RECEIVED

DEC 2 7 2006

Gold Commissioner's Office VANCOUVER, B.C.

GROUND RECONNAISSANCE

GEOLOGICAL - SAMPLING SURVEY REPORT

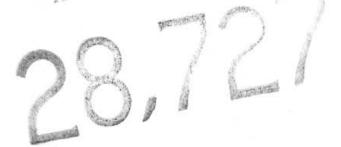
on the

ARROW CLAIMS PROPERTY

ALBERNI MINING DISTRICT, VANCOUVER ISLAND

October 2006

For


Gold Commissioner's Office

Rec'd.

Ashworth Explorations Ltd., December, 2006 8- 650 Clyde Avenue, West Vancouver, B.C., Canada V7T 1E2

by

Craig McConnell
104-2323 Mamquam Road, Squamish, B.C.
Canada V8B 0H9

TABLE OF CONTENTS

A) SUMMARY1
B) LOCATION & ACCESS
C) PROPERTY HISTORY2
D) PROPERTY GEOLOGY & SAMPLING
E) ANALYTICAL RESULTS
F) CONCLUSIONS & RECOMMENDATIONS
G) REFERENCES
H) ANALYTICAL REPORT OF ROCK & SOIL SAMPLES4
I) LOCATION, RECONNIASSANCE & SAMPLING MAPS12
J) STATEMENT OF OUALIFICATIONS

A) SUMMARY

The Arrow Claims are located approximately 8 kilometers west-southwest of Port Alberni in central Vancouver Island. The mineral claim property is comprised of claims 507348, 507349, 507351, and 507354.

During October 21, 22, and 23, 2006 an on ground reconnaissance geological-sampling survey was conducted by the author and Doug Machray for Ashworth Explorations in an attempt to confirm the most recent mineral exploration work carried out in February 1996 (Nostrand and Yacoub, 1996). The February 1996 work program included trenching, geochemical soil sampling, geological mapping, and geophysical surveys to test known gold bearing mineralization along the length of a then exposed mineral occurrence. Although 11 trenches were exposed by a backhoe in 1996, no evidence exists of this exposure due to the provincial regulation of exploration reclamation through in-filling and plant seeding, and the natural reforestation in the area covering the trenches that has occurred in the past decade.

During the current survey a flagged north-south trending baseline with sampling stations every 50 feet (see attached GPS maps) was established in proximity to the 1996 established base line. Soils samples (19) and rock samples (12) were collected for analyses. Geological composition was noted in the rock samples.

ALS Chemex carried out a 27 element specification on soil and rock samples including relevant precious and base metals, all analyzed by four acid induced-coupled plasma (ICP-AES) methodology (see attached ALS Chemex Certificate of Analysis). Significant mineralization values of precious (Ag) or base metals (Co, Cu, Mo, Ni, Pb, Zn) were not apparent in the analytical results.

B) LOCATION & ACCESS

The Arrow Claims are located approximately 8 kilometers west-southwest of Port Alberni in central Vancouver Island. Access to the property is by vehicle (truck) and finally on foot along active and decommissioned logging roads off the main Cous Creek road. The local ATV club is well organized with the creation of many new trails that also include most of the decommissioned logging roads. Therefore, BC Forest District mapping of logging roads is frequently out of date. This situation created much property access confusion. Recreation maps of the area are more current and most suitable to gain an orientation of access to the broader property.

C) PROPERTY HISTORY

The Arrow Claims, previously referred to as the Skarn 3 property (Nostrand and Yacoub, 1996) were first staked as the "A" claim in 1972. Between 1972 and 1974 exploration in the northwest corner of the claim consisted of several showings, pits and trenches, referred to as the north showing in the 1996 exploration program. In 1977 the "A" property was expanded and work included geologic mapping, a VLF-EM survey, and a pulse EM survey. The option on the claim was dropped following unsatisfactory results from 2 percussion holes, drilled near one of the original trenches (Nostrand and Yacoub, 1996).

In 1987 Ashworth Explorations carried out geological, geochemical and geophysical surveys on the Skarn property. A 2 kilometer long N20 deg. E baseline and 21.5 kilometer grid was emplaced. Fifty rock samples and 487 "B" horizon soil samples were collected and an 18.8 kilometer magnetometer survey was also completed (Nostrand and Yacoub, 1996).

In 1989 Ashworth Explorations Ltd. performed additional surveys on the Skarn 3 property and discovered an auriferous zone in the southwestern part of the claim referred to as the south showing. The grid was extended to 26 line kilometers and 13 new trenches were excavated. A total of 120 rock samples and 680 soil samples were collected. The most significant rock sample analyses from the 1989 program yielded 0.664 ounces per ton Au and 1.74 ounces per ton Au, both collected from the south showing area (Nostrand and Yacoub, 1996).

Subsequent sampling in the south showings area by Ashworth Explorations in 1995 yielded values up to 179.3 g/t Au, >30ppm Ag and 1% Cu associated with silicified and quartz alteration zones, and prompted the 1996 field program phase of exploration (Nostrand and Yacoub, 1996).

The February 1996 exploration program concluded that there was good gold, silver and copper mineralization with significant lengths and widths defined by analytical results from the 11 trenches. The 1996 report recommendation was for a follow-up core drilling program accompanied by detailed control and study of the structure and mineralization within the south showing area (Nostrand and Yacoub, 1996), also the current survey area.

D) PROPERTY GEOLOGY & SAMPLING

The current ground reconnaissance geological-sampling survey encountered rock outcrops of relevance along the flagged N-S control line. Intermediate to mafic metavolcanics of andesitic to basaltic composition were observed in the outcrops from which the 12 rock samples were derived. Mineralization was not visible in any outcropping or rock samples, although weathered iron oxide colouration was noted in rock surfaces and regolith soils, typical of eroding metavolvanics. The 19 soil samples were derived from regolith, given that there was no significant soil profile developed in

the area of the flagged control line. For a more extensive description of property geology refer to Nostrand and Yacoub, 1996.

E) ANALYTICAL RESULTS

ALS Chemex of North Vancouver carried out a 27 element specification on 12 rock and 19 soil samples including relevant precious and base metals, all analyzed by four acid induced-coupled plasma (ICP-AES) methodology. See the attached ALS Chemex Certificate VA06106039 and Certificate VA06106210 for details on sample preparation and analytical procedure. Significant mineralization values of precious (Ag) or base metals (Co, Cu, Mo, Ni, Pb, Zn) were not apparent in the analytical results. Anomalous values above background for Pb appeared in rock samples ACR1 and ACR3.5 (754ppm and 515ppm Pb respectively).

F) CONCLUSIONS & RECOMMENDATIONS

The current ground reconnaissance geological-sampling survey and analytical results minimize the potential for any conclusions and recommendations.

The 1996 report recommendation was for a follow-up core drilling program accompanied by detailed control and study of the structure and mineralization within the south showing area (Nostrand and Yacoub, 1996) and such an exploration program could yet be suggested and warranted.

G) REFERENCES

Van Nostrand, T. and Yacoub, F. (1996): Geological, Geochemical and Geophysical Report On The Skarn 3 Property, Alberni Mining District, Vancouver Island, February 1996.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASHWORTH EXPLORATION LTD. 6 - 650 CLYDE AVENUE **WEST VANCOUVER BC V7T 1E2**

Page: 1 Finalized Date: 9-NOV-2006

Account: ASHWOR

CERTIFICATE VA06106039

Project:

P.O. No.:

This report is for 12 Rock samples submitted to our lab in Vancouver, BC, Canada on 19-OCT-2006.

The following have access to data associated with this certificate: CLIVE ASHWORTH

SAMPLE PREPARATION					
ALS CODE	DESCRIPTION				
WEI-21	Received Sample Weight				
PUL-31	Pulverize split to 85% <75 um	!			
SPL-21	Split sample - riffle splitter				
CRU-31	Fine crushing - 70% <2mm				
LOG-22	Sample login - Rcd w/o BarCode				

	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	27 element four acid ICP-AES	ICP-AES

To: ASHWORTH EXPLORATION LTD.

ATTN: CLIVE ASHWORTH 6 - 650 CLYDE AVENUE

WEST VANCOUVER BC V7T 1E2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASHWORTH EXPLORATION LTD. 6 - 650 CLYDE AVENUE **WEST VANCOUVER BC V7T 1E2**

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 9-NOV-2006

CERTIFICATE OF ANALYSIS	VA06106039
-------------------------	------------

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME∃CP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10	ME-ICP61 K % 0.01
ACR 1		1.00	6.4	8.17	305	120	8.0	<2	0.66	2.1	12	8	79	3.80	10	0.55
ACR 3.5	i	1,12	2.5	8.57	12	170	8.0	<2	0.82	0.6	12	10	55	3.99	20	0.50
ACR 5		1.56	<0.5	8.53	11	230	0.6	<2	2.14	<0.5	25	25	59	6.42	20	1.30
ACR 6		1.84	0.5	8.35	<5	240	0.5	<2	1.15	<0.5	25	2	120	7.11	20	1.17
ACR 7	1	1.64	<0.5	9.31	<5	230	0.7	<2	1.22	<0.5	25	6	147	7.52	20	1.14
ACR 8		1.22	<0.5	9.27	<5	220	0.7	<2	2.56	<0.5	22	4	47	5.98	20	0.46
ACR 8.5		1.30	<0.5	9.71	<5	300	0.7	<2	0.55	<0.5	16	2	35	5.30	20	1.16
ACR 9.5		1.22	<0.5	9.11	13	210	1.1	<2	1.13	<0.5	18	3	27	5.86	20	0.33
ACR 11		1.76	<0.5	8.39	14	70	0.6	<2	3.81	<0.5	11	2	8	4.47	20	0.80
ACR 12	Ì	1.40	<0.5	8.52	<5	680	0.9	<2	3.87	<0.5	34	20	60	6.98	20	0.89
ACR 14		1.30	<0.5	8.80	9	310	1.0	<2	3.66	<0.5	28	22	37	7.15	20	0.96
ACRO ON ROAD BED	l	1.52	<0.5	8.64	<5	270	8.0	<2	4.26	<0.5	27	35	7	6.86	20	1.09

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASHWORTH EXPLORATION LTD. 6 - 650 CLYDE AVENUE WEST VANCOUVER BC V7T 1E2 Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 9-NOV-2006

Account: ASHWOR

CERTIFICATE OF ANALYSIS VA06106039

A	Method Analyte Units LOR	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01	ME-ICP61 Ti ppm 10
ACR 1		10	1.17	776	1	4.10	4	740	754	0.03	<5	16	202	<20	0.35	<10
ACR 3.5	I	10	1.27	1025	<1	4.58	4	720	515	0.02	<5	16	315	<20	0.36	<10
ACR 5	I	10	2.17	1420	<1	1.61	14	1010	19	0.02	<5	25	118	<20	0.47	<10
ACR 6	Į	10	1.67	1930	<1	2.25	3	2000	39	0.09	<5	33	52	<20	0.73	<10
ACR 7	Ì	10	1.64	2150	<1	2.55	6	2020	17	0.03	<5	34	181	<20	0.77	<10
ACR 8		10	1.82	1260	<1	3.37	4	1200	23	0.01	< 5	19	316	<20	0.47	<10
ACR 8.5	I	10	1.38	1175	<1	3.56	2	1020	16	0.01	<5	18	255	<20	0.46	<10
ACR 9.5	ŀ	10	0.45	1250	<1	5.28	5	1520	29	< 0.01	<5	17	332	<20	0.47	<10
ACR 11		10	1.26	780	<1	0.18	3	1300	13	<0.01	22	13	116	<20	0.37	<10
ACR 12		10	2.30	2070	<1	2.61	17	1850	18	<0.01	<5	23	596	<20	0.51	<10
ACR 14		10	2.48	1670	<1	3.11	17	1760	13	<0.01	<5	24	547	<20	0.53	<10
ACRO ON ROAD BED		10	2.79	1300	<1	2.46	17	960	9	0.01	<5	31	391	<20	0.55	<10

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASHWORTH EXPLORATION LTD. 6 - 650 CLYDE AVENUE **WEST VANCOUVER BC V7T 1E2**

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 9-NOV-2006

CERTIFICATE OF ANALYSIS V	'A06106039
---------------------------	------------

						L.	· · · · · · · · · · · · · · · · · · ·	CERTIFICA	IE OF AN	ALYSIS	VAUO	100039	
Sample Description	Method Analyte Units LOR	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2								
ACR 1 ACR 3.5 ACR 5 ACR 6 ACR 7		<10 20 <10 <10 10	115 114 218 270 317	10 <10 <10 <10 <10	148 82 86 133 130								
ACR 8 ACR 8.5 ACR 9.5 ACR 11 ACR 12		<10 10 20 <10 <10	193 175 213 150 239	<10 <10 <10 <10 <10	91 80 90 61 101								
ACR 14 ACRO ON ROAD BED		<10 <10	252 297	<10 <10	101 92		-						
													·
		<u> </u>											

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASHWORTH EXPLORATION LTD. 6 - 650 CLYDE AVENUE **WEST VANCOUVER BC V7T 1E2**

Page: 1 Finalized Date: 8-NOV-2006

Account: ASHWOR

CERTIFICATE VA06106210

Project:

P.O. No.:

This report is for 19 Soil samples submitted to our lab in Vancouver, BC, Canada on 19-OCT-2006.

The following have access t	o data associated with this cer	tificate:
CLIVE ASHWORTH		

	SAMPLE PREPARATION					
ALS CODE	DESCRIPTION					
WEI-21	Received Sample Weight					
SCR-41	Screen to -180um and save both					
LOG-22	Sample login - Rcd w/o BarCode					
DRY-22	Drying - Maximum Temp 60C					

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	27 element four acid ICP-AES	ICP-AES

To: ASHWORTH EXPLORATION LTD. ATTN: CLIVE ASHWORTH 6 - 650 CLYDE AVENUE **WEST VANCOUVER BC V7T 1E2**

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASHWORTH EXPLORATION LTD. 6 - 650 CLYDE AVENUE WEST VANCOUVER BC V7T 1E2 Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 8-NOV-2006

CERTIFICATE OF ANALYSIS	VA06106210
-------------------------	------------

								l			OAIL C			¥7.001		
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be Ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10	ME-ICP61 K % 0.01
ACS-1 ACS-2 ACS-3 ACS-4 ACS-5		0.28 0.44 0.30 0.28 0.40	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	9.64 9.42 9.58 8.84 9.31	<5 <5 <5 <5 <5	440 430 260 360 430	1.0 1.0 0.8 0.9 1.0	<2 <2 <2 <2 <2 <2	0.34 0.73 1.97 1.00 0.77	<0.5 <0.5 <0.5 <0.5 <0.5	26 24 19 22 23	35 23 29 36 29	51 68 67 70 69	7.04 6.45 5.14 6.67 6.79	20 20 20 20 20 20	2.28 1.97 1.29 1.42 1.94
ACS-7 ACS-8 ACS-9 ACS-10		0.40 0.38 0.32 0.40	<0.5 <0.5 <0.5 <0.5	9.33 8.45 9.75 9.84	8 <5 9 14	240 240 240 200	0.6 0.6 0.7 1.0	<2 <2 <2 <2	0.69 0.74 0.55 0.42	<0.5 <0.5 <0.5 <0.5	19 19 20 25	39 30 21 16	63 65 80 55	6.43 6.00 5.94 6.85	20 20 20 20 20	0.67 0.84 0.98 0.88
ACS-11 ACS-12 ACS-13 ACS-14 ACS-15		0.36 0.44 0.32 0.30 0.34	<0.5 <0.5 <0.5 <0.5 <0.5	9.62 8.62 8.59 8.82 8.55	24 <5 <5 6 <5	220 270 250 270 240	0.9 0.8 0.7 0.8 0.7	<2 <2 <2 2 2	1.23 1.13 1.06 0.86	<0.5 0.9 <0.5 <0.5	26 25 25 30	39 43 48 63	82 83 94 91	7.41 7.12 6.96 6.90 7.19	20 20 20 20 20	0.70 0.65 0.71 0.75
ACS-16 ACS-17 ACS-18 ACS-19		0.28 0.32 0.38 0.34	<0.5 <0.5 <0.5 <0.5	8.25 8.18 8.33 8.31	<5 <5 7 7	260 270 310 290	0.6 0.6 0.6 0.6	<2 <2 <2 <2	0.95 1.02 0.75 1.04	<0.5 <0.5 <0.5 <0.5	26 26 23 22	61 68 68 63	81 69 59 64	6.85 6.96 6.81 6.43	20 20 20 20	0.63 0.64 0.73 0.60

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASHWORTH EXPLORATION LTD. 6 - 650 CLYDE AVENUE WEST VANCOUVER BC V7T 1E2 Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 8-NOV-2006

CERTIFICATE	OF ANALYSIS	S VA06106210

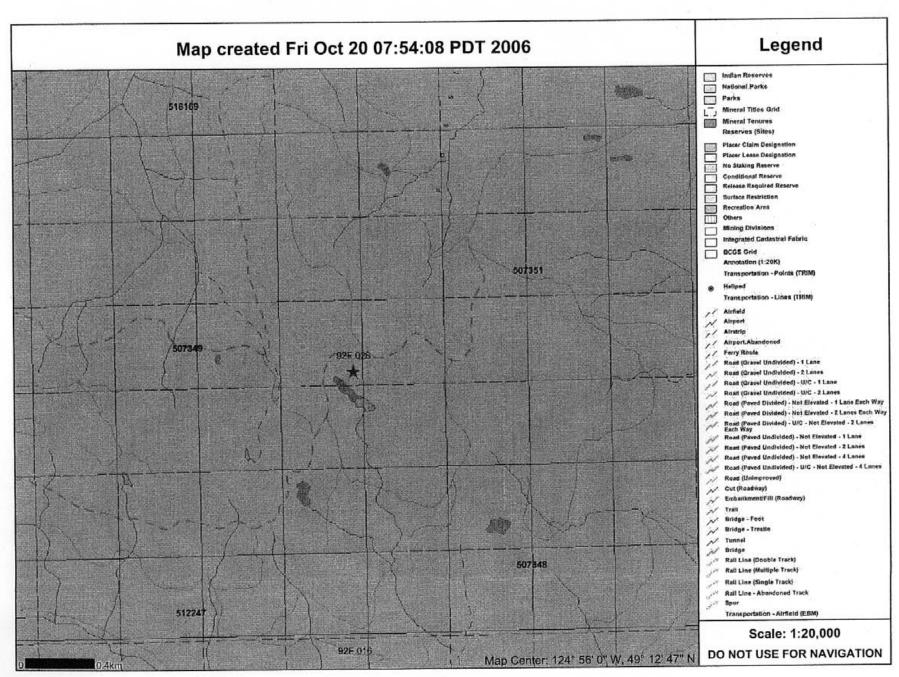
								<u> </u>								
Sample Description	Method Analyte Units LOR	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01	ME-ICP6 ⁴ Τι ppm 10
ACS-1 ACS-2 ACS-3 ACS-4 ACS-5		10 10 10 10	1.40 1.46 1.26 1.45 1.50	2600 2850 1525 1515 1835	<1 1 1 <1 <1	0.61 0.84 1.63 1.29 1.04	18 12 15 16	1020 1480 1130 1240 1270	10 12 11 15	0.02 0.02 0.02 0.02 0.02	<5 <5 <5 <5 <5	27 28 23 24 26	52 72 165 137 108	<20 <20 <20 <20 <20	0.65 0.66 0.53 0.66 0.67	<10 <10 <10 <10 <10
ACS-6 ACS-7 ACS-8 ACS-9 ACS-10		10 10 10 10 10	0.88 1.18 1.23 1.19 0.69	713 824 1370 1625 1695	<1 1 1 1 1	1.44 1.53 1.70 2.24 1.93	9 18 15 11	900 990 1260 1190 1340	11 10 8 9 6	0.02 0.04 0.03 0.03 0.03	<5 <5 <5 <5 <5	20 19 18 20 21	136 172 170 183 179	<20 <20 <20 <20 <20 <20	0.76 0.62 0.53 0.52 0.52	<10 <10 <10 <10 <10
ACS-11 ACS-12 ACS-13 ACS-14 ACS-15		10 10 10 10	0.92 1.68 1.72 1.72 2.15	1480 2010 2290 2950 2510	1 <1 <1 1 <1	1.89 2.11 1.89 1.71 1.72	14 16 19 20 22	1370 1760 1780 1870 1910	9 17 10 18 18	0.03 0.04 0.06 0.04 0.03	10 5 <5 <5 <5	21 24 24 27 31	187 249 236 213 199	<20 <20 <20 <20 <20	0.57 0.60 0.59 0.62 0.61	<10 10 <10 <10 <10
ACS-16 ACS-17 ACS-18 ACS-19		10 10 10 10	2.12 2.26 1.85 1.70	2050 1760 1440 1135	<1 <1 <1 <1	1.62 1.63 1.33 1.50	21 25 24 24	1680 1930 1840 1980	12 8 10 6	0.04 0.03 0.03 0.04	<5 <5 <5 <5	27 25 24 23	197 213 186 192	<20 <20 <20 <20	0.60 0.60 0.65 0.65	<10 <10 <10 <10

EXCELLENCE IN ANALYTICAL CHEMISTRY

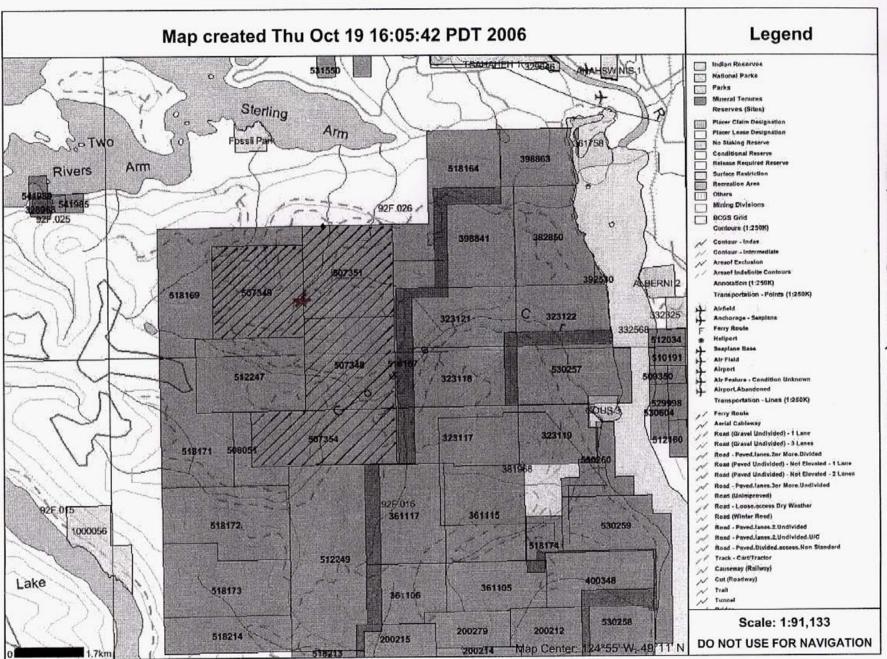
ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

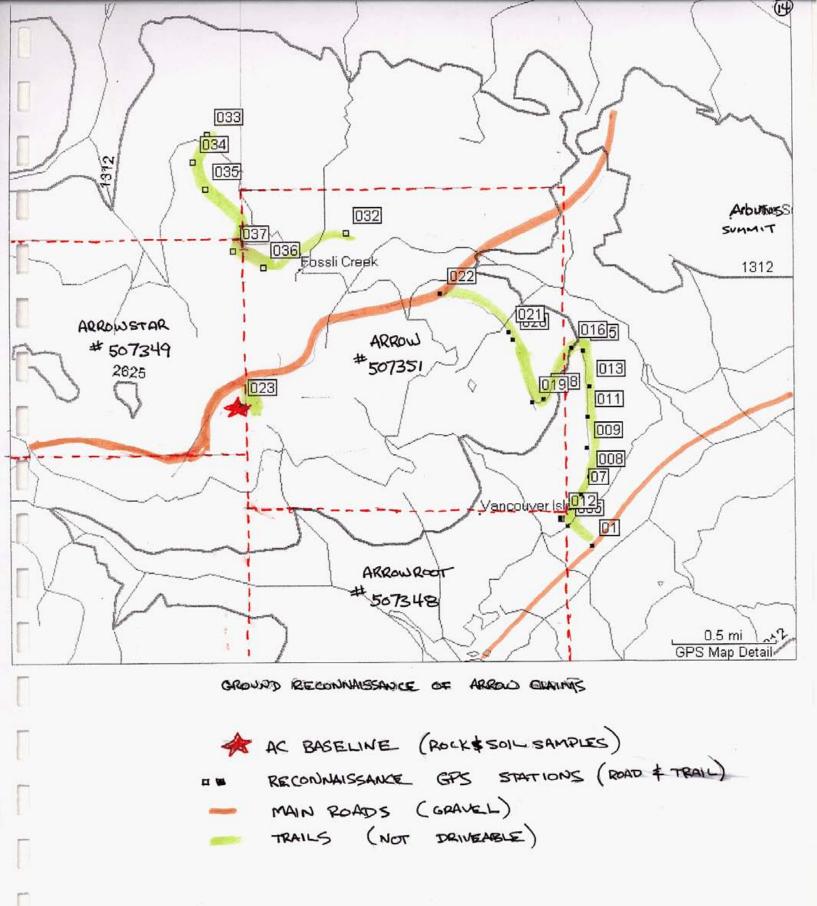

To: ASHWORTH EXPLORATION LTD. 6 - 650 CLYDE AVENUE WEST VANCOUVER BC V7T 1E2

Page: 2 - C Total # Pages: 2 (A - C)


Finalized Date: 8-NOV-2006 Account: ASHWOR

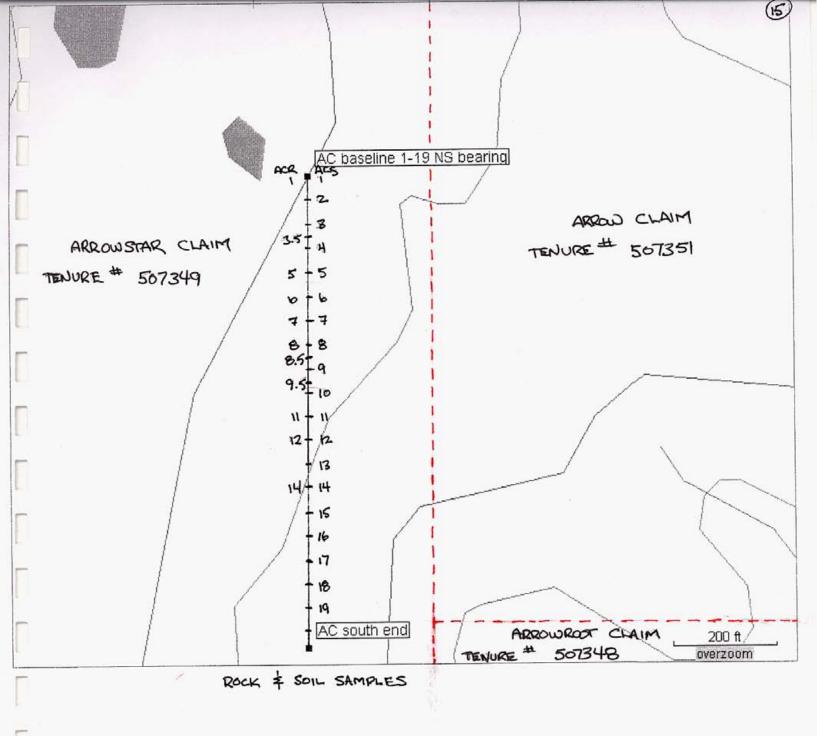
CERTIFICATE OF ANALYSIS VA06106210

						CERTIFICATE OF ANALYSIS VAUGTUBZTU
Sample Description	Method Analyte Units LOR	ME-ICP61 U ppm	ME-ICP61 V ppm	ME-ICP61 W	ME-ICP61 Zn ppm	
	LOK	10	1	10	2	
ACS-1		<10	207	<10	112	
ACS-2		<10	197	<10 <10	104 99	
ACS-3 ACS-4		<10 <10	169 219	<10	107	
ACS-5	Į	<10	209	<10	108	
ACS-6		<10	247	<10	77	
ACS-7		<10	220	<10	103	
ACS-8		<10	204	<10	86	
ACS-9		<10	205	<10	87	
ACS-10		<10	213	<10	105	
ACS-11		<10	240	<10	114	
ACS-12	í	<10	255	<10	131	
ACS-13	1	<10	251	<10	134	
ACS-14		<10	251	<10	123	
ACS-15		<10	256	<10	109	
ACS-16		10	256	<10	94	
ACS-17		<10	262	<10	93	
ACS-18 ACS-19		<10 <10	254 244	<10 <10	89 97	
ACS-19	1	~10	244	~10	91	
	i					
•						
	!					
<u></u>						



LOCATION OF TRENCHES & SAMPLING

ARROW CLAIM GROUP


AC BASELINE 124° 56' 0" W 49° 12' 47" H

@2003 DMTI Spatial Inc.

iarmin Ltd. or its subsidiaries 1995-2004

¹Map®, DMTI Spatial and the DMTI Spatial logo are trademarks of DMTI Spatial Inc., Markham, Ontario

H) STATEMENT OF QUALIFICATIONS

- I, Craig McConnell , of #104 2323 Mamquam Road, Squamish B.C. hereby certify:
- 1) I am a graduate of Lakehead University (1978) and hold a bachelor degree in physical geography with minor in geology.
- 2) I was employed full time as a geologist between May 1979 and March 1987 with several employers including the Ontario Geological Survey, Regional Geology Office, Thunder Bay; Orequest Consultants Ltd., Vancouver, BC; Geological Survey of Canada, Sudbury, Ontario; and Probatech Inc. Mineral Research Services, Sudbury, Ontario.
- 3) I am a past member of the Prospectors and Developers Association of Canada and the Canadian Institute of Mining and Metallurgy.
- 4) I do not hold any direct or indirect interest in the property described nor in the shares of my client, Ashworth Explorations Ltd.
- 5) This report may be used by Ashworth Explorations Ltd. for all corporate purposes and including any public financing.

Craig McConnell December 6, 2006

15. Was GPS used to map work sites? If yes, specify make and model:	16. Work site(s) marking (flegging, cut lines, other):
17. Are photographs of work sites attached?	18. Was Notice of work filed? Permit number:

COST STATEMENT

19. Expense(s):	Total Day	Hourly Rate	Deily Rate	Total(s) (\$)
Labour cost: (specify type)				
30MAN CREW	i O		950.00	950000
Equipment & Machinery cost: (specify type)	- 			

20. Transportation: (specify type)	Rate(s)	Days / Distance	Total(s) (\$)
TRUCK RENTAL			1400
FERRISS			23115
Lodging / Food:			858 W
Other: (specify)			- 19
SUPP SEQUIPMENT			267 7
ANAYES			1 7 20 '
		Total costs:	15809 40
	Amount cl	simed for assessment:	

(Signature of Recorded Holder / Agent)	(Date)

Please ensure you attach the map.

This report must be submitted within 30 days of the date you registered the exploration and development work in MTO.

Submit the report to any Government Agent, Mineral Titles Office, or you can mail to: Mineral Titles Branch Ministry of Energy, Mines and Petroleum Resources

nistry of Energy, withes and Peruseum 300 - 865 Homby Street Vancouver, BC V6Z 2G3

2) with Rejort

Rev. Feb 10/2006