ALDER CREEK PROPERTY

Assessment Report
 on

Geological Reconnaissance and Rock Geochemical Sampling,

NTS 103P/005
$55^{\circ} 02^{\prime} \mathrm{N}$ latitude $129^{\circ} 03^{\prime}$ W longitude

Skeena Mining Division British Columbia

January 8, 2007

Prepared for:
BCM Resources Corp.
1010-1030 Georgia Street West Vancouver BC V6E 2Y3
$B y$:
Margaret Venable PhD
Consultant

> Event NUMB BERS $: 4086451$
> $: 4120553$

Table of Contents

Section Page
SUMMARY 4
INTRODUCTION AND TERMS OF REFERNCE 5
PROPERTY DESCRIPTION AND LOCATION 5
ACCESS, CLIMATE AND PHYSIOGRAPHY 5
HISTORY 6
GEOLOGICAL SETTING 6
Regional Geology 6
Property Geology 6
Mineralization 6
SAMPLING METHOD AND APPROACH 6
SAMPLE PREPARATION AND ANALYSIS 7
RESULTS AND INTERPRETATIONS 8
CONCLUSIONS AND RECOMMENDATIONS 8
EXPENDITURES 9
CERTIFICATE OF AUTHOR 10

List of Tables

Table 1. Alder Creek Property Mineral Claims

List of Figures

Figure 1. Location Map
Figure 2. Claim Map
Figure 3a. Rock Sample Locations (Alder Property)
Figure 3b. Rock Sample Locations (Alder South)

Appendices

$$
\begin{array}{ll}
\text { Appendix A } & \text { Rock Sample Locations and Descriptions } \\
\text { Appendix B } & \text { Rock Geochemistry Assay Results }
\end{array}
$$

SUMMARY

Geological traversing and rock geochemical sampling were performed on the Alder Creek claims in May and June 2006.

The Alder property is located in northwestern British Columbia, approximately 60 km north of Terrace, British Columbia. The property is composed of three claims, Alder, Alder 2 and Alder 3 totaling 33 cell units and covering 611 hectares owned by BCM Resources Corp. One of the claims (Alder) is optioned from N C Carter.

Historical work on the property is quite limited, with some hand trenching reportedly being carried out in the 1970s. No work is listed in MINFILE. The claims cover a prominent gossanous zone around the contact between a granodiorite porphyry intrusive and hornfelsed metasediments of the Bowser Assemblage. Disseminated pyrite is widely distributed in both rock types, along with minor molybdenite and chalcopyrite in quartz veins and on fractures. The granodiorite porphyry, while not dated, appears similar to the Alice Arm Intrusions which host significant molybdenite occurrences elsewhere in this region.

The objective of the 2006 fieldwork was to assess the geological setting and mineralization in the light of the much improved regional geological and metallogenic knowledge since the claims were last worked 30 years ago, and recommend follow-up work if warranted.

Based on the results of the rock geochemical sampling, and the difficult terrain, it is recommended that work be focused on other higher priority properties.

INTRODUCTION AND TERMS OF REFERENCE

This report describes geological traversing and rock geochemical sampling carried out on the Alder Creek claims. The Alder Creek property is located in northwestern British Columbia. Work was carried out on behalf of BCM Resources Corp. (BCM) of Vancouver, British Columbia.

Mr. Dale McClanaghan, President of BCM, contracted the writer to perform the work with the assistance of local field staff. Fieldwork was carried out between May 4 and 8, with a follow-up visit on June 20, 2006.

PROPERTY DESCRIPTION AND LOCATION

The Alder Creek property is located approximately 60 kilometres north of Terrace northwestern British Columbia (Figure 1). The project area is centered at approximately $55^{\circ} 02^{\prime} \mathrm{N}$ latitude and $129^{\circ} 03^{\prime} \mathrm{W}$ longitude.

The Alder Creek property (Figure 2) consists of 3 claims totaling 33 claim units as listed in Table 1 with an area of approximately 611 hectares. These claims were electronically staked under MTO (Mineral Titles Online) in June 2005. The Alder claim \#501281 is covered by an option agreement with N C Carter.

Table 1. Alder Creek Property Mineral Claims

Claim Name	Tenure \#	Units	Owner
Alder	501281	4	BCM Resources Corp.
Alder 2	514216	25	BCM Resources Corp.
Alder 3	525424	4	BCM Resources Corp.

ACCESS, CLIMATE, AND PHYSIOGRAPHY

The Alder Creek property is situated immediately west of Lava Lake, 60 km north of Terrace, BC (Figure 1). Access from Terrace is via the Nass Highway, thence via logging roads which branch off the highway approx. 3 km south of Lava Lake and extend to within 0.5 km of the property.

The property is located in the Coast Mountains in rugged, forested terrain. Elevations range from 300 to 700 metres above sea level. Outcrop exposure is limited due to forest and undergrowth cover except on steep cliff sections. Traversing is both difficult and dangerous.

The climate is severe, with short but hot, dry summers and cold, moist winters.
Figl - Alder Craik Proparty Locelion

Fig. 2 - Alder Claims

[^0]\square BCGS Grid
Contours (1:250K)
\sim Contour-Index
Contour - Intermediate
Areaof Exclusion
Areaof Indefinite Contours
Transportation - Points (TRIM)
© Helipad
Transportation - Lines (TRIM)
Alrfield
Alirport
Airstrip
Airport:Abandoned
Ferry Route
Rnar (firaval IIndivirierl) - 1 I ane

This map is a user generated static output from an Internet mapping site and is for general reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable. THIS MAP IS NOT TO BE USED FOR NAVIGATION.

HISTORY

It is reported (N.C.Carter pers. comm.) that limited hand trenching was carried out over the main prospect in the early 1970s. Specific details and results are unknown, and no reports are filed on MINFILE. No evidence of previous work was seen during BCM's work on the property.

GEOLOGICAL SETTING

Regional Geology

Regionally, the area is underlain by Mid Jurassic to Lower Cretaceous clastic sediments of the Bowser basin. The Bowser basin is flanked to the southwest by granitic intrusions of the early Tertiary Coast Plutonic Complex.

Property Geology

Locally, the property is underlain by hornfelsed siltstones of the Bowser Basin mainly in the northeast, intruded by a granodiorite porphyry body to the southwest. Most of the sampling was in the contact zone on the central eastern portion of claim \#501281, where both rock types occur. Due to the lack of continuous outcrop, the structural relationships between the two units are unclear. The siltstones generally are hornfelsed to a greater or lesser extent.

Mineralization

Disseminations and fracture coatings of fine-grained pyrite are widespread, with occasional molybdenite and chalcopyrite present in quartz veins and veinlets in both of the main rock types, although veins with visible Cu and/or Mo mineralization are largely confined to the granodiorite. All veins seen were narrow, and mineralization relatively weak.

SAMPLING METHOD AND APPROACH

Fieldwork was carried out by Margaret Venable PhD and a local field assistant over three days between May 4 to 8, with a follow-up visit on June 20, 2006. Previous work had identified a gossanous zone at the contact between a granodiorite porphyry intrusive and hornfelsed metasediments with widespread pyrite and minor molybdenite and chalcopyrite. This area was the focus of the current work.

Twenty-four (24) rock or float samples numbered labeled AL-101 to AL-124 were collected from the area. Fifteen of the samples are from within the property, with an additional nine (AL- 105 to 112 inclusive) from nearby on the access road to the south.

Sample locations are listed in Appendix A and shown on Figures 3a and 3b. At each location, approximately 2 kg of representative bedrock/float was collected. All samples were shipped to ALS-Chemex Analytical Laboratories in North Vancouver for analysis.

SAMPLE PREPARATION AND ANALYSIS

All samples were analysed at ALS-Chemex Laboratories for gold by AAS (Method AA23) and 34 element ICP (Method ICP-41). Sample descriptions and UTM locations are listed in Appendix A and analytical results are listed in Appendix B. Sample locations shown on Figures 3a and 3b.

Fig 3a - Alder Creek Samples

Fig 36-Alder Creek South Samples

RESULTS AND INTERPRETATION

The first round of rock geochemical sampling carried out in May 2006 returned one significant result - sample AL-113 returned 418 ppm Mo. Eight additional samples (AL116 to 123) from this area, which is roughly centered on the triple junction of the three claims, were collected during follow-up sampling in June. Three of these samples returned greater than 100 ppm Mo, with a peak value of 147 ppm Mo. While confirming the presence of Mo in the alteration zone, most of the samples were select samples of mineralized rock and/or veins.

The maximum copper value from the May sampling was 1020 ppm Cu , also from sample AL-113. The follow-up sampling returned copper values up to 1060 ppm .

CONCLUSIONS AND RECOMMENDATIONS

The results of reconnaissance geological traversing and rock geochemical sampling confirm the presence of anomalous copper and molybdenum in the gossanous alteration zone, but the overall tenor is low. This, together with the rugged topography, suggests that further work is not warranted at this time.

EXPENDITURES

Contract Geologist 2,100.00
Lodging, truck rental, transport 867.00
Field Assistant 700.00
Assaying 526.01
TOTAL \$ 4,193.01

CERTIFICATE OF AUTHOR

I, Margaret Venable, PhD, do hereby certify that:

1. I am currently employed as a consulting geologist by:

BCM Resources Corp.
1010-1030 West Georgia St.
Vancouver, BC
V6E 2 Y3
2. I graduated with an M.Sc, degree from the Minex program at Queen's University in Kingston, Ontario in 1988, and obtained a PhD degree in Economic geology from the University of Arizona, Tucson, in 1994.
3. I am a member of the American Association of Professional Geologists (AIPG), the Society of Economic Geologists (SEG) and the GSA (Geological Society of America).
4. I have worked as an exploration geologist for approximately 14 years in total.
5. I was on site at the Alder Creek Property for three days between May 4 and May 8, 2006, and a second time on June 20, 2006. During this time I personally performed reconnaissance geological mapping and rock geochemical sampling.

Dated this \qquad day of January 2007.

APPENDIX A

ROCK SAMPLE LOCATIONS AND DESCRIPTIONS

10	Sample_NıEasting.		Northing	Elevation	width_(m) orient	type
	$1 \mathrm{AL}-101$	498369	6099798	418		grab-SC
	$2 \mathrm{AL}-102$	498360	6099825	462	2.5 E-W	chip channel
	$3 \mathrm{AL}-103$	498480	6099900	515		grab - SCiFloat
	$4 \mathrm{AL}-104$	498550	6099945	560	1.2 E-W	chip channel
	$5 \mathrm{AL}-105$	498186	6094190	285	$1 \mathrm{~N}-\mathrm{S}$	chip channel
	6 AL-106	498158	6094253	280	1.6 NNW	chip channel
	$7 \mathrm{AL}-107$	498135	6094455	280	1.8 NE	chip channel
	8 AL-108	498255	6094657	280	1.3 N-S	chip channel
	9 AL-109	498336	6094937	309	1.8 NNE	chip channel
	$10 \mathrm{AL}-110$	498960	6098248	305	$2.7 \mathrm{~N}-\mathrm{S}$	chip channel
	11 AL-111	498717	6098500	306	2.3 N-S	chip channel
	$12 \mathrm{AL}-112$	498703	6098543	309	2 NNW	chip channel
	$13 \mathrm{MC}-201$	516436	6046949	198		recce chip
	$14 \mathrm{MC}-202$	516367	6047591	431		recce chip
	$15 \mathrm{MC}-203$	516269	6047502	433		recce chip
	$16 \mathrm{MC}-204$	515952	6047686	466		recce chip
	$17 \mathrm{MC}-205$	515631	6047914	522		recce chip
	$18 \mathrm{MC}-206$	515976	6047655	468		float
	19 AL-113	498033	6099766	400		grab-SC/Float
	20 AL-114	497925	6099500	333		grab-SC/Float
	21 AL-115	497827	6099393	270		grab-SC/Float

Description

pyr. porph, intrusive, gossan, fe-stained seds
fe-stained porph. int,minor qtz vns, OC/SC
porph. int., altfleached with Fe-stain, minor qtz vns, some dissem pyr, mo?
OC - fe stain and qtz vns in black siltstone
68/90 shear with fe-ox, pyr, qtz vns in granite
60/90 zone Fe-ox, pyr arg alt, minor qZ vns
fe-stained granit, $285 / 70$ veinlets, fractures
fe-stained granite, minor qlz vns, plus 4 cm 85/80 qtz vn with pyr
$60 / 80 \mathrm{qtz}$ veinlets and fe-ox (pyr) in granite
qtz veinlets, sulphides in black siltstone near $210 / 60$ contact with felsic dyke to north
$220 / 60$ shear in black siltstone, minor veinlets; dissem pyrhotite
$250 / 60$ shear in black siltstone with dissem pyr
semi-select of quartz veins and pyr. porphyry dyke
select sample of qte veins, pyr. volc or dyke
select sample of qtz veins, pyr. chl, volc? Host
select sample of qiz veins, pyr. chl. volc? Host
qiz veinlets in andesite, chl, no obvious sulphides
sample of vein from angular fragile boulder from nearby, chlorite-quartz-pyrite vein in chloritized volcanic hos (marked 105 in field) select - matenal from 100 m upstream, quzpyr veins
marked 106 in fieid) select - veinlets at siltstone-dyke contact area
(marked 107 in field) select - material from upstream, qtz-pyrite veins

Sampies

Sample_N Easting							Northing	Elevation	width_(m) orientation type
AL116	498077	6099925	520	1.5 SE	chip channel				
AL117	498050	6099900	494		chip-select				
AL118	498066	6099935	518	2.5 SE	chip channel				
AL119	498117	6099914	525	1.5 SE	chip channel				
AL120	498085	6099871	490	$1 \mathrm{E}-\mathrm{W}$	chip				
AL121	498035	6099830	445	$1 \mathrm{~N}-\mathrm{S}$	chip channel				
AL122	498026	6099789	430		grab-select				
AL123	498028	6099788	430	$1.5 \mathrm{~N}-\mathrm{S}$	chip channel				
AL124	498898	6094300	240		chip				

Description

highly fractured 240/90 quart vein, fe-ox from veins and alteration zones, WSW, in OC at falls quartz veins, fe-ox - highly fractured
pyrite in black siltstone
170/80 quartz vein zone, fe-ox
minor stockwork qtz veinlets in black siltstone, fe-ox
rregular zone of altered rock, ca-veins, fe-ox, pyr in dyke near contact 250/70 ca-vns and fe-ox in sheared black sitstone near contact with dyke 250/70 small dyke? 290/60 shearing, fe-ox stained granite

APPENDIX B

ROCK GEOCHEMISTRY ASSAY RESULTS

masex 1571 Fnises

PRDGEC: :-

[^0]: \square Indian Reserves
 \square National Parks
 \square Parks
 Mineral Titles Grid (LRDW) Mineral Tenures (Mineral - LRDW)

 ## \square Mineral Claim

 \square Mineral Lease
 Reserves (Mineral - LRDW Sites)
 \square Placer Claim Designation
 \square Placer Lease Designation
 No Staking Reserve
 Conditional Reserve
 \square Release Required Rescr
 \square Surface Restriction
 \square Recreat
 \square Mining Division (Mineral - LRDW)

 - Mineral Titles Grid (MTO)

