RECEIVED APPENDIX 1: JAN 162007
 Gold Commissioner's Office VANCOUVER,B.C. MAPS 1-7

REPORT ON THE 2006 EXPLORATION PROGRAM
CARRIED OUT ON THE STEWART PROPERTY:
SKEENA MINING DIVISION, NORTHWESTERN BRITISH COLUMBIA

stewart property geology, gsc, 1993 2006 stewart property outun GEOLOGY OF OWEEGEE DOME

c.J. GREIG and C.A. EVENCHICK
strantred pocks

\qquad
 ${ }^{\text {Witan}}$
\qquad

\qquad
LHTC

 smxne Assemalace

\qquad wrevuvie focks
 map swmeols

Morot ta ais, ipose

 1

DELTAIC GRID, STEWART PROPERTY

Results Of Mobile Metal lons Process (MMI-M) Soil Geochemical Surveys on The Stewart Property (Deltaic Grid), Stewart Area, B.C.

Prepared For: Geofine Exploration Consultants Ltd. 49 Normandale Road Unionville, Ontario L5L 3B9
Tel: 905-477-7072

Prepared By: Mount Morgan Resources Ltd. 34 Wellesley Court
Winnipeg, Manitoba, Canada
R3P 1X8
Tel./Fax. : 204-487-9627
E-mail: mfedikow@shaw.ca

EXECUTIVE SUMMARY

The MMI-M soil geochemical surveys undertaken on the Deltaic grid, Stewart property have successfully defined the high-contrast residence site for a wide range of base and precious metals. This location occurs between 25 and 40 cm below the point at which soil formation is initiated in the Stewart landscape environment. Based on this sampling protocol a very large, multi-sample and multi-line Au anomaly has been identified in the northern portion of the survey area. The anomaly trends east west and encapsulates coincident Ag and As anomalies. It is characterized by a multi-element suite of $\mathrm{Mo}-\mathrm{Bi}-\mathrm{Sb}-\mathrm{W}-\mathrm{Tl}-\mathrm{Nb}-\mathrm{Ti}$ that occurs on the southwestern flank of the Au anomaly. The Au anomaly is open to the east and west and is coincident with a large total rare earth element, Zr, U and Th anomaly that is interpreted to reflect a change in the bulk chemical composition of the Au-anomaly host rocks. The Au and associated multi-element anomaly is interpreted to be representative of the geochemical signature of a precious metal-dominated epithermal mineralizing system. The multi-element Mo-Bi-Sb-W-Ti-Nb-Ti anomaly, and in particular the Ti-Nb components, associated with the Au anomaly appears to be blossoming to the west and may be representative of an oxide halo developed in association with a deep source region consisting of a felsic dome or a porphyry copper type intrusive complex.

The southern survey area is marked by a $\mathrm{Zn}-\mathrm{Cd}-\mathrm{Cu}-\mathrm{Ni}+/-\mathrm{Co}$ anomaly that is reminiscent of the geochemical signature of base metal massive sulphide type mineralization. This anomaly may also represent a base metal (Zn) halo
developed in association with high-grade Au-Cu mineralization, a feature recognized in previous studies in the Stewart Camp.

PREAMBLE

The exploitation of mineral commodities in the near-surface geological environment has become increasingly difficult due to the exhaustion of mineralization exposed at surface and the mantling of prospective bedrock by glacially transported till and its derivatives. Thick glaciofluvial and glaciolacustrine sediments topped by organic deposits make mineral exploration in these terrains challenging. For this reason a plethora of innovative exploration geochemical selective and partial digestions, coupled with state-of-the-art instrumentation capable of measuring concentrations in the parts per billion (ppb) and sub-parts per billion range, have been developed. These techniques offer the explorationist tools to "see through" overburden and derive useful mineral exploration data for integration with geology and geophysics and ultimately for drill-testing multivariate anomalies. Disrupted overburden, such as that observed with logging practices (scarification), tends to complicate MMI responses although modified sampling practices can be adopted to rectify this disturbed environment. Areas affected by landslide are also complicating factors but can also be assessed with MMI Technology by modified sampling procedures.

The proprietary Mobile Metal lons Process (MMI) soil geochemical technique has been utilized on a wide range of commodity types from base and precious metals to diamonds worldwide. The Process is based upon proprietary partial extraction techniques, specific combinations of ligands to keep metals in solution, and relies on strict adherence to sampling protocols usually established during an orientation program. Such an orientation program was implemented by Geofine Exploration Consultants Ltd. Geochemical data resulting from MMI analysis of improperly collected soils cannot be ameliorated with univariate and/or multivariate statistical and graphical solutions.

The recognition of anomalies in geochemical data has progressed from simple visual inspection in small data sets to multivariate, parametric and nonparametric or robust statistical methods for large datasets usually extracted from regional geochemical surveys. Derived parameters from these statistical exercises, such as factor scores or discriminant functions, have been successfully utilized in reducing a large number of potentially useful variables to a select few variables that identify and localize anomalous geochemical signatures. These statistical approaches have been required to manipulate accurate and precise, low-cost, multi-element geochemical data.

The MMI technology uses a different approach to exploration geochemistry by analyzing soils for a select few commodity elements upon which to base property evaluations. Having stated this, the MMI-M multi-element suite that was utilized
to analyze inorganic soils from the Stewart property survey comprises analyses for 45 elements. These consist of a multi-element suite that reports ppb and subppb analyses for base and precious metals, pathfinder elements for these commodities, as well as elements useful for mapping bedrock geology obscured by glacial overburden and its derivatives. A small number of elements in this package report in the ppm concentration range ($\mathrm{Al}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}$). The large number of elements in the database provides an opportunity to assess an area of interest for a wide range of metallic mineral deposits with only minor drawbacks in terms of lower limits of determination. The specific details of this assessment are described below.

TERMS OF REFERENCE

The author of this report was contracted by Mr. David Molloy of Geofine Exploration Consultants Ltd. ("Geofine") to undertake the interpretation of Mobile Metal lons soil geochemical survey data from their Stewart property (Deltaic Grid) in the Stewart B.C. area. The survey was undertaken to assess geophysical anomalies and alteration zones observed in outcrop on the property for MMI geochemical signatures related to structurally controlled precious and base metal mineralization in unknown overburden scenarios and to possibly deduce the nature of source regions for these metals. Soil samples were collected according to protocols established in an orientation survey in the area and described in this report. An interpretation of results obtained to date with recommendations for follow-up exploration is presented in this report.

PURPOSE OF THE SURVEY

The Stewart/ MMI-M exploration survey undertaken by Geofine was designed to assess the survey area for high-contrast geochemical signatures associated with historic geophysical (induced polarization "IP") anomalies, mapped geological structures and mineralization-related alteration zones expressed in outcrop. The overburden cover has hindered exploration and the MMI survey is an attempt to provide a tool for focused exploration. The depth of high-contrast residence sites of gold and associated metals in the soil profile was determined by the current study.

SAMPLE COLLECTION AND ANALYSIS

Sample collection techniques for this survey were determined by an orientation survey undertaken by Geofine and Mount Morgan Resources Ltd. Samples were collected according to protocols developed for the landscape environment that exists at Stewart and surrounding areas. The results of this orientation survey are included in this report.

In MMI surveys there are some general approaches that are used to guide sample collection including preferred depths of sampling and these are described briefly here. Additional information is also available from the MMI website (www.mmigeochem.com).

Soil samples, each weighing approximately 250 grams, are usually collected at variable sample spacing along single transects over known mineralized zones or extrapolated trends of these zones. Generally, 25-m stations in precious metal exploration and up to 50 m in the case of base metals are the routine spacing. Sample spacing should be established on the basis of a "best-estimate" of the likely target being sought with estimates from historical data or exploration results from nearby programs. Initially, samples are often collected at a closer spacing until it is determined that a larger spacing is appropriate to the target being sought. In the Stewart/Deltaic orientation survey, soils were sampled from each pit at depths of $0-10 \mathrm{~cm}, 10-20 \mathrm{~cm}, 20-30 \mathrm{~cm}$ and $30-40 \mathrm{~cm}$ below the "zero datum" or the point at which soil formation is initiated in this environment. Each sample collected represents a continuous 10 cm long plug of sediment or a continuous vertical channel of sediment. Sample sites were established at $25-\mathrm{m}$ stations along a single transect in the vicinity of a known trend of alteration and mineralization. This site was established by Geofine based on prior knowledge acquired from geological mapping, prospecting and results of earlier exploration.

Samples are bagged on site without preparation and shipped to SGS Laboratories (Toronto, Ont.) for MMI-M analysis. The MMI-M is a neutral extraction with analytical finish by inductively coupled plasma-mass spectrometry (ICP-MS).

DATA TREATMENT AND PRESENTATION

In exploration surveys where sampling and analytical protocols have been determined by an orientation survey, analytical data is examined visually for analyses less than the lower limit of detection (<LLD) for ICP-MS. Data <LLD are replaced with a value $1 / 2$ of the LLD for statistical calculations and graphical representation. For most exploration surveys, MMI data is plotted as response ratios. For the calculation of response ratios the 25 th percentile is determined using the software program SYSTAT (V10) and the arithmetic mean of the lower quartile used to normalize all analyses. The normalized data represent "response ratios" which are then utilized in subsequent plots. Zeros resulting from this calculation are replaced with " 1 ". Response ratios are a simple way to compare MMI data collected from different grids, areas and environments from year to year. This normalized approach aiso significantly removes or "smoothes" analytical variability due to inconsistent dissolution or instrument instability. For the Stewart/Deltaic exploration survey the interpretation is based on response ratios. The orientation survey interpretation is based upon concentration (parts per billion or "ppb").

Analytical data as received from SGS Mineral Services for both the orientation and exploration surveys is presented in Appendices 10 ("Orientation") and 1E ("Exploration"), respectively. Analytical data from analytical duplicates, replicate analyses of standard MMI reference materials and analytical blanks are given in Appendices 20 and $2 E$. The $25^{\text {th }}$ percentiles and backgrounds used to calculate
only four replicates. This is particularly true for the commodity elements summarized below.

The analytical blanks for orientation survey blanks all report <LLD indicating the absence of laboratory-based contamination.

Ranges Of Replicate Analyses For MMISRM14, Stewart Orientation Survey ($n=4$)

ELEMENT	MMI-M Concentration Range	Recommended Values (ppb)
Au	$44.5-47.8$	44.1
Ag	$19-21$	19
Cu	$800-860$	765
Mo	$35-40$	37
Pb	$120-140$	100
Zn	$340-390$	345

Data quality for exploration survey samples has virtually the same characteristics as the orientation survey data. Some variability in the analyses for the rare earth elements, Cu and Pb is noted for duplicate sample pair 6036, although the other duplicate pairs do not exhibit this variability. As for the orientation survey, excellent reproducibility and accuracy for the commodity elements is observed for the MMI-M suite of elements. These results are summarized below.

Ranges Of Replicate Analyses For MMISRM14, Stewart Exploration Survey $(\mathbf{n}=4)$		
ELEMENT	MM1-M Concentration Range	Recommended Values
	(ppb)	(ppb)
Au	$39.0-44.5$	44.1
Ag	$17-20$	19
Cu	$650-730$	765
Mo	$27-33$	37
Pb	$120-160$	100
Zn	$300-410$	345

Analytical blanks for the exploration survey analyses all report <LLD with the exception of a single analysis of 0.1 ppb Au that is at the LLD for Au .

Data Description

Both the Stewart orientation and exploration survey MMI-M datasets are marked by a similar number of elements that are at or below the LLD. These include As, $\mathrm{Bi}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Li}, \mathrm{Mg}, \mathrm{Mo}, \mathrm{Pd}, \mathrm{Sb}, \mathrm{Sn}, \mathrm{Sr}, \mathrm{Ta}, \mathrm{Te}, \mathrm{Tl}$ and W . The similarity between the two datasets is not unexpected given the samples were all collected in the same manner and from the same survey area. This demonstrates the consistency of the geochemical flux for any given landscape environment. Some of these elements are typically less mobile than Cu, Zn or Ag and their presence in measurable quantities in a small number of samples is testament to this. The high percentage of samples with $\mathrm{Bi}, \mathrm{Cd}, \mathrm{Sn}, \mathrm{W}$ and Pd contents <LLD in this survey is not surprising given their very low mobility in the surficial/secondary environment. In this regard, any MMI-M analysis for Pd that is >LLD should be reviewed with care for its overall significance in the survey. An MMI analysis for Pd above the LLD should be field checked for possible association with platinum
group metal geological environments. It is worth noting that the diagnostic signal of a significantly mineralized zone will generally produce moderate- to highcontrast apical responses over the target; however, away from the mineralization at "background" locations there may be no trace of the presence of a specific metal in the analysis. This is another consideration when viewing MMI data-the presence of significant numbers of elements <LLD is not necessarily cause for concern or that the MMI extraction is not working or has been "buffered" by soil composition. The MMI process is designed to only extract metals that are moving from source to surface and characteristically report metal contents in low ppb concentrations.

Method of Interpretation

Multivariate statistical and graphical techniques were not utilized for the interpretation of MMI data in the Stewart survey interpretation. A simple visual approach was used. The MMI-M data was examined for anomalous spikes or groups of elevated responses for single and/or coincident elements. Element groupings such as $\mathrm{Au}-\mathrm{Ag}, \mathrm{Au}-\mathrm{Ag}-\mathrm{Pd}, \mathrm{Zn}-\mathrm{Cd}, \mathrm{Ni}-\mathrm{Co}, \mathrm{Ni}-\mathrm{Co}-\mathrm{Ag}$ and $\mathrm{Ni}-\mathrm{Cu}$ all have relevance to underlying geological conditions and their contained mineralization and are used to assist the rankings of any particular MMI response in terms of follow-up.

When concentration-only data is reviewed unique "spikes" or anomalous responses are assessed. When response ratios are used there are general
guidelines brought to bear on the interpretation. Generally, a response ratio of >20 or 20 times background is an initial indication of a low-contrast anomalous response although this "threshold" is not universal. A response of between 20 and 50 is used as a moderate response with $R R>50$ being referred to as high contrast. Often, pattern recognition in the interpretation of geochemical data is paramount.

Orientation Survey

The results of the Stewart orientation survey are based upon a review of vertical partitioning of metals within the upper 40 cm of the soil profile. The variation in concentration of commodity and related elements for each individual 10 cm soil sample is depicted in relation to samples collected from deeper levels in the profile. Results are plotted in Figure 1. The site selected for graphical representation of vertical differentiation of metals was sample 607 A through D collected from line $51+00 \mathrm{E}, 41+75 \mathrm{~N}$.

Figure 1. Stewart Deltaic grid vertical profiling, MMI-M, 2006. Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Examination of vertical bar charts indicates variable enrichments and depletions of certain elements with depth, not all elements are behaving in the same manner within the upper 40 cm of the soil profile. Progressive increases in concentration are noted for $\mathrm{Ag}, \mathrm{Au}, \mathrm{Ce}$ (and other REE), Cu, Pb and Tl with increasing depth in the profile. Most of these elements have their maximum concentrations in the $30-40 \mathrm{~cm}$ sample. The elements Co, Ni and Zn have the reverse patterns with progressive decreases in concentration with increasing depth and maximum contents in the upper 10 cm of soil. The elements Th and Ti are unique in terms of observed patterns in that they exhibit maximum concentrations in the upper 10 cm as well as the lowermost 10 cm sample (i.e., $30-40 \mathrm{~cm})$. There is high-contrast between the geochemical responses at these
two levels of enrichment versus the intervening sample positions at $10-20 \mathrm{~cm}$ and $20-30 \mathrm{~cm}$.

The preferred sample position in the upper 40 cm of the soil profile for the precious metals Au and Ag , the REE and base metals Cu, Pb and Tl in the Stewart area is between 30 and 40 cm beneath the zero datum. The observation that significant responses also occur at $20-30 \mathrm{~cm}$ suggests this interval could also be a valuable sample position in situations where shallow overburden is encountered. As such the exploration phase of the Stewart survey was undertaken on the basis of sample collection between 25-40 cm with analysis by MMI-M. For the purposes of interpretation the soil sample collected from the $30-$ 40 cm depth as part of the orientation survey was included with the Exploration survey samples.

Exploration Survey

A useful method of data reduction in multi-element datasets with the aim of identifying geologically plausible inter-element correlations and therefore useful pathfinder elements for concealed mineralized zones is a correlation coefficient matrix. The use of a Spearman-Rank matrix is preferred when data is not normally distributed and data transformation is not preferred.

Spearman-Rank Correlation Coefficient Matrix

The MMI-M multi-element geochemical data derived from the Stewart MMI-M exploration survey was assessed with a Spearman-Rank correlation coefficient matrix. This assessment documents significantly correlated element pairs and allows the recognition of anomalous geochemical responses related to mineralization and bedrock lithologies. In addition, the approach is an indirect method of assessing analytical quality. The entire Spearman-Rank matrix is presented in Table 2 and the distilled version of significantly inter-correlated MMIM elements is given in Table 1.

Examination of Table 1 indicates the Stewart dataset is characterized by significant base and precious metal sulphide mineral-related inter-correlations however the bulk of the significant correlations are associated with Au and Ag . The sulphide mineral assemblage suggested by the Spearman-Rank correlations between MMI-M element suites includes correlations for the elements Au, Ag, $\mathrm{Pb}, \mathrm{Tl}, \mathrm{As}$ and Mo and fewer correlations for $\mathrm{Zn}, \mathrm{Cu}, \mathrm{Cd}$ and Co . It is of particular interest that the significantly elevated correlations between Au and Ag with Ce, W and lesser Ta are suggestive of an association of the precious metals with an intrusive source region. Both $\mathrm{Cu}-\mathrm{Mo}$ and $\mathrm{Cu}-\mathrm{W}$ correlations in the dataset are low.

Table 1. Significant inter-element correlations, Stewart Deltaic grid, MMI-M survey.

ELEMENT COUPLING	"r"	ELEMENT COUPLING	$" \mathrm{r} "$
$\mathrm{Au}-\mathrm{Bi}$	0.432	$\mathrm{~Pb}-\mathrm{Rb}$	0.662
$\mathrm{Au}-\mathrm{Ce}$	0.704	$\mathrm{~Pb}-\mathrm{Tl}$	0.58
$\mathrm{Au}-\mathrm{Fe}$	0.688	$\mathrm{Cd}-\mathrm{Zn}$	0.726
$\mathrm{Au}-\mathrm{Mo}$	0.779	$\mathrm{Co}-\mathrm{Cu}$	0.532
$\mathrm{Au}-\mathrm{Nb}$	0.709		
$\mathrm{Au}-\mathrm{Pb}$	0.643	$\mathrm{Mo}-\mathrm{Nb}$	0.734
$\mathrm{Au}-\mathrm{Rb}$	0.8	$\mathrm{Mo}-\mathrm{Pb}$	0.479
$\mathrm{Au}-\mathrm{Sb}$	0.738	$\mathrm{Mo}-\mathrm{Rb}$	0.595
$\mathrm{Au}-\mathrm{Ta}$	0.46	$\mathrm{Mo}-\mathrm{Sb}$	0.708
$\mathrm{Au}-\mathrm{Th}$	0.717	$\mathrm{Mo}-\mathrm{Th}$	0.704
$\mathrm{Au}-\mathrm{Ti}$	0.631	$\mathrm{Mo}-\mathrm{Ti}$	0.648
$\mathrm{Au}-\mathrm{Tl}$	0.707	$\mathrm{Mo}-\mathrm{Tl}$	0.677
$\mathrm{Au}-\mathrm{W}$	0.658		
			0.144
$\mathrm{Ag}-\mathrm{As}$	0.585	$\mathrm{Cu}-\mathrm{Mo}$	0.003
$\mathrm{Ag}-\mathrm{Au}$	0.86		
$\mathrm{Ag}-\mathrm{Ce}$	0.633		
$\mathrm{Ag}-\mathrm{Fe}$	0.512		
$\mathrm{Ag}-\mathrm{Mo}$	0.683		
$\mathrm{Ag}-\mathrm{Nb}$	0.538		
$\mathrm{Ag}-\mathrm{Pb}$	0.558		
$\mathrm{Ag}-\mathrm{Rb}$	0.648		
$\mathrm{Ag}-\mathrm{Sb}$	0.651		
$\mathrm{Ag}-\mathrm{Th}$	0.568		
$\mathrm{Ag}-\mathrm{Ti}$	0.501		
$\mathrm{Ag}-\mathrm{Tl}$	0.65		
$\mathrm{Ag}-\mathrm{W}$	0.529		

The lack of association of Au and Ag with Cu and Zn is indicative of an evolved mineralizing system that has deposited precious metals without significant base metals. This feature may also be the indication of metal zonation within the survey area. Such zonation could imply the presence of a precious metal to base metal epithermal system or a precious metal dominated system rooted in an intrusive system at depth. The pyrite association with Cu is indicated by the elevated Co-Cu correlation (0.532) although this association is lacking with Au
and Ag . Goid and Ag are strongly correlated in the dataset (0.860) and a very high correlation coefficient " r " for the Cd-Zn doublet (0.726) is indicative of the geochemical signature of bedrock-hosted sphalerite mineralization.

In addition to commodity elements a significant correlation exists for the REE. The REE correlation indicates an indirect measure of the quality of the analytical data owing to similarities in nuclear characteristics of the REE. The REE should be highly inter-correlated if the quality of the analytical work is good. A strong correlation is also noted between the REE and Au and Ag. This association is suggestive of a possible genetic link between precious metal mineralization and a magmatic source region. The Stewart dataset is considered to be excellent in terms of accuracy and reproducibility and in its ability to be applied to anomaly definition.

AREAL DISTRIBUTION OF ANOMALOUS RESPONSES IN THE Stewart MMIM SURVEY AREA

Vertical Mapper Bubble Plots

The variation in concentration and the resulting morphologies of the MMI-M responses from the Stewart deltaic grid survey area are described in the following section.

Precious and Related Metals (Au, Ag and As)

AuRR: An extremely high-contrast Au anomaly exists across all sampling transects in the northern survey area. Response ratios of up to 425 times background produce an anomaly that has a length of 350 m in an east-west
direction and a width of approximately 200 m . This linear anomaly overlaps with both the Ag and As responses and is interpreted to be open to the east and the west. The anomaly is depicted in the figure below.

GEOFINE STEWART PROPERTY DELTAIC GRID

 MMI-M SURVEY 2006 - AuRR

AgRR: Low- to moderate-contrast (to RR22) Ag responses occur in the northeast corner of the survey area along line $55+00 \mathrm{E}$ with the highest of these responses restricted to the northern portions of lines $55+00 \mathrm{E}$ and $54+75 \mathrm{E}$. There is a suggestion of anomaly continuity to the west although these responses are lowcontrast RR of approximately 10. The southern survey area is devoid of significant responses.

AsRR: Low- to moderate-contrast responses of <25RR typify the northern survey area including the highest AsRR of 56. There is no correspondence between As and Ag responses.

Base and Related Metal Responses $\mathbf{~} \mathrm{Cu}, \mathrm{Pb}, \mathrm{Bi}, \mathrm{Mo}, \mathrm{Sb}, \mathrm{W}, \mathrm{TI}, \mathrm{Zn}, \mathrm{Cd}$, Ni , and Co)

CuRR: Significantly elevated, moderate-contrast CuRR (to 45RR) occur on lines $51+25 \mathrm{E}$ and $50+75 \mathrm{E}$ in the southern survey area. These responses are multisample and are interpreted to be open to the south, east and west. A linear east west but low-contrast CuRR (<25RR) anomaly occurs in the northern survey area between lines 54+00E and 55+00E.

PbRR: Lead responses are erratic, single-sample but high-contrast (to 455RR) anomalies that occur in several locations within the northern and southern survey areas. There is no trend to the distribution of these anomalous responses.

Abstract

BiRR: Bismuth responses are limited to $\mathbf{3}$ or $\mathbf{4}$ adjacent sample sites on one sampling transect in the northern survey area. These responses do not coincide with either Pb or Zn anomalies but do occur on the southwestern edge of a major Au anomaly described under "Precious and Related Metals".

MoRR: Very high-contrast MoRR to 104 times background coincide with a 3-4sample BiRR anomaly in the northern survey area. This Mo-Bi response occurs at the southwestern edge of a very large and extensive high-contrast Au anomaly in this area. Elsewhere on the grid the MoRR are at background response levels ($R R=1$).

SbRR: In a similar fashion as BiRR and MoRR, the SbRR define a moderate- to high-contrast, multi-sample coincident anomaly in the northern survey area. This response occurs at the southwestern edge of the major Au anomaly described above.

WRR: High-contrast WRR responses (to 90RR) are coincident with BiRR-MoRRSbRR responses on the southwestern edge of the major Au anomaly described above. This multi-element anomaly is open to the west.

TIRR: The TI responses in the survey area are low-contrast (to 13RR) and responses >background are restricted to the northern survey area. In this area
they are in coincidence with a Bi-Mo-Sb-W anomaly that occurs on the southwestern edge of the major Au anomaly described above.
$\mathbf{Z n R R}$: Moderate- to high-contrast Zn responses are present in the southern survey area on lines $51+25 \mathrm{E}$ and $50+75 \mathrm{E}$ and are interpreted to be open to the south, east and west. This response is similar and essentially coincident with a CuRR anomaly in the same area. Elsewhere in the survey area the ZnRR are low-contrast and tend to be erratic, single sample and locally multi-sample responses that are non-diagnostic of a mineralization-related trend.

CdRR: Low-contrast (to 20RR) Cd responses typify the survey area. One area of multi-sample/cohesive response occurs in coincidence with ZnRR and CuRR anomalies in the southern survey area. This anomaly is situated on lines 50+75E and $51+25 \mathrm{E}$ and appears to be open to the south.

NiRR: Nickel responses in the survey area are erratic, single-sample and lowcontrast (RR to 16). They are interpreted as non-diagnostic although the highest single sample response occurs in coincidence with a $\mathrm{Zn}-\mathrm{Cd}-\mathrm{Cu}$ anomaly on line $50+75 \mathrm{E}$ in the southern survey area.

CoRR: Low-contrast (RR to 17) responses typify the survey area. The weakly elevated CoRR are non-diagnostic with the greatest number of elevated
responses occurring on line $51+00 \mathrm{E}$ in proximity to the $\mathrm{Zn}-\mathrm{Cd}-\mathrm{Cu}-\mathrm{Ni}$ anomaly in the southern survey area.

Lithologically Sensitive Element Responses (Ce, TREE, Nb, Ti, Zr, U, Th,

$\mathrm{Ca}+\mathrm{Mg}+\mathrm{Sr}$

CeRR: Cerium is a light rare earth element that is mobile in the secondary or surficial environment. The distribution of elevated Ce effectively divides the northern and southern survey areas suggesting a change in the bulk chemical composition in the lithologies flooring the Deltaic grid survey area. The northern grid is marked by responses of between 10RR and 70RR whereas the southern area responses are rarely >1 RR or background.
(TREE)RR: An expected, similar response for the total (additive) rare earth element signature, as observed for the Ce signature, is observed for the survey area. The northern portion of the survey area is marked by elevated TREE whereas the reverse is true for the southern area with one exception. There is a suggestion of an elevated TREE response on the southern portion of lines $50+75 \mathrm{E}$ and $51+00 \mathrm{E}$ in an area marked by a coincident $\mathrm{Zn}-\mathrm{Cd}-\mathrm{Cu}-\mathrm{Ni}+1-\mathrm{Co}$ anomaly. The strongly elevated TREE response in the northern survey area coincides with the major Au anomaly in this area.

NbRR: Niobium is often a geochemical marker in MMI extractions during surveys for peralkaline lithologies (carbonatite) and for kimberlite lithologies. The Nb
results at Stewart are very high-contrast (to 190RR) and define a localized and multi-sample Nb anomaly. This anomaly is coincident with a Bi-Mo-Sb-W-TI anomaly that occurs on the southwestern edge of the major Au anomaly described above.

TiRR: The TiRR are high-contrast (to $215 R \mathrm{R}$) and coincident with a multielement Bi-Mo-Sb-W-TI-Nb anomaly that occurs on the southwestern edge of the major Au anomaly described above.

ZrRR: The Zr responses on the survey grid are somewhat erratic but are highcontrast (to 80RR) and more or less coincident with the Ce and TREE signatures. The interpretation for the Ce/TREE anomaly can be applied to the Zr results that indicate a change in the bulk chemical composition in the lithologies underpinning the northern and southern survey areas.

URR: Very low-contrast responses of 2-10RR typify the northern survey area although these responses are considered elevated in comparison to those from the southern survey area that generally have RR1. Despite the low-contrast between the U contents of soils sampled from the survey area the results appear to mimic those of Ce , TREE and Zr and define a change in the bulk chemical composition between the lithologies in bedrock in the northern and southern survey areas.

ThRR: Like the Ce-TREE-Zr-U responses the moderate-contrast (to 34RR) ThRR define what appears to be a fundamental difference between northern and southern survey areas. The difference is attributed to a change in the lithologic and bulk chemical characteristics in the survey area.
($\mathrm{Ca}+\mathrm{Mg}+\mathrm{Sr}$)RR: This additive function has been used in previous MMI-M surveys undertaken in variable landscape environments to differentiate between mafic/ultramafic and felsic lithologies buried beneath overburden. The results from the Stewart survey area are scattered and single sample and nondiagnostic of changes in bedrock chemistry in the survey area.

OBSERVATIONS and DISCUSSION

The adoption of a well-constrained orientation survey in the Stewart landscape environment by Geofine has resulted in the delineation of three distinctive types of MMI-M geochemical anomalies on the survey grid. These anomalies provide focus for follow-up exploration, details about the geochemical character of a precious metal anomaly on the property and some insight into possible lithologic variation in the survey area.

The Geofine orientation survey was based upon a program of vertical profile sampling and has retumed analytical data that definitively identifies the location of high-contrast residence sites for a large and significant suite of base and
precious metals. This successful survey was targeted on areas of known mineral potential resulting from previous exploration by Geofine.

The depth of high-contrast responses for commodity and related elements Au , $\mathrm{Ag}, \mathrm{Cu}, \mathrm{Pb}$ and Tl was determined to be between $25-40 \mathrm{~cm}$ on the Stewart property. The highest contrast responses were observed between 30 and 40 cm but significant responses were also obtained from the $\mathbf{2 0 - 3 0} \mathrm{cm}$ sample thereby requiring that an additional 5 cm in sample depth be collected so as not to miss any signals emanating from buried mineralization. The results of the exploration survey demonstrate that this sample interval was the correct one for the Stewart survey area and that owing to the siting of the survey in vegetated slopes the vertical differentiation of metals is not due to down-slope soil creep or extreme weather-induced cryoturbation but rather to the ascent of metals from bedrock source to surface.

A major Au anomaly is present in the northern portion of the survey area. It is a cohesive, multi-sample, multi-line approximately east-west-trending feature with an approximate strike length of 350 m and width of 200 m . The anomaly is open to the east and west. It overlaps and encapsulates Ag and As anomalies and is associated with a unique multi-element anomaly on its southwestern edge. This anomaly comprises $\mathrm{Bi}-\mathrm{Mo}-\mathrm{Sb}-\mathrm{W}-\mathrm{Tl}-\mathrm{Nb}-\mathrm{Ti}$ that blossoms to the west and is suggestive of a sulphide mineral assemblage associated with a felsic dyke or a mineralized structure with silicification. Alternatively, this anomaly and specifically
the Ti-Nb component may be suggestive of a mineralized and altered zone developing to the west. This system would be associated with an oxide halo developed about the mineralized zone and as such is reflected by the significantly elevated Ti contents in the MMI-M survey in this area. The mineralogical source for the Ti and Nb in the source region may be rutile, ilmenite or magnetite. The felsic nature of the source region is indicated by $\mathrm{Ce}, \mathrm{TREE}, \mathrm{Zr}$, U and Th , which would tend to support the presence of a source region for the metals as either a felsic dome or a deep porphyry-type intrusion. Previous exploration in the area indicates that the multi-element Bi-Mo-Sb-W-TI-Nb-Ti anomaly is likely associated with an historic 400 m long conventional soil geochemical anomaly comprising Au, Cu and Zn .

The lithologically sensitive elements (Ce (TREE), $\mathrm{Zr}, \mathrm{U}, \mathrm{Th}$) provide evidence to suggest that the bedrock concealed by overburden has two distinctive chemical signatures on the grid. The northern area is marked by elevated response ratios for this suite of elements whereas the southern grid area has responses that are basically "background". The difference between northern and southern survey areas might be explained by the presence of a more felsic character to the lithologies in the northern survey area although this difference might be due to alteration effects or chemical changes in host rocks due to the formation of the Au anomaly.

It is noted that the total rare earth element response in the northern grid area is coincident with the major Au anomaly suggesting a magmatic association between the Au , the incompatible rare earths and the $\mathrm{Bi}-\mathrm{Mo}-\mathrm{Sb}-\mathrm{W}-\mathrm{TI}-\mathrm{Nb}-\mathrm{Th}$ anomaly that has formed on the southwestern flank of the Au anomaly. The overall anomalous response is the signature of an epithermal mineralizing system that is predominantly precious metal in character. It is possible, however that there is a base metal portion to this system in a down-plunge setting. Low $\mathrm{Cu}-\mathrm{Mo}$ and $\mathrm{Cu}-\mathrm{W}$ correlation coefficients tend to argue that this precious metal assemblage is distill to a possible source region such as a porphyry copper environment.

The southern survey area is not "barren" in terms of interesting responses and this is evidenced by the $\mathrm{Zn}-\mathrm{Cd}-\mathrm{Cu}-\mathrm{Ni}+/-\mathrm{Co}$ anomaly. This response is open to the south and possibly the east and west as well. The element assemblage is reminiscent of a base metal massive sulphide association or conceivably could be related to the epithermal mineralizing system responsible for the formation of the major Au anomaly to the north. Haloes of Zn have previously been documented in association with Au-Cu mineralization in the Stewart Camp.

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are evident from this MMI-M exploration survey on the Deltaic grid, Stewart property of Geofine.

1. The survey has successfully demonstrated that MMI-M partial extractions on soil samples collected from appropriate positions in the soil profile can isolate MMI-M precious (Au) and base metal anomalies.
2. Three major features of significance have been documented from the Deltaic grid survey area. The most significant of these is a major Au anomaly with associated Ag and As defined in the northern survey area. This anomaly is multi-sample, traverses multiple sampling transects and has an approximate length of 350 m and width of $\mathbf{2 0 0} \mathbf{~ m}$. It is well defined, open to the east and west and is a definite target for exploration follow-up.
3. There is a multi-element anomaly comprising $\mathrm{Bi}-\mathrm{Mo}-\mathrm{Sb}-\mathrm{W}-\mathrm{TI}-\mathrm{Nb}-\mathrm{Ti}$ developed on the southwestern flank of the Au anomaly. Together with the Au response this element assemblage is interpreted to be the MMI-M geochemical signature of an epithermal mineralizing system of primarily precious metal character. The Ti-Nb component of this anomaly could possibly signal the presence of an oxide halo developed in association with a buried felsic dome or porphyry system that would represent a source region for the metallic metals in the area. The Ti and Nb could be resident in rutile, magnetite or ilmenite.
4. A base metal anomaly characterized by $\mathrm{Zn}-\mathrm{Cd}-\mathrm{Cu}-\mathrm{Ni}+/-\mathrm{Co}$ occurs in the southern grid area and is suggestive of a base metal massive sulphide type anomalous response. This anomaly is open to the south and possibly east and west. This feature could also represent a Zn halo to high-grade $\mathrm{Au}-\mathrm{Cu}$ mineralization documented from the Stewart Camp.
5. The responses obtained from the rare earth elements and Zr, U and Th are suggestive of a change in bulk chemical composition from north to south in the survey area. It is noted that the major Au anomaly is associated with a zone with elevated rare earth elements and as such is suggestive of a magmatic source for the Au.
6. Sampling materials collected for MMI analysis are effective and appropriate sample media for an MMI survey.
7. The analyses generated by the MMI-M extraction are accurate and precise and are effective for the detection of low- to high-contrast anomalies.

The recommendations that flow from this survey are as follows:

1. The MMI process does not indicate the grade of mineralization responsible for the production of an MMI anomaly nor does it indicate the depth of the source
region for the anomaly. Accordingly, it is strongly recommended that an attempt at modeling the geological setting of the target mineralization based on their geophysical responses with emphasis on depth to source be undertaken prior to a diamond drill program. This exercise can greatly assist the drilling when attempting to provide explanations for the geological context of geophysical and MMI anomalies. The attitude of the target can be effectively delineated in this manner.
2. There is significant evidence to support a follow-up diamond drill program in the Deltaic MMI-M survey area based on integrated historic property geology, geophysics, traditional/conventional soil geochemistry and new MMI results. The preferred targets are described below:
(i) Northeast Au-Cu Target: This target is the most significant in terms of its MMI geochemical contrast and multiple sample nature. The anomaly is multi-element in nature comprising significant Au and Cu responses over a 350 m by 200 m area. The anomaly is open to the east and west and significant mineralization was encountered in two historic drill holes on this target. Structurally controlled mineralization in these holes dipped towards an intermediate composition intrusion and as such could be related to deeper intrusive systems.

The association of a Bi-Mo-Sb-W-TI-Nb-Ti anomaly with the Au-Cu anomaly described above may be indicative of an oxide halo associated with a deeper magmatic source region to the west. This target should also be drill-tested and additional MMI surveys undertaken to the west to elucidate more fully this anomalous response.
(ii) The presence of significant Au-Cu-Zn-REE MMI-M anomalies on line $51+00 E$ in what has been termed the "Southeast Meadow Area" is recommended for drill testing. This anomaly is suggestive of base metal massive sulphide type mineralization and in association with the REE component of the anomaly is suggestive of a magmatic hydrothermal association.
(iii) A significant Au-Mo-Ti anomaly occurs west of the "Southeast Meadow Area" in the "Southwest Meadow Area" and this anomaly has striking similarities to the MMI-M anomaly in the Northeast Target area as well as and possible origins. A possible oxide halo accompanying deeperseated mineralization could be indicated by this response. A drill hole is recommended to test this anomaly.
3. The success of MMI-M surveys in the survey area and the focused exploration and diamond drill follow-up based on integrated data sets indicates that

Mark A.F. Fedikow, HB.Sc., M.Sc., Ph.D., P. Eng. P.Geo.
 Consulting Geologist and Ceochembet
 Mount Morgan Resources Ltd.
 34 Welledey Court
 Winnipeg, Manitioba R3P 1×8
 TelFax: 204-487-9827 Cell: 204-898-0271
 Emall: midikowehaw.ca

CERTIFICATE Of AUTHOR

1, Mark A.F. Fedikow, HB.Sc., M.Sc., Ph.D., P.Eng., P.Geo., do hereby certify that:

1. I am currently a self-employed Consulting Geologist/Geochemist with an office at:

34 Wetlesley Court,
Winnipeg, Manitoba, Canada R3P 1X8.
2. I graduated with a degree in Honors Geology (B.Sc.) from the University of Windsor (Windsor, Ont.) in 1975. In addition, I eamed an M.Sc. in geophysics and geochemistry from the University of Windsor and a Doctor of Philosophy (Ph.D.) in exploration geochemistry from the School of Applied Geology, University of New South Wales (Sydney) in 1982.
3. I am a Member of the Association of Professional Engineers and Geoscientists of Manitoba. I am aiso a Fellow of the Association of Exploration (Applied) Geochemists, and a Member of the Prospectors and Developers Association of Canada.
4. I have worked as a geologist for a total of thirty years since my graduation from university; as a graduate student, as an employee of major and junior mining companies, the Manitoba Geological Survey and as an independent consultant.
5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43 101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relovant work experience, Ifuln the requirements to be a "qualified person" for the purposes of NI 43-101.
6. I am responsible for the preparation of the technical report titled "Results Of Mobile Metal lons Process (MMI-M) Soil Geochemical Surveys on The Stewart Property (Deltaic Grid), Stewart Area, B.C."
7. I have not had prior involvement with the property that is the subject of the Technical Report.
8. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.
9. I am independent of the issuer applying all of the tests in section 1.5 of National Instrument 43-101.
10. I consent to the filing of the Technical Report with any stock exchanges or other ragulatory authority and any publication by them, including electronic publication in the public company files on the web-sites accessible by the public, of the Technical Report.

additional MMI-M surveys should be undertaken in the area. These surveys should act as "fill-in" surveys and as surveys designed to extend or extrapolate mineralized intersections in drill core.

Mark Fedikow
Mount Morgan Resources Ltd.
Winnipeg, Manitoba
January 12, 2007.

Table 1. Significant inter-element correlations, Stewart Deltaic grid, MMI-M survey.

ELEMENT COUPLING "r" ELEMENT COUPLING" r "

Au-Bi	$0.432 \mathrm{~Pb}-\mathrm{Rb}$	0.662
$\mathrm{Au}-\mathrm{Ce}$	$0.704 \mathrm{~Pb}-\mathrm{TI}$	0.58
$\mathrm{Au}-\mathrm{Fe}$	$0.688 \mathrm{Cd}-\mathrm{Zn}$	0.726
$\mathrm{Au}-\mathrm{Mo}$	$0.779 \mathrm{Co}-\mathrm{Cu}$	0.532
$\mathrm{Au}-\mathrm{Nb}$	0.709	
$\mathrm{Au}-\mathrm{Pb}$	$0.643 \mathrm{Mo}-\mathrm{Nb}$	0.734
$\mathrm{Au}-\mathrm{Rb}$	$0.8 \mathrm{Mo}-\mathrm{Pb}$	0.479
$\mathrm{Au}-\mathrm{Sb}$	$0.738 \mathrm{Mo}-\mathrm{Rb}$	0.595
$\mathrm{Au}-\mathrm{Ta}$	$0.46 \mathrm{Mo}-\mathrm{Sb}$	0.708
$\mathrm{Au}-\mathrm{Th}$	$0.717 \mathrm{Mo}-\mathrm{Th}$	0.704
$\mathrm{Au}-\mathrm{Ti}$	$0.631 \mathrm{Mo}-\mathrm{Ti}$	0.648
$\mathrm{Au}-\mathrm{Tl}$	$0.707 \mathrm{Mo}-\mathrm{Tl}$	0.677
$\mathrm{Au}-\mathrm{W}$	0.658	
		$\mathrm{Cu}-\mathrm{Mo}$
$\mathrm{Ag}-\mathrm{As}$	0.585 Cu	
$\mathrm{Ag}-\mathrm{Au}$	0.86	
$\mathrm{Ag}-\mathrm{Ce}$	0.633	
$\mathrm{Ag}-\mathrm{Fe}$	0.512	
$\mathrm{Ag}-\mathrm{Mo}$	0.683	
$\mathrm{Ag}-\mathrm{Nb}$	0.538	
$\mathrm{Ag}-\mathrm{Pb}$	0.558	
$\mathrm{Ag}-\mathrm{Rb}$	0.648	
$\mathrm{Ag}-\mathrm{Sb}$	0.651	
$\mathrm{Ag}-\mathrm{Th}$	0.568	
$\mathrm{Ag}-\mathrm{Ti}$	0.501	
$\mathrm{Ag}-\mathrm{Tl}$	0.65	
$\mathrm{Ag}-\mathrm{W}$	0.529	

Table 2. Complete Spearman Rank correlation coefficient matrix, Stewart Deltaic grid MMI-M survey. ($n=149$).

	AGRR	ALRR	ASRR	AURR	BARR
AGRR	1				
ALRR	-0.366	1			
ASRR	0.585	-0.247	1		
AURR	0.86	-0.306	0.678	1	
BARR	0.373	-0.188	0.646	0.478	1
BIRR	0.338	-0.158	0.551	0.432	0.426
CARR	-0.171	-0.191	0.015	-0.093	0.206
CDRR	-0.6	0.166	-0.505	-0.699	-0.369
CERR	0.633	-0.425	0.525	0.704	0.395
CORR	0.214	-0.045	0.077	0.21	0.107
CURR	0.256	-0.069	0.021	0.257	-0.092
DYRR	0.165	-0.352	0.099	0.176	0.106
ERRR	0.217	-0.378	0.14	0.223	0.104
EURR	0.448	-0.512	0.38	0.477	0.333
FERR	0.512	-0.03	0.652	0.688	0.476
GDRR	0.378	-0.473	0.303	0.406	0.272
LARR	0.59	-0.448	0.53	0.646	0.441
MORR	0.683	-0.212	0.684	0.779	0.403
NBRR	0.538	-0.028	0.693	0.709	0.489
NDRR	0.543	-0.514	0.463	0.582	0.365
NIRR	-0.636	0.379	-0.509	-0.697	-0.383
PBRR	0.558	-0.086	0.369	0.643	0.301
PRRR	0.569	-0.505	0.47	0.609	0.38
RBRR	0.648	-0.203	0.529	0.8	0.391
SBRR	0.651	-0.226	0.846	0.738	0.548
SCRR	0.379	-0.225	0.254	0.252	0.207
SMRR	0.489	-0.501	0.426	0.532	0.331
SRRR	0.122	-0.341	0.431	0.162	0.606
TARR	0.369	-0.137	0.529	0.46	0.356
TBRR	0.249	-0.416	0.146	0.226	0.136
THRR	0.568	-0.034	0.588	0.717	0.407
TIRR	0.501	-0.038	0.737	0.631	0.56
TLRR	0.65	-0.25	0.568	0.707	0.48

URR	0.348	-0.058	0.306	0.403	0.126
WRR	0.529	-0.199	0.734	0.658	0.542
YRR	0.148	-0.347	0.005	0.089	0.036
YBRR	0.272	-0.412	0.151	0.259	0.128
ZNRR	-0.47	0.052	-0.321	-0.566	-0.086
ZRRR	0.483	0.007	0.462	0.588	0.322
	BIRR	CARR	CDRR	CERR	CORR
BIRR	1				
CARR	-0.008	1			
CDRR	-0.302	0.277	1		
CERR	0.235	0.059	-0.592	1	
CORR	-0.273	0.154	0.012	0.322	1
CURR	-0.213	0.121	0.104	0.326	0.532
DYRR	-0.17	0.371	-0.001	0.582	0.482
ERRR	-0.153	0.374	-0.014	0.584	0.508
EURR	0.103	0.329	-0.28	0.825	0.414
FERR	0.449	-0.036	-0.492	0.455	0.153
GDRR	-0.003	0.352	-0.218	0.785	0.445
LARR	0.202	0.26	-0.473	0.937	0.355
MORR	0.51	-0.117	-0.58	0.55	0.034
NBRR	0.469	-0.106	-0.607	0.547	0.147
NDRR	0.172	0.269	-0.411	0.915	0.361
NIRR	-0.335	0.209	0.783	-0.653	0.023
PBRR	0.255	-0.013	-0.345	0.421	0.219
PRRR	0.182	0.26	-0.446	0.932	0.342
RBRR	0.29	-0.064	-0.589	0.57	0.171
SBRR	0.544	-0.11	-0.54	0.543	0.053
SCRR	-0.058	0.055	-0.162	0.477	0.482
SMRR	0.122	0.306	-0.34	0.877	0.391
SRRR	0.341	0.451	0.04	0.284	0.128
TARR	0.625	0.011	-0.374	0.332	-0.119
TBRR	-0.103	0.372	-0.066	0.666	0.449
THRR	0.264	-0.13	-0.634	0.634	0.268
TIRR	0.483	-0.057	-0.566	0.471	0.14
TLRR	0.424	-0.063	-0.474	0.621	0.111
URR	-0.112	-0.126	-0.388	0.585	0.36

WRR	0.577	0.054	-0.436	0.438	-0.03
YRR	-0.198	0.393	0.078	0.495	0.436
YBRR	-0.126	0.354	-0.085	0.626	0.469
ZNRR	-0.237	0.366	0.726	-0.315	0.219
ZRRR	0.133	-0.207	-0.603	0.608	0.339
	CURR	DYRR	ERRR	EURR	FERR
CURR	1				
DYRR	0.625	1			
ERRR	0.657	0.951	1		
EURR	0.519	0.854	0.861	1	
FERR	0.108	0.004	0.029	0.234	1
GDRR	0.572	0.909	0.904	0.975	0.171
LARR	0.415	0.672	0.678	0.891	0.416
MORR	0.144	0.03	0.079	0.329	0.743
NBRR	0.098	0.085	0.09	0.317	0.791
NDRR	0.447	0.769	0.773	0.955	0.326
NIRR	-0.005	-0.162	-0.176	-0.457	-0.361
PBRR	0.246	0.128	0.166	0.278	0.478
PRRR	0.409	0.718	0.72	0.925	0.353
RBRR	0.137	0.13	0.154	0.367	0.548
SBRR	0.068	0.035	0.092	0.331	0.64
SCRR	0.456	0.579	0.589	0.566	0.115
SMRR	0.501	0.823	0.826	0.968	0.283
SRRR	-0.004	0.272	0.271	0.398	0.195
TARR	-0.132	-0.027	-0.069	0.154	0.509
TBRR	0.571	0.926	0.909	0.896	0.03
THRR	0.295	0.181	0.191	0.376	0.716
TIRR	-0.004	0.026	0.03	0.276	0.726
TLRR	0.165	0.19	0.205	0.438	0.512
URR	0.524	0.442	0.451	0.475	0.324
WRR	0.003	-0.003	0.018	0.283	0.639
YRR	0.605	0.907	0.902	0.782	-0.074
YBRR	0.62	0.932	0.945	0.882	0.047
ZNRR	0.23	0.238	0.218	0.002	-0.411
ZRRR	0.296	0.242	0.223	0.368	0.574

	GDRR	LARR	MORR	NBRR	NDRR
GDRR	1				
LARR	0.857	1			
MORR	0.252	0.491	1		
NBRR	0.252	0.49	0.734	1	
NDRR	0.932	0.958	0.426	0.413	1
NIRR	-0.387	-0.556	-0.554	-0.486	-0.542
PBRR	0.235	0.39	0.479	0.411	0.349
PRRR	0.896	0.971	0.449	0.43	0.984
RBRR	0.313	0.519	0.585	0.579	0.467
SBRR	0.246	0.488	0.708	0.695	0.429
SCRR	0.591	0.496	0.156	0.168	0.531
SMRR	0.956	0.927	0.368	0.357	0.983
SRRR	0.357	0.378	0.203	0.203	0.37
TARR	0.073	0.292	0.498	0.612	0.232
TBRR	0.931	0.749	0.072	0.101	0.832
THRR	0.341	0.596	0.704	0.826	0.489
TIRR	0.204	0.443	0.648	0.879	0.36
TLRR	0.362	0.579	0.677	0.598	0.515
URR	0.5	0.598	0.338	0.47	0.53
WRR	0.191	0.438	0.7	0.689	0.374
YRR	0.844	0.596	-0.005	-0.017	0.696
YBRR	0.924	0.709	0.114	0.116	0.803
ZNRR	0.063	-0.195	-0.529	-0.494	-0.125
ZRRR	0.356	0.546	0.534	0.775	0.454
	NIRR	PBRR	PRRR	RBRR	SBRR
NIRR	1				
PBRR	-0.259	1			
PRRR	-0.554	0.366	1		
RBRR	-0.586	0.662	0.491	1	
SBRR	-0.521	0.366	0.44	0.494	1
SCRR	-0.191	0.18	0.505	0.206	0.179
SMRR	-0.494	0.328	0.962	0.427	0.384
SRRR	-0.1	0.013	0.376	0.054	0.293
TARR	-0.393	0.19	0.26	0.327	0.558
TBRR	-0.227	0.14	0.801	0.158	0.095

THRR	-0.477	0.457	0.51	0.594	0.6
TIRR	-0.496	0.33	0.38	0.521	0.7
TLRR	-0.521	0.58	0.534	0.65	0.57
URR	-0.289	0.23	0.531	0.362	0.307
WRR	-0.458	0.337	0.395	0.469	0.762
YRR	-0.08	0.078	0.659	0.056	-0.058
YBRR	-0.238	0.213	0.753	0.199	0.1
ZNRR	0.578	-0.216	-0.171	-0.455	-0.403
ZRRR	-0.454	0.361	0.48	0.522	0.479
	SCRR	SMRR	SRRR	TARR	TBRR
SCRR					
SMRR	0.551	1			
SRRR	0.248	0.376	1		
TARR	-0.051	0.189	0.295	1	
TBRR	0.581	0.873	0.302	0.013	1
THRR	0.25	0.443	0.07	0.438	0.193
TIRR	0.186	0.309	0.221	0.512	0.062
TLRR	0.245	0.472	0.242	0.351	0.206
URR	0.457	0.525	-0.041	0.116	0.443
WRR	-0.004	0.322	0.326	0.587	0.028
YRR	0.553	0.742	0.236	-0.115	0.892
YBRR	0.608	0.848	0.267	-0.033	0.915
ZNRR	0.149	-0.041	0.216	-0.339	0.203
ZRRR	0.368	0.424	0.033	0.373	0.246
	THRR	TIRR	TLRR	URR	WRR
THRR	1				
TIRR	0.691	1			
TLRR	0.589	0.546	1		
URR	0.728	0.361	0.32	1	
WRR	0.486	0.693	0.566	0.13	1
YRR	0.057	-0.063	0.126	0.352	-0.077
YBRR	0.207	0.074	0.235	0.462	0.057
ZNRR	-0.473	-0.416	-0.37	-0.211	-0.392
ZRRR	0.903	0.631	0.49	0.768	0.322

	YRR	YBRR	ZNRR	ZRRR
YRR	1	1		
YBRR	0.898	1		
ZNRR	0.249	0.143	1	1

Number of observations: 149

APPENDIX 1E

Results Of Mobile Metal Ions Process (MMI-M) Soil Geochemical Surveys on The Stewart Property (Deltaic Grid), Stewart Area, B.C.

Line No.	Station	Sample No		
(E)	(N)			
48+00	41+62.5	6007		
48+00	41+50	6006		
48+00	41+37.5	6005		
48+00	41+25	6004		
48+00	41+12.5	6003		
48+00	41+00	6002		
48+00	40+75	6001		
$48+00$	40+50	6000		
	40+75	too steep		
Line No.	Station	Sample No		
(E)	(N)			
48+50	41+87.5	6017		
48+50	41+75	6016		
48+50	41+62.5	6015		
48+50	41+50	6014		
48+50	41+37.5	6013		-- .o.a.
48+50	41+25	6012		
$48+50$	41+12.5	6011		
48+50	$41+00$	6010		
48+50	40+75	6009		
48+50	$40+50$	6008		
Line No.	Station	Sample No		
(E)	(N)			
49+00E	42+50	6027		
49+00E	42+25	6026		
49+00E	42+00	6025		
49+00E	41+75	6024		
49+00E	$41+50$	6023		
49+00E	$41+25$	6022		
49+00E	$41+00$	6021		
49+00E	40+75	6020		
49+00E	40+50	6019		
49+00E	40+25	6018		
			$14800 \mathrm{E}, 4050 \mathrm{~N}$ is about	
			east of the o/c that coul	the o/c
	--- .		on L4800E @ 4100N	
TOTAL	FF 55 MM	SAMPLES	S TAKEN IN OCTOB	2006

ANALYTE		Aİ	As	Au	Ba	Bi	Ca	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe	Gd	La	Li	Mg
METHOD	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MM1-M5	MM1-M5	MMI-M5	MML-M5	MMI-M5	MM1-M5	MM1-M5	MMI-M5	MMI-M5	MM1-M5	MMI-M5	MMI-M5	MM1-M5	MMI-M5	MMI-M5	MM1-M5
DETECTIC	- 1	1	10	0.1.	10.	- 1	10	10	5	-5	100	10	1	0.5.	0.5	1	- 1	- 1	5	- 1
UNITS	PPB	PPM	PPB	PPB	PPB	PPB	PPM	PPB	PPM	PPB	PPB	PPB	PPM							
525	22	>300	10	12.1	70	<1	<10	20.	100	14	<100	2310	27	12.7	6.2	57	24	34	<5	<1
526	73	>300	20	30.7	210	<1	<10	<10	142	35	<100	1500	21	8.4	6.9	55	23	48	<5	<1
527	93	141	10	40.3	300	<1	<10	<10	272	14	<100	550.	20	10.9	9.3	31	35	118	<5	<1
528	58	>300	40	43.3	340	<1	<10	≤ 10	204	20	<100	1200	22	9.7	7.9	81	27	74	<5	<1
529	49	217	20	331	130	<1	<10	<10	240	22	<100	2450	40	19.6	11.9	83	46	73	<5	<1
530	101	75	50.	58.5	110	<1	<10	≤ 10	137	9	<100	1820	41	23.8	14.8	78	51	42	<5	<1
531	49	108	<10	23.2	20	<1	<10	<10	185	38	<100	1210	34	15.5	12	15	40	38	<5	<1
532	74	225	40	64.4	290	2	<10	<10	149	26	<100	1610	27	12.7	8.4	83	29	47	<5	<1
533	21	221	<10	18.2	30	<1	<10	10	120	45	<100	2150	39	21.2	8.8	26.	33	34	<5	$\leqslant 1$
534	27	253	<10	21.3	10	<1	<10	10	77	21	<100	1760	26	13.8	5.7	22	22	23	<5	<1
535	108	>300	20.	53.6	220	<1	<10	<10	137	35	<100	1820	30	12.5	7.8	46	30.	48	<5	<1
536	60	156	20.	18.8	50	<1	<10	<10	167	41	<100	1090	50	23.9	17.8	29	70.	135	<	<1
537	68	99	<10	6.3	790	<1	-10	<10	249	28	<100	3600	42	20.2	13.1.	6	51	97	<5	<1
538	22	184	20	1.3	670	<1	<10	<10	388	45	<100	720	61	26.2	21.9	47.	84.	169	<5	- 1
539	56	<1	<10	5.7	120	<1	<10	30	165	24	<100	3950	42	18.3	12.5	19	47.	61	<5	<1
540	115	190	<10	14.5	<10	<1	<10	10	370	20	<100	5750	105	55.5	29.4	17	422	157	<5	<1
541	125	150	<10	22.8	<10	<1	<10	10	397	30	<100	4910	72	36.8	22.9	21.	95	89	< 5	<1
542	53	248	<10	17.7	50	<1	<10	<10	318	12	<100	1920	43.	19.9	12.7	25	50	106	< 5	<1
543	23	>300	<10	19.9	120	<1	10	<10	404	21	<100	1540	23.	11.4	6	46	21	34	<5	<1
544	68	157.	10.	52.4	190	<1	<10	<10	228	12	<100	920	33	15.6	10.7	24.	41	88.	<5	4
545	45	143	<10	13.1	30	<1	<10	<10	358	14	<100	1400	68	38.6	17.1	9	70	136	<5	<1
546	58	97	<10	28	100	<1	<10	<10	348	13	<100	1540	91	48.1	30.8	5.	115	163	< 5	<1
547	99	147	20	54.9	430	< 1	<10	<10	286	24	<100	1710	46	22	15.3	44	55	103	<5	<1
548	36	263	<10	17.7	90	<1	<10	<10	880	29	<100	2060	93	54.4	27.7	22	110	284	<5	<1
549	107	220	10	20.5	230	<1	<10	≤ 10	222	23	<100	1090	37.	15	19.5	22.	41	78	<5	<1
550	99	247	40	54	400	<1	<10	<10	249	31	<100	1540	45	22.6	12.4	58.	52	89	<5	<1
551	77	189	<10	31.5	140	<1	<10	<10	229	17	<100	1520	53	28.8	13.5	18	61	94	<5	<1
552	29.	217	<10	15.7	40	<1	<10	<10	182	26	<100	1880	43.	19.4	11.5	21.	49	53	<5	<1
553	16	219	<10	4.8	40	<1	<10	<10	139	17	<100	2050	42	20.2	9.3	26	43	37	<5	<1
554	23.	239	<10	9.3	40	<1	<10	<10	127	25	<100	1820	46	22.6	8.7	40	42	39	< 5	<1
555	58	178	<10	11.	<10	<1	<10	<10	274	<	<100	490	36.	16.3	10.6	11.	47	100	<5	<1
556	52	>300	50	27.6	360		<10	<10	132	<5	<100	140	14	56	8.9	58	22	36	< 5	<1
557	56	272	70	35.2	1470	2	10	<10	1360	<	<100	480	108	52.9	59.4	53	169	718	<5	1
558	25	>300	10	8.3	150	<1	<10	<10	227	8	<100	1230	27	12.1	9.6	71.	32	85	< 5	<1
559	26	>300	<10	12.7	210	<1	<10	<10	37	8.	<100	740	13	7.9	2.4	54	9	15	<5	<1
560	23	>300	<10	11.4	180	<1	<10	10	25	24	<100	860	7	4.7	1.6	81	5	10	<5	<1
561	83	>300	20	39.4	370	<1	<10	<10	164		<100	650	17	7	6	51	21	73	<5	<1
562	31	294	10	16.3	230	<1	<10	<10	30	13	≤ 100	710	8	4.7	1.5	80	5	14	<5	4
563	46	272	10	27.7	130	<1	<10	<10	110		<100	570	19	7.9	6	43	23	39	<5	<1
564	49	220	50	55.2	340	1	<10	<10	208	<	<100	300	18	7.5	7.1	73	26	78	<5	1
565	40	230	<10	8.2	60	<1	<10	30	19	23	<100	1340	12	7.2	1.7	24.	6	,	<5	<1
566	19	266	<10	8.6	80	<1	<10	20	99	18	<100	1490	32	15.5	7.3	43	29	36.	<5	<1
567	98	80	50	18.8	670	<1	30	90	72	30	<100	3430	221	133	72.5	14.	296	507	<5	<1
568	8	>300	10	3.1	210	<1	<10	<10	251	13	<100	440	33	14.3	9.1	28	34	80	<5	<1
569	63	126	80	21.4	1190	<1	<10	<10	385	48	<100	810	49	22.9	18.7	35	64	82	< 5	<1
570	52	>300	30	10.3	200	<1	<10	<10	483	12	<100	620	69	29.2	22.7	122	95	186		<1
571	78	286	<10	14.3	80	<1	<10	<10	72	16	<100	590	17	7.9	4.3	47	16	26	< 5	<1
572	77	137	40	37	380		<10	<10	163	<5	<100	160	15	6.1	7.4	74	20	51	<	4
573	51	89	70	46.3	770		<10	<10	63	<5	<100	440	40	3.6	7.2	26	17	23	<5	<1
574	55	130	110	57.2	1760	9	<10	<10	169	<5	<100	280	14	\| 6.2	7.1	138	20	59	<5	3
575	73	130	120	48.1	1830		$5<10$	<10	333	<5	<100	310	21	8.7	13.1	199	34	187	<5	2
576	93	>300	280	46.3	3330	10	<10	<10	353	15	<100	690	23	8.9	12	251	33	155	<5	- 7
577	79	295	180	64	800		1<10	<10	126	8	<100	430	8	3.6	4	136	12	54	<5	≤ 1

ANALYTE	Ag	Al	As	Au	Ba	Bi	Ca	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe	Gd	La	Li	1Mg
METHOD	MMI-M5	MMI-MS	MMI-M5	MMI-M5	MMMI-M5															
DETECTIC	1	1	10	0.1	10.	1	10	10	5	5	100	10	-1.	0.5	0.5 1	1	- 1	5	-1
UNITS	PPB	PPM	PPB	PPB	PP8	PPB	PPM	PPB	PPB	PPB	PP8	PPB	PPB	PPB	PPB	PPM	PP8	PPB	PPB	PPM
578	31	98	<10	34.4	120	<1	<10	<10	239	<5	<100	600	44	21.2	24	17	69	53	<5	<1
579	48	129	10	23.3	420	<1	<10	<10	539	87	<100	400	56	29.2	32	39	89	143	<5	<1
580	55	228	<10	27.9	110	<1	<10	10	240	25	<100	830	39	18.1	12.6	50	47	74	<	<1
581	77	167	20	20.8	590	<1	<10	20	623	50	<100	2830	111	60.5	37.5	58	134	247	<5	<1
DUP.525	16	>300	<10	98	60	<1	<10	10	62	10	<100	1660	21	9.7	4.1	42	17	20	<5	<1
DUP-537	74	113	<10	5.3	620	<1	<10	<10	214	41	<100	3910	41	20.6	11.7	8	47	74	<5	<1
DUP-549	115	210	<10	22.2	180	<1	<10	<10	152	19	<100	1060	32	14.3	9	22	34	51	<5	<1
DUP-561	60	277	<10	36.9	300	<1	<10	<10	69	<5	<100	440	11	4.7	3.3	39	12	26	<5	<1
DUP. 573	44	104	70	34.6	610	1	<10	<10	50	<5	<100	600	10	3.6	6.7	26	17	15	<5	<1
MMISRM ${ }^{\text {a }}$	1-18	33	20	42.5	100	<1	300	<10	20	42	<100	730	3	1.1	1.6	2	6	7	<5	43
MMISRM 1	19	34	<10	44.5	110.	<1	270	<10	16.	46	<100	730	2	0.8	1	2	4	3	<5	39
BLANK	<1	<1	<10	<0.1	<10	<1	<10	<10	<5	<5	<100	<10	<1	<0.5	<0.5	<1	<1	<1	<5	<1
BLANK	<1	<1	<10	0.1	<10	<1	<10	<10	<5	<5	<100	<10	<1	<0.5	<0.5	<1	<1	<1	<5	<1

ANALYTE	Mo	Nb	Nd	Ni	Pb	Pd	Pr		Sb	Sc	Sm	Sn	Sr	Ta	Tb	Te	Th	Ti	11	U
METHOD	MMI-M5	MMI-M5	MM1-M5	MMI-M5	MM1-M5	MM1-M5	MM ${ }^{\text {P-M5 }}$	MM1-M5	MM1-M5	MMI-M5	MMI-M5	MM1-M5	MMI-M5							
DETECTIC	5	0.5	- 1	5	10	1.	1	5.) 1	5	1.		10.	1	-1	10	0.5	3.	0.5	1
UNITS	PPB																			
525	8	13.2	63	45	170	2	14	147	1.	43	19	<1	10	1	5	≤ 10	16.5	878	0.6	10
526	17	5	68	20	250	- -1	16	161	2	53	20	≤ 1	<10	$\leqslant 1$	4	<10	13.4	1160	0.8	7
527	25	3.5	176	10	70.	≤ 1	43	172	2	48	35	<1	20	<1	4	<10	6.9	910	0.8	5
528	22	11.2	92	16	290	- 1	23	174	3.	48	25	<1	10	<1	4	<10	14.7	2890	0.8	- 7
529	14	18.8	146	7.	190	3	33	171	6	52	41	1.	<10	2	7.	<10	24.2	2310	0.7	9
530	26	9.2	154	5	370	<1	29.	159	16	47	45	<1	<10	< 4	7	<10	4.8	4200	0.7	4
531	11	3.1	128	<	280	<1	26.	223	<1	47	40	<1	<10	<1	6	<10	7.	613	0.6	6
532	14	11	87	22	440	- 4	19	155	3	45.	26	<1	≤ 10	≤ 1	5	≤ 10	12.4	3390	0.7	5
533	6	4.3	83	21.	350	<1	17	160	<1	42.	24	<1	<10	<1	6.	<10	5.8	605	0.6	6
534	6	3.1	55	14.	150	<1	11	166	<1	29	16.	<1	<10	<4	4	<10	4.2	1000	<0.5	6
535	12	12.4	78	9	150	4	17	219	2	54.	25	<1	≤ 10	1	5	<10	24.5	1580	0.6	9
536	30	4.8	229	7	170.	1	49	205	<1	410	62	<1	<10	4	10	<10	12.1	1470	1	9
537	13	0.5	161	7	130	<1	37	30	<1	103	44	<1	50	<1	8	<10	6.6	251	0.8	6
538	<5	5.1	270	8	180	1.	60	65	2	245	71	<1	30	<1	12	<10	8.6	5680	1.3	7
539	8	9.9	126	27	$1+0$.	1.	26	70	1.	86	38	<1	<10	<1	8	<10	10.7	2700	0.6	9
540	10	13	365	12	350	<1	76	187	<1	107	101	<1	<10	<1	19	<10	5.7	693	0.8	9
541	13	2.3	323	6	200	<1	69	137	$\leqslant 1$	58	84	<1	<10	<1	14.	$\leqslant 10$	4.4	789	0.5	4
542	9	5.9	165.	11	110	<1	39	198	<1	44	45	<1	<10	4	8	<10	10.2	1360	1.3	8
543	9	3.6	59	13	130	<1	13	104	1	45	18	<1	<10	4	4	$\leqslant 10$	15.8	926	<0.5	7
544	6	6.2	134	<5	130	<1	31	174.	1	33	35	<1	<10	<1	6	<10	9.5	1530	0.9	6
545	<5	0.8	235	6	240	<1	53	136	<1	48	58	<1	<10	<1	11	<10	3.6	185	0.9	7
546	<5	0.7	336	<5	110	<1	73	169	1	52	97	<1	<10	<1	17	<10	3.4	161	0.8	6
547	10	6.3	183	8	170	<1	40	186	2	76	51	<1	30	<1	9	<10	8.4	2200	1	7
548	<5	2.8	388	15	340	<1	92	134	1	75	94	<1	<10	<1	17	<10	8.6	645	1	11
549	9	5.1	125	7	70	- 1	29	185	1	81	38	<1	10	<1	7	<10	10.7	934	1	8
550	10	5.8	170	13	150	- 1	39	243	2	65	48	<1	10	<1	8	<10	13.6	2530	1	11
551	<5	2.2	182	7	120	<1	39	185	<1	59	50	<1	<10	<1	10	<10	6.8	703	0.7	10
552	5	8.6	142	15.	320	1	30	159	<1	49	41	<1	≤ 10	<1	8	<10	12.1	735	0.6	19
553	6.	10.1	111	17	100	1	22	92	<1	44	33	<1	<10	<1	7	<10	14.7	1070	<0.5	10
554	6.	13.8	100	17.	130	- 1	20	91.	<1	45	30	<1	<10	1	8	<10	13.5	891	<0.5	9
555	11.	1.9	177	<5	50	<1	43	150	≤ 1	34	42	<1	<10	<1	7	<10	8.8	267	0.7	8
556	45	37.9	109	<5	60	<1	24	104	5	29	28	3	90	3	3	30	7.5	8840	1.6	2
557	136	20.6	916	<5	150	<1	225	119	12	18.	187	6	350	2	23	20	5.2	13300	2	2
558	14	8	125	15	230	<1	32	98	<1	50	31	<1	20	<1	5	<10	26.1	963	1.1	11
559	16.	5.8	23	14	570	<1	5	82	<1	22	6	<1	<10	<1	2	<10	7.5	1140	1.1	6
560	7.	3.7	14	37	260	<1	3	101	<1	19	4	<1	<10	≤ 1	1	<10	8.8	589	1.2	3
561	19	9.3	80.	8	70	<1	21	126	3	38	20	1	20	<1	3	<10	9.4	2580	1.5	6
562	19	9.9	14	17	230	<1	4	120	2	23	4	<1	<10	<1	1	<10	6.5	2760	1.2	4
563	15	11.1	77	10	170	<1	18	158	2	27.	22	<1	<10	<1	4	<10	8.6	2000	0.9	5
564	38	21.2	116	6	280	<1	28	198	6	30	28	2	<40	1	4	<10	7.4	7670	2	4
565	11.	6.5	12	16	240	<1	3	88	<1	18	4	<1	<10	<1	2	<10	2.6	1210	0.9	
566	12	5.1	67.	22	280	<	14	166	<1	32	20	<1	<10	<1	5	<10	7.2	1300	1.2	4
567	<5	2.2	776	27	740	<1	156	158	<1	89	194	<1	80	41	40	<10	3.3	946	0.5	3
568	5	14.6	107	18	70	<1	26	366	<1	37	29	<1	<10	≤ 1	6	<10	10.1	5270	2.1	7
569	5	3	225	8	4000	<1	48	174	2	43	69	<	30	<1	10	<10	4.	1020	1	5
570	19.	93.4	346	11	270	- 7	79	162	2	81	89	6	<10	7	1	<10	55.6	3170	1	18
571	11	12.2	45	21	470		10	160	1	22	13	<1	<10	1	3	<10	8	1590	0.6	6
572	26	13.7	94	<5	120	<1	22	187.	2	39	25	1	20	1	3.	<10	5.6	4080	0.9	4
573	79	43.9	73	<5	30	< 1	13	110	5	28	23	4	40	2	2	10	11.7	13500	1.1	
574	- 245	86.1	104	<5	450	<1	25	147	14	34	25	9	50	5	- 3	20	10	33300	2.2	
575	. 105	42.6	197	<5	470	<1	51	148	9	36	42	6	80	3	$3-5$	20	59	17900	- 1.8	- 3
576	[260	131	180	10	860	1	47	176	- 36	78	40	17	80	8	- 5	40	16.8	51100	3.2	8
577	139	69.5	57	10	510	<1	15	231	- 50	23	- 12	9	30	4	4.2	30	11	30900	$\underline{2.1}$	

ANALYTE]	Mo	Nb	Na	Ni	Pb	Pd	Pr	Rb	Sb	Sc	Sm	Sn	Sr	Ta	Tb	Te	Th	Ti	TI	U
METHOD	MM1-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MML-M5	MMI-M5	MM1-M5	MMI-M5	MM1-M5								
DETECTIK	5	0.5	-1	5	10	1	1	5	1-1.	- 5	-1	1	10	1	1	10	0.5	3	0.5	1
UNITS	PPB																			
578	17	3.1	270	< 5	220	<1	53	186	[1]	20	72	<1	<10	<1	9	<10	6.5	1030	1.8	3
579	<5	9.7	401	7	80	<1	83	131	2	78	103	<1	30	<1	12	<10	3.9	3890	0.9	5
580	8	7.7	165	22	540	1	37	162	- 1	41	44	<1	<10	<1	7	<10	11.5	1510	-1	6
581	9	6.7	438	16	410	<1	98	118	- 2	75	114	<1	20	<1	20	<10	7.3	2570	1	5
DUP-525	8	11.5	40	30	130	1	9.	120	<1	27	12	<1	<10	<1	3	<10	10.6	850	0.6	7
DUP-537	13	0.6	133	7	140	<1	29	31	<1	107 ,	38	<1	20	<1	7	<10	7	329	0.8	7
DUP-549	8	5	92	5	90	<1	21	158	<1	74	29	<1	<10	<1	6	<10	9.5	923	0.8	8
DUP-561	8	7	37	<5	50	<1	9	97	-	27 \|	10	<1	<10	<1	2	<10	5.9	1650	0.9	3
DUP-573	73	40.2	61	<5	20	<1	11.	86.	- -4	26	22	4	20	2	2	<10	11.6	11100	1	2
MMISRM	33	<0.5	24	260	160	44	5	310	<1	9	6	<1	610	<1	<1	<10	21.5	<3	0.6	42
MMISRM	32	<0.5	12	267	120	46	- 2	272	<1	6	4	<1	510	<1	<1	<10	15.1	<3	<0.5	34
ELANK	<5	<0.5	<1	<5	<10	<1	<1	<5	<1	<5	<1	<1	<10	<1	<1	<10	<0.5	<3	<0.5	<1
BLANK	<5	<0.5	<1	<	<10	<1	<1	<5	<1	<5	<1	<1	<10	<1	<1	<10	<0.5	<3	<0.5	<1

ANALYTE		Y	Yb	Zn	Zr
METHOD	MMM1-M5	MMI-M5	MMI-M5	MM1-M5	MMI-M5
DETECTK	1	5		20	-
UNITS	PPB	PP8	PPB	PPB	PPB
525	<1	119	10	170	501
526	- 2	74	6.	100	209
527	1	148	10	80	108
528	- 2	87	8	80	237
529	- 2	176	17	70	751
530	-3	220	21	110	67
531	$\leqslant 1$	108	14	70	192
532	2	98	11	150	218
533	<1	200	17	140	133
534	<1	133	11	60	61
535	<1	108	10	100	737
536	<1	262	19	100	246
537	<1	183	16	380	156
538	<1	269	19	230	313
539	<1	191	13	450	299
540	<1	567	42	240	78
541	<1	321	30	180	54
542	<1	178	15	180	181
543	<1	83	9	140	178
544	<1	154	12	70	189
545	<1	384	33	40	62
546	<1	424	40	<20	77
547	1	204	19	130	133
548	<1	527	48	140	159
549	<1	131	12	60	277
550	-1	184	20	170	329
551	<1	269	24	180	160
552	<1	180	15	100	381
553	<1	188	16.	140	421
554	<1	220	18.	120	416
555	<1	152	12	<20	159
556	7	51	4	30	100
557	9.	542	39	50	58
558	<1	105	9	<20	346
559	1	66	7	20	123
560	<1	36	5	110	101
581	4	64	6	50	134
5.62	3	34	4	60	94
563	- 2	69	6	50	177
564	9	77	6.	80	117
565	2	59	6	120	56
566	- $\quad 1$	184	12	130	135
567	- 2	2050	91	3280	41
568	- 2	127	10	170	111
569	<1	149	22	460	112
570	3	269	22	6	2270
571	1	82	6	100	180
572	3	44	6	40	119
573	20	25	3	60	45
574	28	48	5	110	148
575	13	83	7	70	86
576	45	82	7	290	295
577	40	33	3	130	147

ANALYTE		IY	Yb	Zn	Zr
METHOD	MMI-M5	MMI-M5	MMI-M5	MMI-M5	MMI-M5
DETECTK	1	- 5	1	20	5
UNITS	PPB	PP8	PPB	PPB	PPB
578	2	155	19	40	88
579	2	210	27	110	71
580	<1	158	14	90	256
581	1	600	49	260	106
OUP. 525	<1	90	7	150	312
DUP. 537	<1	183	17	430	176
DUP. 549	<1	114	12	90	241
DUP-561	1	44	4	<20	107
DUP. 573	16	22	3	80	51
MMISRM1	<1	14	<1	410	14
MMISRM1	<1	9	<1	300	9
BLANK	<1	<5	<1	<20	<5
BLANK	<1	<5	< 1	<20	<5

ANALYTE	Ag	Al	As	Au	Ba	Bi	Ca	Cd	Ce	Co	Cr	Cu	Dy
METHOD	MMI-M5	MMIJ-M5	MMAI-M5	MMI-M5	MM1-M5	MM1-M5	MM1-M5	MMI-M5	MMII-M5	MMI-M5	MMI-M5	MMILM5	MM1-M5
DETECTIC	1	1	10	0.1	10	1	10	10	5	5	400	10	1
UNITS	PPB	PPM	PPB	PPB	PPB	PPB	PPM	PPB	PPB	PPB	PPB	PPB	PPB
6000	8	222	<10	0.2	60	<1	<10	10	20	7	<100	240	20
6001	10	243	<10	0.8	130	<1	<10	10	42	14	<100	400	24
6002	14	215	<10	1.3	170	<1	<10	<10	31	7	<100	400	20
6003	24	236	<10	1.5	220	<1	<10	<10	65	8	<100	350	22
6004	13	208	<10	0.4	70	<1	<10	10	26	11	<100	420	19
6005	35	266	<10	3.3	220	<1	<10	<10	105	35	<100	530	28
6006	36	89	60.	18.4	2760	<1	60	<10	486	25	<100	330	174
6007	29	95	20	9.4	250	<1	<10	<10	210	9	<100	420	49
6008	8	233	<10	0.2	210	<1	<10	20	30	9	<100	280	23
6009	7	218	<10	0.1	180	<1	<10	20	13	9	<100	250	15
6010	22	238	<10	1.6	170	<1	<10	<10	31	<5	<100	420	18
6011	33	242	<10	3.4	300	<1	<10	<10	82	17	<100	480	23
6012	14	276	<10	0.9	130	<1	<10	<10	50	12	<100	470	18
6013	12	224	<10	<0.1	80	<1	<10	10	30	9	<100	400	23
6014	34	205	<10	0.3	80	<1	<10	10	12	7	<100	350	14
6015	28	208	<10	0.2	40	<1	<10	20	29	11	<100	610	20
6016	13	209	<10	0.4	40	<1	<10	20	21	11	<100	620	18
6017	7	239	<10	0.1	50	<1	<10	20	36	14	<100	600	16
6018	7	238	<10	0.3	80	<1	<10	20	13	5	<100	210	13
6019	11	208	<10	<0.1	50	<1	<10	20	16	19	<100	190	16
6020	6	247	<10	0.8	120	<1	10	20	70	<	<100	250	22
6021	14	125	<10	2.2	740	<1	220	40	109	11	<100	990	63
6022	13	221	<10	0.7	60	<1	<10	10	14	28	<100	290	18
6023	10	230	<10	<0.1	60	<1	<10	30	17	9	<100	460	14
6024	11	253	<10	2.4	200	<1	<10	<10	83	13	<100	400	18
6025	10	195	<10	<0.1	50	<1	<10	20	42	8	<100	450	24
6026	7	203	<10	0.1	30	<1	<10	30	19	5	<100	590	17
6027	24	176	<10	0.1	40	<1	<10	10	102	8	<100	530	35
6028	4	200	<10	0.2	110	<1	<10	40	8	10	<100	1110	10
6029.	14	224	<10	0.2	50	<1	<10	20	49	11	<100	480	23
6030	11	227	<10	0.2	50	<1	<10	30	36	14	<100	630	19
6031	17	236	<10	2.5	100	<1	<10	30	34	21	<100	670	18
6032	14	227	<10	0.8	190	<1	<10	20	44	10	<100	540	22
6033	15	215	<10	0.4	130	<1	<10	20	66	9	<100	830	25
6034	16	201	<10	0.4	50	<1	<10	30	13.	10	<100	540	17
6035	15	193	<10	0.2	60	<1	<10	20	17	8	<100	560.	21
6036	21	168	<10	1.7	60	<1	<10	30	39	15	<100	10100	77
6037	11.	235	<10	0.7	110	<1	<10	30	70	31	<100	1960	46
6038	7	253	<10	0.2	60	<1	<10	30	66	15	<100	780	30
6039	9	220	<10	<0.1	70	<1	<10	30	36	11	<100	1210	27
6040	4	182	<10	<0.1	170	<1	30	100	52	38	<100	480	42
6041	10	198	<10	0.4	110	<1	<10	30	275	26	<100	6070	370
6042	5	200	<10	0.4	110	<1	20	20	108	83	<100	8990	195
6043	4	192	<10	<0.1	200	<1	40	70	20	9	<100	6740	161
6044	7	197	<10	<0.1	50	<1	<10	60	10	7	<100	460	18
6045	5	238	<10	0.6	100	<1	<10	20	63	6	<100	520	24
6046.	12	211	<10	0.3	40	<1	<10	20	10	5	<100	640	14
6047	16	214	<10	0.2	50	<1	<10	30	22	6	<100	590	18
6048	92	235	<10	23.8	40	<1	<10	20	54	49	<100	2590	25
6049	10	235	<10	1.3	70	<1	<10	10	35	6	<100	730	19
6050	7	195	<10	0.1	40	<1	<10	20	10	6	<100	510	16
6051	8	240	<10	0.4	70	<1	<10	10	52	12	<100	600	21
6052	7	214	<10	0.2	70	<1	<10	20	13	9	<100	330	15
6053	9	>300	<10	0.8	130	<1	<10	10	84	9	<100	1440	36
6054	8	234	<10	0.2	100	<1	<10	60	20	17	<100	930	33
DUP-6000	12	>300	<10	0.3	90	<1	<10	10	39	10	<100	280	26
DUP-6012	12	>300	<10	1.3	150	<1	<10	<10	74	18	<100	750	26
DUP-6024	18	>300	<10	3.2	250	<1	<10	10	86	15	<100	560	25
DUP-6036	28	248	<10	2.1	80	<1	<10	40	106	24	<100	13000	115
DUP-6048	122	>300	<10	31.3	70	<1	<10	20	67	54	<100	3360	33
MMISRM1	17	36	20	39	70	<1	220	<10	15	36	<100	650	2
MMISRM 1	20.	32	20	39.8	80	<1	260	<10	23	38	<100	670	3
BLANK	<1	<1	<10	<0.1	<10	<1	<10	<10	<5	<5	<100	<10	<1
BLANK	<1	<1	<10	<0.1	<10	<1	<10	<10	<5	< 5	<100	<10	<1

Ėr	Eu	Fe	Gd	La	Li	Mg	Mo	Nb	Nd	Ni	Pb	Pd	Pr
MMI-M5	MM1-M5	MMI-M5	MM1-M5	MMIM	NMM1-M5	MM1-M5	MMI-M5	NMMI-M5	MMl-M5	MMI-M5	MM1-M5	MMML-M5	MAMI-M5
0.5	0.5	1	1	1	5	- 1	5	0.5	1	5	10	1	1
PPB	PPB	PPM	PPB	PPB	PPB	PPM	PPB						
9.2	3	8	12	5	<5	<1	<5	1.6	18	38	30	<1	4
10.4	4.2	18	17	13	<5	<1	<5	2.6	30	48	120	<1	7
9	3.7	12	15	9	<5	<1	<5	1.	27	23	170	<1	6
9.7	5.4	12	22	22	<5	<1	<5	1.8	51	11	90	<1	11
9.2	3.3	10	14	8.	<5	<1	<5	1.4	23	22	10	<1	5
10.8	7.3	41	27	41.	<5	<1	<5	4	69	10	90	<1	16
99.4	58.2	75	224	398	<5	6	10	10.8	697	7	50	<1	159
22	18.7	29	63	79	<5	<1	8	2.4	197	<5	170	<1	45
9.9	3.9	8	15	10	<5	<1	<5	2.1	25	34	90	<1	6
8	2.2	5	9	2	< 5	<1	<5	0.6	12	28	20	<1	3
7.8	3.3	9.	13	9	<5	<1	<5	1.2	24.	18	190	<1	5
9.4	5.6	18	22	29	< 5	<1	<5	2.2	55	10	170	<1	13
7.1	3.6	17	15	18	<5	<1	<5	3.1	32.	18	30	<1	8
10.7	3.8	9	16	9	<5	<1	<5	1.4	28	19	<10	<1	6
6.6	2.1	6	8	2	<5	<1	<5	0.5	11	22	40	<1	2
9.7	3.6	10	14	9	<5	<1	<	1.2	27	29	10	<1	6
7.9	2.8	13	12	5	<5	<1	<5	1.1	18	54	30	<1	4
7.6	2.9	30	12	11.	<5	<1	<5	5.2	22	24	<10	<1	5
6.5	2	6	8	3.	<5	<1	<5	0.7	11	28	160	<1	2
7.2	2.5	7	10	3.	<5	<1	<5	<0.5	16	28	<10	<1	3
8.2	6.2	11	23	24	<5	<1	<5	0.9	59	18	60	<1	14
33.9	14.3	18	61.	71	<5	5	<5	<0.5	122	49	120	<1	26
9.7	1.8	8	8	5	<5	<1	<5	0.7.	10	22	60	<1	2
6.2	2.3	15	9	5.	<5	<1	<5	1	14	23	<10	<1	3
7.3	5.6	22	20	32	<5	<1	<5	2.6	58	15	70	<1	14
10.8	5.1	8	22	12.	<5	<1	<	0.8	45	21	<10	<1	9
8.2	3.1	11	13	5.	< 5	<1	<5	0.6	20	22	<10	<1	4
17.4	8.2	3	33	33	<5	<1	<5	<0.5	93	19	<10	<1	21
5.6	1.3	47	5	2	<5	<1	<5	0.8	6	31	80	<1	1
10.3	5.1	10	20	16	<5	<1	<5	1.3	43	23	30	<1	9
8.2	3.9	14	15	12	<5	<1	<5	1.9	32	23	10	<1	7
7.5	3.5	12	14	12	<5	<1	<5	1.7	25	20	180	<1	6
9.3	4.5	11	18	14	< 5	<1	<5	1.3	39	20	90	<1	9
9.9	6.6	13	25	22	< 5	<1	<	1.3	61.	19	10	<1	14
8.2	2.4	7	10	2	<5	<1	<5	0.5	13	22	240	<1	3
9.8	3.1	6	14	3	- 5	<1	<5	<0.5	19	18	<10	<1	4
40	12.4	4	57	22	<5	<1	<5	<0.5	82	18	40	<1	15
20.8	8.9	36	36	26	<5	<1	8	1.1	68	47	90	<1	14
12.4	7	13	27	20	<5	<1	<5	2.2	57	36	20	<1	12
12.5	5.9	6	23	12	<5	<1	<5	0.7	44	28	20	<1	9
20.3	9.1	17	38	20	<5	4	<5	<0.5	80	43	10	<1	16
165	76.1	8	318	191	<5	<1	<5	1.6	621	20	30	<1	125
126	37.6	24	191	262	<5	<1	<5	3.	357	22	70	<1	79
109	20.8	18	121	83	<5	1	<5	0.9	168	83	20	<1	32
8.9	2.6	6	11	3	<5	<1	<5	<0.5	13	37	<10	<1	3
10.2	6.2	11	24	21	<5	<1	<5	0.7	57	18	110	<1	13
7.5	1.6	23.	7	3	<5	<1	<5	0.9	8	25	30	<1	2
8.5	3	9	12	6	<5	<1	<5	0.9	19	24.	<10	<1	4
11.8	7	30	25	20	<5	<1	<5	0.7	47	30	2000	<1	10
8.1	4.2	15	16	11	< 5	<1	<5	0.9	33	18	270	<1	7
8.1	1.9	12	8	2	< $<$	<1	<5	0.5	10	26	<10	<1	2
8.4	5.2	14	20	18	<5	<1	<	2.2	43	14	20	<1	10
7.1	2.1	19	9		< 5	<1	<5	1.3	12	25	100	<1	3
15.2	8.2	18	32	232	< 5	<1	<5	6.9	71	14	40	<1	16
15.6	4.8	22	21	17 - 5	< 5	<1	<5	1.	28	34		<1	5
12	4.5	9	17	13	<	<1	<5	3.5	31	30		<1	7
10.3	5.3	19	21	- 29	< 5	<1	6	6.3	47	21	40	<1	11
10.2	6.7	26	26	$6---32$	- <5	<1	<5	3.2	61	21	100	<1	14
54.3	26	7	112	67	<5	<1	<5	0.9	208	27	60	<1	40
15.3	9.1	40	32	- 26	< 5	<1	6	0.8	61	41	2350	<1	13
0.9	0.9	7	7 . 3		< 5	35	- 27	<0.5		199	120	38	3
1.1	1.4	4	5	$5-4$	$4<5$	40	29	<0.5	18	210	160	41	4
<0.5	<0.5	<1	<1	<1	<5	<1	<5	<0.5	<1	<5	<10	<1	<1
<0.5	<0.5	<1	<1	<1	<5	<1	<5	<0.5	<1	< 5	<10	<1	<1

Rb	Sb	Sc	Sm	Sn	Sr	Ta	Tb	Te	Th	71	17	U	W
MM11-M5	MMAL-M5	MMI-M5	MM1-M5	MMM1-M5	MMI-M5	MMI-M5	MML-M5	MMI-M5	MMHM5	NML-M5	MM1-M5	MMI-M5	MM1-M5
5	1	5	1	1	10	1	1	10	0.5	3	0.5	1	1
PPB	PPB	PPB	PPB	PPB	PPB	PP8	PPB	PPB	PP8	PPB	PPB	PPB	PPB
50.	<1	41	7	<1	<10	<1	3	<10	2.1	821	<0.5	3	<1
117	<1	48	11	<1	<10	<1	4	<10	3.5	1290	<0.5	4	<1
84	<1	27	10	<1	<10	<1	4	<10	1.9	350	<0.5	2	<1
107	<1	35	16	<1	<10	<1	4	<10	3.2	856	<0.5	4	<1
49	<1	34	9	<1	<10	<1	3	<10	2	815	<0.5	3	<1
129	<1	60	22	<1	<10	<1	5	<10	6.7	2490	<0.5	4	<1
86	- 1	68	176	<1	510	1	35	<10	3.7	5720	<0.5	2	2
135	<1	90.	58	<1	30	<1	10	<10	6.7	1180	<0.5	7	<1
76	<1	36	10	<1	20	<1	4	<10	2	603	<0.5	3	<1
73	<1	36	5	<1	20	<1	2	<10	1.1	229	<0.5	2	<1
124	<1	26	9	<1	<10	<1	3	<10	2.6	367	<0.5	3	<1
126	<1	37	17	<1	<10	<1	5	<10	4.1.	1110	<0.5	4	<1
97	<1	29	10	<1	<10	<1	3	<10	4.5	779	<0.5	4	<1
14	<1	41	10	<1	<10	<1	4	<10	4.7	1030	<0.5	3	<1
79	<1	20	5	<1	<10	<1	2	<10	1.1	193	<0.5	2	<1
12	<1	38	10	<1	<10	<1	3	<10	2.1	784	<0.5	3	<1
24	<1	31	7	<1	<10	<1	3	<10	1.8	458	<0.5	3	<1
13	<1	33	8	<1	<10	<1	3	<10	5.7	2510	<0.5	5	<1
123	<1	27	5	<1	<10	<1	2	<10	1.5	298	<0.5	2	<1
15	<1	28	6	<1	<10	<1	3	<10	1	139	<0.5	2	<1
132	<1	28	19	<1	20	<1		<10	2	375	<0.5	2	<1
50	<1	40	40	<1	320	<1	12	<10	3.3	128	<0.5	5	<1
68	<1	19	4	<1	10.	<1	3	<10	1.4	133	<0.5	1	<1
16	<1	33	6	<1	<10	<1	2	<10	2.2	520	<0.5	3	<1
109	<1	34	17	<1	<10	<1	4	<10	4.9	1030	<0.5	3	<1
11	<1	33	15	<1	<10	<1	5	<10	1.3	259	<0.5	3	<1
22	<1	34	8	<1	<10	<1	3	<10	1.4	298	<0.5	4	<1
13	<1	51	24	<1	<10	<1	7	<10	0.8	165	<0.5		<1
89	<1	20	3	<1	<10	<1	1	<10	3.6	212	<0.5	3	≤ 1
23	<1	37	14	<1	<10	<1	4	<10	2.2	841	<0.5	4	<1
24	<1	30	11	<1	<10	<1	3	<10	2.9	1040	<0.5	5	<1
101	<1	23	10	<1	<10	<1	3	<10	3.2	601	<0.5	4	<1
79	<1	31	13	<1	<10	<1	4	<10	2.4	590	<0.5	3	<1
35	<1	37.	19	<1	10	<1	5	<10	2.5	866	<0.5	4	<1
79	<1	21	6	<1	<10	<1	3	<10	1.4	104	<0.5	2	<1
43	<1	31	8	<1	<10	<1	4	<10	1	134	<0.5	3	<1
63	<1	28	32	<1	<10	<1	13	<10	1.6	105	<0.5	4	<1
113	<1	40	23	<1	10	<1	8	<10	3.5	516	<0.5	4	<1
32	<1	50	19	<1	<10	<1	6	<10	4	522	<0.5	4	<1
37	<1	39	15	<1	<10	<1	5	<10	1.7	407	<0.5	3	<1
19	<1	38	26	<1	80	<1	8	<10	1.4	88	<0.5	1	<1
39	<1	33.	191	<1	10	<1	67	<10	2.9	251	<0.5	5	1
61	<1	34	95	<1	10	<1	34	<10	7	1580	<0.5	7	1
58	<1	31	47	<1	80	<1	25	<10	2.9	515	<0.5	5	<1
46	<1	31	6	<1	10	<1	3	<10	0.9	90	<0.5	2	<1
132	<1	34	18	<1	<10	<1	5	<10	2.3	417	<0.5	3	<1
45	<1	30	4	<1	<10	<1	2	<10	2.7	302	<0.5	3	<1
28	<1	34	7	<1	<10	<1	3	<10	1.8	443	<0.5	3	<1
51	<1	96	17	<1	<10	<1	5	<10	2.1	225	<0.5	1	<1
148	<1	24	11	<1	<10	<1	3	<10	2.2	394	<0.5	3	<1
34	<1	28	5	<1	<10	<1	2	<10	1.5	173	<0.5	3	<1
30	<1	34	14	<1	<10	<1	4	<10	3.7	1180	<0.5	4	<1
87	<1	17.	5	<1	<10	<1	2	≤ 10	1.6	381	<0.5	2	<1
78	<1	66	23	<1	<10	<1	7	<10	6.5	1550	<0.5	7	<1
21	<1	37	12	<1	20	<1	6	<10	1.6	317	<0.5	3	<1
50	<1	52	11	<1	10.	<1	4	<10	4.1	2260	<0.5		<1
117	<1	43	16	<1	<10	<1	5	<10	8.2	21630	<0.5	7	<1
149	<1	46	20	<1	<10	<1	5	<10	6.6	\| 1210	<0.5		<1
72	<1		72	<1	10.	<1	22	<10	2.7	246	0.6	[-7	<1
58	<1	134	22	<1	<10	<1		<10	3.1	291	<0.5		<1
252	<1			<1	490	<1	≤ 1	<10	14.7	<3	<0.5	32	<1
289	<1	7		<1	590	<1	<1	<10	22.4	<3	<0.5	42	<1
<5	<1	<5	<1	<1	<10	<1	<1	<10	<0.5	4	<0.5	<1	<1
<5	1<1	<5	<1	<1	<10	<1	<1	<10	<0.5	<3	<0.5	<1	<1

Y	Yb	Zn	Zr
MMI-M5	MMIM ${ }^{\text {a }}$	MMIIM5	MMI-M5
5	1	20	5
PPB	PPB	PPB	PPB
93	6	160	40
100	7	140	79
97	6	110	27
104	7	80	63
98	6	110	41
109	- 7	100	149
1270	66	300	50
203	17	60	120
103	6	290	45
76	6	170	21
74	5	180	50
97	7	100	81
- - 71	5	110	90
111	7	120	47
67	4	140	19
101	7	140	43
82	8	170	33
71	5	130	133
60	4	240	22
71	5	350	16
96	5	570	34
445	22	2140	34
87	6	150	23
58	4	190	40
77	5	140	94
127	7	160	24
86	6	190.	25
208	12	130	15
50	4	340	30
110	7	200	48
82	6	270	63
72	5	230	47
92	6	320	42
116	6	510	52
81	6.	230	18
101	6	260	18
543	25	770	20
229	14	1000	30
133	9	840	74
144	9	440	29
255	13	2250	11
1320	110	360	53
1700	80	790	102
1510	61	2930	40
86	6	830	12
113	7	250	35
66	5	200	29
79	6	250	31
125	9.	210	43
88	6	250	34
76	6	260	21
88	6.	240	85
69	5	210	23
152	10	230	161
161	10	550	24
108	8	160	56
88	7	120	100
105	7	150	124
785	35	850	43
160	11	230	65
10	<1	310	9
13	<1	360	15
<5	<1	<20	<5
<	<1	<20	<5

APPENDIX 2E

Results Of Mobile Metal lons Process (MMI-M) Soil Geochemical Surveys on The Stewart Property (Deltaic Grid), Stewart Area, B.C.

ANALYTE	Ag	A]	As	Au	Ba	Bi	Ca	Cd	Co.	Co	Cr	Cu	Dy	Er	Eu	F	Gd	La	[Mg	Mo
METHOD	MM1-MS	MMM-M5	mmil-M5	MM1-MS	MmıMs	MMI-MS	Mmi-Ms	MMIMS	MM1-MS	MMM MS	MMI-MS	MMI-MS	Mmi-ms	MMI-MS	MMI-MS	MMM MS	MMİMS	MMIPMS	MMM1-M5	MMI-MS	MMI-MS
DETECTION	1	1	10	0.1	10	1	10	10	5	5	100	10	1	0.5	0.3			1	5	1	3
UNITS	PPB	PPM	PPB	PPB	PPB	PPB	PPM	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPM	PPB	PPB	PPB	PPM	PP8
6000	8	222	<10	0.2	∞	< 4	<10	10	20	7	<100	240	20	8.2	3	8	12	5	<5	<1	<5
DUP-6000	12	>300	<10	0.3	80	-1	<10	10	38	10	<100	280	28	12	4.5	9	17	13	<5	<1	< 5
6012	14.	278	<10	0.8	130	<1	<10	<10	50	12	<400	470	18	7.1	3.8	17	15	18	25	<1	<5
OUP-8012	12.	>300	<10	1.3	150.	$\leqslant 1$	<10	<10	74	18	<100	750	28	10.3	5.3	18	21	29	< 5	<1	\square
8024	11	253	<10	2.4	200	<1	<10	<10	83	13	<100	400	18	7.3	5.8	22	20	32	<5	<1	< 5
DUP-8024	18	>300	10	32	250	<	<10	10	88	15	<100	580	25	10.2	6.7	28	28	32	<5	<1	< 5
6036	21	188	<10	17	80	<1	<10	30	39	15	<100	10100	77	40	124	4	57	22		<	
DUP-6038	28	248	<10.	2.1	80	<1	<10	40	108	24	<100	13000	115	54.3	28	7	112	67	45	<1	<5
6048	82	235	<10	23.8	40	<1	<10	20	54	49	<100	2580	25	118	7	30	25	20	<	<1	<5
DUP-6048	122	>300	$1<10$	31.3	70	<1	<10	20	67	54	< 100	3380	33	15.3	8.1	40	32	28	< 5	<1	6
DUP. 525	16	>300	<10		60	21							21			57			-5	4	8
							-	10	6	0	$4{ }^{1}$	180	21	9.7	4.1	42	17	2	<	<1	8
537	88	96	10	8.3	790	-1	<10	<10	248	28	$\leqslant 100$	3800	42	20.2	13.1	8	51	97	<5	<1	13
DUP-537	74	143	<10	5.3	8201	≤ 1	10	<10	214	41	<100	3010	41	20.6	11.7	8	47	74	< 5	1	13
549	107.	220.	10	20.5	230	<1	<10	<10	222	23	<100	1000	37	15	11.5	22	41	78	< 5	1	9
DUP. 549	115	210	<10	22.2	180	<1	<10	<10	152	19	-100	1080	32	14.3	9	22	34	51	<5	<1	8
581	83	>300	20	39.4	370	<1	<10	<10	184	7	<100	650	17	7	6	51	21	73	<	<1	
DUP-561	60	277	<10	38.9	300	-1	-10	<10	8	< 5	<100	440	11	4.7	3.3	30	12	28	< 5	<1	8
573	51	89	70	$4 \overline{8.3}$	770	1	<10	<10	63	<5	-100	440	10	3.6	7.2	28	17	23	25	<1	79
DUP-573	44	104	70	34.6	610	1	<10	<10	50	<5	<100	600	10	3.6	6.7	26	17	15	<	<1	73
Standard MMI	ISRM14																				
ANALTEE	A9	A)	As	Au	Ba	Bi	Ca	Cd	Co	Co	Cs	Cu	Dy	Er	Eu	Fe	0 O	La	4	M9	Mo
METHOD	MMIPMS	MMITMB	MMI-MB	MMI-MB	MMIME	MMI-MS	MMMI-M6	MMI-MB	MMIMMS	MMi-ms	MMi-mb	MMI-MS	MMI-ME	Mmions	MML	MMIMMS	MMI ME	MMIME	MMI-MB	Mmicms	MMICME
DETECTION.	-1	1	10	0.1	10.	1	10	10	6	6	100	10	1	0.5	0.6	1	1	1	3	1	6
UNITS	PP8	PPM	PP8	PPB	PP8	PPB	PPM	PPB	PPB	PPB	PPB	PPP	PPB	PPB	PPB	PPM	PPB	PPE	PPB	PPM	PPB
MMMSRM14	17	38	20	39	70	<1	220	<10	15	38	<100	650	2	0.9	0.8	7	3	4	<5	35	27
MmiSRM14	20.	32.	20	39.8	80	<1	280	<10	23	38	-100	670	3	1.1	1.4	4	5	4	<5	40	29
MMISRM14	18.	33.	20	42.5	100	<1	300	<10	20	42	-100	730	3	1.1	1.6	2	6	7	< 5	43	33
MMSSRM14	18	34	<10	44.5	110	≤ 1	270	<10	18.	46	<100	730	2	0.8	1	- 2	4	3	<5	39	32
Recommended Values-standard MMISRM14																					
MMISRM14	18	38	13.	44.1	60	<1	273	8	13	45		785	2	0.8	0.8	1.7	3	3.	2	38	37
ANALYTE	Ag	A]	As	Au	8	Bi	Ca	Ca	Co	Co	Cr	$\frac{\mathrm{Cu}}{\mathrm{MMM} \mid-\mathrm{MS}}$	Dy	Er	Eu	Fe	0	La	4	Mg	Mo
METHOD	MMI-MS	MMI-MS	MMI-MS	MMI-MS	MMI-MS	MM1-MS	MMI-MS	MMI-MS	MAMIMS	MMMLMS	MMITMS		MLI-MS	MMA-MS	MM1-MS	MMI-MS	MMI-MS	MM1+MS	MMM1-M5	[MMI-MS	MMI-M5
DETECTION.		1	10	0.1	10	1	10	10	5.	5	100	10	1	0.5	0.5		1	1 1 5115		1	
UNITS	PPB	PPM	PPB	PPB	PPB	PPB	PPM	PPB	PPB	PPB	PPB	PP8	PP8	PPB	PPB	PPM	PPB	PPB	Pp8	PPM	PPB
BLANK	≤ 1	<1	<10	<0.1	<10	<1	<10	<10	<5	<5	<100	<10	<1	<0.5	<0.5	<1	<1	<1	<5	<1	<5
BLANK	<1	<1	<10	<0.1	<10	<1	<10	<10	<5	< 5	<100	<10	<1	<0.5	<0.5	<1	<1	<1	<5	<1	<5
BLANK	<1	<1	<10	<0.1	<10	<1	<10	<10	<5	<5	<100	<10	<1	<0.5	<0.5	<1	<1	<1	<5	<1	<5
BLANK	<1	<1	<10	0.1	<10	<1	<10	<10	<5	<5	<100	<10	<1	<0.5	<0.5	<	4	<1	< 5	<	<5

ANALYTE	Nb	Nd	Ni	Pb	Pd	Pr	Rb	Sb	Sc	Sm	Sn	Sr	Ta	Tb	Te	Th	Ti	11	U	W	Y
METHOD	MMMIMS	MMI-MS	MMM-M5	MMI-M5	MMIMS	MML-MS	MMM MS	M Mim	MMI-MS	Mal-Ms	MMIMS	MML M 5	MML-M5	MMIMES	MM2-M5	MML-MS	MMIMS	MMA-M5	MMI-M5	MMIMS	MMI-MS
DETECTION	0.5	1	5	10	- 1	- 1		1		1		10	1	1	10.	0.5	3	0.5	1		5
UNITS	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPP	PPB	PPB	PP8	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB
6000	1.6	18	38	30	<1	4	50	<1	41	7	<1	<10	<1		<10	2.1	821	<0.5		<1	93
DUP-6000	3.5	31	30	40	<1	7	50	<1	52	11	<1	10	1	4	<10	4.1	2280	<0.5		<1	108
6012	3.1	32	18	30	<1	8	97	<1	29	10	<1	<10	<1		<10	4.5	779	<0.5		<1	74
DUP. 6012	6.3	47.	21	40	1	11	117	<1	43	16	$\leqslant 1$	<10	4		-10	8.2	1630	<0.5		<1	98
8024	2.6	58	15	70	<1	14	109	1	34	17	<1	<10	<1		<10	4.9	1030	<0.5		<1	77
DUP-6024	3.2	81	21	100	<1	14	149	<1	48	20	$\leqslant 1$	<10	$\leqslant 1$	5	<10	8.6	1210	<0.5		<1	105
6038	<0.5	82	18	40	<1	15	83	<1	28	32	<1	<10	<1	13	<10	1.6	105	<0. 5		<1	543
OUP-8038	0.8	208	27	60	<1	40	72	-1	45	72	<1	10	<1	22	<10	2.7	248	0.6		<1	785
6048	0.7	47	30	2000	<1	40	51	<	96	17	<1	<10	<1	5	<10	2.1	225	<0.5		<1	125
DUP. 6048	0.8	61	41	2350	<1	13	58	<1	134	22	<1	<10	<1	6	<10	3.1	281	<0.5		-	180
525	13.2	63	45	170	- 2	14	147	1	43	19	<1	10	1	5	<10	18.5	878	0.6	10	<1	118
DUP-525	11.5	40	30	130	--1	9	120	<1	27	12	<1	<10	≤ 1	3	<10	10.6	880	0.8		<1	90
537	0.5	181	7	130	<1	37	30	<1	103	44	<1	50	4		<10	6.6	251	0.8		<1	183
DUP.537	0.6	133	- 7	140	<1	29	31	1	107	38	1	20	-1		<10	7	329	0.8		1	183
549	5.1	125	7	70	1	29	185	1	81	38	<1	10	<1		<10	10.7	834	1		<1	131
DUP. 548	5	92	5	80	<1	21	158	4	74	28	<1	<10	<1		<10	9.5	923.	0.8		<1	144
581	9.3	80	8	70	<1	21	128	- 3	38	20	1	2	<1		<10	2.4	2580	1.5	0	4	94
DUP-581	7	37	< 5	50	<1	8	97	- 1	27	10	1	<10	<1	2	<10	5.9	1850	0.9	3	- 1	44
573	43.9	73	< 5	30	<1	13	110	5	28	23	4	40	2	2	10	19.7	13500	1.1	2	20	25
DUP. 573	40.2	81	<5	20	< 1	11	86	$1-4$	28	22	\square	20	2	2	<10	11.6	11100	- 1	2	16	22
Standard MMi																					
ANALYTE	No	Na	N	Pb	Pd	Pr	Rb	Sb	Sc	3m	Sn	Sr	Ta	70	Te	Th	11	71	0	w	Y
METHOD	MMIME	MMI-MS	PMa-MS	MMB-MS	Mimi-mb	MMi-Ms	MMI-MS	MMİAS	MMI-MS	MMIMB	MMI-MS	MMIM6	MMAIMS	MMIMS	MMI-M5	MMI-M5	MMITH5	MMIF+A5	MMI-MS	MMi-mb	MMITMS
DETECTION	0.5	1	5	10	1	1	8	1	5	1	1	10	1		10	0.3	3.	0.6			8
UNITS	PPB	PPB	PPB	PPP	PPB	PPB	PPB	PPB	PPB	PP8	PPP	PP8	PPB	PPB	PPB	PPB	PP8	PP8	PPP	PPB	PPB
MMISRM14	<0.5	11	189	120	38	3	252	<1	5	3	<1	480	<1	4	<10	14.7	<3	<0.5	32	<1	10
MMISRM14	<0.5	18	210	160	41	4	289	<1	7	5.	<1	590	<1	1	<10	22.4	<3	<0.5	42	-1	13
MMISRM14	<0.5	24.	280	160	44	5	310.	<1	9	6	<1	610	< 1	<1	<10	21.5	<3	0.6	42	<1	14
MMISRM44	<0.5	12.	287	120	48.	2	272	<1	8	4	<1	510	<1	4	<10	15.1	<3	<0.5	34	<1	9
Recommende																					
MMISRM14	<0.5	10	289	100	46	2	283	<1	5	3.	<1	518	<1	4	<10	18.2	<	<0.5	40	<1	8
ANALYTE	Nb	Nd	Ni	Pb	Pd	Pr	Rb	Sb	Sc	Sm.	Sn	Sr	Ta	Tb	Te	Th	7	TI	U	w	Y
METHOD	MMI-MS	MM1-MS	MML-MS	MMI-MS	MMI-M5	MMM-MS	MMITMS	MMI-MS	MMIM MS	MMl-M5	MM1-MS	MMMIM5	MMI-MS	MMI-MB	MMIMS	WML-M5	MML-MS	MMI-MS	MML-MS	MML-M5	MM1-MS
DETECTION	0.5	1	5	10	,	1			- 3			10	- 1	1	10	0.3	3	0.5	1	1	5
UNITS	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB
BLANK	<0.5	<1	<5	<10	<1	$\leqslant 1$	< 5	<1	<5	<1	<1	<10	<1	<1	<10	<0.5	4	-0.5	<1	<1	<5
BLANK	<0.5	<1	<5	<10	<1	<1	<5	<1	<5	<1	<1	<10	<1	<1	<10	<0.5	<3	<0.5	<1	<1	<5
BLANK	<0.5	<1	<5	<10	4	<1	<5	<1	<5	<1	<1	<10	<1	<1	<10	<0.5	<3	<0.5	≤ 1	<1	<5
BLANK	<0.5	<1	≤ 5	<10	$\leqslant 1$	<1	<5	\leqslant	<5	<1	<1	<10	<1	<1	<10	<0.5	-3	<0.5	4	≤ 1	<5

ANALYTE	Yb	Zn	Żr
METHOD	MMI-MS	MMI-MS	MMILMS
DETECTION	1	20	3
UNITS	PP8	PPB	PPB
6000	6	160	40
DUP-6000	8	160	58
	5	110	90
			0
DUP.8012	7	120	100
6024	5	140	94
DUP-8024	7	150	124
6038	25	770	20
DUP. 6038	35	850	43
6048	8	210	43
DUP-6048	11	230	85
525	10	170	501
DUP-525	7	150	312
537	16	380	158
Qup-537	17	430	178
549	12	60	277
DUP. 548	12	∞	241
581	6	50	134
DUP. 589	4	<20	107
573	3	60	45
DUP.573	3	80	51
Standard MM			
ANal yie	Y	2 n	7
METHOD	MMIM ${ }^{\text {S }}$	Mmi-ms	MM1-M8
DETECTION	1	20	- 3
UNITS	PPB	PPB	PPB
MMISRM14	<1	310	9
MMISRM14	<1	380	15
MMISRM14	<1	410	14
MMISRM14	<1	300	9
Recommende			
MMISRM14	4	345	13
ANALYTE	Yi	Zn	2 r
METHOD	MMITMS	MMI-MS	MMI-MS
DETECTION	1	20	5
UNITS	PPB	PPB	PPB
BLANK	<1	<20	<
BLANK	<1	<20	<5
BLANK	<1	<20	<5
BLANK	$\leqslant 1$	<20	<5

Analyte	Grid East	Grid North	A	AgRR	Al	AIR	As	AsRR	Al	AuRR	Ba	BaRR	B1	BiRR	Ca	CaRR	Cd
Method			NM1-125		MMITM5		Manl-m		MM1-m5		WMITIS		WMIM5		M M1-M5		K- ${ }^{1}$
Dataction			1		1		10		0.1		10		1		10		10
Units:			PPB		PPM		PPB		PPB		PPB		PPB		PPM		PPB
500	$54+00$	44+75	21	3	259	2	5	1	5.7	37	120	3	0.5	1	5	1	5
502	$54+00$	45+25	36	5	273	2	20	4	21	137	150	4	0.5	1	5	1	5
503	$54+\infty$	45+50	37	5	169	1	120	24	25.6	167	320	8	0.5	1	5	1	5
504	$54+\infty$	45+75	44	6	154	1	150	30	32.5	212	300	8	1	2	5	1	5
505	54+75	$45+75$	53	7	226	2	20	4	15.4	101	140	4	0.5	1	5	1	5
506	54+75	$46+00$	82	11	143	1	50	10	36.1	236	310	8	2	4	5	1	5
507	$54+75$	46+25	94	13	115	1	40	8	39.9	261	240	6	0.5	1	5	1	5
508	54+75	$46+50$	84	11	165	1	80	16	39.1	255	220	6	2	4	5	1	5
509	54+75	$46+75$	72	10	255	2	20	4	55.8	364	80	2	0.5	1	5	1	10
510	54+75	$47+00$	59	8	137	1	10	2	64.8	423	220	6	0.5	1	5	1	5
512	$54+75$	47+25	163	22	133	1	10	2	41.5	271	200	5	0.5	1	5	1	5
513	$54+75$	47+50	23	3	251	2	10	2	1.8	12	70	2	0.5	1	5	9	5
514	54+75	47+75	93	13	263	2	20	4	9.8	64	250	7	0.5	1	5	1	20
515	54+75	$48+00$	36	5	256	2	5	1	1.9	12	60	2	0.5	1	5	1	50
516	54+75	$48+25$	15	2	257	2	10	2	0.7	5	50	1	0.5	1	5	1	40
517	54+75	$48+50$	15	2	295	2	30	6	0.6	4	370	10	0.5	1	5	9	10
518	54+75	48+75	8	1	194	1	5	1	0.7	5	60	2	0.5	1	10	2	10
519	$53+\infty$	44+50	15	2	200	2	5	1	2.9	19	50	1	0.5	1	5	1	20
520	$53+\infty$	44+25	15	2	300	2	40	8	13.9	91	150	4	0.5	1	5	1	5
521	$53+00$	$44+\infty$	8	1	253	2	10	2	1.7	11	120	3	0.5	1	5	1	5
600	$51+00$	$43+50$	29	4	187	1	5	1	2.2	14	130	3	0.5	1	5	1	20
601	$51+\infty$	43+25	48	6	273	2	10	2	7.6	50	350	9	0.5	1	5	1	5
602	$51+\infty$	$43+\infty$	7	9	249	2	5	1	0.2	1	110	3	0.5	1	5	1	20
603	$51+\infty$	42+75	9	i	242	2	5	1	0.2	1	160	4	0.5	1	5	1	20
604	$51+\infty$	$42+50$	16	2	292	2	5	1	0.2	1	110	3	0.5	1	5	1	10
605	$51+\infty$	42+25	5	1	300	2	5	1	0.1	1	120	3	0.5	1	5	1	10
606	$51+\infty$	$42+\infty$	8	1	294	2	5	1	1.1	7	220	6	0.5	1	5	1	20
607	$51+\infty$	$41+75$	37	5	280	2	5	1	2.9	19	170	5	0.5	1	5	1	20
608	$51+\infty$	41+50	34	5	300	2	5	1	5.9	39	290	8	0.5	1	5	1	10
609	$51+\infty$	$41+25$	11	1	236	2	5	1	0.4	3	70	2	0.5	1	5	1	20
610	$51+\infty$	$41+00$	17	2	227	2	5	1	1	7	80	2	0.5	1	5	4	5
612	$51+\infty$	$40+75$	16	2	292	2	5	1	0.8	5	90	2	0.5	1	5	1	10
613	$51+00$	$40+50$	12	2	102	1	5	1	2.5	16	100	3	0.5	1	20	4	20
614	$51+\infty$	$40+25$	10	1	276	2	20	4	1.2	8	470	12	0.5	1	10	2	50
615	$51+\infty$	$40+00$	7	1	210	2	5	1	0.7	5	180	5	0.5	1	10	2	100
616	$51+\infty$	$39+75$	25	3	300	2	5	1	5.2	34	180	5	0.5	1	5	1	10
617	$51+\infty$	$39+50$	6	1	271	2	5	1	0.2	1	110	3	0.5	1	5	1	50
525	$54+25$	45+75	22	3	300	2	10	2	12.1	79	70	2	0.5	1	5	1	20
526	54+25	$46+\infty$	73	10	300	2	20	4	30.7	200	210	6	0.5	1	5	1	5
527	54+25	$46+12.5$	93	13	141	1	10	2	40.3	263	300	8	0.5	1	5	1	5
528	54+25	$46+25$	58	8	300	2	40	8	43.3	283	340	9	0.5	1	5	1	5
529	54+25	$46+37.5$	49	7	217	2	20	4	33.1	216	130	3	0.5	1	5	1	5
530	$54+25$	$46+50$	101	14	75	1	50	10	58.5	382	110	3	0.5	1	5	1	5
531	54+25	$46+62.5$	49	7	108	1	5	1	23.2	152	20	1	0.5	1	5	1	5
532	$54+25$	$46+80$	74	10	225	2	40	8	64.4	421	290	8	2	4	5	1	5
533	54+25	$46+87.5$	21	3	221	2	5	1	18.2	119	30	1	0.5	1	5	1	10
534	54+25	$47+00$	27	4	253	2	5	1	21.3	139	10	1	0.5	1	5	1	10
535	$54+25$	47+12.5	108	15	300	2	20	4	53.6	350	220	6	0.5	1	5	1	5
536	$54+25$	47+25	60	8	156	1	20	4	18.8	123	50	1	0.5	1	5	1	5
537	$54+25$	$47+40$	68	9	99	1	5	1	6.3	41	790	21	0.5	1	5	1	5
538	54+25	47+50	22	3	184	1	20	4	1.3	8	670	18	0.5	1	5	1	5
539	$54+25$	47+75	56	8	0.5	1	5	1	5.7	37	120	3	0.5	1	5	1	30
540	$55+00$	47+75	115	15	190	1	5	1	14.5	95	5	1	0.5	1	5	1	10

Analyte	Grid East	Grid North	Ag	AgRR	AI	AIRR	As	AsRR	Al	AuRR	Ba	EaRR	B1	BIRR	Ca	CaRR	Cd
Method					WMITH5		Wmilm5		MMM1-H5		Numidis		Winl-ms		MWH\| M 5		Mmilith
Dotaction			1		1		10		0.1		10		1		10		10
Units			PPB		PP\%		PPB		PPB		PPB		PPB		PPM		PPB
541	$55+\infty$	47+50	125	17	150	1	5	1	22.8	149	5	1	0.5	1	5	1	5
542	$55+\infty$	$47+25$	53	7	248	2	5	1	17.7	116	50	1	0.5	1	5	1	5
543	$55+\infty$	47+12.5	23	3	300	2	5	1	19.9	130	120	3	0.5	1	5	1	5
544	55+00	$47+\infty$	68	9	157	1	10	2	52.4	342	190	5	0.5	1	5	1	5
545	$55+\infty$	$46+87.5$	45	6	143	1	5	1	13.1	86	30	1	0.5	1	5	1	5
546	$55+00$	$46+75$	58	8	97	1	5	1	28	183	100	3	0.5	1	5	1	5
547	$55+\infty$	46+62.5	99	13	147	1	20	4	54.9	359	430	11	05	1	5	1	5
548	$55+\infty$	$46+50$	36	5	263	2	5	1	17.7	116	90	2	0.5	1	5	1	5
549	$55+00$	$46+37.5$	107	14	220	2	10	2	20.5	134	230	6	0.5	1	5	1	5
550	$55+\infty$	$46+25$	99	13	247	2	40	8	54	353	400	11	0.5	1	5	1	5
551	$55+\infty$	$46+12.5$	77	10	189	1	5	1	31.5	206	140	4	0.5	1	5	1	5
552	$55+\infty$	$46+00$	29	4	217	2	5	1	15.7	103	40	1	0.5	1	5	1	5
553	$55+00$	$45+87$	16	2	219	2	5	1	4.8	31	40	1	0.5	1	5	1	5
554	$55+\infty$	45+75	23	3	239	2	5	1	9.3	61	40	1	0.5	1	5	1	5
555	52+25	45+25	58	8	178	1	5	1	11	72	5	1	0.5	1	5	1	5
558	52+35	4548	52	7	300	2	50	10	27.6	180	360	10	1	2	5	1	5
557	52+40	4560	56	8	272	2	70	14	35.2	230	1470	39	2	4	10	2	5
558	52+44	4571	25	3	300	2	10	2	8.3	54	150	4	0.5	1	5	1	5
558	$52+48$	4584	26	4	300	2	5	1	12.7	83	210	6	0.5	1	5	1	5
560	52+53	4593	23	3	300	2	5	1	11.4	74	180	5	0.5	1	5	1	10
561	52+56	4605	83	11	300	2	20	4	39.4	257	370	10	0.5	1	5	1	5
562	52+62	4620	31	4	294	2	10	2	16.3	106	230	6	0.5	1	5	1	5
563	52+66	4630	46	8	272	2	10	2	27.7	181	130	3	0.5	1	5	1	5
564	52+71	4643	49	7	220	2	50	10	55.2	360	340	9	1	2	5	1	5
565	52+75	4653	40	5	230	2	5	1	8.2	54	60	2	0.5	1	5	1	30
568	52+80	4865	19	3	266	2	5	1	8.6	56	80	2	0.5	1	5	1	20
567	52+88	4887	98	13	80	1	50	10	18.8	123	670	18	0.5	1	30	6	90
568	52+98	4714	8	1	300	2	10	2	3.1	20	210	6	0.5	1	5	1	5
569	$51+75$	4525	63	8	126	1	80	16	21.4	140	1190	32	0.5	1	5	1	5
570	$51+78$	4538	52	7	300	$\overline{2}$	30	6	10.3	67	200	5	0.5	1	5	1	5
571	$51+82$	4549	78	10	288	2	5	1	14.3	93	80	2	0.5	1	5	1	5
572	$51+86$	4560	77	10	137	1	40	8	37	242	380	10	1	2	5	1	5
573	51+92	4575	51	7	89	1	70	14	46.3	302	770	20	1	2	5	1	5
574	51+96	4585	55	7	130	1	110	22	57.2	374	1760	47	9	18	5	1	5
575	$52+00$	4596	73	10	130	1	120	24	48.1	314	1830	48	5	10	5	1	5
576	$52+05$	4510	93	13	300	2	280	56	46.3	302	3330	88	10	20	5	1	5
577	52+09	4617	79	11	295	2	180	36	64	418	800	21	3	6	5	1	5
578	$52+13$	4631	31	4	98	1	5	1	31.4	205	120	3	0.5	1	5	1	5
579	52+18	4642	48	6	129	1	10	2	23.3	152	420	11	0.5	1	5	1	5
580	52+23	4655	55	7	228	2	5	1	27.9	182	110	3	0.5	1	5	1	10
581	52+28	4666	77	10	167	1	20	4	20.8	136	590	16	0.5	1	5	1	20
6000	$48+00$	$40+50$	8	1	222	2	5	1	0.2	1	60	2	0.5	1	5	1	10
6001	$48+00$	40+75	10	1	243	2	5	1	0.8	5	130	3	0.5	1	5	1	10
6002	$48+\infty$	$41+00$	14	2	215	2	5	1	1.3	8	170	5	0.5	1	5	1	5
6003	$48+00$	41+12.5	24	3	236	2	5	1	1.5	10	220	6	0.5	1	5	1	5
6004	$48+00$	41+25	13	2	208	2	5	1	0.4	3	70	2	0.5	1	5	1	10
6005	$48+00$	$41+37.5$	35	5	266	2	5	1	3.3	22	220	6	0.5	1	5	1	5
6006	$48+00$	$41+50$	36	5	89	1	60	12	18.4	120	2760	73	0.5	1	60	12	5
6007	$48+00$	$41+62.5$	29	4	95	1	20	4	9.4	61	250	7	0.5	1	5	1	5
6008	$48+50$	$40+50$	8	1	233	2	5	1	0.2	1	210	6	0.5	1	5	1	20
6009	$48+50$	40+75	7	1	218	2	5	1	0.1	1	180	5	0.5	1	5	1	20
6010	$48+50$	$41+00$	22	3	238	2	5	1	1.6	10	170	5	0.5	1	5	1	5
6011	$48+50$	$41+12.5$	33	4	242	2	5	1	3.4	22	300	8.	0.5	1	5	1	5

Analyte	Grid East	Orid North	Ag	AgRR	Al	AIRR	As	AsRR	Au	AURR	Ba	BaRR	BI	BIRR	Ca	CaRR	Cd
Mettiod			MM1-m5		MMIINS		MM1FM5		MMMPM5		M M AR-M5		Mullat		MMITA5		MWI-M5
Detaction			1		1		10		0.1		10		1		10		10
Units			PPB		PPW		PPB		PPB		PPB		PPB		PPNT		PPB
6012	$48+50$	$41+25$	14	2	276	2	5	1	0.9	6	130	3	0.5	1	5	1	5
6013	$48+50$	41+37.5	12	2	224	2	5	1	0.05	1	80	2	0.5	1	5	1	10
6014	48+50	$41+50$	34	5	205	2	5	1	0.3	2	80	2	0.5	1	5	1	10
6015	$48+50$	$41+62.5$	28	4	208	2	5	1	0.2	1	40	1	0.5	1	5	1	20
6016	$48+50$	41+75	13	2	209	2	5	1	0.4	3	40	1	0.5	1	5	1	20
6017	$48+50$	$41+87.5$	7	1	239	2	5	1	0.1	1	50	1	0.5	1	5	1	20
6018	$49+\infty$	$40+25$	7	1	238	2	5	1	0.3	2	80	2	0.5	1	5	1	20
6019	$49+\infty$	$40+50$	11	1	208	2	5	1	0.05	1	50	1	0.5	1	5	1	20
6020	$49+\infty$	$40+75$	6	1	247	2	5	1	0.8	5	120	3	0.5	1	10	2	20
6021	$49+00$	$41+00$	14	2	125	1	5	1	2.2	14	740	20	0.5	1	220	44	40
6022	$49+\infty$	41+25	13	2	221	2	5	1	0.7	5	60	2	0.5	1	5	1	10
6023	$49+00$	$41+50$	10	1	230.	2	5	1	0.05	1	60	2	0.5	1	5	1	30
8024	$49+00$	$41+75$	11	1	253	2	5	1	2.4	16	200	5	0.5	1	5	1	5
8025	$49+00$	$42+\infty$	10	1	195	1	5	1	0.05	1	50	1	0.5	1	5	1	20
6026	$49+\infty$	$42+25$	7	1	203	2	5	1	0.1	1	30	1	0.5	1	5	1	30
6027	$49+00$	$42+50$	24	3	176	1	5	1	0.1	1	40	1	0.5	1	5	1	10
6028	51+25	$41+\infty$	4	1	200	2	5	1	0.2	1	110	3	0.5	1	5	1	40
8029	51+25	41+25	14	2	224	2	5	1	0.2	1	50	1	0.5	1	5	1	20
8030	$51+25$	41+50	11	1	227	2	5	1	0.2	1	50	1	0.5	1	5	1	30
6031	$51+25$	$41+75$	17	2	238	2	5	1	2.5	16	100	3	0.5	1	5	1	30
6032	51+25	$42+\infty$	14	2	227	2	5	1	0.8	5	190	5	0.5	1	5	1	20
6033	51+25	42+25	15	2	215	2	5	1	0.4	3	130	3	0.5	1	5	1	20
6034	51+25	$40+75$	16	2	201	2	5	1	0.4	3	50	1	0.5	1	5	1	30
6035	$51+25$	$40+50$	15	2	193	1	5	1	0.2	1	60	2	0.5	1	5	1	20
6036	51+25	$40+25$	21	3	168	1	5	1	1.7	11	60	2	0.5	1	5	1	30
6037	51+25	$40+\infty 0$	11	1	235	2	5	1	0.7	5	110	3	0.5	1	5	$?$	30
6038	51+25	39+75	7	1	253	2	5	1	0.2	1	60	2	0.5	1	5	1	30
6039	51+25	39+50	9	1	220	2	5	1	0.05	1	70	2	0.5	1	5	1	30
6040	51+25	39+25	4	1	182	1	5	1	0.05	1	170	5	0.5	1	30	6	100
6041	$50+75$	39+37.5	10	1	198	2	5	1	0.4	3	110	3	0.5	1	5	1	30
6042	$50+75$	39+12.5	5	1	200	2	5	1	0.4	3	110	3	0.5	1	20	4	20
6043	$50+75$	$38+87.5$	4	1	192	1	5	1	0.05	1	200	5	0.5	1	40	8	70
6044	$50+75$	$39+62.5$	7	?	197	1	5	1	0.05	1	50	1	0.5	1	5	1	60
6045	50+75	$39+87.5$	5	1	238	2	5	1	0.6	4	100	3	0.5	1	5	1	20
6046	$50+75$	$40+12.5$	12	2	211	2	5	1	0.3	2	40	1	0.5	1	5	1	20
6047	$50+75$	40+37.5	16	2	214	2	5	1	0.2	1	50	1	0.5	1	5	1	30
6048	$50+75$	40+62.5	92	12	235	2	5	1	23.8	155	40	1	0.5	1	5	1	20
6049	$50+75$	$40+87.5$	10	1	235	2	5	1	1.3	8	70	2	0.5	1	5	1	10
6050	$50+75$	$41+12.5$	7	1	195	1	5	1	0.1	1	40	1	0.5	1	5	1	20
6051	$50+75$	41+37.5	8	1	240	2	5	1	0.4	3	70	2	0.5	1	5	1	10
6052	50+75	41+62.5	7	1	214	2	5	1	0.2	1	70	2	0.5	1	5	1	20
6053	50+75	41+87.5	9	1	300	2	5	1	0.8	5	130	3	0.5	1	5	1	10
6054	50+75	42+12.5	8	1	234	2	5	1	0.2	1	100	3	0.5	1	5	1	60
25th PERCENTILE				11		189		5		0.4		60		0.5		5	
BACKGROUND				7.428571		131.3919		5		0.153125		37.75882		0.5		5	

Analyto	CdRR	Ce	CerR	Co	CORR	Cu	CuRR	Dy	DyRR	Er	ErRR	Eu	EuRR	Fe	ForR	Gd	GdRR	$\underline{4}$	LaRR
Method		MMTM		NuTITM5		Mmilat		MMITH5		NMITM5		MMITMS		\%M1-m5		MMITM5		Numint	
Detaction		5		5		10		1		0.5		0.5		1		1		1	
Units		PPB		PPB		PPB		PPB		PPB		PPB		PPM		PPB		PPB	
500	1	101	5	10	2.	550	2	25	2	10.3	1	6	2	29	4	26	2	42	6
502	1	104	5	25	4	2240	6	29	2	13	2	7.4	3	23	3	29	3	47	7
503	1	374	17	36	6	5220	14	111	7	50.6	7	40	14	122	17	140	12	155	23
504	1	174	8	8	1	800	2	29	2	12.4	2	8.6	3	147	20	33	3	69	10
505	1	172	8	19	3	1040	3	34	2	15	2	9.5	3	48	7	41	4	63	9
506	1	164	7	6	1	830	2	33	2	15.8	2	8.6	3	116	16	37	3	60	9
507	1	142	6	12	2	590	2	35	2	18.5	3	12.9	5	48	7	42	4	52	8
508	1	123	6	14	3	1980	5	37	2	20.5	3	13.7	5	89	12	44	4	41	6
509	2	75	3	10	2	2040	6	22	1	10.9	2	6	2	27	4	21	2	29	4
510	1	201	9	54	10	630	2	27	2	11.6	2	8.3	3	37	5	31	3	57	8
512	1	209	9	21	4	1020	3	40	3	17.4	2	12.1	4	18	2	49	4	98	15
513	1	160	7	19	3	1830	5	42	3	19	3	12.7	4	9	1	48	4	59	9
514	4	202	9	30	5	3830	11	61	4	31.1	4	16.1	6	18	2	69	6	103	15
515	10	123	6	13	2	4170	11	67	4	31	4	13.8	5	12	2	60	5	44	7
516	8	47	2	23	4	1190	3	34	2	17.8	3	6	2	11	2	27	2	18	3
517	2	101	5	19	3	1120	3	43	3	20.9	3	8.3	3	8	1	38	3	46	7
518	2	168	8	13	2	630	2	51	3	24.2	3	14.3	5	11	2	60	5	76	11
519	4	96	4	8	1	2410	7	64	4	32	5	14.1	5	9	1	60	5	42	6
520	1	105	5	17	3	860	2	26	2	11.3	2	7.7	3	45	6	28	2	48	7
521	1	72	3	11	2	420	1	28	2	11.2	2	6.7	2	16	2	25	2	25	4
600	4	147	7	11	$\overline{2}$	1550	4	105	7	45.4	6	22	8	5	1	93	8	78	12
601	1	165	7	34	6	730	2	44	3	19.4	3	13.6	5	33	5	52	5	66	10
602	4	66	3	8	1	610	2	45	3	24.5	3	8.8	3	11	2	40	4	23	3
603	4	59	3	21	4	950	3	49	3	22.4	3	10	4	14	2	44	4	28	4
604	2	42	2	13	2	720	2	32	2	15.1	2	6.1	2	20	3	26	2	16	2
605	2	40	2	10	2	630	2	24	2	10.6	1	5.1	2	14	2	21	2	14	2
606	4	41	2	10	2	980	3	27	2	12.1	2	5.6	2	15	2	22	2	15	2
607	4	41	2	15	3	980	3	30	2	15.2	2	4.8	2	10	1	21	2	14	2
608	2	42	2	15	3	810	2	22	1	9.4	1	4.2	1	21	3	16	1	15	2
809	4	22	1	7	1	1370	4.	35	2	17.2	2	5	2	4	1	21	2	8	1
610	1	70	3	15	3	1640	5	54	4	29.4	4	12.3	4.	10	1	50	4	24	4
612	2	25	1	12	2	590	2	19	1	9.6	1	2.8	1	13	2	11	1	9	1
613	4	640	29	96	17	16200	45	309	20	182	26	95.2	34	2	1	363	32	177	28
614	10	94	4	57	10	5560	15	91	6	56.5	8	16.4	6	36	5	74	7	58	9
615	20	34	2	92	16	8230	23	86	6	50.2	7	10.5	4	14	2	57	5	32	5
616	2.	146	7	24	4	8940	25	129	8	67.6	10	25.9	9	26	4	109	10	90	13
617	10	22	1	26	5	460	1	26	2	12.4	2	4.3	2	8	1	17	2	8	1
525	4	100	5	14	3	2310	6	27	2	12.7	2	6.2	2	57	8	24	2	34	5
528	1	142	6	35	6	1500	4	21	1	8.4	1	6.9	2	55	8	23	2	48	7
527	1	272	12	14	3	550	2	20	1	10.9	2	9.3	3	31	4	35	3	118	17
528	1	204	9	20	4	1200	3	22	1	9.7	1	7.9	3	81	11	27	2	74	11
529	1	240	11	22	4	2450	7	40	3	19.6	3	11.9	4	83	12	46	4	73	11
530	1	137	6	9	2	1820	5	41	3	23.8	3	14.8	5	78	11.	51	5	42	6
531	1	185	8	38	7	1210	3	34	2	15.5	2	12	4	15	2	40	4	38	6
532	1	149	7	26	5	1610	4	27	2	12.7	2	8.4	3	83	12	29	3	47	7
533	2	120	5	45	8	2150	6	39	3	21.2	3	8.8	3	26	4	33	3	34	5
534	2	77	3	21	4	1760	5.	26	2	13.8	2	5.7	2	22	3	22	2	23	3
535	1	137	6	35	6	1820	5	30	2	12.5	2	7.8	3	46	6	30	3	48	7
536	1	167	8	41	7	1090	3	50	3	23.9	3	17.8	6	29	4	70	6	135	20
537	1	249	11	28	5	3600	10	42	3	20.2	3	13.4	5	6	1	51	5	97	14
538	1	388	18	45	8	720	2	61	4	26.2	4	21.9	8	17	2	84	7	169	25
539	6	165	7	24	4	3950	11	42	3	18.3	3	12.5	4	19	3	47	4	61	9
540	2	370	17	20	4	5750	16	105	7	55.5	8	29.4	10	17	2	122	11	157	23

Analyte	CdRR	C.	CeRR	Co	CORR	Cu	CuRR	Dy	DyRR	Ef	ErRR	Eu	EuRR	Fe	FeRR	Gd	GdRR	La	LaRR
Mothod		Mallis		NMITH5		Menfots		Mmitat				NMIMS		MMICA5		MMITM5		NMITh5	
Detection		5.		5		10		1		0.5		0.5		1		1		1	
Units		PPB		PPB		PPB		PPB		PPB		PPB		PPM		PPB		PPB	
541	1	397	18	30	5	4910	14	72	5	36.8	5	22.9	8	21	3	95	8	99	15
542	1	318	14	12	2	1920	5	43	3	19.9	3	12.7	4	25	3	50	4	106	16
543	1	104	5	21	4	1540	4	23	1	11.4	2	6	2	46	6	21	2	34	5
544	1	228	10	12	2	920	3	33	2	15.6	2	10.7	4	24	3	41	4	88	13
545	1	358	16	14	3	1400	4	66	4	38.6	5	17.1	6	9	1	70	6	136	20.
546	1	348	16	13	2	1540	4	91	6	48.1	7	30.8	11	5	1	115	10	163	24
547	1	286	13	24	4	1710	5	46	3	22	3	15.3	5	44	6	55	5	103	15
548	1	680	31	29	5	2060	6	93	6	54.4	8	27.7	10	22	3	110	10	294	44
549	1	222	10	23	4	1090	3	37	2	15	2	11.5	4	22	3	41	4	78	12
550	1	249	11	31	6	1540	4	45	3	22.6	3	12.4	4	56	8	52	5	89	13
551	9	221	10	17	3	1520	4	53	3	28.8	4	13.5	5	18	2	61	5	94	14.
552	1	182	8	26	5	1880	5	43	3	19.4	3	11.5	4	21	3	49	4	53	8
553	1	139	6	17	3	2050	6	42	3	20.2	3	9.3	3	28	4	43	4	37	5
554	1	127	6	25	4	1820	5	46	3	22.6	3	8.7	3	40	6	42	4	39	6
555	1	274	12	2.5	1	490	1	36	2	16.3	2	10.6	4	11	2	47	4	100	15
556	1	132	6	2.5	1	140	1	14	1	5.6	1	8.9	3	56	8	22	2	36	5
557	1	1360	61	2.5	1	480	1	108	7	52.9	7	59.4	21	53	7	169	15	718	106
558	1	227	10	8	1	1230	3	27	2	12.1	2	9.6	3	71	10	32	3	95	14
558	1	37	2	8	1	740	2	13	1	7.9	1	2.4	1	54	7	9	1	15	2
580	2	25	1	24	4	680	2	7	1	4.7	1	1.6	1	81	11	5	1	10	1
561	1	164	7	7	1	650	2	17	1	7	1	6	2	51	7	21	2	73	11
562	1	30	1	13	$\overline{2}$	710	2	8	1	4.7	1	1.5	1	80	11	5	1	14	2
563	1	110	5	7	1	570	2	19	1	7.9	1	6	2	43	6	23	2	39	6
564	1	208	9	2.5	1	300	1	18	1	7.5	1	7.1	3	73	10	28	2	78	12
565	6	19	1	23	4	1340	4	12	1	7.2	1	1.7	1	24	3	6	1	7	1
566	4	99	4	16	3	1490	4	32	2	15.5	2	7.3	3	43	6	29	3	36	5
587	18	72	3	30	5	3430	9	221	14	133	19	72.5	28	14	2	296	26	507	75
568	1	251	11	13	2	440	1	33	2	14.3	2	9.1	3	28	4	34	3	80	12
569	1	385	17	48	9	810	2	49	3	22.9	3	18.7	7	35	5	64	6	82	12
570	1	483	22	12	2	620	2	69	4	29.2	4	22.7	8	122	17	95	8	186	28
571	1	72	3	16	3	590	2	17	1	7.9	1	4.3	2	47	7	16	1	26	4
572	1	163	7	2.5	1	160	1	15	1	6.1	1	7.4	3	74	10	20	2	54	8
573	1	63	3	2.5	1	440	1	10	1	3.6	1	7.2	3	26	4	17	2	23	3
574	1	169	8	2.5	1	280	1	14	1	6.2	1	7.1	3	138	19	20	2	58	9
575	1	333	15	2.5	1	310	1	21	1	8.7	1	13.1	5	199	28	34	3	197	29
576	1	353	16	15	3	690	2	23	1	8.9	1	12	4	251	35	33	3	155	23
577	1	126	6	8	1	430	1	8	1	3.6	1	4	1	136	19	12	1	54	8
578	1	239	11	2.5	1	600	2	44	3	21.2	3	24	8	17	2	69	6	53	8
579	1	539	24	87	16	400	1	56	4	29.2	4	32	11	39	5	89	8	143	21
580	2	240	11	25	4	830	2	39	3	18.1	3	12.6	4	50	7	47	4	74	11
581	4	623	28	50	9	2830	8	111	7	60.5	9	37.5	13	58	8	134	12	247	37
6000	2	20	1	7	1	240	1	20	1	9.2	1	3	1	8	1	12	1	5	1
6001	2	42	2	14	3	400	1	24	2	10.4	1	4.2	1	18	2	17	2	13	2
6002	1	31	1	7	1	400	1	20	1	9	1	3.7	1	12	2	15	1	9	1
6003	1	65	3	8	1	350	1	22	1	9.7	1	5.4	2	12	2	22	2	22	3
6004	2	26	1	11	2.	420	1	19	1	9.2	1	3.3	1	10	1	14	1	8	1
6005	1	105	5	35	6	530	1	28	2	10.8	2	7.3	3	41	6	27	2	41	6
6006	1	486	22	25	4	330	1	174	11	99.4	14	58.2	21	75	10	224	20	398	59
6007	1	210	9	9	2	420	1	49	3	22	3	18.7	7	29	4	63	6	79	12
6008	4	30	1	9	2	280	1	23	1	9.9	1	3.9	1	8	1	15	1	10	1
6009	4	13	1	9	2	250	1	15	1	8	1	2.2	1	5	1	9	1	2	1
6010	1	31	1	2.5	1	420	1	18	1	7.8	1	3.3	1	9	1	13	1	9	1
6011	1	82	4	17	3	480	1	23	1	9.4	1	5.6	2	18	2	22	2	29	4

Analyte	CdRR	Ce	CerR	Co	CoRR	Cu	CuRR	Dy	DyRR	Er	ErRR	Eu	EuRR	Fe	ForR	Gd	GdRR	La	LaRR
Method		temitim		MMITAS		M M M 10.45		Mnil-mis		MMM1-M5		MTitas		MMISES		MMINH5		NWM-H5	
Detaction		5		5		10		1		0.5		0.5		1		1		1	
Units		PPB		PPB		PPB		PPB		PPB		PPB		PPM		PPB		PPB	
6012	1	50	2	12	2	470	1	18	1	7.1	1	3.6	1	17	2	15	1	18	3
6013	2	30	1	9	2	400	1	23	1	10.7	2	3.8	1	9	1	16	1	9	1
6014	2	12	1	7	1	350	1	14	1	6.6	1	2.1	1	6	1	8	1	2	1
6015	4.	29	1	11	2	610	2	20	1	9.7	1	3.6	1	10	1	14	1	9	1
6016	4	21	1	11	2	620	2	18	1	7.9	1	2.8	1	13	2	12	1	5	1
6017	4	36	2	14	3	600	2	16	1	7.6	1	2.9	1	30	4	12	1	11	2
6018	4	13	1	5	1	210	1	13	1	6.5	1	2	1	6	1	8	1	3	1
6019	4	16	1	19	3	190	1	16	1	7.2	1	2.5	1	7	1	10	1	3	1
6020	4	70	3	2.5	1	250	1	22	1	8.2	1	6.2	2	11	2	23	2	24	4
6021	8	109	5	11	2	990	3	63	4	33.9	5	14.3	5	18	2	61	5	71	11
8022	2	14	1	28	5	290	1	18	1	9.7	1	1.8	1	8	1	8	1	5	1
6023	6	17	1	9	2	460	1	14	1	6.2	1	2.3	1	15	2	9	1	5	1
6024	1	83	4	13	2	400	1	18	1	7.3	1	5.6	2	22	3	20	2	32	5
6025	4	42	2	8	1	450	1	24	2	10.8	2	5.1	2	8	1	22	2	12	2
6026	6	19	1	5	1	590	2	17	1	8.2	1	3.1	1	11	2	13	1	5	1
8027	2	102	5	8	1	530	1	35	2	17.4	2	8.2	3	3	1	33	3	33	5
6028	8	8	1	10	2.	1110	3	10	1	5.6	1	1.3	1	47	7	5	1	2	1
6029	4	49	2	11	2	480	1	23	1	10.3	1	5.1	2	10	1	20	2	16	2
6030	6	36	2	14	3	630	2	19	1	8.2	1	3.9	1	14	2	15	1	12	2
6031	6	34	2	21	4	670	2	18	1	7.5	1	3.5	1	12	2	14	1	12	2
6032	4	44	2	10	2	540	1	22	1	9.3	1	4.5	2	11	2	18	2	14	2
6033	4	66	3	9	2	830	2	25	2	9.9	1	6.6	2	13	2	25	2	22	3
6034	6	13	1	10	2	540	1	17	1	8.2	1	2.4	1	7	1	10	1	2	1
6035	4	17	1	8	1	560	2	21	1	9.8	1	3.1	1	6	1	14	1	3	1
6036	6	39	2	15	3	10100	28	77	5	40	6	12.4	4	4	1	57	5	22	3
6037	6	70	3	31	6	1960	5	46	3	20.8	3	8.9	3	36	5	36	3	26	4
6038	6	66	3	15	3	780	2	30	2	12.4	2	7	2	13	2	27	2	20	3
6039	6	36	2	11	2	1210	3	27	2	12.5	2	5.9	2	6	1	23	2	12	2
6040	20	52	2	38	7	460	1	42	3	20.3	3	9.1	3	17	2	38	3	20	3
6041	6	275	12	26	5	6070	17	370	24	165	23	76.1	27	8	1	318	28	191	28
6042	4	108	5	83	15	8990	25	195	13	126	18	37.6	13	24	3	191	17	262	38
6043	14	20	1	9	2	6740	19	161	10	109	15	20.8	7	18	2	121	11	83	12
6044	12	10	1	7	1	460	1	18	1	8.9	1	2.6	1	6	1	11	1	3	1
6045	4	63	3	6	1	520	1	24	2	10.2	1	6.2	2	11	2	24	2	21	3
6046	4	10	1	5	1	640	2	14	1	7.5	1	1.6	1	23	3	7	1	3	1
6047	6	22	1	6	1	590	2	18	1	8.5	1	3	1	9	1	12	1	6	1
6048	4	54	2	49	9	2590	7	25	2	11.8	2	7	2	30	4	25	2	20	3
6049	2	35	2	6	1	730	2	19	1	8.1	1	4.2	1	15	2	16	1	11	2
6050	4	10	1	6	1	510	1	16	1	8.1	1	1.9	1.	12	2	8	1	2	1
6051	2	52	2	12	2	600	2	21	1	8.4	1	5.2	2	14	2	20	2	18	3
6052	4	13	1	9	2	330	1	15	1	7.1	1	2.1	1	19	3	9	1	3	1
6053	2	84	4	9	2	1440	4	36	2	15.2	2	8.2	3	18	2	32	3	32	5
6054	12	20	1	17	3	930	3	33	2	15.6	2	4.8	2	22	3	21	2	5	1
25th PERCENTILE	5		37		9		490		20		8.9		4.3		11		17		14
BACKGROUND	5		22.13514		5.597222		363.5135		15.37838		7.102703		2.830556		7.212121		11.22222		6.75

Analyte	\underline{L}	LiRR	mo	MgRR	No	MORR	No	NbRR	Nd	NdRR	Ni	NiRR	Pb	PbRR	Pd	PdRR	Pr	PrRR	Rb
Method	MM1-M5		MMITIE		SM1晨5		Minime		Manlim		Manl-M5		WMIT- ${ }^{\text {a }}$		Wenlm5		NWH1-M5		Mulimb
Detaction.	5		1		5		0.5		1		5		10		1		1		5
Units	PPB		PPM		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB
500	2.5	1	0.5	1	2.5	1	11.8	17	77	4	16	3	80	7	1	2	16	4	105
502	2.5	1	0.5	1	7	3	6.1	9	79	4	9	2	20	2	0.5	1	17	4	111
503	2.5	1	0.5	1	26	10	24	34	419	22	7	1	90	8	1	2	80	20	110
504	2.5	1	0.5	1	70	28	28.5	41	121	6	6	1	100	9	1	2	27	7	175
505	2.5	1	0.5	1	10	4	8.3	12	139	7	17	3	70	6	0.5	1	28	7	125
506	2.5	1	0.5	1	13	5	14.2	20	128	7	6	1	1140	102	0.5	1	27	7	169
507	2.5	$\overline{1}$	0.5	1	31	12	7.3	10	141	7	6	1	170	15	0.5	1	27	7	236
508	2.5	1	0.5	1	17	7	13.2	19	134	7	9	2	310	28	0.5	1	24	6	226
509	2.5	1	0.5	1	11	4	4.6	7	57	3	14	3	5070	452	0.5	1	11	3	110
510	2.5	1	0.5	1	2.5	1	23.3	33	102	5	5	1	40	4	2	4	22	8	175
512	2.5	1	0.5	1	11	4	10.3	15	162	8	6	1.	70	6	2	4	34	9	213
513	2.5	1	0.5	1	2.5	1	1.4	2	140	7	13	2	10	1	0.5	1	27	7	15
514	2.5	1	0.5	1	9	4	6.1	9	201	10	15	3	210	18	1	2	39	10	122
515	2.5	1	0.5	1	2.5	1	1.4	2	131	7	60	11	380	34	0.5	1	23	8	84
516	2.5	1	0.5	1	2.5	1	1.4	2	54	3	47	9	160	14	0.5	1	9	2	60
517	2.5	1	0.5	1	2.5	1	3	4	90	5	19	4	370	33	0.5	1	17	4	55
518	2.5	1	0.5	1	2.5	1	2.8	4	176	9	27	5	470	42	0.5	1	34	9	142
519	2.5	1	0.5	1	2.5	1	2.5	4	138	7	16	3	60	5	0.5	1	24	6	84
520	2.5	1	0.5	1	10	4	9.8	14	82	4	8	2	30	3	2	4	17	4	138
521	2.5	1	0.5	1	5	2	6	9	57	3	14	3	150	13	0.5	1	11	3	125
600	2.5	1	0.5	1	2.5	1	1.1	2	215	11	18	3	10	1	0.5	1	40	10	64
601	2.5	1	0.5	1	2.5	1	4.4	6	141	7	8	1	80	7	0.5	1	27	7	178
602	2.5	1	0.5	1	2.5	1	2.3	3	79	4	14	3	10	1	0.5	1	13	3	27
603	2.5	1	0.5	1	2.5	1	6	8	88	4	33	6	30	3	0.5	1	15	4	19
604	2.5	1	0.5	1	25	1	4.2	6	45	2	27	5	20	2	0.5	1	8	2	15
605	2.5	1	0.5	1	2.5	1	2.3	3	39	2	17	3	10	1	0.5	1	7	2	17
606	2.5	1	0.5	1	2.5	1	2.9	4	42	2	17	3	70	6	0.5	1	8	2	118
807	2.5	1	0.5	1	2.5	1	1.9	3	36	2	10	2	480	43	0.5	1	6	2	224
608	2.5	1	0.5	1	2.5	1	3.2	5	30	2	8	2	310	28	0.5	1	6	2	228
609	2.5	1	0.5	1	2.5	1	1	$!$	26	1	14	3	20	2	0.5	1	4	1	62
610	2.5	1	0.5	1	2.5	1	1.4	2	103	5	2.5	1	60	5	0.5	1	16	4	136
612	2.5	1	0.5	1	2.5	1	3.6	5	18	1	68	13	100	9	0.5	1	3	1	133
813	2.5	1	0.5	1	2.5	1	0.25	1	873	45	20	4	180	16	0.5	1	153	39	130
614	2.5	1	0.5	1	2.5	1	4	8	121	6	49	9	150	13	0.5	1	20	5	146
615	2.5	1	0.5	1	5	2	3.4	5	75	4	44	8	60	5	0.5	1	12	3	77
618	2.5	1	0.5	1	7	3	3.1	4	190	10	16	3	50	4	0.5	1	33	8	91
617	2.5	1	0.5	1	2.5	1	1.7	2	25	1	39	7	50	4	0.5	1	4	1	58
525	2.5	1	0.5	1	8	3	13.2	19	63	3	45	9	170	15	2	4	14	4	147
526	2.5	1	0.5	1	17	7	5	7	68	4	20	4	250	22	1	2	16	4	161
527	2.5	1	0.5	1	25	10.	3.5	5	176	9	10	2	70	6	0.5	1	43	11	172
528	2.5	1	0.5	1	22	9	11.2	16	92	5	16	3	290	26	1	2	23	6	174
529	2.5	1	0.5	1	14	6	18.8	27	146	8	7	1	190	17	3	6	33	8	171
530	2.5	1	0.5	1	26	10	9.2	13	154	8	5	1	370	33	0.5	1	29	7	159
531	2.5	1	0.5	1	11	4	3.1	4	128	7	2.5	1	280	25	0.5	1	26	7	223
532	2.5	1	0.5	1	14	6	11	16	87	5	22	4	440	39	1	2	19	5	155
533	2.5	1	0.5	1	6	2	4.3	6	83	4	21	4	350	31	0.5	1	17	4	160
534	2.5	1	0.5	1	6	2	3.1	4.	55	3	14	3	150	13	0.5	1	11	3	166
535	2.5	1	0.5	1	12	5	12.4	18	78	4	9	2	150	13	4	8	17	4	219
536	2.5	1	0.5	1	30	12	4.8	7	229	12	7	1	170	15	1	2	49	13	205
537	2.5	1	0.5	1	13	5	0.5	1	161	8	7	1	130	12.	0.5	1	37	9	30
538	2.5	1	1	2	2.5	1	5.1	7	270	14	8	2	180	16	1	2	60	15	65
539	2.5	1	0.5	1	8	3	9.9	14	126.	7	27	5	110	10	1	2	26	7	70
540	2.5	1	0.5	1	10	4	1.3	2	365	19	12.	2	350	31	0.5	1	76	19	187

Analyte	LI	LikR	Mo	MqRR	No	MoRR	Nb	NbRR	Nd	NdRR	Ni	NiRR	Pb	PbRR	Pd	PdRR	Pr	PrRR	Rb
Miethod	MMALMS		Mmilims		Tmilitis		MMITMS		Mmi+45		MMn/m5		MMITMS		Minl-45		Mnllat		Mintan
Detection	5		1		5		0.5		1		5		10		1		1		5
Units	PPB		PPAM		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PP'
541	2.5	1	0.5	1	13	5	2.3	3	323	17	6	1	200	18	0.5	1	69	18	137
542	2.5	1	0.5	1	9	4	5.9	8	165	9	11	2	110	10	0.5	1	39	10	198
543	2.5	1	0.5	1	9	4	3.6	5	59	3	13	2	130	12	0.5	1	13	3	104
544	2.5	1	0.5	1	6	2	6.2	9	134	7	2.5	1	130	12	0.5	1	31	8	171
545	2.5	1	0.5	1	2.5	1	0.8	1	235	12	6	1	240	21	0.5	1	53	14	136
546	2.5	9	0.5	1	2.5	1	0.7	1	336	17	2.5	1	110	10	0.5	1	73	19	169
547	2.5	1	0.5	9	10	4	6.3	9	183	9	8	2	170	15	0.5	1	40	10	166
548	2.5	1	0.5	1	2.5	1	2.8	4	388	20	15	3	340	30	0.5	1	92	24	134
549	2.5	1	0.5	1	9	4	5.1	7	125	6	7	1	70	6	1	2	29	7	165
550	2.5	1	0.5	1	10	4	5.8	8	170	9	13	2	150	13	1	2	39	10	243
551	2.5	1	0.5	1	2.5	1	2.2	3	182	9	7	1	120	11	0.5	1	39	10	185
552	2.5	1	0.5	1	5	2	8.6	12	142	7	15	3	320	29	1	2	30	8	159
553	2.5	1	0.5	1	6	2	10.1	14	111	6	17	3	100	9	1	2	22	6	92
554	2.5	1	0.5	1	6	2	13.8	20	100	5	17	3	130	12	1	2	20	5	91
555	2.5	1	0.5	1	11	4	1.9	3	177	9	2.5	1	50	4	0.5	1	43	11	150
556	2.5	1	0.5	1	45	18	37.9	54	109	6	2.5	1	60	5	0.5	1	24	6	104
557	2.5	1	1	2	136	54	20.6	29	916	47	2.5	1	150	13	0.5	1	225	57	119
558	2.5	1	0.5	1	14	8	8	11	125	6	15	3	230	29	0.5	1	32	8	98
559	2.5	1	0.5	1	16	6	5.8	8	23	1	14	3	570	51	0.5	1	5	1	82
560	2.5	1	0.5	1	7	3	3.7	5	14	1	37	7	260	23	0.5	1	3	1	101
561	2.5	1	0.5	1	19	8	9.3	13	80	4	8	2	70	6	0.5	1	21	5	128
562	2.5	1	0.5	1	19	8	9.9	14	14	1	17	3	230	21	0.5	1	4	1	120
563	2.5	1	0.5	1	15	6	11.1	16	77	4	10	2	170	15	0.5	1	18	5	158
564	2.5	1	1	2	38	15	21.2	30	116	6	6	1	280	25	0.5	1	28	7	188
565	2.5	1	0.5	1	11	4	8.5	8	12	1	18	3	240	21	0.5	1	3	1	88
566	2.5	1	0.5	1	12	5	5.1	7	67	3	22	4	280	25	0.5	1	14	4	168
567	2.5	1	0.5	1	2.5	1	2.2	3	776	40	27	5	740	88	0.5	1	156	40	158
568	2.5	1	0.5	1	5	2	14.6	21	107	6	18	3	70	6	0.5	1	28	7	366
569	2.5	1	0.5	1	5	2	3	4	225	12	8	2	4000	357	0.5	1	48	12	174
570	5	2	0.5	1	19	8	93.4	133	346	18	11	2	270	24	7	14	79	20	182
571	2.5	1	0.5	1	11	4	12.2	17	45	2	21	4	470	42	1	2	10	3	160
572	2.5	1	0.5	1	26	10	13.7	19	94	5	2.5	1	120	11	0.5	1	22	6	187
573	2.5	1	0.5	1	79	32	43.9	62	73	4	2.5	1	30	3	0.5	1	13	3	110
574	2.5	1	3	6	245	98	86.1	123	104	5	2.5	1	450	40	0.5	1	25	6	147
575	2.5	1	2	4	105	42	42.6	61	197	10	2.5	1	470	42	0.5	1	51	13	148
576	2.5	1	7	14	280	104	131	186	180	9	10	2	860	77	1	2	47	12	176
577	2.5	1	0.5	1	139	56	69.5	99	57	3	10	2	510	46	0.5	1	15	4	231
578	2.5	1	0.5	1	17	7	3.1	4	270	14	2.5	1	220	20	0.5	1	53	14	186
579	2.5	1	0.5	1	2.5	1	9.7	14	401	21	7	1	80	7	0.5	1	83	21	131
580	2.5	1	0.5	1	8	3	7.7	11	165	9	22	4	540	48	1	2	37	9	162
581	2.5	1	0.5	1	9	4	6.7	10	438	23	16	3	440	37	0.5	1	98	25	118
6000	2.5	1	0.5	1	2.5	1	1.6	2	18	1	38	7	30	3	0.5	1	4	1	50
6001	2.5	1	0.5	1	2.5	1	2.6	4	30	2	48	9	120	11	0.5	1	7	2	117
6002	2.5	1	0.5	1	2.5	1	1	1	27	1	23	4	170	15	0.5	1	6	2	84
6003	2.5	1	0.5	1	2.5	1	1.8	3	51	3	11	2	90	8	0.5	1	11	3	107
6004	2.5	1	0.5	1	2.5	1	1.4	2	23	1	22	4	10	1	0.5	1	5	1	49
6005	2.5	1	0.5	1	2.5	1	4	6	69	4	10	2	90	8	0.5	1	16	4	129
6006	2.5	1	6	12	10	4	10.8	15	697	36	7	1	50	4	0.5	1	159	41	86
6007	2.5	1	0.5	1	8	3	2.4	3	197	10	2.5	1	170	15	0.5	1	45	11	135
6008	2.5	1	0.5	1	2.5	1	2.1	3	25	1	34	6	90	8	0.5	1	6	2	76
6009	2.5	1	0.5	1	2.5	1	0.6	1	12	1	28	5	20	2	0.5	1	3	1	73
6010	2.5	1	0.5	1	2.5	1	1.2	2	24	1	18	3	190	17	0.5	1	5	1	124
6011	2.5	1	0.5	1	2.5	1	2.2	3	55	3	10	2	170	15	0.5	1	13	3	126

Analyte	LI	LiRR	Mo	MqRR	Mo	MorR	Nb	NbRR	Nd	NdRR	Ni	NiRR	Pb	PbRR	Pd	PdRR	Pr	PrRR	R ${ }^{\text {b }}$
Mithod	Minltas		WMII-M5		MM1-M5		WWHTH5		MMITM5		MMITM5		MM1/-H5		Vmlams		MM1+M5		MMIMS
Detaction	5		1		5		0.5		1		5		10		1		1		5
Units	PPB		PPM		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB
6012	2.5	1	0.5	1	2.5	1	3.1	4	32	2	18	3	30	3	0.5	1	8	2	97
6013	2.5	1	0.5	1	2.5	1	1.4	2	28	1	19	4	5	1	0.5	1	6	2	14
6014	2.5	1	0.5	1	2.5	1	0.5	1	11	1	22	4	40	4	0.5	1	2	1	79
6015	2.5	1	0.5	1	2.5	1	1.2	2	27	1	29	6	10	1	0.5	1	6	2	12
6016	2.5	1	0.5	1	2.5	1	1.1	2	18	1	54	10	30	3	0.5	1	4	1	24
6017	2.5	1	0.5	1	2.5	1	5.2	7	22	1	24	5	5	1	0.5	1	5	1	13
6018	2.5	1	0.5	1	2.5	1	0.7	1	11	1	28	5	160	14	0.5	1	2	1	123
6019	2.5	1	0.5	1	2.5	1	0.25	1	16	1	28	5	5	1	0.5	1	3	1	15
6020	2.5	1	0.5	1	2.5	1	0.9	1	59	3	18	3	60	5	0.5	1	14	4	132
6021	2.5	1	5	10	2.5	1	0.25	1	122	6	49	9	120	11	0.5	1	26	7	50
8022	2.5	1	0.5	1	2.5	1	0.7	1	10	1	22	4	60	5	0.5	1	2	1	68
6023	2.5	1	0.5	1	2.5	1	1	1	14	1	23	4	5	1	0.5	1	3	1	16
6024	2.5	1	0.5	1	2.5	1	2.6	4	58	3	15	3	70	6	0.5	1	14	4	109
6025	2.5	1	0.5	1	2.5	1	0.8	1	45	2	21	4	5	1	0.5	1	9	2	11
6026	2.5	1	0.5	1	2.5	1	0.6	1	20	1	22	4	5	1	0.5	1	4	1	22
6027	2.5	1	0.5	1	2.5	1	0.25	1	93	5	19	4	5	1	0.5	1	21	5	13
6028	2.5	1	0.5	1	2.5	1	0.8	1	6	1	31	6	80	7	0.5	1	1	1	89
6029	2.5	1	0.5	1	2.5	1	1.3	2	43	2	23	4	30	3	0.5	1	9	2	23
8030	2.5	1	0.5	1	2.5	1	1.9	3	32	2	23	4	10	1	0.5	1	7	2	24
0031	2.5	1	0.5	1	2.5	1	1.7	2	25	1	20	4	180	16	0.5	1	6	2	101
6032	2.5	1	0.5	1	2.5	1	1.3	2	39	2	20	4	90	8	0.5	1	9	2	79
6033	2.5	1	0.5	1	2.5	1	1.3	2	61	3	19	4	10	1	0.5	1	14	4	35
6034	2.5	1	0.5	1	2.5	1	0.5	1	13	1	22	4	240	21	0.5	1	3	1	79
8035	2.5	1.	0.5	1	2.5	1	0.25	1	19	1	18	3	5	1	0.5	1	4	1	43
6036	2.5	1	0.5	1	2.5	1	0.25	1	82	4	18	3	40	4	0.5	1	15	4	63
6037	2.5	1	0.5	1	8	3	1.1	2	68	4	47	9	90	8	0.5	1	14	4	113
6038	2.5	1	0.5	1	2.5	1	2.2	3	57	3	36	7	20	2	0.5	1	12	3	32
6039	2.5	1	0.5	1	2.5	1	0.7	1	44	2	28	5	20	2	0.5	1	9	2	37
6040	2.5	1	4	8	2.5	1	0.25	1	80	4	43	8	10	1.	0.5	1	16	4	19
6041	2.5	1	0.5	1	2.5	1	1.6	2	621	32	20	4	30	3	0.5	1	125	32	39
6042	2.5	1	0.5	1	2.5	1	3	4	357	18	22	4	70	6	0.5	1	79	20	61
6043	2.5	1	1	2	2.5	1	0.9	1	168	9	83	16	20	2	0.5	1	32	8	58
6044	2.5	1	0.5	1	2.5	1	0.25	1	13	1	37	7	5	1	0.5	1	3	1	46
6045	2.5	1	0.5	1	2.5	1	0.7	1	57	3	18	3	110	10	0.5	1	13	3	132
6045	2.5	1	0.5	1	2.5	1	0.9	1	8	1	25	5	30	3	0.5	1	2	1	45
6047	2.5	1	0.5	1	2.5	1	0.9	1	19	1	24	5	5	1	0.5	1	4	1	28
6048	2.5	1	0.5	1	2.5	1	0.7	1	47	2	30	6	2000	178	0.5	1	10	3	51
6049	2.5	1	0.5	1	2.5	1	0.9	1	33	2	18	3	270	24	0.5	1	7	2	148
6050	2.5	1	0.5	1	2.5	1	0.5	1	10	1	26	5	5	1	0.5	1	2	1	34
6051	2.5	1	0.5	1	2.5	1	2.2	3	43	2	14	3	20	2	0.5	1	10	3	30
6052	2.5	1	0.5	1	2.5	1	1.3	2	12	1	25	5	100	9	0.5	1	3	1	87
6053	2.5	1	0.5	1	2.5	1	6.9	10	71	4	14	3	40	4	0.5	1	16	4	78
6054	2.5	1	0.5	1	2.5	1	1	1	28	1	34	6	20	2	0.5	,	5	1	21
25th PERCENTILE		2.5		0.5		2.5		1.3		33		9		30		0.5		7	
BACKGROUND		2.5		0.5		2.5		0.702703		19.32432		5.256757		11.2069		0.5		3.914286	

Analyte	R6RR	Sb	SbRR	3 c	ScRR	Sm	SmRR	Sn	SnRR	Sr	SrRR	Ta	TaRR	Tb	TbRR	Te	TERR	Th	ThRR
method		MM1-M5		MMn+M5		MNI-N5		MM1.+15		Mantins		MM1-ms		MM1A85		Matims		MMIATS	
Detection		1		5		1		1		10		1		1		10		0.5	
Units		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB	
500	3	0.5	1	35	1	22	3	0.5	1	5	1	2	4	4	2	5	1	10.1	6
502	4	4	8	38	2	24	3	0.5	1	5	1	0.5	1	5	3	5	1	11.8	7
503	4	13	26	37	1	122	17	1	2	10	2	2	4	19	11	5	1	11.6	7
504	6	7	14	40	2	33	5	2	4	10	2	2	4	5	3	5	1	16.9	10
505	4	8	16	45	2	38	5	0.5	1	5	1.	0.5	1	6	3	5	1	8.1	5
506	5	6	12	46	2	36	5	1	2	10	2	1	2	6	3	5	1	8.5	5
507	8	3	6	68	3	42	6	0.5	1	10	2	0.5	1	6	3	5	1	4.8	3
508	7	6	12	66	3	42	6	0.5	1	10	2	0.5	1	6	3	5	1	4.5	3
509	4	3	6	29	1	18	3	0.5	1	5	1	0.5	1	3	2	5	1	5.8	4
510	6	2	4	36	1	28	4	0.5	1	10	2	2	4	5	3	5	1	17	10
512	7	2	4	77	3	44	6	0.5	1	20	4	2	4	7	4	5	1	10.5	6
513	1	2	4	81	3	40	6	0.5	1	5	1	0.5	1	7	4	5	1	4.8	3
514	4	2	4	97	4	55	8	0.5	1	20	4	0.5	1	10	6	5	1	12.6	8
515	3	0.5	1	40	2	41	6	0.5	1	5	1	0.5	1	10.	6	5	1	3.9	2
516	2	1	2	58	2	18	3	0.5	1	10	2	0.5	1	5	3	5	1	2.8	2
517	2	1	2	52	2	27	4	0.5	1	5	1	0.5	1	6	3	5	1	9	6
518	4	0.5	1	37	1	49	7	0.5	1	10	2	0.5	1	9	5	5	1	5.1	3
519	3	0.5	1	15	1	40	6	0.5	1	10	2	0.5	1	10	6	5	1	1.6	1
520	4	2	4	35	1	24	3	0.5	1	5	1	0.5	1	4	2	5	1	15.9	10
521	4	0.5	1	33	1	19	3	0.5	1	5	1	0.5	1	4	2	5	1	7.7	5
600	2	0.5	1	93	4	64	9	0.5	1	10	2	0.5	1	16	9	5	1	2.1	1
601	6	0.5	1	91	4	42	6	0.5	1	10	2	0.5	1	8	4	5	1	6	4
602	1	0.5	1	83	3	25	3	0.5	1	10	2	0.5	1	7	4	5	1	2.8	2
603	1	0.5	1	47	2	28	4	0.5	1	20	4	0.5	1	7	4	5	1	3.5	2
604	1	0.5	1	60	2	16	2	0.5	1	10	2	0.5	1	5	3	5	1	3.6	2
605	1	0.5	1	53	2	14	2	0.5	1	10	2	0.5	1	4	2	5	1	3.5	2
808	4	0.5	1	44	2	15	2	0.5	1	20	4	0.5	1	4	2	5	1	3.1	2
607	7	0.5	1	48	2	13	2	0.5	1	5	1	0.5	1	4	2	5	1	2.9	2
608	7	0.5	1	34	1	12	2	0.5	1	5	9	0.5	1	3	2	5	1	5.5	3
609	2	0.5	1	59	2	12	2	0.5	1	5	1	0.5	1	5	3	5	1	1.4	1
610	4	0.5	1	140	6	34	5	0.5	1	5	1	0.5	1	8	4	5	1	2.4	1
612	4	0.5	1	47	2	7	1	0.5	1	5	1	0.5	1	3	2	5	1	4.5	3
613	4	0.5	1	68	3	283	39	0.5	1	20	4	0.5	1	51	29	5	1	1.4	1.
614	5	0.5	1	81	3	42	6	0.5	1	30	6	0.5	1	13	7	5	1	8.7	5
615	2	0.5	1	45	2	25	3	0.5	1	30	6	0.5	1	12	7	5	1	2.9	2
616	3	0.5	1	123	5	86	9	0.5	1	5	1	0.5	1	18	10	5	1	7.2	4
617	2	0.5	1	45	2	10	1	0.5	1	20	4	0.5	1.	4	2	5	1	1.6	1
525	5	1	2	43	2	19	3	0.5	1	10	2	1	2	5	3	5	1	16.5	10
526	5	2	4	53	2	20	3	0.5	1	5	1	0.5	1	4	2	5	1	13.4	8
527	6	2	4	48	2	35	5	0.5	1	20	4	0.5	1	4	2	5	1	6.9	4
528.	6	3	6	48	2	25	3	0.5	1	10	2	0.5	1	4	2	5	1	14.7	9
529	6	6	12	52	2	41	6	1	2	5	1	2	4	7	4	5	1	24.2	15
530	5	16	32	47	2.	45	6	0.5	1	5	1	0.5	1	7	4	5	1	4.8	3
531	7	0.5	1	47	2	40	6	0.5	1	5	1	0.5	1	6	3	5	1	7	4
532	5	3	6	45	2	26	4	0.5	1	5	1	0.5	1.	5	3	5	1	12.4	8
533	5	0.5	1.	42	2	24	3	0.5	1	5	1	0.5	1	6	3	5	1	5.8	4
534	5	0.5	1	29	1.	16	2	0.5	1	5	1	0.5	1	4	2	5	1	4.2	3
535	7	2	4	54	2	25	3	0.5	1	5	1	1	2	5	3	5	1	24.5	15
536	7	0.5	1	110	4	62	9	0.5	1	5	1	0.5	1	10	6	5	1	12.1	7
537	1	0.5	1	103	4	44	6	0.5	1	50	10	0.5	1	8	4	5	1	6.6	4
538	2	2	4	245	10.	71	10	0.5	1	30	6	0.5	1	12	7	5	1	8.6	5
539	2	1	2	86	3	38	5	0.5	1	5	1	0.5	1	8	4	5	1	10.7	7
540	6	0.5	1	107	4	101	14	0.5	1	5	1	0.5	1	19	11	5	1	5.7	3

Analyte	R6RR	Sb	SbRR	Sc	ScRR	3m	SmRR	Sn	SnRR	Sr	SrRR	Ta	TaRR	Tb	TbRR	Tis	ToRR	Th	ThRR
Method		Mmilm		M ${ }^{\text {H1/M5 }}$		NHM M		MMIIMS		MM1705				MMITM5		MM1/ ${ }^{\text {a }}$		MMITM5	
Detection		1		5		1		1		10		1		1		10		0.5	
Units		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB	
541	4	0.5	1	58	2	84	12	0.5	1	5	1	0.5	1	14	8	5	1	4.4	3.
542	6	0.5	1	44	2	45	6	0.5	1	5	1	0.5	1	8	4	5	1	$\frac{10.2}{15}$	6
543	3	1	2	45	2	18	3	0.5	1	5	1	0.5	1	4	2	5	1	15.6	10
544	6	1	2	33	1	35	5	0.5	1	5	1	0.5	1	6	3	5	1	9.5	6
545	4	0.5	1	46	2	58	8	0.5	1	5	1	0.5	1	11	6	5	1	3.6	2.
546	5	1	2	52	2	97	14	0.5	1	5	1	0.5	1	17	10	5	1	3.4	2
547	5	2	4	76	3	51	7	0.5	1	30	6	0.5	1	9	5	5	1	8.4	5
548	4	1	2	75	3	94	13	0.5	1	5	1	0.5	1	17	10	5	1	8.6	5
549	5	1	2	81	3	38	5	0.5	1	10	2	0.5	1	7	4	5	1.	10.7	7
550	8	2	4	65	3	48	7	0.5	1	10	2	0.5	1	8	4	5	1	13.6	8
551	6	0.5	1	59	2	50	7	0.5	1	5	1	0.5	1	10	6	5	1	6.8	4
552	5	0.5	1	49	2	41	6	0.5	1	5	1	0.5	1	8	4	5	1	12.1	7
553	3	0.5	1	44	2	33	5	0.5	1	5	1	0.5	1	7	4	5	1	14.7	9
554	3	0.5	1	45	2	30	4	0.5	1	5	1	1	2	8	4	5	1	13.5	8
555	5	0.5	1	34	1	42	6	0.5	1	5	1	0.5	1	7	4	5	1	8.8	5
556	3	5	10	29	1	28	4	3	6	90	18	3	6	3	2	30	6	7.5	5
557	4	12	24	18	1	187	28	6	12	350	70	2	4	23	13	20	4	5.2	3
558	3	0.5	1	50	2	31	4	0.5	1	20	4	0.5	1	5	3	5	1	26.1	16
559	3	0.5	1	22	1	6	1	0.5	1	5	1	0.5	1	2	1	5	1	7.5	5
560	3	0.5	1	19	1	4	1	0.5	1	5	1	0.5	1	1	1	5	1	8.8	5
581	4	3	6	38	2	20	3	1	2	20	4	0.5	1	3	2	5	1	9.4	8
562	4	2	4	23	1	4	1	0.5	1	5	1	0.5	1	1	1	5	1	6.5	4
563	5	2	4	27	1	22	3	0.5	1	5	1	0.5	1	4	2	5	1	8.6	5
564	6	6	12	30	1	28	4	2	4	5	1	1	2	4.	2	5	1	7.4	5
565	3	0.5	1	18	1	4	1	0.5	1	5	1	0.5	1	2	1	5	1	2.6	2
566	5	0.5	1	32	1	20	3	0.5	1	5	1	0.5	1	5	3	5	1	7.2	4
567	5	0.5	1	89	4	194	27	0.5	1	80	16	0.5	1	40	22	5	1	3.3	2
568	12	0.5	1	37	1	29	4	0.5	1	5	1	0.5	1	6	3	5	1	10.1	8
569	6	2	4	43	2	69	10	0.5	1	30	6	0.5	1	10	8	5	1	4	2
570	5	2	4	81	3	89	12	6	12	5	1	7	14	14	8	5	1	55.6	34
571	5	1	2	22	1	13	2	0.5	1	5	1	1	2	3	2	5	1	8	5
572	6	2	4	39	2	25	3	1	2	20	4	1	2	3	2	5	1	5.6	3
573	4	5	10	28	1	23	3	4	8	40	8	2	4	2	1	10	2	11.7	7
574	5	14	28	34	1	25	3	9	18	50	10	5	10	3	2	20	4	10	6
575	5	9	18	36	1	42	8	6	12	80	16	3	6	5	3	20	4	5.9	4
576	6	36	72	78	3	40	6	17	34	80	16	8	16	5	3	40	8	16.8	10
577	7	50	100	23	1	12	2	9	18	30	6	4	8	2	1	30	6	11	7
578	6	1	2	20	1	72	10	0.5	1	5	1	0.5	1	9	5.	5	1	6.5	4
579	4	2	4	78	3	103	14	0.5	1	30	6	0.5	1	12	7	5	1	3.9	7
580	5	1	2	41	2	44	6	0.5	1	5	1	0.5	1	7	4	5	1	11.5	7
581	4	2	4.	75	3.	114	18	0.5	1	20	4	0.5	1	20	11	5	1	7.3	4
6000	2	0.5	1	41	2	7	1	0.5	1	5	1.	0.5	1	3	2	5	1	3.5	1
6001	4	0.5	1	48	2	11	2	0.5	1	5	1	0.5	1	4	2	5	1	19	1
6002	3	0.5	1.	27	1	10	1	0.5	1	5	1	0.5	1	4	2	5	1	1.9	1
6003	3	0.5	1	35	1	16	2	0.5	1	5	1	0.5	1	4	2	5	$\frac{1}{1}$	3.2	2
6004	2	0.5	1	34	1	9	1	0.5	1	5	1.	0.5	1	5	2	5		67	4
6005	4	0.5	1	60	2	22	3	0.5	1.	5	1	$\frac{0.5}{1}$	1	35	20	5	1	3.7	2
6006	3	1	2	68	3	176	25	0.5	1	510	$\frac{102}{6}$	0.5	1	10	6	5	1	6.7	4
6007	4	0.5	1.	90	4	58	8	0.5	1	20	6	0.5	1	4	2	5	1	2	1
6008	2	0.5	1	36	1	10	1	0.5		20	4	0.5	1	2	1	5	1	1.1	1
6009	2	0.5	1	36	1	$\frac{5}{9}$	1	0.5	1	5	1	0.5	1	3	2	5	1	2.6	2
6010	4	0.5	1	26	1	17	2	0.5	1	5	1	0.5	1	5	3	5	1	4.1	3

Analyte	RbRR	Sb	SbRR	Sc	ScRR	Sm	SmRR	Sn	SnRR	Sr	SrRR	Ta	TaRR	Tb	TbRR	Te	TERR	Th	ThRR
Method		MAl\| ${ }^{\text {a }}$		Mantins		M Miltin		Mnllim		Munlins		WMil-ms		MMİ-75		Mm1/-N5		M M Mi-ms	
Detaction		1		5		1		1		10		1		1		10		0.5	
Units		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB	
6012	3	0.5	1	29	1	10	1	0.5	1	5	1	0.5	1	3	2	5	1	4.5	3
6013	1	0.5	1	41	2	10	1	0.5	1	5	1	0.5	1	4	2	5	1	1.7	1
6014	3	0.5	1	20	1	5	1	0.5	1	5	1	0.5	1	2	1	5	1	1.1	1
6015	1	0.5	1	38	2	10	1.	0.5	1	5	1	0.5	1	3	2	5	1	2.1	1
6016	1	0.5	1	31	1	7	1	0.5	1	5	1	0.5	1	3	2	5	1	1.8	1
6017	1	0.5	1	33	1	8	1	0.5	1	5	1	0.5	1	3	2	5	1	5.7	3
6018	4	0.5	1	27	1	5	1	0.5	1	5	1	0.5	1	2	1	5	1	1.5	1
6019	1	0.5	1	28	1	6	1	0.5	1	5	1	0.5	1	3	2	5	1	1	1
6020	4	0.5	4	28	1	19	3	0.5	1	20	4	0.5	1	4	2	5	1	2	1
6021	2	0.5	1	40	2	40	6	0.5	1	320	64	0.5	1	12	7	5	1	3.3	2
6022	2	0.5	1	19	1	4	1	0.5	1	10	2	0.5	1	3	2	5	1	1.4	1
6023	1	0.5	1	33	1	6	1	0.5	1	5	1	0.5	1	2	1	5	1	2.2	1
6024	4	0.5	1	34	1	17	2	0.5	1	5	1	0.5	1	4	2	5	1	4.9	3
6025	1	0.5	1	33	1	15	2	0.5	1	5	1	0.5	1	5	3	5	1	1.3	1
8026	1	0.5	1	34	1	8	1	0.5	1	5	1	0.5	1	3	2	5	1	1.4	1
6027	1	0.5	1	51	2	24	3	0.5	1	5	1	0.5	1	7	4	5	1	0.8	1
6028	3	0.5	1	20	1	3	1	0.5	1	5	1	0.5	4	1	1	5	1	3.6	2
6029	1	0.5	1	37	1	14	2	0.5	1	5	1	0.5	1	4	2	5	1	2.2	1
8030	1	0.5	1	30	1	11	2	0.5	1	5	1	0.5	1	3	2	5	1	2.9	2
8031	3	0.5	1	23	1	10	1	0.5	1	5	1	0.5	1	3	2	5	1	3.2	2
8032	3	0.5	1	31	1	13	2	0.5	1	5	1	0.5	1	4	2	5	1	2.4	1
6033	1	0.5	1	37	1	19	3	0.5	1	10	2	0.5	1	5	3	5	1	2.5	2
6034	3	0.5	1	21	1	6	1	0.5	1	5	1	0.5	1	3	2	5	1	1.4	1
6035	1	0.5	1	31	1	8	1	0.5	1	5	1	0.5	1.	4	2	5	1	1	1
6036	2	0.5	1	28	1	32	4	0.5	1	5	1	0.5	1	13	7	5	1	1.6	1
6037	4	0.5	1	40	2	23	3	0.5	1	10	2	0.5	1	8	4	5	1	3.5	2
6038	1	0.5	1	50	2	19	3	0.5	1	5	1	0.5	1	6	3	5	1	4	2
6039	1	0.5	1	39	2	15	2	0.5	1	5	1	0.5	1	5	3	5	1	1.7	1
6040	1	0.5	1	38	2	26	4	0.5	1	80	16	0.5	1	8	4	5	1	1.4	1
6041	1	0.5	1	33	1	491	27	0.5	1	10	2	0.5	1	67	38	5	1	2.9	2
6042	2	0.5	1	34	1	95	13	0.5	1	10	2	0.5	1	34	19	5	1	7	4
6043	2	0.5	1	31	1	47	7	0.5	1	80	16	0.5	1	25	14	5	1	2.9	2
6044	1	0.5	1	31	1	6	1	0.5	1	10	2	0.5	1	3	2	5	1	0.9	1
6045	4	0.5	1	34	1	18	3	0.5	1	5	1	0.5	1	5	3	5	1	2.3	1
6046	1	0.5	1	30	1	4	1	0.5	1	5	1	0.5	1	2	1	5	1	2.7	2
6047	1	0.5	1	34	1	7	1	0.5	1	5	1	0.5	1	3	2	5	1	1.8	1
6048	2	0.5	1	96	4	17	2	0.5	1	5	1	0.5	1	5	3	5	1	2.1	1
6049	5	0.5	1	24	1	11	2	0.5	1	5	1	0.5	1	3	2	5	1	2.2	1
6050	1	0.5	1	28	1	5	1	0.5	1	5	1	0.5	1	2	1	5	1	1.5	1
6051	1	0.5	1	34	1	14	2	0.5	1	5	1	0.5	1	4	2	5	1	3.7	2
6052	3	0.5	1	17	1	5	1	0.5	1	5	1	0.5	1	2	1	5	1	1.6	1
6053	3	0.5	1	66	3	23	3	0.5	1	5	1	0.5	1	7	4	5	1	6.5	4
6054	1	0.5	1	37	1	12	2	0.5	1	20	4	0.5	1	6	3	5	1	1.6	1
											5		0.5		3		5		2.4
25th PERCENTILE	61		0.5		2518919				0.5				0.5		1.785714		5		1.633333
BACKGROUND	31.08108		0.5		25.18919		7.171429		0.5		5		0.5		1.76514				

Analyte	Ti	TIRR	Ti	TIRR	U	URR	W	WRR	Y	YRR	Yb	YbRR	27	ZnRR	Zr	ZrRR	CaMgSr	TREE
Method	WM1- ${ }^{\text {a }}$ 5		MMITH5		$\operatorname{mincma~}$		NMHLA5		MM1-M5		MMICHS		Manlimb		M M			
Detection.	3		0.5		1		1		5		1		20		5			
Units	PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB			
500	1090	5	0.25	1	7	4	1	2	87	1	7	2	90	2	388	14	3	33
502	1240	5	0.25	1	10	5	1	2	100	2	10	2	110	2	349	12	3	38
503	6900	29	0.5	2	8	4	4	8	355	5	38	8	90	2	371	13	4	158
504	7520	31	0.8	3	7	4	4	8	89	1	10	2	80	1	494	17	4	51
505	2510	11	0.25	1	7	4	1	2	118	2	11	2	140	2	225	8	3	52
506	6120	26	0.8	3	6	3	3	6	101	2	14	3	110	2	244	9	4	51
507	3200	13	08	3	5	3	2	4	114	2	17	4	100	2	97	3	4	55
508	5170	22	1.1	4	4	2	3	6	123	2	18	4	250	4	68	2	4	52
509	1230	5	0.25	1	5	3	1	2	81	1	9	2	170	3	67	2	3	27
510	4760	20	0.5	2	7	4	3	6	84	1	9	2	80	1	659	23	4	47
512	1130	5	1.3	5	7	4	1	2	137	2	14	3	100	2	403	14	6	67
513	1120	5	0.6	2	7	4	0.5	1	157	2	14	3	230	4	94	3	3	57
514	2340	10	1	4	11	6	1	2	249	4	23	5	530	9	222	8	6	83
515	424	2	1.3	5	5	3	0.5	1	280	4	21	5	880	15	48	2	3	61
516	489	2	0.25	1	4	2	0.5	1	139	2	13	3	780	14	56	2	4	28
517	815	3	0.5	2	9	5	0.5	1	163	2	15	3	950	17	156	6	3	43
518	194	1	0.25	1	4	2	0.5	1	226	3	18	4	270	5	124	4	5	69
519	319	1	0.25	1	3	2	0.5	1	301	5	20	4	110	2	43	2	4	58
520	2260	9	0.25	1	12	7	2	4	83	1	8	2	40	1	432	15	3	38
521	1910	8	0.8	3	7	4	0.5	1	83	1	8	2	50	1	228	8	3	28
600	141	1	0.25	1	6	3	0.5	1	379	6	29	6	150	3	49	2	4	93
601	1780	7	0.6	2	4	2	0.5	1	159	2	14	3	240	4	157	6	4	60
602	350	1	0.25	1	5	3	0.5	1	214	3	18	4	460	8	82	3	4	37
603	789	3	0.25	1	5	3	0.5	1	207	3	15	3	1320	23	112	4	6	40
604	1130	5	0.25	1	4	2	0.5	1	132	2	11	2	330	7	125	4	4	23
605	1040	4	0.25	1	4	2	0.5	1	87	1	7	2	300	5	101	4	4	29
606	804	3	0.7	3	3	2	0.5	1	101	2	8	2	710	12	105	4	6	22
607	549	2	1.5	6	4	2	0.5	1	116	2	11	2	220	4	73	3	3	22
608	1240	5	0.7	3	4	2	0.5	1	71	1	6	1	220	4	120	4	3	47
609	401	2	0.25	1	3	2	0.5	1	134	2	12	3	320	6	44	2	3	20
610	1050	4	0.25	1	6	3	0.5	1	255	4	22	5	450	3	63	2	3	48
612	1630	7	0.25	1	5	3	0.5	1	70	1	7	2	160	3	130	5	3	13
613	32	1	1	4	3	2	1	2	1130	17	164	37	920	16	16	1	9	356
614	2580	11	0.7	3	7	4	0.5	1	932	14	40	9	2010	35	212	8	9	73
615	840	4	0.5	2	5	3	0.5	1	614	9	27	6	2300	40	70	2	9	52
646	779	3	0.6	2	9	5	0.5	1	605	9	47	11	290	5	171	6	3	105
617	999	4	0.25	1	3	2	0.5	1	93	1	8	2	720	13	50	2	6	17
525	878	4	0.6	2	10	5	0.5	1	119	2	10	2	170	3	501	18	4	33
526	1160	5	0.8	3	7	4	2	4	74	1	6	1	100	2	209	7	3	33
527	910	4	0.8	3	5	3	1	2	118	2	10	2	80	1	108	4	6	67
528	2890	12	0.8	3	7	4	2	4	87	1	8	2	80	1	237	8	4	45
529	2310	10	0.7	3	9	5	2	4	176	3	17	4	70	1	751	27	3	66
530	4200	18.	0.7	3	4	2	3	6	220	3	21	5	110	2	67	2	3	58
531	613	3	0.6	2	6	3	0.5	1	108	2	14	3	70	1	192	7	3	52
532	3390	14	0.7	3	5	3	2	4	98	2	11	2	150	3	218	8	3	43
533	605	3	0.6	2	6	3	0.5	1	200	3	17	4	140	2	133	5	3	40
534	1000	4	0.25	1	6	3	0.5	1	133	2	11	2	60	1	61	2	3	26
535	1590	7	0.6	2	9	5	0.5	1	108	2	10	2	100	2	737	26	3	39
536	1470	6	1	4	9	5	0.5	1	262	4	19	4	100	2	246	9	3	90
537	251	1	0.8	3	6	3	0.5	1	183	3	16	4	380	7	156	6	12	72
538	5680	24	1.3	5	7	4	0.5	1	269	4	19	4	230	4	313	11	9	116
539.	2700	11	0.6	2	9	5	0.5	1	191	3	13	3	450	8	299	11	3	56
540	693	3	0.8	3	9	5	0.5	1	567	9	42	9	240	4	78	3	3.	148.

Analyte	TI	TIRR	Ti	TIRR	U	URR	W	WRR	Y	YRR	Yb	YbRR	Zn	ŻnRR	$\overline{\mathrm{Zr}}$	ZrRR	Campsr	TREE
Method	Muldm		MMIIM5		MM1-m5		Muntims		MMITHS		MM1-M5		WMA-M5		Ninlim			
Detection	3		0.5		1		1		5		1		20		5			
Units	PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB			
541	789	3	0.5	2.	4	2	0.5	1	321	5	30	7	180	3	54	2	3	121
542	1360	6	1.3	5	8	4	0.5	1	176	3	15	3	180	3	181	6	3	76
543	926	4	0.25	1	7	4	0.5	1	93	1	9	2	140	2	178	6	3	30
544	1530	6	0.9	4	6	3	0.5	1	154	2	12	3	70	1	189	7	3	61
545	185	1	0.9	4	7	4	0.5	1	384	6	33	7	40	1	62	2	3	104
546	161	1	0.8	3	6	3	0.5	1	424	7	40	9	10	1	77	3	3	143
547	2200	9	1	4	7	4	1	2	204	3	19	4	130	2	133	5	8	78
548	645	3	1	4	11	6	0.5	1	527	$\overline{8}$	48	11	140	2	159	6	3	187
549	934	4	1	4	8	4	0.5	1	131	2	12	3	60	1	277	10	4	58
550	2530	11	1	4	11	6	1	2	184	3	20	4	170	3	329	12	4	73
554	703	3	0.7	3	10	5	0.5	1	269	4	24	5	180	3	160	6	3	78
552	735	3	0.6	2	11	6	0.5	1	180	3	15	3	100	2	381	13	3	58
553	1070	4	0.25	1	10	5	0.5	1	188	3	16	4	140	2	421	15	3	49
554	891	4	0.25	1	9	5	0.5	1	220	3	18	4	120	2	416	15	3	47
555	267	1	0.7	3	8	4	0.5	1	152	2	12	3	10	1	159	6	3	72
558	8840	37	1.6	8	2	1	7	14	51	1	4	1	30	1	100	4	20	37
557	13300	56	2	8	2	1	9	18	542	8	39	9	50	1	58	2	74	389
558	963	$\overline{4}$	1.1	4	11	6	0.5	1	105	2	9	2	10	1	346	12	6	57
559	1140	5	1.1	4	6	3	1	2	66	1	7	2	20	1	123	4	3	14
560	589	2	1.2	5	3	2	0.5	1	36	1	5	1	110	2	101	4	3	11
581	2580	11	1.5	8	6	3	4	8	84	1	6	1	50	1	134	5	6	39
562	2760	12	1.2	5	4	2	3	6	34	1	4	1	60	1	94	3	3	12
583	2000	8	0.9	4	5	3	2	4	69	1	6	1	50	1	177	6	3	32
564	7670	32	2	8	4	2	9	18	77	1	6	1	80	1	117	4	4	48
565	1210	5	0.9	4	2	1	2	4	59	1	6	1	120	2	56	2	3	11
566	1300	5	1.2	5	4	2	1	2	184	3	12	3	130	2	135	5	3	35
567	946	4	0.5	2	3	2	2	4	2050	31	91	20	3280	57	41	1	23	312
568	5270	22	2.1	8	7	4	2	4	127	2	10	2	170	3	111	4	3	55
569	1020	4	1	4	5	3	0.5	1	149	2	22	5	480	8	112	4	8	83
570	3170	13	1	4	18	10	3	6	269	4	22	5	60	1	2270	80	3	137
571	1590	7	0.6	2	6	3	1	2	82	1	6	1	100	2	180	6	3	22
572	4080	17	0.9	4	4	2	3	6	44	1	6	1	40	1	119	4	6	39
573	13500	57	1.1	4	2	1	20	40	25	1	3	1	60	1	45	2	10	25
574	33300	139	2.2	9	3	2	28	56	48	1	5	1	110	2	148	5	17	41
575	17900	75	9.8	7	3	2	13	26	83	1	7	2	70	1	86	3	21	88
576	51100	214	3.2	13	8	4	45	90	82	1	7	2	290	5	295	10	31	80
577	30900	129	2.1	8	5	3	40	80	33	1	3	1	130	2	147	5	8	29
578	1030	4	1.8	7	3	2	2	4	155	2	19	4	40	1	88	3	3	86
579	3890	16	0.9	4	5	3	2	4	210	3	27	6	110	2	71	3	8	141
580	1510	6	1	4	6	3	0.5	1	158	2	14	3	90	2	256	9	3	67
581	2570	11	1	4	5	3	1	2	600	9	49	11	260	5	106	4	6	192
6000	821	3	0.25	1	3	2	0.5	1	93	1	6	1	160	3	40	1	3	12
6001	1290	5	0.25	1	4	2	0.5	1	100	2	7	2	140	2	79	3	3	20
6002	350	1	0.25	1	2	1	0.5	1	97	1	6	1	110	2	27	1	3	13
6003	856	4	0.25	1	4	2	0.5	1	104	2	7	2	80	1	63	2	3	24.
6004	815	3	0.25	1	3	2	0.5	1	98	2	6	1	110	2	41	1	3	12
6005	2490	10	0.25	1	4	2	0.5	1	109	2	7	2	100	2	149	5	3	36
6006	5720	24	0.25	1	2	1	2	4	1270	19	66	15	300	5	50	2	126	284
6007	1180	5	0.25	1	7	4	0.5	1	203	3	17	4	60	1	120	4	8	79
6008	603	3	0.25	1	3	2	0.5	1	103	2	6.	1	290	5	45	2	6	13
6009	229	$\overline{1}$	0.25	1	2	1	0.5	1	76	1	6	1	170	3	21	1	6	11
6010	367	2	0.25	1	3	2	0.5	1	74	1	5	1	180	3	50	2	3	12
6011	1110	5	0.25	1	4	2	0.5	1	97	1	7	2	100	2	81	3	3	27

Analyte	Ti	TRR	Ti	TIRR	U	URR	W	WRR	Y	YRR	Yb	YbRR	2 n	ZnRR	Zr	2rRR	Camysr	TREE
Method	Minlom5		Mminimb		Ment-m5		NMET-M5		MW1]-M5		MMilis		MMITH5		Mm1-m5			
Detection.	3		0.5		1		1		5		1		20		5			
Units	PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB			
6012	779	3	0.25	1	4	2	0.5	1	71	1	5	1	110	2	90	3	3	17
6013	1030	4	0.25	1	3	2	0.5	1	111	2	7	2	120	2	47	2	3	15
6014	193	1	0.25	1	2	1	0.5	1	67	1	4	1	140	2	19	1	3	11
6015	784	3	0.25	1	3	2	0.5	1	101	2	7	2	140	2	43	2	3	14
6016	458	2	0.25	1	3	2	0.5	1	82	1	6	1	170	3	33	1	3	12
6017	2510	11	0.25	1	5	3	0.5	1	71	1	5	1	130	2	133	5	3	14
6018	298	1	0.25	1	2	1	0.5	1	60	1	4	1	240	4	22	1	3	11
6019	139	4	0.25	1	2	1	0.5	1	71	1	5	1	350	6	16	1	3	12
6020	375	2	0.25	1	2	1	0.5	1	96	1	5	1	570	10	34	1	7	26
6021	128	1	0.25	1	5	3	0.5	1	445	7	22	5	2140	37	34	1	118	66
6022	133	1	0.25	1	1	1	0.5	1	87	1	6	1	150	3	23	1	4	12
6023	520	2	0.25	1	3	2	0.5	1	58	1	4	1	190	3	40	1	3	11
6024	1030	4	0.25	1	3	2	0.5	1	77	1	5	1	140	2	94	3	3	27
6025	259	1	0.25	1	3	2	0.5	1	127	2	7	2	160	3	24	1	3	23
6026	298	1	0.25	1	4	2	0.5	1	86	9	6	1	190	3	25	1	3	12
8027	165	1	0.25	1	3	2	0.5	1	208	3	12	3	130	2	15	1	3	40
8028	212	1	0.25	1	3	2	0.5	1	50	1	4	1	340	6	30	1	3	11
6029	841	4	0.25	1	4	2	0.5	1	110	2	7	2	200	3	48	2	3	20
8030	1040	4	0.25	1	5	3	0.5	1	82	1	6	1	270	5	63	2	3	17
8031	601	3	0.25	1	4	2	0.5	1	72	1	5	1	230	4	47	2	3	15
8032	590	2	0.25	1	3	2	0.5	1	92	1	6	1	320	6	42	1	3	19
6033	866	4	0.25	1	4	2	0.5	1	116	2	6	1	510	9	52	2	4	27
8034	104	1	0.25	1	2	1	0.5	1	81	1	6	1	230	4	18	1	3	12
8035	134	1	0.25	1	3	2	0.5	1	101	2	6	1	260	5	16	1	3	12
6036	105	1	0.25	1	4	$\overline{2}$	0.5	1	543	8	25	6	770	13	20	1	3	50
6037	516	2	0.25	1	4	2	0.5	1	229	4	14	3	1000	17	30	1	4	37
6038	522	2	0.25	1	4	2	0.5	1	133	2	9	2	840	15	74	3	3	28
6039	407	2	0.25	1	3	2	0.5	1	144	2	9	2	440	8	29	1	3	23
6040	88	1	0.25	1	1	1	0.5	1	255	4	13	3	2250	39	11	1	30	36
6041	251	1	0.25	1	5	3	1	2	1320	20	110	25	360	6	53	2	4	296
6042	1580	7	0.25	1	7	4	1	2	1700	26	80	18	790	14	102	4	7	193
6043	515	2	0.25	1	5	3	0.5	1	1510	23	61	14	2930	51	40	$!$	26	108
6044	90	1	0.25	1	2	1	0.5	1	96	1	6	1	830	15	12	1	4	12
6045	417	2	0.25	1	3	2	0.5	1	113	2	7	$\overline{2}$	250	4	35	1	3	27
6046	302	1	0.25	1	3	2	0.5	1	66	1	5	1	200	3	29	1	3	11
6047	443	2	0.25	1	3	2	0.5	1	79	1	6	1	250	4	31	1	3	12
6048	225	1	0.25	1	1	1	0.5	1	125	2	9	2	210	4	43	2	3	25
6049	394	2	0.25	1	3	2	0.5	1	88	1	6	1	250	4	34	1	3	17
6050	173	1	0.25	1	3	2	0.5	1	76	1	6	1	260	5	24	1	3	11
6051	1180	5	0.25	1	4	2	0.5	1	88	1	6	1	240	4	85	3	3	21
6052	381	2	0.25	1	2	1.	0.5	1	69	1	5	1	210	4	23	1	3	11
6053	1550	6	0.25	1	7	4	0.5	1	152	2	10	2	230	4	161	6	3	36
6054	317	1	0.25	1	3	2	0.5	1	161	2	10	2	550	10	24	1	6	19
25th PERCENTILE		424		0.25		3		0.5		83		6		100		44		
BACKGROUND		238.7838		0.25		1.823529		0.5		65.22222		4.473684		57.1875		28.24324		

ANALYTE	Ag	Al	As	AII	Ba	Bi	Ca	Cd	Ce	Co	CuI	Dy	Er	Eu	Fe	Gd	La	\underline{L}	Mg	No
METHOD	Mmitas	MMITMS	MM155	Willmb	M M M M M 5	MMIM5	MM1+45	Manl-m5	MMIIM5	Mmitims	Mmilims	Menlims	MMINT5	MTHLM5	NMIAN5	Minl-ms	Mnilifs	Multas	Numitis	M-M
DETECTION	1	1	10	0.1	10	1	10	10	5	5	10	1	0.5	0.5	1	1	1	5	1	5
UNITS	PPB	PPM	PPB	PPB	PPB	PPB	PPA	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPM	PPB	PPB	PPB	PPP	PPB
500	21	259	5	5.7	120	0.5	5	5	101	10	550	25	10.3	6	29	26	42	2.5	0.5	2.5
502	36	273	20	21	150	0.5	5	5	104	25	2240	29	13	7.4	23	29	47	2.5	0.5	7
503	37	169	120	25.6	320	0.5	5	5	371	38	5220	111	50.6	40	122	140	155	25	0.5	26
504	44	154	150	32.5	300	1	5	5	174	8	800	29	12.4	8.6	147	33	69	2.5	0.5	70
505	53	226	20	15.4	140	0.5	5	5	172	19	1040	34	15	9.5	48	41	63	2.5	0.5	10
506	82	143	50	36.1	310	2	5	5	164	6	830	33	15.8	8.6	116	37	60	2.5	0.5	13
507	94	115	40	39.9	240	0.5	5	5	142	12	590	35	18.5	12.9	48	42	52	2.5	0.5	31
508	84	165	80	39.1	220	2	5	5	123	14	1980	37	20.5	13.7	89	44	41	2.5	0.5	17
509	72	255	20	55.8	80	0.5	5	10	75	10	2040	22	10.9	6	27	21	29	2.5	0.5	11
510	59	137	10	64.8	220	0.5	5	5	201	54	630	27	11.6	8.3	37	31	57	2.5	0.5	2.5
512	163	133	10	41.5	200	0.5	5	5	209	21	1020	40	17.4	12.1	18	49	99	2.5	0.5	11
513	23	251	10	1.8	70	0.5	5	5	180	19	1830	42	19	12.7	9	48	59	2.5	0.5	2.5
514	93	263	20	9.8	250	0.5	5	20	202	30	3830	61	31.1	16.1	18	69	103	2.5	0.5	9
515	36	258	5	1.9	60	0.5	5	50	123	13	4170	67	31	13.8	12	60	44	2.5	0.5	2.5
516	15	257	10	0.7	50	0.5	5	40	47	23	1190	34	17.8	6	11	27	18	2.5	0.5	2.5
517	15	295	30	0.6	370	0.5	5	10	101	19	1120	43	20.9	8.3	8	38	46	2.5	0.5	2.5
518	8	194	5	0.7	60	0.5	10	10	168	13	630	51	24.2	14.3	11	60	76	2.5	0.5	2.5
519	15	200	5	2.9	50	0.5	5	20	88	8	2410	64	32	14.1	9	60	42	2.5	0.5	2.5
520	15	300	40	13.9	150	0.5	5	5	105	17	860	28	11.3	7.7	45	28	48	2.5	0.5	10
521	8	253	10	1.7	120	0.5	5	5	72	11	420	28	11.2	6.7	16	25	25	2.5	0.5	5
600	29	187	5	2.2	130	0.5	5	20	147	11	1550	105	45.4	22	5	93	79	2.5	0.5	2.5
601	48	273	10	7.6	350	0.5	5	5	165	34	730	44	19.4	13.6	33	52	68	2.5	0.5	2.5
602	7	249	5	0.2	110	0.5	5	20	68	8	640	45	24.5	8.8	19	40	23	2.5	0.5	2.5
603	9	242	5	0.2	150	0.5	5	20	59	21	950	49	22.4	10	44	44	28	2.5	0.5	2.5
604	16	292	5	0.2	110	0.5	5	10	42	13	720	32	15.1	6.1	20	26	18	2.5	0.5	2.5
605	5	300	5	0.1	120	0.5	5	10	40	10	630	24	10.6	5.1	14	21	14	2.5	0.5	2.5
606	8	294	5	4.1	220	0.5	5	20	41	10	880	27	12.1	5.6	15	22	15	2.5	0.5	2.5
607	37	280	5	2.9	170	0.5	5	20	41	15	980	30	15.2	4.8	10	21	14	2.5	0.5	2.5
608	34	300	5	5.9	290	0.5	5	10	42	15	810	22	9.4	4.2	21	16	15	2.5	0.5	2.5
609	14	238	5	0.4	70	0.5	5	20	22	7	1370	35	17.2	5	4	21	8.	2.5	0.5	2.5
610	17	227	5	1	80	0.5	5	5	70	15	1640	54	29.4	12.3	10	50	24	2.5	0.5	2.5
612	16	292	5	0.8	80	0.5	5	10	25	12	590	19	9.6	2.8	13	11	9	2.5	0.5	2.5
813	12	102	5	2.5	100	0.5	20	20	640	98	16200	309	182	95.2	2	383	177	2.5	0.5	2.5
814	10	276	20	1.2	470	0.5	10	50	94	57	5580	91	58.5	16.4	36	74	58	2.5	0.5	2.5
815	7	210	5	0.7	180	0.5	10	100	34	92	8230	86	50.2	10.5	14	57	32	2.5	0.5	5
616	25	300	5	5.2	180	0.5	5	10	146	24	8940	121	67.6	25.9	26	109	90	2.5	0.5	7
617	6	271	5	0.2	110	0.5	5	50	22	28	460	26	12.4	4.3	8	17	8	2.5	0.5	2.5
525	22	300	10	12.1	70	<1	<10	20	100	14	2310	27	12.7	6.2	57	24	34	<5	<1	8
526	73	300	20	30.7	210	<1	<10	<10	142	35	1500	21	8.4	6.9	55	23	48	<5	<1	17
527	93	141	10	40.3	300	$\leqslant 1$	<10	<10	272	14	550	20	10.9	9.3	31	35	118	<5	<1	25
528	58	300	40	43.3	340	<1	<10	<10	204	20	1200	22	9.7	7.9	81	27	74	≤ 5	<1	22
529	49	217	20	33.1	130	<1	<10	<10	240	22	2450	40	19.6	11.9	83	46	73	<5	<1	14
530	101	75	50	58.5	110	<1	<10	<10	137	9	1820	41	23.8	14.8	78	51	42	<5	<1	26
531	49	108	<10	23.2	20	<1	<10	<10	185	38	1210	34	15.5	12	15	40	38	<	≤ 1	11
532	74	225	40	64.4	290	2	<10	<10	149	26	1610	27	12.7	8.4	83	29	47	<5	<1	14
533	21	221	<10	18.2	30	<1	$\leqslant 10$	10	120	45	2150	39	21.2	8.8	26	33	34	< 5	<1	6
534	27	253	<10	21.3	10	<1	<10	10	77	21	1760	26	13.8	5.7	22	22	23	<5	<1	6
535	108	300	20	53.6	220	<1	<10	<10	137	35	1820	30	12.5	7.8	46	30	48	<5	<1	12
536	60	156	20	18.8	50	<1	<10	<10	167	41	1090	50	23.9	17.8	29	70	135	<5	<1	30
537	68	99	<10	6.3	790	<1	<10	<10	249	28	3600	42	20.2	13.1	6	51	97	<5	<1	13
538	22	184	20	1.3	670	<1	<10	≤ 10	388	45	720	61	26.2	21.9	17	84	169	<5	1	< 5
539	56	<1	<10	5.7	120	<1	<10	30	165	24	3950	42	18.3	12.5	19	47	61	≤ 5	<1	8
540	115	190	<10	14.5	<10	$\leqslant 1$	<10	10	370	20	5750	105	55.5	29.4	17	122	157	<5	<1	10

ANALYTE	Ag	AI	As	Au	Ba	BI	Ca	Cd	Ce	Co	Cu	Dy	Er	Eu	Fe	Od	La	L	Fig	Mo
METHOD	WMITMS	MM1145	MMM年5	MMITH5	Mnnims	MM12M5	MMIM5	WMATM5	MM1-M5	Mnnl\|	MM14.M5	M M1-M5	NM1/m5	WMIM5	MM1-M5	WM1/-15	Mitan5	MNITMS	MM1.45	MMINTH
DETECTION	9	1	10	0.1	10	1	10	10	5	5	10	1	0.5	0.5	1	1	1	5	1	5
Units	PPB	PPW	PPB	PPB	PPB	PPB	PPM	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPM	PPB	PPB	PPB	PPM	PPB
541	125	150	<10	22.8	<10	<1	<10	<10	397	30	4910	72	36.8	22.9	21	95	99	<5	<1	13
542	53	248	<10	17.7	50	≤ 1	<10	<10	318	12	1920	43	19.9	12.7	25	50	106	<5	<1	9
543	23	300	<10	19.9	120	<1	<10	<10	104	21	1540	23	11.4	6	46	21	34	<5	≤ 1	9
544	68	157	10	52.4	190	<1	<10	<10	228	12	920	33	15.6	10.7	24	41	88	<5	<1	6
545	45	143	<10	13.1	30	<1	<10	<10	358	14	1400	66	38.6	17.1	9	70	136	45	<1	<
546	58	97	<10	28	100	<1	<10	<10	348	13	1540	91	48.1	30.8	5	115	163	<5	<1	<5
547	99	147	20	54.9	430	$\leqslant 1$	<10	<10	286	24	1710	46	22	15.3	44	55	103	<5	<1	10
548	36	263	<10	17.7	90	<1	<10	<10	680	29	2060	93	54.4	27.7	22	110	294	<	<1	<
549	107	220	10	20.5	230	<1	<10	<10	222	23	1090	37	15	11.5	22	41	78	<	4	9
550	99	247	40	54	400	<1	<10	<10	249	31	1540	45	22.6	12.4	56	52	89	<5	4	10
551	77	189	<10	31.5	140	$\leqslant 1$	<10	<10	221	17	1520	53	28.8	13.5	18	61	94	$\leqslant 5$	<1	<
552	29	217	<10	15.7	40	<1	<10	<10	182	28	1680	43	19.4	11.5	21	49	53	<	<1	5
553	16	219	<10	4.8	40	<1	<10	<10	138	17	2050	42	20.2	9.3	26	43	37	4	41	6
554	23	239	<10	9.3	40	<1	<10	<10	127	25	1820	48	22.6	8.7	40	42	39	<	<1	6
555	58	178	<40	11	<10	<1	<10	<10	274	<5	490	36	16.3	10.6	11	47	100	< 5	<1	11
556	52	300	50	27.6	360	1	<10	<10	132	<5	140	14	5.6	8.9	58	22	36	≤ 5	4	45
557	58	272	70	35.2	1470	2	10	<10	1380	<5	480	108	52.9	59.4	53	169	718	<5	1	136
558	25	300	10	8.3	150	<1	<10	<10	227	8	1230	27	12.1	9.6	71	32	95	<	4	14
559	26	300	<10	12.7	210	<1	<10	<10	37	8	740	13	7.9	2.4	54	8	15	45	<1	16
560	23	300	<10	11.4	180	<1	<10	10	25	24	660	7	4.7	1.6	81	5	10	<5	<1	7.
581	83	300	20	39.4	370	≤ 1	<10	<10	164	7	650	17	7	8	51	21	73	<	<1	18
582	31	294	10	16.3	230	<1	<10	<10	30	13	710	8	4.7	4.5	80	5	14	<	<1	18
563	48	272	10	27.7	130	<1	<10	<10	110	7	570	19	7.9	6	43	23	39	< 5	$\leqslant 1$	15
584	49	220	50	55.2	340	1	410	<10	208	<	300	18	7.5	7.1	73	26	78	≤ 5	1	38
585	40	230	≤ 10	8.2	60	<1	<10	30	19	23	1340	12	7.2	1.7	24	6	7	45	41	11
586	19	266	<10	8.6	80	<1	<10	20	99	16	1490	32	15.5	7.3	43	29	36	<	41	12
587	98	80	50	18.8	670	<1	30	80	72	30	3430	221	133	72.5	14	298	507	C	41	45
588	8	300	10	3.1	210	<1	<40	<10	251	13	440	33	14.3	8.1	28	34	80	<	$\leqslant 1$	5
569	83	126	80	21.4	1190	41	<10	410	385	48	810	49	22.9	18.7	35	84	82	<	$\leqslant 1$	5
570	52	300	30	10.3	200	<1	<10	<10	483	12	620	69	29.2	22.7	122	95	186	5	4	19
571	78	286	<10	14.3	80	<1	$\leqslant 10$	<40	72	16	590	17	7.9	4.3	47	16	26	<5	<1	11
572	77	137	40	37	380	1	<10	<10	163	< 5	160	15	6.1	7.4	74	20	51	<5	<1	26
573	51	89	70	48.3	770	1	<10	<10	63	<	440	10	3.6	7.2	26	17	23	<5	<1	79
574	55	130	110	57.2	1760	9	<10	<10	169	< 5	280	14	6.2	7.1	138	20	59	< 5	3	245
575	73	130	120	48.1	1830	5	≤ 10	<10	333	<	310	21	8.7	13.1	199	34	197	< 5	2	105
576	93	300	280	46.3	3330	10	<10	<10	353	15	690	23	8.9	12	251	33	155	45	7	260
577	79	295	180	64	800	3	<10	<10	126	8	430	8	3.6	4	138	12	54	<	<1	139
578	31	98	<10	31.4	120	<1	<10	<10	238	<5	600	44	21.2	24	17	69	53	≤ 5	<1	17
579	48	129	10	23.3	420	≤ 1	<10	<10	539	87	400	56	29.2	32	39	89	143	<5	<1	<5
580	55	228	<10	27.9	110	<1	<10	10	240	25	830	39	18.1	12.6	50	47	74	<	<1	8
581	77	167	20	20.8	590	<1	<10	20	623	50	2830	111	60.5	37.5	58	134	247	<	<1	9
6000	8	222	<10	0.2	60	$\leqslant 1$	<10	10	20	7	240	20	9.2	3	8	12	5	<	<1	<
6001	10	243	<10	0.8	130	≤ 1	<10	10	42	14	400	24	10.4	4.2	18	17	13	< 5	<1	<5
6002	14	215	<10	1.3	170	<1	<10	<10	31	7	400	20	9	3.7	12	15.	9	<	<1	< 5
6003	24	236	<10	1.5	220	<1	<10	<10	65	8	350	22	9.7	5.4	12	22	22	<	<1	<
6004	13	208	<10	0.4	70	<1	<10	10	26	11	420	19	9.2	3.3	10	14	8	≤ 5	<1	<5
6005	35	266	<10	3.3	220	<1	<10	<10	105	35	530	28	10.8	7.3	41	27	41	< 5	<1	< 5
6006	36	89	60	18.4	2760	<1	60	<10	486	25	330	174	99.4	58.2	75	224	398	< 5	6	10
6007	29	95	20	9.4	250	<1	≤ 10	<10	210	9	420	49	22	18.7	29	63	79	<	<1	8
6008	8	233	<10	0.2	210	<1	<10	20	30	9	280	23	9.9	3.9	8	15	10	<	<1	<5
6009	7	218	<10	0.1	180	<1	<10	20	13	9	250	15	8	2.2	5	9	2	<	<1	<5
6010	22	238	<10	1.6	170	<1	<10	<10	31	<5	420	18	7.8	3.3	9	13	9	≤ 5	4	<5
6011	33	242	<10	3.4	300	<1	<10	<10	82	17	480	23	9.4	5.6	18	22	29	<5	<1	<5

ANALYTE	Ag	Al	As	Au	Ba	Bi	Ca	Cd	Ce	Co	Cu	Dy	Er	Eu	Fe	Gd	La	Li		+10
METHOD	Nimitas	MAnIM5	MMMI-M5	Manters	NMIMS	M M 1 -	MMITHS	NMM1-M5	Millta	Mnl+45	Mmintit	Mantion	MMITHE	M $=0$ Im ${ }^{\text {a }}$	M-M1-m5	mulims	Whintin			$\frac{1}{5}$
DETECTION	1	1	10	0.1	10	1	10	10	5	5	10	1	0.5	0.5	1	1	PPB	PPB	PP暞	$\stackrel{5}{\text { PPB }}$
UNITS	PPB	PPNM	PPB	PPB	PPB	PPB	PPM	PPB	PPB	PPB	PPB	PPB	$\frac{\mathrm{PPB}}{71}$	${ }^{\text {PPB }}$	17	15	18	<5	<1	<
6012	14	276	<10	0.9	130	<1	<10	<10	50	12	470	18	$\frac{7.1}{} 1$	3.8	9	16	9	55	<1	<5
6013	12	224	<10	00.9	80	≤ 1	<10	10	30	9	350	14	6.6	2.1	6	8	2.	<5	≤ 1	<5
6014	34	205	<10	0.3	80	4	<10	20	12	11	610	20	9.7	3.6	10	14	9	<	<1	<
6015	28	208	≤ 10	0.2	40	<1	<10	20	29	11	620	18	7.9	2.8	13	12	5	<	<1	≤ 5
6016	13	209	<10	0.4	40	<1	<10	20	36	14	600	16	7.6	2.9	30	12	11	< 5	<1	<
6017	7	239	<10	0.1	50	4	<10	20	13	5	210	13	6.5	2	6	8	3	<	<1	<5
6018	7	238	<10	0.3	80	<1	<10	20	16	19	190	16	7.2	2.5	7	10	3	<	<1	<
6019	11	208	<10	<0.1	50	≤ 1	<10	20	70	< 5	250	22	8.2	6.2	11	23	24	< 5	<1	<
6020	6	247	<10	0.8	120	4	10	40	109	11	990	63	33.9	14.3	18	61	71	<	5	<5
6021	14	125	<10	2.2	740	$\stackrel{4}{4}$	220	10	14	28	290	18	9.7	1.8	8	8	5	<	<1	<
6022	13	221	<10	0.7	60	<1	<10	30	17	9	460	14	6.2	2.3	15	9	5	<	<1	<
6023	10	230	<10	<0.9	60	<1	<10	<10	83	13	400	18	7.3	5.6	22	20	32	<	<1	<5
6024	11	253	<10	2.4	200	≤ 1	<10	<10	42	8	450	24	10.8	5.1	8	22	12	<5	$\leqslant 1$	<
6025	10	195	<10	60.1	50.	≤ 1	<10	30	19	5	590	17	8.2	3.1	11	13	5	<5	$\leqslant 1$	<
6026	7	203	<10	0.1	30	<1	<10	10	102	8	530	35	17.4	8.2	3	33	33	<	<1	<5
6027	24	176	<10	0.1	40	<1	<10	40	8	10	1110	10	5.6	1.3	47	5	2	< 5	<1	< 5
6028	4	200	<10	0.2	110	<1	<10	20	49	11	480	23	10.3	5.1	10	20	16	< 5	<1	< 5
6029	14	224	<10	0.2	50	<1	<10	20	36	14	630	49	8.2	3.9	14	15	12	< 5	<1	<
6030	11	227	<10	0.2	50	≤ 1	40	30	34	29	670	18	7.5	3.5	12	14	12	<	<1	< 5
6031	17	236	<10	2.5	100	<1	<10	20	44	10	540	22	9.3	4.5	14	18	14	<	4	<5
6032	14	227	<10	0.8	190	<1	<10	20	66	9	830	25	9.9	6.6	13	25	22	<	≤ 1	<5
6033	15	215	<10	0.4	130	<1	<10	30	13	10	540	47	8.2	2.4	7	10	2	< 5	$\leqslant 1$	<
8034	16	201	<10	0.4	50	<1	<10	30	17	8	560	21	9.8	3.1	6	14	3	< 5	<1	<
6035	15	193	<10	0.2	60	≤ 1	<10	30	39	15	10100	77	40	12.4	4	57	22	<	4	< 5
6036	21	168	<10	1.7	60	<1	<10	30	70	31	1960	46	20.8	8.9	36	36	26	<	<1	8
6037	11	235	<10	0.7	110	<1	<10	30	66	15	780	30	12.4	7	13	27	20	<5	<1	≤ 5
6038	7.	253	<10	0.2	60	<1	<10	30	35	11	1210	27	12.5	5.9	6	23	12	<	$\leqslant 1$	<
6039	9	220	<10	<0.1	70	<1	<10	100	52	38	460	42	20.3	9.1	17	38	20	<	4	<
6040	4	182	<10	<0.1	170	<1	30	$\frac{100}{30}$	275	28	6070	370	165	76.1	8	318	191	<5	41	<5
6041	10	198	≤ 10	0.4	110	<1	<10	20	108	83	8990	195	126	37.6	24	191	262	< 5	41	<5
6042	5	200	<10	0.4	110	<1	20	70	20	9	6740	161	109	20.8	18	121	83	<	1	<5
6043	4	192	<10	<0.1	200	≤ 1	40	60	10	7	460	18	8.9	2.6	6	11	3	<	4	<5
6044	7	197	<10	<0.1	50	<1	<10	20	63	6	520	24	10.2	6.2	11	24	21	<5	<1	< 5
6045	5	238	<10	0.6	100	<1	≤ 10	20	10	5	640	14	7.5	1.6	23	7	3	<	<1	<5
6046	12.	211	<10	0.3	40	<1	<10	30	22	6	590	18	8.5	3	9	12	6	<	<1	<5
6047	16	214	<10	0.2	50	4	<10	20	54	49	2590	25	11.8	7	30	25	20	<5	4	≤ 5
6048	92	235	<10	23.8	40	<1	<10	10	35	6	730	19	8.1	4.2	15	16	11	≤ 5	<1	<5
6049	10	235	<10	1.3	70	<1	<10	20	10	6	510	16	8.1	1.9	12	8	2	< 5	41	<5
6050	7	195.	<10	0.1	40	<1	≤ 10	10	52	12	600	21	8.4	5.2	14	20	18	<	<1	<5
6051	8	240	<10	0.4	70	<1	<10	10	13	9	330	15	7.1	2.1	19	9	3	<	<1	<5
6052	7	214	<10	0.2	70	4	<10	10	84	9	1440	36	15.2	8.2	18	32	32	<	<1	<5
6053	9	300	<10	0.8	130	<1	<10	10	84	17	930	33	15.6	4.8	22	21	5	<5	<1	< 5

ANALYTE	Nb	Nd	Ni	Pb	Pd	Pr	R6	Sb	Sc	Sm	Sn	Sr	Ta	Tb	Te	Th	7	1	0	W
METHOD	Muldem	MMITME	M ${ }^{\text {a }}$-M5	MMITMS	MM1M5	TMIM5	MM1-M5	MNIT-M5	MM1-M5	MMATH5	MWI-M5	Mmilims	MMM ${ }^{\text {a }}$	Wmilm	NM10	MM1-M5	MWIT-M5		WMIM ${ }^{\text {a }}$	Mmintis
DETECTION	0.5	1	5	10	1	1	5	1	5	1	1	10	1	1	10	0.5	3	0.5	1	1
UNITS	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPE
500	11.8	77	16	80	1	16	105	0.5	35	22	0.5	5	2	4	5	10.1	1090	0.25	7	1
502	6.1	79	9	20	0.5	17	111	4	38	24	0.5	5	0.5	5	5	11.8	1240	0.25	10	1
503	24	419	7	90	1	80	110	13	37	122	1	10	2	19	5	11.6	6900	0.5	8	4
504	28.5	121	6	100	1	27	175	7	40	33	2	10	2	5	5	16.9	7520	0.8	7	4
505	8.3	139	17	70	0.5	28	125	8	45	38	0.5	5	0.5	6	5	8.1	2510	0.25	7	1
506	14.2	128	6	1140	0.5	27	169	6	46	38	1	10	1	6	5	8.5	6120	0.8	6	3
507	7.3	141	6	170	0.5	27	236	3	68	42	0.5	10	0.5	6	5	4.8	3200	0.8	5	2
508	13.2	134	9	310	0.5	24	226	6	66	42	0.5	10	0.5	6	5	4.5	5170	1.1	4	3
509	4.8	57	14	5070	0.5	11	110	3	29	18	0.5	5	0.5	3	5	5.8	1230	0.25	5	1
510	23.3	102	5	40	2	22	175	2	36	28	0.5	10	2	5	5	17	4760	0.5	7	3
512	10.3	162	6	70	2	34	213	2	77	44	0.5	20	2	7	5	10.5	1130	1.3	7	1
513	1.4	140	13	10	0.5	27	15	2	81	40	0.5	5	0.5	7	5	4.8	1120	0.6	7	0.5
514	6.1	201	15	210	1	39	122	2	97	55	0.5	20	0.5	10	5	12.6	2340	1	11	1
515	1.4	131	60	380	0.5	23	84	0.5	40	41	0.5	5	0.5	10	5	3.9	424	1.3	5	0.5
516.	1.4	54	47	160	0.5	9	60	1	58	18	0.5	10	0.5	5	5	2.8	489	0.25	4	0.5
517	3	90	19	370	0.5	17	55	1	52	27	0.5	5	0.5	6	5	9	815	0.5	9	0.5
518	2.8	176	27	470	0.5	34	112	0.5	37	49	0.5	10	0.5	9	5	5.1	194	0.25	4	0.5
519	2.5	138	18	60	0.5	24	84	0.5	15	40	0.5	10	0.5	10	5	1.6	319	0.25	3	0.5
520	9.8	82	8	30	2	17	136	2	35	24	0.5	5	0.5	4	5	15.9	2260	0.25	12	2
521	6	57	14	150	0.5	11	125	0.5	33	19	0.5	5	0.5	4	5	7.7	1810	0.8	7	0.5
800	1.1	215	16	10	0.5	40	84	0.5	83	64	0.5	10	0.5	16	5	2.1	141	0.25	6	0.5
601	4.4	149	8	80	0.5	27	176	0.5	91	42	0.5	10	0.5	8	5	6	1780	0.8	4	0.5
802	2.3	79	14	10	0.5	13	27	0.5	83	25	0.5	10	0.5	7	5	2.6	350	0.25	5	0.5
603	6	86	33	30	0.5	15	19	0.5	47	28	0.5	20	0.5	7	5	3.5	789	0.25	5	0.5
604	4.2	45	27	20	0.5	8	15	0.5	60	16	0.5	10	0.5	5	5	3.6	1130	0.25	4	0.5
605	2.3	39	17	10	0.5	7	17	0.5	53	14	0.5	10	0.5	4	5	3.5	1040	0.25	4	0.5
606	2.9	42	17	70	0.5	8	118	0.5	44	15	0.5	20	0.5	4	5	3.1	804	0.7	3	0.5
607	1.9	36	10	480	0.5	6	224	0.5	48	13	0.5	5	0.5	4	5	2.9	549	1.5	4	0.5
608	3.2	30	8	310	0.5	6	228	0.5	34	12	0.5	5	0.5	3	5	5.5	1240	0.7	4.	0.5
609	1	26	14	20	0.5	4	62	0.5	59	12	0.5	5	0.5	5	5	1.4	401	0.25	3	0.5
610	1.4	103	2.5	60	0.5	16	136	0.5	140	34	0.5	5	0.5	8	5	2.4	1050	0.25	5	0.5
612	3.6	18	68	100	0.5	3	133	0.5	47	7	0.5	5	0.5	3	5	4.5	1630	0.25	5	0.5
613	0.25	873	20	180	0.5	153	130	0.5	66	283	0.5	20	0.5	51	5	4.4	32	1	3	1
614	4	121	49	150	0.5	20	146	0.5	81	42	0.5	30	0.5	13	5	8.7	2580	0.7	7	0.5
615	3.4	75	44	60	0.5	12	77	0.5	45	25	0.5	30	0.5	12	5	2.9	840	0.5	5	0.5
616	3.1	190.	16.	50	0.5	33	91	0.5	123	66	0.5	5	0.5	18	5	7.2	779	0.6	9	0.5
617	1.7	25	39	50	0.5	4	58	0.5	45	10	0.5	20	0.5	4	5	1.6	999	0.25	3	0.5
525	13.2	63	45	170	2	14	147	1	43	19	<1	10	1	5	<10	16.5	878	0.6	10	<1
526	5	68	20	250	1	16	161	2	53	20	<1	<10	<1	4	<10	13.4	4180	0.8	7	2
527	3.5	176	10	70	<1	43	172	2	48	35	<1	20	<1	4	<10	6.9	910	0.8	5	1
528	11.2	92	16	290	1	23	174	3	48	25	<1	10	<1	4	<10	14.7	2890	0.8	7	2
529	18.8	146	7	190	3	33	171	6	52	41	1	<10	2	7	<10	24.2	2310	0.7	9	2
530	9.2	154	5	370	<1	29	159	16	47	45	<1	<10	<1	7	<10	4.8	4200	0.7	4	3
531	3.1	128	< 5	280	<1	26	223	<1	47	40	<1	<10	41	6	<10	7	613	0.6	6	<1
532	11	87	22.	440	1	19	155	3	45	26	<1	<10	<1	5	<10	12.4	3390	0.7	5	2
533	4.3	83	21	350	<1	17	160	<1	42	24	<1	<10	<1	6	<10	5.8	605	0.6	6	<1
534	3.1	55	14	150	<1	11	166	<1	29	18	<1	<10	<1	4	<10	4.2	1000	<0.5	6	<1
535	12.4	78	9	150	4	17	219	2	54	25	≤ 1	<10	1	5	≤ 10	24.5	1590	0.6	9	<1
536	4.8	229	7	170	1	49	205	<1	110	62	<1	<10	<1	10	<10	12.1	1470	1	9	<1
537	0.5	161	7	130	<1	37	30	<1	103	44	<1	50	≤ 1	8	≤ 10	6.6	251	0.8	6	<1
538	5.1	270	8	180	1	60	65	2	245	71	<1	30	<1	12	<10	8.6	5680	13	7	<1
539	9.9	126	27	110	1	26	70	1	86	38	<1	<10	<1	8	<10	10.7	2700	0.6	9	<1
540	1.3	365	12	350	<1	76	187	<1	107	101	<1	<10	≤ 1	19	<10	5.7	693	0.8	9	<1

ANALYTE	Nb	Nd	Ni	Pb	Pd	Pr	Rb	Sb	3 c	sm	Sn	3 r	Ta	Tb	Te	Th	Ti			W
METHOD	MM12.ms	MM1/-M5	Manim	Mailens	MM1/45	WMIM5	MMITM5	MMIM 5	Nanlen	TMl	- Mil ${ }^{\text {a }}$ 5	MM1+45	NMITH5	NM1-M5	MM10.45	NMIM ${ }^{\text {a }}$	NEIHMS	Mmilies	CMIM	Meli-m
DETECTION	0.5	1	5	10	1	1	5	1	5	1	1	10	1	1	10	0.5	3	0.5	1	1
UNITS	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	P98
541	2.3	323	6	200	<1	69	137	<1	58	84	<1	≤ 10	≤ 1	14	<10	4.4	789	0.5	4	4
542	5.9	165	11	110	<1	39	198	<1	44	45	≤ 1	<10	<1	8	<10	10.2	1360	1.3	8	≤ 1
543	3.6	59	13	130	<1	13	104	1	45	18	<1	<10	$\leqslant 1$	4	≤ 10	15.6	926	<0.5	7	41
544	6.2	134	<5	130	4	31	171	1	33	35	<1	<10	$\leqslant 1$	6	≤ 10	9.5	1530	0.9	6	≤ 1
545	0.8	235	6	240	≤ 1	53	136	$\leqslant 1$	46	58	≤ 1	<10	≤ 1	11	<10	3.6	185	0.9	7	≤ 1
546	0.7	336	<5	110	4	73	169	1	52	97	≤ 1	<10	<1	17	<10	3.4	161	0.8	6	$\stackrel{1}{1}$
547	6.3	183	8	170	≤ 1	40	166	2	76	51	≤ 1	30	<1	9	<10	8.4	2200	1	7	1
548	2.8	388	15	340	<1.	92	134	1	75	94	<1	<10	≤ 1	17	≤ 10	8.6	645	1	11	≤ 1
549	5.1	125	7	70	1	29	165	1	81	38	<1	10	<1	7	<10	10.7	934	1	8	<1
550	5.8	170	13	150	1	39	243	2	65	48	4	10	≤ 1	8	<10	13.6	2530	1	11	1
551	2.2	182	7	120	<1	39	185	≤ 1	59	50	<1	<10	<1	10	<10	6.8	703	0.7	10	≤ 1
552	8.6	142	15	320	1	30	159	<1	49	41	<1	<10	<1	8	<10	12.1	735	0.6	11	<1
553	10.1	111	17	100	1	22	92	≤ 1	44	33	≤ 1	<10	<1	7	<10	14.7	1070	<0.5	10	≤ 1
554	13.8	100	17	130	1	20	91	<1	45	30	<1	<10	1	8	<10	13.5	899	<0.5	9	<1
555	1.9	177	<5	50	<1	43	150	<1	34	42	<1	<10	<1	7	<10	8.8	267	0.7	8	$\leqslant 1$
556	37.9	109	<5	60	<1	24	104	5	29	28	3	90	3	3	30	7.5	8840	1.6	2	7
557	20.6	918	< 5	150	<1	225	119	12	18	187	6	350	2	23	20	5.2	13300	2	2	9
558	8	125	15	230	<1	32	98	<1	50	31	<1	20	$\stackrel{1}{ }$	5	<10	26.1	963	1.1	19	4
559	5.8	23	14	570	$\leqslant 1$	5	82	$\leqslant 1$	22	6	<1	<10	≤ 1	2	<10	7.5	1140	1.9	6	1
580	3.7	14	37	280	≤ 1	3	101	$\leqslant 1$	19	4	$\leqslant 1$	<10	$\leqslant 1$	1	≤ 10	8.8	589	1.2	3	<1
581	9.3	80	8	70	<1	21	128	3	38	20	1	20	<1	3	<10	9.4	2580	1.5	6	4
562	9.9	14	17	230	<1	4	120	2	23	4	<1	<10	≤ 1	1	<10	6.5	2760	1.2	4	3
563	11.1	77	10	470	<1	18	158	2	27	22	<1	<10	≤ 1	4	<10	8.6	2000	0.9	5	2
564	21.2	118	8	280	≤ 1	28	198	8	30	28	2	<10	1	4	<10	7.4	7670	2	4	9
565	6.5	12	16	240	<1	3	88	4	18	4	<1	<10	<1	2	<10	2.6	1210	0.9	2	2
586	5.1	67	22	280	<1	14	188	≤ 1	32	20	$\leqslant 1$	<10	<1	5	<10	7.2	1300	1.2	4	1
587	2.2	778	27	740	<1	156	158	≤ 1	89	194	<	80	$\leqslant 1$	40	≤ 10	3.3	948	0.5	3	2
588	14.6	107	18	70	<1	26	368	<1	37	29	<1	<10	<1	8	≤ 10	10.1	5270	2.1	7	2
568	3	225	8	4000	<1	48	174	2	43	69	<1	30	$\stackrel{<}{1}$	10	<10	4	1020	1	5	<1
570	93.4	346	11	270	7	79	162	2	81	89	6	<10	7	14	<10	55.8	3170	1	18	3
579	12.2	45	21	470	1	10	160	1	22	13	<1	$\bigcirc 10$	1	3	≤ 10	8	1590	0.6	6	1
572	13.7	94	<	120	≤ 1	22	187	2	39	25	1	20	1	3	<10	5.6	4080	0.9	4	3
573	43.9	73	<5	30	<1	13	110	5	28	23	4	40	2	2	10	11.7	13500	1.1	2	20
574	88.1	104	<	450	<1	25	147	14	34	25	9	50	5	3	20	10	33300	2.2		28
575	42.6	197	<5	470	<1	51	148	9	36	42	6	80	3	5	20	5.9	17900	1.8	3	13
576	131	180	10	860	1	47	176	36	78	40	17	80	8	5	40	16.8	51100	3.2		45
577	69.5	57	10	510	<1	15	231	50	23	12	9	30	4	2	30	11	30900	2.1	5	40
578.	3.1	270	<	220	$\leqslant 1$	53	186	1	20	72	<1	<10	≤ 1	9	<10	6.5	1030	1.8	3	2
579	9.7	401	7	80	≤ 1	83	131	2	78	103	<1	30	4	12	<10	3.9	3890	0.9	5	2
580	7.7	165	22	540	1	37	162	1	41	44	<1	<10	<1	7	<10	11.5	1510	1	6	<1
581	6.7	438	16	410	4	98	118	2	75	114	<1	20	≤ 1	20	≤ 10	7.3	2570	1	5	1
6000	1.6	18	38	30	<1	4	50	<1	41	7	≤ 1	<10	≤ 1	3	<10	2.1	821	<0.5	3	≤ 1
6001	2.6	30	48	120	$\leqslant 1$	7	117	≤ 1	48	11	<1	<10	≤ 1		<10	3.5	1290	<0.5	4	<1
6002	1	27	23	170	<1	6	84	<1	27	10	<1	<10	$\leqslant 1$	4	<10	1.9	350	<0.5	2	<1
6003	1.8	51	11	90	<1	11	107	≤ 1	35	16	<1	<10	<1	4	<10	3.2	856	<0.5	4	$\leqslant 1$
6004	1.4	23	22	10	<1	5	49	<1	34	9	≤ 1	<10	$\leqslant 1$	3	<10	2	815	<0.5	3	≤ 1
6005	4	69	10	90	<1	16	129	<1	60	22	<1	<10	≤ 1	5	<10	6.7	2490	<0.5	4	<1
6006	108	697	7	50	<1	159	86	1	68	176	<1	510	1	35	<10	3.7	5720	<0.5	2	2
6007	2.4	197	<	170	<1	45	135	≤ 1	90	58	≤ 1	30	$\leqslant 1$	10	<10	6.7	1180	<0.5	7	<1
6008	2.1	25	34	90	<1	6	76	<1	36	10	≤ 1	20	41	4	<10	2	603	<0.5	3	≤ 1
6009	0.6	12	28	20	<1	3	73	<1	36	5	≤ 1	20	<1	2	<10	1.1	229	<0.5	2	<1
6010	1.2	24	18	190	<1	5	124	<1	26	9	<1	<10	<1	3	<10	2.6	367	<0.5	3	<1

ANALYTE	Nb	Nd	Ni	Pb	Pd	Pr	Rb	Sb	Sc	Sm	Sn	3 r	Ta	Tb	Te	Th	TI	TI	U	W
METHOD	WMind	Nami-M5	NWINT	Munl-ms	WMITH5	MMI-M5	MMITM5	TMilim	MM1-M5	Mmitm	NMIM5	Mmilat	M	M M - M 5	Minlat	NMil-m5	MM1-45	MMil\|m	MWIH5	MMITM5
DETECTION	0.5	1	5	10	1	1	5	1	5	1	1	10	1	1	10	0.5	3	0.5	1	1
UNITS	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB
6012	3.1	32	18	30	<1	8	97	<1	29	10	4	<10	≤ 1	3	<10	4.5	779	<0.5	4	<1
6013	1.4	28	19	≤ 10	≤ 1	6	14	<1	41	10	4	<10	<1	4	<10	1.7	1030	<0.5	3	<1
6014	0.5	11	22	40	<1	2	79	<1	20	5	<1	<10	41	2	<10	1.1	193	<0.5	2	<1
6015	1.2	27	29	10	$\leqslant 1$	6	12	4	38	10	<1	<10	<1	3	<10	2.1	784	<0.5	3	<1
6016	1.1	18	54	30	<1	4	24	<1	31	7	<1	<10	≤ 1	3	<10	1.8	458	<0.5	$\frac{3}{5}$	<1
6017	5.2	22	24	≤ 10	4	5	13	<1	33	8	<1	<10	<1	3	<10	5.7	2510	<0.5	5	<1
6018	0.7	11	28	160	≤ 1	2	123	<1	27	5	≤ 1	≤ 10	≤ 1	2	<10	1.5	298	<0.5	2	≤ 1
6019	<0.5	16	28	<10	<1	3	15	<1	28	6	<1	<10	<1	3	<10	1	139	<0.5	2	<1
6020	0.9	59	18	60	<1	14	132	<1	28	19	<1	20	≤ 1	4	<10	2	375	<0.5	2	<1
6021	<0.5	122	49	120	4	26	50	≤ 1	40	40	<1	320	<1	12	<10	3.3	123	<0.5	5	<1
6022	0.7	10	22	60	≤ 1	2	68	41	19	4	<1	10	<1	3	<10	1.4	520	<0.5	3	<1
8023	1	14	23	≤ 10	<1	3	16	<1	33	6	<1	<10	≤ 1	2	<10	2.2	1030	<0.5		<1
6024	2.6	58	15	70	<1	14	109	<1	34	17	<1	<10	<1	4	<10	4.9	259			<1
6025	0.8	45	21	<10	<1	9	11	<1	33	15	<1	<10	4	5	≤ 10	1.3	259		3	<1
6026	0.6	20	22	<10	41	4	22	<1	34	8	<1	<10	≤ 1	3	≤ 10	1.4	298	<0.5	4	<1
6027	<0.5	93	19	<10	<1	21	13	<1	51	24	<1	<10	<1	7	<10	0.8	165	<0.5	3	<1
6028	0.8	6	31	80	$\leqslant 1$	1	89	41	20	3	<1	410	≤ 1	1	<10	3.6	212	<0.5	3	<1
8029	1.3	43	23	30	4	9	23	<1	37	14	<1	<10	<1	4	<10	2.2	841	<0.5	4	<1
8030	1.9	32	23	10	<1	7	24	<1	30	11	<1	<10	<1	3	<10	2.9	1040	<0.5	5	<1
6031	1.7	25	20	180	41	6	101	<1	23	10	$\leqslant 1$	<10	<1	3	<10	3.2	591	<0.5	3	<1
6032	1.3	39	20	90	<1	9	79	<1	31	13	$\leqslant 1$	410	<1	5	<10	2.5	886	<0.5	4	<1
6033	1.3	61	19	10	<1	14	35	<1	37	19	<1	<10	<1	3	<10	1.4	104	<0.5	2	<1
6034	0.5	13	22	240	≤ 1	3	79	<1	21	8	<1	<10	<1	4	<10	1	134	<0.5	3	<1
6035	<0.5	19	18	≤ 10	<1	4	43	<1	28	32	<1	<10	4	13	<10	1.6	105	<0.5	4	<1
8038	<0.5	82	18	40	<1	15	113	<1	28	23	<1	10	<1	8	<10	3.5	518	<0.5	4	41
6037	1.1	68	47	90	<1	14	113	<1	50	19	<1	<10	<1	6	<10	4	522	<0.5	4	<1
6038	2.2	57	36	20	<1	12	37	<1	39	15	<1	<10	<1	5	<10	1.7	407	40.5	3	<1
6039	0.7	44	28	20	<1	9	19	<1	38	28	<	80	<1	8	<10	1.4	88	<0.5	1	<1
6040	<0.5	80	43	10	4	16		<1	33	194	1	10	<1	67	<10	2.9	251	<0.5	5	1
6041	1.6	621	20	30	<1	$\frac{125}{79}$	61	<1	34	95	<1	10	4	34	<10	7	1580	<0.5	7	1
6042	3	357	22	70	<1	79	58	<1	31	47	<1	80	<1	25	<10	2.9	515	<0.5	5	<1
6043	0.9	168	83	20	<1	$\frac{32}{3}$	46	<1	31	6	<1	10	<1	3	<10	0.9	90	<0.5	2	<1
6044	<0.5	13	37	<10	<1	13	46	<1	34	18	<1	<10	<1	5	<10	2.3	417	<0.5	3	<1
6045	0.7	57	18	110	<1	13	$\frac{132}{45}$	<1	34	4	<1	<10	<1	2	<40	2.7	302	<0.5	3	<1
6046	0.9	8	25	30	≤ 1	2	28	<1	34	7	<1	<10	4	3	<10	1.8	443	<0.5	3	<1
6047	0.9	19	24	<10	<1	4	54	<1	96	17	<1	<10	<1	5	<10	2.1	225	<0.5	1	41
6048	0.7	47	30	2000	<1	10	148	<1	24	11	<1	<10	$\leqslant 1$	3	<10	2.2	394	<0.5	3	<1
6049	0.9	33	18	270	<1	7	148	<1	28	5	<1	<10	<1	2	<10	1.5	173	<0.5	3	<1
6050	0.5	10	26	<10	<1	$\frac{2}{10}$	30	<1	34	14	<1	<10	<1	4	<10	3.7	1180	<0.5	4	<1
6051	2.2	43	14.	20	<1	10	87	<1	17	5	<1	<10	<1	2	<10	1.6	381	<0.5	2	<1
6052	1.3	12	25	100	<1	16	78	<1	66	23	<1	<10	<1	7	<10	6.5	1550	<0.5	7	<1
6053	6.9	71	14	40	<1	16	21	<1	37	12	<1	20	<1	6	<10	1.6	317	<0.5	3	<1

ANALYTE	Y	Yb	2 n	Zr
METHOD	MMIAE	MMA1/M5	MMICMS	Minlims
DETECTION	5	1	20	5
UNITS	PPB	PPB	PPB	PPB
500	87	7	90	388
502	100	10	110	349
503	355	38	90	371
504	89	10	80	494
505	118	11	140	225
506	101	14	110	244
507	114	17	100	97
508	123	18	250	68
509	81	9	170	67
510	84	9	80	659
512	137	14	100	403
513	157	14	230	94
514	249	23	530	222
515	280	21	880	48
516	139	13	780	56
517	163	15	950	156
518	226	18	270	124
518	301	20	110	43
520	83	8	40	432
521	83	9	50	228
800	379	29	150	49
601	159	14	240	157
602	214	18	460	82
603	207	15	1320	112
604	132	11	390	125
805	87	7	300	101
606	101	8	710	105
607	116	11	220	73
808	71	6	220	120
809	134	12	320	44
810	255	22	150	83
812	70	7	160	130
613	1130	164	920	16
614	932	40	2010	212
815	614	27	2300	70
816	605	47	290	171
617	93	8	720	50
525	119	10	170	504
526	74	6	100	209
527	118	10	80	108
528	87	8	80	237
529	176	17	70	751
530	220	21	110	67
531	108	14	70	192
532	98	11	150	218
533	200	17	140	133
534	133	11	60	61
535	108	10	100	737
536	262	19	100	246
537	183	16	380	156
538	269	19	230	313
539	191	13	450	299
540	567	42	240	78

ANALYTE	Y	Yb	2n	2 r
METHOD	WMITM5	MMITA5	Milm5	Minl\|mb
DETECTION	5	1	20	5
UNITS	PPB	PPB	PPB	PPB
541	321	30	180	54
542	176	15	180	181
543	93	9	140	178
544	154	12	70	189
545	384	33	40	62
546	424	40	<20	77
547	204	19	130	133
548	527	48	140	159
549	131	12	60	277
550	184	20	170	329
551	269	24	160	180
552	180	15	100	381
553	188	16	140	421
554	220	18	120	418
555	152	12	<20	159
556	51	4	30	100
557	542	39	50	58
558	105	9	<20	348
559	66	7	20	123
560	36	5	110	101
561	64	6	50	134
562	34	4	60	94
563	69	6	50	177
564	77	6	80	117
585	59	6	120	58
566	184	12	130	135
567	2050	91	3280	41
588	127	10	170	111
569	149	22	460	112
570	269	22	60	2270
571	82	6	100	180
572	44	6	40	119
573	25	3	60	45
574	48	5	110	148
575	83	7	70	86
576	82	7	290	295
577	33	3	130	147
578	155	19	40	88
579	210	27	110	71
580	158	14	90	256
589	600	49	260	106
6000	93	6	160	40
6001	100	7	140	79
6002	97	6	110	27
6003	104.	7	80	63
6004	98	6	110	41
6005	109	7	100	149
6006	1270	66	300	50
6007	203	17	60	120
6008	103	6	290	45
6009	76	6	170	21
6010	74	5	180	50
6011	97	7	100	81

ANALYTE	Y	Yb	2n	Zr
METHOD	Wenlm	Minlicis	Munlm5	WM1-MS
DETECTION	5	1	20	5
UNITS	PPB	PPE	PPB	PPB
6012	71	5	110	90
6013	111	7	120	47
6014	67	4	140	19
6015	109	7	140	43
6016	82	6	170	33
6017	71	5	130	133
6018	60	4	240	22
6019	71	5	350	16
6020	96	5	570	34
6021	445	22	2140	34
6022	87	6	150	23
6023	58	4	190	40
6024	77	5	140	94
6025	127	7	160	24
6026	86	6	190	25
6027	208	12	130	15
6028	50	4	340	30
6029	110	7	200	48
6030	82	6	270	63
6031	72	5	230	47
6032	92	6	320	42
6033	116	6	510	52
6034	81	6	230	18
6035	109	6	260	16
6036	543	25	770	20
6037	229	14	1000	30
6038	133	9	840	74
6039	144	9	440	29
6040	255	13	2250	11
6041	1320	110	360	53
6042	1700	80	790	102
6043	1510	61	2930	40
6044	86	6	830	12
6045	113	7	250	35
6046	66	5	200	29
6047	79	6	250	31
6048	125	9	210	43
6049	88	6	250	34
6050	76	6	260	21
6051	88	6	240	85
6052	69	5	210	23
6053	152	10	230	161
6054	161	10	550	24

APPENDIX 3E

Results Of Mobile Metal Ions Process (MMI-M) Soil Geochemical Surveys on The Stewart Property (Deltaic Grid), Stewart Area, B.C.

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - NbRR

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - AgRR

Plot Projection:
0
100
200
Meters
Local Grid Co-ordinates Samples ($n=149$)

Geochemistry plots by:

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - AsRR

AsRR
56.0030 to 56
10 to 30
() 7.5 to 10
$\begin{array}{ll}0 & 5 \\ 0 & \text { to } 7.5 \\ 0 & \text { to } 5\end{array}$
$\begin{array}{ll} & 2.5 \text { to } 5 \\ 0 & \text { to } 2.5\end{array}$

Plot Projection:
Local Grid Co-ordinates
Samples ($n=149$)

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - AuRR

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - BiRR

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - Ca+Mg+SrRR

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - CdRR

Plot Projection:

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - CeRR

[^0]
GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - CoRR

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - CuRR

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - MoRR

Geochemistry plots by:

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006-ZrRR

GEOFINE STEWART PROPERTY DELTAIC GRID

 MMI-M SURVEY 2006 - NiRR

Plot Projection:
Local Grid Co-ordinates Samples ($n=149$)

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - PbRR

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - SbRR

Plot Projection:

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - ThRR

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006-TiRR

Plot Projection:
Local Grid Co-ordinates
Samples ($n=149$)

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - TIRR

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006- \sum reeRR

Geochemistry plots by:

GEOFINE STEWART PROPERTY DELTAIC GRID

 MMI-M SURVEY 2006 - URR
Plot Projection:
Local Grid Co-ordinates Samples ($n=149$)

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - WRR

GEOFINE STEWART PROPERTY DELTAIC GRID MMI-M SURVEY 2006 - ZnRR

Geochemistry plots by:

ORIENTATION RESULTS

Results Of Mobile Metal Ions Process (MMI-M) Soil Geochemical Surveys on The Stewart Property (Deltaic Grid), Stewart Area, B.C.

ORIENTATION RESULTS

APPENDIX 10

Results Of Mobile Metal Ions Process (MMI-M) Soil Geochemical Surveys on The Stewart Property (Deltaic Grid), Stewart Area, B.C.

ANALYTE		Pr	Rb	Isb	Sc	Sm	Sn	Sr	Ta	Tib	70	7 Th	Ti	71	U	W	Y			
METHOD	MM1-MS	MMI-M5	MMI-MS	MML-M5	MMPMS	MML-M5	MM1-M5	MM1-MS	MML-M5	MMA-M5	MM1-MS	MM1-M5	MM1-M5	MMI-MS	MML-M5	MM1-MS	MML-M5	MMLM5	MML-M5	MMI-M5
DETECTK												0.5		0.5					20	
UNITS	PPB	PP8	PPB	PP8	$\overline{P P B}$	PPB	PPB	PPB	PPB	PPB	PP8	PPB	PP8	PPB	PP8	PPB	PPB	PP9	PPB	PP8
300-A	<1	- 3	23	1	50	4	<1	30	3	1	1610	8.9	1030	0.5	6	4	47	-7	810	228
600-B	<1	2.	34	<1	28		<1	10	2		<10	3.1	119	<0.5	3	2	51	5	110	93
500-C	1	14	111	2	34	20	<1	<10	2	4	<10	10.4	945	<0.5	9	2	94.	8	110	422
$500-\mathrm{D}$	1	16	105	<1	35.	22	<1	10	2	4	<10	10.1	1090	<0.5	7	- 1	87.	7	90	388
602-A	<	2	43	<1	20.		<1	10	1	2	$1<10$	4.7	217	<0.5	3	- 1	55	6	280	151
602-B	<1	4	89	<1	25		<1	<10	1	3	<10	4.5	164	<0.5		1	93.	9	150	146
502-C	1.	19	110	3.	31	17	<1	10	- 1		<10	11.4	1420	0.5	9	- 1	77.	8	130	374
502-0	<1	17	111	,	38	24	<1	<10	<1		$1<10$	11.8	1240	<0.5	10	1	100	10	110	349
503-A	$\leqslant 1$	6	39	- 1	13	8	<1	10	<	2	1/10	1.6	312	<0.5		<	70	11	50	53
603-8	1	101	88	1	22	185	<1	10	2	38	<10	9	1320	<0.5	10	- 2	1020	72	90	363
503-C	3.	84	107	7	36	135		<10	4	28	[10	25.1	4380	<0.5	12	-3	621	48	90	1090
B03-D	.	80	190	13	37	122	- 1	10	2	19	1×10	11.6	6800	0.5	8	- 4	335	38	90	371
504A	1	3	53	<1	35		<1	10	<1	3	<10	8.1	586	0.7		<1	91	13	110	183
5048	4	19	123	<1	42	34		10			120	27.3	622	<0. 5	12	<1	174	18	30	1140
504 C	3	33	217	5	41	39		<10	2		1-10	26.2	4150	0.8	10	- 2	100	12	80	804
604-0	1	27.	173	7	40	33	- 2	10	2	5	[10	16.9	7520	0.8	7	--4	89	10	80	484
506-A	4	8	104	7	51	10	-1	20	- 1	2	<10	10.7	1220	1		- 2	67	9	480	189
506-8	<1	7	46	<1	28		<1	<10	< 1		10	10.6	776	<0.3		1	29	3	110	297
$500-\mathrm{C}$	<1	13	121	2	36	20	<1	<10	4	4	<10	6.4	1090	<0.5		1	83	9	110	178
505-0	<1	28	128	8	46	38	C	10	<i	8	-10	8.1	2810	<0.3	7	- 1	198	11	140	226
508-A	<1	6	18	<1	28.		-1	10	<1		$1 \leqslant 10$	8.8	838	<0.5		1	28	3	130	218
508 -8	1	2	69	<1	28		<1	10	<1		<10	3	238	<0.3		<1	87	11	130	87
500-C	1. 21	38	189	3	63	47	<1	10			1610	15.9	124.	<0. 5		1	134	14	70	62
50\%-D	<1	27	169	6	48	38	-1	10	- 1		<10	8.5	6120	0.8	6	- 3	101	14	110	244
607-A	<1	16	119	1	67	28	<1	10	4		10^{10}	7.3	399	0.7		<1	168	20	170	137
607.8	<1	47	187	1	63	38	1	≤ 10	<1	8	10	9.8	878	0.8		1	180	18	70	188
607-C	-1.	31	241	1	77	47	<1	110	<1		10	0.2	1170	0.9	8		134	17	110	288
507-0	<1	27	238	3	88	42	<1		<1		$1<10$	4.8	3200	0.8	5	- 2	114	17	100	97
608-A	<1	21	191	2	77	39	<1	<10	-1	8	-10	11.4	1010	0.9	10	-1	203	32	420	171
$508-8$	<1	31	170		33	44	<1	<10	<1		$1{ }^{10}$	9.2	1020	0.6		<1	164	17	150	212
500-C	1	28	194	3	49	43	<1	10	<i		110	3.7	4730	0.8	4		109	13	160	93
$508-\mathrm{D}$.	<1	24	228	6	68	42	-1		<	6	$1<10$	4.5	8170	1.1	4	- 3	123	18	250	68
509 A	1	4	72	1	32.		< 1	30	<1		10	9.3	658	0.6		-1	38	6	380	88
509-8	<1	2	148	<1	28		<1	20	<1		-10	5.2	459	<0.5		-1	48	7	410	43
509 C	<1	5	71	2	27	11	<1	<10	1		10	4.7	217	<0.5		<1	96	10	250	41
809-D	<1	11	110	3	29		<1	10	<1		19	3.8	1230	<0. 5	5	- 1	81	9	170	67
510.A	\cdots	<1	88	-1	25		<1	20	<1		<10	4.8	615	09		1	52	9	140	46
810.3		11	163.		47	21	<1	<10			10	14.7	2320	0.8	10	-2	106.	12	100	327
510-C	3.	18	206	3	47	25	- 2	10	--3		-10	21.6	3080	0.9	10	,	81.	9	70	811
$510-0$	2	22	176	2	36	28	<1	10	2	5	-10	17	4760	0.5	7	3	84.	9	80.	869
SI1-A	4	< 1	27	<1	14	4	<1	20	<1	<1	${ }^{1} 10$	2.2	256	0.61		<1	24 ;	6	130	33
511-8	<1	20	133	1	42	30	<1	<10	<1		10	9.	830	0.8		<1	128	13	80	228
B61-C	<	24	154	2	36	31	<1	20	<1		10	87	1590	0.91		-1	98	10	70	22
611-D	< 1	18	151	6	25	22	<1	20	<1		-10	7.7	3230	0.9	3	1	72	7	120	169
B12-A	<1	3	80	1	41		<1	30	<1		¢ 10	7	506	0.8		-1	66	8	700	98
612-8	<1	26	162 !	1	48	34	<1	10	<1		¢10	5.2	480	1.2		く	154	14	210	104
S12-C	<1	38	199	1	84	46	<1	10	1		10	8.5	1140	1.2	7	- 1	193	16	160	187
612-D		34	213	2	77	44	<1	20	2		<10	10.5	1130	1.3	7	- 1	137	14	100	403
543-A	<1	9	45.	1	36	12	<1	20	<1		¢10	8.	559	1.2		<1	31	7.	360	72
613-8	<1	10	90	<1	59	21	<1	<10	<1		-10	2.9	297	1.3		<1	219	24	310	76
613-C	<	17	39	<1	67	29	<1	<10	<1	6	「10	2.5	488	0.8		1	157	15	240	54
B13-D	<1	27	15.	2	81	40	<1	< 40	<1		¢ 10	4.8	1120	0.6		<1	157	14	230	94
514 A	<1	2	60	<1	38		<1.	20	<1		-10	3.7	312	1.1		<1	114	18	1260	30
514.8	≤ 1	17	85	<1	61	29	<1	10	<1		<10	3.9	414	0.9		<1.	257	25	1020	70
$514-\mathrm{C}$	<1	36	115	1	68	50	<1	10	1	9	16	4.9	1450	0.7		<1	250	22	630	112
5140		39	122	2	97	55	<i	20	<1	10	$\times 10$	12.6	2340	1	11	1	249	23	530	222
615-A	<1	6	92.	2	47	11	<1	50	<1		1610	8	598	,	4	<1	102	12	3370	36
616-B	<1	16	70	<1	43	28	<1	20	<1		<10	7.2	491	1.1		<1	175	14	1400	59
315-C	<1	20	81	<1	44	32	<1	10	<1	8	c10	6.2	729	1.3	6	<1	219	18	1090	64
515-D	<1	23	84.	<1	40	41	<1	<10	<1	10	<10	3.9	424	1.3		<1	280	21	880	48
518-A	<1	1	45.	1	31		<1	30	<1		<10	2.5	320	0.9		<1	77.	10	1340	34
516-B	<1	2	55	<1	36		<1	20	<1		< 40	1.2	238	0.6		<1	115	12	1160	26
B16-C	<1	8	-53	<1	45	15	$1<1$	10	1		<10	2.5	408	0.5		<1	117	10	670	57

ANALYTE		PT	Rb		Sc	Sm	5 n	Sr	Ta	Tb	T0	Th	7	11	U	W	Y	Yb	Zn	Zr
METHOD	MM1－M5	MML－M5	MMI－M5	MML－M5	M1M1－M5	MM2－M5	MML－M5	MM M－M5	MM1－M5	MML－M5	MM1－M5	MML－M5	MML－M5	MM1－M5	MM1－M5	MML－MS	MML－M5	MMI－M5	MMI－M5	MMI－MS
DEEECTK					5.			10		1	10	0.5		0.5			5		20	－ 5
UNITS	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PP8	PPB	PPB	PPB	PPB	PP8	PPB	PPB	PP¢	PPB	PPB	PPP	PPB
600－A	＜1	<1	99	＜1	22	1	－1	40	1	<1	$1<10$	2.7	266	1	2	1	32	－7	300	27
800－B	＜1	3	153	＜1	36		－1	20	－ 1		＜10	4	394	0.8		＜1	70	8	180	105
$600-\mathrm{C}$	＜1	6	116	＜1	53	14	＜1	20	<1		＜10	4.2	397	0.7		＜1	105	11	100	138
$600-\mathrm{D}$	＜1	40	84	$\leqslant 1$	93	64	＜1	10	＜1	16	＜10	2.1	141	<0.5		＜1	379	29	150	49
B01－A	<1	1	83	C1	52.		＜1	50	＜1	$\leqslant 1$	＜10	2.1	455	0.6		－ 1	33	10	1070	43
601－B	<1	4	20	$\leqslant 1$	68	12	＜1．	10	＜ 1	4	10	2.2	488	＜0．5		＜1	18	11.	320.	67
$601-\mathrm{C}$	＜1	8	37	4	80	17	＜1	10	＜1	5	110	2.8	743	＜0．5	4	＜1	126	12	440	82
601－D	＜1	27	176	4	91	42	＜1	10	＜1	8	－10	6	1780	0.6		＜1	159	14	240	157
602－A	＜1	2	34	＜1	66		1	70	≤ 1	2	10	2.9	363	0.6	4	＜1	99	17	1250	58
602－B	＜1	3	33	＜1	68		＜1	20	＜1	4	－10	2.2	375	＜0．5		＜1	146	17	740	57
802－C	＜1	8	26	1	69	18	＜1	10	＜1	6	＜10	1.9	337	＜0．5		＜1	188	16	390	69
602－D	<1	13	27	＜1	83	25	＜1	10	＜1	7	－10	2.8	360	＜0．5		＜1	214	18	460	82
603－A	＜1	2	42	1	48	，	1	100	4	－ 1	10	3.8	2140	＜0．5	5	－1	13	2	860	158
803－B	＜1	＜1	47	＜1	28		－1	70	＜1	＜1	$\leqslant 10$	1.6	385	＜0．5		＜1	56	11	1400	36
$803-\mathrm{C}$	4	11	21	$\leqslant 1$	45	22	＜1．	30	＜1		＜10	2.8	676	＜0．5		＜1	207	18	1320	82
B03－D	＜1	15	19	＜1	47	28	1	20	1		10	3.5	789	<0.5		＜1	207	16	1320	112
604A	＜1	＜1		$\leqslant 1$	18	－1	＜1	170	＜ 1	＜ 1	＜10	1.1	308	＜0．5	1	－1	＜	2	210	25
6048	＜1	1	18.	＜1	27		－1	20	$\leqslant 1$		＜10	1.2	502	<0.5		＜1	68	厚	500	34
$604-\mathrm{C}$	4	．	13.	＜1	41		＜1	10	＜1		10	2.6	1080	＜0．5		＜1	89	9	480	100
604－D	4	8	13	＜1	60	18	－1	10	≤ 1	5	10	3.6	1130	＜0． 3		＜1	132	11	390	126
B003－A	＜1	＜1		＜1	18	＜1	＜1	70	<1	＜1	$\leqslant 10$	1	198	<0.5		＜1	22	8	310	16
605－8	＜1	＜1	18	＜1	21	1	＜1	40	<1	＜1	－10	0.8	162	<0.5		＜1	25	，	360	17
$800-\mathrm{C}$	＜1	1.	15	＜1	34		4	10	＜1		＜10	1.4	630	＜0．5		＜1	71	7	400	43
60\％－1	－1	7	17	＜1	33	14	＜1	10	＜1		－10	3.5	1040	<0.5		＜1	87	7	300	101
808－A	＜1	3	41	＜1	41		1	80	＜1		－10	3.	679	＜0．8		＜1	84	8	930	63
$600-8$	4	1	43	＜1	39		1	60	<1		人10	2.1	398	<0.5		1	83	9	888	38
$608-\mathrm{C}$	＜1	4	89	$\leqslant 1$	37		＜1	20	＜1		＜10	1．7）	494	0.5		＜1	94	8	710	58
608－D	4	8.	118	＜1	44	15	＜1	20	＜1	4	＜10	3.1	804	0.7		＜ 1	101	8	710	105
607－A	＜1	1	78	51	22		＜1	50	＜1	4	1－10	3.1	691	0.8		1	14	4	480	70
607.8	く？	1	111	＜1	27		＜1	10	＜1		＜10	1.5	182	0.8		＜1	65	－ 7	220	35
$607-\mathrm{C}$	＜	2	230	＜1	38		＜1	10	＜1		＜10	1.1	197	1.3		＜1	9	10	270	29
607－D	＜1	6	22	＜1	48	13	＜1	10	＜1	4	＜10	2.9	849	1.8		＜1	116	11	220	73
808－A	＜1	1	41	＜1	33	1	＜1	50		1	10	2.8	518	1.5	－ 1	1	8	2	140	41
808－8	$\leqslant 1$	＜1．	131	1	17	1	$\leqslant 1$	10	＜	＜1	＜10	2.1	468	0.9		＜	16	4.	150	48
B08－C	＜ 1	2	454	＜1	44		＜1	＜10	1		＜10	3.1	609	1.2	3	－1	46	5	180	88
608－D	－1	6	228	<1	34	12	1	＜10	＜	3	＜10	5.5	1240	0.7	4	＜1	71	8	220	120
C09－A	<1	1	85	1	28		＜1	70	＜1	4	－10	2.9	907	0.6		＜1	20	3	620	85
6098	4	1	34	＜1	32.		＜1	10	＜1		110	1.4	292	＜0．5		＜1	53		380	33
$609-\mathrm{C}$	＜1	3	68	4	50		＜1	<10	＜1		$\checkmark 10$	1.3	313	＜0．5		＜1	112	10	350	38
B09－D	＜1	4	62	4	59	12	＜1	＜10	＜1	5	10	1.4	401	＜0．5		＜1	134.	12	320	44
610－A	＜1	2	58	21	62		1 1	40	＜1	4	$\checkmark 10$	2.8	355	＜0．5		＜	21	3	650	83
B10－B	＜1	8	48	<1	159	13	＜1	<10	＜1		10	4.3	788	＜0．3		－1	63		140	153
610－C	＜1	6	62	<1	104	15	＜1	10	＜1		－10	2.1	356	＜0．5		＜1	178	16	90	62
B10－D	＜1	18	138	＜ 1	140	34	＜1	＜ 10	＜1	8	－10	2.4	1050	＜0．5		＜1	255	22	150	${ }^{63}$
$811-\mathrm{A}$	＜1	1	96	＜1	73		＜1	30	－1	＜1	－10	3.5	491	＜0．5		＜1	24	4.	470	78
611－B	＜1	2	139	＜1	97		＜1	<10	＜1		¢ 10	2.2	331	＜0．5		＜1	63	8	120	64
611－C	＜1	3	170	＜1	128	12	＜1	＜10	＜1		＜10	4	307	＜0．3	4	1	134	14	100	108
B11－D	＜1	11	148	＜1	155	23	＜1	＜ 10	－ 1	6	＜10	6.2	1910	＜0．5	－ 7	1	163	16	200	186
612－A	＜1	1	14	＜1	11	<1	1	70	＜1	1	＜10	1.2	283	0.6	＜1	＜1	<5	<1	90	23
812－B	<1	＜ 1	75	＜1	22	＜1	＜1	10	＜1	＜1	＜10	1.6	231	＜0．5		－1	30	5.	190	30
612－C	＜1	1	89	＜1	35		＜1	<10	＜1		＜10	1.9	698	＜0． 3		＜1	50	－ 6	190	45
612－D	<1	3	133	＜ 1	47	7	＜1	＜10	＜1	3	10	4.5	1630	<0.5	－ 5	＜1	70	，	160	130
613－A	＜1	4	88	<1	13		＜1	100	＜1	2	＜10	0.7	63	1		＜1	93	21	1880	9
813－B	1	15	46	＜ 1	33	37	＜1	20	＜1	12	10	<0.5	24	＜0．5		＜1	366	86	1020	－ 8
613－C	<1	182	97	＜ 1	55	336	＜1	20	＜1	62	＜10	1.1	81	0.8		2	1270	191.	900	18
813－0	<1	153	130	＜1	66	283	＜1	20	＜1	51	＜10	1.4	32	－	3	1	1130	164	920	16
614－A	＜1	10	65	＜1	53	22	＜1	140	＜1		＜10	4.8	1240	0.6		＜ 1	462	25	4360	105
614.8	<1	8	43	<1	50	23	＜1	60	＜1	15	＜10	4.5	926	＜0．5		＜1	1350	57	2740	85
$614 . C$	＜ 1	19	109	＜1	72	40	＜1	30	＜1	13	510	9.3	2720	0.6	－ 7	1	1080	48	1810	209
614．D	<1	20	146	＜1	81	42	＜1	30	＜1	13	＜10	8.7	2580	0.7	7	＜1	932	40	2010	212
615－A	<1	2	63	<1	35		＜1	60	＜1	2	＜10	3.3	801	0.8	4	＜1	108	10	1330	55
815－8	<1	9	77	＜1	51	20	＜1	30	＜1		＜10	3.9	980	0.5		＜1	251	16	1530	74
B15－C	<1	4	76	<1	74		＜1		＜1		＜10	5.4	1040	0.71		＜1	96	11	990	86

ORIENTATION RESULTS

APPENDIX 20

Results Of Mobile Metal lons Process (MMI-M) Soil Geochemical Surveys on The Stewart Property (Deltaic Grid), Stewart Area, B.C.

Line No.	Station	Sample No	
(E)	(N)		
$54+00$	$44+75$	500	A, B, C, D
$54+00$	$45+25$	502	A, B, C, D
$54+00$	$45+50$	503	A, B, C, D
$54+00$	$45+75$	504	A, B, C, D
$54+75$	$45+75$	505	A, B, C, D
$54+75$	$46+00$	506	A, B, C, D
$54+75$	$46+25$	507	A, B, C, D
$54+75$	$46+50$	508	A, B, C, D
$54+75$	$46+75$	509	A, B, C, D
$54+75$	$47+00$	510	A, B, C, D
$54+75$	$47+25$	512	A, B, C, D
$54+75$	$47+50$	513	A, B, C, D
$54+75$	$47+75$	514	A, B, C, D
$54+75$	$48+00$	515	A, B, C, D
$54+75$	$48+25$	516	A, B, C, D
$54+75$	$48+50$	517	A, B, C, D
$54+75$	$48+75$	518	A, B, C, D
$53+00$	$44+50$	519	A, B, C, D
$53+00$	$44+25$	520	A, B, C, D
$53+00$	$44+00$	521	A, B, C, D
$51+00$	$43+50$	600	A, B, C, D
$51+00$	$43+25$	601	A, B, C, D
$51+00$	$43+00$	602	A, B, C, D
$51+00$	$42+75$	603	A, B, C, D
$51+00$	$42+50$	604	A, B, C, D
$51+00$	$42+25$	605	A, B, C, D
$51+00$	$42+00$	606	A, B, C, D
$51+00$	$41+75$	607	A, B, C, D
$51+00$	$41+50$	608	A, B, C, D
$51+00$	$41+25$	609	A, B, C, D
$51+00$	$41+00$	610	A, B, C, D
$51+00$	$40+75$	612	A, B, C, D
$51+00$	$40+50$	613	A, B, C, D
$51+00$	$40+25$	614	A, B, C, D
$51+00$	$40+00$	615	A, B, C, D
$51+00$	$39+75$	616	A, B, C, D
$51+00$	$39+50$	617	A, B, C, D

Analyte	Orid East (m)	Grid North (m)	A	AgRR	\|A]	AIRR	As	AsRR	Au	AuRR	Ba	BaRR	Bi	BIRR	Ca	CaRR	Cd	CdRR
method			MMIMS		MMIM		WM1-M5		Mundra		सMI-H5		WM1485		MMIM ${ }^{\text {m }}$		Muntin	
Detection			1		1		10		0.1		10.		1		10		10	
Units			PPB		PPM		PPB		PPB		PPB		PPB		PPM		PPB	
$600 \cdot \mathrm{~A}$	$51+00$	43+50	4	1	274	2	5	1	0.4	2.	540	9.	0.5	1	5	1	5	1
$600-\mathrm{B}$	$51+00$	43+50	15	5	295	2.	5.	1	4	24.	280	5	0.5	1	5	1	5	1
$600-\mathrm{C}$	$51+00$	43+50	25	8	275	2	5	1	5	30	200	3.	0.5	1	5	1	10	2
600-D	$51+\infty$	43+50	29	9	187	1	5	1	2.2	13	130	2	0.5	1	5	1	20	4
$601 . \mathrm{A}$	$51+00$	43+25	0.5	1	245	2	5	1.	0.2	1.	390	7	0.5	1	5	1	10	2
601.8	$51+00$	43+25	9	3	261	2	5	1	0.3	2	120	2.	0.5	1	5	1	10	2
601-C	$51+00$	43+25	37	12	287	2.	5	1.	1.2	7	170	3.	0.5	1	5	-1	10	2
601-D	$51+00$	43+25	48	45	273	2)	10	2	7.6	45	350	6	0.5	1	5	1	5	1
$602-\mathrm{A}$	$51+\infty$	$43+\infty$	4.	1	239	1	5	1.	0.05	1	340	6	0.5	1	10	2	30	6
602.8	$51+00$	$43+\infty$	2	1	249	2	5	1	0.05	1.	170	3	0.5	1	5	1	30	6
602-C	$51+00$	$43+00$	5	2	238	1.	5	1.	0.1	1.	100	2	0.5	1	5	1.	30	6
602-D	$51+00$	$43+00$	7	2	249	2	5	1	0.2	1	110	2	0.5	1	5	1	20	4
603-A	$51+00$	$42+75$	2	1	162	1	5	1	0.3	2	350	6	0.5	1	40	8	10	2
603.8	$51+00$	$42+75$	3	1.	178	1	5	1.	0.2	1	200	3	0.5	1	20	4	30	6
$603-\mathrm{C}$	$51+\infty$	42+75	10	3	233	1	5	1	0.2	1.	140	2	0.5	1	10	2	30	6
603-D	$51+00$	42+75	9	3	242	1	5	1.	0.2	1.	160.	3	0.5	1	5	1	20	4
604-A	$51+00$	$42+50$	0.5	1	184	1	5	1	0.05	1	400	7	0.5	1	30	6	5	1
604-8	$51+00$	42+50	7	2	227	1	5	1.	0.05	1	160	3	0.5	1	5	1	20	4
604-C	$51+00$	42+50	10	3	268	2	5	1	0.1	1	130	2	0.5	1	5	1	30	6
604.D	$51+00$	42+50	16	5	292	2	5	1	0.2	1	110	2	0.5	1	5	1	10	2
805-A	$51+00$	42+25	1	1	220	1	5	1.	0.05	1	200	3	0.5	1	20	4	5	1
605-8	$51+00$	$42+25$	2	1.	216	-	5	1.	0.05	1	160	3	0.5	1	10	2	10	2
$605-\mathrm{C}$	$51+00$	42+25	5	2	249	2	5	1	0.1	1	140	2	0.5	1	5	1	20	4
$605 . \mathrm{D}$	$51+\infty$	42+25	5	2	300	2	5	1	0.1	1	120	2	0.5	1	5	1	10	2
606-A	$51+00$	$42+00$	3	1	239	1	5	1.	0.05	1	200	3	0.5	1	40	8	30	6
606-8	$51+00$	$42+\infty$	3	1.	222	1	5	1	0.05	1	170	3	0.5	1	30	6	40	8
$606 . \mathrm{C}$	$51+00$	$42+\infty$	6	2.	258	2	5	1.	0.3	2	190	3	0.5	1.	5	1	40.	8
$606-0$	$51+00$	$42+\infty$	8	2.	294	2	5	1	1.1	7	220	4	0.5	1.	5	1	20	4
607-A	$51+00$	$41+75$	1	1	242	1	5	1	0.2	1	290	5	0.5	1	5	1	20	4
607-8	$51+\infty$	$41+75$	8	2	247	2	5	1	0.6	4	60	1	0.5	1	5	1	20	4
$607-\mathrm{C}$	$51+\infty$	41+75	15	5	255	2	5	1	0.7	4.	80	1	0.5	1	5	1	40	8
607.0	$51+00$	$41+75$	37	12	280	2	5.	1.	2.9	17	170	3	0.5	1	5	1	20.	4
$608-\mathrm{A}$	$51+00$	$41+50$	3	1	268	2	5	1	0.3	2	210	4	0.5	1.	5	1	5	1
608-B	$51+\infty$	$41+50$	8	2	256	2	5	1	0.5	3	160	3	0.5	1	5	1	5	1
$608-\mathrm{C}$	$51+\infty 0$	$49+50$	15	5	272	2	5	1	1.6	10	170	3	0.5	1	5	1	20	4
608-D	$51+\infty$	$41+50$	34	11	300	2	5		5.9	35	290	5	0.5	1	5	1	10.	2
$609 . \mathrm{A}$	$51+\infty$	$41+25$	0.5	1	223	1	5	1.	0.1	1	390	7	0.5	1	5	1	5	1
609-B	$51+\infty 0$	41+25	3.	1	245	2	5.	1	0.05	1	130	2	0.5	1	5	1	20	4
609-C	$51+00$	41+25	7	2	245	2	5.	1.	0.2	1.	60	1	0.5	1	5	1	30	6
609-D	$51+00$	$41+25$	11.	3	236	1	5	1.	0.4	2	70	1	0.5	1	5.	1	20	4
$610 . A$	$51+\infty$	$41+\infty$	4.	1	264	2	5	1.	1.9	11	270	5	0.5	1	5	1.	20	4
$610-\mathrm{B}$	$51+\infty$	$41+\infty$	19	6	300	2	10	2	5.9	35	180	3	0.5	1.	5	1	5	1
610-C	$51+\infty$	$41+\infty$	14.	4	255	2	5	1	1.3	8	30	1	0.5	1.	5	1.	5	1
610-D	$51+\infty$	$4 i^{+\infty}$	17	5	227.	1	5	1.	1	6	80	1	0.5	1	5	1	5	1
611-A (Duplicate 610)	$51+\infty$	$41+\infty$	8	2	258	2	5.	1.	3.1	18	230	4	0.5	1	5	1	10	2
611-B (Duplicate 610)	$51+\infty$	$41+00$	19	6	265	2	5.	1	3.2	19	70	- 1	0.5	1.	5	1	5	1
611-C (Duplicate 610)	$51+\infty$	$41+00$	22	7	255	2	5	1.	4.3	26	40	1	0.5	1	5.	1.	5	1
611-D (Duplicate 610)	$51+\infty$	$41+\infty$	28	9	283	2	5	1	1.8	11	70.	1	0.5	1	5	1	5	1
612-A	$51+\infty 0$	$40+75$	1	1	205	1	5	1.	0.3	2	250	4	0.5	1.	5	1.	5	1
612-B	$51+00$	$40+75$	6	2	238.	1	5.	1	0.3	2	90	2	0.5	1	5	1	20	4
612-C	$51+00$	$40+75$	8	2	252	2	5	1	0.3	2	60	1	0.5	,	5.	1	20	4
612-D	$51+\infty$	$40+75$	16	5	292	2.	5	1	0.8	5	90	2	0.5	1.	5	1.	10	2
$613-\mathrm{A}$	$51+00$	$40+50$	2.	1	188	1	5	1	0.3	2	180	3	0.5	1.	40	8.	60	12
$613-\mathrm{B}$	$51+00$	$40+50$	10	3	161	1	5	1	0.3	2	60	1	0.5	1	5	1.	50	10
613-C	$51+00$	$40+50$	8.	2	414	1	5	1	1.1	7	140	2	0.5	,	20	4.	20	4
613-D	$51+00$	$40+50$	12	[4	102	1	5	1	2.5	15	100	2	0.5	1	20	4.	20	4
614-A	$51+00$	$40+25$	5.	2	228;	- 1	5	-11	0.1	,	380	6	0.5	1	60	12.	140	28

Analyte	Grid East (m)	Grid North (m)	Ag	AgRR	A1	AIRR	As	AsRR	Au	AuRR	Ba	BaRR	Bi	BIRR	Ca	CaRR	Cd	CdRR
Method			(2M1PM5		WMLTH5		MM1-M5		MmMIM5		Menl-m5		MMIME		Mmims		(mmintin	
Detection			1		1		10		0.1		10		1		10		10	
Units			PPB		PPM		PPB		PPB		PPB		PPB		PPM		PPB	
614.8	$51+\infty$	$40+25$	10	3	242	1	5	1	0.2	1	290	5	0.5	1	20	4	90	18
614-C	$51+\infty 0$	$40+25$	13	4.	270	2.	20	4	1	6	450	8	0.5	- 1	10.	2	50	10
614-D	$51+\infty$	$40+25$	10	3.	276	2	20	4	1.2	7	470	8	0.5	- 1	10.	2	50	10
615-A	$51+\infty$	$40+00$	2	-1.	227	1	5	1	0.2	1	270	5	0.5	[1	20	4	40	8
$615-8$	$51+\infty$	$40+00$	4	1	260	2	5	1	0.3	2	200	3	0.5	1	10	2	80	16
$615-\mathrm{C}$	$51+\infty$	$40+00$	8	2	298	2	5	1	1.4	8	340	6	0.5	- 1	5	- 1	20	4
615-D	$51+\infty$	$40+00$	7	2.	210	1	5	1	0.7	4	180	3	0.5	- 1	10	2	100	20
616-A	$51+\infty$	$39+75$	15	5	300	2	5	1	2	12	430	7	0.5	- 1	20.	4	110	22
616-3	$51+\infty$	$39+75$	17	5.	285	2	5	1	4.2	25	380	6	0.5	1	5.	1	10	2
616-C	$51+00$	39+75	41	43	300	2	5	1	11.4	68	350	6	0.5	- 1	5	1	10	2
616-D	$51+\infty$	39+75	25	8	300	2	5	1	5.2	31	180	3	0.5	[1	5	1	10	2
617-A	$51+\infty$	$39+50$	0.5	1	210	- 1	5	1	0.05	1	630	11	0.5	1	40	8.	80	16
617-8	$51+\infty$	$39+50$	2	1.	235	- 1	5	1	0.05	1	210	4	0.5	1	10	2	80	16
617-C	$51+\infty$	$39+50$	5	2.	274	2	5	1	0.2	1	120	2	0.5	- 1	5.	1.	60	12
617-0	$51+\infty$	$39+50$	6	2.	271	2	5	1	0.2	1	110	2	0.5	- 1	5.	1.	50	10
500-A	$54+00$	$44+75$	6	2	300	2	5	1	1	6	200	3	0.5	- 1	5	1.	20	4
500-B	$54+00$	$44+75$	6	2	212	1	5	1	0.9	5	110	2	0.5	1	5	,	10	2
500-C	$54+\infty$	$44+75$	15	5.	255	2	5	1	3.3	20	100	2	0.5	1	5	1.	5	1
500-D	$54+\infty$	$44+75$	21	7.	259	2	5	1	5.7	34	120	2.	0.5	- 1	5	1.	- 5	1
502-A	$54+\infty$	$45+25$	4	1	227	1	5	1	1.4	8	130	2	0.5	- 1	5	1	5	1
502.8	$54+00$	45+25	9	3	221	1	5	1	3.1	18	60	1	0.5	- 1	5	1	10	2
502-C	$54+00$	$45+25$	22	7	275	2	20	4	16.7	99	200	3	0.5	1	5	,	5	1
502-D	$54+00$	$45+25$	36	11.	273	2.	20.	4.	21	125	150	3	0.5	- 1	5	1	5	1
503-A	$54+\infty$	$45+50$	11	3.	141	1	5	1	1.7	10	70	1	0.5	-- 1	5	1.	5	1
503-8	$54+00$	45+50	9	3	210	1	10	2	4	24	80	1	0.5	1	5	1.	-10	2
$503-\mathrm{C}$	$54+00$	45+50	14	4	222	- 1	40	8	8.7	52	160	3	0.5	1	5	1	5	1
503-D	$54+\infty$	45+50	37	12	169	1	120	24	25.6	152	320	5	0.5	1	5	1	-5	1
504.A	$54+00$	$45+75$	5	2	194	1	5	1	2.1	13	120	2	0.5	1	5	1.	- 5	1
504.8	$54+00$	$45+75$	9	3	202	1	5	1	5.1	30	30	1	0.5	1	5	1.	5	1
504-C	$54+00$	$45+75$	32	10	185	1.	70.	14	29.4	175	180	3	0.5	1	5	1	5	1
504-D	$54+00$	$45+75$	44	14	154	1	150	30	32.5	194	300	5	1	2	5	1	5	1
505-A	$54+75$	$45+75$	23	7	300	2	5	1	6.3	38	270	5	0.5	1	5	1	5	1
505.8	$54+75$	$45+75$	5	2	212	1	5	1	2.3	14	120	2	0.5	- 1	5.	1.	5	1
$505-\mathrm{C}$	$54+75$	45+75	20	6.	235	1.	5	1	8.2	49	110	2	0.5	1	5	1.	5	1
505-D	$54+75$	45+75	53	17.	226	-	20	4	15.4	92	140	2	0.5	-1	5.	1.	5	1
506-A	$54+75$	$46+00$	5	2	175	. 1	5	1	3.7	22	150	3	0.5	1	5	1	5	1
506 - ${ }^{\text {B }}$	$54+75$	$45+00$	9	3.	180	1	5	1	2.6	15	50	1.	0.5	- 1	5	1	20	4
$506-\mathrm{C}$	$54+75$	$45+00$	43	13	225	1	5	1	17.2	102	90	2	0.5	1	5	1.	5	1
506-D	$54+75$	$45+00$	82	26	143	1	50	10	36.1	215	310	5	2	4	5	1	5	1
507-A	$54+75$	$46+25$	20	6	194	-1	5	1	10.8	64	60	1	0.5	1	5	1	5	1
507-B	$54+75$	46+25	78	24	187	1	5	1	24.8	148	70	1	0.5	-1	5	1.	5	1
$507 . C$	$54+75$	$46+25$	102	32	160	1	10	2	28.7	171	170	3	0.5	1	5	1.	5	1
507-D	$54+75$	$46+25$	94	29	115	- 1	40.	8	39.9	238	240	4	0.5	1	5	1	5	1
508-A	54+75	$46+50$	10	3	146	-1	20	4.	10.6	63	100	2	0.5	- 1	5.	1	5	1
508-B	$54+75$	$46+50$	53	17	133	-1	10	2	28.4	169	40	1.	0.5	- 1	5	1.	5	1
508-C	$54+75$	$45+50$	73	23	94	1	20	4	30.6	182	150	3	0.5	,	5	1.	5	1
508-D	$54+75$	$46+50$	84	26	165	1	80	16	39.1	233	220	4	2	4	5	1	5	1
509-A	$54+75$	$46+75$	3	1	199	1	5	1	1.9	11	180	3	0.5	- 1	5.	1	80	16
509-B	54+75	$46+75$	5	2	215	- 1	5	1	1.8	11	150	3	0.5	1	5	1.	80	16
509-C	$54+75$	$46+75$	24	7	235		5	1	13.9	83	50	1	0.5	,	5	-1 1	40	8
509-D	54+75	$46+75$	72	22	255	2	20	4	55.8	332	80	1	0.5	- 1	5.	1	10	2
510-A	$54+75$	$47+\infty 0$	12	4	210	- 1	5	1	4.5	27	140	2	0.5	- 1	5.	1	5	- 1
510-B	$54+75$	$47+\infty 0$	20.	6	227	- 1	20	4	22.8	136	100	2	0.5	1	5	1.	10	2
$510-\mathrm{C}$	$54+75$	$47+\infty$	47.	15	207	,	20	4	44.7	266	200	3	0.5	1	5	1.	5	1
510-D	$54+75$	$47+\infty$	59	18	137	1	10.	2	64.8	386	220	4	0.5	- 1	5	1	5	1
511.A (510 Duplicate)	$54+75$	$47+00$	9.	3	182	1	5	1	3.9	23	120	2.	0.5	- 1	5	1	5	1
511-B (510 Duplicate)	$54+75$	$47+00$	39	12	223	1	5	1	27.2	162	60	-1	0.5	[1	5	1	- 5 ,	1

Analyte	Crid East (m)	Grid North (m)	Ag	AgRR	$\|\mathrm{A}\|$	AIRR		AsRR	Au	AuRR	Ba	BaRR	B	BIRR	Ca	CaRR	Cd	CdRR
Method			\%innem		MM11+M5		MM1-M5		NMIMS		MMIM5		MMII-M5		Mmint		MM1-M5	
Detection			1		1		10		0.1		10.		1		10		10	
Units			PPB		PPM		PPB		PPB		PPB		PPB		PPAM		PPB	
511-C(510 Duplicate)	$54+75$	$47+\infty$	63	20	131	- 1	10.	2.	47.1	280	300	5	0.5	1	5	1	5	1
511-D (510 Duplicate)	54+75	$47+\infty$	44	14	88	-1	301	6	66.6	397	420	7	0.5	1	5	1	5	- 1
512-A	54+75	47+25	10	3)	214	... 1	5	1	5.1	30	210	4	0.5	1.	5	1.	40	8
512-8	$54+75$	47+25	50	16	204	- 1	5.	1.	14.5	86	50	1	0.5	1	5	1	5	1
5i2-C	54+75	47+25	123	38	198	- 1	20.	4.	35.7	213	80.	1	0.5	1	5	1	5	- 1
512-D	54+75	47+25	163	51	133	- 1	10	2.	41.5	247	200	3	0.5	1	5	1	5.	1
513-A	54+75	47+50	9	3	- 150	-1	20	4.	5.1	30	220	4	0.5	1	5	1	5	
513-B	$54+75$	$47+50$	48	15	169	- 1	5	1	10.8	64	40	1	0.5	1	5	1	10	2
513-C	$54+75$	$47+50$	37	12	216	- - 1	5.	1	4.4	26	40.	1	0.5	1	5	1	10.	2
513 -2	$54+75$	$47+50$	23	7	251	2	10	2	18	11	70	1	0.5	1	5	1	5	1
514-A	54+75	47+75	5	2	179	- 1	10	2	4.7	28	280	5	0.5	1	5	1	40	8
514-B	54+75	47+75	26	8.	189	-1	10	2	7	42	120	2	0.5	1	5	1	40	8
514-C	54+75	47+75	37	12	223	- 1	10	2	3.4	20	120	2	0.5	1	5	1	30.	6
514-D	$54+75$	47+75	93	29.	263	- 2	20	4	9.8	58	250	4	0.5	,	5	1.	20	4
515-A	$54+75$	$48+\infty$	6	2	221	1	10	2	0.6	4	280	5	0.5	1	10	2	50	10
515-8	$54+75$	$48+00$	20	6	261	2	10	2	1.2	7	120	2.	0.5	1	5	1	30	6
515-C	54+75	$48+00$	29	9	257	2	10	2	18	11	100	2	0.5	1	5	1	40	8
515-D	54+75	$48+00$	36	11	256	2	5	1	1.9	11	60	1.	0.5	1	5	1	50	10
5i6-A	$54+75$	$48+25$	6	2	204	-1	5	1	1.1	7	180	3	0.5	1.	5	1	40	8
516-8	$54+75$	48+25	10	3	199	1	5	1	1.1	7	70	1	0.5	1	5.	1	40	8
516-C	54+75	48+25	12	4	258	2	5	1	0.8	5	50	1	0.5	1	5	1	20	4
516-D	$54+75$	48+25	15	5	257!	2	10	2	0.7	4	50	1	0.5	1	5	1	40	8
517-A	$54+75$	$48+50$	7	2.	250	2.	5	1	1.4	8	100	2	0.5	1.	5	1	30	6
517.8	$54+75$	$48+50$	10	3.	267	2	10	2	0.7	4	110	2	0.5	1)	5	1	10	2
$517-\mathrm{C}$	54+75	$48+50$	9	3	282	2	20	4	0.7	4	240	4	0.5	1 1	5.	1	10	2
517-D	54+75	48+50	15	5	295	2	30	6	0.6	4	370.	6	0.5	1	5	1	10	2
518-A	54+75	48+75	4	1.	202,	1	5	1	1.1	7	160	3	0.5	1	5	1	5	1
518-B	54+75	48+75	9.	3	232	,	5	1	0.7	4.	40	1	0.5	1	5	1	10	2
518-C	54+75	$48+75$	7	2	210	1	5	1.	0.6	4.	60	1	0.5	1.	5	1	10	2
518-D	$54+75$	$48+75$	8	2	194	1.	5.	1.	0.7	4.	60	1	0.5	1	10	2	10	2
519-A	$53+00$	$44+50$	5	2.	300	2	5	1	1.4	8	510	9	0.5	1	50	10	30	6
519.8	$53+\infty$	$44+50$	10	3	216.	1	5	1	2.6	15	70.	1	0.5	1.	5	1	30	6
519-C	$53+\infty$	44+50	15	5	205	1.	5	1	4.1	24	60.	1	0.5	$1)$	5	1	30	6
519-D	$53+\infty$	44+50	15	5	200	1.	5	1	2.9	17	50	1.	0.5	1.	5	1	20.	4
520-A	$53+\infty 0$	44+25	4	1	255	2.	5	1	0.9	5	120	2	0.5	1	5	1	5	1
520-B	$53+00$	44+25	9	3	225	1	5	1	2.3	14	30	1.	0.5	1.	5	1	5	1
$520-\mathrm{C}$	$53+\infty 0$	44+25	13	4	300	2	10.	2	13	77	90	2.	0.5	1	5	1	5	1
520-D	$53+\infty$	44+25	15.	5	300	2	40	8	13.9	83	150	3	0.5	1	5	1	5	1
521-A	$53+\infty$	$44+00$	2.	1	253	2	5.	1.	0.6	4	200	3	0.5	1	5	1	5	1
521-B	$53+\infty$	$44+00$	5	2	215	1.	5	1	0.5	3	70	1	0.5	1	5	1	5	1
521-C	$53+\infty$	$44+00$	18	6	240	1	20	4.	6.6	39	290	5	0.5	1	5	1	5	1
521-D	$53+\infty$	$44+00$	8	2	253	2.	10	2.	1.7	10	120	2.	0.5	1	5	1	5	1
25th PERCENTILE			5.75		202		5		0.375		87.5		0.5		5		5	
BACKGROUND			3.205128		162.0789		5		0.167949		58.46154		0.5		5		5	

Analyte	Ce	CeRR	Co	CorR	Cu	CuRR	Dy	DyRR	Er	ErRR	Eu	EuRR	Fe	FerR	Od	OdRR	La	LaRR	LI
Method	MM1-45				WMITH5		Manl-m5		MMITM5		Mmima		MMnlim		MM1-45		MMITMS		MWITA5
Detection	5		5		10		-1		0.5		0.5		1.		1		1.		5
Units	PPB		PPB		PPB		PPB		PPB		PPB		PPM		PPB		PPB		PPB
$600-\mathrm{A}$	5	1	18	2.	330	1	7	1	6.9	- 1	0.6	1	26	3	2	1	2	1	2.5
$600-\mathrm{B}$	23	3	15	2.	700	2	17	2	9.6	1	2.8	2	17	2	10	2	8.	2	2.5
600-C	39	5	13	- 2	1100	3	33	4.	14.6	- 2	5.6	5.	12.	1	22.	5	13.	4	2.5
$600-\mathrm{D}$	147	19	11	- 1	1550	4	105	11.	45.4.	- 7	22	19.	5	- 1	93	20	79	22	2.5
601-A	6	- 1	112	13.	390	-1	8.	1	9.4	1	0.7	1.	48	5	2	1	3	1	2.5
$601-\mathrm{B}$	23	3	13	2.	600	2.	30	3	14.8	2	4.9	4	7	1	20	4	8	2	2.5
$601 . \mathrm{C}$	42	5	10	- 1	700	2	33	4	15.9	2	6.3	5	9	1	26	6	14	4	2.5
601-D	165	21	34	4	730	2	44	5.	19.4	3	13.6	12.	33	4	52	11	66	18	2.5
602-A	9	-1	56	7	300	- 1	23.	2	18.6	3	1.9	2	38	4.	8.	2	4	1	2.5
602.B	16	2.	26	3	410	- 1	34.	4.	21	3	4	3	17	2	18	4	6	2	2.5
602.C	35	4	9	1	510	- 1	41	4	22.2	3	6.7	6	10	1	29	6	11	3	2.5
602.D	66	8	8	1	610	2	45	5	24.5	4	8.9	8	11	- 1	40	9	23	6.	2.5
603-A	20	3	135	16	190	- 1	3.	1.	2	1.	1	1	129	14	4	1	10	3.	2.5
603-8	5	1	37	4	400	- 1	12.	1.	12.1	2	0.8	1	40	4	3	1	3	1	2.5
$603-\mathrm{C}$	42	5.	24	3	900	2.	45.	5	22.9	4	8.	7	19	2	37	8	19	5	2.5
603-D	59	7	21	3	950	2	49	5	22.4	3	10	9	14	2.	44	10	28	8	2.5
604.A	2.5	-- 1	53	6	50.	1	0.5	1	1	1	0.25	1	96	11.	0.5	1	1	1	2.5
604-8	6	1	24	3	470	1	15	2	11.2	2	1.1	1	28	3	4	1	3	1.	2.5
604 -C	22	3	18	2	640	2	23	2	12.6	2	3.3	3	23	3.	14	3	9	3	2.5
604.D	42	5	13	2	720.	2	32	3	15.1	2	6.1	5	20	2.	26	6	16	4	2.5
605-A	2.5	1	22	3	170.	1	5	1	5.6	1	0.25	1	50	6	1	1	2	1	2.5
605-8	2.5	1	18	2	260	1	6	1	6.5	1	025	1	42	5	1	1	1	1	2.5
$605-\mathrm{C}$	9	1	11	--1	5401	1	18	2	9.6	1	1.7	1	19	2	8	2	4	1	2.5
605-D	40	5	10	- 1	630	2	24	3	10.6	2	5.1	4	14	2	21	5	14	4	2.5
606-A	13	2	28	3	320	1	18	2	10.3	2	3	3	49	6	12	3.	4	1	2.5
$606-8$	6	1	20	2	370	1	19	2	11.3	2	2.1	2	39	4	9	2	2	1	2.5
606-C	20	3	8	1.	630	2	23	2	11.4	2	3.8	3	19.	2	16	4	7	2	2.5
606-D	41	5	10		980	2	27	3	12.1	2	5.6	5	15	2	22	5	15	4	2.5
$607-\mathrm{A}$	9	1	42	5.	320	1	3	1	3.3	1	0.5	1	86	10	2	1.	5.	1	2.5
$607-\mathrm{B}$	10	1	8	1.	760	2	17	2	9	1	1.6	1.	8	1	7	2	4.	1	2.5
$607 . \mathrm{C}$	13	2	20	2	1000	3	25	3	14.1	2	2.2	2	4.	.	10	2	5	1	2.5
607-D	41	5	15	2.	980	2	30	3	15.2	2	4.8	4	10	1	21	5	14	4	2.5
608-A	25	1	17	2	170	1.	2	1	2.1	1.	0.25	1	34	4	0.5	1	2	1	2.5
608-8	5	1	10	1	370	1	4	1	3.9	1	0.25	1	26	3	1	1.	3	-1	2.5
$608-\mathrm{C}$	12	2	8	1	570	1.	13	1	7.3	1	1.3	1	14	2	5	1	5	1	2.5
608-D	42	5	15.	2	810	2	22	2	9.4	1	4.2	4.	21	2	16	4	15	- 4	2.5
609-A	9	1	28	3	240	1.	5	1	3.5	1.	0.9	$1)$	92	10	3	1	4	- 1	2.5
609-B	8	1	11	1.	470	1	14.	2.	8.8	1.	1.4	1	25	3	6.	1	4	1.	2.5
609-C	15	2	8	1	760	2	29	3.	14.6	2	3.7	3	7	1	16	4	5	1	2.5
609-D	22	3	7	1	1370	3	35	4	17.2	3	5	4	4	1	21	5	8	2	2.5
$610 \cdot \mathrm{~A}$	14	2	65	8	1800	5	7	1	4.2	1.	1.2	1	88	10	4	1	6	2	2.5
610-B	56	7	88	11	2290	6	18	2	9.2	1	5.1	4.	78	9	18	4	20	6	2.5
610-C	30.	4	16	2	2310	6	33.	4	19.9.	3	6.2	5	10	1	25	6	19	3	2.5
610-D	70	9	15	2	1640	4.	54.	6	29.4	5	12.3	10	10	1	50	11.	24	7	2.5
611-A (Duplicate 610)	11	1	68	8	1340	3	7	1	4.7	1	1.1	1	107	12.	4	1.	5	1	2.5
611.B (Duplicate 610)	15	2	11	1	4790	12	20.	2	10.6	2	2.6	2	24	3	11	2	3	1	2.5
611.C (Duplicate 610)	26	3	18	2	4230 .	11	30.	3.	17.8		5	4	15	2.	21	5	9	3	2.5
611-D (Duplicate 610)	62	8	28	3	2930	7	38	4.	20.4	3	8.8	8	16	2	34	7.	19	5	2.5
$612-\mathrm{A}$	2.5	1	25	3	60	1	0.5	1	0.25	1	0.25	1	98	11	0.5	1.	1.	[-1	2.5
612-8	2.5	1	13	2	430	1	7	1	6.2	1	0.5	1	21	2	2	1	2	1	2.5
612.C	8	1	9	- 1	530	1	13	1	8.5	1	1.	1	10	1	4	1	3	1	2.5
612.D	25	3	12	,	590	1	19	2	9.6	1	2.8	2	13	1.	11	2.	9	3	2.5
613-A	29	4	426	51	- 18100	45	18	2	21.9	3	2.6	2	11	,	11	2	10.	3	2.5
613-8	157	20	158	19	15800	40	106	11	90.1	14	14.6	12	2.	1-1	57	13	25.	7.	2.5
613-C	959	122	-157	19	18600	47	390	42	223	35	114	97	2.	1	429	95	205	57	2.5
613-D	640	81	- 96	11	116200	41	309	33	182	28	95.2	81	2	1	363	80	177	49	2.5
$614-A$	34.	4	-86	10	- 2730	7	62	,	41	6	9.4	8.	64.	- 7	47	10	-31	9.	2.5

Analyte	Ce	CerR	Co	CoRR	Cu	CuRR	Dy	DyRR	Er	ErRR	Eu	EuRR	Fe	FeRR	Gd	GdRR	La	LaRR	Li
Method	NMTAM5		MMIM5		MM1-m5		NMiAm		Menlm		MM1-M5		MMI-M5		MMIME		Mantm5		Minlm
Detection	5		5		10		1		0.5		0.5		1		1		1		5
Units	PPB		PPB		PPB		PPB		PPB		PPB		РР9		PPB		PPB		PPB
614-B	22	3	13	2	8740	22.	124	13	90.9	14	11.3	10	47	5	64	14	19	5	2.5
614-C	79	10	58	7	6330	16	99	11	69.1	11	16.1	14	44	5	76	17	54	45	2.5
614-D	94	42	57	7.	5560	14	91	10	56.5	9	16.4	14	36	- 4	74	16	58	16	2.5
615-A	10	1	72	9.	960	2	20	2	13.3	2.	1.8	2	65	-7 7	9	2	5	1	2.5
615-B	43	5	109	13	2940	7	47	5	24.5	4	7.6	6	25	3	34	7	22	6	2.5
615-C	26	3	59	7	2490	6	28.	3	15.3	2	3.7	3	90	10	14	3	13	4.	2.5
615-D	34	4	92	11	8230	21	86	9	50.2	8	10.5	9	14	2	57	13	32	9	2.5
616-A	131	17	203	24	13300	33	170	18	90.7	14	26.5	23	41	5	137	30	115	32	2.5
616.8	51	6.	44	5	7290	18	54	6	33.	5	5.6	5	40	4	23	5	26	7	2.5
$616-\mathrm{C}$	126	16	46	6.	8430	21	89	10	47.9	7	17.	14	28	3	68	15	64	18	2.5
616-D	146	19	24	3	8940	22	121	13	67.6	10	25.9	22	26	3	109	24	90	25	2.5
$617-\mathrm{A}$	2.5	1	51	6	240	1	5	1	4.2	1	0.25	- 1	67	8	2	1.	2	1	2.5
617.8	5	1	31	4	340	1	13	1.	9.1	1	0.9	- 1	19	2	4.	1.	3.	1	2.5
$617 . C$	21	3	29.	3	460	1.	23	2	11.1	2	4	3	9	1.	16.	4.	8	2	2.5
617-D	22	3	26	31	460	1.	26	3.	12.4.	2.	4.3	4	8.	1.	17	4	8	2	2.5
500-A	19	2	46	6	850	2	11.	1	7.6	1	2.2	2	178	20	7	2	14	4.	2.5
500-8	13	2	11	1	770	2	13.	1	6.5	1	1.7	1	27	3	7	2	7.	2	2.5
$500-\mathrm{C}$	90	11	8	1	690	2	28.	3	11.8	2	5.8	5	16	2	26	6	37	10	2.5
500-D	101	13	10.	1	550	1.	25.	3	10.3	2	6	5	29.	3	26	6	42	12	2.5
502-A	13	2	10	1	2850	7	14	2	7.8	1	1.7	1	31	3	7	2	8	2	2.5
502-B	20	3	6	1.	3480	9	23	2	11.8	2	3.3	3	13	1.	14	3	10	3	2.5
502-C	72	9	33	4.	2830	7	22	2	10.8	2	5.5	5	23	3	20	4	34	9	2.5
502-D	104	13	25	3	2240	6	29	3	13	2	7.4	6	23	3	29	6	47	13	2.5
503-A	34	4.	2.5	1	9640	24	18.	2	14.2	2	3.1	3	66	7	11	2	18	5	2.5
503-B	402	51	7	1	7520	19	232	25	112	17	65	55	36	4	255	56	140	39	2.5
503-C	397	50	29	3	5310	13	153	16	70.8	11	46.8	40	83	9	178	39	197	55	2.5
503-D	371	47	36	4	5220	13	111	12	50.6	8	40.	34	122	14	140	31	155	43	2.5
504-A	20	3	20	2	910	2	23	2	15.3	2	2.7	2	44	5	11	2	8	2	2.5
504-8	104	13	6	1	920	2	47	5	22.4	3	9.6	8	31	3	43.	9	34	9	2.5
504-C	216	27	8	1	660	2	35	4	15	2	8.7	7	87	10	401	9)	85	24	2.5
504-0	174	22	8.	1	800	2	29	3.	12.4	2	8.6	7	147	17	33	7	69	19	2.5
505-A	33	4.	38	5	1420	4	19	2	10.8	2	4	3	166	19	13.	3	14	4	2.5
505-8	48	6.	16	2	730	2	9	1.	4.1	1	3	3	74	8	10	2	22	6	2.5
505-C	77	10	20	2	1090	3	27	3	12	2	6	5	23	3	26	6	28	8	2.5
505-D	172	22	19.	2.	1040	3	34	4	15	2	9.5	8	48	5	41.	9	63	18.	2.5
506-A	48	6	15	2.	810	2	8	1	3.7	1	2.6	2	87	10.	9	2	23	6	2.5
506-B	12	2	41	5	1510	4	21	2	13	2	1.9	2	23	3	9	2	5	1	2.5
$506-\mathrm{C}$	221	28	9	1	1160	3	40	4	17.	3.	11.7	10	27.	3	50	11	82	23	2.5
506-D	164	21	6	1.	830	2.	33	4	15.8	2	8.6	7	116.	13	37	8	60.	17	2.5
507-A	101	13	26	3	1920	5	45	5	23.4	4	8.9	8	23	3	36	8	30	8	2.5
507-B	289	37	10	1.	890	2.	44	5	21.8	3	15	13.	23	3.	60	13	105	29	2.5
$507-\mathrm{C}$	176	22	15	2	770	2	42.	5	19.5	3	14	12	23	3.	50	11	60	17	2.5
507-D	142	18	12	1	590	1	35	4	18.5	3	12.9	11	48	5.	42	9	52	14	2.5
508-A	161	20	69	8	2610	7	57	6	33.6	5	13.2	11.	45	5	46	10	31	9	2.5
$508-\mathrm{B}$	163	21	20	2	1050	3	40.	4	19.7	3	13	11	30	3	50	11	62	17	2.5
508-C	136	17.	14	2	540	1	29	3	14.9	2	14.1	12	29	3	45	10	48	13	2.5
508-D	123	16	14	2	1980	5	37	4	20.5	3	137	12	89	10	44	10	41	11	2.5
$509-\mathrm{A}$	33	4	32	4	1520	4	11	1	5.8	1	2.6	2	96	11	9	2	8	2	2.5
509-8	11	1	8	1	1620	4	12	1	7.6	1.	2	2	37	4	7	2	5	1	2.5
509-C	34	4	9	1	2100	5	22	2	12.9	2	4	3	18	2	15	3	12	3	2.5
509-D	75	10	10	1	2040	5	22	2	10.9	2	6	5	27.	3	21	5	29	8	2.5
$510-\mathrm{A}$	8	1	21	3	1900	5	13	1	96	1.	1	1	60	7	4	1.	3	1	2.5
510-8	81	10	49	6	1900	5	29	3	14.5	2	7.3	6	70	8	27	6	24	7	2.5
$510-\mathrm{C}$	133	17	68	8	1010.	3.	26	3	11.1	2	7.8		53	6	28	6	47	13	2.5
510-D	201	26	54	6	630	2	27	3	11.6	2	8.3	7	37.	4	31	7	57	16	2.5
511-A (510 Duplicate)	6	1.	35	4	1880.	5	6	1	5.9	1.	0.5	1	68	8	1	1.	3	1	2.5
511.8 (510 Duplicate)	145	18	26	3.	1590	4	33.	4	15.9	2	9.3	8	26	3	35	8	52	14.	2.5

Analyte	Ce	CeRR	Co	CoRR	Cu	CuRR	Dy	DyRR	Er	ErRR	Eu	EuRR	Fe	FeRR	Od	GdRR	La	LaRR	LI
Method	MM1-M5		MMIAS		Minh-ms		MMIMS		MMITM5		Mullit		(mminm		MM1-M5		MMITM		MMIAS
Detaction	5		5		10		1.		0.5		0.5		-1		1		- 1		
Units	PPB		PPB		PPB		PPB		PPB		PPB		PPM		PPB		PPB		PPB
511-C (510 Duplicate)	166	21	20	2.	1040	3	28	3	12.7	2	8.9	8	21	2	34	7	69	19	2.5
511-D (510 Duppicate)	146	19	42	5	510	1	19.	2	8.9	1	6.3	5	27.	3	24.	5	58	16	2.5
$512-\mathrm{A}$	22	- 3	43	5	3060	8	18	2	9.7	2	2.9	2	50	6	12	3	7.	2.	2.5
512-B	148	19	11	-1.	2440	6	37.	4	17.7	3	10.5	9.	13	1	41	9	68	19	2.5
$512 . C$	208	26	43	5	1850	5	42	5	20.6	3	13.5	12.	19	2	53	12	116	32.	2.5
512-D	209	27	21	3	1020	3	40	4.	17.4	3	12.1	10	18	2	49	11.	99	28	2.5
513-A	78	10	65	8	2960	7	14	2.	7.2	1	4.2	4.	92	10	14	3.	28	8.	2.5
513-B	50	6	12	[-1	5740	14	51	5	28.9	4	7.8	7	9	1	32	7.	13	4.	2.5
513-C	94	12	11	- 1	3210	8	41	4	19.2	3	10	9	6	1	39	9	30	8.	2.5
513-D	160	20	19	2	1830.	5	42	5	19	3	12.7	11	9	1.	48	11.	59	16	2.5
514-A	19	[. 2	78	9	5450	14	25	3.	18.8	3	2.3	2	84	9	10	2	7	2	2.5
514-B	82	10	26	3	5690	14	55	6.	31.5	5	10.4	9	17	2	42	9.	32	9	2.5
514-C	146	19	14.	2	3150	8	57	6	29.1	5	15.6	13	13	1	63	14	82	23	2.5
514-D	202	26	30	4	3830	10	61	7	31.1	5	16.1	14	18	2	69	15	103	29	2.5
515-A	31.	4	93	11	2140	5	25	3	15.1	2	4.1	3	87	10.	17	4	14	4	2.5
515-B	87	11	26	3	3360	8.	45	5	21.5	3	9.4	8	27	3	40	9	36.	10	2.5
515-C	112.	14	22	3	3890	10	52	6	25.9	4.	10.7	9	21	2	46.	10	45	13	2.5
515-D	123	16.	13	2	4170	10	67	7	31	5.	13.8	12	12	1.	60	13	44	12	2.5
516-A	8	1	58	7	850	2.	18	2	12.8	2.	1.6	1.	57	6	7	2	4.	1	2.5
516-B	9	1.	31	4	1180	3	26	3	15.8	2	2.3	2	15	2	11	2	4	1	2.5
516-C	44	6	21	3.	1080	3	27	3	13.8	2	5.2	4	13	1	22	5	17	5	2.5
516-D	47	6	23	3	1190	3	34	4	17.8	3	6.	5	11	1	27	6	18	5	2.5
547-A	24	3.	27.	3	1030	3	31	3	18.3	3	4.4	4	25	3	18	4	9	3	2.5
547.8	70	9	11	1	950	2	32	3	15.2	2	6.8	6	9	1	28	6	29	8	2.5
517-C	111	14	13	2	920	2	34	4	15.4	2	8.3	7	9	1	35.	8	50	14	2.5
517-D	101	13	19	2.	1120	3	43	5	20.9	3	8.3	7	8	1	38	8	46	13	2.5
518-A	10	- 1	23	3	740	2	25	3	17.4	3	2.4	2	46	5	10	2	5	1.	2.5
518-B	106	13	17	2	690	2	41.	4.	20.2	3	10.	9	10	1	40	9	43	12.	2.5
518-C	163	21	16	2	660	2	51.	5	23.9	4	13.8	12	10	1.	58	13	73	20	2.5
518-D	168	21	13	2	630	2	51	5	24.2	4	14.3	12	11	1	60	13.	76	21	2.5
519-A	103	13	70	8	1370	3	43	5	19.6	3	121	10	156	18	45	10.	53	15	2.5
519.8	67	9	17	2	2320	6	46	5	21.6	3	9.6	8	14	2	41	9	29	8	2.5
519-C	112.	14	9	- 1	2580	6	62	7.	29.4	5	14.4	12	8	1.	60	13	49	14	2.5
519-D	96	12	8	1	2410	6	64	7	32	5	14.1	12	9	1	60	13	42	12	2.5
$520-\mathrm{A}$	44	6	10	1	720	2	17	2	8.2	1	4.1	3	23	3	15	3	18	5	2.5
520.B	32	4	8	1	1000	3	21	2	10.3	2	4.1	3	10	1.	16	4	13	4	2.5
$520-\mathrm{C}$	70	9	10	- 1	790	2	22	2	10.3	2	5.7	5	23	3	22	5	31.	9	2.5
520-D	105	13	17	2	860	2	26	3	11.3	2	7.7	7.	45	5	28	6	48	13	2.5
521-A	9.	- 1	23.	3	410	1	9	1	6.2	1	1.1	1	66	?	4	1	4	1	2.5
521-B	10	- 1	17	,	460	1	14	2	8.8	1.	1.4	1	24	3	5	1	5	1	2.5
$521 . C$	222	28	40	5	510	1	44	5	16.2	3	14	12	28	3	50	11	72	20	25
521-D	72	9	11	- 1	420	- 1	28	-3	11.2	2	6.7	6	16	2	25	6	25	7	2.5
25th PERCENTILE	15		11		630		18		9.675		2.375		13.75		10		6.75		2.5
BACKGROUND	7.881579		8.359375		[398.9474		9.305556		6.455128		1.173077		8.897436		4.539474		3.589744		2.5

Analyte	LiRR	Mig	MgRR	Wo	MorR	Nb	NbRR	Na	NdRR	Ni	NIRR	Pb	PbRR	Pd	PdRR	Pr	PrRR	Rb	RbRR
Method		MM1-H5		MMAIMS		MM1-N5		MM19.N5		MM1 + P5		MM1-M5		WMTH5		MM1-H5		Mindem	
Detection		1		5		0.5		1		5.		10		1		1.		5	
Units		PPM		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB	
600-A	$1)$	2	4	2.5		2.1	2	2	1	28	3	30	2	0.5	1	0.5	1	99	3
$600-\mathrm{B}$	1	0.5	1	2.5	-1	3.3	3	17	3	19.	2	50	3	0.5	1	3	4	153	5
600 -	1	0.5	1	2.5	- 1	4.1	4	35	6	15	2	20	1	0.5	1	6	8	116	4
600-D	1	0.5	1.	2.5	1	1.1	- 1	215	38	16	2	10	1	0.5	1	40	55	64	2
$601 \cdot \mathrm{~A}$	1	4	8	2.5	1	1.5	1	3	1	43	5	20	1.	0.5	1	0.5	1	63	2
$601-\mathrm{B}$	1	0.5	1	2.5	-1	1.2	1	28	5	25	3	5	1	0.5	1	4	5	20	1
601-C	1	0.5	1	2.5	- 1	1.5	1	47	8	27.	3	20	1	0.5	1	8	11	57	2
601-D	1	0.5	1.	2.5	-1	4.4	4	141	25	6.	1	80	5	0.5	1.	27.	37	176	6
602-A	1	5.	10.	2.5	1	2	2	8	1	43	5	30	2	0.5	1	2.	3	34.	1
$602 \cdot \mathrm{~B}$	1	1.	2.	2.5	1	1.8	2	21	4	39	5	10	1	0.5	1	3	4	33	1
$602-\mathrm{C}$	1	0.5	1	2.5	1	1.7.	2	47	8	19	2	10	1	0.5	1	8.	11	26	1
602-D	1.	0.5	1	2.5	1	2.3	2	79	14	14	2	10	1	0.5	1	13	18	27	1
$603-\mathrm{A}$	1	8	16	2.5	1	13.9	13	13	2	26	3	70	4	0.5	1	2	3	42	1
$603-\mathrm{B}$	1	3.	6.	2.5	1	2.6	2	4	1	36	4	20	1	0.5	1	0.5	1	47	2
$603 \cdot \mathrm{C}$	1	0.5	1.	2.5	-1. 1	5.3	5	63	11	42	5	30	2	0.5	1	11	15	21	1
603-D	1	0.5	1	2.5	-1	6.	5	86	15	33	- 4	30	2	0.5	1	15	21	19	1
604-A	1	8.	16	2.5	1	2.	2	0.5	1	44	5	5	1	0.5	1	0.5	1	7	1
604-8	1.	0.5	1	2.5	1	1.1	1	5	1	27.	3	5	1	0.5	1	1	1	18	1
604-C	1	0.5	1	2.5	- 1	4.8	4	21	4	28	3	10	1	0.5	1	4.	5	43	1
604-D	1	0.5	1	2.5	1	4.2	4	45	8	27	3	20	4	0.5	1	8.	11	15	1
605-A	1	2.	4	2.5	1	0.9	- 1	0.5	1	30	4	10	1	0.5	1	0.5	1	7	1
605-8	1.	1	2	2.5	-1	0.5	1	0.5	1	23	3	5	1	0.5	1	0.5	1	18	1
605-C	$1)$	0.5	1.	2.5	- 1	12.	1	8	1	18	2	20	1	0.5	1	1.	1	15	1
605-0	1	0.5	1.	2.5	-1	2.3	2	39	7	17	2	10	1	0.5	1	7	10	17	1
$606-\mathrm{A}$	1	3	6	2.5	1	2.1	2	47	3	38.	5	40	2	0.5	1	3	4	41	1
606-8	9	2	4	2.5	1	1.3	1	9	2.	31	4	20	1	0.5	1	1.	1	43	1
606-C	1	0.5	1.	2.5	1	1.7	2	24	4	25	3	30	2	0.5	1	4	5	69	2
606-D	1	0.5	1	2.5	1	2.9	3	42	7.	17.	2	70	4	0.5	1	8	11	148	4
$607-\mathrm{A}$	1.	2.	4	2.5	-1	4.5	4	4	1	28	4	20	9	0.5	1	$1)$	1	78	3
607.8	1	0.5	1	2.5	1	1.4	1.	7	1	19	2	20	1	0.5	1	1	1	111	4
$607 . \mathrm{C}$	1	0.5	1.	2.5	1	1.1	1.	11	2	15	2	60	3	0.5	1	2.	3	230	7
607-0	1	0.5	1	2.5	1	1.9	2.	36	6	10	1	480	27	0.5	1	6.	8	224	7
608-A	1	1.	2	2.5	1	3.6	3.	1	1	46	6	10	1	0.5	1	0.5	1	41	1
608-8	1	0.5	1.	2.5	- 1	2.1	2.	2	1	23	3	40	2	0.5	1	0.5	1	131	4
$608-\mathrm{C}$	1	0.5	1	2.5	1	2.3	2	7	1	15	2	220	12	0.5	1	2	3	154	5
608-D	1	0.5	1.	2.5	1	3.2	3.	30	5	8	1	310	18	0.5	1	6.	8	228	7
609-A	1	4	8	2.5	1	3.3	3.	5	1	29	4	20	1	0.5	1	1	1.	85	3
609-8	1	0.5	1	2.5	1.	1.1	- 1	6	1	29	4	10	1	0.5	1.	1.	1	64	2
609-C	1	0.5	t	2.5	- 1	1	1	18	3	18	2	20	1	0.5	1	3.	4	66	2
609.0	1	0.5	1.	2.5	1	1.	1.	26	5	14	2	20	1	0.5	1.	4.	5	62	2
610-A	1	4	8	7.	3	1.4	1.	7	1	39	5	120	7	0.5	1	2	3.	56	2
610-8	1	0.5	1	15	6	2.8	3.	40	7	17.	2	100	6	0.5	1	8	11	48	2
610-C	1	0.5	1	5.	2	0.7	1	40	7	8	1	50	3	0.5	1	6	8	62	2
$610-0$	1	0.5	1	2.5	1.	1.4	1	103	18	2.5	1	60	3	0.5	1	16	22	136	4
611-A (Duplicate 610)	1	3	6	9	4	1.6	1.	6	1	32	4	210	12	0.5	1	1	1.	96	3
611-B (Duplicate 610)	1	0.5	1	2.5	1.	1	1.	13	2	10.	- 1	160	9	0.5	1.	2	3.	159	5
611-C (Duplicate 610)	1	0.5	1	2.5	1	1.9	2	30	5	7	1	140	8	0.5	1	5	7	170	6
611-D (Duplicate 610)	1	0.5	1	2.5	1	4.5	4	64.	11	7	1	30	2	0.5	1	11.	15	146	5
612-A	1	3	6	2.5	.	2.1	2	0.5	1	43	5	10	1	0.5	1	0.5	1.	14	1
612-B	1	0.5	1	2.5	.	1.1	1	2	1	28	3	40	2	0.5	1	0.5	1	75	2
642-C	1	0.5	1	2.5	,	1.8	2.	5	1	19.	2	40	2	0.5	1.	1.	1	89	3
612-D	1	0.5	1	2.5	1	3.6	3	18.	3	68	8	100	6	0.5	1	3.	4	133	4
613-A	1	2	4	2.5	1.	0.25	1	19	3	48	6	50	3	0.5	1	4.	5	88	3
$613-\mathrm{B}$	1	0.5	1	2.5	,	0.25	1	84	15	35	4	50	3	0.5	1	15	21	46	1
613-C	1	0.5	1	2.5	,	0.25	1	1020	178	26	3	170	10	0.5	1	182	249	97.	3
613-D	1	0.5	1	2.5	1	0.25	1	873	152	20.	2	180	10	0.5	1	153	209	130	4
614-A	1	4	8	2.5	1	4.9	4	64	11	100	12.	40	2.	0.5	1	10	14	+ 65	2

Analyte	LiRR	\%	MgRR	Mo	MoRR	Nb	NBRR	Nd	NdR	Ni	NIRR	Pb	PbRR	Pd	PdRR	Pr	PrRR	Rb	RbRR
Method		Ninl-M5		Mant-ms		Mmilims		MM1-M5		MMILA5		WMII-M5		Wmintis		Wuncm			
Detection		1.		5		0.5		1		5		10		1		1		5	
Units		PPM		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB	
614-8		1	2	2.5	1	4.8	4	53	9.	62	8	30.	2	0.5	1.	8	11	43	1
$614 . C$	1	0.5	1	2.5	1	4.8	4	116	20	54	7	120	- 7	0.5	- 1	19	26	109	4
614-0	1	0.5	- 1	2.5	1	4	4.	121.	21	49	6	150	8	0.5	1	20.	27	146	5
615-A	1	2	4	5	2	2.8	3.	9	2	45	5	70	4	0.5	1	2	3	63	2
615-B	1	0.5	- 1	7	3	2.9	3	57	10.	39	5	60	3	0.5	- 1	9	12	77	3
615-C	1	2	4	5	2	2.4	2	20	3.	69	8	90	5	0.5	1	4	5	76	2
615-D	1	0.5	- 1	5.	2	3.4	3	75	13	44	5	60	3	0.5	1	12	16	77	3
616-A	1	0.5	-1	15	6	14.2	13	216	38	88	11	120	7	1	2	37.	51	147	5
616-3	1	1.	2	2.5	1	2.7	2.	39.	7	41	5.	80	5	0.5	- 1	8	11	96	3
616-C	1	0.5	.	6	2	3.2	3.	120	21	22	3	100	6	0.5	1	22	30	137	4
616-D	1	0.5	- 1	7	3	3.1	3	190.	33	16	2	50	3	0.5	1	33	45	91	3
$617-\mathrm{A}$	1	13	26	2.5	1	1.2	1	2.	1	49	6	40	2	0.5	1	0.5	1	83	3
617.3	1	4	8	2.5	1.	0.8	1.	3.	1	51	6	20	1	0.5	1	0.5	1	66.	2
617.C	1	1.	2	2.5	1.	1.6	1.	23	4	46	6	50	3	0.5	1	4.	5	62	2
617-D	1	0.5	- 1	2.5	1	1.7	2	25	4	39	5	50	3	0.5	1	4	5	58	2
500-A		2	4	8	3	12.5	11	16	3	121	15	180	10	0.5	1	3	4	23.	- 1
500-8	1	0.5	- 1	2.5	1	4.1	4.	11	2	26	3	50	3	0.5	1	2.	3	34	1
$500-\mathrm{C}$	1	0.5	1	5	2	19.6	11	70	12	13	2	60	3	1	2	14.	19	111	4
500-D	1	0.5	- 1	2.5	1	11.8	11	77	13.	16	2	80	5	1	2	16	22	105	3
502-A	1	0.5	- 1	5	2	6.6	6	11	2	31	4	110	6	0.5	1	2	3	43	- 1
502-8	1	0.5	1	2.5	-..... 1	4.9	4	21.	4	15	2	70	4	0.5	1	4	5	69	2
502-C	1	0.5	1	7	3	7.8	7	54	9	11	1	40	2	1.	2	11.	15	110	4
502.D	1	0.5	1	7	3	6.1	6	79.	14	9	1	20	1	0.5	1	17	23	111	4
503-A	1	0.5	1	5	2	4.3	4	28	5	14	2	50	3	0.5	1	6	8.	39	- 1
503-8	1	0.5	1	7	3.	15.8	14	597	104	16	2	120	7	1.	2	101	138	86	3
503-C	1	0.5	1	13	5	49.4	45	461)	80	10	1	80	5	3	6	84.	195	107	3
503-D	1	0.5	1	26	10	24	22	449	73	7	1	90	5	1	2	80	109	110	4
504-A	1	0.5	1	2.5	1.	5.7	5	16	3	31	4	240	14	0.5	1.	3.	4	53	2
504.8	1	0.5	1	8	3	28.6	26	103	18	11	1	160	9	4	8	19	26	125	4
504.C	1	0.5	1	25	10	18.2	17	148	26	6	1	220	12	3	6	33	45	217	7
504-D	1.	0.5	1.	70	28.	28.5	26	121	21	6	1	100	6	1.	2	27.	37	175	6
$505-\mathrm{A}$	1	0.5	1	10	4.	6.4	6	27	5	95	12	430	24	0.5	1	5	7	104	3
505-8	1	0.5	1	6	2	7.3	7	31	5	32.	4	80	5	0.5	1	7	10	46	1
$505 . \mathrm{C}$,	0.5	1.	6	2	4.4	4	64	11	20	2	40	2	0.5	1.	13	18	121	4
505-D	1	0.5	1.	10	4	8.3	8	139	24	17	2		4	0.5	-1.	28	38	125	4
506 -A	1.	- 05	1	5.	2	5.8	5	27	5	33	4	170	10	0.5	1.	6.	8.	18	1
506-B	1	- 0.5		2.5	,	4.1	4	11	2	29	4	110	6	0.5	1.	2	3	69	2
$506-\mathrm{C}$	1	0.5	1	5	2	15.4	14	174	30	11.	1.	370	21	2	4.	36	49	164	5
506-D	1	0.5	1	13	5	14.2	13	128	22	6	1	1140	64	0.5	1	27	37	169	6
$507-\mathrm{A}$	1	0.5	1	8	3	2.7	2	85	15	24	3	140	8	0.5	1.	16	22	119	4
507-B	1	0.5	1	11.	4	4.6	4	231	40	8.	1	120	7	0.5	- 1	47	64	187	6
507-C	1	- 0.5	1	14	6	5.4	5	159	28	6.	1	130	7.	1.	2	31	42	241	8
507.D	1	0.5	1	31	12	7.3	7	141	25	6	1	170	10	0.5	1	27	37	236	8
$508 \cdot \mathrm{~A}$	1	0.5	1	13.	5	3.8	3	113	20	25	3	380	21.	0.5	1	21	29	191	6
508-B	,	- 0.5	-1	7.	3	6.8	6	161	28	11.	1	180	10	0.5	1	31	42	170	6
508-C	1	- 0.5	1	11.	4	5.7	5	165	29	5	1	210	12	0.5	- 1	29	40	194	6
508-D	1	0.5	1	17	7	13.2	12	134	23	9	1.	310	18	0.5	,	24	33	226	7
$509 \cdot \mathrm{~A}$	1	0.5	1	9.	4	3.2	3	19	3	62	8	270	15	0.5	1	4	5	72	2
509-B	,	- 0.5	1	10	4.	2	2	12	2.	56	7	90	5	0.5	1	2	3	148	5
509-C	1.	- 0.5	1	8.	3	1.1	1	30	5	21	3	650	37	0.5	.	5	7	71	2
509-D	1.	0.5	1	11	4	4.6	4	57	10	14	2.	5070.	287	0.5	1	11.	15	110	4
$510-\mathrm{A}$	1	0.5	1	6	2	2.7	2.	4	1	40.	5	170	10.	0.5	1	0.5	1	58	2
510.8	1.	0.5	1	10.	4	12.5	11.	62	11	17	2	190	11	1	2	11	15	153	5
$510-\mathrm{C}$,	0.5	1	9	,	31.6	29	84	15	7	1.	70	4	3	6	18	25	206	7
510-D	1	10.5	1	2.5	1	23.3	21.	102	18	5	1.	40	2	2	4	22	30	175	6
511-A (510 Duplicate)		$1 \quad 0.5$	1	2.5	1	2.	2	2.	1.	27	3	110	6	0.5	1	0.5	1	27	- 1
511-8(510 Duplicate)	1	- 0.5	1	2.5	1	6.8	6.	103	18	11.	1.	140.	8	- 0.5	1.	20.	27	133	4

Analyte	LIRR	por	MgRR	Mo	MoRR	Nb	NbRR	Nd	NdRR	Ni	NiRR	Pb	PbRR	Pd	PdRR	Pr	PrRR	R ${ }^{\text {b }}$	RbRR
Method		MM1-m5		MWITM5		MMITA5		molm5		MMITM5		MM1-M5		Manlim		MMI-M5		Mantios	
Detection		1		5.		0.5		1		5		10.		1		1		5	
Units		PPM		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB	
511-C (510 Duplicate)	1.	0.5	1	2.5	- 1	5.8	5	114	20	5.	1	100	6.	0.5	1	24	33	154	5
511-D (510 Duplicate)	1.	0.5	- 1	2.5	[1	9.9	9	84	15	6.	- 1	90	5	0.5	1	18	25	151	5
512-A	1	1	2	10.	- 4	2.6	2	20	3	67.	8	420	24	0.5	1.	3	4	80	3
512-8	1	0.5	- 1	7.	3	1.9	2	127	22	17	2	160	9	0.5	1	26	36	162	5
512-C.	1	0.5	- 1	11	4	4.5	4	186	32	11	1	100	6	0.5	1	38	52	191	6
512-D	1	0.5	- 1	11	4	10.3	9.	162	28	6	1.	70	4	2	4.	34	47	213	7
513-A	1	1	2	12	5	2.4	2	43.	8	32	4.	280	16	0.5	1.	9	12	45	1
513-B	1	0.5	1	2.5	- 1	1.8	2	60	10.	16	2	280	16	0.5	1	10	14	90	3
513-C	1	0.5	1	5	2	0.9	1	95	17.	16	2	50	3	0.5	1	17	23	39	1
513-0	1	0.5	- 1	2.5	-1	1.4	1.	140	24.	13	2	10	1	0.5	1	27	37.	15	1
514-A	1.	2	4.	8	3	1.2	--1	13	2	43	5	400	23	0.5	1	2	3	60	2
514-B	1.	0.5	1	6	2	1.7	2	96	17	43	5	320	18	0.5	1	17	23	85	3
$514-\mathrm{C}$	1	0.5	1	6	2	3.1	3	188	33	28	3	170	10	0.5	1	36.	49	115	4
514-D	1	0.5	1.	9	4	6.1	6	201	35	15	2	210	12	1	2	39.	53	122	4
515-A	1	5	10.	10	4	1.7	2	31	5	115	14	740	42	0.5	1	6	8	92	3
515-B	1	1	2	7	3.	1.4	- 1	87	15	81	10	520	29	0.5	1	16	22	70	2
515-C	1.	0.5	1	7	3	23	2	108	19	72	9	470	27	0.5	1	20	27	81	3
515-D	1.	0.5	1	2.5	1.	1.4	1	131	23	60	7.	380	21	0.5	1	23	31.	84	3
516-A	1	2	4	2.5	1	1.7	2	8	1	55	7	650	37	0.5	1	1.	1.	45	1
516-B	1	0.5	1.	2.5	1	1	1	11	2	41	5	200	11	0.5	1	2	3	55	2
516-C	1	0.5	1	2.5	- 1	1.4	1	46	8	42	5	100	6	0.5	1	8	11	53	2
516-D	$1)$	0.5	1	2.5	1	14	1	54	9	47	6	160	9	0.5	1	9	12	60	2
517-A	1	0.5	1.	2.5	1	1.7	2	28	5	35	4	390	22.	0.5	1	5.	7.	78	3
517-B	1	0.5	1.	2.5	,	2.8	3	67	12	22	3	270	15	0.5	1	13	18.	66	2
$517-\mathrm{C}$	1	0.5	1.	2.5	- 1	3.1	3	97	17	19	2.	310	18	0.5	1	19	26	40	1
$517 . \mathrm{D}$	1	0.5	1	2.5	1	3	3	90	16	19	2	370	21	0.5	1	17	23	55	2
518-A	1	0.5	1	2.5	1	1.6	1	11.	2	31	4	510	29	0.5	1.	2	3	48	2
518.8	1	0.5	1	2.5	- 1	2.2	2	111	19	28	3	430	24	0.5	1	21	29	104	3
518-C	1	0.5	1	2.5	- 1	2	2	171	30	32	4	510	29.	0.5	1	32	44	114	4
518-D	1	0.5	1	2.5	-	2.8	3	176	31	27.	3	470	27	0.5	1.	34	47	112	4
519-A	1	3	6	11	4	12.6	11	113	20	130	16	560	32	4.	2.	20	27	49.	2
519-8	1	0.5	1	2.5	- 1	1.2	1.	84.	15	31.	4.	70	4	0.5	1	15	21	90.	3
519-C	1	0.5	1	2.5	,	1.1	1.	142	25	18	2	60	3.	0.5	1	26	36	114	4
519-D	1.	0.5	1	2.5	1	2.5	2.	138	24	16	2	60	3	0.5	1.	24	33	84	3
520-A	1	0.5	1	7.	3.	5.9	5	39.	7	45	5	200	11	0.5	1.	8	11	95	3
$520-8$	1	0.5	1	6	2	5.2	5.	33	6	13	2.	120.	7	0.5	1	6	8	79	3
520-C	1	0.5	1	9	4	5.3	5.	57	10	9	1	40.	2	1	2	11	15	121	4
520-D	1	0.5	1	10	4	9.8	9	82	14	8	1	30	2	2	4	17	23	136	4
521-A	1	0.5	1	2.5	[1	5.9	5	6	- 1	54	7	20	1	0.5	1	1	1	96	3
521-8	1	0.5	1	2.5	1	3.4	3	7	1	33	4	20	1	0.5	1	1	1	65	2
$521-\mathrm{C}$	1.	0.5	1	7	3	11.3	10	143	25	9	1	150	8	2	4	30	41	177	6
521-D	1	0.5	1	5	2	6	5.	57.	10	14	2	150	8.	0.5	1	11.	15	125	4
25th PERCENTILE		0.5		2.5		1.675		13		14		37.5		0.5		2		53	
BACKGROUND		0.5		2.5		1.097436		5.72973		8.236111		17.69231		0.5		0.730769		30.68421	

Analyto	3ib	SbRR	Sc	ScRR	Sm	SmRR	Sn	SnRR	Sr	SrRR	Ta	TaRR	Tb	TBRR	Te	TeRR	Th	ThRR	Ti
Method	MM1-M5		MMI-M5		NMIAM5		MMIM5		MMM1-M5		MMI-MS		MMITM5		Munlm		WMi-H5		M Milat
Detection	1		5		1		1.		10		1		1		10		0.5		
Units	PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PP8		PPB
600-A	0.5	1	22	1	1	1	0.5	- 1	40	8	1		0.5	1	5	1.	2.7	2	266
$600-\mathrm{B}$	0.5	1	36	2	7	3	0.5	1	20	4	1	- 2	2	3	5	1.	4	3.	394
600-C	0.5	1	53	2	14	6	0.5	- 1	20	4	0.5	1	5	8	5	1.	4.2	3	397
600-D	0.5	1.	93	4	64	30	0.5.	1	10	2	0.5	1	16	24	5	1.	2.1	1.	141
$601-\mathrm{A}$	0.5	1.	52	2	1	1	0.5	- 1	50	10	0.5	1	0.5	1	5	1.	2.1	1.	455
601-B	0.5	1	68	3	12	6.	0.5	- 1	10	2	0.5	1	4	6	5	1	2.2	1	488
$601-\mathrm{C}$	0.5	1	80	4	17	8	0.5	1	10	2	0.5	1	5	8	5	1	2.8	2	743
$601-\mathrm{D}$	0.5	1.	91	4	42	19.	0.5	-1	10	2	0.5	1	8	12	5	1	6	4	1780
602-A	0.5	1.	66	3	4	2	0.5	- 1	30	14	0.5	1	2	3	5	1	2.9	2	353
602-B	0.5	1.	66	3	9	4	0.5	- 1	20.	4	0.5	1	4	6	5	1	2.2	1	375
$602-\mathrm{C}$	0.5	1	69	3	18	8	0.5	1	10	2	0.5	1	6	9	5	1.	1.9	1	337
602-D	0.5	1	83	4	25	12	0.5	1.	10	2	0.5	1	7	11	5	1	2.6	2	350
$603-\mathrm{A}$	0.5	1	48	2	4	2	1	2.	100	20	0.5	1	0.5	,	5	1.	3.8	2.	2140
$603-8$	0.5	1.	29	.	2	1	0.5	1	70.	14	0.5	1	0.5	9	5	1	1.6	1	385
$603-\mathrm{C}$	0.5	1.	45	2	22	10	0.5	1	30.	6	0.5	1	7	11	5	1	2.8	2	676
$603-\mathrm{D}$	0.5	1.	47.	2	28	13	0.5	1.	20	4.	0.5	1	7	11	5.	1	3.5	2	789
$604 . \mathrm{A}$	0.5	1	18	1	0.5	1	0.5	1	170	34	0.5	1	0.5	1	5	1	1.1	1	308
604-B	0.5	1.	27	1	2	1.	0.5	1	20	4	0.5	1	1	2	5	1	1.2	1	502
604.C	0.5	1.	41	2	8	4	0.5	- 1	10	2	0.5	1.	3	5	5.	1	2.6	2	1080
604-D	0.5	1	60	3	16	7	0.5	1	10	2	0.5	-1	5	8	5	1	3.6	2	1130
$605-\mathrm{A}$	0.5	1.	18	1	0.5	1	0.5	1	70	14.	0.5	1.	0.5	1	5	1	1	1	198
$605 . \mathrm{B}$	0.5	1	21	1.	0.5	1	0.5	1	40	8	0.5	1.	0.5	1	5.	1	0.8	1	162
605-C	0.5	1	34	2	4.	2.	0.5	1	10	2.	0.5	1.	2	3	5.	1	1.4	1	630
605-D	0.5	1.	53	2	14	6	0.5	- 1	10	2	0.5	1	4	6	5.	1	3.5	2	1040
606-A	0.5	1.	41	2	7	3	0.5	1	90	18	0.5	1.	2	3	5	1	3.	2.	679
606-B	0.5	1.	39	2	5	2	0.5	1	60.	12	0.5	1	2	3	5	1	2.1	1.	396
$606-\mathrm{C}$	0.5	1.	37	2	9	4.	0.5	1.	20	4	0.5	1	3	5	5	1	1.7	1	494
606 -D	0.5	1	44	2	15	7	0.5	1	20.	4	0.5	11	4	6	5	1	3.1	2	804
$607 . \mathrm{A}$	0.5	1	22	1	2	1	0.5	- 1	50.	10	0.5	1	0.5	1	5	1	3.1	2	691
607 -B	0.5	1.	27	1	3	1	0.5	1	10	2	0.5	1	2	3	5	1	1.5	1	192
$607-\mathrm{C}$	0.5	1.	38	2	5	2	0.5	1	10.	2.	0.5	1	3	5	5	1	1.1	1	197
607-D	0.5	1.	48	2	13	6	0.5	1	5.	1.	0.5	1.	4	6	5	1	2.9	2	549
608-A	0.5	1	33	2	0.5	1	0.5	- 1]	50.	10.	1	2	0.5	1	5	1	2.9	2	516
608.8	0.5	1	17	1	0.5	1	05	- 1	10	2	0.5	1	0.5	1.	5	1	2.1	1	465
$608-\mathrm{C}$	0.5	1	44	2.	3	1	0.5	- 1	5	1	1	2	1.	2	5	1	3.1 .	2	699
608-D	0.5	1.	34	2	12	6	0.5	- 1	5	1	0.5	1	3	5.	5	1	5.5	4	1240
609-A	0.5	1	29	1	2	1	0.5	,	70	14	0.5	1	0.5	1.	5	1	2.9	2	907
$609 . \mathrm{B}$	0.5	1	32	1.	3	1	0.5	-11	10	2	0.5	-1	2.	3	5	1	1.4	1	292
$609 . \mathrm{C}$	0.5	1	50	2.	9	4.	0.5	- 1	5	1	0.5	1	4	6.	5	1.	1.3	1	313
609-D	0.5	1.	59	3	12	6	0.5	- 1	5	1	0.5	1	5	8.	5	1	1.4	1	401
610-A	0.5	1	62	3	3	1	0.5	1	40	8	0.5	1	0.5	1	5	1	2.8	2	355
610-8	0.5	1	159	7	13	6.	0.5	-1	5	1	0.5	1	3	5	5	1	4.5	3	768
$610 . \mathrm{C}$	0.5	1	104)	5	15	7	0.5	- 1	5	1	0.5	- 1	4.	6	5	1	2.1	1	356
610-D	0.5	1.	140	7	34	16	0.5	- 1	5	1	0.5	1	8	12.	5	1	2.4	2	1050
611-A (Duplicate 610)	0.5	1.	73	3	2	1	0.5	-1	30	6	0.5	1	0.5	1	5	1	3.5	2	491
611-B (Duplicate 610)	0.5	1	97	5	6	3	0.5	,	5	1	0.5	1	2.	3	5	1	2.2	1	331
611-C (Duplicate 610)	0.5	1	126	6	12	6	0.5	-1	5	1	0.5	1	4.	6	5	1	4.	3	307
$614 . \mathrm{D}$ (Duplicate 610)	0.5	1.	155	7.	23	11.	0.5	-1	5	1	1.	2	6	9	5	1	6.2	4	1910
$612 \cdot \mathrm{~A}$	0.5	1.	11	1	0.5	1.	0.5	- 1	70	14	0.5	1	0.5	1	5	1	1.2	1	283
612-B	0.5	1	22	1	0.5	1.	0.5	,	10	2	0.5	1	0.5.	1	5	1.	1.6	1	231
612-C	0.5	1	35	2	2	1	0.5	- 1	5	1	0.5	1	1.	2.	5	1	1.9	1	698
612-D	0.5	1	47	2	7	3	0.5	- 1	5	1	0.5	1	3	5	5	1	4.5	3	1630
613-A	0.5	1	13	1	7	3	0.5	- 1	100	20	0.5	1.	2.	3	5	1	0.7	1	63
613-8	0.5	1	33	2	37	17	0.5	,	20	4	0.5	1	12.	18	5	1	0.25	1	24
613-C	0.5	1	55	3	336	155	0.5	- 1	20	4	0.5	1	62	94	5	1	1.1.	1	81
613-D	0.5	1	66	3	283	131	0.5	1	20	4	0.5	1	51	77	- 5	1	1.4	1	32
614-A	0.5	1.	53.	2	22	10	0.5	- 1	140	28	0.5	1	8.	12	5	-11	4.8	3	1240

Analyte	Sb	SbRR	Sc	SCRR	Sm	SmRR	Sn	SnRR	18	SrRR	Ta	TaRR	Tb	TbRR	Te	TeRR	Th	ThRR	Ti
Method	Mancms		Nilha		WMINS		NMAIES		M M Mi-15		MWITM5		NMHEMS		MMITH5		MM1+45		MMM具5
Detaction	1		5		-1		1		10		1		1		10		0.5		3
Units	PPPB		PPB																
614-B	0.5	1	50	2	23	11	0.5	1	60	12	0.5	1	15	23	5	1	4.5	3	926
$614 . C$	0.5	- 1	72	3	40	18	0.5	-	30	6	0.5	1	13	20	5.	1	9.3	6	2720
614-D	0.5	1	81	4	42	19	0.5	- 1	30	6	0.5	1.	13	20	5	1	8.7	6.	2580
615-A	0.5	1	35	2	4	2.	0.5	- 1	60	12	0.5	1	2	3	5	1	3.3	2	801
615-B	0.5	1.	51	2	20	9.	0.5	1	30	6	0.5	1	7.	11	5	1	3.9	2	980
615-C	0.5	.	74	31	8.	4.	0.5	1	30	6	0.5	1.	3	5	5	1	5.4	3	1040
615-D	0.5	- 1	45	2	25	12	0.5	1	30	6	0.5	1.	12	18	5.	1	2.9	2.	840
616-A	0.5	1	85	4	68	31	0.5	-1	50	10	1	2	24	36	5.	1	10.1	6	3010
616-B	0.5	1	96	4	14	6	0.5	- 1	20	4	0.5	1	6	9	5	1	5.2	3	1040
616-C	0.5	1.	129	6	41	19.	0.5	- 1	10.	2	0.5	1	13.	20	5	1	7.2	5	1290
616-D	0.5	- 1	123	6	66	30	0.5	-1	5	1	0.5	1.	18	27	5 !	1	7.2	5	779
$617 . A$	0.5	1	22	1	0.5	1	0.5	1	190	38	0.5	1	0.5	1	5.	1	18	1	453
617-B	0.5	1	34	2	2	1.	0.5	1	60	12	0.5	1	1.	2	5	1	1.1	1.	342
617-C	0.5	1	44	2	9	4	0.5	- 1	20	4	0.5	1	3.	5	5.	1	1.5	1	906
617-D	0.5	1	45	2	10	5.	0.5	-1	20.	4	0.5	1.	4	6	5	1	1.6	1	999
$500-\mathrm{A}$	1	2	50	2	4	2	0.5	- 1	30.	6	3	6	1.	2	5	1	8.9	6	1030
$500-\mathrm{B}$	0.5	1.	26	1	4.	2	0.5	-1	10.	2	2	4.	2.	3	5.	1	3.1	2	119
$500-\mathrm{C}$	2	4	34	2	20	9	0.5	- 1	5	1	2	4	4	6	5.	1	10.4	7	945
500 -D	0.5	1	35	2	22	10.	0.5	-1	5	1.	2	4	4	6	5	1	10.1	6	1090
502-A	0.5	1.	20	,	4	2.	0.5	1	10	2	1	2	2	3	5	1	4.7	3	217
502-B	0.5	1	25	1	8	4.	0.5	-1	5.	1	1	2	3	5	5	1	4.5	3	164
502-C	3	6	31	1	17	8	0.5	1	10	2	1	2	4	6	5	1	11.4	7	1420
502-D	4	8	38	2	24.	11	0.5	1	5	1.	0.5	1	5	8	5.	1	11.8	8	1240
503-A	0.5	1.	13	1	8.	4.	0.5	1	10.	2	0.5	1	2	3	5.	1	1.6	1	312
503-B	1	2.	22	,	185	85	0.5	1	5	1	2	4.	38	58	5.	1	9	6	1320
503-C	7	14	35	2	135	62	3	6	5	1	4	8.	26	39	5	1	25.1	16	4380
503-D	13	26.	37	2	122	56.	1	2	10	2	2	4.	19	29	5	1	11.6	7	6900
504-A	0.5	1	35	2	7	3	0.5	1	10.	2	0.5	1	3	5	5	1	8.1	5	585
504-B	0.5	1	42	2	34	16	1	2	5.	1	3	6	7	11	5.	1	27.3	17	622
$504 . \mathrm{C}$	5	10	41	2	39	18	1	2	5	1	2	4	6	9	5	1	26.2	17	4150
504.D	7	14	40	2	33.	15.	2	4	10.	2	2	4	5	8	5	1	16.9	11	7520
505-A	7	14	51	2	10	5.	0.5	- 1	20	4.	1	2	2	3	5	1	10.7	7.	1220
505-8	0.5	1	28	1	9	4	0.5	1	5.	1	0.5	1	2	3	5	1	10.6	7	775
505-C	2	4	36	2	20	9.	0.5	1	5	1	0.5	1	4	6	5	1	6.4	4	1090
505-D	8	16	45	2	38	18	0.5		5.	1.	0.5	1.	6	9	5.	1	8.1	5	2510
506-A	0.5	1	25	1	8	4	0.5	- 1	10	2	0.5	1	1.	2	5	1	8.6	5	838
506-B	0.5	1.	29	1	5	2	0.5	1	5	1	0.5	1	2	3	5	1	3	2.	235
506-C	3	6	53	2	47	22	0.5	1	5	1	1	2	7	11	5	1	15.9.	10	1240
506-D	6	12	46	2	36	17.	1	2	10	2	1	2	6	9	5.	1	8.5	5	6120
$507-\mathrm{A}$	0.5	1	57	3	28	13	0.5	- 1	5	1	0.5	1	7.	11	5	1	7.3	5	399
507-8	1	2	63	3	55	25	0.5	- 1	5	1.	0.5	1	8.	12	5	1	9.8	6.	876
507-C	1	2.	77	4	47	22	0.5	1	5	1	0.5	1.	7	11	5	1	92	6.	1170
507.D	3	6.	68	3	42	19	0.5	- 1	10.	2	0.5	1.	6	9	5	1	4.8	3	3200
508-A	2	4	77	4	38	18	0.5	- 1	5	1	0.5	1	8.	12	5	1	11.4	7.	1010
508-B	2	4	53	2	44	20	0.5	- 1	5	1	0.5	1	7.	11	5	1	9.2	6	1020
508-C	3	6	49	2	45	21	0.5	- 1	5.	1	0.5	1	5	8	5.	1	3.7	2.	1730
508-D	6	12	66	3	42	19	0.5	1	10	2	0.5	1	6	9	5	1	4.5	3	5170
509-A	1	2	32	.	7.	3	0.5	1	30.	6	0.5	1.	2.	3	5	1	9.3	6	655
$509-\mathrm{B}$	0.5	1	28	1	5	2	0.5	1	20.	4	0.5	1	2.	3	5	1	5.2	3	459
509-C	2.	4.	27	1	11	5	0.5	1	5	1	0.5	1.	3	5	5	1	4.7	3.	217
509-0	3	6.	29	-1	18	8	0.5	- 1	5	1	0.5	1	3	5	5.	1	5.8	4	1230
510-A	0.5	1.	25	-1	2.	1	0.5	1	20	4	0.5	1	1	2	5	1	4.8	3	615
$510-8$	2	4	47	2	21.	10	0.5	1	5.	1.	1	2	5	8	5	1	14.7.	9	2320
510-C	3	6	47	2	25	12	2	4	10	2	3	6.	4	6	5	1	21.6	14	3080
510-D	2	4	36	2	28	13	0.5	- 1	10	2.	2	4	5	8	5	1	17	11	4760
511-A (510 Duplicate)	0.5	1	14	1	0.5	1	0.5	- 1	20.	4	0.5	1	0.5	1	5	1	2.2	1	255
511-8 (510 Duplicate)	1	2	42	- 2	30	14	0.5	1	5	1	0.5	1	- 5	8	5	1	9	6	830

	3b-M5	SbRR	$\frac{S C}{\text { SC }}$	SCRR	Sm	SmRR	Sn	SnRR	Sr	SrRR	Ta	TaRR	Tb	TbRR	Te	TERR	Th	ThRR	71
Wet	M1-M5		$\sin +45$		Mil-MS		MWITM5		Minloms		MMITH5		MMIMS		MMIM5		MMITH		Mintin
					1		- 1		10				1		10		0.5		
Cuibs -	PB		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB		PPB
5116			36	2	31	14	0.5	1.	20	4	0.5	1	5	8	5	1	8.7	6	1510
		12	25	1	22	10	0.5	1.	20	4	0.5	1	3	5	5	1	7.7	5	3230
51 ?		2.	41	2	7.	3	0.5	1	30	6	0.5	1	2	3	5	1	7	4	506
$51: 1$		2	48	2	34	16	0.5	1.	5	1	0.5	1	6	9	5	-1	5.2	3	480
5i 3		2	64	3	46	21	0.5	1.	10	2	1	2	8	12	5	1	8.5	5.	1140
51:1		4.	77	4	44	20	0.5	1	20	4	2	4	7	11	5	1	10.5	7	1130
51%.		2	36	2	12	6	0.5	1.	20	4	0.5	1	2	3	5	1	8	5	559
5131		1	59	3	21	10	0.5	1	5	1	0.5	1.	6	9	5	1	2.9	2	297
$51:$	05	1	67	3.	29	13	0.5	1	5	1	0.5	1.	6	9	5	1	2.5	2	488
5131		4	81	4	40	18	0.5	1	5	1	0.5	1.	7	11	5	1	4.8	3	1120
$51:$	C 5	1	38	2	5	2	0.5	1	20	4	0.5	1.	3	5	5	1.	3.7	2	312
51.1	¢ 5	- 1	61	3	29	13	0.5	$1)$	10	2	0.5	1	7	11	5	1	3.9	2.	414
$51:$		- 2	68	3	50	23	0.5	1	10	2	0.5	1	9	14	5	-... 1	4.9	3.	1460
511		--4	97	5	55	25	0.5	1	20	4	0.5	1	10	15	5	1	12.6	8	2340
51		4	47	2	11	5	0.5	1	50	10	0.5	1.	3	5	5	1	8	5	598
51		1	43	2	28	13	0.5	1	20	4	0.5	1	7	11	5	1	7.2	5	491
51		1	44	2	32	15	0.5	1	10	2	0.5	1	8	12	5	- 1	6.2	4	729
51	-05	- 1	40	2	41	19	0.5	1	5	1	0.5	1.	10	15	5	1	3.9	2	424
51	-- 1	- 2	31	- 1	4	2	0.5	1	30	6	0.5	1.	2	3	5	1	2.5	2	320
1	05	1	36	2	5	2	0.5	1	20	4	0.5	1	3	5	5	1	1.2	1	238
E1		1	45	2	15	7	0.5	1	10	2	0.5	1	4.	6.	5	1	2.5	2	408
:1	---	-2	58	3	18	8	0.5	1	10	2	0.5	1.	5	8	5	1	2.8	2	489
C.	-05	1	43	2	11	5	0.5	1	5	1	0.5	1.	4	6	5	1	3.6	2	340
! 1		2	41	2	20	9	0.5	1	5	1	0.5	1	5	8	5	1	5.1	3	593
!-1		- 2	44	2	28	13	0.5	1	5	1	0.5	1	6	9	5	1	8.4	5	833
		- 2	52	2	27	12	0.5	1	5	1	0.5	1	6	9	5	1	9	6	815
	05	1	31	1	5	2	0.5	1	10	2	0.5	1	3	5	5	1	2.8	2	168
	05	1	35	2	30	14	0.5	1	5	1	0.5	1.	6	9.	5	1	2.7	2	213
	-05	1	39	2	45	21	0.5	1	5	1	0.5	1	8	12.	5	1	3.5	2	194
	05	-1	37	2	49	23	0.5	1	10	2	0.5	1	9	14	5	1	5.1	3	194
	- 2	- 4	30	1	33	15	0.5	1	130	26	1	2	7	11.	5	- 1	13	8	1410
	--05	1	11	1	26	12	0.5	1	20	4	0.5	1	7	11.	5	1	1.9	1	300
	-05	1	15	1	41	19	0.5	1	10	2	0.5	1	10	15	5	1	1.7	1	232
	-05	1	15	1	40	18	0.5	1	10	2	0.5	1	10	15	5	1.	1.6	1	319
	- 05	1	11	1	12	6	0.5	1	10	2	0.5	1	3	5	5	1	5	3	878
	--05	1	10	1	11	5	0.5	1	5	1	0.5	1	3	5.	5	1	3.6	2	301
	- 1	2	21	1	17	8	0.5	1	5	1	0.5	1	3	5	5	1	10.1	6	975
	--- 2	4	35	2	24	11	0.5	1	5	1	0.5	1	4	6	5	1.	15.9	10	2260
	--05	1	27	1	2	1	0.5	1	20	4	0.5	1	1	2	5	- 1	6.2	4	775
	- 05	1	18	1	3	1.	0.5	1	5	1	0.5	1	2.	3	5	[1	3.1	2	480
	-- 3	- - 6	58	3	43	20	19	38	10	2	0.5	1	8	12	5	1.	13.2	8	4490
	-05	1	33	2	19	9	0.5	- 1	5	1	0.5	-1	4	6	5	-1	7.7	5	1910
ERCEN LLE	05		31		5		0.5		5		0.5		2		5		2.475		348
iRCLA '	-005		21.40541		2.166667		0.5		5		0.5		0.66		5		1.570513		231.9744

Analyte	TiRR	7	TIRR	U	URR	W	WRR	Y	YRR	Yb	YbRR	2n	ZnRR	Zr	2rRR
Method		MM1-A5		MMILM5		MMITS		MMIA5		MMIPA5		Mulims		Mundm	
Dotaction		0.5		1		1		5		1		20		5	
Units		PPB		PPB		PPB		PPB		PPB		PPB		PPB	
$600-\mathrm{A}$	1	1	4	2	1	1	2	32	1	7	2	300	3	27	1
600-3	2	0.8	3	3	2	0.5	1	70	2	8	2	180	2	105	3
$600-\mathrm{C}$	2	0.7	3	5	3	0.5	1	105	3	11	3	100	1	138	4
600.0	1	0.25	1	6	3	0.5	1	379	10	29	7	150	2	49	1
$601 \cdot \mathrm{~A}$	2	0.5	2	2	1	0.5	1	33.	1	10	2	1070	12	43	1
601-8	2	0.25	1	4	2	0.5	1	118	3	11	3	320	4	67	2
$601-\mathrm{C}$	3	0.25	1	4	2	0.5	1	126	3	12	3	440	5	82	2
601-D	8	0.6	2	4	2	0.5	1	159	4	14	3	240	3	157	5
602.A	2	0.6	2	4	2	0.5	1	99	3	17	4	1250	14	56	2
602.8	2	0.25	,	4	2	0.5	1	146	4.	17	4	740	8	57	2
602-C	1	0.25	1	4	2	0.5	1	188	5	16	4	390	4	59	2
602-D	2	0.25	1	5	3	0.5	1	214	5	18	4	460	5	82	2
603-A	9	0.25	1	5	3	0.5	1	13	1	2	1	660	7	158	5
603-8	2	0.25	1	3	2	0.5	1	56	1	11	3	1400	16	36	-1
$603-\mathrm{C}$	3	0.25	1	5	3	0.5	1	207	5	15	4	1320	15	82	2
603-D	3	0.25	1	5	3	0.5	1	207	5	15	4.	1320	15	112	3
604-A	1	025	1	1	1	0.5	1	2.5	1	2	1	210	2	25	1
604.8	2	0.25	1	2	1	0.5	1	68	2	9	2.	500	6	34	1
604 -C	5	0.25	1	3	2	0.5	1	99	3	9	2	480	5	100	3
604-D	5	0.25	1	4	2	0.5	1	132	3	11	3	390	4	125	4
605-A	1	0.25	1	1	1	0.5	1	22	1	6	1.	310	4.	18	1
$605-8$	1	0.25	1	1	1	0.5	1	25	1	6	1.	360	4	17	1
605-C	3	0.25	1	3	2	0.5	1	71	2	7	2	400	5	43	1
605-D	4	0.25	1	4	2	0.5	1	87	2	7	2	300	3	101	3
606-A	3	0.25	1.	4.	2	0.5	1	84	2	8	2	930	11	53	2
606-B	2	0.25	1	3	2	0.5	1	83	2	9	2.	880	10	36	1
606-C	2	0.5	2	2	1	0.5	1	94	2	8	2	710	8	56	2
606-D	3	0.7	3	3	2	0.5	1	101	3	8	2.	710	8	105	3
607-A	3	0.6	2	3	2	0.5	1	14	1	4	1.	460	5	70	2
607.B	1	0.6	2.	2	1	0.5	1	65	2.	7	2	220	2	35	1
$607 . \mathrm{C}$	1	1.3	5	2	1	0.5	1.	99	3	10	2	270	3	29	1
607-D	2	1.5	6	4	2	0.5	1	116	3	11	3	220	2	73	2
608-A	2	1.5	6	1	1	1.	2	8	1	2	1	140	2	49	1
608-B	2	0.9	4	2	1	0.5	1.	16	1.	4	1	150	2	46	1
$608 . \mathrm{C}$	3	1.2	5	3	2	1	2	46	1.	5	1	190	2	68	2
$608 . \mathrm{D}$	5	0.7	3	4	2	0.5	1	71	2	6	1	220	2	120	4
609-A	4	0.6	2	4	2	05	1	20	1	3	1	620	7	65	2
609-B	1	0.25	1	3	2	0.5	1	53	1	7	2	360.	4	33	1
609.C	1	0.25	1	3.	2.	0.5	1	112	3.	10	2	350	4	36	1
609-D	2	0.25	1	3	2	0.5	1	134	3	12	3	320	4	44	1
610-A	2	0.25	1	2	1	0.5	1.	21.	1	3	1	650	7	63	2
610-B	3	0.25	1	3	2	0.5	1	63	2	7	2	140	2	153	5
$610-\mathrm{C}$	2	0.25	1	4	2.	0.5	1.	178	5	16	4	90	1	62	2
$610-\mathrm{D}$	5	0.25	1	6	3	0.5	1	255	7	22	5	150	2	63	2
611-A (Dupticate 610)	2	0.25	1	2	1	0.5	1	24	1	4	1	470.	5	78	2
611-B (Dupticate 610)	1	0.25	1	2	1	05	1.	63	2	8	2	120.	1	64	2
611-C (Duplicate 610)	1	0.25	1	4.	2.	1	2	134	3	14	3	100	1.	108	3
611-D (Duplicate 610)	8	0.25	1	7.	4.	1	2	163	4	16	4	200	2	186	6
612.A	1.	0.6	2	0.5	1	0.5	1.	2.5	1	0.5	1	90	1	23	1
612-8	1	0.25	1.	2	1	0.5	1.	30.	1	5	1	190	2	30	1
612-C	3	0.25	1	3	2	0.5	1	50	1	6	1	190	2	45	1
612-D	7	0.25	1	5	3	0.5	1	70	2	7	2	160	2	130	4
613-A	1	1	4	1	1	0.5	1	93.	2	21	5	1880	21	9	1
$613-8$	1	0.25	1	2	1	0.5	1	366	9	86	20	1020	12.	8	1
613-C	1	0.8	3	3	2	2	4	1270	33	191	45	900	10.	18	1
613-D	1	1	4	3	2	1	2	1130	29	164	38	920	10	16	1
614-A	5.	[0.6	2	- 5	3	0.5	1	462	12	25	6	- 4360	- 49	105	3

Analyte	TiRR	TI	TIRR	U	URR	W	WRR	Y	YRR	Yb	YbRR	Zn	ZnRR	Zr	ZrRR
Method		\%mm		MMITM5		WMims		MMIMS		MM1-M5		mantas		MMITS	
Detection		0.5		1		1		5		1		20		5	
Units		PPB		PPB		PPB		PPB		PP8		PPB		PPB	
614.8	4	0.25	-1	6	3	0.5	1.	1350	35	57	13	2740	31	85	3
614-C	12	0.6	2	7.	4.	1	2.	1080	28	48	11	1810	20	209	6
614.0	11	0.7	3	7	4	0.5	1	932	24	40	9	2010	23	212	6
$615-\mathrm{A}$	3	08	3	4	2	0.5	1	108	3	10	2	1330	15	55	2
615.8	4	0.5	2	5	3	0.5	1	251	6	16	4	1530	17	74	2
615-C	4	0.7	3	4	2	0.5	1.	96	2	11	3	990	11	86	3
615-D	4	0.5	2	5	3	0.5	1.	614	16	27	6.	2300	26	70	2
616-A	13	0.8	3	12	7	1	2	1140	29	52	12	4210	48	300	9
616-8	4	09	4	5	3	0.5	1	190	5	24	6	510	6	101	3
$616 . C$	6	0.7	3	6	3	0.5	1	367	9	35	8	350	4	146	4
616-D	3	0.6	2	9	5	0.5	1.	605	16	47	11	290	3	171	5
617.A	2	0.25	1	2	1	0.5	1	24	1	4	1	2220	25	24	1
647-8	1	0.25	1	2	1	0.5	1	53	1	7	2	1480	17	22	1
617-C	4.	0.25	1	3	2	0.5	1	87	2.	8	2.	930	11.	46	1
617-D	4.	0.25	1	3	2	0.5	1	93	2.	8	2.	720	8.	50	2
$500-\mathrm{A}$	4	0.5	2	6	3	4	8	47	1.	7	2	810	9.	226	7
500-B	1	0.25	1	3	2	2	4.	51	1.	5	1	110	1.	93	3
500-C	4.	0.25	1	9	5	2.	4	94	2	8	2	110	1	422	13
500-D	5	0.25	1	7	4.	1.	2	87	2	7.	2	90	1.	388	12
502.A	1	0.25	1	3	2	1.	2	55	1	6	1	260	3	151	5
502-8	1	0.25	1	5	3	0.5	1	93	2	9	2	150	2	145	4
502-C	6	0.5	2	9	5	1	2	77	2	8	2	130	1	374	11
502-D	5	0.25	1	10	6	1	2	100	3	10	2	110	1	349	10
503-A	1	0.25	1	2	1	0.5	1	70	2	11	3	50	1	53	2
503-8	6	0.25	1	10	6	2	4	1020	26	72	17	90	1	353	11
503-C	19	0.25	1	12	7	3	6	621	16	48	11	90	1	1090	33
503-D	30	0.5	2	8	5	4	8	355	9	38	9	90	1	374	11
504-A	3.	0.7	3	4	2	0.5	1	91	2	13	3	110	1	163	5
504-8	3	0.25	1	12	7	0.5	1	174	4	18.	4	30	1	1110	33
504-C	18.	0.6	2	10	6	2	4	100	3	12.	3	60	1	904	27
504-D	32	08	3	7	4	4	8	89	2	10	2	80	1.	494.	15
505-A	5	1	4	7	4	2	4	67	2	9	2	460	5	199	6
505-8	3	0.25	1	7	4	0.5	1	29	1	3	1	110	1	297	9
505-C	5	0.25	1	7	4	0.5	1	93	2	9	2	110	1	179	5
505-0	11	0.25	1.	7	4	1	2	118	3	19	3	140	2	225	7
506-A	4.	0.25	$1)$	5	3	0.5	,	28.	1	3	1	130	1	216	6
506.8	1	0.25	1	3	2	0.5	1	87	2	11.	3	130	1	87	3
506-C	5	0.25	1.	9	5	0.5	1	134	3	14	3	70	1	622	19
506-D	26	0.8	3	6	3	3	6	101	3	14	3	110	1	244	7
507-A	2	0.7	3	8	5	0.5	,	166	4	20	5.	170	2	137	4
507.8	4	0.8	3	9	5	0.5	1	180	5	18	4	70	1	198	6
$507 . \mathrm{C}$	5	0.9	4	8	5	1	2	134	3	17	4	110	1.	258	8
507-D	14	0.8	3	5	3.	2	4	114	3	17	4.	100	1.	97	3
508-A	4	0.9	4.	10	6	1	2	203	5.	32	7	420	5	171	5
508-8	4	0.6	2	8	5	0.5	1	164	4.	17	4.	150	2	212	6
508-C	7	0.9	4	4	2	1	2.	109	3	13	3	160	2	93	3
508-D	22	1.1	4	4	2.	3	6	123	3	18	4.	250	3.	68	2
509-A	3	0.6	2	4	2	0.5	1	38	1.	5	1.	390	4	88	3
509-8	2	0.25	1	5	3	0.5	1	49.	1	7	2	410	5	43	1
509-C	1	0.25	1	5	3	0.5	1	95	2	10	2	250	3	41	1
509-D	5	0.25	1	5	3	1	2	81	2	9	2	170	2	67	2
$510-\mathrm{A}$	3	0.9	4.	3.	2	0.5	1	52	1.	9	2	140	2	46	
510-8	10	0.8	3	10.	6	2	4	106	3	12	3	100	1	327	10
510-C	13	0.9	4	10	6	2	4	81	2	9	2	70	1	811	24
510-D	21	0.5	2	7	4	3	6	84	2	9.	2	80	1.	659	20
511-A (510 Duplicate)	1	0.5	2	2	1.	0.5	1	24	1	6	1	130	1	33	1
511-8 (510 Duplicate)	4	0.8	3	6	3	0.5	1	126	3	13.	3	80	1	228	7

Analyte	TIRR	TI	TIRR	U	URR	W	WRR	Y	YRR	Yb	YbRR	Zn	ZnRR	Zr	ZrRR
Method		M M1-M5		WMICMS		MM11-M5		MUIM5		MMIT		Mulims		MMM1- ${ }^{\text {a }}$	
Detection		0.5		1		1		5		1		20		5	
Units		PPB		PPB		PPB		PPB		PPB		PPB		PPB	
511.C (510 Duplicate)	7	0.9	4	5	3	0.5	1	98	3	10	2	70	1	222	7
511-D (510 Duplicate)	14	0.9	4	3	2	1	2	72	2	7	2	120	1	169	5
$512-\mathrm{A}$	2	0.8	3	4	2.	0.5	1	66	2	8	2.	700	8	96	
512-8	2	1.2	5	5	3	0.5	1	154	4	14	3	210	2	104	3
512-C.	5	1.2	5	7	4	1	2	193	5	16	4	160	2	197	6
512-D	5	1.3	5	7	4	,	2	137	4.	14	3.	100	1	403	12
513-A	2	1.2	5	4	2	0.5	1	51	1	7	2	360	4	72	2
513-8	1	1.3	5	5	3	0.5	1	219	6	24	6	310	4	76	2
513-C	2	0.8	3	6	3	0.5	1	157.	4.	15	4	240	3.	54	2
543-0.	5	0.6	2	7	4	0.5	1	157	4	14	3	230	3	94	3
514.A	1	1.1	4	3	2.	0.5	1	114	3	16	4	1260	14	30	1
514-B	2.	0.9	4	6	3	0.5	1	257	7	25	6	1020	12	70	2
$514 . C$	6.	0.7	3	8	5	0.5	1	250	6	22	5	630	7	112	3
514-0	10	1.	4	11	6	1	2	249	6	23	5	530	6	222	7
515.A	3	1	4	4	2	0.5	1	102	3	12	3	3370	38	56	2
515-B	2	1.1	4.	5	3	0.5	1	475	4	14	3	1400	16	59	2
515-C	3	1.3	5	6	3.	0.5	1	219	6	18	4	1090	12	64	2
545-D	2	1.3	5	5	3	0.5	1	280	7	21	5	880	10	48	,
516-A	1	0.9	4.	2	1	0.5	1	77	2	10	2.	1340	15	34	- 1
516.8	1	0.6	2.	2	1	0.5	1	115	3	12	3	1160	13	26	- 1
$516-\mathrm{C}$	2.	0.5	2	4	2	0.5	1	117	3	10.	2	670	8	57	2
516-D	2.	0.25	1	4	2	0.5	1	139	4	13	3	780	9.	56	2
$517-\mathrm{A}$	1	0.8	3	4.	2	0.5	1	124	3	14	3	640	7	78	2
$517 . \mathrm{B}$	3	0.25	1	8	5	0.5	1	125	3	12	3	520	6	129	4
$517 . C$	4	0.25	1	9	5	0.5	1	127.	3	11	3	2100	24	155	5
517-D	4	0.5	2	9.	5	0.5	1	163	4	15	4	950	11	156	5
518-A	1	0.7	3	2	1.	0.5	1	109	3	15	4	250	3	47	1
518-B	1	0.6	2	4.	2.	0.5	1	187	5	15	4.	250	3	70	2
518-C	1	0.25	1.	4	2	0.5	1.	231	6	18	4.	270.	3	80	2
518-D	1	0.25	1.	4	2	0.5	1.	228	6	18	4	270	3	124	4
519.A	6	0.8	3	8	5	1	2	190	5.	14	3.	820	9	375	11
519.8	1	0.25	1	3	2	0.5	1	200	5	13	3	170	2	40	1
519-C	1	0.5	2	3	2	0.5	1	265	7	19	4.	110	1	36	1
519-D	1	0.25	1	3	2	0.5	1.	301	8	20	5	110	1.	43	1
$520-A$	4	1.1	4.	3	2	0.5	1	69	2	6	1	140	2	113	3
520-B	1	0.25	1	5	3	0.5	1	92	2	7	2	60	1	104	3
$520-\mathrm{C}$	4.	0.25	1	10	6	0.5	1.	78	2	71	2	40	1	269	8
520-D	10.	0.25	1	12	7	2	4	83	2	8.	2	40	1	432	13
521-A	3.	1.2	5	3.	2	0.5	1.	36.	1	6	1	160	2	116	3
521-B	2	0.7	3	4	2	0.5	1	57.	1	7	2	110	1	81	2
521.C	19	0.9	4	10	6	2	4	110	3	12	3.	110	1	400	12
$521-\mathrm{D}$	8	0.8	3.	7	4.	0.5	1.	83	2	9	2	50.	1	228	7
25th PERCENTILE		0.25		3.		0.5		69.75		7		127.5		49.75	
BACKGROUND		0.25		1.74		0.5		38.97436		4.270833		88.46154		33.33333	

ANALYTE	Pd	Pr	1Rb	Sb	Isc	Sm	$\underline{3}$	8 Br	Te	Tb	To	Th	71	T1	0	W	T	Yb	Zn	Z
METHOD	MMLins	MMI-M	MMLMS	minims	MULLCM	minlim	MM1-M5	dimim ${ }^{\text {a }}$	MMLIMS	TMM [-M 5	MMI-MS	MM1-MB	WMI-ms	MMIME	Minl-ms	Minlom	WMILIM	MU1M5	MML-MS	MMITMS
DETECTION			5					10	1		10	0.5	3	0.5						
UNITS	PPB	${ }^{\text {PPPB }}$	PPP	PPB	PPB	${ }^{\text {PPPB }}$	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PP8	PPB	PPB	PPB
$600-\mathrm{A}$	1	<1	99	<1	22		1	40		<1	<10	2.7	286	-1	2	1	32	-7	300	27
DUP-600-A	<1	<1	90.	≤ 1	19	<1	<1	30	<1	≤ 1	<10	1.5	270	0.7		4	28	6	280	27
803-A	<1	2	42	<1	48	- 4	1	100	<1	<1	<10	3.8	2140	<0. 5		-1	13	2	680	158
DUP-603-A	1	- 4	43	<1	58	5	2	90		<1	<10	4.6	3260	<0. 5		<1	18	3	550	188
B06-A	<1	3		<1	41		-1	90	4		<10	3	679	<0.5		<1	84	8	930	53
DUP-606-A	<1	1	39	<1	37	- 4	$\leqslant 1$	90	< 1	2	<10	2.3	503	<0.3		<1	76	- 9	800	44
609-A	<1	1	85	<1	29	2	<1	70	<1	< 1	<10	2.9	907	0.6		<1	20	3	820	65
DUP-609-A	<	<1	93.	<1	28	- 1	1	80	<1	<1	<10	2.1	771	0.5		<1	18	4	800	55
$612-A$	<1	<1	14	<1	11	<1	<1	70	<1	$\leqslant 1$	10	1.2	283	0.8	<1	<1	< 5	C1	90	23
DUP-812-A	1	<1	17	<1	11.	<1	4	60	<1	< 1	10	0.7	248	0.5	<1	<1	<	1	80	20
615-A	<1	2	63	<1	35	--4	4	60	4		<10	3.3	801	0.8		41	108	10	1330	56
DUP.815-A	<1	1	63	<1	37	- 4	<1	60	<1	2	<10	3.2	947	0.7		<1	108	10.	1400	49
$500-\mathrm{A}$	<1	3	23	1	50		<1	30	3		<10	8.8	1030	0.5	6	4	47	7	810	228
DUP-500-A	<1	2	21.	-	65	- 3	- 1	40	<1	1	<10	8.2	909	0.6		<1	37	6.	670	211
504-A	<1	3	53	<	35		<1	10	<1	3.	< 40	8.1	383	0.7		<	91	13	110	183
DUP-504A	<1	3	39	<1	29		<1	10	<1	3	< 40	0.8	628	0.7		4	108	15	180	217
507 -A	4	18	119	<?	57	28	4	210	4	7	<10	7.3	390	0.7	8	-1	166	20	170	137
DUP-607-A	4	21	125	<	53	36	$\underline{1}$	-10	4	8	40	8.8	490	0.7		4	174	20	140	188
B10-A	-1	4	58	< 1	25		<1	20	- 1	1	<10	4.8	615	0.9		4	62	9	140	48
DUP-510-A	-1	<	55	4	20	<	C 1	20	$\leqslant 1$	4	10	3.4	489	1.1		<1	24	6	120	38
B13-A	<1	9	45		36	12	<1	20	<1		10	8	380	1.2		-1	51	7	360	72
OUP-613-A	1	11	47	1	40	15.	1	20	4	3	16	9.8	019	1.2		4	60	8	400	102
516-A	\wedge	1	45	1	31	4	<1	30	<1		< 40	2.6	320	0.9		<1	77	10	1340	
OUP-516-A	<1	2	43	2	39	8	<1	30	4	3	-10	,	369	0.8		<1	80	19	1280	46
519A		20	49	2	30	33	4	130	1		<10	13	140	0.8	8	1	190	14	820	375
DUP-319.A	2.	21	43	2	28	33	1	110	1	7	<10	13.2	1360	0.8	8	1	204	14	710	373
Replicato Ar																				
ANALYTE	Pd	Pr	Rb	sb	8 c	8 m	3n	Br	Ta	Tb	To.	Th	17	1	U	w	Y	Yb	2 n	$2{ }^{1}$
METHOD	MMI-Ms	mmimb	MMI-M8	Mmame	MMIMS	Himbum	Min-M5	TMMance	MMI-MS	MM1-MS	minta 5	Mminlmb	MM1-MB	MIMLMS	MMLIE	MIMLM 8	malims	mulum	MMIMS	MMLMS
DETECTION	1	1	5	1	8	1		10	1	1	40	0.6	3.	0.5	1		5		20	8
UNITS	PPB	PPB	PP8	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	9 PB	PPB	PPB	PPP	PP8	PPB	PPB	PP8
MMISRM ${ }^{4} 4$	48		295	1	8	4	1	460	<1	<1	<10	16.3	<3	<0.5	37	<1	10	1	360	14
MMISRM14	49	2	302	1	6	4	4	430	<1	<1	<10	18.3	<3	<0.5	40	<1	10	1	390	14
MMISRM14	47	2	301	1	9	4	<1	550	<1	<1	<10	14.9	<3	<0.5	39	<1	10	<1	340	14
MMMSRM14	48	- 2	297.	- 1	<	4	<1	550	<1	<1	-10	14.7	<3	<0.5	40	<1		<1	340	13
Recormmend																				
MMISRM14	46	2	283	c1	5	3	<1	518	< 1	<1	<10	16.2	<3	<0.5	40	<1		<	345	13
ANALYTE	Pd	Pr	Rb	Sb	8 C	sm	sn	${ }^{3}$	Ta	Tb	7	Th	TI	11	U	w	Y			z
METHOD	Mmi-ms	MWims	mMI-MS	MMLCM5	MMIMS	MMIMS	MML-MS	MMI-MS	Mat-ms	MMIL-MS	MMi-MS	Imilims	Mil-ms	Mili-ms	MIML-MS	Mal) MS	(milam	Till-ms	Minims	MM1-M5
OETECTION	1		5					10			10	0.5	3	0.5	1	1	5	1	20	
UNITS	PPB	PP8	PP8	PPP	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PPB	PP8	PPB	PPB	PPB	Pp 8	PPB	PPB
BLANK	<1	<1	<5	<1	<5	<1	<1	<10	<1	<1	<10	<0.5	<3	<0.5	<1	<1	<5	<1	<20	<5
BLANK	<1	<1	<5	<1	- 5	4	<1	\bigcirc	<1	-1	<10	<0.5	<3	<0.5	<1	<1	<5	<1	<20	<5
BLANK	<1	<1	<5	<1	<5	<1	<1	$1<10$	1<1	<1	$1<10$	<0.5	<3	<0.5	<1	<1	<	<1	<20	<5

ORIENTATION RESULTS

APPENDIX 30

Results Of Mobile Metal Ions Process (MMI-M) Soil Geochemical Surveys on The Stewart Property (Deltaic Grid), Stewart Area, B.C.

Figure 1. Stewart Deltaic grid vertical profiling, MMI-M, 2006.
Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

Stewart Deltaic Grid Orientation MMI-M 2006

[^0]: Geochemistry plots by:

