2006 REPORT

FOR THE

COYOTE CREEK PROPERTY

Fort Steele Mining Division, Southeastern B.C. Mapsheets 82G093, 82J003 Latitude 50°00' N, Longitude 115°30'W

Prepared for

EAGLE PLAINS RESOURCES LTD.

200-16 11th Ave. S. Cranbrook, B.C., V1C 2P1 Tel: 1 250 426-0749 Fax: 1 250 426-6899 Email: <u>info@eagleplains.com</u>

by

Charles Downie, P.Geo. 200-16 11th Ave. S. Cranbrook, B.C., V1C 2P1

January 3, 2007

2006 GEOLOGICAL REPORT FOR THE COYOTE CREEK PROPERTY EAGLE PLAINS RESOURCES LTD.

SUMMARY

The Coyote Creek property consists of 2048 hectares located in the Lussier River/Coyote Creek area 50km NE of Cranbrook, BC. The claims are owned 100% by Eagle Plains Resources Ltd., and carry no underlying royalties or encumbrances.

The Coyote Creek claims were originally acquired by Eagle Plains to cover a package of black shales and carbonates associated with highly elevated base and precious metal geochemistry. Subsequent to the original staking, it was discovered that the claims also covered a number of gypsum occurrences which are the focus of the current work.

The Coyote Creek property area is distinguished by high zinc values with associated nickel, molybdenum and vanadium over the entire property area, reflected in soils, stream geochemical, and lithogeochemical samples. Interest in the area dates back to 1991, when results of a BCGS regional geochemical sampling (RGS) program were released, indicating zinc values in the 99th percentile for the ridge forming the divide between the Lussier River and Coyote Creek. All drainages for this area showed highly anomalous zinc values, ranging from 380 ppm to a high of 5500 ppm Zn.

Immediately following the RGS release, Teck Corporation, Cominco Exploration, and an individual prospector commenced staking activities. Because of the direct competition, each group managed to secure only small, irregular blocks of claims in the area. Work programs were subsequently carried out by each party, focusing on soil and stream-sediment geochemical surveys. Following a cursory exploration program, Teck geologists recommended follow-up work including geophysical surveys and trenching. Cominco also received favorable results, and reported that "*more follow-up work is warranted*". Despite these recommendations, no further work was completed by either party, owing primarily to the compromised land position held by each. Over the next five years, all claims in the area were allowed to lapse.

Eagle Plains Resources Ltd. recognized the opportunity to secure the entire area of interest outlined by the RGS study, and in June, 1999 mobilized staking crews. A total of 161 units were acquired, with 97% of posts placed. During the summer of 1999, Eagle Plains hired Charlie Greig to carry out property-scale geologic mapping, concurrent with a 435-sample soil geochemical sampling program. Results from this program were also very encouraging, and follow-up work including trenching and diamond drilling was recommended. This work was carried out during the 2000 field season with a detailed trench sampling and diamond drilling program. No significant base metal mineralization was encountered in the drilling. However, the highly anomalous shale horizon was shown to be widespread both at or near surface and at depth in the drillholes and further work was recommended for the property. The total cost of the 1999-2000 geological exploration work was \$79,467.23

In 2005, Eagle Plains began evaluating the considerable gypsum resource on the Coyote Creek property. Gypsum in the Lussier River and Coyote Creek area was known prior to 1954, with commercial production of gypsum starting in 1984. The Lussier River area has seen significant production of industrial minerals in past years, owing to the presence of high-grade gypsum within evaporite beds of the Devonian Bernaise Formation. Domtar, Westroc, and Georgia Pacific currently operate quarries in the area, and hold claims contiguous to the Coyote Creek block.

In the area now covered by the Coyote Creek claims, S.B. Butrenchuk in 1989 discovered 3 significant new gypsum showings which were exposed by Forestry road construction. Butrenchuk described the geology and gypsum occurrences in the Coyote Creek and Lussier River drainages in open file 1991-15 published by the B.C. Geological Survey.

2005 work by Eagle Plains consisted of a 10 hole diamond drilling program in the area of the Branch F West Minfile occurrence. Nine of the diamond drill holes cored the gypsum deposit through to the underlying anhydrite formation, with an average gypsum thickness of 31 meters. Geochemical analysis of the gypsum indicates that is of a very high purity. Based on the results from the 2005 drill program and a review of the technical paper prepared by S.B. Butrenchuk, further work, including diamond drilling, was recommended for the property. The total cost of the 2005 diamond drilling program was \$65,873.48

In May – June, 2006 Eagle Plains completed a 13 hole, 540 meter diamond drilling program on the Coyote Creek property. The objective of the program was to expand the size of the gypsum mineralization defined in 2005 and to better define the controls on the gypsum. The total cost of the 2006 Phase 1 program was \$94,222.44.

The program successfully expanded the known gypsum resource and further work is recommended for the property, including diamond drilling.

Charles C. Downie, P.Geo Exploration Manager, Eagle Plains Resources

TABLE OF CONTENTS

PROPERTY DESCRIPTION AND LOCATION (Figure 1,2)	1
DESCRIPTION	1
LOCATION (Figure 1)	1
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	4
ACCESS (Figure 1, 2)	4
LOCAL RESOURCES AND INFRASTRUCTURE	4
PHYSIOGRAPHY	
CLIMATE	
HISTORY	4
EXPLORATION EXPENDITURES	5
GEOLOGICAL SETTING (Figure 3, 4)	5
REGIONAL GEOLOGY (Figure 3)	
LOCAL GEOLOGY (Figure 4)	
Stratigraphy PROPERTY GEOLOGY	
MINERAL DEPOSIT TYPES	
BASE METALS	
GYPSUM	
MINERALIZATION	
BASE METALS	
GYPSUM BRANCH F SHOWING	
BRANCH F SHOWING BRANCH F WEST DEPOSIT	
COYOTE DEPOSIT	
EXPLORATION	14
DIAMOND DRILLING (Figure 5, Appendix III, Appendix IV)	14
RESULTS	15
DATA VERIFICATION	17
INTERPRETATION AND CONCLUSIONS	17
RECOMMENDATIONS	17
REFERENCES	20

LIST OF FIGURES

Figure 1 – Property Location	2
Figure 2 – Tenure Map	
Figure 3 – Regional Geology	
Figure 4 – Property Geology	
Figure 5 – DDH Plan Map	
1.241.6 PETITIMI HAP	

LIST OF TABLES

TABLE 1 – COYOTE CREEK TENURE DATA	1
TABLE 2 – DRILL HOLE COLLAR DATA	14
TABLE 3 – DOWN HOLE DRILL SUMMARY	15

LIST OF APPENDICIES

APPENDIX I - CERTIFICATES OF QUALIFICATION APPENDIX II - STATEMENT OF EXPENDITURES APPENDIX III - DDH STRIP LOGS APPENDIX IV – ANALYTICAL RESULTS

PROPERTY DESCRIPTION AND LOCATION (Figure 1,2)

DESCRIPTION

The Coyote Creek property is located in the Whiteswan Lake / Lussier River area on the western flank of the Rocky Mountains in southeastern British Columbia. The claims are centered at approximately Latitude 50°00' N, Longitude 115°30'W on NTS map sheets 082G093and 082J003 approximately 50km north of Cranbrook, BC.

The property consists of 12 legacy and MTO claims located in the Fort Steele Mining division. Total property area is 2048 hectares. The Coyote Creek claims were originally acquired to cover a package of black shales and carbonates associated with highly elevated base and precious metal geochemistry. Subsequent to the original staking, it was discovered that the claims also covered a number of gypsum occurrences which are the focus of the current work. Refer to Table 1 for a complete list of the tenures and their expiry dates.

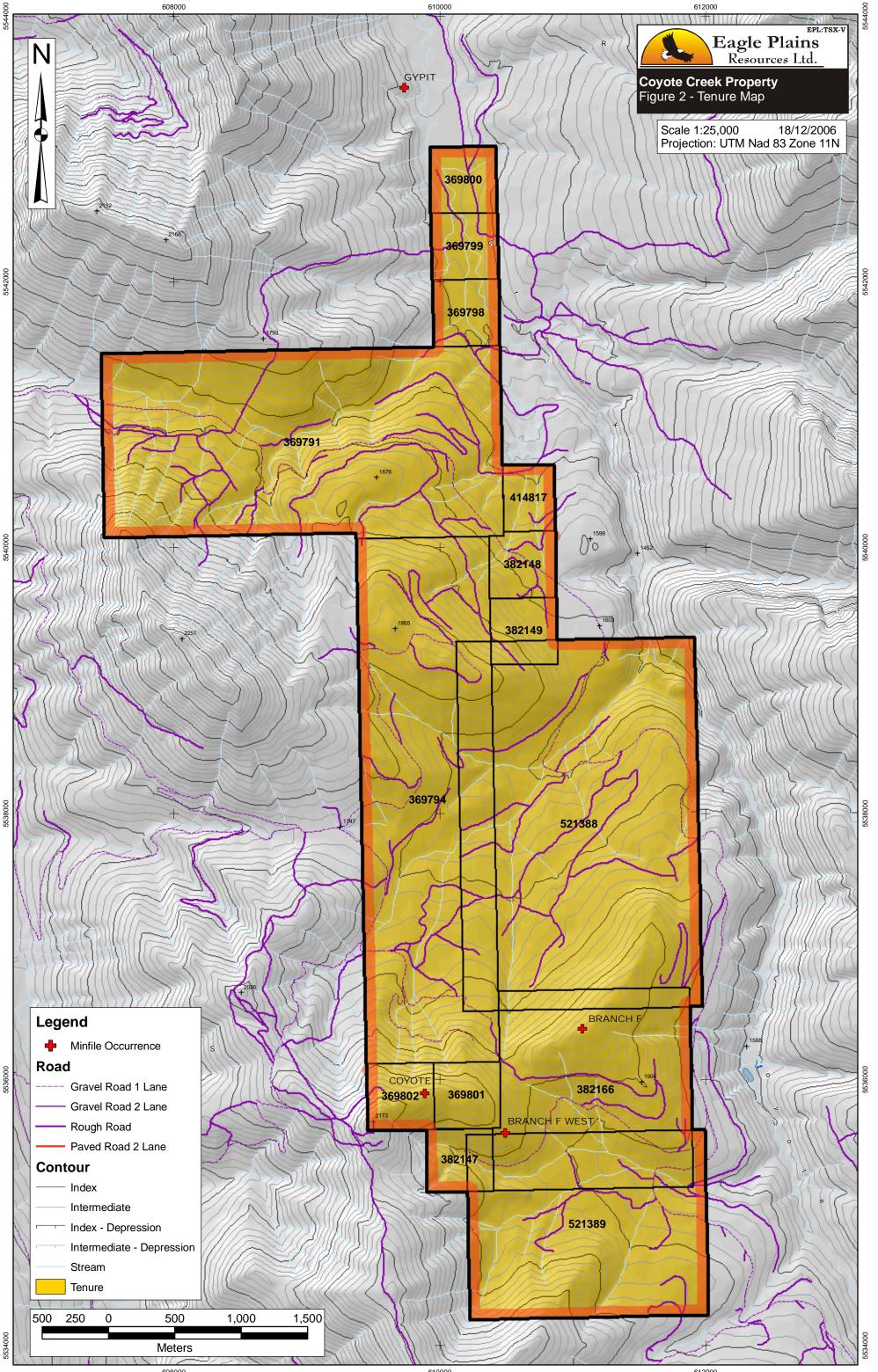
There are, to the best knowledge of the writers, no liens or encumbrances on the claims. The title was researched using the Mineral Titles Division on - line database.

Project	Location	Ownership	Tenure Number	Claim Name	YYYY/MM/DD Expiry Date	Mining Division	Hectacres
Coyote Creek	E.Kootenay	100%EPL	521388	CK	20090901	5 Ft. Steele	498.600
Coyote Creek	E.Kootenay	100%EPL	521389	CK	20090901	5 Ft. Steele	249.440
Coyote Creek	E. Kootenay	100% EPL	369791	CK	20120901	5 Ft. Steele	450.000
Coyote Creek	E. Kootenay	100% EPL	369794	CK	20120901	5 Ft. Steele	400.000
Coyote Creek	E. Kootenay	100% EPL	369798	CK	20120901	5 Ft. Steele	25.000
Coyote Creek	E. Kootenay	100% EPL	369799	CK	20120901	5 Ft. Steele	25.000
Coyote Creek	E. Kootenay	100% EPL	369800	CK	20120901	5 Ft. Steele	25.000
Coyote Creek	E. Kootenay	100% EPL	369801	CK	20120901	5 Ft. Steele	25.000
Coyote Creek	E. Kootenay	100% EPL	369802	CK	20120901	5 Ft. Steele	25.000
Coyote Creek	E. Kootenay	100% EPL	382147	CK	20120901	5 Ft. Steele	25.000
Coyote Creek	E. Kootenay	100% EPL	382148	CK	20120901	5 Ft. Steele	25.000
Coyote Creek	E. Kootenay	100% EPL	382149	CK	20120901	5 Ft. Steele	25.000
Coyote Creek	E. Kootenay	100% EPL	382166	CK	20120901	5 Ft. Steele	225.000
Coyote Creek	E. Kootenay	100% EPL	414817	CK	20120901	5 Ft. Steele	25.000
		- I I				TOTAL:	2048.04

TABLE 1 – COYOTE CREEK TENURE DATA

LOCATION (Figure 1)

The Coyote Creek property is located in the Whiteswan Lake / Lussier River area on the western flank of the Standford Range of the Rocky Mountains in southeastern British Columbia. The claims are centered at approximately Latitude 50°00' N, Longitude 115°30'W on NTS map sheets 082G093and 082J003 approximately 50km north of Cranbrook, BC.



130°0'0"W

130°0'0"W

0.0,0°0

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

ACCESS (Figure 1, 2)

The Coyote Creek property area is located 50 km northeast of Cranbrook, and is accessed by seasonally maintained BC Forest Service roads (Figure 1). Access within the property area is excellent, since a large burn occurred over the entire area in 1985, and was followed by extensive salvage logging operations. Virtually every corner of the property can be reached by existing roads. Elevations range from 1400-2200m, with a summer field season ranging from May to mid-November. Hydroelectric power, railhead and existing milling and loading facilities for the Georgia Pacific Lussier gypsum quarry are located at Canal Flats, located 23km by road northwest of property boundaries. There is also a direct route to the Tembec Skookumchuck pulp mill via the Ram Creek Forest Service Road.

LOCAL RESOURCES AND INFRASTRUCTURE

Hydroelectric power, railhead and existing milling and loading facilities for the Georgia Pacific Lussier gypsum quarry are located at Canal Flats, located 23km by road northwest of property boundaries. There is also a direct route to the Tembec Ltd. Skookumchuck pulp mill via the Ram Creek Forest Service Road. In addition to a modern paper milling facility, the Skookumchuck mill complex includes a hydroelectric cogeneration circuit, a railhead with loading facilities and a large flat undeveloped land package zoned for industrial use.

Direct air service is provided from Calgary and Vancouver to the Cranbrook Airport, located approximately 50 kilometers southwest of the property. There is a well established mining support industry established in the area, to service the SE British Columbia coal mines and, until 2001, the Sullivan Mine.

PHYSIOGRAPHY

The claims are located on the western flank of the Rocky Mountains in the Standford Range. Elevations range from 1400-2200m, with a summer field season ranging from May to mid-November. Diamond drilling could be carried out on a year round basis by using water trucks in the winter when many of the streams are dry. The topography is relatively gentle, with the gypsum showings located in a broad valley.

CLIMATE

The weather is typical of the Rocky Mountains, with moderate to dry summers and heavy snowfall in the winters. Most of the property is free from snow from mid May until mid October.

HISTORY

Eagle Plains Resources originally acquired tenure in the Coyote Creek in 1999 looking for base metal mineralization associated with a package of black shales and carbonates. No base-metal exploration has been reported for the area prior to 1991, when the BCGS released stream-sediment results for the 82G and 82J mapsheets. Following the report of highly anomalous zinc values in the area, Teck Corporation, Cominco Exploration and others staked numerous claim blocks.

Subsequent to staking 52 units in four individual claim blocks, Teck Corporation in 1991 completed a \$13,000, 1:20,000 geological mapping program, concurrent with geochemical sampling (151 soils, 25 rocks, 11 moss-mat samples). Two black shale horizons were delineated, and found to be the likely source of the anomalous zinc values indicated by the 1990 RGS program. Teck found highly anomalous values in three of their four separate claim blocks, with soil samples returning up to 6066 ppm zinc, and moss-mat samples anomalous throughout the property area, ranging upwards to 8342 ppm zinc. S. Jensen, project geologist for Teck reported that "*results from the 1991 program were encouraging, (with) further work recommended, (including) detailed mapping and soil sampling followed by ground magnetometer surveys and trenching*". This program was never carried out.

2006 Geological Report – Coyote Creek

Page 5

While Teck was working in the area, Cominco Exploration Ltd. was also completing an \$8,000 mapping and soil geochemical program on their "Coy" Property, which was situated contiguous to the Teck claims. Cominco technicians collected a total of 377 soil samples, and concluded that "soils/talus have elevated to distinctly anomalous levels of zinc with lesser values in nickel, molybdenum and vanadium...there is conclusive evidence of the association of these metals at these geochemical levels of concentration". D. Anderson, Cominco project geologist, recommended that "more follow-up work is warranted", but again, none was completed, apparently due to the compromised land position.

Eagle Plains Resources Ltd. recognized the opportunity to secure the entire area of interest outlined by the RGS study, and in June, 1999 mobilized staking crews. A total of 161 units were acquired, with 97% of posts placed. During the summer of 1999, Eagle Plains hired Charlie Greig to carry out property-scale geologic mapping, concurrent with a 435-sample soil geochemical sampling program. Results from this program were also very encouraging, and follow-up work including trenching and diamond drilling was recommended. This work was carried out during the 2000 field season with a detailed trench sampling and diamond drilling program. Two diamond drill holes for a total of 261.8m / 859 feet of BTW core drilling were completed from two different sites. Other fieldwork included a detailed hand trenching program in areas of interest located by soil geochemical sampling, and some reconnaissance prospecting. A total of 6 rocks and 42 soil / rock chip samples were collected.

The 2000 diamond drilling intersected a thick, black shale package which is strongly anomalous in many of the metals associated with Carbonaceous Shale - hosted Nickel -Molybdenum - Platinum Group mineralization, SedEx mineralization and Mississippi Valley-type mineralization. The presence of a multi element anomalous horizon within the black shales was interpreted to indicate a potentially widespread and sustained mineralizing event and further work was recommended including detailed soil sampling on the southern part of the property, and a series of widely-spaced soil geochemistry lines across the prospective stratigraphy. Geological mapping was recommended to determine the best location to test the anomalous horizon defined in 2000 with a single drillhole.

Total 1999 expenditures by Eagle Plains on the property in 1999 - 2000 were \$79,467.23.

Gypsum in the Lussier River and Coyote Creek area was known prior to 1954, but production of gypsum did not start until 1984. The Lussier River area has seen significant production of industrial minerals in past years, owing to the presence of highgrade gypsum within evaporite beds of the Devonian Bernaise Formation. Domtar, Westroc, and Georgia Pacific currently operate quarries in the area, and hold claims contiguous to the Coyote Creek block.

In the area now covered by the Coyote Creek claims, S.B. Butrenchuk in 1989 discovered 3 significant new Gypsum showings which were exposed by Forestry road construction. Butrenchuk described the geology and gypsum occurrences in the Coyote Creek and Lussier River drainages in open file 1991-15 published by the B.C. Geological Survey.

2005 work by Eagle Plains consisted of a 10 hole diamond drilling program in the area of the Branch F West Minfile occurrence. Nine of the diamond drill holes cored the gypsum deposit through to the underlying anhydrite formation, with an average gypsum thickness of 31 meters. Geochemical analysis of the gypsum indicates that is of a very high purity. Based on the results from the 2005 drill program and a review of the technical paper prepared by S.B. Butrenchuk, further work, including diamond drilling, was recommended for the property. The total cost of the 2005 diamond drilling program was \$65,873.48

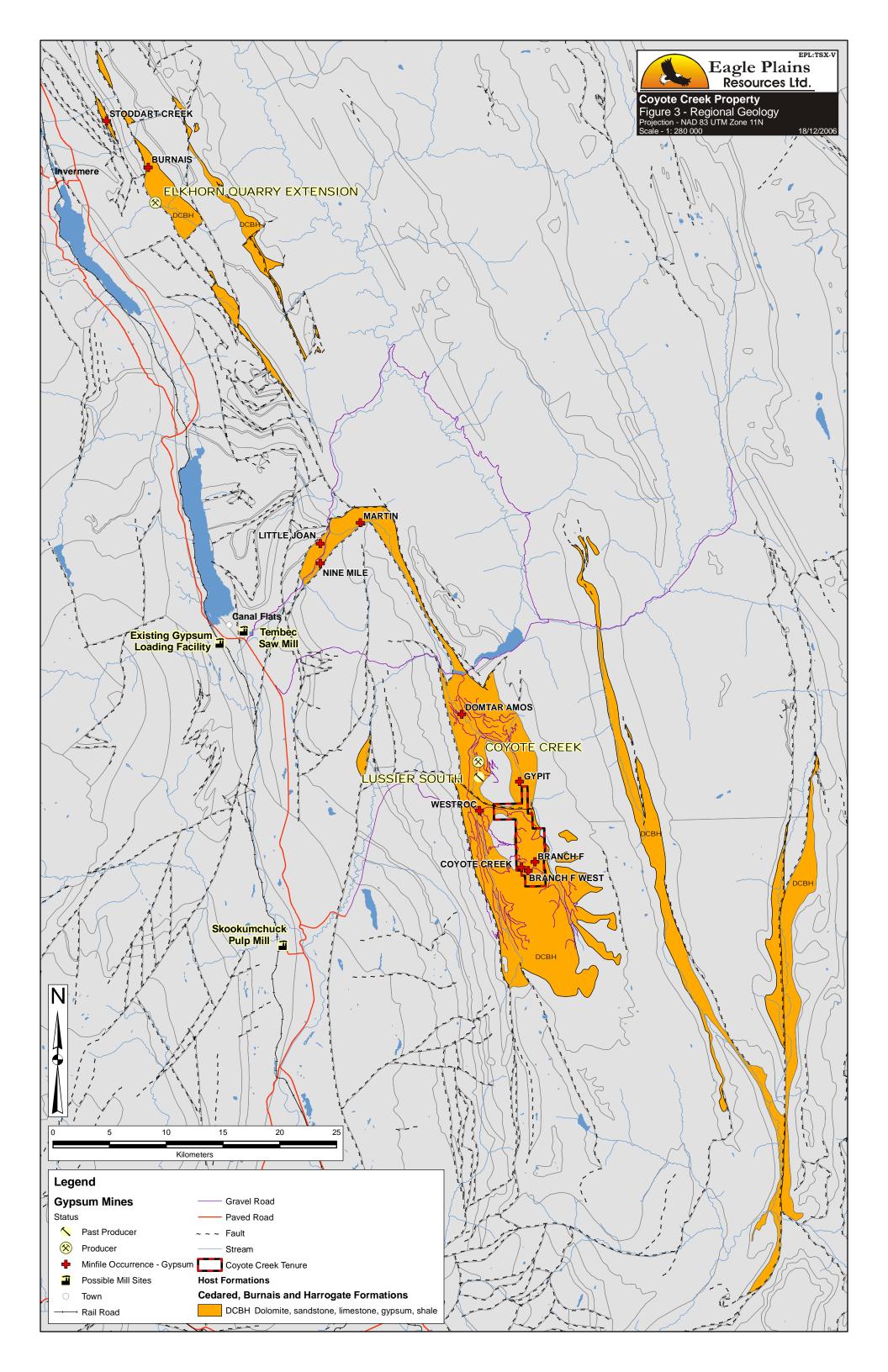
EXPLORATION EXPENDITURES

Based on expenditures documented in exploration reports, expenditures on the Coyote Creek property directed toward evaluating base metal mineralization hosted by shales and carbonates is approximately \$100,467.00. The work to date , including the 2006 drill program, directed toward the gypsum resource on the property is approximately \$160,095.92.

GEOLOGICAL SETTING (Figure 3, 4)

REGIONAL GEOLOGY (Figure 3)

The Lussier-Coyote region has been mapped by both federal and provincial geologists in the past 50 years. Their work suggests that the property is underlain mainly by Devonian carbonate and clastic rocks, with oldest Devonian rocks consisting of quartzites, argillaceous limestone, and limestone. They are interpreted to be overlain by Middle Devonian dolomite,


2006 Geological Report – Coyote Creek

sandstone, and limestone correlated with the Cedared Formation. Laterally equivalent to the Cedared rocks are evaporites (gypsum and anhydrite) assigned to the Burnais Formation. The youngest Devonian rocks are limestone and shale correlated with the middle to Upper Devonian Harrogate Formation.

The Devonian strata unconformably overlie or are in structural contact with the Ordovician-Silurian Beaverfoot-Brisco Formation limestones and dolomite. Overlying the Devonian rocks are limestones and chert correlated with the Mississippian Banff and Rundle Formations.

Structurally, the Lussier-Coyote area is dominated by a gentle north-plunging open syncline, with its north-northwest trending axis located along the height of land separating Coyote Creek and the Lussier River. Leech (1954) interpreted the Lussier Syncline to occupy a graben-like structure with bounding high-angle normal faults separating Silurian to Mississippian strata from Ordovician and Cambrian rocks. More recent mapping by Hoy and Carter (1988) suggests that a northwest-trending thrust fault (the Lussier River Fault) separates predominantly Devonian strata from predominantly Cambrian strata. Numerous northwest-trending folds and thrusts dominate to the east. The north-northwest trending Rocky Mountain Trench Fault is located roughly 15 kilometers to the east.

Page 6

The Coyote Claim Group and surrounding area was mapped between 1989 and 1991 by S.B. Butrenchuk (B.C. Ministry of Energy, Mines and Petroleum Resources Open File 1991-15) and in 2000 by Charlie Greig.

The Coyote Creek property is underlain by shallow and deeper water carbonate and fine grained clastic rocks with probable Devonian and Mississippian ages. Exposure on the property is somewhat limited, particularly within the fine-grained clastic units, which appear to underlie the bulk of the areas of anomalous base metal geochemistry which was the focus of the earlier work. There is a thick mantle of glacial till and glaciofluvial material in many places below about 1600 metres, and glaciolacustrine deposits blanket many of the lowest lying areas (mainly to the north). At higher elevations, colluvium is thick, in part because the resistant Mississippian (?) carbonates have shed a blanket of talus and scree which covers the underlying and relatively recessive fine-grained clastic rocks. Many of the outcrops at lower elevations are in roadcuts, although rare outcrops can be found on the steeper lower slopes and in stream banks.

At the most general level, the property geology can be viewed as a sequence of sedimentary rocks which has been folded into a broad and open syncline. The northerly-trending ridges between Coyote Creek and the Lussier River that bisect the property are capped by the youngest rocks, resistant carbonates of probable Mississippian age assigned to the Banff Formation. In Figure 4 the upper carbonates are encircled by successively older rocks that in general crop out at lower elevations. The oldest rocks, the Ordovician-Silurian Beaverfoot-Brisco Formation, also appear mainly to be carbonates.

Stratigraphy

The property and immediate area is underlain by gently dipping east and west Mississippian and Devonian sediments. The Mississippian Banff formation is the upper most unit in the area. The Banff formation consists of mainly shale and carbonate beds, which conformably overlay the Devonian Harrogate formation. The Harrogate formation is composed mainly of dark grey to black nodular limestone, with some shale and dolomite interbeds that occur locally. Fossils, mainly Brachiopods commonly occur in Harrogate black limestones.

The Burnais evaporate formation for the most part lies within the Harrogate formation. In the Lussier River, Coyote Creek and Kootenay River areas the Burnais formation rests on Devonian sediments which are subdivided into the Cedared and Basal Devonian formations. In the Windermere Creek area, 75 kilometers north of the Lussier River, the Burnais formation unconformably overlays the Ordovician-Silurian Beaverfoot formation. In the Windermere creek area the Burnais formation has a stratigraphic thickness ranging between 50.0 to 100.0 meters. In the Lussier River and Coyote Creek area the Burnais formation has a stratigraphic thickness of 60.0 meters.

The Burnais is mainly an evaporate formation consisting of an upper part that is mainly gypsum and a lower part which is mainly anhydrite. Thin beds of argillaceous dolomite and argillaceous limestone are rare and widely scattered throughout the formation. Locally associated with the evaporitic rocks are sedimentary breccias, with varicoloured angular carbonate fragments contained within a limey matrix. It is not certain if the evaporites represent one or more stratigraphic horizons. They appear to occur near the transition from the very thick sequence of pale-weathering, thick-bedded to massive carbonates of Devonian or older age which surround the property, to the deeper-water, thin-bedded carbonates and fine-grained clastic rocks of Devonian age that underlie the Coyote Creek property. The evaporites are invariably contorted, and are typified by the presence of tight, disharmonic folds, common faults, and locally transposed bedding. The possibility exists that they lie along a detachment horizon, or horizons, which separate the underlying more massive rocks from the Coyote Creek host sequence.

The thickness of the Burnais gypsum is variable; for example in the Windermere Creek area the gypsum ranges between 12.0 and 70.0 meters thick and in the Lussier River and Coyote Creek area the gypsum ranges between 10 and 30 meters thick. Very little is known about the thickness of anhydrite as few holes have penetrated to the lower part of the anhydrite sequence.

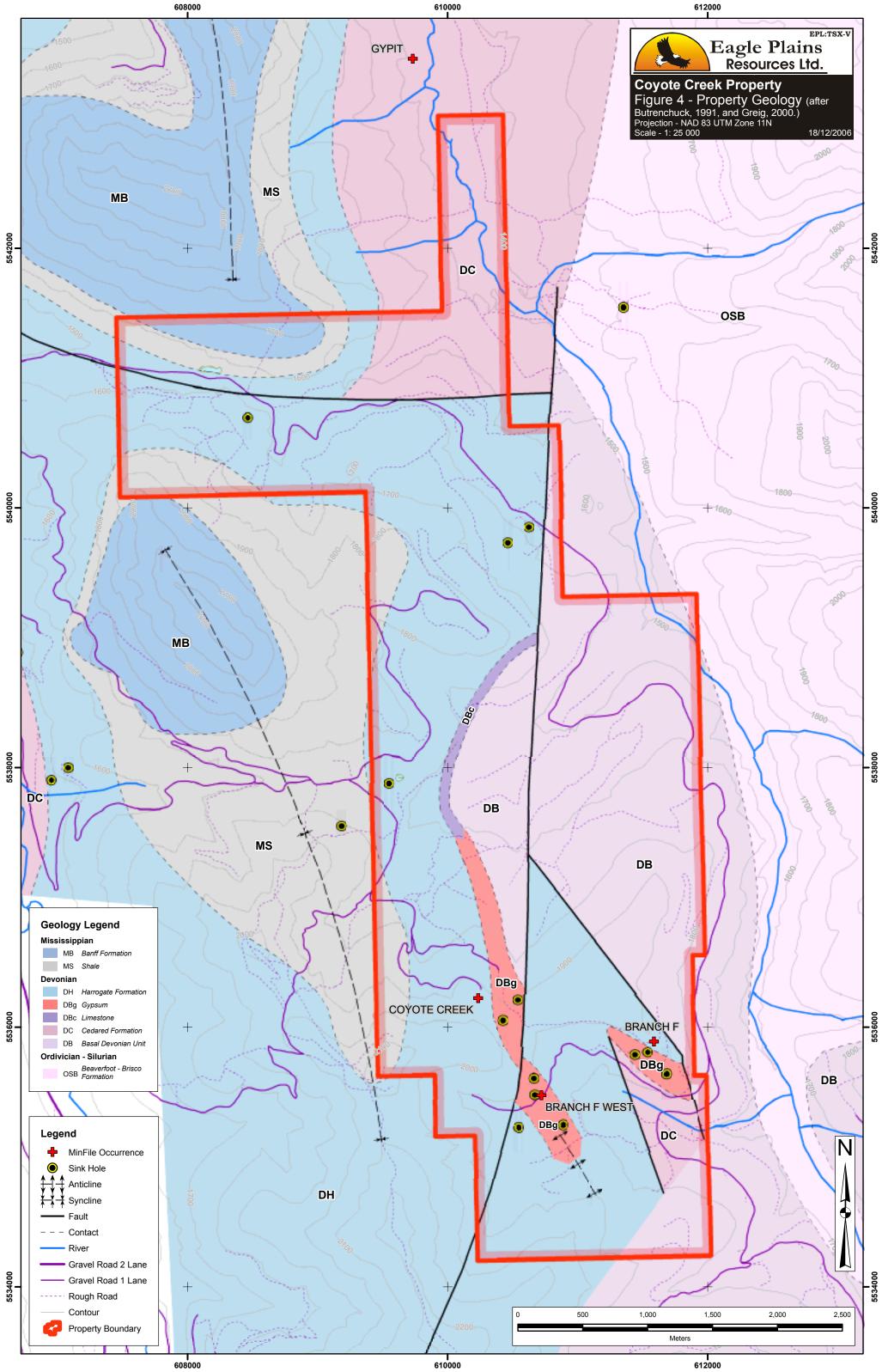
PROPERTY GEOLOGY

Drill hole geology indicates that the Branch F West Deposit a complex assemblage of interfingering structurally different gypsum rock types that is further complicated by widely scattered small lenses and clasts of argillaceous dolomite and argillaceous limestone.

The base of the gypsum deposit is clearly marked by a salt rich zone consisting of mixed anhydrite, gypsum and dolomite. In drill holes the salty zone ranges between 8.0 and 2.0 meters thick. The salty zone is immediately underlain mainly by crystalline anhydrite with minor interbeds of argillaceous dolomite and argillaceous limestone. All the holes were stopped in the anhydrite beds just a few meters below the salty zone. Therefore, the true thickness and geological character of the anhydrite deposit remains unknown.

2006 Geological Report – Coyote Creek

The Branch F West Gypsum deposit can be subdivided into 5 distinctive lithological units.


Unit 1 is a crystalline, light grey to white pure gypsum rock. It is typically finely laminated by paper thin black to dark grey laminae that is commonly strongly distorted by enterolithic folding. This unit locally can form up 80% of the gypsum deposit.

Unit 2 is a matrix supported breccia. The rock consists mainly of a light grey crystalline gypsum matrix with scattered thin discontinuous beds and clasts of light brown micro crystalline gypsum. Argillaceous dolomite and argillaceous limestone clasts are rare. Unit 1 and unit 2 form the bulk of the gypsum deposit.

Unit 3 is mainly thin bedded micritic argillaceous dolomite and micritic argillaceous limestone. The argillaceous dolomite beds are generally various shades of brown and the argillaceous limestone is typically black and rarely brown. These rocks generally form a very minor amount of the gypsum deposit. However, near the western edge of the deposit the dolomite and limestone beds are more abundant.

Unit 4 is mainly a gypsum clast supported breccia consisting of angular to subrounded micro crystalline and crystalline gypsum clasts in a crystalline gypsum matrix. Clasts of argillaceous dolomite and argillaceous limestone are generally very rare in this unit. Clasts in this unit are generally small (1.0cm to 3.0cm) commonly lens shaped and rarely angular. The clasts have a strong preferred orientation that appears to be parallel to bedding in adjacent drill holes. Unit 4 breccia may be the product of early cut and fill channels that developed in the evaporate beds during a period of subaerial exposure.

Unit 5 is a gypsum matrix supported breccia. Clasts are mainly brown and black argillaceous dolomite and argillaceous limestone, rarely gypsum. Clasts generally angular and range between 1cm and 20cm in size. Clasts can be widely scattered to locally abundant. The matrix is typically formed by light grey to white crystalline gypsum. Unit 5 breccia is relatively common and may have formed as the result of expansionary pressures related to the hydration of anhydrite to produce gypsum.

MINERAL DEPOSIT TYPES

Many different types of mineral deposits occur in SE British Columbia including Sedimentary Exhalative (Sullivan, Wilds Creek) deposits, manteau (Blue Bell) deposits, high grade silver veins (Slocan Camp) and gold porphyry systems (Keena).

BASE METALS

The original exploration target at the Coyote creek project was anomalous base metal values (silver, nickel, zinc, barium, molybdenum, bismuth, cadmium, vanadium and strontium) associated with a shale and carbonate sequence. The rocks hosting the Coyote Creek geochemical anomalies represent environments which have the potential to host both SedEx and Mississippi Valley-type mineralization. The close correlation of the anomalies with fine-grained clastic rocks favors the SedEx possibility (particularly in the uppermost part of the sequence of fine-grained clastic rocks), as does the general paucity of anomalies within the carbonate sequences. However, a Mississippi Valley-type setting is at least locally present, with shallow-water carbonates (at least locally common dolostone), overlain by fine-grained, deeper-water rocks. There is also local evidence for subaerial exposure near such transitions, such as evaporites, local oxidized regolith horizons, and paleokarst collapse breccias. In addition, the geochemical anomalies at least locally occur well below the clastic part of the section (such as in Coyote Pass), and the possibility of lower clastic units (as suggested by Jensen 1992) or MVT mineralization remains to be completely evaluated.

The soil geochemical signature and geological setting suggested the possibility of Carbonaceous Shale – hosted Nickel – Molybdenum - Platinum Group mineralization similar to that found at the Nick property in the Yukon Territory and the occurrences on the Yangtze Platform in China. On the Nick property, a thin but laterally extensive sulphide unit occurs that is underlain by carbonaceous shales with carbonate concretions up to 1 meter across and overlain by thin-bedded chert. The mineralization is thought to be related to simultaneous discharge and lateral migration of dense organic rich metalliferous hydrothermal fluids through unconsolidated bottom sediments in a sub - basin. The source for these metals in postulated to be underlying organic rich Devonian and Silurian strata. This unit is anomalous in Ni, Cu, Zn, Mo, V, Cr, Ga, Tl, Ag, Pt, Pd, Ru, and Ir. Minerals identified include marcasite, pyrite, sphalerite, chalcopyrite, and molybdenite. On the Coyote Creek Property, similar anomalous metal trends occur within a package of black Devonian shales capped by cherty limestones.

GYPSUM

Gypsum and anhydrite are typically found in deposits that are the result of chemical precipitation of calcium sulphate from saturated brines. They may also form by the replacement of carbonate by sulphate or in a volcanogenic environment. Minor to trace amounts are also present as alteration products in many porphyry copper deposits.

The most important deposits commercially are the chemical precipitates. They form by precipitation from concentrated brines that have resulted from evaporation at the air-water interface.

Gypsum will begin to precipitate when normal seawater is concentrated to approximately 3.35 times the original salinity. This concentration will take place when the net evaporation effect exceeds the influx of fresh seawater or rainwater and the loss of brine is restricted. High temperatures promote this process.

Environments in which these deposits occur vary from deep water to shallow evaporate basins or sabkha. Each has its own characteristics. Deep-water evaporates are believed to result from crystals, generated at the air-water interface gradually settling to the sea floor. The depth of water in which these deposits may form can be as much as 40 meters as is suggested by studies of the Muskeg – Prairie Evaporite Formations (Kendall, 1984). The most common form of deep water evaporite facies is laminar sulphate together with laminations of carbonate and/or organic matter. Individual laminae may be 1 to 10 millimeters thick. They may be crenulated or plastically deformed and be traceable over long distances.

Shallow water evaporites form in environments that may be subjected to wave or current action. They most commonly form in water about 5 meters in depth. These deposits are also commonly laminated and similar in origin and character to deep water evaporites. However, they may exhibit such shallow water features as crossbedding, ripple marks, rip-up breccias or basal scoured surfaces (Kendall, 1984).

There are three depositional models that are currently accepted for evaporite formation. These are: a deep water, deep basin model; a shallow water, shallow basin model and a shallow water, deep basin model.

2006 Geological Report – Coyote Creek

The shallow water, deep basin model was developed to account for those deposits that developed in pre-existing deep basins but contain evidence for shallow water or subaerial depositional environments. This model is especially applicable to the Middle Devonian Elk Point evaporites of western Canada. This same model may be applicable to the gypsum deposits of the Burnais Formation.

Triassic evaporites of the Whitehorse Formation are interpreted to have been deposited in a shallow-water environment. Further north, the extensive anhydrite

deposits of the Charlie Lake Formation were probably formed in a near-shore environment. The anhydrite is massive and is associated with red dolomitic siltstone, dolomite and minor halite.

Kuroko-type and related volcanogenic massive sulphide deposits are also known to contain gypsum and anhydrite along with other sulphate minerals, in particular barite. Deposits of gypsum and anhydrite generally occur in stratigraphically equivalent strata to or overlying the massive sulphide portion of the deposits. In British Columbia deposits formed in the volcanogenic environment, with the possible exception of Falkland, do not represent a significant source of gypsum.

The deposition of gypsum and anhydrite deposits has been the subject of much discussion in the literature. In recent sediments gypsum is the only form of calcium sulphate evaporite that is forming. This is to be expected as gypsum is the most stable form of sulphate in the surface environment. With depth, generally around 600 meters, and increased temperature, around 42 degrees centigrade, gypsum is converted to anhydrite. Murray (1964) suggested that there is a diagenetic cycle in which gypsum is first formed and subsequently diagenetically converted to anhydrite with burial. Later uplift, removal of covering rocks and presence of meteoric water reverses the reaction and anhydrite is converted to gypsum. As a result gypsum is present in outcrop or at shallow depths in older rocks while anhydrite commonly occurs beneath gypsum at depths varying between 30 and 60 meters.

Henderson (1954) concluded that gypsum deposits in the Stanford Range were primary; he based his conclusions on the absence of anhydrite and the lack of expansionary structures. He further argued that the gypsum was never buried deep enough for it to be converted to anhydrite. Most of his work was done prior to any mining having taken place.

Subsequent work has shown that anhydrite underlies the gypsum deposits in the Stanford Range at relatively shallow depths. Also, some of the structures present can be interpreted as expansionary, as evidenced by the presence of enterolithic folding. However, the absence of these structures does not necessarily preclude the gypsum having formed from anhydrite. Work by Holliday (1970) and Mossop and Shearman (1973) suggest that anhydrite can alter to gypsum without expansion. This may be explained by the fact that some of the sulphate is lost in solution. Also, the volume of water required to hydrate anhydrite is larger than the additional volume of the gypsum that is produced. In a closed system the gypsum occupies the space formerly occupied by water. Where there is macroscopic evidence of distortion caused by expansion, hydration probably took place very close to the surface.

Gypsum deposits in the Stanford Range, including the Coyote, Branch f and Branch F West deposits, are interpreted by Butrenchuk to be secondary. In addition to macroscopic expansionary structures there is petrographic evidence of anhydrite being converted to gypsum. Relict anhydrite in thin section can be identified, although rare hydration or alabastine and textures similar to those described by Holliday (1970) are present. Hydration by meteoric water is interpreted to have taken place near surface, during uplift and erosion of sediments overlying the anhydrite.

Similarly, gypsum at Forgetmenot Creek, Falkland and O'Connor River formed as a result of the hydration of anhydrite. At these deposits the confining pressure was low enough to permit the gypsum to form and expand without restriction. As a result the expansionary structures observed throughout the Stanford Range are not present.

MINERALIZATION

BASE METALS

On the Coyote Creek Property, anomalous metal trends occur within a package of black Devonian shales capped by cherty limestones. Soil and rock geochemistry has returned anomalous base metal values (silver, nickel, zinc, barium, molybdenum, bismuth, cadmium, vanadium and strontium). To date no sulphide mineralization has been located on surface. The 2000 diamond drilling intersected minor marcasite and pyrite mineralization in the form of nodules in te area of the anomalous shale horizon.

GYPSUM

BRANCH F SHOWING

Gypsum is exposed in a road cut for length of 95.0 meters and a width of 20.0 meters. The gypsum is grey to dark grey and black, finely laminated to locally massive. The gypsum unit has an estimated thickness of 30 meters. Two samples were taken from this occurrence and were assayed by Bondar-Clegg. These samples contained 85% gypsum and 92% gypsum.

BRANCH F WEST DEPOSIT

The Branch F West Deposit is located 1000 meters west of the Branch F Showing. Gypsum is exposed in a road cut for distance of 60 meters. The gypsum in road cut is light grey to grey and thinly laminated. Butrenchuk cut a sample across a width of 25 meters which averaged 87% gypsum. This gypsum showing is surrounded by a large area of sinkhole development.

2005 diamond drill testing of the Branch F West intersected an average thickness of 31.0 meters of gypsum

COYOTE DEPOSIT

The Coyote Deposit is located 1000 meters north of the Branch F West Deposit. The gypsum at this site is exposed in two adjacent road cuts. At this locality the best exposure of gypsum occurs across an outcrop width 30 meters and 60 meters of elevation. The gypsum is laminated pale grey to dark grey with some traces of native sulphur. A 20 meter sample cut by S.B. Butrenchuk indicates that the gypsum is better than 90% pure.

EXPLORATION

DIAMOND DRILLING (Figure 5, Appendix III, Appendix IV)

In 2006, thirteen diamond drill holes totaling 540 meters were completed on the Coyote Creek property in May-June. The objective of the drill program was to expand the size of the gypsum mineralization defined in 2005 and to better define the controls on the gypsum. The diamond drilling was carried out by Lone Ranger Diamond Drilling of Lumby, BC using a Longyear 44 Diamond Drill mounted on a TD15E Tractor Crawler. The crew was mobilized to site on May 31, 2006, and demobilized on June 10. The crew stayed onsite in a trailer. Due to a lack of water in the immediate area, a water truck was used to haul water from a stream located approximately 5 kilometers north of the drilling area. Hand-held GPS units were used to record sample locations, spot drill collars, exploration trails and for mapping control. A differential GPS was used to survey the final drill hole collars. Determining hole locations and drill core logging were supervised by David Pighin, P.Geo., Steve Butrenchuk, P.Geol. and Chuck Downie, P.Geo. The core was logged in the field by Steve Butrenchuk and Dave Pighin. Core was hauled to a logging facility every other day by Bootleg Exploration employees. A total of 111 drill core samples were sent for analysis. All drill core is securely stored at a the Vine Property near Moyie Lake.

The basic drill hole data is summarized in Table 2, the drill hole logs are presented in Appendix III and all 2006 drill hole collars are shown on Figure 5.

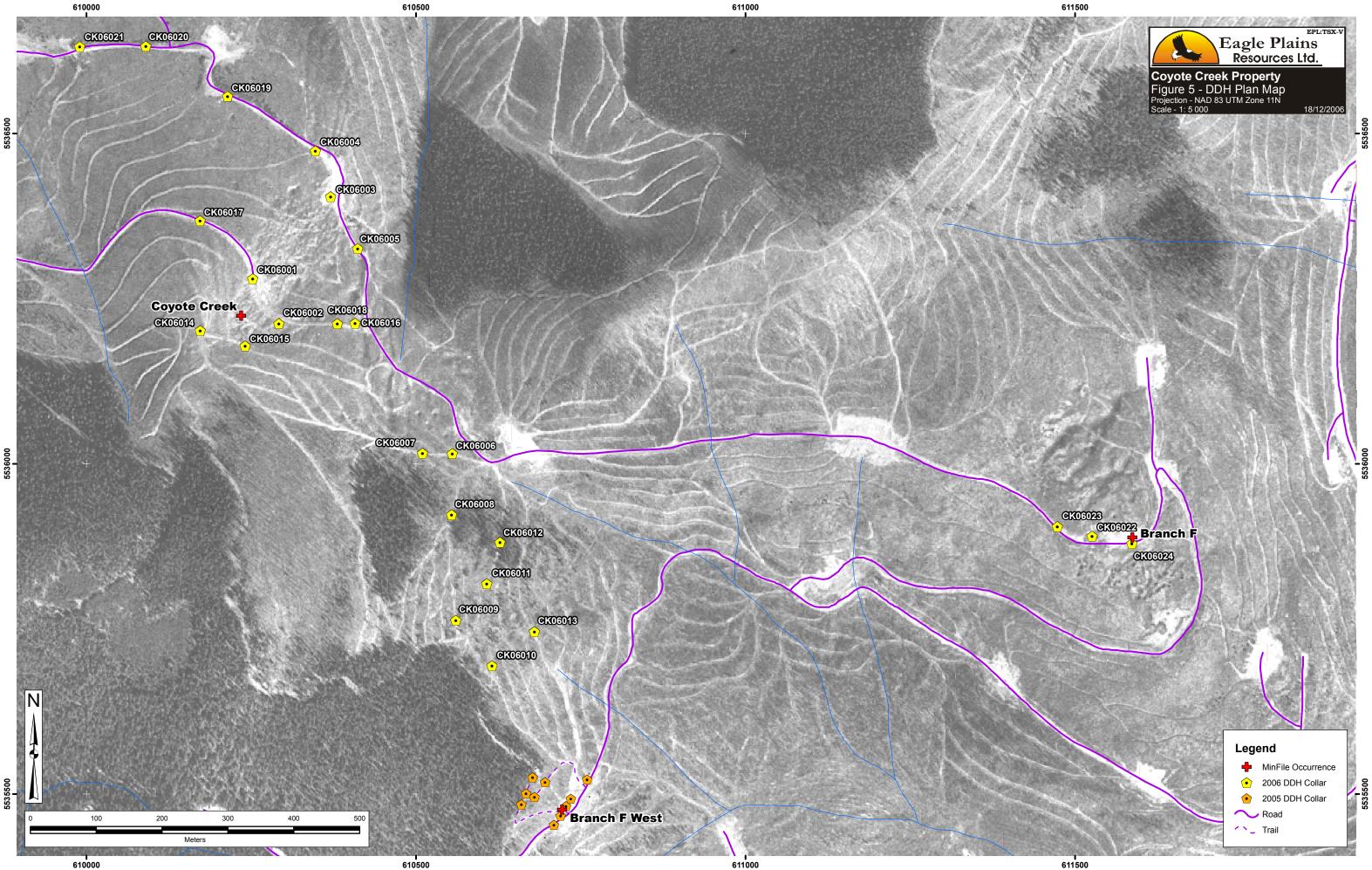
All samples were shipped to Eco Tech Laboratories of Kamloops BC for processing and whole rock analyses. The pulps were sent to ALS Chemex Laboratories in Vancouver, BC for SO₃ analysis. All samples were collected, handled, cataloged and prepared for shipment by Bootleg Exploration Inc. staff, a wholly owned subsidiary of Eagle Plains Resources Ltd, or by subcontractors. All exploration and reclamation work was carried out in accordance to the BC Mines Act and BC Workers Compensation board requirements. The diamond drill program was carried out under BC Mines permit # MX-5-471.

The total cost of the 2006 Phase I diamond drilling program was \$94,222.44

HOLE NO.	<u>EASTING</u> (NAD 83)	<u>NORTHING</u> (NAD83)	<u>ELEVATION</u>	<u>DEPTH (m)</u>	<u>DIP</u>	<u>AZIMUTH</u>	CORE SIZE
CK06-001	610252.29	5536280.15	1912.1m	60.05	-90°	NA	NQ
CK06-002	610292.08	5536212.60	1919.79m	64.0	-90°	NA	NQ
CK06-003	610370.45	5536404.40	1855.49m	29.57	-90°	NA	NQ
CK06-004	610347.28	5536473.74	1847.87m	29	-90°	NA	NQ
CK06-005	610411.42	5536326.24	1855.5m	41.76	-90°	NA	NQ
CK06-006	610555.06	5536015.61	1918.05m	29	-90°	NA	NQ
CK06-007	610509.93	5536016.08	1921.89m	56.39	-90°	NA	NQ
CK06-008	610554.09	5535922.71	1922.23m	47.85	-90°	NA	NQ
CK06-009	610560.49	5535763.32	1921.31m	36.5	-90°	NA	NQ
CK06-010	610615.37	5535694.23	1904.04m	29	-90°	NA	NQ
CK06-011	610607.32	5535818.43	1903.80m	44.2	-90°	NA	NQ
CK06-012	610627.42	5535881.29	1904.23m	29	-90°	NA	NQ
CK06-013	610679.69	5535746.10	1886.09m	43.28	-90°	NA	NQ

TABLE 2 – DRILL HOLE COLLAR DATA

RESULTS


Nine of the thirteen diamond drill holes intersected gypsum, with four of the holes either intersecting only overburden or sink hole material. Holes CK06-006,010 and 012 were collared in sinkholes and stopped at 29 meters without intersecting any gypsum, while CK06-004 was stopped at 29m in overburden. CK06-007 was also collared in a sinkhole, but intersected gypsum from 21.34-51.8 meters.

HOLE NO.	<u>DEPTH</u> (m)	<u>GYPSUM</u> <u>THICKNESS (m)</u>	<u>COMMENTS</u>
CK06-001	60.05	53.85	collared in gypsum;stopped in anhydrite
CK06-002	64.0	48.77	includes 46.6-49.22 limestone/dolomite breccia; stopped in anhydrite
CK06-003	29.57	18.87	21.97-29.57 clay/conglomerate – sinkhole?
CK06-004	29	Ø	Overburden
CK06-005	41.76	28.25	stopped in limestone
CK06-006	29	Ø	Sinkhole
CK06-007	56.39	30.46	collared in sinkhole;stopped in conglomerate
CK06-008	47.85	28.3	stopped in limestone
CK06-009	36.5	29.55	collared in gypsum;stopped in anhydrite
CK06-010	29	Ø	Sinkhole
CK06-011	44.2	25.91	stopped in conglomerate
CK06-012	29	Ø	Sinkhole
CK06-013	43.28	16.57	stopped in anhydrite

TABLE 3 - DOWN HOLE DRILL SUMMARY

The thickest gypsum intercept was 40.70 meters in hole CY05-006 and the thinnest intercept was 21.14 meters in hole CY05-007. In nine holes the gypsum deposit has an average thickness of 31.0 meters. The drill holes trace the gypsum deposit for at least 50 meters in a west-east direction and at least 65 meters in a north-south direction. Holes CY05-007 and CY05-008 appear to be collared near the western edge of the gypsum deposit; however the deposit is open to the east, north and south.

Assay results from holes CY05-001, CY05-006 and CY05-008 and visual estimates suggest the Branch F West Deposit is for the most part high purity gypsum (see Table III, Appendix III).

DATA VERIFICATION

In this technical report the writer has:

- Reviewed technical data related to the 2006 Eagle Plains Resources diamond drilling program
- Visited the property to confirm the nature of the gypsum mineralization in outcrop and determine the locations of the drill collars
- Mapped the area of the gypsum mineralization to determine structural control related to sinkholes
- · Estimated total expenditures required by all parties in the project

OTHER RELEVANT DATA AND INFORMATION

The writers are not aware of any material fact or material change with respect to the subject matter of the technical report which is not reflected in the technical report, the omission of which would make the technical report misleading.

INTERPRETATION AND CONCLUSIONS

The 2006 Coyote Creek drilling continued to expand the known gypsum resource. Although four of the holes intersected only sinkhole or overburden material, the other nine holes demonstrated the thickness and continuity of the gypsum horizon.

The writers conclude that the Coyote Creek property is a property of merit and further exploration is warranted and recommended.

RECOMMENDATIONS

A Phase II program for the Coyote Creek property is recommended for the fall of 2006. Work should include:

• Continue wide spaced diamond drilling to determine the continuity of the gypsum horizon between the Branch F West showing, the Branch F showing and the Coyote Creek showing

• Detailed geological mapping should be completed along the existing roads and in the area of the gypsum occurrences

• A deep penetrating radar survey should be conducted to determine the depth of overburden in the area between the showings and the size of the sinkholes; it may also be useful in defining the sinkholes in areas where they are buried

A suggested budget for the work is as follows:

2006 PHASE 2 EXPLORATION BUDGET Eagle Plains Resources Coyote Creek Project

Coyote Creek Project			no. of		no. of	
personnel:			persons	rate	days	
-	t Manager		1	\$550	40	\$22,000.00
	t Geologists		1	\$450	30	\$13,500.00
	gical Technician w	vith First Aid	1	\$450	30	<u>\$13,500.00</u>
				PERSONN		\$35,500.00
			1011121	21000111		420,00000
analytical: type X no.	of samples X cost	soils(prep)		0	\$1.25	\$0.00
Jener Jener Jener	· · · · · · · · · · ·	soils(30 element ICP)			\$9.00	\$0.00
		silts(prep)			\$1.25	\$0.00
		silts(30 element ICP)			\$9.00	\$0.00
		rocks(prep)			\$2.00	\$0.00
		rocks(30 element ICP)			\$9.00	\$0.00
		drill core(prep)			\$6.00	\$600.00
dr	ill core(gypsum by	y acid digestion and silicates by fusi	ion)		\$140.00	<u>\$14,000.00</u>
u	in core(gypsum og	y acte digestion and sineates by fush		ANALYT		\$14,600.00
			TOTAL		ienil.	\$11,000.00
equipment rental:						
trucks						\$4,000.00
communication includi	ng radios, satellite	phone				\$1,500.00
	C /					
mobilization of crews	to Coyote Creek	including meals, airfare, accomm	odation:			\$2,000.00
pre-field:						
base map preparation						\$1,500.00
• , , •						#2 000 00
permitting:						\$2,000.00
geophysics:						
ground penetrating rada	ar 100 line k	m x \$60.00/line km				\$6,000.00
ground penetrating rada		m x \$60.00/mile km				\$0,000.00
diamond drilling:				cost per	total	
	eters all in			meter	meters	
••••				\$125.00	500	\$62,500.00
meals/groceries:			no. of		no. of	. ,
0			persons	rate	days	
			4	\$40.00	20	\$3,200.00
shipping:						\$500.00
fuel:						\$2,000.00
supplies: office and fie	eld supplies					\$1,000.00
filing fees:						\$2,000.00
report writing and rep	production:					\$5,000.00
						#142 ***
				:	Subtotal A:	\$143,300.00
				10% con	tingency:	\$14,330.00
				,	TOTAL:	\$157,630.00

NOTE: Although care has been taken in the preparation of these estimates, the writer does not guarantee that the above described program can be completed for the estimated costs. Additional quotes and budgeting should be done when financing is in place prior to the start of the program, when quotes can be obtained for supplies and services. Deviations from the suggested program can be made by the field geologist in charge, depending on current conditions such as weather.

Respectfully Submitted:

Charles C. Downie, P.Geo Bootleg Exploration Inc.

REFERENCES

Anderson, D. (1992): Geochemistry of the Coy Group, Fort Steele Mining Division, British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 22506

Belyea, H.R. and Norford, B.S. (1967): The Devonian Cedared and Harrogate Formations in the Beaverfoot, Brisco and Stanford Ranges, Southeast British Columbia; Geological Survey of Canada Bulletin 146

Butrenchuk, S.B. (1988): Gypsum in British Columbia (82G,J,83E), British Columbia Ministry of Energy, Mines and Petroleum Resources; Geological Fieldwork 1988, Paper 1989-1.

Downie, C.C. (2000) :Geological Report for the Coyote Creek Property

Goodfellow, Wayne D. et al (1996): Genesis of Carbonaceous Shale-hosted Ni-Mo-PGE Deposits, New Mineral Deposits of the Cordillera Short Course Notes 1996

Hulbert, Larry J. et al (1992) : Sedimentary Nickel, Zinc and Platinum group element Mineralization in Devonian Black Shales at the Nick Property, Yukon Canada : A New Deposit Type; in : Exploration and Mining Geology Vol.1, No.1, 1992

Hoy T. and Carter, G. (1988): Geology of the Fernie West ½ Map Sheet (and Part of Nelson East ½). British Columbia Ministry of Energy, Mines and Petroleum Resources; Open File Map No. 1988-14.

Jensen, S. (1992): Geological and geochemical Report on the Coyote Property (Coyote, Steve, Pete and Tom Claims); British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 22321.

Jensen, S. (1992): Geological and geochemical Report on the Ted 1-8 Claims; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 22428.

Leech, G.B.: (1954): Canal Flats, British Columbia; Geological Survey of Canada Paper 54-7.

Leech, G.B. (1958): Fernie Map-Area, west Half, British Columbia, 82G W 1/2, Geological Survey of Canada, Paper 58-10.

Leech, G.B. (1958): Canal Flats, Kootenay District; Geological Survey of Canada Map 24-1958.

Leech, G.B. (1960): Geology of Fernie (West Half), Kootenay District; Geological Survey of Canada Map 11-1960.

Leech, G.B. (1979): Kananaskis Lakes Map Area; Geological Survey of Canada Open File 634.

Okulitch, A.V. and Woodsworth, G.J. (1977): Kootenay River; Geological Survey of Canada, Open File 481.

Pighin, D.L. And Hendrickson, G.W. (2006): 2005 Report for the Coyote Creek Property; BCEMPR Assessment Report.

Termuende, Tim.J. and Greig, Charlie J. (2000) : The Coyote Creek Project ; Eagle Plains Resources Ltd.; internal report.

APPENDIX I

CERTIFICATES OF QUALIFICATION

CERTIFICATE OF CHUCK DOWNIE, P.GEO

I, Charles C. Downie, P. Geo. do hereby certify that:

I am currently employed as Vice President Exploration for Eagle Plains Resources Ltd. with business address: 200-16, 11 Ave.S., Cranbrook, BC V1C 2P5. I am also Exploration Manager for Bootleg Resources Inc., a wholly owned subsidiary of Eagle Plains Resources Inc and having the same business address.

I graduated with a Bachelor of Science Degree from the University of Alberta in 1988.

I have worked as a geologist for a total of 17 years since my graduation from university, and have been involved in the mining and exploration industry since 1980.

I am a member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia (ID 20137).

I am entitled to use the seal which is affixed to this report.

I have read the definition of "qualified person" set out in National Instrument 43 - 101 ("NI 43 - 101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43 - 101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of National Instrument 43 - 101.

I have authored this technical report titled "2006 REPORT FOR THE COYOTE CREEK PROPERTY" and dated January 03rd 2007 relating to the 2006 Phase 1 diamond drilling and technical program by Eagle Plains Resources.

I have based this report on data collected through research and on observations and results from physical work on the property. Data sources include British Columbia Ministry of Energy and Mines Map Place, British Columbia Ministry of Energy and Mines Microfiche, and direct contact with persons involved with past exploration programs on the Vulcan property.

I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

I am not independent of the issuer applying all of the tests in section 1.5 of National Instrument 43-101. I am a director of Eagle Plains Resources Ltd. since 2002 and currently hold 362,600 shares of that company. I further hold options to purchase 1,170,000 shares of the company at between \$0.65 and \$0.75 per share.

I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

Dated at Cranbrook, British Columbia, Canada this 03rd Day of January, 2007

Respectfully submitted

Charles C. Downie, P.Geo.

APPENDIX II

STATEMENT OF EXPENDITURES

The following expenses were incurred on the Coyote Creek Project for the purposes of mineral exploration between the dates of January 09, 2006 - September 30, 2006

uates of January 07, 2000 - September 30, 2000			
geological personnel: Bootleg Exploration Inc.	no. of days	rate	
Charles Downie, BSc. Exploration Manager, Project Planning, spotting drillholes, cord haul, permitting		\$600.00	\$3,600.00
Chris Gallagher, MSc.; GIS Specialist / Cartographer	1	\$500.00	\$500.00
Jesse Campbell, BSc.; field technician, GIS specialist : database, compilation maps	' 1	\$425.00	\$425.00
cartography		φ125.00	¢123.00
Glen Hendrickson, BSc. field technician, GIS specialist : database, compilation maps cartography	' 3	\$425.00	\$1,275.00
Brad Robison, field technician, GIS specialist : database, GPS surveying, core haul	, 10	\$425.00	\$4,250.00
splitting			
Total Bootl	eg Per	sonnel:	\$10,050.00
analytical: Eco Tech Laboratories Ltd.; whole rock, SO ₃ ; 111 drill core			\$4,453.65
equipment rental and repair:			
satellite phone			\$100.00
differential GPS surveying drillhole collars 2 days x \$50/day			\$100.00
trucks (including mileage) 12 days x \$60/day; 3200 km x 0.30/km			\$1,680.00
Pighin's Welding Ltd. water tank			\$950.60
High Grade Geologic Consulting core shack, core splitting/processing facility			\$400.00
S. B. Butrenchuk, P.Geo.; vehicle/office rental includes mileage/fuel			<u>\$742.15</u>
S. D. Duitenenuu, T. Seo., Vennere/ernee renuu meruues miteuge/ruer			\$3,972.75
consultants/subcontractors: S. B. Butrenchuk, P.Geo., Project Manager, fieldwork, planning includes travel fro Cranbrook High Grade Geologic Consulting; D. Pighin, P.Geo.; core logging, sections, sampling Pighin's Welding Ltd.; haul water	om Le	thbridge-	\$8,679.46 \$2,275.00 <u>\$4,387.50</u> \$15,341.96
drilling: Lone Ranger Diamond Drilling; 13 holes / 540 meters			\$54,238.66
fuel : trucks			\$1,228.30
meals/groceries:			\$30.00
shipping: includes freight, courier;			\$721.05
field supply: includes materials and equipment for fieldwork / core processing includir etc.;	ıg radi	os, GPS,	\$186.07
report writing : (estimate including maps/reproduction, database work)			<u>\$4,000.00</u>
	то	TAL:	\$94,222.44

APPENDIX III

DDH STRIP LOGS

Appen	ndix 3 - Strip L	.ogs	1					
Hole Nar	me :CK06001			Coyote Creek F			Eagle Plains Reso	urces Ltd.
Status :C	OMPLETE		Core Size :NQ		Company :Lone Ra	nger	Geologist :D.L. Pighin	
Easting (m) :610252.285		Northing (m) :553	6280.151	Elevation (m) :1912	102	Accuracy (m) :0.5	
Length (n			Azimuth (Deg) :?		Dip (Deg) :-90		Loc Method :DGPS-COR	r
Depth (m)	Littiology	Description		Sample C	CaSO4-2H20 (%)	S (%)	SO3 (%)	Elev. (m)
	87303	?				10 10 10	1200 1200 1200 1200 1200 1200 1200 1200	
	$ \begin{array}{c} & \otimes & \otimes & \partial \\ & & \otimes & \partial \\ & & & 0 \end{array} = \begin{array}{c} & & 0 \\ & & \otimes & \partial \\ & & & \otimes \end{array} = \begin{array}{c} & & & 0 \\ & & & \otimes & \partial \\ & & & & & 0 \end{array} $			CK06001-001				
	Gypsum =	?		CK06001-002				
-10	$\begin{array}{c} & \otimes & \partial \otimes \otimes \otimes & \partial \\ & \otimes & \partial & \partial \otimes \otimes & \partial \\ & & & \partial & \partial & \partial & \partial \\ & & & & \partial & \partial$			CK06001-003				1907.34
	Gypsum	?		CK06001-004				
	$ \begin{array}{c} \otimes \otimes \langle \eta \otimes \otimes \rangle \otimes \langle \eta \\ 0 \rangle \langle \eta \rangle = \langle \eta \rangle \langle \eta \rangle = \\ 0 \rangle \langle \eta \rangle = \langle \eta \rangle \langle \eta \rangle = \\ 0 \rangle \langle \eta \rangle = \langle \eta \rangle \langle \eta \rangle = \\ 0 \rangle \langle \eta \rangle = \langle \eta \rangle \langle \eta \rangle = \\ 0 \rangle \langle \eta \rangle = \langle \eta \rangle \langle \eta \rangle = \\ 0 \rangle \langle \eta \rangle = \langle \eta \rangle \langle \eta \rangle = \\ 0 \rangle \langle \eta \rangle = \langle \eta \rangle \langle \eta \rangle = \\ 0 \rangle \langle \eta \rangle = \langle \eta \rangle \langle \eta \rangle = \\ 0 \rangle \langle \eta \rangle = \langle \eta \rangle \langle \eta \rangle = \\ 0 \rangle \langle \eta \rangle = \langle \eta \rangle \langle \eta \rangle = \\ 0 \rangle \langle \eta \rangle = \\ $			CK06001-005				
	II Gypsum	?		CK06001-006				
-20	Gypsum =	?		CK06001-007				1901.0 ⁻
	$\begin{array}{c} 0 & 0 & = \\ 0 & 0 & = \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$			CK06001-008				
	Limestone	?		CK06001-009				
	Gypsum Limestone	? Contains mod		CK06001-010 CK06001-011				
-30	 II ← II ← II ← II ← II ← II ← II ← II	?		CK06001-012 CK06001-013				1893.03
-40	$ \begin{array}{c} \ & \phi \ = \ & \phi \ = \\ \phi & \geq \\ \phi & \leq \\ & \mathbf{Gypsum} \\ \ & \phi & = \\ \ & \phi & = \\ \phi & = \\ \phi & \leq \\ \phi & = \\ \phi $?		CK06001-014 CK06001-015				1883.3
	$\langle n \rangle = q M \langle n \rangle = q M \langle n \rangle = 0$ $\ f \rangle = q = 0$ $\ f \rangle = q = 0$ $\ f \rangle = q M \langle n \rangle = q$ $\langle n \rangle = q M \langle n \rangle = q$ $\ f \rangle = q M \ f \rangle = q$ $\ f \rangle = q M \ f \rangle = q M \ f \rangle = q$ $\ f \rangle = q M$			СК06001-016 СК06001-017				
-50	⊪	?		CK06001-018				1871.78
	$ \begin{array}{l} \ \psi \ _{H} = \ \psi \ _{H} \\ \psi \ _{S} = \ \psi \ _{S} \\ \ \psi \ _{S} = \ \psi \ _{S} \\ \ \psi \ _{S} = \ \psi \ _{S} \\ $			СК06001-019				
	$\begin{array}{l} \ \psi \ u = \ \psi \ u = \\ \ \psi \ \psi \ v \\ \ \psi \ v \\ \ \psi \ v \\ \ v \ v \\ \ \psi \ u \\ \ v \\ \ $			СК06001-020				
	Anhydrite	?		СК06001-021				
-60 Notes :?		a						1858 3
Scale 1:2	286		Date	e: 01/03/07		Time: 19:2	5.22	

Hole Nan	ne :CK06002			C	oyote Creek	Property			Eagle Plains Reso	ources Ltd.
Status :C	OMPLETE		Core Size :N	Q		Company :Lone Ra	anger	Ge	eologist :D.L. Pighin	
Easting (r	m) :610292.082		Northing (m)	:5536212.	597	Elevation (m) :191	9.79	Ac	ccuracy (m) :0.5	
Length (m			Azimuth (De			Dip (Deg) :-90			c Method :DGPS-COR	
Depth (m)	Lithology	Description			Sample	CaSO4-2H20 (%)	S (%)		SO3 (%)	Elev. (m)
		?				1234056788 100000000000000000000000000000000000	10000000000000000000000000000000000000		123067809 123067809	
	Rubble	20 cm recover	red							
10	Gypsum =	?			CK06002-001					1915.0
					CK06002-002		L			
	$\begin{array}{c} 0 & \approx \\ 0 & \approx \\ 0 & \approx \\ 0 & \approx \\ 0 & 0 & \infty \\ 0 & 0 & 0 \\ 0 & 0 & \infty \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$				CK06002-004					
20	$\begin{array}{c} 0 \approx \pm \approx 0 \approx \pm \\ \approx \pm 0 \otimes \approx 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$				СК06002-005					1908.8
	$ \begin{pmatrix} x & y & y & y \\ y & y & y & y \\ y & y & y$				СК06002-006					
	II / I = II / I = Gypsum =	interbanded la with brecciate	aminated to very th d gypsum	nin bedded	СК06002-007					
-30	$\begin{array}{c} \psi \ u = \\ \psi \ u = \\$				СК06002-008					1901.1
	$\begin{array}{c} \ \circ u = \ \circ u \\ \circ \circ \circ \circ$				CK06002-009					
	$\begin{array}{c} \varphi \otimes \psi & \varphi \otimes \varphi \\ \psi \otimes \varphi \otimes \psi \otimes \varphi \otimes$				СК06002-010		L			
-40	$\begin{array}{c} y \approx -\frac{1}{2} \otimes y \approx -\frac{1}{2} \\ y \approx -\frac{1}{2} \otimes y \otimes -\frac{1}{2} \\ z \approx -\frac{1}{2} -\frac{1}{2$				CK06002-011 CK06002-012					1891.7
	Gypsum	in part crystall lamminated; c breccia fragme	ine and massive; contains minor car ents	in part bonate	СК06002-013 СК06002-014		┍			
	Breccia	fragments of g	v limestone and do gypsum matrix; ab v clay; proximal to	undant	CK06002-015		L			
50	Gypsum	?			CK06002-016					1880.6
	Gypsum	gypsum frame contains rare predominantly	e fragments and li ents in gypsum ma very light brown cl limestone fragme	atrix; also ay fragments ents in	CK06002-017					
	Breccia Gypsum	predominantly	x; few vugs presen v brecciated and p ninae sub parallel	artlv	CK06002-018 CK06002-019					
		gypsum very h	hard; anhydrite co	ntent variable	СК06002-020		Γ			
60	Anhydrite	?			СК06002-021					1867.8
	<u> </u>				CK06002-022					
Notes :?										
Scale 1:3	05			Date: 01/0)3/07		Time:	19:25:35		

10 2	Hole Nam	ne :CK06003		(Coyote Creek	Property			Eagle Plains Reso	urces Ltd.
ength (m) 29.57 Azimuth (Deg) P Dip (Deg) 90 Loc Method :DGPS: COR Inform Utblodgy Description Sample CaSC4 2H20 (%) S (%) SO3 (%) Elev. (m 5 Gyptum r CasC4 2H20 (%) S (%) SO3 (%) Elev. (m 5 Gyptum r CasC4 2H20 (%) S (%) SO3 (%) Elev. (m 10 Gyptum velate day content (bypate?) Ciscees aces Ciscees aces Ciscees aces Ciscees aces 1853 10 Gyptum velate day content (bypate?) Ciscees aces Ciscees aces Ciscees aces 1853 20 Gyptum velate day content (bypate?) Ciscees aces Ciscees aces Ciscees aces 1844 20 gray inclusive fragments in transment Ciscees aces Ciscees aces Ciscees aces 1844 21 gray inclusive fragments in transment Ciscees aces Ciscees aces Ciscees aces Ciscees aces 22 gray inclusive fragments in transment Cisces aces <td< th=""><th>Status :C0</th><th>OMPLETE</th><th></th><th>Core Size :NQ</th><th></th><th>Company :Lone Ra</th><th>nger</th><th>Ge</th><th>ologist :D.L. Pighin</th><th></th></td<>	Status :C0	OMPLETE		Core Size :NQ		Company :Lone Ra	nger	Ge	ologist :D.L. Pighin	
Output Lithology Description Sample CaSO4-2420 (%) S (%) SO3 (%) Elev. (n 5	Easting (n	m) :610370.45		Northing (m) :5536404	.396	Elevation (m) :1855	.49	Ac	curacy (m) :0.6	
10 2	_ength (m	ו) :29.57		Azimuth (Deg) :?		Dip (Deg) :-90		Lo	c Method :DGPS-COR	
S S	Depth (m)	Lithology	Description		Sample	CaSO4-2H20 (%)	S (%)		SO3 (%)	Elev. (m)
5 Image: Sypermeter in the clay content (Sypermeter) Image: Sypermeter in the clay content in the clay conten		Casog				123000000000000000000000000000000000000		000000000000000000000000000000000000000		
10 Image: Second se	5	$\ \psi \ _{\mathcal{L}}^{2} = \ \psi \ _{\mathcal{L}}^{2}$	variable clay c	ontent (Gypsite?)	СК06003-002					1853.3
15 Month and the second	10	$\begin{array}{c} \phi & & & \\ \phi & & \\ \phi$			CK06003-003					1850.7
20 Clay ? 25 Proble grey linestone fragments in brown sand arrive, fairly well indurated 26 Clay Proble Prob	15	4828482	minor clay loca	ılly						1847.8
25 Rubble grey limestone fragments in brown sand matrix; fairly well indurated 1840.	20									1844.5
Rubble grey limestone fragments in brown sand matrix; fairly well indurated		Clay	?							
lotes :?	25	Rubule	grey limestone matrix; fairly w	fragments in brown sand ell indurated						1840.9
	Notes :?		- ·		-		-		-	-
				<u> </u>						

Hole Na	me :CK06004		Coyote Creek I	Property		Eagle Plains Reso	urces Ltd.
Status :/	ABANDONED	Core Size :NQ	-	Company :Lone Ra	inger	Geologist :D.L. Pighin	
Easting	(m) :610347.283	Northing (m) :5536473	3.736	Elevation (m) :1847		Accuracy (m) :0.7	
Length (Azimuth (Deg) :?		Dip (Deg) :-90		Loc Method :DGPS-COR	
Depth (m			Sample 0	CaSO4-2H20 (%)	S (%)	SO3 (%)	Elev. (m)
					1224500	288585656 288	
-5							1845.4
-10							1842.2
-15							1838.1
-20							1833.1
-25							1827.2
Notes ·S	Sinkhole, No Core Recovered	d			•		•
10163.0		~I			<u> </u>		
	138	Date: 01			Time: 19:2		

5 300 0000000000000000000000000000000000	lole Nam	ne :CK06005		с	oyote Creek	Property			Eagle Plains Reso	urces Ltd.
Langh (m) 41.76 Leinach (Deg):7 Dip (Deg):40 Lec Method :DGPS-COR Desh min Lindigg Description Sample CaSO4-24/20 (%) S (%) SO3 (%) Elev. (a 20 4 100 a 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Status :CC	OMPLETE		Core Size :NQ	Company :Lone Ranger		nger	Geologist :D.L. Pighin		
Decimit min Lithology Description Sample CaSO4-24/20 (%) S (%) SO3 (%) Elev. (5	Easting (m	n) :610411.418		Northing (m) :5536326.	238	Elevation (m) :1855	5.497	Ac	curacy (m) :0.6	
1000037 Description Sample Cashed 2420 (%) 5 (%) Dot 5 (%)	ength (m	ı) :41.76		Azimuth (Deg) :?		Dip (Deg) :-90		Lo	c Method :DGPS-COR	
5 Conserved and a conserved an	Depth (m)	Lithology	Description		Sample	CaSO4-2H20 (%)	S (%)		SO3 (%)	Elev. (m)
$10 1 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $							1236565	080	12345567889	
$ \begin{array}{c c c c c c } & \hline & $	5	Gaior -	?							1853.2
153 20 $6ypsum$ $6ypsum$ 154 $6ypsum$ 154 $6ypsum$ 154	10				CK06005-001					1850.39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15									1846.9
-25 CK06005-006 CK06005-007 -30 Breccia gyspum fragments in gypum matrix; top contact 40 degrees to CA; bottom contact 20 CK06005-009 CK06005-010 CK06005-00 CK06005-00 CK06005-00	20	u = (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	has variable c	lay (Gypsite?) content	СК06005-004					1842.9
-30 Brecia gyspum fragments in gypsum matrix; top contact 40 degrees to CA; bottom contact 20 degrees to CA -35 Gypsum good quality: strongly crenulated CK06005-019 Gypsum good quality: strongly crenulated CK06005-011 Gypsum 2 Gypsum matrix; rare narrow laminated Intervat; void @ 38.0m -40 Sandstone ? -40 Sandstone ?	25	$ \begin{array}{c} & \left(\left\{ $			CK06005-006					1838.3
-35 Gypsum good quality; strongly crenulated CK06005-011 Gypsum good quality; strongly crenulated CK06005-012 Gypsum atrix; rare narrow laminated interval; void @ 38.0m 40 Sandstone ? CK06005-012 CK06005-012 CK06005-0005-000-000-000-000-000-000-000-0	30	Breccia	gyspsum fragi contact 40 deg degrees to CA	nents in gypsum matrix; top grees to CA; bottom contact 20	CK06005-008					1833.0 ⁻
-40 Sandstone ? 182	35	gypsum v	good quality; s	strongly crenulated			Ľ		L	1827.06
-40 [182]		II = II Gypsum	Gypsum matri interval; void (x; rare narrow laminated ② 38.0m	СК06005-012		ſ			
	40									1820.4
	lotos :0		H				1		1	1
Notes :?	NOTES :?									

-5	NDONED 610555.059 29	Descriptior	Azimuth (e :NQ (m) :5536015.	606 Sample	Company :Lone Ra Elevation (m) :1918 Dip (Deg) :-90 CaSO4-2H20 (%) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ∂ ℃ ⊗ 4 ♡ © 7 ♡ ♡	S (%)		Eagle Plains Reso cologist :D.L. Pighin curacy (m) :0.6 c Method :DGPS-COR SO3 (%) COMPARIANCE SCOR SO3 (%) COMPARIANCE SCOR COMPARIANCE SCOR COMPA	Elev. (m)
Easting (m) :1 Length (m) :2 Depth (m)	610555.059 29 Lithology		Northing (Azimuth ((m) :5536015.	r	Elevation (m) :1918 Dip (Deg) :-90 CaSO4-2H20 (%)	S (%)		curacy (m) :0.6 c Method :DGPS-COR SO3 (%)	Elev. (m)
Length (m) :2	29 Lithology		Azimuth (r	Dip (Deg) :-90 CaSO4-2H20 (%)	S (%)	Loc	C Method :DGPS-COR SO3 (%)	Elev. (m)
-5	Lithology				Sample	CaSO4-2H20 (%)			SO3 (%)	Elev. (m)
-5										
-5										
-10										1915.6
										1912.44
-15	-Gadas	?								1908.3
-20										1903.3
-25										1897.4:
	ole, No Core R	ecovered								
Scale 1:138				Date: 01/0			Time: 19:			

Length (m) :56 Depth (m) [6.39	Description	Core Size :N Northing (m) Azimuth (Deg	:5536016. g) :?	077 Sample		0 (%)	.866 S (%)	Ac	ologist :D.L. Pighi curacy (m) :0.9 c Method :DGPS- SO3 (%)	COR	Elev. (m) 1917.0
Depth (m)	6.39 Lithology	Description Sinkhole enco	Azimuth (Deo	g) :?		Dip (Deg CaSO4-2H2):-90 0(%)	S (%)		curacy (m) :0.9 c Method :DGPS- SO3 (%)	COR	
Length (m) :56 Depth (m)	6.39 Lithology	Description Sinkhole enco	Azimuth (Deo	g) :?		Dip (Deg CaSO4-2H2):-90 0(%)	S (%)		C Method :DGPS-		
Depth (m)	Lithology	Description	untered; occasion		Sample	CaSO4-2H2	0 (%)			SO3 (%)		
-10		Sinkhole enco		iai small					 5667890			
				ial small								1917.0
	\$ 4 8 8 8 4											1910.54
-30	Gypsum	? ⁄? ?			CK06007-001 CK06007-002 CK06007-003							1902.2
-40	Void Gypsum	/?	degrees to CA; in strongly crenulate degrees to CA; in strongly crenulate		CK06007-004 CK06007-005 CK06007-006 CK06007-007 CK06007-008 CK06007-009							1892.0
-50	Gypsum	good quality; la some narrow b ? laminae perpe well indurated	aminae weekly cre recciated interval ndicular to CA	enulated; Is from 47.85	CK06007-010 CK06007-011 CK06007-012 CK06007-013							1879.93
Notes :?										-		

Hole Nan	ne :CK06008			C	oyote Creek	Property		Eagle Plains Resources Ltd		
Status :C	OMPLETE		Core Size :N	2		Company :Lone	Ranger	Ge	ologist :D.L. Pighin	
Easting (I	m) :610554.089		Northing (m)	5535922.	707	Elevation (m) :19	22.282	Ac	curacy (m) :0.7	
_ength (n	-		Azimuth (Deg			Dip (Deg) :-90		Lo	c Method :DGPS-COR	
Depth (m)		Description			Sample	CaSO4-2H20 (%)	S (%)		SO3 (%)	Elev. (m)
		?				1236565658		00000000000000000000000000000000000000		
5	- Casag	2								1920.0
10										1917.;
15					CK06008-001					1914.0
20	Gypsum =	scattered thin dolomite inter	ine gypsum, with w finely crystaline gy beds @ 16.76m. P ular graphitic partir	psum and aper thin	CK06008-002 CK06008-003 CK06008-004					1910.
25					СК06008-005 СК06008-006 СК06008-007 СК06008-008					1906.
30	mestone	xtln gypsum a to very thin be intense crackl matrix of breck	of finely laminated re scattered throug dded, but strongly e brecciation. Gyps cia and forms thin v le salty arg. Limest	hout. Thin distored by sum forms veinlets and	CK06008-009 CK06008-010 CK06008-011					1901.
35		cm to 50 cm th silty limestone	nin bedded. Scatter nick intervals of dol breccia with white	omite and	CK06008-012 CK06008-013 CK06008-014					1895.
0	Dolomite	coarsely xtln g gypsum clasts	x. red breccia, with w yypsum matrix, and s. Carbonate clasts ypsum and in part v	l some are in part	CK06008-015 CK06008-016 CK06008-017 CK06008-018					1889.
	Gypsum	Coarsely xtln finely xtln gyp	gypsum interlamina sum.	ated with	CK06008-019					
15	mestone	planes from 4	ded with flat distinc 4.65 to 46.0; No gy E: probably Burnais e.	psum in this	CK06008-020					1883.
_		ghan								

	ne :CK06009		C	oyote Creek	Property			Eagle Plains Reso	urces Ltd.
Status :C	OMPLETE		Core Size :NQ		Company :Lone Ra	nger	Ge	ologist :D.L. Pighin	
Easting (r	m) :610560.478		Northing (m) :5535763.	324	Elevation (m) :1921	.314	Accuracy (m) :0.8		
_ength (m	n) :36.5		Azimuth (Deg) :?	Dip (Deg) :-90			Loc Method :DGPS-COR		
Depth (m)	Lithology	Description		Sample	- CaSO4-2H20 (%)	S (%)		SO3 (%)	Elev. (m)
		Limestone Cla	ists (5mm to 10mm) in a			1284582	000	123656567888	
	II Gypsum		orted matrix. Clasts are nded and usally distored and	CK06009-001					
5	Limestone		bedded cystaline Gypsum.	CK06009-002					1919.0
			orted Matrix with Dolomite and that are angular to rounded.	CK06009-003					
10	$(a_{1}^{2}, b_{2}^{2}, b_{3}^{2}, b_{3}^{2$			CK06009-004					1916.04
	Gypsum		cia clast supported, clasts rocrystaline argillaceous	СК06009-005					
15	$\begin{array}{c} & e \\ & e \\$			СК06009-006 СК06009-007					1912.4
	Gypsum = = =		ted, Clasts are Arggilous n some gypsum and are ded.	СК06009-008					
20	$\begin{array}{c} 0 & z_{1} \ge 0 & u \ge 1 \\ & & 0 & u \ge 0 \\ & & 0 & 0 & u \ge 0 \\ & & 0 & 0 & u \ge 0 \\ & & 0 & z \ge 0 & u \ge 1 \\ & & 0 & z \ge 0 & u \ge 0 \\ & & 0 & z \ge 0 & u = 0 \\ & & 0 & z \ge 0 & u = 0 \\ & & 0 & z \ge 0 & u = 0 \\ & & 0 & z \ge 0 & u = 0 \\ & & 0 & z \ge 0 & u = 0 \\ & & 0 & z \ge 0 & u = 0 \\ & & 0 & z \ge 0 & u = 0 \\ & & 0 & z \ge 0 & u = 0 \\ & & 0 & z \ge 0 & u = 0 \\ & & 0 & z = 0 &$			CK06009-009					1908.0
	II Gypsum	laminated, me	led, very finely paralled dium crystaline, highly nterolithic folds.	СК06009-010					
25	Gypsum	Gypsum matri consist of Dolo	x supported breccia, clasts omite and Arg-Limestone.	СК06009-011					1903.04
30		consist of Dolo Clasts are ger	x supported breccia, clasts omite and Arg-Limestone. erally rounded and are and 50mm in size.	CK06009-012					1897.2
		 breccia, clasts Arg-Limestone 	Bypsum matrix supported consist of Dolomite and e. Clasts are generally rounded en 2mm and 50mm in size.	CK06009-013 CK06009-014					
35	Anhydritë	?	on zamir dira ovnini ili sizo.	CK06009-015					1890.6
Notes :?		JI							
			1						

Hole Na	me :CK06010		Coyote Creel	Property		Eagle Plains Res	ources Ltd.
Status :A	BANDONED	Core Size :NQ		Company :Lone Ra	anger	Geologist :D.L. Pighin	
	(m) :610615.374	Northing (m) :553	:5535694.226 Elevation (m) :1904.			Accuracy (m) :0.8	
Length (i			Azimuth (Deg) :?		Dip (Deg) :-90		
Depth (m)		escription	· · · · · · · · · · · · · · · · · · ·		CaSO4-2H20 (%) S (%)		Elev. (m)
		comption	Gampie			SO3 (%)	
-5				40 10 10 10 10 10 10 10 10 10 10 10 10 10	40 30 10 10	10000 1000000	1901.6
-10							1898.4
-15							1894.3
-20							1889.3
-25							1883.4
Notes :S	inkhole, No Core Rec	covered					<u> </u>
Scale 1:			e: 01/03/07		Time: 19		

Hole Nar	ne :CK06011		c	oyote Creek	Property			Eagle Plains Reso	urces Ltd.
Status :C	OMPLETE		Core Size :NQ		Company :Lone Ra	nger	Ge	ologist :D.L. Pighin	
Easting (I	m) :610607.318		Northing (m) :5535818.	426	Elevation (m) :1903	.803	Aco	curacy (m) :0.8	
Length (n			Azimuth (Deg) :?	Dip (Deg) :-90			Loc Method :DGPS-COR		
Depth (m)		Description	,	Sample	CaSO4-2H20 (%)	S (%)		SO3 (%)	Elev. (m)
					10 10 10 10 10 10 10 10 10 10 10 10 10 1	12000000000000000000000000000000000000	000000000000000000000000000000000000000	10000000000000000000000000000000000000	
5	Castag	?							1901.5
10									1898.7
15									1895.4
	Gypsum	rare dolomite	clasts; fine crenulations	CK06011-001					
-20	$\begin{array}{c} a \approx \pm \approx a \approx \pm \\ & \approx \pm a \otimes \approx \pm a \\ & a \approx \pm a \otimes \approx \pm a \\ & a \approx \pm a \otimes \approx \pm a \end{array}$			CK06011-002					1891.5
	Limestone	minor xtln gyp crackle breccia xtln gypsum	sum; bedding deformed by ation that is healed by white	CK06011-003		•		P .	
-25		gypsum matrix	x supported breccia: clasts			L		L	1887.0
	Gypsum Dolomite	70% gypsum	x supported breccia; clasts of argillaceous limestone; est f white gypsum; est. 30%	CK06011-005 CK06011-006					
-30			thin beds and clasts of	СК06011-007					1881.9
-35	Gypsum = = = = = = = = = = = = = = = = = = =	dolomite and r	rare limestone	CK06011-008					1876.2
	Dolomite	minor scattere gypsum; cracł	ed veinlets and patches of xtln kle breccia	CK06011-009					
-40				CK06011-010					1869.8
	Rubble	?		CK06011-011					
Notes :?									-
Scale 1:2			Date: 01/0	2/07		Time: 19:2			

Hole Na	me :CK06012		Coyote Cr	eek Property		Eagle Plains Resources Ltd		
Status :A	ABANDONED	Core Size	:NQ	Company :Lone R	anger	Geologist :D.L. Pighin		
	(m) :610627.422) :5535881.29 Elevation (m) :1904		Accuracy (m) :0.8		
_ength (Azimuth (I			Dip (Deg) :-90		2	
Depth (m		Description	Sample		CaSO4-2H20 (%) S (%)		Elev. (m)	
				1234556789 1234556789	3 2234556	28585866 8856 885866 8856	2	
5							1901.8	
10							1898.6	
15	-6asou	?					1894.5	
20							1889.	
25							1883.6	
lotes :S	inkhole, No Core R	ecovered						
	138		Date: 01/03/07		Time: 19			

Hole Nan	ne :CK06013		c	oyote Creek	Coyote Creek Property			Eagle Plains Reso	urces Ltd.
Status :C	OMPLETE		Core Size :NQ		Company :Lone Ra	nger	Geolo	gist :D.L. Pighin	
Easting (ı	m) :610679.694		Northing (m) :5535746.	101 Elevation (m) :1886.085			Accuracy (m) :0.8		
Length (n	n) :43.28		Azimuth (Deg) :?	Dip (Deg) :-90			Loc Method :DGPS-COR		
Depth (m)	Lithology	Description		Sample	CaSO4-2H20 (%)	S (%)	s	O3 (%)	Elev. (m)
	Česa;	?				12336582 12386582	0000		
-5				CK06013-001					1883.8
-10	Limestone	framework sup clasts and thin est. 20% gyps	ported breccia; scattered irregular veinlets of gypsum; um						1881.0
-15	II = II Gypsum	xtin gypsum; b	edding is wavey and distorted	CK06013-002					1877.6
-20	$\langle \psi \psi \psi \psi \psi \psi \psi \psi \psi \psi $			CK06013-003					1873.7
-25	II Gypsum	clast supporte 70% gypsum	d; gypsum matrix; est. 50% to	СК06013-004 СК06013-005					1869.1
-30	Gypsum =	rare thin wispy compositional	limestone beds; crenulated layering; est. 90% gypsum	CK06013-006					1864.00
-35	11 4 = 11 4 = 11 4 = 11 4 = 11 4 = 11 4 = 11 4 = 11 4 = 11 4 =	Salt Zone; wid limestone and	ely scattered argillaceous dolomite clasts and thin beds	CK06013-007					1858.1
40	I ≤ Gypsum // = // ≤ = ≤ // ≤ = // ≤ // ≤	of dolomite; w	nite salt precipitate surrounds me cases partly fills the vugs	CK06013-008 CK06013-009					1051 7
-40	Anhydrite	beds of silty do forming brecci	plomite with liy mudstone a matrix	CK06013-010					1851.7
Notes :?		. .			-				-
Scale 1:2			Date: 01/0						

APPENDIX IV

ANALYTICAL RESULTS

4.1 Diamond Drill Sample Results – Sulphur4.2 Diamond Drill Sample Results – Whole Rock

4.1 Diamond Drill Sample Results - Sulphur

BOOTLEG EXPLORATION INC.

#200, 16-11TH Ave S. Cranbrook, BC V1C 2P1 11-Oct-06

No. of samples received: 21 Sample type: Rock **Shipment #: CK06-001** Samples submitted by: Brad Robison

		S	SO3	
ET #.	Tag #	(%)	(%)	
1	CK06001-001	12.6	31.4	
2	CK06001-002	11.8	3 29.5	
3	CK06001-003	13.2	. 32.8	
4	CK06001-004	13.6	34.0	
5	CK06001-005	18.4	45.9	
6	CK06001-006	11.1	27.6	
7	CK06001-007	18.7	46.6	
8	CK06001-008	16.9	9 42.1	
9	CK06001-009	4.78	3 11.9	
10	CK06001-010	16.5	5 41.1	
11	CK06001-011	8.33	3 20.8	
12	CK06001-012	10.7	26.7	
13	CK06001-013	10.6	6 26.4	
14	CK06001-014	10.8	3 26.8	
15	CK06001-015	13.4	33.3	
16	CK06001-016	13.3	33.2	
17	CK06001-017	15.2	2 37.9	
18	CK06001-018	14.0) 34.8	
19	CK06001-019	15.1	37.6	
20	CK06001-020	15.7	' 39.1	
21	CK06001-021	16.3	40.7	
QC DA	<u>TA:</u>			
Resplit	S:			
	<u></u>			

12.8

1 CK06001-001

31.9

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

BOOTLEG EXPLORATION INC.

#200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

No. of samples received: 22 Sample type: Core **Shipment #: CK06-002** Samples submitted by: B. Robison

ET #.	Tag #	S (%)	SO3 (%)	
1	CK06002-001	11.6	28.8	
2	CK06002-002	11.5	28.8	
3	CK06002-003	16.7	41.7	
4	CK06002-004	13.3	33.2	
5	CK06002-005	14.5	36.2	
6	CK06002-006	15.1	37.7	
7	CK06002-007	15.9	39.6	
8	CK06002-008	18.0	44.8	
9	CK06002-009	21.0	52.5	
10	CK06002-010	16.2	40.3	
11	CK06002-011	17.3	43.2	
12	CK06002-012	17.6	43.8	
13	CK06002-013	17.8	44.3	
14	CK06002-014	9.19	23	
15	CK06002-015	8.74	21.8	
16	CK06002-016	15.0	37.4	
17	CK06002-017	12.4	30.8	
18	CK06002-018	10.7	26.8	
19	CK06002-019	18.0	44.9	
20	CK06002-020	13.6	33.8	
21	CK06002-021	15.7	39.1	
22	CK06002-022	20.6	51.4	
QC DAT	TA:			
	=			

Resplits:

1	CK06002-001	11.5	28.6

BOOTLEG EXPLORATION INC.

#200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

No. of samples received: 10 Sample type: Core **Shipment #: CK06-008** Samples submitted by: B. Robison

ET #.	Tag #	S (%)	SO3 (%)	
1	CK06-013-001	11.3	28.2	
2	CK06-013-002	14.3	35.7	
3	CK06-013-003	15.9	39.6	
4	CK06-013-004	14.3	35.7	
5	CK06-013-005	15.9	39.6	
6	CK06-013-006	16.7	41.7	
7	CK06-013-007	17.3	43.2	
8	CK06-013-008	16.2	40.4	
9	CK06-013-009	15.9	39.6	
10	CK06-013-010	20.9	52.2	

QC DATA:

Repeat:

1	CK06-013-001	10.1

JJ/bp XLS/06

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

25.2

BOOTLEG EXPLORATION INC.

#200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

No. of samples received: 15 Sample type: Core **Shipment #: CK06-006** Samples submitted by: B. Robison

 #	T #	S	S03	
ET #.	Tag #	(%)	(%)	
1	CK609 - 001	13.9	34.6	
2	CK609 - 002	9.96	24.9	
3	CK609 - 003	15.7	39.1	
4	CK609 - 004	14.9	37.2	
5	CK609 - 005	13.0	32.4	
6	CK609 - 006	15.7	39.1	
7	CK609 - 007	13.8	34.3	
8	CK609 - 008	17.1	42.7	
9	CK609 - 009	17.5	43.6	
10	CK609 - 010	20.1	50.1	
11	CK609 - 011	16.9	42.0	
12	CK609 - 012	14.0	34.9	
13	CK609 - 013	17.5	43.6	
14	CK609 - 014	18.3	45.7	
15	CK609 - 015	19.7	49.1	

QC DATA:

....

_

Resplit	S:		
1	CK609 - 001	14.1	35.0

JJ/bp XLS/06 **ECO TECH LABORATORY LTD.** Jutta Jealouse B.C. Certified Assayer

BOOTLEG EXPLORATION INC.

#200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

No. of samples received: 12 Sample type: Core **Shipment #; CK06-004** Samples submitted by: B. Robison

		S	S03	
ET #.	Tag #	(%)	(%)	
1	CK06005 - 001	14.2	35.4	
2	CK06005 - 002	14.2	35.4	
3	CK06005 - 003	15.4	38.3	
4	CK06005 - 004	14.6	36.3	
5	CK06005 - 005	12.6	31.4	
6	CK06005 - 006	13.3	33.0	
7	CK06005 - 007	12.3	30.7	
8	CK06005 - 008	12.8	31.9	
9	CK06005 - 009	11.3	28.1	
10	CK06005 - 010	10.4	26.0	
11	CK06005 - 011	17.6	43.9	
12	CK06005 - 012	12.9	32.2	

QC DATA:

Resplits:

1	CK06005 - 001	14.4	35.8

JJ/bp XLS/06 **ECO TECH LABORATORY LTD.** Jutta Jealouse B.C. Certified Assayer

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. **Cranbrook, BC** V1C 2P1

No. of samples received: 7 Sample type: Core **Shipment #: CK06-003** Samples submitted by: B. Robison

	S	S03	
Tag #	(%)	(%)	
CK06003 - 001	14.5	36.2	
CK06003 - 002	13.3	33.2	
CK06003 - 003	13.2	32.9	
CK06003 - 004	14.9	37.2	
CK06003 - 005	15.0	37.4	
CK06003 - 006	14.7	36.5	
CK06003 - 007	15.5	38.6	
	CK06003 - 001 CK06003 - 002 CK06003 - 003 CK06003 - 004 CK06003 - 005 CK06003 - 006	Tag #(%)CK06003 - 00114.5CK06003 - 00213.3CK06003 - 00313.2CK06003 - 00414.9CK06003 - 00515.0CK06003 - 00614.7	Tag #(%)(%)CK06003 - 00114.536.2CK06003 - 00213.333.2CK06003 - 00313.232.9CK06003 - 00414.937.2CK06003 - 00515.037.4CK06003 - 00614.736.5

QC DATA:

Resplits:

1 CK06003 - 001

14.7

36.6

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. **Cranbrook, BC** V1C 2P1

No. of samples received: 11 Sample type: Core **Shipment #: CK06-007** Samples submitted by: B. Robison

		S	S03	
ET #.	Tag #	(%)	(%)	
1	CK06011 - 001	16.9	42.1	
2	CK06011 - 002	15.7	39.1	
3	CK06011 - 003	10.7	26.5	
4	CK06011 - 004	5.65	14.1	
5	CK06011 - 005	13.5	33.5	
6	CK06011 - 006	13.0	32.4	
7	CK06011 - 007	13.2	32.8	
8	CK06011 - 008	15.9	39.7	
9	CK06011 - 009	13.5	33.5	
10	CK06011 - 010	15.6	39.0	
11	CK06011 - 011	3.37	8.42	
QC DA1	A:			
Resplits	s:			

1	CK06011 - 001	17.3	43.2

ECO TECH LABORATORY LTD. Jutta Jealouse

11-Oct-06

B.C. Certified Assayer

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. **Cranbrook, BC** V1C 2P1

No. of samples received: 13 Sample type: Core **Shipment #: CK06-005** Samples submitted by: B. Robison

		S	S03	
ET #.	Tag #	(%)	(%)	
1	CK06007 - 001	13.8	34.5	
2	CK06007 - 002	1.98	4.95	
3	CK06007 - 003	16.7	41.6	
4	CK06007 - 004	1.16	2.90	
5	CK06007 - 005	16.5	41.2	
6	CK06007 - 006	16.8	42.0	
7	CK06007 - 007	15.6	38.8	
8	CK06007 - 008	3.47	8.66	
9	CK06007 - 009	16.2	40.5	
10	CK06007 - 010	16.2	40.4	
11	CK06007 - 011	16.0	39.9	
12	CK06007 - 012	3.71	9.27	
13	CK06007 - 013	14.7	36.8	

QC DATA:

1 CK06007 - 001

14.9

37.0

JJ/bp XLS/06

ECO TECH LABORATORY LTD.

11-Oct-06

Jutta Jealouse B.C. Certified Assayer 4.2 Diamond Drill Sample Results - Whole Rock

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

No. of samples received: 21 Sample type: Rock **Shipment #: CK06-001** Samples submitted by: Brad Robison

Note: Values expressed in percent

ET #.	Tag #	BaO	P205	SiO2	MnO	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
1	CK06001-001	<0.01	0.02	6.35	<0.01	0.42	5.02	1.03	30.14	0.05	0.02	0.41	25.6
2	CK06001-002	<0.01	0.03	6.89	<0.01	0.49	5.89	1.06	30.58	0.06	0.02	0.39	26.7
3	CK06001-003	<0.01	0.03	6.26	<0.01	0.41	5.50	1.03	30.65	0.06	0.01	0.39	25.3
4	CK06001-004	<0.01	0.02	5.38	<0.01	0.41	5.15	0.94	30.45	0.05	0.01	0.32	25.1
5	CK06001-005	<0.01	<0.01	0.81	<0.01	0.11	0.81	0.06	34.55	0.05	<0.01	0.09	21.4
6	CK06001-006	<0.01	0.01	2.96	<0.01	0.20	4.88	0.54	36.08	<0.01	0.02	0.22	28.8
7	CK06001-007	<0.01	<0.01	0.45	<0.01	0.15	0.86	0.04	34.78	0.03	<0.01	<0.04	21.1
8	CK06001-008	<0.01	0.02	1.01	<0.01	0.10	1.55	0.14	33.63	<0.01	0.01	0.07	21.6
9	CK06001-009	<0.01	0.01	1.91	<0.01	0.20	4.88	0.38	43.07	0.02	0.02	0.22	37.1
10	CK06001-010	<0.01	0.01	1.11	<0.01	0.17	2.45	0.21	34.08	0.02	0.01	0.09	23.2
11	CK06001-011	<0.01	0.03	4.35	<0.01	0.33	6.73	0.95	35.33	0.04	0.02	0.33	32.1
12	CK06001-012	<0.01	0.04	8.20	<0.01	0.57	7.20	1.35	28.32	0.07	0.02	0.44	27.3
13	CK06001-013	<0.01	0.04	8.17	<0.01	0.66	7.30	1.51	26.80	0.08	0.02	0.50	26.9
14	CK06001-014	<0.01	0.05	8.34	<0.01	0.77	7.64	1.77	27.74	0.12	0.08	0.69	26.5
15	CK06001-015	<0.01	0.04	7.77	<0.01	0.63	6.55	1.48	31.95	0.07	0.11	0.59	18.9
16	CK06001-016	<0.01	0.03	7.21	<0.01	0.56	6.89	1.28	30.55	0.07	0.06	0.53	22.6
17	CK06001-017	<0.01	0.04	6.49	<0.01	0.54	6.09	1.20	33.99	0.06	0.04	0.42	15.3
18	CK06001-018	<0.01	0.04	7.96	<0.01	0.62	7.56	1.46	35.03	0.11	0.05	0.53	15.3
19	CK06001-019	<0.01	0.02	6.74	<0.01	0.55	6.36	1.25	34.92	0.06	0.05	0.46	12.3
20	CK06001-020	<0.01	0.04	7.37	<0.01	0.59	6.76	1.41	34.02	0.07	0.05	0.53	12.2
21	CK06001-021	<0.01	0.02	6.86	<0.01	0.65	6.04	1.03	36.11	0.05	0.04	0.43	1.9
QC DATA	<u>A:</u>												
Resplit:													
1	CK06001-001	<0.01	0.01	6.28	<0.01	0.42	5.18	1.03	30.86	0.06	0.02	0.39	25.6
Repeat:													
20	CK06001-020	<0.01	0.04	7.44	0.01	0.55	6.77	1.41	34.16	0.07	0.05	0.53	13.6

14-Sep-06

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1

No. of samples received: 22 Sample type: Core Shipment #: CK06-002 Samples submitted by: B. Robison

Note: Values expressed in percent

ET #.	Tag #	BaO	P205	SiO2	MnO	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
1	CK06002-001	<0.01	0.08	7.98	0.01	0.55	7.87	1.63	32.03	0.05	0.03	0.58	26.50
2	CK06002-002	<0.01	0.03	7.39	0.01	0.56	8.37	1.45	29.88	0.04	0.02	0.60	26.90
3	CK06002-003	<0.01	0.03	2.17	0.01	0.34	2.47	0.42	33.52	0.02	0.02	0.15	22.90
4	CK06002-004	<0.01	0.01	2.74	<0.01	0.22	6.32	0.61	37.83	0.04	0.11	0.22	27.60
5	CK06002-005	<0.01	0.04	2.96	0.01	0.25	5.01	0.75	31.23	0.04	0.04	0.21	25.50
6	CK06002-006	<0.01	0.03	3.46	<0.01	0.21	4.55	0.65	33.03	0.03	0.04	0.24	25.00
7	CK06002-007	<0.01	0.01	2.39	<0.01	0.22	3.31	0.37	26.83	0.02	0.16	0.19	22.90
8	CK06002-008	<0.01	0.02	2.57	0.01	0.25	3.44	0.37	36.40	0.05	0.07	0.12	14.60
9	CK06002-009	<0.01	0.05	2.22	0.01	0.12	2.61	0.46	40.07	0.02	0.06	0.09	6.40
10	CK06002-010	<0.01	0.04	3.11	<0.01	0.29	8.19	0.64	37.84	0.03	0.07	0.25	15.00
11	CK06002-011	<0.01	0.01	4.19	<0.01	0.23	5.55	0.69	38.07	0.04	0.12	0.19	11.70
12	CK06002-012	<0.01	<0.01	4.24	<0.01	0.33	5.41	0.74	37.67	0.04	0.17	0.23	13.20
13	CK06002-013	<0.01	0.03	3.75	<0.01	0.33	3.40	0.76	35.66	0.03	0.03	0.19	15.90
14	CK06002-014	<0.01	0.02	5.38	0.01	0.38	5.63	0.96	34.03	0.05	0.02	0.34	25.90
15	CK06002-015	<0.01	0.03	4.63	0.01	0.43	9.09	0.75	35.91	0.05	0.03	0.41	32.10
16	CK06002-016	<0.01	<0.01	2.20	<0.01	0.25	6.19	0.39	33.90	0.02	0.01	0.14	25.40
17	CK06002-017	<0.01	0.04	6.55	0.01	0.50	7.32	1.00	32.42	0.06	0.02	0.33	26.90
18	CK06002-018	<0.01	0.05	4.49	0.01	0.36	8.12	0.89	38.05	0.05	0.05	0.32	26.30
19	CK06002-019	<0.01	0.03	6.76	0.01	0.37	6.81	1.42	36.16	0.06	0.03	0.32	13.50
20	CK06002-020	<0.01	0.06	7.54	0.01	0.57	8.87	1.46	35.86	0.08	0.08	0.38	16.80
21	CK06002-021	<0.01	0.02	6.42	0.01	0.43	6.33	1.07	37.69	0.06	0.06	0.33	13.10
22	CK06002-022	<0.01	<0.01	1.55	<0.01	0.32	4.87	0.59	40.27	0.02	0.03	0.10	7.70

QC DATA:

Standard:

Mrg-1	0.02	0.09	39.55	0.17	16.97	13.26	8.28	14.36	3.12	0.75	0.26	2.22

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

31-Aug-06

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1 31-Aug-06

No. of samples received: 10 Sample type: Core Shipment #: CK06-008 Samples submitted by: B. Robison

Note: Values expressed in percent

ET i	#. Tag #	BaO	P205	SiO2	MnO	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
1	CK06-013-001	<0.01	0.06	9.88	<0.01	0.33	4.80	0.91	31.49	0.04	0.02	0.23	24.9
2	CK06-013-002	<0.01	0.03	3.52	<0.01	0.18	3.75	0.49	32.16	0.02	0.01	0.07	24.3
3	CK06-013-003	<0.01	0.03	3.81	<0.01	0.27	3.56	0.55	32.29	0.03	0.01	0.07	24.7
4	CK06-013-004	<0.01	<0.01	4.56	<0.01	0.23	5.07	0.66	33.52	0.03	0.01	0.07	24.8
5	CK06-013-005	<0.01	0.02	4.02	<0.01	0.19	4.97	0.62	32.25	0.03	0.01	0.08	24.9
6	CK06-013-006	<0.01	<0.01	2.77	<0.01	0.18	2.98	0.26	33.16	0.02	0.01	0.04	22.6
7	CK06-013-007	<0.01	<0.01	2.35	<0.01	0.12	2.10	0.21	34.66	0.03	0.18	0.08	20.4
8	CK06-013-008	<0.01	<0.01	2.25	<0.01	0.09	3.97	0.45	34.68	0.02	0.15	0.08	24.0
9	CK06-013-009	<0.01	0.01	2.83	<0.01	0.07	2.94	0.44	35.27	0.02	0.07	0.06	22.8
10	CK06-013-010	<0.01	<0.01	2.45	<0.01	0.09	2.82	0.35	39.17	0.02	0.10	0.07	10.1

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

XLS/06

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1 07-Sep-06

No. of samples received: 15 Sample type: Core Shipment #: CK06-006 Samples submitted by: B. Robison

Note: Values expressed in percent

ET #.	Tag #	BaO	P205	SiO2	MnO	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
1	CK609 - 001	<0.01	<0.01	3.22	<0.01	0.33	4.33	0.71	32.19	0.03	0.01	0.28	25.4
2	CK609 - 002	<0.01	0.01	2.73	0.01	0.38	9.02	0.73	32.14	0.03	0.02	0.32	31.6
3	CK609 - 003	<0.01	<0.01	2.54	<0.01	0.23	4.01	0.45	33.22	0.02	0.01	0.21	25.0
4	CK609 - 004	<0.01	0.02	2.84	<0.01	0.35	3.74	0.61	33.18	0.04	0.02	0.21	24.5
5	CK609 - 005	<0.01	0.01	5.47	0.01	0.39	5.53	1.04	31.11	0.05	0.02	0.34	25.5
6	CK609 - 006	<0.01	0.02	3.57	<0.01	0.32	4.36	0.67	33.26	0.04	0.02	0.20	24.9
7	CK609 - 007	<0.01	0.02	4.43	0.01	0.37	4.22	0.86	32.20	0.04	0.02	0.28	25.0
8	CK609 - 008	<0.01	0.02	2.59	<0.01	0.23	2.76	0.66	33.52	0.03	0.01	0.18	23.1
9	CK609 - 009	<0.01	<0.01	3.04	<0.01	0.22	2.74	0.45	33.33	0.02	0.01	0.17	23.1
10	CK609 - 010	<0.01	<0.01	1.10	<0.01	0.15	1.08	0.15	33.94	<0.01	0.01	0.05	21.6
11	CK609 - 011	<0.01	0.02	1.69	0.01	0.22	3.38	0.25	33.55	<0.01	0.01	0.07	24.1
12	CK609 - 012	<0.01	0.01	3.28	<0.01	0.25	4.83	0.59	33.40	0.03	0.02	0.21	25.3
13	CK609 - 013	<0.01	<0.01	1.88	<0.01	0.24	2.57	0.32	33.24	0.02	0.01	0.06	23.2
14	CK609 - 014	<0.01	0.01	2.44	<0.01	0.27	2.08	0.36	34.45	0.02	0.09	0.05	17.3
15	CK609 - 015	<0.01	<0.01	3.02	<0.01	0.27	3.45	0.46	39.02	0.01	0.04	0.09	10.5

QC DATA:

Repeat:													
9	CK609 - 009	<0.01	<0.01	2.68	<0.01	0.22	2.78	0.46	33.89	0.02	0.01	0.15	23.2

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1 07-Sep-06

No. of samples received: 12 Sample type: Core Shipment #: CK06-004 Samples submitted by: B. Robison

Note: Values expressed in percent

 ET #.	Tag #	BaO	P205	SiO2	MnO	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
1	CK06005 - 001	<0.01	0.01	4.32	<0.01	0.37	4.47	0.95	32.03	0.05	0.01	0.26	24.6
2	CK06005 - 002	<0.01	0.01	4.34	<0.01	0.39	4.36	0.97	32.83	0.05	0.01	0.29	24.8
3	CK06005 - 003	<0.01	0.02	5.09	<0.01	0.44	4.59	0.93	32.53	0.05	0.01	0.32	24.8
4	CK06005 - 004	<0.01	0.02	5.84	0.01	0.44	5.19	1.17	32.06	0.05	0.02	0.38	25.7
5	CK06005 - 005	<0.01	0.03	6.01	<0.01	0.52	6.11	1.17	30.99	0.06	0.01	0.39	25.7
6	CK06005 - 006	<0.01	0.04	0.35	0.01	0.41	5.98	1.27	32.09	0.05	0.01	0.38	25.6
7	CK06005 - 007	<0.01	0.02	6.25	<0.01	0.47	6.64	1.14	31.41	0.06	0.02	0.47	26.4
8	CK06005 - 008	<0.01	0.04	6.15	<0.01	0.46	5.88	1.17	30.22	0.07	0.01	0.38	25.6
9	CK06005 - 009	<0.01	0.04	8.16	0.01	0.69	5.93	1.89	30.46	0.08	0.01	0.58	26.5
10	CK06005 - 010	<0.01	0.04	9.73	0.01	0.86	4.24	2.07	30.19	0.11	0.02	0.63	26.6
11	CK06005 - 011	<0.01	0.01	2.42	<0.01	0.11	1.92	0.57	33.82	0.04	0.01	0.12	22.2
12	CK06005 - 012	<0.01	0.03	6.73	0.01	0.45	5.65	1.57	31.03	0.06	0.01	0.46	25.0

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

XLS/06

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1 31-Aug-06

No. of samples received: 7 Sample type: Core Shipment #: CK06-003 Samples submitted by: B. Robison

Note: Values expressed in percent

ET #.	Tag #	BaO	P205	SiO2	MnO	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
1	CK06003 - 001	<0.01	0.03	5.10	<0.01	0.30	5.05	0.94	31.55	0.05	0.01	0.30	24.70
2	CK06003 - 002	<0.01	0.02	5.06	<0.01	0.37	5.32	1.02	31.91	0.05	0.01	0.32	25.20
3	CK06003 - 003	<0.01	0.05	5.55	<0.01	0.33	5.67	0.99	32.00	0.05	0.01	0.32	25.30
4	CK06003 - 004	<0.01	0.04	4.84	<0.01	0.29	4.45	0.79	31.94	0.04	0.01	0.27	24.20
5	CK06003 - 005	<0.01	0.02	4.67	<0.01	0.27	4.65	0.83	31.36	0.05	0.01	0.30	24.70
6	CK06003 - 006	<0.01	0.02	4.55	<0.01	0.28	4.32	0.86	31.98	0.04	0.01	0.30	23.90
7	CK06003 - 007	<0.01	<0.01	3.73	<0.01	0.21	3.32	0.87	32.77	0.04	0.01	0.25	23.20
<u>QC DAT</u> Repeat: 1 Standard	 CK06003 - 001	0.01	0.03	5.57 ·	<0.00	0.27	5.10	1.00	32.08	0.06	0.01	0.31	24.32
Mrg-1		0.02	0.09	39.55	0.17	16.97	13.26	8.28	14.36	3.12	0.75	0.26	2.22

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

df/wr925 XLS/06

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1 07-Sep-06

No. of samples received: 11 Sample type: Core Shipment #: CK06-007 Samples submitted by: B. Robison

Note: Values expressed in percent

 ET #.	Tag #	BaO	P205	SiO2	MnO	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
 1	CK06011 - 001	<0.01	<0.01	1.83	<0.01	0.12	2.39	0.33	34.31	0.02	0.03	0.12	22.9
2	CK06011 - 002	<0.01	<0.01	1.89	<0.01	0.12	1.98	0.29	35.24	0.02	0.01	0.11	24.4
3	CK06011 - 003	<0.01	<0.01	3.43	0.01	0.28	9.04	0.71	31.91	0.03	0.03	0.28	29.7
4	CK06011 - 004	<0.01	0.01	6.01	0.01	0.47	9.12	0.91	35.90	0.05	0.03	0.29	34.7
5	CK06011 - 005	<0.01	<0.01	1.66	<0.01	0.19	5.43	0.41	30.12	0.02	0.01	0.18	26.7
6	CK06011 - 006	<0.01	<0.01	3.98	<0.01	0.26	6.36	0.77	31.87	0.04	0.02	0.32	26.3
7	CK06011 - 007	<0.01	0.01	3.77	<0.01	0.44	6.27	0.63	32.19	0.03	0.03	0.23	26.2
8	CK06011 - 008	<0.01	<0.01	1.77	<0.01	0.13	2.94	0.38	33.62	0.02	0.01	0.11	23.0
9	CK06011 - 009	<0.01	<0.01	3.55	<0.01	0.19	4.73	0.66	35.22	0.03	0.02	0.27	24.5
10	CK06011 - 010	<0.01	<0.01	3.32	<0.01	0.21	4.75	0.60	33.44	0.03	0.02	0.24	24.6
11	CK06011 - 011	<0.01	0.02	11.15	0.02	0.88	3.93	1.66	43.95	0.11	0.06	0.58	34.3

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

XLS/06

BOOTLEG EXPLORATION INC. #200, 16-11TH Ave S. Cranbrook, BC V1C 2P1 07-Sep-06

No. of samples received: 13 Sample type: Core Shipment #: CK06-005 Samples submitted by: B. Robison

Note: Values expressed in percent

ET #.	Tag #	BaO	P205	SiO2	MnO	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
1	CK06007 - 001	<0.01	<0.01	2.61	<0.01	0.32	2.09	0.47	35.27	0.02	0.01	0.19	25.0
2	CK06007 - 002	<0.01	0.02	9.18	0.01	0.65	4.95	1.63	46.43	0.05	0.04	0.42	36.4
3	CK06007 - 003	<0.01	<0.01	1.49	<0.01	0.05	1.87	0.17	34.65	<0.01	0.02	0.10	22.3
4	CK06007 - 004	<0.01	0.02	10.81	0.01	1.01	6.68	2.35	39.85	0.09	0.06	0.73	35.4
5	CK06007 - 005	<0.01	0.01	1.73	<0.01	0.06	2.78	0.22	35.02	0.01	0.01	0.06	23.2
6	CK06007 - 006	<0.01	<0.01	1.55	<0.01	0.07	1.72	0.21	32.72	<0.01	0.02	0.05	22.6
7	CK06007 - 007	<0.01	<0.01	3.32	<0.01	0.23	2.58	0.73	32.22	0.03	0.02	0.22	23.7
8	CK06007 - 008	<0.01	0.02	19.17	0.01	1.01	7.73	2.15	35.13	0.11	0.06	0.84	31.6
9	CK06007 - 009	<0.01	<0.01	2.36	<0.01	0.17	2.59	0.37	35.79	0.01	0.01	0.08	22.0
10	CK06007 - 010	<0.01	<0.01	1.66	<0.01	0.09	2.66	0.29	35.12	0.02	0.01	0.07	22.7
11	CK06007 - 011	<0.01	<0.01	2.31	<0.01	0.16	2.68	0.28	33.87	0.02	0.01	0.13	22.7
12	CK06007 - 012	<0.01	0.05	18.46	0.02	0.93	7.55	3.13	36.13	0.11	0.09	0.91	31.1
13	CK06007 - 013	<0.01	0.01	4.57	0.02	0.32	4.15	0.74	35.01	0.03	0.02	0.27	23.9
QC DATA:													

Repeat:

Repeat:												
8	CK06007 - 008	0.04	18.17	0.02	1.07	7.85	2.23	38.37	0.11	0.05	0.80	31.2

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer