Isintok Project

Osoyoos Mining Division
N.T.S. 92H/09 \& 82E/12
Latitude $49^{\circ} 31^{\prime} 50^{\prime \prime} \mathrm{N}$, Longitude $120^{\circ} 01^{\prime} 30^{\prime \prime} \mathrm{W}$

for
Jasper Mining Corporation 1020, 833-4 $4^{\text {th }}$ Avenue S.W.
Calgary, Alberta T2P 3T5

Submitted by:
Richard T. Walker, M.Sc., P.Geol.
of
Dynamic Exploration Ltd. 656 Brookview Crescent

Cranbrook, B.C.
V1C 4R5

Submitted: December $15^{\text {th }}, 2006$

SUMMARY

The Isintok property comprises approximately $3,007 \mathrm{ha}$ (7,433 acres), covering the drainage divide between McNulty and Isintok creeks, located approximately 27 km west-southwest of Summerland, BC and 20 km north of Hedley. The property is located along the height of land between the Okanagan Lake drainage system (Isintok Creek) and the Similkameen River drainage system (McNulty Creek) on mapsheets 092H/09 and 082E/12 (BCGS TRIM maps 092H060 and 082E051). The centre of the property is at Latitude $49^{\circ} 31^{\prime} 50^{\prime \prime} \mathrm{N}$, Longitude $120^{\circ} 01^{\prime} 30^{\prime \prime} \mathrm{W}$ (approximate UTM coordinates $715824 \mathrm{E}, 5490050 \mathrm{~N}$). Access to the property is available along the well maintained McNulty FSR from Summerland.

The area currently underlain by the Isintok property has been the locus of previous exploration programs targeting possible $\mathrm{Cu} \pm \mathrm{Mo} \pm \mathrm{Au} \pm \mathrm{Ag}$ porphyry-style mineralization. In general, results previously reported from the property consistently document weakly to locally, relatively strongly, anomalous copper \pm molybdenum \pm gold \pm silver over a considerable portion of the property. Exploration to date has been completed with the objective of locating and, ideally, defining a coppermolybdenum \pm silver \pm gold porphyry style deposit similar to the Brenda Mine, located approximately 40 km north of the Isintok property, west of Peachland. "The Brenda mine began production in early 1970 with measured geological (proven) reserves of $160,556,700$ tonnes grading 0.183 per cent copper and 0.049 per cent molybdenum at a cutoff of 0.3 per cent copper equivalent $[\mathrm{eCu}=\% \mathrm{Cu}+(3.45 \mathrm{x} \% \mathrm{Mo})]$ (BC MINFILE 092HNE047) (Note: reported prior to implementation of, and therefore not compliant with, National Instrument 43-101). Of particular significance to the Company's evaluation of the property is that "... reserves are based on 14 widely-spaced diamond and percussion-drill holes drilled by Anaconda Canada Exploration Ltd. in 1981. The 14 holes average about 90 metres in depth with many of the holes stopped in ore grade material. The area encompassed measures about 1000 by 300 metres with a vertical mineralized interval of 27 metres" (MINFILE 092HNE100). The documented fact that many of the holes stopped in material considered to be"ore grade", at that time, suggests strong potential to increase the size and possible grade of the reported resource.

In the early winter of 2005, Jasper Mining Corporation completed a short, preliminary diamond drill program on the Isintok property. A total of four drill holes were drilled from three separate pads in order to provide an initial assessment of several anomalies identified from a Fugro airborne geophysical survey completed earlier in the year (Walker 2006). A total of 183 samples of sawn core were submitted to Acme Analytical Laboratories Ltd for Group 1DX 42 element ICP analysis.

The deposit model is that of a high tonnage, low grade copper \pm molybdenum \pm gold porphyry deposit. Review of the airborne geophysical data with regard to previous soil and drill results is ongoing.

Table of Contents

Summary i
Table of Contents ii
List of Figures iii
List of Appendices iii
1.0 Introduction 1
2.0 Location and Physiography 4
2.1 Location and Access 4
2.2 Physiography and Climate 4
2.3 Claim Status 5
3.0 History 7
4.0 Geological Setting 8
4.1 Regional Geology 8
4.2 Detail Geology 9
4.2.1 Mineralization 12
5.0 2005 Program 13
6.0 Results 14
7.0 Conclusions 21
8.0 References 22

List of Figures

Page
Figure 1 - Regional Location Map 2
Figure 2 - Property Location Map 3
Figure 3 - Claim Map 6
Figure 4 - Drill Plan Map - 1: 10,000 scale BackPocket
Figure 5 - Drill Section - $1: 10,000$ scale (3x Vertical Exaggeration) Back
Pocket
Figure 6 - Strip Log - ISIN 05-01 16
Figure 7 - Strip Log - ISIN 05-02 17
Figure 8 - Strip Log - ISIN 05-03 19
Figure 9 - Strip Log - ISIN 05-04 20

List of Appendices

Appendix A - Statement of Qualifications
Appendix B - Core Descriptions and Analytical Results
Appendix C-Statement of Expenditures
Appendix D - Program related Documents

1.0 INTRODUCTION

The Isintok property comprises approximately 3,007 ha (7,433 acres), covering the drainage divide between McNulty and Isintok creeks, located approximately 27 km west-southwest of Summerland, BC and 20 km north of Hedley (Fig. 1 and 2). The property is located along the height of land between the Okanagan Lake drainage system (Isintok Creek) and the Similkameen River drainage system (McNulty Creek) on mapsheets 092H/09 and 082E/12 (BCGS TRIM maps 092H060 and 082 E 051). The centre of the property is at Latitude $49^{\circ} 31^{\prime} 50^{\prime \prime} \mathrm{N}$, Longitude $120^{\circ} 01^{\prime} 30^{\prime \prime} \mathrm{W}$ (approximate UTM coordinates $715824 \mathrm{E}, 5490050 \mathrm{~N}$). Access to the property is available along the well maintained McNulty FSR from Summerland.

The area currently underlain by the Isintok property has been the locus of previous exploration programs targeting possible $\mathrm{Cu} \pm \mathrm{Mo} \pm \mathrm{Au} \pm \mathrm{Ag}$ porphyry-style mineralization. In general, results previously reported from the property consistently document weakly to locally, relatively strongly, anomalous copper \pm molybdenum \pm gold \pm silver over a considerable portion of the property. Exploration to date has been completed with the objective of locating and, ideally, defining a coppermolybdenum \pm silver \pm gold porphyry style deposit similar to the Brenda Mine, located approximately 40 km north of the Isintok property, west of Peachland. "The Brenda mine began production in early 1970 with measured geological (proven) reserves of $160,556,700$ tonnes grading 0.183 per cent copper and 0.049 per cent molybdenum at a cutoff of 0.3 per cent copper equivalent $[\mathrm{eCu}=\% \mathrm{Cu}+(3.45 \mathrm{x} \% \mathrm{Mo})]$ " (BC MINFILE 092HNE047) (Note: reported prior to implementation of, and therefore not compliant with, National Instrument 43-101). Of particular significance to the Company's evaluation of the property is that "... reserves are based on 14 widely-spaced diamond and percussion-drill holes drilled by Anaconda Canada Exploration Ltd. in 1981. The 14 holes average about 90 metres in depth with many of the holes stopped in ore grade material. The area encompassed measures about 1000 by 300 metres with a vertical mineralized interval of 27 metres" (MINFILE 092HNE100). The documented fact that many of the holes stopped in material considered to be"ore grade", at that time, suggests strong potential to increase the size and possible grade of the reported resource.

In the early winter of 2005, Jasper Mining Corporation completed a short, preliminary diamond drill program on the Isintok property. A total of four drill holes were drilled from three separate pads in order to provide an initial assessment of several anomalies identified from a Fugro airborne geophysical survey completed earlier in the year (Walker 2006). A total of 183 samples of sawn core were submitted to Acme Analytical Laboratories Ltd for Group 1DX 42 element ICP analysis.

The deposit model is that of a high tonnage, low grade copper \pm molybdenum \pm gold porphyry deposit. Review of the airborne geophysical data with regard to previous soil and drill results is ongoing..

2.0 LOCATION AND PHYSIOGRAPHY

2.1 Location and Access

The Isintok property is located approximately 27 km west-southwest of Summerland, BC and 20 km north of Hedley in the Osoyoos Mining Division (Fig. 1 and 2). The property is located along the height of land between the Okanagan Lake drainage system (Isintok Creek) and the Similkameen River drainage system (McNulty Creek) on mapsheets $092 \mathrm{H} / 09$ and 082E/12 (BCGS TRIM maps 092 H 060 and 082E051). The centre of the property is at Latitude $49^{\circ} 31^{\prime} 50{ }^{\prime \prime} \mathrm{N}$, Longitude $120^{\circ} 01^{\prime}$ 30" W (approximate UTM coordinates $715824 \mathrm{E}, 5490050 \mathrm{~N}$).

Access to the property is available along the well maintained McNulty FSR from Summerland. Proceed west from Summerland along Prairie Valley Road to the Summerland-Princeton Highway. Turn left on Bathville Road and continue past the Dump to the Isintok / McNulty FSR. Take the left fork at approximately km 19.8 toward Isintok Lake. The eastern property boundary is at approximately Km 26, approximately 1 km past the Isintok Lake Recreation Site.

2.2 Physiography And Climate

Elevations on the property vary from approximately $1700 \mathrm{~m}(5577 \mathrm{ft})$ at the eastern edge of the property along Isintok Creek to $1940 \mathrm{~m}(6365 \mathrm{ft})$. The property is located at the height of land between the Similkameen River and Okanagan Lake drainage systems. The property is located approximately 40 km south of the Okanagan Connector between Peachland and Merrit and receives similar snow fall. As such, they are subject to relatively heavy snowfall.

Snow generally remains on the ground into mid-May, particularly north facing slopes and valleys, however, the roads are generally clear and well drained, allowing access to most of the property. The main road into the headwaters of McNulty Creek is located along the north facing slope and late season snow and ice may persist to late May.

Therefore, the property is available for geological exploration from May to late October. However, the possibility of early, heavy snowfall can be expected as early as mid-October.

Vegetation in the area consists predominantly of coniferous trees with minor to moderate undergrowth comprised largely of small deciduous shrubs.

2.3 Claim Status

The Isintok property consists of 40 Mineral Tenure Online tenures, resulting from a combination of conversion of Legacy Claims and new acquisition (Fig. 3). The resulting property comprises a total area in excess of approximately 3,007 ha (7,433 acres).

Significant claim data are summarized on the following pages:
Mineral Tenure Online (MTO) Mineral Tenures

Tenure Name	Tenure Number	Good To Date	Area (ha)
ISINTOK 1	414581	Dec. 24, 2013	500
ISINTOK 2	414492	Dec. 24, 2015	500
ISINTOK 3	414495	Dec. 24, 2015	25
ISINTOK 4	414496	Dec. 24, 2015	25
ISINTOK 5	414497	Dec. 24, 2015	25
ISINTOK 6	414498	Dec. 24, 2015	25
ISINTOK 7	414499	Dec. 24, 2015	25
ISINTOK 8	414500	Dec. 24, 2015	25
ISINTOK 9	414501	Dec. 24, 2015	25
ISINTOK 10	521001	Dec. 24, 2013	503.079
ISINTOK 11	530436	Mar. 23, 2007	41.944
ISINTOK 12	530437	Mar. 23, 2007	20.97
ISINTOK 13	530438	Dec. 24, 2013	503.079
HED WEST	502495	Dec. 24, 2015	188.779
HEDWEST1	512538	Dec. 24, 2013	62.926
NW ANOMALY	520239	Dec. 24, 2013	209.599
MO-FO	520474	Dec. 24, 2013	62.927
MO-FO-2	520690	Dec. 24, 2013	62.914
MOLINK	520831	Dec. 24, 2013	188.685
HED BACK	528548	Feb. 18, 2007	167.796
HED-IN	528688	Feb. 20, 2007	83.877
HED SOUTH	530063	Mar. 15,2007	$\underline{209.794}$
		Total	$\mathbf{3 , 0 0 7 . 4 8 9}$

- Upon acceptance of 2005 Assessment Work credits.

3.0 HISTORY

1969 - Anaconda American Brass Limited - Similkameen reconnaissance project

- outlined an anomalous copper - molybdenum zone
- 48 claims staked

1970 - silt sampling of streams at 400 foot spacing

- 487 soil samples on lines spaced 800 feet with samples every 200 feet, 25 rock samples
- analyzed for $\mathrm{Ag}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}$ and Zn
- IP survey of Lines N22600 and N23400

1971 - Property optioned to Canex Aerial Exploration Ltd.

- staked additional 85 claims
- line cutting, 1165 soil samples (analyzed for $\mathrm{Ag}, \mathrm{Au}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}$ and Zn), 6.08 miles of IP and Mag surveying, 5 miles of road construction

1972-13.81 miles of IP and Resistivity surveying on 18 lines

- 62 " percussion drill holes completed for a total of 1365 feet (note: subsequently referred to as Placer holes)

1981 - Anaconda Canada Exploration Ltd. - completed limited magnetometer survey, geological mapping, petrochemistry, 8 km road construction

- $342^{1 / 2 "}$ " percussion drill holes for a total of $2,805.45$ metres
- 599 m of BQ diamond drilling

1992 - Seguro Consulting Inc. - geological mapping and rock sampling, thin section analysis
1996 - Verdstone Gold Corp. - 144 soil samples for 24 element ICP

- completed 3 diamond drill holes for a total of 900 feet

1997 - Verdstone Gold Corp / Molycor Gold Corp

- review of GSC Geophysical Map Series 8527G and 8521G to define Magnetic

Amplitude Distortion or Noise Anomalies and the Relative Ambient Field Strength

- Tectonic Survey and Photogeophysical Study
- completed 4 BQTW diamond drill holes for a total of 773.4 m

2005 - Fugro Airborne Survey - 164.7 line km airborne survey includes magnetics, resistivity and radiometric data

4.0 GEOLOGICAL SETTING

4.1 Regional Geology

Regionally, the property is located within a large intrusive batholith into Nicola group, comprised predominantly of lavas with intermixed tuffaceous and argillaecous layers and lenses. However, from a review of the regional geological map, the roof of the batholith must have been a significant distance above the current erosion level and so the details of the Nicola Group will not be discussed any further.

The phases comprising the batholith underlying the property were assigned to the Grey and Red Granodiorites by Rice (1947), with the property underlain by the Red Granodiorite. The following has been taken from Rice (1947) with regard to his "Red Granodiorite":
"Mostly it is coarser grained (than the grey granodiorite), much more variable in texture and grain size, and more plentifully associated with aplite and pegmatite dykes. Pegmatitic phases occur as well as distinct pegmatite dykes, and altogether the rock appears to have been derived from a magma much more plentifully supplied with mineralizers. Characteristically it is a light-coloured rock composed largely of quartz, plagioclase, and pink orthoclase or microcline. ... A darker and older porphyritic phase is in places cut by the normal pink phase, though generally they grade into one another and are so intimately associated that it is not possible to map them separately.

The groundmass of the porphyritic phase is a dark foliated granodiorite not unlike much of the "grey" granodiorite, but containing euhedral crystals of orthoclase as much as 3 inches long. These may be relatively scarce or, on the other hand, so closely spaced as to constitute 75 or 80 per cent of the rock. Zenoliths with a common orientation are also common in the porphyritic phase, and there is reason to suggest a relationship between the abundance of the zenoliths and the abundance of orthoclase crystals. ...

The normal phase of the red granodiorite ranges in composition from a granite to a quartz diorite with the average composition of a granodiorite. It differs from the grey granodiorite in having a much higher content of potash feldspar and generally more quartz. The plagioclase ranges from acid oligoclase $\left(\mathrm{An}_{16}\right)$ to andesine $\left(\mathrm{An}_{45}\right)$. Biotite is present in most specimens, and is the most abundant ferromagnesian constituent. Amphibole, commonly a member of the tremolite-actinolite family, is common. The usual accessory minerals are magnetite, apatite, titanite, and zircon.

The following has been taken from Woodsworth et al. (1991):
> "Between Okanagan Lake and the Pasayten Fault, the largest plutonic complex of general Jurassic age has been variously called the Similkameen, Pennask, and Okanagan Batholith (Peto and Armstrong, 1976; Gabrielse and Reesor, 1974) and is here called the Okanagan Composite Batholith. The batholith, crudely zoned both spatially and temporally (Peto, 1973), consists of at least seven plutonic units that intrude the Upper Triassic Nicola Group and are overlain by Tertiary volcanics. The margin consists of older granodiorite to quartz diorite called the Pennask Batholith in the north and the Similkameen Intrusions to the south. These rocks are characteristically equigranular and contain more hornblende than biotite. The marginal Similkameen Batholith gave a preliminary Early Jurassic U-Pb date (R.R. Parrish, pers. comm., 1986) which suggests that the Similkameen and Pennask bodies are part of the Guichon Suite. The core of the batholithic complex, here called the Osprey Lake Pluton, consists of characteristically pink granodiorite to granite that intrudes the typically greenish to grey Similkameen and Pennask intrusions. Abundant K-feldspar megacrysts are characteristic of the Osprey Lake Pluton. Biotite generally predominates over hornblende. Based on $\mathrm{Rb}-\mathrm{Sr}$ studies and a review of the K-Ar data, Peto and Armstrong (1976) thought that the Osprey Lake Pluton was emplaced at about 156 Ma . This conclusion is confirmed by $\mathrm{U}-\mathrm{Pb}$ dates on zircons of about 162.5 Ma (R.R. Parrish, pers. comm., 1987)".

4.2 Detail Geology

No mapping has been undertaken on the property by the author prior to drilling. Therefore, the following has been taken form a summary by Riccio

"Lithology

The following rock types were recognized at the Hed property:

1. Hornblende-biotite granodiorite
2. Biotite granodiorite
3. Megacrystic granodiorite
4. Aplite
5. Diorite-quartz diorite
6. Mafic dykes

Most of the property is underlain by hornblende-biotite granodiorite cut by sporadic aplitic and minor mafic dykes. Biotite granodiorite was observed at a few localities in the northwest and southwest anomaly areas. Diorite-quartz diorite crops out in the
northwest anomaly. The megacrystic granodiorite is very rare in outcrop but very common in float throughout the property.
Hornblende Biotite Granodiorite is a grey-weathering, medium grained hypidiomorphic granular rock light grey to locally pinkish or greenish on fresh surfaces. It consists of: $40-50 \%$ plagioclase, occurring as subhedral grains including both twinned and untwinned varieties; 30% combined quartz and Kspar as finer grained $(0.2-0.5 \mathrm{~mm})$ allotriomorphic granular aggregates interstitial to plagioclase grains; sporadic anhedral microcline or perthite grains up to 2 mm in size; 15% hornblende as subhedral mainly elongate crystals and less than 5% biotite occurring as pseudohexagonal books. Accessories include abundant sphene and subordinate apatite, magnetite, and zircon. Hornblende can be fresh or partially to totally replaced by secondary hydrothermal biotite.

Biotite granodiorite is texturally and compositionally similar to hornblende biotite granodiorite but lacks hornblende crystals.

The Megacrystic granodiorite is a very distinctive rock characterized by large pinkish microcline megacrysts (up to several centimetres) set in a finer grained ($0.5-3 \mathrm{~mm}$) hypidiomorphic granular matrix of plagioclase, quartz and Kspar, up to 10% primary biotite, and minor hornblende. The Kspar megacryst distribution in these rocks is highly variable from outcrop to outcrop and locally megacrysts can be seen to cross contacts between granodiorite and mafic xenoliths. This latter feature along with the variable modal distribution of megacrysts and the lack of aphanitic groundmass all indicate that the megacrystic granodiorites are not porphyries but porphyroblastic plutonic rocks in which megacrysts developed through solid state diffusion processes.

Aplites are fine grained aplitic-textured leucocratic rocks consisting of interlocking sub-rounded Kspar (mainly microcline) and quartz grains, subordinate plagioclase and minor biotite and muscovite. A few larger (up to 1-2 mm) anhedral quartz grains are locally scattered throughout the rock. Since these larger quartz grains impart a pseudoporphyritic texture to the rock, the aplitic dykes were described as quartz-porphyry dykes by previous workers in the area.

Diorites-quartz diorites are medium grained green coloured mesocratic rocks consisting of 40% euhedral to subhedral twinned plagioclase laths ($2-4 \mathrm{~mm}$) 40 to 45% mafics and 5 to 15% anhedral quartz interstitial to plagioclase. Mafic minerals include colourless clinopyroxene rimmed or patchily replaced by green hornblende, discrete irregularly shaped hornblende grains poikilitically enclosing plagioclase, deep reddish-brown magmatic biotite crystals, accessory apatite and sphene.

Structure

Poor exposures and moss-covered outcrops did not allow a systematic study of structural features. Zones of shearing and fracturing characterized by planar orientation of mafic minerals and a weakly developed pseudoschistosity are invariably present within mineralized and hydrothermally altered areas. Most shear and fracture sets are subvertical to steeply dipping and trend in a northwest-southeast or north-northwest-south-southeast direction....

Hydrothermal Alteration

Both background and structure-controlled hydrothermal alteration have been recognized at the Hed property. Background alteration consists of biotitization and chloritization developed within equigranular portions of the granodiorite. Structure controlled alteration is closely associated with fractures, shear zones, and quartz veins.

Background hydrothermal biotite occurs as fine grained felted aggregates of small greenish brown biotite grains partially to totally replacing hornblende crystals and locally corroding the rims of brown magmatic biotite. Hydrothermal biotitization can be classified as weak since both fresh and biotitized amphiboles always coexist in any given hand specimen. Hydrothermal chlorite patchily replaces amphiboles and biotites. Hydrothermal biotite is present in the northwest and southwest anomaly areas of the HED project but occurs most frequently in the central anomaly area. Background hydrothermal chlorite is common in the southwest anomaly area and rare elsewhere.

Structure-controlled alteration includes: 1) Fine grained aplitic-textured mixtures of quartz and Kspar which destroy the equigranular texture of the granodiorite. The Kspar flooding is often associated with and peripheral to younger quartz veins which may in turn contain minor interstitial Kspar; 2) Narrow films of dark green hydrothermal biotite developed on fractures and shear planes. 3) Zones of widespread chloritization associated with intense shearing and fracturing; 4) Localized and probably supergene clay-alteration developed near open fractures; 5) Epidote veins. Plagioclase in granodiorite from the HED property is characteristically fresh to very weakly sericitized except near zones of intense structure-controlled hydrothermal alteration. Here a weak pervasive alteration is seen as a light green coloration of this mineral. The green coloured plagioclases are good indicators of proximity to sulphide mineralization.

Mineralization

Common hypogene metallic minerals at the HED property include chalcopyrite, molybdenite, bornite, magnetite and locally, pyrite. Most of the $\mathrm{Cu}-\mathrm{Mo}$ mineralization occurs as veinlets or fracture coatings along shear or fracture planes
or as veinlets associated with quartz veins. Sulphides occurring as disseminations are relatively rare and include chalcopyrite, pyrite and molybdenite. The following vein types have been recognized:

1) chalcopyrite-magnetite,
2) chalcopyrite- bornite-magnetite,
3) chalcopyrite-molybdenite-magnetite,
4) chalcopyrite-molybdenite-bornite-magnetite,
5) molybdenite,
6) pyrite-chalcopyrite,
7) chalcopyrite-molybdenite-pyrite,
8) pyrite-chalcopyrite-bornite-magnetite.

Type 8 veins are very rare and types 6 and 7 uncommon, especially within the central anomaly area.

Vein types indicate that distinct copper, copper-molybdenum, and molybdenum bearing solutions were involved in sulphide deposition. Crosscutting relationships observed in drill core point to the following sequence of sulphide deposition: chalcopyrite-molybdenite, chalcopyrite, chalcopyrite-bornite, molybdenite.

Minerals identified from the zone of oxidation include limonite (goethite) malachite, azurite, chalcocite, ferro-molybdenite, and, occasionally, native copper. Highly magnetic malachite-stained shears or fractures containing patches of dark brown limonite surrounding remnants of unleached chalcopyrite are the commonest examples of surface mineralization. Although the effects of oxidation are largely surficial (less than 15-20 m deep) open fractures stained with malachite and limonite have been observed to depths of 53 m in diamond drill hole No. 2".

4.2.1 Mineralization

Disclaimer: The following reserve was reported in 1996 prior to implementation of National Instrument 43-101 and cannot currently be considered an Ore Reserve unless an updated feasibility study demonstrates economic viability.

Possible reserves are $22,994,985$ tonnes grading 0.067 per cent $\operatorname{MoS} 2$ (0.040 per cent molybdenum) and 0.161 per cent copper or a copper equivalent of 0.386 per cent copper. The reserves are based on 14 widely-spaced diamond and percussion-drill holes drilled by Anaconda Canada Exploration Ltd. in 1981. The 14 holes average about 90 metres in depth with many of the holes stopped in ore grade material. The area encompassed measures about 1000 by 300 metres with a vertical mineralized interval of 27 metres (George Cross News Letter No. 48 (March 7), 1996).

5.0 2005 PROGRAM

A diamond drill was mobilized on November 20 for a short drill program. Between November 20 and December 14, Jasper completed a short, preliminary diamond drill program on the property. A total of four drill holes were drilled from three separate pads (Fig. 4) in order to provide an initial assessment of several anomalies identified from a Fugro airborne geophysical survey completed earlier in the year (Walker 2006).

A total of 700.08 m of NQ (2") core was drilled. The core was described and then sampled over the entire length of each hole at 10 foot (3.05 metre) interval. The core was cut in half using a saw, with a total of 183 samples submitted to Acme Analytical Laboratories Ltd for Group 1DX 42 element ICP analysis.

All drill core recovered was sampled in 3.05 m (10 foot) increments. Resulting samples were submitted to Acme Analytical Laboratories Ltd. for Group 1EX analysis using their R150 process for drill core preparation. Sample preparation consisted of crushing of each sample so 70% passed 10 mesh, with 250 g split and subsequently pulverized so 95% passed 150 mesh. The Group 1EX package combines "... a strong 4 -acid digestion that dissolves most minerals with ... ICP-MS analysis ... (for a) highly cost-effective near-total determinations with low to very low detection limits". A 0.25 g split is heated in $\mathrm{HNO}_{3}-\mathrm{HClO}_{4}-\mathrm{HF}$ to fuming and taken to dryness. The residue is dissolved in HCl . Solutions are analysed by ICP-MS. Group 1EX provides 41 element ICP analysis of each sample and was chosen to provide information regarding any metal and/or element associations accompanying mineralization.

Note: while cutting the core, the assistant cut through the end of box 14 (Sample 28), continued into box 17 (Samples 32-34) and the first sample in box 16 (sample 30). The author caught the assistant when he had just started cutting sample 31. He had samples up to 34 so designated uncut sample 31 as $31 \mathrm{~B}, 32$ uncut so left it as it was (although shortened to 109.72-110.78).

The author went through samples between 27 and 34, matching core segments between sample and those remaining in the core boxes. Where possible, samples bags were relabeled according to core segments.

As a result, Sample 28 is a composite of samples 28 and 32; Sample 33 was mislabeled as 29; 34B is a composite of 34 and 28 (labelled as 30); 29 mislabeled as 31 and 30 mislabeled as 32 . Many core segments where matched, with corrections made to labelled sample bags accordingly, however, some samples remain composites of core segments that may or may not have been adjacent in the original core.

Analytical data and core descriptions have been included in Appendix B.

6.0 RESULTS

A total of four diamond drill holes, totalling 700.08 m , were completed from three separate drill pads (Fig. 4). Due to winter conditions prevalent on the property during drilling, and associated issues pertaining to the availability of water for drilling, the locations of the drill holes were modified on the basis of the Fugro airborne geophysical results, road access and available water.

ISIN 05-01 was located approximately 680 m east-northeast of the nearest previously drilled hole and on the northwest fringe of a prominent resistivity anomaly evident on the final geophysical maps received from Fugro Airborne Surveys. ISIN-05-02 (Pad \#2) was located on the southern margin of the same prominent resistivity anomaly and on the northern fringe of a large slightly elliptical resistivity anomaly drill tested in previous programs. Pad \#3 (hole 3 and 4) were located approximately 200 m east of weakly mineralized holes previously drilled in 1997. Upon completing hole \#4, hole \#3 was re-entered at 142.64 m and deepened to 246.57 m .

The three pads were widely spaced, intended to target and test three geophysical anomalies (Fig. 4). Compilation of previous drill data was ongoing at the time and, therefore, the precise location of all holes and, in some cases the results of some holes, were unavailable at the time of drilling. Previous holes were plotted on a best case basis with reference to claim maps and hand drawn maps. As a result, there was, and remains, uncertainty regarding the location of these holes. Work continues to obtain GPS coordinates for roads and trails on the property in an attempt to match them to those on previous maps and help further constrain the location of previous holes.

The holes drilled in 1996 and 1997 were rather better located with reference to a contour map which could be compared to the $1: 20,000$ TRIM maps to determine collar locations. In addition, review of the results of the these holes, particularly the 1997 holes, suggested the possibility of higher grade mineralization and was the intended target for pad 3 (Holes 3 and 4).

A prominent linear resistivity low (conductivity high) is evident from the Fugro airborne survey (Walker 2006) and was the intended target for Hole 1. The second hole was located at the northern edge of a large resistivity high, in a transitional zone between the linear resistivity anomaly and a broad resistivity low. (Note: the resistivity base for Figure 4 has been plotted with a reverse scale and is, thus, effectively a conductivity plot). The third and fourth holes were located in the core of the resistivity high, immediately east of several mineralized holes documented by previous drill programs.

Drill hole location data are as follows:

Drill Hole	Easting	Northing	Azimuth	Inclination	Length (m)
ISIN 05-01	716128	5490382	Vertical	-90°	124.96
ISIN 05-02	716682	5490030	Vertical	-90°	140.20
ISIN 05-03	716885	5489355	Vertical	-90°	246.57
ISIN 05-04	716885	5489355	075°	-45°	188.35

The holes were initially drilled at an inclination of -90° (Fig. 5) as no sections or other geological data was available which clearly documented the orientation of (a) controlling structure(s). Hole 4, however, was drilled at an azimuth of approximately 75°, at an inclination of -45° on the basis of mineralized veinlets identified in Hole 3. Upon completing hole \#4, hole \#3 was re-entered at 142.64 m and deepened to 246.57 .

An initial evaluation of the results of the 2005 drill program with respect to both previously documented surface soil and sub-surface drill results, as well as the Fugro airborne geophysical survey data, is interpreted to represent a possible mineralized annulus. Under this working hypothesis a mineralized phase of the Early Jurassic Bromley Batholith was emplaced into surrounding host rocks (comprised of earlier phases of the batholith. Subsequent erosion has removed the mineralized cap, leaving a mineralized ring (or annulus) as defined by both a resistivity high (conductivity low) and a magnetic high. Holes previously drilled on the property appear to document better, although still low, grades toward to margins of the coincident anomaly, thus leading to the interpretation of a mineralized annulus. Should this interpretation subsequently be determined to be correct, there are five additional, smaller anomalies having similar geophysical expressions.

In addition to circular to elliptical, possibly mineralized annuli (representing possible concentrically zoned porphyry-style mineralization), there are a number of well defined geophysical linears, defined predominantly by the magnetic and electromagnetic data. These linears define up to three distinct trends, oriented west-southwest - east-northeast, north-south and north-northwest - south-southeast. Of the linears evident, the strongest bisects the property, trending west-southwest - east-northeast, approximately along the boundary between the Isintok 1 and Isintok 2 Mineral Tenures.

As it is a broad (approximately 300 m wide), linear feature, it is not interpreted to be a porphyry-style target but rather a possible structure (i.e. fracture or fault) which may host mineralization derived from, and associated with, an interpreted adjacent porphyry. ISIN05-01 (Fig. 6), located 680 m from the nearest previously drilled hole, was a vertical hole collared approximately 100 m northeast of the centre of the trend of the linear. ISIN-05-02 (Fig. 7), also a vertical hole, was collared approximately

400 m southeast of the fringe of the linear. Hole $\# 1$ is interpreted to have intersected weak, yet anomalous, mineralization associated with the linear within the outermost envelope of mineralization (and alteration). Hole \#2 was well beyond the envelope of mineralization associated with the linear (and not far enough south to document mineralization associated a proposed mineralized annulus).

Holes 3 and 4 (Fig. 8 and 9) were drilled from the same pad along the southern edge of prominent and coincident resistivity and magnetic anomalies. Hole 4 was drilled at an inclination of -45° on the basis of mineralized veinlets identified in Hole 3, which was subsequently was re-entered at 142.64 m and deepened to 246.57. Both holes documented mineralization, albeit low grade, and are interpreted to have confirmed previous reports of sub-surface mineralization. As a result, the holes are considered important and for the fact that their location was accurately established using GPS.

A review of available information pertaining to the Brenda Mine (40 km to the north and Goldrea Resources ("Goldrea") Crow Rea property suggests structures trending 045° to 070° may be regional in extent and, in the case of the Crow Rea property, host high grade mineralization. Goldrea's Webb Site occurrence reportedly contains 500,000 tonnes grading 0.19% (Note: reported prior to implementation of, and therefore not compliant with, National Instrument 43-101), hosted in a structure oriented $060^{\circ} / 40^{\circ}$. The prominent linear on the Isintok property trends approximately $050^{\circ}\left(230^{\circ}\right)$ and is very well defined on the basis of electromagnetic and magnetic data results.

As part of the 2006 field program on the property, additional diamond drilling is proposed along the trend of the linear to further test this interpretation. (Note: shortly after receipt of the preliminary geophysical survey results, the Company acquired an additional Mineral Tenure to the northeast to cover the projection of this prominent linear). As previously stated, there are a number of other, less well defined, linears evident throughout the property, several of which are spatially associated with previously completed drill holes documenting weak, though anomalous mineralization.

7.0 CONCLUSIONS

The 2005 program consisted of a total of four diamond drill holes, totalling 700 m , completed from three separate drill pads. Due to winter conditions prevalent on the property during drilling, and associated issues pertaining to the availability of water for drilling, the final drill hole locations were modified on the basis of preliminary Fugro geophysical results, road access and available water. The first hole was intended to test a prominent linear resistivity low (conductivity high). The second hole was located at the northern edge of a large resistivity high, while the third and fourth hole were located in the core of the resistivity high, immediately east of several mineralized holes documented by previous drill programs.

The results from the limited drill program, while admittedly low grade, are considered significant and worthy of continued evaluation on the basis of the following:

1. Previous work has documented anomalous copper and molybdenum mineralization, both at surface and in previously completed drill holes (both percussion and diamond drill holes),
2. The Fugro airborne geophysical survey (Walker, 2006) returned many anomalies on the Resistivity, Magnetic and Radiometric series of maps, many of which are broadly coincident,
3. The 2005 drill program confirmed anomalous copper \pm molybdenum mineralization from locations up to 680 metres away from previously drilled holes and at greater depth than previously documented.

Results of the drill program are encouraging, particularly with respect to the fact that mineralization was identified at a greater distance (680 m) and at deeper levels (188 m vertically) than previously documented. Continued work to compile previous data (surface geochemistry and sub-surface drill results) is strongly recommended so as to allow evaluation and interpretation of the Fugro data with regard to known sub-surface mineralization and is expected to result in better delineation of potential drill targets. Further geological evaluation of the property, including additional diamond drilling, is proposed for the late spring.

8.0 REFERENCES

Rice, H.M.A. 1947. Geology and Mineral Deposits of the Princeton Map-Area, British Columbia, Geological Survey of Canada Memoir 243, 136 p.

Peto, P. and Armstrong, R.L. 1976. Strontium isotope study of the composite batholith between Princeton and Okanagan Lake, Canadian Journal of Earth Sciences, vol. 13, pp. 1577-1583.
--------- . 1973. Petrochemical study of the Similkameen batholith, British Columbia, Geological Society of America Bulletin, v. 84, pp. 3977-3983.

Riccio, L. 1982. Final Report - 1981 Exploration Activities, HED Claim Group, British Columbia, internal report for Anaconda Canada Exploration Ltd., 45 p. with Appendices

Walker, R.T. 2006. Report on the Isintok Property, Assessment Report 28,500, submitted August 11, 2006, 15 p.

Woodsworth, G.J., Anderson, R.G. and Armstrong, R.L. 1991. Plutonic Regimes in Geology of the Cordilleran Orogen in Canada, Gabrielse, H. and Yorath, C.J. (eds.), Geological Survey of Canada, Geology of Canada, no. 4, 9. 491-531.

Appendix A

Statement of Qualifications

Richard T. Walker, M.Sc., P.Geol.
656 Brookview Crescent
Cranbrook, B.C.
V1C 4R5

I, Richard T. Walker, hereby certify that:

1. I am a graduate of the University of Calgary with a Bachelor of Science in Geology in 1986 and subsequently obtained a Masters of Science in structural geology from the University of Calgary in 1989,
2. I am a Professional Geologist (P.Geol.) registered with the Association of Professional Geologists and Geoscientists of British Columbia,
3. I am the principal of Dynamic Exploration Ltd., 656 Brookview Crescent, Cranbrook, B.C. and work as a Consulting Geologist,
4. I have worked as a geologist and a consulting geologist from 1986 to the present in the provinces of British Columbia, Alberta and New Brunswick, the Northwest Territories, the state of Montana and Brazil and have been employed by the Geological Survey of Canada, the government of the Northwest Territories, and junior to senior resource companies as both a contract employee and as a consultant,
5. I am the author of this report which is based upon work completed on the property between November $20^{\text {th }}$ and December $14^{\text {th }}, 2005$.

Dated in Cranbrook, British Columbia this $13^{\text {th }}$ day of December, 2006.

Richard (Rick) T. Walker, P. Geol.

Appendix B

Core Descriptions and Analytical Results

DYNAMIC EXPLORATION LTD
DRILL LOG: DIAMOND DRILL CORE

MINERAL TENURE NUMBER:			543037
NTS:	092H/09E	TRIM Map:	092H060
CLAIM NAME: Isintok 1			
LOCATION - GRID NAME:			
EASTING:	716129	NORTHING:	5490380
SECTION:		ELEV:	1774
AZIM:	000°	LENGTH:	124.96
DIP:	-90 ${ }^{\circ}$	CASING LEF	
CORE SIZE:			
CORE ST	ORAGE: Pr	roperty, Cranb	

HOLE NO.	ISIN-05-01

DRILLING CO:	F.B. Drilling
STARTED:	23-Nov-05
COMPLETED:	26-Nov-05
PURPOSE:	To test Fugro EM
anomaly	
CORE RECOVERY:	$>97 \%$
LOGGED BY:	Rick Walker
DATE LOGGED:	
ASSAYED BY:	Acme Analytical
LAB REPORT NOS.:	A507894, A507894R A508023, A508023R

Drill Hole ISINTOK - 05-01

Broken intervals with probable failure (coarse grit to small cobble sized frags with poor cohesion) 36.82-37.10, 37.28-37.44, 37.50-37.55, 38.83-38.93, 39.16-39.37, 41.72-41.88, 42.60-42.67, 42.80-42.93
37.28-37.34 - Failure zone hosted by heavily chloritized, dark pink quartz monzonite
40.00-42.21 - Medium to dark pink quartz monzonite with development of light to medium green quartz + epidote veins / veinlets and dark green patches and feathery veins of chlorite sub-parallel to 30° to core axis
40.80-40.81 - Failure zone, loss of cohesion in quartz monzonite oriented at 60° to core axis. 43.34-44.04 - Interval comprised of fragments of medium (to dark) pink quartz monzonite with quartz + chlorite veinlets sub-parallel to 15° to core axis. Base of interval (43.92-44.04 m) comprised of medium green, heavily chloritized quartz monzonite that has failed between $43.92-43.93$ and $43.98-43.99$. Quartz monzonite has completely lost cohesion with development of coarse sand sized clasts in dark green clayey matrix. Thin quartz + epidote + chlorite infill along fractures.

Mineralization

41.88-41.99-Minimum 4 cm thick, light to medium dirty grey quartz vein (only 1 margin in core) a approximately 50° to core axis. Up to 3 cm thick zone enriched in chalcopyrite adjacent to vein (possibly in core of quartz vein). Chalcopyrite up to 0.5 cm in long dimension as coarse disseminated to weak mesh network up to 20%. Interval adjacent to chalcopyrite-rich interval (opposite side from quartz) comprised of 10-15\% chalcopyrite as thinner mesh textured and finer disseminated chalcopyrite.
Light grey quartz monzonite. Predominantly light grey quartz monzonite with highly subordinate medium pink intervals up to 1.5 m thick, associated with quartz + epidote + chlorite fractures oriented parallel to 30° to core axis. Quartz monzonite comprised of chalk white, subhedral kspar ($\leq 0.8 \mathrm{~cm}$) with subhedral to euhedral, $10-15 \%$ chlonized dark green to black amphibole ($\leq 1.0 \mathrm{~cm}$ lon dimension) and $15-25 \%$ black biotite $(\leq 0.5 \mathrm{~cm}$) phenocrysts, with approximately $1-3 \%$ black 115.74-116.00 - Pinkish - grey to medium pink, medium-grained, sucrosic textured quartz - biotite aplite. Upper contact at 55° to core axis; lower contact broken.

Broken intervals

59.70-60.15-Broken, with possible fault at centre of interva
68.32-69.34-Badly broken interval comprised of biotite- enriched (to 40\%), friable granodionite
79.06-79.45 - Multiple fault planes between 0° and 25° to core axis, thin coating of white clayey fault gouge
83.57-84.28, 85.59-86.00-Badly broken / faulted granodiorite with associated moderate pink potassic alteration. Rock heavily chloritized to a dark green, with abundant dark green clayey gouge. Intact host chloritized and potassic altered for $\leq 6-10 \mathrm{~cm}$ above and below.
86.38-86.87; 87.44-87.82-Discrete fault planes up to 1 cm thick, comprised of cataclastic clasts to small cobble sized flakes with matrix gouge, limited associated chlorite + potassic altered fault planes sub-paralle to core axis. Note: light to medium green coloured alteration associated with quartz-bearing fracture and fault plane surfaces, not epidote, malachite, chlorite - probably calcite?
89.00-89.71 - Fracture plane with probable movement comprised of $\leq 2 \mathrm{~mm}$ of white to medium green calcite gouge sub-parallel to core axis
92.90-94.48 - Multiple thin fault planes sub-parallel to core axis, comprised of $\leq 2 \mathrm{~mm}$ clayey gouge with up to 1.5 cm friable granodiorite along each margin
96.44-96.90-As above
97.92-98.13-As above
99.42-100.32 - Fault plane at 30° to core axis with up to 0.5 cm of dark dirty green clayey gouge Potassic alteration evident up to 1 cm into host rock. Interval broken with other possible fault planes similar to $92.90-94.48 \mathrm{~m}$
100.58-100.98 - Interval broken above 9 cm thick, medium grey band of fault gouge between 100.89 100.98 m . Basal contact at 60° to core axis.
102.10-102.24 - Broken interval with light to medium green calcite covered surfaces. Host rock potassic altered
103.42-105.45 - Broken interval with heavily chloritized and faulted core. Loss of cohesion over upper 26 cm underlain by weakly to moderately chloritized granodiorite to approximately 104.07 m . Heavily chloritized to approxiamtely 104.23 m with loss of visually recognizable granodiorite. Fault gouge with rounded milled, dark green clasts to 1.5 cm suspended in dark green to reddish brown clayey matrix between 104.23 and 104.48 m . Heavily to strongly chloritized to approxiamtely 105.00 m , with chloritization diminishing to base of interval
108.17-108.40 - Cataclastic fault at approximately $20^{\circ}-25^{\circ}$ to core axis with $\leq 0.5 \mathrm{~cm}$ clayey gouge and angular, coarse grit sized clasts.
111.52-114.29-9 cm of material in box
111.52-113.63 - Broken interval with fault zone between approximately 114.29-114.46 comprised of milled angular clasts to coarse grit clayey gouge. Chloritization increases from margins of interval to fault zone, heavily chloritized.
113.82-114.05 - Increased abundance of medium green, coarse-grained biotite having an increasingly well developed foliation toward fault zone. Biotite comprises approximately $30-40 \%$ of 3 cm interval above fault with gneissic texture
114.05-114.09 - Fault zone with jet black, fine-grained (chlorite?) gouge at high angle to core axis. 122.26-122.70 - Medium pink (potassic altered) interval with multiple chloritized fractures (shear?) up to 0.4 cm thick sub-parallel to shallowly inclined to larger fractures (splays?). Mafic minerals in host rock moderately to strongly chloritized.

Alteration

Potassic altered intervals in granodiorite between 1-20 cm thick, oriented sub-parallel and approximately 30° to core axis associated with fracturing, possible silicification. May be associated with both molybdenite and/or chalcopyrite
Below approximately 47.50 m fractures evident with no associated pink colouration with or without quartz infill.
Chlorite alteration of mafic minerals localized in highly subordinate zones associated with pink colouration (potassic alteration?) below 46.00 m .
Pink chloritic intervals: 44.04-47.92 (mod to strong), 48.86-49.16 (moderate), 49.93-50.96 (moderat to weak)
51.96-55.00 - Slight change in texture of quartz monzonite relative to rest of interval. Quartz monzonite has weak to light pink colour and possible preferred orientation evident in mafic minerals. Fractures with and without quartz infill $(\leq 0.5 \mathrm{~cm})$ at $15^{\circ}-20^{\circ}$ to core axis.

Box 1 - Overburden to 21.33, 21.33-22.54
Box 2-22.54-30.09
Box 3-30.09-36.36
Box 4-36.36-42.29
Box 5-42.29-47.90
Box 6-47.90-53.60
Box 7-53.60-59.45
Box 8-59.45-65.12
Box 9-65.12-70.74
Box 10-70.74-76.51
Box 11-76.51-82.29
Box 12-82.29-87.82
Box 13-87.82-93.6
Box 14-93.60-99.50
Box 15-99.50-105.00
Box 16-105.00-110.78
Box 17-110.78-117.98
Box 18-117.98-123.81
Box 19-123.81-124.96

DYNAMIC EXPLORATION LTD.
DRILL LOG: DIAMOND DRILL CORE

HOLE NO.
ISIN-05-02

DRILLING CO:	F.B. Drilling
STARTED:	27-Nov-05
COMPLETED:	29-Nov-05
PURPOSE:	To test Fugro EM
	anomaly
CORE RECOVERY:	$>97 \%$
LOGGED BY:	Rick Walker
DATE LOGGED:	
ASSAYED BY:	Acme Analytical
LAB REPORT NOS.:	A507894, A507894R
	A508023, A508023R

Drill Hole ISINTOK - 05-02

From	тo	Interv		Description	Sample	From	To	Mo	Copper
	15.24	$\begin{aligned} & \text { From } \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \hline \text { To } \\ & \text { (m) } \end{aligned}$	Casing	Number	m	m	ppm	ppm
15.24	18.25			Overburden					
18.25	24.38			Weathered Quartz Monzonite. Light grey quartz monzonite with dark orange-brown to brown fractures, and altered mafic phenocrysts. Euhedral, rectangular limonitic masses to 0.75 cm probably heavily to completely altered amphibole (hornblende) while biotite phenocrysts have limonitic rinds $\leq 1 \mathrm{~mm}$ thick with associated brown iron staining in host. Fractures irregular to strongly curvilinear, probably near surface spalling. One set of spaced ($0.3-1 \mathrm{~cm}$) fractures over approximately 10 cm at 63° to core axis at approximately 20 m . Variable cohesion in host with core crumbling to intact segments to 16 cm .	$\left\lvert\, \begin{aligned} & 37 \\ & 38 \end{aligned}\right.$	$\begin{aligned} & 18.29 \\ & 21.33 \end{aligned}$	$\begin{aligned} & 21.33 \\ & 24.38 \end{aligned}$		
24.38	48.76			Quartz Monzonite. Better cohesion with intact segments to 30 cm , average $6-15 \mathrm{~cm}$. Alteration of mafic minerals varies from minor secondary limonite to variably chloritized. Pink (potassic altered) bands generally associated with quartz + green calcitic veins up to 0.3 cm thick. Veins 33.68-33.78-Coarse-grained, light grey to dirty white, opaque to translucent quartz vein with brittle, sheared appearance at approximately 35° to core axis. Broken intervals 28.96-30.48 - Faulted intervals at top (approximately 50 cm thick) and at base (approximately 6 cm thick) of interval. Approximately 3 cm of dark brown to black clayey mud at top of upper fault zone overlying medium brown quartz monzonite angular fragments to 2 cm long dimension with angular milled clasts to grit size. Lower fault zone similar but reversed. Missing material probably from base of lower fault zone, coincident with end of drill run. 34.44-34.98 - Fault zone in pink (potassic altered) quartz monzonite with strongly chloritic mafic minerals. Loss of cohesion in quartz monzonite at top of interval with lower 8 cm comprised of coarse sand to medium grit in clayey gouge. Note - Sample 38 short approximately 19 cm , sample 40 short approximately 42 cm 34.44-34.98-Fault zone between approximately $34.81-34.85 \mathrm{~m}$, with complete loss of cohesion in host between 34.71-34.81 37.08-37.45-Fault zone with loss of cohesion and failure, minor accompanying potassic alteration, little or no visual chloritization of mafic minerals. Upper contact at 25° to core axis. Note: 13 cm missing, probably from this interval. 38.36-38.38-Loss of cohesion and failure in quartz monzonite with little or no chloritization or potassic alteration. 39.20-39.32 - Fault zone between weakly potassic altered quartz monzonite above (6 cm) and unaltered quartz monzonite below. Fault zone comprised of medium to large pebble sized clasts in coarse sand to grit sized matrix. Partially annealed with quartz and epidote. 40.49-40.54 - Broken Interval with brown, clayey fault gouge on several surfaces. 41.10-41.83 - Multiple thin fault zones up to 0.4 cm thick, oriented at $35^{\circ}-45^{\circ}$ to core axis, spaced between 4 and 20 cm . 42.08-43.84-Medium orange to pink, potassic altered quartz monzonite with variably chloritized mafic minerals. Interval comprised predominantly of broken fragments with spaced fractures at approximately $0^{\circ}-25^{\circ}$ to core axis, with or without chloritized surfaces. At least two chloritized fault zones $\leq 0.5 \mathrm{~cm}$ thick at 25° to core axis (42.01 and 43.77 m). 45.14-48.76 - Variably potassic altered (medium pink to orange), variably chloritized quartz monzonite. Interval broken with segments from 2-10 cm in length to approximately 46.75 m . Local choritized fault zones at shallow angle to core axis between $46.01-46.20 \mathrm{~m}$. From 47.21 to base of interval, core medium (to dark) brown with multiple, thicker fault zones ($\leq 3 \mathrm{~cm}$) at approximately 0° and 50° to core axis between 47.50-47.73 m. Host rock sheared and quartz monzonite character largely obscured over interval. Alteration 30.48-34.98-Comprised predominantly of pink (potassic altered) quartz monzonite with moderately chloritized mafic minerals. 33.01-33.53-Chloritic fractures sub-parallel to core axis	$\begin{aligned} & 39 \\ & 40 \\ & 41 \\ & 42 \\ & 43 \\ & 44 \\ & 45 \\ & 46 \end{aligned}$	24.38 27.43 30.48 33.53 36.57 39.62 42.67 45.72	27.43 30.48 33.53 36.57 39.62 42.67 45.72 48.76		
48.76	140.20	63.60 76.25 84.71 86.22 89.92	67 79.2 84.8 90.1 90	Medium (to coarse-) grained quartz monzonite. Xenoliths of more mafic granitoids (diorite?) dark grey, $70-80 \%$ fine to medium-grained mafics, equigranular to 6.0 cm long dimension. Six fine-grained, light grey and pink dykes, predominantly fine-grained aplite (with very fine-grained biotite phenocrysts) with subordinate pink quartzose dykes at $35^{\circ}\left(-40^{\circ}\right)$ to core axis, $\leq 7 \mathrm{~cm}$ thick ($1-7 \mathrm{~cm}$). Several (thin) dykes have diffuse margins whereas the more abundant, thicker dykes have sharp planar contacts. Thinner diffuse dykes at $35^{\circ}-40^{\circ}$ with opposite sense to, and cross-cut by, thicker dykes. Light pink, potassic altered aplite dyke approximately 5 cm thick at 30° to core axis, fine biotite (\pm hornblende?) phenocrysts. Megacrystic, porphyrytic phase with rectangular, light grey to pinkish grey potassium feldspar phenocrysts to 1 cm diameter. No contacts visible, appears to be local gradational contact into and out of very coarse-grained porphyritic quartz monzonite Thin, light grey aplite dyke (3.5 cm thick) at 35° to core axis. Faults Thin ($\leq 0.4 \mathrm{~cm}$) fault zones having cataclastic texture, coarse sand to fine grit sized clasts, 51.88 at 37° to core axis, 52.63 at 28° to core axis, 54.11 at 35° to core axis, 54.60 at 25° to core axis. 72.03-72.28 - Medium green, chlorite coated fault with medium green powdery gouge at 12° to core axis. Fault zone up to 3.0 cm thick with multiple sub-parallel planes with quartz and chlorite. Host in fault zone weakly potassic altered (light pink). Alteration 60.12 - Potassic altered fracture at 35° to core axis, minor pyrite on surface.	$\begin{aligned} & 47 \\ & 48 \\ & 49 \\ & 50 \\ & 51 \\ & 52 \\ & 53 \\ & 54 \\ & 55 \\ & 56 \\ & 57 \\ & 58 \\ & 59 \\ & 60 \\ & 61 \\ & 62 \\ & 63 \\ & 64 \\ & 65 \\ & 66 \\ & 67 \\ & 68 \\ & 69 \end{aligned}$	48.76 51.81 54.86 57.91 60.96 64.00 67.05 70.10 73.15 76.20 79.24 82.29 85.34 88.89 91.44 94.48 97.53 100.58 103.63 106.67 109.72 112.77 115.82	51.81 54.86 57.91 60.96 64.00 67.05 70.10 73.15 76.20 79.24 82.29 85.34 88.89 91.44 94.48 97.53 100.58 103.63 106.67 109.72 112.77 115.82 118.87		

Box	
1	$15.24-23.31$
2	$23.31-28.80$
3	$28.80-34.60$
4	$34.60-40.26$
5	$40.26-46.01$
6	$46.01-51.81$
7	$51.81-57.65$
8	$57.65-63.49$
9	$63.49-69.17$
10	$69.17-74.80$
11	$74.80-80.53$
12	$80.53-86.22$
13	$86.22-92.08$
14	$92.08-97.95$
15	$97.95-103.89$
16	$103.89-109.77$
17	$109.77-115.63$
18	$115.63-121.47$
19	$121.47-127.07$
20	$127.07-132.92$
21	$132.92-138.67$
22	$138.67-140.20$

DYNAMIC EXPLORATION LTD.

DRILL LOG: DIAMOND DRILL CORE

MINERAL TENURE NUMBER:			543037
NTS:	092H/09E	TRIM Map:	092H060
CLAIM NAME: Isintok 1			
LOCATION - GRID NAME:			
EAST	716885	NORTHING:	5489355
SECTION:		ELEV:	1745
AZIM:	$050{ }^{\circ}$	LENGTH:	188.35
DIP:	-45	CASING LEF	
CORE SIZE:			
CORE STORAGE: Property, Cranbrook			

HOLE NO.
ISIN-05-03

DRILLING CO:	F.B. Drilling	
STARTED:	3-Dec-05	10-Dec-05
COMPLETED:	6-Dec-05	12-Dec-05
PURPOSE:	To test Fugro EM	
	anomaly	
CORE RECOVERY:	>97\%	
LOGGED BY:	Rick Walker	
DATE LOGGED:		
ASSAYED BY:	Acme Analytical	
LAB REPORT NOS.:	A508118, A508118R	
	A508118R2, A600274	
	A600274R	

Drill Hole ISINTOK - 05-03

From	To	Intervals		Description	Sample	From	To	Mo	Copper
m	m	$\begin{gathered} \hline \text { From } \\ (\mathrm{m}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { (m) } \end{aligned}$		Number	m	m	ppm	ppm
0.00	6.09			Casing					
6.09	12.85	$\begin{array}{\|l} 7.96 \\ 10.69 \\ 11.47 \\ 12.57 \end{array}$	$\begin{array}{\|l} 8.00 \\ 10.71 \\ 11.48 \\ 12.72 \end{array}$	Sericitic Quartz Monzonite. Medium blue-grey altered quartz monzonite, resulting in different texture. Medium to coarse-grained phenocrysts not as evident as in previous holes and underlying interval. Rock has fine-grained, patchy appearance (sericitized (?) and / or chloritized(?)) with approximately $15-20 \%$ light grey, subhedral to euhedral, medium-grained feldspar phenocrysts. Medium grey to pink aplite dykes at approximately 80° to core axis, diffuse, indistinct contacts with or without weakly potassic altered margins up to 2.0 cm into host. Aplite at 12.57-12.72 cross-cut by network of fractures along which limited bleaching is evident. Faults 6.09-6.92-Represented by 56 cm of coarse pebble sized fragments (overburden and / or weathered bedrock). 6.92-7.76-Chloritic / brecciated fault zone at 15° to core axis. Fault $\leq 3 \mathrm{~cm}$ thick (upper contact lost in broken interval) comprised of strongly chlorite altered quartz monzonite with multiple chloritic shears sub-parallel to lower bounding contact, resulting in quartz monzonite fault breccia clasts separated by chloritic planes and rinds. 8.30 - Clastic fault zone $\leq 0.4 \mathrm{~cm}$ thick with chloritic, clayey gouge at 18° to core axis. 8.53 - Weakly altered (potassic altered) fault zone $(\leq 0.4 \mathrm{~cm})$ at 60° to core axis. Weak potassic alteration extends $\leq 1 \mathrm{~cm}$ into host rock. 10.47, 10.65-10.82, 11.61-11.77, 12.36-12.42-Fracture zones and / or broken intervals with white clayey (kaolinitic?) to pale yellow to green (chloritic) intervals at approximately 17° to core axis. Alteration 9.83 - Chlorite seams ($\leq 0.3 \mathrm{~cm}$) at 20° to core axis, sub-parallel to, and shallowly cross-cutting, thin aplite dyke at 15° to core axis. At least three thin chlorite seams comprised of medium green chlorite rinds with core of white feldspar and patches of black biotite, all fine-grained. Series of fractures throughout interval at shallow angle to core axis $\left(10^{\circ}-20^{\circ}\right)$ with limited bleaching ($\leq 0.2 \mathrm{~cm}$ into host), vary from spaced planar fractures to single irregular fractures, possible finegrained sulphides (pyrite) along fractures.	$\begin{aligned} & 77 \\ & 78 \\ & 79 \end{aligned}$	$\begin{aligned} & \hline 6.09 \\ & 9.14 \\ & 12.19 \end{aligned}$	$\begin{aligned} & 9.14 \\ & 12.19 \\ & 15.24 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 70 \\ & 153.3 \\ & 50 \end{aligned}$
12.85	57.70			Weakly altered quartz monzonite. Subhedral to euhedral, medium- to coarse-grained feldspatic and mafic phenocrysts clearly evident. Relatively rapid gradational transition over 7 cm . Interval variably altered with variable, patchy bluish colour interpreted as variable degrees of chloritization, alternating (overlapping?) with weak potassic alteration. Phenocrysts, both felsic and mafic, variably well defined due to extent of alteration. Mafic minerals chloritized. Moderately well developed alteration throughout. Weakly bleached fractures at shallow angle to core axis extend through interval. Thin, bleached fractures at 35° to core axis (both senses, potentially cross-cutting) as well as at shallow angle (15°) to core axis. Also minor chlorite veins ($\leq 0.1 \mathrm{~cm}$ thick) at $10 \circ$ to core axis, cross-cut by bleached fractures (above). Dark green - black chloritic intervals proportionately high down-hole, both increasing thicker and more abundant. Veins 35.63-35.67-Light grey quartz vein at 75° to core axis. $46.05,46.24-46.25,46.55$ - Medium green chlorite veins at high angle ($45^{\circ}-50^{\circ}$) to core axis Faults 14.69-14.83 - Broken interval with chlorite covered fracture surfaces, approximately 7 cm material missing. 15.40 - Chloritic shear zone with $\leq 0.2 \mathrm{~cm}$ of chlorite at approximately 18° to core axis. Weak potassic alteration above fracture for approximately 20 cm sub-parallel to fracture, approximately 1.5 cm below. 16.40-16.58, 17.03-17.10-Interval from 16.40-17.10 bounded by two broken intervals with 47 cm intact segment between, with approximately 17 cm of broken angular fragments, with clayey (kaolinitic?) gouge. Lies within larger, weakly potassic latered (light pink) interval. 17.90-18.09-Bleached, kaolinitic shear at 15° to core axis, comprised of at least two parallel planes with $\leq 0.3 \mathrm{~cm}$ of clay altered, bleached host on either side. Relict mafic minerals suspended in kaolinitic gouge along shear. 21.95-22.54-Cataclastic fault zone comprised of broken fragments to 4 cm long with at least two intervals of heavily chloritized, extremely friable flakes, angular fragments in fine sandy gouge. Fragments have chloritic coatings and are characterized by chloritization with moderate potassic alteration. Core broken along fractures spaced approximately 2 cm at $20^{\circ}-25^{\circ}$ to core axis, minor set sub-parallel to core axis and third set at high angle to core axis. 26.95-27.20-Broken interval with coarse pebble sized, angular fragments with chlorite coated surfaces. Probable chlorite flakes and gouge in core of interval. 29.07-29.51 - Main calcite and epidote fracture at shallow angle (approximately 10°) to core axis $\leq 3.0 \mathrm{~cm}$ thick fault at approximately 29.16-29.21m. Calcite and epidote stringers. (Smaller en echelon faults to 29.75 m) 31.50-34.39- Interval broken into segments $2-10 \mathrm{~cm}$ in length by fractures sub-parallel, shallow angle (10-15 to core axis), and at high angle (60-75 to core axis), with or without weakly to moderately chloritic gouge $\leq 0.4 \mathrm{~cm}$ thick. 37.40-39.16-Faulted interval with multiple failure zones. 37.40-37.51-At approximately 50° to core axis. Heavily iron stained interval, varying from medium brown iron stained to dark brown goethite bearing failure zone $\leq 1.0 \mathrm{~cm}$ thick. 38.08-38.12, 38.26-38.43, 38.49-38.57, 38.63-39.11-Multiple clayey (kaolinitic?) and chloritic failure zones up to 2.0 cm thick at shallow angle (20°) and sub-parallel to core axis. $40.38-40.85$ - Multiple, parallel spaced ($0.5-2.0 \mathrm{~cm}$) fractures at 15° to core axis with minor kaolinitic gouge $\leq 0.3 \mathrm{~cm}$ thick. 52.41-52.46-Broken interval at 75° to core axis with white powdery gouge. 54.68-54.70-Broken interval with chloritic powdery gouge at high angle to core axis. Alteration Proportion of dark green to black chlorite altered patches and bands increases down-hole, particularly from 51.75-57.70 m.	80 81 82 83 84 85 86 87 88 89 90 91 92 93	15.24 18.29 21.33 24.38 27.43 30.48 33.53 36.57 39.62 42.67 45.72 48.76 51.81 54.86	18.29 21.33 24.38 27.43 30.48 33.53 36.57 39.62 42.67 45.72 48.76 51.81 54.86 57.91	1.6 0.5 0.6 3.9 0.6 0.5 1 36.6 1 2.1 1.9 4.7 10.5 7.3	$\begin{aligned} & \hline 114.8 \\ & 24 \\ & 152.9 \\ & 491.1 \\ & 45.2 \\ & 46.7 \\ & 485.7 \\ & 106.7 \\ & 17.9 \\ & 18.3 \\ & 59.7 \\ & 54.8 \\ & 41.4 \\ & 66.2 \end{aligned}$

				18.92-19.14 - Approximately 1.5 cm thick, medium pink (potassic altered) interval cored by en echelon series of thin ($\leqslant 0.2 \mathrm{~cm}$), medium green chlorite veins at 15° to core axis. Mafic minerals (biotite) immediately outside pink interval not visibly chloritized, equivalent sized biotite phenocrysts within pink zone extensively (to completely) chloritized. 21.40-22.54 - Uppermost 55 cm characterized by loss of characteristic equigranular texture and distinct phenocrysts, which have been moderately to heavily chloritized. 24.93 - Light grey to dirty white, clayey calcitic fracture surface at approximately $20^{\circ}-25^{\circ}$ to core axis. 26.49 - Chloritic fracture at approximately 25° to core axis. 35.32-35.55 - Thin, fine-grained, black veinlet at approximately 12° to core axis. 45.64-45.65, 45.85-Two dark reddish brown intervals at high angle $\left(70^{\circ}\right)$ to core axis. Upper band may be discolouration at lower contact of think, medium grey aplite dyke $49.44,49.67,50.23$ - Weakly bleached fractures at $20^{\circ}-25^{\circ}$ to core axis with white powdery gouge. Mineralization 21.57 - Fracture at 55° to core axis with minor azurite staining along surface. No primary sulphides noted in adjacent host. 26.71-26.95-Thin iron-stained to limonitic fracture sub-parallel to core axis with 1-3\% malachite staining as spots and discontinuous segments to 1.2 cm in length.					
57.70	61.56			Chloritic Quartz Monzonite Rock heavily altered to chlorite with progressive destruction of original texture down-hole. Phenocrysts with diffuse boundaries at top of interval largely unidentifiable and indistinguishable from matrix at bottom. Gradual colour change from mottled medium (to dark) green at top to dark dirty green-grey at bottom. 58.00-58.03- Dark purple hematitic altered interval with burgandy coloured powdery gouge. Faults 59.05-60.96 - Interval broken into fragments and segments $\leq 10 \mathrm{~cm}$. 59.05-60.61 - Badly broken interval with very angular to angular fragments between $1-10 \mathrm{~cm}$, with ironstained to yellow-orange goethite and gouge coated surfaces. Alteration Increasing abundance of deep purple coloured en echelon to horsetail hematitic veinlets ($\leq 0.3 \mathrm{~cm}$ thick), forming $\leq 1.5 \mathrm{~cm}$ thick network at shallow angle $\left(0^{\circ}-10^{\circ}\right)$ and approximately 30° to core axis, with both cross-cutting and gradational relationships. Medium green chlorite veinlet network sub-parallel core axis also noted. Medium red-brown streak noted in purple veinlets (hematite?) but granular to patchy texture may indicate intimate association with other minerals (bornite?)	94	57.91	60.96	0.8	42.3
61.56	78.05			Bleached, chloritic Quartz Monzonite. Interval comprised predominantly of angular fragments, with subordinate short intact segments ($\leq 30 \mathrm{~cm}$) of bleached quartz monzonite with stock work veining to in situ breccia texture infilled with both purple hematitic and green chloritic veinlets. Veins 73.83-78.05-Up to 5\% hematitic veinlets sub-parallel to core axis, with subordinate sets at moderate and high angles to core axis. Veins have $\leq 60 \%$ angular inclusions of altered host rock, possible breccia infill. Proportion of hematitic veins decreases down-hole, many with chloritic rinds (precursors?). Hemaitic \pm black chlorite veinlets variably developed, from $0-30 \%$, as mesh to stockwork network. Highly subordinate, medium green chlorite veinlets locally evident, some transitional to burgundy to purple hematitic veins. Chlorite altered to hematitic and black chlorite? Faults 69.00-69.34-Rock extremely friable, not sure if due to alteration or faulting. Dark reddish brown flakes and possible gouge in interval characterized by black hematite and chlorite alteration (80\%), with relict breccia (\pm fault clasts). 70.00-70.65-Fault zone. Dark brown over upper 10 cm and between approximately 70.36-70.54 m, earthy yellow-brown between approximately 70.10-70.36 and dark green-grey from 70.54-70.65 m. Interval comprised of clayey gouge with two relatively intact segments between $70.10-70.25 \mathrm{~m}$. 72.44-73.83-Dark purple hematite dominated interval with hematitic bands at up to 40° to core axis. Hematitic veins have breccia fill texture around bleached, chloritic, angular clasts. Medium green chlorite veins appear to be peripheral (perhaps earlier) than hematitic veins. Alteration Mafic phenocrysts evident locally but completely chloritized (medium green). Fracture surfaces watery yellow-orange goethite to approximately 63.70 m , with deep brown to brick red hematitic coating to end of interval. Host rock extensively to completely altered with only local relict texture evident. 73.83-78.05-Mottled pale green to medium green, bleached, chloritic quartz monzonite	95 96 97 98 99 100	60.96 64.00 67.05 70.10 73.15 76.20	64.00 67.05 70.10 73.15 76.20 79.24	1.1 1 5.9 7.2 85.6 3.9	3 4.5 161.5 108.5 158.9 114.8
78.05	81.28			Hematitic Breccia. Sharp transition into hematitic interval having infill texture around very angular to angular clasts ranging from 1 mm to $6+\mathrm{cm}$ in long dimension, cross-cut by calcitic veinlets ($\leq 1-3 \mathrm{~mm}$ thick) at shallow and high angle to core axis. Orientation of elongate fragments in hematitic matrix approximately sub-parallel to 25° to core axis. Faults 78.87-79.10 - Possible fault zone sub-parallel to core axis, defined by $\leq 0.3 \mathrm{~cm}$ medium red gouge.	101	79.24	82.29	6	173.3
81.28	94.65			Moderately Chloritized Quartz Monzonite Interval comprised of medium (to dark) green, moderately (to heavily) chloritic quartz monzonite. Original texture largely obscured but locally evidenced by completely pseudomorphed, green chlorite after original euhedral mafic minerals. Light coloured bands, probably representative of potassic altered (chloritic) intervals previously described, noted. Hematitic veinlets decrease in proportion down-hole, with none noted below approximately 86.00 m . Faults 81.28-81.30-Faulted contact at approximately 70° to core axis, comprised of medium green chloritic gouge having dark red spots with medium grit sized flakes. 84.73-85.34-Broken interval comprised of angula, in situ, brecciated, heavily chloritic fragments to 3.0 cm long dimension in chloritic and hematitic matrix. Chlorite gouge indicates possible fault zone. Coincides with base of hematitic vein zone.	102 103 104 105	82.29 85.34 88.39 91.44	85.34 88.39 91.44 94.48	$\begin{aligned} & 159.8 \\ & 33.7 \\ & 5.9 \\ & 513.8 \end{aligned}$	$\begin{aligned} & 1661.2 \\ & 1333.3 \\ & 436.4 \\ & 277.4 \end{aligned}$

				Pink (potassic altered) interval from approximately $174.93-175.67 \mathrm{~m}$ at approximately 20° to core axis. Hornblende and biotite strongly chloritized to pseudomorphed. Interval cross-cut by epidote and quartz veinlet $\leq 0.4 \mathrm{~cm}$ thick at 20° to core axis. 156.14-156.51 - Band of moderately to heavily chloritized quartz monzonite 159.86-160.21- Pink (potassic altered) quartz monzonite in medium green chloritic matrix, cross-cut by abundant, black to medium green (chloritic), fine-grained biotitic veinlet at $40^{\circ}-45^{\circ}$ to core axis. 177.24-177.74 - Moderately to heavily chloritized interval broken at centre. Mineralization Minor chalcopyrite noted as disseminations and small aggregate masses along veinlets (with quartz) at $7^{\circ}-10^{\circ}$ to core axis and as coarse aggregate masses $\leq 1 \mathrm{~cm}$ diameter between $149.02-153.40 \mathrm{~m}$. 171.93 - Chalcopyrite veinlet at 17° to core axis. Minor chalcopyrite on core surface, approximately $3-5 \%$ on veinlet surface, veinlet $\leq 0.1 \mathrm{~cm}$ thick.					
187.50	219.65			Altered Quartz Monzonite. Virtually identical to preceeding interval, with mixed pulses of more altered and almost pristine quartz monzonite, however, sericitic (?) alteration increased. Rock has light to medium blue-grey colour and felsic phenocrysts less distinct. Matrix darker (sericitic and / or chlorite alteration). 189.15-189.40- Light to medium grey aplite dyke. 193.22-193.60- Three thin ($<4 \mathrm{~cm}$ thick) medium grey aplite dykes. Faults 188.33-189.15, 204.09-208.08-Medium to dark green to black, generally broken intervals with gouge covered surfaces at shallow angle to core axis. Alteration Strongly to heavily chloritized intervals noted. 193.68-200.65-Approximately 25% potassic altered (pink) intervals between $30-60 \mathrm{~cm}$ thick, cross-cut by thin medium green to black chloritic biotite veinlets $\leq 0.1 \mathrm{~cm}$ thick at 80° to core axis. Mineralization Minor chalcopyrite noted between 191.57-195.82 m along thin chalcopyrite and quartz veinlets ($\leq 0.2 \mathrm{~cm}$) thick at high angle $\left(80^{\circ}\right)$ to core axis.	198 199 200 201 202 203 204 205 206 207	188.97 192.02 195.06 198.11 201.16 204.21 207.25 210.30 213.35 216.40	192.02 195.06 198.11 201.16 204.21 207.25 210.30 213.35 216.40 219.45	60.6 18.1 12.1 4.7 2.1 5.1 0.9 4.6 9.5 3.6	839.5 192.6 275.6 394.1 169.2 153.7 60.2 421.7 540.9 171
219.65	245.00			Weakly altered Quartz Monzonite. Almost pristine looking quartz monzonite with moderately to strongly chloritized to chlorite pseudomorphed hornblende. 221.85-221.90 - Aplite dyke at $45^{\circ}-50^{\circ}$ to core axis. Veins 221.55 - Chloritized biotite and quartz vein at 50° to core axis, subsequently cross-cut by epidote and chalcopyrite veinlet at 25° to core axis (opposite sense). Chalcopyrite veinlet intersects and follows epidote vein.	208 209 210 211 212 213 213	219.45 222.49 225.54 228.59 231.64 234.68 234.68	$\begin{aligned} & 222.49 \\ & 225.54 \\ & 228.59 \\ & 231.64 \\ & 234.68 \\ & 237.73 \\ & 237.73 \end{aligned}$	$\begin{aligned} & 9.3 \\ & 1.7 \\ & 9.2 \\ & 3.2 \\ & 14.6 \\ & 19.5 \\ & 19.5 \end{aligned}$	258.1 284.1 137.3 60.1 162.9 88.4 88.4
245.00	246.57			Sericitic Quartz Monzonite. Weak preferred orientation evident due to diffuse, discontinuous fine-grained biotitic bands at approximately 70° to core axis in medium blue-grey quartz monzonite. Biotite phenocrysts evident, host similar to previous interval except for colour change and biotitic bands.	$\begin{aligned} & 214 \\ & 215 \\ & 216 \end{aligned}$	$\begin{aligned} & 237.73 \\ & 240.78 \\ & 243.87 \end{aligned}$	$\begin{aligned} & 240.78 \\ & 243.78 \\ & 246.57 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 0.5 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 84.1 \\ & 85.4 \\ & 39.2 \end{aligned}$
246.57				End of Hole					

15	$220.85-226.49$
16	$226.49-232.17$
17	$232.17-237.73$
18	$237.73-243.49$
19	$243.49-246.57$

DYNAMIC EXPLORATION LTD.

DRILL LOG: DIAMOND DRILL CORE

MINERAL TENURE NUMBER:			543037
NTS:	092H/09E	TRIM Map:	092H060
CLAIM NAME: Isintok 1			
LOCATION - GRID NAME:			
EAST	716885	NORTHING:	5489355
SECTION:		ELEV:	1745
AZIM:	$050{ }^{\circ}$	LENGTH:	188.35
DIP:	-45	CASING LEF	
CORE SIZE:			
CORE STORAGE: Property, Cranbrook			

HOLE NO.
ISIN-05-04

DRILLING CO:	F.B. Drilling
STARTED:	6-Dec-05
COMPLETED:	9-Dec-05
PURPOSE:	To test Fugro EM
	anomaly
CORE RECOVERY:	$>97 \%$
LOGGED BY:	Rick Walker
DATE LOGGED:	
ASSAYED BY:	Acme Analytical
LAB REPORT NOS.:	A508118, A508118R
	A508118R2, A600274
	A600274R

Drill Hole ISINTOK - 05-04

From	To	Interval		Description	Sample	From	To	Mo	Copper
m ${ }^{\text {m }}$	${ }^{\text {m }}$	$\begin{aligned} & \text { From } \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \text { To } \\ & (\mathrm{m}) \end{aligned}$	Casing	Number	m	m	ppm	ppm
7.32	24.12			Quartz Monzonite. 14.73, $14.95,15.38$ - Three thin ($1-2 \mathrm{~cm}$), light to medium grey aplite dykes at $50^{\circ}-60^{\circ}$ to core axis truncated by thin biotitic veins (?) at 63° to core axis. 16.36 - Light grey aplite dyke with pink margins truncated and offset by thin biotitic vein / fracture at $70^{\circ}-75^{\circ}$ to core axis, extensional character. 16.56-16.82 - (Light to) medium grey aplite dyke at 55° to core axis, with approximately 5% medium-grained biotitic phenocrysts (andesite dyke of previous programs?). Alteration Weakly to moderately altered quartz monzonite over interval, with degree of alteration increasing down-hole. Biotite phenocrysts visually pristine, Hornblende phenocrysts extensively to completely chloritized (medium green). Highly subordinate pink (potassic altered) bands in which mafic phenocrysts chloritized. Completely chloritized biotite pseudomorph approximately 1 cm from visually pristine biotite phenocryst suggest sharp alteration front. Black biotitic veinlets evident at top of interval, $\leq 0.2 \mathrm{~cm}$ thick at $30^{\circ}-35^{\circ}$ to core axis. Phenocrystic margins increasingly diffuse down-hole toward base of interval due to increasing extent of sericitization of felsic phenocrysts and chloritization of matrix and mafic minerals. Minor epidote \pm quartz filled fractures $\leq 0.1-0.5 \mathrm{~cm}$ thick at $40^{\circ}-45^{\circ}$ to core axis below approximately 19.50 m . Possible chilled contact at base of interval, from approximately $23.70-24.12 \mathrm{~m}$, crystal size decreases and mafic content appears to increase. Mineralization Low grade copper mineralization evident as minor disseminations, local concentrations along narrow quartz fractures and as malachite spotting and patches along fractures, noted from approximately $30^{\circ}-35^{\circ}$. 8.65-22.00-Minor associated pyrite with or without chalcopyrite.	122 123 124 125 126 127 128	7.32 8.53 11.58 14.63 17.68 20.72 23.77	$\begin{aligned} & 8.53 \\ & 11.58 \\ & 14.63 \\ & 17.68 \\ & 20.72 \\ & 23.77 \\ & 26.82 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.4 \\ & 10.5 \\ & 0.8 \\ & 1.2 \\ & 28.4 \\ & 14.9 \end{aligned}$	$\begin{aligned} & 26.9 \\ & 67.5 \\ & 423.3 \\ & 125.4 \\ & 303.5 \\ & 239.9 \\ & 102.6 \end{aligned}$
24.12	29.15			Quartz Monzonite. Composition appears to be similar, although texturally different, possibly more plagioclase. Elongate, subhedral to euhedral feldspar laths ($\leq 0.5 \mathrm{~cm}$) with alkali feldspar (rectangular morphology) to 0.5 cm diameter with 30$35 \%$ fine to medium-grained, anhedral (to subhedral) biotite to 0.2 cm , possibly highly subordinate hornblende. Progressive development of weak preferred orientation (coarse spaced foliation) to basal contact at approximately 05° to core axis. Possible chilled lower contact from 28.70-29.15 m. Lower contact at 22° to core axis. Mineralization Minor malaclite spotting noted on fracture at approximately 27 m .	129	26.82	29.87	8.3	252.2
29.15	29.71			Breccia. Brecciated contact with angular clasts to 3.0 cm long dimension in fine-grained, black (biotitic) matrix. Clasts generally increase in size, with decreasing chloritization, away from contact.					
29.71	51.34			Light grey quartz monzonite. Mafic phase dominated by $\leq 0.5 \mathrm{~cm}$, anhedral to subhedral (locally, euhedral) biotite phenocrysts. Minor aplite dykes (<2cm thick) at 15-35 degrees to ca, v. fine to fine-grained biotite comprises $<35 \%$, sharp to very diffuse margins. Alteration Approximately 3-5\% fine-grained, variably chloritic black to medium green biotitic veins cross-cutting at approximately $25^{\circ}-35^{\circ}$ to core axis, transitional to sub-parallel to core axis, sharp to gradational contacts (locally brecciated) to 35.96 m . Texture varies from weakly to moderately obscured phenocryst phases (particularly felsic) to sharply defined phenocrysts due to varying degrees of alteration (sericitic). Local, very coarse-grained (megacrystic) mafic phenocrysts noted; hornblende $\leq 1.5 \mathrm{~cm}$, biotite $\leq 1.2 \mathrm{~cm}$. Possibly reflects different injections of quartz monzonite magma during chamber filling, earlier pulses altered by subsequent pulses. Noted highly subordinate, medium to dark grey bands, previously thought to be very fine-grained biotite and / or chl intervals, however, one band at 45.34 m has fine malachite spotting over entirety of band within fracture, possible fine-grained chalcocite? Bands vary between $0.4-3.0 \mathrm{~cm}$ thick at high angles $\left(65^{\circ}\right)$ to core axis with diffuse margins. 47.09-51.20 - Thin ($\leq 0.5 \mathrm{~cm}$), irregular to anastamosing, black to medium green (chloritic) biotitic veinlets at moderate angle $\left(15^{\circ}-20^{\circ}\right)$ to core axis. Mineralization Chalcopyrite and / or subordinate pyrite as small aggregate masses to thin ($\leq 1 \mathrm{~cm}$ thick) chalcopyrite-rich quartz veins at $35^{\circ}-40^{\circ}$ to core axis.	130 131 132 133 134 135 136 137	29.87 32.92 35.96 39.01 42.06 45.11 48.16 51.20	32.92 35.96 39.01 42.06 45.11 48.16 51.20 54.25	10.3 10.2 36.9 21.1 34.7 5.4 4 3.6	384.9 597.4 779.5 1104.4 887.8 496.4 259.6 236.8
51.34	115.57			Quartz Monzonite. Coarse-grained quartz monzonite comprised of coarse-grained (to locally megacrystic), subhedral to euhedral biotite and chlorite pseudomorphed euhedral hornblende phenocrysts. Feldspar crystals dirty white (predominantly alkali feldspar) with altered (sericitic) rinds $\leq 0.1 \mathrm{~cm}$ thick. Biotite phenocrysts black and visually pristine. 59.04-59.80-Four thin ($\leq 2 \mathrm{~cm}$ thick), light grey aplitie dykes at $40^{\circ}-55^{\circ}$ to core axis. 63.39-64.49 - Seven thin ($\leq 3 \mathrm{~cm}$ thick), light grey aplite dykes at $45^{\circ}-75^{\circ}$ to core axis. $71.75-71.84$ - Two $\leq 5.5 \mathrm{~cm}$ thick, light grey aplite dykes at $60^{\circ}-70^{\circ}$ to core axis. $74.96-75.03$ - Approximately 5 cm thick, light grey aplite dyke at 50° to core axis. 76.40-79.44-Change in texture of quartz monzonite with possible chilled margins, earlier pulse? 86.67-90.42-Texture similar to above with numerous cross-cutting chloritized biotitic wisps and veinlets. Probable earlier pulse as compared to more pristine looking material. More mafic, fine-grained xenoliths of granodiorite to diorite (based solely on colour, could not determine composition), generally chloritized mafics with abundant fine-grained biotite (black, secondary?) and medium-grained porphyritic (secondary?), subhedral biotite. Xenoliths $1.5<\mathrm{x}<11 \mathrm{~cm}$. Veins	138 139 140 141 142 143 144 145 146 147 148 149 150 151 152	54.25 57.30 60.34 63.39 66.44 69.49 72.54 75.58 78.63 81.68 84.72 87.77 90.82 93.87 96.92	$\begin{aligned} & 57.30 \\ & 60.34 \\ & 63.39 \\ & 66.44 \\ & 69.49 \\ & 72.54 \\ & 75.58 \\ & 78.63 \\ & 81.68 \\ & 84.72 \\ & 87.77 \\ & 90.82 \\ & 93.87 \\ & 96.92 \\ & 99.96 \end{aligned}$	1.6 2.5 7.2 2.2 0.8 5.7 24.8 3.9 1.2 9.6 6.1 8.1 1.1 6.8 4	138.7 160.3 134.7 44.1 52.3 56.5 57.5 91.8 56.3 321.6 193.4 32.2 97.9 189.6 37.7

			61.00-71.00-Approximately 3-5\% thin biotitic (to chloritic) veinlets, cross-cut all lithologies and phases. Locally chloritized sub-parallel to core axis and $30^{\circ}-35^{\circ}$ to core axis. 72.60-75.13 - Thin, en echelon to irregular, biotite (to chloritic) veinlets, $\leq 0.3 \mathrm{~cm}$ thick, sub-parallel to core axis and at $25^{\circ}-35^{\circ}$ to core axis. Locally truncated and offset by aplite dykes, extensional offset 76.11-76.40 - Partially chloritized biotite vein $\leq 1.5 \mathrm{~cm}$, en echelon step-over with inclusions of host (in situ brecciations in narrow portion of vein). 76.60-78.00-Thin veinlets and discontinuous segments of chloritized biotitic veins sub-parallel to core axis and at shallow angle to core axis, with possible truncation of earlier sets by later sets noted. Cross-cut by 114.39-114.42 - Medium green, chloritic and subordinate black biotite vein, $\leq 1.0 \mathrm{~cm}$ thick at 16° to core axis. Alteration Variably altered (sericite, with local intervals of kaolinitic alteration of feldspar). Biotite phenocrysts variably altered (to pseudomorphed) by chlorite). Hornblende phenocrysts moderately to extensively chloritized (to pseudomorphed). Biotite pseudomorphed by chlorite adjacent to some fractures. Highly subordinate pink (potassic altered) bands $\leq 10 \mathrm{~cm}$ at approximately 40° to core axis. Short intervals ($\leq 1.5 \mathrm{~m}$) of medium-grained quartz monzonite with diffuse phenocryst contacts (sericitized) and anhedral (to subhedral) chloritized mafics in a heavily chloritic and sericitic matrix (earlier pulse). 112.16-115.57 - Progressive alteration down-hole, with increased sericitization and thin, cross-cutting black biotite to medium green chloritized biotitic veinlets sub-parallel to very shallow angle to core axis. Mineralization Minor chalcopyrite noted as disseminated grains. None noted below approximately 57.40 m No chalcopyrite noted in boxes 12-15. Note: diesel spilled on right end of box $13, \leq 30 \mathrm{~cm}$ of rows 1-3. 95.82 - Approximately 0.4 cm thick band of chalopyrite at 30° to core axis. Discontinuous, along fracture in host.	$\left\lvert\, \begin{aligned} & 153 \\ & 154 \\ & 155 \\ & 156 \\ & 157 \end{aligned}\right.$	$\|$99.96 103.01 106.06 109.11 112.16	$\left\lvert\, \begin{aligned} & 103.01 \\ & 106.06 \\ & 109.11 \\ & 112.16 \\ & 115.20 \end{aligned}\right.$	$\begin{array}{\|l} 1.5 \\ 2.8 \\ 12.3 \\ 3.5 \\ 2 \end{array}$	$\left\lvert\, \begin{aligned} & 51.2 \\ & 166 \\ & 399.8 \\ & 421.6 \\ & 52.7 \end{aligned}\right.$
115.57	118.38		Quartz vein with approximately 84 cm chlorite above and 10 cm below. Quartz Monzonite increasingly altered to vein contact. Vein coarse-grained, glassy to vitreous lustre, translucent to opaque, creamy off-white colour. Broken throughout ($\leq 8 \mathrm{~cm}$ segments). 116.10-116.18 - Dark dirty green to black chlorite with black powdery gouge	158	115.20	118.25	29.6	21.1
118.38	126.65		Altered Quartz Monzonite. Interval dominated by quartz monzonite with poorly defined felsic phenocrysts (sericitized) and anhedral (to subhedral), chloritic mafic phases, typical of interpreted earlier pulse. Approximately 5-7\% black to medium green (chloritic) biotite veinlets (50.3 cm) sub-parallel to shallow angle to core axis. Mineralization 124.93 - Chlorite veinlet ($\leq 2.0 \mathrm{~cm}$ thick) contains approximately $10-15 \%$ molybdenum along upper contact. Difficult to see on core surface. Vein has in situ breccia texture, tapers off rapidly into wispy veinlets into host	$\left\lvert\, \begin{aligned} & 159 \\ & 160 \\ & 161 \end{aligned}\right.$	$\begin{aligned} & 118.25 \\ & 121.30 \\ & 124.35 \end{aligned}$	$\left\lvert\, \begin{aligned} & 121.30 \\ & 124.35 \\ & 127.40 \end{aligned}\right.$	$\begin{aligned} & 24.1 \\ & 16.4 \\ & 291.7 \end{aligned}$	$\begin{aligned} & 112.6 \\ & 117.3 \\ & 60.9 \end{aligned}$
127.03	127.40		Broken interval comprised of highly angular core shards and fragments to $\leq 8 \mathrm{~cm}$ long with powdery grey gouge on surfaces.					
127.40	132.02		Broken interval with intact segments $\leq 25 \mathrm{~cm}$ long between approximately $127.40-128.20$ and $128.61-129.50 \mathrm{~m}$ Faults Loci of possible faults. Probable faultsbetween 130.91-131.08 and 131.26-131.79 m.	$\begin{array}{l\|l} 162 \\ 163 \end{array}$	$\begin{array}{\|l\|l} 127.40 \\ 130.44 \end{array}$	$\left\lvert\, \begin{aligned} & 130.44 \\ & 133.49 \end{aligned}\right.$	$\begin{aligned} & 1.3 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 58.5 \\ & 16.2 \end{aligned}$
132.02	143.22		Quartz Monzonite. Mixed pulses of quartz monzonite as previously described, with predominantly moderately altered quartz monzonite with moderately well defined phenocrysts and subordinate well defined phenocrysts Veins 138.47-138.82 - Medium to dark green chlorite vein at $5^{\circ}-10^{\circ}$ degrees to core axis, $\leq 1.5 \mathrm{~cm}$ thick with quartz-rich core. Mineralization 139.65-143.22 - Approximately 0.5% very fine disseminated chalcopyrite with local concentrations along highly subordinate $\leq 0.3 \mathrm{~cm}$ veinlets at 70° to core axis.	$\begin{aligned} & 164 \\ & 165 \\ & 165 B \end{aligned}$	$\begin{aligned} & 133.49 \\ & 136.54 \\ & 139.59 \end{aligned}$	$\begin{aligned} & 136.54 \\ & 139.59 \\ & 142.64 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 131.5 \\ & 142.7 \end{aligned}$	$\left\lvert\, \begin{aligned} & 52 \\ & 243.1 \\ & 1284.8 \end{aligned}\right.$
143.22	144.67		Sheared Chloritic Quartz Monzonite. Host rock heavily altered, medium to dark grey, Faults Interval from 143.22-143.45 and 144.94-145.50 heavily chloritized with fault zone at 143.30 at 25° to core axis and several black chlorite shear(?) zones between 144.35 and 144.42 at 55° and 76° to core axis. Multiple thin $<0.3 \mathrm{~cm}$ thick chlorite bands between 144.52 and 144.56 at 80° to core axis (incipient zones of failure). Alteration Locally dark grey-green due to sericitization of feldspar and chloritization of mafics and matrix. Mineralization Scattered disseminated chalcopyrite throughout interval as fine interstitial disseminations, 145.42-145.45 m has 0.4% moloybdenite with chalcopyrite. Chalcopyrite over interval 0.1%.	167	142.64	145.68	655.3	2089.2
144.67	188.35		Quartz Monzonite. Predominantly pristine looking quartz monzonite with subhedral to euhedral, coarse-grained black biotite and moderately to strongly chloritized to pseudomorphed hornblende phenocrysts. Subhedral white to pale greenish white plagioclase with slightly subordinate, dark flesh euhedral (to subhedral), pink alkali feldspar. Mediumgrained, subhedral magnetite. Minor thin aplite dykes occur throughout core, noted where there is a local concentration. 173.15-175.00 - Five thin ($\leq 3.0 \mathrm{~cm}$ thick), dirty white-pink to light grey aplite dykes at high angle $\left(75^{\circ}-80^{\circ}\right)$ to core axis. Contacts sharp to gradational, through fine-grained biotitic margins to felsic cores. Faults 160.04-161.04 - Heavily chlorite altered (dark green-grey). Quartz Monzonite with numerous cross-cutting pink (potassic altered) bands $0.5-15 \mathrm{~cm}$ thick. Thin ($\leq 0.2 \mathrm{~cm}$ thick), dark (to medium green) chlorite veinlets cross-cut interval at $45^{\circ}-60^{\circ}$ to core axis.	168 169 170 171 172 173 174 175 176 177 178	145.68 148.73 151.78 154.83 157.87 160.92 163.97 167.02 170.07 173.11 176.16	148.73 151.78 154.83 157.87 160.92 163.97 167.02 170.07 173.11 176.16 179.21	56.6 284.9 43.7 6 14.2 1.3 275.6 136.6 28.5 7.3 15.4	502.3 530.5 559.4 389.2 272.7 207.9 1438.7 1595.8 968 359.8 473.5

Box
7.32-12.26
12.26-18.12
18.12-23.90
23.90-29.71
29.71-35.59
35.59-41.25
41.25-47.09
47.09-53.01
53.01-58.90
58.90-64.59
64.59-70.42
70.42-76.31
76.31-82.22
82.22-88.18
88.18-93.80
93.80-99.38
99.38-105.05
105.05-110.66 110.66-116.18 116.18-121.44 121.44-127.03 127.03-132.02 132.02-137.70 137.70-143.22 143.22-148.96 148.96-154.47 154.47-160.24 160.24-165.57 165.57-170.97 170.97-176.50 176.50-182.26 182.26-188.00 188.00-188.35

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT
To Jasper Mining Corporation PROJECT Isintok
Acme file \# A507894R Received: JAN 13 2006 * 7 samples in this disk file
Analysis: GROUP 3B - FIRE GEOCHEM AU, PT, PD - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM.

ELEMENT Au**	Pt**	Pd**
SAMPLES ppb	ppb	ppb
ISIN-05-01	$11<2$	<2
ISIN-05-01	$15<2$	
ISIN-05-01	9	2
ISIN-05-01	$7<2$	<2
ISIN-05-01	$7<2$	<2
ISIN-05-01	$11<2$	<2

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT
To Jasper Mining Corporation PROJECT Isintok
Acme file \# A508023R Received: JAN 13 2006 * 12 samples in this disk file.
Analysis: GROUP 3B - FIRE GEOCHEM AU, PT, PD - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS $=10$ PPM.
ELEMENT Au** $\mathrm{P}^{\star \star} \quad \mathrm{Pd}^{\star \star}$
SAMPLES ppb $\quad \mathrm{P}^{\star \star} \quad \mathrm{Pd}^{\star \star}$
SAMPLES ppb ppb ppb
5/3/1983 $\quad 6<2<2$
$5 / 3 / 1998 \quad 10<2<2<2$

| $05-03-101<2$ | <2 | <2 | |
| :--- | ---: | :--- | ---: | :--- |
| $05-03-102$ | $21<2$ | | 3 |

$05-03-103$	3	3	4

$05-03-104$	3	3	5

$05-03-108$	6	3	5

RE 05-03-1 3 3

$05-03-109$	2	4	6

$05-03-110$	28	4	6

$05-03-115$	26	2	6
$05-03-118$	$13<2$		5

STANDAR	461	494	474

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT
To Jasper Mining Corporation PROJECT Isintok
Acme file \# A508023R2 Received: JAN 13 2006 * 6 samples in this disk file.
Analysis: GROUP 7KP - 0.500 GM SAMPLE BY PHOSPHORIC ACID LEACH, ANALYSIS BY ICP-ES.
ELEMENT W
SAMPLES \%
05-03-087
05-03-111
0.03

05-03-112 0.04
05-03-115 0.09
05-03-116
0.07

STANDAR 0.08

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT
To Jasper Mining Corporation PROJECT Isintok
Acme file \# A508118R Received: JAN 13 2006 * 15 samples in this disk file.
Analysis: GROUP 3B - FIRE GEOCHEM AU, PT, PD - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS $=10$ PPM.
ELEMENT Au** $\mathrm{Pt}^{* *} \quad \mathrm{Pd}^{* *}$
SAMPIES ppb $\quad \mathrm{Pt}^{\star \star} \quad \mathrm{Pd}^{\star \star}$
05-03-119 $\quad 10<2<2$

05-04-124 $\quad 15<2 \quad<2$
05-04-126 $24<2<2$
05-04-127 636

05-04-129
5-04-130
$5<2 \quad<2$
RE 05-04-1 $\quad 11 \quad 3<2$
05-04-132 $\quad 14<2$
05-04-133 $\quad 13<2 \quad 3$

$05-04-134$	28	2	3

05-04-155 $\quad 19<2 \quad<2$
05-04-156 $28<2 \quad 3$

05-04-165E $\quad 20<2 \quad<2$
05-04-167 44 2
$\begin{array}{lll}\text { STANDAR } & 464 & 494\end{array}$

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT
To Jasper Mining Corporation PROJECT Isintok
Acme file \# A508118R2 Received: JAN 132006 * 2 samples in this disk file.
Analysis: GROUP 7KP - 0.500 GM SAMPLE BY PHOSPHORIC ACID LEACH, ANALYSIS BY ICP-ES.
ELEMENT W
SAMPLES \%
05-04-158
STANDAR|
0.09

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT
To Jasper Mining Corporation
Acme file \# A600274R Received: FEB 16 2006 * 5 samples in this disk file.
Analysis: GROUP 7KP - 0.500 GM SAMPLE, 4 ACID (HF-HCLO4-HNO3-HCL) DIGESTION TO 100 ML , ANALYSIS BY ICP-ES.
ELEMENT W
SAMPLES \%
ISIN-05-03 0.05
ISIN-05-03 0.02
$\begin{array}{ll}\text { ISIN-05-03 } & 0.02\end{array}$
STD TLG- 0.08
STANDAR 0.08

Date:

Copper	1.000 lb
Molybdenum	6.000 lb

ELEMENT From		$\begin{aligned} & \text { To } \\ & \text { (m) } \end{aligned}$	Width (m)	From (ft)	To (ft)	Width (ft)	$\begin{array}{r} \text { Mo } \\ \text { ppm } \end{array}$	$\begin{gathered} \text { Mo } \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$	Copper	(t)		
SAMP												Equivalent		Cu	
								Assay	Calc	Assay	Calc			\%	\%
ISIN-05-01-01	21.33	21.81	0.48	69.98	71.56	1.57	23.1	0.002	541.6	0.054	0.6	0.068	0.004	0.085	
ISIN-05-01-02	21.81	22.93	1.12	71.56	75.23	3.67	1	0.000	149.3	0.015	0.3	0.016	0.000	0.055	
ISIN-05-01-03	22.93	24.38	1.45	75.23	79.99	4.76	0.3	0.000	16	0.002	0.3	0.002	0.000	0.008	
ISIN-05-01-04	24.38	27.43	3.05	79.99	90.00	10.01	0.7	0.000	20.3	0.002	0.1	0.002	0.001	0.020	
ISIN-05-01-05	27.43	30.48	3.05	90.00	100.00	10.01	1.1	0.000	19.8	0.002	<. 1	0.003	0.001	0.020	
ISIN-05-01-06	30.48	33.53	3.05	100.00	110.01	10.01	7.3	0.001	29.5	0.003	<. 1	0.007	0.007	0.030	
ISIN-05-01-07	33.53	36.57	3.04	110.01	119.99	9.97	19.9	0.002	74.2	0.007	0.1	0.019	0.020	0.074	
ISIN-05-01-08	36.57	39.62	3.05	119.99	129.99	10.01	6.4	0.001	79.4	0.008	0.1	0.012	0.006	0.079	
ISIN-05-01-09	39.62	42.67	3.05	129.99	140.00	10.01	10.1	0.001	1300.3	0.130	0.7	0.136	0.010	1.301	
ISIN-05-01-10	42.67	45.72	3.05	140.00	150.01	10.01	3.2	0.000	16.7	0.002	<. 1	0.004	0.003	0.017	
ISIN-05-01-11	45.72	48.76	3.04	150.01	159.98	9.97	5.8	0.001	187.5	0.019	0.1	0.022	0.006	0.187	
ISIN-05-01-12	48.76	51.81	3.05	159.98	169.99	10.01	4.7	0.000	81.3	0.008	0.1	0.011	0.005	0.081	
ISIN-05-01-13	51.81	54.86	3.05	169.99	180.00	10.01	0.9	0.000	436.5	0.044	0.4	0.044	0.001	0.437	
ISIN-05-01-14	54.86	57.91	3.05	180.00	190.00	10.01	8.2	0.001	122.3	0.012	0.1	0.017	0.008	0.122	
ISIN-05-01-15	57.91	60.96	3.05	190.00	200.01	10.01	1.1	0.000	30.7	0.003	0.1	0.004	0.001	0.031	
ISIN-05-01-16	60.96	64	3.04	200.01	209.98	9.97	0.7	0.000	9.1	0.001	<. 1	0.001	0.001	0.009	
ISIN-05-01-17	64	67.05	3.05	209.98	219.99	10.01	1.7	0.000	230.1	0.023	0.1	0.024	0.002	0.230	
ISIN-05-01-18	67.05	70.1	3.05	219.99	230.00	10.01	3.1	0.000	272.7	0.027	0.2	0.029	0.003	0.273	
ISIN-05-01-19	70.1	73.15	3.05	230.00	240.01	10.01	3.2	0.000	124.4	0.012	0.1	0.014	0.003	0.124	
ISIN-05-01-20	73.15	76.2	3.05	240.01	250.01	10.01	72.8	0.007	724	0.072	0.4	0.116	0.073	0.725	
ISIN-05-01-21	76.2	79.24	3.04	250.01	259.99	9.97	25.2	0.003	305.9	0.031	0.2	0.046	0.025	0.305	
ISIN-05-01-22	79.24	82.28	3.04	259.99	269.96	9.97	179.8	0.018	427.7	0.043	0.3	0.151	0.179	0.427	
ISIN-05-01-23	82.28	85.34	3.06	269.96	280.00	10.04	256.8	0.026	181.2	0.018	0.1	0.172	0.258	0.182	
ISIN-05-01-24	85.34	88.39	3.05	280.00	290.01	10.01	12.7	0.001	242.3	0.024	0.2	0.032	0.013	0.242	
ISIN-05-01-25	88.39	91.44	3.05	290.01	300.01	10.01	91.5	0.009	143.6	0.014	0.1	0.069	0.092	0.144	
ISIN-05-01-26	91.44	94.48	3.04	300.01	309.99	9.97	11.8	0.001	161.8	0.016	0.2	0.023	0.012	0.161	
ISIN-05-01-27	94.48	97.53	3.05	309.99	320.00	10.01	47.8	0.005	364.3	0.036	0.4	0.065	0.048	0.365	
ISIN-05-01-28	97.53	100.58	3.05	320.00	330.00	10.01	20.3	0.002	807.5	0.081	0.6	0.093	0.020	0.808	
ISIN-05-01-30	100.58	103.63	3.05	330.00	340.01	10.01	11.7	0.001	65.9	0.007	0.1	0.014	0.012	0.066	
ISIN-05-01-31	103.63	106.67	3.04	340.01	349.98	9.97	7.1	0.001	151.8	0.015	0.2	0.019	0.007	0.151	
ISIN-05-01-31B	106.67	109.72	3.05	349.98	359.99	10.01	157.6	0.016	279.5	0.028	0.2	0.123	0.158	0.280	
ISIN-05-01-32	109.72	112.77	3.05	359.99	370.00	10.01	25.8	0.003	867.6	0.087	0.5	0.102	0.026	0.868	
ISIN-05-01-33	112.77	115.82	3.05	370.00	380.01	10.01	167.8	0.017	1016.4	0.102	0.7	0.202	0.168	1.017	
ISIN-05-01-34A	115.82	118.87	3.05	380.01	390.01	10.01	4.7	0.000	1264.8	0.126	0.5	0.129	0.005	1.266	
ISIN-05-01-34B							32.6	0.003	441.4	0.044	0.4	0.064			
ISIN-05-01-35	118.87	121.91	3.04	390.01	399.99	9.97	3.3	0.000	22.1	0.002	0.1	0.004	0.003	0.022	
ISIN-05-01-36	121.9	124.96	3.06	399.95	409.99	10.04	3.5	0.000	102.5	0.010	0.1	0.012	0.004	0.103	
													1.102	7.634	
Interval \#1: 17			54.87			180.03	feet						0.006	0.042	
Length-Weighted Average for:					Cu		\%	0.042 over		54.870		Metres	180.028	Feet	
					Mo		\%	0.006 over		54.870		Metres	180.028	Feet	
					Ag		oz/t	0.008 over		54.870		Metres	180.028	Feet	
					Copper	Equivalen		0.079 over		54.870		Metres	180.028	Feet	

ISIN-05-02-55	73.15	76.2	3.05	240.01	250.01
ISIN-05-02-56	76.2	79.24	3.04	250.01	259.99
ISIN-05-02-057	79.24	82.29	3.05	259.99	269.99
ISIN-05-02-058	82.29	85.34	3.05	269.99	280.00
ISIN-05-02-059	85.34	88.89	3.55	280.00	291.65
ISIN-05-02-060	88.89	91.44	2.55	291.65	300.01
ISIN-05-02-061	91.44	94.48	3.04	300.01	309.99
ISIN-05-02-062	94.48	97.53	3.05	309.99	320.00
ISIN-05-02-063	97.53	100.58	3.05	320.00	330.00
ISIN-05-02-064	100.58	103.63	3.05	330.00	340.01
ISIN-05-02-065	103.63	106.67	3.04	340.01	349.98
ISIN-05-02-066	106.67	109.72	3.05	349.98	359.99
ISIN-05-02-067	109.72	112.77	3.05	359.99	370.00
ISIN-05-02-068	112.77	115.82	3.05	370.00	380.01
ISIN-05-02-069	115.8	118.87	3.07	379.94	390.01
ISIN-05-02-070	118.87	121.91	3.04	390.01	399.99
ISIN-05-02-071	121.91	124.96	3.05	399.99	409.99
ISIN-05-02-072	124.96	128.01	3.05	409.99	420.00
ISIN-05-02-073	128.01	131.06	3.05	420.00	430.01
ISIN-05-02-074	131.06	134.11	3.05	430.01	440.01
ISIN-05-02-075	134.11	137.15	3.04	440.01	449.99
ISIN-05-02-076	137.15	140.2	3.05	449.99	460.00

10.01	2.4	0.000
9.97	1	0.000
10.01	1	0.000
10.01	4.1	0.000
11.65	1.1	0.000
8.37	0.9	0.000
9.97	8	0.001
10.01	26.6	0.003
10.01	0.8	0.000
10.01	1	0.000
9.97	0.5	0.000
10.01	0.5	0.000
10.01	0.4	0.000
10.01	0.9	0.000
10.07	0.7	0.000
9.97	0.7	0.000
10.01	8.3	0.001
10.01	1.7	0.000
10.01	0.8	0.000
10.01	1.4	0.000
9.97	3.2	0.000
10.01	1.3	0.000

6.4	$0.001<.1$	0.002	0.002	0.006
4.5	$0.000<.1$	0.001	0.001	0.004
8.1	0.001	0.1	0.001	0.001
14.2	0.001	0.1	0.004	0.004
7.8	$0.001<.1$	0.001	0.001	0.014
4.4	$0.000<.1$	0.001	0.001	0.004
5.8	$0.001<.1$	0.005	0.008	0.006
6.9	$0.001<.1$	0.017	0.027	0.007
5.1	$0.001<.1$	0.001	0.001	0.005
6.5	$0.001<.1$	0.001	0.001	0.007
4.5	$0.000<.1$	0.001	0.000	0.004
6.7	$0.001<.1$	0.001	0.001	0.007
8	$0.001<.1$	0.001	0.000	0.008
13.4	$0.001<.1$	0.002	0.001	0.013
6.9	$0.001<.1$	0.001	0.001	0.007
11.8	$0.001<.1$	0.002	0.001	0.012
8.9	$0.001<.1$	0.006	0.008	0.009
20.8	$0.002<.1$	0.003	0.002	0.021
5.4	$0.001<.1$	0.001	0.001	0.005
15.6	$0.002<.1$	0.002	0.001	0.016
11.1	$0.001<.1$	0.003	0.003	0.011
12.1	$0.001<.1$	0.002	0.001	0.012

Appendix C

Statement of Expenditures

STATEMENT OF EXPENDITURES

The following expenses were incurred on the Isintok Project between November $20^{\text {th }}$ and December 14 ${ }^{\text {th }}, 2005$.

Diamond Drilling - 700.08 m at $\$ 100 \mathrm{~m}$ (inclusive)	\$	70,080
Geologist - 24 days at \$500/day	\$	12,000
Assistant - 24 days at \$300 / day	\$	7,200
Field Supplies - 48 man-days at \$20 / day	\$	960
4WD Truck - 24 days at \$75/day	\$	1,800
Fuel	\$	750
Mileage - 2,600 km at \$0.50 / km	\$	1,300
Rock saw - 20 days at \$75 / day	\$	1,500
Samples		
183 core samples ICP analysis at \$22 / sample	\$	4,026
Shipping	\$	700
Report - 4 days at \$500 / day	\$	2,000
	\$	$\underline{\text { 102,316 }}$

Appendix D

Program-related Documents

 whers HelpB.C. HOME

Mineral Titles Online

http://www.mtonline.gov.bc.ca/mto/jsp/sow_m_c/sowEventConfirmation.jsp?ca.bc.gov.em.app.mto.shoppingItemIndex=0\&org.apache.... 16/08/2006

52	NW ANOMALY	2005/SEP/20\|	2011/SEP/2	2013/dec/24	82	209.	\$ 3790.01	89.73
520474	MO-FO	2005/SEP/27	2011/SEP/27	2013/dec/24	819	62.93	\$ 1128.20	\$ 56.48
5206900	MO-FO-2	2005/OCT/01	2006/OCT/0	2013/dec/24	2641	62.9	\$ 2884.05	\$ 182
520831	MOLINK	2005/OCT/05	2006/OCT/05	2013/dec/24	2637	188.69	\$ 8632.98	\$ 545.27
521001	ISINTOK 10	2005/OCT/12	2006/OCT/12	2013/dec/24	2630	503.0	\$ 22940.40	\$ 1449.97
414581	ISINTOK 1	2004/SEP/24	2011/SEP/24	2013/dec/24	822	500.00	\$8997.2	\$ 450.41
415492	ISINTOK 2	2004/OCT/24	2011/SEP/24	2015/dec/24	1552	500.00	\$ 16997.26	\$ 850.41
4154951	ISINTOK 3	2004/OCT/24	2011/SEP/24	2015/dec/24	1552	25.00	\$ 849.86	\$ 42.52

Total required work value: $\$ \quad 80108.87$
PAC name: Mountain Star Resources Ltd
Debited PAC amount: $\$ \quad 0.00$
Credited PAC amount: $\$$
0.00

Total Submission Fees: $\$$
4461.77

Total Paid: \$
4461.77

The event was successfully saved.

Please use Back button to go back to event confirmation index.

Back

