

ſ.

November 30, 2006

Fieldwork completed between August 1st and September 10, 2006

TABLE OF CONTENTS

1

1. TITLE PAGE	
2. TABLE of CONTENTS	
3. SUMMARY	3
4. INTRODUCTION and TERMS OF REFERENCE	5
5. DISCLAIMER	5
6. PROPERTY DESCRIPTION and LOCATION	6
7. ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE and PHYSIOGRAPHY	6
8. HISTORY	7
9. GEOLOGICAL SETTING	10
10.DEPOSIT TYPES	11
11. MINERALIZATION	12
12. EXPLORATION	14
13. PREVIOUS DIAMOND DRILLING	14
14. SAMPLING METHOD and APPROACH	14
15. SAMPLE PREPARATION, ANALYSES and SECURITY	14
16. DATA VERIFICATION	15
17.ADJACENT PROPERTIES	15
18. OTHER RELEVANT DATA AND IFORMATION	15
19. CONCLUSIONS and INTERPRETATION	15
20. RECOMMENDATIONS AND BUDGET	16
21.REFERENCES	18
22. DATE AND SIGNATURE	19
23. STATEMENT OF QUALIFICATIONS	20
24. APPENDIX I STATEMENT of COSTS 2006	22
25. APPENDIX II ASSAY CERTIFICATES	24
26. APPENDIX III SAMPLE DESCRIPTIONS & GPS LOCATIONS	25

LIST OF FIGURES

1	Location Map	3
2	Claim Map	5
3	Regional Geology Map	9
\mathbb{A}	Outopil Stign Mapor Historic Deta Societ Perhasola Area	140
5	Tasu Field Data – Base Map, 1:50,000	13
6	Tasu Field Data – Base Map	14
7	Location of 2006 Sample Results, 1:10,000	in pocket

TABLES

TABLE I	List of Claims

1

6

3.0 SUMMARY

The Tasu Pacific Gold Project property is comprised of 19 mineral claims centered 60 km south-southwest of the town of Sandspit, within the Skeena Mining District of British Columbia in the Queen Charlotte Islands.

The property area is accessible by floatplane or helicopter from Sandspit. Alternative access to the project area by boat is to proceed westward from Sandspit through Skidegate Channel to the open Pacific Ocean, then southwards to Tasu Sound along the outer coast of Moresby Island, a distance of about 130 km.

The terrain consists of moderately steep-sided, rugged mountains that rise from the shoreline of Tasu Sound. Large cedar, spruce and hemlock trees cover the lower elevations.

The property region has been explored for iron, copper and gold since the early 1900's. The past-producing Tasu open pit mine is located adjacent to the northwestern corner of the Tasu Pacific property. Iron, copper, silver and gold were produced from the chalcopyrite-bearing magnetite skarn at Tasu, which closed in 1984.

Corlett Peninsula is across Fairfax Inlet from the old Tasu minesite, and lies within the current Tasu Pacific property. The Corlett Peninsula area has been sporadically explored since an adit was excavated circa 1908 on a garnet-magnetite skarn showing on the historic Tommy claim. This skarn contains chalcopyrite, sphalerite and pyrite that mainly occur as vein-like bodies, the largest of which averages 1.22 m wide over a strike length of 76 m. Exploration work at Corlett Peninsula has included prospecting, trenching, geochemical sampling, geophysical surveying and a total of approximately 1,908 m of diamond drilling in 23 holes.

Disseminated chalcopyrite and molybdenite coat fracture surfaces within variably altered quartz diorite at Corlett Peninsula.

Anomalous concentrations of platinum group elements and gold occur in soil within the southeastern Tasu Pacific property area. This area is mapped as being underlain by Karmutsen Formation basalts. Platinum and palladium are associated with bornite, chalcopyrite, silver and gold within Karmutsen Formation rocks at the nearby historic Swede occurrence.

Mr. Neil Froc discovered visible gold at the Discovery Zone located west of Botany Inlet during 2003. Thirteen channel samples from 2004 sampling of the Discovery Zone contain from 0.007 g/t gold and 0.2 g/t silver across 35 cm to 26.742 g/t gold and 4.2 g/t silver across 20 cm.

Triassic Karmutsen Formation basalts and Kunga Formation limestones are intruded by Jurassic quartz diorites of the San Cristoval Plutonic Suite within the property area. These rocks are themselves crosscut by late igneous dykes of Paleogene age. Quartz-carbonate veins locally intrude all of the other rock types. Northwesterly to north-northwesterly trending faults have affected all of the rocks.

Tasu Pacific has completed a brief reconnaissance program of geochemical moss mat stream sediment and rock sampling in 2005 and a follow-up program of silt sampling and prospecting in 2006. Thirty-three geochemical moss mat sediment samples and 21 rock samples were collected during March 2005. A total of 256 silt and 149 rock samples were collected in 2006.

The 33 moss mat sediment samples contain from zero to 601 parts per billion (ppb) gold. These sediment samples were collected mainly from stream drainages along the eastern side of Corlett Peninsula. Eight of these moss mat sediment samples contain greater than 20 ppb gold.

The 2005 and 2006 rocks contain between 4 ppb and 22,655 ppb gold, from <0.1 ppm to 3 ppm silver, from 8.9 ppm to 4,829 ppm copper and from 0.3 ppm to 17.4 ppm molybdenum. The results of the current sampling confirm the presence of chalcopyrite and molybdenite within quartz diorite at northern Corlett Peninsula.

Gold mineralization in outcrop at the Discovery Zone area, and the presence of anomalous gold concentrations in geochemical moss mat sediment and silt samples, indicate that additional gold mineralization likely occurs in bedrock along Corlett Peninsula. Most of the area drained by the sampled streams is underlain by quartz diorite.

The Karmutsen Formation basalts underlying southeastern Tasu Pacific property area likely contain anomalous concentrations of platinum group elements and gold.

Prospecting, geological mapping and geochemistry should be the primary focus of the next phase of exploration work at the Tasu Pacific property. The prospecting should be directed towards discovering additional gold occurrences on Corlett Peninsula, by searching the stream drainages where anomalous gold concentrations have been found in moss mat sediments. Prospecting should also be done to the south of the known copper-molybdenite occurrences at northern Corlett Peninsula.

Further work should be performed in the area where anomalous concentrations of platinum group elements and gold occur in soil at southeastern Tasu Pacific property. Geochemical moss-mat sediment sampling and soil sampling should be done in areas underlain by Karmutsen Formation basalts. In addition, this

area should be prospected and geologically mapped. Geochemical rock sampling of any sulphide occurrences will assist in determining the mode of occurrence of platinum group elements within the bedrock.

An exploration program consisting of prospecting, geological mapping and geochemical soil, stream sediment and rock sampling is recommended. The work is estimated to cost \$ 98,300.00.

4.0 INTRODUCTION ANDS TERMS OF REFERENCE

This assessment report describes current and historic exploration performed on the Tasu Pacific Gold Project property of Tasu Pacific Gold Inc., Moresby Island, Queen Charlotte Islands, British Columbia. This report was prepared at the request of Neil Froc, President of Tasu Pacific Gold Inc.

This assessment report summarizes and describes both historical and current work conducted on the Tasu Pacific Gold Project property, and makes recommendations for future work on the property.

This report is based on assessment records for the Tasu Pacific Gold Project property area, upon information provided by Neil Froc and upon published governmental maps and reports pertaining to the Tasu Pacific Gold Project property area. The writer personally visited the Tasu Pacific Gold Project property on September 2, 2006.

5.0 DISCLAIMER, RELIANCE on OTHER EXPERTS

The information presented in this report is based partly on assessment records for the Tasu Pacific Gold Project property area on file with the British Columbia Ministry of Energy and Mines. These records are available through the Vancouver Geoscience Office of the Ministry, or, in abstract format, electronically through the Map Place website at

www.em.gov.bc.ca/mining/geolsurv/MapPlace/default.htm.

Tasu Pacific Claims

6.0 PROPERTY DESCRIPTION AND LOCATION

The mineral claims which form the Tasu Pacific Gold Project property are centred approximately 60 km south-southwest of the town of Sandspit, Moresby Island, Queen Charlotte Islands, British Columbia, on N.T.S. map-sheeets 103 B/12 and 103 C/09 (Figure 1). The claim group is comprised of 19 claims covering 8,711.4 hectares. These claims are currently registered as being owned 100 % by Mr. Neil Froc (FMC 108954).

The claims comprising the property are listed in Table I and illustrated in Figure 2.

List of Claims											
Tenure	Claim Name	Area (ha)	Issue Date	Current Date	Registered						
Number					Owner						
501434	Tasu 1	469.616	Jan 12/06	Sept. 13/08	N. Froc						
501492	Tasu 2	488.943	Jan 12/06	Sept. 13/08	N. Froc						
501953	Tasu 3	450.088	Jan 12/06	Jan. 12/08	N. Froc						
501974	Tasu 4	450.108	Jan 12/06	Jan. 12/08	N. Froc						
504998	Tasu 5	469.857	Jan 12/06	Jan. 12/08	N. Froc						
502034	Tasu 6	489.544	Jan 12/06	Jan. 12/08	N. Froc						
502053	Tasu 7	470.115	Jan 12/06	Jan. 12/08	N. Froc						
507153	Apex 1	430.961	Jan 12/06	Jan. 12/08	N. Froc						
507154	Apex 2	470.018	Jan 12/06	Jan. 12/08	N. Froc						
507676	CB 1	470.018	Jan 12/06	Jan. 12/08	N. Froc						
507677	CB 2	469.84	Jan 12/06	Jan. 12/08	N. Froc						
507678	CB 3	469.81	Jan 12/06	Jan. 12/08	N. Froc						
507680	CB4	176.142	Jan 12/06	Jan. 12/08	N. Froc						
511056	Wilson 1	176.148	Apr. 19/05	Apr. 19/08	N. Froc						
511060	Fairfax 1	470.101	Apr. 19/05	Apr. 19/08	N. Froc						
511083	Conv.	1155.204	Apr. 19/05	Sept. 14/08	N. Froc						
511084	Conv.	176.096	Apr. 19/05	Sept. 13/08	N. Froc						
526130	Crescent East	469.718	Jan. 24/06	Jan. 24/08	N. Froc						
528576	RB 1	489.09	Feb. 20/06	Feb. 20/08	N. Froc						
	Total	8,711.417			N. Froc						

TABLE I ist of Claims

It is understood from Mr. Froc that an agreement has been signed with Tasu Pacific Gold Inc., however the writer has not reviewed this agreement.

7.0 ACCESSIBILITY, CLIMATE RESOURCES, INFRASTRUCTURE and PHYSIOGRAPHY

The Tasu Pacific Gold Project property is located approximately 60 km southsouthwest of the town of Sandspit, Moresby Island, Queen Charlotte Islands, British Columbia. Basic services required for exploration purposes can be obtained at Sandspit or nearby Queen Charlotte City.

Access to the property for the Sept 2006 exploration work was by boat and airplane on floats. Alternative access is by gravel road from Sandspit to Moresby Camp on Gillat Arm, a distance of approximately 32 km, then by boat from Moresby Camp to the head of Sewell Inlet. The boat could then be trailered a distance of 7 km over logging roads to Newcombe Inlet, which opens on to Tasu Sound.

The old tent campsites on Corlett Peninsula were used for the 2006 work on the project. An abandoned, metal-clad building with a concrete floor is located at the Tasu minesite.

Alternative access to the project area by boat is to proceed westward from Sandspit through Skidegate Channel to the open Pacific Ocean, then southwards to Tasu Sound along the outer coast of Moresby Island, a distance of about 130 km. Initial camp supplies for the 2006 program was brought to the property in this manner.

Elevations in the property area range from sea level up to about 930 metres a.s.l. at the top of Tasu Mountain on the western side of the property. The terrain consists of moderately steep-sided, rugged mountains that rise from the shoreline of Tasu Sound. The highest elevations are above treeline. Large cedar, spruce and hemlock trees cover the lower elevations; only the southeastern corner of the property area has been logged. Soil is sparse and poorly developed where present. The climate is generally cool and wet, with windstorms in late fall.

8.0 HISTORY

The property region has been sporadically explored for iron, copper and gold since the early 1900's. The past-producing Tasu open pit mine is located adjacent to the northwestern corner of the property (Figure 2). More than 12,300,000 tonnes iron, 57,000 tonnes copper, 52,800 kg silver and 1,430 kg gold were produced from the chalcopyrite-bearing magnetite skarn at Tasu (British Columbia Ministry of Energy and Mines minfile number 103C 003). Exploration work at Tasu began during 1908. Westfrob Mines Limited, a wholly owned subsidiary of Falconbridge Nickel Mines Limited, brought the mine into production in June 1967. The Tasu mine closed in 1984.

The historic Tommy claim covered an adit 21.3 m long excavated circa 1908 on a showing of banded garnet-magnetite skarn with chalcopyrite, sphalerite and pyrite in Karmutsen Formation basalt and Kunga Formation limestone on the western side of Corlett Peninsula, across Fairfax Inlet from the Tasu minesite. The basalt and limestone form a pendant in the roof of the San Cristoval quartz diorite (Figure 5). The garnet-magnetite bands are up to 150 m long by 6 m

wide. The sulphide minerals mainly occur as vein-like bodies, the largest of which averages 1.22 m wide over a strike length of 76 m (Sutherland Brown, 1968). Cominco Limited performed hand trenching in the area north of the Tommy Adit during the 1950's. Silver Standard Mines performed a ground magnetometer survey and completed 64.92 m of diamond drilling in the area during 1962 (Sutherland Brown, 1968).

Moresby Mines Limited (Moresby) performed geological mapping and rock sampling over the northern end of Corlett Peninsula during 1966. The results of this work showed that disseminated chalcopyrite and molybdenite spot fracture surfaces within variably altered quartz diorite, which is mineralized across about 150 m by 305 m in one area, and across about 120 m by 670 m in another area. Fracture density within the quartz diorite appears to control alteration (Arscott, 1967). Moresby drilled twelve holes totalling 495.6 m. Five of these holes tested copper and iron showings on the western side of Corlett Peninsula; average grades of 1.3 % copper, 20.6 g/t silver and 0.08 % molybdenite across widths of 7.62 m to 12.2 m were reported by Arscott (1967). Seven of the Moresby drill holes tested the zinc and copper showings within skarn; these holes intersected spotty mineralization (Arscott, 1967).

Canadian Superior Exploration Limited performed geological mapping, induced polarization (I.P.) surveying, magnetometer surveying and geochemical rock and soil sampling on Corlett Peninsula (Dujardin and Fawley, 1967). Most of their work was done on the area of disseminated and veinlet chalcopyritemolybdenite-pyrite mineralization within chlorite-, sericite- and silica-altered guartz diorite along the intrusive contact with Karmutsen Formation basalt wallrocks. A broad zone of anomalous chargeability was detected along the intrusive rock contact on the western side of Corlett Peninsula (Plate 5 in Dujardin and Fawley, 1967). The results of their limited ground magnetometer surveying indicate that the Karmutsen Formation basalts have a higher magnetic signature than the adjacent intrusive quartz diorite. The results of geochemical rock sampling outlined an area of guartz diorite 213 m wide and 457 m long that contains anomalous (100 to 1,000 parts per million (ppm)) copper concentrations. This area generally coincides with the zone of higher I.P. chargeability referred to above, which occurs along the Karmutsen Formation / guartz diorite contact. The results of geochemical soil sampling indicate that soils overlying the bedrock with anomalous copper concentrations and anomalous chargeability also contain anomalous (< 100 ppm) copper concentrations (Dujardin and Fawley, 1967; Figure 5). Canadian Superior Exploration Limited tested the coincident geochemical and geophysical anomalies with three diamond drill holes totalling 482.5 m; sparse disseminated chalcopyrite and molybdenite were observed in quartz diorite from these holes (McAllister, 1983).

Sutherland Brown (1968) mapped the geology of the region at 1:253,440 scale for the British Columbia Department of Mines and Petroleum Resources.

Imperial Oil Enterprises Ltd. (Imperial) outlined I.P. chargeability anomalies in an area of quartz diorite mineralized with molybdenite and chalcopyrite on the eastern side of Corlett Peninsula (Wyder, 1971). Imperial drilled five holes totalling 649.8 m to test these anomalies; subeconomic grades of less than 0.4 % copper were obtained from the drill core samples (McAllister, 1983).

Dowa Mining Co., Ltd. (Dowa) drilled three holes totalling 215.19 m on the western side of Corlett Peninsula, to test the potential for magnetite skarn deposits north of the Tommy adit, and to the west of the area earlier drilled by Moresby and Canadian Superior Exploration Limited. The Dowa drill holes tested the rocks underlying the central portion of the Kunga limestone (Figure 5). Pyrite and pyrrhotite traces were seen in core from only one of the three drill holes (Komura, 1975).

A total of approximately 1908 m of diamond drilling in 23 holes was performed at Corlett Peninsula area between 1962 and 1975. The approximate locations of the historic diamond drill holes are shown on Figure 5.

The northern end of Corlett Peninsula was prospected and re-evaluated by Charles Kowall in 1982. Kowall recommended follow-up prospecting and diamond drilling at the northern end of Corlett Peninsula, where he located several new molybdenite and chalcopyrite occurrences within quartz diorite, over an area about 150 m by 300 m across (Figure 5; Kowall, 1982).

McAllister (1983) compiled data pertaining to the metallic mineral occurrences of the Tasu region for Falconbridge Limited (Falconbridge). This work included the results of 1969 stream sediment sampling, which show that sediment from the stream draining the northern tip of Corlett Peninsula contains 120 ppm copper and 4 ppm molybdenum (Figure 5). Falconbridge performed geochemical soil and rock sampling and prospecting in the immediate vicinity of the old Tommy adit during 1985. Select rock samples assayed up to 12.2 g/t silver, 0.73 % copper, 2.2 % lead and up to 14.1 % zinc (Zastavnikovich, 1985).

The results of historic geochemical soil sampling indicate that platinum group elements occur within the southeastern property area, in areas underlain by Karmutsen Formation basalts (Shearer, 1987). Soils from this area contain up to 5,350 ppb palladium, 1,200 ppb platinum and up to 1,720 ppb gold (Shearer, 1987). Platinum and palladium are associated with bornite, chalcopyrite, silver and gold at the historic Swede occurrence, located 8 km to the southeast of the geochemical soil anomaly (Annual Report of B.C. Minister of Mines, 1921; Figure 3).

Haggart (2004) compiled the geology of the Queen Charlotte Islands at 1:250,000 scale for the Geological Survey of Canada.

10.

Mr. Neil Froc discovered visible gold within a quartz veinlet on the hillside west of Botany Inlet during 2003; this occurrence has been named the Discovery Zone. Mr. Froc collected nine select geochemical rock samples from the Discovery Zone area that contain from 4.07 g/t to 175.03 g/t gold, and from 0.6 to 37.6 g/t silver (Pawliuk, 2005). These sample sites are shown on Figure 6. The OG 1 to 4 legacy mineral claims were staked in September 2003 to cover the Discovery Zone.

Thirteen rock channel samples, one grab sample and three stream sediment samples were collected from the Discovery Zone area during April 2004. Thirteen channel samples from the Discovery Zone contain from 0.007 g/t gold and 0.2 g/t silver across 35 cm to 26.742 g/t gold and 4.2 g/t silver across 20 cm (Pawliuk, 2004).

Thirty-three geochemical moss mat samples were collected in 2005 and contain from <2 ppb to 601 ppb gold, and from <0.1 ppm to 0.8 ppm.

Stream sediment sample 185012 contains 601 ppb gold. This sample was collected from a small creek drainage about 1600m north of the Discovery Zone area, along the eastern shoreline of Corlett Peninsula

Stream sediment sample 185002 contains 58 ppb gold (Appendix B). This sample site is located in the headwaters of "Sheldon" Creek, about 2800 m south of the Discovery Zone. Two sediment samples collected downstream of this site only contain 4 and 7 ppb gold, however.

Stream sediment samples 185015 and 185016 contain 44 ppb and 40 ppb gold respectively. These samples were collected along the eastern shoreline of Corlett Peninsula west of Botany Island.

All of the stream sediments with high gold concentrations were collected from stream drainages mainly underlain by quartz diorite. Quartz diorite also underlies most of the Discovery Zone area, where anomalous gold concentrations occur in bedrock on the eastern side of Corlett Peninsula.

9.0 GEOLOGICAL SETTING

9.1 REGIONAL GEOLOGY

Igneous, volcanic and sedimentary rocks of Triassic to Paleogene age underlie the project region. The property lies in the Wrangellia Terrane of the Insular Belt, the outer portion of the Cordillera.

Triassic Karmutsen Formation basalts and Kunga Formation limestones are intruded by Jurassic quartz diorites of the San Cristoval Plutonic Suite within the property area (Haggart, 2004). These rocks are themselves intruded by late igneous dykes of Paleogene age. Northwesterly to north-northwesterly trending faults occur within the region. The geology of the project region is shown on Figure 3.

9.2 LOCAL GEOLOGY

Quartz diorite of the San Cristoval Plutonic Suite has intruded Karmutsen Formation basalt and Kunga Formation limestones.

Tertiary andesite and felsic dykes intrude the above rocks, and quartz-carbonate veins locally intrude all of the other rock types.

10.0 DEPOSIT MODEL CONSIDERATIONS

DEPOSIT TYPES

The styles of mineralization encountered to date on and nearby the Tasu Pacific Gold property, as well as the geological setting of the mineralization, suggest that the property has the potential to host economic epithermal vein gold-silver deposits, iron skarn deposits, porphyry copper-molybdenum-gold deposits and platinum group element occurrences. Epithermal gold-silver veins and iron skarns can be related to nearby porphyry copper-molybdenum-gold deposits. The following outlines of these deposit types are taken partly from Ray (1995) and Panteleyev (1995). The geology and setting of the adjacent, now-closed Tasu mine were described by Sutherland Brown (1968).

Porphyry copper-gold deposits are important producers of copper, gold and molybdenum. These deposits are directly related to epizonal to mesozonal intrusions, typically located in orogenic belts at convergent plate boundaries. Mineralization is hosted within the causative intrusions and/or the host wallrocks and consists of quartz stockworks, veinlets, disseminations and replacements within large hydrothermally altered systems. These hydrothermal systems are marked by distinctive alteration mineral assemblages. The system cores contain potassic alteration mineral assemblages that include potassium feldspar, biotite and magnetite; the cores commonly host the highest-grade copper-gold mineralization. Mineralization is comprised of chalcopyrite, pyrite, molybdenite, magnetite and hematite. Propylitic alteration zones characterized by chlorite, calcite, epidote and albite are peripheral to the potassic core. These alteration assemblages are commonly overprinted by phyllic (sericite, pyrite, clay, carbonate) alteration and argillic (quartz, kaolinite, montmorillonite) alteration assemblages.

Epithermal gold-silver veins are quartz veins, stockworks and breccias containing gold, silver, electrum and pyrite, with lesser and variable amounts of sphalerite,

chalcopyrite, galena, and, rarely, sulphosalts. These deposits occur in a high level, near surface structural environment. The ore commonly exhibits open space filling textures, and is related to volcanic hydrothermal or geothermal systems within a tectonic setting of either a volcanic island to continental margin magmatic arc, or continental volcanic fields with extensional structures. The epithermal orebodies are generally localized along structures that focus fluid flows. Upward-flaring ore zones centred on the structurally controlled hydrothermal conduits commonly have associated veins and vein stockworks. Epithermal vein systems can be laterally extensive, but are usually have a restricted vertical extent. Classic epithermal textures include open space filling, symmetrical layering, crustification, comb structures, colloform banding and multiple stages of brecciation. Ore minerals in epithermal deposits typically include pyrite, electrum, native gold, native silver and argentite, with lesser amounts of chalcopyrite, sphalerite, galena, tetrahedrite, sulphosalts and selenide minerals. The deposits show a strong vertical zonation, from gold- and silver-rich tops to silver- and base metal-rich bottoms.

Iron skarns are magnetite-rich bodies associated with a skarn gangue. The skarns typically form when iron-rich gabbro or diorite intrudes limestone or other calcareous rocks at a high to intermediate structural level. The iron skarns form massive pods, lenses, sheet-like bodies or veins nearby the contact between intrusions and the calcareous rocks. Both stratigraphy and structures such as faults, folds and fracture zones control the skarn emplacement. Ore minerals typically include magnetite, chalcopyrite, pyrrhotite, pyrite and gold. Epidote and actinolite-tremolite are replaced by later garnet within the skarn at Tasu; magnetite replaces the other minerals in the core of the skarn bodies. The sulphide minerals are the last formed (or youngest) minerals at Tasu, and replace the magnetite (Sutherland-Brown, 1968).

The results of historic geochemical soil sampling indicate that platinum group elements occur within the southeastern property area, which is underlain by Karmutsen Formation basalts (Shearer, 1987). Platinum and palladium are associated with bornite, chalcopyrite, silver and gold at the nearby Swede occurrence (Annual Report of B.C. Minister of Mines, 1921). The style and geological setting of platinum group element occurrences in Karmutsen Formation rocks is not well-documented.

11.0 MINERALIZATION

Discovery Zone

Brecciated and rehealed milky white quartz veins and veinlets up to 20 cm wide intrude a felsic dyke emplaced along a fault striking 177 to 178 degrees and dipping 83 to 85 degrees to the east at the Discovery Zone. The quartz veins are generally parallel the margins of the felsic dyke, but in places the veins strike oblique or perpendicular to the dyke margins. The quartz veins locally contain up to 1 % arsenopyrite and traces of finely disseminated pyrite.

Coarse visible gold was observed within an easterly trending quartz veinlet at the Discovery Zone; the gold occurs as irregular masses up to 3 or 4 mm across.

Thirteen channel samples from the Discovery Zone contain from 0.007 g/t gold and 0.2 g/t silver across 35 cm to 26.742 g/t gold and 4.2 g/t silver across 20 cm (Pawliuk, 2004).

Corlett Peninsula

Quartz diorite of the San Cristoval Plutonic Suite underlies much of Corlett Peninsula (Figure 5). The quartz diorite locally contains pyrite, chalcopyrite and molybdenite that mainly occur as spotty masses along steep fracture surfaces. Malachite, azurite and limonite are also present.

A discontinuous, somewhat irregular chalcopyrite veinlet about 3 mm wide occurs along a fracture striking 110 degrees at rock sample site 29552 (Appendix C). This select sample of mineralized material contains 4,829 ppm copper, 1,998 ppm molybdenum and 101 ppb gold.

As discussed in earlier within the section of this report pertaining to the history of the Tasu Pacific Gold Project property, the results of diamond drilling at Corlett Peninsula outlined an area of geochemically anomalous copper, molybdenum and gold concentrations within quartz diorite. Significantly anomalous concentrations have been defined across about 150m by 305m in one area, and across about 120m by 670m in another area. Mineralization and associated alteration are associated with steeply-dipping fractures within quartz diorite.

While the northern end of Corlett Peninsula has been sporadically explored since 1908, the area to the south is largely unprospected and untested until the 2006 program.

Platinum group elements in Karmutsen Formation rocks

The style and geological setting of platinum group element occurrences in Karmutsen Formation rocks is not well-documented. Platinum and palladium are associated with bornite, chalcopyrite, silver and gold at the Swede occurrence (Annual Report of B. C. Minister of Mines, 1921). The Swede occurrence is in Karmutsen Formation rocks, outside the southeastern corner of the Tasu Pacific Gold project property.

FIGURES

Botany Inlet Area

Chalcopyrite occurs as elongate masses up to 6 mm long by 1.5 mm wide within a late felsic dyke crosscutting Karmutsen Formation basalt along the eastern shoreline of Botany Inlet (Figure 4a; Appendix C). Grab sample 29578 was collected here; this sample contains 61 ppb gold and 686.1 ppm copper (Appendix B; Figure 4a).

12.0 EXPLORATION

Tasu Pacific Gold Inc. has completed a reconnaissance program of stream sediment and rock sampling on the property were collected between August 15 and September 10, 2006 as a follow up to sampling in 2005.

The results of the 2006 program are plotted on Figure 7 (in pocket) and assay results are contained in Appendix II. Individual sample locations by GPS coordinates are contained in Appendix III.

Sample 3069 assayed 351.6 ppb gold.

Rock sample 206s assayed 512.9 ppb Au and sample 2097 ran 105.4 ppb Au.

13.0 PREVIOUS DIAMOND DRILLING

Is outlined in the History Section, 8.0.

14.0 SAMPLING METHODS and APPROACH

The sampling method and approach consisted of wet sieving the geochemical moss mat sediment sample. A 20 mesh sieve was used to reduce the sample volume required for shipping to the laboratory. An effort was made to collect the moss mat sediment samples from active stream channels within the property area. The moss mat sediment sampling was mainly carried out in the vicinity of the Discovery Zone, and along the eastern shoreline of Corlett Peninsula. The wet moss mat sediments were placed in spun poly resin bags and air dried prior to shipping to the laboratory.

The geochemical rock samples from the Tasu Pacific Gold Project property area were obtained from sites where sulphide minerals or other minerals characteristic of hydrothermal alteration were observed within rock outcrops.

15.0 SAMPLE PREPARATION, ANALYSIS AND SECURITY

The samples were bagged, and then shipped as airline baggage from Sandspit to Vancouver. The samples were then delivered to Acme Analytical Laboratories Ltd. in Vancouver, British Columbia for analysis.

The rocks were analyzed for gold by geochemical fire assay, solvent extraction and atomic adsorption spectrometry. Subsamples of 30 gm were analyzed. The rock samples were also analyzed 34 other elements, including silver, copper and molybdenum, by aqua regia acid digestion ICPAES.

The minus 80 mesh size fraction of the moss mat stream sediment samples was analyzed for gold by geochemical fire assay, solvent extraction and atomic adsorption spectrometry. Subsamples of 15 gm were analyzed. The moss mat stream sediment samples were also analyzed 34 other elements, including silver, copper and molybdenum, by aqua regia acid digestion ICPAES.

Certificates of analysis form Appendix II. Sample descriptions and results are presented in Appendix III.

16.0 DATA VERIFICATION

In 2005, one duplicate pair of geochemical moss mat sediment samples was collected, comprising samples numbered 29568 and 29569. Sample 29568 contains 2 ppb gold, 0.1 ppm silver, 4.7 ppm copper and 0.8 ppm molybdenum. Sample 29569 contains 13 ppb gold, 0.1 ppm silver, 5.1 ppm copper and 0.8 ppm molybdenum (Appendix B). These results show good agreement for silver, copper and molybdenum, but not for gold, indicating a possible "nugget effect".

Also in 2005, one duplicate pair of geochemical rock samples was collected, comprising samples numbered 29581 and 29582. Sample 29581 contains 6 ppb gold, <0.1 ppm silver, 38.7 ppm copper and 4.3 ppm molybdenum. Sample 29582 contains 4 ppb gold, <0.1 ppm silver, 32 ppm copper and 7.5 ppm molybdenum (Appendix B). These results show good agreement for all of these elements.

17.0 ADJACENT PROPERTIES

No relevant data not already discussed in Section 8.0.

18.0 OTHER RELEVANT DATA AND INFORMATION

No other relevant data is believed to exist and the data discussed in this report is an accurate portrayal of the property's potential.

19.0 CONCLUSIONS and INTERPRETATION

Work by various mining companies has identified an area of copper- and molybdenite-bearing quartz diorite at the northern end of Corlett Peninsula. The style and type of mineralized rock observed at Corlett Peninsula is characteristic of porphyry copper-molybdenum-gold deposits. Geochemical rock and moss mat stream sediment sampling, geological mapping and drilling have identified an area of altered and mineralized quartz diorite at Corlett Peninsula.

The results of geochemical moss mat stream sediment sampling along the eastern side of Corlett Peninsula in 2005 indicate that anomalous gold concentrations locally exist within the stream drainages. This area is largely underlain by quartz diorite, as is the Discovery Zone area to the south. Anomalous concentrations of gold and silver occur in bedrock within the Discovery Zone area.

The results of current 2006 geochemical rock sampling around Corlett Peninsula area confirm the existence of anomalous concentrations of copper and molybdenum in the quartz diorite bedrock there, as indicated by the historic work in the area.

Historic work has discovered anomalous concentrations of platinum group elements within soils from the southeastern portion of the Tasu Pacific Gold Project property.

20.0 RECOMMENDATIONS and BUDGET

A recommended exploration program for the Tasu Pacific Gold Project property is outlined below.

- The Corlett Peninsula area should be geologically mapped and prospected for copper-molybdenum-gold mineralization. This work would confirm the extent and style of the mineralization discovered during historic work. The recommended exploration work should cover the area to the south of the historic showings; this part of Corlett Peninsula has likely not been systematically explored (e.g., General geology map of Moresby property *in* Arscott, 1967).
- Stream drainages where anomalous gold concentrations occur in geochemical moss mat sediment samples should be prospected. This followup work would search for the bedrock source(s) of the gold in stream sediments. Significant concentrations of gold exist in bedrock at the Discovery Zone area.
- Geochemical soil sampling, geochemical moss mat stream sediment sampling, geological mapping and prospecting should be performed in the area of historic geochemical soil sampling in the southeastern part of the property. Historic soil samples from this area contain up to 5,350 ppb palladium, up to 1,200 ppb platinum and up to 1,720 ppb gold. The recommended soil sampling would confirm the earlier results, and betterdefine the area with anomalous platinum group metals in soil. The stream sediment sampling, geological mapping and prospecting should be performed

in the same area in an attempt to define and delineate the style and extent of platinum group metal mineralization in the Karmutsen Formation bedrock.

<u>Budget</u>

Based on the exploration program recommended above, a staged budget for further work on the Tasu Pacific Gold Project property is outlined as follows:

Prospecting, geochemical anomaly follow-up	
3 prospectors for 20 days @ \$400 per day:	\$24,000
Reconnaissance geological mapping,	
supervision of prospecting	
1 Geologist for 20 days @ \$500 per day:	\$10,000
1 Geologist for 6 days @ \$500 per day:	\$3,000
Soil and stream sediment sampling	
2 field assistants for 20 days @ \$300 per day:	\$12,000
Camp accommodation @ \$100 per man-day for 126 days	\$12,600
Boat rental, fuel and operator for 20 days @ \$400 per day	\$10,000
Field supplies:	\$4,000
Airfares, travel; 8 return trips Vancouver – Sandspit @ \$600:	\$4,200
Analytical costs: 450 samples @ \$30 per sample:	<u>\$13,500</u>
Sub total:	\$93,300
Report preparation	
For reporting on all of the above work, including drafting:	\$5,000
Total	\$98,300
-	

Respectfully submitted,

do Shearer, M.Sc., P.Geo. November 30, 2006

21.0 REFERENCES

Annual Report of British Columbia Minister of Mines (1921) Swede Group; page G 39.

Arscott, D. (1967) Comprehensive geological report, Moresby Mines Limited, Tasu Sound, B.C.; private report for Moresby Mines Limited dated March 31, 1967.

Dujardin, R.A. and Fawley, A.P. (1967) Report on geological, geophysical and geochemical surveys on the Moresby Mines Limited property, Tasu Sound, Queen Charlotte Islands, B.C., Canadian Superior Exploration Limited; British Columbia Ministry of Energy, Mines and Petroleum Resources assessment report 1257.

Haggart, J.W. (2004) Geology, Queen Charlotte Islands, British Columbia; Geological Survey of Canada Open File 4681 (1:250,000 scale).

Komura, A. (1975) Diamond drilling report on GARNET #1 - #58 and RUBY #1 - #4 claims, for Moresby Mines Limited by Dowa Mining Co., Ltd.; British Columbia Ministry of Energy, Mines and Petroleum Resources assessment report 5392.

Kowall, C. (1982) A prospecting report covering the King Neptune group of mineral claims, report for Charles Kowall; British Columbia Ministry of Energy, Mines and Petroleum Resources assessment report 10138.

McAllister, S. (1983) Compilation report on the Tasu area, Queen Charlotte Islands; private report for Falconbridge Limited dated November 1983.

Panteleyev, A. (1995) Porphyry Cu <u>+</u> Mo <u>+</u> Au; *in* Selected British Columbia Mineral Deposit Profiles, Volume 1 – Metallics and Coal; Lefebure, D.V. and Ray, G. E., Editors, British Columbia Ministry of Energy, Mines and Petroleum Resources Open File 1995-20, pages 87 - 91.

Pawliuk, D.J. (2001) Zeballos and Nimpkish areas, Vancouver Island, report on prospecting, geochemical rock sampling, geochemical stream sediment sampling and geological mapping; report prepared for Prospectors Assistance Program, Geological Survey Branch, Ministry of Energy and Mines, British Columbia.

Pawliuk, D.J. (2004) Botany Inlet, Moresby Island, Queen Charlotte Islands, Assessment report on geochemical rock sampling, geochemical stream sediment sampling and geological mapping; British Columbia Ministry of Energy, Mines and Petroleum Resources assessment report 27503.

Ray, G.E. (1995) Fe Skarns; *in* Selected British Columbia Mineral Deposit Profiles, Volume 1 – Metallics and Coal; Lefebure, D.V. and Ray, G. E., Editors, British Columbia Ministry of Energy, Mines and Petroleum Resources Open File 1995-20, pages 63 - 65.

Shearer, J.T. (1987) Geological and geochemical assessment report on the LOCKEPORT Group (LOCKPORT 1, 2, 3 AND 4 claims), Foundation Resources Ltd.; British Columbia Ministry of Energy, Mines and Petroleum Resources assessment report 17097.

Sutherland Brown, A. (1968) Geology of the Queen Charlotte Islands, British Columbia; British Columbia Department of Mines and Petroleum Resources Bulletin 54.

Wyder, J.E. (1971) A geophysical report on an induced polarization survey, Moresby Island, Queen Charlotte Islands, B.C., RUBY and GARNET claims, Imperial Oil Enterprises Limited; British Columbia Ministry of Energy, Mines and Petroleum Resources assessment report 3487.

Zastavnikovich, S. (1985) Geochemical assessment report on TOMMY claim, Falconbridge Limited; British Columbia Ministry of Energy, Mines and Petroleum Resources assessment report 13457.

22.0 DATE and SIGNATURE

Nov 30/06

J.T (Jo) Shearer, M.Sc., P.Geo.

23.0 STATEMENT OF QUALIFICATIONS

- I J. T. (Jo) Shearer do hereby certify that:
 - 1. I am an independent consulting geologist and principal of Homegold Resources Ltd.
 - 2. My academic qualifications are:

- Bachelor of Science, Honours Geology from the University of British Columbia, 1973

- Associate of the Royal School of Mines (ARSM) from the Imperial College of Science and Technology in London, England in 1977 in Mineral Exploration

- Master of Science from the University of London, 1977

- 3. My professional associations are:
 - Member of the Association of Professional Engineers and Geoscientists in the

Province of British Columbia, Canada, Member #19,279

- Fellow of the Geological Association of Canada, Fellow #F439
- Fellow of the Geological Society of London

- Fellow of the Canadian Institute of Mining and Metallurgy, Fellow # 97316

- Fellow of the Society of Economic Geologists (SEG), Fellow #723766

- 4. I have been professionally active in the mining industry continuously for over 30 years since initial graduation from university.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 and certify that by reason of my education, affiliation with a professional association and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- I am responsible for the preparation of all sections of the technical report entitled "Technical Report for the Tasu Pacific Gold Project" dated October 1, 2006. I have visited the Property on September 2, 2006. General logistic and geological parameters were examined. I have also worked extensively in the Tasu area in 1979, 1980, 1981 and 1987 and 1988.
- 7. I have had prior involvement with the property, which is the subject of the technical report.
- 8. That as of the date of the certificate, to the best of the qualified person's knowledge, information and belief, the technical report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading.
- 9. I am independent of the issuer, applying all of the tests in section 1.5 of National instrument 43-101.
- 10. Subject to agreement by Tasu Pacific Gold Inc., I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them, including electronic publication in

the public company files on their websites accessible by the public, of the Technical Report, for reading only. Nov 30/06 Date (Jo) Shearer, M.Sc., P.Geo. JJ

_

APPENDIX I Statement of Costs 2006

.

Statement of Costs Tasu Pacific Gold 2006 (from N. Froc, 2006)

-

,

Wages and Benefits		
Dwayne McInnis, Kyejack Resources		
9612 Adams Road, Smithers, BC, V0J 21	Ŋj	
13hrs @ \$32.50/hr, May 15-Sept. 12	•	\$ 4,558.00
John Wilson, Prospector		
15 days @ \$400/day, August 15 to Sec.	ept. 10	6,000.00
Eric Ethier, Prospector	•	-
15 days @ \$400/day, August 15 to Second	ept. 10	6,000.00
Kevin Davidson	•	
15 days @ \$350/day, August 15 to Se	ept. 10	5,250.00
Jacob Young	-	
15 days @ \$350/day, August 15 to Se	ept. 10	5,250.00
Brian Olsen	•	
15 days @ \$350/day, August 15 to Se	ept. 10	5,250.00
J. T. Shearer, M.Sc., P.Geo., Consulting	Geologist	
3 days @ \$500/day, Sept. 2, 3 & 4	0	1,500.00
		\$ 33,808.00
	GST	2,028.48
	Subtotal	\$ 35,836.48
Expenses		
Transportation		
Truck		100.00
Gas		787.29
Ferries		270.46
Fixed Wing Float Plane		1,414.50
Boats		640.84
Taxis		91.41
Accommodations – Hotel & Camp		5,145.22
Food & Meals		3,062.55
Basemap Preparation & AutoCAD		1,500.00
Supplies/Consumables		674.72
Radio Rental		316.14
Freight, Seine Boat to bring in Camp		4,732.88
Report Preparation		2,500.00
Word Processing & Reproduction		500.00
	Subtotal	\$ 20,736.01
Plus analytical (Acme Labs) - not included		
	Grand Total	\$ 56,572.49

APPENDIX II

Assay Certificates

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1RE To Tasu Globai Resources

1

Acme file # A608160 Page 1 Received: OCT 20 2006 • 99 samples in this disk file.										
Analysis: G	ROUP 1D	- 0.50 GM	SAMPLE L			-2-2 HCL-F	1NO3-H2O	A1 95 DEG.	SITC.	
	MO				Ag	NI	Co	Mn	SILP	
SAMPLES	ppm M		ppm V	ppm 📲	ppm	ppm	ppm	ppm		
G-1	0.2	12.5	4	8	<.1	3.3	4.5	484		
1000	1.1	13.6	5.9 5.7	83	<.1	9.7	15.2	892		
1001	0.9	9.9	D./	87	<.1	9.2	12.9	835		
1000	2.0	30.0	3.8	113	0.2	30.0	11.2	519		
1007	2.8	37.4	3.0	107	0.2	35.3	11.3	544		
1008	2.7	31.6	3.0	105	0.2	34.8	10.5	493		
1009	3.0	30	3.1	129	0.2	30.8	9.8	534		
1010	2.1	39.4	5.9	129	0.2	39.8	9.8	453		
1011	3.3	41.8	5.3	144	0.3	38.3	9.6	505		
1012	2.5	19.1	2.0	57	<.1	10.1	13.9	1077		
1013	1.0	23.5	2.4	67	<.1	9.8	13.6	1051		
1014	0.0	17	2.5	67	<.1	8.4	12.3	968		
1015	2.7	17.4	3.1	67	<.1	5.5	12.2	1314		
1016	2.3	12.2	2.7	64	<.1	7.2	13.5	951		
1017	4.4	11.8	3.1	67	<.1	5.5	20.9	1300		
1023	2.2	11.7	3.7	50	<.1	6.2	12.9	887		
1024	2.9	8.4	3.7	49	<.1	7.9	10.7	625		
1025	2	15.9	2.5	69	<.1	9.7	14.1	858		
1026	2.3	17.5	2.5	62	<.1	8	13.8	1804		
1027	1.6	18.6	2.3	64	<.1	8.2	11.3	701		
1028	1.8	18.3	2.5	70	<.1	9.4	11.8	664		
1030	6.7	66.8	37.5	182	<.1	7.2	10.2	834		
1031	16.8	67.5	37.3	159	<.1	9.5	14.7	1915		
1032	12.4	73	4.9	46	<.1	7.1	13.4	968		
1034	8.3	114	4.6	38	<.1	6.1	6.8	253		
1035	1.8	30.5	3.3	65	<.1	11.5	15.6	844		
1036	3.1	52.3	3.6	74	<.1	9.7	14.8	808		
RE 1036	3.1	53.8	3.8	78	<.1	10.2	15.3	834		
1040	1.1	42.7	3.4	49	<.1	10.6	12.3	753		
1041	1.8	20.4	4.2	56	<.1	14.2	16.6	792		
1051	2	23.4	3.4	62	<.1	9.4	14.2	1023		
1052	1.9	15.4	3.1	64	<.1	11	14.9	1011		
1053	1.9	23.3	3.1	59	<.1	6	12.6	985		
1054	1.3	24.1	3.1	60	<.1	8.7	14	741		
1055	1	24.1	3.5	58	<.1	7.5	13.7	696		
STANDAR	20	93.9	66.7	393	0.9	50.3	8.4	602		
G-1	0.1	2.2	3	47	<.1	3.5	4.2	532		
1056	1.5	28	3.1	64	<.1	9.9	15.9	766		
1058	1.1	30.7	2.7	63	<.1	11.1	16.5	825		
1059	1	26.7	2.5	60	<.1	8.2	14.5	817		
1062	1.6	34.5	4.5	116	<.1	47.8	17	671		
1063	2.9	32.3	6.2	126	0.1	46.7	14.1	671		
1065	1.9	38.7	4.1	107	<.1	49.3	15.3	605		
1066	1	35.8	3.3	99	<.1	38	17.2	644		
2001	2.2	54.1	2.7	67	<.1	34.2	19.2	556		
2006	0.6	53.8	4.1	77	<.1	32.7	21.2	744		

							. .	
2008	0.4	30.8	4.8	94 <.1		20.8	21	873
2009	0.6	20.7	4.9	69 <.1		16.5	16.7	724
2013	3.1	52.3	4.2	104	0.1	35.6	14.6	627
2018	0.3	73.4	1.8	60 <.1		41.7	22	576
2020	1. 9	21 .1	2.5	68 <.1		9.2	14.9	1010
2021	3.7	17.8	4.5	50 <.1		6.1	10.3	804
2022	2.9	17.6	3.6	49 <.1		6.3	13	638
2023	2.5	22.8	2.8	67 <.1		8.5	14.9	879
2024	5.4	17.7	3.9	57 <.1		5.8	13.9	849
2029	11.4	41.3	2.5	64 <.1		10.9	16.5	1229
2034	5.5	44	2.2	66 <.1		14.8	15.4	904
2038	2.7	120.9	2.1	69 <.1		10.3	13	787
2043	2.3	74.3	2.5	91 < 1		8.7	13.3	1071
2044	2.4	64.4	2.5	97 < 1		8.5	12.9	1114
2045	27	65.6	2.5	112 < 1		12.2	14.3	1180
2046	3.6	59.3	3.1	49 < 1		6.8	10.6	716
2048	16	58.5	2.6	102 < 1		10	13	1149
2049	1.0	61.4	2.0	107 < 1		, G	13.1	1251
2050	2.5	57.1	2.0	97 < 1		98	12.5	1347
2000	2.0	67.8	2.0	36 < 1		63	10.3	730
2007	17	147.9	1.0	63	0.2	98.4	27.8	720
2003	0.5	09 A	1.4	42 < 1	0.2	47	12.0	207
2004	0.5	90.4 42.7	1.4	42 ~.1		4/ 20.1	13.0	507
2014	2.4	43.7	0.3	101 5.1		30.1	17.0	607
RE 2074	2.4	44.5	0.2	120 5.1		57.7	17.9	670
2079	2.1	39.5	4.4	98 <.1	• •	50.1	15.1	0/0
STANDAR	20.6	105.5	00.4	405	0.9	54.8	9.6	03/
G-1	0.3	0.0	2.7	46 <.1		5.4	4.3	535
2082	5.2	24.3	3.9	/5 <.1		28	28.2	1070
20888	1.3	3.9	6.1	16 <.1		0.4	0.2	54
RE 2088B	1.6	3.6	6	15 <.1		0.4	0.2	53
2090	4.1	64.8	4.3	/1 <.1		24.7	13.5	501
2091	1	24.6	2.1	56 <.1		21.9	13.8	565
2092	1	19.2	1.9	53 <.1		20.3	13	548
3009	1.8	20.8	3.3	85 <.1		15.1	18.8	1083
3010	1.6	15.1	3.3	83 <.1		15.3	18.4	950
3011	2.3	18.6	3.7	80 <.1		14.3	19	863
3012	2.3	19.3	3.5	79 <.1		13.2	21	1064
3013	3.4	38.1	4.3	107	0.1	40.2	12.4	515
3018	4	38.6	3.7	115	0.1	40.5	12.4	511
3019A	3.4	40.6	3.6	119	0.2	37. 9	11.9	553
3019B	3.2	40.2	4	118	0.2	41.4	12.6	546
3020	4.3	44.3	4.3	129	0.2	39.2	11.7	506
3021	4.8	41.6	4.3	144	0.2	44	10.2	496
3022	5	42.7	4.9	137	0.2	48.6	11.1	485
3023	4.9	44 .1	4.5	127	0.3	47.4	11.2	467
3024	5.5	47.9	4.8	167	0.3	50.4	10.2	521
3028	2	60.5	2.7	62 <.1		32.3	19.9	603
3029	1.9	66	2.8	73 <.1		36.3	19.7	573
3031	0.8	49.4	5.1	79 <.1		28.5	17.4	650
3032B	1.6	312.9	1.5	44	0.2	5.4	10.3	549
3037	1	36.5	8.2	92 <.1		23.4	14.2	701
3039	0.9	40	9.4	106 <.1		25.2	15.2	810

.

3045	2.8	44.3	3.3	117	0.2	37.7	13.2	563
3069	0.4	56.6	1.6	49 <.1		20.7	16.1	650
3073	0.7	32.9	2.7	53 <.1		20.1	14.4	578
STANDAR	20.8	106	68.5	400	0.8	54.4	9.5	626

.

 $\overline{}$

6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT

 \mathcal{C}

Fe	As	U	Au T	h Sr	Cd	i SI	o Bi	
%	ppro	ррю	ppb p	ipm pp	m pp	m pr	n ppr	1
1.84	> 36	1.9	1.5	3.6	51	0.3	2.4	2
3.12	67.8	2.5	8.3	1.6	24	0.2	0.3	0.2
2.98	33.6	2.5	3.1	1.6	29	0.3	0.4	0.1
3.04	51	1.2	3.9	0.7	39	0.8	0.9	0.1
3.12	34.5	1.2	3.1	0.6	35	1	0.8	0.1
2.92	44.4	1.1	3.3	0.6	32	1	1.1	0.1
2.76	31.8	1.2	2.2	0.5	27	1.4	1	0.1
2.86	39.6	1.4	2.7	0.5	37	1.1	1.1	0.1
2.82	51.3	1.6	3.8	0.5	37	1.2	1.2	0.1
3.5	7.3	1.2	2	1.8	20	0.1	0.2 <.1	
3.39	4.2	0.9	1.4	2	20	0.2	0.2 <.1	
3.18	4.5	0.9	3	1.8	18	0.1	0.2 < 1	
3.1	4.1	1.1	3.1	1.5	16	0.1	0.2 <.1	
3.33	4.6	1.2	1.3	1.9	16 <.1		0.2 <.1	
2.98	4.6	1.9	9 .8	1.5	15	0.1	0.2 <.1	
3.86	4.4	0.6	2.5	1.6	14 <.1		0.2	0.1
3.78	5	0.5	0.9	1.3	12 <.1		0.2	0.1
3.21	4	· 1.4	2.7	2	18	0.1	0.2 <.1	
3.02	4.3	1.1	2.3	2.1	16	0.1	0.4	0.1
2.86	3.5	0.8	1.3	1.6	18	0.1	0.2 < 1	
3.14	3.3	0.9	0.6	1.6	22	0.1	0.2 <.1	
2.3	3.4	0.7	3	2.9	16	0.8	0.6	0.1
2.99	2.7	0.5	7.1	1.3	19	0.9	1	0.1
3.43	3	0.4	1.3	1.7	13	0.1	1.9	0.3
2.82	4.4	0.3	5.2	1.6	6 < 1		1.8	0.1
3.44	5.7	1.3	1.2	1.9	24	0.1	0.3 <.1	
3.02	4	1.9	3.1	1.7	20	0.1	0.5 <.1	
3.16	4.2	2.1	3.1	1.8	21	0.1	0.4 < 1	
2.83	4.5	0.9	1.7	2.2	20 <.1		0.2 <.1	
3.97	3.4	0.8	3	1.3	20 <.1		0.2 <.1	
3.03	5.4	2.3	3.2	1.8	15	0.1	0.2	0.1
3.01	4.6	2.4	2.6	1.6	15	0.1	0.2 <.1	
2.64	7.1	4.6	3	1.6	16	0.1	0.1	0.1
2.93	4.2	3.2	4	2.5	19	0.1	0.2	0.1
2.93	4.3	3.2	3	2.1	20	0.1	0.1	0.1
2.2/	46.9	4.2	66.8	4.2	66	6.2	5.8	4.3
1.86	1.2	2.5	0.5	3.9	61 <.1	<,`	1	0.1
3.54	4.3	4.2	3.2	2.3	19	0.1	0.2	0.1
3.5	3.9	3.2	3.1	2.4	21	0.1	0.2	0.1
2.92	4.4	4.8	1.3	2.3	21	0.1	0.1	0.1
4.25	50.2	1	3.6	0.7	29	0.7	0.8	0.1
3.82	33.1	1.3	3	0.7	25	0.8	1.1	0.1
4.01	4/.3	1	4.5	0.7	25	0.6	0.8	0.1
4.43	14.4	0.8	1.4	1	39	0.5	0.5	0.1
4.29	5	2.1	3.3	0.9	33	0.1	0.3	0.1
4./2	3	0.5	5	1.4	29	0.1	0.3	0.1

. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS.

			AU					
4.81	4	0.5	2.3	1.7	21	0.1	0.2	0.1
4.14	2.6	0.6	1.7	1.4	24	0.1	0.2 <.1	
3.55	12.5	2	1.3	1.2	35	0.7	0.4	0.1
4.5	3.3	0.3	6.2	0.9	32	0.1	0.2	0.1
3.64	2.3	1	1.1	2.1	20 <.1	<u>.</u>	0.1 <.1	• •
2.0	1.8	2	1.6	1.4	15	0.1	0.2	0.1
3.55	25	12	1 2	1.7 2	16	0.1	0.1	0.1
3 42	2.5	3.2	1.5	 1.8	13	0.1	0.2 \.1	0.1
3.19	6.9	11	14	22	15	0.1	0.1	0.1
3.04	6.4	1.3	1.1	2.1	15	0.1	0.2 < 1	
3.38	2.5	0.9	1.8	3	28	0.1	0.2	0.1
3.27	2	1.2	29.4	3	33	0.4	0.2 <.1	
3.23	2	0.9	1.4	3.1	32	0.4	0.2 <.1	
3.36	2.3	0.9	1.1	2.9	37	0.5	0.2 <.1	
3.38	1. 9	0.7	3.6	2.9	15	0.1	0.5	0.1
3.25	2	1	1.1	3.1	35	0.5	0.2 <.1	
3.24	2.1	0.9	0.8	3.1	41	0.5	0.2 <.1	• •
3.02	2	0.7	1.2	2.9	36	0.5	0.2	0.1
2.90	2.7	0.6	19/1	3	23 <.1	0.1	0.1 <.1	07
J.05 4 79	24	0.1	27	03	02 38	0.1	0.3	0.7
4.75	30.5	11	1.5	0.5	53	0.1	0.3	0.2
4.26	30	1	2	0.6	54	0.4	0.7	0.1
3.62	25	0.8	0.6	0.5	41	0.4	0.6	0.1
2.41	49.6	47	62.9	41	71	6.6	6.1	4.5
1.82 <.5	5	3.1	1.1	3.7	49 <.1	<.1		0.1
4.54	8.1	0.6 <.5		1.1	29	0.1	0.2	0.1
0.29 <.5	5	0.8 <.5		3.7	9 <.1		0.1	0.2
0.28 <.5	5	0.8	0.5	3.7	8 <.1		0.1	0.2
3.46	9.2	1.5	1.8	1.6	20 <.1		0.3	0.2
3.53	0.7 6.4	0.9	1.2	1.5	17 <.1		0.2	0.1
3.29 1.58	0.4	0.9	10.6	1.5	10 <.1	0.1	0.2	0.1
4.50	9.7 Q	0.7	10.0	1.0	20	0.1	0.3	V . 1
4 42	10.8	0.0	29	1.2	23 < 1	0.1	0.2 < 1	
3.98	9.3	0.8	6	1.5	20	0.1	0.3 < 1	
3.33	24.1	1.5	4.1	0.7	35	0.8	0.7	0.1
3.17	33.3	1.6	2.7	0.8	30	1.1	0.8	0.1
3.12	28.2	1.2	1.1	0.6	29	1	1	0.1
3.15	31	1.3 <.5		0.7	40	1	0.9	0.1
2.98	34.7	1.4	1.7	0.6	25	1.2	1	0.1
2.84	34.4	1.6 <.5		0.5	28	1.6	1.1	0.1
2.82	35.6	1.6	3.7	0.4	33	1.3	1	0.1
2.88	32.2	1.4	2.6	0.4	29	1.7	1.2	0.1
2.88	39.4	1.5	0.9	0.4	31	1.8	1.5	0.1
4.30 1 1 1	4.1 17	1.9	∠.4 12.9	0.9	21	0.1	0.3	U.1
4.41	32	<u>^</u>	12.0 8.4	10.7	32 97	0.1	0.4	0.1
2.65	21	0.5	4.6	29	<u> </u>	0.0	0.0	U. I
3.8	3.5	1	1.1	1.3	30	0.4	0.2 < 1	
3.71	5.1	1	6.1	1.6	27	0.4	0.2 < 1	

3.28 8.4	1.9 <.5⁄		0.9	42	0.5	0.7	0.1		
3.62 3.3	0.3 <	351.6	0.7	37	0.1	0.1 <.1			
3.52 14.9	0.5	10.7	1.3	17 <.1		0.2	0.1		
2.36 47.2	4.8	71	4.3	69	6.2	5.9	4.4		
V	Ca	Р	La	Cr	Mg	B	a Ti	В	
-----	-----------------	------	-------	-------------------	----------	--------------	------	-------------------	----
ppm	%	%	ppm	_ ppm	%	p	pm %	ppm	
	31	0.42	0.067	5	6	0.51	80	0.092	1
	58	0.58	0.025	4	13	1.03	70	0.14/	5
	56	0.48	0.017	4	12	0.93	85	0.14	2
	118	1.74	0.111	4	52	0.99	26	0.142	1
	126	2.06	0.142	5	50	1.00	31	0.15	
	121	1.6	0.134	5	53	0.98	33	0.143	10
	131	1.69	0.117	4	53	0.62	20	0.142	10
	98	2.0	0.100	р 7	40	0.67	39	0.125	20
	172	2.0/	0.227	1	39 42	0.09	30	0.119	20
	01 57	0.30	0.020	4	10	1.1	45	0.109	3
	5/ 50	0.40	0.019	4	10	1.10	60	0.10	2
	00	0.33	0.015	4	12	1.01	09	0.141	1
	40	0.33	0.013	3	9 11	4.17	101	0.037	I
	00	0.20	0.015	4	0	0.95	81	0.134 ~1	1
	40 50	0.23	0.015	3	11	0.00		0.099	1
	00 62	0.17	0.014	2	12	0.00	45	0.092	1
	03 60	0.10	0.011	3	12 -	1.04	62	0.034	3
	55	0.30	0.02	ч Л	11	1.04	71	0.116 <1	J.
	50 50	0.32	0.022	-+ ./	11	90 0	85	0.110 <1	
	50	0.32	0.010	, Л	12	1.03	59	0.10 1	1
	50	0.31	0.02	5	14	00	135	0.063	2
	40	0.39	0.030	Л	27	0.5	118	0.007	1
	40	0.22	0.027	5	13	0.02	69	0.022 <1	•
	40	0.10	0.010	6	11	0.04	48	0.003	2
	75	0.07	0.021	4	17	1 22	53	0.21 <1	-
	61	0.07	0.028	-т Д	12	1.02	79	0 163	2
	62	0.48	0.020	Ā	12	1.02	79	0 167 <1	-
	58	0.56	0.035	4	15	1.00	66	0.161	2
	94	0.00	0.016	3	23	1.33	41	0 239	-
	56	0.33	0.023	4	12	1.00	60	0.148	2
	64	0.32	0.023	4	13	1.02	47	0.184	3
	47	0.29	0.015	3	13	0.77	63	0.09	3
	62	0.51	0.027	4	14	1.09	63	0,162	2
	58	0.53	0.024	4	13	1.04	72	0.157	2
	83	0.91	0.075	11	155	1.03	369	0.107	38
	37	0.55	0.074	7	9	0.58	208	0.124	2
	73	0.54	0.027	4	16	1.1	66	0.17 9	4
	74	0.72	0.033	4	17	1.27	111	0.205	5
	61	0.68	0.028	4	15	1.03	57	0.167	2
	117	1.61	0.121	5	66	1.52	31	0.191	6
	13 9	1.69	0.094	5	70	1.29	36	0.163	12
	120	1.91	0.093	5	71	1.53	32	0.171	6
	112	1.83	0.108	6	49	1.46	25	0.259	7
	120	1.18	0.075	3	54	1. 49	13	0.305	2
	1 16	0.9	0.054	4	44	1.73	22	0.334	1

<u>____</u>

96	0.78	0.055	4	32	1.76	26	0.308 <1	
94	0.78	0.047	4	22	1.27	29	0.277	1
104	2.26	0.159	7	38	1.09	25	0.169	6
120	1.23	0.062	3	77	1.68	15	0.274 <1	
59	0.39	0.019	4	13	1.19	62	0.162	1
50	0.23	0.015	4	10	0.75	62	0.082	1
55	0.37	0.022	4	10	0.84	52	0.094 <1	
59	0.31	0.018	4	11	1.1	73	0.132	1
66	0.35	0.018	4	8	0.92	66	0.106 <1	
53	0.3	0.021	4	17	1.11	83	0.125 <1	
57	0.35	0.029	4	23	1.2	68	0.143 <1	
76	0.7	0.045	5	16	1.23	39	0.16	1
69	0.79	0.032	5	12	1.15	60	0.138 <1	
68	0.75	0.031	5	13	1.2	54	0.136 <1	
73	0.82	0.03	5	16	1.24	55	0.153 <1	
58	0.27	0.028	5	11	1.05	47	0.062 <1	
72	0.85	0.034	5	14	1.24	57	0.15	4
69	0.92	0.03	5	12	1.23	55	0.144	3
66	0.85	0.03	4	12	1.18	59	0.136 <1	
61	0.42	0.025	4	11	1.04	49	0.119	3
135	1.74	0.044	1	60	3.82	13	0.245	1
188	0.87	0.063	4	84	1.36	11	0.333	2
117	1.59	0.117	5	47	1.57	17	0.222	13
118	1.6	0.114	5	48	1.6	18	0.226	11
113	1.82	0.127	4	63	1.54	59	0.159	19
85	0.94	0.081	12	171	1.07	373	0.118	40
35	0.49	0.078	7	10	0.65	205	0.12	2
91	1.12	0.045	2	34	1.72	11	0.362	1
	0.12	0.006	4	1	0.02	20	0.002	1
	0.13	0.006	4	1	0.02	21	0.001	1
73	0.8	0.052	4	36	1.34	26	0.183	2
78	0.71	0.053	4	33	1.36	21	0.181	1
72	0.7	0.05	3	32	1.37	19	0.178	2
93	0.64	0.03	3	22	1.35	22	0.333	3
92	0.59	0.029	3	24	1.44	24	0.359	2
93	0.58	0.034	4	20	1.27	26	0.277	3
89	0.58	0.032	4	20	1.2	31	0.269	3
135	1.81	0.167	5	53	1.17	29	0.149	7
137	1.58	0.114	5	57	1.07	28	0.156	10
135	1.53	0.14	5	53	1.02	27	0.156	8
136	2.01	0.175	6	57	1.08	30	0.148	12
151	1.39	0.129	5	51	0.86	25	0.14	9
146	1.73	0.164	5	52	0.85	26	0.132	5
150	1.88	0.154	5	60	0.85	24	0.122	10
152	1.87	0.167	5	65	0.96	23	0.116	45
152	1.47	0.154	5	57	0.75	26	0.105	19
112	1	0.075	3	52	1.61	11	0.261	2
124	0.97	0.067	3	59	1.55	12	0.289	3
105	1.03	0.061	3	43	1.52	17	0.278	1
47	0.92	0.04	4	9	1.05	45	0.14	3
8/	1.46	0.116	5	32	1.27	23	0.227	1
85	1.44	0.086	6	30	1.36	28	0.206	3

· _____

<1 <1

(

97	2.87	0.146	8	36	0.96	20	0.177	26
83	1.08	0.068	3	28	1.11	20	0.196	1
78	0.75	0.047	3	34	1.33	21	0.182	1
85	0.94	0.077	12	166	1.03	372	0.12	37

.

.

AI	Na	ı K	W	Hg	Sc	TI	S	Ga	
%	%	%	ppm	ppm	ppm	ppm	%	ppm	
	0.79	0.052	0.45	0.1 <.01	0.04	1.8	0.3	0.11	4
	2.07	0.045	0.08	0.2	0.01	3.6 < 1	<.05		1
	1.97	0.054	0.09	0.2	0.01	3.2 <.1	<.05	0.40	6
	2.1	0.055	0.04	0.3	0.01	5.2	0.1	0.16	
	2.32	0.06	0.05	0.3	0.01	6.1	0.1	0.17	
	1.93	0.058	0.05	0.4	0.01	5.4	U.1	0.1	1
	1.81	0.057	0.04	0.3	0.01	5.8	0.1	0.15	(
	2.08	0.058	0.04	0.4	0.01	5.2	U.1	0.13	
	2.1	0.049	0.04	0.4	0.01	5	0.1	0.11	' 7
	1.94	0.001	0.09	0.4	0.01	4 5.1	 .00 .05 		6
	1.00	0.052	0.09	0.2	0.01	4.2 \.1	< 05		07
	1.0	0.044	0.08	0.3	0.01	3.0 <.1	< 05		7
	1.70	0.035	0.08	0.3	0.01	29 - 1	< 05		7
	1.79	0.056	0.09	0.3	0.01	3.0 < 1	<.UD		6
	1.74	0.051	0.09	0.3	0.01	2.9 < 1	< 05		7
	1.07	0.009	0.13	0.4	0.01	2.0 \.1	< 05		0
	1.04	0.057	0.11	0.2	0.01	2.7 < 1	< 05		07
	1.02	0.075	0.12	0.5	0.01	3.0 < 1	< 05		6
	1.7	0.055	0.1	0.0	0.01	3.7 < 1	< 05		6
	1.00	0.000	0.09	0.3 < 01	0.01	3.4 < 1	< 05		7
	1.01	0.003	0.12	0.501	0.06	3.0 - 1	0.00	0.11	5
	1.29	0.002	0.13	0.0	0.00	3.0 2.1	0.5	0.11	5
	1.40	0.003	0.17	0.2	0.03	2.1	0.7	0.03	6
	1.40	0.044	0.15	0.1	0.07	2.0	0.1 < 0.5		5
	1.00	0.031	0.10	0.1	0.03	2.J 4.2	0.1 < 0.05		7
	2.02	0.053	0.00	0.0 5.01	0.02	7.2	< 05		7
	2.02	0.055	0.09	0.0	0.02	3.3 < 1	< 05		, 8
	1 76	0.051	0.09	0.0	0.02	3.2 < 1	< 05		6
	1.70	0.009	0.12	0.3	0.01	3.0 < 1	< 05		a
	1.30	0.054	0.00	0.2	0.01	34	0.1 < 05		7
	1.07	0.003	0.12	0.0	0.01	3.4 < 1	< 05		י פ
	1.83	0.040	0.05	0.2	0.01	26	0.1 < 05		6
	1.89	0.05	0.1	0.2	0.02	36<1	< 05		7
	1.00	0.054	0.12	0.7	0.01	35<1	< 05		7
	0.93	0.074	0.43	37	0.19	24	41	0.21	4
	0.98	0.082	0.5	0.1 < 01	0.10	19	0.3 < 05	0.21	5
	2	0.05	0.11	0.2	0.01	4 < 1	<.05		8
	2.1	0.059	0.1	0.1	0.01	4.1 < 1	<.05		8
	1.93	0.043	0.08	0.1	0.01	3.5 < 1	<.05		7
	2.66	0.053	0.06	0.3	0.01	5.8	0.1	0.07	9
	2.44	0.044	0.07	0.3	0.01	6.3	0.1 <.05		8
	2.75	0.05	0.06	0.3	0.01	6.2	0.1	0.06	9
	2.72	0.069	0.04	0.2 < .01	· ·	5.6	0.1 < 05		10
	2.34	0.08	0.05	0.2 < .01		6.4 < 1	<.05		9
	2.47	0.081	0.07	0.2 < 01		6.7 < 1	<.05		10

 \square

2.62	0.077	0.08	0.2 <.01		6.1 <.1	<.05		10
2.16	0.056	0.06	0.1 <.01		4.1 < 1	<.05		9
2.74	0.064	0.04	0.2	0.01	4.5	0.1	0.11	9
2.5	0.089	0.06	0.3 <.01		6.9 <.1	<.05		9
1.9	0.057	0.1	0.2	0.01	4.4 < 1	<.05		8
1.92	0.033	0.08	0.2	0.03	2.9	0.1 <.05		9
2.19	0.035	0.09	0.2	0.06	3.1 <.1	<.05		9
1.88	0.045	0.11	0.2	0.01	3.7 <.1	<.05		8
2.28	0.024	0.08	0.3	0.03	3.6 <.1	<.05		9
1.78	0.044	0.1	0.6	0.02	3.4 < 1	<.05		7
1.85	0.043	0.09	0.5 <.01		3.8 <.1	<.05		7
2	0.071	0.11	0.3	0.05	5 <.1	<.05		8
2.08	0.04	0.08	0.3	0.05	5 <.1	<.05		8
2.03	0.047	0.08	0.3	0.06	4.8 < 1	<.05		8
24	0.043	0.08	0.2	0.05	5 < 1	<.05		9
1.69	0.045	0.11	0.1	0.06	4 < 1	< 05		8
2.21	0.042	0.08	0.3	0.00	53<1	< 05		8
2.21	0.042	0.00	0.0	0.04	5 < 1	< 05		8
2.23	0.045	0.00	0.2	0.04	49<1	< 05		Ř
1.67	0.040	0.07	0.2	0.04	41<1	< 05		7
1.04	0.000	0.11	24	0.00	70	0.1	0.35	11
4.04	0.134	0.08	0.4	0.01	1.5	V.I ~ 05	0.55	10
1.09	0.112	0.07	0.2	0.01	5 - 1	0.00	0.15	10
2.42	0.083	0.05	0.3	0.01	0.1	0.1	0.15	9
2.45	0.079	0.05	0.3	0.02	0.3	0.1	0.10	9
2.26	0.076	0.06	0.3	0.01	5.2	0.1	0.1	8
1.01	0.082	0.45	3.8	0.19	2.5	4.2	0.2	5
0.92	0.049	0.48	0.6	0.01	1.9	0.3	0.06	5
2.44	0.042	0.02	0.7	0.01	5.9 <.1		0.06	10
0.31	0.04	0.14	0.1	0.01	0.3 <.1	<.05		2
0.3	0.039	0.15	0.1 <.01		0.4 <.1	<.05		2
2.04	0.07 5	0.09	0.8	0.01	4.9 <.1		0.08	7
2.03	0.065	0.08	0.3 <.01		5.4 <.1		0.06	7
2.06	0.055	0.06	0.5 <.01		4.9	0.1 <.05		7
2.09	0.057	0.05	0.1	0.01	4.7 <.1	<.05		9
2.07	0.061	0.04	0.2	0.01	4.9 < 1	<.05		9
2.03	0.069	0.05	0.1	0.01	4.1 <.1	<.05		9
2.05	0.062	0.05	0.3	0.01	3.8 <.1	<.05		8
2.22	0.063	0.04	0.4	0.01	5.9	0.1	0.17	8
2.07	0.066	0.04	0.6	0.01	5.7	0.1	0.15	7
1.92	0.068	0.04	0.3	0.01	5.7	0.1	0.14	7
2.33	0.062	0.04	0.8	0.01	5.8	0.1	0.18	8
1.79	0.058	0.04	0.3	0.01	5.7	0.1	0.12	6
1.76	0.088	0.04	0.9	0.01	5.9	0.1	0.16	6
1.9	0.088	0.04	0.4	0.02	5.5	0.1	0.19	7
2 12	0.069	0.03	07	0.01	57	0.1	0.17	7
1 72	0.055	0.04	0.4	0.01	5.8	0.1	0.14	6
24	0.000	0.04	0.3 < 01		64<1	< 05		9
2 27	0.064	0.04	0.2	0.01	61<1	< 05		ģ
2 32	0.004	0.04	04<01	0.01	56<1	< 05		Q
1 79	0.001	0.00	15	0.01	2821	<.00 < ∩5		7
2 20	0.04	0.00	0.4	0.01	18 < 1	00	0 00	، ۵
2.08	0.009	0.04	0.9 2 01	0.01	4.0 \.l		0.09	0 9
∠.43	0.000	0.00	0.2 7.01				0.00	Э

 \mathcal{C}

2.6	0.057	0.03	0.5	0.01	3.8 <.1		0.17	9
1.75	0.077	0.05	0.2	0.01	3.5 <.1	<.(05	6
2.01	0.064	0.07	0.8 <.0)1	4.8 <.1	<.()5	7
0.94	0.078	0.44	3.8	0.19	2.4	4.2	0.22	5

Se							
ppm							
< 5							
<.5							
	0.7						
	3						
	2.8						
	2.4						
	3.1						
	2.6						
	2.3						
<.5							
<.5							
<.5							
	0.5						
<.5							
<.5							
<.5							
<.5							
<.5	•						
<.5							
<.5							
<.5							
<.0							
<.5 < 5							
>.0 ∠ E							
<.5 < 5							
~.5							
< 5							
< 5							
< 5							
<.5							
<.5							
<.5							
<.5							
<.5							
	3.3						
<.5			,				
<.5							
<.5							
<.5							
	1.5						
	2						
	1.4						
_	0.7						
<.5							
<.5							

<.5						
	0.5					
	3.3					
<.5						
<.5						
	1					
	1.1					
<.5						
	0.8					
<.5						
<.5						
<.5						
<.5						
<.5						
<.5						
<.5						
<.5						
<.0 < 5						
<.5 < 5						
<.5 < 5						
<.0						
<. 0	1 0					
	1.0					
	1.0					
	3.6					
< 5	0.0					
< 5						
<.5						
<.5						
<.5						
<.5						
<.5						
	0.5					
	0.6					
<.5						
	0.6					
	2.1					
	3					
	2.8					
	3.1					
	3.4					
	3.0					
	4.∠ ∡					
	4					
~ 5	4.3					
∼.0 ∠ R						
~.J < 5						
< 5						
	12					
	0.5					
	0.0					

 $\overline{}$

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEX

To Tasu Global Resources

ł

Acme file # A608158 Page 1	Received: OCT 20 2006 *	159 samples in this disk file.
----------------------------	-------------------------	--------------------------------

Analysis: GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED E

ELEMENT Mo	(Cu	Pb	Zn	Ag		Ni	Co		Mn		Fe	As	U	Au	Th	
SAMPLES ppm	1	ppm	ppm	ppm	ppm		ppm	ppm		ppm		%	ppm	ppm	ppb	ppm	
G-1	1.6	2.3	3.3	3	43 <.1		10.7		4.5		520		1.77 <.5		2.2 <.5	• •	3.6
1042	0.7	115.5	2.6	5	39 <.1		122.2		24.2		744		3.39	2.3	1	0.9	3
1075	1.2	87.4	9.8	3	31	1.5	11.9		8.6		527		2.66	1.5	0.7	10.4	3.1
1076	0.5	59.6	2.2	2	62 <.1		57.1		35.6		1193		5.6	2.9	0.1	0.8	0.2
2007	5	71.3	5.4	F	173	1	41.2		12.6		104		2.41 <.5		1.2	5	0.3
2012	7	34	3.2	2	37	0.1	100.3		10.6		513		1	30.8	4.9	1	0.7
2035	20.3	24.6	2.5	5	29	0.2	7.2		10		521		2.99	1.9	1.5	1.3	3.3
2040	708.8	624.7	2.6	6	30	0.4	9.6		18.7		605		2.9	1	1.1	3.5	3.4
2041	3.7	12.4	2.5	5	33	0.2	6.7		8.6		492		2.3 9	1.4	0.5	1.5	3.5
2058	4	108.5	1		48 <.1		213.2		38.5		714		4.74	1.4 <.1	<.5		0.1
2066	1.4	151	2.2	2	117 <.1		22.8		6.2		338		1.5	11.4	1.7	· 4	0.7
2067	0.7	55.8	0.7	,	68 <.1		52.6		29.5		319		4.81	1.9 <.1	<.5		0.1
2068	1.6	76	107.6	5	40	0.1	39.5		17		713		3.04	2.6	0.2 <.5	<.1	
2069	0.3	79 .1	1		59 <.1		68.7		31.7		709		4.79 <.5		0.1 <.5		0.2
2071	0.6	46.1	1.9)	56	0.1	21.4		29.3		555		6.41	1.6	0.3	1.2	0.2
2073	0.8	55.8	1.9)	51 <.1		31.8		30.6		503		6.7 <.5		0.1	1.2	0.2
2075	0.2	1.5	0.4	ļ	2 <.1		0.7		0.5		53		0.1 <.5		1.1	0.7 <.1	
2076	0.8	39	1.2	2	86 <.1		19.9		25.3		360		5.75	5	0.1	0.8	0.4
2077	5.6	73.5	8.8	;	194	0.8	65.2		9.3		80		2.69 <.5		0.7	3 .1	0.4
2078	0.4	28.2	2	<u>}</u>	29 <.1		26.4		17.8		528		2.81	2	0.8	0.9	0.1
2080	4	43.1	5.4	ļ	80	0.2	41.3		10.7		111		2.17 <.5		0.4	1.3	0.2
2081	2.9	17.4	7.6	5	30	0.3	4.1		3.9		248		2.66	8.9	0.1	0.6	0.7
2084	0.6	2.1	6.3	}	37	0.1	5.7		6.5	,	305		1.94	0.5	0.6	1.7	3.5
2086	5.2	56.9	4.2) -	25	0.5	12		11.8		416		5.56	3.9	0.2	0.8	0.4
2098	0.3	10.2	6.3	\$	3 <.1		1.8		1.4		4		0.04 <.5		0.4 <.5		1.5
2099	2.6	51.3	10.3	\$	73	0.2	26		12.2		177		2.46	1.9	1.3	1.2	1.1
2100	7.9	68.5	12.1		90	0.5	121.7		15		352		3.23	72.8	3.4	2.1	0.6
RE 2100	7.8	72.2	12.2) -	92	0.6	126.6		15.1		355		3.28	72.2	3.5	1.9	0.6
4000	0.5	19.4	2		73 <.1		15.2		20.6		785		4.19	5.1	1.1 <.5		1.7
4001	0.8	62.3	2.2	}	78 <.1		18.8		24.5		911		4.87	3.4	0.6	0.5	1.3
4003	0.4	5.9	2.1		51 <.1		7		12.6		872		3.02	3.2	0.9 <.5		3.3
4004	1	32.1	2.1		72 <.1		11.3		23.8		888		5.6	1.5	0.2	1	0.3
4005	0.2	43.8	1		96 <.1		25		33.3		1126		7.35	2.1	0.1	1.8	0.3
4006	0.7	3.1	2.4	ļ.	123 <.1		6.2		13.3		1434		3.35	1.1	0.4	1.1	2.3
4007	0.2	4	1.7	,	45 <.1		6.5		11.4		776		2.99	1.2	0.5	1	2
STANDAR	20.7	106.2	70.1		400	0.9	56.3		9.5		630		2.39	50.4	4.9	85.4	4.4
G-1	0.7	3.3	3.8	}	50 <.1		16.4		4.2		359		1.29 <.5		2.1 <.5		2.5

													,
4008	0.3	18.6	2.3	46 <.1		15.2	13.1	787	3.46	1.9	0.5	0.7	3.6
4009	0.4	22.6	1.2	75 <.1		32	19.5	861	4.28	4.8	0.5	1.9	0.7
4010	0.2	8.8	3	44 <.1		7.5	13.3	855	2.96	0.9	0.7	0.5	2.6
4011	0.1	23.3	1.5	63 <.1		3.6	15.4	845	4.38	2.3	0.3	1.5	0.6
4012	0.2	51.5	1.8	33 <.1		4.8	10.3	437	2.65	0.8	0.5	0.5	1.4
4013	3.5	64.9	8.5	46	0.4	36.2	15	99	3.08	8.1	0.8 <.5		0.5
4014	48.1	102.3	2.9	707	0.7	75.2	18.8	155	3.81	27	4.7	4.6	0.2
4015	1	32.3	3.8	108 <.1		8.5	12.4	659	2.83	5.6	0.8	0.6	1.8
4016	0.9	13.2	2.8	45 < 1		8.3	13	607	3.49	4.2	0.9 <.5		3.6
4017	1.7	44.1	4.8	28 <.1		2.5	7.5	367	1.54	4.4	1.1	0.6	14.1
4018	1.5	23.2	4.6	46 <.1		27.3	11.3	438	2.4	7.3	1	0.6	1.9
4019	0.4	12.7	2.4	50 <.1		7.5	13.5	716	3.38	2	0.8 <.5		2.5
4020	1.8	55.2	1.5	94	0.1	53.7	25	222	4.62	0.7	0.5	1.1	0.5
4021	0.2	12.8	1.3	33 <.1		6	10.4	566	2.84	1	0.7 <.5		3.8
4022	0.3	111.6	1	26 <.1		25.7	13.6	371	2.35	1.2	0.2	5.1	0.9
4023	0.3	8.1	2.5	44 < 1		4.1	10.1	512	2.62	1.4	0.9 <.5		2.6
4024	0.4	22.4	2.4	119 < 1		11.1	15.3	1258	6.45	0.5	0.3	⁻ 0.6	0.7
4025	0.7	6	28.1	24 <.1		4	0.4	104	0.67	7.5	3.9	3.1	16.9
4027	0.1	60.6	0.9	66 < 1		62	27.8	712	5.07	0.7	0.1	4.5	0.2
4028	0.3	12.2	1.7	43 < 1		7.6	10.1	560	2.94	1	1 <.5		3.1
4029	0.2	58.5	1.2	67 <.1		36.3	27.4	648	5.13	0.8	0.1	0.9	0.2
4030	2.6	1.9	10.1	9 <.1		2.5	0.3	151	0.55	0.5	2.9	0.9	17.5
4031	1.3	37.8	4.3	191 <.1		57.6	18.2	271	3.29	1.3	0.4	1.1	0.3
4032	0.3	24.1	1.8	36 <.1		5.5	8.6	450	2.71	0.5	0.9 <.5		3.4
4033	1.1	63.7	2.3	59 <.1		8.3	15.1	601	3.13	0.9	1.2 <.5		3.5
4034	0.4	50.4	1.3	95 <.1		15.7	30.8	933	6.41	0.5	0.1	0.8	0.3
4035	0.3	29	2.8	40 <.1		6.4	10.4	752	3.09	1.3	1 <.5		3.9
4036	0.4	71.1	2.2	35 < 1		5.3	8.4	522	2.57	1	0.8 <.5		3.5
4037	0.6	10.1	2.1	42 <.1		6.2	10.6	645	2.84	1.2	0.8 <.5		3.7
4038	2.1	10.6	2.3	34 <.1		4.7	8.7	496	2.66	1.1	0.6 <.5		3.1
4039	0.7	9.8	3.5	49 <.1		6.5	11.7	832	3.03	1.7	1.2	0.8	4
4040	0.3	69.8	1.8	59 <.1		24	31.6	693	6.98	3.3	0.1	0.9	0.3
RE 4040	0.2	66.3	1.8	60 < 1		23.2	30	687	6.97	3.2	0.1	0.9	0.3
4041	0.4	68.9	1.6	29 < 1		5.7	7.9	423	2.55	0.9	0.4 <.5		2.7
STANDAR	21.7	108.4	70	393	0.9	56.1	9.7	634	2.4	49.3	5.1	55.2	4.7
G-1	0.5	2.7	3.8	41	0.4	8.6	4	457	1.59	1.4	2.4 <.5		3.9
4042	0.4	9.5	5.7	63 <.1		5.8	5.3	391	1.84	1.1	0.2	3	0.8
4043	0.4	40.9	3.3	77 <.1		29.6	31	776	7	7.2	0.2	1.7	0.5
RE 4043	0.4	42.2	3.4	80 < 1		32.2	31.7	771	7.02	7.8	0.2	1.2	0.5
4044	8.6	961.9	2.1	37	0.4	5.5	10.2	645	2.76	1.3	1.4	6.7	3.7
4045	17.3	901.3	1.8	41	0.4	7.7	10.1	679	3.01	1.5	0.9	9.6	3.3
4046	4.5	973.4	2.9	55	0.3	5.7	11.6	647	2.82	1.1	0.9	4.9	3.1
4047	12.3	836.6	1.8	42	0.5	4.7	9.3	720	2.59	0.5	1.2	5.5	3.8

4048	0.7	54.5	2.1	99 <.1		36.6	34.8	966	7.32	14	0.1	2.6	0.3
4049	0.5	8	2.2	45 <.1		5	10	756	2.81	0.9	0.9	0.9	3.4
4050	3	15.2	3.4	43 <.1		4.4	9.8	950	2.62	16.2	1.4	0.8	2.8
4051	4.8	98.7	2.2	34	0.1	5.9	11.8	645	3.06	0.6	0.8	0.9	2.9
4052	1.8	88.7	1.4	30 <.1		4.5	7.2	438	2.52	1	0.8 <.5		3.2
4053	0.3	5.4	2.9	48 <.1		5.4	14.4	813	2.96	3.4	0.8 <.5		3
4054	0.8	30.1	2.4	44 <.1		5.1	10.3	707	2.81	0.5	0.8 <.5		3
4055	0.5	5.3	1.6	36 <.1		4.9	9.5	494	2.51	0.8	0.8 <.5		3.5
4056	0.9	5.6	1.4	37 <.1		4.5	8.9	519	2.4	0.8	0.8 <.5		2.8
4057	0.4	66.8	1	68 <.1		49.7	32.5	402	5.15	4.8	0.3 <.5		0.1
4058	0.5	184.2	1.3	33 <.1		29.3	13.3	254	2.5	1	0.5	1.7	2.1
4059	0.1	4.2	1.6	40 <.1		7.4	8.7	375	2.06 <.5	•	0.8 <.5		2.5
4060	0.3	22.8	2.5	115 <.1		1.4	23.3	1297	7.7	2	0.2	0.5	0.8
4061	2.8	76.4	10.4	52	0.6	33.3	13.4	61	3.21	29.6	0.5 <.5		0.2
4062	0.7	7.4	3.2	13 <.1		0.8	1.2	292	0.68	0.6	1.7 <.5		5.6
4063	0.6	4.7	9.9	48 <.1		0.5	1	115	0.61	1	0.4 <.5		2.3
4064	0.3	7	2.3	31 <.1		0.7	7.1	376	2.36	1.4	0.4 <.5	•	1.1
4065	0.3	38.6	1.2	98 <.1		4.5	29.1	1084	7.23	1.1	0.2 <.5		0.4
4066	0.4	3.5	1.5	11 <.1		0.7	0.7	115	0.22	1.7	0.3	1.4	0.8
4067	0.2	7.5	4.8	41 <.1		6.6	11.3	483	2.85	4.1	0.8 <.5		3.1
4068	1.5	30.2	2.5	38 <.1		3.3	13	679	3.66	4.9	0.4	3.6	2.5
5002	0.3	6	3.3	44 <.1		5.4	10.5	629	2.82	0.7	0.8 <.5		3.4
5004	0.7	4.9	1.2	33 <.1		4	8.8	438	2.44	0.8	0.6 <.5		2.6
5006	0.2	2.9	2.6	44 <.1		6	12.2	764	3.21	1.5	0.4	0.9	2
5007	1.3	293.5	1.3	14 <.1		162.3	53.4	152	4.57	1.3	0.3 <.5		0.3
5008	0.3	48.9	2.4	80 <.1		28.6	31.1	784	5.8	10	0.1 <.5		0.2
5010	0.8	7.7	4.7	42 <.1		7.4	11.4	599	3.31	1.3	0.9 <.5		2.8
STANDAR	20.2	109.8	67.6	400	0.9	56.2	9.5	630	2.4	49	4.8	62.2	4.3
G-1	0.5	2.1	2.9	42 <.1		11.7	3. 9	422	1.53	1.9	2	1.2	3.1
5011	0.8	4.3	2.1	39 <.1		6.2	11	669	3.03	0.5	0.6	2.2	2.5
5012	0.2	5	5.1	47 <.1		6.4	11.8	640	3.28	1	0.6 <.5		2.6
5013	0.4	3.8	2.5	43 <.1		6.5	12	741	3.3	0.8	1.1	1.1	2.8
5014	0.4	4.7	5.3	41 <.1		5.3	9.3	541	2.79	0.6	0.7 <.5		2.5
5015	0.3	39.9	1.2	85 <.1		26.6	29.4	885	5.62	1.7	0.2 <.5		0.4
5016	6.3	70.2	3.1	110	0.1	26.2	10	193	2.71 <.5	i i	1.8 <.5		0.3
5017	0.3	5.2	1.6	42 <.1		4.7	9	726	2.57	0.7	0.8 <.5		4.1
5018	0.4	49.9	2.1	101 <.1		23.1	33	803	6.63	0.7	0.1 <.5		0.3
5019	0.4	38	0.9	96 < 1		15.3	27.7	822	6.37	1	0.1 <.5		0.3
5020	0.5	45	0.9	95 <.1		18	30.2	783	6.7	0.8	0.1 <.5		0.3
5021	0.6	29.7	2.4	40 <.1		5.2	10.2	659	3.06	1.2	0.6 <.5		3.2
5023	0.6	20.4	1.4	98 <.1		6.2	33	821	6.96	1.3	0.2	1.8	0.4
5027	9.8	60.2	6.6	38	0.2	11.7	6.8	98	1.91	10.6	2	2	0.2
5028	1.9	106	5.2	72	0.4	23.2	10.5	418	2.33	4.9	0.7	1.2	0.5

5030 5031 5032	1.1	05 7					20			0.0	V. I 1.V		0.5
5031 5032		00.7	7	35	0.2	150.1	35.3	1555	4.92	7.3	0.2 <.5		0.2
5033	0.1	0.5	0.2	1 <.1		0.3	0.1	40	0.06 <.5		0.8 <.5	<.1	
JUJZ	1.1	3.5	2.4	38 <.1		4.8	6.8	460	2.39	1.1	1.3 <.5		3.1
5033	0.5	11.5	1.8	40 <.1		5.3	10.2	566	2.94	1.3	0.7 <.5		3.1
5035	1.2	15.3	1.3	30 <.1		4.4	8.4	464	2.56	0.7	0.6 <.5		2.7
5037	0.5	31	1.2	80 <.1		2.1	27.2	1069	7.25	6.6	0.2 <.5		0.6
5038	0.8	17.5	4.4	77 <.1		0.9	9.5	598	3.94	7	0.1 <.5		0.6
5039	1.3	18.4	3.9	82 <.1		1.4	11	961	3.97	0.9	0.1 <.5		1.1
5040	3.7	34.8	1.4	33 <.1		5.2	9.8	644	2.66	0.6	1 <.5		4.2
5041	0.4	48.5	1.2	29 <.1		3.4	6.9	487	2.37	1	0.5 <.5		2.7
5042	0.7	4.2	2.7	150 <.1		0.5	2.2	1477	4.96	45.3 <.1		31.6	0.3
5043	0.6	7.4	1.5	32 <.1		4.1	12.6	566	3.49	1.3	0.9 <.5		2.8
5044	0.8	23.7	2.1	37 <.1		4.2	10.6	730	2.9	1.1	0.6 <.5		2.6
RE 5044	0.8	23.5	2.1	36 <.1		4	10.6	727	2.89	1	0.6	0.5	2.8
5045	0.7	8.7	2.5	36 <.1		3.6	9	729	3.04	2	1	1.4	2.7
5047	0.5	46.6	1.5	87 <.1		29.2	30.4	829	6.22	5.3	0.1	¹ .7	0.3
5048	0.2	11	2	29 <.1		4.5	8.2	568	2.33	0.9	0.8 <.5		3
5049	0.4	41.4	1.6	92 <.1		32	30.3	668	6.49	3.9	0.1	0.7	0.3
5050	0.6	53.3	0.8	85 <.1		52.9	34.2	731	6.78	13.9	0.2 <.5		0.2
STANDAR	20.6	106.6	68.8	391	0.9	54.2	9.4	623	2.37	49.3	4.8	52.6	4.5
G-1	0.9	3.1	4.3	43 <.1		4.1	3.9	537	1.89	0.6	2.9	5	4.5
5051	0. 9	33.9	2.1	117 <.1		0.6	21.2	1580	10.28	14.8	0.3	3.3	0.4
5052	0.1	87.2	2.1	70 <.1		71.2	42.5	1308	7.02	3.5	0.2	1.6	0.2
5053	0.6	20.3	1	70 <.1		3.6	26.8	994	6.05	1.4	0.3	1.8	0.9
5054	0.6	49.8	1.6	84 <.1		49	33.8	823	6.75	5.7	0.3	2.7	0.3
5055	1.3	3.2	2.2	25 <.1		4.6	8.2	428	2.63	0.8	0.9	0.9	3.3
5057	0.3	24	1.7	61 <.1		3.6	28.7	1045	5.18	4.7	1.6	0.7	0.3
5058	0.9	4.4	2.9	30 <.1		4.1	8.3	703	2.19	9.4	1.2	5.2	4.5
5060	0.1	19.6	0.6	96 <.1		49.3	47.3	1222	8.79 <.5		0.1	1.5	0.3
5061	0.1	4.3	2.6	39 <.1		5.2	7.2	353	1.89 <.5		0.9 <.5		2.8
5063	0.4	109.1	1	35 <.1		17.3	13.1	290	2.78 <.5		0.5	1.6	2
5064	1.1	44.8	9.5	103	0.4	2.9	68.7	4692	22.72	62.3	1.1	27.7	0.2
5065	5.9	86.6	0.8	26	0.1	17.3	13.1	302	3.02 <.5		1.1	4.3	1.3
RE 5065	5.9	87.5	0.9	29	0.1	17.7	13.5	300	3.04 <.5		1.1	3.3	1.2
5066	1.4	46.4	1	37 <.1		20.9	10.9	440	3.18 <.5		0.6	2.2	0.7
5067	3.7	3.4	6.5	45 <.1		7.5	1.8	191	0.6	2.3	1.1 <.5		0.2
5068	0.9	8.6	0.8	8 <.1		1.6	6.3	149	2.19	1.5	0.8 <.5		2.4
5069	0.4	11.9	0.9	6 <.1		0.9	2.3	129	0.7 <.5		3.4 <.5		16.5
5071	0.8	14.6	5.6	48 <.1		10.3	12.8	702	3.16	74.6	0.8	15.3	3.6
STANDAR	20.4	109.1	68.2	401	0.9	55.2	9.9	632	2.4	48.9	4.7	57.1	4.3

İ

T FORMAT

I

3Y ICP	-MS.													
Sr	Cd	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ba	Ti	В	Al	
ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	
	49 <.1	<.1		0.1	34	0.46	0.077	6	11	0.61	183	0.115	1	0.85
	12 <.1		0.1	0.1	51	1.14	0.054	5	8	1.01	29	0.156	3	1.89
	16	0.1	0.5 <.1		57	0.72	0.022	7	9	0.82	50	0.17	3	1.49
	39 <.1		0.1	0.1	140	1.33	0.049	3	13	2.15	25	0.449	5	3
	79	5.1	0.7 <.1		43	2.54	0.068	3	18	0.06	19	0.089	3	1.7
	71	0.5	0.4 <.1		536	11.67	0.331	12	91	0.05	76	0.074	15	1.54
	8 <.1		0.1 <.1		45	0.21	0.044	6	12	1.09	38	0.072	3	1.46
	27 <.1		0.1	0.1	71	0.7	0.055	5	12	1.09	101	0.17	3	1.42
	25 <.1		0.1 <.1		64	0.58	0.051	6	12	0.79	47	0.161	2	1.2
	108	0.1	0.2 <.1		109	1.11	0.03	1	269	4.82	9	0.199	4	4.24
	340 <.1		0.1	0.1	40	30.5	0.024	4	45	1.49	247	0.12	9	1.95
	38	0.1	0.1 <.1		80	1.52	0.109	3	16	1.68	25	0.163	1	3.26
	71	0.2	0.2 <.1		40	9	0.154	2	33	4.55	21	0.009	2	2.21
	60	0.1	0.1 <.1		95	1.95	0.068	2	11	2.58	5	0.236	1	3.93
	32	0.1	0.2 <.1		251	0.92	0.086	4	7	1.24	13	0.301	2	2.14
	26	0.1	0.3 <.1		280	1.13	0.102	5	9	1.25	7	0.389	3	1.96
	426 <.1	<.1	<.1		3	37.43	0.005 <1	<1		0.08	1	0.006 <1		0.1
	26	0.2	0.3 <.1		112	1.23	0.267	8	11	1.06	11	0.162	3	1.92
	19	1.8	0.7	0.1	69	2.3	0.048	3	46	0.1	9	0.106	11	1.38
	208	0.2	0.2 <.1		87	21.99	0.036	2	28	1.28	6	0.282	2	1.47
	17	0.8	0.2	0.1	29	1.43	0.048	3	36	0.11	30	0.145	2	0.41
	8	0.3	1.6	0.1	25	0.65	0.043	2	13	0.5	19	0.055	2	0.87
	13 <.1		0.2 <.1		20	0.59	0.02	3	15	0.55	14	0.117 <1		1.27
	27	0.2	2.8	0.1	66	0.43	0.11	2	10	1.97	43	0.153	2	1.79
	23	0.1 <.1		0.1	3	0.03	0.002	4	1	0.01	38	0.002	3	0.06
	136	0.7	0.4	0.1	52	4.31	0.174	9	15	0.08	137	0.094	19	2.9
	52	1.4	2	0.2	235	7.18	0.4	16	46	0.23	34	0.066	9	2.31
	51	1.5	2.2	0.2	237	7.3	0.39	16	45	0.23	34	0.066	10	2.31
	33	0.1	0.1 <.1		101	1.45	0.047	4	27	1.64	25	0.339	2	2.54
	52	0.1	0.2	0.1	96	1.26	0.073	5	30	1.85	56	0.288	2	2.74
	16 <.1		0.1 <.1		57	1.1	0.045	5	11	1.32	29	0.154	4	2.12
	57	0.1	0.2 <.1		177	2.32	0.071	5	11	1.39	18	0.424	1	3.11
	37	0.1	0.1 <.1		207	1.12	0.081	5	23	1.86	8	0.55	1	2.97
	36	0.2	0.1 <.1		60	0.56	0.035	4	11	1.29	30	0.141	1	1.9
	29 <.1		0.1 <.1		58	1.86	0.048	4	11	1.3	48	0.123	2	2.36
	73	6.8	5.8	4.5	85	0.95	0.081	13	165	1.05	382	0.121	40	0.98
	41 <.1	<.1		0.1	23	0.47	0.048	5	10	0.38	143	0.084	3	0.61

													1
17 <.1		0.1 <.1		72	0.83	0.04	7	14	1.41	41	0.183	1	2.05
30	0.1	0.4 <.1		52	0.97	0.07	5	10	1.45	31	0.242	7	2.08
34	0.1	0.1 <.1		57	1.27	0.052	6	12	1.37	19	0.17	1	2.17
30	0.1	0.1 <.1		33	1.19	0.092	4	2	1.03	29	0.242	4	1.94
37	0.1	0.1 <.1		84	1.26	0.052	5	7	0.83	50	0.125	2	1.58
44	0.7	0.5	0.1	25	1.86	0.085	5	11	0.1	79	0.141	5	1.14
27	35.3	2.2	0.1	168	2.63	0.059	4	22	0.21	29	0.132	4	1.7
86	0.5	0.3 <.1		65	2.11	0.06	6	13	0.89	72	0.216	4	2.26
29	0.1	0.1 <.1		80	0.45	0.039	7	15	1.23	40	0.204	2	1.72
30	0.2	0.2 <.1		39	3.29	0.118	10	5	0.52	41	0.084	3	2.2
24	0.2	0.2 <.1		56	1.53	0.057	6	13	0.79	23	0.157	2	1.72
32	0.1 <.1	<.1		82	1.45	0.052	6	17	1.32	19	0.203	3	2.26
40	1	0.2 <.1		175	1.24	0.058	2	112	1.13	116	0.26	2	1.91
25 <.1	<.1	<.1		62	0.91	0.053	6	11	1.21	23	0.139	2	1.81
66 <.1		0.2	0.1	87	1.84	0.058	3	29	0.92	16	0.189	3	2.56
26 <.1		0.1 <.1		66	1.07	0.055	7	14	0.9	21	0.199	1	1.73
41	0.2	0.2 <.1		46	1.06	0.187	9	9	0.91	14	0.325 <1		2.2
9	0.1	0.2	0.3	2	0.09	0.001	7	9	0.04	8	0.019 <1		0.29
66	0.1 <.1	<.1		126	2.02	0.117	5	36	2.22	12	0.342	4	3.54
33	0.1	0.1 <.1		76	0.74	0.063	6	16	1.03	35	0.187	2	1.59
41	0.1	0.3 <.1		92	2.72	0.07	4	25	1.74	7	0.432	1	3.23
5 <.1		0.1	0.2	1	0.07	0.001	4	4	0.04	3	0.015 <1		0.24
37	0.1	6.9	0.2	111	0.76	0.043	2	106	1.26	13	0.189	1	1.51
21 <.1		0.1 <.1		68	0.8	0.063	6	13	0.83	41	0.154	2	1.43
35	0.1	0.2 <.1		84	0.88	0.07	6	17	1.5	21	0.228 <1		1.81
35	0.2	0.1 <.1		187	1.33	0.107	5	19	1.3	10	0.537	1	2.4
26	0.1	0.1 <.1		60	1.8	0.05	8	10	1.18	87	0.169	5	2.49
30	0.1	0.1	0.1	60	1.06	0.051	7	10	0.81	103	0.158	4	1.68
32	0.1	0.1 < 1		73	1.12	0.051	7	12	1.06	118	0.169	4	1.78
32	0.1	0.1 <.1		70	1.24	0.052	6	10	0.82	98	0.156	3	1.69
22	0.1	03<1		74	0.74	0.04	6	11	1.22	89	0.185	2	1.8
34	0.1	0.2 < 1		249	1.05	0.081	4	8	1.4	19	0.373	1	2.01
31	0.1	02<1		247	1.03	0.079	4	8	1.4	19	0.364	2	2
34 < 1	0.1	01<1		70	1.08	0.042	5	12	0.79	68	0.158	3	1 57
75	6.5	5.9	46	84	0.95	0.082	14	169	1.06	382	0 124	39	0.99
54	0.0	0.0	0.1	29	0.48	0.062	6	8	0.47	168	0.11	1	0.78
30 < 1	0.4	0.1	0.1	- 9	1.05	0.023	5	6	0.46	54	0.004	3	0.96
15	0.1	0.1	0.1	286	1.66	0.104	6	29	1.82	4	0.528	4	2.07
14 < 1	0.1	0.5 < 1		285	1.65	0.107	5	29	1.81	4	0.526	4	2.05
16	0.1	0.01	01	67	1.00	0.047	5	10	1 16	40	0 164	5	1 93
44	0.1	0.1	0.1 Ω 1	76	1 41	0.052	5	12	1 10	 60	0.171	े २	2 16
 0	0.1	0.1	0.1	21	0.41	0.002	10	<u>م</u>	1.13	48	0.066	<u>л</u>	1.97
36	0.1	0.2	0.1	20 20	0.0 2 GA	0.001	10	9 40	1.44 0.07	9 0 60	0.000	4 5	1.07
30	0.1	0.3	Q. I	30	∠.04	0.040	1.1	10	0.37		0.000	U	1.23

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34	0.2	1.4 <.1		190	1.94	0.121	8	21	2.1	40	0.67	8	3.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	0.1	0.2 <.1		68	1.31	0.044	6	11	1.12	38	0.169	5	1.91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72	0.1	0.1 <.1		72	2.4	0.039	7	8	1.03	36	0.129	4	2 48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 <.1		0.3	0.1	73	0.25	0.033	6	11	1.25	53	0.166	5	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	0.1	0.1 <.1		66	1.03	0.044	5	10	0.76	40	0.145	3	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	0.1	0.2 <.1		56	2.58	0.041	5	12	1.22	34	0.151	5	3 37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 <.1		0.1 <.1		58	1.24	0.05	5	13	1.08	50	0.143	4	1.61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 <.1		0.1 <.1		65	0.91	0.042	6	11	0.8	71	0.167	3	1.37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	0.1	0.1 <.1		57	0.92	0.033	6	11	0.82	56	0.16	2	1.51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	0.1	0.2 <.1		155	1.74	0.076	4	16	1.74	12	0.523	2	2.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	0.1	0.1 <.1		87	1.3	0.073	3	34	0.79	12	0.195	1	1 22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 <.1		0.1 <.1		20	0.68	0.035	2	18	0.76	10	0 11 <1	•	1.35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	0.1	0.1	0.1	127	1.02	0.205	8 <1		1 49	11	0.421	1	2.46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	0.9	2.2	0.1	36	2.24	0.04	2	15	0 14	16	0 104	3	1 61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 <.1		0.1	0.1	6	0.2	0.013	4	5	0.15	14	0.047	1	0.42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29 < 1		0.1	0.1	8	0.42	0.023	3	4	0.04	20	0.043	1	0.63
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	85	0.1	0.3 <.1		55	1.02	0.071	4	3	0.73	-5	0.128	· 1	1 44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	0.2	0.1	0.1	213	1.12	0.122	6	5	1.05	7	0.421 <1	·	2.06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	0.2	0.1 <.1		15	0.7	0.115	3	6	0.08	6	0.106	1	0.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	0.1	0.2 <.1		65	0.43	0.051	5	14	1.35	29	0.178	. 1	1 67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	0.1	0.1 <.1		95	1.56	0.072	5	5	1 19	23	0 145	5	1.86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 <.1		0.1 <.1		66	1.04	0.045	6	11	1.08	66	0 166	6	1 76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 < 1		0.1 <.1		61	0.75	0.042	5	12	0.79	57	0.147	1	1.35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27 <.1		0.1 <.1		67	1.47	0.04	5	12	1 31	175	0 164	3	2 44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	338	0.1	0.3 < 1		66	2.4	0.103	6	114	0.75	42	0 152	4	3.81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	0.1	0.1 <.1		175	1.31	0.087	4	8	1.63	7	0.458	4	2.37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	0.1	0.3 <.1		81	0.62	0.035	5	19	1 11	48	0.227	3	1.67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71	6.3	6	4.4	85	0.93	0.08	13	173	1.05	377	0.122	37	0.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52 < 1	<.1	-	0.1	29	0.55	0.05	7	11	0.43	154	0.102	2	0.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 < 1		0.1 < 1		73	1.31	0.032	5	13	1 19	22	0.102	5	1 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	0.1	0.3 <.1		73	1.04	0.022	5	14	1.31	14	0.225	Ğ	2 04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 <.1		0.2 <.1		74	0.88	0.036	5	14	1.34	28	0.177	5	1 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	0.1	0.2 < 1		70	1.04	0.033	5	14	1.02	21	0.202	5	1 74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	0.1	0.1 <.1		164	0.99	0.064	4	26	1.89	q	0.621	4	2.35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	3.5	0.2 <.1		134	4.68	0.044	3	36	0.18	2	0.089	8	2.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 < 1		0.1	0.1	50	0.48	0.042	6	11	1 12	25	0.000	3	1 38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	0.1	0.3 < 1		175	1 29	0.108	6	13	1.55	5	0.439	1	2.30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	0.1	0.2 <.1		172	1.09	0 102	5	6	1.34	6 6	0.51	2	2.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	0.1	0.2 <.1		199	1.07	0.107	5	8	1.32	7	0.456	2	2.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	0.1	0.2 < 1		70	0.71	0.049	6	ğ	1 11	35	0 172	3	1.64
15 2.2 0.4 0.1 65 4.54 0.086 3 23 0.05 2 0.079 6 2.68 62 0.2 0.5 0.4 0.0 0.75 0.07 7 10 10 100 0.052 2 0.079 6 2.68 0.05 0.079 6 2.68 0.055 0.079 6 2.68 0.055 0.079 6 2.68 0.055 0.079 6 2.68 0.055 0.079 6 2.68 0.055 0.079 6 0.055 0.079 6 2.68 0.055 0.079 6 0.055 0.079 6 2.68 0.055 0.079 6 0.055 0.079 6 0.055 0.07	22	0.1	0.2 < 1		201	1.11	0.089	6	10	1.36	200 R	0.522	2	2 12
	15	2.2	0.4	0.1	65	4,54	0.086	3	23	0.05	2	0.079	6	2.12
	62	0.3	0.5	0.1	29	0.75	0.07	7	12	0.76	18	0 102	2	1 19

65	0.1	0.1 <.1		115	1.73	0.102	5	90	2.33	6	0.379	4	3.19
173	0.1	0.9 <.1		125	13.61	0.066	3	136	2.35	53	0.001	4	1.89
278 <.1	<.1	<.1		3	32.78	0.008 <1	<1		0.05	268	0.003	2	0.22
21	0.1	0.5 <.1		54	1	0.041	7	10	0.7	47	0.158	6	1.29
33 <.1		0.2 <.1		67	0.7	0.046	6	13	0.92	42	0.155	3	1.48
30	0.1	0.1 <.1		67	0.8	0.041	5	11	0.85	53	0.16	3	1.39
55	0.1	0.6 <.1		145	2.19	0.059	5	8	1.73	36	0.379	3	2.92
14	0.1	0.3	0.1	9	0.62	0.071	12	1	0.57	142	0.001	2	1.73
22	0.1	0.3 <.1		9	1	0.062	11	1	0.52	99	0.002	3	1.78
21 <.1		0.2 <.1		41	0.68	0.046	11	10	0.93	142	0.002	2	1.35
38 <.1		0.3 <.1		49	1.09	0.053	7	8	0.76	258	0.132	3	1.12
32	0.3	0.9 <.1	<1		1.74	0.035	7	1	0.21	128	0.001	2	1.87
83 <.1		0.2 <.1		87	2.44	0.049	7	8	1.2 9	67	0.033	4	1.76
15 <.1		0.1 <.1		52	1.15	0.05	5	9	1.06	35	0.16	3	1.82
14 <.1		0.1 < .1		49	1.14	0.051	5	9	1.05	35	0.157	5	1.82
39 <.1		0.2	0.1	42	0.9	0.045	6	5	0.83	94	0.153	5	1.65
32	0.1	0.8 <.1		140	1.59	0.11	6	16	1.96	25	0.479	· 2	2.65
60 <.1		0.6 <.1		54	3.51	0.043	5	9	0.86	16	0.152	3	3.17
66	0.1	0.5 <.1		139	1.11	0.098	4	14	1.87	15	0.727	6	2.56
47	0.2	0.7 <.1		190	2.41	0.133	6	55	2.28	18	0.483	2	3.3
72	6.1	6	4.4	85	0.92	0.079	13	172	1.04	380	0.121	39	0.96
64	0.1	0.1	0.1	34	0.56	0.072	8	9	0.56	198	0.125	1	1.04
35	0.2	0.3 <.1		18	0.94	0.12	5 <1		1.44	41	0.368	3	4.11
79	0.1	0.1 <.1		171	4.18	0.03	2	90	4.05	43	0.143	5	4.37
62	0.1	0.2 <.1		123	1.77	0.057	3	5	2.42	24	0.3	2	2.99
53	0.2	0.4 <.1		153	1.85	0.136	6	71	2.01	15	0.55	5	3.36
8 <.1		0.1 <.1		40	0.11	0.012	5	7	0.71	35	0.131	2	1.17
54	0.1	0.2 <.1		97	1	0.05	2	3	1.98	19	0.31	2	2.5
32 <.1		0.1 <.1		24	1.25	0.043	7	8	0.85	77	0.065	3	1.24
9 <.1		0.1 <.1		164	0.89	0.082	3	157	4.37	26	0.463 <1		4.03
24 <.1		0.2 <.1		22	0.57	0.028	2	15	0.63	11	0.12 <1		1.19
11 <.1	<.1	<.1		108	1.05	0.095	4	20	0.81	12	0.201	1	1.15
50 <.1		0.3	2.6	105	5.46	0.002	2	6	1.57	26	0.04	2	3.21
97	0.1 <.1	<.1		41	4.32	0.179	11	14	0.12	22	0.129	9	3.51
101	0.2 <.1	<.1		42	4.38	0.181	11	14	0.12	22	0.134	11	3.59
19	0.1	0.1 <.1		40	2.5	0.074	5	24	0.3	6	0.087	7	2.01
167	0.9	0.3 <.1		45	7.55	0.086	3	9	0.11	7	0.063	12	1.23
17 <.1		0.1 <.1		50	0.8	0.075	4	14	0.19	6	0.118	1	0.98
11 <.1		0.1 <.1		13	0.27	0.012	3	9	0.14	14	0.044 <1		0.41
16	0.1	0.5 <.1		37	0.4	0.04	6	8	1.11	45	0.098	3	1.62
74	6.6	5.6	4.5	82	0.93	0.079	13	168	1.05	387	0.125	40	0.98

Na	к	W	Hg		Sc		Tl		s		Ga		Se	
%	%	ppm	ppm		ppm		ppm		%		ppm		ppm	
	0.052	0.44	0.1 <.01			1.8		0.3	<.05			4	<.5	
	0.034	0.06	0.5	0.01		3.8	<.1			0.33		8	<.5	
	0.045	0.07	0.5	0.01		3.5	<.1		<.05			8	<.5	
	0.085	0.03	0.1	0.01		1.9	<.1			0.25		9		0.5
	0.05	0.04	0.1	0.01		1.5		0.1		1.44		5		17.4
	0.029	0.04	0.3	0.01		5.4	<.1			0.37		4		4.6
	0.041	0.09	3.1	0.01		4.9	<.1		<.05			7	<.5	
	0.092	0.13	2	0.09		4.7	<.1			0.29		6		1
	0.097	0.07	0.3	0.06		2.2	<.1		<.05			5	<.5	
	0.173	0.02	0.1	0.01		4.4	<.1		<.05			10	<.5	
	0.068	0.06	0.2 <.01			4.3	<.1			0.98		5	<.5	
	0.34	0.44 <.1	<.01			1.2		0.2		0.12		9	<.5	
	0.161	0.03	0.2 <.01			0.9	<.1			0.09		4	<.5	
	0.225	0.02	0.1 <.01			1.3	<.1			0.08		9	<.5	
	0.121	0.09	0.2 <.01			1.9	<.1			0.14		11	<.5	
	0.095	0.08	0.1 <.01			1.8	<.1			0.15		11	<.5	
	0.002	0.01	0.1 <.01			0.2	<.1			0.07	<1		<.5	
	0.147	0.04 < 1		0.01		3.2	<.1			0.13		10	<.5	
	0.043	0.03	0.3	0.03		3.4		0.1		1.78		5		30.6
	0.042	0.01	0.4 <.01			4.5	<.1			0.2		6		0.5
	0.056	0.03	0.3 <.01			2.2		0.1		1.1		2		5.5
	0.049	0.03	0.3	0.02		2		0.3		1.93		4		13.8
	0.041	0.04	0.2 <.01			2	<.1		<.05			5	<.5	
	0.053	0.33	0.3	0.01	-	10.1		1.1		4.25		14		20.8
	0.019	0.02 < 1		0.01		0.9	<.1			0.05	<1			1.3
	0.153	0.08	0.2	0.01		4.1	<.1			1.19		7		6.1
	0.014	0.02	0.4	0.01		3		0.2		2.32		8		17.3
	0.014	0.02	0.4	0.01		2.9		0.2		2.32		8		17.3
	0.032	0.03	0.1 <.01			3.7	<.1		<.05			10	<.5	
	0.118	0.02	0.3 <.01			5.9	<.1		<.05			9	<.5	
	0.04	0.05	0.2 <.01			3.5	<.1		<.05			8	<.5	
	0.208	0.04	0.2 <.01			5	<.1			0.07		11	<.5	
	0.093	0.01	0.2 <.01			2.1	<.1		<.05			13	<.5	
	0.029	0.06	0.2 <.01			4.6	<.1		<.05			9	<.5	
	0.029	0.05	0.2 <.01			4.1	<.1		<.05			7	<.5	
	0.08	0.45	3.8	0.2		2.5		4.2		0.19		5		3.9
	0.05	0.32	0.4	0.02		1.4		0.2	<.05			3	<.5	

)

.

0.045	0.09	0.1 <.01		5.2 <.1	<.05		8 <.5	
0.065	0.06	0.3 <.01		4 <.1	<.05		8 <.5	
0.045	0.06	0.2 <.01		3.4 <.1	<.05		7 <.5	
0.048	0.08	0.3 <.01		2.4 <.1	<.05		9 <.5	
0.104	0.1	0.2 <.01		3.1 <.1	<.05		6 <.5	
0.098	0.06	0.2 <.01		1.1	0.2	1.75	4	6.8
0.049	0.02	0.3	0.07	3	0.5	2.13	6	42.4
0.075	0.08	0.5 <.01		4 <.1	<.05		8	0.8
0.058	0.12	0.1 <.01		5.5 <.1	<.05		8 <.5	
0.058	0.04	0.2	0.01	2.7 <.1		0.08	7	0.5
0.074	0.05	0.1 <.01		2.5 <.1		0.11	6	1.6
0.04	0.06	0.1 <.01		4.5 <.1	<.05		9 <.5	
0.114	0.43	0.2 <.01		2.5	0.1	0.46	6	5.2
0.05	0.07	0.2	0.09	3.4 <.1	<.05		7 <.5	
0.249	0.05	0.2 <.01		4.4 <.1	<.05		8 <.5	
0.049	0.07	0.2 <.01		3.6 <.1	<.05		7 <.5	
0.036	0.02	0.1	0.02	5.5 <.1	<.05		13 <.5	
0.054	0.07	0.2	0.02	0.9 <.1	<.05		2 <.5	
0.179	0.02 <.1	<.01		1.7 <.1	<.05		10 <.5	
0.106	0.08	0.2 <.01		2.5 <.1	<.05		6 <.5	
0.069	0.01	0.2 <.01		3.2 <.1		0.08	11 <.5	
0.048	0.07	0.3	0.01	0.9 <.1	<.05		3 <.5	
0.073	0.05	0.2	0.02	2.6 <.1	<.05		5 <.5	
0.07	0.09	0.2 <.01		2.5 <.1	<.05		5 <.5	
0.058	0.04	0.1 <.01		2.9 <.1		0.18	7	0.7
0.035	0.02	0.1 <.01		2.7 <.1		0.13	11 <.5	
0.043	0.09	0.4 <.01		4.3 <.1	<.05		9 <.5	
0.085	0.09	0.3	0.01	2.8 <.1	<.05		6 <.5	
0.067	0.08	0.3 <.01		4.2 <.1	<.05		7 <.5	
0.082	0.07	0.9	0.01	2.8 < .1	<.05		6 <.5	
0.045	0.1	0.3	0.01	5.7 <.1	<.05		8 <.5	
0.137	0.03 <.1	<.01		2.5 <.1		0.51	11	0.8
0.139	0.02 <.1	<.01		2.5 <.1		0.51	11	0.8
0.083	0.06	0.1	0.01	2.4 <.1	<.05		6 <.5	
0.078	0.46	3.8	0.2	2.6	4.3	0.2	5	3.9
0.046	0.4	0.2	0.01	1.7	0.3 <.05		4 <.5	
0.021	0.18	0.1 <.01		1	0.1	0.11	4 <.5	
0.064	0.01	0.5	0.01	3.9 <.1		0.3	11 <.5	
0.06	0.01	0.4	0.01	3.9 <.1		0.31	11 <.5	
0.041	0.07	0.5	0.13	4.8 <.1		0.2	7	0.5
0.057	0.09	0.5	0.11	5. 9 <.1		0.16	7 <.5	
0.021	0.23	0.6	0.04	3.5	0.1	0.07	5 <.5	
0.026	0.11	0.1	0.1	5.3 <.1		0.19	5 <.5	

.

0.136	0.01	0.1	0.04	5.5 < 1		0.28	12	0.5
0.056	0.08	0.3	0.01	4 <.1	<.05		7 <.5	
0.03	0.06	0.4	0.17	4.4	0.1	0.55	9 <.5	
0.07	0.08	0.5	0.03	6.6 < 1		0.06	7 <.5	
0.101	0.08	0.2	0.01	1.7 <.1	<.05		5 <.5	
0.08	0.1	0.3 <.01		3.7 < 1		0.14	11 <.5	
0.052	0.11	0.2	0.01	4.7 <.1		0.08	6 <.5	
0.083	0.09	0.2	0.01	3.2 <.1		0.06	5 <.5	
0.084	0.07	0.1 <.01		2.3 < 1	<.05		6 <.5	
0.297	0.01 <.1	<.01		1.6 < 1		0.37	7 <.5	
0.12	0.07	0.2 <.01		4.4 < 1		0.06	6 <.5	
0.035	0.03	0.3 <.01		2.1 < 1	<.05		5 <.5	
0.034	0.01	0.6	0.01	8.7 <.1		0.62	13	0.7
0.057	0.03	0.2	0.01	2.2	0.4	2.44	6	26.7
0.043	0.07	0.1 <.01		0.6 < 1	<.05		2 <.5	
0.077	0.16	0.2 <.01		0.4 < 1	<.05		3 <.5	
0.046	0.02	0.2	0.01	1.2 <.1	<.05		6 <.5	
0.037	0.02	0.5 <.01		4.5 <.1		0.25	14 <.5	
0.128	0.02	0.2	0.01	0.3 <.1	<.05		2 <.5	
0.048	0.09	0.3	0.02	4.4 < 1	<.05		7 <.5	
0.063	0.06	0.2 <.01		3.7	0.1	0.13	7 <.5	
0.062	0.08	0.1	0.02	4.3 < 1	<.05		6 <.5	
0.1	0.08	0.1 <.01		2.3 <.1	<.05		5 <.5	
0.04	0.07	0.1 <.01		4.4 <.1	<.05		9 <.5	
0.475	0.04 <.1	<.01		1.5 <.1		2.5	10	2.1
0.078	0.03	0.1	0.01	2.1 < 1		0.11	11 <.5	
0.045	0.08	0.1	0.12	4.4 < 1	<.05		8 <.5	
0.079	0.48	3.6	0.2	2.5	4.1	0.2	4	3.7
0.066	0.38	0.3 <.01		1.6	0.3 <.05		4 <.5	
0.034	0.07	0.2	0.09	4.8 <.1		0.1	9 <.5	
0.035	0.04	0.2	0.03	3.2 <.1		0.06	9 <.5	
0.041	0.09	0.2	0.17	5.3 < 1		0.11	8 <.5	
0.04	0.07	0.1	0.05	2.9 <.1	<.05		7 <.5	
0.029	0.02 <.1	<.01		3.3 <.1		0.1	11 <.5	
0.011 <.01		0.2	0.02	5.1 < 1		1.08	8	16
0.055	0.09	0.3 <.01		3.3 <.1	<.05		7 <.5	
0.127	0.01	0.2	0.01	2 <.1		0.14	13 <.5	
0.061	0.03	0.1 <.01		1.8 <.1		0.2	11 <.5	
0.094	0.04	0.1 <.01		2 <.1		0.14	12 <.5	
0.067	0.09	0.3 <.01		4.1	0.1 <.05		7 <.5	
0.08	0.01	0.1 <.01		1.7 < 1		0.16	12 <.5	
0.012 <.01		0.2 <.01		1.8 <.1		0.89	8	22.9
0.092	0.02	0.1	0.02	1.6 < 1		0.42	4	3.1

.

0.19	0.01 <.1	<.01		1.6 <.1	<.05		10 <.5	
0.033	0.12 <.1		0.02	14.7	0.1	1.27	5 <.5	
0.003 <.01	<.1	<.01		0.1 <.1	<.05		1 <.5	
0.062	0.08	0.2	0.01	2.1 <.1		0.06	6 <.5	
0.128	0.08	0.6 <.01		5.1 <.1	<.05		6 <.5	
0.092	0.06	0.5 <.01		2.5 <.1	<.05		6 <.5	
0.158	0.03	0.1 <.01		14.9 <.1		0.06	12 <.5	
0.024	0.2 <.1		0.02	2.6 <.1	<.05		7 <.5	
0.02	0.17	0.1	0.01	3.1 <.1	<.05		6 <.5	
0.044	0.2	0.1	0.07	3.7 <.1	<.05		5 <.5	
0.103	0.13	0.2	0.05	2.7 <.1	<.05		5 <.5	
0.042	0.15 <.1		0.05	4.2	0.1	0.13	9 <.5	
0.045	0.14	0.1	0.01	7 <.1	<.05		7 <.5	
0.029	0.08	0.3 <.01		3.3 <.1	<.05		8 <.5	
0.028	0.08	0.3 <.01		3.2 <.1	<.05		8 <.5	
0.103	0.16	0.5 <.01		3.7 <.1		0.06	8 <.5	
0.113	0.01 <.1		0.01	4.4 <.1		0.17	11 <.5	
0.044	0.05	0.3 < 01		3.4 < .1	<.05		9 <.5	
0.029	0.01	0.1	0.01	3.3 <.1		0.14	11 <.5	
0.267	0.01	0.1 <.01		3.6 <.1		0.13	10 <.5	
0.08	0.45	3.9	0.19	2.5	4.2	0.2	5	3.6
0.084	0.49	0.2	0.01	2	0.3 <.05		5 <.5	
0.132	0.08	0.4	0.01	14 <.1		0.22	15 <.5	
0.152	0.07	0.1 <.01		13.5 <.1		0.06	13 <.5	
0.141	0.02	0.4 <.01		12.4 <.1	<.05		11 <.5	
0.245	0.01	0.1 <.01		2.1 <.1		0.37	11 <.5	
0.042	0.13	0.1	0.01	3.5	0.1 <.05		7 <.5	
0.051	0.01	0.2 < 01		7 <.1		0.06	10 <.5	
0.022	0.22	0.1 <.01		3 <.1		0.2	4 <.5	
0.031	0.02	0.7 <.01		13.7 <.1	<.05		13 <.5	
0.034	0.04	0.4 <.01		1.9 <.1	<.05		5 <.5	
0.089	0.07	0.2	0.01	4.7 <.1	<.05		5 <.5	
0.002	0.01	1.3	0.01	3.6 <.1		9.95	12	13.3
0.109	0.05	0.1 <.01		2.7 <.1		1.53	11	7.6
0.115	0.05	0.1 <.01		2.6 <.1		1.54	11	7.9
0.038	0.01	0.1 <.01		3.4 <.1		1.83	7	10.5
0.004 <.01		0.4	0.01	0.8 <.1		0.09	3 <.5	
0.161	0.08	0.3 < 01		1 <.1		0.47	3 <.5	
0.041	0.09	0.1 <.01		0.4 <.1	<.05		2 <.5	
0.026	0.13	0.4	0.02	3.8 <.1		0.13	5 <.5	
0.078	0.47	3.9	0.19	2.5	4.2	0.23	5	3.7

i

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEX To Tasu Global Resources

Acme file # A608158A Received: OCT 20 2006 • 3 samples in this disk file.

1

Analysis: GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED E

ELEMENT MO	Cu	Pb	Zn	Ag	NI	Co	MN	⊦e	As	U	Au	11	
SAMPLES ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	
G-1	0.5	2.2	2.9	54 < .1		6.4	4.6	532	1.8 <.5		2.1	1	3.6
5009	0.2	9.1	3.1	43 <.1		9.5	11.5	577	2.78	6.3	1 <.5		4.6
STANDAR	21.4	109.8	71.6	417	0.9	56.2	10	64 1	2.43	46.8	4.8	56.9	4.7

T FORMAT

1

3Y ICP-MS.

Sr	Cd	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ba	Ti	B	AI	
ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	
	45 <.1	<.1		0.1	36	0.44	0.077	8	67	0.6	210	0.121	2	0.89
	18 <.1		0.4 <.1		68	1.08	0.037	8	18	1.08	34	0.198	5	1.72
	76	6.2	5.9	4.5	85	0.98	0.07	15	281	1.06	374	0.134	34	1.04

Na	К	W	Hg	Sc	TI	S	Ga	Se	
%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	
	0.046	0.48	0.2 <.01		1.8	0.4 <.05		5 <.5	
	0.062	0.09	0.2	0.16	5.3 <.1	<.05		9 <.5	
	0.097	0.46	3.8	0.2	2.7	4.2	0.22	5	3.9

. .

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT To Tasu Global Resources

Acme file # A608158A Received: OCT 20 2006 • 3 samples in this disk file.

Analysis: GROUP 3B - FIRE GEOCHEM AU, PT, PD - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM.

ELEMENT	Au**	Pt**	Pd**	
SAMPLES	ppb	ppb	ppb	
G-1	<2	<3	<2	
5009	<2	<3	<2	
STANDARD	ł	478	481	491

i

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1RE To Tasu Global Resources

Acme file # A608160 Page 1 Received: OCT 20 2006 * 99 samples in this disk file.

Analysis: GROUP 3B - FIRE GEOCHEM AU, PT, PD - 30 GM SAMPLE FUSION, DORE DISSOLVED

ELEMENI	Au**		Ρτ	Pa	
SAMPLES	ppb		ppb	ppb	•
G-1	<2		<3	<2	
1000		- 14	<3	<2	
1001	<2		<3	<2	
1006		4	<3		2
1007		4	<3		2
1008		3	<3		2
1009		4	<3		3
1010		3	<3	<2	
1011		4	<3		2
1012	<2	·	<3	<2	-
1012	<2		<3	<2	
1010	$\overline{\mathbf{a}}$		<3	<2	
1014	~2		~3	<2	
1010	~2		~3	<2	
1010	~2		~2	<2	
1017	~2		~3	~2	
1023	< <u>Z</u>		<3	~2	
1024	<2		<3	<2	
1025	<2		<3	<2	
1026	<2		<3	<2	
1027	<2		<3	<2	
1028	<2		<3	<2	
1030	<2		<3	<2	
1031		3	<3	<2	
1032		7	<3	<2	
1034		4	<3	<2	
1035	<2		<3	<2	
1036		2	<3	<2	
RE 1036		2	<3	<2	
1040	<2		<3	<2	
1041	<2		<3	<2	
1051	<2		<3	<2	
1052	<2		<3	<2	
1053		2	<3	<2	
1054	<2		<3	<2	
1055	_	16	<3	<2	
STANDAR	1	48	-	48	48
G-1	<2		<3	<2	
1056	-	3	<3	<2	
1058		2	<3	<2	
1050	<2	2	<3	<2	
1000	~2	Б	~2	-2	
1002		0 2	~3	~2	
1003		0 2	~3	~2	2
1000		0	~>	-0	2
1000		3	< 3	<۷	
2001		3	<3	.0	4
2006	1	2	<3	<2	

.

		-	
2008	4 <3	<2	
2009	5 <3	<2	
2013	2 <3		2
2018	8 < 3		6
2010	3 ~ 3	~?	v
2020	3 ~ 3	~2	
2021	2 <3	<2	•
2022	2 <3	<2	
2023	4 <3	<2	
2024	4 <3	<2	
2029 <2	<3	<2	
2023 ~2	~2	~2	
2034 ~2	~ 3	~2	
2038	3 < 3	<2	
2043	3 <3	<2	
2044 <2	<3	<2	
2045 <2	<3	<2	
2046	2 < 3	<2	
2048 <2	3	<2	
2040 -2	-0	~2	
2049 <2	< 3	<2	
2050	2 <3	<2	
2057 <2	<3	<2	
2063 <2	<3	<2	
2064	2	7	21
2074 <2	_ <3	<2	
DE 2074	2 ~ 2	~2	
RE 2014	2 < 3	~2	
2079 <2	<3	<2	
STANDAR	49	47	48
G-1 <2	<3	<2	
2082	2 <3	<2	
2088B	3 <3	<2	
RE 2088B <2	<3	<2	
2000	10 < 3	_	2
2000	0 - 2	~?	2
2091	0 \3	~2	
2092	3 <3	<2	
3009	4 <3	<2	
3010	3 <3	<2	
3011	2 <3	<2	
3012	3 <3	<2	
3013	5<3	-	2
2010	6 < 2	-2	2
0106	0 < 3	~2	•
3019A	4 < 3		2
3019B	5 <3		2
3020	8 <3		3
3021	6 <3		3
3022	4 <3		2
3023	11 <3		3
3024	7 - 2		2
3024	1 50		3
3028	6 <3		4
3029	8 <3		5
3031	6 <3		2
3032B	12 <3	<2	
3037	3 < 3	<2	
3030	2 - 2	<2	
JUJ37	5 ~ 5	~2	

.

3045	3 <3	<2	
3069	26 <3		3
3073	7 <3	<2	
STANDAR	48	48	47

.

. _.....

. ,

6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT

.

IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM.

~

-

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEX

To Tasu Global Resources

Acme file # A608159 Page 1 Received: OCT 20 2006 * 173 samples in this disk file.

Analysis: GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED E

ELEMENT Mo	Cu	Pb	Zn	Ag	Ni	Co	!	Mn	Fe	As	U	Au	Th	
SAMPLES ppm	pp	m ppn	n ppm	ppm	ppm	ppm	ł	opm	%	ppm	ppr	n ppt	o ppm	
G-1	0.6	2.4	3.4	47 <.1		6.9	4.4	509	Э	1.82 <.5		2.6 <.5		3.7
207A	2.2	58.9	11.4	85 <.1		20.1	19.1	74	5	4.75	7.3	2.1	3.4	2.2
213	13.5	49.5	5.6	33	0.1	7	8.4	272	2	1.16	4.3	3.9	4.4	0.3
1018	4	10.2	6.4	18	0.3	1.8	3.5	14(3	0.79	1.5	5.7	1	0.1
1019	3.4	36.9	8.6	44	0.3	4.6	19.6	2162	2	2.21	1.4	5.2	1	0.1
1033	17.5	59.9	2.5	15	0.1	2.8	3.4	13	7	2.12	1.8	0.3	3	0.7
1043	3.9	18.1	7.8	22	0.2	4.6	19.9	953	3	2.19	1.7	5.7 <.5		0.2
1044	3.3	14.9	4.8	30	0.1	5.3	9.1	529	9	2.24	2.2	4.1	0.8	0.4
1047	3.1	13.4	7.7	52	0.1	3.3	25.9	2323	3	1.98	2.3	10.3	0.9	0.3
1048	1.8	3.3	6.8	5 < 1		1.3	0.5	3.	1	0.21 <.5		1.2	1.5	0.1
1050	5.9	37.9	6.9	80	0.1	10.8	28.6	342	5	4.1	13.6	16.6	2.4	1.3
1060	10.9	172.7	6.3	74	0.5	10.7	47.2	2673	3	6.66	51.5	175.8	8.3	1.5
1064	8.3	56.8	10.8	211	0.3	55.4	19.9	127:	3	4.33	88.1	3.3	8.2	0.4
1067	5.7	67.3	12	68	0.4	38.6	10.9	163	7	3.67	77.7	7.3	3.5	0.1
RE 1067	5.4	68.8	12.4	67	0.4	38.4	10.9	168	3	3.55	77.9	7.4	5.2	0.1
1068	2.1	22	7.1	10 <.1		1.6	1.9	104	4	9.96	2.7	1	3.2	2.5
1069	1.6	10.3	3	5 <.1		0.7	0.8	46	6	2.85	0.6	0.2 <.5		0.6
1070	0.6	6.8	6	6	0.1	1	1	7	1	1.19 <.5		0.2 <.5		0.6
1071	0.9	12.2	6.6	9	0.2	3.5	0.9	58	3	1.02	0.6	0.5	0.5	0.1
1072	0.6	3.9	5.3	3 <.1		0.6	0.4	24	4	0.72 <.5		0.2	0.6	0.5
1073	0.5	4.8	5.7	1 <.1		0.3	0.2	18	3	0.28 <.5		0.2	0.5	0.3
1074	0.3	4	4.7	2 <.1		0.6	0.3	22	2	0.28 <.5		0.3	1.1	0.6
1078	0.4	2.1	1.6	2 <.1		0.7	0.6	24	4	1,93 <.5		0.2 <.5		0.5
1079	1.2	11.4	5.2	7	0.4	18.1	0.8	4()	2.05	0.7	0.6 <.5		0.2
1080	2.6	75.5	3.8	15 <.1		1.9	2.9	142	2	1.7	0.8	1.8	8.2	1.5
1081	5.1	19.5	7.9	22 <.1		4	10.3	311	1	4.08	2.6	2.6	4.1	1.7
2003	1.8	20	7.6	22 <.1		10.4	6.2	200	3	2.5	3.3	1	7.2	0.2
2004	2	63	16.4	44	0.1	16.4	8.6	23	7	2.6	4.5	3.2	3	0.2
2005	1.6	26.9	10.4	38	0.1	10.2	13.8	706	3	3.53	2.5	1	2.5	0.5
2007	1.7	41.7	13.4	49	0.1	14.1	17.6	843	3	3.44	4.8	2.1	3.4	0.6
2010	0.7	20	7.1	38 <.1		11.5	16.9	650)	3.93	2.1	1.1	2.8	0.5
2011	0.7	19.6	6.3	42 < 1		12.1	17.9	829	9	3.79	2.3	1.1	2	0.6
2012	2.1	125.7	18.4	117	0.2	40	23.9	1014	4	4.03	15.8	3.3	4.5	0.5
2014	1.9	183.9	8.3	106	0.3	45.7	28.8	1214	4	4.22	17.5	5.5	24	0.3
2015	1.9	147	7.3	100	0.2	41.4	26.3	1017	7	4.24	18.9	4.8	9.4	0.3
STANDAR	21.1	109.3	69.1	405	0.9	55.9	10.1	653	3	2.48	47.4	4.9	55.4	4.6
G-1	0.9	4.5	2.7	44 < 1		9.7	4.4	489	9	1.82 <.5		2.2	1.2	3.4

2016	1.3	189.9	6.4	69	0.3	33	27	1080	3.78	13.3	6	6.9	0.2
2017	2.1	136.7	13.5	112	0.4	66.9	24.7	1125	4.27	38.9	7.3	4.2	0.3
2025	6	12.4	9.1	30	0.1	2.9	7.9	300	1.82	1	4.6	25	0.2
2026	6.6	19.6	5.9	54	0.1	6.1	15	527	3.15	15.5	39.8	1.5	0.7
2027	3.6	12.7	6.3	16	0.1	2.8	8.1	395	2.07	1	1.5	1.3	0.3
2028	4.4	33	1.7	42 < 1		14.3	8	459	1.76	8.7	5.3	1.8	1
2030	32	102.3	7.9	26	0.1	3	25.4	7634	4.28 <.5		1.4	0.6	1.1
RE 2030	31.7	102.6	8	26	0.1	3	25	7416	4.25	0.5	1.6	1.1	1.1
2031	41	64.3	7.3	73	0.1	9.9	28.7	6153	3.3	18.5	6.3	3.2	1
2032	24.9	44.7	7.3	67	0.1	6.4	32.3	5237	3.2	17.3	4.3	6	0.8
2033	29.5	48.7	7.9	55	0.1	6.2	37.8	5056	4.13	22.9	6.1	1	0.9
2035	14.3	37.7	6.5	24 <.1		4.4	5.4	211	2.83	13.3	3.8	0.5	1.1
2036	97.6	48.2	7.3	85	0.1	7.8	49.9	10723	8.79	38.2	5.2	2.6	1.5
2039	6.2	124.8	3.8	76	0.1	6.1	10.7	999	2.88	2.9	1.2	4.2	1.7
2042	14.6	292.5	3.5	13	1	2.8	7	205	4.45	2.3	1.4	10	3.1
2047	2.6	27.6	4.2	13	0.1	2.5	4.9	1122	1.41	0.5	0.6	1.5	0.3
2051	26.3	57.4	11.1	290	0.2	12.6	30.7	10406	3.23	4.2	3.8	່ 1	1
2052	3.1	17.4	4.7	15	0.1	2.6	4.1	213	1.99	1	0.6	1.5	0.9
2053	1.5	6.7	4.1	6	0.1	1.5	1.1	80	0.39 <.5		0.6	0.8	0.2
2054	1.3	28.2	4.2	7 < 1		1.6	2.4	93	2.15	0.6	1.1	3.4	1.9
2055	24	29.7	8.7	60 <.1		6.9	10	657	4.26	3.1	1.1	0.9	1.6
2056	37.6	130.6	10.3	60	0.3	4.5	10.2	1217	4.15	5.7	5.6	0.8	1.4
2059	3.4	500.9	5.1	58	1.3	66.1	49.7	1615	5.13	45.5	0.5	32.6	0.1
2060	4.4	402.3	5.4	38	1.6	30.4	20.1	564	4.43	9.9	0.7	23.2	0.1
2062	5.6	298.4	5.8	48	0.8	69.9	16.7	366	7.27	13.8	0.6	512.9	0.2
2070	2.2	10.1	9	8	0.1	2.3	1.1	43	1.05 <.5		2.1	2.3	0.1
2072	4.3	34.9	10.1	98	0.2	28.2	14.6	520	3.39	60.3	2.3	14.5	0.2
2083	4.3	5.6	9	22 <.1		4.6	27.4	1785	2.52	1.5	3.2	1.2	0.4
2085	2.1	4.3	6.6	12 <.1		5.2	8	859	1.57	1.4	0.8	1	0.4
2086	1.9	4.5	8.6	11 <.1		2.7	4	175	1.06 <.5		1.5	4.4	0.2
2087	0.3	1.9	5.2	4 < 1		1.2	1	45	0.9 <.5		0.3	30.1	0.7
2088A	1.8	42 .1	6.5	46 <.1		15.3	14.9	598	3.31	40.1	6.4	33.3	0.6
2093	1.3	10.2	5.7	40 <.1		7.3	8.5	434	1.7	2.9	1.4	1.6	0.2
2094	1.4	12.7	6.6	48 <.1		8.6	8.7	578	1.97	5.3	2.4	1.8	0.2
STANDAR	21.4	109.2	69.3	409	0.9	55.8	9.9	643	2.43	46.8	4.7	58.4	4.3
G-1	0.7	2.2	2.8	49 <.1		6.7	4.4	526	1.77 <.5		1.7 <.	5	3.8
2096	1.4	16.8	9.6	50 <.1		8.5	8.7	460	2.29	5	2	3.3	0.3
2097	0.9	8.9	8.7	56	0.1	8	7.5	384	1.93	3.5	1.1	105.4	0.4
3001	2.6	10.9	10.9	133 <.1		10	17.4	1523	3.54	13.8	3.9	21.2	1.1
3002	1	10.5	10.2	118 <.1		8.8	15.5	1404	3.15	11.9	6 .1	23.2	0.8
3003	2.8	7	9	86 <.1		4.9	17.9	1790	2.62	25.8	28.3	8.2	0.4
3004	5.7	7.3	12.9	61 <.1		5.3	34.1	4755	4.25	17.2	8.9	1.3	0.5
RE 3004	5.5	6.9	13	62 <.1		4.6	33.2	4474	4.26	17.5	9.1	0.6	0.6

3006	2.3	6.9	8.2	36 <.1		5.6	15.1	1362	1.8	5.1	1.1	30.5	0.7
3007	3.5	10.9	8.9	51 <.1		8.4	23.6	1908	2.78	9.1	1.9	27.2	0.5
3008	4.3	9.4	6.9	69 <.1		9.5	78.6	4454	3.18	11.7	1.1	15.1	1
3015	6.3	58.9	9.5	216	0.3	54.5	20.4	916	4.42	99.2	2.5	16.1	0.5
3016	7.1	56.6	9	217	0.3	60.7	19.4	943	4.5	96.7	2.1	31.2	0.8
3017	6. 9	66.4	10.1	243	0.4	58.3	21	992	4.82	105.5	2.2	6.9	0.6
3025	11.4	92.1	13.9	249	0.8	71.5	25.8	1085	5.59	103.6	3	5.4	0.2
3026	9.9	91.9	9.5	364	0.5	89.2	22.1	1213	4.98	55.2	2.1	2.4	0.3
3027	11.5	110.7	14.4	312	0.6	98.3	26.8	1092	6.18	107.2	2.9	4.3	0.3
3030	1.1	37.4	10.6	69 <.1		18	10.6	370	2.69	3.7	1.9	1.5	0.3
3032	1.9	11	11.4	27	0.1	7.3	5.5	251	5.6	3.2	2.4	5.7	0.5
3034	2.1	65.3	15.6	98	0.1	27.2	19.9	1022	4.02	8.7	2.2	58.1	0.8
3035	1.7	68.1	15.4	106	0.1	29.9	20.1	998	4.11	8.1	2.7	15.9	0.7
3036	5.8	14.2	7.5	47 <.1		6.9	11.4	750	2.93	13.8	9.7	18.2	0.4
3038	2.5	74.6	29.5	76	0.2	20.9	8.8	341	2.64	9.3	3.2	3.7	0.3
3040	1.9	145.5	26	105	0.3	35.8	26	1261	4.43	15.6	3.9	26.5	0.4
3041	2	140.4	22.4	112	0.2	32.9	25.7	1183	4.13	15.2	4.1	6.7	0.3
3042	1.8	94.8	24.4	124	0.2	30.7	23.3	1057	4.17	13.5	3	153.2	0.5
3043	1.9	137.5	22.9	135	0.2	39.8	24.3	1024	3.93	15.3	3.8	29	0.3
3044	2.2	76.8	60.6	128	0.2	28	21.1	1253	4.07	11.2	2.5	4.8	0.5
3046	1.6	175.2	7.8	105	0.3	40.4	27.5	1202	4.22	17.9	5.7	9.3	0.3
3047	2.3	131.8	8.1	117	0.2	46.3	24.2	982	4.11	19.1	3.3	9	0.4
3048A	1.2	49.4	5.2	53	0.1	16.1	83.5	4549	3.93	1.5	0.4	8.1	0.1
3048B	1.3	140.1	7.4	114	0.7	17.7	8.9	2595	1.86	48.7	17.7	14.4	0.2
3049	1.3	54.2	4.5	88	0.1	26	71.9	4297	4.77	2.4	0.5	4.5	0.2
3050	1.4	36.9	7.7	26	0.2	8.4	20.5	1176	1.91	1.6	0.6	5.4	0.1
3051	0.8	32.7	6.1	16	0.1	8	28.7	1171	2.74	0.5	0.4	126.3	0.1
STANDAR	21	105.7	68.1	395	0.9	55.1	9.9	650	2.44	47.5	4.9	73.1	4.4
G-1	0.7	1.9	2.7	44 <.1		6	4.4	491	1.73 <.	5	2 <.	5	3.6
3052	39.3	277	9	223	0.3	7.8	22.6	4807	3.22	5.3	2.1	8.3	0.5
3053	49.2	211.1	7.2	285	0.3	6.8	23.3	4616	3.14	5.3	1.9	3.8	0.9
3054	43.6	181.9	7.9	259	0.2	6.4	19.7	3776	2.59	6.5	1.3	3.7	0.3
3055	26.7	228.9	6.9	204	0.3	9.1	16.1	3793	2.11	4.3	2.6	3.3	0.2
3056	52.3	385.4	7.1	561	0.4	9.3	15.4	4740	2.25	8.8	3.6	7.3	0.8
3057	36.2	48.7	2.9	26	0.2	2.1	3.8	193	2.55	5.2	0.4	4.6	0.8
3060	2.5	40.2	9.8	67	0.1	5	15.6	1693	1.96	15.9	9.1	2.4	0.2
3061	2.6	60	9.8	93	0.2	6.3	16.4	1911	2.02	24.6	20.4	2.1	0.3
3062	0.4	1.5	5 .8	5 <.1		1	0.8	52	0.74 <.	5	0.3 <.	5	0.3
3063	3.2	9.5	10.9	21 <.1		2.5	11.4	2870	2.04	1.1	2.4	1.9	0.6
3064	3.9	9.9	11.4	79 <.1		4.5	22.4	3774	1.83	28.4	11.8	0.5	0.1
RE 3064	3.7	10.5	11.4	77 <.1		4.9	20. 9	3677	1.73	26.5	12.3	1.7	0.1
3065	2.8	11.2	13.3	71	0.1	4.6	17.4	2260	1.75	15.2	16.9	2.2	0.2
3066	1.9	10.9	7.7	70 <.1		5	13.5	1631	1.5	6.8	26.1	1.6	0.3

}.

i

3067	2.7	8.3	5.3	60	0.2	4	13.8	1092	2.34	21.7	44.1	0.5	0.5
3068	3.7	14.6	6.9	95	0.2	5.4	22.2	3276	2.73	35.3	33	0.9	0.6
3070	0.5	59.9	16	26 <.1		4.2	2.8	132	1.48	2.2	0.4	4.3 <.1	
3071	2	506.9	109	92	0.3	27.2	15.2	549	4.83	20.1	1.2	3	0.8
3074	1.7	58.6	5.8	42 <.1		15	11.5	386	3.51	64.5	4	35.3	0.7
3075	2.9	43.5	7.7	22	0.2	4.1	1.5	162	0.49	1.4	2.3	3.4	0.1
3076	8	50.8	11.8	210	0.3	53.3	19.7	1247	3.96	97	3.2	10.9	0.3
3077	7.1	51.9	11.2	229	0.3	55	25.4	2635	4.57	95	4.5	14	0.4
3078	6.4	49.1	10.9	190	0.3	50.2	18.6	1382	4.35	89.8	3.4	10	0.4
3079	10.4	61.9	14.2	245	0.4	67.4	20.5	1194	3.99	131.5	3.3	15.7	0.3
3080	3.1	29.1	6.2	113	0.2	34.1	18.6	1104	3.4	55.2	4.5	2.2	0.2
3081	4.2	54	9.5	101	0.2	26.4	22.2	1159	5.25	64.4	4.5	4.9	0.5
3082	6.2	52.3	10.2	111	0.4	46.1	26.8	1511	4.76	110	7.8	3.3	0.2
3083	0.6	4.2	30.5	5 <.1		1.4	0.6	47	0.51	1.3	0.4	8.2	0.3
3084	0.7	17	5.8	18 <.1		4.7	2.5	12 9	1.01	3.4	0.3	2	0.1
3085	0.3	10.8	4.4	16 <.1		2.4	1.1	83	0.32	1	0.1	4.5 <.1	
3086	0.1	8.7	3.4	18 < 1		1.3	0.5	824	0.11	0.9 <.1		· 2.1 <.1	
3087	0.6	6.5	6.4	8 <.1		1.5	0.7	71	1.1	1.1	0.1	1.4	0.2
3088	0.4	7.6	6.2	10 <.1		3.3	1.3	52	0.51	0.8	0.4	3.9	0.1
3089	0.2	13.7	5.3	21 <.1		2.7	1.5	42	0.35	0.7	0.1	6.7 <.1	
STANDAR	21	109.4	70	409	0.9	57.7	9.9	670	2.49	46.5	4.9	64.9	4.7
G-1	0.6	2.1	2.8	45 <.1		7.8	4.4	505	1.77 <.5		1.7 <.5		3.7
3090	0.3	6.1	5.5	13 < 1		1.4	0.3	30	0.07	1.4	0.1	7.4 <.1	
3091	0.4	1.8	8.5	5 <.1		0.8	0.7	294	0.3	0. 9	0.2 <.5		0.2
3092	0.3	4.7	5.1	9 <.1		1.9	0.7	56	0.51 <.5		0.2	3.1	0.1
3093	5	4.4	24.2	15 <.1		2	1.6	92	4.37	10.2	1.2	1.3	0.5
4202	0.3	3.7	6.6	6 <.1		0.7	0.5	46	1.12 <.5		0.3	0.9	0.7
4203	0.5	7.5	10.3	8 <.1		2.4	1.6	50	2.84	0.5	0.2 <.5		0.4
4204	0.9	14.2	16	28 < .1		4	17.7	2503	2.9	1.3	2.1	0.7	0.7
4205	0.6	2.2	10.6	6 <.1		1	0.6	44	1.25 <.5		0.4 <.5		0.6
4206	0.6	1	9.4	3 <.1		0.8	0.3	29	0.26 <.5		0.4	0.5	0.3
4207	0.5	2.5	3.1	4 < 1		1.2	1.3	22	0.5	0.5	0.2 <.5		0.4
4208	0.5	2.5	3.3	4 <.1		1.3	0.9	24	0.59	0.7	0.3 <.5		1.1
4209	1.2	8.1	6.5	15	0.1	4.4	3.4	148	5.71	1.1	0.8	0.7	0.5
4211	0.6	3.3	6.3	9 < 1		1.6	1.5	66	0.73	1.1	0.5	1	0.4
4212	1.9	3.9	9.4	9	0.2	2.1	1.9	65	2.29	1	1.2	0.7	0.2
4213	0.8	1.7	7.1	3 <.1		0.5	0.3	19	0.24	0.6	0.5	0.5	0.1
4214	0.9	1	6	3 <.1		0.7	0.3	17	0.24 <.5		0.6	0.9	0.1
4215	8.4	7.1	16	56 <.1		4.7	19.6	1618	6.51	2.9	4.9	1.7	1.4
5000	2.3	11.4	10.1	69	0.1	5.3	17.1	1873	1.7	31.7	16.1	1.8	0.3
5003	1.7	11.8	7.5	65	0.2	3.7	4.8	972	1.22	43. 9	19.4	0.9	0.2
5005	3	9.2	10.1	22 <.1		2.4	4.7	312	7.64	23.9	2.1	1.3	1.7
5022	1.4	16	6.5	20	0.1	5.5	10.3	668	2.24	1.8	0.8	1.2	0.1

5024	1.4	55.7	24.4	64	0.1	21.5	9.5	366	2.33	4.5	2.4	5.9	0.2
5025	1.5	3.7	4.8	9 <.1		1.5	0.7	32	0.43	1.4	0.6	0.6	0.2
RE 5025	1.3	3.8	4.8	10 <.1		1.4	0.7	31	0.43	2	0.7	0.5	0.1
5026	0.5	5.7	6.7	13 <.1		2.6	2.1	91	2.01	3	0.3	1.4	0.3
5034	24.1	22.3	6.2	61	0.4	4.3	7.1	312	2.95	31.4	159.9	1.7	0.3
5036	1.7	13.2	7.3	10	0.2	1.8	1.3	65	1.63	0.9	2.3	1.1	0.1
5046	2.8	9.5	7.9	19 <.1		2.9	5.9	145	1.52	1.2	3.3	1.3	0.2
5070	3.4	15.7	8	14 <.1		2.6	3.7	148	5.04	3.3	2.1	1.7	1.8
5071	1.6	21.4	6.8	37	0.1	5.1	15.3	1211	2.56	2.9	2.5	1.8	0.4
5072	2.3	29.3	6.1	12 <.1		1.6	2.8	199	3.63	0.9	0.8	1.6	0.7
5073	2.4	28.4	5.9	12 <.1		1.9	3	192	3.58	0.9	0.7	1.2	0.6
STANDAR	20.5	107.7	69.5	412	0.9	55.3	9.7	664	2.47	49.2	4.9	59.3	4.4

.

.

.

.

T FORMAT

1

~
1
1

0.98

4.58

2.61

1.8

2.61 0.96

2.23

2.27

2.83 0.75

3.81

7.46

2.5

4.03

3.99 2.32

1.19

0.48

1.23

0.88

0.5

0.55

0.33

0.91

4.33

2.15

1.47

2.21

2.11

2.56

2.61

2.68

2.61

3.27

2.86

1.01

0.83

Al %

1

2

3

1

3

2 1

2

4 .

1

3

3

1

2

1

5

1

1

1

1

5 5

6

5

9

10

10

41

10

ppm

Sr	Cd	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ba	Ti	В
ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	· ppi
•••	54 < 1	<.1		0.1	37	0.44	0.083	7	74	0.63	184	0.118
	16	0.1	0.1	0.4	129	0.21	0.062	6	33	1.63	24	0.36
	8	0.1	0.2	0.2	43	0.08	0.037	5	20	0.47	54	0.032
	13	0.1	0.1	0.2	33	0.24	0.035	4	5	0.17	44	0.016
	34	0.3	0.2	0.8	44	0.74	0.087	5	9	0.2	53	0.04
	5 < 1		0.7	0.1	40	0.07	0.028	6	5	0.27	25	0.003 <1
	20	0.2	0.2	0.3	53	0.35	0.067	5	9	0.27	42	0.054
	16	0.1	0.1	0.2	58	0.24	0.032	4	10	0.39	54	0.076
	32	0.3	0.2	0.3	49	0.64	0.053	5	8	0.17	62	0.04
	9 <.1		0.1	0.2	26	0.08	0.032	3	3	0.05	13	0.06 <1
	38	0.3	0.2	0.2	76	0.71	0.03	5	20	0.71	111	0.115
	39	0.4	0.5	0.5	202	1.13	0.084	20	65	0.41	77	0.075
	35	2.9	2.2	0.2	203	1.51	0.116	7	54	0.73	30	0.124
	20	0.6	1.3	0.2	196	0.66	0.15	11	76	0.62	17	0.101
	19	0.7	1.2	0.2	190	0.68	0.156	11	73	0.63	16	0.096
	8 <.1		0.2	0.2	144	0.08	0.014	3	15	0.14	9	0.35
	5 <.1		0.1	0.1	85	0.03	0.005	3	4	0.07	11	0.061
	12	0.1	0.7	0.1	98	0.1	0.019	3	4	0.07	9	0.225
	16	0.1	0.3	0.1	16	0.14	0.053	3	5	0.06	21	0.021
	6 < 1		0.1	0.1	52	0.05	0.006	4	3	0.04	13	0.051
	3 <.1		0 .1	0.1	29	0.02	0.009	3	2	0.02	8	0.075
	4 < 1		0.1	0.1	23	0.03	0.011	2	2	0.04	8	0.056
	4 < 1		0.1	0.1	71	0.02	0.006	2	8	0.04	8	0.061
	11 <.1		0.2	0.1	13	0.12	0.057	3	6	0.06	20	0.031
	4 <.1		0.1	0.1	34	0.03	0.03	6	8	0.3	42	0.016
	8	0.1	0.1	0.5	89	0.07	0.026	4	12	0.36	92	0.046
	20	0.1	0.3	0.2	82	0.35	0.08	3	25	0.45	14	0.191
	22	0.3	0.3	0.2	77	0.49	0.112	5	30	0.64	19	0.138
	20	0.2	0.2	0.3	81	0.31	0.053	4	20	0.71	27	0.194
	20	0.3	0.2	0.3	81	0.46	0.063	4	25	0.83	22	0.196
	17	0.1	0.3	0.1	82	0.26	0.06	4	22	0.78	27	0.21

76

110

113

117

86

33

0.1

0.4

0.4

0.4

5.2

0.1

0.2

0.2

0.2

4.6

0.1

17

46

59

46

74

50 <.1

0.2

0.9

1.3

0.8

6.5

<.1

0.26

1.51

1.69

1.62

0.96

0.45

0.054

0.108

0.122

0.113

0.082

0.077

21

54

65

53

199

163

4

6

6

6

7

13

0.86

1.1

1.14

1.07

1.06

0.56

28

23

27

21

394

176

0.21

0.156

0.145

0.168

0.125

0.11 <1

		• •	• •		4.00	0.000	F	53	1.05	24	0 143 -1		3 13
63	0.9	0.4	0.3	114	1.82	0.098	5	53	1.05	24 65	0.143 1	16	2.67
75	1.2	0.7	0.3	100	1.55	0.142	5	52	0.95	0.0	0.034 <1	10	2.07
22	0.1	0.1	0.3	52	0.44	0.042	5	10	0.33	127	0.004 <1		4 15
40	0.2	0.2	0.2	64	1.12	0.043	5	6	0.40	68	0.00 <1		1 42
13	0.1	0.1	0.2	52	0.10	0.042	5	21	0.3	67	0.062	7	1.92
37	0.7	0.3 <.1	• •	43	0.03	0.031	5	21	0.00	153	0.002	'	2.66
19	0.1	0.1	0.2	57	0.29	0.031	6	9	0.17	155	0.014 <1		2.68
19	0.1	0.1	0.2	58	0.31	0.031	0	14	0.10	162	0.010 11	10	2.33
33	0.4	0.1	0.1	58	0.59	0.027	4	14	0.49	102	0.033	5	2.00
20	0.3	0.1	0.2	55	0.4	0.03	4	10	0.41	109	0.033	8	2.27
19	0.3	0.1	0.2	68	0.39	0.037	5	12	0.41	70	0.036 <1	0	2.07
7 <.1		0.1	0.3	65	0.07	0.013	4	14	0.35	21	0.030 <1		2.04
18	0.3	0.1	0.4	84	0.29	0.021	5	10	0.38	236	0.035 <1		2.02
58	0.3	0.1	0.2	64	1.07	0.027	4	13	0.67	55	0.004 < 1	E	Z.9Z A AG
9	0.1	0.1	0.4	87	0.13	0.03	4	13	0.34	39	0.06	5	4.40
8 <.1		0.1	0.4	39	0.12	0.031	3	5	0.31	23	0.045	5	1.04
87	5	0.1	0.2	57	1.64	0.054	5	12	0.4	1/4	0.038 <1		4
12	0.1	0.2	0.1	46	0.17	0.039	3	6	0.33	30	0.063	2	0.9
4 <.1	<.1		0.2	28	0.05	0.016	3	5	0.15	13	0.027	2	0.75
10	0.1	0.1	0.1	63	0.16	0.037	5	10	0.14	9	0.063	3	4.08
7	0.2	0.1	0.1	74	0.1	0.039	5	12	0.73	48	0.009	1	1.82
14	0.3	0.2	0.2	105	0.38	0.043	14	17	0.34	82	0.037	1	4.38
18	0.4	0.9	2.6	106	0.41	0.069	3	98	0.66	16	0.06 <1		1.88
13	0.2	0.5	5.9	98	0.49	0.067	3	59	0.67	9	0.122	1	1.87
9	0.2	0.5	8.8	172	0.65	0.031	3	146	0.9	11	0.1 <1		2.23
8	0.1	0.1	0.2	28	0.12	0.069	3	6	0.06	8	0.075 <1		0.98
16	1.1	1.5	0.2	131	0.6	0.062	5	39	0.63	15	0.116	1	1.87
14	0.2	0.1	0.1	51	0.31	0.034	3	8	0.23	14	0.1 <1		1.26
10 <.1		0.1	0.1	52	0.19	0.015	2	10	0.24	9	0.131 <1		0.98
12	0.2	0.1	0.1	29	0.25	0.036	2	7	0.12	10	0.075 <1		0.69
4 < 1		0.1	0.1	31	0.06	0.007	3	3	0.07	4	0.05 <1		0.43
32	0.1	0.2	0.3	76	0.64	0.064	3	27	0.98	14	0.126	14	2
17	0.3	0.2	0.1	42	0.71	0.048	3	13	0.44	17	0.105 <1		1.43
18	0.0	0.2	0.2	50	0.74	0.058	3	15	0.52	18	0.102 <1		1.64
73	66	5	4.6	84	0.97	0.083	13	193	1.08	393	0.123	38	1
51 < 1	< 1	Ũ	01	36	0.47	0.082	7	62	0.63	189	0.12	6	0.95
19	04	0.2	0.3	55	0.81	0.063	4	16	0.6	17	0.114 <1		2.12
10	0.4	0.2	0.0	45	0.48	0.026	4	13	0.56	14	0.128 <1		1.53
14	0.4	0.1	0.2	72	0.40	0.023	4	14	0.81	102	0.091 <1		2.26
20	0.3	0.2	0.2	64	0.65	0.020	4	13	0.7	156	0.074 <1		2.28
29	0.4	0.2	0.2	64	1 28	0.045	5	11	0.31	76	0.044 <1		3.2
30	0.4	0.2	0.1	102	0.74	0.040	5	12	0.29	62	0.086 <1		2.2
28	0.4	0.2	0.2	102	0.74	0.045	5	11	0.20	61	0.09 <1		2.14
27	0.3	U.2	0.2	103	· U./	0.040			0.20	01	0.00		
21	0.1	0.2	0.1	47	0.39	0.033	3	9	0.39	40	0.129 <1		1.18
--------	------	-----	-----	-----	------	-------	----	-----	------	-----	----------	----	------
24	0.2	0.2	0.1	72	0.45	0.042	4	14	0.5	45	0.158 <1		1.89
21	0.2	0.3	0.2	77	0.4	0.019	3	13	0.63	62	0.196 <1		1.57
32	2.6	1.6	0.1	172	1.3	0.138	6	49	0.89	37	0.134	24	2.36
31	2.7	1.3	0.1	176	1.38	0.136	6	54	0.97	52	0.143	10	2.31
34	3.2	1.7	0.1	174	1.44	0.152	6	49	0.93	43	0.134	19	2.31
23	3	2.5	0.2	223	0.96	0.148	7	62	0.6	27	0.114	6	2.59
39	6.4	2.5	0.1	195	1.47	0.192	8	60	0.65	41	0.09	5	2.17
33	4.1	2.7	0.2	233	1.6	0.181	7	72	0.83	32	0.106	3	2.66
27	0.3	0.2	0.1	75	0.77	0.103	4	26	0.85	18	0.167 <1		1.92
15	0.2	0.3	0.2	106	0.24	0.083	4	20	0.33	13	0.189 <1		1.75
35	0.6	0.3	0.1	99	1.14	0.103	4	36	1.13	28	0.19	2	2.52
36	0.7	0.3	0.2	103	1.09	0.071	4	39	1.13	29	0.217	2	2.47
21	0.3	0.2	0.1	83	0.6	0.044	4	14	0.42	25	0.148 <1		1.85
27	0.2	0.4	0.2	103	0.96	0.078	6	35	0.84	16	0.169	2	3.04
40	0.8	0.4	0.2	127	1.1	0.098	7	48	1.14	24	0.171 <1		3.61
42	0.9	0.4	0.2	114	1.28	0.096	6	44	0.97	24	0.164	2	3.12
43	0.8	0.3	0.2	109	1.34	0.102	6	41	1.1	38	0.172	5	2.98
48	1.1	0.4	0.5	115	1.56	0.107	6	54	1.08	24	0.158 <1		3.04
44	0.9	0.3	0.2	97	1.27	0.091	5	35	0.95	40	0.152 <1		2.46
56	0.9	0.4	0.3	124	1.77	0.11	6	54	1.11	25	0.154	14	3.42
50	1.3	0.5	0.2	125	1.75	0.111	5	60	1.06	23	0.151	5	3.12
22	0.3	0.3	0.1	150	0.57	0.054	3	23	0.35	23	0.185	3	2.3
77	2.6	1.3	0.1	36	3.34	0.18	14	51	0.31	56	0.028 <1		5.12
33	0.3	0.2	0.1	168	1.06	0.046	4	28	0.44	29	0.188 <1		3.2
25	0.4	0.3	0.1	102	0.6	0.068	3	14	0.19	20	0.219 <1		0.99
14	0.1	0.3	0.1	157	0.24	0.041	2	23	0.19	14	0.31	1	1.04
76	6.5	5.3	4.5	87	0.96	0.081	13	177	1.06	395	0.124	42	1.02
47 <.1	<.1		0.1	34	0.46	0.075	7	68	0.58	177	0.111	3	0.9
24	1.8	0.6	0.5	48	0.48	0.091	5	9	0.28	103	0.008	1	2.27
24	1.9	0.7	0.3	46	0.56	0.065	5	8	0.28	104	0.007 <1		2.21
26	2.5	0.9	0.3	40	0.63	0.058	4	7	0.28	78	0.008	1	1.38
36	1.8	1.2	0.3	32	0.65	0.103	5	8	0.2	125	0.01	2	1.83
49	3.5	1	0.3	36	0.99	0.063	8	6	0.35	281	0.002	3	1.86
6	0.1	0.2	0.1	40	0.09	0.043	4	5	0.24	24	0.003 <1		1.3
38	0.9	0.2	0.2	42	0.87	0.055	5	10	0.25	46	0.048	2	2.13
55	0.7	0.1	0.2	43	1.43	0.071	6	13	0.22	53	0.045	5	3.26
6 <.1	••••	0.1	0.2	48	0.06	0.014	2	5	0.08	11	0.065 <1		0.59
16	0.3	0.1	0.2	52	0.23	0.032	5	5	0.22	50	0.024 <1		1.26
43	1	0.3	0.1	38	1.22	0.07	4	10	0.16	48	0.035	4	2.01
42	1	0.3	0.1	37	1.22	0.07	4	10	0.15	47	0.033	19	1.87
43	1.2	0.2	0.1	35	1.14	0.067	6	13	0.14	47	0.036	3	2.93
69	0.6	0.1	0.1	27	2.05	0.064	7	15	0.14	53	0.036	14	3.68

÷

.

49	07	0.3	0.1	38	1.47	0.063	9	20	0.13	41	0.051	2	5.35
43	12	0.5	0.1	53	1.32	0.074	11	35	0.17	66	0.058	2	5.45
22	0.2	0.3	0.1	16	0.44	0.075	1	6	0.14	12	0.037 <1		0.3
23	04	0.8	0.2	76	0.66	0.056	3	43	0.78	27	0.172	14	1.61
15	0.4	0.0	0.4	80	0.43	0.052	4	33	0.94	17	0.144 <1		3.09
18	0.3	0.2	0.1	12	0.28	0.07	5	6	0.08	31	0.013 <1		0.88
29	23	2.5	0.2	198	1.14	0.116	7	50	0.73	27	0.106	8	2.15
36	37	2.2	0.2	203	1.42	0.113	7	53	0.75	37	0.116	7	2.12
33	2.3	21	0.2	183	1.29	0.11	6	51	0.73	29	0.116	6	2.04
27	24	3	0.2	241	1.12	0.137	8	62	0.8	30	0.082	6	2.33
31	22	07	0.1	125	1.34	0.091	5	43	0.62	20	0.13	4	2
18	04	0.8	0.2	164	0.69	0.097	7	44	0.74	15	0.182	6	3.35
29	17	11	0.1	187	1.04	0.145	8	64	0.57	21	0.082	2	2.89
12	0.1	04	0.2	126	0.15	0.01	2	4	0.03	7	0.325	6	0.35
26	0.3	0.2	0.1	37	0.32	0.052	1	10	0.13	12	0.102	1	0.36
34	0.1	0.1	0.1	9	0.32	0.053	1	3	0.13	27	0.022	2	0.26
27	0.3	0.1 < 1		1	0.17	0.043	2	2	0.15	63	0.002	<u> </u>	0.06
22	0.0	03	0.1	79	0.24	0.029	1	5	0.08	12	0.269	1	0.24
17	0.1	0.1 < 1		21	0.22	0.065	2	5	0.09	19	0.079	1	0.75
32	0.2	0.1	0.1	7	0.2	0.071	1	6	0.15	24	0.022	12	0.24
74	6.7	5.2	4.5	86	1	0.081	13	199	1.07	400	0.124	41	1.02
51 < 1	<.1		0.1	36	0.44	0.082	6	67	0.61	175	0.114	1	0.88
42	0.2	0.2	0.1	2	0.17	0.053	1	2	0.28	17	0.002	4	0.09
12	0.1	0.2	0.2	41	0.11	0.024	2	3	0.05	10	0.094	3	0.3
19	0.1	0.1	0.1	16	0.21	0.058	2	3	0.08	19	0.032	6	0.45
9	0.1	0.2	0.5	164	0.08	0.046	4	11	0.1	14	0.174	3	1.5
7 < 1	••••	0.1	0.4	73	0.06	0.012	3	4	0.06	9	0.087	1	0.63
12	0.1	0.3	0.3	201	0.13	0.012	2	9	0.07	5	0.462	2	0.63
16	0.3	0.2	0.6	58	0.29	0.069	6	9	0.33	49	0.069	5	1.26
10	0.1	0.3	1	134	0.09	0.013	3	8	0.05	10	0.241	1	0.84
5 < 1	••••	0.1	0.3	45	0.04	0.012	3	4	0.04	8	0.129	1	0.67
7	0.1	0.1	0.1	27	0.06	0.02	2	3	0.04	10	0.047	3	0.35
10	0.1	0.2	0.1	44	0.04	0.017	2	4	0.04	10	0.095	4	0.34
9	0.1	0.1	0.2	102	0.09	0.042	2	10	0.28	12	0.133	3	1.02
15	0.1	0.1	0.3	31	0.1	0.026	2	4	0.12	10	0.087	3	0.47
9	0.2	0.1	0.5	52	0.1	0.039	3	5	0.08	15	0.06	2	0.91
6 <.1	<.1		2.1	27	0.04	0.015	2	2	0.03	11	0.053	1	0.7
6 < 1		0.1	0.4	26	0.04	0.021	2	3	0.04	9	0.053	2	0.6
25	0.2	0.1	0.7	149	0.56	0.039	6	12	0.5	31	0.257	3	2.93
52	0.8	0.6	0.1	42	1.71	0.067	6	12	0.15	44	0.048	9	3.61
68	1	0.8	0.1	32	3.4	0.081	5	24	0.25	26	0.033	20	2.39
18	0.1	0.2	0.4	182	0.38	0.037	3	20	0.16	14	0.242	2	3.95
18	0.3	0.3	0.1	62	0.3	0.084	3	13	0.29	17	0.119	3	1.44

0.3	0.2	0.2	76	0.84	0.074	5	40	0.87	17	0.149	1	2.57
0.1	0.2	0.1	31	0.33	0.034	2	6	0.08	19	0.071	2	0.31
0.2	0.2	0.1	29	0.34	0.035	2	5	0.09	19	0.068	2	0.31
0.1	0.3	0.1	77	0.15	0.042	2	9	0.14	9	0.191	3	0.63
0.4	0.4	0.2	85	1.39	0.095	7	14	0.22	90	0.028	2	4.1
0.1	0.1	0.2	39	0.2	0.055	3	5	0.12	30	0.014	1	1.51
0.1	0.1	0.3	58	0.14	0.036	3	8	0.23	33	0.063	4	1.58
	0.1	0.5	108	0.04	0.016	3	13	0.2	68	0.055	2	1.95
0.3	0.2	0.3	57	0.47	0.045	4	11	0.44	104	0.047	5	1.76
0.1	0.1	0.2	92	0.06	0.019	3	7	0.18	55	0.031	1	2.27
	0.1	0.2	92	0.06	0.017	3	7	0.17	53	0.031	1	2.08
6.6	5.5	4.5	86	0.97	0.081	12	196	1.06	378	0.122	40	0.99

Ι

Na	K	W	H	g	Sc	ТΙ	S		Ga	Se	
%	% 0.050	ppm	Pl	om or	ppm	ppm	%		ppm	ppm	
	0.052	0.45	0.1 ~.			1.0 8.6	0.3 5.05	0.00		0 < .0 14 < 5	
	0.017	0.04	0.2	0.02		0.0 1 9	0.1	0.00		14 5.0	24
	0.013	0.04	0.0	0.09		1.0 N.G	0.1	0.14		10	2.1
	0.022	0.04	0.2	0.09		15	0.1	0.11		10	1.1
	0.034	0.03	0.5	0.24		1.0	0.1	0.24		10 5 < 5	J. I
	0.059	0.03	0.1	0.03		1.1 5.1	0.1	0.00		10	26
	0.016	0.03 < 1	0.1	0.10		19<1	0.1	0.21		10	2.0 1 A
	0.028	0.03 < 1		0.07		2	0.1	0.07		Q	7 A
	0.031	0.02	01	0.07		0.8	0.1	0.10		7	09
	0.031	0.05	0.2	0.07		3.3	01	0.08		10	14
	0.02	0.03	0.3	0.15		7.2	0.1	0.12		15	22
	0.014	0.02	0.3	0.07		4.9	0.4	0.09		8	
	0.023	0.01	0.2	0.13		4.1	0.2	0.15		12	9.2
	0.024	0.01	0.2	0.13		4.2	0.2	0.17		12	9
	0.008	0.02 <.1		0.07		1.8	0.1	0.07		30	2
	0.009	0.03 <.1		0.03		0.8	0.1 <.05			15 <.5	
	0.015	0.03 <.1		0.08		0.8 <.1		0.06		7 < 5	
	0.022	0.02	0.3	0.21		0.7 <.1		0.26		2	2.5
	0.008	0.04 <.1		0.03	1	0.6 <.1	<.05			11 <.5	
	0.007	0.02 <.1		0.04		0.4 <.1	<.05			8 < 5	
	0.011	0.03 <.1		0.04		0.4 <.1	<.05			8 < 5	
	0.008	0.02 <.1		0.01		0.4 <.1	<.05			6 < 5	
	0.034	0.03	0.1	0.16		1.2 <.1		0.23		4	2.4
	0.009	0.03	0.5	0.08		3	0.1	0.08		8	2.8
	0.011	0.04	0.1	0.13		2.8	0.1 <.05			16	1.7
	0.021	0.02	0.1	0.12		2.2 <.1		0.11		9	2.1
	0.025	0.02	0.2	0.13		3.1 <.1		0.16		9	3.6
	0.021	0.03	0.1	0.11		3.3	0.1	0.1		11	2.1
	0.02	0.03	0.1	0.09		4 <.1	<.05			10	2
	0.016	0.02 <.1		0.14		3.3 <.1		0.12		12	2.2
	0.013	0.02 <.1		0.12		3.3 <.1		0.08		11	2
	0.029	0.03	0.2	0.07		4.7	0.1 <.05			9	4.1
	0.036	0.03	0.3	0.11	:	5.6	0.1	0.11		10	4.6
	0.028	0.02	0.2	0.07		5.2	0.1	0.06		10	3.9
	0.078	0.46	3.8	0.21		2.6	4.4	0.23		5	3.7
	0.05	0.46	0.1 <.	01		1.7	0.4 < 05			5 < 5	

0.036	0.03	0.3	0.11	4.9	0.1	0.12	9	4.1
0.024	0.02	0.3	0.08	3.7	0.2	0.1	8	2
0.025	0.04	0.2	0.11	1.6	0.1	0.12	15	1.6
0.03	0.04	0.4	0.12	3	0.1	0.1	11	2.5
0.034	0.04	0.2	0.15	1.5	0.1	0.09	10	1.8
0.025	0.05	1.3	0.02	2.6	0.3	0.34	4	2.1
0.035	0.03	0.2	0.19	2	0.2	0.13	16	1.8
0.034	0.03	0.2	0.22	2.1	0.2	0.12	16	2.1
0.072	0.05	1.1	0.08	2.5	0.1	0.13	9	1.5
0.038	0.04	0.6	0.1	2.2	0.1	0.08	9	1.4
0.017	0.03	0.6	0.14	2.5	0.1	0.12	10	23
0.011	0.03	0.2	0.09	2.4	0.1 <	05	14	17
0.024	0.04	1.5	0.07	2.3	0.2	01	10	1.3
0.013	0.04	0.3	0.09	3.2	0.1	0.12	10	1 1
0.02	0.03	1.5	0.18	5.1	0.1	0.11	12	29
0.023	0.04	0.1	0.11	1.1 < 1		0.08		1
0.041	0.03	0.4	0.21	2.7	0.2	0.2	10	25
0.042	0.05	0.1	0.09	1.7 < 1		0 1	7	0.9
0.063	0.03 <.1		0.06	0.8 < 1		0.07	, 6	0.7
0.072	0.02	0.2	0.18	3 < 1		0.13	14	2.5
0.03	0.06	0.4	0.14	3.1	0.1	0.15	11	17
0.075	0.02	0.9	0.12	5.5	0 1	0.3	10	3.5
0.117	0.04	4.1	0.29	4.2	0.1	0.22	8	22
0.056	0.03	10.1	0.32	2.8	0.1	0.21	Ğ	3
0.028	0.04	7.5	0.17	41	0.1	0.12	16	17
0.047	0.03	0.3	0.22	0.9 < 1	v . 1	0.21	7	،. ر
0.032	0.03	0.3	0.12	3.5	02	0.13	Ŕ	45
0.029	0.02	0.0	0.08	16	0.1	0.10	7	21
0.013	0.02 < 1	÷.,	0.04	15<1	Q , 1	0.06	, 8	<u> </u>
0.02	0.02	0.1	0.04	12	0.1	0.00	7	16
0.008	0.02 < 1	V . 1	0.00	07<1	V. 1 ~ 1	0.03 15	, e	0.0
0.05	0.05	36	0.00	3121	~ .(0.06	Q	1 1
0.02	0.02	0.0	0.00	18 < 1		0.00	6	1.1
0.016	0.02	0.2	0.07	18<1		0.11	7	1.0 1.9
0.081	0.02	37	0.07	2.01	A A	0.00	1 E	1.0
0.057	0.47	0.7	0.Z 11	2.J 1 Q		0.∡ I 15	U E / E	3.0
0.021	0.02	0.20	0.00	22	0.4 5.0	014	0 \.5 0	^ ^
0.013	0.02	0.1	0.03	21 < 1	0.1	0.04	3 7.	<i>L.L</i> 1 <i>A</i>
0.132	0.05	0.1	0.04	2.1 5.1	0.1	0.00	1 · ·	1.14
0.084	0.05 < 1	U . 1	0.05	2.3	0.1	0.05	0 9	1.3
0.153	0.03 < 1		0.00	24	0.1	0.07	0	1.0
0.100	0.03 < 1		0.12	4. 4 2.2	0.1	0.12	9 10	১.৬ র হ
0.183	0.04 < 1		0.12	2.2 2 1	0.1	0.13	12	4.0
0.100	0.04 ~1		V. I J	∠ . I	U . I	0.13	12	১.৬

0.127	J.04 <.1		0.07	1.7 <.1		0.1	9	2
0.113	0.03 <.1		0.12	2.2	0.1	0.1	11	3
0.056	0.03	0.1	0.04	2.2	0.1	0.06	10	1.1
0.057	0.03	0.3	0.04	5.2	0.2	0.09	9	6.1
0.067	0.03	0.3	0.03	5.6	0.2	0.08	9	5.3
0.076	0.03	0.4	0.04	5.5	0.2	0.16	9	7
0.106	0.02	0.4	0.11	7	0.3	0.08	10	8.8
0.053	0.03	0.5	0.05	6.7	0.4	0.17	8	9.4
0.064	0.03	0.6	0.05	7.4	0.3	0.14	10	10.4
0.078	0.02	0.1	0.05	3.3 <.1		0.08	8	1.5
0.125	0.03 <.1		0.2	3.1	0.1	0.15	17	3.7
0.037	0.03	0.2	0.05	4.1 <.1		0.07	10	2.3
0.051	0.03	0.1	0.05	4.4 <.1	<.	05	10	2 .1
0.084	0.03	0.1	0.09	2 <.1		0.09	10	2.4
0.047	0.02	0.2	0.05	4	0.1	0.09	10	3.3
0.047	0.03	0.2	0.07	5.3	0.1	0.06	10	3.3
0.058	0.02	0.2	0.08	4.7	0.1	0.1	9	4.1
0.13	0.03	0.2	0.07	4.3	0.1	0.07	9	3
0.113	0.03	0.3	0.09	5	0.1	0.07	9	4.3
0.114	0.03	0.2	0.08	3.7	0.1	0.07	9	3.1
0.09	0.03	0.2	0.12	5.3	0.1	0.12	9	4.1
0.084	0.03	0.3	0.08	5.3	0.1	0.07	9	4.2
0.089	0.03 <.1		0.19	4.6	0.1	0.16	13	1.2
0.251	0.03	0.1	0.2	2.7	0.2	0.23	5	6.7
0.097	0.03 <.1		0.19	6.2	0.1	0.13	12	1.2
0.153	0.03	0.1	0.25	2.8 <.1	-	0.2	9	1.6
0.057	0.03 <.1		0.16	2.5 <.1		0.09	16	0.7
0.076	0.44	3.9	0.2	2.6	4,3	0.2	5	3.8
0.049	0.44	0.1 < 0		1.6	0.3 < 0	05	5 < 5	
0.084	0.05	5	0.34	1.7	0.1	0.23	8	2.3
0.035	0.05	3	0.19	2	0.1	0.14	7	2.2
0.046	0.05	9.8	0.19	1.3	0.1	0.14	5	1.7
0.074	0.04	4.1	0.49	1.2	0.1	0.22	5	2.5
0.109	0.07	7.2	0.31	1.9	0.1	0.15	7	1.6
0.046	0.06	0.7	0.08	1.2	0.1	0.07	7	
0.08	0.03	0.1	0.00	17	0.1	0.17	7	52
0 122	0.04	0.1	0 19	2.5	0.1	0.23	6	79
0.024	0.03 < 1	v . 1	0.03	0.9 < 1	<	05	7	0.5
0.043	0.05 < 1		0.00	1.8	0.1	0.09	10	1.5
0.064	0.03	01	0.26	1.5	0.1	0.22	5	74
0.069	0.03	0.1	0.26	1.3	0.1	0.2	5	73
0.044	0.03	0.1	0.24	2	0.1	0.18	Â	5.6
0.105	0.02	0.1	0.2	28	0.1	0.2	5	76
0.100	0.02	V . I	U.		V. 1	v. 4		1.0

0.067	0.02	0.2	0.2	3.2	0.1	0.16	6	6.3
0.025	0.02	0.1	0.15	3.6	0.1	0.15	8	4.8
0.199	0.05	0.4	0.13	0.7 <.1		0.22	1	1.9
0.056	0.03	0.6	0.06	3.3 <.1		0.12	7	1.5
0.029	0.03	1.2	0.04	4.1 <.1		0.07	10	1.8
0.08	0.02	0.5	0.23	0.7 <.1		0.31	3	2.8
0.017	0.02	0.2	0.1	4.7	0.4	0.1	7	5.9
0.014	0.02	0.2	0.1	4.5	0.4	0.15	7	7.5
0.012	0.02	0.2	0.09	4.3	0.3	0.12	7	6
0.011	0.03	0.4	0.09	5	0.5	0.11	7	6.9
0.013	0.01	0.2	0.09	2.9	0.2	0.12	8	5
0.018	0.02	0.1	0.08	5.5	0.1	0.12	13	2.9
0.021	0.02	0.2	0.14	3.4	0.3	0.11	10	6
0.012	0.02 < 1		0.07	1<1	<	05	9 < 5	-
0.024	0.04	0.1	0.16	0.8 < 1		0.14	3	0.9
0.029	0.04	0.1	0.16	04<1		0.16	1	0.8
0.038	0.04 < 1	V ···	0.13	01<1		0 13 <1	•	0.7
0.016	0.02 < 1		0.10	0.6 < 1		0.10 31	5	0.7
0.022	0.02 3.1	0.1	0.27	0.0 < 1		0.19	2	11
0.108	0.05	0.1	0.24	0.5 < 1		0.18	<u>د</u> 1	1.1
0.100	0.00	39	0.27	2.6	4 4	0.10	5	30
0.070	0.40	0.5	0.15	17	03<	05	5 < 5	0.9
0.000	0.04 < 1	0.1 5.01	0.23	1.7 1 2 < 1	0.5	0.22 <1	JJ	2
0.004	0.07 < 1		0.20	0.21		0.22 >1	3 - 5	۷
0.013	0.03 \.1	0.1	0.03	0.0 5.1		0.09	0 N.U 0	4
0.001	0.04	V. I	0.17	0.0 5.1	0.1	0.10	ער 28	10
0.010	0.03 < 1		0.10	1.4	0.1	0.09	40 0 < F	1.9
0.012	0.03 \.1		0.07	0.0 ~ 1		05	5 N.U 10 2 F	
0.012	0.02 \.1	0.1	0.00	0.9 5.1	 	0.10	⊊.> ∠۱ ه	4 7
0.020	0.00	0.1	0.3	4.1	U . 1	0.19	0	1.7
0.011	0.03 <.1		0.07	1.1 5.3	<	UQ 05	10 5.0	
0.012	0.04 <.1		0.05	0.5 <.1	<.	00	12 <.5	
0.021	0.03 < 1		0.08	0.5 < 1	<.	05	3 <.5	o -
0.026	0.02 < 1		0.05	0.5 <.1	<.	05	4	0.5
0.012	0.03 <.1		0.16	1.5 <.1		0.09	9	2
0.015	0.03 <.1	• •	0.12	0.9 <.1	• •	0.1	6	0.5
0.013	0.04	0.1	0.17	1.2	0.1	0.12	9	1.3
0.011	0.04 <.1		0.07	0.5 <.1	<.	05	8 <.5	<u> </u>
0.014	0.03 <.1	• •	0.1	0.5 <.1	.>	05	7	0.5
0.015	0.03	0.1	0.16	3	0.1	0.14	19	2.7
0.019	0.02	0.1	0.22	2.6	0.1	0.15	5	9.8
0.035	0.03	0.2	0.2	1.8	0.1	0.29	4	19
0.013	0.02 <.1		0.17	3.4	0.1	0.1	24	3.2
0.028	0.03	0.1	0.2	1.3 <.1		0.11	8	2.4

0.022	0.02	0.2	0.05	3.7 <.1		0.06	9	2.6	
0.02	0.02	0.1	0.09	0.6 <.1		0.09	3	1.4	
0.019	0.02	0.1	0.09	0.6 <.1		0.07	3	1.3	
0.013	0.02	0.1	0.1	1.1 <.1		0.09	8	1.1	
0.015	0.03	3.9	0.18	1.7	0.1	0.14	9	3.1	
0.012	0.03	0.2	0.13	1	0.1	0.09	9	1.5	
0.016	0.03	0.1	0.11	1.2	0.1	0.07	13	2	
0.011	0.03	0.1	0.08	2.2	0.1 <.0	5	18	1.3	
0.017	0.04	0.1	0.11	2	0.1	0.12	8	2	
0.009	0.04	0.1	0.05	1.9	0.1 <.0	5	13	0.8	
0.009	0.04	0.1	0.04	1.8	0.1 <.0	5	13	0.7	
0.08	0.45	4	0.19	2.5	4.3	0.22	5	3.7	

· .

2	05-SEP-06 11:35:09AM	9	299591	5848492	41 m
3	05-SEP-06 11:48:15AM	9	299508	5848430	-14 m
4	05-SEP-06 12:25:16PM	9	299512	5848483	42 m
5	05-SEP-06 1:46:33PM	9	299458	5848493	70 m
6	06-SEP-06 2:38:33PM	9	300017	5846712	235 m
7	09-SEP-06 9:39:17AM	9	297882	5850578	34 m
8	09-SEP-06 12:51:26PM	9	297661	5850311	
10	05-SEP-06 12:12:51PM	9	297961	5850625	4 m
11	06-SEP-06 3:08:55PM	9	300179	5846896	
15	12-SEP-06 12:34:16PM	9	299267	5848852	29 m
1006	Pacific Ocean	9	300497	5847323	
1007	Pacific Ocean	9	300487	5847249	
1008	Pacific Ocean	9	300458	5847159	
1009	Pacific Ocean	9	300289	5847025	
1010	Pacific Ocean	9	300107	5846846	
1011	Pacific Ocean	9	300026	5846868	
1012		9	297968	5850633	
1013		9	297960	5850610	
1014		g	297909	5850619	
1015		g	297882	5850578	
1016		ğ	297780	5850425	
1017		a	297748	5850416	
1018		ò	297722	5850358	
1021	09-SEP-06 12:44:38PM	o a	207655	5850308	127 m
1023	00 021 00 12.44.001 11	a	207682	5850399	
1024		å	297697	5850417	
1025		ă	297714	5850440	
1026		a	207752	5850463	
1027		q	297763	5850463	
1028		o o	297795	5850481	
1029	09-SEP-06 3:10:37PM	٥ ٥	297806	5850494	44 m
1035	10-SEP-06 1:17:16PM	a	298242	5850251	12 m
1036	10-SEP-06 1:43:27PM	Q Q	298197	5850216	22 m
1037	10-SEP-06 2:01:27PM	a	298182	5850190	29 m
1038	10-SEP-06 2:16:52PM	9	298144	5850150	62 m
1039	10-SEP-06 2:31:29PM	q	298225	5850016	32 m
1041	10-SEP-06 3:28:42PM	9	298229	5850199	14 m
1042	10-SEP-06 3:43:04PM	ů.	298218	5850193	17 m
1043	11-SEP-06 1:16:54PM	ġ	298199	5850107	42 m
1044	11-SEP-06 1:37:04PM	å	298178	5850104	71 m
1046	11-SEP-06 2:15:47PM	à	298109	5850031	58 m
1040	11-SEP-06 2:25:52PM	a	298111	5849972	171 m
1048	11-SEP-06 2:53:48PM	ğ	298101	5849908	168 m
1040	11_SEP_06 3:06:27PM	٥ ٥	298106	5849846	168 m
1050	12_SEP_06 0.37.08AM	<u>a</u>	298277	5850222	4 m
1051	12-SEP-06 9:52:59AM	0	298330	5850173	20 m
1052	12-SEP-06 10:04:21AM	a	208360	5850174	20 m
1052	12-SEP-06 10:26:37AM	a	298302	5850120	31 m
1054	JE: JU 10.20.077.04	ğ	298391	5850082	
		۲		1-0-0005	

•

1055 12-SEP-06 11:11:08AM	9	298368	5850010	31 m
1056 12-SEP-06 11:22:13AM	9	298344	5849953	31 m
1058 12-SEP-06 11:59:49AM	9	298359	5849924	66 m
1059 12-SEP-06 12:20:15PM	9	298333	5849882	118 m
1060 12-SEP-06 12:39:50PM	9	298272	5849873	130 m
1061 15-SEP-06 9:56:54AM	9	298621	5845691	3 m
1062 15-SEP-06 10:11:18AM	9	298724	5845719	53 m
1063 15-SEP-06 10:25:14AM	9	298801	5845674	86 m
1064 15-SEP-06 10:41:11AM	9	298929	5845663	118 m
1065 15-SEP-06 10:53:28AM	9	298963	5845640	118 m
1067 15-SEP-06 11:37:51AM	9	299095	5845355	118 m
1068 16-SEP-06 10:56:08AM	9	297802	5850556	15 m
1070 16-SEP-06 11:23:58AM	9	297784	5850598	56 m
1071 16-SEP-06 11:32:14AM	9	297763	5850623	52 m
1072 16-SEP-06 11:37:15AM	9	297753	5850623	59 m
1073 16-SEP-06 11:50:03AM	9	297726	5850652	70 m
1074 16-SEP-06 12:08:45PM	9	297688	5850684	55 m
1075 16-SEP-06 12:14:59PM	ġ	297658	5850713	66 m
1078 16-SEP-06 1:12:32PM	9	297865	5850526	64 m
1079 16-SEP-06 1:22:24PM	9	297898	5850494	59 m
1080 16-SEP-06 1/30/08PM	9	297944	5850468	55 m
1081 16-SEP-06 1:45:40PM	ă	207002	5850436	55 m
2001 Pacific Ocean	ă	301214	5846333	00 111
2004	ă	300976	5845005	
2005	ă	300968	5845791	
2017	ă	300471	5844646	
2018	ă	300553	5844638	
2020	a	207000	5850616	
2021	a i	297869	5850567	
2022	à	207825	5850530	
2023	à	207803	5850480	
2024	а а	297003	5850442	
2025	a	297788	5850413	
2026	å	297781	5850377	
2027	à	207770	5850315	
2028	3 0	207758	5851138	
2020	о 0	207731	5851076	
2030	0	297710	5851065	
2031	3	297714	5851050	
2032	å	207676	5851038	
2033	a	297656	5850068	
2034	9 0	297050	5950900	
2035	9 0	297669	58500351	
2036	0	207662	5850045	
2000	9	207669	585004E	
2065 2066	9	200607	5845020	
2003 2000	9	230071	5045030	
2070 2071	9	200604	5945004	
2072 2073	9	200506	0040200	
	3	123003 <u>90</u>	JO43/ 191	

ſ

	2074	9	298705	5846379	
2075 2076		9	298687	5846308	
2077 2078		9	298741	5846263	
	2079	9	298707	5846722	
2080 2081		9	298694	5846658	
	2082 Pacific Ocean	9	298706	5844855	
2083 2084		9	298747	5844864	
2085 2086		9	298793	5844879	
	2087	9	298827	5844846	
	2088	9	302806	5844470	
2089 2090		9	302681	5844431	
	2091	9	302681	5844393	
	2092	9	302684	5844348	
	2093	9	302691	5844309	
	2094	9	302699	5844266	
	2095	9	302700	5844229	
	2096	9	302688	5844190	
	2097	9	302684	5844203	
	2098	9	298605	5845702	
	2099	9	298700	5845713	
	2100	9	298911	5845652	
	2101	9	298954	5845639	
	2102	9	298984	5845621	
	2103	9	298682	5849669	
	2104	9	298671	5849662	
	2105	9	298650	5849662	
	2106	9	298640	5849630	
	2107	9	298638	5849594	
	2108	9	298639	5849563	
	2109	9	298647	5849538	
	211	9	297818	5850529	
	2110	9	298694	5849503	
	2111	9	298674	5849480	
	2112	9	298705	5849459	
	2113	9	298717	5849437	
	2114	9	298725	5849391	
	2115	9	298758	5849379	
	2116	9	298770	5849387	
	212	9	297774	5850301	
	213	9	297677	5851038	
	214	9	297663	5850946	
	3001	9	299586	5848445	
	3002	9	299568	5848403	
	3004	9	299577	5848348	
	3005 05-SEP-06 3:11:37PM	9	299770	5848399	113 m
3005 N/S		9	299771	5848399	
	3008	9	299658	5848274	
	3009	9	299651	5848214	
	3010 05-SEP-06 4:11:07PM	9	299637	5848165	66 m

	3011 Pacific Ocean	la	200607	58/8152	1
	3012	0	200578	59/8135	
	3013 06-SEP-06 12:37:01PM	å	300564	5847210	17 m
	3015 06-SEP-06 12:53:28PM	Ĭ.	300514	5847103	31 m
	3016 06-SEP-06 1:04:50PM	ă	300429	5847186	42 m
	3019 06-SEP-06 1:57:30PM	ă	300314	5847089	54 m
	3020 06-SEP-06 2:05:28PM	Ğ	300257	5847008	137 m
	3021 06-SEP-06 2:35:04PM	ā	300194	5846895	128 m
	3022	ğ	300169	5846779	
	3023 06-SEP-06 3:19:06PM	9	300115	5846615	137 m
	3027 06-SEP-06 4:18:15PM	9	299908	5846709	302 m
	3031	9	300962	5846020	
	3043	9	300737	5845342	
	3060 12-SEP-06 12:10:10PM	9	299340	5849022	16 m
	3062 12-SEP-06 12:34:31PM	9	299272	5848880	36 m
	3063 12-SEP-06 12:40:55PM	9	299278	5848843	52 m
	3065 12-SEP-06 1:04:35PM	9	299213	5848726	72 m
	3067 12-SEP-06 1:24:05PM	9	299127	5848633	87 m
	3068 12-SEP-06 1:31:35PM	9	299125	5848610	129 m
	3069 13-SEP-06 11:45:40AM	9	298664	5844923	9 m
	3070 13-SEP-06 12:12:29PM	9	298700	5844769	20 m
	3071 13-SEP-06 12:19:53PM	9	298731	5844644	32 m
	3072 14-SEP-06 12:26:22PM	9	302801	5844446	6 m
	3073 14-SEP-06 12:50:45PM	9	302809	5844298	-3 m
	3074 14-SEP-06 1:01:35PM	9	302815	5844179	20 m
	3075 14-SEP-06 3:30:33PM	9	297971	5850572	32 m
	3076 15-SEP-06 12:04:04PM	9	298683	5845718	43 m
	3077 15-SEP-06 12:18:35PM	9	298756	5845723	55 m
	3078 15-SEP-06 12:33:03PM	9	298876	5845678	130 m
	3079 15-SEP-06 12:52:35PM	9	298985	5845676	142 m
	3080 15-SEP-06 1:09:22PM	9	299050	5845541	145 m
	3081 15-SEP-06 1:20:34PM	9	299023	5845468	157 m
	3082 15-SEP-06 1:29:46PM	9	299043	5845325	169 m
3083 SS	16-SEP-06 1:18:22PM	9	299308	5848864	79 m
3084 SS	16-SEP-06 1:22:10PM	9	299340	5848843	84 m
3085 SS	16-SEP-06 1:29:40PM	9	299376	5848832	101 m
3086 SS	16-SEP-06 1:41:42PM	9	299405	5848805	95 m
3087 SS	16-SEP-06 1:44:47PM	9	299368	5848748	72 m
3088 SS	16-SEP-06 1:55:29PM	9	299398	5848723	94 m
3089 SS	16-SEP-06 2:08:13PM	9	299394	5848690	93 m
3091 SS	16-SEP-06 2:28:40PM	9	299426	5848627	106 m
3092 SS	16-SEP-06 2:33:23PM	9	299398	5848579	106 m
3093 SS	16-SEP-06 2:40:43PM	9	299438	5848533	127 m
	4009	9	299803	5848074	
	4013 06-SEP-06 1:52:38PM	9	299679	5847975	0 m
	4015 06-SEP-06 2:39:59PM	9	299714	5848004	115 m
	4017 06-SEP-06 3:22:09PM	9	299612	5847949	138 m
	4019 06-SEP-06 4:37:35PM	9	299529	5847874	149 m
	4020 07-SEP-06 12:12:05PM	9	301220	5846383	22 m

4025 07-SEP-06 2:47:45PM	9	300881	5845643	22 m
4029	9	300948	5845677	
4031	9	300879	5845544	
4033	9	300778	5845361	
4034	9	300776	5845359	
4035	9	297939	5850611	
4036 09-SEP-06 11:53:10AM	9	297868	5850553	46 m
4037 09-SEP-06 12:17:09PM	9	297806	5850488	48 m
4039	9	297730	5850209	
4041	9	297622	5850069	
4053 12-SEP-06 12:15:44PM	9	299328	5849015	4 m
4056 12-SEP-06 1:13:14PM	9	299169	5848679	80 m
4057 12-SEP-06 1:29:47PM	9	299224	5848673	216 m
4060 13-SEP-06 1:04:22PM	9	298774	5844452	233 m
4061	9	298736	5844595	
4064 15-SEP-06 12:11:29PM	9	298600	5845599	244 m
4066 15-SEP-06 12:49:55PM	9	298835	5845853	121 m
4067 15-SEP-06 1:30:07PM	9	298983	5845753	
4068 15-SEP-06 1:50:55PM	9	299057	5845779	159 m
4201 16-SEP-06 12:49:33PM	9	299099	5849532	170 m
4202 16-SEP-06 1:20:39PM	9	298961	5849427	61 m
4205 16-SEP-06 1:49:21PM	9	298963	5849346	59 m
4206 16-SEP-06 1:54:28PM	9	298986	5849335	65 m
4207 16-SEP-06 2:04:23PM	9	299000	5849299	59 m
4210 16-SEP-06 2:35:37PM	9	299031	5849197	76 m
4211 16-SEP-06 2:43:55PM	9	299056	5849172	99 m
4212 16-SEP-06 2:51:19PM	9	299054	5849139	101 m
5001	9	299491	5848470	
5002, 5003, 5004	9	299469	5848485	
5005, 5006	9	299411	5848442	
5007	9	300496	5847315	
5008	9	300410	5847155	
5009	9	300282	5847153	
5010	9	300271	5847150	
5011	9	300223	5847164	
5012	9	300212	5847147	
5013 Pacific Ocean	9	300196	5847107	
5014 Pacific Ocean	9	300150	5847090	
5015 Pacific Ocean	9	300278	5847226	
5016 Pacific Ocean	9	301108	5846236	
5017 Pacific Ocean	თ	301096	5846086	
5018	თ	301097	5846039	
5019 Pacific Ocean	9	301139	5846000	
5020 Pacific Ocean	9	301183	5845938	
5021 Pacific Ocean	9	301072	5845859	
5022 Pacific Ocean	9	301037	5845885	
5024	9	300960	5845626	
5025	9	300987	5845655	
5026	9	300832	5845382	

(

, -

	5027		9	300773	5845357	1
	5028		9	300734	5845324	
	5029		9	300820	5845374	
	5031		9	300177	5846769	
	5032		9	297870	5850593	
	5033		9	297755	5850464	
	5034		9	297740	5850398	
	5035		9	297721	5850148	
	5036		9	297635	5850062	
	5037		9	297695	5850062	
	5044		9	298225	5850188	
	5045		9	298225	5850188	
	5046		9	298189	5850142	
	5047		9	298151	5850091	
	5048		9	298151	5850091	
	5049		9	298109	5850032	
	5050		9	298304	5850226	
	5051		9	298361	5850163	
	5052		9	298394	5850149	
	5053		9	298379	5850019	
	5054		9	298379	5850019	
	5055		9	298359	5849919	
	5056		9	298250	5849854	
	5057		9	298375	5850168	
	5060		9	298660	5844958	
	5061		9	298733	5844868	
5062 5063			Ğ	298722	5844615	
	5064		9	298727	5844721	
	5065		9	300532	5847183	
	5066		Ğ	300424	5847164	
5067 4061			Ğ	300224	5846194	
	5068		ă	302673	5844424	
	5069		ă	302644	5844282	
	5070		ă	207046	5850348	
	5071		Ğ	297970	5850243	
	5072		ă	207840	5850184	
	5073		ă	207830	5850070	
2	0010	05-SEP-06 4:36:10PM	å	200323	5848301	246 m
· 22		00-0E1 00 4:00.101 M	ă	200063	5845747	240 111
Bear Creek			a	208288	5850280	
Bear Valley		Pacific Ocean	å	290200	5846482	
Beginners C	rook	Pacific Ocean	9	200967	5949402	
	CCN	Facilic Ocean	3	299007	5950624	
Comp Creek			9	291902	5950607	
Dunkski Cro	- -		9	29/9/2	5030007	
dwavne1	GR		3	230333	5950104	
dwayne?			3	230323	5850060	
dwaynez			3	230300	5940722	
dwowco4			۲.	290//3	5049/33	
uwayne4			Э	299139	0040300	

 \mathcal{C}

_-

dwayne5		9	300278	5846709
dwayne6		9	300863	5843342
dwayne7		9	300863	5859733
EOR Creek		9	302791	5844502
Halfway Creek	Pacific Ocean	9	299448	5849123
Jellyfish Creek		9	298531	5845093
Krazy Kreek	Pacific Ocean	9	300678	5847338
Sidecar Creek		9	302670	5844508

· ____

~···

201 202 203 204 205 206 208 209 210		3028 3029 3030 3031 2005 15m up from 2007 2009 uphill from 2011 30m uphill from 2014
211	0207774 5950204	15m up from 2022
212	0207677 5951029	
213	0291011 - 3031030	
210	0297663 - 5850946	
1000	0207000 - 0000940	Got off Boat, start of stream
1001		20 ft wide stream
1002		two streams
1003		Fric has
1004		No Sample
1006	0300497 - 5847323	No oumpie
1007	0300458 - 5847249	
1008	0300458 - 5847159	
1009	0300289 - 5847025	
1010	0300107 - 5846846	
1011	0300025 - 5846868	
1012	029796 - 5850647	
1013	0297960 - 5850610	
1014	0297909 - 5850619	
1015	0297882 - 5850578	
1016	0297780 - 5850426	
1017	0297748 - 5850416	
1018	0297722 - 5850358	
1019	0702353 - 5850219	
1020		No Sample, 50m d/s of 1019
1021	0297658 - 5850309	
1022		No Sample or signal
1023		No Signal
1024	0297697 - 5850417	
1025	0297714 - 5850440	
1026	0297752 - 5850463	
1027	0297763 - 5850463	
1028	0297795 - 5850481	
1029	0297806 - 5850499	
1058	0298359 - 5849919	
2001	0301214 - 5846333	
2001		
2003	0000070 50 (-00-	at 3030
2004	0300976 - 5845995	
2005		10m up from 3032
2005		10m up from 3032
2007		Tum down from 3035, Silt Sample
2008		tum down from 3035

· ··--- ·

2009		25 meters up from 3038
2010		25 meters up from 3038
2011		25 meters up from 3038, silt sample
2012		100m up from 3043
2013		100m up from 3045
2014		100m up from 2013
2015		100m up from 2014
2016		100m up from 2015
2017	0300471 - 5844646	
2018	0300553 - 5844638	
2020	0297900 - 5850616	
2021	0297869 -5850567	
2022	0297825 - 5850539	
2023	0297803 - 5850489	
2024	0297783 - 5850442	
2025	0297788 - 5850413	
2026	0297781 - 5850377	
2027	0297779 - 5850315	
2028	0297758 - 5851138	
2029	0297731 - 5851076	
2030	0297710 - 5851065	
2031	0297714 - 5851050	
2032	0297676 - 5851038	
2033	0297656 - 5850968	
2034	0297655 - 5850931	
2035	0297668 - 5850935	
2036	0297662 - 5850945	
2037	0297668 - 5850935	
2038	0701230 - 5851756	
2039		50m up from 2038
2040		50m up from 2038
2041		50m up from 2038
2042		15m down from 2043
2043	0701300 - 5851692	
2044		50m up from 2043
2045	0701355 - 5851637	
2046	0701370 - 5851605	
2047	0701372 - 5851608	
2048	0701347 - 5851607	
2049	0/014/3 - 5851554	
2050	0701473 - 5851504	
2051	0701540 - 5851453	50 f 0054
2052	0704504 5054040	50m up from 2051
2053	0701521 - 5851343	
2004	0701000 - 5851430	
2000	0701041 - 5851380	
2000	0704540 5054450	oun up nom 2000
2007	0700749 5054000	
2008	0700744 5051030	
2009	0700756 5050007	
2000	0700756 50500997	
2061	0700756 - 5850997	

2062	0700752 - 5850985	
2062	0700752 - 5850985	
2064	0700752 - 5850985	
2004	0208627 - 5845032	
2000	0290027 - 5045032	
2000	0290021 - 0040002	
2007	0290027 - 3043032	
2068	0296627 - 5645032	
2069	0298627 - 5845032	
2070	0298624 - 5845285	
2071	0298624 - 5845285	
2072	0298598 - 5845719	
2073	0298598 - 5845719	
2074	0298705 - 5846379	
2075	0298705 - 5846379	
2076	0298705 - 5846379	
2077	0298705 - 5846379	
2078	0298705 - 5846379	
2079	0298707 - 5846722	
2080	0298707 - 5846722	
2081	0298707 - 5846722	
2082	0298706 - 5844855	
2083	0298747 - 5844864	
2084	0298747 - 5844864	
2085	0298793 - 5844879	
2086	0200700 - 0044070	
2000	0298733 - 5844846	
2007	0290027 - 0044040	
2000	0302606 - 5644470	
2089	0302081 - 5844431	
2090	0302681 - 5844431	
2091		
2092		
2093		
2094		
2096	0302688 - 5844190	
2097	0302684 - 5844203	
2098		10m above poc of creek
2099		5m above 2099
2100	0298911 - 5845652	
2101		at 1065
2102	0298984 - 5845621	
2103	0298682 - 5849669	
2104	0298671 - 5849662	
2105	0298650 - 5849662	
2106	0298640 - 5849630	
2107	0298638 - 5849594	
2108	0298639 - 5849563	
2100	0208647 - 5849538	
2110	0208604 - 5840503	
2110	0200004 - 0040000	
2111	0230014 - 3043400 0309705 - 5040450	
2112	0290103 - 3048438	25m from 2112
2113	0000705 5040004	ZƏTH HQITLZ I IZ
2114	0298725 - 5849391	

(

1

_

2115	0298758 - 5849379	
2116	0298770 - 5849387	
3001	0299586 - 5848445	
3002	0299568 - 5848403	
3003		
3004	0299577 - 5848348	
3005	0200011 - 0040040	
2006	0200771 5949200	
3000	0299771-5040599	
3007	0000050 5040074	
3008	0299008 - 0848274	
3009	0299651 - 5848214	
3010		
3011	0299607 - 5848152	
3012	0299578 - 5848135	
3013	0300564 - 5847210	
3014		
3015	0300513 - 5847193	
3016	0300429 - 5847186	
3017		
3018		
3019	0300314 - 5847089	
3020	0300257 - 5847008	
3021		
3022		20 meters away from waypoint 5031
3022	0300115 . 5846615	20 meters away nom waypoint 500 r
2025	0300113 - 3040013	
3025		
3020	000000 5040700	
3027	0299908 - 5846709	
3028		
3028		
3029		
3030		
3031	0300962 - 5846020	
3032		
3033		
3034		
3035		
3036		
3036		
3037		
3038		
3039		
3040		
3041		
3042		
3043		
3044		
3045		Seek K D. Gos
2046		Jeer N.D. Ops
2040		Mouth of Trib long need
3047	0704044 5950040	mouth of THD long pond
3040	0701014 - 3852010	

3050	0701804 - 5831767	
3051	0700050 5951099	
3052	0700939 - 3631266	
3053	0701029 - 5851222	
3054	0701008 - 5851197	
3055		
3056		with 3055
3057	0701124 - 5851067	
3060	0299340 - 5849022	
3061		
3062	0299272 - 5848880	
3063	0299278 - 5848843	
3064		
3065	0299213 - 5848726	
3066		
3067	0299127 - 5848633	
3068	0299126 - 5848610	
3069	0298665 - 5844923	
3070	0298700 - 5844769	-
3071	0298731 - 5844644	
3073	0302809 - 5844298	
3074	0302815 - 5844179	
3075	0297971 - 5850572	
3076	0298683 - 5845718	
3077	0298756 - 5845722	
3078	0298876 - 5845678	
3079	0208085 - 5845676	
3080	0290900 - 3040070	
2021		
2001		
3002	0000000 5949964	
3083	0299308 - 5646664	
3084	0299340 - 5848843	
3085	0299376 - 5848832	
3086	0299404 - 5848805	
3087	0299369 - 5848748	
3088	0299396 - 5848723	
3089	0299394 - 5848690	
3090		
3091	0299427 - 5848627	
3092	0299398 - 5848579	
3093	0299437 - 5848533	
4000		grandorite meeting intursive?
4001		green quartz
4002	0299505 - 5848456	green quartz
4003		granite
4004		green quartz
4005		sedimentary?
4006		green quartz
4007		green with quartz and feldspar
4008	52 44.858, 131 58.392	granite, quartz
4009	0299803 - 5848074	Starting point
4010		areen quartz granite

(

4011			green
4012			salt and pepper visible metalics
4013		0299670 - 5847975	
4014			rusty pyrite
4015	wp 6		mineral bearing
4016			granite
4017	wp 7		green guartz with tormaline
4018	•		granite, rusty minerals
4019	8 gw		granite
4020	019	0301108 - 5846237	.
4020	wp1		green quartz, pyrite present
4021	•		green quartz
4022			green granite
4023			green granite
4024			aréen
4025			white quartz
4026			granite green
4027			green
4028			granite with mineral
4029	025		200 meters downhill left 5023 Erics sample
4029			quartz epidote
4030			white chalky (gamet2)
4031		0300879 - 5845544	white ondaty (gamer)
4031			green guartz feldsnar - tag on tree reads #29553
4032			granite with mineral
4033	030	0300778 - 5845361	granice wan mineral
4033			granite with beavy mineral
4034	030	0300778 - 5845361	granice with heavy mineral
4034	000	0000110-0040001	areen quartz mineral
4035		0207030 - 5850611	green quarz mineral
4035		0207000 0000011	aranite
4036			granite mineral hearing
4037			granite minicial bearing
4038			granite granite small mineral
4000		0207730 - 5850200	granite Smail mineral
4030		0237730 - 3030203	grapite
4033			grante grant minoral
4040	037	0207635 5850062	green quartz minerar
4041	007	0291000 - 0000002	arapita minaral
4047			grante mineral
4042			green quartz mineral
4043			
4044			
4040			
4040			green quartz, malachite present
4042 A048			green quarz pyrite
4040			exitusive looking, lots of pyrite
4030			
4052			granite
4002			granne
4000			green quanz
4004			granite
4000			

(

C	4056			granite
	4057			green sandstoney
	4058			dark has unusual luster
	4059	53	0298733 - 5844868	
	4059			altered granitic veins
	4060			rusty mineral bearing
	4061	54	0298722 - 5844615	
	4061	57	0300224 - 5846194	
	4061			dark rock mineral bearing
	4062			granite
	4063			chalky white stone
	4064			granite
	4065			green extrusive
	4066			granite with chalky
	4067			granite
	4068			granite
	4202			grey clay
	4203			dark soil
	4204			black soil
	4205			grey clay
	4206			grey clay
	4207			grey clay
	4208			grey clay
	4209			clay and dark
	4210			clay reddish
	4211			clay
	4212			clay
	4213			clay
	4214			clay
	4215			clay
	5000			
	5001	005		
	5002	006		
	5003	006		
	5004	006		
	5005	007		
	5006			
	5007	008	300496 - 5847315	
	5008	009	0300410 - 5847155	
	5009	010	0300282 - 5847153	
	5010	011	0300271 - 5847150	
	5011	012	0300223 - 5847164	
	5012	014	0300212 - 5847147	
	5013	015	0300196 - 5847107	Picture taken
	5014	U16 04⊐	0300150 - 584/090	
	5015	017	0300278 - 5847226	
	5015	019	0301108 - 5846236	
	5017	020	0301096 - 5346086	75 m downhill from white 04
	5018	021	0004400 504000	rom downniii from wpt 21
	5019	021	0301139 - 5845000	
	5020	022	0301103 - 3043930	
	5021	023	0301072 - 5845859	

5022	024	0301037 - 5845885	
5023	025		0-8
5024		0000070 5045540	Soll
5025		0300879 - 3843343	10 meters from creek, Soli
5025	000	0000770 5045004	Soll, 100 m downnill of wpt 29
5027	030	0300778 - 5845361	
5028	031	0300/34 - 5845324	
5029	029	0300820 - 58453/4	
5030			Float from Camp, Jo said he would sample
5031		0300177 - 5846769	
5032	032	0297870 - 5850593	
5033	033	0297755 - 5850464	Float From Trib of Camp Creek
5034	034	0297740 - 5850398	
5035	036	0297721 - 5850148	Rock from boulder
5036	037	0297635 - 5850062	
5037	037	0297695 - 5850062	Orange rock
5038			· · ·
5039			Near 1031
5040		0701201 - 5851506	
5041			at 1030
5042			at 1034
5043			at 1034
5044		0298225 - 5850188	float from creek
5045		0298225 - 5850188	
5046	40	0298189 - 5850142	
5047	41	0298151 - 5850091	
5048	41	0298151 - 5850091	Picture taken
5049	1046		
5050	42	0298304 - 5850226	10m up
5051	43	0298361 - 5850163	close to 1052 and 1053
5052	44	0298394 - 5850149	
5053		0298379 - 5850019	20m downstream of mark
5054	45	0298391 - 5850082	
5054		0298379 - 5850019	
5055		0298359 - 5849919	
5056	49	0298250 - 5849854	
5057	50	0298375 - 5850168	
5058			
5060	52	0298660 - 5844958	
5061	53	0298733 - 5844868	
5062	54	0298722 - 5844615	
5063	54	0298722 - 5844615	
5064			40m d/s of 5062
5065	55	0300532 - 5847183	
5066	56	0300424 - 5847164	
5067	57	0300224 - 5846194	
5068	57	0302800 - 5844414	
5068	58	0302673 - 584424	
5069	59	0302644 - 5844282	creek float
5070	63	0297946 - 5850348	
5071	64	0297875 - 5850246	
5072	66	0297849 - 5850184	

5073		0297839 - 5850070	
207A			206
Camp		0297964 - 5850638	No sample
Silts	wpt		
	018		BEAR VALLEY, Start of Creek
	1030	0701113 - 5851586	
	1031	0701164 - 5851547	
	1032	0701120 - 5851542	
	1033	0701255 - 5851504	
	1034	0701226 - 5851469	
	1035	0298240 - 5850250	
	1036	0298210 - 5850215	
	1037	0298182 - 5850191	
	1038	0298146 - 5850156	
	1039	0298118 - 5850109	
	1040	0298269 - 585046	
	1041	0298232 - 5850201	
	1042	0298218 - 5850193	
	1043	0200210 0000100	
	39		old claim post 650290 Garnett #22 Re Dale April 21 1966
	60	0297809 - 5850514	Camp Creek
	51	0298605 - 5845042	Start of Day
	1044	0701427 - 5849839	olar of buy
	1043	0298201 - 5850106	
	1040	0298178 - 5850104	
	1045	0208137 - 5850026	
	1046	0290107 - 5850020	
	1040	0290119 - 5840072	
	1048	0290110 - 5840008	
	1040	0290099 - 5049900	
	1045	0290700 - 5850232	
	1050	0290270 - 5050252	
	1051	0290331 - 3030172	
	1052	0290300 - 3630175	
	1055	0290300 - 3030173	
	1055	0290390 - 3030129	
	1054	0290291 - 3030002	
	1055	0290300 - 3030011	
	1050	0290344 - 304933	
	1057	0290344 - 304933	
	1000	0290309 - 0049924	
	1059	0290333 - 3049000	
	1000	0230273 - 3043074	
	1001	0290021-0040092	
	1002	0290721-0040720	
	1003	0290007 - 204000	
	1064	0298930 - 5845663	
	1065	0298962 - 5845641	un altre and Eller from 4005
	1066		upstream 50m from 1065
	106/	0299095 - 5845355	
	1068	0297803 - 5850555	
	1069		
	1070	0297784 - 5850598	

1071	0297763 - 585023
1072	0297754 - 5850623
1073	0297726 - 5850652
1074	0297689 - 5850684
1075	0297658 - 5850713
1076	0297658 - 5850713
1078	0297866 - 5850524
107 9	0297899 - 5850494
1080	0297943 - 5850468
1081	0297992 - 5850436

--

* * * * * * * * * * * * * * * * . * * * * * * * * * * * * *

 \int

x x x x x x x x

.

x x x x x x x x

x x x x x x x x x . x x

x

x x

<u>____</u>

X X X X

× × × × × × ×

x x x x x x x x . x x x x x x x x x x * * * * * * * * * * * * * * * * * • * * * * * * * * * * * * * * * * *

× × × × × × × × × × × × × х x х

 $\overline{}$

x

x x x

 $\overline{}$

.

x x

x

x x

< c

x

 $\overline{}$

- x x x x x x x x x x
- x x
- x
- x
- x x

- × × × × × × × × × × × ×

- x x x x
- · ·
- x x x x

- - .

