

PACIFIC BOOKER MINERALS INC. MORRISON COPPER GOLD PROJECT

GEOTECHNICAL SITE INVESTIGATION REPORT (REF. NO. VA101-102/7-1)

REV. NO.	REVISION	DATE	APPROVED
0	Issued in Final	July 7, 2006	KUB
	·		

Knight Piésold Ltd.

Suite 1400 750 West Pender Street Vancouver, British Columbia Canada V6C 2T8

Telephone: (604) 685-0543
Facsimile: (604) 685-0147
E-mail: kpl@knightpiesold.bc.ca

PACIFIC BOOKER MINERALS INC. MORRISON COPPER GOLD PROJECT

GEOTECHNICAL SITE INVESTIGATION REPORT (REF. NO. VA101-102/7-1)

EXECUTIVE SUMMARY

The Morrison Copper Gold Project is located approximately 65 km northeast of Smithers, BC. The deposit is approximately 500 m by 900 m in plan and extends to a depth of approximately 330 m below ground surface. The proposed open pit for the Morrison Project is scheduled to be mined over 14 years at a production rate of 25,000 tonnes/day. Material from the mine will be processed at the plant site located adjacent to the open pit. Tailings will be transported via a pipeline and waste rock will be transported by overland conveyor to the waste management facility, located roughly 4 km north northeast of the open pit/plant site area.

Knight Piésold Ltd. has completed a geotechnical site investigation to provide geotechnical data and groundwater quality monitoring sites in the project area. The area of investigation includes the waste management facility (WMF), the proposed plant site, and groundwater quality monitoring installations for the open pit. The investigation consisted of geotechnical drillholes, installation of groundwater monitoring wells, and the completion of testpits. Fieldwork began in November 2005 and was completed in April 2006. This report presents the data compiled through the fieldwork and testing.

Findings of this report are summarized below, and itemized according to their corresponding sections in this report:

- The purpose of the investigation was to collect the information required to conduct a prefeasibility level design of the waste management facility and plant site. A total of 17 drillholes, 17 groundwater monitoring wells and 35 testpits were completed during the site investigation.
- 2. The Morrison property is located within the Stikine terrane, in the Babine Lake geological region. Rocks of the Morrison property have been divided into two main types, Jurassic sedimentary rocks and Eocene intrusive rocks.
- 3. Drilling methods consisted of ODEX drilling through the overburden and rotary drilling using HQ Triple Tube drilling in bedrock. Standard Penetration tests and Shelby Tube samples were collected in soils and Packer Permeability Tests were completed in competent bedrock along with the collection of geotechnical data.
- 4. Site investigation results show a consistent, 4 m to 20 m depth of moist, stiff till throughout the WMF area. This area showed a mixture of sedimentary and volcanic bedrock beneath the overburden. Investigations in the plant site and surrounding area also showed a

consistent, moist, stiff till overburden with both volcanic and sedimentary bedrock. Groundwater monitoring wells have been installed in geotechnical drillholes on the Morrison property, though no water sampling was conducted by KP. The water quality sampling is to be conducted by other environmental consultants.

5. A selection of soil samples were sent to Cantest Ltd for physical soils testing. Laboratory tests performed included Atterberg limits, particle size analysis, moisture content, density, Proctor compaction, and saturated hydraulic conductivity.

The data presented herein provides a basis for future studies of the waste management facility and plant site area.

In addition to this report Knight Piésold Ltd has conducted under a separate scope and budget a geotechnical investigation of the open pit (VA101-102/8) and provided environmental permitting assistance (VA101-102/9).

PACIFIC BOOKER MINERALS INC. MORRISON COPPER GOLD PROJECT

GEOTECHNICAL SITE INVESTIGATION REPORT (REF. NO. VA101-102/7-1)

TABLE OF CONTENTS

			PAGE
EXECUTIV	E SUMM	IARY	
TABLE OF	CONTEN	NTS	i
SECTION 6	1	RODUCTION	1
1.1		CT DESCRIPTION	
1.2		OF WORK	
SECTION 2	2.0 - GEC	DLOGICAL BACKGROUND	2
2.1		AL	
2.2		NAL GEOLOGY	
2.3	TOPOG	RAPHY AND GEOMORPHOLOGY	2
SECTION :	3.0 - SITE	E INVESTIGATION PROGRAM	3
3.1	GENER	AL	3
3.2	OVERB	URDEN AND BEDROCK DRILLING	3
	3.2.1	Soil Drilling and Sampling	3
	3.2.2	Geotechnical Logging and Testing	3
3.3	HYDRO	GEOLOGICAL TESTING	4
	3.3.1	Packer Permeability Tests	4
	3.3.2	Piezometer Installation and Groundwater Level Measurement	4
3.4	TESTPI	TS	5
SECTION 4	4.0 - GEC	OTECHNICAL CONDITIONS	6
4.1	GENER	AL	6
4.2	WASTE	MANAGEMENT FACILITY AREA	6
	4.2.1	General	6
	4.2.2	Overburden	6
	4.2.3	Bedrock	7
	4.2.4	Groundwater	7
4.3	PLANT	SITE AND SURROUNDING AREA	7
	4.3.1	General	7
	4.3.2	Overburden	8
	4.3.3	Bedrock	8
	4.3.4	Groundwater	8

Knight Piésold

SECTION 5.0 - LA	BORATORY TESTING	10					
5.1 GENE	RAL	10					
5.1.1	Natural Moisture Content	10					
5.1.2	Particle Size Analysis with Hydrometer	10					
5.1.3	Atterberg Limits						
5.1.4	1.4 Particle Density						
5.1.5	•						
5.1.6	Proctor Compacted Samples Hydraulic Conductivity	11					
5.1.7	Shelby Tube Saturated Hydraulic Conductivity	11					
SECTION 6.0 - SU	MMARY AND RECOMMENDATIONS	12					
SECTION 7.0 - RE	FERENCES	13					
SECTION 8.0 - CE	RTIFICATION	14					
	TABLES						
Table 3.1 Rev 0	Drillhole Summary – Waste Management Facility Area						
Table 3.2 Rev 0	Drillhole Summary – Plant Site and Surrounding Area						
Table 3.3 Rev 0	Summary of Testpit Excavation and Sampling						
Table 4.1 Rev 0	Summary of Rock Permeability Results						
Table 5.1 Rev 0	Summary of Laboratory Testing Results						
Table 5.2 Rev 0	Standard Proctor Compaction Results						
	FIGURES						
Figure 1.1 Rev 0	Project Location Map						
Figure 2.1 Rev 0	Regional Geology						
Figure 3.1 Rev 0	Drillhole and Testpit Locations						
Figure 4.1 Rev 0	Waste Management Facility Section Locations						
Figure 4.2 Rev 0	Waste Management Facility Geological Sections						
Figure 4.3 Rev 0	Plant Site Section Locations						
Figure 4.4 Rev 0	Plant Site Geological Sections						
Figure 5.1 Rev 0	Testpit Samples - Particle Size Distributions - Page 1						
Figure 5.2 Rev 0	Testpit Samples - Particle Size Distributions – Page 2						
Figure 5.3 Rev 0	Testpit Samples - Particle Size Distributions - Page 3						
Figure 5.4 Rev 0	Testpit Samples - Particle Size Distributions - Page 4						
Figure 5.5 Rev 0	Testpit Samples - Particle Size Distributions - Page 5						
Figure 5.6 Rev 0	Testpit Samples - Particle Size Distributions - Page 6						
Figure 5.7 Rev 0	Compaction Test Results – Sample Group 1						
Figure 5.8 Rev 0	Compaction Test Results – Sample Group 2						
Figure 5.9 Rev 0	Compaction Test Results – Sample Group 3						
Figure 5.10 Rev 0	Compaction Test Results – Sample Group 4						

APPENDICES

APPENDIX A Rev 0 Geotechnical Drillhole Logs

APPENDIX B Rev 0 Field Tests

APPENDIX C Rev 0 Cantest Ltd. Laboratory Results

APPENDIX D Rev 0 Photographs

PACIFIC BOOKER MINERALS INC. MORRISON COPPER GOLD PROJECT

GEOTECHNICAL SITE INVESTIGATION REPORT (REF. NO. VA101-102/7-1)

SECTION 1.0 - INTRODUCTION

1.1 PROJECT DESCRIPTION

Pacific Booker Minerals Inc. (PBM) is in the process of completing pre-feasibility and feasibility studies for the Morrison Copper Gold Project. The Morrison project is a copper-gold deposit located in central British Columbia, approximately 65 kilometres northeast of Smithers and 35 kilometres north of Granisle. The general project location is shown on Figure 1.1.

The Morrison deposit is approximately 500 m by 900 m in plan and extends to a depth of approximately 330 m below ground surface. Based on the 2003 exploration program and previous investigations, the deposit consists of a resource of 87 million tonnes grading 0.45% copper and 0.257 grams gold per tonne. The current feasibility mine plan (115 million tonnes: the resource plus a low grade stockpile) forecasts approximately 14 years of mining at a production rate of 25,000 tonnes per day (PBM Company Update, 2004).

1.2 SCOPE OF WORK

Knight Piésold Ltd. (KP) has undertaken pre-feasibility level geotechnical investigations for the proposed Morrison Copper Gold Project Waste Management Facility (WMF) and plant site. The geotechnical site investigation program was carried out from November 2005 to April 2006.

The primary purpose of the site investigation program was to collect geotechnical information for the pre-feasibility level design of the Waste Management Facility, the proposed plant site and to install groundwater monitoring wells for baseline data collection in the project area. In total seventeen drillholes were completed during this investigation. In addition to detailed geotechnical logging at all holes, packer permeability tests were completed on drillholes where bedrock drilling took place. Groundwater monitoring wells were installed in all but one of the drillholes and 35 testpits were completed. Soils were logged and samples taken in each testpit and laboratory tests were conducted on a selection of the soil samples.

Detailed geotechnical logs were compiled along with the field and laboratory testing results to establish a geotechnical database for the project area. This report presents the data collected from the 2005/2006 geotechnical site investigation program. The geotechnical characteristics of the overburden have been summarized and the geotechnical laboratory results required for the waste management tailings facility studies are provided.

SECTION 2.0 - GEOLOGICAL BACKGROUND

2.1 GENERAL

PBM geologists have developed a geological model for the Morrison deposit based on the 2003 exploration program and earlier studies by Noranda and others. This model provides valuable background information including the major lithological units, the nature and distribution of the major structures and the extent of various alteration assemblages within the project area. A geological background review was completed and a description of the site geological conditions is provided below.

2.2 REGIONAL GEOLOGY

The Morrison property lies within the Babine Lake region of the Intermontane Belt of central British Columbia, which is a collage of accreted island arc and oceanic terranes (Gabrielse and Yorath, 1989). The Morrison property is found within the largest of these accreted terranes, the Stikine terrane.

The Stikine terrane consists of four assemblages, including island arc, molasse, transtensional continental magmatic arc, and plateau basalt assemblages. In the vicinity of Morrison Lake, the older island arc assemblage is exposed in the highlands surrounding the lake as marine volcanic rocks, tuffs and greywacke of the Lower Jurassic Telkwa Formation (Tipper and Richards, 1976). Later northwesterly block faulting ensured that younger Middle Jurassic sedimentary rocks of the Bowser Lake Group are exposed in the lowlands in down-faulted blocks. The continental magmatic arc comprises the hornblende, biotite, plagioclase and quartz phyric dykes and plugs generally known as the Biotite Feldspar Porphyry (BFP).

The Morrison deposit is situated adjacent to the Morrison Fault in the Takla, Hazelton and Bowser Lake Groups and the deposit itself is largely hosted by the intrusive BFP of the Babine Igneous Suite (see Figure 2.1).

2.3 TOPOGRAPHY AND GEOMORPHOLOGY

The Morrison property is located within the rolling uplands of the Nechako Plateau. This is an area of northwesterly trending ridges and valleys. The largest valleys are filled with long, narrow lakes, the largest of which is Babine Lake. Most of the area is an upland surface that stands 733m to 1380m above sea level (Ogryzlo et al,1995).

SECTION 3.0 - SITE INVESTIGATION PROGRAM

3.1 GENERAL

The geotechnical investigations were completed between November 22, 2005 and April 4, 2006. Seventeen drillholes were located to provide geotechnical information about the overburden and rock mass in the vicinity of proposed tailings embankments, and to provide water quality monitoring sites in the area. A combination of soils logging, core logging, permeability testing and groundwater monitoring well installations were completed at each of the drillholes. In addition, 35 testpits were excavated in the area to confirm overburden thickness and composition. The locations of these drillholes and testpits throughout the project area are shown on Figure 3.1. The following subsections describe the methods used in the site investigation.

3.2 OVERBURDEN AND BEDROCK DRILLING

3.2.1 Soil Drilling and Sampling

Air Rotary drilling (ODEX) was used to advance casing and drill through the overburden to the bedrock. Samples of the cuttings were continuously collected and analyzed during drilling. Shelby Tube samples were collected where conditions allowed. Standard Penetration Tests (SPT's) were conducted at five foot intervals up to a depth of forty feet, after which they were completed every ten feet. This process continued until bedrock was reached. Detailed logs of the overburden drilling are included in Appendix A1.

SPT's were not collected in holes DH06-01, GW1, DH06-16 and DH06-17 as can be seen in Tables 3.1 and 3.2, DH06-01 was an inclined hole whose primary purpose was to collect geotechnical data on the bedrock. The drillhole GW1 was drilled to provide a groundwater monitoring well on the edge of the open pit. The drillholes DH06-16 and DH06-17 were drilled with a portable solid stem auger which was not suitable for performing SPT's and so they could not be performed in these holes. The drillholes in the vicinity of the proposed plant site and open pit encountered overburden to a depth of greater than 30 m and no bedrock coring or packer testing took place in these holes.

3.2.2 Geotechnical Logging and Testing

The geotechnical drilling contractor was equipped to switch from ODEX drilling in the overburden to rotary drilling using HQ Triple Tube for bedrock drilling. Knight Piésold field engineers carried out detailed geotechnical logging of the bedrock in order to characterize the rock mass. The bedrock was usually drilled to 30 m (100 feet) below the overburden contact to supply condemnation drilling data for PBM. Photographs of the core were taken by PBM personnel once the core was returned to the core shack. All core is stored in the core racks surrounding the PBM Camp. The following geotechnical information was recorded:

- Core recovery,
- Rock Quality Designation (RQD),
- Lithological description,
- Estimated intact rock strength,
- Joint condition (roughness, aperture, alteration, infilling, etc.),
- · Joint spacing.

Detailed geotechnical logs for the bedrock drilling are provided in Appendix A2 and graphical representations of Recovery, RQD, Estimated UCS and RMR vs. Depth are provided in Appendix A3.

3.3 HYDROGEOLOGICAL TESTING

3.3.1 Packer Permeability Tests

Double packer permeability (Lugeon) tests were conducted in selected drillholes to estimate the in-situ hydraulic conductivity of the rock mass. The tests were performed by pumping water down the drill rods into a test zone that was isolated by a through-the-bit double packer. Flow rates were monitored during three ascending and two descending water pressure stages. The testing intervals and depth varied depending on the quality of the rock observed in the drill core.

As seen in Tables 3.1 and 3.2, a total of twelve Lugeon tests were completed in ten different holes. The testing results are presented in Appendix B1.

3.3.2 Piezometer Installation and Groundwater Level Measurement

Groundwater monitoring wells were installed in all but one drillhole, as shown on Figure 3.1. The monitoring wells were installed using 2" PVC pipe and screens. Monitoring wells were installed using 1" PVC pipe and screens in DH06-16 and DH06-17 due to their shallow depth. Clean silica sand was placed around the screen in the designated completion intervals. Coated bentonite chips were placed above and below the filter to seal the sand completion interval. Cement grout was used to backfill the drillholes to surface. Red, steel stick-ups were cemented in place with a reinforced cement slab base roughly 1 m squared and 10 cm thick. These stick-ups are marked with the drillhole identification number, depth of well, and date. They are also locked with Master locks, key 2729 to prevent tampering.

Completion details of each groundwater monitoring installation are illustrated in Appendix B2 along with the groundwater levels as measured at the time of installation.

3.4 <u>TESTPITS</u>

A total of 35 testpits were excavated throughout the Morrison property, primarily around the proposed south embankment location. An excavator was contracted from the Babine Barge company for all the testpits. The depth of the testpits was limited by either the reach of the excavator or shallow bedrock depths. Average depth of the testpits was roughly 3.2 m. During testpit excavation at least two samples were taken from each pit. Field notes were also taken describing the lithology of the pits. After sampling and data collection were finished, each testpit was filled in and levelled off with the excavator and the testpit site reclaimed as much as was practical to its original condition.

A summary of the testpits completed during the site investigation is provided in Table 3.3. Detailed logs of each testpit can be found in Appendix B3 and Photos of selected testpits are located in Appendix D.

SECTION 4.0 - GEOTECHNICAL CONDITIONS

4.1 GENERAL

The proposed waste management facility embankment locations and the proposed plant site location were included in the geotechnical site investigation program. This involved soils logging and core logging at drillholes and testpits in these areas. Groundwater monitoring wells were also completed throughout the above areas as well as in the open pit area. The locations of all drillholes, testpits and groundwater monitoring wells are shown on Figure 3.1. The results of the field work are provided in the following subsections.

Summaries of the geotechnical drill holes and testpits are found in Tables 3.1, 3.2 and 3.3. Detailed data from drillholes, testpits and groundwater monitoring well logs are included for reference in the appendices. Photos of all drill core and selected testpits are located in Appendix D.

4.2 WASTE MANAGEMENT FACILITY AREA

4.2.1 General

The proposed waste management facility is located several kilometres north of the open pit area. The facility lies in a gently sloping valley, encompassing densely forested slopes and a large meadow/marsh area at the lower elevations. Two large embankments will define the north and south limits, with two small embankments along a ridge to the west. The proposed Ultimate Tailings Limit is at an elevation of 1005 m.

Soil type, depth to bedrock, and groundwater depth were investigated in the areas of the north and south embankments. A total of nine drillholes and fourteen testpits were completed in the area. Some of the proposed testpits were not excavated due to time constraints. A plan map showing the locations of these is shown on Figure 4.1. General details of each drillhole have been summarized in Table 3.1.

4.2.2 Overburden

The depth of overburden varied throughout the drillholes between a minimum of 4 m and a maximum of 22 m. The soil in the testpits and drillholes was consistently a silt/clay matrix with some gravel and cobbles. This stiff, moist till was found in all locations with the exception of TP05-8, which revealed sand and clay. Figure 4.2 shows geologic cross sections through each of the two large embankments. Appendix A1 contains detailed soil logs from each drillhole. A summary of testpit details is shown in Table 3.3. Detailed testpit logs are contained in Appendix B3.

4.2.3 Bedrock

Bedrock encountered in the drillholes of the region was found to be either sedimentary or volcanic. The holes drilled at the north dam revealed sedimentary rocks that were primarily slightly to highly calcareous siltstones. Drillholes on the south embankment showed a mixture of sedimentary and volcanic rocks, where the volcanics were moderately to highly calcareous with traces of pyrite. The different rock types are visible in the geologic cross sections of Figure 4.2. Detailed core logs from each drillhole are contained in Appendix A2.

Packer permeability tests were completed on all drillholes where competent bedrock was reached and drilled through an interval greater than five metres. Packer test results for the waste management facility have been summarized in Table 4.1. Details of all packer tests are included in Appendix B1.

4.2.4 Groundwater

Groundwater monitoring wells were installed at all drillholes in the WMF area except for DH06-1, which was drilled at an incline primarily for bedrock data. Water levels from each well at the time of drilling are included in Table 3.1. KP did not collect water samples from any of the installed wells, ongoing water sampling and analysis is to be conducted by PBM or their consultants. Well installation details at each of the drillholes in the waste management facility can be seen in Appendix B2.

4.3 PLANT SITE AND SURROUNDING AREA

4.3.1 General

The proposed plant site is located immediately to the east of the proposed open pit area. The plant site area is characterized by moderately dense forests and low rolling hills between Morrison Lake and the west facing forested slopes to the east of the lake.

A total of nine drillholes and 21 testpits were completed in this area. Two drillholes and nine testpits were located in the immediate area of the proposed plant site. The other seven holes were drilled for groundwater monitoring purposes. Three of the groundwater monitoring drillholes are located to the north, east, and southern boundaries of the ultimate open pit and one hole was placed in the middle of the open pit. These will be used for water quality monitoring purposes. One well was installed adjacent to each of two small creeks downstream of the open pit area and the WMF area to monitor baseline conditions. The general details and results of the above drillholes have been summarized in Table 3.2.

An additional 12 testpits were completed in selected locations in the area to provide information on a potential embankment material borrow area, along the proposed overland conveyor route, and in a gravel pit. The gravel pit is located south of the

proposed open pit and was explored for its potential as a supply of concrete aggregate material and filter/drainage zone material for the waste management facility. The locations of the testpits and drillholes in the area are shown on Figure 4.3.

4.3.2 Overburden

Drillholes DH06-9, DH06-14 and DH06-15 encountered overburden to depths of 20 - 33 m. Bedrock was not reached at DH06-8, which was drilled to a depth of 40 m. Relatively shallow bedrock was found at drillholes DH06-13 and GW1, with depths of 10 m and 3 m respectively. The soil in all of these holes was primarily a moist silt/clay matrix with some gravel. This stiff till is similar to the soil found in the drillholes and testpits throughout the WMF area.

A portable auger-type drill was used to install groundwater monitoring wells at DH06-16 and DH06-17 and there were limitations on the drillhole depths that could be reached. The depth of either one did not exceed 4 m. Sampling was also limited, but in both cases, it indicated moist, firm till with a minimal covering of topsoil.

Testpits in the vicinity of the plant site revealed primarily till, with some occurrence of peat, sand, silt and clays. Figure 4.4 shows geological cross sections through the plant site area, and they indicate a deep, consistent layer of till.

Testpits completed in the areas surrounding the plant site and along the overland conveyor route revealed a continuation of this same till. Four testpits were also completed in a gravel pit located at roughly 6,118,180 N, 671,600 E. These confirmed the pit as a good source of silty sand and gravel.

4.3.3 Bedrock

Drillholes DH06-13 and DH06-14 were the only two drillholes in the vicinity of the plant site where bedrock drilling and core logging took place. The bedrock encountered in DH06-13 consisted primarily of mineralized BFP as it is located in the open pit area. In DH06-14 the bedrock consisted of moderately calcareous volcanics. Detailed core logs are contained in Appendix A2.

HQ Coring did not take place at the other drillholes in the area due to the great depth of overburden or the use of a portable auger-type drill. The primary purpose of these holes was the installation of groundwater monitoring wells.

4.3.4 Groundwater

Groundwater monitoring wells were installed at all drillholes in the plant site and surrounding area. Water levels at the time of installation are included in Table 3.2. No water samples were collected from any of the wells during installation. For well installation details at each of the drillholes refer to Appendix B2. There were two

groundwater monitoring wells installed at the DH06-15 site and details of these can be seen in Table 3.2.

Packer permeability tests were executed at the two drillholes in the plant site area that reached the bedrock. At drillhole DH06-13, a packer test from 11.9 m to 20.3 m showed a permeability of $1.1x10^{-4}$. A packer test in DH06-14 from 21.9 m to 29.3 m identified a permeability of $9.2x10^{-5}$. Refer to Appendix B1 for packer test details.

SECTION 5.0 - LABORATORY TESTING

5.1 **GENERAL**

Selected samples collected from the testpits were sent for laboratory testing. The laboratory testing consisted of Natural moisture content, particle size analyses, hydrometer tests, Atterberg limits, particle density tests, standard Proctor compaction tests, Proctor compacted hydraulic conductivity tests and Shelby Tube saturated hydraulic conductivity tests. The testing was conducted by the physical soils laboratory of Cantest Ltd.

The results of the laboratory testing have been summarized in Table 5.1. Full testing results have been included for reference in Appendix C. The following sections describe each of the tests and their general results.

5.1.1 Natural Moisture Content

A total of 26 samples were tested for their natural moisture content. This testing did not include all of the test pit samples from the gravel pit area. The analysis was performed gravimetrically by heating a separate sample portion at 105° C and measuring the weight loss. The natural moisture contents varied from as low as 8.4% to as high as 23.9%. See Table 5.1 and Appendix C for laboratory results.

5.1.2 Particle Size Analysis with Hydrometer

Particle size analyses were completed on all 34 samples sent for testing. The analysis included the use of a hydrometer to separate the fines. Samples were passed through several sieves to determine the percent fractions of gravel, coarse, medium and fine sand, silt, and clay. The sizes used were 4.75 mm, 2.0 mm, 0.425 mm, 0.075 mm, 0.002 mm.

The results of these analyses are presented graphically in Figures 5.1 through 5.6. Detailed results can be found in the Cantest laboratory data, included in Appendix C.

5.1.3 Atterberg Limits

Atterberg limits tests were completed on a selection of the samples that were sent to the Cantest laboratory. The portion of each sample which passed through a 0.425 mm sieve was then analyzed to determine the liquid and plastic limits. Liquid limits varied between 22% and 35%, while plastic limits varied from 15% to 19%.

5.1.4 Particle Density

16 samples were tested for particle density. Sample selection also excluded any samples from the gravel pit area. Particle densities were obtained by finding the weight

of kerosene displaced by a known weight of a soil. Particle densities ranged from as low as 2585.8 kg/m³ up to 2641.3 kg/m³.

5.1.5 Standard Proctor Compaction Analysis

Groups of samples taken from the same testpit or testpits in the same area were combined into composite samples for standard Proctor compaction analyses. The groups are identified on Table 5.1. The results of each of these analyses are presented on Figures 5.7 through 5.10. The figures indicate a maximum dry density of roughly 1.92 tonnes/m³ at an optimum moisture content of approximately 14% for the till samples, and roughly 1.95 tonnes/m³ at an optimum moisture content of 11% for the samples from the gravel pit area.

Data from the compaction analyses has been summarized in Table 5.2. Raw data from the Cantest Laboratory is available in Appendix C.

5.1.6 Proctor Compacted Samples Hydraulic Conductivity

Hydraulic conductivity tests were also completed with the same composite till sample groups used for standard Proctor compaction analyses. The results of these hydraulic conductivity tests varied from 1.5x10⁻¹⁰ m/s to 1.6x10⁻⁷ m/s, as illustrated in Table 5.1.

5.1.7 Shelby Tube Saturated Hydraulic Conductivity

Hydraulic conductivity tests were completed on the Shelby tube samples collected on site. Results varied from $2.0x10^{-10}$ m/s up to $1.4x10^{-5}$ m/s. These results are summarized in Table 5.1.

SECTION 6.0 - SUMMARY AND RECOMMENDATIONS

The site-specific geotechnical information presented in this report has been determined from the geotechnical site investigation program which took place from November 2005 to April 2006. This information can be used to provide geotechnical parameters needed to assist in future studies including the upcoming pre-feasibility level waste management facility and plant site design.

The field investigations comprised of drillholes with soils and core logging, packer permeability testing, groundwater monitoring well installation, and testpitting. A number of laboratory tests were undertaken by CanTest Ltd. to support and add to the information collected in the field.

SECTION 7.0 - REFERENCES

- Beacon Hill Consultants (1988) Ltd., August 2004, Preliminary Assessment, Morrison/Hearne Hill Project, Morrison Deposit, Pacific Booker Minerals Inc. Volume 1.
- Bieniawski, Z.T., 1989, Engineering Rock Mass Classifications, Wiley, New York.
- Carson, D.J.T., and Jambor, J.L., 1976, Morrison: Geology and Evolution of a Bisected Annular Porphyry Copper Deposit. *In* Porphyry Deposits of the Canadian Cordillera. *Edited by* A. Sutherland Brown, Canadian Institute of Mining and Metallurgy, Special Volume 15, p.264-273.
- Carter, N.C., 1973, Geology of the Northern Babine Lake Area, B.C. Department of Mines and Petroleum Resources, Preliminary Map No. 12.
- Franklin and Dusseault, 1989, Rock Engineering, Mcgraw-Hill, New York.
- Ogryzlo, P.L., Dirom, G.E. and Stothart, P.G., 1995, Morrison Hearne Hill copper-gold deposits, Babine region, west-central British Columbia. *In* Porphyry Deposits of the Northwestern Cordillera of North America. *Edited by* T.G. Schroeter. Canadian Institute of Mining and Metallurgy, Special Volume 46, p. 290-303.
- Richards, T.A. 1974, Hazelton East Half: Geological Survey of Canada, Open File Map 215
- Rocscience Inc., 2001, DIPS User's Guide, Version 5.0, Toronto, Ontario.
- Tipper, H.W. and Richards, T.A., 1976, Jurassic stratigraphy and history of north-central British Columbia. Geological Survey of Canada, Bulletin 270.
- http://www.pacificbooker.com/pdf/Company_Update_Sep04_low.pdf

SECTION 8.0 - CERTIFICATION

This report was prepared and approved by the undersigned.

Prepared by:

Joshua Vines, E.I.T. Staff Engineer

Reviewed by:

Greg Johnston, M.Sc. Geotechnical Specialist

Approved by:

Ken J. Brouwer, P.Eng. Managing Director

This report was prepared by Knight Piésold Ltd. for the account of Pacific Booker Minerals Inc. The material in it reflects Knight Piésold's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Knight Piésold Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions, based on this report. This numbered report is a controlled document. Any reproductions of this report are uncontrolled and may not be the most recent revision.

TABLE 3.1

PACIFIC BOOKER MINERALS INC. MORRISON COPPER GOLD PROJECT GEOTECHNICAL SITE INVESTIGATION

DRILLHOLE SUMMARY - WASTE MANAGEMENT FACILITY AREA

Print 7-13-06 11:22

 $\underline{ \ M:\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 0$

Rev'd 5/15/06

				1	Tests Performed during drilling								
Drillhole ID	Depth (m)	Elevation (m)	UTM Northing (m)	UTM Easting (m)	Inclination (degrees)	Azimuth (degrees)	Depth to Bedrock (m)	Water Level (mbgl)	Well Screen Interval (mbgl)	Shelby Tube Tests	Standard Penetration Tests	Packer Permeability Tests	Core Logging
DH06-1	126.3	950	6,123,950	670,785	60	300	24.8	n/m ¹	n/a	N	N	Y	Υ
DH06-2	39.5	950	6,123,723	670,576	90	-	8.2	Artesian	30.5 - 33.5	Y	Y	Y	Y
DH06-3	37.0	950	6,123,781	670,541	90	-	5.8	4.5	4.0 - 5.5	N	Y	Y	Y
DH06-4	41.5	983	6,123,060	670,997	90	-	9.1	12.2	24.4 - 27.4	N	Y	Y	Y
DH06-6	36.7	960	6,122,655	671,486	90	-	5.2	Artesian	15.2 - 18.3	Y	Y	Y	Y
DH06-7	43.0	993	6,122,667	671,775	90	-	10.7	Artesian	30.5 - 33.5	Y	Y	Y	Y
DH06-10	53.6	1001	6,125,683	671,523	90	-	22.0	Artesian	29.0 - 32.0	N	Y	Y	Y
DH06-11	37.0	965	6,125,568	671,912	90	-	3.5	1.2	1.5 - 3.0	N	Y	Y	Y
DH06-12	58.0	996	6,125,182	672,265	90	•	9.1	3.8	27.4 - 30.5	N	Υ	Y	Υ

Notes:

1.) Water level not measured at DH06-1. Hole drilled with water and polymer lubricants.

TABLE 3.2

PACIFIC BOOKER MINERALS INC. MORRISON COPPER GOLD PROJECT GEOTECHNICAL SITE INVESTIGATION

DRILLHOLE SUMMARY - PLANT SITE AND SURROUNDING AREA

Print 7-13-06 11:22

M:\1\01\00102\07\A\Data\WMF Geotech SI - Feb to Apr '06\Drillholes\[Drillhole Summary.xls]Table 3.2

Rev'd 5/15/06

				1	Tests Performed during drilling								
Drillhole ID	Depth (m)	Elevation (m)	UTM Northing (m)	UTM Easting (m)	Inclination (degrees)	Azimuth (degrees)	Depth to Bedrock (m)	Water Level (mbgl)	Well Screen Interval (mbgl)	Shelby Tube Tests	Standard Penetration Tests	Packer Permeability Tests	Core Logging
DH06-8	39.9	838	6,119,649	671,249	90	-	n/a	Artesian	36.6 - 39.6	N	Υ	N	N
DH06-9	33.2	835	6,119,478	671,152	90	-	30.2	21.0	27.4 - 30.5	Υ	Y	N	N
DH06-13	20.3	808	6,119,111	670,800	90	-	10.0	8.8	17.1 - 20.1	N	Y	Υ	Y
DH06-14	29.0	840	6,119,159	671,396	90	-	20.2	10.4	17.1 - 20.1	N	Y	Υ	Y
DH06-15a	33.1	817	6,120,320	670,693	90	-	32.9	Artesian	29.9 - 32.9	N	Y	N	N
DH06-15b	5.6	817	6,120,319	670,690	90	-	n/a	3.0	2.4 - 5.5	N	N	N	N
DH06-16	3.8	762	6,120,880	669,420	90	-	n/a	3.0	2.1 - 3.7	N	N	N	N
DH06-17	1.5	763	6,122,420	669,500	90	-	n/a	Dry	0.9 - 1.5	N	N	N	N
GW1	4.3	795	6,118,724	670,847	90	•	2.7	2.6	1.5 - 3.2	N	N	N	N

TABLE 3.3

PACIFIC BOOKER MINERALS INC. MORRISON COPPER GOLD PROJECT **GEOTECHNICAL SITE INVESTIGATION**

SUMMARY OF TESTPIT EXCAVATION AND SAMPLING

13-07-06 11:24

	Excavation	ech SI - Feb to Apr '06		pth	.5, . 25.5				Elevation	Revised 5/19/20
Test Pit	Depth (m)	Sample No.	FM (m)		Date	Location	Easting	Northing	(m)	Notes
TP06-1	3.2	TP06-1-1 TP06-1-2	0.8	1.2 1.6	29-Jan	Borrow Pit	670880	6121830	974	Till Till
TP05-2		TP05-2-1	1.4 0.3	0.5	24-Nov	Conveyor Alignment	671388	6121943	966	Sand, Gravel and Clay
TP06-3	0.8	TP05-2-2	2.0	2.4	29-Jan	Borrow Pit	671020	6122100	982	Till
TP05-4	3.6	TP05-4-1	0.8	1.2	29-Jan 24-Nov	Conveyor Alignment	671469	6122254	966	Till
TP05-5		TP05-4-2 TP05-5-1	2.8 1.0	3.2 1.2	24-Nov	Conveyor Alignment	671490	6122581	967	Till Till
TP05-5	3.2	TP06-6-1	0.8	1.0	29-Jan	South Embankment	671317	6122749	959	Till
TP05-7		TP05-7-1 TP05-7-2	0.8 2.8	1.2 3.0	25-Nov	South Embankment	671006	6122910	959	Till Till
TP05-8	0.8		2.0		26-Nov	South Embankment	670743	6123151	956	Till
TP05-9	3.1	TP05-9-1 TP05-9-2	1.0 2.4	1.2 2.6	26-Nov	South Embankment	670852	6123264	966	Till Till
TP05-10	-	TP05-3-2	1.0	1.2	28-Nov	South Embankment	670621	6123451	946	Till
TP06-15		TP06-15-1 TP06-15-2	1.3 2.3	1.5 3.5	06-Apr	South Embankment	670801	6124074	955	Till Till
TP06-16	2.4	TP06-16-1	1.1	1.3	06-Apr	South Embankment	671085	6123975	966	Till
		TP06-16-2 TP06-17-1	2.2 1.1	2.4 1.3	00-Арі	Oddir Embankment				Till Till
TP06-17	3.4	TP06-17-2	2.9	3.1	06-Apr	South Embankment	671168	6123668	967	Till
TP06-18		TP06-18-1 TP06-18-2	0.6 1.4	0.8 1.6	05-Apr	South Embankment	671038	6123527	963	Till Till
11 00 10		TP06-18-3	4.4	4.6	00 7.01	Coun Embanianon	07.1000	0120027	000	Till
TP06-19	3.7	TP06-19-1 TP06-19-2	0.8 2.9	1.0 3.1	06-Apr	South Embankment	671400	6123650	970	Till Till
TP06-20		TP06-20-1	0.6	0.9	05-Apr	South Embankment	671258	6123321	970	Till
		TP06-20-2 TP06-21-1	1.4 1.1	1.6 1.3						Till Till
TP06-21	3.4	TP06-21-2	2.6	2.8	06-Apr	South Embankment	671487	6123485	972	Till
TP06-22		TP06-22-1 TP06-22-2	1.0 2.0	1.2 2.2	05-Apr	South Embankment	671481	6123214	973	Till Till
TP05-23	3.4	TP05-23-1	8.0	1.2	25-Nov	South Embankment	671384	6123018	972	Till
	0.1	TP05-23-2 TP05-24-1	2.5 0.4	2.8 0.6	20 1101	Octain Embariament	07 100 1	0120010	072	Till Peat
TP05-24	4.0	TP05-24-2	1.0	1.2	22-Nov	Plant Site	671098	6119571	844	Lacustrine Clay
11 00 24		TP05-24-3 TP05-24-4	2.0 3.6	2.2 3.8	22 1101	Tiant Oito	071000	0110071		Sand, Silt and Gravel Till
TP05-25	4.0	TP05-25-1	8.0	1.2	22-Nov	Plant Site	671196	6119558	843	Till
		TP05-25-2 TP05-26-1	3.5 0.3	3.7 0.5	22 1101	Tidit Oito	071100	0110000	0.10	Till Peat
TP05-26	3.5	TP05-26-2	1.2	1.5	22-Nov	Plant Site	671304	6119573	843	Sandy Silt and Clay
		TP05-26-3 TP05-27-1	2.0 0.5	2.4 0.8						Fine Sand and Silt Lacustrine Clay
TP05-27	3.0	TP05-27-2	2.0	2.4	23-Nov	Plant Site	671195	6119470	838	Silt Gravel and Clay
TP05-28		TP05-28-1 TP05-28-2	0.5 2.3	0.8 2.6	23-Nov	Plant Site	671169	6119648	846	Till, Sand and Silt
TP05-33	3.8	TP05-33-1	0.5	0.8	23-Nov	Conveyor Alignment	671071	6120552	885	Till
		TP05-33-2 TP05-34-1	3.5 0.3	3.8 0.5						Till Till and Sand
TP05-34	3.4	TP05-34-2	2.2	2.5	23-Nov	Conveyor Alignment	671229	6121500	924	Till
TP05-35		TP05-35-1 TP05-35-2	0.1	0.3 1.2	23-Nov	Conveyor Alignment	670932	6119978	824	Fine Sand and Clay Till
		TP05-35-3	2.6	3.0	201101		0.0002	0110070	02.	Till
TP06-37		TP06-37-1 TP06-37-2	1.0 2.0	1.2 2.2	28-Jan	Plant Site	671073	6119671	845	Till Till
TP06-38	3.2	TP06-38-1	1.0	1.2	28-Jan	Plant Site	671173	6119671	845	Till
		TP06-38-2 TP06-39-1	2.2 0.5	2.5 0.7	20 0011	Tidit Oito	0/11/0	0110071	0.10	Till Till
TP06-39	3.2	TP06-39-2	1.5	1.8	28-Jan	Plant Site	671273	6119671	845	Till
TP06-40		TP06-39-3 TP06-40-1	3.0 0.6	3.2 0.8	28-Jan	Plant Site	671175	6119720	846	Till Till
TP06-40	3./	TP06-41-1	0.7	0.9	07-Apr	Gravel Pit	671173	6118176	803	Silty Sand (Alluvium)
		TP06-41-2 TP06-42-1	2.3 0.8	2.5						Gravely, Silty Sand (Alluvium Gravely Sand (Alluvium)
TP06-42	3.7	TP06-42-2	2.6	1.0 2.8	07-Apr	Gravel Pit	671569	6118189	798	Silty Sand (Alluvium)
TP06-43	3.0	TP06-43-1 TP06-43-2	1.1 2.3	1.3 2.5	07-Apr	Gravel Pit	671695	6118284	816	Silty Sand (Alluvium)
TD06 44		TP06-43-2 TP06-44-1	0.8	1.0	07 455	Graval Dit	671504	6110074	702	Silty Sand (Alluvium) Silty Sand (Alluvium)
TP06-44	3.4	TP06-44-2	2.6	2.8	07-Apr	Gravel Pit	671594	6118074	793	Silty Sand (Alluvium)

Notes:

1.) Testpits 11-14 and 29-32 were not excavated.

TABLE 4.1

PACIFIC BOOKER MINERALS INC. MORRISON COPPER GOLD PROJECT GEOTECHNICAL SITE INVESTIGATION

SUMMARY OF ROCK PERMEABILITY RESULTS

Print 7-13-06 11:25

Rev'd 5/23/06

Drillhole ID	Test No.	Test Interval (m)	Rock Type ¹	Average Permeability (cm/s)
DH06-1	1	27.4 - 60.8	ZS	1.4E-04
DH06-1	2	59.4 - 89.9	Vol	2.4E-05
DH06-1	3	89.9 - 126.5	Vol	n/m²
DH06-2	1	9.1 - 39.5	Vol	5.1E-05
DH06-3	1	6.7 - 36.9	Vol	3.3E-05
DH06-4	1	11.0 - 41.5	LM	7.4E-05
DH06-6	1	9.6 - 36.7	Vol	1.4E-04
DH06-7	1	12.8 -43.3	Vol/ZS/SST	5.1E-04
DH06-10	1	21.9 - 53.6	SST/ZS	n/m³
DH06-11	1	8.8 - 36.9	ZS	7.2E-05
DH06-12	1	13.1 - 58.3	SST/Siltst/ZS	2.8E-05
DH06-13	1	11.9 - 20.3	BFP	4.5E-05
DH06-14	1	21.9 - 29.3	ZS	8.5E-05

Notes:

- 1.) Rock Types taken from PBM Core Logs, Vesko Karadzic
- 2.) No water acceptance was recorded. Permeability too low to measure.
- 3.) Rock would not hold water pressure. Permeability too high to measure.

TABLE 5.1

PACIFIC BOOKER MINERALS INC. MORRISON COPPER GOLD PROJECT GEOTECHNICAL SITE INVESTIGATION

SUMMARY OF LABORATORY TESTING RESULTS

Revised 6/7/06

M:\1\01\00102\07\A\Data\WMF Geotech SI - Feb to Apr '06\Lab Testing\ILab Testing Results.xls\Table 5.1

M:\1\01\00102\07\A\Da	ita\WMF Geotech SI	- Feb to A	pr '06\Lab	Testing\[Lab	Testing Resu	lts.xls]Table 5	5.1					Printed: Jul-1:	3-06 11:26:16
				_	S.		Att	erberg Lin	nits		r sis	od ic s)	ic s)
Sample Number	Sample Description	-	h (m) - To	Natural Moisture Content (%)	Grain Size Analyses¹	Hydrometer	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Particle Density (kg/m³)	Standard Proctor Compaction Analysis	Proctor Compacted Saturated Hydraulic Conductivity (m/s)	Shelby Tube Saturated Hydraulic Conductivity (m/s)
TP06-1-1	Till	0.2	1.0	21.6	Х	Х							
TP06-1-2	Till	1.4	1.6	8.4	X	X							
TP06-6-1	Till	0.8	1.0	13.1	Х	Χ							
TP06-6-2	Till	2.2	2.5	13.5	X	Χ							
TP06-15 @ 4.5'	Till	1		12	Х	Х	32	18	14	2606.1			
TP06-15 @ 8'	Till		.4	12.6	Х	X							
TP06-16 @ 4'	Till	1		15.1	Х	X	35	18	17	2585.9	Х	1.5E-10	
TP06-16 @ 8'	Till	2		15.4	Х	X					^	1.52 10	
TP06-17 @ 4'	Till	1		12.7	X	X	31	16	15	2628.8			
TP06-17 @ 10'	Till	3	.0	10.6	X	X							
TP06-18 @ 2'	Till	0	.6	17.1	Χ	Χ				2612.6			
TP06-18 @ 5'	Till	1		13.1	X	X	29	16	13	2621.3			
TP06-18 @ 15'	Till	4		11.1	Х	Х					Х	6.1E-09	
TP06-19 @ 3'	Till	0		13.6	X	X	32	17	15	2615.4			
TP06-19 @ 10'	Till	3	.0	13.6	Χ	Χ	32	16	16	2623.2			
TP06-20 @ 0-5'	Till	0.0	1.5	16.1	Χ	Χ	33	18	15	2585.8			
TP06-20 @ 5'	Till	1	.5	14.6	Χ	Χ	33	16	17	2620.8			
TP06-21 @ 0-4'	Till	0.0	1.2	12.6	Χ	Χ	33	16	17	2610.5	Х	1.6E-07	
TP06-21 @ 9'	Till	2		12.9	Χ	Χ							
TP06-22 @ 4'	Till	1		14.1	Χ	Χ							
TP06-22 @ 5-11'	Till	1.5	3.4	22.7	Χ	Χ	22	19	3	2586.2			
TP06-41 @ 2.5'	Sand & Gravel	0	.8		Х	Х							
TP06-41 @ 8'	Sand & Gravel		.4		Χ	Χ							
TP06-42 @ 3'	Sand & Gravel	0			Χ	Χ							
TP06-42 @ 9'	Sand & Gravel	2			Х	Х					Х		
TP06-43 @ 4'	Sand & Gravel		.2		X	Х					^		
TP06-43 @ 8'	Sand & Gravel		.4		Х	Х							
TP06-44 @ 3'	Sand & Gravel	0			Х	Х							
TP06-44 @ 9'	Sand & Gravel	2	.7		Х	Х							
DH06-2	Shelby Tube	1.2	1.7	23.9	X	Х	27	17	10	2628.1			1.7E-09
DH06-7	Shelby Tube	1.2	1.5	13.1	Χ	Х	33	17	16	2637.9			1.4E-05
DH06-9	Shelby Tube	1.2	1.5	15.4	Х	Х	27	15	12	2629.0			2.4E-08
DH06-11	Shelby Tube	2.6	2.7	12.9	Χ	Х	27	16	12	2641.3			5.0E-07
DH06-12	Shelby Tube	1.4	1.5	15.3	Х	Х	30	17	13	2629.7			2.0E-10

Notes:

1.) An 'X' indicates that the corresponding test was completed. Results are shown in other tables and/or figures.

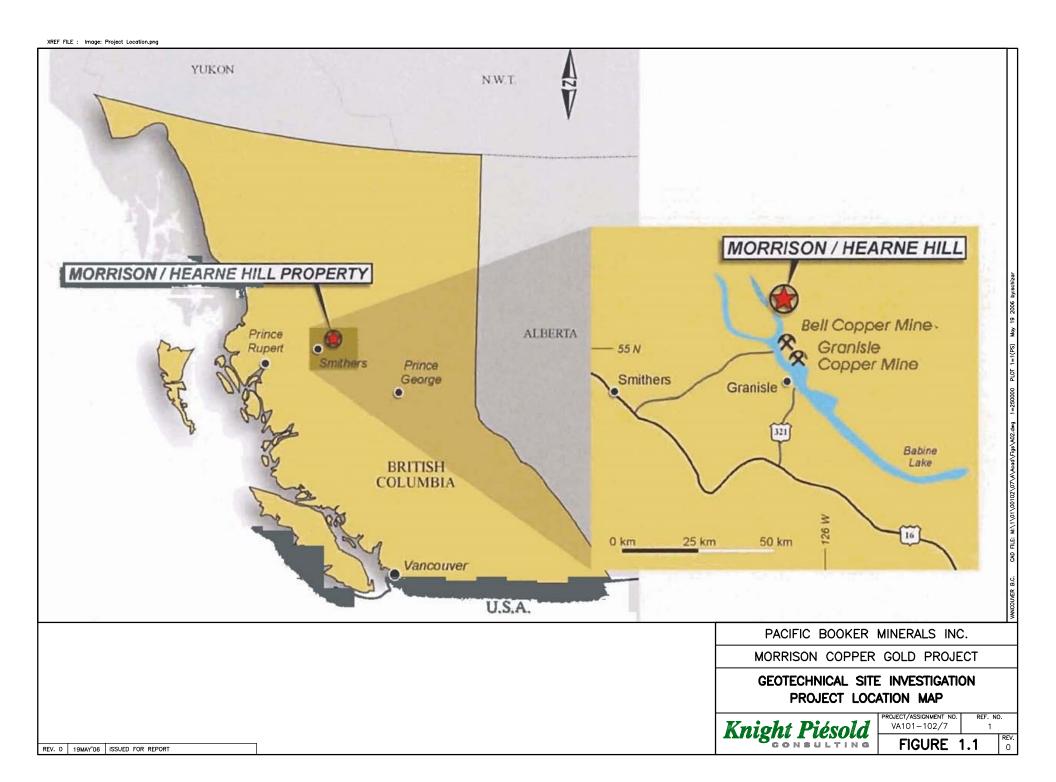
TABLE 5.2

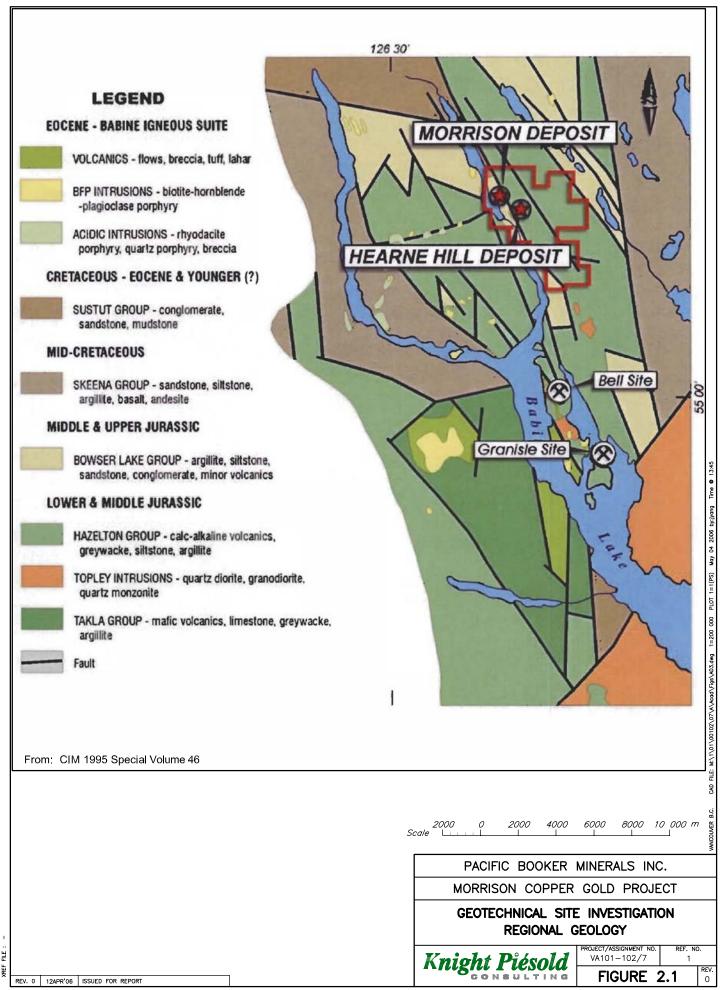
PACIFIC BOOKER MINERALS INC. MORRISON COPPER GOLD PROJECT GEOTECHNICAL SITE INVESTIGATION

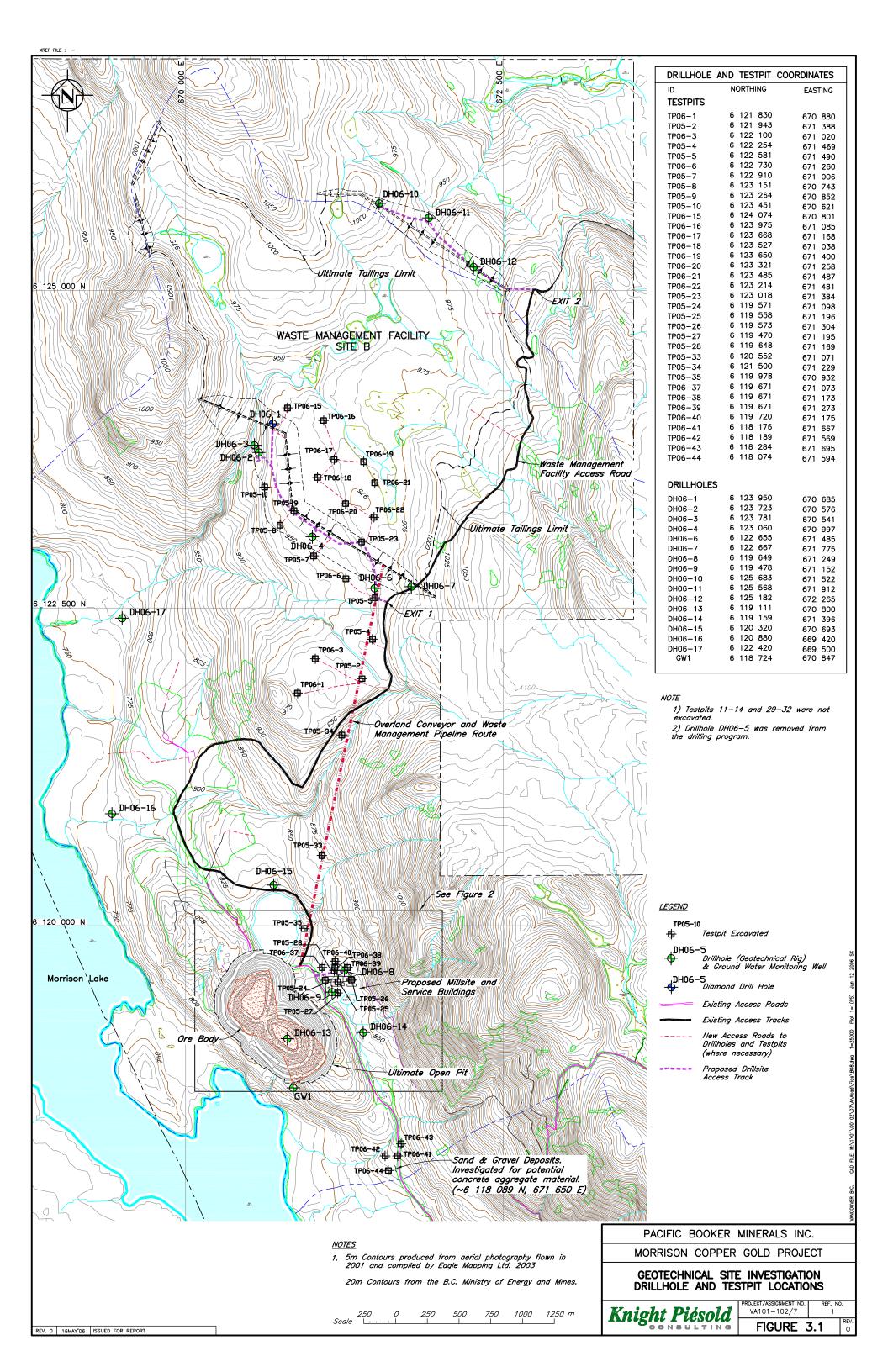
STANDARD PROCTOR COMPACTION RESULTS

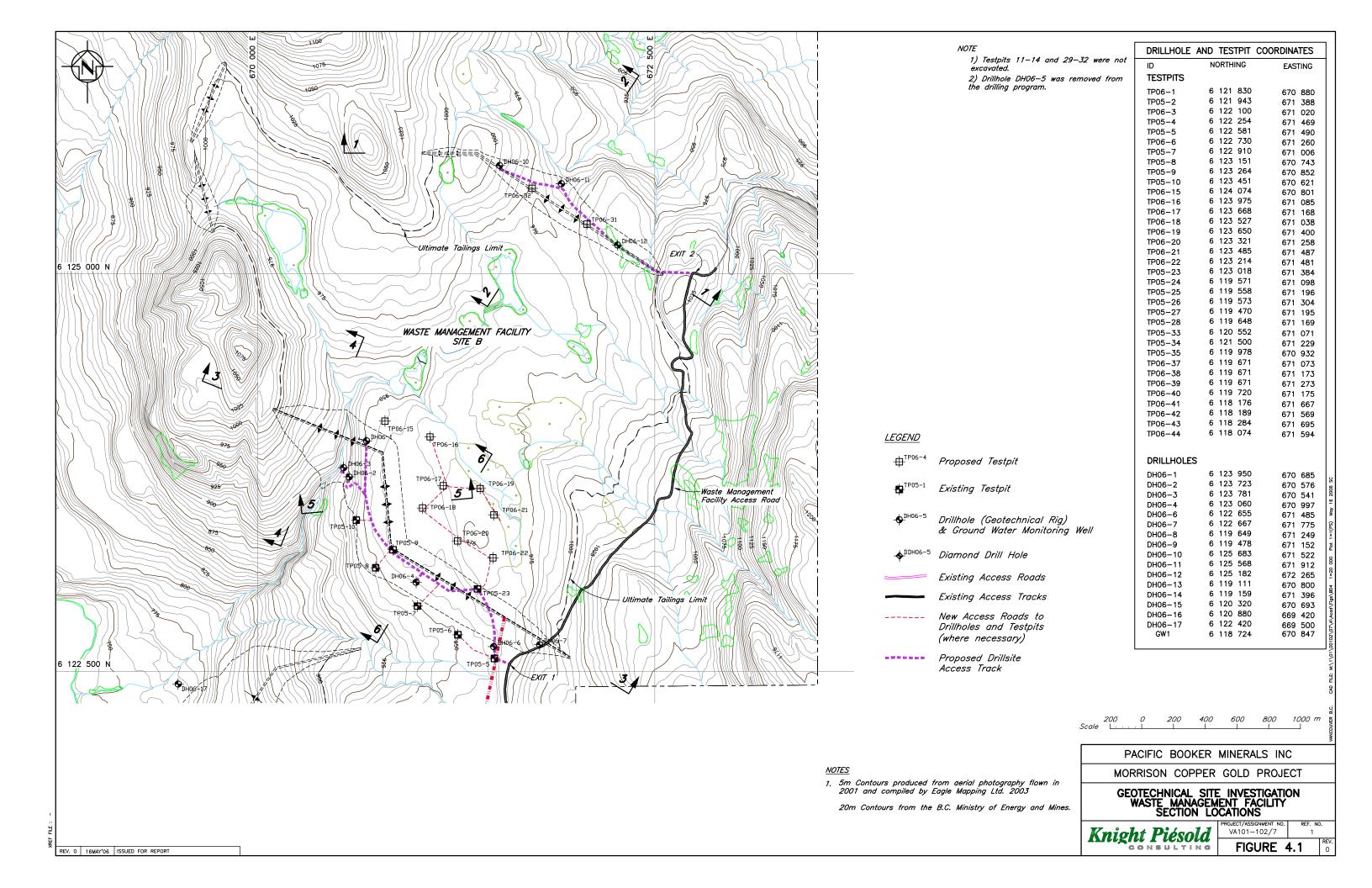
Print 7-7-06 17:15

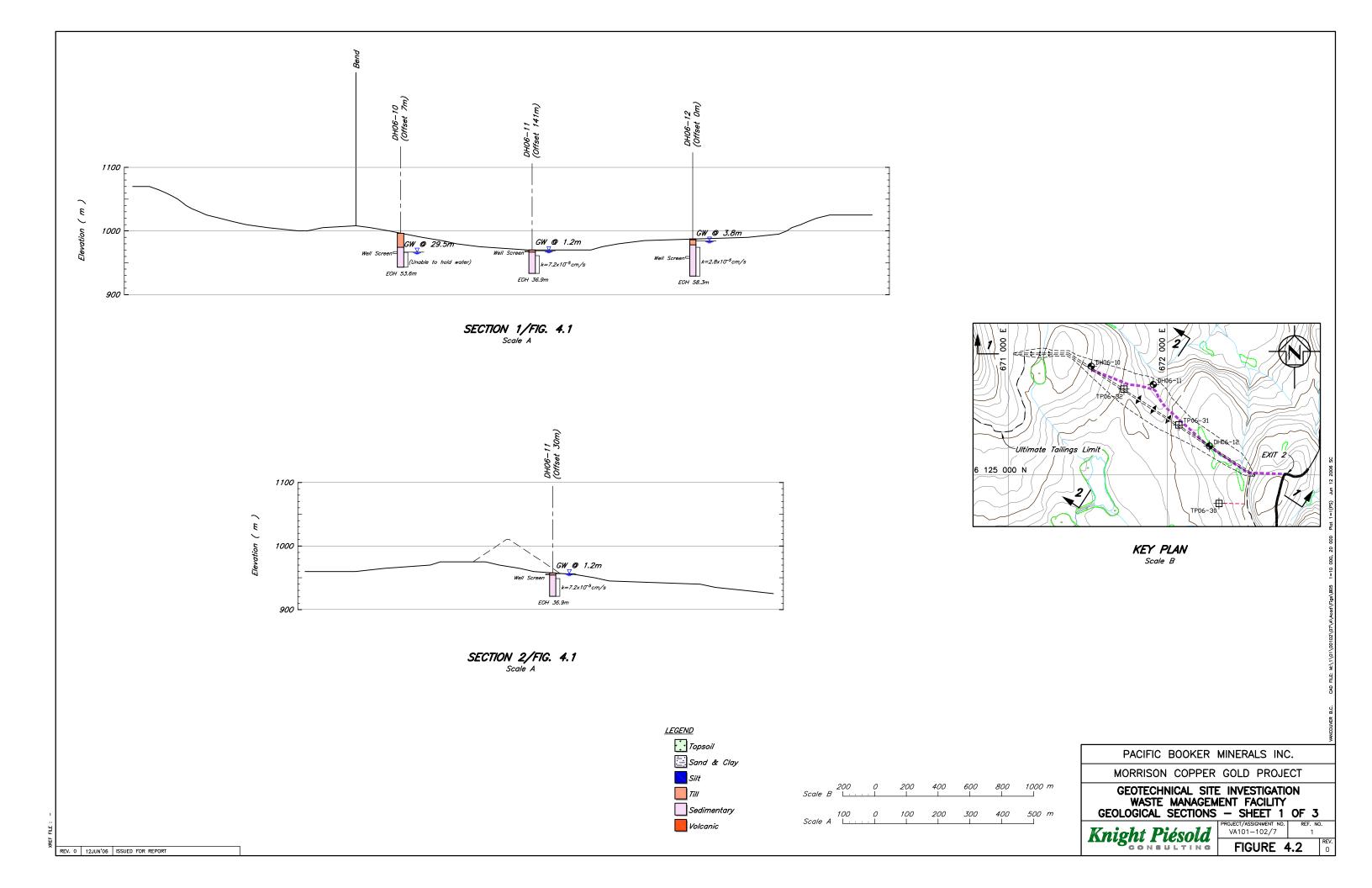
Rev'd 6/8/06

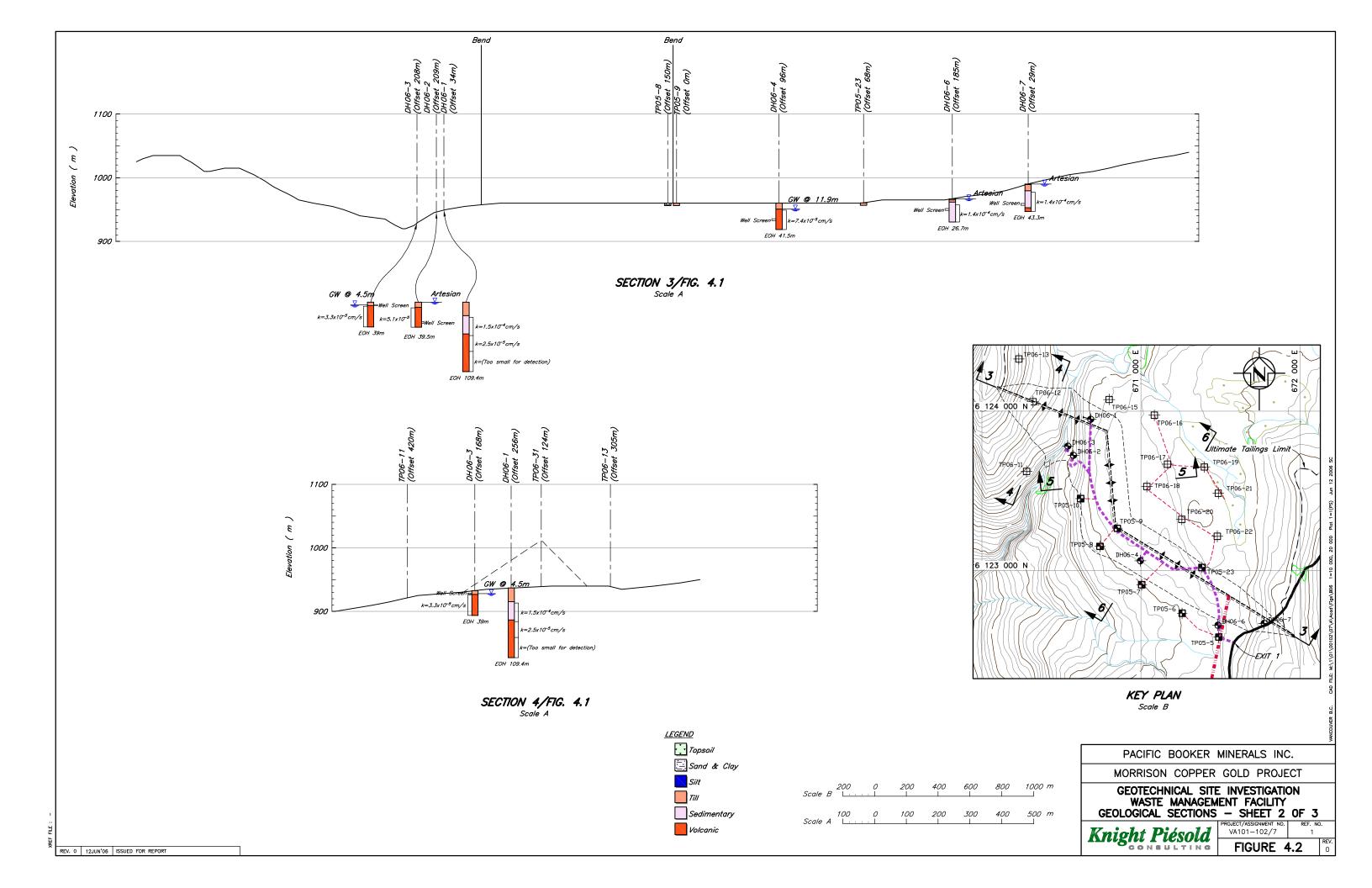

M:\1\01\00102\07\A\Data\WMF Geotech SI - Feb to Apr '06\Lab Testing\[Proctor Compaction Results.xls]Data

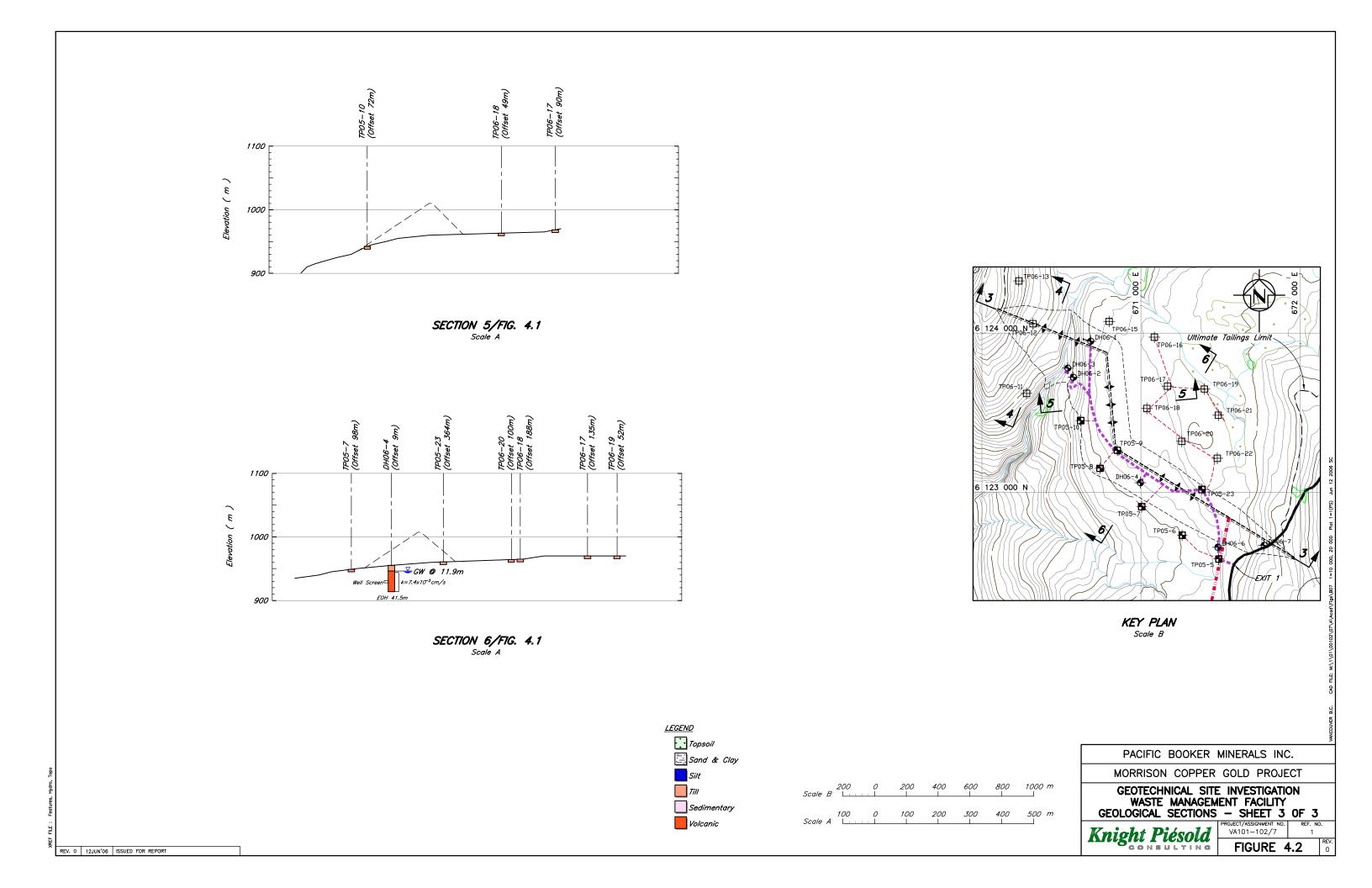

	Gro	up 1	Gro	up 2	Gro	up 3	Group 4		
Test Point	Bulk Density (kg/m³)	Moisture (%)	Bulk Density (kg/m³)	Moisture (%)	Bulk Density (kg/m³)	Moisture (%)	Bulk Density (kg/m³)	Moisture (%)	
Point 1	1804	10.72	1789	10.89	1740	11.15	1918	6.34	
Point 2	1890	12.39	1938	13.70	1932	13.97	1935	8.36	
Point 3	1921	14.71	1887	14.91	1841	15.87	1955	10.74	
Point 4	1818	16.28	1809	16.97	1796	17.24	1944	12.64	

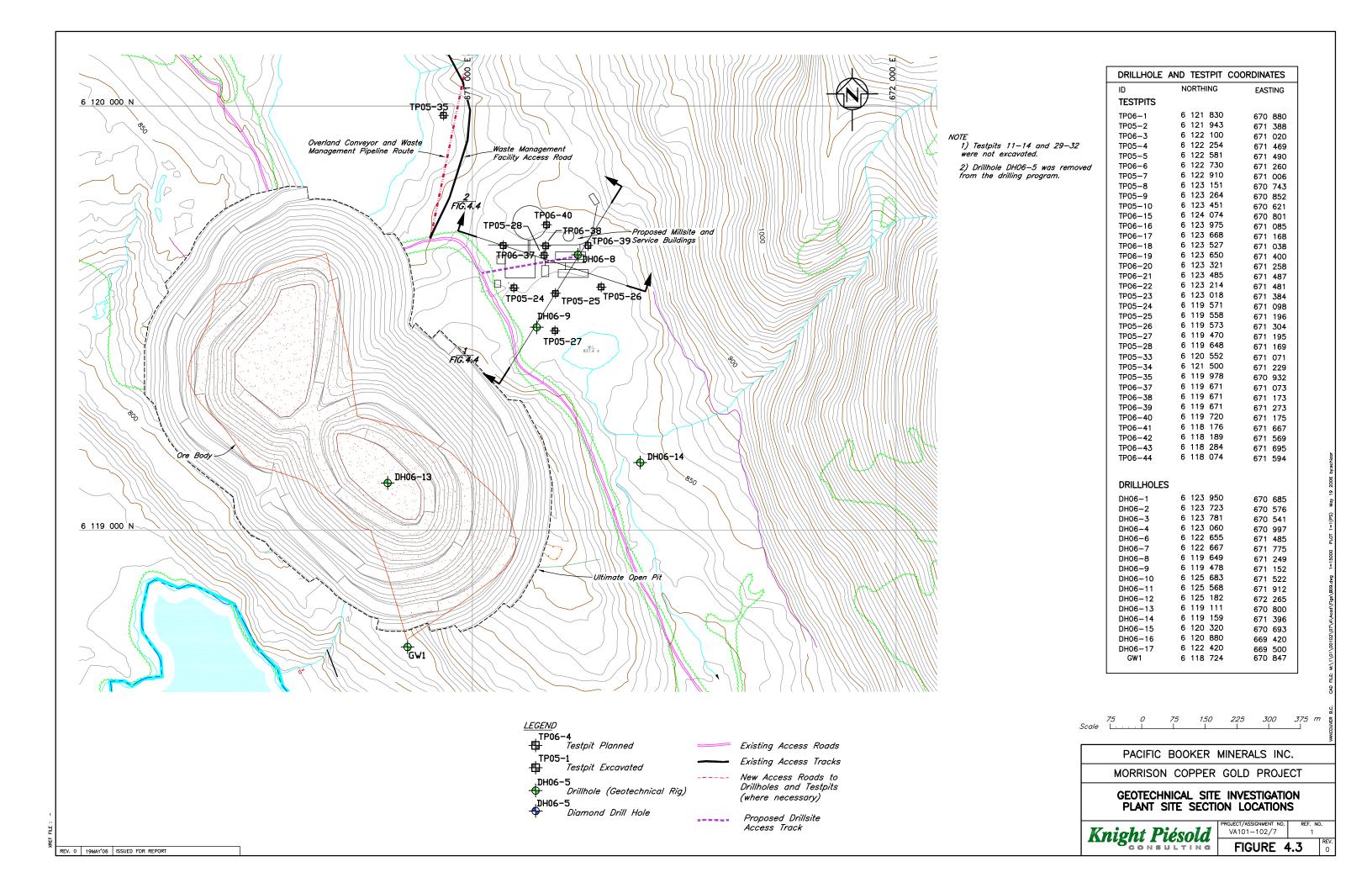

Notes:

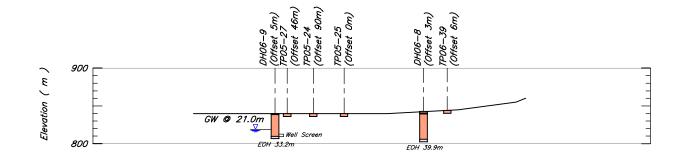

- 1.) Data from Cantest Ltd.
- 2.) Groups composed of the following samples:

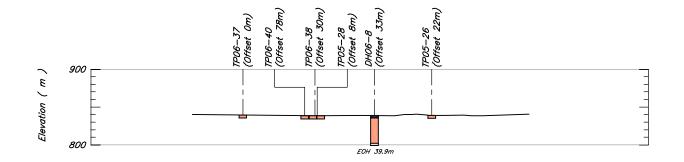

	TP06-15 @ 4.5', TP06-15 @ 8', TP06-16 @ 4', TP06-16@8',
	TP06-17 @ 4', TP06-17 @ 10'
Group 2	TP06-18 @ 2', TP06-18 @ 5', TP06-18 @ 15', TP06-19 @ 3',
	TP06-19 @ 10'
Group 3	TP06-20 @ 0-5', TP06-20 @ 5', TP06-21 @ 0-4', TP06-21 @ 9',
Group 3	TP06-22 @ 4'
Group 4	TP06-41 @ 2.5', TP06-41 @ 8', TP06-42 @ 3', TP06-42 @ 9',
	TP06-43 @ 4', TP06-43 @ 8', TP06-44 @ 3', TP06-44 @ 9'











SECTION 1/FIG. 4.3

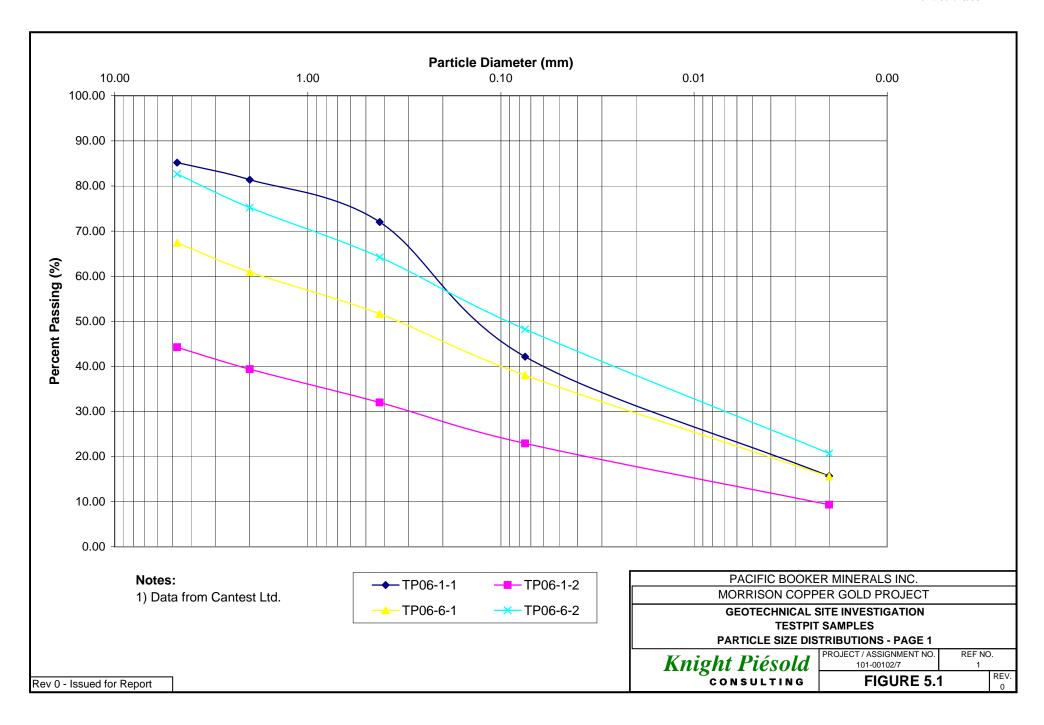
Scale A

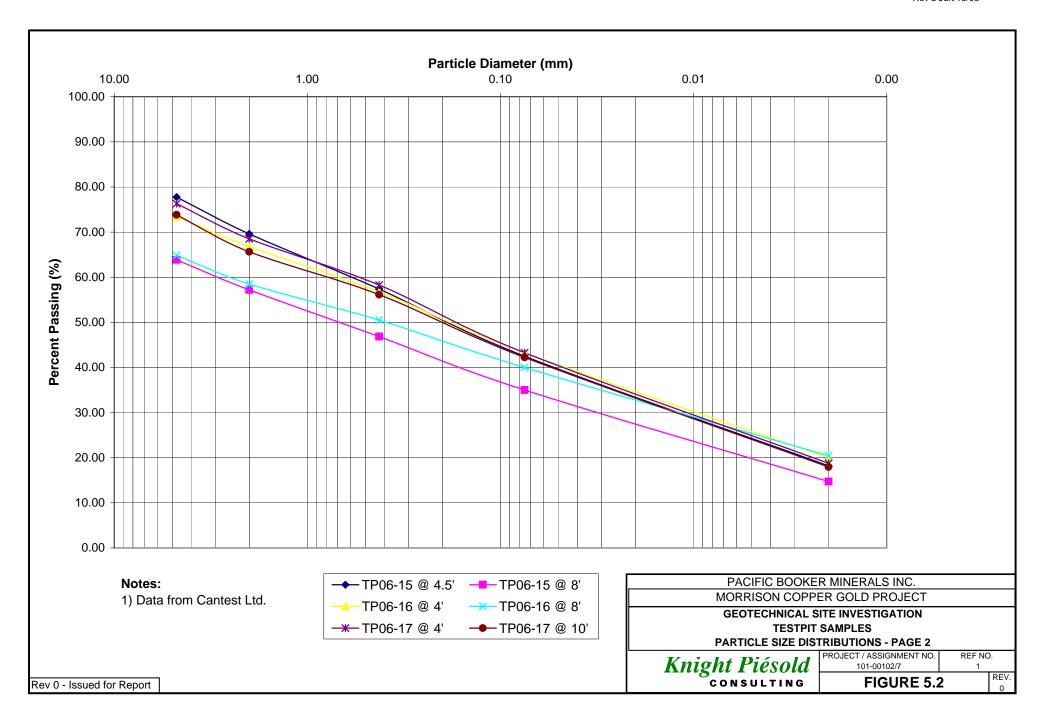
SECTION 2/FIG. 4.3

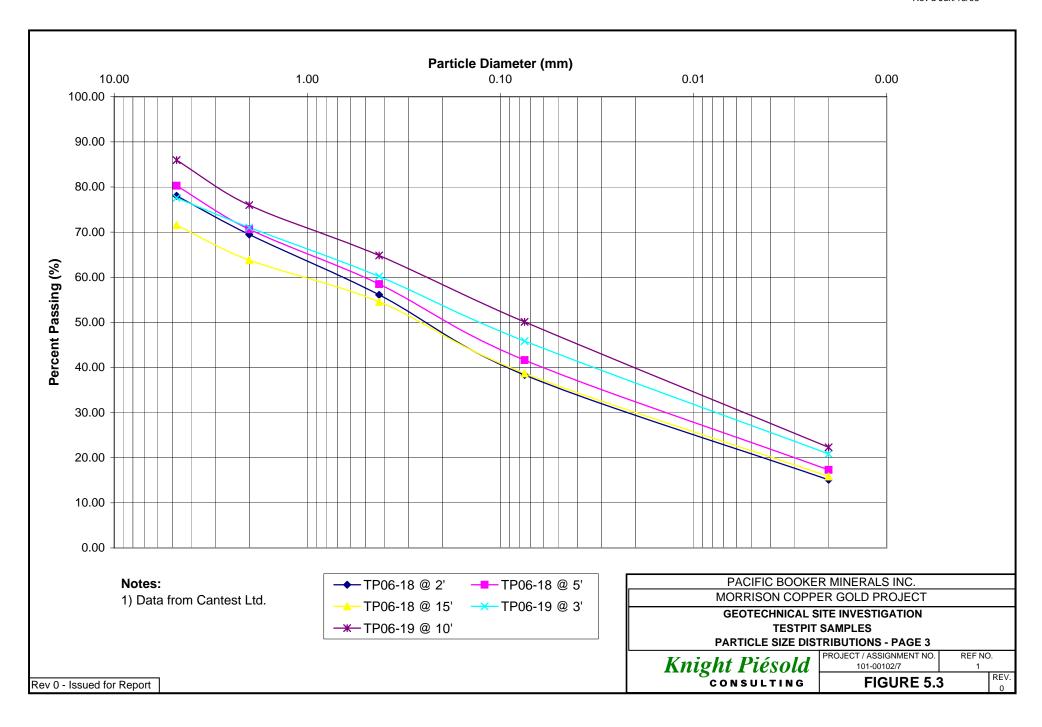
Scale A

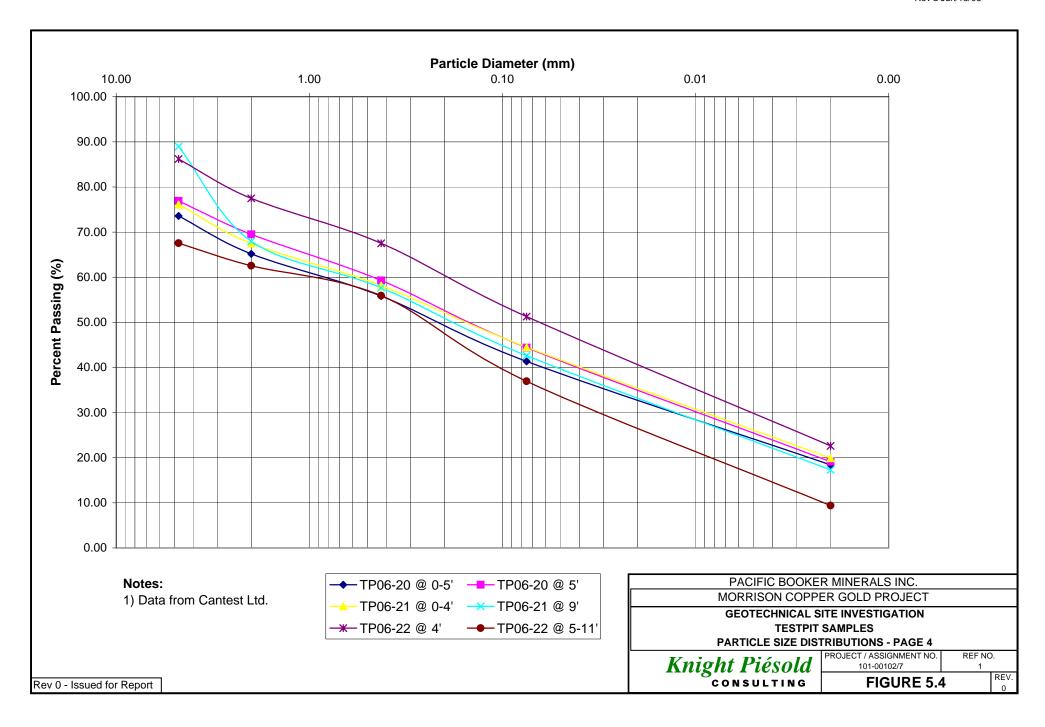
KEY PLAN Scale B

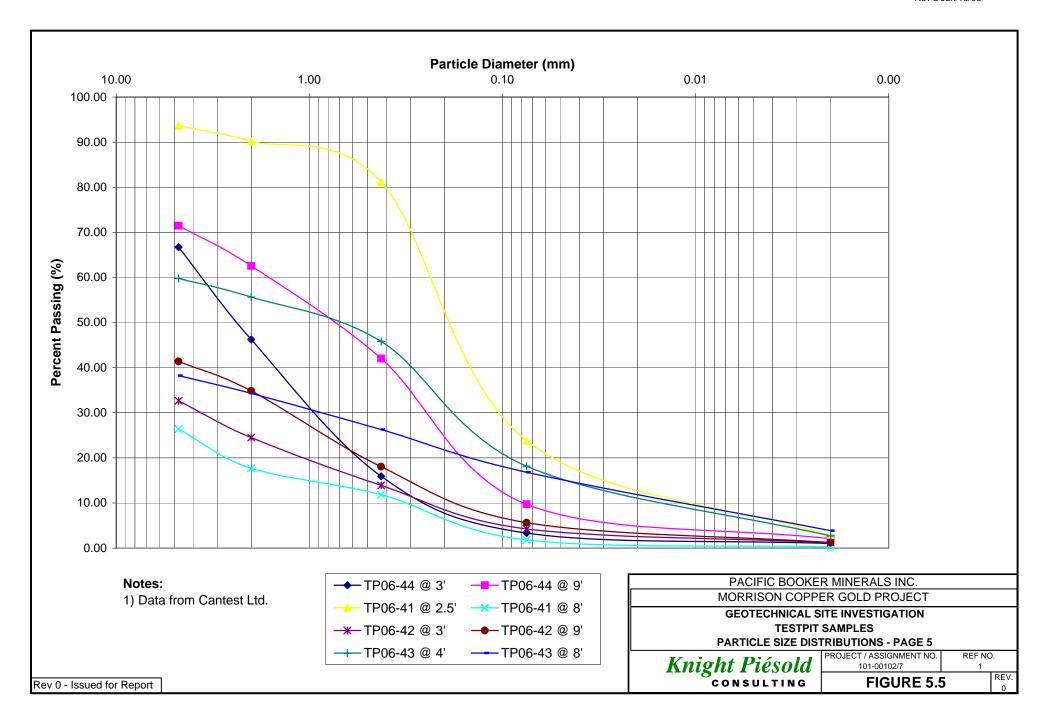
PACIFIC BOOKER MINERALS INC.

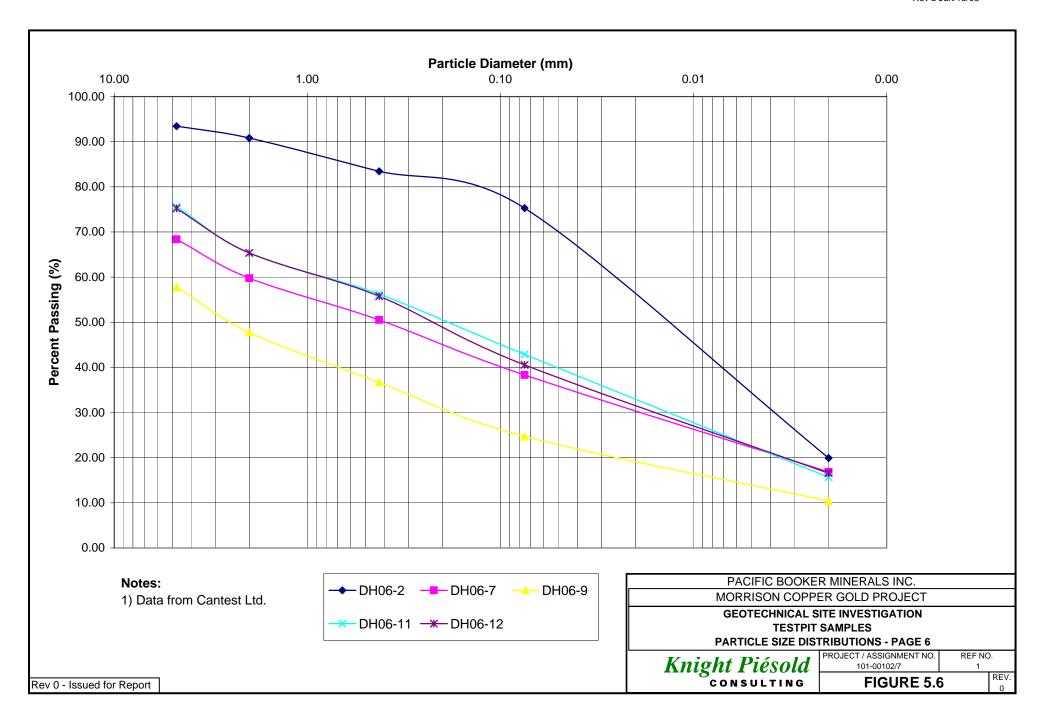

MORRISON COPPER GOLD PROJECT

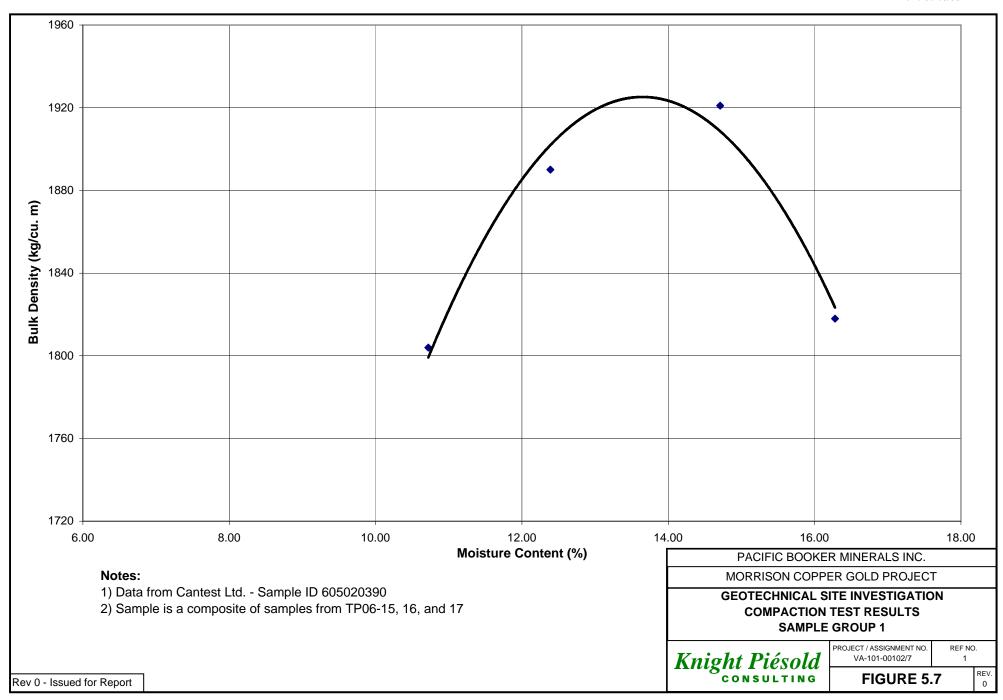

GEOTECHNICAL SITE INVESTIGATION PLANT SITE GEOLOGICAL SECTIONS

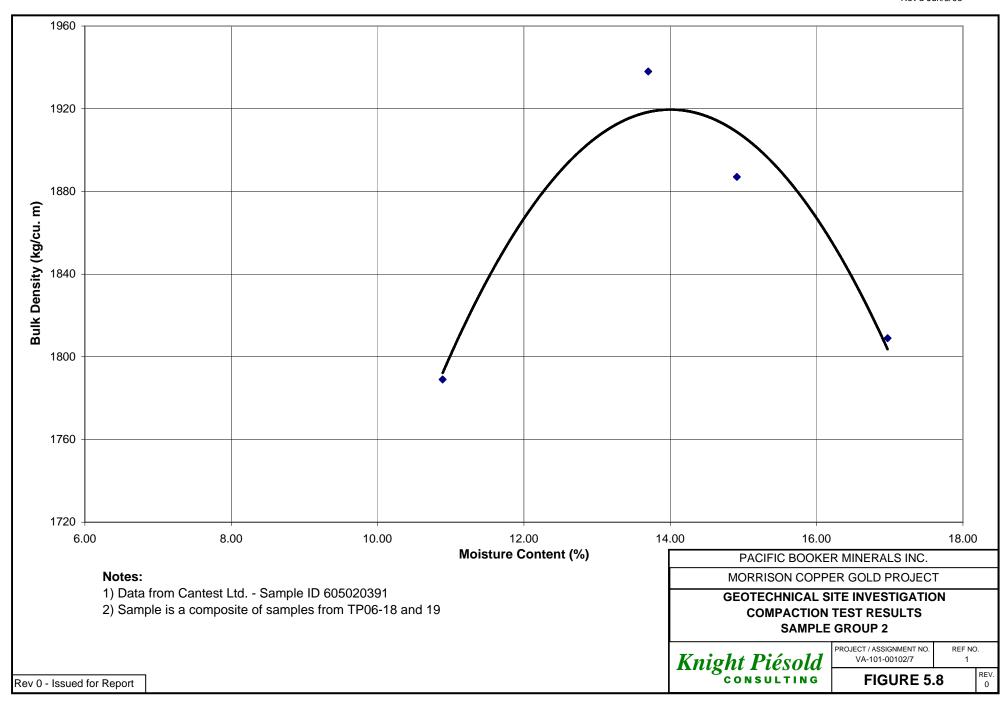

Knight Piésold

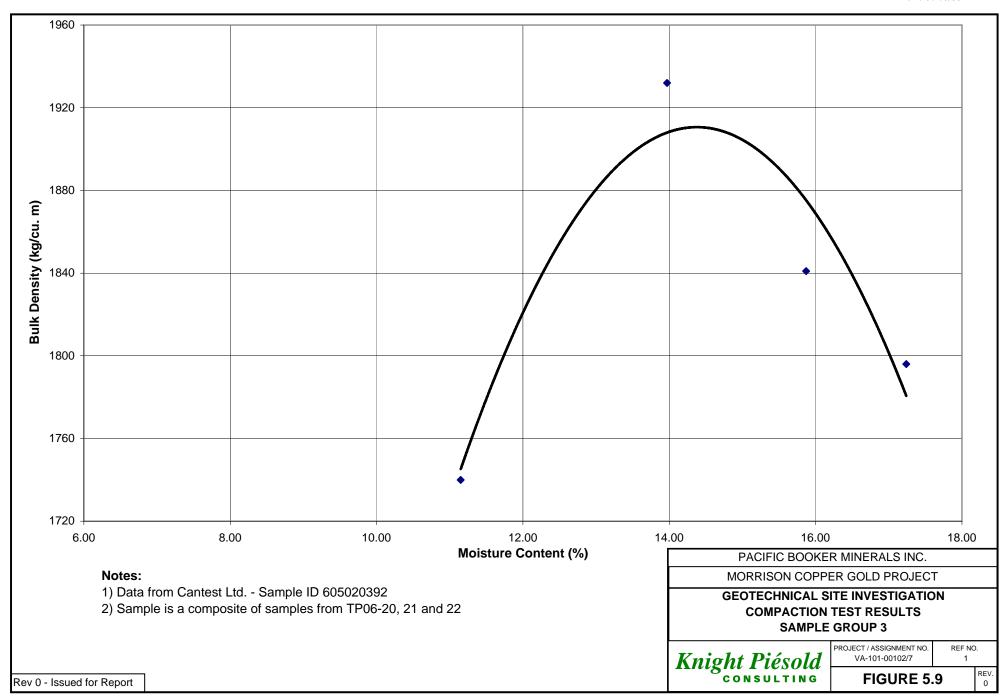

REF FILE: -

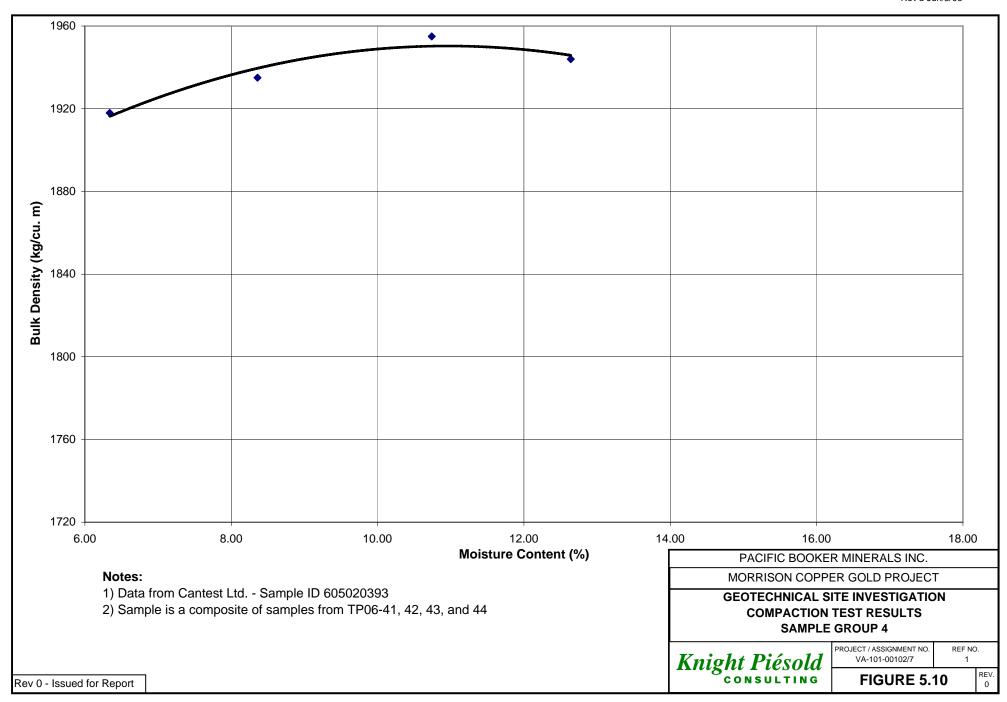

REV. 0 12JUN'06 ISSUED FOR REPORT











APPENDIX A

(Rev 0)

GEOTECHNICAL DRILLHOLE LOGS

APPENDIX A1 OVERBURDEN DRILLING LOGS
APPENDIX A2 BEDROCK DRILLING LOGS
APPENDIX A3 BEDROCK DRILLING GRAPHS

APPENDIX A1

(Rev 0)

OVERBURDEN DRILLING LOGS

- Drillhole DH06-01
- Drillhole DH06-02
- Drillhole DH06-03
- Drillhole DH06-04
- Drillhole DH06-06
- Drillhole DH06-07
- Drillhole DH06-08
- Drillhole DH06-09
- Drillhole DH06-10
- Drillhole DH06-11
- Drillhole DH06-12
- Drillhole DH06-13
- Drillhole DH06-15A

Drillhole DH06-14

(Pages A1-1 to A1-14)

			Morrison Copper Gold Project				l Hole No					1 of 1
		-	Geotech Drilling Services		_		u Sampler:				Date Started:_	
Drill			Odex & HQ3 Coring		_		Elevation:	-			ite Completed:	
			WMF South Dam		_	Te	stal Depth:		126.3	<u>m_</u>	Logged by:	
С	oordi	nates:	6.123.943 N . 670.676 E	-	_Az	imuth	Inclination		300.		Reviewed by:	GJ
рертн (#)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION Gravelly SILT/CLAY matrix, with trace sand.	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPT N" VALUE	SPT TEST DATUNCOTTECTED IN VALUES VS. depti	NO	TES
5111			Moist. Firm. Low to medium plasticity. Brown.				1	ij			Odex drilling to	24.15 m,
10			SiLT/CLAY matrix with some gravel, Moist, Medium plasticity, Stiff, Dark brown, TiLL.	-			2	#				
20-1	5-						3	<i>"</i>				
25							5	#				
30	10-						6	H				
35							7	#	<u> </u> -			
40 1							8	ff				
50-1	15-						9	Ħ				
55					:							
65	20—								 			
70											<u> </u>	
75											:	
	25-		HQ Coring to 126.3 m. See Rock Log for details.	-							:	
		·					Mor	Tisc	n Coppe	Minerals Inc. r Gold Projec r For DH06-0	et 1	
Rev	v. 0 ·	Issu	ed for Report				Knig	ht	Pi	ésolo	Project No. 101-102/7	Ref. No. Ref. No. 1 (1)

	Proj	ect:	Morrison Copper Gold Project			Dri	l Hole N	o <u>. D</u>	HOE	6-02	Page	1 of 1
			Geotech Drilling Services			In-Sit	u Sampler	SPT	<u>8 HC</u>	23 Coring C	Date Started:	4 Mar 08
Dril			Odex & HQ3 Coring		_		Elevation:		_		Completed:	-
			WMF South Dam		—		otal Depth:		39.5		Logged by:	
-	Joordin	nates: _	6.123.723 N . 670.576 E	_	_		nclination:		- 90		Reviewed by:	G1
DEPTH (ft)	DEРТН (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPT N' VALUE	SPT TEST DATA Uncorrected 11' values vs. depth (a) 20 40 60 80	NOT	
5—	2		SILT/CLAY matrix with trace sand and gravel, Moist to wet. Firm. Low to medium plasticity. Subangular to subrounded clasts. TILL.		100		Shelby Tubo SPT 1		7		Odex drilling to	
20-	5—				161		SPT 3	1/1/I 1/8/13	2 1			
SOILS LOG DRILL, GDT 9 Jun 06			HQ Coring to 39.5 m. See Rock Log for details.					Pa Mor Ove	cific riso	n Copper irden Log i	linerals Inc. Gold Projec For DH06-02	2
NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE			ed for Report DATAIGEOTEC-3/GINT/DRILL GPJ			1	Knig	hţ.	Pi	ésold	101-102/7 DH	Ref. No. Rev. 1 0 106-02 Revised: 2 May 0

	F	² roj	ect:	Morrison C	opper Gold Project	t		_	Dri	li Hole N	o. D	H06	-03	Page _	1 of 1
İ					ing Services			_ '	In-Si	tu Sampler	: <u>SPT </u>	& HC	3 Coring	Date Started:	2 Mar 06
	Orilli			Odex & HQ3						Elevation:				te Completed:_	
	_			WMF South D				_		otal Depth:		-	m	Logged by:	
- 1	C	oordir	nates: ,	6.123.781 N .	670,541 E	-	_	=		nclination:		-90		Reviewed by:	<u>G1</u>
	DEPTH (ft)	ОЕРТН (m)	GRAPHIC LOG		DESCRIPTION	<u>2</u> 0 -	RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	вгом сопит	SPTN'VALUE	SPT TEST DA Uncorrected 'N' velues vs. depti	n NO	ITES
	5	1-		sand, Weil gra plasticity. Subs size. Light brox SILT/CLAY ma Medium plastic	atrix with some gravel. Moist	ace high vet		39		SPT 1	2/3/3	6		Odex drilling to	>5.8 m.
	10	2— 2— 3— 3— 4— 4— 4— 4— 4— 4— 4— 4— 4— 4— 4— 4— 4—		boulders. Suba TILL.	angular gravel clasts. Light b	rown.		89	-	SPT 2	7/12/38	50			
	15	4— 4— 4— 4— 4— 4— 5—		T				50		SPT 3	8/13/14	27			
SOILS LOG DRILL GPJ DRILL GDT 9 JUN 06	20	6-		HQ Caring to 3	37 m. See Rock Log for detai	ils.		О			50/-/-	-	SALE OF THE PROPERTY OF THE PR		
OG DRILL.G											Mor Ove	riso erbu	n Coppe rden Log	Minerals Inc r Gold Project g For DH06-0	ct 3
אורטונכ	Rev	ν Λ.	leen	ed for Repo	nrt	<u>.</u> .			┨,	Knig	ht	Pi	ésolo	Project No. 101-102/7	Ref. No. Rev. 1 0 H06-03
Š	N:\1\0	1\0010	2\07\A\	DATA GEOTEC	-3/GINT\DRILL.GPJ						<u> </u>	(LTIM		Revised: 2 May 06

	Proj	ect:	Morrison Copper Gold Project			Dril	i Hole N	o. D	H06	-04		Page	1 of 2
	Drillin	g Co: .	Geotech Drilling Services			ln-Sit	u Sampler	: SPT	& HC	3 Cort	j ng	Date Started:	7 Mar 08
Dril	ling M	ethod:	Odex & HQ3 Coring		_		Elevation:					te Completed:	9 Mar 06
	Loc	ation: ,	WMF South Dam		_	To	otal Depth:		<u>41.5</u>	m		Logged by:	_LS
	oordi	rates:	6.123.060m N . 670.997m E			i	nclination:		-90			Reviewed by:	GJ
DEPTH (ft)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPTN"VALUE	SPT TE Uncorre- values v 20 40	sted 'N' s. depth	NO.	
5	1		Gravelly SILT/CLAY matrix with some sand. Moist. Firm. Frequent subangular to subrounded clasts to fine gravel size. Well graded. Low to medium plasticity. TILL. SILT/CLAY matrix with some gravel and trace sand. Low to medium plasticity. Moist. Stiff. Subangular to subrounded clasts up to cobble size. Well graded. Light brown. TILL.		93	X	SPT 1	4/6/9	15	Transfer of the state of the st		Odex drilling to	9.1 m.
10	3-			i i	100	X	SPT 2	4/6/10	16				
15	5_ -			:	104	X	SPT3	3/4/5	9				
20-	6-				100	X	SPT 4	4/7/ 11	18				
DRILL, GDT 27 Jun 06	8 8 9-				61	X	SPT 6	6/50+/-	9				
SOILS LOG DRILL GPJ DRILL GDJ]		HQ Coring to 41.5 m. See Rock Log for details.				P	Norris Overt	on	Copp en Lo	er G og Fo	nerals Inc. iold Project or DH06-04	No. VN
1810					K	ni	ght	Pié	so	ld	Project 10	01-102/7	.1 0
್ವ Re			ed for Report		<u> </u>	# * *	CON	8 0 1	<u>. T i</u>	H G		DH06-	
M:\1\0	1\0010	2\07\A\	DATA/GEOTEC-3/GINT/DRILL.GPJ									Date	Revised: 3 May 0

ſ	F	roj	ect:	Morrison Copper Gold Project			Dri	II Hole N	o <u>.</u> D	H06	<u>8-06</u>	Page	1 of 1
١				Geotech Drilling Services		_	In-Sit	tu Sampler	SPT	& HC	13 Coring D	ate Started:	9 Mar <u>06</u>
-	Drilli	-	_	Odex & HQ3 Coring		_		Elevation:				Completed:	
1	_			WMF South Dam		_		otal Depth:				Logged by:	
┝		oordir	ates: .	6.122.855 N . 671.486 E		_		nclination:		90		teviewed by:	GJ
	DEPTH (#)	рертн (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPTN'VALUE	SPT TEST DATA Uncorrected In values vs. depth.	NOT	
30 nul 6 10s	5 10 15 15 1	1— — — — — — — — — — — — — — — — — — —		Silty sandy GRAVEL. Moist to dry. Loose. Subrounded to subangular clasts up to pebble size. Well graded. Till. Clayey SILT with some sand and gravel. Small subrounded gravel clasts. Poorly graded. Very wet. Loose. Till. SILT/CLAY matrix with some gravel. Moist. Stiff. Small subangular to subrounded clasts. Medium to high plasticity. Light brown. Till. HQ Coring to 36.7 m. See Rock Log for details.		0		SPT 1	11-11	9		Odex drilling to 8	
S LOG DRILL GPJ ORILL GDT		_ 							Mor	riso	n Copper (inerals Inc. Gold Project	
ဗ္ဗ							\vdash					For DH06-06	Ref. No. Rev.
ILSI	_		•	od for Donald		_	4 4	Knig	ht	Pi	ésold	101-102/7	_1 0
				ed for Report DATA/GEOTEC-3/GINT/DRILL.GPJ			1_		COI	4 8 1	LTING		06-06 Revised: 3 May 00

	Proj	ect:	Morrison Copper Gold Project			Dri	ll Hole N	o. D	HQE	<u>3-07</u>	Page	1 of 1
-	Drillin	g Co:	Geatech Drilling Services		_	In-Sit	u Sampler	: <u>SPT (</u>	& HC	<u> 3 Cori</u> ng Da	te Started:	27 Feb 06
Drill			Odex & HQ3 Coring		_		Elevation:		993	m Date 0	Completed:	1 Mar 06
			WMF South Dam		_		otal Depth:		43.3	<u>-</u>	.ogged by:	·
<u> </u>	oordi	nates: ,	6.122.667 N . 671.775 E	,	_		nclination:		-90		viewed by:	<u>GJ</u>
ОЕРТН (₹)	DEPTH (m)	GRAPHIC	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPT N' VALUE	SPT TEST DATA Uncorrected N' values vs. depth	гом	
25 25 30 Ann. 12 35 Soils 12 30 Soils 12 35 Soils 12 3	6 -		SILT/CLAY matrix with some gravel and trace sand. Moist. Stiff. Medium to high plasticity. Subangular to angular small clasts up to cobble size. Well graded. Light brown. TiLL.		78 72 83 78		Shelby Tube 1 SPT 1 SPT 2 SPT 3 SPT 4	// 8/10/14 8/9/10 6/10/12	18		Odex drilling to	10.3 m.
DRILL.GPJ D			_·	<u> </u>	<u> </u>			Mor	riso	Booker Mir n Copper G	old Project	<u> </u>
90						\vdash				rden Log Fo		Ref. No. Rev.
<u></u>		•			_		Knig	ht.	Pi	ésold	101-102/7	1 0
© Re M:\1\0			ed for Report DATA/GEOTEC~3/GINT/DRILL.GPJ		_		- 0	CON		LTING		06-07 Revised: 3 May 00

Defining Cot George Amiliante 12 Marc 10		Morrison Copper Gold Project		_	Dri	li Hole N	o <u>.</u> D	НО€	80-3		Page	1 of 1
Coordinates: 6.119.649 N	Drilling Co:	Geotech Drilling Services			In-Sit	u Sampler	:	SP	<u> </u>	D:	ate Started:	18 Mar 06
Coordinates: 6.119.649 N	1 -			_						Date	Completed:	20 Mar 06
Sandy Str / CLAY matrix with some gravel. Very well firm Brown. Titl. Sandy Str / CLAY matrix with some gravel. Most. Medium Plastickly. Stiff. Standy galar to subrounded clasts. Dark brown. Titl. Sandy Str / CLAY matrix with some gravel. Most. Medium Plastickly. Stiff. Standy galar to subrounded clasts. Dark brown. Titl. Sandy Str / CLAY matrix with some gravel. Most. Medium Plastickly. Stiff. Standyplar to subrounded clasts. Dark brown. Titl. Sandy Str / CLAY matrix with some gravel. Most. Medium Plastickly. Stiff. Standyplar to subrounded clasts. Dark brown. Titl. Sandy Str / Sandy St	1			_	To	otal Depth:		39.9	<u> </u>		Logged by:	Jv
Section Sect	Coordinates:	6.119.649 N . 671.249 E		_	1	nclination:		-90			eviewed by:	GJ
36 37 CLAY with some sand. Very wet, high plasticity. 37 Soft. High pressure water bearing region - source of Artesian well.	Location: Coordinates: (ii) HLd30 1	Proposed Milisite. 6.119.649 N. 671.249 E DESCRIPTION Sandy SILT/CLAY matrix with some gravel. Very wet. Firm. Brown. TILL. Silty SAND. Very wet. Firm. Brown. SILT/CLAY matrix with some gravel. Moist. Medium Plasticity. Stiff. Subangular to	I ⊾	89 61 100 78 83 83 65 89 83 72 72 126 126 104	SAMPLES - 1	SPT 1 SPT 2 SPT 3 SPT 4 SPT 5 SPT 6 SPT 7 SPT 8 SPT 9 SPT 10 SPT 11 SPT 12 SPT 13	1/4/6 17/22/2- 6/8/10 8/9/13 5/6/11 6/21/16 4/9/10 4/7/10 7/15/21 6/10/19 6/11/17 4/6/13	99 10 43 18 22 17 37 19 17 36 40 29 28 19 38	SPT TES Uncorrect values vs	Rott DATA and 'N' depth	Logged by: eviewed by: NO'	GJ JV
Pacific Booker Minerals Inc. Morrison Copper Gold Project Overburden Log For DH06-08 Knight Piésold Project No. Ref. No. Rev. No. Rev. No.	36 37 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39	Soft. High pressure water bearing region - source of Artesian well.		133		SPT 16	4/2/9	11	Y	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Knight Piésold 191-102/7 1 0	1	<u> </u>				Mor Ove	riso erbu	n Cop rden i	per (Log F	3old Project For DH06-08	3	
Rev. 0 - Issued for Report Consulting DH06-08	Rev. 0 - Issu	ed for Report			$\frac{1}{4}$	Knig	ht.	Pi	éso	ld	101-102/7	1 0

Pro	ject:	Morrison Copper Gold Project			Dril	Hole N	o. D	HQE	S-09	Page	1 of 1
		Geotech Drilling Services		_	In-Sit	u Sampler	· <u></u>	SP		Date Started:	20 Mar 06
Drilling I	•			_		Elevation:				ate Completed	22 Mar 06
		Proposed milisite.		_		tal Depth:		33.2	m	Logged by:	
Coord	iinates:	6.119.478 N . 671.152 E	_	-	Į.	nclination:		-90		Reviewed by	GJ
DEPTH (ft)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPT N' VALUE	SPT TEST O/ Uncorrected ? values vs. dep 20 40 60 84	PÎ	NOTES
	777	Organic soll, moist, black. CLAY, Moist, Highly plastic, Fine grained.								Odex drilling	
10 3 4 15 5		Whitegrey. SILT/CLAY matrix with some gravel and trace sand. Stiff, Molst. Trace amounts of yellowish sand. Subrounded to subangular clasts. Medium to low plasticity. Dark brown. TILL.		28 48 78 65		Shelby 1 SPT 1 SPT 2 SPT 3 SPT 4	// 12/12/8 4/6/8 5/9/11	14 20			
20 6 7 25 8				11		SPT 5	6/6/10	18			
30-1 9				111	H	SPT 6	7/8/12	20			
35 11 40 12				100 54		SPT 7	6/10/15 5/36/53	35 89	<u> </u>	1	
45 14 50 15 16 55 17				65		SPT9	7/8/11	19			
65 20		¥		54 126		SPT 10	6/10/12 6/11/14				
70 22 75 23 80 24				100		SPT 12				The state of the s	
85 26 27 90 28 95 29				133		SPT 13	6/12/15	27		[
30 31 32 33 33 34 34 35 35		Drilled into bedrock to 33 m. Na core taken.		17		SPT 14	50+/-/-	-			
30,	<u> </u>		<u> </u>				Mor Ove	riso erbu	n Coppe irden Lo	Minerals In er Gold Proj g For DH06	ect -09
		ed for Report			1	Knig	ht.	Pi	ésol	101-102/	

Γ	F	roj	ect:	Morrison Copper Gold Project			Dril	Hole N	o <u>. D</u> i	H06	3-10	Page _	1 of 2
ı	Į	Oriliin	Co:	Geotech Drilling Services			In-Sit	u Sampler	SPT	& HC	<u> 3 Cori</u> ng	Date Started:	17 Feb 06
-	Drilli	ng M	ethod:	Odex & HQ3 Coring		_		Elevation:		1001	<u>m</u> (Date Completed:	19 Feb 06
				WMF North Dam			Ť¢	tal Depth:		53.6	<u>m</u>	Logged by:	1/
\perp	_ C	oordii	ates:	6.125.683m N . 671.523m E		- -	li I	nclination:		-90		Reviewed by:	GJ
	DEPTH (#)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPTNVALUE	SPT TEST I Uncorrected values vs. de 20 40 60 t	NO NO	TES
Γ	=		44	TILL/SILT with some gravel. Stiff. Fine gravel. Medium plasticity, Dark brown, Moist.								Odex drilling to	35 m.
	11111			Hit a boulder. Back to till at the bottom of run, TILL/SILT with some gravel. Stiff, Fine gravel. Medium plasticity, Dark brown, Molst.		104	X	SPT 1	7/16 /21	37	+		
	10-1	•				104	×	SPT 2	8/15/19	34		The state of the s	
	15-1	5-				126	×	SPT 3	4/8/7	15			
	20-					93	\boxtimes	SPT 4	5/6/10	16			
	~ 30-1					85 78	X	SPT 5	4/5/9 5/8/13	21			
	35	10—				33	X	SPT7	11/8/11			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	ا ماران			Same TILL as above, but with trace amounts of		100	X	SPT 8	5/6/10			The state of the s	
	45 45 50	15—		orangey/green sand.		65		SPT 9	4/8/10	18			
	55					100	×	SPT 10	4/13/18	31		Andreas -	
	65 	20-						CPT	418/16				
GPJ DRILL.GDT 27 Jun 06	70 - 1 75 1			HQ Coring to 53.6 m. See Rock Log for details.		111	X	SPT11	4/8/12	20		Control of the Contro	
SORS LOG DRILLG								P.	dorris Overb	urd	Copper en Log	linerals Inc. Gold Project For DH06-10	Na I Bay
1810			_			K	ni	ght I	Pié	SO	ld 🗀	oject No. Ref. 101-102/7	10
ខ្លី	Rev	7. 0 -	ISSU	ed for Report DATA/GEOTEC~3/GINT/DRILL.GPJ				CON	8 U L	TI	N G	DH06-	10 Revised: 3 Mar 0
141	10-1		_101041	or trespect that expire incl Mala, Of a								Jak	v mai v

Drilling Co. Gactach Drilling Services Drilling Method: Odex & H03 Coring Location: 955 m Date Completed: 22 Feb 08 Coordinaties: 6,125,588 N 671,912 E
Location: WMF North Dam Coordinates: \$,125,568 N. 671,912 E Inclination: 90 Reviewed by: 91 Reviewed by: 91 Reviewed by: 91 Reviewed by: 91 Reviewed by: 92 Reviewed by: 93 Reviewed by: 94 R
Coordinates: 6.125.588 N. 671.912 E
DESCRIPTION OF A DESCRIPTION DESCRIPTION OF A
DESCRIPTION A BURGAN STATE OF The sand Angular clasts Low to medium plasticity. Slightly moist. Staff. Tit.L. Self-Claysiff and gravel. Trace fine sand. Angular clasts Low to medium plasticity. Slightly moist. Staff. Tit.L. Self-Claysiff and gravel. Moist to very moist. Staff. Dark brown. Tit.L. SPT 1 14/192 38
Silt/Clay matrix with some gravet. Moist to very moist. Stiff. Dark brown. TitLt.
2
HQ Coring to 37 m. See Rock Log for details.
Pacific Booker Minerals Inc. Morrison Copper Gold Project Overburden Log For DH06-11
Knight Piésold 101-102/7 1 0
Rev. 0 - Issued for Report Consulting DH06-11 Date Revised: 1 May Consulting Date Revised: 1

			Morrison Copper Gold Project				I Hole N					Page	1 of 1
			Geotech Drilling Services		_	In-Sit	u Sampler					ate Started:	•
DIAIII	_	_	Odex & HQ3 Coring WMF North Dam			т.	Elevation: otal Depth:		996 58.3			Completed: Logged by:	
c			6.125.182 N . 672.265 E		_		nclination:		-90 -90			eviewed by:	-
Ť				- -	<u> </u>	<u> </u>				SPT TEST	DATA	**************************************	
₽	Ê	ι,		Z X	RY (တ္တ	Š	BLOW COUNT	SPT'N' VALUE	Uncorrecte values vs. (lepth:		
DEPTH (#)	DEPTH (m)	GRAPHIC LOG		DRILL RUI	SAMPLE RECOVERY	SAMPLES	SAMPLE NO	Š	> Z	20 40 60	80		
Ä	DEF	[8 ₀	DESCRIPTION	REC	REC	SAN	SA.	BLC	SPT			NO	res
\neg	-		Clayey SiLT, Light brown, moist, Stiff, Poorly graded, Medium plasticity.								\blacksquare	Odex drilling to	9.1 m.
	_									lililili	ilil		
4					•								
4		5255 23	Silt/Clay matrix with some gravel. Small to					į			$\ \ $		
5_	_	11/1	medium sized clasts. Medium plasticity. Slightly moist. Stiff. Dark brown, TILL			ļ							
\dashv	,-		•										
┪	-		(
4	_		1			ŀ							
1				,	72	_	SPIt	8/15/28	43				
។	3 <u>-</u>					<u> </u>							
]	_		•		-								
]		1/	T	}							$\ \ $		
	-									iliii	ilil		
5_	_				11	ļ	SPT2	11/18/13	20				
4	_		•		1,,		3,12	101025	20				
4	5			}							111		
\dashv	_						:						
\exists	_												
ᅱ	6-	1//.		ŀ	100	H	SPT3	6/8/11	19		$\ \ $		
1	_												
4	_												
1	7-	"//		}							$\ \ $		
_ 1	-												
5		11/1	Silvolay with some gravel and trace sand, Moist, Small to medium sized clasts. Trace amount of	1	100		SPT4	8/10/13	23				
]	8_ _		orange coloured sand, Medium plasticity. Stiff, Dark brown, TILL.			-					1111		
]	_										$\parallel \parallel$		
	_												
\sim	9-		HQ Coring to 58 m. See Rock Log for details.	┧	100	<u> </u>	SPT 5	50+/-/-	_				
4	_										Ш		
4	_	[П							
<u> </u>		L			<u> </u>	Ή		Pa	cific	: Book	r Mi	inerals Inc.	"
								Mor	TISO	n Cop	рег (Sold Projector DH06-12	t ≥
		_					Knig	ht	Pi	éso	\overline{ld}	Project No. 101-102/7	Ref. No. Re
3	v. 0 ·	Issu	ed for Report DATA/GEOTEC-3/GINT/DRILL.GPJ			1 1		CON	_ , (LTI	N O	DH	106-12

Drilling Cor. Clear & Host Corrige Location: Coordinates: 5,119.111m N. \$70,800m E Coordinates: Coordin	(Morrison Copper Gold Project				Hole N				Page	1 of 1
Coordinates: 5,119,11m N 570,800m E				_							
Coordinates: \$.119.111m N	1										
Second						-					
35— 11— HQ Coring to 20 m. See Rock Log for details. 72 SPT 7 21/60+/	Location: Coordinates: (i) HL dag 0	DESCRIPTION Sandy SILT/CLAY with organics. Dry. Firm. Reddish brown. TILL. Gravelly SILT/CLAY Low to medium plasticity. Moist. Subangular to subrounded clasts. Dark brown. TILL. Sandy CLAY. Moist. Low plasticity. Sand looks like coarse calcite chunks. Soft. Whitish	DRILL RUN RECOVERY (%)	115 126 104 43 78	X X X SAMPLES	SPT 1 SPT 3 SPT 4 SPT 5	T/15/16 7/10/13 10/22/34	20.3 -90 31 23 56 83	SPT TEST DA Uncorrected N values vs. dept	Logged by:	GJ TES
Pacific Booker Minerals Inc. Morrison Copper Gold Project	11 11 12 13 14 15 15 16 17 18 11 11 11 11 11 11 11 11 11 11 11 11	grey/green. Trace pyrite in sand.		72	X		Pacif Aorris	ic B	Copper (Sold Project	
Overburden Log For DH06-13 Knight Piésold Project No. Ref. No. Rev. 101:102/7 1 0	Pos 0 Jon	ad for Donard		K	ni	ght I	Pié.	urd SO	en Log F	or DH06-13 ct No. Ref. 01-102/7	1 0
Rev. 0 - Issued for Report CONSULTING DH06-13 M:\1\01\00102\07\A\DATA\GEOTEC~2\GNT\DRILLGPJ Date Revised: 1 May	Rev. 0 - Issu			<u> </u>		CON	# U L	TI	HO		

			Morrison Copper Gold Project Geotech Drilling Services				l Hole N ı Sampler						Page	1 of
			Odex & HQ3 Coring		_		ı Sampler Elevation:		640				Date Started: Completed:	
		,	East of open pit area.				tal Depth:		29.0		_	_010	Logged by:	
_c			6.119.159m N . 671.396m E				ndination:		-90		_	F	Reviewed by:	
DEPTH (ft)	DEPTH (m)	GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)		SAMPLE NO.	BLOW COUNT	SPT 'N' VALUE	Unco value	TEST precte es vs. ((m) 40 60	tepth	NOI	res
			Gravelly SAND, with some clay. Wet. Loose. Reddish brown.		50	» W	SPT 1	6/7/17					Odex drilling to	
	5-		SILT/CLAY matrix with some gravet. Moist. Low-medium plasticity. Stiff. Subangular to angular gravet. Dark brown. TILL.		104 65	X	SPT 3	3/4/4 7/13/14	8 27	•				
	10_				0	^ X	SPT 5	20/18/12						
7					78 54	X	SPT 6	5/12/17 10/11/19		***************************************				
§	1 5 —				39	×	SPT 8	15/17/2	38					
	20_		HQ Coring to 29 m. See Rock Log for details.		115	X	SPT 9	12/14/2	36					
70— 75—							N	<i>l</i> lorris	on i	Cor	pe	r Go	erals Inc. old Project r DH06-14	
Par	v. O -	· Issu	ed for Report	_	K	ni	ght	Pié	so	la	1	roject		1

Orilling Method: Location:	Geotech Drilling Services Odex Near pond north of open pit.		_	in-Si	tu Sampler						1 of 1
Orilling Method: Location:	Odex				io compion		SP	Ĺ	Dat	te Started:	12 Mar 06
	Near north north of onen nit				Elevation:		817	<u>m</u> (Date C	ompleted:	17 Mar 06
Coordinates:	MARI DOUG HOLKI OF ODEH DIG			T	otal Depth:		33.1			ogged by:	JV & LS
	6.120.320 N . 670.693 E		_	į	inclination:		-90	<u> </u>	Rev	viewed by:	GJ
DEPTH (ft) DEPTH (m) GRAPHIC LOG	DESCRIPTION	DRILL RUN RECOVERY (%)	SAMPLE RECOVERY (%)	SAMPLES	SAMPLE NO.	BLOW COUNT	SPTN'VALUE	SPT TEST (Uncorrected values vs. de se) 20 40 60 :	epiti spiti	NOT	ES
5 10 3 3 11 15 15 15 15 15 15 15 15 15 15 15 15	Sandy sit/clay matrix with some gravel. Moist. Stiff. Subrounded clasts. Well graded. Dark brown. TILL. Sifty SAND. Fine sand. Moist. Firm. Poorly		54 78		SPT 1 SPT 2 SPT 3	4/1/11 7/1/1/2 6/7/1/2				Odex drilling to 3	32.9 m.
5 20- 6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		22		SPT4	50/ <i>-</i> /-	-				
25 8 30- 9	·- 		28 100		\$PT 5 \$PT 6	5/6/12 5/10/10	18 20				
35 11			93		SPT7	4/7/12	19				
4012 13 45			111		SPT 8	3/6/8	14				
50————————————————————————————————————			7		SPT 9	9/14/23	37				
65 19 19 19 19 19 19 19 19 19 19 19 19 19			89		\$PT 10	4/5/9	14				
70— 21 22 75— 23			111		SPT 11	5/6/10					
85— 26 27			89		SPT t2	7/7/8					
90— 28 95— 29 32			72		SPT 13	6/13/15	28				
35 36 36 36 36 36 36 36 36 36 36 36 36 36			;			Mor	riso	n Copp	er G	nerals Inc. old Project r DH06-15/	
Rev. 0 - Issu	led for Report				Knig		Pi	ésol		Project No. 101-102/7 DH	Ref. No. Rev. 0 0 06-15a

APPENDIX A2

(Rev 0)

BEDROCK DRILLING LOGS

- Drillhole DH06-01
- Drillhole DH06-02
- Drillhole DH06-03
- Drillhole DH06-04
- Drillhole DH06-06
- Drillhole DH06-07
- Drillhole DH06-10
- Drillhole DH06-11
- Drillhole DH06-12
- Drillhole DH06-13
- Drillhole DH06-14

(Pages A2-1 to A2-18)

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET ROCK MASS CLASSIFICATION - RMR 1989

Drill Hole Number: DH06-1

 PROJECT: MORRISON COPPER GOLD

 Client: PACIFIC BOOKER MINERALS

 Drilling Company: GEOTECH DRILLING

 Location: GRANISLE, BC

 Coordinates: N 6,123,950 m, E 670,685 m

 Logged By:
 JV

 Reviewed By:
 GJ

 Date Started:
 Mar/25/2006

 Date Completed:
 Mar/31/2006

										Inc	Azimuth:	300 60	deg (do	n is pos	itive)				to to	m m		<u>—</u>																			
M:\1\01\00102	07\A\Data\WM	MF Geotech SI - Fe			06-1.xls]Data - Calc	Sheet					_																										ill Hole				106-1
				LL RUN						GEOLOGY - COMMENTS			RMR - DA							CALCULA		Τ΄		Т	1 1	1	1		NTINUITY DAT		Orientation	Orie	entation		$\overline{}$			1 1	DATA / CAL		
	From Fr	opth Elev.	Depth	Depth To	Run Re Length Ler	cov. Rec		QD RQI	D Rock Type (see Le	Weathered State, Structure, Color, C Size, Rock Material Strength, Rock T	UCS # Grain (ype (Est.) of Joints		Persis- Aper	Joint Cond Rough		h TOTAL	Water Rating	UCS Rating	RQD	Joint Jo	loint W	MR-89 RMR-89 Vater Total	Depth	Elev	v. Alpha		Disc. Aper	Type 1	Fill. Fill. Type 2 Type g) (see Leg) (see L	3 Joint	vertical (degrees)- clockwise from	Quappled?	luality D	Depth I	Elev.	Date Tested	Core Diameter	Gauge Value	-	JCS sx24)	Strength Designation Grade
(ft)	(ft) (r	m) (m)	(ft)	(m)	(m) (r	m) (%	5) (1	(m) (%)		(MPa)	(mm)								Rating Ra	ating		(m)	(m)) (deg.)	(deg.)	(mm	n)		Jc	reference			(m)	(m)		(mm)	(psi)	(kPa) (M	ЛРа)	
0.0 3	16.0 0.	.00 950.0	81.0	24.70	24.70	0.0	0	0.0	ОВ																																
85.0 3	042.4 25	5.91 927.6	89.3	27.23	1.31 1.	30 99	.2 0.	.70 53.	4 ZS	Dark grey to light grey. Fine grained. CC and CLY infilling Some QTZ/CC veins. Crumbly bottom of run. Rust coloured infilling.	at	65	0 4	3	2 5	14	15	10.6	10.6	5.9 1	14.0	15 56.1																			
80.3 3	138 7 27	723 026.4	04.3	28 75	1.52 1.	52 99	7 0	.58 38.	0 ZS	Siltstone. CC/CLY infilling. Fin grained. Rusty coloured infilling	e 60 22	69	0 4	3	2 3	12	15	6.5	8.0	5.9 1	12.0	15 47.5											\vdash		-				-	+	
					1.52 1.					Siltstone. CC infilling up to 2m thick, with CLY layers on each s of CC. Fine grained, drk grey Highly fractured in areas.	m ide		0 1				15					15 49.4																			
										Siltstone. CC/CLY infilling. Son																															
99.3	30.0	923.8	102.8	31.34	1.07 1.	07 100	0.0 0.	.45 42.	2 ZS			56	0 4	3	2 3	12	15	5.7	8.7	5.8 1	12.0	15 47.1													4				\perp	+	
102.8 3	27.0 31	.34 922.9	107.3	32.71	1.37 1.	37 99	.9 0.	.81 59.	0 ZS	as above	60 17	81	0 4	1	4 5	14	15	6.5	11.6	6.1 1	14.0	15 53.2																		#	
107.3 3	023.1 32	2.71 921.7	110.8	33.78	1.07 1.	05 98	.4 0.	.79 74.	0 zs	Same rock. CC and brown har infilling. Large Clay seam at bottom.		105	0 4	1	4 5	14	15	8.0	14.5	6.4 1	14.0	15 57.9																			
110.8 3	020.0 33	3.78 920.7	114.3	34.85	1.07 1.	05 98	.4 0.	.61 57.	2 ZS	As above: touches of CLY infilling Reddish brown infilling. Highly fractured.	ng. / 60 16	66	0 4	3	4 5	16	15	6.5	11.3	5.9 1	16.0	15 54.7																			
114.3	17.0 34	1.85 919.8	117.8	35.91	1.07 1.	13 100	0.0 0.	.13 12.	2 ZS	Same stuff. Highly fractured.	60 30	38	0 4	1	2 3	10	15	6.5	4.4	5.5 1	10.0	15 41.4																			
117.8 3	14.0 35	5.91 918.9	122.8	37.44	1.52 1.	52 99	.7 0.	.93 61.	0 zs	Same, but more competent.	60 16	95	0 4	3	4 3	14	15	6.5	12.0	6.3 1	14.0	15 53.7													#		厂		#	#	
122.8 3	009.7 37	7.44 917.6	127.8	38.96	1.52 1.	47 96	.4 1.	.05 68.	9 ZS	As above.	60 13	113	0 4	3	4 3	14	15	6.5	13.5	6.5 1	14.0	15 55.5																		#	
127.8 3	005.3 38	3.96 916.3	132.8	40.49	1.52 1.	59 100).0 1.	.54 100	1.0 ZS	Siltstone. Fine grained. CLY ar hard reddish brown CC like infilling.	80 6	265	0 4	3	2 3	12	15	8.0	20.2	8.3 1	12.0	15 63.6																			
132.8 3	001.0 40	0.49 914.9	137.8	42.01	1.52 1.	56 100	0.0 1.	.27 83.	3 ZS	CLY reddish brown infilling.	80 10	156	0 4	1	2 3	10	15	8.0	16.4	7.0 1	10.0	15 56.5																			
137.8 2	996.7 42	2.01 913.6	142.8	43.54	1.52 1.	56 100	0.0 1.	.29 84.	6 ZS	ZS? Some sections larger grain (sand size). Light grey. Clay seams. One joint had touches PY. Mostly CLY and CC infillin	of	173	0 4	1	2 3	10	15	10.9	16.7	7.3 1	10.0	15 59.9																			
142.8 2	992.3 43	3.54 912.3	147.8	45.06	1.52 1.	50 98	.4 1.	.21 79.	4 ZS	Fine grained. Light grey. CLY, (infilling.	90 8	188	0 4	3	2 3	12	15	8.7	15.6	7.4 1	12.0	15 58.8													#						
147.8 2	988.0 45	5.06 911.0	152.8	46.59	1.52 1.	55 100	0.0	.30 19.	7 ZS		80 26	60	0 4	3	4 3	14	15	8.0	5.4	5.8 1	14.0	15 48.2																			
152.8 2	983.7 46	5.59 909.7	155.3	47.35	0.76	79 100	0.0	.63 82.	7 ZS		60 4	198	0 4	3	2 5	14	15	6.5	16.3	7.6 1	14.0	15 59.3																			
155.3 29	981.5 47	7.35 909.0	159.5	48.63	1.28 1.	13 88	.2 1.	.10 85.	9 ZS		125 2	565	0 1	3	2 3	9	15	10.9	17.0	11.3	9.0	15 63.3																			
159.5 2	77.9 48	3.63 907.9	164.5	50.15	1.52 1.	55 100	0.0	.95 62.	3 ZS	QTZ/CC Veins. Fine grained. C and CC infilling.	LY 80 10	155	0 4	3	2 3	12	15	8.0	12.2	7.0 1	12.0	15 54.3																		1	
164.5 1	69.5 50	0.15 906.6	169.5	51.68	1.52 1.	55 100	0.0 0.	.76 49.	9 ZS	As above.	60 18	86	0 4	3	4 5	16	15	6.5	10.0	6.2 1	16.0	15 53.6																	#	#	
169.5 2	969.2 51	.68 905.2	174.5	53.20	1.52 1.	58 100	0.0 1.	.58 100	.0 ZS	As above.	125 3	527	0 4	0	2 5	11	15	10.9	20.2	11.0 1	11.0	15 68.1																	#	#	
174.5 2	964.9 53	3.20 903.9	179.5	54.73	1.52 1.	50 98	.4 1.	.25 82.	0 ZS	Lots of CLY in joints.	100 9	167	0 1	5	2 3	11	15	9.4	16.2	7.2 1	11.0	15 58.8																	#	#	
179.5	960.5 54	1.73 902.6	184.5	56.25	1.52 1.	56 100	0.0 0.	.77 50.	5 ZS	As above. Some red and gree crystals.	n 125 13	120	0 4	3	2 5	14	15	10.9	10.1	6.6 1	14.0	15 56.6																			

Weathered State Structure Color Grain	M:\1\01\00102\07\A\Data\WMF	F Geotech SI - Fel	b to Apr '06\Dri	llholes\[DH0	6-1.xls]Data - Calc	Sheet																													Dr	<u>ri</u> ll H	łole Nu	ı <u>m</u> ber	<u>:</u>	DH06-1	
			DRIL	L RUN D	DATA				(GEOLOGY - COMMENTS			RMR - DA	TA (BY R	UN)				F	RMR CALC	ULATIONS	S (BY RUN)						DISCON	TINUITY DATA	l .						PL1	T STRENG	TH DATA	/ CALCs.		
	Depth Elev. Dep	oth Elev.	Depth	Depth	Run Rec	ov. Recov	v. RQ	D RQD	Rock		UCS #	Joint		Joint Cond	ition		Water	RMR-89	RMR-8	9 RMR-89	RMR-89	RMR-89 RMR-89	Depth	Elev.	Alpha E	Beta Disc	c. Aper.	Fill.	Fill. Fill.	RMR		Orientation Quality	Depth	Elev.	Date	Co	ore Gauge	e Gauge	UCS	Strength	
	From From From	m From	То	To	Length Len	gth	Len	gth	Type	Weathered State, Structure, Color, Gra	in (Est.) of	Set	Persis- Ape	t- Rough	Infill Weat	th TOTAL	Rating	UCS	RQD	Joint	Joint	Water Total				Тур	oe .	Type 1	Type 2 Type 3	Joint		10			Tested	Diam	neter Value	e Value	(Isx24)	Designation	
										OLO, ROOK Material Ollorigat, Rook Typ		Snac	Р А	P				Pating	Pating	Snac	Condition	Pating						(200 003)	(ean Lan) (ean Lan	a) Condition	clockwise	11									
	(ft) (ft) (m)) (m)	(ft)	(m)	(m) (m	(%)	(m	1) (%)	(300 Log)				' ' ^	IX.				Rating	reading			Raung	(m)	(m)	(deg.) (c	deg.)	(mm)	(366 Leg)	(366 Leg) (366 Leg		reference		(m)	(m)		(m	nm) (psi)	(kPa)	(MPa)	Glade	
										As above At hottom (188') turned																															
										greenish with varying grain size up																															
	184.5 2956.2 56.2	25 901.3	189.5	57.77	1.52 1.5	99.7	1.3	87.9	ZS/VL		80 6	253	0 1	3	2 3	9	15	8.0	17.4	8.2	9.0	15 57.7																			
										Fine grained red with some																															
										greenish/dark grey small gravel	7																														
	189.5 2951.9 57.7	77 900.0	194.5	59.30	1.52 1.5	99.7	1.5	99.7	VL	or CC vein.	80 1	1520	0 5	3	4 3	15	15	8.0	20.1	17.5	15.0	15 75.7																			
	104 5 2047 6 50 3	20 200 6	100.5	60.00	150 1	01.0		01.0	2.0			200	0 5		2 4	16	15	6.5	10.2	0.5	16.0	15 64.3																			
	194.5 2947.6 59.3	30 096.6	199.5	00.02	1.52 1.2	91.0	1.4	91.0	VL	green and write crystals.	00 5	200	0 5	4	3 4	16	15	0.5	10.3	0.5	16.0	15 64.3																			
										As above Red with black (with																															
	199.5 2943.2 60.8	82 897.3	204.5	62.35	1.52 1.5	100.0	0 1.4	91.8	VL		100 8	198	0 4	3	4 6	17	15	9.4	18.3	7.6	17.0	15 67.3																			
2. 1																																									
																																									-
										crystals/spots. Soft crumbly layers																															
8-8	204.5 2938.9 62.3	35 896.0	209.5	63.87	1.52 1.5	98.4	1.1	78.1	VL	at one joint.	100 9	167	0 1	2	4 6	13	15	9.4	15.3	7.2	13.0	15 59.9																	1		
										As above Pig short of OTT									1																				1		
										Yellowish green to green to white		1																													
	209.5 2934.6 63.8	87 894.7	214.5	65.40	1.52 1.5	100.0	0.9	63.6	VL	spots on reddish grey rock.	80 12	130	0 4	3	4 5	16	15	8.0	12.5	6.7	16.0	15 58.2																			
	0.11		046																1	-	40.5																				
20	214.5 2930.2 65.4	40 893.4	219.5	66.92	1.52 1.5	100.0	1.2	83.3	VL	As above.	125 9	174	0 4	3	2 3	12	15	10.9	16.4	7.3	12.0	15 61.7																	1		
20	219.5 2925.9 66.9	92 892.0	224.5	68.45	1.52 1.5	99.7	1.5	99.7	VL	As above.	125 3	507	0 4	1	4 3	12	15	10.9	20.1	10.8	12.0	15 68.9																	1 1		
24																																									
24 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	224.5 2921.6 68.4	45 890.7	229.5	69.97	1.52 1.5	100.0	0 1.4	93.2	VL	As above. Red CLY infilling.	80 5	312	0 4	3	2 3	12	15	8.0	18.6	8.9	12.0	15 62.5																	$\perp = 1$		
24 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2										As above. Pinkish hue to OTZ									1																						
Section 1.	229.5 2917.2 69.9	97 889.4	234.5	71.49	1.52 1.5	99.7	1.4	95.8	VL		80 8	190	0 4	5	4 6	19	15	8.0	19.2	7.5	19.0	15 68.7																			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										As above Come CLV and a										-																			1		
Part										reddish CC infill. QTZ pockets.																															
24	234.5 2912.9 71.4	49 888.1	239.5	73.02	1.52 1.5	100.0	0 1.1	78.1	VL	Some greenish base rock.	100 12	130	0 4	3	4 5	16	15	9.4	15.3	6.7	16.0	15 62.5																			
24										Greenish grey speckled light arev									1																				1		
No.	230.5 2000.6 72.0	no gos c	244.5	74 54	152	00 4	0.0	7 62 6	1/1	QTZ with pink hue chunks. Green		150	0 4	2	2 5	1.4	15	12.2	10 F	7.0	14.0	15 60.7																			
No.	2500.0 73.0	J. 000.0	274.0	77.04	1.02 1.0	30.4	0.8	03.0	VL	Speckies.	130 10	130	0 4	3	- 3	14	10	12.2	12.3	7.0	17.0	10 00.7																	1		
242 243 244 245 245 245 245 245 245 245 245 245	244.5 2904.3 74.5	54 885.4	249.5	76.07	1.52 1.5	100.0	0 1.0	01 66.3	VL	As above.	60 16	96	0 4	3	4 5	16	15	6.5	13.0	6.3	16.0	15 56.8																			
242 243 244 245 245 245 245 245 245 245 245 245																																									
Part												1																													
See 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	249.5 2899.9 76.0	07 884.1	254.0	77.44	1.37 1.3	94.8	0.5	36.4	VL		80 11	118	0 4	3	2 5	14	15	8.0	7.8	6.6	14.0	15 51.4																			
See 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										Dark Grey with green, red, and										+																			1		
27 28 3 7 1 28 2 28 3 7 1 28 3 28 3 28 3 28 3 28 3 28 3 28 3 28	254.0	44 800 0	257.0	70.05	0.01	7 040		17 10 0		(mostly) white spots, up to 8mm	60	50		_	2 5		45				140	45																			
Sept. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	254.0 2896.0 77.4	44 882.9	257.0	78.35	0.91 0.7	84.2	0.1	18.6	VL	diameter.	bU 13	59	0 4	3	2 5	14	15	6.5	5.2	5.8	14.0	15 46.5																	1		
267 2 980 1 791 2 980 1 792 980 1 792 980 1 792 980 1 793 981 1 792 980 1 793 981 981 981 981 981 981 981 981 981 981											s								1																				1		
2875 29754 7825 9827 1 7812 9827 2 2955 7874 2 075 0 000 1 020 0 050 1 040 1 1.										of more reddish grey rock. Otherwise as above, More		1																													
265 2891 75 28 86 87 5 275 889 877 5 275 887 150 150 150 150 150 150 150 150 150 150	257.0 2893.4 78.3	35 882.1	259.5	79.12	0.76 0.9	100.0	0.9	100.0	VL		125 1	900	0 4	3	4 6	17	15	10.9	20.2	14.0	17.0	15 77.1																			
265 2891 75 28 86 87 5 275 889 877 5 275 887 150 150 150 150 150 150 150 150 150 150										Some CLY CC infilling Highly									-																				1		
2845 2868 80.64 80.2 2865 82.16 1832 2745 83.80 1822 185 90.1 185 80.1 185 185 91 185										fractured. Dark grey with white,						1					l l																				
282 6 282 6 21 8 778 8 274 5 889 122 157 100 157 991 11 15 991 11	259.5 2891.3 79.1	12 881.5	264.5	80.64	1.52 1.6	100.0	0.5	34.8	VL	green, pink and red spots.	60 24	67	0 4	3	2 5	14	15	6.5	7.5	5.9	14.0	15 48.9																	1		
282 6 282 6 21 8 778 8 274 5 889 122 157 100 157 991 11 15 991 11	264.5 2886.9 80.F	64 880.2	269.5	82.16	1.52	0 100.0	0.9	63.6	VL	As above.	60 13	123	0 4	3	2 5	14	15	6.5	12.5	6.6	14.0	15 54.6																	1 1		
274.5 287.8 38.9 87.7 278.5 85.2 1.52 1.52 1.57 10.0 1.5																																									
274 287 38 38 87 75 278 82 1 52 157 100 1 57 100	269.5 2882.6 82.1	16 878.8	274.5	83.69	1.52 1.5	99.1	1.5	99.1	VL	As above.	150 4	378	0 4	3	4 6	17	15	12.2	20.0	9.6	17.0	15 73.8		$oxed{\Box}$															\perp		
2745 28763 8589 877.5 279.6 8521 1.52 1.57 100.0 1.57 100.0 VL resiness to rock. 190 2 2 785 0 4 3 0 4 6 17 15 13.6 20.2 13.1 17.0 15 78.8		_								As above Some intermittent									1																						
284.5 286.8 86.74 874.9 289.5 88.26 1.52 1.54 100.0 1.54 100.0 V. As above. 100 5 308 0 4 3 4 6 17 15 12.2 20.2 13.1 17.0 15 77.5 299.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 1.46 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained and gray compa	274.5 2878.3 83.6	69 877.5	279.5	85.21	1.52 1.5	7 100.0	0 1.5	100.0	VL		180 2	785	0 4	3	4 6	17	15	13.5	20.2	13.1	17.0	15 78.8																			
284.5 286.8 86.74 874.9 289.5 88.26 1.52 1.54 100.0 1.54 100.0 V. As above. 100 5 308 0 4 3 4 6 17 15 12.2 20.2 13.1 17.0 15 77.5 299.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 1.46 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained. 289.5 286.6 91.31 870.9 304.5 92.84 1.52 1.66 95.8 V. Dark gray/reddish gray with white and gray companies. Fire grained and gray compa																			1																				 		
283.5 2865.8 87.8 6 294.5 89.79 1.52 1.57 100.0 1.57 100.0 V.L As above. 100 2 785 10 4 3 4 6 17 15 12.2 20.2 13.1 17.0 15 77.5 10.0 15	279.5 2873.9 85.2	21 876.2	284.5	86.74	1.52 1.5	99.7	1.5	99.7	VL	As above.	150 4	380	0 4	3	4 6	17	15	12.2	20.1	9.6	17.0	15 73.9																			
283.5 2865.8 87.8 6 294.5 89.79 1.52 1.57 100.0 1.57 100.0 V.L As above. 100 2 785 10 4 3 4 6 17 15 12.2 20.2 13.1 17.0 15 77.5 10.0 15	284.5 2869.6 86.7	74 874 0	289.5	88.26	1.52	4 100 (0 15	100 0) VI	As above.	100 5	308	0 4	3	4 5	16	15	9.4	20.2	8.8	16.0	15 69.4																	1		
294.5 2861.0 89.79 872.2 299.5 91.31 1.52 1.56 100.0 1.56 100.0 V.L and touches of CLY infilling. 295.5 2866.6 91.31 870.9 304.5 92.84 1.52 1.46 95.8 V.L Dark grey with green and white and green crystals. Fine grained. Large sections of CTZ. 297.5 286.6 91.31 870.9 304.5 92.84 1.52 1.46 95.8 V.L As above, but highly fractured at the section of CTZ. Some Dands of greenish rock with lots of CTZ. Some Dands of greenish rock with lots of CTZ. Some Dands of greenish rock with lots of CTZ. Some Dands of GTZ. Some Dands of GT	2000.0	. 0.4.0	_55.5		/	100.0						555					.5				.0.0	00.4																			
294.5 2861.0 89.79 872.2 299.5 91.31 1.52 1.56 100.0 1.56 100.0 V.L and touches of CLY infilling. 295.5 2856.6 91.31 870.9 304.5 92.84 1.52 1.46 95.8 V.L 297.5 2856.8 91.31 870.9 304.5 92.84 1.52 1.46 95.8 V.L 298.5 285	289.5 2865.3 88.2	26 873.6	294.5	89.79	1.52 1.5	100.0	0 1.5	100.0	VL VL	As above.	100 2	785	0 4	3	4 6	17	15	9.4	20.2	13.1	17.0	15 74.8																			
294.5 2861.0 89.79 872.2 299.5 91.31 1.52 1.56 100.0 1.56 100.0 VL speckles. Some bands of greenish rock with lots of QTZ. Some CC and touches of CLY infilling. 299.5 2856.6 91.31 870.9 304.5 92.84 1.52 1.46 95.8 1.46 95.8 VL Large sections of QTZ. As above but birthy fractured at the control of the control of the control of QTZ. As above but birthy fractured at the control of QTZ. As above but birthy fractured at the control of QTZ. As above but birthy fractured at the control of QTZ.																																									
294.5 286.0 89.79 872.2 299.5 91.31 1.52 1.56 100.0 1.56 100.0 VL and touches of CLY infilling. 150 2 780 0 4 3 4 6 17 15 12.2 20.2 13.1 17.0 15 77.5 1.5 10.9 19.2 17.2 17.0 15 79.4																																									
294.5 2861.0 89.79 872.2 299.5 91.31 1.52 1.56 100.0 VL and touches of CLY infilling. 150 2 780 0 4 3 4 6 17 15 12.2 20.2 13.1 17.0 15 77.5										rock with lots of QTZ. Some CC		1																													
299.5 2856.6 91.31 870.9 304.5 92.84 1.52 1.46 95.8 1.46 95.8 VL and green crystals. Fine grained. Large sections of QTZ. 125 1 1460 0 4 3 4 6 17 15 10.9 19.2 17.2 17.0 15 79.4	294.5 2861.0 89.7	79 872.2	299.5	91.31	1.52	100.0	0 1.5	100.0	VL	and touches of CLY infilling.		780	0 4	3	4 6	17	15	12.2	20.2	13.1	17.0	15 77.5		<u> </u>																	
29.5 285.6 91.31 87.9 304.5 92.84 1.52 1.46 95.8 1.46 95.8 VL and green crystals. Fine grained. Large sections of QTZ. 125 1 1460 0 4 3 4 6 17 15 10.9 19.2 17.2 17.0 15 79.4										Dark and 171																													\perp		
299.5 2856.6 91.31 870.9 304.5 92.84 1.52 1.46 95.8 V.L Large sections of QTZ. 125 1 1460 0 4 3 4 6 17 15 10.9 19.2 17.2 17.0 15 79.4										and green crystals. Fine grained.		1																													
304.5 2852.3 92.84 869.6 309.5 94.36 1.52 1.52 99.7 1.07 70.2 VL As above, but highly fractured at the bottom foot. 125 16 95 0 4 3 4 6 17 15 10.9 13.7 6.3 17.0 15 62.9	299.5 2856.6 91.3	31 870.9	304.5	92.84	1.52	95.8	1.4	95.8	VL	Large sections of QTZ.	125 1	1460	0 4	3	4 6	17	15	10.9	19.2	17.2	17.0	15 79.4																	1		
304.5 285.2 9 2.84 869.6 309.5 94.36 1.52 1.52 99.7 1.07 70.2 VL the bottom foot. 125 16 95 0 4 3 4 6 17 15 10.9 13.7 6.3 17.0 15 62.9										As above, but highly fractured of									1																						
	304.5 2852.3 92.8	84 869.6	309.5	94.36	1.52 1.5	99.7	1.0	70.2	VL	the bottom foot.	125 16	95	0 4	3	4 6	17	15	10.9	13.7	6.3	17.0	15 62.9																			
																			1			1																			

M:\1\01\00102\07\A\E	ata\WMF Ge	eotech SI - Feb t	to Apr '06\Drilll	noles\[DH06	6-1.xls]Data - Calc Si	heet																																Drill	Hole No	ımber:	DH06-1
			DRILL	RUN D	DATA					GEOLOGY - COMMENTS			RM	IR - DATA (BY RUN)				RMR	CALCUL	ATIONS ((BY RUN	1)					DISCON	ITINUITY [DATA								F	PLT STRENG	TH DATA / CALCS	
Depth Elev.	Depth	Elev.	Depth	Depth	Run Reco	v. Recov.	RQD	RQD	Rock		UCS	# Joir	nt	Joint Condition			Water	RMR-89	RMR-89	RMR-89 R	RMR-89 R	RMR-89	RMR-89	Depth	Elev.	Alpha Beta	Disc. A	Aper. Fill.	Fill.	Fill.	RMR C	TY of Slick	wrt	Orientatio Quality	on Depth	n Elev.	. Date	te	Core Gaug	e Gauge UCS	Strength
From From			То	То	Length Leng	th	Length		Туре	Weathered State, Structure, Color, Gra Size, Rock Material Strength, Rock Typ	nir (Est.)	of Se		is- Apert- Rough Infil	Weath	TOTAL	Rating	UCS	I			Water	Total	, ,			Туре	Type 1	Type 2		Joint	vertica (degree	al	quanty			Teste		Diameter Valu		Designation
11011					Longar		Longar	i			Se (251.)			no riport reagn min		101712	rtdang						rotai				1,700					clockw	se	?			1000		Jameter Valo	o valdo (lox2-1)	
									(see Leg	3)		Joints Spa		A R I	W			Rating				Rating						(see Leg)	(see Leg) (s	see Leg) C	ondition	from referen	ce								Grade
(ft) (ft)	(m)	(m)	(ft)	(m)	(m) (m)	(%)	(m)	(%)			(MPa)	(mn	1)		-					Rating I	Rating			(m)	(m)	(deg.) (deg.)	(1	(mm)			Jc	line			(m)	(m)	_	_	(mm) (psi	(kPa) (MPa)	
										Dark grey with dispersed white and	d																														
309.5 2848.0	94.36	868.3	314.5	95.88	1.52 1.56	100.0	1.11	72.8	VL	green speckles. Fine grained.	200	11 142	2 0	4 3 4	5	16	15	14.1	14.3	6.9	16.0	15	66.3																		
								_																																	
										Grey, fine grained, with small red crystals and larger (up to 1cm)																															
										green crystals. A few large white																															
314.5 2843.6	95.88	867.0	319.5	97 41	152 153	99.7	1.00	65.6	VI	CC crystals near bottom. CC infilling.	125	45 34	0	4 3 4	5	16	15	10.9	12.8	5.5	16.0	15	60.2																		
011.0 2010.0	00.00	007.0	010.0		1.02	00.7	1.00	00.0		iiiiiiiig.	120	40 01	ŭ		-	.0				0.0	10.0		00.2																		
319.5 2839.3	97.41	865.6	324.5	98.93	1.52 1.55	100.0	1.37	89.9	VL	As above.	100	10 155	5 0	4 3 4	5	16	15	9.4	17.9	7.0	16.0	15	65.3																		
										Some joints slickensides. As					_																										
324.5 2835.0	98.93	864.3	329.5	00.46	1.52 1.56	100.0	1.05	68.9	VL	above.	100	11 142	2 0	4 3 4	5	16	15	9.4	13.5	6.9	16.0	15	60.8																		
		+ +						-		Dark grey/deep red with crystals	+ +				+																										
										from <1mm to 1cm in diameter.								J																							
329.5 2830.6	100.46	863.0	334,5	01.98	1.52 1.53	99.7	1.29	84.6	VL	Also green and red speckles. Fine grained.	125	8 190) (4 3 4	5	16	15	10.9	16.7	7.5	16.0	15	66.1																		
020.0 2000.0	100.10	000.0	001.0	01.00	1.02	00.7	1.20	01.0		grained.	120	0 101			-	.0		10.0	10.1	7.0	10.0																				
	l	1								Greenish CC infilling. White CC																															
334.5 2826.3	101.98	861.7	339.5	03.51	1.52 1.58	100.0	1.40	91.8	VL	crystals intermittent. As above.	125	8 198	3 0	4 3 4	5	16	15	10.9	18.3	7.6	16.0	15	67.8																		
339.5 2822.0	102.51	960.4	244 5	05.03	152 15	2 00 7	1.52	00.7	VL	As above.	125	1 152	0 0	4 3 4	5	16	15	10.9	20.1	17.5	16.0	15	79.6																		
339.5 2822.0	103.51	860.4	344.5	05.03	1.52 1.54	99.7	1.52	99.7	VL	As above.	125	1 152	0	4 3 4	5	16	15	10.9	20.1	17.5	16.0	15	79.6																		
										Mostly as above. One band of																															
										green rock with lots of pyrite.																															
344.5 2817.7	105.03	859.0	3/0.5	06 55	152 150	08.4	1 35	88.6	VL	Carying shades of green, from min to emerald.	100	6 250	0	4 3 4	5	16	15	9.4	17.6	8.2	16.0	15	66.2																		
344.3 2017.7	100.00	000.0	343.3	00.55	1.02	30.4	1.55	00.0	VL	to emeraid.	100	0 250	, ,	7 0 7	3	10	10	3.4	17.0	0.2	10.0	10	00.2																		
										Same as above, without green																															
349.5 2813.3	106.55	857.7	354.5	80.80	1.52 1.52	99.7	1.17	76.8	VL	section.	80	17 89	0	4 3 4	6	17	15	8.0	15.1	6.2	17.0	15	61.3																		
354.5 2809.0	108.08	856.4	359.5	09.60	1.52 1.56	100.0	1.26	82.7	VL	As above.	80	9 173	3 0	4 3 4	6	17	15	8.0	16.3	7.3	17.0	15	63.6																		
		-													-																										
										As above, but with light grey/greer section with lots of QTZ/CC.	n																														
359.5 2804.7	109.60	855.1	364.5	11.13	1.52 1.52	99.7	1.52	99.7	VL	section with lots of Q12/CC.	125	1 152	0 0	4 3 4	5	16	15	10.9	20.1	17.5	16.0	15	79.6																		
		1								Fine grained reddish grey with																															
364.5 2800.3	111.13	853.8	369.5	12.65	1.52 1.54	100.0	1.54	100.0	VL	green, white and red speckles.	80	1 154	0 0	4 3 4	6	17	15	8.0	20.2	17.6	17.0	15	77.9																		
										Dark grey with hints of red. Fine																															
										grained. White and green crystals. One large section of rust-red																															
000 5 0700	440.0-	050.4	0745	4440	4.50	400.0	4.4-	05.1	1.0	coloured rock with QTZ and red	00					47	45		40.4	0.7	47.0	45																			
369.5 2796.0	112.65	852.4	3/4.5	14.18	1.52 1.58	100.0	1.45	95.1	VL	CLY.	80	4 39	5 0	4 3 4	б	1/	15	8.0	19.1	9.7	17.0	15	68.8																		
374.5 2791.7	114 10	851 1	370 5	15.70	152 14	077	1.40	07.7	VL	As above, but no red section.	100	2 74	5 0	4 3 4	6	17	15	9.4	19.7	12.8	17.0	15	73.9																	-	-
014.0 2151.1	114.10	001.1	313.5	.0.70	1.02 1.43	51.1	1.48	31.1	VL		100	2 743	. 0	7 3 4	0	-''	10	3.7	13.1	.2.0	.7.0	10	10.5																		
379.5 2787.3	115.70	849.8	384.5	17.23	1.52 1.54	100.0	1.54	100.0	VL	As above, lots of QTZ.	100	2 770) 0	3 3 4	5	15	15	9.4	20.2	13.0	15.0	15	72.6																		
270.0 2707.0	1	0.0.0	231.0	20	1.02	100.0	1.54	1.00.0			.00	- //		J J J 7	- ŭ		.0	Ü		. 3.0	. 5.0																				
384.5 2783.0	117.23	848.5	389.5	18.75	1.52 1.59	100.0	1.55	100.0	VL	As above.	60	1 155	0 0	4 3 4	5	16	15	6.5	20.2	17.7	16.0	15	75.4																		
	T -							1										- 1																							
389.5 2778.7	118.75	847.2	394.5	20.27	1.52 1.52	99.7	1.52	99.7	VL	As above.	100	4 380	0	4 3 4	6	17	15	9.4	20.1	9.6	17.0	15	71.1																		
										As above. One section of light																															
394.5 2774.4	120.27	845.8	399.5	21.80	1.52 1.5	99.1	1.51	99.1	VL	greenish grey rock.	100	2 755	5 0	4 3 4	6	17	15	9.4	20.0	12.9	17.0	15	74.3																		
	<u> </u>																																								
399.5 2770.0	121 02	044.5	404.5	22.22	1.50	100.0	1.64	100.0		As above. Greenish grey mixed throughout.	125		,	4 3 4	-	16	45	10.0	20.2	44.4	16.0	15	72.2																		
399.5 2110.0	121.80	044.5	404.5	23.32	1.52 1.6	100.0	1.61	100.0	VL	unougnout.	125	3 53	0	4 3 4	5	10	15	10.9	20.2	11.1	10.0	15	13.2																		-
404.5 2765.7	122.00	042.2	400 F	24.05	150 15	1000	1.10	02.0	VL	As above, without green.	100	5 000		4 3 4	6	17	45	9.4	10.6	0.0	17.0	15	60.0																		-
404.5 2/65./	123.32	043.2	409.5	∠4.65	1.52 1.54	100.0	1.42	93.2	VL	As above, without greetl.	100	308	. 0	4 3 4	ь	17	15	9.4	0.01	0.0	17.0	15	8.00																		-
	 	1						-		As above with one large green																															
409.5 2761.4	124.85	841.9	414.5	26.37	1.52 1.53	7 100.0	1.35	88.6	VL	section.	100	8 196	0	4 3 4	6	17	15	9.4	17.6	7.5	17.0	15	66.5																		
-	•					_				•																								_		_	_				

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET ROCK MASS CLASSIFICATION - RMR 1989

Drill Hole Number: DH06-2

PROJECT: MORRISON COPPER GOLD
Client: PACIFIC BOOKER MINERALS

Drilling Company: GEOTECH DRILLING
Location: GRANISLE, BC
Coordinates: N 6,123,723 m, E 670,576 m

 Logged By:
 LS

 Reviewed By:
 GJ

 Date Started:
 Mar/4/2006

 Date Completed:
 Mar/6/2006

										Az Incli	zimuth:	90	deg deg (d	lown is	positive)				to to		m m		•								_											
M:\1\01\001	02\07\A\Data\W	VMF Geotec	h SI - Feb to A		[DH06-2.xls]Data -	Calc Sheet																															Dı			ımber		DH06-2
Depth	Elev. D	Depth	Elev. D	DRILL RU		Boom	Recov.	RQD	RQD	GEOLOGY - COMMENTS	UCS #	Joint	RMR - D		(RUN)		Wate	r RMR-		1	RMR-89	RMR-89	JN) RMR-89	Depth	Elev. A	Alpha Bet	a Disc. A		Fill. Fill.	Fill. RMR	QTY	Orientation of Slick wrt		Orientation	Depth	Elev.	Date	Core	1		UCS	Strength
From				То То		Length	Recov.	Length	KQD	Type Weathered State, Structure, Color, Gra Size, Rock Material Strength, Rock Typ		Set	Persis- A		T T	Weath To	OTAL Ratin				Joint	Water	Total	Бериі	Elev. A	чірпа вес	Type		Type 1 Type 2	Type 3 Joint	QII	vertical (degrees)-	Sampled?	Quality	Бериі	Elev.	Tested	Diameter				Designation
										(see Leg)	Joint	s Spac.	Р	A R	1	w		Ratir	ng Rating	Spac.	Condition	Rating						(se	ee Leg) (see Leg)	(see Leg) Condition		clockwise from reference	Sampleu:									Grade
(ft)	(ft)	(m)	(m)	(ft) (m) (m)	(m)	(%)	(m)	(%)		(MPa)	(mm)								Rating	Rating			(m)	(m) (d	deg.) (deg	g.) (i	(mm)		Jc		line			(m)	(m)		(mm)	(psi)	(kPa)	(MPa)	
0.0	3116.0	0.00	50.0 2	27.0 8.2	3 8.23		0.0		0.0	OB																																
										Silicified/granitized garnet porphyr	ry																														+-+	
00.5	0000 5		44.0	24.0	5 0 40	0.45	00.4	0.00	70.0	hem'd and chlo'd grits. Reddish brown and green matrices. QTZ	:	450				5	40		40.7	7.0	40.0	45	50.7																			
29.5	3086.5	8.99	141.0	31.0 9.4	5 0.46	0.45	98.4	0.32	70.0		80 3	150	U	4 3	4	5	16 15	8.0	13.7	7.0	16.0	15	59.7																			
										Sil. C dies cut in top 1'. Reddish brown pink matrix CC veins. Chlo	/d																															
31.0	3085.0	9.45	140.5	36.0 10.9	1.52	1.55	100.0	0.64	42.0	VL grnts.	80 15	103	0	1 3	3	5	12 15	8.0	8.7	6.4	12.0	15	50.1																		\pm	
36.0	3080.0 1	0.98	39.0	37.0 11.2	28 0.30	0.23	75.4	0.00	0.0	Very broken soft yet hard infill. VL Bright green same as above.	60 10	23	0	4 3	3	5	15 15	6.5	3.0	5.3	15.0	15	44.8																			
										Same as above with CC/QTZ																															+	
37.0	3079.0 1	1.28	38.7	41.0 12.5	50 1.22	1.25	100.0	0.45	36.9	veins. Pyrite CHL on fracs. Large VL grats up to 1cm diam.	60 15	83	0	1 3	3	5	12 15	6.5	7.9	6.1	12.0	15	47.5																			
										Reddish brown matrix. Grat's ven																															+	
										small. CC veins almost seems like diff area rock but not enough to	e																															
41.0	3075.0 1	2.50	37.5	42.0 12.8	0.30	0.25	82.0	0.00	0.0	VL tell.	60 10	25	0	4 3	4	5	16 15	6.5	3.0	5.3	16.0	15	45.8																		+-+	
										Grnts back reddish brown matrix CC veins. Same as above.	C																															
42.0	3074.0 1	2.80	137.2	46.0 14.0	1.22	1.20	98.4	0.82	67.2	VL CC Vellis. Salile as above.	70 10	120	0	1 3	3	5	12 15	7.3	13.2	6.6	12.0	15	54.0																		+ +	
46.0	3070.0 1	4.02	36.0	47.5 14.4	18 0.46	0.45	98.4	0.26	56.9	VL Same as above.	75 4	113	0	4 4	4	5	17 15	7.7	11.2	6.5	17.0	15	57.4																		1	
47.5	3068.5 1	4.48 9	35.5	51.0 15.8	55 1.07	1.02	95.6	0.66	61.9	VL Same as above.	75 2	510	0	4 4	4	5	17 15	7.7	12.1	10.8	17.0	15	62.6																			
51.0	3065.0 1	5.55 9	34.5	56.0 17.0	7 1.52	1.52	99.7	0.54	35.4	VL Same as above.	75 23	66	0	1 3	3	5	12 15	7.7	7.6	5.9	12.0	15	48.2																		+	
										Same as above. Small green area																															1	
56.0	3060.0 1	7.07	32.9	61.0 18.6	0 1.52	1.52	99.7	0.52	34.1	VL but most reddish brown.	75 15	101	0	1 3	4	5	13 15	7.7	7.4	6.4	13.0	15	49.4																		+	
61.0	3055.0 1	8.60	31.4	65.0 19.8	32 1.22	1.15	94.3	0.39	32.0	VL Same as above.	75 13	88	0	4 3	4	5	16 15	7.7	7.1	6.2	16.0	15	52.0																			
65.0	3051.0 1	9.82	30.2 7	70.2 21.4	1.59	1.55	97.8	0.98	61.8	VL Same as above.	75 13	119	0	4 3	4	5	16 15	7.7	12.1	6.6	16.0	15	57.4																		+	
																																										-
70.0	3046.0 2	21.34	28.7	75.3 22.9	7 1.63	1.57	96.6	0.87	53.5	Same as above. Looks like some bedded SST layers at 72.75'.	75 10	157	0	1 3	3	5	12 15	7.7	10.6	7.1	12.0	15	52.3																			
75.3	3040.7 2	22.97	27.0	80.5 24.5	i4 1.58	1.56	99.0	1.03	65.3	Same as above. SST intruded by garnet porphyry. Jugs in CC/QTZ		156	0	4 3	4	5	16 15	7.7	12.8	7.0	16.0	15	58.5																			
80.5	3035.5 2	24.54	25.5	84.2 25.6	1.13	1.27	100.0	0.43	38.1	Same as above. Areas that seem VL SST like??	75 25	51	0	1 3	2	5	11 15	7.7	8.0	5.7	11.0	15	47.4																		\perp	
84.2	3031.8 2	25.67	24.3	86.0 26.2	2 0.55	0.36	65.6	0.36	65.6	VL Same as above.	75 2	180	0	4 3	4	5	16 15	7.7	12.8	7.3	16.0	15	58.8																		$\pm \pm \pm$	
										Same as above. Some jugs large	e																														+	
	3030.0 2			91.0 27.1		1.52	99.7	1.09	71.5	VL CC crystals peg?	75 8	190	0	4 4	4	5	17 15	7.7	14.0	7.5	17.0	15	61.1																		+	
91.0	3025.0 2	7.74	22.3	96.0 29.2	27 1.52	1.52	99.7	1.15	75.4	VL Same as above.	75 8	190	0	4 3	4	5	16 15	7.7	14.8	7.5	16.0	15	60.9																		1	
96.0	169.5 2	9.27	20.7	99.0 30.	8 0.91	0.83	90.7	0.23	25.1	VL Same as above.	75 8	104	0	4 3	4	5	16 15	7.7	6.1	6.4	16.0	15	51.2																		力寸	
99.0	3017.0 3	30.18	119.8 1	01.0 30.1	9 0.61	0.57	93.5	0.00	0.0	VL Same as above.	75 10	57	0	1 3	3	5	12 15	7.7	3.0	5.8	12.0	15	43.4																		+	
																																									1	
101.0	3015.0 3	50.79	19.2	04.5 31.8	36 1.07	1.03	96.5	0.20	18.7		75 25	41	U	4 3	4	5	16 15	7.7	5.3	5.6	16.0	15	49.5																			
104.5	3011.5 3	31.86	18.1	09.5 33.3	1.52	1.52	99.7	0.30	19.7	Same as above. Very broken. CC blobs.	C 75 25	61	0	1 3	2	5	11 15	7.7	5.4	5.8	11.0	15	44.9																			
										Same as above in green sploches VL CC veins. Vugs.	s.																														+	
109.5	3006.5 3	33.38	16.6	14.5 34.9	1.52	1.55	100.0	0.37	24.3	VL CC veins. Vugs.	75 25	62	0	1 3	3	5	12 15	7.7	6.0	5.8	12.0	15	46.5																		+	
114.5	3001.5 3	34.91	15.1 1	19.5 36.4	13 1.52	1.60	100.0	1.24	81.3	VL Same as above. More competent	t. 75 10	160	0	4 3	4	5	16 15	7.7	16.0	7.1	16.0	15	61.8																			
					96 1.52						75 16		0	1 2	3		12 15	7.7				15	51.9																		1	
119.5	2990.5 3	00.43	1.5.0	24.5 37.9	1.52	1.60	100.0	0.84	55.1	VL Same as above.	75 16	100	U	3	3	5	12 15	7.7	10.9	6.3	12.0	15	51.9																		\pm	

M:\1\01\0010	2\07\A\Data\WMF	Geotech SI - Fe			06-2.xls]Data - Calc	Sheet												1																		Drill Ho	le Nu	mber:		DH06-2
	ı			LL RUN						GEOLOGY - COMMENTS			RMR - DA								LATIONS (l					ONTINUITY DATA		Onentation	ı	Orientation		1	1	TRENGT		1	
Depth From	From From			Depth To		ov. Reco	. RQE		Rock Type	Weathered State, Structure, Color, Gra Size, Rock Material Strength, Rock Typ	UCS #	Joint Set	Persis- Ape	Joint Co ert- Rough	ndition Infill Wear	th TOTAL	Water Rating	RMR-89 UCS		RMR-89 Joint			RMR-89 Total	Depth	Elev.	Alpha E	Beta Disc. /	Aper. Fi	ill. Fill. Fill. De 1 Type 2 Type 3		QTY of Slick wrt vertical (degrees)- clockwise	Sampled?	Orientation Quality	Depth	Elev.	Date Core Tested Diamet				Strength Designation
									(see Leg)		Joints			R				Rating				Rating						(see	Leg) (see Leg) (see Leg		clockwise from reference	Gampieu:								Grade
(ft)	(ft) (m)) (m)	(ft)	(m) 39.48	(m) (m 1.52 1.5	(%)	(m)	9 84.6	VL	Same as above.	(MPa) 75 8	(mm) 190	0 1	3	3 5	12	15	7.7			Rating 12.0	15	58.8	(m)	(m) ((deg.) (d	deg.) ((mm)		Jc	line			(m)	(m)	(mm)	(psi)	(kPa)	(MPa)	
		012.0	120.0	00.10	1.02	2 00.1	1.2	01.0	12			100	Ů,	Ť	Ů				10.7	7.0	12.0	.0	00.0																	
ЕОН																																								
																																							+ +	
																																							+ +	
		-																	-																				\vdash	
																																								-
																				-																				
												<u> </u>							I																l					

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET ROCK MASS CLASSIFICATION - RMR 1989

Drill Hole Number: DH06-3

PROJECT: MORRISON COPPER GOLD
Client: PACIFIC BOOKER MINERALS
Drilling Company: GEOTECH DRILLING
Location: GRANISLE, BC
Coordinates: N 6,123,781 m, E 670,541 m

 Logged By:
 LS

 Reviewed By:
 GJ

 Date Started:
 Mar/2/2006

 Date Completed:
 Mar/4/2006

										Az Inclir	imuth:	90	deg deg (do	wn is pos	itive)				to to	n n	ו ו	<u> </u>																			
M:\1\01\00102\	17\A\Data\WM	MF Geotech SI - F		rillholes\[DH0	06-3.xls]Data - Calc	heet			1 6	SEOLOGY - COMMENTS	1		RMR - DA									(BY RUN)						DISCO	NTINUITY DAT	٠,			-		D		Hole Nu			DH06-3	<u>i</u>
Depth E	lev. De	epth Elev.	Depth	Depth Depth	Run Rec	ov. Recov	RQE	RQD		SEOLOGY - COMMENTS	LICS #	Joint	RWR - DA	Joint Cond			Water	RMR-89	1	RMR-89	RMR-89	RMR-89 RMR-8	Depth	Elev.	/. Alpha	Beta	Disc. Ap	er. Fill.	Fill. Fill	1	QTY of Slick wrt	Orienta Qualit	tion by Dept	oth Elev.	Date		Core Gauge		1 1		Strength
		rom From	-	То		ıth	Lengt		Туре	Weathered State, Structure, Color, Gra Size, Rock Material Strength, Rock Typ	ir e (Est.) of	Set	Persis- Ape	1 1	Infill Weat	h TOTAL	Rating	UCS	RQD	Joint	Joint	Water Total	Борин	Liov.	. rupna	Dota	Туре	Type			vertical (degrees)-		ly Sop		Tested		meter Value		· 1		esignation
									(see Leg)		Joints	Spac.	P A	R	ı w			Rating	Rating	Spac.	Condition	Rating						(see Le	g) (see Leg) (see L	.eg) Conditio	n clockwise from	u:									Grade
(ft)	(ft) (r	m) (m)	(ft)	(m)	(m) (m	(%)	(m)	(%)			(MPa)	(mm)		+						Rating	Rating		(m)	(m)	(deg.)	(deg.)	(mi	m)		Jc	reference		(m)	(m)		(n	nm) (psi)	i) (kPa)) (MPa)		
0.0 31	16.0 0.	.00 950.0	19.0	5.79	5.79	0.0		0.0	ОВ																																
										FG matrix in alt'd chlod? Garnets																									+	_	_		-		
										(black and yellow green). Matrix is pinkish purple. Possibly not SST.																															
21.5 30	94.5 6.	.55 943.4	26.0	7.93	1.37 1.3	6 99.1	1.25	91.1	VL	CC veins. Competent.	75 5	272	0 1	1	3 5	10	15	7.7	18.2	8.4	10.0	15 59.2																			
										Same as above. Slightly less																								_		_					
26.0 30	90.0 7.	.93 942.1	31.0	9.45	1.52 1.4	8 97.1	0.62	2 40.7	VL	competent. Huge QTZ/CC filled area 5cm diamter along a vein.		99	0 1	3	3 5	12	15	7.7	8.5	6.3	12.0	15 49.4																			
										· ·																													1 1		
31.0 30	85.0 9.	45 940 5	36.0	10.98	1.52 1.5	5 100.0	0.58	38.0	VL	Same as above. Frequent parallel CC veins. CHL/CC on fractures.	75 20	78	0 1	3	3 5	12	15	7.7	8.0	6.0	12.0	15 48.7																			
36.0 30	80.0 10	939.0	41.0	12.50	1.52 1.5	99.7	0.43	28.2	VL	Same as above. Very broken. Stil alt'd garnets? Throughout.	75 25	61	0 1	3	3 5	12	15	7.7	6.6	5.8	12.0	15 47.0																	\perp		
41.0 30	75.0 12	2.50 937.5	46.0	14.02	1.52 1.5	6 100.0	0.66	43.3	VL	as above	75 12	130	0 1	3	3 5	12	15	7.7	8.9	6.7	12.0	15 50.3																	+	-	
										Same as above. Till end cast 3"																													1		
46.0 30	70.0 14	936.0	50.0	15.24	1.22 1.0	6 86.9	0.20	16.4	VL	clay alt'd zone very priable.	75 11	96	0 0	3	0 5	8	15	7.7	4.9	6.3	8.0	15 41.9												4_		4			\perp		
										Same as above rock type wise.																													+		
										Top 15" altered to white then beautiful green colours surround																															
										CC veins. Some garnets around CC veins. Some garnets around																															
50.0 30	66.0 15	5.24 934.8	55.2	16.83	1.59 1.6	0 100.0	0.99	62.4	VL	picture broken zones.	75 25	64	0 0	0	0 5	5	15	7.7	12.2	5.9	5.0	15 45.8																			
										Same as above. No CLY. CC																								_	+		_		+		
55.2 30	60.8 16	6.83 933.2	60.3	18.39	1.56 1.5	6 99.7	0.96	61.4	VL	veins. Light green veins. Some sections very red brown.	75 13	120	0 1	3	3 5	12	15	7.7	12.0	6.6	12.0	15 53.3																			
																																		_	_		_	_	-		
60.3 30	55.7 18	3.39 931.6	62.0	18.90	0.51 0.5	1 100.0	0.11	1 21.6	VL	Reddish brown sections appear no more. Same as above.	75 10	51	0 1	3	3 5	12	15	7.7	5.6	5.7	12.0	15 46.0																			
00.0	540 40	00 004 4	00.0	00.40	1.22 1.2	5 100.0	0.46	40.0	VL	Same as above.	75 13	96	0 0	3	3 5	11	45	7.7	8.4	6.3	11.0	15 48.3																			
							0.48	9 40.2	VL	Same as above.	75 13	96	0 0	3	3 5	- ''	15	7.7	0.4	0.3	11.0	15 46.3																			
66.0 30	50.0 20	929.9	71.0	21.65	1.52 1.5	6 100.0	0.80	52.5	VL	Same as above.	75 15	104	0 1	3	4 5	13	15	7.7	10.4	6.4	13.0	15 52.5														_		_	-		
71.0 30	45.0 21	.65 928.4	76.0	23 17	1.52 1.5	2 99.7	1.16	76.1	VL	Same as above. More competent.	75 12	127	0 4	3	4 5	16	15	7.7	14.9	6.7	16.0	15 60.3																	1		
71.0	40.0 21	.03 320.4	70.0	20.17	1.02	2 33.1	1.10	70.1	VL.		75 12	121	0 4		7 3	10	10	7.7	14.5	0.7	10.0	15 00.5																			
										Same as above, then changes to reddish brown ST-like rock of																															
76.0	40.0	17 000 0	91.0	24.70	1.52 1.5	00.4	0.00	59.0	VL	DH06-7 then back to GP (?). End weathered zones/breccia zones.	75 10	150	0 0	1	2 5	8	15	7.7	11.6	7.0	8.0	15 49.2																			
70.0 30	-u.u 23	, 920.8	01.0	24.10	1.02 1.0	90.4	0.90	0.80	VL		73 10	150	0 0		2 3	٥	15	1.1	11.0	7.0	0.0	10 49.2																			
										Same as above. Reddish brown weathered back to GP? Rethink																															
81.0 30	35.0 24	925.3	86.0	26.22	1.52 1.4	97.1	1.33	87.2	VL	DH06-7.	75 4	370	0 1	3	3 5	12	15	7.7	17.3	9.5	12.0	15 61.4																	\pm		
86.0 30	30.0 26	923.8	91.0	27.74	1.52 1.5	99.7	1.09	71.5	VL	Same as above. Alt'd grats ham'd chlo'd CC veins.	75 11	138	0 4	3	4 5	16	15	7.7	14.0	6.8	16.0	15 59.5																			
										Same as above. Clay on fracs.																													+		
91.0 30	25.0 27	7.74 922.3	95.5	29.12	1.37 1.3	6 99.1	0.52	37.9	VL	Some sections more alt'd.	75 25	54	0 1	3	0 5	9	15	7.7	8.0	5.7	9.0	15 45.4												4					+		
95.5 30	20.5 29	920.9	99.5	30.34	1.22 1.4	0 100.0	0.70	57.4	VL	Same as above.	75 15	93	0 4	3	3 5	15	15	7.7	11.3	6.3	15.0	15 55.2																			
99.5 20	16.5 30	34 010 7	102.0	31 10	0.76 0.7	0 01 0	0.10	13.1	VL	Same as above.	75 15	47	0 4	3	2 5	14	15	7.7	4.5	5.6	14.0	15 46.8												4-					+		
33.3	. 5.5 50	7.07 313.7	102.0	51.10	0.70 0.7	51.0	0.10	10.1	VL		10 10	+1	0 4	3	2 3	14	13	1.1	7.0	5.0	17.0	.0 40.0																			
100.0		40 000	400.0	00.00	4.00					Same as above. Rock has lost pinkish tinge. Still chlo'd some	75	00=			2 5							45																			
					1.22 1.2					greenish grey.	75 6	207	0 0	1	2 5	8	15	7.7	14.1		8.0	15 52.4																	\pm		
106.0 30	10.0 32	2.32 917.7	111.0	33.84	1.52 1.4	7 96.4	0.85	55.8	VL	Same as above.	75 12	123	0 0	1	3 5	9	15	7.7	11.0	6.6	9.0	15 49.3																	\blacksquare		
111.0	05.0 22	04 046 0	114.0	24.76	0.91 0.8	0 000	0.50	F7.0	VL	Same as above. Less CC veins.	75 8	110	0 1	1	2 5	9	15	7.7	11.4	6.5	9.0	15 49.5																	+		-
																	15																								
114.0 30	02.0 34	915.2	116.0	35.37	0.61 0.6	100.0	0.16	26.2	VL	Same as above. Chlo'd.	75 5	124	0 4	3	3 5	15	15	7.7	6.3	6.6	15.0	15 50.6																			

| | | | DRI | LL RU | N DAT | 4 | | | | | | G | SEOLOGY - COMMENTS | | | | RMR - I | ATA (B | Y RUN |) | | | | | RMR C | CALCULA
 | TIONS (E | BY RUN | l) | | | |
 | | DISCON | TIUNITY | Y DATA
 | | | | |
 | | | | PLT ST | RENGTH
 | DATA / CA | LCs. | |
|-------|--------|----------|-------------|--|--|--|--|--|-------|------|------|--------|--|---|--|--|--|---|---|---|---|--------|--|--|--
---|----------|--------|---|--|--
--	--	--	---
--	--	--	--
--	--	--	--
--	--	--	
. Der	th Ele	ev.	Depth
 | IR-89 RI | MR-89 | RMR-89 | Depth | Elev. | Alpha Be | a Disc.
 | Aper | r. Fill. | Fill. | Fill.
 | RMR | QTY | of Slick wrt
vertical | |
 | epth E | lev. | Date | Core | Gauge
 | Gauge l | ics | Stree |
| Fro | n Fro | om | То | То | Len | gth Le | ength | | Lengt | n | T | Гуре | Size, Rock Material Strength, Rock Ty | /pe (Est.) | of | Set | Persis- A | pert- Rou | igh Infill | Weath | TOTAL | Rating | | | D J | loint J
 | oint V | Vater | Total | | | | Туре
 | | Type 1 | Type 2 | Type 3
 | Joint | | (degrees)-
clockwise Sam | pled? |
 | | | Tested | Diameter | Value
 | Value (Is | x24) | Design |
| (r | (m | n) | (ft) | (m) | (m |) | (m) | (%) | (m) | (%) | (506 | e Leg) | | (MPa) | Joints | Spac.
(mm) | Р | A R | 1 | W | | | Rati | ing Ratir | |
 | | Rating | | (m) | (m) | (deg.) (de | 1-)
 | (mm | (see Leg | g) (see Leg |) (see Leg)
 | Condition
Jc | | reference | | (1
 | m) (| (m) | ı | (mm) | (psi)
 | (kPa) (f | MPa) | Gra | |
| 十 | | | | | | | | | | | | | | | | | | | | | | | | | 1 |
 | | | | | | |
 | | | |
 | | | line | |
 | | | | , , |
 | , , , | | |
| .0 35 | 7 914 | 4.6 | 121.0 | 36.8 | 1.5 | i2 1 | .54 | 100.0 | 0.87 | 57.1 | ١ ، | VL | Fg grey green matrix. Chlo'd grts
CC veins/ BI veins. | ;/?
75 | 12 | 128 | 0 | 4 1 | 3 | 5 | 13 | 15 | 7.3 | 7 11.3 | 3 6 | 6.7 1
 | 3.0 | 15 | 53.6 | | | | |
 | | | |
 | | | | |
 | | | | |
 | | | |
| 1 | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | |
 | | | |
 | | | | |
 | | | $\overline{}$ | |
 | | | |
| m) | m From |) (m) (r | m From From | v. Depth Elev. Depth To) (m) (m) (ft) | v. Depth Elev. Depth To To (m) (m) (m) (ft) (m) | v. Depth Elev. Depth To Care (m) From From To To Len (m) (m) (m) (ft) (m) (m | v. Depth Elev. Depth Depth Run Rim From From To To Length Le | v. Depth Elev. Depth Depth Run Recov. m From From To To Length Length) (m) (m) (ft) (m) (m) (m) | | | | | | m From From To To Length Length Length Type Weathered State, Structure, Color, G Size, Rock Material Strength, Rock Ty (m) (m) (m) (m) (m) (m) (m) (m) (%) (m) (%) Figure green matrix. Chlo'd gris | w. Depth Elev. Depth From From To To Length Length (Est.) (m) (m) (m) (ft) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m | w. Depth Elev. Depth From From To To Length I Le | w. Depth Elev. Depth From From To To Length Length (Est.) (m) (m) (m) (tt) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m | v. Depth Elev. Depth From From To To Length Length I (%) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m | w. Depth Elev. Depth From From From Weathered State, Structure, Color, Grain (Est.) Joint Spac. P A R R R R R R R R R R R R R R R R R R | v. Depth Elev. Depth From From From From (m) (m) (m) (m) (m) (m) (m) (m) (m) (m | W. Depth Elev. Depth Prom From To To Length Length Company (%) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m | | No. Depth Elev. Depth Prom From From From From From From To To To Length Length | N. Depth Elev. Depth Run Recov. Recov. Rought Rout Recov. Rought Rout Rout | N. Depth Elev. Depth From From From From From From From To To Length Length Length Length (see Leg) To (m) (| w. Depth Elev. Depth Run From From To To Length Length (see Leg) RQD RQD (see Leg) Watered State. Structure, Color, Grain (Est.) Joint Spac. P A R I W Water TOTAL Rating | | | No. Depth Elev. Depth From From | No. Depth Elev. Depth Run From From From From From From From Run Run | No. Depth Elev. Depth Run Recov. Rob Rob. Length Length Length Rob. Type (see Leg) Depth Rob. Material Strength, Rock Type Rob. Material Strength, Rock Type Rob. Material Strength, Rock Type Rob. Rob. Rob. Material Strength, Rock Type Rob. Ro | No. Depth Elev. Depth Elev. Depth Run From From | No. Depth Elev. Depth Run Recov. R | No. Depth Elev. Depth Run From From | No. Depth Elev. Depth From From | No. Depth Elev. Depth From From From Order O | No. Depth Elev. Depth From From From Order O | No. Depth Elev. Depth From From From Order O | No. Depth Elev. Depth From From From Omegan Omeg | No. Depth Elev. Depth Elev. Depth Run From From | No. Depth Elev. Depth Run From From From From (It) (It) | No. Depth Elev. Depth From From From From Ordered Ordere | No. Depth Elev. Depth From From From Offer From Offer From Offer From Offer Offe | Depth Elev. Depth Elev. Depth From Fr | No. Depth Elev. Depth From From From From Omega Om | No. Depth Elev. Depth Elev. Depth From From From From Offendation Offendatio | Depth Elev. Depth Elev. Depth From Fr | No. Depth Elev. Depth Elev. Depth From From From From Offer From Offer Off | Depth Elev. Depth Elev. Depth From Fr | Depth Elev. Depth Elev. Depth From Fr |

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET ROCK MASS CLASSIFICATION - RMR 1989

HQ3 61.0 mm

Drill Hole Number: DH06-4

PROJECT: MORRISON COPPER GOLD
Client: PACIFIC BOOKER MINERALS

Drilling Company: GEOTECH DRILLING
Location: GRANISLE, BC
Coordinates: N 6,123,060 m, E 670,997 m

| No. | Core | Drill Type: HQ Triple Tube | Square | HQ Triple Tube | HQ T

 Logged By:
 LS

 Reviewed By:
 GJ

 Date Started:
 Mar/7/2006

 Date Completed:
 Mar/9/2006

		C	oorani	ites :	N 6,123,06	υ m, Ε t	70,997	m			muth:	136	_π deg		Core Di	ameter.	FIOIII		to	m m m	า <u> </u>	-	45.0	mm		Da	ite Completed		Mar/9/200	0	-									
M:\1\01\00102\07\A\E	uta\WMF Ge	otech SI - Feb t				Sheet					ation:	90			positive)				to	m	1														Dr	ill Hol				DH06-4
			DRILI	RUN	DATA					GEOLOGY - COMMENTS			RMR - E	DATA (B	Y RUN)				RM	IR CALCUI	LATIONS	(BY RUN	1)					DISCO	NTINUITY DATA	Α	1	Onentation 1	Orientation		1	PLT ST	RENGTH	DATA /	CALCs.	
Depth Elev. From From	Depth From	Elev. From	Depth To	Depth To	Run Red Length Len	cov. Re		QD RQI	D Ro Tyl (see	Weathered State, Structure, Color, Grain Size, Rock Material Strength, Rock Type	UCS # (Est.) of Joints	Joint Set Spac.			gh Infill Weath		Water Rating	RMR-89 UCS Rating	RMR-89 RQD Rating	Joint	Joint	RMR-89 Water Rating	RMR-89 Total	Depth	Elev. Alph	ha Bei	ta Disc. Aper.	Fill. Type 1 (see Leg		3 Joint	QTY	of Slick wrt vertical (degrees)- clockwise from	Quality ed?	Depth Elev.	Date Tested	Core Diameter	Gauge Value	Gauge Value	UCS (Isx24)	Strength Designation Grade
(ft) (ft)	(m)	(m)	(ft)	(m)	(m) (n	n) (1	%) (i	n) (%)		(MPa)	(mm)								Rating	Rating			(m)	(m) (deg	g.) (de	g.) (mm)			Jc		reference		(m) (m)		(mm)	(psi)	(kPa)	(MPa)	
0.0 3224.2	0.00	983.0	30.0	9.15	9.15	0	.0	0.0) ()	В												#																		
34.5 3189.7	10.52	972.5	36.0	10.98	0.46 0.4	40 8	7.5 0.	00 0.0) Li	FG Grey rock han/lim on fracs. CC vein. Very broken.	75 25	16	0	4 1	4 5	14	15	7.7	3.0	5.2	14.0	15	44.9																	
36.0 3188.2	10.98	972.0	41.0	12.50	1.52 1.5	53 10	0.0 0.	43 28.	2 LN	M Sam as above.	75 25	61	0	1 1	2 5	9	15	7.7	6.6	5.8	9.0	15	44.0																	
41.0 3183.2	12.50	970.5	46.0	14.02	1.52 0.8	39 5	3.4 0.	00 0.0) LN	Clay seam driller noted. Also clay at end of run.	75 25	36	0	0 1	0 3	4	15	7.7	3.0	5.5	4.0	15	35.1																	
46.0 3178.2	14.02	969.0	51.0	15.55	1.52	45 99	5.1 0.	24 15.	7 LI	Clay then green SST then back to fg grey sst. Hem/lim on fracs. Clay zone very soft. Possible fossils.	50 25	58	0	0 1	0 3	4	15	5.7	4.9	5.8	4.0	15	35.3																	
51.0 3173.2	15.55	967.5	54.5	16.62	1.07 1.0	05 98	3.4 0.	26 24.	4 LN	y fg sst hem/liim on fracs. Very bro	60 25	42	0	0 1	0 5	6	15	6.5	6.0	5.6	6.0	15	39.1																	
54.5 3169.7	16.62	966.4	59.5	18.14	1.52 1.4	48 91	7.1 0.	25 16.	4 LI	Grey fg cc veins. Trace fossils. SST/Siltstone.	75 25	59	0	1 1	2 5	9	15	7.7	4.9	5.8	9.0	15	42.4																	
59.5 3164.7	18.14	964.9	61.5	18.75	0.61 0.5	58 9	5.1 0.	00 0.0) Li	Grey fg very broken. CC on fracs. Trace fossils.	50 25	23	0	1 1	4 5	11	15	5.7	3.0	5.3	11.0	15	40.0																	
61.5 3162.7	18.75	964.3	63.5	19.36	0.61 0.6	61 10	0.0 0.	00 0.0) Li	Grey SST/siltstone. CC veins. Green clay filled fracture.	50 15	41	0	0 1	0 5	6	15	5.7	3.0	5.6	6.0	15	35.2																	
63.5 3160.7	19.36	963.6	67.5	20.58	1.22 1.	17 98	5.9 0.	37 30.	3 LM	Grey SST/Siltstone. CC veins. Large green clay zone ~15cm wide	60 25	47	0	0 1	0 5	6	15	6.5	6.9	5.6	6.0	15	40.0																	
67.5 3156.7	20.58	962.4	70.0	21.34	0.76	71 9:	3.2 0.	28 36.	7 LN	Grey sst/siltstone in area of courser grey sst. CC on fracs.	75 15	47	0	4 1	4 5	14	15	7.7	7.8	5.6	14.0	15	50.1																	
70.0 3154.2	21.34	961.7	74.5	22.71	1.37 1.3	35 9	3.4 0.	33 24.	1 LI	FG grey SST/siltstone with large clay (green seam). CC on fracs.	75 23	59	0	0 1	0 5	6	15	7.7	6.0	5.8	6.0	15	40.4																<u></u>	
74.5 3149.7	22.71	960.3	79.5	24.24	1.52 1.5	52 9	9.7 0.	83 54.	4 LN	M Same as above, no clay.	75 15	101	0	1 1	4 5	11	15	7.7	10.8	6.4	11.0	15	50.8																	
79.5 3144.7	24.24	958.8	84.5	25.76	1.52 1.5	52 99	9.7 0.	32 21.	0 LI	Same as above. Less competent. Mor CC veins. Some bands of fg green rock towards end.	75 25	61	0	1 1	3 5	10	15	7.7	5.6	5.8	10.0	15	44.0																	
84.5 3139.7	25.76	957.2	88.5	26.98	1.22 1.0	07 8	7.7 0.	50 41.	0 LI	Same as above. Clay breccia towards end.	60 20	54	0	0 1	0 5	6	15	6.5	8.5	5.7	6.0	15	41.7																	
88.5 3135.7	26.98	956.0	90.5	27.59	0.61 0.5	53 80	6.9 0.	00 0.0) LI	M Same as above. Clay on fracs.	75 20	27	0	0 1	0 5	6	15	7.7	3.0	5.4	6.0	15	37.0																	
90.5 3133.7	27.59	955.4	94.5	28.81	1.22 1.	17 9	5.9 0.	37 30.	3 LI	Same as above. Lost core clay zone washed away.	70 20	59	0	0 1	0 5	6	15	7.3	6.9	5.8	6.0	15	40.9																\blacksquare	
94.5 3129.7	28.81	954.2	96.5	29.42	0.61 0.8	53 80	6.9 0.	00 0.0) Li	Same as above. Breccia zone at top.	75 15	35	0	4 1	4 5	14	15	7.7	3.0	5.5	14.0	15	45.1																	
96.5 3127.7	29.42	953.6	98.0	29.88	0.46 0.4	46 10	0.0 0.	14 30.	6 LN	M Same as above.	75 15	31	0	1 1	3 5	10	15	7.7	6.9	5.4	10.0	15	45.0																	
98.0 169.5	29.88	953.1	101.5	30.95	1.07 1.0	05 9	3.4 0.	58 54.	4 LI	Same as above. Large vug w QTZ crystals. Clay on fracs. Shear zone near top. One xH is 1.5" across with perfect planes.	75 25	42	0	0 1	0 5	6	15	7.7	10.8	5.6	6.0	15	45.0																	
101.5 3122.7	30.95	952.1	106.0	32.32	1.37 1.3	36 9:	9.1 0.	73 53.	2 LI	Same as above. No clay or qtz filled vugs.	75 25	54	0	4 1	4 5	14	15	7.7	10.6	5.7	14.0	15	53.0																	
106.0 3118.2	32.32	950.7	111.0	33.84	1.52 1.4	47 9	6.4 0.	78 51.	2 LN	Same as above. Clay in fracs. Breccia at end.	75 20	74	0	0 1	0 5	6	15	7.7	10.2	6.0	6.0	15	44.9																	
111.0 3113.2	33.84	949.2	116.0	35.37	1.52	54 10	0.0	78 51.	2 LM	Same as above. Some cg sst sections. Some green CLY on fracs. Larger CC veins. Trace fossils?	75 16	96	0	1 1	2 5	9	15	7.7	10.2	6.3	9.0	15	48.2																	
116.0 3108.2	35.37	947.6	121.0	36.89	1.52	49 97	7.7 0.	90 59.	0 L1	Same as above with cg sst sections greenish in colour. Trace fossils. CC veins.	75 15	99	0	1 1	3 5	10	15	7.7	11.6	6.3	10.0	15	50.6																	

				DRILL	RUNE	ATA					G	SEOLOGY - COMMENTS			RMF	- DATA	(BY RU	UN)				RI	MR CALC	JLATION	S (BY RU	IN)						DISC	CONTIN	NUITY DATA	1								PLT S	TRENGT	H DATA	/ CALCs.	
oth E	Elev. D	pth Ele	v. D	epth	Depth	Run	Recov.	Recov.	RQD			Weathered State, Structure, Color, Grain	UCS #	Joint			int Condit				RMR-89		RMR-89		RMR-89	RMR-89	Depth	Elev	. Alpha		Disc. A	Aper. F	ill.	Fill. Fill.	RMR		Slick wrt vertical	(Orientation Quality	Depth	Elev.	Date	Core	Gauge	Gauge		Strength
m F	From F	om Fre	m	То	То	Length	_ength		Length		Type	Size, Rock Material Strength, Rock Type	(Est.) of	Set					th TOTAL	Rating			Joint	Joint	Water	Total					Туре	Тур	pe 1 T	Type 2 Type 3	Joint 1	clo	ockwise	impled?				Tested	Diamete	er Value	Value	(Isx24)	Designation
)	(ft) (m) (n	1)	(ft)	(m)	(m)	(m)	(%)	(m)	(%)	(see Leg)		Joints (MPa)	Spac. (mm)		A	R	I W			Rating	Rating	Spac. Rating	Condition Rating	Rating		(m)	(m)	(deg.)	(deg.)	(1	(see mm)	Leg) (se	ee Leg) (see Le	g) Condition	ref	from ference			(m)	(m)		(mm)	(psi)	(kPa)	(MPa)	Grade
.0 31	103.2 36	.89 94	5.1 12	26.0	38.41	1.52	1.50	98.4	0.87	57.1	LM	Same as before, some with greenish tinge. CC veins. Clay zone.	60 13	115	0	0	1	0 5	6	15	6.5	11.3	6.5	6.0	15	45.3																					
i.0 30	098.2 38	.41 94	1.6 13	31.0	39.94	1.52	1.52	99.7	0.89	58.4	VL	CG sst greenish grey. Zones of microconglomerate. Black phenocrysts.	60 15	101	0	0	3	0 5	8	15	6.5	11.5	6.4	8.0	15	47.3																					
																																										1		7			
.0 30	093.2 39	.94 94:	3.1 13	36.0	41.46	1.52	1.52	99.7	1.45	95.1	VL/LM	Congl at top 2.5'. Then siltstone. Grey black with trace fossils and CC yeins.	75 9	169	0	4	3	4 5	16	15	7.7	19.1	7.2	16.0	15	64.9																					
																																										7					
Н																																										/					
																																										1		/			

Print: 13-07-06

Rev. 0 - Issued for Report

Rev. 0 - Sheet 2 of 2

Rev. 0 - Issued for Report

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET ROCK MASS CLASSIFICATION - RMR 1989

Drill Hole Number: DH06-6

PROJECT: MORRISON COPPER GOLD
Client: PACIFIC BOOKER MINERALS
Drilling Company: GEOTECH DRILLING
Location: GRANISLE, BC
Coordinates: N 6,122,655 m, E 671,486 m

 Logged By:
 LS

 Reviewed By:
 GJ

 Date Started:
 Mar/9/2006

 Date Completed:
 Mar/11/2006

											Inclin	nation:	90	deg (lown is	positive)				to		m																_					Dillog o
M:\1\01\001	02\07\A\Data\WM	fF Geotech SI		06\Drillholes\		a - Calc Sheet				G	GEOLOGY - COMMENTS	1		RMR - I	ΆΤΑ (Β	Y RIIN)			ı	RI	IR CALCI	ULATIONS	S (BY RIII	N)						DISCON.	TINUITY DAT	Δ				1			Orill Ho		I mber: TH DATA		DH06-6
Depth	Elev. Dep	oth Ele				Recov.	Recov.	RQD	RQD	Rock	SECECULA COMMENTO	UCS #	Joint	TKIMIK -		Condition		Water	RMR-89		RMR-89	RMR-89	RMR-89	RMR-89	Depth	Elev.	Alpha	Beta Disc.		Fill.	Fill. Fill.		R QTY of Slick	on vrt	Orientation Quality	Depth	Elev.	Date	Core				Strength
From	From Fro					Length		Length		Туре	Weathered State, Structure, Color, Grai Size, Rock Material Strength, Rock Type	ir e (Est.) of	Set	Persis- A			ath TOTAL	Rating			Joint	Joint	Water	Total				Туре		Type 1	Type 2 Type		vertica nt (degrees	s)- Compled?				Tested					Designation
										(see Leg)		Joints	Spac.	Р	A R	1 1	V		Rating	Rating	Spac.	Condition	Rating							(see Leg)	(see Leg) (see L	eg) Condit	tion clockwis	96	`								Grade
(ft)	(ft) (m	n) (m) (ft)	(m)	(m)	(m)	(%)	(m)	(%)			(MPa)	(mm)								Rating	Rating			(m)	(m)	(deg.)	(deg.)	(mm)			Jc	reference	e		(m)	(m)		(mm)	(psi)	(kPa)	(MPa)	
0.0	3148.8 0.0	00 960	.0 17.0	0 5.18	3 5.18		0.0		0.0	ОВ																																	
											Dark reddish brown (burgundy).																																
19.5	3129.3 5.9	95 954	1 21.5	5 6.55	5 0.61	0.61	100.0	0.15	24.6	VL	FG rock. CC veins. Weathered at top.	60 9	68	0	1 1	3	10	15	6.5	6.0	5.9	10.0	15	43.5																			·
					-																																						
21.5	3127.3 6.5	55 953	.4 26.0	0 7.93	3 1.37	1.30	94.8	0.10	7.3	VL	Same as above. Shear zones. Some course sections.	60 25	52	0	1 3	3	12	15	6.5	3.8	5.7	12.0	15	43.0																			
											Same as above.																																
26.0	3122.8 7.9	93 952	31.0	0 9.45	5 1.52	1.50	98.4	0.35	23.0	VL	Microconglomerate then graded fract to siltstone.	60 25	60	0	1 3	2	11	15	6.5	5.8	5.8	11.0	15	44.1																			l
																																											-
31.0	3117.8 9.4	45 950	.5 36.0	0 10.9	8 1.52	1.52	99.7	0.80	52.5	VL	Same as above. With microfaults and small breccia zones.	60 20	76	0	1 3	2	11	15	6.5	10.4	6.0	11.0	15	49.0																			l
36.0	3112.8 10.9	.98 949	.0 39.0	0 11.8	9 0.91	0.90	98.4	0.11	12.0	VL	bove. Tiny microfaults. CC veins. B	60 20	45	0	1 3	2	11	15	6.5	4.4	5.6	11.0	15	42.5																			
											Same as above. Dark red brown																																
39.0	3109.8 11.8	.89 948	.1 44.0	0 13.4	1 1.52	1.45	95.1	0.23	15.1	VL	SST/Siltstone. C and fg sections.	70 25	58	0	4 3	4	16	15	7.3	4.8	5.8	16.0	15	48.8																			
44.0	3104.8 13.	.41 946	.6 49.0	0 14.9	4 1.52	1.55	100.0	0.18	11.8	VL	Same as above.	70 25	62	0	4 3	2	14	15	7.3	4.4	5.8	14.0	15	46.5																			
40.0	3099.8 14.9	04 045	1 540	0 16.4	6 1.52	1.50	98.4	0.12	7.9	VI	Same as above.	70 25	60	0	4 3	2	14	15	72	3.9	5.8	14.0	15	46.0																			
								0.12	7.5	VL	came as above.	70 25	00	0	4 3	2	14	15			5.0	14.0	15	40.0																			
54.0	3094.8 16.	.46 943	59.0	0 17.9	9 1.52	1.49	97.7	0.00	0.0	VL	Same as above.	70 25	60	0	4 3	2	14	15	7.3	3.0	5.8	14.0	15	45.1																			
59.0	3089.8 17.	.99 942	.0 64.0	0 19.5	1 1.52	1.50	98.4	1.01	66.3	VL	Same as above.	70 20	75	0	4 3	2	14	15	7.3	13.0	6.0	14.0	15	55.3																			
64.0	3084.8 19.	.51 940	5 69.0	0 21.0	4 1.52	1.52	99.7	0.70	45.9	VL	Same as above.	70 21	72	0	4 3	4	16	15	7.3	9.3	6.0	16.0	15	53.6																			
69.0	3079.8 21.	.04 939	.0 73.0	0 22.2	6 1.22	1.22	100.0	0.14	11.5	VL	Same as above.	70 25	49	0	1 3	2	11	15	7.3	4.3	5.7	11.0	15	43.3																			
73.0	3075.8 22.	.26 937	76.0	0 23.1	7 0.91	0.90	98.4	0.20	21.9	VL	Same as above.	70 13	69	0	4 3	4	16	15	7.3	5.7	5.9	16.0	15	49.9																			
76.0	3072.8 23.	.17 936	.8 79.5	5 24.2	4 1.07	1.06	99.3	0.58	54.4	VL	Same as above.	75 15	71	0	4 3	4	16	15	7.7	10.8	6.0	16.0	15	55.4																			
79.5	3069.3 24.:	.24 935	81.0	0 24.7	0 0.46	0.44	96.2	0.19	41.5	VL	Same as above.	75 5	88	0	4 1	4	14	15	7.7	8.6	6.2	14.0	15	51.4																			
81.0	3067.8 24.	.70 935	86.0	0 26.2	2 1.52	1.49	97.7	0.60	39.4	VL	Same as above.	80 22	68	0	4 1	4	14	15	8.0	8.2	5.9	14.0	15	51.2																			
86.0	3062.8 26.3	.22 933	.8 91.0	0 27.7	4 1.52	1.52	99.7	0.67	44.0	VL	Same as above.	80 20	76	0	4 3	4	16	15	8.0	9.0	6.0	16.0	15	54.0																			
01.0	3057.8 27.	74 022	3 040	0 20.0	6 0.04	0.91	99.5	0.00	0.0	VL	Same as above.	80 25	36	0	4 1	4	14	15	8.0	3.0	5.5	14.0	15	45.5																		+	
										¥£	Camo do above.	25		,									10																				
94.0	169.5 28.0	.66 931	.3 99.0	0 30.1	8 1.52	1.52	99.7	0.54	35.4	VL	Same as above.	80 20	76	0	4 3	4	16	15	8.0	7.6	6.0	16.0	15	52.7																		+	
											Same as above, with some bands of lighter coloured matrix. Hem on									1																							
99.0	3049.8 30.	.18 929	.8 104.0	.0 31.7	1 1.52	1.52	99.7	0.71	46.6	VL	fracs.	75 15	101	0	1 3	2	11	15	7.7	9.4	6.4	11.0	15	49.4																		1	
104.0	3044.8 31.	.71 928	.3 109.0	.0 33.2	3 1.52	1.52	99.7	0.99	64.9	VL	Same as above.	75 15	101	0	1 3	2	5 11	15	7.7	12.7	6.4	11.0	15	52.7																		+	
																0																											
											Same as above, with CLY zone.	60 13	81	0	0 3	U	8	15		9.3			15	44.9																			
112.5	3036.3 34.3	.30 925	.7 116.0	.0 35.3	7 1.07	1.04	97.5	0.34	31.9	VL	Same as above. More CC veins.	60 10	104	0	4 3	4	16	15	6.5	7.1	6.4	16.0	15	51.0																			
											Same as above. Some lighter																																
116.0	3032.8 35.	.37 924	.6 120.	.5 36.7	4 1.37	1.35	98.4	0.52	37.9	VL	coloured zones. Some cg zones. CLY, Breccia at bottom.	60 10	135	0	0 1	0	6	15	6.5	8.0	6.8	6.0	15	42.3																			
ЕОН																																										++	
20.1																																											
																			<u> </u>	1						<u> </u>																	

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET **ROCK MASS CLASSIFICATION - RMR 1989**

Drill Hole Number: DH06-7

PROJECT: MORRISON COPPER GOLD Client: PACIFIC BOOKER MINERALS

Drilling Company: GEOTECH DRILLING
Location: GRANISLE, BC
Coordinates: N 6,122,667 m, E 671,775 m

Drill Type: HQ Triple Tube

Logged By: Reviewed By: Date Started: Date Completed:

			imuth:	90	deg (deg	own is positive)			to		m m		-																	
M:\1\01\00102\07\A\Data\WMF Geotech SI - Feb to Apr '06\Drillholes\[DH06-7.xls]Data - Calc Sheet			1									- /= 1/ = 1		1			Biggori	TIN 11 11 TV	D.17.1									Number		DH06-7
DRILL RUN DATA		GEOLOGY - COMMENTS			RMR - D	ATA (BY RUN)					LCULATION		T T			1		ITINUITY		1	Offentation	1	Orientation					ENGTH DATA		
Depth Elev. Depth Elev. Depth Depth Run Recov.	Recov. RQD RC	Weathered State, Structure, Color, Grain	UCS #	Joint		Joint Condition				-89 RMR-		RMR-89		Depth	Elev. Alpha	Beta		Fill.	Fill.	RMR	QTY of Slick wrt vertical		Quality	Depth	Elev.	Date		Gauge Gauge	UCS	Strength
From From From To Length Length	Length	Type Size, Rock Material Strength, Rock Type	(Est.) of	Set	Persis- Ap	ert- Rough Infill Weat	h TOTAL			D Join		Water	Total				Type 1		Type 3	Joint	CIOCKWISE	Sampled?				Tested	Diameter	Value Value	(Isx24)	Designation
(ft) (ft) (m) (m) (m) (m)	(%) (m) (%	(see Leg)	Joints (MPa)	Spac. (mm)	Р /	A R I W			Rating Rat	ing Space		Rating		(m)	(m) (dea.)	(deg.)	(see Leg)	(see Leg)	(see Leg)	Condition	from reference			(m)	(m)		(mm)	(psi) (kPa)	(MPa)	Grade
	(76) (111) (7		(Wil a)	(11111)						Rauii	ig italing			(III)	(III) (deg.)	(deg.)	(Hall)			30	line			(11)	(111)		(11111)	(pai) (ki a)	(wii a)	
0.0 3257.0 0.00 993.0 35.0 10.67 10.67	0.0 0.	0 OB																												
		Dark brownish red siltstone. Very																							-					
<u>40.0</u> 3217.0 12.20 980.8 <u>42.0</u> 12.80 0.61 <u>0.30</u>	49.2 0.11 18		75 15	20	0 4	4 3 4 5	16	15	7.7 5.	2 5.3	16.0	15	49.1																	
		More competnet. CC veins																												
42.0 3215.0 12.80 980.2 47.0 14.33 1.52 1.51	99.1 1.23 80	throughout. FG dark redbrown	75 15	101		1 3 4 5	16	16	7.7 15	.9 6.4	16.0	15	60.9																	
42.0 3213.0 12.00 300.2 47.0 14.00 1.02 1.01	33.1 1.23 00	Thattix with they clasts.	75 15	101	0	, , , , ,	10	10	7.7	.5 0.4	10.0	10	00.5																	
47.0 3210.0 14.33 978.7 52.0 15.85 1.52 1.52	99.7 0.81 53	.1 VL Same as above. More SST'ish	75 25	61	0 4	3 2 5	14	15	7.7 10	.5 5.8	14.0	15	53.0																	
52.0 3205.0 15.85 977.1 57.0 17.38 1.52 1.48	97.1 0.68 44	.6 VL Same as above. Broken zones.	75 25	59	0	1 3 4 5	16	45	7.7 9.	1 5.8	16.0	15	53.6																	
52.0 5205.0 15.65 977.1 57.0 17.56 1.52 1.46	97.1 0.66 44	.o VL Same as above. Broken zones.	75 25	59	0 .	3 4 5	16	15	7.7 9.	1 5.0	16.0	15	55.6																	
57.0 3200.0 17.38 975.6 62.0 18.90 1.52 0.83	54.4 0.00 0.	0 VL ame as above. Very broken. Lost co	75 25	33	0 4	3 4 5	16	15	7.7 3.	0 5.5	16.0	15	47.1																	
		Same as above. Lost core. Broken																												
62.0 3195.0 18.90 974.1 67.0 20.43 1.52 0.68	44.6 0.00 0.		75 25	27	0 4	3 2 5	14	15	7.7 3.	0 5.4	14.0	15	45.0																	
67.0 3190.0 20.43 972.6 70.0 21.34 0.91 0.80	87.5 0.00 0.	0 VL Same as above. Broken zones.	75 25	32	0	1 3 2 5	14	15	7.7 3.	0 5.4	14.0	15	45.1																	
01.0 3190.0 20.43 912.0 70.0 21.34 0.91 0.80	37.3 0.00 0.	VE Camb as above. Dionoii 20165.	75 25	32	0 4	3 2 5	14	10	7.1 3.	5.4	14.0	15	40.1																	
70.0 3187.0 21.34 971.7 72.0 21.95 0.61 0.60	98.4 0.00 0.	0 VL Same as above.	75 25	24	0 4	3 2 5	14	15	7.7 3.	0 5.3	14.0	15	45.0																	
700 0405 0 0405 0 740 750 0007 004 005	71.1 0.11 12	Clay at end. Lost core. Chocolate milk return for all of above.	00 00	-00				45			0.0	45																		
72.0 3185.0 21.95 971.0 75.0 22.87 0.91 0.65	71.1 0.11 12	.0 VL MILIK TERUTI TOT All OF ADOVE.	60 25	26	0 0	3 0 5	8	15	6.5 4.	4 5.4	8.0	15	39.2																	
75.0 3182.0 22.87 970.1 77.0 23.48 0.61 0.61	100.0 0.23 37	.7 VL Same as above. No CLY.	75 10	61	0 4	1 3 4 5	16	15	7.7 8.	0 5.8	16.0	15	52.5																	
77.0 3180.0 23.48 969.5 81.0 24.70 1.22 0.75	61.5 0.00 0.	0 VL Same as above. Lighter return.	75 25	30	0	3 0 5	9	15	7.7 3.	0 5.4	9.0	15	40.1																	
		Same as above. Much more																												
81.0 3176.0 24.70 968.3 86.0 26.22 1.52 1.52	99.7 0.80 52	.5 VL competent.	75 13	117	0 4	1 3 4 5	16	15	7.7 10	.4 6.6	16.0	15	55.6																	
86.0 3171.0 26.22 966.8 89.0 27.13 0.91 0.80	87.5 0.10 10	.9 VL Same as above. Clay at bottom.	60 15	53	0 (3 0 5	8	15	6.5 4.	3 5.7	8.0	15	39.5																	
		Chocolate brown return again.																												
89.0 3168.0 27.13 965.9 92.0 28.05 0.91 0.92	100.0 0.49 53		75 10	92	0 (3 0 5	8	15	7.7 10	.6 6.2	8.0	15	47.5																	
		Same as above until 93', then																												
		changes to grey green SST, CC																											
92.0 3165.0 28.05 965.0 97.0 29.57 1.52 1.52	99.7 0.33 21	.6 VL/ZS veins. CLY on fracs. Fault at 93'.	75 25	61	0	3 2 5	11	15	7.7 5.	6 5.8	11.0	15	45.1																	
97.0 3160.0 29.57 963.4 102.0 31.10 1.52 1.48	97.1 0.59 38	FG greenish rock. CC veins. ZS/SS/BX Breccia zones/congl zones.	70 20	74	0	1 3 4 5	16	45	7.3 8.	1 6.0	16.0	15	52.4																	
97.0 5160.0 29.57 965.4 102.0 51.10 1.52 1.46	97.1 0.59 36	.7 ZS/SS/BX Breccia zones/congl zones.	70 20	74	0 .	3 4 5	16	15	7.3 0.	1 6.0	16.0	15	52.4																	
		Green SST with CC veins.																												
102.0 3155.0 31.10 961.9 107.0 32.62 1.52 1.52	99.7 0.97 63	.6 ZS/SS/BX Congl/breccia zones up at top 1'. Same as above.	75 20	76	0 4	3 4 5	16	15	7.7 12	.5 6.0	16.0	15	57.2																	
											-																			
		Same as above. Green SST/Siltstone with conglomerate																												
107.0 3150.0 32.62 960.4 112.0 34.15 1.52 1.48	97.1 0.91 59	.7 ZS/SS/BX sections. CC veins.	75 13	114	0 4	3 2 5	14	15	7.7 11	.7 6.5	14.0	15	54.9																	
		Some or share Clisters to					\Box																							-
112.0 169.5 34.15 958.9 117.0 35.67 1.52 1.56	100.0 0.72 47	.2 ZS/SS/BX Same as above. Slickensides on fracs.	75 22	71	0 4	1 0 3 5	12	15	7.7 9.	5 6.0	12.0	15	50.1																	
		Same as above. Zone of																												
117.0 3140.0 35.67 957.3 122.0 37.20 1.52 1.52	00.7	microconglomerate near bottom.	76					45	_ .			,-	4.5.5																	
117.0 3140.0 35.67 957.3 122.0 37.20 1.52 1.52	99.7 0.63 41	.3 ZS/SS/BX Very veined.	75 25	61	0	0 2 5	8	15	7.7 8.	6 5.8	8.0	15	45.0																 	
		Same as above. Shear																												
122.0 3135.0 37.20 955.8 127.0 38.72 1.52 1.52	99.7 0.66 43	.3 ZS/SS/BX zones/broken zones. Congl zones throughout.	75 25	61	0 4	0 2 5	11	15	7.7 8.	9 5.8	11.0	15	48.4																	
		Same as above. FG green SST/Siltstone with conglomerate																												
127.0 3130.0 38.72 954.3 132.0 40.24 1.52 1.56	100.0 0.81 53	00 001 -11	75 17	92	0 4	1 1 4 5	14	15	7.7 10	.5 6.2	14.0	15	53.4																	
132.0 3125.0 40.24 952.8 137.0 41.77 1.52 1.46	95.8 0.90 59	.0 ZS/SS/BX Same as above. Completely congl now. CC veins.	75 15	97	0 4	3 2 5	14	15	7.7 11	.6 6.3	14.0	15	54.6																	
							\Box																							-
		Same as above. Turns back to SST at 138'. CC veins. FG, green.											_																	
137.0 3120.0 41.77 951.2 142.0 43.29 1.52 1.50	98.4 0.79 51	.8 ZS/SS/BX SS1 at 138. CC veins. FG, green.	75 25	60	0	3 3 5	12	15	7.7 10	.3 5.8	12.0	15	50.8																1	

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET ROCK MASS CLASSIFICATION - RMR 1989

Drill Hole Number: DH06-10

PROJECT: MORRISON COPPER GOLD

Client: PACIFIC BOOKER MINERALS

Drilling Company: GEOTECH DRILLING
Location: GRANISLE, BC

Coordinates: N 6,125,683 m, E 671,523 m

Surface Elevation: 1,001.0 n 3,283 ff Total Depth: 53.6 n 176 ff Azimuth: 90 d

 Logged By:
 JV

 Reviewed By:
 GJ

 Date Started:
 17-Feb-06

 Date Completed:
 20-Feb-06

												Azir Inclina	nuth:	90	deg deg	(down is posit	ve)				to to		m m																						
M:\1\01\00	02\07\A\Data	WMF Geot	tech SI - Fel		rillholes\[DF	DATA	alc Sheet				G	GEOLOGY - COMMENTS			RM	R - DATA (BY RUI	1)						JLATIONS							DISCON	ITINUITY	DATA								Dri		e Num	ber:	DH06-10	
Depth	Elev.	Depth	Elev.	Depth	Depth	1	ecov. F	lecov.	RQD R	RQD	Rock		UCS #	Join		Joint Condition			Water	RMR-89	RMR-89			<u> </u>	•	Depth	Elev.	Alpha Beta	Disc.	Aper. Fill.	Fill.		RMR	QTY of Slic	wrt .	Orie Q	entation uality D	Depth	Elev.	Date	Core	Gauge	Gauge UCS	Strength	
From	From	From	From	То	То	Length Le	ength	1	Length	(Type see Leg)	Weathered State, Structure, Color, Grair Size, Rock Material Strength, Rock Type	(Est.) d	Set ots Space		A R	ill Weath	TOTAL	Rating	UCS Rating	RQD Rating	Joint Spac.	Joint Condition	Water Rating	Total				Туре	Type 1 (see Leg			Joint	verti (degre clocki froi	vise Sample					Tested	Diameter	Value	Value (Isx24)	Designation Grade	
(ft)	(ft)	(m)	(m)	(ft)	(m)	(m)	(m)	(%)	(m) ((%)			(MPa)	(mm)							Rating	Rating			(m)	(m)	(deg.) (deg.))	(mm)			Jc	refere	nce		(_m)	(m)		(mm)	(psi)	(kPa) (MPa)		
0.0	3283.3	0.00	1001.0	74.8	22.80	22.80	.00	0.0	0.00	0.0	ОВ	Air Rotary to bedrock. SPT's every 5 ft.																																	
74.8	3208.5	22.80	978.2	78.0	23.78	0.98	.05 1	00.0	0.59 6	60.5	SS	Slightly weathered, crystaline structure, dark green, small grain, brown till infill.	140	175	0	4 3 2	5	14	15	11.7	11.9	7.3	14.0	15	59.9																				
79.0	2205.2	22.70	077.2	90.9	24.62	0.85	196 1	00.0	0.67 7	70 E	ss	Crystaline structure. Dark green. Grain size varying from fine sand	125 5	172	0	4 3 2		14	15	10.9	15.4	7.2	14.0	15	62.6													Ŧ							
76.0	3205.3	23.76	977.2	00.0	24.03	0.65		00.0	0.67	0.5	55	through course sand. Brown till infill decreasing towards bottom.	125	172	. 0	4 3 2	5	14	15	10.9	15.4	1.2	14.0	15	62.6													\blacksquare							
80.8	3202.5	24.63	976.4	85.8	26.16	1.52	.52	99.7	(0.9	Siltst	Fine sand grain size. Dark Green with black specks. One vein of quartz ~1cm wide. Brown till infill elsewhere.	110 1	101	0	4 3 2	5	14	15	10.0	3.1	6.4	14.0	15	48.5																				
85.8	3197.5	26.16	974.8	90.8	27.68	1.52	.49	97.7	0.72 4	7.2	ZS	Crystaline, small grains, green. Fractured heavily throughout. Touches of CC or QTZ infill. Mostly	110 1	, 88	0	4 5 2	5	16	15	10.0	9.5	6.2	16.0	15	56.8																				
												brown till infill.																											<u> </u>						
90.8	3192.5	27.68	973.3	95.8	29.21	1.52	.52	99.7	0.77 5	60.5	zs	Very fine grained crystal structure. Greenish colour. Flakey. Very fractured at top, more coherent at bottom.	80 1	127	0	4 3 2	5	14	15	8.0	10.1	6.7	14.0	15	53.8																				
												Small grain size. Some dark greenish grey, some lighter greenish grey with orange and																																	
95.8	3187.5	29.21	971.8	100.8	30.73	1.52	.47	96.4	0.61 4	10.0	ZS	reddish flecks. The lighter coloured rock crumbles easily. Highly fractured throughout. Some orange weathering. Some CC infill. Mostly dark brown till infill.	60 1	82	0	4 3 2	5	14	15	6.5	8.3	6.1	14.0	15	49.9																				
												Small grain size. Light grey to dark grey in appearance. Crush zone at																										Ħ							
100.8	3182.5	30.73	970.3	105.8	32.26	1.52	.55 1	00.0	0.92 6	60.4	ZS	40" from top. Veins of white CC or QTZ up to 2mm thick. Mostly darm brown till infill, some CC infill.	50 1	141	0	4 3 2	5	14	15	5.7	11.9	6.9	14.0	15	53.4																				
105.8	3177.5	32.26	968.7	110.8	33.78	1.52	.52	99.7	1.07 7	0.2	zs	Fine grained. Greenish grey. Infill changing: goes from CC or Q to dark brown till to greyish till. Veins of QTZ.	125 1	152	. 0	4 5 2	5	16	15	10.9	13.7	7.0	16.0	15	62.7																				
												Grey to reddish-green grey. Very																																	
110.8	3172.5	33.78	967.2	115.8	35.30	1.52	.54 1	00.0	1.27 8	13.3	ZS	fine grained. Lighter grey rock seems softer, more crusehd. Dark brown till infill to CC infill. Crush zone 17" down.	75 8	193	0	4 5 2	3	14	15	7.7	16.4	7.5	14.0	15	60.6																				
												Dark greenish grey fine grained rock. Fracture near bottom filled																																	
115.8	3167.5	35.30	965.7	120.8	36.83	1.52	.46	95.8	0.88 5	57.7	ZS	with both dark brown till and a CC layer. One fracture showing light grey and rusty coloured CC-like infill.	60 1	104	0	4 3 2	3	12	15	6.5	11.4	6.4	12.0	15	51.3																				
																																						4	4						
120.8	3162.5	36.83	964.2	125.8	38.35	1.52	.57 1	00.0	0.71 4	6.6	SS	Dark greenish grey to pinkish grey. Fine grained crystalline structure. Light infill or brown till. Some rusty red bands in the joints.	125 1	121	0	5 2 3	4	14	15	10.9	9.4	6.6	14.0	15	56.0																				
125.8	3157.5	38.35	962.6	130.8	39.88	1.52	.59 1	00.0	0.81 5	i3.1	SS	Dark green grey to purpley grey. Fine sand grain size. Light layer of dark brown till in the fractures.	150 1	99	0	4 3 2	5	14	15	12.2	10.5	6.3	14.0	15	58.1																				
												Greenish grey - dark in colour.																											\dashv						
130.8	3152.5	39.88	961.1	135.8	41.40	1.52	.52	99.7	1.18 7	7.4	SS	Bands of lighter grey rock. Grain size varies from silt sized in greenish rock through gravel fines in grey. Very slight infill of dark	140 1	127	0	4 3 2	5	14	15	11.7	15.2	6.7	14.0	15	62.6																				
					-					_		brown till.			_	+		<u> </u>									 																		

Sheet 1 of 3

M:\1\01\00102\07\A\I	Data\WMF	Geotech SI - F	eb to Apr '06'	Drillholes\[D	H06-10.xls]Data -	Calc Sheet																																	Di	rill H	Hole Nu	ımber	r:	DH06-10	
			DR	ILL RUN	DATA					G	GEOLOGY - COMMENTS			RMR - I	DATA (BY RUN)					RMF	R CALCU	LATIONS	(BY RUI	N)					DISCON	TINUITY I	DATA									PL	T STRENG	TH DATA	A / CALCs.		
Depth Elev.			Depth To			Recov.		RQD R		Rock Type	Weathered State, Structure, Color, Grain Size, Rock Material Strength, Rock Type	UCS #	Joint Set	Persis- A	Joint Condition	Weath	TOTAL	Water Rating	RMR-89 UCS	RMR-89 RQD	RMR-89 Joint	RMR-89 Joint	RMR-89 Water	RMR-89	Depth	Elev.	Alpha Beta	Disc.	Aper. Fill.	Fill. Type 2	I	RMR Joint	QTY of S	rtical rrees)- San	Ţ	Orientation Quality	Depth	Elev.	Date Tested		ore Gauge			Strength Designation	
Tion	1101	III I I I I I I I I I I I I I I I I I	10	10	Length	engur		Lengur		(see Leg)		Joi	nts Spac.		A R I	W	TOTAL	Rating		Rating	Spac.	Condition	Rating	rotai				Турб		(see Leg) (see Leg) C	Condition	clo	kwise San	mpled?				resteu					Grade	
(ft) (ft) 135.8 3147.5	(m)	(m)	(ft)	(m) 41.83	(m) 0.43	(m)	(%) 100.0	, ,	(%)	SS	Bit jammed. Same as above.	(MPa)	(mm) 86	0		_	14		7.7	11.1	Rating 6.2	Rating 14.0		53.9	(m)	(m)	(deg.) (deg.)	(mm)			Jc	161	ne			(m)	(m)		(n	nm) (psi)	(kPa)) (MPa)		
135.8 3147.8	5 41.4	0 959.6	137.2	41.83	0.43	0.43	100.0	0.24 5	6.2	55	Some grey infill (soft), some rusty red with brown till infilling.	75	86	0	4 3 2	5	14	15	1.1	11.1	6.2	14.0	15	53.9																					
											Mostly very fine grained silstone - dark green with grey. One large band of lighter grey rock with grain																																		
137.2 3146.	1 41.8	3 959.2	140.8	42.93	1.10	1.15	100.0	0.55 5	60.1	SS	size as large as small gravel. Infilling varied from CC to dark	50	128	0	4 3 2	5	14	15	5.7	10.0	6.7	14.0	15	51.4																					
											brown till (soft). Finegrained siltstone. Dark																																		
140.8 3142.5	5 42.9	3 958.1	145.8	44.45	1.52	1.53	100.0	0.66 4	13.3	ZS	greenish grey.	50	219	0	4 3 2	3	12	15	5.7	8.9	7.8	12.0	15	49.3																					
145.8 3137.5	5 44.4	5 956.5	150.8	45.98	1.52	1.52	99.7	0.91 5	i9.7	zs	Mostly fine grained siltstone. One band of reddish grey large sand grain size rock. Brown and grey till	90 1	4 109	0	4 3 2	5	14	15	8.7	11.7	6.5	14.0	15	55.9																					
											infilling.																																		
150.8 3132.5	5 45.9	8 955.0	155.8	47.50	1.52	1.52	99.7	0.91 5	9.7	zs	Dark green and grey. Fine grained. Joints look fresh with some flecks of pyrite. Hints of brown till infilling.	90 1	109	0	4 3 2	6	15	15	8.7	11.7	6.5	15.0	15	56.9																					
155.8 3127.5	5 47.5	0 953.5	160.8	49.02	1.52	1.54	100.0	0.78 5	1.2	zs	Fine grained. Dark green, grey. Some pyrite flecks showing injoints. One joint near 41" from	125 1	3 118	0	4 3 4	6	17	15	10.9	10.2	6.6	17.0	15	59.7																					
											top infilled with ~1cm of soft, black, easily brushed siltstone-like rock.																																		
		+							+		Very fine grained. Dark grey. Crush zones at 20" and 53" from top.										+																								
160.8 3122.5	5 49.0	2 952.0	165.8	50.55	1.52	1.55	100.0	0.77 5	60.5	zs	Many fractures indicates softer rock. Hardly any infill. One crush	75 1	4 111	0	4 3 4	6	17	15	7.7	10.1	6.5	17.0	15	56.2																					
		+									zone is soft, flakey black with pyrite.																																		
165.8 3117.5	5 50 5	5 950 5	170.8	52.07	1.52	1.52	99.7	1.11 7	2.8	zs	Fine grained, dark green siltstone. Veins of calcite or quartz less than 1mm thick. Isolated pyrtie bits	90 9	169	0	4 3 4	6	17	15	8.7	14.3	7.2	17.0	15	62.2																					
100.0	30.0	550.5	. 70.0	52.07	1.52		30				visible in joints. Very little infilling (calcite).		103	J				.,	J.,			0	.,	UZ.Z																					
170.9 2440.4	5 50 0	7 049 0	175.0	E2 60	1.52	1 40	97.1	1.21 7	9.4	70	Very fine grained, dark greenish grey siltstone. Hardly any infill.	125	247	0	4 3 4	6	17	15	10.9	15.6	Ω 1	17.0	15	66.7																					
170.8 3112.5	52.0	, 948.9	175.8	53.60	1.52	1.48	7.18	1.21 7	5.4	ZS	Small bits of pyrite visible in joints. Touches of CC infilling.	125	241	U	3 4	ь	1/	15	10.9	d.c1	8.1	17.0	15	00./																					
									1																																				
		1							1																																				_
									1																																				
									1																																				
									1																																				
									1																																				
									1																																				
	1																									<u> </u>												<u> </u>							

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET ROCK MASS CLASSIFICATION - RMR 1989

Drill Hole Number: DH06-11

PROJECT: MORRISON COPPER GOLD

Client: PACIFIC BOOKER MINERALS

Drilling Company: GEOTECH DRILLING
Location: GRANISLE, BC
Coordinates: N 6,125,568 m, E 671,912 m

 Logged By:
 JV / LS

 Reviewed By:
 GJ

 Date Started:
 20-Feb-06

 Date Completed:
 22-Feb-06

										Azii Inclina	ation:	90	deg deg	(down is positiv	e)			to to		m																			
M:\1\01\00102	7/A\Data\WM	MF Geotech SI - Fe			06-11.xls]Data - Calc Sh	neet																													Dr	ill Hole N			DH06-11
				L RUN [EOLOGY - COMMENTS				- DATA (BY RUN)			-		RMR CALC				T				TINUITY D			Onematio	1	Orientation			1			ATA / CALCs.	
		epth Elev.	Depth	Depth	Run Recov	. Recov.			Rock	Weathered State, Structure, Color, Grain	UCS	# Joint		Joint Condition				R-89 RMR-8		RMR-89	RMR-89	RMR-89	Depth	Elev. Alpha		Disc. Aper. Fill.	Fill.		RMR QTY	vertical		Orientation Quality	Depth	Elev.	Date			Sauge UCS	Strength
From	rom Fr	rom From	То	То	Length Length	1	Length		Туре	Size, Rock Material Strength, Rock Type	(Est.)	of Set	Persis-	Apert- Rough Infill	Weath	TOTAL Ra	ating U	CS RQD	Joint	Joint	Water	Total			1	Type 1	Type 2	Гуре 3	Joint	(degrees) clockwise	Sampled?	•			Tested	Diameter V	/alue V	/alue (Isx24)	Designation
									see Leg)		Jo	ints Spac.		A R I	W		Ra	iting Rating		Condition	Rating					(see Leg	(see Leg) (s	ee Leg) Co	ondition	from reference									Grade
(ft)	(ft) (r	m) (m)	(ft)	(m)	(m) (m)	(%)	(m)	(%)			(MPa)	(mm)							Rating	Rating			(m)	(m) (deg.)	(deg.)	(mm)			Jc	line			(m)	(m)		(mm) ((psi) (I	kPa) (MPa)	
0.0 3	65.2	.00 965.0	74.8	22.90	22.80 0.00	0.0	0.00	0.0	ОВ	Air Rotary to bedrock. SPT's every																													
0.0 3	05.2 0.	.00 905.0	74.0	22.00	22.00 0.00	0.0	0.00	0.0	ОВ	5 ft.																													
17.0 3	48.2 5.	18 959.8	21.0	6.40	1.22 1.06	86.9	0.60 4	19.2	ZS	fine grained, banded	80	7 151	0	4 3 6	5	18 1	15 8	3.0 9.9	7.0	18.0	15	57.9																	
21.0 3	44.2 6.	40 958.6	26.0	7.93	1.52 1.48	97.1	0.89 5	58.4	zs	fine grained SST. Lim hem on fracs.	80 2	25 59	0	0 4 6	5	15 1	15 8	3.0 11.5	5.8	15.0	15	55.3																	
26.0 3	39.2 7.	.93 957.1	30.5	9.30	1.37 1.40	100.0	1.29	94.0	ZS	dark grey fg banded. SST. CC veins.	100	5 280	0	4 3 4	5	16 1	15 9	.4 18.8	8.5	16.0	15	67.7																	
30.5	34.7 9.	.30 955.7	35.5	10.82	1.52 1.52	99.7	0.65	12.6	ZS	Very fg. Same as above.	90 2	20 76	0	1 3 4	5	13 1	15 8	8.8	6.0	13.0	15	51.5																	
										Fine grained. CC/Lim/hem on																													
35.5 3	29.7 10	0.82 954.2	40.8	12.42	1.60 1.58	98.7	1.22 7	76.2	ZS	fracs. CC veins.	90 1	105	0	4 3 4	5	16 1	15 8	3.7 15.0	6.4	16.0	15	61.1																	
		_								SST with CC veins and bands of									-																				
40.8	24.5 12	2.42 952.6	46.0	14.02	1.60 1.58	98.7	1.10	68.7	ZS	microconglomerate. Hem/lim on fracs.	80 1	158	0	4 3 4	5	16 1	15 8	3.0 13.4	7.1	16.0	15	59.5																	
46.0 3	19.2 14	1.02 951.0	51.0	15.55	1.52 1.57	100.0	1.57 1	0.00	ZS	SST with CC veins. CC/hem/chl on fracs.	80	3 523	0	4 3 4	5	16 1	15 8	3.0 20.2	11.0	16.0	15	70.2																	
	_	-								iraus.																													
51.0 3	14.2 15	5.55 949.5	56.0	17.07	1.52 1.50	98.4	1.00	65.6	ZS	SST with CC veins. Chlo alt CC on fracs.	80 1	150	0	4 3 4	5	16 1	15 8	3.0 12.8	7.0	16.0	15	58.8																	
										ilacs.																													
56.0 3	09.2 17	.07 947.9	61.0	18.60	1.52 1.52	99.7	0.57	37.4	ZS	SST. Chlo/cc on fracs. Small PY vein noted.	80 1	101	0	4 4 4	5	17 1	15 8	3.0 7.9	6.4	17.0	15	54.3																	
										vein notea.																													
61.0 3	04.2 18	3.60 946.4	65.7	20.02	1.42 1.42	99.7	1.22 8	35.7	ZS	SST. CC veins. Chl, CC on fracs.	80	9 158	0	1 3 4	5	13 1	15 8	3.0 17.0	7.1	13.0	15	60.1																	
65.7 30	99.5 20	0.02 945.0	71.0	21.65	1.63 1.58	97.2	1.07	65.8	ZS	SST with CC veins. Greenish CHL alt. CC/Chl on fracs.	80 1	122	0	1 1 3	5	10 1	15 8	3.0 12.9	6.6	10.0	15	52.5																	
										alt. CC/CIII OII IIacs.																													
71.0 30	94 2 21	.65 943.4	76.0	23.17	1.52 1.55	100.0	1.29 8	34.6	ZS	SST with microconglo bands. CC veins. Same as above. CC on	80	9 172	0	4 1 2	5	12 1	15 8	3.0 16.7	7.2	12.0	15	59.0																	
71.0			70.0	20.11	1.02	100.0	1.20	J 1.0	20	fracs.		2	ŭ		Ů		,			12.0	.0	33.0																	
										SST same as above. CC veins.																													
76.0 30	89.2 23	3.17 941.8	81.0	24.70	1.52 1.52	99.7	1.25	32.0	zs	Bands of microconglomerate.	80	7 217	0	1 1 2	5	9 1	15 8	3.0 16.2	7.8	9.0	15	56.0																	
										CC/CLY on fracs.																													
81.0 30	84.2 24	.70 940.3	86.0	26.22	1.52 1.50	98.4	1.21 7	79.4	ZS	SST Fine grained. Same as above.	80	8 188	0	4 1 4	5	14 1	15 8	3.0 15.6	7.4	14.0	15	60.1																	
										With CC veins.																													
86.0 30	79.2 26	5.22 938.8	91.0	27.74	1.52 1.52	99.7	0.92	60.4	ZS	Same as above. CC veins.	80 2	20 76	0	4 3 4	5	16 1	15 8	3.0 11.9	6.0	16.0	15	56.9																	
04.0	740 0-	74 222	00.0	00.07	150	4000	0.00	20.4	70	0	00			1 2						4/2	45																		
91.0 30	14.2 27	7.74 937.3	96.0	29.27	1.52 1.56	100.0	0.92 6	60.4	ZS	Same as above.	80 1	104	0	4 3 2	5	14 1	15 8	3.0 11.9	6.4	14.0	15	55.3																	
96.0 30	69.2 29	0.27 935.7	101.0	30.79	1.52 1.55	100.0	1.28 8	34.0	ZS	Fine grained SST. CHL alt. CC	80 1	129	0	4 1 2	5	12 1	15 8	3.0 16.6	6.7	12.0	15	58.3																	
3.0						. 50.0				veins.		.25	Ŭ			-				0																			
101.0 30	64.2 30	0.79 934.2	106.0	32.32	1.52 1.52	99.7	1.38 9	90.5	ZS	FG SST with CC veins. Some	80	5 304	0	4 1 4	5	14 1	15 8	3.0 18.0	8.8	14.0	15	63.8																	
	-	+		-						microconglomerate.								-				-																	
400.0	500		441.0	00.01	4.50	00-	4.40	70.5	70	FG SST with CC veins.	00					40				46.5	45																		
106.0 30	ວອ.∠ 32	932.7	111.0	33.84	1.52 1.52	99.7	1.12 7	3.5	ZS	Microcongolmerate. CHL alt. CC on fracs.	80	6 253	U	4 3 4	5	16 1	15 8	3.0 14.4	8.2	16.0	15	61.6																	
										Fine expined CCT Condition (
111.0 30	54.2 33	3.84 931.2	116.0	35.37	1.52 1.54	100.0	1.46	95.8 Z	ZS/BX	Fine grained SST. Grading from microconglomerate to	80	4 385	0	4 3 4	5	16 1	15 8	3.0 19.2	9.6	16.0	15	67.9																	
										conglomerate. CC veins.																													
116.0 3	49.2 35	37 929 6	121.0	36.89	1.52 1.52	99.7	1.11 7	72.8	BX/ZS	Conglomerate grades back to SST.	80 1	117	0	1 3 4	5	13 1	15 8	3.0 14.3	6.6	13.0	15	56.8																	
		323.0	121.0	55.55	1.02		····' /			CC veins. Chl alt.	00		Ü	, , ,	,		-	14.3	0.0	.5.0	.5	00.0																	
		_																	-																			1	
		-																																					
		1																1	1	1														1					

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET ROCK MASS CLASSIFICATION - RMR 1989

Drill Hole Number: DH06-12

PROJECT: MORRISON COPPER GOLD
Client: PACIFIC BOOKER MINERALS

Drilling Company: GEOTECH DRILLING
Location: GRANISLE, BC
Coordinates: N 6,125,182 m, E 672,265 m

| Column | C

 Logged By:
 JV / LS

 Reviewed By:
 GJ

 Date Started:
 22-Feb-06

 Date Completed:
 26-Feb-06

										Azi Inclin	imuth:	270 45	0	deg deg (down is positi	ive)				to to		m m																				
M:\1\01\00102	07\A\Data\W	MF Geotech SI			106-12.xls]Data - Calc S	iheet																		1										1		Dr	ill Hole			DH06-12	
	. 1.			RILL RUN						GEOLOGY - COMMENTS				RMR - DATA (BY RUI			l				ILATIONS	`	•		_ 1	I _ I		NTINUITY			Orientati	on	Orientation						OATA / CALCs.		
		rom Fron	n To		Run Reco	v. Recov.	RQD Length	RQD	Rock Type	Weathered State, Structure, Color, Grain Size, Rock Material Strength, Rock Type	UCS ir (Est.)	of	Joint Set	Joint Condition Persis- Apert- Rough Ini P A R I		TOTAL	Water Rating	UCS	RQD	Joint	Joint	RMR-89 Water	RMR-89 Total	Depth	Elev. Alpha		Disc. Aper. Fill. Type Type		Fill. Type 3	RMR Q1	ry of Slick v vertical (degrees clockwis from	Sampled?	Orientation Quality	Depth	Elev.	Date Tested	Core Diameter	I	Gauge UCS Value (Isx24)	Strength Designation	
(ft)	(ft)	(m) (m)	(ft)	(m)	(m) (m)	(%)	(m)	(%)	(see Leg)		(MPa)		Spac. (mm)	PARI	W			Rating		Spac. Rating	Condition Rating	Rating		(m)	(m) (deg.)	(deg.)	(mm)	g) (see Leg)	(see Leg)	Jc Jc	reference	ce		(m)	(m)		(mm)	(psi)	(kPa) (MPa)	Grade	
0.0 32	266.9	0.00 996.	0 34.5	10.52	10.52 0.00	0.0	0.00	0.0	ОВ	Air Rotary to bedrock. SPT's every 5 ft.	'																														
34.5	242.5 1	0.52 988.	6 36.3	11.07	0.55	98.4	0.60	0.3 S	Sedimentar	Very small grain size. Siltstone. Dark grey. Calcite, Quartz, Pyrite on fractures.	140	6	90	0 4 5 4	5	18	15	11.7	3.0	6.2	18.0	15	54.0																		
36.3	241.2 1	1.07 988.	2 41.3	12.59	1.52 1.52	99.7	0.96	63.0 S	Sedimentar	Siltstone. Dark Grey. CC infilling. Slightly weathered. PY infilling.	50	18	84	0 4 3 4	5	16	15	5.7	12.3	6.1	16.0	15	55.2																		
										Moderately weathered siltstone. CC																															
41.3 3	237.7 1	2.59 987.	1 46.3	14.12	1.52 1.53	100.0	0.81	53.1	Sedimentar	Grey.	75	19	81	0 4 3 4	3	14	15	7.7	10.5	6.1	14.0	15	53.3																		
46.3 32	234.1 1	4.12 986.	0 51.3	15.64	1.52 1.48	97.1	0.52	34.1	Sedimentar	Dark grey. Fine grained. Cery little infilling. CC and wee amount of clay.	75	23	64	0 4 3 4	5	16	15	7.7	7.4	5.9	16.0	15	52.0																		
51.3 32	230.6 1	5.64 984.	9 56.3	17.16	1.52 1.52	99.7	0.71	46.6 S	Sedimentary	Siltstone. Dark grey with CC veins.	. 50	20	76	0 4 3 4	5	16	15	5.7	9.4	6.0	16.0	15	52.1																		
56.3	227.1 1	7.16 983.	9 61.3	18.69	1.52 1.48	97.1	0.88	57.7 S	Sedimentar	As above. CC veins. Very little to no infilling on most joints.	60	14	106	0 4 3 4	6	17	15	6.5	11.4	6.4	17.0	15	56.3																		
61.3 32	223.5 1	8.69 982.	8 66.3	20.21	1.52 1.46	95.8	1.07	70.2 S	Sedimentar	As above.	75	12	122	0 4 3 4	5	16	15	7.7	13.7	6.6	16.0	15	59.0																		
66.3	220.0 2	0.21 981.	7 69.8	21.28	1.07 0.74	69.3	0.00	0.0	Sedimentary	Bit jammed, so only 3' in this run. Same rock as above. CC veins.	50	22	34	0 4 3 4	5	16	15	5.7	3.0	5.5	16.0	15	45.1																		
69.8 32	217.5 2	1.28 981.	0 71.3	21.74	0.46 0.53	100.0	0.48	100.0 S	Sedimentar	This is the rest of the last run.	60	1	530	0 4 3 4	5	16	15	6.5	20.2	11.0	16.0	15	68.7																		
71.3 3	216.5 2	1.74 980.	6 76.3	23.26	1.52 1.52	99.7	0.83	54.4 S	Sedimentar	Highly fractured. CC infilling.	60	20	76	0 4 3 4	3	14	15	6.5	10.8	6.0	14.0	15	52.3																		
76.3	212.9 2	3.26 979.	6 81.3	24.79	1.52 1.63	100.0	1.26	82.7 S	Sedimentary	Larger grains appearing. Fenocrysts. Turning to sand sized grains (microconglomerate) near bottom with a clay/sand filled joint ~1cm wide.	50	9	181	0 4 3 4	3	14	15	5.7	16.3	7.4	14.0	15	58.3																		
81.3 33	209.4 2	4.79 978.	5 86.3	26.31	1.52 1.48	97.1	1.19	78.1	SST	FG SST.	80	10	148	0 4 3 4	5	16	15	8.0	15.3	7.0	16.0	15	61.3																		
86.3 33	205.9 2	6.31 977.	4 91.5	27.90	1.59 1.52	95.9	0.96	60.6	SST	SST FG with microconglomerate.	80	14	109	0 4 1 4	. 5	14	15	8.0	11.9	6.5	14.0	15	55.4												 						
										CC veins. FG dark coloured siltstone.																															
91.5	202.2 2	7.90 976.	3 96.5	29.42	1.52 1.50	98.4	0.84	55.1	Siltst	Microconglomerate/SST bonds. Less CC veins.	80	12	125	0 4 3 4	5	16	15	8.0	10.9	6.7	16.0	15	56.6																		
96.5	198.6 2	9.42 975.	2 101.5	30.95	1.52 1.50	98.4	0.12	7.9	Siltst	Dark brown fg siltstone. Very broken bankds of microconglomerate/sst	80	25	60	0 4 1 4	5	14	15	8.0	3.9	5.8	14.0	15	46.7																		
101.5 3	195.1 3	0.95 974.	1 106.5	32.47	1.52 1.57	100.0	1.09	71.5	Siltst/SST	Dark brown banded SST/Siltstone	80	7	224	0 4 1 4	5	14	15	8.0	14.0	7.9	14.0	15	58.9																		
106.5	191.6 3	2.47 973.	0 107.8	32.85	0.38 0.43	100.0	0.20	52.5	SST/Siltst	Same as above.	80	6	72	0 4 1 4	5	14	15	8.0	10.4	6.0	14.0	15	53.4																		
107.8 3	190.7 3	2.85 972.	8 111.3	33.92	1.07 1.07	100.0	1.01	94.7	SST/Siltst	Greenish SST at top for 3: then back to dark choco brown fq	80	5	214	0 4 1 6	5	16	15	8.0	19.0	7.7	16.0	15	65.7												\vdash						
									. amot	siltstone/sst. CC veins.																															
111.3 3	188.2 3	3.92 972.	0 116.3	35.44	1.52 1.51	99.1	1.15	75.4	Siltst/SST	dark brown siltstone with bands of sst. Fine CC veins.	80	6	252	0 4 1 4	5	14	15	8.0	14.8	8.2	14.0	15	60.0																		
116.3	184.7 3	5.44 970.	9 121.3	36.97	1.52	100.0	0.96	63.0	Siltst/SST	same as above. Dark brown sst banded. CC veins. Green alt ones.	. 80	12	129	0 0 1 3	5	9	15	8.0	12.3	6.7	9.0	15	51.1																		
121.3	181.1 3	6.98 969.	8 126.3	38.51	1.52 1.52	99.7	1.15	75.4	SST/Siltst	reddish brown and green SST. Few CC veins. Green after 1st 2'.	W 80	14	109	0 1 1 2	: 5	9	15	8.0	14.8	6.5	9.0	15	53.3																		
126.3	177.6 3	8.51 968.	8 131.3	40.03	1.52 1.50	98.4	1.11	72.8	SST/Siltst	Fine to course grained green SST/Siltstone. Banded CC veins.	60	9	167	0 4 3 2	5	14	15	6.5	14.3	7.2	14.0	15	56.9																		

M:\1\01\00102\07\A	Data\WMF Geotech	SI - Feb to Ap	or '06\Drillhole	s\[DH06-12.x1	is]Data - Calc Si	heet																													Dri		le Nun			DH06-12
			DRILL R	UN DAT	A				G	EOLOGY - COMMENTS			RMR - DAT	ΓA (BY R	UN)				RI	MR CALCU	ILATIONS	S (BY RUN)						DISCON	ITINUITY DATA							PLT S	TRENGTH	I DATA /	CALCs.	
Depth Elev.	Depth E	lev. De	epth De	pth Ru	in Recov	. Recov.	RQD	RQD	Rock		UCS #	Joint		Joint Cond	lition		Water	RMR-89	RMR-89	RMR-89	RMR-89	RMR-89 RMR-89	Depth	Elev.	Alpha	Beta	Disc. Aper.	Fill.	Fill. Fill.	RMR	QTY of Slick wrt	Orientation Quality	Depth	Elev.	Date	Core	Gauge	Gauge	UCS	Strength
From From		rom T		o Len			Length			Weathered State, Structure, Color, Gra Size, Rock Material Strength, Rock Typ	ir o (Est.) of	Set	Persis- Apert-	Rough	Infill Weat	h TOTAL			RQD	Joint	Joint	Water Total	,				Туре	Type 1		Joint	vertical (degrees)				Tested	Diamete		Value	(Isx24)	Designation
11011	110			2011	gui		Longar			Size, Rock Material Strength, Rock Typ	e (Lot.)						raung										.,,,,				clockwise	?			100100	Diamoto	, vaido	vaido	(IOXE-I)	
									(see Leg)		Joints	Spac.	P A	R	I W			Rating	Rating		Condition	Rating							(see Leg) (see Leg		from reference									Grade
(ft) (ft)	(m) (i	m) (f	ft) (ı	n) (m	n) (m)	(%)	(m)	(%)			(MPa)	(mm)		-						Rating	Rating		(m)	(m)	(deg.)	(deg.)	(mm)			Jc	line		(m)	(m)		(mm)	(psi)	(kPa)	(MPa)	
										Cross CCT/Ciltotono to A. of run										<u> </u>				-																
131.3 3174.	0 40.03 96	7.7 136	6.3 41	.55 1.5	1.52	99.7	0.55	36.1	ST/Siltst/ZS	Green SST/Siltstone to ~4; of run then highly broken ZS (?). CC	60 25	61	0 1	1	2 5	9	15	6.5	7.7	5.8	9.0	15 44.1																		
										veins abound.																														
136.3 3170.	5 41.55 96	66.6	1.3 43	.08 1.5	1.48	97.1	0.50	32.8	ZS	Dark grey siltstone with CC veins.	. 60 10	148	0 1	3	4 5	13	15	6.5	7.2	7.0	13.0	15 48.7																		
141.3 3167.	0 43.08 96	55.5 146	6.3 44	.59 1.5	1.56	100.0	1.05	69.6	ZS	Same as above.	80 14	111	0 0	1	0 5	6	15	8.0	13.6	6.5	6.0	15 49.1																		
146.3 3163.	4 44.60 96	64.5 15 °	1.3 46	.13 1.5	1.52	99.7	0.99	64.9	ZS	Same as above. CC veins.	80 15	101	0 4	1	2 5	12	15	8.0	12.7	6.4	12.0	15 54.1																		
151.3 3159.	9 46.13 96	33.4 156	6.3 47	.65 1.5	52 1.51	99.1	1.14	74.8	ZS	Same as above.	80 10	151	0 4	1	4 5	14	15	8.0	14.7	7.0	14.0	15 58.7																		
																				1																				
156.3 3156.	4 47.65 96	52.3 16	1.3 49	.18 1.5	1.45	95.1	0.99	64.9	ZS	Same as above.	80 15	97	0 4	1	4 5	14	15	8.0	12.7	6.3	14.0	15 56.0																		
161.3 3152.	8 40 10 00	12 40	63 50	70 45	2 4 50	00.4	1.00	66.0	ZS	Same as above.	80 15	100	0 4	1	4 5	14	15	8.0	13.1	6.3	14.0	15 56.5														<u> </u>				
101.3 3152.	43.10 90	11.2	0.0	.70 1.5	1.30	90.4	1.02	00.9	25	Same as above.	00 15	100	0 4		7 5	14	15	0.0	13.1	0.3	14.0	10 00.5		1															-+	
	+ +									70								1	1	1 +	- t			 																
166.3 3149.	3 50.70 96	60.1 17	1.3 52	.23 1.5	1.48	97.1	1.21	79.4	ZS	ZS with layers of greenish sst/microconglomerate. CC veins.	80 7	211	0 0	3	2 5	10	15	8.0	15.6	7.7	10.0	15 56.4																		
	+ +									J								1	1	+ +				 												 				
471.0		0.4		-						ZS with layers of green sst. CC	00									++	44.5	45														 				
171.3 3145.	5 52.23 95	9.1 176	p.3 53	./5 1.5	1.55	100.0	1.27	83.3	ZS	veins. Dark grey sst/siltstone.	80 9	172	0 4	1	4 5	14	15	8.0	16.4	7.2	14.0	15 60.7																		
																		1	1																	<u> </u>				
176.3 3142	2 53.75 95	8.0 18	1.3 55	.27 1.5	1.52	99.7	1.26	82.7	SS/VL	Greenish SST/Siltstone. CC veins Bands of microconglomearte/sst.	80 6	253	0 4	1	4 5	14	15	8.0	16.3	8.2	14.0	15 61.5																		
0.42.			55		52	00.7	20		23,12	Bands of microconglomearte/sst.	v	_50			, J			0.0	.0.0			01.3																		
										Contact with conlomerate at 183'. Pebble sized. Same as above.																														
181.3 3138.	7 55.27 95	6.9	6.3 56	.80 1.5	1.51	99.1	1.26	82.7	SS/VL	Congomerate ends at bottom of	80 11	137	0 4	3	2 5	14	15	8.0	16.3	6.8	14.0	15 60.1																		
										run.																														
										70 111																														
186.3 3135.	1 56.80 95	55.8 19	1.3 58	.32 1.5	1.50	98.4	1.12	73.5	SS/VL	ZS like again with some green sections. CC veins.	80 8	188	0 1	3	2 5	11	15	8.0	14.4	7.4	11.0	15 55.9																		
EOH																																								
																				<u> </u>																				
-	-										+			+ +						-					-				-			+								
																																+								
											1 1			+ +						+ +								+												
																						,																		·
																		1	1	1 1																				
	1																	1		1 1																				
	+																	1	1	1 1																 				
	+																	1	1	1 1				-												-				
	+ +																	1	1	1 +				 																
																			1	1 1																			- +	
																		1	1	1 1	<u> </u>																			
																		1			İ																			
																		1	1																	<u> </u>				
				_														1		1																<u> </u>				
	1 1																	<u> </u>	1	1 1																<u> </u>				
	+																	1	1	+																-				
	+			-														1	1	1 1	+			-												-				
	+ +																	1	1	+ +		-														<u> </u>				
	+ +																	1	1	1 1																<u> </u>				
	+ +																	1	1	1 1	- t			1																
	1																	1	1	1 1																				
																				1 1		1																		
																			1	1 1	<u> </u>																			
																			1	1 1																			- 1	
																					1																		1	
																																		-						
																								<u> </u>																
		_	_	_	_	_	_	_	_	·	_	_				_	_	_	_			·		_		_	·	_		_	·			_	·	_		_		

GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET **ROCK MASS CLASSIFICATION - RMR 1989**

DH06-13 Drill Hole Number:

PROJECT: MORRISON COPPER GOLD Client: PACIFIC BOOKER MINERALS Drilling Company: GEOTECH DRILLING Location: GRANISLE, BC

2,650 ft 20.3 m

Drill Type: HQ Triple Tube HQ3 61.0 mm

Logged By: Reviewed By: Date Started:

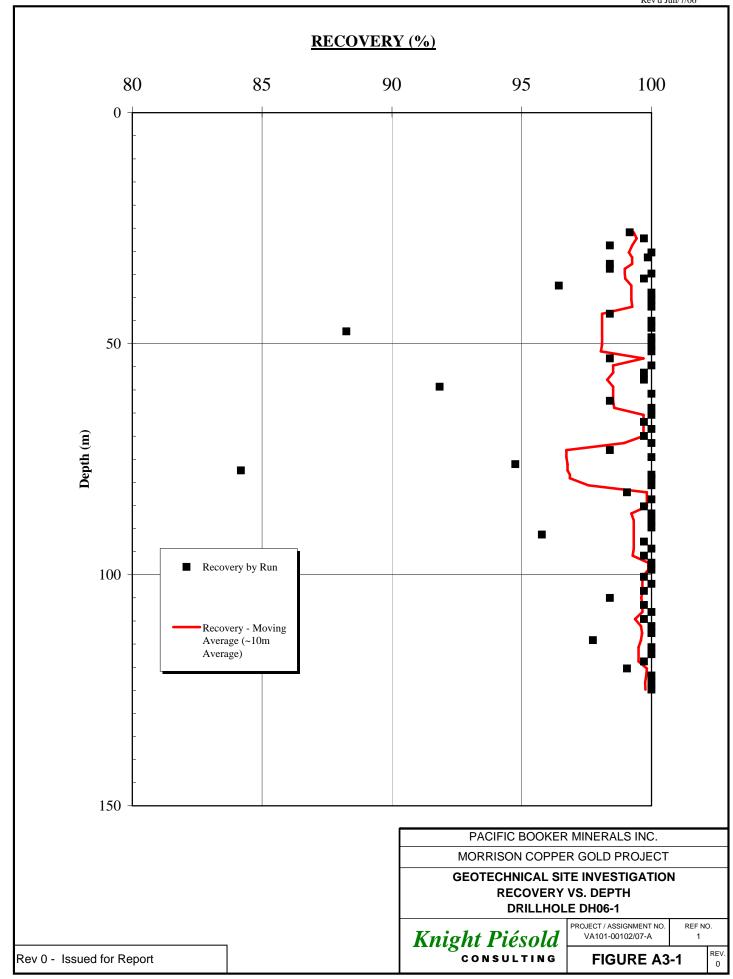
			_			RANISLE,					Total	Depth:	20.3	m				er: From		to		m					_	Date Sta			1ar-06	_												
			Co	oordinat	es : <u>N</u> (6,119,111	m, E 670),800 m			<u> </u>	imuth:	67 270	ft dea		Core E	iamete	er: From		to to		m m		45.0	mm			Date Compl	leted:	24-N	/lar-06	-												
											Inclin	imuth:	90	deg (d	lown is	positive)				to		m		-																				
M:\1\01\001	02\07\A\Data\W	VMF Geote	ech SI - Feb to			3.xls]Data - Calc S	Sheet																															Dri	II Hole				DH06-13	3
				DRILL	RUN DA	TA					GEOLOGY - COMMENTS			RMR - D	ATA (B	Y RUN)				RM	IR CALC	ULATION	S (BY RU	JN)						DISCONTINUITY	/ DATA		Conemiation		Orleatetles				PLT ST	RENGTH	H DATA / (CALCs.		
Depth	Elev.	Depth	Elev.	Depth D	epth I	Run Reco	v. Recov	RQD	RQD	Rock		UCS #	Joint		Joint	Condition		Water	RMR-89	RMR-89	RMR-89	RMR-89	RMR-89	RMR-89	Depth	Elev. Al	Alpha	Beta Disc.	Aper.	Fill. Fill.	Fill. RMR	QTY	of Slick wrt vertical		Orientation Quality	Depth	Elev.	Date	Core	Gauge	Gauge	UCS	s	Strength
From	From F	From	From	То	To Le	ength Lengt	th	Length		Туре	Weathered State, Structure, Color, Gra Size, Rock Material Strength, Rock Typ	e (Est.) o	f Set	Persis- Ap	pert- Rou	igh Infill We	ath TOT	AL Rating	UCS	RQD	Joint	Joint	Water	Total				Туре		Type 1 Type 2	Type 3 Joint		(degrees)- clockwise from	Sampled?		i '	1	Tested	Diameter	Value	Value	(Isx24)	De	esignation
										(see Leg	g)	Join	nts Spac.	P	A R	: I v	,		Rating	Rating	Spac.	Condition	Rating							(see Leg) (see Leg)	(see Leg) Condition	1	from			i '	1	1		, I				Grade
(ft)	(ft)	(m)	(m)	(ft)	(m)	(m) (m)	(%)	(m)	(%)			(MPa)	(mm)								Rating	Rating			(m)	(m) (d	deg.) (d	deg.)	(mm)		Jc		reference			(m)	(m)	—	(mm)	(psi)	(kPa)	(MPa)		
0.0	0050.0	0.00	000.0	35.0 1	2.07	0.67	0.0		0.0	0.0																											\vdash	\leftarrow			\vdash	. +		
0.0	2650.2	0.00	808.0	35.0	J.67 1	0.67	0.0		0.0	OB																														=	\vdash			
											Black and Grey with white and																										(T							
37.5	2612.7 1	1.43	796.6	75.0 2	2.87 1	1.43 1.21	1 10.6	0.99	8.7	BFP	green phenocrysts. QTZ, PY infilling. QTZ, PY veins.	150 1	110	0	4 3	4 5	16	15	12.2	4.0	6.5	16.0	15	53.7												()	ı /				1			
41.5	2608.7 1	2.65	795.3	46.5	4.18 1	1.52 1.53	100.0	1.34	87.9	BFP	As above. QTZ, PY, and CC infilling.	80 10	153	0	4 3	4 5	16	15	8.0	17.4	7.0	16.0	15	63.5													1 /				1			
46.5	2603.7 1	4.18	793.8	51.5	5.70 1	1.52 1.53	100.0	1.13	74.1	BFP	As above. Some blueish green phenocrysts. CC infilling.	120 12	128	0	4 3	4 3	14	15	10.6	14.5	6.7	14.0	15	60.9												()	ı /				1			
51.5	2598.7 1	5.70	792.3	56.5	7.23 1	1.52 1.56	100.0	1.37	89.9	BFP	As above.	150 8	195	0	4 3	4 5	16	15	12.2	17.9	7.5	16.0	15	68.6													↓				igspace			
56.5	2593 7 1	7 23	790.8	61.5	3 75 4	1.52 1.53	3 100.0	1.52	100.0	BFP	As above.	150 6	255	0	4 3	4 5	16	15	12.2	20.2	8.2	16.0	15	71.7													\vdash				$\vdash \vdash$			
						1.02	100.0	1.03	100.0	OFF'	7.5 above.	100 6	200	,	. 3	7 5	10	. 13	14.4	20.2	0.2	10.0	10	. 1.7																		-+		-
61.5	2588.7 1	8.75	789.3	66.5	0.27 1	1.52 1.47	7 96.4	1.47	96.4	BFP	As above.	120 6	245	0	4 5	4 5	18	15	10.6	19.4	8.1	18.0	15	71.1																				
																																					 /							
																				1																	 				\vdash	+		
																																					/ /							-
																																				-	\vdash	\longleftarrow			1			
																																					 							
																																					\vdash	\leftarrow			1			
																																									+			
																																					/ /							
																																					\longrightarrow	-						
																																					 				\vdash			
																																									\vdash			
																																				-	\vdash	\longleftarrow			↓			
																																					 							
																																				-								
																				1																	 				\vdash	. 		
																				1																	 				\vdash	,—+		
		[↓ ——Ĭ							
																																					\vdash				$\vdash \vdash$			
																				1																	- 					-		
										<u> </u>										1																	 				↓			
					_															1																	 				\vdash	,—+		-
																																					↓ ——]							
																				1																	 				$\vdash \vdash$			
																				1																						-+		-
																																					 /				igwdown			
																				1																	 				\vdash			
																				1																	- 				\vdash	-+		
																																					↓				igspace			
																				1		-		-													 				\vdash	+		
									1											1		1		1													 				-			

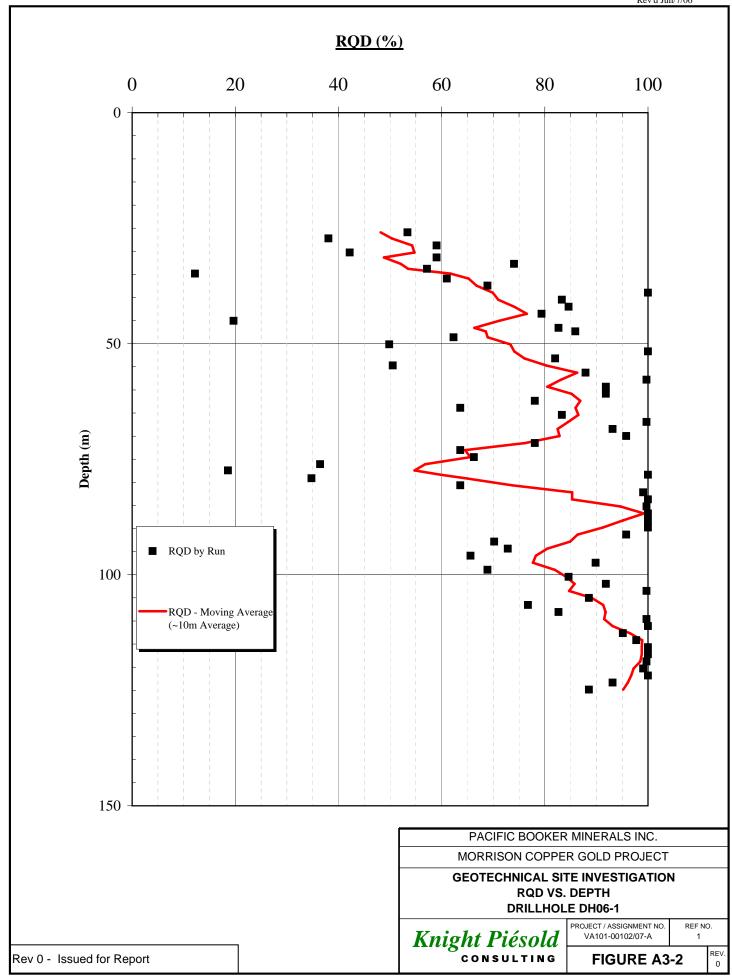
GEOTECHNICAL DRILLHOLE LOGGING DATA SHEET **ROCK MASS CLASSIFICATION - RMR 1989**

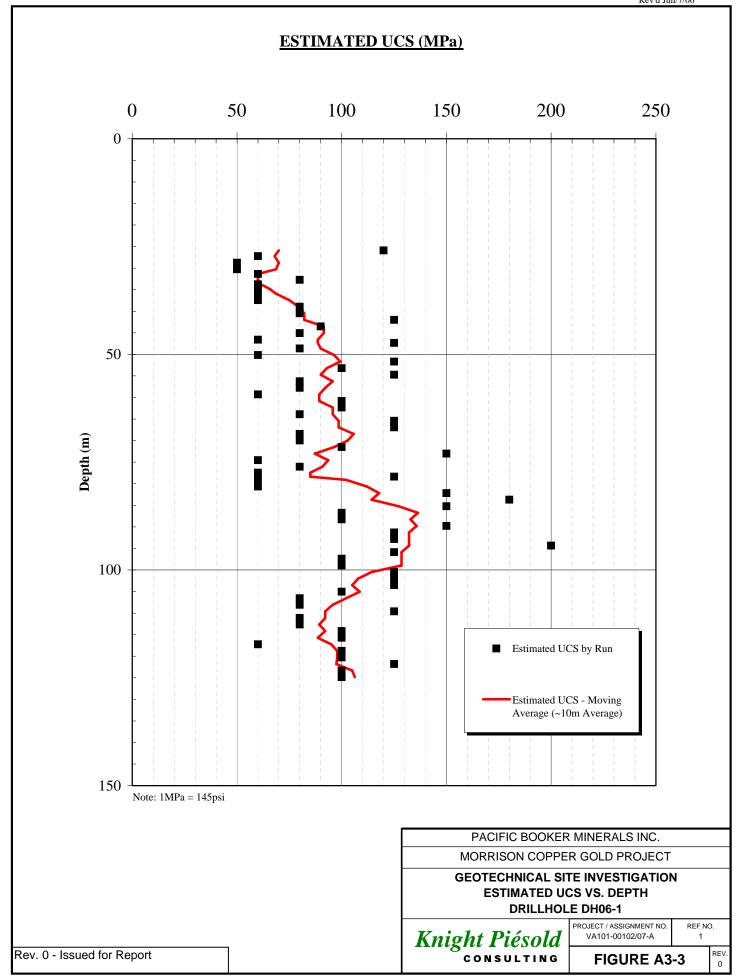
DH06-14 **Drill Hole Number:**

PROJECT: MORRISON COPPER GOLD Drill Type: HQ Triple Tube Client: PACIFIC BOOKER MINERALS Logged By: Reviewed By: Drilling Company: GEOTECH DRILLING HQ3 61.0 mm Location: GRANISLE, BC Date Started: 20-Mar-06 Coordinates : N 6,119,159 m, E 671,396 m 22-Mar-06 Date Completed:

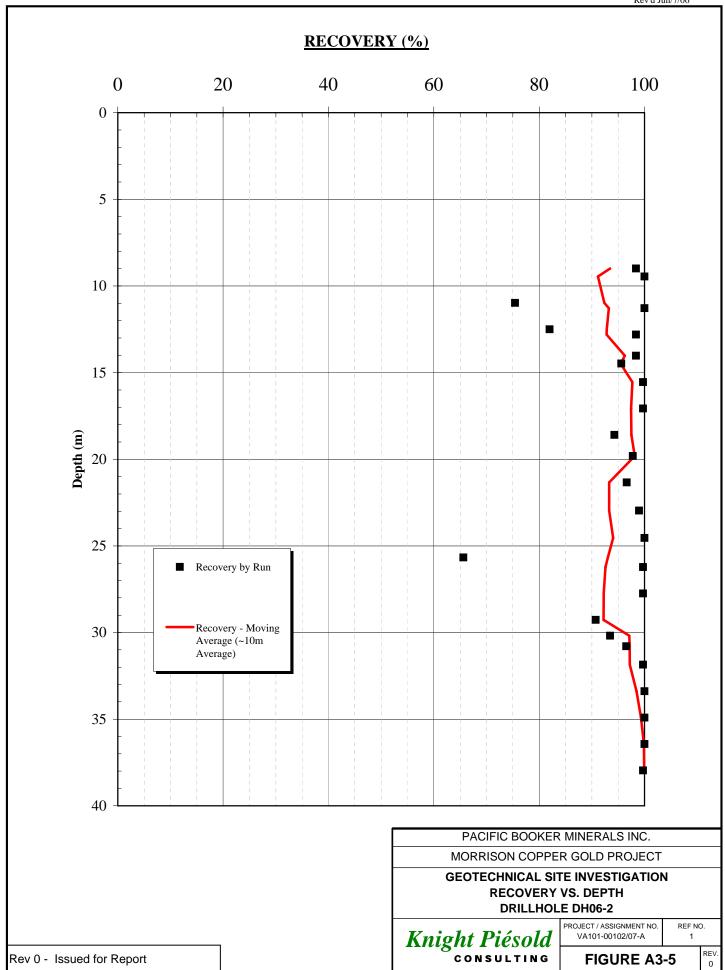
Managagaga	(TA) Door	ME Court of C	Esh to A - We're	dilleda (957)	06-14.xls]Data - Cak	. Chan				Inclin	ation:	90	deg (do	vn is positive)			to	m	n														Dr	ill Hole	Num	ber.	וח	H06-14
M:\1\01\00102\	I/\A\Data\W	Mr Geotech SI - I		L RUN		c Sheet				GEOLOGY - COMMENTS	I		RMR - DA	TA (BY RUN)			1	RM	R CALCUI	LATIONS (E	BY RUN)						DISCON	NTINUITY DATA					T		PLT STF				100-14
		epth Elev. From From		Depth To		cov. Recov	. RQD Lengti		Rock Type (see Leg	Weathered State, Structure, Color, Grain Size, Rock Material Strength, Rock Type	UCS # (Est.) of	Joint Set Spac.		Joint Condition	Weath TOTA	Water L Rating	RMR-89 UCS Rating	RQD		Joint W	MR-89 F Vater ating	RMR-89 Total	Depth	Elev. Alpha	a Beta	Disc. Aper.	Type 1	Fill. Fill. Type 2 Type 3		(d	Slick wrt vertical egrees)- ockwise from	Orientation Quality ed?	Depth Elev.	Date Tested	Core Diameter	Gauge Value		UCS (Isx24)	Strength Designation Grade
(ft)	(ft) ((m) (m)	(ft)	(m)	(m) (n	n) (%)	(m)	(%)			(MPa)	(mm)					9	9		Rating	9		(m)	(m) (deg.	.) (deg.) (mm)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Jc	re	eference line		(m) (m)		(mm)	(psi)	(kPa)	(MPa)	
0.0 27	55.2 0	0.00 840.0	66.0	20.12	20.12	0.0		0.0	OB																														
70.0 26	85.2 21	1.34 818.7	7 75.0	22.87	1.52 1.5	56 100.0	1.56	100.0	ZS	Slightly Weathered, CC infilling, dark grey, fine grained, siltstone/mudstone.	80 2	780	0 4	3 4	5 16	15	8.0	20.2	13.1	16.0	15	72.3																	
75.0 26	80.2 22	2.87 817.1	80.0	24.39	1.52 1.5	52 99.7	1.26	82.7	zs	Dark grey with "bubbles" of lighter grey. Fine grained. CC and CLY infilling. Some hard orange infilling.	80 4	380	0 4	3 2	3 12	15	8.0	16.3	9.6	12.0	15	60.9																	
80.0 26	75.2 24	4.39 815.6	85.0	25.91	1.52 1.5	51 99.1	1.34	87.9	ZS	Light Grey. CC, CLY, PY infilling.	60 4	378	0 4	3 4	5 16	15	6.5	17.4	9.6	16.0	15	64.5																#	
85.0 26	70.2 25	5.91 814.1	90.0	27.44	1.52 1.3	89.2	1.28	84.0	zs	Light Grey, CC, PY infliing and veins up to 4mm wide (PY, CC)	60 7	194	0 4	1 4	5 14	15	6.5	16.6	7.5	14.0	15	59.6																	
90.0 26	65.2 27	7.44 812.6	95.0	28.96	1.52 1.5	52 99.7	1.10	72.2	ZS	wish with some reddish areas and b	80 15	101	0 4	1 2	5 12	15	8.0	14.1	6.4	12.0	15	55.5																	
	+																																					#	
																																						\pm	
																																						#	
																																						#	
																																						#	
																																						\pm	
																																						#	
																																						#	
																																						#	
																																						\pm	
	\perp																																					#	
	#																																					#	
	\mp																																					+	
																																						\equiv	
	\pm																																					\pm	
	#																																					#	
																																						#	
																																						#	
	-																																					#	
																																						\pm	

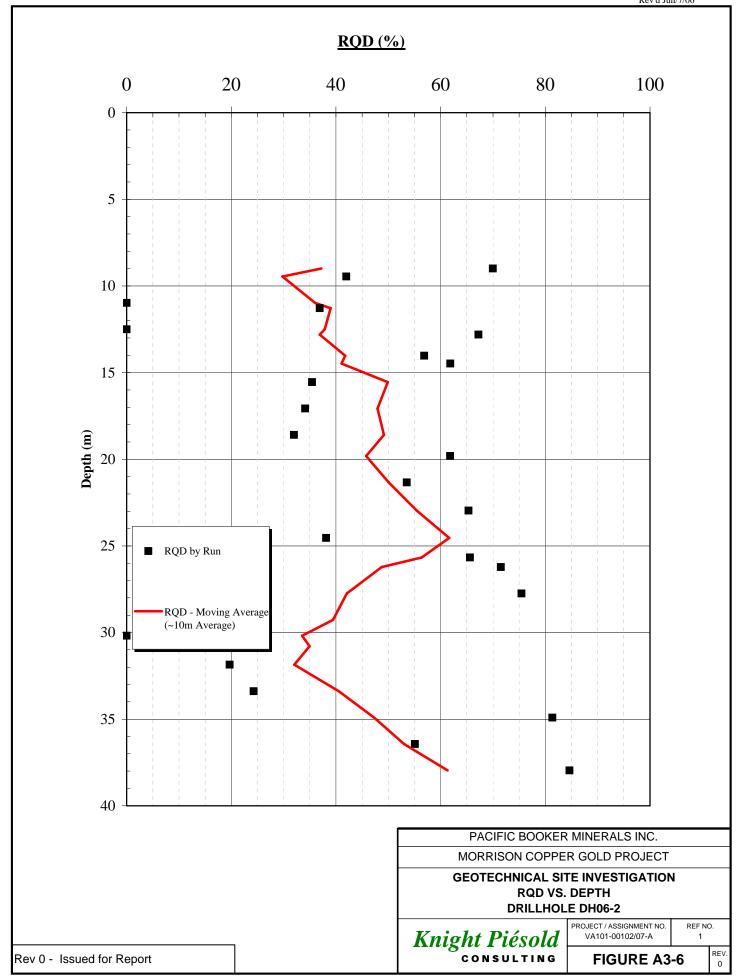

APPENDIX A3

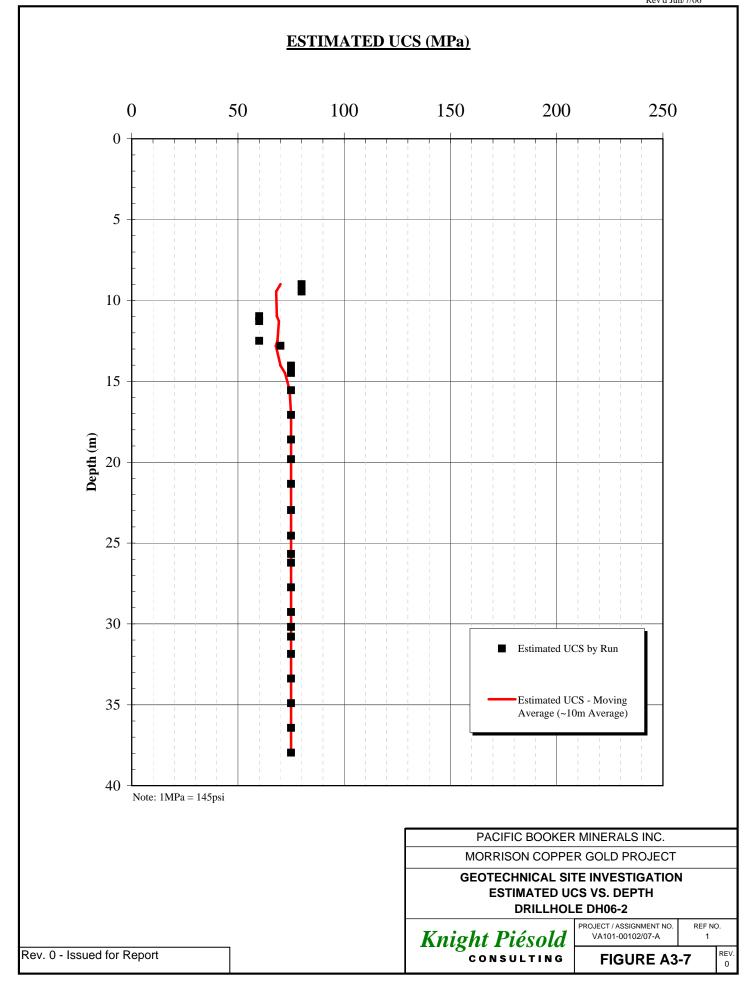

(Rev 0)

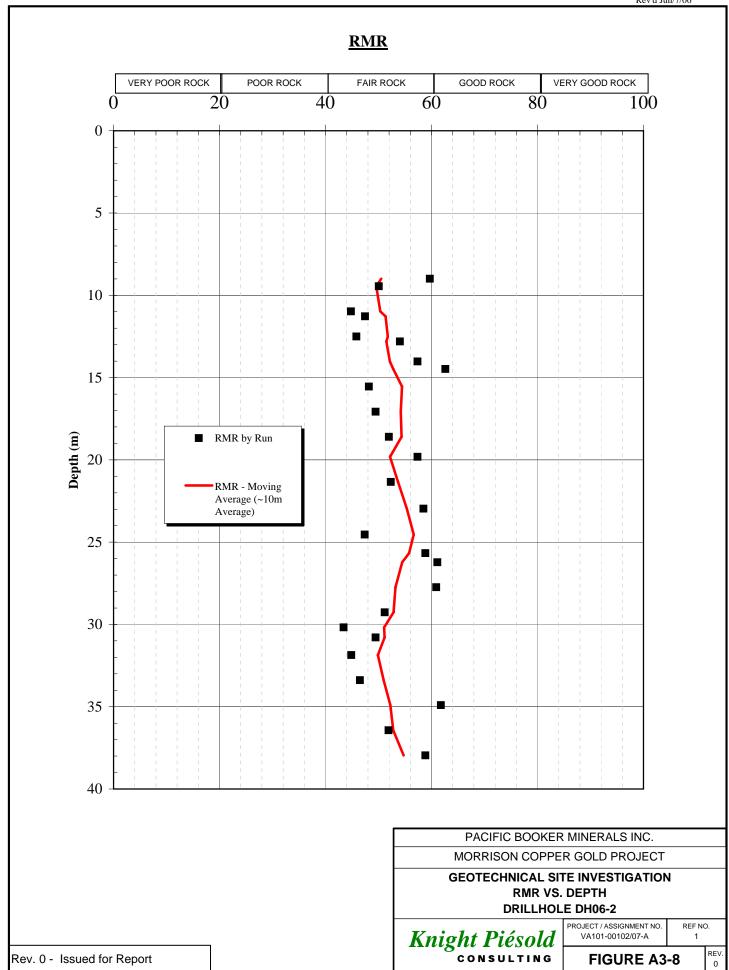

BEDROCK DRILLING GRAPHS RECOVERY, RQD, ESTIMATED UCS, AND RMR VS. DEPTH

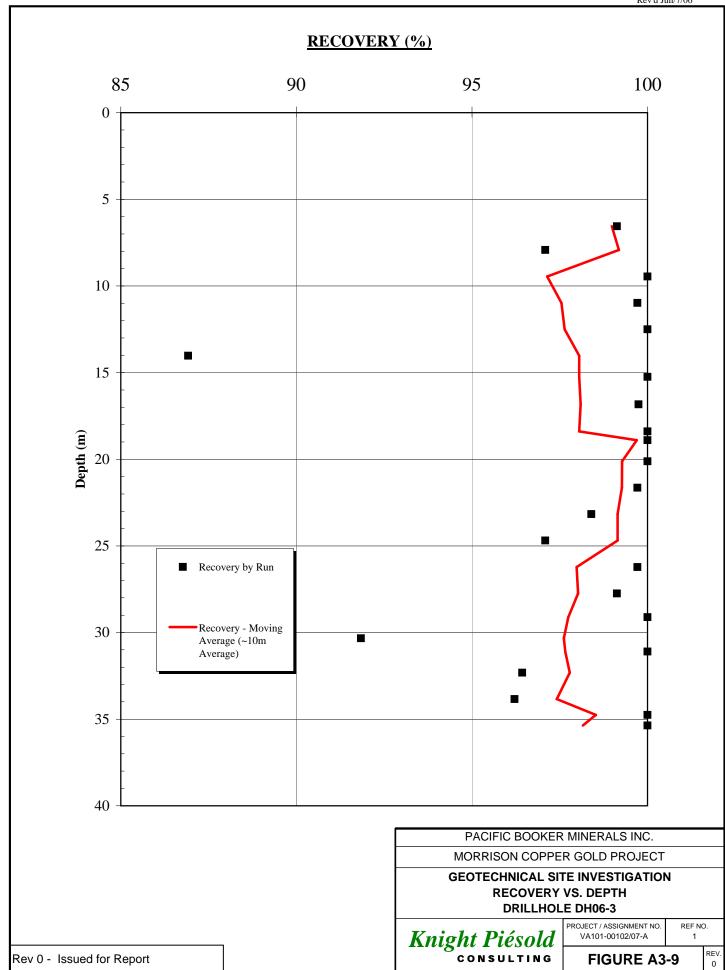
- Drillhole DH06-01
- Drillhole DH06-02
- Drillhole DH06-03
- Drillhole DH06-04
- Drillhole DH06-06
- Drillhole DH06-07
- Drillhole DH06-10
- Drillhole DH06-11
- Drillhole DH06-12
- Drillhole DH06-13
- Drillhole DH06-14

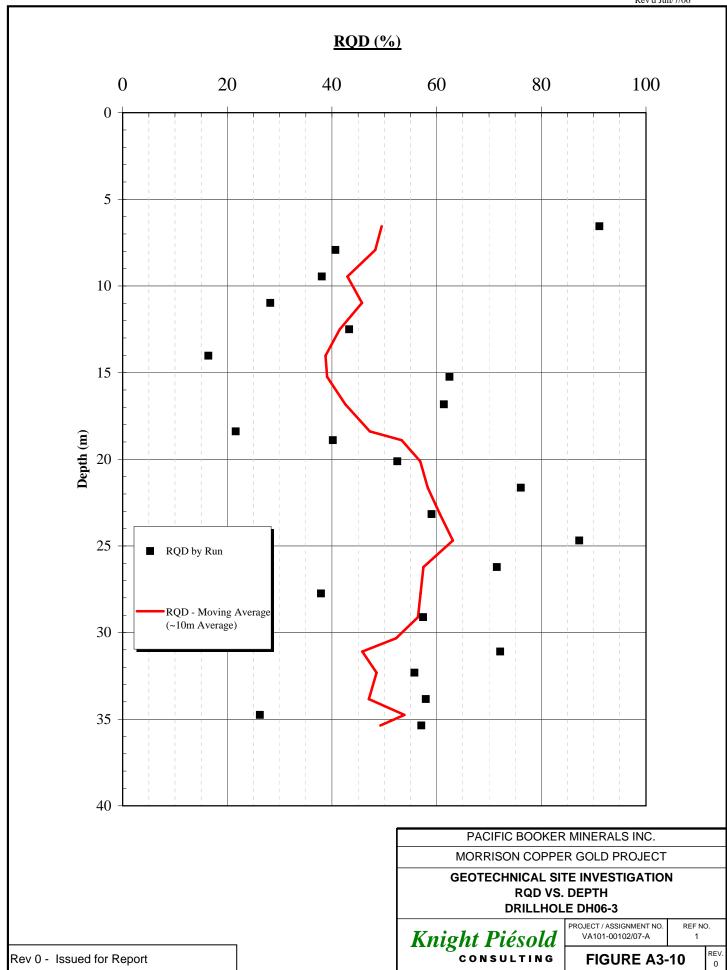

(Figures A3-1 to A3-44)

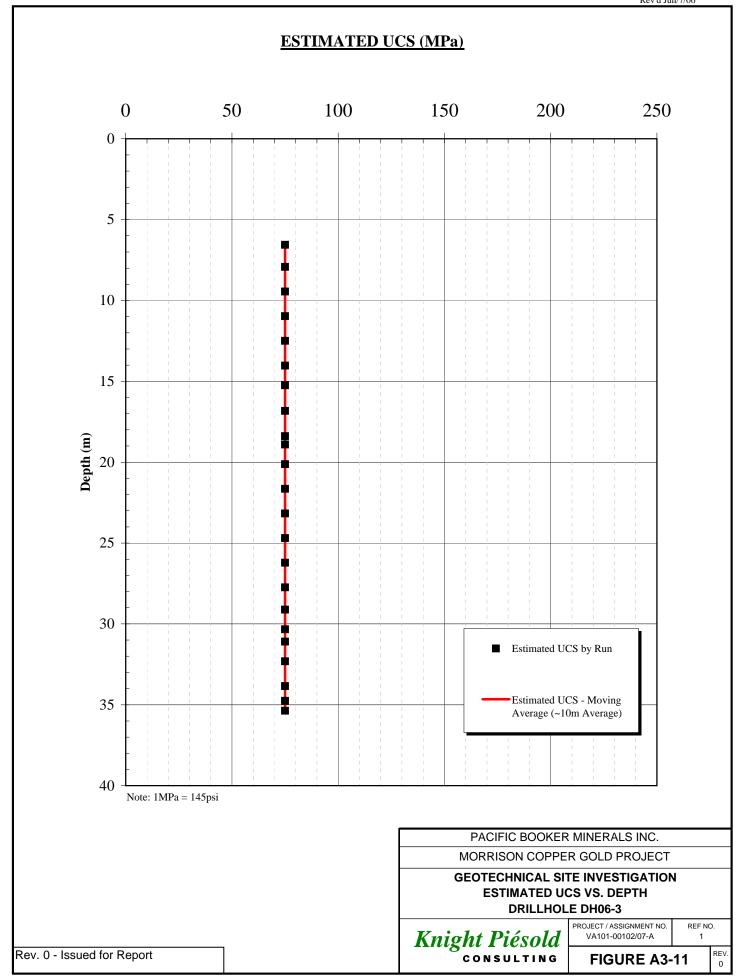


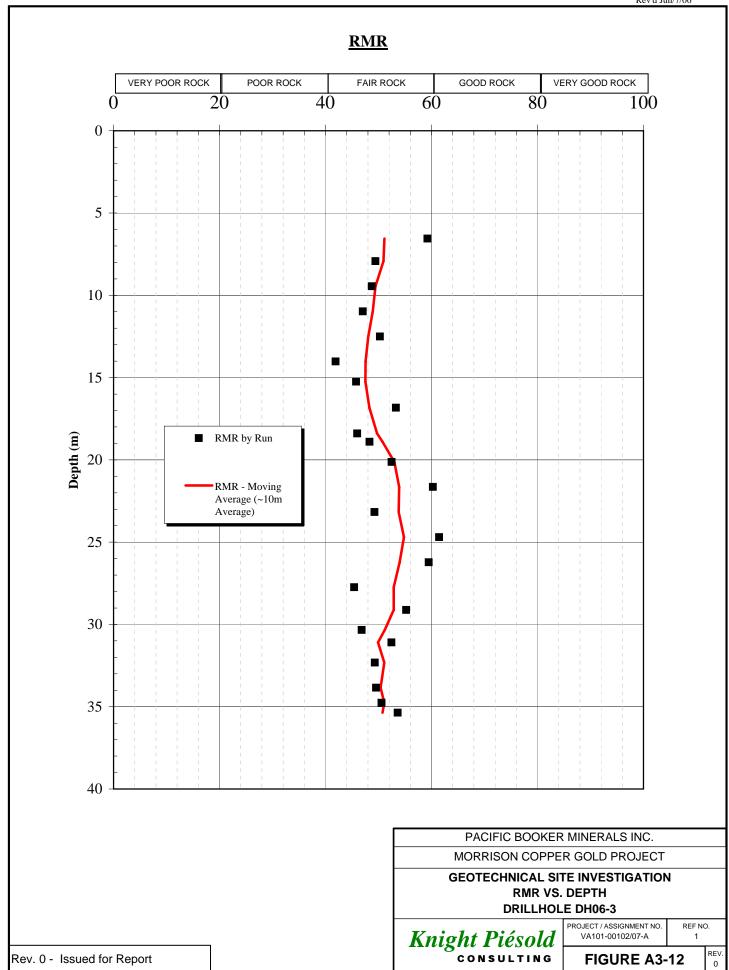


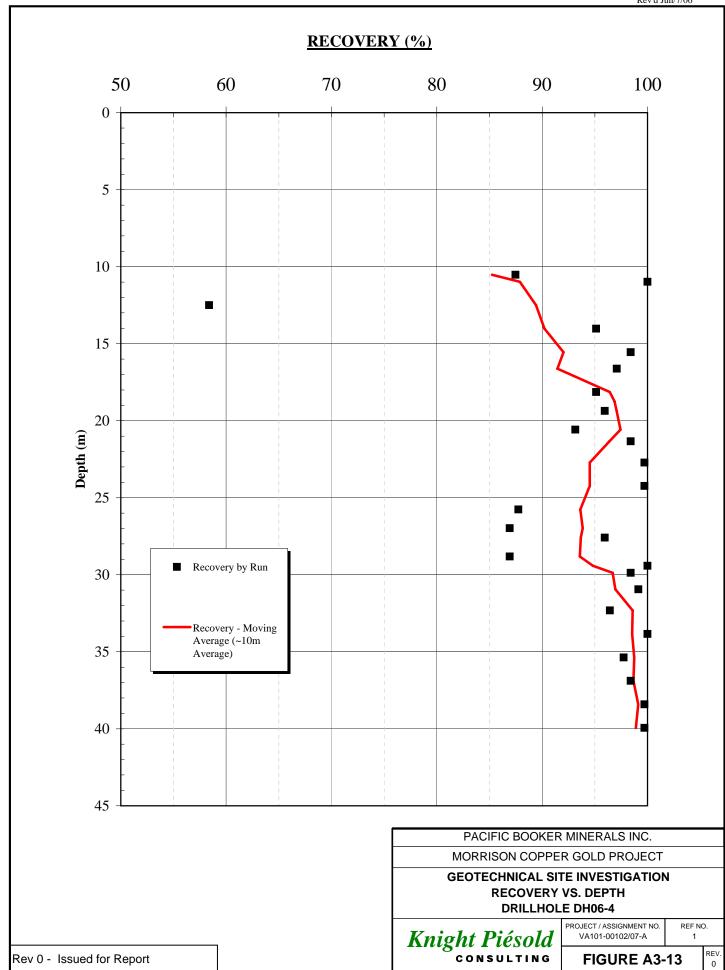


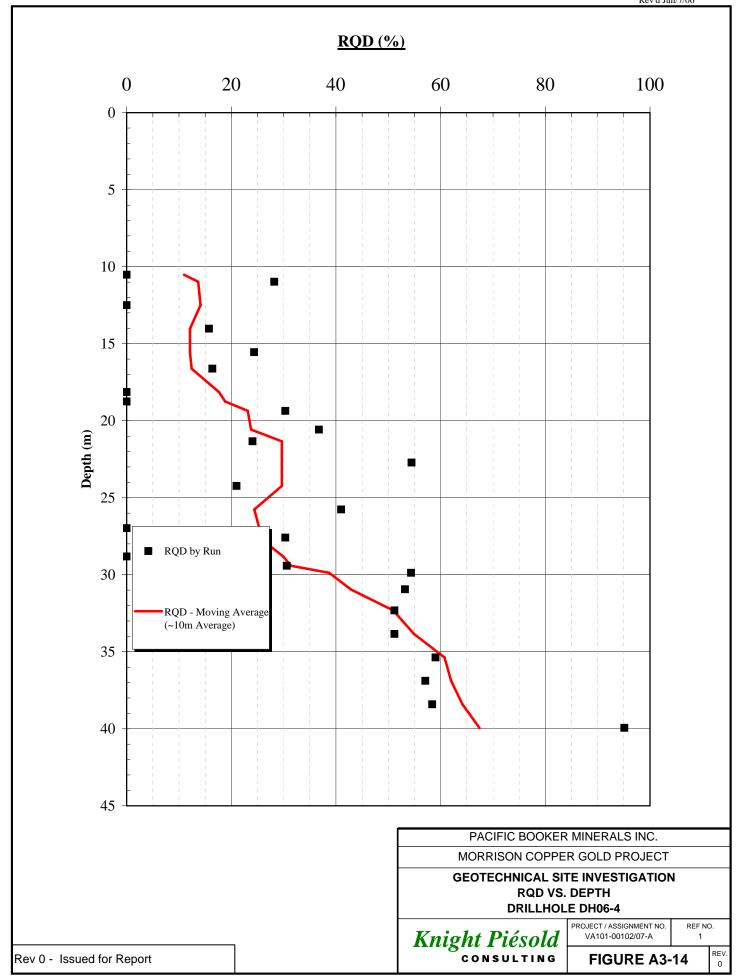


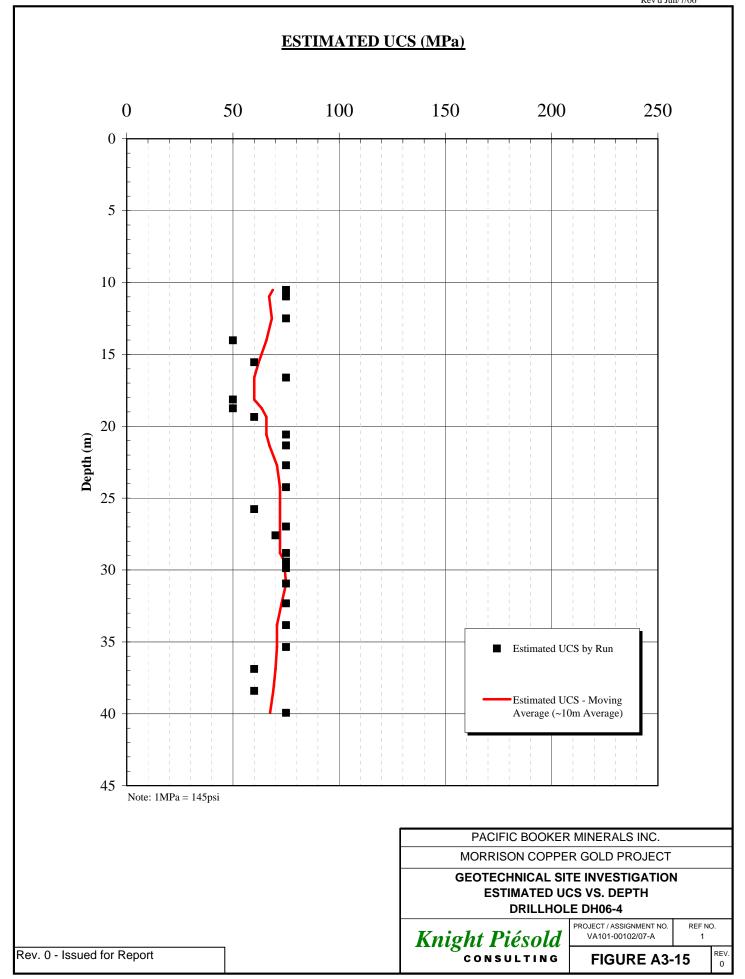


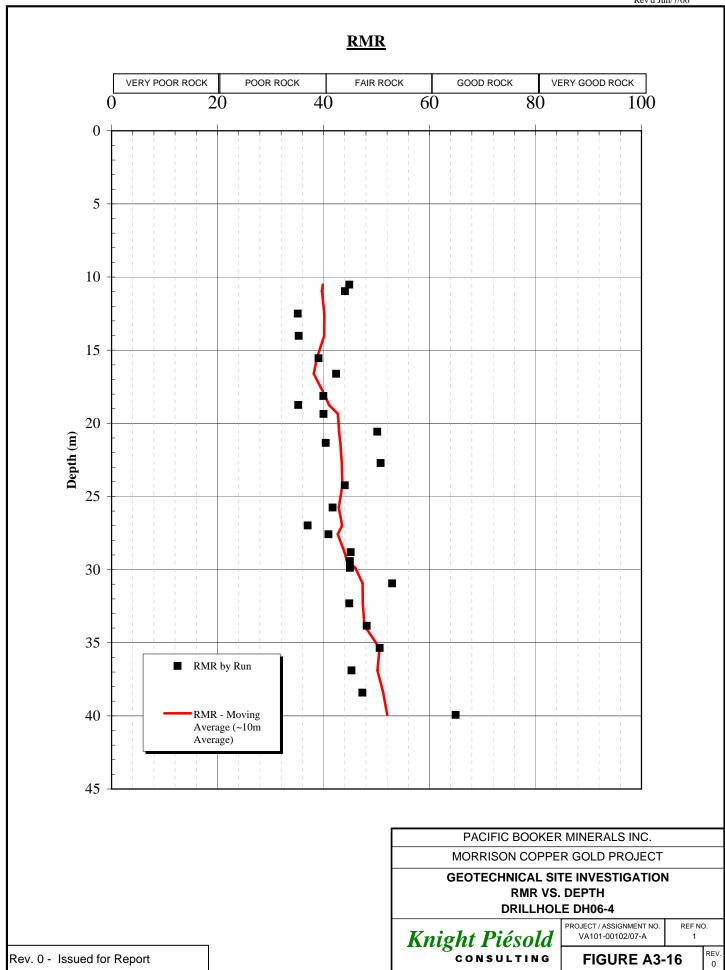


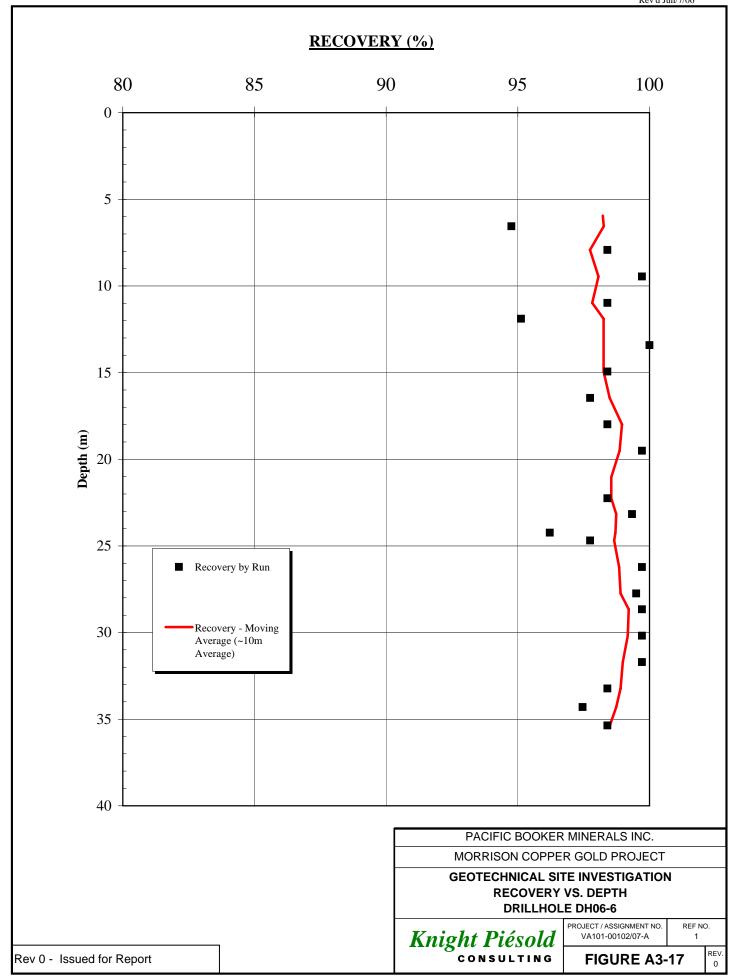


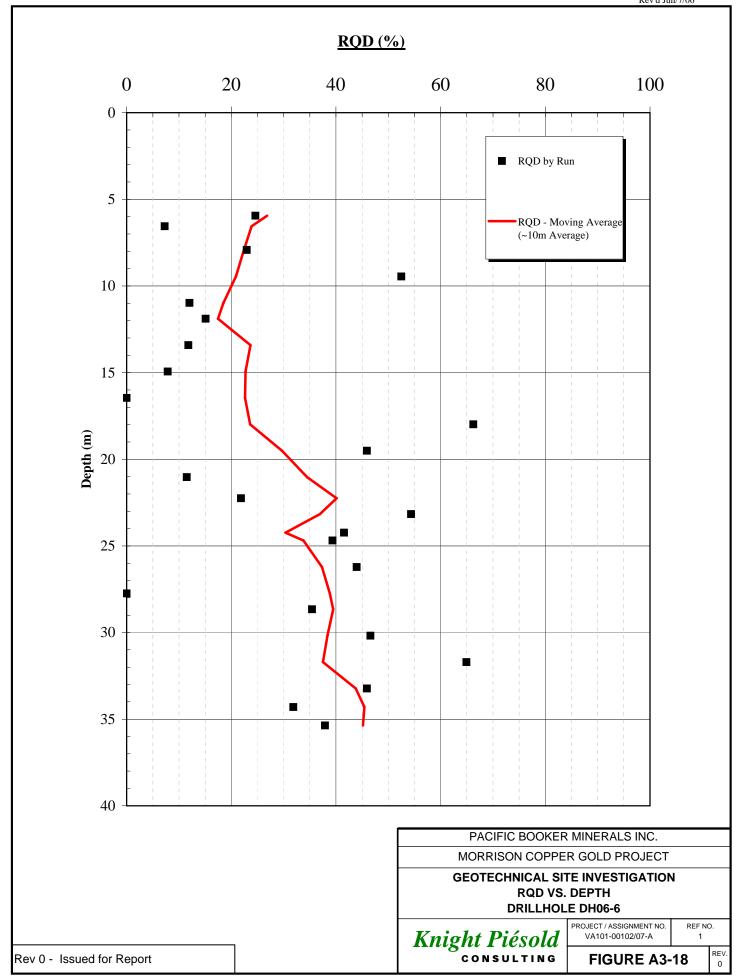


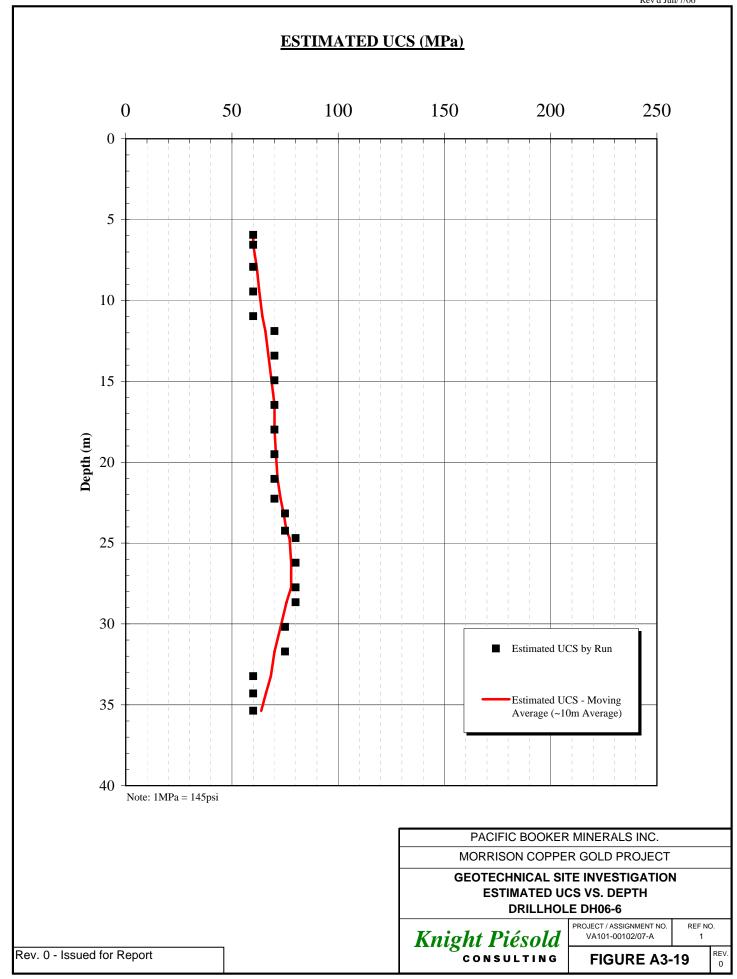


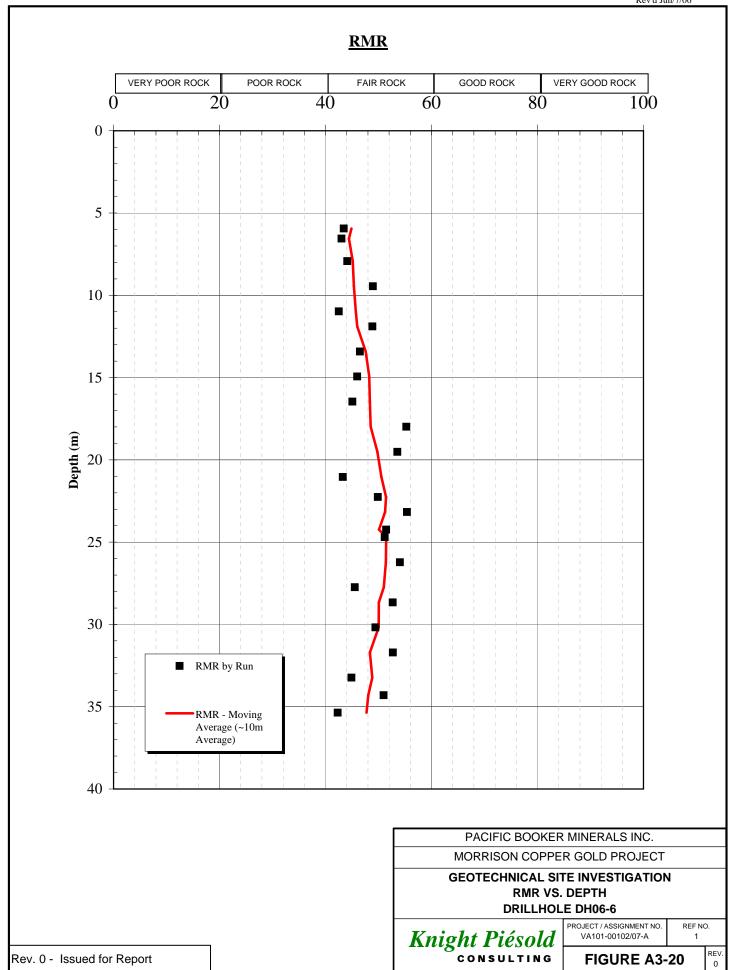


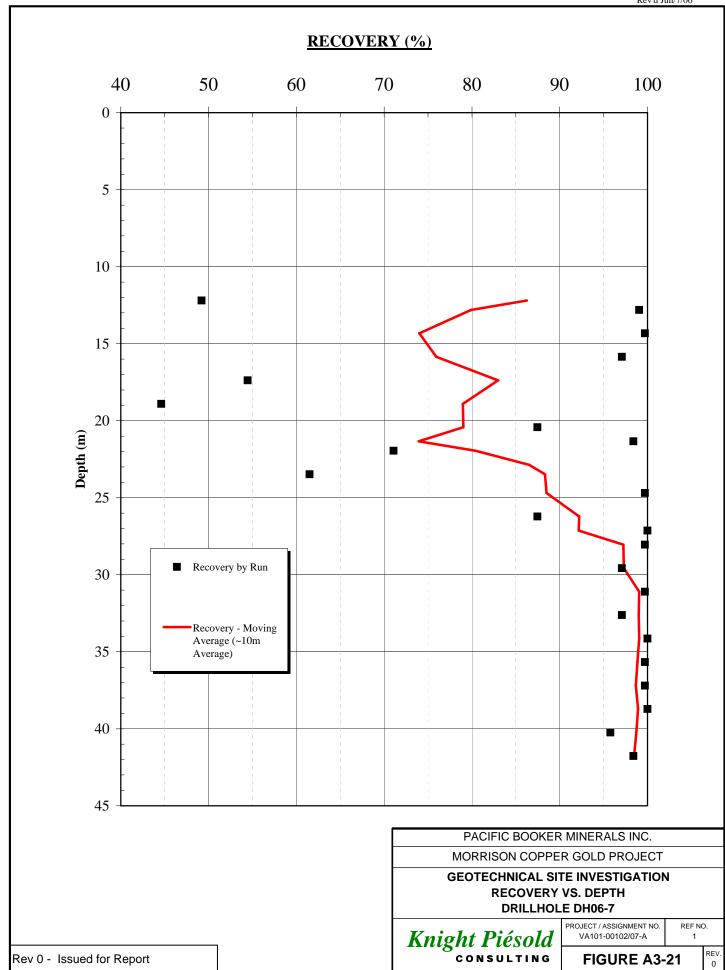


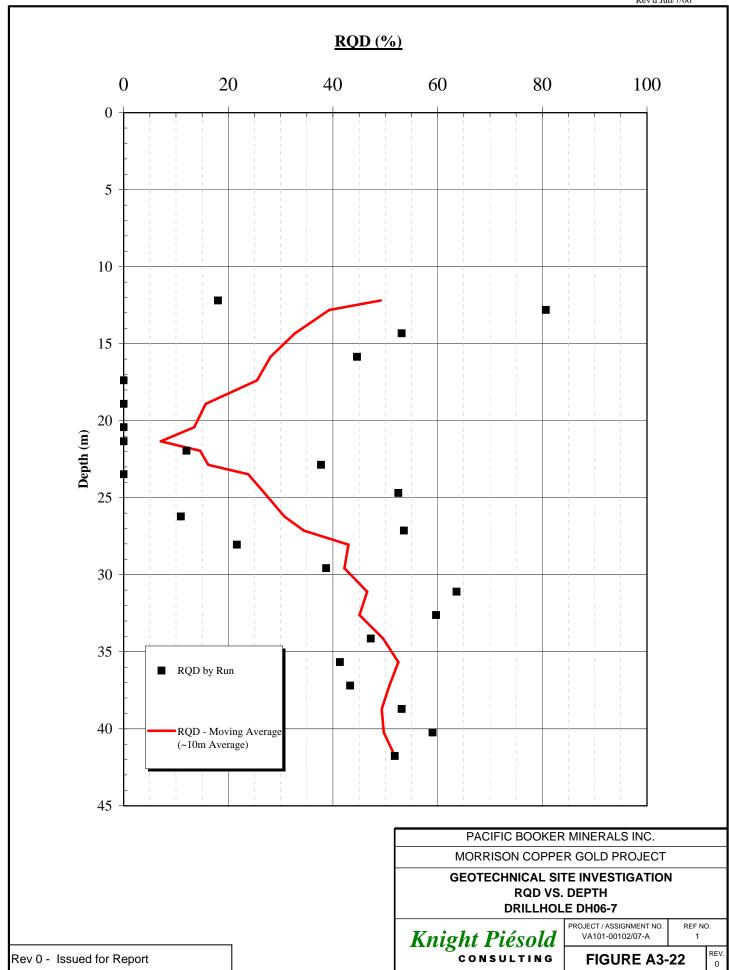


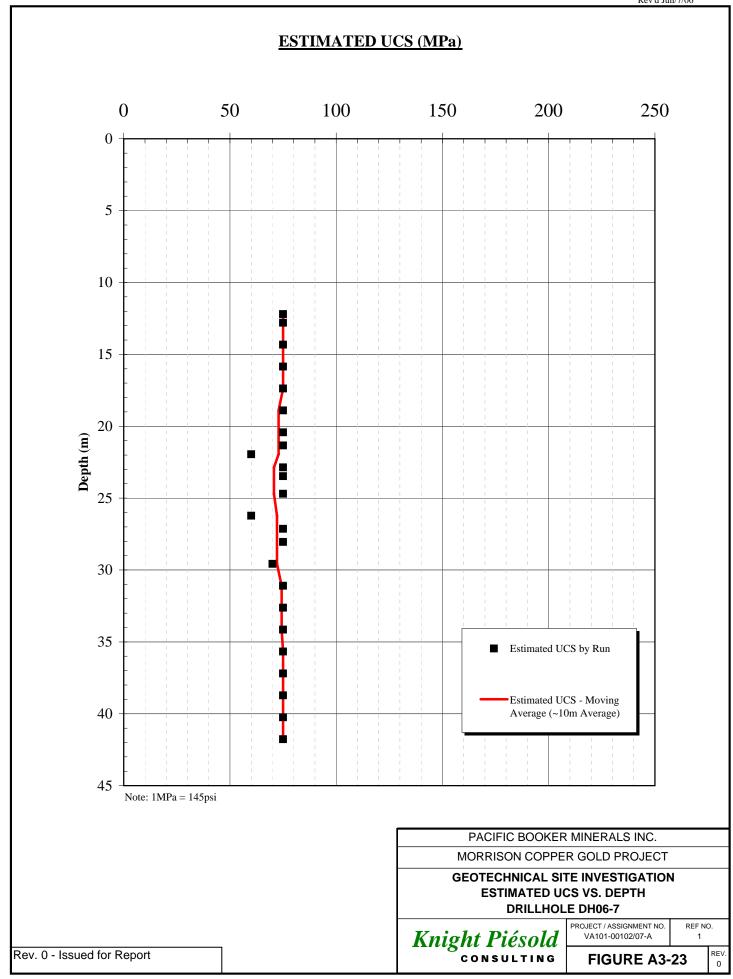


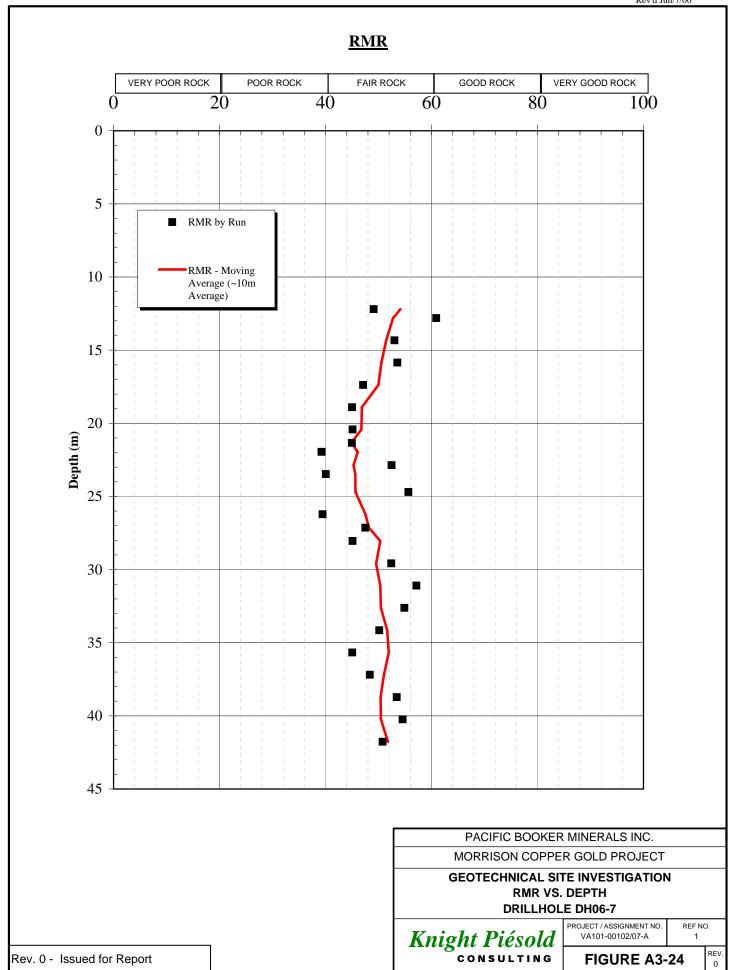


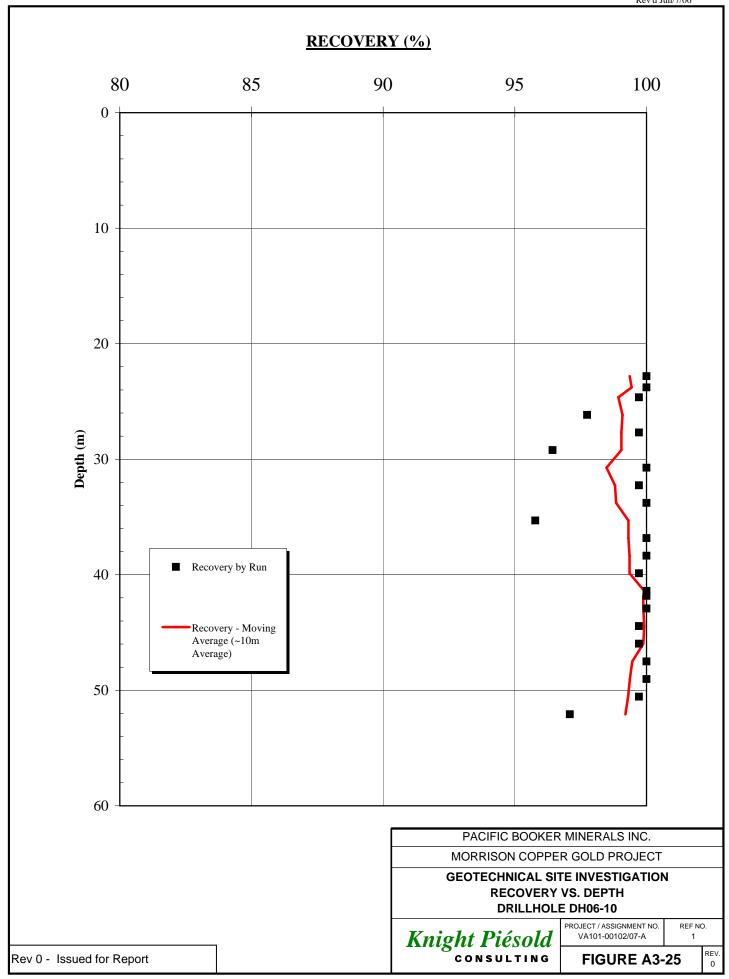


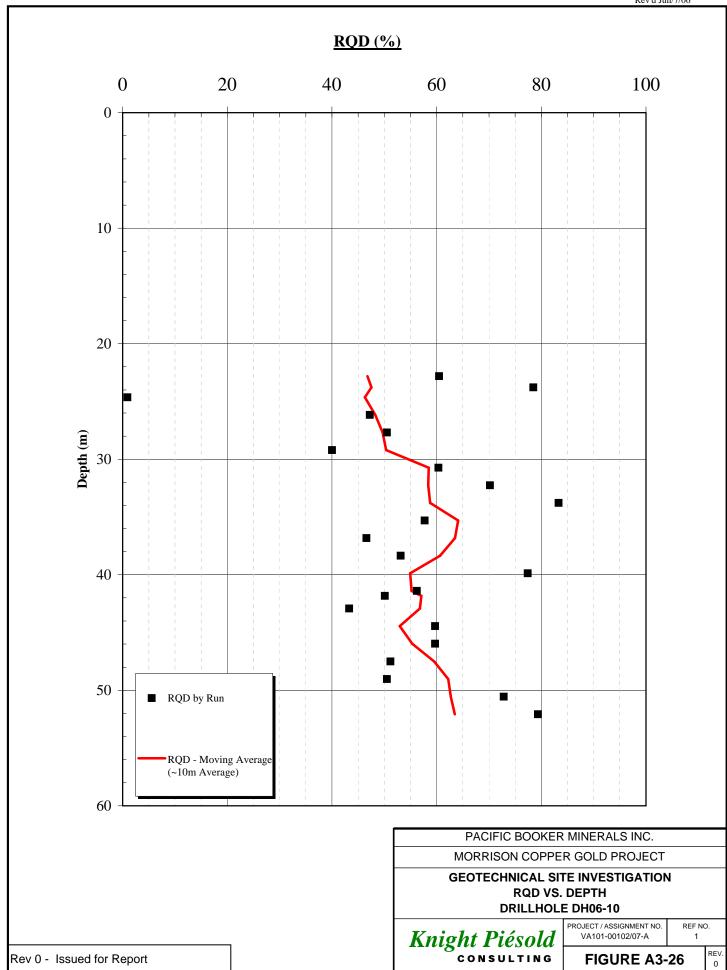


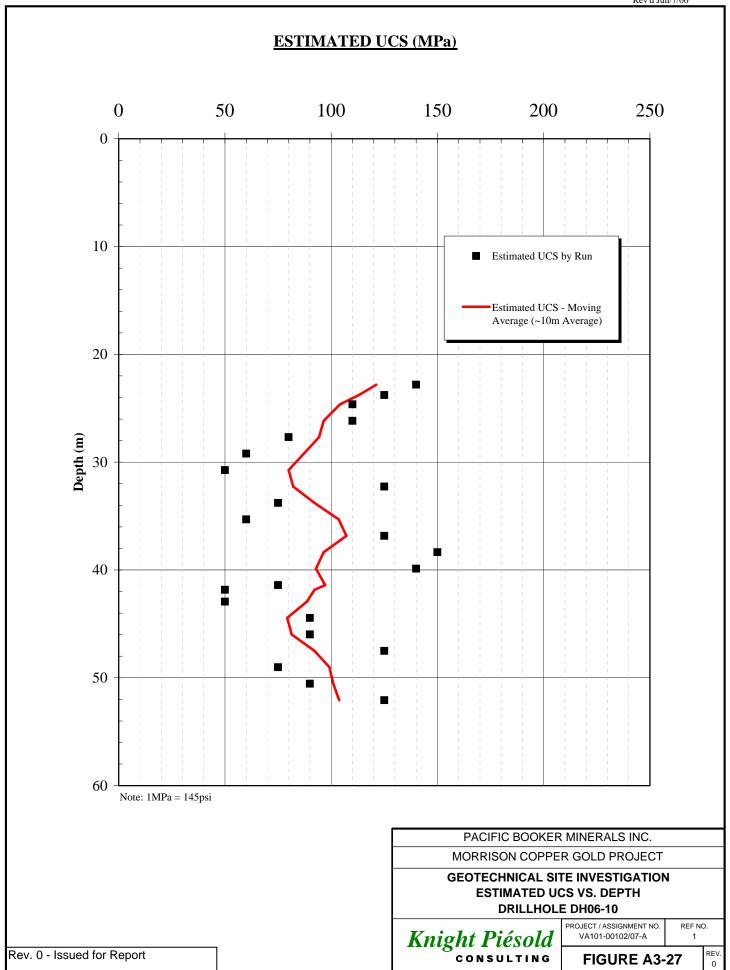


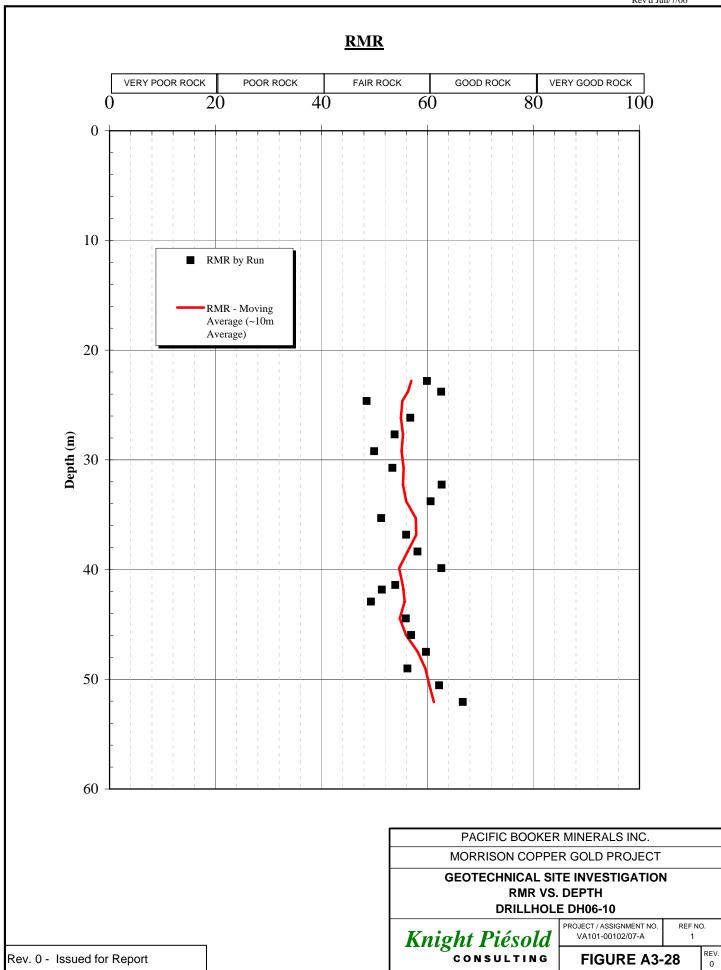


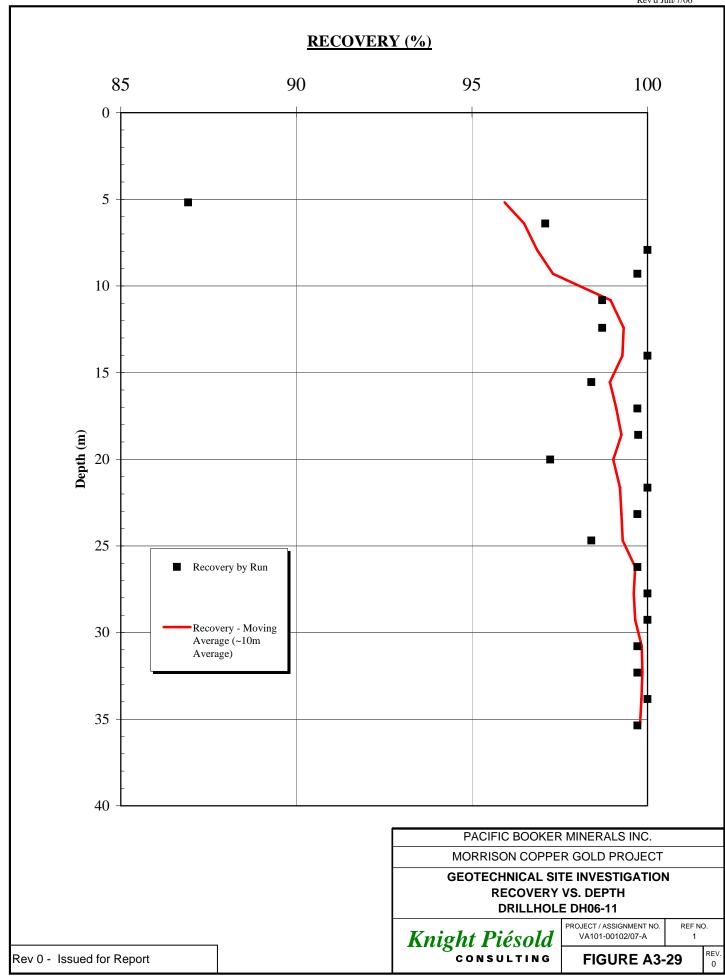


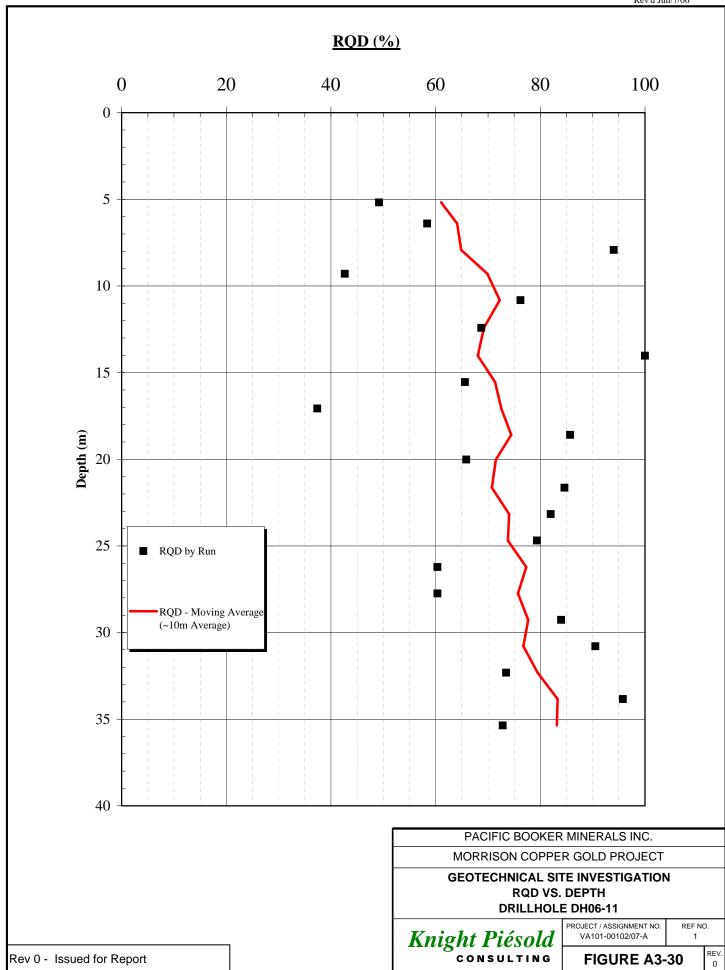


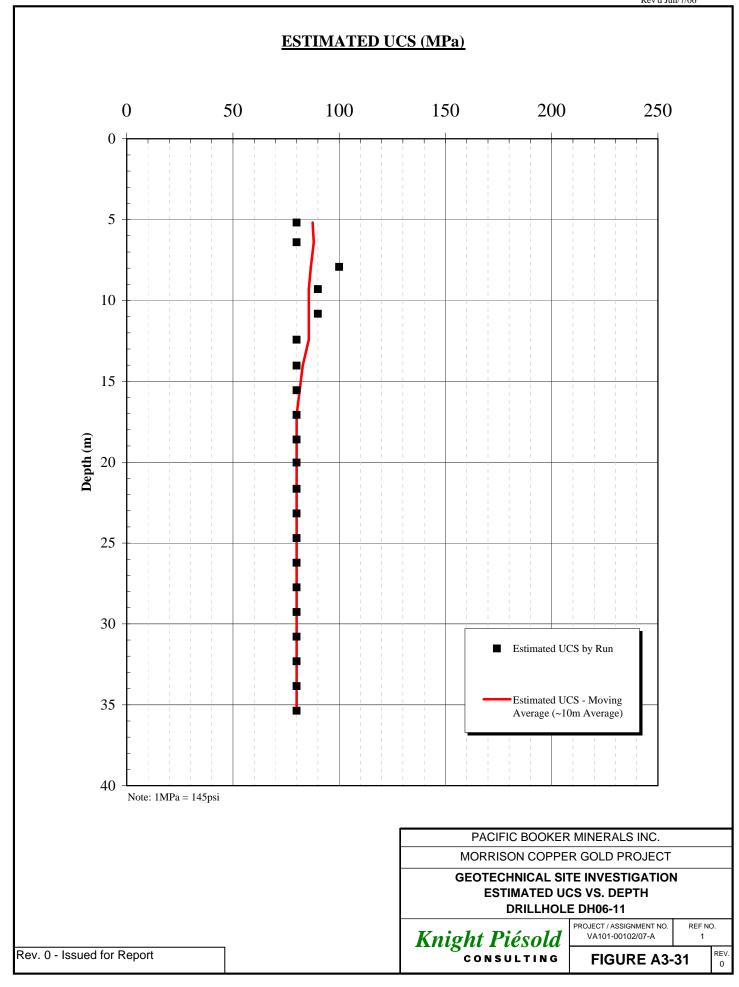


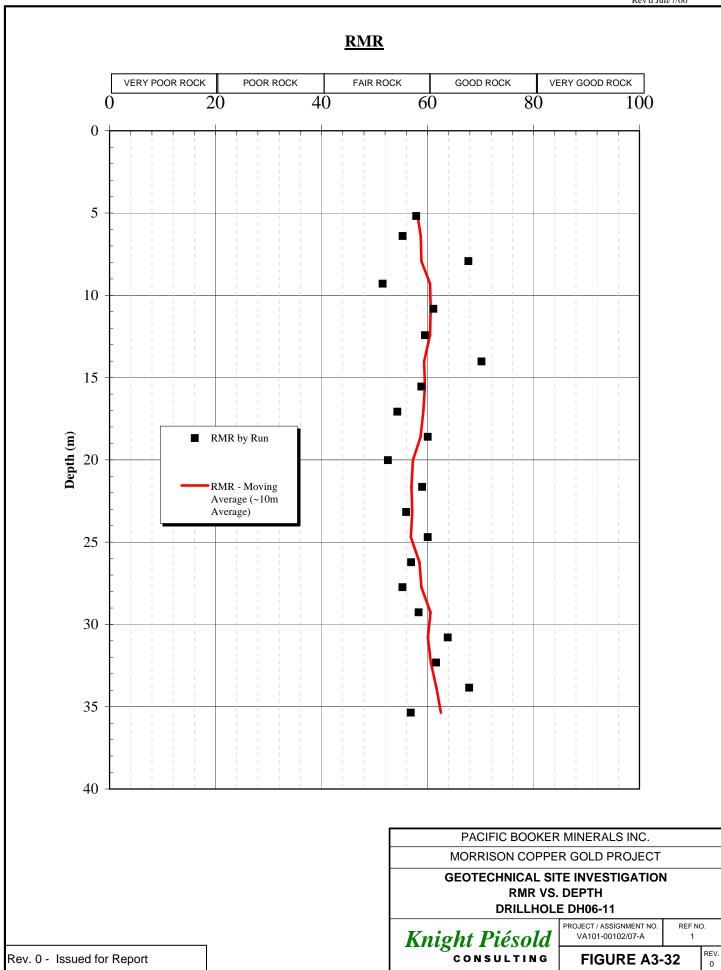


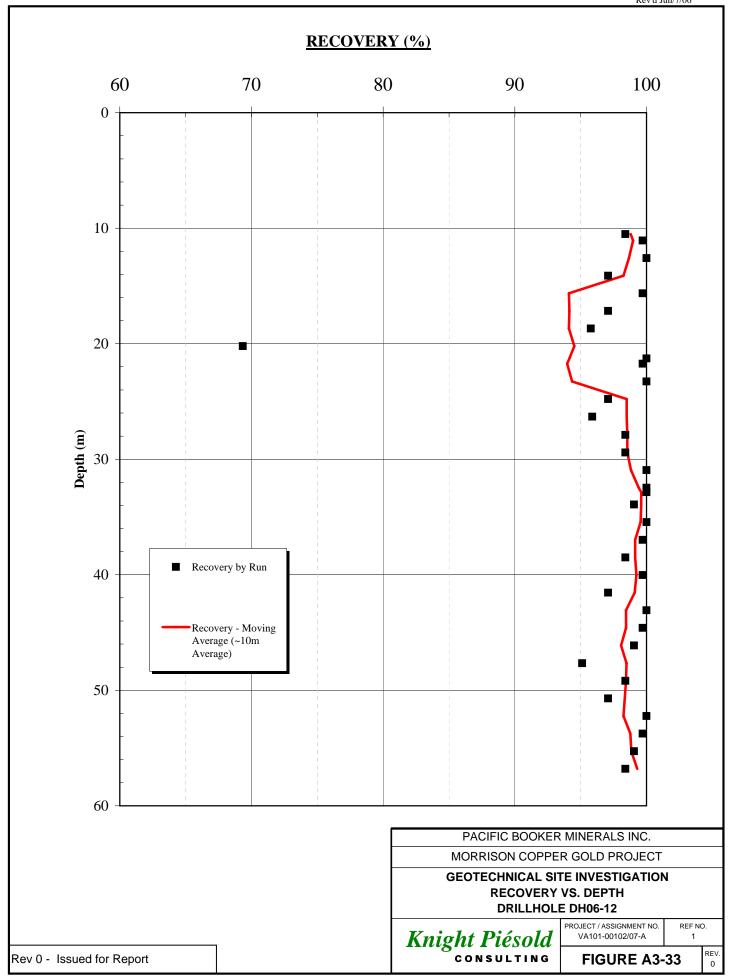


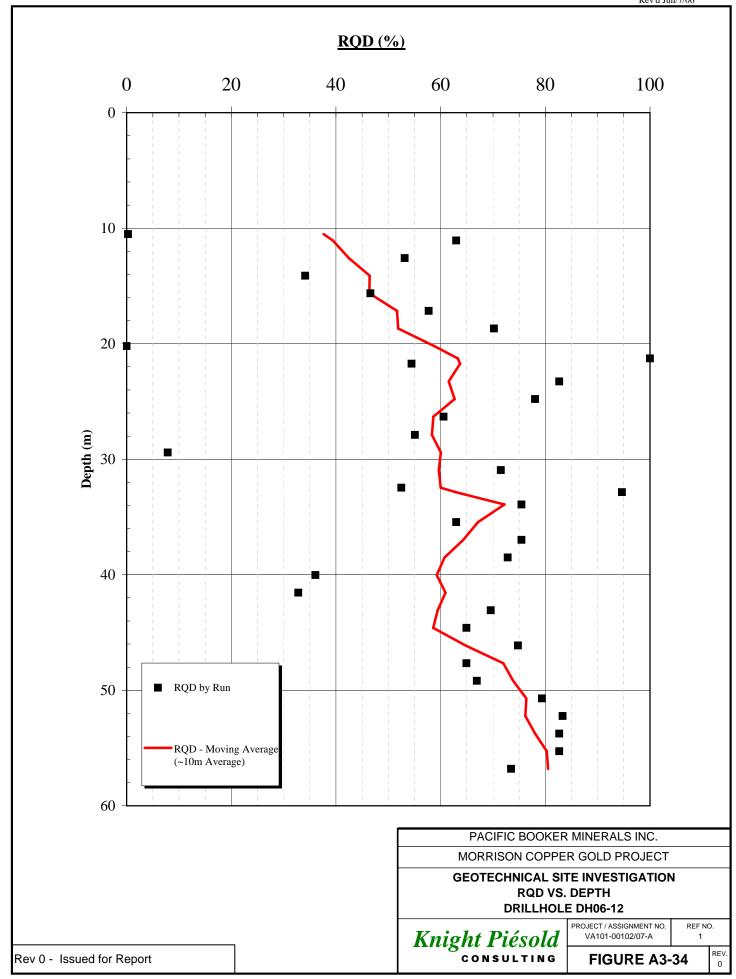


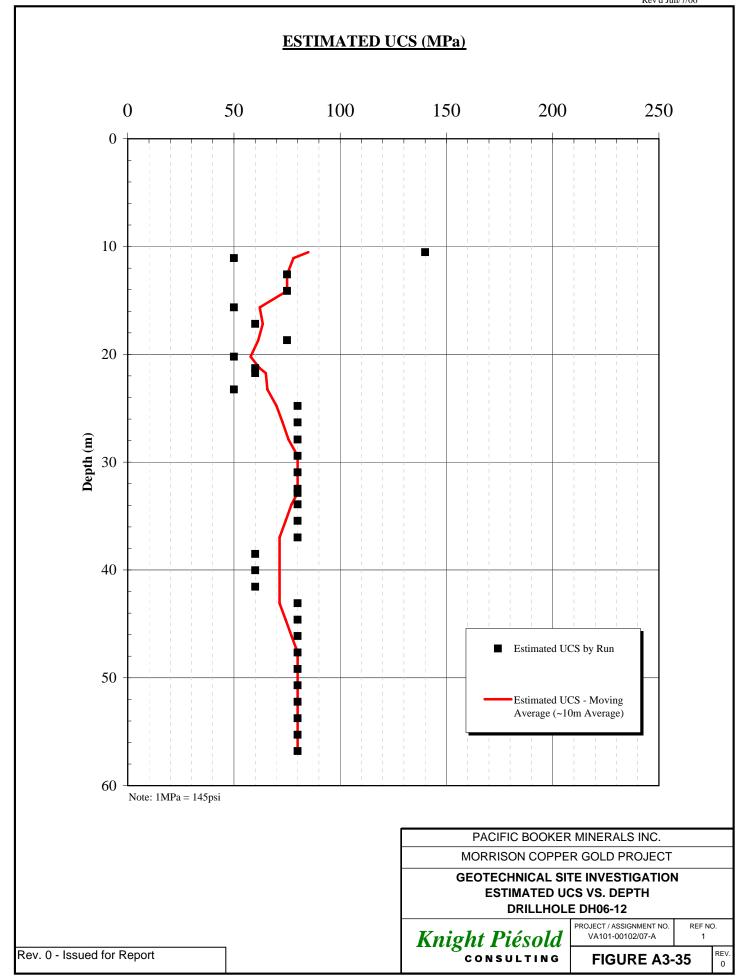


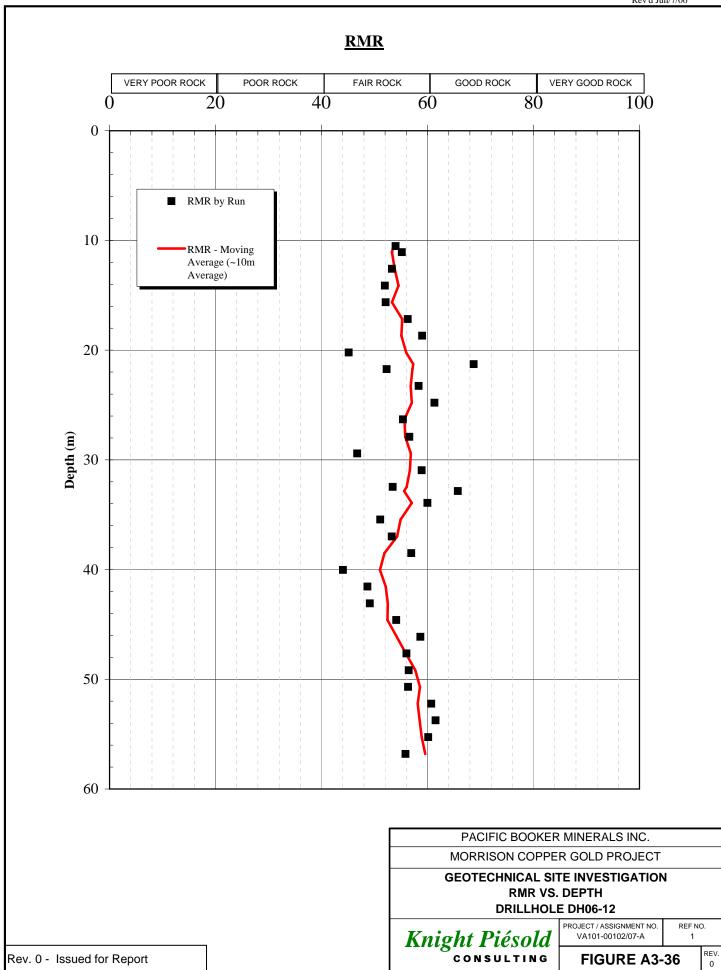


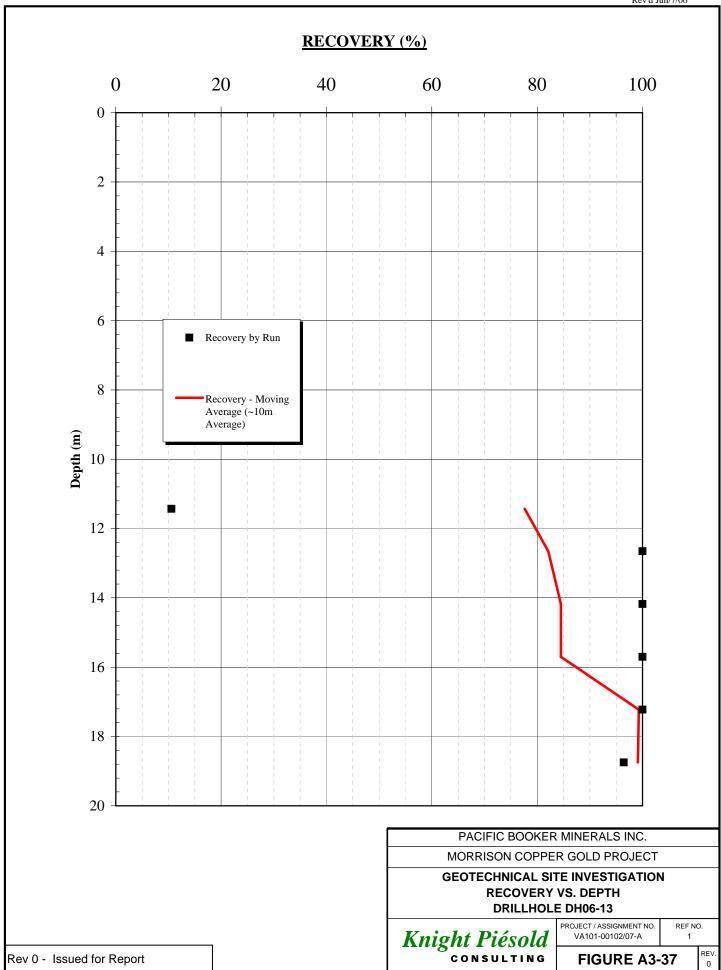


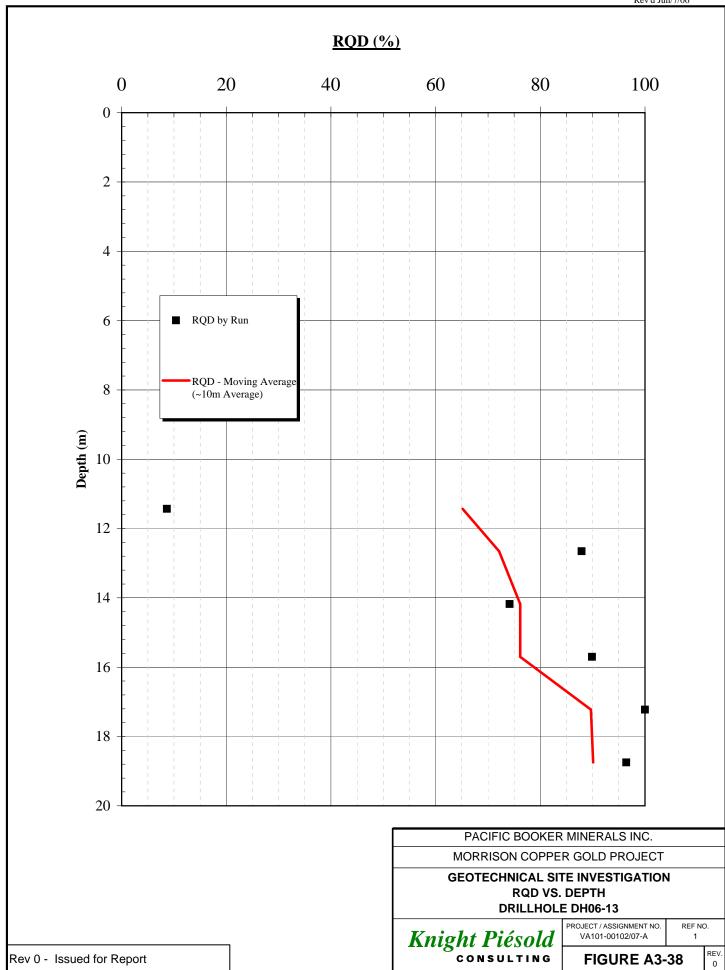


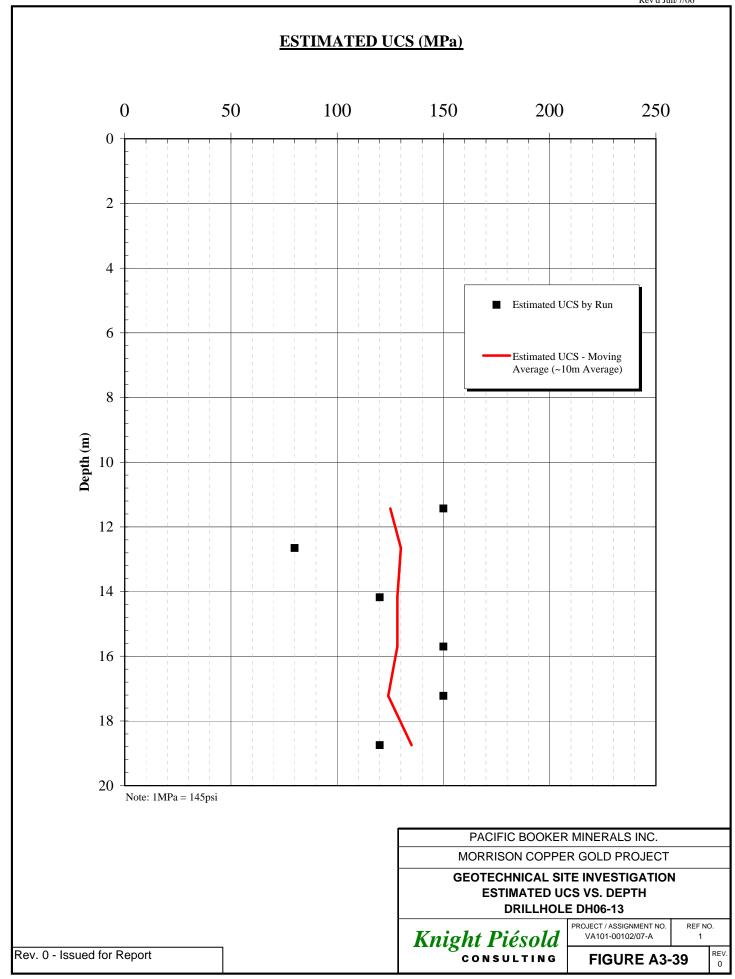


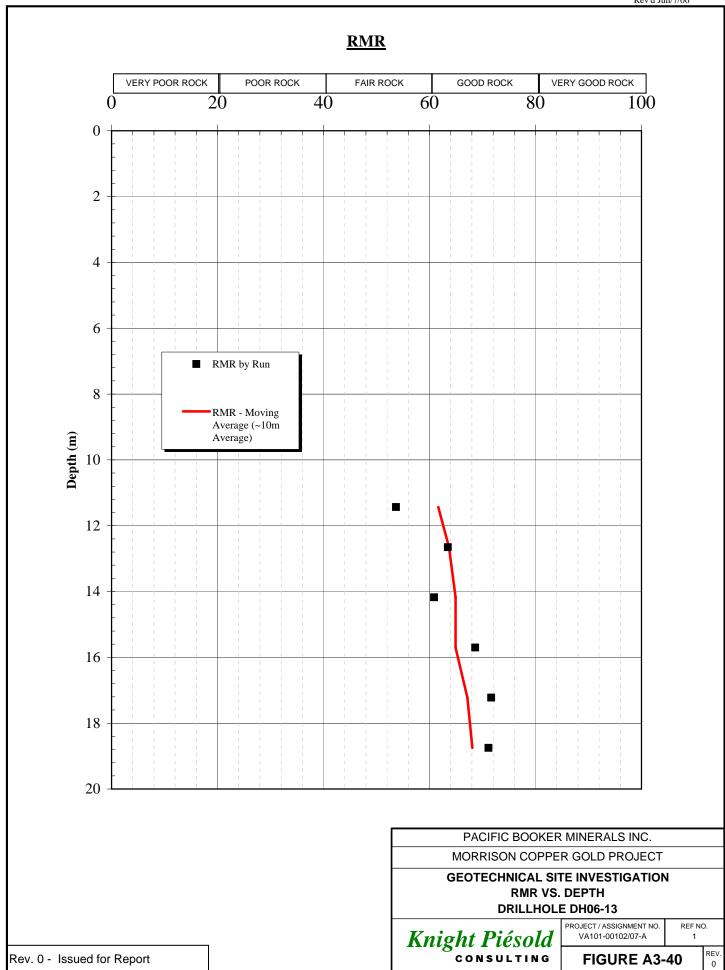


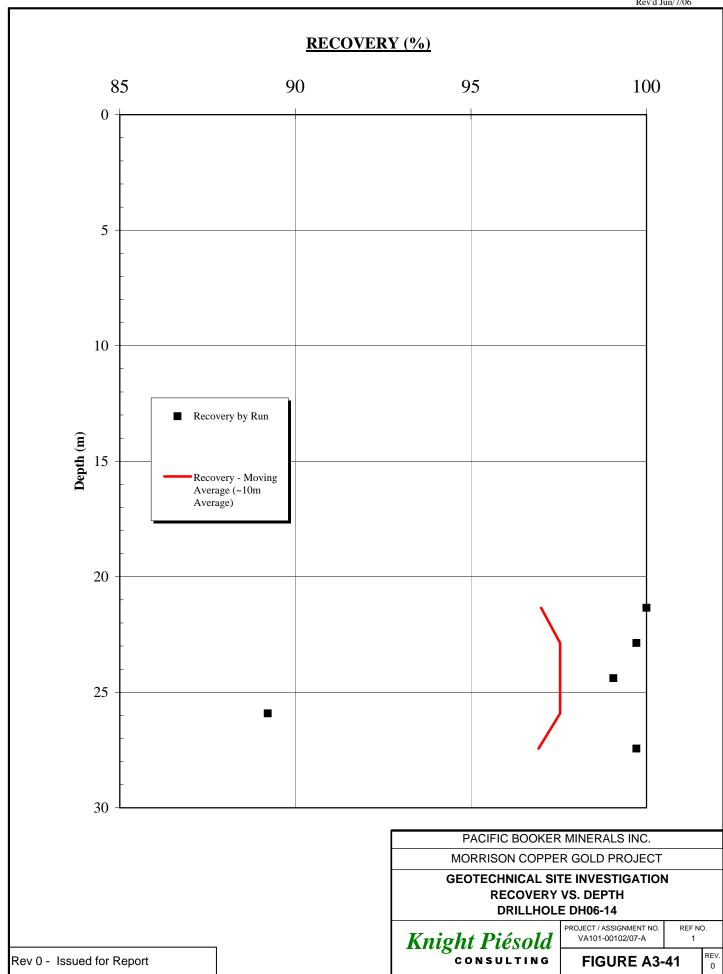


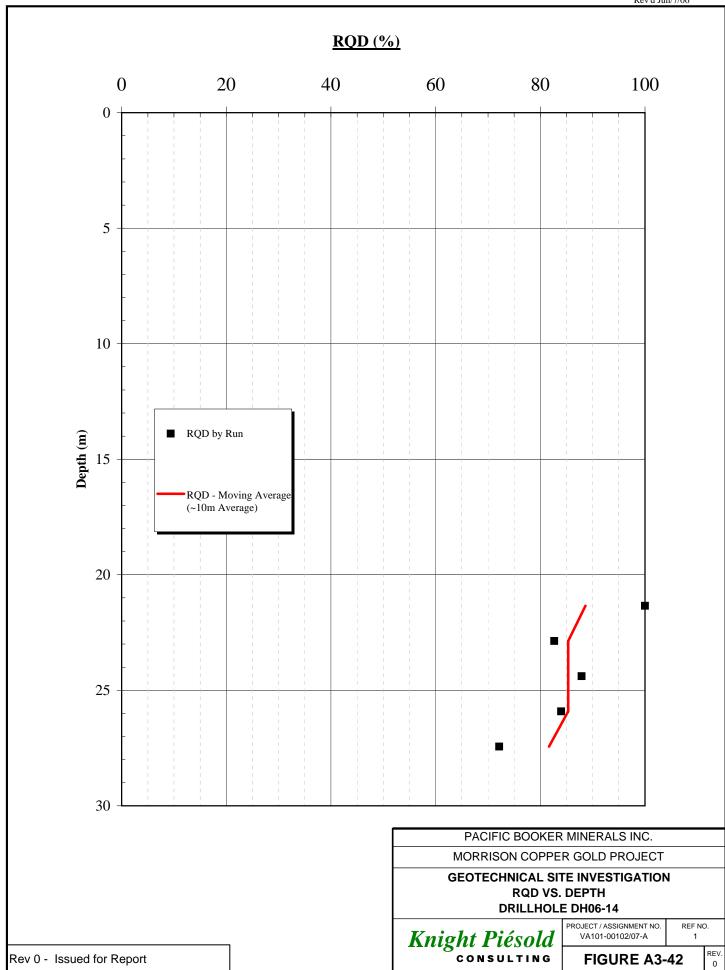


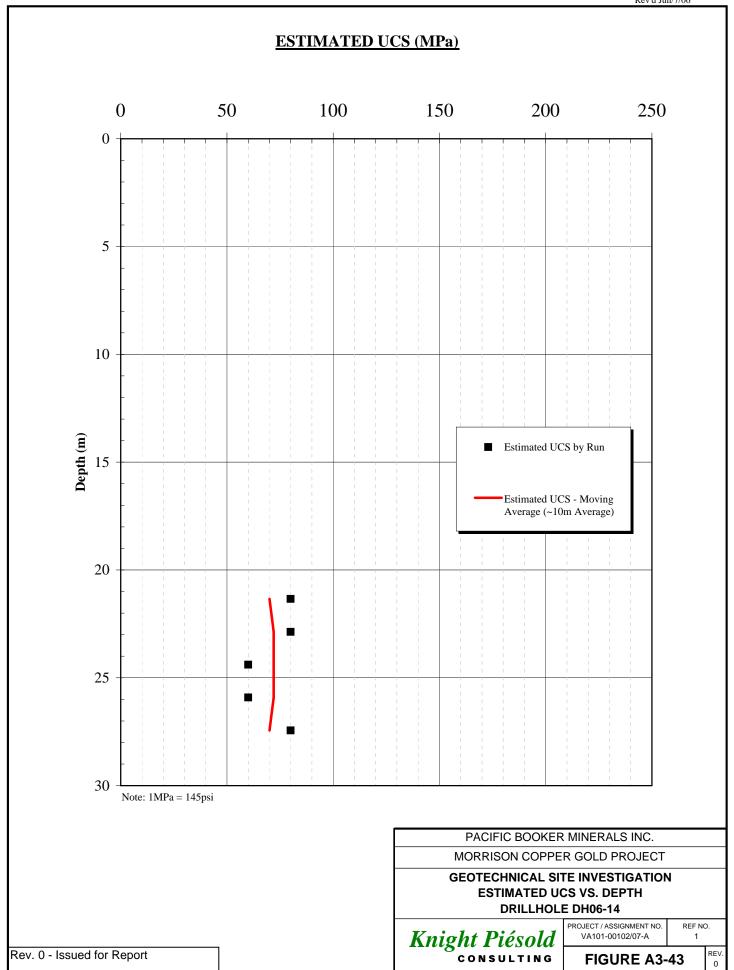


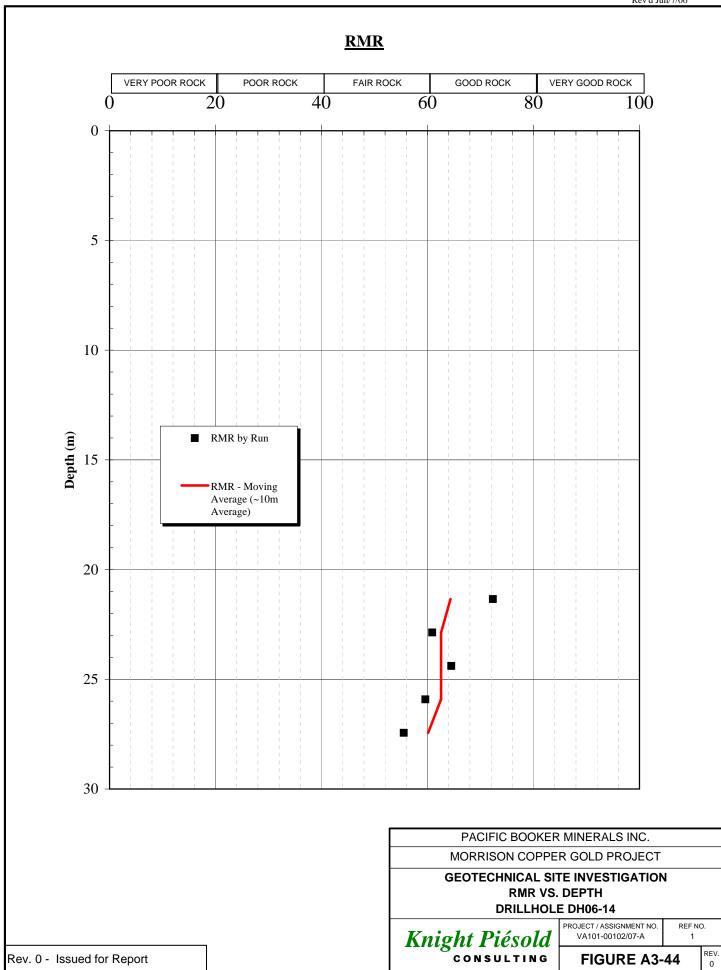












APPENDIX B

(Rev 0)

FIELD TESTS

APPENDIX B1 PACKER PERMEABILITY TESTING SHEETS

APPENDIX B2 WELL COMPLETION DETAILS

APPENDIX B3 TESTPIT LOGS

APPENDIX B1

(Rev 0)

PACKER PERMEABILITY TESTING SHEETS

- Drillhole DH06-1
- Drillhole DH06-2
- Drillhole DH06-3
- Drillhole DH06-4
- Drillhole DH06-6
- Drillhole DH06-7
- Drillhole DH06-11
- Drillhole DH06-12
- Drillhole DH06-13Drillhole DH06-14

(Pages B1-1 to B1-11)

SHEET 1	OF 1		LUGI	EON TE	ST FIEL	D DATA	A SHEET	Γ		Knig	ht Pié	sold
PROJECT:		Morrison Coppe	r Gold		P	ROJECT NO	101-	102/7	I	ORILLHOLE:	DH	06-1
AREA:			Upst	ream from N	Millsite and	Service Buil	dings				TEST NO:	1
DIPS:	60 (FROM HORIZONTAL)	1	ДЕРТН С	ROUNDWAT	TER:		m		TOP OF TES	T INTERVAL	L	27.4 m (DOWN HOLE)
DATE:	03-27-06		GAUGE HE	EIGHT ABOVE (GROUND:	1.0	m		BOTTOM O	F TEST INTE	RVAL:	60.8 m (DOWN HOLE)
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	USGAL	5227.00	5246.00	5266.00	5285.00	5303.00	5322.00		litres/min	
(рэг)	(BAK)	Take	litres	5227.00	19.00	20.00	19.00	18.00	19.00		nacs min	
13.5	0.93	Average Take	l/m		19.00	20.00	19.00	18.00	19.00		19.00	18.345
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	USGAL	5332.00	5359.00	5385.00	5410.00	5435.00	5459.00		litres/min	
(psi)	(BAK)	Take	litres	3332.00	27.00	26.00	25.00	25.00	24.00		nucs/mm	
27	1.86	Average Take	l/m		27.00	26.00	25.00	25.00	24.00		25.40	12.797
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
		Flowmeter	USGAL									
(psi)	(BAR)	Flowmeter	litres	5485.00	5520.00	5560.00	5596.00	5626.00	5660.00		litres/min	
45	3.10	Take Average Take	litres		35.00 35.00	40.00	36.00 36.00	30.00	34.00 34.00		35.00	10.768
GAUGE P	GAUGE P	Time	l/m min	0	35.00	2	30.00	30.00	54.00			LUGEON
GAUGE P	GAUGE P	Flowmeter	min USGAL	U	1	2	3	-	3		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	litres	5678.00	5699.00	5723.00	5745.00	5768.00	5791.00		litres/min	
4 /		Take	litres		21.00	24.00	22.00	23.00	23.00			
27	1.86	Average Take	l/m		21.00	24.00	22.00	23.00	23.00		22.60	11.386
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
		Flowmeter	USGAL									
(psi)	(BAR)	Flowmeter	litres	5798.00	5813.00	5828.00	5844.00	5860.00	5876.00		litres/min	
13.5	0.93	Take Average Take	litres l/m		15.00 15.00	15.00 15.00	16.00 16.00	16.00 16.00	16.00 16.00		15.60	15.062
3.5		FLOW VERSU			3.2		20.00 18.00 16.00	STAG	E PRESSURE	VERSUS LUG	EEON VALUE	
(a) 2.0 - 1.5 - 1.0 - 0.5 - 0.00	5.00 10.00		1.0	25.00 30.0	0 35.00	40.00	12.00 18.00 18.00 6.00 4.00 2.00 0.00	0.93	1.86 Stage Ga	3.10 uge Pressure (BA	1.86 R)	0.93
							LUGEONS			APPRO	XIMATE PERI	MEABILITY, cn
STATIC WTR L DETERMINATI							MAX Lu=	18.345]		MAX k=	1.83E-04
INTERPRETAT REFERENCE:	TON						MIN Lu=	13.671	cm/s		MIN k= AVG k=	1.08E-04 1.4E-04
INTERPRETAT TYPE OF FLOV		LAMINAR TURBULENT DILATION WASH-OUT VOID FILLING		YES NO NO NO NO	•	Note: F	Permeability ca upon flow cla		endent			
DRILLING / TE	ST RESULTS CO	OMMENTS:										
TEST BY:	Josh Vines					REVIE	WED BY:	Greg Johnston	1			

SHEET 1	OF 1		LUGI	EON TE	ST FIEL	D DATA	SHEET	[Knig	ht Pie	sold
PROJECT:		Morrison Coppe	er Gold		P	ROJECT NO:	101-	102/7]	RILLHOLE:	DH	[06-1
AREA:			Upst	ream from N	Millsite and	Service Buil	dings				TEST NO:	2
DIPS:	60 (FROM HORIZONTAL	_1	ДЕРТН G	ROUNDWAT	ΓER:		m		TOP OF TES	T INTERVAI	ı:	59.4 m (DOWN HOLE)
DATE:	03-29-06		GAUGE HE	IGHT ABOVE (GROUND:	1.0	m		воттом он	TEST INTE	RVAL:	89.9 m (DOWN HOLE)
GAUGE P	GAUGE P	Time Flowmeter	min USGAL	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	litres	6008.00	6014.00	6019.00	6025.00	6030.00	6035.00		litres/min	
25	1.72	Take Average Take	litres 1/m		6.00	5.00 5.00	6.00	5.00 5.00	5.00 5.00		5.40	2.928
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(nci)	(BAB)	Flowmeter Flowmeter	USGAL litres	6040.00	6048.00	6056.00	6064.00	6072.00	6079.00		litres/min	
(psi)	(BAR)	Take	litres	0040.00	8.00	8.00	8.00	8.00	7.00		ntres/min	
51	3.52	Average Take	l/m		8.00	8.00	8.00	8.00	7.00		7.80	2.124
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
		Flowmeter	USGAL									
(psi)	(BAR)	Flowmeter	litres	6085.00	6097.00	6109.00	6120.00	6132.00	6143.00		litres/min	
0.4	5.70	Take	litres		12.00	12.00	11.00	12.00	11.00		11.00	1.026
84	5.79	Average Take	l/m		12.00	12.00	11.00	12.00	11.00		11.60	1.936
GAUGE P	GAUGE P	Time Flowmeter	min USGAL	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	litres	6147.00	6154.00	6162.00	6170.00	6178.00	6186.00		litres/min	
(1)	(=1)	Take	litres		7.00	8.00	8.00	8.00	8.00			
51	3.52	Average Take	l/m		7.00	8.00	8.00	8.00	8.00		7.80	2.124
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
		Flowmeter	USGAL									
(psi)	(BAR)	Flowmeter	litres	6190.00	6195.00	6201.00	6206.00	6212.00	6217.00		litres/min	
25	1.72	Take Average Take	litres l/m		5.00 5.00	6.00	5.00	6.00	5.00 5.00		5.40	2.928
7.0		FLOW VERSI	US PRESS	URE PLOT			3.50	STAGI	E PRESSURE	VERSUS LUC	GEON VALUE	
6.0 - 5.0 - 1.0 - 1.0 - 0.00	2.00 4.	00 6.00	8.00 Q (l/m)	10.00	12.00	14.00	3.00	1.72	3.52 Stage Gat	5.79 age Pressure (BA)	3.52 R)	1.72
							LUGEONS			APPRO	OXIMATE PER	MEABILITY, cr
STATIC WTR I DETERMINAT							MAX Lu=	2.928	J		MAX k=	2.93E-05
INTERPRETAT							MIN Lu=	1.936	cm/s		MIN k=	1.94E-05
REFERENCE: INTERPRETAT	ΠΟΝ	LAMINAR		YES]		AVG Lu=	2.408			AVG k=	2.4E-05
TYPE OF FLOV	W: EST RESULTS C	TURBULENT DILATION WASH-OUT VOID FILLING OMMENTS:		NO NO NO	-	Note: P	ermeability ca upon flow cla		endent			
TECT DV	Josh Vines					l prviev	VED BY:	Con Johnston				
TEST BY:	Josh vines					KEVIEV	VED DI:	Greg Johnston	1			

SHEET 1	OF 1]	LUGI	EON TE	ST FIEL	D DAT	SHEET	Γ		Knig	ht Pie	sold
PROJECT:		Morrison Copper	r Gold		P	ROJECT NO	101-	102/7	I	ORILLHOLE:	DH	106-2
AREA:				Sou	th Embankı	ment					TEST NO:	1
DIPS:	90 (FROM HORIZONTAL)	1	ДЕРТН G	ROUNDWAT	TER:	0.0	m		TOP OF TES	T INTERVAL	ı:	9.1 m (DOWN HOLE)
DATE:	03-06-06		GAUGE HE	IGHT ABOVE (GROUND:	1.0	m		воттом о	F TEST INTEI	Į.	39.5 m (DOWN HOLE)
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	USGAL	2672	2675	2678	2681	2684	2687		litres/min	
		Take	litres		3	3	3	3	3			
5	0.34	Average Take	l/m		3	3	3	3	3		3	6.6
GAUGE P	GAUGE P	Time Flowmeter	min USGAL	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	litres	2694	2700	2704	2709	2714	2718		litres/min	
* '		Take	litres		6	4	5	5	4			
10	0.69	Average Take	l/m		6	4	5	5	4		5	6.0
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	USGAL	2725	2732	2738	2744	2751	2757		litres/min	
(101)	(5.11)	Take	litres	2.20	7	6	6	7	6		indes/ iiiii	
15	1.03	Average Take	l/m		7	6	6	7	6		6	5.5
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
()		Flowmeter	USGAL	2550	2000	25.5	25.00	2551	255			
(psi)	(BAR)	Flowmeter Take	litres	2758	2761 3	2765 4	2768 3	2771 3	2775 4		litres/min	
10	0.69	Average Take	l/m		3	4	3	3	4		3	4.2
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
		Flowmeter	USGAL									
(psi)	(BAR)	Flowmeter	litres	2776	2777	2779	2780	2782	2783		litres/min	
5	0.34	Take Average Take	litres l/m		1	2 2	1	2 2	1		1	3.1
1.2 T		FLOW VERSU	S PRESS	URE PLOT			7.00	STAG	E PRESSURE	VERSUS LUG	SEON VALUE	
1.0 0.8 0.8 0.8 0.0 0.4 0.2 0.00 0.00	1.00 2.	◆ 0.4 ○ 00 3.00	4.00 Q (I/m)	5.00	6.00	7.00	5.00 5.00 84.00 97 13.00 2.00 1.00	0.34	0.69 Stage Gar	1.03 uge Pressure (BAI	0.69	0.34
							LUGEONS		_	APPRO	XIMATE PER	MEABILITY, cm
STATIC WTR I							MAX Lu=	6.644			MAX k=	6.64E-05
INTERPRETAT							MIN Lu=	3.101	cm/s		MIN k=	3.10E-05
REFERENCE: INTERPRETAT TYPE OF FLOW		LAMINAR TURBULENT DILATION WASH-OUT VOID FILLING		YES NO NO NO NO	•	Note: F	AVG Lu= Permeability ca upon flow cla		endent		AVG k=	5.1E-05
DRILLING / TE	ST RESULTS C	OMMENTS:										
TEST BY:	Josh Vines					REVIE	WED BY:	Greg Johnsto	n			

SHEET 1	OF 1	LUGI	EON TE	ST FIEL	D DATA	SHEET	Γ		Knig	ht Pié	sold
PROJECT:		Morrison Copper Gold		P	ROJECT NO:	101-	102/7] 1	DRILLHOLE:	DH	06-3
AREA:			Sou	th Embankr	nent					TEST NO:	1
DIPS:	90 (FROM HORIZONTAL	<u></u>	ROUNDWAT	TER:	4.5	m		TOP OF TE	ST INTERVAL	L	6.7 m (DOWN HOLE)
DATE:	03-02-06	GAUGE HE	IGHT ABOVE (GROUND:	1.0	m		воттом о	F TEST INTE	RVAL:	36.9 m (DOWN HOLE)
GAUGE P	GAUGE P	Time min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter USGAL Flowmeter litres	2547	2552	2555	2559	2562	2565		litres/min	
(P31)	(5.11)	Take litres	2017	5	3	4	3	3		na co min	
5	0.34	Average Take 1/m		5	3	4	3	3		4	4.0
GAUGE P	GAUGE P	Time min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
		Flowmeter USGAL									
(psi)	(BAR)	Flowmeter litres	2573	2581	2586	2591	2595	2600		litres/min	
10	0.69	Take litres Average Take l/m		8	5	5	4	5		5	4.3
GAUGE P	GAUGE P	Time min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
G.ICOL I	G.100E 1	Flowmeter USGAL	ű		-		7				LUGLON
(psi)	(BAR)	Flowmeter litres	2611	2619	2627	2635	2641	2648		litres/min	
		Take litres		8	8	8	6	7			
13	0.90	Average Take l/m		8	8	8	6	7		7	5.1
GAUGE P	GAUGE P	Time min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
		Flowmeter USGAL	2610	2.50	2472	2/22	2 (20	2550			
(psi)	(BAR)	Flowmeter litres	2648	2650	2652	2655	2659	2660		litres/min	
10	0.69	Take litres Average Take l/m		2 2	2 2	3	4	1		2	1.9
GAUGE P	GAUGE P	Time min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
GILCOL I	GALCOLL I	Flowmeter USGAL	Ü	-	-		•			AVEIGETEON	LCGLOIT
(psi)	(BAR)	Flowmeter litres	2652	2653	2654	2656	2656	2657		litres/min	
4 /		Take litres		1	1	2	0	1			
5	0.34	Average Take 1/m		1	1	2	0	1		1	1.1
1.6 1.2 - 1.0 - 1.0 - 0.8 - 0.4 - 0.2 - 0.0 - 0.00	1.00 2.00	3.00 4.00 Q (l/m)	5.00 6.0	0 7.00	8.00	5.00	0.34	0.69 Stage Ga	0.90 uge Pressure (BAI		0.34
TATIC WTR L	EVEL					MAX Lu=	5.056	٦	APPRO	MAX k=	5.06E-05
ETERMINATI						MIN Lu=	1.110]		MIN k=	1.11E-05
NTERPRETAT EFERENCE:	ION					AVG Lu=	3.278	cm/s	S	AVG k=	3.3E-05
NTERPRETAT YPE OF FLOW RILLING / TE		DILATION WASH-OUT VOID FILLING	YES NO NO NO NO	•	Note: P	ermeability ca upon flow cla		endent			
EST BY:	Josh Vines				REVIEV	WED BY:	Greg Johnsto	n			

SHEET 1	OF 1	LUC	GEON TE	ST FIEL	LD DATA	SHEET	Γ		Knig	ht Pié	sold
PROJECT:		Morrison Copper Gold		F	PROJECT NO	101-	102/7	1	ORILLHOLE:	DH	[06-4
AREA:			Sou	ıth Embank	ment					TEST NO:	1
DIPS:	90 (FROM HORIZONTAL)	1	H GROUNDWA	TER:	11.9	m		TOP OF TES	ST INTERVAL	<u>L</u>	11.0 m (DOWN HOLE)
DATE:	03-09-06	GAUGI	HEIGHT ABOVE	GROUND:	1.0	m		воттом о	F TEST INTE	<u>L</u>	41.5 m (DOWN HOLE)
GAUGE P	GAUGE P	Time mir		1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter USG/ Flowmeter litre		2927	2940	2953	2965	2978		litres/min	
(101)	(Dint)	Take litre		13	13	13	12	13		initely iiiii	
5	0.34	Average Take 1/m		13	13	13	12	13		13	7.8
GAUGE P	GAUGE P	Time mir		1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter USG/ Flowmeter litre		3003	3018	3033	3048	3063		litres/min	
(P31)	(BAR)	Take litre	_	15	15	15	15	15		nucs/mm	
10	0.69	Average Take 1/m		15	15	15	15	15		15	7.5
GAUGE P	GAUGE P	Time mir	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
		Flowmeter USG									
(psi)	(BAR)	Flowmeter litre	_	3095	3114	3131	3149	3167		litres/min	
15	1.03	Take litre Average Take 1/m		18 18	19 19	17 17	18 18	18 18		18	7.7
GAUGE P	GAUGE P	Time mir		1	2	3	4	5		AVERAGE FLOW	LUGEON
0.1002.1	GROOD I	Flowmeter USG		-	-		-			AVEIGUETEON	LUGLOIN
(psi)	(BAR)	Flowmeter litre		3190	3205	3218	3232	3246		litres/min	
		Take litre	s	14	15	13	14	14			
10	0.69	Average Take 1/m	_	14	15	13	14	14		14	7.0
GAUGE P	GAUGE P	Time mir		1	2	3	4	5		AVERAGE FLOW	LUGEON
(i)		Flowmeter USG	_	2265	2277	2200	2200	2210		11.	
(psi)	(BAR)	Flowmeter litre	_	3265 11	3277 12	3288 11	3300 12	3310 10		litres/min	
5	0.34	Average Take 1/m		11	12	11	12	10		11	6.8
2.5 - 2.0 -		FLOW VERSUS PRI	2.00 × 1.6	2.0	2.3	7.80 7.60 7.40	STAG	E PRESSURE	VERSUS LUG	GEON VALUE	
0.5 -	2.00 4.00	6.00 8.00 10.00 Q (l/m)	12.00 14.00	16.00 18.00) 20.00	87.20 87.20 17.00 6.80 6.60 6.40	0.34	0.69 Stage Ga	1.03 uge Pressure (BAI	0.69 R)	0.34
						LUGEONS		_	APPRO	OXIMATE PERI	MEABILITY, cn
STATIC WTR L DETERMINATI						MAX Lu=	7.798			MAX k=	7.80E-05
INTERPRETAT REFERENCE:	ION					MIN Lu=	6.823 7.370	cm/s		MIN k= AVG k=	6.82E-05 7.4E-05
INTERPRETAT FYPE OF FLOV		LAMINAR TURBULENT DILATION WASH-OUT VOID FILLING	YES NO NO NO NO	•	Note: F	Permeability ca upon flow cla		pendent			
ORILLING / TE	ST RESULTS C	OMMENTS:									
TEST BY:	Josh Vines				REVIE	WED BY:	Greg Johnsto	on			

Rev'd Jun/7/06

SHEET 1	OF 1] 1	LUGE	EON TE	ST FIEL	D DAT	SHEET	Γ		Knig	ht Pié	Sold
ROJECT:		Morrison Copper	Gold		P	ROJECT NO	101-	102/7	ı	ORILLHOLE:	DH	06-6
REA:				Sou	th Embankı	nent					TEST NO:	1
IPS:	90 (FROM HORIZONTAL	_1	ЭЕРТН G	ROUNDWAT	ΓER:	0.0	m		TOP OF TES	ST INTERVAL	L.	9.6
ATE:	03-11-06		GAUGE HE	IGHT ABOVE (GROUND:	1.0	m		воттом о	F TEST INTE	RVAL:	36.7
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
			USGAL									
(psi)	(BAR)	Flowmeter	litres	3471	3480	3491	3501	3510	3517		litres/min	
_	0.24	Take	litres		9	11	10	9	7		0	20.4
5	0.34	Average Take	l/m	0	9	11	10	9	7		9	20.4
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(nci)	(0.40)		USGAL	3533	3550	3565	3578	3591	3603		1:4/	
(psi)	(BAR)	Flowmeter Take	litres	3533	17	15	13	13	12		litres/min	
10	0.69	Average Take	l/m		17	15	13	13	12		14	17.4
	1	1		0		2			5			
GAUGE P	GAUGE P	Time	min	0	1	4	3	4	5		AVERAGE FLOW	LUGEON
(pgi)	(DAD)	Flowmeter	USGAL	3621	3642	3661	3679	3694	3709		litres/min	
(psi)	(BAR)		litres	3021							litres/min	
1.5	1.02	Take	litres		21	19 19	18 18	15 15	15		10	15.0
15	1.03	Average Take	l/m	0					15		18	15.2
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(')			USGAL	27712	2515	2502	27720	2525	25.42			
(psi)	(BAR)	Flowmeter	litres	3712	3717	3723	3729	3735	3742		litres/min	
10	0.60	Take	litres		5	6	6	6	7			7.5
10	0.69	Average Take	l/m	0	5	6	6	6	7		6	
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
, B			USGAL			25.10			200			
(psi)	(BAR)	Flowmeter	litres	3742	3745	3748	3752	3755	3758		litres/min	
_	0.24	Take	litres		3	3	4	3	3			= 1
5	0.34	Average Take	l/m		3	3	4	3	3		3	7.1
1.0 - 0.8 - 1.0 - 0.8 - 1.0 - 0.8 - 1.0 - 0.8 - 1.0 - 0.0 -	◆0.4 2.00 4.00		.4. .0.00 12.0 (l/m)	0.8	1.1		20.00	0.34	0.69	1.03 nuge Pressure (BA	0.69	0.34
							LUGEONS			APPRO	XIMATE PERM	MEABILITY,
TATIC WTR L							MAX Lu=	20.375			MAX k=	2.04E-04
ETERMINATI							MIN Lu=	7.087			MIN k=	7.09E-0
NTERPRETAT EFERENCE:	TON						AVG Lu=	13.522	cm/s		AVG k=	1.4E-0
VTERPRETAT YPE OF FLOV	V:	LAMINAR TURBULENT DILATION WASH-OUT VOID FILLING		YES NO NO NO NO	•	Note: F	ermeability ca upon flow cla		endent			
RILLING / TE	ST RESULTS C	OMMENTS:										
EST BY:	Josh Vines					REVIE		Greg Johnsto				

SHEET 1	OF 1		LUGI	EON TE	ST FIEL	D DAT	A SHEET	Γ		Knig	ht Pie	sold
PROJECT:		Morrison Coppe	r Gold		P	ROJECT NO	: 101-	102/7] 1	DRILLHOLE:	DH	106-7
REA:				Sou	th Embankı	nent					TEST NO:	1
IPS:	90 (FROM HORIZONTAL	<u></u>	ДЕРТН G	ROUNDWAT	ΓER:	0.0	m		TOP OF TES	ST INTERVAI	L	12.8 m (DOWN HOLE
ATE:	03-02-06		GAUGE HE	IGHT ABOVE (GROUND:	1.0	m		воттом о	F TEST INTE	RVAL:	43.3 m (DOWN HOLE
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	USGAL	1426	1457	1488	1516	1542	1568		litres/min	
4.7	, ,	Take	litres	-	31	31	28	26	26			
5	0.34	Average Take	l/m		31	31	28	26	26		28	62.9
GAUGE P	GAUGE P	Time Flowmeter	min USGAL	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	litres	1672	1720	1767	1814	1860	1905		litres/min	
* '		Take	litres		48	47	47	46	45			
10	0.69	Average Take	l/m	_	48	47	47	46	45		47	58.0
GAUGE P	GAUGE P	Time Flowmeter	min USGAL	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	litres	1945	2000	2054	2107	2158	2210		litres/min	
4-7	, ,	Take	litres		55	54	53	51	52			
13	0.90	Average Take	l/m		55	54	53	51	52		53	52.3
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEO
(psi)	(BAR)	Flowmeter	USGAL	2231	2269	2307	2345	2382	2420		litres/min	
(psi)	(BAK)	Take	litres	2231	38	38	38	37	38		nues/mm	
10	0.69	Average Take	l/m		38	38	38	37	38		38	47.1
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEO
		Flowmeter	USGAL	2444	2455	2.452	2400	2505	2522			
(psi)	(BAR)	Flowmeter Take	litres	2444	2457 13	2473 16	2489 16	2505 16	2522 17		litres/min	
5	0.34	Average Take	l/m		13	16	16	16	17		16	34.5
0.8 - 0.8 -	10.00	20.00 3	0.4 0.00 0.000 0.00m	40.00	50.00	60.00	50.00	0.34	0.69	0.90 auge Pressure (BA	0.69	0.34
							LUGEONS				OXIMATE PERI	MEABILITY
ATIC WTR L							MAX Lu=	62.897			MAX k=	6.29E-0
TERMINATI	ON:						MIN Lu=	34.549	7		MIN k=	3.45E-0
TERPRETAT	ION						AVG Lu=	50.963	cm/s	3	AVG k=	5.1E-0
FERPRETAT PE OF FLOW		LAMINAR TURBULENT DILATION WASH-OUT VOID FILLING		YES NO NO NO NO NO		Note: I	Permeability ca upon flow cla		endent			
ILLING / TES	ST RESULTS C	OMMENTS:										
EST BY:	Josh Vines					REVIE	WED BY:	Greg Johnston	n			

ROJECT:		Morrison Coppe	r Gold		I	PROJECT NO): 101-	102/7	:	DRILLHOLE:	DH	06-11
REA:				Sou	ıth Embank	ment					TEST NO:	1
PS:	90		DEPTH G	ROUNDWA	TER:	1.2	m		TOP OF TE	ST INTERVAL	<u></u>	8.8
TE:	(FROM HORIZONTAL		GAUGE HE	IGHT ABOVE	GROUND:	1.0	m		воттом о	F TEST INTE	RVAL:	36.9 m (DOWN HOL
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	USGAL litres	10	19	28	35	43	50		litres/min	
(psi)	(BAK)	Take	litres	10	9	9	7	8	7		nucs/mm	
10	0.69	Average Take	l/m		9	9	7	8	7		8	8.7
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEO
(psi)	(BAR)	Flowmeter	USGAL litres	60	79	96	114	130	141		litres/min	
(psi)	(BAK)	Take	litres	00	19	17	18	16	11		nues/mm	
20	1.38	Average Take	l/m		19	17	18	16	11		16	10.0
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEO
, .		Flowmeter	USGAL		10:							
(psi)	(BAR)	Flowmeter	litres	175	194	220	241	259	278		litres/min	
30	2.07	Take Average Take	litres l/m		19 19	26 26	21	18 18	19 19		21	8.8
GAUGE P	GAUGE P	Time	min	0	19	20	3	4	5		AVERAGE FLOW	LUGEO
		Flowmeter	USGAL	Ÿ			-	-				20320
(psi)	(BAR)	Flowmeter	litres	280	286	292	300	310	321		litres/min	
		Take	litres		6	6	8	10	11			
20	1.38	Average Take	l/m		6	6	8	10	11		8	5.0
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEO
(psi)	(BAR)	Flowmeter	USGAL litres	321	323	325	330	333	336		litres/min	
(psi)	(DAK)	Take	litres	521	2	2	5	3	3		nucsimii	
10	0.69	Average Take	l/m		2	2	5	3	3		3	3.3
2.5		FLOW VERSU	US PRESSU	URE PLOT			12.00	STAG	E PRESSURE	VERSUS LUG	EON VALUE	
2.5					2.3		12.00					
2.0 +							10.00					
£ 1.5 +		1.6		1.6			8.00		_	-		
1.5 - (Parsonne							suo					
ž 1.0 +	• 0.9	◆0.9					700.6 Find the control of the contro					
	. 0.5						4.00					
0.5 -												
							2.00					
0.00	5.00	10.00	15.	00	20.00	25.00	0.00					
		•	Q (I/m)					0.69	1.38 Stage G	2.07 auge Pressure (BA	1.38 R)	0.69
							LUGEONS			APPRO	XIMATE PERM	1EABILITY
ATIC WTR LI							MAX Lu=	9.962			MAX k=	9.96E-0
TERMINATIO	ON:						MIN Lu=	3.250			MIN k=	3.25E-0
ERPRETATI	ON								cm/	s	-	
FERENCE:							AVG Lu=	7.153	_		AVG k=	7.2E-(
TERPRETATI		LAMINAR		YES	1							
PE OF FLOW	:	TURBULENT DILATION		NO NO		Note:	Permeability ca		pendent			
		WASH-OUT		NO			upon flow cla	issilication:				
		VOID FILLING		NO	4							
H I INC /mmc												
ILLING / TES	ST RESULTS C	OMMENTS:										

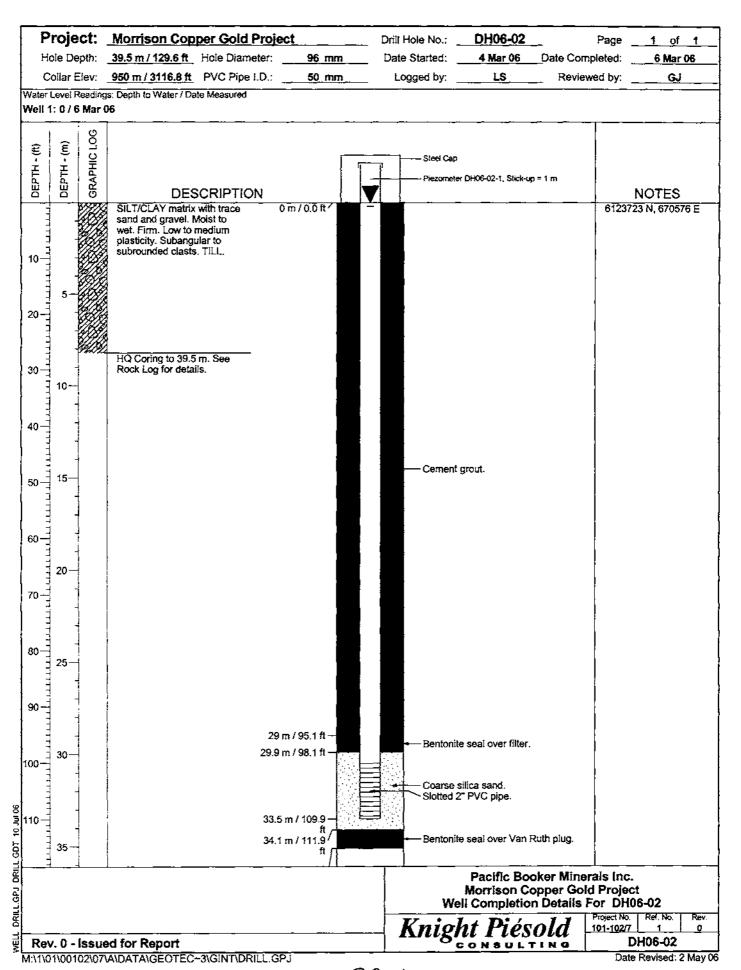
Rev'd Jun/7/06

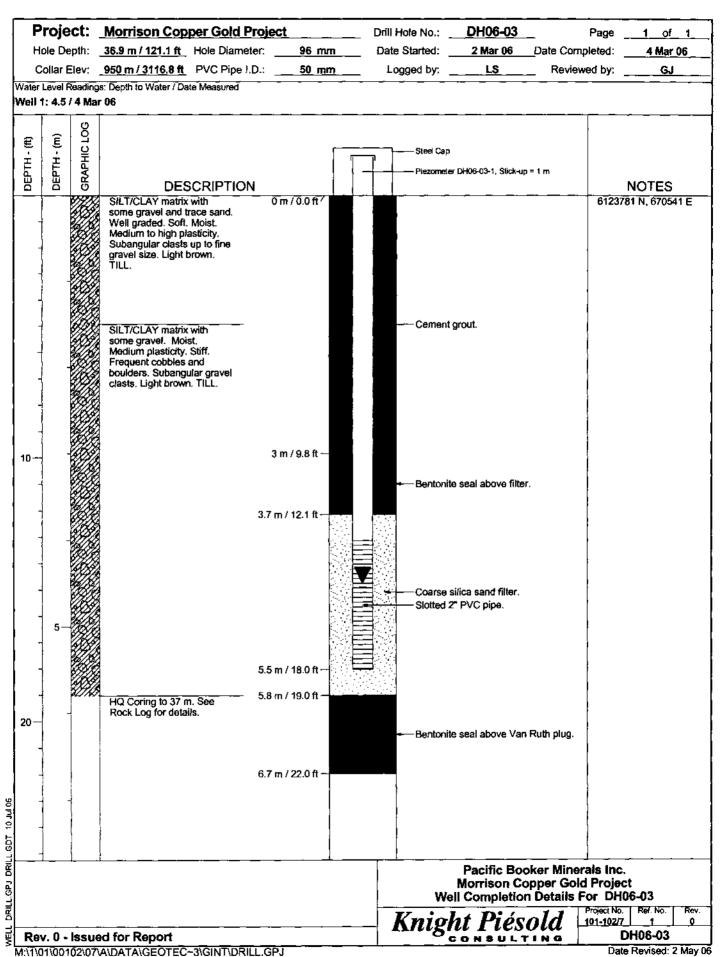
ROJECT:		Morrison Coppe	er Gold		P	ROJECT NO	: 101-	102/7	ı	ORILLHOLE:	DHO	06-12
REA:				Sou	th Embankı	ment]	TEST NO:	1
	00]	<u> </u>	
PS:	90 (FROM HORIZONTAL)	l.	DEPTH G	ROUNDWAT	ER:	3.8	m		TOP OF TES	ST INTERVAL	L.	13.1 m (DOWN HOL
TE:	02-26-06		GAUGE HE	IGHT ABOVE (GROUND:	1.0	m		BOTTOM O	F TEST INTE		58.3 m (DOWN HOL
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEO
(psi)	(BAR)	Flowmeter	USGAL	1058	1061	1064	1067	1070	1074		litres/min	
(1937)	(Dint)	Take	litres	1000	3	3	3	3	4		na com min	
10	0.69	Average Take	l/m		3	3	3	3	4		3	2.7
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEO
(psi)	(BAR)	Flowmeter	USGAL	1080	1086	1092	1098	1104	1109		litres/min	
(1)	(===,	Take	litres		6	6	6	6	5			
20	1.38	Average Take	l/m		6	6	6	6	5		6	3.1
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEO
(psi)	(BAR)	Flowmeter	USGAL	1123	1132	1141	1150	1158	1166		litres/min	
(1931)	(BAK)	Take	litres	1123	9	9	9	8	8		nacs/mm	
30	2.07	Average Take	l/m		9	9	9	8	8		9	3.3
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEO
(:)		Flowmeter	USGAL	1180	1185	1191	1197	1202	1207		11. / 1	
(psi)	(BAR)	Flowmeter Take	litres	1180	5	6	6	5	5		litres/min	
20	1.38	Average Take	l/m		5	6	6	5	5		5	2.9
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEO
		Flowmeter	USGAL	1210	1012	1015	1017	1220	1222			
(psi)	(BAR)	Flowmeter Take	litres	1210	1213 3	1215 2	1217 2	1220 3	1223 3		litres/min	
10	0.69	Average Take	l/m		3	2	2	3	3		3	2.2
2.5		FLOW VERS			2.5		3.50	STAG	E PRESSURE	VERSUS LUG	SEON VALUE	
1.5 - 1.0 - 0.5 - 0.0	 	.2 ◆1.2 .00 4.00	5.00 6.0 Q (I/m)	.9	8.00 9.00	10.00	1.50 ————————————————————————————————————	0.69	1.38	2.07	1.38	0.69
									Stage Ga	uge Pressure (BAI	R)	
ATIC WTR I	EVEL						LUGEONS MAX Lu=	3.322	٦	APPRO	MAX k=	3.32E-0
TERMINAT									_			
TERPRETAT	TON						MIN Lu=	2.198	cm/s		MIN k=	2.20E-0 2.8E-0
FERENCE:	NO.	I 41407:5		NEC.	ī		AVG Lu=	2.832	_		AVG k=	⊿.∪1 2*(
TERPRETAT PE OF FLOV		LAMINAR TURBULENT DILATION WASH-OUT VOID FILLING		YES NO NO NO NO		Note: F	Permeability ca upon flow cla		pendent			
LLING / TE	ST RESULTS CO	OMMENTS:										

SHEET 1	OF 1		LUGI	EON TES	ST FIEL	D DATA	SHEET	Γ		Knig	ht Pié	sold
PROJECT:		Morrison Coppe	r Gold		P	ROJECT NO:	101-	102/7]	ORILLHOLE:	DH	06-13
AREA:				Mid	ldle of Open	Pit					TEST NO:	
DIPS:	90 (FROM HORIZONTAL)	1	ДЕРТН G	ROUNDWAT	ER:	8.7	m		TOP OF TES	T INTERVAL	<u>L</u>	11.9 m (DOWN HOLE)
DATE:	03-24-06		GAUGE HE	IGHT ABOVE O	GROUND:	1.0	m		BOTTOM OI	F TEST INTE	RVAL:	20.3 m (DOWN HOLE)
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	USGAL	4225.00	4235.00	4244.00	4253.00	4261.00	4268.00		litres/min	
4.7	, ,	Take	litres		10.00	9.00	9.00	8.00	7.00			
6	0.41	Average Take	l/m		10.00	9.00	9.00	8.00	7.00		8.60	6.179
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	USGAL	4276.00	4287.00	4298.00	4307.00	4316.00	4324.00		litres/min	
(1)	(=-=)	Take	litres		11.00	11.00	9.00	9.00	8.00			
12	0.83	Average Take	l/m		11.00	11.00	9.00	9.00	8.00		9.60	5.293
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
4 10		Flowmeter	USGAL	4220.00	1210.00	1262.05	4287.00	420 = 05	4207.00			
(psi)	(BAR)	Flowmeter	litres	4338.00	4349.00	4362.00	4375.00	4385.00	4395.00		litres/min	
20	1.38	Take Average Take	litres 1/m		11.00 11.00	13.00	13.00 13.00	10.00	10.00		11.40	4.798
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
0.1002 1	G.ICGE I	Flowmeter	USGAL	Ü	-	-		-			TVLKIGETEO!	LOGLON
(psi)	(BAR)	Flowmeter	litres	4400.00	4407.00	4413.00	4419.00	4424.00	4431.00		litres/min	
		Take	litres		7.00	6.00	6.00	5.00	7.00			
12	0.83	Average Take	l/m		7.00	6.00	6.00	5.00	7.00		6.20	3.418
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	USGAL	4433.00	4436.00	4440.00	4444.00	4448.00			litres/min	
(psi)	(BAK)	Take	litres	4433.00	3.00	4.00	4.00	4.00			nues/mm	
6	0.41	Average Take	l/m		3.00	4.00	4.00	4.00			3.75	2.694
2.5 2.0 - 2.	2.00		6.00 Q (l/m)	8.00	10.00	2.3	7.00 6.00 5.00 94.00 2.00 1.00 0.00	0.41	0.83 Stage Gat	1.38 age Pressure (BAI	0.83	0.41
							LUGEONS		¬	APPRO	XIMATE PER	MEABILITY, cr
STATIC WTR L DETERMINATI							MAX Lu=	6.179	J		MAX k=	6.18E-05
							MIN Lu=	2.694]		MIN k=	2.69E-05
INTERPRETAT REFERENCE:	ION						AVG Lu=	4.477	cm/s		AVG k=	4.5E-05
INTERPRETAT TYPE OF FLOW	V:	LAMINAR TURBULENT DILATION WASH-OUT VOID FILLING		YES NO NO NO NO	•	Note: P	ermeability ca upon flow cla		endent			
DRILLING / TE	ST RESULTS C	OMMENTS:										
TEST BY:	Josh Vines					REVIEV	VED BY:	Greg Johnston	1			

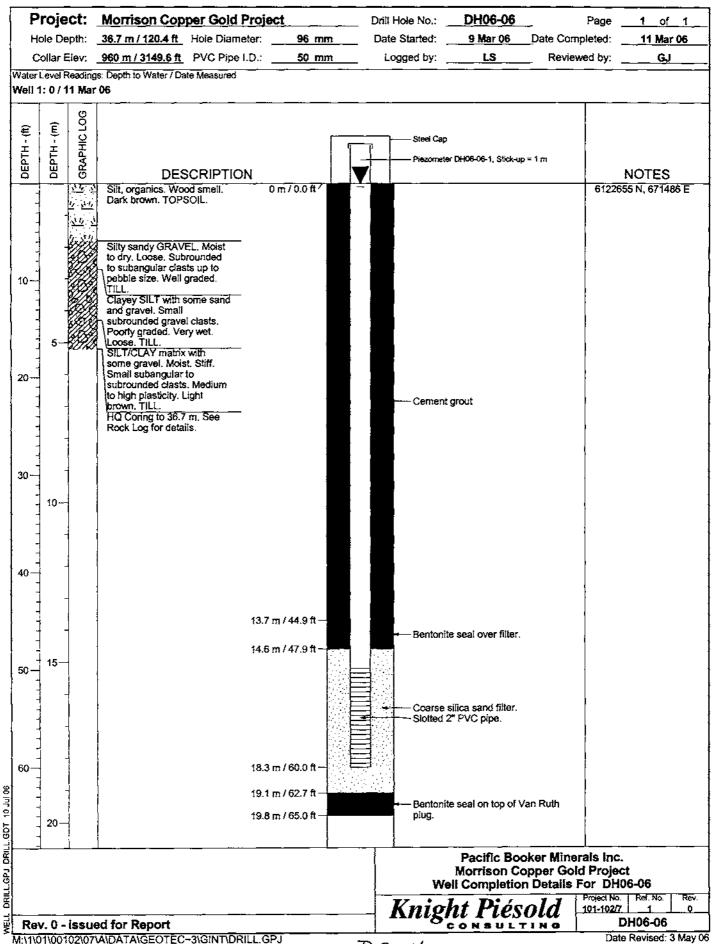
Rev'd Jun/7/06

SHEET 1	OF 1		LUGI	EON TES	ST FIEL	D DATA	SHEET	Γ		Knig	ht Pié	SOLD
ROJECT:		Morrison Coppe	er Gold		P	ROJECT NO	101-	102/7] 1	ORILLHOLE:	DHO	06-14
REA:			Upst	ream from N	Millsite and	Service Buil	dings				TEST NO:	1
IPS:	90 (FROM HORIZONTAL		ДЕРТН G	ROUNDWAT	TER:		m		TOP OF TES	T INTERVAL	L.	21.9
ATE:	03-23-06		GAUGE HE	IGHT ABOVE (GROUND:	1.0	m		BOTTOM O	F TEST INTER	<u>L</u>	29.3 m (DOWN HOL
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
(psi)	(BAR)	Flowmeter	USGAL	3788.00	3792.00	3796.00	3800.00	3804.00	3809.00		litres/min	
4 /		Take	litres		4.00	4.00	4.00	4.00	5.00			
11	0.76	Average Take	l/m		4.00	4.00	4.00	4.00	5.00		4.20	4.809
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
		Flowmeter	USGAL									
(psi)	(BAR)	Flowmeter	litres	3817.00	3834.00	3852.00	3868.00	3884.00			litres/min	
22	1.50	Take	litres		17.00	18.00	16.00	16.00			1685	10.153
22	1.52	Average Take	l/m		17.00	18.00	16.00	16.00			16.75	10.172
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEON
		Flowmeter	USGAL	****	2027.00	20.50.00	2002.00	4002.00	40.04.00			
(psi)	(BAR)	Flowmeter	litres	3907.00	3935.00	3960.00	3982.00	4003.00	4024.00		litres/min	
26	2.40	Take	litres		28.00	25.00	22.00	21.00	21.00		22.40	0.00
36	2.48	Average Take	l/m		28.00	25.00	22.00	21.00	21.00		23.40	8.894
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEO
		Flowmeter	USGAL									
(psi)	(BAR)	Flowmeter	litres	4036.00	4048.00	4062.00	4076.00	4090.00			litres/min	
		Take	litres		12.00	14.00	14.00	14.00			42.50	0.400
22	1.52	Average Take	l/m		12.00	14.00	14.00	14.00			13.50	8.198
GAUGE P	GAUGE P	Time	min	0	1	2	3	4	5		AVERAGE FLOW	LUGEO
		Flowmeter	USGAL									
(psi)	(BAR)	Flowmeter	litres	4096.00	4104.00	4113.00	4123.00	4132.00	4142.00		litres/min	
		Take	litres		8.00	9.00	10.00	9.00	10.00			
11	0.76	Average Take	l/m		8.00	9.00	10.00	9.00	10.00		9.20	10.534
2.5 - 2.0 -	◆0.9 5.00	10.00	1.6 15 Q (I/m)	1.6	20.00	25.00	10.00	0.76	1.52	2.48 uge Pressure (BA)	1.52	0.76
							LUGEONS			APPRO	XIMATE PERM	MEABILITY
TATIC WTR L							MAX Lu=	10.534			MAX k=	1.05E-0
ETERMINATI							MIN Lu=	4.809			MIN k=	4.81E-0
VTERPRETAT EFERENCE:	TON						AVG Lu=	8.521	cm/s		AVG k=	8.5E-0
TERPRETAT YPE OF FLOV		LAMINAR TURBULENT DILATION WASH-OUT VOID FILLING		YES NO NO NO NO	•	Note: F	ermeability ca upon flow cla		endent			
ILLING / TE	ST RESULTS C	OMMENTS:										
ST BY:	Josh Vines					REVIE	WED BY:	Greg Johnsto	n			

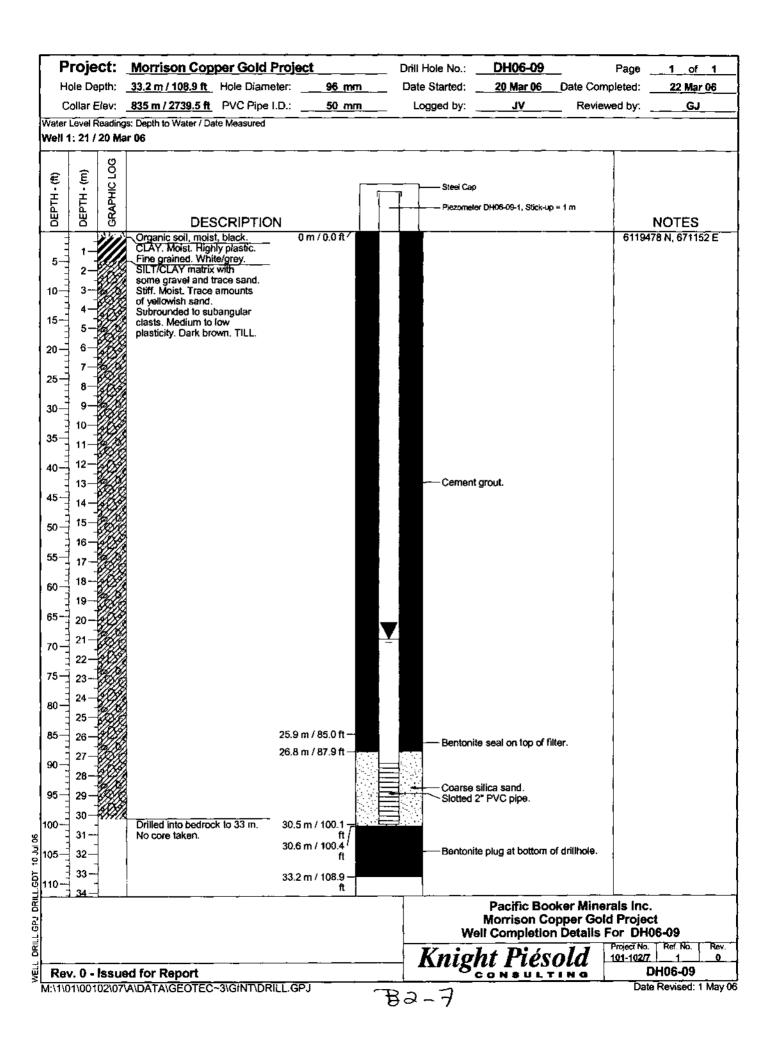

APPENDIX B2

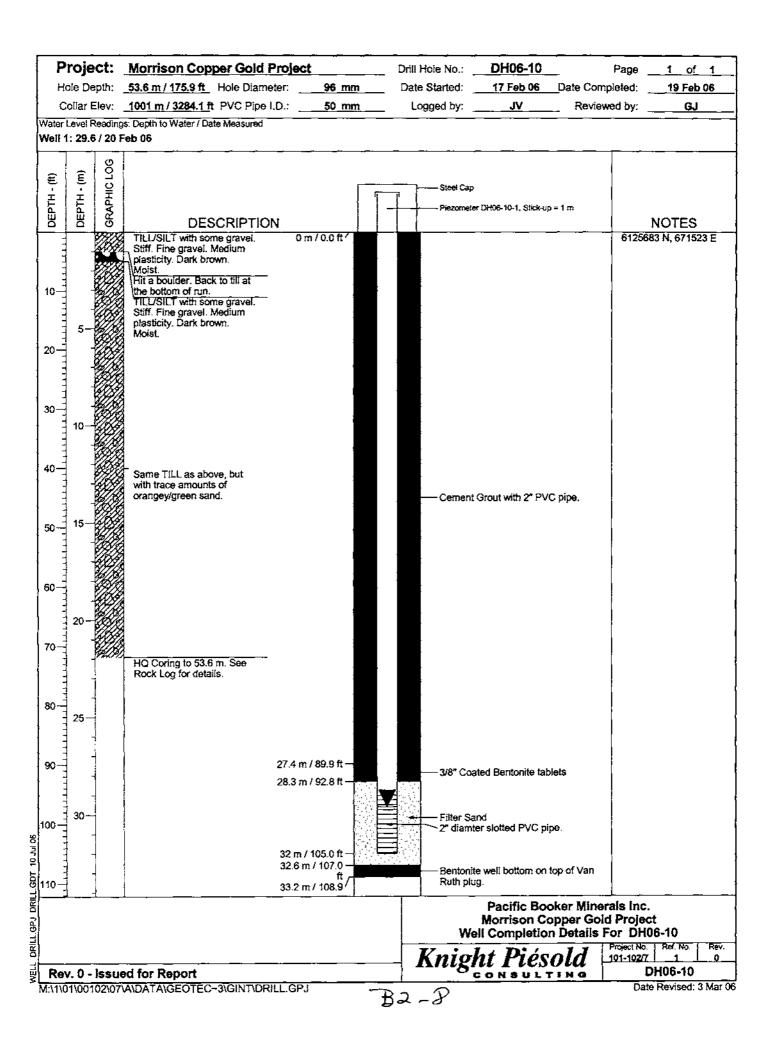

(Rev 0)

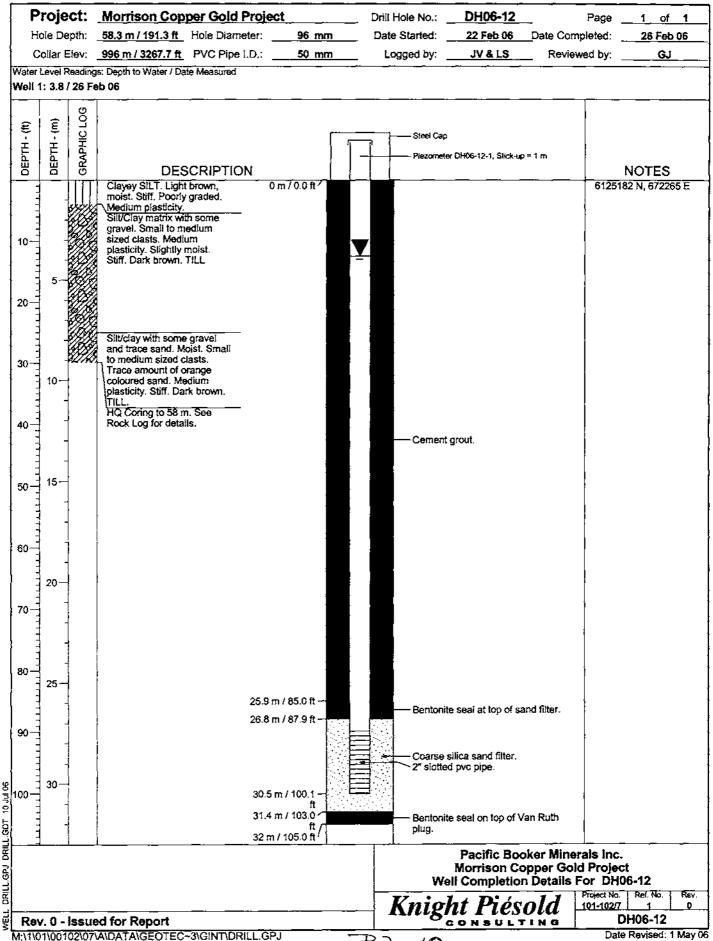
WELL COMPLETION DETAILS

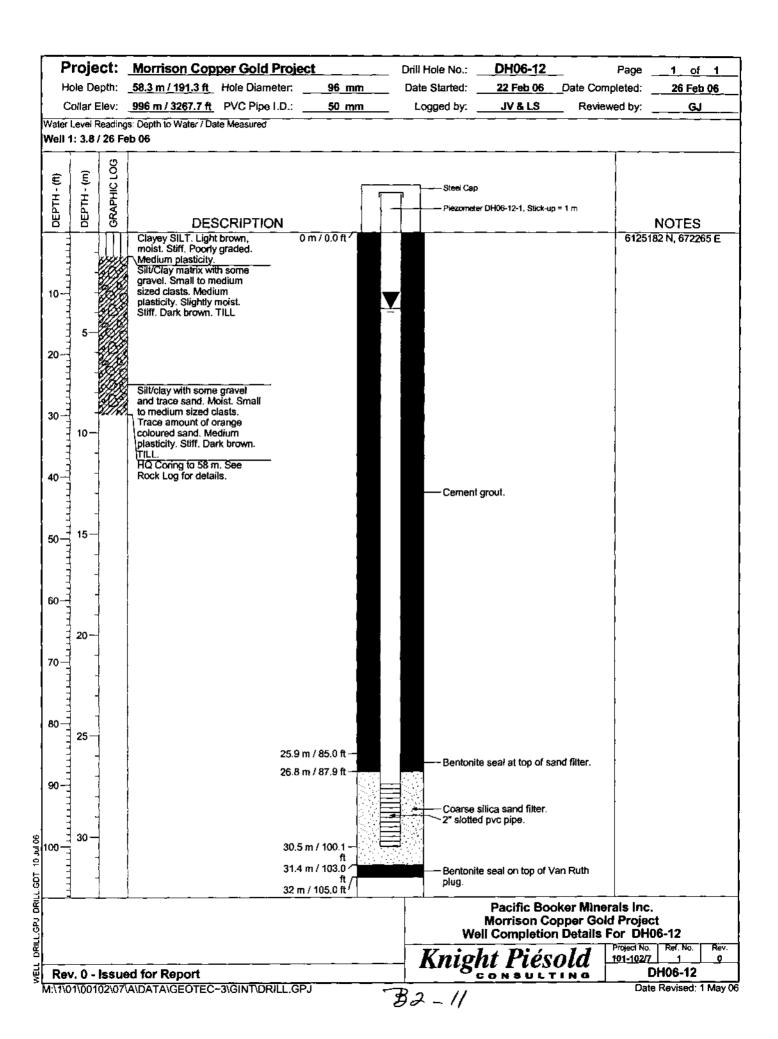

- Drillhole DH06-02
- Drillhole DH06-03
- Drillhole DH06-04
- Drillhole DH06-06
- Drillhole DH06-07
- Drillhole DH06-08
- Drillhole DH06-09
- Drillhole DH06-10
- Drillhole DH06-11
- Drillhole DH06-12
- Drillhole DH06-13
- Drillhole DH06-14Drillhole DH06-15a
- Drillhole DH06-15b
- Drillhole DH06-16
- Drillhole DH06-17
- Drillhole GW1

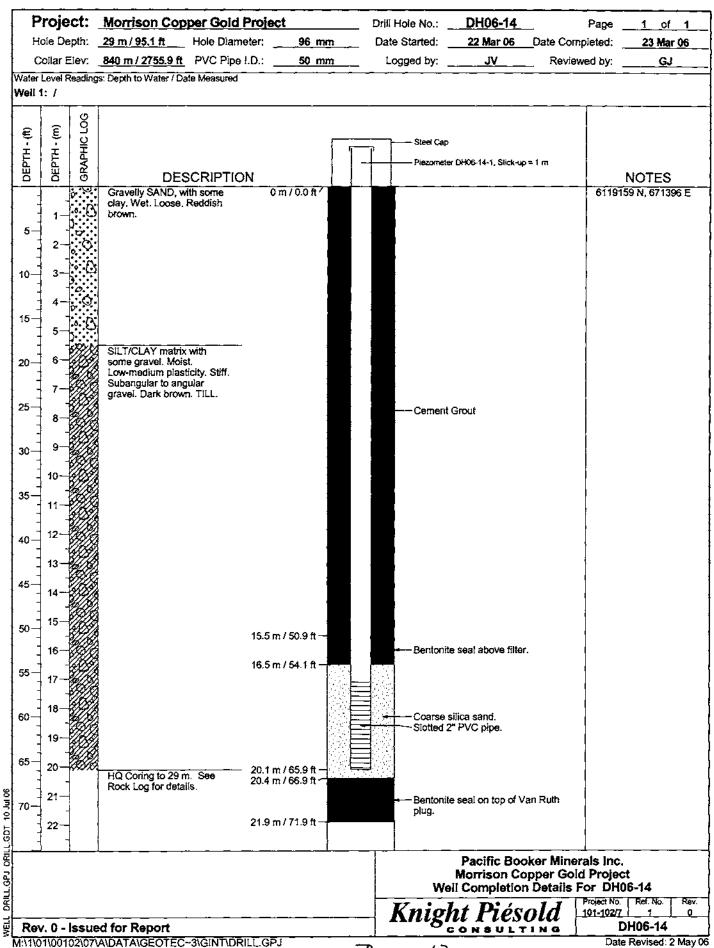
(Pages B2-1 to B2-18)



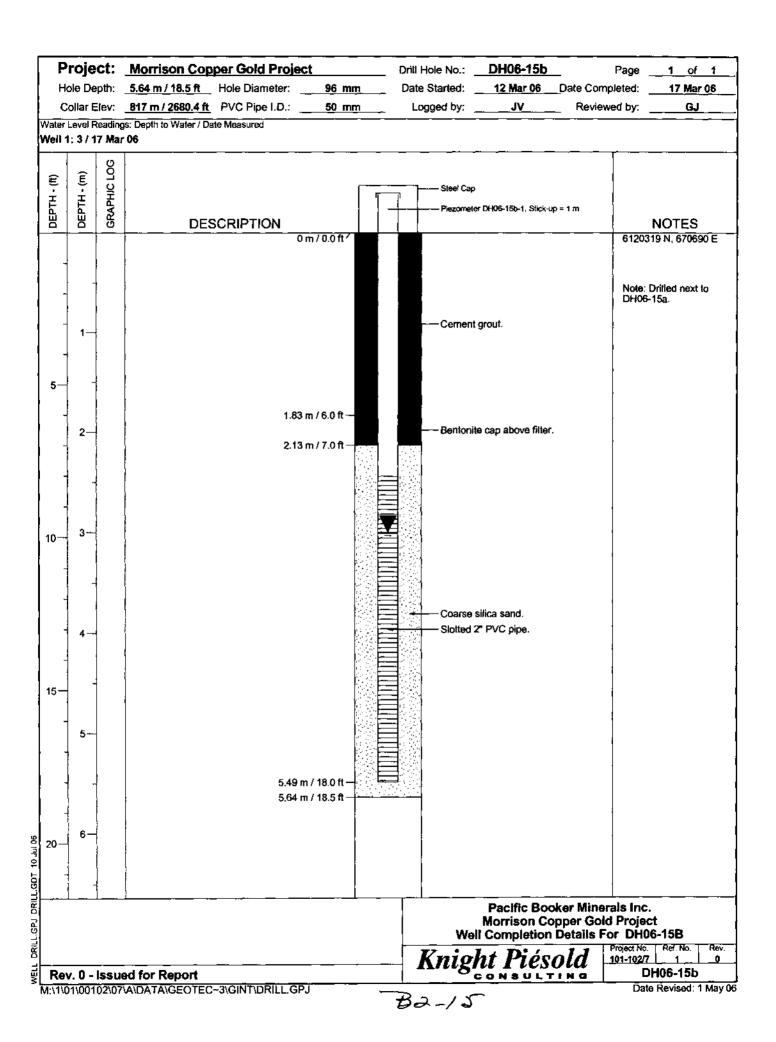

Proje	ect:	Morrison Cop	per Gold P	roject	Drill I	tole No.:	DH06-04		Page	1 of 1
-		41.5 m / 136.2 ft			n Date	Started:	7 Mar 06	Date Comp		9 Mar 06
		983 m / 3225.1 ft		D.: <u>50 mm</u>	<u>n</u>	gged by: _	L\$	Review	ed by:	GJ
Water Level Well 1: 12.		s: Depth to Water / Dai ar 06	te Measured							·-
	. –								Γ –	
€ €	GRAPHIC LOG									
Ŧ Ħ	l ¥				▎▝▔▘▐	Steel Cap				
DEPTH - (ff)	₹	DES	CRIPTION	1		Piezomete	r DH06-04-1, Stick-t	µp=1m		NOTES
- }-	11/16	Gravelly SILT/CLA	Y matrix	0 m / 0.0 ft /						60 N, 670997 E
1		with some sand. M Firm. Frequent sub to subrounded clas	oangular							
1		∖gravel size. Well g	raded.						,	
10-		Low to medium pla TILL.								
1		SILT/CLAY matrix some gravel and tr	race sand.							
5-		Low to medium pla Moist, Stiff, Suban	isticity.						1	
20		subrounded clasts cobble size. Well of	up to							
~ 1		Light brown, TILL.	,							
1									1	
=										
30-	27212	HQ Coring to 41.5	m. See						ĺ	
10-	4	Rock Log for detail	ıs.							
3						Cement	grout.			
40-	-				Y		_			
1	-									
T T										
- 15-									ļ	
50-										
7.1.1										
=	1	•								
60	1								[
] ;	1									
20-	+									
70										
70~	1									
Ę]		:	22.7 m / 74,5 ft		D "	t-a			
=			:	23.8 m / 78.1 ft		Bentoniti	e seat over filter		ŧ	
80-	Ì			-						
25-	1]:		Coarse s	silica sand filter.		ĺ	
1	1					Slotted 2	PVC pipe.			
90	1		:	27.4 m / 89.9 ft —					[
·	-			28.3 m / 92.8 ft —		_			<u> </u>	
1	-		:	29.1 m / 95.5 ft		- Bentonite	e seal above Va	a Kuth plug.		
	<u> </u>						Design De			
					Ì		Morrison C		Projec	:t
							II Completic	n Detalls F		
				 	1	Knigl	ht Piés		101-102/7	1 0
		od for Report ANDATANGEOTEC-	-3/CINT/DDII	I GDI	77.7		ONSUL	TING		H06-04 Revised: 3 May

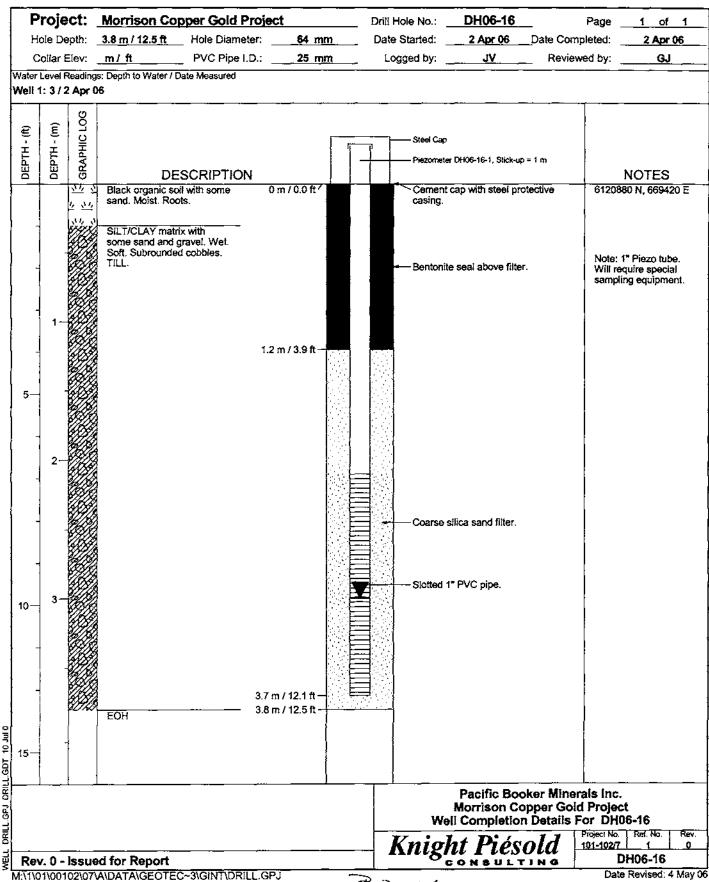



Hole Depth: 38.8 m / 130.8 ft Note Diameter: 96 mm Date Started: 18 Mer 66 Date Completed: 20 Mer 06 Colar Elev: 588 m / 1249.8 ft PVC Pipe ID: 50 mm Logged by: 4V Reviewed by: QU Well 1-0 / 20 Mer 06 E	Б	roic	ot:	Harrison Conner Gold Pr		Dell Hote No.	DH06-08	Page 4 of 4
Coller Elev 888 m 12743.3 ft PVC Pipe I.D.: 50 mm Logged by:	l	-				Drill Hole No.:		Page 1 of 1
Weel 1: 0 / 20 Mar 05 DESCRIPTION DESCRIPTION On / 0.0 R7 State Cap Percentate Device 38-1, 864-up = 1 m NOTES 6119649 N, 671249 E STate Cap Percentate Device 38-1, 864-up = 1 m NOTES 6119649 N, 671249 E Cernant Grout. Cernant Grout. Description of All State Cap and the companies of the companies	l				<u> </u>			-
Stand Cap DESCRIPTION DESCRIPTION Of A Stand Stand Cap Percentate Phase Set 1, Seck-up = 1 on NOTES Stand Stand Cap Percentate Phase Set 1, Seck-up = 1 on NOTES Stand Cap Percentat	ı			••••	7 <u>00 mm</u>		TO THE PROPERTY OF THE PROPERT	
Sandy SILT/CLAY meths this cone grave. Very wet. Firm. Brown. TILL. SILT/CLAY meths with some grave. Mosts. Medium Plasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank Silt. Figh. Stiff. Subanquiar to subrounced clasts. Dank CLAY with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh. Stiff. Clay with some sand. Very wet. Figh. Stiff. Clay with some sand. Very wet. Figh. Stiff. Stiff. Clay with some sand. Very wet. Figh. St	1		_	•				
Sandy SILT/CLAY meths this cone grave. Very wet. Firm. Brown. TILL. SILT/CLAY meths with some grave. Mosts. Medium Plasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank Silt. Figh. Stiff. Subanquiar to subrounced clasts. Dank CLAY with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh. Stiff. Clay with some sand. Very wet. Figh. Stiff. Clay with some sand. Very wet. Figh. Stiff. Stiff. Clay with some sand. Very wet. Figh. St			ပ					
Sandy SILT/CLAY meths this cone grave. Very wet. Firm. Brown. TILL. SILT/CLAY meths with some grave. Mosts. Medium Plasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank Silt. Figh. Stiff. Subanquiar to subrounced clasts. Dank CLAY with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh. Stiff. Clay with some sand. Very wet. Figh. Stiff. Clay with some sand. Very wet. Figh. Stiff. Stiff. Clay with some sand. Very wet. Figh. St	€	Ê	<u> </u>		<u></u>			
Sandy SILT/CLAY meths this cone grave. Very wet. Firm. Brown. TILL. SILT/CLAY meths with some grave. Mosts. Medium Plasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank Silt. Figh. Stiff. Subanquiar to subrounced clasts. Dank CLAY with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh. Stiff. Clay with some sand. Very wet. Figh. Stiff. Clay with some sand. Very wet. Figh. Stiff. Stiff. Clay with some sand. Very wet. Figh. St	±	Ė	₹		1	7 1		
Sandy SILT/CLAY meths this cone grave. Very wet. Firm. Brown. TILL. SILT/CLAY meths with some grave. Mosts. Medium Plasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank brown. TILL. CLAY with some sand. Very wet. Figh clasticity. Stiff. Subanquiar to subrounced clasts. Dank Silt. Figh. Stiff. Subanquiar to subrounced clasts. Dank CLAY with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh clasticity. Stiff. Clay with some sand. Very wet. Figh. Stiff. Clay with some sand. Very wet. Figh. Stiff. Clay with some sand. Very wet. Figh. Stiff. Stiff. Clay with some sand. Very wet. Figh. St	Ë	- E	₹	DESCRIPTION		Piezometer (0H06-08-1, Slick-up = 1 m	NOTES
Silly SAND Very wet. Firm. Silly SAND Very wet. Silly Sand V			<i>9999</i>	Sandy SILT/CLAY matrix	!!▼		<u>-</u>	
Sill, SAID, Very well, Firm Stown. Sill, TCL/AV matrix with Medium Plassichy, Stiff. Subangular to subrounded clasts. Dark brown. TILL. Cement Grout. Rev. 0 - Issued for Report	=	-		with some gravel. Very wet.				
SSLF2CH with some gard. Most. Medium Plastoly. Stft. Subangular to subconcoded dasts. Derk 80 25 90 100 100 100 100 100 100 100 100 100	1,5	-		Silty SAND, Very wet, Firm.				
Plasticity, Soft, Subanquiar to subrounded class. Dark brown. Tit.L. ——————————————————————————————————] 10-		17924	SILT/CLAY matrix with				
to brown. Tit.L. Cernent Grout. Coarse silica sand. High pressure water bearing region. Solicited 2 PVC pipe. Coarse silica sand. High pressure water bearing region. Solicited 2 PVC pipe. Coarse silica sand. High pressure water bearing region. Solicited 2 PVC pipe. Coarse silica sand. High pressure water bearing region. Solicited 2 PVC pipe. Coarse silica sand. High pressure water bearing region. Coarse silica sand. High pressure of Artesian. Coarse silica sand. High pressure of Ar		5-		some gravel. Moist, Medium Plasticity, Stiff, Subangular				
The state of the s	20-3			to subrounded clasts. Dark				•
The second of th				Sional field				
The second of th								
Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Bentonite seal over filter. Send of Hole @ 39.8 m. Coarse silica sand. High pressure water bearing region - source of Artesian well. Signature Grout Grout. Coarse silica sand. Sicret 2º PVC pipe. Well Completion Details For DH08-08 Rev. 0 - Issued for Report Rev. 0 - Issued for Report Coarse silica sand. Morrison Copper Gold Project Well Completion Details For DH08-08 Rev. 0 - Issued for Report Coarse silica sand. Morrison Copper Gold Project Well Completion Details For DH08-08 This is the send of the coarse of the	30	40						
Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Bentonite seal over filter. Send of Hole @ 39.8 m. Coarse silica sand. High pressure water bearing region - source of Artesian well. Signature Grout Grout. Coarse silica sand. Sicret 2º PVC pipe. Well Completion Details For DH08-08 Rev. 0 - Issued for Report Rev. 0 - Issued for Report Coarse silica sand. Morrison Copper Gold Project Well Completion Details For DH08-08 Rev. 0 - Issued for Report Coarse silica sand. Morrison Copper Gold Project Well Completion Details For DH08-08 This is the send of the coarse of the		10-						
Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Cement Grout. Bentonite seal over filter. Send of Hole @ 39.8 m. Coarse silica sand. High pressure water bearing region - source of Artesian well. Signature Grout Grout. Coarse silica sand. Sicret 2º PVC pipe. Well Completion Details For DH08-08 Rev. 0 - Issued for Report Rev. 0 - Issued for Report Coarse silica sand. Morrison Copper Gold Project Well Completion Details For DH08-08 Rev. 0 - Issued for Report Coarse silica sand. Morrison Copper Gold Project Well Completion Details For DH08-08 This is the send of the coarse of the	40							
CLAY with some sand. Very wet, high plasticity. Soft High pressure water bearing region - source of Artesian region - source of Artesian Regio	"							
CLAY with some sand. Very wet, high plasticity. Soft High pressure water bearing region - source of Artesian region - source of Artesian Regio	=							
80 25 90 100 30 35.1 m / 115.2 1 100 35.1 m / 115.2	50	15-						
80 25 90 100 30 35.1 m / 115.2 1 100 35.1 m / 115.2								
20]					Cement G	irout.	
35.1 m / 115.2 - Bentonite seal over filter. CLAY with some sand. Very wet, high pressure water bearing region - source of Artesian well. End of Hole @ 38.8 m. Bentonite seal over filter. Coarse silica sand. Slotted 2" PVC pipe. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Knight Piesold Project, Raf No. Rev. 101-1027 1 0 DH06-08	60-							
80 25 90 100 30 25 100 30 100 30 30 100 30 1] 3	20-						
35.1 m / 115.2 36 m / 118.1 ft CLAY with some sand. Very wet, high plasticity. Soft. High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Rev. 0 - Issued for Report Solution 2 PVC pipe. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Knight Piesold Project No. 182.1 m. 9 Project No. 191-1927 1. 0 DH06-08	70							
35.1 m / 115.2 36 m / 118.1 ft CLAY with some sand. Very wet, high plasticity. Soft. High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Rev. 0 - Issued for Report Solution 2 PVC pipe. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Knight Piesold Project No. 182.1 m. 9 Project No. 191-1927 1. 0 DH06-08								
35.1 m / 115.2 36 m / 118.1 ft CLAY with some sand. Very wet, high plasticity. Soft. High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Rev. 0 - Issued for Report Solution 2 PVC pipe. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Knight Piesold Project No. 182.1 m. 9 Project No. 191-1927 1. 0 DH06-08						:		İ
35.1 m / 115.2 — Bentonite seal over filter. CLAY with some sand. Very wet, high plasticity. Soft. High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Rev. 0 - Issued for Report Rev. 0 - Issued for Report DH06-08	80	25-						
35.1 m / 115.2 — Bentonite seal over filter. CLAY with some sand. Very wet, high plasticity. Soft. High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Rev. 0 - Issued for Report Rev. 0 - Issued for Report DH06-08	1 3	2.5						
35.1 m / 115.2 — Bentonite seal over filter. CLAY with some sand. Very wet, high plasticity. Soft. High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Rev. 0 - Issued for Report Rev. 0 - Issued for Report DH06-08] =							
35.1 m / 115.2 36 m / 118.1 ft CLAY with some sand, Very wet, high plasticity. Soft. High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Rev. 0 - Issued for Report Project No. Ref. No. Rev. 10 100-108	90							
35.1 m / 115.2 36 m / 118.1 ft CLAY with some sand, Very wet, high plasticity. Soft. High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Rev. 0 - Issued for Report Project No. Ref. No. Rev. 10 100-108	1 1							
35.1 m / 115.2 36 m / 118.1 ft CLAY with some sand. Very wet, high plasticity. Soft. High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Rev. 0 - Issued for Report Som / 118.1 ft Coarse silica sand. Slotted 2" PVC pipe. Project No. Rev. 101-1027 1 0 DH06-08	100	30-						
35.1 m / 115.2 36 m / 118.1 ft CLAY with some sand. Very wet, high plasticity. Soft. High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Rev. 0 - Issued for Report Som / 118.1 ft Coarse silica sand. Slotted 2" PVC pipe. Project No. Rev. 101-1027 1 0 DH06-08								
35.1 m / 115.2 36 m / 118.1 ft CLAY with some sand. Very wet, high plasticity. Soft. High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Rev. 0 - Issued for Report Som / 118.1 ft Coarse silica sand. Slotted 2" PVC pipe. Project No. Rev. 101-1027 1 0 DH06-08								
Bentonite seal over filter. 36 m / 118.1 ft CLAY with some sand. Very wet, high plasticity. Soft. High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Rev. 0 - Issued for Report Rev. 0 - Issued for Report DH06-08	110							
CLAY with some sand. Very wet, high plasticity. Soft. High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Rev. 0 - Issued for Report A might Piésold Consulting DH06-08	=	35-			35.1 m / 115.2 —	Rentonite	seal over filter	
wet, high plasticity. Soft. High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Rev. 0 - Issued for Report Coarse silica sand. Slotted 2" PVC pipe. Project No. Ref. No. Rev. 191-102/7 1 0 DH06-08	120				36 m / 118.1 ft	Somoniae		
High pressure water bearing region - source of Artesian well. End of Hole @ 39.8 m. Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Rev. 0 - Issued for Report Slotted 2" PVC pipe. Project No. Rev. 191-1027 1 0 DH06-08				wet, high plasticity. Soft.		Coarse sil	ica sand.	
Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Rev. 0 - Issued for Report Name of the consulting of the consulting DH06-08 Rev. 0 - Issued for Report				High pressure water bearing				
Pacific Booker Minerals Inc. Morrison Copper Gold Project Well Completion Details For DH06-08 Knight Piésold Rev. 0 - Issued for Report Project No. Rev. 101-102/7 1 0 DH06-08	130	40-		⊢ well.		* 		
Morrison Copper Gold Project Well Completion Details For DH06-08 Knight Piésold Rev. 0 - Issued for Report Morrison Copper Gold Project Well Completion Details For DH06-08 Project No. Rev. 101-102/7 1 0 0 0 0 0 0 0 0 0		1	<u>i </u>	End of Hote (@ Jaco Iti.	"/]		Pacific Rooker Mine	l Araje Inc
Rev. 0 - Issued for Report Well Completion Details For DH06-08 Knight Piésold CONSULTING Project No. Ref. No. Rev. 101-10277 1 0 DH06-08	<u>:</u>						Morrison Copper Go	id Project
Rev. 0 - Issued for Report Knight Piésold CONSULTING DH06-08						Well	Completion Details	For DH06-08
Rev. U - ISSUED FOR REPORT CONSULTING Drive-ou						Knigh	t Piésold	101-102/7 1 0
M: 4304:00102:07A3DATA(CEOTEC~3:CINT)DRILL CR I							ONSULTING	DH06-08 Date Revised: 2 May 06

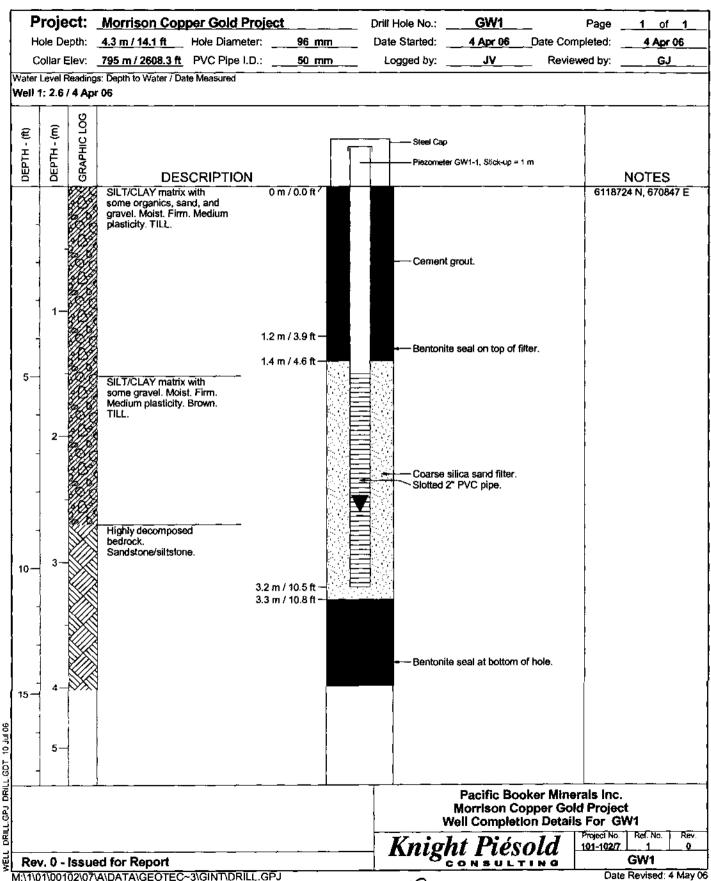


P	roje	ct:	Morrison Copper Gold Pr	oject	Drill Hole No.;	DH06-11	Page <u>1 of 1</u>
н	ole De	epth:	36.9 m / 121.1 ft Hote Diamete	er: <u>96 mm</u>	Date Started:	20 Feb 06 Date Co	ompleted:22 Feb 06
1			965 m / 3166.0 ft PVC Pipe 3.0).: <u>50 mm</u>	Logged by: _	LS Revi	iewed by:GJ
		Reading / 22 Fe	s: Depth to Water / Date Measured b 06				
DEPTH - (ft)	OEPTH - (m)	GRAPHIC LOG	DESCRIPTION		Steel Cap Piezometer	rDH06-11-1, Stick-up = 1 m	NOTES
			Clay/silt and gravel. Trace fine sand. Angular clasts. Low to medium plasticity. Slightly moist. Stiff. TILL. Sitt/Clay matrix with some gravel. Moist to very moist. Stiff. Dark brown. TILL.	0 m / 0.0 ft / 0.9 m / 3.0 ft - 1.2 m / 3.9 ft - 3 m / 9.8 ft - 1.2 m / 3.9 ft - 1.2 m / 3.0 ft - 1.2 m / 3.	Coarse s	grout. e seal at top of filter, silica sand filter. d PVC pipe.	6125568 N, 671912 E
20-	5	The second secon	HQ Coring to 37 m. See Rock Log for details.	3.7 m / 12.1 ft	— Bentonite plug.	e seal on top of Van Ruth	
3						Pacific Booker Min Morrison Copper G	
						Il Completion Details	s For DH06-11
			ed for Report		Knigh	ht Piésold	Project No. Ref. No. Rev. 101-102/7 1 0 DH06-11





Project:	Morrison Copper Gold	l Project	Drill Hole No.: _	DH06-13	F	Page 1 of 1
Hole Depth:	20.3 m / 66.6 ft Hole Diam	neter: 96 mm	Date Started: _	22 Mar 06	_Date Comple	eted: 24 Mar 06
	808 m / 2650.9 ft PVC Pip		_ Logged by: _	JV	_ Reviewe	d by: GJ
Water Level Readir Well 1: 8.8 / 23 N	gs: Depth to Water / Date Measured Aar 06	I				
DEPTH - (ft) DEPTH - (m) GRAPHIC LOG		[Steel Cap			
APH APH				DH06-13-1, Stick-up	= 1 m	
	DESCRIPTI					NOTES
1 24	Sandy SILT/CLAY with organics. Dry. Firm.	0 m / 0.0 ft /				6119111 N, 670800 E
1-	Reddish brown, TILL. Gravelly SILT/CLAY, Low to	_				
5—	medium plasticity. Moist. Subangular to subrounded					
	clasts. Dark brown. TILL.					
10- 3-					į	
					İ	
15						
5-22						
					İ	
20 - 6 - 7			— Cement	arout		
7-				J		
25						
8 3			√ ■			
9-17	Sandy CLAY. Moist. Low	_	-			
	plasticity. Sand looks like coarse calcite chunks. Soft.					
10	Whitish grey/green. Trace pyrite in sand.	_				
35 11-	HQ Coring to 20 m. See Rock Log for details.					
1 -			:		•	
40						
13—		13.1 m / 43.0 ft —				
45-			Bentonite	seal at top of filte	er.	
14-		14 m / 45.9 ft				
50 - 15-						
16— 1 − 1						
55-17-		Nies PW	Coarse s	ilica sand.		
7.7						
60			Stotled 2	" PVC pipe.		
19—				· · - F-k-		
65 20						
- 20		20.1 m / 65.9 ft — 20.3 m / 66.6 ft				
21	<u> </u>		l			
				Pacific Boo Morrison Co	pper Gold I	Project
				Il Completion	Details Fo	
			→ Knigh	rt Piése	old 🗀	1-102/7 1 0
	ied for Report 7\A\DATA\GEOTEC~3\GINT\E			ONSULT	ING	DH06-13 Date Revised: 1 May



P	roje	ct:	Morrison Copper Gold P	roject	Driil Hole No.: _	DH06-15a	Page	1 of 1
Н	ole De	epth:	33.1 m / 108.6 ft Hole Diame	ter: <u>96 mm</u>	Date Started: _	12 Mar 06 Date	Completed:	17 Mar 06
ı			817 m / 2680.4 ft PVC Pipe i.	D.: <u>50 mm</u>	Logged by: _	JV & LS R	eviewed by:	GJ
1		Reading: 16 Mar	s: Depth to Water / Date Measured 06					
DEPTH - (ft)	DEPTH - (m)	GRAPHIC LOG			Steef Cap			
<u> </u>	严	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DESCRIPTION	. -	Piezometer	DH06-15a-1, Stick-up = 1 m		NOTES
-		<i>77278</i>	Sandy silt/clay matrix with	0 m / 0.0 ft /			6120	320 N, 670693 E
5-	2-		some gravel. Moist. Stiff. Subrounded clasts. Well graded. Dark brown, TILL.					
10-	3-							
15	5-		Silty SAND. Fine sand. Moist. Firm. Poorly graded. Medium plasticity. Light brown.					
20-	7		Sili/Clay matrix with some gravel, Moist, Stiff, Poorly graded, Few clasts.					
30	9-		Subangular to subrounded. Medium plasticity. Light brown. TILL.					
35	10-						Į.	
40	13-							
50-	14- 15-				Cement (grout.		
55	16- 17-				:			+
60-	18- 19-							
65	20- 21-				:			
75-	22 23			:				
80	24 25-							
85-	26 - 27 -							
90-	28- 29-			28.7 m / 94.2 ft —		e seal at top of filter.		
100-	30-			29.3 m / 96.1 ft —				
105	31 – 32 –				Coarse s	ilica sand filter.		
110	33-	104774	Bedrock @ 32.9 m. EOH (Target depth).	32.9 m / 107.9				
	. –		<u> </u>		Wel	Pacific Booker Morrison Copper Completion Deta	Gold Proje	∍ct
					<u> </u>	nt Piésolo		o. Ref. No. Rev.
			ed for Report		1 miles	ONSULTING	3	DH06-15a ate Revised: 1 May 06

	-		Morrison Co	-	-		Drill Hole	No.: _	DH06-17		Page	1 of 1
		-	1.5 m / 4.9 ft			nm	Date Sta	rted: _	3 Apr 06	Date Con	rpleted:	3 Apr 06
			m / ft	PVC Pipe I.D	.:25 п	nm	Logge	đ by:	7/	Revie	wed by: _	GJ
ater Le			s: Depth to Water / D	ate Measured								
DEPTH · (ft)		S S GRAPHIC LOG	DE Black organic sol sand, Moist, Roo	SCRIPTION il with some	0 m / 0.0 ft /		P	Steel Cap Piezometer I	DH06-17-1, Stick-u	p=1m		NOTES 20 N, 669500 E
			SILT/CLAY matri some sand and g Soft. Subrounded TILL.	ravel. Wet.				Bentonite	seal over filter.		require	." Piezo - s special ent to sample
					0.6 m / 2.0 ft -							
	1								ica sand filter. PVC pipe.			
5			ÉOH -		1.5 m / 4.9 ft -						5	
	2-											
	_						<u> </u>		Pacific Bo			
							TV	Well	Morrison Completio	n Details	For DH0 Project No.	6-17 Ref. No. R
Rev.			d for Report				KI	ugn	t Piés	Ola		H06-17

Knight Piésold

APPENDIX B3

(Rev 0)

TESTPIT LOGS

- TP06-1
- TP05-2
- TP06-3
- TP05-4
- TP05-5
- TP06-6
- TP05-7
- TP05-8
- TP05-9
- TP05-10
- TP06-15
- TP06-16
- TP06-17
- TP06-18
- TP06-19
-
- TP06-20
- TP06-21
- TP06-22TP05-23
- TP05-24
- TP05-25
- TP05-26
- TP05-27
- TP05-28
- TP05-33
- TP05-34
- TP05-35
- TP06-37
- TP06-38
- TP06-39
- TP06-40
- TP06-41
- TP06-42
- TP06-43
- TP06-44

(Pages B3-1 to B3-35)

	P	roje	ect:	Mor	rison Copper Gold Project		Test Pit:	TP06-1	Pa	ige1_of_1_
					INE BARGE					ted: 29 Jan 06
		Loca	tion:	CON	VEYOR ALIGNMENT		Total Depth:	3.2 m/ 10.5 ft	Date Comple	sted: 29 Jan 06
	C	oordi	nates	6.121	.830 m N. 670.880 m E		Surface Elev.:	974 m/3195.5		by:TT
\vdash	<u> </u>			(NAD	83- Zone 10)				Reviewec	by: GJ
DEPTH - (#)		DEPTH ~ (m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION Topsoil, organic, brown			NOTES		SAMPLE ID
-	4	-	l							
	فللبناء فأعديبا أميديا معميلين	0.5	X		CLAY, some gravel, trace sand, moderately soft, brown, moist CLAY & GRAVEL (Till), some cobbles, very stiff, brown, moist					TP06-1-1
10		2.5			End of test pit at 3.2 m/10.5 ft					
12	'‡	-			5	(
13	31	4.0-		 						
14	- - - - - - -									
15	1	4,5— — —								
ESILIES								Pacific Booker orrison Copp Test Pit Log	er Gold Proj	ect
3 F	}ev	r. O -	Issu	ied fo	or Report	Kn	ight H		Project No. VA101-102/	Ref. No. Rev.

M:\1\01\00102\07\A\DATA\GEOTEC~3\GINT\TESTPIT.GPJ

Date Revised: 29 Jan 06

	Proj	ect:	Mor	rison Copper Gold Project	Test Pit:	TP05-2		nge1	of 1
				INE BARGE	Equipment Used:	- <u>-</u>	••	ted: 24	
				VEYOR ALIGNMENT		3.1 m/ 10.21			
'	Coordi	nates		l.943 m N. 671.388 m E 9 83- Zone 10)	Surface Elev.:	966 m/3169.3		by:	
-	Γ	Γ_	(MAL	7 83- 2018 10)			Keviewer	1 by:	GJ
DEPTH - (ft)	DEPTH - (m)	SAMPLES	GRAPHIC LOG						
	"	8		MATERIAL DESCRIPTION	Elevetions and	NOTES	fitting for board	SAM	IPLE ID
20 July 1821 Per 19 July 19 Ju	1.0— 1.5— 2.0—	X			held GPS (Gan	coordinates were o	obtained by harid	TP05-2-1	
TESTPIT.GP		L				Pacific Booke orrison Copp Test Pit Log		ect	
				1	Knight F	-	Project No. VA101-102/	Ref. No.	Rev.
Re	v. 0 -	lssu	ed fo	or Report	TIME CON	PRITING		P05-2	
	1\0010	2\0 7\A	\DATA\	GEOTEC~3\GINT\TESTPIT.GPJ			·	Date Revis	ed: 1 Dec 05

	Project: Contractor			rison Copper Gold Project	Test Pit:		_	ge <u>1 of 1</u>
}					Equipment Used:			ted: 29 Jan 06
١,				VEYOR ALIGNMENT				ted: 29 Jan 06
` `	Jooran	nates		2.100 m N, 671.020 m E	Suпасе Elev.:	982 m/3221.		by:
 			(IAXL	7 63- 20118 10)			Keytewed	ву <u>. у</u>
(W), HLd3Q 1 2 3 4 5 6 7 8 10 11 12 13 13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	(w)-HLd3C 0.5 1.0 1.5 1.0 2.5 3.0 3.5 4.0 3.0 3.5 4.0 3.0 3.5 4.0 3.0 3.0 3.5 4.0 3.0 3.0 3.5 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	SAMPLES		MATERIAL DESCRIPTION		NOTES		SAMPLE ID
14	4.5				М	-	per Gold Proj g For TP06-3 TProject No.	ect
Per	v n	leen	ori fo	r Report	night H	resold	VA101-102/	7 <u> 1 0 </u>
Ke'				OF Report GEOTEC-3/GINT/TESTPIT GPJ	CON	BULTING		P06-3 Date Revised: 29 Jan 6

Pr	oje	ct:	Mor	rison Copper Gold Project	Test Pit:	TP05-4	Pa	ige 1 of	1
	_			INE BARGE		· -		ted: 24 No	
				VEYOR ALIGNMENT		3.6 m/ 11.8 ft			
Coc	ordina	ites .			Surface Elev.: _	966 m/3 <u>1</u> 69.3			
<u></u>	Т		(NAD	9 83- Zone 10)			Reviewed	1 by; <u>GJ</u>	
3 DEPTH-(f)		SAMPLES		MATERIAL DESCRIPTION organic soil, PEAT, black, wet CLAY and GRAVEL (TILL), some rock clasts . stiff, medium plasticity, brown, moist to wet very stiff, high plasticity, brown, damp		•	Reviewed	SAMPL	
12 13 14 15 16 16 17 16 18 18 18 18 18 18 18 18 18 18 18 18 18	5			ii Report	Knight P	acific Booker errison Coppe Test Pit Log	er Gold Proj For TP05-4 Project No. VA101-102/	Ref. No. 7 1 1	Rev. 0
				ii Report	CONS	ULTING			
M:\1\01\0	0102\0)7\A\	DATAV	GEOTEC~3\GINT\TESTPIT.GPJ				Date Revised: 1	Dec 0

Project: Morrison Copper Gold Project		Page <u>1 of 1</u>
Contractor: BABINE BARGE		ate Started; 24 Nov 05
Location: CONVEYOR ALIGNMENT	Total Depth:	
Coordinates 6.122.581 m N. 671.490 m E		Logged by: T
(13AD 53-2018 10)		eviewed by: GJ
(NAD 83- Zone 10) (NAD 83- Zone 10) (NAD 83- Zone 10) MATERIAL DESCRIPTION Topsoll, organics, moss, roots CLAY and GRAVEL (TILL), soft to firm, some rock clasts, high plasticity, brown, wet 1	NOTES Elevations and coordinates were obtained to held GPS (Garmin)	seviewed by; GJ SAMPLE ID
13 4.0 14.5 15 16 16 16 17 Rev. 0 - Issued for Report	Pacific Booker Mine Morrison Copper Gol Test Pit Log For T Knight Piésold VA10	d Project P05-5

\Box	 Proi	ect:	Mor	rison Copper Gold Project	Test Pit:	TP06-6		ige <u>1 of</u>	1
				INE BARGE	_ Equipment Used:			ted: 29 Jan	
				TH EMBANKMENT		3.2 m/ 10.5 ft			
1	Coordi	nates	6.122	2.749 m N. 671.317 m E		959 m/3146.3		by: TT	
			(NAE	83- Zone 10)			Reviewed	by: GJ	
DEPTH - (ft)	DEPTH - (m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION		NOTES		SAMPLE	E ID
1-	0.5-			Topsoil, organic, brown Clay & sandy GRAVEL (Till), rounded, stiff, brown, damp					
3.	1.0	X						TP06-6-1	
5-	1.5-			CLAY & GRAVEL, trace of silt, very stiff, brown, mo	ist				
7.	2.0-							TP06-6-2	
9.	2.5						į		
10.				End of test pit at 3.2 m/10.5 ft					
12-	3.5		:						
13 -	4.0_		i c						
15-	4.5								
	1	 	Į.			Pacific Booker orrison Coppe Test Pit Log	er Gold Proj For TP06-6	ect	<u></u>
Re	v. 0 -	İssı	ed fr	or Report	Knight I	riésold	Project No		ev. 0

	Contr Loca	actor: ation:	80U 6.12	rison Copper Gold Project INE BARGE TH EMBANKMENT 2.910 m N. 671,006 m E	Equipment Used: Total Depth:	TP05-7 CAT 320LM 3,2 m/ 10.5 959 m/3146.3	E Date Sta ft Date Comple 3 ft Logged	l by:	Nov 05 Nov 05
(a)-HLd30 1 2 3 4 5 6 7 8 9 10 11 12 13	(E) +H_dag		6.122		Surface Elev.:	959 m/3146.	3.ft Logged Reviewed	d by;	π
		_		or Report			per Gold Proj g For TP05-7 Project No. VA101-102/	ject Ref No	Rev. 0

Project: Morrison Cop		TP05-8	-	1 of 1
Contractor: BABINE BARGI Location: SOUTH EMBANK	Equipment Used:			26 Nov 05
			Date Completed	
(NAD 83- Zone 10				
Topsoil, CLA		NOTES coordinates were of min)	Reviewed by	
4.0 4.5 4.5 ev. 0 - Issued for Report		orrison Coppe Test Pit Log		ef. No. Rev.

1			<u> </u>					·			
					rison Copper Gold Project		Test Pit: _				of 1
1					INE BARGE	Eq		CAT 320LME		rted: 26 I	
١		Loca	ition:	<u>sou</u>	TH EMBANKMENT	_	Total Depth: _	3.1 m/ 10.2 ft	Date Comple	eted: 26	Nov 05
ı		Coordi	nates	6.123	3.264 m N. 670.852 m E	_	Surface Elev.: _	966 m/3169.3	-	l by:	
ı				(NAD	83-Zone 10)				Reviewe	l by:(GJ
	OEPTH - (ff)	DEP TH - (m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION	:		NOTES		SAMF	PLE ID
		_		<u> </u>	Topsoil, organics, moss, roots		Elevations and one held GPS (Gam	coordinates were ob	tained by hand		
	1-] -			Topsoil CLAY and SAND, soft, brown, damp		neid GFS (Gam	rart)			
	-				CLAY and GRAVEL (TILL), trace of silt, some rock	k .				!	
	2-	0.5— - -			clasts, subangular, firm, brown, moist						
	3	1.0 <u>—</u> —	X							TP05-9-1	
	4	- 1.5—			very stiff with increased lean clay percent						
	9 6	- -									
	7	2.0— -									
	8-	2.5—	X		·					TP05-9-2	
	9	- - 3.0-									
	10 -	-			End of test pit at 3.1 m/10.2 ft	\dashv					
	11 -	3.5—									
	12	-		•							
	13	4.0_									
מח חות	14	-		i 							
500	15	4.5—									
r) IESI	16	-							- 		
5.171.6			. – –					acific Booker orrison Coppe Test Pit Log	r Gold Pro For TP05-9	ject)	
=						K	right P	Piésold	7oject No. VA101-102/	7 Ref. No.	Rev.
ů	Re	v. 0 -	Issu	ed fo	or Report	43/	++5/++ 1	riésold		ΓP05-9	

Cont	ractor:	BAB	rison Copper Gold Project INE BARGE	Test Pit: _ Equipment Used:	TP05-10 CAT 320LME		ge <u>1 of</u> ted: <u>28 No</u>	
			TH EMBANKMENT		3.4 m/ 11.2 ft			
Coord	linates		.451 m N. 670.621 m E	Surface Elev.:_	946 m/3103.7		by: T]	
(w)-HLd30	SAMPLES		MATERIAL DESCRIPTION Topsoil, organics, moss, roots CLAY and GRAVEL (TILL), trace of sand, frequer boulders, firm, medium plasticity, brown, dry	Elevations and c	NOTES	Reviewed	SAMPL	<u> </u>
6 2.0-7 2.5-9 9 1 3.0-			CLAY and GRAVEL (TILL), stiff, frequent cobbles					
3 4.0-			LIN OI 1831 PIL 81 3.4 HV I 1.2 H	D.	acific Rooks	Minarale In		
				Mo	acific Booker Prrison Coppe Test Pit Log	er Gold Proj For TP05-10	ect O	
				Knight P	iésold [Project No. VA101-102/		Re
	_		r Report	CONS	ULTING	T	P05-10	_
1\01\001	02\07\A	MATA!	GEOTEC-3\GINT\TESTPIT.GPJ				Date Revised:	1 De

_		rison Copper Gold Project		TP06-15		ige <u>1 of 1</u>	<u> </u>
Location	: SOU	TH EMBANKMENT	Equipment Used:_ Total Depth: _			ted: 6 Apr 06 eted: 6 Apr 06	
Coordinate		4.074 m N. 670.801 m E D 83-Zone 10)	•			by:JV	
1 1	(NAL	by: GJ	<u>-</u>				
DEPTH - (m)	E GRAPHIC E LOG	MATERIAL DESCRIPTION Organic soil with decomposing vegetation and roots. Trace sand, Moist/frozen, Spongy, PEAT.		NOTES		SAMPLE	D
1 - 0.5 - 0.		SILT/CLAY with some gravel. Rounded to subrounded clasts, up to cobble size. Poorly graded. Moist. Stiff. Medium plasticity. Dark brown. TiLL.				TP06-15 @ 4.5'	
8 2.5 9 10 3.0 11 3.5 12 13 4.0 15 16 16 16 16 16 16 16 16 16 16 16 16 16		End of test pit at 3.4 m/11.2 ft				TP06-15 @8'	
16				acific Booke	er Gold Proj	ect	
			Knight P	Test Pit Log iésold	For TP06-19 Project No. VA101-102/	5 Ref. No. Rev 7	
		or Report T	CONS	ULTING	Т	P06-15 Date Revised: 4 Ma	

Contracto Location			BAB SOU	rison Copper Gold Project INE BARGE TH EMBANKMENT	Test Pit: _ Equipment Used: _ Total Depth: _	CAT 320LME	Date Star Date Comple	age 1 of 1 inted: 6 Apr 06 eted: 6 Apr 06 d by: JV	
•	>OO:til	nates		1.975 m N. 671.085 m E				by: JV by: GJ	
DEPTH - (ft)	DEPTH - (m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION SILT/CLAY matrix with some sand and gravel. Slightly moist. Firm. Brown. Till.		NOTES		SAMPLE ([
2 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.5			SILT/CLAY matrix with some gravel. Moist. Medium plasticity. Stiff. Dark brown. TILL.	; ;				
4 11119	1.5	X		Gravelly, SILT/CLAY matrix. Moist. Medium plasticity. Stiff. Some cobbles, poorly graded. Dark brown. TILL			:	TP06-16 @ 4'	
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.5	X		End of test pit at 2.4 πv7.9 ft	Hit bedrock at 2.	4 m.		TP06-16 @ 8'	
10 1	3.0—								
13	4.0								
16-					Mo	acific Booker rrison Coppe Test Pit Log	er Gold Proj For TP06-16	ect i	
Rev	/. O -	Issu	ed fo	r Report	Knight P	iésold	Project No. VA101-102/7	Ref. No. Rev. 1 0	

Coordinates 6.12 (NA	UTH EMBANKMENT 23.668 m N. 671.168 m E	Equipment Used: CAT 320LM Total Depth: 3.4 m/ 11.2:	E Date Started: 6 Apr	06
			ft Date Completed: 6 Apr Logged by: JV	
<u> </u>	AD 83- Zone 10)		Reviewed by: GJ	_
DEPTH-(m) DEPTH-(m) SAMPLES GRAPHIC LOG		NOTES	SAMPLE	≣ID
	Organic soil with trace sand. Roots, Moist, Soft, Blackish brown, TOPSOIL.			
3 1.0 5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	SILT/CLAY matrix with some gravel. Moist. Firm. Medium plasticity. Poorly graded. Brown. TILL. Gravely SILT/CLAY matrix. Moist. Stiff. Some cobbles, and chunks of hard clay. Brown. TILL.		TP06-17 @ 4'	
8-2.5- 9-3.0- 11-3.5- 12-	End of test pit at 3.4 m/11.2 ft		TP06-17 @ 10'	
13 4.0-		Morrison Copp Test Pit Log	er Minerals Inc. her Gold Project if For TP06-17	Rev.
Rev. 0 - Issued f	for Report	Knight Piésold	Project No. Ref. No. 1 VA101-102/7 1 TP06-17	Rev.

	_			ison Copper Gold Project	_	TP06-18		ge <u>1 of 1</u>
				NE BARGE THE EMBANKMENT	Equipment Used:_			ted: 5 Apr 06
				.527 m N. 671,038 m E	total Depth: _	4.6 m/ 15.1 m		ted: 5 Apr 06 by: JV
•				83- Zone 10)				by: GJ
	Ι .	-	(,
DEPTH - (ft)	DEPTH - (m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION		NOTES		SAMPLE ID
	_		25.3	Sandy organic soil with trace clay, Moist, Soft, Roots, TOPSOIL.				
1	- - 0.5—	;	14.4					
2 1 1 1 1 1 1 1 1 1	; ; ;	X		Gravely SILT/CLAY matrix. Many subrounded cobble Poorly graded. Moist. Stiff, TILL.	s.			TP06-18 @ 2'
4	1.0— —						1	
5 7 7 7 7	1.5—	X						TP06-18 @ 5'
6	2.0—							
8	2.5_							
9 1	3.0—							
11	1 7							
12	3.5 - -							
14 -	4.0							
15 -	4.5— -	X		End of test pit at 4.6 m/15.1 ft				TP06-18 @ 15*
	<u> </u>					acific Booker orrison Coppe Test Pit Log	er Gold Proj For TP06-18	ect B
Re	v. 0 -	issu	ed fo	r Report	Knight P	iésold	Project No. VA101-102/ T	Ref. No. Rev. 7 1 0 P06-18

F	Proje	ect:	Mor	rison Copper Gold Project	Test Pit:	TP06-19	Pa	ige 1 of 1
	_			INE BARGE	Equipment Used:			ted: 6 Apr 06
•				TH EMBANKMENT				ted: 6 Apr 06
				3.650 m N. 671.400 m E				by: JV
				983- Zone 10)	-			l by: GJ
			Ì					
овртн - (м)	(m) - HTP3C	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION		NOTES		SAMPLE ID
]]	-			Organic soil with some sand. Roots. Slightly moist. Soft. TOPSOIL.				
1.	- -						:	
2-	0.5— —			SILT/CLAY matrix with some fine gravel and trace sand. Slightly moist, Low plasticity. Firm, Dark brown Tit.L.	n.			
3_	 	X						TP06-19 @ 3'
4-	- -			SILT/CLAY matrix with some gravel, Subrounded clasts. Moist. Medium plasticity. Very stiff, TILL.				
5-1	1.5							
6 4 4 4	2.0—							
7-	- -							
8-	2.5	 						
9 1	3.0—							TP06-19 @10'
10	- -							
11	3.5 							
13-	-			End of test pit at 3.7 m/12.1 ft				
14	4.0—							
15-	4.5 							
16	-							
		<u> </u>	l		Mo	acific Booker errison Coppe Test Pit Log I	r Gold Proj	ect
Pos	v 0	leer	od fe	or Report	Knight P	iésold [roject No. VA101-102/	Ref. No. Rev. 7 1 0

Contractor: Location:	SOU' 6.123	rison Copper Gold Project INE BARGE TH EMBANKMENT 1.321 m N. 671,258 m E	Test Pit: Equipment Used: Total Depth:	: CAT 320LM	E Date Star _ Date Comple Logged	age 1 of 1 Inted: 5 Apr 06 eted: 5 Apr 06 d by: JV d by: GJ	
(ii) - HL-(ii) 1	GRAPHIC STATE TO THE TOTAL TO THE TOTAL TO	MATERIAL DESCRIPTION Sandy organics with trace day, Compact. Moist. TOPSOIL. SILT/CLAY matrix with some gravel. Stiff. Moist. Tit.L. End of test pit at 3 m/9.8 ft	Hit Bedrock.	NOTES	Reviewed	SAMPLE TP06-20 @ 0-5'	<u> ID</u>
16 1				Pacific Booke orrison Copp Test Pit Log	er Gold Proj For TP06-2	ect)	
Rev. 0 - Issu	ed fo	r Report	Knight F	riésold	Project No. VA101-102/	Ref. No. R 7 1 P	tev.

	Des!			dan Amus Aria But 1	·		-	
				rison Copper Gold Project		TP06-21		ge <u>1 of 1</u>
				INE BARGE	Equipment Used:			ted: 6 Apr 06
				TH EMBANKMENT	Total Depth:	3.4 m/ 11.2 ft		ted: 6 Apr 06
	Coordii	nates .		3.485 m N. 671.487 m E				by: JV
	 1		(NAL	9 83- Zone 10)			Reviewed	by: GJ
DEPTH - (ft)	DEPTH - (m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION		NOTES		SAMPLE ID
	-		<u> 22. 7</u>	Organic soil with decomposing vegetation and roots. Some sand, Moist, Spongy, Black, PEAT.				
] -		44	Some sand, Moist, Spongy, Black, PEAT.				
2-	0.5-1			Gravelly, SILT/CLAY matrix. Moist, Medium plasticity Firm. Subangular to subrounded clasts up to coarse gravel size. Dark brown. TILL.	•			TP06-21 @ 4'
5.	1.5	X		Gravelly, SILT/CLAY matrix with trace amounts of coal. Very moist. Stiff, Medium plasticity. Rounded coarse gravel and cobble sized clasts. Poorly graded Dark brown. TILL.	I.			30-21 02-4
7.	2.0							
9.	1 1	X						TP06-21 @ 9'
11-	-{			End of test pit at 3.4 m/11.2 ft	\dashv			
12-	3.5							:
13.	4.0							
14.	4.5				:			
15		: :						
9.111691					Mo	acific Booker rrison Coppe Test Pit Log I	r Gold Proj For TP06-21	ect !
: Re	.v. 0 -	lssu	ed fo	or Report	Knight P	iésold -	roject No. VA101-102/ T	Ref. No. Rev. 7 1 0 P06-21

Contr	actor:	BAB	rison Copper Gold Project INE BARGE	Test Pit:	CAT 320LME	Date Star	•
		6.123	7H EMBANKMENT .214 m N. 671.481 m E	_ Total Depth: _ -	3. <u>4 m/ 11.2 ft</u>	Logged	by: JV
	lI	(NAD	83- Zone 10)			Reviewed	l by; GJ
DEPTH - (m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION Sandy SILT/CLAY with organics. Moist, Firm, Brown		NOTES	: 	SAMPLE
1			Gravelly, SILT/CLAY matrix. Moist. Stiff. Well graded up to cobble size. Dark brown. Tit.t.				TP06-22 @ 5-11'
					Pacific Booker orrison Coppe Test Pit Log	er Gold Proj For TP06-2	iect 2
Rev. 0 -	issu	ed fo	r Report	Knight F	riésold	Project No. VA101-102/ T	Ref. No. Ref. 1 P06-22

	Contra	ctor:	BAB	rison Copper Gold Project	Test Pit: Equipment Used:	TP05-23 CAT 320LM		age <u>1 of 1</u>
Ì				TH EMBANKMENT			ft Date Comple	eted: 25 Nov 05
C	oordin	ates		1.018 m N, 671.384 m E	Surface Elev.:	972 m/3189.		by: <u>TT</u>
 			(NAL	983- Zone 10)			Reviewed	3 by; GJ
DEPTH - (ft)	DEРТН - (m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION		NOTES		SAMPLE ID
+-+			<u> </u>	Vegetation, moss, roots, rotten trees		coordinates were	obtained by hand	SAMPLETO
6	0.5			CLAY and GRAVEL (TILL), trace of sandy silt, some rock clasts, subangular, soft, medium plasticity, brown, wet As above. Very stiff, some lenses of isolated silt End of test pit at 3.4 m/11.2 ft	held GPS (Gar	min)		TP05-23-1
14 15 16 16 16 16 16 16 16 16 16 16 16 16 16						Pacific Booke orrison Copp Test Pit Log	er Gold Proj 3 For TP05-2	ect 3
Rev Rev	·. 0 -	lssu	ed fo	r Report	Knight H	<u>`</u>	Project No. VA101-102/	Ref. No. Rev.
M:\1\01	100102	107\A	DATA	GEOTEC-3/GINT/TESTPIT.GPJ				Date Revised: 1 Dec 0

	Proi	ect:	Mor	rison Copper Gold Project	Test Pit	TP05-24	P:	nge <u>1 of</u>	1
	_			INE BARGE				ted: 22 No	
				NT SITE		4 m/ 13.1 ft			
(Coordi	nat e s		9.571 m N. 671.098 m E	_ Surface Elev.:	844 m/2769.0		by:	
			(NAC	9 83- Zone 10)			Reviewed	i by: GJ	
DEPTH-(ft)	DEPTH - (m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION		NOTES		SAMPL	E ID
	-		<u> </u>	Topsoll, organics, moss, roots PEAT, black, saturated	held GPS (Gar		obtained by hand		•
1 - 2 -	0.5—	X	5 25 25 5 5 25	Eacustrine SILTand CLAY, very fine, soft, white to	Excess surface	e water		TP05-24-1	
3-4-	1.0-	X		green, saturated				TP05-24-2	
5	2.0	X		SAND,SILT and GRAVEL, well graded,compact, graded,compact, graded	ay			TP05-24-3	
10	-	X		CLAY and GRAVEL, well graded high plasticity, brown, moist End of test pit at 4 m/13.1 ft				TP05-24-4	
1687 PIT TESTPIT.GPJ TESTPIT.GDT 9 Jun 06	4.5—							ect 4 TRef. No. T	Rev.
Re	v. 0 -	İssu	ed fo	or Report	Knight l	BULTING		P05-24	
				GEOTEC-3/GINT/TESTPIT.GPJ				Date Revised: 1	Dec 05
				pa	- 20				

Rev	v. 0 -	İssu	ed fo	r Report	Knight F	résold	Project No. VA101-102/	Ref. No. 7 1 P05-25	Rev. 0
· .						Pacific Booker Minerals In Morrison Copper Gold Proje Test Pit Log For TP05-25		ect 5	
HL430 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1	(W)-HLd3Q	SAMPLES	CHAPPIIC CRAPHIC COST OF THE C	MATERIAL DESCRIPTION Topsoil, organics, moss, roots SAND and SILT, firm, brown, moist CLAY and GRAVEL (TILL), trace of sand/slit, well graded, frequent cobbles, firm, brown, moist very stiff, with increasing lean clay percent	held GPS (Gan			TP05-25-1	PLEID
£,	- (m)	ES		63- 20ne 10)			Keviewe	d by: <u>C</u>	<u> </u>
	Coordi	nates		.558 m N. 871.196 m E 83- Zone 10)	_ Surface Elev.:	843 m/2765.7		l by:	
-			FEAT	11 911 E	_ Total Depth: _	4 m/ 13.1 ft	 Date Comple 	eted <u>: 22 N</u>	<u>lov 05</u>
,	Loca	ition:	DI AN	T RITE	_ Equipment Used:			rted: 22 N	

	Contr	actor:	BAB	rison Copper Gold Project INE BARGE NT SITE	_ Equipment Used:	TP05-26 CAT 320LM 3.5 m/ 11.5	E Date Sta	age <u>1 c</u>	lov 05
			6.119	1.573 m N. 671.304 m E 0 83- Zone 10)		843 m/2765.7	Zft Logged	i by:]	П
			(NAL	7 63- Zone 1Uj			Reviewe	d by: <u>G</u>	<u> </u>
DEPTH-(ft)	ОЕРТН - (m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION		NOTES		SAMF	LE ID
=	_		<u>市</u> 3	Topsoil, organics, moss, roots PEAT organic, black, saturated	held GPS (Garr		obtained by hand		
1 1	0.5	X	77 7 7 77		Excess surface	water		TP05-28-1	
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0			Sandy SiLT & CLAY, well graded, moderately firm, brown, wet				TP05-26-2	
5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.5—	X		fine SAND and SILT, compact, grey, wet					
7 8 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.5	X		Gravelly CLAY (TILL), stiff, high plasticity, brown, moist				TP05-26-3	
10 11 12 13 13 1	3.5			End of test pit at 3.5 m/11,5 ft					
14 15 16 1	4.5								
					Pacific Booker Minerals In Morrison Copper Gold Proje Test Pit Log For TP05-26				
Rev	v. 0 -	İssu	ed fo	or Report	Knight F	riésold	Project No. VA101-102/	P05-26	Rev. 0
				GEOTEC~3\GINT\TESTPIT.GPJ				Date Revised	: 1 Dec

	Proje	oct.	Mor	rison Copper Gold Project	T4 Dit	TD05 07	Page 1 of 1			
				INE BARGE		TP05-27 CAT 320LME		age <u>1 of 1</u> rted: <u>23 Nov 05</u>		
1				NT SITE				eted: 23 Nov 05		
				0.470 m N. 671.195 m E		838 m/2749,3		by: <u>TT</u>		
				983-Zone 10)				i by: GJ		
ОЕРТН ∙ (₦)	DЕРТН - (m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION		NOTES		SAMPLE ID		
\vdash			23.2		Elevations and coordinates were obtained by hand					
1	-			Lacustrine SILTand CLAY, very fine, soft, white,	held GPS (Gar	min) t of surface water				
2 3 4 4	0.5 — 1 1.0 — 1	X		saturated				TP05-27-1		
5 6	1.5			SILT, GRAVEL and CLAY, well graded, subrounds very stiff, brown, moist	id,			TP05-27-2		
8 9	2.5	X		End of test pit at 3 m/9.8 ft						
11 12 13	3.5—			End of test priest 5 mys.o r						
14 15 16	4.5									
						Pacific Booker orrison Coppe Test Pit Log I	r Gold Proj For TP05-2	ect 7		
Rev. 0 - Issued for Report					Knight Piésold Project No. VA101-102/7 1 0 TP05-27					

M:\1\01\00102\07\A\DATA\GEOTEC~3\GINT\TESTPIT.GPJ

Date Revised: 1 Dec 05

ı				rison Copper Gold Project		TP05-28		age1_	of 1
				INE BARGE	Equipment Used:	CAT 320LME	Date Star	ted: 23	Nov 05
				NT SITE		3.8 m/ 12.5 ft			
(Coordi	nates		2.648 m N. 671.169 m E	Surface Elev.:	846 m/2775.6			П
		Γ	(NAL	9 83- Zone 10)			Reviewed	d by:(GJ
מון - עון	DEPTH - (m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION		NOTES		SAMI	PLE ID
-	_		77. 2		Elevations and heid GPS (Gan	coordinates were of	otained by hand		
1 _	-			SILT and CLAY some gravel, stiff, high plasticity, brown, moist	neid GFG (GBI	#HICF			
	1.0—	X		CLAY and GRAVEL (TILL), some sand, with frequent isolated sift lenses, well graded, firm, brown, moist				TP05-28-1	
	2.0	X		very stiff, frequent cobbles, well graded, brown, moist				TP05-28-2	
	3.5			End of test pit at 3.8 m/12.5 ft					
4 5 6	4.5-					Pacific Booker			
					M	orrison Coppe Test Pit Log	er Gold Proj For TP05-2	ect 8 Ref. No.	Rev.
Re	v 0 -	leer	eri fo	r Report	Knight F	resold	VA101-102/	7 <u>1 1</u> P05-28	<u> </u>
/¢				GEOTEC-3/GINT/TESTPIT.GPJ	- CON	BULTING	t	FUJ-20	

	_			rison Copper Gold Project INE BARGE		TP05-33		age1 rted:23	
				VEYOR ALIGNMENT		3.8 m/ 12.5			
c				.552 m N. €71.071 m E		885 m/2903.		by:	
				83- Zone 10)					GJ
(ii)*HLd30 1 2 3 4 5 6 7 8 9 10 11 12 13 14	(E), PL-d30	SAMPLES	CAN CAN CAN CAN CAN CAN CAN CAN CAN CAN	MATERIAL DESCRIPTION	held GPS (Gar	NOTES Coordinates were ornin)			IPLE II
15	4.5—				M	Pacific Booke orrison Copp Test Pit Loc	er Gold Proj p For TP05-3	ject 3	
<u></u>	v. 0 -	Īsei	ed fo	r Report	Knight H	Piésold	Project No. VA191-102/	7: 1 P05-33	Rev.

Rev. 0 -			Report EOTEC-3/GINT/TESTP/T GPJ	Knight F	Tesola	A101-102/	P05-34	1 0 sed: 1 Dec 0
			*** 	M-	Pacific Booker Morrison Copper Test Pit Log Fo	Gold Pro or TP05-3	ject 4 Ref. No.	Rev.
(a)-HLd3Cl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16		DOT COMPANY CONTRACTOR OF CONT	MATERIAL DESCRIPTION Topsoil, organics, moss, roots CLAY and GRAVEL (TILL), some sand, well graded, trace of cobbles, brown, moist to wet some rock clasts, subangular, stiff, brown, moist End of test pit at 3.4 m/11.2 ft	held GPS (Gan Perched water	encountered @ 0.7m		TP05-34-2	
	,	(NAD	83-Zone 10)			Reviewe	d by <u>;</u>	GJ
	_		500 m N. 671,229 m E		924 m/3031.5 ft		i by:	
			NE BARGE EYOR ALIGNMENT	_ Equipment Used: _ Total Depth:	3.4 m/ 11.2 ft			Nov 05
						D -4- O4-		N N L

				rison Copper Gold Project INE BARGE	Test Pit: _ _ Equipment Used: _	TP05-35 CAT 320LM	-	age <u>1 </u>	
				VEYOR ALIGNMENT		3.5 m/ 11.5 f		-	
(Coordi	nates		.978 m N. 670.93 <u>2 m E</u>	Surface Elev.:	824 m/2703.4		•	Π
	1	I	(NAD	83- Zone 10)			Reviewe	d by:	J
A	DEPTH - (m)	SAMPLES	S GRAPHIC X LOG	MATERIAL DESCRIPTION fine SAND, trace of clay, poorly graded, loose,	Elevations and	NOTES	obtained by hand	SAMF	PLE ID
	0.5	X		reddish brown, dry	held GPS (Gan		soumes by hand	TP05-35-1	
	1.0_	X		CLAY and GRAVEL (TILL), trace of sand, frequent isolated silty lenses, firm, brown, moist				TP05-35-2	
	2.0—			trace of cobbles, very stiff, brown, moist to dry	Perched water	encountered @ 1.7	7m		
	3.0—	X		End of test pit at 3.5 m/11.5 ft				TP05-35-3	
	4.0—								
: -	_ 					racific Booke orrison Copp		ject	
- -	v. 0 -	lssi	ed fo	or Report	Knight F		Project No. VA101-102/	Ref. No.	Rev.
-				GEOTEC~3/GINT/TESTPIT.GPJ	CONI	OLTING	<u>'</u>	Date Revised	

			rrison Copper Gold Project BINE BARGE	Test Pit: _ Equipment Used:_	TP06-37		ige <u>1</u>	
			NT SITE			Date Started: 28 Date Completed: 28		
Coo	rdinate	s <u>6.11</u>	9.671 m N. 671.073 m E		845 m/2772.3		by:	
	1	(NA	D 83- Zone 10)	<u> </u>		Reviewed	d by;(3J
(E)-HLdHO 1 2 3 4 5 6 7 8 9 10 11 12 3.5 4.5 5 6 7 8 9 10 11 12 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5			MATERIAL DESCRIPTION Topsoil, organic, brown Gravelly SAND, trace slit, moderately dense, brown, moist Sandy slity CLAY (Till), trace of gravel and cobbles, stiff, brown, dry CLAY & GRAVEL (Till), Tenses of slit, stiff, brown, dry End of test pit at 3.2 m/10.5 ft		NOTES	Reviewed		PLEID
13 4.0	- - - - - - - - - - - - - - - - - - -		or Report				ject 7 Ref. No. 7 1	Rev.
			- 	MILLEILL I	*************************************			. v

	Proi	ect:	Mor	rison Copper Gold Project	Test Pit:	TP06-38		ige <u>1</u> o	
					Equipment Used:			ted: <u>28 J</u>	
				NT SITE		3.2 m/ 10.5 f		-	
				9.871 m N. 671.173 m E		845 m/2772.3		by: T	
			(NAI	983- Zone 10)				i by <u>; G</u>	
(£)·HLd=0	(w)-HLdHC	SAMPLES				NOTES			iJ
1 PIT TESTPIT GPJ TESTPIT GDT 9 Jun 06	4.5	Seri	ed f	or Report	M Knight I	Pacific Booke orrison Copp Test Pit Log Piésold	er Gold Proj For TP06-3 Project No. VA101-102/	ject 8 Ref. No.	Rev. 0
				- Itoport	CON	BULTING		Date Revised:	28 100 00
MIXIM	U 11 00 10	2107 VA	IUA IA	GEOTEC~3/GINT/TESTP/T.GPJ	B3-29			rate vakseo:	∠o yan Ot

				rison Copper Gold Project INE BARGE	Equipment Used:	TP06-39 CAT 320LM	_	ege <u>1 o</u> rted: <u>28 J</u>	
	Loca	ation:	PLA	NT SITE		3.2 m/ 10.5 f			
•	Coordi	nates	6.119	1.671 m N. 671.273 m E	Surface Elev.:	845 m/2772.3		l by: <u>1</u>	Ι
	Ţ <u>-</u>	_	(NAD	83- Zone 10)			Reviewed	1 by <u>. G</u>	J
VET 13 * (15)	DEPTH - (m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION Topsoil, organic, brown		NOTES		SAMP	PLE ID
2-3-	0.5—	X		CLAY & GRAVEL (Till), subrounded, moderately soft, brown, wet	perched water wall collapsed	at 0.8m		. TP06-39-1	
	1.5—	X		SAND & GRAVEL, some clay, dense, brown, wet CLAY & GRAVEL (Till), gravels are subrounded, stiff, brown, moist				TP06-39-2	
	2.5	X						TP06-39-3	
1	3.5—			End of test pit at 3.2 m/10.5 ft					
5-6-	4.5—					Pacific Booke orrison Copp	er Gold Pro	ject	<u> </u>
					Knight F	Test Pit Log Piésold	Project No. VA101-102/	Ref. No.	Rev.
Re	v. 0 -	Issu	ed fo	r Report	FIER T	LESULUI LILIUS		P06-39	-

	Proje	ect:	Mor	тison Copper Gold Project	Test Pit:	TP06-40	Pa	nge <u>1 of 1</u>
				INE BARGE	Equipment Used:			ted: 28 Jan 06
1.				NT SITE				eted: 28 Jan 06
'	Jooru:	ales		3.720 m N. 671.175 m E 3 83- Zone 10)	Sunace Elev.:	846 m/2775.6		by:T by: GJ
(£)"+HLd30 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 14 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	(iii)**HLd∃O	SAMPLES	GRAPHIC STATE TO TO TO TO TO TO TO TO TO TO TO TO TO	MATERIAL DESCRIPTION Topsoil, organic, brown CLAY & GRAVEL (TILL), some sand, soft, reddish-brown, moist As above (Till), trace of cobbles +35", stiff, brown, moist End of test pit at 3.2 m/10.5 ft		NOTES		SAMPLE ID
14 1 15 14 15 14 15 14 15 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	4.5						Project No. VA101-102/	ect 0 Ref. No. Rev. 7 1 0
				- 110port	CON	SULTING	Т	P06-40
M:\1\0	1\0010	2\07\A\	(DATA)	GEOTEC-3/GINT/TESTPIT,GPJ	B3-31			Date Revised: 28 Jan 06

· · · · ·	D								
				rison Copper Gold Project	Test Pit:		_	ige <u>1 o</u> t	
ļ				INE BARGE	Equipment Used:			ted: <u>7 At</u>	
Ì				VEL PIT	Total Depth:	3.4 m/ 11.2 f			
'	Coordi	nates		3.176 m N. 671.667 m E				by: J\	
<u> </u>			(NAE	9 83- Zone 10)			Reviewed	by: G	J
DEPTH-(ft)	DEPTH-(m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION Gravelly SAND. Slightly moist. Loose: ALLUVIUM?		NOTES		SAMP	LE ID
3-4-	0.5— - - - 1.0—	X		Silty SAND with trace gravel. Slightly moist. Compact Very poorly graded. Reddish brown. ALLUVIUM?	l			TP06-41 @ 2	.5'
5-	2.0			Gravelly, silty SAND. Moist. Coarse gravel with fine sand. Poorly graded. Dense, ALLUVIUM?				TP06-41 @ 8'	,
11 12 13 14 16 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	4.0—			End of test pit at 3.4 m/11.2 ft		Pacific Booke Iorrison Copp	er Gold Proj	ect	
<u>=</u>				<u> </u>	77 • 7 . 7	Test Pit Log	Project No.	Ref. No.	Rev.
LS PC	<u>ν</u> Λ	lee.	ad fa	r Penert	Knight I	resola	VA101-102/	<u>71 1</u> P06-41	10_
				or Report GEOTEC~3/GINT/TESTPIT.GPJ	- CON	SULTING		Date Revised	Allana
191.111G	/100 IU,	⊂i∩t M	(L) (A)	GEORED TO GRAPH ESTETLIGEN	ga	•		Date Neviseu	. Tividy U
					B3-32	, 			

Γ		Proi	ect:	Mor	тison Copper Gold Project	Test Pit:	TP06-42	Pr	age <u>1 of 1</u>
					INE BARGE				ted: 7 Apr 06
					VEL PIT				eted: 7 Apr 06
	(Coordi	nates	_6.118	8.189 m N. 671.569 m E				by: JV
L				(NAI	0 83- Zone 10)			Reviewed	l by: GJ
	DEPTH = (ft)	DEPTH - (m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION		NOTES		SAMPLE ID
27 Jun 06	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15	1.5— 			Sandy organic soil. Slightly moist. Loose. Reddish brown. ALLUVIUM? Gravelly SAND with some silt. Moist. Compact. Well graded. Reddish brown. ALLUVIUM? Silty SAND with some gravel and trace clay. Slightly moist. Compact. Reddish brown. ALLUVIUM?				TP06-42 @ 9'
IBPI.	+	-		J		ŀ	rest Fit Log	FOR LEUD-4.	
TEST PIT TEPIT GOT		<u> </u>				Knight P		Project No. VA101-102/	Ret. No. Rev. 7 1 0
					or Report	CONS	VLTING	T	P06-42
М	1110	1\0010	2\07\A	(DATA)	GEOTEC-3/GINT/TESTPIT.GPJ				Date Revised: 4 May 0

Location: GRAVELPT Coordinates 6.115.284 m.N. 671.695 m.E (NAD 33-Zone 10) MATERIAL DESCRIPTION Samoy GRAVEL with some boulders. Dry Loses. ALLUVIUM? Samoy GRAVEL with some boulders. Dry Loses. ALLUVIUM? Satisfy SAND with some gravel. Moist. Compact. Reddish brown. ALLUVIUM? Sity SAND with some gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and an accurate gravel Moist. Compact. Reddish brown. ALLUVIUM? Barrier and an accurate gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and an accurate gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and an accurate gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and an accurate gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and an accurate gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and an accurate gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and an accurate gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and an accurate gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and an accurate gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and an accurate gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and an accurate gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and a gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and a gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and a gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and a gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and a gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and a gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and a gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and a gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and a gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and a gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and a gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and a gravel. Moist. Compact. Reddish brown. ALLUVIUM? Barrier and a gravel. Moist. Compact. R		-			rison Copper Gold Project		it:TP06-43	_	age <u>1 of 1</u>
Coordinates 6.118.284 m N. 671.695 m E (NAD 83-Zone 10) Reviewed by: GJ MATERIAL DESCRIPTION MATERIAL DESCRIPTION Sandy GRAVEL with some boulders. Dry. Loose. ALLUVIUM? Sity SAND with some gravel. Slightly moist. Compact. Fine sand and coarse gravel. Poorly graded. Reddish brown. ALLUVIUM? Sity SAND with some gravel Moist. Compact. Reddish brown. ALLUVIUM? TP06.43 @ 4' TP06.43 @ 8' TP06.43 @ 8' TP06.43 @ 8'	- 1								
E LE LE LE LE LE LE LE LE LE LE LE LE LE									
Sandy GRAVEL with some boulders. Dry. Loose. ALLUVIUM? Silty SAND with some gravel. Slightly moist. Compact. Fine sand and coarse gravel. Poorly graded. Reddish brown. ALLUVIUM? TP06-43 @ 4' Silty SAND with some gravel. Moist. Compact. Reddish brown. ALLUVIUM? Freddish brown. ALLUVIUM? TP06-43 @ 8' TP06-43 @ 8' TP06-43 @ 8'				(NAI	9 83- Zone 10)			Reviewed	by: GJ
ALLUVIUM? Silty SAND with some gravel. Slightly moist. Compact. Fire sand and coarse gravel. Poorly graded. Reddish brown. ALLUVIUM? TP06-43 @ 4' Silty SAND with some gravel. Moist. Compact. Reddish brown. ALLUVIUM? Find of test pit at 3 m/9.8 ft Find of test pit at 3 m/9.8 ft Find of test pit at 3 m/9.8 ft Find of test pit at 3 m/9.8 ft Find of test pit at 3 m/9.8 ft TP06-43 @ 8'	DEPTH - (ft)	DEPTH - (m)	SAMPLES	GRAPHIC LOG			NOTES		SAMPLE ID
Silty SAND with some gravel. Slightly moist. Compact. Fine sand and coarse gravel. Poorly graded. Reddish brown. ALLUVIUM? 1.5 1.5 2.0 Silty SAND with some gravel. Moist. Compact. Reddish brown. ALLUVIUM? Fine sand and coarse gravel. Moist. Compact. Reddish brown. ALLUVIUM? Fine sand and coarse gravel. Moist. Compact. Reddish brown. ALLUVIUM? Fine sand and coarse gravel. Moist. Compact. Reddish brown. ALLUVIUM? Fine sand and coarse gravel. Moist. Compact. Reddish brown. ALLUVIUM? Fine sand and coarse gravel. Poorly graded. Fine sand and coarse g		-			Sandy GRAVEL with some boulders. Dry. Loose. ALLUVIUM?		_		
8— 2.5— 2.5— End of test pit at 3 m/9.8 ft Hit large boulder or bedrock.	3 1 1 1 5 1 1 6 1	1.5	X		Silty SAND with some gravel. Slightly moist. Compact. Fine sand and coarse gravel. Poorly graded. Reddish brown. ALLUVIUM?				TP06-43 @ 4'
Pacific Booker Minerals Inc. Morrison Copper Gold Project Test Pit Log For TP06-43	10 - 3	3.0			End of test pit at 3 m/9.8 ft	Hit large bo	oulder or bedrock.		TP06-43 @ 8'
Project No. Ref. No. Rev.	165 TESTPIT.GD1 9 Jun 19 19 19 19 19 19 19 19 19 19 19 19 19	4.5—					Pacific Booke Morrison Copp Test Pit Log	r Minerals Ir er Gold Proj For TP06-4:	nc. ect
Rev. 0 - Issued for Report Knight Piésold CONSULTING Froject NO. VA101-102/7 1 1 1 1 1 1 1 1 1 1 1 1 1	Rev.	. 0 - I	ssu	ed fo	or Report	Knight	Piésold	Project No. VA101-102/	Ref. No. Rev. 7 1 0
	-							·	Date Revised: 4 May 0

				rison Copper Gold Project		TP06-44		nge <u>1 of 1</u>
1			BABINE BARGE GRAVEL PIT		Equipment Used:_			
Ι,		-			Total Depth: _	3.4 m/ 11.2 ft		
`	Joordin	ales,		1.074 m N. 671.594 m E 1 83- Zone 10)				by: JV
\vdash		_	(NAL	, 03- 2011e 10)			Reviewed	1 by; GJ
DEPTH-®	0. DEPTH-(m)	SAMPLES	GRAPHIC LOG	MATERIAL DESCRIPTION Silty SAND with some gravel. Slightly moist. Compact to dense. Gravel increasing in size with depth, from fine gravel near surface to coarse gravel/smail cobble size near bottom. Reddish brown. ALLUVIUM?	1	NOTES	<u>-</u>	SAMPLE ID
3 4 4 5 6 6 7 7 7 8 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.5—	X						TP06-40 @ 3'
10 11 12 13 14 16 15 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	3.5—			End of test pit at 3.4 m/11.2 ft				
PIT TESTPIT.				-	M	acific Booker prrison Coppe Test Pit Log	er Gold Proj For TP06-44 Project No.	ect 4 Ref. No. Rev.
				1 Kepoli	Knight P	lesola -	VA101-102/ T	P06-44
M:\1\0	1\00102	107\A1	DATA	GEOTEC~3\GINT\TESTPIT.GPJ	2 2	<i></i>		Date Revised: 4 May (

APPENDIX C

(Rev 0)

CANTEST LTD. LABORATORY RESULTS

(Pages C-1 to C-70)

Analysis Report

REPORT ON:

Analysis of Soil Samples

REPORTED TO:

Knight Piesold Ltd. 1400-750 W Pender St

Vancouver, B.C.

V6C 2T8

Att'n: Josh Vines

PROJECT NAME: PROJECT NUMBER: Morrison Lake 101-10217A

P.O. NUMBER:

3029

4606 Canada Way

Burnaby, B.C.

Analytical Services

CANTEST LTD. Professional

V5G 1K5

Fax: 604 731 2386

Tel. 604 734 7276

1 800 665 8566

NUMBER OF SAMPLES: 38 REPORT DATE: June 6, 2006

DATE SUBMITTED: May 1, 2006 **GROUP NUMBER: 70502059**

SAMPLE TYPE: Soil

NOTE: Results contained in this report refer only to the testing of samples as submitted. Other

information is available on request.

TEST METHODS:

Atterberg Limits - Atterberg limits are used to determine the "liquid" and "plastic" limits of a soil. These limits furnish a basis for the classification and identification of fine-grained soils. The analysis is performed on the portion of soil which passes through the 0.425 mm sieve. Analysis based on Atterberg Limits and Indices, Soil Testing for Engineers (1951 Edition) and D 4318 ASTM Standards (1997 Edition). Analysis performed at Cantest Ltd-Winnipeg, Unit D - 675 Berry St. Winnipeg, Manitoba R3H 1A7.

Type of Compaction - There are 5 different types of compaction, 15B = 15 Blow, ST = Shelby Tube, SP = Standard Proctor, FC = Field Core and HP = Hand Packed. Based on Methods of Soil Anlaysis Part 1 - Physical and Mineralogical Methods (2nd edition). Analysis performed at Cantest Ltd - Winnipeg, Unit D-675 Berry St, Winnipeg, Manitoba R3H 1A7.

Saturated Hydraulic Conductivity (Ksat) - Shelby Tube - A Shelby tube may be submitted for estimating the saturated hydraulic conductivity of subsoils. The submitted Shelby tube will be cut in the lab and a core will be pressed into a clean edge of the cut Shelby. Saturated hydraulic conductivity isperformed using a falling head soil core method (Klute and Dirksen (1986) as shown in Soil and Methods of Analysis (Carter 1993). Analysis peformed at Cantest Ltd - Winnipeg, Unit D - 675 Berry St, Winnipeg, Manitoba R3H 1A7.

Saturated Hydraulic Conductivity(Ksat) - Standard Proctor - performed on soils being placed in an urban setting and is appropriate for soils being used in most construction scenarios, or for soils being used for capping or lining which will undergo compaction. Compaction is performed according to ASTM D698; saturated hydraulic conductivity is performed using a falling head soil core method (Klute and Dirksen 1986) as shown in Soil Sampling

(Continued)

CANTEST LTD.

famie Kolach Project Manager

A Member of the CANAM Group www.cantest.com

Page 1 of 34

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Saturated Hydraulic Conductivity(Ksat) - Standard Proctor

and Methods of Analysis (Carter 1993). Analysis performed at Cantest Ltd - Winnipeg, Unit D - 675 Berry St, Winnipeg, Manitoba R3H 1A7.

Saturated Hydraulic Conductivity - Saturated Hydraulic Conductivity is performed according to the Method of Soil Analysis Part 1 - Physical and Mineralogical Methods Second Edition. Analysis performed at Cantest Ltd. Winnipeg, Unit D - 675 Berry St, Winnipeg, Manitoba R3H 1A7.

Bulk Density of Soil - analysis was performed using a gravimetric procedure. This test was performed at CANTEST LTD. Unit D 675 Berry St. Winnipeg Manitoba R3H 1A7.

Moisture in Soil - analysis was performed gravimetrically by heating a separate sample portion at 105 C and measuring the weight loss. Analysis performed at Cantest Ltd-Winnipeg, Unit D-675 Berry St, Winnipeg, Manitoba R3H 1A7.

Standard Proctor Compaction - uses 3 layers of soil and a 5.5 lb hammer to compact each layer of soil. Based on ASTM method D698 - Procedure A (Moist Preparation), Performed at Cantest Ltd - Winnipeg, Unit D - 675 Berry St. Winnipeg, Manitoba R3H 1A7.

Particle Size Analysis - The particle size distribution is determined in accordance with Methods of Soil Analysis Part 1-Physical and Mineralogical Methods(2nd Ed), UBC Methods Manual for Soil Analysis(1981) and Soil Sampling and Methods of Analysis (1993). The % gravel, sand, silt and clay are determined by a combination of a standard dry sieve, wet sieve and pipetting techiques. Particle size limits used to define size fractions are based according to Canadian Soil Survey Committee(CSSC) and U.S. Department of Agriculture(USDA) classification scheme. Winnipeg Lab D-675 Berry St. Wpg, MB R3H1A7

Estimated Porosity in Soil - An estimated particle density of 2650 Kg/M3 and the determined bulk density are used to achieve and estimated porosity. Based on Method of Soil Analysis Part 1 - Physical and Mineralogical Method (2nd edition).

Particle Density in Soil - Particle density is determined by finding the weight of kerosene displaced by a known weight of a soil. Based on U.B.C Methods Manual for Soil Analysis (1981 edition) and Methods of Soil Analysis Part 1 - Physical and Mineralogial Methods. Analysis performed at Cantest Ltd - Winnipeg, Unit D - 675 Berry St, Winnipeg, Manitoba R3H 1A7.

Particle Size Analysis - Engineering - This analysis is appropriate for particle size fractions that must be defined according to the American Society for Testing (ASTM) & Unified Soil Classification Systems, this is common for engineering purposes. These particle size limits are used to define the size fractions: gravel, coarse, medium, & fine sand, silt & clay, according to the ASTM (D-2487) classification. The size fractions analyzed are 4.75, 2.0, 0.425, 0.075, & 0.002 mm. %Sand, Silt & Clay are based on the < 4.75mm fraction of the sample by weight. Wpg Lab, D-675 Berry St. Wpg, MB R3H1A7

(Continued)

Knight Piesold Ltd.

CANTEST®

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

COMMENTS:

Sample 605020390: Std. Proctor KSAT completed on Rep #3. Sample 605020391: Std. Proctor KSAT completed on Rep #1. Sample 605020392: Std. Proctor KSAT completed on Rep #1.

TEST RESULTS:

(See following pages)

REPORTED TO: Knight Piesold Ltd.

REPORT DATE: June 6, 2006

GROUP NUMBER: 70502059

Atterberg Limits in Soil

CLIENT SAMPLE IDENTIFICATION:	CANTEST ID	Liquid Limit	Plastic Limit	Plasticity Index
TP06-15@4.5'	605020226	32	18	14
TP06-16@4'	605020233	35	18	17
TP06-17@4'	605020249	31	16	15
TP06-18@5'	605020271	29	16	13
TP06-19@3'	605020275	32	17	15
TP06-19@10'	605020276	32	16	16
TP06-20@0-5'	605020277	33	18	15
TP06-20@5'	605020278	33	16	17
TP06-21@0-4'	605020279	33	16	17
TP06-22@5-11'	605020282	22	19	3
DH06-2	605020307	27	17	10
DH06-7	605020308	33	17	16
DH06-9	605020309	27	15	12
DH06-11	605020310	27	16	12
DH06-12	605020312	30	17	13
DETECTION LIMIT		-	- · · · · · · · · · · · · · · · · · · ·	
UNITS		%	%	%

^{% =} percent, on a weight basis

 $\mathcal{A}_{\lambda}^{\lambda_{2}}$

REPORTED TO: Knight Piesold Ltd.

REPORT DATE: June 6, 2006

GROUP NUMBER: 70502059

%Sand, %Silt and %Clay in Soil

CLIENT SAMPLE IDENTIFICATION:	CANTEST ID	%Sand <4.75 mm 8 >0.075 mm	%Silt <0.075 mm & >0.002 mm	%Clay <0.002 mm
TP06-1-1	605020217	50.51	31.07	18.42
TP06-1-2	605020221	48.16	30.71	21.14
TP06-6-1	605020223	43.60	33.31	23.09
TP06-6-2	605020224	41.62	33.32	25.06
TP06-15@4.5'	605020226	45.35	31.26	23.39
TP06-15@8'	605020231	45.18	31.79	23.03
TP06-16@4'	605020233	41.07	31.71	27.22
TP06-16@8'	605020246	38.32	30.16	31.52
TP06-17@4'	605020249	43:31	32.11	24.58
TP06-17@10'	605020263	42.78	32.91	24.30
TP06-18@2'	605020268	50.89	29.78	19.33
TP06-18@5'	605020271	48.15	30.31	21.54
TP06-18@15'	605020274	45.95	31.91	22.15
TP06-19@3'	605020275	40.92	32.23	26.85
TP06-19@10'	605020276	41.72	32.33	25.96
TP06-20@0-5'	605020277	43.81	31.19	25.01
TP06-20@5'	605020278	42.29	32.87	24.84
TP06-21@0-4'	605020279	41.53	32.35	26.11
TP06-21@9'	605020280	52.09	28.46	19,45
TP06-22@4'	605020281	40.53	33.23	26.24
TP06-22@5-11'	605020282	45:28	40.84	13.89
TP06-40@3'	605020284	95.01	3.46	1.53
TP06-40@9'	605020297	86.38	10.70	2.92
TP06-41@2.5'	605020298	74.57	22.48	2.95
TP06-41@8'	605020299	93.13	5.93	0.94
TP06-42@3'	605020300	86.95	9.27	3.78
TP06-42@9'	605020301	86.33	10.67	3.0
TP06-43@4'	605020302	69.63	25.85	4.51
TP06-43@8'	605020303	56.04	33.85	10.11
DH06-2	605020307	19.44	59.26	21.30
DH06-7	605020308	43.97	31.39	24.64
DH06-9	605020309	57.27	24.78	17.95
DH06-11	605020310	43.27	35.98	20.75
DH06-12	605020312	46.10	31.90	22.0
DETECTION LIMIT		-		-
UNITS		%	%	%

^{% =} percent, on a weight basis

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Type of Particle Size Analysis in Soil

CLIENT SAMPLE IDENTIFICATION:	CANTEST ID	PSA Engineering
TP06-1-1	605020217	COMPLETE
TP06-1-2	605020221	COMPLETE
TP06-6-1	605020223	COMPLETE
TP06-6-2	605020224	COMPLETE
TP06-15@4.5'	605020226	COMPLETE
TP06-15@8'	605020231	COMPLETE
TP06-16@4'	605020233	COMPLETE
TP06-16@8'	605020246	COMPLETE
TP06-17@4'	605020249	COMPLETE
TP06-17@10'	605020263	COMPLETE
TP06-18@2'	605020268	COMPLETE
TP06-18@5'	605020271	COMPLETE
TP06-18@15'	605020274	COMPLETE
TP06-19@3'	605020275	COMPLETE
TP06-19@10'	605020276	COMPLETE
TP06-20@0-5'	605020277	COMPLETE
TP06-20@5'	605020278	COMPLETE
TP06-21@0-4'	605020279	COMPLETE
TP06-21@9'	605020280	COMPLETE
TP06-22@4'	605020281	COMPLETE
TP06-22@5-11'	605020282	COMPLETE
TP06-40@3'	605020284	COMPLETE
TP06-40@9'	605020297	COMPLETE
TP06-41@2.5'	605020298	COMPLETE
TP06-41@8'	605020299	COMPLETE
TP06-42@3'	605020300	COMPLETE
TP06-42@9'	605020301	COMPLETE
TP06-43@4'	605020302	COMPLETE
TP06-43@8'	605020303	COMPLETE
DH06-2	605020307	COMPLETE
DH06-7	605020308	COMPLETE
DH06-9	605020309	COMPLETE
DH06-11	605020310	COMPLETE
DH06-12	605020312	COMPLETE
DETECTION LIMIT UNITS	8) a A	- -

CANTEST®

^{- =} text or without units

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Saturated Hydraulic Conductivity (Ksat) in Soil

CLIENT SAMPLE IDENTIFICATION:	DH06-2	DH06-7	DH06-9	DH06-11		
		<u> </u>			DETECTION	UNITS
CANTEST ID:	605020307	605020308	605020309	605020310	LIMIT	
Type of Compaction	ST	ST	ST	ST	-	- ;
Ksat Shelby Tubes	COMPLETE	COMPLETE	COMPLETE	COMPLETE	-	-
Ksat cm/s	1.7E-07	1.4E-03	2.4E-06	5.0 E -05] -	cm/s
Ksat cm/hr	6.0E-04	5.2E+00	8.6E-03	1.8E-01	-	cm/hr
Ksat mm/hr	6.0E-03	5.2E+01	8.6E-02	1.8E+00	ļ -	mm/hr
Ksat in/hr	2.3E-04	2.0E+00	3.4E-03	7.1E-02	-	in/hr

- = text or without units cm/hr = Centimeter per hour in/hr = Inch per hour

cm/s = Centimeter per second mm/hr = millimeter per hour

30x

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Saturated Hydraulic Conductivity (Ksat) in Soil

CLIENT SAMPLE IDENTIFICATION:	DH06-12	5 to	to TP06-19@10	TP06-20@0- 5 to TP06-22@4	DETECTION	UNITS
CANTEST ID:	605020312	Com 605020390	605020391		LIMIT	ONITS
Type of Compaction	ST	SP	SP	SP	-	-
Ksat Shelby Tubes	COMPLETE	-	-	-	-	-
Ksat Standard Proctor	-	COMPLETE	COMPLETE	COMPLETE	-	-
Ksat cm/s	2.0E-08	1.5E-08	6.1E-07	1.6E-07	_	cm/s
Ksat cm/hr	7.3E-05	5.6E-05	2.2E-03	5.9E-04	-	cm/hr
Ksat mm/hr	7.3E-04	-	-	-	-	mm/hr
Ksat in/hr	2.9E-05	2.2E-05	8.7E-04	2.3E-04	-	in/hr
Ksat in/s	-	6.1E-09	2.4E-07	6.4E-08	-	in/s

- = text or without units cm/hr = Centimeter per hour in/hr = Inch per hour

cm/s = Centimeter per second mm/hr = millimeter per hour in/s = Inch per second

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Proctor Compaction in Soil in Soil

CLIENT SAMPLE IDENTIFICATION:	5 to	to TP06-19@10	5 to		DETECTION	UNITS
CANTEST ID:	605020390	605020391	Comp 605020392	605020393	LIMIT	
Standard Proctor Compaction	COMPLETE	COMPLETE	COMPLETE	COMPLETE	-	<u> </u>
Bulk Density Point-1	1890	1938	1932	1935	-	kg/cu. m
Bulk Density Point-2	1804	1887	1796	1955] -	kg/cu. m
Bulk Density Point-3	1921	1789	1740	1918	-	kg/cu. m
Bulk Density Point-4	1818	1809	1841	1944	} -	kg/cu. m
Moisture Point-1	12.39	13.70	13.97	8.36	-	\ <u>'</u>
Moisture Point-2	10.72	14.91	17.24	10.74	-	%
Moisture Point-3	14.71	10.89	11.15	6.34	\	%
Moisture Point-4	16.28	16.97	15.87	12.64	-	%

^{- =} text or without units

kg/cu. m = kilograms per cubic meter

^{% =} percent, on a weight basis

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

CANTEST®

Percent Passing on Sieves and Pipettes in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-1-1	TP06-1-2	TP06-6-1	TP06-6-2	
CANTEST ID:	605020217	605020221	605020223	605020224	DETECTION
Pipette Size 0.075 mm	42.16	22.93	38.02	48.26	- 🦪
Pipette Size 0.002 mm	15.69	9.35	15.57	20.71	-
Sieve 4.75 mm, ASTM #4	85.18	44.22	67.42	82.67	ii -
Sieve 2 mm, ASTM #10	81.36	39.39	60.92	75.19	-
Sieve 0.425mm, 425um, #40	72.0	31.99	51.63	64.20	<u> </u>

Knight Piesold Ltd.

1..... 0. 0000

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Percent Passing on Sieves and Pipettes in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-15@4. 5'	TP06-15@8'	TP06-16@4'	TP06-16@8'	
CANTEST ID:	605020226	605020231	605020233	605020246	DETECTION
Pipette Size 0.075 mm	42.49	35.01	43.27	40.0	-
Pipette Size 0.002 mm	18.18	14.70	19.99	20.44	_
Sieve 4.75 mm, ASTM #4	77.76	63.86	73.43	64.84	ij -
Sieve 2 mm, ASTM #10	69.61	57.20	66.79	58.49	-
Sieve 0.425mm, 425um, #40	57.39	46.86	56.80	50.49]

Knight Piesold Ltd.

REPORT DATE: June 6, 2006

GROUP NUMBER: 70502059

Percent Passing on Sieves and Pipettes in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-17@4'	TP06-17@10	TP06-18@2'	TP06-18@5'	
CANTEST ID:	605020249	605020263	605020268	605020271	DETECTION
Pipette Size 0.075 mm	43.27	42.24	38.34	41.63	
Pipette Size 0.002 mm	18.76	17.94	15.09	17.30	-
Sieve 4.75 mm, ASTM #4	76.33	73.82	78.06	80.30	
Sieve 2 mm, ASTM #10	68.49	65.62	69.45	70.65	-
Sieve 0.425mm, 425um, #40	58.27	56.12	56.09	58.47	··-

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Percent Passing on Sieves and Pipettes in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-18@15	TP06-19@3'	TP06-19@10	TP06-20@0- 5'	
CANTEST ID:	605020274	605020275	605020276	605020277	DETECTION
Pipette Size 0.075 mm	38.68	45.85	50.10	41.35	- 35 3
Pipette Size 0.002 mm	15.85	20.83	22.31	18.40	-
Sieve 4.75 mm, ASTM #4	71.56	77.60.	85.95	73.59	-
Sieve 2 mm, ASTM #10	63.79	71.03	75.98	65.19	[[-
Sieve 0.425mm, 425um, #40	54.55	60.20	64.83	55.82]

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Percent Passing on Sieves and Pipettes in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-20@5'	TP06-21@0- 4'	TP06-21@9'	TP06-22@4'	
CANTEST ID:	605020278	605020279	605020280	605020281	DETECTION LIMIT
Pipette Size 0.075 mm	44.39	44.52	42.63	51.26	-
Pipette Size 0.002 mm	19.11	19.88	17.31	22.62	-
Sieve 4.75 mm, ASTM #4	76.92	76.14	88.96	86.19	 -
Sieve 2 mm, ASTM #10	69.51	67.48	67.99	77.50	 - "
Sieve 0.425mm, 425um, #40	59.28	58.16	57.67	67.51	<u> </u>

REPORTED TO: Knight Piesold Ltd.

REPORT DATE: June 6, 2006

GROUP NUMBER: 70502059

Percent Passing on Sieves and Pipettes in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-22@5- 11'	TP06-40@3'	TP06-40@9'	TP06-41@2. 5'	DETECTION
CANTEST ID:	605020282	605020284	605020297	605020298	DETECTION LIMIT
Pipette Size 0.075 mm	36.96	3.33	9.74	23.81	-
Pipette Size 0.002 mm	9.38	1.02	2.09	2.76	-
Sieve 4.75 mm, ASTM #4	67.55	66.73	71.48	93.64	-
Sieve 2 mm, ASTM #10	62.57	46.26	62.59	90.22	-
Sieve 0.425mm, 425um, #40	55.92	15.92	42.04	81.21	

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Percent Passing on Sieves and Pipettes in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-41@8'	TP06-42@3'	TP06-42@9'	TP06-43@4'	
CANTEST ID:	605020299	605020300	605020301	605020302	DETECTION LIMIT
Pipette Size 0.075 mm	1.81	4.27	5.66	18.16	- :
Pipette Size 0.002 mm	0.25	1.24	1.24	2.70	-
Sieve 4.75 mm, ASTM #4	26.38	32.68	41.39	59.82	
Sieve 2 mm, ASTM #10	17.70	24.52	34.88	55.65	-
Sieve 0.425mm, 425um, #40	11.85	13.92	18.07	45.82	'

Results expressed as percent passing (PCTP)

袋,

REPORTED TO: Knight Piesold Ltd.

REPORT DATE: June 6, 2006

GROUP NUMBER: 70502059

Percent Passing on Sieves and Pipettes in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-43@8'	DH06-2	DH06-7	DH06-9	DETECTION
CANTEST ID:	605020303	605020307	605020308	605020309	LIMIT
Pipette Size 0.075 mm	16.81	75.29	38.31	24.70	-
Pipette Size 0.002 mm	3.87	19.91	16.84	10.38	-
Sieve 4.75 mm, ASTM #4	38.24	93.45	68.37	57.79	-]
Sieve 2 mm, ASTM #10	34.30	90.83	59.77	47.73	-
Sieve 0.425mm, 425um, #40	26.27	83.43	50.50	36.70	

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Percent Passing on Sieves and Pipettes in Soil

CLIENT SAMPLE IDENTIFICATION:	DH06-11	DH06-12	
CANTEST ID:	605020310	605020312	DETECTION LIMIT
Pipette Size 0.075 mm	42.88	40.55	-
Pipette Size 0.002 mm	15.68	16.55	-
Sieve 4.75 mm, ASTM #4	75.59	75.24	-
Sieve 2 mm, ASTM #10	65.33	65.37	-
Sieve 0.425mm, 425um, #40	56.22	55.76	

Knight Piesold Ltd.

.....

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Percent Retained on Sieves - % By Weight in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-1-1	TP06-1-2	TP06-6-1	TP06-6-2	
CANTEST ID:	605020217	605020221	605020223	605020224	DETECTION LIMIT
<0.002 mm	15.69	9.35	15.57	20.71	<u> </u>
>4.75 mm	14.82	55.78	32.58	17.33	-
<4.75 mm & >0.075 mm	43.02	21.30	29.40	34.41	 - .
<0.075 mm & >0.002 mm	26.47	13.58	22.46	27.55	

Results expressed as percent, on a weight basis (%)

Š

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Percent Retained on Sieves - % By Weight in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-15@4. 5'	TP06-15@8'	TP06-16@4'	TP06-16@8'	
CANTEST ID:	605020226	605020231	605020233	605020246	DETECTION LIMIT
<0.002 mm	18.18	14.70	19.99	20.44	-
>4.75 mm <4.75 mm & >0.075 mm <0.075 mm & >0.002 mm	22.24 35.26 24.31	36.14 28.85 20.30	26.57 30.15 23.28	35.16 24.85 19.56	- - -

Results expressed as percent, on a weight basis (%)

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Percent Retained on Sieves - % By Weight in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-17@4'	TP06-17@10	TP06-18@2'	TP06-18@5'	
CANTEST ID:	605020249	605020263	605020268	605020271	DETECTION LIMIT
<0.002 mm	18.76	17.94	15.09	17.30	;
>4.75 mm	23.67	26.18	21.94	19.70	-
<4.75 mm & >0.075 mm	33.06	31.58	39.73	38.66]]
<0.075 mm & >0.002 mm	24.51	24.30	23.25	24.33	-

Results expressed as percent, on a weight basis (%)

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Percent Retained on Sieves - % By Weight in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-18@15	TP06-19@3'	TP06-19@10	TP06-20@0- 5'	
					DETECTION
CANTEST ID:	605020274	605020275	605020276	605020277	LIMIT
<0.002 mm	15.85	20.83	22.31	18:40	- "
>4.75 mm	28.44	22.40	14.05	26.41	-
<4.75 mm & >0.075 mm	32.88	31.75	35.86	32.23	-
<0.075 mm & >0.002 mm	22.83	25.01	27.79	22.95	

Results expressed as percent, on a weight basis (%)

Knight Piesold Ltd.

l..... C 0000

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Percent Retained on Sieves - % By Weight in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-20@5'	TP06-21@0- 4'	TP06-21@9'	TP06-22@4'	
CANTEST ID:	605020278	605020279	605020280	605020281	DETECTION
<0.002 mm	19.11	19.88	17.31	22.62	<u> </u>
>4.75 mm	23.08	23.86	11.04	13.81	-
<4.75 mm & >0.075 mm	32.53	31.62	46.34	34.93	-
<0.075 mm & >0.002 mm	25.28	24.63	25.32	28.64	

Results expressed as percent, on a weight basis (%)

 \mathcal{G}_{p}^{n}

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

CANTEST®

Percent Retained on Sieves - % By Weight in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-22@5- 11'	TP06-40@3	TP06-40@9'	TP06-41@2. 5'	
CANTEST ID:	605020282	605020284	605020297	605020298	DETECTION
<0.002 mm	9.38	1.02	2.09	2.76	_ "749
>4.75 mm	32.45	33.27	28.52	6.36	-
<4.75 mm & >0.075 mm	30.59	63.40	61.75	69.83	ii - j
<0.075 mm & >0.002 mm	27.58	2.31	7.65	21.05	-

Results expressed as percent, on a weight basis (%)

i 45

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Percent Retained on Sieves - % By Weight in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-41@8'	TP06-42@3'	TP06-42@9'	TP06-43@4*	
CANTEST ID:	605020299	605020300	605020301	605020302	DETECTION LIMIT
<0.002 mm >4.75 mm <4.75 mm & >0.075 mm <0.075 mm & >0.002 mm	0.25 73.62 24.57 1.56	1.24 67.32 28.41 3.03	1.24 58.61 35.73 4.41	2.70 40.18 41.65 15.46	- -

Results expressed as percent, on a weight basis (%)

ζΦ.

Knight Piesold Ltd.

CANTEST®

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Percent Retained on Sieves - % By Weight in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-43@8'	DH06-2	DH06-7	DH06-9	
CANTEST ID:	605020303	605020307	605020308	605020309	DETECTION
<0.002 mm	3.87	19.91	16.84	10.38	
>4.75 mm <4.75 mm & >0.075 mm <0.075 mm & >0.002 mm	61.76 21.43 12.94	6.55 18.17 55.38	31.63 30.06 21.46	42.21 33.10 14.32	-

Results expressed as percent, on a weight basis (%)

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Percent Retained on Sieves - % By Weight in Soil

CLIENT SAMPLE IDENTIFICATION:	DH06-11	DH06-12	
		<u> </u>	DETECTION
CANTEST ID:	605020310	605020312	LIMIT
<0.002 mm	15.68	16.55	-
>4.75 mm	24.41	24.76	-
<4.75 mm & >0.075 mm	32.71	34.69	-
<0.075 mm & >0.002 mm	27.20	24.0	<u> </u>

Results expressed as percent, on a weight basis (%)

Knight Piesold Ltd.

CANTEST®

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Soil - Physical Testing in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-1-1	TP06-1-2	TP06-6-1	TP06-6-2	DETECTION
CANTEST ID:	605020217	605020221	605020223	605020224	LIMIT
% Moisture	21.6	8.4	13.1	13.5	

Results expressed as percent, on a weight basis (%)

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

CLIENT SAMPLE IDENTIFICATION:	TP06-15@4. 5'	TP06-15@8'	TP06-16@4'	TP06-16@8'	DETECTION	UNITS
CANTEST ID:	605020226	605020226 605020231 605020233 60502024	605020246	LIMIT		
% Moisture Particle Density	12.0 2606.1	12.6	15.1 2585.9	15.4	-	% kg/cu. m

^{% =} percent, on a weight basis

kg/cu. m = kilograms per cubic meter

Knight Piesold Ltd.

Tringiti i lesola Eta.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

CLIENT SAMPLE IDENTIFICATION:	TP06-17@4'	TP06-17@10	TP06-18@2'	TP06-18@5'	DETECTION	UNITS
CANTEST ID:	605020249	605020263	605020268	605020271	LIMIT	
% Moisture Particle Density	12.7 2628.8	10.6	17.1 2612.6	13.1 2621.3		% kg/cu. m

^{% =} percent, on a weight basis

kg/cu. m = kilograms per cubic meter

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

CLIENT SAMPLE IDENTIFICATION:	TP06-18@15	TP06-19@3'	TP06-19@10	TP06-20@0- 5'	DETECTION	TUNITS
CANTEST ID:	605020274	605020275	605020276	605020277	LIMIT	
% Moisture Particle Density	11.1	13.6 2615.4	13.6 2623.2	16.1 2585.8		% kg/cu. m

^{% =} percent, on a weight basis

kg/cu. m = kilograms per cubic meter

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

CLIENT SAMPLE IDENTIFICATION:	TP06-20@5'	TP06-21@0- 4'	TP06-21@9'	TP06-22@4'	DETECTION	lunits l
CANTEST ID:	605020278	605020279	605020280	605020281	LIMIT	
% Moisture Particle Density	14.6 2620.8	12.6 2610.5	12.9	14.1	-	% kg/cu. m

^{% =} percent, on a weight basis

kg/cu. m = kilograms per cubic meter

Knight Piesold Ltd.

REPORT DATE:

June 6, 2006

GROUP NUMBER: 70502059

Soil - Physical Testing in Soil

CLIENT SAMPLE IDENTIFICATION:	TP06-22@5- 11'	DH06-2	DH06-7	DH06-9		
CANTEST ID:	605020282	605020307	605020308	605020309	DETECTION	UNITS
Bulk Density	-	1647	1767	1909	0.01	kg/cu. m
% Moisture	22.7	23.9	13.1	15.4	-	%
Estimated Porosity	-	38	33	28	<u> </u>	% by vol.
Particle Density	2586.2	2628.1	2637.9	2629.0	JL	kg/cu. m

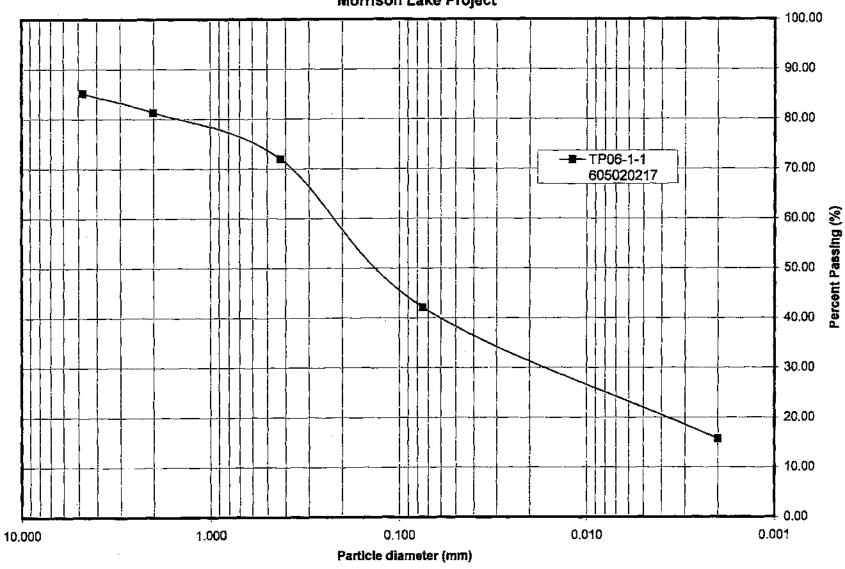
kg/cu. m = kilograms per cubic meter % by vol. = percent by volume

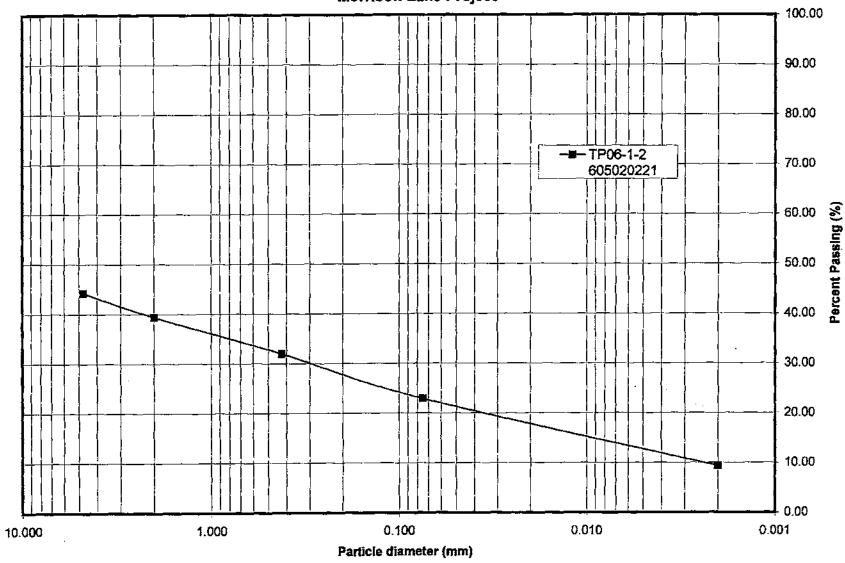
% = percent, on a weight basis

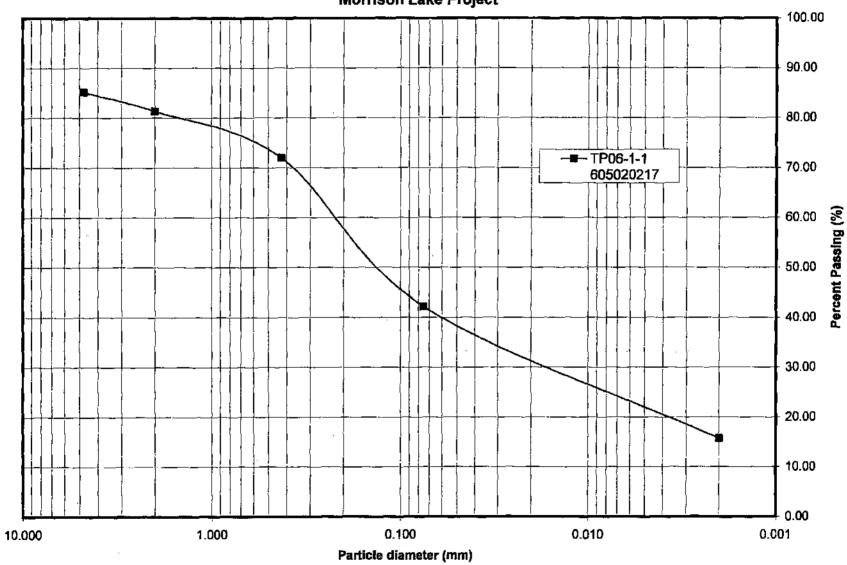
Knight Piesold Ltd.

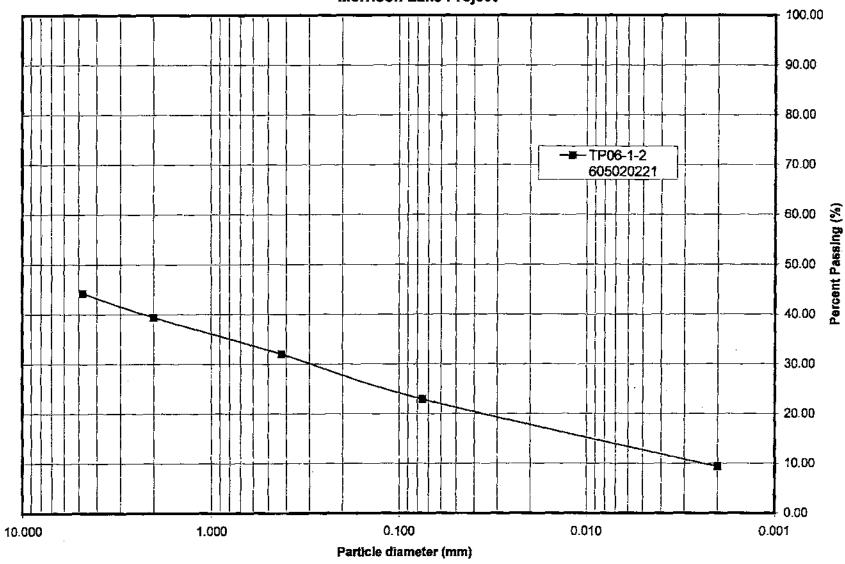
REPORT DATE:

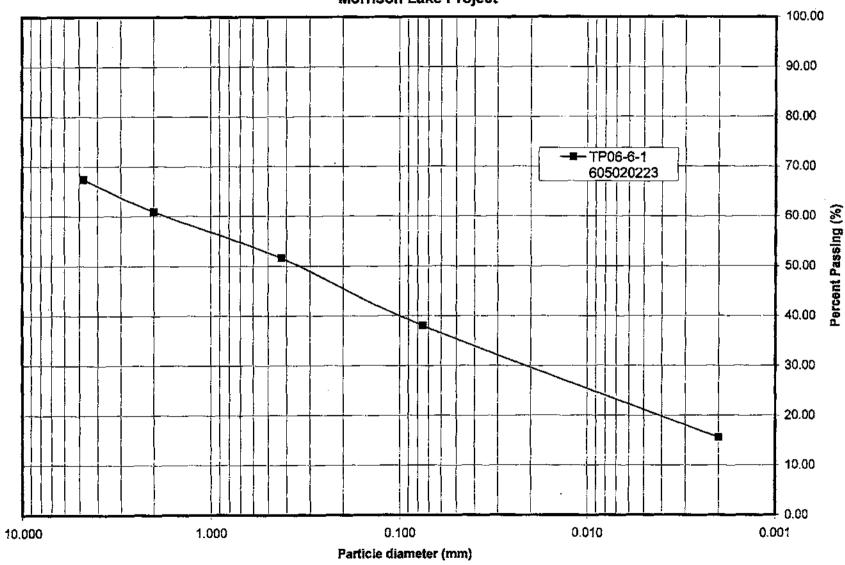
June 6, 2006

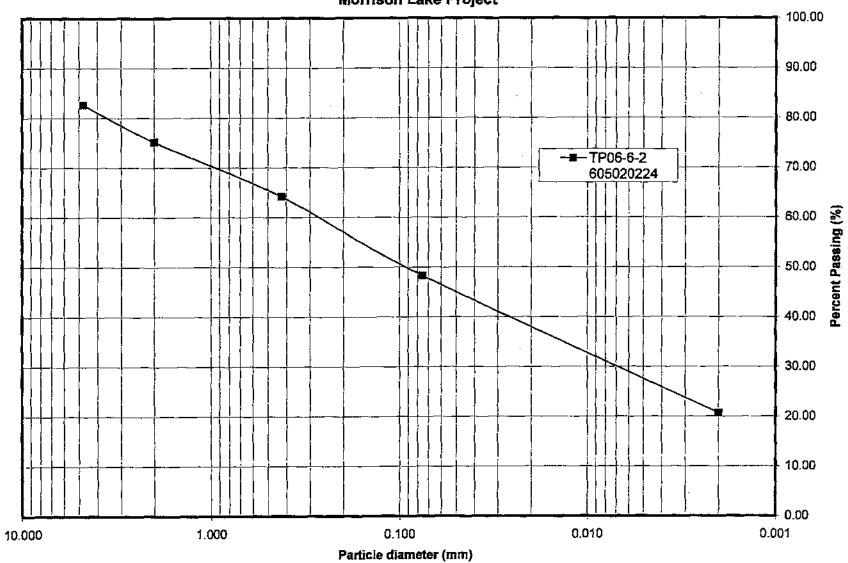

GROUP NUMBER: 70502059

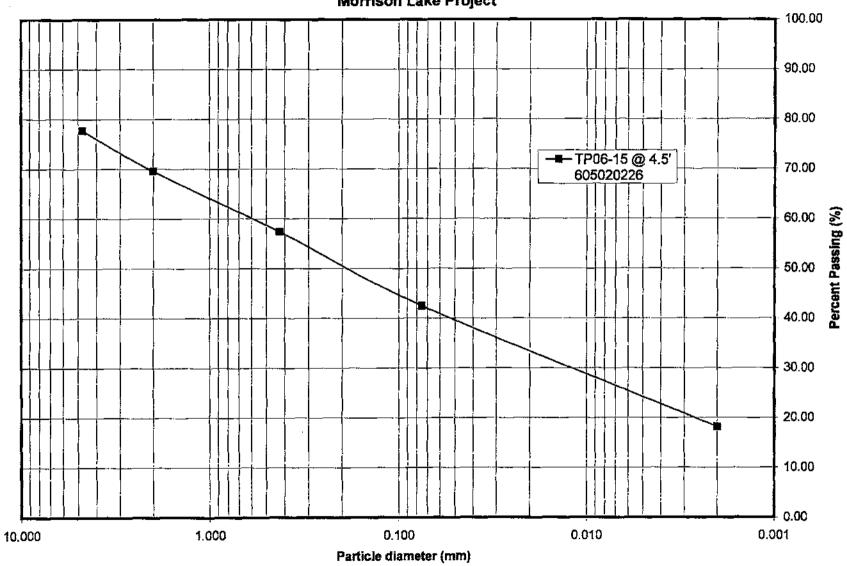

Soil - Physical Testing in Soil

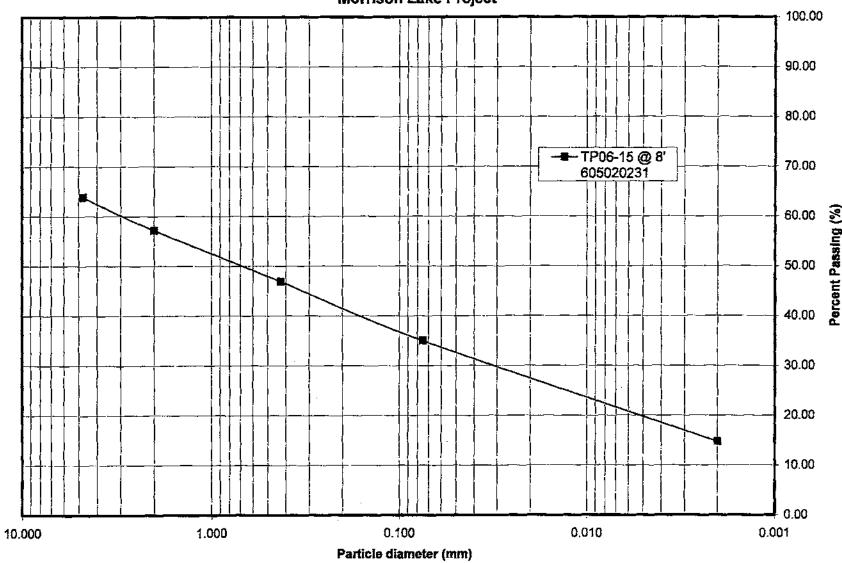

CLIENT SAMPLE IDENTIFICATION:	DH06-11	DH06-12		
CANTEST ID:	605020310	605020312	DETECTION	UNITS
Bulk Density	1826	1847	0.01	kg/cu. m
% Moisture	12.9	15.3	-	%
Estimated Porosity	31	30	- 1	% by vol.
Particle Density	2641.3	2629.7	_]	kg/cu. m

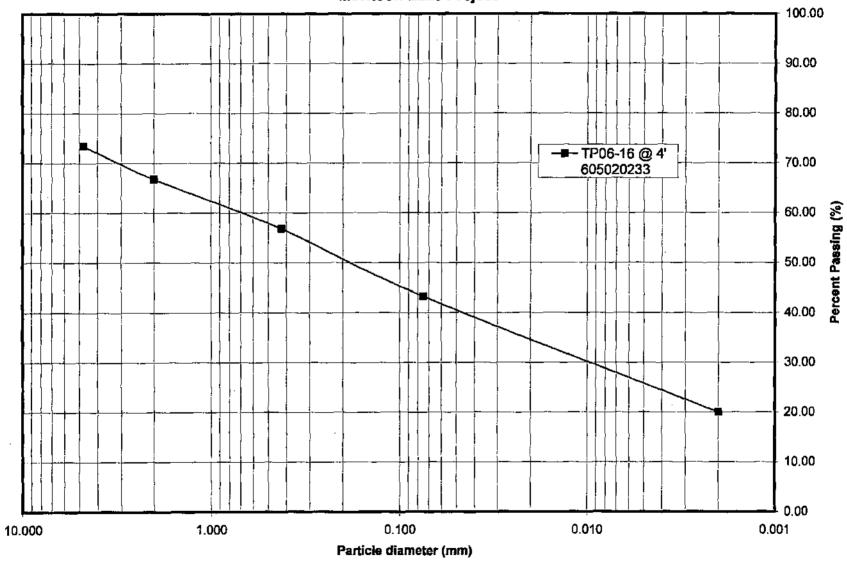

kg/cu. m = kilograms per cubic meter % by vol. = percent by volume

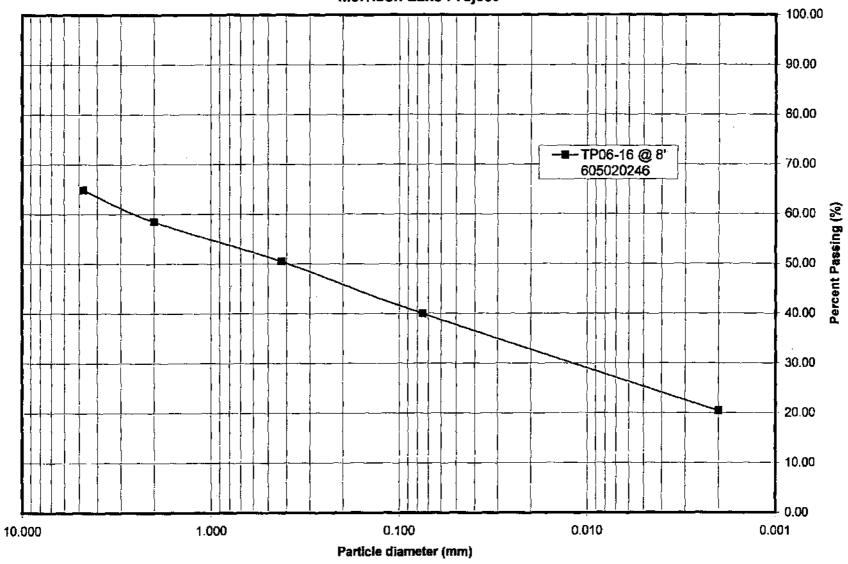

% = percent, on a weight basis

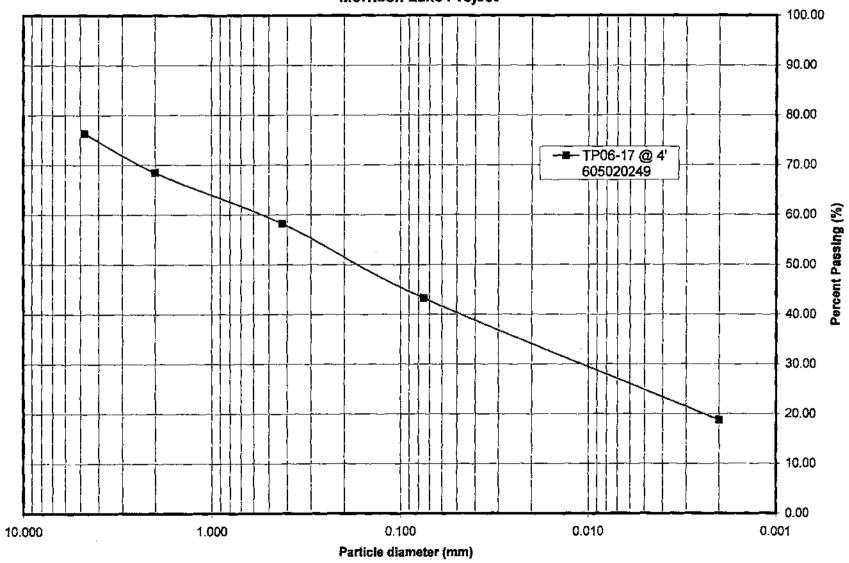


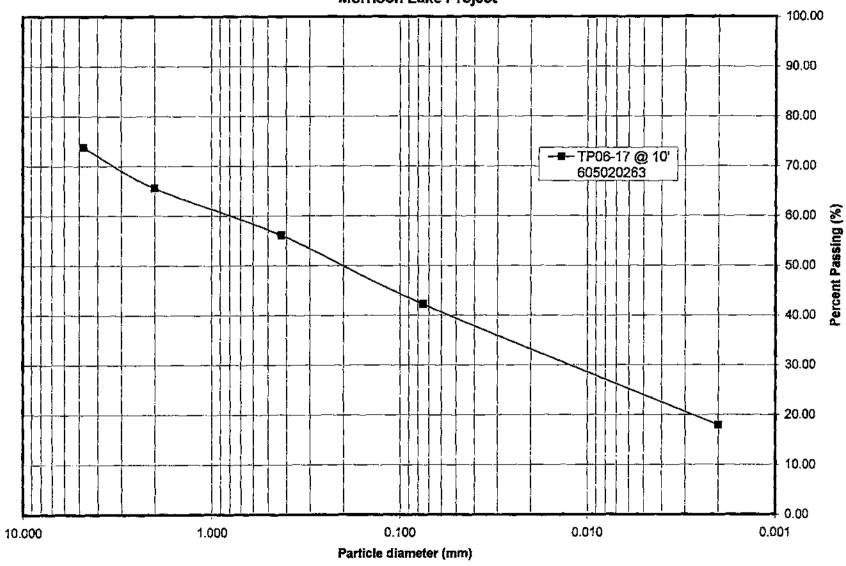


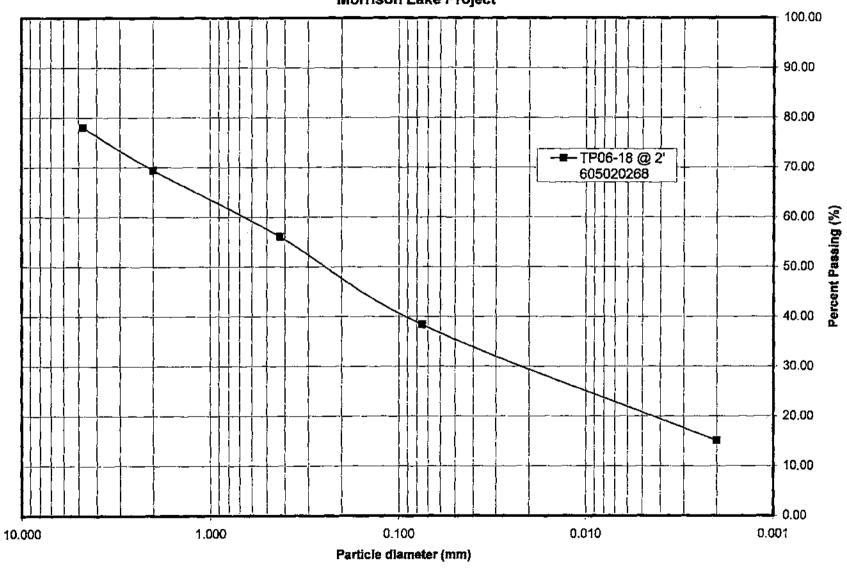


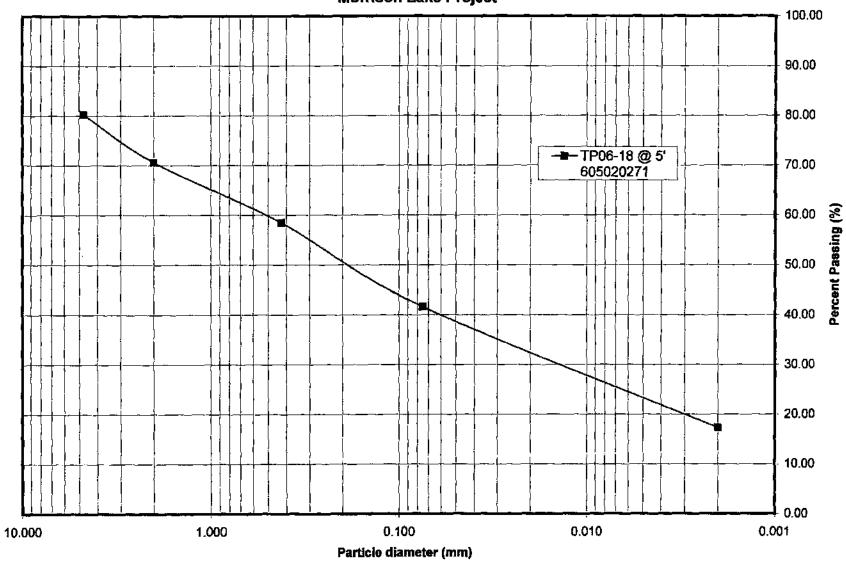


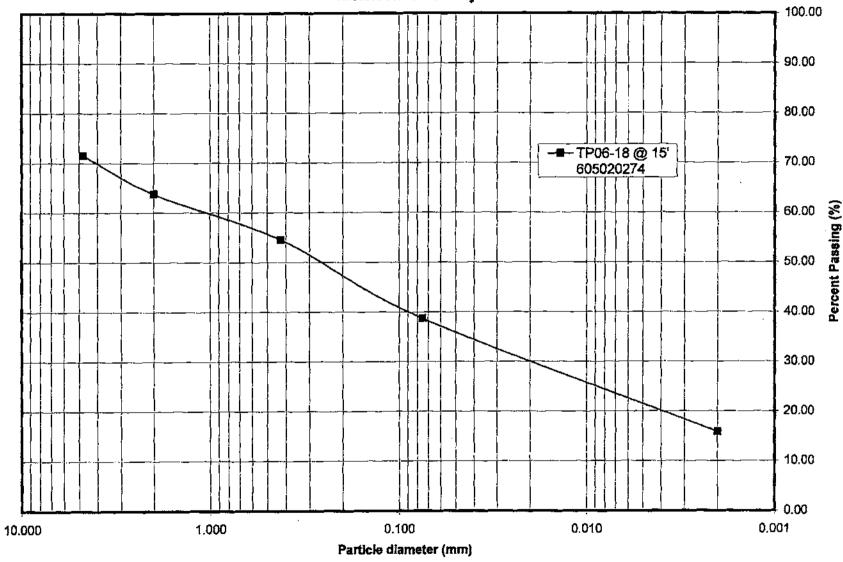


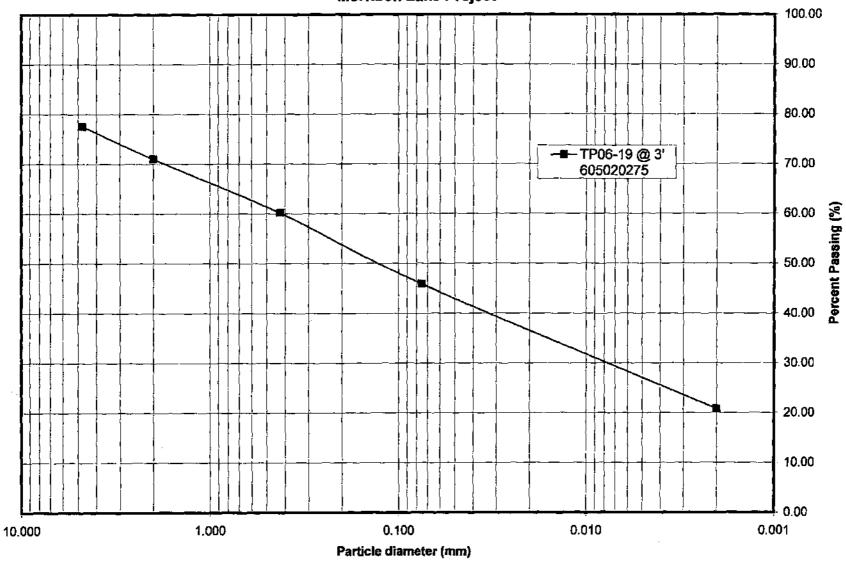


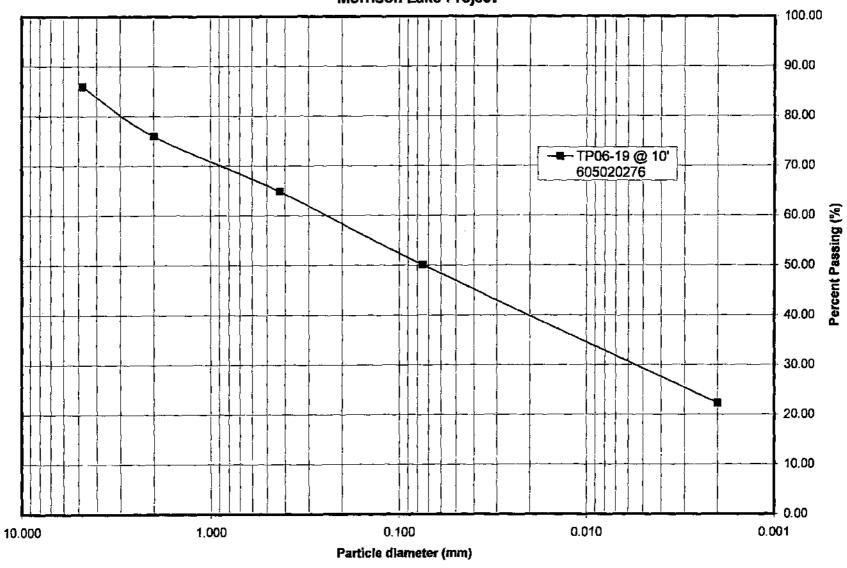


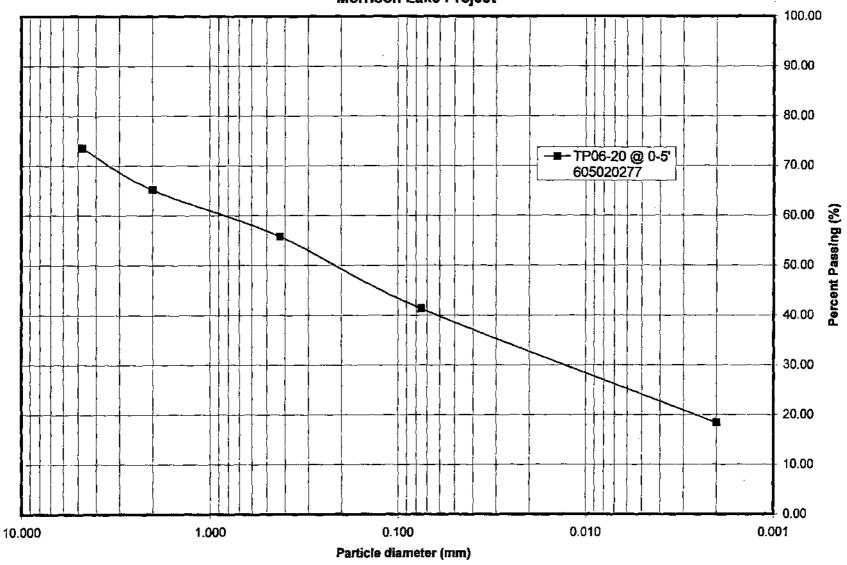


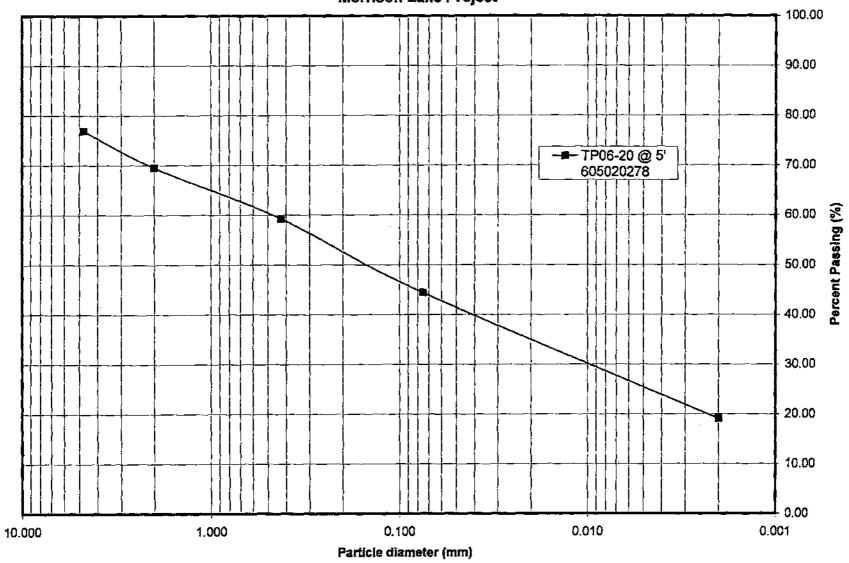


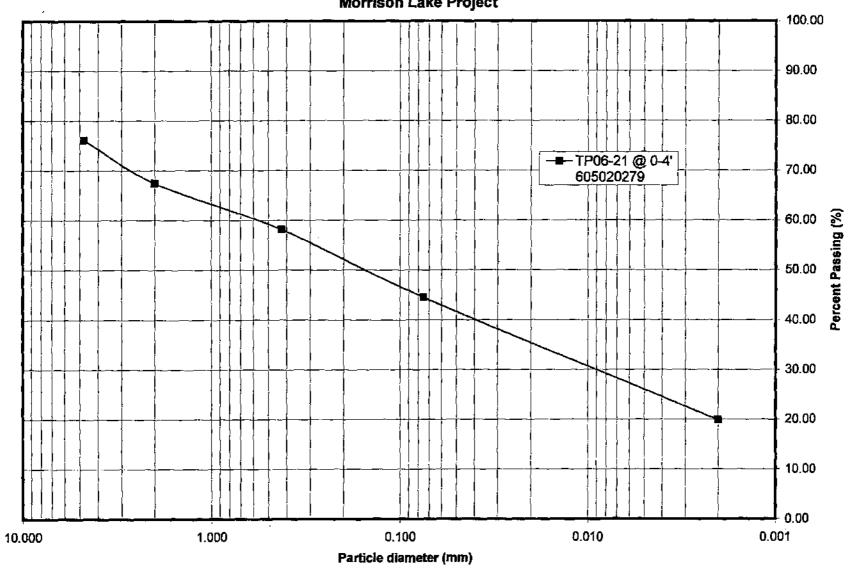


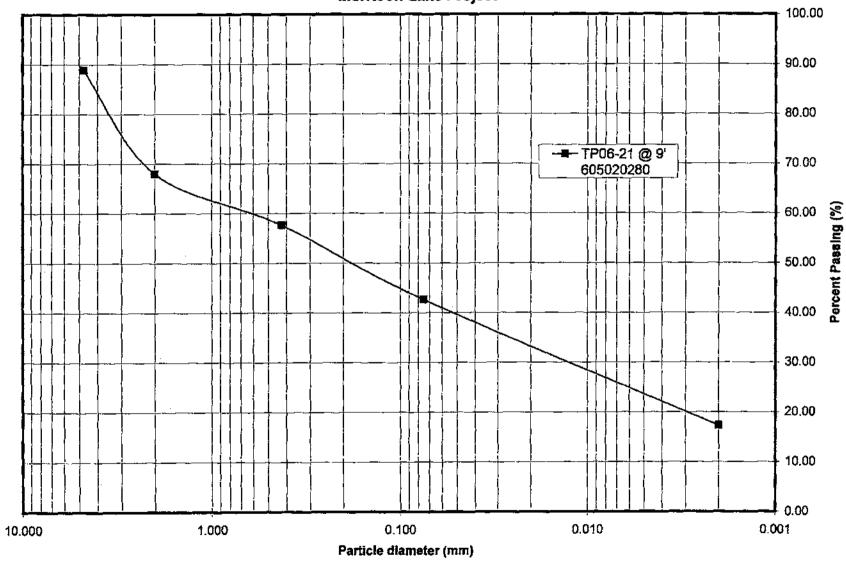


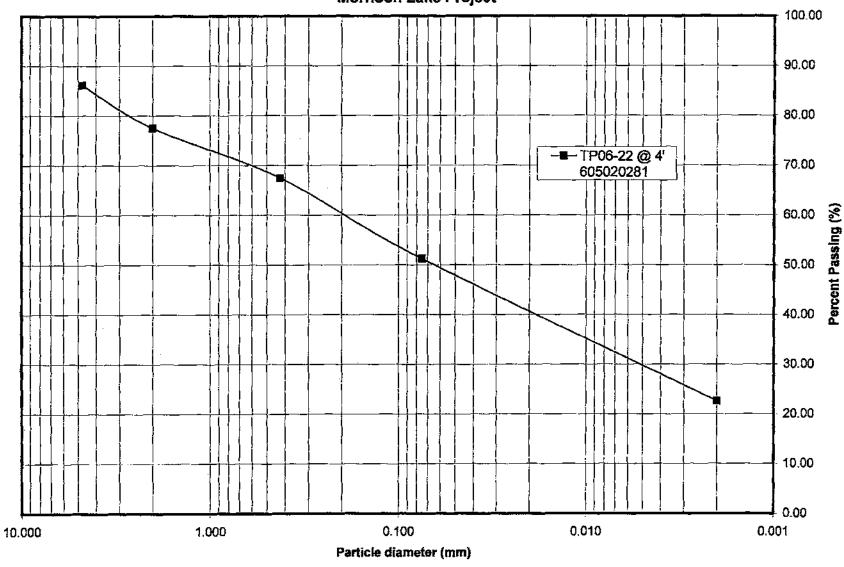


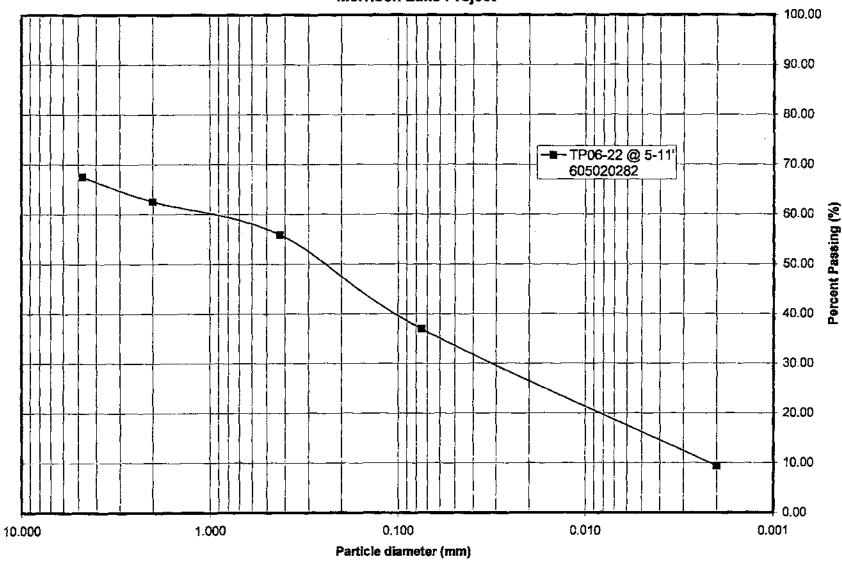


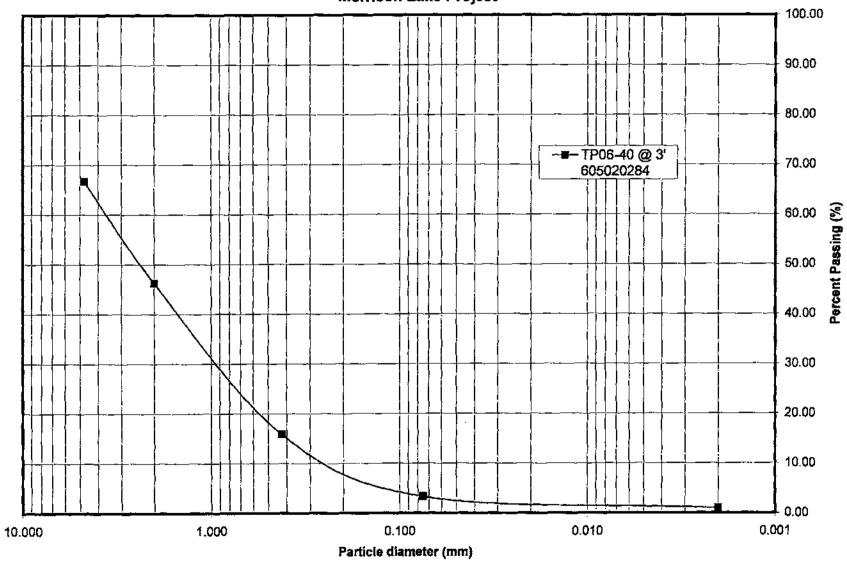


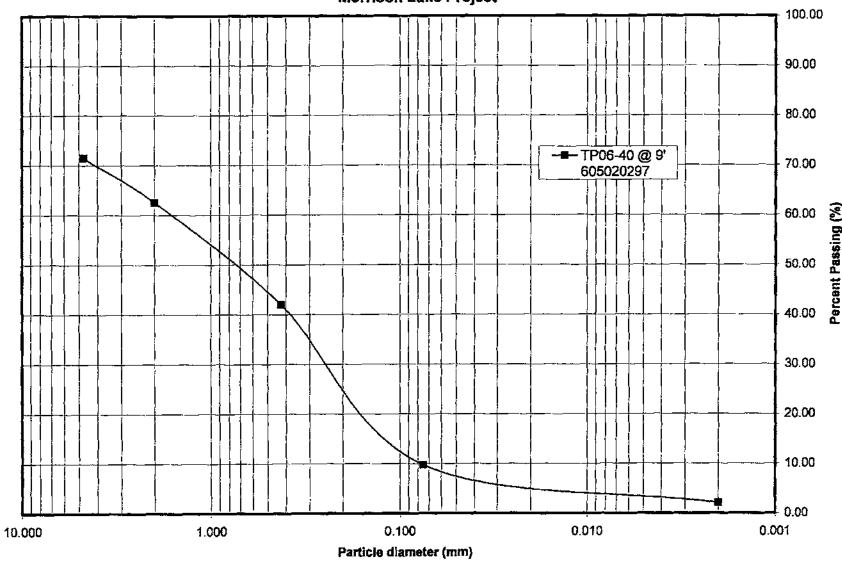


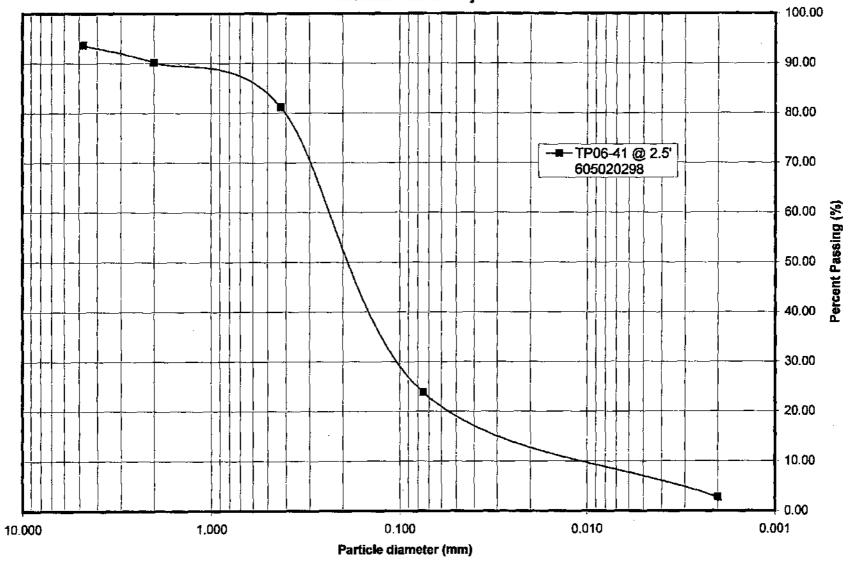


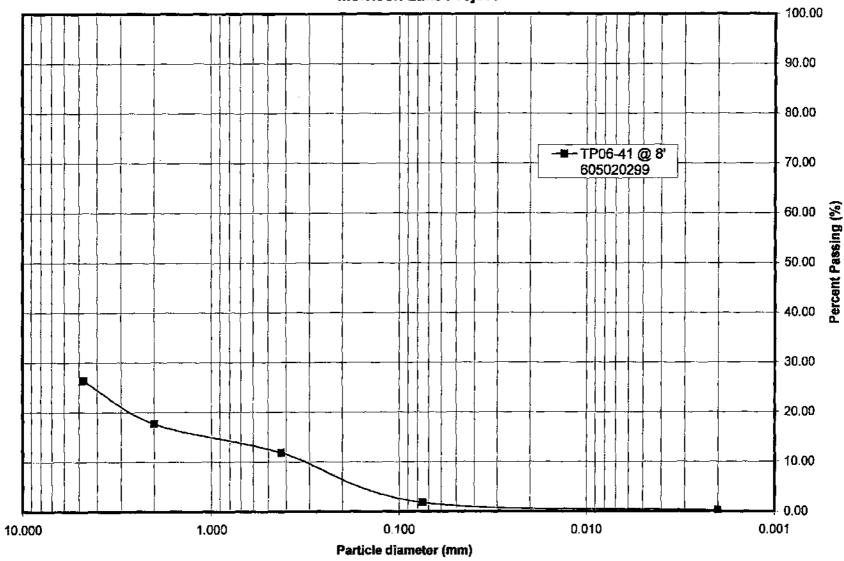


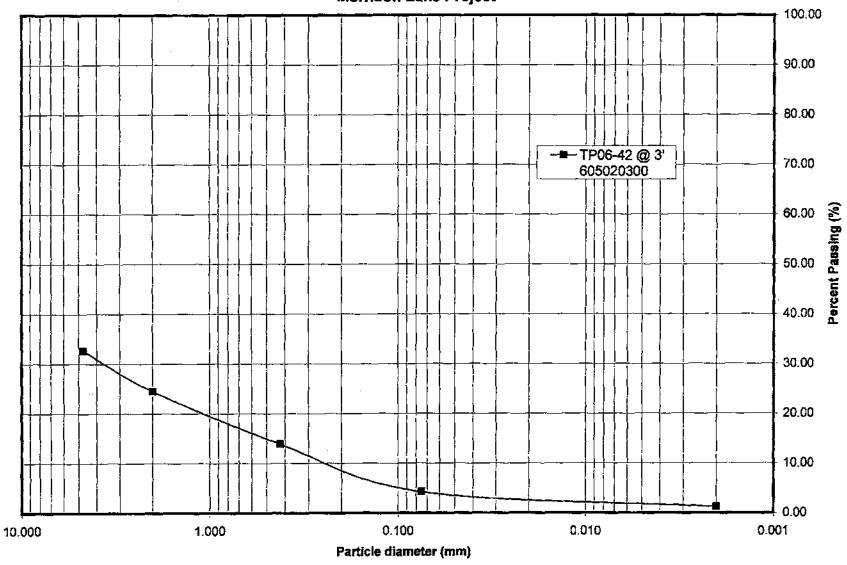


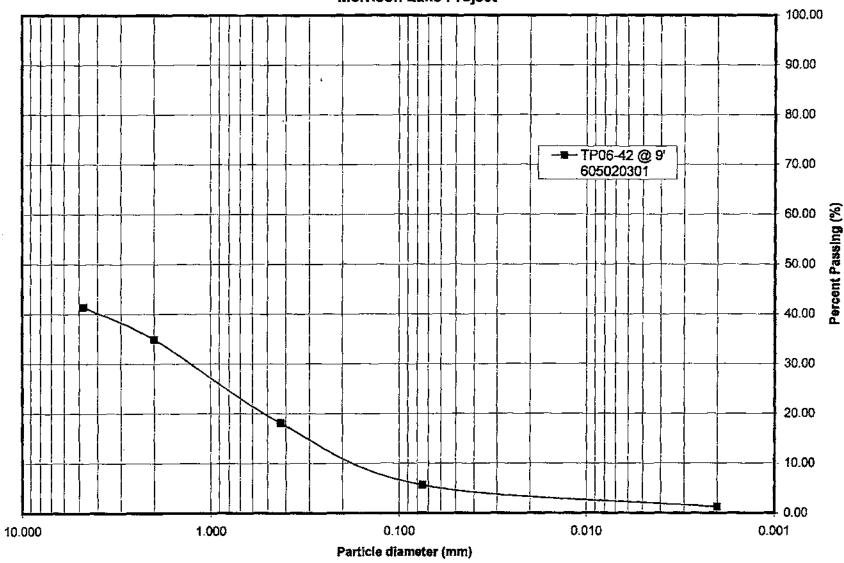


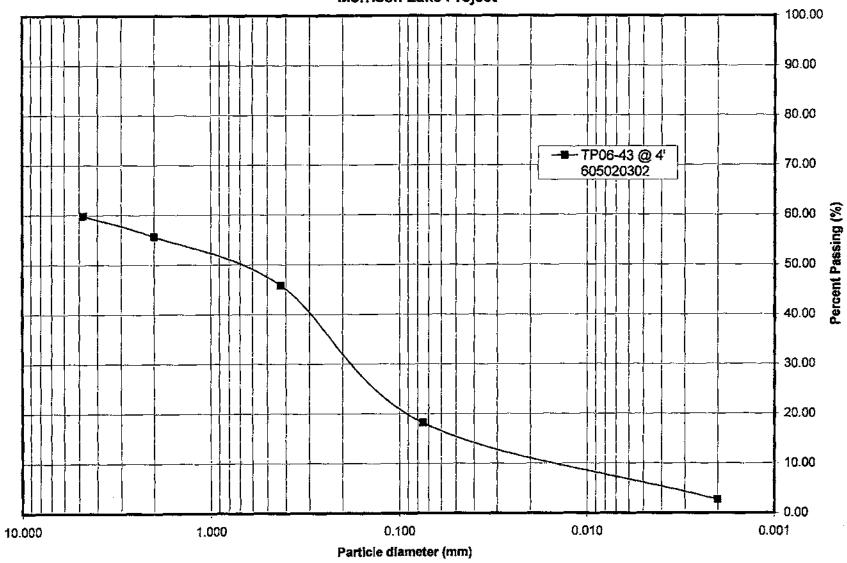


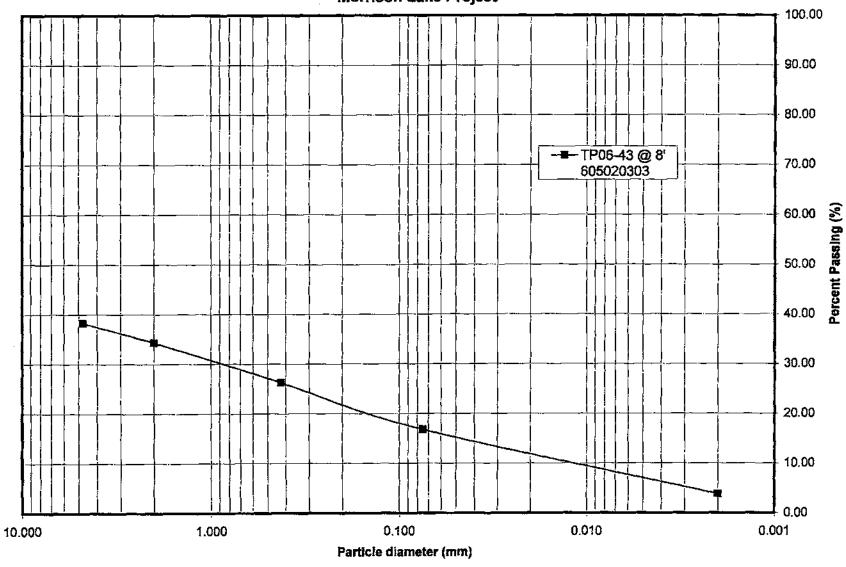


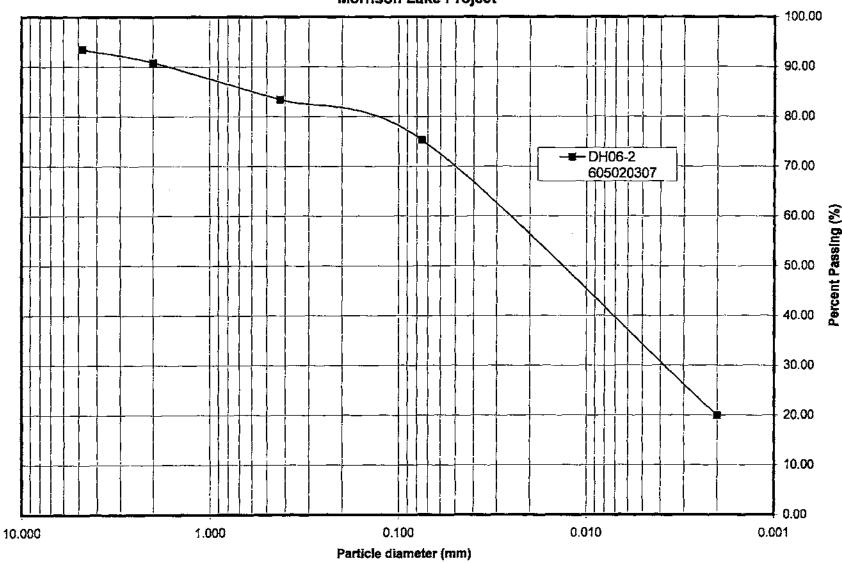


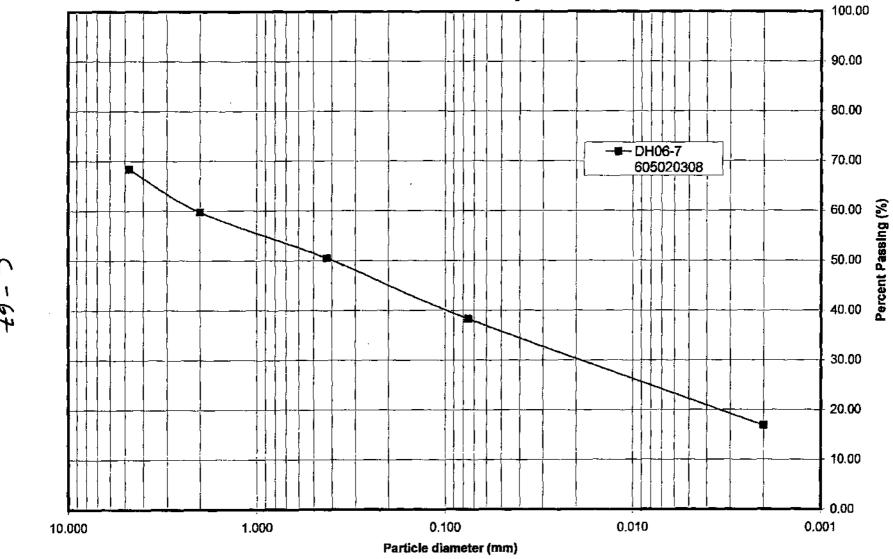


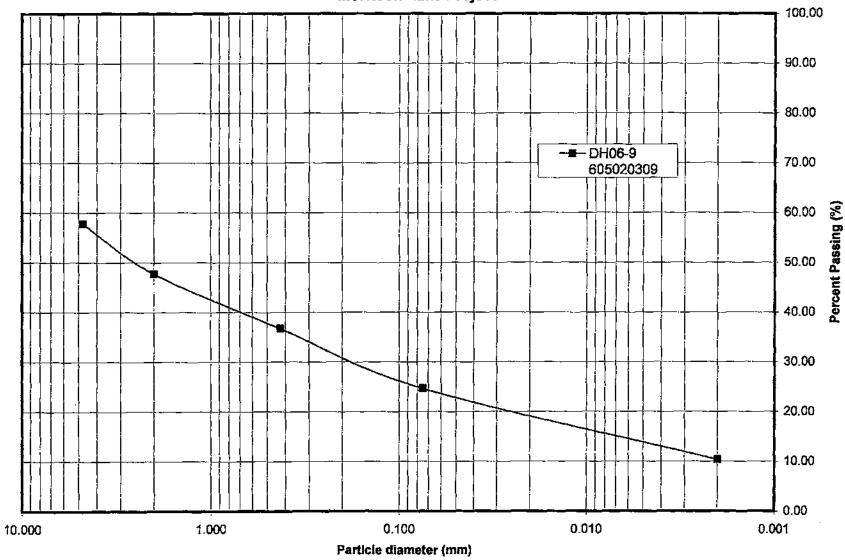


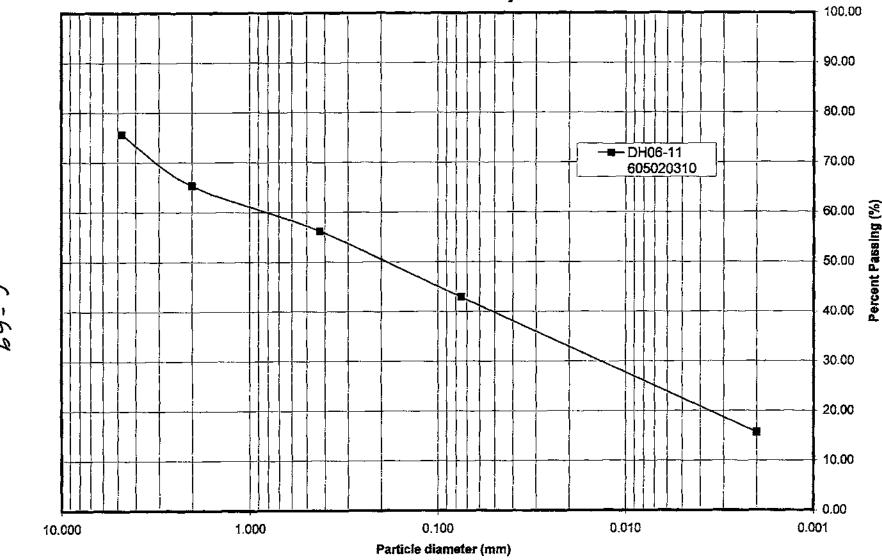












APPENDIX D

(Rev 0)

PHOTOGRAPHS

TESTPIT PHOTOS (Pages D-1 to D-5)

CORE PHOTOS (Taken by PBM Personnel) (Pages D-6 to D-13)

PHOTO #1 – TP05-7 Near WMF South Embankment

PHOTO #2 - TP05-9 Near WMF South Embankment

PHOTO #3 – TP06-15 Near WMF South Embankment

PHOTO #4 - TP06-19 Near WMF South Embankment

PHOTO #5 - TP06-23 Near WMF South Embankment

PHOTO #6 – TP06-24 at Plant Site

PACIFIC BOOKER MINERALS INC.
MORRISON COPPER GOLD PROJECT

PHOTO #7 - TP06-25 at Plant Site

PHOTO #8 - TP06-26 at Plant Site

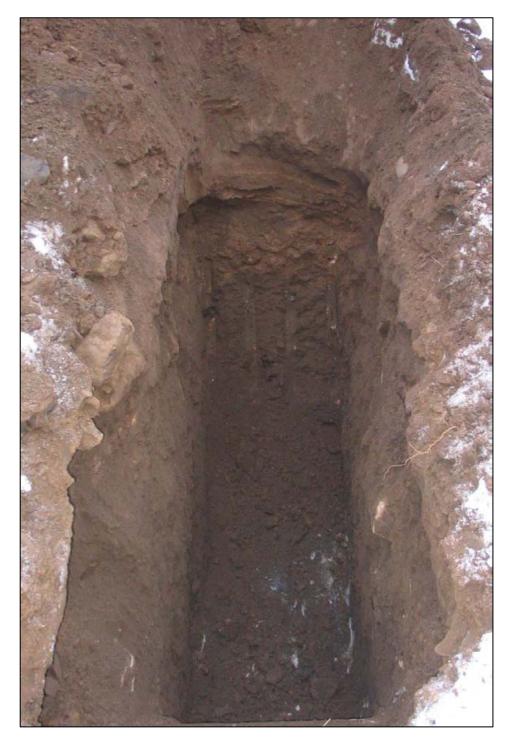
PHOTO #9 - TP06-27 at Plant Site

PHOTO #10 - TP06-28 at Plant Site

PACIFIC BOOKER MINERALS INC.
MORRISON COPPER GOLD PROJECT

PHOTO #11 - TP06-41 at Gravel Pit

PHOTO #12 - TP06-42 at Gravel Pit



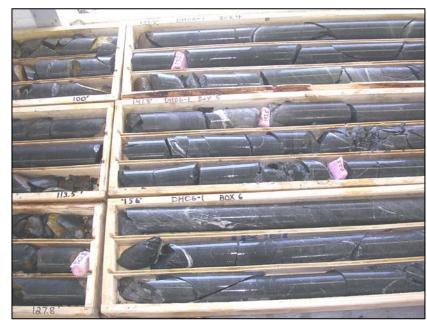

PHOTO #13 - TP06-43 at Gravel Pit

PHOTO #14 - TP06-44 at Gravel Pit


PHOTO #15 – DH06-1 Box 1 to 3 (1st half)

PHOTO #16 – DH06-1 Box 4 to 6 (1st half)

PHOTO #17 – DH06-1 Box 4 to 6 (2nd half)

PHOTO #18 – DH06-1 Box 7 to 9 (1st half)

PHOTO #19 – DH06-1 Box 7 to 9 (2nd half)

PHOTO #20 – DH06-1 Box 10 to 12 (1st half)

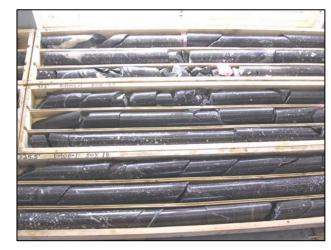

PHOTO #21 – DH06-1 Box 10 to 12 (2nd half)

PHOTO #22 – DH06-1 Box 13 to 15 (1st half)

PHOTO #23 – DH06-1 Box 13 to 15 (2nd half)

PHOTO #24 – DH06-1 Box 16 to 18 (1st half)

PHOTO #25 – DH06-1 Box 13 to 15 (2nd half)

PHOTO #26 – DH06-1 Box 19 to 21 (1st half)

PHOTO #27 – DH06-1 Box 19 to 21 (2nd half)

PHOTO #28 – DH06-1 Box 22 to 24 (1st half)

PHOTO #29 – DH06-1 Box 22 to 24 (2nd half)

PHOTO #30 – DH06-2 Box 1 (1st half)

PHOTO #31 – DH06-2 Box 1 (2nd half)

PHOTO #32 – DH06-2 Box 2 to 4 (1st half)

PHOTO #33 – DH06-2 Box 2 to 4 (2nd half)

PHOTO #34 – DH06-2 Box 5 to 7 (1st half)

PHOTO #35 – DH06-2 Box 5 to 7 (2nd half)

PHOTO #36 – DH06-2 Box 8 (1st half)

PHOTO #37 – DH06-2 Box 8 (2nd half)

PHOTO #38 – DH06-3 Box 1 to 3 (1st half)

PHOTO #42 – DH06-3 Box 7 to 8 (1st half)

PHOTO #39 – DH06-3 Box 1 to 3 (2nd half)

PHOTO #43 – DH06-3 Box 7 to 8 (2nd half)

PHOTO #40 – DH06-3 Box 4 to 6 (1st half)

PHOTO #44 – DH06-4 Box 1 to 2 (1st half)

PHOTO #41 – DH06-3 Box 4 to 6 (2nd half)

PHOTO #45 – DH06-4 Box 1 to 2 (2nd half)

PHOTO #46 – DH06-4 Box 3 to 5 (1st half)

PHOTO #47 – DH06-4 Box 3 to 5 (2nd half)

PHOTO #48 – DH06-4 Box 6 to 8 (1st half)

PHOTO #49 – DH06-4 Box 6 to 8 (2nd half)

PHOTO #50 – DH06-6 Box 1 to 3 (1st half)

PHOTO #51 – DH06-6 Box 1 to 3 (2nd half)

PHOTO #52 – DH06-6 Box 4 to 6 (1st half)

PHOTO #53 – DH06-6 Box 4 to 6 (2nd half)

PHOTO #54 – DH06-6 Box 7 to 8 (1st half)

PHOTO #55 – DH06-6 Box 7 to 8 (2nd half)

PHOTO #56 – DH06-7 Box 3 to 1 (1st half)

PHOTO #57 – DH06-7 Box 3 to 1 (2nd half)

PHOTO #58 – DH06-7 Box 4 to 6 (1st half)

PHOTO #59 – DH06-7 Box 4 to 6 (2nd half)

PHOTO #60 – DH06-7 Box 7 (1st half)

PHOTO #61 – DH06-7 Box 7 (2nd half)

PHOTO #62 – DH06-10 Box 1 to 4

PHOTO #63 – DH06-10 Box 5 to 8

PHOTO #64 – DH06-11 Box 1 to 4

PHOTO #65 – DH06-11 Box 5 to 8

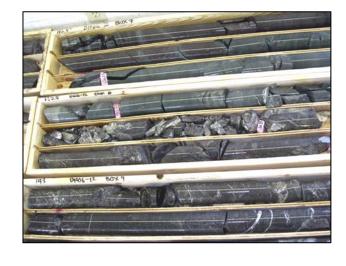


PHOTO #66 – DH06-12 Box 1 to 3 (1st half)

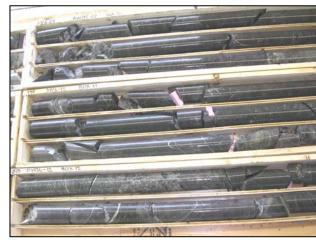

PHOTO #67 – DH06-12 Box 1 to 3 (2nd half)

PHOTO #68 – DH06-12 Box 4 to 6 (1st half)

PHOTO #69 – DH06-12 Box 4 to 6 (2nd half)

PHOTO #70 – DH06-12 Box 7 to 9 (1st half)

PHOTO #71 – DH06-12 Box 7 to 9 (2nd half)

PHOTO #72 – DH06-12 Box 10 to 12 (1st half)

PHOTO #73 – DH06-12 Box 10 to 12 (2nd half)

PHOTO #74 – DH06-13 Box 1 to 2 (1st half)

PHOTO #75 – DH06-13 Box 1 to 2 (2nd half)

PHOTO #76 – DH06-14 Box 1 to 2 (1st half)

PHOTO #76 – DH06-14 Box 1 to 2 (2nd half)