RECEIVED JAN O 52007 Gold Commissioner's Office VANCOUVER, B.C.

on the

Kringle-consolidated Claims 515029 and 521073

south-south-east of Rooney Lake, and mainly west of Adam River
in
092L/08 (or 092L040)
at
$50 \operatorname{deg} 19 \min \mathrm{~N}$ and $126 \operatorname{deg} 05 \min \mathrm{~W}$
in the
Nanaimo Mining Division

0.0 SUMMARY

Kringle-consolidated Claims 521073 and 529363 (central part of the Kringleconsolidated claims) are located south and west of the Island Highway, southeast of Rooney Lake, near the 250 km marker, some 40 km past Sayward, along and west of the Adam River. The group is staked on a hydrothermal system associated with a contact between the Triassic Vancouver Group and the Jurassic Adam River pluton. Early altered dykes are near, and fresh porphyry dykes cut, the altered contact. The main copper mineral occurrences are in shears, veins and dispersed disseminations found in a highly magnetic bounding fringe along the edge of the pluton, and are locally exposed in logging road cuts.

Previous work in the general area has located shear zones and cross veins filled with copper mineralization. No minfile locations are located on these two claims, but several are noted nearby. This campaign has added five new locations of veins with elevated copper.

51 samples of prospective material were selectively collected from subcrops exposed in logging roads covering an area of about 100 ha within the two claims. Granodiorite and limestone are generally barren. Background values determined from "fresh" basaltic rocks are about 110 ppm copper and less than 0.3 ppm silver. Mineralized samples from basalt and crosscutting veins contain between 181 ppm and $221,260 \mathrm{ppm}$ copper with a median of 7038 ppm and 0.3 ppm to 49.1 ppm of silver with a median of 2.7 ppm . Should a large enough volume of such material be located, these tenors are of interest. The highest gold value noted in this two claim area so far, has been 315 ppb and for Pd has been 31 ppb ; compared with background values of about 3 ppb gold and 9 ppb palladium. Gold is locally concentrated, but not in commercial quantities.

This is a grass roots project and the extent of the postulated hydrothermal system is still being explored. Hence estimates of volumes and concentrations will require definition by geophysical and other sampling methods. There is a possibility that prospects, showings and Minfile locations in the country rock to the north and south of the claims are also part of the same mineralizing system; thus this discovery may be significant. The entire Kringle-consolidated Claims, including the two claims, currently covers a contiguous body some 16 km by 4 km over locally mineralized rock..

A possible exploration scenario costing about $\$ 240,000$ would provide enough new information to make an informed decision as to where to drill. The property is available for sale or option.
0.1 TABLE OF CONTENT
0.0 SUMMARY 2
0.1 TABLE OF CONTENT 3
0.2 FIGURES 3
1.0 INTRODUCTION 4
2.0 PROPERTY LOCATION, ACCESS, AND TITLE 5
3.0 PREVIOUS WORK 9
4.0 SUMMARY OF WORK DONE 10
5.0 DETAILED DATA AND INTERPRETATION 11
5.1/ Purpose 11
5.2/ General surficial geology 11
5.3/ Regional Geology 11
5.3.1Units 11
5.3.2 Regional Structures 14
5.3.3 Regional Geophysics 15
5.4/ Geology of the Kringle consolidated Claims (central part) 15
5.4.1 introduction 15
5.4.2 Formations 15
5.4.3 Jurassic Intrusives 16
5.4.4 Mineralization 16
5.5/ Detailed sampling results 17
5.6/ Interpretation 23
5.7/ Conclusions 23
6.0 FUTURE WORK 24
7.0 REFERENCES 26
8.0 AUTHOUR'S QUALIFICATIONS 29
9.0 ITEMIZED COST STATENENT 30
10.0 APPENDICES
10.1 Appendix A Geology map from MapPlace
10.2 Appendix B Aeromagnetic anomaly map from MapPlace10.3 Appendix C Rock descriptions of analyzed rocks10.4 Appendix D Certificates of analyses.
FIGURES
Fig. 1. Location Map of Kringle-consolidated (central) claims in BC 6
Fig. 2. Location of Kringle-consolidated (central) claims on a portion of a 1:250000 map with local geographic features named 7
Fig. 3. Detail location map of Kringle-consolidated (central) claims 8
Fig 4. Detail map showing locations of Assays 19
Fig. 5. Detail map showing results of Cu assays (in numbers, ppm) 20
Fig. 6. Detail map showing results of Ag assays (in numbers, ppm) 21
Fig. 7. Detail map showing results of $A u$ assays (in numbers, ppb) 22

1.0 INTRODUCTION

Northern Vancouver Island has been prospected actively since the first world war. The general Adam's River region has been prospected in particular, since logging opened up the area in the 1960's. Previous operators have staked the area of the Kringle-consolidated Claims (central portion), but this particular area has been peripheral to previous exploration efforts.

The Kringle showings, east of the Adam River, were first noted and sampled by the author in September 2000 and since then the property has grown as continuing prospecting has yielded more and more mineralized localities. They occur within an area defined by an aeromagnetic anomaly and near the intrusive contact complex, in associated mineralized shear zones and distal skarn zones. The current report discusses new showings found in new logging road subcrops west of the river and south of mouth of Kim Creek.

The entire Kringle-consolidated Claims cover about 5700 ha, a large area of local mineralized showings including Minfiles 092L-163, 170 and 249 to the north and 092L$165,166,167,168$, and 222 to the south of the two claims under consideration. Efforts are ongoing to vector towards the most economically interesting mineralized area. This report is a step in this process.

The locating, staking, geological work and report writing has been performed by, and paid for, by the sole owner of the claims.

An exploration program which could locate potential drill targets, would include an low level airborne mag and EM survey, as well as ground checking and would cost about \$240,000.

2.0 PROPERTY LOCATION, ACCESS, AND TITLE

The Kringle-consolidated Claims are located on northern Vancouver Island, BC (Figures 1, 2). They contain the easily identifiable 250 km marker on the Island Highway (Highway 19) within the 092L.040 trim sheet (Figure 3). The claims upon which the assessment work is being carried out are only a small part of the contiguous claim block. It is located west of the Adam River near, and south of, the junction of Kim Creek and the Adam River. The claims are accessible by logging road spurs and by Kim Creek Main logging road.

The conversion of legacy claims has left some very unusual claim configurations, such as seen here. The claims under discussion in this report are in the center part of the larger Kringle-consolidated Claims. They include claims number 515029 resulting from converting legacy claims, and 521073 which has been added later.

Name	Record	Ha	Anniversary Date	year recorded
	515029	82.5	$2008 / F e b / 15$	$2002,05^{*}$
KRINGLE-2	521073	495.1	$2008 /$ Feb/18	2005

(*date of original staking by location of legacy claim, later converted)
The anniversary date of the two claims listed is adjusted to take into account the work listed herein.

All claims are focused on copper and silver mineralization, but include an ancillary interest in gold and palladium as well as other base and industrial metals. They are wholly owned by Mikkel Schau.

The land situation is typical; I believe I have claimed and hold the mineral rights in a lawful manner. The region, including the claimed area, is in a Timber License previously logged and reforested; and to the best of my knowledge the land claim treaty process has not directly discussed these lands. It is, however, listed on MapPlace as part of the Kwakiutl_Laich_Kuul_Tach SOL. There has been no impediment to my claiming or working the land to time of writing. And I have no expectation of any. In fact, people of nearby communities would like there to be more exploration, and possibly mining, to shore up the local economy.

Fig. 1. Location Map of Kringle-consolidated (central) claims in BC

Fig. 2. Location of Kringle-consolidated (central) claims on a portion of a 1:250000 map with local geographic features named

Fig. 3. Detail location map of Kringle-consolidated (central) claims

3.0 PREVIOUS WORK

Prospecting work has been carried out in the general Adam River region for about a century. Minfiles 092L 163, 165-167 inclusive, 222 and 249 are located within the Kringle-consolidated Claims The showings discussed in this report are new and reported for the first time.

The ground was prospected for silver and gold in the first quarter of the century and showings of copper and gold veins were reported. Some distance south of the claims, but in the same geological context, a showing (Lucky Jim) of a contact deposit with copper (5.92%), silver (1.8 opt) and gold (. 9 opt) has been described as early as 1918 (page K270, 1918 BC Minister of Mines Report).

Logging opened up the area in the 60's and regional prospecting campaigns located scattered copper rich showings. A large block was staked in 1965 by W.R. Boyes, and was taken over shortly thereafter by Western Standard Silver Mines.

AR 1993, commissioned by Bethlehem Copper Corporation, and carried out by W.M. Sharp, P.Eng., in 1969 sketched in the regional geology of a large area, some of which includes the area currently claimed. He noted the presence of a large NW trending granodiorite pluton emplaced in a sequence of Karmutsen "basalt-andesites" and the Quatsino Limestone. He noted that much mineralisation of the area is mainly in veins. The first mention of the Billy Claims occurs in this report as a parcel covering widely dispersed copper mineralization. The geological framework presented by Mr. Sharp has not changed substantially, although he mentioned the occurrence of Bonanza volcanics in the general region; this latter conclusion has not been confirmed by later workers.

AR 3795, commissioned by Sayward Explorations Ltd, and carried out by Sheppard and Associates in 1972, reported on the geology of the Billy Claims Group and documents showings now known as Minfile 092L163 (in Billy 19) and 092L249 in (Billy 11). These showings are west of the Adam River and north of the claims discussed herein. They reported that amygdaloidal portions of basalts and the adjacent faults are mineralized.

In 1974 the GSC published a map of the area (Mueller et al, 1974) that generally follows the geology determined by previous consultants. No Quatsino limestone was indicated near the claims despite Sheppard's mapping (see above).

At 092L-222 stratified copper mineralization was found below thin limestone beds within the Karmutsen basalts to the south of the claims discussed herein. The details of this prospect are discussed in AR 14284, 22409, and 23906.

A geological compilation of area in digital form (Massey, 1994, 2005) contains contacts assembled in part from previous assessment reports. The Quatsino limestone in this compilation occupies a larger area in the vicinity of the claims than on Muller's map
(ibid).
The author has been active in the area since 2000 and several prospectors grant reports and assessment reports have been filed. They document location of several new mineralized showings, possibly all part of a single large hydrothermal system (see AR 26930, 27070, 27463, 27736, 27745, 28327, and 28328).

Thus, work to date has shown sporadic and widespread mineraiization of copper and silver with occasional gold values occurs in basaltic country rock adjacent to a large granodiorite batholith. The country rock is part of the Karmutsen Formation comprising mainly feldspar-phyric basalt, as amygdaloidal or massive flows, or as thin sills with intercalated with minor beds of limestone and associated clastics, overlain by thicker beds of Quatsino limestone. New roads have exposed new subcrops and the area under discussion is mainly underlain by Karmutsen Formation. Copper mineralization is found in porous and permeable zones in basalt, veins and shear zones within a positive magnetic anomaly.

4.0 SUMMARY OF WORK DONE

The 500 ha claim area has been prospected by walking logging roads and trails, and by excursions into the dense second growth timber and steep river valley (100 ha.) This area is central to areas covered by two recent assessment reports; to the north (AR 28328) and to the south (AR 28327).

Preliminary geological traverses have been conducted along available roads, as well as in selected locations along the Adam River, and other significant off road sites (100 ha). No significant changes were noted to available geological maps (ie Massey, 2005, Appendix A, B))

51 Samples of the mineralized areas, where well exposed, have been collected, crushed and analysed for 30 aqua regia soluble elements (ACME Labs, 1D).

51 samples as above have been analyzed for precious elements (Pt, Pd, and Au) by fire assay and ICP-ES- Finish (ACME Labs, 3B)

10 check assays to check high Copper values.(ACME Labs, 7R)
$\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}, \mathrm{Pd}$ data along with a sample name for each sample is tabulated in appendices C and complete analytical certificates are shown in appendix D..

A large number of rocks for thin sections were collected at this time. The results of petrological studies of alteration minerals and the relations between magnetite, magnetic susceptibilities and aeromagnetic anomaly are subject to a later assessment report. Field costs of the current project are shared with the upcoming project report..

5.0 DETAILED DATA AND INTERPRETATION

5.1/ Purpose

This work is aimed at understanding the nature of the mineralizing events along and in the vicinity of a tectonized contact between basalt, limestone and granodiorite batholith. A bounding aeromagnetic anomaly encloses most of the showings located so far. Previous experience with this highly prospective combination of lithologies and structural setting makes it likely that metal concentrations of some value may have accumulated in the rocks adjacent to the pluton in structurally prepared rocks.

5.2/ General surficial geology

The Kringle-Consolidated Claim group straddles the north-north west flowing Adam River south of its confluence with Eve River. The river runs in a typical U shaped valley, between tall hills trending roughly the same northerly direction. Local areas of till have been noted in lower areas where road construction has laid it bare. At least three different terraces indicate that the river has had a complex geomorphic history. The river is currently incising its course through thick, earlier river and till deposits. Bedrock occurs sporadically in the river bottom.

The course of the river is largely along the outcrop trend of the Quatsino Limestone. Adjacent creeks seem to occupy north or northwest trending strain/fault zones. The hills are variably covered with colluvium and thin till deposits; only where logging roads expose subcrops, or in outcrops on cliff faces or steep sided valleys are bedrock visible.

5.3/ Regional Geology

Contacts between country rock and batholith are possible regions of metal concentrations. Basalts of the Karmutsen Formation, limestones of the Quatsino Formation are deformed, metamorphosed and metasomatised in the locally sulphidized contact of the Adam River Batholith (See appendix A).
5.3.1Units

Vancouver Group

The units are generally as described by Massey $(1994,2005)$ but many lithological details are taken from Carlisle(1972).

The Vancouver Group (Karmutsen, Quatsino, and Parson Bay Formations) underlies much of the region of the claims.

The Karmutsen Formation (or "subgroup" of Carlisle, 1972) is a low potash tholeiite basalt mass of remarkably consistent structure and thickness that constitutes the lower third of the Vancouver Group in this area. The lower 2500 to 3000 m . invariably consists of classical closely packed pillow lava. the next 600 to 1000 m consist of pillow breccia and aquagene tuff, typically with unsorted beds $1 / 2$ to 2 m thick in the lower half.

The upper 3000 m is composed of amygdaloidal and non-amygdaloidal basalt flows intercalated with, particularly in the upper third of the unit, are sporadic and commonly incomplete sequences of 3 to 20 m thick consisting of thin discontinuous bioclastic, micritio, cherty or tuffaceous limestone. Overlain by closely packed pillows, which are overlain in turn by pillow breccia.

The structure of the unit is marked by gently folded and locally severely faulted areas. The folding is part of a regional shallowly north plunging antiform, and many showings are located near the regional axis. The faults and well developed linears trend north and north westerty directions as well as easterly directions and separate large panels of gently dipping lavas.

The volcanic rocks have been metamorphosed to lower greenschist grades. Albitized feldspars, amygdules and veins of pumpellyite, prehnite, epidote, calcite, and chlorite are widely noted. Near contacts with later intrusives, amphibolite bearing assemblages are more common.

Considerable regional variation is shown on aeromagnetic map, including local positive anomalies, within the area underlain by the Karmutsen, indicating that magnetite concentrations of the volcanic rocks are not uniform and/or area is underlain by highly magnetic bodies.

The Quatzino Formation is a thin ribbon traversing the country in a north-northwest direction, to the northeast of the Karmutsen Formation. Regionally, it is seen to stratigraphically overlie the Karmutsen, and is known to vary in thickness from as much as 500 m to the west near Alice Lake to a thinner 150 m or so further east. In the Adams river area it is a distinct, easily recognizable unit, but the thickness is in doubt, because where best exposed it is deformed contact with the granodiorite. The Adam River follows part of its outcrop pattern.

The formation consists of grey limestone beds. Where undeformed it is a coarsely bioclastic, light grey, indistinctly bedded and non fissile (Carlisle, 1972). Where deformed near plutons it becomes a light grey, finely recrystallized limestone. Fossils indicate that the Quatsino Formation is upper Triassic in age (mainly Karnian, perhaps partly lower Norian (Muller et al, 1974).)

The expected negative aeromagnetic signature is poorly defined on large scale geophysical maps shown on MapPlace although the limestone is not magnetic. More
detailed aeromagnetic surveys are necessary to delineate in detail, the outcrop pattern.

Abstract

The Parson Bay Formation is considered to overlie the Quatsino Limestone. According to Carlisle, 1972, it is characterized by thinly laminated alternating fissile and non fissile black carbonaceous limestone with extremely fine grained siliceous matrix. Small slivers were recognized along the contact with the pluton, mainly northwest of Keta Lake, but it seems to disappear to the northwest, as the Adam Lake Pluton cuts through the unit to impinge directly on the Quatsino further to the northwest. It is possible that some of the silty reaction skarns intercalated with black limestone noted on the property, north of the 250 km marker, and east of the claims under discussion, may represent some hitherto unrecognized relic thin lenses of Parson Bay Formation along the western flank of the Adam River Batholith.

Jurassic Intrusives

Jurassic granodiorite to diorite underlies the area to the east-northeast of the Adam River. It has been called the Adam River Batholith (Carson, 1973, Muller, et al, 1974). It is about 4 km wide and trends northwesterly in excess of 10 km .

It consists mainly of mesozonal granodiorite. Rocks studied are mainly medium to fine grained biotite homblende granodiorite and quartz diorite with a locally elevated content of mafic minerals. In thin section, pyroxene cores to amphibole grains are noted. Local veining of darker phases by lighter more feldspathic phases are common. At contacts the volcanic rock inclusions are transformed into dioritic inclusions and limestones become skarn and marble rafts.

Carson (1973), suggested that the Adam River was emplaced as a sill, along the Quatsino Formation horizon. He suggested that the sill was shaped as a gentle syncline and figured the geology in the general area on his Fig. 15 (Carson, op cit). An anticline has been postulated to the west currently expressed at surface by the Karmutsen Formation. The sense of movement of a synkinematic sill would be upper units to move away from the synclinal core. That would predict an east over west component in folds and faults.

Continued examination of this hypothesis over five years by this author has resulted in it being rejected. The intrusive contact is vertical and crosscuts units, cross cutting the Parsons Bay Formation in the vicinity of Keta Lake and intruding the underlying Quatsino further to the northwest. The Karmutsen Formation across the Adam River to the west, has dips that are directed to the north-north-east and would be expected to young in that direction. Instead they seem to be structurally thickened by cross faults. The younger Quatsino and Parsons Bay Formations rocks are found adjacent to (ie along strike with) and in probably fault contact to a thick section of basalt, and the predicted Quatsino and Parsons Bay Formations have not been located at the top of the dipping basalts mentioned above.

K-Ar dates of 160 on Hornblende and 155 on biotite from a quartz diorite of this batholith confirm the synkinematic nature of pluton emplacement.

Contacts are known to be hornfelsed for short distances, with local skarnification near and in limestone beds. Orientations are steep and complex at near the contact. There is much evidence that the Karmutsen is in fault contact with the overlying Quatsino Limestone, and not in a simple stratigraphic relationship.

The high concentrations of magnetite in these l-type intrusions are well refiected in the regional positive aeromagnetic anomalies over these plutons.

Felsic dykes

Based on very preliminary evidence, supported in part by observations made by Carlisle (1972), there appears to be at least three sets of granitoid dykes in area.

From oldest to youngest they are:
Feldspar Porphyry "folded into tight folds" and which may predate Ji ,
Deformed, and argillically altered and mineralized porphyries (locally brecciated).
and later "fresh" Feldspar and Hornblende porphyries with planar or irregular contacts.

In the northern part of the larger claim group late basaltic dykes cut metamorphosed basalts and are metamorphosed themselves.

5.3.2 Regional structures

The area of interest lies within the shallow east north east dipping homocline of Triassic rocks and the Adam River Batholith, called by Muller et al (1974), the White River Block. It is bounded to the west by a major fault, the north northwest trending Eve River Fault. To the north the Johnson Strait Fault terminates the block, the eastern and southern borders are faults on adjacent map sheets. The faults in the claimed area are sub parallel to the border faults, or are second or third order subsidiaries of it. It is thought that these faults contain a large normal component but a dextral transverse component is often mentioned in reports and shown in outcrop as sub horizontal slickenlines.. On a regional scale a northerly directed shallowly plunging anticline is suggested by scarce bedding determinations. The Kringle-consolidated claims are the east side of this structure.

The area is more structurally complex since the regional structure predicts that the youngest rocks should be to the north, instead the Parsons Bay Formation (the youngest in this area, are found near Keta Lake, or far southeast of where they would be expected in a simpler structural milieu.

The region is noted for copper bearing veins and have been described as the type: copper veins in basalts. Muller et al.(1974) repeat this categorization and assigns the showings in the vicinity of the claims to his category C; "veins in basalts". Minfiles in area include Minfiles 092L-163, 170 and 249 to the north and 092L-165, 166, 167, 168, and 222. The nearest minfile is 092L 249 to the north of area of discussion and minfile 092L 222 is nearest to the south.

5.3.3 Regional Geophysics

The magnetic character of the Adam River Batholith is well expressed on regional aeromagnetic maps. Of some interest is a magnetic domain of similar magnitude seemingly located over Karmutsen Basalts as shown on Map Place. The contact, between the magnetic batholithic rocks and the non magnetic limestone is not well defined on the low resolution aeromagnetic map. Instead a sharp magnetic boundary is located several km to the west separating non magnetic basalt from magnetic basalt. The boundary is not parallel with strikes and dips determined for the basalts, but cross cuts them instead to be roughly parallel with the contact of the Adam River pluton (see appendix B).

Whether a large batholith underlies a thin cover of basalt and limestone or whether the basalts are intrinsically more magnetic than usual, and if so, why? seems an obvious question to seek to answer. An aerial survey with closer flight line spacing may show internal variations and help explain the anomaly.

The Cu-Ag vein showings and prospects are located within in this anomalously magnetic region.

5.4/ Geology of Kringle-Consolidated, (Central part) Claims

5.4.1 Introduction

Karmutsen Formation of the Vancouver Group largely underlies the claims under discussion. (figure 5), especially west of the river (Appendix A).

5.4.2 Formations

The area to the west of the Adam River is mainly underlain by the upper part of the Karmutsen Formation stratigraphy, comprising mainly thick massive flows with local intercalations of amygdaloidal basalt and pods of autoclastic breccias, pillowed and massive flows with thin intercalations of volcaniclastic and limey sandstones all cut by thin dolerite/gabbro sills. They dip north to northeasterly with shallow to moderates dips,

A suite of "unaltered" basalts show background values of about 110 ppm copper and 0.3 or less ppm silver.

The Quatzino Formation is a thin ribbon traversing the country in a north-northwest direction, to the northeast of the Karmutsen Formation. It is seen in recrystallized and deformed ribbon in roadcuts along the highway. The thickness is not known. The Adam River follows part of its outcrop pattern. Where deformed near plutons, as in these claims, it becomes a light grey, finely recrystallized limestone.

The expected negative aeromagnetic signature is scarcely noticeable on a map of aeromagnetic field (Appendix B) although the limestone is not magnetic. More detailed aeromagnetic surveys are necessary to delineate the outcrop pattern. Perhaps underlying magnetic units mask the effect of a thin layer of non magnetic Quatsino Formation?

The Parson Bay Formation is considered to overlie the Quatsino Limestone. According to Carlisle, 1972, it is characterized by thinly laminated alternating fissile and non fissile black carbonaceous limestone with extremely fine grained siliceous matrix. Several outcrops on the east side of the river, near the granodiorite contact were visited and sampled. Although rusty economically interesting minerals have not been found.

5.4.3 Jurassic Intrusives

In the claims under discussion Jurassic granodionite to dionite underlies the area to the east-northeast of the Adam River. It consists mainly of mesozonal granodiorite. Rocks studied are mainly medium to fine grained biotite hornblende granodiorite and quartz diorite with a locally elevated content of mafic minerals. In thin section, pyroxene cores to amphibole grains are noted. Local veining of darker phases by lighter more feldspathic phases are common. At contacts the mafic volcanic rock inclusions are transformed into dioritic inclusions, limestones become skarn and marble rafts and siliceous siltstones become rusty homfels. Orientations of bedded host rocks are steep and complex at near the contact.

Based on observations from a few locations, porphyry dykes of granodioritic composition (sensu lato) with planar walls have been seen to cut basalt, and limestone.

5.4.4 Mineralization

Mineralization in the form of amygdular fillings shear zones and veins filled with quartz, epidote, bornite (+/-local chalcocite) were noted in the earlier prospecting.

In the claim area, new mineralization is to be seen in newly opened road metal quarries and areas where erosion has bared the rock after complete logging has removed the cover. It is in alteration zones, shear zones and veins. Chalcopyrite, less commonly bornite, and local malachite constitute the economically interesting minerals.

5.5 Detailed sampling results

Selected samples thought to carry mineralized sections were collected. Malachite was used as a guide to selecting such rocks.

The results are listed in appendix C along with a geological commentary, and their locations are shown on a series of maps (Fig 4, assay location, Fig 5, Cu in ppm, Fig 6, Ag in ppm , and Fig 7. Au in ppb)

Results vary with rock type. Granodiorite and porphyry dykes are generally barren as are limestone samples. Altered basalt and some veins return very encouraging results. On the other hand not all veins carry interesting values. 51 samples of prospective material were selectively collected from subcrops exposed in logging roads covering an area of about 100 ha within the two claims. Background values determined from "fresh" basaltic rocks are about 110 ppm copper and less than 0.3 ppm silver. Mineralized samples from basalt and crosscutting veins contain between 181 ppm and $\mathbf{2 2 1 , 2 6 0} \mathrm{ppm}$ copper with a median of 7038 ppm and 0.3 ppm to 49.1 ppm of silver with a median of 2.7 ppm. Should a lange enough volume of such material be located, these tenors are of interest. The highest gold value noted in this two claim area so far, has been 315 ppb and for Pd has been 31 ppb ; compared with background values of about 3 ppb for gold and 9 ppb for palladium. Gold is locally concentrated, but not in commercial quantities.

The best locality is at waypoint 072 (and reoccupied as waypoint 135) at Z09, UTME 0706087, UTMN 5578288, elev 621 m where three selected samples returned $21 \%, 15 \%$ and $.8 \%$ copper, $49.0,39.0$, and 3.7 ppm silver, 64,46 , and 125 ppb gold, and $5,4,23 \mathrm{ppb}$ palladium. A revisit to the locality confirms that above samples were a part of a chalcopyrite vein torn out of the road bed during logging road construction. There is only one such vein, whose width would be on the order of centimeters, located so far. Other samples collected within a few metres of these sulphide rich samples return assays of 0.77 to 0.96% copper, 5.3 to 4.2 ppm silver, 2 to 3 ppb gold and 15 to 17 ppb palladium.set in a basalt host with an elevated 900 ppm copper.background. The structure of the showing is not understood as yet. This locality is very exciting, because the area is newly exposed, and potassic alteration is relatively widespread. It will be a primary target of ongoing prospecting.

Another location, with the highest gold value and elevated copper values is at Z 09 , UTME 0705247, UTMN 5580019, elev 335 m ., and returns 1.5% copper, 5.6 ppm silver, 351 ppb gold and 20 ppb palladium.

At a 3 m by 2 m pit located at $\mathrm{Z} 09,706165,557940$, and elev 324,4 samples of variably malachite stained basalt with sporadic sulphides show variable copper (214 ppm to 1.4%), silver (below .3 to 5 ppm) and gold (5 to 255 ppb) values. Cobalt values may reach 110 ppm at this location. A resampling of the above site, returns 0.15% copper, 9.4 ppm silver, 21 ppb gold and 13 ppb palladium.

Other sampled localities with elevated copper values include a malachite stained
basalt at Z09, UTME 0706194, UTMN 5578517, elev 538 m., returning 4.9 to 3.2 \% copper:, 6.6-5.5 ppm silver, and 35 ppb gold and 20 to 26 ppb palladium. Also samples with elevated copper values from Z09, UTME 0705195, UTMN 5579879, elev 348 m ., return $2.7-2.0 \%$ copper, $<.3$ to 2.7 ppm silver, 17 to 31 ppb gold and 3 to 17 ppb palladium.

At a quarry for road metal at Z09, 706060, 5579121 and elev 404, 4 samples from rusty samples of basalt at or near the contact with a grey granodioritic porphyry dyke return low copper (46 to 336 ppm) and silver (. 3 or less ppm Ag) values but variable gold values. (4, 84, 3, 194 ppb Au).

Fig 4. Detail map showing locations of Assays

5.6/ Interpretation

Elevated copper values in shears, amygdales and veins located at surface may be indicators of a larger deposit at depth. The elevation of surface exposures vary by several nundred meters. The placement of showings within the stratigraphy and structure become of interest. Neither the relationship of later dykes and showings nor the proximity of showing to deep regional linears is clearly established at this time. Given that showings occur over a large area, some method for focusing on the best mineralization is required.

The upper Karmutsen may be exceedingly well differentiated along a tholeiitic trend. Hence this iron (and associated Ti, V, Mn and possibly Cu) enrichment should have regional and stratigraphic expression. Currently, very few systematic lithochemical studies have been conducted on the regional stratigraphy of the Karmutsen Formation (Surdam, Greene et al, 2006). It is not known whether the Karmutsen Formation is chemically zoned, through time and space.

Alternately, if the magnetite that forms the aeromagnetic anomaly is metasomatic in origin (Eastwood, 1965), then the possibility of iron oxide-copper deposits should be considered. Locally sulphide concentrations are associated with magnetite and/or hematite within these claims.

Since a large area is underlain by rocks with silicate and sulphide filled amygdales and veins, as well as containing enhanced magnetite in the groundmass and veins, a reasonable hypothesis is that large scale metasomatism of some type took place.

5.7 Conclusions

The Kringle-Consolidated (central portion) Claims are largely underlain by basalts of the upper Triassic upper Karmutsen Formation, but adjacent to Jurassic Granodiorite pluton..

Within the whole Kringle-consolidated Claims sulphide accumulations of interest include bornite bearing sulphide veins and replacement masses, more common chalcopyrite veins, molybdenite bearing garnet veins, pyritic veins and disseminations in granodiorites and dykes, and pyrrhotite layers in reaction skarns. Only their presence has been documented, estimates of volumes and grades require much more work.

In the central portion, the subject of this report, chalcopyrite veining is associated with pink (feldspar) and quartz alteration, bornite is in quartz-epidote-Kspar filled vesicules, and pyrite and chalcopyrite is in mineralized shear zones. Local concentrations of copper are of interest.

The apparent association of magnetic basalts and copper sulphide occurrences, as well as local spikes in gold suggest that an IOCG type mineral deposit model might be a
useful guide to further exploration in this area.
This is a grass roots project and the extent of the postulated hydrothermal system is still being explored. Hence estimates of volumes and concentrations require defining by geophysical and other methods. The values of selected grab samples discussed in this report indicate local enrichment of copper and associated elements occur as amygdale fillings, shear zone and vein materials. There is a possibility that adjacent new showings and already located Minfile locations in the country rock are part of a single and large mineralizing system, in which case, this region may become a significant prospect.

6.0 FUTURE WORK

Future work should focus on establishing the areal extent of the various types of amygdale fillings, shear zones and skarn bodies and their enclosed mineralization. Not only should metals be considered as a principal asset, but it may also be that industrial minerals (such as magnetite) are present in sufficient amounts to be exploited.

To find the extent the magnetic phases (magnetite, pyrrhotite) of the (distal) ore skarn and local shears and veins, a magnetic survey is clearly indicated. To find the extent of conductive portions (sulphide concentrations) of the mineralized zones one of several types of survey can be contemplated; the size of the exploration commitment would seem to dictate the method. A low flying helicopter survey combining aeromagnetic and EM methods may be most efficient method to focus ground based exploration.

Interpretations of the surveys will be fraught with errors. The presence of the many roads with their infill of materials trucked in from unknown sources will pose a problem. The Adam River valley with the deep (glacio)- fluvial fill will shield anomalies located along the (major) fault traces in the valley bottom. Nevertheless if enough surface anomalies along the valley sides are successfully tested, then deeper exploration (in part under the river channel) will be easier to justify.

A possible exploration scenario is given below. Many others can be proposed, the main determinant is the amount of money available for further work.

A POSSIBLE EXPLORATION SCENARIO

1/ A program which fulfills the needs outlined above, is a small helicopter survey (about 15 km by $6 \mathrm{~km}, 100 \mathrm{~m}$ spacing) measuring the magnetic and electromagnetic parameters simultaneously. This would focus the ground search.

ESTIMATED COST ; $\$ 150,000$ (recent, but unofficial quote)
2/ After the airborne survey, a more accurate GPS survey of any newly located (see above) near- surface geophysical targets would be appropriate. (Using a BeepMat to
help locate thinly covered magnetic and/or sulphide mineralization could also be useful). Trench and sample best locations

ESTIMATED COST: \$50,000

3/ Petrographic analysis and detailed mapping of rock types near the contact/anomalous areas can establish the locations of hydrothermal ore bearing channels and the nature of the mineralizing fluids, and, possibly, with the help of the geophysics, estimate their extent.

More litho-geochemistry and systematic assaying of new and old showings on the property will help decide as to which type of mineralizing fluid the pluton might have generated. This will help in focusing interest in an appropriate host rock and alteration type.

Both methods will result in finding vectors towards ore targets. And the results will also help in establishing the extent of industrial minerals such as magnetite, wollastonite or garnet.

ESTIMATED COST: $\$ 40,000$
At the end of this phase of the exploration cycle, several target regions, of coincident geological and geophysical anomalies, will probably have been established. At this point there should be enough information to decide on the feasibility and design of a drill campaign.

7.0 REFERENCES

Anon, 1918
Lucky Jim; BC Minister of Mines Report, p.K270.
Carlisle, D., 1972
Late Paleozoic to mid Triassic sedimentary-volcanic sequence of northeastern Vancouver Island; in Report of Activities, Nov-March 1972, GSC Paper 72-1B, pg 22-29.

Carson, D.J.T., 1973
Petrography, chemistry, age and emplacement of plutonic rocks of Vancouver Island, GSC paper 72-44.

Carson, D.J.T., Muller, J.E., Wanless, R.H. and Stevens, R.D. 1972
Age of contact metasomatic copper and iron deposits, Vancouver and Texada Islands, BC; Geological Survey of Canada, Paper 71-36.

Eastwood, G.E.P., 1965
Replacement magnetite on Vancouver Island, BC; Economic Geology, vol 60, p. 124-148.

Greene, A.R., Scoates, J.S., Nixon,G.T. and Weis, D.:2006 Picritic Lavas and Basal Sills in the Karmutsen Flood Basalt Province, Wrangellia, Northern Vancouver Island, BC; Geological Field work 2005, Paper 2006-1 p. 39

Kwak, T.A.P., 1994
Hydrothermal Alteration in Carbonate- Replacement Deposits: Ore Skarns and Distal Equivalents in Lentz, D.R., ed, Alteration and Alteration Processes associated with Ore-forming systems: Geological Association of Canada, Short Course Notes, V11, p. 381-402.

Massey, N.W.D., 1994
Geological compilation, Vancouver Island, British Columbia (NTS 92B, C, E, F, G, K, L, 1021); BC Ministry of Energy, Mines and Petroleum Tesources, Open File 1994-6, 5 digital files, 1:250 000 scale.

Muller, J.E., Northcote, K.E., and Carlisle, D., 1974
Geology and Mineral Deposits of Alert-Cape Scott Map Area, Vancouver Isiand, British Columbia; Geological Survey of Canada, Paper 74-8, 77pg and map 41974.

Northcote K.E., and Muller J.E. 1972
Volcanism, Plutonism, and mineralization on Vancouver Island: Bull Can Inst Mining and Metallurgy, Oct 1972, p. 49-57.

Ray, G.E., Webster, I.C.L., and Etlinger, A.D., 1995
The distribution of skarns in British Columbia and the chemistry and ages of their related plutonic rocks; Economic Geology, vol. 90, p 920-937.

Sangster, D.F., 1969
The contact metasomatic magnetite deposits of southwestern British Columbia; GSC Bulletin 172, 85pg.

Schau, Mikkel, 2000 (unpublished)
Report on PAP grant 95-2000, submitted to BC dept of Energy and Mines
-do-, 2001
Report on PAP grant 91-2001, submitted to BC dept of Energy and Mines
Schau, Mikkel, 2002,
Report on the preliminary Geology, Petrography, and Petrophysics of the KRINGLE property, assessment report AR -26930, BC Dept of Energy and Mines..
-do- 2003,
Report on the Preliminary Geology and Petrography of the Puff Property; Assessment report AR -27070, BC Dept of Energy and Mines..
-do- 2004
Preliminary geology and litho geochemistry of the Pastry Macaroon \& Oreo claims; Assessment report AR -27463, BC Dept of Energy and Mines
-do- 2005
A prospectors report Krisp 1-6 claims; Assessment report AR -27736, BC Dept of Energy and Mines
-do- 2005
Prospecting Report on the Klejne 1-2 Claims; Assessment report AR -27745, BC Dept of Energy and Mines
-do- 2006
Prospecting Report on the Kringle Consolidated Southern Portion; Assessment report AR 28327, BC Dept of Energy and Mines
-do- 2006
Prospecting Report on the Kringle Consolidated Property Northern Portion; Assessment report AR 28328, BC Dept of Energy and Mines

Sharp, W.M., 1969
Geological Report on the Boyes Copper Prospect located near the Adam River, Sayward Area, BC, in Nanaimo M.D.; BC Dept of Mines, AR1993.

Sheppard and Associates, 1972
Geological Report on the Billy Claims Group, Sayward Area, Nanaimo MD, Vancouver Island BC; BC Dept of Mines, AR3795.

Surdam, RC, 1968
The Stratigraphy and Volcanic History of the Karmutsen Group, Vancouver Island, BC; University of Wyoming Contributions to Geology, V.7, p.15-26.

8.0 AUTHOR'S QUALIFICATIONS

I have been a rock hound, prospector and geologist for over 40 years. My mineral exploration experience has been with Shell, Texas Gulf Sulfur, Kennco, Geophoto, Cogema and, several mining juniors. I have worked 10 years in southern BC and spent 23 years with the GSC as a field officer focused on mapping in northeastern Arctic Canada. For the last 11 years I have prospected and mapped in Nunavut, Nunavik, Yukon, Ontario and BC.

I reside at 1007 Barkway Terrace, Brentwood Bay, BC, V8M 1A4
I am currently a BC Free Miner, \# 142134, paid up until September 20, 2007.
During 2000 and 2001, I received Prospector's Assistance Program (PAP) grants to prospect on Vancouver Island. In 2002 I received YMIP grant to prospect in the Yukon.

My formal education is that of a geologist, I graduated with an honours B.Sc. in 1964 and Ph.D. in Geology in 1969, both, from UBC.

I am a P.Geol. licensed (L895) in Nunavut and NT, and a P.Geo. (25977) in BC and Ontario (1047).

The information, opinions, and recommendations in this report are based on fieldwork carried out by myself, and on published and unpublished literature.

I am sole owner of the claims in question.

Mikkel Schau, B. Sc., Ph.D., P. Geol., P. Geo.
Dated December 31, 2006.

9.0 ITEMIZED COST STATEMENT

Wages:

sampling and prospecting, July 23, 2005 cost are shared with another projects, one still to be submitted.
Mikkel Schau, geologist1 day x 450$\$ 450.00$
Alec Tebbutt, contract helper(AT) 1 day at 250 $\$ 250.00$TOTAL Wages$\$ 700$
Food and Accommodation:cost are carried by another project to be submitted
Transportation: cost are shared with another project to be submitted
Analyses:
51 prepare and crush rocks @4.50 229.50
51 Geo4 (ICP-ES of AR dissolved elements +
and PGE (Pt, Pd, Au) FA with ICP-ES finish and PGE (Pt, Pd, Au) FA with ICP-ES finish
@ 17.0 867.00
Copper Assays 10@10.50 105.00
Freight 30.00
GST 74.07
TOTAL: $\$ 1308.57$
Report preparation (most of a day) \$ 391.43
Total project cost $\mathbf{\$ 2 , 4 0 0 . 0 0}$
10. APPENDICES
10.1 Appendix A Geology Map from MapPlace

Kringle-consolidated-geology

$=\overbrace{0} \frac{\text { SCALE } 1: 75,000}{\substack{1 \\ \text { MILES }}}$

Kringle-consolidated-details

Kringle-consolidated-aeromag

$\square-\int_{0} \frac{\text { SCALE 1:75,000 }}{\substack{1 \\ \text { MILES }}}$
10.3 Appendix C Rock Descriptions of analysed samples, with $\mathbf{C u}, \mathbf{A g}, \mathbf{A u}, \mathbf{P t}$, and $\mathbf{P d}$ tabulated
(all samples in UTM Zone 09, using NAD 83 values).

sample	elev	utme	utmn	$\mathrm{Cu} / \mathrm{ppm}$	$\mathrm{Ag} / \mathrm{ppm}$	$\mathrm{Au} / \mathrm{ppb}$
K066C	375	706720,5578610	5	$<.3$	4	<2
Otc, green carbonated granodiorite porphyry dyke intruded into limestone			4			

K067 quarry,	375 iorite	$706934,5578348$ porphyry dyke	81	$<.3$	7	12
large area of blasted rock, dark basalt						
K069A quarry,	339 altere	$\begin{aligned} & 706147,5579453 \\ & \text { basalt } \end{aligned}$	38	$<.3$	<2	<2
K069B quarry,	339 iorite	$706147,5579453$ porphyry dyke	160	$<.3$	<2	16
K070A	324	706165,5579402	13870	5.0	98	15

otc, near 68 , but nearer road, malachite and local sulphides in altered basalt value of copper re-assayed
$\begin{array}{lllllll}\text { K070B } & 324 & 706165,5579402 & 214 & <.3 & 53 & 21\end{array}$
otc, near 68, but nearer road, malachite and local sulphides in altered basalt

K070C	$324 \quad 706165,5579402$	2096	.6	5	13

K070D	324	706165,5579402	517	.4	255	31
CO=110 otc, near 68, malachite and local sulphides in altered basalt						
mearer road,						

K071C	$404 \quad 706060,5579121$	336	$<.3$	3	8
quarry, dark grey granodiorite porphyry dyke	270	$<.3$	194	17	
K071E	404	706060,5579121			

K072A1 631 706076,5578293	212760	49.1	64	5
$\mathrm{Cd}=37.1 \mathrm{ppm}, \mathrm{W}=22 \mathrm{ppm}$ otc, malachite rich samples in altered basalt, value of copper re-assayed				
K072A2 631 706076,5578293	159060	39.2	46	4
$\mathrm{CD}=15.1 \mathrm{ppm} \mathrm{W}=11 \mathrm{ppm}$ otc, malachite rich samples in altered basalt, value of copper re-assayed				
K072B otc, malachite rich samples in altered basalt,	8119	3.7	125	23

K092A237 Otc, black amphibolite, near contact	21	<3	3	4	
K092B otc, black amphibolite, near contact		156	$<.3$	3	3

quarry, bluey green basalt						
K093B	235	707663, 5578959	17	$<.3$	3	<2
quarry, porphyry cutting altered basalt						
K094A	242	707385, 5579229	25	$<.3$	<2	<2

otc, granodiorite
K094B
otc, granodiorite

| K095 236 707223,5579347 1<3 | <2 | 3 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| otc, limestone, | | | | |

K096A $\quad 235 \quad 707044,5579432$	137	$<.3$	<2	3
quarry, rusty contact zone near lst				

K097A	226	706529, 5579924	24	<. 3	3	<2
otc, rusty contact (Parsons Bay Formation siliceous siltstone).						
K097B	226	706529, 5579924	29	< 3	4	7
otc, limestone, $\mathrm{Mo}=65 \mathrm{ppm}$						
K098	238	706052, 5580437	62	$<.3$	3	2

rusty zone near contact, small amount of veining

331601 ripup, ma	542 te sta	$0706225,5578501$ ned basalt	2864	$<.3$	<2	14
331602	538	0706194, 5578517	49100	6.6	35	20
otc, malachite stained basalt, local specks of bornite value of copper re-assayed						
331603	538	0706194, 5578517	32300	5.5	35	26
otc, malachite stained basalt, local specks of bornite value of copper re-assayed						

331604	645	0706011,5578206	6832	0.5	46	19
otc, basalt with specks of bornite, very magnetic				19		
331605	645	0706011,5578206	7659	0.3	36	16

| 331606 | 621 | 0706087,5578288 | 914 | 0.7 | <2 | 18 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | sparse malachite stain samples of 072 from near here

, west of creek

331607	621	0706087,5578288	7038	4.2	2	15

deeper green malachite coating $331608 \quad 621 \quad 0706087,5578288$
$9681 \quad 5.3$
visible bornite in small specks and veinlets

331609 andesite dyke	263	0706233, 5578792	110	$<.3$	2	<2
331610 white vein	263	0706233, 5578792	256	0.4	4	9
331611 epidote rich v	263	0706233, 5578792	108	$<.3$	<2	12
331612 unaltered host	263	0706233, 5578792	171	$<.3$	2	12
331621 otc, quartz vei	651	0705874, 5578239	810	0.4	<2	<2
331622 laminated vein	651 , cent	0705874, 5578239	21	$<.3$	2	10
331623 laminated vein	$\begin{gathered} 651 \\ \mathrm{n} \text { edge } \end{gathered}$	0705874, 5578239	16	$<.3$	<2	3
331624 andesite dyke	359	0705179, 5579988	35	0.3	3	<2
331625	348	0705195, 5579879	26100	0.7	30	13

vein in massive host, malachite wash value of copper re-assayed $331627 \quad 348 \quad 0705195,5579879$ pink alteration in hosting basalt value of copper re-assayed $331628 \quad 348$ 0705195,5579879 vein of quartz and epidote with malachite center value of copper re-assayed
$\begin{array}{lllllll}331626 & 335 & 0705247,5580019 & 15000 & 5.6 & 351 & 20\end{array}$
malachite stained basalt
value of copper re-assayed
$\begin{array}{lllllll}331629 & 393 & 0705356,5579565 & 193 & <.3 & <2 & 6\end{array}$
vein with epidote quartz center

331630 vein	409	0705391,5579384	392	0.3	6	7

$331650 \quad 334 \quad 0706165,5579396$ vein in green basalt near 070 at edge of pits, black magnetic
$331656 \quad 409 \quad 0707549,5578968$ andesite dyke in limestone

331657	341	0706462,5580552	7	$<.3$	<2

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SONE MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. Al॥* PT** \& PD** GROUP 30 - 30.00 CM SAMPLE ANALYSIS BY FAIICP
ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM \& AU > 1000 PPR

- SAMPLE TYPE: ROCK R150

All results are considered the confidential property of the client. Acme assumes the liabtities for actual cost of the analysis only.

SAMPLE\#	$\begin{gathered} \text { Mo } \\ \text { ppin } \end{gathered}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} 2 n \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppon} \end{gathered}$	$\begin{array}{r} \mathrm{Co} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} M n \\ \text { ppm } \end{gathered}$	$\begin{array}{cc} \mathrm{n} & \mathrm{Fe} \\ \mathrm{n} & \mathrm{Z} \end{array}$	$\begin{aligned} & \text { As } \\ & \chi \text { ppm } \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{U} \\ \text { ppin } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Th } \\ \text { ppm } \end{array}$	$\underset{\substack{\text { Pr } \\ \hline}}{ }$	$\begin{gathered} \text { Cd } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { sb } \\ \text { pprit } \end{gathered}$	$\begin{gathered} \text { Bi } \\ \text { pprin } \end{gathered}$	$\begin{array}{r} V \\ \text { pprn } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{\%} \end{gathered}$		$\begin{aligned} & \mathrm{La} \\ & x \text { ppin } \end{aligned}$	$\underset{\mathrm{pr}}{\mathrm{cr}}$	$\begin{gathered} \mathrm{Mg} \\ \% \end{gathered}$		$\begin{array}{r} \mathbf{T i} \\ \mathbf{Z} \end{array}$		$\begin{gathered} A! \\ X \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \mathrm{~K} \end{gathered}$	$\begin{aligned} & \mathrm{k} \\ & \mathbf{x} \end{aligned}$	$\begin{array}{r} \mathrm{H} \\ \mathrm{pp} \boldsymbol{m} \end{array}$	A ${ }^{\text {** }}$ ppb	$\begin{aligned} & \mathrm{Pt}^{* *} \\ & \mathrm{ppb} \end{aligned}$	$\begin{aligned} & \text { Pd** } \\ & \text { pppo } \end{aligned}$
0560	<1	60	12	55	$<.3$	60	28	519	5.50	3	<8	<2	<2	137	. 8	<3	<3	174	3.67	. 059	2	103	2.12	11	. 53	4	3.96	. 02	. 09	<2	29	7	19
056E	1	29	3	35	. 3	39	20	329	3.83	10	<8	<2	<2	131	. 6	3	<3	166	5.52	. 050	1	67	1.11	17	. 41	6	4.19	. 01	. 01	<2	22	6	17
056F	<	65	7	23	<. 3	33	16	287	3.13	7	<8	<2	<2	25	$<.5$	<3	<3	158	6.71	. 033	3	53	. 84	3	. 37	<3	4.55	. 01	<. 01	<2	37	7	12
056G	<1	140	<3	16	. 3	17	16	335	1.73	<2	<8	<2	<2	193	$<.5$	<3	<3	86	3.02	. 051	+	27	. 29	3	. 54	<3	1.29	. 02	<. 01	<2	12	7	18
056H	1	95	7	69	$<.3$	56	30	482	5.89	9	<8	<2	<2	295	$<.5$	<3	<3	170	2.33	. 081	3	84	1.64	4	. 49	<3	3.33	. 03	. 02	2	18	8	24
0561-1	<1	1326	9	5	.5	10	5	151	1.56	4	<8	<2	<2	243	$<.5$	<3	<3	101	5.41	. 032	1	13	. 10	2	. 29	9	3.15	<. 01	$<.01$	<2	49	5	22
0561-2	<1	B79	10	7	. 3	9	6	127	1.68	8	<8	<2	<2	287	$<.5$	<3	<3	97	4.53	. 021	1	14	. 13	2	. 23	5	2.96	<. 01	<. 01	<2	65	3	19
056J	<1	105	<3	61	<. 3	61	31	487	5.20	6	<8	<2	<2	198	< 5	<3	<3	164	1.81	. 068	3	90	1.82	4	. 50	8	2.96	. 03	. 01	2	65	6	21
056K	2	173	3	59	$<.3$	53	27	381	5.25	5	<8	<2	<2	80	< 5	<3	5	183	1.44	. 067	2	78	1.86	4	. 55	7	2.65	. 05	. 02	<2	59	10	30
056L	1	159	<3	10	.3	13	8	160	1.86	<2	<8	<2	<2	263	$<.5$	<3	<3	90	2.38	. 042	21	20	. 24	1	. 49	5	1.60	<. 01	<. 01	2	8	3	16
056N	1	1670	<3	65	1.0	31	22	316	2.25	2	<8	<2	<2	81	. 7	<3	<3	78	1.54	. 028	<1	27	. 36	8	. 30	<3	1.01	. 05	. 01	<2	92	4	15
RE 056N	<1	1652	<3	64	. 9	31	21	317	2.25	4	<8	<2	<2	80	. 7	<3	<3	79	1.55	. 027	<1	25	. 36	8	. 30	<3	1.01	. 05	. 01	<2	39	4	12
057	1	200	5	42	. 3	31	19	335	4.08	6	<8	<2	<2	115	$<.5$	5	<3	164	2.31	. 055	5	5	. 63	12	. 39	<3	3.44	. 39	. 02	<2	75	4	22
058	1	91	<3	49	. 4	43	26	808	4.37	2	<8	<2	<2	9	2.7	5	<3	202	5.46	. 045	3	42	1.25	2	. 58	10	4.16	< 01	< 01	<2	74	<2	<2
059	<1	92	5	40	<. 3	20	14	540	2.98	3	<8	<2	<2	74	.5	8	<3	76	6.16	. 023	3	6	. 70	2	. 19	<3	8.08	. 04	. 09	<2	44	4	4
060	1	32	6	22	. 3	20	12	266	1.78	2	<8	<2	<2	61	$<.5$	<3	<3	79	6.90	. 029	-	16	. 38	2	. 36	8	2.94	< 01	<. 01	<2	52	5	11
062	2	27	<3	50	<. 3	31	22	471	4.84	3	<8	<2	<2	42	$<.5$	3	<3	149	2.53	. 046	4	3	1.08	8	. 29	4	4.11	. 62	. 04	<2	5	2	15
063A	1	605	5	12	. 8	18	12	234	2.72	3	<8	<2	<2	67	<. 5	4	<3	140	9.39	. 016		26	. 41	2	. 21	4	2.94	$<.01$	< 01	<2	7	9	19
064	1	575	<3	30	.4	38	21	354	3.95	7	<8	<2	<2	64	$<.5$	5	<3	151	3.38	. 035	2	39	1.31	14	. 27	4	3.26	. 17	. 02	<2	108	5	24
067	<1	81	<3	25	$<.3$	32	17	434	2.60	3	<8	<2	<2	79	$<.5$	<3	<3	105	2.35	. 066	2	61	1.05	14	. 40	4	1.50	. 07	. 02	<2	7	5	12
070A		10000	<3	10	5.0	46	21	141	2.58	5	<8	<2	<2	47	$<.5$	4	<	43	1.75	. 008	<1	31	. 52	2	. 13	5	1.50	. 05	. 01	<2	98	6	15
0700	<1	517	<3	10	. 4	65	110	281	3.36	8	<8	<2	<2	74	$<.5$	3	<3	44	2.80	. 021	<1	43	. 82	4	. 17	<3	2.06	. 20	. 09	<2	255	12	31
071	<1	809	6	8	. 3	10	8	1263	1.07	4	<8	<2	<2	32	$<.5$	<3	<3	63	. 65	. 027	1	27	. 20	8	. 17	<3	. 75	. 04	. 01	<2	46	2	4
0718	+1	181	<3	6	< 3	13	8	180	1.40	<2	<8	<2	<2	65	< 5	<3	<3	27	1.82	. 002	<1	18	. 57	6	. 07	<3	1.23	. 02	. 05	<2	84	4	3
071E	1	270	<3	50	<. 3	38	14	431	2.25	<2	<8	<2	<2	69	<. 5	<3	<3	101	1.54	. 073	3	136	1.12	11	. 45	7	2.12	. 15	. 05	<2	194	12	17
072A-1	$12>$	10000	37	23	49.1	18	14	361	6.20	<2	<8	<2	<2	3	37.1	<3	<3	19	. 06	. 146	<1	<1	1.12	65	. 01	6	. 1.65	< 01	.17	22	64	5	5
072A-2		10000	37	34	39.2	27	20	445	6.27	<2	<8	<2	<2	3	15.1	<3	<3	37	. 04	. 049	<1	<1	1.85	68	<. 01	9	2.37	<. 01	. 20	11	46	4	4
072B	1	8119	4	79	3.7	65	40	1286	8.66	10	<8	<2	<2	24	1.2	8	<3	292	2.81	. 061	6	110	2.54	15	. 17	5	3.04	. 02	. 02	<2	125	4	23
074A	<1	5247	<3	13	1.0	19	11	267	1.89	3	<8	<2	<2	64	. 5	4	<3	90	1.23	. 030	1	31	. 45	7	. 48	<3	. 98	<. 01	. 01	<2	46	4	10
075A	1	1469	<3	50	.3	47	30	607	6.87	4	<8	<2	<2	12	$<.5$	<3	<3	181	. 65	. 061	3	25	2.22	12	. 42	9	2.20	. 02	. 04	3	87	6	19
079	<1	4240	<3	16	3.0	24	15	186	2.19	<2	<8	<2	<2	28	$<.5$	3	<3	64	. 97	. 037	1	11	. 59	2	. 36	7	1.18	. 01	. 02	<2	1169	9	107 -
080	1	296	<3	31	. 6	42	21	387	4.42	5	<8	<2	<2	157	$<.5$	4	<3	179	1.48	. 079	4	31	. 66	7	. 36	8	2.16	. 27	. 06	<2	70	7	25
081A	2	366	<3	581	. 5	104	60	234	8.05	5	<8	<2	<2	16	10.6	<3	<3	287	. 68	. 099	4	119	1.35	83	. 37	13	1.88	. 16	. 03	<2	56	6	24
082	1	215	<3	42	. 4	56	37	402	7.49	3	<8	<2	<2	12	<. 5	4	<3	250	. 67	. 090	2	72	1.83	98	. 48	10	2.15	. 07	. 06	2	4	6	20
STANDARD DS6/FA-10R	12	121	28	140	. 5	24	12	739	2.89	24	8	<2	3	47	5.6	5	5	59	. 78	. 079	12	179	. 56	161	. 09	18	1.99	. 07	. 15	4	485	494	478

Sample type: ROCK R150. Samples beginning 'RE' are Rerung guxd 'RRE' are Reject Reruns.

Sample type: ROCK R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP $10-0.50$ GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, OILUTED TO 10 ML, ANALYSED BY ICP-ES ($>$) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU P8 ZN AS $>1 \%$, AG >30 PPM \& AU >1000 PPB
SAMPLE TYPE: ROCK R150 AU** PT** PD** GROUP $3 B$ BY FIRE ASSAY \& ANALYSIS BY ICP-ES. (3g-qM)
Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
Data 1 FA \qquad DATE RECEIVED: JAN 32006 DATE REPORT MATLED
All results are considered the confidential property of the client. Acme assumes the lialivities for actual cost of the analysis only.

Sample type: ROCK R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE Schau, Mikkel
Acme file \# A605452 Page 1 Received: AUG 22 2006* 62 samples in this disk file.
Analysis: GROUP $1 \mathrm{D}-0.50$ GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C F
 G-1 <1

$331640<1$		612	34	6	3.6	16	537	13	36.99	$5<8$	<2		4	$9<.5$	
$331641<1$		159	29	31	0.7	28	89	153	20.22	$9<8$	<2		2	28	1.8
331642	9	140	5	44	0.8	38	61	301	11.44	$9<8$	<2	<2		41 <.	
$331643<1$		601	44	65	0.7	42	62	343	10.55	$8<8$	<2	<2		37	0.
$331644<1$		$298<3$		63	0.6	38	19	512	$5.23<2$	<8	<2	<2		41	0.
331645	1	434	3	40	0.4	18	11	275	$3.94<2$	<8	<2	<2		41	0.7
$331646<1$		$565<3$		42	0.7	18	9	290	$2.14<2$	<8	<2	<2		36	0.7
$331647<1$		2444	5	133	2	48	29	389	4.18	$2<8$	<2	<2		73	2.8
$331648<1$		234	5	$21<3$		28	16	108	1.1	$16<8$	<2	<2		344	0.6
331649 <1		$865<3$		$28<3$		80	55	384	5.45	$8<8$	<2		2	230	1.1
$331650<1$		$1511<3$		66	0.4	74	36	408	$2.74<2$	<8	<2	<2		88	0.9
331651 <1		$78<3$		61×3		50	29	640	$5.31<2$	<8	<2	<2		36	0.8
$331652<1$		$61<3$		$33<.3$		31	17	342	$2.23<2$	<8	<2	<2		$79<$	
$331653<1$		$283<3$		28	0.3	24	10	240	$2.11<2$	<8	<2	<2		37 <	
$331654<1$		145	3	111	0.6	28	31	913	7.52	$7<8$	<2	<2		11	0.8
$331655<1$		3	5	$80<3$		80	37	679	6	2	$12<2$	<2		24	
$331656<1$		$82<3$		65	0.3	7	19	684	4.37	$3<8$	<2	<2		$135<$	
331657 <1		7	4	$54<3$		4	8	477	2.37	$4<8$	<2		2	33	
331658 <1		$127<3$		42	0.3	5	13	411	3.95	$2<8$	<2		2	255	
NDARD [19	98	67	402	1	56	9	623	2.3		<2			73	

OR ONE HOUR, DILUTED TO 10 ML , ANALYSED BY ICP

OR ONE HOUR, DILUTED TO 10 ML , ANALYSED BY ICF
 ppm ppm ppm \% \% ppm ppm \% ppm \% ppm \% \% \% ppm $<3<3 \quad 36 \quad 0.57$

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)2 Schau, Mikkel

Acme file \# A605452 Page 1 Received: AUG 22 2006* 62 samples in this disk file.

Analysis: GROUP 3B - FIRE GEOCHEM AU, PT, PD - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AQUA

ELEMENT Au**	Pt**	$\mathrm{Pd}^{* *}$	
SAMPLES ppb	ppb	ppb	
G-1 <2	<3	<2	
$331601<2$		3	14
331602	35	5	20
331603	35	3	26
331604	46	3	19
331605	$36<3$		16
$331606<2$	<3		18
331607	$2<3$		15
331608	3	3	17
331609	$2<3$	<2	
331610	$4<3$		9
331611 <2		6	12
331612	2	6	12
331613	$4<3$	<2	
331614	$10<3$	<2	
331615	$6<3$	<2	
331616	5	3	3
331617	$26<3$		9
331618	5	3	13
331619	$4<3$		4
331620	$3<3$		3
331621 <2	<3	<2	
331622	$2<3$		10
$331623<2$	<3		3
331624	$3<3$	<2	
RE 331624	$3<3$	<2	

331625	$30<3$		13
331626	$\mathbf{3 5 1}$	5	20
331627	31	3	17
331628	$17<3$		3
$331629<2$	<3		6
331630	$6<3$		7
331631	$5<3$		5
331632	2	3	7
331633	4	5	14
STANDARI	482	481	469
G-1 <2	<3	<2	
331634	3	3	11
$331635<2$	<3		10
RE $331635<2$		3	15
331636	7	8	18
331637	2	15	22
331638	6	6	6
331639	34	12	14

		A	Pf	Pd
[ppl	ip	fro
6	331640	$29<3$		9
	331641	10	3	8
Γ	331642	5	8	22
	331643	5	7	25
	331644	4	8	18
Γ	331645	47	4	18
	331646	69	4	14
	331647	75	9	19
[$331648<2$		5	2
	331649	4	10	7
	331650	21	7	13
	331651	7	6	10
	331652	4	8	18
1	331653	4	10	7
	331654	6	7	20
r	331655	3	10	16
I	$331656<2$	<3		3
	$331657<2$		$4<2$	
[331658	3	8	2
	STANDARI	494	498	487

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)2 Schau, Mikkel
Acme file \# A605452R Received: SEP 21 2006 * 8 samples in this disk file.
Analysis: GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML , ANAL ELEMENT Cu SAMPLES \% $331602 \quad 4.91$
$331603 \quad 3.23$
$331625 \quad 2.61$
$331626 \quad 1.5$
$331627 \quad 1.98$
$331628 \quad 2.71$
$331639 \quad 2.74$
STANDARI 0.55

