DIAMOND DRILLING ASSESSMENT REPORT

ON THE

DEC 2 2 2006

RECE

Gold Commissioner's Office KUTCHO CREEK PROJECT: VANCOUVER, B.C. VORTH CENTRAL BRITISH COLUMBIA

LIARD MINING DISTRICT 104I018, 019, 028, 029 58°12'N : 128°22'W

Jeff#4 (227719), Jeff#6 (227721), Jeff#92 (227802), Jeff#89 (227799), Jeff#96 (227806) SMRB#6 (227641), SMRB#7 (227642), SMRB#13 to #15 (227648 to 227650)

July 1, 2005 to September 15, 2005

WESTERN KELTIC MINES LC. OWNER AND OPERATORA

Prepared by

Anja Weiss, M.Sc. Western Keltre Mines Inc.

Peter M. Holbek, M.Sc. P.G.O. VP Exploration Western Keltic Mines Inc.

and

Rob G. Wilson, P.Geo Exploration Manager Western Keltic Mines Inc.

December 13, 2006

EXECUTIVE SUMMARY

The Kutcho Creek project is situated within the Cassiar Mountains of northern British Columbia, approximately 100 km east of the town of Dease Lake. Claim holdings, which total approximately 5,500 hectares, cover the thickest part of the Permo-Triassic Kutcho Formation which hosts volcanogenic massive sulphide mineralization. Three sulphide deposits have been defined that form a linear, shallow plunging, westerly trend, approximately four kilometres in length.

An infill diamond drill program from July to September 2005 consisted of 31 holes (including 5 branch holes) for 6342m. Within the deposits area, sixteen holes extended and defined the up and down-dip limits to the Kutcho deposit and underlying Foot Wall Zone. Four holes plus four branch holes located the western edge of the Esso deposit, and four holes discovered a higher grade core and western limit to the Sumac Deposit. Regional exploration holes included one hole drilled in the Jack Target which confirmed a weakly mineralized Kutcho horizon 5km east of the Kutcho deposit, and one hole within the North Graben Target that aided in the geological understanding of the rhyolite flow-dome complex and provided partial condemnation of the proposed storage area for waste rock.

The twelve holes drilled into the footwall along the upper edge of the Kutcho deposit will aid environmental and geotechnical data collection to facilitate open-pit mine design. Many of these holes also provided additional information on the up-dip edge of the deposit and confirmed above average grades for a starter pit. The overall resource estimate remains relatively unchanged from 2004.

Sumac deposit drilling returned improved grades compared within the area of historical drilling and defined a higher-grade core to the deposit. The deposit displays good continuity of thickness (+20 m in the core zone) and may be conducive to bulk underground mining methods. Access to the Esso deposit by a decline that transects the Sumac deposit is being considered in the mine development plans and would allow for extraction of the Sumac mineralization if warranted by metal prices.

Drilling west of the Esso deposit provided better definition to the deposit boundaries and contributed to a decrease in tonnage and a decrease in grade relative to the previous estimate. The decrease in metal grades compared to historical estimates is partly considered to be a function of estimation methodology, with the current estimates by interpolated block model methods which incorporate internal dilution compared to the historical, sectional estimates which have no dilution.

Results of the 2005 drilling have been merged into the historical database, and revised resource estimates have been carried out. Measured and indicated resources for the Kutcho deposit are 14.2 million tonnes grading 1.86% Cu, 2.44% Zn, 32.7 g/t Ag, and 0.39 g/t Au. The Esso deposit indicated resource is 2.0 million tonnes grading 2.93% Cu, 5.50% Zn, 69.0 g/t Ag, and 0.63 g/t Au. The Sumac deposit inferred resource is 4.2 million tonnes grading 1.35% Cu, 1.85% Zn, 20.6 g/t Ag, and 0.19 g/t Au.

ii

TABLE OF CONTENTS

.

-

.

-

_

-

-

Page

Executive Summary ii
1.0 Introduction 1
1.1 Property Description and Location1
1.2 Access, Physiography, & Climate
1.3 Exploration History 4
1.4 2005 Exploration Program
2.0 Geology
2.1 Regional Geology
2.2 Property Geology7
2.2.1 Stratigraphy7
2.2.2 Structure 12
3.0 Mineralization and Alteration13
3.1 Deposit Type
3.2.1 Main (Kutcho) Deposit14
3.2.2 Sumac Deposit
3.2.3 Esso Deposit
3.2.4 Other Mineralization16
4.0 2005 Diamond Drill Program19
4.1 Introduction
4.2 Description of Program and Methods20
4.3 Results
4.3.1 Main (Kutcho) Deposit Drill Results
4.3.2 Sumac Deposit Drill Results
4.3.3 Esso Deposit Drill Results
4.3.4 Additional Targets
5.0 Resource Estimation
5.1 Estimation Methods
5.2 Results
6.0 Conclusions
7.0 Recommendations
8.0 References

LIST OF FIGURES

í l

-

-

		Page
Figure 1.1	Location Plan for the Kutcho Project	2
Figure 1.2	Claim Map	3
Figure 2.1	Kutcho Project, Regional Geological Setting	8
Figure 2.2	Schematic Cross Section of the King Salmon Aloochthon	9
Figure 2.3	Kutcho Property Geological Plan	10
Figure 2.4	Reconstructed Stratigraphic Section	11
Figure 3.1	Cross Section through the Kutcho Deposit	17
Figure 3.2	Kutcho Deposit, Internal Sulphide Stratigraphy	18
Figure 4.1a &	4.1b Kutcho Project 2005 Diamond Drill Collars	Back Pocket
Figure 4.2	Kutcho Deposit Longitudinal Section Projected to Plan	24
Figure 4.3	Sumac Deposit Inclined Longitudinal Section	27
Figure 4.4	Esso Deposit Vertical Longitudinal Section	28

LIST OF TABLES

		Page
Table 4.1	Summary of Drill Holes	19
Table 4.2	Drill Collar Data for 2005 Drilling	21
Table 4.3	Significant 2005 Drill Intersections	23
Table 5.1	Silver: Gold Ratios of Grouped Drill Hole Intersections	32
Table 5.2	Measured, Indicated, and Inferred Resource Estimates	33

APPENDICES

APPENDIX I	List of Claims for Kutcho Creek Property
APPENDIX II	Diamond Drill Logs
APPENDIX III	Drill Core Sample Details
APPENDIX IV	Assay Laboratory Certificates
APPENDIX V	Lab Accreditation and QA/QC Overview
APPENDIX VI	Project QA/QC Study
APPENDIX VII	Itemized Cost Statement
APPENDIX VIII	Certificates of Qualifications

1.0 INTRODUCTION

Western Keltic Mines Inc. (WKM) owns 100% of the Kutcho project in north central British Columbia. Exploration of the Kutcho property through the late 1970's and early 1980's defined three sulphide deposits or lenses that form a gently plunging, east-west oriented, linear trend. The largest of the deposits, the Kutcho lens is a near-surface sulphide deposit which contains a historical estimate for diluted, open-pit mineable "reserves" of 14.2 million tonnes grading 1.76% copper, 3.47% zinc, 34.2 g/t silver and 0.34 g/t gold (Wright Engineers Limited pre-feasibility study, 1985). The next sulphide lens to the west is the Sumac deposit which is an, approximately, 10 million tonne sulphide body within which there is 4 to 5 million tonnes of relatively low grade mineralization. The Esso deposit is furthest to the west and lies at a depth of 400 to 500 m. This lens contains an estimated indicated resource of 1.5 million tonnes grading 3.4% copper, 5.7% zinc, 63.4 g/t silver and 0.54 g/t gold as estimated by Esso Minerals Canada (1983).

The 2005 drill program consisted of 6,342m of drilling and was designed to fulfill four objectives:

1) obtain sample material for ABA testing from the near surface Kutcho footwall which would form part of the pit wall and determine the up dip boundary of the Kutcho deposit and depth of surface oxidation,

2) test for mineralized extensions along the down-dip edge of the Kutcho deposit and to the west of the Esso deposit,

3) outline the limits of a copper-zinc rich core zone within the Sumac deposit, and

4) test additional targets on the property.

The results of this drill program are the subject of this report.

1.1 PROPERTY DESCRIPTION AND LOCATION

The Kutcho Creek project area is situated 100 km east of the town of Dease Lake, and 330 km north of Smithers in northern B.C. (Fig 1.1). The property occurs within the NTS map sheet 104I/1 and geodetic coordinates for the center of the claim area are 58°12'N and 128°22'W. The claims cover an area of approximately 5,500 hectares. Overlap between historical claims results in the sum of the individual claim areas being greater than the actual total claim area. Claims are shown in Figure 1.2 and are listed in Appendix I. Western Keltic Mines Inc. owns the claims through two separate purchase agreements. One agreement is with Barrick Gold Inc., a subsidiary of Barrick Gold Corporation, and AMI Resources Inc who had 80% and 20% ownership, respectively, in all of the claims except the 16 SMRB claims and the 30 KC claims, which are the subject of the other agreement with Sumac Mines Inc., a subsidiary of Sumitomo Metal Mining Co. Ltd. The claims are subject to net smelter return royalties (NSR); in the case of the Barrick claims the NSR is 2% and in the case of the Sumac claims the NSR is 3% beginning 36 months after achieving Commercial Production.

Western Keltic Mines Inc. has formally entered the Kutcho project into the British Columbia Environmental Assessment process as a step toward obtain permitting for a mining operation. Initial consultations with all appropriate government agencies, both provincial and federal, have been held along with First Nations consultations and open houses. Water balance, weather, fish, and wildlife baseline studies are in progress.

Figure 1.1 Property Location Plan

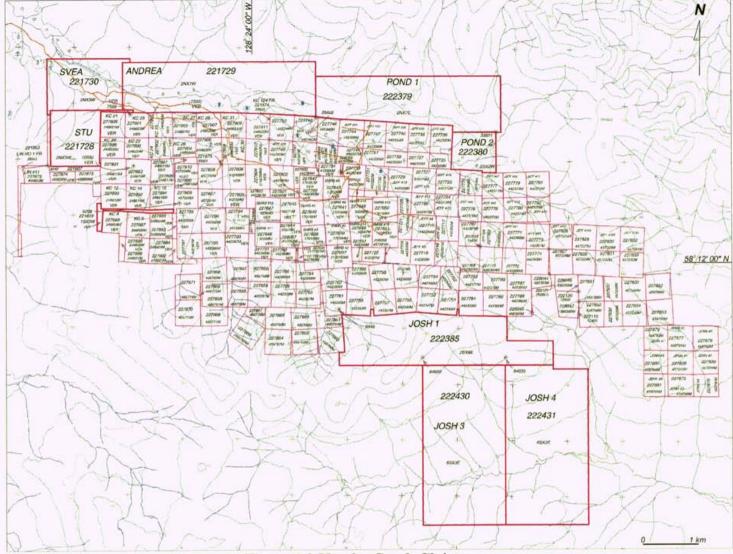


Figure 1.2 Kutcho Creek Claim map

1.2 ACCESS, PHYSIOGRAPHY, & CLIMATE

Access to the property is by fixed-wing aircraft from Smithers or Dease Lake to the 1,100 metre long gravel airstrip located at the junction of Kutcho and Andrea Creeks. The deposit area of the property is connected to the airstrip by an 8 km road (currently this road has had culverts removed and is only passable to four wheel drive vehicles with good clearance). Land access via the 125 km tote road to Dease Lake is available to four wheel drive vehicles during late summer and early fall but passage is somewhat dependant upon weather due to extensive muddy sections.

The property is located within the Cassiar Mountains, just to the north of the continental divide between the Arctic and Pacific watersheds. The area is moderately rugged with elevations ranging from 1,400 to 2,200 metres. Most of the area is alpine with tree line at approximately 1500 metres. Structural fabric and two periods of glaciation have produced an intersecting pattern of east-west and north-south ridges and valleys. The major valleys are commonly filled with a deep layer of glacial till and outwash gravels.

Winters are cold and dry, while the summers are cool and moist. Average annual temperature is -1°C with average annual precipitation of 50 cm, approximately half of which occurs as snow. Snow cover can persist for nine months of the year, particularly on north facing, shady slopes.

1.3 EXPLORATION HISTORY

Mineralization was first discovered on what was to become the Kutcho property in 1968 by an exploration joint venture operated by Imperial Oil Ltd. The discovery was made by prospecting in response to anomalous stream sediment samples collected during a regional drainage survey. Twenty claims were staked by W. Melnyk directly over the as of yet undiscovered main Kutcho sulphide deposit. These claims were allowed to lapse when the other partners in the joint venture declined to fund further exploration. Imperial Oil returned to the area in 1972, after the statutes of the joint venture agreement expired, in order to restake the area. However, Sumac Mines Ltd. (Canadian exploration subsidiary of Sumitomo) had conducted stream sediment sampling earlier that season and in response to anomalous samples, R. Britten staked 8 'two-post' claims along the anomalous stream, and an additional 8 claims (SMRB claims) along the geological strike direction resulting in the cruciform claim outline overlying the western part of the main Kutcho sulphide deposit and the whole of the Sumac deposit. Imperial Oil (later becoming Esso Minerals Canada Ltd.) staked a much larger area encompassing Sumac's claims.

Beginning in 1973, exploration work was carried out by both Sumac and Esso and early success prompted additional staking resulting in the claim boundaries more or less as they are today. Diamond drilling commenced in 1974 and by 1982 approximately 60,000 metres had been drilled by both companies, defining three sulphide lenses. Additionally, Esso had drilled a number of exploration targets in other areas of the property with moderate technical success. Environmental, metallurgical and engineering studies were begun by both groups in 1980. A partnership agreement on engineering and development work was signed by Esso

and Sumac in 1983 but was retroactive to 1981; the year Sumac began work driving the adit in order to collect a 100 tonne bulk sample. The agreement was, in essence, a 50:50 joint venture for development work, and culminated in a pre-feasibility study by Wright Engineers Limited in 1985. The pre-feasibility study indicated an 11.3% internal rate of return when using a copper price of US\$0.95. Given the risk factors involved and long term price projections for copper below the 95 cent level, the companies put the project on hold pending further exploration results. Limited exploration on Esso's claims south of the main mineralized trend between 1985 and 1988 and the numerous earlier geophysical surveys indicated a reduced potential for additional open pit mineralization.

In 1989, Esso sold most of its mining assets to Homestake Canada Ltd. In 1990, Homestake optioned the Kutcho property to American Reserve Mining Corporation who funded a \$1.1M exploration program (Homestake remained the operator) which included 7,031m of drilling in 28 holes (Holbek et al, 1991) mostly in outlying target areas and thereby earned a 20% interest. Exploration was successful in confirming the presence of extensive areas of favourable geology and alteration indicative of hydrothermal activity, but failed to discover zones of potentially economic mineralization. For example, 10 km to the southwest of the Kutcho deposit, a narrow zone of cryptocrystalline massive pyrite with a strike length in excess of five kilometres was intersected in four widely spaced drill holes but was barren of base or precious metals. American Reserve carried out engineering studies but did no further exploration work and relinquished the option in 1993 but retained a 20% interest in Homestake's property. The property was optioned to Teck Cominco Metals Ltd. in 1992. Teck Cominco carried out deep penetration EM geophysical surveys (UTEM) over the Esso zone with the goal of defining additional conductors along the Kutcho trend. Due to extensive cover of conductive argillaceous units in the hanging wall, the UTEM system was unable to detect the Esso deposit or other conductors at depth, consequently Teck-Cominco dropped the option. Homestake was purchased by Barrick Gold Corp in 2003.

Extensions of the Kutcho stratigraphy to the west have been staked and worked by various companies in the past. Shortly after the discovery of the Kutcho deposits, Noranda staked the Kutcho formation to the west of Kutcho Creek. Noranda conducted geophysical surveys, and carried out a small drill program. The claims were allowed to lapse and were re-staked in 1995 by Gary Belik. Mr. Belik carried out a detailed mapping program and optioned the claims to Atna Resources in 1997. Atna conducted UTEM geophysical surveys and an extensive drill program. Results of Atna's work were mixed and although no deposits were discovered, significant but weak to moderately mineralized alteration zones were intersected. Structural complexity and lack of clear geophysical targets prevented additional work and the option was terminated.

Negotiations by Western Keltic Mines to purchase the property from Barrick and Sumitomo were initiated in 2003 and concluded in early 2004. Western Keltic carried out diamond drilling within the Kutcho and Esso deposits during 2004 to confirm historical results and obtain material for metallurgical studies (Holbek and Wilson, 2005).

5

1.4 2005 EXPLORATION PROGRAM

A diamond drilling program was undertaken from early July to mid September on the Kutcho property to accomplish the objectives set out in the Introduction. A total of 6,342 metres were drilled in 31 diamond drill holes at a total cost of approximately \$1 million. Drilling in the Kutcho deposit area totalled 1,819.7m in fifteen NQ diameter holes and one NQ/BTW diameter hole. Twelve holes, totalling 725.2m were drilled along the upper edge of the Kutcho deposit to obtain environmental and geotechnical data to aid in open-pit design. Four NQ holes hole totalling 1724.3m were drilled into the Sumac deposit. This total includes one hole that was abandoned near surface. Three NQ drill-holes, one NQ/BTW hole and four BTW branches, totalling 2,192.6m were drilled in the Esso deposit area. One 246m NQ hole was drilled in the Jack Target – Kutcho Horizon 5km east of Kutcho deposit, and one 358.3m NQ hole was drilled into the North Graben Target / waste rock disposal area.

Approximately 454 kg of drill core was packaged in nitrogen to prevent oxidation and shipped SGS Lakefield Research in Ontario for metallurgical testing. Metallurgical results are the subject of a separate report. A total of 499 core samples were analyzed by at ALS Chemex Laboratories using ICP methods for 33 elements following an aqua-regia digestion. Copper, zinc, or silver values above the ICP detection limits (50,000 ppm for Cu and Zn, and 200 ppm for Ag) were assayed by atomic absorption methods following an aqua-regia digestion. All samples were analyzed for gold by fire assay on 30g sub-samples and sulphur was analyzed by Leco furnace. Specific gravities (SG) on many samples were measured in the field by weighing the sample in air and in water, with the SG calculated using the formula (wt in air – wt in water)).

The exploration crew of 12 people consisted of one senior geologist, one geologist/camp manager, one geologist/surveyor, one junior geologist, one core splitting/data entry person, one cook/first aid attendant, two pad building/camp maintenance people, two diamond drillers, one of which was the drill foreman, and two driller's helpers. Fuel, drilling equipment, and camp supplies were mobilized into the property by Delta tundra-tired vehicles using the tote-road from Dease Lake. The drill contractor was Hy-Tech Diamond Drilling of Smithers, B.C. The drill was moved between drill sites by a Skidder owned by DJ-Drilling, and by Hughes 500D helicopter owned by Prism Helicopters. The core was transported by a Unimog-Utility-Truck owned by Lo-Profile Exploration.

2.0 GEOLOGY

2.1 REGIONAL GEOLOGY

The Kutcho property lies within the King Salmon Allochthon (KSA), a narrow belt of Permo-Triassic island-arc volcanic rocks and Jurassic sediments, sandwiched between two northerly dipping thrust faults: the Nahlin fault, to the north and the King Salmon fault to the south (Fig. 2.1). Penetrative foliation and axial planes of major folds are parallel to these east-west trending, bounding faults. The belt of volcanic rocks is thickest in the area where it hosts the volcanogenic massive sulphide deposits; due in part to primary deposition, but also to stratigraphic repetition by folding and possibly, thrusting. The KSA is terminated to the east, near the eastern edge of the property, by the strike-slip Kutcho fault (Gabrielse, 1978) but extends to the west for hundreds of kilometers, however, Kutcho Formation rocks thin to the west and are poorly exposed within the area beginning 10 km to the west of Kutcho Creek and ending near Dease Lake.

Stratigraphy of the KSA consists primarily of the Kutcho Formation which is overlain by the limestone of the upper Triassic, Sinwa Formation, which in turn is overlain by sediments, predominately argillite, of the Lower Jurassic Inklin Formation. Major folds are clearly delineated by the Sinwa limestone or the contact between the Kutcho and Inklin Formations where the Sinwa Fm. is absent (Fig. 2.2).

2.2 PROPERTY GEOLOGY

2.2.1 Stratigraphy

Stratigraphy of the Kutcho property has been described by Thorstad (1983), Bridge (1984), and Holbek (1985) and will only be briefly reviewed here. A property plan map is given in Fig. 2.3 and a generalized re-constructed stratigraphic section is presented in Fig. 2.4. Stratigraphy is best understood in the upper part of the Kutcho Formation where units are better exposed and drill information is available. The footwall stratigraphy particularly away from the deposit area is only known from surface mapping.

The lowest rocks in the section are exposed on the southern ends of Imperial and Sumac Ridges and include interlayered (interfolded?) basalt, basaltic tuff and wacke, rhyolitic lapilli tuff and possible trondhjemite. The mafic rocks are fine to very fine grained, chloritic, equigranular to weakly porphyritic and are commonly given the field term of greenstone. The lapilli tuffs are pale grey, siliceous and commonly contain very fine quartz phenocrysts and lenticular fragments from 0.5 to 3 cm in length. Textures can only be seen on weathered, but lichen-free, surfaces. The trondhjemite unit is somewhat equivocal. It is described by Pearson and Pantaleyev (1975) and Bridge *et al*, (1983) as a fine grained, equigranular, plagioclase rich unit; however it is very similar to some of the tuffaceous units as well. A weak but pervasive carbonate-chlorite-pyrite or propylitic alteration of this unit is subtle but discernable.

Rocks overlying the greenstone-lapilli tuff package have been termed the "ore-sequence" and consist of lapilli tuffs, crystal-lithic tuffs, quartz and quartz-feldspar crystal tuffs. Away from the deposit area, these units tend to be thin, interbedded and variably but weakly altered. Fine quartz-crystal ash tuff with silica rich laminations and rare thin zones of ferroan dolomite typically mark the distal exhalative zone. The sulphide zones occur at, or near to, the contact between footwall lapilli tuff and hanging wall quartz crystal tuff. In general both lapilli fragments and phenocrysts are much coarser grained in the vicinity of the deposits and become progressively finer grained to the south and west. The quartz-feldspar crystal tuff is quartz-rich near the deposits and to the south becomes more feldspar rich.

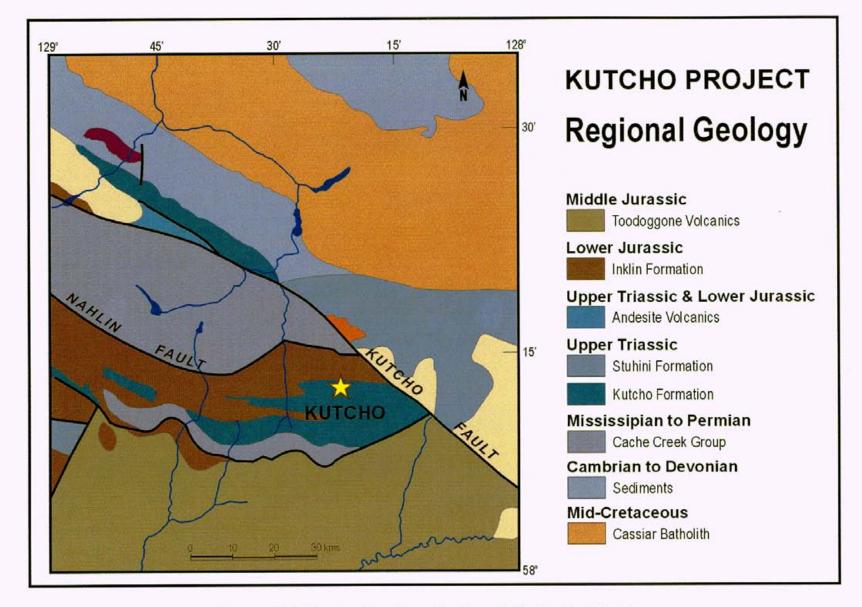
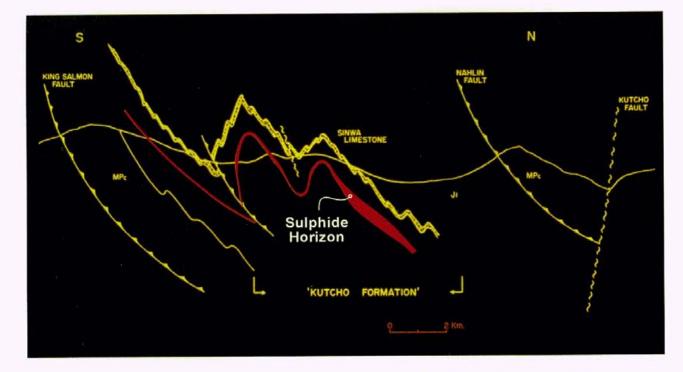



Figure 2.1 Kutcho Project, Regional Geological Setting

A large zone of feldspar crystal tuff with almost no free quartz occurs a few hundred metres south of the sulphide zones and it is indeterminate whether this unit is footwall, hanging wall, or a facies equivalent to the quartz-feldspar crystal tuff. An interesting feature is the occurrence of a coarse breccia texture within the quartz-feldspar crystal tuff immediately over the sulphide zones. The breccia fragments are typically sub-round from 2 to 30 cm in size and are identical to crystal tuff matrix except for an increase in the amount of epidote from one or two to closer to ten percent. This feature has been interpreted to be a debris flow of semi-consolidated crystal tuff shed from a flow dome complex and trapped in the graben or half-graben like structure which hosts the sulphide lenses.

Rocks between the ore sequence and the overlying conglomerate unit are referred to as the Tuff-Argillite Unit (TAU) and consist of gabbroic to basaltic intrusive sills and dykes, greywacke and argillite. In the area of the deposit the gabbroic units are commonly coarse-grained and are commonly referred to as metagabbro. Higher in the section and both to the east and west from the Kutcho deposit this mafic unit becomes much finer grained and an intrusive origin is not so clearly identified. The amount of argillite increases in a westerly direction supporting the concept that this direction is towards the marine basin. The base of the TAU is interpreted to be a thrust fault and there are numerous other fault zones within the unit as noted in drill core and the adit. The basal thrust plane does not cause significant offset of the Sinwa limestone in the fold nose to the west which implies a scissor type action with increasing movement to the east.

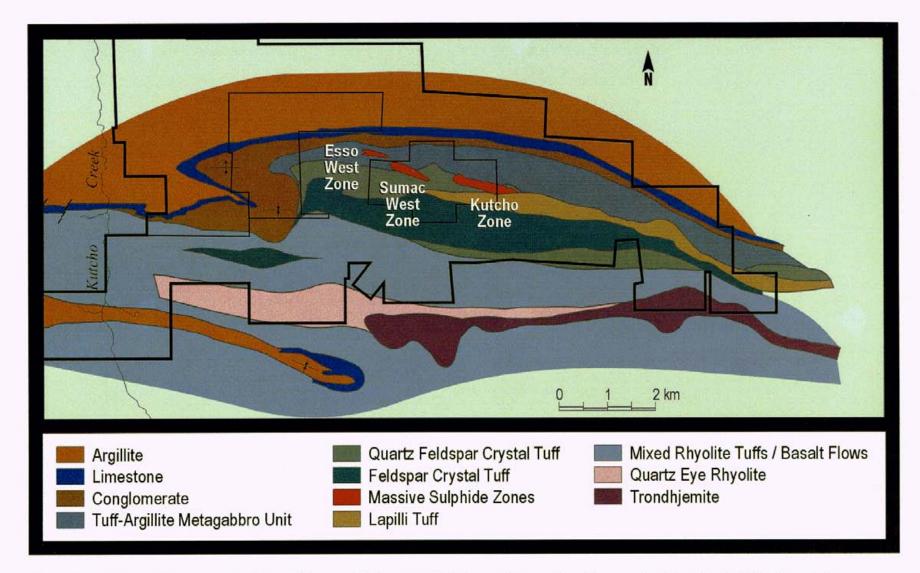


Figure 2.3 Kutcho Property Geological Plan (with historical claim outline and surface projection of sulphide deposits).

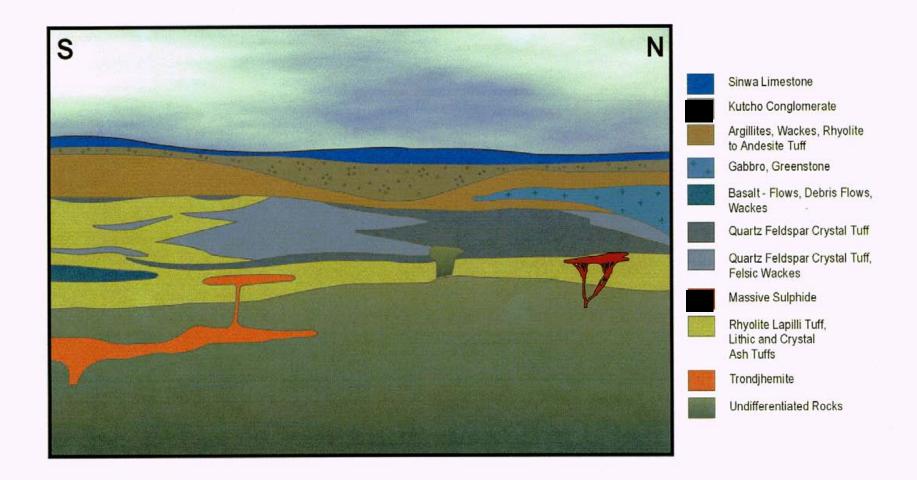


Figure 2.4 Reconstructed Stratigraphic Section. (Vertical exaggeration approximately 10x)

Overlying the TAU, and truncating it to the west is the Kutcho Conglomerate. This unit is a heterolithic, fragment-supported conglomerate composed of sub-rounded clasts, ranging in size from 1 to 38 cm (long axis) and derived from all of the underlying lithologies. The conglomerate is conformably overlain and transitional into the Sinwa limestone, which in turn appears to be conformably overlain by Jurassic aged Inklin Formation argillite, although it is quite possible that there could be a contact between Kutcho Formation argillite and Inklin Formation argillite higher in the section which would be difficult to spot and could be unconformable.

The Kutcho Formation is of Upper Triassic to uppermost Permian in age. Thorstad (1983) determined an Upper Triassic age on the basis of Rb-Sr dating of volcanic rocks and regional stratigraphic constraints. Subsequent work by F. Childe at the Mineral Deposit Research Unit of The University of B.C. in 1996 suggest ages in the lower Triassic to uppermost Permian age range.

2.2.2 Structure

Rocks of the Kutcho Formation are characterized by penetrative axial planar foliation that has a relatively constant strike direction of 270 to 290 degrees with northerly dips from 45 to 65 degrees. Minor but systematic changes in foliation from the east to west suggest low amplitude buckling of the fold axes. There appears to be a tendency for the foliation dip to decrease with structural depth indicating that the axial planes are convex to the south.

Folds are open to tight, asymmetrical, inclined and verging to the south. Fold plunges range from 0 to 30 degrees in a westerly direction. Folds are most evident in well-bedded, competent units and therefore spatial distribution of the fold data is heavily biased to the western property area where these units predominate.

Fold hinges outlined by the Sinwa limestone unit on Conglomerate Ridge, immediately east of Kutcho Creek, are difficult to trace in an easterly direction. Structural data (Holbek, 1985) indicate that the folds are cylindrical and therefore should be continuous within the depth of exposed stratigraphy. However, lithological competency contrasts are likely to result in disharmonic folding (Holbek and Heberlein, 1986) causing discontinuity of the axial plane towards the core of the fold. Stratigraphically thicker units will tend to produce a series of lower amplitude folds toward the core of the structure which may explain why the axes of folds so clearly outlined by the limestone unit on the western part of the property are not at all evident to the east, in the vicinity of the Sumac and Kutcho deposits. Therefore, a certain degree of flexibility needs to be maintained regarding structural and stratigraphic interpretations in the vicinity of the sulphide deposits.

Two aspects of the structure that critically affect stratigraphic interpretations are (i) the number and size of foliation parallel thrust faults, and (ii) the degree to which the folds are propagated through the stratigraphic sequence. Neither of these aspects can be determined independently and therefore there remains considerable scope to re-interpret stratigraphic position of various units locally. Foliation parallel thrust faults are difficult to detect from outcrop but can be inferred from missing stratigraphy, contact geometry, shearing and

topographic evidence. Faults of this type are consistent with the deformation style and are considered to be prevalent over the property area.

3.0 MINERALIZATION AND ALTERATION

There are three known deposits which comprise the Kutcho project and form a westerly plunging linear trend (see Figure 2.3). From east to west the deposits are termed the Main deposit, the Sumac deposit and the Esso deposit (these deposits were previously termed Kutcho, Sumac West and Esso West). The Main deposit outcrops at its eastern end whereas the Esso deposit occurs at depths greater than 400 m below surface.

3.1 **DEPOSIT TYPE**

Mineralization of the Kutcho project is part of the volcanogenic massive sulphide (VMS) family of deposits. These deposits are a major source of copper, zinc, lead, silver and gold around the world. Speculation about the origin of these deposits goes back to mid 1850's when various French and English scientists postulated chemical precipitation from seafloor volcanic activity (Stanton, 1991). In the early 19th century Japanese workers documented astute observations of the sulphide textures preserved in the Kuroko deposits of Japan and the association of these deposits with ryholite domes and articulated the "submarine sinter theory". However, this work did not seem to attract much attention and genetic theories or models of ore formation of this deposit type did not really gain international acceptance until similar observations were published by other workers world wide in the 1950's and 1960's. Discovery of the Red Sea brine deposits in 1965 provided substantial impetus for the proponents of the "submarine exhalative" model. A certain amount of controversy between syngenetic and epigenetic theories continued through the 1970's, but with the advent of deepsea submersibles and the filming of black and white "smokers" or hydrothermal vents in volcanic rift zones on the sea-floor, scientific models could go to a new level of detail.

VMS deposits have been classified into various subtypes depending upon the composition of the host rocks and the mineralization, and the tectonic setting of origin. The Kutcho deposits are VMS deposits of the Kuroko type or Felsic volcani-siliciclastic depending upon the classification scheme. Mineralization is related to felsic volcanism in island-arc or back-arc tectonic setting. Perhaps the most significant feature of VMS deposits from an exploration point of view is their tendency to occur in clusters. Larger VMS camps can have up to 25 discrete deposits, and mineralized districts are common.

Features of the Kutcho deposits suggest that they formed at or very near to the water-seafloor interface in a structurally controlled depression, likely a half graben type structure. The Kutcho deposits have some features that are not common: the absence of lead and barite is likely due to the low potassium content of the volcanic host rocks (and presumably the associated rhyolite dome) and abundant carbonate of probable exhalative origin.

Alteration associated with VMS deposits is well documented and provides a valuable exploration tool, in that the area of alteration is much larger (up to a factor of 10 to 100) than the actual sulphide deposit thereby providing a much larger exploration target. Extensive

studies of the alteration around the Main (Kutcho) deposit have been undertaken and the chemical composition of the alteration is well-zoned about the hydrothermal vent area. This zonation allows geochemical analysis of drill core, within the alteration zone, to provide vectors towards the hydrothermal vent area and, hopefully, the sulphide deposits.

Geophysical techniques such as electro-magnetic (EM) and gravity surveys are useful for locating conductors or possible sulphide concentrations. EM methods can be used in airborne and ground surveys but can also be used within drill holes to locate "off-hole" conductors thereby effectively increasing the search area of a drill hole. Many airborne and ground geophysical surveys have been completed on the Kutcho property and most high-priority targets have been investigated.

3.2.1 Main (Kutcho) Deposit

The Main (Kutcho) deposit has an elliptical, lenticular shape with approximate dimensions of 1,500 m in length, 260 m wide (down-dip) and 20 (34 maximum) metres thick. The long axis of the deposit plunges to the west at about 12 degrees, just slightly less than the regional fold axes. The deposit is approximately conformable with stratigraphy. There is a gentle warping of the deposit such that the dip of the deposit changes from east to west and north to south. The shallowest dip, about 38°, occurs at the southeastern edge and becomes progressively steeper, to about 63°, at the northwestern edge. In general, the up-dip edge of the sulphide lens is narrow and pinches out, whereas the down-dip edge is thick and interlayered with tuffaceous rock (Fig. 3.1).

Sulphide mineralogy of the deposit is relatively simple consisting of pyrite, chalcopyrite, sphalerite and bornite, with minor sulphide minerals chalcocite, tetrahedrite, diginite (and related minerals), galena, idiaite, hessite and electrum. Gangue minerals include quartz, dolomite ankerite, sericite, gypsum and anhydrite. Fluorite and barite have been observed but do not occur in volumetrically significant amounts.

Interpretation of the shape of the sulphide zone, taken together with the observed volcanic and depositional textures of the enclosing rocks, suggest that the sulphide mineralization was deposited in a structural depression, likely a half-graben type structure. The internal stratigraphy of the Main deposit was determined by detailed drill core logging (Holbek and Heberlein, 1986) along a single longitudinal section of drill holes and is given in figure 3.2. The deposit appears to have formed from three hydrothermal-depositional cycles that begin with barren pyrite which grades into a copper rich middle and zinc rich top. Depositional cycles are commonly separated by layers of exhalative quartz and/or carbonate and minor volcanic ash, however, continued hydrothermal activity results in sulphide replacement mineralization which tends to blur grade and cycle boundaries in some areas. Additional features such as an irregular depositional surface and localized slumping of sulphide mineralization or chimney collapse, and late stage (post depositional) hydrothermal activity also cause complexity to the internal sulphide stratigraphy. Areas of late overprinting by oxidized copper species and enrichment in precious metals are interpreted as indicators of vent areas and occur along a linear trend on the down-dip side of the deposit with two "hotspots" near each end of the deposit. However, no areas of 'classical' copper-rich footwall stringer mineralization have yet been identified by drilling.

The upper contact of the sulphide mineralization is sharp with almost no sulphide minerals occurring in the hanging wall rocks with the exception of scattered coarse grains of porphyroblastic pyrite. However, sericite alteration of feldspar in the hanging wall is gradational from very weak at distances of up to 50 m above the sulphide contact to intense near (from 1 to 10m above) the sulphide zone. It is common for a small shear zone to occur at the sulphide-schist contact which varies from 20 to a maximum of 200 cm in thickness and in many drill holes carries some grade. The base of the deposit consists of nearly barren massive pyrite with interstitial quartz. The contact between 'ore' and the footwall pyrite zone can be either gradational or sharp. Below the footwall pyrite zone is quartz-sericite schist with bands of generally barren, massive to semi-massive pyrite. The footwall pyrite content diminishes with depth away from the deposit but extends to a maximum depth of 200 m below the central part of the deposit. Although the footwall material appears to be of low competence in the drill core it holds up very well in the underground adit.

3.2.2 Sumac Deposit

The Sumac deposit has not previously received much attention due to its relatively low grades. The shape of the deposit was primarily taken from conductance-contours generated by a 'Mis-la-Mass' or chargeability geophysical survey carried out during the early days of exploration. A chargeability survey is completed by putting an electrical current into a sulphide zone and measuring the change in the magnetic field due to electrical flow through the conductive (sulphide-rich) rocks.

Sumac sulphide zone mineralization is massive to banded pyrite with varying amounts of chalcopyrite and sphalerite, but lacking in bornite. The deposit core is oval, 300m in length and 200m in width and varies from 20 to 32m in thickness. Hanging wall alteration is as the Main deposit, but contains less pyritic banding in the footwall, progressing much sooner into the chlorite(?) altered lapilli ash tuff.

An inferred resource estimate for the Sumac deposit quoted by Sumac Mines and Esso Minerals was based on a polygonal method using data from 10 drillholes at 100 to 200m spacing. That resource was 5.3 million tonnes grading 1.09% Cu, 1.62% Zn and 14.4 g/t Ag. As this resource was not deemed to be economic very little additional work was carried out. A new resource estimate based upon 14 holes which includes the 2005 drilling is presented in Section 5.2.

3.2.3 Esso Deposit

The Esso deposit was discovered as a natural consequence of following the trend in mineralization through the Kutcho and Sumac areas. The deposit occurs between depths of 400 and 520 m below surface. The Esso deposit, like the others, is an elongate lens shape with current dimensions of approximately 680 m in length, up to 110 m in width and up to 24 m in thickness. The deposit consists of two lenses; a larger lower lens and a smaller upper

lens. Current drilling results suggest that the two lenses are connected rather than displaced by faulting. Similar to the Sumac deposit, there is both a zonation in thickness and grades from the central area of the main lens. Mineralization in the Esso deposit is higher grade than either the Main or Sumac deposits, but displays a similar mineral zonation with either copper or zinc rich layers, or zones. Hangingwall and footwall alteration is as the Main deposit, and it is deduced from three dimensional modeling that the two deposits either lie along the same stratigraphic horizon, or are only marginally separated.

A resource estimate by Esso (Didur, 1980) using the sectional method had the following results: 1.63 million tonnes grading 3.42% Cu, 6.5% Zn, 62.7 g/t Ag and 0.53 g/t Au in the main part with 0.46 million tonnes grading 2.1% Cu, 3.13% Zn, 46.5 g/t Ag and 0.43 g/t Au in the upper zone. Drill holes were spaced approximately 10 to 30 m along sections and sections are variably spaced, between 60 and 120m. The above estimate is based on 43 drill intersections and includes idealized cross sectional shape interpretations of the deposit. Mineralization which was located within 30 m of a drill hole was classified as indicated*, with the remainder classified as inferred*. Approximately 50% of the mineralization was within 30 m of a drill hole. Subsequent, published estimates by Esso, for which documentation is unavailable, state a resource of 1.5 million tonnes grading 3.37% Cu, 5.71% Zn, 63.4 g/t Ag and 0.54 g/t Au. It is presumed that this estimate used a more conservative ore body shape and may have been estimated using geostatistical interpolation. The estimate was classified by Esso as indicated*. Additional 2005 drilling in the Esso deposit area provided better definition to the deposit boundaries. See Section 5.2 for updated results.

3.2.4 Other Mineralization

Other zones of mineralization include the Footwall zone, and the Jenn area. The Footwall zone occurs, as the name implies, in the footwall of the Kutcho lens, approximately 100 m below and up-dip from the area near the eastern Esso-Sumac claim boundary. The FW zone is relatively narrow, at 2-5 m thick, and relatively zinc rich. A resource estimate by Didur (1979) using a polygonal method is 230,000 tonnes grading 1.47% Cu, 5.52% Zn, 43.7 g/t Ag and 0.4 g/t Au. This resource is classified as inferred*.

The Jenn claims are on the eastern end of the property and received a fair amount of attention by Esso. Although significant alteration and some local mineralization were intersected, no resources have been defined in the Jenn area. Folding appears to limit the down-dip potential in this area but revisions to the structural interpretation are likely and detailed geophysical surveys may enhance the area's potential.

16

^{*} Although the resource estimates described above pre-date the Standards on Mineral Resources and Reserves Definitions and Guidelines adopted by CIM council on August 20th, 2000, the use of the terms: Indicated and Inferred have been used and have the same meanings as the CIM definitions.

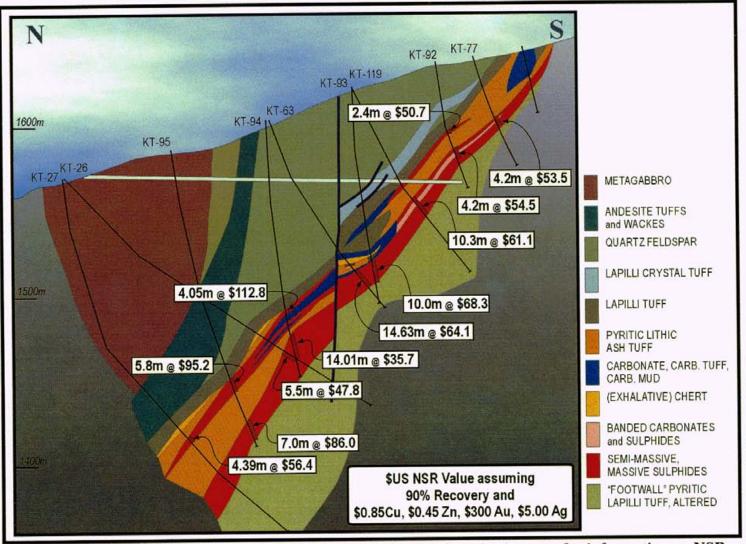


Figure 3.1 Cross Section through the central part of the Kutcho deposit. (see text for information on NSR value of intersections)

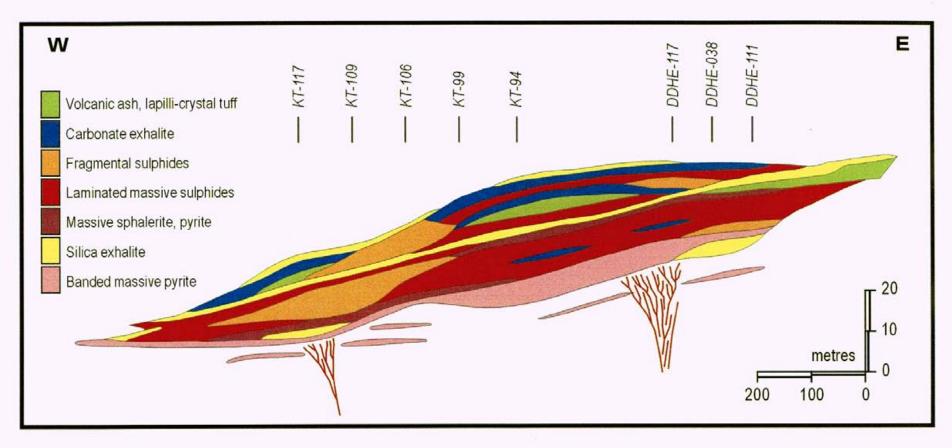


Figure 3.2: Kutcho Deposit, Internal Sulphide Stratigraphy

4.0 2005 DIAMOND DRILL PROGRAM

4.1 INTRODUCTION

Approximately 70,000 metres of diamond drilling in 276 drill-holes and 39 wedge branches had been completed on the property prior to 2004. Most of the drilling was completed between 1974 and 1983 (Esso Minerals and Sumac Mines) with an additional 7,031 metres in 28 exploration holes completed by ARM and Homestake in 1990. During 2004, 7936m in 41 holes were drilled in the Main and Esso deposit areas. In 2005, Western Keltic drilled 31 diamond drill holes for 6342.0 metres in the Main, Sumac and Esso deposits.

The Main deposit is defined by 196 drill holes (102 by Sumac Mines 49 by Esso Minerals, and 45 by Western Keltic). The Esso deposit is not yet fully defined, but there were 49 intersections in the area. Prior to 2005, the shape of the Sumac deposit had been largely determined from geophysical data as there were only 10 drill holes in and around the deposit. The four holes drilled into the deposit in 2005 helped to refine the shape but additional drilling is needed before that deposit is fully defined.

Drill-hole collar locations are shown in plan on figure 4.1. Sixteen holes totaling 1,819.7m were drilled into the Main deposit (WK05-39 to 52 and 57, 58), of which twelve holes, for 725.2m were drilled along the deposit's upper edge. This drilling was designed to obtain environmental and geotechnical data to aid in open-pit design. The remaining four holes tested the down dip potential for deposit expansion.

Four holes totaling 1724.3m were drilled into the Sumac deposit (WK05-59 and 62 to 64). They were drilled to investigate the possibility of a higher grade core to the deposit. Four holes and two "wedge" branches, totaling 2,192.6m were drilled in the Esso deposit area (WK05-53, 54, 54B1, 60, 60B1, and 61). These holes were designed to test the deposit's western boundary. One 246m hole was drilled in the Jack Target – Kutcho Horizon 5km east of Main deposit (WK05-55). Also drilled was a 358.3m hole into the North Graben Target (WK05-56), a potential waste rock dump site. Failed holes include one Esso branch which was abandoned due to fault gouge and one Sumac hole which was aborted after 14.3m due to an incorrect drill azimuth. Table 4.1 summarizes drilling by all companies to date.

Company	Kutcho lens	Sumac lens	Esso lens area	Exploration/ Other	Total
Sumac	102	10		16	128
Esso	49		24 (63*)	45	118 (157)
ARM	2			26	28
WKM	45	5	20	2	72
Total	198	15	44 (83)	89	346 (385)

* 24 pilot holes plus 39 wedge branches.

4.2 DESCRIPTION OF PROGRAM AND METHODS

Hy-Tech Drilling out of Smithers, B.C. was contracted to conduct the drilling using a Tech 5000 drill. The initial holes were drilled from a skid mounted drill shack that was moved by a skidder and for the final portion of the program the drill was removed from the skid shack and transported by helicopter. Core from 2005 drilling was logged at the core-farm and stacked there on old drill rod which is elevated on timbers. Core boxes have been labeled with aluminum tags engraved with drill-hole, box and depth information.

Drill-hole collars from 2004 and 2005 programs were surveyed by Marek Mroczek (Min. Eng.). A travers survey consisting of three points was set up at the Kutcho deposit. UTM coordinates were obtained by a GPS survey with the Promark2 GPS system in static survey mode. After the survey, the data from the GPS set was transferred to Ashtech Solution software for processing. Collar surveying was conducted by an electronic total station Topcon GTS 226. Historic holes were re-surveyed to convert the relative (mine) grid coordinates, into UTM NAD 83 Zone 9 coordinates. Table 4.2 summarizes the drill-collar data.

Update: The WKM holes and a selection of historic drill collars were resurveyed in 2006 by McElhanneyProfessional Surveyors as part of a larger survey program. Though the two data sets are close in absolute value, the McElhanney survey results have been adopted and thus substituted to keep the data consistent

The drill core was geologically logged using a modified GEOLOG style system. Drill logs are located within Appendix II.

Mineralized drill core intersections were sawn in half with half the core preserved for metallurgical testing by packing in nitrogen filled, sealed plastic bags which were then packed within airtight, nitrogen filled plastic pails. The remaining half core was again sawn in half (quartered) with a quarter of the core sent for assay and the final quarter was returned to the core box as legacy samples. Sample details are contained within Appendix III which contains a list of the 499 core and standard plus blank (QA/QC) samples submitted. Also contained in Appendix III are specific gravity measurements which were done on the quartered core by the process of weighing the sample in air and then in water. Assay certificates are located within Appendix IV, and Appendix V contains the lab accreditation details. Table 4.3 summarizes the significant intersections of the drill program.

Table 4.2: Drill Collar Data for 2005 Drilling Mine

	UTH Foot	Mine									
HoleId	Deposit	UTM North	UTM East	North	Mine East	Elevation	Azimuth	Dip	Total Depth (m)	Drilled Length (m)	Core Size
WK0539	KL	6451995.07	537773.19	22683	38296	1562.21	180	-51	307.5	307.5	NQ2
WK0540	KL	6452197.08	537162.11	22891	37687	1527.17	180	-67	344.1	344.1	NQ2
WK0541	KL	6452038.30	537482.55	22729	38006	1563.67	180	-63	222.2	222.2	NQ2
WK0542	KL	6451878.00	537225.19	22571	37956	1603.65	180	-70	69.5	69.5	NQ2
WK0543	KL	6451840.56	537302.42	22533	37823	1614.86	180	-62	69.5	69.5	NQ2
WK0544	KL	6451851.50	537358.88	22547	37881	1622.35	180	-72	76.2	76.2	NQ2
WK0545	KL	6451743.73	537649.24	22433	38170	1637.21	180	-80	57.9	57. 9	NQ2
WK0546	KL	6451729.39	537777.46	22417	38298	1642.87	180	-55	51.5	51.5	NQ2
WK0547	KL	6451719.65	537984.17	22405	38505	1629.93	180	-60	53.9	53.9	NQ2
WK0548	KL	6452196.00	537159.00	22749	37956	1531.00	180	-74	220.7	220.7	NQ2/BTW
WK0549	KL	6451922.35	537059.29	22617	37581	1551.20	180	-80	51.5	51.5	NQ2
WK0550	KL	6451922.35	537058.70	22617	37581	1551.20	180	-48	54.6	54.6	NQ2
WK0551	KL	6451958.10	536993.21	22653	37515	1518.06	180	-80	54.6	54.6	NQ2
WK0552	KL	6451957.30	536993.21	22408	38730	1518.06	1 8 0	-45	54.6	54.6	NQ2
WK0553	EW	6452622.48	535107.69	23336	35636	1471.34	180	-87	260.3	260.3	NQ2
WK0554	EW	6452621.98	535108.32	23336	35636	1471.46	180	-80	478.2	478.2	NQ2/BTW
WK0554B1	EW	6452621.98	535108.32	23336	35636	1471.46	180	-67	447.8	222.2	BTW
WK0555	JT	6450434.00	543304.00	21108	43800	1621.00	190	-60	246.0	246.0	NQ2
WK0556	NG	6452161.35	538675.02	22840	39199	1533.97	180	-60	358.3	358.3	NQ2
WK0557	KL	6451723.56	538210.50	22408	38730	1608.48	180	-90	67.7	67.7	NQ2
WK0558	KL	6451724.21	538210.51	22407	38730	1608.54	180	-45	63.7	63.7	NQ2
WK0559	SL	6452402.97	536044.19	23107	36570	1497.17	180	-60	399.0	399.0	NQ2
WK0560	EW	6452651.97	535037.25	23367	35565	1454.07	180	-82	469.4	469.4	NQ2
WK0560B1	EW	6452651.97	535037.25	23367	35565	1454.07	180	-82	456.3	212.8	BTW
WK0561	EW	6452651.97	535037.25	23367	35565	1 454.07	180	-88	550.8	550.8	NQ2/BTW
WK0562	SL	6452494.74	535896.59	23201	36423	1491.61	185	-60	468.8	468.8	NQ2
WK0563	SL				36340	1485.29	185	-62	514.8	514.8	NQ2
WK0563A	SL	6452316.57	536135.85	23274	36340	1479.83	207	-59	14.3	14.3	NQ2
WK0564	SL	6452316.57	536135.85	23019	36661	1479.83	185	-50	327.4	327.4	NQ2
								Total	6 811.1	6342.0	

4.3 RESULTS

The 2005 Kutcho project drill program was multi-focused. It was completed to:

- outline possible extensions of the Main deposit in the down-dip direction and test the Foot Wall zone (FW zone) along the western end of the deposit
- obtain environmental and geotechnical data along the upper edge of the Main deposit as well as determine the depth of oxidation on the up-dip deposit edge
- provide better definition to the Esso deposit western boundary
- test for grade zonation within the Sumac deposit, and
- explore untested targets elsewhere on the property.

Significant intersections from this years drilling are listed in Table 4.3.

4.3.1 Main (Kutcho) Deposit Drill Results

Four holes (WK05-39, 40, 41 and 48) tested the down-dip extension of the Main (Kutcho) deposit with mixed results. Figure 4.2 shows the 2005 drill pierce points on a longitudinal section of the deposit projected to surface. Drillhole WK05-39 was collared in the central lower part of the deposit and intersected 3m of 2.5% Cu and low zinc, and shows the deposit to be narrowing at this depth. Hole WK05-40, drilled on the lower western edge of the deposit intersected 1.0m of 1.5% Cu and over 100 gmt Ag. Intersecting the Kutcho horizon 90m down-dip from the previously interpreted edge of the deposit is significant in that it indicates potential for expansion of the deposit to wards this area. These two holes were sampled for lithogeochemical analysis to aid in future geochemical vectoring. Drill hole WK05-41 was drilled in the western third of the deposit and extended the deposit in a down dip direction with a tongue of mineralization 4m thick grading 2.45% Cu, 2.46% Zn and 63 gmt Ag. Hole WK05-48 was drilled to test down dip of a high grade zone and to test BTW-wedging techniques. Wedging led to good hole curvature, but apparent termination of the Kutcho horizon (0.8m of 1.19% Cu) negated completing the NQ (deeper) part of the hole.

The FWZ, which had previously yielded mineralized intersections below the eastern part of the Main deposit, had not been tested below the deeper and western parts of the deposit. Holes 39 and 40 were extended to test the FWZ in this area with negative results.

Twelve holes (42 to 47, 49 to 52, 57 and 58) were drilled along the upper edge of the Main deposit to obtain environmental and geotechnical data to aid in open-pit design and to determine engineering and development parameters. Many of these holes extended the Kutcho mineralization significantly closer to surface. Eight of the twelve holes (42-46, 49, 57 and 58) contained significant intersections that will contribute to the size of the Kutcho deposit resource and lower the overall strip ratio. Sulphide oxidation was not observed in the up-dip intersections and this will allow mill feed to begin flowing shortly after pitting commences.

Table 4.3 Significant 2005 Drill Intersections

Hole ID	Deposit	From (m)	To (m)	Length (m)	Cu%	Zn%	Ag g/t	Au g/t	
WK05-39	Kutcho	162.5	164.3	3.1	2.51	0.20	69.9	0.45	
WK05-40	Kutcho	275.0	276.0	1.0	1.58	0.02	102.0	0.25	
WK05-41	Kutcho	184.0	188.0	4.0	2.45	2.46	63.0	0.24	
WK05-42	Kutcho	45.6	49.0	3.4	1.08	4.42	13.3	0.32	
WK05-43	Kutcho	24.1	25.2	1.1	0.57	5.33	22.0	0.33	
and		31.6	33.2	1.6	4.87	5.34	147.0	0.93	
WK05-44	Kutcho	52.0	61.4	9.4	2.62	2.98	52.7	0.37	
WK05-45	Kutcho	11.8	16.0	4.2	0.25	3.46	5.2	0.71	
and		19.5	29.6	10.1	0.78	1.55	12.8	0.15	
and		31.0	37.0	6.0	3.07	2.38	43.5	0.41	
WK05-46	Kutcho	33.6	35.2	1.6	3.08	0.53	44.0	0.33	
WK05-47	Kutcho	38.0	39.0	1.0	1.54	0.05	5.0	0.05	
WK05-48	Kutcho	218.2	219.0	0.8	1.19	0.05	10.0	0.32	
WK05-49	Kutcho	37.4	42.1	4.7	2.31	6.29	91.2	0.64	
WK05-50	Kutcho	33.2	35.7	2.5	0.88	1.58	13.4	0.45	
WK05-51	Kutcho	No signif	icant inter	sections					
WK05-52	Kutcho		icant inter					8	
WK05-53	Esso	Abandor	ned hole in	fault gouge	after red	lucing to E	BTW		
WK05-54	Esso	454.0	457.0	3.0	0.82	2.07	7.0	0.07	
and		459.5	460.5	1.0	1.17	0.02	15.0	0.06	
WK05-54B1	Esso	431.1	432.8	1.7	2.30	1.24	13.9	0.13	
WK05-55	Jack Target	No signif	icant inter	sections					
WK05-56	East Graben	No signif	icant inter	sections					
WK05-57	Kutcho	21.1	33.0	11.9	2.73	2.89	41.9	0.45	
WK05-58	Kutcho	11.0	25.0	14.0	1.28	2.29	13.0	0.17	
Incl.		16.6	25.0	8.4	1.77	3.53	15.0	0.23	
WK05-59	Sumac	359.6	383.0	23.4	_1.37	1.9	26.2	0.23	
WK05-60	Esso	No signif	icant inter	sections					
WK05-60B1	Esso	No significant intersections							
WK05-61	Esso	505.7	506.3	0.6	0.46	1.35	10.0	0.04	
WK05-62	Sumac	427.6	453.7	26.1	1.45	2.56	23.7	0.23	
WK05-63	Sumac	489.5	490.0	0.5	1.72	0.02	10.0	0.13	
WK05-64	Sumac	294.6	303.0	8.4	0.80	1.95	14.6	0.20	

.....



Figure 4.2 Kutcho Deposit Longitudinal Section Projected to Plan.

4.3.2 Sumac Deposit Drill Results

Two of the four Sumac deposit holes (WK05-59, 62, 63 and 64) were successful in better defining a higher grade core zone previously observed in historical holes E058 and KT058. Drill holes WK05-59 and WK05-62 were drilled into the core of the deposit. Hole WK05-59 intersected 23m of 1.37% Cu and 1.9% Zn and WK05-62 returned 26.1m of 1.45% Cu and 2.56% Zn. These intersections help to refine the shape and size of the higher grade core zone, which has dimensions of approximately 400m in length by 200m in width, figure 4.3.

Drill holes WK05-63 and WK05-64 were drilled into the Sumac deposit western and eastern boundaries respectively. An initial hole termed WK05-63A was aborted after 14.3m due to an incorrect drill azimuth, and the drill was realigned and drilled as WK05-63. This hole returned a narrow (0.5m) mineralized Cu zone (1.72%) which defines a thinning western edge of the deposit. The hole also tested the Sumac - Esso deposit boundary and though Esso deposit mineralization style was not seen in the core, viewing the two deposits in three dimensions suggests that the deposits overlap at two stratigraphic levels. Hole WK05-64 tested the eastern edge of the core zone and intersected a wide (8.4m) zone of low grade copper (0.80%) and moderate zinc (1.95%). This mineralization is within a wider massive to semi-massive sulphide intersection and the hole is deemed to mark the eastern grade boundary to the deposit.

The Sumac deposit displays good continuity of thickness (+20 m in the core zone) and may be conducive to bulk underground mining methods. The Sumac deposit has the potential to add significantly to the resource currently contained within the Main and Esso deposits, but due to relatively low grades would require high metal prices. The deposit core could contribute additional mill feed during these periods of higher metal prices if a decline to the higher grade Esso deposit was routed through the Sumac deposit

4.3.3 Esso Deposit Drill Results

Four holes and two branches were drilled in the Esso deposit area to provide better definition to the deposit's western boundary, figure 4.4. WK05-53 was drilled to test the western extension of the deposit. An attempt to create a branch hole failed when after reducing to BTW sized core for 34.7m the hole had to be abandoned in fault gouge. This BTW branch (53B1) was re-named 53 but the boxes are labeled 53B1. Due to a lack of drill rod curvature, the NQ2 pilot hole was not extended further. Hole WK05-54 was collared from the same drill pad as hole 53 but at a shallower dip. A branch (WK54B1) off the pilot hole provided an initial, shallower cut at the deposit. The pilot hole 54 was extended as an NQ2 hole before again reducing to BTW as branch hole 54B2 and completing a second down dip cut of the Kutcho horizon. Due to limited flattening of 54B1 and 54B2, the pilot hole was not extended further and the second BTW branch was renamed from 54B2 to 54 though the boxes are still labeled 54B2. These two holes extend the Esso deposit to the west, and show the lens to be thinning in this direction.

Drill holes WK05-60/60B1 and WK05-61 were drilled along a section 70m west of WK05-54. WK05-60/60B1 consists of a pilot hole and a single branch hole. The up-dip branch WK05-60B1 intersected disconnected 1m intersections of approximately 1% Cu and very low grade Zn, Ag, Au. The pilot hole WK05-60 was extended and intersected the Kutcho horizon 10m down dip of 60B1 and encountered alteration but no mineralization. Hole WK05-61 was also drilled as a pilot hole from the same pad and down-dip of WK05-60. At 243.8m the hole was reduced to BTW rods and the branch named WK05-61B1. A lack of curvature in 61B1 negated continued drilling of the pilot and second branch, and 61B1 was renamed as WK05-61 (but the boxes have not been relabeled). WK05-61 intersected a very thin (0.6m) massive sulphide section, which together with the results of WK05-60 and WK05-60B1, which encountered no mineralization at the Kutcho horizon, suggests that this is the western limit of the Esso deposit.

Historical drilling (94B4) on a section approximately 280m to the west encountered a massive sulphide intersection which was speculated to be related to the Esso deposit. This mineralization now appears to be related to a new deposit of unknown size. Due to the depth of the mineralization, additional drilling on this zone would have to employ advanced wedging or directional drilling techniques outside the scope of the present drill campaign. Follow-up drilling is being contemplated for a future program.

4.3.4 Additional Targets

Two targets outside the deposits were drilled in 2005 with limited success. The Jenn claims area (Jack target) was tested by drillhole WK05-55 while the North Graben target was investigated with hole WK05-56.

Drilling WK05-55 in the Jack Zone was successful in intersecting the fault repeated and altered but unmineralized Kutcho horizon. The stratigraphy in this area appears to be disrupted by a series of thrust faults with both strike and dip slip motion. Further drilling in this area would be predicated on success with deep penetration geophysical methods.

Hole WK05-56 was drilled as waste dump area condemnation hole and to test the North Graben target, a potential zone of mineralization located to the northeast of the rhyolite flow-dome complex associated with the Kutcho deposit. The hole was drilled 550m northeast of the Main (Kutcho) deposit, in an area selected as a site for waste-rock deposition from the open pit. The drill hole intersected a thick rhyolite flow-dome complex. Additional drilling is required further northeast to test for a graben type feature on the north side of the flow-dome complex.

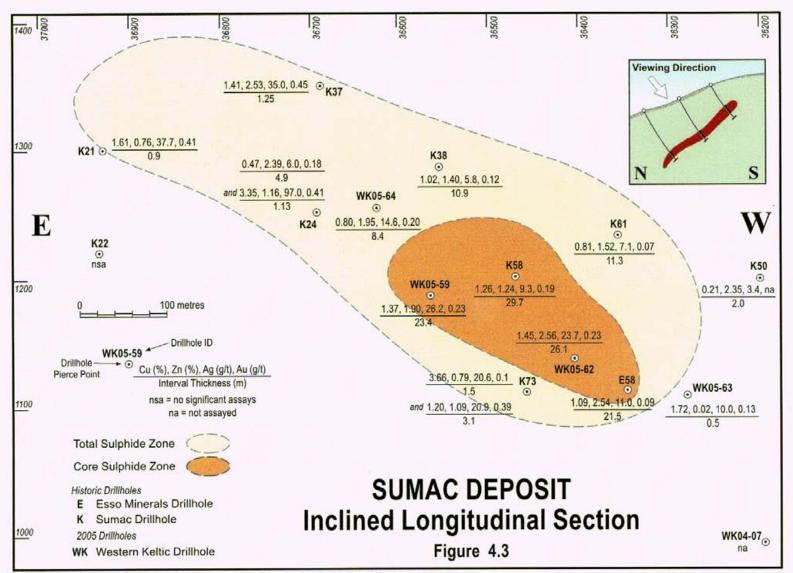


Figure 4.3: Sumac Deposit Inclined Longitudinal Section

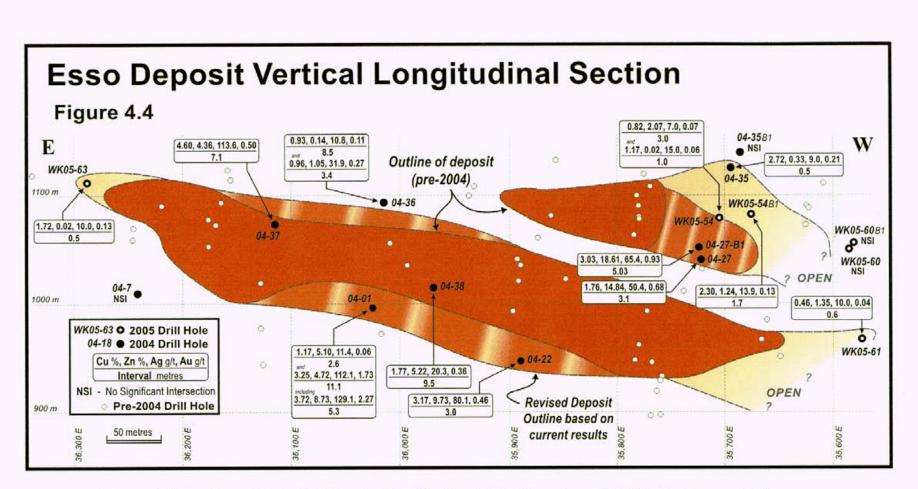


Figure 4.4 Esso Deposit Vertical Longitudinal Section (of the Esso deposit drill-hole pierce points).

5.0 **RESOURCE ESTIMATION**

Results of the 2005 drilling have been merged into the historical database and revised resource estimates have been carried out. Details of the estimation procedures are located in the following sections.

5.1 ESTIMATION METHODS

Resources were estimated using 188 drill holes in the Kutcho deposit and 72 drill holes (and wedge branches) in and around the Esso deposit and 14 drill holes in the Sumac deposit. Three dimensional digital 'solids models' based on geology were constructed to outline the deposits. Drill data within the solids boundary were composited into equal intervals (1m or 2m) and block grades were estimated using inverse distance cubed interpolation. Interpolation was performed using multiple passes with decreasing search parameters. Most of the assay data has associated specific gravity (SG) measurements. Those samples without SG measurements were assigned SG values based on regression of known SG values with iron and sulfur analyses, both of which are tightly correlated with SG. Classification of resources conforms to CIM Definition Standards on Mineral Resources as required by National Instrument 43-101.

Solids models. An outline of the mineralization is created on each section. The 1. outline follows geology in general but attempts to use "smooth" lines that would be considered mineable. Usually the hanging wall contact is sharp; whereas the footwall contact is locally gradational, and an assay cut-off is used. NSR assay cut-offs would be between US\$10 and US\$20 for the Kutcho deposit and between \$20 and \$30 for the Esso deposit. First pass outlines attempted to minimize waste, provided that it was greater than 3m in thickness. Generally this resulted in bifurcation along the down dip part of a number of sections, as well as a small upper lens in the eastern part of the Kutcho deposit. There were also two sections with bifurcations in the Esso deposit. Sectional estimates of the deposits were completed at this stage. Creation of sectional outlines was done by 'snapping' lines to actual assay intervals on the drill-holes in 3-dimensional space; as the drill-holes do not lie perfectly along section lines, the outlines are 3dimensional and would appear 'jagged' in plan view. Points were then assigned at 10m intervals around the section outline to assist in creating the solid surface around the outside of the section frames.

During the process of connecting the sectional outlines into 3-dimensional 'solids' models, it became clear that the bifurcation of the section caused problems triangulating between sections to create the solids, due to crossing triangles. Essentially the scale of bifurcation was so small relative to the overall scale of the deposit that it became very difficult to create a solid without intersecting triangles. Extensive use of tie-lines might be able to overcome this problem, however it was felt that a complex shape would be difficult for miners as well, and therefore the bifurcations were streamlined, or simplified by placing the outline around the outside perimeter of the mineralization (closer spaced drilling, or more sections would also help to alleviate this problem as shape changes between sections would be more gradual). This results in the inclusion of waste within

the block model and some smearing of grade into waste blocks and visa-versa. The Kutcho hanging wall lens was included into the main body of mineralization where it was thick enough and ignored where it was thin (< 3m) resulting in the "loss" of some mineralization and the local inclusion of hanging-wall waste. Sectional outlines were compared to neighboring sections and minor adjustments where made to create shape similarity between the sections and to create a smoother outline along the up-dip and down-dip edges as the more irregular outline is interpreted to be an artifact of drill spacing rather than reality. Some sections still required tie-lines or connecting segments between the sections in order to prevent "crossing triangles", particularly where there are significant differences between the shapes or sizes of adjacent sections.

Once the solid was completed it was checked against infill holes that occur between existing sections. There were a number of cases where some mineralization was falling outside of the solids on the infill holes. In these cases, the nearest section was adjusted so that the resultant solid shape would include the entire mineralized interval in the isolated hole. It would be better to have a complete in-between section in order to generate a more precise solid shape, however, in all cases the changes required to the adjacent sections were relatively small so that the net differences in volume and grades would be also be small.

2. Sectional Estimates. Sectional estimates were carried out using the Surpac software which provides a 2-dimensional area of the sectional deposit outline and carries out a length weighted average grade for the area based on all drill-hole assays within the area, including the projection of the area for a specified distance (half-way to adjoining sections). A volume is calculated by multiplying the 2-D area by the projection distance which is half the distance to the next section. Tonnages are calculated by multiplying by the specific gravity which has also been 'averaged' with the assay data. Section volumes are summed and grades averaged on tonnage weighted basis to produced estimated grades and tonnage for the entire deposit. As section outlines were changed slightly during the creation of solids models the tonnages of the sectional estimates will not be identical to the contained tonnage of the solids models. Additionally the solids models were given interpreted "ends" (usually merging the solids to a point located at the position of the next section) which will result in a small difference when compared the sectional estimate where the section is projected ½ of the section spacing.

3. Block Models. Block models are established by determining the model origin, maximum dimensions and block sizes. The Kutcho model needs to be large enough to include a full size open pit, whereas the Esso model was just large enough to enclose the deposit. Both models are based on orthogonal co-ordinates and are not rotated. Block size for the Kutcho deposit is 10m in the east-west direction (x), 5 m in the north –south direction (y) and 3 m in the vertical direction (z). Block dimensions are arbitrary but were chosen to be the largest size that would reasonably conform to the shape of the deposit. A 3 m vertical distance was chosen to be compatible with 6, 9 or 12 m bench heights. Sub-blocking was allowed to go to $\frac{1}{2}$ of the block size in all directions. It is worth noting, that, as the deposit is currently being modeled (3,000 t/day), 5 blocks of massive sulphide mineralization is one day of mill feed. Initial block models in the Esso

deposit used the same block size but subsequent models using $10 \times 3 \times 3$ m blocks with 50% sub-blocking yielded slightly better results due to the narrower thicknesses along the deposit edges.

4. Composites. Composites are created to subdivide the drill-hole intersections into equal lengths for interpolation calculations. The process of compositing begins at the updip edge of the solids model and then subdivides the distance along the drill-hole that is within the model into the specified composite length. Choice of composite length is determined with consideration being given to initial sample size, number of samples, block size and thickness of the solids model. Generally, one would want the statistical distribution of the initial sample population to be reflected in the composite population. For the last sample, at the lower boundary of the solids model, inclusion for the interpolation; conversely if less than 51% is within the solids model the composite is not created. Typically composite lengths are 50% of block size, however, in this case a composite length of 1m was chosen. This length is better suited to the areas where the deposit is relatively narrow (< 6 metres) and provides better resolution of grade boundaries in the down-hole direction.

Interpolation. Block models were interpolated using inverse distance 5. methodology. Geostatistical studies carried out previously (WEL, 1985; and Holbek and Champigny, 1990) provided information on directions of best data continuity, however this is somewhat self-evident by simple inspection of the deposit. Interpolation of block grades within a massive sulphide deposit is fraught with difficulty and can be debated at length. The crux of the problem lies in the stratiform nature of the mineralization and the overall geometry of the deposit. Both the Kutcho and Esso deposits are finely layered with significant grade variations within the overall thickness of the massive sulphide deposits. The deposits ('massive sulphide sheets') are slightly curvi-planar such that connection of the higher grade zones is not along a straight line in either the strike or dip direction. Consequently the search ellipse used during interpolation may use data from the middle of the deposit in the center of the ellipse, from the top of the deposit at one end of the ellipse and from the bottom of the deposit at the other end. The possibility of creating grade shells (creating solid models for a succession of grade increases) was investigated and found to be impractical for deposit scale interpolation. A variety of search ellipse shapes and constraints were investigated. The Kutcho deposit has dimensions of approximately 1,500 m in the east-west direction, 300 m in the down dip direction, a maximum thickness of 34 m and an average thickness of about 10-15 m. Thus the relative dimension ratios are 150:30:1. The distribution of data is quite different, in that drill holes are most commonly drilled perpendicular to the deposit thickness with anywhere from 3 to 20 assay intervals* in the down hole direction. Drill sections are spaced at 60m along the deposit strike length, with drill hole spacing of about 30 m between holes along the sections. Thus, assay data density is in somewhat reverse proportions to the deposit shape.

The search ellipse was designed such that a maximum of 12 composites could be used with a maximum of 4 composites from a single hole, and that a minimum of 5 composites

was required, thereby ensuring that a least two drill holes contributed to a block grade. The major axis of the search ellipse was along the down-plunge trend of the deposit, and rotated into the plane of the deposit. Sample weighting is in proportion to the axis lengths of the search ellipse which tends to counteract the unbalanced data distribution within the deposit.

Interpolation was carried out in successive passes. Initially the search ellipse had radii of 150, 30 and 10 m, and the solid model was checked to ensure that all blocks received a grade. Subsequent passes were carried out with smaller radii, however due to the limiting the minimum and maximum number of composites, changes due to these additional interpolations were relatively small but did provide some increase in grade. Interpolation was done using inverse distance cubed. Inverse distance to the power of 5 was also tried on the last pass (smallest ellipse) interpolation but had a negligible impact on the results. In parts of the deposit were the strike orientation changes, the trend of the major axis of the ellipse was also adjusted to match this change, resulting in a very small effect on the estimation results.

* Assay intervals within drill-holes varied with both company and samplers. In general, the early EMC drilling incorporated relatively large (3m and up to 4.5m) samples with limited shoulder sampling. Sumac used much finer, geological or mineralogical based sampling. Current sampling used a geological/mineralogical approach to sampling with a minimum sample distance of 0.5m (except in rare circumstances) and maximum sample thickness of 2.0m. Generally two, 0.5m 'shoulder' samples bounded all mineralized intervals.

6. **Kutcho gold grades**. Gold values are not available (not analyzed) for 22 of the Esso holes, equivalent to approximately 50% of the holes in the eastern third of the deposit. Previously, these gold grades had been calculated from silver grades based on the very strong correlation of gold to silver. Data from all of the other drilling indicated an average ratio of gold to silver of 1:98, as calculated by Sumac and used in the Wright Engineers pre-feasibility study. However, if this data is grouped by area and data with gold or silver values near the detection limits is not included, the ratios are quite different. Grouping gold-silver ratios by drill hole intersections and area, indicates that silver/gold ratios are lower in the eastern part of the deposit as shown in Table 5.1.

hinding feater than \$50 NSK cut-off.								
Drill Hole Group	# of drill-holes	# of intersections	Silver:gold					
Sumac	60	86	90					
Esso (w/out Au assay)	16	25	96					
Esso (with Au assay)	22	25	58					
WKM (all)	19	23	84					
WKM (eastern holes)	7	10	58					

 Table 5.1: Silver:gold ratios of grouped drill hole intersections based on

 minimum 3m greater than \$30 NSR cut-off.

From Table 5.1, it is observed that the silver to gold ratio varies with location. The Esso drill-hole intersections without gold assays have a silver/gold ratio of 96 which is to be

32

expected as all gold values were calculated on the basis of a silver-to-gold ratio of 98. The Sumac holes have a ratio of 90 which is less than the determined 98 value, primarily because the precious metal ratio is slightly biased by very low grade samples which have been removed by only taking intersections above a cut-off grade. The drill intersections from the eastern part of the deposit (Esso drill-holes with gold assays) have an average silver to gold ratio of 58, and the WKM drill intersections in this area have the same ratio.

Copper is almost as well correlated with gold as is silver. The correlation line through the graph of the Cu vs. Au plot indicates that on average 1% copper corresponds to 0.25 g/t gold. Consequently, it was felt that a calculated gold grade would be better if it used both silver and copper data to base it on. After some experimentation it was determined that the formula (Cu*0.23)/2+(Ag/70)2 yielded gold values that shared the same distribution as the gold assays within the Esso drill data (post 1980), but at an average grade approximately 14% below the assayed data. This still results in an overall increase of 25% over the previously calculated grade and an average silver/gold ratio of 74. When additional drilling in the eastern part of the Kutcho deposit is completed it will be possible to eliminate the calculated gold data, as there will be sufficient gold assay data density to properly estimate block grades.

5.2 RESULTS

Deposit	Cut-off NSR US\$	Tonnes (000's)	Cu %	Zn %	Ag g/t	Au g/t	CuEq* (%)
Kutcho	20	14,217	1.86	2.44	32.7	0.39	3.01
Kutcho	25	12,928	1.96	2.59	34.3	0.41	3.14
Esso	30	2,025	2.93	5.50	69.0	0.63	5.33
Esso	40	1,863	3.08	5.88	72.3	0.65	5.63

Table 5.2Measured and Indicated Resources

Inferred Resources

Deposit	Cut-off NSR US\$	Tonnes (000's)	Cu %	Zn %	Ag g/t	Au g/t	CuEq* (%)
Sumac	30	5,513	1.23	1.91	18.1	0.17	2.01
Sumac	40	4,161	1.35	1.85	20.6	0.19	2.13

*CuEq calculation is based on metallurgical recoveries of 90% for Cu, 77% for Zinc, 49% for Ag and 41% for Au, and metal prices of \$1.20, \$0.60, \$8.00 and \$450. for Cu, Zn, Ag and Au, respectively. NSR values are based on metallurgical recovery, estimated relative smelter returns and metal prices as above.

The overall Kutcho deposit resource estimate remains relatively unchanged from 2004. The 9% increase in tonnage with a concomitant 9% decrease in grades is due to the application of an economic based cut-off value as opposed to a single element cut-off grade. Minor changes to the deposit shape, particularly along the down-dip edge,

resulted in more grade blocks within the potential pit outline. Distribution of block grades indicates that the upper part of the deposit has increased grades relative to the lower part, for example, the initial starter-pit contains 1.7 million tonnes with grades of 2.26% Cu, 2.77% Zn, 38 g/t Ag and 0.53 g/t Au. A majority of low-grade blocks sit along the lower (down-dip) edge of the deposit and there are no internal waste blocks within the main body of the deposit.

Additional drilling in the Esso deposit area provided better definition to the deposit boundaries which contributed to a 4% decrease in tonnage and 9% decrease in grade relative to the previous estimate. The current decrease in metal grades compared to historical estimates is considered to be a function of estimation methodology, the current interpolated block model compared to the historical, sectional estimate.

2005 drilling in the Sumac deposit returned improved grades ($\sim +15\%$) compared with the historical drilling and defined a higher-grade core zone to the deposit. The deposit displays good continuity of thickness (+20 m in the core zone) and may be conducive to bulk underground mining methods.

Metallurgical testing is ongoing at SGS Lakefield Research under the supervision of Art Winkers, P.Eng. Preliminary metallurgical results returned encouraging results. Copper recoveries of 90% can be achieved producing a concentrate grading 30-33% Cu. Zinc recoveries in excess of 75% can be obtained in a concentrate grading about 55% Zn. The iron content of the zinc concentrate can be controlled to less than 8%.

6.0 CONCLUSIONS

The Kutcho Creek volcanogenic sulphide deposits occur within a 4 km long, gently plunging linear trend, between felsic lapilli tuffs and quartz-crystal tuffs within the Kutcho Formation in northern British Columbia. The three known deposits, from east to west are the Kutcho lens, the Sumac lens and the Esso lens.

Western Keltic Mines Inc. purchased a 100% interest, subject to royalties, in the Kutcho property from Sumac Mines Ltd. and Barrick Gold Corp. Title to claims is secure and size of the property provides ample room for future exploration and development. The project has had a long history of exploration, beginning in 1969 and extending to present, including a pre-feasibility study by Wright Engineers Limited (WEL) on the open pit mining of the main Kutcho deposit.

During the 2005 drill program twelve drill holes were completed along the upper edge of the Kutcho deposit to obtain environmental and geotechnical data to aid in open-pit design. The drilling also resulted in confirming un-oxidized sulphide mineralization proximal to surface. Additionally, copper and zinc grades in the 2005 and 2004 drill holes confirm potential for higher grade starter pits at the eastern and western ends of the deposit. Four holes tested the down-dip extension of the Kutcho deposit with mixed results. Two of these holes were extended into the Footwall zone, but were unsuccessful in defining additional Footwall zone mineralization.

Esso deposit drilling in 2005 tested the westward extension of the deposit and appears to have determined the western limits. Mineralization intersected in the westernmost historic drill hole (E94B4) is thought to be part of a different, and as yet undefined, sulphide deposit. Differences in historical and current estimation methodologies resulted in small decreases in metal grades.

Drilling in 2005 within the Sumac deposit confirmed good continuity of thickness (+20 m in the core zone) and it may be conducive to bulk underground mining methods. Improved grades and a defined higher-grade core zone, were also confirmed by this years drilling. Thickness and grade are better in the western end of the deposit, and weaken in an easterly direction. Although the Sumac deposit is lower grade than the other deposits, it is located along a potential access corridor to the Esso deposit and therefore could provide mill feed as allowed by metal prices.

Drilling the Jack and North Graben zones did not intersect mineralization but added to the geological understanding of the target zones. Both zones require more drilling to understand their full potential.

7.0 RECOMMENDATIONS

Additional exploration targets at Kutcho remain to be tested. Further drilling in the Jack Zone would be predicated on success with deep penetration geophysical methods. The North Graben target would require further drilling to test for a graben type feature on the north side of the flow-dome complex. More drilling would be required to follow up on the theory that the western limits of the Esso deposit have been determined and mineralization in 94B4 represents the start of a new sulphide body.

8.0 REFERENCES

- Bridge, D., 1982. 1981 Progress Report on the Kutcho Creek Property, an unpublished report for Esso Minerals Canada Ltd.
- Bridge, D., 1983. 1982 Progress Report on the Kutcho Creek Property, an unpublished report for Esso Minerals Canada Ltd.
- Bridge, D., 1984. 1983 Progress Report on the Kutcho Creek Property, an unpublished report for Esso Minerals Canada Ltd.
- Didur, B., 1979. Kutcho Creek Ore Reserves. Unpublished report prepared for Esso Minerals Canada Ltd.
- Didur, B., 1981. Diamond Drill Results and Ore Reserve Estimates. Unpublished text of presentation given in Tokyo Japan on behalf of Esso Minerals Canada Ltd.
- Gabrielse, H., 1978. Geology of NTS Map Sheet 104I (Cry Lake); Geological Survey of Canada, Open File, # 610.
- Gasparini, C., 1979. Study of Cu, Zn, and Ag distribution in Five Samples from the Kutcho Creek; In: Summary of 1978 Metallurgical testwork for Kutcho Creek, by H.E. Neal.
- Holbek, P.M., 1985. 1984 Exploration Report on the Kutcho Creek Project; an unpublished report for Esso Minerals Canada.
- Holbek, P.M., 1989. 1988 Geochemical and Geophysical Report on the Kutcho South Area – Kutcho 89A and 89B Claim Groups. British Columbia Assessment Report.
- Holbek, P.M., 1990. 1990 Diamond Drilling Report on the Kutcho Creek Property. British Columbia Assessment Report.
- Holbek, P.M., and Heberlein, D., 1986. 1985 Exploration Report on the Kutcho Property; and unpublished report for Esso Minerals Canada.
- Holbek, P.M., and McPherson, M.D., 1990. The Kutcho Creek Property: A summary of exploration status and proposed future work; unpublished report for Homestake Canada Limited.
- Holbek, P.M., McPherson, M.D., and Oyie, H., 1991. Report on 1990 Diamond Drilling Program, Kutcho Creek Property; unpublished report for American Reserve Mining Corp. and Homestake Canada Limited.
- Holbek, P.M., and Champigny, N., 1992. Geological Reserve Estimate for the Kutcho Lens, Kutcho Creek Volcanogenic Massive Sulphide Deposits, Northwestern

British Columbia; unpublished report for Homestake Canada Limited, American Reserve Mining Corp., and Sumitomo Metal Mining Canada Ltd.

- Holbek, P.M, and Wilson, R.G., 2005. Diamond Drilling Assessment Report on the Kutcho Creek Project: North Central British Columbia.
- Pearson, D.E., and Pantaleyev, A., 1975. Cupiferous Iron Sulphide Deposits, Kutcho Creek Map Area (104I/1W); Geological Field Work, British Columbia Ministry of Mines and Petroleum Resources, pp. 86-93.
- Smith, J.B., 1991. Report on the Potential for Underground Mining Main Zone; Kutcho Creek Property. A study by Laxey Mining Services for American Reserve Mining Corp. and Homestake Canada Ltd.
- Stanton, R.L., 1991. Understanding Volcanic Massive Sulphides Past, Present, and Future. <u>In</u>: Historical Perspectives of Genetic Concepts and Case Histories of Famous Discoveries, Papers Arising from SEG Symposia, Oct 30 and 31, 1988 Denver, Colorado; Economic Geology Monograph 8, Skinner, B.J., Ed.
- Sumitomo Exploration Dept., 1984. ORC1: Explanatory note on the ore reserve calculation of the Kutcho main ore body, B.C., Canada; unpublished report for Sumitomo Metal Mining Canada Ltd.
- Thorstad, L.E., 1983. The Upper Triassic Kutcho Formation, Cassiar Mountains, North Central British Columbia; unpublished M.Sc. Thesis, The University of British Columbia.
- Thorstad, L.E, and Gabrielse, H., 1986. The Upper Triassic Kutcho Formation, Cassiar Mountains, North Central British Columbia; Geological Survey of Canada, Paper 86-16, 53p.
- Wright Engineers Limited, 1985. Pre-feasibility Study of the Kutcho Creek Project for Esso Minerals Canada Ltd. and Sumac Mines Ltd.

APPENDIX I

List of Claims

For

Kutcho Creek Property

<u>Kutcho Project</u> <u>Liard Mineral Division</u>		
Cassiar Land District		
Tenure Number	<u>Claim Name</u>	Units
221728	STU	6
221729	ANDREA	14
221730	SVEA	6
221863	LIN 001 FR	1
221907	CGL NO. 1 FR.	1
222015	JEFF 57 FR.	1
222119	JEFF 113 FR	I
222120	JEFF 114 FR	1
222121	JEFF 064 FR	1
222379	POND 001	14
222380	POND 002	4
222385	JOSH 1	16
222430	JOSH 3	18
222431	JOSH 4	18
227716	JEFF 001	1
227717	JEFF 002	1
227718	JEFF 003	1
227719	JEFF 004	1
227720	JEFF 005	1
227721	JEFF 006	1
227722	JEFF 007	1
227723	JEFF 009	1
227724	JEFF 013	1
227725	JEFF 014	1
227726	JEFF 015	1
227727	JEFF 016	1
227728	JEFF 017	1
227729	JEFF 018	I
227730	JEFF 019	1
227731	JEFF 020	1
227732	JEFF 021	1
227733	JEFF 022	1
227734	JEFF 024	1
227735	JEFF 025	1
227736	JEFF 026	1
227737	JEFF 027	1
227738	JEFF 028	1
227739	JEFF 029	1
227740	JEFF 030	1
227741	JEFF 031	1
227742	JEFF 032	1
227743	JEFF 033	1
227744	JEFF 034	1
227745	JEFF 035	1

-

227746	JEFF 036	1
227747	JEFF 037	1
227748	JEFF 038	1
227749	JEFF 039	l
227750	JEFF 040	1
227751	JEFF 041	1
227752	JEFF 042	1
227753	JEFF 043	1
227754	JEFF 044	1
227755	JEFF 045	1
227756	JEFF 046	1
227757	JEFF 047	1
227758	JEFF 048	1
227759	JEFF 049	1
227760	JEFF 050	1
227761	JEFF 051	1
227762	JEFF 052	1
227763	JEFF 053	1
227764	JEFF 054	1
227765	JEFF 055	1
227766	JEFF 056	1
227767	JEFF 057	1
227768	JEFF 058	1
227769	JEFF 059	1
227770	JEFF 060	1
227771	JEFF 061	1
227772	JEFF 062	1
227773	JEFF 063	1
227774	JEFF 064	1
227775	JEFF 065	1
227776	JEFF 066	i
227777	JEFF 067	1
227778	JEFF 068	1
227779	JEFF 069	1
227780	JEFF 070	1
227781	JEFF 071	1
227782	JEFF 072	1
227783	JEFF 073	1
227784	JEFF 074	1
227785	JEFF 075	1
227786	JEFF 076	1
227787	JEFF 077	1
227788	JEFF 078	1
227789	JEFF 079	1
227790	JEFF 080	1
227791	JEFF 081	1
227792	JEFF 082	1
227793	JEFF 083	1
227794	JEFF 084	1
227795	JEFF 085	1

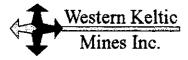
227796	JEFF 086	1
227797	JEFF 087	1
227798	JEFF 088	1
227799	JEFF 089	1
227800	JEFF 090	1
227801	JEFF 091	1
227802	JEFF 092	1
227803	JEFF 093	1
227804	JEFF 094	1
227805	JEFF 095	1
227806	JEFF 096	1
227807	JEFF 097	1
227808	JEFF 098	1
227809	JEFF 099	1
227810	JEFF 100	1
227826	JEFF 101	1
227827	JEFF 102	1
227828	JEFF 103	1
227829	JEFF 104	1
227830	JEFF 105	1
227831	JEFF 106	1
227832	JEFF 107	1
227833	JEFF 108	1
227834	JEFF 109	1
227835	JEFF 110	1
227836	JEFF 111	1
227837	JEFF 112	1
227838	JENN 001	1
227839	JENN 002	1
227850	JEFF 113	1
227851	JEFF 114	1
227852	JEFF 115	1
227853	JEFF 116	1
227854	JEFF 117	1
227855	JEFF 118	1
227856	JEFF 119	1
227857	JEFF 120	1
227858	JEFF 121	I
227859	JEFF 122	1
227860	JEFF 123	1
227861	JEFF 124	I
227862	JEFF 125	1
227863	JEFF 126	1
227864	JEFF 127	1
227865	JEFF 128	1
227866	JEFF 129	1
227867	JEFF 130	1
227868	JEFF 131	1
227869	JEFF 132	1
227870	JEFF 133	1

227871	JEFF 134	1
227872	LIN 011	1
227873	LIN 039	1
227874	LIN 040	1
227875	JENN 003	1
227876	JENN 004	1
227877	JENN 005	1
227878	JENN 006	1
227879	JENN 000	1
		1
227880	JENN 008	-
227881	JENN 009	1
228044	JEFF 135	1
228045	JEFF 136	1
228046	JEFF 137	1
228047	JEFF 138	1
228056	REX 1 FR.	1
228057	REX 2 FR.	1
228059	REX 4 FR.	1
227636	SMRB#1	1
227637	SMRB#2	1
227638	SMRB#3	1
227639	SMRB#4	1
227640	SMRB#5	1
227641	SMRB#6	1
227642	SMRB#7	1
227643	SMRB#8	1
227644	SMRB#9	1
227645	SMRB#10	1
227646	SMRB#11 SMRB#12	1 1
227647 227648	SMRB#12 SMRB#13	1
227649	SMRB#15 SMRB#14	1
227650	SMRB#15	I
227651	SMRB#16	1
221659	KC122	3
221874	KC124FR	1
221875	KC125FR	1
227882	KC1	1
227883	KC2	1
227884	KC3	1
227885	KC4	1
227886	KC5	1
227887	KC6	1
227888	KC7	1
227889	KC8	1
227890	KC12	1
227891	KC13	1
227892	KC14	1
227893	KC15	1
227894	KC16	1 1
227895	KC17	I
227896	KC18 KC19	I I
227897 227898	KC19 KC20	1
221070	NU20	I

•

~

227899	KC21	1
227900	KC22	1
227901	KC23	1
227902	KC24	1
227903	KC25	1
227904	. KC26	1
227905	KC27	1
227906	KC28	1
227907	KC29	1
227908	KC30	l
227909	KC31	l
227910	KC32	1
227911	KC33	l


.

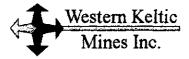
APPENDIX II

-

DIAMOND DRILL LOGS

1

ļ


Diamond Drill Logging Codes

Kutcho Creek Project

·····

••••• }

I (INDEX)			OGY (ROCK TYPE) cont.		OGY (RM) cont.		ONENTS (C=MINL)	Comp	onents (MINL) cont	TEXT	URE (Tx) cont		TEXTURE (Tx) cont
Р	Primary	LLTF	Lapilli Tuff	LS	Nitty	EA	Albite	PY	Pyrite	EQ	Equigranular	PÍ	Pisolitic, pes-like
Ľ	Lower	ļωπ	Lapili crystal tuff	LT	latitic	AM	Amygdules	QA	Quartz, agate	F\$	Fissile	PK	Poliditic
R	Remark	LOST	Lost core	MF	mafic	AL	Alunite	QV	Quartz vein, massive	FB	Flow banded	PL	Pelleted
A	Analysis Type	LXTF	Lithic crystal tuff	MZ	monzonitic	AP	Apatite	QX	Quartz, crystals	FD	Folded	PM	Polymictic
S	Survey	MSSX	Massive sulphide	PG	pegmatitic	AS	Arsenopyrite	QZ	Quartz, general	FE	Fiattened & Eloigaed	PP	Porphyritic
Е	Exended	MUDS	Mudstone	PH	phylitic	AU	Augite	SE	Serpentine	FG	Fine-Grained	PS	Poorty Sorted
LAG (FL	.G)		Overburden	PP	porphyritic	AX	Amphiboles, general	SL	Sphalerite	FO	Foliated	RW	Reworked
	Clear Field	PATE	Pyritic Ash Tuff	PY	pyritic	BA	Barite	SP	Sphalerite	FR	Fragmental	SB	Slabby
3RX	Breccla zone	PLTF	Pyrttic-lepilli tuff	RY	rhypittic	BI	Biotite	SE	Serpentine	FT	Flattened	SC	Schistose
INT	Contact	PMDS	Pyritic mudstone	SH	shaly	BF	Breccia Fragments	SD	Siderite	FY	Flaggy	SE	Seriate
ŊYK	Dyke, dike	OFXT	Quartz fektspar crystal tuff	Si	silty	80	Bomite	SX	Sulphides (general)	G:	Graded-bedded	SG	Sugary
W.	Footwall	OXAT	Quartz crystal ash tuff	SL	salty	CA	Calcite	TA	Talc	GB	Granobiastic	SH	Sheared
εLT	identified faults	OXLT	Qtz Xtei Lithic Tuff	ST	schistose	СВ	Carbonate	TM	Toumaline	GC	Gradational Contact	SP	Spotted
τz	Fault Zone	OZVN	Quartz vein, alternative form	SY	syenitic	СК	Chrysocolis	Π	Tetrahedrite	GG	Fault Gouge	SW	Stockworked
w.	Hanging wall	RHYL	Rhyolite	TF	tuffaceous	CL	Chiorite	XF	Crystel Fragments	GN	Gneisaic	тв	Thin Bedded
AIN .	Mineralization	SEXL	Silica Exhalite	UM	utramatic	CN	Cinnabar		JRE (Tx=Texture)	GP	Giornero-porphyritic	TF	Tuffaceous
VB	Overburden	SIBX	Silica Breccia	VŁ	volcanic	CP	Chalcopyrite	\$T	Sheeted	GT	Granitic	тĠ	Trachytic, trachytoid
UM	Summery	SILT	Sitatone		R (S=SHADE)	CY	Ciev	<<	Microveined	GY	Greasy, sectile	TR	Trachytic
HN	Thin section	SMPY	Semi-massive pyrite	1	Very Dark		Dolomite	>>	Macroveined	HE	Homfels	VG	Vuggy
THOLO	GY (Fm=Formation)	SMSX	Semi-massive sulphide	3	Dark	EP	Epidote	A*	Amygdeioidal	HL	Heterolithic	VN	Veined
RD	Augen Rhyodacite	STRZ	Stringer Zone	5	Medium	FL	Fluorite	AE	Augen Eyes	HO	Homogeneous	VS	Vesicular
MD	Green-Maroon Rhyd	SYEN	Syenite	7	Pale	FS	Feldsper (general)	AF	Angular Fragments	нт	Heterogeneous	Ŵ	Veined
MAR	Mottled Meta-Rhyi	TFBR	Tuff-breccia	à	Very Light	FX	Feideper phenocyrsts	AG	Augen structured	18	interbedded	wD	Welded
IPY	Silver Phylite	UNKN	Unknown rock	COLOU	R (CL=COLOUR)		Fault Gouge	AM	Amyodelokiel	iM	Imbricated	WL	Welded
SPR	Speckled Rhvolite	VEIN	Vein	4	Grey	GL	Gelena	AP	Aplitic	IN	Interstitial	WS	Wispy
SEX	Silica Exhalte	VSLT	Voicanic Siltstone		Biue	GT	Gemet	BD	Beddad	IQ	Inequioranular	XB	Cross-bedded
	GY (Lith=ROCK TYPE)	XATE	Crystal-ash tuff	G	Green	GO	Goethite	вк	Blocky	iR	irreguigrantata	XC	Cross-cutting
GLM	Aggiomerate	XLAT	Crystal-lithic tuff	0	Orange	GP	Graphite	BN	Banded	KR	Crackied	<u> </u>	Cross-collery
NDS	Andesite	-	OGY (RM=Rx MODIFIER)	-l.	Red	GY	Gypeum	BR	Bracciated	LB	Lensoid-bended	1	
ARGL	Araillite	AK	arkosic	- [``	Tan	нв	Hombiende	BT	Botroidal	LE	Lineated		
SHT	Ash tuff	AN	andesitic	- in	Brown	HE	Hemetite, eerthy	BX	Breccieted	LM	Laminated		
BAEX	Barite Exhalite	AP	aplitic	v	Yellow	HM	Hematile, magnetite	CA	Cataclastic	LN	Lenticular	1	
BASL	Basalt	AR	argillaceous	AG	Grey-green	HS	Hematite, specularite	СВ	Cracida Braccia	LT	Lithic		
RXX	Breccia	BN	bentonitic	AT	Gray Tan	JA	Jaroste	cc	Concretionary	MG	Medium Grained	1	
ASE	Casing	CG	congiomeratic	AU	Gray Brown	KF	K-spar, orthoclase	CG	Clay-galled	ML	Monolithic	1	
	Chert	СН	cherty	AW	Grey White	LF	Lithic Freqments	СМ	Chilled margin	MM	Monomietic	1	
ONG	Congiomenate	lco	coalv	GA	Greenish-grev		Limonite	CN	Contorted	MP	Microporphyry	1	
ACT	Dacite	CY	clavey	GM	Green & Marcon	MC	Malachite	co	Colloform Banded	MT	Mottled	4	
BRF	Debris Flow	DB	diabasic	GN	Green & Black	MF	Mafics, general	CP	Crowded Porphyry	MV	Microviened	ł	
NOR	Diorite	DC	dacitic	NG	Blackish Green	MG	Magnetite	CR	Crenulated	MX	Massive		
OLM	Dolomite	00	dolomitic	NN	Black	IMI	Micas (general)	CS	Closed-structured	MY	Mylonitic	1	
YKE	Dyke	DR	dioritic	IOA .	Orange and Gray	MS	Muscovite-sericite	CT	Clastic	ND	Nodular	1	
XHL	Dyke Exhalite	IFL	felaitic	TG	Tan-green	MU	Muscovite-service Muscovite	CX	Crowed Crystal	PA	Patchy	1	
LTZ	Fault zone	GB	Gabbroic	WG	Vhitish preen	IOX	Oxides (general)	IDF	Drag-folded	PA	Parchy Porphyroblastic	1	
SOUG		GN	genoroic aneissic	ww	White	PF	Piegiociase feldspar	EL		PB		1	
SRWK	Gouge	GR		YA	Yellowish Grav	PO	Pregrociese telosper Pyhrtolite	IEr I	Elongate Fragments	PF	Pauedofragmental Reconctitio	1	
	Greywacke Lithic ash tuff	HR	granitic homfelaic	YG	Yeliowish Graen	IPX	•			PG PH	Pegmatitic Disatilitie	I.	
ATF	CIONC BRU KUM	INK	nomining	10			Pyroxene, general			rn.	Phylitic	_	

Diamond Drill Logging Codes

Kutcho Creek Project

· · ·

Y

1

FRAGMENTS	S (TY=TYPE)	FRAGMENT	IS (Sort=SORTING)	VEINS (Vm=VEIN MATERIAL)	ALTERATIO	N (H=HOW (HABIT))	ALTERATIO	N (Amt=Amount)
Use Compon	enta - Mineral	1	Extremely poor	Use Components - Mineral		Clear Floid	0.1	15
		2	Very poor		#	Breccia fillings	0.5	20
FRAGMENTS	S (Sh=SHAPE)	3	Poor	VEINS (AT=AVERAGE THICKNESS)	\$	Sheeting	1	25
1	Extremely angular	4	Moderately Poor	Use Fragments Sz Scale	\neg \rightarrow	CL/MG replaces MF	3	30
2	Very Angular	5	Moderate		•	Ciasts	5	35
3	Angular	6	Moderately good	VEINS (OF-ORIENTATION)] +	Within quartz vein	7	40
4	Moderately Angular	7	Good	Relative to core axis] 0	Fresh, primary rock	10	etc
5	Intermediate	8	Very good		1 1	A, minor > and/or scat. Crysta		-
6	Moderately rounded	9	Extremely good	VEINS (V/M=VEINS/METRE)	2	Macroveins and Veins	Ł	
7	Rounded				3	Veine, Spots or Patches	MINERALIZ	ATION (H=HOW)
8	Very rounded	STRUCTUR	E (SD=STR. DEF.)		4	Veins, and/or occas. Envelopes	Use Alteratio	on H (How) scale
9	Extremely rounded	~~	Microvein		5	Veins, and/or abundant Envelop	Į	
A	Angular	>>	Macrovein		8	P or D Less Than <, S, and E	MINERALIZ	ATION (Amt=% Amount)
В	Bladed	BD	Bedding	f	7	P or D Equal To <, S, and E	0.1	15
ċ	Compact, cubic	BN	Banding		8	P or D Greater Than <, S and E	0.5	20
Ē	Elongated	CT	Contact		9	P or D, V, <, S and E	1	25
F	Flattened	DY	Dyke	1	<	Microveins, frecture fillings	3	30
Ĺ	Lengthened	FB	Flow banding	1	-	MS/CY replaces FX	5	35
M	Mixed	FO	Foliation	1	>	Macroveins	7	40
P	Platy	FS	Fracture set		A	A, cavity fillings	10	etc
R	Rounded	FL	Fault		8	Blebs		
S	Sub-Angular	FŻ	Fault zone	1	c	Coatings & ancrustations		
RAGMENT		JS	Joint set		D	Disseminations, scat. crystals		
A	<.004 mm	LM	Laminations		E	Envelopes	1	
В	.004 to .008 mm	LN	Lineations		1 F	Framework crystals	SUM (AF=A	It'n Facies)
č	.008 to .016 mm	QV	Quartz Vein		G	Gouge	FR	Fresh, primary rock
D	.016 to .03 mm	S#	Schistosity		I н	Replaced phenocrysts	Í PP	Propylitic
Ē	.032 to .06 mm	SZ	Shear zone		1	Eyes,augen	MN	Montmonillonitic
F	.06 to .12 mm	SF	Single fracture		ł J	Interstitial	A I	Intermediate argillic
Ġ	.128 to .25 mm	SH	Shear		ĸ	Stockwork	KF	KF-stable
н	.25 to .5 mm	SL	Sill	1	1 L	Laminations/bedded	РН	Phylic/greisenous
ŀ	.5 to 1 mm	TL	Tuffaceous Layering		м	Massive	- AA	Advanced argillic
, 1	1 to 2 mm	vc	Cerbonate vein		N	Nodules	PT	Pottassic
ĸ	2 to 4 mm	VE	Epidote vein		0	Spots	CP	Chlori-potassic
L	4 to 8 mm	VN	Vein		P	Pervasive	sc	Silicic
M	8 to 16 mm	VP	Pyrite vein	1	0	Patches, as in quilts		
N	18 to 32 mm	va	Quartz vein		R	Rosettes & crystais clusters		
ö	32 to 64 mm	'-			S	Seivages	SUM (AF) (Amt=Amount}
P	64 to 128 mm	ł			T	Steinings, as in tamish	1	Trace
à	128 to 258 mm				U	Eu-hedral crystals	2	Very Weak
R	256 to .5 m	ł			l v	Veins	3	Weak
S	.5 to 1 m				w	Boxwork	4	Moderate-Wesk
т	1 to 2 m				X	K and/or \$, M and/or L	5	Moderate
บ	2 to 4 m	ł			Ŷ	Deimationite	8	Moderate-Strong
x	1 to 4 m	Į		1	z	Massive,Laminated/Bedded	7	Strong
~		1		1		Wispy Laminations	8	Intense
FRAGS (MxP	MAX SIZE)	1					9	Very Intense
Use Sz scale		1					x	Complete
				1	1		1	

and a second second

T. Weste	rn Keltic		1	Project:	KUT	сно с	REEK
Min	es Inc.	DIAMOND DRIL	LOG	Drill Hole I	d.: WK	(05-39	<u> </u>
Hole Azimuth:	Dip:51°	Total Depth:	<u>307,5m (1009')</u>	-	:	Geologi	cal Summary
Date Started:July 7, 2005	Date Completed:	July 9, 2005 Core	Size: <u>NQ</u>		•	-	n dip extension in the east to the footwall zone.
	Northing	Easting	Elevation			ar yong n	
UTM Location:	6451994	~537772					d a 50cm band of SEXH with fault right above it. So the
Grid Location:		38296	1565	qu	estion is i	f the upper	zone is peetering out or if it is red SMPY with some MSPY
Collar Survey:		537772	1575		-	he footwall.	
Down Hole Survey	Sample Information	Split By:	Kat Britten				
Survey Method: 	# of Samples: <u>33 & 1 Std &</u> <u>280451-28</u>	<u>1 Blank</u> Type: 0472: 280424-480436	1/2 Sawn Core				
Depth Azimuth Dip* 33.2 179.8 -51.3	5 Date Shipped:July 20, 200	5 Assay C	ertificate # : <u>_ A05063070</u>	<u> </u>			
63.7 179.7 -50.	6 4 Analytical Lab: <u>Chemex</u>					Key Inte	rsections
185.6 180.7 -48.	9				From	To	Results
228.3 180.2 -48. 307.5 180.7 -46.	Drill Information	Core Siz	e: NQ to: end				
307.5 100.7 -40.	Drill Contractor: <u>Hy-Tech</u>		e: BTW to:				
└ <u></u>	Driiler: <u>Mark Konst</u>	Shift	Distance Shift I	Distance			
	Driller: <u>Chris Yuen</u>]	<u> </u>	
	Helper: <u>Luis Azofeifa</u> Helper: <u>Sean Bradley</u>			Lo	gged By	:A	nia Weiss
	J	<u></u>					

•

Western Keltic Mines Inc.

Drill Hole Id: WK05-39

					1										Te	-		T	-	-		1				Alter	Ho				-				Ň	neral	Izatio	×n		
	erval		echnical	Lithe	Lith2	0	iolour		C	omp		8	101		18	cture Tran	1	ien.	SUL	ctur		.haw	0-4	Mali		AILE	Ch			AL			HP						BnH	BnA
From		%Rec	RQD		Limz	<u>5n</u>	COL	<u>C1</u>	C17	CZ.	C27	<u>[[]</u>	<u> </u>	121	1.24	11.84	1.24	1301	PAN'S	302	12.416	MART		_ mar	1 (1) 3/	1 VUIT	1		1	1	<u>+~~</u>	+	1							
0.0	6.9			CASE	<u> </u>	-				~		-	07		105	+	╆	F.	<u> </u>		╉	+	+	┼──	+	6	3	, 	+		+		+	-†		-	- 1			
6.9	9.2	. 90	80	GBBR	[1	GN	PF	- 50	PX	40	LCB		FG	SE	1114	+	FL.	<u> </u>		╋		+	┿╾╍	- f• -	٣-	1-5	' 	╀	+	+	+-	+	-						
						Ι.								L.				~					1	Į –		н	3	,		1						- 1			, I	į
9.2	16.4	80	. 70	GBBR		3	AG	PF		PX		CB	вт	PA	SE	4	+	FL	110	-	+	╄──	+ -	┥	+	<u>m</u>	1-34	4—	+	+	- {	+-	+	+	-+				<u> </u>	
16.4	138.7	90	70	GBBR		3	AG	PF	30	PX	30	св	PY	PA	SE			FL	130			н	10									U		2						
				QFXT		5	AG	ax	40	FX	30	св			LB	ST		av	20							s	2													
138.7	141.1	90			[_	AG	άX		FX					LB	_	we	_			+			5	20	1//\$	2		+	1	-		1		-7				\square	
141.1	145.2	90	70		· · ·	1 -	AG	<u> </u>	- 30	۴ <u>م</u>		1 110	100	ť-		+	1	-					1	Ť	1		+-=	-	+						_1					
						ء ا	A	ax	20	FX	20	ме		PP	LB	ST		LM	10		i i	1		7	2	1/5	1 1	ai 👘				U	v1	1						1
145.2	153 <u>.0</u>			OFXT	1		G	0X							LB	ST	+	LM	20		+	+	+	┦╤╌╌	+	5	1		+-	+-	+-	- U	-	1						
153.0	154.8	100		LATE						FX	_		ا د	MX		ST	+	LM	20		+	╉╼		<u>+</u>	+	5	+ 1	-	+	+	+	-U/	7	10			_			
154.8	156.8	90		OCEX			AY	<u>ox</u>		СВ	10				_	131	+-	LM	20		+	1-	+	+	+-	M	1 9	_	+	1	+	Ū/	_	10				· · ·		
156.8	158,1	90	80	CEXL	L	1 <u>5</u>	AY	CB	90			PY	+	MX	+	+	+	<u></u>	-20	' —	+	+-	+	+	+-		+-*	Ť	+-	+	+-	-1-"	· -	-				-		
158.1	163.1	80	70	SMSX	}	3	A	ax	30	FX	20	CB	sx	мх	BN	CN		LM	10							z	1	0				м		15					Q	5
136.1	103.1			Smox	<u> </u>	Ĕ	<u> </u>	1	<u> </u>	f <u>a</u>		t==	1	<u> </u>	1	1	+	1	1	1-	\mathbf{t}	1-					1						Т							
163.1	165.6	90	80	LLAT	SMPY	5	G	аx	15	C 8	5		PY	UB	ST	₋	-	 	┨		1	 	+		╞	\$	+	5	╞	+-	+-	Р		8						<u> </u>
165.6	168.6	100	90	LLTF		5	A	αx	70	СВ	20		PY	LB	\$T	_		_	_	ļ		_	<u> </u>	<u> </u>		s	1 2		_	_	+	//	<u> </u>	10	<u>a</u>	_1	<u> </u>			
168.6	177.2			FLT									1			1	+	∔_		1		4—	-	+	+	-	+	+	- 	+		+-	-+-				<u>↓</u>	-	<u> </u>	+
177.2	188.7	90	70	LLXT	SMPY	3	AG	ox.	30	СВ	40	MS	PY	ш	<u>88</u> _	BN								 		s	4	0	-			Р		40			-			
188.7	202.0	80	80	LUXT	SMPY	5	A	ax	20	СВ		PY			BN						<u> </u>	┢	_	1	+-	s	6		4	\downarrow		P		30		1	Q	3		╞
202.0	206.5	90	80	LLXT	SMPY	5	AW	OX	50	CB		PY			BN	1	1			1-	1	┢	1	+	<u> </u>	5	_	0	+			-	+	15	<u>u</u>	<u>⊢'</u>	+	┝	–	+
206.5	213.5	90	80	LLXT		5	GA	ax	30	CB			PY		BN		1			1	-			+	+	\$	_		+-			╞	-+-	5		<u> </u>			+	+
213,5	222.2	90	60	LIXT	1	5	5 A	ax	30	CB	30	CL		LB	BN	\$T				1	⊥_	S	10	<u>1</u>	<u> </u>	S	13	이	+-	-		- 12	-+-	_5		<u> </u>		+	–	┢
222.2	222.3			FLT			1													1_	-		1	4_			+	+	+	+	+	-		_				+	+	+
222.3	228.0	90	50	LIXT		5	5 A	ax	20	CB	30	MS	PY	LB	BN	<u> \$</u> T		LM	20			-	_	-		5	13	<u>o</u>	+		\rightarrow	- 2	-+-	5		1		1	+	+
228.0	231.0			FLT											1	-		1-		1		-		-	-	-	+	-	+-	+			-+-	3		1-	+	+	+	+
231.0	239.2		80	LIXT		5 t	A	QX	20	CB	30	MS	PY	LB	\$T	BN		LM	30	4	-			1.	+-	\$/N	1 3	0	+-		-+-	- [*	-+-	3	<u> </u>		+	+	+	+
239.2	240.1	50	10	FLT									L	1		_	\perp	+	+	-	-	-	-	+	+	-	+				+	┢	-+	10	<u> </u>				+	+
240.1	249.8	80	10	LLXT			to A	ax		CB					\$T	BN	_	+			-	+				\$			+	-	+	┢		5		1-		1	+	+
249.8	258.8	60	10	FLT	ILIXT	5 t	to A	δX	1 5	CB	50	MS	PY	LB	\$T	BA	4	_		+	-	+-		+ -	+	- \$	15	i0	+	+		-	-+-	3			+	+	+	+
258.5			70	LLXT	SMPY		5 A	ax	30	св	40	MS	PY	ш	\$T	84		LM	20				<u> </u>			5	4	10	+-		_	Ρ	\downarrow	30	<u> </u>			-	\vdash	+
269.5	284.6	60	60	ASTE	QCEX		AG	ax	30	œ					ST	M		LM	2					_		5	_	10	-			_ P	_	15			1		\perp	+
284.6				LATE	1		G	CL		ax		CB	PY	ST	FG	B	I PF	QV	5	5						\$	1					P	N	10	-	1	+		+	+
						Γ										T																P	N	35			Р	3	3	
290.9		i 90	80	ASHT	SMPY	13	3 G	FX.	1 10	<u>plar</u>	-	CE	HPA	FG	<u>'</u>	Bł	4				-				+		+	+-	+		-+-	-ŕ	-+		—	\vdash	ť-	1	1	1
307.5				L	1				L		L							_				_	_	_		_	-	-4-		_		_	_			_			<u> </u>	

Project: Kutcho Creek

services and the services of t

DIAMOND DRILL LOG

1

١

DIAMOND DRILL LOG

1 1 1 1 1

Project: Kutcho Creek

•

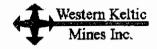
٦

Drill Hole Id: WK05-39

Int	terval	
From	Ta	Comments
0.0	6.9	Boulder Fragments
6.9		Relatively FG with a few QV and/or mobilizations
		Highly altered rock from surface oxidization with some periods up to 35 cm fresh rock in between. There appear to be some stretches where the CB replaced the PF and then there seem to some some where it
9,2	16.4	rather replaced the PX minerals.
į		There are more phorphyntic looking stretches that move into more fine grained stretches, into porpytic* again and then into fine grained again; same thing as above in periods the CB, MS, CL is replacing the PX
		and in other periods it is rather replacing the PF; a few small (2-3mm) U PY; there are about 6 periods of up to 30 cm highly altered/oxidized; there is an about 10 cm thick QV at he 4.1, 8 m with quite a few up to
15.4	138,7	3 cm U PY and about 5 cm above and 10 cm underreath the QV are more small U PY (up to 3 mm) than is the rest of this unit, where you will only find the occasional U PY
		First 30 cm appear dark green, mainly CL, CB and some big QX LB, next 10 cm contain mainly CL, CB, \$T with CB replacing some up to 5 cm angular shaped X?; next 10 cm FG QX becomes more abundant
138.7		with minor replaced X an from 139.3 on QF XT with relatively small CB QX grains.
141.1	145.2	Typical QFXT with in parts huge (up to 5 cm) CB blobs; from 144.6-144.8 strongly mushed, mostly muse, and QX containing CNGL
		Typical QFXT with PP QX, has a limonite laminated texture to it; just the first 3.7 cm look a little bit different. Some smaller QX in relatively massive appearing matrix - doesn't have the laminated texture to it. From
145.2		151.3-153 slightly red/colouring from FG HE?
153.0	154.8	Limonite laminated LATF containing some LF and a few 2mm PY, one is 1 cm.
154.8	156.8	Massive QEXL with laminated CB/Li and abundant PY some up to 2 cm
156.8	158.1	Massive CEXL laminated with Li and some FG HE; lots of 1 mm PYV, abundant FG PY with a few up to 1 cm.
		First 2.2 m abundant 1-2mm PYV with two that are up to 2 cm; just before 160m it looks like there is a 20cm fault gauge - rest of section maybe faulted away. from 150.0-160.2 60-65% PY, from here to 161.8 lots
		of FG PY and some small V. From 161.8 to 162 m 30% PY with the occasional blob of Bn. From 162.0 on Bn becomes more abundant in the core together with some U PY and a tew veins of Bn up to 2 cm.
158.1	163.1	From 162.6-163.1 SEXH with some pretty big up to 3 cm PY and Bn U. PY>BN
		Green LLAT interbedded with some up to 4 cm thick QX/CB layers which seem to gradationally become more until the Tuff layers become very minor. PY mineralization seems to be much more abundant in
163.1	165.6	QX/CB layers.
165.6	168.6	Basically mainly QX and CB rich Tuff with minor LLAT layers, PY fine grained and euhedral about 10% acattered throughout the core, one up to 2 cm V. Towards the end of this section some minor Cp appears.
168.6	177.2	From 176.5m to 176.7m contains some mud that seems to be full with FG PY
		First 3.8m only minor PY. Then it appears more abundant in up to 5cm bands fine grained. From 183.2m to 183.6m it is LLXT with one about 3mm band of FG PY from then on PY is very abundant up to 185.4
177.2	188.7	where a 20om band of MSPY appears, from 185.8 to 187.1 again SMPY; from there to 187.4 MSPY; from there on to the end there is one 20cm band of almost MSPY and two up to 10cm bands of almost MSPY.
		This unit consists of LLXT with a 30cm VSLT from 194.8 to 195.1 m with lots of FGPY; it also consists of 3 inches between 30cm to up to 1m thick bands of airnost MSPY, generally spread throughout the rock are
188.7		many smaller bands in lamination up to 5cm thick. There is a 15cm blob of Sp at 197.6m and some minor occurances of Sp througout the core.
202.0		Lots of small (1-3cm) thick bands of FG PY - "Feeder Zone"?
206.5		Contains some intercalated bands of 10cm up to 1mASHT with some minor 1 mm to 3 mm thick PY bands. LLXT contains a few PY bands up to 4cm. Green colour probably due to chloritization?
213.5		Basically the same rock as above, just without the ASHT and the green colouring only appears periodically. PY is minor in a few up to 3cm zones
222.2	222.3	
222.3		Some minor small (1-20mm) bands of PY
228.0		Strongly broken up rock with lots of small, loose QX fragments
231.0		Intercalated (from 1 cm up to 9 cm thick) bands QX and CB with some minor small (1 mm up to 20 mm) bands of PY.
239.2		Strongly mushed up rock with lots of QX fragments and MS sheets (broken up)
240.1		Contains 3 about 5 cm thick bands of almost MSPY in first m, from then on there is about 8 bands in between 2-10cm abundant PY and other than that there is a few minor up to 2 cm bands of PY.
249.8	258,8	Lots of mushed up rock intercalated with up to 1m of intact rock, last 1m is wash. there are about 5 bands of abundant PY (up to 10 cm) though.
250 5	000 F	There is a FLT zone in between 261.8-262, quite abundant PY actually with 3-4 bands of up to 10 cm almost massive PY. Within the last 3m there is about 4 20cm bands with no PY, otherwise PY is pretty much
258.5	209.5	spread throughout the whole rock
269.5	2040	
269.5	204.6	Atternating bands of CEXH, SEXH and ASTF with 74 up to 5 cm bands with almost MSPY and lots of little (1-3 mm) bands of PY. There are some PP QX in ASTF, but not many. rock appears strongly banded. Atternating LATF with some CB richer layers and some almost pure QX layers; about 3 up to 5 cm thick bands of PY and quite a lot of small 1-3mm veins there.
204.0	230.9	
ļ	[Attemating ASHT with two 80-120cm thick SEXL layers. The first SEXL layer contains two up to 5cm thick blobs of Sp with U PY and a band of almost MSPY up to 5 cm at the end. The second SEXL layer
290.9	307 6	contains two up to 4cm almost MSPY. Throughout the ASHT there are up to 8 bands up to 7 cm of almost MSPY. Other than that there are lots of arnall veinlets of PY. The ASHT contains guite a few CB crystals.
307.5		end of hole
<u></u>		

ł

Western Keltic Project: KUTCHO CREEK Mines Inc. DIAMOND DRILL LOG Drill Hole Id.: WK05-40 Dip: _ **Geological Summary** Hole Azimuth: 180° -67° Total Depth: _____344.1m (1130'). Date Started: _____July 10, 2005 _ Date Completed: _____July 12, 2005 _____ Core Size: NQ Purpose / Target: Northing Easting Elevation 6452196 UTM Location: 537159 1531 Comments: This hole hits a SMPY Kutcho zone at


Grid Loca	tion:		37687	22891			154	0	11m furthe	r down the	appears to be relatively low gra second zone starts with 10m e us some grade and eventual
Collar Sur	vey:		6452199	537161			154	0		•	of SMPY. The mineralized zone
<u>Down H</u>	ole Surv	ey	Sample Information		Calit Bu	Kat B	***		ſ		
Survey Me Depth	thod: <u>Refiex</u> Azimuth	Dip*	# of Samples: <u>10 Assa</u> 28047:	v. 10 Lithogeochem 3-280482		Kat Br 1/2 Sawn Ci					
30.5			Date Shipped: <u>July 20,</u>	2005	Assay Ce	rtificate # :	<u></u>	070		<u> </u>	
91.4 152.4 213.4	179.6	-65.5	Analytical Lab: <u>Chemer</u>	. Acme					From	Key Inte	ersections
279.3			Drill Information					<u> </u>			
328.9	183.7	-60.3	Drill Contractor:Hy-Te	ch		: <u>NQ to:</u> : <u>BTW to:</u>		. <u> </u>			
			Driller: <u>Mark Konst</u>		Shift	Distance	Shift	Distance			
			Driller: <u>Chris Yuen</u> Helper: <u>Luis Azofeifa</u> Helper: <u>Sean Bradle</u> y						Logged By	/:A	nia Weiss

7

1 1

·]

1

DIAMOND DRILL LOG

,

.

Project: Kutcho Creek

Drill Hole Id: WK05-40

~

1

۱

Int	erval	Geo.T	echnical	(Lithe		L C	olour	T	Ċ	0000	oneni	-			Ter	ture		r –	Str	ectur		1		_			Alter	ation		_			-		M	Inera	lizati			
From				Lith1	Litth2	Sh	Col	C1 1	C1%	C2	C2%	C3	C4	Tri			Tyd	SD1	And	isn	An	1071	10,		leHij	Me A	ChH	ChA	DIN		ALH	Ale	1 PVH	PvA	Cok	CnA	Sol	ISne	Bat	(Baå
0.0	6.1			CASE	E.G.L			F -1	<u>- 1</u>	-	VL /0				1.22		1		1	100	120			~ 1~	1.00	11.354	10011	1000		1		1	1	1	1-20	1	1	1000		1
	0.1			UAGE .	†											\vdash		· · · -		†	+	-	╋	+	-+-		<u>} </u>		+			┢	1		+	+	+	+	+	┼─┦
					[i					1							1		1	1	
6.1	132.5				FLT			FX							PP	L		av			10	4		J		10			_	<u> </u>		_	<u>lu</u>	1	<u> </u>		1	1	1	
132.5	137.0			QXAT	L			FX		ax					PP				45		_			H		20						↓	_	1		<u> </u>	-	—	<u> </u>	+
137.0	183.0	80	80	TFBR	QXLT	5	G	면	30	ОX	30	CL	EP	BX_	PPA	IN	IN	٥v	75	ax	10) J	12	20 J		25			 	<u> </u>			μ_		-		<u> </u>			┿╍┦
183.0	189.6	90	60	LLTF		7	AG	ax	30	MS	15	a	CB	IR	ST	eT.	ST	cv	25	СВ				\$		10	•	15			1		h .							1
189.6	191.5	90		OXTE		7		ox l		MS	30	68	PY	PP	ST	ST		Ŭ.		100	┦──		+	ŝ		30		15				1	Ŭ	5	-	+	+	+	1	+
191.5	193.4	70		FLT	<u> </u>									· ·	-					+			+	-1-	-					1		1	1		_	1			1	
193.4	197.0	90			t	7	A	āχ	15	MS	30	СВ	PY	PP	ŚT	ST	1-	av	75	i	<u> </u>	1		5		30	s	15	1	1		1	τυ	1		1	1	+		
197.0	200.0	90			OXTE	7		ox I		MS				PP		ST				<u> </u>	1	1	1	\$		30		10		1			Ū	1						
10110																1				1	1		1-				-					1	-	1			1			\square
200.0	203.0	90	90	QCEX	FLT	5	A	ax		СВ				ΜХ	MX							м	6	50			M	30					U/P	3	·					
												_																				1				1	1	1		
203.0	225.0	90	70	LLXT	FLT	7	AM_	ax	20	MS	30	CB	PY	PΡ	LM	LM	LM	LM.	20	1	-		+	\$		30	\$	15		.	I	_	<u>v</u> _		-	 	-	4	_	
225.0	231.4	90	90	XATE		3	G	ox	25	MS	30	CL	СВ	PP	LM	LM	LM	LM	25					\$		30	s	10					U	1						
																				1									T	1		1					1			
231.4	243.3				QCEX			OX		MS				PP	LM		LM	LM	- 30					\$		30		15		_		1	₽ĄŲ	ļ	ų	<u> </u>		1	4	
243.3	248.4	90		LLTF	L	7	A	QΧ	40	MS	35	CB	PY	LB	<u>\$</u> T	\$T		LM	35	i				\$		35	\$	15				<u> </u>	P/U		<u>i</u>	\vdash	<u> </u>	+	<u> </u>	+!
248.4	253.1	80		FLT												<u> </u>						<u> </u>	1	_			L		<u> </u>	Ļ			I	1		+		┶	+	+
253.1	256,6	90	90	LLTF		5	A/G	ax	60	СВ	20	α	PY	LM	LM	LM		LM	35	<u>i</u>	<u> </u>	Ρ.		15			\$	15	i	_		\vdash	Ρ	1 1	+ -	<u> </u>	+	+	+	+
256.6	260.9	90	80	SMPY	LITE	5	•	ox	40	СВ	20	PY		LB	ST												s	20					P	60						
260.9	272	90		LLTF		5		OX I		CB				LB		\$T		LM	40	1	1	t		\$	-	15	-	20				1	U/P	15	5	_				1
200.0						- T															1				-				-	1		Γ	T					-		
																		ł												1		1								
272.0	282.7	90	80	SMSX	LLTF	3	A	<u>ox</u>	35	CB	20	MS	SX	LB	\$T	ST_						1_		\$		15	\$	_20	<u>ч</u>			1	U/P	40	비	 	-	+	0	2
																				1	1	1	1							1		1	P/Q	35			1.	3		
282.7	300.0	90	80	SMPY	LLTF	7	Α	QX	30	СВ	20	MS	PY	ĻВ	\$1	\$T				+	┝	╋	+	\$	\rightarrow	15	5	20	'	-	<u> </u>	+	PIQ	35	4	+	+	+	"→	+
300.0	307,3	80	60	SMPY	UTE	5	Δ.	ax	30	св	40	MS	PY	LB	AN	BN				Į		Ł		s		40	s	40)		1		Р	35	i.		1		}	
307.3	312.7	80		LLTF	<u></u>	5		ax		CB					BN		-	t		1		t	+	5	_	40		30		1	1	1	P	15			1			
312.7	319.2	90		QCEX	1	5		οx I		CB		PY		MX		<u> </u>		-		1		1-	+-	Ť			M	30					P/U	8						
319.2	331.7	80		LCTF		5		OX		CB					LM	LM		LM	45	5		1		\$		20	L	30	1				U/P	20			L	1	1	
331.7	335.5	90		QCEX		5		OX		CB		PY		MX													М	40)[U/P		5					
																		1					T	T										1						
335.5	344.1	90	80	ASTF		5	G	ax	20	a	40	PY		CM	BN		L	LM	20	¥		5	4	40						↓		-	U/P		1	-		+	+	
344.1																		L .		1			1									1			1			<u> </u>	<u> </u>	

.

Western Keltic Mines Inc.

i

DIAMOND DRILL LOG

Project: Kutcho Creek

- 1

Drill Hole id: WK05-40

in	erval	
From	To	Comments
0.0	6.1	
–		Rock is strongly broken - FLT zone for first 12m, from 15.4 to 16.7 same thing. Plus from 19.6-21.4 Feldspar - PX porphory but lots of the Plag has been converted to EP. From 30.2-40.0 is one big Fault zone
		with strongly broken rock. Around 124.0m there is a 20cm MXQX band. in between 96.0 and 106 GBBR becomes more massive looking with mainly FX, CL, MS and EP. From 119.6-132.5 same thing, just that
6.1	132.5	the primary alteration mineral is rather MS then EP. Rock appears pale gray in these sections.
132.5		A dark green PP tooking Tuff with few OX grains. Contains a 20 cm band of Dolomite with fine grained HE (red?)
137.0	183.0	Very funky looking rock. Abundant LF, also lots of PP QX; towards the end of this interval QV and mobilizations become more abundant. Lots of interstitial EP in this rock.
		This section starts with 1.2 m almost like a CHRT looking, including some Chloritic Fragments and goes into a highly laminated LLTF with some HE in it. Towards the bottom of this interval Fluor MS becomes
183.0	189.6	more abundant.
189,6	191.5	Pale gray QXTF wit lots of FluorMS and laminated CB; QX PP are not that abundant. Rock seems to have been bleached.
191.5		Strongly mushed and baked together by a clay matrix fault zone.
193.4		Same as above the fault zone, but QX PP are guite abundant.
197.0		There is a Fault zone from 197 to 198.7 with strongly broken up QXTF cemented with clay. Rock shows some small folds. Rest of the interval is same as above with abundant fluor muscorite.
	200.0	
200.0	203.0	First 30 cm contain another FLT zone some strongly folded Ctz, CB, PY rock - about 8% fine disseminated PY. The QCEX contains a few FG Py veinlets and some U Py - overall not a whole for though.
200.0	2.00.0	Pale purplish (HE) strongly limonite laminated LLXT with some up to 1 cm bleached sections. There are two fault zones at 222.6 m and at 224.4 m with up to 5 cm bleached rock on each side of it. At about 223
203.0		m there is a 10 cm band of green LLAT. Rock contains abundant PP QX.
200.0	220.0	
225.0	724 4	
223.0	231.4	Dark green strongly limonite laminated XATF intercalcated with a few CB and QX bands up to 5cm and also with a few up to 30 cm bands of the same rock just purplish instead of green. Lots of PP QX.
004 4	G 40 0	Pale purple strongly limonite laminated LLXT intercated with a 50 cm band of alternating purple and green bands with a QCEX of about 40 cm, with a 20cm band of CB with boxwork alteration. Fit zone from 232.4 to 232.7 m.
231.4		
243.3		Strongly laminated QX-MS LLTF with some minor but relatively big (up to 5cm) blobs of PY.
248.4		looks very much like a healed fracture zone.
253.1		Strongly laminated to lensoid banded LLTF, simost looking like CHRT in places with some minor PY veinlets up to 3mm.
		Section starts out with a 10cm band of almost MSPY, then there is about 40cm of LLTF and at 257.2 to 259.5 there is about 70% pervasive PY scattered throughout the rock. From 259.5 to 260.9 there is about
256.6		35% of pervasive PY in the rock, which starts to show some boxwork alteration.
260.9	272	Generally some small veinlets with fine disseminated PY, but there also are a few bands with U PY.
		I would mark this as he beginning of the second mineralized zone. Starting out with a 20cm band of almost MSPY. Then there is about 60cm band of healed fracture zone, followed by two 10cm bands of almost
		MSPY. This is followed by 1.6 m of LLTF with the occasional small PY veinlet. At 275,2m there is a 20cm band with some Bn and CP. From here on there are lots and lots of fine disseminated PY throughout the
272.0		rock. At about 281 to 281.2 CP becomes a little bit more abundant.
1		At 293.8 there is almost 1m of almost MSPY. Right above that there is another healed fracture zone. At 295.0 m there is another about 50cm of almost MSPY. Other than that there are actually quite a few
282.7		veinlets with PY and SP spread throughout the rock
		This interval starts with a 60cm band of ~70% PY. At 304.6 another 70% PY band and at 305m a 60cm band of about 60% PY. The rock is strongly broken up into lots of small pieces. There is another 20cm
300.0		band of almost MSPY at 305.5 and one 10cm band at 306m. One more 10cm band almost MSPY at the end of the section.
307.3		There are a few bands up to 5cm scattered throughout this rock and quite a few smaller veinlets up to 2mm.
312.7		Very massive looking QCEX with a few up to 5 cm veinlets of fine grained PY. At about 317 there is an 18cm band of aknost MSPY.
319.2		There are quite a few bands with almost MSPY in between 3-10cm, also 30cm band at 331m and another one at 331.4m. There are a few stretches with limonite laminations.
331.7		Rock contains a few veinlets of up to 1cm PY from about 333m on. Where CB seems to be te dominant constituent limonite lamination becomes more obvious.
		This interval seems to start with 500 ft of a 60cm transition zone where CI becomes more and more abundant and the CB content decreases w/ the limonite laminationslowly gying out, there are a few minor Py
335.5		bands up to 2 cm. And there are quite a lot of up to 3mm bands. From 343.7m on there are a few GB phenocrysts in the ashmatrix.
344.1	-	end of hole

ł

Western Keltic

Mines Inc.

.

F

Project: KUTCHO CREEK

Drill Hole Id.: WK05-41

Hole Azim	with:	180°	Dip: <u>-63°</u>	Total D	epth:	222.2m (72	9')			<u>Geologi</u>	ical Summary
Date Start	ed: <u>Jui</u>	<u>iy 12, 2005</u>	Date Completed	July 13, 2005	Co	re Size: <u>N</u>	IQ			Target: Do	wn dip extension of the Kutcho
			Northing	Easting			<u>Elevati</u>	on	Deposit		
UTM Loca	ation:		6452037	537483			156	9			ion hits the first mineralized zone
Grid Loca	tion:		22729	38006			157	7	should give	us some C	- even though it is only 50cm it ou grade (Cp!). Second
Collar Sur	vey:		<u> </u>	· <u>,,</u>							out 4m with some Bn and some cone (~13m) has some Cp.
<u>Down H</u>	ole Surv	ey	Sample Information		Split By:	Kat Bri	itten				
Survey Me	thod:								1		
	Reflex		# of Samples:18		Type:	1/2 Sawn Co	re _		i		
			280483 - 498	280422 - 423							
Depth	Azimuth								1		
30.2	177.9	-61.6	Date Shipped: <u>July 20, Au</u>	gust 8, 2005	Assay Cei	tificate # :	A0506	3070			
91.4	182.9	-55.8								Key Inte	ersections
152.4	185.2	-52.0	Analytical Lab: <u>ALS Chem</u>	<u>ex</u>							
191.7	184.1	-50,8	-						From	То	Results
222.2	185.7	-49.5	Drill Information								
						NQ to:					
			Drill Contractor: <u>Hy-Tech</u>		Core Size:	BTW to:	<u> </u>				
			Deiller Medikeret		louis	(n		1 m 1 n			····
			Driller: <u>Mark Konst</u> Driller: <u>Chris Yuen</u>		Shift	Distance	Shin	Distance		<u> </u>	· · · · - · · ·
			Helper: Luis Azofelfa							<u> </u>	I
			Helper: Sean Bradley					<u> </u>	Logged By	r: A	nia Weiss
					4 <u> </u>	[4			

:

DIAMOND DRILL LOG

•

DIAMOND DRILL LOG

Project: Kutcho Creek

- 1

Drill Hole Id: WK05-41

int	erval	Geo-T	chnical	Litth	ology	10	Colour	1	C	mpo	hents		T		Tas	ture	-	1.		ucturi		<u> </u>								<u> </u>										
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	IC1	C1%	C2 C	2% (3 0	4 1	Tv4 I	112	11-1	7.4	1001	Sur And	en	8		0.0	100-0		Alte	ration	1				+				eraliza				
0.0	2.1			CASE	-	1		<u> </u>				-	~		1 44	11.00	1.00	1.00	Aug	1304	1 Ang	- uzn	UQ2P						DIA	AK		PY			СрН	СрА	SpH	SpA	Bni	[BnA
					+	+-	+	-f	╃━┤			-+-	-+-	-+		 	+	+	╂—	+	-	<u> </u>	<u> - </u>	н	30	<u>' </u>	+	<u> </u>	-	_	4	1_	1				<u></u>			
2.1	16.4	80	70.0	DIOR	FLT	1,	A	FX	10	PX	10 0	~ !		. 1	22	0		_		1					1			1	{				1	i	1	l	Ì	1	1	
			70.0		<u>+</u>	+	<u>r</u> -	- <u>F</u> -		<u>-</u>	1010	17- IN	2	<u>N </u>	22	ISP	1151	av		ļ	<u> </u>	\$/H	20	0	20	¥[<u> </u>	<u> </u>	<u> </u>			υ		<u>1</u>				1	1	
16.4	61.0	80	60.0	GBBR	ELT	Ι,	G	PX	30	~	30 N		_ [_	~											F	1	-			1		ł	1	1						T
				0000	+		10	<u>†</u> ^			30 N	10 E	- [111	SP	uni -	<u>av</u>				ļ	ļ	<u> H.</u>	30	·		<u> </u>	ļ	<u> </u>		U		1			1.			
61.0	66.4	90	80.0	DIOR			G	FX	30		10			.								1	1			1		1	1	1		1	1	ļ			1	1	1 -	1
		- 30	00.0		+	۲ď	P	₽	30			1310	<u>- "</u>	<u>n 1</u>	PP	SP	IN		<u> </u>	<u> </u>	 	 	<u> </u>	+		<u> </u>	_		[1		U		1					L.	
1					Ì	ł	[[[!		1	1	ĺ		1			í			1				1	[
Í					1	1		1		ļ	[{		1			ł		į –	1	f		1]	}	1		1	- 1	1		1	ł		
66.4	167.0	80	70.0	GBBR	EI T	##		FX	0.00	~	-		.]	1		1	i		ł			Į		l.	4				1						i i	1
	107.0		10.0	GBBR		##	<u> </u>	<u>r^</u>	30	-	30 N	is c	<u>-</u> (R	<u>ין א</u>	44	SP	IN.	_		╡	<u> </u>			\$	20	1				ļ		บ	<u> </u>	1				L	<u> </u>	
167.0	171.0	100	00.0	OXAT	LUTE -	3 to				-~							1	1	i		ł					t i	1	1					1				/	1		1
107.0		- 100	30.0	<u>uni</u>		<u>3 (</u>	<u> </u>	<u>lox</u>	40	<u> </u>	10 C	<u>ι</u> ρ	<u> </u>	<u>11 44</u>	.M	21	_	I		+	Į	5	30	\$	20							P-L		4				i	1	1
Į		{			1		1										1	ł							1		1	1	ļ			ł		- 1						1
171.0	175,7	90	00.0	OVAT				_								_	1			1	ł		l		1	1	{	1	1	ł		i i			ł ł			1		1
175.7	176,5	90	10.0	OXAT		<u> </u>	G	<u>ox</u>	30 0	зв	2010	L S.	XIP	P	ST	\$T			L						1	\$	20]		Ρ		15	Q	9	4	1		-
176.5							l				_	1	_												[[ł.	-	L	1	1		\square					
179.6	179.6	100		ASHT				OX.	35 0	<u>B</u>	15 C	LP	Y IN	IX I	<u>. Ti</u>	\$T	L	ĹΜ						1		\$	15	1			T	P/L		1				(Î	
	181.2	100		UNKN	I	_		OX	801	R	75 H	EP			.M	FG		LM	20	l			L	1							1								Ì	
181.2	182.6 183.8	90		SEXH		3	G	аx			_ _		_1™	IX		_		I													1	U		3	ίΠ			1	1	
182.6	103.0	80	10.0									┶	-							L												I	1		\square			í		+
	1							1 1]			[1								1	1						1	
						_		I												1							Į	:			1		ĺ		1				ł	
183.8	188.0	90			SMSX	3	Α	ox	30 0	-18	<u>20 LI</u>	S)	니니	B 1	<u>N</u>			LM	10						L.	S/L	20	L				P-U		25	1		L	9	Q	17
188.0	188.6			FLT																1																				1-1
188.6	193.0	80		SEXH		7	WG	OX	90 L	в	5 C		_ [M	X										1							1	T.	<u>†</u>							1-1
193.0	207.1	70	40.0																_					Г							+	1	1		~+	-				11
207.1	209.4	90	90.0	LLTF		7	AG	СВ	30 0	7L	15 LI	Q	ХU	ML	M	LM .	LB									L	30				1	P		-1						1
								1		ļ		1	ſ	T																		1			+		 			<u>+</u>
209.4	222.2	90		SMSX	LLTF	7	A	QX	150	в	40 C	L S>	<u>(</u> 11	BİS	т	\$T																Ρ		25	0	25	1 1			1 1
222.2										1	[1	1	1										<u> </u>							1	1 -	1		-+		<u> </u>			+4

.

I.

DIAMOND DRILL LOG

1

1

. ,

· · · · · ·

1

۱

a service research to the service

1 · 1 · 1

Project: Kutcho Creek

- 1

١

٠

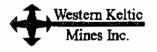
Drill Hole Id: WK05-41

Int	erval	
From	Ťo	Comments
0.0	2.1	casing
1		Relatively massive grey looking rock, where most of the PX have been altered to either CL or MS. There are quite a few stretches up to 1m that are highly altered by surface oxidization. And there is a fault zone at
2.1		about 9.2 where 3m got washed away
16.4	61,0	Typical looking GBBR. In the first 12m MS is the primary alteration Min, from then on to 50.3 Epitode becomes primary alteration Min. and for the last few MS again. There is a fault zone at 25.3 to 25.6.
-		Grey massive looking rock again with a 1.5m strongly oxidized zone, lots of H Ms towards the end of the interval; also PX - CL are increasing towards the end. Rock contains lots of FG HE. At the end of this
61.0		interval is a 5cm MSQX band.
		At 66.7 there is another 5cm band of MSQX with a 5cm oxidized band above it. There is another Fit zone at 73.3 to 73.8m. MS is primary alteration mineral over some minor Epidote. Most of the PX seems to
l		have been replaced by BT. From 89m on there is another 3m DIOR? which looks as described above. Then it goes into more regular looking GBBR again. At 96m there is another band of DIOR? to 100.3, also at
		131.4 to 134m and another one at 140 to 142. There is a fit zone from 118.2-142.6. Then there is a 30cm MSQX band at 122.4 within the DIOR? In between 149-152.6 there seems to be lots of HE in the GBBR
66.4	167.0	- red. And also there is a PP blueish grey looking Min in there.
]		Dark green QX-CL ash tuff with intercalated ash bands and some bands were the QX are dominant. At 169m it becomes more a pale green QX-Fluor MS Ash tuff. From 170.6 on there is a grey LLTF band. Py is
167.0		present in some minor veinlets.
		Medium green ASTF with lots of QX. At 172.6 there is a 1.2 band of LLTF with a band of almost MSCp right at the beginning, then there is 10cm almost MSPy with quite some Cp mixed in, continuing to 172.9
		with smaller Cp and Py veinlets. There a 20cm band of SMPy and Cp starts. From then on to 173.6m a few smaller veinlets of Py and Cp. 10cm above and 10cm underneath 175m there is a section with mainly
171.0		MS and Limonite bordered by each a 20cm QV.
175.7		Strongly broken up rock
176.5		Medium green ASHT laminated with limonite. From 177m to 177.4m there are a few huge elongated QX blobs.
179.6		Pale yellow-reddish strongly laminated rock with quite a few U Py crystals.
181.2	182.6	
182.6	183.8	
		Overall a dark grey appearing LLTF - in parts strongly laminated w/ limonite. At 134.1m there is a 20cm band of almost MSSp and Py with some Cp mixed in. 10 cm after that band there is another 20cm band,
		same thing. All the way through to 185.4m there are a few minor bands of Py and Bn. From there on there are about 3 bands of up to 5cm with big patches of Bn and the occasional U Cp. At about 186m there is
183.8		a 10cm band with lots of Bn and some Py. From 187.4m on there is an 80cm band full of Bn and Py and a little bit of Cp. Bn>Py>Cp>Sp.
188.0	188.6	
188.6		tavalamp rock"
193.0		There is some FG Py in the Fit zone.
207.1		Strongly laminated LLTF.
	1	There is a 40 cm band of almost MS PY and Cp at 210.6m. Before that there are quite a few bands with Py and Cp up to 5cm. At 211.5m there is a 1cm band with almost MSPy and Cp. Other than that there is
209.4		the occasional band of Cp and/or Py up to 5cm, but otherwise there is a lot of little veinlets of Cp with Py. Cp=Py.
222.2		end of hole

1	L, W	/este	m Kel	tic					Projec	t: KU	тсно с	REEK
		Min	es Inc.	•	DIAMOND	DRILL	. LOG		Drill Ho	le Id.: W	K05-42	
Hole Azin	nuth:	180°		Dip:	Total I	Depth:	<u>69.5m (228</u>	')	_		Geologi	ical Summary
Date Star	ted: <u>Ju</u>	<u>iy 14, 2005</u>		Date Completed:	July 14, 2005	Co	re Size: <u>i</u>	Q			-	st up dip of Kutcho - Deposit
			Northing		Easting	Elevation				extended in	to footwall	for ABA samples.
UTM Loc	ation:	-	6451878		537224			1610)	1		ne at 45.8m for about 3m with
Grid Loca	tion:		22571	<u> </u>	37956	·`		1616	5	Cp and Bn Cn grade.	- moving in	to a 1m zone of SMSX. Possible
Collar Su	vey:		6451879		537224			1616	<u> </u>			
Down H	ole Surv	ey	Sample In	formation	- <u></u>	-	<u></u>			4		
Survey Me	<u>Reflex</u>		# of Samples		8 Acme, 6 Met 10, 351-355, 531-537, 2		Kat Br		1/2 Met			
Depth 30,4	Azimuth 168,5		Date Shipped	d: <u>August 8, 2</u>	005	Assay Ce	rtificate # :	A05066	024			
69.5	171.2	-69.0		ab: <u>Chemex, A</u>	cme. Met							ersections
			Drill Inform	nation		<u> </u>	· · · ·		<u> </u>	From	To	Results
							: <u>NQ to:</u>					
			Drill Contrac	tor: <u>Hy-Tech</u>	·····	Core Size	: <u>BTW to:</u>					
			Driller: Mari	k Konst		Shift	Distance	Shift	Distance			
			Driller: Chri	s Yuen			1		1			
			Helper: <u>Luis</u> Helper: <u>Sea</u>							Logged B	r:A	nja Welss
			I							l		

•

I.


•

· · · · ·

DIAMOND DRILL LOG

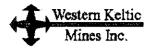
۰.

,

1

Project: Kutcho Creek

. . .


1 1

1

Drill Hole Id: WK05-42

1 1

Int	erval	Geo-T	echnical	Lith	ology	Colour			omp				1		xture				cture						Alter						1				lizatio			
From	To	%Rec	RQD	Lith1	Lith2	Sh CoL	C1	C1%	C2	C2%	C3	CA	Tx1	Tx2	Tx	Tr/	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Сън	СЬА	DIH	DIA	AkH	Aka	PyH	РуА	CpH	СрА	SpH	SpA	BnH	BnA
0.0	3.0			CASE									—															}			r-		1					
3.0	22.0	80	70	QXTF	FLT	3 G	QX	30	a	30	EP	PY	PP	IN	IN		QV	45		T	J	30	a	15			<u> </u>		J	30	V	1						
22.0	25.3	80	80	XATE		7 A	CB	30	g	15	MS	}	LM	PP	LM		QV	50				1	\$	30														
25.3	32.7	80	60	XATF	FLT	7 AG	QX	20	MS	40	CB	PY	PP	\$T	IN			1					\$	40	J	15					U	1						
32.7	37.0	80	60	ASHT	SEXL	5 A	C8	50	MS	- 30	Ι		MX	\$T			-		Ι.				\$	30	М	50		[
																	1									1		· · · ·			I	<u> </u>						
37.0	40.4	70	70	LLTF		5 A	OX	20	СВ	30	<u>н</u>	PY	LB	CB	ĻM				1						L	- 30					Р	3	}					
40.4	43.0	90	80	LLTF	SEXL	_7 AU	δ	49	LI	- 30			LB	LM					}				1			L												
43.0	43.9	100	100	LLTF		5 G	OX	_25	B	25	Ŀ		LB	LM	LM							Ι.			L	25							1					
43.9	45.8	80	70	XATF		7 GU	ę	35	MS	30	68	PY	LΒ	LM	SP								L	30							υ	4						
45.8	49.1	90	90	MSSX	SEXL											1			1]							P	60	P	30			Q	3
49.1	50.2	100	100	SMSX	LLTF	3 A	Q	20	CB	30	SX		Ъ	LM		1									L	30					Ρ	30	P	25				
50.2	50.7			FLT								ŀ					1								ŀ					[1.					
														1	T	T	T					1								[
50.7	69.5	90	80	LLTF		7 G	QX	50	СВ	15	CL	SX	LB/	IN	LB							L			\$	15				1	Р	10	U/P	15				
69.5																							1							1								

DIAMOND DRILL LOG

the mean of the second s

and the second
Project: Kutcho Creek

•

۱.

Drill Hole id: WK05-42

Inte	Hval	
From	To	Comments
0.0	3.0	
3.0	22.0	First 8.4m nice and relatively fresh looking. Down to 13m big Fit Zone. From then on rock looks partly oxidized - rusty looking veinlets. From 20.6cm strongly oxidized.
22.0	25.3	Last 0.7m are strongly oxidized.
25.3	32.7	There is a Fit Zone from 26.6-27.5, another one at 28.5-29, and one more at 32.3-32.5. Rock becomes more limonite laminated towards the bottom of the interval, also some HE gets mixed in
32.7		The bottom 0.6m are SEXL.
		Strange looking UTF, in parts almost mottled (?) looking, in other parts almost massive looking. There is a Fit zone from 38.7 to 39.3. Other than that rock is pretty broken up. Limonite lamination increases towards
37.0	40.4	the bottom.
40.4	43.0	From 41.6 to 42.6 there is SEXL
43.0	43.9	
43.9	45.8	
45.8	49.1	There is a 20cm band of almost CHRT like looking rock intercatated.
49.1	50.2	"There are quite a few bands of CP and Py, Py>Cp.
50.2	50.7	
		This is a pale green almost MSQX like looking LLTF. From 54m on there is about a 40cm band of about 40% Cp. Before that are three bands of almost massive Cp up to 3cm. There is another 3cm band with lots
50.7	69.5	of Cp at 55m, other than that there is basically a few veinlets of Cp and Py scattered throughout the rest of the core.
69.5		end of hole

i

Western Keltic Mines Inc.

ĩ

DIAMOND DRILL LOG

Project: KUTCHO CREEK

1

٦

1

i

Drill Hole Id.: WK05-43

a ...

3

Hole Azim	with:	180°	Dip:	6 <u>2/63</u> 7°	Tota	ai Depth: _	69.5m	(228')			<u>Geologi</u>	cal Summary
Date Starl	ed: <u>Ju</u>	<u>ly 14, 2005</u>	Date Co	mpleted: <u>July 14,</u>	2005	Cor	re Size:	NQ		1 ·	-	st up dip part of Kutcho Deposit- for ABA samples.
			Northing		<u>Easting</u>			<u>Elevati</u>	on			ar year barriped.
UTM Loca	ation:		6451840	<u> </u>	537302			1619	-	F		24.1m for 1.5m with some Cp,
Grid Loca	tion:		22533	<u></u> ,	37823			1628	-	Bh and Sp. Possible Ci		m MSSX with Bn and Cp. ade.
Collar Sur	vey:		6451842		537301	<u> </u>		1628		l		
<u>Down H</u>	ole Surv	ey	Sample Informat	ion		Split By: _	Kat B	ritten				
Survey Me			H	~								
	Reflex		# of Samples: <u>6</u> <u>280356-</u>	Chemex, 15 Acme 280360, 280409, 2805		Type:	1/2 Core (C	hemex), 1/4	core (Acme			
Depth 30.2	Azimuth 183.0	Dip* -62.7	Date Shipped:Ju	uly 20. August 8. 2005_		Assay Cer	tificate # :	A050630	<u></u>			
69.5	182.7	-61.3	Analytical Lab: <u>C</u>	hemex, ACME				<u>A504412_</u>	_		Key Inte	rsections
			Drill Information	·				<u></u>		From	To	Results
			Distant		1	Core Size:	NQ to:	end				
			Drill Contractor:	Hy-Tech	_	Core Size:	BTW to:					
			Driller: <u>Mark Konst</u>		ł.	Shift	Distance	Shift	Distance			·
			Driller: Chris Yuen		ł							
			Heiper: <u>Luis Azofeita</u>		[1			
			Heiper: <u>Sean Bradle</u> y	,	[Logged By	: <u> </u>	nja Weiss
										1		

DIAMOND DRILL LOG

.

•

,

.

Project: Kutcho Creek

Drill Hole Id: WK05-43

- 1

Int	erval	Geo-T	echnical		logy		loiour	1		ompo				1		ture		}	Stru	cture		r	···			Alter	ation					· · · ·				lizatio			
From	To	%Rec	RQD	Lith 1	Lith2	Sh	CoL	C1	C1%	CZ	C2%	Ċ3	CA	Tx1	Tx2	Tx3	Tx4	501	Ang	SD2	Ang	QzH	QzA	MsH	MsA	CDH	СЪА	DIH	DIA	Aidi	Aka	PyĤ	РуА	СрН	СрА	SpH	SpA	BnH	BnA
0.0	4.6	I		CASE								ľ _	L _		L	T				Į	<u> </u>]		[
4.6	12.0	80	70	QXAT	FLT	7	AG	ax	30	68	15	MS	<u>LI _</u>	PP	LB	\$T	LM	<u>LM</u>	20			— .		\$	25	Z	15				Γ_			<u> </u>	<u> </u>				
12.0	19,4	90	_70	QCEX	FLT			ox	20	св	60	LI	sx	MX	мх			LM	20							м	60					U	3	υ	3				
19.4	21.6	I		FLT		Ι –	Τ			-						I	1_				Ι				1_	l									L				
21.6	24.1	80	80	LLTF		5	A	QX	20	8	30	MS	SX		LB	BN	ST	<u> </u>			[\$	20	\$	30							<u> </u>					
24.1	25.6	90	90	SMSX	LLTF	5	A		i								ĺ _	(ļ				{							P	25	a_	7	a	3	a	7
25.6	32.0	90	70	LLTF		7	A	OX	20	CB	30	MS	SX		LB	BN	\$T			1	Γ			\$	20	Z	30					P	5	Q	3			a]	3
32.0	33.2	80	80	MSSX	SEXL		Ţ							1	1	Τ	}	<u> </u>	1	ł	1			1	T							ρ	50	P	30			Q	10.
33.2	36.1	90	80	SMSX	LLTF	4	A	OX	20	<u>C8</u>	30	MJ	SX	LB	BN	\$T								\$	15	Z	30				<u> </u>	P	_25	P	10				
36.1	39.0	90	80	LLTF		L	<u> </u>	ax	50	св	15	MS	sx	டு	BN	\$T				ļ	L			\$	15	z	15					P	15	a	15			<u>├</u>	
39.0	46.5	80	60	QXAT?		7	G	ax	50	св	15	α	sx	AE	BN	LM									İ	z	15					Р	5	a	5				
46.5	54.0	90	80	LATE?		7	G	OX	15	CB				AE		LM		LM	20					1		Z	40					Ρ	3	Р	3			ł	
54.0	56.0	90	80	LLTF		7	AG	OX	25	CB	30	α	SX	LB	BN	LM	1	LM	25							Z	30					Ρ	4	Q	4				
56.0	69.5	90	60	QXAT		7	G	OX	40	CL	35	Ц	SX	AE	LM	LM]			1	1							۵.	5	Q	5				
69.5										1									1]	}	1	I					}]	\square	

DIAMOND DRILL LOG

Western Keltic Mines Inc.

1

Project: Kutcho Creek

---- 1

•

- 1

Drill Hole Id: WK05-43

Int	erval	
From	To	Comments
0.0	4.6	
4.6	12.0	This series starts out with a fit zone up to 5.7m. At 10.1m to 10.3m there is another Fit zone. Other than that rock is basically porphyritic looking with strong lamination (Li)
	_	This section starts out with a 3.6m band of MX CB to laminated with limonite, From 15.6 m to 15.9m there is SEXL. From there on it seems to basically be CB strongly laminated with limonite. There are quite a few
12.0	19.4	big Py and Cp crystals, and there is a fit zone from 12.5m-12.9m.
19.4	21.6	
21.6	24.1	Shows the occasional band of Py, especially right at the end there is a 5cm thick band.
		From 24.1m to 24.4m there is a band with MSPy with some Cp scattered throughout and also some Sp? From 24.6m there is another 15cm band of basically MSPy with some FGCp and maybe some Sp? Up to
24.1	25.6	25m there is some Cp there and at 25m starts a 40cm band of SEXH wit some Bn and Cp.
25.6	32.0	This appears to be a strongly banded rock with alternating QX, CB, MS and some HE layers. Right before 31m there are two 1-2cm thick Py, Cp, Bn bands.
32.0	33.2	This section starts out with an about 2cm band of Bh and Cp. Then there is a 2cm gauge zone right before an 80cm band of MSPy with Cp. This leads directly into a 10cm SEXL with Bh and Cp.
33.2	36.1	There are a few minor bands of Py with Cp down to 35.5m, where right after about 10cm QV two 10 to 15 cm bands of almost MSPy with Cp start. Down to 36m there is a lot of Py and Cp.
		This is a very QX rich, strongly limonite laminated rock with an almost MSSX band from 36.5-36.8m with lots of Cp in it. At 37.1m there is another 40cm band with SMSX - Py and Cp. Towards the end of this
36.1	39.0	interval there are many small Cp-Py veinlets.
39.0	46.5	This is a pale green section that contains mainly QX, CI, Li where QX appears in the first 8m as eyes and in parts almost massive looking. There are a few veinlets of Py and Cp spread throughout this section.
46.5	54.0	This is a more "fragmental" appearing rock with some CB blobs and minor Quartz. There are a few Py and Cp veinlets.
54.0	56.0	There is a band of 3cm with almost MSCp and some Py. Then there is a 10cm section at the end of this interval of Cp and Py.
56.0	69.5	There is a huge fault zone starting at 57.6m through to 61.6m. Other than that there are a few veinlets consisting of Cp and Py.
69.5		end of hole

Western Keltic Mines Inc.

ŧ

DIAMOND DRILL LOG

.

• • 1

Project: KUTCHO CREEK

1 1

- - **1**

•

· 1

Drill Hole Id.: WK05-44

Hole Azimuth: <u>180°</u>	Dip: <u>-72°</u> Total D	epth: 76.2m (250')	<u>Geo</u>	logical Summary					
Date Started:July 15, 2005	Date Completed:july 15, 2005		Purpose / Target: Test up dip part of Kutcho Depositextended into footwall for ABA samples.						
	Northing Easting	Elevation							
UTM Location:	6451848 537355			section hits a MSSX zone at 52.4m					
Grid Location:	2254737881		goes into a 4.3m	PY, CP and some Bn, which then SMSX Cp with Py and some Sp.					
Collar Survey:	6451857 537358		Possible Cn and	Zn grade.					
<u>Down Hole Survey</u>	Sample Information	Split By: Kat Britten							
Survey Method: Reflex	# of Samples: <u>9 Met, 22 CHEMEX</u>								
Depth Azimuth Dip* 30.5 174.7 -72.4	Date Shipped:July 20, August 8, 2005	Assay Certificate # :							
75.9 175.3 -71.3	Analytical Lab: Chemex, Met		<u>Key</u>	Intersections					
			From T	o Results					
	Drill Information Drill Contractor: <u>Hy-Tech</u>	Core Size: <u>NQ to: end</u> Core Size: <u>BTW to:</u>							
	Driller: <u>Mark Konst</u> Driller: <u>Chris Yuen</u>	Shift Distance Shift Distance							
	Helper: <u>Luis Azofeifa</u> Helper: <u>Sean Bradie</u> y		Logged By:	Anja Weiss					

DIAMOND DRILL LOG

and the second second second second second second second second second second second second second second second

\$

Project: Kutcho Creek

Drill Hole Id: WK05-44

....1

Int	erval	Geo-Ti	echnical	Lith	ology	C	olour		- c	omp	onen	5		T	Tex	ture		1	Stru	cture						Alter	ation		_				_	N	linera	lizatio			
From	To	%Rec	RQD	Lith1	Litth2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QZH	QzA	MsH	MsA	СРН	CDA	DIH	DIA /	AKH	Alca	Рун	PyA	CpH	СрА	SpH	SpA	BnH	BnA
0.0	1.5	70	20	CASE			Ι															T	T		1														
2.3	8.0	80	60	QXTF		3	G	à	40	8	20	α	1	PP	SP	BN		LM	20			z	20			0	20	-		- 1									
8.0	13.4	70	50	FLTZ	SEXL											T	1			1	<u> </u>				1									<u> </u>					
13.4	23.0	90	90	SEXL	QXTF	7	AG	ğ	45	CB	20	MS	PY	PP	SP	BN		LM	30	av	30		1-	5	25	0	20	υī	8										
23.0	29.7	70	40	FLT	SEXL	7	AG	ax	30	мз	35	св	PY	PP	SP	ØN		LM	25				1	\$	35	0	15					U	3	_					
29.7	42.0	90	70	QXTF	FLT	7	AG	ax	35	MS	40	СВ	PY	PP	BN	SP		LM	30				ļ	\$	40	0/\$	20					υ	1						
42.0	50.3	80	50	LLTF	FLT	5	A	ax)	30	CB	30	MS	PY	LB	BN	LM		LM	45			—	1	\$	15	z	30					υ	1						
50.3	50.6	90	90	FLTZ												1-			· · · ·		<u> </u>	1-	<u> </u>		<u> </u>														
50.6	52.3	90	85	LLTF	CEXL	5	A	ax	30	CB	30	MS	SX	LB	BN	LM		LM	45					\$	15	z	30					Ρ	5	Q.	3				
52.3	60.5	90	85	MSSX	LLTF																											Р	65	P	30			Q	<u>5 to</u>
60.5 76.2	76.2	80	60	SMSX	LLTF	7	Α	ax	30	MS	15	CB	sx	ĻВ	\$T	BN		-	_				<u> </u>	\$	15	z	15					Р	25	Q	20	L	15		

ł

Ì

DIAMOND DRILL LOG

and the second second second second second second second second second second second second second second second

Project: Kutcho Creek

----1

7


. 1

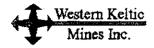
Drill Hole Id: WK05-44

Inte	rval	
From	To	Comments
0.0	1,5	
2.3		Dark green porphyritic appearing rock. Surface oxidization increases towards the end of this interval.
8.0	13.4	Big Fit gauge with strongly broken up rock and gauge material in between very strong surface oxidization. Last 80cm of this interval consists of a strongly oxidized and broken up SEXL.
13.4		First 0.9m are SEXL. Then going into a 40cm section with relatively strong oxidized QXTF with lots of U.Py. From 16.2m to 18.1m there is another strongly oxidized section. Lots of Fluor MS.
_		First 0.3m consist of a Gauge zone. Next 0.8m consist of SEXL with quite a few U Py. The rest of this interval is a mixture of Fit gauge material SEXL and QXTF with lots of Fluor MS "silver/schist." Oxidization goes
23.0	29.7	down to 29m.
		"Silver Schist" with a fit gauge zone from 31 to 31.4m goes down to 34.7m. From then on I wouldn't call it "silver shist" anymore - I would call it regular QXTF because it is more green/beige colored and MS content
29.7	42.0	seems to go down a bit. In about the last in of this section some LF appear.
42.0	50.3	This is a grey-beige looking LLTF - strongly laminated with alternating QX richer and CB richer and Limonite layers.
50.3	50.6	Fit gauge
50.6	52.3	
		This interval starts with a 20cm band of LLTF with Cp scattered throughout k. Then there is about 5cm band of SEXL with some Bn and a little bit of Cp. Anoter 10cm LLTF and then a 3cm band of SEXL with Bn
	i	and Cp. At 52.7m starts an about 8m band of MSSX with a 3cm band of some Bn, Cp and Py. Next 0.5m are MSPy with some Cp mixed in, then there is a 2cm band of lots of Bn with Cp. The rest of this
52.3	60.5	sequence is basically MSPY with Cp. Py>Cp>Bn.
		There is a fit zone at 61.2m for 10cm, at 62.4m for 40cm and this section seems to end in a fit zone. The first 1m basically consists of LLTF with some Py and a little bit of Cp scattered throughout it. Then there is
ł		an about 15-20cm band of almost MSCp with Py and some Sp. At 61.8m an about 1.2m interval with almost MSCp with Py and some Sp occurs. At 64.3m another 30cm band of almost MSCp with Py and some
60.5	76.2	Sp occurs. The rest of the section there is about 4 more bands of some Cp, Py and Sp up to 10cm. Py>Cp>Sp.
76.2		end of hole

1	W _	/este	rn Keltic					Projec	t: KU'	гсно с	REEK
7	-	Min	es Inc.	DIAMOND	DRILL	LOG		Drill Ho	le Id.: Wi	(05-45	
Hole Azim	uth:	180°	Dip:80°	Total D	lepth:{	57.9m_(190')	_		Geologi	cal Summary
Date Start	ed: <u>Ju</u>	y 16, 2005	Date Completed:	July 16, 2005	Cor	re Size: <u>N</u>	<u>a</u>		Purpose / `	Target: Tes	t up dip part of Kutcho Deposit-
			Northing	Easting			<u>Elevati</u>	on	extended in	to footwall f	or ABA samples.
UTM Loca	ition:	·	6451746	537647	<u></u>	<u> </u>	1644	_	Comments	: This section	on hits a MSSX zone at 20.6m
Grid Locat	tion:	<u>.</u>	22433	36170			1650	_			faulted LLTF with some Py, Sp, ak of 1.5m a second 5m MSSX
Collar Sur	vey:		6451745	537648			1650	_	zone appea Possible Cr	-	into a 4.5m SMSX zone. ide.
<u>Down H</u>	ole Surv	eV	Sample Information		Split By:	Kat Brit	Iten				
Survey Me	thod: <u>Refiex</u>	<u>-</u>	# of Samples: <u>30 Chemex,</u> 280379-28		_ Type:	1/4 Chemex.	1/4 Acme	. 1/2 Met			
Depth	Azimuth	Dip*									
30.5 57.9	180.5 186.8	-79.5	Date Shipped: <u>July 20, Aus</u> Analytical Lab: <u>Chemex, AC</u>		Assay Cer			<u>3070</u>		<u>Key inte</u>	rsections
			Drill Information						From	To	Results
			Drill Contractor:Hy-Tech_			NQ to: BTW to:					
:			Driller: <u>Mark Konst</u>		Shift	Distance	Shift	Distance			
			Driller: <u>Chris Yuen</u> Helper: <u>Luis Azofeifa</u> Helper: <u>Sean Bradle</u> y						Logged By	:A	nja Weiss

ł.

.


DIAMOND DRILL LOG

and the second second second second second second second second second second second second second second second

Project: Kutcho Creek

Drill Hole Id: WK05-45

<u>Int</u>		_	Technic		ology	Coi					ment					cture			Stru	cture		1				Alter	ation					Į		1	Áinera	lizatio	n		
From	To	X Re	RQD	Lith1	Lith2	Sh C	oL	ũ	C1%	C2	C2%	CĴ	24	111	Tx2	Tx3	Tz4	SD1	Ang	SD2	Ang	QzH	Q2Å	MsH	MsA	СЪН	СЪА	DIH	DIA	AkH	Alca	İрун	PVA	CoH	CoA	SpiH	SoA	BnH	Ba.
0.0	3.0		1	CASE											1			1				1			1		†—	1	1			-	-	1					
3.0	11.9	50	4	0 FLT	LLTF	70	A	oz	30	MS	15	AŬ	PY	AG	\$T	LM	1	LM	60	-	1		<u>†</u>	5	15			1	†	L	15	υ	1		1-			<u>├</u> †	
11.9	20.6	90	9	OLLTF		5 A		OX	30	СВ	20	MS	ŜХ	СВ	LM	\$T	<u> </u>	<u> </u>	1	<u> </u>		f	1	5	15		1	1	1	1	•	P	15	ia	7	L	15		7
20.6	29.2	90	1 5	0 MSSX												1	1-						<u>† · · · ·</u>		†	1	f	1	1	1	1	P	60	DQ.	18	<u>†</u>		o I	7
29.2	31.4	100	1 9	OLLTE		7 A		OX	20	СВ	15	MS	HE	LB	LM	ST	LM	1			<u> </u>	1	†	5	15	L	15			1	1		<u> </u>	<u> </u>				, ∼., †	
31.4	36.8	100	9	OMSSX	1										i	-	1							F	1		1	1	<u> </u>			P	70	o a	15		10		15
36.8	41.4	100	10	OLLTE	SMSX			ax	20	СВ	20	MS	SX	LB	LM	\$T			1	-			1	<u> </u>								P	15	P/Q	10	÷	15	<u>+ - +</u>	
41,4	46.8	100	5	0 XATF		5 G		ax	10	СВ	15	a	PY	AG	SP	LM	1-	LM	30	av	30		t	1		L	15	1				v	1						
46.8	57.6	90	7	OLUXT	FLT	7 A	G	ax	25	CB	20	α	SX	AG	SP	LM					1					<u> </u>						Р	8		5	a	5		, <u> </u>
57.6			1														t		1			1		t	t		†	1	<u> </u>	<u> </u>		· · · ·	<u> </u>	+	<u> </u>			r+	

1

DIAMOND DRILL LOG

•

ι

.

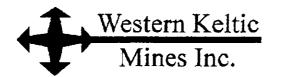
· · · ·

Project: Kutcho Creek

•

•

١


′ 1

1

Drill Hole Id: WK05-45

Inte	i val	
From	To	Comments
0.0	3.0	
3.0	11.9	This whole section is highly faulted and quite oxidized.
11.9		For the first 4.5m this rock actually has guite a lot of Sp and Cp/ Py veinlets. Within the last 1m there are 3 to 4 Bn, Cp/Py veinlets.
20.6	29.2	This section contains MSPy with Cp, with brecciated and mottled texture where either the carbonate is being replaced by Py or vice versa.
29.2	31.4	
31.4	36.8	
36.8	41.4	The next 0.8m there is a bit of Py and Cp, but not a whole lot. For the rest of this section Py, Cp and some Sphalerite are definitely picking up with about 5 bands almost MSPy/Cp/Sp up to 20cm.
41.4	46.8	This section contains a green ASTF with some QX and CB eyes and is in places strongly limonite laminated.
46.8	57.6	There is a Fit zone at 54.2m pretty much down to 56m. There are a few minor veinlets of Sp/Cp/Py scattered throughout the core
57.6		end of hole

ļ

DIAMOND DRILL LOG

Project: KUTCHO CREEK

-

1

Drill Hole Id.: WK05-46

Hole Azimuth: <u>180°</u>	Dip:55° Total I	epth:51.5m (169')		<u>Geologi</u>	cal Summary
Date Started: July 17, 2005	Date Completed:July 17, 2005			-	st up dip part of Kutcho Deposit- for ABA samples.
	Northing Easting	<u>Elevation</u>			
UTM Location:		1648		-	s of a mineralized zone appear in
Grid Location:	22417 38298	1656	is a mineral	lzed zone a	Sp and Cp. Then there definitely at 33.6m for 1.6m with lots of Py,
Collar Survey:	6451731537776	1656			After that there is a 5m zone ne Py and Cp pr
Down Hole Survey	Sample Information	Split By: Kat Britten			
Survey Method: 	# of Samples: <u>8 Chemex, 5 Acme</u> <u>280377-78, 280416-21, 280501-505</u>	Type: <u>1/2 core (Chemex), 1/4 core (Acme)</u>			
Depth Azimuth Dip* 15.2 183.2 -54.1	Date Shipped:July 20, August 8, 2005	Assay Certificate # :			
51.5 182.3 -51.5	Analytical Lab: Chemex, ACME			<u>Key Inte</u>	rsections
	Drill Information		From	То	Results
	Drill Contractor: <u>Hy-Tech</u>	Core Size: <u>NQ to:</u> end Core Size: <u>BTW to:</u>			
	Driller: <u>Mark Konst</u>	Shift Distance Shift Distance			· · · · · · · · · · · · · · · · · · ·
	Driller: <u>Chris Yuen</u> Helper: <u>Matt Wheativ</u> Helper: <u>Sean Bradle</u> y		Logged By	:A	nja Weiss

DIAMOND DRILL LOG

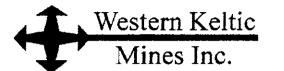
Project: Kutcho Creek

and the second second second second second second second second second second second second second second second

Inte	rval	Geo-1	echnical	Lith	ology	C	olour	I		ompo						ture		1		nutai						Altera	ution							. 1	Viner	alizat	ion		
From	To	%Rec	RQD	Lith1	Lith2	Sh	Col	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ала	QzH	Qz	MsH	MsA	Срн	СЪА	DIH	DIA	AkH	Alce	PyH	PyA	Cpl	Cp/	Spl-	1 SpA	BnH	BnA
0.0	7.3			CASE			1										Ι	I I			Γ		1	1								Ρ	20	Q	3	S L	15		
7.3	13.0	80	70	QXAT		5	YA	QХ	20	СВ	25	MS	PY	PP	SP	\$T]	\$	15	0	25					Ρ	25	Q	3	L	20		
13.0	31.8	90	60	QXAT	FLT	5	AG	ax	25	св	30	MS	sx	AG	SP	BN		LM_	_35					z	15	OL	30					P	15	a	5	i <u>ι</u>	15		
31.8	40.1	90	80	LLTF	SMSX	5	A	ax	20	СВ	30	MS	sx	LB	BN	ST.		LM	45					s	15	z	30					P	60	a	10		15		
40.1	42.4	100	90	QXAT	[5	AG	OX	_20	CB	25	a	SX	AG	SP	\$T		LM	15	QV	20	I			Τ							PN	5	I		L	5		
42.4	51.5	90	70	LLAT		7	AG	аx		св		a	sx																			P/V	1						

Western Keltic Mines Inc.

DIAMOND DRILL LOG


and the second second second second second second second second second second second second second second second

Project: Kutcho Creek

1

- 1

Inte	rval	
From	Ta	Comments
0.0	7.3	CASE
7.3	13.0	This section is strongly surface oxidized with lots of oxidized carbonate spots.
		Fit zone at 13.4m basically down to 15.6m with about 10-15cm section strongly broken up MSPy pieces in it. There is also a stretch from 14.9-15.3m with quite a lot of Sp/Py and minor amounts of Op in it. From
13.0	31,8	then on down it is basically a regular QXAT with some Sp/Cp laminations with the occasional Py veinlet.
		This section starts out with a 30cm section of beige strongly Li laminated LLTF and then goes into a regular LLTF starting at the mineralized zone at 33.8m with a 20cm band of laminated Sp together with Cp and
ł		some Bn. This then goes into a 1.2m zone of basically MSPy with Cp including some SEXL spots where the Bn is concentrated. From then on to the end of the interval there are quite a few bands of Sp, Cp, Py
31.8	40.1	laminations with Cp/Py in places wispy laminated.
40.1	42.4	
		This section only contains a few veinlets with Sp/Cp/Py. A fit zone goes from 46.4-46.7m. Another fit zone goes from 47.9 to 48.5m. Then there starts a section where LLTF alternates with some QX layers and
42.4	51.5	some ash layers, ending with a few QX/DO layers up to 30 cm.
51.5		end of hole

ł

DIAMOND DRILL LOG

Project: KUTCHO CREEK

Drill Hole Id.: WK05-47

and the second second second second second second second second second second second second second second second

Hole Azimuth: <u>180°</u>	Dip: <u>-60°</u> Total D	epth:53.9m_ <u>(177')</u>	Geological Summary
Date Started:July 17, 2005	Date Completed:july 17, 2005		Purpose / Target: Test up dip part of Kutcho Deposit- extended into footwall for ABA samples.
	Northing Easting	Elevation	
UTM Location:	<u>6451721</u> 537981		Comments: This section hits a SMSX zone at 17.8m
Grid Location:	22405 38505	<u> </u>	for 1m, then goes into a somewhat mineralized LLTF and then again into a 1m SMSX. I am not sure whether
Collar Survey:	6451721 537983		I would separate these two zones. At 35.9 we hit a 2.5m MSSX zone - probably not alot of Cn grade but
Down Hole Survey Survey Method: Reflex	Sample Information # of Samples:	Split By: <u>Kat Britten</u> Type: <u>1/2 core (Chemex), 1/4 core (Acme)</u>	
Depth Azimuth Dip* 15.2 176.9 -60.1	Date Shipped:August 8, 2005	Assay Certificate # :	
53.9 177.4 -57.9	Analytical Lab: <u>Chemex, ACME</u>	<u>A504412</u> _	Key Intersections From To Results
	Drill Information Drill Contractor: <u>Hy-Tech</u>	Core Size: <u>NQ to: end</u> Core Size: <u>BTW to:</u>	
	Driller: <u>Mark Konst</u> Driller: <u>Chris Yuen</u> Helper: <u>Matt Wheatley</u> Helper: <u>Sean Bradle</u> y	Shift Distance Shift Distance	Logged By: Anja Weiss

i

DIAMOND DRILL LOG

and the second second second second second second second second second second second second second second second

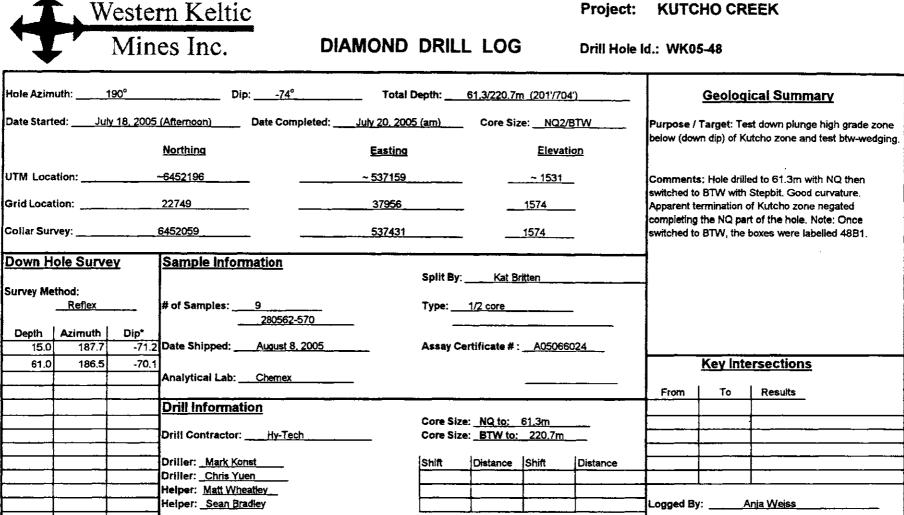
Project: Kutcho Creek

Drill Hole Id: WK05-47

Int	erval	Geo-T	echnical	Lith	ology	Colo					onen			1		xture		T	Stru	etun		T		_		Aiter	atio					1			finera	lizatio	Ht	
From	To	%Rec	RQD	Lith1	Lith2	Sh C	oL	C1	C1%	CZ	C2%	C3	C4	Tx1	Tx2	Tx	Tx	SD	I Ang	SD2	Ang	QzH	QZA	MsH	MsA	СЪН	Сь	DIH	DIA	AICH	Aka	PyH	PyA	CoH	CpA	SpH	SpA	BnH Bn/
0.0	1.5	75	50	CASE			Ι					l				T	Ţ			1	1]	l	[T		1		1	U	1					
1.5	8.8			OXTE		5 A	U	àх	50	СВ	15	MS	Γ	PP	SP	\$T	Τ	T	1-	1			1	\$	20	0	1	5	1	1	1		1	t				· · · · ·
8.8	15.5	70	10	FLT	1			I						1	1	T		1		1					1								<u> </u>	1				
15.5	17.8	90	80	LLTF	FLT	5 A	U	QХ	60	CB	15	MS	PY	LB	LM	S T		LM	35					\$	20	L	1	5		1		υ	1					
17.8	18.9	100	90	SMSX	LLTF	5 A		св	65	оx	15	a	sx	LM	LM	ST]	L	6	5	{	1	1	Þ	30	a	5		15	
18.9	25.0	100	90	LLTF		5 A		СВ	65	ax	15	СL	sx	LM	LM	\$T	1			1	1		f			L	6	5	+	1	1	P		Q	3		15	
25.0	26.0	100	90	SMSX	LLTF	5 A		CB	65	аx	15	CL	SX	L8	LM	ST	1		1	1	1					Ē	6	<u> </u>	1	1	1	P	25		3	_	20	
26.0	35,9	100	90	LLTF		5 A		СВ	65	QХ	15	CL	sx	LB	LM	\$T			1.			_				ī	6	;	<u> </u>	<u> </u>	1.	Р	15		5		15	
35.9	38.4	100	90	MSSX																												Р	60	Q	10	د	15	
38,4	40.4	100	90	LLTF	1	5 A(G	ax T	15	CB	60	C L	PY	LB	LM	\$T		1					1			L	6		1			PN	5	-		L	5	
40.4	46.8	100	60	LLAT	FLT	5 G	-	0X	10	CB	25	CL	PY	LB	LM	\$T	T	LM	35		1		1			a	2	5				PN	1	1			1	
46.8	48.9	90	80	QCEX		7 W	G	QX	20	СВ	60	CL	PΥ	MХ	MX	\$T										М	60)				υ	1					
48.9	53.9	100	60	LLAT		5 GI	M	ax	15	св	25	CL	PY		<u> </u>			LM	15	av	65			\$	20	L	25	; 				υ	1					
53.9				L	<u>L</u>			}		i			Ì	I	İ						I						ł		1									

.

ł


DIAMOND DRILL LOG

Project: Kutcho Creek

•

١

inte	erval	
From	To	Comments
0.0	1.5	Case
1.5	8.8	This is typical QXTF with some oxidization veins and oxidized CB spots.
8.8		This is basically one big fit zone - guite oxidized
15.5	17.8	This is strongly limonite (oxidized) laminated LLTF. Oxidization goes down to 17.4m. Then it becomes a pale grey LLTF. There is an about 2cm gauge zone right on top of the next interval.
T.		This section starts with a 40cm band of almost MSSX with about 65% Py and 5-8% Cp. For the rest of this interval there are lots of Py veinlets - one up to 3cm, one with quite a bit of Cp. The first 20cm of this
17.8	18.9	interval contains guite a lot of tiny QX pebbles within the Py and Cp.
18.9	25.0	This LLTF contains guite a few Py veinlets with minor Cp. There is a fit zone from 22.0m to 22.2m.
25.0		At 25.2m there is a 6cm band with almost MSPy, Cp and Sp in it. To the end of this section there is Sp with Py laminations - minor Cp.
26.0		There are quite a few up to 3cm veins with Py, Sp, and minor Cp. There are also a few smaller veinlets with Sp/Py and some Cp. This rock is strongly ilmonite laminated.
1		This section starts with a 15cm band of almost MSPy with Sp, minor Cp. Next 25cm are LLTF. Then there is another 15cm band with almost MSPy and Sp. Another 20cm LLTF and then at 36.7m MSPy starts
35.9	38.4	and goes to 38.1m. Then there is an about 20cm band with Cp, Py and Sp.
38.4		Strongly limonite laminated LLTF with quite a bit of FG Py scattered throughout it.
40.4	46.8	There is a Fit zone from 42.0m to 43.8m. From 45.5 to 46m there is a band where there are more QX/CB lapilii (elongated), and only a little bit of CI around them.
46.8	48.9	Lava Lamp Rock
		This section starts out with a 1cm gauge zone. At 49.3m there is another 2cm one, and just before 51m another 2cm. At 52.5m there is a 60cm Fit zone. From 51m on this core looks more maroon coloured - FG
48.9	53.9	HE and Fluormuscovite rather than chloride in the above section.
53.9		end of hole

-- **1**

י ז א

۱

DIAMOND DRILL LOG

ı

.

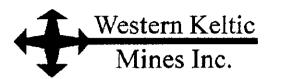
,

Project: Kutcho Creek

ł

-

int	erval	Geo-T	echnical	Lith	ology		Colour	}			onen			1		dure		1	Str	icture		{				Alter	ation					<u> </u>		N	linec	alizati	OD		_ _
From	To	%Rec	RQD	Lith1	Lith2	SI	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD	Ang	SD2	Ang	QZH	QzA	MsH	MsA	Срн	CbA	DIH	DIA	AkH	Aka	İрун	PvA	CoH	CDA	SoH	SDA	BnH	BnA
0,0	1.5	15		CASE		L	1	I			-			T	1	1	1	T		1				1											1	1			
1.5	2.2	100	90	GBBR			5 G	FX	40	MS	20	α		PA	1	IN	1		1			<u> </u>		J	20						1	lu –	1		†	<u> </u>	++		-1
2.2	2.7	90	10	FLT	1	Г						<u> </u>			<u> </u>	1	1	1	1	1				1		••••					1	t	-		1	1		<u> </u>	
2.7	6.9	90	90	DIOR			5 A	FX	40	MS	20	CL	PY	PA	SP	IN	1		†	1				0	20						1	υ	1	<u> </u>			+		
6.9	61.3	80	70	GBBR	[3 GA	FX	30	MS	20	EP	BT	PA	IN	IN	PP	1	1-	1			1	J	20			1			1	Ū	1						-1
																	ſ		1												1	<u> </u>							
61.3	178.0		80	GBBR	FLT	Ļ	5 AG	FX	30	MS	20	EP	BT	PA.	IN	IN	PP			1.				J	20					<u> </u>	ļ.,	L		L				\square	
178.0	190.8	90	60	XATE	SEXL	5	AMG	ax	25	св	25	MS	a	PP	SP	\$ T	ST							\$	20	o	25					U	1						
190.8	194.3	90	80	QCEX		5	ТА	ax	20	св	80	PY		мх	мх																	U/P	7						
194.3	197.9	40	0	FLT		F	1-								.		ļ														ļ								
197.9	208.7	90	10	OCEXL		6	5 A	ax	_30	св	50	MS	sx	мx	MX	LM	 							\$	20 :	3	50			-		P/U	5	Q/L	3	L	7		
208.7	219.0	80	60	SMSX	LLTF	5	5 A	аx	20	СВ	50	MS	sx	LB	LM	\$T								5	15		50					Р	20	0	7		5	q	10
219.0	220.7	50	0	I	1	1	1								1	1	<u> </u>	1	<u>†</u>												†-	ř			† ÷	<u>†</u>	<u>├~</u> †		
220.7				[1										1	1	<u> </u>		1					†					+		<u>† </u>								\neg



DIAMOND DRILL LOG

Project: Kutcho Creek

ļ

' int	erval	
From	To	Comments
0.0	1.5	Case
1,5	2.2	
2.2	2.7	
2.7	6.9	
6.9	61.3	Lots of the plagioclase is aftered to Ms and in the bottom 18m to Epidote. The Px is altered to Bt. There are quite a few fit zones in this core and the occasional up to 20cm SEXL!
61.3		There is a fit zone in this core at 87.9-88.1m. Other than that this is basically all GBBR with a few intercalacted sections of more massive, light grey looking lots of FG black spots of HE containing DIOR? With up to 3m. Also there are a few QV up to 10cm.
178.0	190.8	I called this rock XATF because it contains quite a few QX and CB crystalls in a fine matrix. The colour goes from pale green into marconish into grey into dark green into marconish-pale green again. There is an about 60cm SEXL 184.4 ml There also is a fit zone at 181m for about 10cm, and there is another one at 188.3-188.6m.
190.8	194.3	This section starts out with a 20cm SEXL and then goes into 2.4m of CEXL. Then it goes into 40cm SEXL again, then about 2m of CEXL again. This section ends with a 20cm band of SEXL and a 10cm fit zone
197.9		This is a section where some CBEX layers are intercated with some SEXL layers; for the first 3 m the rock is strongly limonite laminated - beige coloured. From then on it becomes basically massive carbonate with some alternating CEXL layers. There are a few euhedral Py in the limonite laminated rock. In the massive Carbonate the Py is rather pervasive though in small veinlets there also is a few Sp with Py laminations. There are a few minor veinlets of Cp.
		This section starts with a band of Cp, Bh and some Sp up to 3cm. Then down to about 211m there are a few small bands with Bh, Cp, Py and some Sp. Right before 211m there is a 3cm band of almost MSPy. After that there is about 10cm band of almost MSPy. And then at 211.2m there is a 20cm band of almost MSPy with some Bh, minor Cp and maybe some Sp mixed in. From then on to 216.5m there is a few bands of Py with some FGBh mixed in. From 216.5m on there is an about 20cm band with some bigger Bh patches and some Cp patches mixed within the Py within the LLTF. To the end of this section there is a
208.7		basically quite a bit of Py veinlets in this LLTF.
219.0		Wash/mud containing some Py
220.7		end of hole

i i

DIAMOND DRILL LOG

Project: KUTCHO CREEK

1

I

1

•----1

1

• • •

Drill Hole Id.: WK05-49

1

۲

Hole Azimu	rth:1	80°		Dip:80°	Total D	Depth:	51,5m (169	ľ)			Geologi	ical Summary
Date Starte	d:Jub	<u>y 20, 2005</u>	(am)	_ Date Completed:	July 20, 2005	i (pm)	Cor	e Size:	NOZ	Purpose / on eastern	-	st up dip part of Kutcho deposit m 37620.
			<u>Northing</u>		Easting			<u>Eleva</u>	tion			
UTM Local	ion:				<u> </u>	<u> </u>	_					X Intersection of Reasonable
Grid Locati	on:		22617		37581		_	1564	····.	(good) grad	e.	
Collar Surv	ey:		6451924		537058		_	1564				
Down Ho	le Surve	ÞΥ	Sample Info	ormation		Split By:	Kat Br	itten				
Survey Met	hod: <u>Reflex</u>		# of Samples:	<u>11</u> 280551-280561		Type:	1/2.core		_			
Depth 21.0	Azimuth 188.4	Dip* -79.6	Date Shipped:	August 8, 2005		Assay Ce	ertificate # :	A0506	6024			
51.5	185.2	-78.7		: <u>Chemex</u>								ersections
			Drill Inform			Ē	<u> </u>	•		From	То	Results
				attorr pr: <u>Hy-Tech</u>			e: <u>NQ to:</u> e: <u>BTW to:</u>					· · · · · · · · · · · · · · · · · · ·
			Driller: <u>Mark I</u>	Konst		Shift	Distance	Shift	Distance		-	
			Driller: <u>Chris '</u> Helper: <u>Matt V</u> Helper: <u>Sean</u>	Wheatley						Logged By	:	Anja Weiss

DIAMOND DRILL LOG

· 1

,

,

Western Keltic Mines Inc.

i

Project: Kutcho Creek Drill Hole Id: WK05-49

• 1

				11 1	itho	in and		olour	<u> </u>		omp		fe		—	Tex	dure	_	T	Str	ictur		T				A	itera	tion							Ň	liner	lizatio	an _		
inte		_	echnic		_		_	-Diour		~~~		ANK/		104	19.4	17.0	True	17-4	len	1 And	Ten		-to-i	107	A M	HM	eA C	bH	ChA	DIH	DIA	AKH	Aka	PVH	PYA	СрН	CpA	SpH	SpA	BnH	BnA
From	Ta	%Rec	RQD	[Lith	1	Lith2	Sn	CoL	61	C17	CZ.	617	<u>, es</u>	100	111	1 34	1143		130	1	100			-	-		-							- <u></u>	<u>+</u>	<u></u>					
0.0	1.5	r -		CAS	SE												. I		1		<u> </u>	-		_							-+			—	┿╾╾	+	+	<u> </u>	—		
1.5	29.3	80	8	0 QX	F		3	G	αX	25	СВ	20	CL	EP	PP	SΡ	IN	IN	QV	4			5				C	2	20				<u> </u>	L	_	—	÷	<u> </u>	<u>↓</u>		<u> </u>
							<u>├</u> -	1												{	{	{		1	i	1	1	- 1						1	1	1			/		
		1	} .		~		7	GM	ox.	25	СВ	20	MS	PY	PP	SP	LM				1				L		20 C	וכ	20					U	1			1			
29.3	36.3						_								_		<u> </u>	_	LM	4		+	+	+	-1	+		-1	15		- 1			P	1 3		1				
36.3	37.5	80	7	OLLT	F	FLT	5	A	OX	25	CB	13	CL	PY	LB	LM	LM	+	LW	4	<u>4</u>	+				-+	┉╇┶			-	-+		<u> </u>	i	+	+	<u>t</u>	+		<u> </u>	<u> </u>
			1								ļ		1					1	1	1		1			1		1	ì			·			۱.	1	l_		l.	0		
37.5	41.3	90	i e	0 MS	sx İ	FLT																1		1			_						ļ	P_	45	μ_	20	Ψ <u></u>	28	I	—
		<u> </u>	-	-				<u> </u>		-					—				1	Τ.—		1	Т					- 1						1					'		
1					1		L						í		I 1	l			Ł	{	Į.	ļ		ļ				1					ł	1	1	1	í	1	1 '	}	
		1	-	- I	- Ì	- . -	۔ ا			30	СВ	26		lev.	ł D	LM	LM	[1			1	h		20 V	N I	25					P	20		10				
41.3	51.5	90	5		⊢.↓	FLT	1-2	A	QX	30		20		130	100			-	╂	+	+	+	+-	+		+		-					<u> </u>	1	+	1	1				
51.5					- 1		1	1			I				1				1	L					_					_							<u> </u>				

Western Keltic Mines Inc.

t

DIAMOND DRILL LOG

Project: Kutcho Creek

and the second second second second second second second second second second second second second second second

Inte	ival	
From	To	Comments
0.0		case
1.5	29.3	Typical dark green QXTF with some oxidized CB spots starting at 24.1m basically going down to 24.5m. Some more oxidization at 27.9-28.2m. From 27.5m there are lots of small spots of HE!
-		This is a pale green maroonish colored QXTF with another oxidized period at 29.8 to 30.2m. There are three more bands of 10cm oxidized rock. Oxidization stops at 32.5m. The amount of fluormuscovite is
29.3		increasing towards the end of this section with no more HE mixed in from 35m on.
36.3		There is a fit zone at 36.8m-37.4m. There appears to be Py, Sp and Cp in the fit zone.
		For the first 2.5m this MSSX consists basically of Py and Sp. For the rest of the interval the amount of Cp mixed in with the Py and Sp increases. Py>Sp>Cp. There is a fit zone from 40m to 40.7m, because the
37.5	41.3	rock is strongly broken up.
		This interval is highly faulted and contains lots of gauge material. Plus for the first 5m the rock appears very porous - wheathered out CB? It also appears as if in one of the fault zones there was an about 10cm
i i		thick band of MSPY. Other than that there are quite a few bands with Py and Cp, up to 2cm. Py seems to be quite abundant - relatively- in lots and lots of small veinlets which are spread throughout the core. The
41.3		last 3m are more limonite laminated
51.5		end of hole

T. West	ern Keltic			Project:	КИТСНС	CREEK
Mi	nes Inc. DIAI	MOND DRILI	LOG	Drill Hole I	ld.: WK05-50	D
Hole Azimuth: <u>180°</u>	Dip:48°	Total Depth:	54.6m (179')	<u> </u>	G	eological Summary
Date Started:July 20, 200	5 (pm) Date Completed: Ji	uty 21, 2005 (am)	Core Size:	102	Purpose / Ta	rget: Test up dip part of Kutcho deposit
	Northing	Easting	Elevati	on	on eastern en	d same set up as WK05-49.
UTM Location:						Extended into Foot wall for ABA samples
Grid Location:		37581	1564	·	0.7m MSSX F	lighgrade intersection.
Collar Survey:	6451923	537058	1564			
Down Hole Survey	Sample Information	Split By:	Kat Britten	 ,	_	
Survey Method: 	# of Samples: <u>13 (Chemex), 11 (Acme)</u> <u>280571 - 581, 280598 - 600, 54</u>		/4 Sawn Core, 1/2 Saw	n Core	_	
Depth Azimuth Dip* 15.2 180.6 -4	<u>651 - 65</u> 4 3.2 Date Shipped: <u>August 05/05</u>	Assay Ce	rtificate # : <u>A05066</u>	024,		
54.6 179.3 -4	Analytical Lab:Chemex, Acme		<u>A504413.</u>	<u>A504414:</u>		ey Intersections
	Drill Information				From	To Results
	Drill Contractor:Hy-Tech		e: NQ to; end e: BTW to;	-		
	Driller: Driller: <u>_Chris Yuen</u>	Shift	Distance Shift	Distance		
	Helper:			1		

Helper: Sean Bradley

the second second second second second second second second second second second second second second second s

Logged By: <u>Anja Weiss</u>

•···-1

.

•

ł

Drill Hole Id: WK05-50

Project: Kutcho Creek

Inte		lan T	echnical	L Heb	ology	Colour	Ţ	C	omp	00.00	he i		1	Ťe	dure	_	T T	Stru	cture				-	-	Alter	ation					ĩ				lization		
From		%Rec		Lith1	Litth2	Sh CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QZA	MsH	MsA	СЪН	CbA	DIH	DIA	AKH	Alca	Рун	PyA	СрН	СрА	SpH S	pA i	BnH Bn
0.0	3.0	_		CASE	1		1								T						L									ļ	 	ļ .					
3.0	22.9	90	90	QFXT		3 G	ax	25	FX	30	MS	EP	AE	PP	JN	PP				_			J	25													
22.9	24.3		70	ίιχτ	FLT	7 G	QХ	15	CB	25	MS		LB	SP	\$ T		QV	35	OX	5			\$	30	0	25	ļ			<u> </u>		ł.—				-+	-+
24.3	31.4	90	40	QCEX	FLT	5 AG	ax	30	СВ					MX			LM	35							40	м				ļ	Р	5					
31.4	33.2	90	80	LLTF	1	5 A	ax	15	СВ	30	MS	SX	LВ	LM	\$T			L			I		\$	20		<u> </u>	<u>i</u>			 	<u>P</u>	15		5		10 25	
33.2	33.9	100	90	MSSX	LLTF		SX						I			L						L	<u> </u>	_		1		ļ		<u> </u>	<u>P</u>	60		8		25	<u> </u>
33.9	35.7	90	70	LLTF	QCEX		OX	25	CB					MX	\$ T		1				1	L	S	15		Į	ļ	L			<u>P</u>	10	+	5	┝━┅┢╸		 ~~
35.7	38.4	90	70	UXT		7 AG	ōΧ	15	CB	30	MS	PY	LB	SP	\$ T								\$	30		30			ļ		P/U	10	h			-	
38.4	42.4	90	80	LLTF		7 AT	QХ	15	8	30	MS	PY	LВ	LM	\$T	-			<u> </u>			L	\$	30	<u>L</u>	30		-			P/U	25		<u> </u>		\dashv	-+
42.4	54.6	100	80	XATE		5 G	ax	20	св	20	CL		EL	SP	\$T										٤	20					P	10					
54.6				<u> </u>	<u> </u>	1			<u> </u>	L	1		L	1			<u> </u>				L.,	1	1	1		{	1	1	t	1	1	<u> </u>	ļ	,		ł	

DIAMOND DRILL LOG

I

DIAMOND DRILL LOG

1

,

'n

.

,

1

Project: Kutcho Creek

~ 1

-

- - 7

Drill Hole Id: WK05-50

Inf	erval	
From	Ťo	Comments
0.0		case
		This is a typical dark green QFXT with quite a few lithic fragments in it - most of the feldspar crystals have been replaced by Epidote and Sericite. From 19.4m on the Epidote gets replaced by Fe - carbonate.
3.0	22.9	Oxidization stops at about 22.7m.
22.9		Pale green LLXT with lots of CB spots and lots of FluorMS. From 24-24.3m there is a gauge zone.
		This is an alternating QCEX with mostly chloritic layers in it as well. This rock is largely limonite laminated and has about four up to 30cm layers of SEXL and about three up to 20cm layers of almost CI. There are
24.3	31.4	quite a few Fit zones in this section. The most important one being the one right above the section where the SX start appearing from 30.8m to 31.4m.
31.4	33.2	There is another gauge zone at 31.5 to 31.6m. There is some Py, Cp veinlets and some Sp in this rock.
33.2		This is a 0.7m section of almost MSSX with lots of Py>Sp>Cp.
33.9	35.7	This is a section that goes from LLTF into a gauge zone into a SEXL into a 10cm stretch of Dolornite into SEXL into CEXL There are two 5-10cm sections that actually contain some Py and Cp.
35.7	38.4	There are a few U Py and some small Py veinlets spread throughout this rock.
38.4		This is a strongly limonite laminated rock with lots of FG Py spread throughout it.
		There are quite a few gauge zones up to 10cm. At 49.4 to 49.8m there is a 40cm band of ASTF with the last 10cm almost MSPY. Other than that there is quite a bit of FGPy spread throughout the core, also some
42.4	54.6	CB spots.
54.6		end of hole

Page 2 of 2

Ì

Project: KUTCHO CREEK DIAMOND DRILL LOG Drill Hole Id.: WK05-51 Dip: ______80° Total Depth: _____54,6m (179') Hole Azimuth: 180° **Geological Summary** Date Started: _____July 21, 2005 ____ Date Completed: July 21, 2005 Core Size: NQ Purpose / Target: Test up dip part of Kutcho deposit on section 37500E. Northing Easting Elevation UTM Location: Comments: This section hits the mineralized zone at 31m. For 5.6m there appears to be some possible Zn 22653 Grid Location: 38515 1530 grade, not much Cu grade though. Collar Survey: 6451959 536992 1530 Down Hole Survey Sample Information

			neiper. <u>Gean biauley</u>	L	1	1			·/	-111a ¥¥6135
			Helper: Sean Bradley		+	+		Logged By	- /	Anja Weiss
			Helper: Matt Wheatty		1	1				· · · · · · · · · · · · · · · · · · ·
			Driller: Chris Yuen		1	1				
			Driller: <u>Mark Konst</u>	Shift	Distance	Shift	Distance			1
								1		
			Drill Contractor: Hy-Tech		BTW to:					1
				Core Size	: NQ to:	end		1		
			Drill Information							
							<u> </u>	From	То	Results
			Analytical Lab: <u>Chemex</u>					1		<u> </u>
54.6	158.2	-78.8							Key Int	ersections
15.2	179.0	-79,9	Date Shipped: <u>August 8, 2005</u>	Assay Ce	ertificate # :	A05066	024			
Depth	Azimuth	Dip*	<u></u>							
			280582-280596	• , pe	1/2 0010		_			
Survey me	Reflex		# of Samples:13, 1 Std, 1 Blank	Type:	1/2 0070					
Survey Me	thad			Opine by.				-1		
				Solit By:	Kat Bi	ritten		1		

T.	Western	Keltic
T	Mines	Inc.

1

i i i . . T 1

Project: Kutcho Creek

••••••

1

.

.

i

DIAMOND DRILL LOG

int	erval	Geo-	Technica	I Litt	ialogy	Co	olour	[Ċ	omp	nen	*			Te)	nture			Stru	cture						Aitera	ation							M	ineral	izatio	R		
From	To	%Red	RQD	Litth1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	12	Tx3	Tx4	SD1	Ang	SD2	Ang	Q zH	QzA	MsH	MsA	СРН	CbA	DIH	DIA	AKH	Aka	PyH	РуА	CpH	CpA	SpH	SpA	BnH E	3nA
0.0	3.0			CASE											[L							Ļ															\square	
3.0	20.5	90	7	OFXT		3 Т	G	ax	20	FX	30	MS	св	AE	PP	IN	SP	QV	45	ax	10			L	15	н	15												
20.5	24.3	90	7	XATE	FLT	7	G	ax	15	CB	30	MS	l .	LB	SP	ST							[\$	25	0	30	1				U	1			·1			
24.3	25.2	100	9	XATE	DOEX	7	GU	OX	15	MS	15	DO	СВ	AE	\$T	MX	LM		Ι					\$	15	L	10												
25.2	26.4	100	9	SEXL		7	M								1	1			ĺ									1				υ	3				. (T	
26.4	29.4	90	71		SEXL	7	AG	QХ	25	СВ	25	MS	PΥ	PΡ	SP	\$T		<u> </u>						\$	20	0	25					Ρ	5						
29.4	37.4	90	8	LLTF	SMSX	7	A												Ì				1		{							ΡN	25	Q	3	ι	30		:
37.4	42.2	90	6	LLXT	1	7	AG	OX	25	СВ	30	MS	PY	PP	SP	\$T		1					1	\$	30	0	30					Р	5				1		
42.2	43.9	90	80	LLTF	1	7	A	сx	30	СВ	25	MS	SX	L8	LM	\$Ť							1	\$	20	L	25					Ρ	15			L	10		
43.9	54.6	90	8	ASTE		7	G	ОX	15	CL	40	LI	PY	LB	\$T	LM																							
_54.6			1	1												1															— ——								

ļ

DIAMOND DRILL LOG

1

1

Project: Kutcho Creek

· ·· 1

inte	rval	
From	To	Comments
0.0	3.0	case
		This is a typical dark to medium green QXFT with strong oxidization starting at 19.1m to 20.5m. In the top 6m Epidote seems to be the major feldspar replacing mineral whereas after that section CB/Ms seem to
3.0	20.5	be the feldspar replacing minerals. From the oxidized zone on Fe-CB is replacing the feldspar crystals.
20.5	24.3	This is a FluorMS rich XATF that ends in a fit zone at 23.9m to 24.2m. The last 10cm are SEXL.
24.3	25.2	This section seems to become dolomite richer towards the bottom of the interval.
25.2	26.4	"Jasperite" with a few euhedral Py. Towards the bottom of this section the QX has a regular grey colour again.
26.4	29.4	At 29.1m there is about 30cm SEXL with a little bit of Py in it. Then there is a fit zone.
		For the first 1.5m all there is are basically lots of FG Py. The next 6m on the other hand should give us some Zn grade though, because there is lots of Sp in there always assocaited with Py patches. For the rest of
29.4	37.4	this interval there is a bit of Py and Sp scattered throughout the core.
37.4	42.2	There is a 20cm gauge zone at the end of this section.
42.2	43.9	For the first 40cm this rock basically only shows some Py veinlets. But from 42.8m on there is some Sp again.
43.9	54.6	From 44.5 to 44.8m there is another sequence of LLTF intercalated - which again contains quite a bit of Sp. For the rest of the interval there is FGPy scattered throughout the rock.
54.6		end of hole

1	W	/estei	rn Keltic					Project:	KUTCH	IO CRE	EK
1	-	Min	es Inc.	DIAMOND	DRILL	LOG		Drill Hole Ic	i.: WK05-	52	
Hole Azimi	uth:	180°	Dip: <u>-45</u>	° Total I	Depth:5	54.6m (179)')	_		<u>Geologi</u>	cal Summary
Date Starte	ed: <u>July :</u>	21/05	Date Completed:	July 22/05	Core Size:	<u>NQ2</u>	<u> </u>				dip Kutcho Deposit on western
			Northing	<u> Easting</u>			<u>Elevati</u>	on	end; sectio	n 37500E.	
UTM Loca	tion:					_			Comments	5:	
Grid Locat	ion:		22408		,		162 1				
Collar Sun	/ey:		538209	6451725	<u> </u>		1621	<u></u> -			
Down He	ole Surv	ey	Sample Information		Split By: _	Kat Br	itten	<u> </u>	1		
Survey Met	thod: <u>Reflex</u>		# of Samples: 22 Chemex, v 	w/ 1 Std.&1 Blank: 2 Acme_ 5-280326, 280546-280547.	_ Type:		·		-		
Depth 15.2	Azimuth 171.8		Date Shipped: <u>August 8</u>	. 2005	Assay Cer	tificate # :	A050660;	24			
54.6	171.8	-43.5			•					Key inte	rsections
				<u></u>				·	From	To	Results
			Drill Information		Core Size:	NQ to:	end				· · · · · · · · · · · · · · · · · · ·
			Drill Contractor: <u>Hy-Te</u>	ech	Core Size:			_			
			Driller: <u>Mark Konst</u> Driller: <u>Chris Yuen</u>		Shift	Distance	Shift	Distance			
			Helper: <u>Sean Bradley</u>						Logged By	 r:A	nja Weiss

and the second second second second second second second second second second second second second second second

DIAMOND DRILL LOG

and the second second second second second second second second second second second second second second second

Project: Kutcho Creek

Drill Hole Id: WK05-52

tni			echnical		ology	Colo	ir 🗌		Comp	onen	ts		[Tex	ture]	Stru	cture						Altera	tion					1	•	R	lineca	izatio		
From	To	%Rec	RQD	Lith1	Litth2	Sh Co	ιc	1 C1	% C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СЬН	ChA	DIH	DIA	AKH	Aka	PvH	PvA	CoH	CDA	Solis	50A	BnH BnA
0.0	4.6			CASE				_						ļ																					-		
4.6	19.1	75	70	QFXT		5 G	0	x 2	5 FX	40	MS	СВ	PP	PP	SP	SP	av	15					н/7	15	нν	25											
19.1	21.5	100	90	XATF	ļ	7 G	_0	X 1	0 CB	30	MS	PΥ	PΡ	SP	\$T								\$	30	н	30					Ų	1					-
21.5	22.8	100	50	QCEX	LLAT	5 AG		x 1	0 CB	60	ц	PY	МΧ	мх	LM/	<u>\$</u>	LM	15							м	60							v	3			
22.8	26.4	90	50	LLTF		7 A	0	K 4	0 CB	20	ម	sx	LB	LM	LM		LM	10		:						20					ρ	15	0	7	1	7	
26.4	34.5	100	50	QFXT	ļ	7 AG			ОСВ					_	\$T	_						-	\$	30	O/H	20	- 1				U	3			-+	-'†	
34.5	36.6	90	30	LLTF.		6 A		(3	СВ	30	мз	sx	68	LM_	\$T		LM	<u>1</u> 0					s	15	L	30					U/P	15			L	5	
36.6	54.6	90	70	LLAT	LLTF_	5 G		(2	5 CL	40	sx		цв	\$T																	P/U	15	a	1	L	10	
54.6								1	1	1	Ι.				ł				1		. ({		T			Т								1	

4

i

`

I

DIAMOND DRILL LOG

Project: Kutcho Creek

1

Drill Hole Id: WK05-52

Inte	eval	
From	To	Comments
0.0	4.6	Case
T		Typical green QEXT - relatively highly altered - though since all the feidspar has been replaced by (for the first m) Epidote, and the rest of the interval MS and FE-CB in oxidized zones (from 17.2-18.8m). Also there
4.6		are quite abundant small (1-5cm) QV.
19.1		Lots of Fluor MS in this rock. There is a 10cm band of SEXL at the bottom of the interval.
[This interval starts out with a 5cm gauge zone. Then it goes into about 1m of QCEXH with mostly CB. There are a few bands of SEXL up to 3cm intercalated though. This rock is strongly limonite laminated. At 22.7
21.5		there is an about 10cm green LLAT layer.
		Right around 23m there is a 10cm CEXL band. There is a 5cm band of lots of Py with some Cp mixed in at 24.2m. To 24.4m there are a few smaller veinlets with Py. Then at 24.4m there is a 10cm band with
ļ		some Py and a bit of Cp mixed in to 24.6m there are a few Py and Sp veinlets with a bit of Cp mixed in. To 26m there are two more bands with quite a bit of FGPy and some Sp. From 26 to 26.2 there is a gauge
22.8		zone.
26.4	34.5	This rock contains lots of FluorMS. Also there are quite a few QV up to 2cm.
		There is a 60cm ft/gauge zone at the beginning of the interval. Then going into a 20cm section with quite a bit of Py and Sp. From then on there is basically some FG, in places even wispy laminated looking Py
34.5	36.6	with some minor Sp mixed in.
		At 41.9m there is a 1m band of LLTF intercalated with some Py and a tiny bit of Cp and some Sp. At 45.5m there is another 10cm band with some Py, minor Cp in it. Throughout the rest of the rock there is the
36.6		occasional 10 to 20m band with some Py, a little bit of Sp and some Cp in it.
54.6		end of hole

i

and the second second second second second second second second second second second second second second second

1	L, W	/este	rn Keltic					Project:	KUTCI	10 CRE	EK
		Min	es Inc.	DIAMOND	DRILL	LOG	i	Drill Hole Ic	i.: WK05	-53	
Hole Azin	nuth:	180°	Dip: <u>87°</u>	Total I	Depth:2	25.6m (74	0')			Geologi	cal Summary
Date Star	ted: <u>July 2</u>	2/05	Date Completed:	July 24/05	Core Size:	NQ2/BTV	v		Purpose /	Target: Es	so West: Western extension
			Northing	Easting			<u>Elevati</u>	on	downdip of	E 080.	
UTM Loca	ation:		6452620	535109		_	1478		Comment	s: Abandone	ed hole after reducing to BTW,
Grid Loca	tion:		23336				1484				untered mainly gabbro and as near parallel to the core axis at,
Collar Sur	vey:		6452624	535106			1484		the top of t		
Down H	ole Surv	<u>ev</u>	Sample Information		.		<u></u>	<u> </u>	-		
Survey Me	thod: <u>Reflex</u>		# of Samples: <u>not sampled</u>	· · · · · · · · · · · · ·	Split By:						
Depth	Azimuth	Dip*		-							
14.5	185.3		Date Shipped:		Assay Cer	tificate # :					
61.0 106.7	169.6 158.0	-85.5							·	<u>Key inte</u>	rsections
106.7	158.0	-83.9	Analytical Lab:					·	F	I - - 1	
197.8	147.1		Drill Information					· · · · · · · · · · · · · · · · · · ·	From	То	Results
225.6	155.6	-83.2			Core Size:	NQ to:					
			Drill Contractor: <u>Hy-Tec</u>	:h	Core Size:	BTW to:					
			Dellare Atoric Konst		1		I	1			
			Driller: <u>Mark Konst</u> Driller: <u>Chris Yuen</u>		Shift	Distance	Shift	Distance	┟_──		
			Helper: <u>Matt Wheatty</u>		<u>├</u> ──			<u> </u>	<u> </u>	L	
			Helper: <u>Sean Bradley</u>				<u> ·</u>		Logged By	: <u> </u>	nja Weiss
									1		

DIAMOND DRILL LOG

Project: Kutcho Creek

.

~ 1

Int	erval	Geo-	echnical	Lith	ology	1.0	Colour	Ľ.			oner			T		ture		1	Stru	cture		T				Atten	ation					T			Ainera	lizati	on	······	
From	Ta	%Red	RQD	Litht	Lith2	S	CoL	C1	C1%	C2	C29	103	C4	Tx1	Tx2]Ţx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СРН	CbA	DIH	DIA	AkH	Aka	PyH	PyA	CpH	СрА	SpH	SpA	8nH	BnA
0.0	7.3			CASE		Г							1						I						-		1				—					1			-1
7,3	24.1	90	80	GBBR	SEXL		3 A	FX	50	BŤ	20	CL	MS	MX	PP	SN	SN							J	15											1			
24.1	48.8	100	90	ARGL			3 A					1					I					H/Q	15			a	15					U	3			1			
48.8	57,6	100	90	ARGL			A	QХ	10	FS	20	BT	1	EL	SP	PP		1	1													Ū.	5			1	<u> </u>		
57.6	60.0	90	80	GBBR			5 A	СВ	20	CL	10	BT												<u> </u>	F	o	20								T				
60.0	149.4	90	90	ARGL			A					1					Γ															υ	3		1				
149.4	166.7	90	60	ARGL		Г						T	<u> </u>		[<u> </u>							1															
166.7	220.7	90	80	ARGL			AG											1	1	[``		<u> </u>			1		<u> </u>					U	3		1				
220.7				1.		1						<u> </u>				1	<u> </u>							<u> </u>										1	· · ·				

ł

DIAMOND DRILL LOG

Project: Kutcho Creek

- --]

1

int	erval -	
From	To	Comments
0.0	7.3	case
7.3	24.1	This is a dark grey rock with lots of porphyritic Bt and Ms replacing feldspar, lots of QX veins and mobilizations - coarser grained/ARGL
24.1	48.8	This is a dark grey argiilite with lots of little QX veinlets. Intercalated are some layers wit lots of CI fragments and carbonate fragments.
48.8		Coarser grained ARGL
57.6	60.0	This appears to be medium grey GBBR. From 60m on Bt and CI disappear only some minor CB spots are left even those disappear from 64.6m on.
60.0	149.4	Dark grey ARGL to 98.9 going into light grey into medium grey towards the bottom.
149.4	156.7	Coarser grained mudstone with lots of CI and Cb Fragments.
166.7	220.7	Fine grained almost black ARGLwith lighter, in parts even greenish looking sections.
220.7		end of hole

ł

1	, W	este	rn Keltic					Projec	t: KU	тсно с	REEK
7		Min	es Inc.	DIAMOND	DRILL	. LOG		Drill Ho	le Id.: W	K05-54	
Hole Azirr	uth:1	<u>80°</u>	Dip:80°	Total I	Depth:	478.2m_(15	69')			<u>Geologi</u>	cal Summary
Date Star	ed: <u>Jul</u>	/ 25, 2005	Date Completed:	August 8, 2005	c	ore Size: _	NQ/BTW		Purpose /	Target: Es	so West Deposit westward
			Northing	Easting			<u>Elevati</u>	on	continuatio	n test.	
UTM Loca	ation:		6452620	535103		_	1478	_	Comment	s: Hole start	s as 54 (NQ2) to 225.6m where
Grid Loca	tion:		23336	35636		_	_1484		where 54 v	vas reduced	54 (NQ2) continues to 307.2m, I to BTW. Due to limited flattening
Collar Sur	vey:		6452624	535106		_	1484	_			vas not continued further. Note: 3TW on, the boxes were labelled
<u>Down H</u> Survey Me	ole Surve thod: Reflex	_	Sample Information # of Samples:45 & 1 Std, & 1	Blank	Split By: _	Kat Br		<u></u>			
		<u> </u>			· ype	172 34WII CA	<u>ure</u>				
Depth 15.2	Azimuth 171.3	Dip* -78.3	Date Shipped: <u>August 13</u>	2005	Assay Cer	rtificate # :	A0507162	24_			
45.7		-77.3								Key Inte	ersections
91.4	167.6 167.8	<u>-76.1</u> -73.7	Analytical Lab: <u>ALS Cheme</u>	×						i - .	
179.5			Drill Information						From	To	Results
225.2		-70.7			Core Size	_NQ to:	307.2m			· · _ · ·	
267.9			Drill Contractor:Hy-Tech			BTW to:			}	·	
307.2		-63.0									
350.2	161.5	-62	Driller: <u>Mark Konst</u>		Shift	Distance	Shift	Distance			
371.6	169.5	-59.0	Driller: <u>Chriss Yuen</u>			1					
395.6			Helper: <u>Mathew Wheatly</u>]		
447.8			Helper: <u>Sean Bradley</u>						Logged B	r:A	nja Weiss
478.2	177.0	-51.0							1		

.

DIAMOND DRILL LOG

Project: Kutcho Creek

-----]

1

Int	erval	Geo-T	chnical	Lith	ology	Co	lour		Ċ	omp	onen	3			Tex	ture		1	Stru	cture			_			Alter	ation					r		N	linera	lizati			
From		%Rec			Lith2	Sh (CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	501	Ang	SD2	Ang	QzH	QzA	MsH	MsA	CPH	СЪА	DIH	DIA	AICH	Aka	PyH	PyA	CpH	CpA	SpH	SpA	BnH	BnA
0.0	6.7			CASE																										_									
																		I T	Γ																				
6.7	13.1	70	80	GBBR		34	A	FX	15	BT	20	MS		IN	PP	IN		QV	45					Q	30							υ	2	Q	1				
13.1	47.9	80	80	ARGL		51	JA										ł	LM	80	av	75													L_					
47.9	57.6	90	90	ARGL		5 L	JA																												<u> </u>				
57.6	13 <u>2.9</u>	90			GBBR													L.M	80													U	1						
132.9	141.1	100		ASTF	[51						L							1																			$ \rightarrow $	
141.1	143.6			GBBR		5 L										1	_														L						_		
143.6	145.7	100		QXLT		5		ax	30		20			PP	Í	1N															L .			<u> </u>					
145.7	151.2	90		XLTF		70		СВ	10	LF	20	MS	α											H/J	30											L			
151.2	158.2	90		ASTF		70																																	
158.2	179.5	100	100	ARGL		3 A	AN	SX																								U/P	15						
179.5	225.6			VSLT		5 A	AG	sx																								U/P	15						
225.6	232.3	0		VSLT	 	l _ + -								_				ļ	+						I				$ \rightarrow $			w	· · -	<u> </u>	+	↓			
232.3	259.0			VSLT		54				┝─┤		<u> </u>	SX	_	—	+	-	 	<u> </u>				<u> </u>			ļ						w			<u> </u>			<u> </u>	\rightarrow
259.0	274.0			VSLT		5 /			-	~	_	sx			<u></u>	-	 	<u> </u>	<u> </u>	<u> </u>				-	45										<u> </u>	 			
274.0	302.3			GBBR		3 /	<u> </u>	et	20		30			PP	111	SP	┝	┨───					<u> </u>	0	15		· · ·					U 	3			<u> </u>			
302.3	304.1	90		VSLT	 	74								_			ļ	 	<u> </u>	1	_			<u> </u>		<u> </u>			-+		ļ	<u>u</u>		<u>a</u>	3			i	
304.1	307.2			VSLT		7 4				.					—		<u> </u>	Ⅰ—	ľ	<u> </u>				<u> </u>		-								I	├	<u> </u>		 	
307.6	308.2	90		VSLT	-	54					45		-				-	┣—	<u> </u>				<u> </u>						+					ļ	<u> </u>			$ \rightarrow$	
308.2	320.7	90			XLAT	50		<u>ox</u>		FLF			CB			\$T		—	+	i				\$	15	-	20						l –	-	<u> </u>	-		 	
320.7	400.2	90		QFXT		50	ف	<u>ax</u> X		MS				AË			IN		_					\$	15	_	20		-+-			υ	-		<u> </u>	+			
400.2	425.6	100				70				MS				AE		SP	<u> </u>			-				3	35		15	_				-		<u> </u>		·			
425.6	428.9	100			FLTZ	70		ax		MS			PY		ST	SP	<u> </u>	LM	15					3	30	<u>.</u>	15					υ P	30		9		15	<u> </u>	
428.9	472.9			SMSX	TIT	5 4		ax		CB		sx		LB			 	 	ŧ						├	L	25						15		- 3	<u>-</u>	10	·	
472.9	478.2	100	90	LLTF	 	74	4	QX	25	СВ	30			ĻΒ	LM_	+			 	<u> </u>	_			+		L -	30					F	15	<u>u</u>	1	<u>⊢</u>	1.0		
478.2																	1	1							1	1								L	1	1			

· · · · · ·

ļ

DIAMOND DRILL LOG

, .

1

• • •

١

1

Project: Kutcho Creek

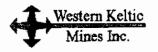
~

1 1 1 1 1

.....

Drill Hole Id: WK05-54

int	erval	
From	To	Comments
0.0	6.7	Case
6.7	13.1	Strongly attered Gabbro - relatively soft - so most of the feldspar has turned into Ms and the Px into Bt. There are a few pretty big euhedral Pyrite in a QV, also some Cp at 8.8m of about 20cm thickness.
13.1		Some minor QV. There is quite a few fit zones.
47.9	57.6	Coarser grained ARGL
		Fine grained again - Lamination seems to be folded. Lots of little QV in this rock. 64.6m to 65.2m there is a pretty big QV. At 98.5m there is about 1m of intruded Gabbro. At 100m there is another 0.3m of GBBR.
		And at 100.9m there is another 1.5m of gabbro, There is some minor Cp and Py in there. At 104.5m another GBBR band seems to start out which goes to 112.5m. For the next 1m there is ARGL again. To
57.6	132.9	123.1m there is GBBR again. To 125.6m ARGL again. Down to 132.9m there is GBBR in parts bracciated looking coarser grained.
132.9		Kind of brownish very fine grained ASTF with lots of smail white spots up to 3mm for the last 4.5 feet. For the last 0.7m there is a lot of QX mobilizations in there.
141.1	143.6	This is kind of a weird loking GBBR with lots of QX mobilizations in it and lots of CI replaced amphibole/pyroxene phenocrysts.
143.6	145.7	
145.7		There is a lot of elongated crystalls in there, where I am not sure if it is Cb or Ms.
151.2		This rock contains very fine disseminated accumulations of SX - wispy lamination.
158.2		Very fine grained blackish ARG with some Py spread throughout. There are some lighter sections with wispy laminated Py.
		This is a grey green VSLT with some coarser grained sections. For example at 184.1m for 20cm and at 189.9m for 10cm plus there are more scattered throughout the rock. There is quite a lot of wispy laminated
179.5		Py in this rock - plus two up to 20cm SEXL bands. This rock shows lots of tiny white spots - altered something?
225.6		redrilling with NQ2, no core securing.
232.3		There are two SEXL bands of about 30cm thickness and two SEXL of about 10cm thickness in this rock - other than that there are some wispy laminated Py in this rock.
259.0		Medium grained VSLT - with many white spots.
274.0		There is quite a bit of FG euhedral Py in this rock
302.3		Medium grained VSLT.
304.1		Fine grained VSLT with a lot of euhedral Py and there is a 300m band of SEXL with quite a few subsdral Py crystals.
307.6		There is a 20cm fault zone right after the first 10cm.
308.2		Atternating QFXT w/ TBX/XLAT bands. The QFXT bands are 20-30cm.
320.7		Some quite big Qz eyes, lots of little QV, lots of epidote. Hematite from 353.9-365.5. Quite a few lithic fragments for the last 7.5m. Big FLTZ from 374.6 to 381.7m.
400.2		Lots of FluorMS and hematite.
425.6		Strongly faulted LLTF w/ lots of elongated QX and limonite lamination. Strongly broken up and lots of gauge material. Gauge zone at 428.6 to 428.7m.
428.9		Lots of little blotches of Cp and lots of Zn. First 1m is almost MSSX w/ Cp (20-25%) and Zn (20-25%).
472.9	478.2	
478.2		end of hole


1		Wes	ster	rn Kel	tic						Projec	t: KU	тсно	CREEK
	~	M	lin	es Inc	•		DIAMOND	DRILI	LOG	i	Drill Ho	le Id.: W	K05-54B	11
Hole Azin	nuth:	<u>180°</u>			Dip:	67°	Total	Depth: <u>225</u>	. 6-447,8 m (222.2m)			Geolog	ical Summary
Date Star	ted:	<u> July 26,</u>	2005		Date Co	mpleted:	July 29, 2005	Co	re Size:	BTW	_	Purpose /	Target: Es	so West Deposit westward
				Northing			<u>Easting</u>			<u>Elevati</u>	on	continuatio	on test.	
UTM Loc	ation:		t	6452620		<u></u>	535103		_	1478	_	Comment	s: Hole 54B	1 branches at 225.6m with BTW.
Grid Loca	tion:			23336			35636		_	1484				
Collar Sur	'vey:			6452624			535106	·	_	1484				
Down H	ole Sur	vey	<u> </u>	Sample In	format	ion						ļ		
Survey Me	thod:							Split By:	Kat B	ritten	<u> </u>			
	<u>Reflex</u>		-	# of Sample	: <u>19 (inc.</u> 22032	1Std. & 181	nk) Chemex, 20 MET		<u>1/2 Sawn C</u> 1/4 Sawn C					
Depth	Azimut		ip*	Data China a										
243.5	· · · · · · · · · · · · · · · · · · ·	- · ·		Date Shippe	a:/	AUQUST 8, 20	<u>və</u>	Assay Ce	rtificate # :	A040614	33			
258.8	160. 162.		-65.9	Analytical L	م. مان	S Chemer							Key Inte	rsections
319.7	161.		-63.8		av. <u> ^i</u>	o offernes						From	То	Results
383.7	169.	5	-62.0	Drill Infor	nation				·				,0	The suits
444.7	174.		-60.0					Core Size	: NQ to;					
				Drill Contrac	tor:	Hy-Tech		Core Size	: BTW to:	447.8m				· · · · · · · · · · · · · · · · · · ·
								1	ter :	1	1_			
	.			Driller: <u>Mar</u> Driller: <u>Chr</u> i				Shift	Distance	Shift	Distance			
		+		Helper: <u>Mat</u>				 		·				
		1	-	Helper: <u>Sea</u>				}	1	t	<u> </u>	Logged By	r:A	nja Weiss
									•					

and the second second second second second second second second second second second second second second second

ł

DIAMOND DRILL LOG

· · · · ·

١

Project: Kutcho Creek

Drill Hole Id: WK05-54B1

lat	erval	Geo	Tecl	hnical	Little	ology	Te	olour	— —	C	omp	onen			<u> </u>	Te	ture		T	Str	uctur				_			Alten	ation					Γ			Alnen	alizati	01		
From		%Re	_					CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD	1 An	g SD	2 4	g Q	zH]Q	ZA I	MsH	MsA	CbH	CBA	DIH	DIA	AkH	Aka	Рун	РуА	CpH	СрА	SpH	SpA	BnH	BnA
		r															1	1	Г				Т		Τ	T				-	{	ļ	Ţ	F			ł				
		1		1				ì					1]		1	1	1									ĺ							1					1
225.6	258.5	9	nl	80	VSLT		5	AG						sx		1		1			í	1												U/P	15	i					
258.5	308.B			100			5	AN										T													[U] 3	<u>!</u>		1			
200.0			-					1								<u> </u>		1												{				Į –				ļ		Į	
308.8	341.1	10	n İ	90	QFXT		5	AG	ox	25	СВ	25	MS	EP	AE	IN	ST.	IN	1			1				s	15	J	25												
341.1	343.8		<u> </u>		SEXL		1	1	OX.		SX				MХ	<u> </u>			1			-								<u> </u>				UN	- 6	Q	2	2	T		
343.B	424.9		-		OFXT	1	15	G	ax		CB	25	MS	EP	AE	IN	ST	IN	1					-		\$	15	J	25	1	[
424.9	430.7				QXAT	f	_		ax		MS			SX			FG	1	1	1	—			-		\$	40							Q	5	;					
430.7	432.2	_	_		MXSX	<u>+</u>	t									-	1	1		-	-		-1-	-†						1	1			Ρ	70		18	3 L	10		
432.2	432.8	_	_		SMSX	LITE	1 3	A	ax	20	СВ	40	sx	<u> </u>	LB	ST	1	1	1		-			-					<u> </u>					P	30	Q	15	5 L	5		
432.8	447.8	_	_		LLTF		_	A	ax		CB	40		sx	<u> </u>	<u> </u>	1	1-	1	-	1			-†					· · · ·				1	P/V	25		7		10		
432.8		1	┭	<u></u>			ť	1			<u> </u>					<u> </u> -	+		1_	1-	1			1		1										Ι.	1				

ļ

Western Keltic Mines Inc.

1

DIAMOND DRILL LOG

Project: Kutcho Creek

1

Int	erval j	
From	To	Comments
		There is some nice bedding visible from 216.4m on for about 2m. Starting with the BTW there is a 20cm (to 225.9m) SEXL and 20cm after that there is an about 60cm intercalated band of QXTF - then it goes to
225.6	258.5	fine grained VSLT again, getting almost black towards 231.3m. Underneath that it goes into a very light grey. There are some up to 60cm intercalated QXTF. Also there are lots of tiny little Py veinlets.
258.5	308.8	This is a medium grained intrusive sill.
		For the first 1.3m there is kind of a transition zone with not a lot of QX in there yet, but from 310m on the QX are definitely increased. From 314.9m on there is an about 0.7m fit zone, lots of interstitial Epidote in
308.8	341.1	this rock. There are stretches with abundant QX eyes and then there are stretches with almost no QX eyes.
341.1	343,8	With lots of little Py veinlets and some euhedral Py, also some Cp and a Pythotite looking mineral - slightly magnetic?
343.8	424.9	The last two boxes contained about 50% strongly broken up rock - fit zone corning through?? (From 385.6m) After that it is just typical QFXT with increasing Fluor MS for the last 3m.
424.9	430.7	The first 1.5m are red from FG HE. Then it goes into green grey.
430.7	432.2	This section starts with a 30cm gauge zone. The beginning of the zone could be faulted away.
432.2	432.8	There are quite a few very big patches of Cp in here.
432.8		There are lots and lots of small veinlets mostly Py, but also some Sp and a few Cp.
447.8		end of branch

H	W	·	rn Kelti es Inc.		DIAMOND	DRILL	. LOG		•	t: KU le Id.: W	_	CREEK	
Hole Azim	uth:	190°	C	Dip:60°	Total I	Depth:;	2 <u>46m (80</u> 7)			Geologi	ical Summary	
Date Start	ed: <u>Au</u>	<u>gust 8, 200</u>	5 I <u>Northing</u>	Date Completed: _	August <u>10, 2005</u> <u>Easting</u>		Core Size	: <u>NQ2</u> <u>Elevat</u> i		Purpose / east of Kut	-	ck Target. Kutcho Horizon Skr t.	n
Grid Locat Collar Sur	tion: <u>off</u> vey: <u>not</u> ole Surve	minegrid surveyed ey			<u>543304</u>	Split By: _	Kat Br 1/2 Sawn C		 	Comment	5 :		
Depth 15.2	Azimuth 171,3	Dip*		August 13, 20		Assav Cei	tificate # :	A050716	74				
45.7	171.3	-78.3	authlace		<u> </u>	Howny UE		_,,000,10			Key Inte	ersections	
91.4	167.6		Analytical Lab:	ALS Chemex						1			
152.1	167.8	-73.7								From	То	Results	
179.5	161.0		Drill Informa	tion									
225.2	159.7	-68.2					NQ to:	_ ,					
267.9	163.5		Drill Contractor	r: <u>Hy-Tech</u>		Core Size	BTW to:						
307.2	160.0	-63.0		•		terre	1	1 	tes :				
350.2	161.5		Driller: <u>Mark K</u>			Shift	Distance	Shift	Distance			ļ	
371.6 395.6	169,5 174.0		Driller: <u>Chriss</u> Helper: <u>Mathe</u> v			ļ		<u> </u>				l	
	174.0		Helper: <u>Sean E</u>				<u> </u>	<u>-</u>		Logged By	r: N	farek Mroczek	
						L	t	<u>ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا </u>		1		<u> </u>	-

i

.

DIAMOND DRILL LOG

the second second second second second second second second second second second second second second second s

Project: Kutcho Creek

,

	erval	Ceo.T	echnical) 1 ith	logy	17	Colour	T			nents	_	T	Tex	ture			Stru	cture	_					Alter	ation					<u> </u>				lizatio			
From		%Rec		Litth 1	Lith2	S.	Col	C1	C1¥	C2	C2% C	1 104	Tr1	112	Tx3	Tx4	SD1	Ana	SD2	And	QzH	QzA	MsH	MsA	СЪН	ChA	DIH	DIA	AkH	Aka	PyH	PyA	CpH	СрА	\$pH	SpA	BnH	BnA
0.0	1.8			CASE		1							1	1																1								
1.8	7.6	_		QFXT		6	AW	oz	10	KF	10		LN				UN	82			ò	10				_												
7.6	13.8			GBBR		_	NG	PX		FX	15	-+-	LE								z	5									· · · ·			[
13.8	16.0	**	<u> </u>	SILT			A	οz	1			1	1		1															1								_
16.0	36.0		85	GBBR	<u>+</u>	-	INN	PX	30	FX	20	1	ю	<u> </u>	+																						_	
36.0	38.0			SILT		-	A	oz	2				LE	1 -	1															[
38.0	39.4			GBBR	†	_	NG	PY	20	FX	20			1	1		_						-															
39.4	42.5			SILT	1	3	A	a	1				LE		1																			L				
42.5	56,9			QFXT		1 5	GA	FS	30	oz	10		EL	1	1		· · · ·		LE	42										[
56.9	57,5	_		FLTZ	1		MA	LL I	10				FR	<u> </u>	-	<u> </u>	FZ																	. .		_		
57.5	73.4	100		QFXT		_	GĀ		1		+	-1-	LE	<u> </u>	1		ĹN	52																				
73.4	74.2			SILT	<u>}</u>		NN								1																a T	0.5						
74.2	79.8			GBBR				PX	20	FX	20			1	PP	<u> </u>			FB											1				I				
79.8	115.2			QFXT		3	3 A	oz	30	FS	25		LE		T		ĻΕ	57						Í.										I				
115.2	115.7	100		GBBR		1.5	NN	PX	20	FX	20		LE																					L				
115.7	148,1	100	100	OFXT		3	A	αz	25	FX	20		LE				LE	55													<u> </u>				 			
148.1	153.5	90	10	LLTF		5	5 GA	αz	10				LM				BD	72												!	<u>Ľ</u>	3					┝──┤	
153.5	175.5		80	LLTF		7	7 G	αz	15				LM				BD	70													I	L		L	┣ ┥		<u> </u>	
175.5	244.9		100	GBBR		T:	5 NN	PX	30	FX	20		LE				FB	40	_								L			L					\vdash			_
244.9	245.5		70	LATF		5	5 A	FS	10				LM				LE	42	<u> </u>			L	I				L			L	L	0.5		Ļ	┟┉╼┥			
245.5	445.0	100	70	LATE		1 5	5 A	oz	20				LM				LE	65			Z	_20		L		-				ļ	<u>۴. </u>	30	<u> </u>	 	┝──┤	_	<u>⊢</u> -+	
445.0						Γ													L					1									L	L				

•

,

I

DIAMOND DRILL LOG

Project: Kutcho Creek

• ...1

Drill Hole id: WK05-55

int	erval	
From		Comments
0.0	1,8	
1.8	7.6	Partially weathered rock.
7.6	13.8	
13.8	16.0	Contact with gabbro at 15 degrees
16.0	36.0	
36.0		Contact with gabbro at 20 degrees
38.0	39.4	
39.4		Contact with gabbro at 24 degrees
42.5	56.9	
56.9	57.5	
57.5	73.4	
73.4	74.2	
74.2		Contact with quartz crystal ash tuff at 44 degrees.
79.8	115.2	
115.2	115.7	
115.7	148.1	
148.1	153.5	
153.5	175.5	
175.5		Quartz-dolomite vein up to 3cm thickness.
244.9	245.5	
245.5	445.0	
445.0		end of hole

1	W _	/este	rn Keltic					Projec	t: KU	гсно с	REEK
7		Min	es Inc.	DIAMOND	DRILL	LOG		Drill Ho	le Id.: Wi	K05-56	
Hole Azim	uth:	180°	Dip:60°	Total D	epth: <u>3</u>	58m (1175	5)			Geologi	cal Summary
Date Start	ed: <u>A</u> L	<u>igust 11, 20</u>	05 Date Completed	i:August 12, 2005	i	Core Siz	e: <u>NQ2</u>		Purpose /	Target: Tes	t North Graben concept.
			Northing	Easting			<u>Elevati</u>	on			
UTM Loca	ition:						·	<u> </u>			d a thick section of porphyritic
Grid Local	tion:		22840	<u>39199</u>			1547		complex. S	mall interva	s interpreted to be a flow dome I of QFXT - some pyritic layers,
Collar Sur	vey:		6452163	538673		_	1547		but no clea	"OH"	
Down H	ole Surv	ey	Sample Information	<u>.</u>			······				
Survey Me	thod:				Split By: _			<u>.</u>			
	<u>Pajari</u>		# of Samples: <u>not sampled</u>		Type:						
Depth 264.9	Azimuth 186.0	Dip*	Date Shipped:		Assay Cer	tificate # :					
316.7	188.5	-50.0			·					Key Inte	rsections
			Analytical Lab:	-					From	То	Results
			Drill Information								
	·····		Drill Contractor: Hy-Tech		Core Size: Core Size:					<u> </u>	
					OUIE DIZE.	<u></u>	<u> </u>				<u> </u>
			Driller: <u>Mark Konst</u>		Shift	Distance	Shift	Distance			
			Driller: Chriss Yuen							·	
			Helper: <u>Mathew Wheatty</u>								
			Helper: <u>Sean Bradley</u>		L		l	<u> </u>	Logged By	: <u>N</u>	larek Mroczek

and the second second second second second second second second second second second second second second second

,

. .

1

DIAMOND DRILL LOG

١.

.

Project: Kutcho Creek

1

				1 145		1 0	lolour									ture			-	cture	_					Alten									liners	lizatio			
		Geo-I %Rec	echnical	Lith1	Lith2	ler.	Cel I		IC4	Comp	Onen		C4	T-1	11.2	7.3	1	ED4	200	SO2	Ana	O-H	0+4	M-H	M-A	СРА	Cha	DIH	DIA	AHH	Ales	-	PvA					BnH	BhA
From		7 . Kec		CASE	Linz_	<u> 90</u>	COL	107		102	027	100	<u>~</u>		144	1123		301	Pang.	Jour	All Y	Q2N	- un	man	max	Cun	CDA	Dirt		A.A.N	1000	1 2			440		- Pro	-	<u> </u>
0.0	5.1				<u> </u>	╞	ING	PX	-	FX	5	┣	 	50	MG	+			<u> </u>										+		+		<u> </u>			1-1			-1
5,1	6.1	80		GBBR	<u> -</u>		AU			_		+	<u> </u>	GG	MO	+	<u> </u>		┞╍━										<u> </u>		<u> </u>	f				+ - 1		-+	
6.1	8.8	20		FLTZ					20	_		<u> </u>		FG	100		├ · · ·	FB	48									 	}		╞──	+	<u> </u>		<u> </u>	1	-+		
8.8	14.9	90		GBBR	I	_	NG	_		FX	10	<u>' </u>			MG	+—	1	r D	40			<u> </u>	<u> </u>					┣━━	+	~	<u> </u>	 	<u> </u>	+	<u> </u>	<u>├ i</u>	-+	\rightarrow	
14.9	15.3	80	0.0	FLTZ	<u> </u>	5		CY		_	40	╂──	<u> </u>	GG FG	1.10		[<u> </u>	-			<u> </u>	ļ					<u>├</u>	-	-	┼╍╌┤	\rightarrow		
15.3	_24.1	100	90.0	GBBR		5		PX	_	FX		┢──	<u>←</u>					1.11					—						<u>+</u> − i		╂──		0.1					+	
24.1	63.7	100	95.0	GBBR	<u> </u>	5	NG	PX	_			┢		MG	_	1		LN														10	[<u>u. i</u>				-+	+	
63.7	91.1	100	100.0	GBBR	ļ	17	AG	FX			5	+		LE	FG	<u> </u>		LE.					- +		<u> </u>						╂	╂	<u> </u>			┝─┤		-+	
91.1	93.8	100	100.0	QAXT	<u> </u>	9	A	oz		<u> </u>		<u> </u>	 	LN	<u> </u>	<u> </u>	<u> </u>	n.	55		-		<u> </u>		-		<u> </u>	 -					├	<u> </u>	<u> </u>	1	\rightarrow		-+
93.8	99.5	100	80.0	LXTF		1	<u>A</u>	FS		-	L	_	ļ	LT	<u> </u>			π	49			-		ļ			1		↓				<u> </u>	<u> </u>		 	$ \rightarrow $		
99.5	109.4	100	85.0	LATE		9	<u>A</u>	FS		_			ļ	LT.		<u> </u>	L	π	64								<u> </u>				_	Z	2	<u> </u>	0.1		$ \rightarrow $	\rightarrow	
109.4	117.8	90	_20.0	LAFT		7	<u>NN</u>	FS	10			L.		LM			L	π	64		_		L									Z	2						
117.8	119.3	100	80.0	LATE		7	G					L		FG	L	1		π	64					L					I		Ļ	Z	3			·		\rightarrow	
119.3	146.0	100	90.0	QAXT	LATE	9	<u> </u>	οz	_			L		LT				πL	52			N.	20					L			<u> </u>	ł	-	<u> </u>		<u> </u>			
146.0	166.4	100	90.0	QFXT		5	G	QZ						LN				TL.	55												L	1	0.2						
166.4	166.7	100	90.0	QZVN		7	WW	oz	95					٧N		Ι.		VN	40			V	95					Ĺ			L	1	L					$ \rightarrow $	
166.7	172.9	100	90.0	QFXT	-	3	A	FS	15	ß	10			LE		{		π.	60								{		ĺ		<u> </u>	<u> </u>	0.2						
172.9	175.0	100	90.0	OXAT		7	A	QZ	50					CX				π	42														1						
175.0	176.6	100	60.0	LAXT		5	A	loz	20	-		—		LF				LM	68									-				1	1						
176.6	177.2	60	0.0	FLTZ		7	A	GG	80				1		_	1		FZ]				Γ								
177.2	180.9	100	60.0	LATE		7	AW	FS		az	15			LT		T-	1	π	70								1				T.		[
180.9	214.1	100	80.0	LLXT	<u> </u>	5	WG	laz	10			1	1	LT	LE			π	60					1			1				T	1	0.5	I .	l				
214.1	233.0	100	30.0	LLXT		3	ĀŴ	LF	15	az	10	1		TF																		1	0.5					L]	
233.0	252.6	100	20.0	LATE		5	AG	BF	_	_		1	<u> </u>	11	_			π	80	<u> </u>							<u> </u>					Z	0.5						
252.6	265.3	90	60.0	LATE		3		BF				+		TF			<u>† </u>	TL	66									—			<u>†</u> —	Z	0.5		-				
265.3	270.8	90	70.0	LATE	<u> </u>	7	AG	oz		FS	10	1	1	TF	<u> </u>	†	<u> </u>	n	73										1		1	ł	0.2						
270.8	278.7	100	60.0	LATE		2	ww	_			<u> </u>	┫───	<u> </u>	Ŧ		+		n	69					1	-	1	1				1-	Z	0.5				\square		
278.7	280.7	100	70.0	LATE	SILT	1	A	FS				1	<u> </u>	ŤF		1		n	76									<u> </u>			1	Z	4	1	1				
280.7	281.7	100	70.0	SILT	5121	3		FS			-	<u>+</u>	1	ĹМ	<u> </u>	-	<u> </u>	BD	80	<u> </u>				1					1					1	1	1			
		100	80.0	LATE		3					-	1	1	TF	f		<u> </u>	n	82								t	<u>+</u>	1		+	T T	0.2	1	1				
281.7	284.3	100	80.0	LATE	├ ───	5	G	BF		_	<u> </u>	+	+	ΤĒ	┟───	1-	<u> </u>	Ŧ	65	<u>├</u>							t	<u> </u>	+		<u>+</u>	1	1	1	t				
284.3	288.9			RHYL		7	w		60	<u>+</u>	<u>⊢</u> .	<u>+</u>	+	惿	 -	 		FB	58		-			+	i –	+──	1	╉╼──	1 -		+	1	2			1			
288.9	295.2	100	85.0 100.0	DACT	<u> </u>	3	G	1.2	100	<u>+</u>		╉──		FG	<u> </u>	+		FB	60	<u>├</u>						<u> </u>	<u> </u>	1	f	· · ·	+	1 i	0.5	1					_
295.2	304.5	100				3		FS	40	+	-	+ -	<u> </u>	FG	+	+	-	FB	64	<u> </u>			1	· ·			t –	+			+	tò	1	1	†				
304.5	321.6	100	90.0	DACT		3				_		+		GG	-	-		댥	48	1		t		1	1	1	1			-	-	1	† ·	1	<u> </u>	1	,		
321.6	321.8	80	0.0	FLTZ		3	_	FS				1	1—	FG		1	1 -	FB	60	-		-	1	1		-	+	-			1	1.	0.2	t	1	1		[
321.8	332.1	100	90.0	DACT	<u> </u>					<u> </u>	-	+	{	1.6		+	1-	뀨	80			⊢	<u>+</u>	† -		1	t	1	+	-	-	Ż	10	1	1				
332.1	332.4	100	100.0	LAFT	+	1-	A	- PY FS	_	<u> </u>		1 -		FG	-	+ -	-	뷺	66		-		1-	-	<u> </u>	+		\vdash	+	-	+-	1ī	0.5	<u>† </u>	<u> </u>	1-			
332.4	341.1	100	100.0	DACT		3		_	<u> </u>	_				ru.	+	+	t	쁥	66				- 1			-	1	+	+		+	Ż	5			1			
341.1	341.5	100	100.0		· · ·	3		ᄩ		_		+ •		FG	PP	-	+ -	FB	78	1	-		<u> </u>	+	-		+		+		+-	17	0.2	1	<u> </u>				
341.5	344.4	100	100.0	DACT	· · ·	3		FS		_		1			1 40	+	+	fil	68					1	-	1	1	t	+	t	+	Ż	0.2	1	1	1			
344.4	345.4	100	100.0	LATE		7	<u>A</u>	BF				+	ł		<u>}</u>	1	1	FB	_	<u>}</u>	-		<u> </u>	-	-	+—	+		+	t	+	╧	3	1		1			
345.4	345.8	100	90.0	DACT		3	AU	FS		_	I	+	+	FG	[-		_	12	-		l v	90	-	-	+	-	+	+		+	z	5	z	0.1	+			
345.8	346.3	100	100.0	VEIN	h	5	w			<u> </u>	-	-		1.5		+	+	FB	+	+ -		Ľ	30	-		1-	+	+	+		+-	ź	3	1	1 3.1		\vdash		
346.3	349.9	100	100.0	RHLY	<u> </u>	3	A	QZ		-	-	+ -	+	ᄩ	+	+			05			-	+	<u> </u>			+	+	+		+	1ź	4	+		+	\vdash	\vdash	-
349.9	355.7	100	90.0	DACT	 	13		FS			<u> </u>	+	÷ .	FG	_	+	f	臣	_	t-		1-		+	t —	+	+	1	+	t	+	1-7	0.5	{	+		t	\vdash	
355.7	356.3	100	95.0	LATE	1-	3	<u> </u>	LF	-	<u> </u>	I	+	+	프	LE	+		T.	62	+		-			+	+	+	+ -	+		+	Ηż	1	+	1	+	t	\vdash	<u> </u>
356.3	356.6	100	90.0	LATE	+	3		LF		_	<u> </u>	+	+	UF 		+	+	꼬	74	+	-		+			+	1	-	+	-	+	Ź		+	+	+			
356.6	358.3	100	90.0	LATE		3	<u> </u>	LF	10	1	I	-	4	TF	<u> </u>			<u>n</u>	.71	÷	-	├	<u>+</u>				+		+	+	-	1.4	+	+	+	+	+		
358.3										_				1		1							<u> </u>		1	L	1.	L			1		1				<u> </u>	<u> </u>	<u></u>

DIAMOND DRILL LOG

and the second second second second second second second second second second second second second second second

Project: Kutcho Creek

1	terval	
From		Comments
	5,1	comments
0.0		
5.1	6.1	
6.1	8.8	
8.8		Clay in fractures locally, dolomite veinlets thikoness up 2 cm.
14.9	15.3	
15.3	24.1	
24.1	63.7	
63.7	91.1	Dolomite veinlets thickess up 2 cm.
91,1	93.8	
93.8	99.5	
99.5	109,4	
109.4	117.8	
117.8	119.3	This rock can be a siltstone, carbonaceous substance content up 20%
119,3	146.0	
146.0		Rock altered by chlorite.
166.4		Contact 40 degrees.
166.7	172.9	TT 1997 10 1997 11.
172.9	175.0	
175.0	176.6	
176.6	177.2	
177.2	180.9	
		View fine exclored by divide - Learning to the second by the backs
180.9		Very fine grained tuff with alongated fragments, weak altered by chlorite.
214.1		Very fine grained tuff, weak altered by chlorite.
233.0		Thin layered tuff, week altered by chlorite.
252.6	265.3	
265.3		Slightly silicified tuff, sericitic.
270.8		Strong silified tuff with thin patches of pyrite along layering.
278.7	280.7	
280.7	281.7	
281.7		Very large alongated fragments, locally quartz-dolomite veinlets.
284.3	288.9	Moderate aftered by chlorite, locally very tight aligned fragments.
288.9		This can lithic ash tuff too, strongly silicified.
295.2	304.5	
304.5		Very fine grained, locally brecciated with common white dolomite-quartz? Veinlets.
		Very fine grained, locally aftered by chlorite.
321.8		Very fine grained with icy quantz veinits and diomite patches.
332.1		tcy back color with tuffaceous bedding and lamination of pyrite.
332.4		very fine grained groundmass with phenocrysts up to 2 mm.
341.1		It seems to be very thin layer of lapilli tuff with pyrite along bedding.
341.5		Very fine grained dacite flow.
344.4		Very fine grained ash tuff with thin layering.
345.4	345.8	Very fine grained dacite flow,
345.8		Quartz vein with transition to ryolite.
346.3		Rhyolite flow? This can be part of quartz vein too.
349.9	355.7	Dacite, locally with flow bands.
355.7	356.3	Lithic as tuff locally mixed with dacite.
356.3		It seems to be very thin layer of lapilli tuff with pyrite along bedding.
356.6	358.3	It contains carbonaceous substance 10%.
358.3		end of hole

1	W	este	rn Kelti	ic					Project	:: KU T	гсно с	REEK
1		Min	es Inc.	[DRILL	LOG		Drill Hol	e Id.: WI	K05-57	
Hole Azim	uth:	900°	(Dip: <u>-90°</u>	Total D	lepth:6	57.7m (222)		_		Geologi	cal Summary
Date Start	ed:Au	oust 14, 20	05	Date Completed: _	August 14, 2005	5	Core Size	: <u>NQ2</u>		Purpose / '	Target: Up	dip Kutcho section 38760.
			<u>Northing</u>		Easting			<u>Elevatio</u>	<u>nc</u>			
UTM Loca	ition:			<u></u>		<u> </u>		<u> </u>		Comments	5:	
Grid Locat	tion:		22408				<u></u>	1621				<i>.</i>
Coliar Sur	vey:		538209		6451725			1621	<u> </u>			
Down H	ole Surve	ev.	Sample Info	ormation								
		-1				Split By: _	Damian Le	onard				
Survey Me	thod: <u>Pajari</u>			14 & 1Std		Type: <u>1/2</u>	Sawn Core					
Depth	Azimuth	Dip*		280686 - 700		_						
67.7	169.0		Date Shipped:	September 09, 200	5	Assay Cel	rtificate # :	A0507473	9			
			Analutical I ah	: ALS Chemex							Key inte	rsections
}			Analytical Lab		<u> </u>					From	То	Results
			Drill Inform	ation								
			Drili Contracto	or: <u>Hy-Tech</u>			: <u>NQ to;</u> : <u>BTW to;</u>					
<u> -</u>												
			Driller: <u>Mark I</u>			Shift	Distance	Shift	Distance			
			Driller:						<u>}</u>]
		<u> </u>	Helper: <u>Mathe</u>	w wheatly		<u> </u>	┝───┥			t occed By	<i>r</i> • •	nja Weiss
<u> </u>			Helper: _			L	L i		L	Collier D	··Q	

.

DIAMOND DRILL LOG

Project: Kutcho Creek

Drill Hole Id: WK05-57

Inte	irval	Geo-1	echnica	Lith	ology	Colour	I I		omp	avev	ts		T	Te	cture		1	Stru	icture		T				Alter	حماف									Al-		
From	To	%Rec	ROD	Lith1	Lith2	Sh CoL	C1	C1%	C2	C2%	C3	C4	Tr1	Tr2	Tr3	1774	501	Ann	1502	Ano	IO-H	0-4	Biest	1 14 - A	CHI	Cha	[muu]	DIA I			-		0.0	inen	SpH S	1	
0.0	6.1	0	0	CASE			1	1	1	1	1	1	1	1	-	<u> </u>		1		1			11112411	(ma)A	Cun	CDA	(D)U		чикп	ARE	суп	гуа	Срп	CDA	SUNS		
6.1	15.5	70	60	LLAT	FLTZ	7 A	οz	15	СВ	30	MS	1	(8	LM	\$T	+	1		+		╉	-	e	15	1	30	╞	+		_				<u> </u>	{		
15.5	21	80	80	LLAT		6 A	οz	*	СВ	· · · · · ·	-	÷	_		ST	+		<u> </u>	1			t	5	15	- 4	30		+			D	10	<u> </u>	<u> </u>		-+-	
		1]	I .			I		<u> </u>		1	1	1	1	1	1	1		1	<u>†</u>		<u> </u>	Ť				+				-		1	<u>+</u>			-+-
21	32.8	80	30	MSPY	MSSX		PY	CP													1					ļ		- 1			P	85	Р	13			
		·	•	ł			ł	i i			1					1		ľ		1	1-	1	ļ					-		_	ř		ŀ	<u>†</u>		-+	
32.8	67.7	90	80	LLTF	SMPY		αz	20	CB	30	MS	SX.	LB	LM	ST			ł			1	1	\$	20	1.	30			1		P	25	P	5			
67.7						LT	1				I	1	[1	1	<u> </u>	†	1	†	†	t				├ ┣		- 1		· · ·	20	<u> `</u>	<u>├</u>		-+	

Page 1 of 2

DIAMOND DRILL LOG

Project: Kutcho Creek

- 1

Drill Hole Id: WK05-57

Inte	rval	
From	To	Comments
0.0	6,1	Casing
5.1	15.5	Strongly faulted tock w/ high surface oxid.
15.5	21	First 0.8m contain guite a bit of Py and a tiny bit of Cp. From then on there is guite a lot of Cb spots.
[From 21.0-21.1m there is some gauge material. Then it goes into MSPY w/ a bit of Cp mixed in - down to 24.5m. To 26.8m there is quite a bit of Cp in the rock. 21.0-22.0m there is some strongly broken rock in
21		there. 24.1-24.3m there is some gauge material. To the end the rock is strongly broken up again.
		Starts w/ broken up rock for 1.7m - then it goes into solid core. To 39.3m there seems to be some Op mixed in w/ the Py veinlets. Quite a few almost massive Py bands. Other than that there are lots of little Py
32.8		veinlets spread throughout the core. From 55.9m on there is just lots of fine grained Py veinlets following the lensoid-banded shape around the Qtz. Lots of Fluor-Muscovite.
67.7		end of hole

i

1	W	ester	m Kelti	ic				Projec	:t: KL	лсно (CREEK
		Min	es Inc.		DIAMOND	DRILL	LOG	Drill Ho	ole Id.: V	/K05-58	
Hole Azim	with:1	80°)ip: <u>-45</u> °	Total I	Depth: <u>6</u>	<u>3.7m (209')</u>			Geolog	ical Summary
Date Start	ed: <u>Au</u>	<u>just 14, 20</u>	05	Date Complete	ed:August 15, 200	5	Core Size:	NQ2	Purpose	/ Target: Up	o dip Kutcho section 38760E.
			Northing		Easting		Ē	levation			
UTM Loca	ation:			_	<u></u>	<u> </u>			Commen	ts:	
Grid Loca	tion:		22407	_	38730	<u> </u>	162	1			
Collar Sur	vey:		6451728	_	538209	······	162	t			
Down H Survey Me	ole Surve	eγ	<u>Sample Info</u>	rmation		Split By: _	Damian Leonar	d			
	Pajari				nk. Chemex, 17 ACME 0806 - 822 (ABA)	Type: <u>1/2</u>	Sawn Core, 1/4	Sawn Core			
Depth 60.7	Azimuth 178.0	Dip* -44.0	Date Shipped:	September	09, 2005	Assay Cer	lificate # : <u>A05</u>	074739_			
			Analytical Lab:	ALS Chemex						<u>Key inte</u>	ersections
			Drill Informa	tion					From	То	Results
			Drill Contractor				NQ to: 63.71 BTW to:	<u>n</u>			
			Driller: <u>Chriss</u>	Yuen		Shift	Distance Shift	Distance			

Driller: _____ Helper: Sean Bradley

Heiper: _

Logged By: <u>Anja Weiss</u>

and the second second second second second second second second second second second second second second second

I

le la companya de la companya

Western Keltic Mines Inc.

Project: Kutcho Creek

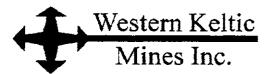
1

Int	erval	Geo-T	echnical	Lith	ology	Colour		_	oma	onen	-		· · ·	Te	cture		T	-	cture		r						_				<u> </u>							
From		%Rec			Lith2	Eh ICal	101	-	Ica	CON	0.00		P 4	1.0.0	1.010			300	cuire	-		T+			Alter	ntion					<u> </u>		<u> </u>	liner	lizati	<u>pn</u>		
			_		Ling	Sh CoL	<u></u>	617	1-2	<u>42%</u>	5	-	1121	1 7 2	1X3	1 24	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СРН	<u>Срч</u>	DIH	DIA	AkH	Alca	Рун	∐РуА	CpH	CpA	SpH	SpA	BnH	BnA
0	4.6	30	0	CASE					1		Í	t i		1.		1		1				1																
4.6	8.8	70	60	FLTZ	LLR									T	1	1						<u> </u>	t				<u> </u>	<u> </u>		- 1		1	+	<u>-</u>				
8.8	11.4	100	80	LLR												1	1		· · · -			<u> </u>	<u> </u>				-					+	+	<u> </u>				
11.4	12.3	100	70	LLTF	FLTZ										1	1	1-		<u> </u>			<u> </u>						<u> </u>		1-	P		ta	1 1				
12.3	14.9	100	80	LLTF	SMSX	5 A	az	15	CB	30	MS	sx	LB	LM	\$T		T	1					s	15	L	30					P		ā	3				
14.9	16.6	100	80	LLAT	1	6 AM	qz	10	CB	40	MS	SX	ĻΒ	LM	\$T		1		•	-		f	Ś	15	_	40	-					+ • • •	tā -	5			0	
16.6	20.2	100	70	MSSX					_							1		1			-		ř					<u> </u>			P	90	+		L I	4	-	
20.2	22.8		80	LLAT	SMSX	7 A	az	10	СВ	40	MS	SX	LB	LM	\$ T		1	T		-		1	\$	20	4	40		<u> </u>	_		P	20		· · · ·	Ē.	4		
22.8	25	80	10	MSPY				{							1	1	F	t —				1	-			=					P	80	<u> </u>	-			┝──┼	\neg
25	27.5	100	80	SMSX	LLTF	6 A	QZ	20	CB	30	MS	SX	LB	LM	\$Ť		1	<u> </u>					S	20	4	30		-		f	P	25	-	3	li l	4		
27.5	42.3	80	70	LLTF	SMSX	6 A									<u> </u>		1-	1					\$	20	4	30					P	15	<u> </u>	7	-			
42.3	63.7	100	80	LLAT		7 AG	az	15	CB	35	MS	PY	LB	LM	\$T	1	1	-					S	20	4	35					P	10	<u> </u>	-2	ti l	4	+	-
63.7								· —				_		1	1	- 1	t-	1		—		-	·			- 30	-			<u> </u>	<u> </u>	1-10	†—		<u></u>			

ļ

DIAMOND DRILL LOG

Project: Kutcho Creek


٠

1

1

Drili Hole Id: WK05-58

Inte	erval		
From	To	o Comments	
0	4.6	6	
4.6	8.8	8 Strong oxid. + fractured rock w/ gauge. lava lamp rock!	
8.8		4 Lava lamp rock	
11.4	12.3	3 Strongly broken rock shows some Py and some Cp.	
12.3	14.9	9 10cm band of almost MSPy w/ some Cp at 13.2m + 20 cm band.	-
14.9	16.6	6 At 15.5m 10cm band w/ some Cp and a bit of Bn.	
16.6	20.2	2	
20.2	22.8	8 At 20.6m 20cm band of MSPy w/ Sp and Cp mixed in	
22.8		5 First 20cm gauge	
25	27.5	5 26.1-26.5m almost MSPy w/ some Cp and Sp? mixed in.	
27.5		3 Lots of little Py veins. 37.5-39.3 gauge w/ lots of FG Py in it.	
42.3	63.7	7 Lots of fluorMs.	
63.7		end of hole	

,

۱

1

,

DIAMOND DRILL LOG

Project: KUTCHO CREEK

Drill Hole Id.: WK05-59

Ŧ

Hole Azim	uth:	180°	Dip: <u>-70°</u>	Total I	Depth::	<u>399m (1309</u>	<u>))</u>	_		Geologi	ical Summary	
Date Start	ed: <u>Au</u>	gust 15, 20	05 Date Complet	ted: <u>August 17, 200</u>	5	Core Siz	e: <u>NQ2</u>		Purpose /	Target:		
			Northing	<u>Easting</u>			<u>Elevati</u>	<u>on</u>				
UTM Loca	ition:					_			Comment	6:		
Grid Local	tion:		23107				1509					
Collar Sur	vey:		6452405	536042		_	1509					
Down H	ole Surve	<u>ey</u>	Sample Information									
Sumar Na	Ala and a				Split By: _	Damian Lo	eonard		4			
Survey Me	Pajari		# of Samples: <u>26 & 2 Blank &</u> 280776 - 805		Type: <u>1/</u>	2 Sawn Core	•	<u> </u>				
Depth 81.4	Azimuth 177.5	Dip*	Date Shipped: <u>September</u>		Assav Ce	rtificate # :	A0507473	39				
143.0	175.5	-56.0	4 — — — — — — — — — — — — — — — — — — —		···· ·				 	Key inte	ersections	
240.5	181.5		Analytical Lab: <u>ALS Cheme</u>	×								
267.9	183.5	-54.0	<u> </u>						From	To	Results	
310.6	188.5		Drill Information									
353.3	192.5	-52.0				: <u>NQ to:</u>		_	ļ			
335.9	187.5	-51.0	Drill Contractor: <u>Hy-Tech</u>	<u> </u>	Core Size	: BTW to:				<u> </u>	 	
			Driller: Chriss Yuen		Shift	Distance	Shift	Distance			 -	
			Driller:						t		<u>†</u>	···
			Helper: <u>Sean Bradley</u>								<u> </u>	
			Helper:						Logged By	/:A	nia Weiss	
		1							ł			

Western Keltic Mines Inc.

ŧ

DIAMOND DRILL LOG

the second second second second second second second second second second second second second second second s

Project: Kutcho Creek

١

Int	erval	Geo-T	echnical	Colour	T.	Ō	omp	onen	ts		T	Te	cture	_	F	Stru	cture		T				Alter	ation		_						linera	lizatio					
From	To	%Rec	ROD	上/曲1	Lith2	Sh CoL	C1	C1%	C2	C2%	C3	CA	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	SD2 Ang QzH QzA MsH MsA CbH CbA DH DIA AkH Ak								Aka	PVH	PVA	CoH	CDA	SpH	SDA	BaH	BnA		
0	2.1	30	90	CASE								Γ-	Γ	T	1									-			-	-		1					_			
2.1	107.9	100	80	GBBR		5 G	FS	25	BT	25	EP		IN	PP	IN			1-	\mathbf{t}			t -		· · ·	<u> </u>	<u> </u>	+ -	<u> </u>		+		<u>├</u>				-+		
107.9	123	80	70	VSLT		5 GN			1		-		1		1	-	5	15	1-	t			-	-		<u>†</u>		 	<u> </u>	<u>† </u>					-+			
123	137.9	100	60	ARGL	T	1 N			<u> </u>		1	<u> </u>	1	1	1	1	-		1	1			h			t—	-	<u> </u>	<u> </u>	+					\rightarrow	-+	\rightarrow	
137.9	175.4	100	90	VSLT	ARGL	5 GN			1			1	 	<u> </u>	<u> </u>	1-		1		t			- 1				<u> </u>	<u>† </u>	<u> </u>	!		5			+	+	-	
175.4	207	100	90	OFXT		7 AG	oz	25	FS	30	EP	PY	AE	IN	IN	-	1	<u> </u>	†	<u>+-</u>	t					<u> </u>	1	<u>+</u>		<u> </u>	<u>; —</u>	ب			\rightarrow	-+		_
207	311.4	100	90	QFXT	TFBX	5 G	αz	20	FS	40	EP	PY	AE	IN	IN	-	f		1-							<u> </u>		<u> </u>	<u> </u>	<u>+</u>		4		\vdash				
311.4	341.4	100	90	LLAT		5 MG	οz	25	MS	20	CL	PY	LB	\$T	ST	1-			1	-			s	20	0	10	t-	┢	ŕ —	1	U	5		h	-+	+		-
341.4	354.7	100	90	XATE		5 G	oz	10	CL	40	CB	PY	PP	\$T	SP								<u> </u>		ō	10	· · · ·	┝		+	ŭ	2					-+	
354.7	357.4	100	90	LLAT		GM	αz	15	MS	30	CL.	PY	LB	\$T	\$T				<u> </u>	1			\$	30	<u> </u>		-	<u>†</u>		<u> </u>	ō.	2				\rightarrow	+	
357.4	359.4	90	70	LLR					<u> </u>		\square	1-		1	†	1	-	<u> </u>	—			-	-				†—	t		!	<u> </u>			r			-	-
359.4	359.8	100	90	UNKN						_		 			1	· · ·			<u> </u>		••••					-	+	<u> </u>	f	+		1	\vdash			-	-+	
359.8	383	100	80	MSSX								T			T		1		1					_		-					P	93	Р	6		-	-t	-
383	392.2	100	90	SMSX	LLTF	5 A	QZ	25	CB	30	MS	SX	<u> </u>	1	-				t				\$	15	L	30		 .	F	<u>†</u>	P	25	_	3		4		
392.2	394.5	100	90	LLAT	GOUG	6 G	οz	20	СВ	20	CL	sx		1	T										0	15	-	t—		1	P	10			1	2	-	
394.5	399	100	80	elte –		5 A	αz	30	СВ	25	MS	SX	tΒ	\$T	ST				<u> </u>				\$	15	\$	25					P	10		H I	+	2	-	-
399												<u> </u>				-	-	-					ř –		-		<u> </u>	1						r+	~		-+	-

ţ

DIAMOND DRILL LOG

!

• •

Project: Kutcho Creek

•----

Drill Hole Id: WK05-59

Int	erval	
From		Comments
0	2.1	
2.1	107.9	Few QV + 60cm SEXL at 19.3m. Bt replaced Px
107.9	123	Starts w/ coarse VSLT.
123		Some VSLT interlayered.
137.9		Intercalated VSLT + ARGL w/ wispy laminations of Py.
175.4		To 197m intercalated QFXT + ASHTw/ some Hematite
207		Intercalated QFXT + ASHT + TFBX
311.4		Stretches w/ lots of He + quite e few magnetite spots.
341.4		Quite a few Cb spots
354.7	357.4	
357.4		15cm intercalated LLTF. 40cm gauge at 357.7.
359.4		Strongly folded Cl.
359.8	383	
383		First 13m almost MSPy w/ Cp.
392.2		Limonite laminated w/ Py veins and Sp L. last 15cm gauge.
394.5	399	
399		end of hole

i

1	L.V	Veste	rn Keltic						Projec	t: KU	тсно с	CREEK
7		Mir	es Inc.	DIA	MOND	DRILL	. LOG	i	Drill Ho	le Id.: W	K05-60	
Hole Azim	nuth:	<u>180°</u>	Dip: _	-82°	Total D)epth:	469.4m (15	<u> 40')</u>			Geologi	ical Summary
Date Star	ied: <u>Augus</u>	<u>t 18/05; Au</u>	<u>o 23/05</u> Date	Completed: <u>August</u>	17/05; Aug 26	5/05	Core Size	: <u>NQ2</u>	<u></u>	Purpose /	Target:	
			Northing		<u>Easting</u>			<u>Elevat</u>	ion			
UTM Loca	ation:		6452655		535035		_	1466		Comment	5 :	
Grid Loca	tion:		23367		35565		_	1467				
Collar Su	vey:		6452654		535034			1467				
Down H	ole Surv	eγ	Sample Informa	ition		Split By:	Rob Wilso	20				
Survey Me	thod: <u>Pajari/Refl</u>	<u>ex_</u>	# of Samples: _4			Type: <u>1/</u>	2 Sawn Corr	e <u></u>				
Depth 30.2	Azimuth 184.0		Date Shipped:			Assay Ce	rtificate # :	_A050824	45_			
91.1 182.6	171.5 169.5			Chamay							Key Inte	ersections
243.5			5 Analytical Lab: <u>Al</u> 9							From	То	Results
298.4	172.6	-63.	Drill Information	1								
341.1		-62.					: NQ to:					
365.8			Drill Contractor:	Hy-Tech		Core Size	: BTW to:					
396.2 469.4	<u>174.9</u> 174.6		Driller: <u>Marcel Duct</u>			Ishift	Distance	louin	Distance	i		
409.4	1/4.0	-00.1	Driller: Chris Yuen			Snin	Distance	Shift	Distance			· · · · ·
		<u> </u>	Helper: Mathew Wh					1	+	 	L	L
			Helper: Sean Bradle				<u> </u>		·†	Logged By	: Mare	k Mroczek
# Mag. Inte	rference	<u> </u>	1				<u> </u>	<u> </u>		1		

DIAMOND DRILL LOG

Project: Kutcho Creek

Drill Hole Id: WK05-60

Int	erval	Geo-T	echnical	Lith	ology		colour	1		omp	nest	-			Ter	ture			Stru	cture		<u> </u>				1 Har	ation	-				T		N	linera	liveti			<u> </u>
From		%Rec		Lith1	Lith2			1C1	CIX	C2	C2%	C3	C4	Tx1	122	173	Tx4	SD1	Ana	SD2	Ana	O7H		MaH	MsA	СЬН	ChA	DIH	DIA	AH	Alca	PVH	PvA	CnH	CoA	SnH	SoA	BaH	Bad
0.0	4.2			CASE		1	1	1.							1	+	1			<u> </u>	1	<u> </u>			1	4011	1007					1 7	1.20			opri			
4.2	5.0	60	0.0	OVER		7	G	BBB	80		-			_	1	†	<u> </u>			-	<u> </u>		<u>├</u> ──	<u>† • • • •</u>							<u> </u>		<u> </u>	<u>+</u>	-			+	-1
5.0	18.0	100	80.0	GBBR		5	G	PX		FX	5			FB	MG	1	1	FB	25					1				1			<u> </u>						\vdash	<u> </u>	-1
18.0	34.2	100	70.0	SILT		1	A	FS	40	oz	30			LM	1	<u>†</u>		LM	65		<u> </u>			<u> </u>				1			+	z	0.2	<u> </u>		_		r+	
34.2	34,4	80	0.0	FLTZ		1	AU	L	80					GG	<u> </u>	<u> </u>	-	FL				 					-					F							
34,4	38.4	100	70.0	SILT	1	1	A	FS	40	az	30			LM		1		LM	63		<u> </u>							-			<u> </u>			<u> </u>					
38.4	46.5	100	90.0	GBBR		5	G	PX	15	FX	10			FB	MG	+	<u>├</u>	FB	22									1					<u> </u>	†					
46.5	46.8	80	0.0	FLTZ		1	AU	L	10					GG																	1		<u> </u>						
46.8	65.0	100	100.0	GBBR		5	G	PX	15	FX		15			FG	1		FB	35												1	1							
65.0	95.2	100	100.0	GBBR		7	NG	PX	40	FX	20		_	MG							1	— · · ·									<u> </u>	1	t—						
95.2	96.4	100	100.0	GBBR		3	WG	PX	10	αz	15			FB	MG	1	<u> </u>						_									1					[]		
96.4	99.0	100	100.0	GBBR		3	WG	PX	3	FX	5	-	_	FB		\square		FB	25		-										1		<u> </u>						-1
99.0	103.4	100	100.0	SILT		3	GA	οz	20					LM				LM	48								-					z -	0.5						
103.4	116.4	100	100.0	VSLT		7	Α	FS	30	οz	20	_		LF		1		TL.	29							-						z	0.2	<u> </u>			\square		
116.4	144.6	100	90.0	VSLT		7	Α.	FS	10	OZ I	10			LM.		<u> </u>		LM	18							-		1				1	0.2	_			[]		
144.6	144.8	50	0.0	FLTZ		1	A	GG	20					BR				FT	35								<u> </u>	- T										-+	
144.8	160,6	100	50.0	VSLT		3	A	oz	10	FS	20			LM	-			LM	30													ļ	0.2						
160.6	162.7	100	30.0	VEIN		3	ww	αz	95					٧N		F		VN	20									-				<u> </u>	· ·						_
162.7	164.6	100	90.0	VSLT		3	A	QZ	20					BD	FG			BD	45									i —			-		0.2				\square		
164.6	173,0	100	90.0	SILT		Э	NN	QZ.	10					BD	FG			BD	52							_				_		1	0.5	1	0.2			\neg	
173.0	192.5	100	90.0	SILT		3	NN	αz	10					BD	FG			80	40													1	1.5						
192.5	198.8	100	100.0	SILT		3	NN	oz.	20		_]			BD	FG			BO	38													z	3						
198.8	210.0	100	90.0	SIILT	_	3	GA	οz	20					BD	FG			BD	40													z	0.2						
210.0	211.4	100	100.0	SILT		3	NN							BD	FG			BD	55													z	0.5						
211.4	216.4	100	100.0	SILT		3	AG							BD	FG			BD	42													1	0.2						
216.4	229.0		100.0	SILT		3	AG	αz						BO	FG			80	48							_						1	0.2						
229.0	237.1	100	90.0	QXFT		9	G	οz	20					TF				TL]	50													0	0.1						
237.1	243.5	100	90.0	SILT		7	NNB	oz	10	DO	20			BD	FG			BD	48						T							1	0,5	•					
243.5	246.6			LOST			·					_																											
245.6	247.7	100	60.0	SILT		5	NN							BD				BD]	47													Z	0.5						
247.7	251.1	100	90.0		LAFT	5	G				_			BD				BD	51																				
251.1	280.4	100	90.0	LATE		1	G	BF	40				-	ਜ	BR			π.	26													Z	0.3						
280.4	288.8	100	70.0		OXTE	5	AW							LE				πÌ	30									<u> </u>				z	0.5				\square		
288.8	292.0	100	70.0	QFXT		5	AW	oz	_20	FS	30			TF				π.	_30		_								_		L		0.5						
292.0	292.7	100	100.0	VEIN		3	ww	αz	80	_	_	\rightarrow		W				٧N																					
292.7	295.2	100	100.0	QFXT		7	A	QZ	15	FS	20	_		ना				π.	40													z	0.5					$ \rightarrow $	
295.2	303.9	100	70.0	LATE		7	AW	Ⅰ →		_		_		ना				π	58								_						L						
303.9	304.0	100	0.0	FLTZ		3	AU		_			_		GG	_		_	FT		_																			
304.0	320.1	100	80.0		LAFT	5	A	οz		FS	20	\rightarrow	_	TF				TL	52																	_			
320.1	334.1	100	90.0	GBBR		5	NG	PX	15	FX	10		_					FB	31																		,	\rightarrow	
334.1	342.1	100	70.0	QAFT		1		oz	40					TF				n.	55							_			.										
342.1	357.7	100	90.0	GBBR		5		PX	15		10		_	FB	MG	-		FB	40																			\rightarrow	_
357.7	357.8 361.4	80	0.0	FLTZ		5		BF	90	_	10	\rightarrow		FR		— .			42																		┝──┥		
357.8	361.4	80 80	0.0	GBBR		5	G	PX	15		10	-		MG				FB					_						\vdash				<u> </u>						_
361.5	396.7	100	100.0	FLTZ GBBR		5	G	BF	80	<u>6</u> 6		-+		FR					35							_	_												
396.7	424.9	100	80.0	QXAT		5 5	G	PX	10 15		-+	+		MG		-		FB	46		_	-						\vdash									<u> </u>	\rightarrow	-
424.9	439.7	100	75.0	QFXT		3	G	oz oz	FS	10	-+	_	- +	╦┤				$\frac{n}{n}$	40	_						-													
439.7	445.2	100	90.0	QFXT		7	AW		FS	10				뚞	-				40 35		-																\rightarrow	-	_
445.2	446.7	100	60.0			7	GA	az	15			+	+				_	<u>n</u>	30	-				-+													\rightarrow	\rightarrow	-
-1-1.2		100	00.0				<u>GA</u>	<u> </u>	13				1	15				16.1	30	_		I										1							

Page 1 of 4

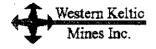
Page 2 of 4

DIAMOND DRILL LOG

Project: Kutcho Creek

•

•----1


-" **1**

Drill Hole Id: WK05-60

From	To	%Rec	RQD	Litth 1	Litth2	Sh	CoL	C1	C1%	C2	C2%	C3	Ç4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QZA	MsH	MsA	СРН	CbA	DIH		AICH]	Aica	P∨H	PVA	CoH	CDA	SoH	SeA	BnH	BnA
446.7	447.9	90	0.0	FLTZ		9	ww	GG	100					GG				FT	60					1								-			_				
447.9	457,9	100	20.0	LATE		5	A	M	5					TF	-	1	1	π	55	-	-	<u> </u>	!								_			-+			-+	-+	-
457.9	458.5	80	0.0	FLTZ	1	5	ww	οz	70	CY	30			GG		†	1	FZ				-							+			+	-	$ \rightarrow$		-	<u> </u>	-+	-
458.5	469.4	100	30.0	LAFT		1	A	BF	10					TF				π	44	<u> </u>	-	_	··· ·				_		+	-+		z	8	1	0.5	. 	01		
469.4								<u> </u>					_														-		-	+	_							+	

I

ļ

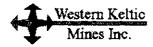
DIAMOND DRILL LOG

,

1

Project: Kutcho Creek

•


- 1

•

Drill Hole Id: WK05-60

1-4		
	erval To	Comments
From 0.0		
	4.2	Sporadic dolomite velniets up to 4 mm. E.O.H.
4.2	5.0	Overburden with gabbro boulders and glacial gravel.
5.0		Gabbro with clay in fractures and dolomite veinlets - thickness 1cm.
18.0	34.2	Partly attered with moderate limonite syeins on fragments quartz veinlets up 05 cm thickness.
34.2		Fault angle at 15 degrees to core axis
_34.4		Partly altered with limonite steins on fractures
38.4		At the depth 41.76 m fault 10 cm wide with limonite and clay infili.
46.5		Fault angle at 10 degrees to core axis.
46.8		Dolomite veinlets up to 1 cm thickness.
65.0	95.2	
95.2		Intensive guartz-dolomite veining.
96.4		Strong altered gabbro.
99.0	<u>103.4</u>	This siltstone can be also ash tuff.
103.4	116.4	Very fine grained, locally with guartz veins - thickness up 10 cm.
116.4]	144.6	Very spotty pyrite along lamination.
144.6		Very spotty pyrite along mineralization.
144.8	160.6	Spotty pyrite mineralization.
160.6	162.7	Contact with volcanic situatione at 20 degrees with 2% pyrite.
162.7		Carbonaceous substance up 5 %
164.6	173.0	Carbonaceous silstone with content carbonaceous substance up 15%, locally with dolomite veinlets.
173.0		Carbonaceous siltstone with content carbonaceous substance up 20%
192.5		Very strong bedding and lamination, carbonaceous substance content up 10%.
198.8		Locally black siltstone with carbonaceous substance content to 5%
210.0		Carbonaceous substance up 5 %
211.4		Siltstone with black lamination of carbonaceous layers.
216.4		Silistone with carbonaceous layers.
229.0		Quartz crystal tuff.
237.1		Carbonaceous silistone with 10 % content carbonaceous substance.
243.5		No core recovery after applying wedge.
246.6	247.7	
247.7		Mixed siltstone with lapill ash tuff.
251.1	280.4	
280.4		Two layers of quartz crystal tuff with average thickness 0.5 m.
288.8		Quartz vein 0.2 m thickness.
292.0	292.7	
292.7	295.2	
295,2		Very fine grained lapilli ash tuff.
303.9	303.9	tery and grantee appan deriver.
304.0	320,1	
320.1		Patches of epidote.
334.1		Contact with gabbro at 34 degrees, altered by chlorite.
342.1	357.7	Opinavi mini gavoro en or orginece, ancieti by Univine.
357.7		Very narrow fault zone
357.8		Gabbro dyke.
361.4		Very narrow fault zone
361.5		Sporadic dolomite veinlets thickness <1 cm
396.7		Very nice contact with gabbro at 46 degrees. At 415.0 depth, week potassic atteration.
424.9	424.9	אפוץ וועב עטותמט אותו צמטויט מו דט עפעובפס. או דו טיט טפטוו, אפנא אטמאטר מוונית מווייז איז איז ארא איז איז איז איז איז איז איז איז איז אי
424.9	445.2	
439.7		At the contact with quartz-feldspar crystal tuff there is 5 cm thick black layer with content 15% of pyrite
443.4	440.7]	At the contact with quartz-relospar crystal turt there is 5 cm mick black layer with content 15% of pyrite

Page 3 of 4

ł

DIAMOND DRILL LOG

Project: Kutcho Creek

•

1

• • • • •

٦

Drill Hole Id: WK05-60

From	Τσ	Comments
446.7	447.9	
447.9	457.9	Strongly sericitic tuff.
457.9	458.5	Quartz vein mixed with fault gauge.
458.5	469.4	
469.4		End of hole

Ì

1	W	este	rn Keltic					Projec	t: KU	тсно с	CREEK
1	,	Min	es Inc.	DIAMOND	DRILL	LOG		Drill Ho	le Id.: W	K05-60B	1
Hole Azimi	uth:		Dip:	Total Dept	h: <u>243.5 - 4</u>	56.3 <u>(21</u> 2.8	3m)	<u> </u>		Geologi	ical Summary
Date Starte	ed: <u>August</u>	20/05	Date Completed:	August 23/05 Col	re Size: <u>B</u>	<u>tw</u>			1 .	-	W branch from WK05-60. Esso
			Northing	Easting			<u>Elevati</u>	on	West exter	ision to wes	st.
UTM Loca	tion:		6452655	535035		_	1466		Comment	s: Hole was	terminated due to drilling
Grid Locat	ion:	.		35565		-	1467		difficulties	caused by f	ault.
Collar Surv	/ey:		6452654	535034		_	1467	_			
Down Ho	ole Surve	v	Sample Information					· · · · · · · · · · · · · · · · · · ·	1		
Survey Met	thad				Split By: _	Rob Wilso	20		4		
	<u>Reflex</u>		# of Samples: <u>11</u>	1	Type: <u>1/2</u>	Sawn Corr	3	.			
Depth	Azimuth	Dip*	_200001-00	<u> </u>							
243.5	171.5	-68.9	Date Shipped: <u>Septer</u>	nber 17, 2005	Assay Cel	tificate # :	A050822	<u>16</u>			
271.0	169.8	67.1								Key Inte	ersections
322.8	171.0		Analytical Lab: <u>ALS Ch</u>	emex							1
365.5 410.3	175.4 177.9	-56.9	Drill Information					· · · · · · · · · · · · · · · · · · ·	From	To	Results
410.3	180.4	-53.9			Core Size	NQ to:	end				
			Drill Contractor:Hy-1	Fech	Core Size:			_		···· · · ·	
			Driller: Marcel Ducharme		Shift	Distance	Shift	Distance			
└── →			Driller: <u>Chris Yuen</u>	-	 	<u> </u>		<u> </u>	 		<u> </u>
┠────╁			Helper: <u>Mathew Wheatley</u> Helper: <u>Sean Bradley</u>	<u> </u>	ļ		 -	┨──────	Logged By	r Mare	k Mroczek
┝			Contractor		L	L	<u>ــــــــــــــــــــــــــــــــــــ</u>	I	Logged by	. <u>mana</u>	

ł

ł

DIAMOND DRILL LOG

and the second second second second second second second second second second second second second second second

Project: Kutcho Creek

* ---1

•

1

101	terval	Geo-Te	echnical	Litte	ology	C	otour		(omp	onents			Tex	ture			Stru	cture						Altera	tion							N	linera	lizati	0N		
From	To		RQD		Lith2		CoL	C1	C19	C2	C2%	3 04	Tx1	Tx2	Tx3	Tx4	SD1	Ana	SD2	Ana	QzH	QzA	MsH	MsA	CbH	ChA	DIH	DIA	AkH	Aka	PyH	PyA	СрН	CpA	SpH	SpA	BnH	Bn
244.6	248.2	100	50	SILT		5	NN							LM			BD	49													Z	0.5	-				<u> </u>	1-
248.2	250.5	100	95	SILT		7	A	αz	30				BD	<u> </u>	1	1-	BO	28			<u> </u>			t							_					t	<u> </u>	+
250.5	280.2	100		LATE			G	οz					ना	<u> </u>	+	-	n.	38		<u> </u>	<u> </u>			ţ							w	0.1				<u> </u>	<u> </u>	+
280.2	285.3	100		LATE			ww		<u> </u>	<u>†</u>	-		TF	FG	+	+	h.			t -			<u> </u>					-			i l	0.1				<u> </u>	<u>├</u>	+
285.3	290.9	100		OAXT	LATE	<u> </u>	A	αz	30				TTF	· -	+	<u> </u>	'n	39		1				╆-~-				- 1			D	0.5			<u> </u>	<u> </u>	+	+
290.9	291.4	100	0	VEIN		5	ww	az	80		-+		VN	<u>+··</u>	+		VN	14		<u> </u>	<u> </u>			<u> </u>	- 1						7	2		<u> </u>				+
291.4	305.8			LATE	1		A	οz	5		- +		TTF		+	1	n	62		<u> </u>							┝╼╴┨	-+			7	0.2			+	 	+	+
305.8	306.2	100		VEIN	1		ww	αz	90				VN	<u> </u>	+	+	VN	<u> </u>		-		+						- 1	_			0.2			<u>+</u>		<u> </u>	+
306.2	311.6	100		LATE	-	_	A	οz	20			+-	TF		+		n.	62			┢──	<u> </u>	<u>-</u>							- 1	\vdash			<u> </u>	┣──	<u> </u>	<u>+</u>	+
311.6	319.1	100		LATE			G	-		1 1				FG	+	<u> </u>	n	46		<u> </u>	<u> · · · </u>													<u> </u>	<u>├</u> ─-		+	+
319.1	333.0			GBBR			NG	PΧ	20	FX	10		FB	10	+	+	FB	39		 	<u> </u>	<u> </u>					+		_		ö	0.2			 -		+	+
333.0	351.1	100		OFXT	+	_	G	âź		FS	15		퐮	i —	+	+	TF	30		<u> </u>	ł —										<u> </u>	0.2		÷		┟┈╼	<u>+</u> —	+
351.1	379.8	100		GBBR	l		NG	PX		FX	5			MG	+	+	BN	40			I	<u> </u>	<u> </u>							-	0			<u> </u>	<u> </u>		┼──	┢
379.8	381.3	100		QFXT	-	<u> </u>	_				- 3(F	MG	<u> </u>			_		-			<u> </u>				·				<u>~</u>				<u> </u>	├	<u> </u>	+
							G	<u>oz</u>	15			<u> </u>			4		TF	45	_	-											1	0.5		ļ	<u> </u>		 	+
381.3	382.7	100		GBBR	ļ		NG	PX.		FX	5	_		MG	+				 	ļ	┢──		ļ								υ	0.2		<u> </u>	<u> </u>	<u> </u>	┢	+
382.7	383.2	100		OXAT	<u> </u>	<u> </u>	G	αz				-+	TF				TF	32								_		_									 	+
383.2	383.7	100		GBBR	<u> </u>	_	NG	PX		FX.	10		_	MG	4				1				L												L	<u> </u>	_	+-
883.7	417.4	100		QXAT	L		G	αz	20	 	_		TF				TF	33	<u> </u>	1											D	0.2			L	Ŀ.		
117.4	417.6	90		FLTZ			Ģ	GG					GG		i		FT		<u> </u>	L															L			
417.6	422.2	100		OXAT			GA	οz	20								ना	30																		L	L	
122.2	422.3	100		FLTZ			G	GG					ĢG							L .																		
22.3	424.3	100		QFXT	Ĺ	1	G	oz	10				TF				ना	29																				
24.3	424.6	100	0	FLTZ		3	G	GG	30		Т		GG				FZ				I																	T
124.6	426.7	100	90	QAXT		7	G	az	30				ना		1		TF	25																		[T
426.7	432.5	100	90	QAXT		3	A	laz	20				TF				TF		1												0	0.5			<u> </u>			1
432.5	438.9	100	100	QAXT		7	AW	οz	40				ना	-	1		ना	29		1												-						T
438.9	440.8	80	30	LATE		7	ww	BR	20				-	t			ना	50																			<u> </u>	+
440.B	441.3	60		FLTZ			ww	GG			-+		GG		+	1-	FZ						-													<u> </u>		+
41.3	441.9	70		VEIN			ww	αz	80	CY	20		w				QW		<u> </u>	-		-		-				-		- 1						<u> </u>	<u> </u>	+
441.9	442.7	70		FLTZ		7		GG					GG				FZ														, 1	2				i —		+
442.7	445.2	90		LATE	-		G	BR	25				TF	· · ·	-	ł –	नग	49						-	_			-			<u>;</u>	1.5	1	0.1	<u> </u>		<u> </u>	+
445.2	452.0	90		LATE		3		BR	10		-+		- 11			+	TF	50									┟╌╌┥				<u>.</u>	6	_	2	l –		+−−	+
152.0	456.3	100		PLTF		1		BR	15		+		TF	┝	<u> </u>		मा	50								~~~						10		0.5		<u> </u>	—	+
88.8	292.0	100	70.0	OFXT		5	AW			FS	30		TF	<u> </u>	+	<u>+</u>		30	I												<u></u>	0.5	<u> </u>	0.5	<u> </u>	├ ──	<u> </u>	┿
292.0	292.0	100	100.0		<u> </u>				20		30		w	<u> </u>			TL VN	30	<u> </u>							-					! 	0.5		<u> </u>		<u> </u>	—	┢
				VEIN		3									{			10	<u> </u>								┝╸┤	_			7					├	—	+
92.7	295.2	100	100.0	QFXT		7	A	αz	15	FS	20		표			 	n.	40													۷	0.5			-		–	+
95.2	303.9	100	70.0	LATE	_	7	AW			\vdash	-+		표		-	┢──┤	π	58			-						\vdash	\rightarrow	_							<u> </u>		+
03.9	304.0	100	0.0	FLTZ		3	AU					_	GG		ļ	-	FT		-								$ \downarrow \downarrow$	_								<u> </u>	_	+
304.0	320.1	100	80.0	QFXT	LAFT	5	A	oz		FS	20	<u> </u>	TF		-	\square	πL	52												_						<u> </u>	_	+-
20.1	334.1	100	90.0	GBBR		5	NG	PX		FX	10	_		<u> </u>	<u> </u>	<u> </u>	FB	31	-								1	\rightarrow							 		<u> </u>	+
34.1	342.1	100	70.0	QAFT		1	G	αz	40	_			TF		.		Ē	55									┝──┥									-	\vdash	+-
42.1	357.7	100	90.0	GBBR		5	G	PX		FX	10			MG	ļ	h	FB	40							_								_				\vdash	+
57.7	357.8	80	0.0	FLTZ		5	G	BF		GG	10		FR				FT_	42																				1
57.8	361.4	80	0.0	GBBR		5	G	PX		FX	10		MG				FB																					_
61.4	361.5	80	0.0	FLTZ		5	G	BF	80	GG	5		FR				Ŀ	35																				
61.5	396,7	100	100.0	GBBR		5	G	PX	10		T		MG				FB	46																				
96.7	424.9	100	80.0	QXAT		5	G	αz	15								π					-																T
24.9	439.7	100	75.0	QFXT	_	3		oz		10			TF				π	40		_										-1								T
139.7	445.2	100	90.0	QFXT		7	AW		FS	10	-+-		TF				π	35	_											_					Į			\uparrow
145.2	446.7	100	60.0	LLTF		7		οz	15	-			ना		<u> </u>		TL I	30			-							†		-				-		t		+

the second second second second second second second second second second second second second second second s

Western Keltic Mines Inc.

1

Project: Kutcho Creek

1

From	To	%Rec	RQD	Lith1	Litth2	Sh	CoL	C1	C1%	C2	C2%	C3 (4	Tx1	Tx2	Tx3	Tx4	\$D1	Ang	SD2	Ang	QzH	0zA	MsH	MsA	СРН	ChA	DIHİL		NH I	Aka	PvH	PVA	CnH	CoA /	SpH S	AR	InH BnA
446.7	447.9	90	0.0	FLTZ		9	ww	GG	100					GG				FT .	60					1								- 7/1	- 10			701101	-	
447.9	457.9	100	20.0	LATE		5	A	MI	5		-		1	TF		1		n	55				-						+				<u>├</u>			<u> </u>	~+	-+
457.9	458.5	80	0.0	FLTZ		5	ww	αz	70	CY	30		-1	GG		-	-	FZ					<u> </u>	- 1	+			-+	+					├				
458.5	469.4	100	30.0	LAFT		T	A	BF	10					ना	_			n	44	-				1				+	-+-	-		7	8		0.5 !		0.1	-+
469.4													1						····		-							-+			-		Ĩ	i d	<u></u>	-+"	<u>, ,</u>	+1

•

•

i

DIAMOND DRILL LOG

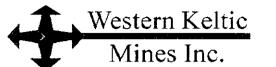
· · · ·

Project: Kutcho Creek

T 1

Inte	ervat	
From		Comments
244.6		Carbonaceous sitstone, 10% content of carbonaceous substance.
248.2		Sitstone possible ash tuff, very fine grained.
250.5		Green ash tuff with dolomite-quartz veinlets thickness 3 cm
280.2		Very fine grained tuff.
285.3	290.9	Toy me graned tan.
290.9	291.4	
291.4	305.8	
305.8	305.8	
306.2	311.6	
311.6		Very fine grained tuff.
319.1	373.0	Gabbro medium altered by chlorite, sporadic quartz-dolomite veinlets.
333.0	351.1	Gabbio medium altered by chlorike, sporadic quariz-dolomite verniets.
351.1		Gabbro medium grained.
379.8	379,8	Gabro medium grained.
381.3		
381.3	<u>382.7</u> 383.2	Strongly chloritized gabbro
		Cabbo strong alternat by ablasita
383.2		Gabbro strong attered by chlorite.
	417.4	
417.4	417.6	
417.6	422.2	
422.2	422.3	
422.3	424.3	
424.3	424.6	
424.6	426.7	
426.7	432.5	
432.5	438.9	
438.9	440.8	
440.8		Fault gauge-clay with quartz fragments from quartz crystal tuff.
441.3	441.9	
441.9	442.7	
442.7	445.2	
445.2	452.0	Sporadic bands of chalcopyrite
452.0	456.3	Soradic spotty chalcopyrite. The hole terminated due to driling difficulties caused by fault.
288.8		Quartz vein 0.2 m thickness.
292.0	292.7	
292.7	295.2	
295.2		Very fine grained rapilli ash tuff.
303.9	304.0	
304.0	320.1	
320,1		Patches of epidote.
334.1		Contact with gabbro at 34 degrees, altered by chlorite.
342.1	357.7	
357.7		Very narrow fault zone
357.8		Gabbro dyke
361.4		Very narrow fault zone
361.5		Sporadic dolomite veinlets thickness <1 cm
396.7		Very nice contact with gabbro at 46 degrees. At 415.0 depth, week potassic alteration.
424.9	439.7	
439.7	445.2	
445.2	446.7	At the contact with quartz-fekdspar crystal tuff there is 5 cm thick black layer with content 15% of pyrite
		Page 3 of 4

ł


DIAMOND DRILL LOG

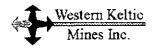
and the second sec

Project: Kutcho Creek

ł

From	To	Comments
446.7	447.9	
447.9	457.9	Strongly sericitic tuff.
457.9	458.5	Quartz vein mixed with fault gauge.
458.5	469,4	E.O.H.
469.4		end of branch

į


í

DIAMOND DRILL LOG

Project: KUTCHO CREEK

Drill Hole Id.: WK05-61

Hole Azim	uth:1	180°	Dip:	-88°	Total D	epth:	550.8m				<u>Geolog</u>	ical Summary	
Date Start	ed: <u>August</u>	26/05	Date Complete	ed: <u>August 28/</u>	<u>05</u> Cor	e Size:	NQ2			Purpose /	Target: Es	so West.	
l			Northing		Easting			<u>Elevati</u>	on				
UTM Loca	ition:	<u></u>	6452655		535035		_	1466				s drilled to 243.8 with NQ	•
Grid Loca	tion:		23367		35565		_	1467				to BTW down to 550.8n were labelled WK05-61	
Collar Sur	vey:		6452654		535034		_	1467					
Down H	ole Surve	<u>sð</u>	Sample informat	<u>tion</u>		Split By:				1			
Survey Me	thod: <u>Reflex</u>		# of Samples: <u>8</u> 2808	895 - 902			/2 Sawn Core						
Depth 30.2	Azimuth 212.2	Dip* -87.2	2000 Date Shipped:Sep				ertificate # :	A050824	45				
60.7	194.3	-86.5			<u>.</u>						Key Int	ersections	
109.7 143.3	190.6 171.2		Analytical Lab: <u>ALS</u>	Chemex						From	То	Results	
188.7	160.0	-85.2	Drill Information										
213.4	166.8	-84.6	1				e: <u>NQ to:</u>						
243.8	168.2		Drill Contractor:	<u>Hy-Tech</u>		Core Siz	e: <u>BTW to:</u>	<u>550.8m</u>	<u>.</u>	L		ļ	
252.7 282.2	172.6 166.5	-83.5		armo		Shift	Distance	lon:#	Distance	 	 		
282.2 313.6	100.5		Driller: <u>Marcel Duch</u> Driller: Chris Yuen	anne		Shin	Uistance	Shift	Distance		<u> </u>		
313.0	170.3		Helper: <u>Mathew Whe</u>	eatlev			-	+	-		l	i	
374.6	170.8		Helper: Sean Bradley					1		Logged By	/: <u>Mar</u> e	ek Mroczek	_
405.0	172.1	-74.9	· ·			L	.			1			
435.6	172.2	-73.9											
466	172.3	-73.1											
496.5	168.4	-73.1											
527.0 550.8	177.5 176.0	-72.4 -71.8											

DIAMOND DRILL LOG

Project: Kutcho Creek

Drill Hole Id: WK05-61

Int	erval	Geoste	echnical	Litho	loav		olour	T	<u>c</u>	ompo	nent	e .	Ī		Tex	ture			Struc	ture						Alter	ation							h	Ainera	lizatio	n		
From		%Rec		Lith1	Lith2		Col	C1	C1%	C7	C2%	C3	C4	Tx1	Ty2	Tr3	Ty4	SD1	Ana	SD2	Ana	O7H	07 Δ	MsH	MsA	СЬН	CbA	DIH	DIA	AkH	Aka	PVH	ΡνΑ			SpH		BaH	BnA
0.0	3.0			CASE	P-14112	011	001		01/0		7 2 70	<u> </u>	<u> </u>	<u> </u>		1.20		<u> </u>	<u>~~~</u>	UDI	Ang				1.1.27						1						1		
3.0	4.2			OVER		7	NG	┼╌╴┤		-+								-											-						<u>† </u>				
4.2	7.3			GBBR			NG	PX	10	FX	10			FB				FВ											-		1				<u> </u>	- 1	- 1		
7.3	7.8	30		FLTZ			AU	GG	40		60			FR				FZ							-		• • • • •				<u> </u>								
7.8	20.0			GBBR		_		FX		FX	10			FB		t l		FB						ł —	t	·			-1			t	• • •	<u> </u>	1			-	
20.0	23.9	90		SILT			A	oz		FS	30			LE				LM	-					1										Ì	1			-+	
23.9	24.1	90		VEIN				oz	90			-+		VV				VN						+	+						1	1		<u> </u>	+		- 1		
24.1	24.8			SILT			υ	az	20		20			LE		<u> </u>		LM	42		-			1			<u> </u>		-	-					† –		- 1	<u> </u>	
24.8	28.3	70		FLTZ			υ	BF	90		10	+		FR			_	FT		•					1	·	i · · ·				1								
28.3	32.3	90		SILT				oz	15		10	-		LE		<u> </u>		LM	15						<u> </u>	1									t			-	
32.3	39.6	100		SILT	-		A	ōz	40					LE		1		LM	70				· ·		1	1	<u> </u>		-		1			†	†	1			
39.6	40.9			GBBR				PX		FX	15			FB				FB	25					1	1 -	i —	1		- 1		t	t		1	1.				
40.9	47.2	100		SILT			A	oz	30		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 1		BD				BD	50						-						<u>†</u>	1		<u> </u>	<u> </u>				
47.2	48.5	90		SILT			U		20					BD				BD	30			-		t	<u>+</u>							0	0.1	f	<u> </u>	1			
48.5	58.1	100		GRWK	-			αz	30					BD				BD	20	-				t	1						Í			ſ	1				
58.1	59.5	100		GRWK			U	LI	20					BD				BD	12			i	t	†	†	1					i –			1	1			\neg	
59.5	61.6			GRWK			A	QZ	10		5			BD	• •	t	-	BD	38		• •			<u> </u>	†						í	z	0.1	1	1				
61.6	84.7	100		GRWK			AG	oz	10					BD	•			BD	28					1	<u> </u>	t –					1	t –		1	1				
84.7	84,9			FLTZ			A	BF		_				FR		1		FT						1	1		1	-			1	1		1	1	1			
84.9	108.0	• •		GRWK			AG	οz	20					MG		1									- 1		1				1	1		1	1				
108.0	112.6	100			SILT		G	az	20					FG		<u> </u>		LN	48			1		1	- 1					•••	1	1		1					
112.6	136.5	100		SILT			GA	QZ	30				- 1	FG		1		LM	36					1	1 -						1	z	0.3]		
136.5	136.5	100		FLTZ				GG	95			ſ		GG		1		FT	25				1	1	1	ĺ	1				1	1	1	1			1		
136.5	138.5	100	100	SILT		7	G	QZ	70		Í		1	BD		1		ΒN	22				1	1	1	1						!	0.1	1				T	
138.5	174.2	100		SILT		5	G	QZ	20				1	BD		1		BN	23			1	1	1	1	1	1					İ	0.1]					
174.2	201.0	100	90	VSLT			G	QZ	10			I	1	BD		1		BD	52						1	1	1					İ	0.2						
201.0	210.0	100	90	SILT		3	NN	QZ	10					BD		1		BD	40						Γ-							Z	0.5						
210.0	219.5	100		SILT		3	NN		-					BD				BD	32			1										Z	0.2						
219.5	228.0	100	90	SILT		5	GA	οz	15					LM				BÐ	45													Į	0.1						
228.0	228.4		0	FLTZ			GA	GG	40			ĺ		GG		1		FT																					
228.4	235.0		0	SILT		3	GA	oz	10			- 1		BD		ļ		BD	35					Ι		[I							
235.0	241.4	100	90	GRWK		3	GA	QZ	10				Ī	LM				BD	42													Z	0.2						
241.4	246.3	90	60	VSLT		3	GA	loz I	10					LM				BD	38				Į		I							Z	0.2			i			
246.4	258.8	90	80	VSLT		3	GA	loz I	10					ĻΜ				BD	28													Z	0.1						
258.8	279.2	100	90	VSLT	· _ · · ·	7	GA	oz oz	20					TF	LM			TL	32			Ι.										<u>!</u>	0.1	1					
279.2	281.0	100	80	VSLT		9	WG	loz	30					_नाः				TF	40			ł									[Į	0.5						
281.0	297.4	100	90	SILT		3	A	QZ	20			1		BD				BD	28			Į										U	0.2		1				
297.4	300.2	100	90	ASHT		3	GA	QΖ	5					TF_				TL				1	[]											ļ			
300.2	304.5	100	90	VSLT		3	ww	OZ	15					TF_]		ΤL	19]										<u> </u>				
304.5	326.5	100	90	GRWK			GA	QZ	15				Ι	LE_				LN							<u> </u>							ļ	L	L	1				
326.5	335.7	100	70	ASHT			WG	oz oz	10					TF_				TL]	36				ļ				ļ				1	I	<u> </u>	1	\perp	$ \downarrow \downarrow$			
335.7	337.7	100		OAXT	LATF		WG	loz	20					TF				TL	44			L	ļ	<u> </u>	<u> </u>							Z	0.3		<u> </u>	Z	0.3		
337.7	351.9			ASHT	VSLT		NG	loz l	10]]		TF				T∟	50	L			ļ			 	<u> </u>	ļ	Ļ		1	Z	0.5			<u> </u>			
351.9	361.7	100		SILT			NN	οz	15					BD				LN	34		<u> </u>	<u> </u>		1	1	ļ					-	Z	0.5		\downarrow	z	0.1		
361.7	368.4	100			SILT		A	QZ		FS	10			TF		<u> </u>		πL	38		ļ	┣	<u> </u>	<u> </u>	<u> </u>	ļ	I	I			1	Z_	0.5		<u> </u>	<u> </u>			
368.4	374.3	100		SILT		<u> </u>	NN	QZ	10					LE		 		BD	44		L	 	 	 	<u> </u>	I	<u> </u>	1				Z	1		–	<u> </u>	0.5		$ \rightarrow$
374.3	385.4			QFXT			G	QZ		FS	30			TF		I		TL	33	Ļ		I	<u> </u>	-			ļ	<u> </u>	 		1	1!	0.1	<u> </u>	<u> </u>				
385.4	426.4	100		QXFT			G	QZ	40					TF		<u> </u>		TL	34		ļ	I	<u> </u>				<u> </u>		<u> </u>			↓	<u> </u>	+	+	+			
426.4	502.7	100		QXAT			G	QZ	35						AF	<u> </u>		TL	32		<u> </u>	I—	ļ	-		1		<u> </u>	<u> </u>		-	ł., –	<u> </u>	.+	+				$ \rightarrow $
502.7	503. <u>2</u>	90	0	LATF		7	WG	BF	40					TF_				ΤL	42										<u> </u>		1	Z	2	1	<u> </u>				de 1 d

Page 1 of 4

Project: Kutcho Creek

----1

- 1

From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Срн	CbA	DIH	DIA	ÂkH	Aka	PyH	РуА	CpH	СрА	SpH	SpA	BnH	BnA
503.2	503.3	90	0	FLTZ				GG						GG	Í			FΖ																				Î	
503.3	504.1	90	0	ASHT		3	G	PΥ	10					TF		1		ΤL	40												İ İ	z	10						
504.1	504.2	100	10	MSSX		1	A	ΡY	95	CP	2			ΜX																		z	95	Z	2				
504.2	505.2	100	40	ASHT		9	WG	αz	5	CY	5			TF		Ţ		TL					İ					_				z	1						-
505.2	507.2	100	80	LATE		5	A	οż	20					TF		1		ΤL	30												1	Ż	15		[·]				
507.2	507.7	100	100	VEIN		6	ww	QZ	95					NN	1		l .	VN						1								1	2						
507.7	510.8	100	100	QFXT		3	G	αz	20	FS	20			TF	1		1	ΤL	33													1	2						
510.8	511.2	100	100	VEIN		5	ww	αz	100	Ī				VV			1	VN	18														_		1				
511.2	525.1	100	80	QFXT		3	G	QΖ	20	FS	15			ŦF	1	1	1	TL	38													w	0.5			i t			
525.1	528.5	100	40	QFXT	I	7	G	az	15	FS	20			TF	Ī		Γ.	TL						İ								Z	2					Í	
528.5	528.8	100	60	QFXT		7	G	QZ	30	FS	10			TF			1							1								Z	5			1	0.4	T I	
528.8	529.2	60	0	FLTZ		5	AG	GG	70	BF	30			FR			1	FT														-							
529.2	530.0	80	9	VEIN		1	w	oz	30					٧V		1		VN													1				·	i – †			
530.0	530.2	80	0	FLTZ		3	A	GG						FR	1	1		GT						1		i			1										
530.2	534.4	100	90	LATF		1	A	oz	50	PY	8			TF	I	T T		TL	36					1		i –						Z	8						
534.4	534.9	100	40	LATF		1	A	az	50	PY	5			٦F	[1	1	TL	37					1		1						Z	5	ţ	0.5	, t			
534.9	544.2	100	80	LATF		1	A	αz	70					ना	[<u> </u>	TL	58							1		- 1				z	5			z	3		
544.2	550.8	100	90	QFXT		3	G	αz	15	FS	15			TF	[1	TL	32							1							0.5						
550.8																		Ι											Ī										

,

DIAMOND DRILL LOG

1 1 1

Project: Kutcho Creek

*----

- I	terval	
From		Comments
0.0		
3.0		Gabbro glacial boulders.
4.2		Thin dolomite veinlets.
7.3	7.8	Thin doiortage foineto.
7.8		Grey sittstone with very little lamination.
20.0	23.9	Quartz vein with contact at 40 degrees.
23.9	24.1	
24.1		Very altered siltstone with significant amount of limonite.
24.8	28.3	
28.3		Altered sittstone by limonited.
32.3	39.6	
39.6	40.9	
40.9	47.2	
47.2		Strong altered by limonite
48.5	58.1	
58.1		Strong attered sittstone into limonite.
59.5	61.6	Locally altered into timonite
61.6	84.7	Moderate altered by chlorite.
84.7	84.9	
84.9	108.0	
108.0	112.6	Mixed graywack with sittstone.
112.6	136.5	
136.5	136.5	Very tight fault with carbonaceous sabstance as gouge.
136.5	138.5	Very fine grained sittstone with sporadic quartz veinlets.
138.5	174.2	
174.2	201.0	Sporadic quartz veinlets , thickness up to 2 cm.
201.0		Carbonaceous substance content uo 15 %
210.0		Dolomite veinlets along bedding, carbonaceous substance uo 15%.
219.5		Laminated with blackish siltstone.
228.0	228.4	
228.4	235.0	
235.0		Carbonaceous substance content 5%.
241.4		Laminated green sittstone with black sittstone
246.4		Laminated siltstone with black siltstone.
258.8		Locally very strong laminated,
279.2		Very fine grained volcanic siltstone.
281.0		
297.4		
300.2	304.5	
304.5	326.5	
326.5 335.7	335.7	
335.7		At 345.7 shalerite veinlet, thickness 5 mm.
351.9		Carbonaceous substance content up 20 %.
361.7		Ash tuff with layers carbonaceous siltstone.
368.4	374 2	Carbonaceous substance content up 20 %.
374.3	385.4	Carbonaceous substance content op 20 %.
385.4		Quartz crystal tuff with visible quartz crystals.
426.4	502.7	
502.7		Contact with quartz crystal tuff at 40 degrees.
JV2.(000.21	Page 3 of 4

ł

DIAMOND DRILL LOG

Project: Kutcho Creek

•----1

From	То	Comments
503.2	503.3	
503.3	504.1	Very fine grained witg dolomite veinlets.
504.1	504.2	
504.2	505.2	Ash tuff with white cly in it.
505.2	507.2	
507.2	507.7	
507.7	510.8	At the contact pyrite and chalcopyrite laminations. Contact angle 32 degrees,
510.8	511.2	
511.2	525.1	
525.1	528.5	
528.5	528.8	
528.8	529.2	Intensive quartz veininig.
529.2	530.0	
530.0	530.2	
530.2		Strongly silicified lapilli ash tuff.
534.4		Strong silicified tuff.
534.9		Strong silicified tuff. Contact with quartz crysyal tuff at38 degrees
544.2	550.8	Sporadic quartz veinlets.
550.8		end of hole

Western Keltic Mines Inc.

1

DIAMOND DRILL LOG

.

1

1

Drill Hole Id.: WK05-62

Project: KUTCHO CREEK

• •

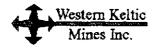
Hole Azin	wth:	185°	Dip:60	° Total	Depth: <u>46</u>	<u>8,8m (1538')</u>	<u></u>			Geolog	ical Summary
Date Star	ed: <u>Septen</u>	tber 02/05	Date Completed:	September 06/05	Core S	ize: <u>NQ2</u>	<u></u>		Purpose /	Target: Su	Imac West section 36430E.
			Northing	Easting			<u>Elevat</u>	ion			
UTM Loca	ation:		6452492	535900		_	1506	_	Comment	s:	
Grid Loca	tion:		23201			_	1504	_			
Collar Sur	vey:		6452496	535894		-	1504	_			
	ole Surv	ey	Sample Information		Split By:	Rob Wi	lson				
Survey Me	Reflex		# of Samples: <u>22 & 1 Std. &</u> _ <u>280824 - 847</u>		Type: <u>1/</u>	2 Sawn Core	<u>.</u>				
Depth 14.9	Azimuth 187.5	Dip* -59.9	Date Shipped: <u>September</u>	17/05	Assay Ce	ertificate # :	A050822	16			
45.4 75.9	187.4 189.0		Analytical Lab: <u>ALS Chem</u>	<u>×.</u>						Key Inte	ersections
112.5 157.0	188.4 188.9	-58.7	Drill Information						From	То	Results
200.9	190.6	-57.2	Dur mounation		Core Size	: <u>NQ to:</u>	end		 		· · · · · · · · · · · · · · · · · · ·
251.8	188.9		Drill Contractor: Hy-Te	ch		: _BTW to:_					
298.4	190.2	-52.7									
344.1	191.2	-50.9	Driller: Marcel Ducharme		Shift	Distance	Shift	Distance			
389.8	189,1	-50.4	Driller: <u>Chris Yuen</u>							· · ·	
468.7	188.9		Helper: <u>Mathew Wheatley</u>	-				1	†		۰
			Helper: <u>Sean Bradley</u>			† i		† · ·	Logged By	: <u>Mare</u>	k Mroczek
							•		1 -		

Project: Kutcho Creek

1

		IGeo-Tí	echnical	l Litthe	ology	Colo	ur i		Co	mbo	nent			т.	extur			St	ructi	10						Alter	ation							M	linera	lizati	on		
From		%Rec				Sh Co		11					I Tx				4 SC				nglQ	zH (ZZA	MsH				DIH	DIA	AkH	Alca	PyH	PyA				_	BaH	Bn/
0.0	1.5	0		CASE			-	-												1	-				-														
1.5	1.8	80		OVER	<u> </u>	1 NG	3 6	3R	100											-	-						-	1-											
1.8	7.3	100		GBBR		1 NG	- F	x	30	FX	20		FR	M	5	-	FE	3 5	<u>at -</u>		-+-	-	- 1	-				+	+1										
7.3	22.6	100		GBBR		3 NO	-	×	20		15		F8				FE			+	-		-				<u> </u>		!		 		t —						
22.6	22.9	100		VEIN		1 1	w h	Î	90	<u>`</u>		- (100	_	-	+-	1		<u>~</u> +	+			-				-	-					<u> </u>			· · · ·			
22.9	36.3	100		GBBR		3 NC		×	25	ry t	20		FB	_	-	-+-	FE		5	-!-	-	-+-					<u> </u>	 -	┝╍╶┥										<u> </u>
36.3	63,7	100		GBBR		3 NC		ŵ t	25		15	-+-	FB	—	_		FE		5	+		-+-				<u> </u>	+	1	···				+						
	71.8	100		GBBR	ł	3 10		ŵ	40		15	-+-	Fe	-	_		F		õ.	-+-		-			<u> </u>		<u> </u>	<u>+</u>	\vdash		<u> </u>								
63.7				VEIN	<u>-</u> .	1 1		ź	85						-				<u>-1-</u>								<u> </u>								<u> </u>				<u>+</u>
71.8	72.0	100						×				-	_	_	<u> </u>		FE			-	· -	-	+				<u> </u>	<u> </u>			<u> </u>		-						<u>+</u>
72.0	83.5	100		GBBR	<u> </u>	1 NC			35		20		FB						2		-+-	\rightarrow					<u> </u>		i −										⊢
83.5	91.5	100		GBBR	ļ	3 NG		<u>×</u>	20		15			FG			FE		0		+						<u> </u>	_			[<u> </u>						⊢
91.5	110.4	100		GBBR	<u> </u>	5 NC		×		FX	10	-+-	FB		<u>د</u>	+	FE		5			-+-					<u> </u>		\vdash				÷	<u> </u>	· ·				
10.4	110.6	100		VEINj	<u> </u>	1 W			100	<u></u> +			~	_		_	Vł		+	_	-+-						<u> </u>	+	+										
10.6	112.6	100		GBBR		1 A		х	10	_	10	_	_	FG			FE		5			_	{				ļ	<u> </u>											—
12.6	146.7	100		GBBR		5 GN		×	10	FX	10		_FB			_	F8	3 3	8		-				L		L	<u> </u>					I	L			ļ		–
46,7	161.0	100		SILT		5 A		¥Z	30				BC				80		0									L	ļ				1						-
61.0	167.8	95		SILT		5 NN								FG			B		5			_							1			z	1						1
67.8	168.5	100		XATF		9 G		<u>ک</u> لا	10		15		ना	_			π	. 5	1								L												<u> </u>
68.5	178.3	100	70	VSLT		5 A		٧Z	20	FS	20		80				BC		9													Ζ	0.5						
78.3	178.5	80	0	FLTZ		ЗA		SF	80			1	FR				FT											Ι.											
78.5	190.5	100	80	VSLT		5 A		1Z	20	FS	10						BC	5 7	0																				
90.5	196,2	100	95	ASHT	XATE	5 W	w						FG	TF			π	. 5	8				1			_					[1	0.2						
96.2	196.7	80	0	FLTŻ		3 A	- le	BF	80	GG	20		FR			-	FT		-								1				1								
96.7	197.9	90		ASHT		5 W				_				ना		+	h		2	-						-	1						-						
97.9	236.0	100		XATE		3 G		st	30	ozt	10		चत्री -			-	ħ		1	-+-	+	-	- 1			-	1	1									1		\square
36.0	236.4	100		VEIN		5 W		ž I	90				Ŵ			+		_			+	-				-	<u> </u>												
36.4	236.8	90		ASHT		7 A	~ `	-		+	-+		11	_	-+-	-+-	Th.		ō		-	-+	- 1				+	!						<u> </u>					
36.8	237.1	100		VEIN	<u> </u>	5 00	NC	z	90	-	-+	+-	1			+	- 17		<u>~</u> +	+	-+-	-+	}		<u> </u>		 	\vdash			<u> </u>			1					-
37.1	266.3	100		XATE		3 G		s	25	77	15		-			-+-	π		15	-+-	-	-+	\rightarrow				 	+			+		+	<u> </u>					-
66.3	266.5	80		FLTZ	· · · · · ·	3 G		50	40	쑮	60			+			峝		~	-+	-	-+		-	1		<u> </u>	+					+	<u> </u>					
				VEIN		3 W			100				1	,+		+	-듃		+	+	-					· · · ·	+	+	<u>+</u>		- 1			t —					+
66.5	266.8	100						12			20	-+	TF			-+-	- 17		2	-+-		-				<u> </u>			<u>├</u>		 	,	0.2						+
66.8	292.0	100		XATE		3 G			15 10	101	201		- IIF		<u> </u>		慌		12	-+-	-+-	-+-				-	<u>↓</u>	+	h		<u> </u>	1	10.2	<u> </u>	Ì				+-
92.0	313.1	100		TFBR		1 G		<u>r</u>		\rightarrow	+			_		-+-			2	+		-+-			<u> </u>		<u>-</u>		+ - 1		 _		+	<u> </u>			<u> </u>		+
13.1	323.6	100		QXAT		5 W(9 0	2	30			\rightarrow	TF		-	<u> </u>	Ē		+	-+-					ļ			_				· · ·	<u> </u>	<u> </u>					+
23.6	338.0	100		QXAT		3 G		Z	30	-+			ŤF			+	n		+				-								I			<u> </u>			ļ		+
38.0	345.4	100		OXAT		5 W(¥Z	30				TF				. <u>n</u>		_		-	-+-			-		<u> </u>		- •					<u> </u>			<u> </u>		+
45.4	345.7	70	_	FLTZ		7 AU			90	_			FR			_	FT		5		_ _				ļ	ļ	I	<u> </u>			ļ	<u> </u>	ļ	<u> </u>	 				+
45.7	356.8	_100		QAXT		7 G			20	_		_	TF		_	-	_π.		2	\rightarrow	-	-+			<u> </u>	<u> </u>	I	<u> </u>			<u> </u>			<u> </u>	—		<u> </u>		∔
56.6	359.6	100		LATE		7 G	C		30	$ \rightarrow $			ΤF	_			π	_	0		_						L	1			<u> </u>	!	0.2	—	<u> </u>		<u> </u>		
59.6	359.8	100		VEIN		3 W			100				ना	_		\rightarrow	_ħ	_	0			\rightarrow					L	<u> </u>	L				-	L					-
59.8	386.2	100		LATF		5 AU) C	Σ	15	BF	20		नग		_		<u>_n</u>			_							-				I	!	0.2	I					+
36.2	386.4	100		FLTZ		5 AU	, je	G					B				_F1		3									L			L			L	L		1		1
36.4	405.8	100		LATE		5 AU		Σ	15		20		TF				π		0								L.							1					1
05.8	419.2	100	60	LATF		5 G	F	S	15	oz	20		TF				π		2			T							L								1		
19.2	423.8	100	95	QFXT		7 G	C	۶Z	25		10		ना				π	. 7	0	T		T												L			L		-
23.8	427.6	100		LATE		5 A	c	VZ	10	CY	5		TF	1			π	. 7	0															L					
27.6	430.5	100		MSSX		3 YA		~	97		- 1		FG					-														Z	98						
30.5	437.8	100		MSSX		3 YA		Y	98	-	- 1		FG									- 1					· ·	1				Z	98	Z	0.5	1	0.5		
37.8	449.0	100		MSSX		5 YA		Y	98				FG								1	-1						—				z	98	ţ	0.8				
49.0	456.7	100		MSSX		3 YA		ήt	97	oż	-1		+	+	-+-	-	+	+	+	-+-	-	-+			1		<u>+-</u>				1	7	97				1		

Project: Kutcho Creek


Western Keltic Mines Inc.

1

Drill Hole Id: WK05-62

.

			_												_																						
From	Ta	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2% C	2	Tx	I Tx2	1	'x3 T	4 SD1	Ang	SD2	Ang	Qz	QzA	MsH	MsA	СРН	ChA	DIH	AAK	Ak	a IPV	1 PvA	CoH	CoA	SpHS	DAIE	3nH P	inΔ
456.7	457.8	100	90	PLTF		3	YA	PY	35	az	10		BN	FG		- T-	BN	28		1		1	1			1				7	35		1				-
457.8	458.8	_100	80	MSSX		3	YA	PY	80	QZ	10		BN	FG	Ī	_	BN	55	1	1	1	1	†		<u> </u>				+	Ī	80	+		├ ─-†-		-+-	-
458.8	460.3	100	80	PLTE		3	ww	PY	_40				BN	FG			BN	58			1	1	1						1	Ī	40	1	<u>+ - 1</u>	† -	-	-	
460.3	468.8	100	80	PLTF		3	ww	PY	30	oz	30		BN	FG			BN	55	1		1	1	1					1		Ī	30	<u> </u>		r—†-	1		-1
468.8				EOH	1					1	-		T]	1	1	1											1	t – 1			- 1-	

· 1

,

DIAMOND DRILL LOG

the second second second second second second second second second second second second second second second se

Project: Kutcho Creek

1

,

-

1

Drill Hole Id: WK05-62

Type To Community 15 1.5 16 1.5 17 1.6 18 7.2 22.2 22.3 23.7 7.5 23.8 7.5 23.8 7.7 23.9 9.8 33.1 7.7 7.7 8 7.7.8 7.7 7.7.8 7.7 7.7.8 7.7 7.7.8 7.7 7.7.8 7.7 7.7.8 7.7 7.7.8 7.7 7.7.8 7.7 7.7.8 7.7 7.7.9 7.7 7.7.9 7.7 7.7.9 7.7 7.7.9 7.7 7.7.9 7.7 7.7.9 7.7 7.7.9 7.7 7.7.9 7.7 7.7.9 7.7 7.7.9 7.7 7.7.9 7.7 7.7.9 <	lat	erval	
0.0. 15 16 18 73 Gabbro with incorting store, quarte-debraties with Bijdenes up 16 on. 23 23. 94. 94. 23. 23. 94. 94. 23. 23. 94. 94. 23. 23. 94. 94. 23. 23. 94. 94. 23. 23. 94. 94. 23. 23. 94. 94. 23. 23. 94. 94. 23. 23. 94. 94. 23. 94. 94. 94. 23. 110.4 112. 94. 94. 110.4 112.6 Common querts debrate with the store 94. 110.4 112.6 Common querts debrate with the store 94. 110.4 112.6 Common querts debrate with the store 94. 1112.6 Common querts debrate with the store 94. 1112.6 Common querts debrate dbabbre 94.			Comments
15 16 18 7.3 226 Very common downic quetz versites. 226 229 228 Very common downic quetz versites. 228 229 228 Very common downic quetz versites. 228 229 228 Very common downic quetz versites. 228 Very common downic quetz versites. 228 Very common soomits versites. 228 Very common soomits versites. 229 Very common soomits versites. 220 Very torm instructures. 238 915 139 1104 Very common soomits versites. 11106 1120 129 1447 120 1447 1212 1447 1212 1447 1212 1447 1212 1447 1212 1447 1212 1447 1212 1447 1212 1447 1212 1447 1213 1510 Very thin instructures with 50 sonthonoonoonononono 1214			
1.8 7.3 Cabbro with innofite alerse, quarter, delonties was thicknes up 15 cm. 228 Very common delontie, quarter, delonties was thicknes up 15 cm. 228 229 229 3.4 230 240 241 3.4 242 3.4 243 3.4 244 3.5 345 4.5 345 4.5 345 4.5 346 4.5 347 10.4 348 4.5 349 4.5 341 4.7 342 4.6 343 4.5 344 4.6 345 4.5 341 4.6 342 4.6 343 4.5 344 4.6 345 4.5 346 4.6 347 16.8 347 16.8 347 16.8 346 34.5			
7.3 22.6 (Very common 600mt-quartz verindes 72.8 22.9 73 33 74 74 75 75 76 75 77 75 77 75 77 75 77 75 775 75 775 75 775 75 775 75 775 75 <tr< td=""><td></td><td></td><td></td></tr<>			
228 229 329 363 637 363 637 710 638 721 635 732 730 733 735 734 736 735 736 736 737 737 738 738 736 739 736 731 735 732 737 733 735 734 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 735 7350 735		22.6	Capito war informe defaulty que tendes verifies de antes op 10 offi.
229 363 433 657 457 716 726 726 728 726 728 726 728 726 728 726 728 726 728 726 728 726 728 726 728 726 728 726 728 726 728 726 729 726 721 727 722 728 723 728 724 728 725 728 726 728 727 728 728 728 728 728 729 728 729 729 729 729 729 729 729 729 729 729 729 720 729 720 729 720 729 7	22.6		roj ostrinist dostri dasta vennas.
363 63.7 77.8 77.8 77.8			
837 718 718 720 720 835 835 915 815 916 815 917 1010 1016 1128 1740 1128 1740 1121 1740 1121 1740 1122 1745 1121 1740 1121 1740 1121 1740 1121 1740 1121 1740 1121 1740 1121 1740 1121 1740 1121 1740 1121 1740 1121 1740 1121 1740 1121 1740 1121 1740 1121 1740 1121 1740 11221 1741 11231 1742 11231 1742 11232 1741 11242 1905 11252 1907 11262			
77.6 72.0 83.5 91.5 91.5 110.4 Very common doionite veinieta. 110.4 110.6 112.6 Common quartz-doionite veinieta. 112.6 112.6 112.6 Common quartz-doionite veinieta. 112.6 112.6 112.6 Common quartz-doionite veinieta. 112.6 Very thin taminated statione. 112.6 Control (Very thin taminated statione. 112.6 Control (Very thin taminated statione. 112.6 Control (Very thin taminated statione. 112.6 Control (Very thin taminated statione. 112.6 Control (Very thin taminated statione. 112.6 Control (Very thin taminated statione. 112.6 Control (Very thin taminated statione. 112.6 Control (Very thin taminated statione. 112.6 Control (Very thin taminated statione. 112.6 Control (Very thin taminated statione. 112.6 Control (Very thin taminated statione. 112.6 Control (Very thin taminated statione. 112.7 128.0 128.0 Sondo 128.0 Son			
720 83.5 915 110.4 Vey common doomite veinets. 915 110.4 Vey common doomite veinets. 1106 111.6 Common quart_doomite veinets. 11126 144.7 1126 144.7 1126 144.7 1126 145.0 Very thin laminated attalone. 1127 144.7 1128 144.7 1128 144.7 1128 144.7 1128 144.7 1128 144.7 1128 144.7 1128 144.7 1128 144.7 1128 144.7 1128 144.7 1128 144.7 1128 144.7 1128 144.7 1128 144.7 1128 144.7 1128 144.7 1128 145.7 1128 145.7 1129 195.7 1129 195.7 1128.7 198.7 1128.7 198.7 1128.7 186.7 <			
83.5 91.5 91.5 110.4 110.4 110.6 110.4 110.6 110.4 110.6 110.4 110.6 110.4 110.6 110.4 110.6 110.4 110.6 110.4 110.6 110.4 110.6 110.4 110.6 110.4 110.6 110.4 110.6 110.6 110.6 110.7 100.6 110.7 100.6 110.7 100.6 110.7 100.6 110.7 100.6 110.8 100.6 110.8 100.6 110.8 100.6 110.8 100.6 110.8 100.6 110.8 100.6 110.8 100.6 110.8 100.6 110.8 100.6 110.8 100.6 110.8 100.6 110.8 100.6 128.6 128.6 128.7			
915 110.4 Very common doornite weinlets. 1104 110.5 1104 110.5 1105 112.6 14.6.7 1106 112.6 14.6.7 1107 151.0 Very thin similated effictore. 1106 112.6 14.6.7 1107 151.0 Very thin similated effictore. 1107 152.0 Cathonacoous subtance content. 1107.1 150.5 Contagt with sillatore at 48 degrees. 1108.5 Contagt with sillatore at 48 degrees. 150.5 1108.5 Contagt with sillatore at 48 degrees. 150.5 1108.5 119.5 Spondic quartz-doiomite verniets. 1109.5 119.7 Spondic quartz-doiomite verniets. 1109.7 119.7 Spondic quartz-doiomite verniets. 1109.7 119.7 Spondic quartz-doiomite verniets. 1109.7 119.7 Spondic quartz-doiomite verniets. 1109.7 119.7 Spondic quartz-doiomite verniets. 1109.7 119.7 Spondic quartz-doiomite verniets. 1109.7 129.6 129.6 1201.7 <td< td=""><td></td><td></td><td></td></td<>			
110.4 110.8 110.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 112.6 Catonacous statione with 15% catonacous statione content. 117.8 117.8 117.8 117.8 117.8 117.8 117.8 117.8 117.8 117.8 117.8 110.5 119.7 119.7 119.7 119.7 119.7 119.7 119.7 119.7 119.7 119.7 119.7 119.7 119.7 119.7 119.7 119.8 119.7 119.2 119.7 119.2 119.7 119.2 119.7 119.2 119.7 128.6 128.6			
110.6 112.6 Common guntz-dolomit veniets. 112.6 148.7 112.6 148.7 112.6 148.7 112.6 148.7 112.6 148.7 112.6 148.7 112.6 148.7 112.6 148.7 112.6 148.7 112.6 148.7 112.6 148.7 112.6 148.7 112.6 148.7 112.6 148.7 112.6 148.7 112.6 148.7 112.6 148.7 112.6 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 <		110.4	Tery constron coloring vehacts.
112.6 146.7 146.7 161.0 147.7 161.0 147.8 178.5 147.8 178.5 147.8 178.5 147.8 178.5 147.8 178.5 147.8 178.5 147.8 178.5 147.8 178.5 147.8 178.5 147.8 178.5 147.8 147.5 147.8 147.5 147.8 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5 14			
140.7 191.0 Very thin faminated elistone 161.0 167.8 Cathonacous alistone with 15% cathonacous alistance content. 167.8 168.5 Contact with siliatone ar 48 degrees. 178.5 100.5 178.5 100.5 190.5 196.7 197.9 Sponoic quartz-dolomite vehilets. 197.9 197.9 197.1 Sponoic quartz-dolomite vehilets. 197.9 Sponoic quartz-dolomite vehilets. 197.9 Sponoic quartz-dolomite vehilets. 197.9 Sponoic quartz-dolomite vehilets. 197.9 Sponoic quartz-dolomite vehilets. 197.9 Sponoic quartz-dolomite vehilets. 197.9 Sponoic quartz-dolomite vehilets. 197.1 206.0 205.4 205.1 206.2 206.1 207.1 206.3 208.6 207.1 208.6 207.1 208.6 208.6 209.1 208.6 209.2 20.2 200.3 20.3 211.3 20.3 222.0 20.3			
161.0 167.8 Cartac with 15% carbonacous substance content. 167.8 168.5 Contact with sitistone at 48 degrees. 168.6 178.3 I 178.3 178.5 I 178.4 178.5 I 178.5 I I 178.5 I I 178.5 I I 178.5 I I 178.5 I I 178.5 I I 178.5 I I 178.6 I I 179.7 I I I 197.6 I I I 197.6 I I I 198.7 I I I 198.6 I I I 236.0 I I I 236.1 I I I I 236.2 I I I I I 236.3 I I I I I I I 236.3			Vogethin Inversed all alledance
167.8 168.5 Contact with siliatore at 48 degrees. 178.3 178.5 178.5 190.5 190.5 196.2 190.7 197.8 197.8 190.5 197.9 197.9 197.9 197.9 197.9 197.9 197.9 197.0 197.9 197.0 197.9 197.0 197.9 197.0 197.9 197.0 197.0 197.0 197.1 197.0 197.1 197.0 197.1 197.0 197.1 197.0 197.1 197.0 197.1 197.0 197.1 197.0 197.1 197.0 197.1 197.0 197.1 197.0 197.1 197.0 197.1 197.0 197.1 197.0 197.1 197.0 197.1 197.0 197.1 197.0 197.1 100.0 197.1		167.0	
198.5 178.3 197.5 190.5 197.5 190.5 199.5 196.7 199.7 205.0 199.7 205.0 236.0 205.4 236.1 205.4 236.2 205.4 236.4 205.4 236.5 205.4 236.6 205.4 236.7 1 236.8 207.1 236.9 207.1 236.1 206.3 266.3 206.6 220.0 Local y quartz verise up 5 cm thickness. 220.0 Local y quartz verise up 5 cm thickness. 220.0 Local y quartz verise up 5 cm thickness. 220.0 Local y quartz verise up 5 cm thickness. 220.0 Local y quartz verise up 5 cm thickness. 220.0 Local y quartz verise up 5 cm thickness. 220.0 Local y quartz verise up 5 cm thickness. 220.0 Local y quartz verise up 5 cm thickness. 220.0 Local y quartz verise up 5 cm thickness. 220.0 Local y quartz verise up 5 cm thickness. 220.0 L		169.5	Carbonaceous sinsione with 15% carbonaceous substance content.
178.5 178.5 178.5 190.5 198.6 198.7 198.7 197.9 198.7 197.9 197.9 236.0 236.0 236.4 236.4 236.8 237.1 266.3 236.4 236.4 237.1 266.3 237.1 266.3 236.4 236.8 237.1 266.3 237.1 266.3 236.6 237.1 237.1 266.3 237.1 266.3 266.3 266.5 266.4 236.8 267.5 266.5 268.6 266.5 237.1 266.3 238.0 238.0 238.1 This tock can be also as liftic ash tuff. 231.1 This tock can be also as liftic ash tuff. 232.6 338.0 3345.7 See 3 3345.4 345.7 358.8 359.6 358.8 359.6 358.8 359.6		170.0	
176.5 190.5 190.5 196.2 190.5 197.9 196.7 197.9 197.9 236.0 238.0 238.4 238.6 237.1 238.6 237.1 266.3 266.3 267.4 236.0 238.4 238.4 238.6 237.1 238.6 237.1 238.6 237.1 266.3 266.3 265.4 266.3 265.5 266.8 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.1 238.0 238.2 24.4 238.3 380.0 238.4 345.4 345.7 Very important fault, gauge conaits of kthi			
190.2 196.2 196.2 196.7 196.2 197.9 236.0 238.4 236.4 236.4 236.6 237.1 237.1 266.3 236.5 237.1 266.3 266.5 266.4 236.6 237.1 266.3 236.6 237.1 237.1 266.3 266.3 266.5 266.4 236.6 236.5 236.6 236.6 237.1 237.1 266.3 266.3 266.5 266.4 236.6 238.5 238.6 238.5 238.6 238.6 238.6 238.6 338.0 338.0 345.4 345.7 355.8 358.6 359.6 358.8 359.8 358.8 359.8 358.8 359.8 358.8 358.8 358.8 358.8 358.8 358.8 35			
1967 1967 197.9 Sporacic quartz-dolomite veinlets. 197.9 236.0 236.4			
197 197 Sporadic quartz-dolomite veinlets. 197.9 236.0 236.4 236.4 236.6 237.1 237.1 266.3 236.6 237.1 236.7 236.8 237.1 266.3 266.3 266.6 220.6 220.1 237.1 236.6 236.6 220.2 237.1 266.5 266.6 220.2 220.0 131.3 237.1 236.6 232.0 131.1 233.0 236.5 338.0 345.4 338.0 345.4 338.0 345.4 345.4 345.7 345.8 355.6 355.8 355.6 356.8 355.6 356.8 355.6 356.8 356.6 356.8 356.6 356.8 356.6 356.8 356.6 356.8 356.6 356.8 356.6 356.8			
197.9 236.0 236.0 236.4 236.4 236.8 236.5 237.1 236.6 237.1 236.6 237.1 236.7 266.3 236.8 237.1 266.3 266.3 266.5 256.6 237.1 256.6 238.6 232.0 238.6 232.0 238.6 232.0 238.6 232.0 238.6 232.0 238.6 232.0 238.7 256.8 238.0 233.0 238.0 234.5 238.0 235.4 238.0 235.4 238.0 235.4 238.0 235.6 238.0 235.6 238.0 235.6 238.0 235.6 238.0 235.6 238.0 235.6 238.0 235.6 238.0 235.6 238.0 235.6 238.1 238.2 23	190.2		
236.0 236.4 236.4 236.8 237.1 266.3 237.1 266.3 266.3 266.5 266.4 237.1 265.3 266.5 266.4 237.1 265.5 266.5 266.6 252.0 272.0 Localty quartz veins up 5 cm thickness. 282.0 313.1 313.1 323.6 323.6 38.0 338.0 345.4 345.4 345.7 356.8 359.6 359.8 359.6 359.8 359.6 359.8 359.6 359.8 359.6 359.8 359.7 359.8 359.8 359.8 359.8 359.8 359.8 359.8 359.1 359.8 359.2 359.8 359.2 359.8 359.2 359.8 359.3 359.8 359.4 359.8 359.8 359.8 359.8 <td></td> <td></td> <td></td>			
236.4 236.8 237.1 266.3 265.3 266.5 265.4 266.5 265.5 266.8 292.0 Locally quartz veins up 5 cm thickness. 286.8 292.0 213.1 This rock can be also as lithic ash tuff. 213.1 233.6 238.6 338.0 233.6 338.0 338.0 345.4 338.0 345.4 338.6 345.7 356.8 359.6 358.8 362.2 This tuff have redish colorcaused by hematite and is strong layered. 386.4 405.8 243.8 City strong layered red tuff, quartz veiniets common. 413.2 Very strong layered red tuff, quartz veiniets common. 423.6 423.6 423.6 Sig.5 423.6 Sig.5 423.6 Sig.5 423.6 Sig.5 423.6 Sig.5 423.6 Sig.5 423.6 Sig.5 423.6 Sig.5 423.6 Sig.5 </td <td></td> <td></td> <td></td>			
236.8 237.1 237.1 266.3 226.3 266.5 226.6 292.0 231.1 This rock can be also as lithic ash tuff. 313.1 323.6 323.6 338.0 338.0 345.4 345.7 Very important fault, gauge consits of lithic tuff. 345.4 345.7 345.8 329.6 338.0 338.0 338.0 338.0 338.0 345.4 345.7 Very important fault, gauge consits of lithic tuff. 345.4 345.7 359.8 339.6 359.8 359.8 359.8 359.8 359.8 359.8 362.2 386.4 363.4 405.8 47.5 Very important fault, gauge conclused by hematite and is strong layered. 364.7 359.8 379.8 359.8 386.4 405.8 419.2 Very timp layered red tuff, quartz veinlets common. 419.2 423.8 (217.6 430.5 430.5			
237.1 266.3 266.5 266.6 266.6 262.0 268.6 292.0 203.11 This rock can be also as lithic ash tuff. 232.6 338.0 323.6 338.0 338.0 345.4 345.7 356.8 358.8 359.6 358.8 359.6 358.9 359.8 358.8 359.8 358.8 359.8 358.8 359.8 358.8 359.8 359.8 365.4 362.4 365.4 362.4 365.8 359.8 365.8 359.8 365.4 366.4 365.4 386.4 405.8 386.4 405.8 386.4 405.8 386.4 405.8 386.4 405.8 386.4 405.8 386.4 405.8 386.4 405.8 386.4 405.8 386.4 405.8 386.4 405.8			
266.3 266.5 266.4 266.5 266.5 266.8 282.0 313.1 11 This rock can be also as likhic ash tuff. 313.1 323.6 323.6 338.0 345.4 345.7 345.7 756.8 356.8 359.6 358.9 359.8 359.8 359.8 386.2 This tuff have reddish colorcaused by hematife and is strong layered. 386.4 405.8 405.8 175 tuff have reddish colorcaused by hematife and is strong layered. 442.0 427.6 430.5 437.8 437.8 439.0 449.0 456.7			
266.5 266.8 266.5 292.0 203.1 This rock can be also as lithic ash tuff. 313.1 323.6 323.6 338.0 338.0 345.4 345.4 345.7 356.8 359.6 359.8 359.6 386.4 369.6 359.8 386.2 11s tuff have reddish colorcaused by hematite and is strong layered. 386.4 405.8 419.2 Very strong layering. 423.8 427.6 430.5 430.5 437.8 439.6 437.8 439.6 437.8 439.6 437.8 439.6			
266.8 292.0 Locally quartz veins up 5 cm thickness. 229.0 13.1 This rock can be also as lithic ash tuff. 313.1 323.6 338.0 345.4 345.4 345.7 345.4 345.7 356.8 359.6 359.6 359.6 369.6 359.6 386.2 This tuff have reddish colorcaused by hematite and is strong layered. 386.2 386.4 405.8 419.2 Very strong layering. 423.8 419.2 423.8 427.6 430.5 436.5 437.8 449.0 449.0			
292.0 313.1 This rock can be also as lithic ash tuff. 313.1 323.6 338.0 323.6 338.0 338.0 345.4 345.4 345.7 Very important fault, gauge consits of lithic tuff. 345.7 358.8 359.6 359.8 359.8 359.8 359.8 359.8 362.2 386.4 386.4 405.8 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 419.2 423.8 Clay along layering. 423.6 437.8 437.8 439.0 449.0 456.7			
313.1 323.6 323.6 338.0 338.0 345.4 338.0 345.4 345.4 345.7 345.7 356.8 359.6 359.6 359.8 359.8 362.2 This tuff have reddish colorcaused by hematite and is strong layered. 386.2 386.4 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.4 This tuff have reddish colorcaused by hematite and is strong layering.			
323.6 338.0 335.4 345.4 345.4 345.7 345.4 345.7 345.7 356.8 359.8 359.6 359.8 386.2 386.4 405.8 386.4 405.8 345.7 328.4 386.4 405.8 386.4 405.8 386.4 405.8 386.4 405.8 386.4 405.8 386.4 405.8 386.4 405.8 386.5 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 This tuff have reddish colorcaused by hematite and is strong layered. <td></td> <td></td> <td></td>			
338.0 345.4 345.4 345.7 345.4 345.7 345.7 Very important fault, gauge consits of ithic tuff. 345.7 358.8 356.8 359.6 359.8 386.2 386.2 This tuff have reddish colorcaused by hematite and is strong layered. 386.2 386.4 386.4 405.8 345.7 Usry strong layered red tuff, quartz veinlets common. 419.2 Very strong layering. 423.8 Clay along layering. 437.8 449.0 449.0 456.7			
345.4 345.7 Very important fault, gauge consits of lithic tuff. 345.7 356.8 356.8 359.6 359.8 359.8 386.2 This tuff have reddish colorcaused by hematite and is strong layered. 386.2 386.4 386.4 405.8 19.2 Very strong layered red tuff, quartz veinlets common. 419.2 423.8 427.6 430.5 437.8 449.0 449.0 456.7			
345.7 356.8 356.8 359.6 359.8 365.2 365.2 This tuff have reddish colorcaused by hematite and is strong layered. 366.2 386.4 386.4 405.8 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 419.2 Very strong layered red tuff, quartz veinlets common. 419.2 423.8 427.6 430.5 437.8 449.0 456.7			
356.8 359.6 359.8 386.2 359.8 386.2 386.4 405.8 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 419.2 Very strong layered red tuff, quartz veinlets common. 419.2 423.6 427.6 430.5 437.8 449.0 456.7	345.4	345.7	very important raut, gauge consits of Nithic turi.
359.6 359.8 359.8 385.2 386.4 386.4 386.4 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 419.2 Very strong layered red tuff, quartz veinlets common. 419.2 423.8 427.6 430.5 430.5 437.8 449.0 456.7			
359.8 386.2 This tuff have reddish colorcaused by hematite and is strong layered. 386.4 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 419.2 Very strong layered red tuff, quartz veinlets common. 419.2 423.8 (Lay along layering. 427.6 430.5 437.8 449.0 449.0 456.7			
386.2 386.4 386.4 405.8 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 419.2 Very strong layered red tuff, quartz veinlets common. 419.2 423.8 423.8 427.6 432.8 427.6 433.5 437.8 449.0 456.7			
386.4 405.8 This tuff have reddish colorcaused by hematite and is strong layered. 405.8 419.2 Very strong layered red tuff, quartz veinlets common. 419.2 423.8 Clay along layering. 423.8 427.6 430.5 437.8 437.8 449.0 449.0 456.7		386.2	Ins turn have requisin colorcaused by nematike and is strong layered.
405.8 419.2 Very strong layered red tuff, quartz veinlets common. 419.2 423.8 Clay along layering. 423.8 427.6 423.6 430.5 430.5 437.8 449.0 456.7			
419.2 423.8 Clay along layering. 423.8 427.6 427.6 430.5 430.5 437.8 449.0 456.7		400,8	rms run neve request conceaused by nemative and is knong layered.
423.8 427.6 427.6 430.5 430.5 437.8 437.8 449.0 449.0 456.7		419.2	very studing layered realiting quark vernies controls.
427.6 430.5 430.5 437.8 437.8 449.0 449.0 456.7		423.8	
430.5 437.8 437.8 449.0 449.0 456.7	423.0		
437.8 449.0 449.0 456.7			
449.0 456.7	430.3		
	443.01		Page 3 of 4

Project: Kutcho Creek

From	To	Comments
456.7	457.8	Locally bands with massive sulphides.
457.8	458.8	
458.8	460.3	
460.3	468.8	
468.8		end of hole

Western Keltic Mines Inc.

DIAMOND DRILL LOG

1

•

1

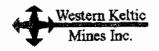
Drill Hole Id.: WK05-63

Project: KUTCHO CREEK

1

· · ·]

•• 1


3

·····

۲"

1

Hole Azim	uth:	185°	Dip: <u>-62</u>	Total	Depth: <u>51</u>	4.8m (1689	Ŋ			Geolog	ical Summary	
Date Start	ed: <u>Septer</u> r	1ber 07/05	Date Completed:	September 11/05	Core S	ize: <u>NQ</u> 2			Purpose /	Target: Su	mac West - Esso West bound	dary
			Northing	<u>Easting</u>			<u>Elevati</u>	on				
UTM Loca	tion:	·						_	Comment	s: Hole WK	05-63A was abandoned after	49"
Grid Locat	ion:	<u> </u>	23274				1498		due to inco	orrect azimu	th.	
Collar Sun	vey:		6452569	535810			1498					
Down Ho Survey Me		€Λ	Sample Information	<u> </u>	Split By:				4			
	Reflex		# of Samples: <u>11 & 1 Std.</u> <u>280879 - 890</u>		Type: <u>1/</u>	2 Sawn Cor	e					
Depth 14.9	Azimuth 186.5	Dip* 62.3	Date Shipped: <u>September</u>	17/05	Assay Ce	rtificate # :	A050822	16				
60.7 106.4	190.2 191.5	-59.5	Analytical Lab: <u>ALS Cheme</u>	X						Key Inte	rsections	
152.1	193.4	-55.9							From	To	Results	
197.5	189.6		Drill Information							1		
243.5	189.6	-52.1				: NQ to:		_				
298.4 319.7	191.7	-51.2	Drill Contractor: <u>Hv-Tec</u>	<u></u>	Core Size	: BTW to:						
364.2	192.4		Driller: Marcel Ducharme		Shift	Distance	Shift	Distances		<u> </u>		
411.2	192.2		Driller: Chris Yuen		Stan	Distance	Snik	Distance		<u> </u>		
459.9	191.3		Helper: Mathew Wheatley	_						· · · · ·		
514.8	191.5		Helper: <u>Sean Bradley</u>				<u> </u>		Logged By	y: <u>Mare</u> l	K Mroczek	
							·		1			

Project: Kutcho Creek

0.0 4.5			Interval Geo-Technical Lithology Colour Compone															STO	cture															lineral				
0.0		%Rec	RQD		Lith2		tol l	C1	C1%	C2 10	C2%	3 64	Tv1	172	ture Ty3	Tv4	501	Ano	SD7	Asa	07H	078	MeH	MeA	Срн	ChA	DIH	DIA	AkH	Aka	PVH	PvA					BaH	BnA
	4.5	AREC		CASE	GIGIZ			<u> </u>		<u>~</u> †			<u> </u>		1.07	1.24							1	1	1		1		-	-								
4.5	4.6	10	0	OVER		30				-+	-+		t	<u></u>	<u></u> ∱∙−		-			· · ·		+	t—	+	+	t	1									-		
4.0		100	100	GBBR		50		PX	15	rv t	20		FB	<u> </u>	+		FB	30				+—	+	1 -	1	+	+								-		-	
4.6	9.2					30		PX PX	20		15		FB	<u> </u>	+		FB	32				+	+	╂	╀╌╌╼	+						<u> </u>						
9.2	45.4	100	95	GBBR		30	_	PX	20	_	20		FB		+	+	FB	30				<u> </u>	+	+	+	+	+											-
45.4	52.0	100	100	GBBR				OZ	20		-201		BD	<u>├</u>	┟╌╼┙	 	BD	45	_	╂-──	<u> </u>	╂	 	+		+	+								-			\vdash
52.0	54.4	100	80	SILT		70				~+	15		FB	<u> </u>		<u> </u>	FB	40	+ -		┣	┢──	+	+	+	 	+	}			-							<u>† </u>
54.4	65.8	100	90	GBBR	-	30		PX QZ		FX	15		BD	į	<u> </u>		BO	72	 			+	+	–	+	+	+			<u></u>								<u> </u>
65.8	72.4	100	85	SILT		70			20						-		NN NV	./2		ļ	Į		+	+		<u> </u>	-											
72.4	73.0	100	100	VEIN	0000			ΟZ	100	\rightarrow				<u> </u>	+			- 50	+	 	<u> </u>		+	+	┢╌	<u>├</u>	+					-	-					
73.0	93.9	100	80	SILT	GRWK			oz	25	+			80	<u> </u>	<u> </u>	 	BD	56	4	–	<u> </u>	╂-~-	+	┼──	Ļ	+	+							-				+
93.9	112.0	100	100	GBBR		30		PX	15	FX	20		FB		┥	<u> </u>	FB		╉╼─	┣	<u> </u>	ļ	1	+	1		+						<u> </u>	,				<u> </u>
12.0	112.1	100	100	VEIN	L	1 V		αz	100	_			vv		<u> </u>		VN		<u> </u>	I	 	┥—	+	<u> </u>	+	+	┿	<u> </u>	-				┣──				 	+
12.1	159.8	100		GBBR		30		PX	20	FX	15		FB	MG	_	L	FÐ	_58			L	_	+	Ļ													<u> </u>	┿──
59.8	160.0	100	100	VEIN		1 V		αz	95				W				VN	45					-	1	.	+			1				Ļ	.			-	
60.0	180.0	100	100	GBBR		3 N		PX		FX	15		FB	MG	Ì	1	FB	48		<u> </u>	L	1		1	-		<u> </u>											+
80.08	183,7	100	95	SILT		3 A		οz	20					FG			BN	90			L	1		-	_		1	L	I				L				<u> </u>	+
83.7	190.5	100	95	SILT		70		QZ	20				BD			L	BN	88	_	1-				1			-	Į	1	I			L					+
90.5	197.8	100	80	SILT		5 A		oz	25					FG			BN	80				I			1		1				L							<u> </u>
97.8	198.6	100	60	SILT		7 N	ž	oz i	25				8D	FG			BN	82	I			{	1		1				<u> </u>			L	L]		\vdash
98.6	203.6	100	90	SILT		7 1	٧N	OZ	20	1			8D	FG			BN	82	2	1		<u>}</u>		[ļ	0.1		L		L	[L
03.6	206.3	100	90	SILT		5 A	1	oz	35		-		BD	FG	1		BN	78				T															L	<u> </u>
06.3	210.1	100	70	SILT		5 A		QZ	30				BD	FG	<u> </u>		BN		T	<u> </u>		1		1										L.				_
10.1	220.4	100	80	SILT		71		oz	20			_	80	FG	1	t —	BN	68			1 ~~			1-		1	T-	1										
20.4	220.7	80	0	FLTZ		5 4		GG					FR		1-	-	FT	1	1-			<u> </u>		<u> </u>	1	T				Ţ								
20.7	221.6	100		SILT	-	51		oz	15			_	BD	FG		-	BN	1	1-			1-				—	1	_		1	1	1						
21.6	235.0	100	80		LATE	50		οz	18	FX	20	-+-	BD			1-	BN	82	2	1		1	· · · ·	-	1	1-		· · · -			I.	0.5]	
35.0	241.3	100	60	SILT	LATE	31		oz	15				BD		†	<u> </u>	BN	85		1	<u> </u>	1—	1-	+	+	1-	1		t		1	0.5						
241.3	244.7	100		LATE	<u> </u>	710		oz	10		-+		靜	FG		<u>†</u>	n	55		1	t	 	+	+	+ • •	+	+			<u> </u>			<u>+</u>			1	1	1
44.7	259.6	100	80	QXAT		7		az	30	-		+	TT	<u>+ -</u>	<u> </u>	1	n	<u> </u>	+	<u>†</u>				+	+~	1		· · ·			1	0.2	<u> </u>					1
	277.2	100	70	QXAT		3 4		oz.	30		-		मंग		+	· · ·	ħ	42	,	<u>├</u>		+	·····	+	+	+	+	†	<u> </u>		1	0.2						1
59.6		100		VEIN		าทั	AAA/	oz	95				iv-		<u> </u>	+	VN		<u></u>	+		1	+	+	+	t –	1	1	<u> </u>	1	<u> </u>		1			1	1	1
77.2	278.8				<u> </u>	30	24	oz i		FX	10		TF		+		n	<u> </u>	┼	┼──	+	<u>+</u>	1-	+	+	+	+	┢		-	 	<u> </u>				<u> </u>	<u>†</u>	-
78.8	287.8	100		OXAT	ļ				_				hr.	<u> </u>	╉──	┝	ار	┢──	+ -	╉╌╴	╂╌──	+-	+	+	+	+	+	+	┝	+	7	3	1	<u> </u>		!	1	-
87.8	303.9	100		QXAT		30		οz	_20			- -			┢┉	<u> </u>	FT	-	+	┢━━┙		+	+	╉╼╍╾	+	+	┦──		<u> </u>	+	É−-	<u>+</u> ₹	<u>+</u>	<u>+</u>		+	+	+
03.9	304.0	60	0	FLTZ		3 A		GG		FR	20		BR	–	╂—			<u> </u>	+	<u> </u>			-	+	+		+	<u> </u>		+	-	+		<u> </u>	<u></u>	╞──	 	+
04.0	328.2	100		QXAT		50		αz	30	-			팬	ļ	╂──		n.		+	╉──	Į—	+	-	+	+	-	+		┣──		<u> </u>	<u>+</u> −	<u>{</u>	<u> </u>		┼	† – –	+
28.2	338.0	100	90	QXAT		30		άz	25				11	<u> </u>	_	-	ħ	<u> </u>	+-		I	+-	+	+	+		+		<u>├</u>	<u> </u>	{─-	+	<u> </u>			╂-──	-	+
38.0	340.0	100		QXAT		7 A		oz	25				TF			<u> </u>	TL.	ļ	4		<u> </u>	+		+	+		+		<u> </u>	+		<u> </u>	+	╂───		+	╂	+
40.0	357.5	100		QXAT		50		<u>oz</u>	25		-		TF	 	┣	 	n		<u>.</u>	┝	┣—	4	+	+	+	_	+		<u> </u>	+	⊢	<u> </u>	+	┟		╂──	[+
57.5	361.1	100		VEIN		1 V		αz	95			<u> </u>	٧V		_	<u> </u>	VN	30	4	┢━━	∔		+	+	╄	┿	-	₊	<u> </u>	÷—		↓	+		<u>.</u>	÷		+
61.1	379.6	100		OXAT		50		oz	30				ना	}	_	<u> </u>	π.	Ļ	┢	<u> </u>	L	ļ	1	_		-	+	↓	_		┢──	Į	┝	-	 	+—	<u> </u>	+
79.6	381.4	100		SEXL		5 A		αz	80				MY	L	I		VN		- I	-	L-	1		+		-		—			<u>.</u>		ł				1	+
81.4	389.2	100		QAXT		10		oz	15				TF			<u> </u>	π	59	1		L			-	-	-	-	-		-	U_	0.2	-	-		-	-	+
89.2	394.8	100		LLXT		7 A		αz		FS	20		TF			L	TL.	L			 	1_	1		-	1	+	L	L	-		h		1	ļ	–≁	<u> </u>	+
94.8	406.9	100	100	QFXT		10		αz	15				TF		1		π	1		1		1_				+	+	I		1-	<u>v</u> _	0.2		↓	-	+		+
06.9	408.3	80	70	OXLT		3 A	4	οz	25				ŦĨ		1		π			L.		1	1					I	L	_	<u>r</u>	0.5		<u> </u>		I	<u> </u>	+
08.3	408.5	80	0	FLTZ		3 A		GG	60	BF	40		FR				Ы	55	5												3	5	-		.	<u> </u>	1	+-
08.5	409.9	90	30	EXHL		70	3	po	10																									L			L	+
09.9	412.7	100		LLXT		3 A	1	DO	5				ŦT				π	60	1			[_						1		{	N	0.5		-	1.	L		1
12.7	423.7	100		LLXT		7 A		oz	_	DO	5		TF	<u> </u>			π	65	5	1							T				N	0.2						
23.7	446.4	100		LLXT		4 4		DO		BF	10		TF		1 -		ħ	62	_			1-	1					—	<u> </u>	1							1	

DIAMOND DRILL LOG

and the second second second second second second second second second second second second second second second

Project: Kutcho Creek

1

1

i

:

From	To	%Rec	RQD	Litth1	Litth2	Sh CoL	C1	C1%	C2	C2%	C3	64	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	OzA	MsH	MsA	СЪН	CbA	DIH	DIA	AkH	Aka	PVH	PvA	CoH	CnA	Soli So	ABat	H Bna
446.4	459.6	100	30	LATE		1 G	DO	15	oz	15			TF				TL.	72						l	1												10104
459.6	460.8	100	70	EXHL		3 WW	DO	15	il i				BO	1	1	1	BO	70	÷					<u> </u>	<u> </u>	┢━		┝╸╴┦		+		{──			┋╌╌┥╼╸	- 	+
460.8	463.1	100	20	LATE		1 G	DO	5	loz	10			TF			1	π	70	· · · · · · · · · · · · · · · · · · ·						<u> </u>	<u> </u>				+		 	<u> </u>		+ +		+
463.1	476.1	100	70	LXTF		7 G	αz	10	BF	20			नग	1	1	1	TL.	1 · · ·	<u> </u>			-		<u> </u>	<u> </u>	†				<u> </u>	7	3	z	0.3	┞╍╼╁╼	+	
476.1	477.1	100	30	LATF		1 G	00	5					ना	Î	1	1	π	81	†					[† – –	†			-	f	-	• *	<u> </u> −			+	- }
477.1	477.3	100	90	EXHL		3 WW	DO	20					TF	1		1	TL	71		_			1	<u>†</u>	Í –					1		··			<u>├──</u> ┼──	+	
477.3	480.5	100	90	LATF		1 G	DO	10					TF	1	1 -		n.		<u> </u>							1						1	i —		╏╼╴┠╼╍		+
480.5	485.7	100	100	QFXT		5 G	d	20	FS	15			ना	1	1	1										1		f				!				+	+
485.7	488.2	100	100	PATE		3 A	az	30					TF		1		ΤL								† · · · ·	t					7	20				+	
488.2	489.5		80	PATE		3 A	OZ.	25					TF			1								<u> </u>	1	 -					z	5		1	}	+	+
489.5	489.8			MSSX		3 YA	PY	60	CY	10			ना		1	1	π	72							1	• • • •					z	60	+	10		+	+
489.8	495.1			PATE		5 G	PY	20	oz	30			ना		1	I	ΤL.	72							1			- 1			z	20		.1		+	·+
495.1	495.3	_100	70	MSSX		1 G	PY	75	R N	15			नग				TL.	72							l —	r				<u> </u>	z	75		· · ·		+	+
495.3	514.8	100	90	PATE	_	3 G	αz	_ 30	PY	20			ना		1	<u> </u>	π	71							·····		\square	-+			z	20	<u></u>			+	-╋╼╍╼┙┙
514.8														· · · · ·	1		_								<u> </u>						<u> </u>	- 20				-+	+

Project: Kutcho Creek

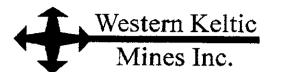
Drill Hole Id: WK05-63

lint	terval	
From		Comments
0.0	4.5	Casing
4.5		Glacial Boulders,
4.6		Coarse grained Gabbro w/ limonite stains.
9.2		
45.4	52.0	
52.0	54.4	
54.4		Frequent Qtz-Dol veinlets
65,8	72.4	
72.4	73.0	
73.0	93.9	Locally w/ bands of carbonaceous substance.
93.9	112.0	
112.0	112.1	
112.1	159.8	Gabbro w/ very common Qtz veinlets
159.8	160.0	
160.0	180.0	Very common Qtz-Dol veinlets.
180.0	183.7	
183.7	190.5	Very fine grained Silfstone.
190.5	197.8	
197.8	198.6	20% carbonaceous substance.
198.6		Pyrrhotite 0.5% along bedding. 20% carbonaceous substance.
203.6	206.3	
206.3		Thin layered Sittstone w/ 10% carbonaceous substance and 0.5% Pyrrhotite.
210.1	220.4	
220.4	220.7	
220.7		20% carbonaceous substance, 0.5% Pyrrhotite.
221.6	235.0	
235.0		25% carbonaceous substance.
241.3	244.7	
244.7	259.6	
259,6	277.2	
277.2		At 227.2 fragment of MSPY, lower contact at 30 degrees.
278.8	287.8	
287.8		At 303.3-303.8m bands of 15% Py.
303.9	304.0	
304.0	328.2	
328.2		Patches of Epidote
338.0	340.0	
340.0		Common thin quartz veinlets, two gauartz veins with thickness 20 cm each.
357.5	361.1	
361.1	379.6	
379.6	381.4	
381.4	389.2	One guartz vein 15 cm thickness.
389.2		One guartz vein 10 cm thickness.
394.8		Soradic guartz veins thickness up 2 cm.
406.9	408.3	
408.3	408.5	ragments of pyrite in quartz zone.
408.5		Quartz vein 20 cm thickness
409.9	412.7	
412.7	423.7	At 418.8 guartz vein 15 cm thickness.
423.7	446.4	ight pink color from admixture of hematite.
		Page 3 of 4

.

ł

DIAMOND DRILL LOG


Project: Kutcho Creek

• 1

Drill Hole Id: WK05-63

From	To	Comments
446.4	459.6	Quartz dolomite veins up 3 cm thick, strong layering
459.6	460.8	
460.8	_463.1	
463.1	476.1	
476.1	477.1	
477.1	477.3	
477.3	480.5	
480.5	485.7	
485.7	488.2	
488.2	489.5	
489.5	489.8	
489.8	495.1	
495.1	495.3	
495.3	514.8	
514.8		end of hole

Ì

.

Drill Hole Id.: WK05-64

Project: KUTCHO CREEK

and the second second second second second second second second second second second second second second second

Hole Azimuth: _____185° ______ Dip: ____50° _____ Total Depth: _<u>327,4m (1074')</u> Geological Summarv Date Started: September 12/05 ____ Date Completed: September 14/05 ____ Core Size: NQ2 Purpose / Target: Northing Easting Elevation UTM Location: Comments: Grid Location: _____ 232019 36661 1492 Collar Survey: _____ 6452317 536134 1492 Down Hole Survey Sample Information Split By: _____ Survey Method: # of Samples: <u>15 & 1 Std. & 1 Blank</u> Reflex Type: 1/2 Sawn Core <u> 280862 -</u> 878 Depth Azimuth Dip* -49.0 Date Shipped: September 17/05 189.5 14.9 Assay Certificate # : _A05082216_ 60.7 188.5 -48.3 **Key Intersections** 106.4 187.5 -45.9 Analytical Lab: ALS Chemex 158.2 189.4 -45.0 From То Results -44.6 Drill Information 203.9 189.7 Core Size: <u>NQ to: end</u> Dritl Contractor: ____ Hy-Tech Core Size: BTW to: Dritter: <u>Marcel Ducharme</u> Shift Distance Shift Distance Driller: Chris Yuen Helper: <u>Mathew Wheatley</u> Helper: Sean Bradley Logged By: Peter Holbek

the second second second second second second second second second second second second second second second s

Western Keltic Mines Inc.

ł

Project: Kutcho Creek

۱

Int	erval	Geo-T	echnical	Lithe	ology	Colour	1			onen			T		dure		1		cture							ation			_						lizatio			5
From	To	%Rec	RQD	Lith1	Lith2	Sh CoL	C1	C1%	C2	C2%	Ċ3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СРН	CbÄ	DIH	DIA	AKH	Aka	ΡŦ	PyA	CpH	CpA	SpH	SpA	BnH B	Ant
0	6.1			CASE												Ι.	I												_									
6.1	10.6	96	10	GYWK		7 G	PY	3	HE	3			FG	LM	GC	Ī		Γ			_						<u> </u>					1	L	<u> </u>		j		
10.6	18	65	5	FLTZ	GYWK													I								[
18,	51.5	90	60	ARGL	VSLT	7 A			L_				LM	FG	CB		BO	75															L					
51.5	91	99	85	VSLT		9 G							BD	FG	LM		BD	77												[.							\square	
91	97.3	100	90	LLXT		5 G	ĿF	35	oz	10	PO		FR	PP			FO	70						1			[1			[
97.3	255.1	100	93	QFXT	TFBR	3 G	oх	20	EP	20	LF_	QV	FR	PP			FÖ	70											-									
255.1	278	100	95	QFXT		3 G	ax	20	FX	25	а	SX	PP																									
278	286	100	88	QFXT		9 G	QX	_20	MS	30	FM	PY	PP	FO	Ι	Ϊ	FO	75					P	30							D	5						
286	288	100	60	LLAT		7 A	LF	20	CB	30	οz	MS	FR	SC	T			_					P	20	P	20					D	5	i					
288	293.8	95	10	LAXT	FLTZ	7 A	MS	_40	PY	10	LF	QX	SH	SL.	GG								Ρ	40	P	5					L	10						
293.8	298.2	98	50	MSSX			PY	90	SP	5			FG	MX																	м	90	D	_1	J	5		
298.2	298.7			ASHT		5 A	MS	40	CB	20	οz	PY	LM	ST.	1	Τ-		<u> </u>					Ρ	40	\$	10	P	10			P	5				- 1		
298.7	304	100	90	MSSX			PY	80	SP	10	CP	οz	MX	MT	1	T	LM	90			J	5				<u> </u>	1				м	80	B	5	J	10		
304	307.5	100	90	SMSX	LLTF		PY	30	MS	20	LF	QZ	LM		1-		FO	90			P	20	P	20		<u> </u>	<u> </u>				L	30	D	1	D	3		
307.5	310.6	100	90	SMSX	1		PY	40	az	30	MS	-	ĽМ								Ρ	30	\$	10							L	40	D	0.5	D	1		
310.6	327.4	100		LLTF		9 G	LF	35	MS	25	PY	oz	FR	LM	LB		FO	90			P	10	P	25							L	10						
327.4												{					1]												

Project: Kutcho Creek

•

Drill Hole Id: WK05-64

Int	ervai	
From	Ta	Comments
0	6.1	
6.1	10.6	Fine grained
10.6	18	As above, Instead of FLTZ could be extensive weathering.
18	51.5	Thin bedded arg!, SILT, 3m FLTZ at 46-49m.
51.5	91	Variable grain size w/ rare vok: Fragments.
91	97.3	Interesting top to the QFXT. 2-3% Po as wispy disseminations.
97.3	255.1	Tuff breccia phase of QFXT. Abundant Ep or Ct.
255.1	278	Finer QX + coasres FX than previous, rare fragments.
278		Abundant fluorMS and minor disseminated Py.
286		Prominent PB CB. only most siliceous frags are visible.
288		Highly attered "silver schist" w/ last 50cm gauge, some SEXL.
293.8		FG MSPy w/ minor Sp and rare specks of Cp.
298.2		Strongly sheeted.
298.7		Looks more like kutcho zone MSSX.
304		Fine grained.
307.5		Coarser grained.
310.6		Typical footwall. Footwall not as altered as other locations.
327.4		end of hole

.

APPENDIX III

.

ł

Ĺ

ł

Drill Core Sample Details

Western Keltic Mines Inc.			Appendix III Drill Core Sample Details			:	Kutcho Creek Project 2005 Diamond Driil Program
Hole_id	Sample_No	From metres	To metres	Width metres	Wt_in_Air grams	Wt_in_H2O grams	SG
WK05-39	280451	158	159	1			
WK05-39	280452	159	160	1			
W K0 5-39	280453	160	160.2	0.2			
WK05-39	280454	160.2	161.2	1			
WK05-39	280455	161.2	162.5	1.3			
WK05-39	280456	162.5	163.1	0,6			
WK05-39	280457	163.1	164,3	1.2			
WK 05 -39	280458	164.3	165.4	1.1			
WK05-39	280459	165.4	166.8	1.4			
WK05-39	280424	166.8	167.5	0.7			
WK 0 5-39	280432	167.5	168.7	1.2			
WK 0 5-39	280433	168.7	170.4	1.7			
WK 0 5-39	280434	170.4	173.4	3			
WK05-39	280435	173.4	176,5	3.1			
WK05-39	280436	176.5	176.8	0.3			
WK05-39	280425	182.6	184	1.4			
WK05-39	280428	184	185	1			
WK05-39	280429	185	186	1			
WK05-39	280430	186	187	1			
WK05-39	280431	187	188.6	1.6			
WK05-39	280628	188.6	190.3	1.7	0445 C		
WK05-39	280630	190.3	192	1.7	6145.5	4444.6	3.6
WK 0 5-39 WK 05 -39	280460	192	193	1	4169.6	2806.1	3.1
WK05-39	280461 280462	193	194	1			
WK05-39	280463	19 4 195	195 196	1 1			
WK05-39	280465	195	197	1			
WK05-39	280466	197	198	1			
WK05-39	280467	198	199	1			
WK05-39	280601	199	207	8			
WK05-39	280602	207	213.1	6.1			
WK05-39	280603	213.1	219.2	6,1			
WK 0 5-39	280604	219.2	225	5,8			
WK 05 -39	280605	225	234	9			
WK 05 -39	280606	234	238.7	4.7			
WK 05 -39	280607	238. 7	245	6.3			
WK 05 -39	280608	245	249.7	4.7			
WK 05 -39	260609	249.7	258.8	9.1			
WK05-39	280610	258.8	264.9	6.1			
WK05-39	280611	264. 9	270	5.1			
WK05-39	280612	270	277	7			
WK05-39	280613	277	284.6	7.6			
WK05-39	280614	284.6	292.1	7.5			
WK05-39	280615	292.1	297	4.9			
WK05-39	280616	297	302	5			
WK05-39	280617	302	307.5	5.5			
WK05-39	280468	297	298	1			
WK05-39	280469	298	299	1			
WK05-39	280470	299	300	1			
WK05-39	280471	300	301	1			
WK05-39 WK05-40	280472	301	302	1			
VV/\UD-4U	280473	272	273	1			

.

Hole_Id Sample_No From metres To metres Width wetres Wt_in_Air grams VW_in_Alr grams VW_in_Alr grams SG WK05-40 220474 273 274 1 <td< th=""><th>SECOND DAVID DAVID</th><th>ern Keltie nes Inc.</th><th></th><th></th><th colspan="5">Appendix III Drill Core Sample Details</th><th colspan="3">Kutcho Creek Project 2005 Diamond Drill Program</th></td<>	SECOND DAVID DAVID	ern Keltie nes Inc.			Appendix III Drill Core Sample Details					Kutcho Creek Project 2005 Diamond Drill Program		
WK05-40 280476 275 1 WK05-40 280477 276 277 1 WK05-40 280477 278 278 1 WK05-40 280478 278 278 1 WK05-40 280478 278 278 1 WK05-40 280481 280 1 1 WK05-40 280482 281 282 1 WK05-40 280618 282 286 4 WK05-40 280621 300.5 306 5.5 WK05-40 280623 314 320 6 WK05-40 280624 320 333 7 WK05-40 280625 326 333 339 6 WK05-41 280482 172 173 1 WK05-41 280481 154 1.4 WK05-41 280481 154 1.4 WK05-41 280481 166 0.6 WK05-41 280482 168.8 188 1.2 WK05-41 280482	_	Hole_ld	Sample_No						SG	_		
WK05-40 280476 275 1 WK05-40 280477 276 277 1 WK05-40 280477 278 278 1 WK05-40 280478 278 278 1 WK05-40 280478 278 278 1 WK05-40 280480 281 282 1 WK05-40 280618 282 286 4 WK05-40 280621 300.5 306 5.5 WK05-40 280623 314 320 6 WK05-40 280623 314 320 6 WK05-40 280623 333 333 7 WK05-40 280624 320 36 6 WK05-40 280625 326 333 37 WK05-41 280485 172 173 1 WK05-41 280485 172 173 1 WK05-41 280485 186 1.6 1.6 WK05-41 280485 186.2 0.2 2 WK0		WK05-40	280474	273	274	1						
WK05-40 280476 275 276 1 WK05-40 280478 277 278 1 WK05-40 280479 278 279 1 WK05-40 280470 279 280 1 WK05-40 280480 279 280 1 WK05-40 280681 282 286 4 WK05-40 280621 200.5 306 5.5 WK05-40 280622 306 5.5 WK05-40 280623 314 8 WK05-40 280623 333 7 WK05-40 280624 320 325 6 WK05-40 280623 333 39 6 WK05-40 280624 320 326 6 WK05-41 280486 173 174 1 WK05-41 280486 173 174 1 WK05-41 280487 186.4 1.6 0.6 WK05-41 280481 186.5 0.6 WK05-41 280482												
WK05-40 280478 277 278 1 WK05-40 280479 278 279 1 WK05-40 280481 280 281 1 WK05-40 280481 280 281 1 WK05-40 280618 282 286 4 WK05-40 280619 286 283 7 WK05-40 280620 283 300.5 5.5 WK05-40 280623 314 8 WK05-40 280625 326 6 WK05-40 280625 320 326 6 WK05-40 280625 333 33 6 WK05-41 280485 172 173 1 WK05-41 280485 172 173 1 WK05-41 280485 184 185.4 1.4 WK05-41 280487 184 185.4 1.4 WK05-41 280481 186 1.6 1.6 WK05-41 280481 186.8 1.8 1.2 WK05-41												
WK05-40 280479 277 278 1 WK05-40 280480 279 280 1 WK05-40 280481 280 281 1 WK05-40 280618 282 286 4 WK05-40 280619 282 286 4 WK05-40 280620 293 300.5 7.5 WK05-40 280622 306 314 8 WK05-40 280623 314 320 6 WK05-40 280624 320 326 6 WK05-40 280624 320 326 6 WK05-40 280327 333 39 6 WK05-41 280485 172 173 1 WK05-41 280486 186 166 0 WK05-41 280481 186 166 0 WK05-41 280481 186 16 1 WK05-41 280481 186 16 1 WK05-41 280481 186 16 1												
WK05-40 280480 278 279 1 WK05-40 280480 280 281 1 WK05-40 280481 280 281 1 WK05-40 280618 282 286 4 WK05-40 280620 283 300.5 7.5 WK05-40 280621 300.5 306 5.5 WK05-40 280622 314 320 6 WK05-40 280623 324 320 6 WK05-40 280625 323 333 7 WK05-40 280625 333 7 WK05-41 280485 172 173 1 WK05-41 280485 172 173 1 WK05-41 280485 186 166 0.6 WK05-41 280486 186.2 0.2 2 WK05-41 280489 186 186 0.6 WK05-41 280492 207 209 2 WK05-41 280492 210 211 1 <												
WK05-40 280481 280 1 WK05-40 280481 281 281 1 WK05-40 280618 282 1 WK05-40 280619 286 283 7 WK05-40 280621 300.5 7.5 WK05-40 280623 314 8 WK05-40 280623 314 3 WK05-40 280624 320 326 6 WK05-40 280627 333 339 6 WK05-40 280264 320 326 6 WK05-40 280326 333 39 6 WK05-41 280485 717 1 1 WK05-41 280487 184 14 1 WK05-41 280487 184 186 16 WK05-41 280481 186 18 1 WK05-41 280491 186 16 2 WK05-41 280491 186 18 1 WK05-41 280492 10 1 W												
WK05-40 280482 281 1 WK05-40 280618 282 286 4 WK05-40 280620 293 30 5 7 WK05-40 280620 293 300.5 7.5 5 WK05-40 280620 293 300.5 5.5 5 WK05-40 280622 306 314 8 5 WK05-40 280623 314 320 6 5 WK05-40 280625 326 6 5 5 WK05-40 280425 333 339 6 5 5 WK05-41 280485 172 173 1 5 1 WK05-41 280486 173 174 1 5 1 WK05-41 280489 186.1 186 0.6 5 5 WK05-41 280489 186.1 186 1.2 5 1 WK05-41 280490 186.8 188 1.2 5 1 WK05-41 280492												
WK05-40 280618 282 281 282 1 WK05-40 280619 282 293 7 WK05-40 280621 300.5 7.5 WK05-40 280622 300.5 7.5 WK05-40 280623 314 8 WK05-40 280623 314 8 WK05-40 280625 326 6 WK05-40 280425 333 339 6 WK05-41 280485 173 1 WK05-41 280486 173 174 1 WK05-41 280485 184 186 0.6 WK05-41 280487 186 186 0.6 WK05-41 280487 186 186 0.6 WK05-41 280481 186.8 18.8 1.2 WK05-41 280491 186 186 1.4 WK05-41 280491 188 189 1 WK05-41 280491 121 1 1 WK05-41 280492 210 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
WK05-40 280619 286 293 7 WK05-40 280620 293 300.5 7.5 WK05-40 280621 300.5 7.5 WK05-40 280623 314 8 WK05-40 280623 314 320 6 WK05-40 280623 314 320 6 WK05-40 280625 326 333 7 WK05-40 280327 333 339 6 WK05-41 280485 172 173 1 WK05-41 280486 184.4 186 0.6 WK05-41 280487 184 185.4 1.4 WK05-41 280487 186 1.2 - WK05-41 280489 186.8 0.6 - WK05-41 280491 186.8 188 1.2 WK05-41 280492 209 2 - WK05-41 280492 209 2 - WK05-41 280492 210 1 - WK05-41												
WK05-40 280620 293 300.5 7.5 WK05-40 280622 300.5 37.5 WK05-40 280622 306 5.5 WK05-40 280623 314 8 WK05-40 280625 326 6 WK05-40 280252 326 33 WK05-40 280327 339 344.1 5.1 WK05-41 280485 172 173 1 WK05-41 280485 173 174 1 WK05-41 280485 184 185.4 1.4 WK05-41 280485 186.1 166.2 0.2 WK05-41 280481 186.8 188 1.2 WK05-41 280481 186.8 188 1.2 WK05-41 280492 209 210 1 WK05-41 280492 209 210 1 WK05-41 280492 210 1 1 WK05-41 280492 212 1 3130.3 2222.1 3.4 WK05-41 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
WK05-40 280621 300.5 7.5 WK05-40 280621 300.5 306 5.5 WK05-40 280623 314 8 WK05-40 280623 314 320 6 WK05-40 280624 320 326 6 WK05-40 280327 333 37 WK05-41 280485 172 173 1 WK05-41 280485 173 174 1 WK05-41 280485 173 174 1 WK05-41 280485 186 0.6 WK05-41 280487 186.8 186 0.6 WK05-41 280489 186.8 186 1.4 WK05-41 280491 186.2 186.8 0.6 WK05-41 280492 209 2.10 1 WK05-41 280492 209 2.10 1 WK05-41 280492 213 2.14 1 2.770 1903.4 3.2 WK05-41 280492 213 2												
WK05-40 280621 300.6 306 5.5 WK05-40 280623 314 8 WK05-40 280624 320 326 6 WK05-40 280625 333 37 WK05-40 280625 333 339 6 WK05-40 280227 339 344.1 5.1 WK05-41 280486 173 174 1 WK05-41 280487 186.4 186.4 1.4 WK05-41 280487 186.4 186.5 0.5 WK05-41 280489 186.8 186.2 0.2 WK05-41 280491 186.8 186 1.2 WK05-41 280491 186.8 188 1.2 WK05-41 280493 210 211 1 WK05-41 280493 210 211 1 WK05-41 280492 213 214 1 2770 109.3 3.2 WK05-41 280492 212 213 1 3130.3 222.1 3.4 <						7. 5						
WK05-40 280622 306 314 8 WK05-40 280623 314 320 6 WK05-40 280625 326 333 7 WK05-40 280327 339 344.1 5.1 WK05-41 280485 172 173 1 WK05-41 280485 173 174 1 WK05-41 280487 184 185.4 1.4 WK05-41 280487 186.1 86.2 0.6 WK05-41 280489 186.2 186.8 0.6 WK05-41 280491 186.2 186.8 0.6 WK05-41 280492 209 209 2 WK05-41 280492 209 209 2 WK05-41 280492 209 209 2 WK05-41 280492 209 209 2 WK05-41 280492 213 214 2770 1903.4 3.2 WK05-41 280494 213 214 1 2770 1903.4 3.2												
WK05-40 280623 314 320 6 WK05-40 280625 326 333 7 WK05-40 280326 333 339 6 WK05-40 280327 339 344.1 5.1 WK05-41 280486 173 174 1 WK05-41 280486 173 174 1 WK05-41 280487 184 185.4 1.4 WK05-41 280489 186.1 186.2 0.6 WK05-41 280499 186.8 186.2 0.2 WK05-41 280491 186.8 186 1.2 WK05-41 280492 209 210 1 WK05-41 280492 209 210 1 WK05-41 280492 210 1 1 WK05-41 280492 210 1 1 WK05-41 280492 213 14 1 2770 1903.4 3.2 WK05-41 280497 214 215 1 266.1 1906.2 3.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
WK05-40 280624 320 326 6 WK05-40 280625 326 333 7 WK05-40 280327 339 344.1 5.1 WK05-41 280485 172 173 1 WK05-41 280485 173 174 1 WK05-41 280485 184 185.4 1.4 WK05-41 280487 184 185.4 1.4 WK05-41 280489 186 186.2 0.2 WK05-41 280489 186 186.8 0.6 WK05-41 280491 188 189 1 WK05-41 280492 209 210 1 WK05-41 280492 209 210 1 WK05-41 280492 210 21 1 WK05-41 280492 210 21 1 WK05-41 280492 210 21 1 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-42 280597 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
WK05-40 280326 333 7 WK05-40 280326 333 339 6 WK05-40 280327 339 344.1 5.1 WK05-41 280485 172 173 1 WK05-41 280486 173 174 1 WK05-41 280487 184 186.4 1.4 WK05-41 280489 186.4 186.2 0.2 WK05-41 280490 186.8 186.1 0.6 WK05-41 280491 188 189 1 WK05-41 280492 197.8 203.9 6.1 WK05-41 280492 209 210 1 WK05-41 280492 209 210 1 WK05-41 280492 210 211 1 WK05-41 280492 212 213 1 3130.3 2222.1 3.4 WK05-41 280492 213 214 1 2770 1903.4 3.2 WK05-41 280496 213 214 1 <td< td=""><td></td><td>WK05-40</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		WK05-40										
WK05-40 280326 333 339 6 WK05-40 280327 339 344.1 5.1 WK05-41 280486 173 174 1 WK05-41 280487 184 185.4 1.4 WK05-41 280489 186.4 166 6 WK05-41 280489 186.1 186.2 0.2 WK05-41 280481 186.8 0.6		WK05-40										
WK05-41 280485 172 173 1 WK05-41 280487 184 185.4 1.4 WK05-41 280489 186.1 186.2 0.2 WK05-41 280489 186.1 186.2 0.2 WK05-41 280490 186.8 186.2 0.2 WK05-41 280491 186.8 188 1.2 WK05-41 280491 188.189 1		WK05-40	280326									
WK05-41 280485 172 173 1 WK05-41 280487 184 185.4 1.4 WK05-41 280489 186.1 186.2 0.2 WK05-41 280489 186.1 186.2 0.2 WK05-41 280490 186.8 186.2 0.2 WK05-41 280491 186.8 188 1.2 WK05-41 280491 188.189 1												
WK05-41 280486 173 174 1 WK05-41 280487 184 185.4 1.4 WK05-41 280488 185.4 186. 1.4 WK05-41 280491 186.2 0.2 WK05-41 280491 186.2 186.8 0.6 WK05-41 280491 186.8 189 1 WK05-41 280492 197.8 203.9 6.1 WK05-41 280492 209 20 2 WK05-41 280492 210 211 1 WK05-41 280494 211 212 1 WK05-41 280494 211 212 1 WK05-41 280495 212 213 1 3130.3 2222.1 3.4 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-42 280507 45.6 0.6 1526.6 973.6 2.8 <tr< td=""><td></td><td>WK05-41</td><td>280485</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>		WK05-41	280485									
WK05-41 280487 184 185.4 1.4 WK05-41 280488 185.4 186 0.6 WK05-41 280498 186.2 186.2 0.2 WK05-41 280490 186.8 188 1.2 WK05-41 280490 186.8 189 1 WK05-41 280423 207 209 2 WK05-41 280423 207 209 2 WK05-41 280492 209 210 1 WK05-41 280493 210 1 1 WK05-41 280493 210 211 1 WK05-41 280493 212 213 1 3130.3 2222.1 3.4 WK05-41 280496 213 214 1 28770 1803.4 3.2 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-42 280597 45 47 1.4 2004 1515.6 4.1 WK05-42 280505 47 1.4		WK05-41	280486			1						
WK05-41 280489 186 186.2 0.2 WK05-41 280891 186.8 186.8 0.6 WK05-41 280490 186.8 188 1.2 WK05-41 280491 188 189 1 WK05-41 280422 197.8 203.9 6.1 WK05-41 280422 207 209 2 WK05-41 280493 210 211 1 WK05-41 280492 210 211 1 WK05-41 280493 212 213 1 3130.3 2222.1 3.4 WK05-41 280495 212 213 1 2170 1903.4 3.2 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-41 280497 214 216 1 2563.7 1724.6 3.1 WK05-42 280597 45 45.6 0.6 1526.6 973.6 2.8 WK05-42 280352 49 50.2 1.2 1287.9 897.8		WK05-41				1.4						
WK05-41 280489 186 186.2 0.2 WK05-41 280891 186.8 0.6 WK05-41 280490 186.8 188 1.2 WK05-41 280491 188 189 1 WK05-41 280422 197.8 203.9 6.1 WK05-41 280492 209 20 2 WK05-41 280492 209 210 1 WK05-41 280492 210 211 1 WK05-41 280492 212 213 1 3130.3 2222.1 3.4 WK05-41 280495 212 213 1 216.1 1905.2 3.1 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-41 280498 215 216 1 2563.7 1724.6 3.1 WK05-42 280597 45.6 47 1.4 2004 151.5 4.1 WK05-42 280352 49 50.2 1.2 1287.9 897.8 3.3		WK05-41										
WK05-41 280490 186.8 188 1.2 WK05-41 280421 197.8 203.9 6.1 WK05-41 280422 197.8 203.9 6.1 WK05-41 280423 207 209 2 WK05-41 280492 209 210 1 WK05-41 280493 210 211 1 WK05-41 280495 212 213 1 3130.3 2222.1 3.4 WK05-41 280496 213 214 1 2770 1903.4 3.2 WK05-41 280496 213 214 1 2770 1903.4 3.2 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-42 280597 45 45.6 0.6 1526.6 973.6 2.8 WK05-42 280597 45 45.6 0.6 1526.5 1247.2 4.0 WK05-42 280532 49 50.2 1.2 1287.9 897.8 3.3 WK05-42 <td></td> <td>WK05-41</td> <td></td> <td>186</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		WK05-41		186								
WK05-41 280491 188 189 1 WK05-41 280422 197.8 203.9 6.1 WK05-41 280492 209 210 1 WK05-41 280493 210 211 1 WK05-41 280493 210 211 1 WK05-41 280494 211 212 1 WK05-41 280495 212 213 1 3130.3 2222.1 3.4 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-42 280597 45 45.6 0.6 1526.6 973.6 2.8 WK05-42 280500 47 48 1 1602.6 1247.2 4.0 WK05-42 280351 48 49 1 1602.6 1247.2 4.0 WK05-42 280351 55 57 2 1981.3 1244.9 2.7 WK05-42 280		WK05-41	280891									
WK05-41 280491 188 189 1 WK05-41 280422 197.8 203.9 6.1 WK05-41 280492 209 210 1 WK05-41 280493 210 211 1 WK05-41 280493 210 211 1 WK05-41 280494 211 212 1 WK05-41 280495 212 213 1 3130.3 2222.1 3.4 WK05-41 280496 213 214 1 2770 1903.4 3.2 WK05-41 280497 214 215 1 2861.7 1724.6 3.1 WK05-42 280597 45 45.6 0.6 1526.6 973.6 2.8 WK05-42 280500 47 48 1 1665.6 1247.2 4.0 WK05-42 280351 48 49 1 1662.6 1235.2 4.4 WK05-42 280351 55 57 2 1991.3 1244.9 2.7 WK05-42 28053		WK05-41										
WK05-41 280422 197.8 203.9 6.1 WK05-41 280423 207 209 2 WK05-41 280492 209 210 1 WK05-41 280493 210 211 1 WK05-41 280494 211 212 1 WK05-41 280495 212 213 1 3130.3 2222.1 3.4 WK05-41 280496 213 214 1 2770 1903.4 3.2 WK05-41 280497 214 215 1 2863.7 1724.6 3.1 WK05-42 280597 45 45.6 0.6 1526.6 973.6 2.8 WK05-42 280500 47 48 1 1662.6 1247.2 4.0 WK05-42 280351 48 49 1 1602.6 1235.2 4.4 WK05-42 280353 53.8 54.4 0.6 938.9 644 3.2 WK05-42 280531 55 57 2 1991.3 1244.9 2.7		WK05-41										
WK05-41 280423 207 209 2 WK05-41 280492 209 210 1 WK05-41 280493 210 211 1 WK05-41 280494 211 212 1 WK05-41 280495 212 213 1 3130.3 2222.1 3.4 WK05-41 280496 213 214 1 2770 1903.4 3.2 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-41 280498 215 216 1 2563.7 1724.6 3.1 WK05-42 280597 45.6 47 1.4 2004 1515.6 4.1 WK05-42 280500 47 48 1 1602.6 1235.2 4.4 WK05-42 280351 48 49 1 1602.6 1235.2 4.4 WK05-42 280531 53.8 54.4 0.6 938.9 644 3.2 WK05-42 280531 55 57 2		WK05-41				6.1						
WK05-41 280492 209 210 1 WK05-41 280493 210 211 1 WK05-41 280494 211 212 1 WK05-41 280495 212 213 1 3130.3 2222.1 3.4 WK05-41 280496 213 214 1 2770 1903.4 3.2 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-41 280498 215 216 1 2563.7 1724.6 3.1 WK05-42 280597 45 45.6 0.6 1526.6 973.6 2.8 WK05-42 280590 47 1.4 2004 1515.6 4.1 WK05-42 280351 48 49 1 1602.6 1235.2 4.4 WK05-42 280353 53.8 54.4 0.6 938.9 644 3.2 WK05-42 280531 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
WK05-41 280493 210 211 1 WK05-41 280494 211 212 1 WK05-41 280495 212 213 1 3130.3 222.1 3.4 WK05-41 280496 213 214 1 2770 1903.4 3.2 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-41 280498 215 216 1 2563.7 1724.6 3.1 WK05-42 280597 45 45.6 0.6 1526.6 973.6 2.8 WK05-42 280500 47 48 1 1665.6 1247.2 4.0 WK05-42 280351 48 49 1 1602.6 1235.2 4.4 WK05-42 280352 49 50.2 1.2 1287.9 897.8 3.3 WK05-42 280531 55 57 2 1991.3 1244.9 2.7 WK05-42 280532 57 59 2 2292.6 1455.3 2.7<			280492									
WK05-41 280494 211 212 1 WK05-41 280495 212 213 1 3130.3 2222.1 3.4 WK05-41 280496 213 214 1 2770 1903.4 3.2 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-41 280498 215 216 1 2563.7 1724.6 3.1 WK05-42 280597 45 45.6 0.6 1526.6 973.6 2.8 WK05-42 280590 47 48 1 1665.6 1247.2 4.0 WK05-42 280351 48 49 1 1602.6 1235.2 4.4 WK05-42 280352 49 50.2 1.2 1287.9 897.8 3.3 WK05-42 280533 53.8 54.4 0.6 938.9 644 3.2 WK05-42 280532 57 59 2 2292.6 1455.3 2.7 WK05-42 280533 59 61 2		WK05-41										
WK05-41 280495 212 213 1 3130.3 222.1 3.4 WK05-41 280496 213 214 1 2770 1903.4 3.2 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-41 280498 215 216 1 2563.7 1724.6 3.1 WK05-42 280597 45 45.6 0.6 1526.6 973.6 2.8 WK05-42 280597 45 45.7 1.4 2004 1515.6 4.1 WK05-42 280500 47 48 1 1662.6 1235.2 4.4 WK05-42 280351 48 49 1 1602.6 1235.2 4.4 WK05-42 280353 53.8 54.4 0.6 938.9 644 3.2 WK05-42 280531 55 57 2 1991.3 1244.9 2.7 WK05-42 280532 57 59 2 2292.6 1455.3 2.7 WK05-42		WK05-41	280494									
WK05-41 280496 213 214 1 2770 1903.4 3.2 WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-41 280498 215 216 1 2563.7 1724.6 3.1 WK05-42 280597 45 45.6 0.6 1526.6 973.6 2.8 WK05-42 280500 47 48 1 1665.6 1247.2 4.0 WK05-42 280351 48 49 1 1602.6 1235.2 4.4 WK05-42 280352 49 50.2 1.2 1287.9 897.8 3.3 WK05-42 280353 53.8 54.4 0.6 938.9 644 3.2 WK05-42 280531 55 57 2 1991.3 1244.9 2.7 WK05-42 280533 59 61 2 2099.9 1330 2.7 WK05-42 280533 59 61 2 2099.9 1330 2.7 WK05-42 2805		WK05-41	280495	212		1	3130.3	2222.1	3.4			
WK05-41 280497 214 215 1 2816.1 1905.2 3.1 WK05-41 280498 215 216 1 2563.7 1724.6 3.1 WK05-42 280597 45 45.6 0.6 1526.6 973.6 2.8 WK05-42 280499 45.6 47 1.4 2004 1515.6 4.1 WK05-42 280350 47 48 1 1665.6 1247.2 4.0 WK05-42 280351 48 49 1 1602.6 1235.2 4.4 WK05-42 280352 49 50.2 1.2 1287.9 897.8 3.3 WK05-42 280353 53.8 54.4 0.6 938.9 644 3.2 WK05-42 280531 55 57 2 1991.3 1244.9 2.7 WK05-42 280532 57 59 2 2292.6 1455.3 2.7 WK05-42 280533 59 61 2 2099.9 1330 2.7 WK05-42		WK05-41	280496			1						
WK05-41 280498 215 216 1 2563.7 1724.6 3.1 WK05-42 280597 45 45.6 0.6 1526.6 973.6 2.8 WK05-42 280499 45.6 47 1.4 2004 1515.6 4.1 WK05-42 280500 47 48 1 1665.6 1247.2 4.0 WK05-42 280351 48 49 1 1602.6 1235.2 4.4 WK05-42 280352 49 50.2 1.2 1287.9 897.8 3.3 WK05-42 280353 53.8 54.4 0.6 938.9 644 3.2 WK05-42 280531 55 57 2 1991.3 1244.9 2.7 WK05-42 280532 57 59 2 2292.6 1455.3 2.7 WK05-42 280533 59 61 2 2099.9 1330 2.7 WK05-42 280535 63 65 2 2311.6 1466.3 2.8 WK05-42 28		WK05-41	280497									
VK05-42 280499 45.6 47 1.4 2004 1515.6 4.1 VK05-42 280500 47 48 1 1665.6 1247.2 4.0 VK05-42 280351 48 49 1 1602.6 1235.2 4.4 VK05-42 280352 49 50.2 1.2 1287.9 897.8 3.3 VK05-42 280353 53.8 54.4 0.6 938.9 644 3.2 VK05-42 280531 55 57 2 1991.3 1244.9 2.7 VK05-42 280532 57 59 2 2292.6 1455.3 2.7 VK05-42 280533 59 61 2 2099.9 1330 2.7 VK05-42 280533 59 61 2 2099.9 1330 2.7 VK05-42 280535 63 65 2 2311.6 1466.3 2.8 VK05-42 280535 63 65 2 2311.6 1469.3 2.7 VK05-42 280536 <td></td> <td>WK05-41</td> <td>280498</td> <td>215</td> <td></td> <td>1</td> <td></td> <td>1724.6</td> <td></td> <td></td>		WK05-41	280498	215		1		1724.6				
WK05-42280500474811665.61247.24.0WK05-42280351484911602.61235.24.4WK05-422803524950.21.21287.9897.83.3WK05-4228035353.854.40.6938.96443.2WK05-4228054354.4550.61331.28642.8WK05-42280531555721991.31244.92.7WK05-42280532575922292.61455.32.7WK05-42280533596122099.913302.7WK05-42280534616322294.61466.32.8WK05-42280535636522311.61469.32.7WK05-422805366567226721670.32.7WK05-422805376769.52.52873.61809.52.7WK05-4328089223.824.10.32.7		WK05-42	280597	45	45.6	0,6	1526.6	973,6	2.8			
WK05-42 280351 48 49 1 1602.6 1235.2 4.4 WK05-42 280352 49 50.2 1.2 1287.9 897.8 3.3 WK05-42 280353 53.8 54.4 0.6 938.9 644 3.2 WK05-42 280543 54.4 55 0.6 1331.2 864 2.8 WK05-42 280531 55 57 2 1991.3 1244.9 2.7 WK05-42 280532 57 59 2 2292.6 1455.3 2.7 WK05-42 280533 59 61 2 2099.9 1330 2.7 WK05-42 280534 61 63 2 2294.6 1466.3 2.8 WK05-42 280535 63 65 2 2311.6 1469.3 2.7 WK05-42 280536 65 67 2 2672 1670.3 2.7 WK05-42 280537 67 69.5 2.5 2873.6 1809.5 2.7 WK05-43 280892						1.4						
WK05-42 280352 49 50.2 1.2 1287.9 897.8 3.3 WK05-42 280353 53.8 54.4 0.6 938.9 644 3.2 WK05-42 280543 54.4 55 0.6 1331.2 864 2.8 WK05-42 280531 55 57 2 1991.3 1244.9 2.7 WK05-42 280532 57 59 2 2292.6 1455.3 2.7 WK05-42 280533 59 61 2 2099.9 1330 2.7 WK05-42 280534 61 63 2 2294.6 1466.3 2.8 WK05-42 280535 63 65 2 2311.6 1469.3 2.7 WK05-42 280536 65 67 2 2672 1670.3 2.7 WK05-42 280537 67 69.5 2.5 2873.6 1809.5 2.7 WK05-43 280892 23.8 24.1 0.3 10.3 10.3 10.3						1						
WK05-42 280353 53.8 54.4 0.6 938.9 644 3.2 WK05-42 280543 54.4 55 0.6 1331.2 864 2.8 WK05-42 280531 55 57 2 1991.3 1244.9 2.7 WK05-42 280532 57 59 2 2292.6 1455.3 2.7 WK05-42 280533 59 61 2 2099.9 1330 2.7 WK05-42 280534 61 63 2 2294.6 1466.3 2.8 WK05-42 280535 63 65 2 2311.6 1469.3 2.7 WK05-42 280536 65 67 2 2672 1670.3 2.7 WK05-42 280537 67 69.5 2.5 2873.6 1809.5 2.7 WK05-43 280892 23.8 24.1 0.3 0.3 0.3												
WK05-42 280543 54.4 55 0.6 1331.2 864 2.8 WK05-42 280531 55 57 2 1991.3 1244.9 2.7 WK05-42 280532 57 59 2 2292.6 1455.3 2.7 WK05-42 280533 59 61 2 2099.9 1330 2.7 WK05-42 280534 61 63 2 2294.6 1466.3 2.8 WK05-42 280535 63 65 2 2311.6 1469.3 2.7 WK05-42 280536 65 67 2 2672 1670.3 2.7 WK05-42 280537 67 69.5 2.5 2873.6 1809.5 2.7 WK05-43 280892 23.8 24.1 0.3 2.7 2.7												
WK05-42 280531 55 57 2 1991.3 1244.9 2.7 WK05-42 280532 57 59 2 2292.6 1455.3 2.7 WK05-42 280533 59 61 2 2099.9 1330 2.7 WK05-42 280534 61 63 2 2294.6 1466.3 2.8 WK05-42 280535 63 65 2 2311.6 1469.3 2.7 WK05-42 280536 65 67 2 2672 1670.3 2.7 WK05-42 280537 67 69.5 2.5 2873.6 1809.5 2.7 WK05-43 280892 23.8 24.1 0.3 27 2672 1670.3 2.7							938.9		3.2			
WK05-42 280532 57 59 2 2292.6 1455.3 2.7 WK05-42 280533 59 61 2 2099.9 1330 2.7 WK05-42 280534 61 63 2 2294.6 1466.3 2.8 WK05-42 280535 63 65 2 2311.6 1469.3 2.7 WK05-42 280536 65 67 2 2672 1670.3 2.7 WK05-42 280537 67 69.5 2.5 2873.6 1809.5 2.7 WK05-43 280892 23.8 24.1 0.3 0.3 0.3												
WK05-42 280533 59 61 2 2099.9 1330 2.7 WK05-42 280534 61 63 2 2294.6 1466.3 2.8 WK05-42 280535 63 65 2 2311.6 1469.3 2.7 WK05-42 280536 65 67 2 2672 1670.3 2.7 WK05-42 280537 67 69.5 2.5 2873.6 1809.5 2.7 WK05-43 280892 23.8 24.1 0.3 1409.3 2.7												
WK05-42 280534 61 63 2 2294.6 1466.3 2.8 WK05-42 280535 63 65 2 2311.6 1469.3 2.7 WK05-42 280536 65 67 2 2672 1670.3 2.7 WK05-42 280537 67 69.5 2.5 2873.6 1809.5 2.7 WK05-43 280892 23.8 24.1 0.3 0.3 0.3												
WK05-42 280535 63 65 2 2311.6 1469.3 2.7 WK05-42 280536 65 67 2 2672 1670.3 2.7 WK05-42 280537 67 69.5 2.5 2873.6 1809.5 2.7 WK05-43 280892 23.8 24.1 0.3 0.3												
WK05-42 280536 65 67 2 2672 1670.3 2.7 WK05-42 280537 67 69.5 2.5 2873.6 1809.5 2.7 WK05-43 280892 23.8 24.1 0.3												
WK05-42 280537 67 69.5 2.5 2873.6 1809.5 2.7 WK05-43 280892 23.8 24.1 0.3												
WK05-43 280892 23.8 24.1 0.3							2672	1670.3	2.7			
							2873.6	1809.5	2.7			
WK05-43 280356 24.1 25.2 1.1												
		WK05-43	280356	24.1	25.2	1.1						

ſ

[

Γ.

.

-

_

6 C	estern Keltic Mines Inc.				opendix III e Sample [Details	20)0
	Hole_ld	Sample_No	From metres	To metres	Width metres	Wt_in_Air grams	Wt_in_H2O grams	
	WK05-43	280357	25.2	26	0.8			
	WK05-43	280358	31.6	33.2	1.6			
	WK05-43	280409	33.2	35	1.8			
	WK05-43	280893	35	35.4	0.4			
	WK05-43	280359	35.4	36.5	1.1			
	WK05-43	280360	36.5	39	2.5			
	WK05-43	280515	39	41	2	2274.8	1465.2	
	WK05-43	280516	41	43	2	2399.6	1534	
	WK05-43	280517	43	45	2	2204.4	1385.6	
	WK05-43	280518	45	47	2	2022.6	1255.6	
	WK05-43	280519	47	49	2	2114.7	1319.5	
	WK05-43	280520	49	51	2	2500.2	1580	
	WK05-43	280521	51	53	2	2149.3	1377.6	
	WK05-43	280522	53	55	2	2046.7	1317.7	
	WK05-43	280523	55	57	2	2374.8	1502.3	
	WK05-43	280524	57	59	2	1421.7	858	
	WK05-43	280525	59	61	2	1683.4	1048	
	WK05-43	280526	61	63	2	1699.2	1054.4	
	WK05-43	280527	63	65	2	2108.2	1312.9	
	WK05-43	280528	65	67	2	2128.2	1334.4	
	WK05-43	280529	67	69.5	2.5	3268	2041.2	
	WK05-44	280411	50.5	50.9	0.4	0200	2041.2	
	WK05-44	280410	50,9	52	1.1			
	WK05-44	280361	52	54	2			
	WK05-44	280362	54	55	1			
	WK05-44	280363	55	56	1			
	WK05-44	280364	56	57	1			
	WK05-44	280365	57	58	1			
	WK05-44	280366	58	60	2			
	WK05-44	280368	60	61.4	1.4			
	WK05-44	280371	61.4	61.9	0.5			
	WK05-44	280372	61.9	64.3	2.4			
	WK05-44	280373	64.3	66.9	2.6			
	WK05-44	280374	66.9	70.1	3.2			
	WK05-44	280375	70.1	71.1	1			
	WK05-44	280376	71.1	72	0.9			
	WK05-44	280412	72	73	1			
	WK05-44	280413	73	74	1			
	WK05-44	280414	74	75	1			
	WK05-44	280415	75	76.2	1.2			
	WK05-45	280379	11.8	13	1.2			
	WK05-45	280380	13	14	1			
	WK05-45	2803 8 1	14	15	1			
	WK05-45	280382	15	16	1			
	WK05-45	280385	19.5	20	0.5			
	WK05-45	280386	20	21	1			
	WK05-45	280387	21	22	1			
	WK05-45	280388	22	23	1			
	WK05-45	280389	23	24	1			
	WK05-45	280390	24	25	1			
	WK05-45	280391	25	26	1			
	WK05-45	280392	26	27	1			

-

.

ł

SG

2.8 2.8 2.7 2.6 2.7 2.7 2.8 2.8 2.7 2.5 2.6 2.6 2.7 2.7 2.7 2.7

Hole_1d WK05-45 WK05-45 WK05-45 WK05-45	Sample_No 280393 280394	From metres	To metres	Width				
WK05-45 WK05-45 WK05-45				metres	Wt_in_Air grams	Wt_in_H2C grams	SG	
WK05-45 WK05-45	280394	27	28	1				
WK05-45 WK05-45		28	29	1				
WK05-45	280395	29	29.6	0.6	1966.8	1401.4	3.5	
	280894	29.6	31	1.4				
WK05-45	280396	31	32	1	3197.4	2311.7	3.6	
WK05-45	280397	32	33	1	3340.6	2511.4	4.0	
WK05-45	280398	33	34	1	3672.7	2702	3.8	
WK05-45	280399	34	35	1	3306.1	2461.8	3.9	
WK05-45	280400	35	36	1	3310.3	2422.3	3.7	
WK05-45	280400	36	37	1	2967	2102.2	3.4	
WK05-45	280402	37	38	1	2642	1734.7	2.9	
WK05-45	280403	38	39	1	2754.9	1913.4	3.3	
WK05-45	280406	39	40	1	3089.4	2108.2	3.1	
WK05-45	280400	39 40	40 41	1	2194.1	1469.2	3.0	
WK05-45	280408	40	41	1	2533.3	1657.8	2.9	
WK05-45	280506	42	42	2	2000.0	1057.0	2.3	
WK05-45	280507	42 44	44	2				
WK05-45	280508	46	48	2				
WK05-45	280509	48	48 50	2				
WK05-45	280510	50	52	2				
WK05-45	280511	52	52	2				
WK05-45	280512	54	56	2				
WK05-45	280513	56	57.6	1.6				
WK05-46	280378	14.9	15.4	0.5				
WK05-46	280377	33.2	35.2	2				
WK05-46	280416	35.2	37	1.8				
WK05-46	280417	37	38	1				
WK05-46	280418	38	39	1				
WK05-46	280419	39	40	1				
WK05-46	280420	40	41	1				
WK05-46	280421	41	42	1				
WK05-46	280501	42	44	2	2188.5	1335.1	2.6	
WK05-46	280502	44	46	2	2345.9	1425.9	2.5	
WK05-46	280503	46	48	2	2060.5	1280.5	2.6	
WK05-46	280504	48	50	2	1648.6	1045.6	2.7	
WK05-46	280505	50	51.5	1.5	1639.8	1045	2.8	
WK05-47	280437	17	18	1	2433.9	1587.5	2.9	
WK05-47	280438	18	19	1	2772.8	1877.8	3.1	
WK05-47	280439	19	20	1	1342.5	834.1	2.6	
WK05-47	280440	24	25	1	2784.5	1771.4	2.7	
WK05-47	280441	25	26	1	2867.8	1873.5	2.9	
WK05-47	280442	26	27	1	2842.2	1856.4	2.9	
WK05-47	280443	27	28	1	2224.7	1387.2	2.7	
WK05-47	280444	28	29	1	2711.6	1693.1	2.7	
WK05-47	280445	29 25 5	30	1	2513.2	1561.1	2.6	
WK05-47	280446	35.5	36	0.5	1194.4	735.6	2.6	
WK05-47	280447	36	37	1	3275	2338.9	3.5	
WK05-47 WK05-47	280449	37	38	1	3643.6	2805.3	4.3	
WK05-47 WK05-47	280301	38	39	1	2583.4	1689.7	2.9	
	280302	3 9	40	1	2268	1427.1	2.7	
WK05-47 WK05-47	280303 280304	40 41	41 41.5	1 0.5	2742.4 1348.3	1748.3 819	2.8 2.5	

•

.

-

	Western Keltic
Ŧ	Mines Inc.

, - ·

Hole_Id	Sample_No	From	То	Width		Wt_in_H2O	SG
<u> </u>		metres	metres	metres	grams	grams	
WK05-47	280544	42.5	44	1.5	1574.9	979,8	2.6
WK05-47	280545	42.5	44 46	2	2259.6	979.8 1417.4	2.0
WK05-47	280539	44	48	2		1295.9	2.7
					2017		
WK05-47	280540	48	50 50	2	1908.7	1220.8	2.8
WK05-47	280541	50	52 52	2	2127.5	1342.2	2.7
WK05-47	280542	52	53.9	1.9	1530.7	962.1	2.7
WK05-48	280562	205	207.9	2.9	4133	2682.4	2.8
WK05-48	280563	207.9	209.2	1.3	2296.5	1486	2.8
WK05-48	280564	209.2	210.7	1.5	2419	1587.1	2.9
WK05-48	280565	210.7	212.2	1.5	2611.8	1745.4	3.0
WK05-48	280566	212.2	213.7	1.5	1958.3	1270.7	2.8
WK05-48	280567	213.7	215.2	1.5	2127.5	1394.6	2.9
WK05-48	280568	215.2	216.7	1.5	2491.9	1623.7	2.9
WK05-48	280569	216.7	218.2	1.5	2698.7	1791.5	3.0
WK05-48	280570	218.2	219	0.8	703.3	463.1	2.9
WK05-49	280551	36.3	37.4	1.1	2093,1	1351.5	2.8
WK05-49	280552	37.4	39	1.6	6093	4744.5	4.5
WK05-49	280553	39	40	1	3905.6	3026.2	4.4
WK05-49	280554	40	41	1	3211.1	2497.6	4.5
WK05-49	280555	41	42.1	1.1	2652.4	1834.5	3.2
WK05-49	280556	42.1	43.6	1.5	3867.4	2583.2	3.0
WK05-49	280557	43.6	45	1.4	3152.3	1944	2.6
WK05-49	280558	45	47	2	4656.7	3014.4	2.8
WK05-49	280559	47	47.9	0.9	1523	958.5	2.7
WK05-50	280571	26	27.3	1.3	2427.7	1523.2	2.7
WK05-50	280572	27.3	38	10.7	1720.9	1094.6	2.7
WK05-50	280573	28	29.5	1.5	3589.8	2301.2	2.8
WK05-50	280574	29.5	30.5	1	2418	1517.4	2.7
WK05-50	280575	30.5	31.4	0.9	1741.3	1093.3	2.7
WK05-50	280576	31.4	31.9	0.5	1716.2	1117.5	2.9
Wk05-50	280577	31.9	33.2	1.3	3365.8	2178.6	2.8
WK05-50	280578	33.2	33.9	0.7	2473.8	1839.1	3.9
WK05-50	280579	33.9	34.8	0.9	1680.3	1081.1	2.8
WK05-50	280580	34.8	35.7	0.9	1219.3	786.3	2.8
WK05-50	280581	35.7	36.1	0.4	1780.8	1136.6	2.8
WK05-50	280598	36.1	37.5	1.4			
WK05-50	280599	37.5	39	1.5			
WK05-50	280600	39	41	2			
WK05-50	280548	41	43	2			
WK05-50	280549	43	45	2			
WK05-50	280550	45	47	2			
WK05-50	280651	47	48.9	1.9			
WK05-50	280652	48.9	51	2.1			
WK05-50	280653	51	53	2			
WK05-50	280654	53	54.6	1.6			
WK05-51	280584	28	29	1	2293.5	1502.6	2.9
WK05-51	280585	29	30	1	3070	2016	2.9
WK05-51	280585	29 30	30 31				
WK05-51				1	1405.2	932.8	3.0
	280587	31	32	1	2621	1720.2	2.9
WK05-51	280588	32	33	1	0		. -
WK05-51	280589	33	34	1	2669.2	1755.6	2.9
WK05-51	280590	34	35	1	2768.4	1790.5	2.8

(I	Vestern Keltie
Ψ.	Mines Inc.

--

.

Hole_Id	Sample_No	From metres	To metres	Width metres	Wt_in_Air grams	Wt_in_H2O grams	SG
WK05-51	280591	35	36	1	2736.2	1831.2	3.0
WK05-51	280592	36	37	1	3033.4	2033.5	3.0
WK05-51	280593	37	37.8	0.8	1840.2	1174.8	2.8
WK05-51	280594	42.4	43	0.6	826.3	539	2.9
WK05-51	280595	43	44	1	2637.5	1708	2.8
WK05-51	280596	44	45	1	2663	1716.2	2.8
WK05-52	280305	23	24.1	1.1	2489.4	1590.8	2.8
WK05-52	280306	24.1	24.7	0.6	1570.6	1029.6	2.9
WK05-52	280308	24.7	26.3	1.6	3482.4	2238.6	2.8
WK05-52	280309	26.3	34	7.7	850.9	539.3	2.7
WK05-52	280310	34	34.5	0.5	1662.6	1066.2	2.8
WK05-52	280311	34.5	36	1.5	3981.9	2532.2	2.7
WK05-52	280312	36	36.5	0.5	1577.7	1032.2	2.9
WK05-52	280313	36.5	41	4.5	1102.5	694.7	2.7
WK05-52	280314	41	41.5	0.5	1297.1	821	2.7
WK05-52	280315	41.5	42.4	0.9	1970.8	1255.5	2.8
WK05-52	280316	42.4	43.4	1	2499.4	1591.9	2.8
WK05-52	280317	43.4	48.5	5.1	1527.8	962.2	2.7
WK05-52	280318	48.5	49	0.5	1113.5	695.4	2.7
WK05-52	280319	49	50	1	2350.3	1521.4	2.8
WK05-52	280320	50	50.6	0.6	1334.9	849.8	2.8
WK05-52	280322	50.6	51	0.4	1085.3	678.5	2.7
WK05-52	280323	51	51.3	0.3	8612.2	536.3	1.1
WK05-52	280324	51.3	51.7	0.4	813.8	525.6	2.8
WK05-52	280325	51.7	51.9	0.2	968.7	602	2.6
WK05-52	280326	51.9	52.4	0.5	446.3	328.5	3.8
WK05-52	280546	52.4	54	1.6	3014.1	1865.6	2.6
WK05-52	280547	54	54.6	0.6	841.2	552.7	2.9
WK05-54	280632	428	428.8	0.8	2042.7	1248.4	2.6
WK05-54	280633	428.8	429.8	1	1701.5	1179.4	3.3
WK05-54	280634	429.8	430.7	0.9	1090.2	742.3	3.1
WK05-54	280635	430.7	432.1	1.4	2222.2	1461	2.9
WK05-54	280636	432.1	433.2	1.1	2182.7	1476.2	3.1
WK05-54	280637	433.2	434.6	1.4	3019.8	2051.8	3.1
WK05-54	280638	434.6	435.7	1.1	1896.2	1267.5	3.0
WK05-54	280639	435.7	436.9	1.2	2312.9	1535.3	3.0
WK05-54	280640	436,9	437.8	0.9	2068.5	1398.6	3.1
WK05-54	280641	437.8	438.9	1.1	2062.6	1384.3	3.0
WK05-54	280642	438.9	439.9	1	1934.2	1304.2	3.1
WK05-54	280643	439.9	440.9	1	1970.4	1330.4	3.1
WK05-54	280644	440.9	441.9	1	2087.8	1413.8	3.1
WK05-54	280645	441.9	442.9	1	1884.8	1229.3	2.9
WK05-54	280646	442.9	443.9	1	2023.6	1367.7	3.1
WK05-54	280647	443.9	444.9	1	2102.2	1425.2	3.1
WK05-54	280648	444.9	445.9	1	2039.7	1364.4	3.0
WK05-54	280649	445.9	446.9	1	1878.4	1229.2	2.9
WK05-54	280650	446.9	447.9	1	1426.7	1215	6.7
WK05-54	280656	447.9	449.2	1.3	2710.7	1800.8	3.0
WK05-54	280657	449.2	450.2	1	2052.4	1359.3	3.0
WK05-54	280658	450.2	451.2	1	1914.7	1268	3.0
WK05-54	280659	451.2	452.2	1	1967	1339.8	3.1
WK05-54	280660	452.2	453.2	1	2028.8	1325.3	2.9

÷÷	Western Keltic Mines Inc.
₩	Minnes Inc.

.

. . .

Hole_id	Sample_No	From metres	To metres	Width metres	Wt_in_Air grams	Wt_in_H2O grams	SG
WK05-54	280661	453.2	454	0.8	1376	909.8	3.0
WK05-54	280662	454	455	1	2114.3	1455.4	3.2
WK05-54	280664	455	456	1	1911	1272	3.0
WK05-54	280665	456	457	1	1991.6	1335.8	3.0
WK05-54	280667	457	458.5	1.5	1905.9	1251.6	2.9
WK05-54	280668	458.5	459.5	1	1953	1306.5	3.0
WK05-54	280669	459.5	460.5	1	1899.2	1253.4	2.9
WK05-54	280670	460.5	461.5	1	1905	1261.7	3.0
WK05-54	280671	461.5	462.5	1	1792	1177.6	2.9
WK05-54	280672	462.5	463.5	1	1889.8	1230.6	2.9
WK05-54	280673	463.5	464.5	1	1841.9	1216.2	2.9
WK05-54	280674	464.5	465.5	1	1840.8	1207	2.9
WK05-54	280675	465.5	466.5	1	1842.7	1234.7	3.0
WK05-54	280676	466.5	467.5	1	1868	1232.1	2.9
WK05-54	280677	467.5	469	1.5	2888.7	1912.6	3.0
WK05-54	280678	469	470.5	1.5	2689.8	1727.9	2.8
WK05-54	280679	470.5	472	1.5	2003.0	1834.2	3.0
WK05-54	280680	472	473.5	1.5	2821.2	1848.3	2.9
WK05-54	280681	473.5	475	1.5	2707.8	1761.2	2.9
WK05-54	280682	475	476.5	1.5	2759.3	1820.4	2.9
WK05-54	280683	476.5	478.2	1.3	2433.5	1589,3	2.9
WK05-54B1	280327	430.4	431.1	0.7	2433,5 599.7	377.4	2.5
WK05-54B1	280328	431.1	432.2	1.1	1238.9	913.3	3.8
WK05-54B1	280320	432.2	432.8	0.6	606.8	419.2	3.8
WK05-54B1	280333	432.8	434	1.2	1503	1006,9	3.2 3.0
WK05-54B1	280332	434	435	1	681.4	445.7	2.9
WK05-54B1	280332	435	435	1	925.5	445.7 605.3	2.9 2.9
WK05-54B1	280333	435	437	1	925.5 817.6	551.9	2.9 3.1
WK05-54B1	280334	430	437	1	909.6	615.5	3.1 3.1
WK05-54B1	280335	437	430	1			3.1 2.9
WK05-54B1	280330	439	439	1	1063.8	700.3 621.7	2.9 2.9
WK05-54B1	280337	435	44 1	1	945.5 820.9	539.6	∠.9 2.9
WK05-54B1	280339	441	442	1	921.3	602.4	2.9
WK05-54B1	280339	442	443	1	921.3 1 246 .9	811.2	2.9
WK05-54B1	280340	443	444	1	708.3	469	3.0
WK05-54B1	280342	444	445	1	795.2	531.4	3.0
WK05-54B1	280343	445	446	1	802.8	530.8	3.0
WK05-54B1	280344	446	447	1	908.8	597.1	2.9
WK05-54B1	280346	447	447.8	0.8	679.5	451.2	3.0
WK05-55	280684	244.9	245.5	0.6			••••
WK05-55	280685	245.5	245.9	0.4			
WK05-57	280686	20.5	21.1	0.6			
WK05-57	280687	21.1	22	0.9			
WK05-57	280688	22	23	1			
WK05-57	280689	23	24	1			
WK05-57	280690	24	25	1			
WK05-57	280692	25	26	1			
WK05-57	280693	26	27	1			
WK05-57	280694	27	28	1			
WK05-57	280695	28	29	1			
WK05-57	280696	29	30	1			
WK05-57	280697	30	30	1			
11100-07	200007	00		I.			

٠

-	Hole_id	Sample_No	From metres	To metres	Width metres	Wt_in_Air grams	Wt_in_H2O grams	SG
	WK05-57	280698	31	32	1			
	WK05-57	280699	32	33	1			
	WK05-58	280753	11	12	1			
	WK05-58	280754	12	13	1			
	WK05-58	280755	13	13	1			
	WK05-58	280756	13	15	1			
	WK05-58 WK05-58	280757	15	16.6	1.6			
	WK05-58	28075 8 28075 9	16.6 18	18 19	1.4 1			
	WK05-58		18					
	WK05-58	280760		20.2	1.2			
	WK05-58	280762 280764	20.2 20.8	20.8 22.1	0.6			
	WK05-58	280765	20.8		1.3			
	WK05-58	280765	22.1	22.3 23	0.2 0.7			
	WK05-58							
	WK05-58	280767	23	24.1	1.1			
		280768	24.1	25	0.9			
	WK05-58	280769	25	26	1			
	WK05-58	280770	26	26.5	0.5			
	WK05-58	280771	26.5	27	0.5			
	WK05-58	280772	27	27.9	0.9			
	WK05-58	280806	27.9	29	1.1			
	WK05-58 WK05-58	280807	29	31.1	2.1			
	WK05-58	280808 280809	31.1 33.1	33.1	2			
	WK05-58	280809	35.1 35.1	35.1 37.1	2 2			
	WK05-58	280810	35.1	37.1	2			
	WK05-58	280812	39.1	41.1	2			
	WK05-58	280813	41.1	43.1	2			
	WK05-58	280814	43.1	45.1	2			
	WK05-58	280815	45.1	47.1	2			
	WK05-58	280816	47.1	49.1	2			
	WK05-58	280817	49.1	51.1	2			
	WK05-58	280818	51.1	53.1	2			
	WK05-58	280819	53.1	55.1	2			
	WK05-58	280820	55.1	57.1	2			
	WK05-58	280821	57.1	59.1	2			
	WK05-58	280822	59.1	61.1	2			
	WK05-58	280823	61.1	63.7	2.6			
	WK05-59	280776	358.5	359.6	1.1			
	WK05-59	280777	359.6	361	1.4			
	WK05-59	280778	361	362	1			
	WK05-59	280779	362	363	1			
	WK05-59	280781	363	364	1			
	WK05-59	280782	364	365	1			
	WK05-59	280783	365	366	1			
	WK05-59	280784	366	367	1			
	WK05-59	280786	367	368	1			
	WK05-59	280787	368	369	1			
	WK05-59	280788	369	370	1			
	WK05-59	280789	37 0	371	1			
	WK05-59	280790	371	372	1			
	WK05-59	280791	372	373.2	1.2			
				V1 V.Z	1.2			

1

1

£

.

Hole_id	Sample_No	From metres	To metres	Width metres	Wt_in_Air grams	Wt_in_H2O grams	SG
WK05-59	280792	373.2	374.5	1.3			
WK05-59	280793	374,5	376	1.5			
WK05-59	280794	376	377	1			
WK05-59	280795	377	378	1			
WK05-59	280796	378	379	1			
WK05-59	280797	379	380	1			
WK05-59	280798	380	381	1			
WK05-59	280799	381	382	1			
WK05-59	280800	382	383	1			
WK05-59	280802	383	384	1			
WK05-59	280804	384	385	1			
WK05-59	280805	385	386	1			
WK05-60	280903	447	448.1	1.1			
WK05-60	280904	448.1	448.8	0.7			
WK05-60	280905	448.8	449.8	1			
WK05-60	280906	449.8	451.3	1.5			
WK05-60B1	280851	442.5	443.8	1.3			
WK05-60B1	280852	443.8	445	1.2			
WK05-60B1	280853	445	445.8	0.8			
WK05-60B1	280854	445.8	446.5	0.7			
WK05-60B1	280855	446.5	447.8	1.3			
WK05-60B1	280856	447.8	449.3	1.5			
WK05-60B1	280857	449.3	450.8	1.5			
WK05-60B1	280858	450.8	451.8	1			
WK05-60B1	280859	451.8	453.3	1.5			
WK05-60B1	280860	453.3	454.8	1.5			
WK05-60B1	280861	454.8	455.6	0.8			
WK05-61	280895	502.6	503.6	1			
WK05-61	280896	503.6	504	0.4			
WK05-61	280897	504	504.6	0.6			
WK05-61	280898	504.6	505.7	1.1			
WK05-61	280899	505.7	506.3	0.6			
WK05-61	280900	506.3	507.2	0.9			
WK05-61	280901	507.2	507.8	0.6			
WK05-61	280902	507.8	508.7	0.9			
WK05-62	280824	427.1	427.6	0.5			
WK05-62	280825	427.6	428.5	0.9			
WK05-62	280826	428.5	429.6	1.1			
WK05-62	280827	429.6	431.1	1.5			
WK05-62	280828	431.1	432.6	1.5			
WK05-62	280829	432.6	434	1.4			
WK05-62	280830	434	435.5	1.5			
WK05-62	280831	435.5	437	1.5			
WK05-62	280832	437	438.5	1.5			
WK05-62	280834 280835	438.5	440	1.5			
WK05-62		440	441.5	1.5			
WK05-62 WK05-62	280836	441.5 443	443	1.5			
	280837		444.5	1.5			
WK05-62 WK05-62	280838	444.5 446	446	1.5			
WK05-62	280839 280840	440 447.5	447.5 449	1.5 1.5			
WK05-62	280840	447.5 449	449 450	1.5			
VVI\00-02	200042	443	400	1			

J.V	<i>lestern</i>	Keltic
Ŧ	Mines	Inc.

Ĭ.

¥

.....

Appendix III Drill Core Sample Details

Kutcho Creek Project 2005 Diamond Drill Program

Hole_Id	Sample_No	From metres	To metres	Width metres	Wt_in_Air grams	Wt_in_H2O grams	SG
WK05-62	280843	450	451,5	1.5			
WK05-62	280844	451.5	453	1.5			
WK05-62	280845	453	453.7	0.7			
WK05-62	280846	453.7	455	1.3			
WK05-62	280847	455	456	1			
WK05-63	280879	286.2	487	200.8			
WK05-63	280880	487	488	1			
WK05-63	280881	488	488.8	0.8			
WK05-63	280882	488.8	489.5	0.7			
WK05-63	280883	489.5	490	0.5			
WK05-63	280884	490	491	1			
WK05-63	280885	491	492	1			
WK05-63	280886	492	493	1			
WK05-63	280887	493	494	1			
WK05-63	280888	494	495	1			
WK05-63	28088 9	495	496	1			
WK05-64	280863	293.3	293.8	0.5			
WK05-64	280864	293.8	294.6	0.8			
WK05-64	280865	294.6	295.2	0.6			
WK05-64	280866	295.2	296.2	1			
WK05-64	280867	296.2	297.2	1			
WK05-64	280868	297.2	298.2	1			
WK05-64	28086 9	298.2	298.7	0.5			
WK05-64	280870	298.7	299.9	1.2			
WK05-64	280871	299.9	301	1.1			
WK05-64	280872	301	302	1			
WK05-64	280873	302	303	1			
WK05-64	280874	303	304	1			
WK05-64	280876	304	304.5	0.5			
WK05-64	280877	304.5	305.5	1			
WK05-64	280878	305.5	306.5	1			

APPENDIX IV

Γ

L

.

Assay Laboratory Certificates

(ISO 9081 Acc									13 <i>9)</i>		eri	1	CAT	E										T-2225
	H	<u>este</u>	<u>rn</u>	<u>Kelt</u> 900	1.C) - 808	S S A L	9.2000 001015	60 (0-) 50 (8)		(*(337)	C II 6 IIC		eihe 74	P. Stamit	tle tted by	AS Pete	0242 Holbel	: 1	Pag	r e 1				
SAMPLE#	Ho X				Ag gm/nt	Nî X									Ca X	р Х	Cr X	Mg X	Al X	Na X	K X			Au** g#/#t
B 004512	4.001	.140	.01	.36	17	.004	.002	.12	5.37	.01	.001	.001		<.01	.23	.092	.007	4.92	2 04	07	no	< 001	<.001	.04
B 004541	1.	2.096		9.05			<.001		18.80			.050			8.31		.003	4.58	.09	.02		<.001		.42
B 004564	.004	5.449						<.01	18.28	n2.	(001	001	008	01	.01		.001	.23	.32	.03		<.001		
B 004569		1.540		40.76	54	007-	/ 001	101	14.66	.02	001	.001	.000	~ 01										.10
8 004576		2.414		.27					22.46						.92	.128 .006	.001 .004	.22 3.39	.18 2.38	-02 -03		<.001		.91 .45
		-																						
B 004598	.001		<.01	.28					3.30							.015	.008	1.55		.03		<.001		.03
B 004659		1.761		2.88			.024	.07	37.97	- 14	.001	.016	.015	<.01	.69		.006	.89		<.01	-01	<.001	.001	. 15
RE B 004659		1.719					.024	.07	37.64	. 13	.001	.017	.015	<.01		.045	.006	.90	. 10	<.01	.01	<.001	-001	. 16
B 004660	1.016	1.734	.03	2.89	17	.001	.024	.07	37.31	. 134	:.001	.016	.014	<.01	.69	.044	.006	. 88	.09	<.01	.01	<.001	.001	. 16
B 004669	.012	1.510	.02	1.76	20	.002	.011	. 12	28.06	.03	.001	.010	.005	<.01	1.45	.028	.006	1.16	.24	.02	.03	<.001	.001	.15
B 004670	.012	1.480	.0Z	1.74	19	.002	.011	.11	27.89	.03	.001	.010	.004	<.01	1.43	.027	.006	1.15	.23	.02	.03	<.001	.001	. 14
B 004679	.008	.739		1.38				. 15	18.57	.02	.001	.008	.003	<.01	1.63	.023	.007		.64	.03		<.001		.10
B 004680	.008	.747		1.38					18.59						1.67		.007		.64	.03		<.001		.09
B 004769	.001	.441		.04		.001<			8.22						.09	.018		2.43		.05		<.001		.10
B 004804		2.743		.93	-				19.04						9.95			5.46	.10	-02		<.001		-06
A 00/007	004	< ENE	04	3 34		004	ODE	75	42 22	- 01	007	017	00/	- 01	10 77	0.84	004			02	٥F	- 001	001	
B 004827		1.505		2.26	-	.001			14.66						10.73	.081	.006		. 14	-02		<.001	.001	.14
B 004847		3.812				.001			26.83						4.33	.229		1.92	.28	.04		<.001		_80
B 004848		14.962				.001	-		22.26						4.60			2.06	.23	-04		<.001		2.85
B 004863		7.781				.015			12.90						5.38			.31	.26	-04		<.001		.27
B 004886	.011	2.583	.20	10.03	59	.003<	.001	.15	9.92	<.01	.009	.062	.002	<.01	5.60	.016	.002	2.94	.24	.04	.12	<.001	.001	.64
B 004898	.001	4.381	<.01	.03	66<	.001<	.001	<.01	15.05	<.01<	.001<	.001<	.001	<.01	.01	.002	.002	.25	.16	.03	.07	<.001	<.001	.28
B 004902	.013	1.587	2.64	23.54	54	,003<	.001	.02	9,87	.01	.002	.138	.006	<.01	.56	.012	.003	.46	.28	.06	.07	<.001	.002	.17
B 004908	.001	.233		.26	3<	.001<	.001	.01	9.88	<.01	.001	.001<	.001	<.01		.001	.005	1.40	.62	.05	.17	<.001	<.001	.09
B 004919		3.597		13.00		.002<			23.08							.045	.003	.33	.06	.01		<.001		.69
8 004925		10.614		.27		.001<			18.10						8.52	.040		4.64	.06	.02		<.001		.35
B 004936	002	1.604	05	1.46	164	001<	001	<.01	10.51	02	001	007	002	< 01	44	.002	.003	. 39	12	.02	.05	<.001	<.001	.11
B 004966	.001	.127		1.45		-	-		12.75						.02	.005	.002	.07	.17			<.001		.04
B 280053	1.1	2.769		1.63					23.63									1.13		.02		<.001		.81
8 280075	1	3.255		7.99					29.57								.001	19	.04	.01		<.001		.36
B 280090		2.551		12.31					28.67								.001	.21	.04			<.001		.71
P. 390140	000		01	20	10	000	007	00	0 74	~ 05	004	001.4	004	- 01	2 02	177	604	7 71	1 77	07	08	~ 001	~ 001	.12
B 280110		2.252		.29											2.02									
B 280144	1.001			2.87					4.67									2.49				<.001		- 10
8 280147	.016	.937			23.	.001	.015	.01	30.86	.01<	.001	-016	.004	<.01		.013		.05	.32	.06	- 09 -	<.001	.001	. 18
B 280187	.001			.13	17<.	.001	.033	<.01	40.09	.03<	.001	.001	.004	<.01	.04		.008		. 12					.16
STANDARD R-2a/AU-1	.049	.559	1.50	4.22		.368	.043	.19	22.23	.22	.164	.029	<u>. 132</u>	<.01	2.27	.078	.067	1.66	1.39	.20	.50	.053	.172	3.39
A	U** BY Sample	FIRE A	SSAY ROCK	FRON 1. PULP	/2 A.T. <u>Ser</u>	. SAMI Noles	PLE. begi	nning	' <u>RE'</u>	are R	eruns	and i	'RRE'	are A	ANALYSE Leject A	teruns.	-				k	JULLE	50	<u>16/6</u>
1						•	•							,	<u>, 2</u>	2	15	nn	-	•	5	<u>z _</u>	4	ND
Data I FA	D	ATE R	RCE	VED	JUN	6 20	05 1	DATE	REP	ORT	MAII	LED		N		·/	20	10	5		<u> </u>	A.	Jack	y Wang
													-			1							- I	· · · / /

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ł

ACKE AMALYTICAL

Western Keltic Mines Inc. PROJECT KUTCHO FILE # A502421

Page 2

ACHE ANALYTICAL																			<u> </u>	÷					ACTE ANALYTICAL
SAMPLE#	Mo	Cu				Ni	Co	Mn	Fe	As	Sr	Cd	SÞ	Bi	Ca	P	Cr	Mg	AL	Na	ĸ	W	Hg	Au**	
	×	×	X	<u>×</u>	gn/mt	*	<u> </u>	<u>×</u>	*	*	*	*	*	X	X	*	X	X	<u>×</u>	*		*	X	gm/mt	
B 280212	.002	3.870	.02	3.88	581	.001	.001	.02	2.58	<.01	.001	.026<	.001	<.01	.21	.009<	.001	1.36	.73	.09	.08	.004	.001	.44	
B 280220	.007	3.534	.43	2.45	277	.002<	.001	<.01	33.30	.01<	:.001	.011	.002	.01	.10	.012	.003	.07		.06	.10	.002	.001		
B 280223	.007	1.869	.50	29.89	65	.004<	.001	.08	19.00	.01	.001	,169	.002	<_01	2.03	.213<	.001	.76		. 05	<.01<				
8 280229	.013	.569	.02	.37	9	.003	.018	<.01	33.13			.001				.034<		.03		.12	-				
B 280243	.011	1.953				.001			35.27			.013				.021<		.35		<.01	.05				
8 280261	.008	3.022	.05	3.95	45	.002	.017	.45	24.06	.02	.004	.025<	.001	<.01	8.18	.056	.002	4.40	.06	.03	<_01	.002	.001	.48	
RE B 280261	.008	2.992	.04	3.93	47	.002	.016	.44	23.95	.01	.004	.025	.001	<.01	8.14	.055	.002	4.38	.04	< .01	.02	.002	.002	.48	
B 280275	.013	1,135		6.55	9	.003	.012	.02	36.58	.04<	.001	.037	.003	<.01	.15	.014	.005	.07	.06	<.01	<.01	.003	.002	.17	
B 280287	.018	12.039	.09	3.42	194	.012	.010								2.52			1.85	.40	.02	.09	002	.001		
B 280297	.005	.024	<.01	.28					36.64							.005		.02	. 18	.02	.09<	.001	.001	.02	
B 280306	.010	8.852	.27	6.17	75	.003	.005	.03	31.46	.02<	.001	.033	.001	<.01	.26<	.001	.004	.17	.13	.05	<.01	.003	.001	.61	
8 280325	.020	7.959	.13	3.91	78	.002	.040	.03	31.40	.11	.001	.023	.003	.01	.42	.023	.003	.23	.24	.04	.05	.004	.002	2.01	
8 280327	.010	3.818	.13	15.72	112	.002	.001	.05	18.03	.02	.001	.089	.001	<.01		.010		.35		.14	.09	003	.003	1.98	
	.004	.923	<.01	.39	18	.001	.016	.01	36.37	-03<	.001	.001<	.001	<.01		.011		.06	.22	.05	.14<.	001	.001	.26	
1.	.001	.019	<.01	.08	<2	.001	.006		28.07									1.77	.46	.01	.13<	001	.001	.21	
8 280368	.008	1.571	.08	3.18	37	.007	.002	.03	15.60	.01	.001	.018	.001	<.01	1.06	.241	.002	.31	.97	.20	.26	003	.002	1.92	
B 280375	.004	5.649	.04	4.30	97	.001	.004	.68	23.17	.02	.003	.024	.001	<.01	7.26	.036<	.001	3.69	.09	<.01	.02 .	002	.001	1.48	
B 280392	.007	2.303	.08	7.38	45	.003	.007	.11	27.89	.02	.002	.040	.003	<.01	2.40	.046	.005	1.22	.22	.04	.09 .	003	.001	.67	
1	.006	8.078	.01	2.20	54	.005	.002	04	20.79			.013<				.001		.92	.27	.07	.09 .	001	.001	.28	
1		1.101		13.72		.002									4.21				.27	.11	.06 .			.52	
B 280444	.002	3.026	.01	.08	114	.001<	.001	.65	1.63	<.01	.008	.001<	.001	.01	17.48	.047	.001	10.38	.12	.04	-04<.	001<	.001	.78	
		6.216	. 02	4.21		.005			27.22					.01				1.14	.16	.07	.09		.001	3.79	
	-014	5.112		2.95		.001			17.25						7.64				.30		.08			.69	
	.048		1.47			.364			22.63						2.37						.53 .				

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

- f .)E., EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.aischemex.com

CERTIFICATE VA05063070		SAMPLE PREPARATION	1
	ALS CODE	DESCRIPTION	
Project: KUT P.O. No.: This report is for 125 Drill Core samples submitted to our lab in Vancouver, BC on 29-JUL-2005. The following have access to data associated with this certificate: BRIAN PETER HOLBEK	WEI-21 LOG-22 LOG-24 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Pulp Login - Rcd w/o Barcode Fine crushing - 70% <2mm Split sample - riffie splitter Pulverize split to 85% <75 um	
		ANALYTICAL PROCEDUR	ES
	ALS CODE	DESCRIPTION	INSTRUMENT
	Cu-AA46 Zn-AA46 Au-AA23 ME-ICP41a	Ore grade Cu - aqua regia/AA Ore grade Zn - aqua regia/AA Au 30g FA-AA finish High Grade Aqua Regia ICP-AES	AAS AAS AAS ICP- A ES

Ag-AA46

b: WL. , LRN ILL I'C MINES INC'

VANCOUVER BC V6C 2X4

1

To: WESTERN KELTIC MINES INC. **ATTN: PETER HOLBEK** 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Reserve

EL VE MEInalized Date: 12-AUG-2005 Account: LTU

AAS

AUG 2 9 2005

· .

Ore grade Ag - aqua regia/AA

O WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST

3.59

3.87

C.84

51

83

129

<5

12

17

35

42

54

4230

8310

8690

39.6

38.1

24.4

<50

<50

<50

VANCOUVER BC V6C 2X4

Finalized Date: 12-AUG-2005

١

CERTIFICATE OF ANALYSIS VA05063070

Account: LTU

Project: KUT

Sample Description	Mathod Analyte Units LOR	WEI-21 Recvd WL kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a At % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 6	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
B280356		3.04	0.329	22	0.73	340	130	ও	30	3.49	332	144	56	5660	14.25	<50
B280357		2.16	0.160	16	0.70	30	110	<5	20	8.75	31	8	37	5330	5.11	<50
B280358		5.60	0.925	147	0.49	590	120	<5	110	1.39	309	148	64	>50000	26.2	<50
B280359		3.20	0.013	<1	0.75	<10	70	<5	<10	1.02	<5	47	7 9	150	15.15	<50
B280360		6.74	0.014	<1	0.92	20	<50	ৎ	<10	2.19	<5	39	43	221	10.90	<50
B280361		3.18	0.539	53	0.43	680	60	\$	80	1.40	234	116	87	31400	26.3	<50
8280362		1.62	0.551	48	0.11	540	<50	<5	60	0.79	284	231	55	40500	40.2	<50
B280363		1.92	0.312	24	0.13	490	<50	<5	50	0.96	63	266	102	17100	44.4	<50
B280364		2.12	0.185	16	0.14	240	<50	<5	80	0.41	55	230	72	11750	45.4	<50
B280365		2.06	0.139	5	0.19	180	<50	<5	20	0.39	102	219	87	6140	42.8	<50
B280366		4.22	0.366	102	0.17	360	<50	<	80	0.73	137	157	55	34900	39.8	<50
B280367		Not Recvd														
B280368		2.34	0.349	66	0.39	790	<50	<5	50	0.60	157	48	92	27300	27.5	<50
B280369		0.64	0.006	1	2.24	10	150	<5	10	2.25	<5	24	131	753	4.58	<50
B280370		0.16	0,146	18	0.33	270	<50	<5	10	1.38	92	109	77	14700	30.2	<50
B280371		1.36	0.012	2	0.59	30	50	<5	<10	0.70	<5	23	111	431	13.10	<50
B280372		6.00	0.021	1	0.28	20	50	<5	<10	⊲0.05	9	35	59	242	20.6	<50
B280373		5.98	0.037	3	0.25	20	<50	<5	10	<0.05	25	26	101	3360	11.00	<50
B280374		7.08	0.023	2	0.27	20	<50	<5	10	<0.05	10	13	74	670	7. 76	<50
B280375		2.46	0.055	6	0.20	130	<50	<5	20	⊲0.05	112	29	89	2010	9.57	<50
B280376		2.04	0.027	1	0.24	30	<50	<5	10	⊲0 .05	55	14	59	836	4.80	<50
B280377		6.98	0.329	44	0.21	230	<50	<5	50	1.16	36	230	59	30800	30.6	<50
B280378		1.48	0.098	2	0.39	40	<50	<5	10	0.15	153	37	78	4330	22.5	<50
B280379		1.24	0,146	9	0.40	<10	<50	<5	10	0.11	403	<5	50	4030	6.43	<50
B280380		1.26	0.044	4	0.39	<10	<50	<5	10	0.31	202	<5	97	1430	2.75	<50
B280381		1.32	0.043	2	0.34	20	<50	\$	<10	0.13	156	8	99	2020	2.93	<50
B280382		0.98	0.037	5	0.38	10	70	<5	10	0.27	114	<5	54	2200	2.23	<50
B280383		0.14	0.156	17	0.13	1430	<50	<5	30	0.63	152	228	68	16150	37.8	<50
B280384		0.50	<0.005	<1	1.83	10	110	<5	<10	2.55	<5	22	114	236	3.51	<50
B280385		0.46	0.072	6	0.51	<10	100	<5	<10	1.18	35	8	32	4160	3.75	<50
B280386		1.44	0.341	30	0.33	70	60	<	10	2.45	44	<5	59	9530	21.9 ·	<50
B280387		1.90	0.161	18	0.05	80	<50	4	20	0.76	70	5	54	6020	42.0	<50
B280388		1.60	0.141	11	<0.05	190	<50	<5	10	6.01	76	<5	42	12100	30.1	<50
B280389		2.04	0.066	4	<0.05	100	<50	<5	10	2.24	109	<5	44	1665	39.1	<50
B280390		1.82	0.106	9	<0.05	90	<50	<5	10	7.42	62	<5	52	10500	27.9	<50
B280391		1.80	0.128	10	<0.05	180	 <50	<5	10	4.63	57	6	29	5380	34.2	<50
B280392		1. 64	0.190	16	<0.05	220	<50	<5	10	7.43	41	6	45	13350	29.5	<50
	E		A 4 4 4	-	-0.02	040	-50		**					1000	~~ ~	-50

ALS CHEMEX **EXCELLENCE IN ANALYTICAL CHEMISTRY**

ALS Canada Ltd. 212 Brooksbank Avenue

North Vancouver BC V7J 2C1

1.94

1.76

0.90

B280393

B280394

8280395

0.114

0.129

0.146

< 0.05

<0.05

0.55

8

12

14

310

380

70

<50

<50

90

<5

<5

<5

20

10

20

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

1 1

Page: 2 - A Total # Pages: 5 (A - C)

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue

North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

...

Page: 2 - 8 Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2005 Account: LTU

Project: KUT

20

1

CERTIFICATE OF ANALYSIS VA05063070

Sample Description	Method Analyte Unite LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm S	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41s Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41s Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
B280356		9	0.26	<50	1,30	1040	231	0.09	57	5900	1900	18.10	<10	<5	52	<0.05
B280357		<5	0.32	<50	4,91	3240	64	0.07	14	550	460	5.50	<10	<5	50	<0.05
B280358		15	0.15	<50	0.49	340	226	0.07	73	2460	3230	31.4	40	<5	21	<0.05
B280359		<5	0.20	<50	2.07 4.53	540 1020	33	0.06	ব্য ব্য	60 <50	<10	15.50 10.20	<10 <10	<5 <5	9 16	<0.05
B280360		<5	0.09	<50			21	0.05			10					<0.05
B280361		7	<0.05	<50	0.94	510	174	0.05	26	1840	1420	30.8	40	<5	27	<0.05
B280362		13	<0.05	<50	0.42	320	166	<0.05	21	350	190	45.7	30 <1D	_ <\$ 	11	<0.05
B280363		\$	0.05	<50	0.45	210	152	< 0.05	20 25	960 70	70 50	47.9 48.6	<10 <1D	<5 <5	14 5	<0.05
B280364		<5 <5	<0.05 <0.05	<50 <50	0.25 0.90	160 290	174 45	<0.05 <0.05	25 14	<50	40	46.3	<10	<5	<5	<0.05 <0.05
B280365													10	<	6	
B280366	1	8	<0.05	<50	0.54	230	321	<0.05	39	2120	290	44.0	10	<2	0	<0.05
8280367 8280368		6	0.11	<50	0.70	310	153	<0.05	32	280	1920	31.0	60	<5	5	<0.05
B280369		<5	1.62	<50	1.94	600	5	<0.05	25	3450	<10	0.43	<10	7	95	0.42
B280370		\$	0.05	<50	1.17	1140	112	<0.05	21	290	160	33.1	<10	<5	8	<0.05
8280371		<5	0.15	<50	1.29	280	45	0.06	8	50	10	13.65	<10	<5	<5	<0.05
8280372		<5	0.15	<50	<0.05	30	71	<0.05	103	60	50	22.7	10	<5	<5	<0.05
B280373		<5	0.13	<50	<0.05	30	35	<0.05	28	60	60	12.20	<10	<5	<5	<0.05
B280374	i	<5	0.14	<50	<0.05	<30	25	<0.05	16	<50	20	8.53	10	<5	<5	<0.05
B280375		<5	0.11	<50	<0.05	30	63	<0.05	20	50	30	11.60	40	<5	<5	<0.05
B280376		<5	0.13	<50	<0.05	<30	34	<0.05	15	60	20	5.86	10	<5	<5	<0.05
B280377		<5	0.11	<50	0.57	520	106	<0.05	23	180	230	34.6	10	<5	<5	<0.05
B280378		5	0.06	<50	0.06	70	106	0.10	31	290	40	26.1	10	<5	<5	<0.05
B280379		5	0.10	<50	0.06	60	20	0.09	16	<50	910	10.50	10	<5	<5	<0.05
B280380		<5	0.12	<50	0.17	160	5	60.0	6	70	170	4.68	<10	<5	<5	<0.05
B280381		<5	0.13	<50	0.08	80	7	0.05	13	60	20	4.39	10	<5	<5	<0.05
B280382		<5	0.16	<50	0.16	140	<5	0.06	15	60	20	3.32	<10	<5	<5	<0.05
B280383		<5	<0.05	<50	0.81	620	138	<0.05	29	500	220	43.3	110 <10	<5 5	<5 220	<0.05 0.34
B280384		<5	1.41	<50	1.61	560	<5	<0.05	29 13	3240 80	10 20	0.12 4.18	<10	⊳ <5	11	<0.05
B280385		<5	0.25	<50	1.35	480	<	0.05								
B280386		<5	0.15	<50	1.31	920	34	<0.05	84	250	650	25.1	<10	<5	15 <5	<0.05 <0.05
B280387		<5	<0.05	<50	0.34	590	57	<0.05	82	460	500	47.1	<10 10	<5 <5	10	<0.05
B280388		<5	<0.05	<50	3.01	5980 1440	48 39	<0.05 <0.05	42 23	190 200	710 340	35.2 44.9	<10	~> <5	<5	<0.05
B280389		<5 <5	<0.05 <0.05	<50 <50	1.10 3.83	5670	50	<0.05	33	160	160	32.8	<10	~	17	<0.05
B280390													10	<5	9	<0.05
B280391		<5	<0.05	<50	2.25	3710	26	<0.05 <0.05	23 13	90 140	310 190	39.5 34.2	10	<0 <5	25	<0.05
B280392		<5	<0.05 <0.05	<50 <50	3.17 0.56	5160 1680	33 52	<0.05	13 14	140 50	390	34.2 45.1	10	<5	26	<0.05
B260393		<5 <5	<0.05 <0.05	<50 <50	0.50	1670	63	<0.05	19	140	260	43.8	10	<5	21	<0.05
B280394 B280395		<5 <5	0.23	<50	0.38	410	66	0.07	18	100	560	28.4	10	<5	<5	<0.05
D200353																

ALS LITEMEX

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: W ____ ERN .___ TC MINL INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2005 Account: LTU

CERTIFICATE OF ANALYSIS VA05063070

Project: KUT

										CENTIFICATE OF ANALTOIO	TABOODOTO
	Nethod	ME-ICP41a	ME-ICP41a	ME-ICP41	ME-ICP41a	ME-ICP41a	Ag-AA45	Cu-AA46	Zn-AA46		
	Analyte	п	U	v	w	Zn	Ag	Cu	Zn		
	Units	ρρπ	ppm	ppm	ppm	ppm	ppm	*	*		
Sample Description	LOR	50	50	5	50	10	1	0.01	0.01		
B280356		<50	<50	62	<50	>50000			5.33		
8280357		<50	<50	15	<50	4720					
B280358		<50	<50	83	<50	>50000		4.87	5.34		
B280359		<50	<50	<5	<50	400					
B280360		<50	<50	<5	<50	430		· · · · · · · · · · ·			
B280361		<50	<50	20	<50	48500 >50000			5.44		
B280362		<50	<50	18	<50	13050			3.44		
B280363		<50	<50	10	<50	11250					
B280364		<50	<50	20	<50 <50	18600					
B280365		<50	<50								
B280366 B280367		<50	<50	30	<50	23900					
B280368		<50	<50	15	<50	26900					Í
B280369		<50	<50	142	<50	460					
B280370		<50	<50	9	<50	16250					
B280371		<50	<50	5	<50	590					
B280372		<50	<50	<5	<50	2830					
B280373		<50	<50	<5	<50	5660					
B280374		<50	<50	<5	<50	2090					
B280375		<50	<50	<5	<50	23000					
8280376		<50	<50	<5	<50	13950					
B280377		<50	<50	<5	<50	5320					
B280378		<50	<50	<5	<50	28700					
B260379		<50	<50	<5	<50	>50000			7.10		
8280380		<50	<50	<5	<50	37100			. · ·		
B280381		<50	<50	<5	<50	28100					
B280382		<50	<50	<5	<50	19950					
8280383		<50	<50	18	<50	26500					
B280384		<50	<50	120	<50	280					
B280385		<50	<50	6	<50	6110					
B280386		<50	<50	10	<50	8590					(
B280387		<50	<50	13	<50	13750					
B280388		<50	<50	23	<50	16850					
8280389		<50	<50	19	<50	27600					
B280390		<50	<50	27	<50	16500					
B280391		<50	<50	18	<50	14600					
8280392		<50	<50	22	<50	10400					
B280393		<50	<50	14	<50	12400					
B280394		<50	<50	18	<50	17500					
B280395		<50	<50	7	<50	25200					

Page: z - C

0: W____RN I___IC M..._ INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - A Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2005 Account: LTU

Project: KUT

1

CERTIFICATE OF ANALYSIS VA05063070

Sample Description	Method Analyte Units LOR	WEI-21 Recvd WL kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Be ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd µpm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm S	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
B280396		1.68	0.115	9	0.31	90	60	<5	20	1.36	151	71	69	16700	27.3	<50
B280397		1.56	0.449	50	0.05	180	<50	<5	50	5.64	111	198	19	47200	29.6	<50
B280398		1.60	0.553	55	<0.05	200	<50	<5	40	8.08	186	123	36	37800	23.8	<50
B260399		1.58	0.618	51	<0.05	130	<50	ব	40	6.78	125	224	20	32900	28.8	<50
B280400		1.58	0.560	74	<0.05	150	<50		50	9.22	112	170	31	36000	21.7	<50
B280401		1.32	0.173	22	0.27	130	<50	<5	20	6.78	136	67	25	13400	19.90	<50
B280402	:	1.00	0.031	1	0.42	<10	120	<5	10	0.21	<5	38	86	969	10.15	<50
B280403		1.32	0.031	1	0.32	<10	100	<5	20	0.19	<5	60	52	. 361	17.90	<50
B280404		1.12	<0.005	<1	3.10	<10	210	4	<10	0.94	<5	9	94 73	45 16050	5.74 36.9	<50
B280405		0.18	0.166	16	0.16	1370	<50	<u></u>	40	0.62	146	216				<50
B280406		1.30	0.018	1	0.49	<10	50	<5	10	1.34	<5	60	95	244	15.40	<50
B280407		0.88	0.008	1	0.98	<10	<50	<5	10	3.21	<5	29	36	841	10.15	<50
B280408		1.46	<0.005	<1	1.36	<10	<50	<5	<10	4.38	<5	15	47	249	6.69	<50
B280409		3.84	0.024	1	0.40	<10	50	<5	10	1.39	<5 8	40 7	51 50	276 2810	10.30 4.17	<50 <50
B280410		1.20	0.025	3	0.50	30	<50		20	0.91		,				
B280411		0.42	0.038	2	0.60	30	<50	<5	10	0.48	19	10	25	4470	7.37	<50
8260412		2.50	0.020	<1	0.28	90	<50	<5	<10	<0.05	27	7	81	309	3.37	<50
B280413		2.08	0.015	<1	0.27	20	50	<5	10	< 0.05	22	7	55	106	3.93	<50
B280414		2.68	0.012	1	0.33	30	<50	<5	10	<0.05	56	6	102	130 76	6.19 7.34	<50 <50
B280415		2.48	0.013		0.31	<10	<50	<5	<10	<0.05	21	12	66			
8280416		4.86	0.020	3	0.42	10	70	<5	10	0.08	<5	21	86	719	8.28	<50
B280417		2.94	0.013	<1	0.35	20	50	<5	<10	0.08	<5	29	66	142	11.40	<50
B280418		2.62	0.030	1	0.41	<10	60	<5	10	0.81	<5	10	52	1110 881	5.99 8.39	<50 <50
B280419		2.46	0.027	<1	0.37	20	60 <50	<5	<10 <10	0.67	<5 <5	21 12	53 51	729	7.10	<50
B280420		2.56	0.022	<1	2.18	<10		<5		2.12						
B280421		2.66	0.011	<1	1.82	20	<50	<5	<10	0.51	<5	<5	33	123	4.80	<50
B280422		3.18	0.023	2	1.20	<10	160	<5	<10	1.76	<5	<5	116	253 1445	13.55	<50
B280423		1.74	0.083	9	0.42	10	110	<5	<10	0.89	<5 7	30 7	88 77	3370	19.65 10.95	<50 <50
B280424	1	1.26	0.062	2	0.85	<10 <10	130 90	ব্য ব্য	<10 <10	1.81 0.64	<5	18	63	64	15.75	<50
B280425		4.34	0.009	<1	0.71											
B280426		0.20	0.183	19	0.14	1510	<50	4	30	0.66	148	228	82	16450	39.6	<50
B260427		0.88	<0.005	<1	2.19	40	120	<5	<10	4.08	<5	22	150	202	4.52	<50 <50
B280428		2.76	0.013	1	0.39	<10	70	<5	<10	0.61	<5	47	64 104	102 107	25.6 31.2	<50 <50
B280429		3.56	0.017	<1	0.39	<10	60 90	<5 <5	<10 10	0.10	<5 <5	41 18	104	215	24.3	<50
B280430		3.08	0.029	2	0.46	<10			_							
B280431		4.12	0.040	3	1.23	80	90	<5	10	0.75	<5	42	<5	864 678	23.8	<50 <50
B280432		2.48	0.024	<1	1.03	<10	130	<5	<10	1.01	<5	<5 <5	ব্য ব্য	678 2540	5.70 5.89	<50 <50
8280433		1.52	0.076	2	1.21	20	110	<5	10	0.81	<5 <5	<5 <5	<5	657	4.99	<50
B280434		2.20	0.037	2	1.92	20	150	<5 <5	10 <10	1.21 0.55	<5 <5	<5 10	<5	158	4.99 5.90	<50
B280435		1.82	0.025	1	1.16	20	80	<0	<10	0.55	< 9	10	-0	1.00	3.30	-00

1

ALS Canada Ltd. 212 Brooksbank Avenue

North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue

North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

,

1

10: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - B Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2005 Account: LTU

Project: KUT

CERTIFICATE OF ANALYSIS VA05063070

1

Sample Description	Nothed Analyte Units LOR	ME-ICP41a Hg ppm S	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41s Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
8280396		\$	0.12	<50	1.03	890	96	<0.05	35	110	330	31.4	10 10	<5 <5	<5 13	<0.05 <0.05
B280397		7	<0.05	<50	3.08	2390	54	<0.05	11	190	240 200	34.3 29.1	10	ব	21	<0.05
B280398		6	<0.05	<50	4.40	2680	39	<0.05 <0.05	9 17	250 1560	350	33.9	10	~ <5	19	<0.05
B280399		<5	<0.05	<50	3.53	2510 3300	54 44	<0.05	17	360	130	26.3	10	<5	21	<0.05
B280400		<5	<0.05	<50	5.05							23.8	10	<5	17	<0.05
8280401		<5	0.08	<50	4.58	2600	66	<0.05	8 <5	490 80	70 10	11.10	<10	<5	<5	<0.05
B280402		<5	0.24	<50	0.22	80	16 20	<0.05 <0.05	8	130	<10	19,75	<10	. <6	<6	<0.05
B280403		<5	0.17	<50	0.13	70 940	4	<0.05	29	680	<10	0.17	<10	<5	78	0.40
8280404		<5	0.25	<50	1.99 0.81	610	134	<0.05	18	420	240	42.2	110	<5	<5	<0.05
B280405		5	<0.05	<50							<10	16.35	<10	<5	6	<0.05
B280406		<5	0.13	<60	1.95	450	8	≪0.05	27 11	220 690	10	9,22	<10	-5	19	<0.05
B280407		<5	<0.05	<50	5.63	1080 1290	10 <5	0.05 <0.05	28	140	30	5.14	<10	7	29	<0.05
B280408		<5	<0.05	<50	7.18 0.73	390	33	<0.05	8	310	20	11.15	<10	<5	11	<0.05
B280409		<5	0.18 0.06	<50 <50	1.89	370	20	0.10	12	120	170	4.02	<10	<5	10	<0.05
B280410		\$								230	150	7.71	30	5	18	<0.05
B280411		<5	0.07	<50	1.92	240	32	0.12	14	<50	10	3.92	<10	<5	<5	<0.05
B280412		5	0.14	<50	<0.05	<30	21 26	<0.05 <0.05	<5 <5	<50	<10	4.41	<10	<5	<5	<0.05
B280413		<5	0.13	<50	<0.05	<30 <30	26 38	<0.05	6	<50	20	7.32	<10	<5	<5	<0.05
B280414		<5	0.16	<50 <50	<0.05 <0.05	<30	30 18	<0.05	<5	<50	10	8.05	<10	<5	<5	<0.05
8280415		<5	0.15						-	50	80	8.98	<10	<5	<5	<0.05
8280416		<5	D.20	<50	0.05	30	10	<0.05 <0.05	<5 <5	50 <50	50	12,40	20	<	<5	<0.05
B280417		<5	0.16	<50	0.05	<30 210	11 <5	<0.05	<5	<50	<10	6.34	10	<5	8	< 0.05
B280418		<5	0.15	<50 <50	0.47 0.86	210	8	<0.05	5	70	<10	8.91	10	<5	8	<0.05
B280419		<5	0.15 0.07	<50 <50	4.77	970	7	<0.05	<5	70	<10	6.27	<10	5	15	<0.05
B280420		<5							6	50	<10	3.87	10	<5	6	<0.05
8280421		<5	0.13	<50	4,14	700	5 16	<0.05 0.06	-5	150	60	14.80	10	<5	8	<0.05
B280422		<5	0.20	<50 <50	2.07 0.56	520 300	8	<0.05	<5	100	20	21.4	20	<5	5	<0.05
B280423		<5	0,15 0.17	<50 <50	1.66	650	11	0.05	<5	90	10	12.00	10	<5	8	<0.05
B280424		- 6 <5	0.20	<50	0.72	200	6	0.06	5	170	<10	17.10	10	<5	6	<0.05
B280425		_	•		0.85	630	142	<0.05	9	440	240	44.2	130	<5	7	⊲0.05
B280426		6	<0.05 1.62	<50 <50	1.94	720	<5	<0.05	27	3340	<10	0.19 .	<10	8	315	0.32
8280427		<5 <5	0.13	<50	0.31	140	11	0.06	<5	200	10	27.6	<10	<5	6	<0.05
8280428		<5	0.13	<50	0.05	60	9	0.06	<5	<50	20	33.4	10	<5	5	<0.05
8280429 8280430		<5	0.18	<50	0.06	50	10	0.05	<5	<50	<10	26.0	<10	<5	<5	<0.05
		5	0.17	<50	1.54	280	11	0.05	<5	100	10	25.6	<10	<5	6	<0.05
B280431		্	0.17	<50	1.24	610	<5	0,06	<5	90	<10	5.97	<10	<5	<5	<0.05
B280432			0.19	<50	1.39	540	7	0.06	<5	150	<10	6.05	<10	<5	<5	<0.05
8280433 8280434		<5	0.18	<50	2.29	670	6	0.05	<5	600	10	4.89	<10	<5	11	<0.05
B280434 B280435		<5	0.19	<50	1.06	440	15	0.06	<5	70	10	6.07	10	<5	<5	<0.05
D£00430			0.10													

I.

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brookebank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.sischemex.com To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

~ . 1

1

Page: 3 - C Totai # Pages: 5 (A - C) Finalized Date: 12-AUG-2005 Account: LTU

Project: KUT

1

1

CERTIFICATE OF ANALYSIS VA05063070

1

		115 10014	10016		ME-ICP41a	ME-ICP41a	4- 4440	0	7- 444-	
	Hethed	ME-ICP41a 17	ME-ICP41a U	ME-ICP41a V	WE-RCP418	ME-ICP41a Zn	Ag-AA46	Cu-AA46	Zn-AA46 Zn	
ł	Analyte Units						Ag	Cu %		
Sample Description	LOR	. ppm 50	ppm 50	ppm 5	ррт 50	ppm 10	ppm 1	0.01	% 0.01	
		50					· _	0.01	0.01	
B280396		<50	<50	9	<50	27200				
B280397		<50	<50	6	<50	19150				
6260398		<50	<50	<5	<50	32900				
B280399		<50	<50	7	<50	21000				
B280400		<50	<50	9	<50	18450				
B280401		<50	<50	6	<50	24200				
8280402		<50	<50	<5	<50	590				
8280403		<50	<50	<5	<50	410				
8280404		<50	<50	57	<50	120				
B280405	1	<50	<50	19	<50	26100				
B280406		<50	<50	<5	<50	200				
B280407		<50	<50	10	<50	320				
B280408		<50	<50	6	<50	260				
8280409		<50	<50	<5	<50	310				
B280410		<50	<50	16	<50	2230				
B280411		<50	<50	11	<50	4730				
B280412		<50	<50	<5	<50	7770				
B280413	1	<50	<50	<5	<50	6340				
B280414	- 1	<50	<50	<5	<50	15350				
B260415		<50	<50	<5	<50	5260				
B280416		<50	<50	\$	<50	160				
B280417		<50	<50	<5	<50	220				
B280418		<50	<50	<5	<50	110				
B280419		<50	<50	<5	<50	290				
B280420		<50	<50	<5	<50	470				
B280421		<50	<50	<5	<50	160				
8280422		<50	<50	<5	<50	140				
B280423		<50	<50	<5	<50	60				
B280424		<50	<50	<5	<50	820				
8280425		<50	<50	<5	<50					
8280426		60	<50	22	<50	28500				
B280427		<50	<50	165	<50	110				
B280428		<50	<50	<5	<50	40				
B280429		<50	<50	<5	<50	10				
B280430		<50	<50	<5	<50	50				
B280431		<50	<50	<5	<50	110				
B280432		<50	<50	<5	<50	130				
B280433		<50	<50	<5	<50	140				
B280434		<50	<50	<5	<50	170				
B280435	ľ	<50	<50	<5	<50	100				
			<u> </u>							

1 1 1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschernex.com To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

1

Page: 4 - A Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2005 Account: LTU

Project: KUT

١

CERTIFICATE OF ANALYSIS VA05063070

1

٦

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41 <u>a</u> Ga ppm 50
B280436		0.60	0.048	5	1.30	60	80	4	10	0.86	<5	4	9	638	4.24	<50
B280451		1.34	0.019	2	0.98	40	70	<5	<10	1.39	10	14	11	551 590	6.84 4.30	<50
8280452		2.14	0.023	4	0.76	50	<50	<5	10	0.44	<5	<5	<5	393	28.5	<50 <50
B280453		0.80	0.049	6	0.46	110	50	<5	10	0.40	9	ক ক	13 <5	393 109	3.98	<50
B280454		2.32	0.007	<1	0.80	20	60		10	0.30	<5					
B280455		3.14	0.221	65	0.61	20	50	-5	20	0.60	20	20	<5	14300 >50000	6.23 2.96	<50 <50
B280456		1.38	1.745	>200	0.44	90	<50	<5	90	5.00	<5	4	<5 <5	5700	5.17	<50
8280457		2.94	0.040	9	4.28	<10	50	4	10	1.27	4	0	-	3160	8.43	<50
B280458		2.94	0.043	5	3.27	<10	50	4	<10	3.40	21	<5	<5 <5	4850	7.73	<50
B280459		3,78	0.093	3	0.54	<10	110	<	<10	1.40	11	<5				
B280460		2,86	0.035	2	0.29	10	60	<5	<10	0.06	14	32	5	126	17.45	<50
B280461		3.02	0.027	5	0.27	<10	<50	<5	<10	0.12	57	35	5	327	14.35	<50
B280462		2.14	0.037	3	0.35	20	50	<5	<10	0.06	<5	43	<5	315	21.3 19.45	<50 <50
B280463		3.16	0.054	2	0.38	30	60	<5	10	0.07	<5	30	<5	218 475	28.8	<50
8280464		2.74	0.082	5	0.38	50	50	<5	<10	0.07	<5	40	<u> </u>			_
B280465		0,18	0.180	18	0.12	1500	<50	<5	30	0.62	153	222	64	16500	39.8	<50
B280466		3.02	0.125	12	0.18	40	<50	<5	10	<0.05	261	41	9	667	12,30	<50
B280467		2.74	0.037	2	0.20	<10	<50	<5	<10	<0.05	<5	17	<5	123	14.65 13.15	<50 <50
B280468		2.50	0.017	<1	3.45	<10	<50	<5	<10	0.19	<5	49	208	58 36	6.86	<50
B280469		2.78	0.013	<1	1.40	30	<50	<	10	0.09	<5	16	62			
B280470		2.50	0.012	1	2.40	10	<50	<5	<10	0.17	<5	48	89	41	12.80	<50
B280471		2.64	<0.005	<1	5.91	<10	<50	<5	10	0.19	<5	40	232	31	11.15 12.50	<50 <50
B280472		2.30	<0.005	<1	6.26	<10	<50	<5	<10	0.22	<5	48	196	19 147	12.50	<50
B280473		2.68	0.017	2	0.58	10	60	<5	10	0.71	<5	25 27	44 5	218	12.05	<50
8280474		2.64	0.021	4	0.66	20	60	<5	<10	0.27	<5					
8280475		2.26	0.024	3	0.53	30	50	<5	10	0.10	<5	13	33	308 15800	5.39 7,14	<50 <50
B280476		2.60	0.246	102	0.63	110	70	4	20	0.05	<5	13	<5	488	7.83	<50
B280477		2.58	0.027	4	0.58	<10	<50	<5	10	0.05	<5	7	27 <5	400	9.12	<50
B280478		2,76	0.013	1	0.33	<10	<50	<5	10	<0.05	<5 <5	15	<5	290	8.33	<50
B280479		2.60	0.016	1	0.33	<10	<50	<5	10	0.09						<50
8280480		3.24	0.017	1	0.27	60	<50	<5	10	< 0.05	<5	50	<5	226 14	13.10 7.40	<50
B280481		2.44	0.007	<1	0.26	<10	<50	<5	10	<0.05	<5	22	<5	3100	15.90	<50
B280482		3.16	0.022	2	0.26	80	<50	<5	10	0.09	<5	47	<5 71	16600	37.7	<50
B280483		0.18	0.179	18	0.13	1420	<50	<5	40	0.62	141	218	91	206	3.39	<50
B280484		0.72	<0.005	<1	1.81	<10	100	<5	10	6.02	<5	21				
B280485		2.60	0.107	37	0.97	20	130	<5	<10	1.39	26	<5	<5	18800	9.35	<50 <50
B280486		2.56	0.058	16	0.85	70	100	<	10	2.23	17	<5	<5	2210 2500	5.95 6.07	<50
B280487		3.92	0.063	9	0.41	<10	<50	<5	20	0.07	322	<5	<5 - f		4.40	<50
B280488		1.48	0.168	61	0.57	20	220	<5	<10	0.50	6	<5	<5 <5	24400 >50000	4.40	<50
B280489		0.68	0.439	>200	0.72	180	620	<5	50	2.52	20	<5	<0	>0000	4./4	

ų.

ALS LNemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue

North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

0: WED I ERN REL ITC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 4 - B Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2005 Account: LTU

Project: KUT

.

CERTIFICATE OF ANALYSIS VA05063070

	Hethod Analyte Unite	ME-ICP41a Hg ppm	ME-ICP41a K %	ME-ICP41a La	ME-ICP41a Mg %	ME-ICP41a Mn ppm	ME-ICP41a Mo ppm	ME-ICP41a Na %	ME-ICP41s Ni ppm	ME-ICP41a P ppm	ME-ICP41a Pb apm	ME-ICP41a S %	ME-ICP41a Sb ppm	ME-ICP41a Sc ppm	ME-ICP41 Sr ppm	ME-ICP41a Ti %
Sample Description	LOR	5	0.05	50	0.05	30	5	0.05	5	50	10	0,05	10	5	5	0.05
B280436		ৰ	0.21	<50	1.29	480	11	0.06	8	410	10	3.82	<10	<5	15	<0.05
8280451		<5	0.24	<50	0.21	260	78	0.15	136	4480	10	7.53	<10	<5	21	<0.05
6280452		4	0,14	<50	0.20	310	45	0.17	42	330	240	4.65	<10	<5	7	<0.05
B280453		5	0.14	<50	0.22	190	93	0.06	125	60	1000	30.9	10	<5	<5	<0.05
B280454		<	0.16	<50	0.11	100	26	0.17	33	540	40	4,33	<10	<5	8	<0.05
B280455		<5	0.13	<50	0.35	270	222	0.12	106	130	330	7.18	10	<5	6	<0.05
B280456		5	0.10	<50	2.82	2210	23	0.05	<5	500	210	3.95	20	6	34	<0.05
B280457		\$	0.10	<50	6.16	940	10	0.10	<5	310	10	4.80	<10	6 7	10	<0.05
B280458		<5	<0.05	<50	6.31	1880	5	<0.05	<5	1560	20	8.72	<10	<5	22 7	<0.05
B280459		<	0.12	<50	1.20	720	<	<0.05	<5	<50	10	8.33	<10			<0.05
B280460		<	0.09	<50	0.11	40	25	<0.05	12	<50	420	19.00	<10	<5	<5	<0.05
B280461		<5	0.10	<50	<0.05	40	<5	<0.05	<5	<50	1220	16.10	<10	<5	<5	<0.05
B280462		<5	0.13	<50	<0.05	30	6	0.06	<5	<50	30	22.9	<10	<5	<5	<0.05
B280463		<5	0.14	<50	<0.05	30	23	0.05	10	<50	70	21.0	10	<5	<5	<0.05
B280464		<5	0.13	<50	<0.05	30	79	0.06	17	<50	90	31.4	<10	<5	<5	<0.05
B280465		<5	<0.05	<50	0.87	670	146	<0.05	34	410	240	44.9	110	<5	9	<0.05
B260466		<5	0.07	<50	<0.05	<30	15	<0.05	<5	<50	1040	15.15	10	<5	<5	<0.05
8280467		<5	0.08	<50	<0.05	<30	10	<0.05	<5	<50	40	15.85	10	<5	<5	<0.05
B280468		<5	0.10	<50	3.71	1320	22	<0.05	99	330	20	10.35	<10	9	<5	<0.05
8280469		<5	0.10	<50	1.34	450	14	<0.05	19	140	<10	5.73	10		<5	<0.05
8280470		<5	0.05	<50	2.50	560	27	<0.05	25	150	<10	11.05	10	6	<5	< 0.05
B280471		<5	<0.05	<50	6.41	1250	<5	<0.05	72	430	<10	5.41	<10	21	<5	<0.05
B280472		<5	<0.05	<50	6.82	1230	<5	<0.05	61	370	<10	6.15	<10	27	<5	<0.05
B280473		<5	0.17	<50	0.30	100	14	0.06	<	200	70	10.55	20	<5	6	< 0.05
B280474		<5	0.21	<50	0.17	50	17	0.07	<5	<50	180	13.00	<10	<5	6	<0.05
B280475		<5	0.20	< <u>5</u> 0	0.06	<⊲0	12	0.06	<5	50	<10	5.65	<10	<5	<5	<0.05
B280476		<5	0.22	<50	<0.05	<30	17	0.09	<5	130	20	7.85	10	<5	5	<0.05
B280477		<5	0.17	<50	<0.05	<30	<5	0.10	<5	190	<10	8.47	<10	<5	<5	<0.05
B280478		<5	0.07	<50	<0.05	<30	<5	0.07	6	60	<10	9.85	<10	<5	<5	<0.05
B280479		<5	0.07	<50	<0.05	<30	18	0.06	<5	100	<10	9.01	<10	<5	<5	<0.05
8280480		<5	0.05	<50	<0.05	<30	37	0.06	<5	<50	<10	14.25	<10	<5	<5	<0.05
6280481		<5	<0.05	<50	<0.05	<30	27	0.06	5	<50	<10	7.86	<10	<5	<5	<0.05
B280482		<5	0.07	<50	0.05	<30	44	0.05	<5	<50	<10	17.25	<10	<5	<5	<0.05
B280483		7	<0.05	<50	0.82	600	136	<0.05	17	390	220	42.3	120	<5	5	<0.05
B280484		<5	1.39	<50	1.66	550	<5	<0.05	22	2920	<10	0.08	<10	5	1560	0.31
B280485		<5	0.19	<50	1.42	240	19	<0.05	8	260	260	9.78	<10	<	24	<0.05
B280486		<5	0.14	<50	1.56	490	13	0.05	8	540	510	5.70	10	<5	40	<0.05
8280487		10	0.05	<50	<0.05	30	90	0.10	18	130	1630	10.90	<10	<5	6	<0.05
B280488		<5	0.10	<50	0.14	140	11	0.12	7	320	490	5.31	10	<5	7	<0.05
B280489		<5	0.06	<50	2.63	1010	8	0.07	<5	360	350	6.79	40	7	19	<0.05
				_												

O: WEDIERN NELITC MINES INC. 900-808 W HASTINGS ST

VANCOUVER BC V6C 2X4

Page: 4 - C Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2005 Account: LTU

CERTIFICATE OF ANALYSIS VA05063070

Project: KUT

	Method	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	Ag-AA48	Cu-AA48	Zn-AA48				
· ·	Analyte	π	U	v	W	Zn	Ag	Cu	Zn				
Barrela Barratalian	Units	ppm	ppm	ppm	ppm	ppm	ppm	*	*				
Sample Description	LOR	50	50	5	50	10	1	0.01	0.01				
8260436		<50	<50	6	<50	150							
B280451		<50	<50	61	<50	1770							:
8280452		<50	<50	14	<50	310							
8280453		<50	<50	29	<50	1900							
B280454		<50	<50	17	<50	290							
B280455		<50	<50	10	<50	3760							
8280456		<50	<50	<5	<50	210	200	8.74					
B280457		<50	<50	<5	<50	1000						,	
B280458		<50	<50	<5	<50	3860							
B280459		<50	<50	<	<50	1120						<u></u> .	
B280460		<50	<50	4	<50	3140							
8280461		<50 <50	<50 <50	<5 <5	<50 <50	11000							
B280462 B280463		<50	<50	<5 <5	<50	130 340							
B280465		<50	<50 <50	<5 <5	<50	340							
· · · · · · · · · · · · · · · · · · ·						26400			<u> </u>		······		
B280465	1	<50 <50	<50 <50	17	<50	37100							
B280466 B280467		<50	<50 <50	<5 <5	<50 <50	37100							
B280468		<50	<50	89	<50	230							
8280469		<50	<50	21	<50	80							1
B280470		<50	<50	60	<50	80	· · · ·				·····	·····	
8280470		<50	<50	175	<50	100							
B280472		<50	<50	202	<50	100							
B280473	1	<50	<50	6	<50	240							
B280474		<50	<50	<5	<50	1060							
B280475		<50	<50	- ব	<50	320		· · · ·					
B280476	1	<50	<50	<5	<50	180							
B280477		<50	<50	<5	<50	640							1
8280478	1	<50	<50	<5	<50	10							
B280479		<50	<50	<5	<50	10							
B280480		<50	<50	- জ	<50	10							
B280481		<50	<50	<5	<50	<10							
8280482		<50	<50	<5	<50	60							1
B280483	1	<50	<50	21	<50	25600							
B280484		<50	<50	119	<50	70				·			
8280485	1	<50	<50	<5	<50	6060							
B280486	1	<50	<50	<5	<50	4070							1
B280487		<50	<50	<5	<50	>50000			9.65				[
8280488		<50	<50	<5	<50	1290	047	(D AA					
B280489		<50	<50	<5	<50	3450	317	12.00					1

ALS LNEMEX **EXCELLENCE IN ANALYTICAL CHEMISTRY**

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS LILEN

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

TIC N.____ INC. To: W ERN 900-808 W HASTINGS ST

VANCOUVER BC V6C 2X4

Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2005

Account: LTU

Project: KUT

CERTIFICATE OF ANALYSIS VA05063070

Sample Description	Nethed Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Be ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41 Ga ppm 50
B280490 B280491 B280492 B280493 B280493 B280494		3.72 2.02 2.60 2.98 3.18	0.597 0.015 0.040 0.047 0.036	108 3 4 4 5	0.31 0.58 0.40 0.41 0.36	<10 10 <10 <10 50	430 640 120 100 90	ও ও ও ও ও	<10 <10 10 10 20	6.46 9.11 0.35 0.30 0.10	ళ ళ 7 16 ళ	38 <5 25 73 64	ও ও ও ও ও	43500 557 719 638 790	12.30 2.27 11.40 20.2 24.0	<50 <50 <50 <50 <50
								<u>. </u>								

.

2

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4 Page: 5 - B Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2005 Account: LTU

ALS

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

Project: KUT

1

CERTIFICATE OF ANALYSIS VA05063070

- - - --

1

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Min ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41s Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
B280490 B280491 B280492 B280493 B280493 B280494		ও ও ও ও ও	0.11 0.14 0.17 0.15 0.15	<50 <50 <50 <50 <50	3.37 4.81 0.16 0.14 0.05	3800 9380 130 150 40	28 <5 30 47 47	<0.05 0.08 <0.05 0.05 0.05	ଏ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ	390 1550 80 <50 <50	90 10 10 190 210	14.95 2.34 12.45 22.0 25.6	10 <10 <10 <10 <10	ৎহ ৎহ ৎহ ৎহ	44 50 ⊄5 ⊄5 ⊄5	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05
			<u></u>													

1

ļ

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 5 - C Total # Pages: 5 (A - C) Finalized Date: 12-AUG-2005 Account: LTU

Project: KUT

CERTIFICATE OF ANALYSIS VA05063070

Sample Description	Nothed Analyte Units LOR	ME-ICP41a 7) ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41s Zn ppm 10	Ag-AA48 Ag ppm 1	Cu-AA48 Cu % 0.01	2n-AA46 Zn % 0.01	
B280490 B280491 B280492 B280493 B280493		50 <50 <50 <50 <50	<50 <50 <50 <50 <50	***	<50 <50 <50 <50 <50	600 200 1640 3540 340		·		
				-						

8280532

VANCOUVAR BC

Aurans Add	LOWNICAL OF	AHOR	Nates	RTR	<u>е</u> т.														BC						Cen				97-9-835		604)		-
(I8C	9001 Acc)		8. M											×	Q. 2003.	19 M M					104						0041.	(33+ <u>1</u>	716
8,8,88									<u>جان</u>	9.6		24					e c	č	Q Q I	ICA	CE .												
		West				64.	• M•	mae			T		T T				'n		BPY	10 4 1		u 4							÷			1. 	¥ + ¥
in the Local	Sec. Sec. Sec. 9	Mop u					80			18		? ??###					36-577 B	, M	500m F				~		4		Pac	re .	-		4.00		
						<u></u>						<u>i</u>										- 10A				83					1990 (M		elitereli
	SAMPLE	Mo	: Cu	Pb	Zn	Ag	HI Co	Hn -	Fe J	is U	Au	Th	Sr	Ca :	20 B1	¥	Ca P	La	Cr Ng	a Ba T	1 8	A1 N	a K	¥	Hg	Sc T) s	Ga	Se TO	t/s smp	ile		
		\$ D M	i ppa	ppe	ppa.	ppe (spa ppa	ppn	1 p;	n ppn	ppb	ppm	ppn ;	pa p	* pp	ppm 	1 1	ppn.	pp a 1	K ppm :	t ppn	\$	1 1	pçalı	ppe p	pp pp	r 1	рря	, , , , , , , , , , , , , , , , , , , 	1	kg		
	8280501	1.5	277.\$	1.6	207	.5 3	3.5 2.8	587 2.	07 <u>2</u> .	i <.1	13.1	.1	4	.1	1.4	3	17 .009	1	3.8 3.52	2 50 .00	1 1	. 89 . 54	4 .17	< 1 <	0t 2	•	7 1 14	5	د ۲ ۱	27 2	31		
	\$280502																		3.8 2.33														
	8280503																		1.0 3.09														
	6280504																		<1 4.93														
	8289505	.3	4.8	4.0	50	<.1 1	.1 1.7	1622 1.4	61 < .	5 <.1	.6	1.	29	.3 <.	1 <.1	27.	54 .008	2	1.5 4.55	5<.00	i <1	.95 .07	7 .03	<.1 <.	.01 6	.9 <.)	<.05	3 -	c.s. <.	02 1.	69		
	8280506	5.4			146	,		812 3		e 1			18	1 .	۰ e		BA 1977	-1	<1 5.67	22 00		71 67		- 1				,		<i>(</i> 1 - 1	40		
	5280507																		<1 5.31														
	5290506																		1.2 3.25														
	8280509		52.1																1.0 2.24														
	8280510																		1.1 2.04														
	8280511																		1.3 1.66														
	8280512																		1.1 1.25												62		
	RE 6280512																		1.2 1.29										2.5 5.	27	·		
	RRE 8280512																		1.5 1.31										2.4 5.		•		
	8260513	7.1	178.3	3.7	193	.5	.6 7.8	399 5.5	13 B.	5 <.1	13.2	<.1	Z	. z .	1 1.6	1.	46 .923	ব	1.3 1.38	20 .001	11	.09 .014	5 .14	<.1 .	.01 1.	4.1	6.14	3 3	5.0 6.	79 2.:	27		
	8280514(pu1p) 77.2	7969.1	%. 3>	19603 1	2.2 20	.7 75.2	1623 18.7	4 210.	2.1	104.1	.1	12 76	.3 11.	5 3.9	25 1.	810, 85	ż	71.2 1.45	7 .014	1	.59 .012	.04	.1 3.	46 3.	2 2.8	>10	3 11	.6 22.	53	-		
	8280515	26.0	101.7	2.7	91	.Z	.9 37.0	540 5.1	16 9.	5.1	6.0	<.1	6 <	,1 .	1.8	4.	70 .002	<1	1.1 3.52	30<.001	11	.34 .02	2 .05	<1.	05 2 .	6 .2	3.88	3 1	1.7 4.	51 2.	32		
	8280516	22.3	53.B	3.0	111	.4	.7 26.7	854 5.6	99 E.	5.2	15.9	<.1	7	. Z .	1.4	6 1 .	14 .001	<1	1.0 4.44	22 .001	<1 2	.62 .017	,07	<.1 .	63 4.	4 .1	3.69	7 1	1.9 4.	06 Z.	41		
	8280517																		1.6 2.53														
	8280518	18.6	5.1	1.4	61	<.1	.5 8,8	590 Z.O) 5 2.	7 <.1	<.5	.1	18	.1 <.	1.1	5.	94 .004	1	<1 3.42	51 .001	12	.29 .92	. 05	<.1 < <i>.</i>	01 3.	0.1	.34	5 •	4.5.	44 2.	02		
	8280519	29.7	5,9	.1	68	<11	0 10 7	427 2.7	0 2	, 1	1.2	1	3 <	1. <	t .1	7	15 007	1	1.0 4.41	52 .001	· 13	27 014	. ot	<1	01 3	7 ł	32	7 .	5	43 2	15		
	B280520																		<1 4.95														
	8289521																		1.0 4.80														
	8280522																		<1 3.10											32 2.			
	8280523																		1.2 2.13											33 2.4			
				_	-									. .																			
	8280524							578 2.3											<1 2.23 2.1 1.64											15 1.4 60 1.1			
	8280525 8290526																		1.3 2.05											90 I. 70 I.			
	8280525																		1.5 2.28			.24 .021								70 1. 65 2.3			
	8289528																		1.2 2.64											83 2.3			
	0100010		v - .v	.,	•••								~~			•••		•										-					
	8280529	37.6	940.2	1.3	68	.5	.5 8.1	194 3.3	1 H.	1.1	29.4	<.1	6	3.0	8. 14	3.	21 .011	<1	1.7 1.65	28 .001	11	.32 .018	.10	.1 .	G J 1.	6.Z	2.56	3 <	.5 2.	72 3.2	21		
	6280530(pulp)																		55.6 1.39			.60 .016									-		
	8280531	14.7	8.6	42.7	53	.2 1	.9 6.4	427 2.0	91.	. <.1	2.4	.1	4 <	.1 <.1	1.6	5	55 .001	1	1.7 3.71	35 .001	2 2	.43 .033	.11	<.1 .I	01 3.	Z.Z	.62	5	.5 .	66 1,9	79		

GROUP 10X - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-HZO AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILIT TOT/S GROUP 2A BY LECO. - SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AUG 11 2005 DATE REPORT MAILED DATE RECEIVED: FA حمز) Data Clarence

STANDARD D56/C58 11.3 127.2 31.5 144 .3 24.6 10.5 728 2.85 28.5 6.3 42.6 2.9 36 5.9 3.1 4.8 54 .87 .070 15 181.8 .55 161 .079 16 1.94 .073 .16 3.5 .22 3.5 1.7 <.05 6 4.1 5.48

12.1 4.2 1.4 29 < 1. 6 10.9 324 5.30 .8 < 1. < 5. < 1. 2. < 1. < 2. 3 .29 .001 < 1. 1.2 2.68 29 .001 11.98 .020 .11 < 1. < 01 2.4 .2 4.47 4 2.2 4.95 2.33

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

:

Western Keltic Mines Inc. PROJECT KUTCHO CREEK FILE # A504412 Page 2

																																				WAR MANES	
SAMPLE#	Ма ррл		_		n Ag trippm				Fe	As ppm	U ppm	Au ppb	Th ppm		Cd ppm		B1 ppm	V ppm	Ca \$	P 1	La ppm	Cr ppm	Hg ¥	8a ppm	Ti X	B ppm	A] ¥	Na ¥	К Х р	W	Hig ppm	Sc ppm p	T1 ppm		Ga Se pm ppm	TOT/S	Samp1 k
3280533 3280534 3280535 3280535 3280536 3280537	9.6 64.5 61.0 17.1 14.9	8.4 253.1 207.8	4.7	-) 1.4 3 .6	.4	17.9 21.4 11.6 3.3	860 967	4.91 2.74 1.56	4.8 11.3 37.1 16.3 26 2	<.1 <.1 <.1	9.3 24.2 11.5	<.1 <,1 <.1	2 7 8 6	<.1 <.1 109.5 21.6 .3	.3 1.0 .4	.4	2		.002 .013 .009 .004 .005	<1 <1 <1	<1 1.1 <1 2.2 1.2	2.33 1.90 1.17	18 20< 31<	.001 .001 .001 .001 .001	1 <1 <1	1.36 1.01	.019 .015	.06 < .06 < .06 < .08 < .08 <	.1 .1 2 .1	. 02	2.9 1.7 1.2	.13 .34 .72 .31	. 92 . 83	5 1.4 3 4.2 3 2.3 1 .7 2 .5	4.72 3.32 1.47	2.11 2.32 2.34 2.70
3280539 3280540 3280541 RE B280541 RE B280541	14.9 1.1 .3 .4 .1	5.3 5.3 5.1 2.8 2.7	3 3.8 3.1 1.1 1.3	139 111 123 128	<pre>> .2 > <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1</pre>		2.1 2.4 3.1 3.3	2269 2016 679 690	1.87 2.15 2.14 2.22	1.1 2.9 .7 .7	<.1 <.1 <.1 <.1	1.3 .6 .9	<.1 <.1 <.1 <.1	31 25 9	1.2 .6 .2 .2	<.1 <.1 <.1 <.1 <.1	.1 .1 <.1 <.1	2 3 4 4	7.41 5.70 1.29 1.29		<1	<1 4 1.1 4 <1 2 <1 2	4.41	7< 7< 9< 10<	.001 .001 .001 .001 .001 .001	<1 <1 2 1 2	.51 .71 .78 .78	.061 .081	.04 < .04 < .06 < .06 <	.1 .1 < .1 <	.01 .01 .01 .01	6.1 6.3 4.1 < 4.7	.1 .1 <.1 .1	.47 .25 .50 .56 .42	1 <.5 2 <.5 2 <.5 2 <.5 2 <.5 2 <.5	. 47 . 25 . 50 . 49	
3280542 3280543 3280544 3280545 3280545 3280545	.1 26.5 5.0 1.9 10.1	205.3	4.5 3.5 3.1	279 386	5 .1 7 .1	•••	5.0 2.4	362 1039 1572	5.97 3.58 1.99	3.1	<.1 <.1 <.1	<.5 2.7 8.4 3.3 .6	<.1	6 6 8 14 2	.1	<.1 .1 <1 .1 .1	.9	3	.73 1.16 .74 2.23 .11	.006 .001 .013 .012 .022	√1 √1 √1 √1 √1 √1 √1		L.37	23< 18< 8<		<1	.73 1.73 2.18	.020 .033	.07 < .12 < .10 .04 < .04 <	.1 < .1 < .1 <	.01 .01 .01	1.7 3.9 5.5 <	.3 6 .2 3 <.1	. 92	1 <.5 1 5.9 4 1.2 5 <.5 5 <.5	6.58 3.26 .98	
3280547 Standard DS6/CSB	.5 11.4	7.9			/ <.1 5 .3	1.1 23.9	3.8 10.5	198 713	1.22 2.85	.9 21.5		<.5 49.5		1 37		<.1 3.1	<.1 4.9	5 56	.04 .84	.007 .079	1 15	7.5 2 185.9	2.75 .58		.001 .081	<1 2 17			.03 < .15 3	. –		-	<.1 < 1.7 <		5 <.5 6 4.4		.5

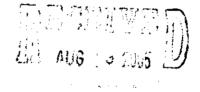
Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data i FA

Linemex **EXCELLENCE IN ANALYTICAL CHEMISTRY**

Phone: 604 964 0221 Fax: 604 984 0218 www.alschemex.com


ALS Canada Ltd. 212 Brooksbank Avanue North Vancouver BC V7J 2C1 10: WESTERN KELLIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 1 Finalized Date: 24-AUG-2005 Account: LTH

ICP-AES

C	ERTIFICATE VA0506602	23		SAMPLE PREPARAT	TION
			ALS CODE	DESCRIPTION	
11-AUG-2005.	re samples submitted to our lab in \ s to data associated with this ce PETER HOLBEK		WEI-21 LOG-22 LOG-24 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Pulp Login - Rcd w/o Barcode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	
				ANALYTICAL PROCED	URES
			ALS CODE	DESCRIPTION	INSTRUMENT
			Au-AA23	Au 30g FA-AA finish	AAS

ME-ICP41a

Au 30g FA-AA finish

High Grade Aqua Regia ICP-AES

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Rest Con

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS CHEMEX

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 964 0221 Fax: 604 984 0218 www.aischemex.com

1

. b: WL .. LRN K.L. . C MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Total # Pages: 2 (A - C) Finalized Date: 24-AUG-2005

Account: LTU

Page: 2 - A

1

Project: KUT

CERTIFICATE OF ANALYSIS VA05066023

٠. 1

Sample Description	Method Analyte Ualts LOR	WEI-21 Recvd Wt. kg 0.02	Al-AA23 Ali ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Ai % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bl ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41s Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
B280628 B280629 B280630 B280631		6.16 1.12 4.22 0.18	0.040 <0.005 0.037 0.145	5 <1 2 20	1.04 1.96 1.14 0.24	20 <10 60 290	150 240 140 <50	ণ্ড ণ্ড ণ্ড	10 10 <10 <10	0.47 2.11 0.07 1.38	<5 <5 <5 89	65 22 37 108	25 118 15 63	1240 270 291 14750	26.6 3.80 12.25 28.7	<50 <50 <50 <50
B280327 B280328 B280329 B280330		0.60 1.26 1.12 0.62	0.019 0.139 <0.005 0.099	15 15 1 12	0.52 0.70 2.04 1.56	10 40 10 30	60 110 260 250	ব্য ব্য ব্য ব্য ব্য	<10 10 10 10	1.29 1.90 2.09 3,61	5 91 <5 15	5 7 24 7	<5 76 128 44	2020 26500 365 18550	5.13 28.1 3.98 14.10	<50 <50 <50 <50 <50
B280331 B280332 B280333 B280333 B280334		1.54 0.68 0.96 0.84	0.040 0.055 0.039 0.072	1 3 1 1	1.10 0.96 1.24 1.15	90 <10 30 60	180 140 130 160	ত ব্য ব্য ব্য ব্য ব্য ব্য	10 10 <10 10	0.62 1.71 1.51 0.39	<5 12 <5 9	<5 <5 5 7	<5 83 11 <5	422 1690 403 547	13.45 11.70 8.28 13.55	<50 <50 <50 <50 <50
8280335 8280336 8280337		0.92 1.08 0.96	0.073 0.073 0.067	2 2 2	1.06 0.93 0.59	40 40 60	150 110 70	ৎ ৎ ৎ	<10 10 10	1.25 1.38 1.89	19 <5 <5	<5 5 5	13 < 5 <5	920 830 1105	13.75 11.80 10.05	<50 <50 <50
B280338 B280339 B280340 B280341 B280342		0.84 0.94 1.28 0.74 0.82	0.073 0.063 0.056 0.049 0.043	1 1 1 1	1.32 0.77 2.12 2.10 1.92	50 20 40 50 80	100 50 120 90 150	জ জ জ জ জ জ জ	<10 10 <10 <10 <10	1.74 0.65 0.36 1.38 1.24	ব্য ব্য ব্য ব্য	<5 <5 8 6 <5	- - - - - - - - - - - - - - - - - - -	526 1980 1705 2010 1670	10.95 11.05 10.80 11.30 13.05	<50 <50 <50 <50 <50
B280343 B280344 B280345		0.82 0.94 0.18	0.032 0.037 0.174 0.039	<1 1 18 <1	2.13 2.67 0.12 1.56	60 60 1520 30	<50 100 <50 <50	্য ব্য ব্য ব্য	<10 <10 20 <10	0.08 0.06 0.87 0.05	<5 <5 150 <5	<5 <5 248 7	<5 48 67 <5	377 631 17200 295	10.95 11.30 39.9 11.90	<50 <50 <50 <50
8280346		0.70	0.039	<;	1.50	30	<30	~>	<10	0.05	0	,	7	290	11.80	~50
												<u></u>	=		<u></u>	

ļ

IN: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 24-AUG-2005 Account: LTU

Project: KUT

CERTIFICATE	OF ANALYS	S VA05066023

١

1

Sample Description	Nothed Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
B280628		\$	0.34	<50	0.30	130	21	0.11	72	<50	60	28.7	<10	<5	6	<0.05
8280629		<5	1.61	<50	1.77	590	4	0.05	47	3610	<10	0.11	<10	<5	95	0.29
B280630		S	0.39	<50	0.06	30	29	0.14	45	<50	80	13.30	10	<	8	<0.05
B280631 B280327		হ হ	<0.05 0.14	<50 <50	1.06 1.24	1120 300	112 20	<0.05 0.07	15 5	260 80	170 10	32.2 4.87	90 <10	ব্য ব্য	9 39	<0.05 <0.05
B280328		5	0.26	<50	0.94	390	26	0.08	 <5	<50	30	31.3	<10		35	<0.05
B280329		<5	1.69	<50	1.88	810	<	<0.05	38	3930	<10	0.13	<10	~ ~	89	0.31
B280330		<5	0.85	<50	1.89	580	19	0.14	<5	<50	130	15.15	10	· 5	85	<0.05
B280331		<5	0.44	<50	0.35	120	27	0.08	ব	<50	20	14.65	<10	<u>جْ</u>	24	<0.05
B280332		<5	0.37	<50	1.11	390	22	0.06	11	90	50	12.70	<10	<5	35	<0.05
8280333		<5	0.37	<50	1.62	460	17	0.09		80	20	8.55	<10	<5	29	<0.05
B280334		<5	0.43	<50	0.43	100	21	0.08	<5	100	20	14.70	<10	<5	13	<0.05
8280335		<5	0.34	<50	0.83	410	16	0.10	<5	120	20	15.00	<10	<5	28	<0.05
B280336		<5	0.32	<50	0.96	450	16	0.06	<5	100	20	12.65	<10	<5	26	<0.05
B280337		<5	0.15	<50	1.64	610	20	<0.05	22	<50	20	10.70	<10	4	34	<0.05
B280338		<5	0.29	<50	1.57	550	14	0.11	\$	50	20	11.65	<10	-5	30	<0.05
8280339		<5	0.13	<50	1.24	260	13	<0.05	<5	50	10	11.60	<10	<5	15	<0.05
B280340		<5	0.32	<50	1.91	220	11	0.09	<5	<50	10	11.30	<10	<5	14	<0.05
B280341		<5	0.25	<50	2.54	580	12	0.11	<5	50	10	11.80	<10	<5	24	<0.05
B280342		<5	0.24	<50	2.26	580	12	0.09	<	<50	10	13.95	<10	<u> </u>	26	<0.05
B280343		<5	0.10	<50	2.67	220	13	<0.05	<5	<50	<10	11.25	<10	<5	5	<0.05
B280344		<5	0.27	<50	2.91	230	14	0.05	<5	50	<10	11.50	<10	<5	6	<0.05
B280345		<5	<0.05	<50	0.85	640	142	<0.05	8	440	220	44.8	110	<5	<	<0.05
B280346		<5	0.15	<50	1 .90	180	11	<0.05	<5	<50	10	12.60	<10	<5	4	<0.05

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

• • •

.

ALS

1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com 10: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 24-AUG-2005 Account: LTU

i

Project: KUT

1

CERTIFICATE OF ANALYSIS VA05066023

Sample Description	Method Analyta Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	
8280628		<50	<50	\$	<50	60	
8280629		<50	<50	125	<50	60	
B280630		<50	<50	<5	<50	230	
B280631		<50	<50	7	<50	16850	
8280327		<50	<50	6	<50	1210	
B280328		<50	<50	11	<50	17600	
8280329		<50	<50	130	<50	140	
8280330		<50	<50	25	<50	2960	
8280331		<50	<50	13	<50	800	
B280332		<50	<50	11	<50	2450	
8280333		<50	<50	8	<50	810	
8280334		<50	<50	5	<50	1860	
B280335		<50	<50	<5	<50	4040	
B280336		<50	<50	4	<50	830	
8280337		<50	<50	<	<50	580	
B280338		<50	<50	5	<50	280	
B280339		<50	<50	\$	<50	270	
8280340		<50	<50	5	<50	510	
B280341		<50	<50	5	<50	490	
B280342		<50	<50	6	<50	380	
B280343		<50	<50	5	<50	550	
B280344		<50	<50	9	<50	650	
8280345		<50	<50	18	<50	27900	
B280346		<50	<50	5	<50	600	
-	ļ						
	[
	ŀ						
	1						
	- 1						
	ļ						
	ł						
	1						

.

ALS CHEMEX **EXCELLENCE IN ANALYTICAL CHEMISTRY**

Phone: 604 984 0221 Fax: 604 984 0218 www.aischemex.com

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 1 Finalized Date: 29-AUG-2005 Account: LTU

AAS

ICP-AES

C	ERTIFICATE VA0506602	4	SAMPLE PREPARATION						
			ALS CODE	DESCRIPTION					
Project: KUT P.O. No.:			WEI-21 LOG-22	Received Sample Weight Sample login - Rcd w/o BarCode					
	pre samples submitted to our lab in V	ancouver, BC, Canada on	LOG-24 CRU-31	Pulp Login - Rcd w/o Barcode Fine crushing - 70% <2mm					
The following have acces	ss to data associated with this cer PETER HOLBEK	tificate: ROB W	SPL-21 PUL-31	Split sample - riffle splitter Pulverize split to 85% <75 um	· · · · · · · · · · · · · · · · · · ·				
				ANALYTICAL PROCEDUR	RES				
			ALS CODE	DESCRIPTION	INSTRUMENT				
			Zn-AA46	Ore grade Zn - aqua regia/AA	AAS				

Au-AA23

ME-ICP41a

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Au 30g FA-AA finish

High Grade Aqua Regia ICP-AES

Signature: Prese Com

IN: WESTERN KELTIC MINES INC.

900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - A Total # Pages: 4 (A - C) Finalized Date: 29-AUG-2005 Account: LTU

Project: KUT

1

CERTIFICATE

1

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a Az ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ce % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-iCP41a Fe % 0.05	ME-ICP41a Ga ppm 50
B280584		2.28	0.009	4	0.42	<10	80	<5	<10	5.39	<5	31	<	55	8.97	<50
8280585		3.08	0.023	2	0.24	30	50	<5	10	2.27	<5	12	11	807	10.05	<50
B280586		1.42	0.033	2	0.38	<10	70	<5	<10	2.78	<5	28	<5	759	11.80	<50
B280587 B280588		2.62 2. 84	0.130 0.028	3 1	0.38 0.40	<10 <10	70 70	<5	20	1.41	<5	55	9	569	7.46	<50
								<	10	2.46	<5	30	7	41	6.54	<50
B280589		2.68	0.019	1	0.38	10	90	-5	<10	1.68	<5	38	<5	46	9.64	<50
8280590 8280591		2.78 2.74	0.023 0.029	1 1	0.54	10	120	<5	10	1.51	<5	25	5	34	5.72	<50
8280592		3.04	0.029	1	0.39 0.42	<10 10	90 110	<5 <5	<10 10	1.92	<5 <5	48 52	<5	- 100	12.30	<50
8280593		1.86	0.011	<1	0.42	30	120	<9 <5	<10	3.10 5.81	<5	52 21	<5 7	96 106	11.70 3.95	<50 <50
								-								
8280594 8280595		0.84 2.62	0.026 0.013	<1 <1	0.44 0.53	30	120	<5	10	1.69	<5	45	<5	131	9.77	<50
B280595		2.66	0.013	1	0.53	20 <10	90 70	ব্য ব্য	<10 10	6.46	<5 <5	17	<5	174 753	6.75 3.15	<50
B280571		2.44	<0.005	4	0.48	<10	80	4	<10	4.04 3.59	<5	6 <5	<5 9	753 41	3.15	<50 <50
B280572		1.74	0.009	<1	0.66	10	90	ন্ ব	<10	1.86	ন্ <u>হ</u>	<5	-5 -5	40	3.45	<50
B280573		3.62	0.013	<1	1.03	<10	80	ব	<10	0.83	<5	<5	<5	65	4.21	<50
B280574		2.44	0.024	<1	0.91	20	120	<5	10	0.36	<5	<5	<5	157	2.16	<50
B280575		1.76	0.034	<1	0.60	<10	140	<5	<10	0.54	<5	<5	<5	821	3.44	<50
B280576		1.74	0.115	7	0.37	30	130	<5	30	0.24	16	25	7	7330	10.15	<50
B280577		3.40	0.057	1	0.51	10	100	<5	<10	0.21	14	27	<5	1450	7.25	<50
B280578		2.50	1.170	13	0.31	240	<50	<5	10	1.32	277	163	<5	11700	29.4	<50
B280583		1,10	0.005	<1	2.40	<10	670	<5	<10	3.75	<5	24	141	265	4.55	<50
B280579 B280580		1.70	0.152	7	0.82	20	110	<5	<10	1.27	15	7	6	4800	5.93	<50
B280581		1.24 1.80	0.180 0.046	20 <1	0.63 0.87	<10 <10	60 70	ব্য ব্য	10 <10	2.41 2.78	<5 <5	7 13	7 8	10550 176	6.23 1.84	<50 <50
B280582		0.16	0.105	11	0.78	160	<50				-					
B280437		2.44	0.033	4	0.78	<10	<50 70	ব্য ব্য	10 <10	1.56 2.24	71 10	72 7	85 <5	7380 1540	18.40 7.19	<50 <50
B280438		2.76	0.057	10	0.60	<10	100	5	<10	0.12	<5	12	<5 5	3510	15.50	<50 <50
B280439	1	1.32	0.033	3	0.58	<10	80	Ś	<10	0.07	<5	<5	-5	314	4.83	<50
B280440		2.74	0.073	4	0.65	10	120	Ś	10	0.06	<5	8	<5	2940	4.73	<50
B280441		2.82	0.095	8	0.85	30	240	<5	10	0.08	ৰ	21	<5	6440	9.58	<50
8280442	1	2.86	0.024	1	0.53	<10	80	<5	<10	0.12	<5	<5	<5	354	2.77	<50
B280443		2.24	0.031	1	0.76	40	80	<5	10	0.28	<5	<5	<5	3740	4.39	<50
B280444		2.72	0.018	1	0.80	30	90	-5	<10	0.14	<5	<5	<5	1225	3.70	<50
B280445		2.48	0.015	<1	0.78	<10	130	ব	<10	<0.05	<5	<5	<5	346	3.91	<50
B280446		1.22	0.007	<1	0.65	<10	90	<5	<10	2.32	<5	\$	<5	567	3.56	<50
B260447		3.28	0.155	7	0.47	160	110	<5	20	2.41	50	36	<5	7350	22.6	<50
B280448		0.16	0.144	21	0.32	270	<50	<5	10	1.46	99	107	70	15100	30.2	<50
B280449 B280450	1	3.64 0.78	0.126	8	0.15	170	<50	<5	20	0.38	13	125	<5	5580	44.6	<50
D20V43V		0.78	800.0	2	2.28	<10	260	<u>ح</u>	<10	2.50	<5	28	147	287	4.33	<50

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemax.com

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue

North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

10: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - B Total # Pages: 4 (A - C) Finalized Date: 29-AUG-2005 Account: LTU

Project: KUT

CERTIFICATE OF ANALYSIS VA05066024

	Nathod	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a
	Analyte	Hg	ĸ	La	Mg	Min	Mo	Na	NI	P	Pb	S	Sb	Sc	Sr	1
	Units	ppm	*	ppm	*	ppm	ppm	*	ppm	ppm	ppm	*	ppm	ppm	ppm	*
Sample Description	LOR	5	0.05	50	0.05	30	5	0.05	5	50	10	0.05	10	5	5	0.05
B280584		<5	0.18	<50	2.89	710	12	<0.05	21	<50	110	8.31	<10	<5	48	<0.05
B280585	-	<5	0.10	<50	1.33	440	23	<0.05	10	<50	50	10.55	<10	<5	18	<0.05
B280586		<5	0.15	<50	1.44	400	18	0.05	<5	<50	30	12.55	<10	<5	24	<0.05
B280587		5	0.15	<50	0.71	210	195	0.05	28	80	10	7.84	<10	<5	14	<0.05
B280588		10	0.15	<50	1.40	370	128	0.05	<5	<50	10	8.62	<10	<5	20	<0.05
8280589		<5	0,17	<50	0.99	270	72	<0.05	10	<50	10	10.00	<10	<5	17	<0.05
8280590		7	0.24	<50	0.95	240	43	<0.05	7	<50	<10	5.77	<10	<5	21	<0.05
8280591		<5	0.17	<50	1.09	320	100	<0.05	<5	<50	10	12.75	<10	· <5	16	<0.05
B280592		<5	0.22	<50	1.56	440	105	<0.05	8	80	<10	12.40	<10	<5	27	<0.05
B280593		<5	0.20	<50	2.68	850	11	<0.05	23	210	<10	3.13	<10	<5	41	<0.05
B280594		<5	0.22	<50	0.78	280	27	<0.05	<5	360	<10	10.00	<10	<5	14	<0.05
B280595		<5	0.19	<50	3.74	840	15	<0.05	<5	140	20	6.35	<10	<5	49	<0.05
B280596		<5	0.14	<50	5.46	860	7	<0.05	<5	120	<10	1.63	<10	5	34	<0.05
B280571		<5	0.14	<50	2.22	990	<5	<0.05	7	210	<10	2.09	<10	<5	33	<0.05
B280572		<5	0.21	<50	1.81	540	6	0.07	14	220	<10	2.34	<10	<5	30	<0.05
B280573		<5	0.18	<50	2.28	400	<5	0.05	9	270	<10	2.90	<10	<5	12	<0.05
B280574		<5	0.26	<50	1.77	210	<5	0.08	10	210	10	0.99	<10	<5	19	<0.05
B280575		<5	0.22	<50	1.02	210	6	0.05	5	240	10	3.01	<10	<5	12	<0.05
B280576		<5	0.14	<50	0.19	100	46	<0.05	6	140	<10	10.65	<10	<5	7	<0.05
B280577		<5	0.20	<50	0.14	90	65	0.06	9	<50	<10	7.70	<10	<5	6	<0.05
B280578		5	0.09	<50	0.70	470	138	<0.05	48	1040	240	33.8	10	<5	13	<0.05
B280583		<5	1.54	<50	2.00	820	<5	0.07	47	3940	<10	0.20	<10	7	202	0.36
8280579		-	0.30	<50	0.51	280	30	0.08	7	1680	220	6.15	<10	<5	15	<0.05
B280580		<5	0.15	<50	1.16	650	82	0.11	32	1160	30	6.32	<10	<5	23	<0.05
B280581		<5	0.22	<50	1.42	<u> </u>	<5	0.16	22	100	<10	1,31	<10	<5	23	<0.05
8280582		<5	0.07	<50	1.46	1520	67	0.05	16	190	100	20.1	<10	<5	14	<0.05
8280437		<5	0.17	<50	1.80	700	27	0.12	8	90	<10	7.32	<10	<5	29	<0.05
B280438		<5	0.19	<50	0.10	70	68	0.06	8	<50	80	16.55	<10	<5	6	<0.05
B280439		<5	0.18	<50	0.12	50	<5	0.10	<5	<50	40	5.07	<10	<5	7	<0.05
B280440		<5	0.23	<50	0.07	<30	-5	0.08	\$	130	10	4.87	<10	ৎ	8	<0.05
8280441		<5	0.32	<50	0.18	30	11	0.10	<5	150	10	10.15	<10	<	12	<0.05
B280442		<5	0.17	<50	0.81	120	<5	0.07	5	90	<10	2.66	<10	<5	6	<0.05
8280443		<5	0.20	<50	2.26	300	<5	0.10	<5	50	10	3.96	<10	<5	11	<0.05
B280444	[<5	0.27	<50	2.16	280	<5	0.09	<5	<50	10	3.20	<10	<5	7	<0.05
B280445		<5	0.32	<50	0.24	40	10	0.07	<5	<50	<10	3.98	<10	<5	5	<0.05
B280446		<5	0.16	<50	3.30	1250	13	0.08	10	140	<10	2.94	<10	\$	34	<0.05
B280447		13	0.15	<50	1.27	970	126	0.07	11	530	180	25.2	<10	<5	23	<0.05
B280448	1	<5	<0.05	<50	1.14	1180	116	<0.05	21	290	180	33.5	10	<5	13	<0.05
B280449		13	0.05	<50	0.22	250	161	<0.05	<5	<50	130	47.6	<10	<5	<5	<0.05
B280450		7	1. 68	<50	2.07	690	<5	<0.05	42	4050	10	0.20	<10	<5	91	0.28

Í

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com S: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST

VANCOUVER BC V6C 2X4

rage: 2 - C Total # Pages: 4 (A - C) Finalized Date: 29-AUG-2005 Account: LTU

CERTIFICATE OF ANALYSIS VA05066024

Project: KUT

		ME-ICP41s	ME-ICP41a	ME-ICP41	ME-ICP41a	ME-ICP41a	Zn-AA46	
	Method	TI	U	V	W	Zn	Zn	
	Analyte Units	ppm	opm -	ρpm	ppm	ppm	*	
Sample Description	LOR	50	50	5	50	10	0.01	
B280584		<50	<50	5	<50	940		
B280585		<50	<50	<5	<50	590		
B280586		<50	<50	<5	<50	250 130		
B280587		<50	<50	<5	<50 <50	130 270		
8280588		<50	<50	<5				
B280589		<50	<50	<5	<50	110		
B280590		<50	<50	<5	<50	120		
B280591		<50	<50	<5	<50	110		
8280592		<50	<50	<5	<50	70		
B280593		<50	<50	6	<50	110		
B280594		<50	<50	5	<50	50		
B280595		<50	<50	<5	<50	180		
B280596		<50	<50	<5	<50	320		
B280571		<50	<50	7	<50	200		
B280572		<50	<50	10	<50	240		
B280573		<50	<50	18	<50	620		
B280574		<50	<50	16	<50	560		
B280575		<50	<50	12	<50	310		
B280576		<50	<50	5	<50	2540		
B280577		<50	<50	12	<50	2270		
B280578		<50	<50	19	<50	>50000	5.27	· · · · · · · · · · · · · · · · · · ·
8280583		<50	<50	166	<50	310		-
B280579		<50	<50	17	<50	2650		
B280580		<50	<50	20	<50	350		
B280581	1	<50	<50	14	<50	380		
B280582		<50	<50	30	<50	13350		
B280437		<50	<50	5	<50	2220		
B280438		<50	<50	7	<50	720		
B280439		<50	<50	<	<50	130		
8280440		<50	<50	<5	<50	30		
B280441		<50	<50	<5	<50	50		
B280442		<50	<50	<5	<50	170		
B280443		<50	<50	<5	<50	480		
8280444		<50	<50	<5	<50	380		
8280445		<50	<50	<5	<50	30		
B280446		<50	<50	<5	<50	620		
B280447		<50	<50	5	<50	10750		
8280448		<50	<50	9	<50	17400		
B280449		<50	<50	<5	<50	2290		
B280450	[<50	<50	146	<50	140		
					· · · · · · · · · · · · · · · · · · ·			

.

1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue

North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

10: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - A Total # Pages: 4 (A - C) Finalized Date: 29-AUG-2005 Account: LTU

Project: KUT

CERTIFICATE OF ANALYSIS VA05066024

Sample Description	Analyte Units LOR	WEI-21 Recvd WL kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-KCP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fa % 0.05	ME-ICP41a Ga ppm 50
8280301		2.64	0.088	5	0.48	10	100	<5	10	0.63	- ২	26	ও	15400	13.60	<50
8280302		2.28	0.006	<1	0.90	<10	100	<5	<10	3.13	<5	7	<5	198	4.24	<50
8280303		2.76	0.009	<1	3.11	<10	60	<5	<10	1.18	<5	10	<5	175	7.42	<50
B280304		1.36	0.057	2	3.22	<10	<50	4	<10	1.68	<5	<5	<5	2070	4.51	<50
B280597		0.92	<0.005	<1	0.65	<10	100	<5	10	1.21	<\$	<5	<5	37	2.04	<50
8280499		2.00	0.378	23	0.23	320	<50	\$	50	2.28	313	192	<5	12800	30.9	<50
8280500		1.68	0.423	8	0.75	410	<50	<5	30	1.00	322	111	<5	2340	29.9	<50
B280351		1.62	0.136	5	0.31	120	<50	<5	30	0.54	20	221	<5	16500	38.6	<50
B280355		1.54	0.012	<1	2.33	<10	250	<5	<10	2.67	7	26	156	799	4.85	<50
B280352		1.30	0.067	1	0.36	<10	80	<5	10	0.12	8	96	<5	1405	21.6	<50
B280353		0.94	0.018	<1	1.46	<10	50	<5	<10	1.51	<5	44	<5	55	17.30	<50
8280354		0.16	0.183	17	0.15	1540	<50	<5	40	0.63	152	234	65	17100	39.4	<50
B280495		3.14	0.041	2	0.52	30	90	<5	10	0.08	<5	51	<5	307	23.4	<50
B280496	l	2.78	0.054	3	0.69	<10	90	ব	<10	0.10	<5	29	<5	975	16.60	<50
B280497		2.82	0.070	2	0.51	10	70	<5	<10	0.19	6	29	<5	192	13.45	<50
B280498		2.56	0.019	1	0.46	<10	70	<5	10	0.05	<5	29	7	59	13.40	<50
B280305		2.52	0.011	<1	0.67	10	110	<5	<10	1.18	<5	6	<5	120	3.78	<50
B280306		1.58	0.051	2	0.60	70	120	<5	30	0.61	<5	54	5	2940	9,56	<50
B280307		1.06	0.009	<1	2.26	<10	640	<5	10	3.28	<5	24	144	250	4.18	<50
B280308		3.48	0.020		1.32	10	190	<5	<10	1.36	\$	21	<5	89	6.28	<50
B280309		0.86	0.008	<1	0.49	20	140	<5	10	7.36	<5	8	8	52	2.44	<50
B280310		1.68	0.006	<1	0.79	<10	130	<5	<10	5.22	<5	14	15	54	2.55	<50
B280311		3.88	0.022	<1	0.51	<10	110	<5	<10	3.71	<5	25	<5	221	7.62	<50
8280312		1.60	0.021	<1	1.80	20	110	<5	<10	1.67	<5	22	<5	37	7.84	<50
B280313		1.12	<0.005	<1	4.22	<10	<50	<5	<10	2.24	<5	<5	<\$	16	2.31	<50
B280314		1.32	0.049	1	4.21	20	<50	\$	<10	2.08	\$	<5	\$	858	3.47	<50
B280315		2.00	0.134	3	1.98	70	170	<5	<10	0.18	<5	<5	11	2570	4.86	<50
B280316		2.52	0.122	1	1.46	10	80	<5	10	0.20	<5	<5	<5	1505	3.04	<50
B280317		1.56	0.035	1	4.28	20	<50	<5	<10	0.74	<5	<5	<5	1220	3.39	<50
B280318		1.14	0.006	<1	2.37	10	70	<5	<10	0.14	<	5	<5	28	2.74	<50
B280319		2.38	0.007	<1	0.96	<10	60	ৰ	<10	0.18	<5	20	6	19	7.75	<50
B280320		1.34	<0.005	<1	1.30	<10	70	<5	<10	0.10	<5	29	<5	7	5.03	<50
B280321		0.16	0.140	21	0.29	270	<50	<5	20	1.42	96	116	66	14900	29.5	<50
B280322	4	0.88	<0.005	<1	1.98	<10	<50	<5	<10	0.16	<\$	<5	6	51	1.79	<50
8280323		0.82	<0.005	<1	0.83	<10	<50	<5	<10	0.31	<5	16	<5	22	6.42	<50
B280324		1.00	<0.005	<1	1.68	<10	<50	<5	<10	0.10	<	<5	<5	17	1.70	<50
B280325	1	0.50	0.017	<1	0.99	<10	<50	<	10	0.06	<5	50	<5	47	11.30	<50
B280326	1	1.10	<0.005	<1	1,98	<10	<50	<5	10	0.10	<5	7	<5	23	2.39	<50
B280562		4.16	0.043	9	0.96	60	80	<5	10	0.36	6	<5	5	791	4.37	<50
B280563	i	2.34	0.052	37	0.29	50	50	<5	<10	0.50	34	<5	<5	2610	4.33	<50

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Cenade Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

10: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Project: KUT

۲

1

1

Page: 3 - B Total # Pages: 4 (A - C) Finalized Date: 29-AUG-2005 Account: LTU

1

									C	ERTIFI	CATE C	F ANA	YSIS	VA050	66024	
Sample Description	Mathed Analyte Units LOR	ME-ICP4ta Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0,05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm S	ME-ICP41a Ti % 0.05
B280301		<5	0.20	<50	1.36	370	44	<0.05	<	80	70	14.40	<10	<5	10	<0.05
B280302		<5	0.16	<50	4.79	2040	17	0.05	5	140	<10	3.53	<10	5	38	<0.05
B280303		45	0.12	<50	9.02	1740	16	<0.05	\$	90	<10	6.25	<10	7	16	<0.05
B280304		<5 <5	0.09 0.29	<50 <50	7.28 0.79	1880	6	<0.05	\$	690	<10	3.47	<10	6	29	<0.05
B280597						440	<	0.06	4	60	<10	1.86	<10		12	<0.05
B280499		16	0.05	<50	1.20	910	190	<0.05	13	1510	1680	36.8	10	<5	15	<0.05
B280500		8	<0.05	<50	2.01	450	185	<0.05	14	1940	540	34.9	<10	<5	12	<0.05
B280351 B280355		<5 <5	<0.05 1.57	<50 <50	1.17 2.08	230 730	32 ≪5	<0.05 0.06	5 31	1060 3810	40 <10	41.4 0.63	<10 <10	`<5 6	9 165	< 0.05
B280353 B280352	1	ও	0.17	<50	0.26	60	<3 60	<0.05	31 <5	<50	20	23.3	<10	<	<5	0.36 <0.05
8280353	_	<5	0.22	<50	2.18	470	75									
B280353 B280354		\$ \$	<0.22	<50 <50	2.16 0.85	470 680	75 143	0.07 <0.05	8 23	80	<10	18.25	<10	<5 <5	11 6	<0.05
B280495		<5 <5	0.20	<50	0.65	40	14-3 66	<0.05 0.06	23 7	480 <50	230 40	43.8 25.2	90 <10	<5 <5	5	<0.05 <0.05
8280496		<5	0.26	<50	0.07	50	57	0.07	6	<50	10	17.85	<10	~ ব্য	<5	<0.05
B280497		<5	0.21	<50	0.10	80	82	0.05	Ś	120	20	14.55	<10	~ ~	ব	<0.05
B280498		<5	0.18	<50	<0.05	30	26	0.05	7	<50	40	14.40	<10	<5	<	<0.05
B280305		4	0.21	<50	2.32	370	13	<0.05	< <u>-</u>	180	+0 <10	2.44	<10	~> <5	24	< 0.05
B280306		<5	0.22	<50	0.64	170	36	<0.05	ર્સ	70	<10	9.91	<10	~ <5	15	<0.05
B280307		<5	1.68	<50	2.00	770	4	0.05	49	3610	<10	0.09	<10	6	174	0.35
B280308		<5	0.31	<50	2.54	350	22	0.07	<5	90	<10	5.11	<10	< <u>s</u>	22	<0.05
B280309		<5	0.21	<50	2.59	1160	<5	0.05	8	560	<10	1.05	<10	<5	48	<0.05
B280310		<u> </u>	0.25	<50	2.18	640	ँड	0.13	19	180	<10	0.71	<10	5	39	<0.05
B280311	-	<5	0.20	<50	1.92	500	43	0.05	5	<50	<10	7.85	<10	<5	28	<0.00
B280312	1	<5	0.22	<50	4.66	450	19	0.05	<5	90	<10	6.76	<10	5	23	<0.05
B280313		8	<0.05	<50	7.61	770	<	<0.05	<	320	<10	0.05	<10	8	62	<0.05
B280314		<5	<0.05	<50	7.42	990		<0.05	<5	60	<10	1.87	<10	8	14	<0.05
B280315	ļ	5	0.20	<50	2.34	180	7	<0.05	-5	270	<10	4.52	<10	<5	8	<0.05
B280316		<5	0.18	<\$0	1.60	180	<5	<0.05	4	120	<10	2.73	<10	<5	5	<0.05
B280317		<5	0.10	<50	6.06	650	7	<0.05	<5	<50	<10	1.60	<10	6	7	<0.05
B280318		ব	0.26	<50	2.34	240	9	<0.05	ব	50	<10	1,41	<10	< <u>s</u>	<5	<0.05
B280319		<5	0.22	<50	0.71	120	9	<0.05	4	110	10	7.81	<10	<5	<5	<0.05
B280320	ł	<5	0.28	<50	0.88	100	6	0.06	\$	120	<10	4.75	<10	<5	6	<0.05
B280321		10	<0.05	<50	1.10	1150	112	<0.05	17	270	150	32.9	10	<5	11	<0.05
B280322		<5	0.07	<50	2.12	190	5	<0.05	<5	130	<10	0.54	<10	<5	<5	<0.05
B280323		< <u></u>	0.15	<50	0.71	150	17	<0.05	5	350	<10	8.39	<10	<5	<5	<0.05
B280324		7	0.07	<50	1.77	160	12	<0.05	6	<50	20	0.67	<10	\$	\$	<0.05
B280325		<5	0,15	<50	0.82	90	23	<0.05	10	60	10	11.50	<10	<5	<	<0.05
8280326		<5	0.12	<50	2.13	180	5	<0.05	<5	230	<10	1.30	<10	<5	<5	<0.05
B280562		<5	0.16	<50	0.05	30	37	0.20	45	580	100	4.63	<10	<5	10	<0.05
8280563		<5	0.07	<50	0.09	60	7	0.05	6	<50	220	5.00	<10	<5	7	<0.05

.

1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com 10: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST

VANCOUVER BC V6C 2X4

Page: 3 - C Total # Pages: 4 (A - C) Finalized Date: 29-AUG-2005 Account: LTU

Project: KUT

ĩ

CERTIFICATE OF ANALYSIS VA05066024

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Zn- AA48 Zn % 0.01	
B280301		<50	<50	<	<50	480		
B280302		<50	<50	6	<50	360		
B280303		<50	<50	7	<50	510		
B280304 B280597		<50 <50	<50 <50	6 5	<50 <50	440 120		
8280499		<50	<50	26	<50	>50000	6.08	
B280500		<50	<50	45	<50	>50000	6.16	
B280351		<50	<50	11	<50	3580		
8280355		<50 <50	<50 <50	159 <5	<50 <50	1400 1590		
B280352								
8280353		<50	<50	<5	<50	240		
B280354		<50	<50	22	<50	27500		
B280495		<50	<50	\$	<50	470		
B280496		<50	<50	ৎ	<50	450		
B280497		<50	<50	ব	<50	1150		
B280498		<50	<50	<5	<50	430		
B280305		<50	<50	6	<50	210		
B280306		<50	<50	5	<50	130		
B280307		<50	<50	154	<50	80		
B280308		<50	<50	7	<50	330		
B280309		<50	<50	7	<50	90		
B280310		<50	<50	11	<50	180		
B280311		<50	<50	<5	<50	480		
B280312		<50	<50	6	<50	460		
B280313		<50	<50	9	<50	410		
8280314		<50	<50	10	<50	260		
B280315		<50	<50	<5	<50	220		
B280316		<50	<50	<\$	<50	130		
B280317	Ì	<50	<50	7	<50	380		
B280318		<50	<50	<5	<50	60		
B280319		<50	<50	ব	<50	30		
B280320		<50	<50	<\$	<50	20		
B280321	1	<50	<50	8	<50	17350		
B280322	[<50	<50	\$	<50	80		
B280323		<50	<50	<5	<50	30		
B280324		<50	<50	<5	<50	40		
B280325	ł	<50	<50	-5	<50	30		
B280326		<50	<50	5	<50	30		
B280562		<50	<50	29	<50	1410		
B280563		<50	<50	<5	<50	7800		

. O: W____ RN ILL. IC MINED INC.

900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 4 - A Total # Pages: 4 (A - C) Finalized Date: 29-AUG-2005 Account: LTU

i

Project: KUT

	المرباب فالتشرير فلسط ومستعدان فالتقا التقارب	
CERTIFICATE	OF ANALYSIS	VA05066024

1

Sample Description	Nethod Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP4ta Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
B280564		2.48	0.292	69	0.57	80	140	ৰ	10	1.20	8	<5	ৰ	8940	9.31	<50
B280565		2.66	0.079	3	0.40	40	140	<5	10	0.19	<5	18	<5	1735	15.60	<50
8280566		2.00	0.026	2	0.45	10	160	<5	10	0.10	<5	6	<5	537	6.69	<50
B280567		2.16	0.009	2	0.34	<10	400	4	<10	0.43	<5	<5	<5	1225	9.36	<50
8280568		2.52	0.099	3	0.48	40	480	<5	<10	0.21	<5	<u> </u>	<	3710	7.53	<50
B280569		2.72	0.012	1	0.44	<10	530	\$	<10	0.44	\$	7	8	544	11.10	<50
B280570		0.72	0.317	10	0.51	<10	910	<5	10	0.65	8	<5	<5	11900	9.61	<50
B280551		2.12	0.039	1	0.51	50	80	ব	10	2.84	5	27	6	634	5.53	<50
8280552		6.10	0.763	116	0.11	1260	<50	<5	80	0.83	393	152	<5	17900	36.4	<50
B280553		5.00	0.608	133	80.0	1180	<50	4	130	0.87	470	192	<5	24600	36.3	<50
8280561		1.16	0.006	2	2.38	<10	260	- ব	<10	2.22	5	24	142	488	4.60	<50
B280554		3.24	0.867	67	0.18	530	<50	<5	90	1.39	249	185	<5	34600	36.1	<50
B280555		2.70	0.282	39	0.58	380	90	<5	110	0.60	234	73	<5	18700	15.55	<50
B280556		3.90	0.084	3	0.52	<10	100	<5	10	0.97	36	46	5	1970	13.65	<50
B280557		3.18	0.037	2	0.60	10	120	<5	10	0.71	8	20	<5	1235	8.05	<50
B280558		4.62	0.121	12	0.52	100	70	<5	20	0.30	28	26	<5	2560	9.28	<50
B280559		1.54	0.041	<1	0.60	20	70	<5	10	0.05	<5	14	<5	102	6.69	<50
B280560		0.16	0.145	19	0.33	220	<50	<5	10	1.28	89	101	68	14200	27.8	<50
8280560		0.16	U.1 43	19	0.33	220	<20	<≎	10	1.28	89	101	68	14200	27.8	•

.

ALS CHEMEX

Phone: 504 984 0221 Fax: 604 984 0218 www.alschemex.com

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

.

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 10: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4 Page: 4 - B Total # Pages: 4 (A - C) Finalized Date: 29-AUG-2005 Account: LTU

Project: KUT

١

τ

CERTIFICATE OF ANALYSIS VA05066024

Sample Description	Methed Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP418 Ti % 0.05
B280564		<5	0.18	<50	0.18	100	28	0.07	ৎ	50	550	10.20	10	<5	6	<0.05
B280565		<5	0.14	<50	0.08	50	24	0.06	<5	<50	90	16.80	<10	<5	<5	<0.05
B280566		<5	0.14	<50	0.06	40	8	0.07	<5	90	70	7.09	<10	<5	6	<0.05
B280567		4	0.13	<50	0.18	150	<5	<0.05	<5	<50	10	10.00	<10	<5	8	<0.05
8280568		<5	0.19	<50	0.11	100	16	0.05	\$	70	20	8.05	<10	<u> </u>	8	<0.05
B280569		\$	0.15	<\$0	0.07	110	<	0.06	- ব	<50	10	11.90	<10	<5	9	<0.05
B280570		<5	0.19	<50	0.10	130	<5 ·	0.06	<5	300	50	10.50	<10	<5	12	<0.05
B280551		<5	0.17	<50	1.33	600	37	0.08	9	930	50	5.48	<10	· <5	34	<0.05
B280552		17	<0.05	<50	0.30	260	205	<0.05	48	1340	3750	42.7	100	4	13	<0.05
8280553		12	<0.05	<50	0.34	240	192	<0.05	65	1520	2590	43.4	50	<5	26	<0.05
8280561		<5	1.54	<50	1.94	630	<5	0.06	33	3890	50	0.43	<10	6	131	0.36
B280554		\$	<0.05	<50	0.66	610	214	<0.05	39	900	1890	40.9	20	<5	14	<0.05
8280555		9	0.24	<50	0.23	180	80	0.05	17	1120	1950	18.95	<10	<5	11	<0.05
B280556		<5	0.19	<50	0.52	220	228	0.06	12	80	80	14.90	<10	<5	10	<0.05
B280557		<5	0.23	<50	0.41	200	52	0.06	<5	170	50	8.41	<10	<5	15	<0.05
8280558		<5	0.19	<50	0.25	180	32	0.05	<5	90	450	9.93	<10	<	8	<0.05
B280559		<5	0.23	<50	0.06	40	12	0.06	<5	190	10	6.86	<10	<5	8	<0.05
B280560		<5	<0.05	<50	1.08	1140	102	<0.05	19	310	160	31.0	10	<\$	12	<0.05

1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 504 984 0221 Fax: 604 984 0218 www.aischernex.com 10: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Total # Pages: 4 (A - C) Finalized Date: 29-AUG-2005 Account: LTU

CERTIFICATE OF ANALYSIS VA05066024

Project: KUT

	Nothed	ME-ICP41a	ME-ICP41a U	ME-ICP41a V	ME-ICP41a W	ME-ICP41a Zn	Zn-AM6 Zn	
	Analyte Units	TI						
Sample Description	LOR	99m 50	ppm 50	ppm 5	ppm 50	ррт 10	% 0.01	
B280564		<50	<50	ব	<50	1610		
B280565		<50	<50	<5	<50	140		
B280566		<50	<50	4	<50	30		
B280567		<50	<50	<5	<50	40		
8280568		<50	<50	<u></u>	<50	60		
8280569		<50	<50	4	<50	110		
8280570		<50	<50	<5	<50	470		
B280551		<50 <50	<50 <50	10 48	<50 <50	970 >50000	7.32	· · · · · · · · · · · · · · · · · · ·
8280552 8280553		<50 <50	<50 <50	+0 31	<50 <50	>50000	1.32 8.46	
		<50	<50	162	<50	1090		
8280561 8280554		<50	<50	43	<50	46800		
B280555		<50	<50	22	<50	42800		
8280556	1	<50	<50	6	<50	6390		
B280557		<50	<50	<5	<50	1260		
8280558		<50	<50	<\$	<50	4910		
B280559		<50	<50	<5	<50	180		
8280560		<50	<50	5	<50	16260		
	1			••				
				,				
	Ì							
	1							
	1							
	1							
	Ì							
	1							
	1							
	1							

GEOCHEMICAL ANALYSIS CERTIFICATE

V6A 1R6

PHONE (604

PAX (604) 253

Clarence

Western Keltic Mines Inc. PROJECT KUTCHO CREEK File # A504413 Page 909 · 808 W. Hastings St., Vancouver SE V6C 2K4 Submitted by: Pete Holbek

852 B. HASTINGS ST. VANCOUVER BC

											• na	D C F E E					, qe					ateg	<u>ы</u> у.;	res	: NOL				6. Q.							
SAMPLE#	Mo				n Ag			Min				Au									' La	Cr			Ti		A)				g Sc		-	Ga		Sample
	ppm	ppn	i ppm	ppr	n ppm	ppi	ppm	ppm			i pprii	ppb	ppm	ppm	ppm	ppn	ppm	ppm	1	1	ppm	ppn		ppm	X	ppn		<u> </u>		ppm pp	n por	ірря		ppm	ppm	kg
B280548	26.5	42.1	3.3	74	.3	1.3	25.8	219	7.51	3.5	.3	20.6	.1	2	<.1	.1	2.1	4	. 10	.010	1	1.7	2.12	2 27	.001	2 1		. 027	.12	<.1.0	1 2.0	.1	6.72	4	4.3	2.59
B280549		51.6		- 79	.1	1.0	9.2	370	2.53	3 7.6	.1	8.3	.1	3	.1	.3	.3	5	. 30	.001	1	1.6	3.01	17	.001	<1 2	2.25	.013	.08	<.1<.0	1 2.7	.1	.74	5	<.5	2.17
B280550		16.1																													1 3.1				.6	2.48
8280598 8280599																															4 5.6 3 3.8				1.3 6.2	1.28
0200339	31.0	202.4	10.0	550		23.0	33.3	040	7.00	13.7	. 4	22.1	• 1	13	1.4	.0	2.0	2	3.07	.915	~1	7.1	¢. Ju	25	.001	ł		. 046	. 00	·.1 .0	3 3.0		1.22	1	0.2	2.09
8280600		163.2						313																							2 2.3			1	5.2	2.29
B280601		605.2																												<.1 .0			>10		10.1	2.38
B280602 B280603		381.5						486							.2																1 2.1 4 1.0		5.92		4.1	2.15
8280604		54.2						316											. 30												2 1.2				4.7 4.8	1.86 2.13
0200004					• • •		01.0	010	0.00		. 1	0.0				• •		•		.014	•	-•		~*		-							0.00	*	•	2.10
B280605		18.3						648														1.3									1 1.8			-	2.0	2.21
8280606		28.9																													L 2.3				2.6	1.45
8280607 B280608		21.1																													4 1.2 L 1.5			1		1.90 1.01
B280609		52.1						567							.8				1.01												2 1.8			_	1.3	1.40
0200007			2.0		•-			•••			••		•••	•				•			-	-		10		-										
B280610		41.9						175											.40												5 1.1		>10	-	7.1	2.07
B280611		72.8																													51.1			-	6.9	1.88
8280612 8280613		74.9 38.3												3 4		.5			.23			1.1									2 1.8 1 1.8			-	3.5 4.7	2.05 2.87
B280614		12.9						434 907								.1															1.0					2.38
0200021	0.0								0			0.0		•		••		•			-												••••	-		
8280615		34.6																													5.4				1.7	2.20
B280616		30.7												1								188.0		-	.004	-					15.6					1.82
8280617 8280618		13.1 90.0																				302.3									30.6			16 1	.7 1.8	2.80 1.96
B280619		26.9						30								<.1										_		•		.1<.01			6.92	_	- +	3.25
		20.9																			-													-		
B280620		13.4						76											.20												1.4			-	4.8	3.08
B280621 B280622		12.4			<.1		15.1 11.9	19	5.14						.1.				.09											.1 .01 .1<.01		<.1 <.1		1	2.4	2.03 3.53
B280623		5.8			.1		10.5		3.69																					.1<.03		<.1		1		2.99
8280624	÷ · -	12.3		-				153											.22												1.1					
																		-																		
B280625	14.0		1.1		.1		12.0		3.44															31<	.001					.1 .01			3.71			2.96
RE B280625 RRE B280625	13.4	- 6.8 - 7.1	1.1		.1 .1		11.8 12.2		3.42 3.51															32< 30<						.1<.01 .1 .01			3.66 3.82	1		-
B280626	14.4							315																							2.1					2.64
STANDARD DS6																																				
					-														-			-														

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY 1CP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Refune and 'RRE' are Reject Refuns.

FA Data

ACHE ANALYTICAL LABORATORIES LTD.

(ISO 9001 Accredited Co.)

DATE RECEIVED: AUG 11 2005 DATE REPORT MAILED

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Western Keltic Mines Inc. PROJECT KUTCHO CREEK FILE # A504413 Page 2

	SAMPLE/	Ho	Ću	Pb	Ľ	1 A	g M1	C	o He	Fe	As	ų	Au	Th	5r	Cal	Sb	#1	۷	Ca I	ŧ.	Cr	ilg	li	ti	8 A	1 #	4	X I	i N	e Sc	. 11		6 4	5	e Sample
		ppm	ppm	ppm	рри	рр	n bba	90	e ppe	1	οpm	(ppm)	ppb.	ppe :	p pa	ppa .	ppm	ppe p	1	1 1	ppm	ppe	1	ppa	1 1	njuni	t	1	t pp	e pp	в рря	ppa	1	i pp	i ppi	n kg
	8289627	4,4	7.4	.9	48	<.	1 9.2	9.	1 217	2.62	4.3	.1	Z.3	.1	z	<.1	.2	.2	14 .1	11 .018	<1	19.0	1.92	22 .5	191	21.9	5 .02	6.0	9 <.1	L .63	2.7	.1	1.12		i <.5	5 2.01
	\$280651																	-													-					5 2.48
	8260652	38.0	26,4	2.9	109		2 1.7	Ζ.	5 599	6.29	9.0	.2	8.0	<.1	5	.2	.4 :	i. 1	91.3	17 .003	<1	4.Z	4.18	7.0	92	4 3.1	. 92	0, i	4 <.1	i .#1	i 5.4	.2	4.57	9	2.9	2.62
	8289653	16.2	33.6	2.0	96		8. 5	9.:	319	3.01	15.2	.1	4.9	۲.>	4	.2	.4	.5	4.5	51 .004	1	1.1	2.39	1€.8	183	5 2.8	. 92	5.8	7 <.1	L .Q)	1.5	.4	1.92	: 5	.6	2.30
	8280654	9,4	6.4	1.2	149	. 1	L ,6	6 .)	212	1.84	7.8	.1	2.7	.1	1	<.1	.2	.1	4.1	M .003	1	1.5	2.59	13.0	01	1 2.3	. 021	6.0	7 <.1	<.01	2.7	.3	. 39	6	<.5	1.51
	8280655(pu1p)	91.3	>10000	217.0	-19009	15.6	5 14.2	212.0	624	38.19	L130.4	3.2	51.2	٤.>	4 14	6.2 10	3.2 Z	s.2	19 .4	58 .039	ব	56.6	.81	34.8	01	2.0	. 803	3 <.9	1.1	6.69	ı.,	2.5	>10	z	43.9	
	standard dS6	11.5	119.5	29.7	139	.3	24.2	10	694	2.84	22.5	6.6	14.8	2.7	37	6.2	3.4 4	1,9 I	57 .8	NZ . 878	15	185,9	. 58	163 .0	67	20 1.8	. 175	5.1	5 3.5	.22	2 3,4	1.7	<.05	6	4.6	i -

Sample type: ORILL CORE R150.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

e 7

I _'**f**_je... EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

212 Brooksbank Avenue North Vancouver BC V7J 2C1 .J:WE____kN 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Paye: Finalized Date: 8-SEP-2005 Account: LTU

ICP-AES

C	ERTIFICATE VA050716	24		SAMPLE PREPARATION	
			ALS CODE	DESCRIPTION	
25-AUG-2005.	ore samples submitted to our lab in ss to data associated with this co peter HOLBEK		WEI-21 LOG-22 LOG-24 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample togin - Rcd w/o BarCode Pulp Login - Rcd w/o Barcode Fine crushing - 70% <2mm Spilt sample - riffie spiltter Pulverize spilt to 85% <75 um	· · · · · · · · · · · · · · · · · · ·
<u></u>		<u> </u>		ANALYTICAL PROCEDURES	
			ALS CODE	DESCRIPTION	INSTRUMENT
			Au-AA23	Au 30g FA-AA finish	AAS

ME-ICP41a

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

High Grade Aqua Regia ICP-AES

Signature: Read Com

BUE』
SEP 1 3 205

1

ALS CITETIEX EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 964 0221 Fax: 604 964 0218 www.alschemex.com

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 1

. J: WEJ. LAN KLLINC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 8-SEP-2005 Account: LTU

Project: Kutcho Creek

CERTIFICATE OF ANALYSIS VA05071624

٦

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP4ts Bs ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
B280632		2.00	0.007	<1	0.80	10	70	\$	<10	2.84	ব	8	20	375	2.78	<50
B280633		1.70	0.034	2	0.48	40	90	ব	<10	0.25	7	<5	15	801	11.15	<50
B280634		1.12	0.094	8	0.85	30	140	4	<10	2.23	47	5	21	16100	15.65	<50
B280635		2.18	0.073 0.079	6 5	0.51 0.59	40 60	100 90	ব্য ব্য	<10	1.60 1.39	20 13	<5 <5	20 25	3900 1945	11.60 13.60	<50
B280636		2.18							<10							<50
B280637		3.02	0.085	5	0.55	80	90	ব্	10	<0.05	36	<5	19	1885	14.80	<50
B280638		1.90	0.078	4	0.27	60	50	4	10	0.44	5	6	18	3450	11.40	<50
B280639		2.32	0.056 0.065	2 2	0.36 0.23	40 40	50	<5	<10	0.80	<5	5 <5	15 19	1895 2460	10.70 12.80	<50 <50
B280640 B280641		2.08	0.065	2	0.23	40 30	<50 60	ৰ্ব্ব ৰ্ব্ব	<10 <10	1.19 1.07	19 12	<0 <5	19	2460 3410	11.70	<50 <50
B280642		1.94	0.052	2	0.69	40	80	<	10	0.39	<5 .f	6	22	1655	12.80	<50
B280643		1.96	0.052	2	0,39	30	50	ব	10	1.73	<5	<5	18	2820	12.80	<50
B280644 B280645		2.08 1.84	0.045 0.053	1	0.94 0.45	20 20	60 <50	ৰ ৰ	<10 10	0.71 0.06	<5 <5	ব্য ব্য	20 18	501 875	14.10 12.90	<50 <50
B280646		2.04	0.053	1	0.45	20 <10	<50	জ জ	10 <10	<0.05	20	<5 <5	20	1105	12.80	<50 <50
				-												
B280647		2.12	0.052	2	0.39	10	50	4	10	<0.05	<5	5	16	2270	14.40	<50
B280648		2.06	0.045	2	0.44	10	50	45	<10	<0.05	<5	<5	18	730	11.45	<50
B280649		1.88	0.047	1	0.47	20	50	4	10	<0.05	<5	<5	27	2060	8.15	<50
8260650		1.86	0.050	2	1.09	30	50	4	10	<0.05	21	<5	18	3190	8.26	<50
B280656		2.72	0.051	3	0.59	10	<50	<u> </u>	10	<0.05	8	<5	15	2740	10.45	<50
B280657		2.06	0.051	2	0.94	50	<50	\$	10	<0.05	8	<5	17	1835	9.25	<50
B280658	1	1.92	0.056	2	0.83	10	50	<5	<10	<0.05	18	<5	15	2810	9.86	<50
B280659		1.98	0.077	6	1.05	60	<50	\$	10	<0.05	62	<5	20	8800	13.85	<50
B280660		2.04	0.046	2	0.63	30	<50	ব	<10	<0.05	<5	<5	11	1950	7.14	<50
B280661		1.38	0.060	2	1.13	30	50	<u></u> ব	<10	<0.05	<5	<5	16	915	9.35	<50
B280662		2.12	0.082	9	0.85	50	<50	<5	10	0.05	59	<5	19	7820	15.25	<50
B280663		1.24	0.008	<1	2.29	<10	310	<	<10	2.03	<5	24	144	286	4.12	<50
8280664	ł	1.94	0.083	12	0.68	30	<50	4	<10	0.06	109	<5	19	9660	10.55	<50
B280665		2.02	0.062	11	0.76	30	<50	<5	<10	0.08	110	<5	25	7100	10.70	<50
B280666		0.20	0.115	13	0.74	200	≪50	4	<10	1.64	71	73	91	7440	18.70	<50
B280667	1	1.92	0.041	6	0.80	10	<50	-5	10	0.08	16	হ	23	4130	9.15	<50
B280668	1	1.96	0.055	9	0.38	30	<50	4	10	0.05	<5	<5	26	8790	13.65	<50
B280669	l	1.96	0.055	15	0.62	20	<50	<5	<10	<0.05	<5	<5	17	11700	11.85	<50
B260670		1.92	0.050	13	0.94	20	<50	<5	<10	<0.05	<5	<5	26	8540	10.10	<50
8280671		1.82	0.047	10	0.83	60	<50	ও	10	0.05	<5	5	20	9760	9.84	<50
8280672	1	1.86	0.030	5	1.29	50	50	ৰ	<10	<0.05	<5	<5	20	3040	7.47	<50
B280673	-	1.86	D.050	11	0.35	90	<50	Ś	10	0.08	<5	5	13	6390	10.40	<50
B280674		1.88	0.034	7	0.78	70	<50	<5	10	0.05	<5	6	19	4370	8.51	<50
B280675		1.90	0.035	4	0.73	30	<50	-5	<10	0.05	<5	<5	13	2520	6.71	<50
B280676		1.88	0.035	5	0.71	10	<50	<5	<10	<0.05	<5	<5	18	4240	9.26	<50

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vencouver BC V7J 2C1 Phone: 804 984 0221 Fac: 604 984 0218 www.alschernex.com . D: WELLEN KLEINC MINLS INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

rage: ۲ - ط Total # Pages: 3 (A - C) Finalized Date: 8-SEP-2005 Account: LTU

Project: Kutcho Creek

CERTIFICATE OF ANALYSIS VA05071624

	Method	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP4 1a	ME-ICP41a	ME-ICP41a	ME-ICP41a
	Analyte	Hg	κ	La	Mg	Mn	Mo	Ne	Ni	P	Pb	S	Sb	Sc	Sr	π
	Unite	ppm	*	ppm	*	ppm	ppm	*	p pm	ppm	ppm	*	ppm	ρ p m	ppm	*
Sample Description	LOR	5	0.06	50	0.05	30	5	0.06	5	50	10	0.05	10	5	5	0.05
B280632		<5	0.18	<50	1.70	830	8	0.12	114	160	90	1.49	10	<5	65	<0.05
B280633		45	0.20	<50	0.17	60	13	0.06	28	<50	20	11.95	<10	<5 <5	12	<0.05
B280634 B280635		ণ প	0.30 0.23	<50 <50	1.05 0.83	450 350	34 22	0.11 0.05	23 18	100 190	50 50	17.05 12.45	10 <10	৩ ৩	50 30	<0.06
B260636		3 45	0.23	<50	0.83	420	19	0.05	8	200	80	14.80	<10	~ <5	26	<0.05 <0.05
B280637 B280638		<5 <5	0.24 0.12	<50 <50	0.19 0.64	<30 140	21 11	0.05 <0.05	10 7	<50 <50	150 30	16.35 12.20	<10 <10	<5 <5	5 11	<0.05 <0.05
B280639		~) <5	0.12	<50	0.93	230	12	<0.05	<5	<50	10	11.30	<10	~5	16	<0.05
B280640		<5	0.09	<50	0.99	320	13	<0.05	5	<50	10	14.00	<10	<5	17	<0.05
B280641		<5	0.14	<50	1.11	300	13	0.05	ঁ	50	20	12.70	<10	<5	18	<0.05
B280642		<5	0.23	<50	0.79	140	15	0.06	11	<50	20	13.85	10	<5	11	<0.05
B280643	ĺ	<5	0.12	<50	1.27	530	14	0.05	8	<50	40	13.80	<10	<5	25	<0.05
B280644		5	0.17	<50	1.48	320	9	<0.05	<5	<50	20	15.10	<10	<5	16	<0.05
B280645		<5	0.14	<50	0.67	70	11	<0.05	6	<50	20	13.85	<10	<5	6	<0.05
8280646		<5	0.13	<50	0.05	<30	17	0.06	9	<50	20	14.05	<10	ব	<	<0.05
8280647		\$	0.14	<50	0.05	<30	13	0.06	ব	<50	20	15.60	<10	<u>ج</u>	6	<0.05
B280648	ł	<5	0.16	<50	0.05	<30	10	0.07	5	<50	10	12.40	<10	<5	<5	<0.05
B280649		<5	0.15	<50	0.27	30	10	0.06	10	<50	10	8.63	<10	<5	<5	<0.05
B280650		<5	0.19	<50	1.01	90	9	0.06	7	80	10	8.84	<10	4	5	<0.05
B280656		\$	0.12	<50	0.50	60	10	0.05	9	<50	20	11.20	<10	<5	7	<0.05
B280657			0.16	<50	0.69	80	18	0.07	23	80	10	9.83	<10	<5	6	<0.05
B280658	1	<	0.15	<50	0.64	70	14	0.06	<5	90	10	10.60	<10	<5	<5	<0.05
B280659		<5	0.14	<50	1.01	110	14	0.05	7	60	40	15.40	<10	<5	<5	<0.05
B280660 B280661		<5 <5	0.08 0.23	<50 <50	0.64 0.67	80 70	18 12	<0.05 0.10	<5 11	<50 <50	20 40	7.56 9.91	<10 <10	<5 <5	<5 5	<0.05 <0.05
B280662		<5	0.14	<50 <50	0.67	100 580	18 <5	0.06	9	<50 3760	160	16.90	<10 <10	<5 5	<5 106	<0.05 0.33
B280663		ব্য ব্য	1.71 0.16	<50	1.89 0.44	- 360 - 80	12	0.05 0.06	41 <5		<10	0.13	<10		5	<0.05
B280684 B280665		6	0.16	~50 <50	0.50	90	13	0.06	~0 6	110 150	260 210	12.25 12.55	<10	<5		<0.05
B280666	[۰ ح	0.17	<50	1.43	1440	74	<0.05	26	200	110	20.3	10	<5	11	<0.05
B280667		<5	0.15	<50	0.63	100	13	0.06	7	130	70	9.80	<10	<5	6	<0.05
B280668	1	<5	0.08	<50	0.28	40	13	<0.05	9	100	70	14.75	<10	<5	<5	<0.05
8280669	1	<5	0.13	<50	0.45	60	13	0.05	6	130	90	12.60	<10	<5	<5	<0.05
B280670		<5	0.17	<50	0.75	90	10	0.07	6	50	70	10.55	<10	<5	<5	<0.05
8280671		<5	0.13	<50	0.69	90	13	0.05	8	150	70	10.25	<10	<5	<5	<0.05
B280672		<5	0.20	<50	0.97	120	11	0.09	<5	140	40	7.71	<10	<্য	5	<0.05
B280673	l	<5	<0.05	<50	0.37	90	20	<0.05	75	80	360	11.10	10	<5	<5	<0.05
B280674	ł	<5	0.13	<50	0.60	100	13	0.06	14	80	480	8.92	10	<5	<5	<0.05
B280675	1	<5	0.12	<50	0.61	90	9	0.05	5	90	130	6.97	10	<5	<5	<0.05
B280676	- 1	<5	0.13	<50	0.52	70	12	0.06	6	120	40	9.73	10	<5	<5	<0.05

1

1

Sample Description

ţ

ALS CHEMEX

ME-ICP41a

n

ppm

50

Nothed

Analyte Units

LOR

ME-ICP41a

υ

ррт

50

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com . J: WE ... LAN KLL .. & MHILL .NC. 900-808 W HASTINGS ST

VANCOUVER BC V6C 2X4

Total # Pages: 3 (A - C) Finalized Date: 8-SEP-2005 Account: LTU

Project: Kutcho Creek

ME-ICP41a ME-ICP41a ME-ICP41a ۷ ₩ Zn ppm ppm ррт 5 50 10 700 - 60 -

CERTIFICATE OF ANALYSIS VA05071624

8280632	<50	<50	<5	<50	760	
B260633	<50	<50	<5	<50	1390	
B280634	<50	<50	9	<50	9000	
B280635	<50	<50	6	<50	3750	
B280636	<50	<50	<5	<50	2420	
B280637	<50	<50	<	<50	7120	
B280638	<50	<50	<5	<50	1200	
B280639	<50	<50	<5	<50	340	
B280640	<50	<50	<5	<50	3570	
8280641	<50	<50	<5	<50	2470	
B280642	<50	<50	<5	<50	910	
B280643	<50	<50	<5	<50	180	
B280644	<50	<50	<5	<50	310	
B280645	<50	<50	<5	<50	610	
B280646	<50	<50	<5	<50	3840	
B280647	<50	<50	<5	<50	320	
B280648	<50	<50	<5	<50	70	
8280649	<50	<50	<5	<50	90	
B280650	<50	<50	<5	<50	4690	
B280656	<50	<50	4	<50	1580	
B280657	<50	<50	<5	<50	1630	
8280658	<50	<50	<5	<50	3730	
8280659	<50	<50	<5	<50	12450	
B280660	<50	<50	<5	<50	290	
8280661	<50	<50	<5	<50	240	
8280662	<50	<50	5	<50	13000	
8280663	<50	<50	142	<50	160	
B280664	<50	<50	<5	<50	24400	
B280665	<50	<50	<5	<50	24800	
8280666	<50	<50	28	<50	13300	
8280667	<50	<50	<5	<50	3860	
8280668	<50	<50	<5	<50	220	
B280669	<50	<50	<5	<60	200	
B280670	<50	<50	<5	<50	250	
B280671	<50	<50	<5	<50	400	
B280672	<50	<50	<5	<50	250	
B280673	<50	<50	<5	<50	460	
B280674	<50	<50	<5	<50	890	
8280675	<50	<50	<5	<50	650	
B280676	<50	<50	<5	<50	410	

Page: 2 - C

i

1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com . . WEUTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

CERTIFICATE OF ANALYSIS

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 8-SEP-2005 Account: LTU

VA05071624

Project: Kutcho Creek

WEI-21 Au-AA23 ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41s ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a Noticed Analyte Recvd WL Au Aa A As 8e Be 81 Ca Cđ Cr Fe Co Cu Units * ۴. * kg ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm Sample Description LOR 0.02 0.005 0.05 1 10 50 5 10 0.05 5 5 5 5 0.05 0.028 0.58 10 B280677 2.90 4 <50 <0.05 <5 <5 14 3940 9.60 <5 <10 8280678 2.62 0.042 5 0.40 20 50 ≪5 <10 0.05 8 <5 27 3780 11.45 0.052 30 B280679 2.76 7 0.29 <50 <5 0.05 5 4930 11.20 <10 16 16 10 8280680 2.82 0.039 4 0.52 60 -<6 26 2250 9.34 <10 0.05 5 B280681 2.72 0.029 2 0.39 20 <50 <5 <10 0.06 <5 <5 16 907 6.88 8280682 2.78 0.035 5 0.51 50 60 \$ <10 \$ 29 10.55 0.07 9 2610 **B280683** 2.44 0.019 3 0.20 10 <50 <5 8.97 <10 0.08 6 <5 15 892 B280684 1.42 < 0.005 1.73 <10 140 <5 4.98 1 <10 4.86 <5 23 40 240 B280685 1.14 0.005 1 0.56 <10 90 <5 <10 0.18 <5 а 18 19 15.40

١

Ge

ppm

50

<50

<50

<50

<50

<50

<50

<50

<50

<50

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

,

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST

VANCOUVER BC V6C 2X4

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 8-SEP-2005 Account: LTU

Project: Kutcho Creek

CERTIFICATE OF ANALYSIS VA05071624

1

Sample Description	Nothed Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a No ppm S	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-iCP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
B280677		ও	0.11	<50	0.44	60	15	0.05	ৰ	90	30	10.15	<10	ৎ	<5	<0.05
B280678		<5	0.14	<50	0.17	40	17	0.06	9	100	200	12.25	<10	<5	<5	<0.05
8280679		<5	0.11	<50	0.20	40	17	0.05	<5	130	130	12.10	10	<5	<5	<0.05
8280680		<5	0.15	<50	0.36	50	14	0.07	<5	110	120	9.84	<10	<5	<5	<0.06
B280681		<5	0.14	<50	0.32	50	9	0.08	ব	90	90	7.22	<10	<5	5	<0.05
8280682		5	0.16	<50	0.29	50	18	0.08	5	130	450	11,15	<10	\$	5	<0.05
8280683		\$	0.07	<50	0.13	30	12	<0.05	7	120	70	9.63	10	<5	<5	<0.05
B280684		<5	0.59	<50	2.93	1310	9	<0.05	30	3080	10	1.03	<10	<5	451	<0.05
B280685		<5	0.33	<50	0.42	90	5	<0.05	<5	100	10	16.20	10	<5	19	<0.05

ı

1

ALS Chemex ٦

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 8-SEP-2005 Account: LTU

Project: Kutcho Creek

CERTIFICATE OF ANALYSIS VA05071624

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	
B280677 B280678 B280679 B280680 B280680 B280681		<ଚ0 <ଚ0 <ଚ0 <ଚ0 <ଚ0 <ଚ0	<50 <50 <50 <50 <50	হ হ হ হ	<50 <50 <50 <50 <50	560 2270 3950 1110 680	
8280682 8280683 8280684 8280685		<50 <50 <50 <50	<50 <50 <50 <50	ব্য ব্য 37 ব্য	<50 <50 <50 <50	2420 1170 130 30	
	-						

1

LC C.Je.Je. **EXCELLENCE IN ANALYTICAL CHEMISTRY** ALS Canada Ltd. 212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

	VA05074739	SAMPLE PREPARATION						
		ALS CODE	DESCRIPTION					
Project: KUTCHO		WEI-21	Received Sample Weight					
P.O. No.:		LOG-22	Sample login - Rcd w/o BarCode					
	austration Management BO. Consiste an	LOG-24	Pulp Login - Red w/o Barcode					
This report is for 65 Rock samples submitted to	our las in vancouver, BC, Canada on	CRU-31	Fine crushing - 70% <2mm					
2-SEP-2005.		SPL-21	Split sample - riffie splitter					
The following have access to data associate	ed with this certificate:	PUL-31	Puiverize split to 85% <75 um					
DONALD PETER H	NBEK Í ROB W							

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Zn-AA46	Ore grade Zn - aqua regia/AA	AAS
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41a	High Grade Aqua Regia ICP-AES	ICP-AES

DI SEP 1 9 2005

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Rest Dog

): WE 'RN K' T MIC NC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Ŧ F .3 · State F Gymer v Finalized Date: 12-SEP-2005 Account: LTU

C MILLS INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

- - - 5

Total # Pages: 3 (A - C) Finalized Date: 12-SEP-2005 Account: LTU

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

Project:	KUTCHO	D
----------	--------	---

1991 - M. S. 1986 - 1

CERTIFICATE OF ANALYSIS VA05074739

٦

Sample Description	Nothed Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Ai % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Se ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm S	ME-ICP4ta Cr ppm S	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
280686		1.62	0.005	<1	1.26	30	200	4	<10	3.53	<5	5	14	262	2.58	<50
280687		2.54	0.812	33	0.15	420	<50	4	10	<0.05	162	93	<5	39900	41.9	<50
280688		3.62	0.461	36	0.06	310	<50	4	30	<0.05	180	22	34	22700 28100	43.5 42.9	<50
280689		3.28	0.422	42	<0.05 0.55	390 170	<50 60	\$ 5	20 10	<0.05 <0.05	165 200	11 32	<5 25	29100	42.8 28.6	<50 <50
280690		2.70	0.411	25					·							
280691		1.10	0.023	1	2.06	20	290	4	<10	2.37	8	30	132	1355	5.11	<50
280692		3.34	0.358	33	0.13	560	<50 - 10	\$	10	0.06	149 227	30 23	48 5	38700 25900	42.1 41.4	<50 <50
280693		3.22 2.72	0.354 0.390	26 31	0.11 0.13	600 480	<50 <50	ধ ধ	10 10	<0.05 <0.05	193	146	51	14950	42.9	<50
280694 280695		2.20	0.289	26	0.05	880	<50	থ ও	20	<0.05	152	32	<5	16000	44.9	<50
													· · · · · ·	16200	45.1	<50
280696		2.18 3.56	0.262 0.267	24 26	<0.05 0.06	650 640	<50 <50	-জ -জ	20 20	<0.05 <0.05	158 104	53 119	60 <5	18200	40.1 45.4	<50 <50
280697 280698		3.00	0.207	20 49	0.39	230	100	3 5	20	<0.05	85	222	48	43800	40.1	<50
280699		1.80	0.489	151	0.54	90	250	ঁ	<10	0.09	12	16	67	34900	16.20	<50
280700		0.20	0.150	19	0.28	250	<50	<5	10	1.34	90	115	70	14450	29.3	<50
280753		1.72	0.056	13	0.72	90	80	4	<10	6.39	78	5	<5	13200	5.19	<50
280754		2.22	0.067	10	0.94	90	120	⊲	<10	0.21	8	<5	39	955	5.93	<50
280755		2.48	0.200	10	0.90	130	290	<	<10	0.25	6	9	<5	4270	15.20	<50
280756		2.32	0.051	4	1.03	40	140	<5	<10	2.11	22	7	24	3660	5.90	<50
280757		3.54	0.011	12	1.18	170	510	4	<10	0.29	ব	<5	<5	5270	1.89	<50
280758		3.42	0.153	8	0.13	350	50	\$	<10	<0.05	160	30	42	20800	40.8	<50
280759		3.14	0.145	9	0.14	420	<50	-5	<10	<0.05	202	28	<5	16250	42.4	<50
280760		4.18	0.201	14	0.10	400	<50	<5	<10	<0.05	381	24	45	13150	38.6	<50
280761		1.08	< 0.005	1	2.47	10	300	-	<10	2.32	<5	30	150	455	4.98	<50
280762		1.88	0.016	2	0.94	20	160	\$	<10	0.18	544	6	32	3670	12.70	<50
280763		0.20	0.146	20	0.35	290	<50	<5	<10	1.38	94	108	79	14700	29.6	<50
280764		3.14	0.005	<1	1.37	<10	360	<5	<10	0.52	17	6	<5	212	3.66	<50
280765	1	0.44	0.077	5	0.48	90	750	<5	<10	0.10	140	40	55 5	10150 4640	33.9 6.36	<50 <50
280766		0.98	0.031	3 30	1.40 0.21	20 550	260 70	থ থ	<10 10	<0.05 <0.05	28 132	13 150	56	41000	41.4	<50
280767		1.78	0.481													
280768		1.96	0.871	57	0.59	260	300	4	<10	0.07	40	140	<5	38700	34.7 14.30	<50 <50
280769		2.44	0.057	5	1.02	270	520	<5	<10	0.09	9	18 7	65 <5	2830 4260	12.30	<50
280770		1.40	0.548 0.014	25 1	0.38 0.97	380 20	310 220	ধ্য ধ্য	<10 <10	0.20 0.35	ধ্য ধ্য	11	92	293	11.75	<50
280771 280772		1.78 2. 5 6	0.014	1	0.89	20	220	<2 <2	<10	0.35	<5 <5	23	<5	329	13.40	<50
											_				4.53	<50
280776		1.24	0.005	<1	1.35	30	260	র্ব	<10	9.76	<5	8	9 <5	731 5850	4.53 44.2	<50
280777	(2.26 2.20	0.125 0.278	6 28	0.10 0.05	90 360	<50 <50	ব ব	<10 <10	0.42 0.11	98 54	22 29	<5 55	11050	44.2 46.7	<50
280778 280779		2.20	0.223	29	0.05	440	<50	ও ও	10	0.05	54 44	135		11300	46.4	<50
280780		0.18	0.080	13	0.68	200	<50	<5 <5	<10	1.60	72	82	84	7420	19.55	<50
200700		0.10	0.000			200			- 10							

Comments: Additional Au-AA23 results for samples 280784 and 280788 are 0.266ppm and 0.261ppm.

ALS Chemex

ALS Canada Ltd.

212 Brooksbenk Avenue North Vancouver BC V7J 2C1

EXCELLENCE IN ANALYTICAL CHEMISTRY

. J: WL

ALS CHEMEX

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue

North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

.0: WLS & LRN KEL & C MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4 1

CERTIFICATE OF ANALYSIS

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 12-SEP-2005 Account: LTU

VA05074739

Project: KUTCHO

ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41s ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a Math Mo Ne M Ph Sb Sc S П Ls Mg 140 s Analyte Ha ĸ % % Units * ppm ppm ppm * ٩. ppm ppm DDIT ppm **pp**(**T PDIT** ppm Sample Description 5 LOR 30 Б 50 10 0.05 10 5 0.05 0.05 50 0.05 0.05 5 5 33 7 110 60 1.68 <10 6 <0.05 <50 3.52 1590 0.22 43 <5 0.19 280686 <5 38 <50 110 46.8 10 <5 <0.05 <0.05 <50 <0.05 80 130 < 0.05 280687 5 4 <5 10 <0.05 <0.05 100 93 <0.05 15 <50 190 48.6 < 0.05 <50 280688 7 93 170 47.9 10 <5 <5 <0.05 <50 < 0.05 100 <0.05 13 <50 <0.05 280689 . <10 <5 <5 <0.05 <50 190 32.6 <50 <0.05 30 55 0.12 21 0.07 280690 5 100 40 <10 <5 0.30 640 9 0.08 3760 10 1.37 <6 1.58 <50 1.91 280691 130 250 46.5 20 <5 <5 <0.05 <50 0.06 90 229 <0.05 25 280692 5 <0.05 <50 260 46.5 10 <5 <5 <0.05 184 39 <5 <0.05 <50 <0.05 120 < 0.06 280693 <50 410 47.7 10 <5 <5 <0.05 <50 <0.05 110 330 <0.05 36 <0.05 280694 8 <5 <5 <0.05 168 <50 200 49.4 10 130 <0.05 16 280695 <5 <0.05 <50 <0.05 <5 <50 110 49.7 10 <5 <0.05 <0.05 <50 < 0.05 70 92 < 0.05 8 <5 280696 <5 125 50 190 49.4 20 <5 <0.05 <50 <0.05 70 <0.05 <5 <0.05 280697 <5 128 90 43.8 10 <5 <5 < 0.05 0.12 <50 < 0.05 50 0.05 <5 90 6 280698 <10 <5 <5 <0.05 40 36 0.09 6 430 220 17.25 <5 0.15 <50 < 0.05 280699 170 32.4 20 <5 7 <0.05 1100 114 <0.05 10 310 <0.05 <50 1.08 280700 6 5 35 3.92 1190 37 0.18 6 280 280 5.61 <10 <0.05 0.08 <50 <5 280753 < 0.05 98 220 220 6.02 <10 <5 8 <5 0.16 <50 0.79 120 0.21 <5 280754 176 140 150 16.05 <10 <5 6 <0.05 160 16 280755 <δ 0.18 <50 0.61 0.18 <5 14 <0.05 55 12 120 90 5.74 <10 <5 0.15 <50 2.49 910 0.19 280756 330 <5 0.23 80 70 1.17 <10 5 10 <0.05 <50 1.61 <5 280757 <5 0.16 < <5 76 13 50 200 44.9 <10 < 0.05 <0.05 5 <0.05 <50 0.06 220 280758 <5 <0.05 <50 <0.05 160 106 <0.05 24 <50 180 47.0 10 <5 <0.05 280759 <5 <5 <0.05 <50 620 44.8 20 <5 70 <0.05 18 <0.05 <50 < 0.05 120 14 280760 114 0.38 7 <50 2.09 630 ≪5 0.07 35 4080 30 0.49 <10 <5 1.69 280761 <10 <5 <5 <0.05 270 90 360 18.50 <50 0.79 11 0.16 <5 0.18 280762 8 32.7 20 <5 6 <0.05 112 22 280 190 <5 <0.05 <50 1.15 1150 <0.05 280763 5 12 <0.05 <5 140 50 2.75 <10 0.32 <50 1.67 650 5 0.21 5 280764 <5 19 <0.05 60 93 <0.05 49 500 210 38.2 <10 280765 <5 0.05 <50 <0.05 6.31 <10 5 7 <0.05 280 11 0.17 17 70 60 5 0.30 <50 0.49 280766 15 <0.05 10 <5 50 190 <0.05 22 60 190 45.9 280767 6 < 0.05 <50 < 0.05 <5 125 0.10 <50 100 37.7 10 R <0.05 <5 0.12 <50 0.07 60 <5 280768 10 < 0.05 <5 15 0.18 110 30 15.35 <10 <50 0.08 40 <5 280769 <5 0.25 <5 <5 <0.05 60 26 0.05 <5 <50 30 13.10 10 <5 0.12 <50 0.11 280770 <5 5 <0.05 100 5 <5 80 30 12.35 <10 0.32 <50 0.20 0.14 280771 <5 <5 5 < 0.05 <50 0.19 180 <5 0.11 6 60 10 14.10 <10 5 0.33 280772 102 <0.05 1490 20 1.23 <10 8 <50 2040 <5 <5 280776 <5 0.37 5.27 0.15 < 0.05 <5 <0.05 <50 0.21 240 69 <0.05 63 90 290 48.4 <10 <5 <5 280777 < 0.05 450 >50 20 <5 <5 80 <50 <5 <0.05 <50 0.05 100 <0.05 14 280778 < 0.05 <5 <50 <0.05 100 66 <0.05 15 <50 310 >50 10 <5 < 0.05 280779 5 < 0.05 250 120 10 <5 8 73 21.1 <5 <0.05 <50 1.47 1480 <0.05 25 280780

Comments: Additional Au-AA23 results for samples 280784 and 280788 are 0.266ppm and 0.261ppm.

als'Enemex'

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com J: WELLEN KLETC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 12-SEP-2005 Account: LTU

CERTIFICATE OF ANALYSIS VA05074739

Project: KUTCHO

		ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	Z1-AA48	
	Hethod Analyte	Π	U	V	W	Zn	Zn	
	Units	ppm	ppm	ppm	ppm	ppm	*	
Bample Description	LOR	50	50	5	50	10	0.01	
280686	_	<50	<50	26	<50	1140		
280687		<50	<50	5	<50	34500		
280688		<50	<50	8	<50	37400		
280689		<50	<50	7	<50	33800		
280690		<50	<50	13	<50	41300		
280691		<50	<50	130	<50	1910		
280692		<50	<50	12	<50	27900		
280693		<50	<50	17	<50	42600		
280694		<50	<50	21	<50	35100		
280695		<50	<50	13	<50	29000		
280696		<50	<50	7	<50	30200		
280697		<50	<50	14	<50	18650		
280698		<50	<50	10	<50	15050		
280699	1	<50	<50	10	<50	2130		
280700		<50	<50	10	<50	16250		
280753		<50	<50	6	<50	14600	_	
80754		<50	<50	7	<50	1780		
280755		<50	<50	14	<50	1390		
280756	[<50	<50	13	<50	5060		
280757	i	<50	<50	16	<50	980		
280758		<50	<50	<5	<50	30900		
280759		<50	<50	11	<50	38300		
280760		<50	<50	10	<50	>50000	7.47	
280761	Į	<50	<50	158	<50	830		
280762		<50	<50	15	<50	>50000	12.80	
280763	1	<50	<50	13	<50	17050		
280764	1	<50	<50	27	<50	4170		
280765		<60	<50	14	<50	25400		
280766		<50	<50	28	<50	5900		
280767		<50	<50	11	<50	24700		······································
280768		<50	<50	8	<50	7100		
280769	ł	<50	<50	7	<50	1740		
280770		<50	<50	8	<50	410		
280771		<50	<50	6	<50	170		
280772		<50	<50	<5	<50	80		
280776	ſ	<50	<50	17	<50	810	_	
280777	1	<50	<50	24	<50	27400		
280778		<50	<50	10	<50	14950		
280779	ļ	<50	<50	13	<50	12050		
280780		<50	<50	27	<50	13750		

Comments: Additional Au-AA23 results for samples 280784 and 280788 are 0.266ppm and 0.261ppm.

10: WESTERN KELLIC MINES INC. 900-808 W HASTINGS ST

VANCOUVER BC V6C 2X4

Total # Pages: 3 (A - C) Finalized Date: 12-SEP-2005

Project: KUTCHO

CERTIFICATE OF ANALYSIS VA05074739

Sample Description	Nethed Analyte Units LOR	WEI-21 Recvd WL kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41s Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppri 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
280781 280782		2.62 1.90	0.140 0.259	28 26	<0.05 <0.05	580 500	<0 <0	হ হ	10 10	0.12	20 50	132 147		11300 10750	47.8 46.6	<\$0 <\$0
280783		1.74	0.273	37	<0.05	560		4	10	0.38	46	24	57	17800	46.1	<0 <0
280784		2.12	0.272	26	<0.05	510	<50	ব	10	0.28	67	10	-5	20100	46.0	<50
280785		1.02	0.012	<1	2.28	10	290	<	<10	2.37	<u><</u>	30	158	732	4.95	<50
280788		2.66	0.135	16	<0.05	520	<50	<5	10	0.15	70	8	5	16100	46.4	<50
280787 280788		1.80 1.92	0.130 0.246	13 27	<0.05 <0.05	390 490	<50 <50	ব্য ব্য	10 10	0.08 0.33	116 98	7 30	58 5	8240 8960	47.1 45.9	<50 <50
280789		2.14	0.336	37	<0.05	750	<50	~ ~	10	0.18	58	<5	66	17800	46.2	<50
280790		1.78	0.383	49	<0.05	740	<50	<5	30	0.27	59	10	6	18000	46.5	<50
280791		2.34	0.471	50	<0.05	760	<50	<5	30	0.28	71	15	66	15750	46.0	<50
280792		2.68	0.348	42	<0.05	770	<50	<5	20	0.25	79	9	73	19750	45.8	<50
280793		2.84	0.325 0.229	33 33	<0.05 <0.05	570 610	<50 <50	ৰ ৰ	10	0.23	92 92	20 14	5 7	10950 12300	48.4 46.3	<50 <50
280794 280795	1	2.18 2.58	0.147	33 24	<0.05	530	<50 <50	4	10 20	0.30 0.34	92 1 55	14	75	12500	45.1	<50
280796		1.70	0.097	12	<0.05	560	<50	4	10	0.47	147	24	<	17100	41.2	<50
260797		1.70	0.194	17	<0.05	450	<50	\$	30	0.50	83	17	69	16250	45.2	<50
280798	ľ	1.88	0.176	20 14	<0.05	550 500	<50 <50	8	50	0.94	65	54	<5	20200	44,5	<50
280799 280800		1,92 1,96	0.126 0.089	5	<0.05 <0.05	520 170	<50 <50	ৰ ৩	40 10	0.95 4.66	55 113	26 33	43 <5	12550 9690	40.3 36.8	<50 <50
280801		0.16	0.137	19	0.35	270	<50	ৰ	10	1.40	93	110	81	14750	29.6	<50
280802		1.60	0.025	3	0.74	70	<50	<5	10	0.41	5	497	63	948	40.9	<50
280803		0.82	0.012	<1	2.48	20	270	4	<10	2.88	8	29	140	917	5.95	<50
280804	1	1.14 1.32	0.013 0.008	<1 1	0.84 0.81	50 <10	80 80	ব্য ব্য	<10	0.07	<5 <5	36 36	5 52	88 36	9.43 13.65	<50 <50
280805		1.32	0.008		V.01	< +U			<10	<0.05	<				13.00	<u>~00</u>

Comments: Additional Au-AA23 results for samples 280784 and 280788 are 0.266ppm and 0.261ppm.

ALS Chemex **EXCELLENCE IN ANALYTICAL CHEMISTRY**

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Caneda Ltd.

212 Brooksbank Avanue North Vancouver BC V7J 2C1 Page.

Account: LTU

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

C MINES NC. . S: WE. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 12-SEP-2005 Account: LTU

Project: KUTCHO

CERTIFICATE OF ANALYSIS VA05074739

	Nethod	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a Mg	ME-ICP41a Mn	ME-ICP41a Mo	ME-ICP41a Na	ME-ICP41a Ni	ME-ICP41a P	ME-ICP41a Pb	ME-ICP41a S	ME-ICP41a So	ME-ICP41a Sc	ME-ICP41a Sr	ME-ICP41a Ti
1	Applyte	Hg	K	La							Apm.	*	opm.	ppm	ppm	*
a second designed	Units	ppm	*	ppm	*	ppm	ppm 5	% 0.05	ppm S	ррт 50	10	0.05	10	5	5	0.05
Sample Description	LOR	5	0.05	50	0.05	30	5	0.06	5	307	10	0.00				
260781		<5	<0.05	≪50	0.06	120	68	<0.05	45	50	170	>50	10	<5	<5	<0.05
280782		<5	<0.05	<50	0.15	200	71	<0.05	4	<50	170	>50	<10	-5	4	<0.05
280783		<5	<0.05	<50	0.19	270	45	<0.05	<5	<50	230	>50	10	<5	<5	<0.05
280784		7	<0.05	<50	0.09	220	64	<0.05	13	<50	350	- 49.9	<10	<5	<5	<0.05
280785		<5	1.65	<50	1.96	650	-5	0.07	41	3920	<10	0.76	<10	5	134	0.35
280786		5	<0.05	<50	0.06	160	76	<0.05	10	80	200	>50	10	<	<5	<0.05
280787		12	<0.05	<50	<0.05	120	88	<0.05	14	<50	310	>50	10	<5	<5	<0.05
280788		7	<0.05	<50	0.17	380	99	<0.05	25	60	300	50	10	. <	<5	<0.05
280789		7	<0.05	<50	0.00	230	87	<0.06	13	<50	200	49.9	<10	<5	<5	<0.05
280790			<0.05	<50	0.12	320	80	<0.06	6	<50	140	>50	10	<5	<5	<0.05
		5	<0.05	<50	0.11	310	96	<0.05	<	<50	150	>50	<10	<5	<5	<0.05
280791		5	<0.05	<50	0.10	350	97	<0.05	6	<50	250	49.6	<10	<5	<5	<0.05
280792		<5	<0.05	<50	0.06	360	132	<0.05	18	<50	290	>50	10	<5	<5	<0.05
280793		5	<0.05	<50	0.08	440	100	<0.05	24	<50	280	>50	20	<5	<5	<0.05
280794		10	<0.05	<50	0.15	410	101	<0.05	24	70	380	49.7	20	<5	<5	<0.05
280795							92		15	50	340	45.8	20	<5	<	<0.05
280796		6	<0.05	<50	0.22	330		<0.05		<50	340	49.1	<10	<5	<	<0.05
280797		<5	<0.05	<50	0.24	330	85	<0.05	<5	<50	420	48.3	10	<	<5	<0.05
280798		<5	<0.05	<50	0.47	450	98	<0.05	12			43.8	20	<5	Š	<0.05
280799		<5	<0.05	<50	0.45	310	65	<0.05	11	290	370	41.3	<10	~5	11	<0.05
280800		<5	<0.05	<50	1.75	1520	36	<0.05	10	5200	150					
280601		<	<0.05	<50	1.16	1150	114	<0.05	10	260	180	32.7	20	<5	9	<0.05 <0.05
280802		ব্য	0.08	<50	0.23	130	37	0.16	<5	90	190	43.8	<10	<5	<5	0.37
280803		<5	1.62	<50	2.14	750	4	0.08	35	4150	10	1.73	<10	7	160	
280804		<5	0.24	<50	0.05	<30	11	0.14	<5	60	10	9.93	<10	<5	<5	<0.05
280805		<	0.26	<50	<0.05	<30	9	0.12	<5	<50	20	14.65	<10	<5	<5	<0.05

Comments: Additional Au-AA23 results for samples 280784 and 280788 are 0.266ppm and 0.261ppm.

ALS LITEITEX EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Carada Ltd.

ļ

ALS Carada Lto. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com b:WI IRN I IC M INC.

900-808 W HASTINGS ST VANCOUVER BC V6C 2X4 Total # Pages: 3 (A - C) Finalized Date: 12-SEP-2005 Account: LTU

Project: KUTCHO

								CERTIFICATE OF ANALYSIS VA05074739
Sample Description	Method Analyte Unite LOR	ME-ICP41a TI ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41# W ppm 50	ME-ICP41a Zn ppm 10	Zn AA48 Zn % 0.01	
280781		<50	<50	13	<50	6000		
280782		<50	<50	16	<50	15100		,
260783		<50	<50	21	<50	13000		
280784		<50	<50	13	<50	18400		
280785		<60	<50	144	<50	350		
280786		<50	<50	18	<50	17850		
280787		<50	<50	14	<50	28600		
280788		<50	<50	30	<50	21600		
280789		<50	<50	15	<50	12200		
280790		<50	<50	19	<50	12500		
280791		<50	<50	17	<50	14500		
280792		<50	<50	20	<50	15900		
280793		<50	<50	13	<50	18400		4
280794		<50	<50	23	<50	18750		
280795		<50	<50	21	<50	33900		
280796		<50	<50	18	<50	35300		
280797		<50	<50	17	<50	19850		
280798		<50	<50	23	<50	15050		1
280799		<50	<50	14	<50	14250		1
280800		<50	80	28	<50	32200		
280801		<50	<50	13	<50	16850		
280802		<50	<50	6	<50	740		
280803		<50	<50	158	<50	2140		
280804		<50	<50	<5	<50	120		
280805		<50	<50	<5	<50	30		

Comments: Additional Au-AA23 results for samples 280784 and 280788 are 0.266ppm and 0.261ppm.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J Phone: 604 984 0221 F

North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com			
CERTIFICATE VA05082216		SAMPLE PREPARATION	
	ALS CODE	DESCRIPTION	
Project: KUTCHO	WEI-21	Received Sample Weight	
P.O. No.:	LOG-22	Sample login - Rod w/o BarCode	
This report is for 71 Drill Core samples submitted to our lab in Vancouver, BC, Canada on	LOG-24	Pulp Login - Rcd w/o Barcode	
	CRU-31	Fine crushing - 70% <2mm	
	SPL-21	Split sample - riffle splitter	

PUL-31

ROB W

In

900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

The following have access to data associated with this certificate:

BRIAN	PETER HOLBEK

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Zn-AA46	Ore grade Zn - aqua regia/AA	AAS
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41a	High Grade Aqua Regia ICP-AES	ICP-AES

Putverize split to 85% <75 um

E

0005

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this cartificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Read Dog

Finalized Date: 4-OCT-2005 Account: LTU

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbenk Avenue

North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

10: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 4-OCT-2005 Account: LTU

Project: KUTCHO

CERTIFICATE OF ANALYSIS VA05082216

۲

	Nethed	WEI-21 Recvd WL	Au-AA23	ME-ICP41a	ME-ICP41s Al	ME-ICP41a As	ME-ICP41a Ba	ME-ICP41a Be	ME-ICP41a Bi	ME-ICP41a Ca	ME-ICP41a Cd	ME-ICP41a Cc	ME-ICP41a Cr	ME-ICP41a Cu	ME-ICP41a Fe	ME-ICP41a Ga
1	Analyte		Au	Ag					-						×	
Sample Description	LOR	kg	ppm o por	ppm	% 0.05	ppm 10	ppm 50	ppm 5	քր տ 10	% 0.05	ppm 5	ppm S	ppm 5	ppm 5	0.05	ppm 50
	LVA	0.02	0.005	1	60.0	10	50		10	0.05	3	3	3	3	0.05	30
B280624		0.58	0.012	<1	0.80	40	300	\$	<10	2.31	<5	ব্য	4	96	4.05	<50
B280825		2.88	0.103	4	0.09	250	<50	4	20	0.26	64	30	7	7020	47.0	<50
8280826		2.24	0.071	4	<0.05	400	<50	4	20	0.15	104	17	6	5560	47.1	<50
8280827		2.68	0.062	3	<0.05	200	<50	<5	10	0.09	110	<5	6	3000	46.5	<50
6280828		2.66	0.068	6	<0.05	400	<50	<5	10	0.15	54	63	8	8550	47.8	<50
B280829		3.00	0.094	7	<0.05	340	<50	ৎ	10	0.11	39	32	9	10050	47.3	<50
B280830	- 1	2.68	0.101	8	0.06	500	<50	<5	30	0.14	56	38	6	10150	47.6	<50
B280831		2.54	0.169	17	0.06	710	<50	<5	20	0.18	162	7	7	10800	44.2	<50
B280832		2.84	0.133	11	<0.05	790	<50	<5	10	0.17	374	<5	8	14350	41.5	<50
B280833		1.60	0.009	<1	1.83	30	220	\$	10	1.90	5	22	130	546	4.17	<50
B280834		3.16	0.247	21	<0.05	880	<50	<\$	20	0.30	289	ধ	7	9720	43.0	<50
B280835		3.04	0.246	21	<0.05	660	<50	<5	30	0.31	128	16	35	11450	46.3	<50
B280836		3.54	0.238	21	<0.05	590	<50	<5	40	0.14	85	27	8	11550	46.3	<50
B280837		2.90	0.271	26	<0.05	620	<50	<5	20	0.25	48	155	35	23400	46.8	<50
B280838		3.06	0.263	23	<0.05	590	<50	4	30	0.23	24	183	10	18850	47.2	<50
B280839		2.70	0.334	36	0.05	530	<50	<	40	0.38	58	96	40	20000	46.3	<50
B280840		3.10	0.297	37	0.05	630	<50	<5	30	0.88	123	60	8	17900	44.1	<50
B280841		0.20	0.093	13	0.69	210	<50	<5	10	1.70	74	73	93	7370	19.70	<50
B280842		2.30	0.530	71	< 0.05	1000	<50	<5	30	0.55	159	<5	35	20100	44.7	<50
B280843		3.24	0.648	93	0.08	830	<50	<5	60	0.27	π	5	7	36900	45.7	<50
B280844		2.74	0.266	25	<0.05	730	<50	\$	50	0.24	143	5	7	15650	44.6	<50
B280845		1.50	0.134	11	0.09	270	<50	<5	20	0.94	97	<5	9	18200	42.1	<50
B280846		2.46	0.039	3	0.36	50	<50	<5	10	0.10	7	77	8	3440	41.5	<50
B280847		1.72	0.022	3	0.38	10	<50	<	10	<0.05	7	26	10	801	39.4	<50
B280848		0.86	0.008	1	0.39	10	<50	<	10	0.19	<5	<5	20	253	3.05	<50
B280849		1.48	0.094	16	0.77	30	60	4	10	0.32	24	<5	47	4050	3.70	<50
B280850		1.80	0.011	1	0.58	<10	140	<5	10	3.18	<5	6	<5	225	3,96	<50
B280851		1.24	0.074	2	0.86	30	100	<5	10	0.86	<5	<5	35	1620	5.71	<50
B280852		1.70	0.049	<1	1.02	20	80	<5	<10	0.37	<5	<5	6	940	2.66	<50
B280853		1.22	0.113	9	0.85	40	70	<5	10	1.02	<5	<5	28	8530	5.61	<50
B280854		1.00	0.048	1	0.81	20	70	<5	10	0.89	<5	ৰ	6	1100	4.14	<50
B280855		1.84	0.129	6	0.77	20	60	<5	10	0.88	<5	4	28	9860	8.04	<50
B280856		2.38	0.072	2	1.39	10	60	<5	10	1.18	-5	<5	5	3420	5.30	<50
B280857		2.44	0.041	<1	2.18	10	50	<5	10	0.29	<5	<5	6	642	3.67	<50
B280858		1.64	0.086	2	2.12	30	50	<5	10	0.44	-5	<5	6	10800	7.18	<50
B280859		2.70	0.032	2	2.41	40	50	<5	20	0.13	7	ৎ	6	959	4.91	<50
B280860		2.68	0.075	2	2.08	30	50	<5	20	0.10	5	<5	7	3000	7.05	<50
B280661		1.00	0.046	1	1.97	20	50	<5	10	<0.05	<5	<5	5	1805	4.72	<50
B280862		0.18	0.101	13	0.73	190	<50	<5	10	1.65	71	71	94	7220	19.15	<50
B280863		0.58	0.020	2	0.95	<10	140	<5	10	3.79	26	6	5	695	6.89	<50
	1											•				

b: W IRN I IC M. INC. 900-808 W HASTINGS ST

VANCOUVER BC V6C 2X4

.'age. _ _ 3 Total # Pages: 3 (A - C) Finalized Date: 4-OCT-2005

Project: KUTCHO

CERTIFICATE OF ANALYSIS VA05082216

· ···

	Method Analyte	ME-ICP41a Hg	ME-ICP4ta K	ME-ICP41a La	ME-ICP41a Mg	ME-ICP41a Mn	ME-ICP41a Mo	ME-ICP41a Na	ME-ICP41a Ni	ME-ICP41s P	ME-ICP41a Pb	ME-ICP41s S	ME-ICP41a Sb	ME-ICP41a Sc	ME-ICP41a Sr	ME-ICP41a Ti
Sample Description	Unite LOR	ррт- 5	% 0.05	ppm 50	% 0.05	ppm 30	ppm 5	% 0.05	ppm 5	50	ррт 10	% 0.05	9pm 10	99m 5	ppm 5	% 0.05
B280824		ধ	0,41	≪0	1.05	690	19	<0.05	<	110	30	3.59	<10	<5	39 5	<0.05
8280825		<5	<0.05	<50	80 .0	230	45	<0.05	18	<50	390	50	<10	<5	-	<0.05
B280826		6	<0.05	<50	<0.05	160	55	<0.05	22	<50	310	>50	20	<5	<5 <5	<0.05
B260627		9	<0.05	<50	<0.05	140	64	<0.05	12	<50	190	>50	10	<5 <5	- 3	<0.05
B280828		7	<0.05	<50	0.05	170	57	<0.05	8	50	250	>50	20			<0.05
B280829		5	<0.05	<50	<0.05	130	75	<0.05	12	<50	250	49.9	20	<5	<5	<0.05
B280830		5	<0.05	<50	0.05	160	67	<0.05	5	<50	270	>50	10	4	5	< 0.05
B280831		8	<0.05	<50	0.07	320	150	<0.06	34	<50	430	48.2	30	<5	5	<0.05
8280832		12	<0.05	<50	0.07	370	123	<0.05	30	<50	1030	47.1	50	<5	<5 82	<0.05
8280833		<5	1.31	<50	1.61	510	<u><</u>	0.05	52	3850	30	0.69	<10	<5		0.28
B280834		12	<0.05	<50	0.08	440	176	<0.05	29	<50	320	48.0	50	<5	5	<0.05
B280835		6	<0.05	<50	0.05	310	274	<0.05	24	100	330	49.8	30	<5	<5	<0.05
8280836		<5	<0.05	<50	0.05	160	152	<0.05	31	<50	270	49.3	20	<	<5	<0.05
B280837		<5	<0.05	<50	0.09	250	132	<0.05	7	<50	150	49.7	10	<5	<5	<0.05
B280838		<5	<0.05	<50	0.06	190	107	<0.05	8	<50	160	49.5	10	<5	8	<0.05
B280839		<5	<0.05	<50	0.06	230	64	<0.05	\$	<50	180	49.1	20	<5	6	<0.05
B280840		5	<0.05	<50	0.09	360	51	<0.05	<5	<50	260	47.5	10	<5	7	<0.05
B280841		<5	0.05	<50	1.43	1470	73	<0.05	15	220	110	20.8	20	<5	16	<0.05
B280842		7	<0.05	<50	0.06	320	99	<0.05	5	<50	360	48.8	30	<5	6	<0.05
B280843		5	<0.05	<50	0.10	220	90	<0.05	7	100	280	48.8	30	ব	5	<0.05
B280844		8	<0.05	<50	0.08	210	69	<0.05	17	100	190	48.3	30	<5	8	<0.05
B280845		<5	<0.05	<50	0.41	490	69	<0.05	6	150	60	43.7	20	<5	9	<0.05
B280846		<5	0.10	<50	0.05	60	23	0.06	<5	<50	210	43.2	<10	<5	<5	<0.05
B280847	1	<5	0.13	<50	<0.05	40	26	0.06	<5	<50	200	41.2	<10	<5	8	<0.05
B280848		4	<0.05	<50	<0.05	40	11	0.10	27	530	40	2.79	<10	<5	9	<0.05
B280849		<5	0.09	<50	<0.05	60	86	0.20	59	1020	940	3.95	10	<	18	<0.05
8280850		<5	0.22	<50	1.21	870	16	<0.05	<5	150	10	3.60	<10	<5	8	<0.05
8280851		<5	0.30	<50	0.72	210	21	0.09	<5	<50	20	5.51	<10	<5	32	<0.05
8280852		<	0.27	<50	1.35	170	<5	0.07	<5	60	10	2.13	<10	<5	13	<0.05
B280853		<5	0.22	<50	1.36	380	8	0.08	S	<50	10	5.37	<10	<5	23	<0.05
B280854		<	0.22	<50	1.01	310	9	0.10	<5	120	10	3.96	<10	<5	29	<0.05
8280855		<5	0.18	<50	0.77	290	7	0.10	<5	60	20	8.24	<10	<5	21	<0.05
B280856		<5	0.18	<50	1.65	430	<5	0.09	<5	60	10	5.09	<10	<5	24	<0.05
B280857		<5	0.15	<50	2.32	230	5	0.09	<5	130	10	3.10	<10	<5	13	<0.05
B280858		<5	0.16	<50	2.33	350	9	0.09	<5	100	30	6.89	<10	<5	15	<0.05
B280859		<5	0.18	<50	2.55	250	6	0.08	\$	90	10	4.48	<10	<5	16	<0.05
B280860		<5	0.20	<50	2.03	210	11	0.09	<5	110	10	6.92	<10	<5	12	<0.05
B260861		<5	0.19	<50	1.87	160	<5	0.09	<5	140	10	4.47	<10	<5	10	<0.05
B280862		5	0.05	<50	1.42	1430	70	<0.05	11	220	100	20.4	10	<5	16	<0.05
B280863		<5	0.31	<50	1.87	810	64	0.14	30	<50	20	6.88	<10	5	53	<0.05

1

ALS CHEMEX

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

1

Account: LTU

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

<50

<50

<50

<50

900

810

13450

4430

<5

<5

28

29

<50

<50

<50

<50

<50

<50

<50

<50

B280860

B280861

B280862

B280863

10: WESTERN KELLIC MINES INC. 900-808 W HASTINGS ST

VANCOUVER BC V6C 2X4

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 4-OCT-2005 Account: LTU

CERTIFICATE OF ANALYSIS VA05082216

Project: KUTCHO

·····		ME-ICP41s	ME-ICP41a	ME-ICIP41a	ME-ICP41a	ME-ICP41a	Zn-AA48	
	Nothod Analyta		U	V	W	Zn	Zn	
	Units	ppm	ppin	ppm	ppm	ppm	*	
Sample Description	LOR	50	50	5	50	10	0.01	
B280824		<50	<50	<5	<50	400		
B280825		<50	<50	25	<50	15500		
B280826		<50	<50	16	<50	23700		
B280827		<50	<50	10	<50	30100		
8280828		<50	<50	12	<50	15150		
B280829		<50	<50	5	<50	11650		
B280830		<50	<50	13	<50	12950		
B280831		<50	<50	14	<50	33000		
B280832		<50	<50	17	<50	>50000	7.60	
B280833		<50	<50	127	<50	1080		
B280834	-	<50	<50	26	<50	>50000	5.92	
B280835		<50	<50	17	<50	29100		
B280836		<50	<50	13	<50	19400		
8280837		<50	<50	17	<50	11300		
B280838		<50	<50	11	<50	4980		
B280839		<50	<50	14	<50	12350		
B280640		<50	<50	22	<50	25800		
B260841		<50	<50	27	<50	13950		
B280842		<50	<50	13	<50	33800		
B280843		<50	<50	21	<50	16000		
B280844		<50	<50	19	<50	30200		
B280845		<50	<50	38	<50	19700		
B280846		<50	<50	<5	<50	1160		
B280847		<50	<50	<5	<50	1200		
B280848		<50	<50	34	<50	380		
B280849		<50	<50	34	<50	4010		
B280850		<50	<50	<5	<50	630		
B280851		<50	<50	<5	<50	340		
B280852		<50	<50	<5	<50	360		
B280853		<50	<50	<\$	<50	260		
B260854		<50	<50	<5	<50	160		
B260855		<50	<50	<5	<50	160		
B280856		<50	<50	<5	<50	230		
B280857		<50	<50	<5	<50	360		
B280858		<50	<50	<\$	<50	380		
8280859		<50	<50		<50	1610		
0200005			-50	-5	~50	000		

į

•

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue

North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

10: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 4-OCT-2005 Account: LTU

Project: KUTCHO

1

CERTIFICATE OF ANALYSIS VA05082216

												ME-ICP41	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41
	Hethed	WEI-21	Au-AA23	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a Be	ME-ICP41a Bi	ME-ICP41a Ca	ME-ICP41a Cd	Co	Cr	Cu	Fe	Ge Ge
	Analyte	Recvd WL	Au	Ag	A	As	Be			54 56			ppm	ррт	*	ppm
Sample Description	Units LOR	kg	ppm 0.005	ppm 1	% 0.05	рфт 10	ppm 50	ppm 5	ppm 10	0.05	ррт 5	pp m 5	5	5	0.05	50
	CON	0.02	0.005	1	0.00	10			~	0.00	_		_	-		
B280864		1.02	0.067	5	0.88	70	110	<5	<10	1.93	74	17	21	3250	17.10	<50
8280865		1.04	0.183	9	0.14	160	<50	<5	10	0.40	16	<5	<5	13200	42.0	<50
B280866		1.96	0.160	8	0.07	130	<50	<5	10	0.23	67	6	36	6410 4740	43.8 43.5	<50
B280867		2.06	0.190	9	0.06	310	<50	-5	<10	0.32	101	13	5	4740 7340	43.5	<50 <50
B280868		2.00	0.151	9	0.05	210	<50		20	0.37	81	13	32			
8280869		0.46	0.015	1	0.69	40	<\$0	<5	<10	0.75	8	<5	<5	577	5.46 33.0	<50
B280870		2.16	0.217	16	0.15	150	<50	4	20	3.14	76	114	20	11450		<50
B280871		1.90	0.306	14	0.05	170	<50	4	50	5.41	114	251	<5	10250	32.1 38.3	<50 <50
B280872		1.70	0.117	18	<0.05	310	<50	4	20	3.42	110	90	25	4320		
8280873		2.00	0.311	38	0.14	520	<50	<u> </u>	40	3.53	160	154	<5	11350	34.9	<50
B280874		1.94	0.301	18	0.40	190	<50	<5	10	0.86	21	292	16	6780	39.3	<50
6280875		1.48	<0.005	<1	2.02	<10	240	<5	<10	2.39	<5	24	156	271	4.18	<50
B280876		0.86	0.220	12	0.42	150	<50	<5	20	1.85	8	298	20	5200	23.2	<50
B280877		1.58	0.077	7	0.42	50	<50	<5	10	0.77	<5	108	<5	2430	17.50	<50
B280878		1.50	0.037	<1	0.50	<10	<50	<	10	0.12	<5	82	26	388	18.75	<50
B280879		2.28	0.011	<1	2.01	40	90	\$	<10	0.25	<5	<5	<5	123	4.17	<50
B280880		2.54	0.029	1	1.79	40	60	<5	<10	0.36	<5	5	12	95	6.36	<50
8280881		2.16	0.050	3	0.65	40	80	<5	<10	0.17	<5	20	<5	2420	12.50	<50
B280882		1.70	0.043	5	0.90	20	120	<5	<10	0.11	<5	10	13	398	3.30	<50
8280883		1.76	0.125	10	0.60	130	80	<	10	0.06	<5	87	<5	17150	21.6	<50
B280884		2.40	0.024	1	0.54	10	60	4	<10	<0.05	ব	12	29	114	4.92	<50
B280885		2.60	0.033	1	0.54	20	50	<5	<10	<0.05	<5	22	<5	112	9.30	<50
B280886		2.54	0.034	2	0.65	30	60	<5	<10	<0.05	<5	38	26	295	12.05	<50
B280887		2.82	0.055	4	0.51	40	<50	<5	10	<0.05	<5	107	6	264	14.50	<50
B280888		2.66	0.064	1	0.48	40	50	<5	<10	<0.05	<5	142	24	197	15.15	<50
B280889		3.14	0.063	1	0.57	30	70	\$	<10	0.06	<5	91	<5	78	17.30	<50
B280890		0.18	0.097	13	0.71	200	<50	<5	10	1.59	73	69	93	7060	18.30	<50
B280891		1,64	0.007	1	1.14	40	220	<5	<10	4.54	<5	5	8	216	3.02	<50
B280892		0.68	0.134	9	0.89	150	160	<	10	0.68	86	102	8	6120	17.35	<50
B280893		0.90	0.010	<1	0.89	50	60	<5	<10	2.08	<5	18	10	52	4.61	<50
B280894		1.46	0.165	<1	0.93	20	130	<\$	<10	0.29	7	<5	<5	149	1.50	<50
										-						

ALS Criemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com .b: WE____KN K____ MI INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

-age. . - -Total # Pages: 3 (A - C) Finalized Date: 4-OCT-2005 Account: LTU

٦

Project: KUTCHO

CERTIFICATE OF ANALYSIS VA05082216

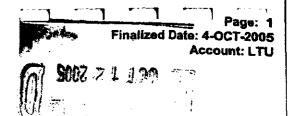
Sample Description	Method Analyta Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mis ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.06	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	NE-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
B280864		5	0.25	<50	0.69	400	166	0,14	251	2320	90	18.65	10	<5	32	<0.05
B280865		<5	0.06	<50	0.20	230	83	<0.05	52	120	100	45.0	<10	<5	5	<0.05
B280866		7	<0.05	<50	0.10	170	52	<0.05	33	130	210	47.7	<10	<5	<5	<0.05
8280867		9	<0.05	<50	0.15	260	54	<0.06	22	100 60	250 170	47.8 46.9	20 <10	<5 <5	<5 5	<0.05 <0.05
B280868		8	<0.05	<50	0.18	210	50	<0.05	20							
B280869		Ģ	0.06	<50	1.22	150	9	0.13	6	660	20	4.77	<10	5	24	<0.05
B280870		7	<0.05	<50	1.54	1000	75	<0.05	15	1270	440	36.9	<10 <10	<5 <5	15 14	<0.05 <0.05
B280871	I	5	<0.05 <0.05	<50 <50	2.75 1.66	1930 1330	65 57	<0.05 <0.05	9 10	620 1030	350 680	36.4 42.7	<10	, ∿ 5 .<5	11	<0.05
8280872 8280873		9 12	<0.05	<50 <50	1.83	1260	118	<0.05 <0.05	<5	560	210	39.6	10	<5	14	<0.05
													<10	<5	5	<0.05
B280874		\$	0.07	<50 <50	0.58 1.92	310 630	128 <5	0.06 0.06	8 48	<50 4080	130 20	42.8 0.06	<10	<5 5	120	0.35
8280875		হ হ	1.64 0.09	<50 <50	1.92	660	-5	0.09	40 8	4000	<u>60</u>	25.2	<10	<5	10	<0.05
B280876 B280877		\$ \$	0.09	<50	0.43	280	13	0.10	<5	90	20	19.20	<10	<5	8	<0.05
8280878	Í	ঁ	0.09	<50	0.07	60	13	0.13	<5	50	20	20.0	<10	<5	5	<0.05
B280879		<5	0.20	<50	2.30	290	8	0.12	<5	270	20	3.94	<10	<5	10	<0.05
B280880		\$	0.14	<50	2.23	310	14	0.14	<5	100	10	6.47	<10	<5	10	<0.05
B280881		<5	0.26	<50	0.45	110	15	0.09	9	<50	30	13.25	<10	<5	8	<0.05
B280882		<5	0.38	<50	0.07	30	5	0.12	10	270	20	3.45	<10	<5	11	<0.05
B280883		\$	0.27	<50	0.05	60		0.07	7	<50	60	23.0	<10	<	6	<0.05
B280884		\$	0.21	<50	<0.05	<30	5	0.08	<5	<50	20	5.16	<10	<5	6	<0.05
B280885		4	0.19	<50	<0.05	<30	8	0.09	5	60	50	9.77	<10	<5	5	<0.05
B280866	ſ	<5	0.23	<50	<0.05	<30	13	0.10	61	<50	60	12.85	<10	<5	6	<0.05
B280887	ł	<	0.17	<50	<0.05	30	21	0.09	6	<50	30	15.65	<10 <10	<5 <5	6 <5	<0.05 <0.05
B280888		ব	0.19	<50	<0.05	<30	39	0.07	6	<50	20	16.30				
B280889		<5	0.23	<50	<0.05	30	18	80.0	13	<50 140	30 110	18.80 20.2	<10 <10	ধ্য ধ্য	<5 10	<0.05 <0.05
B280890		<5	0.07 0.18	<50 <50	1.39 2.68	1430 1660	68 8	0.05 0.14	20 5	400	30	20.2	<10	6	23	<0.05
B280891 B260892		<5 <5	0.18	<50	2.00 0.18	80	0 148	0.14	192	2040	230	19.50	<10	<5	24	<0.05
8280893		~ ~	0.21	<50	3.12	810	27	0.10	<5	<50	10	3.97	<10	Ś	15	<0.05
B280894			0.34	<50	0.70	140	6	0.12	10	<50	50	1.35	<10	<5	5	<0.05

1

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com .b: WLULEN KLEIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Total # Pages: 3 (A - C) Finalized Date: 4-OCT-2005 Account: LTU

Project: KUTCHO


								CERTIFICATE OF ANALYSIS VA05082216
	Nethed	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	Zn-AA46	
	Analyte	וד	U	v	W	Zn	Zn	
	Units	ppm	ppm	ppm	ppm	ppm	*	
Sample Description	LOR	50	50	5	50	10	0.01	
B280864		<50	<50	89	<50	13250		
B280865		<50	<50	71	<50	3100		
B280866		<50	<50	50	<50	15350		
B280867		<50	<50	62	<50	24000		
B280868		<50	<50	35	<50	19600		
B280869		<50	<50	16	<50	2360		
B280870		<50	<50	16	<50	15850		
B280871		<50	<50	14	<50	26400		· · · · · · · · · · · · · · · · · · ·
B280872		<50	<50	9	<50	22100		
B280873		<50		13	<50	31700		
B280874		<50	<50	9	<50	5480		
B280875		<50	<50	151	<50	80		
B280876		<50	<50	1	<50	1720		
B280877		<50	<50	<5	<50	190		
8280878		<50	<50	<5	<50	80		
B280879		<50	<50	<5	<50	190		
B280880		<50	<50	5	<50	270		
B280881		<50	<50	<5	<50	60		
B280882		<50	<50	<5	<50	30		4
B280883		<50	<50	<5	<50	150		
8280884		<50	<50	<5	<50	30		
8280885		<50	<50	<5	<50	50		
B280886	1	<50	<50	<5	<50	140		
B280887		<50	<50	<5	<50	130		
8280888		<50	<50	\$	<50	70		
B280889		<50	<50	<5	<50	60		
8280890		<\$0	<50	28	<50	13150		
B280891		<50	<50	6	<50	320		
B280892		<50	<50	55	<50	13850		
B280893		<50	<50	6	<50	480		
B280894	1	<50	<50	8	<50	1440		
	ł							
	ł							
	1							

rage:

LI Cheme **EXCELLENCE IN ANALYTICAL CHEMISTRY**

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com b:WL_. JRN I IC M..... 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

INSTRUMENT

AAS **ICP-AES**

C	ERTIFICATE VA050824	45		SAMPLE PREPARATION
			ALS CODE	DESCRIPTION
28-SEP-2005. The following have acces	amples submitted to our lab in Var	ertificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing: • 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um
BRIAN	PETER HOLBEK	ROBW		ANALYTICAL PROCEDURES
			ALS CODE	DESCRIPTION
			Au-AA23 ME-ICP41a	Au 30g FA-AA finish High Grade Aqua Regia ICP-AES

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted, All pages of this report have been checked and approved for release.

Signature: Philadelog

.b:W____RN F____IC M...__INC.

900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Þage. Total # Pages: 2 (A - C) Finalized Date: 4-OCT-2005 Account: LTU

Project: KUTCHO

CERTIFICATE OF ANALYSIS VA05082445

Sample Description	Nethod Analyte Units LOR	WEI-21 Recvd Wt. igg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Ba ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
B280895		1.16	0.035	3	0.43	50	50	ধ	<10	1.72	21	8	<	1575	3.65	<50
8280896		0.82	0.056	7	2.95	20	50	4	<10	0.48	18	5	7	2980	7.17	<50
B280897		0.70	0.042	5	0.46	20	80	<5	<10	0.40	<5	6	4	3000	6.62	<50
8280898		1.46	0.016	2	0.49	20	80	<5	<10	1.75	28	6	15	1205	3.13	<50
8280899		1.00	0.041	10	0.66	20	<50	-5	10	1. 70	79	6	<5	4640	7.06	<50
B280900		1.32	0.018	3	1.72	10	70	<5	<10	2.87	13	8	7	1235	3.92	<50
B280901		1.02	0.023	6	0.44	50	<50	<5	10	8.04	46	6	<5	2310	4.10	<50
8280902		1.36	0.011	4	1.02	10	50	<5	<10	8.65	80	<	10	1860	2.82	<50
B280903		1.42	0.020	<1	0.42	20	90	<5	<10	1.13	<5	<5	<5	196	4.29	<50
B280904		1.42	0.019	<1	0.35	20	50	<	<10	1.46	<5	5	54	158	2.25	<50
B280905		2.36	0.040	<1	0.28	10	<50	<5	10	0.47	<5	5	<5	134	3.38	<50
B280906		3.56	0.070	1	0.56	30	80	<5	10	0.57	<5	<5	21	731	6.58	<50

٦

3

ALS LHE **E**X EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS CNEMEX

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com DE WEGTERN KELT C MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - 8 Total # Pages: 2 (A - C) Finalized Date: 4-0CT-2005 Account: LTU

Project: KUTCHO

CERTIFICATE OF ANALYSIS VA05082445

. 1

1

•

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a 1i % 0.05
B260895		<5	0,12	<50	3.46	830	8	<0.05	38	120	100	2.56	<10	<5	110	<0.05
8280896		<5	0.11	<50	5.43	600	12	<0.05	6	80	170	5.37	<10	<5	28	<0.05
B280897		<5	0.18	<50	1.15	200	8	<0.05	7	<50	20	6.85	<10	<5	29	<0.05
B280898		<5	0.18	<50	2.59	730	5	<0.05	9	120	30	2.39	<10	<5	82	<0.05
B260899		<5	0.07	<50	3.38	780	18	<0.05	7	120	510	6.68	<10	<5	79	<0.05
B280900		<5	0.17	<50	5.64	1230	9	<0.05	5	90	130	1.74	<10	ব্য	131	<0.05
B280901		<5	0.09	<50	6.21	2070	37	<0.05	7	340	590	2.61	10	<5	336	<0.05
B280902		<5	0.10	<50	6.35	1770	17	<0.05	<5	210	280	0.99	<10	. <5	361	<0.05
8280903	1	<5	0.16	<50	0.90	190	7	0.05	<5	<50	10	4.01	<10	<5	35	<0.05
B280904		<5	0.13	<50	0.85	480	<5	<0.05	<5	60	10	1.95	<10	<5	42	<0.05
B280905		<5	0.10	<50	1.40	210	<5	<0.05	<	80	10	2.93	10	<5	20	<0.05
B280906		<5	0.21	<50	0.99	230	9	0.06	<5	120	10	6.72	<10	<5	18	<0.05

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fac 604 984 0218 www.alschemex.com S: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

I Total # Pages: 2 (A - C) Finalized Date: 4-OCT-2005 Account: LTt1

Project: KUTCHO

CERTIFICATE OF ANALYSIS VA05082445

1

1

1

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	
B280895		<50	<50	<	<50	3520	
B280896		<50	<50	7	<50	3800	
8280897		<50	<50	<5	<50	360	
B280898		<50	<50	5	<50	4790	
B280899		<50	<50	6	<50	13500	
B280900		<50	<50	7	<50	3070	
B280901		<50	<50	<5	<50	8160	
B280902		<50	<50	10	<50	12950	
B280903		<50	<50	<5	<50	570	
B280904		<50	<50	<5	<50	170	
B280905		<50	<50	<5	<50	420	
B280906		<50	<50	<5	<50	490	

١.

CMB MAY!	1.		AT		i, i	1					Ŧ	CN	Ĩ	r.		Jou		BC					Raun		- (~~)_2	:53	3108	PA	ត ស	4) 2	93-171
(ISO 9001	ACC	92 (30) (1	108		a.)				GE(DCH	EM	:C.	I.	3.9	T'A	SIS	l c	2), (TIFI	CAT	5										
<u>ĽT</u>						9	We 09 -	ste: 808 (cn I I. Has	<u>Keil</u> ting	<u>tic</u> 5 St	: <u>14</u> :, V	<u>1.5</u> .	9.5 Iver	In 8C	<u>C.</u> /6C 2	- F 34	ile Sui	e ∦ mitter	А50(і by:	508 Peter	5 Hol	bek								
SAMPLE#	Mo Riqq		Pb ppn			Ni ppri		Hn ippm								Sb ppm		V mqq	Ca X		La ppm			8a ppm		8 1907	AL X	Na X	K X	¥ ppm	Au* ppb
8280951	<1	20	31	174	<.3	1	9	1483	4.65	11	<8	~2	2	29	1.3	ব	ব	24	.92	.177	14	3	1.09	39	.01	3	1.44	.04	. 16	<2	1.1
8280952	1	148	8	120	<.3	9	31	1355	7.12	11	-	-	_		1.8				1.39	.133					<.01	-	3.50		.06	<2	1.3
8280953	<1	54	-						5.79		-	_	-		1.5		उँ	10	.01	.005	1	1	<.01		<.01	-	.29	.05	.04		<.5
B280954	27	78	<3	<1				-	2.74			-	<2		.5	<3	3	7	.01	.042	1	ż	.01		<.01	-			<.01	<2	15.2
B280955	8	14	-	<1		•	2	. –	.94	•					< 5	3	હે	4	<.01	.016		-			<.01		.16	.01	.07	<2	37.1
8280956	6	3	8	<1	<.3	<1	<1	10	.25	<2	<8	<2	<2	31	<.5	ত	3	4	<.01	.009	1	8	<.01	98	<.01	ব	. 19	.02	.05	<2	6.3
B280957	12	18	941	28	1.9	1	<1	146	1.86		<8		11			3	Ğ	3	.01	.044		6		111		-	.59	.02	.40	<Ž	11.7
B280958	18	76	6	26	<.3	4	Ż		7.09		<8		• •		1.7	-	3	48	.07	.167	_	12		107			1.11		.17	_	3.3
8280959	<1	4	ं	<1			1	87	.98	_	-	_	-		<.5	-	3	16	.01	.081	4	3			<.01			<.01	.02	~2	1.0
8280960	48	182	<3	•	<.3		<1		11.84					30		5	3	14	<.01	.050	1	-	<.01					.01	.08		5.8
RE 8280960	49	188	ব	<1	<.3	<1	<1	2	12.20	137	<8	<2	4	30	2.2	8	ব	14	<.01	.051	1	3	<.01	418	.01	<3	.08	-01	.08	<2	4.3
B280961	14	166	- ģ	<1	<.3		<1		15.84		8	-		35		4	10	•••	<.01	.069	ż	-				3	.14	.01	.05	<2	5.1
8280962	3	56	ġ	<1			<1		7.47			_			1.2	•		31	.01	.049	3	-	<.01				.68	.07	.30	-	2.8
B280963	1	28	•••	2	.4	1	1		4.40			~2			1.3		ž	3	.01	.009	ž	4			<.01		.15	.01	.07		3.7
8280964	16	309		_	<.3	i	<		27.39					79		-	11	60	<_01	.130	4	•		_	<.01		.22	.04	.20		4.2
B280965	14	204	13	<1	<.3	<1	<1	2	15.27	36	8	<2	12	60	3.2	ব	9	37	<.01	. 134	3	3	<.01	412	<.01	<3	.21	.03	.08	<2	5.1
8280966	2	81	6	<1	.6	2	9		2.34	2	<8	<Ż					3		<.01	.005	ž	-	< 01			<3	.20	.01	.11	<2	3.4
B280967	<1	28	6	92	<.3	5	27	445	5.31	Ž	<8	<Ž	-	29		-	-	35	.34	.212	5		1.10		<.01	3	1.62	.03	.17	<2	.6
B280968	4>1	0000	4	67	57.6	9	15	133		- 3		~2		43	.8			96	.11	.118	-	12	.01		<.01	<3	1.73	.05	.07	~2	265.0
B280969	S	647	3	81	.4			1058			9	<2		48		8		73	.49	.051	3		1.24		.14	4	2.23	.01	.20	<2	54.0
B280970	6	64	4	<1	.4	<1	<1	14	.60	2	<8	<2	~2	16	<.5	4	4	4	<.01	.006	1	4	<.01	265	<.01	ত	.05	.01	.08	<2	4.2
8280972	27	9570	<3	45	9.7	2	22	141	3.04	4	<8	<2				3	5			.090	ġ	3	.17		.02	<3	.69	.02	.24	ž	115.8
STANDARD DS6/AU-R	12	120	29	170	٦,	24	0	719	2 RQ	20	<8	~ 5		41		ž	5		.77					145		17	1.98	.08	.16	3	467.0

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 AU* IGNITED, ACID LEACHED, ANALYZED BY ICP-MS. (15 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

....

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

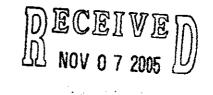
SAMPLE	Мо			b Zn	-			Mn							Sb Bi			' La	Cr				B A							Se Samp
<u> </u>	ppm					ppm									ppm ppm			••	ppm			* p	·				m ppm		¥ ppm pj	·
G-1 S05-TZM01	.6 11.3	2.3	3 3. 5 24.	3 47 7 39	<.1 .1	6.8 4.0	4.5	583 297	1.83	<.5 15.3	2.3 1.1	<.54 10.06	.0 82 .5 177	2 <.1 / <.1]	<.1 .1 1.1 1.5	37.4) 55.07	078 . 116 .	19 16	82.0 4.8	.60 2	231 . 152 .(117 047	1 1.03	.113	.55 .45 <	.2<.0 .1 .0	13.12	.4<.0	55< 064	
S05-TZM09	11.7	73.9	26.	3 47	.1	3.5	2.9	237	5,43	16.7	1.0	11.86	.2 164	1	1.3 1.6	50 .05	.114	15	4.6	.54 3	142 .	043	2 1.27	. 091	. 41	.1.0	1 3.1	.6.8	4 65	.1 15
S05-TZM10 S05-TZM11															.5.3 .4.3								1 3.52 3 2.90							-
S05-TZM12	2.9	389.1	. 14.1	3 148	.3	13.8	93.7	3914	6.52	7.6	1.0 :	32.4 1.	.6 157	1.2	.4 .2	82.59	.223	21	4.4	1.28 1	185 .(060	3 3.59	.036	.11 <	.1.0	5 6.4	.2 .2	193.	.8 15.
S05-TZM14	2.8	353.0	14.9	3 132	.3	9.6	72.6	2754	6.17	7.9	1.0	27.91.	7 144	.6	.5.3	79.51	. 225	20	4.4	1.24 1	182 .(062	3 3.23	.037	.12 <	.1.0	35.6	.2 .2	7 84.	1 15
S05-TZM16 S05-TZM18															.5 .2 1.8 2.2								2 3.13							
S05-TZP14A															.2.2															
S05-TZP148																													7 8 2.	
STANDARD DS6	11.8	123.3	30.9	5 146	.3	25.3	10.8	715	2.84	22.0	6.7 4	47.0 3.	2 53	6.4 3	3.6 5.2	57.89	.081	15 1	188.4	.60 1	171 .0	084	17 1.94	.075	.17 3	.5 .2	2 3.4	1.8<.05	5 64.	6 15.
GROUP 1DX - (>) CONCENTR - SAMPLE TYPI ataFA	ATION E: SI	EXCE	EDS 580 (UPPE iOC	RLI	MITS	. 50	me M		.s ma	Y BE	PARTI	IALLY	ATTA		REFRAC	TORY	AND (GRAPHI	ITIC !	SAMPL	.ES C		IT AU	SOLU	BILI	ſΥ.		ŗ	
(>) CONCENTRA - SAMPLE TYP	ATION E: SI	EXCE	EDS 580 (UPPE iOC	RLI	MITS	. so	me M	INERAL	.s ma	Y BE	PARTI	IALLY	ATTA	CKED.	REFRAC	TORY	AND (GRAPHI	ITIC !	SAMPL	.ES C	AN LIM	IT AU	SOLU	BILI	ΓΥ.		ţ	
(>) CONCENTRA - SAMPLE TYP	ATION E: SI	EXCE	EDS 580 (UPPE iOC	RLI	MITS	. so	me M	INERAL	.s ma	Y BE	PARTI	IALLY	ATTA	CKED.	REFRAC	TORY	AND (GRAPHI	ITIC !	SAMPL	.ES C	AN LIM	IT AU	SOLU	BILI	ΓΥ.		:	
(>) CONCENTRA - SAMPLE TYP	ATION E: SI	EXCE	EDS 580 (UPPE iOC	RLI	MITS	. so	me M	INERAL	.s ma	Y BE	PARTI	IALLY	ATTA	CKED.	REFRAC	TORY	AND (GRAPHI	ITIC !	SAMPL	.ES C	AN LIM	IT AU	SOLU	BILI	ΓΥ.		ŗ	
(>) CONCENTRA - SAMPLE TYP	ATION E: SI	EXCE	EDS 580 (UPPE iOC	RLI	MITS	. so	me M	INERAL	.s ma	Y BE	PARTI	IALLY	ATTA	CKED.	REFRAC	TORY	AND (GRAPHI	ITIC !	SAMPL	.ES C	AN LIM	IT AU	SOLU	BILI	ΓΥ.		¢	
(>) CONCENTRA - SAMPLE TYP	ATION E: SI	EXCE	EDS 580 (UPPE iOC	RLI	MITS	. so	me M	INERAL	.s ma	Y BE	PARTI	IALLY	ATTA	CKED.	REFRAC	TORY	AND (GRAPHI	ITIC !	SAMPL	.ES C	AN LIM	IT AU	SOLU	BILI	ΓΥ.		¢	
(>) CONCENTRA - SAMPLE TYP	ATION E: SI	EXCE	EDS 580 (UPPE iOC	RLI	MITS	. so	me M	INERAL	.s ma	Y BE	PARTI	IALLY	ATTA	CKED.	REFRAC	TORY	AND (GRAPHI	ITIC !	SAMPL	.ES C	AN LIM	IT AU	SOLU	BILI	ΓΥ.		¢	
(>) CONCENTRA - SAMPLE TYP	ATION E: SI	EXCE	EDS 580 (UPPE iOC	RLI	MITS	. so	me M	INERAL	.s ma	Y BE	PARTI	IALLY	ATTA	CKED.	REFRAC	TORY	AND (GRAPHI	ITIC !	SAMPL	.ES C	AN LIM	IT AU	SOLU	BILI	ΓΥ.		¢	
(>) CONCENTRA - SAMPLE TYP	ATION E: SI	EXCE	EDS 580 (UPPE iOC	RLI	MITS	. so	me M	INERAL	.s ma	Y BE	PARTI	IALLY	ATTA	CKED.	REFRAC	TORY	AND (GRAPHI	ITIC !	SAMPL	.ES C	AN LIM	IT AU	SOLU	BILI	ΓΥ.		¢	
(>) CONCENTRA - SAMPLE TYP	ATION E: SI	EXCE	EDS 580 (UPPE iOC	RLI	MITS	. so	me M	INERAL	.s ma	Y BE	PARTI	IALLY	ATTA	CKED.	REFRAC	TORY	AND (GRAPHI	ITIC !	SAMPL	.ES C	AN LIM	IT AU	SOLU	BILI	ΓΥ.		ţ	
(>) CONCENTRA - SAMPLE TYP	ATION E: SI	EXCE	EDS 580 (UPPE iOC	RLI	MITS	. so	me M	INERAL	.s ma	Y BE	PARTI	IALLY	ATTA	CKED.	REFRAC	TORY	AND (GRAPHI	ITIC !	SAMPL	.ES C	AN LIM	IT AU	SOLU	BILI	ΓΥ.		<i>.</i>	
(>) CONCENTRA - SAMPLE TYPI	ATION E: SI	EXCE	EDS 580 (UPPE iOC	RLI	MITS	. so	me M	INERAL	.s ma	Y BE	PARTI	IALLY	ATTA	CKED.	REFRAC	TORY	AND (GRAPHI	ITIC !	SAMPL	.ES C	AN LIM	IT AU	SOLU	BILI	ΤΥ.		·	
(>) CONCENTRA - SAMPLE TYPI	ATION E: SI	EXCE	EDS 580 (UPPE iOC	RLI	MITS	. 50	me M	INERAL	.s ma	Y BE	PARTI	IALLY	ATTA	CKED.	REFRAC	TORY	AND (GRAPHI	ITIC !	SAMPL	.ES C	AN LIM	IT AU	SOLU	BILI	14.		i To	(SER)

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ţ

ALS CINEMESTRY

Phone: 604 984 0221 Fix: 604 984 0218 www.alschemex.com


ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 1 Finalized Date: 3-NOV-2005 Account: LTU

CERTIFICATE VA05091905		SAMPLE PREPARATION	
	ALS CODE	DESCRIPTION	
Project: Kutcho P.O. No.: This report is for 57 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 24-OCT-2005. The following have access to data associated with this certificate: PETER HOLBEK	WEI-21 LOG-22 CRU-QC PUL-QC CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Crushing QC Test Pulverizing QC Test Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	·

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Cu-AA48	Ore grade Cu - aqua regla/AA	AAS
Zn-AA46	Ore grade Zn - aqua regia/AA	AAS
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41a	High Grade Aqua Regia ICP-AES	ICP-AES
Ag-AA46	Ore grade Ag - aqua regia/AA	AAS

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Prese Con

0: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST

VANCOUVER BC V6C 2X4

Project: Kutcho

Total # Pages: 3 (A - C) Finalized Date: 3-NOV-2005

CERTIFICATE OF ANALYSIS VA05091905

Account: LTU

Page: 2 - A

212 Brooksbank Avenue

ALS Canada Ltd.

North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

EXCELLENCE IN ANALYTICAL CHEMISTRY

Mothod Analyta WEI-21 Au-AA23 ME-ICP41a <t< th=""><th>ME-ICP41a Cu ppm 5</th><th>ME-ICP41a Fe %</th><th>ME-ICP41a Ga</th></t<>	ME-ICP41a Cu ppm 5	ME-ICP41a Fe %	ME-ICP41a Ga
Sample Description Lot 0.02 0.005 1 0.05 10 50 5 10 0.05 5 5 5		0.05	50
KT-2-01 1.98 0.277 8 0.40 90 <50 <5 20 3.28 72 28 5	10200	9.51	<50
KT-2-02 2.14 0.752 22 0.46 450 <50 <5 90 1.20 194 156 48	23000	33.2	<50
KT-16-01 1.32 0.472 23 0.12 180 <50 <5 10 0.53 256 122 <5	9990	28.5	<50
KT-18-02 0.84 0.054 6 0.94 <10 70 <5 <10 3.39 9 7 16	6610	3.64	<50
KT-16-03 2.92 0.019 2 0.53 <10 70 <5 <10 0.27 14 <5 14	534	2.04	<50
KT-16-04 1.56 0.201 16 1.06 10 160 <5 <10 0.50 6 9 47	9490	4.91	<50
KT-16-05 1.24 0.033 3 1.33 <10 240 <5 <10 0.75 15 6 10	2000	5.89	<50
K7-18-06 1.30 0.009 <1 1.18 <10 210 <5 <10 0.53 <5 <5 53	254	2.86	<50
KT-16-07 0.68 0.077 19 1.20 60 250 <5 <10 3.12 <5 <5 28	15650	6.61	<50
KT-16-08 0.70 0.076 5 1.06 <10 80 <5 <10 1.80 <5 <5 11	2750	1.74	<50
KT-16-09 1.06 4.77 167 0.33 390 <50 <5 60 2.21 140 192 <5	>50000	31.8	<50
KT-16-10 0.64 0.145 12 1.02 10 210 <5 <10 1.09 9 <5 14	8450	1.58	<50
KT-16-11 2.40 0.251 49 0.09 610 <50 <5 30 0.31 202 192 <5	42600	40.0	<50
KT-16-12 3.18 0.238 39 0.11 960 <50 <5 30 0.51 223 89 41	24600	41.0	<50
KT-16-13 3.08 0.517 50 0.07 750 <50 <5 20 0.24 94 106 <5	32100	42.6	<50
KT-16-14 3.36 0.368 45 0.06 720 <50 <5 20 0.18 162 74 54	25700	42.9	<50
KT-16-15 4.92 0.283 35 0.07 560 <50 <5 20 0.35 286 177 <5	21800	41.0	<50
KT-16-16 0.76 0.199 15 0.07 370 <50 <5 30 1.16 122 234 67	10650	42.5	<50
KT-16-17 3.64 0.288 37 0.40 170 <50 <5 40 0.90 75 224 <5	17750	40.7	<50
KT-25-01 3.64 0.450 58 0.69 110 90 <5 10 10.50 118 41 35	11700	10.20	<50
KT-25-02 0.62 0.632 54 0.23 290 <50 <5 50 2.67 405 129 <5	8960	32.3	<50
KT-26-1 1.56 0.132 14 0.95 10 80 <5 <10 6.96 19 5 17	7410	3.66	<50
KT-28-2 1.36 0.237 12 0.32 130 <50 <5 <10 12.15 652 <5 <5	7790	11.25	<50
KT-26-3 1.74 0.212 16 0.30 90 <50 <5 <10 3.49 116 10 42	9380	34.6	<50
KT-26-4 1.58 0.191 16 0.18 30 <50 <5 <10 6.36 58 <5 <5	23400	28.5	<50
KT-28-5 1.42 0.245 24 0.18 20 <50 <5 10 5.99 <5 12 48	40700	28.5	<50
KT-26-6 0.42 0.026 2 1.26 <10 <50 <5 <10 15.65 <5 <5 <5	2760	2.30	<50
KT-26-7 0.44 1.760 186 3.63 510 210 <5 <10 1.97 14 <5 23	>50000	12.55	<50
KT-28-8 1.26 0.095 22 1.22 40 200 <5 <10 1.30 <5 <5 <5	6650	8.35	<50
KT-26-9 1.18 0.718 23 3.00 20 250 <5 <10 2.01 7 <5 25	9140	9.11	<50
KT-26-10 1.26 0.180 15 0.74 110 250 <5 <10 1.38 12 10 <5	6470	17.7 5	<50
KT-26-11 2.86 0.079 9 1.89 10 <50 <5 <10 3.95 33 5 46	3760	21.3	<50
KT-26-12 2.42 0.031 1 1.62 <10 <50 <5 <10 5.40 10 32 <5	540	12.20	<50
KT-26-13 1.64 0.271 26 0.07 220 <50 <5 30 6.17 134 108 22	25300	28.3	<50
KT-26-14 2.20 0.173 11 0.08 210 <50 <5 10 3.55 137 138 <5	6110	35.8	<50
KT-26-15 1.60 0.407 45 <0.05 480 <50 <5 50 0.77 87 346 53	22100	42.4	<50
KT-26-16 2.56 0.270 23 0.05 570 <50 <5 20 0.52 214 156 <5	14050	42.1	<50
KT-26-17 2.00 0.259 20 <0.05 380 <50 <5 30 2.68 195 212 47	13050	38.5	<50
KT-26-18 0.72 1.295 84 0.06 380 <50 <5 90 3.85 154 190 <5	>50000	32.8	<50
KT-26-19 0.52 0.106 5 0.62 20 130 <5 10 1.12 26 22 49	4260	12.45	<50

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avanue

North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

' ⊢age: ∠ - B Total # Pages: 3 (A - C) Finalized Date: 3-NOV-2005 Account: LTU

VA05091905

٦

1

CERTIFICATE OF ANALYSIS

٦

Project: Kutcho

ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a MEJCP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41s ME-ICP41a ME-ICP41s ME-ICP41a Noth Sb Sc Sr Ti s Nł Ph Mn Мо Na κ Ł Mo Hg Analyte ppm * * ppm DDM * DOM × DOM DDM ppm % ppm Units ppm ppm 10 5 0.05 Sample Description 50 10 0.05 5 30 0.05 5 0.05 5 LOR 0.05 50 5 27 33 88 320 450 10.20 <10 <5 <0.05 <0.05 <50 2.42 1240 0.09 <5 KT-2-01 37.1 20 <5 21 <0.05 490 154 <0.05 39 2620 <50 1.47 500 7 < 0.05 KT-2-02 6 <0.05 72 13 340 80 32.1 10 <5 <0.05 <50 0.26 320 < 0.05 KT-16-01 <5 29 50 2.98 <10 5 <0.05 110 1060 9 0.18 <5 0.20 <50 2.61 <5 KT-16-02 <10 <5 7 <0.05 2.01 69 0.08 34 530 10 80 0.17 <50 0.10 <5 KT-16-03 \$ 15 1670 90 5.33 <10 <0.05 49 0.14 75 80 <50 0.27 <5 0.36 KT-16-04 26 <10 <5 <0.05 2570 30 6.31 140 63 0.11 146 0.51 <50 0.50 <5 KT-16-05 25 20 2.78 <10 <5 <0.05 30 76 1620 0.95 140 0.09 <50 <5 0.45 KT-16-06 <5 148 <0.05 70 7.05 <10 49 7220 3.50 1050 0.07 131 <5 0.31 <50 KT-16-07 6 19 <0.05 160 60 0.79 <10 0.05 11 <50 6.38 1410 6 <5 0.15 KT-16-08 17 ŝ <0.05 51 100 36.7 10 156 380 1.23 1060 <0.05 <5 0.07 <50 KT-16-09 <5 15 <0.05 0.09 7 350 420 1.76 <10 <50 0.87 480 8 0.46 KT-16-10 <5 30 <5 <5 < 0.05 370 44.7 <50 <50 320 132 <0.05 20 11 <0.05 0.16 KT-16-11 <5 5 <0.05 40 560 137 <0.05 25 <50 350 45.9 <50 0.28 <0.05 <5 KT-16-12 240 46.7 20 <5 <5 <0.05 490 170 <0.05 23 60 <50 0.12 <5 < 0.05 KT-16-13 \$ 30 <5 < 0.05 47.6 26 <50 160 <50 0.10 360 200 <0.05 <0.05 <5 KT-16-14 <5 <5 <0.05 350 46.5 20 <5 510 360 110 <0.05 <50 0.16 <5 <0.05 KT-16-15 <5 9 < 0.05 10 350 370 46.5 <50 0.52 1420 72 <0.05 9 <5 < 0.05 KT-16-16 < 0.05 440 44.3 <10 <5 6 86 0.06 16 800 <50 0.37 790 <5 0.13 KT-16-17 64 < 0.05 <5 1230 12.10 <10 2270 <50 5.49 3660 77 0.13 62 0.17 <5 KT-25-01 <5 19 <0.05 38.3 <10 185 <0.05 24 540 560 1100 <50 1.40 6 0.05 KT-25-02 7 53 <0.05 <10 168 0.22 13 470 30 3.84 <5 0.19 <50 3.85 2150 KT-26-1 67 <0.05 3120 20.4 <10 <5 244 0.06 28 540 <50 2.35 4290 22 < 0.05 KT-26-2 <10 <5 26 < 0.05 39.0 69 0.06 6 820 150 <5 <0.05 <50 1.81 1180 KT-26-3 41 < 0.05 160 110 32.3 <10 <5 3030 37 0.05 6 <50 3.42 < 0.05 <5 KT-26-4 <0.05 <5 39 30 31.2 <10 41 0.05 10 200 <50 3.03 2210 <5 < 0.05 KT-26-5 <0.05 128 <10 11 1.69 5710 11 0.09 <5 140 10 <50 10.35 <5 0.05 KT-26-6 < 0.05 15.15 70 9 11 <50 330 15 0.11 15 <50 5.18 790 5 0.15 KT-26-7 17 <0.05 <5 <10 <5 <50 30 8.97 340 ß 0.12 <50 1.55 <5 0.12 KT-26-8 <0.05 16 <50 50 9.65 <10 5 <5 890 10 0.08 0.16 <50 4.83 <5 KT-26-9 10 \$ 14 <0.05 240 19.30 16 120 <50 1.12 630 0.08 <5 <5 0.15 KT-26-10 23 <0.05 5 17 <5 270 120 23.5 <10 0.07 <50 4.42 2190 <0.05 <5 KT-26-11 7 31 <0.05 12.50 <10 110 10 0.08 <5 360 <50 5.35 2940 <5 < 0.05 KT-26-12 <0.05 <5 20 33.0 <10 42 <0.05 <5 50 240 5350 <50 3.12 7 < 0.05 KT-26-13 <5 13 < 0.05 <50 230 40.6 <10 52 <5 3960 <0.05 <0.05 <50 1.79 6 KT-26-14 <0.05 10 <5 9 350 46.7 0.38 550 115 <0.05 <5 60 <50 <5 <0.05 KT-28-15 <0.05 <5 <5 270 46.8 20 133 < 0.05 94 140 490 7 <0.05 <50 0.25 KT-26-16 10 < 0.05 <5 20 51 < 0.05 12 790 290 43.3 <50 1.16 3060 <0.05 5 KT-26-17 <0.05 <5 10 420 37.9 10 3700 79 <0.05 21 1130 <5 <0.05 <50 1.81 KT-26-18 7 < 0.05 <5 20 13.45 <10 53 <0.05 <5 80 0.29 <50 0.73 810 <5 KT-26-19

1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com DE WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

r'age: ∠ - C Total # Pages: 3 (A - C) Finalized Date: 3-NOV-2005 Account: LTU

CERTIFICATE OF ANALYSIS VA05091905

Project: Kutcho

٦

Sample Description	Method Analyte Units LOR	ME-ICP41a TI ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA48 Ag ppm 1	Cu-AA46 Cu % 0.01	Zn-AA46 Zn % 0.01	
KT-2-01		<50	<50	33	<50	13350				
KT-2-02		<50	<50	50	<50	35800				
KT-16-01		<50	<50	<5	<50	39100				
KT-16-02		<50	<50	7	<50	1820				
KT-16-03		<50	<50	33	<50	2080				
KT-16-04		<50	<50	70	<50	800				
KT-16-05		<50	<50	127	<50	2230				
KT-16-06		<50	<50	66	<50	640				
KT-16-07		<50	<50	95	<50	580				
KT-16-08		<50	<50	39	<50	1220				
KT-16-09		<50	<50	34	<50	24100		6.84		
KT-18-10		<50	<50	29	<50	1280				
KT-18-11		<50	<60	10	<50	36300				
KT-16-12		<50	<50	11	<50	42500				
KT-16-13		<50	<50	13	<50	17250				
KT-18-14		<50	<50	12	<50	29300				
KT-16-15		<50	<50	21	<50	>50000			5.23	
KT-16-16		<50	<50	10	<50	22600				
KT-16-17		<50	<50	8	<50	13300				
KT-25-01		<50	<50	93	<50	19550				
KT-25-02		<50	<50	16	<50	>50000			6.71	
KT-26-1	- 1	<50	<50	14	<50	3550				
KT-26-2		<50	<50	19	<50	>50000			15.45	
KT-26-3		<50	<50	7	<50	22700				
KT-26-4		<50	<50	5	<50	13550				
KT-26-5		<50	<50	<5	<50	420		•		
KT-26-6	1	<50	<50	14	<50	730				
KT-28-7		<50	<50	5	<50	1170	190	8.96		
KT-26-8		<50	<50	<5	<50	480				
KT-26-9	1	<50	<50	<5	<50	1590				
KT-26-10		<50	<50	<5	<50	2810			- ' .	
KT-26-11		<50	<50	<5	<50	6240				
KT-26-12		<50	<50	<5	<50	2720				
KT-26-13		<50	<50	6	<50	30900				
KT-26-14	1	<50	<50	<5	<50	32200				
KT-26-15		<50	<50	7	<50	16650				
KT-26-16		<50	<50	5	<50	41700				
KT-26-17	F	<50	<50	10	<50	36400				
KT-26-18		<50	<50	<5	<50	27700		6.97		
KT-26-19		<50	<50	<5	<50	4850				

ALS LITEMEX

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschernex.com .0: WLUTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - A Total #Pages: 3 (A - C) Finalized Date: 3-NOV-2005 Account: LTU

1

1

1

Project: Kutcho

VA05091905 CERTIFICATE OF ANALYSIS WEI-21 ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a AL-AA23 ME-ICP41s ME-ICP41a ME-ICP41a ME-ICP41s ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a Nethod Recvil WL Analyta Au Ag A As Ba Be Bi Ca Cđ Co Cr Cu Fe Ga Units * ppm % % kg ppm ppm ppm ppm ppm <u>ppm</u> ppm ppm ppm ppm **Sample Description** LOR 0.05 10 50 0.02 0.005 1 10 0.05 5 5 5 5 0.05 5 50 KT-26-20 2.16 0.343 30 0.15 200 50 ≪5 30 0.47 14 269 <5 17150 43.2 <50 2.60 0.083 4 0.12 200 <50 <5 <10 301 75 1750 43.3 KT-26-21 1.08 5 <50 220 KT-26-22 2,98 0.079 9 0.17 <50 <5 10 0.35 21 308 <5 5210 44.8 <50 KT-26-23 3.38 0.092 8 0.12 220 <50 <5 <10 0.65 <5 339 71 2920 47.7 <50 0.439 52 0.17 520 130 178 148 27900 29.9 KT-28-01 1.78 100 1.88 <5 <5 <50 91 120 46 2.12 0.370 0.13 50 60 4.74 148 148 11800 30.0 KT-28-02 <5 <50 KT-28-03 1.64 0.184 23 0.44 70 100 <5 20 6.94 538 16 10 13900 14.10 <50 0.22 2.32 0.184 16 280 <50 <5 20 5.99 13 174 31 10550 29.9 <50 KT-28-04 9 0.21 120 <50 <5 148 34.7 KT-28-05 2.92 0.051 20 4.43 5 <5 5020 <50 KT-29-01 1.82 3.00 >200 0.08 330 <50 <5 50 3.22 335 245 18 >50000 27.5 <50 0.33 KT-29-02 1.14 0.742 72 30 190 <5 <10 14.70 80 5 <5 32000 3,50 <50 0.422 0.18 120 <5 43300 33.6 KT-29-03 1.46 82 110 <10 3.33 142 6 48 <50 KT-34-01 1.24 0.127 28 0.25 40 <50 < 20 1.66 606 21 6 17350 17.80 <50 5 1.56 0.118 0.59 20 90 <5 <10 0.89 15 81 2050 8.88 <50 KT-34-02 14 420 <50 KT-34-03 2.32 0.464 38 0.17 <5 80 1.92 364 184 <5 9740 35.6 <50 3.70 1.650 87 0.05 770 <50 <5 80 3.09 515 144 42 20900 32.0 <50 KT-34-04 KT-34-05 2,66 0.836 99 <0.05 1020 <50 <5 80 158 <5 >50000 28.9 <50 6.31 112

Comments: additional sliver value for sample KT-26-7 are 166/115ppm, >200/190 ppm, 146/152ppm.

1

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST

VANCOUVER BC V6C 2X4

Project: Kutcho

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 3-NOV-2005 Account: LTU

CERTIFICATE OF ANALYSIS VA05091905

212 Brooksbank Avenue North Vancouver BC V7J 2C1

ALS Canada Ltd.

1

1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

1

1

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Chemex

1

1

Sample Description	ilethod Analyto Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a No ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a 8 % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
KT-26-20		ও	0.06	<50	0.28	320	108	<0.05	10	<50	120	46.3	<10	<5	<	<0.05
KT-26-21		<5	<0.05	<50	0.58	540	34	<0.05	<5	<50	130	46.5	<10	<5	6	<0.05
KT-26-22		<5	0.08	<50	0.17	180	53	<0.05	5	<50	50	47.7	<10	<5	ব	<0.05
KT-28-23		<5	0.05	<50	0.34	280	53	<0.05	<5	<50	90	>50	<10	<5	- ব	<0.05
KT-28-01		ব	<0.05	<50	0.94	1800	144	<0.05	55	230	660	34.0	30	<u><</u>	8	<0.05
KT-28-02	-	<	<0.05	<50	2.56	2530	212	<0.05	80	180	300	34.4	10	<5	26	<0.05
KT-28-03		13	0.17	<50	3.49	4180	213	0.05	71	1680	660	21.3	<10	<5	37	<0.05
KT-28-04		<5	<0.05	<\$0	3.23	3010	55	0.06	<5	250	370	33.2	30	<5	30	<0.05
KT-28-05		<5	<0.05	<50	2.29	1820	17	0.06	<5	290	70	37.8	<10	<5 <5	22 10	<0.05
KT-29-01		15	<0.05	<50	1.83	2840	123	<0.05	<5	290	980	32.9	40			<0.05
KT-29-02		<5	0.05	<50	7.86	7130	20	0.09	6	340	680	5.12	<10	<5	43	<0.05
KT-29-03		5	0.05	<50	1.04	1360	76	<0.05	16	1250	360	38.4	10	<5	12	<0.05
KT-34-01		5	0.05	<50	0.72	430	101	0.06	43	1150	4740	24.6	<10	<5	14	<0.05
KT-34-02		<5 - *	0.20	<50	0.55	240	53	0.08	<5	70	50	9.24	<10	<	11	<0.05
KT-34-03		<5	<0.05	<50	0.74	550	170	<0.05	45	1880	3040	41.3	20	<5	17	<0.05
KT-34-04		18	<0.05	<50	1.51	1100	148	<0.05	18	880	3310	39.5	40	<	19	<0.05
KT-34-05		<5	<0.05	<50	3.42	1430	222	<0.05	9	560	390	32.2	30	<5	24	<0.05

EXCELLENCE IN ANALYTICAL CHEMISTRY

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: WTTRN IT IC MITTNC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4 Total # Pages: 3 (A - C) Finalized Date: 3-NOV-2005 Account: LTU

Project: Kutcho

•

CERTIFICATE OF ANALYSIS VA05091905

Sample Description	Method Analyte Units LOR	ME-ICP41a 11 ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA48 Ag ppm 1	Cu-AA45 Cu % 0.01	Zn-AA48 Zn % 0.01	
KT-28-20		<50	<50	5	<50	2160				
KT-26-21		<50	<50	5	<50	1000				
KT-26-22		<50	<50	<5	<50	4610				
KT-26-23		<50	<50	<5	<50	930				
KT-28-01		<50	<50	12	<50	29200				
KT-28-02		<50	<50	21	<50	25200				
KT-28-03		<50	50	69	<50	>50000			11.65	
KT-28-04		<50	<50	7	<50	2360				
KT-28-05		<50	<50	<5	<50	990				
KT-29-01		<50	<50	18	<50	>50000	224	13.90	6.00	
CT-29-02		<50	<50	ৎ	<50	15150		-		
KT-29-03		<50	<50	14	<50	29800				
KT-34-01		<50	<50	14	<50	>50000			12.10	
KT-34-02		<50	<50	8	<50	3160				
KT-34-03		<50	<50	22	<50	>50000			6.72	
KT-34-04		<50	<50	26	<50	>50000			9.28	
(T-34-05		<50	<50	12	<50	18500		6.45		
					- >200/190					

APPENDIX V

ן ו

[

Ì.

Lab Accreditation

And

QA/QC Overview

ALS Chemex

Quality Assurance Overview

LABORATORY REGISTRATION

ISO 9001:2000

ALS Chemex laboratories in North America are registered to ISO 9001:2000 for the "provision of assay and geochemical analytical services" by QMI Quality Registrars.

In addition to ISO 9001:2000 registration, ALS Chemex's North Vancouver laboratory has received ISO 17025 accreditation from the Standards Council of Canada under CAN-P-1579 "Guidelines for Accreditation of Mineral Analysis Testing Laboratories". CAN-P-1579 is the Amplification and Interpretation of CAN-P-4D "General Requirements for the Accreditation of Calibration and Testing Laboratories" (Standards Council of Canada ISO/IEC 17025). The scope of the accreditation includes the following methods:

- Au and Ag by Fire Assay/Gravimetric Finish
- Au by Fire Assay/AAS Finish
- Au, Pt, Pd by Fire Assay/ICP Finish
- Ag, Cu, Pb, Zn by Aqua Regia Digestion/AAS Finish
- Co, Ni by 4-Acid Digestion/AAS
- Cu, Ni, Co by Sodium Peroxide Fusion/ICP Finish
- Multi-element package by Aqua Regia Digestion/ICP Finish

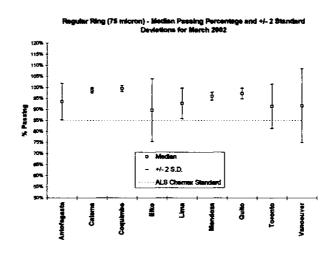
The ISO 9001:2000 registration provides evidence of a quality management system covering all aspects of our organization. ISO 17025 accreditation provides specific assessment of our laboratory's analytical capabilities. In our opinion, the combination of the two ISO standards provides our clients complete assurance regarding the quality of every aspect of ALS Chemex operations.

Lab Accreditation & QA Overview.doc

Revision: 02.00 August 16, 2005 Page 1 of 6 Aside from laboratory accreditation, ALS Chemex has been a leader in participating in, and sponsoring, the assayer certification program in British Columbia. Many of our analysts have completed this demanding program that includes extensive theoretical and practical examinations. Upon successful completion of these examinations, they are awarded the title of Registered Assayer.

QUALITY ASSURANCE PROGRAM

The quality function is an integral part of all day-to-day activities at ALS Chemex and involves all levels of staff. Responsibilities are formally assigned for all aspects of the quality assurance program. As well, all senior staff is expected to actively participate in the quality program through regular Quality Assurance and Technical Meetings.


Sample Preparation Quality Specifications

Standard specifications for sample preparation are clearly defined and monitored. The specifications are as follows:

- Crushing
 - > 70% of the crushed sample passes through a 2 mm screen
- Ringing
 - > 85% of the ring pulverized sample passes through a 75 micron screen (Tyler 200 mesh)
- Samples Received as Pulps
 >80% of the sample passes through a 75 micron screen (Tyler 200 mesh)

These characteristics are measured and results reported and logged to verify the quality of sample preparation. Our standard operating procedures require that at least one sample per day be taken from each sample preparation station. Measurement of sample preparation quality allows the identification of equipment, operators and processes that are not operating within specifications.

QC results from all sample preparation laboratories are reported to the QC department monthly. The data is combined and reported to senior management for monthly review of the performance of each preparation laboratory.

Lab Accreditation & QA Overview.doc

Revision: 02.00 August 16, 2005 Page 2 of 6

Other Sample Preparation Specifications

Sample preparation is a vital part of any analysis protocol. Many projects require sample preparation to other specifications, for instance > 90% of the crushed sample to pass through a 2 mm screen. These procedures can easily be accommodated and the Prep QC monitoring system is essential in ensuring the required specifications are routinely met.

Analytical Quality Control -- Reference Materials, Blanks & Duplicates

The Laboratory Information Management System (LIMS) inserts quality control samples (reference materials, blanks and duplicates) on each analytical run, based on the rack sizes associated with the method. The rack size is the number of sample including QC samples included in a batch. The blank is inserted at the beginning, standards are inserted at random intervals, and duplicates are analysed at the end of the batch. Quality control samples are inserted based on the following rack sizes specific to the method:

Rack Size	Methods	Quality Control Sample Allocation
20	Specialty methods including specific gravity, bulk density, and acid insolubility	2 standards, 1 duplicate, 1 blank
28	Specialty fire assay, assay-grade, umpire and concentrate methods	1 standard, 1 duplicate, 1 blank
39	XRF methods	2 standards, 1 duplicate, 1 blank
40	Regular AAS, ICP-AES and ICP-MS methods	2 standards, 1 duplicate, 1 blank
84	Regular fire assay methods	2 standards, 3 duplicates, 1 blank

The laboratory staff analyses quality control samples at least at the frequency specified above. If necessary, laboratory staff may include additional quality control samples above the minimum specifications.

All data gathered for quality control samples – blanks, duplicates and reference materials – are automatically captured, sorted and retained in the QC Database.

Quality Control Limits and Evaluation

Quality Control Limits for reference materials and duplicate analyses are established according to the precision and accuracy requirements of the particular method. Data outside control limits are identified and investigated and require corrective actions to be taken. Quality control data is scrutinised at a number of levels. Each analyst is responsible for ensuring the data submitted is within control specifications. In addition, there are a number of other checks.

Certificate Approval

If any data for reference materials, duplicates, or blanks falls beyond the control limits established, it is automatically flagged red by the computer system for serious failures, and yellow for borderline results. The Department Manager(s) conducting the final review of the Certificate is thus made aware that a problem may exist with the data set.

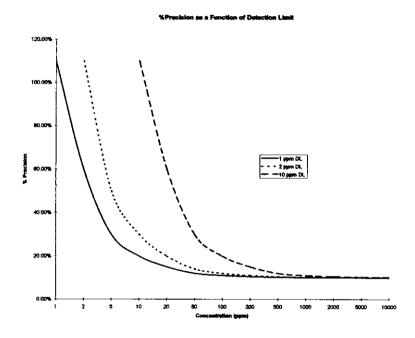
Lab Accreditation & QA Overview.doc

Revision: 02.00 August 16, 2005 Page 3 of 6

Precision Specifications and Definitions

Most geochemical procedures are specified to have a precision of \pm 10%, and assay procedures \pm 5%. The precision of Au analyses is dominated by the sampling precision.

Precision can be expressed as a function of concentration:

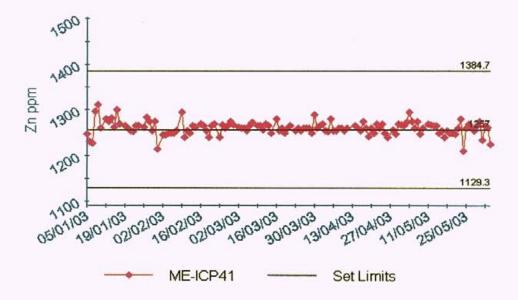

$$P_c = \left(\frac{DetectionLimit}{c} + P\right) \times 100\%$$

where P_c

С

- the precision at concentration c
 concentration of the element
- P the "Precision Factor" of the element. This is the precision of the method at very high concentrations, i.e. 0.05 for 5%.

(M. Thompson, 1988. Variation of precision with concentration in an analytical system. Analyst, 113: 1579-1587.)


As an example, precision as a function of concentration (10% precision) is plotted for three different detection limits. The impact of detection limit on precision of results for low-level determinations can be dramatic

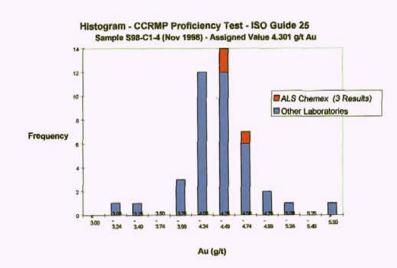
Lab Accreditation & QA Overview.doc

Revision: 02.00 August 16, 2005 Page 4 of 6

Evaluation of Trends

Control charts for frequently used method codes are generated and evaluated by the QA Department and distributed to Departmental managers for posting in the lab and review on a weekly basis. The control charts are evaluated to ensure internal specifications for precision and accuracy are met. The data is also reviewed for any long-term trends and drifts.

Control Chart for G2000, ME-ICP41, Zn


External Proficiency Tests

Proficiency testing provides an independent assessment of laboratory performance by an outside agency. Test materials are regularly distributed to the participants, ideally four times a year, and results are processed by a central agency. The results are usually converted to some kind of score, such as Z-scores.

All ALS Chemex analytical facilities in North America participate in proficiency tests for the analytical procedures routinely done at each laboratory. ALS Chemex has participated in several rounds of proficiency tests organized by organizations such as Canadian Certified Reference Materials Projects, and Geostats as well as a number of independent studies organized by consultants for specific clients. We have participated also participated in several certification studies for new certified reference materials by CANMET and Rocklabs.

Lab Accreditation & QA Overview.doc

Revision: 02.00 August 16, 2005 Page 5 of 6

ALS Chemex has obtained the highest rating for the results submitted. with а few minor exceptions. Feedback from these studies is invaluable in ensuring our continuing accuracy and validation of method.

Quality Assurance Meetings

A review of quality assurance issues is held regularly at Technical and Quality Assurance Meetings. The meetings cover such topics as:

- Results of internal round robin exchanges, external proficiency tests and performance evaluation samples
- Monitoring of control charts for reference materials
- Review of sample preparation quality control results from all branch offices
- Review of quality system failures
- Incidents raised by clients
- Results of internal quality audits
- Other quality assurance issues

The Quality Assurance Department and senior management participate in these meetings, either in person or by teleconference.

Lab Accreditation & QA Overview.doc

Revision: 02.00 August 16, 2005 Page 6 of 6

APPENDIX VI

-

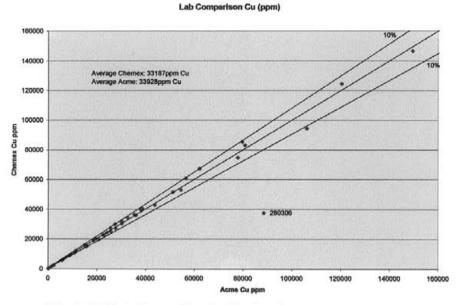
Project QA/QC Study

Kutcho Creek Project OA/QC Study

Introduction:

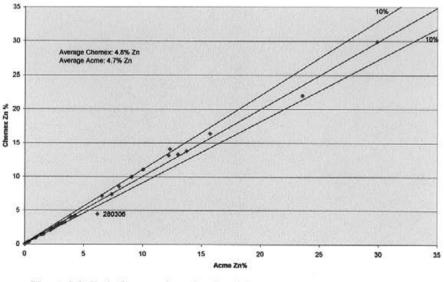
A quality assurance – quality control program was implemented during the 2004 and 2005 diamond drill programs at Kutcho Creek. The QA/QC program involved the use of blank samples, standard samples and analytical comparisons between labs in addition to monitoring the internal controls and standards used by the laboratory. All routine analysis of drill core was carried out by ALS Chemex Laboratories, located in North Vancouver.

Drill core was transported by from the drill by truck or helicopter to the core logging facilities at Camp site which is situated adjacent to the Kutcho Airstrip, approximately 8km west of the area of drilling. Core was geologically logged and marked for splitting. Approximately 50% of the deposit intersections were selected for metallurgical samples. In these cases, the core would be sawn in half and returned the core logging areas. The metallurgical samples, consisting of half the core would be collected by a geologist and sealed in a nitrogen filled bag. The core box would be returned to the sawing area and the half core would be sawn into quarters. After returning the box to the core shack the geologist would collect the quarter sample, measure the specific gravity, place the sample in a plastic bag and heat-seal the bag closed. Sample bags were then placed into rice bags for shipment to the laboratory. For core not being used for metallurgical samples, the process would be the same except that half core samples were used, and not all core had SG measurements. Sample bags were transported to Dease Lake (or Smithers) by aircraft and picked up at the aircraft hanger by the trucking company for transport to the Laboratory.


Field Standards with similar matrix and characteristics to the material being analyzed were not available for the 2004 drilling program so checks on the analyses were done by re-analyzing pulps at a second lab. Field blanks were used and consisted of previously drilled non-mineralized mafic intrusive rocks. Field standards were prepared in 2004 by collecting 30 kgs of mineralized material from the dumps adjacent to the adit. The material was visually hand sorted into low, medium and high grade material and shipped to Pioneer Laboratories for grinding and homogenization.

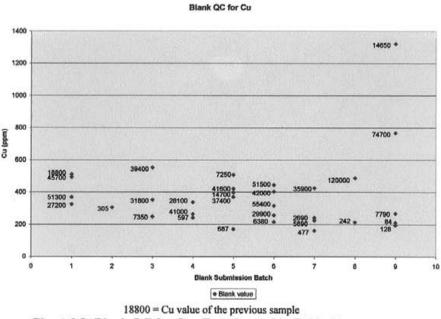
1

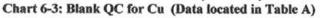
Results:


Laboratory Comparison 2004

In 2004, 49 samples previously analyzed by ALS Chemex were sent to umpire lab Acme Laboratories in Vancouver for comparative analysis. The results were graphed to identify outlier samples. Charts 6-1 and 2 show the comparison for Cu and Zn analyses, respectively.

Lab Comparison Zn (%)


As can be seen, almost all the samples fall within the +/- 10% control lines and therefore are considered to be within expected analytical and sample variation. A single outlier (280306) is also within statistical expectations as rare cases of significant "within-sample" variation or random error are anticipated.


Blank QC for 2004

Blanks were inserted in the drill sample stream, at a rate of approximately 1 per 20 samples from the Kutcho Creek Project in both 2004 and 2005.

Blanks are samples of material essentially devoid of the element undergoing analysis. Blanks help to monitor the presence of unacceptably high levels of background concentrations caused by cross-over contamination (dust, boil-overs, etc); poor lab-ware cleaning; or, in circumstances where below-detection results are infrequent, mis-ordering of samples. This material is then subjected to the same sample preparation steps undergone by a project sample. The mineralogy of the blank should resemble that of the material being routinely analyzed (*e.g.* barren drill cuttings); however, this is not as critical for blank material as it is for standards (S. Long, 2003)

Blanks used at Kutcho were taken from previously drilled gabbro units. Although some pyrite can occur within the gabbro it was anticipated that it would serve the above stated purpose.

The chart (above) and the table (below) demonstrate that the overall range for the blank lies between 162 ppm and 510 ppm copper, with an average of 375 ppm. However, there are two outliers at 1320 ppm and 767 ppm. These two samples are preceded by samples containing very high concentrations of copper. Thus, it appears that some crossover contamination has occurred. However, the contamination is minimal relative to the high grade nature of the zones being sampled. It is concluded that while lab procedures are not perfect, and that minor cross-contamination can and does occur, the amount of contamination is insignificant relative to ore-grade values and therefore does not affect the results.

Sample ID	Cu-Blank	Cu-previous Sample
	ppm	ppm
280054	368	27200
280082	324	51300
280097	510	18800
280121	493	45700
280155	403	42000
280165	315	55400
280217	305	57900
280262	352	31800
280281	552	39400
280295	248	7350
280317	264	41000
280329	337	28100
280357	242	597
280383	421	41600
280401	171	687
280413	507	72500
280420	398	14700
280434	370	37400
280461	216	6380
280478	444	51500
4557	487	12000
4579	214	242
4805	257	29900
4849	1320	146500
4864	767	74700
4884	195	128
4889	267	7790
4910	212	84
4920	425	35900
4922	225	5890
4953	242	2690
4980	162	477
Average	375	

Table 6-3: Values for blanks and previous samples

The same plotting method has been used for Zn:

-

Ľ

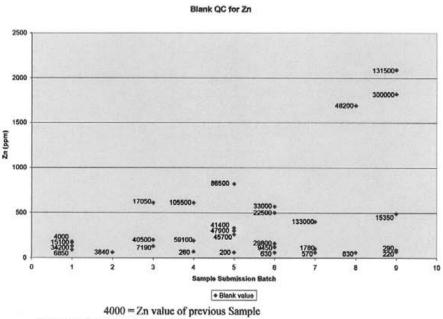


Chart 6-4: Blank QC for Zn

The range for the Zn within the Blank samples is between 60 ppm and 820 ppm, with an average of 392 ppm, as observed in the chart above and in the table below. There are three outliers, only one of which is common with the Cu outliers. It should be noted that very high grade Zn samples also produced cross-contamination in blank samples confirming that some lab induced error does occur. As with Cu blanks, however, the contamination is minimal, indicating that crushing and grinding circuits were cleaned between samples, but the cleaning was not perfect.

Sample	Zn-Blank	Zn-previous Sample
iD	ppm	ppm
280054	170	15100
280082	90	6850
280097	130	34200
280121	180	4000
280155	500	225000
280165	60	630
280217	60	3840
280262	200	40500
280281	610	17050
280295	130	7190
280317	190	59100
280329	610	105500
280357	70	260
280383	330	41400
280401	60	200
280413	260	45700
280420	820	86500
280434	300	47900
280461	160	298000
280478	570	30000
4557	1690	48200
4579	60	830
4805	120	9450
4849	490	15350
4864	2090	131500
4884	70	220
4889	1820	300000
4910	90	290
4920	400	133000
4922	100	1780
4953	60	4180
4980	60	570
Total		
Average	392	

Table 6-4: Values for blanks previous samples

Standard QC for 2005

An ideal standard reference material has a matrix identical to the samples being assayed, has extremely low heterogeneity, has a value (grade) within the range used for categorizing mineralized material, and has a reputation for being reliably prepared and accurately characterized (S. Long, 2003).

Standards at Kutcho were created by collecting mineralized material from the bulk sample mined underground. The samples were crushed and pulverized before being well mixed to ensure homogeneity. Sample aliquots were analyzed by several laboratories to ensure consistency of grades. Standards at three different grades were prepared and analyzed at three independent labs. The standard sample results are shown below.

Table 6-5a: Cu Standard comparison from independent Labs with average Chemex results

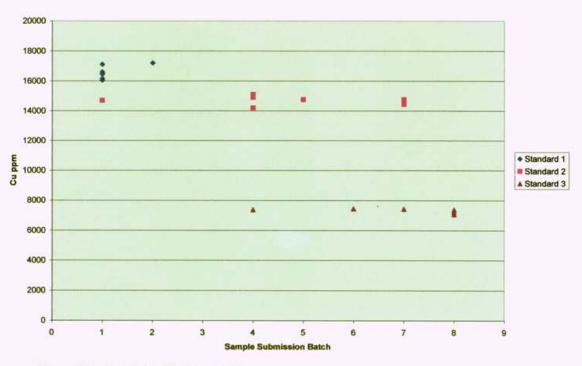

Cu Standard	tandard							
	Standard A	Standard B	Standard C					
Pioneer Laboratories	1.67	1.46	0.75					
Assayers Canada	1.65	1.42	0.72					
Acme Analytical Laboratories	1.71	1.48	0.74					
Average Keltic	1.66	1.47	0.73					

Table 6-5b: Zn Standard comparison from independent Labs with average Chemex results

Zn Standard				
	Standard A	Standard B	Standard C	
Pioneer Laboratories	2.8	1.75	1.4	
Assayers Canada	2.73	1.66	1.34	
Acme Analytical Laboratories	2.65	1.7	1.37	
Average Keltic	2.69	1.68	1.35	

In 2005 a standard was submitted approximately every 20th sample. The results for Cu standards can be seen in Chart VI-5 1, and for Zn in Chart VI-6. The Cu and Zn values were plotted against sample submission batches.

Results for Zn Standards on a sample submission batch basis

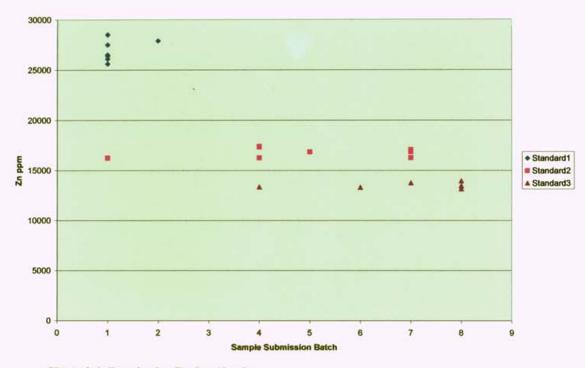
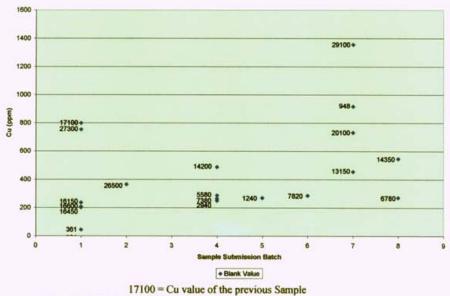
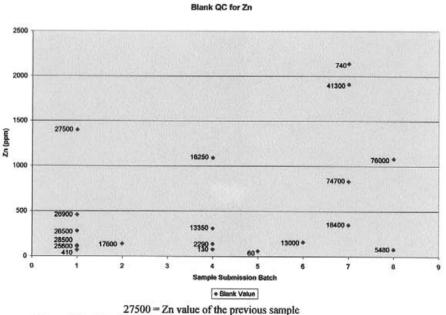



Chart 6-6: Results for Zn Standards

The values for the standards demonstrate reasonable and consistent precision and accuracy by the analytical laboratory.

Blank QC for 2005



Sample ID	Cu-Blank ppm	Cu-previous Sample ppm
280427	202	16450
280484	206	16600
280355	799	17100
280369	753	27300
280384	236	16150
280404	45	361
280329	365	26500
280450	287	5580
280561	488	14200
280583	265	7380
280307	250	2940
280629	270	1240
280663	286	7820
280691	1355	29100
280761	455	13150
280785	732	20100
280803	917	948
280833	546	14350
280875	271	6780
Total Average	459	
Average w/out 280803	434	

Table 6-7: Values for blanks and previous samples

There are two outliers for Cu and Zn. Sample 280691 seems to have experienced some minor crossover contamination, which is still minimal relative to the high grade nature of the zones being sampled. For Sample 280803, the 17 samples before the blank-preceding sample have Cu numbers ranging from 8000 to 20000 ppm, and Zn numbers ranging from 10000 to 30000 ppm. This suggests either late cross-contamination of the sample or random error.

Sample ID	Zn-Blank ppm	Zn-previous Sample ppm
280427	110	25600
280484	70	410
280355	1400	27500
280369	460	26900
280384	280	26500
280404	120	28500
280329	140	17600
280450	140	2290
280561	1090	16250
280583	310	13350
280307	80	130
280629	60	60
280663	160	13000
280691	1910	41300
280761	830	74700
280785	350	18400
280803	2140	740
280833	1080	76000
280875	80	5480
Total Average	569	
Average w/out 280803	482	

Table 6-8: Values for blanks and previous samples

Conclusions

Three methods of "external" analytical quality assurance and quality control were employed during the 2004 and 2005 diamond drilling programs: the insertion of blanks, the insertion of standards: and lab to lab comparison of analyses on sample pulps. These methods, in addition to the laboratories use of internal standards and re-analysis, ensure that the analytical data can be used with confidence in resource and reserve estimations. There are no issues with accuracy or precision of analyses brought to light by the QA/QC program.

References

Long, Scott D., 2003, Assay quality assurance-quality control program for drilling projects at the pre-feasibility to feasibility report level, 57p.

APPENDIX VII

l

-

ITEMIZED COST STATEMENT

Itemized Cost Statement

(July 1 to September 15, 2005 unless otherwise specified)

Wages P.M. Holbek R.G. Wilson A. Weiss M. Mroczek K. Britten D. Lenard K. Kirwan G. Thompson	between July 1 and Sept 15: 48 days @ \$450.00/day between July 1 and Sept 15: 62 days @ \$350.00/day between July 1 and Sept 15: 54 days @ \$250.00/day between July 1 and Sept 15: 50 days @ \$250.00/day between July 1 and Sept 15: 55 days @ \$135.00/day between July 1 and Sept 15: 60 days @ \$225.00/day between July 1 and Sept 15: 77 days @ \$250.00/day between July 1 and Sept 15: 77 days @ \$350.00/day	
Camp and Accomodation:Food: July 1 to Sept 15:775 person days @ \$19.76/dayAccommodation: July 1 to Sept 15:2.5 months @ \$7500.00Expediting: Smithers & Dease Lake (CJL Enterprises) (Expediting & Supplies to repair and refurbish camp)		
Fixed wing: (BC-Yuk Fixed wing (Tsayta A Rotary wing: (Pacific Air Canada & Northe Generator (WKM): 2. Down-hole Survey In Rocksaw & blades (P Skidder (Jedway): Fla Delta transport vehicl Trucking (Bandstra T	ls: (Viking Geoscience): 2.5mo @ \$4220/month ton Air): 4 trips @\$395.00/trip .viation): 16 trips @ avg. \$2600.00/trip Western, Prism): 58.1 hours @ avg. 1000/hr rn Thunderbird: 10 round trips @ avg. \$800.00/trip .5 months @ \$1000.00/month st. (Pjari): 2.5 months @ \$720.00/month othier Enterprises): 2.5 months @ \$744.00/month	
Surveys and Analysis Drilling (Hy-Tech Drilling): July 1 to September 15: 6342m Sample analysis (Chemex, Acme): July to November: 473 samples ICP & Au Assay including : Cu, Zn, or Ag assay of overlimits Maps (Aero Geometrics, Archetype, Western Technical, Dominion Blue)		
Fuel Diesel, Gasoline, Propane, Barrels (NW Fuels, SuperValue, Superior Propane)		
Communications Satellite telephones: Msat & Globalstar (Infosat & Apex Communications) Radios (Falcon Research): 2.5 months @ \$1056.00/month		
Report Preparation Text & maps, reproduction & binding (WKM)		

Total costs:

Γ

\$991,220.00

\$ 4,000.00

\$21,600.00 \$21,700.00 \$13,500.00 \$12,500.00 \$7,420.00 \$13,500.00 \$15,000.00 \$21,000.00

\$15,320.00 \$7,500.00

\$ 7,940.00

\$10,550.00 \$1,580.00 \$41,620.00 \$58,100.00 \$2,500.00 \$1,800.00 \$1,860.00 \$9,000.00 \$32,500.00 \$9,100.00 \$11,550.00

\$574,960.00

\$20,600.00 \$ 2,800.00

\$32,830.00

\$ 8,250.00 \$ 2,640.00

APPENDIX VIII

-

1

-

÷

CERTIFICATES OF QUALIFICATION

Certificate of Qualifications

I, Peter Holbek, residing at 1276 West 21st Street, North Vancouver, British Columbia, do hereby certify:

- 1. THAT, I am a geologist residing in the District of North Vancouver, B.C, currently employed by Western Keltic Mines Inc of 600-888 Dunsmuir Street, Vancouver, B.C..
- THAT, I obtained a Bachelor of Science degree in Geology in 1981 and a Master of Science degree in Geology in 1988 from The University of British Columbia, Vancouver, British Columbia, Canada.
- THAT, I have been continuously practicing my profession as a geologist since 1981 for a variety of major and junior companies including, Teck Explorations, Kerr Addison Mines, Esso Minerals Canada, Homestake Canada Ltd., Princeton Mining Corp, Atna Resources Ltd, and Western Keltic Mines Inc.
- 4. THAT, I am Registered Professional Geoscientist (License # 19763) in good standing with the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. THAT, this report is based upon my knowledge of the project gained from working on the project seasonally between 1984 and 1991, and work conducted on the property from July 1st through September 15th, 2005.

Dated at Vancouver, British Columbia this 13th of December, 2006.

Signed By CIEN

Peter Michael Holbek, M.Sc., P.Geo. Registered Professional Geoscientist.

Certificate of Qualifications

I, Robert G. Wilson, of 20216 8th Ave. Langley, in the Province of British Columbia, DO HEREBY CERTIFY:

- 1. THAT I am employed by Western Keltic Mines Inc. of 600 888 Dunsmuir Street., Vancouver B.C.
- 2. THAT I am a graduate of the University of British Columbia with a Bachelor of Science degree in Geology.
- 3. THAT I am a Professional Geoscientist registered in good standing with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4. THAT this report is based in part on property work I personally completed and/or directly supervised between July 1 and September 15, 2005.

DATED at Vancouver, British Columbia, this 13th day of December, 2006.

Robert G. Wilson, P.Geo.

Certificate of Qualifications

I, Anja Weiss, of 14369 Bedford Drive, Surrey, in the Province of British Columbia, DO HEREBY CERTIFY:

- 1. THAT I am employed by Western Keltic Mines Inc. of 600 888 Dunsmuir Street, Vancouver B.C.
- 2. THAT I am a graduate of the University of Tuebingen, Germany with a Master of Science degree in Geology.
- 3. THAT I am a Geoscientist in Training registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4. THAT this report is based in part on property work I personally completed and/or directly supervised between July 1 and September 15th, 2005.

Dated at Vancouver, British Columbia, this 13th day of December, 2006

(Jens

Anja Weiss, Geologist

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Mineral Division - ALS Chemex

December 21, 2006

ASSAYER'S CERTIFICATION

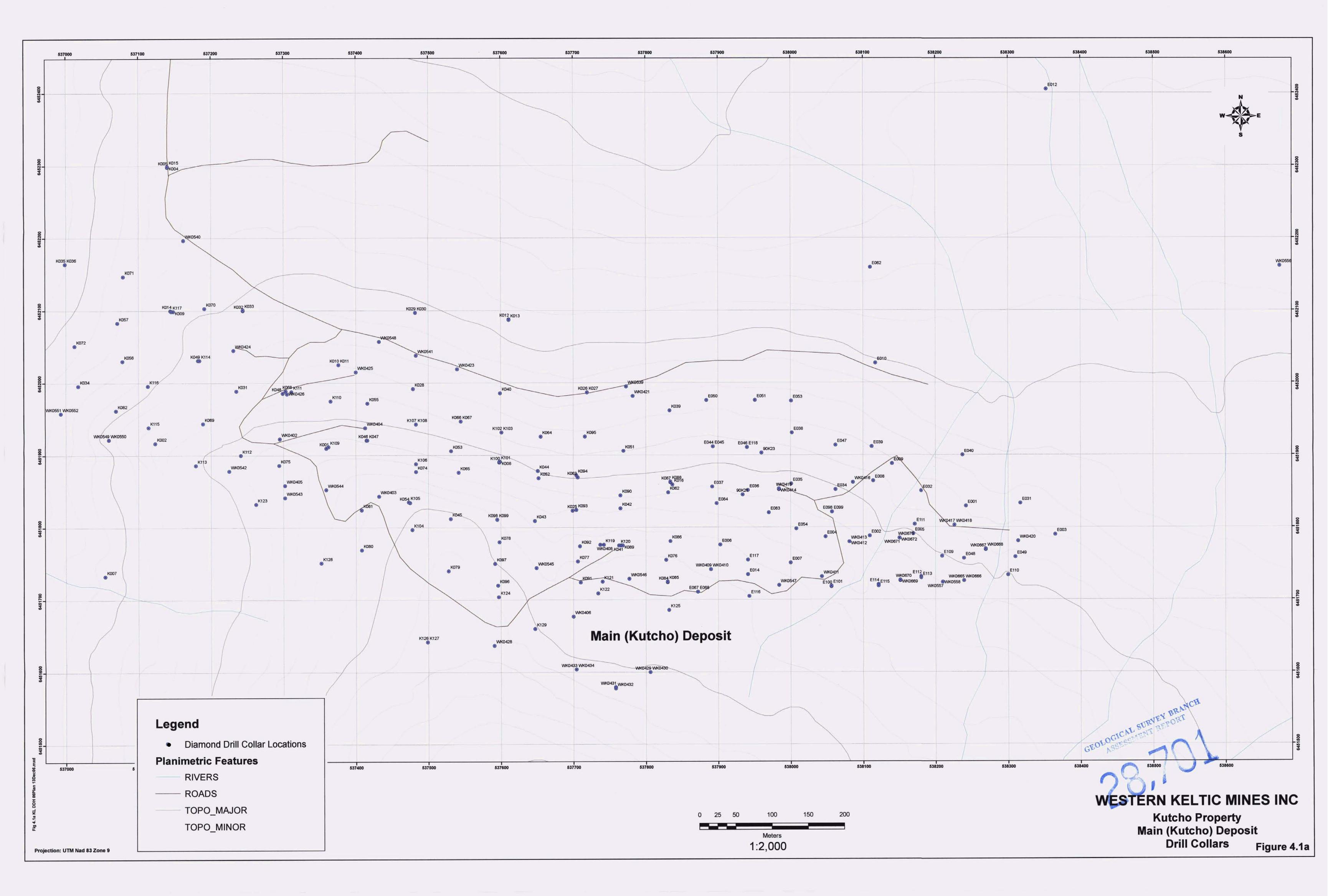
n an an an an an an ann an Arthread an Arthread an Anna an Arthread an Anna an Anna an Anna an Anna an Anna an An an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an An

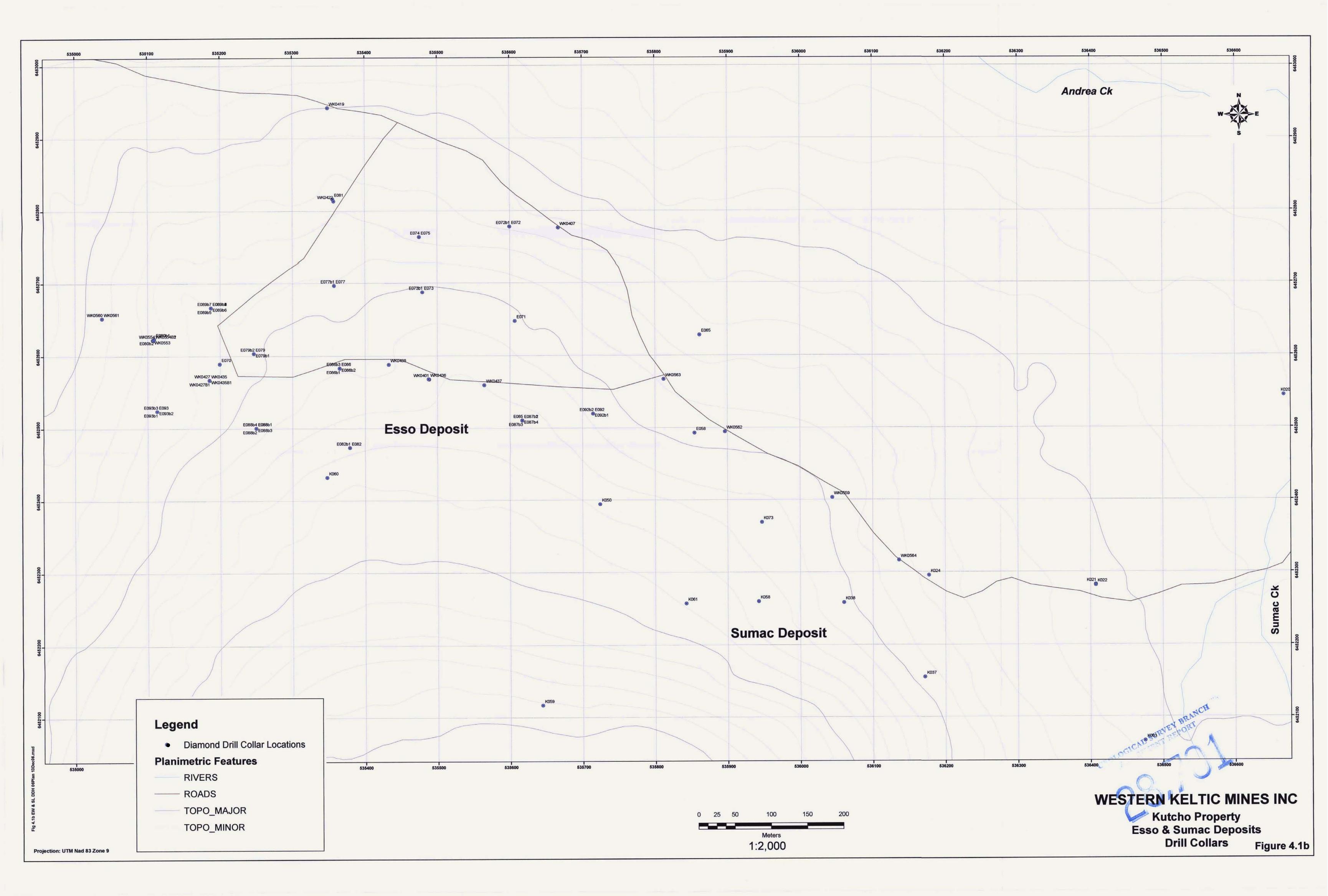
ميديد والجيمة الجراد

I, Keith Rogers of 908 Tollcross Rd, North Vancouver British Columbia DO HEREBY **CERTIFY:**

THAT I am employed as Director Western Canadian Operations by ALS 1 Chemex, of 212 brooksbank Ave. North Vancouver B.C. and have over 35 years of experience in the mineral analytical services business.

THAT I have attained a Certificate of Efficiency from the Province of British 2. Columbia date 1973.


3. THAT I personally managed or supervised the assaying for those certificates that are signed by me for samples submitted by Western Keltic Mines Inc. between July and October, 2005.


and the second second second second second second second second second second second second second second secon

Signed:

Keith Rogers, B.C. Certified Assayer

DATED at North Vancouver British Columbia, this 21st day of Dec., 2006

