SUMMARY REPORT OF THE 2006 FIELD PROGRAM (FILED FOR ASSESSEMENT WORK)

ON THE
CROWSNEST PROPERTY
FORT STEELE MINING DIVISION, BC

NTS: 82G017, 82G018
Latitude 49 degrees $09^{\prime} \mathrm{N}$, Longitude 114 degrees $33^{\prime} \mathrm{W}$ (centre)

Mincord Exploration Consultants Ltd. 110325 Howe St., Vancouver, BC, V6C 1Z7
Ginette Carter P.Geo and J.W. (Bill) Morton P.Geo
TABLE OF CONTENTS
SUMMARY 1
1 INTRODUCTION AND TERMS OF REFERENCE 2
2RELIANCE ON OTHER EXPERTS 2
3 PROPERTY DESCRIPTION AND LOCATION 3
4 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY 3
5 HISTORY 4
6.0 GEOLOGICAL SETTING 7
6.1 Property Geology 8
7 DEPOSIT TYPES 9
8 MINERALIZATION 9
9 EXPLORATION 11
10.1 DRILLING 11
10.2 TRENCHING 12
11 SAMPLING METHOD AND APPROACH 17
12 SAMPLE PREPARATION, ANALYSIS AND SECURITY 17
13 ADJACENT PROPERTIES 18
14 MINERAL PROCESSING AND METALLURGICAL TESTING 18
15 MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES 18
16 OTHER RELEVANT DATA AND INFORMATION 18
17 INTERPRETATIONS AND CONCLUSIONS 19
18 RECOMMENDATIONS AND BUDGET 19
192006 FIELD WORK COST STATEMENT 21
20 AUTHOR QUALIFICATIONS 22
LIST OF FIGURES
Figure 1 Location Map 2
Figure 2 Claim Map 4
Figure 3 Stratigraphic and Deposit Model 10
Figure 42006 Trench Location map - page size 14
Figure 5a 1:250 scale- CTR612 Trench samples and Au ppb values map Attached
Figure 5b $\quad 1: 250$ scale - K Grid area 2006 Trench samples and Au ppb values map Attached
Figure 6 Significant samples location Property wide 1:3000 scale AttachedFigure $7 \quad 1: 250$ scale - K Grid - Significant Sample location versusTrenching location

Mincord Exploration Consultants Ltd. 110325 Howe St., Vancouver, BC, V6C $1 Z 7$
Ginette Carter P.Geo and J.W. (Bill) Morton P.Geo
TABLE OF CONTENTS
SUMMARY 1
1 INTRODUCTION AND TERMS OF REFERENCE 2
2RELIANCE ON OTHER EXPERTS 2
3 PROPERTY DESCRIPTION AND LOCATION 3
4 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY 3
5 HISTORY 4
6.0 GEOLOGICAL SETTING 7
6.1 Property Geology 8
7 DEPOSIT TYPES 9
8 MINERALIZATION 9
9 EXPLORATION 11
10.1 DRILLING 11
10.2 TRENCHING 12
11 SAMPLING METHOD AND APPROACH 17
12 SAMPLE PREPARATION, ANALYSIS AND SECURITY 17
13 ADJACENT PROPERTIES 18
14 MINERAL PROCESSING AND METALLURGICAL TESTING 18
15 MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES 18
16 OTHER RELEVANT DATA AND INFORMATION 18
17 INTERPRETATIONS AND CONCLUSIONS 19
18 RECOMMENDATIONS AND BUDGET 19
192006 FIELD WORK COST STATEMENT 21
20 AUTHOR QUALIFICATIONS 22
LIST OF FIGURES
Figure 1 Location Map 2
Figure $2 \quad$ Claim Map 4
Figure $3 \quad$ Stratigraphic and Deposit Model 10
Figure 42006 Trench Location map - page size 14
2006 Trench Location map - 1:3000 Attached
Figure 5a 1:250 scale- CTR612 Trench samples and Au ppb values map Attached
Figure 5b \quad 1:250 scale - K Grid area 2006 Trench samples and Au ppb values map Attached
Figure 6 Significant samples location Property wide 1:3000 scale
Figure $7 \quad 1: 325$ scale - K Grid - Significant Sample location versus Trenching location Attached
Figure $8 \quad 1: 250$ scale anomalous Au ppb -2006 K area Trenching Attached 16
LIST OF TABLES
TABLE I: Tenure table 3
TABLE II: Significant Au g/t intervals drilled in the A grid 6
TABLE III: Grab Samples collected on the Crowsnest property in 2006 11
TABLE IV: All significant Au g/t intercept from the Crowsnest property 12

APPENDICES

Appendix A High grade float table
Appendix B Crowsnest Trench Au-Ag Intervals
Appendix C Assays certificates

Summary

An exploration program consisting of road reconstruction and mechanical trenching was initiated on the Crowsnest property in June 2006. The Crowsnest property is underlain by a thick sequence of Pennsylvanian and Mississippian carbonate and clastic rocks, of which the Mississippian Rundle Group shows the greatest exposure. Mid-Cretaceous syenite and trachyte intrusions as sills, dykes, plugs and possible diatremes intrude these units.

The object of the 2006 program was to trench untested soil gold anomalies and to provide further insight in the area peripheral to the upper trench (exposed in 1993 and reexposed in 1999). The lower trenches were designed to become drill roads for a possible later drill program and to allow access to higher elevations along the slope where it is believed that high-grade mineralized float may be sourcing from. The existing exploration road was, at the same time, repaired as required.

Although the results of the trenching were largely disappointing a new model has been developed which interprets a structure higher up the slope providing a possible source for mineralized float which has been discovered over a 2 kilometres stretch of the property over the last eighteen years. A review of the database calculates an average grade for samples of this float exceeding $1 / \mathrm{g} / \mathrm{t}$ to be $32.656 \mathrm{~g} / \mathrm{t}$ gold (based on 36 determinations) with a corresponding copper value of 0.23% (based on 34 determinations). The majority of mineralized samples in this population are from limonitic, pyritic or magnetite rich syenite / monzonite with and without quartz veining. The highest-grade sample in this population (\#21714), collected in 1989 by Placer Dome Inc., is described as an intrusive breccia with a gold value of $524.41 \mathrm{~g} / \mathrm{t}(15.20$ ounces per ton). Clearly more exploration for probable multiple sources of this mineralization is warranted.

Mincord Exploration Consultants Ltd. of Vancouver provided the geological management for the project with Astraf Construction Ltd. of Jaffray BC providing a track-mounted excavator.

1 INTRODUCTION AND TERMS OF REFERENCE

At the request of LaQuinta Resources Ltd., this report was prepared by Bill Morton and Ginette Carter, both P.Geo. to document and discuss the results of the 2006 trenching work conducted on the Crowsnest claim group located 50 kilometers southeast of Fernie, B.C. This report summarizes the fieldwork carried out on the claims and discusses the implication of this year's results on further exploration programs on the Crowsnest Property.

The purpose of the report is to qualify targets for future mineral exploration and development within the subject property.

The 2006 exploration report is based on fieldwork carried out by Ginette Carter, who was on site during the whole program from and supervised the project from July $4^{\text {th }}$ to July $29^{\text {th }}, 2006$. This rest of the report is partly based on published and unpublished fieldwork reports carried out by various private sector mining company personnel and public sector government personnel. Current compilation of the geological and geochemical data undertaken by the author has led to recommendations for work on the Crowsnest mineral claims which include a 2 phase program involving further prospecting, geological mapping and trenching, and later drilling.

2 RELIANCE ON OTHER EXPERTS

No experts additional to Ginette Carter and Bill Morton were consulted for the 2006 program.

3 PROPERTY DESCRIPTION AND LOCATION

The Crowsnest claim group is located 50 km southeast of Fernie, B.C. (Lat. 49° $10^{\prime} \mathrm{N}$, Long. $114^{\circ} 32^{\prime} \mathrm{W}$) some 25 kilometres west of the Alberta boundary and 20 kilometres north of the Montana border within the Fort Steele Mineral Division. The Crowsnest property consists of 10 staked (unpatented) mineral claims totaling 2,388 hectares.

Eastfield Resources Ltd owns the Crowsnest property. In 2004 La Quinta Resources Corporation of Vancouver, BC, entered into an option agreement with Eastfield. By this agreement, La Quinta can earn up to 60% of the Crowsnest Property by spending $\$ 800,000$ over four years, paying $\$ 100,000$ and issuing 150,000 shares.

A listing of claim tenures is as follows:
TABLE I: Tenure Table

Claim Name	Record \#	Area (hectares)	Expiry Date
Aubyrd 4	406552	375	Oct 31, 09
Aubyrd 5	406551	500	Oct 31, 09
Aubyrd 6	406550	500	Oct 31, 09
Aubyrd 7	406553	250	Oct 31, 09
Aubyrd 8	406554	150	Oct 31, 09
Crowsnest Lookout	504310	317	Jan 19, 10
Crowsnest Revenge	504297	85	Jan 19, 09
Connector	517530	$\mathbf{1 2 7}$	Jul 12, 09
Lower Connector	520838	63	Oct 06, 09
Hilltop	549732	21	Jan 17, 08
Total area		$\mathbf{2 3 8 8}$	

All claims are located in the Fort Steele Mining Division

4 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

Road access to the property is via a series of major logging roads that lead southerly from Highway 3 at Morrissey approximately 15 kilometres southwest of the town of Fernie (the Lodgepole, Harvey and Flathead forest access roads progressively lead into each other). At the 71-kilometre road marker, on the right side of the road, the Crowsnest property road initially follows a seismic line in a westerly direction and then turns northerly into the " B " grid area of the property. Elevations on the claim group range from 1320 metres at the Flathead River to 2100 metres at the highest point on the property.

Vegetation is dominated by pine with lesser larch and Douglas fir at the lower elevations and deciduous brush and alpine grasses at higher elevations. Extensive clearcut logging has occurred over the last twenty years in much of the mature timber in the

Figure 2: Crowsnest Claims Location

Flathead Valley and its tributary drainages with immature pine remaining in much of the remainder. Snow is typically gone by the third week of May and returns about the first week of November.

5 HISTORY

Early exploration in the vicinity of the Crowsnest project was almost exclusively for hydrocarbons. In the early 1900's oil seeps on Sage Creek, located approximately ten kilometers southeast of the southeast corner of the Crowsnest claims (on the opposite side of the Flathead valley) attracted the attention of early oil exploration groups and a number of wooden derricks were constructed on site. None of these early wells however encountered commercial quantities of oil and the rigs were eventually abandoned. In the nineteen fifties Shell Canada completed a 3500 metre oil and gas wildcat seven kilometers to the northeast of the claims, Pacific Atlantic Oil completed a 2,700 metre test nine kilometers to the east of the claims and in 1971 Imperial Oil completed a 1400 metre wildcat fifteen kilometers to the northwest of the claims (on Harvey Creek at the

Howell Creek road junction). In the late 1980's and early 1990's a consortium including Shell Canada Resources and Chevron Canada completed extensive seismic surveys and completed four drill tests for reservoir quantities of carbon dioxide that if found could be piped to Southern Alberta for well injection purposes. This exploration, although still largely confidential, is not believed to have been immediately successful.

Coal was explored for by several groups at different times in the general area of the claims beginning in the mid 1900's and continuing to the present. First approximately twelve kilometers northeast of the northeast claim boundary near the now abandoned village of Flathead and later eight kilometers south of the claims in the valley of Cabin Creek at its confluence with the Flathead River (Sage Creek Coal Consortium). In 1997 Fording Coal Limited drilled nine exploration holes in the upper Flathead Valley (the Lodgepole Leases located approximately 15 kilometres to the north).

Dome Exploration (Canada) Limited (later Placer Dome Inc.) staked the first mineral claims on the Crowsnest Property in 1984 following the discovery of several gold anomalies during a silt sampling program conducted that year in the vicinity of Trachyte Ridge. The Dome Mine's program was managed by Dr. Peter Fox PhD and was initially called the Flathead Project. Fox was at this time conducting a BC wide reconnaissance gold and copper program which had started in 1972 for Dome Exploration (Canada) Limited focusing on alkalic intrusive complexes. Doctor Fox had keyed this area as a result of the recent documentation of alkalic intrusives in the area in the 1965 Geological of Canada memoir for the area (Price et al 1965) and anecdotally because of reference to gold having been panned from a stream near the 71-kilometre road marker in the 1960's.

Further work completed in 1985 and 1986, focusing on the "A Grid" area of the property, outlined encouraging rock, float and soil results and discovered a small calcsilicate vein ($<0.5 \mathrm{~m}$) which returned an analysis of $1.5 \mathrm{~g} /$ t gold and 2.3% zinc. A soil gold anomaly measuring 1000 metres by 300 metres with peak soil values to $5,590 \mathrm{ppb}$ was outlined and a raft of limestone cut by red and white chalcedonic veins within the syenite was noted. Additional minor grids were located at several other locations on the then claim block including the "E" grid where a greater than 200 ppm soil copper anomaly was located but never evaluated. Success on the "A grid", which included grab samples up to 36.80 grams per ton gold was sufficiently successful to justify a diamond drill program the following season.

The 1987 field program at Flathead (now Crowsnest) was initiated in mid May and completed in late August in the "A Grid" area of the property which is located in the extreme western side. The drill program totalled 1262 metres in ten holes and was completed using a helicopter. An unexpected collapse of the core rack occurred during the program with eight holes being spilled and 25% of the core lost. Several holes intersected syenite intrusive through their full lengths while one encountered only marble and the others intersected a mixture of marble, limestone and syenite. Gold mineralization was noted to be correlative with increased limonite. Despite the small scale of the program five holes obtained encouraging intercepts as follows:

Hole	From-To (m)	Intercept (m)	Gold (g/t)
FA-1	$32-33$	1.0	1.39
FA-2	$80-81$ and $99-100$	1.0	5.49
FA-4	$76.8-78.3$	1.0	3.54
FA-6	$44.2-45.7$ and $48.6-50.1$	1.5	1.16
FA-9	$50.3-51.7$	1.4	1.71

TABLE II: Significant Au g/t intervals drilled in the A grid
Also in 1987 exploration was initiated on the "B grid", located seven kilometres to the east, and resulted in the discovery of a "sulphide rich gossanous boulder" that returned an analysis of $122,000 \mathrm{~g} / \mathrm{t}$ gold (3.56 ounces per ton) and can be considered the initial discovery of significant mineralization on the "B grid". This sample consisted of limonite, pyrite, chalcopyrite with minor quartz and altered rock fragments.

In 1988 Placer Dome Inc. (formerly Dome Exploration (Canada), Limited) continued to work on the " B " grid and extended the grid coverage to the north, completed induced polarization surveying and began road construction up the "B Grid" valley.

In 1989 Placer Dome Inc. continued to expand the grid in a northerly direction, completed ground based geophysics (VLF and magnetometer) and completed six short diamond drill holes totaling 886 metres. Four of the holes were designed to follow up VLF geophysical anomalies while one hole was designed to test a coincident induced polarization soil gold response and one was designed to test a magnetic lineament. The 1989 drill holes, which did not return significant results, predominantly intersected limestone with lesser shale and syenite. Prospecting completed while the program was being conducted located several pieces of impressively mineralized float including a sample of pyritic intrusive breccia that returned an analysis of $521,101 \mathrm{ppb}$ gold (15.20 ounces per ton).

In 1991 Placer Dome Inc. conducted 215 metres of excavator trenching (three trenches) on the slope above the 1989 drill sites. The results were unremarkable excepting the most easterly sample in trench $91-2$ which returned an analysis o 542 ppb gold in the last sample. Further pieces of mineralized float were found with values to $66,211 \mathrm{ppb}$ gold ($1.93 \mathrm{oz} /$ ton).

In 1993 Phelps Dodge Corporation of Canada (Optionee from Placer Dome Inc.) discovered a limonitic quartz vein outcropping higher in the drainage of the "B Grid". A new grid "K grid" was established in this area and the exposure sampled returning analysis to $4.6 \mathrm{~g} / \mathrm{tg}$ gold. The existing road was then continued to this area and mechanical trenching initiated resulting in a number of high grade samples including two which exceeded $99,999 \mathrm{ppb}$ gold which upon full assay returned values to $350.70 \mathrm{~g} / \mathrm{t}$ gold.

In 1994 Phelps Dodge Corporation of Canada drilled four diamond drill holes totaling 364 metres without encountering any significant intersections (all holes were
angled southwesterly. If a vein structure was also dipping southwesterly it would be missed by all of these holes).

In 1998 Eastfield Resources Ltd. purchased the Crowsnest project claims and in 1999 optioned a 75% interest to International Curator Resources Ltd. The 1999 program which started the last week of May included 2.8 kilometres of road construction, 20 kilometres of induced polarization survey, 19 kilometres of magnetometer survey, 341 soil samples, 30 till bank samples, nine stream sediment samples, 101 rock and trench samples, six trenches totaling 106 metres and ten diamond drill holes totaling 1056 metres. Of the rock samples collected 15 were boulders or cobbles in till with seven samples exceeding 1 gram per tonne gold with the average value being $19.27 \mathrm{~g} / \mathrm{t}$. Trench TK-99-1(a) yielded a 16.5 metre channel sample grading $8.338 \mathrm{~g} / \mathrm{t}$ gold including 3 metres grading $19.063 \mathrm{~g} / \mathrm{t}$. Other trenches were far less successful and a complex system of faults was interpreted to explain the apparent lack of continuity. Drilling did not encounter significant gold intercepts.

In 2002 Goldrea Resources Corp. optioned a 60\% interest in the Crowsnest claims from Eastfield and subsequently completed a program of mechanical trenching, road construction and diamond drilling. A new spur road, 175 metres in length, was constructed from the Spur " 2 " road to the southwest of the trench area and minor trenching was competed to the northwest of this area. A total of 11 drill holes were completed with and aggregate meterage of 641 metres (8 holes were drilled of the new road and three were drilled in the vicinity of the discovery trench). Most holes were terminated short of their target depths due to drilling problems. One of the holes, 02-03, intersected 12 separate syenite dykes or sills over an interval of 91 metres and returned an intercept of $1.05 \mathrm{~g} / \mathrm{t}$ gold over 12 metres (approximately 150 metres south of the discovery trench area).

In 2004 Goldrea Resources Corp. completed 4 diamond drill holes totaling 476 metres. Results included hole $03-03$ with 3.1 metres grading $248-\mathrm{g} / \mathrm{t}$ silver and hole 03-04 which ended with 3.4 metres grading $240 \mathrm{~g} / \mathrm{t}$ silver ($7.0 \mathrm{oz} / \mathrm{t}$). Hole $03-04$ was drilled southwesterly into the hill above spur road 3 (constructed in 1999) and may have intersected an important structure integral to the new exploration model.

In 2005 La Quinta Resources Corp. completed minor sampling and mapping in the vicinity of the discovery trench area, which is described in more detail in further sections of this report.

6.0 GEOLOGICAL SETTING

The Crowsnest property is located within the Eastern Ranges of the Canadian Rocky Mountains on the ancestral North American Craton. Here the stratigraphic column is dominated with marine sediments that vary in age from the Pre-Cambrian Purcell (Belt Group) to younger Paleozoic carbonate and clastic sediments.

Major structural complexities developed during the Laramide Orogeny when thrusting juxtapositioned older Purcell (Belt Series) rocks over Paleozoic carbonate and clastic sequences. A 10,500 foot (2700 metre) oil exploration well drilled by Pacific Atlantic Oil in the 1950 's, nine kilometres to the east of the Flathead River encountered 1200 metres of Purcell rocks before encountering younger Mesozoic carbonates for the
remainder of the hole. The Lewis Overthrust, intersected by this hole, is one of the more significant faults in this region of the Canadian Rocky Mountains and is exposed in several locations on and around the Crowsnest claims.

The Crowsnest Property is predominantly underlain by a thick sequence of Pennsylvanian and Mississippian carbonate and clastic units with carbonate units of the Mississippian Rundle group predominating.

Basin and Range tectonics were operative in this area in late Cretaceous and Tertiary time and represent the northernmost extension of this structural province that is more prevalent in the western United States. The Flathead Fault, one of the younger features in the area, is interpreted to be part of this regime and forms the edge of an extensional graben that developed during this event. Paleo-reconstruction of the Flathead Valley interprets 9.6 kilometres of extension over the present surface exposure of the valley of 27.2 kilometres. Several southwesterly dipping normal faults (one being named the Flathead Fault) are interpreted. This interpretation suggests that mineralizing structures may likewise trend north-northwest and dip steeply to the southwest in multiple repetitions.

The Flathead Valley contains the only significant volumes of intrusive rocks known in the Eastern Ranges of the Canadian Rockies. These intrusive rocks are dominantly alkalic in composition and occur as dykes, sills and stocks and possibly diatremes that include monzonite, syenite and trachyte varieties. Some appear to have been emplaced along faults and these can consequently be fractured and sheared. Many of the fault controlled syenites are extensively clay altered and are manifested as prominent surface lineations. Larger intrusives, interpreted to occur as stocks and dykes, are often fresh or propylitically altered in outcrop. Altered syenites exposed in trenches and encountered in drill core can be variably clay and sericite altered and sometimes silicified. Occasional areas of skarning in the hosting carbonates have been noted (particularly on the "A grid") and contact areas in the carbonates are often brecciated and silicified. Flathead intrusions are generally propylitically altered in surface exposure and drill core exhibiting silicification, sericitization, pyritization and clay alteration. At surface, alteration is generally limited to marbleization, re-crystallization, and bleaching, while in drill holes skarn and hornfels alteration has been noted.

It has been speculated that trachytic volcanics outcropping in the nearby Crowsnest Pass area of Alberta are the volcanic equivalents of these rocks.

Faulting in the predominantly carbonate stratigraphy can be divided into low angle types which are often associated with some brecciation and are quite possibly thrusts (part of the Lewis Thrusting event) and high angle normal faults related to graben development during extension. The later types predominantly strike north-south (or north northwest) often dipping to the west with the west (or west south-west) side down dropped. Dykes, and stocks have intruded the sedimentary sequence.

6.1 PROPERTY GEOLOGY

The Crowsnest property is underlain by a thick sequence of Pennsylvanian and Mississippian carbonate and clastic rocks, dominated by the Mississippian Rundle Group. Mid-Cretaceous syenite and trachyte intrusions as sills, dykes, and stocks have intruded the sedimentary sequence. Flathead intrusions are generally propylitically altered in
surface exposure. Drill core exhibit silicification, limited to marbleization, rerystallization, and bleaching, and to a lesser extent skarn and hornfels alteration. The Crowsnest property is within a basin and range structural domain, dominated by an abundance of listric faults. These structures bave been displaced by high angle easterly, northwesterly and northeasterly trending normal faults associated with regional Tertiary extension. The low to moderate angle structures are mainly hosted in shaly parts of the carbonate and clastic section.

Both intrusive and carbonate hosted gold mineralization is present on the Crowsnest and nearby Howell properties. Data from several drill campaigns suggests that the Crowsnest has mostly intrusive hosted gold mineralization while the nearby Howell features dominantly carbonate hosted gold mineralization. The Crowsnest property also contains elevated gold values hosted in sediments, but a drill program completed in 2002 suggests that elevated gold values are closely associated with the margin phases of the Flathead Intrusive Complex, and to a large extent intrusive hosted or in close proximity to intrusive rock. Thus the deposit type for the Crowsnest property is best described as alkalic intrusion-associated Au , a sub-type of low-sulphidation epithermal Au deposits.

7.0 DEPOSIT TYPES

The integral component of the deposit model for the Crowsnest project is the association between gold and alkalic intrusive rocks-particularly in a setting where the intrusives in question have been emplaced in a regime of extensional tectonics. Many of the analogues that can be cited are "world class gold deposits" and include Lanolam (Lahir Island) with resources of 422 million tonnes grading $2.95 \mathrm{~g} / \mathrm{t}$ gold (40 million ounces gold), Porgera (PNG) with current and previous production resources of 23 million ounces gold and Cripple Creek (Colorado) also with current and previous production resources of 23 million ounces gold. Cripple Creek, the closest analogue, is still in production with lowgrade resources currently being mined by AngloGold Ashanti. Located about 1500 kilometres to the south-south-east of Crowsnest, Cripple Creek shares many similarities with Crowsnest including a comparable setting on the ancestral North American craton and gold mineralization associated with a Tertiary age alkaline complex occurring in a horst and grabon structural setting. The bulk of the mineralization at Cripple Creek is within or spatially associated with heterolithic breccias interpreted to be diatremes. Lowgrade gold mineralization occurs with pyrite in micro-fractures and as disseminations while high-grade mineralization is fracture controlled and occurs with gold-silver tellurides. High-grade minerlization is often associated with larger areas of low-grade mineralization commonly in the contact areas of the Cripple Creek Breccia. Historically the greatest amount of gold produced at Cripple Creek has been the high-grade variety.

8 MINERALIZATION

The drusy, probably late stage, quartz veining and silicification that has been observed at Crowsnest may be the controlling feature for gold mineralization. Cu and Bi tend to be elevated in strong gold zones. Silver values generally increase with increasing gold and copper. Earlier hydrothermal events may be responsible for the various
alteration phases that have been noted，including pervasive silicification，sericitization and skarning．It may suggest that the gold enriched fluids were gold－silver rich and base metal deficient．The trace elements match the alkalic intrusive hosted model by including molybdenum，bismuth，by the low but anomalous levels of copper，zinc，lead，and elevated levels of barium．Elevated tellurium was reported by earlier workers．Fluorite has been noted as a common，but not prolific，gangue mineral．

STRATIGRAPHIC AND GEロLDGICAL MロDEL

（MロDIFIED FRUM L．M CLARK 1964 ）

FIG． 3

Figure 3：Stratigraphy and Geology Model

Mincord Exploration Consultants Ltd．110－325 Howe St．，Vancouver，BC，V6C 1 Z7 10 Ginette Carter P．Geo and J．W．（Bill）Morton P．Geo

9 EXPLORATION

The 2006 exploration program consisted of 10 trenches totaling 718 meters and 332 samples over two areas, across the K grid (Discovery Grid) and on the B grid near the second switch back driving northerly on the access road.

Trenching results are described in section 10.2 . In addition to trenching nine grab samples were collected during the field season with sample 29-08-R1 consisting of limonitic syenite occurring as float from the hairpin on the access road north of DDH FB4 (Fig. 6) returning $3.49 \mathrm{~g} / \mathrm{t}$ gold.

TABLE III: Grab Samples collected on the Crowsnest property in 2006

10.1 DRILLING

No drilling was undertaken at the Crowsnest Property during the 2006 program. Between 1987 and 2003 4,553 metres of drilling has been completed.

In 1987 Placer Dome Inc completed a drill program in the "A Grid" area with ten hols drilled totaling 1262 metres. Several holes intersected syenite intrusive through their full lengths while one encountered only marble and the others intersected a mixture of marble, limestone and syenite. Gold mineralization was noted to be correlative with increased limonite. Despite the small scale of the program five holes obtained encouraging intercepts.

In 1989 Placer Dome Inc completed six short diamond drill holes totaling 886 metres in the southern area of the "B" Grid. The 1989 drill holes, which did not return significant results, predominantly intersected limestone with lesser shale and syenite.

In 1994 Phelps Dodge Corporation of Canada drilled four diamond drill holes totaling 364 metres in the vicinity of the discovery trench without encountering significant results. All holes were angled southwesterly such that if a vein structure were also dipping southwesterly it would be missed by these holes.

In 1999 International Curator Resources Ltd completed ten diamond drill holes totaling 1056 metres in various areas of the " B " grid without obtaining significant results. Thick sections of limestone and calcareous siltstones with lesser volumes of carbonaceous siltstone to carbonaceous limestone, divided by several thin (1 meter or less) to thick (up to 85 m) feldspar porphyry intrusions were encountered. Local calcsilicate (skarn) alteration was encountered including garnet-epidote-magnetite.

Mincord Exploration Consultants Ltd. 110-325 Howe St., Vancouver, BC, V6C $1 Z 711$ Ginette Carter P.Geo and J.W.(Bill) Morton P.Geo

In 2002 Goldrea Resources Corp. completed eleven diamond drill holes totaling 641 metres (8 holes were drilled of the new road constructed up the hill to the south of the discovery trench and three were drilled in the vicinity of the discovery trench). One of the holes, 02-03 drilled 150 metres to the south, intersected 12 separate syenite dykes or sills over an interval of 91 metres and returned an intercept of $1.05 \mathrm{~g} / \mathrm{t}$ gold over 12 metres. In 2003 Goldrea Resources Corp. completed four diamond drill holes totaling 476 metres. Results included hole $03-03$ with 3.1 metres grading $248-\mathrm{g} / \mathrm{t}$ silver and hole 03-04 which ended with 3.4 metres grading $240 \mathrm{~g} / \mathrm{t}$ silver ($7.0 \mathrm{oz} / \mathrm{t}$). Hole $03-04$ was drilled southwesterly into the hill above spur road 3 (constructed in 1999) and may have intersected an important structure. A summary of significant drill results is as follows:

TABLE IV: Significant Au g/t drill intercepts from the Crowsnest property

Hole	From-To (m)	Intercept (m)	Gold (g/t)	Silver (g/t) Grid
	$32-33$	1	1.39	not assayed "A"
FA-1	$30-81$	1	5.49	not assayed "A"
FA-2	80			
	and		3.54	not assayed "A"
	$99-100$	1	1.16	not assayed "A"
FA-4	$76.8-78.3$	1.5	1.71	not assayed "A"
FA-6	$44.2-45.7$	1.5		
	and		7.58	not assayed "A"
	$48.6-50.1$	1.5	1.13	not assayed "A"
FA-9	$50.3-51.7$	1.4	1.05	not assayed "K"
CR-02-03	$66.5-78.5$	12	0.52	not assayed "K"
CR-02-04	$63.0-69.0$	6		
	and		0.92	not assayed "K"
	$87.5-90.5$	3	insignificant	248.0

10.2 TRENCHING

Four previous trenching programs took place at the Crowsnest property.
In 1991 Dome Exploration cut three trenches in the B Grid area with limited success for a total of $215 . \mathrm{m}$.

In 1993 Phelps Dodge Corporation of Canada (Optionee from Placer Dome Inc.) discovered a limonitic quartz vein outcropping higher in the drainage of the "B Grid". A new grid "K grid" was established in this area and the exposure sampled returning analysis to $4.6 \mathrm{~g} / \mathrm{t}$ gold. The existing road was then continued to this area and mechanical
trenching initiated resulting in a number of high grade samples including two which exceeded $99,999 \mathrm{ppb}$ gold which upon full assay returned values to $350.70 \mathrm{~g} / \mathrm{t}$ gold.

International Curator Resources Ltd. trenched the K grid area (Discovery Grid) in 1999, and the discovery trench area. Trench TK99-1 encountered 16.5 metres grading $8.338 \mathrm{~g} /$ t gold including 3 metres grading $19.063 \mathrm{~g} / \mathrm{t}$. Other trenches were less successful and a complex system of faults was interpreted to explain the apparent lack of continuity.

In 2002 Goldrea Resources Corp. excavated a duplicate trench "Discovery" to confirm both location and grade of the discovery trench and encountered similar grades.

The 2006 trenching component of the exploration program was designed to test mineralization extension in the K (Discovery) grid area and to test soil and float anomalies in the B grid. Ten trenches totalling 718 m were excavated (Fig.4), mapped, sampled and photographed. The trenches were immediately refilled and seeded. The following table provides the NAD 83 Zone 11 UTM grid location for the start of all the 2006 trenches.

TABLE II. 2006 Trenching Program - Trench Headers

TR_ID	Easting	Northing	EL	Azimuth	Dip	Length
CTR601N	679,386	$5,447,917$	1716	57	-10	56
CTR601S	679,383	$5,447,915$	1716	255	5	38
CTR602	679,429	$5,447,950$	1700	164	-3	27
CTR603N	679,409	5,447910	1715	37	-7	25
CTR603S	679,381	$5,447,880$	1720	41	-10	43
CTR604E	679,358	$5,447,889$	1725	124	-3	80
CTR604W	679,259	$5,447,926$	1730	114	-5	105
CTR612C	680,653	$5,446,662$	1605	356	5	60
CTR612N	680,627	$5,446,718$	1612	360	11	94
CTR612S	680,653	$5,446,662$	1605	174	5	190

In the trench sample interval table provided in Appendix (TABLE III) the uphill side and if samples were available from the downhill side both sides of the trenches were sampled. The table includes sampled intervals, sample ID and Au ppb values. One column specifies the trench side sampled. ACME's Fire Assay certificates and the ICP certificates were formatted for page size PDF and can be found in Appendix B (2006 Assay certificates).

Of the 332 chip samples collected from either or both sides of the average 3 m deep and 1.5 m wide trenches, 307 samples represented unique intervals, while the balance indicated overlapping lithologies within the same intervals. Composites of the 25 overlapping intervals were weighted by their length to produce the composited Au ppb values used with the Discover program to produce the Trenching 2006 Assay plans included in Appendix. (See Table I "Crowsnest Trench FA Intervals"). Twenty-six (26) intervals from the K grid trenches CTR603N, CTR601N, CTR601S, CTR602, and an isolated sample on 603 S (TableII). returned gold over 100 ppb .

Figure 4: Location of 2006 Trenching Program - Crowsnest Property

Except for sample 173456 all came from representative chip samples. The only interval with over 500 ppb Au was sample 173402 on CTR603N, near the start of the trench carrying 976 ppb Au on the west side and 425 ppb Au on the East side of the trench.

Significant Intersections - 2006 Trenching program

| Trench_No | From_m_ | To_m_ | | Sample_No AuPPB | | Side |
| :--- | ---: | :--- | ---: | :--- | :--- | :--- | profile part

The 2006 trenching program provided us with further insights on the stratigraphic and structural setting of K and B grid area. On the K grid area, a layered undulating package of fractured and bleached limestone and oxidized syenite (partly sills?) was mapped. Within CTR603N and CTR601N and between them minor subhorizontal mesofolds were recognized as trending roughly WNW (roughly 290 degrees trend).

While intense fracturing and jointing obscured much of the bedding attitude, several greyish decalcified clayey strata remnants confirmed the attitude of the wrinkled lithological sequence as gently dipping to the North. Jointing and minor axial planes

Mincord Exploration Consultants Ltd. 110-325 Howe St., Vancouver, BC, V6C $1 Z 715$ Ginette Carter P.Geo and J.W.(Bill) Morton P.Geo
encountered in the 2006 trenches dipped moderately to steeply (45 to 60 deg) to the North. Strong oxidation haloes were present at most contacts between fractured decalcified limestone sequences and totally oxidized clayey interlayered syenite sill or bodies. Except for trenches CTR604E, CTR604W where the sample population was derived form deep regolith, colluvium and till, most trenches provided with continuous and reliable weathered rock cuts. Although a significant section of CTR604 W did cut through a slightly pyritic and oxidized porphyritic green syenite, there were no significant results from either CTR 604E or CTR604W. A single limonitic clayey deep float accounts for the one anomalous interval found in the northern part of CTR603S.

Anomalous gold was intersected to the north in trenches CTR601N, CTR602, and CTR603N. Oxidation appeared to follow the trend of minor mesofold sets recognized between CTR601N and CTR603N. These meso hinges were slightly undulating to subhorizontal. In trench CTR 603 N , an oxidized syenite flattish small body within a mesofold set returned our highest gold interval (973 ppb Au -sample 173402). Sample 173413 , on the opposite (East) side of the trench returned 425 ppb Au , which was the second highest sample of the program. Both samples came from the same mesofold axis - ripple trend. That trend appears to aim directly at the high grade intervals that were trenched in 1999 by International Curator (TK99-1). Small structural mesofolds also coincide with an increase in alteration and oxidation. The following sketch illustrate the structural style observed in the trenches.

Figure 9. Structural Interpretation Sketch

Phelps Dodge's drilling of the K grid in 1994 also led them to the conclusion that strata and syenite sills generally dipped gently to the north.

The B grid 2006 trenching CTR612N, CTR612C and CTR612S outlined a generally southwesterly shallow dipping carbonate sequence intruded by a 25 meter thick
green porphyritic syenite in the first half of CTR612S, with a few very thin sills further south in in CTR612S. These minor sills are highly argillized, usually very thin and often associated with minor thrust faulting and minor mesofolding. There was no significant new mineralization intersected in the CTR 612 trenches.

11 SAMPLING METHOD AND APPROACH

Trenches were surveyed and mapped by the project geologist who defined and spray painted each interval to be sampled. Each meter was marked at the top of the trench. At 5 m intervals, red sprayed pickets were marked with the meterage and were placed along the upper part of the trenches. Both trench sides were photographed with continuous photo coverage, with pictures covering every 3-5m intervals or so. Height and width of the trenches were measured and recorded over the length of the trenches. The project geologist used the survey data to construct several sets of geological trench profiles at a scale of 1:50. These field profiles were later scanned and pasted together and can be used to assist structural and lithological interpretation in the future. All intervals were sampled, usually as representative chip samples across distinct lithologies, or panel sampled within uniform lithologies. One tag from a dual tag sample book was inserted into each polypropylene plastic sample bag. The second tag stayed in the sample book with the recorded trench name, and sampled interval, notes and date. Sample location was marked by a metallic tag nailed by a green pin galvanized nail placed at the top of the trench or attached to adjacent branches. Representative samples from each trench were also collected by the geologist. These were taken to the camp and briefly described for future reference. Several grab samples were collected and the results are described below in this report.

12 SAMPLE PREPARATION, ANALYSIS AND SECURITY

After collection all samples were locked with a sample tag in 6 millimetre polypropylene plastic bags with a zip tie. The bags were registered in a ledger and placed $4-5$ at a time in a numbered rice bag for a total weight of roughly $40-60 \mathrm{lbs}$. The rice bags were in turn zip tied and recorded, the last rice bag holding the sample list and analytical instructions for the laboratory. The shipment of rice bags was brought directly to Fernie under the supervision of the project geologist. A total of four shipments were delivered to Greyhound in Fernie. Each shipment left the same day with the bus to Acme Analytical Laboratories in Vancouver (ACME). At ACME, the $4-6 \mathrm{~kg}$ samples were crushed to 10 mesh then pulverized to 150 mesh. For the ICP-ES (Inductively Coupled Plasma Atomic Emission Spectrometer -Acme Group 1D) analysis, samples were reduced to 0.5 gm then dissolved by Aqua Regia (leached with 3ml 2-2-2 HCL-HNO3-H2O at 95 deg C for one hour, diluted to 10 ml) and analyzed by ICP-ES for 30 elements. All samples were analyzed for gold by fire assay (FA - ACME's group 3B). ACME's Fire geochemistry Au analysis uses 30 gm sample fusion and the doré is dissolved in Aqua

Regia. In general, Fire Assay is recommended to detect with precision Au content of less than 10 ppm .

To provide control on the assaying quality and accuracy, ACME inserted 11 DS7 standards for the ICP analysis, and repeated 11 ICP analysis. ACME inserted 11 OxF41 standard, and repeated twice 11 Fire Assays. All Fire Assay certificates and ICP certificates are included in APPENDIX DATA. Both ICP and FA results were sent to us within 3 to 5 weeks of shipping. Acme Analytical Laboratories Ltd. is an accredited (ISO 9001:2000) laboratory.

13 ADJACENT PROPERTIES

As quoted from Andris Kikauka's (2003) Report on the Flat 1-7, Crowl-9 Claims: "The Elk River valley and the Flathead River valley are the sight of several coal mines (Eagle Mountain, Line Creek, Fording Bridge, Green Hills, Edwin Creek, Bingay Creek, and others) which have generated high quality, high-volatile bituminous coal. These two river valleys have also been explored for oil and gas by Shell and Chevron. The prospective reservoirs include the Flathead Gas Field (estimated resource of 600 bcf).

There are numerous lead-zinc-silver bearing sulphide mineral zones in the area east of the Crowsnest property. Most of these occurrences consist of carbonate-hosted galena and sphalerite mineralization with variable silver and gold values. The Howell claim group is located northwest of the Crowsnest property. La Quinta Resources Corp. has entered into an agreement with Eastfield whereby La Quinta can earn 60% of the Howell Property claims by completing a schedule of fieldwork on the property and by completing certain cash and stock payments to Eastfield. The Howell property has a history of gold exploration by numerous mining companies."

14 MINERAL PROCESSING AND METALLURGICAL TESTING

The Crowsnest property has no reported metallurgical testwork that would define gold size and distribution, amenability to gravity concentration and cyanide leach tests, and grindability.

15 MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES

The Crowsnest property has no measured, indicated, or probable mineral resource. The Crowsnest property has not been evaluated for mineral reserve estimates.

16 OTHER RELEVANT DATA AND INFORMATION

All assay certificates are included in Appendix Data. Compiled 2006 Trench interval data with brief field notes are provided in Appendix (Data) "Crowsnest06TrenchAu_AgIntervals"). A complete set of scanned field trench profiles now merged and set up to be printed at $1: 100$ scale is readily available on request.

17 INTERPRETATIONS AND CONCLUSIONS

The 2006 trenching work outlined WNW trending mesofolds with moderately NNE dipping axial planes in the K Grid area, suggesting a NE to SW structural compression of a northwest trending moderately NE dipping sequence of Mississippian carbonate and Flathead syenite sills. Exposures of the lower trenches (CTR612) outlined a generally SW gently dipping sequence of carbonates and with a few thin Flathead syenite sills. Trench profile mapping outlined enough mesostructures to document two opposite stress directions, with moderately SW dipping minor axial planes and thrust planes in the northern part (CTR612N) and moderately NE dipping minor axial planes and fault planes in the southern part. This combination suggests the structural bloc slightly lifted by compression from both the NE and the SW.

While CTR612 trenching did not return any significant samples, high grade floats and anomalous soils in the area still need to be followed to their source. While the 2006 K Grid trenches demonstrated that alteration and anomalous gold values increase near the WNW trending mesofolds hosting clay altered porphyritic syenite, the 2006 trenching program failed to return any samples over $1 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. These results essentially closed the eastern potential extension of the mineralization intersected by the TK99-1 trench. It is currently postulated that the mineralization intersected in TK99-1, TGR93-1, TK93-2, and TK99-2 is the surface expression of the same WNW mineralized trend. However, we now feel that the conjunction of cross cutting structures might be the key to higher grade and thicker mineralization associated with Flathead intrusions. Such structures need to be defined and sampled throughout the property.

The source of much of the high grade float samples found on the property is still unknown. A set of parallel structures connecting the southeast to the northwest end of the property could be the source of the property wide high-grade float distribution.

Structural mapping of trenches and outcrops could help locate other mineralized intersecting structures, in particular where associated with syenite intrusive bodies.

18 RECOMMENDATIONS

A detailed mapping and prospecting program combined with trenching of prospective areas up hill from mineralized floats and generally away from previous drilling and trenching, is recommended. The general area surrounding Fortress Peak (at elevations of $1,720-1,780 \mathrm{~m}$) should be investigated in an effort to locate the source of high-grade gold floats found on the lower access road. Further evidence for the existence of a gold bearing structure up the hill (to the southwest) is afforded by the results of the 1999 silt sampling conducted by International Curator Resources Ltd. in which the highest silt sample (\# 10917) returned 1150 ppb gold from a small eastward flowing tributary which crosses the Spur 3 road approximately 125 metres north west of drill hole CR-03-04.

A two phase program consisting of detailed geological and structural mapping, trenching and lithogeochemical sampling followed by a series of diamond drill holes is proposed to test the depth extension of any resulting new surface mineralization. Previous
geophysical surveys and available ASTER, LANDSAT images need to be investigated prior to setting up field work with the purpose of outlining significant crosscutting structures that may intersect known or expected syenite limestone contacts. Alteration haloes picked up from these images will need to be field checked to assess the reliability of the image analysis and to refine its selective criteria.

A suggested budget of this two-phase exploration program is described as follows:

PHASE 1: PROPOSED BUDGET FOR TARGET DEFINITION:

FIELD CREW- 2 Geologists, 2 Geotechnicians, 15 days $\$ 40,000$
ANALYTICAL COSTS 400 determinations \$9,000
PIMA or other alteration survey $\$ 10,000$
ASTER IMAGE ANALSIS to flush out structures $\$ 10,000$
EXCAVATOR \$25,000
EQIPMENT AND SUPPLIES \$5,000
COMUNICATIONS $\$ 1,000$
FOOD and CONSUMABLES $\$ 5,000$
CAMP RENTAL \$5,000
TRUCKS AND TRANSPORTATION \$4,500
REPORTING $\$ 3,500$
TOTAL PHASE 1 $\mathbf{\$ 1 1 8 , 0 0 0}$
PHASE 2: PROPOSED BUDGET FOR TARGET EVALUATION:
FIELD CREW-Geologist, 3 geotechnicians, 1 cook 60 days $\$ 120,000$
DRILLING COSTS- diamond 2000 metres (all in at $\$ 120$ metre) $\$ 240,000$
ANALYTICAL COSTS 1500 assays \$37,500
EQUIPMENT AND SUPPLIES \$9,000
EXCAVATOR AND CRAWLER \$35,000
COMUNICATION \$2,000
FOOD and CONSUMABLES $\$ 10,000$
CAMP RENTAL $\$ 10,000$
TRUCKS AND TRANSPORTATION \$8,000
REPORTING $\$ 3,500$
TOTAL PHASE 2 $\$ 475,000$

192006 FIELDWORK COST STATEMENT

A new four men camp was built on the old base camp location, off the seismic line at elevation 1340 m . It consisted of two sleeping platform tents, a platform kitchen tent and a shower hut. Astaraf Contracting of Jaffray was retained for the road building, trench digging and part of the reclamation work.

Date	Item	Details	Cost
June 14-22/ 06	Professional Fees	Ginette Carter P.Geo, 2 days @ \$550	\$3,575.00
July 2,3/06	Professional Fees	Ginette Carter P.Geo, 6.5 days @ \$550	\$825.00
July 4-25/06	Professional Fees	Ginette Carter P.Geo, 22 days @ \$600	\$13,200.00
Aug 7-9/06	Professional Fees	Ginette Carter P.Geo, 3 days @ \$550	\$1,650.00
Aug 26/06	Professional Fees	Ginette Carter P.Geo, 1 days @ \$600	\$600.00
Nov 28-30/06	Professional Fees	Ginette Carter P.Geo, 3 days @ \$550	\$1,650.00
June 22/06	Professional Fees	J.W. Morton P.Geo, 1 day @ \$600	\$600.00
July 13, 14/06	Professional Fees	J.W. Morton P.Geo, 2 day @ \$600	\$1,200.00
Sept $6 / 06$	Professional Fees	J.W. Morton P.Geo, 0.5 day @ \$600	\$300.00
June 29, 30/06	Professional Fees	J.P. Charbonneau, 2 days @ \$320	\$640.00
July 1-27/06	Professional Fees	J.P. Charbonneau, 26.5 days @ \$320	\$8,480.00
June 28 -July 15	Professional Fees	Eric Mackenzie, 18 days @ \$340	\$6,120.00
July 12-19/06	Professional Fees	B Patterson, 8 days @ \$300	\$2,400.00
July 21-27/0	Professional Fees	M Berkvens, 7.5 days @ \$300	\$2,250.00
June 28-30/06	Camp \& Generator Rental	3 days @ \$325	\$975.00
July 1-28/06	Camp \& Generator Rental	28 days @ \$325	\$9,100.00
	Analytical costs	332 samples @ \$27.90	\$9,508.21
	Filed Equipment Purchased		\$4,126.98
	Truck Rental (2 units)		\$5,012.88
	Vehicle repairs		\$1,108.52
	ATV rental	2 units at $\$ 70+$ PST for 26.5 days	\$3,969.70
	Travel Expenses		\$2,478.82
	Freight		\$3,507.37
	Camp Lumber and materials		\$13,264.91
	Communications		\$1,786.82
	Food and Groceries		\$3,380.49
	Transportation (scheduled)		\$178.68
	Accommodation		\$2,217.19
	Fuel		\$264.19
	Expeditor charges		\$1,058.75
	Excavator charges	215 hours @ approximately $\$ 90 \mathrm{hr}$	\$19,355.00
	Sat phone rental	1 @ $\$ 5$ day for 33 days	\$165.00
	4 radios rental	4 at $\$ 5$ day for 33 days	\$660.00
	GPS rental	1 At \$15 day for 33 days	\$495.00
	Lap top computer rental	1 at 15 days for 31 days	\$465.00
	GST Charged		\$3,275.50
	Total		\$129,844.01

20 AUTHOR QUALIFICATIONS

Author Qualifications JW. (Bill) Morton P.Geo

I, J.W. Morton am a graduate of Carleton University Ottawa with a B.Sc. (1972) in Geology and a graduate of the University of British Columbia with a M. Sc. (1976) in Graduate Studies.

I, J.W Morton have been a member of the Association of Professional Engineers and Geoscientists of the Province of BC (P.Geo.) since 1991.

I, J.W. Morton have practiced my profession since graduation throughout Western Canada, the Western USA and Mexico.

I, J.W Morton supervised the work outlined in this report.
Signed this 22 day of January, 2007

Author Qualifications Ginette Carter P.Geo

I, G. (Ginette) Carter, P.Geo. do hereby certify that:

1. I am currently employed as a Consulting Geologist by:

Mincord Exploration Consultants Ltd.
110-325 Howe Street
Vancouver, BC, V6C $1 Z 7$
2. I graduated with a B.Sc. in Geology from the University of Quebec at Montreal in 1981 and a M.Sc. from the University of Calgary, in 1984.
3. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia since 1991, and a Member of the Northwest Territories Association of Professional Geologists since 1985.
4. I have worked as a geologist for at least 20 years since graduation from university.
5. I am a co-author of the technical report titled Summary Report on the 2006 Field Program Filed for Assessment Work on the Crowsnest Property, dated January 22, 2007.
6. I have spend 25 days during July 2006 on the Crowsnest property as the project geologist and supervised the work from the laying out of the trenches, the mapping, sampling of the trenches and shipping of the samples.

Trench_No	From_m_		Interval_n			Samplo_No	LabFile	Stde	Part	Notes
CTR-60INE	5.00	7.00	2.00	27	-0.3	201369	A603953	East	all	beneath dirt line only
CTR-601NE	7.00	8.00	1.00	61	-0.3	201370	A603953	East	top	lower contact within syonitel y yellow brownish sand/clay
CTR-601NE	8.00	10.00	2.00	140	-0.3	201371	A603953	East	all	($7-10 \mathrm{~mm}$) all grey dshattered hrif lit $+/$-sil - all beneath soil
CTR-601NE	10.00	12.00	2.00	52	-0.3	201372	A603953	East	all	Brown sand regolith - tollow band - transition to syenite from decak I grey ist?
CTR-601NE	12.00	16.00	4.00	60	-0.3	201373	A603953	East	down?	Blocky sym gossan v limonitic shattered - between lines drawn in trench
CTA-601NE	14.00	16.00	2.00	94	-0.3	201374	A603953	East	top	Transition - less altered more brownish still shatered
CTR-601NE	16.00	19.00	3.00	34	-0.3	201375	A603953	East	all	Massive jointed I grey decalchinfl ist - hump area on trench floor - sample $1 / 2$ each side
CTR-601NE	19.00	22.00	3.00	8	-0.3	201376	A603953	East	all	dotomitic fract hnitds \& E $1 / 2$ floor
CTR-601NE	22.00	25.00	3.00	13	-0.3	201377	A603953	East	all	Hump - +/- fractured shattered rel massive I grey docalhrnil ist
CTR-601NE	25.00	27.00	2.00	12	-0.3	201378	A603953	East	all	hmmil to contact with more transitional (grey brown dirt)
CTR-601NE	27.00	31.00	4.00	135	-0.3	201379	A603953	East	down	limonitic rusty - syenite remnant?
CTR-601NE	31.00	32.00	1.00	141	0.3	201380	A603953	East	top	(29-32 mup). Only 1 grey jointed hnil lst
CTR-601NE	32.00	35.00	3.00	62	-0.3	201381	A603953	East	all	1 grey shattered rubbly decak hrnf ts:
CTR-601NE	35.00	37.00	2.00	45	0.3	201383	A603953	East	ald	I grey shattered rubbly decalc hrnfist
CTR-601NE	37.00	40.00	3.00	163	0.6	201384	A603953	East	al	nusty main zone - likely remnant of syenite - trench to be extended
CTR-601NE	40.00	42.00	2.00	27	-0.3	201391	A604109	East	all	I grey jointed shattered hril lit
CTR-601NE	42.00	44.00	2.00	14	-0.3	201392	A604109	Eas!	ali	I grey jointed shattered hinil lst
CTR-601NE	44.00	46.00	2.00	5	-0.3	201393	A604109	East	all	I grey jointed shatered hrifl ist
CTR-601NE	46.00	48.00	2.00	4	-0.3	201394	A604109	East	all	I grey jointed shattered hinfl ist _bleached zone as well
CTR-601NE	48.00	51.00	3.00	2	-0.3	201395	A604109	East	all	1 grey jointed shatered hnfl ist - intersection with 602 tench start
CTR-601NE	51.00	53.00	2.00	3	-0.3	201396	A604109	East	all	Also fior same unit as 9495 sample
CTR-601NE	53.00	56.00	3.00	5	-0.3	201397	A604109	East	all	Recessive + /- dol +1 - coaley veneer (carbonaceous sooty wisps).
CTR-601NE	0.00	5.00	5.00	22	-0.3	201368	A603953	East	all	I grey shattered rubbly decalc hind ist
CTR-601NW	5.00	7.00	2.00	26	-0.3	201352	A603953	West	all	not brown
CTR-60iNW	7.00	10.00	3.00	35	-0.3	201353	A603953	West	top	Brown only
CTR-601NW	7.00	10.00	3.00	18	-0.3	201354	A603953	West	down	grey Decatc (hrofis?)
CTR-601NW	10.00	13.00	3.00	40	-0.3	201355	A603953	West	too	lim dirt - likely syenite remains. Its very base has grey shattered decalc (hrifis?)
CTR-601NW	13.00	17.00	4.00	83	-0.3	201356	A603953	West	all	Buff at lim dirt syenite +/-gossan
CTR-601NW	17.00	18.55	1.55	200	-0.3	201357	A603953	West	top	Brown top only w shattered blocky syenite limoniticfouff att
CTR-601NW	18.55	22.00	3.45	41	-0.3	201358	A603953	West	all	grey decalc (hrrifis?) kst
CTR-601NW	22.00	25.00	3.00	15	-0.3	201359	A603953	West	al	grey decak $+/$ - sil (hrrffts?) lst
CTR-601NW	25.00	27.00	2.00	26	-0.3	201360	A603953	West	all	dirt buff to brown transition zone (both alt syenite and grey decalc (hrnfls?) ist)
CTR-601NW	27.00	29.00	2.00	30	-0.3	201361	A603953	West	all	w dol/sil grey beige decalc (hrrits?) Ist - gossan not taken in this sample
CTR-601NW	29.00	31.00	2.00	58	-0.3	201362	A603953	West	cts	Irreg shaped limonitic rusty zone exciusively
CTR-601NW	31.00	32.00	1.00	19	-0.3	201363	A603953	West	down	down zone mosty it grey shatered decalc hnfi ist
CTR-601NW	32.00	35.00	3.00	29	-0.3	201364	A603953	West	all	
CTR-601NW	35.00	37.00	2.00	94	-0.3	201365	A603953	West	all	transition (into intense lim syenite) butt gravel
CTR-601NW	37.00	40.00	3.00	133	0.6	201366	A603953	West	down	Intense lim syenite /up to It grey hrnfi decal contact
CTR-601NW	40.00	42.00	2.00	15	-0.3	201385	A604109	West	all	Jointed subvertical I grey shattered rubbly decak hrnf ist
CTR-601NW	42.00	44.00	2.00	9	-0.3	201386	A604109	West	all	L grey ($+/$ - dol) massive ist micrite
CTR-601NW	44.00	46.00	2.00	2	-0.3	201387	A604109	West	all	Massive jited and shattered L grey (+1 - dol) itt micrite

Trench_Mo

CTR-601NE CTR OONE CTR-601NE CTR-601NE CTR-601NE CTR-601NE CTR-601NE ctr-boine CTR-601NE CTR-601NE CTR-601NE
CTR-601NE CTR-601NE CTR-601NE
CTR-601NE CTR-601NW CTR-601NW CTR-601NW cTR GOINW CTR-601NW CTR-601NW CTR-601NW CTR CTR-60inw CTR-601NW

CTR.601SW	22.00	24.00	2.00	85	0.4	173117 A604234	West	up	Brown buff dirt - same interval as 116	19.Jul-06
CTR-601SW	24.00	26.00	2.00	41	-0.3	173118 A604234	West	all	SIdol list $+/$-rusty rock and dirt	19-Jul-06
CTR-601SW	26.00	28.00	2.00	34	-0.3	173119 A604234	West	down	grey and dis grey scoty lit	19-Jut06
CTR-601SW	26.00	28.00	2.00	55	-0.3	173120 A604234	West	up	Brown buif dirt - same interval as 119	19-Juto6
CTR-601SW	28.00	29.00	1.00	12	-0.3	173121 A604234	West	all	upper brownish dit and sootey carbonaceous ist	19-Ju-06
CTR-601SW	29.00	31.00	2.00	11	-0.3	173122 A604234	West	all	Brown butif dist	19-Jut-06
CTR-601SW	31.00	32.00	1.00	32	0.6	173123 A604234	West	all	Brown buffl dirt	19-Juh-06
CTR-601SW	0.00	2.00	2.00	7	-0.3	173101 A604234	West	ats	Greyfoutif si dol fract ist - sample below line. Bedding 29240; bive grey thin lit	19-Jul-06
CTR-602N	4.00	6.00	2.00	18	-0.3	173463 A604109	North	an		17-Jul-06
CTR-602N	6.00	9.00	3.00	19	-0.3	173464 A604109	North	al	Massive grey list +1 -dol jipinted	17-Jul-06
CTR-602N	9.00	12.00	3.00	107	-0.3	173465 A604109	North	a	Recessive - transitional?- brown dirt +1 - dol	17-Jul-06
CTR-602N	12.00	15.00	3.00	172	-0.3	173466 A604109	North	all		17-Jul-06
CTR-602N	15.00	20.00	5.00	83	-0.3	173467 A604109	North	all	ends neer end of 603 N	17-Jul-06
CTR-602N	2.00	4.00	2.00	22	-0.3	173462 A604109	North	all	Massive grey lit +1 -dol jointed	17-Jul-06
CTR-602N	0.00	2.00	2.00	7	-0.3	173461 A604109	Nortin	all	Massive +/-hornf /decal ist jointed. Cleavage 55/60. 164 deg azimuth, -3 slope to 16.5 m . 679428 E , 5447950N;	17-Jul-06
CTR-602S	2.00	4.00	2.00	15	-0.3	173469 A604109	South	all	Massive less ited Ist/dol	18-Jul-06
CTR-602S	4.00	6.00	2.00	12	-0.3	173470 A604109	South	all	Massive less jited ist/dal	18-JuH06
CTR-602S	6.00	8.00	2.00	16	-0.3	173471 A604109	South	all	More shattered Massive less jited istudol	18-Jut-06
CTR-602S	8.00	10.00	2.00	77	-0.3	173472 A604109	South	a	below line	18-Ju*06
CTR-602S	10.00	12.00	2.00	47	-0.3	173473 A604109	South	ald	buff dotornitic	18-Jut-06
CTR-602S	12.00	15.00	3.00	86	-0.3	173474 A604109	South	재	Increasingly beige dol - a hake? Syenite nearby?	18-dut-06
CTR-602S	15.00	17.00	2.00	133	-0.3	173475 A604109	South	al	buff dirty brown dollst shattered - thin syenite remnant within?	18-Jut-06
CTR-602S	17.00	20.00	3.00	62	-0.3	173476 A604109	South	all	includes hump flocr dol ist	18-Jut-06
CTR-602S	0.00	2.00	2.00	13	-0.3	173468 A604109	South	al	Massive multi jted lsy/dd	18-Jul-06
CTR-603NE	2.00	6.00	4.00	6	-0.3	173412 A604109A	East	all	Jts shattered whitebeige carbonates $+/$ - dol lst	17-Jul-06
CTR-603NE	6.00	9.00	3.00	425	-0.3	173413 A604109A	East	a	rusty yellowish brown mush - tikely syenite sill remnant	17-Jul-06
CTR-603NE	5.00	9.00	4.00	132	-0.3	173419 A604 t09A	East	up	rusty yellowish brown mush - Helly syenite sill remnant	17-Jul-06
CTR-603NE	9.00	10.00	1.00	161	-0.3	173414 A604109A	East	up	rusty yellowish brown dirt - likely syenite sill remnant	17-Jth-06
CTR-603NE	9.00	10.00	1.00	186	-0.3	173415 A604109A	East	down	grey witite dolist	17-Jul-06
CTR-603NE	10.00	16.00	6.00	162	-0.3	173416 A604109A	East	all	pocr cutcrop	17-Jul-06
CTR-603NE	16.00	21.00	5.00	88	-0.3	173417 A604109A	East	all	poor outcrop dol list	17-Jut-06
CTR-603NE	21.00	25.00	4.00	46	-0.3	173418 A604109A	East	all	grey m grey mierte (+1 - dol fractured)	17-Jut06
CTR-603NE	0.00	2.00	2.00	62	-0.3	173411 A604109A	East	at	white \& dk grey ist - possitly cc massive m xime vein or hornielsed white Ist	17-Ju-06
CTR-603NW	2.00	4.00	2.00	973	-0.3	173402 A604109A	West	al	beige to sl rusty dirt base - transitional zone to at syenite sill?	17.Jut-06
CTR-603NW	4.00	5.50	1.50	287	-0.3	173403 A604109A	West	up	($4-6 \mathrm{~m}$ intv) Transitional - less attered syenite - mostly dirt -	17-Jul-06
CTR-603NW	5.50	6.50	1.00	110	-0.3	173404 A604109A	West	down	(5-7m intv) rusty gossan clay att around horst	17.Jul-06
CTR-603NW	6.50	8.00	1.50	77	-0.3	173405 A604109A	West	top	($6-8 \mathrm{~m}$ intv) greyish dirt - trans or weathered ist	17-Jul-06
CTR-603NW	8.00	9.00	1.00	91	-0.3	173406 A604109A	West	top	rusty lim dirt att in narrow contact zone	17-Jul-06
CTR-603NW	9.00	11.00	2.00	14	-0.3	173407 A604109A	West	al	modk grey dollst - rocks only	17.Ju-06
CTR-603NW	11.00	15.00	4.00	64	-0.3	173408 A604109A	West	al	end α hump - witin bedded dol list + /- bcaly rusty	17-Jul-06
CTR-603NW	15.00	20.00	5.00	98	-0.3	173409 A604109A	West	all	within becided i gr m grey dol st t $/$ - - caly rusty _honey comb textures	17-Jul-06
CTR-603NW	20.00	25.00	5.00	48	-0.3	173410 A604109A	West	a	v shallow trench dol fract list and narow beige buff dol list	17-Jut-06

CTR-603NW	0.00	2.00	2.00	44	-0.3	173401 A604109A	West all	white grey ist micrite - 1 crystalline - beneath
CTR-603S	5.00	10.00	5.00	7	-0.3	173452 A604109A	DF	deep float
CTR-603S	10.00	15.00	5.00	7	-0.3	173453 A604109A	DF	deep ticat
CTR-603s	15.00	20.00	5.00	7	-0.3	173454 A604109A	DF	deep float
CTR-603s	20.00	25.00	5.00	8	-0.3	173455 A604109A	DF	deep tioat
CTR-603S	25.00	30.00	5.00	286	0.3	173456 A604109A	DF	deep tlicat
CTR-603s	30.00	35.00	5.00	4	-0.3	173457 A604109A	DF	deep ticat - almost a regolith
CTR-603S	35.00	40.00	5.00	-2	-0.3	173458 A604109A	DF	deep thoat
CTR-603S	40.00	43.00	3.00	3	-0.3	173459 A604109A	DF	deep float
CTR-603S	0.00	5.00	5.00	7	-0.3	173451 A604109A	DF	going north from 604 west intersect - deep fioat
CTR-604E	5.00	10.00	5.00	5	-0.3	173575 A604109	DF	
CTR-604E	10.00	15.00	5.00	5	-0.3	173576 A604109	DF	
CTR-604E	15.00	20.00	5.00	3	-0.3	173577 A604109	DF	
CTR-604E	20.00	25.00	5.00	4	-0.3	173578 A604109	DF	
CTR-604E	25.00	30.00	5.00	3	-0.3	173579 A604109	DF	
CTR-604E	30.00	35.00	5.00	10	-0.3	173580 A604109	DF	
CTR-604E	35.00	40.00	5.00	4	-0.3	173581 A604109	DF	
CTR-604E	40.00	45.00	5.00	5	-0.3	173582 A604109	DF	
CTR-604E	45.00	50.00	5.00	5	-0.3	173583 A604109	DF	
CTR-604E	50.00	55.00	5.00	3	-0.3	173584 A604109	DF	
CTR-604E	55.00	60.00	5.00	4	-0.3	173585 A604109	DF	
CTR-604E	60.00	65.00	5.00	5	-0.3	173588 A604109	DF	
CTR-604E	65.00	70.00	5.00	4	-0.3	173587 A604109	DF	
CTR-604E	70.00	75.00	5.00	4	-0.3	173588 A604109	DF	
CTR-604E	75.00	80.00	5.00	6	-0.3	173589 A604109	DF	
CTR-604E	0.00	5.00	5.00	5	-0.3	173574 A604109	DF	Deep angular fioats - no outcrops or subcrops taken from botton of boti sides
CTR-604W	3.00	6.00	3.00	4	-0.3	173552 A604109	DF	
CTR-604W	6.00	10.00	4.00	4	-0.3	173553 A604109	DF	
CTR-604W	10.00	13.00	3.00	7	-0.3	173554 A604109	DF	
CTR-604W	13.00	15.00	2.00	4	-0.3	173555 A604109	DF	
CTR-604W	15.00	20.00	5.00	2	-0.3	173556 A604109	DF	
CTR-604W	20.00	25.00	5.00	0	0	173557 A604109	DF	
CTR-604W	25.00	30.00	5.00	0	0	173558 A604109	DF	
CTR-604W	30.00	35.00	5.00	0	0	173559 A604109	DF	
CTR-604W	35.00	40.00	5.00	5	-0.3	173560 A604 109	DF	
CTR-604W	40.00	45.00	5.00	-2	-0.3	173561 A604109	DF	
CTR-604W	45.00	50.00	5.00	-2	-0.3	173562 A604109	DF	
CTR-604W	50.00	55.00	5.00	2	-0.3	173563 A604109	DF	
CTR-604W	55.00	60.00	5.00	-2	-0.3	173564 A604109	DF	
CTR-604W	60.00	65.00	5.00	-2	-0.3	173565 A604109	DF	
CTR-604W	65.00	70.00	5.00	-2	-0.3	173566 A604109	DF	
CTR-604W	70.00	75.00	5.00	-2	-0.3	173567 A604109	DF	

17-Jut-06
17-Jul-06
17-Jul-06
17-Jul-06
17-Jud -06
$17-J$ Ju-06
17-Jut-06
17-Juld 06
17-Jul-06
17-Jul-06
17JUH06
17-Jul-06
17-Jul-06
17-JuL-06
17.Ju゙-06

17-Ju-06
17-Jut-06
17-Jul-06
17-Jul-06
17-Jul-06
17-Jut-06
17-Jut-06
17-Ju-06
17-Jul-06
17-Jul-06
17-Jul-06
17-Jul-w
17-Jul-06
17-Jul-06
17-Jul-06
17-Jul-06
17-Jul-06
17.Jul-06
17.Jul-06
17-Jul-06
$17-$-Jul-06
17-Jul-06
17-Jut06
17-Jut-06
17.Ju゙-06
17- J 4 -06

17- Jus-06
17Ju-06
17- Jut-06
17-Jut-06
17 Jut-06
17-Jul-06
17-Jul-06
17-Jul-06
17-Jul-06
$17-$ Ju-06
$17-J u l-06$
$17-J u l-06$
17-Jul-06
17Jul-06
17J Jut-06
17-Jul-06
17-Jut-06

CTR-604W	75.00	80.00	5.00	-2	-0.3	173568 A604109	DF		
CTR-604W	80.00	85.00	5.00	-2	-0.3	173569 A604109	DF		
CTR-604W	85.00	90.00	5.00	2	-0.3	173570 A604109	DF		
CTR-604W	90.00	95.00	5.00	3	-0.3	173571 A604109	DF		
CTR-604W	95.00	100.00	5.00	2	-0.3	173572 A604109	DF		
CTR-604W	100.00	107.00	7.00	-2	-0.3	173573 A604109	DF		
CTR-604W	0.00	3.00	3.00	4	-0.3	173551 A604109	DF		Trench from west to east - mostly deep thiat from heap side of trench - see notes
CTR-612-CE	50.00	53.00	3.00	8	-0.3	173523 A604467	East		
CTR-612-CE	38.00	41.00	3.00	11	0.3	173524 A604467	East		
CTR-612-CE	35.00	38.00	3.00	7	0.3	173525 A604467	East		
CTR-612-CE	32.00	35.00	3.00	3	0.3	173526 A604467	East		
CTR-612-CE	29.00	32.00	3.00	3	0.3	173527 A604467	East		
CTR-612-CE	27.00	29.00	2.00	3	0.4	173528 A604467	East		
CTR-612-CE	24.00	27.00	3.00	2	-0.3	173529 A604467	East	down	
CTR-612-CE	24.00	26.00	2.00	3	-0.3	173530 A604467	East	100	
CTR-612-CE	18.00	21.00	3.00	4	-0.3	173531 A604467	East		
CTR-612-CE	14.00	16.00	2.00	-2	-0.3	173532 A604467	East		
CTR-612-CE	11.00	14.00	3.00	5	-0.3	173533 A604467	East		
CTR-612-CE	8.00	11.00	3.00	4	0.5	173534 A604467	East		
CTR-612-CE	5.00	6.50	1.50	5	0.3	173535 A604467	East	down	
CTR-612-CE	2.00	6.00	4.00	4	-0.3	173536 A604467	East	ctr	
CTR-612-CE	1.00	2.00	1.00	- 2	-0.3	173537 A604467	East	top	(1-3mintv)
CTR-612-CE	-1.00	2.00	3.00	-2	-0.3	173538 A604467	East		
CTR-612-CE	57.00	58.00	1.00	3	0.7	173522 A604467	East	down	
CTR-612-CW	2.00	5.00	3.00	2	0.3	173502 A604467	West		
CTR-612-CW	5.00	11.00	6.00	-2	-0.3	173503 A604467	West	down	
CTR-612-CW	5.00	11.00	6.00	3	-0.3	173504 A604467	West	top	
CTR-612-CW	11.00	15.00	4.00	-2	0.3	173505 A604467	West		
CTR-612-CW	15.00	19.00	4.00	2	-0.3	173506 A604467	West		
CTR-612-CW	19.00	24.00	5.00	-2	-0.3	173507 A604467	West		
CTR-612-CW	24.00	28.00	4.00	-2	-0.3	173508 A604467	West		
CTR-612-CW	28.00	31.00	3.00	2	-0.3	173509 A604467	West		
CTR-612-CW	31.00	34.00	3.00	- 2	-0.3	173510 A604467	West		
CTR.612-CW	34.00	37.00	3.00	2	-0.3	173511 A604467	West		
CTR-612-CW	37.00	40.00	3.00	3	-0.3	173512 A604467	West		
CTR-612-CW	40.00	43.00	3.00	- 2	-0.3	173513 A604467	West		
CTR-612-CW	43.00	46.00	3.00	-2	0.4	173514 A604467	West		
CTR-612-CW	46.00	49.00	3.00	2	-0.3	173515 A604467	West		
CTR-612-CW	49.00	52.00	3.00	2	-0.3	173516 A604467	West		
CTR-612-CW	52.00	55.00	3.00	-2	-0.3	173517 A604467	West	down	
CTR-612-CW	55.00	57.00	2.00	2	0.3	173518 A604467	West	100	
CTR-612-CW	56.00	58.00	2.00	8	0.5	173519 A604467	West	ctr	

17-JUR-06
17.Jut-06
17.Jut-06

17-Jul-06
17-Jul-06
17-Jut-06
17-Jut-06
17-Jut06 24-Ju-06
24-Jul-06 24-Jul-06 24-Jul-06 24-Jut-06 24-Jul-06 24-Jul-06 24-Jul-06

CTR-612-cW	57.00	59.00	2.00	4	0.6	173520 A604467	West	down	
CTR-612-CW	-1.00	2.00	3.00	2	-0.3	173501 A604467	West		Heading north
CTR-612NE	20.00	23.00	3.00	7	-0.3	201459 A603953	East		see trench map
CTR-612NE	23.00	26.00	3.00	- 2	-0.3	201461 A603953	East		seetrench map
CTR-612NE	26.00	29.00	3.00	4	-0.3	201463 A603953	East		see trench map
CTR-612NE	44.00	47.00	3.00	4	0.3	201470 A603953	Eas:		seetrench map
CTR-612NE	47.00	50.00	3.00	2	-0.3	201472 A603953	East		seetrench map
CTR-612NE	50.00	53.00	3.00	-2	0.3	201474 A603953	East		see trench map
CTR-612NE	60.00	63.00	3.00	3	0.3	201478 A603953	East		Mostly dirt
CTR-612NE	63.00	66.00	3.00	7	-0.3	201480 A603953	East		Mostly dirt
CTR-612NE	17.00	20.00	3.00	7	-0.3	201457 A603953	East		see trench map
CTR-612NW	4.00	8.00	4.00	-2	-0.3	201452 A609953	West	NW\&Flo	Mosaic fine breccia vilet +/-silt/- dol nodules
CTR-612NW	8.00	11.00	3.00	-2	-0.3	201453 A603953	West		two third mosak fine bx $1 / 3$ fracture bx
CTR-612NW	11.00	14.00	3.00	7	0.3	201454 A603953	West		representative Ist micrite
CTR-612NW	14.00	17.00	3.00	3	-0.3	201455 A603953	West		see trench map
CTR-612NW	17.00	20.00	3.00	2	0.4	201456 A603953	West		see trench map
CTR-612NW	20.00	23.00	3.00	-2	-0.3	201458 A603953	West		see trench map
CTR-612NW	23.00	26.00	3.00	-2	0.3	201460 A603953	West		see trench map; +floor
CTR-612NW	26.00	29.00	3.00	-2	-0.3	201462 A603953	West		see tench map; end α trench below id livel
CTR-612NW	29.00	32.00	3.00	2	-0.3	201464 A603953	West		seetrench map
CTR-612NW	32.00	35.00	3.00	2	-0.3	201465 A603953	West		into broken ground BZ Micrite and sill nodules $+/$ - dol fract
CTR-612NW	35.00	38.00	3.00	2	-0.3	201466 A603953	West		see trench map
CTR-612NW	38.00	41.00	3.00	2	-0.3	201467 A603953	West		see trench map
CTR-612NW	41.00	44.00	3.00	-2	0.3	201468 A603953	West	Welloor	see trench map
CTR-612NW	44.00	47.00	3.00	-2	0.5	201469 A603953	West		see trench map
CTR-612NW	47.00	50.00	3.00	-2	-0.3	201471 A603953	West		seetrench map
CTR-612NW	50.00	53.00	3.00	-2	-0.3	201473 A603953	West		see trench map
CTR-612NW	53.00	56.00	3.00	2	-0.3	201475 A603953	West		seetrench map
CTR-612NW	56.00	60.00	4.00	2	-0.3	201476 A603953	West		seetrench map
CTR-612NW	60.00	63.00	3.00	-2	-0.3	201477 A603953	West		seetrench map
CTR-612NW	63.00	66.00	3.00	2	-0.3	201479 A603953	West		
CTR-612NW	66.00	69.00	3.00	3	-0.3	201481 A603953	West	all	trench stops at 67 m rest is on W ra bank exposure
CTR-612NW	69.00	72.00	3.00	3	0.3	201482 A603953	West		
CTR-612NW	72.00	75.00	3.00	4	0.3	201483 A603953	West		
CTR-612NW	75.00	78.00	3.00	2	-0.3	201484 A603953	West		
CTR-612NW	78.00	81.00	3.00	6	-0.3	201485 A603953	West		
CTR-612NW	81.00	86.00	5.00	-2	0.3	201486 A603953	West	up	nodular silvol list
CTR-612NW	81.00	86.00	5.00	-2	-0.3	201487 A603953	West	down	slatey faulted? Lst
CTR-612NW	86.00	90.00	4.00	2	0.3	201488 A603953	West		bent structure?
CTR-612NW	90.00	94.00	4.00	2	-0.3	201489 A603953	West		end of rd cut
CTR-612NW	0.00	4.00	4.00	-2	0.5	201451 A603953	West		Starts at road ellow geing north. Lst + dol cracled ist micrite
CTR-612SE	107.00	110.00	3.00	7	-0.3	201402 A604467	East		

CTR-612SE	110.00	112.00	2.00	7	-0.3	201403 A604467	East		Limey clayey dirt
CTR-612SE	112.00	114.00	2.00	15	-0.3	201404 A604467	East		yellow clay
CTR-612SE	114.00	117.50	3.50	4	-0.3	201405 A604467	East	down	base rusty clay only
CTR-612SE	114.00	177.50	63.50	3	-0.3	201406 A604467	East	ctr	grey clay layer only
CTR-612SE	114.00	117.50	3.50	5	-0.3	201407 A604467	East	top	brown clay/dirt above grey
CTR-612SE	117.50	120.00	2.50	7	-0.3	201408 A604467	East		brown \& yellow clay
CTA-612SE	120.00	123.00	3.00	7	-0.3	201409 A604467	East		beige dirt \& angular rubble
CTR-612SE	133.00	137.00	4.00	2	-0.3	201410 A604467	East		beige grey dol ist/argillaceous
CTR-612SE	136.00	139.00	3.00	-2	-0.3	201411 A604467	East		limoritic dol claeyey rusty
CTR-612SE	139.00	141.00	2.00	-2	-0.3	201412 A604467	Eas:	down	beige grey dol ist/arglllaceous - gap in eastern sampling after that
CTR-612SE	150.00	154.00	4.00	3	-0.3	201413 A604467	East		dol + /- argillaceous
CTR-612SE	103.00	107.00	4.00	5	-0.3	201401 A604467	East		rocks orily - dol ist beige to buft
CTR-612SW	3.00	6.00	3.00	4	-0.3	173002 A603953	West		Limonlicic attered Syenite (green porph) - +1-rubbly. Shallow dipping sill
CTR-612SW	6.00	9.00	3.00	3	-0.3	173003 A603953	West		Limonitic attered Syenite (green porph) +1 rubbly
CTR-612SW	9.00	11.00	2.00	-2	-0.3	173004 A603953	West		Limonitic attered Syenite (green porph) + +/-rubbly
CTR-612SW	11.00	14.00	3.00	3	-0.3	173005 A603953	West		st Limonitic aitered Syenite (green porph) - solid porphyry green syenite
CTR-612SW	14.00	17.00	3.00	5	-0.3	173006 A603953	West		st Limmonitic altered Syenite (green porph) - solid porphyry preen syenite
CTR-612SW	17.00	19.00	2.00	-2	-0.3	173007 A603953	West		st Limonitic altered Syenite (green poph) - solid porphyry green syenite
CTR-612SW	19.00	22.00	3.00	2	-0.3	173008 A603953	West		s1 Limonitic aftered Syenite (green porph) - solid porphyry green syenite
CTR-612SW	22.00	25.00	3.00	-2	-0.3	173009 A603953	West		st Limonitic attered Syenite (green porph) - blocky porphyry green syenite. Much vert jointing
CTR-612SW	25.00	28.00	3.00	-2	-0.3	173010 A603953	West		sl Limonitic altered Syenite (green pooph) - blocky porphyry green syonke
CTR-612SW	28.00	31.00	3.00	- 2	-0.3	173011 A603953	West		sl Limonitic attered Syenite (green porph) - blocky porphyry green syenike
CTR-612SW	31.00	34.00	3.00	-2	-0.3	173012 A603953	West		sl Limenitic altered Syenite (green porph) - blocky porphyy green syenite
CTR-612SW	34.00	37.00	3.00	-2	-0.3	173013 A603953	West		sl Limonitic altered Syenite (green porph) - blocky porphyy green syenite
CTR-612SW	37.00	40.00	3.00	-2	-0.3	173014 A603953	West		sl Limonitic altered Syenite (green porph) - biocky porphyry green syenite
CTR-612SW	40.00	43.00	3.00	2	-0.3	173015 A603953	West		sl Limonitic attered Syenite (green porph) - blocky porphyry green syenite
CTR-612SW	43.00	46.00	3.00	-2	-0.3	173016 A603953	West		sl Limonitic attered Syenite (green porph) - blocky porphyry green syenite
CTR-612SW	46.00	49.00	3.00	-2	-0.3	173017 A603953	West		st Limonitic attered Syenite (green poiph) - blocky porphyry green syenite
CTR-612SW	49.00	52.00	3.00	-2	-0.3	173018 A603953	West		sl Limonitic altered Syenite (green porph) - blocky porphyry green syenite
CTR-612SW	52.00	55.00	3.00	2	-0.3	173019 A603953	West		sil Limonitic attered Syenite (green porph) - blocky porphyry green syenite
CTR-612SW	55.00	60.00	5.00	2	-0.3	173020 A603953	West	down	very Limonitic attered Syenite (green porph) - blocky pophyry green syenite
CTR-612SW	55.00	60.00	5.00	-2	-0.3	173021 A603953	West	top	grey lst just above rusty contact
CTR-612SW	60.00	63.00	3.00	-2	-0.3	173022 A603953	West		grey ist
CTR-612SW	63.00	66.00	3.00	4	0.3	173023 A603953	West		grey lst
CTR-612SW	66.00	70.00	4.00	3	-0.3	173024 A603953	West		grey ist
CTR-612SW	70.00	75.00	5.00	-2	-0.3	173201 A604467	West		
CTR-612SW	75.00	80.00	5.00	-2	-0.3	173202 A604467	West		
CTR-612SW	80.00	85.00	5.00	- 2	-0.3	173203 A604467	West		
CTR-612SW	85.00	88.00	3.00	-2	-0.3	173204 A604467	West		
CTR-612SW	88.00	90.00	2.00	3	-0.3	173205 A604467	West		
CTR-612SW	90.00	95.00	5.00	-2	-0.3	173206 A604467	West		
CTR-612SW	95.00	100.00	5.00	-2	-0.3	173207 A604467	West		

22-Jul-06
22-Jul-06
22-Jul-06
22-Jul-06
22-JuR-06
22-Jut-06
22-Jul-06
22-Jul-06
22-Jul-06
22-Jut-06
22-JuL-06
22-Jut-06
22-J4-06
13-Ju-06
13-Jut- 6
13-Jut-06
13-Jul-06
13-Jul-06
13-Jul-06
13-Jul-06
13-Jul-06
13-Jul-06
13-Jul-06
13-Jul-06
13- Ju-06
13-Jul-06
13-Jul-06
13-Jul-06
13-Jut-06
$13-\mathrm{Ju}-06$
13-Juk-06
13-Jul-06
13-Jul-06
13-Jul-06
13-Jul-06
13 -Jul-06
13-Jul-06
13-Jul-06
13-Jul-06
22-Jut-06
22-Jul-06
22-Jul-06
22-Jul-06
22-Jut-06
22-Jul-06
22-Jul-06
22-Jul-06

CTR-612SW	100.00	104.00	4.00	- 2	-0.3	173208 A604467	West			22-Jul-06
CTR-612SW	104.00	107.00	3.00	5	-0.3	173209 A604467	West			22-Jul-06
CTR-612SW	107.00	110.00	3.00	18	-0.3	173210 A604467	West		above diagonal line	22-Jul-06
CTR-612SW	110.00	112.00	2.00	2	-0.3	173211 A604467	West		below diagonal line	22-Jul-06
CTR-612SW	112.00	114.00	2.00	2	-0.3	173212 A604467	West			22Jul-06
CTR-612SW	114.00	117.00	3.00	3	-0.3	173213 A604467	West	down		22-Jul-06
CTR-6i2SW	114.00	117.00	3.00	5	-0.3	173214 A604467	West	ctr		22-Jul-06
CTR-612SW	114.00	117.00	3.00	13	-0.3	173215 A604467	West	top		22-Jul-06
CTR-612SW	117.00	120.00	3.00	3	-0.3	173216 A604467	West	down		22-Jul-06
CTR-612SW	117.00	120.00	3.00	3	-0.3	173217 A604467	West	top		22-Jul-06
CTR-612SW	120.00	123.00	3.00	-2	-0.3	173218 A604467	West	all		22-Jut06
CTR-612SW	123.00	126.00	3.00	5	-0.3	173219 A604467	West			22-Jut-06
CTR-612SW	126.00	130.00	4.00	-2	-0.3	173220 A604467	West		rocks only	22-Jut06
CTR-612SW	130.00	133.00	3.00	6	-0.3	173221 A604467	West	all		22-Jut-06
CTR-612SW	133.00	135.00	2.00	2	-0.3	173222 A604467	West	down		22.Jul-06
CTR.612SW	133.00	135.00	2.00	10	-0.3	173223 A604467	West	top		22-Jul-06
CTR-612SW	135.00	138.00	3.00	4	-0.3	173224 A604467	West	down	bereath line rusty clay	22-Jul-06
CTR-612SW	135.00	138.00	3.00	4	-0.3	173225 A604467	West	top	grey clay mart	22-Jul-06
CTR-612SW	138.00	140.00	2.00	4	-0.3	173226 A604467	West	all	all grey beige	22-Jul-06
CTR-612SW	140.00	142.00	2.00	- 2	-0.3	173227 A604467	West		rocks greylbeige	22-JuA-06
CTR-612SW	142.00	145.00	3.00	2	-0.3	173228 A604467	West	down	base grey Istclay	22-JuH06
CTR-612SW	142.00	145.00	3.00	9	-0.3	173229 A804467	West	top	yellow clay pocket above	22-Jut-06
CTR-612SW	145.00	147.00	2.00	3	-0.3	173230 A604467	West		angula beige rubble	22-Jut-06
CTR-612SW	147.00	151.00	4.00	5	-0.3	173231 A604467	West	down	beige rocks and clay	22.Ju-06
CTR-612SW	147.00	151.00	4.00	5	-0.3	173232 A604467	West	top	angular flasts andd fine beige	22-Jut-06
CTR-612SW	151.00	153.00	2.00	5	-0.3	173233 A604467	West	down	lower clay - yellow only	22-Jul-06
CTR-612SW	153.00	156.00	3.00	2	-0.3	173234 A604467	West	down	below line yellow clay	22-Jut06
CTR-612SW	153.00	156.00	3.00	2	-0.3	173235 A604467	West	top	above line anguia that subcrop	22-Jul-06
CTR-612SW	156.00	160.00	4.00	2	-0.3	173236 A604467	West		rocks	22-Jul-06
CTR-612SW	160.00	165.00	5.00	-2	-0.3	173237 A604467	West		rocks	22-Jul-06
CTR-612SW	165.00	\$70.00	5.00	-2	-0.3	173238 A604467	West	down	rocks	22-Jut-66
CTR-612SW	165.00	170.00	5.00	5	-0.3	173239 A604467	West	top	rusty layer dirt	22-Jul-06
CTR-612SW	170.00	175.00	5.00	3	0.3	173240 A604467	West	down	beige clay - float dot	22-Jut-06
CTR-612SW	170.00	175.00	5.00	5	0.3	173241 A604467	West	top	upper bench grey and rusty	22-Jut06
CTR-612SW	175.00	178.00	3.00	3	-0.3	173242 A604467	West	down		22.Jut06
CTR-612SW	178.00	182.00	4.00	2	-0.3	173243 A604467	West			22-Ju-06
CTR-612SW	182.00	187.00	5.00	3	-0.3	173244 A604467	West			22-Jul-06
CTR-612SW	187.00	192.00	5.00	2	-0.3	173245 A604467	West		end of trench	22-Jul-06
CTR-612SW	0.00	3.00	3.00	2	-0.3	17300: A603953	West		grey ist	13-Jul-06

Eastfield - A603953 (G1D)_C01A

Page 2 of 8

ELEMENT	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	K	W	Sample
SAMPLES	ppm	ppm	\%	\%	ppm	ppm	\%	ppm	\%	ppm	\%	\%	\%	pom	kg
G-1	<3	-31	0.46	0.073	- 7	6	0.59	197	0.12	3	0.96	0.06	0.48	<2	-
173001	<3	5	29.69	0.017	4	6	1.22	39	<. 01	<3	0.12	0.01	0.02	<2	3.94
173002	<3	71	0.68	0.115	32	5	2.01	53	0.01	<3	3.05	0.01	0.08	<2	9.51
173003	<3	64	0.63	0.125	38	3	1.57	29	0.04	<3	2.4	0.02	0.11	<2	6.66
173004	<3	81	0.61	0.123	34	4	1.54	30	0.11	<3	2.25	0.02	0.11	<2	7.55
173005	3	93	0.71	0.13	26	4	1.2	30	0.19	<3	1.57	0.03	0.1	<2	5.51
173006	<3	108	1.02	0.132	26	5	0.9	44	0.29	4	1.41	0.06	0.12	<2	6.02
173007	4	107	1.25	0.133	25	4	0.9	36	0.25	7	1.47	0.05	0.09	<2	5.85
173008	4	106	1.38	0.135	25	5	0.77	44	0.27	8	1.52	0.07	0.11	<2	6.53
173009	<3	110	1.55	0.138	25	5	0.79	33	0.27	9	1.58	0.05	0.07	<2	7.23
173010	<3	114	1.49	0.141	28	5	0.87	42	0.28	12	1.59	0.07	0.1	<2	4.38
173011	<3	112	1.38	0.141	27	5	0.97	44	0.27	7	1.6	0.05	0.08	<2	4.77
173012	<3	113	1.39	0.137	28	4	0.77	53	0.28	11	1.65	0.06	0.1	<2	4.81
173013	3	111	1.31	0.14	27	4	0.75	48	0.26	9	1.55	0.04	0.08	<2	4.58
RE 173013	<3	113	$1.34{ }^{\text {a }}$	0.14	27	4	0.75	49	0.27	9	1.56	0.04	0.08	<2	-
173014	<3	109	0.9	0.134	29	5	1.01	60	0.27	4	1.48	0.06	0.11	<2	5.2
173015	4	109	0.64	0.135	27	4	1.63	53	0.26	<3	1.6	0.05	0.08	<2	3.92
173016	<3	96	0.63	0.127	27	5	2.16	67	0.24	<3	1.94	0.05	0.1	<2	4.23
173017	<3	91.	0.6	0.133	28	4	2.48	61	0.16	<3	2.3	0.03	0.11	<2	3.97
173018	<3	92:	0.57	0.132	28	4	2.56	44	0.11	<3	2.47	0.03	0.13	<2	3.96
173019	3	82	0.6	0.126	26	4	2.56	43	0.07	<3	2.7	0.02	0.13	<2	3.69
173020	3	83	0.95	0.124	31	5	2.92	71	0.03	<3	3.14	0.01	0.14	<2	4.11
173021	<3	6	21.27	0.015	4	6	6.42	119	<. 01	<3	0.18	0.01	0.01	<2	2.7
173022	<3	6	22.27	0.035	3	7	7.15	13	<. 01	<3	0.24	0.02	0.01	<2	4.14
173023	<3	5	23.67	0.025	3	10	8.85	37	<. 01	<3	0.2	0.02	0.01	<2	2.69
173024	<3	4	18.93	0.021	4	8	8.63	106	<. 01	<3	0.14	0.02	0.01	<2	3.98
201451	<3	42	14.43	0.017	6	23	8.8	20	< 01	16	0.89	0.03	0.62	<2	3.97
201452	<3	15	25.1	0.016	7.	17.	2.78	231	< 01	7	0.29	0.02	0.16	<2	3.89
201453	<3	8	26.39	0.012	5	12	0.39	76	<. 01	<3	0.08	0.01	0.04	<2	2.96
201454	<3	19	30.66	0.022	7	20	1.09	150	<. 01	4	0.2	0.01	0.1	<2	3.93
201455	3	15	17.92	0.022	5	13	7.55	67	<. 01	5	0.26	0.01	0.13	<2	3.59
201456	<3	30.	16.17	0.02	6	17	7.37	[633	< 01	9	0.63	0.02	0.39	<2	4.94

Eastfield - A603953 (G1D)_C01A

Page 3 of 8

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb
SAMPLES	ppm	\%	ppm													
201457	1	3	4	32	< 3	7	1	70	0.45	2	<8	<2	<2	204	<. 5	<3
201458	<1	1	4	22.	< 3	1	<1	28	0.12	<2	<8	<2	<2	343	<. 5	<3
201459	1	5	9	24	<. 3	5	1	101	0.46	<2	<8	<2	<2	331	0.6	<3
STANDARD DS7	21	101	75	419	1	52	8	644	2.43	51	8	<2	5	76	6.4	5
G-1	<1	2	8	44	<3	3	3	506	1.71	<2	<8	<2	4	55	<. 5	<3
201460	<1	3	10	35	0.3	2	<1	45	0.18	<2	<8	<2	<2	300	0.5	<3
201461	<1	3	<3	38	<. 3	2	1	41	0.15	<2	<8	<2	<2	323	0.6	<3
201462	<1	1	<3	26	<. 3	2	<1	28	0.14	<2	<8	<2	<2	266	< 5	<3
201463	1	1	<3	17	< 3	2	<1	26	0.16	<2	<8	<2	<2	282	<. 5	<3
201464	1	1	3	20	< 3	2	<1	30	0.12	<2	<8	<2	<2	361	< 5	<3
201465	<1	1	5	13	< 3	3	<1	36	0.2	<2	<8	<2	<2	286	< 5	<3
201466	<1	1	<3	15	<. 3	3	<1	35	0.2	<2	<8	<2	<2	327	< 5	<3
201467	<1	1	4	11	<. 3	3	<1	28	0.17	<2	<8	<2	<2	303	< 5	<3
201468	<1	1	3	17	0.3	4	<1	38	0.22	<2	<8	<2	<2	328	< 5	<3
201469	<1	1	5	23	0.5	4	<1	44	0.21	<2	<8	<2	<2	321	<. 5	<3
201470	<1	1	4	15	0.3	5	<1	38	0.22	<2	<8	<2	<2	334	< 5	<3
201471	<1	1	3	19	$<.3$	4	<1	53	0.25	<2	9	<2	<2	304	< 5	<3
201472	<1	1	3	14	< 3	4	1	44	0.23	<2	<8	<2	<2	304	<. 5	<3
201473	1	1	<3	17	< 3	4	<1	38	0.23	<2	<8	<2	<2	270	<. 5	<3
201474	1	1	<3	16	0.3	4	<1	39	0.26	<2	<8	<2	<2	286	<. 5	<3
201475	1	<1	<3	15	< 3	4	<1	35	0.19	<2	<8	<2	<2	304	0.5	<3
201476	1	1	3	14	< 3		$1<1$	38	0.23	2	<8	<2	<2	108	< 5	<3
201477	1	1	7.	21	<. 3	4	<1	44	0.22	<2	8	<2	<2	289	< 5	<3
201478	1	4	4	47	<. 3	8	1.	200	0.79	<2	<8	<2	<2	80	0.5	<3
201479	<1	<1	<3	17	<. 3	5	<1	44	0.22	<2	<8	<2	<2	326	<. 5	<3
201480	1.	5	3		< 3	11	2	156	0.89	2	<8	<2	<2	208	0.7	<3
201481	1	<1	<3	18	< 3	6	<1	46	0.25	<2	<8	<2	<2	299	< 5	<3
201482	<1	1	<3	25.	0.3	8	: $-\ldots 1$	42	0.33	<2	<8	<2	<2	378	< 5	<3
201483	<1	<1	<3	17	0.3	5	5 - $-\cdots \frac{1}{1}$	39	0.2	<2	<8	<2	<2	429	< 5	<3
201484	<1		<3	17	< 3	4	4 - 1	33.	0.22	<2	<8	<2	<2	391	0.5	<3
201485	<1	1	<3	19	< 3	7	2	34	0.32	2	<8	<2	<2	372	< 5	<3
201486	<1	1	<3	15	0.3	5	5	41	0.24	<2	10.	<2	<2	336	< 5	<3
201487	<1	<1	4.	20	< 3	5	-1	37	0.24	3	<8	<2	<2	445	< 5	<3
201488	1	<1	<3	26	0.3	6	<1	49	0.25	4		<2	<2	396	< 5	<3
201489		<1	<3	28	< 3		-1	58	0.3		<8	<2	<2	422	0.6	<3

Eastield - A603953 (G1D)_C01A

Page 4 of 8

ELEMENT	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	K	W	Sample
SAMMPLES	ppm	ppm	\%	\%	ppm	ppm	\%	ppm	\%	ppm	\%	\%	\%	ppm	kg
201457	<3	16	21.39	0.024	6	14	5.17	22	< 01	5	0.26	0.02	0.14	<2	3.4
201458	<3	8	28.52	0.011	5	15	1.19	24	< 01	5	0.07	0.02	0.04	<2	3.78
201459	<3	15	26.73	0.018	7	16	2.03	147	$<.01$	7	0.31	0.02	0.16	<2	4.33
STANDARD DS7	6	85	0.96	0.076	13	166	1.08	395	0.13	37	1.01	0.08	0.46	4	-
G-1	3	31.	0.46	0.07	6	6	0.55	198	0.11	<3	0.87	0.05	0.47	<2	-
201460	<3	9	$24.7{ }^{\text {! }}$	0.012	6	19	2.21	799	<. 01	13	0.1	0.03	0.05	<2	3.94
201461	<3	10	24.07	0.012	6	21	2.97	2082	<. 01	6	0.08	0.03	0.04	<2	4.92
201462	<3	6	21.23	0.008	4	12	0.72	83	<. 01	3	0.05	0.01	0.03	<2	4.96
201463	<3	9	24.65	0.012	5	13	0.35	64	$<.01$	9	0.08	0.01	0.04	<2	3.82
201464	<3	6	30.63	0.015	5	12	0.36	20	< 01	4	0.06	0.01	0.03	<2	3.96
201465	<3	11	24.79	0.012	4	15.	0.22	23	< 01	3	0.07	0.01	0.04	<2	4.46
201466	<3	10	29.03	0.019	6	13	0.22	13	< 01	3	0.08	0.01	0.05	<2	4.42
201467	<3	7	26.19	0.021	4	10	0.21	8	< 01	<3	0.06	0.01	0.03	<2	4.03
201468	<3	10	26.69	0.042	6	13	1.44	29	$<.01$	4	0.13	0.01	0.07	<2	3.55
201469	3	14	28.56	0.031	5	11	2.59	10	<. 01	4	0.08	0.01	0.04	<2	5.37
201470	<3	11	26.32	0.037	5	12	1.94	12	<. 01	3	0.13	0.01	0.07	<2	5.32
201471	<3	14.	29.47	0.027	6	11.	1.47	8	<. 01	<3	0.11	0.01	0.05	<2	4.9
201472	<3	11	29.92	0.021	6	13	0.29	14	< 01	3	0.11	0.01	0.05	<2	5.13
201473	<3	14	25.46	0.033	6	12	0.36	10	<. 01	<3	0.13	0.01	0.05	<2	5.82
201474	<3	13	26.19	0.023	5	12	0.21	8	< 01	3	0.1	0.01	0.04	<2	5.39
201475	<3	13	28.3	0.036	6	13	0.22	7	$<.01$	3	0.13	0.01	0.07	<2	5.01
201476	<3	10	23.51	0.023	5	13	0.22	9	<. 01	<3	0.11	0.01	0.05	<2	4.21
201477	3	9.	29.67	0.016	6	13	0.23	13	<. 01	7	0.11	0.01	0.05	<2	4.35
201478	<3	16	7.37	0.041	10	17	0.12	53	0.02	3	0.86	0.01	0.05	<2	6.79
201479	<3	10	32.78	0.032	6	12	0.24	8	<. 01	11	0.14	0.01	0.07	<2	4.47
201480	<3	20	20.07	0.043	14	19	0.29	46	0.01	4	0.66	0.01	0.09	<2	6.54
201481	<3	11	31.74	0.036	6	13	0.32	28	< 01	3	0.16	0.01	0.09	<2	4.09
201482	<3	27	29.21	0.026	6	16	1.53	35	< 01	6	0.35	0.01	0.18	<2	4.46
201483	<3	8	35.08	0.02	5	10	0.27	1470	< 01	8	0.13	0.01	0.07	<2	4.64
201484	<3	8	29.66	0.023	6	13	0.24	305	< 01	3	0.1	0.01	0.05	<2	4.06
201485	<3	10	26.86	0.043	6	10	0.35	3012	< 01	11.	0.18	0.01	0.1	<2	6.82
201486	<3	9	30.5	0.053	6	13	0.27	460	<. 01	6	- 0.17	0.01	0.08	<2	6.33
201487	<3	11	34.35	0.027	5	15	0.36	297	< 01	5	0.22	0.01	0.11	<2	4.33
201488	<3	11.	36.34	0.012	4	9	0.24	13	< 01	<3	0.09	0.01	0.05	<2	5.8
201489	<3	12	35.42	0.011	4	9	0.28	28	<. 01	<3	0.09	0.01	0.05	<2	4.98

Page 5 of 8

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb
SAMPLES	ppm	\%	ppm	ppm	ppm	ppm	ppm	pom	ppm							
201351	1	17	<3	11	<. 3	2	<1	223	0.14	5	<8	<2	<2	155	< 5	<3
RE 201351	1	17	5	11	$<.3$	2	<1	223	0.14	5	<8	<2	<2	160	$<.5$	<3
201352	2	23	5	28	<. 3	3	1	262	0.42	9	<8	<2	<2	97	<. 5	<3
201353	3	46	12	62	<. 3	8	6	408	2.47	12	<8	<2	3	22	0.5	<3
STANDARD DS7	19	99	62	396	1.1	52	9	631	2.39	46	<8	<2	5	76	6.2	7
G-1	<1	1	10	43	<. 3	3	3	531	1.86	<2	<8	<2	5	76	$<.5$	<3
201354	2	4	12	19	< 3	1	<1	210	0.39	2	<8	<2	<2	79	< 5	<3
201355	3	41	15	60	< 3	8	6	247	2.44	8	<8	<2	3	25	< 5	<3
201356	1	4	6	17	<. 3	1	1.	155	1.94	5	<8	<2	3	38	< 5	<3
201357	<1	6	14	33	<. 3	2	3	312	2.27	7	<8	<2	4	43	0.5	3
201358	1	5	10	51	<. 3	2	<1	331	0.21	2	<8	<2	<2	233	<. 5	<3
201359	2	2	12	25	<. 3	1.	<1	258	0.13	4	<8	<2	<2	132	< 5	<3
RE 201359	2	2	3	25	< 3	1	<1	259	0.13	3	<8	<2	<2	130	$<.5$	<3
201360	2	4	7	36	<. 3	1	<1	669	0.32	10	<8	<2	<2	93	$<.5$	<3
201361	1	6	10	22	<. 3	2	1	527	0.58	11	<8	<2	<2	83	< 5	<3
201362	2	10	13	37	<. 3	2	2	298	1.92	28	<8	<2	3	15	<. 5	<3
201363	1	4.	12	35	<. 3	1	<1	394	0.27	8	<8	<2	<2	137	<. 5	<3
201364	2	11	11	70	<. 3	1	<1	708	0.64	18	<8	<2	<2	99	0.5	3
201365	1	22	15	29	<. 3	3	3	472	2.32	55	<8	<2	<2	29	0.5	3
201366	<1	16	17	75	0.6	2	3	228	2.32	58	<8	<2	2	14	0.5	5
201368	1	10	3	13	<. 3	2	<1	235	0.26	3		<2	<2	118	<. 5	<3
201369	4	21	10	29	< 3	2	1	329	0.47	5	<8	<2	<2	89	<. 5	<3
201370	5	72	19	83	< 3	12	6	696	2.74	22	<8	<2	4	29	0.7	<3
201371	4	7	8	27	< 3	1	1	230	0.69	3	<8	<2	<2	69.	0.6	3
201372	1	13	15	39	< 3	4	3	395	2.12	9	<8	<2	3	30	<. 5	3
201373	1	4	8	17	<. 3	1	1	115	2.09	43	<8	<2	3	30	<. 5	<3
201374	<1	7	12	34	<. 3	2	2	291	2.28	6	<8	<2	4	32	<. 5	<3
201375	1	12	8	22	< 3	1	1	212	0.15	2	<8	<2	<2	128	<. 5	<3
201376	1	5	4	14	< 3	1	<1	199	0.1	<2	<8	<2	<2	112	<. 5	<3
201377	2	2	10	21	< 3	1	<1	237	0.08	4	<8	<2	<2	128	<. 5	<3
201378	1	1	4	28	< 3	<1	<1	421	0.12	8	≤ 8	<2	<2	97	<. 5	<3
201379	3	18.	18	37	< 3	2	2	541	1.41	30	<8	<2	<2	75	0.7	3
201380	2	20	217	279	0.3	2	---1	586	0.77	20	<8	<2	<2	99	2.3	5
201381	2	11,	40	100.	< 3	1	1	583	0.59	22	<8	<2	<2	94	0.7	<3
201383	2	13 j	19	34	0.3	2	1	661	0.77	24	<8	<2	<2	89	< 5	<3

Eastield - A603953 (G1D) C01A

Page 6 of 8

ELEMENT	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	B	AI	Na	K	W	Sample
SAMPLES	ppm	ppm	\%	$\%$	ppm	ppm	\%	ppm	$\%$	ppm	\%	\%	\%	ppm	kg
201351	<3	11	21.32	0.003	3	1	11.93	9	< 01	<3	0.07	0.02	0.01	<2	13.62
RE 201351	<3	10	21.22	0.003	3	1	11.83	9	$<.01$	4	0.07	0.02	0.01	<2	-
201352	<3	9	18.3	0.009	5	3	11.3	13	< 01	<3	0.35	0.02	0.04	<2	7.32
201353	<3	40	0.94	0.059	17	11	1.83	53	0.06	3	2.3	0.02	0.12	<2	8.15
STANDARD DS 7	6	78	0.94	0.074	13	167	1.06	382	0.13	37	1.02	0.08	0.45	3	-
G-1	3	34	0.59	0.068	9	7	0.57	207	0.13	<3	1.07	0.11	0.51	<2	-
201354	<3	6	16.97	0.008	5	1	11.18	9	0.01	4	0.51	0.02	0.03	<2	15.03
201355	<3	39	0.37	0.068	18	11	0.87	63	0.06	4	2.25	0.04	0.2	2	8.48
201356	<3	28	0.74	0.042	26	2	2.21	78	0.05	4	1.84	0.06	0.17	<2	12.67
201357	<3	31	0.46	0.049	23	3	0.97	102	0.06	5	1.47	0.07	0.19	<2	6.56
201358	<3	5	24.73	0.005	3	1	8.14	12	0.01	22	0.2	0.01	0.01	<2	9.32
201359	<3	4	20.61	0.003	2	1	11.62	6	<01	7	0.1	0.02	0.01	<2	11.54
RE 201359	<3	4	20.67	0.003	2	1	11.05	6	< 21	3	0.1	0.02	0.01	<2	-
201360	<3	5	19.03	0.005	3	1	11.27	13	< 01	<3	0.15	0.02	0.02	<2	9.57
201361	<3	8	16.34	0.011	7	1	9.63	20	<. 01	9	0.45	0.02	0.06	<2	5.51
201362	<3	14	1.49	0.031	19	3	1.39	49	<01	7	2.5	0.01	0.3	2	4.95
201363	<3	14	19.81	0.002	2	1	11.87	6	< 01	<3	0.04	0.02	0.01	<2	12.42
201364	<3	9	18.85	0.005	4	,	10.98	14	< 01	<3	0.18	0.02	0.02	<2	7.44
201365	<3	15	2.75	0.051	22	3	2.24	47	<. 01	<3	1.75	0.02	0.17	<2	5.71
201366	<3	11	0.51	0.058	22	2	0.77	65	< 01	<3	1.45	0.02	0.17	<2	12.28
201368	<3	8	18.77	0.005	4	1	11.07	43	<. 01	<3	0.17	0.01	0.03	<2	16.02
201369	<3	10	18.08	0.01	6	2	10.84	23	<. 01	<3	0.36	0.01	0.03	<2	9.81
201370	<3	45	1.17	0.048	22	14	1.53	57	0.02	3	2.36	0.01	0.13	<2	4.87
201371	<3	10	14.35	0.017	8	1	10.71	14	0.02	3	0.99	0.01	0.03	<2	9.79
201372	<3	29	2.09	0.047	24	5	8.39	51	0.04	5	3.89	0.01	0.06	<2	10
201373	3	29	0.28	0.043	30	2	2.4	150	0.03	6	1.79	0.03	0.09	2	16.18
201374	<3	31	0.56	0.048	25	3	2.32	125	0.06	5	2.08	0.03	0.12	<2	8.56
201375	<3	4	21.14	0.003	2	1	10.43	8	$<.01$	14	0.1	0.01	0.01	<2	9.18
201376	<3	3	20.4	0.003	2	1	11.57	5	$<.01$	5	0.07	0.01	0.01	<2	7.17
201377	<3	3	20.8	0.001	2	1	11.5	3	<. 01	<3	0.04	0.02	<. 01	<2	10.32
201378	<3	3	19.99	0.002	2	,	11.79	5	<. 01	<3	0.04	0.02	0.01	<2	8.82
201379	<3	11	11.64	0.02	11	2	7.32	25	<. 01	<3	0.58	0.01	0.06	<2	15.21
201380	<3	13	16.46	0.007	5	3	10.02	17	<. 01	5	0.32	0.02	0.04	<2	13.86
201381	<3	7	18.71	0.004	3	1	10.89	8	<. 01	8	0.13	0.02	0.02	<2	9.33
201383	<3	9	17.48	0.006	5	2	11.16	15	<. 01	7	0.22	0.02	0.03	<2	10.33

Eastfield - A603953 (G1D)_C01A
$1 \cdots$

Page 7 of 8

ELEMENT	Mo	Cu	Pb		Zn	Ag	Ni	Co		Mn	Fe	As	U		Au	Th	Sr	Cd	Sb
SAMPLES	ppm	ppm	ppm		ppm	ppm	ppom	ppom		ppm	\%	ppm	ppm		ppm	ppm	ppom	ppm	ppm
201384	1	13.		20	40	0.6	2		3	485	2.42	73			<2	2	27	0.6	4
STANDARD DS7	20	97		67	406	1.8	52		9	625	2.38		<8		<2		71	6.6	5

Eastield - A603953 (G1D) C01A

Page 8 of 8

Eastield - A603953 (G1D)_C01A

Page 1 of 4

Page 2 of 4

ELEMENT	$\mathrm{Au}^{* *}$										
SAMPLES	ppb										
201455	3										
201456	2										
201457	7										
201458	<2										
201459	7										
STANDAR	796										
G-1	<2										
201460	<2										
201461	<2										
201462	<2										
201463	4										
201464	2										
201465	2										
201466	2										
201467	2										
201468	<2										
201469	<2										
201470	4										
201471	<2										
201472	2										
201473	<2										
201474	<2										
201475	2										
201476	2										
201477	<2										
201478	3										
201479	2										
201480	7										
201481	3										
201482	3										
201483	4										
201484	2										
201485	6										
201486	<2										
201487	<2										

Page 3 of 4

Eastrield - A603953 (G3B)_C01A

ELEMENT	$\mathrm{Au}^{* *}$										
SAMPLES	ppb										
201381	62										
201383	45										
201384	163										
STANDAR	796										

Eastfield - A604109_C02 (G1D)

ELEMENT	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	B	AI	Na	K	W
SAMPLES	ppm	ppm	ppm	\%	\%	ppm	ppm	\%	ppm	\%	ppm	\%	\%	\%	ppm
G-1	3	<3	35	0.59	0.07	8	101	0.62	210	0.13	<3	1.12	0.11	0.52	<2
173461	<3	<3	8	18.56	0.002	1	1	11.1	3	<. 01	<3	0.02	0.01	0.01	<2
173462	<3	<3	12	18.02	0.002	2	1	10.97	3	<. 01	<3	0.01	0.01	0.01	<2
173463	<3	<3	11.	18.69	0.002	2	<1	11.75	3	<. 01	<3	0.02	0.01	0.01	<2
173464	<3	<3	10	18.16	0.002	2	1	11.4	4	<. 01	<3	0.04	0.01	0.02	<2
173465	<3	<3	20	17.62	0.007	4	3	7.29	44	<. 01	<3	0.23	0.01	0.02	<2
173466	<3	<3	13	19.71	0.002	1	<1	9.51	11	<. 01	<3	0.04	0.01	0.01	<2
173467	<3	<3	11	20.91	0.002	1	<1	7.79	12	<. 01	<3	0.03	0.01	0.01	<2
173468	<3	<3	16	19.23	0.002	2	<1	11.23	4	<. 01	<3	0.01	0.01	0.01	<2
173469	<3	<3	14	18.12	0.001	1	<1	10.73	3	<. 01	<3	0.01	0.01	0.01	<2
173470	3	<3	12	18.22	0.001	2	<1	11.06	3	$<.01$	<3	0.02	0.01	0.01	<2
173471	4	<3	9	18.17	0.002	1	<1	11.12	3	< 01	<3	0.03	0.01	0.01	<2
173472	4	<3	14	16.67	0.013	5	2	8.36	177	<. 01	<3	0.34	0.13	0.03	<2
173473	3	<3	14	17.75	0.003	2	<1	7.92	12	< 01	6	0.04	0.01	0.01	<2
173474	3	3	11	18.19	0.003	2	<1	9.33	9	$<.01$	<3	0.04	0.01	0.01	<2
173475	<3	<3	7	17.9	0.002	1	<1	10.67	12	< 01	<3	0.04	0.01	0.01	2
173476	<3	<3	11	18.9	0.002	2	<1	9.68	9	<. 01	<3	0.03	0.01	0.01	<2
173551	<3	<3	5	25.3	0.016	3	3	3.6	8	< 01	<3	0.13	0.01	0.03	<2
173552	<3	<3	5	23.86	0.013	3	3	3.84	5	< 01	<3	0.11	0.01	0.03	<2
173553	<3	<3	5	23.13	0.013	2	3	3.87	5	<. 01	<3	0.1	0.01	0.03	<2
173554	3	- <3	5	22.79	0.017	3	2	3.98	17	0.01	<3	0.12	0.01	0.05	<2
173555	<3	<3	5	25.02	0.014	3	3	3.5	5	< 01	9	0.13	0.02	0.04	<2
173556	<3	<3	5	26.29	0.013	3	3	2.47	5	<. 01	<3	0.11	0.01	0.03	<2
173560	<3	<3	78	1.37	0.109	27	9	0.58	58	0.15	5	1.47	0.05	0.08	<2
RE 173560	-3	<3	76	1.37	0.105	27	8	0.56	58	0.14	10	1.42	0.05	0.08	<2
173561	3	3	81	1.26	0.107	27	8	0.59	71	0.16	10	1.53	0.06	0.09	<2
173562	5	<3	82	1.15	0.114	27	8	0.57	85	0.16	9	1.5	0.04	0.08	<2
173563	<3	3	83	1.12	0.114	28	9	0.58	60	0.15	5	1.5	0.04	0.07	<2
173564	4	<3	781	0.96	0.106	27	8	0.58	57	0.14	8	1.52	0.04	0.07	<2
173565	7	<3	76	0.88	0.106	28	8	0.62	50	0.14	4	1.65	0.04	0.07	<2
173566	<3	3	84	0.88	0.114	30	10	0.61	66	0.15	4	1.6	0.04	0.07	<2
173567	4	3	80	1.03	0.111	29	8	0.54	67	0.15	5	1.45	0.04	0.07	<2

ELEMENT	Sample
SAMPLES	kg
G-1	-
173461	12
173462	9
173463	11
173464	8.5
173465	9.5
173466	8.5
173467	9.5
173468	6.5
173469	8
173470	9.5
173471	11
173472	6
173473	6
173474	5
173475	5.5
173476	$\frac{5}{5}$
173551	6.5
173552	8.5
173553	8.5
173554	9
173555	10
173556	13
173560	7.5
RE 173560	-
173561	6.5
173562	5.5
173563	6.5
173564	8.5
173565	11.5
173566	10.5
173567	5.5

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd
SAMPLES	ppm	\%	ppm	ppm	ppm	ppm	ppm	ppm							
173568	1	5	19	63	<. 3	3	6	622	3.01	2	<8	<2	5	77	<. 5
173569	1	6	18	62	<. 3	4	6	666	3.07	2	<8	<2	6	79	<. 5
173570	1	6	22	58	< 3	3	6	618	2.95	<2	<8	<2	6	77	<. 5
STANDARD	21	94	68	375	1	50	8	600	2.27	47	<8	<2	4	67	6.2
G-1	<1	48	8	45	< 3	3	3	538	1.84	2	<8	<2	4	50	<. 5
173571	<1	16	23	68	< 3	4	6	570	3.13	4	<8	<2	5	69	0.8
173572	<1	12	20	64	< 3	4	6	568	3.19	\| 4	<8	<2	5	64	0.7
173573	<1	12	24	72	< 3	4	6	586	3.28	3	<8	<2	6	66	0.8
173574	<1	7	14	39	< 3	5	3	442	1.73	4	9	<2	3	115	0.5
173575	<1	5	12	13	< 3	4	1	250	0.56	<2	<8	<2	<2	176	<. 5
173576	<1	6	10	14	< 3	6	1	246	0.52	4	<8	<2	<2	181	< 5
173577	<1	6	11	11	< 3	5	1	233	0.55	4	<8	<2	<2	189	< 5
173578	<1	5	11	18	< 3	5	2	328	0.99	3	<8	<2	<2	192	< 5
173579	<1	5	9	13	< 3	5	2	247	0.62	<2	<8	<2	<2	210	< 5
173580	<1	5	9	35	< 3	4	1	321	0.39	4	<8	<2	<2	169	< 5
173581	<1	6	11	20	< 3	2	1	273	0.65	2	<8	<2	<2	161	< 5
RE 173581	<1	6	7	20	< 3	2	1	275	0.64	<2	<8	<2	<2	160	<. 5
173582	<1	6	16	52	< 3	4	5	564	2.76	4	<8	<2	4	68	0.6
173583	<1	8	19	58	< 3	4	6	619	2.98	3	<8	<2	5	61	0.6
173584	<1	4	16	29	< 3	2	2	443	1.49	3	<8	<2	2	89	<. 5
173585	<1	4	4	18	< 3	1	1	255	0.59	<2	<8	<2	<2	83	< 5
173586	<1	3	3	13	< 3	1	<1	164	0.15	2	<8	<2	<2	94	< 5
173587	<1	5	4	17	< 3	1	<1	191	0.2	2	<8	<2	<2	119	< 5
173588	<1	5	4	16	< 3	2	<1	174	0.19	3	<8	<2	<2	164	< 5
173589	<1	4	6	15	< 3	2	<1	173	0.15	2	<8	<2	<2	116	<. 5
201385	<1	7	3	9	< 3	1	<1	452	0.16	4	<8	<2	<2	117	< 5
201386	<1	5	<3	18	< 3	1	<1	300	0.14	3	<8	<2	<2	89	< 5
201387	<1	2	9	15	< 3	<1	<1	176	0.09	3	<8	<2	<2	99	<. 5
201388	<1	2	6	16	< 3	1	<1	204	0.1	2	<8	<2	<2	97	< 5
201389	1	3	<3	17	< 3	1	<1	244	0.13	4	<8	<2	<2	86	<. 5
201390	3	12	10	33	< 3	1	1	416	0.53	7	<8	<2	<2	72	< 5
201391	<1	3	<3	13	< 3	1	<1	472	0.17	6	<8	<2	<2	123	< 5
201392	<1	3	3	20	< 3	1	<1	335	0.12	3	<8	<2	<2	122	< 5
201393	<1	2	4	15	< 3	1	<1	281	0.09	2	<8	<2	<2	99	<. 5
201394	2	7	7	37	<. 3	<1	<1	339	0.14	4	<8	<2	<2	100	< 5

Eastfield - A604109_C02 (G1D)

Page 5 of 9

ELEMENT	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	K	W
SAMPLES	ppm	ppm	ppm	\%	\%	ppm	ppm	\%	ppm	\%	ppm	\%	\%	\%	ppm
173568	4	3	80	1.1	0.113	27	7	0.56	75	0.15	5	1.45	0.04	0.07	<2
173569	<3	<3	75	1.08	0.109	29	8	0.58	52	0.12	5	1.62	0.04	0.07	<2
173570	4	<3	76	1.78	0.104	26	8	0.58	71	0.14	6	1.56	0.04	0.07	<2
STANDARI	5	5	77	0.91	0.072	12	154	1.01	368	0.11	41	0.95	0.08	0.43	4
G-1	3	<3	33	0.49	0.073	7	6	0.59	204	0.12	3	0.94	0.05	0.48	<2
173571	<3	5	86	1.04	0.116	28	8	0.58	81	0.16	8	1.69	0.05	0.07	<2
173572	4	3	86	0.96	0.12	28	7	0.62	71	0.15	5	1.65	0.03	0.06	<2
173573	4	3	89	1.05	0.124	29	9	0.6	89	0.16	4	1.71	0.04	0.07	<2
173574	<3	4	41	13.7	0.075	17	6	1.96	52	0.09	3	0.91	0.03	0.07	<2
173575	<3	5	12	24.77	0.033	8	4	3.95	10	0.02	<3	0.32	0.01	0.05	<2
173576	<3	3	10	24.39	0.036	9	4	4.07	8	0.01	6	0.3	0.01	0.07	<2
173577	3	<3	9	24.65	0.028	8	4	3.52	11	0.01	<3	0.3	0.01	0.05	<2
173578	<3	<3	19	23.48	0.044	11	4	2.66	19	0.04	6	0.52	0.01	0.05	<2
173579	<3	4	14	26.13	0.04	9	5	3.14	12	0.02	6	0.39	0.01	0.1	<2
173580	<3	3	5	24.93	0.029	6	3	6.54	7	<. 01	<3	0.18	0.01	0.04	<2
173581	<3	4	13	23.58	0.025	7	2	5.1	10	0.02	<3	0.3	0.01	0.03	<2
RE 173581		<3	13	23.52	0.025	7	2	5.08	10	0.02	<3	0.3	0.01	0.03	<2
173582	3	<3	67	3.19	0.107	27	7	0.98	64	0.1	<3	1.41	0.03	0.06	<2
173583 \|	<3	<3	73	1.55	0.11	30	7	0.85	73	0.12	3	1.51	0.04	0.07	<2
173584	<3	<3	36	13.51	0.064	13	4	5.51	25	0.07	6	0.78	0.02	0.04	<2
173585	<3	<3	14	17.1	0.021	6	2	10.29	12	0.03	<3	0.36	0.01	0.02	<2
173586	<3	3	3	20.59	0.004	3	2	11.44	4	<. 01	<3	0.09	0.01	0.02	<2
173587	<3	<3	5	21.64	0.004	2	1	10.45	5	$<.01$	5	0.1	0.01	0.02	<2
173588	<3	4	3	23.81	0.008	2	2	9.13	4	$<.01$	<3	0.1	0.01	0.02	<2
173589	<3	5	2	21.19	0.008	2	1	10.76	3	<. 01	5	0.07	0.01	0.02	<2
201385	<3	<3	6	19.21	0.002	2	1	12.16	5	<. 01	<3	0.03	0.01	0.01	<2
201386	<3	4	3	19.75	0.002	2	1	11.67	6	$<.01$	<3	0.02	0.01	0.01	<2
201387	<3	<3	2	20.61	0.001	2	1	12.03	3	$<.01$	<3	0.04	0.01	0.02	<2
201388	<3	<3	2	19.39	0.002	2	1	12.33	3	< 01	5	0.04	0.01	0.02	<2
201389	<3	<3	3	20	0.001	2	1	12.57	4	< 01	<3	0.07	0.01	0.01	<2
201390	<3	<3	7	17.7	0.008	5	1	10.31	13	<. 01	<3	0.34	0.01	0.02	<2
201391	<3	<3	9	19	0.002	2	1	12.44	4	<. 01	<3	0.03	0.01	0.01	<2
201392	<3	<3	8	19.38	0.002	2	<1	12.19	4	< 01	<3	0.03	0.01	0.01	<2
201393	<3	<3	4	19.67	0.001	1	1	12.5	3	<. 01	<3	0.02	0.01	0.01	<2
201394	<3	4	6	19.52	0.001	1	1	11.68	4	< 01	<3	0.03	0.01	0.01	<2

Page 6 of 9

ELEMENT	Sample
SAMPLES	kg
173568	7.5
173569	6.5
173570	5
STANDAR	-
G-1	-
173571	10
173572	11
173573	8
173574	6.5
173575	7
173576	7
173577	6.5
173578	4.5
173579	3
173580	6
173581	-6
RE 173581	-
173582	6.5
173583	5
173584	3.5
173585	8.5
173586	9.5
173587	10.5
173588	7
173589	8
201385	12.6
201386	11
201387	11
201388	8.5
201389	8
201390	8.6
201391	11
201392	12
201393	8.9
201394	7

Page 7 of 9

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd
SAMPLES	ppm	\%	ppm	ppm	ppm	ppm	ppm	ppm							
201395	2	2	6	30	< 3	1	<1	265	0.32	2	<8	<2	<2	99	<. 5
201396	<1	2	<3	24	<. 3	1	<1	218	0.07	<2	<8	<2	<2	89	<. 5
201397	1	3	<3	20	< 3	1	<1	224	0.16	5	<8	<2	<2	84	<. 5
STANDARD	19	98	69	401	0.9	48	8	615	2.35	48	<8	<2	3	71	6.1

Page 8 of 9

ELEMENT	Sb		Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	K	W
SAMPLES	ppm		ppm	ppm	\%	\%	ppm	ppm	\%	ppm	\%	ppm	\%	\%	\%	ppm
201395	<3		<3	4	19.28	0.002	2	1	11.75	3	<. 01	4	0.03	0.01	0.01	<2
201396	<3		3	2	20.05	0.001	1	1	11.54	3	<. 01	3	0.03	0.01	0.01	<2
201397	<3		<3	2	21.16	0.003	2	1	11.36	4	<. 01	<3	0.07	0.01	0.01	<2
STANDARI			5	76	0.92	0.073	12	157	1.04	376	0.12	38	0.98	0.08	0.44	3

ELEMENT	Sample
SAMPLES	kg
201395	
201396	10.5
201397	9.5
STANDARI	

 \(-7\)

Eastfield - A604109_C02 (G3B)

Page 2 of 3

Eastfield - A604109_C02 (G3B)

Page 3 of 3

ELEMENT	$\mathrm{Au}^{* *}$											
SAMPLES	ppb											
201394	4											
201395	2											
201396	$\overline{3}$											
201397	5											
STANDAR	794											

	From ACME A	ANALYTICAL L	ABORATORIE	ES LTD. 852 E	E. HA	T. VANCOU	VER BC V6A	1R6 PHONE(6	604)253-3158	FAX(604)253-1	716	T FORMAT
	To Eastield Re	Resources Ltd. P	PROJECT Crow	Wsnest								
	Acme file \# A6	604109A Rec	ceived: JUL 21	$2006^{\circ} 30$ s	samples	disk file.						
	Analysis: GRO	UPP 1D-0.50	GM SAMPLE L	LEACHED WIT	TH 3	HCL-HNO3-	AT 95 DE	C FOR ON	HOUR, DILU	ED TO 10	AN	ICP-ES.
ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au
SAMPLES	ppm	\%	ppm	ppm	ppm							
G-1	<1	<1	5	46	<. 3	<1	4	551	1.98	<2	<8	<2
173401	2	11	6	25	<. 3	<1	1	842	1.03	12	<8	<2
173402	1	59	6	40	<. 3	7	6	642	2.41	13	<8	<2
173403	<1	65	7	46	< 3	3	6	485	2.42	17	<8	<2
173404	2	48	<3	36	< 3	<1	4	488	4.35	27	<8	<2
173405	1	19	<3	46	< 3	<1	5	614	2.77	13	<8	<2
173406	3	21	9	83	<. 3	<1	6	961	3.7	22	<8	<2
173407	1	9	7	34	<. 3	1	<1	375	0.2	10	<8	<2
RE 173407	1	8	5	35	<. 3	1	<1	374	0.2	10	<8	<2
173408	3	15	6	33	< 3	<1	<1	567.	0.65	19	<8	<2
173409	3	24	8	35	< 3	<1	<1	774	0.75	22	<8	<2
173410	1	18	<3	24	<. 3	2	<1	463	0.39	14	<8	<2
173411	1	8	6	22	< 3	3	2	421	0.61	12	<8	<2
173412	1	8	3	50	< 3	1	<1	549	0.68	8	<8	<2
173413	10	156	31	57	<. 3	4	1	820	20.15	73	<8	2
173414	2	22	15	92	<. 3	6	9	785	4.14	11	<8	<2
173415	10	52	25	23	< 3	5	<1	968	23.13	39	<8	<2
173416	6	28	9	21	< 3	<1	<1	726	1.64	28	<8	<2
173417	2	14	6	35	$<.3$	<1	<1	581	0.72	19	<8	<2
173418	2	4	6	7	<. 3	<1	<1	576	0.38	11	<8	<2
173419	1	18	11	80	< 3	8	8	488	3.05	14	<8	<2
173451	<1	8	16	39	<. 3	10	2	373	0.91	10	<8	<2
173452	1	7	15	35	< 3	2	<1	332	0.82	8	<8	<2
173453	1	7	10	26	<. 3	7	<1	293	0.62	5	<8	<2
173454	1	7	4	30	< 3	8	2	309	0.69	11	<8	<2
173455	1	5	15	28	< 3	5	3	274	0.58	6	<8	<2
173456	1	6	3	24	<. 3	<1	2	268	0.49	4	<8	<2
173457	<1	3	15	69	< 3	<1	6	584	2.86	3	<8	<2
173458	1	5	12	64	< 3	4	6	587	2.82	6	<8	<2
173459 ;	1	- 6	17	71	<3	4	6	652	3.06	<2	<8	<2
STANDAR[- 19	101:	68	410		54	9	627	2.38	50	<8	<2

ELEMENT	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	\%	\%	ppm	ppm	\%	ppm
G-1	3	66	0.7	<3	<3	38	0.58	0.076	7	7	0.6	219
173401	2	114	0.7	7	4	10	20.99	0.019	8	5	9.6	31
173402	<2	47	0.9	<3	<3	26	2.25	0.065	32	6	1.03	53
173403	<2	25	< 5	<3	<3	30	0.35	0.067	25	7.	0.64	54
173404	<2	51	<. 5	<3	<3	15	1.29	0.044	42	3	0.58	86
173405	<2	27	0.7	<3	<3	21	0.39	0.062	26	4	0.5	63
173406	2	33	0.6	<3	<3	19	1.82	0.048	24	5	0.95	87
173407	<2	80	< 5	6	<3	5	22.7	0.004	2	2	13.2	8
RE 173407	<2	80	< 5	6	<3	5	22.43	0.003	1	1	12.99	12
173408	<2	95	<. 5	<3	3	10	21.07	0.007	2	2	11.57	17
173409	<2	254	0.5	<3	<3	47	24.29	0.003	1	<1	10.81	45
173410	<2	432	<. 5	8	<3	44	26.17	0.004	2	<1	7.3	24
173411	2	221	0.5	6	, <3	10	30.04	0.014	6	2	1.67	14
173412	<2	210	0.7	<3	11	5	29.54	0.006	3	3	7.87	9
173413	4	25	1.5	4	3	20	1.92	0.033	19.	6	0.49	42
173414	3	33	<. 5	<3	<3	55	0.57	0.055	13	10	0.87	63
173415	3	4	< 5	3	<3	10	0.12	0.025	7	4	0.12	18
173416	<2	192	0.7	<3	4	17	24.87	0.005	2	1	6.81	11
173417	<2	183	1	4	10	11	26.33	0.002	1.	<1	8.74	8
173418	<2	143	0.5	<3	<3	3	25.67	0.002	<1	<1	11.2	10
173419	4	35	< 5	<3	<3	56	1.08	0.068	15	10	1.03	70
173451	2	137	0.6	<3	<3	16	23.73	0.046	13	6	6.47	15
173452	2	146	< 5		<3	14	24.88	0.044	10	5	6.46	11
173453	<2	176	<. 5	<3	5	12	26.74	0.035	10	6	5.22	8
173454	<2	181	<. 5	<3	5	12.	26.45	0.038	11	5	5.49	13
173455	2	166	0.5	4	3	10	27.69	0.03	9	5	5.58	7
173456	<2	187	< 5	3	7	9	28.89	0.03	8	5	5.39	5
173457	4	94	< 5	<3	<3	75	7.94	0.105	26	7	0.77	58
173458	4	84	<. 5	3	<3	76	7.76	0.103	24	8	0.9	59
173459	5	88	<. 5	3	<3	81.	3.47	0.115	27	10	0.58	69
STANDARI	15	- 68	5.7	6	<3	81	0.93	0.076	12	191	1.03	398

Page 3 of 3

ELEMENT	Ti	B	Al	Na	K	W	Sample
SAMPLES	\%	ppm	\%	\%	\%	ppm	kg
G-1	0.13	5	0.98	0.08	0.48	<2	-
173401	< 01	<3	0.42	< 01	0.07	<2	4
173402	< 01	4	1.44	0.03	0.11	<2	10
173403	< 01	7	1.67	0.02	0.15	2	7.5
173404	<. 01	7	1.57	0.02	0.11	<2	13
173405	<. 01	<3	1.74	< 01	0.16	<2	8
173406	<. 01	5	1.72	<. 01	0.14	<2	5
173407	<. 01	<3	0.06	0.01	0.04	<2	5.6
RE 173407	< 01	<3	0.06	<. 01	0.03	<2	-
173408	< 01	<3	0.19	< 01	0.01	<2	6.2
173409	< 01	<3	0.06	<. 01	0.03	<2	6
173410	< 01	<3	0.1	0.03	0.06	<2	6.7
173411	0.01	<3	0.3	<. 01	0.09	<2	2.5
173412	< 01	<3	0.16	0.02	0.05	<2	6.5
173413	<. 01	16	1.04	0.02	0.08	<2	4.5
173414	0.01	5	2.59	0.05	0.05	<2	5
173415	<. 01	9	0.35	< 01	0.05	<2	4.5
173416	< 01	<3	0.14	<. 01	0.01	<2	7
173417	<. 01	<3	0.04	<. 01	0.01	<2	7
173418	<. 01	5	0.02	0.06	0.01	<2	5.5
173419	0.01	5	2.56	<. 01	0.06	3	5
173451	0.01	5	0.54	<. 01	0.06	<2	13.5
173452	0.01	3	0.48	0.01	0.1	<2	14.5
173453	0.01	<3	0.41	0.02	0.07	<2	12.5
173454	0.01	4	0.43	0.02	0.11	<2	12
173455	0.01	3	0.41	0.03	0.07	<2	11
173456	$<.01$	3	0.31	0.01	0.09	<2	12
173457	0.13	8	1.3	<. 01	0.1	2	5.5
173458	0.13	10	1.26	0.05	0.08	<2	5
173459	0.14	7	1.49	0.04	0.13	<2	4
STANDARI	- 0.12	42	1	; 0.07	0.46	5	

Eastfield - A604109A_C02 (G3B)

	From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT											
	To Eastfield Re	Resources Ltd.										
	Acme file \# A604234 Page 1 Received: JUL 24 2006* 50 samples in this disk file.											
	Analysis: GROUP 1D-0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.											
ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au
SAMPLES	ppm	\%	ppm	ppm	ppm							
G-1	<1	2	4	46	< 3	5	4	580	1.98	54	<8	<2
173101	1	21	<3	27	<. 3	1	<1	206	0.12	11	<8	<2
173102	1	14	3	29	< 3	1	<1	195	0.17	11	<8	<2
173103	2	32	<3	32	< 3	<1	<1	276	0.24	12	<8	<2
173104	1	45	<3	14	0.4	1	<1	309	0.12	15	<8	<2
173105	2	31	<3	17	<. 3	9	1	436	0.13	8	<8	<2
173106	<1	37	7	32	< 3	4	2	436	2.23	23	<8	<2
173107	1	13	<3	20	0.3	4	2	268	0.57	5	<8	<2
173108	<1	11	5	19	< 3	8	2	222	0.39	10	<8	<2
173109	2	58	22	86	0.4	23	7	656	2.71	11	<8	<2
173110	6	13	4	40	< 3	3	<1	250	0.61	8	<8	<2
173111	2	35	20	111	0.4	21.	9	789	3.12	11	<8	<2
173112	1	39	6	64	0.5	9	2	526	1.36	9	<8	<2
173113	1	11	14	89	0.3	11	8	681	3.03	8	<8	<2
173114	1	65	40	236	0.5	21	6	753	2.32	17.	<8	<2
173115	1	12	14	108	<. 3	15	6	731	3.15	6	<8	<2
173116	1	66	33	182	0.3	2	<1	410	1.09	6	<8	<2
173117	1	27	32	154	0.4	19	8	868	2.84	11	<8	<2
173118	1	28	13	79	<. 3	9	3	435	0.97	8	<8	<2
173119	<1	15	<3	59	< 3	2	<1	345	0.4	6	<8	<2
173120	1	19	18	114	<3	19.	8	885	2.97	7	<8	<2
173121	1	14	- -16	91	< 3	12	7	767	2.69	10	<8	<2
173122	1	13	- 19	95	<. 3	11	7	752	3.13	5	<8	<2
173123	1	41	- 7	72	0.6	11	10	765	2.85	6	<8	<2
173124	1	19	4	27	0.3	6	<1	219	0.15	3	<8	<2
RE 173124	<1	18	: $-\cdots$	22	0.4	<1	1	213	0.13	6	<8	<2
173125	2	- - ${ }^{\text {a }}$	- $\quad-\quad 9$	41	0.3	4	<1	275	0.32	10	<8	<2
173126	2	-- 24	<3	29	< 3	<1	2	243	0.46	16	<8	<2
173127	3	. 61	<3	27	<. 3	4	<1	383	0.3	12	<8	<2
173128	1	- $\ldots-26$	- -4	16	0.3	<1	<1	658	0.24	7	9	<2
173129	1	- 30	- 8	42	0.5	7	5	376	2.38	28	<8	<2
173130	<1	13	- -4		< 3	4	1	255	0.49	5	<8	<2

Page 2 of 6

ELEMENT	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	\%	$\%$	ppm	ppm	\%	ppm
G-1	4	58	<. 5	<3	<3	37	0.5	0.071	7	8	0.58	211
173101	<2	136	<. 5	<3	<3	4	24	0.004	1	5	12.14	5
173102	<2	108	<. 5	5	<3	4	21.42	0.002	2	<1	12.81	5
173103	<2	162	0.5	3	<3	16	21.91	0.004	\| 1	<1	11.82	4
173104	2	186	0.7	<3	4	56	22.99	0.004	2	<1	12	5
173105	<2	223	<. 5	<3	<3	26	24.08	0.002	3	<1	11.9	18
173106	<2	44	< 5	<3	<3	13	4.39	0.05	22	<1	2.31	54
173107	2	123	<. 5	<3	<3	14	22.19	0.007	5	6	10.78	17
173108	<2	93	<. 5	<3	<3	11	19.97	0.005	3	5	12.37	16
173109	4	32	0.8	<3	<3	54	1.45	0.072	41	22	3.43	64
173110	<2	92	0.6	<3	7	10	20.72	0.007	3	4	12.73	14
173111	6	43	0.5	6	4	59	0.56	0.113	33	14	1.11	74
173112	<2	73	<. 5	<3	<3	29	14.85	0.037	17	8	9.6	25
173113	5	46	<. 5	4	<3	67	2.49	0.108	23	7	1.7	43
173114	3	62	1.5	<3	6	52	8.33	0.065	33	15	6.73	53
173115	5	40	0.7	<3	<3	65	0.73	0.103	23	10	0.86	69
173116	<2	121	0.9	<3	<3	17	18.6	0.019	5	3	11.26	15
173117	4	59	1	<3	<3	55	4.02	0.097	28	10	2.61	68
173118	<2	234	< 5	<3	<3	17	18.52	0.034	12	6	8.31	33
173119	<2	79	<. 5	<3	6	8	20.29	0.013	3	3	12.88	12
173120	3	27	1	<3	4	51	1.36	0.125	32	12	1.43	56
173121	3	41	0.8	<3	<3	52	2.52	0.135	29	10	1.78	75
173122	4	43	1.2	<3	6	61	1.05	0.109	32	10	1.08	58
173123	4	47	1.1	<3	<3	61	3.65	0.114	29	13	4.36	72
173124	<2	181	< 5	<3	9	26	24.34	0.004	2	<1	11.78	7
RE 173124	-2	176	< 5	<3	7	25	23.61	0.004	2	<1	11.4	4
173125	<2	171	<. 5	<3	6	40	20.66	0.009	2	2	11.44	13
173126	<2	244	<. 5	<3	6	20	24.24	0.004	4	<1	12.04	6
173127	<2	194	<. 5	<3	<3	32	23.52	0.004	4	<1	12.14	8
173128	<2	163	<. 5	<3	7	16	22.24	0.006	4	<1	12.37	6
173129	2	26	0.9	<3	<3	14	1.68	0.059	25	3	1.01	46
173130	<2	98	<. 5	<3	5	13	20.74	0.006	4	7	12.19	18

Eastfield - A604234_C03 (G1D)

Page 3 of 6

ELEMENT	Ti	B	Al	Na	K	W	Sample
SAMPLES	\%	ppm	\%	$\%$	\%	ppm	kg
G-1	0.13	<3	0.96	0.07	0.47	<2	-
173101	< 01	6	0.06	0.03	0.03	<2	7.2
173102	< 01	<3	0.08	0.03	<. 01	<2	7
173103	< 01	<3	0.05	0.05	<. 01	<2	8.2
173104	<. 01	<3	0.04	0.04	<. 01	<2	6.5
173105	<. 01	6	0.04	0.01	0.01	<2	5.5
173106	$<.01$	4	0.91	0.05	0.14	<2	7
173107	0.01	6	0.59	0.05	0.12	<2	7.5
173108	0.01	5	0.51	0.05	0.11	<2	7
173109	0.04	16	2.51	<. 01	0.17	<2	6.5
173110	0.01	<3	0.44	0.05	0.09	<2	7.5
173111	0.04	8	2.28	0.07	0.14	<2	4.5
173112	0.03	10	1.06	0.1	0.1	<2	7
173113	0.08	<3	1.94	0.06	0.11	<2	10
173114	0.05	10	1.96	0.06	0.13	<2	6.5
173115	0.07	<3	2.25	0.07	0.14	2	7.5
173116	0.01	13	0.44	0.03	0.03	<2	5.5
173117	0.05	15	2.12	0.05	0.12	<2	10
173118	0.01	11	0.54	0.03	0.1	<2	7.5
173119	0.01	13	0.27	0.04	0.01	<2	4
173120	0.03	3	2.06	0.06	0.14	<2	6.5
173121	0.05	4	1.67	0.05	0.09	<2	6.5
173122	0.06	6	2.15	0.04	0.1	<2	7.5
173123	0.09	7	2.01	0.04	0.23	<2	3.5
173124	< 01	<3	0.09	0.02	0.03	<2	3.5
RE 173124	<. 01	<3	0.08	0.06	0.01	<2	-
173125	< 01	<3	0.17	0.02	0.01	<2	6
173126	<. 01	<3	0.06	0.05	0.03	<2	6
173127	< 01	4	0.09	0.06	0.02	<2	7
173128	<. 01	<3	0.12	0.05	0.03	<2	6
173129	$<.01$	<3	0.82	0.04	0.18	<2	7
173130	0.02	<3	0.68	0.01	0.13	<2	9

Page 4 of 6

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au
SAMPLES	ppm	\%	ppm	ppm	ppm							
173131	2	48	12	96	<. 3	19	7	726	3.12	9	<8	<2
173132	2	14	19	174	0.4	31	8	992	2.81	18	<8	<2
173133	<1	20	<3	14	0.4	8	1	200	0.57	11	<8	<2
STANDAR[19	101	67	418	0.8	57	9	646	2.47	46	<8	<2
G-1	<1	<1	4	44	<. 3	7	4	575	2.1	<2	<8	<2
173134	1	28	<3	58	<. 3	10	3	281	0.74	9	<8	<2
173135	2	11	14	96	<. 3	13	9	848	3.33	9	9	<2
173136	1	28	7	45	<. 3	8	3	340	0.84	11	<8	<2
173137	2	15	26	95	< 3	16	9	813	2.96	7	<8	<2
173138	1	20	21	80	< 3	8	1	423	0.84	8	<8	<2
173139	2	15	17	81	< 3	24	7	859	2.21	9	<8	<2
173140	<1	30	23	159	< 3	3	1	427	0.64	4	<8	<2
RE 173140	<1	31	22	161	< 3	1	<1	419	0.63	4	<8	<2
173141	2	18	28	118	0.3	22	9	857	3.02	14	<8	<2
173142	2	11	7	75	< 3	4	<1	477	0.83	8	<8	<2
173143	1	16	21	104	< 3	21	9	851	3.11	10	<8	<2
173144	<1	9	<3	17	<. 3	2	<1	258	0.27	3	<8	<2
173145	1	17.	18	84	<. 3	17	7	857	2.73	9	<8	<2
173146	3	127	9	39	0.3	12	10	342	3.46	7	<8	<2
STANDAR[20	102	67.	418	1	52	10	639	2.4	51	<8	<2

Page 5 of 6

ELEMENT	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	\%	\%	ppm	ppm	\%	ppm
173131	4	37	0.8	<3	<3	58	0.59	0.099	35	15	1.44	69
173132	4	72	1.5	<3	<3	52	5.79	0.172	38	12	0.96	58
173133	<2	100	< 5	<3	10	17	20.15	0.009	5	8	12.57	19
STANDARI	- 4	78	6.1	6	5	81	0.98	0.074	13	164	1.07	406
G-1	4	90	< 5	<3	<3	40	0.67	0.076	8	15	0.6	244
173134	2	94	< 5	<3	<3	20	20.3	0.012	9	13	13.42	22
173135	5	44	1.2	<3	5	69	0.84	0.114	37	13	1.06	69
173136	2	99	0.7	<3	5	16	21.24	0.009	10	9	13.1	27
173137	5	34	1.4	<3	7	55	0.55	0.117	34	13	0.82	63
173138	<2	156	< 5	<3	<3	16	20.71	0.037	10	6	9.41	20
173139	4	47	1	<3	<3	34	7.69	0.111	37	11	4.11	56
173140	2	258	1	<3	<3	12	25.44	0.013	4	3	9.77	17
RE 173140		254	1.2	<3	<3	11	25.08	0.015	3	5	9.65	19
173141	5	39	1.1	3	6	48	2.02	0.124	31	15	1.22	52
173142	<2	95	1.1	<3	<3	16	19.04	0.035	15	6	10.64	17
173143	7	31.	0.8	4	4	51	0.67	0.128	33	14	0.91	59
173144	<2	101	<. 5	<3	<3	6	23.79	0.011	3	1	12.76	6
173145	3	50	0.9	<3	3	47	5.51	0.111	45	13	2.01	57
173146	5	60	0.8	7	5	90	3.36	0.192	24	26	3.11	42
STANDARI	- 4	70	6.1	6	5	87	0.94	0.077	11	156	1.07	392

Page 6 of 6

ELEMENT	Ti	B	Al	Na	K	W	Sample
SAMPLES	\%	ppm	\%	\%	\%	ppm	kg
173131	0.05	6	2.19	0.05	0.14	<2	4.5
173132	0.04	3	1.94	0.05	0.14	2	6.5
173133	0.02	9	0.81	0.06	0.18	<2	3
STANDARI	0.13	35	1.04	0.11	0.47	4	-
G-1	0.14	4	1.2	0.11	0.57	<2	-
173134	0.03	27	1.01	0.02	0.15	<2	6.5
173135	0.07	7	2.28	0.02	0.1	<2	5
173136	0.02	37	0.81	<. 01	0.09	<2	4.5
173137	0.04	7	2.07	0.02	0.13	<2	3.5
173138	0.01	21	0.61	<. 01	0.09	<2	6
173139	0.02	8	1.42	0.01	0.12	<2	2.5
173140	0.01	32	0.32	0.01	0.06	3	6
RE 173140	0.01	33	0.3	0.03	0.05	2	-
173141	0.03	10	1.99	<. 01	0.14	<2	4.5
173142	0.01	8	0.53	<. 01	0.08	<2	5.5
173143	0.04	6	2.21	0.03	0.16	<2	4.5
173144	<. 01	6	0.19	<. 01	0.02	<2	5.5
173145	0.04	12	1.63	0.01	0.16	<2	7.5
173146	0.14	12	1.98	0.02	0.18	2	5.5
STANDARI	- 0.12	40	0.98	0.08	0.48	5	-

ELEMENT	$\mathrm{Au}^{* *}$											
SAMPLES	ppb											
173130	20											
173131	285											
173132	24											
173133	58											
STANDAR	803											
G-1	<2											
173134	78											
173135	30											
173136	25											
173137	18											
173138	52											
173139	23											
173140	40											
RE 173140	36											
173141	25											
173142	176											
173143	15											
173144	37											
173145	22											
173146	59											
STANDAR	822								1			

	From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT											
	To Eastield Resources Ltd. PROJECT Crowsnest											
	Acme file \# A604467 Page 1 Received: JUL 27 2006** 104 samples in this disk file.											
	Analysis: GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.											
ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au
SAMPLES	ppm	\%	ppm	ppm	ppm							
G-1	<1	6	<3	40	< 3	8	3	519	1.88	<2	<8	<2
173201	<1	5	3	18	<. 3	9	2	173	0.54	4	<8	<2
173202	<1	6	5	49	< 3	1	<1	128	0.46	3	<8	<2
173203	<1	4	<3	10	< 3	3	1	104	0.33	<2	<8	<2
173204	<1	4	<3	26	<3	2	2	138	0.29	2	<8	<2
173205	<1	3	<3	14	< 3	<1	<1	143	0.21	<2	<8	<2
173206	<1	3	<3	10	< 3	7	<1	109	0.17	<2	<8	<2
173207	<1		<3	10	< 3	3	<1	133	0.16	<2	<8	<2
173208	<1	6	- 5	20	< 3	3	<1	166	0.25	3	<8	<2
173209	<1	7	- 10	50	< 3	9	3	344	0.53	2	<8	<2
173210	<1	11	6	41	< 3	10	4	285	0.64	9	<8	<2
173211	<1	16	-10	29	< 3	11	6	206	1.1	6	<8	<2
173212	<1	13	- 10	26	< 3	19	6	130	1.67	8	<8	<2
173213	<1	10	-12	38	<. 3	23	8	160	2.01	10	<8	<2
RE 173213	<1	10	111	34	<. 3	23	8	158	2	8	<8	<2
173214	<1	9	- 20	13	< 3	4	2	8	1.1	5	<8	<2
173215	<1	13	: 21	30	< 3	14	4	151	1.6	11	<8	<2
173216	<1	7	7 14	22	< 3	12	5	62	1.41	7	<8	<2
173217	<1	11	13	37	< 3	14	7	117	2.18	18	<8	<2
173218	<1	10	--12	56	< 3	11	6	118	2.89	19	<8	<2
173219	<1	11	- 18	109	< 3	11	5	299	2.71	26	<8	<2
173220	<1	5	5 ; 24	117	< 3	8	2	237	0.47	10	<8	<2
173221	<1	3	3 8	45	< 3	2	<1	275	0.33	7	<8	<2
173222	<1	10	- 10	42	< 3	3	1	278	0.85	7	<8	<2
173223	1	7	$7-11$	32	< 3	4	2	270	1	10	<8	<2
173224	1	13	--11	58	< 3	2	6	290	5.33	13		<2
173225	1		3:<3	15	< 3	<1	<1	513	0.19	7	<8	<2
173226	1	3	3 4	13	< 3	<1	<1	331	0.23	<2	<8	<2
173227	<1	1	< <3	8	<. 3	4	<1	212	0.17	8	<8	<2
173228	<1	9	9 8	47	< 3	13	5	180	0.98	11	<8	<2
173229	<1	4	4	32	<. 3	4	1	152	0.52	7	<8	<2
173230	<1		$4<3$	34	< 3	3	1.	89	0.36	5	<8	1<2

Page 2 of 12

ELEMENT	Th	$\overline{\mathrm{Sr}}$	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	\%	\%	ppm	ppm	\%	ppm
G-1	3	62	1.3	<3	<3	33	0.48	0.067	7	7	0.52	201
173201	3	97	<. 5	8	5	17	15.57	0.041	10	13	5.56	439
173202	2	76	1.6	3	6	18	16.5	0.042	7	12	7.06	37
173203	2	55	0.9	4	11	10	13.81	0.042	5	11	6.43	19
173204	<2	80	0.5	<3	10	8	18.54	0.055	3	6	8.27	31
173205	<2	94	< 5	<3	<3	6	22.14	0.041	3	6	9.44	12
173206	2	64	<. 5	4	10	5	19.51	0.035	2	5	10.71	7
173207	<2	63	< 5	3	9	4	19.93	0.033	2	6	9.63	5
173208	<2	60	<. 5	<3	11	6	20.05	0.069	3	8	9.32	8
173209	2	47	0.6	4	6	11	14.73	0.055	4	10	5.92	20
173210	4	41	1.1	4	5	16	12.71	0.052	5	11	5.18	28
173211	4	32	0.8	6	<3	16	7.66	0.04	4	11	2.32	35
173212	5	15	1	3	7	9	3.42	0.029	4	11	1.05	35
173213	4	14	1	<3	3	10	1.96	0.023	4	13	0.75	89
RE 173213	4	13	0.8	5	4	11	1.93	0.021	4	13	0.74	90
173214	3	13	0.6	<3	<3	9	0.17	0.01	4	12	0.13	58
173215	2	18		<3	5	24	1.97	0.018	14	12	1.08	34
173216	3	10	0.8	<3	<3	10	0.13	0.015	6	12	0.1	56
173217	3	7	0.9	<3	6	18	0.25	0.014	13	14	0.13	32
173218	3	6	1.5	4	3	21	0.31	0.021	7	17	0.07	64
173219	3	35	1.4	3	7	22	12.62	0.061	5	15	5.62	43
173220	4	47,	0.8	<3	5	16	13.33	0.134	7	14	4.33	27
173221	<2	73	<. 5	<3	8	11	21.11	0.061	3	8	8.89	13
173222	3	65	0.6	<3	15	11	18.45	0.082	10	9	6.16	88
173223	3	167	0.9	<3	<3	21	17.4	0.045	9	7	4.71	43
173224	5	52	1.2	6	6	35	3.21	0.093	21	4	0.53	163
173225	<2	206	$<$	<3	4	4	28.44	0.025	4	6	7.17	8
173226	<2	175	0.9	3	<3	4	25.01	0.024	3	8	6.72	8
173227	<2	156	<. 5	<3	3	4	23.9	0.021	4	8	7.85	8
173228	2	106	0.6	<3	10	33	15.41	0.056	13	21	3.01	43
173229	<2	87	< 5	<3	4	15	17.27	0.046	6	11	6.3	14
173230	2	52	< 5	<3	12	11	15.24	0.041	7	13	6.45	6

Eastfield - A604467_C04 (G1D)

Page 3 of 12

ELEMENT	Ti	B	Al	Na	K	W	Sample
SAMPLES	\%	ppm	\%	\%	\%	ppm	kg
G-1	0.12	<3	0.93	0.06	0.48	<2	-
173201	$<.01$	4	0.35	0.01	0.14	<2	5.31
173202	< 01	5	0.27	< 01	0.08	<2	10.18
173203	< 01	4	0.19	0.03	0.05	<2	9.9
173204	< 01	4	0.15	< 01	0.06	<2	5.74
173205	$<.01$	<3	0.11	< 01	0.02	<2	6.26
173206	< 01	3	0.07	<. 01	0.04	<2	11.08
173207	< 01	3	0.06	0.02	0.04	<2	7.78
173208	< 01	<3	0.12	0.02	0.07	<2	11.27
173209	< 01	3	0.22	< 01	0.07	<2	5.96
173210	< 01	<3	0.23	< 01	0.08	<2	5.15
173211	< 01	8	0.37	< 01	0.17	<2	10.38
173212	< 01	7	0.4	< 01	0.22	<2	9.41
173213	< 01	9	0.5	0.01	0.25	<2	11.48
RE 173213	<. 01	7	0.5	< 01	0.26	<2	- $-\quad-1$.
173214	< 01	10	0.7	< 01	0.41	<2	5.57
173215	< 01	4	0.55	< 01	0.18	<2	4.96
173216	< 01	5	0.48	0.02	0.29	<2	5.72
173217	<. 01	3	0.46	< 01	0.15	<2	7.69
173218	<. 01	4	0.28	<. 01	0.12	<2	8.84
173219	< 01	3	0.2	< 01	0.1	<2	5.68
173220	< 01	4	0.11	<. 01	0.06	<2	6.27
173221	< 01	3	0.07	< 01	0.02	<2	5.04
173222	< 01	3	0.22	0.02	0.1	<2	9.09
173223	< 01	<3	0.47	0.02	0.09	<2	3.85
173224	< 01	<3	1.16	0.04	0.13	<2	9.19
173225	<. 01	3	0.06	0.03	0.02	<2	6.03
173226	<. 01	<3	0.11	0.01	0.01	<2	6.39
173227	< 01	3	0.08	0.03	0.02	<2	5.01
173228	<. 01	9	0.82	0.02	0.3	<2	10.14
173229	< 01	4	0.34	<. 01	0.09	<2	8.85
173230	<. 01	5	0.25	0.01	0.06	<2	8.99

Page 4 of 12

Page 5 of 12

ELEMENT	Th		Sr	Cd		Sb		Bi		V	Ca	P	La	Cr	Mg	Ba
SAMPLES	ppm		ppm	ppm			m		m	ppm	\%	\%	ppm	ppm	\%	ppm
173231		2	65		0.5	<3		<3		21	13.57	0.064	10	25	5.33	15
173232	<2		87	< 5		<3			7	15	19.32	0.04	7	9	7.03	15
173233		3	57	< 5		<3			7	23	13.75	0.066	10	19	5.91	27
STANDARI		4	75		6.1		5		4	76	0.94	0.073	12	186	1.02	384
G-1		3	53	$<.5$		<3			5	31	0.51	0.068	6	7	0.54	200
173234	<2		36		0.9	<3		<3		26	8.56	0.06	10	21.	1.96	22
173235	<2		78		0.9	<3		<3		17	19.35	0.038	5	7	7.76	9
173236	<2		70	< 5		<3		<3		7	20.99	0.046	4	8	9.51	5
173237	<2		60	< 5		<3		<3		6	18.62	0.04	4	9	8.97	4
173238	<2		65	< 5		<3		<3		9	17.27	0.041	5	9	8.14	6
173239	<2		128		0.9	<3			11	14	21.1	0.042	7	4	3.94	15
173240		2	63	<. 5		<3			3	21	14.16	0.064	10	18	5.86	14
173241	<2		86		1.3	<3		<3		25	16.7	0.055	12	7	2.94	23
173242	<2		59		0.7	<3		<3		15	13.36	0.049	8	15	5.62	9
173243	<2		118	< 2		<3			3	1	29.81	0.028	1	1	2.39	5
173244	<2		58		0.8		3	<3		15	14.86	0.05	6	11	6.16	11
173245	<2		101	< 5			4		5	3	25.78	0.048	2	4	0.97	7
173457	<2		123		1.2		3	<3		13	20.76	0.042	12	5	6.92	16
173458	<2		137		0.5	<3			4	17	19.61	0.054	14	7	5.03	20
173459		3	96		1.2	<3			3	44	11.01	0.076	29	11	2.49	44
173501	<2		106	<. 5		<3			3	14	16.4	0.025	3	9	8.29	5
173502		2	85		1.9	<3		≤ 3		28	12.36	0.063	10	19	3.87	17
173503	<2		151		2.1		5		8	10	19.63	0.028	6	8	9.9	51
173504		3	72		1.6		3		5	32	9.84	0.09	13	25	2.83	41
173505	<2		263		0.7		4	<3		8	21.91	0.021	3	4	11.05	343
173506	<2		291		2.2		3		13	5	24.19	0.016	2	3	10.14	39
173507	<2		172		2.1	<3			7	8	21.39	0.024	2	4	11.9	7
RE 173507	<2		169		2.3	<3			10	8	21.03	0.023	2	4	11.7	8
173508	<2		89		1.2	<3	3	<3		16	10.24	0.062	5	19	6.32	22
173509	<2		119	<. 5			3	<3		5	20.7	0.015	2	4	11.77	16
173510	<2		97	$<.5$			5		8	8	21.96	0.011	2	4	12.08	4
173511	<2		155	< 5			5	<3		10	23.32	0.011	2	5	11.43	3
173512	<2		219	< 5			3		8	3	21.67	0.01	2	12	11.69	1
173513	<2		213		0.5		8		7	5	22.75	0.012	2	10	11.22	3
173514	<2		176		0.5		11		3	6	23.6	0.014	1	10	5.74	2

Eastfield - A604467_C04 (G1D)

Page 6 of 12

ELEMENT	Th		Sr	Cd		Sb			Bi	V		Ca	P	La	Cr	Mg	Ba
SAMPLES	ppm		ppm	ppm		ppm	m		ppm		pm	\%	\%	ppm	ppm	\%	ppm
173515	<2		163	<. 5			3		<3		6	19.6	0.014	1	9	7.84	6
173516	<2		164	<. 5			5		8		4	19.15	0.016	<1	9	10.84	2
173517	<2		133		0.6		8		12		3	18.52	0.014	1	10	9.96	3
173518	<2		166		0.7		7		5		4	21.78	0.014	2	9	8.57	3
STANDARI		4	77		5.8		6		5		79	0.98	0.073	13	190	1.04	387
G-1		4	67	<. 5		<3			<3		34	0.71	0.071	7	7	0.65	206
173519		4	87		2		6		4		58	9.63	0.04	5	28	4.24	22
173520	<2		176	<. 5		<3			<3		31	19.98	0.021	4	10	11.22	11
173522		4	83		0.8		5		<3		72	9.77	0.03	5	41	4.77	30
173523	<2		148	< 5			4		<3		6	19.54	0.022	2	12	11.06	7
173524	<2		214	< 5			5		<3		4	23.81	0.011	1	16	13.6	2
173525	<2		152	< $<.5$			3		<3		10	23.23	0.018	3	7	11.62	11
173526	<2		107	< 5			4		<3		12	22.73	0.014	3	5	11.97	9
173527	<2		123		0.9		9		<3		8	20.94	0.02	4	8	12.06	51
173528		3	107		1.5	<3			<3		27	10.17	0.041	7	28	6.35	95
173529	<2		78		0.9	<3			4		5	14.85	0.046	4	9	8.67	6
173530	<2		57		1.4	<3			<3		7	11.22	0.058	6	14	6.76	12
173531	<2		269		0.6	<3			<3		3	23.68	0.014	1	4	13.01	63
173532	<2		294		1.3	<3			4		6	24.4	0.017	2	5	11.36	20
173533	<2		226	<. 5		<3			<3		8	21.21	0.025	4	7	11.5	41
173534		3	62		1.7	<3			3		33	9.28	0.061	15	26	3.41	46
173535		4	57		2		3		<3		54	7.03	0.078	15	34	1.52	31
173536	<2		133		1.2	<3			3		14	20.3	0.02	4	6	7.58	12
173537	<2		127		0.8		6		<3		20	20.16	0.028	5	10	8.51	17
173538		2	116	< 5			5		<3		13	19.53	0.029	4	10	7.92	8
RE 173538			114	<. 5		<3			<3		12	18.99	0.028	3	11	7.73	9
201401	<2		65		0.9	<3			<3		9	19.51	0.045	3	9	8.29	20
201402		2	88		0.9		3		4		20	12.87	0.043	4	14	2.56	32
201403	<2		63	< 5		<3			5		13	8.01	0.036	5	14	1.69	22
201404	<2		45	< 5		<3			6		23	6.2	0.031	11	14	1.17	25
201405	<2		10	< 5		<3			<3		14	0.96	0.017	5	17	0.4	29
201406		4	16	< 5		<3			<3		6	0.16	0.014	4	9	0.1	77
201407		4	8	< 5		<3			<3		17	0.09	0.021	16	14	0.1	29
201408		3	5	< 5		<3			3		21	0.09	- 0.014	18	13	0.08	19
201409		3	6		0.6			5	<3		26	0.3	0.019	11	20	0.12	110

Page 10 of 12

ELEMENT]	Mo		Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au
SAMPLES	ppm		ppm	\%	ppm	ppm	ppm						
201410		1	1	27	108	< 3	9	1	222	1.04	15	18	<2
201411		1	11	21	114	< 3	11	7	148	4.47	23	<8	<2
201412		1	<1	3	10	< 3	2	1	353	0.18	<2	10	<2
201413	<1		1	8	28	< 3	8	1	154	0.63	6	<8	<2
STANDAR[21	100	64	417	1.1	55	10	645	2.46	52	<8	<2

Page 11 of 12

ELEMENT	Th		Sr	Cd	Sb		Bi		V	Ca	P	La	Cr	Mg	Ba
SAMPLES	ppm		ppm	ppm	ppm		ppm		ppm	\%	\%	ppm	ppm	\%	ppm
201410		2	52	0.7	<3		<3		18	10.47	0.069	8	15	1.24	21
201411		5	25	<. 5	<3		<3		31	1.98	0.065	18	8	0.54	37
201412		2	162	0.6	<3		<3		3	27.26	0.02	3	7	6.43	4
201413		2	71	0.6	<3		<3		17	19.42	0.051	8	14	7.18	17
STANDARI		4	78	6		7		5	83	1	0.077	13	201	1.08	398

Page 12 of 12

ELEMENT	Ti		B	Al	Na	K	W		Sample
SAMPLES	\%		ppm	\%	\%	\%	ppm		kg
201410	< 01		3	0.22	0.02	0.13	<2		6.11
201411	<. 01		<3	0.82	0.01	0.09	<2		13.43
201412	<. 01		<3	0.08	0.01	<. 01	<2		6.72
201413	<. 01		8	0.33	<. 01	0.15	<2		9.76
STANDARI		0.12	34	1.04	0.07	0.46		3	-

Page 2 of 4

ELEMENT	$\mathrm{Au}^{* *}$											
SAMPLES	ppb											
173230	3											
173231	5											
173232	5											
173233	5											
STANDAR	812											
G-1	2											
173234	2											
173235	2											
173236	2											
173237	<2											
173238	<2											
173239	5											
173240	3											
173241	5											
173242	3											
173243	2											
173244	3											
173245	2											
173457	10											
173458	11											
173459	25											
173501	2											
173502	2											
173503	<2											
173504	3											
173505	<2											
173506	2											
173507	<2											
RE 173507												
173508												
173509	2											
173510	<2											
173511	2											
173512	3											
173513	<2											

Eastfield - A604467_C04 (G3B)

Page 4 of 4

ELEMENT	$\mathrm{Au}^{\text {+ }}$									-		
SAMPLES	ppb											
201409	7											
201410	2											
201411	<2											
201412	<2											
201413	3											
STANDAR	802											

