Assessment Report on Drilling and Geochemical Work On The Following Claim

> FR1 355258 FR4 394238

Statement of Exploration #4101151

Work permit # MX-1-153

located 42 Km North Of Stewart, British Columbia Skeena Mining Division

56 degrees 17 minutes latitude 129 degrees 53 minutes longitude

N.T.S. 104A/5

Project Period: July 15 to September 30, 2006

On Behalf Of

Mountain Boy Minerals Ltd Stewart, BC And Pinnacle Mines Ltd. Vancouver, B.C.

Report By

E.R. Kruchkowski, B.Sc., P.Geo.

Marken 1

Daos Decembe

GEOLOC

TABLE OF CONTENTS

		Page
SUMMARY	· ·	1
INTRODUC	CTION	3
	Location and Access	3
	Physiography and Topography	3
	Personnel and Operations	4
	Property Ownership	5
	Previous Work	6
GEOLOGIO	CAL SURVEYS	8
	Regional Geology	8
	Local Geology	10
	Mineralization	12
DIAMOND	DRILLING	16
GEOCHEM	lICAL	29
	Introduction	29
	Field Procedure and Laboratory Technique	29
	Statistical Treatment	29
	Anomalous Zones	30
CONCLUS	IONS	30
RECOMM	ENDATIONS	31
REFERENC	CES	33
STATEME	NT OF CERTIFICATE	35
STATEME	NT OF EXPENDITURES	36

LIST OF FIGURES

<u>After Page</u>

Figure 1	Project Location Map	37
Figure 2	Claim Map	37
Figure 3	Geology Map	37
Figure 4	Map Showing Area of Work	37
Figure 5	Map Showing Area of Drill Sites	37
Figure 6	Plan Map of DDH-2006-FR-1-2-3.	37
Figure 7	Plan Map of DDH-2006-FR-4-5-6-7-8 and 14-15	37
Figure 8	Geological Cross-Section DDH – 2006-FR-1-2-3	37
Figure 9	Geological Cross-Section DDH-2006-FR-4-5-6-7-8 and 14	-15
		37
Figure 10	Geological Cross-Section DDH-2006-FR-9-10-11-12-13	37
Figure 11	Assay Cross-Section DDH – 2006-FR-1-2-3	37
Figure 12	Assay Cross-Section DDH - 2006-FR-4-5-6-7-8 and 14-15	37
Figure 13	Assay Cross-Section DDH-2006-FR-9-10-11-12-13	37
Figure 14	Map Showing Area of Geochemical Sampling	37
Figure 15	Map Showing Geochemical Sampling	37
Figure 16	Map Showing Detailed Geochemical Sampling	37

LIST OF APPENDICES

APPENDIX I	Laboratory Methods and Specifications for Sample Analysis
APPENDIX II	Drill Hole Logs – DDH -2006- FR – 1 to 15 inclusive
APPENDIX II I	Assay Results – DDH – 2006 – FR – 1 to 15 inclusive
APPENDIX IV	Calculations of Drill Hole Intercept Results
APPENDIX V	Geochemical Sample Descriptions
APPENDIX VI	Assay Results – Geochemical Samples

Page 1

SUMMARY

The FR property is located about 42 kilometers north of Stewart, British Columbia in the Skeena Mining Division. The property covers an area of Hazelton pyroclastic volcanic rocks that have been folded into an anticline along American Creek.

The property contains approximately 7675 hectares within 21 claims.

The property lies within a belt of Jurassic volcanic rocks extending from the Kitsault area, south of Stewart, to north of the Stikine River. This belt is host to numerous gold deposits, in a variety of geological settings, including the producing Eskay Creek and formerly producing Snip and, Premier-Big Missouri mines. Reserves have been reported from a number of other properties including Red Mountain, the Brucejack Lake area and Georgia River. In addition, exploration companies, have reported numerous gold-silver showings along this belt of rocks At least three porphyry type deposits with either Cu-Mo, Cu-Mo-Au or Cu-Au mineralization are also present. A recent Kurko type VMS horizon has also been outlined just east of the FR claim group.

Three main types of mineralization occur on the property consisting of the following:

- 1. Replacement type mineralization with quartz-carbonate-barite with sulfides consisting of sphalerite, galena, chalcopyrite, pyrite and greenockite.
- 2. Quartz veins with abundant siderite exhibiting strong manganese stain and containing chalcopyrite, pyrite, galena and sphalerite as well as minor fine arsenopyrite and tetrahedrite.
- 3. Massive sulfide stringers and veins with galena, sphalerite, chalcopyrite, pyrite, and tetrahedrite in strongly carbonate altered rocks.

The main mineral showings outlined to date consist of the Barite and Coates in the replacement type, the Moonlight in the massive sulfide variety and the Lilianne and Virginia K. no. 5 in the sulfide bearing quartz type.

During the period July 15, to September 30, 2006, Mountain Boy Minerals Ltd and Pinnacle Mines Ltd conducted an exploration program on the FR 1 and 4 claims in the central portion of the property consisting of geochemical sampling along the Lilianne vein and diamond drilling to test the silver tenor of the Moonlight and Coates showing.

A total of 1307.61 meters of BTW drill core was completed in 15 separate drill holes from 2 different pads. Best silver values were obtained on the Moonlight vein in DDH 2006-FR-6 which yielded 1.83 meters of 0.19 g/t Au, 1412 g/t Ag, 0.303 % Cu, 0.09 % Pb and 0.44 % Zn.

Page 2

Best silver value in the Coates showing was 0.91 m of 0.01 g/t Au, 132.6 g/t Ag, 0.09 % Cu, 0.26 % Pb and 0.34 % Zn.

A total of 140 rock geochemical samples were collected from the area of the Lilianne vein. Work showed that the vein was at least 600 meters long with strong gold-silver values. Best results included 236.6 g/t Au, 8108 g/t Ag, 11.24 % Cu, 5.95 % Pb and 13.4 % Zn.

Based on the favorable results in the 2006 work on the Lilianne vein, an exploration program involving further prospecting, trenching, and diamond drilling is recommended for the property. Expected cost of the above programs is approximately \$300,000.

Page 3

INTRODUCTION

This report is primarily based on geochemical and drill results of an exploration program conducted by Mountain Boy Minerals Ltd and Pinnacle Mines Ltd. on the property during the period July 15 to September 30 2005.

In addition to data accumulated during this work program the report was also prepared on data contained in previous assessment reports on the property as well as data obtained by the author from other surveys in the general area.

Location and Access

The claims form part of a contiguous group of 21 claims located about 42 kilometers north of Stewart, British Columbia. The claim area is approximately 56 degrees 17 minutes latitude and 129 degrees 53 minutes longitude on NTS sheet 104A/4. Figure 1 shows the location of the claim area.

The FR claims are located in the headwaters of the American Creek valley with the claims covering both sides of American Creek and roughly centered on Kimball Lake, a small lake on American Creek. Access is via helicopter based in Stewart. The claims are approximately 22 kilometers north of paved Highway 37 located to the south. Road access is available to within 12 kilometers of the property along the American Creek valley where there is a non-maintained, mine road running north to the MB silver property from Highway 37.

A pack-horse trail some 17 kilometres long was constructed to the Virginia K and Moonlight properties in the early 1930s from the Bear River but has long since fallen into disrepair and disuse and is overgrown with alders in many localities.

Physiography and Topography

The area of the FR property claims encompasses steep mountain slopes typical of the Coast Range region of British Columbia. The valley of American Creek is steep-sided, with elevations on the property ranging from 900 metres south of Kimball Lake, to more than 1,900 metres along the ridges. The topography on the west side of American Creek near the headwaters is more gentle with a number of benches and ridges locally marked by small patches of tag spruce occupying areas away from avalanche trails and snow chutes.

The west edge of the claims is underlain by the Moonlight Glacier while the extreme northeast and northwest edges encompass tributary valleys to the Bowser River.

Page 4

The lower slopes on the property are partially snow free in mid July with snowfall commencing in late September and starting to accumulate by mid to later October.

Maximum rock exposure occurs in early October when most of the annual snowfall has melted. The surface exploration is restricted to late summer and early fall. Most of the property can be traversed safely on foot although local areas contain occasional bluffs and cliffs.

Spruce and hemlock trees as well as small patches of tag spruce are present along the lower slopes of the mountain valleys, particularly the north facing edges. Alders grow along avalanche slopes and moraines. Alpine grasses, heather and arctic willows grow in patches along the talus, moraine and outcrops in the upper regions of the property.

Permanent snow occupies most depressions and gullies.

Thick glacial moraine is primarily restricted to lower elevations and valley floors with good rock exposure along ridge tops and creek beds.

Personnel and Operations

Personnel involved during the exploration program are listed below:

E. Kruchkowski	Consulting Geologist
Randy Kasum	Operations Manager
Alex Walus	Consulting Geologist
Sheila Ballantyne	Consulting Geologist
Hugh Samson	Consulting Geologist
Rob Pelkey	Consulting Geologist
Kaitlin Cherniwchan	Geological Assistant
Alexandra Cremonese	Geological Assistant
Peter Leigh	Geological Assistant
Lou Kamermans	Geological Assistant
Richard Lemieux	Core Cutting

Personnel mobilized either out of Stewart or the American Creek area, British Columbia to the job site on a daily basis utilizing a Bell 206 helicopter, contracted from Hayes Helicopters, based in Stewart.

Drilling was provided by a modified J.K.Smit drill owned by Mountain Boy Minerals Ltd.

Page 5

Personnel stayed in rented accommodations in Stewart and acquired meals at local restaurants.

Core was flown to Stewart, where it was logged, cut in half with a diamond saw with half the core sent for analysis and the other half put back in the core box. The core remaining in the coreboxes is stored in core rack facilities at Stewart BC.

All samples were prepared and analyzed by Assayers Canada in Vancouver, British Columbia.

Property Ownership

The FR property consists of a one claim group located at the headwaters of American Creek. The property contains approximately 7675 hectares within 21 claims. Relevant claim information with respective NTS map area is summarized below:

Name	Tenure	NTS Map Area	Hectares	Expiry Date
FR 1	355258	NTS104 A	375	April 24/09
FR 2	372675	NTS104 A	500	October 21/09
FR 3	394237	NTS104 A	175	June 19/09
FR 4	394238	NTS104 A	225	June 19/09
FR 5	396851	NTS104 A	300	September 29/09
FR 6	396852	NTS104 A	75	September 29/09
FR 7	396853	NTS104 A	350	September 29/09
FR 8	405010	NTS104 A	400	September 12/09
FR 9	405011	NTS104 A	200	September 9/09
FR 10	405012	NTS104 A	500	September 24/09
FR 11	405285	NTS104 A	500	September 24/09
FR 12	405286	NTS104 A	500	September 24/09
FR 13	405290	NTS104 A	500	September 24/09
FR 14	405291	NTS104 A	375	September 24/09
FR 15	405292	NTS104 A	450	September 24/09
FR 16	407576	NTS104 A	450	January 10/09
FR 17	407577	NTS104 A	450	January 10/09
FR 18	407578	NTS104 A	450	January 10/09
FR 19	407579	NTS104 A	300	January 10/09
FR 20	407581	NTS104 A	300	January 10/09
FR 21	407580	NTS104 A	300	January 10/09

Page 6

Total

7675 hectares

Claim location is illustrated on Figure 2, copied after available government NTS maps. Ownership of FR 1 is presently 50 % registered with Frank Kamermans of Stewart, British Columbia, who is holding in trust for Mountain Boy Minerals Ltd. and 50 % Pinnacle Mines Ltd. The FR 2 to 21 claims inclusive are registered in the name of Mountain Boy Minerals Ltd. (49 %) and Pinnacle Mines Ltd (51 %).

Previous Work

Exploration began in the Stewart region about 1898 after the discovery of mineralized float by a party of placer miners. Sites which could be easily reached from Stewart were the first to be explored among which was the lower American Creek area.

Mineralized showings at the head of American Creek were discovered by D.D. Kimball in 1929 with the Excelsior Prospecting Syndicate was formed in 1930 to explore the showings at both the Virginia K and Moonlight properties. A pack-horse trail was completed to the properties along the east side of American Creek in 1932.

In 1935, further exploration work consisting of limited mining was carried out on the Virginia K claims. A discovery of spectacular pockets of native gold was made on the Moonlight property in 1936 through 1939.

The next recorded work was in 1955 when the Great North Mining Company carried out trenching and x-ray diamond drilling on the Moonlight group of claims. Further trail work was completed and a cabin erected on the access trail and beside the workings on the Moonlight vein.

The Virginia K Group was explored by diamond drilling in 1956, when Canex Exploration Ltd. optioned the property. In 1966, Frontier Exploration Inc. carried out further prospective, trenching and sampling of the Moonlight vein area. In 1979 Tournigan Mining Exploration Ltd. carried out mapping and sampling of the Moonlight vein and reconnaissance mapping of the surrounding area over staked claims in the American Creek area.

In 1960, Newconex performed geological mapping and sampling on the Virginia K claim group with the results of this work not known.

Page 7

In 1980 Komody Resources Ltd. acquired the Reverted Crown Grants on the Virginia K property and during the course of exploration work a high grade vein was discovered. A 1,500 lb. bulk sample, averaging 182 ounces per ton silver, was mined and shipped to the smelter.

Komody Resources Ltd. consolidated the Moonlight and adjoining Bugnello claims under the same ownership as the Virginia K property in 1981. The Moonlight vein was leased for high-grading in 1984.

In 1986 the AM-1 and AM-2 modified grid claims were staked to cover the lapsed Moonlight and Bugnello claims. The property comprising the Virginia K Group of Reverted Crown Grants and the AM-1&2 claims was acquired under option by Square Gold Exploration Inc. A program of geological mapping, prospecting and sampling was carried out over the Moonlight and Bugnello mineral occurrences on the west side of American Creek, where several veins carrying gold and silver mineralization were discovered to the north of the old Moonlight vein. Additional modified grid claims were staked, the AM-3, AM-4 and AM-5, totaling 44 units, a Reverted Crown Grant was acquired, and added to the Joint Venture property.

The results of the 1986 program were sufficiently encouraging and an extensive program of trenching and sampling was carried out over the newly discovered mineralized veins, as well as some geological mapping and geochemical soil sampling on the AM-3 and AM-4 claims. A total of 174 rock samples were collected. The samples were either of the reconnaissance type taken on prospecting traverses, or were moiled or chipped over specific widths on specific targets. Mineralized zones outlined included gold in quartz bearing sulfide as well as high silver values associated with lead and zinc in carbonate rich zones

The 1987 program outlined two gold/silver bearing veins in some detail, the veins are up 0.9 metres wide and were traced over 90 metres to 120 metres along strike. Mineralization consists of quartz-siderite veins carrying sphalerite, galena and chalcopyrite.

In 1987, Carmac Resources performed geological mapping and sampling on the Virginia K. 5 and Virginia K. Extension 2 claims.

In 1988, six holes totaling 456 metres were drilled from three set-ups by Glacier Resources on the AM-1 claim to test the gold bearing sulfide veins.

In 1990, Northair Mines carried out talus sampling on the Virginia K. 5 and Virginia K. Extension 2 claims.

Page 8

In the period 1999 to 2004, Mountain Boy Minerals staked the FR1 to 21 claims to cover the American Creek valley and area of the various mineral showings.

In 2002, Mountain Boy carried out a brief exploration program consisting of prospecting and sampling on the original FR 1-3 claims. This program intended to evaluate siliceous replacement zones that carried gold-silver values associated with galena-sphalerite-chalcopyrite. In the course of this program, several different types of replacement mineralization were discovered. Initial select sampling of barite/carbonate float boulders by Mountain Boy (Moon 1-3) yielded 0.27 to 0.62 g/T Au, 56.7 to 3640 g/T Ag, 1.16 to 7.2 % Pb and 2.52 to 11.50 % Zn. Follow-up select sampling of barite rich boulders (Moon 5-6) yielded 0.65 to 1.13 g/T Au, 54.0 to 126 g/T Ag, 0.072 to 0.10 %Cu, 3.2 to 4.8 % Pb and 10.1 to 15.1 % Zn.

A silt sample collected in the area of the above area of mineralization gave a value of 0.38 g/t Au and 12.5 g/t Ag.

Sampling in 2003 concentrated in the area of the above silt sample and 2002 sampling, which led to the discovery of mineralization in bedrock. Mineralization consisted of brecciated green volcanic rock with massive sphalerite-galena filling the voids between the clasts. The massive mineralization has a distinct yellow-green weathering product, possibly greenockite associated with the massive sphalerite-galena. Select sampling of the sulfide rich portion yielded 0.14 to 0.87 g/T Au, 31.5 to 45.5g/T Ag, 0.016 to 0.0.73 %Cu, 1.23 to 2.5% Pb and 2.9 to 7.0 % Zn. Best assays in the replacement zone yielded 264.65 g/T silver over 18.3 meters.

In 2004 and 2005, trenching of rusty zones was completed with no significant results.

GEOLOGICAL SURVEYS

Regional Geology

The FR claim block lie in the Stewart area, east of the Coast Crystalline Complex and within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic Hazelton Group and Bowser Lake Group that have been intruded by plugs of both Cenozoic and Mesozoic age.

According to C.F. Greig, in G.S.C. Open File 2931, the western portion of the claim area is underlain by Lower Jurassic volcanic rocks overlain by the Lower to Middle Jurassic Salmon River Formation at the east edge of the claims. The Salmon River formation is in turn overlain by the Upper Jurassic Bowser Lake sediments, east of the claim holdings.

Page 9

At the base of the Hazelton Group is the lower Lower Jurassic Marine (submergent) and nonmarine (emergent) volcaniclastic Unuk River Formation. This is overlain at steep discordant angles by a second, lithologically similar, middle Lower Jurassic volcanic cycle (Betty Creek Formation), in turn overlain by an upper Lower Jurassic tuff horizon (Mt. Dilworth Formation). Middle Jurassic non-marine sediments with minor volcanics of the Salmon River Formation unconformably overlie the above sequence.

The lower Lower Jurassic Unuk River Formation forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, volcanic conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.

In the property area, the Unuk River Formation is unconformably overlain by middle Lower Jurassic rocks from the Betty Creek Formation. The Betty Creek Formation is another cycle of troughfilling sub-marine pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, with self erosional conglomerate, sandstone and siltstone and minor crystal and lithic tuffs, chert, limestone and lava.

The upper Lower Jurassic Mt. Dilworth Formation consists of a thin sequence varying from black carbonaceous tuffs to siliceous massive tuffs and felsic ash flows. Minor sediments and limestone are present in the sequence. Locally pyritic varieties form strong gossans.

The Middle Jurassic Salmon River Formation is a late to post volcanic episode of banded, predominantly dark colored siltstone, greywacke, sandstone, intercalated clarinet, minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows.

Overlying the above sequences are the Upper Jurassic Bowser Lake Group rocks. These rocks mark the western edge of the Bowser Basin and are also located as remnants on mountaintops in the Stewart area. These rocks consist of dark grey to black clastic rocks including silty mudstone and thick beds of massive, dark green to dark grey, fine to medium grained arkosic litharenite.

According to E.W. Grove, the majority of the rocks from the Hazelton Group were derived from the erosion of andesitic volcanoes subsequently deposited as overlapping lenticular beds varying laterally in grain size from breccia to siltstone.

D. Aldrick's work to the north of Stewart has shown several volcanic centers in the surveyed area. Lower Jurassic volcanic centers in the Unuk River Formation are located in the Big

Page 10

Missouri Premier area and in the Brucejack Lake area. Volcanic centers within the Lower Jurassic Betty Creek Formation are in the Mitchell Glacier and Knipple Glacier areas.

There are various intrusives in the area. The granodiorites of the Coast Plutonic Complex largely engulf the Mesozoic volcanic terrain to the west. East of these (in the property area), smaller intrusive plugs range from quartz monzonite to granite to highly felsic. Some are likely related to the late phase offshoots of the Coast plutonism, other are synvolcanic and tertiary. Double plunging, northwesterly - trending synclinal folds of the Salmon River and underlying Betty Creek Formations dominate the structural setting of the area. These folds are locally disrupted by small east-overthrusts on strikes parallel to the major fold axis, cross-axis steep wrench faults which locally turn beds, selective tectonization of tuff units and major northwest faults which turn beds. Figures 3 show the general geology of the property area.

Local Geology

The section on local geology is excerpted from a 1986 assessment report by Tom Lisle:

The AM and related mineral claims cover the upper section of American Creek. This area is shown on British Columbia Ministry of Energy, Mines and Petroleum Resources Maps (Unuk River-Salmon River-Anyox, 1982) to be underlain by the following formations believed to correlate with the lower units I and 2 of Aldrick's classification.

- Unit 12 Unuk River Formation Green, Red and Purple volcanic breccia, conglomerate, sandstone and siltstone (a); Crystal and lithic tuff (b); Sandstone (c); Conglomerate (d); Limestone (e); Chert (f); Minor coal (g).
- Unit 13 Green, Red and purple and black volcanic breccia, conglomerate sandstone and siltstone (a); Crystal and lithic tuff (b); siltstone (c); Minor chert and limestone. (Includes some lava of unit 14)(d).

The upper section of American Creek is shown to follow the course of a major fault trending about 014 degrees. Several kilometers to the south towards the Bear River, the creek is near the axial plane of the American Creek anticline that trends mainly west of north. It is perhaps significant that regional fault directions in this area are also variable. Preliminary work on the AM claims has identified the following.

A) A lower dark argillite unit that outcrops on both sides of the valley. To the east it is associated with limestone around the old Virginia K workings. To the west it is

Page 11

exposed up to elevation 1160 meters as 1 at the Moonlight showings. At this location it strikes northeast and dips from 40 degrees to 60 degrees northwest. Further to the north, it strikes northwest and dips about 30 degrees northeast.

- B) The argillite is succeeded upward on the west slope of the valley at approximate elevation 1025 metres asl, by a well-bedded blue-grey siltstone or argillite. Coarser gritty layers up to 1/3 meter in width are present, and near the contacts, rounded clasts of the finer sedimentary rocks occur in the coarser tuff. Where noted, attitudes strike west to the northwest, however dips range from low to moderate angles northeast, north and west.
- C) The tuff- siltstone assemblage is succeeded upwards and to the west by a green, maroon and reddish fragmental assemblage that includes tuff, breccia, conglomerate and agglomerate. Small limestone fragments, several tens of meters or more in length, along with minor amounts of dark chert are also evident. Prospecting has shown this unit to be present to the west at least to the 1560 meter elevation. It may correlate with unit 2b in the Aldrick classification.

A fault, roughly parallel to the American Creek fault, passes north-northeast through the contact area between the siltstone-tuff unit and the green-maroon fragmental unit. This area appears to be a transition zone marked by a narrow 2 meter dark green augite porphyry dyke with conspicuous hornblende; a fine-grained green tuff; a medium grained augite-rich andesite or diorite; and areas of strong silicification. A small outcrop of fine-grained augite porphyry has also been noted west of the fault.

The area around the fault, and particularly to the east, is cut by a northerly-trending, steeply dipping swarm of green felsic dykes that range upwards from 2 meters in width. The dykes contain 2% to 10% mafics, mainly hornblende; trace to 1% pyrite; are commonly chloritized and in places strongly altered (bleached). A whole rock ICP analysis from a specimen at 900s-150W indicates a composition close to dacite or granodiorite.

Near the fault and mainly to the west, the volcanic and sedimentary assemblage is cut by medium to coarse-grained granodiorite porphyry dykes or sills that may be up to 30 meters wide. The rocks contain hornblende laths up to 1 centimeter in length, plagioclase, quartz, and 2% to 3% coarse orthoclase crystats about a centimeter in diameter. These dykes ? trend northerly or northeast and in one location dip -65 degrees westerly. They resemble the Premier Porphyry as shown on plate XX1b, Bulletin 58, Geology and Mineral deposits of the Stewart Area by E.W. Grove, 1971.

A considerable amount of quartz, quart-siderite and lesser calcite veins and minor barite are present near the fault on the northwest flank of American Creek. The veining is less intense

Page 12

along the trace to the south, and also up slope to the west. Much, but apparently not all of the quartz is present in late-stage epithermal veins. The veins are commonly crystalline and buggy, and textures, directions and sulphide content indicate more than a single generation of emplacement. Breccias with either rock or quartz fragments are locally developed in the more highly silicified areas. Common directions of veins are northerly, north-northwest, north-northwest, north-northwest.

Mineralization

Three main types of mineralization occur on the property consisting of the following:

- 4. Replacement type mineralization with quartz-carbonate-barite with sulfides consisting of sphalerite, galena, chalcopyrite, pyrite and greenockite.
- 5. Quartz veins with abundant siderite exhibiting strong manganese stain and containing chalcopyrite, pyrite, galena and sphalerite as well as minor fine arsenopyrite and tetrahedrite.
- 6. Massive sulfide stringers and veins with galena, sphalerite, chalcopyrite, pyrite, and tetrahedrite in strongly carbonate altered rocks.

The main mineral showings outlined to date consist of the Barite and Coates in the replacement type, the Moonlight in the massive sulfide variety and the Lilianne and Virginia K. 5 in the sulfide bearing quartz type.

Descriptions of the showings are as follows:

Coates Showing

The showing has mineralization consisting massive sphalerite-galena filling voids between the brecciated green volcanic clasts. The massive mineralization has a distinct yellow-green weathering product, possibly greenockite. Sulfide content varies from less than 1 % to over 20 % in the mineralized portions. Where observed, the mineralized zone is at least 10 meters in width striking at 305 degrees. It has been observed for over 200 meters of strike length over a vertical height of at least 60 meters. The zone is very subtle with narrow stringers (up to 15 cm wide) of carbonate with sparse galena and sphalerite. These stringers, which assay up to 563 g/t Ag, parallel the strike of the zone. The stringer zone is up to 2 meters wide with fractures and veinlets of massive galena-sphalerite-greenockite filling fractures in a random direction on either side of the stringers. Locally a light brown weathering surface is present over rocks in the zone.

Page 13

In 2004, select sampling of the sulfide rich portion yielded 0.14 to 0.87 g/T Au, 31.5 to 45.5g/T Ag, 0.016 to 0.0.73 %Cu, 1.23 to 2.5% Pb and 2.9 to 7.0 % Zn. Best assays in the replacement zone yielded 264.65 g/T silver over 18.3 meters.

Barite Showing

In 2002, Mountain Boy Minerals located float samples of replacement mineralization that consisted of sphalerite-galena bearing carbonate/barite boulders up to 1 meter in diameter that weathered a light brown color with no obvious sign of sulfides. These boulders showed swirl features in the coarse barite crystals as well as minor banding. Sulfide content varied from 2 to 20 % in these boulders. Initial select sampling of barite/carbonate float boulders by Mountain Boy yielded 0.27 to 0.62 g/T Au, 56.7 to 3640 g/T Ag, 1.16 to 7.2 % Pb and 2.52 to 11.50 % Zn. Follow-up select sampling of barite rich boulders yielded 0.65 to 1.13 g/T Au, 54.0 to 126 g/T Ag, 0.072 to 0.10 %Cu, 3.2 to 4.8 % Pb and 10.1 to 15.1 % Zn.

These boulders discovered by Mountain Boy may be related to replacement type mineralization discovered in exploration programs in 1986. Mineralized limestone? and pyritic barite horizons are mentioned in the assessment report. The area of mineralization is on the west side of the ridge separating the American Creek valley from Betty Creek. A grab sample by Mountain Boy minerals Ltd, from the pyritic barite, yielded 7.72 opt/Ag with 0.22 % Pb and 0.26 % Zn. A grab from the same outcrop of pyritic breccia with galena and pyrite yielded 13.83 opt/Ag, 1.60 % Pb and 0.36 % Zn. Widths of the zone and possible strike length are unknown. Potential strike could be greater than 500 meters as the mineralized limestone? is at least 500 meters away from the pyritic barite and on strike. A brief description of the limestone from Assessment Report 15,365 by T. Lisle is as follows:

'On the ridge and slope to the west, small fragments? of limestone a few to a few tens of meters in diameter occur in the green-maroon fragmental unit. The limestone is locally mineralized with galena, sphalerite, and minor tetrahedrite?, pyrite and chalcopyrite. A boulder of similar material was sampled on the ridge at a bearing of 218 degrees from the camp. North of the mineralized limestone, pyritic barite? forms a conspicuous gossan trending about 150 degrees."

The assessment report gives the following description and assays from the report as follows:

"Exposures of limestone that appear to be small fragments, a few to several meters in diameter, occur within the maroon-green fragmental unit mainly high on the ridge near permanent snow fields. They are locally mineralized with galena, sphalerite and tetrahedrite?. In view of the following assays and implications, further prospecting efforts in this area should be

Page 14

undertaken.

<u>Sample No</u> .	<u>Width</u>	<u>Au oz/t</u>	<u>Ag oz/t</u>	<u>Cu%</u>	<u>Pb%</u>	<u>Zn%</u>
AC 206	Select	0.023	14.39	-	-	-
AC 207	Select	0.093	5.12	-	-	-
AC 208	Select	0.010	38.90	-	-	-
AC 61	0.75 M	0.004	2.80	0.01	0.77	2.15
AC 62	1.60M	0.001	3.46	0.01	0.25	0.60
AC 63	1.10M	0.001	1. 9 8	0.01	0.08	0.36
AC 64	1.25M	0.016	15.96	0.06	3.06	7.58
AC 246	Float	0.015	12.87	0.03	0.85	6.44"

It appears relative to the location of the two types of boulders float that the boulders sampled by Mountain Boy in all probability originated in a zone that is similar to that described in the assessment report from the 1986 work. It should be noted that the barite rich zone (1986 report) is on the west side of the ridge overlooking Kimball Lake while the boulders found by Mountain Boy are on the east side of the ridge. The indicated strike of the barite rich zone (1986 report) is approximately 320 - 340 degrees (parallel to the ridge) and is over 500 meters in length.

<u>Moonlight Showing</u> - The moonlight showing consists of a 7 meter wide mineral zone exposed over a strike length of 25 meters. It consists of massive galena, sphalerite, tetrahedrite, argentite and pyrite over 0.4 meters of width along the hanging wall with sheared, fractured and pyritized rocks below it. An average of sampling across the 7.5 meters of width averages 0.09 % Cu, 1.63 % Pb, 0.13 % Zn, 7.70 oz/to Ag and 0.004 oz/to Au. Samples from the massive mineralization yielded up to 36 % Pb, 9 % Zn and 226 oz/to Ag and 0.10 oz/to Au.

This showing is along a 500 meter long zone of quartz-carbonate veining with local galena and sphalerite mineralization.

Lilianne Showing

This showing consists of several quartz veins up to 1 meter wide along 100 meters of exposed strike length containing manganiferous siderite, galena, sphalerite, chalcopyrite and pyrite. On vein #1 a weighted average of 14 samples collected in 1986/87 yielded 0.382 oz/ton Au, 7.28 oz/ton Ag, 0.60 % Cu, 0.54 % Pb and 0.035 % Zn over a width of 0.57 meters. On vein #2 a weighted average of 7 samples collected in 1986/87 yielded 0.49 oz/ton Au and 26.28 oz/ton Ag.

Page 15

Limited drilling in 1988 gave up to 1.98 meters of 0.13 oz/ton Au, 8.8 oz/ton Ag, 0.33 % Cu, 0.104 % Pb and 0.06 % Zn in DDH 88-4.

Virginia K showing

The Virginia K. 5 occurrence described from the Minfile is as follow:

Three types of mineralization occur on the Virginia K. claims (Minister of Mines Annual Report 1932, p. 59):

1. Replacement shear zone in argillite.

2. Veins between interbedded sandstone, sandy argillite and

tuffs near the top of the predominantly sedimentary sequence.

3. Fracture zones consisting of quartz veins and veinlets in

reticulated structures

The Virginia K. 5 showing is located at the southwest part of the Virginia K. 5 claim (L. 5821). Mineralization was discovered by Excelsior Prospecting in 1931. A 12-metre(?) long adit (No. 2 adit) and nearby open cuts (Nos. 7 and 8) were probably emplaced soon after the discovery. The mineralization was examined in 1980, 1986 and 1987.

The adit exposes a 1 to 2-metre wide manganese and limonite- stained concordant fracture zone that strikes 320 degrees and dips 16 degrees northeast. Mineralization comprises stringers of quartz with galena, sphalerite, chalcopyrite and pyrite in carbonate-altered argillite and greywacke host rocks.

Grab samples of siliceous vein material from the No. 2 adit assayed up to 1,177.7 grams per tonne silver; a grab sample from the immediately adjacent No. 7 cut assayed 433.4 grams per tonne silver (Assessment Report 16842). A chip sample across the face of the adit assayed 607.6 grams per tonne silver, 0.14 gram per tonne gold, 0.83 per cent lead, 0.68 per cent zinc and 0.13 per cent copper across 0.80 metres (Assessment Report 15145).

The Virginia K. 5 showing may correspond to the No. 2 vein mentioned in the 1931 Minister of Mines Annual Report (p. 44). The location of this vein is not clear. The No. 2 vein is described as being southeast striking and about 3.7 metres wide. A chip(?) sample assayed 9.6 grams per tonne gold, 1,522.3 grams per tonne silver and 8.01 per cent lead across 3.7 metres (Minister of Mines Annual Report 1931, p. 44).

Page 16

On the Virginia K. Extension 2 claim, near the southeastern corner, and about 400 metres north of the No. 2 adit, the No. 6 cut exposes andesitic and porphyritic dikes in a fault. The fault strikes at 300 degrees and dips steeply north (Assessment Report 8982, p. 11). Galena and sphalerite occur in a 30 centimetre wide zone between the dikes. A composite chip (grab) sample assayed 783.1 grams per tonne silver, 0.04 grams per tonne gold, 1.76 per cent lead and 2.61 per cent zinc (Assessment Report 8982). This showing may correspond to an occurrence described in Annual Report. 1932, p. 60.

DIAMOND DRILLING

During the period July 15, to September 30, 2006, Mountain Boy Minerals Ltd and Pinnacle Mines Ltd drilled 1307.61 meters of BTW drill core in 15 separate drill holes from 2 different pads utilizing a modified J. K. Smit 300 drill owned by Mountain Boy. DDH 2006-FR-1 through Fr-3 were drilled from pad #1 in order to test the Coates zone. Drill holes FR-4 through FR-15 were drilled from a second pad in order to test the area of the Moonlight vein.

The main rock types intersected were andesite tuffs and argillites intruded by porphyritic granodiorite.

		Ľ		
Drill Hole	Pad No.	Azimu	th Dip	Total Depth (m)
by Number		Degrees	Degrees	
2006-FR -1	Pad 1	135	-55	257.62
2006-FR-2	Pad 1	135	-65	218.60
2006–FR-3	Pad 1	135	-75	129.57
2006–FR-4	Pad 2	125	-45	5.18
2006–FR-5	Pad 2	125	-55	16.77
2006FR-6	Pad 2	125	-65	59.45
2006-FR-7	Pad 2	125	-75	44.51
2006–FR-8	Pad 2	125	-85	67.38
2006–FR-9	Pad 2	138	-55	51.83
2006–FR-	Pad 2	138	-65	59.15
10				
2006FR-	Pad 2	138	-75	62.20
11				

Drill hole azimuths, dips and total depth of hole are summarized below:

Page 17

2006–FR- 12	Pad 2	138	-85	47.87
2006–FR- 13	Pad 2	vertical	-90	57.93
2006–FR- 14	Pad 2	305	-45	81.10
2006–FR- 15	Pad 2	305	-55	148.48

Total 1307.61 m

Drill log summaries are as follows:

FR-2006-1

The hole encountered green, fine grained andesite tuff with minor jasper and siltstone and 3 to 5 % quartz-carbonate stringers at 1.83 to 11.13 m.

At 11.13 to 11.89 m, the hole intersected a fault zone.

From 11.89 to 13.41 m the hole intersected andesite tuff as above.

At 13.41 to 15.70, the hole encountered a weakly carbonate altered zone with carbonate-jasperbarite veins carrying traces of galena.

The hole encountered green, brecciated andesite tuff with 2 to 3 % quartz-carbonate stringers at 15.70 to 24.70 m.

From 24.70 to 25.61 m the hole encountered a weakly carbonate altered zone with carbonate-jasper carrying sphalerite and chlorite.

From 25.61 to 33.54 m the hole intersected weakly sausseritized andesite tuff with disseminated jasper.

At 33.54 to 36.74 m the hole encountered a weakly carbonate altered zone with carbonate--jasper and minor galena.

From 36.74 to 47.87 m the hole intersected andesite tuff as above.

Page 18

At 47.87 to 51.52 m the hole encountered a weakly carbonate altered zone containing carbonate--jasper with minor galena as well as traces of chalcopyrite and pyrite.

The hole hit andesite tuff from 51.52 to 56.10 m.

At 56.10 to 57.62 m, the hole intersected a fault zone.

From 57.62 to 60.67 m the hole hit andesite tuff with 2-3 % quartz-calcite stringers.

The hole encountered a weakly carbonate altered zone with minor galena and trace chalcopyrite at 33.54 to 36.74 m.

The hole intersected brecciated andesite tuff from 62.20 to 93.90 m.

At 93.90 to 98.17 m the hole encountered a weakly carbonate altered zone with abundant quartzcarbonate stringers containing minor pale yellow sphalerite, galena and rhodochrosite.

From 98.17 to 119.51 m the hole intersected brecciated andesite tuff with traces of local sphalerite and rhodochrosite.

At 119.51 to 122.10 m, the hole intersected grey-green andesite suff that is sericite-chlorite altered.

From 122.10 to 130.18 m, the hole hit a grey fine grained andesite dyke.

At 130.18 to 167.68 m, the hole encountered a dark grey andesite crystal tuff with minor hematite and jasper.

The hole intersected reddish-grey brecciated andesite tuff with minor quartz-carbonate stringers at 167.68 to 175.91 m.

The hole hit andesite tuff from 175.91 to 186.28 m with minor quartz-carbonate veinlets containing trace to minor pyrite and chalcopyrite.

From 186.28 to 207.62 m, the hole hit brecciated andesite tuff same as the interval from 167.68 to 175.91m.

At 207.62 to 217.68 m, the hole encountered an alteration zone that is weakly to strongly silicified as well as containing minor rhodochrosite.

Page 19

From 217.68 to 257.62 m, the hole encountered a dark grey andesite crystal tuff with strong chlorite alteration and minor hematite.

The hole was stopped at 257.62 m.

Figure 8 shows the geological section for DDH -2006-FR -1 to 3.

FR-2006-2

Fine grained chlorite altered andesite tuff was hit by the hole at 1.52 to 18.90 m.

From 18.90 to 111.13 m the hole encountered andesite lapilli tuff that is weakly silicified and locally contains up to 40 % quartz-carbonate with minor sphalerite.

The hole intersected andesite tuff with strong chlorite alteration at 111.13 to 116.77 m.

At 116.77 to 122.26 m the hole encountered andesite lapilli tuff that is strongly chlorite altered.

From 122.26 to 134.15 m the hole encountered a felsic intrusive that is feldspar porphyritic to aphanitic with moderate sericite-chlorite alteration.

The hole encountered andesite pyroclastic that is partly replaced by siliceous aphanitic felsic rock from 134.15 to 169.91 m. There are minor carbonate-rhodochrosite replacements.

From 169.91 to 214.94 m the hole encountered andesite lapilli tuff that is strongly chlorite altered with minor carbonate veining.

The hole intersected andesite tuff with weak chlorite alteration at 214.94 to 218.60 m.

The hole was stopped at 218.60 m.

Figure 8 shows the geological section for DDH - 2006-FR -1 to 3.

FR-2006-3

From 2.13 to 16.77 m the hole ran across porphyritic intrusive consisting of granodiorite with 2 % quartz stringers.

Page 20

At 16.77 to 50.00 m the hole ran across porphyritic intrusive consisting of granodiorite with 5-15 % quartz stringers with local hematite and local minor pale yellow sphalerite.

The hole hit porphyritic intrusive at 50.00 to 55.18 m with strong carbonate alteration as well as minor pale yellow sphalerite and minor hematite.

The hole intersected reddish-green andesite tuff at 79.27 to 86.89 m.

At 86.89 to 102.13 m the hole intersected hematite rich andesite tuff with minor quartzcarbonate stringers containing traces galena, sphalerite and specularite.

The hole intersected reddish-green andesite tuff at 102.13 to 125.00 m same as at 79.27 to 86.89 m.

From 125.00 to 129.57 m, the hole intersected moderate to strongly silicified grabundant chlorite and traces pyrite.

The hole was terminated at 129.57 m.

Figure 8 shows the geological section for DDH - 2006-FR -1 to 3

FR-2006-4

At 0-5.18 m the hole intersected greenish-grey porphyritic intrusive with 2 to 3 % quartz carbonate stringers.

The hole was abandoned at 5.18m.

Figure 9 shows the geological section for DDH - 2006-FR - 4 to 8 and 14 to 15.

FR-2006-5

From 0-10.37 m the hole intersected grey weakly chlorite – sericite altered porphyritic intrusive.

ļ

The hole intersected black to dark green and esite tuff at 10.37 - 12.0 m.

From 12.20 - 16.7 m the hole intersected intensely carbonate altered porphyritic intrusive. The zone contained 2-3 % quartz carbonate stringers with minor sphalerite and trace galena.

Page 21

The hole was stopped at 16.7 m

Figure 9 shows the geological section for DDH - 2006-FR - 4 to 8 and 14 to 15.

FR-2006-6

At 0-10.37 m the hole intersected grey porphyritic intrusive with weak sericite chlorite alteration.

From 10.37 to 13.4 m the hole encountered black to dark purplish grey andesite tuff.

At 13.41 to 19.51 m the hole intersected intensely altered porphyritic intrusive with trace sphalerite, galena and specularite.

From 19.51 to 29.12 m the hole intersected andesite tuff same as the interval from 10.37 to 13.41 m.

The hole intersected porphyritic intrusive from 29.12 to 35.06 m.

At 35.06 to 38.26 m the hole intersected intensely carbonate altered porphyritic intrusive and the Moonlight vein. The vein contained 2-3 % chalcopyrite, tetrahedrite, galena, sphalerite, and trace argentite.

From 38.26 to 42.99 m the hole hit porphyritic intrusive that is weak to moderate carbonate altered.

The hole hit andesite tuff from 42.99 to 44.51 m.

At 44.51 to 54.88 m the hole intersected green – grey andesite tuff with 2-3 % quartz carbonate.

From 54.88 to 59.49 m the hole encountered porphyritic intrusive.

The hole was terminated at 59.45 m.

Figure 9 shows the geological section for DDH -2006-FR -4 to 8 and 14 to 15.

FR-2006-7

Page 22

From 0-8.84 m the hole intersected grey andesite tuff with minor quartz carbonate and trace pyrite.

At 8.84 to 14.3 m the hole hit porphyritic intrusive that is weakly chlorite – sericite altered.

The hole hit interbedded black tuff and argillite at 14.33 to 19.21 m.

From 19.21 to 36.89 m the hole hit porphyritic intrusive with 10-15 % quartz - carbonate as irregular stringers containing minor pyrite, galena, and sphalerite.

The hole hit black tuff and argillite at 36.89 to 44.51 m.

The hole was stopped at 44.51 m.

Figure 9 shows the geological section for DDH - 2006-FR - 4 to 8 and 14 to 15.

FR-2006-8

At 0 - 17.3 m the hole hit grey porphyritic intrusive with minor chlorite alteration.

From 17.38 to 33.23 m the hole intersected interbedded black tuff and argillite with 5-7 % quartz carbonate stringers.

At 33.23 to 38.72 m the hole intersected intensely altered porphyritic intrusive. In this section from 38.11 to 38.72 m the hole hit the Moonlight vein containing tetrahedrite, chalcopyrite, galena, and sphalerite.

From 38.72 to 44.82 m the hole encountered dark grey to black tuff with minor interbedded argillite.

At 44.82 to 67.38 the hole intersected grey porphyritic intrusive with zones of andesite tuff interbedded with argillite.

The hole was stopped at 67.38 m.

Figure 9 shows the geological section for DDH - 2006-FR - 4 to 8 and 14 to 15.

FR-2006-9

Page 23

From 0.91 to 22.26 m the hole hit weakly carbonate – chlorite altered tuff.

At 22.26 to 30.03 m the hole intersected green weakly carbonate – chlorite altered porphyritic intrusive.

From 30.03 to 38.41 m the hole hit aphanitic black tuff and fine grained green andesite tuff.

At 38.41 to 39.94 m the hole hit the Moonlight vein containing minor tetrahedrite and galena.

From 39.94 to 51.83 m the hole hit interbedded black tuff and green andesite tuff.

The hole was stopped at 51.83m.

Figure 10 shows the geological section for DDH – 2006-FR -9-13.

FR-2006-10

From 1.5 to 10.37 m the hole intersected green andesite tuff with 2-3 % quartz carbonate veins.

At 10.37 to 19.51 m the hole intersected grey – green porphyritic containing 5-10 % quartz carbonate stringers.

The hole hit porphyritic intrusive with weak to strong carbonate alteration containing narrow quartz veins with minor sphalerite and trace galena at 19.51 to 21.10 m.

From 22.1 to 31.55 m the hole intersected grey – green porphyritic intrusive.

At 31.55 to 37.20 m the hole encountered interbedded black tuff and argillite.

From 37.02 to 42.99 m the hole hit intensely carbonate altered andesite tuff. Within this interval from 37.96 to 38.26 m the hole hit the Moonlight vein containing sphalerite, galena, and chalcopyrite.

At 42.99 to 51.52 m the hole hit green andesite tuff.

The hole hit black tuff and argillite at 51.52 to 59.15 m.

Page 24

The hole was stopped at 59.15 m.

Figure 10 shows the geological section for DDH - 2006-FR -9-13.

FR-2006-11

From 0.91 to 6.04 m the hole hit grey porphyritic intrusive carbonate – chlorite altered.

At 6.40 to 8.84 m the hole hit grey andesite tuff containing 2-3 % quartz carbonate stringers.

The hole hit aphanitic black tuff containing 1-2 % quartz carbonate stringers at 8.84 to 14.33 m.

From 14.33 to 16.46 m the hole hit grey andesite tuff with local carbonate alteration.

At 16.46 to 19.05 m the hole hit grey porphyritic intrusive that is carbonate – chlorite altered.

The hole intersected aphanitic black tuff containing 1-2% quartz stringers at 19.05 to 22.87 m.

From 22.87 to 28.96 m the hole encountered grey andesite tuff.

At 28.96 to 34.30 m the hole hit weakly carbonate – chlorite altered porphyritic intrusive.

From 34.30 to 43.90 m the hole hit intensely carbonate porphyritic intrusive. Within this zone at 36.89 to 39.33 the hole hit the Moonlight vein containing chalcopyrite, galena and tetrahedrite.

At 43.90 to 62.20 the hole encountered grey andesite tuff.

The hole was stopped at 62.20 m.

Figure 10 shows the geological section for DDH – 2006-FR -9-13.

FR-2006-12

At 1.83 to 5.18 m the hole hit green andesite tuff with 2-3% quartz carbonate stringers.

From 5.18 to 13.11 m the hole intersected light green porphyritic intrusive.

Black tuff was intersected at 13.11 to 18.90 m.

Page 25

From 18.90 to 25.30 m the hole intersected grey porphyritic intrusive with minor quartz carbonate stringers.

At 25.30 to 38.87 m the hole intersected interbedded black tuff and argillite.

The hole intersected the Moonlight vein containing 2-3% sulphides consisting of minor galena, chalcopyrite, tetrahedrite, and sphalerite from 38.87 to 40.40 m.

At 40.40 to 45.43 m the hole intersected black tuff and argillite.

From 45.43 to 47.87 m the hole intersected porphyritic intrusive.

The hole was stopped at 47.87m.

Figure 10 shows the geological section for DDH – 2006-FR -9-13.

FR-2006-13

At 0-16.6 m the hole intersected grey porphyritic intrusive with 4-5 % quartz carbonate.

From 16.16 to 32.32 m the hole encountered dark grey andesite tuff interbedded with black argillite.

From 32.32 to 38.26 m the hole hit intensely carbonate altered tuff. Within the zone at 37.80 to 38.26 m the hole encountered the Moonlight vein containing galena, chalcopyrite and tetrahedrite.

At 38.26 to 51.52 m the hole intersected grey andesite tuff interbedded with minor black argillite.

The hole hit porphyritic intrusive with trace pyrite at 51.52 to 57.93 m.

The hole was stopped at 57.93 m.

Figure 10 shows the geological section for DDH – 2006-FR -9-13.

FR-2006-14

At 0 to 10.8 m the hole intersected interbedded black tuff and argillite.

Page 26

From 10.8 to 13.41 m the hole hit green grey porphyritic intrusive.

The hole hit black argillite at 13.41 to 15.70 m.

From 15.70 to 19.97 m the hole intersected grey porphyritic intrusive.

At 19.97 to 54.57 m the hole intersected black argillite.

From 54.57 to 57.93 m the hole intersected porphyritic intrusive.

At 57.93 to 67.07 m the hole intersected black argillite with barite stringers.

From 67.07 to 67.99 m the hole intersected porphyritic intrusive.

The hole intersected with brecciated argillite with porphyritic intrusive fragments in the argillite at 67.99 to 73.93 m.

At 73.93 to 81.0 m the hole hit sericite altered grey andesite tuff.

The hole was stopped at 81.0 m.

Figure 9 shows the geological section for DDH -2006-FR -4 to 8 and 14 to 15.

FR-2006-15

From 1.83 to 3.05 m the hole hit green andesite tuff.

At 3.05 to 15.85 m the hole hit interbedded argillite and black volcanic sandstone with minor barite.

From 15.85 to 22.10 m the hole intersected grey porphyritic intrusive that is highly faulted.

At 22.10 to 25.30 m the hole intersected argillite interbedded with black volcanic sandstone.

From 25.30 to 28.05 m the hole intersected porphyritic intrusive.

At 28.05 to 97.56 m the hole intersected interbedded argillite and black volcanic sandstone.

Page 27

From 97.56 to 98.48 m the hole encountered green sericite altered andesite tuff.

From 98.48 to 103.05 m the hole hit strongly brecciated argillite and large intervals of clay gouge.

At 103.05 to 106.40 m the hole hit strongly silicified and sericite altered breccia stockwork in andesites.

From 106.40 to 107.16 m the hole hit argillite with clay gouge.

At 107.16 to 109.76 m the hole intersected silicified breccia stockwork.

From 109.76 to 110.67 m the hole intersected argillite and clay gouge.

From 110.67 to 116.77 m the hole hit silicified breccia stockwork.

At 116.77 to 125.30 m the hole encountered a quartz breccia consisting of angular quartz clasts within an argillite matrix.

From 125.30 to 133.08 m the hole intersected a green porphyritic intrusive.

At 133.08 to 135.07 m the hole intersected weakly silicified black argillite.

From 135.67 to 138.41 m the hole intersected porphyritic black intrusive.

At 138.41 to 148.48 m the hole intersected black argillite interbedded with volcanic sandstone.

The hole was stopped at 148.48 m.

Figure 9 shows the geological section for DDH - 2006-FR - 4 to 8 and 14 to 15.

Assay results greater than 34 g/t silver are plotted on the figures and are listed in the section below. Tabulated assays for the core from the drilling are as follows:

Table 2 Significant Silver Results

	From	То	Width	Au	Ag	Cu	Pb	Zn

Page 28

DDH	(m)	(m)	(m)	g/t	g/t	%	%	%
FR-1	24.70	25.61	0.91	0.01	132.6	0.009	0.26	0.34
FR-1	47.87	49.39	2.44	0.01	39.6	0.008	0.15	0.17
FR-1	60.67	61.89	1.22	0.01	98.8	0.003	0.11	0.15
FR-1	158.54	160.06	1.52	0.01	153.9	0.006	0.12	0.51
FR-2	50.91	63.11	12.2	0.022	40.5	0.011	0.24	1.04
FR-3	28.96	32.01	3.05	0.01	41.8	0.009	0.08.	0.05
FR-6	35.06	36.89	1.83	0.19	1412	0.303	0.09	0.44
FR-8	37.8	38.72	0.92	0.11	200	0.097	0.84	0.23
FR-9	38.41	39.94	1.53	0.21	228.7	0.345	0.25	0.15
FR-12	37.34	40.4	3.06	0.085	227.75	0.051	1.12	0.31

Figure 11 shows the assay section for DDH 2006-FR-1 to 3 inclusive. Figure 12 shows the assay section for DDH 2006-FR- 4 to 8 and 14-15. Figure 13 shows the assay section for DDH 2006-FR-10 - 13. Best silver values were obtained on the Moonlight vein in DDH 2006-FR-6 which yielded 1.83 meters of 0.19 g/t Au, 1412 g/t Ag, 0.303 % Cu, 0.09 % Pb and 0.44 % Zn. Best silver value in the Coates showing was 0.91 m of 0.01 g/t Au, 132.6 g/t Ag, 0.09 % Cu, 0.26 % Pb and 0.34 % Zn.

Analytical procedures for assays are shown in Appendix I. Complete drill logs with assay results for DDH-2005-FR 1-15 inclusive are located in Appendix II. Complete assay results for the

Page 29

drilling are located in Appendix III while Appendix VI shows the calculations for each drill hole with widths and assays used in determining Table 2.

GEOCHEMISTRY

Introduction

Reconnaissance rock samples were taken from the area of the Lilianne vein. The location of the vein is shown in figure 14 at a scale of 1: 5,000 in relation to the claim lines.

Altogether 140 rock samples were taken: 33 bedrock grab and 107 float. Locations for the all samples were located by reference to GPS locations.

Field Procedure and Laboratory Technique

Rock samples were taken in the field with a prospector's pick and collected in standard plastic sample bag. Grab samples were taken to ascertain character of mineralization at any specific locality. These samples consisted generally of three to ten representative pieces with total sample weight ranging between 0.5 to 2.0 kgs. Complete descriptions of the rock samples, in terms of type, noted mineralization and relationship to nearby features are located in Appendix V.

All rock samples were analyzed by Assayers Canada, both in Vancouver, British Columbia. Rock samples were first crushed to minus 10 mesh (70 % of sample) using jaw and cone crushers. Then 250 grams of the minus 10-mesh material was pulverized to minus 150 mesh using a ring pulverizer. A modified Aqua Regia solution is added to each sample and leached for 1 hour at greater than 95 degrees Celsius. The resulting solution was then analyzed by atomic absorption. The analytical results were then compared to prepared standards for the determination of the absolute amounts. For the determination of the remaining trace and major elements Inductively Coupled Argon Plasma (ICP) was used. In this procedure a 0.5-gram portion of the minus 140-mesh material is digested with aqua regia for 1 hour at 95 degrees Celsius and made up to a volume of 20 mls prior to the actual analysis in the plasma. Again the absolute amounts were determined by comparing the analytical results to those of prepared standards. Appendix I has the methods and specifications description as supplied by Assayers Canada.

Appendix VI has the complete analyses results.

Statistical Treatment

Page 30

No statistical treatment of the geochemical data was undertaken.

Anomalous Zones

Rock geochemical sampling was principally restricted to float and bedrock sampling of any identified mineralized rocks, in the area of the Lilianne vein.

Work showed that the Lilianne vein was at least 600 meters long with strong gold-silver values. Best results included 236.6 g/t Au, 8108 g/t Ag, 11.24 % Cu, 5.95 % Pb and 13.4 % Zn. Sampling was also successful in outlining a number of parallel splays to the main Lilianne vein.

Results of the sampling indicate a strong correlation between high copper values and high gold values.

Figures 15 and 16 show the assay values and sample locations for the geochemical samples.

Trenching and drilling is recommended for the vein in order to test for width, strike length and gold-silver tenor.

CONCLUSIONS

- 1. The FR property is located about 42 kilometers north of Stewart, British Columbia in the Skeena Mining Division. The property covers an area of Hazelton pyroclastic volcanic rocks that have been folded into an anticline along American Creek.
- 2. The property contains approximately 7675 hectares within 21 claims.
- 3. Three main types of mineralization occur on the property consisting of the following:
 - a. Replacement type mineralization with quartz-carbonate-barite with sulfides consisting of sphalerite, galena, chalcopyrite, pyrite and greenockite.
 - b. Quartz veins with abundant siderite exhibiting strong manganese stain and containing chalcopyrite, pyrite, galena and sphalerite as well as minor fine arsenopyrite and tetrahedrite.
 - c. Massive sulfide stringers and veins with galena, sphalerite, chalcopyrite, pyrite, and tetrahedrite in strongly carbonate altered rocks.

Page 31

- 4. The main mineral showings outlined to date consist of the Barite and Coates in the replacement type, the Moonlight in the massive sulfide variety and the Lilianne and Virginia K. 5 in the sulfide bearing quartz type.
- 5. During the period July 15, to September 30, 2006, Mountain Boy Minerals Ltd and Pinnacle Mines Ltd conducted an exploration program on the FR 1 and 4 claims in the central portion of the property consisting of geochemical sampling along the Lilianne vein and diamond drilling to test the silver tenor of the Moonlight and Coates showing.
- 6. A total of 1307.61 meters of BTW drill core was completed in 15 separate drill holes from 2 different pads. Best silver values were obtained on the Moonlight vein in DDH 2006-FR-6 which yielded 1.83 meters of 0.19 g/t Au, 1412 g/t Ag, 0.303 % Cu, 0.09 % Pb and 0.44 % Zn. Best silver value in the Coates showing was 0.91 m of 0.01 g/t Au, 132.6 g/t Ag, 0.09 % Cu, 0.26 % Pb and 0.34 % Zn.
- A total of 140 rock geochemical samples were collected from the area of the Lilianne vein. Work showed that the vein was at least 600 meters long with strong gold-silver values. Best results included 236.6 g/t Au, 8108 g/t Ag, 11.24 % Cu, 5.95 % Pb and 13.4 % Zn.
- 8. Based on the favorable results in the 2006 work on the Lilianne vein, an exploration program involving further prospecting, trenching, and diamond drilling is recommended for the property. Expected cost of the above programs is approximately \$250,000.
- 9. Expected cost of the program is approximately \$300,000.

RECOMMENDATIONS

The recommended program is outlined as follows:

1. **Prospecting**

Prospecting should be carried out on any extension to the Lilianne vein

2. <u>Geochemical Surveys</u>

Further rock geochemistry is recommended particularly rock chip sampling in areas of known anomalous metal values and/or newly discovered zones.

Page 32

3. Trenching

.....

I

L

ſ

-

-

Trenching using a small excavator and/or explosives should test along strike of the Lilianne vein.

Trenching would also include any newly discovered mineralization.

4. Diamond drilling

Diamond Drilling is recommended to complete 1000 meters of drilling along the Lilianne vein to test for vein width and gold-silver tenor.

Estimated Cost of the Program

Geochemical Sampling	\$11,600.00
2 geologists @ \$800.00/day for 10 days -\$8,000,00	
2 assistants @ \$360.00/day for 10 days - \$3,600.00	
Helicopter and associated trenching	
Helicopter - 70 hours @ \$1200.00/hour- \$84,000.00)
1000 Rock Samples @ \$25.00 All Inclusive-\$25,00	
2 geologists @ \$800.00/day for 20 days -\$16,000,00	
2 assistants @ \$360.00/day for 20 days - \$7,200.00	
	\$132,200.00
Diamond Drilling	
1000 meters @ \$75,000.00/meter	\$75,000.00
Accommodation	
120 man days @ \$ 60.00/day	\$7,200.00
Vehicle rental	\$5,000.00
Mob/Demob	\$6,000.00
Consumables (plastic bags, fuel, explosives, etc.)	\$3,000.00
Trenching - drill, compressor rental, excavator	\$30,000.00
Reporting	\$10,000.00
Contingency	\$20,000.00
	\$200 000 00

Total

<u>\$300,000.00</u>

Page 33

<u>REFERENCES</u>

- 1. ALLDRICK, D.J. (1984); "Geological Setting of the Precious Metals Deposits in the Stewart Area", Paper 84-1, Geological Fieldwork 1983, B.C.M.E.M.P.R.
- 2. ALLDRICK, D.J. (1985); "Stratigraphy and Petrology of the Steward Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
- 3. CREMONESE, D. M., Geophysical Report on an Airborne Magnetic and VLF-EM Survey-Kelly 1-4 Claims. B.C.E.M.P.R Assessment Report 17,607.
- 4. DICK, D., McINTOSH, R. AND PARKIN, J., (1987) Report on Field Trip to Virginia K Group.
- 5. B.C.E.M.P.R Assessment Report 16842.
- 6. Golden Glacier resources Inc Prospectus (1988).
- GREIG, C.J., ET AL (1994); "Geology of the Cambria Icefield: Regional Setting for Red Mountain Gold Deport, Northwestern British Columbia", p. 45, Current Research 1994-A, Cordillera and Pacific Margin, Geological Survey of Canada.
- 8. GROVE, E.W. (1971); Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- 9. GROVE, E.W. (1982); "Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 10. GROVE, E.W. (1987); Geology and Mineral Deposits of the Unuk, River-Salmon, River-Anyox, Bulletin 63, B.C.M.E.M.P.R.
- 11. HOUSE, G.D., (1988); Assessment Report on the 1988 Drill Program on the Virginia K 12. Group Of Claims. B.C.E.M.P.R Assessment Report 18,430,
- 13. LISLE, T.E., (1986); Prospecting Report on the Virginia K Property. B.C.E.M.P.R Assessment Report 15,165,
- 14. LISLE, T.E., (1986); Geological Report on the AM-Virginia K Mineral Claims. B.C.E.M.P.R Assessment Report 15,365.

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd. Skeena Mining Division Stewart, British Columbia <u>Report on FR Property</u>

Page 34

15. MURTON, J.W (1987); 1987 Report on the AM 1 \$ 2 and Virginia K Group of Claims.

- 16. VISAGIE, D. A., (1991) Geochemical Report on the Virginia K Group. B.C.E.M.P.R Assessment Report 20,726.
- 17. YACOUB, F. F., and KIHAUHA, A., (1982); Geological, Geochemical and Geophysical Report on the Rich 1, 2, 3 and 4 Claim Group. B.C.E.M.P.R Assessment Report 19,746.

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd: Skeena Mining Division Stewart, British Columbia Report on FR Property

Page 35

CERTIFICATE

I, Edward R. Kruchkowski, geologist, residing at 23 Templeside Bay, N.E., in the City of Calgary, in the Province of Alberta, hereby certify that:

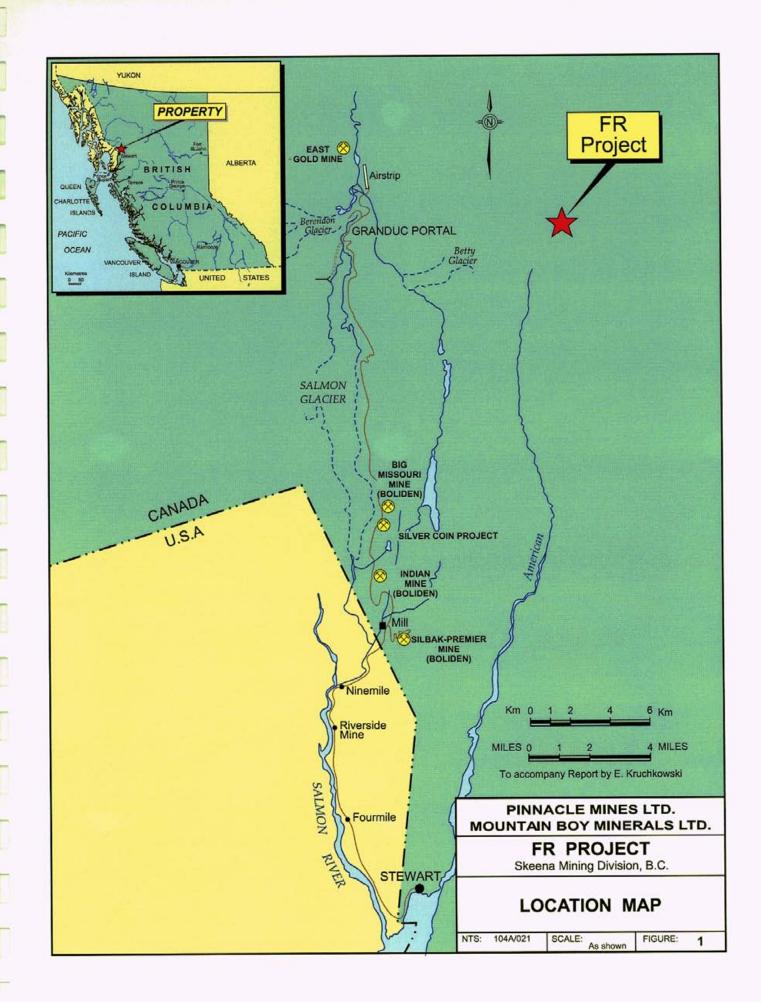
- 1. I received a Bachelor of Science degree in Geology from the University of Alberta in 1972.
- 2. I have been practicing my profession continuously since graduation.
- 3. I am a member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 4. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. I am a consulting geologist working on behalf of Mountain Boy Minerals and Pinnacle Mines Ltd.
- 6. The main source of information has been the geological and sampling programs conducted by the author and others in 2006. The author also has a general knowledge on the Stewart region gained in exploration programs in the period 1969 2006.
- 7. I am familiar with epithermal deposits having visited and worked on these types of deposits in Canada, USA and Mexico and have conducted exploration programs on these type of occurrences in the Stewart region.

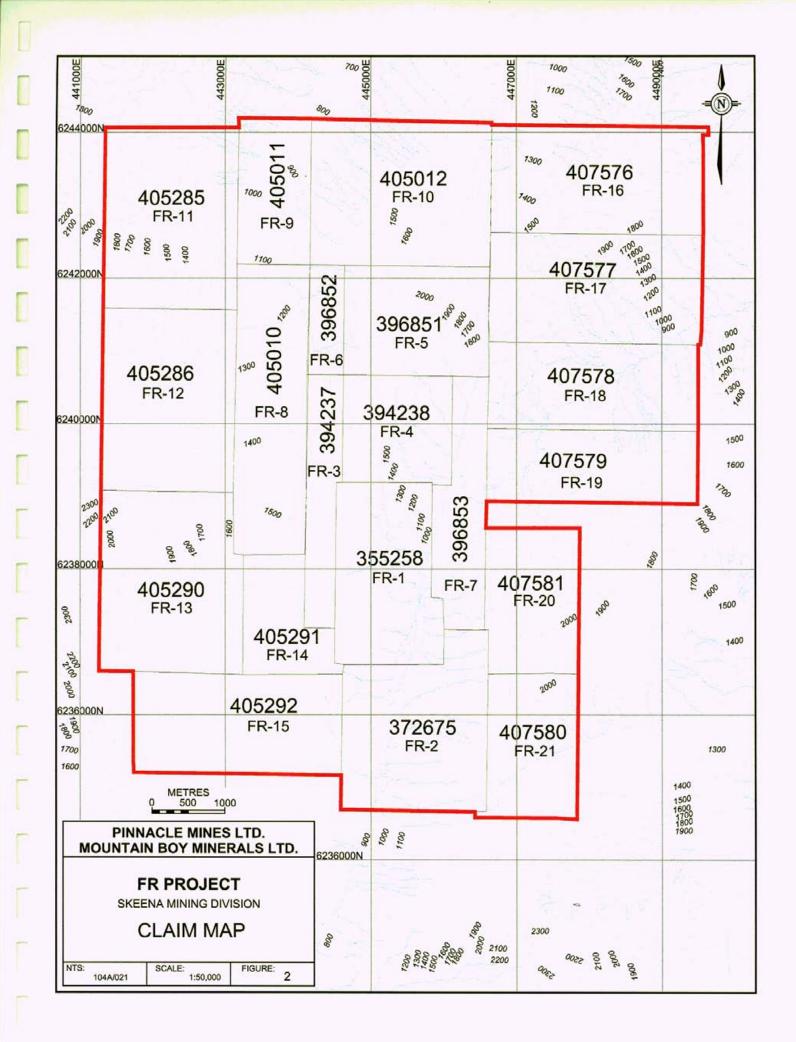
les [

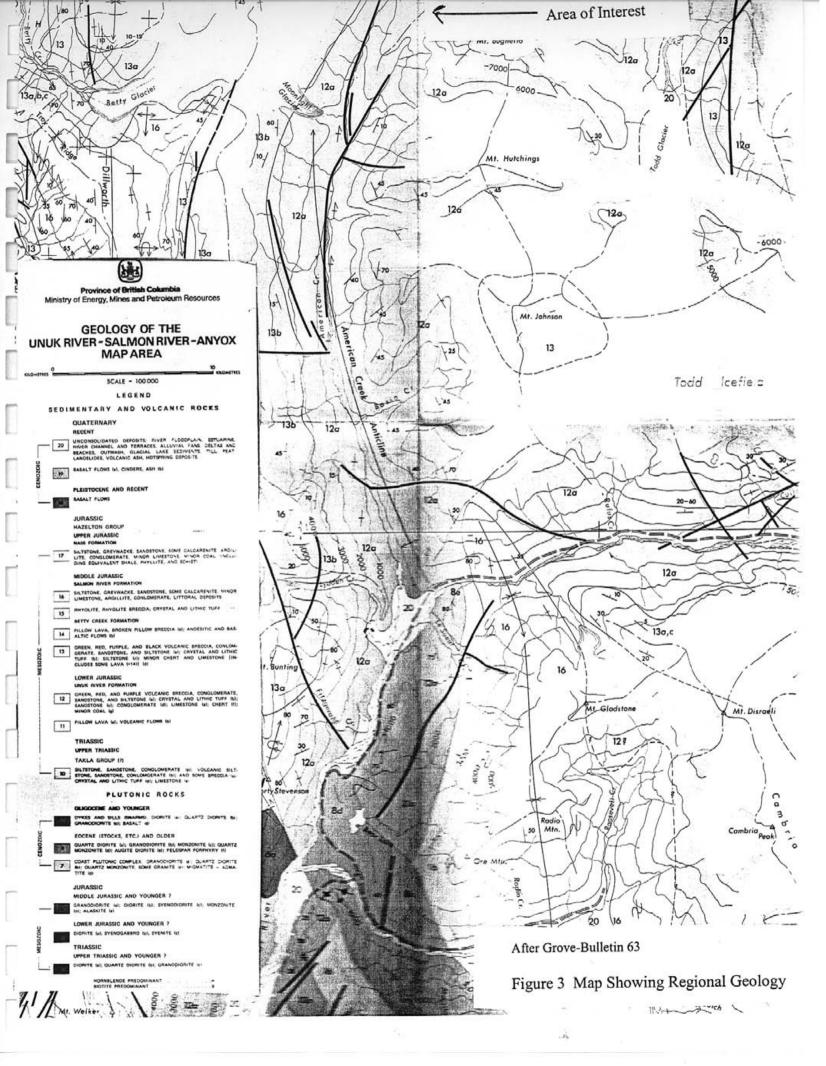
E.R. Kruenkowski, B.Sc.

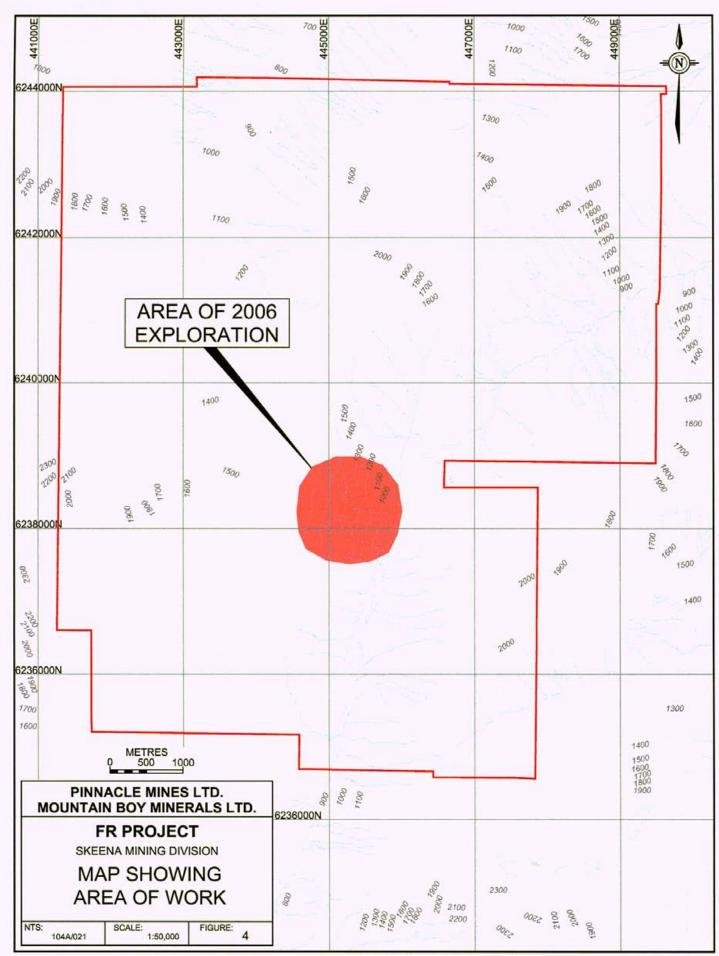
Mountain Boy Minerals Ltd-Pinnacle Mines Ltd. Skeena Mining Division Stewart, British Columbia <u>Report on FR Property</u>

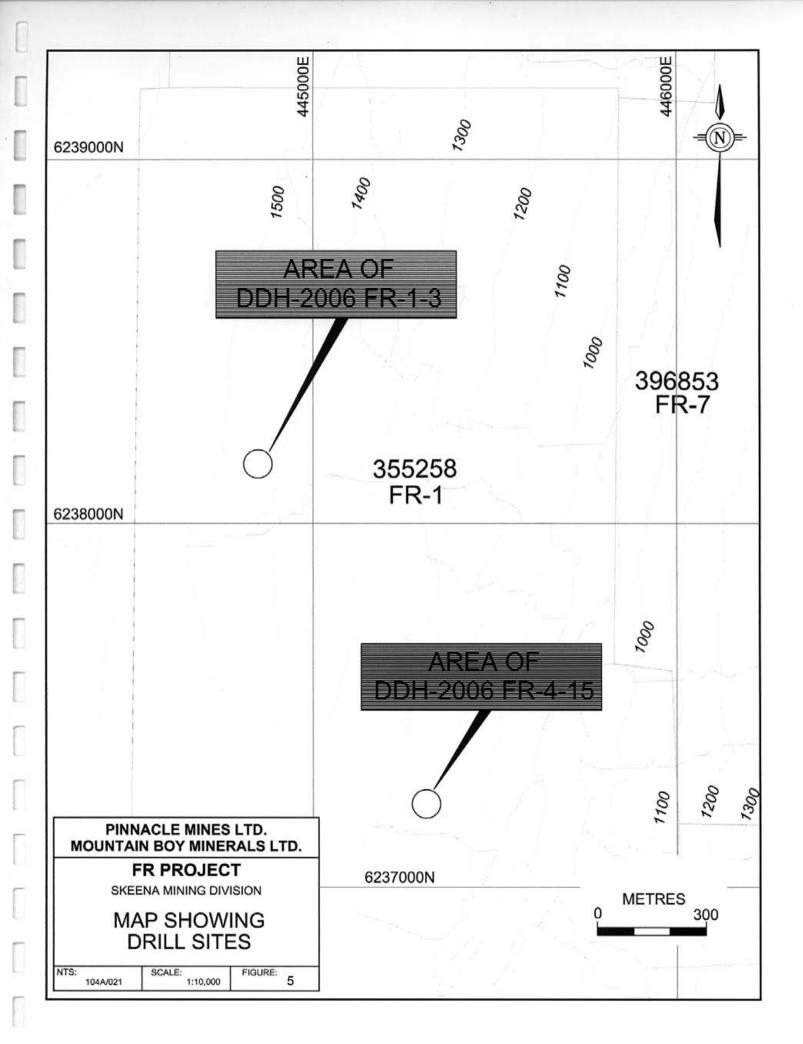
Page 36

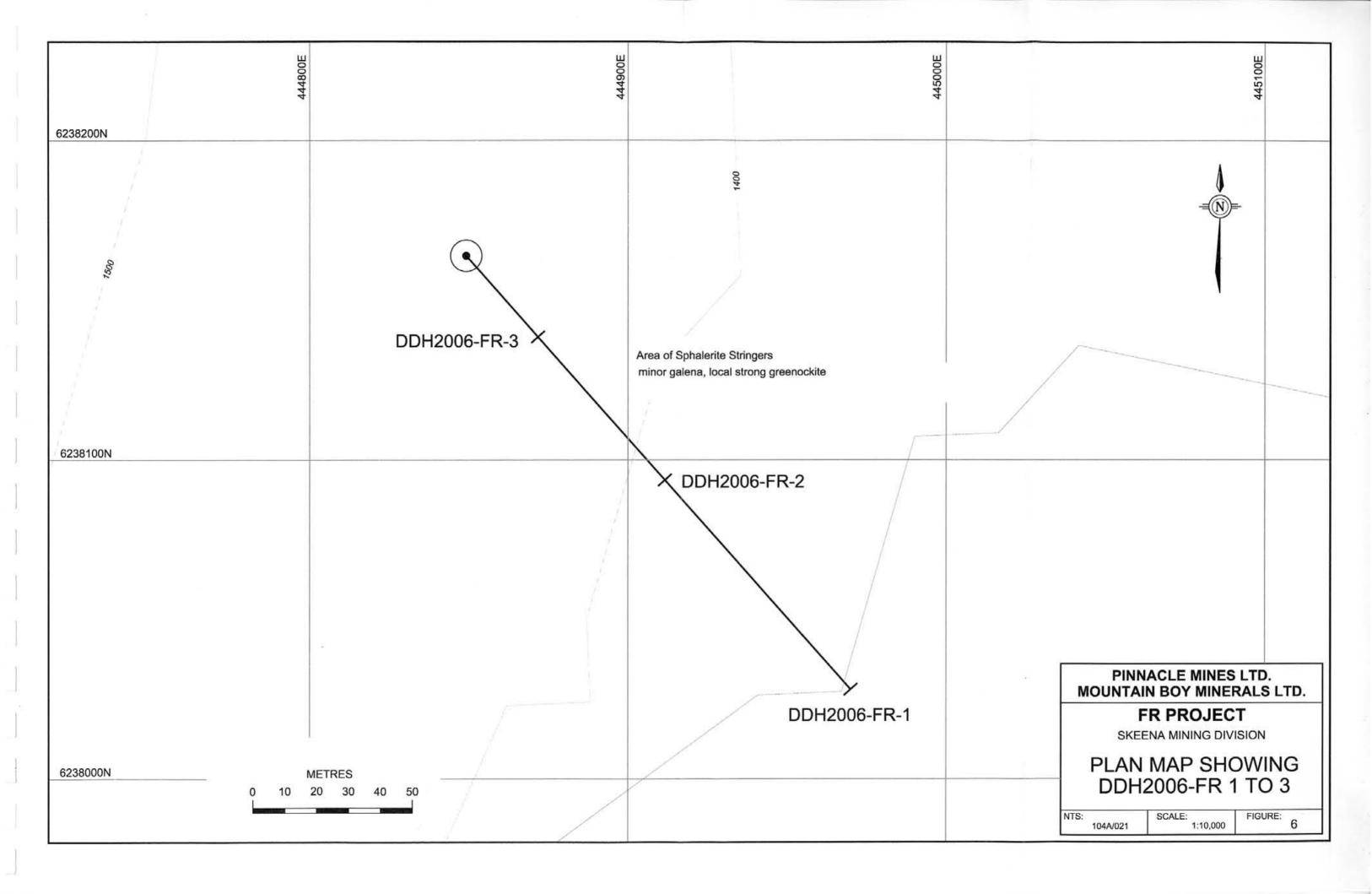

STATEMENT OF EXPENDITURES

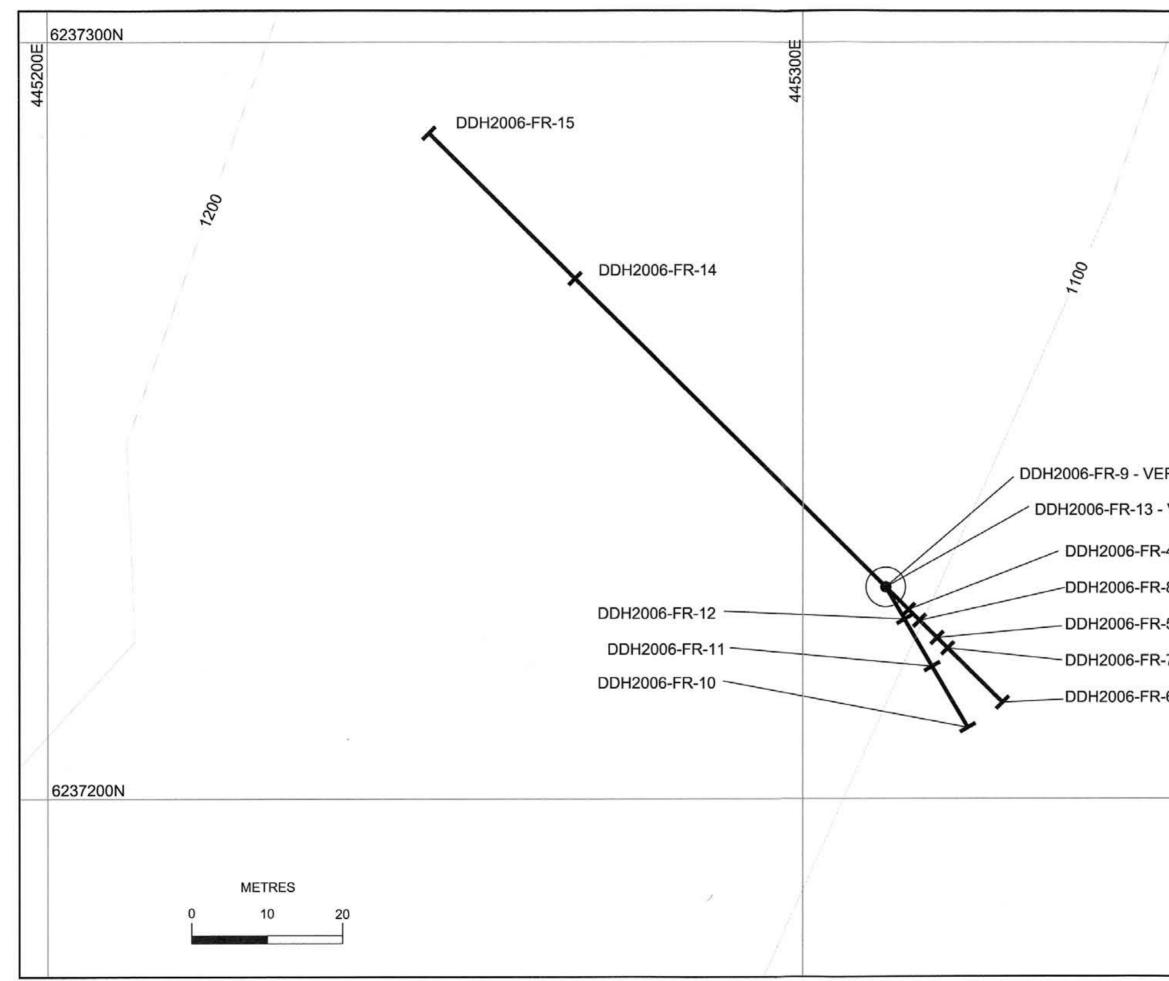

Field PersonnelJuly 15 to September 30, 2006	
E. R. Kruchkowski, geologist 20 days at \$450.00/day	\$9,000.00
Alex Walus, geologist	••••••
5 days @ \$300.00/day	\$1,500.00
Sheila Ballantyne, geologist	
5 days @ \$300.00/day	\$1,500.00
Hugh Samson, Geologist	
10 days @ \$225.00/day	\$2,250.00
Rob Pelkey, geologist	• • - • • • -
20 days @ \$225.00/day	\$4,500.00
R Kasum, operations manager	# < 000 00
20 days at \$300.00/day	\$6,000.00
Kaitlin Cherniwchan, geological assistant	#1 000 00
10 days at \$180.00/day	\$1,800.00
Alexandra Cremonese, geological assistant	¢1 000 00
10 days at \$180.00/day	\$1,800.00
Peter Leigh, geological assistant	\$1 800 00
10 days at \$180.00/day Lou Kamermans, geological assistant	\$1,800.00
10 days at \$180.00/day	\$1,800.00
10 days at \$180.00/day	\$1,000.00
HelicopterHayes Helicopters-contact machine based in Stewart,	B.C.
Crew drop-off/pick-ups-July 15-September 30, 2006 Invoices	\$98,037.97
mvoices	\$90,037.97
Diamond Drilling 1307.61 meters @ \$90.00/m	\$117,684.90
Sample Analysis	\$4,455.94
Diamond Drill Core 191 samples @ \$22.65/sample	\$4,326.15
Rock samples 140@ \$22.65/sample	\$3,171.00
	<i>\$2,171.00</i>
Wood for Drill Pads @ \$1600.00/pad	\$3,200.00
Freight on Samples	\$2,000.00
Core Cutting 5 days @ \$230,00	\$1,150.00
Mob/Demob for crew	\$5,000.00

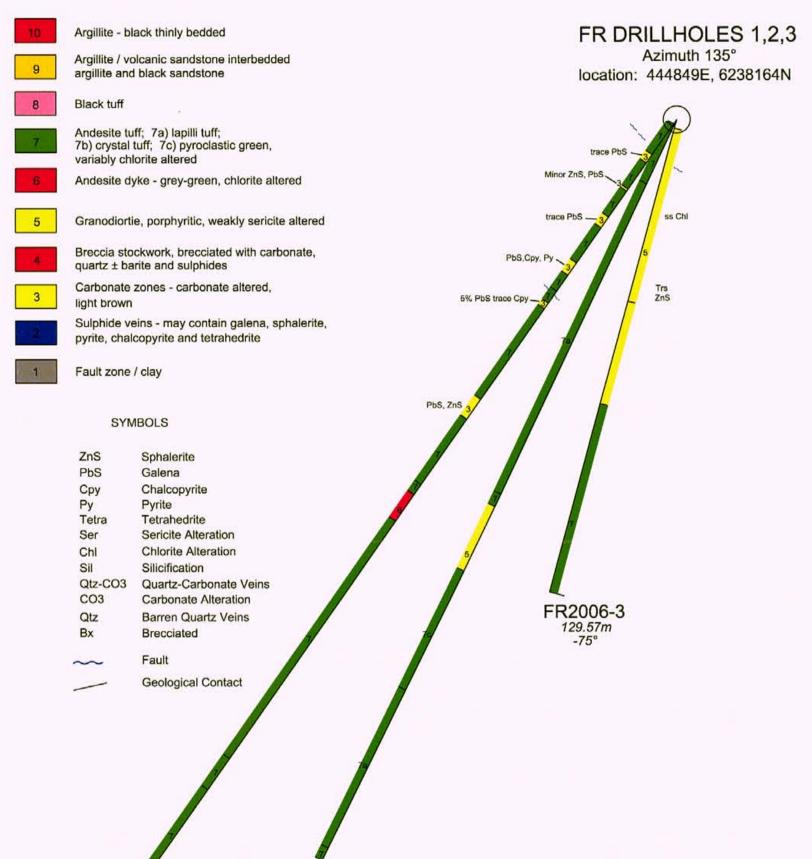

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd. Skeena Mining Division Stewart, British Columbia <u>Report on FR Property</u>

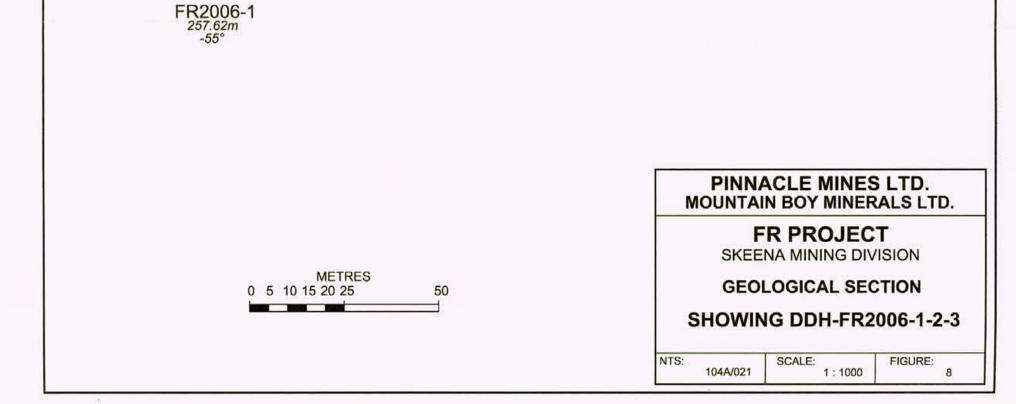

Page 37

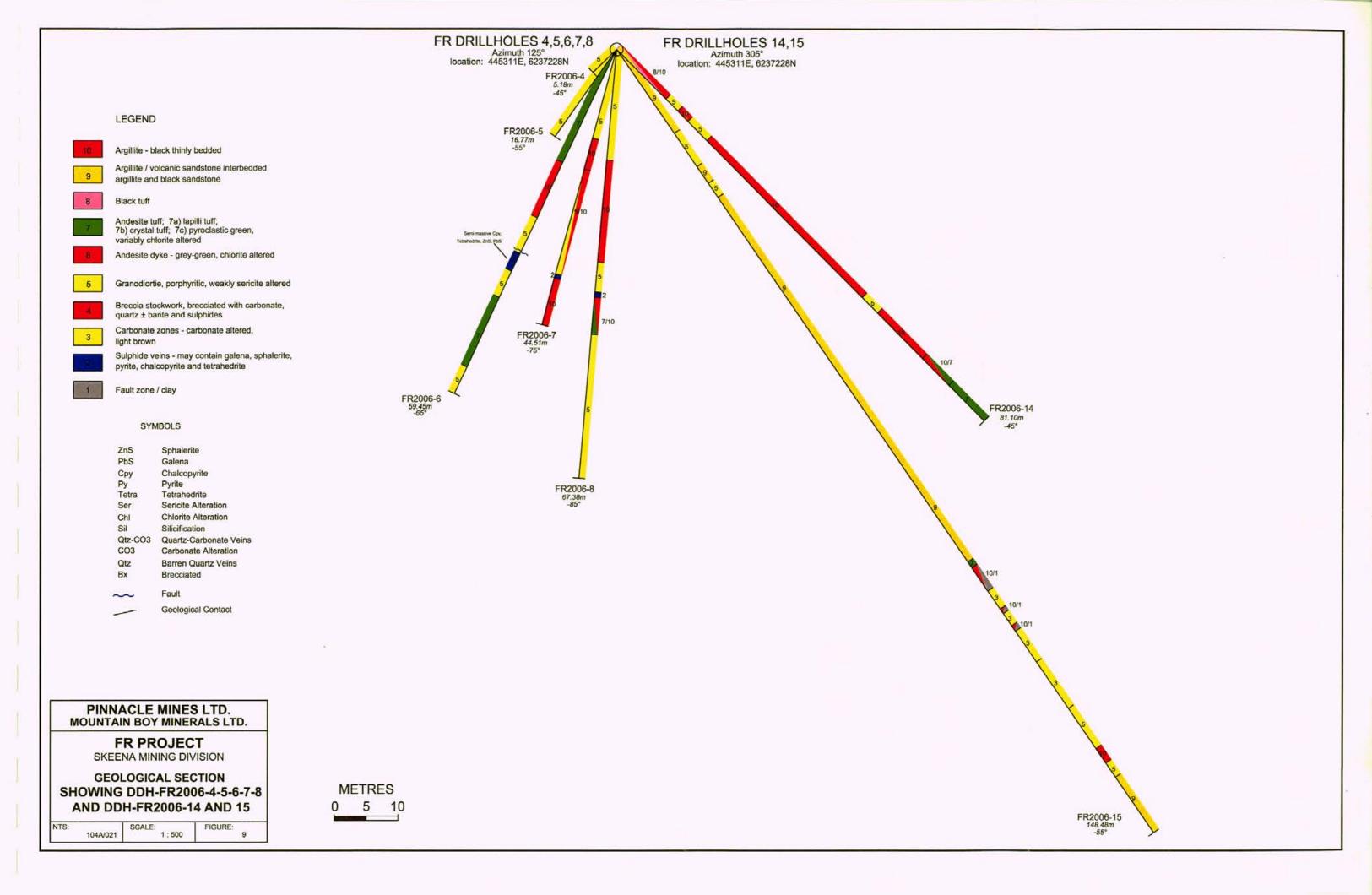

Vehicle Rental		\$2,000.00
20 days @ \$100.00/day Food/Accommodation		\$12,000.00
120 days @\$100/day		<i>Q</i>12,00000
Drafting, as per invoice		\$4526.00
Report writing		\$5,000.00
	Total	<u>\$286,878.80</u>

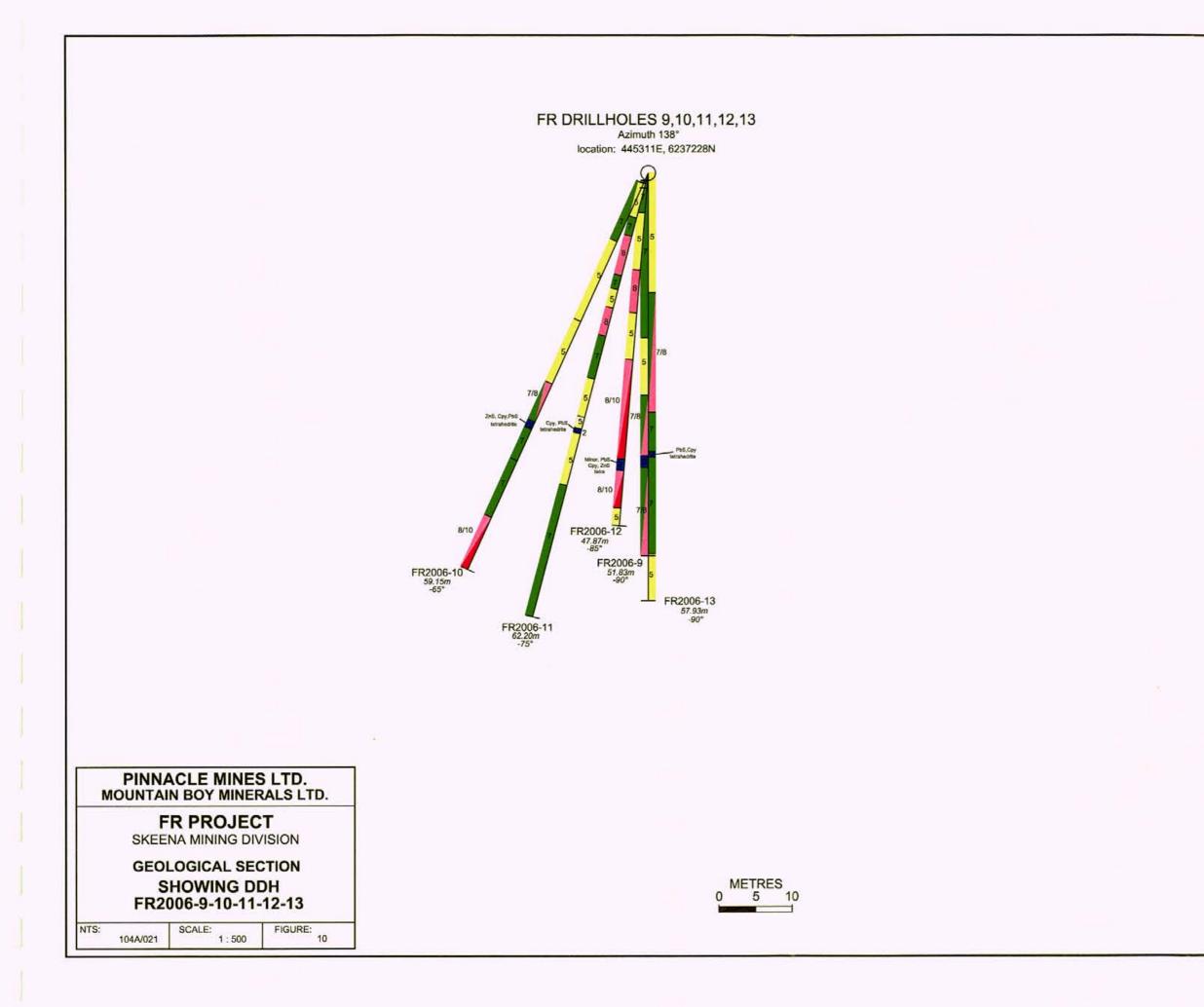









	9
RTICAL	
/ERTIC/	AL.
ł	
3	
5	
5	
5	
5	PINNACLE MINES LTD. MOUNTAIN BOY MINERALS LTD.
5	PINNACLE MINES LTD. MOUNTAIN BOY MINERALS LTD. FR PROJECT SKEENA MINING DIVISION
3	MOUNTAIN BOY MINERALS LTD. FR PROJECT


LEGEND

FR2006-2 218.60M -65°

LEGEND

10	
9	
8	
7	
-5	
5	
4	
3	
1	

Argillite - black thinly bedded

Argillite / volcanic sandstone interbedded argillite and black sandstone

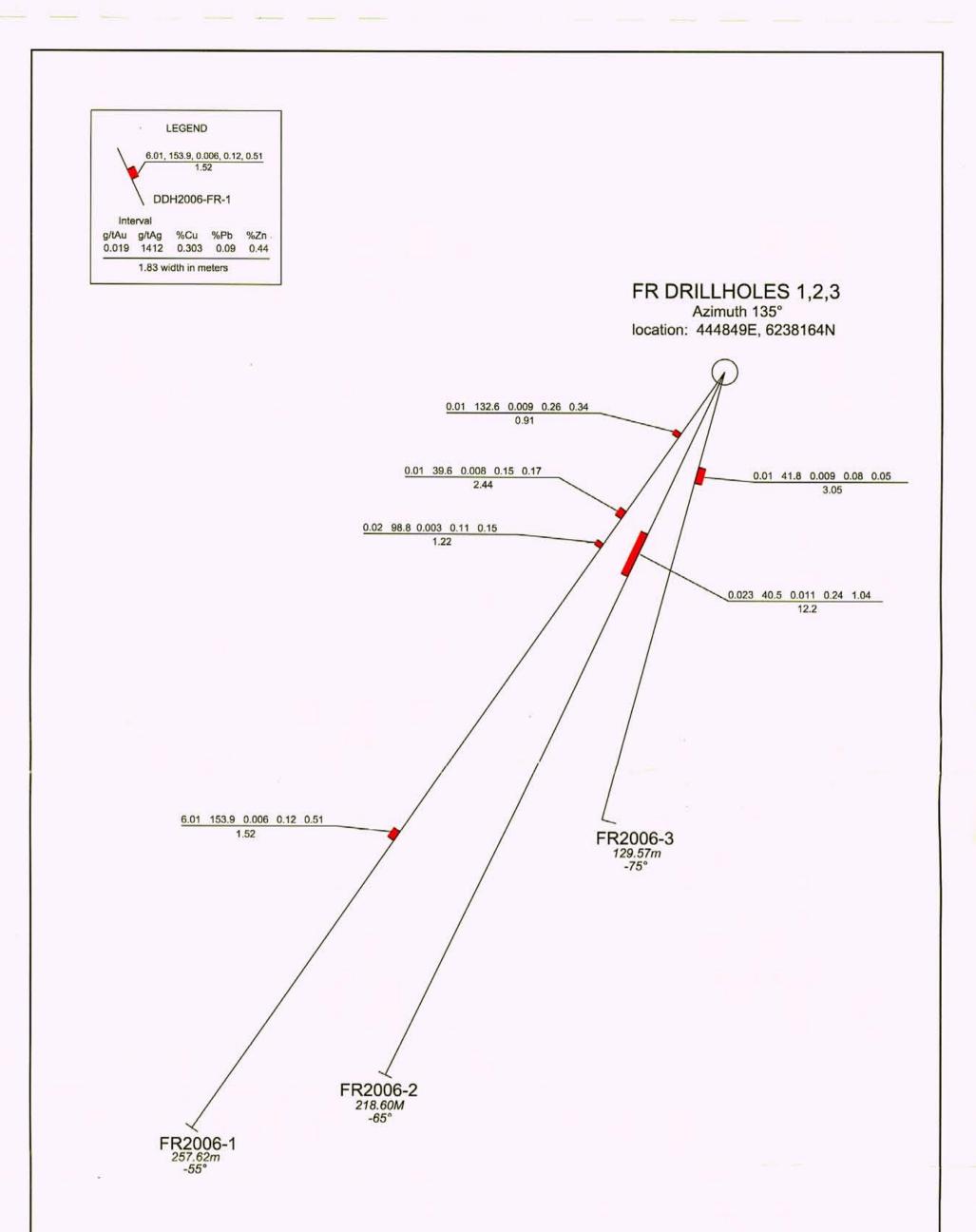
Black tuff

Andesite tuff; 7a) lapilli tuff; 7b) crystal tuff; 7c) pyroclastic green, variably chlorite altered

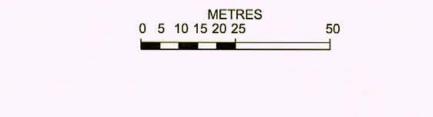
Andesite dyke - grey-green, chlorite altered

Granodiortie, porphyritic, weakly sericite altered

Breccia stockwork, brecciated with carbonate, quartz ± barite and sulphides


Carbonate zones - carbonate altered, light brown

Sulphide veins - may contain galena, sphalerite, pyrite, chalcopyrite and tetrahedrite


Fault zone / clay

SYMBOLS

ZnS	Sphalerite
PbS	Galena
Сру	Chalcopyrite
Py	Pyrite
Tetra	Tetrahedrite
Ser	Sericite Alteration
Chi	Chlorite Alteration
Sil	Silicification
Qtz-CO3	Quartz-Carbonate Veins
CO3	Carbonate Alteration
Qtz	Barren Quartz Veins
Bx	Brecciated
~	Fault
-	Geological Contact

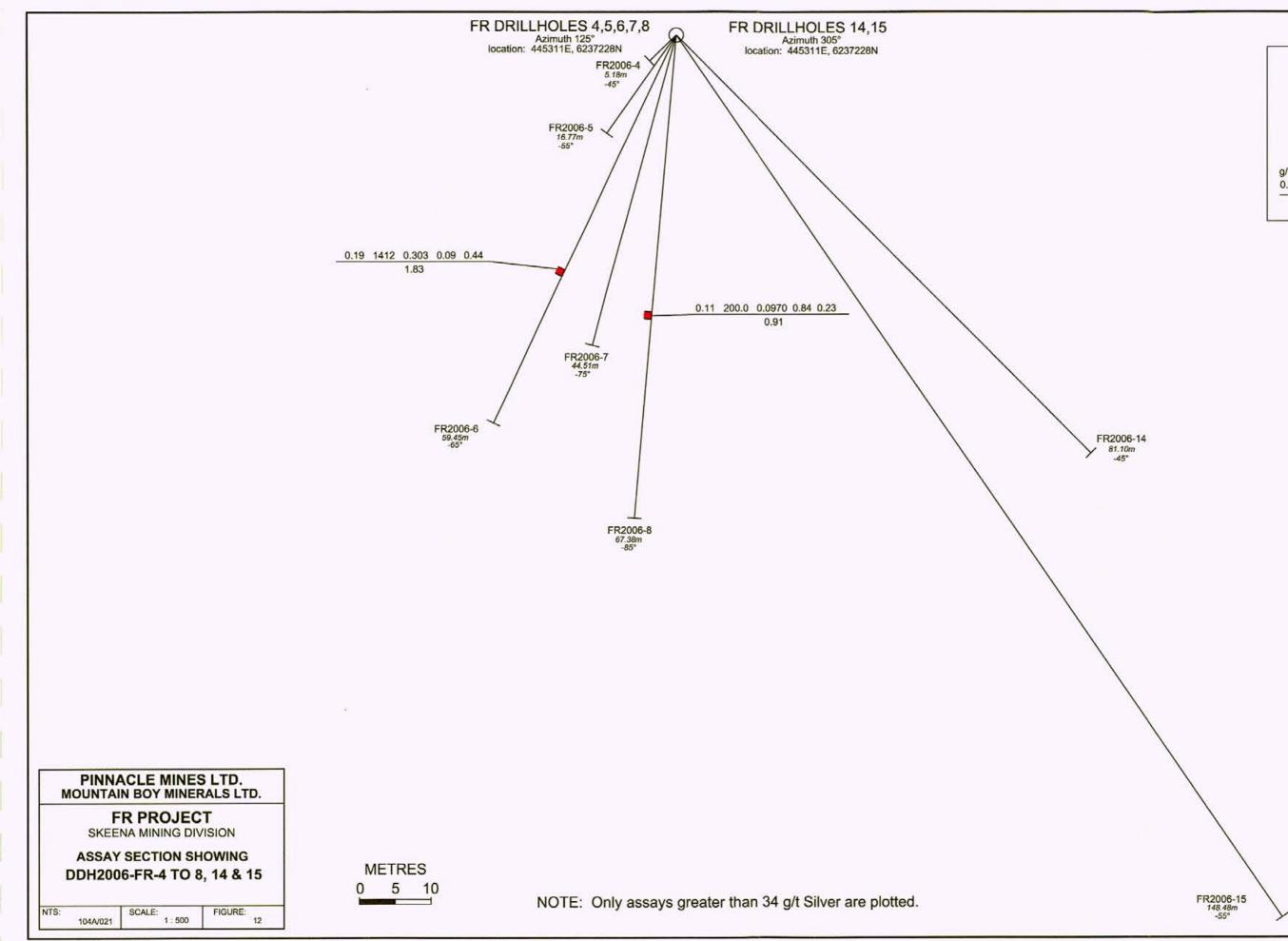
NOTE: Only assays greater than 34 g/t Silver are plotted.

PINNACLE MINES LTD. MOUNTAIN BOY MINERALS LTD.

FR PROJECT

SKEENA MINING DIVISION

GEOLOGICAL SECTION


SHOWING DDH-FR2006-1-2-3

1:1000

SCALE:

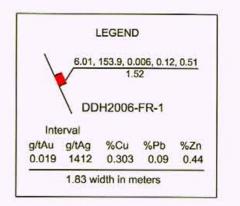
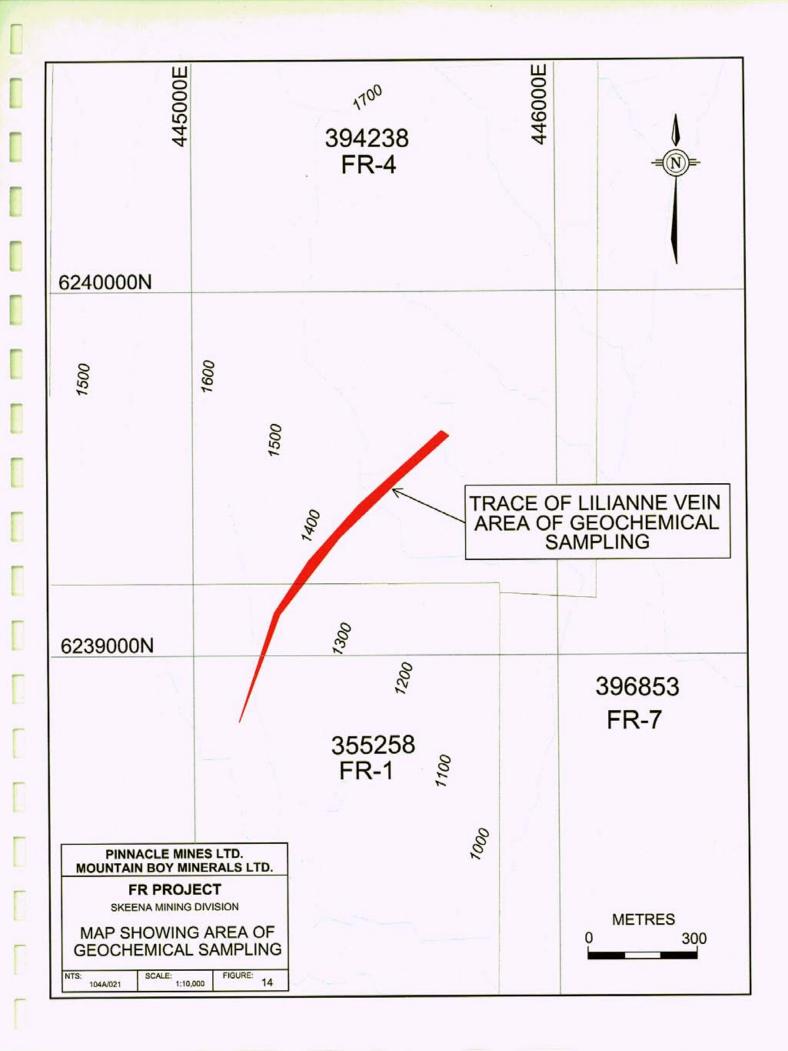
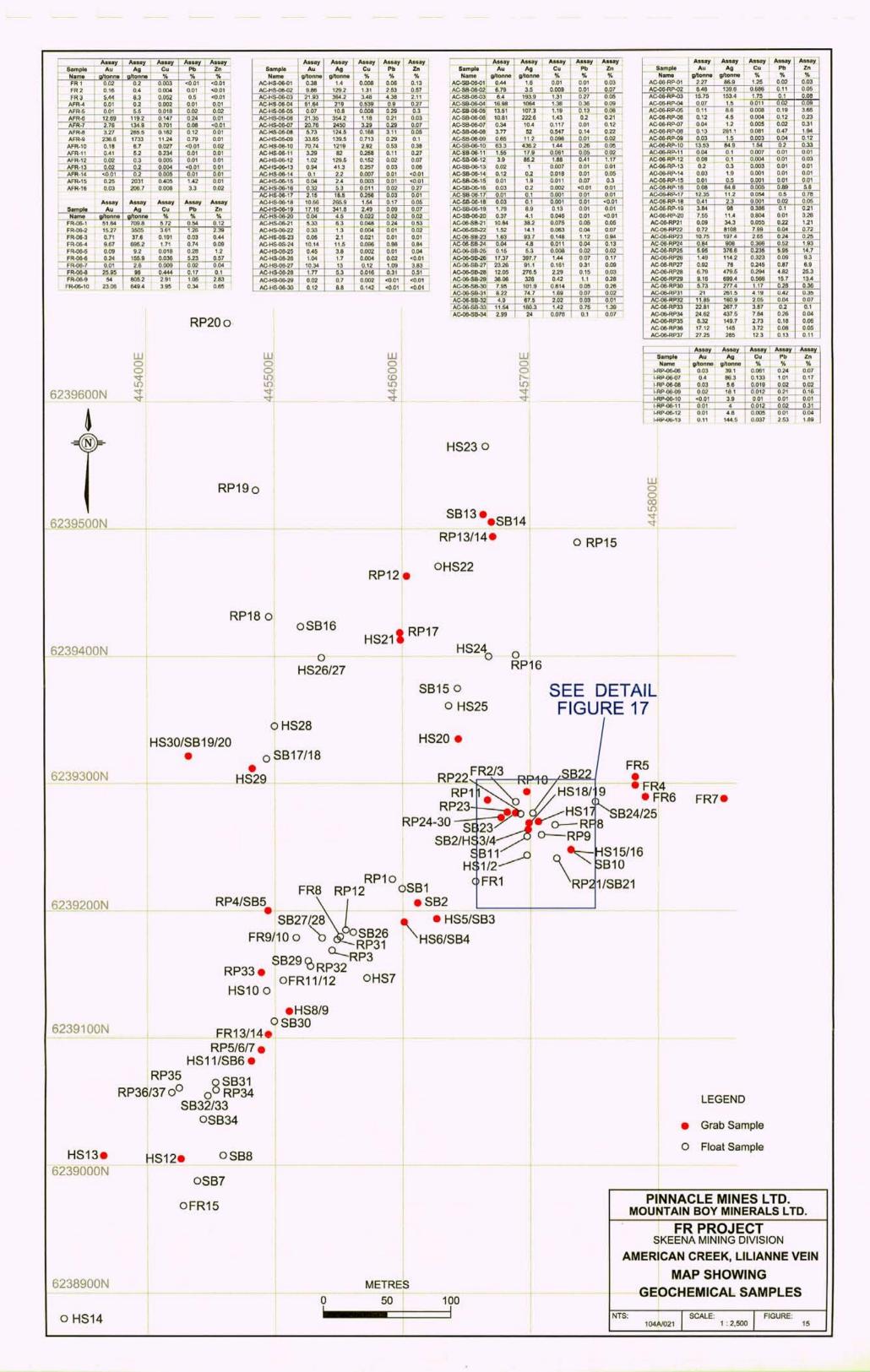
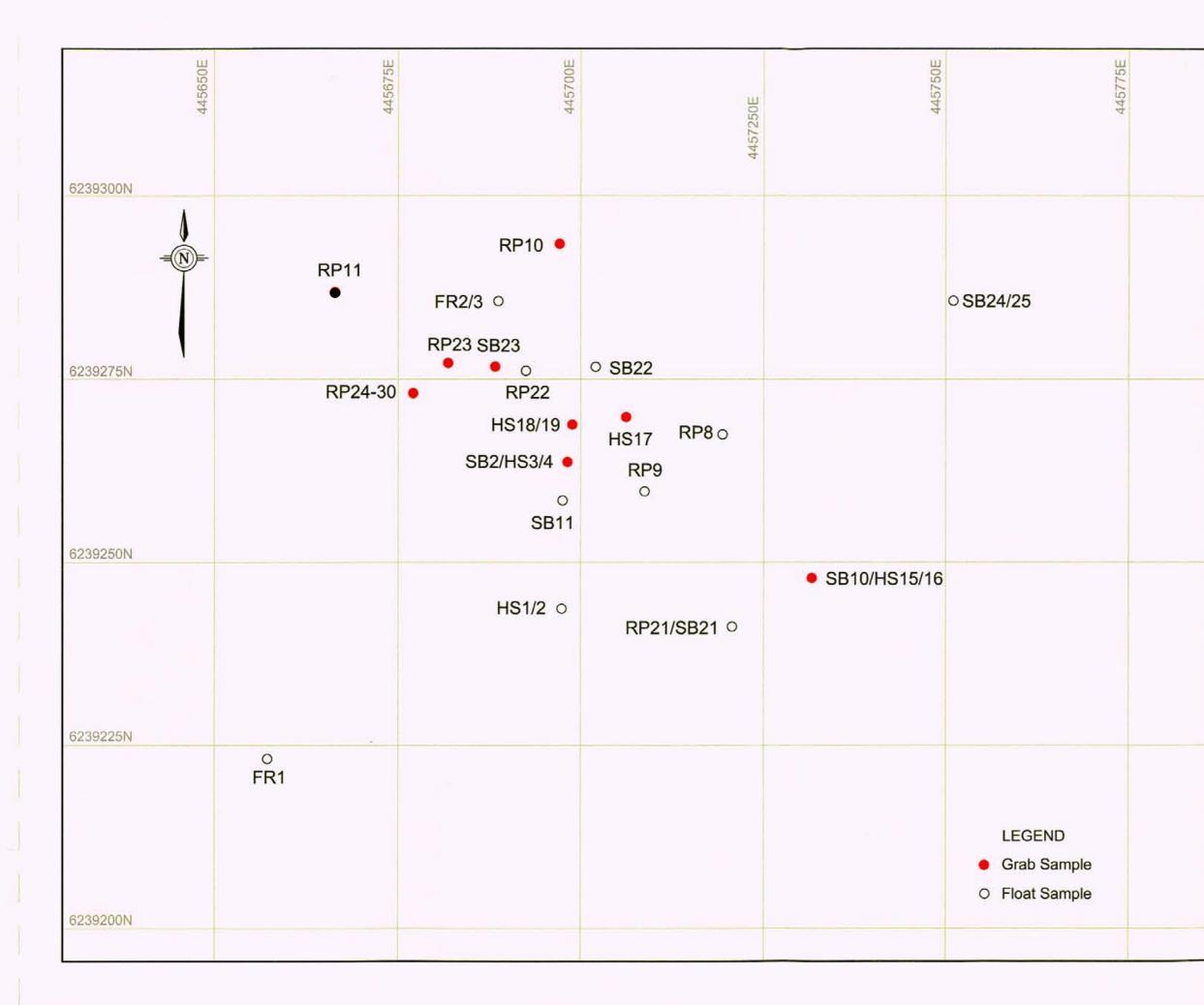

NT	5:
NT	104A/021

FIGURE: 11







Sample Name	Assay	Assay	Assay	Assay	Assay
	Au g/tonne	Ag g/tonne	Cu %	Pb %	Zn %
FR 1	0.02	0.2	0.003	< 0.01	<0.01
FR 2	0.16	0.4	0.004	0.01	<0.01
FR 3	5.44	8.3	0.052	0.5	<0.01
	Assay	Assay	Assay	Assay	Assa
Sample	Au	Assay	Cu	Pb	Zn
Name	g/tonne	g/tonne	%	%	%
FR-06-1	51.64	709.8	5.72	0.54	0.12
FR-06-2	15.27	3505	3.61	1.26	2.39
FR-06-3	0.71	37.6	0.191	0.03	0.44
	Assay	Assay	Assay	Assay	Assay
Sample	Au	Ag	Cu	Pb	Zn
Name	g/tonne	g/tonne	%	%	%
AC-HS-06-01	0.38	1.4	0.008	0.06	0.13
AC-HS-06-02	9.86 21.93	129.2 364.2	1.31	2.53	0.57
AC-HS-06-03 AC-HS-06-04	51.64	219	0.539	0.9	2.11 0.27
AC-HS-06-15	0.04	2.4	0.003	0.01	<0.01
AC-HS-06-16	0.32	5.3	0.003	0.02	0.27
AC-HS-06-17	2.15	18.5	0.256	0.02	0.01
AC-HS-06-18	10.56	265.9	1.54	0.17	0.05
AC-HS-06-19	17.16	341.8	2.49	0.09	0.07
terorenza an	1 2 (V) - 2 -		1 - 1944 M		11 1000
Sample	Assay	Assay	Assay	Assay Pb	Assay
Name	g/tonne	Ag g/tonne	%	%	%
AC-SB-06-02	6.79	3.5	0.009	0.01	0.07
AC-SB-06-03	6.4	193.9	1.31	0.27	0.05
AC-SB-06-10	63.3	436.2	1.44	0.26	0.05
AC-SB-06-11	1.55	17.9	0.061	0.05	0.02
AC-06-SB-21	10.84	38.2	0.075	0.05	0.05
AC-06-SB-22 AC-06-SB-23	1.52	14.1	0.063	0.04	0.07
AC-06-SB-23 AC-06-SB-24	1.63	93.7 4.8	0.148	1.12	0.94
AC-06-SB-24 AC-06-SB-25	and the second sec	5.3	0.008	0.04	0.13
11200000	Assay	Assay	Assay	Assay	Assay
Sample	Au	Ag	Cu	Pb	Zn
Name	g/tonne	g/tonne	%	%	%
AC-06-RP-01	2.27	201.1	1.25	0.02	0.03
AC-06-RP-08	0.13	281.1	0.081	0.47	1.94
AC-06-RP-09 AC-06-RP-10	0.03	1.5 84.9	0.003	0.04	0.12
AC-06-RP-10	0.04	0,1	0.007	0.01	0.03
AC-06-RP21	0.09	34.3	0.055	0.22	1.21
AC-06-RP22	0.72	8108	7.99	0.04	0.72
AC-06-RP23	10.75	197.4	2.65	0.24	0.25
AC-06-RP24	0.84	908	0.366	0.52	1.93
AC-06-RP25	5.95	376.6	0.235	5.95	14.7
AC-06-RP26	1.49	114.2	0.323	0.09	9.3
AC-06-RP27	0.92	76	0.245	0.87	6.9
AC-06-RP28	6.79	479.5	0.294	4.82	25.3
AC-06-RP29 AC-06-RP30	9.16 5.73	699.4 277.4	0.566	15.7	13.4
	0.10			0.20	0.00
12 · · · ·	Assay	Assay	Assay	Assay	Assay
Sample	Au	Ag	Cu	Pb	Zn
Name	g/tonne	g/tonne	%	%	%
I-RP-06-08	0.03	5.6	0.019	0.02	0.02
I-RP-06-09	0.02	18,1	0.012	0.21	0.16
I-RP-06-10	0.01	4	0.012	0.01	0.01
				0.04	0.01
		METR	ES		
Q	10		20		30

APPENDIX I

l

ſ

l

٢

ĺ

1

.

LABORATORY METHODS AND SPECIFICATIONS FOR SAMPLE ANALYSIS

8282 Sherbrooke Street, Vancouver, B.C. Canada V5X 4R6 Tel: 604 327-3436 Fax: 604 327-3423

Procedure Summary:

Gold (Au) Assay Analysis

Element(s) Analyzed:

Gold (Au)

Procedure:

The samples are fluxed, silver is added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved with aqua regia solution, diluted to volume and mixed.

These resulting solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 2 standard deviations of its known or the whole set is re-assayed.

A minimum of 10% of all assays are rechecked, then reported in grams per metric ton (g/tonne).

Detection Limit: 0.01 g/tonne

8282 Sherbrooke Street, Vancouver, B.C. Canada V5X 4R6 Tel: 604 327-3436 Fax: 604 327-3423

Procedure Summary:

Base Metal Assay

Element(s) Analyzed:

Copper, Lead, Silver, Zinc (Cu, Pb, Ag, Zn)

Procedure:

A 1.000 gram sub-sample is weighed from the pulp bag for analysis. Each batch of 30 assays has, three duplicates, two natural standards and a reagent blank included. The samples are digested with HNO_3 , HBr, and HCl. After digestion is complete, extra HCl is added to the flask to bring the concentration of HCl to 25% in solution. This is to prevent precipitation of lead and silver chloride.

The resulting solutions are analyzed on an atomic absorption spectrometer (AAS), using appropriate calibration standard sets.

The natural standard(s) digested along with this set must be within 2 standard deviations of the known or the whole set is re-assayed. If any of the samples assay over the concentration range of the calibration curve, the sample is re-assayed using a smaller sample weight. At least 10% of samples are assayed in duplicate.

Detection limit: 0.1g/tonne for Ag 0.001% for Cu 0.01% for Pb and Zn

APPENDIX II

.

Ĺ

١.

.

Drill Hole Logs - DDH -2006 -FR 1 to 15 inclusive

-				FR DIAMOND D	RILL L	OGS									
DDH #	\$ 2006	-1	Core Size		Logged by:H. Samson, R. Pelkey, and A. Walus										
Azimuti	h 135 d	egrees_	Start Aug 11/2	.006		epth_2									
Dip -5	5 degree	- <u>*</u>	Completion_A			inate 4			8164 N						
				Depth (m)	-						······	_			
	F	teflex Sur	vey	Azimuth (degrees)						·		1			
Elevati	оп			Dip (degrees)											
METI	ERAGE	ROCK TYPE	ROCK, ALTERATION	, MINERALIZATION	SAMP	LE INTER	RVAL(me	eters)		ASS	AY/GEOC	НЕМ			
FROM	TO		STRUCTURE DESCRI	PTION	Sple No.	FROM	то	Width	Au g/t	Ag g/t	Cu %	Pb %	Zn %		
0.00	1.83	Casing/			_										
		Overburden													
		L													
1.83	11.13	Andesite		3-5% quartz-carbonate stringers.	004644	1.83	5.18	3.35	<0.01	0.4	0.001	<0.01	0.01		
	··	Tuff		er, intervals of moderate	4645	5.18	8.23	3.05	< 0.01	0.1	0.001	0.01	0.02		
			sausseritization.		4646	8.23	11.28	3.05	0.01	0.3	0.001	0.03	0.13		
		<u> </u>			4647	11.28	13.41	2.13 0.91	<0.01 0.01	0.2	0.001	< 0.01	0.02		
	····	<u> </u>		z-carbonate banded jasper mm thick at 45 degrees to C.A.	4648	13.41	14.33 15.55	1.22	<0.01	0.1	0.002	0.05	0.07		
		<u> </u>	replacement vein 5-10	mini thick at 45 degrees to C.A.	4649	14.33 15.55	15.55	1.83	<0.01	0.1	0.001	<0.01	0.02		
11.13	11.89	Fault Zone	Marked by fractured o	ore and fault gouge	4650	17.38	20.43	3.05	0.01	0.2	0.002	<0.01	0.02		
11.15		Fuult Lone	indixed by nuclaied c		4652	20.43	24.70		<0.01	0.9	0.001	0.01	0.02		
			At 12.04 - mislatch.		4653	24.70	25.61	0.91	0.01	132.6	0.009				
					4654	25.61	29.57	3.96	0.01	4	0.003	0.01	0.03		
11.89	13.41	Andesite	Same as interval 1.83	to 11.13.	4655	29.57	33.54	3.96	<0.01	6.7	0.003		0.0		
		Tuff			4656	33.54	35.06	1.52	0.01	5.7	0.003		0.02		
					4657	35.06	36.74	1.68	0.01	19	0.006	0.11	0.1		
13.41	15.70	Carbonate	Interval of weak carbo	onate alteration. Banded quartz-	4658	36.74	38.72	1.98	0.01	7.7	0.005				
		Zone	carbonate-jasper vein	s +/- barite (?). 2-3% chlorite,	4659	38.72	41.77	3.05	0.01	7.9	0.002	0.02	0.09		
		L	trace galena.		4660	41.77	44.82	3.05	<0.01	2.1	0.001	0.01	0.02		
		<u> </u>			4661	44.82	47.87	1.52	0.02	9.2	0.002	0.02	0.0		
15.70	24.70			quartz-carbonate replacements	4662	47.87	49.39	2.13	0.01	11.7	0.004	0.03			
		Andesite	and stringers.	<u></u>	4663	49.39		2.44	0.01	39.6	0.008				
		Tuff			4664	51.52	53.96	2.44	0.01	10.6	0.006	0.01	0.08		
1		1	At 17.38 to 17.53 - 5 m	m thick quartz-carbonate-jasper	4665	53.96	57.01	3.05	0.01	1	0.004	0.01	0.0		

T		1		T			0.00			6 ccc		
		<u> </u>	vein.	4666	57.01	60.67	3.66	<0.01	1.7	0.002	<0.01	0.02
<u></u>				4667	60.67	61.89	1.22	0.02	98.8	0.003	0.11	0.15
24.70	25.61	Carbonate	Weak carbonate alteration, 2-4% jasper, minor	4668	61.89	63.11	1.22	0.01	0.6	0.004	<0.01	0.02
	<u> </u>	Zone	sphalerite, and chlorite.	4669	63.11	66.16	3.05	<0.01	3.8	0.003	0.01	0.07
				4670	66.16	69.21	3.05	0.01	0.2	0.002	0.01	0.04
25.61	33.54	Andesite	Dark green andesite, several quartz-carbonate-jasper-	4753	69.21	72.26	3.05	<0.01	0.5	0.001	<0.01	0.01
		Tuff	chlorite (?) stringers. Intervals of disseminated jasper	4754	72.26	75.30		0.01	0.1	0.001	0.01	0.02
			and/or sausseritization.	4755	75.30	78.35	3.05	<0.01	0.2	0.003	<0.01	0.02
				4756	78.35	81.40		0.01	0.5	0.004	0.01	0.01
33.54	36.74	Carbonate	Interval of weak to moderate carbonate alteration.	4757	81.40	84.45		<0.01	0.3	0.002	0.01	0.02
		Zone	Several quartz-carbonate-jasper stringers, minor	4758	84.45	87.50		0.01	1.1	0.004	< 0.01	0.01
			galena.	4759	87.50	90.55	3.05	0.01	0.6	0.002	<0.01	0.02
		L		4760	90.55	93.90	3.35	0.01	3.2	0.003	0.02	0.02
36.74	47.87	Andesite	Same as interval 1.83 to 11.13 with minor intervals of	4761	93.90	95.43	1.52	0.04	31.1	0.011	0.27	0.28
		Tuff	fragmented tuff and hematite.	4762	95.43	96.95	1.52	0.02	9	0.01	0.2	0.27
				4763	96.95	98.48	1.52	0.06	24.7	0.015	0.35	0.95
47.87	51.52	Carbonate	Same as interval 33.54 to 36.74 with minor galena and	4764	98.48	99.70	1.22	0.01	0.3	0.002	0.01	0.02
		Zone	trace chalcopyrite and pyrite.	4765	99.70	102.74	3.05	<0.01	0.5	0.001	<0.01	0.01
				4766	102.74	105.79	3.05	< 0.01	0.7	0.002	< 0.01	0.02
51.52	56.10	Andesite	Same as interval 1.83 to 11.13.	4767	105.79	108.84	3.05	<0.01	0.3	0.001	< 0.01	0.01
		Tuff		4768	108.84	111.89	3.05	0.01	0.3	0.001	0.01	0.01
				4769	111.89	114.94	3.05	0.01	0.4	0.001	0.01	0.01
56.10	57.62	Fault Zone	Clay gouge and fractured core.	4770	114.94	117.99	3.05	< 0.01	0.8	0.005	0.01	0.02
				4771	117.99	121.04	3.05	0.01	0.2	0.001	<0.01	0.01
57.62	60.67	Andesite	Light to dark green andesite, 2-3% quartz-carbonate	4772	121.04	124.09	3.05	0.01	0.1	0.001	<0.01	< 0.01
		Tuff	stringers.	4773	124.09	127.13	3.05	0.01	0.1	0.001	< 0.01	<0.01
				4774	127.13	130.18	3.05	< 0.01	1.1	0.001	0.01	0.01
60.67	62.20	Carbonate	Interval of weak carbonate alteration, 5% galena, trace	4775	130.18	133.23	3.05	0.01	2.4	0.003	<0.01	0.02
		Zone	chalcopyrite.	4776	133.23	136.28	3.05	< 0.01	0.6	0.001	< 0.01	0.01
				4777	136.28	139.33	3.05	<0.01	0.3	0.002	< 0.01	< 0.01
62.20	93.90	Fragmented	Same as interval 15.70 to 24.70.	4778	139.33	142.38	3.05	0.01	0.5	0.001	< 0.01	0.01
		Andesite		4779	142.38	145.43	3.05	<0.01	0.4	0.002	< 0.01	< 0.01
		Tuff		4780	145.43	148.48		<0.01	0.1	0.002	0.01	< 0.01
——†		1		4781	148.48		3.05	< 0.01	0.6	0.001	< 0.01	0.01
93.90	98.17	Carbonate	Andesite tuff with abundant quartz-carbonate	4782	151.52	154.57	3.05	< 0.01	0.3	0.001	< 0.01	< 0.01
		Zone	stringers and zones of breccia with minor yellow	4783	154.57	157.62	3.05	< 0.01	0.1	0.001	0.01	0.02
		1	sphalerite, rhodochrosite, and galena. Abundant chlorite	4784	157.62	158.54	0.91	< 0.01	3	0.002	0.01	0.01

.

•

		1	and trace pyrite.	4785	158.54	160.06	1.52	0.01	153.9	0.006	0.12	0.51
				4786	160.06	163.72	3.66	<0.01	4.5	0.001	<0.01	0.01
98.17	119.51	Fragmented	Grey green brecciated tuff, 1-3% quartz-carbonate as	4787	163.72	166.77	3.05	0.01	5.2	0.002	0.01	0.01
	·	Andesite	irregular veinlets and replacements.	4788	166.77	169.82	3.05	< 0.01	1.6	0.002	0.02	0.01
		Tuff		4789	169.82	172.87	3.05	< 0.01	0.5	0.001	< 0.01	0.01
			At 112.80 to 114.18 - interval of abundant quartz-	4790	172.87	175.91	3.05	< 0.01	0.1	0.002	< 0.01	0.01
			carbonate replacement. Trace to minor yellow	4791	175.91	179.57	3.66	< 0.01	1	0.002	0.01	0.02
			sphalerite and rhodochrosite.	4792	179.57	181.10	1.52	<0.01	0.6	0.005	0.01	0.01
				4793	181.10	182.62	1.52	< 0.01	0.7	0.01	0.01	0.02
19.51	122.10	Andesite	Grey green, moderate chlorite-sericite altered crystal	4794	182.62	184.15	1.52	<0.01	0.2	0.016	0.01	0.01
		Tuff	tuff. 3-5% quartz-carbonate as irregular stringers and	4795	184.15	185.67	1.52	<0.01	0.4	0.007	0.01	0.02
			replacements.	4796	185.67	188.11	2.44	0.01	0.5	0.004	0.01	0.02
				4797	188.11	191.16	3.05	<0.01	0.2	0.004	< 0.01	0.01
22.10	130.18	Andesite	Grey andesite with abundant chlorite. 3-7% quartz-	4798	191.16	194.21	3.05	0.01	0.6	0.001	<0.01	0.01
		Dyke	carbonate as replacements and irregular veinlets.	5201	194.21	197.26	3.05	<0.01	0.2	0.002	<0.01	0.02
				5202	197.26	200.30	3.05	<0.01	0.2	0.001	<0.01	0.02
30.18	167.68	Andesite	Dark grey to greyish green weak to moderate chlorite-	5203	200.30	203.35	3.05	<0.01	0.8	0.003	<0.01	0.01
	<u> </u>	Crystal	sericite altered rock. 3-7% quartz-carbonate as	5204	203.35	206.40	3.05	<0.01	0.2	0.004	<0.01	0.02
		Tuff	irregular stringers and replacements. Minor hematite	5205	206.40	209.45	3.05	0.05	3.3	0.008	0.14	0.02
			and jasper.	5206	209.45	212.50	3.05	0.03	0.6	0.002	<0.01	0.01
				5207	212.50	215.55	3.05	0.02	0.3	0.004	_<0.01	<0.01
		ļ	At 158.84 to 160.37 - interval of andesite tuff with	5208	215.55	218.60	3.05	0.01	2.5	0.004	0.01	0.01
			irregular quartz-carbonate stringers containing galena,	5209	218.60	221.65	3.05	<0.01	0.8	0.005	<0.01	0.02
			pyrite, and hematite (jasper).	5210	221.65	224.70	3.05	<0.01	0.2	0.003	<0.01	0.01
	<u> </u>			5211	224.70	227.74	3.05	<0.01	0.7	0.001	<0.01	0.01
67.68	175.91		Reddish-greyish green brecciated andesite tuff. Minor	5212	227.74	230.79	3.05	<0.01	0.4	0.001	0.01	0.01
		Andesite	quartz-carbonate as irregular stringers and	5213	230.79	233.84	3.05	<0.01	0.4	0.003	< 0.01	0.01
		Tuff	replacements. Matrix is reddish due to abundant	5214	233.84	236.89	3.05	<0.01	0.5	0.001	<0.01	0.01
		ļ	hematite.	5215	236.89	239.94	3.05	<0.01	1.1	0.005	0.01	0.01
				5216	239.94	242.99	3.05	<0.01	0.8	0.005	<0.01	0.01
<u>75.91</u>	186.28	Andesite	Greenish grey to reddish grey, fine grained andesite	5217	242.99	246.04	3.05	<0.01	0.5	0.003	<0.01	0.01
		Tuff	tuff. 10-15% quartz-carbonate as irregular veinlets and	5218	246.04	249.09	3.05	<0.01	0.8	0.001	< 0.01	0.01
			replacements containing trace to minor pyrite and	5219	249.09	252.13	3.05	< 0.01	0.6	0.001	0.01	0.01
	<u> </u>		chalcopyrite.	5220	252.13	255.18	3.05	< 0.01	0.1	0.001	< 0.01	0.01
0(00	207 (2			5221	255.18	257.62	2.44	<0.01	0.2	0.001	<0.01	0.01
86.28	207.62		Same as interval 167.68 to 175.91.	<u> </u>	<u> </u>							
		Andesite										

•

•

		·······						·······		.		
		Tuff	At 193.45 to 194.21 - fault zone marked by crushed core									
			and clay gouge.							1		
			At 202.44 to 203.20 - strong sericite-carbonate		1				[
			alteration.									
			At 203.20 to 207.62 - weak silicification.	1								
207.62	217.68	Alteration	The interval hosted with andesite pyrodactics is							<u></u>		
		Zone	weakly to strongly silicified and locally chlorite-	+				<u> </u>	1			
			carbonate altered. It contains 5-30% carbonate veinlets	1	t			<u> </u>	<u> </u>	<u> </u>	t —	t
			and replacements, locally minor rhodoerosite.		1		<u> </u>	<u>}</u> _	<u>†</u>	1	f	
				1	t			t	<u> </u>	<u> </u>	t	
t			At 207.93 to 208.05 - minor galena.		[<u> </u>
						[<u> </u>
217.68	257.62	Andesite	Strong chlorite alteration, 5-10% carbonate veinlets.									
		Tuff	Local foliation at 10 to 40 degrees to C.A. at the top of							}		
	-		the interval.									
									1			
			At 226.22 to 231.10 - the interval has a reddish tint due									
			to disseminated hematite.								ļ	
		[_ _	L	L		· _ ·	L	ļ	Į	
		<u> </u>	At 239.88 to 239.97 - quartz-carbonate limonite vein at				<u> </u>			Ļ	L	<u> </u>
			45 degrees to C.A.	<u> </u>	L	ļ		<u>[</u>	ļ	ļ		
					ļ				L	ļ		<u> </u>
			At 247.56 to 257.62 - weak, patchy silicification.		L				<u> </u>	ļ		<u> </u>
							ļ	 	<u> </u>	 	ļ	ļ
		-		<u> </u>	<u> </u>	<u> </u>		 	<u> </u> -	\	<u> </u>	
			E.O.H. 257.62 m.	- 	<u> </u>	 		<u> </u>	<u> </u>		ļ	<u> </u>
					L	<u> </u>	<u> </u>		<u> </u>		<u> </u>	l

.

1

	`			OGS	ILL LO	FR DIAMOND DE				
Valus and S. Ballantyne	and S. Ball	lus and S	. Walu	by: A	Logged	·····	Core Size	-2	2006	DDH #
					Start Aug 12/2	egrees	135 de	Azimut		
849 E 6238164 N							Completion Au	<u> </u>	5 degrees	
		T				Depth (m)				·····
						Azimuth (degrees)	vey	leflex Sur	R	
						Dip (degrees)			on	Elevati
L(meters) ASSAY/GEOCHEM	ters)	meters)	RVAL(me		SAMPL	MINERALIZATION	ROCK, ALTERATION,	ROCK TYPE	RAGE	MET
ro Width Aug/t Agg/t Cu% Pb% Z	Width Au	Width	TO	FROM	Sple No.	PTION	STRUCTURE DESCRIE		то	FROM
								Casing/	1.52	0.00
								Overburden		
					-				10.00	
5.18 3.66 <0.01 1.6 0.002 0.01				1.52	005222	ion, 1-15% carbonate veinlets and			18.90	1.52
			8.23	5.18	5223	of different attitudes to C.A.	relacements. Veinlets	Tuff		
			11.28	8.23	5224		A4 40 00 40 40 07			
			14.33	11.28	5225	rtz-chlorite vein at 10 degrees to	At 10.06 to 10.37 - qua			
			17.38	14.33 17.38	5226 5227		U.A.			
			20.43	20.43	5227	ion, 1-15% carbonate veinlets and	Strong chlorite alterati	Andesite	111.13	18.90
			26.52	20.43	5228	disseminated hematite.			111.15	10.70
			29.57	26.52	5230					
			32.62	29.57	5231	seminated hematite in matrix.	At 24.39 to 29.73 - dise	<u> </u>		
			35.67	32.62	5232	ion. Sporadically some				
			38.72	35.67	5233	TT	rhodochrosite.			
			41.77	38.72	5234					
4.82 3.05 0.01 6.9 0.004 0.03	3.05 0	82 3.05	44.82	41.77	5235	bonate replacement.	At 34.76 to 34.85 - cart			
			47.87	44.82	5236					
			50.91	47.87	5237	ly broken core and limonite on		l		
			53.96	50.91	5238		fractures.			
			57.01	53.96	5239					
			60.06	57.01	5240	50% carbonate replacement.	At 54.73 to 55.64 - 40-5			
			63.11	60.06	5241					
			66.16	63.11	5242	acement by aphanitic andesite.	At 66.46 to 66.59 - repl	·		
			69.21	66.16	5242					

-

		· · · · · · · · · · · · · · · · · · ·	At 90.55 to 91.77 - red coloured interval (increased	5244	69.21	70.00	3.05	<0.01	2.9	0.001	0.041	
			amount of disseminated hematite).			72.26	3.05	0.01	<u>2.9</u> 5.3	0.001	0.01	0.02
			amount of disseminated nematite).	5245	72.26		3.05	0.01	 3.6	0.003	0.06	0.06
			At 94.66 to 94.76 - minor fault.	5246	75.30	78.35		<0.01	<u> </u>		0.01	0.02
	·		At \$4.00 to \$4.70 - minor laut.	5247	78.35	81.40	3.05	<0.01	2.5	0.001	0.01	0.01
111.13	116.77	Andesite	Strong chlouite alternation of 20% and another valuate	5248	81.40	84.45	3.05	<0.01	2.5	0.001	0.01	0.01
111.15	110.77	Tuff	Strong chlorite alteration, 1-3% carbonate veinlets.	5249 5250	84.45 87.50	87.50 90.55	3.05	<0.01	1.1	0.001	<0.01	0.0
	<u>.</u> .	<u> </u>		5250	90.55	90.55	3.05	<0.01	0.9	0.002	<0.01	0.0
116.77	122.26	Andesite	Strong chlorite, lesser sericite alteration.	5301	90.55	95.60	3.05	<0.01	1.5	0.001	<0.01	0.0
110.77	122.20	Lapilli Tuff	Strong chionte, lasser sencite alteration.	5302	95.60	90.05 99.70	3.05	<0.01	1.5	0.002	<0.01	0.0
		Lapini I un		5303	99.05	102.74	3.05	<0.01	2.6	0.003	<0.01	0.0
122.26	134.15	Felsic	Feldspar porphyritic to aphanitic texture, light greenish	5304	102.74	102.74	3.05	<0.01	2.0	0.002	<0.01	0.0
122.20	134.15	Intrusive	colour. Moderate sericite-chlorite alteration.	5305	102.74	105.79	3.05	0.06	82	0.009	0.94	0.0
		Inclusive		5307	108.84	111.89	3.05	<0.00	1.1	< 0.003	<0.01	0.0
			At 129.57 to 130.64 - intense pervasive limonite.	5308	111.89	114.94	3.05	<0.01	0.9	0.002	<0.01	0.0
				5309	114.94	117.99	3.05	0.01	0.5	0.002	<0.01	0.0
134.15	169.91	Andesite	Andesite pyroclastics partly replaced by siliceous	5310	117.99	121.04	3.05	<0.01	1.7	< 0.001	<0.01	0.0
			aphanitic felsic rock. Minor quartz-carbonate	5311	121.04	124.09	3.05	0.01	2.2	0.001	<0.01	0.0
f		Felsite	replacements.	5312	124.09	127.13	3.05	0.01	1.6		<0.01	0.0
	<u> </u>			5313	127.13	130.18	3.05	0.01	1.7	0.001	< 0.01	0.0
			At 149.70 to 149.88 - carbonate-rhodochrosite-chlorite	5314	130.18		3.05	0.01	1.4	< 0.001	< 0.01	0.0
		·	vein at 15 degrees to C.A. Epithermal texture.	5315	133.23		3.05	< 0.01	1	0.001	< 0.01	0.0
				5316	136.28		3.05	< 0.01	1	< 0.001	< 0.01	0.0
- 1			At 164.94 to 165.24 - 15-20% carbonate-rhodochrosite	5317	139.33		3.05	0.01	2	0.001	<0.01	0.0
			replacements.	5318	142.38		3.05	<0.01	1.6	0.001	< 0.01	0.0
		• • • • • • • • • • • • • • • • • • •		5319	145.43	148.48	3.05	0.01	2.4	0.001	< 0.01	0.0
			At 169.82 to 170.43 - moderately siliceous interval.	5320	148.48	151.52	3.05	0.03	3.3	0.001	<0.01	0.1
				5321	151.52	154.57	3.05	<0.01	2.4	0.001	<0.01	0.0
169.91	214.94	Andesite	Strongly chlorites rock, minor carbonate veining.	5322	154.57	157.62	3.05	<0.01	1.8	<0.001	<0.01	0.0
1		Lapilli Tuff		5323	157.62	160.67	3.05	0.01	1.6	< 0.001	<0.01	0.0
		· · · · · · · · · · · · · · · · · · ·	At 182.93 to 186.13 - the interval is of reddish colour	5324	160.67	163.72	3.05	<0.01	1.3	<0.001	<0.01	0.0
			due to disseminated hematite in the matrix.	5325	163.72	166.77	3.05	< 0.01	1.9	<0.001	< 0.01	0.0
				5326	166.77	169.82	3.05	< 0.01	1.1	0.006	<0.01	<0.0
			At 191.01 to 197.41 - same as above with intervals of	5327	169.82	172.87	3.05	< 0.01	1.3	< 0.001	<0.01	<0.0
			no hematite within the interval.	_ 5328	172.87	175.91	3.05	<0.01	2	<0.001	<0.01	<0.0
				5329	175.91	178.96	3.05	<0.01	0.5	<0.001	<0.01	<0.0
			At 203.51 to 205.79 - same as above.	5505	178.96	182.01	3.05	0.01	0.6	<0.001	<0.01	0.0

.

		1	At 210.06 to 210.12 - interval of strong goethite staining.							[
					<u> </u>			··		f		
			At 210.82 to 211.74 - interval of strong goethite staining.		<u> </u>					<u> </u>	<u> </u>	
		<u> </u>	At 210.02 to 211.14 - hits val of su ong goedine stanning.		╂─────							
<u></u>										 		
			At 212.50 to 212.74 - interval of strong goethite staining.									
					 _	 				ļ	[
			At 214.33 to 214.48 - interval of strong goethite staining.									
			At 214.79 to 214.94 - Interval of strong goethite, quartz			l .						
			veining, and possible adularia.									
												
214.94	218.60	Andesite	Dark grey andesite tuff with moderate hornblende, 2%									
		Tuff	quartz-carbonate stringers, and weak chlorite-sericite						<u> </u>			
			alteration.									
]				<u> </u>			
		1	At 215.24 to 215.30 - interval of goethite staining.							1	f	
					1	[
		<u> </u>			 	<u>†</u>			†	t	<u> </u>	
		·	E.O.H. 218.60 m.	-1		t			<u> </u>		<u>+</u>	
		t			<u> </u>	<u>+</u> -	<u> </u>			├ ───	<u> </u>	
		1		1	I		l		I			L

•

.

THE OWNER AND A REPORT OF THE OWNER AND A RE

1

DDH #2006-3 Core Size					Logged by: S. Ballantyne and R. Pelkey									
Azimut	h_135 de	grees	Start Aug 18/2											
	degrees		Completion A		Total depth_129.57 m Co-ordinate 444849 E 6238164 N									
<u></u>	Donth (m)						44047	C023	010411					
	F	Reflex Sur	vey	Azimuth (degrees)							_			
Elevati	on			Dip (degrees)		··								
	ERAGE	ROCK TYPE	ROCK ALTERATION		SAMP		N/AI (me	tore)			AY/GEOC		ويستقلع فن	
FROM	TO	KOCK THE	ROCK, ALTERATION, MINERALIZATION STRUCTURE DESCRIPTION		Sple No.		TO		Au g/t			Pb %	-	
		1						••••au	Au gr	ng gri		10/0	211 70	
0.00	2.13	Casing/	Some core lost at the	beginning.		┟┈╴╼╴┨					<u>·</u>			
		Overburden				<u>├</u>								
		1	· · · · · · ·											
2.13	16.77	Porphyritic	Dark grey granodiorite	with 2% quartz stringers.	005627	2.13	4.57	2.44	<0.01	3.8	0.003	0.05	0.12	
		Intrusive			5628	4.57	7.62		0.01	6.6	0.004	0.05	0.1	
			At 2.13 to 3.35 - weak	disseminated hematite.	5629	7.62	10.67	3.05	0.01	1.8	0.002	0.01	0.0	
					5630	10.67	13.72	3.05	<0.01	1	0.003	<0.01	. 0.02	
			At 3.35 to 4.88 - weak	chlorite-sericite alteration.	5631	13.72	16.77	3.05	0.01	0.5	0.003	0.01	0.02	
					5632	16.77	19.82	3.05	< 0.01	0.9	0.003	0.01	0.0	
			At 4.88 to 6.10 - rubbly	core (possible minor fault) with	5633	19.82	22.87	3.05	<0.01	1.5	0.004	<0.01	0.02	
			moderate chlorite-seri	cite alteration and minor	5634	22.87	25.91	3.05	<0.01	0.7	0.003	<0.01	0.01	
			hematite.		5635	25.91	28.96	3.05	<0.01	7	0.005	0.01	0.04	
			·······		5636	28.96	32.01	3.05	0.01	41.8		0.08	0.0	
		L		vals of strong disseminated	5637	32.01	35.06	3.05	0.03	9.4	0.007	0.04	0.0	
		}	hematite giving a stro	ng red colour.	5638	35.06	38.11	3.05	0.01	3.9	0.006	0.01	0.03	
		ļ			5639	38.11	41.16	3.05	0.01	2.3	0.004	0.01	0.03	
		·		rtz vein with fine grained	5640	41.16	44.21	3.05	0.01	3.1	0.01	0.1	0.0	
		4	hematite at 25 degree	s to C.A.	5641	44.21	47.26	3.05	0.01	1.7	0.005	0.01	0.1	
16.77	50.00	Bornhuridia	Curradiants with P 41		5642	47.26	50.00	2.74	0.01	1	0.002	< 0.01	0.0	
10.77	30.00	Intrusive	and replacements. In	% quartz-carbonate as stringers	5643	50.00	51.52	1.52 1.52	0.07	15.3	0.002	0.01	0.0	
	·	inti usive		e throughout, minor pale yellow	5644 5645	51.52 53.05	53.05 53.96	0.91	<0.01	<u>24.4</u> 1.5	0.003	0.03 <0.01	0.0	
			sphalerite.	a rancognout, major para yanow	5646	53.05	55.18	1.22	0.01	1.5	0.001	<0.01	0.02	
——		 	Spilateille.		5647	55.18	55.18	1.22	<0.01	0.8	0.001	<0.01	0.02	
		<u> </u>	At 27 13 to 27 23 min	or fault marked by clay gouge	5648	56.40	59.45	3.05	0.01	1.5	0.002	0.01	0.0	

•

•

1

			and rubbly core.	5649	59.45	6 2.50	3.05	< 0.01	0.2	0.001	<0.01	0.01
				5650	62.50	65.55	3.05	0.01	1.6	0.001	0.01	0.05
			At 30.34 to 30.37 - minor fault marked by clay gouge and	5651	65.55	68.54	2.99	<0.01	1.8	0.002	0.01	0.04
			rubbly core.	5652	68.54	69.82	1.28	0.01	5.9	0.004	0.16	0.44
				5653	69.82	71.65	1.83	0.01	2.6	0.003	0.02	0.09
50.00	55.18	Porphyritic	Same as interval 16.77 to 50.00 except with strong	5654	71.65	74.70	3.05	<0.01	1.6	0.002	<0.01	0.02
		Intrusive	carbonate alteration, minor pale yellow sphalerite, and	5655	74.70	77.74	3.05	<0.01	0.6	0.002	0.01	0.0
			minor hematite.	5656	77.74	80.79	3.05	<0.01	0.9	0.001	<0.01	0.02
				5657	80.79	83.84	3.05	0.02	1	0.002	0.01	0.02
55.18	79.27	Porphyritic	Same as interval 16.77 to 50.00.	5658	83.84	86.89	3.05	<0.01	1	0.003	<0.01	0.01
		Intrusive		5659	86.89	89.94	3.05	0.01	3.5	0.003	0.06	0.16
			At 68.54 to 69.82 - stringers of quartz-carbonate with	5660	89.94	91.46	1.52	0.01	1.2	0.002	0.07	0.18
			fine grained hematite and fine grained galena.	5661	91.46	92.99	1.52	0.01	3.8	0.005	_ 0.01	0.07
				5662	92.99	94.51	1.52	0.01	4.8	0.007	0.03	0.15
			At 75.30 to 78.66 - Interval of red coloured intrusive	5663	94.51	96.04	1.52	< 0.01	1.6	0.003	< 0.01	0.02
			with strong disseminated hematite.	5664	96.04	97.56	1.52	0.01	0.7	0.001	< 0.01	0.02
				5665	97.56	99.09	1.52	< 0.01	0.5	0.002	<0.01	0.01
			At 78.96 to 79.57 - minor fault zone marked by clay	5666	99.09	100.61	1.52	0.01	1	0.003	< 0.01	0.02
			gouge and rubbly core.	5667	100.61	102.13	1.52	0.01	0.7	0.001	< 0.01	.0.0
				5668	102.13	105.18	3.05	< 0.01	0.9	0.001	< 0.01	0.01
79.27	86.89	Andesite	Fine grained reddish-greenish grey tuff. 2-5% quartz-	5669	105.18	108.23	3.05	0.01	0.3	0.001	< 0.01	0.0
		Tuff	carbonate as irregular stringers and replacements.	5670	108.23	111.28	3.05	0.01	0.2	0.001	< 0.01	0.01
				5671	111.28	114.33	3.05	< 0.01	0.3	0.001	< 0.01	0.0
86.89	102.13	Andesite	Hematite rich, intensely carbonate altered tuff with	5672	114.33	117.38	3.05	0.01	2.1	0.001	0.01	0.0
		Tuff	quartz-carbonate stringers (10-15%). Trace galena,	5673	117.38	120.43	3.05	0.01	2.1	0.001	0.01	0.02
			pale yellow sphalerite, and specularite.	5674	120.43	123.48	3.05	0.01	0.7	0.001	<0.01	0.0
				5675	123.48	125.00	1.52	0.01	1.2	0.001	< 0.01	0.0
102.13	125.00	Andesite	Same as interval 79.27 to 86.89 with abundant chlorite.	5676	125.00		1.52	0.01	3.9	0.001	<0.01	0.0
		Crystal		5677	126.52	128.05	1.52	0.02	31.3	0.001	0.01	0.0
		Tuff		5678	128.05	129.57	1.52	0.02	13	0.001	<0.01	0.0
		1										
125.00	129.57	Andesite	Moderate to strongly silicified grey tuff. Highly	1	1							
		Tuff	fractured with rusty staining. 5-7% quartz-carbonate		1						 	
		1	stringers with abundant chlorite and trace pyrite.	+	1			†	t			
		1			1							
		1	E.O.H. 129.57 m.		1							
		f · · - ·			t—							

•

•

FR DIAMOND DRILL LOGS Core Size BQ DDH # 2006-4 Logged by: R. Pelkey Start Aug 24/2006 Azimuth_125 degrees_ Total depth 5.18 m Completion_Aug 24/2006 Dip_-45 degrees Co-ordinate__445311 E 6222074 N Depth (m) **Reflex Survey** Azimuth (degrees) Elevation Dip (degrees) METERAGE ROCK TYPE ROCK, ALTERATION, MINERALIZATION SAMPLE INTERVAL(meters) ASSAY/GEOCHEM FROM то STRUCTURE DESCRIPTION Spie No. FROM TO Width Aug/t Agg/t Cu% Pb % Zn % 0.00 Porphyritic Greenish grey, highly fractured rock. 2-3% quartz-5.18 carbonate as irregular stringers. Intrusive Hole abandoned at 5.18 m.

,

						DRILL LOGS									
DDH #	<u> 2006 / 2006 / 2006 / 2006 / 2006 / 2006 / 2006 / 2006 / 2006 / 2006 / 2006 / 2006 / 2006 / 2006 / 2006 / 2006</u>	<u>-5</u>	Core Size_BQ		Logged by:R. Pelkey										
Azimut	h_125 de	grees	Start Aug 19/2	2006	Total depth16.77 m										
Dip55 degrees CompletionAug				ug 20/2006	Co-ordinate445311 E_6222074 N										
Reflex Survey				Depth (m)											
Reliex Survey				Azimuth (degrees)											
Elevati	on			Dip (degrees)											
METERAGE ROCK TYPE ROCK, ALTER				, MINERALIZATION					ASS	SSAY/GEOCHEM					
FROM	TO		STRUCTURE DESCRI	PTION	Sple No.	FROM	TO	Width	Au g/t	Ag g/t	Cu %	Pb %	Zn %		
0.00	10.37	Porphyritic	Grey, highly fractured		┨╴╴──┨			·			¦				
		Intrusive	alteration.												
10.37	12.20	Andesite	Black to dark green a	ndesite tuff. Highly fractured,	005779	12.20	13.72	1.52	<0.01	1.3	0.001	0.01	0.01		
		Tuff	minor quartz-carbona	ite as irregular stringers.	5780	13.72	15.24	1.52	< 0.01	1.2	0.001	0.01	0.01		
					5781	15.24	16.77	1.52	<0.01	2	0.001	0.02	0.04		
12.20	16.77	Porphyritic	Intensely carbonate a	Itered light brown to light grey											
		Intrusive	rock. 2-3% quartz-ca	rbonate as stringers containing									L		
			minor brown sphaler	ite and trace galena.											
		┟━───	<u> </u>					i							
	<u> </u>	<u> </u>	E.O.H. 16.77 m.												
					<u> </u>	1						·1	···-·		

•

τ.

en la prime de la prime de

•

				FR DIAMOND D	RILL L	OGS								
DDH #	#2006	5-6	Core Size BQ		Logged by:R. Pelkey									
Azimut	h_125 de	grees	Start_Aug 19/2	2006 Total depth59.45 m										
Dip65	degrees		Completion_A	ug 20/2006	Co-ordinate 445311 E 6222074 N									
	Reflex Survey			Depth (m)										
		cenex Sur	vey	Azimuth (degrees)										
Elevati	on			Dip (degrees)										
METI	ERAGE	ROCK TYPE	ROCK, ALTERATION	, MINERALIZATION	SAMP	LE INTER	₹VAL(me	eters)		ASS	Y/GEOC	нем		
FROM	то		STRUCTURE DESCRI	PTION	Sple No.	No. FROM TO			Au g/t	Ag g/t	Cu %	Pb %	Zn %	
		l			_									
0.00	10.37		1	o moderately sericite-chlorite										
	<u></u>	Intrusive	†	artz-carbonate as stringers.										
			Trace disseminated p	yrite, weak carbonate alteration.	_									
10.37			l		005782	13.41	14.94		<0.01	0.4	0.001	<0.01	<0.01	
	13.41	Andesite		grey, weakly carbonate altered	5783	14.94	17.07	2.13	<0.01	1.5	0.001	0.02	0.02	
 		Tuff		bonate as stringers, trace	5784	17.07	19.51	2.44	<0.01	0.8	0.001	0.01	<0.01	
		+	disseminated pyrite, 1	highly fractured.	5785	28.00	20.40	1.52	0.01	- 10	0.004			
13.41	19.51	Pornhyritic	Intensely carbonate a	Itered light brown, reddish	5786	28.96 30.49	30.49 32.01		<0.01	1.2 0.6	0.001	<0.01 <0.01	0.01	
13.11	17.51	Intrusive		rock. 5-10% quartz-carbonate as	5787	32.01	33.54		<0.01	1.3		<0.01	0.01	
				race light brown sphalerite and	5788	33.54	35.06		<0.01	1.9		0.01	0.02	
			galena and specularit		5789	35.06	36.89		0.19	1412	0.303	0.09	0.02	
					5790	36.89	38.26		0.01	5.8		0.02	0.02	
19.51	29.12	Andesite	Same as interval 10.3	7 to 13.41.										
		Tuff												
29.12	35.06	Pornhyritic	Same as interval 13.4	4 to 10 51			_							
27.12		Intrusive												
35.06	38.26	Downhuvitie		Itered light brown, red brown to										
33.00	30.20	Intrusive/	+	bundant quartz-carbonate				[]					ļ	
	······	Moonlight		2-3% chalcopyrite, tetrahedrite,										
		Vein		d possibly trace to minor										
			argentite.											
		<u>† </u>										·		

		At 35.03 to 35.06 - fault zone marked by clay gouge.	1		1			l			
			<u>†</u>					<u>├</u> ─────			
		At 35.06 to 35.52 - moonlight vein containing semi-	1								
				i		· · · ·					
		sphalerite and galena.									
			<u> </u>	 _							
							<u>.</u>	<u> </u>			
		with abundant quartz-carbonate stringers.	<u> </u>					· · · · ·			
12 99	Pornhyritic	Weak to moderate carbonate altered, same as interval	<u> </u>	<u> </u>	_·			 			
			 	<u> </u>	 	 	<u>_</u>			l	
ł	nti usive		{	<u> </u>	<u> </u>			<u> </u>			
		At 38.57 to 39.18 - fine grained black andesite tuff.									
4.51	Andesite	Same as interval 10.37 to 13.41.		<u> </u>							
1 99	Andosito	Constitution and with 2 200 minute anti-anti-	 	<u> </u>			<u>.</u>				
			+	<u>} </u>				┣────	<u> </u>		
				<u> </u>				1	<u> </u>	<u> </u>	
59.45 I	Porphyritic	Same as interval 13.41 to 19.51.									
	Intrusive							·	· · ·		
	··· _			 	<u> </u>	ļ		 	 	 	· ···
		E O H 50 45 m		<u> </u>				<u> </u>		<u> </u>	—
			<u></u> †· · · - ·	<u> </u>		<u> </u>		╀		┨────	
5.	4.51 4.88 9.45	2.99 Porphyritic Intrusive 4.51 Andesite Tuff 4.88 Andesite Tuff	Intrusive 13.41 to 19.51. At 38.57 to 39.18 - fine grained black andesite tuff. 4.51 Andesite Same as interval 10.37 to 13.41. Tuff 4.88 Andesite Greenish grey rock with 2-3% quartz-carbonate and Tuff 9.45 Porphyritic Same as interval 13.41 to 19.51.	massive chalcopyrite, tetrahedrite with lesser yellow sphalerite and galena. At 35.52 to 38.26 - intensely carbonate altered porphyry with abundant quartz-carbonate stringers. 2.99 Porphyritic Weak to moderate carbonate altered, same as interval Intrusive 13.41 to 19.51. At 38.57 to 39.18 - fine grained black andesite tuff. 4.51 Andesite Same as interval 10.37 to 13.41. Tuff 9.45 Porphyritic Same as interval 13.41 to 19.51. Intrusive 10.37 4.51	massive chalcopyrite, tetrahedrite with lesser yellow sphalerite and galena. At 35.52 to 38.26 - intensely carbonate altered porphyry with abundant quartz-carbonate stringers. 2.99 Porphyritic Weak to moderate carbonate altered, same as interval Intrusive 13.41 to 19.51. At 38.57 to 39.18 - fine grained black andesite tuff. 4.51 Andesite Same as interval 10.37 to 13.41. Tuff 9.45 Porphyritic Same as interval 13.41 to 19.51. Intrusive 1.11	massive chalcopyrite, tetrahedrite with lesser yellow					

•

.

)DH #	#2006	-7	Core Size_BQ	_	Logged	by:R	. Pełkey	/	_				
zimut	h_125 de	grees	Start_Aug 19/2	2006	Total d	epth_4	4.51 m						
 Dip7	5 degree	s	Completion A	ug 20/2006	Co-ordi	inate 4	45311	E 6222	2074 N		- 		
		. A C		Depth (m)			1						
	К	leflex Sur	vey	Azimuth (degrees)									
levati	on			Dip (degrees)									
MET	ERAGE	ROCK TYPE	ROCK, ALTERATION	, MINERALIZATION	SAMP	LE INTER	RVAL(me	ters)		ASSA	Y/GEOCI	HEM	
FROM	то		STRUCTURE DESCRI	PTION	Sple No.	FROM	то	Width	Au g/t	Ag g/t	Cu %	Pb %	Zn %
													·
0.00	8.84	Andesite	Steel grey, fine graine	d, weak to moderate sericite									
		Tuff		or to moderate black chlorite									
				uartz-carbonate as irregular	5791	19.51	20.73	1.22					
			stringers containing t	race pyrite.	005792	19.51	20.73	1.22	<0.01	1.9		0.01	0.01
	14.32	D 1 1.1.1			5793	20.73	24.09	3.36	<0.01	0.6		<0.01	< 0.01
8.84	14.33		f	chlorite-sericite altered rock.	5794	24.09	25.61	1.52	< 0.01	0.8		0.01	0.01
		Intrusive	3-4% quartz-carbonat	e as irregular stringers.	5795	25.61	27.13	1.52	< 0.01	1.9		< 0.01	<0.01
14.33	19.21	Block Triff/	Internalistad fire analy	ed black tuff and argillite. 5-7%	5796	27.13	28.66	1.52 1.52	<0.01 <0.01	1.5 0.1	0.001	<0.01 <0.01	<0.01 <0.01
14.55	19.41	Argillite	<u> </u>	rregular stringers which contain	5797	28.66 30.18	30.18 31.71	1.52	< 0.01	0.1	-	<0.01	<0.01
		Arginic	trace pyrite.	negular sungers which contain	5799	31.71	33.23	1.52	<0.01	0.0	0.001	0.01	0.01
		i	nace plute:		5800	33.23	34.76	1.52	<0.01	0.5		0.01	0.01
19.21	36.89	Porphyritic	Weak to intense carb	onate altered greenish grey,	5801	34.76	36.89	2.13	< 0.01	0.0		0.02	0.02
			· ······ ·····	k brown rock. 10-15% guartz-		• •							
				r stringers containing minor									
			pyrite, galena, and sp								··· ··· ·· ··	·····	
									· · · · · · · · · ·				
			At 33.84 to 34.76 - inte	erval of argillite similar to interval									
			14.33 to 19.21.										
				·····									
36.89	44.51		Same as interval 14.3	3 to 19.21. Interval is highly									
		Argillite	fractured.										
		ļ		<u>-</u>		L			·				ļ
1			E.O.H. 44.51 m.										

				FR DIAMOND D	· · · · · · · · · · · · · · · · · · ·								•
DDH #	¥ <u>2006</u>	-8	Core Size_BQ		Logged	by:R	. Pelkey	/ <u></u>					
Azimut	h_125 de	grees	Start Aug 19/2	2006	Total d	epth_6	7.38 m_						
Dip85	5 degrees		CompletionA	ug 21/2006	Co-ordi	inate_4	45311	E 6222	074 N				
	D	offer Sur		Depth (m)									
	Г	Reflex Sur	vey	Azimuth (degrees)									
Elevati	on			Dip (degrees)									
MET	ERAGE	ROCK TYPE	ROCK, ALTERATION	, MINERALIZATION	SAMP	LE INTER	VAL(me	ters)			AY/GEOCI		
FROM	TO		STRUCTURE DESCRI	PTION	Sple No.	FROM	TO	Width	Au g/t	Ag g/t	Cu %	Pb %	Zn %
0.00	17.38	Porphyritic		fractured porphyry with minor									
		Intrusive	ł	10% quartz-carbonate as irregular]		
		L	stringers containing t	race pyrite.									
					005802	33.23	34.76	1.52	<0.01	0.6	0.001	0.01	0.0
17.38	33.23		•	hed dark grey to black tuff and	5803	34.76	36.28	1.52	<0.01	0.5		0.01	0.0
	. <u> </u>	Argillite	f=- ⁻ ··- · · · ·	-carbonate as irregular stringers,	5804	36.28	37.80	1.52	0.01	0.2	0.001	0.02	0.0
		 	trace pyrite.		5805	37.80	38.72	0.91	0.11	200	0.097	0.84	. 0.2
33.23	38.72	Porphyritic	Intensely carbonate a	Itered light grey to light to dark									
		Intrusive	brown rock. 3-5% qu	artz-carbonate as irregular									
		· · · · · · · · · · · · · · · · · · ·	stringers.										
			At 38.11 to 38.72 - mo	onlight vein containing 4-5%		<u>}</u>							
			•	rite, and galena and sphalerite.									
			At 38 26 to 38 32 - fau	It zone marked by clay gouge		} }							
			within moonlight veir	· · · · · · · · · · · · · · · · · · ·									
			within mooningint ven	······································		<u>├</u>							
			At 38.41 to 38.48 - fau	It zone marked by clay gouge									
			within moonlight veir	h.									
38.72	44.82	Andesite	Dark grey to black tur	f with minor intercalated argillite.									
		Tuff/		e as irregular stringers, highly							[]		
		Argillite	fractured interval.								I		

44.82	67.38	Porphyritic	Light grey porphyritic intrusive with zones of andesite					
		Intrusive/	tuff intercalated with argillite. 5-12% quartz-carbonate					
		Andesite	as stringers containing minor pyrite. Porphyry has					
		Tuff/	weak carbonate alteration.					
		Argillite]				
				[
			E.O.H. 67.38 m.					

•

-

.

FR DIAMOND DRILL LOGS DDH # 2006-9 Core Size BO Logged by: H. Samson Start_Aug 23/2006 Azimuth 138 degrees Total depth_51.83 m Completion Aug 24/2006 Dip -55 degrees Co-ordinate 445311 E 6222074 N Depth (m) **Reflex Survey** Azimuth (degrees) Elevation Dip (degrees) METERAGE **ROCK TYPE ROCK, ALTERATION, MINERALIZATION** SAMPLE INTERVAL(meters) ASSAY/GEOCHEM Width Aug/t Agg/t Cu % Pb % Zn % FROM то STRUCTURE DESCRIPTION Spie No. FROM TO 0.00 0.91 Casing/ Overburden 0.91 22.26 Andesite Weakly carbonate-chlorite altered tuff. 2-3% quartz-006049 32.01 33.54 1.52 < 0.01 1.7 0.005 0.01 0.03 0.007 0.01 Tuff 34.91 1.37 < 0.01 1.4 0.01 carbonate stringers, trace pyrite. 6050 33.54 1.52 < 0.01 1.7 0.008 0.01 0.02 At 23.17 to 23.63 - interval of intense carbonate 6088 36.89 38.41 1.52 0.21 228.7 0.345 0.25 0.15 alteration. 6089 38.41 39.94 1.22 < 0.01 2.5 0.005 < 0.01 0.01 6090 39.94 41.16 22.26 30.03 Porphyritic Greyish green, weakly carbonate-chlorite altered Intrusive intrusive, 2-3% guartz-carbonate stringers. 30.03 38.41 Andesite intercalated intervals of aphanitic black tuff and fine Tuff/ Black grained green andesite tuffs/volcaniclastics. Weak

1

carbonate-chlorite alterations, 2-3% guartz-carbonate

At 32.01 to 34.91 - interval of locally intense carbonate alteration, 5-10% carbonate replacement (sampled

weathered sulphides. Minor tetrahedrite, and galena.

Intercalated intervals of aphanitic black tuff and fine

Quartz-carbonate +/- barite vein with abundant

replacements and stringers.

zone).

Tuff

Moonlight

Andesite

Vein

38.41

39.94

39.94

51.83

 Tuff/ Black	grained green andesite tuffs/volcaniclastics. Weak					l		
	carbonate-chlorite alterations, 2-3% quartz-carbonate					[
 	replacements and stringers.	 					<u> </u>	
 	At 51.68 to 51.98 - interval of intense carbonate		<u> </u>		 		 	╋┈┈╸
	alteration/replacement.		1					
		 		 			·	<u> </u>
	E.O.H. 51.83 m.					İ		
					1			

.

.

.

.

				FR DIAMOND DI	RILL L	OGS	<u>-</u>						
DDH #	¥2006	-10	Core Size BQ		Logged	by: H	. Samso	on and	R. Pelke	у		·	
Azimut	h_138 de	grees	Start_Aug 23/2	006	Total d	epth_5	9.15 m			<u> </u>			
Dip -65	degrees		Completion A	ug 24/2006	Co-ordi	inate 4	45311	E 6222	2074 N		· <u> </u>	<u> </u>	{
		Alex Sur		Depth (m)					·				
	r	Reflex Sur	vey	Azimuth (degrees)									
Elevati	on			Dip (degrees)									
METI	ERAGE	ROCK TYPE	ROCK, ALTERATION	, MINERALIZATION	SAMP	LE INTEF	RVAL(me	iters)		ASS	AY/GEOCI	IEM	
FROM	то		STRUCTURE DESCRI	PTION	Sple No.	FROM	TO	Width	Au g/t	Ag g/t	Cu %	Pb %	Zn %
0.00	1.52	Casing/		·····									
		Overburden											
					006081	18.90	20.43	1.52	< 0.01	1.6		0.01	0.02
1.52	10.37	Andesite		ctured andesite tuff containing	6082	20.43	21.95	1.52	<0.01	1.1	0.001	0.01	0.02
		Tuff	2-3% quartz-carbonat	e as irregular veins.	6083	21.95	23.48	1.52	<0.01	0.5	0.001	<0.01	0.01
10.27	10.51							4.00			0.005	-0.04	
10.37	19.51			neared intrusive containing 5-10%	6084	36.28	37.50	1.22	< 0.01	0.6		<0.01 0.02	0.02
		Intrusive	quartz-carbonate as i	rregular stringers and	6085	37.50	39.02		0.02	16.8 2.1			0.09
			replacements.		6086	39.02	41.46 42.99	2.44	<u><0.01</u> <0.01	2.1	0.001	0.02	0.02
		 	At 10 67 . 5 cm carbo	nate altered guartz-carbonate	6087	41.46	42.99	1.92	<u> </u>	<u> </u>	0.001	<u> </u>	
		<u> </u>		ematite and rusty staining.									
			Four with abundant in	smatte and rusty stammig.						 			
19.51	22.10	Porphyritic	Weak to strong carbo	nate altered rock with multiple									
		Intrusive		bonate veins with intense rusty	-+					<u> </u>			·
	······································		·····	phalerite and trace galena.									
						[<u> </u>	ļ — — —			
22.10	31.55	Porphyritic	Grey green, heavily s	heared intrusive containing 5-10%									
		Intrusive	quartz-carbonate as i	rregular stringers and									
			replacements.										
31.55	37.20	Andesite		to black tuff (55%) with black									
		Tuff/ Black	· · · · · · · · · · · · · · · · · · ·	quartz-carbonate as irregular		<u>ا</u>				 		-	
		Tuff/	stringers.					ļ		ļ			
		Argillite	L			<u> </u>		l	L	<u> </u>			

		<u> </u>			}						
37.20	42.99	Andesite	Intense carbonate altered light grey to reddish brown	 <u> </u>	<u> </u>						<u> </u>
		Tuff/	rock. Interval is highly fractured with 2-3 possible	 							[
	-	Moonlight	faults.								
		Vein			1						
			At 37.96 to 38.26 - Moonlight quartz-carbonate vein								
			containing sphalerite, galena, and chalcopyrite with								
			possible tetrahedrite.		ļ						
				 į	<u> </u>		<u> </u>			l	
42.99	51.52	Andesite	Grey green andesite tuff containing 2-3% quartz-	 							<u> </u>
		Tuff	carbonate stringers.	 	<u> </u>	ļ				ļ	ļ
51.52	59.15	Black Tuff/	Intercalated argillite and aphanitic black tuff. 1-2%	 <u> </u>	 		·		<u> </u>		
		Argillite	quartz-carbonate stringers.								
{		ļ	<u>↓</u>	 ļ				 	┨_────	 	<u> </u>
			E.O.H. 59.15 m.	 						<u> </u>	┨
						[

•

.

•

н.

.

•

				FR DIAMOND D	KILL L	UGS							
<u>DDH #</u>	<u>‡_2006</u>	5-11	Core Size_BQ		Logged	by:H	. Sams	o n					
Azimutl	h_138 de	grees	Start_Aug 23/2	.006	Total d	epth6	2.20 m	_					
Dip75	degrees		Completion_A	ug 24/2006	Co-ord	inate4	45311	E 6222	2074 N_				
	τ	Reflex Sur		Depth (m)									
		Cenex Sur	vey	Azimuth (degrees)							:		
Elevati	on			Dip (degrees)					-				
METI	ERAGE	ROCK TYPE	ROCK, ALTERATION	, MINERALIZATION	SAMP	LE INTER	RVAL(me	eters)			AY/GEOCI		
FROM	то		STRUCTURE DESCRI	PTION	Sple No.	FROM	то	Width	Au g/t	Ag g/t	Cu %	Pb %	Zn %
0.00	0.91	Casing/											
0.00	0.71	Overburden			·	<u> </u>		╏╴┈╴	··	<u> </u>	<u> </u>		
0.91	6.40	Porphyritic	Grey green, weakly ca	arbonate-chlorite altered	006091	14.33	15.24	0.91	<0.01	2.2	0.001	0.01	0.03
		Intrusive	intrusive. 2-3% quart	z-carbonate stringers.									
		ļ		<u> </u>	6092	34.30	35.67		<0.01	1.5		0.01	0.02
6.40	8.84	Andesite	Grey green andesite t	uff containing 2-3% quartz-	6093	35.67	36.59		<0.01	1.2	0.001	0.02	.0.02
	<u>.</u>	Tuff	carbonate stringers.		6094	36.59	37.80		0.02	62	0.033	2.14	1.99
0.04					6095	37.80	39.33		0.29	22.9		0.03	
8.84	14.33	Black Tuff		ontaining 1-2% quartz-carbonate	6096	39.33	40.85		0.01	13.6		0.02	0.02
		<u> </u>	stringers.		6097	40.85	42.38		< 0.01	4.8		0.02	0.02
14.33	16.46	Andesite		A sector and a sec	6098	42.38	43.90	1.52	<0.01	0.9	0.001	0.01	0.02
14.33	10.40	Tuff	· · · · · · · · · · · · · · · · · · ·	uff containing 2-3% quartz-				{					<u> </u>
			carbonate stringers.										<u> </u>
			At 14.33 to 15.24 - inte	erval of intense carbonate				[· · · ·		
			alteration - sampled.					[
16.46	19.05	Porphyritic	Grey green, weakly c	arbonate-chlorite altered				 	· · · · · ·	_			<u> </u>
		Intrusive		z-carbonate stringers.									
19.05	22.87	Black Tuff	Aphanitic black tuff c	ontaining 1-2% quartz-carbonate				┣		!			┟───
			stringers.					·		{	<u>}</u>		
										<u></u>	 		<u> </u>
		1	At 19.82 to 21.04 - fau	It zone marked by rubbly core.		1				1	t	1	1

	<u> </u>	1		 1						ļ	
22.87	28.96	Andesite	Grey green andesite tuff containing 2-3% quartz-								
		Tuff	carbonate stringers.								
28.96	34.30	Porphyritic	Grey green, weakly carbonate-chlorite altered								
{		Intrusive	intrusive. 2-3% quartz-carbonate stringers.	 <u> </u>							
34.30	43.90	Porphyritic	Intensely carbonate altered light green to reddish	 +	┨────					<u>}</u>	<u> </u>
		Intrusive/	brown rock. Highly fractured interval with several		1		[
		Moonlight	small faults.								
		Vein									
			At 36.89 to 39.33 - small guartz-carbonate veins with						-		
			chalcopyrite, galena, and rare tetrahedrite - sampled.							· · ·	
			At 41.31 to 42.38 - main moonlight vein.	 <u> </u>	<u> </u> -				 		
43.90	62.20	Andesite	Green to grey andesite tuff containing 1-2% quartz-		<u> </u>					<u> </u>	[
		Tuff	carbonate stringers.								
		<u> </u>		 	<u> </u>	<u> </u>	<u> </u>				<u> </u>
			E.O.H. 62.20 m.	 <u> </u>	<u> </u>	<u> </u>	[· · · · ·		

•

•

1

.

FR DIAMOND DRILL LOGS DDH # 2006-12 Core Size BO Logged by: H. Samson Start Aug 22/2006 Azimuth 138 degrees Total depth 47.87 m Completion Aug 23/2006 Dip -85 degrees Co-ordinate 445311 E 6222074 N Depth (m) **Reflex Survey** Azimuth (degrees) Elevation Dip (degrees) METERAGE **ROCK TYPE ROCK, ALTERATION, MINERALIZATION** SAMPLE INTERVAL(meters) ASSAY/GEOCHEM Width Aug/t Agg/t Cu % Pb % FROM STRUCTURE DESCRIPTION Sple No. FROM то Zn % то 1.83 Casing/ 0.00 Overburden 155.1 0.036 1.83 5.18 Andesite Light green tuff containing 2-3% quartz-carbonate 38.87 1.52 0.03 1.72 0.12 006099 37.35 1.52 0.065 Tuff 0.14 300.4 0.57 0.49 stringers. 6100 38.87 40.40 2.9 0.05 40.40 41.77 1.37 < 0.01 0.012 0.02 6101 5.18 13.11 Porphyritic Light green porphyritic intrusive containing 2-3% Intrusive quartz-carbonate stringers. Fine grained black tuff containing 1-2% quartz-18.90 13.11 Black Tuff carbonate stringers. 18.90 25.30 Porphyritic Greyish green, weak chlorite-carbonate altered Intrusive porphyry. 2-5% quartz-carbonate as stringers and replacements. Black Tuff/ Intercalated argillite and aphanitic black tuff, 2-3% 25.30 38.87 Argillite/ quartz-carbonate stringers, 1-2% pyrite. Volcanicclastic 38.87 40.40 Moonlight Moonlight vein hosted in black tuff. Local iron-Vein carbonate stain. 2-3% sulphides consisting of minor galena, chalcopyrite, tetrahedrite, and sphalerite.

1 1 1 1

40.40	45.43	Black Tuff/	/ Same as interval 25.30 to 38.87.	
		Argillite		
45.43	47.87	Porphyritic	c Same as interval 18.90 to 25.30.	
		Intrusive		
			E.O.H. 47.87 m.	

.

,

-

١

•

	¥ 2006	13	Core Size BQ	FR DIAMOND DI									
								and H	I. Samso	n			
	h_138 de	grees	Start_Aug 24/2		Total de	epth_5	7.93 m	<u> </u>					·
Dip90	degrees		Completion_A	ug 24/2006	Co-ordi	nate_4	45311	E 6222	2074 N_				<u> </u>
	D	leflex Sur		Depth (m)									
			vcy	Azimuth (degrees)									
Elevati	on			Dip (degrees)									
MET	ERAGE	ROCK TYPE	ROCK, ALTERATION	, MINERALIZATION	SAMPI	EINTER	VAL(me	eters)		ASSA	Y/GEOC	нем	
FROM	то		STRUCTURE DESCRI	PTION	Spie No.	FROM	TO	Width	Au g/t	Ag g/t	Cu %	Pb %	Zn %
0.00	16.16	• · • · •		ning 4-5% quartz-carbonate as								L	
		Intrusive	irregular stringers and	d replacements.									Ļ
16.16	32.32	Andesite		ff intercalated with black argillite.	006102	31.40	32.93		<0.01	1.6	0.005		0.01
		Tuff/		te as irregular stringers and	6103	32.93	34.45		< 0.01	0.9	0.001	< 0.01	0.01
		Argillite		intervals of greenish grey	6104	34.45	35.98		<0.01 <0.01	0.8	0.001	0.01	0.01
		<u>}</u>	porphyritic intrusive.	······································	6105 6106	35.98 37.35	37.35 38.57	1.37	missing	0.4	0.003	0.01	.0.01
32.32	38.26	Andesite	Intensely carbonate a	itered reddish brown rock. 2-3%	6106	38.57	39.94	1.22	< 0.01	0.6	0.003	0.01	0.01
52.52	50.20	Tuff/	quartz-carbonate as i	· ··· ·· ··· ··· ··· ···		30.37	33.34	1.57			0.000	0.01	
		Moonlight										i	t
		Vein	At 37.80 to 38.26 - mo	onlight vein containing galena and			·					<u> </u>	<u> </u>
				achite staining and tetrahedrite.									t
38.26	51.52	Andesite	Dark grey andesite tu	ff intercalated with black argillite.									
		Tuff	5-10% quartz-carbona	te as irregular stringers and					-				
			replacements. Small	intervals of greenish grey									
			porphyritic intrusive.									L	
													
51.52	57.93			rry, 2-3% quartz-carbonate								┟────	.
		Intrusive	stringers, trace pyrite	•						ļ		 	┣───
			ļ								<i>.</i>	┟────	┥───
		<u> </u>	E 0 11 17 10	<u> </u>						 		┣────	╆━━━━
		ļ	E.O.H. 57.93 m.									┣━━━━━	

			······	FR DIAMOND D	RILL L	OGS							
DDH #	¥ 2006	5-14	Core Size BQ		Logged	by: R	. Pelkey	and H	I. Samso	n			
Azimut	h_305 de	grees	Start Aug 25/2	2006	Total de	epth_8	1.10 m						
	degrees		Completion A			inate 4		E 6222	2074 N				
			······	Depth (m)									
	F	Reflex Sur	vey	Azimuth (degrees)		÷							
Elevati	on			Dip (degrees)									
MET	ERAGE	ROCK TYPE	ROCK, ALTERATION	, MINERALIZATION	SAMP	LE INTER	VAL(me	ters)		ASS	Y/GEOCI	HEM	
FROM	то		STRUCTURE DESCRI	PTION	Sple No.	FROM	то	Width	Au g/t	Ag g/t	Cu %	Pb %	Zn %
0.00	10.82	•	Intercalated fine grain	ed dark grey rock with black									
		Argillite	argillite. 1-3% quartz	carbonate as stringers, trace									
i			pyrite.										
		<u></u>			006387	67.84	71.34	3.51	0.03	0.5	0.006	0.01	0.01
10.82	13.41			ontaining 2-4% quartz-carbonate	6388	71.34	74.39	3.05	0.02	1.5	0.003	0.01	0.01
		Intrusive	as stringers.		6389	74.39	77.44	3.05	0.02	1.5	0.001	0.01	0.01
13.41	15.70	Argillite	Plack proillite with 2	5% quartz-carbonate and possible	6390	77.44	81.10	3.66	0.01	1.8	0.001	0.01	.0.01
13,41	15.70	Argunte		race disseminated pyrite and									
		<u> </u>	hematite.	race disseminated pyrite and								····	
											· · · ·		
15.70	19.97	Porphyritic	Greenish grev rock c	ontaining 2-4% quartz-carbonate									
		Intrusive	as stringers.										
			<u></u>		<u> </u>	<u> </u>							
19.97	54.57	Argillite	Black argillite with 3-	5% guartz-carbonate and possible									
		1	barite as stringers. T	race disseminated pyrite and									
			hematite.										
54.57	57.93	Porphyritic	Greenish grey rock c	ontaining 2-4% quartz-carbonate	-								
		Intrusive	as stringers.										
						 			ļ	ļ			
57.93	67.07	Argillite	÷	10% quartz-carbonate as irregular		 							
┠───┥		ļ		e barite as stringers. 1-3%	_ <u> </u>	 			<u> </u>		l		}
┣┥		<u> </u>	disseminated pyrite a	nd hematite.		┨────		┞───					
		1	<u>l</u>					L	<u> </u>	L	L	L	1

67.07 67.99 Porphyritic Greenish to light grey sericite altered rock with minor stockwork of quartz-carbonate stringers. Intrusive At 67.99 to 68.02 - fault zone marked by clay gouge. 67.99 73.93 Argillite/ Brecciated argillite with 10-20% fragments of Porphyritic porphyritic intrusive and/or andesite tuff. 5-7% quartzcarbonate stringers. 1-2% pyrite, disseminated. Tuff 73.93 81.10 Andesite Moderately sericite altered greyish green andesite Tuff tuff. Weakly silicified, 5-7% quartz-carbonate stringers and replacements. 1-2% disseminated pyrite. E.O.H. 81.10 m.

1

.

DDH #	<u>⊧2006</u>	5-15	Core Size B	Ô	Logged by:Hugh Sampson and Rob Pelkey								
Azimutl	n_305 de	grees	Start_Aug 26/2	006	Total depth148.48 m								
Dip55	Dip55 degrees Completion_Aug 30/2006 Reflex Survey Depth (m) Azimuth (degrees)		ug 30/2006		inate_4	45311	E 6222	2074 N					
·			Depth (m)			-							
			Azimuth (degrees)										
Elevati	on			Dip (degrees)							-		
MET	ERAGE	ROCK TYPE	ROCK, ALTERATION	MINERALIZATION	SAMP	LE INTER	RVAL(me	ters)		ASS	AY/GEOCI	нем	
FROM	то		STRUCTURE DESCRI	PTION	Sple No.	FROM	TO	Width	Au g/t	Ag g/t	Cu %	Pb %	Zn %
0.00	1.83	Casing/			6391	68.45	69.97	1.52	<0.01	28.9	0.007	0.31	0.4
		Overburden			6392	73.17	74.70	1.53	< 0.01	2.2	0.005		0.0
					6393	103.05	104.57	1.52	0.23	0.6	0.002	<0.01	<0.0
1.83	3.05	Andesite	Light green weakly ch	lorite altered andesite tuff.	6394	104.57	106.40	1.83	0.07	0.6	0.002	<0.01	<0.0
		Tuff	· · · ·		6395	107.32	108.84	1.52	0.04	0.2	0.002	<0.01	<0.0
					6396	108.84	109.76	0.92	0.02	0.6	0.002	<0.01	<0.0
3.05	15.85	Argillite/		0-15%) and fine-grained black				1.50					<u> </u>
		Black		em. pyrite, 2-3% quartz carbonate	6645	110.37		1.52	0.04	1.7	0.002	< 0.01	<0.0
		Volcanic	stringers. Minor barit	e	6646	111.89		1.52	<0.01	1.7	< 0.001	<0.01	<0.0
	<u> </u>	Sandstone	··		6647	113.41		1.53	< 0.01	1.9		<0.01	<0.0
15.05	00.10				6648			1.83	< 0.01	1.3		< 0.01	< 0.0
15.85	22.10			chlorite sericite altered tuff.	6649		117.99		0.04	0.9		< 0.01	0.0
		Intrusive	2-3% quartz carbonate	e stringers. 65-66% fault zone.	6650			1.52	0.09	2.6 1.9		<0.01 <0.01	0.0
22.10	25.30	Argillite/	Same as 3.05 to 15.85	······	6651 6652	119.51 125.30	121.34	1.83	0.03	0.3		<0.01	0.0
44.10	23.30	Black	34110 43 3.03 (0 13.03	III.	6653					1.4		<0.01	<0.0
		Volcanic			6654	130.18		2.90	0.01	1.4		<0.01	<0.0
		Sandstone			6655		135.52	2.30	0.01	1.1	0.008		0.0
		SHRUSIVIL	··			100.00	.00.02	2	0.02	1. 1	0.000		
25.30	28.05	Porphyritic	Same as 15.85 to 22.1	9 m.		<u> </u>							
		Intrusive		<u> </u>						<u> </u>			
	·												
28.05	97.56	Argillite/	Intercalated argillite (50%) and fine-grained black								· · · ·	
		Black		tz carbonate stringers.									
		Volcanic											

•

•

i

r						 .						
		Sandstone	At 28.35 to 29.88 m - fault zone marked by rubbly core.									
			At 35.67 to 36.59 m - same as above.									
				_								
			At 41.16 to 41.16 m - rubbly core indicating fault									
	_	-	At 44.21 to 44.82 m - same as above	-								
I			At 66.16 to 67.68 m - same as above							[
			At 70.12 to 111.28 m - clay gauge									
97.56	98.48	Andesite	Light green, weakly sericite altered tuff. 2-4% quartz									
		Tuff	carbonate stringers]				1]	
											[
98.48	103.05	Argillite/	Strongly brecciated argillite and large intervals of clay	· ·		1						
	_		gauge, 2-3% pyrite				1					
						1	[
103.05	106.40	Silicified	Strongly silicified, strongly sericite altered, light green				<u> </u>					
		Breccia	andesite breccia			1	1					
		Stockwork		-						1	 	
							<u> </u>				<u> </u>	
106.40	107.16	Argillite/	Same as 98.48 to 103.05 m.	-		<u> </u>				1	[
		Clay gauge									[
				_			1			1		
107.16	109.76	Silicified	Same as 103.05 to 106.4 m, ± barite			1	1		<u> </u>	1	1	
		Breccia				1	1	t	1	1	1	<u> </u>
		Stockwork	<u>↓ </u>			<u> </u>	1		1	1	† -	1
	··			-	<u> </u>	t		<u> </u>			1	1
109.76	110.67	Argillite/	Same as 98.48 to 103.05 m.			t –		<u> </u>	t	1	t	t
		Clay gauge				1	<u> </u>	<u>†</u>	<u>†</u>	1	1	<u> </u>
		Bunge					<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	1
110.67	116.77	Silicified	Same as 98.48 to 103.05 m.			<u>t</u>	<u>├</u> ───	<u> </u>	<u> </u>	1		<u> </u>
		Breccia				1		·	<u> </u>	1	t	···
 		Stockwork	<u>├</u>			t			<u> </u>	<u> </u>	1	1
		Stotanora			<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	1	1	t
		Quartz			1	1	1		I	<u> </u>		<u></u>

the second of th

.

		Breccia							
125.30	133.08	Porphyritic	Greenish grey strongly silicified and quartz altered						
		Intrusive	rock.	 <u></u>			 	 	
 		· · · · · · · · · · · · · · · · · · ·	At 131.70 to 132.01 m - Fault marked by clay gauge.	 ļ				 	
133.08	135.67	Argillite	Weak to moderately silicified black argillite with 10%	<u> </u>			 	 	
			quartz carbonate as irregular stringers. Minor blobs				}		
			of pyrite.	 			 	 	
135.67	138.41	Porphyritic	Same as 125.30 to 133.08 m.	 }			 <u> </u>	}	
		Intrusive		 					
138.41	148.48	Argillite	Same as 28.05 to 97.56 m.	 <u> </u>		<u> </u>	 	 	
		Volcanic		[- · -					
		Sandstone						 	
			E.O.H at 148.48 m.	<u> </u>					

.

•

۲

The second s

APPENDIX III

1

ASSAY RESULTS - DDH - 2006 - FR - 1 TO 15 inclusive

٠.

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3438 Fax: (604) 327-3423

6V-2097-RA1 Page 1 of 2

Oct-16-06

. .

Description Assessing for and 20 Gaun

Assay Certificate

.

Company:	Mountain Boy Minerals Ltd.
Project:	FR
Attn:	Randy Kasum

We hereby certify the following assay of 24 drill core samples submitted Sep-01-06

Sample Name	Au g/tonne	Ag g/toune	Cu %	Pb %	Z.n %	
A004996	0.35	8.0	0.026	0.15	0.28	·····
A005222	<0.01	1.6	0.002	0.01	0.02	• <u>-</u>
A005223	0.01	5.5	0.001	0.15	0.33	•
A005224	<0.01	2.6	0.002	0.01	0.05	
A005225	<0.01	1.9	0.001	0.02	0.20	_
A005226.	0.01	6.2	0.001	0.07	0.34	······································
A005227	0.01	14.2	0.002	0.04	0.25	
A005228	<0.01	29.2	0 .002	0.04	0.07	
A005229	<0.01	1 8	0.000	0.01	0.02	
A005230	<0.01	2.2	0.002	0.01	0.01	
A005231	<0.01	1.7	0.002	0.01	0.03	··· ··· ··· ··· ··· ··· ··· ··· ···
A005232	0.01	9.7	0.008	0.02	0.09	
A005233	<0.01	20.9	0.007	0.04	0.13	
A005234	<0.01	9.4	0.003	0.02	0.07	
A005235	0.01	6.9	0.004	0.03	0.05	
A005236	0.01	12.5	0.004	0.02	0.05	
A005237	0.02	37.0	0.011	0.14	0.55	
A005238	0.02	41.4	0.012	0.12	0.26	
A005239	0.05	58.6	0.021	0.58	3.20	
A005240	<0.01	11.8	0.005	0.03	0.12	
A005241	<0.01	50.2	0.007	0.23	0.59	
A005242	<0.01	5.9	0.004	0.01	0.03	
A005243	<0.01	2.6	0.001	0.01	0.02	
A005244	<0.01	2.9	0.001	0.01	0.02	
*DUP A004098	0.41	7.1	0.027	0.15	0.29	
*DUP A005230	<0.01	1.9	0.002	0.01	0.01	· · · · · · · · · · · · · · · · · · ·
*DUE A005240	<0.01	12.3	0.004	0.03	0.12	
*Au5	1.46				-	
*CCu-le		130.5			4.09	
*KC-la			0.626	2.22		

Certified by

.....

				_ +		· · · · · · · · · · · · · · · · · · ·	
ASSA C A N	ABRS I A D A		. •			Assayers Can 8282 Sherbrook Vancouver, B.C V5X 4R6 Tel: (604) 327-3 Fax: (604) 327-3	e St. 436
· · · · ·		Carrity	Obering for	over 20 Ja	ertoj	······································	
Assu	<u>v Certificate</u>					6V-2097-RA2	
Company: Project: Attn:	Mountain Boy M FR Randy Kasum	inerals Ltd.				Oct-16-06	
	<i>certify</i> the followin Sep-01-06	g assay of 6 d	rill core samp	les			
Sample Name		Au g/tonne	Ag g/tonne	Cu %	Pb %	Zn %	

5.3

3.6

2.5

1.1

1.9

0.9

4.8

128.8

<0.1

0.01

0.01

<0.01

<0.01

<0.01

<0.01

0.01

1.50

<0.01

A005245

A005246

A005248

A005249

A005250

A005301

+CCu-1c

*KC-la

*BLANK

7

*Au5

*DUP A005245

. . . .

0.003

0.003

0.001

0.001

0.002

0.001

0.003

0.628

<0.001

0.06

0.01

0.01

<0.01

<0.01

<0.01

<u>2.23</u> <0.01

0.07

0.06

0.02

0.01

0.02

0.01

0.01

0.06

4.03

<0.01

Certified by

Aler

ASSAN CAN		Assayers Canada 8282 Sherbrooke SL Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423	
· · · ·	Curting Assaying Freeman 20 Years	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·
<u>Assa</u>	<u>v Certificate</u>	6V-2098-RA2 Page 1 of 2	-
Company: Project; Atin;	Mountain Boy Minerals Ltd. FR Claim Randy Kasun	Oct-05-06	

We hereby certify the following assay of 24 drill core samples submitted Sep-01-06

Sample Name	Au g/tonne	Ag g/tonne	Cu %	Ph %	Zn %	
A005805	0.11	200.0	0.097	0.84	0.23	•• • •• • •
A006081	<0.01	1.6	0.001	0.01	0.02	
A006082	<0.01	1.1	0.001	0.01	0.02	-
A006083	<0.01	0.5	0.001	<0.01	0.01	
A006084	< 0. 01	0.6	0.005	<0.01	0.02	
A006085	0.02	16.8	0.023	0.02	0.09	***
A006086	<0.01	2.1	0.001	0.02	0.02	
A006087	<0.01	2.3	0.001	<0.01	0.01	
A006088	<0.01	1.7	0.008	0.01	0.02	
A006089	0.21	228.7	0.345	0.25	0.15	
A006030	<0.01	2.5	0.005	<0.01	0.01	
A006091	<0.01	2.2	0.001	0.01	0.03	
A006092	<0.01	1.5	0.001	0.01	0.02	
A006093	<0.01	1.2	0.001	0.02	0.02	
A006094	0.02	62.0	0.033	2.14	1.99	
A006095	0.29	22.9	0.054	0.03	0.04	• • • • • • • • • • • • • • • • • • • •
A006096	0.01	13.0	0.006	0.02	0.02	
A006097	<0.01	4.8	0.002	0.02	0.02	
A006098	<0.01	0.9	0.001	0.01	0.02	
A006099	0.03	155.3	0.036	1.72	0.12	
A006100	0.14	300.4	0.065	0.57	0.49	· · · · · · · · · · · · · · · · · · ·
A006101	<0.01	2.9	0.012	0.02	0.05	
A006102	<0.01	1.6	0.005	< 0.01	0.01	
A006103	<0.01	0.9	0.001	<0.01	0.01	
*DUP A005805	0.08	212.5	0.095	0.85	0.23	
*DUP A006089	0.26	227.5	0.344	0.26	0.15	•
+DUP A006099	0.04	151.8	0.036	1.75	0.12	
*Au5	1.45			+		
*CCu-le		127.0			3.98	
*KC-la			0.631	2.22		

Certified by

ŰΛ

......

.

Page 1 of 2

Oct-05-06

6V-2098-RA1

Contaily Masager v over 20 Gears 9

Assay Certificate

Company:	
Project:	
Attn:	


Mountain Boy Minerals Ltd. FR Claim Randy Kasum

We hereby certify the following assay of 24 drill core samples submitted Sep-01-06

Sample Name	Au g/tonne	Ag g/tonne	Cu %	Pb %	Zn *⁄2	
A005779	<0.01	1.3	0.001	0.01	0.01	
A005780	<0.01	1.2	0.001	0.01	0.01	
A005781	<0.01	2.0	0.001	0.02	0.04	
A005782	<0.01	0.4	0.001	<0.01	<0.01	
A005783	<0.01	1.5	0.001	0.02	0.02	
A005784	<0.01	0.9	0.001	0.01	<0.01	
A005785	0.01	1.2	0.001	<0.01	0.01	
A005786	<0.01	0.6	0.001	<0.01	0.01	
A005787	<0.01	1.3	0.001	<0.01	0.01	
A005788	<0.01	1.9	0.001	0.01	0.02	
A005783	0.19	1412.0	0.303	0.09	0.44	
A005790	0.01	5.8	0.003	0.02	0.02	
A005791	<0.01	4.8	0.001	<0.01	<0.01	
A005792	<0.01	1.9	0.001	0.01	0.01	
A005793	<0.01	0.6	0.001	<0.01	<0.01	
A005794	<0.01	0.8	0.001	0.01	0.01	
A005795	<0.01	1.9	0.001	<0.01	<0.01	
A005796	<0.01	1.5	0.001	< 0.01	<0.01	
A005797	<0.01	0.1	0.001	<0.01	< 0.01	
A005798	<0.01	0.6	0.001	<0.01	<0.01	
A005799	<0.0	0.1	0.001	0.01	0.01	
A005800	<0,0	0.5	0.004	0.01	0.01	
A005802	<0.01	0.6	0.001	0.01	0.01	
A005803	<0.01	0.5	0.001	0.01	0.01	
+DUP A005779	<0.01	1.7	0.001	0.01	0.01	
+DUP A005788	<0.01	2.3	0.001	0.01	0.02	
*DUP A005798	<0.01	1.0	0.001	<0.01	<0.01	
*Au5	1.45					
*CCu-lc		127.9			4.03	
*KC-1a			0.622	2.26		

Certified by

Al

Couldy Same for over 25 years

Assay Certificate

6V-2098-RA3

.

Company: Project: Attn:

Mountain Boy Minerals Ltd. FR Claim Randy Kasum Oct-05-06

. . **. . . .** .

We hereby certify the following assay of 9 drill core samples submitted Sep-01-06

Sample Name	Au g/tonne	Ag g/tonne	Cu %	Pb %	Zn %	
A006104	<0.01	0.8	0.001	0.01	0.01	
A006105	<0.01	0.4	0.063	0.01	0.01	
A006107	<0.01	0.6	0.003	0.01	0.01	
A006049	<0.01	1.7	0.005	0.01	0.03	
A006050	<0.01	1.4	0.007	0.01	0.01	
A006387	0.03	0.5	0.006	0.01	0.01	
A006388	0.02	1.5	0.003	0.01	0.01	
A006389	0.02	1.5	0.001	0.01	0.01	
No number sample	<0.01	46.6	0.012	0.11	0.06	
*DUP A006104	<0.01	0.7	0.001	0.01	0.01	
*Au5	1.44			•		· • · · · · · · · · · · · · · · · · · ·
+CCu-le		127.5			4.08	
*KC-1a			0.621	2.22		
*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01	
· · · · · · · · · · · · · · · · · · ·						· ···· · ····

AU

Certified by

e e en en e

6V-2116-RA1 Page 1 of 2

Oct-20-06

Buchily Assessing fo vere 25 Years

Assay Certificate

Company;	Mountain Boy Minerals Ltd.
Projecti	FR
Attn:	Randy Kasum

We hereby certify the following assay of 24 drill core samples submitted Sep-06-06

Sample Name	Au g/tonne	Ág g/tonne	Cu %	РЬ %	Zп %	
A005302	<0.01	1.5	0.002	<0.01	0.01	
A005303	<0.01	1.4	0.003	<0.01	0.01	
A005304	<0.01	2.6	0.002	<0.01	0.01	
A005305	<0.01	1.5	0.001	<0.01	0.01	
A005306	0.06	82.0	0.009	0.94	0.90	
A005307	<0.01	1.1	<0.001	<0.01	0.01	
A005308	<0.01	0.9	0.002	<0.01	0.01	
A005309	0.01	0.5	0.001	<0.01	0.01	
A005310	<0.01	1.7	<0.001	<0.01	0.01	
A005311	0.01	2.2	0.001	<0.01	0.01	
A005312	0.01	3.6	<0.001	<0.01	0.01	
A005313	0.01	1.7	0.001	<0.01	0.01	
A005314	0.01	1.4	<0.001	<0.01	0.01	
A005315	<0.01	1.0	0.001	<0.01	0.01	
A005316	<0.01	1.0	<0.001	<0.01	0.01	
A005317	0.01	2.0	0.001	<0.01	0.01	tin an
A005318	<0.01	1.5	0.001	<0.01	0.01	
A005319	0.01	2.4	0.001	<0.01	0.02	
A005320	0.03	3.3	0.001	<0.01	0.14	
A005321	<0.01	2.4	0.001	<0.01	0.01	
A005322	<0.01	1.8	<0.001	<0.01	0.01	
A005323	0.01	1.6	<0.001	<0.01	0.01	
A005324	<0.01	1.3	<0.001	<0.01	0.01	
A005325	<0.01	1.9	<0.001	<0.01	0.01	
*DUP A005302	<0.01	1.7	0.002	<0.01	0.01	
*DUP A005311	<0.01	1.7	0.001	<0.01	0.01	•
*DUP A005321	0.01	2.5	0.001	<0.01	0.01	
*Au5	1.48					
*CCu-le		128.4			4.08	
*KC-la			0.623	2.22		

Certified by

···· · · · · · · · · ·

Some 24 grain Conting Sugary

Assay Certificate

6V-2116-RA2

Oct-20-06

Company:Mountain Boy Minerals Ltd.Project:FRAun:Randy Kasum

We hereby certify the following assay of 15 drill core samples submitted Sep-06-06

Sample Name	Au g/tonne	Ag g/tonne	Cu %	Pb %	Zn %	
A005326	<0.01	1.1	0.006	<0.01	<0.01	
A005327	<0.01	1.3	<0.001	<0.01	<0.01	
A005328	<0.01	2.0	<0.001	<0.01	<0.01	
A005329	<0,01	0.5	<0.001	<0.01	<0.01	
A005505	0.01	0.6	<0.001	<0.01	0.01	
A005506	<0.01	1.4	0.001	<0.01	0.01	· · · · · · · · · · · · · · · · · · ·
A005507	<0.01	1.1	0.001	、<0.01	0.01	
A006645	0.04	1.7	0.002	<0.01	<0.01	
A006646	<0.01	1.7	<0.001	<0.01	<0.01	
A006647	<0.01	1.9	<0.001	<0.01	<0.01	
A006648	<0.01	1.3	<0 001	<0.01	<0.01	
A006650	0.09	2.6	0.001	<0.01	0.01	
A006651	0.03	1.9	0.003	<0.01	0.01	
A006653	<0.01	1.4	0.001	<0.01	<0.01	
A006654	0.01	1.3	0.001	<0.01	<0.01	
*DUP A005326	<0.01	1.6	0.005	<0.01	<0.01	
+DUP A005647	<0.01	1.7	< 0.001	<0.01	<0.01	
*Au5	1.36					
*CCu-lc		128.9			4.05	
*KC-la			0.624	2.21		
*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01	-

Certified by

.

Constip Assam leven 25 Gours 1. 11

Assay Certificate

Company:	Mountain Boy Mir	nerals Ltd.
Project;	FR Claims	

Attn:

FR Claims Randy Kasum

We hereby certify the following assay of 24 drill core samples submitted Sep-07-06

Sample . Name	Au g/tonne	Ag g/tonne	Cu %	Pb %	Zn %	
A005508	0.01	0.8	0.006	0.01	0.02	· · · · · · · · · · · · · · · · · · ·
A005509	<0.01	1.2	0.002	<0.01	0.01	
A005510	<0.01	0.5	0.003	<0.01	0.01	
A005511-	<0.01	1.0	0.003	<0.01	0.01	
A005512	<0.01	1.1	0.002	0.01	0.01	
A005513	<0.01	1.3	0.003	0.01	0.01	
A005514	<0.01	1.8	0.006	0.01	0.01	
A005515	<0.01	2.0	0.012	0.01	0.01	
A005516	<0.01	1.9	0.006	0.01	0.02	
A005517	<0.01	1.2	0.003	0.01	0.01	
A005627	<0.01	3.8	0.003	0.05	0.12	
A005628	0.01	6.6	0.004	0.05	0.15	
A005629	0.01	1.8	0.002	0.01	0.02	
- A005630	<0.01	1.0	0.003	<0.01	0.02	
A005631	0.01	0.5	0.003	0.01	0.02	
A005632	<0.01	0.3	0.003	0.01	0.01	
A005633	<0.01	1.5	0.004	<0.01	0.02	
A005634	<0.01	0.7	0.003	<0.01	0.01	
A005635	<0.01	7.0	0.005	0.01	0.04	
A005636	0.01	41.8	0.009	0.08	0.05	
A005637	0.03	9.4	0.007	0.04	0.05	
A005638	0.01	3.9	0.006	0.01	0.03	
A005639	0.01	2.3	0.004	0.01	0.03	
A005640	0.01	3.1	0.010	0.10	0.04	
*DUP A005508	0.01	0.9	0.006	0.01	0.02	
*DUP A005517	<0.01	1.5	0.003	0.01	0.01	•
+DUP A005636	0.01	41.6	0.010	0.08	0.05	
*Au5	1.45					
*CCu-lc		127.6			4.00	
*KC-1a	· •··		0.624	2.21		

Certified by

6V-2225-RA1 Page 1 of 2 Nov-02-06

·- ·· ·

Carlie Vagaging for over 2. Hears

Assay Certificate

Company:	Mountain Boy Minerals Ltd.
Project:	FR Claims
Atin;	Randy Kasum

6V-2225-RA2 Page 1 of 2 Nov-02-06

We hereby certify the following assay of 24 drill core samples submitted Sep-07-06

Sample Name	g/1	<u>Au</u> ionne	Ag g/tonne	Cu %	Ph %	Zn %	
A005641	· · · · · · · · · · · · · · · · · · ·	0.01	1.7	0.005	0.01	0.13	
A005642	(0.01	1.0	0.002	<0.01	0.02	
A005643	1	0.07	15.3	0.002	0.01	0.08	
8005644	·	0.01	24.4	0.003	0.03	0.09	
A005645	<(0.01	1.5	0.001	<0.01	0.02	
A005646	(0.01	1.4	0.001	<0.01	0.02	
A005647	<(0.01	0.8	0.002	<0.01	0.02	
A005648	(0.01	1.5	0.002	0.01	0.05	
A005649	<(0.01	0.2	0.001	<0.01	0.01	
A005650	C	0.01	1.6	0.001	0.01	0.05	
A005651	<().01	1.3	0.002	0.01	0.04	• • • • • • • • • • • • • • • • • • • •
A005652		0.01	5.9	0.004	0.16	0.44	
A005653		1.01	2.6	0.003	0.02	0.09	
8005654		0.01	1.6	0.002	<0.01	0.02	
A005655	<(0.01	0.6	0.002	0.01	0.01	
A005656		.01	0.9	0.001	<0.01	0.02	
A005657		.02	1.0	0.002	0.01	0.02	
A005658	<0	.01	1.0	0.003	< 0.01	0.01	
A005659	•	.01	3.5	0.003	0.06	0.16	
A005660	ſ,	-01	1.2	0,002	0.07	0.18	
A005661	G	.01	3.8	0.005	0.01	0.07	• • • • •
A005662	0	-01	4.8	0.007	0.03	0.15	
A005663	<0	.01	1.6	0.003	<0.01	0.02	
A005664	0	.01	0.7	0.001	<0.01	0.02	
*DUP A005641	0	.01	1.4	0.005	0.01	0.13	
*DUP A005650	<0	.01	1.9	0.001	0.01	0.05	•
*DUP A005660	0	.01	1.4	0.002	0.07	0.18	
*Au5	1	. 4.3					
*CCu-1¢			130.9			4.06	
*KC-la		• •		0.625	2.24	• •• •• ••	· · · · · · · · · · · · · · · · · · ·

Certified by

A N	A D A				Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423			
. •		Chertier 3	Salary ing P	r crex 22	Jours	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
Assa	<u>v Certificate</u>		·····		_	6V-2225-RA	3	
Company: Project; Attn:	Mountain Boy M FR Claims Randy Kasum	inerals Ltd.				Nov-02-06	• .	
	<i>certify</i> the following Sep-07-06	g assay of 18	drill core sa	mples				
		Au g/tonne	Ag g/tonne	Cu %	Pb %	Zn %		
Name A005665		g/tonne <0.01		% 0.002		•		
Name A005665 A005666	<u>.</u>	g/tonne <0.01 0.01	g/tonne 0.5 1.0	% 0.002 0.003	% <0.01 <0.01	% 0.01 0.02		
Name A005665 A005666 A005667	<u></u>	g/tonne <0.01 0.01 0.01	g/tonne 0.5 1.0 0.7	% 0.002 0.003 0.001	% <0.01 <0.01 <0.01	% 0.01 0.02 0.01		
Name A005665 A005666 A005667 A005668		g/tonne <0.01 0.01 0.01 <0.01 <0.01	g/tonne 0.5 1.0 0.7 0.9	% 0.002 0.003 0.001 0.001	% <0.01 <0.01 <0.01 <0.01	% 0.01 0.02 0.01 0.01	••••••••••••••••••••••••••••••••••••••	
Name A005665 A005666 A005667 A005668 A005669	<u> </u>	g/tonne <0.01 0.01 0.01 <0.01 0.01	g/tonne 0.5 1.0 0.7 0.9 0.3	% 0.002 0.003 0.001 0.001 0.001	% <0.01 <0.01 <0.01 <0.01 <0.01	% 0.01 0.02 0.01		
Name A005665 A005666 A005667 A005668 A005669 A005670	· ·	g/tonne <0.01 0.01 0.01 <0.01 0.01 0.01	g/tonne 0.5 1.0 0.7 0.9 0.3 0.2	% 0.002 0.003 0.001 0.001 0.001	% <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	% 0.01 0.02 0.01 0.01		
Name A005665 A005666 A005667 A005669 A005669 A005670 A005671		g/tonne <0.01 0.01 0.01 <0.01 0.01 0.01 <0.01	g/tonne 0.5 1.0 0.7 0.9 0.3 0.2 0.3	% 0.002 0.003 0.001 0.001 0.001 0.001 0.001	% <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	% 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01		
Name A005665 A005666 A005667 A005668 A005669 A005670 A005671 A005672		g/tonne <0.01 0.01 0.01 <0.01 0.01 <0.01 <0.01 0.01	g/tonne 0.5 1.0 0.7 0.9 0.3 0.2 0.3 2.1	% 0.002 0.003 0.001 0.001 0.001 0.001 0.001 0.001	% <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	% 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01		
Sample Name A005665 A005666 A005668 A005669 A005669 A005670 A005671 A005671 A005673 A005673	• • • • • • • • • • • • • • • • • • •	g/tonne <0.01 0.01 0.01 <0.01 0.01 0.01 <0.01	g/tonne 0.5 1.0 0.7 0.9 0.3 0.2 0.3	% 0.002 0.003 0.001 0.001 0.001 0.001 0.001	% <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	% 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01		

3.9

31.3

13.0

2.4

2.2

1.2

1.0

0.3

0.2

128.3

<0.1

.

0.001

0.001

0.001

0.003

0.001

0.001

0.001

0.001

0.630

<0.001

0.001

<0.01

0.01

<0.01

0.02

0.01

0.01

<0.01

<0.01

2.25

.

<0.01

0.02

0.01

0.01

0.01

0.03

0.04

0.05

0.05

0.01

0.01

4.05

<0.01

0.01

0.02

0.02

0.09

0.09

0.16

0.25

<0.01

<0.01 1.48

<0.01

A005676

A005677

A005678

A006899

A006900 A006901

A006902

*CCu-lc

+KC-la

+BLANK

*Au5

*DUP A005665

+DUP A005674

Certified by	Ŀ.
--------------	----

<u>_</u>. . . .

APPENDIX IV

ŧ

Calculations of Drill Hole Intercept Results

FR -2006-12											
Sample No.	Interval (M)	g/t Au	g/t Ag	% Cu	% РЬ	% Zn	l xg/t Au	ixg/tAg	l x % Cu	I x % Pb	Ix%Zn
	·						0	0	0	0	0
							0	0	0	0	0
6099	1.52	0.03	155.1	0.036	1.72	0.12	0.0456	235.752	0.05472	2.6144	0.1824
6100	1.52	0.14	300.4	0.065	0.57	0.49	0.2128	456.608	0.0988	0.8664	0.7448
	┫						0	0	0	0	0
	┦───┤						0	0	0	0	0
							0	0	0	0	0
	ļ	,					0	0	0	0	0
							0	0	0	0	0
	<u> </u>						0	0	0	0	0
<u> </u>	┨────┤						0	0	0	0	0
	<u> </u>						0	0	0	0	0
	<u> </u>						0	0	0	0	0
	╉╍───┤						0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
······································	<u> </u>						00	0	0	0	0
							0	0	0	0	0
<u>.</u>							0	0	0	0	0
<u> </u>							0	0	0	0	0
	+						0	0	0	0	0
		4					0	0	0	0	0
· · · · <u> </u>	┣						0	0	0	0	0
	┨────┤.					··	0	0	0	0	0
	 						0	0	0	0	0
	3.04						0.085	227.75	0.0505	1.145	0.305

•

•

.

					FR -20	06-2					
Sample No.	Interval (M)	g/t Au	g/t Ag	% Cu	% Pb	% Zn	l xg/t Au	l x g/t Ag	l x % Cu	lx%Pb	l x % Zn
]			0	0	0	0	0
							0	0	0	0	0
5238	3.05	0.02	41.4	0.012	0.12	0.26	0.061	126.27	0.0366	0.366	0.793
5239	3.05	0.05	58.6	0.021	0.58	3.2	0.1525	178.73	0.06405	1.769	9.76
5240	3.05	0.01	11.8	0.005	0.03	0.12	0.0305	35.99	0.01525	0.0915	0.366
5241	3.05	0.01	50.2	0.007	0.23	0.59	0.0305	153.11	0.02135	0.7015	1.7995
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
<u></u>							0	0	0	0	0
							0	0	0	0	0
<u></u>							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							Q	0	0	0	0
							0	0	0	0	0
	12.2						0.0225	40.5	0.01125	0.24	1.0425

1

.

.

į

.

APPENDIX V

, . .

Geochemical Sample Descriptions

FR SAMPLES DESCRIPTIONS

FR-1(444594, 6238466) Grab from vuggy limonite-quartz vein about 40 m below apple green rhyolite. Vein oriented 300 deg / moderate dip to N. Thickness about 0.5 m.

FR-2(444686, 6239662) Grab sample from small shear zone, quartz-sericite alteration, minor pyrite, some Fe and Mn stain, shearing orientation E-W with vertical dip.

FR-3(445305, 6238137) Grab sample from quartz vein 2-5 cm wide with minor malachite and galena. The vein is a part of branching vein zone 1.5 m wide at the end of major quartz vein 60-70 m long. The vein is 2-10 cm wide and branch off at the N end, orientation N-S / vertical dip.

AFR-4(444888, 6239488) Chip 2.0 m from a rusty zone of sericite altered andesite volcanics. The zone (shear, fracture zone) is 20 m long and 2-3 m wide.

AFR-5(44923, 39296) Grab from a suboutcrop of a pod (max. 2-3m across) of carbonate, lesser barite cemented breccia hosted in andesite rocks. Abundant Mn stain.

AFR-6(445300, 6239654) Float (angular, head size) of quartz vein with 3-4% pyrite and minor sphalerite, strong Mn stain on surface, several similar pieces were noted nearby.

AFR-7(445593, 6239177) Grab from sub outcrop of a quartz vein about 40 m long (exposed length) and no wider than 30 cm. The vein pinch and swell from 0 to 30 cm. Vein orientation 340/V. The sample contains 20-30% pyrite, minor chalcopyrite and strong Mn stain. The vein is located just 20 m above the sample ACH S-06.

AFR-8(445556, 6239107) Grab from quartz vein 10-15 cm wide with minor pyrite and trace galena (?). Orientation 20/V. Can be traced for 3 m.

AFR-9(45491, 39123) Float from ore pile related to nearby mined-out vein. The sample is of quartz with 10-15% pyrite and 25-30% chalcopyrite, heavy Mn. Sample ACH S-06-10 is just a few metres away.

AFR-10(446286, 6236460) Grab from zone of carbonate alteration with pervasive limonite stain 15-20 m across hosted in andesite epiclastics.

AFR-11(446410, 6246485) Grab from limonitic limestone/marble with minor disseminated chalcopyrite and malachite. The sample came from distinctively bedded layer of limestone 10-15 m thick. Bedding N-S/steep E. Mineralization is most likely epigenetic.

AFR-12(446410, 6246485) Grab from limestone/mudstone.

AFR-13(46138, 36399) Grab from very strongly sericite-carbonate altered rock with strong pervasive limonite.

AFR-14(445928, 6235677) Float from sub outcrop of very strongly quartz-sericite-pyrite altered rock. Pyrite content 5-10%. The rock came from zone above of this type of alteration. The zones are a few m across, but are quite irregular.

AFR-15(445850, 6235735) Float of carbonate replaced rock with 20-25% coarse grained sphalerite and 1-2% galena. There are other boulders with sphalerite nearby. The source of the float is a small cliff above.

AFR-16(445923, 6235664) Grab sample from small pod (?) partly buried (max. 1-1.5 m) of quartz with 1-2% of combined sphalerite and galena, and abundant limonite.

FR-06-1(445656, 6239521) Float- 15 cm massive pyrite -chalcopyrite boulder.

FR-06-2(445686, 6239286) Select grab out of old trench. Grab of siderite-chalcopyrite-pyrite with sulphides approximately 12 %.

FR-06-3(445686, 6239286) Select grab out of old trench. Grab of siderite-chalcopyritepyrite with sulphides approximately 3-4 % %. Zone is approximately 2 m wide with stringers of chalcopyrite and pyrite striking 085 degrees.

FR-06-4 (445782, 6239296) Select grab out of dump by old trench. Select grab of massive pyrite, minor chalcopyrite and traces sphalerite. Sulphides form approximately 40-50 % of the rock.

FR-06-5 (445782, 6239296) Grab from a stringer in the mineralized zone. There is heavy manganese stain with minor galena, sphalerite and traces of chalcopyrite. Sulphides total approximately 5 to 6 % of the zone.

FR-06-6 (445799, 6239296) 15 m east of sample FR-06-5. Grab of semi-massive sphalerite, galena and pyrite from a trench dump.

FR-06-7 (445854, 6239288) Grab from outcrop in small trench. Grab of manganese stained, silicified zone with minor siderite veinlets and traces pyrite.

FR-06-8 (445549, 6239177) Float consisting of vuggy quartz with semi-massive pyrite approximately 20 % and traces of chalcopyrite and galena.

FR-06-9 (445516, 6239178) Float consisting of vuggy quartz with massive chalcopyrite veinlets and minor galena approximately 10 % of the rock

FR-06-10(445516, 6239178) Grab of siderite rich rock with 5-10 % chalcopyrite FR-06-11(445503, 6239147) Grab from massive, banded pyrite float with minor chalcopyrite.

FR-06-12(445503, 6239147) Grab of float with quartz stockwork carrying 5-6 % chalcopyrite and minor pyrite.

FR-06-13(445494, 6239101) Grab from trench dump beside 15 m long cut. Sample is grab of quartz with 15 % chalcopyrite.

FR-06-14(445494, 6239101) Grab of dump material, same as above.

FR-06-15(445494, 6239101) Float grab sample of manganese vuggy quartz with crystalline crystals and minor chalcopyrite and pyrite.

ACHS-2006-1(445699, 6239241) (float) Quartz-stockwork/vein. Float rock 1-2% galena. Minor chalcopyrite and pyrite.

ACHS-2006-2(445699, 6239241) (float) Intermediate aphanitic volcanic. Quartz carbonate vein containing galena, chalcopyrite and pyrite, \pm specularite

ACHS-2006-3(445698, 6239264) (trench) Quartz vein in volcanics. Semi-massive galena, chalcopyrite and pyrite. Malachite stain in fractures.

ACHS-2006-4(445698, 6239264) (old trench) Massive, banded pyrite in quartz vein. 2-3% pyrite

ACHS-2006-5(445627, 6239192) silicified, sericite felsic intrusive volcanic. Massive galena vein, minor pyrite.

ACHS-2006-6(445600, 6239189) (grab from trench) 15-30cm thick quartz vein. Semimassive pyrite vein. Vein at 340°

ACHS-2006-7(445571, 6239146) (float) Quartz vein, 10-20% sulfides, pyrite, chalcopyrite. Malachite stain.

ACHS-2006-8(445510, 6239120) (old trench) Quartz vein system, \pm barite in volcanics, strong rusty stain.

ACHS-2006-9(445510, 6239120) (same trench as above) Quartz vein in mafic-andesitic volcanic. 10% pyrite. Strong rusty stain.

ACHS-2006-10(445493, 6239134) (old blast) Quartz vein, malachite stain in fracture. 10-12% pyrite and chalcopyrite.

ACHS-2006-11(445493, 6239134) (grab) Aphanitic, mafic volcanic with 2-4mm quartzstringers carrying 5-7% chalcopyrite, 5% pyrite. There is minor malachite stain.

ACHS-2006-12(445424, 6239004) (float) Quartz carbonate float, semi-massive galena 3-4% pyrite and chalcopyrite.

ACHS-2006-13(445366, 6239006) (grab) Aphanitic, mafic volcanic with abundant, coarse grained quartz veins, 2-3% chalcopyrite and 10% pyrite.

ACHS-2006-14(445334, 6238881) (float) Weakly silicified sericite-andesite tuff with 5-10% pyrite.

ACHS-2006-15(445730, 6239246) (float) Quartz vein at least 40cm thick. Pervasive goethite stain, 3-5% pyrite

ACHS-2006-16(445730, 6239246) (float) Quartz carbonate vein with pervasive goethite stain and local iron-carbonate stain. 2-3% pyrite.

ACHS-2006-17(445706, 6239266) (float) Quartz carbonate vein. There is a stockwork in aphanitic volcanic with local goethite and manganese stain. Pyrite veinlets are in the quartz.

ACHS-2006-18(445698, 6239264) (old trench) Quartz carbonate vein stockwork in volcanic with pervasive manganese and goethite stain. The rock contains massive pyrite veins.

ACHS-2006-19(445698, 6239264) (old trench) Same as 18, minor malachite stain and minor chalcopyrite.

ACHS-2006-20(445644, 6239333) (grab) Black tuff/argillite outcrop. Persuasive goethite and manganese stain.

ACHS-2006-21(445597, 6239411) (grab) Quartz-vein, 30-50cm wide, minor galena, chalcopyrite, pyrite at 200°.

ACHS-2006-22(445627, 6239468) (float, likely from old trench) Quartz-stockwork andesitic volcanic manganese stain, 5-7% pyrite.

ACHS-2006-23(445663, 6239566) (float) Andesite volcanic, 8-10% pyrite strong goethite stain.

ACHS-2006-24(445667, 6239399) (float) Quartz carbonate vein, at least 30cm thick. Local manganese and iron carbonate stain. Minor pyrite.

ACHS-2006-25(445636, 6239359) (float) Quartz vein with pervasive goethite and minor manganese stain. Minor pyrite.

ACHS-2006-26(445535, 6239397) (float) Quartz carbonate vein. Pervasive iron carbonate and local manganese stain with minor pyrite.

ACHS-2006-27(445535, 6239397) (float) Quartz carbonate vein with iron carbonate stain and 2-5% galena, 2-5% sphalerite, 2-5% chalcopyrite.

ACHS-2006-28(445499, 6239343) (float) Massive quartz carbonate vein with ironcarbonate stain and 2-3% galena, minor sphalerite.

ACHS-2006-29(445484, 6239308) (old trench at 200°) Quartz-vein system, with large 1-2m veins and stringer stockwork.

ACHS-2006-30(445431, 6239321) (grab) Blast from old trench. Sample is from large quartz carbonate vein with local manganese stain, 2-5% galena, 2-3% chalcopyrite and 1-2% pyrite.

ACRP-2006-1(445592, 6239223) (float) Quartz vein 7-10% galena and chalcopyrite and strong limonitic staining, 3-4% pyrite.

ACRP -2006-2(445556, 6239184) (float) Intensely limonitic stained semi-massive pyrite with 5-10% chalcopyrite and minor galena.

ACRP-2006-3(445543, 6239165) (float) Quartz vein within fine-grained mafic volcanic. 15-20% chalcopyrite, 10-15% black shiny mineral possibly tetrahedrite, semi-massive pyrite

ACRP-2006-4(445494, 6239199) (grab) Quartz vein within mafic volcanic, minor pyrite, minor limonite staining.

ACRP-2006-5, 6+7(445487, 6239089) 1m cross-cuts of 3 10-40cm thick quartz branded vein. Minor pyrite, chalcopyrite and galena, intense staining. Shining black mineral, sphalerite or tetrahedrite. Veins trending approximately 95° and dipping nearly vertical

ACRP-2006-8(445715, 6239265) (float) Quartz-carbonate stockwork within heavily limonitic stained fine-grained black rock (argillite?) 5-7% galena, minor chalcopyrite and pyrite.

ACRP-2006-9(445715, 6239265) (float) Quartz stockwork within an intensely stained limonite/manganese country rock. 3-5% galena

ACRP-2006-10(445698, 6239292) (grab) Carbonate vein containing abundant chalcopyrite and pyrite. Vein is trending between 50-80 degrees.

ACRP-2006-11(445666, 6239286) (grab) Quartz-carbonate stringers within chloritesericite altered volcanic (manganese staining, no visible sulfide)

ACRP-2006-12(445602, 6239461) (trench, grab) Quartz-carbonate vein within chloritesericite altered green volcanic intense manganese staining ACRP-2006-13(445602, 6239461) (grab) Quartz vein with clasts of manganese and limonitic stained felsic volcanic. Vein trending N/S banded 5-10 cm thick.

ACRP-2006-14(445602, 6239461) (float) Dark black argillite with pervasive carbonate stringers. Brown rusty staining.

ACRP-2006-15(445736, 6239486) (float) Intensely limonitic stained felsic volcanic manganese staining, 3-4% pyrite.

ACRP-2006-16(445685, 6239399) (float) 15cm thick quartz vein within chlorite-sericite altered volcanic 3-7% sphalerite, galena, minor pyrite and chalcopyrite. Intense manganese staining.

ACRP-2006-17(445601, 6239415) (grab) Quartz-carbonate vein 20-40cm thick trending N/S with abundant stringers branching from main vein. 2-3% galena, minor pyrite and chalcopyrite. Fine grained black- country rock- possible manganese staining.

ACRP-2006-18(445495, 6239431) (float) Quartz-vein with manganese staining, minor chalcopyrite

ACRP-2006-19(445486, 6239529) (float) Quartz vein with limonite manganese, hydrozincite staining, 1-3% galena, chalcopyrite and pyrite.

ACRP-2006-20(445463, 6239663) (float) Quartz veins containing abundant chalcopyrite, argillite, malachite staining, minor pyrite

AC-06-RP-21(445721, 6239240) (float) Mafic volcanic with fracture controlled quartz veins carrying galena, sphalerite and minor chalcopyrite. Strong limonite and manganese stain on surface of sample.

AC-06-RP-22(445692, 6239275) (float). Sample is massive siderite containing 5-7 % chalcopyrite with manganese, limonite and malachite staining on surface.

AC-06-RP-23(445682, 6239274) (Outcrop). Sample is from 15 - 20 cm quartz vein with minor carbonate. Sample contains 5 -10 % chalcopyrite and minor pyrite.

AC-06-RP-24(445679, 6239275) (Outcrop). Sample is from 45 quartz vein within mafic volcanic. It contains minor carbonate 1 - 3 % sphalerite, chalcopyrite and galena.

AC-06-RP-25(445679, 6239275) (Outcrop). Sample is from 45 quartz vein within mafic volcanic. It contains minor carbonate 1 - 3 % sphalerite, chalcopyrite and galena.

AC-06-RP-26(445679, 6239275) (Outcrop). Sample is from 45 quartz vein within mafic volcanic. It contains minor carbonate 1-3 % sphalerite, chalcopyrite and galena.

AC-06-RP-27(445679, 6239275) (Outcrop). Sample is from 45 quartz vein within mafic volcanic. It contains minor carbonate 1 - 3 % sphalerite, chalcopyrite and galena.

AC-06-RP-28(445679, 6239275) (float). Sample is quartz-carbonate with 45-50 % sphalerite and 1-3 % galena as well as minor chalcopyrite.

AC-06-RP-29(445679, 6239275) (float). Same as Sample 28. Sample is quartzcarbonate with 45-50 % sphalerite and 1-3 % galena as well as minor chalcopyrite.

AC-06-RP-30(445752, 6239280) (float). Same as Sample AC-06-SB-25.

AC-06-RP-31(445547, 6239175) (float). Semi – massive chalcopyrite and pyrite with minor manganese, azurite and malachite staining.

AC-06-RP-32(445525, 6239156) (float). Sample of quartz stockwork containing 10-12 % siderite and chalcopyrite. There is strong manganese staining on surface of rock.

AC-06-RP-33(445489, 6239152) (outcrop). Sample of quartz stockwork containing 15-20 % siderite and 7 % chalcopyrite. There is strong manganese staining on surface of rock.

AC-06-RP-34(445452, 6239058) (float). Sample of massive chalcopyrite rich rock with strong manganese and limonite staining on surface of rock.

AC-06-RP-35(445423, 6239060) (float). Sample of quartz stockwork with strong manganese and limonite staining on surface of rock and 3-5 % chalcopyrite.

AC-06-RP-36 and 37(445417, 6239057) (float). Sample of semi-massive chalcopyrite associated with siderite and strongly manganese stained rock.

AC-06-SB-21(445721, 6239240) (float). Sample of fine grained black siltstone with 40 % white quartz veins. It has strong manganese staining with 15 % semi-massive pyrite.

AC-06-SB-22(445702, 6239274) (float). Sample of fine grained black siltstone with strong manganese and goethite staining. It contains minor quartz veins with 5 % semi-massive pyrite and traces arsenopyrite.

AC-06-SB-23(445689, 6239276) (float). Sample of fine grained black siltstone with 5-6 % quartz and strong manganese and goethite staining. It contains 3 % disseminated pyrite.

AC-06-SB-24(445752, 6239280) (float). Sample of fine grained black siltstone with 65 % quartz and strong manganese and goethite staining. It contains minor disseminated pyrite.

AC-06-SB-25(445752, 6239280) (float). Sample of fine grained black siltstone with 20 % quartz and strong manganese and goethite staining. It contains minor disseminated pyrite that is up 1-2 %.

AC-06-SB-26(445560, 6239185) (float). Sample of strongly weathered fine grained black siltstone with 60 % quartz and strong manganese and goethite staining. It contains 5 % chalcopyrite and 1 % pyrite.

AC-06-SB-27(445560, 6239185) (float). Sample of fine grained black siltstone with 5-10 % quartz and strong manganese and goethite staining. It contains 2 % sphalerite, 2 % chalcopyrite and 1 % pyrite.

AC-06-SB-28(445560, 6239185) (float). Sample of fine grained black siltstone with 50 % quartz and weak manganese and goethite staining. It contains 5-10 % chalcopyrite and 2 % pyrite.

AC-06-SB-29(445525, 6239156) (float). Sample of fine grained black siltstone with 35 % quartz and strong manganese and goethite staining. It contains 10 % siderite, 1 % chalcopyrite and 8 % fine grained pyrite.

AC-06-SB-30(445497, 6239112) (float). Sample of fine grained black siltstone with 25 % quartz and strong manganese and goethite staining. It contains 2 % semi massive chalcopyrite and 3 % pyrite.

AC-06-SB-31(445459, 6239063) (float). Sample of fine grained black siltstone with 10 % quartz and strong manganese and goethite staining. It contains 3 % semi massive chalcopyrite and 8 % siderite.

AC-06-SB-32(445447, 6239054) (float). Same as SB 31.

AC-06-SB-33(445447, 6239054) (float). Sample of fine grained black siltstone with 3 cm wide vuggy quartz veins and strong manganese and goethite staining. It contains 4 % semi massive chalcopyrite and minor galena.

AC-06-SB-34(445440, 6239035) (float). Sample of fine grained black siltstone with 30 % quartz veins and strong manganese and goethite staining. It contains minor chalcopyrite and 1-2 % pyrite.

APPENDIX VI

ASSAY RESULTS – Geochemical sampling

Assayers Canada 8282 Sherbrooke St. Varicouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Ξ.

Couldy Assegue 2. H. ars Assay Certificate -6V-1671-RA6 Page 1 of 2 Mountain Boy Minerals Ltd. Company: Sep-27-06 Project:

Atin:

Randy Kasum

We hereby certify the following assay of 24 rock samples submitted Aug-11-06

Sample Name	Au g/tonne	Ag g/tonne	Cu %	Pb %	Zn %	
AC-HB-06-01	0.38	1.4	0.008	0.06	0.13	•••••••••••••••••••••••••••••••••••••••
AC-HB-06-02	9.86	129.2	1.31	2.53	0.57	
AC-HB-06-03	21.93	364.2	3.48	4.38	2.11	
AC-HB-06-04	51.64	219.0	0.539	0.90	0.27	
AC-HB-06-05	0.07	10.8	0.008	0.29	0.30	
AC-HB-05-06	21.35	354.2	1.18	0.21	0.03	• • <u>•</u> •••••
AC-HB-06-07	20.76	2450.0	3.29	0.29	0.07	
AC-HB-06-08	5.73	124.5	0.168	3.11	0.05	
AC-HB-06-09	33.65	139.5	0.713	0.29	0.10	
AC-HB-06-10	70.74	1219.0	2.92	0.53	0.38	
AC-HB-06-11	3.29	82.0	0.258	0.11	0.27	••••••••••••••••••••••••••••••••••••••
AC-HB-06-12	1.02	129.5	0.152	0.02	0.07	
AC-HB-06-13	0.94	41.3	0.257	0.03	0.06	
AC-HB-06-14	0.10	2.2	0.007	0.01	<0.01	
AC-HB-06-15	0.04	2.4	0.003	0.01	<0.01	
AC-88-06-16	0.32	5.3		0.02	0.27	·· · ··
АС-НВ-06-17	2.15	18.5	0.256	0.03	0.01	
AC-HB-06-18	10.56	265.9	1.54	0.17	0.05	
AC-HB-06-19	17.16	341.8	2.49	0.09	0.07	
AC-HB-06-20	0.04	4.5	0.022	0.02	0.02	
AC-HB-06-21	5.33	6.3	0.048	0.24	0.53	· · · · · · · ·
AC-HB-06-22	0.33	1.3	0.004	0.01	0.02	
AC-HB-06-23	0.05	2.1	0.021	0.01	0.01	
AC-HB-96-24	10.14	11.5	0.096	0.98	0.84	
*DUP AC-HB-06-01	0.40	2.0	0.008	0.06	0.13	
*DUP AC-HB-06-10	63.18	1233.0	2.93	0.53	0.37	
+DUP AC-HB-06-20	0.05	3.7	0.021	0.02	0.02	•
*Au5	1.40				~ • • •	
*CCu-1c		127.4			3.94	
*KC-la			0.627	2.22		

Certified by

All

.....

Assayers Canada 8282 Sherbrocke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Assay Certificate

6V-1671-RA8

Sep-27-06

._____

52

Gen

Company: Project: Attn:

Randy Kasum

We hereby certify the following assay of 20 rock samples submitted Aug-11-06

Mountain Boy Minerals Ltd.

Coulde

Sample Name	Au g/tonne	Ag g/tonne	Cu %	РЬ %	Zn %		
AC-SB-06-01	0.44	1.6	0.010	0.01	0.03	•· ,	• • • • • •
AC-SB-06-02	6.79	3.5	0.009	0.01	0.07		
AC-SB-06-03	6.40	193.9	1.31	0.27	0.05		
AC-SB-06-04	16.98	1084.0	1.38	0.36	0.09		
AC-SB-06-05	13.51	107.3	1.19	0.13	0.06		
AC-SB-06-06	10.81	222.6	1.43	0.20	0.21		
AC-SB-06-07	0.34	10.4	0.117	0.01	0.12		
AC-SB-06-08	3.77	\$2.0	0.547	0.14	0.22		
AC-SB-06-09	0.65	11.2	0.096	0.01	0.02		
AC-SB-06-10	63.30	436.2	1.44	0.26	0.05		
AC-SB-06-11	1.55	17.9	0.061	0.05	0.02		• • •
AC-SB-06-12	3.90	85.2	1.88	0.41	1.17		
AC-SB-06-13	0.02	1.0	0.007	0.01	0.01		
AC-5B-06-14	0.12	0.2	0.018	0.01	0.05		
AC-SB-06-15	0.01	1.9	0.011	0.07	0.30		
AC-SB-06-16	0.03	0.2	0.002	<0.01	0.01		· ··· •
AC-SB-06-17	0.01	0.1	0.001	0.01	0.01		
AC-SB-06-18	0.03	0.1	0.001	0.01	<0.01		
AC-SB-06~19	1.79	8.9	0.130	0.01	0.01		
AC-SB-06-20	0.37	4.1	0.046	0.01	<0.01		
+DUP AC-SB-06-01	0.41	2.2	0.010	0.01	0.03		
+DUP AC-SB-06-10	59.50	435.1	1.45	0.26	0.05		
+DUP AC-SB-06-20	0.42	3.7	0.047	0.01	<0.01		
*Au5	1.44						
*CCu-1c		127.6			3.99		
*KC-la			0.633	2.26			•
*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01		

SSAVERS		Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436
		Fax: (604) 327-3423
· · · · · · · · · · · · · · · · · · ·	Mondaty Assaging for over 25 Th	

Assay Certificate

6V-1671-RA9

Sep-27-06

. . .

Company: Project: Atta:

Randy Kasum

We hereby certify the following assay of 20 rock samples submitted Aug-11-06

Mountain Boy Minerals Ltd.

Sample Name	Au g/tonne	Ag g/tonne	Cu %	Pb %	Zn %	
AC-06-RP-01	2.27	86.9	1.25	0.02	0.03	·· ··· ··
AC-06-RP-02	8,48	139.6	0.586	0.11	0.05	
AC-06-RP-03	15.75	153.4	1.75	0.10	0.08	• .
AC-06-RP-04	0.07	1.5	0.011	0.02	0.09	
AC-06-RP-05	0.11	8.6	0.008	0.19	3.66	_
AC-06-RP-06	0.12	4.5	0.004	0.12	0.23	· · · · · · · ·
AC-06-82-07	0.04	1.2	0.005	0.02	0.31	
AC-06-85-08	0.13	281.1	0.081	0.47	1.94	
AC-06-RP-09	0.03	1.5	0.003	0.04	0.12	
AC-05-RP-10	13.53	84.9	1.54	Q.20	0.33	
AC-06-RP-11	0.04	84.9 0.1	0.007	0.01	0:01	•••
AC-06-RP-12	0.08	0.1	0.004	0.01	0.01	
AC-06-RP-13	0.20	0.3	0.003	0.01	0.01	
AC-06-RP-14	0.03	1.9	0.001	0.01	0.01	
AC-06-RP-15	0.01	0.5	0.001	0.01	0.01	
AC-06-RP-16	0.08	64.6	0.005	0.89	5.60	** **
AC-06-RP-17	12.35	11.2	0.054	0.50	0.78	
AC-06-RP-18	0.41	2.3	0.001	0.02	0.05	
AC-06-RP-19	3.84	98.0	0.386	0.10	0.21	
AC-06-RP-20	7.55	11.4	0.804	0.01	3.28	
*DUP AC-06-RF-01	2.09	87.9	1.22	0.02	0.03	.
*DUP AC-06-RP-10	13.43	84.9	1.48	0.20	0.33	
*DUP AC-06-RP-20	7.24	12.8	0.800	0.01	3.29	
*Au5	1.45					
+CCu-lc		129.8			4.01	
*KC-1a			0.628	2.22		• • •
*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01	

÷.,

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

33 Beach Buschilly Manually

Assay Certificate

6V-1671-RA7

Company: Project: Attn:

- 11 S

Mountain Boy Minerals Ltd.

...

Sep-27-06

Randy Kasum

We hereby certify the following assay of 6 rock samples submitted Aug-11-06

Sample Name	Au g/tonne	Ag g/tonne	Cu %	Pb %	Zn %	
AC-HB-06-25 AC-HB-06-26 AC-HB-06-27 AC-HB-06-28 AC-HB-06-29	0.45 1.04 10.34 1.77 0.02	3.8 1.7 13.0 5.3 0.7	$0.002 \\ 0.004 \\ 0.120 \\ 0.016 \\ 0.002$	0.01 0.02 1.09 0.31 <0.01	0.04 <0.01 3.83 0.51 <0.01	· · · · · · · · · · · · · · · · · · ·
AC-HB-06-30 *DUP AC-HB-06-25 *Au5 *CCu-1c *KC-1a	0.12 0.43 1.48	8.8 3.7 129.5	0.142 0.002 0.623	<0.01 0.01 2.24		••• • • •
*BLANK	<0.01	<0.1	<0.001	<0.01	<0,01	

Certified by

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

6V-2294-RA1 Page 1 of 2 Nov-11-06

Assay Certificate

I

Company:	Mountain Boy Minerals Ltd.
Project:	FR FR
Attn:	Randy Kasum

We hereby certify the following assay of 24 rock samples submitted Sep-13-06

Sample Nanic	Au g/tonne	Au-Grav g/tonne	Ag g/tonne	Cu %	РЬ.	Zn %	
FR 1	0.02		0.2	0.003		· · · · · · · · · · · · · · · · · · ·	
FR 2	0.16		0.4	0.004	<0.01	<0.01	
FR 3	5.44		8.3	0.052	0.01	<0.01	
AFR-4	0.01		0.2	0.002	0.50	<0.01	
AFR-5	0.01		5.5	0.018	0.01	0.01	
AFR-6	12.69	11.22	119.2		0.02	0.02	
AFR-7	2.76	+4,22	134.9	0.147 0.701	0.24	0.01	
AFR-8	3.27		265.5	0.162	0.08	<0.01	
AFR-9	236.6	247.2	1733.0	11.24	0.12	0.01	
AFR-10	0.18	247.2	6.7	0.027	0.79	0.01	
AFR-11	0.41		5.2		<0.01	0.02	· · · · · · · · · · · · · · · · · · ·
AFR-12	0.02		0.3	0.234	0.01	0.01	
AFR-13	0.02			0.005	0.01	0.01	
AFR-14	<0.01		0.2	0.004	<0.01	0.01	
AFR-15	0.25		2031.0	0.005	0.01	0.01	
AFR-16		• • • • • • • •		0.405	1.42	0.01	
R.F06-FR 1	0.03 0.01		206.7	0.008	3.30	0.02	
R.P06-FR 2	<0.01		151.0	0.003	0.17	0.02	
R.P06-FR 3	0.01		24.9	0.002	0.12	0.01	
P.P06-FR 4	<0.01		40.4	0.003	0.05	0.02	
R.P06-FR 5	the second states of	· ···· ·· ·	302.1	0.002	0.19	0.01	
RFR-2006-HS1	0.02		28.1	0.002	0.01	0.02	···· -
RFR-2006-HS2	0.01		33.0	0.001	0.02	0.01	
RFR-2006-HS3	0.01		28.0	0.002	0.01	0.01	
*DUP FR 1	0.01		0.1	0.002	<0.01	0.01	
	0.01		0.2	0.002	<0.01	<0.01	
*DUP AFR-10	0.16		7.2	0.025	<0.01	0.02	·····
*DUP R.P06-FR 4	<0.01		297.1	0.002	0.19	0.01	
*Au5	1.44					0.01	
+CCu-1c			127.2			3.94	
*KC-1a				0.625	2.24		

Assayers Canada 8282 Sherbrooke St.

8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tei: (604) 327-3436 Fax: (604) 327-3423

Counting Daraging for over 23 Years

Assay Certificate

Company:	Mountain Boy Minerals Ltd.
Project;	FR
Attn:	RandyKasum

6V-2538-RA1 Page 1 of 2 Dec-01-06

We hereby certify the following assay of 24 rock samples submitted Nov-01-06

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample Name	Au g/tonne	Au-grav g/tonne	Ag g/tonne	Cu %	P b. %	Zn %	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.09		34.3	0.055	0.22		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				8108.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			9.93	197.4	2.65			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0.366			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AC-06-RP25	5.95		376.6				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.49		114.2		0.09		
AC-06-RP286.79479.50.2944.8225.3 $AC-06-RP29$ 9.16699.40.56615.713.4 $AC-06-RP30$ 5.73277.41.170.280.36 $AC-06-RP31$ 21.0020.60261.54.190.420.35 $AC-06-RP32$ 11.8511.40160.92.050.040.07 $AC-06-RP33$ 22.8121.33267.73.570.200.10 $AC-06-RP34$ 24.6225.60437.57.840.260.04 $AC-06-RP35$ 8.32149.72.730.180.06 $AC-06-RP37$ 27.2523.07285.012.30.130.11 $FR-06-1$ 51.6447.20709.85.720.540.12 $FR-06-3$ 0.7137.60.1910.030.44 $FR-06-4$ 9.67695.21.710.740.09 $FR-06-6$ 0.24155.90.0365.230.57 $FR-06-7$ 0.012.60.0090.020.04 $PR-06-6$ 0.24155.90.361.19 $PR-06-7$ 0.012.60.0090.020.04 $PR-06-7$ 0.012.60.0090.020.04 $PR-06-7$ 0.012.60.0090.020.04 $PR-06-7$ 0.012.60.0090.020.04 $PR-06-7$ 0.012.60.0290.35 $PR-06-7$ 0.012.60.0290.35 P	AC-06-RP27	0.92						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6.79						
AC-06-RP305.73277.41.170.280.36 $AC-06-RP31$ 21.0020.60261.54.190420.35 $AC-06-RP32$ 11.8511.40160.92.050.040.07 $AC-06-RP33$ 22.8121.33267.73.570.200.10 $AC-06-RP34$ 24.6225.60437.57.840.260.04 $AC-06-RP35$ 6.32149.72.730.180.06 $AC-06-RP36$ 17.1218.53145.03.720.080.05 $AC-06-RP37$ 27.2523.07285.012.30.130.11 $FR-06-1$ 51.6447.20709.85.720.540.12 $FR-06-2$ 15.2715.703505.03.611.262.39 $FR-06-3$ 0.7137.60.1910.030.44 $FR-06-5$ 0.099.20.0180.281.20 $FR-06-6$ 0.24155.90.0365.230.57 $FR-06-7$ 0.012.60.0090.020.04 $PDUP AC-06-RP21$ 0.0834.00.0600.231.19 $PDUP R-06-3$ 0.6534.90.1950.020.43 $*Aus$ 1.50 $*27.6$ 4.05 4.05				699.4				
AC-06-RP31 21.00 20.60 261.5 4.19 042 0.35 AC-06-RP32 11.85 11.40 160.9 2.05 0.04 0.07 AC-06-RP33 22.81 21.33 267.7 3.57 0.20 0.10 AC-06-RP34 24.62 25.60 437.5 7.84 0.26 0.04 AC-06-RP35 8.32 149.7 2.73 0.18 0.06 AC-06-RP36 17.12 18.53 145.0 3.72 0.08 0.05 AC-06-RP37 27.25 23.07 285.0 12.3 0.13 0.11 FR-06-1 51.64 47.20 709.8 5.72 0.54 0.12 FR-06-2 15.27 15.70 3505.0 3.61 1.26 2.39 FR-06-3 0.71 37.6 0.191 0.03 0.44 FR-06-4 9.67 695.2 1.71 0.74 0.09 FR-06-5 0.09 9.2 0.018 0.28 1.20 FR-06-6 0.24 155.9 0.036 5.23 0.57 FR-06-7 0.01 2.6 0.009 0.02 0.04 DUP AC-06-RP30 5.27 277.9 1.16 0.29 0.35 $PU0 AC-06-RP30$ 5.27 277.9 1.16 0.02 0.02 $A1.9$ 0.65 34.9 0.195 0.02 0.43 $A1.9$ 0.55 34.9 0.195 0.02 0.43 $A1.9$ 0.55 34.9 <		5.73		277.4				
AC-06-RP3211.8511.40160.92.05 0.04 0.07 AC-06-RF3322.8121.33267.7 3.57 0.20 0.10 AC-06-RP3424.6225.60 437.5 7.84 0.26 0.04 AC-06-RP35 8.32 149.7 2.73 0.18 0.06 AC-06-RP37 27.25 23.07 285.0 12.3 0.13 0.11 FR-06-151.64 47.20 709.8 5.72 0.54 0.12 FR-06-215.2715.70 3505.0 3.61 1.26 2.39 FR-06-3 0.71 37.6 0.191 0.03 0.44 FR-06-4 9.67 695.2 1.71 0.74 0.09 FR-06-5 0.09 9.2 0.018 0.28 1.20 FR-06-6 0.24 155.9 0.036 5.23 0.57 FR-06-7 0.01 2.6 0.009 0.02 0.04 *DUP AC-06-RP21 0.08 34.0 0.060 0.23 1.19 *DUP AC-06-RP30 5.27 277.9 1.16 0.29 0.35 *Aus 1.50 127.6 4.05		21.00	20.60	261.5	4.19			
AC-06-RF33 22.81 21.33 267.7 3.57 0.20 0.10 AC-06-RF34 24.62 25.60 437.5 7.84 0.26 0.04 AC-06-RF35 8.32 149.7 2.73 0.18 0.06 AC-06-RF36 17.12 18.53 145.0 3.72 0.08 0.05 AC-06-RF37 27.25 23.07 285.0 12.3 0.13 0.11 FR-06-1 51.64 47.20 709.8 5.72 0.54 0.12 FR-06-2 15.27 15.70 3505.0 3.61 1.26 2.39 FR-06-3 0.71 37.6 0.191 0.03 0.44 FR-06-4 9.67 695.2 1.71 0.74 0.09 FR-06-5 0.09 9.2 0.018 0.28 1.20 FR-06-6 0.24 155.9 0.036 5.23 0.57 FR-06-7 0.01 2.6 0.009 0.02 0.04 *DUP AC-06-RP21 0.08 34.0 0.060 0.23 1.19 *DUP AC-06-RP30 5.27 277.9 1.16 0.29 0.35 *DUP FR-06-3 0.65 34.9 0.195 0.02 0.43 *Aus 1.50 127.6 4.05		11.85	11.40	160.9				
AC-06-RP3424.6225.60 437.5 7.840.260.04AC-06-RP358.32149.72.730.180.06AC-06-RP3617.1218.53145.03.720.080.05AC-06-RP3727.2523.07285.012.30.130.11PR-06-151.6447.20709.85.720.540.12FR-06-215.2715.703505.03.611.262.39FR-06-30.7137.60.1910.030.44FR-06-49.67695.21.710.740.09FR-06-50.099.20.0180.281.20FR-06-60.24155.90.0365.230.57FR-06-70.012.60.0090.020.04*DUP AC-06-RP210.0834.00.0600.231.19*DUP AC-06-RP305.27277.91.160.290.35*Aus1.50277.6277.91.460.290.35			21.33	267.7	3.57			
AC-06-RP35 $B.32$ 149.7 2.73 0.18 0.06 $AC-06-RP36$ 17.12 18.53 145.0 3.72 0.08 0.05 $AC-06-RP37$ 27.25 23.07 285.0 12.3 0.13 0.11 $FR-06-1$ 51.64 47.20 709.8 5.72 0.54 0.12 $FR-06-2$ 15.27 15.70 3505.0 3.61 1.26 2.39 $FR-06-3$ 0.71 37.6 0.191 0.03 0.44 $FR-06-5$ 0.09 9.2 0.018 0.28 1.20 $FR-06-6$ 0.24 155.9 0.036 5.23 0.57 $FR-06-7$ 0.01 2.6 0.009 0.02 0.04 $*DUP$ $AC-06-RP21$ 0.08 34.0 0.060 0.23 1.19 $*DUP$ $AC-06-RP30$ 5.27 277.9 1.16 0.29 0.35 $*DUP$ $FR-06-3$ 0.65 34.9 0.195 0.02 0.43 $*Au5$ 1.50 127.6 4.05			25.60	437.5	7.84	0.26		
AC-06-RP37 27.25 23.07 285.0 12.3 0.13 0.11 $FR-06-1$ 51.64 47.20 709.8 5.72 0.54 0.12 $FR-06-2$ 15.27 15.70 3505.0 3.61 1.26 2.39 $FR-06-3$ 0.71 37.6 0.191 0.03 0.44 $FR-06-5$ 0.09 9.2 0.018 0.28 1.20 $FR-06-6$ 0.24 155.9 0.036 5.23 0.57 $FR-06-7$ 0.01 2.6 0.009 0.02 0.04 $*DUP$ $AC-06-RP21$ 0.08 34.0 0.060 0.23 1.19 *DUP $AC-06-RP30$ 5.27 277.9 1.16 0.29 0.35 *DUP $FR-06-3$ 0.65 34.9 0.195 0.02 0.43 *Aus 1.50 127.6 4.05	AC-06-RP35	B.32		149.7	2.73			
AC-06-RP37 27.25 23.07 285.0 12.3 0.13 0.11 $FR-06-1$ 51.64 47.20 709.8 5.72 0.54 0.12 $FR-06-2$ 15.27 15.70 3505.0 3.61 1.26 2.39 $FR-06-3$ 0.71 37.6 0.191 0.03 0.44 $FR-06-4$ 9.67 695.2 1.71 0.74 0.09 $FR-06-5$ 0.09 9.2 0.018 0.28 1.20 $FR-06-6$ 0.24 155.9 0.036 5.23 0.57 $FR-06-7$ 0.01 2.6 0.009 0.02 0.04 $*DUP$ $AC-06-RP21$ 0.08 34.0 0.060 0.23 1.19 $*DUP$ $AC-06-RP30$ 5.27 277.9 1.16 0.29 0.35 $*DUP$ $FR-06-3$ 0.65 34.9 0.195 0.02 0.43 $*Aus$ 1.50 127.6 4.05			18.53	145.0	3.72	0.08	0.05	
PR-06-151.6447.20709.8 5.72 0.54 0.12 FR-06-215.2715.703505.0 3.61 1.26 2.39 FR-06-3 0.71 37.6 0.191 0.03 0.44 PR-06-4 9.67 695.2 1.71 0.74 0.09 FR-06-5 0.09 9.2 0.018 0.28 1.20 FR-06-6 0.24 155.9 0.036 5.23 0.57 FR-06-7 0.01 2.6 0.009 0.02 0.04 *DUP AC-06-RP21 0.08 34.0 0.060 0.23 1.19 *DUP AC-06-RP30 5.27 277.9 1.16 0.29 0.35 *DUP FR-06-3 0.65 34.9 0.195 0.02 0.43 *Aus 1.50 127.6 4.05			23.07		12.3			
FR-06-215.2715.703505.03.611.262.39FR-06-3 0.71 37.6 0.191 0.03 0.44 FR-06-4 9.67 695.2 1.71 0.74 0.09 FR-06-5 0.09 9.2 0.018 0.28 1.20 FR-06-6 0.24 155.9 0.036 5.23 0.57 FR-06-7 0.01 2.6 0.009 0.02 0.04 *DUP AC-06-RP21 0.08 34.0 0.060 0.23 1.19 *DUP AC+06-RP30 5.27 277.9 1.16 0.29 0.35 *DUP FR-06-3 0.65 34.9 0.195 0.02 0.43 *Aus 1.50 127.6 4.05				709.8				
FR-06-3 0.71 37.6 0.191 0.03 0.44 FR-06-4 9.67 695.2 1.71 0.74 0.09 FR-06-5 0.09 9.2 0.018 0.28 1.20 FR-06-6 0.24 155.9 0.036 5.23 0.57 FR-06-7 0.01 2.6 0.009 0.02 0.04 *DUP AC-06-RP21 0.08 34.0 0.060 0.23 1.19 *DUP AC+06-RP30 5.27 277.9 1.16 0.29 0.35 *DUP FR-06-3 0.65 34.9 0.195 0.02 0.43 *Aus 1.50 127.6 4.05			15.70		3.61	1.26		
FR-06-5 0.09 9.2 0.018 0.28 1.20 FR-06-6 0.24 155.9 0.036 5.23 0.57 FR-06-7 0.01 2.6 0.009 0.02 0.04 *DUP AC-06-RP21 0.08 34.0 0.060 0.23 1.19 *DUP AC+06-RP30 5.27 277.9 1.16 0.29 0.35 *DUP FR-06-3 0.65 34.9 0.195 0.02 0.43 *Aus 1.50 127.6 4.05	FR-06-3	0.71		37.6	0.191	0.03		
FR-06-5 0.09 9.2 0.018 0.28 1.20 FR-06-6 0.24 155.9 0.036 5.23 0.57 FR-06-7 0.01 2.6 0.009 0.02 0.04 *DUP AC-06-RP21 0.08 34.0 0.060 0.23 1.19 *DUP AC+06-RP30 5.27 277.9 1.16 0.29 0.35 *DUP FR-06-3 0.65 34.9 0.195 0.02 0.43 *Aus 1.50 127.6 4.05				635.2	1.71	0,74	0.09	
FR-06-6 0.24 155.9 0.036 5.23 0.57 FR-06-7 0.01 2.6 0.009 0.02 0.04 *DUP AC-06-RP21 0.08 34.0 0.060 0.23 1.19 *DUP AC+06-RP30 5.27 277.9 1.16 0.29 0.35 *DUP FR-06-3 0.65 34.9 0.195 0.02 0.43 *Aus 1.50 127.6 4.05		0.09		9.2	0.018	0.28		
FR-06-7 0.01 2.6 0.009 0.02 0.04 *DUP AC-06-RP21 0.08 34.0 0.060 0.23 1.19 *DUP AC-06-RP30 5.27 277.9 1.16 0.29 0.35 *DUP FR-06-3 0.65 34.9 0.195 0.02 0.43 *Aus 1.50 127.6 4.05						5.23		
*DUP AC-06-RP21 0.08 34.0 0.060 0.23 1.19 *DUP AC-06-RP30 5.27 277.9 1.16 0.29 0.35 *DUP FR-06-3 0.65 34.9 0.195 0.02 0.43 *Aus 1.50 127.6 4.05				2.6	0.009			
*DUP FR-06-3 0.65 34.9 0.195 0.02 0.43 *Au5 1.50 127.6 4.05		0.08		34.0	0.060	0.23		
*DUP FR-06-3 0.65 34.9 0.195 0.02 0.43 *Aus 1.50 127.6 4.05				277.9	1.16	0.29	0.35	
*Au5 1.50 *CCu-1c 127.6 4.05				34.9	0.195			
		1.50						
*KC-1a 0.634 2.23				127.6			4.05	
	*KC-la				0.634	2.23		

		Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423
	Partity Sugary for ever 25 Years	
Assi	av Certificate	6V-2538-RA2
Company: Project:	Mountain Boy Minerals Ltd. FR	Dec-01-06
Attn:	RandyKasum	

Sample Nanie	Au g/tonne	Au-grav g/tonne	Ag g/tonne	Cu %	РЬ %	Zn */	
FR-06-8	25.95	25.47	98.0	0.444	0.17	0.10	
FR-06-9	54.00	54.47	805.2	2.91	1.05	2.83	
FR-06-10	23.06	22.20	649.4	3.95	0.34	0.65	
FR-06-11	20.11	20.00	189.7	1.26	0.15	0.08	
FR-06-12	14.92	15.47	78.3	0.423	0.19	• • • •	'
FR-06-13	144.3	149.4	875.0	3.87	3.06	6.30	• • • • • • • • • • • •
FR-06-14	41.80	43.80	2502.0	5.80	4.96	2.62	
*DUP FR-06-8 *Au5	27.11 1.48		100.4	0.435	0.18	0.10	
*CCu-le			128.8			4.05	
*KC-la				0.633	2:25		
+BLANK	<0.01		<0.1	<0.001	<0.01	<0.01	

Certified by

Ala

		Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423	
	Ruelity Assuzing for over 25 years		
Assa	v Certificate	6V-2666-RA1	÷.
Company: Project: Attn:	Mountain Boy Minerals Ltd. FR Randy Kasum	Dec-16-06	•
We hereby submitted	<i>certify</i> the following assay of 15 rock samples Oct-26-06		

10.

A. 44.2

1

- - I.

:604

37

3423

Iec.

21

2005

Sample Name	Au g/toune	Au-Grav g/tonue	Ag g/tonnc	Cu %	Pb %	Zn %	
FR-06-15	0.23	, , , , , _ , _ , _ , _ , _ , _ ,	31.6	0.306	0.02	0.15	
AC-06-SB-21	10.84	NES	38.2	0.075	0.05	0.05	-
AC-08-SB-22	1.52		14.1	0.063	0.04	0.07	-
AC-06-SB-23	1.63		93.7	0.148	1.12	0.94	
AC-06-SB-24	0.04		4.8	<u>• 0.01</u> 1	<u>0.04</u>	0.13	
AC-06-SB-25	0.15		5.3	0.008	0.02	0.02	
AC-06-5B-26	17.37	NES	397.7	1.44	0.07	0.17	
AC-06-SB-27	23.26	23.83	91.1	0.161	0.31	0.09	
AC-06-SB-28	. 12.05	NES	276.5	2.29	0.15	0.03	
AC-06-SB-29	36.06	30.58	326.0	0.420	1.10	0.28	
AC-06-5B-30	7.95		101.9	0.614	0.05	0.26	
AC-06-SB-31	8.22		74.7	1.59	0.07	0.02	
AC-06-SB-32	4.90		67.5	2.02	0.03	0.01	
AC-06-SB-33	11.54	NES	180.3	1.42	0.75	1.39	
AC-06-SB-34	2.99		24.0	0.076.	0.10	0.07	
*DUP FR-06-15			32.9	0.309	0.02	0.14	
*DUP AC-06-SB-23	1.65					- '	
*DUP AC-06-SB-29		•	322.4	0.418	1.10	0.28	
*DUP AC-06-SB-31	8.23			•			
*GxH37	1.26						
*CCu-1c		*****	128.5			4.03	
*KC-la				0.632	2.22		
*BLANK	<0.01		· <0.1	<0.001	<0.01	<0.01	

Certified by