2006 REPORT ON EXPLORATION ACTIVITIES

PROSPECTING, MAPPING AND GEOCHEMISTRY INN PROPERTY (CLAIMS: 522256, 522257 and 522258)

Nicola Mining Divisions Merritt Area, British Columbia NTS: 92I/03; BCGS: 092I005, 015 Latitude 50°04' N Longitude 121°01' W UTM Zone 10: 642000E, 5548000N (NAD 83)

December, 2006

(BC 2006 ASSESSMENT)

By Martin L. Stewart David F. Gale, P.Geo (BC)

Strongbow Exploration Inc. 800-625 Howe St. Vancouver, B.C. V6C 1T2

TABLE OF CONTENTS

TABLE OF CONTENTS	i
List of Figures	. ii
List of Tables	. ii
List of Appendices	. ii
List of CDs	. ii
SUMMARY	
1.0 INTRODUCTION	
1.1 Location, Access, Physiography and Climate	
1.2 Claim Data	. 4
1.3 History	
1.4 2006 Exploration Program	
2.0 GEOLOGICAL SETTING	
2.1 Regional Geology and Mineral Deposits	
2.2 Property Geology, Alteration and Mineralization	
3.0 GEOCHEMISTRY	
3.1 Introduction	
3.2 Sampling and Analytical Procedures	
3.3 Quality Control Measures	
3.4 Geochemical Sampling	
4.0 INTERPRETATION AND CONCLUSIONS	
5.0 RECOMMENDATIONS	
6.0 PERSONNEL AND CONTRACTORS	
7.0 STATEMENT OF COSTS	
8.0 STATEMENT OF QUALIFICATIONS	
9.0 REFERENCES	20

List of Figures

(In report)

Figure 1	Inn Property Location map
Figure 2	Inn Claims
Figure 3	Surficial geology of the Inn property
Figure 4	Inn Sample Locations
Figure 5	Inn Gold Results

List of Tables

Table 1Inn Mineral Claims

List of Appendices

Appendix I	Acme Analytical Laboratories- Laboratory Procedures & Gold Standard
	Reference Material
Appendix II	Acme Analytical Laboratories- Laboratory Assay Certificates
Appendix III	Inn Property-Reconnaissance Prospecting- Sample Descriptions

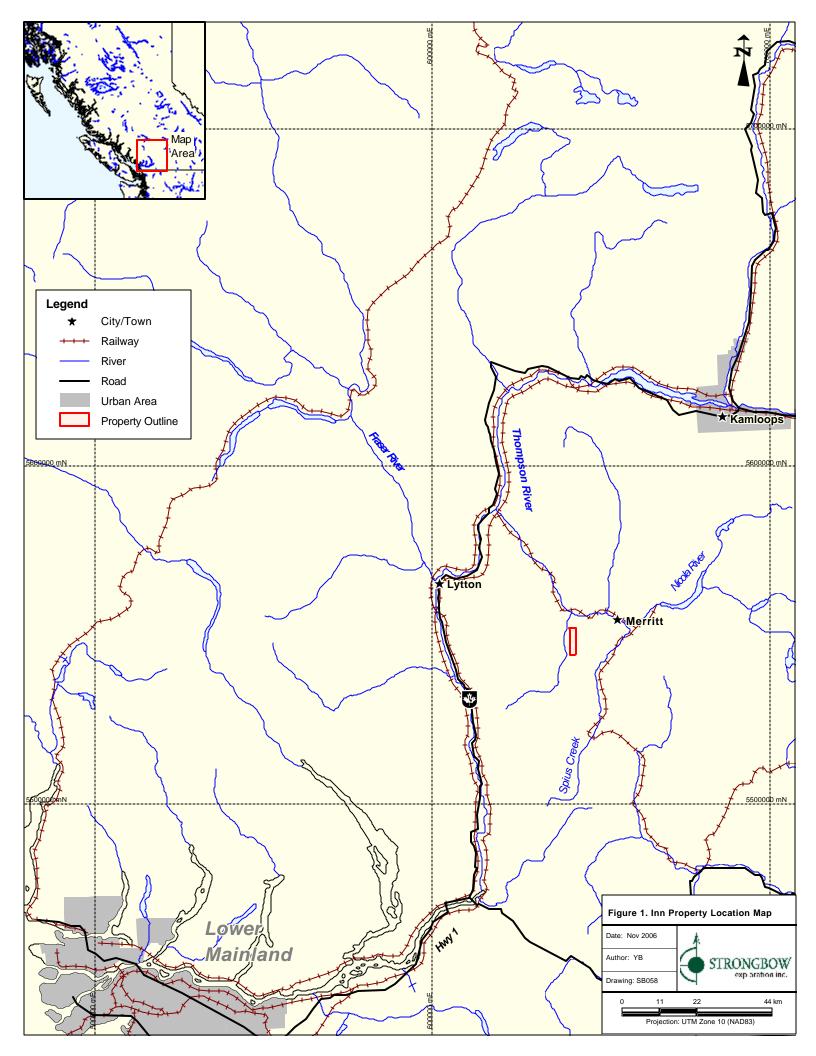
List of CDs

(With report; 1 copy only) Final Report and figures and maps (PDF document)

SUMMARY

Since the discovery of high grade gold mineralization in massive and stockwork quartz veins on the Skoonka property in 2005, new discoveries have been unearthed throughout the length of exposures of the Spences Bridge Group from Lillooet to Princeton. After early discoveries by Almaden Minerals in 2003 and 2004, additional discoveries have quickly followed including more on the Skoonka property by Strongbow Exploration, Prospect Creek by Consolidated Spire, and Ponderosa, PV and Nicoamen by Almaden minerals. These new early-stage discoveries continue to highlight the potential for new discoveries that exists within rocks of the Spences Bridge Group.

The northwest-southeast trending Cretaceous Spences Bridge Group is part of the southern Intermontane tectonic belt of the Canadian Cordillera. The dominant rock type in the Inn property is massive coherent volcanic flows attributed to the Spius formation. The Inn property is easily accessible by road, but exposure is limited by extensive soil and local till cover. Work in 2006 was limited to local silt sampling and prospecting to seek out possible occurrences of anomalous mineralization or alteration on the property. Recent successes and discoveries on the adjacent Ponderosa property continue to prove the potential for new discoveries in the Spences Bridge Group, particularly in the area of the Inn property. Further work is recommended to establish whether those structures or stratigraphy which host mineralization on neighbouring properties extend onto and mineralize portions of the Inn property.

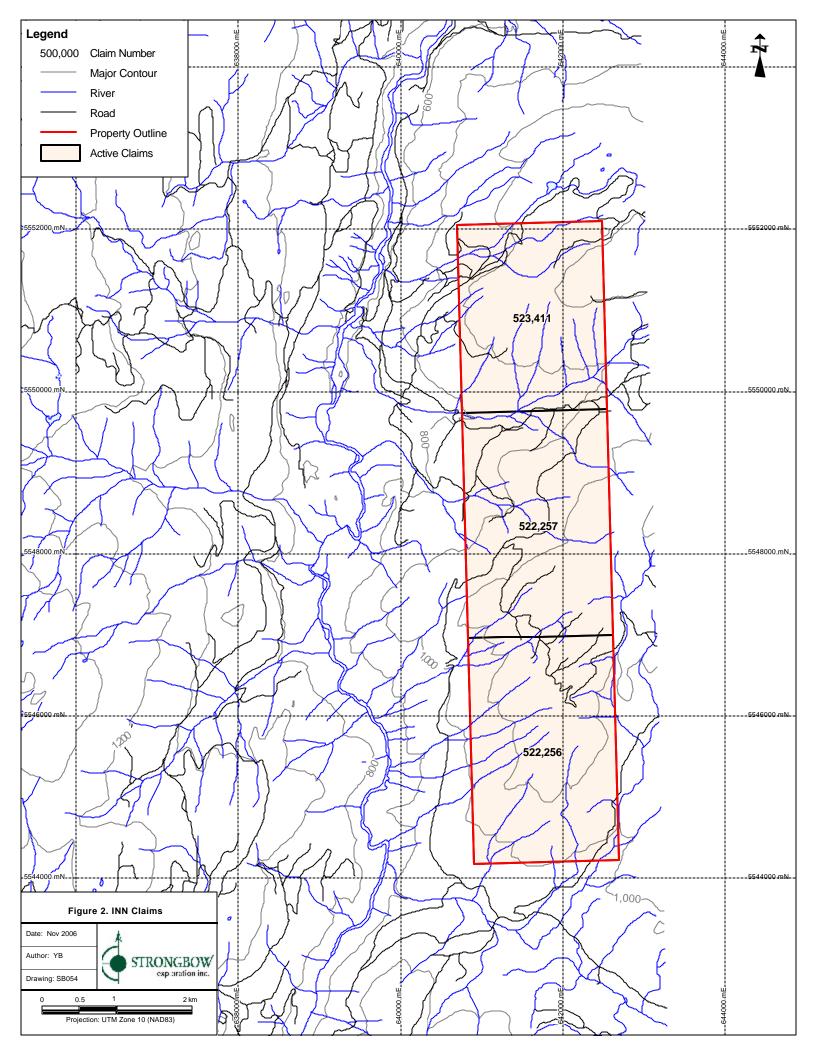

1.0 INTRODUCTION

In 2006, Strongbow Exploration Inc. (Strongbow) staked the 1410ha Inn property based on the presence of potentially prospective Spences Bridge Group volcanic rocks. This property is located in a road accessible area north of Merritt in southern British Columbia. In 2006, Strongbow's exploration program included regional silt sampling and reconnaissance prospecting and mapping on the property. The purpose of this report is to provide an update and summary of exploration work conducted within the Inn property.

1.1 Location, Access, Physiography and Climate

The Inn property is situated at latitude 50°04'N and longitude 121°01'W or 642000E, 5548000N (UTM NAD 83, Zone 10). It is located between communities of Merritt and Spences Bridge in south-central British Columbia, less than 10 km from highway 8, near the Nooaitch Reserve (Figure 1). The property can be accessed from Merritt in less than a half hour drive, along well maintained logging roads. To enter the property, turn south off highway 8 at Canford along the Spius Creek fish hatchery road. Seven kilometres in are several access roads which carry up to the height of land which these claims cover. The property area is covered by 1:50,000 scale NTS map sheet 92I/03.

The Inn property lies within the Intermontane physiographic region, in the western area of the Okanogan Plateau, in the lower Nicola drainage basin. It is situated on the western slopes of small plateau comprising rolling hills and grassland. Elevations range from 800m on its lower western margin to 1340m in the highlands to the southeast. This area lies within the transition from coastal to interior climatic zones. Forests range from open ponderosa pine forest with open grassy areas to slightly more humid subalpine pine and hemlock forest. Northern slopes tend to be denser and overgrown while south facing slopes remain dry and open due to hot temperatures (>35°C) and significant sun exposure. Bedrock is scattered and poor with some exposures in road cut at lower elevations and at higher elevations. Soil and till cover is extensive on lower slopes although thicknesses are unknown.



1.2 Claim Data

The Inn property consists of 3 mineral claims which are summarized in Table 1 below (Figure 2). Strongbow Exploration maintains a 100% ownership.

 Table 1. Inn Mineral Claims

Tenure Number	Owner	Expiry Date	Area
522256	200995 (100%)	2008/NOV/30	498.03
522257	200995 (100%)	2008/NOV/30	497.78
522258	200995 (100%)	2008/NOV/30	414.629

1.3 History

The Inn Property was staked by Strongbow geologists on November 13th, 2005. There are no known prior assessment reports on the claim and the only known historic work was carried out by Almaden Minerals in 2002 and 2003. During this time Almaden carried out regional exploration in the Spences Bridge Gold Belt. Strongbow staked these claims to follow up the head waters of a southerly-draining drainage that produced a RGS value of 16ppb Au. It also was staked to tie onto Almaden's Ponderosa claim package, situated immediately to the east.

1.4 2006 Exploration Program

Work on the Inn claims was undertaken as a part of the greater "regional Spences Bridge group" reconnaissance grassroots exploration program during the 2006 field season. Work was focused on preliminary prospecting, mapping, and silt sampling of drainages. Approximately 11 person-days were spent on the ground directly by Strongbow staff, with additional field days contracted out to Rio Minerals Ltd for a regional silt sampling program. A total of 7 rock and 7 silt samples were collected and submitted for assay at Acme Laboratories in Vancouver.

2.0 GEOLOGICAL SETTING

2.1 Regional Geology and Mineral Deposits

The regional Spences Bridge Reconnaissance project derives its name from the stratigraphic assemblage on which exploration efforts are being focussed, the Spences Bridge Group (SBG). The SBG is part of the southern Intermontane tectonic belt of the Canadian Cordillera (Map 1), a region of relatively low topographic and structural relief with mainly subgreenschist metamorphic grade rocks. Predominant lithologies in the 92I mapsheet covering the Inn property comprise Nicola Group volcanics, metasediments of the Ladner and Relay Mountain groups, Jackass Mountain Group sediments and Spences Bridge Group volcanics (Banfield and Mountjoy, 1997). Stratigraphy is intruded by abundant Late Triassic and/or Jurassic to Miocene plutons. Metamorphic assemblages consist of Cache Creek Complex mélanges and Bridge River Complex metamorphic and ultramafic rocks. Quaternary sediments occur as thick drifts along the main rivers and some of the larger creeks. For further work on the Spences Bridge Group, please refer to Thorkelson 1985, Thorkelson and Rouse 1989 and Thorkelson and Smith 1985.

The Highland Valley porphyry copper and Craigmont copper iron skarn mines are two major mineral deposits that occur in the Spences Bridge region (Map 1), with the Craigmont mine lying only 15km to the North of the property. The Highland Valley deposit is situated within the Late Triassic to Early Jurassic Guichon Creek batholith and is hosted by Bethsaida phase porphyritic quartz monzonite and granodiorite. Feldspar porphyry and quartz feldspar porphyry dykes dip steeply eastward in the western and central areas, and northward in the southern area of the deposit and are cut by mineralized fractures and quartz veinlets (MINFILE 092ISW012). Mineralization consists of five major orebodies that contain aggregate reserves of approximately 1.5 billion tonnes grading 0.4% Cu (Balon, 2005). The Craigmont mine contains 33 million tonnes grading 1.3% Cu (Balon, 2005) and lies adjacent to the southern margin of the Guichon Creek batholith. Host rocks are calcareous sedimentary rocks of the Nicola Group comprised of limestones, limy tuffs, greywackes and argillites. Mineralization consists of magnetite, hematite and chalcopyrite and occurs as massive pods, lenses and disseminations extending through the calc-silicate horizon. The body is roughly tabular, trends east and dips near vertically. Minor folding and faulting is present but do not significantly distort the mineralization (MINFILE 092ISE035).

2.2 Property Geology, Alteration and Mineralization

The Inn property is interpreted to lie within the regionally extensive Spius Creek formation of the Spences Bridge group. Rocks on the property are dominated by massive, aphanitic andesite to basalt volcanic rocks (Figure 3). At the southeast end of the property there appears to be a lower lapilli tuff unit. This unit cannot be traced regionally and thus has been left off geology maps, but appears to correspond with a significant break in topography that may represent a contact with the massive volcanic flows. This same tuff is not exposed elsewhere on the property. There are two occurrences of a quartz diorite reported by prospecting in 2006, one in the northeast and a second in the southwest corners of the property. Their presence has not been confirmed and has not been included in mapping. Alteration is limited to a weak chloritic overprint with some silicification present as chalcedonic amygdule and fracture fill. There are no known mineral occurrences on the property.

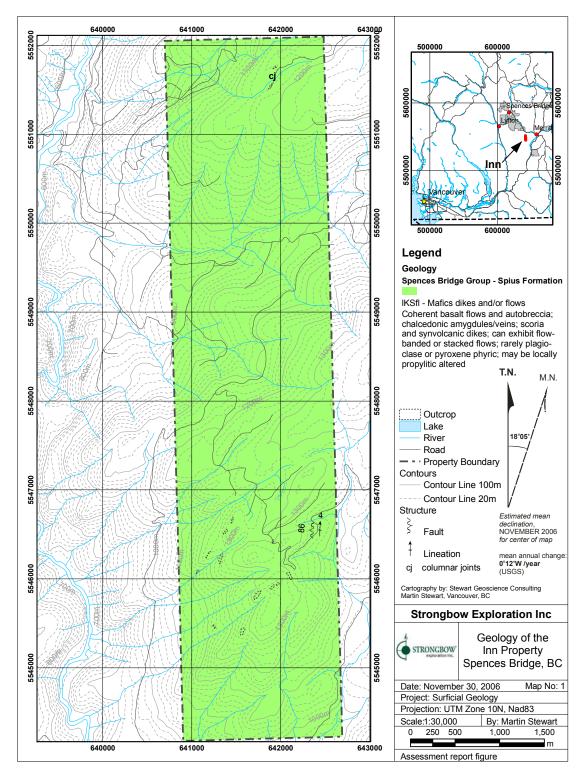


Figure 3. Geology of the Inn property.

3.0 GEOCHEMISTRY

3.1 Introduction

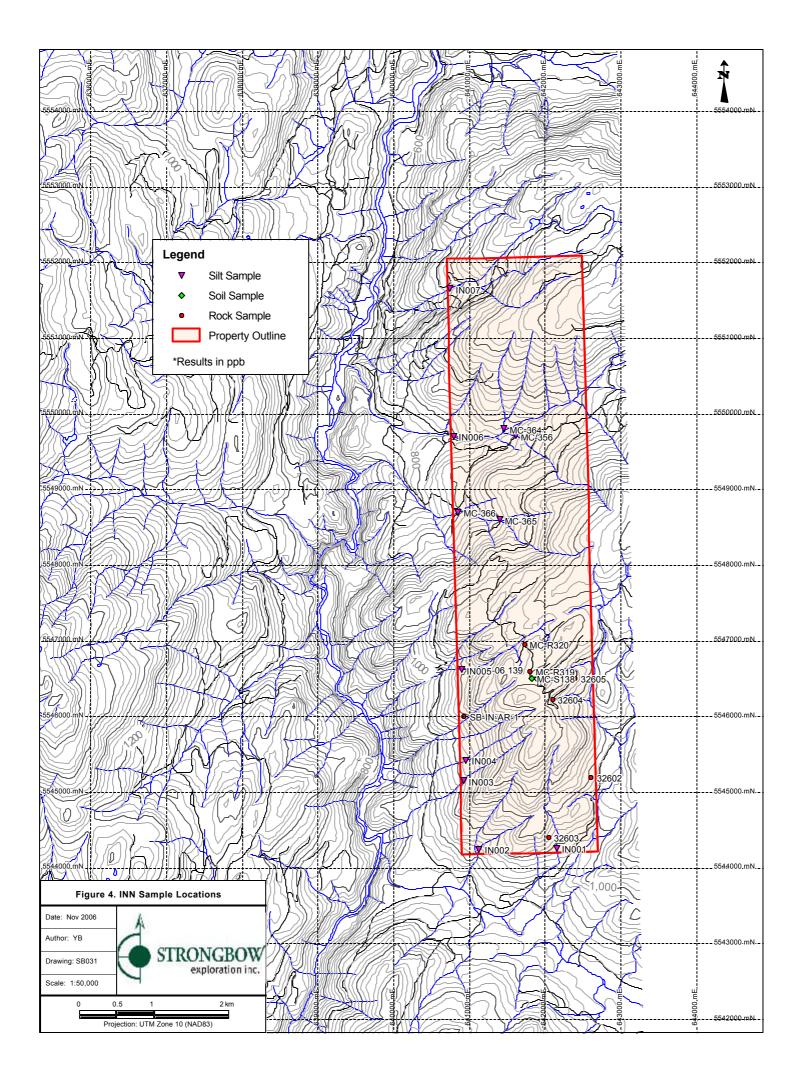
Prior to the 2006 field season there has been no work done on the Inn property. A regional silt sampling program was contracted out to Rio Minerals Ltd. during the summer of 2006 to test drainages for anomalous metals in stream sediments on the property. Concurrently and following this program, a prospecting and mapping campaign was undertaken to sample outcroppings of bedrock for anomalous metals. In total, 7 rock and 7 silt samples were collected on the Inn property. Section 3.3 will discuss the quality assurance/quality control procedures adopted for the 2006 field program. Section 3.4 will discuss the details of the silt and rock sampling program.

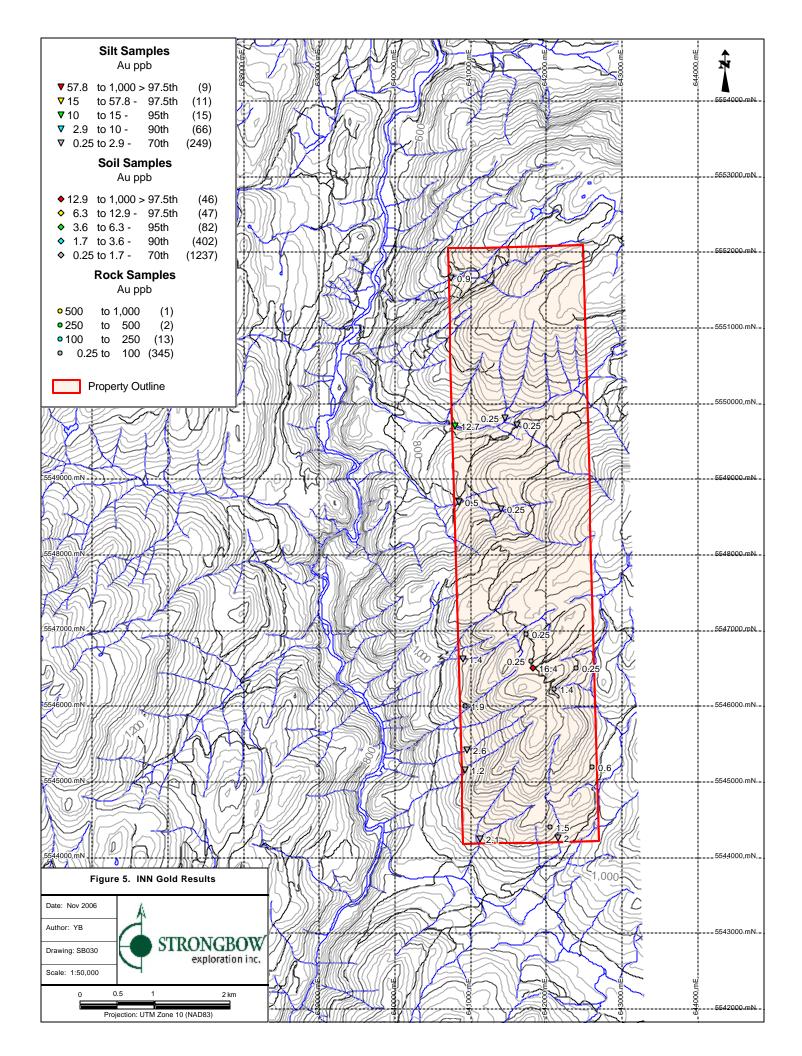
3.2 Sampling and Analytical Procedures

Sample locations are recorded using a hand held GPS unit where permitted. Where GPS coverage is insufficient, sample locations are approximated based on previous GPS points taken and hip chain and compass measurements. Silt samples are collected in all drainages that did not have previous RGS sampling. In particular, samples were taken from areas where heavy minerals would most likely drop out of suspension, such as bends and slope inflections (shallowing) in a stream. A typical sample is composed of fine silt or sand, weighs approximately 3 kg, and stored in a medium-sized kraft bag.

Each rock (prospecting) sample location is marked with a representative sample, wrapped with orange flagging tape that contains the assigned sample number. Individual float and rock samples weigh no more than 5 kg. Rock samples were collected such that the specimens had little to no weathered surface or lichen and represented the overall characteristics of mineralization from that location. In places where rock material is rare or difficult to liberate, chip samples are taken to represent the zone of interest.

Acme Analytical Laboratories of Vancouver, BC, was contracted to conduct sample preparation and analysis of all samples collected during the program. All samples were submitted for a 36-element ICP-MS aqua regia analysis (Acme: 1DX). For rock samples that returned greater than 100ppb gold, the pulp was reanalyzed using the Au fire assay with ES (Acme: 3B) or gravimetric (Acme: 6) finish depending on the grade of the original ICP result (i.e. a sample with greater than 8 gpt Au ICP was re-analyzed using gravimetric finish). For those samples that returned base metal values greater than 10000ppm were automatically sent for a more accurate assessment of the specific element in question (Acme: 7AR). A detailed explanation of analytical techniques and procedures has been compiled in Appendix I. The certificates for the standards used for the Quality control procedures are also included in Appendix I. Lab certificates showing complete results for geochemical analyses for silt, soil, rock and drill core samples are included in Appendix III.


3.3 Quality Control Measures


Quality assurance/quality control (QA/QC) for the 2006 field program comprised inserting blanks, field duplicates, and standards in the sample stream sent to Acme Analytical Laboratories in Vancouver, BC. QA/QC samples were only inserted into the surface rock sampling with blanks and field duplicates inserted at least every 20 samples and prepackaged standards purchased from Analytical Solutions were inserted at least every 30 samples. Blanks were inserted to monitor for potential contamination during analysis, duplicates were inserted as a measure of reproducibility and precision of data while standards measure the precision and accuracy of Acme's analysis.

There were no failures from any of the samples submitted from the Inn program. Normally, a failure occurs when any single standard value is greater or less than three standard deviation from the expected value, or when two standard values from the same sample batch are greater or less than two standard deviations from the expected value. For blanks, any value greater than 10 ppb was interpreted to indicate contamination. Results from the reanalysis of the pulps (in the case of a QA/QC failure) were used to replace the original failed samples in the database. Also, for reporting purposes, a hierarchy for gold values were used for each respective "best" gold value. The results from metallic screen for assays were used instead of fire assay, which in turn was used instead of a gold geochemical analysis. The more accurate method would always supersede the less accurate one.

3.4 Geochemical Sampling

The 2006 field program was started by contracting out a regional silt sampling program to Rio Minerals Ltd on the Inn property. Prospecting was undertaken with the goal of a quick regional reconnaissance in which traverses were designed to maximize the amount of exposure examined and sampled (see locations, Figure 4). Traverses were further defined by targeting areas seen as having highest potential of success. This included targeting obvious lineaments observed from airphotos and colour anomalies visible from an initial drive-through and ongoing work. Prospecting was carried out systematically from one ridge to the next, always looking ahead and behind for colour anomalies to sample. Based on successes at the Skoonka property, quartz float trains were followed up where visible, usually leading either up steep slopes or creek beds. No obvious anomalous geochemistry was outlined on the Inn property (see results, Figure 5), although the neighbouring Ponderosa property has returned values ranging from 0.4 to 12.8 g/t gold including a channel sample which returned 2.43 g/t over 10.5m (Almaden Minerals, 2006).

4.0 INTERPRETATION AND CONCLUSIONS

The Inn property is situated within the Spences Bridge Group volcanic arc which has shown itself to be highly prospective for low sulphidation epithermal styles of gold mineralization. During the 2006 field season an extensive silt sampling program opened work on the Inn property which was followed by a prospecting and mapping campaign. Based on this work, an initial understanding of geology on the property has been outlined and possible structures have been identified but remain underexplored.

The Inn property is interpreted to lie wholly within the Spius formation, the upper member of the Spences Bridge group Cretaceous volcanic rocks. Mafic flows of this formation are dominantly massive and coherent. Prospectors and an assistant working on the 2006 field program report the presence of several small diorite-like bodies on the property. No mineralization or significant alteration has thus far been identified on the property. Northeast trending topographic lineaments covered by soil and/or till suggest there are some hidden structures on the property. Successful exploration on the neighbouring Ponderosa Property (Almaden Minerals, 2006) indicates there is still potential for the Inn property to host significant gold grades, possibly along the structures believed to be hidden by cover.

5.0 RECOMMENDATIONS

The following work is recommended as further follow-up to work on the Inn property based on successful results returned from the neighbouring Ponderosa property (Almaden Minerals, 2006).

- 1. Soil sampling is needed to test for potential anomalous mineralization below extensive overburden cover. This sampling should be focused on testing for possible hidden structures in linear gullies on the property.
- 2. In addition to grid sampling, a regional reconnaissance road soil sampling program is needed to test for mineralization below overburden cover.
- 3. A better understanding of the Ponderosa showing (discovered August, 2006) on Almaden's ground could highlight potential for the Inn property.
- 4. Magnetic and electromagnetic surveys of the Inn property would assist in identifying buried structures or intrusive bodies on the property which may host gold mineralization.

6.0 PERSONNEL AND CONTRACTORS

List of Contractors

Contractor	Type of Work	Address
Acme Analytical Labs	Geochemical analysis	852 East Hastings Street
		Vancouver, B.C. V6A 1R6
Rio Minerals Ltd.	Silt sampling, soil	209 - 475 Howe Street
	sampling, rock sampling,	Vancouver, B.C.
	mechanized hand trenching,	V6C 2B3
	and ground geophysics	
Caribou Chilcoten	Silt sampling, property visit	PO Box 1345
Helicopters Ltd.		Lillooet, BC V0K 1V0
Petrascience Consultants	PIMA	700 - 700 W. Pender Street
Inc.		Vancouver, B.C. V6C 1G8
Vancouver Geotech Labs	Thin section preparation	Unit 38A, 1640 SE Kent
Ltd.		Avenue
		Vancouver, B.C. V5P 2S7
Stewart Geoscience	Bedrock mapping and	307 – 1933 West 5th Ave,
Consulting (Martin	prospecting	Vancouver, B.C., V6J 1P6
Stewart).		

7.0 STATEMENT OF COSTS

Strongbow Exploration Summary of INN Program Expenditures Expenditures from November 14th, 2005 to Sept 30, 2006

Date Camp	Reference	Description	Amount
Costs			
01-Aug-06	Allocate SpBr Regional field program	Misc employee expenses	50.78
01-Aug-06	Allocate SpBr Regional field program	other vendors	81.92
Total			132.70
Helicopter	Costs Valley Helicopters	Helicopter - gossan evaluation over Spences Bridge Group of properties. Number represents proportion	
01-Aug-06		attributable to all three properties	70.61 70.61
01-Aug-06	3.0 man days @ 390/day	MARTIN STEWART - Includes wages and expenses (e.g. gas for truck, office supplies and hotel costs) RIO MINERALS LTD. Includes Truck rental. radios. field	1,820.29
01-Aug-06	4.0 man days @ 397.5/day (daily wage does not incl. room and board or exploration expenses 3 man days @ 350/day (daily wage does not incl. room	RIO MINERALS LTD. Includes Truck rental, radios, field supplies, accommodation and Per diem (37.5/man) charge	1,863.64
05-May-06	and board or exploration expenses	Don Coolidge - Prospector NORTH TRACK EXPLORATION	1,050.00
01-Aug-06	4 VHF. FM Portable radios @ 50/radio/month	FALCON RESEARCH LTD.	35.87
01-Aug-06	Allocate SpBr Regional field program	Vernon Computers Laptop Rental	32.73
Total			4,802.53
Laboratory Cha	r ges Regional Silt Samples / 7 samples		
01-Aug-06	o i i	ACME ANALYTICAL LABORATORIES LTD.	100.67
01 1.000	Allocate SpBr Regional field program	Martin Stawart Craybound Chinning Charges	4.04

01-Aug-06	···· 9······ ···· · ···· · · · · · · ·	ACME ANALYTICAL LABORATORIES LTD.	100.67
01-Aug-06	Allocate SpBr Regional field program	Martin Stewart - Greyhound Shipping Charges	4.24
01-Aug-06	Allocate SpBr Regional field program	Other Vendors	21.60
01-Aug-06	Allocate SpBr Regional field program	RIO MINERALS LTD Greyhound Shipping Charges	7.25
20-Apr-06	Apr20/Recon. sample collection - 8 samples	ALMADEN MINERALS LTD Includes costs associated with purchase of silt-soil-rock sample dataset for the LP property. Per sample cost is all-in (i.e. incl. all field related costs)	1,250.00
20-Jun-06	A602391/4 samples	ACME ANALYTICAL LABORATORIES LTD.	67.20
tal			1,450.97

eneral cappile			
01-Aug-06	Allocate SpBr Regional field program	Employee Exp	3.64
01-Aug-06	Allocate SpBr Regional field program	other vendors	2.69

Assessment Report December, 2006

01-Aug-06	Allocate SpBr Regional field program	Plotter - Field Maps	233.34
05-Apr-06	Apr5/on-line purchase-maps	KEN ARMSTRONG - Trim data	428.66
01-Jul-06	3 Med @ \$15	Plotter Chgs / June	45.00
31-Jul-06	3 Lrg @ \$30	Plotter Chgs / July	90.00
Total			803.33
Salaries of Full	time and Temporary Contract Staff		
	Bruce Anderson - Prospector - 1 days	Salary @ 360/day	360.00
	Ayaka Shiroki - Geologist- 3.8 days	Salary @ 216/day	820.80
	Yvonne Bowen -GIS Technician - 1 days	Salary @ 300/day	300.00
	Craig Sturdivant Geological Assistant - 2.0 day	Salary @ 144/day	288.00
	Dave Gale - VP Exploration - 0.7 days	Salary @ 750/day	525.00
	Mike Mayer - GIS Technician - 0.2 days	Salary @ 300/day	60.00
	Julie Paillard - GIS Supervisor - 1.4 days	Salary @ 300/Day	420.00
	Nicole Westcott - Land Administrator - 0.4 days	Salary @ 300/day	120.00
Total			2,893.80
Documenta	ation Estimated Report writing	Includes Salary, mapmaking and printing costs	2,500.00
Total			2,500.00
			<u>.</u>
Grand			

Grand	
Total	12,653.93

8.0 STATEMENT OF QUALIFICATIONS

I, Martin L. Stewart, of Stewart Geoscience Consulting, located at 307-1933 West 5th Ave., Vancouver BC, V6J 1P6, do certify that:

- I have been conferred with the academic degrees of Honours Bachelor of Science Earth and Ocean Sciences (Carleton University, 1998) and Master of Science – Geology (University of British Columbia, 2002).
- 2. I have been engaged as a geoscientist in Canada since 1995 with the Ontario Geological Survey, BC Geological Survey, Geological Survey of Canada, Carleton University, the University of Ottawa, University of British Columbia, Falconbridge Exploration Ltd., Teck Exploration Ltd., Barrick Gold Corporation and Great Panther Resources
- 3. I am currently employed with Strongbow Exploration Inc. of 800-625 Howe St., Vancouver BC, V6C 2T6.

Dated at Vancouver, British Columbia, this 20th day of December, 2006.

Martin L. Stewart, M.Sc.

- I, David F. Gale, of 800-625 Howe Street, Vancouver, BC, V6C 2T6, do certify that:
- I have been conferred with the academic degrees of Honours Bachelor of Science Geology (Memorial University, 1994) and Master of Science – Geology (Queen's University, 1997).
- 2. I have been engaged as an exploration geologist throughout Canada since 1995 with Cominco, Westmin Resources, BHP Ltd., Homestake Canada Inc., and Barrick Gold Corp.
- 3. I am a member of the Association of Professional Geoscientists of BC (Member No. 27366).
- 4. I am currently employed with Strongbow Exploration Inc. of 800-625 Howe Street, Vancouver, BC, V6C 2T6.
- 5. I certify that to the best of my knowledge the costs listed, and all data presented, were incurred while carrying out exploration work on the Skoonka Property, BC during 2005.

Dated at Vancouver, British Columbia, this 20th day of December, 2006.

David F. Gale, P. Geo., M.Sc.

9.0 REFERENCES

- Almaden Minerals Ltd., 2006. Our Projects: Ponderosa Project, BC: URL <u>http://www.almadenminerals.com/Projects/Ponderosa%20Project.html</u>, website
- Balon, E., 2005. 2004 Geochemical, prospecting and physical work report on the Sam Property, NTS92I, Kamloops Mining Division: submitted by Almaden Minerals Ltd., BC Ministry of Energy and Mines, AR 27672, 75 pages.

Banfield, S.N. and Mountjoy, K.J. 1997. 92!SW Mineral occurrences, URL http://www.em.gov.bc.ca/mining/geolsury/minfile/mapareas/92iswcov.htm

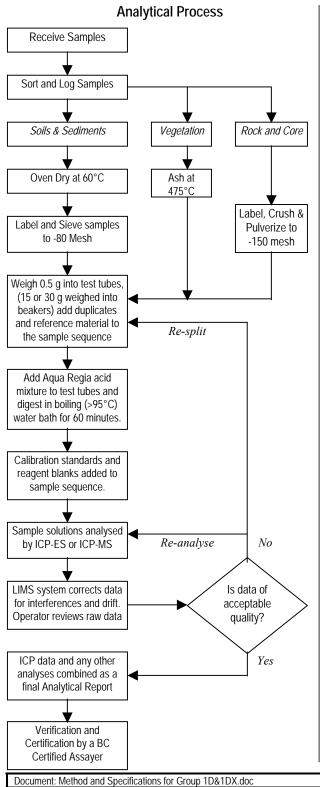
Jackaman, W and Matysek, P F., 1994. British Columbia regional geochemical survey, NTS 92I – Ashcroft: Geological Survey of Canada, Open File 2666, 233 pages

MINFILE 092ISW012. 2006.

http://www.em.gov.bc.ca/mining/geolsurv/minfile/App/Summary.aspx?minfilno =092ISW012

- MINFILE 092ISE035. 2006. http://www.em.gov.bc.ca/mining/geolsurv/minfile/App/Summary.aspx?minfilno =092ISE035
- Thorkelson, D.J. 1985. Geology of the Mid-Cretaceous Volcanic Units near Kingsvale, southwestern BC; in Current Research, Part B, GSC Paper 85-1B, p. 333-339
- Thorkelson, D.J. and Rouse, G. 1989. Revised stratigraphic nomenclature and age determinations for mid-Cretaceous volcanic rocks in southwestern British Columbia; in Canadian Journal of Earth Sciences, 26:10 p. 2016-2031
- Thorkelson, D.J. and Smith, A. 1985. Arc and intraplate volcanism in the Spences Bridge Group: implications for Cretaceous tectonics in the Canadian Cordillera; in Geology, v.12, p. 1093-1096

APPENDIX I


Acme Analytical Laboratories Laboratory Procedures & Gold Standard Reference Material

Methods and Specifications for Analytical Package Group 1D & 1DX & ICP & ICP-MS Analysis-Aqua Regia Methods and Specifications for Analytical Package Group 3B & 3B-MS- Precious Metals by Fire Geochem Methods and Specifications for Analytical Package Group 6 –Precious Metals Assay Methods and Specifications for Analytical Package Group 7AR-Multi-Element Assay by ICP-ES-Aqua Regia Digest &

Oreas 61Pa Oreas 61Pb Oreas 62Pb

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 1D & 1DX – ICP & ICP-MS ANALYSIS – AQUA REGIA

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 μ m). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. Pulp splits of 0.5 g are weighed into test tubes, 15 and 30 g splits are weighed into beakers.

Sample Digestion

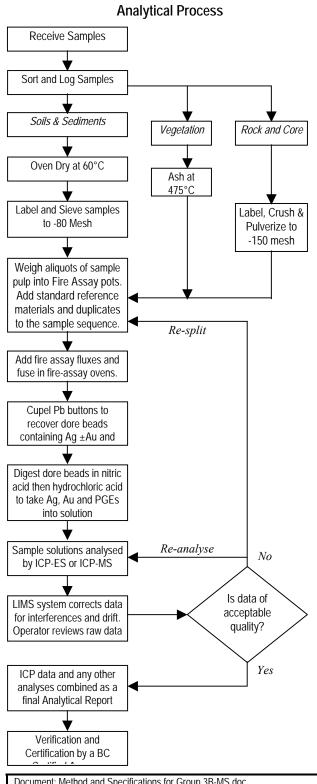
A modified Aqua Regia solution of equal parts concentrated ACS grade HCl and HNO₃ and de-mineralised H₂O is added to each sample to leach for one hour in a hot water bath (>95°C). After cooling the solution is made up to final volume with 5% HCl. Sample weight to solution volume is 1 g per 20 mL.

Sample Analysis

Group 1D: solutions aspirated into a Jarrel Ash AtomComp 800 or 975 ICP or Spectro Ciros Vision emission spectrometer are analysed for 30 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Group 1DX: solutions aspirated into a Perkin Elmer Elan 6000/9000 ICP mass spectrometer are analysed for 36 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, *Ga, Hg*, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, *S*, Sb, *Sc*, *Se*, *Tl*, Sr, Th, Ti, U, V, W, Zn.

Quality Control and Data Verification


An Analytical Batch (1 page) comprises 33 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD DS6 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Marcus Lau, Ken Kwok and Jacky Wang.

Document: Method and Specifications for Group TDX.doc Date: June 7, 2005 Revised By: 1. Ferguson	Document: Method and S	pecifications for Group 1D&1DX.doc	Date: June 7, 2005	Revised By: T. Ferguson
--	------------------------	------------------------------------	--------------------	-------------------------

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 3B & 3B-MS - PRECIOUS METALS BY FIRE GEOCHEM

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 μ m). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. Pulp splits of 30 g are weighed into fire-assay crucibles.

Sample Digestion

The sample aliquot is custom blended with fire assay fluxes, PbO litharge and a Ag inquart. Firing the charge at 1050°C liberates Au \pm PGEs that report to the molten Pb-metal phase. Once cooled the Pb button is recovered then fired in a MnO cupel at 950°C to render a Ag \pm Au \pm PGE dore bead. The bead is weighed and parted (i.e. leached in 1 mL of hot HNO₃) to dissolve Ag then 10 mL of HCl is added to dissolve the Au \pm PGEs. A Rh fire assay requires inquarting with Au for quantitative analysis.

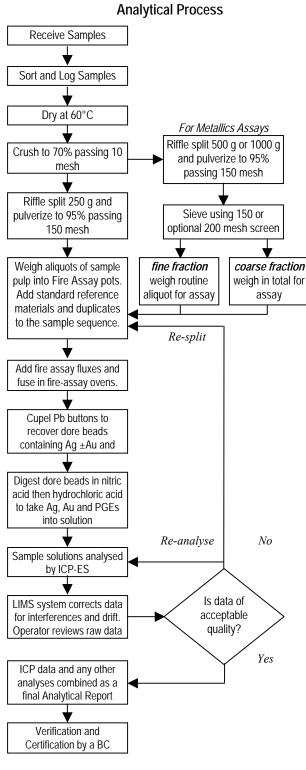
Sample Analysis

Group 3B: Solutions analysed by a Jarrel Ash Atom-Comp 975 ICP-ES determine Au only. Analyses on a Perkin Elmer Elan 6000 ICP-MS determine Au, Pt and Pd.

Group 3B-MS: Lower Au, Pt and Pd detection limits are achieved by a longer determination time on the Elan 6000 ICP-MS.

Rh by Au inquart gives a quantitative analysis. Rh by Ag inquart is semi-quantitative owing to the limited solubility of Rh in Ag.

Quality Control and Data Verification


An Analytical Batch (1 page) comprises 34 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like Au-S, Au-R, Au-1 or FA-10R and FA-100S monitor accuracy. Group 3B-MS incorporates new crucibles and additional reagent blanks to permit accurate analysis at very low concentration levels.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Ken Kwok, Marcus Lau and Jacky Wang.

T	Document: Method and Specifications for Gro	Jp 3B-MS.doc	Date: June 7, 2005	Revised by: T. Ferguson

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 6 – PRECIOUS METALS ASSAY

Comments

Sample Preparation

Rock and drill core are jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. One assay ton aliquots (29.2 g) are weighed into fire assay crucibles. Option for 2 assay-ton aliquots is available on request. Smaller aliquots of ¼ or ½ assay ton may be required with difficult ore matrices.

Metallics Assay: A 500 g reject split (or optional 1000 g) is pulverized to 95% passing 150 mesh. Screening the pulp gives a fine and coarse fraction (containing any coarse gold) for assaying.

Sample Digestion

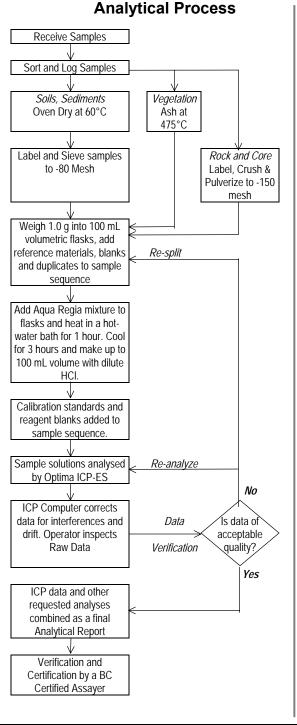
The sample aliquot is custom blended with fire assay fluxes, PbO litharge and a Ag inquart. Firing the charge at 1050°C liberates Au \pm PGEs that report to the molten Pb-metal phase. After cooling the Pb button is recovered placed in a cupel and fired at 950°C to render a Ag \pm Au \pm PGEs dore bead. The bead is weighed and parted (i.e. leached in 1 mL of hot HNO₃) to dissolve Ag leaving a Au sponge. Adding 10 mL of HCl dissolves the Au \pm PGE sponge. A Rh fire assay requires inquarting with Au.

Sample Analysis

Solutions are analysed for Ag, Au, Pt, Pd and Rh on a Jarrel-Ash Atomcomp model 975 ICP emission spectrometer. Au in excess of 30 g/t forms a large sponge that can be weighed (gravimetric finish). Ag in excess of 300 g/t is reported from the fire assay solution otherwise a separate split is digested in aqua regia and analysed by ICP-ES.

Metallics Assay: The coarse fraction is assayed in total. An aliquot of the fine fraction is assayed. Results report the total Au in the coarse fraction, the fine-fraction Au concentration and a weighted average Au concentration for the entire sample.

Quality Control and Data Verification


An Analytical Batch (1 page) comprises 34 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) as the first sample carried through all stages of preparation to analysis, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of Rocklabs Certified Reference Materials like OxL34 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Ken Kwok, Marcus Lau, Dean Toye and Jacky Wang.

Document: Method and Specifications for Group 6.doc Date: Feb 16, 2004 Prepared By: J. Gravel				
	Document: Method and Spec	cifications for Group 6.doc	Date: Feb 16, 2004	Prepared By: J. Gravel

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 7AR – MULTI-ELEMENT ASSAY BY ICP-ES • AQUA REGIA DIGEST

Comments

Sample Preparation

Assaying is warranted for representative well-mineralized samples (eg. Cu > 1%). Samples are dried at 60°C. Soil, sediment and moss mats (after pounding) are sieved to -80 mesh (-177 μ m). Vegetation is dried (60°C) and pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g aliquot is riffle split and pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. Aliquots of 1.000 ± 0.002 g are weighed into 100 mL volumetric flasks. Acme's QA/QC protocol requires one pulp duplicate to monitor analytical precision and an two blanks and aliquots of in-house reference material STD R2A or GC2A to monitor accuracy in each batch of 33 samples. Trench and drill core programs will also include a pulp made from a 2nd crushed fraction split (rejects duplicate) to measure method precision.

Sample Digestion

30 mL of Aqua Regia, a 2:2:2 mixture of ACS grade concentrated HCl, concentrated HNO₃ and de-mineralised H₂O, is added to each sample. Samples are digested for one hour in a hot water bath (>95°C). After cooling for 3 hrs, solutions are made up to volume (100 mL) with dilute (5%) HCl. Very high-grade samples may require a 1 g to 250 mL or 0.25 g to 250 mL sample/solution ratio for accurate determination. Acme's QA/QC protocol requires simultaneous digestion of two regent blanks inserted in each batch.

Sample Analysis

Sample solutions are aspirated into a Jarrel Ash Atomcomp model 800 or 975 or Spectro Ciros Vision ICP emission spectrograph to determine 21 elements: Ag, Al, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, W, Zn.

Data Evaluation

Raw and final data from the ICP-ES undergoes a final verification by a British Columbia Certified Assayer who then signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Marcus Lau and Jacky Wang.

Document: Method and Specifications for Group 7AR.doc

Date: June 2005

Revised By: T. Ferguson

CERTIFICATE OF ANALYSIS FOR

GOLD ORE REFERENCE MATERIAL

OREAS 61Pa

SUMMARY STATISTICS

Recommended Values, 95% Confidence and Tolerance Intervals

Constituent	Recommended value	A CONTRACTOR OF A CONTRACTOR O	nfidence rval		e interval 9, ρ=0.95
		Low	High	Low	High
Gold, Au (ppm)	4.46	4.39	4.54	4.45	4.48
Silver, Ag (ppm)	8.54	8.35	8.72	8.36	8.71

Prepared by: Ore Research & Exploration Pty Ltd April, 2004

REPORT 02/443B

CERTIFICATE OF ANALYSIS FOR

GOLD ORE REFERENCE MATERIAL

OREAS 61Pb

SUMMARY STATISTICS

Recommended Values, 95% Confidence and Tolerance Intervals

Constituent	Recommended value	A CONTRACTOR OF A CONTRACTOR O	nfidence rval		e interval 9, ρ=0.95
		Low	High	Low	High
Gold, Au (ppm)	4.75	4.68	4.82	4.73	4.77
Silver, Ag (ppm)	8.8	8.4	9.2	8.6	9.0

Prepared by: Ore Research & Exploration Pty Ltd October, 2003

REPORT 02/443C

CERTIFICATE OF ANALYSIS FOR

GOLD ORE REFERENCE MATERIAL

OREAS 62Pb

SUMMARY STATISTICS

Recommended Values, 95% Confidence and Tolerance Intervals

Constituent	Recommended value	A CONTRACTOR OF A CONTRACT OF	nfidence rval		e interval 9, ρ=0.95
		Low	High	Low	High
Gold, Au (ppm)	11.33	11.16	11.50	11.29	11.37
Silver, Ag (ppm)	21.5	21.0	22.0	20.6	22.4

Prepared by: Ore Research & Exploration Pty Ltd April, 2004

REPORT 02/443E

APPENDIX II

Acme Analytical Laboratories Laboratory Assay Certificates

Silt	
A603102	
A602607	
V 05-1151S	

Rock A604829R A604829 A602388R A602388

Soil A604830 A603744

# of Samples Date Received Date Completed Project	1435-06-01 Strongbow Exploration Inc. 4 290506 190606 INN																																			
Acme file# PO#	A602391																																			
PO#	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY	CADY
	G1DX	G1DX	G1DX	G1DX	GIDX	G1DX	GIDX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX												
SAMPLE	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ba	Ti	В	AI	Na	ĸ	W	Hg	Sc	TI	S	Ga	Se
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm
DETECTION	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.01	0.1	0.05	1	0.5
STANDARD G-1	0.5	2.1	3.5	44	0.1	5.2	4.3	584	1.99	0.6	3.1	0.6	5.7	83	<.1	0.1	0.1	37	0.62	0.073	10	12	0.55	231	0.15	<1	1.11	0.125	0.52	0.1	0.04	2.1	0.3	<.05	6	<.5
32602	6.1	51	3.2	56	0.2	131.8	27.2	1038	5.55	23.1	0.4	0.6	0.9	40	0.1	2.7	0.1	84	0.98	0.191	11	128.3	2.47	27	0.355	2	2.61	0.065	0.04	0.1	0.19	6.6	<.1	0.93	10	<.5
32603	3.1	53.7	2.2	73	0.2	52.2	26.4	1143	4.63	3.1	0.4	1.5	1	50	0.1	0.1	0.1	131	2.61	0.096	9	124.1	2.83	59	0.238	1	2.24	0.066	0.07	0.2	0.02	9.5	<.1	0.09	9	0.9
32604	1.4	69.3	4.4	68	<.1	126.5	33.6	1360	4.5	0.7	0.5	1.4	1.4	152	0.2	0.1	<.1	111	5.59	0.145	14	176	3.44	145	0.261	<1	2.88	0.048	0.06	0.1	<.01	9.7	<.1	<.05	13	<.5
32605	0.7	43.6	1.4	70	<.1	127.6	37.1	675	5.04	<.5	0.3	<.5	0.8	35	<.1	<.1	<.1	94	0.73	0.202	14	149.5	4.75	85	0.056	<1	3.07	0.07	0.05	<.1	<.01	9.3	<.1	<.05	11	<.5
STANDARD DS6	11.7	124.7	29.9	142	0.4	25.3	10.9	703	2.83	21.2	6.6	46.5	3	40	6	3.5	5	56	0.86	0.08	13	185.8	0.58	164	0.081	18	1.93	0.073	0.15	3.5	0.23	3.1	1.8	<.05	6	4.4

Batch No. Client # of Samples Date Received Date Completed Project Acme file# PO#	Strongbow Exploration Inc 46 120506 250506 2335a-06-01 A602103																																				
	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX		G1DX	G1DX NA	
SAMPLE DESCRIPTION	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm	Hg ppm	Sc ppm	TI ppm	S %	Ga ppm	Se Sample ppm kg	Wt.
DETECTION	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.01	0.1	0.05	1	0.5 0	
STANDARD G-1	0.6	6.8	12.4	50	<.1	6.2	4.7	583	2.1	3	2.4	<.5	4.4	68	<.1	0.2	0.1	42	0.55	0.087	8	80.8	0.65	245	0.144	<1	1.09	0.099	0.58	0.1	<.01	2.3	0.3	<.05	6	<.5 -	
IN001 IN002	0.3	28.7 30.2	3.9 5.4	43 54	<.1 <.1	34.9 31	11.8 12.8	417 473	2.74 2.85	1.6 2.4	0.4 0.4	2 2.1	0.9 1.1	110 92	0.1 0.1	0.3 0.2	<.1 0.1	79 80	1.18 1.01	0.05 0.067	9 10	46.1 40.3	0.87 0.92	72 81	0.134 0.144	4 4	1.36 1.62	0.038 0.036	0.06 0.09	<.1 0.1	0.03 0.03	5 5.6	<.1 <.1	<.05 <.05	5 5	<.5 1.45 <.5 1.6	•
IN003	0.3	18.7	1.6	31	<.1	11.5	8.8	286	3.27	1.8	0.4	1.2	1	32	<.1	0.1	<.1	112	0.48	0.089	5	26.1	0.39	53	0.071	<1	0.67	0.016	0.05	0.1	<.01	2.3	<.1	<.05	3	<.5 3.2	
IN004	0.5	33.3	3.9	53	<.1	38.2	15.3	624	3.25	3.1	0.4	2.6	1.4	84	0.1	0.2	0.1	87	0.95	0.084	11	45.3	0.96	90	0.137	2	1.54	0.031	0.11	0.1	0.06	5.7	<.1	<.05	6	<.5 1.85	i
IN005 IN006	0.3 0.3	31.4 26.9	4.1 3.4	27 56	<.1 <.1	17.2 40.1	5.4 13.4	250 466	1.34 2.88	0.6 1.8	0.2 0.4	1.4 12.7	0.2 1.3	514 108	0.2 0.1	0.2 0.1	<.1 0.1	34 89	18.06 1.06	0.088 0.065	6 9	20.5 43	0.54 1.01	158 68	0.05 0.163	10 3	0.66 1.47	0.02 0.054	0.06 0.07	0.1 <.1	0.03 0.02	2.3 5	<.1 <.1	0.07 <.05	2 5	0.6 1.1 <.5 1.16	
IN007	0.3	19.7	3.5	30	<.1	18.4	8.6	343	2.42	1	0.2	0.9	1	187	0.1	0.1	0.1	58	4.88	0.029	8	31.2	0.64	101	0.14	13	1.36	0.037	0.19	<.1	0.01	5.2	<.1	<.05	5	<.5 1.3	
IR001 IR002	0.4 0.4	30.9 20.1	3.2 2.6	53 46	<.1 <.1	65.3 34.3	19 14.6	552 452	3.43 2.88	1.8 1.9	0.4 0.6	2.3 2.2	1.7 1.3	164 86	0.1 0.1	0.1 0.2	<.1 <.1	88 86	1.36 0.75	0.095 0.085	13 9	44.2 38.5	1.63 1.08	85 86	0.201 0.124	3 2	2.04 1.23	0.09 0.065	0.16 0.05	0.1 0.1	0.04 0.01	6.6 4.3	<.1 < 1	<.05 <.05	7 4	<.5 1.55 <.5 2.4	5
RE IR002	0.4	20.1	2.6	40	<.1 <.1	34.3	14.6	452	2.80	2.1	0.6	1.3	1.3	89	0.1	0.2	<.1 <.1	83	0.75	0.085	9	36.3	1.00	90	0.124	2	1.23	0.063	0.05	<.1	0.01	4.3	<.1 <.1	<.05 <.05	4	<.5 2.4	
IR003	0.4	20.3	2.5	46	<.1	33.5	13.1	430	2.8	1.9	0.6	1.3	1.2	88	0.1	0.2	<.1	83	0.72	0.09	9	38.2	1.07	92	0.113	2	1.17	0.054	0.05	0.1	<.01	4.2	<.1	<.05	4	<.5 2.45	
IR004 IR005	0.3 0.4	20.9 31.7	2.8 3.3	47 57	<.1 <.1	49.4 60.7	13.9 18.1	372 477	2.72 3.28	0.8 1	0.4 0.7	0.6 1.5	1.3 1.8	121 131	0.1 0.1	0.1 0.1	<.1 <.1	87 95	1.27 1.34	0.062 0.076	9 12	47.1 67.6	1.21 1.48	63 81	0.163 0.155	5 12	1.44 1.77	0.13 0.102	0.06 0.12	0.1 <.1	<.01 0.01	3.7 5.8	<.1 <.1	<.05 <.05	4 6	<.5 1.98 1 1.86	
IR006	0.3	31.6	3.5	59	<.1	54.9	18.8	541	3.39	0.8	0.4	0.5	2.4	99	0.1	0.1	<.1	76	0.93	0.063	12	38.1	1.40	69	0.201	4	1.89	0.064	0.2	<.1	0.02	6.8	<.1	<.05	6	<.5 1.83	
IR007	0.2	23.4	2.8	50	<.1	60.5	16.7	381	2.91	0.5	0.5	1	1.3	136	0.1	0.1	<.1	84	1.09	0.066	10	49	1.48	80	0.141	4	1.66	0.155	0.07	<.1	0.01	4.2	<.1	<.05	5	<.5 1.88	
IR008 IR009	0.6 0.3	42.4 38.8	4.4 3.4	47 49	<.1 <.1	40.9 52.6	11.2 14.7	365 404	2.05 3.21	0.7 1.2	1.3 0.4	2.8 10.1	0.9 2.2	126 129	0.1 0.1	0.3 0.1	<.1 <.1	88 82	6.9 1.09	0.088 0.043	10 13	36.6 47.6	1.18 1.19	56 102	0.104 0.15	43 4	1.16 1.76	0.072 0.066	0.09 0.13	0.1 <.1	0.04 0.03	4.3 7.7	<.1 <.1	0.11 <.05	4 6	1.6 0.65 <.5 1.7)
IR010	0.3	34.3	5.1	55	<.1	85.7	22.7	554	3.55	<.5	0.6	2.7	2.3	107	0.1	<.1	<.1	85	1.28	0.084	14	32.4	2.12	49	0.218	1	2.18	0.061	0.14	0.1	0.01	5.6	<.1	<.05	7	<.5 1.74	
IR011 IR012	0.4	39.3 58.7	3.6	59 66	<.1	82.3	20.3 15	546 548	3.76 3.28	1.6 3	0.4 0.3	2.2	1.7 1.7	138 91	0.1 0.2	0.2 0.2	<.1	97 81	1.87 0.93	0.082	12 9	48.9 40.5	2.06	79 110	0.153 0.134	4 4	2.04 1.96	0.094 0.025	0.12	<.1 0.1	0.04	5.6 6.4	<.1 0.1	<.05 <.05	6	<.5 2.06 <.5 2	5
IR012	0.6 0.3	41	5.4 2.9	43	<.1 <.1	45.3 29.1	10.1	299	2.32		0.3	3.6 1.6	0.8	146	0.2	0.2	0.1 <.1	67	0.93 5.45	0.061 0.082	9 10	40.5 31.7	1.19 0.82	105	0.134	4 12	1.96	0.025	0.2 0.13	<.1	0.01 0.03	0.4 4.4	<.1	<.05 0.07	6 4	<.5 2 1 1.56	;
IR014	0.4	45.9	4	74	<.1	46.3	14.7	708	3.29	1.1	0.5	0.5	1.2	150	0.2	0.1	0.1	78	1.8	0.072	15	36.1	1.11	141	0.077	11	1.85	0.064	0.23	<.1	0.03	6.6	0.1	<.05	6	0.6 1.05	i
IR015 IR016	0.9 1.5	93.5 35.7	4 2.7	29 34	<.1 <.1	36.8 27.5	5.8 8.5	343 280	1.3 1.69	0.5 0.5	3.1 3	3 1.3	0.2 0.8	100 166	0.2 0.1	0.6 0.2	<.1 <.1	106 91	4.65 10.62	0.132 0.095	12 9	16.5 25.4	0.7 0.86	64 90	0.032 0.065	38 24	0.82 0.97	0.056 0.084	0.1 0.08	<.1 <.1	0.08 0.03	2.3 3.3	<.1 <.1	0.21 0.11	3 3	2.4 0.55 1.8 0.65	
IR017	0.3	32.9	3.3	45	<.1	50	17.7	528	2.99	<.5	0.6	1.7	1.7	256	0.1	0.1	<.1	69	8.46	0.111	13	32.5	1.79	118	0.241	6	2.31	0.188	0.19	<.1	0.01	6.7	<.1	<.05	6	0.5 2.22	
MN005	0.4	35.9	3.4	49	<.1	42.7	14.1	462	2.99	1.7	0.7	2.1	1.2	119	0.1	0.1	<.1	87	1.26	0.064	11	39.4	1.13	61	0.211	3	1.67	0.065	0.07	0.1	0.02	5.9	<.1	<.05	6	0.6 1.5	
MN006 MN007	0.4 0.8	34.2 48	3.7 3.6	51 45	<.1 <.1	51.4 41	16.5 13.3	469 382	3.34 2.71	1.3 2.1	1 0.9	1.6 1.7	1.3 0.7	135 159	0.1 0.1	0.1 0.3	<.1 <.1	95 94	1.39 2.07	0.071 0.08	12 9	39.3 38.3	1.33 1.05	54 49	0.245 0.145	4 12	1.98 1.47	0.069 0.058	0.07 0.07	0.1 <.1	0.03 0.05	6.5 5.2	<.1 <.1	<.05 0.08	6 5	0.5 1.48 2.2 0.95	
MN008	0.8	37.7	4.8	58	<.1	43.6	15	538	3.51	2.4	0.6	3.1	1.3	115	0.1	0.2	0.1	99	1.22	0.071	11	43.4	1.17	55	0.181	5	1.76	0.057	0.08	0.1	0.02	6.1	<.1	<.05	6	0.5 1.73	
MN014	0.3	31.1	3.2	47	0.1	48.7	13.9	410	2.86	1	0.7	0.7	1.3	131	0.1	0.1	<.1	72	1.23	0.047	11	42.4	1.05	64	0.2	6	1.71	0.058	0.08	<.1	0.03	6.4	<.1	<.05	5	0.6 1.76	
MN015 MN016	0.3 0.6	26.6 25	2.9 3	42 48	<.1 <.1	43.8 49.6	12 14.7	561 436	2.4 3.24	1.5 1.7	0.8 0.4	1.5 1.8	0.7 1.3	167 156	0.1 0.1	0.1 0.1	<.1 <.1	70 101	3.57 1.13	0.067 0.081	8 10	39.1 52	1.11 1.25	78 74	0.162 0.209	12 2	1.58 1.77	0.152 0.228	0.06 0.06	<.1 0.1	0.02 0.01	4.9 5.6	<.1 <.1	0.06 <.05	5 5	0.7 1.32 0.5 2.03	
MN017	1.2	29.9	2.8	53	<.1	64.4	16.9	489	4.12	1.1	0.6	1.5	1.5	109	0.1	0.1	<.1	126	1.07	0.094	11	83.7	1.39	46	0.214	3	1.68	0.074	0.05	0.1	0.01	5.7	<.1	<.05	6	<.5 2.64	Ļ
SB020 STANDARD DS6	0.8 11.9	35.3 126.2	1.6 30.1	20 146	<.1 0.3	10.8 25.8	6 11	163 718	3.01 2.87	1.2 21.3	1.4 6.7	0.6 46.8	0.8	48 40	0.1 6	0.3 3.6	<.1	124 57	1.01 0.86	0.047 0.079	3 13	24.6 190.4	0.29 0.58	38 163	0.053 0.08	5 17	0.58 1.91	0.017 0.075	0.04 0.15	0.1 3.7	0.01 0.23	1.6 3.2	<.1 1.7	<.05 <.05	3 7	1.3 1.76 4 7 -	5
STANDARD G-1	0.2	2.8	3.1	44	<.1	3.7	4.1	563	1.89	<.5	3	0.8	4.6	68	<.1	3.0 <.1	0.1	37	0.57	0.079	9	8.2	0.58	217	0.08	1	1.04	0.075	0.49	0.1	<.01	2.2	0.3	<.05	5	4.7 - <.5 -	
SB021	0.6	52.1	2.5	25	<.1	12.4	8.7	312	4.4	1.9	0.7	0.9	1.5	47	0.1	0.2	<.1	167	0.92	0.062	6	31.1	0.4	63	0.077	4	0.97	0.023	0.07	0.1	0.02	2.7	<.1	<.05	4	<.5 1.96	
SB022 SB023	0.3	42.9 61.5	4 2.1	53 33	<.1 <.1	50.3 10.3	16.6 7.6	500 308	3.44 2.72	1.6 1.7	0.5 0.7	1.2 1.2	1.5 1.7	78 50	0.1 0.1	0.1 0.2	0.1 <.1	97 98	0.85 1.07	0.044 0.081	9	35.4 20	1.21 0.45	52 72	0.183 0.069	3 2	1.78 0.94	0.067 0.027	0.16 0.09	0.1 0.1	0.01 0.02	5.7 2.6	<.1 <.1	<.05 <.05	6 4	<.5 2.42 <.5 1.69	
SB024	0.7	71	2.3	24	<.1	11.9	8.9	268	3.06	2.8	0.9	1.1	1.8	59	0.1	0.2	<.1	100	1.23	0.032	7	22.7	0.5	83	0.089	4	1.28	0.024	0.06	0.1	0.02	3.3	<.1	<.05	5	0.6 2.01	
SB025	0.4	21.3	2.6	38	<.1	14.4	8.9	387	2.51	2.1	0.4	10.9	1.1	51	0.1	0.2	<.1	80	0.61	0.081	6	27.6	0.6	79	0.089	1	0.99	0.029	0.06	0.1	0.01	3.3	<.1	<.05	4	<.5 1.95	
SB026 SB027	0.5 0.6	22.1 46.1	3 5.4	43 55	<.1 <.1	16.8 49.1	10.1 17.6	364 686	4.15 3.75	2.4 2.2	0.5 0.6	1 2.1	1.2 1.4	44 205	0.1 0.1	0.3 0.1	<.1 <.1	151 105	0.62 2.82	0.094 0.083	6 11	42.9 33.9	0.56 1.69	62 77	0.093 0.321	1 7	0.89 2.35	0.027 0.078	0.05 0.13	0.1 0.1	0.01 0.02	3.1 6.9	<.1 <.1	<.05 <.05	4 8	<.5 3.13 <.5 2.01	
SB028	0.4	22.7	2	21	<.1	10	5.5	297	1.79	1.8	0.5	0.5	0.3	159	0.1	0.2	<.1	60	14.35	0.051	4	17.5	0.51	66	0.069	9	0.7	0.027	0.06	0.8	0.01	2.2	<.1	<.05	3	0.5 1.55	;
SB029 SB030	0.5	22.7	3.2 5	40 14	<.1	15.5	9.6	420 86	3.07	2.4	0.6	0.9	1.2	50 420	0.1	0.2	<.1	103	0.68	0.096	7	33.5	0.6	81 39	0.098	1	1.03 0.19	0.03	0.06	0.1	0.01	3.6	<.1	<.05	4	<.5 2.51 0.7 0.64	
SB030 SB032	0.2 0.4	12.6 23.1	5 2.9	14 41	<.1 <.1	2.8 19.8	1.1 9.8	86 436	0.24 2.7	0.9 2.2	0.4 0.5	<.5 0.7	<.1 1.2	420 56	0.1 0.1	0.1 0.2	<.1 0.1	7 82	22.47 0.73	0.074 0.084	1 7	4.2 27.9	0.63 0.74	39 81	0.01 0.099	46 1	0.19	0.035 0.03	0.02 0.07	0.1 0.1	0.01 0.01	0.2 3.7	<.1 <.1	0.08 <.05	1 4	0.7 0.64<.5 2.65	
SB034	0.3	20.7	2.5	36	<.1	13.9	8.3	359	2.1	2.2	0.4	1.2	0.9	50	<.1	0.2	<.1	62	0.62	0.076	6	23.1	0.61	75	0.088	2	1.02	0.031	0.06	0.1	0.01	3.3	<.1	<.05	4	<.5 1.85	
RE SB034 SB035	0.3 0.5	20 29.6	2.5 3.9	36 53	<.1 <.1	13.3 23.6	8.1 15.2	351 449	2.06 11.15	2 2.8	0.4 0.9	0.9 5.3	1 2.6	47 39	0.1 0.1	0.2 0.3	<.1 0.2	61 459	0.63 0.57	0.077 0.09	6 8	22.7 97.4	0.61 0.46	74 54	0.087 0.131	2	1 0.74	0.031 0.023	0.06 0.04	<.1 0.1	0.01 0.01	3.3	<.1 <.1	<.05 <.05	4 7	<.5 - <.5 2.2	
STANDARD DS6	11.9	125.2	30.5	146	0.3	25.9	11.2	716	2.92	2.0	6.8	5.3 54.6	3.1	39 41	6.5	3.6	5.2	459 57	0.88	0.09	° 15	97.4 188.8	0.48	172	0.083	18	1.97	0.023	0.04	3.6	0.23	3.4	<.1 1.8	<.05 <.05	7	4.5 -	

Batch No.																																				
Client	Strongbow Exploration Inc.																																			
# of Samples	1																																			
Date Received	120506																																			
Date Completed	250506																																			
Project	2335a-06-01																																			
Acme file#	A602104																																			
PO#																																				
	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX	G1DX
SAMPLE	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ba	Ti	В	AI	Na	к	W	Hg	Sc	TI	S	Ga	Se
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm
DETECTION	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.01	0.1	0.05	1	0.5
STANDARD G-1	0.2	2.4	3.2	41	<.1	3.7	3.8	588	2.05	<.5	2.5	<.5	4.2	66	<.1	<.1	0.1	37	0.57	0.073	8	8.6	0.59	199	0.14	1	1.03	0.104	0.54	0.2	<.01	2.1	0.3	<.05	5	<.5
SB-IN-AR-1	0.1	0.8	2.1	5	<.1	0.8	0.6	40	0.26	<.5	<.1	1.9	0.4	9	<.1	<.1	<.1	2	0.05	0.003	2	8.5	0.05	15	0.017	<1	0.2	0.045	0.07	0.1	<.01	0.6	<.1	<.05	1	<.5
STANDARD DS6	11.4	122.8	29.4	141	0.3	24.7	10.9	695	2.83	21.3	6.7	47	3	39	6.1	3.4	4.9	55	0.86	0.079	13	183.1	0.58	164	0.08	17	1.9	0.075	0.15	3.6	0.23	3.2	1.8	<.05	6	4.2

APPENDIX III

Inn Property Reconnaissance Prospecting –Silt, Soil, and Rock Sample Descriptions

SampleID	Sample_Type	Comment	NAT_East	NAT_North	Au_ppb	Ag_ppm	As_ppm	Hg_ppm	Sb_ppm	Ba_ppm	Cu_ppm	Pb_ppm	Zn_ppm	Mo_ppm
32602	Rock	stratigraphy: spius	642607.82	5545204	0.6	0.2	23.1	0.19	2.7	27	51	3.2	56	6.1
32603	Rock	moderately hematite altered fresh andesite with local pyrite along fractures; stratigraphy: spius	642041	5544402	1.5	0.2	3.1	0.02	0.1	59	53.7	2.2	73	3.1
32604	Rock	stratigraphy: pimainum	642096	5546231	1.4	0.05	0.7	0.005	0.1	145	69.3	4.4	68	1.4
32605	Rock	weak chalcedonic and calcite veining with dogtooth textures on sub-mm scales; unknown stratigraphy	642394	5546506	0.25	0.05	0.25	0.005	0.05	85	43.6	1.4	70	0.7
IN001	Silt		642149.22	5544256.01	2	0.05	1.6	0.03	0.3	72	28.7	3.9	43	0.3
IN002	Silt		641126.74	5544249.5	2.1	0.05	2.4	0.03	0.2	81	30.2	5.4	54	0.4
IN003	Silt		640923.27	5545153.34	1.2	0.05	1.8	0.005	0.1	53	18.7	1.6	31	0.3
IN004	Silt		640951.81	5545429.14	2.6	0.05	3.1	0.06	0.2	90	33.3	3.9	53	0.5
IN005	Silt		640894.72	5546623.31	1.4	0.05	0.6	0.03	0.2	158	31.4	4.1	27	0.3
IN006	Silt		640785.44	5549710.28	12.7	0.05	1.8	0.02	0.1	68	26.9	3.4	56	0.3
IN007	Silt		640741.59	5551655.61	0.9	0.05	1	0.01	0.1	101	19.7	3.5	30	0.3
MC-356	Stream		641605.6	5549712.19	0.25	0.05	1.7	0.02	0.1	65	29.3	3.8	49	0.4
MC-364	Stream		641455.6	5549812.19	0.25	0.05	1.8	0.04	0.1	60	31.8	4.2	64	0.5
MC-365	Stream		641400.6	5548602.19	0.25	0.05	1.5	0.06	0.2	61	32.6	3.3	49	0.5
MC-366	Stream		640848.27	5548706.8	0.5	0.05	1.5	0.02	0.1	57	32.6	3.2	48	0.4
		CBQZ veined dk green tuff.; Coarse CCAK; Lt bluish white to												
MC-R319	Rock	semiclear chalcedony (apparent highlevel agate type).; Rdside talus fgmnt. 89x20x25cm cobble.	641800.6	5546602.19	0.25	0.05	2.8	0.01	0.05	2388	6.4	2.2	14	0.7
		Irregular masses/vns (?) bright redbrn to wht & seagrn jasper.;												
MC-R320	Rock	O/C & Talus grab from station and for 15m downslope to WSW	641727.61	5546957.18	0.25	0.05	5.2	0.07	0.1	128	3.3	0.5	4	8.7
		(~250). In situ masses to 2025 cm width												
MC-S138	Soil		641822.6	5546506.18	16.4	0.1	1.7	0.03	0.4	124	50.2	5.1	64	0.4
		Grab of large (50cm) qtz float boulder. Milky with slight banding,												
SB-IN-AR-1	Rock	mottled weathered surface, no apparent mineralization, non-	640927.74	5546003.33	1.9	0.05	0.25	0.005	0.05	15	0.8	2.1	5	0.1
		magnetic, no-fizz. Minor qtz fragments located on uphill slope.												