NEWMAC RESOURCES INC.

2605 Jane Street, Port Moody, British Columbia Canada V3H 2K6 Tel. (604) 461-7211

RECEIVED

FEB 0 7 2007

Gold Commissioner's Office VANCOUVER, B.C.

CRAZY FOX PROPERTY

Kamloops Mining Division NTS 92 O 7 BCGS 092 O- 059,069

Lat. 51° 35'N Long. 120° 18'E

Assessment Report of the 2006

Diamond Drill Program

February 16, 2006 – June 16, 2006

By:

W.A. Howell, R. Geo. 15294 96 A Svenue Surrey, BCa Canada V3R \$P5

Tel: 604 583 2049

Fax: 604 83 2 7

V. A. HOWELL

E-Mail: wahowell@telus.net

February 03, 2007

SUMMARY

The Crazy Fox Property is located about 100 km North of Kamloops BC and about 20 km North West of the town of Little Fort. The property is located on BCGS map 092P 059 and 069

The tungsten-molybdenum prospect is centered on Lat. 51° 36' N. Long. 120° 18' W.

The CRAZY FOX property was staked by prospectors Lloyd Addie and Robert Bourdon in 1999, after claims, held for decades, by the Jim Family from Little Fort, lapsed. Bourdon and Addie had originally focused their attention on Volcanogenic Massive Sulphide potential in the Nicola Volcanics which had been previously identified by the BCGS.

The Crazy Fox tungsten molybdenum prospect has a considerable history, with references going back to the 1940's that include mention of the removal and transport by packhorse of a small tonnage of very high-grade material during the First World War. By the 1960's a number of showings across British Columbia were being more systematically explored by major companies. It was at this time that certain similarities to the Cyprus and Amax owned molybdenum mines, (Climax and Henderson), in Colorado were noted. Of particular significance in this regard was the identification of unidirectional quartz crystallization ("brain rock") associated with molybdenum mineralization which was further documented by R.V. Kirkham of the Geological Survey of Canada, (CIMM Special Vol. 56, 1984) Although this early exploration (1960s,'70s & early '80s) was encouraging, it was not sufficient to keep the exploration active and the molybdenum prospect was eventually abandoned and largely forgotten for the next twenty years.

Since 2000, new roads have been built and new areas cleared of trees throughout the property area, in an attempt to salvage bug killed trees and to control the spread of the mountain pine bark beetle.

Prospecting since 2004 in the area of the old showings and new exposures created by new roads, has revealed significant new showings of molybdenite, up to 2.81% Mo. (An angular boulder of quartz feldspar porphyry, found in 2005, in the vicinity of the 'old' exploration, weighed 50kg and contains 7.29% Mo and 1.583 grams per tonne Rhenium).

During the summer of 2005, Newmac Resources reviewed the property and concluded an option agreement with Bourdon and Addie for cash and stock, giving Newmac 100% control over the property. The prospectors retain a net smelter royalty.

Newmac moved quickly and commenced an orientation grid and sampling program along the grid and new road system. This was followed by an excavator trenching program in November of 2005 to assess the extent of the new showings and to develop additional information about the extent of mineral occurrences, and grades.

The mineralization system is able to generate high grades when the 'plumbing system' is in place.

Newmac's most recent exploration program, a diamond drill program initiated in February 2006, entailed one and later two diamond drills working in consort with an excavator. The drill program completed 7,490 m (24,567 feet) of NQ core, currently stored under cover at Little Fort BC.

The drilling was designed to explore beyond the regions of previous activities and to provide insight into the following geological questions:

- 1.) Is the granitic unit which hosts the mineralization exposed at surface, adequately reflecting the limits of the mineralization?
- 2) Is the hornfelsing which has affected the older, host Triassic-Jurassic volcanic rocks, indicative of a larger target existing under cover?
- 3.) Does a fault, thought to be a thrust fault, which appears to truncate the mineralization at depth offer an additional "blind" target which has been displaced under a veneer of overburden? If so where is the offset?

An initial program of soil sampling was undertaken in May and June 2006, near the end of the recent drilling program, to try and solve these questions. Results are inconclusive.

Newmac Resources is confident that a much larger untested target exists at the Crazy Fox Mo/W prospect than was previously recognized and that much more drilling is warranted.

The 2006 drill program focused primarily on molybdenum with initially little attention paid to tungsten. This began to change rapidly as results were received.

One of the most encouraging surprises of the 2006 program was the discovery of large continuous intersections of tungsten mineralization. (Wolframite). Tungsten in this type of setting (granite porphyry) is usually recovered, as a by-product of molybdenum production. In the case of the Crazy Fox property, the tungsten may be the primary product. Multiple drill intersections of several tens to three hundred meters of consistent tungsten mineralization coincide more or less with fracture controlled molybdenite mineralization. This style of mineralization should lend itself to bulk mineable, open pit mining techniques. It is this style of deposit which underlies the exploration model adopted by Newmac Resources.

Drilling to date has shown continuity of mineralization to depth, as well as laterally for up to several hundred meters. The bounds of the mineralization are not yet completely defined by drilling. Based on constraints developed from surface showings, trenches and geology, mineralization is expected to continue to the north and north-west from the collar of DDH 32. Additionally, there is about 300 to 400 m of highly prospective ground NW from hole 10 towards hole 19 and 27 along the eastern flank of the intrusive.

It was along the eastern contact area that prospectors Addie and Bourdon discovered two small zones of high grade molybdenite (2.81% Mo, at the Road Showing and 1.7% Mo at the Maggie Showing). Additional high grade zones along the eastern flank may exist.

The original, "historical" high-grade mineralization was found proximal to the western contact area, analogous to the eastern contact zone. A series of drill holes, relatively short and considerably closer together, were completed in the vicinity of the old showings, with mixed results. No extensions

to the original high-grade material were found but additional area north-west of DDH 16 remains to be tested. A three meter intersection grading 0.35% Mo was found associated with rather spectacular "Brain Rock" (unidirectional quartz comb texture which has been developed in a convoluted fashion) from DDH 14 and 20. The intersection is believed to be part of another small relatively high -grade pocket or zone and raises the possibility of many more such pockets of mineralization only a few meters in extent but containing Mo up to 10%. (as was the original "Anticlimax" showing). The texture is widely recognized within the drill core from the 2006 program.

Additional favourable prospective ground is untested along the southern and western flanks of the intrusive area. Nothing is known about the Granite in this region, as overburden and tills in excess of 5m cover the area.

Newmac Resources is led to the conclusion that a strong possibility exists that a body of open pit mineable tungsten and molybdenum exists on the Crazy Fox property. Work to Date by Newmac, (over 7400m [24507 feet] of Diamond Drilling) has demonstrated continuity of mineralization over hundreds of meters to depth, and laterally. The extent of mineralization has not been reached by the drilling and the prospect for significant expansion of the currently indicated mineralization is excellent.

Locally at least, there does not appear to be any significant mineralization beyond the limits of the granite.

The hornfelsing developed in the Nicola rocks has local effects due to the proximity of the granite but there is also a strong regional hornfelsing and the resulting difference between regional and local events may be minimal.

The thrust fault is best exposed in drill holes from the central part of the deposit. The fault's relationship to the edges of the deposit are not clear. The trust fault does not appear to be exposed at surface anywhere in close proximity to the Granite.

Additional drilling is warranted and is recommended.

The area north of DDH 10, east of DDH 19 et al, up to and including the contact zone with the Volcanics promises to be well mineralized for tungsten and has the potential to host high grade pods of molybdenite, demonstrated by the nearby "road showing".

There is a NW trending "fabric" to the deposit, and the area on strike to the NW of DDH's 31,32,33,25 and 19, is considered favourable 'hunting ground' for additional continuity of grade and tonnage.

Additional discovery of mineralization in either or both of theses two areas will dramatically affect the size of the outlined body of mineralization,

The overburden covered area generally north-east of the old cabin requires definition by drilling.

PLATE 1 A photo illustrating the "Brain Rock" Unidirectional Seriate Texture (UST) is reprinted below.

A specimen of Unidirectional Seriate Texture in QFP. Quartz growth or comb quartz from the Crazy Fox Property of Newmac Resources near Little Fort B.C.

The specimen illustrated here is also mineralized with Molybdenite.

The sometimes convoluted texture of the quartz veinlets leads to the common term "Brain Rock" The core pictured represents 48 mm diameter (top to bottom)

TABLE OF CONTENTS

Summary			2
Table of Co	ntents		6
Introduction	n		7
Location an	d Acce	ess	8
General Set	ting		9
Mineral Cla	ims		12
History and	Previo	ous Work	12
Regional Ge	eology		15
2006 Work	Progra	nm	17
Observation	ıs & D	iscussion of Results.	19
Conclusions	and R	Recommendations	24
Bibliograph	y		25
		APPENDICES	
Appendix	1	Statements of Qualifications	26
Appendix	II	Statement of Costs	30
Appendix	III a	Drill Hole Samples with Molybdenum and Tungsten Assays	39
Appendix	III b	Drill Logs	32
Appendix	IV	Assay Certificates & Assays	33

....2

Table of Contents....2

List of Plates, Tables and Figures

Plate 1	"Brain Rock", UST	5
Table 1	Claims	12
Table 2	Drill Hole Data	18
Table 3	Selected Assays for Molybdenum, DDH 06-1 to 9	22
Table 4	Selected Assays for Tungsten, DDH 06-1 to 9	22
Table 5	Additional Selected Assays for Molybdenum and Tungsten	
	from DDH 06-10 to 33	23
Fig. 1	Property Location Map	10
Fig. 2	Claim Map	11
Fig. 3a	Regional Geology Legend	15
Fig. 3b	Regional Geology	16
Fig. 4	Drill Hole Location Plan	Pocket
Fig. 5	Longitudinal Section 6980 E	Pocket
Fig. 6	Cross Section Looking N Through DDH 06-13, 14, 15	Pocket
Fig. 7	Cross Section Looking N Through DDH 06-22, 23	Pocket
Fig. 8	Cross Section Looking E Through DDH 06-16,17,18,20,21	Pocket
Fig. 9	Cross Section Looking E Through DDH 06-27	Pocket
Fig. 10	Cross Section Looking E Through DDH 06-27, 25, 19	Pocket
Fig. 11	Cross Section Looking E Through DDH 06-28, 08	Pocket
Fig. 12	Cross Section Looking E Through DDH 06-28, 30	Pocket
Fig. 13	Cross Section Looking E Through DDH 06-30	Pocket
Fig. 14	Cross Section Looking E Through DDH 06-12	Pocket
Fig. 15	Cross Section Looking E Through DDH 06-31	Pocket
Fig. 16	Cross Section Looking E Through DDH 06-32, 29	Pocket
Fig. 17	Cross Section Looking E Through DDH 06-33	Pocket

INTRODUCTION

This report has been commissioned by Newmac Resources Inc. and prepared for the purpose of filing for assessment credit on the Crazy Fox Property as defined below.

Field work on the Crazy Fox property was conducted during the period February 15, 2006 to June 15, 2006. The program was under the supervision of W.A. Howell, P.Geo. (the writer). Additional supervisional assistance for this period of time was given by Eric Mackenzie, Prospector. Frank Renaudat, Prospector also assisted for the period Feb.15 to March 31, 2006. During the period from. April 30 to June 15, geological assistance was provided by Brian Callaghan and Rob Montgomery, geologists, as time permitted them from their other duties. The writer benefited also from site inspections and suggestions from Alex Burton, P. Eng. Diamond drilling was ably performed by DJ Drilling Ltd of Aldergrove BC and Watson Lake YT. DJ provided one Long-year LF-70 hydraulic diamond drill for the entire period and another, a Boyles 37-A, for the period from April 20, to May 22. Drill site preparation and moving was completed using a Caterpillar 320-L Excavator provided by Saunders Contracting Ltd from Merritt BC. and a Caterpillar D-6 'Dozer provided by DJ Drilling. Road maintenance was achieved using equipment on hand and using a Caterpillar 16 Grader provided by A.D. Kerr Earthmoving, for snow plowing and road maintenance.

A total of **7486 m (24, 560 feet)** of NQ drilling was completed. **1904** samples of split core were submitted to Acme Analytical Laboratories for analysis by geochemical techniques. Samples returning >2000ppm Mo and >200ppm W were also re-analysed with assay procedures. The data for which is included in this report. (reported as ppm)

Drill collars were marked with 10 to 15 cm diameter, 1.5m long, green treated wooden posts, (fence posts) with bright cerise red tops and appropriately inscribed aluminum tags fastened with several broad headed roofing nails.

2710 m of trenches were completed using a Caterpillar 320-L excavator. All trenches, and drill sites, including trenches left open for inspection by a previous program and historical trenches dating to the period between 1967 and 1982, were backfilled, with topsoil and forest litter redistributed over the disturbed area. (Only the apportioned costs of drill site and access preparation and reclamation are included in this report. Trench costs and reclamation are not included in the attached cost statement.) Total volume of excavation is estimated at 13,500 cubic m. Trench locations were established by a combination of GPS with chain and compass.

LOCATION AND ACCESS

The property is located on BCGS map sheet 092- O/059,069. The Tungsten, Molybdenum prospect area is centered on: lat. 51° 36' N. long. 120° 18' W. or UTM (NAD 83, zone 10U) 5719000 N; 687000 E.

The Crazy Fox Property is situated in the Kamloops Mining Division approximately 100 km north of Kamloops or about 25 km northwest of the town of Little Fort BC. Good access to the molybdenite prospect is from Highway 24 about 20 Km west of Little Fort, turning northwards onto the Taweel Lake logging road and following that road to the Tuloon Lake road at km13.0. The Tuloon Lake road

leads directly to the property and exploration area at approx.15.5 km and beyond. (Tuloon Lake is mapped as *Tintlhohten* lake on government maps.)

The area is subject to active logging and caution must be exercised when traveling logging roads in this area. Radio frequencies are generally posted and it is strongly suggested that radios be used on all logging roads.

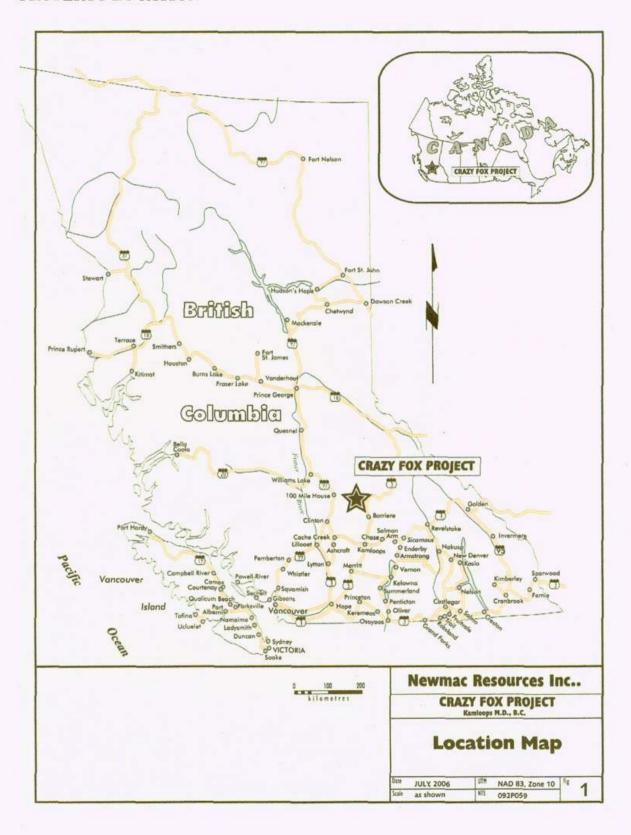
There is a gate on the Tuloon Lake Road at about 13.2 km, the key to which is controlled by Tolko Forest products at Heffley Creek, about 30km north of Kamloops.

Access to the VMS /Sedex prospect area on the Crazy Fox Property is described by Bourdon and Addie in their April 2000 assessment report and differs from the above.

GENERAL SETTING

The molybdenum prospect area on the Crazy Fox property is located on the north side of 14 mile creek between 1100 and 1400 m elevation. Except for the major drainage valleys, which quickly become very steeply inclined with steep valley walls as the drainage descends from the Nehaliston Plateau, the topography is generally gently rolling with 100m to 300 m relief. Valleys on the plateau commonly contain lakes and ponds. The larger lakes are known for their recreational fishing and several commercial fishing lodges are found on the lakes adjacent to the property.

The property receives an average of 1-2m of snow but is generally snow free from mid May to late November. The property could be explored or operated on a year 'round basis.


The property is extensively covered by overburden, consisting of basal and ablation tills and glaciofluvial deposits. The overburden varies in thickness from less than a meter to possibly 10 m or more. Bourdon and Addie have estimated the thicknesses away from the valley bottoms to be commonly 1 to 2 metres. Drilling has encountered overburden of up to 15m of boulder, clay till. Bedrock outcrop is rare and accounts for less than 1% of the claim area. A few outcrops have been created in recent logging areas and associated road cuts.

Vegetation in the area consists mainly of coniferous forest with a few scattered open areas of brush. There has been extensive clearcut logging with corresponding new road construction which has taken place since the 1980's with earlier re-grown cut blocks evident. In recent decades, there has been an endemic infestation of mountain pine bark beetle which has affected a vast area of central BC including the Crazy Fox claim area. During the winter of 2004-2005, new roads were constructed into the molybdenum prospect area on the Crazy Fox Property, which resulted in new exposures of mineralization.

The settlement of Little Fort lies in the valley of the North Thompson River, and provides basic services. ie fuel, bus depot, restaurant, motel. Additional services are found along highway 5, (following the River). The communities of Barriere and Clearwater are located south and north of Little Fort. Each is approximately 30km distant and offers additional services such as banking, vehicle repairs and medical facilities.

The Thompson River corridor is also used by the main transcontinental line of the CNR, and by major power transmission lines.

PROPERTY LOCATION

CLAIM MAP

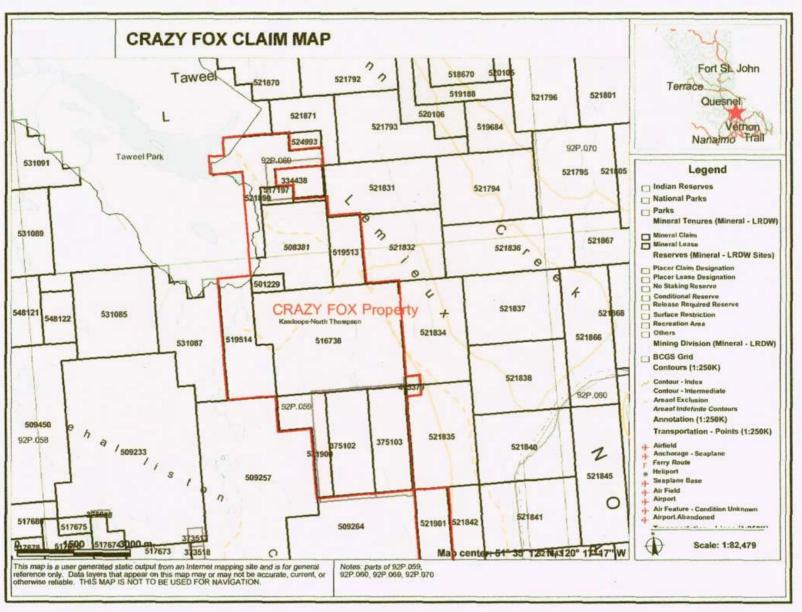


FIG. 2 Canada V3R8P5

W.A. Howell, P.Geo.

15294 94 A

Avenue,

Surrey BC

Fax: 604 583

2079

E-Mail: wahowell@telus.net

MINERAL CLAIMS

Table 1

Tenure Number	Туре	Claim Name	Good Until	Area (ha)
375102	Mineral	CRAZY FOX 1	20110214	450
375103	Mineral	CRAZY FOX 2	20110214	300
415379	Mineral	GOLD ZONE	20101104	25
501229	Mineral	FoxN	20110112	40.16
508381	Mineral	Anticlimax	20110307	401.526
516738	Mineral		20110214	1024.414
517197	Mineral	ACE	20110712	40,142
519513	Mineral		20110829	160.618
519514	Mineral		20100829	341.47
52189 9	Mineral	CRAZY FOX 3	20101103	341.164
521900	Mineral	CRAZY FOX 4	20101103	200.964
521901	Mineral	CRAZY FOX 5	20091103	301.65

The property claims total approximately 3627 Ha or 37 square km.

It should be noted that this report does not include tenure 521901 which is reported under separate cover. Tenure 521901 is shown here, as it is considered part of the Crazy Fox Property.

HISTORY AND PREVIOUS WORK

Claims were first staked for molybdenum at the "Anticlimax" prospect in 1938 when mineralization containing up to 10% Mo was recognized near Tintlhohten Lake. Later, trenching and pitting uncovered a small flat lying pod of pegmatitic (?) material which appeared to be the source of the float. About 1958, the property was owned by Mr. G.L. Jim from Little Fort and Mr. K. Calder of Vancouver. The property was optioned by Calder Molybdenum Company during which time some diamond drilling and trenching was done.

The first report on the property was written in 1960 by H.B. Leitch who made a generalized map of the geology and showings and directed the drilling of 3 diamond drill holes along Moly creek in the vicinity of the granite – Argillite contact. Total footage was 407 feet. This core was apparently removed from the property before it could properly be examined and assayed.

In 1961, the property was optioned to Bralorne Pioneer Mines for 3 months. They did some limited I.P. work and trenching and drilled three holes for a total of 529 feet. Detailed sampling of the trenches revealed low Mo and WO₃ values. Data for this period is not available.

In 1961, at the request of Mr. G.L. Jim, the property was examined by an independent consultant, Dr. A.P. Fawley. Fawley made no recommendations for future work.

Rio Tinto took an option on the ground in 1965, Rio did the first detailed geologic mapping of the area They also did magnetometer work and soil geochemistry over the entire property, trenching, some IP work and reconnaissance stream geochemistry over the entire general area. The reconnaissance work did not delineate any other areas of interest. Molybdenum values in the trenched areas were generally .03% Mo and lower. The report, did call attention to an apparent zone of radial fracturing centered at Rong Lake. Rio dropped the property just before a large option payment was due. This decision was probably influenced by their deep involvement at Lornex at this time.

Falconbridge optioned the property in 1966 for a 6 month period. Areas of known mineralization were remapped and 5 holes totaling 2,032 feet were drilled in the vicinity of Rong Lake. No mineralization of interest was found. (From company report, S.H. Pilcher, Taweel Lake property, 1969, Falconbridge Property Files, Ministry of Mines property file archives)

Falconbridge re-examined the property in 1968 and decided that the property still had untested possibilities and warranted additional work. Their objectives were to drill the known mineralized fracture zone and to drill the contact zone at several locations. Previous mapping by Rio and Falconbridge was field checked and found to be "quite accurate". Other work completed by Falconbridge in 1969, included the following:

- 1. Soil geochemistry over the grid area. Approximately 900 samples collected and analyzed for copper and molybdenum.
- 2. Stream sediment geochemistry, approximately 300 samples were collected within a radius of about 2 miles. Samples were analyzed for copper and molybdenum and a few, for lead and zinc.
- 3. EM-16 over grid area -12 line miles.
- 4. Magnetometer over part of grid area, 10 line miles.
- 5. Diamond drilling 9 holes, 3233 feet (985.6m)
 "no significant mineralization was found" and the option was dropped.

In 1980, Amax of Canada Ltd. conducted an exploration program over the Anticlimax prospect (AR 8492). They reviewed and described the geology and conducted soil and stream sediment sampling along traverses approximately 500 m apart. Samples were collected every 100m from "b" horizon soils. Samples were analyzed for copper, molybdenum, silver, lead, and zinc. Sme samples were analyzed for tungsten and fluorine. AMAX concluded:

A broad and intense W-Mo soil anomaly overlies the southeast portion of the intrusive stock, in the vicinity of Rong Lake.

Several soil samples taken immediately east of central Tuloon lake (Tintlhohten Lake) range in value from 12 to 30 ppm Mo. The anomaly remains unexplained.

There is an unexplained silver -molybdenum anomaly roughly coincident with the intrusive contact area in northeastern sector of the intrusive stock between Moosehead and Moose Lakes.

Amax also identified 2 zones of silver / zinc and zinc in areas now excluded from mining exploration within Taweel Park. (AR 8492, S.G. Enns for Amax of Canada Ltd)

There were no recommendations for further work and Amax dropped their option.

The claims lapsed in 1998 and were acquired by prospectors Lloyd Addie and Robert Bourdon. Bourdon and Addie initially focused their exploration efforts on the massive sulphide potential, building on data developed by the Geological Survey Branch (Bobrowsky et al, OF-1998-6)

In 2004, new roads were extended into the area of the historical molybdenite showings in preparation for salvage logging areas of blown down timber and infested with pine bark beetle..

Bourdon and Addie while routinely prospecting the new roads found significant new high grade mineralization (2.38% Mo) approximately 1000m from the historical showings and on the eastern flank of the broad moly-tungsten high geochem area in the vicinity of Rong Lake, previously defined and noted by S.G. Enns.

In the summer of 2005, Newmac Resources concluded an option agreement with Addie and Bourdon and shortly thereafter commenced a program of geochemical sampling and prospecting followed by excavator trenching on some of the geochemical anomalies. Newmac completed their program in early December. At the same time logging operations were commencing over much of the area underlain by prospective granite between the 'new' showings and the historical showings.

In February 2006, Newmac returned to the property and commenced a drilling program (this report) utilizing the newly constructed and recently used logging roads and skid trails. A total of 7,486 m (24,560 feet) of NO drilling was completed between Feb.16 and June 16, 2006.

REGIONAL GEOLOGY

The most recent compilation of the regional geology is BCGS Open File 2002-4, Geology of the Nehaliston Plateau, NTS 92P/7,8,9,10; Geology by P.Schiarizza, S. Israel, S. Heffernan and J.Zuber.

QUATER	NARY
Qal	Unconsolidated glacial, fluvial and alluvial deposits
Qv	Basait
EOCENE	ops Group
	Skull Hill Formation: andesite, basalt, dacite, volcanic breccia;
Ev	minor amounts of sandstone, siltstone, conglomerate
Es	Chu Chua Formation: conglomerate, sandstone
CRETACI	FOUS
	Granite, quartz-feldspar porphyry
K ₀	Taken and the consequent to the transfer of th
EARLY JI	URASSIC
	Siltstone, sandstone, conglomerate
IJs	
EJgd	Granodiorite; locally includes quartz diorite, diorite and monzodiorite
ATE TO	ASSIC(?) and EARLY JURASSIC
	Syenite, monzonite, quartz monzonite
TJs	
TJa	Diante, microdionite, syenite, intrusion breccie; pyrite-silica-altered rock, skarn and chloritic schist derived from these intrusive rocks and/or associated country rocks
TJd	Diorite, microdiorite, gabbro; locally includes clinopyroxenite and intrusion breccia
TJum	Dunite, wehrlite, clinopyroxenite, serpentinite
MDDI E	AND LATE TRIASSIC
Nicola (
uTNsv	Volcanic sandstone, siltstone, conglomerate, volcanic breccia, tuff, basait, chert, limestone
uTNv	Mafic volcanic breccia, massive to pillowed pyroxene-phyric baselt; minor amounts of volcanic sandston siltstone and conglomerate
uTNtv	Dacite, sericite schist with felsic volcanic fragments
Mori	dian Lake succession
uTNms	Sillstone, argillite, state, sandstone, conglomerate, limestone
uT.Nmst	Limestone; locally includes state, sittstone and chert
Lem	leux Creek succession
mu\\\\s	Siltstone, slate, phyllite, sandstone, quartote, siltite, limestone
mu TNsi	Limestone; lesser amounts of slate and siltstone
Way	ey Lake succession
TNwv	Volcanic breccia, tuff, volcanic sandstone
TNws	Chert, slate, siltstone, volcanic sandstone, conglomerate

FIG 3a

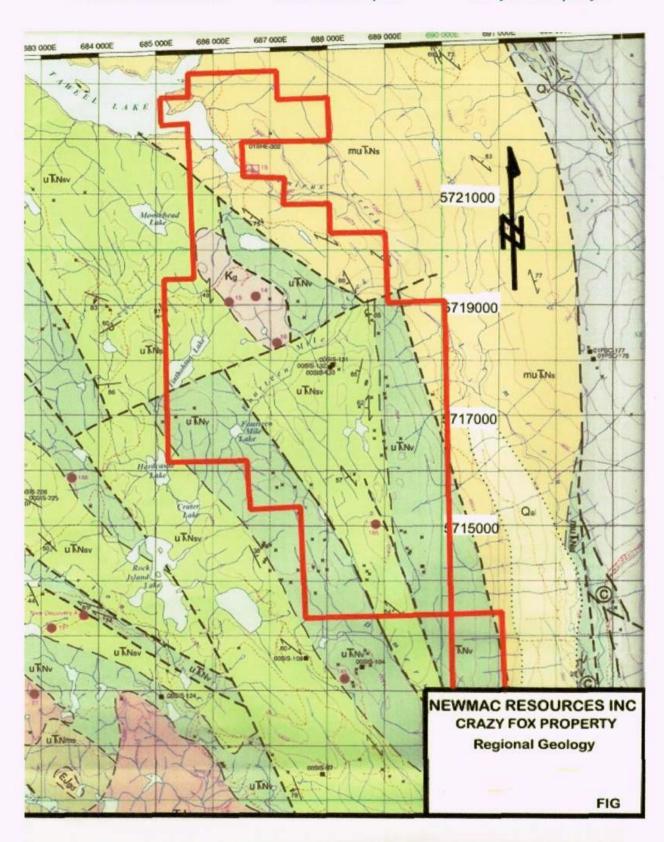


FIG 3b

2006 WORK PROGRAM

Between 15 February, 2006 and 15 June, 2006, thirty-three diamond drill holes totaling 7,486 meters or 24,560 feet were completed. Drilling was performed by DJ Diamond Drilling of Aldergrove BC using an LF -70 Hydraulic drill. In addition, DJ provided a Boyle's Brothers 37-A Diamond drill which performed between April 20th and May22. Room and board arrangements were made with The River Mount Motel and Cafe located beside the Thompson River and Highway 5, located about 4.5 km north of Little Fort BC. (Roy and Betty Tattersall, proprietors). Site preparation and pre drilling evaluation trenching was completed using a Caterpillar 320-L excavator provided by Sanders Equipment and Construction from Merritt BC. Drill moves and site preparation were performed using the excavator and a Caterpillar D-6 'Dozer provided by DJ Drilling. Snow plowing and road maintenance and repairs were completed using a Cat 16 Grader provided by Kerr Earthmovers from Barrierre.

Newmac enjoyed excellent service from all of the above providers.

A core logging facility was established at the motel where heat and power were available as well as core storage.

Drill core was brought to the core shack and logging facility at the end of every shift where it was examined by a geologist, Assay intervals determined, the core was split, logged and racked for storage. The storage racks are made by stacking successive layers of 4 ten foot 2x4's on edge, much like a X's and O's matrix has 3 spaces with 2 cross bars, the core rack built in this way has 5 spaces with 4 cross bars. In this manner a 10 foot square almost 2 meters high is able to hold about 7000 feet of core with no wasted space, as core can be placed from all sides on every level. A simple roof sheds water and core can be relatively secured by sheathing the sides with plywood. The writer was ably assisted in logging the core by Robert Montgomery and Brian Callaghan. Aside from helpful dialogue on geological matters their humour and wit were much appreciated.

The excavator program, under the supervision of Mr. Eric McKenzie, Prospector, was used to great advantage considering the snow and overburden coverage. Contact areas and mineralized zones could be identified and summarily evaluated with timely and better placement of follow up drilling, The drilling was designed to explore beyond the regions of previous activities and to provide insight into the following geological questions:

- 1.) Is the granitic unit which hosts the mineralization exposed at surface, adequately reflecting the limits of the mineralization?
- 2) Is the hornfelsing which has affected the older, host Triassic-Jurassic volcanic rocks, indicative of a larger target existing under cover?
- 3.) Does a fault, thought to be a thrust fault and which appears to truncate the mineralization at depth offer an additional "blind" target which has been displaced under a veneer of overburden? If so where is the offset?

An initial program of soil sampling was undertaken in May and June 2006, near the end of the drilling program, to try and provide some insight into this question. (The costs associated with this aspect of the program are not included with the statement of costs attached to this report).

Newmac Resources is confident that a much larger untested target exists at the Crazy Fox prospect than was previously recognized and that much more drilling is warranted.

Table of Drill Hole Data Table 2

	(utm Nad 83)		m			m	ft				projection	projection
Hole	East	North	Elev.	Azimuth	Dip	Length	Length	start	finish	drill	Н	V
0 6 1	687190	5718662	1266	٧	-90	219.5	720	Feb-19	Feb-28	LF-70	0	219.5
06 2	687189	5718662	1266	270	-60	307.3	1008	Feb-28	Mar-04	LF-70	153.9	266.1
06 3	687297	5718901	1288	45	-45	97.8	321	Mar-04	Mar-05	LF-70	69.1	75.3
06 4	687297	5718901	1288	٧	-90	164.0	538	Mar-05	Mar-07	LF-70	0	164
06 5	687297	5718901	1288	225	-50	99.7	327	Mar-07	Mar-08	LF-70	64.1	76.4
06 6	687185	5718601	1271	V	-90	298.8	980	Mar-08	Mar-12	LF-70	0	298.8
06 7	687053	5718672	1266	270	-60	322.6	1058	Mar-13	Mar-19	LF-70	161.3	279.4
8 80	686928	5718692	1262	360	-60	282.9	928	Mar-19	Mar-23	LF-70	141.5	245
06 9	686924	5718689	1262	270	-60	310.4	1018	Mar-23	Mar-27	LF-70	155.2	268.8
06 10	687009	5719058	1353	100	-60	304.3	998	Mar-27	Mar-31	LF-70	152.2	263.5
06 11	686774	5718637	1270	270	-60	316.5	1038	Mar-31	Apr-04	LF-70	158.3	274.1
06 12	686776	5718636	1270	360	-60	316.5	1038	Apr-04	Apr-08	LF-70	158.3	274.1
06 13	686397	5718870	1296	90	-45	157.9	518	Apr-08	Apr-11	LF-70	111.6	111.6
06 14	686397	5718870	1296	٧	-90	97.0	318.0	Apr-11	Apr-12	LF-70	0	97
06 15	686397	5718870	1296	270	-50	78.7	258	Apr-13	Apr-14	LF-70	47.4	60.3
06 16	686392	5719023	1317	140	-60	94.8	311	Apr-20	Apr-21	LF-70	49.4	82.1
06 17	686406	5718996	1318	140	-60	72.9	239	Apr-21	Apr-24	LF-70	36.5	63.1
06 18	686414	5718960	1314	160	-60	103.0	338	Apr-24	Apr-25	LF-70	51.8	89.2
06 19	686827	5719249	1358	180	-60	364.3	1195	Apr-24	Apr-30	37-A	182.2	315.5
06 20	686432	5718936	1316	148	-60	139.6	458	Apr-25	Ápr-27	LF-70	69.8	120.9
06 21	686447	5718908	1313	٧	-90	105.8	347	Apr-27	Apr-28	LF-70	0	105.8
06 22	686406	5718855	1292	V	-90	112.8	370	Apr-28	Арг-29	LF-70	0	112.8
06 23	686406	5718855	1292	90	-80	122.0	400	Apr-29	Apr-30	LF-70	21.2	120.2
06 24	686830	5718683	1292	90	-80	169.8	557	Apr-30	May-01	LF-70	29.5	167.2
06 25	686827	5719250	1358	٧	-90	285.4	937	Apr-30	May-03	37-A	0	285.4
06 26	687358	5718842	1293	V	-90	246.6	809	May-01	May-04	LF-70	0	246.6
06 27	686827	5719251	1358	360	-60	2 94 .8	967	May-03	May-06	37-A	142.4	255.3
06 28	686888	5718875	1300	360	-75	258.8	849	May-01	May-07	LF-70	67	250
06 29	686723	5719246	1366	180	-60	398.1	1306	May-06	May-10	37-A	197.6	344.8
06 30	686873	5719004	1324	360	-60	295.2	968	May-07	May-10	LF-70	149.1	255.6
06 31	686723	5718958	1366	360	-60	333.1	1093	May-10	May-13	LF-70	166.5	288.5
06 32	686724	5719251	1370	٧	-90	306.3	1005	May-10	May-14	37-A	0	306.3
06 33	686782	5719271	1357	176	-50	410.0	1345	May-14	May-18	37-A	263.5	314.1

TOTAL 7487.2 24560

OBSERVATIONS and DISCUSSION OF RESULTS

The 2006 drill program focused primarily on molybdenum with initially, little attention paid to tungsten. This began to change rapidly as results were received.

One of the most encouraging surprises of the 2006 program was the discovery of large continuous intersections of tungsten mineralization. (Wolframite). Tungsten in this type of setting (granite porphyry) is usually recovered, as a by-product of molybdenum production. In the case of the Crazy Fox property, the tungsten may be the primary product. Multiple drill intersections of several tens to three hundred meters of consistent tungsten mineralization coincide more or less with fracture controlled molybdenite mineralization. This style of mineralization should lend itself to bulk mineable, open pit mining techniques. It is this style of deposit which underlies the exploration model adopted by Newmac Resources.

Drilling to date has shown continuity of mineralization to depth, as well as laterally for up to several hundred meters. The bounds of the mineralization are not yet completely defined by drilling. Based on constraints developed from surface showings, trenches and geology, mineralization is expected to continue to the north and north-west from the collar of DDH 32. Additionally, there is about 300 m to 400 m of highly prospective ground NW from DDH 06-10 towards holes 19 and 27 along the eastern flank of the intrusive.

The 2006 drilling was completed primarily along two north-south sectional zones, and one east-west section with some detailed zones explored on the eastern contact and in the historical main showing area. It was along the eastern contact area that prospectors Addie and Bourdon discovered two small zones of high grade molybdenite (2.81% Mo, at the Road Showing and 1.7% Mo at the Maggie Showing from selected samples). Additional high grade zones along the eastern flank may exist.

The original high-grade mineralization was found proximal to the western contact area, analogous to the eastern contact zone. A series of drill holes, relatively short and considerably closer together than elsewhere, were completed in the vicinity of the old showings, with mixed results. No extensions to the original high-grade material were found but additional area north-west of DDH 16 remains to be tested. A three meter intersection grading 0.35% Mo was found associated with rather spectacular "Brain Rock" (unidirectional quartz comb texture which has been developed in a convoluted fashion) from DDH 14 and 20. The intersection is believed to be part of another small relatively high -grade pocket or zone and raises the possibility of many more such pockets of mineralization only a few meters in extent but containing Mo up to 10%. (As was the original Anticlimax showing). The texture is widely recognized within the drill core from the 2006 program, and is commonly well mineralized, albeit for short intervals.

Additional favourable prospective ground is untested along the southern and western flanks of the intrusive area. Nothing is known about the Granite in this region, as overburden and tills in excess of 5m cover the area. The area beneath and around Rong Lake is considered highly prospective. 2 holes in this area by Falconbridge in 1969 offer tantalizing comments about fracture moly, local aplite and pegmatite development. Their logs are of a brief summary nature and describe consistent 'low grade' mineralization, the maximum depth tested was about 125m. The writer is of the opinion that this area should receive additional drill testing.

The method of analysis chosen, in consultation with the geochemists at Acme Labs in Vancouver was to perform Acme's Group 1 EX analytical package with follow up assays on any sample for molybdenum yielding greater than 2000 ppm Mo and greater than 200 ppm W. This package combines a strong 4 acid digestion that dissolves most minerals with an ICP-MS analysis. A .25 gram split is heated in HNO₃-HClO₄-HF to fuming and taken to dryness. The residue is dissolved in HCl. Solutions are analysed by ICP-MS. The package provides cost effective near total determinations with very low detection limits.

Similarly with the group 1 DX package which uses an aqua regia digestion and an ICP-Ms finish. both packages offer a lower detection limit of 0.1 ppm W and a maximum limit of 200ppm W. while the Mo has a lower detection limit of 0.1 ppm and a maximum limit of 4000ppm and 2000ppm respectively.

The core was initially checked for precious metal content initially using the group 1DX digestion and a fire assay finish. No significant values were found for Au, Ag,

Early in the program it was noted that many samples were returning what seemed to be high values in Rb (Rubidium). The samples range up to three or four hundred ppm Rb. It seemed prudent to also check some samples for Rare Earth elements considering the "exotic" nature of some of the mineralization. The Rare Earths require a different analysis where determinations are made by ICP-MS following a Lithium metaborate / tetraborate fusion and Nitric acid digestion. Every tenth sample of one shipment was tested in addition to the regular analysis. No significant Rare Earth elements were detected. The procedure is relatively expensive per sample and the procedure was not used on anymore samples submitted. It was not until completion of the fieldwork that a comparison was made between results for W achieved by the lithium metaborate fusion analysis and results for W from the Group I EX analyses, (and the assay results.) The fusion results were higher for Tungsten in 10 of 10 samples tested. The improvement ranged from about 7% to 34% with an arithmetic average of 24%. Clearly, this aspect of analysis requires more investigation under more controlled circumstances.

There are two, or possibly three broad rock intrusive types exposed at the Crazy fox property. The first is a medium grained combination of white to grey orthoclase, grey quartz and white plagioclase. This rock is called here an "Alaskite Granite", or "Leucogranite". The second rock type is mostly a cream coloured Quartz Feldspar (orthoclase) Porphyry, the "QFP". QFP exists in several variants: a Hybrid QFP with the Alaskite where quartz 'eye' phenocrysts coexist with short segments of UST (?) quartz and masses of grey anhedral matrix quartz, feldspars are both as phenocrysts and anhedral masses and may locally be crowded. It appears from core textures and proximal relationships that aplite forms mutiple veins and 'dykes' in the QFP and Hybrid QFP in close proximity to the "Brain Rock" or UST quartz, probably at the same time and under the same circumstances. Fine grained QP and aplite with fine quartz 'eyes' are probably also variants of the QFP. There seems to be a close correlation, but not exclusively, between QP and molybdenite. The third broad intrusive type is a Feldspar Porphyry most commonly observed in the southern and south eastern part of the intrusive complex. The FP is a somewhat glassy orange coloured very hard rock with visible clear to opaque feldspar (Orthoclase) crystals in a siliceous glassy groundmass of silicified material, the orange colour may be imparted by small amounts of introduced potassic feldspar throughout the matrix. A photomicrograph of this material is presented by Kirkham and Sinclair in their paper about comb

quartz in 'Recent Advances in the Geology of Granite Related Mineral Deposits' showing micrograpohic intergrowths of quartz and K-feldspar around K-feldspar crystals. Their term for this rock is "Porphyritic Aplite". Mineralization (Mo), is observed sparsely and only on fractures in the FP. The FP appears to be early in the local intrusive paragenesis, followed by QFP and by the Alasksite or Leucogranite and the QFP variants superimposed on the granite and the QFP.

The above mentioned paper by R.V. Kirkham and W.D. Sinclair is the most thorough treatment of comb quartz or UST found to date by the writer. The texture is common to major granite hosted molybdenum deposits including numerous cited Canadian deposits such as Log Tung, Hudson Bay Mtn., Boss Mtn., Roundy-Creek, Gaspe Copper, Mt.Pleasant, to name a few. Numerous other deposits world wide are cited. The feature appears common to major molybdenum +/- tungsten,+/-Tin deposits world wide.

Kirkham and Sinclair refer to a "thrust fault" dipping 15 to 20 degrees to the south west. The recent drilling has encountered the basal fault but suggests the fault may be much flatter than previously recognized. DDH 06-10 encountered tungsten and molybdenum mineralization in alaskite to a vertical depth of 242m, The hole terminated very close to where Sinclair and Kirkham projected the "thrust" to surface. Clearly something is amiss in their model and the granite has substantially greater depth on the eastern side than had been recognized previously.

Trenching has shown the volcanic/intrusive contact to be somewhat west of previous projections. Prospecting and sampling by Bourdon and Addie in 2004 and by Newmac in 2005, suggests elevated tungsten along the eastern contact zone. the results from drill hole 06-10, show the eastern flank of the intrusive mineralized with Tungsten and Molybdenum. surface traces shown in trenches and the drilling in holes 06-19, 06-25 and 06-27 strongly suggest that this eastern trend of mineralization may continue for 300 meters or more from hole 06-10. The only other holes along the eastern side of the intrusive to explore to depth were holes 06-1 and 06-6. They did not explore the eastern contact zone.

Table 3 Selected Assays for Molybdenum from diamond drill holes 06-1 to 06-9 are presented below:

Hole	From (m)	To (m)	Width(m)	Mo (%)	MoS ₂ (%)
06-1	3.0	79.2	76.2	0.017	0.023
06-2	3.0	39.0	36.0	0.021	0.028
06-5	47.9	60.0	12.1	0.023	0.038
06-6	2.7	72.0	69.3	0.018	0.030
06-7	262.9	322.5	59.6	0.017	0.028
Including	262.9	280.9	18.0	0.027	0.045
06-8	185.1	239.1	54.0	0.024	0.040
Including	197.1	239.1	42.0	0.028	0.047
06-9	XX	XX	XX	XX	XX
Including	106.0	109.0	3.0	0.35	0.58

Table 4 Selected Assays for Tungsten from diamond drill holes 06-1 to 06-9 are presented below:

Hole	From (m)	To (m)	Width (m)	W (%)	WO_3
06-1	161.5	206.8	45.3	0.029	0.037
06-2	6.0	9.0	3.0	0.070	0.088
06-5	23.5	32.5	9.0	0.053	0.067
06-7	96.0	111.0	15.0	0.023	0.029
06-7	130.5	139.5	9.0	0.015	0.019
06-7	151.5	196.4	46.9	0.021	0.026
06-7	244.7	265.9	18.2	0.017	0.021
06-7	292.0	310.0	18.0	0.025	0.032
06-8	93.2	111.6	19.4	0.019	0.024
06-8	127.4	188.1	64.7	0.028	0.035
06-8	191.1	257.1	66.0	0.027	0.034
06-9	59.9	109.8	51.0	0.015	0.019

Hole	From	То	Width	Width	W	MTU WO ₃ /	Mo	MoS ₂
#	(m)	(m)	(m)	(ft)	(%)	tonne	(%)	(%)
06-10	1.5	160.5	159.0	521.5	0.038	0.048		
06-12	154.6	160.6	6.0	19.6	0.085	0.107	0.080	0.130
06-19	5.2	358.2	353.0	1,157.5	0.071	0.089	0.020	0.033
Including	25.1	27.2	2.1	6.9	3.910	4.920	0.048	0.080
06-25	6.9	269.7	262.8	862.0	0.041	0.051	0.013	0.022
Including	154.9	243.2	88.3	289.6	0.077	0.097	0.024	0.040
06-27	7.6	279.1	271.5	890.5	0.044	0.055	0.014	0.023_
Including	175.4	275.2	99.8	327.3	0.059	0.074	0.006	0.010
06-28	3.0	241.8	238.8	783.3	0.022	0.027	0.007	0.012
06-29	7.9	166.9	159.0	521.5	0.032	0.040	0.012	0.020
06-29	352.0	378.6	26.6	87.2	0.054	0.068	0.028	0.047
06-30	14.2	267.3	253.1	830.1	0.039	0.049	0.018	0.030
06-31	273.7	319.1	45.4	149.0	0.040	0.050	0.067	0.112
06-32	3.0	16.5	13.5	44.3	0.061	0.076	0.014	0.023
06-32	201.6	283.6	82.0	268,4	0.023	0.028	0.016	0.027
06-33	48.0	397.1	349.1	1,145.1	0.035	0.044	0.015	0.025
Including	48.0	217.3	169.3	555.3	0.043	0.054	0.017	0.028

The above selected intersections have been extracted from recent company news releases, a full report of all relevant drill holes can be reviewed on the company web site at newmacresources.com or from records filed with SEDAR.

Drill logs and assays are appended to this report.

Plans and Sections showing the location of drill holes are presented as Fig 4to 17

CONCLUSIONS and RECOMMENDATIONS

The writer is led to the conclusion that a strong possibility exists that at current prices, a body of open pit mineable tungsten and molybdenum, may exist on the Crazy Fox property. Work to date by Newmac, (over 7400m {245607 feet] of Diamond Drilling) has demonstrated continuity of mineralization over hundreds of meters to depth, and laterally. The extent of mineralization has not been reached by the drilling and the potential for significant expansion of the currently drill indicated mineralization is excellent.

Additional drilling is recommended for:

- 1.) The NE flank and contact area of the Intrusive, to test for continuity of mineralization between DDH 06-10 and mineralization exposed in holes 06-19, 06-25, and 06-27.
- 2.) The N and NW flank of the Intrusive, N of DDH 06-29 and 32. To test the northwards extension of the mineralization exposed in both of those holes.
- 3.) The Southward extension of the longitudinal section through DDH 06-8 beneath Rong Lake and below the drilling done in 1969 which describes "low grade" fracture mineralization with pegmatitic mineralization. A description which fits with mineralization associated with DDH 06-19, 30, 32, 33,

A program of 3000 meters of NQ Drilling is recommended at an estimated cost of \$480,000.00

Respectfully Submitted

February 03, 2007

A. HOWEL

W.A. Howell P.Geo.

BIBLIOGRAPHY

- Charteris, S.N. (1967) Report on the Drilling of the Taweel Molybdenum Option. Falconbridge Property Files, BCGS, Ministry of Energy, Mines and Petroleum Resources, Province of British Columbia.
- Enns, S.G. (1980) 1980 Geochemical and Geological Assessment Report, for Amax of Canada Ltd. A.R. 8492. BCGS, Ministry of Energy, Mines and Petroleum Resources, Province of British Columbia.
- Hill, Wm. J. (1972) Tuloon Property...A Geophysical Report, for Imperial Oil Limited, AR 4137. BCGS, Ministry of Energy, Mines and Petroleum Resources, Province of British Columbia.
- Kirkham, R.V. and Sinclair, W.D. (1988) Comb quartz layers in felsic intrusions and their relationship to porphyry deposits. Recent Advances in Geology of Granite Related Mineral Deposits. CIMM special Volume
- Pilcher, S.H. (1970) Report on the Taweel Lake Property- 1969. Falconbridge Property Files, BCGS, Ministry of Energy, Mines and Petroleum Resources, Province of British Columbia.
- Seedorff, E. and Einaudi, M.T. (2004) Henderson Porphyry Molybdenum System, Colorado: II.

 Decoupling of Introduction and Deposition of Metals during Geochemical evolution of Hydrothermal Fluids. Economic Geology, Vol.99, pp 39-72.
- Sinclair, W.D. (2001?) Porphyry Deposits. Geological Survey of Canada. http://gsc.nrcan.gc.ca/mindep/synth_dep/porph/pdf/deposit.synthesis.porphyry. sinclair.pdf
- Sinclair, W. D..(1995): Porphyry Mo, (Climax Type), in Selected British Columbia Mineral Deposit profiles, Volume 1- Metallics and coal, Lefebure, D.V. and Ray, G.E., Editors, British Columbia Ministry of Energy, Employment and Investment, Open File 1995-20, pages 105-108.
- Sinclair, W. D.. (1995): Porphyry W, in Selected British Columbia Mineral Deposit profiles, Volume 1- Metallics and coal, Lefebure, D.V. and Ray, G.E., Editors, British Columbia Ministry of Energy, Employment and Investment, Open File 1995-20, pages 101-104
- Stein, H. and Hannah, J. (2006) Compilation of Whole Rock Major and Trace element Data for Urad-Henderson Intrusions and Silver Plume Granite. Http://airie.warnercnr.colostste.edu/documents/Major-TraceElementData.pdf

APPENDIX I

Statements of Qualifications

CERTIFICATE OF QUALIFICATIONS

- I, William A. Howell, P. Geo. certify the following:
- 1) I am a registered and practicing member of the Association of Professional Engineers and Geoscientists of British Columbia, Licence # 20440.
- 2) I reside and conduct my business at 15294 96A Avenue, Surrey BC V3R 8P5.
 - tel: 604-583-2049; Fax 604-583-2079. E-Mail: wahowell@telus.net
- 3) I graduated from the University of British Columbia in 1971 with a Batchelor of Science Degree.
- 4) I have practiced my profession as a geologist since 1971.
- 5) I have gained geological experience working with several major companies and several junior companies working on a wide variety of deposit types including exploration for porphyry copper/moly and molybdenum deposits.
- 6) I have practiced my profession as a consultant and contractor since 1983, and have conducted and managed exploration programs in British Columbia, Alberta, Yukon and NW Territories, Western and Southwestern USA, Central and Northern Mexico and the Republic of Panama.
- 7) I did supervise the drilling and exploration program described herein between February 15, 2007 and June 15, 2007.

W.A. Howell, P.Geo.

Date

CERTIFICATE OF QUALIFICATIONS

Brian Callaghan, BSc. 989 Curtis Road, Kelowna. B.C. V1V2C9 Telephone 1 250 868 9672 E.Mail bcallagh@telus.net

- I, Brian Callaghan do certify that:
- 1. I am a consulting geologist and proprietor of Geo-Crystal Exploration with a business office at 989 Curtis Road, Kelowna, BC, V1V 2C9.
- I have graduated with a Bachelor of Science Degree in Geology from Brandon University in 1980.
- 3. I have practiced my profession in the Canadian Mining Industry since graduation in Canada for 25 years.
- 4. My duties included core logging on the Crazy Fox property for Newmac Resources Inc. of Vancouver, B.C, during the months of April to May 2006.
- 5. I do not own or expect to receive any interest (direct, indirect or contingent) in the property, described herein, nor in the securities of Newmac Resources Inc., or any of its affiliates.

Signed in Kelowna, B.C. January 25, 2007 at Kelowna, B.C.

Brian Callaghan, BSc.

CERTIFICATE OF QUALIFICATIONS

Robert Montgomery, B.Sc.

279 Glenmary Road, Enderby, British Columbia, Canada V0E 1V3 Phone: (250) 838-0586, E-mail: rmontgomery@uniserve.com

- I, Robert Montgomery, B.Sc. do hereby certify that:
 - 1. I am a self-employed consulting geologist with an office at: 279 Glenmary Road Enderby, BC, Canada.
 - 2. I graduated with a degree in Geology (B.Sc.) from the University of Calgary in 1990.
 - 3. I have worked as a geologist for a total of 16 years since graduation from university.
 - 4. I have gained experience in a wide variety of geological settings and projects, including drilling, logging, sampling and mapping in Porphyry environments.
 - 5. I worked on the Crazy Fox Property between April and June, 2006. My duties included logging core from the property for Newmac Resources Inc.
 - 6. I have not had prior involvement with the Crazy Fox Property that is the subject of this report.
 - 7. I do not expect any remuneration for this work other than normal consulting fees and expenses incurred during the performance of my work.

Dated this 16th day of May, 2006

"Robert Montgomery, B. Sc."

Robert Montgomery, B.Sc.

APPENDIX II

Statement of costs

STATEMENT OF COSTS:

(apportioned for Drilling related costs)

Crazy Fox Project Newmac Resources Inc.

January 25, 2007

Field Personnel	
W.A. Howell, P.Geo. 120days	
Brian Callaghan, Geol. 30	
Robert Montgomery, Geol. 14	
Erik McKenzie, Field foreman 120	
Frank Renaudat, Prospector 43	
Cole Mackin Tech asst 82	
Gordon Wilson Tech asst 60	
469 man days	\$137,120.00
Field supplies and Rentals	37,685.39
Contractors- Sanders Excavating (apportioned to drilling) Cat 320 excavator; site access, prep and reclamation	53,393.97
-DJ Drilling, 33 holes, 7488m NQ drilling	741,554.91
Assays (core only) ACME Analytical Labs	58,840.58
Travel, Transport & Accommodation	86,345,93
Maps, Reports, Printing etc.	6009.85
Final Report	12,000.00
TOTAL COST	\$ 1,132,950.50

APPENDIX III a

Drill Hole Samples With Molybdenum & Tungsten Assays

NEWMAC RESOURCES Inc. CRAZY FOX PROJECT

Diamond Drill Hole Samples and Assays

compiled by: W.A. Howell

DDH	certificates	Sample	From (m)	To (m)	interval (m) Mo	ppm V	V ppm
DDH06-1	A601112	4701	3.0	6.0	3.0	256.7	8.0
		4702		9.0	3.0	323.6	8.8
		4703		12.0	3.0	101.9	7.5
		4704		15.0	3.0	175.7	8.0
		4705		18.0	3.0	186.2	6.3
		4706		21.0	3.0	113.1	7.9
		4707		24.0	3.0	255	10.1
		4708		27.0	3.0	135.6	8.1
		4709		30.0	3.0	229.9	9.0
		4710		33.0	3.0	262.8	37.4
		4711		36.0	3.0	294.3	7.4
		4712		39.0	3.0	140	70.3
		4713		42.0	3.0	94	35.0
A601112R3	(A)	4714		45.0	3.0	91.4	600.0
		4715		51.0	6.0	370.6	48.5
		4716		54.0	3.0	239.5	29.4
		4717		57.0	3.0	96.9	50.9
		4718		60.0	3.0	95.3	26.6
		4719		62.0	2.0	157.1	6.5
		4720		64.0	2.0	80.8	25.9
		4721		65.1	1.1	369.6	23.5
		4722		66.5	1.4	41.7	114.6
		4723		69.5	3.0	76.6	63.7
		4724		72.8	3.3	51.4	18.0
		4725		75.0	2.2	158.6	15.6
		4726		77.6	2.6	27.6	9.4
		4727		79.2	1.6	203.4	5.5
		4728	•	82.2	3.0	6.4	11.0
		4729		85.3	3.1	17.3	31.0
		4730		87.3	2.0	33.7	93.8
		4731		90.3	3.0	8.4	13.2
A60112R3 ((A)	4732	131.1	134.1	3.0	20.3	500.0
		4733		137.1	3.0	36.1	102.5
		4734		140.1	3.0	62.1	113.8
		4735		143.1	3.0	2.4	77.0
		4736		146.1	3.0	5.8	67.2
		4737		149.1	3.0	15.9	112.6
A601112R3	(A)	4738		151.1	2.0	5.4	200.0
		473 9		152.5	1.4	3.7	90.5
		4740		155.5	3.0	0.9	61.5
		4741		158.5	3.0	5.1	38.2
		4742		161.5	3.0	1.3	100.7
		4743		164.5	3.0	14.7	196.9
		4744		167.5	3.0	12.2	187.5
		4745		170.5	3.0	3.8	129.3
		4746		173.5	3.0	4.9	80.4
		4747		176.5	3.0	13.8	89.1
A60112R3		4748		179.5	3.0	3.7	1600.0
A60112R3		4749		182.0	2.5	1.7	300.0
A60112R3 (4750		185.8	3.8	2.4	300.0
A60112R3 ((A)	4751		188.8	3.0	18.9	300.0
		4752		191.8	3.0	2.5	300.0
		4753		194.8	3.0	5,1	145.1
A60112R3		4754		197.8	3.0	353.7	0.008
A60112R3	(A)	4755		200.8	3.0	198.7	900.0

		4756		203.8	3.0	22.4	182.3	
		4757		206.8	3.0	3.2	147.9	
		4758		208.8	2.0	2.8	31.4	
		4759		212.8	4.0	9.6	47.4	
		4760		215.8	3.0	13.2	38.5	
		4761		219.5	3.7	26.3	50.4	
DDH 06-2	A601112	4762	3	6.0	3.0	247	12.1	
			J					
A60112R3 (A))	4763		9.0	3.0	424.3	700.0	
		4764		12.0	3.0	132.6	21.5	
		4765		15.0	3.0	156.9	9.9	
		4766		18.0	3.0	321.6	9.2	
		4767		21.0	3.0	442.8	6.3	
		4768		24.0	3.0	161.2	7.1	
		4769		27.0	3.0	129	15.7	
		4770		30.0	3.0	110.2	8.3	
		4771		33.0	3.0	112.6	58.9	
		4772		36.0	3.0	117.8	51.7	
		4773		39.0	3.0	113.5	7.6	
		4774		42.0 45.0	3.0	76.7	12.3	
1001410001	• .	4775		45.0	3.0	40.3	29.7	
A601112R3 (A	۹)	4776		48.0	3.0	43.6	300.0	
		4777		51.0	3.0	62.3	104.9	
		4778		54.0	3.0	68.5	45.3	
		4779		57.0	3.0	70.6	24.1	
		4780		60.0	3.0	38.7	30.2	
		4781	*	63.0	3.0	41.5	27.5	
		4782		66.0	3.0	61.6	22.6	
		4783		69.0	3.0	57.6	14.1	
		4784		72.0	3.0			
						64 51.4	49.6	
		4785		75.0	3.0	51.1	54.4	
		4786		78.0	3.0	53.7	49.9	
		4787		81.0	3.0	34.4	27.8	
		4788		84.0	3.0	0	0	
		4789		87.0	3.0	0	0	
		4790		90.0	3.0	0	0	
		4791		93.0	3.0	0	0	
		4792		96.0	3.0	0	0	•
		4793		99.0	3.0	0	0	
		4794		102.0	3.0	Õ	Ō	
		4795	234.5	237.5	3.0	31.2	87.1	
		4796	207.0	240.5	3.0	12	75.0	
		4797		243.5				
					3.0	12.2	103.3	
A60444650 11	A 3	4798		246.5	3.0	8.3	158.5	
A601112R3 (A	۹)	4799		249.5	3.0	28.5	2800.0	
		4800		252.5	3.0	17.8	49.3	
		4801		255.5	3.0	25.1	72.4	
		4802		258.5	3.0	21	183.7	
A601112R3 (A	۹)	4803		261.5	3.0	37.7	300.0	
`		4804		264.5	3.0	11.4	143.8	
		4805		267.5	3.0	14.2	25.1	
		4806		270.5	3.0	61.2	38.7	
DDH 06-3	A601112	4807	4.8	8.2	3.4	6.5	77.8	
JU11 00-3	7701112	4808	7.0					
				11.2	3.0	12.2	42.8	
		4809		14.2	3.0	29.4	6.7	
		4810		17.2	3.0	27.3	44.2	
		4811		20.2	3.0	20.7	21.4	
		4812		23.2	3.0	17.3	7.6	
		4813		26.2	3.0	17.1	30.8	
		4814		29.2	3.0	18.5	16.4	
		4815		32.2	3.0	19.6	10.3	
		4816	42.0	45.0	3.0	3.7	4.2	
		.5.15	74.V	.O.Q	0.0	J. 1	7.4	

		4047		40.0	2.0	4.0	4.0
		4817		48.0	3.0	4.2	4.6
mm11.00.4	1004440	4818		51.0	3.0	14.9	2.7
DDH 06-4	A601112	4819	96.9	100.0	3.1	26.9	28.7
		4820		103.0	3.0	12.5	82.1
		4821		106.0	3.0	7.4	110.3
		4822		109.0	3.0	23.1	80.7
		4823		112.0	3.0	9.7	90.8
		4824		115.0	3.0	9.6	134
		4825	150.3	153.0	2.7	15	16.3
		4826		156.0	3.0	10.5	27.2
		4827		159.0	3.0	14.3	41.8
		4828		162.0	3.0	8.7	83.3
P.Dhoe e	400440	4829	44.5	164.0	2.0	9.2	50.4
DDH06-5	A60112	4830	11.3	14.3	3.0	12.6	18.8
		4831		17.4	3.1	23.1	12.3
		4832		20.4	3.0	59	33.3
		4833		23.5	3.1	855.3	47.0
	(A) (A)	4834		26.5	3.0	214.5	800.0
A	60112R3 (A)	4835		29.6	3.1	166	400.0
A	60112R3 (A)	4836		32.6	3.0	85.7	400.0
	` '	4837		35.7	3.1	141.4	74.0
		4838		38.7	3.0	139.8	76.2
		4839		41.8	3.1	28.9	18.3
		4840		44.8	3.0	138.4	56.5
	AC04440						
	A601112	4841		47.9	3.1	84.4	43.1
	A601247	4842		50.9	3.0	122.9	84.6
		4843		53.9	3.0	234.5	34
		4844		57.0	3.1	206.7	41.4
		4845		60.0	3.0	342.1	11.5
		4846		63.1	3.1	42.1	15.1
•		4847		64.6	1.5	63.5	8.3
		4848		69.0	4.5	16.4	7.5
	A601247R	4849		71.4	2.4	78.5	300
	A601247R	4850		73.4	2.0	132.9	4700
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4851		76.4	3.0	86	10.6
		4852		79.5	3.1	142.2	14.3
		4853					
				84.8	5.3	30.5	26.7
		4854		87.7	2.9	3.9	14.5
		4855	79.5	83.1	3.6	3.6	8.3
		4856	64.5	67.2	3.3	25.5	40.4
		4857	87.7	90.5	2.8	11.3	11.6
		4858		93.6	3.1	31.9	14.8
		4859		96.6	3.0	67.2	34.2
		4860		99.7	3.1	29.8	89.5
DDH 06-6		4861	2.7	5.8	3.1	187.2	6.6
		4862		7.9	2.1	210.5	6.2
		4863		11.0	3.1	181.8	5.1
		4864		14.0	3.0	99.8	4.4
		4865		17.0	3.0	176.7	4.4
		4866		20.0	3.0		5
						60.5	
		4867		23.0	3.0	83.2	5.9
		4868		26.0	3.0	231.9	6.3
		4869		28.0	2.0	89.9	4.2
		4870		31.0	3.0	61.9	5.5
		4871		34.0	3.0	133.6	3.9
		4872		37.0	3.0	191.4	4.3
		4873		40.0	3.0	160.5	7.2
		4874		43.0	3.0	239.6	7
		4875		45.0	2.0	404.7	5.8
		4876		48.0	3.0	162.6	17
		4877		51.0	3.0	327.1	94
		1011		31.0	3.0	JZ1.1	3 →

	4878		54.0	3.0	453.4	14			
	4879		57.0	3.0	221.3	106.9			
A601247R	4880		60.0	3.0	207.8	400			
	4881		63.0	3.0	51.1	13			
	4882		66.0	3.0	198.5	7.7			
	4883		69.0	3.0	49.8	11			
	4884		72.0	3.0	140.1	18.1			
	4885		75.0	3.0	41.8	55.6			
A601247R	4886		78.0	3.0	38.6	400			
	4887		80.5	2.5	69.9	51.3			
	4888		82.0	1.5	92.1	32.2			
	4889		84.9	2.9	50.7	10.8			
	4890		88.0	3.1	88.5	57.8			
	4891 4892		91.0 94.0	3.0	128.1	22.7			
	4893		94.0 97.0	3.0 3.0	144.4 139.4	94.3 18.4			
	4894		100.0	3.0	50.8	16.9			
	4895		103.0	3.0	106.5	27.4			
	4896		106.0	3.0	66.1	28.8			
	4897		109.0	3.0	15.4	20.7			
	4898		112.0	3.0	23.2	109.8			
	4899		115.0	3.0	14.7	158			
	4900		118.0	3.0	28.4	106.5			
	4901		121.0	3.0	7.4	26.2			
	4902		124.0	3.0	96.5	28.7			
	4903		127.0	3.0	11.4	52.3			
	4904		130.0	3.0	6.6	66.9			
	4905		133.0	3.0	9.5	53.3			
	4906		136.0	3.0					
	4907		139.0	3.0					
	4908		142.0	3.0					
	4909		145.0	3.0					
	4910		148.0	3.0					
	4911		151.0	3.0					
	4912	400.0	154.0	3.0					•
4.0040.47D	4913	182.9	185.8	2.9	3.4	70			
A601247R	4914	194.4	197.4	3.0	50.2	200			
	4915 4016		200.4	3.0	88.6	150.6			
	4916 4917		203.4 206.4	3.0 3.0	70.1 39.8	147.6 137.8			
A601247R	4918		209.4	3.0	57.4	700			
A601247R	4919		212.4	3.0	32.8	300			
7100124711	4920		215.4	3.0	32.6	154.7			•
	4921		218.4	3.0	66.9	53.7			
	4922		221.4	3.0	13.7	85.9			
	4923		224.4	3.0	10.6	57.7			
	4924		227.4	3.0	18.8	138.4			
	4925		230.4	3.0	23.8	98.2			
	4926		233.4	3.0	42.6	93			
A601247R	4927		236.4	3.0	60.7	200			
A601247R	4928		239.4	3.0	20	200			
	4929		242.4	3.0	5.9	122.3			
	4930		245.4	3.0	19.5	75.5			
	4931		248.4	3.0	10.5	82.8			
	4932		251.4	3.0	5.9	112			
A601247R	4933		254.4	3.0	16.7	400		•	
A601247R	4934		257.4	3.0	17.1	400	•		
100101==	4935		260.4	3.0	18.8	157.2			
A601247R	4936		263.4	3.0	31.6	400			
A601247R	4937		266.4	3.0	6.9	500			
A601247R	4938		269.4	3.0	7.7	200			

.

	A601247R	4939		272.4	3.0	8.4	200
	A601247R	4940		273.8	1.4	38.5	200
		4941		276.8	3.0	10.7	50.4
		4942		279.8	3.0	4.6	19.7
		4943		n-s	0.0	4.3	4.8
DDH 06-7		4944	10.0	13.0	3.0	38	48.2
DDH 00-1		4945	10.0	15.8		160	
					2.8		114.5
	****	4946		18.0	2.2	75.2	85.7
	A601247R	4947		21.0	3.0	101.4	300
	A601247R	4948		24.0	3.0	84.8	400
		4949		27.0	3.0	51.4	43.4
		4950		30.0	3.0	81.3	13.4
		4951		33.0	3.0	77.5	11.2
		4952		36.0	3.0	113.1	18.5
		4953		39.0	3.0	130.5	43.1
		4954		42.0	3.0	97.1	71.3
		4955		45.0	3.0	29.3	18.5
	A601247R	4956		48.0	3.0	86.1	400
	7.00124711	4957		51.0	3.0	47.7	61.4
		4957 4958			3.0		62.4
				54.0 57.0		330.6	
		4959		57.0	3.0	98.7	60.6
		4960		60.0	3.0	13.9	40.7
	A601247	4961		63.0	3.0	22.5	62.4
A601473 (B)	A 601473	4962		66.0	3.0	120.7	145.6
		4963		6 9 .0	3.0	30.6	195.7
		4964		72.0	3.0	18.9	26.6
		4965		75.0	3.0	9.2	64.5
		4966		78.0	3.0	4.4	49.5
		4967		81.0	3.0	68.7	28.6
		4968		84.0	3.0	23.6	103.5
		4969		87.0	3.0	9.7	28.1
		4970		90.0	3.0	18.8	147.8
		4971		93.0	3.0	20.5	47.1
		4972		96.0	3.0	34.2	67.3
		4973		99.0	3.0	21.8	382.3
		4974		102.0	3.0	19.7	154.1
		4975		105.0	3.0	30.3	302.9
		4976		108.0	3.0	158.9	111
		4977		111.0	3.0	42.8	187
		4978		114.0	3.0	13.9	94.9
		4979		117.0	3.0	9.2	68.6
		4980		119.0	2.0	5.2	56.9
		4981		122.0	3.0	5.7	50.4
		4982		124.3	2.3	5.7 7	256.2
		4962 4983		124.3	2.3 3.1	182	61.4
		4984		130.5	3.1	6.2	55.2
		4985		133.5	3.0	14.6	144.2
		4986		136.5	3.0	17.5	118.5
		4987		139.5	3.0	39.7	183.2
		4988		142.5	3.0	7.3	47.7
		4989		145.5	3.0	7.9	79.5
		4990		148.5	3.0	31.7	96.7
		4991		151.5	3.0	13.1	84.9
		4992		153.2	1.7	4.1	118.5
		4993		155.2	2.0	3.7	94.9
		4993 4994		155.2		25.8	413.5
					3.0		
		4995		161.2	3.0	5.4 43.4	137.9
		4996		164.2	3.0	43.1	73.8
		4997		167.2	3.0	33.9	80.1
		4998		170.2	3.0	59.1	257.6
		4999		172.2	2.0	72.3	315.5

		5000		174.4	2.2	64.4	379.5		
		5000	•						
	•			175.1	0.7	15.8	151.2		
		5002		178.4	3.3	61.2	241.9		
		5003		181.4	3.0	42.9	137.3		
		5004		184.4	3.0	16	149.8		
		5005		187.4	3.0	48.7	135.7		
		5006		190.4	3.0	134.7	291.1		
		5007		193.4	3.0	9.3	158.2		
		5008		196.4	3.0	158.7	433.3		
		5009		199.4	3.0	10.8	56.8		
		5010		202.4	3.0	8.2	44.9		
		5011	228.8	231.8	3.0	22.5	68.5		
		5012		234.8	3.0	37.2	70.7		
		5013		237.8	3.0	166	161.7		
		5014		240.9	3.1	53.7	136.9		
		5015		241.7	0.8	10.8	71		
		5016		244.7	3.0	58.4	60.2		
		5017		247.7	3.0	372.4	201.7		
		5018		250.7	3.0	186.9	392.7		
		5019		253.7	3.0	44.9	88.6		
		5020		256.7	3.0	90.8	110		
		5021		259.9	3.2	61.5	86		
		5022		262.9	3.0	91.2	118.8		
		5023		265.9	3.0	123.2	72.2		
		5024		268.9	3.0	689.7	75.1		
		5025		271.9	3.0	79.2	171.2	•	
		5026		274.9	3.0	102.9	77.5		
		5027		277.9	3.0	476.5	340.2		
		5028		280.9	3.0	165.4	183.7		
		5029		283.9	3.0	17.6	77.8		
		5030		286.9	3.0	42.7	74.4		
		5031		289.0	2.1	43.5	64.9		
		5032		292.0	3.0	180.1	41.2		
		5033		295.0	3.0	64.5	198.9		
		5034		298.0	3.0	54.7	919.8		
		5035		301.0	3.0	206.6	51.6		
		5036		304.0	3.0	159.8	113		
		5037		307.0	3.0	94.4	105.9		
		5038		310.0	3.0	81.7	134.7		
		5039		313.0	3.0	92.6	70.6		
		5040		316.0	3.0	90.5	61.1		
		5041		319.0	3.0	198	94.6		
		5042		322.5	3.5	246.1	348.5		
DDH 06-8	A601473 (B),		93.2	96.2	3.0	292.1	365.5		
	A601473	5044		99.2	3.0	161.6	248.8		
		5045		102.2	3.0	77.8	156		
		5046		105.2	3.0	37.9	55.6		
		5047		107.5	2.3	376	137.7		
		5048		109.0	1.5	14	221.2		
		5049		111.6	2.6	9.8	141.6		
		5050	120.4	123.4	3.0	31.4	89.2		
		5051	120.4	124.4	1.0	79.9	80.8		
		5051		124.4	3.0	79.9 34.6	94.3		
		5052					203.9		
				130.4	3.0	53.1			
	•	5054		133.4	3.0	48.1	215.5		
		5055		136.4	3.0	215.6	1673.2		
		5056		139.4	3.0	44	75		
		5057		142.4	3.0	50.1	310.3		
		5058		145.4	3.0	13.4	318.7		
		5059		146.5	1.1	11.4	111.3		
		5060		148.7	2.2	362.5	677.1		

5061	150	8 3	2.1	161.4	437.3
5062	153		3.0	36.4	314.7
5063	156		3.0	34.7	120.5
5064	159		3.0	15.6	64.4
5065	162		3.0	22.1	117.9
5066	165		3.0	53.4	
					172.8
5067	168		3.0	40.9	317.1
5068	171		2.5	35.7	272.6
5069	173		1.8	36.9	221.7
5070	176		3.0	59.8	82.7
5071	179		3.0	32.8	176.6
5072	182		3.0	51.4	158
5073	185		3.0	15.9	46.7
5074	188		3.0	148.1	388.5
5075	191		3.0	63.5	98.2
5076	194	l.1 3	3.0	136.3	150.6
5077	197	'.1 3	3.0	68.7	225.7
5078	200).1 3	3.0	110.4	203.7
5079	203	3.1 3	3.0	315.8	243.1
5080	206	3.1 3	3.0	518.7	171.3
5081	209		3.0	214.8	109.7
5082	212		3.0	269.2	317.1
5083	215		3.0	376.3	215.1
5084	218		3.0	475.8	79.2
5085	221		3.0	308.6	99.4
5086	224		3.0	433.1	161.5
5087	227		3.0	235.8	421
5088	230		3.0	244.3	387.4
5089	233		3.0	204.6	508.3
5090	236				
			3.0	47.1	224.4
5091	239		3.0	182.3	417.5
5092	242		3.0	71.2	226.4
5093	245		3.0	23.6	86
5094	248		3.0	61.3	83.3
5095	251		3.0	43.9	186
5096	254		3.0	124.6	938.1
5097	257		3.0	54.1	496.8
5098	260		3.4	29.7	92.4
5099	263		3.0	26.2	94.2
5100	266	3.5	3.0	6.2	54.9
5101	268		2.3	1.3	75.9
5102	14.7 17	.7	3.0	48.2	93.9
5103	20	.4	2.7	96.3	54.6
5104	23	.7	3.3	34.5	144.1
5105	26	7	3.0	104.6	35.1
5106	29	7	3.0	166.6	146.9
5107	32	.7	3.0	26.6	62.7
5108	35		3.0	56.5	48.8
5109	38		3.0	122.2	15.9
5110	41		3.0	22.4	263.2
5111	44		3.0	33.5	43.1
5112	47		3.0	16.4	56.3
5113	50		3.0	25.2	58.1
5114	53		3.2	10.8	36.9
5115	56		3.0	7.8	78.1
5116	59		3.0 3.0	18.1	90.8
5117	62		3.0 3.0	28.6	
5117	65		3.0 3.0		113.1
				54.7 72.2	236.5
5119	68		3.0	72.2	204.2
5120	71		3.0	11.3	152.9
5121	74	. y .	3.0	24.3	102.1

	5122	77.9	3.0	15.2	81	
	5123	80.9	3.0	33.4	107.5	
	5124	83.9	3.0	2.6	101.5	
	5125	86.9	3.0	47.6	72.9	
	5126	89.9	3.0	11.3	52.2	
	5127	92.9	3.0	3.7	350.8	
	5128	95.9	3.0	28.5	399.9	
	5129	98.9	3.0	48.9	226.7	
	5130	101.9	3.0	4.2	78.2	
	5131	104.9	3.0	6.3	46.2	
	5132	107.7	2.8	34	47.8	
A601473 R	5133	109.8	2.1	3510	224.7	
A001473 TC	5134	111.8	2.0	90.2	49.4	
	5135	114.8	3.0	21.1	32.9	
	5136	117.8	3.0	46.2	126.2	
	5137	120.8	3.0	32.6	87.4	
A601473 (B) A 601473	5137	123.8		23.1	93.4	
			3.0			
A601604, A601604R2,	5139 5140	126.8 120.8	3.0	14.9 16.1	75.8 157.3	
A601604R	5140 5141	129.8	3.0	16.1	157.3	
	5141 5142	132.8	3.0	7.1	48.1	
	5142	135.8	3.0	46.8	97.8 01.3	
	5143	138.8	3.0	8.4	91.2	
	5144	141.8	3.0	4.5	75.3	
	5145	144.8	3.0	51.3	154.7	
	5146 5147	147.8	3.0	19.4	79.5	
	5147	150.8	3.0	16.9	76.3	
	5148	153.8	3.0	34.9	136.9	
*004004D0	5149	156.8	3.0	21.4	62.3	
A601604R2	5150	159.8	3.0	55.7	300	
	5151	162.8	3.0	42.8	54	
	5152	165.8	3.0	11.3	33.3	
	5153	168.8	3.0	20.5	82.6	
A601604R2	5154	171.8	3.0	28.3	300	
	5155	174.8	3.0	9.9	94.2	
	5156	177.8	3.0	11	45.9	
	5157	180.8	3.0	18.7	81	
·	5158	183.8	3.0	5.8	66.8	
	5159	186.8	3.0	316.2	168.4	
A601604R2	5160	189.8	3.0	55	200	
	5161	192.8	3.0	35.3	52.9	
	5162	195.8	3.0	52.3	32.2	
	5163	198.8	3.0	97.5	171.2	
	5164	201.8	3.0	74	15.8	
	5165	204.8	3.0	43.9	17.7	
	5166	207.8	3.0	15	33.1	
A601604R2	5167	210.8	3.0	33.1	200	
	5168	213.8	3.0	4.5	29.2	
	5169	216.8	3.0	5.5	28	
	5170	219.8	3.0	140.3	37.5	-
	5171	222.5	2.7	2	22.4	
	5172	225.8	3.3	6.7	42.4	
	5173	228.8	3.0	8.2	53	
	5174	231.8	3.0	1.7	27.5	
A601604R2	5175	234.8	3.0	120.9	400	
A001004112	5176	237.8	3.0	107.9	72.9	
4601604P2	5177	240.8		88.7	600	
A601604R2	5177 5178	240.6 243.8	3.0	85		
	5178		3.0		152.3 164.2	
A604604D0		246.8	3.0	272.3		
A601604R2	5180 5181	249.8	3.0	94.8 57.3	300	
A004004D0	5181	252.8 255.8	3.0	57.3	97.5	
A601604R2	5182	255.8	3.0	49.1	300	

		5183		258.8	3.0	34.3	37.6
		5184		261.8	3.0	86.5	179.1
		5185		264.8	3.0	43.2	71
		5186		267.8	3.0	38.8	56.7
		5187		270.8	3.0	97.4	71.8
		5188		273.8	3.0	32.5	76.1
		5189		276.8	3.0	22.2	72.3
		5190		279.8	3.0	278.4	192
		5191		282.8	3.0	96.9	59.1
		5192		285.8	3.0	28.5	56.7
		5193		288.8	3.0	52.1	123.8
		5194		291.8	3.0	5.8	30.4
		5195		294.8	3.0	9.7	27.4
		5196		297.8	3.0	31.7	32.1
		5197		300.8	3.0	17.9	30.5
		5198		303.8	3.0	183.8	59.3
		5199		306.8	3.0	10.5	49.5
		5200		308.8	2.0	296.3	150.1
		5201		311.5	2.7	16.1	47.6
DDH06-10		5202	1.5	4.5	3.0	5.8	74.9
DDMQ0 10		5203	1.5	7.5	3.0	10.3	65.2
	A601604R2	5204		10.5	3.0	6.7	700
	AUDITOUTINE.	5205		13.5	3.0	15.2	183.4
	A601604R2	5206		16.5	3.0	13.8	300
	A601604R2	5207		19.5	3.0	2.7	300
	A601604R2	5208		22.5	3.0	10.3	200
	A601604R2	5209		25.5	3.0	4.8	300
	A601604R2	5210		28.5	3.0	14.9	500
	A601604R2	5211		31.5	3.0	12.1	700
	7001004112	5212		34.5	3.0	30.5	98
	A601604R2	5212		37.5		20.3	
	A601604R2	5213 5214		37.5 40.5	3.0	20.3 106.5	300
	A601604R2				3.0		600
	A001004N2	5215 5216		43.5 46.5	3.0 3.0	29.5 43.9	300
	A601604R2	5210 5217		49.5	3.0		164.3
	A601604R2	5217 5218		52.5	3.0	53.8 71.6	300 400
	A601604R2	5219		55.5	3.0	25.1	
	A601604R2	5220		55.5 58.5	3.0	25.1 37.1	300
	A601604R2	5221		61.5		29.5	500
	A601604R2	5222		64.5	3.0	29.5 17	300
	A601604R2	5223			3.0		200
	A601604R2	5223		67.5	3.0	29.1 31.7	400
	A601604R2	5225		70.5 73.5	3.0 3.0	66.4	400 500
	A601604R2	5226		76.5	3.0	27.1	600
	A601604R2	5227		79.5	3.0	32.6	800
	A601604R2	5228		82.5	3.0	32.6 8.4	500
	A601604R2	5229		85.5	3.0	6.2	300
	A601604R2	5229					
	A601604R2	5230 5231		88.5 91.5	3.0	3.8	1000
					3.0	25.1	500
	A601604R2	5232		94.5	3.0	167.1	800
	A601604R2	5233		97.5	3.0	94.8	400
	A601604R2	5234 5235		100.5	3.0	7.4	200
	A601604R2	5235	•	103.5	3.0	9.5	300
	A601604R2	5236		106.5	3.0	29.2	200
	A601604R2	5237		109.5	3.0	10.4	200
	A601604R2	5238		112.5	3.0	12.3	400
	A601604R2	5239		115.5	3.0	7.3	300
	A601604R2	5240		118.5	3.0	6.1	500
	A601604R2	5241		121.5	3.0	4.8	1000
	A601604R2	5242		124.5	3.0	17.7	1300
	A601604R2	5243		127.5	3.0	11.4	500

	A601604R2	5244		130.5	3.0	22.7	200
	A601604R2	5245		133.5	3.0	5.8	400
		5246		136.5	3.0	90.5	129.2
		5247		139.5	3.0	10.5	142.8
		5248		142.5	3.0	7.5	102.2
	A601604R2	5249		145.5	3.0	34.6	178
	A601604R2	5250		148.5	3.0	24.8	400
	A601604R2	5251		151.5	3.0	18.9	200
	A601604R2	5252		154.5	3.0	26.1	600
	A601604R2	5253		157.5	3.0	7.5	200
A601604R	A001004112	5254		160.5	3.0	31.8	120.1
A601826, A6	03C910	5255		163.5	3.0	57.2	300
A001020, A0	0010201	5256		166.5	3.0	6.6	163.4
		5257		169.5	3.0	12.3	119.9
		5258		172.5	3.0	9.9	200
		5256 5259		175.5	3.0	7.4	88.2
				178.5	3.0	24.2	200
		5260			3.0	6.1	46.5
		5261		181.5	3.0	2.9	130.1
		5262		184.5			
		5263	•	187.5	3.0	11.9	87.8
		5264		190.5	3.0	7.5	46.6
		5265		193.5	3.0	9.3	700
		5266		196.5	3.0	33	83.6
		5267		199.5	3.0	14.3	181.7
		5268		202.5	3.0	2.7	200
		5269		205.5	3.0	3.1	175.2
		5270		208.5	3.0	29.9	96
		5271		211.5	3.0	85	82.5
		5272		214.5	3.0	29.7	1100
		5273		217.5	3.0	46.6	500
		5274		220.5	3.0	18.5	163.1
		5275		223.5	3.0	4.7	137.4
		5276		226.5	3.0	3.1	49.5
		5277		229.5	3.0	3.6	103.7
		5278		232.5	3.0	2.1	43.9
		5279		235.5	3.0	4.4	47.9
		5280		238.5	3.0	7.3	102.6
		5281		241.5	3.0	5.3	59.5
		5282		244.5	3.0	6.6	300
		5283		247.5	3.0	26.7	200
		5284		250.5	3.0	54.1	59.8
		5285		253.5	3.0	17.4	900
		5286		256.5	3.0	11.8	153.6
		5287		259.5	3.0	8.9	300
		5288		262.5	3.0	14.4	120.8
		5289		265.5	3.0	15.5	53
		5290		268.5	3.0	16.2	62.5
		5291		271.5	3.0	12.1	300
		5292		274.5	3.0	6.8	200
		5293		277.5	3.0	28.1	175.3
		5294		280.5	3.0	14.6	78.4
		5295		283.5	3.0	8.0	13.1
		5296		286.5	3.0	2.1	2.6
		5297		289.5	3.0	0.9	5.8
		5298		292.5	3.0	0.9	1.1
		5299		295.5	3.0	0.7	1.6
	•	5300		298.5	3.0	0.9	25.2
		5301		301.5	3.0	0.8	1.3
		5302		304.2	2.7	0.7	1.7
DDH 06-11		5303	10.6	13.6	3.0	50.1	31.3
	01826	5304		16.6	3.0	55.5	14.1

	5305		19.6	3.0	105.2	52.2
	5306		22.6	3.0	25.8	117.9
	5307		25.6	3.0	24.9	22.6
	5308		28.6	3.0	89.7	40.2
	5309		31.6	3.0	40. 6	71.7
	5310		34.6	3.0	35	32.9
	5311		37.6	3.0	41.3	20.9
	5312		40.6	3.0	84.1	16
	5313		43.6	3.0	32.4	21
	5314		46.6	3.0	320.1	72
	5315		49.6	3.0	124.3	200
	5316		52.6	3.0	84.7	116.7
	5317		55.6	3.0	145.2	35.6
	5318		58.6	3.0	75.2	146.9
	5319		61.6	3.0	34.7	60.4
	5320		64.6	3.0	57.3	25.2
	5321		67.6	3.0	39.2	17.8
	5322		70.6	3.0	56.5	52.2
	5323		73.6	3.0	27.5	35
	5324		76.6	3.0	8.5	100.8
	5325		79.6	3.0	18	130.8
	5326		81.2	1.6	30	95.3
DDH 06-12	5327	223.8	226.8	3.0	25	800
D	5328	220.0	229.8	3.0	38.7	200
	5329		232.8	3.0	10.5	27.4
	5330		235.8	3.0	22.9	57.3
	5331		238.8	3.0	5.1	25.2
	5332		241.8	3.0	3.1	22.3
	5333		244.8	3.0	15.4	28.4
	5334		247.8	3.0	75.3	24.4
	5335		250.8	3.0	12.9	21.6
	5336		253.8	3.0	37.6	33.2
	5337		256.8	3.0	136.2	800
	5338		259.8	3.0	13.3	30.9
	5339		262.8	3.0	9	27.3
	5340		265.8	3.0	15.3	26.2
	5341		268.8	3.0	78.3	41.3
	5342		271.8	3.0	55.5	80.8
	5343		274.8	3.0	42.9	43.4
	5344		277.8	3.0	49	41.2
	5345		280.8	3.0	140.4	52.2
	5346		283.8	3.0	131.1	36.6
	5347		286.8	3.0	95.4	67.8
	5348		289.8	3.0	386.9	58.4
	5349		292.8	3.0	186.6	41.6
	5350		295.8	3.0	232.1	65.9
	5351		298.8	3.0	202.6	92.3
	5352		301.5	2.7	37. 6	165.7
	5353		304.8	3.3	32.9	300
	5354		307.8	3.0	56.2	150.4
	5355		310.8	3.0	23.6	154.5
	5356		313.8	3.0	38	140
	5357		316.4	2.6	7.4	200
DDH 06-13	5358	3.0	6.0	3.0	28	13.2
	5359	3.0	9.0	3.0	45.6	16.4
	5360		12.0	3.0	81.4	94.1
	5361		15.0	3.0	40	12.5
	5362		18.0	3.0	41.6	6.8
	5363		21.0	3.0	22.3	11.3
	5364		24.0	3.0	29.8	21
	5365		27.0	3.0	518.2	31.6
	-		-·· v	5.0	010,£	01.0

	5366		28.9	1.9	90.1	200		
	5367		32.0	3.1	10.3	7.6		
	5368		35.0	3.0	11.3	13.3		
1001000 10010000	5369		38.0	3.0	12	21		
A601826, A601826R	5370		41.0	3.0	22.6	39.5		
A602092	5371		44.0	3.0	24	12.1		
	5372		47.0	3.0	4.8	19.8		
	5373		50.0	3.0	58.4	5		
	5374		53.0	3.0	275.7	34.8		
	5375		56.0	3.0	4.9	8.4		
	5376		59.0	3.0	4.1	29.5		
	5377		62.0	3.0	5.1	11		
	5378		65.0	3.0	2	20.2		
	5379		68.0	3.0	3.6	13.6		
	5380		71.0	3.0	1.7	12.9		
	5381		74.0	3.0	4.6	15		
	5382		77.0	3.0	1.7	23.3		
	5383		80.0	3.0	5.2	15.3		
	5384		83.0	3.0	9	14.3		
	5385		86.0	3.0	6.8	16.8		
	5386		89.0					
				3.0	18.3	19.8		
	5387		92.0	3.0	24.2	52.1		
	5388		93.7	1.7	14.7	33.8		
	5389		96.7	3.0	7.9	11.7		
	5390		99.7	3.0	7.7	17.6		
	5391		102.7	3.0	8.9	14.1		
	6392		105.7	3.0	32	15.5		
	5393		108.7	3.0	9.5	14		
	5394		111.7	3.0	6.1	23.6		
	5395		114.7	3.0	1.6	17.5		
	539 6		117.7	3.0	5.2	17.8		
	5397		120.7	3.0	7.8	18.6		
	5398		123.7	3.0	13.8	81.5		
	5399		126.7	3.0	3	19.9		
	5400		129.7	3.0	14.1	53.9		
	5401		132.7	3.0	40.6	32.6		
	5402		135.7	3.0	29.8	27.2		
	540 3		138.7	3.0	10.4	31.7		
	5404		141.7	3.0	27.5	18.8		
	5405		144.7	3.0	38.3	14.3		
	5406		147.7	3.0	23.6	20.4		
	5407		150.7	3.0	5.8	18.8		
	5408	•	153.7	3.0	10	15.9		
	5409		156.7	3.0	4.4	40.9		
A602092	5410		157.9	1.2	4.4 15.8	40.9 16.6		
DDH 06-12 A602274	5411	9.1	12.1	3.0				
UDIT QU-12 A002214		9. I			221.1	23.7		
	5412 5412		15.1	3.0	182	7.5		
	5413		18.1	3.0	126.1	32		
	5414		21.1	3.0	21.5	66.8		
	5415		24.1	3.0	117.2	11.9		
	5416		27.1	3.0	37	8.9		
	5417		30.1	3.0	163.1	16.8		
	5418		33.1	3.0	35.8	31.3		
	5419		36.1	3.0	57.4	38.1		
	5420		39.1	3.0	46	44.9		
	5421		42.1	3.0	66.3	49.7		
	5422		45.1	3.0	87.8	22.7		
	5423		48.1	3.0	42.4	38.1		
	5424		51.1	3.0	39.3	60.9		
•	5425		54.1	3.0	147,3	91.5		
	5426			4.0	17.7	24.8		
	J4420		58.1	411	177	/4 ^		

i

5427		60.0	1.9	648.4	200
5428		63.0	3.0	21.9	112.7
5429		66.0	3.0	24.7	59.9
5430		69.0	3.0	37.2	89
5431		70.0	1.0	17.2	200
5432		75.0	5.0	17.3	83
5433	•	78.0	3.0	61.7	33
5434		81.0	3.0	65	800
5435		84.0	3.0	18.9	26.9
5436		87.0	3.0	21.1	64.8
5437		90.0	3.0	220.5	300
5438		93.0	3.0		
				20.8	155.1
5439		94.4	1.4	20.6	43.7
5440		96.3	1.9	45.5	71.8
544 1		99.3	3.0	32.5	169.9
5442		102.0	2.7	8.9	33.4
5443		103.5	1.5	84.4	181.3
5444		106.6	3.1	6.1	32.3
5445		109.6	3.0	8.4	38
5446		112.6	3.0	9.3	27.1
5447		115.6	3.0	153.9	119.8
5448		119.6	4.0	46	114.1
5449		122.6	3.0	40.4	200
5450		126.2	3.6	20.7	88.6
5451		129.2	3.0	5.1	74
5452		132.2	3.0	13.9	48
5453		135.2	3.0	15.6	54.3
5454		138.2	3.0	32.1	400
5455		141.2	3.0	21.2	161.4
5456		144.2	3.0	7.8	
					126.2
5457		147.2	3.0	23.3	93.4
5458		148.6	1.4	5.3	71.4
5459		151.6	3.0	8.9	99.9
5460		154.6	3.0	7. 7	33.1
5461		157.6	3.0	102.5	600
5462		160.6	3.0	56.6	1300
5463		163.6	3.0	10.1	142.3
5464		166.6	3.0	5.7	75.1
5465		169.6	3.0	15.1	75.5
5466		172.6	3.0	23.6	200
	0.0		• =		
5467	6.9	9.8	2.9	4	60.6
5468		12.8	3.0	15.4	300
5469		15.8	3.0	15.8	32
5470		18.8	3.0	53.5	24.9
5471		21.8	3.0	44.5	192.3
5472		24.8	3.0	94.7	74.2
5473		27.8	3.0	324.8	400
5474		31.7	3.9	75.3	200
5475		33.7	2.0	9.2	18.6
5476		36.7	3.0	62.8	
					136.9
5477		39.7	3.0	85.7	200
5478		42.7	3.0	98	200
5479		45.7	3.0	86.5	179.3
5480		48.7	3.0	26.4	300
5481		51.7	3.0	243.3	400
5482		54.7	3.0	84.3	200
5483		57.7	3.0	30	187.5
5484		59.1	1.4	26.8	200
5485		62.1	3.0	3.6	5
5486					
5487	76.9	65.1	3.0	2.8	5.8 700
J -1 Q1	10.8	79.9	3.0	177.8	700

A602092 A602092 A602092 A602092R

DDH 06-25 A602274

5488	82.9	3.0	77.6	500
5489	85.9	3.0	60.1	187.1
5490	88.9	3.0	28.8	130.1
5491	91.9	3.0	22.4	112.6
5492	94.9	3.0	10.7	55.4
5493	97.9	3.0	15.4	91.5
5494	100.9	3.0	61.6	300
5495	103.9	3.0	66.2	300
5496	106.9	3.0	126.4	900
5497	109.9		27	
		3.0		400
5498 5400	112.9	3.0	101.8	3
5499	115.9	3.0	34.6	300
5500	118.9	3.0	45.2	400
5501	121.9	3.0	47.4	300
5502	124.9	3.0	156.5	600
5503	127.9	3.0	127.3	500
5504	130.9	3.0	182.5	600
5505	133.9	3.0	259.8	600
5506 ₍	136.9	3.0	162.4	800
5507	139.9	3.0	111.4	300
5508	142.9	3.0	62.3	150.5
5509	145.9	3.0	10.5	46.8
5510	148.9	3.0	6.7	43.6
5511	151.9	3.0	215.7	300
5512	154.9	3.0	167.9	600
5513	157.9	3.0	289.6	1200
5514	160.9	3.0	516.2	1100
5515	163.9	3.0	137.6	4200
5516	166.9	3.0	25.5	200
5517	169.9	3.0	92	500
5518	172.9	3.0	56.8	200
5519	175.9	3.0	103.3	300
5520	178.9	3.0	132.8	193.7
5521	181.9	3.0	89.5	200
5522	184.9	3.0	60.4	196.2
5523	187.9	3.0	74.1	200.
5524				
	191.4	3.5	179.1	300
5525 5536	194.4	3.0	619.5	500
5526 5527	197.4	3.0	51 120	160.7
5527 5528	200.4	3.0	130	800
5528 5520	203.4	3.0	146.4	500
5529 5520	206.4	3.0	358.5	400
5530	208.2	1.8	270.8	200
5531	210.2	2.0	420	600
5532	213.2	3.0	523.5	61.7
5533	216.2	3.0	265.9	65
5534	219.2	3.0	171.2	1800
5535	222.2	3.0	355.6	400
5536	225.2	3.0	177.3	200
5537	228.2	3.0	106.6	300
5538	231.2	3.0	189.9	600
5539	234.2	3.0	252	400
5540	237.2	3.0	884.7	700
5541	240.2	3.0	336.8	200
5542	243.2	3.0	324.7	1000
5543	246.2	3.0	51.7	90.9
5544	249.2	3.0	183.9	300
5545	252.2	3.0	124	152.4
5546	255.2	3.0	13.1	75.6
5547	258.2	3.0	150.7	152.9
5548	261.2	3.0	37.8	300
	-41.4	3.0	JU	

5549		263.7	2.5	84.6	109.1
5550		266.7	3.0	0.9	52.6
5551		269.7	3.0	1.2	22
5552	3.0	6.0	3.0	121.4	200
5553		9.0	3.0	25.8	76.8
5554					
		12.0	3.0	23.5	136.8
5555		15.0	3.0	33.1	183.3
5556		18.0	3.0	23.9	163.2
5557		21.0	3.0	33.3	108.7
5558		24.0	3.0	24.2	56.8
5559		27.0	3.0	25.8	62.1
5560		30.0	3.0	37.8	65.6
5561		33.0	3.0	36.6	155.5
5562		36.0	3.0	22.9	108
5563		39.0	3.0	94.9	172.8
5564		42.0	3.0	28	101.5
5565		45.0	3.0	27	72.3
5566		48.0	3.0	27.6	161.6
5567		51.0	3.0	49.6	93.8
5568		54.0	3.0	166.4	95.9
5569		57.0	3.0	53.8	52
5570		60.0	3.0	26.6	49
5571		63.0	3.0	42.2	181.2
5572		66.0			
			3.0	25.5	127.7
5573		69.0	3.0	15.8	95
5574		72.0	3.0	103.7	300
5575		75.0	3.0	82.8	300
5576		78.0	3.0	64.1	300
5577		81.0	3.0	53	600
5578		84.0	3.0	18.4	60.3
5579		87.0	3.0	61.9	191
5580		90.0	3.0	31.6	139.3
5581		93.0	3.0	23.2	123.4
5582		96.0	3.0	36.3	300
5583		99.0	3.0	105.1	500
5584		102.0	3.0	86.8	300
5585		105.0	3.0	75.2	300
5586		108.0	3.0	175.8	400
5587		111.0	3.0	96.1	400
5588		114.0	3.0	53.1	177
5589		117.0	3.0	9.3	200
5590		120.0	3.0	111.1	300
5591		123.0	3.0	75.7	400
5592		126.0	3.0	69.7	400
5593		128.0	2.0	51.5	156.5
5594		132.5	4.5	38.7	130.1
5595		135.5	3.0	33	82
5596		138.5	3.0	134.6	200
5597		143.0	4.5	66.3	139
5598		145.7	2.7	22.3	35.2
5599		148.7	3.0	227.5	700
5600		151.7	3.0	17.5	123.5
5601					1100
		154.7	3.0	87.3	
5602		157.7	3.0	55.6	400
5603		160.7	3.0	77.3	300
5604		163.7	3.0	59.3	162.2
5605		166.7	3.0	90	182.7
5606		169.7	3.0	23.6	90
5607		172.7	3.0	23.3	89.7
5608		175.7	3.0	20.8	143.8
5609		178.7	3.0	33.2	86.8
7.7					30.3

5610		181.7	3.0	30	73.8
5611		184.7	3.0	12.7	96.1
5612		187.7	3.0	24.9	92.8
5613		190.7	3.0	67.9	73.2
5614		193.7	3.0	70.9	81
5615		196.9	3.2	101.7	167.8
5616		199.9	3.0	80.9	700
5617		202.9	3.0	57.1	195.9
5618		205.9	3.0	186.2	300
5619		208.9	3.0	90.6	155.3
5620		211.9	3.0	145.5	300
5621		214.9	3.0	154.1	195.6
5622		217.9	3.0	215.3	800
5623		220.9	3.0	258.1	195.8
5624		223.9	3.0	334.9	200
5625		226.9	3.0	32.7	58
5626		229.8	2.9	18.9	68.9
5627		232.8	3.0	30.8	400
5628		235.8	3.0	48.3	400
5629		238.8	3.0	57.5	168
5630		241.8	3.0	20.3	200 -
5631		244.8	3.0	74.5	55.3
5632		247.8	3.0	42.1	147.1
5633		250.8	3.0	2.5	65.9
5634		253.8	3.0	1.2	14.7
	7.0				
5635	7.6	10.6	3.0	26.5	169.1
5636		13.6	3.0	67.1	600
5637		16.6	3.0	67	400
5638		19.6	3.0	217.6	500
5639		22.6	3.0	302.9	400
5640		25.6	3.0	46.7	500
5641		28.6	3.0	158.3	179.3
5642		31.6	3.0	330.5	800
5643		34.6	3.0	132.2	300
5644		37.6	3.0	105.8	400
5645		40.6	3.0	92.2	200
5646		43.6	3.0	78	158.5
5647		46.6	3.0	66.1	200
5648		49.6	3.0	240.9	200
5649		52.6	3.0	137.9	800
5650		55.6	3.0	118.5	500
5651		58.6	3.0	58.2	196.3
5652		61.6	3.0	53.5	200
5653		64.6	3.0	317.7	2300
5654		67.6	3.0	79.8	300
5655		70.6	3.0	17.2	157.1
5656		73.6	3.0	34.1	200
5657		76.6	3.0	86.7	192.7
5658		79.6	3.0	194.5	600
5659		82.6	3.0	45.4	300
5660		85.6	3.0	71.5	133.9
5661		88.6	3.0	61.1	79.7
5662		91.6	3.0	25.9	200
5663		94.6	3.0	185.7	110.1
5664		97.6	3.0	104.4	200
5665		100.6	3.0	41.7	76.2
5666		103.6	3.0	26	96.5
5667					
		106.6	3.0	45	200
5668		109.6	3.0	15.8	300-
5669		112.6	3.0	19.8	47
5670		115.6	3.0	92.9	195.3

A602274 A602401

	5671		118.6	3.0	130.2	160
	5672		121.6	3.0	163.1	1600
	5673		124.6	3.0	127.7	113.7
	5674		127.6	3.0	10 9	100.5
	5675		130.6	3.0	357.6	195.7
	5676		133.6	3.0	127.8	108.7
	5677		136.6	3.0	146.4	400
	5678		140.2	3.6	118.5	300
	5679		142.2	2.0	695.7	500
	5680		142.4	0.2	1357.3	1100
	5681		145.4	3.0	134.3	200
	5682		148.4	3.0	479.4	500
	5683		151.4	3.0	308.3	500
	5684		154.4	3.0	372.1	190.6
	5685		157.4	3.0	240.3	182.6
	5686		160.4	3.0	215.1	800
	5687		163.4	3.0	322.3	400
	5688		166.4	3.0	142.8	800
	5689		169.4	3.0	205.1	200
	5690		172.4	3.0	325.7	188
	5691		175.4	3.0	36.7	96.4
	5692		178.4	3.0	125.8	5800
	5693		181.4	3.0	130.4	400
	5694		184.4	3.0	57.3	200
	5695		187.4	3.0	54.2	300
	5696		190.4	3.0	31.3	300
	5697		193.4	3.0	42.4	198.4
	5698		196.4	3.0	37.9	200
	5699		199.4	3.0	96	300
A602401	5700		203.2	3.8	90.1	1300
DDH 06-19 A602092	5701	5.2	8.0	2.8	82.7	129.5
A 602092R	5702	9,2	11.0	3.0	61.6	500
A 602092R	5702 5703		14.0	3.0	80.9	300
A 602092R	5704		17.0	3.0	73.5	700
A 602092R	5705		20.0	3.0	30.9	200
	5706		23.0	3.0	88.5	162.3
A COOCOD	5707		25.1	2.1	33.1	168.6
A 602092R	5708		27.2	2.1	476.5	39100·
A 000000	5709		30.0	2.8	125.7	169.4
A 602092R	5710		32.3	2.3	115.2	1300
A 602092R	5711		35.0	2.7	95	400
A 602092R	5712		38.0	3.0	77.4	200
A 602092R	5713		41.0	3.0	225	600
A 602092R	5714		44.0	3.0	141.9	700
A 602092R	5715		47.0	3.0	165.5	700
A 602092R	5716		50.0	3.0	59.8	500
A 602092R	5717		53.0	3.0	135.9	1900
A 602092R	5718		56.0	3.0	172.4	400
A 602092R	5719		59.0	3.0	150.3	1000
A 602092R	5720		62.0	3.0	119.8	1800
A 602092R	5721		65.0	3.0	203.3	2100
A 602092R	5722		68.0	3.0	111.8	400
	5723		71.0	3.0	66.4	93.8
	5724		74.0	3.0	13.1	37.7
A 602092R	5725		77.0	3.0	201.4	300
	5726		80.0	3.0	137.9	101.7
	5727		83.0	3.0	119.4	165.5
	5728		86.0	3.0	97.5	143.3
	5729		88.0	2.0	523.6	87.1
	5729 5730		91.0	3.0	296.4	117.4
	5730 5731		93.0	2.0	2 30.4 231.4	168
	0731		3 3.U	2.0	231. 4	100

A 602092R	5732	96.0	3.0	539.3	900
A 602092R	5733	99.0	3.0	161.4	500
A 602092R	5734	102.0	3.0	69.5	300
	5735	105.0	3.0	142	177.1
	5736	108.0	3.0	196.9	78.7
A 602092R	5737	111.0	3.0	74.4	1300
	5738	114.0	3.0	116.5	106.8
	5739	117.0	3.0	58.4	112.3
A 602092R	5740	120.0	3.0	525.1	300
	5741	123.0	3.0	43.5	52.3
	5742	126.0	3.0	116	88.2
	5743	129.0	3.0	175.5	142
A 602092R	5744	132.0	3.0	225.7	400
A 602092R	5745	135.0	3.0	106.9	300
A 00203211	5746	138.0	3.0	74.2	148.7
A 602092R	5747	141.0	3.0	72.2	500
A 602092R	5747 5748	144.0	3.0	160.6	400
A 002092N			3.0	163.7	177
A 602002B	5749	147.0			
A 602092R	5750	150.0	3.0	510.4	800
A 602092R	5751	153.0	3.0	231.6	1200
A 602092R	5752	156.0	3.0	246.6	300
	5753	159.0	3.0	191.2	180.2
	5754	162.0	3.0	60.5	117.5
4.000000	5755	165.0	3.0	93.8	166.5
A 602092R	5756	168.0	3.0	97.7	800
A 602092R	5757	171.0	3.0	48.9	300
A 602092R	5758	174.0	3.0	117.6	300
A 602092R	5759	177.0	3.0	156.8	300
	5760	180.0	3.0	206.5	128.2
A 602092R	5761	183.0	3.0	206.1	300
A 602092R	5762	186.0	3.0	458	300
A 602092R	5763	189.0	3.0	133.3	2000
A 602092R	5764	192.0	3.0	581.2	700
A 602092R	5765	195.0	3.0	557.7	500
A 602092R	5766	198.0	3.0	441.5	300
A 602092R	5767	201.0	3.0	308.5	1800
A 602092R	5768	204.0	3.0	236.4	300
A 602092R	5769	207.0	3.0	209.6	400
A 602092R	5770	210.0	3.0	164.8	300
A 602092R	5771	213.0	3.0	206.8	600
	5772	216.0	3.0	417.6	114.9
A 602092R	5773	219.0	3.0	384.7	1900
A 602092R	5774	222.0	3.0	190.6	600
A 602092R	5775	225.0	3.0	1083.4	500
A 602092R	5776	228.0	3.0	360.7	200
A 602092R	5777	231.0	3.0	442.8	300
A 602092R	5778	234.0	3.0	405.7	500
A 602092R	5779	237.0	3.0	541.8	600
A 602092R	5780	240.0	3.0	184.9	800
***************************************	5781	243.0	3.0	164.1	122.1
A 602092R	5782	246.2	3.2	148.5	400
ACCESCEN	5783	248.3	2.1	6.2	60.2
	5784	252.0	3.7	781.3	84.5
	5785	254.0 254.0	2.0	172.7	170.9
A 602092R					
A 602092R	57 86	257.0	3.0	245	200
•	5787 5788	260.0	3.0	444.5	167.4
	5788 5700	263.0	3.0	270.3	46
	5789 5700	266.0	3.0	261.8	154.6
	5790	269.0	3.0	220.7	200
A 602092R	5791 5700	272.0	3.0	177.9	900
A 602092R	5792	275.0	3.0	105.9	800

A 602092R	5793		278.0	3.0	192.6	300
A 602092R	5794		281.0	3.0	60.5	400
A 602092R	5795		284.0	3.0	129.3	600
A 602092R	5796		287.0	3.0	122.3	600
A 602092R	5797		290.0	3.0	254.2	700
A 602092R	5798		293.0	3.0	205.9	200
A 602092R	5799		296.0	3.0	69.6	400
A 602092R	5800		299.0	3.0	168.4	900
A 602092R	5801		302.0	3.0	51.8	400
A 602092R	5802		305.0	3.0	149.5	200
	5803		308.0	3.0	95.7	47.4
	5804		311.0	3.0	44.5	88.7
	5805		314.0	3.0	14.1	60.2
	5806		317.0	3.0	104.5	129
A.602092R	5807		320.0	3.0	107.4	300
	5808		323.0	3.0	60.9	108.8
	5809		326.0	3.0	357.5	89.2
A 602092R	5810		329.0	3.0	1047.4	600
	5811		332.0	3.0	49.5	106.2
	5812		335.0	3.0	108.7	98.5
	5813		338.0	3.0	47.1	57.6
	5814		339.3	1.3	33.6	27.5
	5815		342.0	2.7	27.7	181.9
	5816		345.0	3.0	53	107
	5817		348.0	3.0	25.4	57.5
	5818		349.6	1.6	71.1	92.5
	5819		352.0	2.4	2.2	58
	5820		355.0	3.0	6.7	18.4
A602092	5821		358.2	3.2	2.1	21.6
DDH 06-27 A602401	5822	203.2	206.2	3.0	228.5	199.9
	5823		209.2	3.0	47.1	55.8
	5824		212.2	3.0	56.4	86.4
	5825		215.2	3.0	28.1	53.2
	5826		218.2	3.0	46.1	300
	5827		221.2	3.0	11.9	191.6
•	5828		224.2	3.0	8.4	88.8
	5829		227.2	3.0	56.5	187.9
	5830		230.2	3.0	70.8	154.7
	5831		233.2	3.0	33.9	600
	5832		236.2	3.0	85.3	166.9
	5833		239.2	3.0	81.8	400
	5834		242.2	3.0	61.6	500
	5835		245.2	3.0	33.6	300
	5836		248.2	3.0	63.1	400
	5837		251.2	3.0	62.9	300
	5838		254.2	3.0	35.9	300
	5839		257.2	3.0	78	400
	5840		260.2	3.0	17.2	149
	5841		263.2	3.0	52.7	136
	5842		266.2	3.0	23.2	400
	5843		269.2	3.0	8.9	139.9
	5844		272.2	3.0	3.6	300
	5845		275.2	3.0	15.8	4400
	5846		279.1	3.9	12.3	200
	5847		282.4	3.3	19.6	40.7
	5848		286.6	4.2	18.3	115.2
	5849		288.3	1.7	2.5	44.6
	5850		291.3	3.0	5.7	4.1
	5851		294.5	3.2	5.5	10.8
Philipp 11	5852		298.0	3.5	1.1	3.4
DDH 06-30	5853	2.2	5.2	3.0	53.2	46.8

5854	8.2	3.0	16.2	40.7
5855	11.2	3.0	56.5	159.7
5856	14.2	3.0	18.1	144.2
5857	17.2	3.0	219.9	111.4
5858	20.2	3.0	48.5	200
5859	23.2	3.0	114.7	500
5860	26.2	3.0	30.6	600
58 61	29.2	3.0	112.1	300
5862	32.2	3.0	80.5	300
5863	35.2	3.0	102.6	135.2
5864	38.2	3.0	170.4	300
5865	41.2	3.0	141.1	188.6
5866	44.2	3.0	198.2	200
5867	47.2	3.0	674	200
5868	50.2	3.0	166.5	92.3
5869	53.2	3.0	65.8	600
5870	56.2	3.0	62.8	200
5871	59.2	3.0	70.6	175.5
5872	62.2	3.0	166.7	700
5873	65.2	3.0	74.4	300
5874	68.2	3.0	139.7	700
5875	71.2	3.0	107.4	130.8
5876	74.2	3.0	110.2	600
5877	77.2	3.0	121.5	135.6
5878	80.2	3.0	64.6	151
5879	83.2	3.0	49.7	200
5880	86.2	3.0	78.4	800
5881	89.2	3.0	603.2	600
5882	92.2	3.0	807.1	600
588 3	95.2	3.0	317.9	300
5884	98.2			197.7
		3.0	113.5	
5885	101.2	3.0	864	400
5886	104.2	3.0	91.1	700
5887	107.2	3.0	78.1	193
5888	110.2	3.0	141.5	600
5889	113.2	3.0	96.3	300
5890	116.2	3.0	341.8	300
5891	119.2	3.0	270	800
5892	122.2	3.0	149.5	700
5893	125.2	3.0	103.5	300
5894	128.2	3.0	87.6	133.2
5895	131.2	3.0	146.6	300
5896	134.2	3.0	197.6	500
5897	137.2	3.0	239.8	600
5898	140.2	3.0	110.6	700
5899	143.2	3.0	138.8	500
5900	146.2	3.0	92.3	800
5901	149.2	3.0	158	400
5902	152.2	3.0	140.6	400
5902 5903	155.2	3.0	74	700
5904	158.2	3.0	72.8	149.3
5905	161.2	3.0	98.8	500
5906	164.2	3.0	96.4	400
5907	167.2	3.0	224.3	300
5908	170.2	3.0	139.8	400
5909	172.1	1.9	352.7	600
5910	173.9	1.8	188.7	300
5911	176.9	3.0	86.7	400
5912	179.9	3.0	244.3	800
E013	1920			
5913 5914	182.9 185.9	3.0 3.0	131.5 361	500 500

5915		188.9	3.0	265.8	1200
5916		191.9			
			3.0	272.2	200
5917		194.9	3.0	425.8	108.6
5918		197.9	3.0	216.3	300
5919		200.9	3.0	271.5	500
5920		203.9	3.0	143.7	400
5921		206.9	3.0	565.3	600
5922					
		209.9	3.0	319.8	300
5923		212.9	3.0	181.7	300
5924		215.9	3.0	64.3	400
5925		219.9	4.0	260.2	800
5926		221.9	2.0	106	400
5927		224.9	3.0	70.3	300
5928		227.9	3.0	143.2	175.6
5929		230.9	3.0	53.9	142.9
5930		233.9	3.0	153	126.6
5931		236.9	3.0	54.1	300
5932		239.9	3.0	93.7	300
5933		242.9	3.0	413.3	1000
5934		245.9	3.0	31.1	200
5935		248.9			
			3.0	7.6	99.9
5936		251.9	3.0	31.5	300
5937		254.9	3.0	72	200
5938		257.9	3.0	17	138.3
5939		260.9	3.0	65.2	122.3
5940		263.9	3.0	34.6	200
5941		267.3	3.4	265.3	200
5942		268.8	1.5	36.8	79.8
5943		271.8	3.0	0.4	64.8
5944		274.8	3.0	0.9	83.1
5945		277.8	3.0	0.6	51.3
5946		281.3	3.5	1.2	32.4
5947		283.0	1.7	0.6	37.2
5948		286.0	3.0	1.6	8.4
5949		289.0	3.0	0.6	4.5
5950		292.0	3.0	0.8	1.3
5951		295.0	3.0	1.2	1.9
5952	7.9	10.9	3.0	112.7	1200
5953		13.9	3.0	124.0	195.4
5954		16.9	3.0	115.4	300
5955		19.9	3.0	90.2	84.7
5956		22.9	3.0	134.8	
					200
5957		25.9	3.0	145.8	196
5958		28.9	3.0	63.9	78.3
5959		31.6	2.7	74.3	400
5960		34.9	3.3	98.1	143.9
5961		37.9	3.0	268.1	400
5962		40.9	3.0	181.2	300
5963		43.9	3.0	108.5	167.7
5964		46.9	3.0	56.0	102.5
5965		49.9	3.0	136.4	300
596 6		52.9	3.0	123.2	185.4
5967		55.9	3.0	110.3	300
5968		58.9	3.0	107.6	300
5969		61.9	3.0	119.5	500
5970		64.9	3.0	140.5	200
5971		67.9	3.0	173.7	600
5972		70.9	3.0	213.2	800
5973		73.9	3.0	128.8	300
5974		76.9	3.0	62.8	600
5975		79.9	3.0	72.1	191.8
			•		· ·

A602401 DDH 06-29 A602520, A602520R2

	5976		82.9	3.0	3.4	18.8
	5977		85.9	3.0	4.8	12.8
	5978		88.9	3.0	1.5	13.4
	5979		91.9	3.0	4.3	198.7
	5980		94.9	3.0	42.7	177.8
	5981		97.9	3.0	74.4	140.8
	5982		100.9	3.0	45.6	71
	5983		103.9	3.0	222.1	400
	5984		106.9	3.0	130.0	300
	5985		109.9	3.0	122.2	500
	5986		112.9	3.0	64.9	300
	5987		115.9	3.0	68.7	300
	5988		118.9	3.0	289.3	171.8
	5989		121.9	3.0	198.8	500
	5990		124.9	3.0	89.0	400
	5991		127.9	3.0	43.2	300
	5992		130.9	3.0	102.4	117.9
	5993		133.9	3.0	68.8	300
	5994		136.9	3.0	163.8	600
	5 995		130.9	3.0	120.3	300
•	5996		142.9	3.0	206.7	400
	5997		145.9	3.0	270.3	600
	5998		148.9	3.0	240.3	1700
	5999		151.9	3.0	71.0	300
	6000		154.9	3.0	76.5	200
	6001		157.9	3.0	184.1	400-
	6002		160.9	3.0	206.5	152.9
	6003		163.9	3.0	142.2	95.2
	6004		166.9	3.0	163.1	500
	6005		169.9	3.0	10.2	58.9
	6006		172.9	3.0	2.4	7.9
	6007		175.9	3.0	2.4	7.7
	6008		178.9	3.0	2.9	9.4
	6009		181.9	3.0 .	6.9	20.9
	6010		184.9	3.0	75.6	51.6
	6011		187.9	3.0	6.3	8.3
	6012		190.9	3.0	3.5	42
	6013		193.9	3.0	136.0	193.4
	6014		196.9	3.0	134.3	800
	6015		199.9	3.0	3.5	21.7
	6016		202.9	3.0	2.4	64.2
A602520	6017		205.9	3.0	2.5	49.1
DDH 06-31	6018	4.6	7.6	3.0		
A602520	6019		10.6	3.0	28.7	195.5
	6020		13.6	3.0	5.3	81.7
	6021		16.6	3.0	8.0	33.4
	6022		19.6	3.0	51.2	109.4
	6023		22.6	3.0	15.1	96.2
	6024		25.6	3.0	18.2	43.3
	6025		28.6	3.0	77.3	124
	6026		31.6	3.0	43.2	64.2
	6027		34.6	3.0	9.1	38.1
	6028		37.6	3.0	97.1	300
	6029		40.6	3.0	56.3	172.4
	6030		43.6	3.0	5.4	300
	6031		47.6	4.0	23.7	93.4
	6032		50.6	3.0	63.2	67
	6033		53.6	3.0	56.9	44.7
	6034		56.6	3.0	22.6	101.7
	6035		59.6	3.0	31.6	40
	6036		62.6	3.0	74.8	75.7
	0030		02.0	3.0	/ 4 .0	15.1

6037		65.6	3.0	305.5	173.4
6038		68.6	3.0	4.5	56.5
6039		71.6	3.0	49.8	168.8
6040		74.6	3.0	96.0	173.6
6041		77.6	3.0	26.4	64.5
6042		80.6	3.0	24.6	144.1
6043		83.6	3.0	31.4	99.6
6044					
		86.6	3.0	189.1	200
6045		89.6	3.0	26.4	27.6
6046		92.6	3.0	447.4	77.3
6047		95.6	3.0	26.0	45.8
6048		98.6	3.0	54.3	66.3
6049		100.5	1.9	28.9	71.7
6050					
		103.5	3.0	85.1	111.2
6051		106.5	3.0	23.8	77.5
6052		109.5	3.0	120.2	179.4
6053		111.5	2.0	44.3	200
6054		115.5	4.0	46.7	180.3
6055	205.9	208.9	3.0	4.8	33.7
	203.8				
6056		211.9	3.0	4.6	19.9
6057		214.9	3.0	4.0	18.1
6058		217.9	3.0	5.6	54
6059		220.9	3.0	4.7	400
6060		223.9	3.0	1.9	156.7
6061		226.9	3.0	5.1	200
6062					
		229.9	3.0	5.0	100.1
6063		232.9	3.0	7.5	77.7
6064		235.9	3.0	8.6	41.3
6065		238.9	3.0	11.2	76.9
6066		241.9	3.0	113.1	78.5
6067		244.9	3.0	131.7	26
6068		247.9	3.0	218.0	169.8
6069		250.9	3.0	154.9	46.3
6070		253.9	3.0	28.9	51.9
6071		256.9	3.0	131.9	27.3
6072		259.9	3.0	100.5	20.1
6073		262.9	3.0	157.9	13.9
6074		265.9	3.0	92.7	20.4
6075		268.9	3.0	138.1	36.1
6076		271.9	3.0	38.5	68.1
6077		274.9	3.0	27.6	12.8
6078		277.9	3.0	159.9	18.6
6079		280.9	3.0	74.6	10.2
6080		283.9	3.0	225.1	14.8
6081		286.9	3.0	254.1	20.7
6082		289.9	3.0	158.5	24.5
6083		292.9	3.0	213.7	20.5
6084		295.9	3.0	126.6	16.2
6085		298.9	3.0	126.9	18.1
6086		301.9	3.0	80.7	17.8
6087		304.9	3.0	60.6	28.3
6088		307.9	3.0	49.4	18.8
6089		310.9	3.0	115.3	18.8
6090		313.9	3.0	160.2	24
6091		316.9	3.0	261.7	19.2
6092		319.9	3.0	121.5	20.5
6093		322.9	3.0	199.1	18.1
6094		325.9	3.0	117.1	20.6
6095		328.9	3.0	251.3	22.8
6096		331.9	3.0	106.0	28.3
6097		334.9	3.0	70.8	20.4

OUSO		331. 3	3.0	91.4	25.1
6099		340.9	3.0	13.2	10.1
6100		343.9	3.0	49.7	22.6
6101		346.0	2.1	1.7	14.6
6102				76.0	
		349.0	3.0		30.9
6103		352.0	3.0	90.4	95.9
6104		355.0	3.0	178.8	400
6105		358.0	3.0	487.5	600
6106		361.0	3.0	146.0	300
6107		364.0	3.0	314.9	600
6108		367.0	3.0	102.4	300
6109		370.0	3.0	276.2	900
6110		373.0	3.0	196.9	300
6111		375.6	2.6	616.8	400
6112		378.6	3.0	244.6	1000
6113		381.6	3.0	3.7	30.4
6114		384.6	3.0	34.5	32.3
6115		387.6	3.0	1.6	15.6
6116		390.6	3.0	2.5	3.2
6117		393.6	3.0	1.8	2
6118		396.6	3.0	2.4	1.2
6119	445.5	398.6	2.0	1.6	2.8
6120	115.5	118.5	3.0	74.1	151.7
6121		121.5	3.0	96.5	157
6122		124.5	3.0	86.5	91.1
6123		127.5	3.0	88.3	142.1
6124		130.5	3.0	75.0	113.3
6125		133.5	3.0	76.1	156.9
6126		136.5	3.0	82.6	156.7
6127		139.5	3.0	72.6	51.3
6128		142.5	3.0	71.4	166.2
6129		145.5	3.0	91.7	153.1
6130		148.5	3.0	89.1	200
6131		151.5	3.0	51.8	193.4
6132		154.5	3.0	38.8	190.9
6133		157.5	3.0	81.1	43.5
6134		160.5	3.0	51.3	91.7
6135		163.5	3.0	50.8	62.7
6136		166.5	3.0	59.9	63.7
6137		169.5	3.0	51.1	100.7
6138		172.5	3.0	50.1	50.6
6139		175.5	3.0	79.5	68.7
6140		178.5	3.0	131.1	20.6
6141		181.5	3.0	55.3	38.1
6142		18 4 .5	3.0	39.8	48.7
6143		187.5	3.0	48.1	23.4
6144		190.5	3.0	36.2	42.8
6145		193.5	3.0	26.0	22.8
6146		196.5	3.0	42.4	47.3
6147		199.5	3.0	103.9	40.6
6148		202.5	3.0	51.0	36.9
				60.4	
6149		205.5	3.0		20.6
6150		208.5	3.0	42.4	31.3
6151		211.5	3.0	53.8	12.4
6152		214.5	3.0	97.9	10.8
6153		217.5	3.0	22.5	14.7
6154		220.5	3.0	62.6	58.9
6155		223.5	3.0	156.8	23.3
6156		226.5	3.0	108.6	16.7
6157		229.5	3.0	72.8	16.4
0450		220.0	0.0	12.0	10.4

232.5

6158

3.0

147.1

17.8

337.9

6098

3.0

91.4

25.1

6159		235.5	3.0	67.3	16.7
6160		238.5			13.8
			3.0	117.7	
6161		241.5	3.0	97.3	16.3
6162		244.5	3.0	84.9	13.1
6163		247.5	3.0	125.0	22.1
6164		250.5	3.0	164.0	16.9
6165		253.5	3.0	105.3	17.1
6166		256.5	3.0	86.9	14.8
6167		259.5	3.0	155.6	23.8
6168		262.5	3.0	67.7	12.2
6169		265.5	3.0	92.2	18.6
6170		267.7	2.2	111.1	17.6
6171		270.7	3.0	167.6	19
6172		273.7	3.0	54.4	32.6
6173		276.7	3.0	135.5	500
6174		279.7	3.0	300.3	40
6175		282.9	3.2	345.8	700
6176		286.0	3.1	2137.0	800
6177		289.0	3.0	322.1	300
6178		292.0	3.0	1323.1	200
6179		295.0	3.0	300.2	60.8
6180		298.0	3.0	187.0	1000
6181		301.0	3.0	244.5	200
6182		304.0	3.0	184.4	182.1
					68.1
6183		306.5	2.5	93.7	
6184		308.8	2.3	6184	199.9
6185		310.3	1.5	6185	7200.0
6186		313.8	3.5	6186	373.1
6187		316.3	2.5	6187	243.4
6188		319.1	2.8	6188	273.9
6189		322.1	3.0	6189	3.9
6190		325.1	3.0	6190	3.5
6191		328.1	3.0	6191	1.4
6192		331.1	3.0	6192	1.7
6193	3	6.0	3.0	86.8	300
6194	Ŭ	9.0	3.0	170.7	900
6195		12.0	3.0	53.4	400
6196		14.4			
			2.4	266.4	1100
6197		16.5	2.1	137	400
6198		18.8	2.3	40.4	176.1
6199		21.8	3.0	1.4	41.7
6200		24.8	3.0	5.6	41.6
6201		27.8	3.0	6.1	9.5
6202		30.8	3.0	56.2	200
6203		33.8	3.0	238.4	109.9
6204		36.8	3.0	30.2	175.3
6205		39.8	3.0	9.2	20
6206		42.8	3.0	19.7	30.2
6207		45.8	3.0	29.3	89
6208		48.8	3.0	47.4	199.7
6209		51.8	3.0	40	75
6210		54.8	3.0	36.6	32.6
6211		57.8	3.0	24	300
6212	,	60.8	3.0	96.9	100.7
6213		63.1	2.3	66.7	112.7
6214		63.9	8.0	312.8	48.7
6215		66.9	3.0	30.7	97.6
6216		69.9	3.0	140.9	82.9
6217		72.9	3.0	89.4	200
6218		75.9	3.0	115.4	400
6219		78.9	3.0	153.6	55.5

A602520R2 A602520

A602765, A602765R

6219

78.9

153.6

55.5

	6220	81.9	3.0	79	87.5
	6221	84.9	3.0	74.7	122.1
	6222	87. 9	3.0	31.1	56.1
	6223	90.9	3.0	67.2	150.1
	6224	93.9	3.0	37.7	62.9
	6225	96.9	3.0	91.3	45.8
	6226	99.9	3.0	12.8	400
	6227	102.9	3.0	8	49.1
	6228	105.9	3.0	94.8	165.9
	6229	108.9	3.0	16.2	49.4
	6230	111.9	3.0	42	52.3
	6231	114.9	3.0	8.7	128.5
•					
	6232	117.9	3.0	19.9	144.8
	6233	120.9	3.0	6.4	89.4
	6234	123.9	3.0	69.6	200
•					
	6235	126.9	3.0	90.5	200
	6236	129.9	3.0	41.8	171.3
	6237	132.9	3.0	46.6	300
	6238	135.9	3.0	80.9	91.9
	6239	138.9	3.0	18.7	43
	6240	141.9	3.0	8.4	300
	6241	144.9	3.0	196.4	111.5
	6242	147.9	3.0	31.4	300
	6243	150.9	3.0	43.8	200
	6244	153.9	3.0	70.7	195.2
	6245	156.9	3.0	103.6	300
	6246	159.9	3.0	58	50.4
	6247	162.9	3.0	23.9	400
	6248	165.9	3.0	47.3	168.7
	6249	168.9	3.0	116	35.7
	6250	171.9	3.0	91.5	47.9
	6251	174.9	3.0	55.9	165.2
	6252	177.9	3.0	84.2	174.6
	6253	180.9	3.0	84.6	107.8
	6254	183.9	3.0	152.5	49.9
	6255	186.9	3.0	79.4	45.1
	6256	189.9	3.0	111.2	42.6
	6257	192.9	3.0	59.8	42.1
	6258	195.9	3.0	80.9	26.8
•	6259	198.9	3.0	60.5	48.1
	6260	201.6	2.7	71.2	71.9
	6261	203.7	2.1	91.3	200
	6262	206.7			800
			3.0	175.6	
	6263	209.7	3.0	73.9	600
	6264	212.7	3.0	81.4	158.1
	6265	215.7	3.0	87.1	128.1
	6266	218.7	3.0	56.2	50.8
	6267	221.7	3.0	78.5	73.6
	6268	224.7	3.0	181.7	130.5
	6269	227.7	3.0	163.5	300
	6270	229.8	.2.1	134.1	300
	6271	233.7	3.9	47	73
	6272	236.7	3.0	39.6	126.4
	6273	239.7	3.0	75.8	200
	6274	242.7	3.0	80.1	55.4
	6275	245.7	3.0	39.4	191
	6276	248.7	3.0	102.6	126.3
	6277	251.7	3.0	75.9	400
*	6278	254.5	2.8	233	400
	6279	257.5	3.0	68. 9	153.8
	6280	260.5	3.0	360.4	178.8
	0200	£00.0	5.0	JUU4	110.0

			•		
6281		263.5	3.0	468	300
6282		266.5	3.0	758.4	700
6283		269.5	3.0	230.2	190.4
6284		272.5	3.0	59.3	109.1
6285		275.5	3.0	183.3	113.3
6286		278.5	3.0	174.9	96.5
6287		281.0	2.5	273.5	128.5
6288		283.6	2.6	133.4	200
6289		286.6	3.0	3.4	53.3
6290		289.6	3.0	1.2	7.2
6291		291.1	1.5	1.2	2.1
6292	3	6.0	3.0	26.5	400
6293		9.0	3.0	253	300
6294		12.0		315	
			3.0		500
6295		15.0	3.0	27.2	187.9
6296		18.0	3.0	32.1	177.2
6297		21.0	3.0	418	94.8
6298		24.0	3.0	38	900
6299		27.0	3.0	322	600
6300		30.0	3.0	2.2	18.3
6301		33.0	3.0	2.5	77.9
6302		36.0	3.0	13.6	21
6303					
		39.0	3.0	2.7	60.5
6304		42.0	3.0	27.4	104
6305		45.0	3.0	67.1	200
6306		48.0	3.0	34.4	200
6307		51.0	3.0	40.2	1300
6308		54.0	3.0	106	300
6309		57.0	3.0	141	1500
6310		60.0	3.0	187	500
6311		63.0	3.0	251	108.2
6312		66.0	3.0	80	500
6313		69.0	3.0	906	1400
6314		72.0	3.0	194	400
6315		75.0	3.0	128	400
6316		78 .0	3.0	82	600
6317		81.0	3.0	115	
					600
6318		84.0	3.0	146	172
6319		87.0	3.0	314	700
6320		90.0	3.0	68.5	600
6321		93.0	3.0	87	300
				203	
6322		95.4	2.4		200
6323		97.3	1.9	1112.8	1400
6324		100.3	3.0	122.1	300
6325		103.3	3.0	17.5	60.8
6326		106.3	3.0	109.9	143
6327		109.3			
			3.0	439.5	700
6328		112.3	3.0	173.9	900
6329		115.3	3.0	100.1	300
6330		118.3	3.0	185.5	200
6331		121.3	3.0	298.9	200
6332		124.3	3.0	143	500
6333		127.3	3.0	75.6	200
6334		130.3	3.0	69.6	200
6335		133.3	3.0	100.4	105.3
6336		136.3			
			3.0	41.7	900
6337		139.3	3.0	333.1	800
6338		142.3	3.0	149.4	200
6339		145.3	3.0	264.9	143.3
6340		148.3	3.0	109.6	300
6341		151.3	3.0	187.4	200

	4546		100.0	400
6342	154.3	3.0	186.8	400
6343	157.3	3.0	82.3	189.7
6344 6345	160.3 163.3	3.0 3.0	226.8 125.3	500 141.2
6346	166.3	3.0	156.7	90.5
6347	169.3	3.0	67.2	300
6348	172.3	3.0	149.4	400
6349	175.3	3.0	33.7	300
6350	178.3	3.0	66.6	108.2
6351	181.3	3.0	101.2	300
6352	184.3	3.0	60.6	171.5
6353	187.3	3.0	160	400
6354	190.3	3.0	141.5	500
6355	193.3	3.0	310.1	58.6
6356	196.3	3.0	46.1	94
6357	199.3	3.0	130.7	700
6358	202.3	3.0	145.5	400
6359	205.3	3.0	108	400 500
6360 6361	208.3 211.3	3.0 3.0	105.4 71	500 200
6362	211.3 214.3	3.0 3.0	99.2	300
6363	217.3	3.0	346.2	1100
6364	220.3	3.0	122.1	300
6365	223.3	3.0	101.9	163.3
6366	226.3	3.0	316.7	142.8
6367	229.3	3.0	110.6	190.2
6368	232.3	3.0	180.6	196.5
6369	235.3	3.0	95.9	200
6370	238.3	3.0	66.8	200
6371	241.3	3.0	51	500
6372	244.3	3.0	115.8	400
6373	247.3	3.0	141.1	500
6374	250.3	3.0	147	149.4
6375	253.3	3.0	141.1	300
6376	256.3	3.0	173.3	600
6377 6378	259.3 262.3	3.0 3.0	64.3 52.3	300 120.8
6379	265.3	3.0	192.3	1300
6380	268.3	3.0	88.1	195.2
6381	271.3	3.0	127	200
6382	274.3	3.0	127	400
6383	277.3	3.0	153.2	500
6384	280.3	3.0	239.9	400
6385	283.3	3.0	183.5	800
6386	286.3	3.0	72.1	300
6387	289.3	3.0	124.2	191.6
6388	292.3	3.0	135.2	92.4
6389	295.3	3.0	152.1	148.7
6390	298.3	3.0	77.3	126.1
6391	301.3	3.0	124.4	300
6392	304.3	3.0	113	200
6393	307.3	3.0	198.7	123.3
6394	310.3	3.0	86.3	64.9
6395	313.3	3.0	265.3	28.7
6396	316.3	3.0	216.7	130.9
6397	319.3	3.0	101.9	67.9
6398	322.3	3.0	80.8	300
6399	325.3	3.0	79.4	75.6
6400	328.3	3.0	96.2	300
6401 6402	331.3 334.3	3.0 3.0	343.2 52	149.3 161.8
0-102	<i>აა</i> 4.ა	3.0	52	101.0

	6403		337.3	3.0	136.7	158.7
	6404		340.3	3.0	217.3	700
	6405		343.3	3.0	123.9	200
	6406		346.3	3.0	223.9	107.2
	6407		349.3	3.0	68.6	180.7
	6408		352.3	3.0	26	400
	6409		354.0	1.7	9.4	53.5
	6410		357.0	3.0	80.6	181.2
	6411		360.0	3.0	174	500
	6412		363.0	3.0	150.4	200
	6413					
			366.0	3.0	99.7	200
	6414		369.0	3.0	89.9	199.8
	6415		371.8	2.8	82.8	400
	6416		373.8	2.0	9	94.2
	6417		375.8	2.0	10.6	79.8
	6418		378.8	3.0	126	1200
	6419		381.6	2.8	130.3	400
	6420		384.2	2.6	169.9	127.8
	6421		387.2	3.0	173	800
	6422		390.2	3.0	169.2	400
	6423		393.2	3.0	173.2	400
	6424		397.1	3.9	119.3	300
	6425		400.1	3.0	121.2	46.8
	6426		403.1	3.0	77.5	61.7
	6427		406.1	3.0	57.7	107.6
	6428		408.3	2.2	38.8	116.4
A602765, A602765R	6429		410.0	1.7	114.8	400
DDH 06-16 A602814,	6430	1.5	4.5	3.0	23.9	9.1
A602814R	6431	1.0	7.5	3.0	8.6	10.9
A002014A	6432		10.5	3.0	11.5	15.6
	6433		13.5	3.0	8.5	10.9
	6434		16.5	3.0	8.4	9.3
	6435		19.2	2.7	287	17.2
	6436		20.1	0.9	1917	70.9
	6437		23.1	3.0	53.2	16.4
	6438		26.1	3.0	233.8	16.1
	6439		29.1	3.0	45.8	13.6
	6440		32.1	3.0	10.2	16.9
	6441		35.1	3.0	19.9	8.4
	6442		38.1	3.0	20.3	13.7
	6443		41.1	3.0	18.8	12.6
	6444		44.1	3.0	8.9	11.6
	6445		47.6	3.5	107.7	11.3
	6446		48.2	0.6	101.9	6
	6447		50.2	2.0	68.2	19.2
	6448		52.3	2.1	16	11.7
	6449		55.3	3.0	11.6	7.8
	6450		58.3	3.0	39.3	24.6
	6451		61.3	3.0	22.5	14.1
	6452		64.3	3.0	5.6	11.8
	6453		67.3	3.0	0.1	12.7
	6454		70.3	3.0 <.1	J. 1	28.1
	6455		73.3	3.0	0.1	26.3
	6456		76.3	3.0 <.1	V. I	26.6
	6457		79.3	3.0	0.3	42.9
	6458		82.3			
				3.0	0.1	22.2
	6459		85.3	3.0 <.1		13.4
	6460		88.3	3.0 < 1		11.3
	6461		91.3	3.0 <.1		75.8
DDU 06 47	6462	4.5	94.8	3.5	0.1	25.1
DDH 06-17	6463	1.5	4.5	3.0 <.1		11.9

i

		6464		7.5	3.0 <.1	ı	11.4
		6465		10.5	3.0 <.		12.8
		6466		13.5	3.0 <.		17.2
		6467		16.5	3.0	0.1	43.7
		6468		19.5	3.0 <.1		30.8
		6469		20.5	1.0 <.1		13.8
		6470		22.0	1.5 <.1		10.2
		6471		25.0	3.0 <.1	1	23.4
		6472		28.0	3.0 <.1	1	13.3
		6473		31.6	3.6 <.1	1	5.4
		6474		32.7	1.1 <.1		13.7
		6475		35.7	3.0 <.1		14.9
		6476		38.7	3.0 <.1		9.5
		6477		41.7	3.0 <.1		14.6
		6478		42.7	1.0	0.1	14.9
							8.2
		6479		43.3	0.6 <.1		
		6480		46.3	3.0 <.1		21.1
		6481		49.3	3.0 <.1		29.3
		6482		52.3	3.0 <.1		35.2
		6483		53.7	1.4	0.6	19.3
		6484		56.7	3.0 <.1		9.8
		6485		59.7	3.0	12.7	15.5
		6486		62.4	2.7	21.8	12.3
		6487		65.7	3.3	50.3	19.1
		6488		68.7	3.0	45	24.6
		6489		71.7	3.0	52.4	64
		6490		72.8	1.1	49.3	15.1
DDH 06-18		6491	1.5	4.5	3.0	38.8	12.8
DD11 00-10		6492	1.5	7.5	3.0	40.1	9.9
		6493		10.5	3.0	34.5	24.7
		6494		13.5	3.0	32.8	42.7
		6495		16.5	3.0	46.5	25
		6496		19.5	3.0	32.9	13.5
		6497		22.5	3.0	54.2	9.9
		6498		25.5	3.0	14.9	8.2
		6499		28.5	3.0	12.9	8.1
DDH 06-18		6500		31.7	3.2	14.4	32.1
DDH 06-18	A602814	4551	31.7	35.0	3.3	71.3	28.1
		4552		38.0	3.0	24.2	15.6
		4553		41.0	3.0	24.1	10.2
		4554		44.0	3.0	36.2	19.9
		4555		47.0	3.0	14.1	32.8
		4556		49.0	2.0	56	42.5
		4557		52.0	3.0	4.7	11.2
		4558					
				55.0	3.0	13.4	59.1
		4559		58.0	3.0	11.4	20.5
		4560		61.0	3.0	7.7	12.8
		4561		64.0	3.0	58.5	8.8
		4562		67.0	3.0	26	8.7
		4563		69.5	2.5	59	8.6
		4564		71.5	2.0	11.1	7.3
		4565		71.9	0.4	1409.4	7.7
		4566		74.9	3.0	3.2	21.1
		4567		77.9	3.0	4.5	12.3
		4568		80.9	3.0	7.1	11.7
		4569		83.9	3.0	8.3	9.9
		4570		86.9	3.0	2.5	11.4
		4571		89.9	3.0	30	13.6
		4572 4572		92.9	3.0	13.5	11.6
		4573		94.5	1.6	27	15.8
		4574		97.5	3.0	22.1	19.7

į

	4575		100.5	3.0	4.4	20.7
	4576		103.0	2.5	15.1	23.8
DDH 06-20	4577	0.6	3.6	3.0	63.6	21.4
	4578		6.6	3.0	78.7	28.5
	4579		9.6	3.0	60.6	30.2
	4580		12.6	3.0	54 .1	13.8
	4581		15.6	3.0	34	20
	4582		18.6	3.0	9.4	35.7
	4583		21.6	3.0	62.8	9.6
	4584		24.6	3.0	32	13.3
	4585		27.6	3.0	27.3	9.6
	4586		30.6	3.0	14.2	9.7
	4587		33.6	3.0	29.8	18.8
	4588		36.6	3.0	10.2	20.2
	4589		39.6	3.0	88.4	16.5
	4590		42.6	3.0	39.7	13.2
	4591		45.6	3.0	17.7	16.7
	4592		48.6	3.0	26.3	10.9
	4593		51.6	3.0	31.7	12.3
	4594		54 .6	3.0	15.6	18.5
	4595		57.6	3.0	6.4	34.1
	4596		60.6	3.0	6.2	20.7
	4597		63.6	3.0	6.6	10.7
	4598		66.6	3.0	41.9	48.1
	4599		69.6	3.0	17	400
	4600		71.1	1.5	7.2	11.1
	4601		74.1	3.0	21.2	12.7
	4602		76.1	2.0	399.9	58.5
	4603		79.1	3.0	7.1	53.2
	4604		82.1	3.0	8.5	17.9
	4605		85.1	3.0	8.3	12.8
	4606		88.1	3.0	10.1	9.3
	4607		91.1	3.0	7	9
	4608		94.2	3.1	19.4	11.4
	4609		95.5	1.3	1614.1	39.7
	4610		98.5	3.0	32.7	14
	4611		100.5	2.0	8.3	17.6
	4612		102.7	2.2	32.1	10.7
	4613		106.0	3.3	17	56.3
	4614		109.0	3.0	33.3	9.3
	4615		112.0	3.0	14.3	42.7
	4616		115.0	3.0	68.3	43.4
	4617		118.0	3.0	60.8	13.8
	4618		121.0	3.0	96.6	196.4
	4619		124.0	3.0	88.7	300
	4620 4624		127.0	3.0	22.3	38.4
	4621		130.0	3.0	6.7	13.1
	4622		133.0 136.0	3.0	53.8	43.9
	4623			3.0	45.9 35.7	27.6 29.2
DDH 06-22	4624 4625	3.7	139.6	3.6	35.7	
DDH 00-22	4625 4626	3.1	6.7 9.7	3.0	38.6 36.4	19.5
	4627		9.7 12,7	3.0	26.4	7.1 7.7
	4627 4628		12.7 15.7	3.0 3.0	18.9 19.9	7.7 7.4
	4626 4629		18.7	3.0 3.0	8.4	7.4 7.4
	4629 4630		21.7			
	4631		21.7 24.7	3.0 3.0	24.5	49.2 400
	4632		24.7 27.7	3.0 3.0	62.2 14.5	400 21.2
	4632 4633		30.7	3.0 3.0	14.5 58.8	
	4633 4634		30.7 33.7	3.0 3.0	58.8 14.5	42.9 - 12.2
	463 4 4635		36.7	3.0 3.0	19.3	8.1
	**************************************		JU.1	3.0	15.5	0.1

	4636	39.7	3.0	42.8	8.3
	4637	42.7	3.0	60.2	7.7
•	4638	46.7	4.0	23.1	9.1
	4639	48.7	2.0	10.6	9.1
	4640	53.8	5.1	13.4	10.5
	4641	56.8	3.0	2.5	25.9
	4642	58.8	2.0	88.2	13.6
	4643	61.8	3.0	42.4	300
	4644	64.7	2.9	16.8	9.7
	4645	67.7	3.0	1.5	28.7
	4646	70.7	3.0	3.1	12.3
	4647	73.7	3.0	215.1	19.5
	4648	76.7	3.0	3.5	24.5
	4649	79.0	2.3	51.5	13.4
	4650	81.0	2.0	1.8	10.7
	4651	84.7	3.7	2.2	53.7
	4652	87.7	3.0	1.1	23.3
	4653	90.7	3.0	3.8	14.1
A602814R	4654	92.7	2.0	1.8	22
DDH 06-22 A602814	4655	95.7	3.0	0.9	34

APPENDIX III b

Drill Logs

Newmac Resources Inc.

DDH Fox 06-1

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-1

Logged by: W. A. Howell

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Feb. 22, 2006.

Finished: Feb. 28, 2006

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 687190

Northing: 5718662

Collar elev: 1266 m

Az: Vertical

Dip: -90°

Length: 219.5 m

roject: Crazy Fox		Hole Number: Fox 06-01			
From To Rocktype & Description	S_from	S_to	Sample	Width	
0.00 3.00 Casing		:			
3.00 77.60 QFP	3.00	6.00	4701	3.00	
Distinct Qtz veins are sub-euhedral 1 - 3 mm xtls. Orthoclase is present as	6.00	9.00	4702	3.00	
euhedral 1 - 4 mm xtls. Pale pink in colour. Plagioclase is present as	9.00	12.00	4703	3.00	
sausseritized phenocrysts and clots. Ground mass is a fine sugary mass of Qtz	12.00	15.00	4704	3.00	
sericite and masses of Qtz flooding. Mafic minerals are sparse with	15.00	18.00	4705	3.00	
occasional fresh Bt; Occasional bleaches out pseudomorph of « Bt » indicates	18.00	21.00	4706	3.00	
multiphase alteration history, as does occasional vfgr myrmiketic texture	21.00	24.00	4707	3.00	
within orthoclase cores. Sericite within feldspar xtls and within matrix,	24.00	27.00	4708	3.00	
exhibits both whote and green variants. The latter looks very similare to	27.00	30.00	4709	3.00	
fluoro sericite. (The variation may result from different phases of	30.00	33.00	4710	3.00	
alteration.) Darker grey Qtz within lighter coloured feldspars is alligned	33.00	36.00	4711	3.00	
into a weak subhorizontal foliation 80° to CA. The foliation is not everywhere	36.00	39.00	4712	3.00	
evident.	39.00	42.00	4713	3.00	
« 40.00- 70.00 K spar + Bt is locally absent. Relict Bt is present.	42.00	45.00	4714	3.00	
Sericite / Qtz stronger. Moly on fracts ± Qtz. Early Qtz veins have diffuse	45.00	51.00	4715	6.00	
selvages and no Mo S2. Local aplitic sections of diffuse selvages . Occasional	51.00	54.00	4717	3.00	
weak fracture chl. »	54.00	57.00	4718	3.00	
Rock is persistently foliated subhorizontally.	57.00	60.00	4719	3.00	
	60.00	62.00	4720	2.00	
	62.00	64.00	4716	2.00	
	64.00	65.10	4721	1.10	
	65.10	66.50	4722	1.40	
	66.50	69.50	4723	3.00	
	69.50	72.80	4724	3.30	
	72.80	75.00	4725	2.20	
	75.00	77.60	4726	2.60	
77.60 82.20 Peg	77.60	79.20	4727	1.60	
	79.20	82.20	4728	3.00	
82.20 91.44 QFP	82.20	85.30	4729	3.10	
Faulted at 91.44, 90° to CA.	85.30	87.30	4730	2.00	
	87.30	90.30	4731	3.00	
91.44 92.60 Alaskite				ļ	
Strongly sericitized alaskite. Lower contact with QFP 20° to CA.			·	<u></u>	
92.60 141.60 QFP		134.10	4732	3.00	
At 130.00 relict textures suggest old Qtz stockwork obliterated by alteration.	134.10	137.10	4733	3.00	
•	137.10	140.10	4734	3.00	
141.60 145.60 Aplite	[

	T-	Desktung & Description	Hole Number: Fox 06-0 S_from S_to Sample Wid				
From	То	Rocktype & Description	S_ITOIII	3_(0)	- Jainpie	widin	
Tàn vfgr G	tz eyes 0.5	to 1.0 mm. Flow banding 85° to CA.		ļ			
145.60 14	47.00 QFP						
147.00 14	49.40 Aplit	e				<u></u>	
				143.10	4735	3.00	
			143.10	146.10	4736	3.00	
				149.10	4737	3.00	
			149.10	151.10	4738	2.00	
As above.							
149.40 1	56.00 QFP			152.50	4739	0.40	
Plunge on	near vertic	al fracts is 45° to CA.	}	155.50	4740	0.40	
	82.00 Alasi			158.50	4741	0.40	
	-	ed. Qtz aggregates and clots 30%. White orthoclase 40%.		161.50	4742	0.40	
Cream col	loured plagi	ioclase 15%. White to yellow green sericite 15%, as clots		164.50	4743	0.40	
and disper	rsed throug	h matrix. A dark dirty green sericite is marginal to	167.10	167.50	4744	0.40	
fracture sh	near at 171.	00 to CA.		170.50	4745	0.40	
				173.50	4746	0.40	
				176.50	4747	0.40	
			176.50	179.50	4748	3.00	
			179.50	182.00	4749	2.50	
182.00 1	82.90 Peg					ļ,	
			182.00	185.80	4750	3.80	
Qtz, ortho	clase, fluori	ite (fl), bismuthinite (bi), py, po, trace MoS2.				ļ	
	19.50 Alas			188.80	4751	3.00	
• -		and in plag. Orthoclase alters to sericite / Qtz.		191.80	4752	3.00	
		sses and clots.		194.80	4753	3.00	
		nal bleached out pseudomorphs of bt.		197.80	4754	3.00	
•	s are vfgr s	ericite with flakey tan bleached chl. relicts, possible	<u> </u>	200.80	4755	3.00	
minor ep.				203.80	4756	3.00	
c @ 219.5	0 EOH >		<u> </u>	206.80	4757	3.00	
				209.80	4758	3.00	
				212.80	4759	3.00	
				215.80	4760	3.00	
			215.80	219.50	4761	3.70	
219.50 2	19.50 EOH				·		
			. :			1	

Newmac Resources Inc.

DDH Fox 06-2

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-2

Logged by: W. A. Howell

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Feb. 28, 2006.

Finished: Mar. 04, 2006

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 687189

Northing: 5718662

Collar elev: 1266 m

Az: 270°

Dip: -60°

Length: 307.3 m

	razy Fox	S_from	S_to	Sample	Width
From	To Rocktype & Description	3_110111	3_10		1
0.00	3.00 Casing				ļ
2.00	AS SO OFF	3.00	6.00	4762	3.00
	45.50 QFP	6.00	9.00	4763	3.00
	inct Qtz eyes. Occasional Qtz veinlet, « py 7.00-7.00mm» MoS2.	9.00	12.00	4764	3.00
	fractures are common but not abundant. Plag is clay altered, orth is	}	15.00	4765	3.00
	tered. Plag is somewhat yellowed and "corroded".Relict Bt is bleached	<u> </u>		4766	3.00
	cized (possible some chl) Bt is foliated 45 to CA with locally	15.00	18.00 21.00	4767	3.00
increased		18.00	24.00		3.00
_	O Minor Peg. Qtz, strong ser selvages	21.00		4768	3.00
	O Pink, hard QFP	24.00	27.00	4769	3.00
_	O Minor stockwork developement	27.00	30.00	4770	-
_	O QFP, pinkinsh k spar >	30.00	33.00	4771	3.00
_	O Foliated 70/80 to CA Peg. Qtz @ 90.3 >	33.00	36.00	4772	3.00
_	10 Weak clay throughout, stronger on fractures, Felds lose definition,	36.00	39.00	4773	3.00
	s almost aplitic.	39.00	42.00	4774	3.00
_	10 Local 1/5mm QV with Kspar selvages, Occ. Peg. textures >	42.00	45.00	4775	3.00
_	0.1 to 3 mm QV 15 to 20 to CA >	45.00	48.00	4776	3.00
(@ 119.		48.00	51.00	4777	3.00
_	10 Local ser." patches" with more K spar margins (old Bx) along	51.00	54.00	4778	3.00
fractures		54.00	57.00	4779	3.00
_	10 Zones up to 10/20cms become aplitic with difuse contacts, local Qv	<u> </u>	60.00	4780	3.00
	A, minor Bt.	60.00	63.00	4781	3.00
_	10 Rock is well fractured, mostly pale green sericite on fractures,	63.00	66.00	4782	3.00
occasion	al Qtz veinlet. >	66.00	69.00	4783	3.00
		69.00	72.00	4784	3.00
		72.00	74.00	4785	2.00
		75.00	78.00	4786	3.00
		78.00	81.00	4787	3.00
	57.90 QFP]		
Mixed, fii	e matrix, Qtz 'eyes' evident, felds virtually obliterated. Aplitic				
groundm	ass				ļ · · · ·
157.90	59.20 Aplite				<u> </u>
Fine grai	ped, no phenos.				<u> </u>
159.20	73.20 QFP				<u> </u>
QFP, QF	Locally sheared and rotated frags in strong ser. matrix, Qtz ppy				
evident.					
170-173.	2 Chilled? fgr.				1
173.20	69.00 Alaskite	234.50	237.50	4795	3.00
Weak sto	ckwork development, fractures sub-parallel to CA to 30 to CA, Qtz	237.50	240.50	4796	3.00

	Crazy Fox		Hole Number: Fox 06-				
From	То	Rocktype & Description	9_110111	3_10		Width	
filled witi	fine black/g	reen sulphide. py, po, > cpy, with minor wolframite.	240.50	243.50	4797	3.00	
(ferberite	?)		243.50	246.50	4798	3.00	
« 184	.00- 269.00	Weak Quartz stockwork Qv's from hairline to 2cm,	246.50	249.50	4799	3.00	
sulphide	in Qv's, plag	is chalky, orthoclase is white, opaque mostly vfg « ser	249.50	252.50	4800	3.00	
» Qtz. S	ome plag is g	glassy (sanidine?) and at first glance looks like Qtz,	252.50	255.50	4801	3.00	
coarse s	ericiite in fela	spar cores and throughout matrix. 202-Occassional	255.50	258.50	4802	3.00	
vuggy ca	vities (miaro	lites?) 206- Shear planes are 80° westerly, movement is	258.50	261.50	4803	3.00	
steeply i	orth-south. 2	24- Still in granite, uniform texture. 248- Granite	261.50	264.50	4804	3.00	
become.	s increasingly	shattered, occ. chlorite, sheared, local Bx. 268- 2cm	264.50	267.50	4805	3.00	
aplite dil	e is strongly	altered with host rocks. »	1				
269.00	272.30 Argil	lite	T			1	
ARGILL	TE, Fault coi	ntact 45° to CA. Highly distorted, mixed argillite and SS.				Ţ	
	278.60 Aplit						
	-	d sheared, strongly clay altered, black argillic film on				T	
	_	granite is similarly altered.	ļ			-	
	307.30 Argil			1		1	
	-	is fractured and sheared, strongly silicified and cut				-	
	-	veinlets, hornsfelsed. Bedding / foliation is 25° to				 	
=	aring follows				· · · · · · · · · · · · · · · · · · ·	1	
O71, O110	army remotite	Journal of the state of the sta				 	
« 294	180-295 50	Faults are 30 to 45° to CA and are light grey, strongly		} 			
clay alte		take are so to to so that are light grey, strongly		 		}	
•	5.80- 297.10	As above »		 		†	
" ZJ(.00-201.10	710 abovo "		1		<u> </u>	
∠ <i>(</i> 20.7	30 EOH >					+	
(@ 307	.30 EO(1)					+	
207 20	307.30 EOH					-	
307.30	307.30 EOR		<u> </u>]		 	
]]	
				{		1	
		•					

Newmac Resources Inc.

DDH Fox 06-3

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-3

Logged by: W. A. Howell

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Mar 04, 2006.

Finished: Mar. 05, 2006

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 687293

Northing: 5718907

Collar elev: 1288 m

Az: 045°

Dip: -45°

Length: 97.8 m

From To Rocktype & Description	S_from	Hole Number: Fox 06-0				
		S_to	Sample	Width		
0.00 4.90 Casing						
	4.80	8.20	4807	3.40		
4.90 97.80 Vs	8.20	11.20	4808	3.00		
Altered volcanics and greywacke siltstones with minor black argillite,	11.20	14.20	4809	3.00		
chloritic volcanics are altered to secondary biotite. Siltstone becomes a grey	14.20	17.20	4810	3.00		
elsitic rock. Argillite becomes hard, black. All rock are severely shattered	17.20	20.20	4811	3.00		
and cut by and interbedded with 0.5 to 2 mm veinlets of Qtz/ser/carb.	20.20	23.20	4812	3.00		
Occasional 1 -2 cm intrusive Qtz rich veins. Bedding planes are variable 30°	23.20	26.20	4813	3.00		
o subparallel to CA. Chlorite becomes more common with depth, secondary	26.20	29.20	4814	3.00		
violite hornfels remain strong. Bedding is convoluted, between 5 and 30° to	29.20	32.20	4815	3.00		
CA. Occasional 3 cm Qtz vein with trace MoS2. Fine siltstone is silicified	42.00	45.00	4816	3.00		
ornfels with prominent reddish brown bands (beds) of preferentially secondary	45.00	48.00	4817	3.00		
niotite and reddish brown vfgr K-spar (?).	48.00	51.00	4818	3.00		
97.80 97.80 EOH				 		
97.80 97.80 EOH				ļ		
	1			{		
]			ŀ		
	1					
	1	- 1		}		
]			1		
		i				
]]]		1		
	1					
•						
		ĺ				
				1		
				l		
				1		
				l		
	1			}		
				1		
	1					
]			l		
	1					
	1	}				
	1 1					
	į l					
	1]				
		l		!		
]]	-				
	1					
				ĺ		
		1		!		
				1		
7/02/01	1 1		Page	 		

DDH Fox 06 - 4

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-4

Logged by: W. A. Howell

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Mar 05, 2006.

Finished: Mar 07, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 687297

Northing: 5718901

Collar elev: 1288 m

Az: Vertical

Dip: -90°

Length: 164.0 m

roject: Cra	ry Fox	Но	Hole Number: Fox 06-04					
From To	Rocktype & Description	S_from	S_to	Sample	Width			
0.00 7.	60 Casing							
0.00		,—·						
7.60 26.	20 Volcanic							
	anics and altered greywacke volcanics , mostly fine sediments,				i			
	PBt) mixed with fine grained chloritic volcanics. Shear zones							
	ay sericite. Rock is quite broken and hard (silica), dark green							
	grained rock are assumed to be chloritic,							
	40 Alaskite	ļ		,	† ·			
	broken 60° to CA.		··		ļ			
	10 Volcanic				 			
	rediments, similar to above.							
	10 Alaskite				 			
31.10 34.	10 Alaskite				 , ·			
2240 42	00 Volcanic				 			
	nstone and Metaseds.				<u> </u>			
Allered Gree	istorie and wetaseus.	<u> </u>	<u> </u>		<u> </u>			
42.00 92.	CA OED				ļ			
	ified, minor sericite in some felds, obvious clear Qtz phenos,							
·	re total Qtz with ghost outlines. Minor Bt. Pseudomorphs are mix							
Qtz and serio	•				-			
-	53.80 15 to 20 cm Xenoliths of alaskite (leuco granite) are in				l			
	55.80 15 to 20 cm Seriolitis of alaskite (leaco granite) are in							
the QFP »	ut by a small aplite dike with chilled margin 40° to Ca. Fractures							
	•				 			
	ve yellow-pale green fluoro-sericite (?) ± Py, ± Cpy.				<u> </u>			
•	phostly" fragmental or locally Bx'd, with darker, slightly less				ļ			
•	re silicic) "clasts". All rock is QFP. Intensely silicified				_			
	sericitic, pyritic, with grey sulphide. Local silica rich	a			ļ			
	/ be matrix to coarse Bx. Local stockwork appearance. @ 90.0							
	rone, dark / light, silicified >	00.00	400.00	4040	240			
	00 Volcanic	96.90		4819	3.10			
•	ta seds), chilled contact 45° to CA. Sediments are black to		103.00	4820	3.00			
• • •	eous sediments, strongly silicified (hfls), with occasional well	103.00		4821	3.00			
aevelopea Q	uartz veins with sulphides.		109.00	4822	3.00			
_			112.00	4823	3.00			
	all shears have clay altered and narrow gouge zones.	112.00		4824	3.00			
_	^o Bt is restricted to hornfels and selvages to Qtz veins. ⋊ @		153.00	4825	2.70			
	is well fractured, increased clay, vfgr ground sulphides on		156.00	4826	3.00			
fractures.>		ļ	159.00	4827	3.00			
		159.00	162.00	4828	3.00			
007/02/01			- -	Page	1			

oject: Crazy Fox			Hole Number: Fox 06-0				
From	То	Rocktype & Description	S_from	S_to	Sample	Width	
			162.00	164.00	4829	2.00	
						T	
164.00	164.00 EOH						
				-		İ	
			ļ				
				ŀ			
				1		1	
						:	

. .

DDH Fox 06 - 5

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-5

Logged by: W. A. Howell

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Mar 07, 2006.

Finished: Mar 08, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 687297

Northing: 5718901

Collar elev: 1288 m

Az: 225°

Dip: -50°

Length: 99.7 m

oject: Crazy Fox			ber:Fox	
From To Rocktype & Description	S_from	S_to	Sample	Width
0.00 6.10 Casing				<u> </u>
·				<u></u>
6.10 11.30 Rubble				<u> </u>
Black argillite and mud.				<u> </u>
11.30 69.00 Alaskite	11.30	14.30	4830	3.00
Alaskite, (Leuco granite), chilled phase, strong sericite on local shear.	14.30	17.40	4831	3.10
perhaps fragmental Bx textures) clasts to 40 cm. Intense clay gouge, black	17.40	20.40	4832	3.00
sulphide mud.	20.40	23.50	4833	3.10
« 22.30- 23.00 Xenolith of metaseds. Dip minus 80° »	23.50	26.50	4834	3.00
@ 23.50 Clay gouge in ALSK is 75° CA > Textures are variable and are likely	26.50	29.60	4835	3.10
arge clasts of ALSK (10 to 50 cm) with coarse and medium grained variants with	29.60	32.60	4836	3.00
aplite. Contacts are resorbed and indistinct.	32.60	35.70	4837	3.10
	35.70	38.70	4838	3.00
	38.70	41.80	4839	3.10
	41.80	44.80	4840	3.00
sericite and yellow-grey fluoro varieties (?). ‹ @ 54.00 Local QFP	44.80	47.90	4841	3.10
variants >	47.90	50.90	4842	3.00
	50.90	53.90	4843	3.00
	53.90	57.00	4844	3.10
	57.00	60.00	4845	3.00
	60.00	63.10	4846	3.10
	63.10	64.60	4847	1.50
	64.50	67.20	4856	2.70
	64.60	69.00	4848	4.40
69.00 71.40 meta sediments	69.00	71.40	4849	2.40
71.40 79.50 QFP	71.40	73.40	4850	2.00
	73.40	76.40	4851	3.00
	76.40	79.50	4852	3.10
79.50 83.10 Andesite	79.50	83.10	4855	3.60
Grey andesite - see following 99.7				1
83.10 84.80 QFP				
	79.50	84.80	4853	5.30
04.00 . 00.70 Amdonia	04.00	07.70	40E 4	200
84.80 88.70 Andesite	84.80	87.70	4854	2.90
Consumodo ella	87.70	90.50	4857	2.80
Grey andesite	00.50	02.00	4050	240
88.70 99.70 EOH	90.50	93.60	4858	3.10
After collaring approximately 2m ahead of holes 3 and 4 DDH 5 penetrated strong	93.60	96.60	4859	3.00

	razy Fox				ber:Fox Sample	Width
From	То	Rocktype & Description	S_from	S_to		AAIGIN
aulting a	nd entered A	laskite (LG) Alaskite was encountered in the borrom of	96.60	99.70	4860	3.10
DDH 2 ar	nd 6. There i	is a QFP / Alaskite contact somewhere between DDH 5				
ind						T
DDH 1.						
Grey and	esite is a stro	ongly Qtz / sericite / ± K-spar, altered fine grained				
ntrusive i	ock app. 15	%, .5 mm to 2 mm. Tan coloured orth, aggregates with 2°				ļ
Bt cores,	or corroded	cores, outer margins are pale cream to clear (sandine),				†
rey trans	sluscent mat	rix is a mixture of grey VFG 'felted' sericite and Qtz.			—	†
•		tz is clear to blue white 2 -5 mm miarolitic cavities are				† · · · · -
		minor carbonate and rimmed with Qtz vfgr. py, wolframite				i
		distributed throughout the matrix.	-			
	,					
The rock	annears in ir	ntensely silicified QFP as dikes with chilled margins.				
	contact)	nonco, omenica di l'acamoe miniorimos margines	ļ			
ma uone	oomadij					
			}·			
99.70	99.70 EOH					ļ
33.70	99.70 EON					ļ
		•				
				1		
			1			L

DDH Fox 06 - 6

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-6

Logged by: W. A. Howell

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Mar 08, 2006.

Finished: Mar 12, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 687185

Northing: 5718601

Collar elev: 1271 m

Az: Vertical

Dip: -90°

Length: 298.8 m

	azy Fox		 1	ber:Fox	Width
From	To Rocktype & Description	S_from	S_to	Sample	AAIGU
0.00	2.70 Casing				
2704	5.60 QFP	2.70	5.80	4861	3.10
	r flooded. Rock is hard with 1 to 2 mm specks of 2° B	<u> </u>	7.90	4862	2.10
-	2° Bt impart an orange-brown colour. Qtz eyes are e		11.00	4863	3.10
-	sericite. Qtz is ubiquitous, often enclosing relict corro	 	14.00	4864	3.00
	t and Qtz has a foliated orientation subhorizontal. Ser	i i i i i i i i i i i i i i i i i i i	17.00	4865	3.00
-	apple green to 'bile' yellow green. At 30m core has be		20.00	4866	3.00
	ely less k-spar altered. Bt has diminished. Sericite h		23.00	4867	3.00
	Core is a grey colour, with a hint of orange/pink. Orti		26.00	4868	3.00
	ay altered and have corroded centers. Relict Bt becor		28.00	4869	2.00
	commonly 60 to 90° to CA. At 50 m 2° Bt becomes re		31.00	4870	3.00
	t. Cream coloured orthoclase predominates. Qtz 1 to		34.00	4871	3.00
	al Qtz stockwork. Occasional 10 cm clots of sericite m	ł	37.00	4872	3.00
pseudome		37.00	40.00	4873	3.00
pooddon	per.	40.00	43.00	4874	3.00
« 57.9	0- 60.40 Local Bx with groundup sulphides/Qtz. »	43.00	45.00	4875	2.00
	, , , , , , , , , , , , , , , , , , ,	45.00	48.00	4876	3.00
Strona se	cite on fractures. Variable aplitic texture.	48.00	51.00	4877	3.00
•	on massive yellow-green sericite, masses, 5 mm Qtz	/ « ser » py, vein 51.00	54.00	4878	3.00
	pegmatite, subparallel to CA.	54.00	57.00	4879	3.00
		57.00	60.00	4880	3.00
« 82.0)- 84.00 Copper sulphate(?) coating fractures. »	60.00	63.00	4881	3.00
	,,	63.00	66.00	4882	3.00
At 94 m o	casional Aplitic section has poorly defined contacts w	th QFP. May 66.00	69.00	4883	3.00
be old Bx	occasional sericite fractures have ground sulphides.	Core is QFP 69.00	72.00	4884	3.00
with aplitic	areas. Distinct Qtz and pale orange orthoclase is a fil	ne sugary 72.00	75.00	4885	3.00
matrix of	ericite and Qtz. Early plag and orthoclase are now se	ricite. 75.00	78.00	4886	3.00
Occasion	l darker grey patches are increased sericite.	78.00	80.50	4887	2.50
113.5 m s	eared face with ground sulphides 10° to CA. Hairline	py / ser 80.50	82.00	4888	1.50
fractures	arallel to CA, cut aplite and QFP. Aplite has weak Qta	eyes. 82.00	84.90	4889	2.90
Fractures minor	are commoly coated with medium yellow-green "waxy	sericite and 84.90	88.00	4890	3.10
py. 45° f	actures are common. 〈@ 144.00 Local Pegmatite ›‹ (2) 148.00 25 cm 88.00	91.00	4891	3.00
Qtz / serie	te 30° to CA × @ 152.30 Shear strong clay sericite >	91.00	94.00	4892	3.00
« 158.	0- 160.30 Aplite fractures 60° to CA »	94.00	97.00	4893	3.00
		97.00	100.00	4894	3.00
		100.00	103.00	4895	3.00
		103.00	106.00	4896	3.00
			=====	·····	

From	То	Rocktype & Description	S_from	S_to	Sample	Widtl
			106.00	109.00	4897	3.00
			109.00	L	4898	3.00
			112.00		4899	3.00
			115.00		4900	3.00
			118.00		4901	3.00
				124.00	4902	3.00
			124.00	127.00	4903	3.00
				130.00	4904	3.00
				133.00	4905	3.00
				136.00	4906	3.00
				139.00	4907	3.00
			139.00	··· - · · · - ·	4908	3.00
			142.00		4909	3.00
			145.00	148.00	4910	3.00
		:	148.00	151.00	4911	3.00
			151.00	154.00	4912	3.00
			152.90	185.80	4913	32.90
185.60	273.80 Alas	kite	194.40	197.40	4914	3.00
Equigran	ular cream o	coloured granite up to 85% Qtz, up to 40% chalky orthoclase,	197.40	200.40	4915	3.00
up to 259	% pale yellov	v-green sericite after plag. Trace to minor Bt, altered to	200.40	203.40	4916	3.00
sericite, i	minor sulphi	des include py, cpy, mo. and po. Core is cut by	203.40	206.40	4917	3.00
occasion	al Qtz vein v	vith py, and sericite with trace MoS2. 228 m 2º Bt appears.	206.40	209.40	4918	3.00
At 234 m	core is muc	h more broken but still silicified, feels like broken	209.40	212.40	4919	3.00
porcelair	. At 242M i	ncreased clay. Core is white with pale green (ser) tinge.	212.40	215.40	4920	3.00
Compet	ent rock. At	250 m core remains competent but becomes "mushed" with	215.40	218.40	4921	3.00
numerou	s black coat	ed irregular slip surfaces, not planar.	218.40	221.40	4922	3.00
			221.40	224.40	4923	3.00
			224.40	227.40	4924	3.00
			227.40	230.40	4925	3.00
			230.40	233.40	4926	3.00
			233.40	236.40	4927	3.00
			236.40	239.40	4928	3.00
			239.40	242.40	4929	3.00
			242.40	245.40	4930	3.00
			245.40	248.40	4931	3.00
			248.40	251.40	4932	3.00
			251.40	254.40	4933	3.00
			254.40	257.40	4934	3.00
		·	257.40	260.40	4935	3.00

oject: Crazy Fox	Hole Number: Fox 06-06				
From To Rocktype & Description	S_from	S_to	Sample	Width	
	260.40	263.40	4936	3.00	
		266.40	4937	3.00	
		269.40	4938	3.00	
		272.40	4939	3.00	
		273.80	4940	1.40	
273.80 298.70 Volcanic Sediments		276.80	4941	3.00	
Vicola Volcanics, green _black meta agglomerate and hornfelsed grey, fine	L	279.80	4942	3.00	
grained tuffs and black argillite.				 	
, and a tank and a second a second and a second a second and a second a second and a second and a second and a second a second a second a second a second and a second a second a second a second and a					
				†	
298.70 298,70 EOH		i		1	
EOH				1	
•				†	
		:			
			•		
			•		
		İ			
	+		Page	+	

DDH Fox 06 - 7

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-7

Logged by: W. A. Howell

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Mar 13, 2006.

Finished: Mar 19, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 687053

Northing: 5718672

Collar elev: 1266 m

Az: 270°

Dip: -60°

Length: 322.6 m

oject: Crazy Fox	Hole Number: Fox 06-07				
From To Rocktype & Description	S_from	S_to	Sample	Width	
0.00 7.60 Casing					
· ·					
7.60 10.01 Overburden		ļ		[
				1	
10.01 12.00 FP			-· 	T	
Feldspar ppy, (ghost feldspar, no visible Qtz)				T	
« 10.01- 12.00 Grey aplite, contact lost, upper contact 40° to CA.				T	
				-	
12.00 119.00 QFP				T	
Qtz porphyry white, chalky, speckled appearance, sub horizontal foliation. At				1	
36m chlorite-clay-porphyry on fractures, slip planes. 54m Minor Qtz pegmatites	<u> </u>				
or clots of Qtz. At 58m weak secondary Bt. At 62 m biotite increased, core				†	
is hard silicified pink orthoclase. Seriticized groundmass and plagioclase				<u></u>	
alt'd to sericite, overprint appears dark grey and blotchy, with Qtz flooding.				 	
74M local breccia with Qtz / py, filling. At 88 m secondary biotite diminishes.	t			· t · · · · · · ·	
At 92 M quartz porphyry and aplite, minor brecciated Alaskite. Local UST				1	
quartz veining with MoS2 and clay on and along fractures. Matrix is aplitic					
Qtz / sericite. At 104 M fractures have epidote, green colour. Sericite ±					
pyrite local coarse quartz. At 115M local kaolin around coarse Qtz and					
sericite.				<u> </u>	
119.00 123.40 Aplite					
Pale tan colour.				 	
123.40 155.20 QP				İ	
Local kaolin around coarse Qtz and sericite . Aplite has intruded QFP along					
fractures as sheeted dikes and as matrix to QFP breccia. Everything is				1	
silicified. There are a few biotite rich clasts and Qtz veins 30° to CA, with					
pyrite and Qtz, and local Qtz feldspar pegmatite.		- -		 	
Sericite mainly on fractures and with veinlet Qtz. At 144 M K-spar dominates				-	
feldspar, core is overall pale salmon pink.				 	
155.20 165.00 QFP				 	
Grades into Alaskite.				†	
				 	
Yellow / green sericite on fracture faces. Sericite throughout matrix. Core				 	
becomes white / cream colour. Minor aplite dikes.		·		†	
165.00 174.40 Alaskite				 	
See below	1 ;		. <u>. </u>		
174.40 175.40 Aplite	ł			 	
Occasional Qtz veining 1 to 5 mm.				 	
175.40 228.80 Alaskite				 	
II V-TV & LOISV AIGORITO				1	

Minor pyrite, trace Mo, minor pegmatite Qtz, occasional aplite dike 10 to 15° to CA and vuggy quartz vein with accessory MoS2. Qtz flooded and Qtz on small occasional veins with ser/ Py K-spar flooding. Minor secondary Bt, original Bt is present as sericite pseudomorph. Sericite is generally only on solvages of Qtz / Py fractures and some other "tight" fractures 75° to CA. Loss of Qtz and increased clay and sericite at 192.5 M. At 200 M occasional nearrow zones of intense K-spar / less Qtz become creamy pink. At 212 M alaskite has minor common aplite veining. (possible large breccia), commonly 20° to CA. 228.80 248.70 Alaskite Fine grained ALSK (leuco-granite). Rock texture is not distinct, perhaps crushed / sheard, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear febric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. 4240.90-241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. 4240.90-241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. 426.90-241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared blackite. 428.90-241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared blackite. 428.90-241.70 Andesite: Sheared, grey, with black sulphides and clasts of sheared blackite. 428.90-241.70 Andesite: Sheared, grey, with black sulphides and clasts of sheared blackite. 428.90-241.70 Andesite: Sheared, grey, with black sulphides and clasts of sheared blackite. 428.90-241.70 Andesite: Sheared, grey, with black sulphides and clasts of sheared blackite. 428.90-241.70 Andesite: Sheared, grey, with black sulphides and clasts of sheared blackite. 428.90-241.70 Andesite: Sheared, grey, with black sulphides and clasts of sheared blackite. 428.90-241.70 Andesite: Sheared, grey, with black sulphides and clasts of sheared blackite. 428.90-241.70 Andesite: Sheared, grey, with black sulphides and cla	Project: Crazy Fox Hole Number: Fox Exem To Rocktyne & Description S from S to Sample				
to CA and vuggy quartz vein with accessory MoS2. Qtz flooded and Qtz on small occasional veins with ser / Py K-spar flooding. Minor secondary Bt, original Bt is present as sericite pseudomorph. Sericite is generally only on selvages of Qtz / Py fractures and some other "ight" fractures 75° to CA. Loss of Qtz and increased clay and sericite at 192.5 M. At 200 M occasional narrow zones of intense K-spar / less Qtz become creamy pink. At 212 M alaskite has minor common aplite veining, (possible large breccia), commonly 20° to CA. 228.80 248.70 Alaskite Fine grained ALSK (leuco-granite). Rock texture is not distinct, perhaps crushed / sheared, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90-241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « 240.90-241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « @ 247.00 Shearing intensity diminishes.) 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90-286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » « @ 381.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. @ 297.00 Pegmatite 2-4cm » « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long	From To Rocktype & Description	S_from	S_to	Sample	Width
to CA and vuggy quartz vein with accessory MoS2. Qtz flooded and Qtz on small occasional veins with ser / Py K-spar flooding. Minor secondary Bt, original Bt is present as sericite pseudomorph. Sericite is generally only on selvages of Qtz / Py fractures and some other "ight" fractures 75° to CA. Loss of Qtz and increased clay and sericite at 192.5 M. At 200 M occasional narrow zones of intense K-spar / less Qtz become creamy pink. At 212 M alaskite has minor common aplite veining, (possible large breccia), commonly 20° to CA. 228.80 248.70 Alaskite Fine grained ALSK (leuco-granite). Rock texture is not distinct, perhaps crushed / sheared, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90-241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « 240.90-241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « @ 247.00 Shearing intensity diminishes.) 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90-286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » « @ 381.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. @ 297.00 Pegmatite 2-4cm » « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long	Minor pyrite, trace Mo, minor pegmatite Qtz, occasional aplite dike 10 to 15°				
Occasional veins with ser / Py K-spar flooding. Minor secondary Bt, original Bt is present as sericite pseudomorph. Sericite is generally only on selvages of Otz / Py fractures and some other "tight" fractures 75° to CA. Loss of Otz and increased clay and sericite at 192.5 M. At 200 M occasional narrow zones of intense K-spar / less Qtz become creamy pink. At 212 M alaskite has minor common aplite veining, (possible large breccia), commonly 20° to CA. 228.80 248.70 Alaskite Fine grained ALSK (leuco-granite). Rock texture is not distinct, perhaps crushed / sheared, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90-241.70. Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « 247.00 Shearing intensity diminishes.) 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90-286.00 Alaskite. Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » « @ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. « @ 297.00 Pegmatite 2-4cm) « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long					
Bt is present as sericite pseudomorph. Sericite is generally only on selvages of Qtz / Py fractures and some other "tight" fractures 75° to CA. Loss of Qtz and increased clay and sericite at 192.5 M. At 200 M occasional narrow zones of intense K-spar / less Qtz become creamy pink. At 212 M alaskite has minor common aplite veining, (possible large breccia), commonly 20° to CA. 228.80 248.70 Alaskite Fine grained ALSK (leuco-granite). Rock texture is not distinct, perhaps crushed / sheared, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90-241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » (@ 247.00 Shearing intensity diminishes.) 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90-286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (@ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlests. The irregular fractures are less abundant with less ground sulphides. (@ 297.00 Pegmatite 2-4cm) « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long					
of Qtz / Py fractures and some other "tight" fractures 75° to CA. Loss of Qtz and increased clay and sericite at 192.5 M. At 200 M occasional narrow zones of intense K-spar / less Qtz become creamy pink. At 212 M alaskite has minor common aplite veining, (possible large breccia), commonly 20° to CA. 228.80 248.70 Alaskite Fine grained AL.SK (leuco-granite). Rock texture is not distinct, perhaps crushed / sheared, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90-241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » (@ 247.00 Shearing intensity diminishes.) 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90-286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (@ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmattic veinlets. The irregular fractures are less abundant with less ground sulphides. (@ 297.00 Pegmatite 2-4cm) « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long			· · · · · · · · · · · · · · · · · · ·		
and increased clay and sericite at 192.5 M. At 200 M occasional narrow zones of intense K-spar / less Qtz become creamy pink. At 212 M alaskite has minor common aplite vetning, (possible large breccia), commonly 20° to CA. 228.80 248.70 Alaskite Fine grained ALSK (leuco-granite). Rock texture is not distinct, perhaps crushed / sheared, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90-241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « 247.00 Shearing intensity diminishes.) 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90-286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » « @ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. « @ 297.00 Pegmatite 2-4cm) « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long					
of intense K-spar / less Qtz become creamy pink. At 212 M alaskite has minor common aplite veining. (possible large breccia), commonly 20° to CA. 228.80 248.70 Alaskite Fine grained ALSK (leuco-granite). Rock texture is not distinct, perhaps crushed / sheared, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90-241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « 247.00 Shearing intensity diminishes. » 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.0-286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » « © 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. « © 297.00 Pegmatite 2-4cm » « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long					-
228.80 248.70 Alaskite Fine grained ALSK (leuco-granite). Rock texture is not distinct, perhaps crushed / sheared, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240,90- 241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » (② 247.00 Shearing intensity diminishes.) 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (② 281.30 Fault 60° to CA with increased clay,) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. « ② 297.00 Pegmatite 2-4cm) « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long					
228.80 248.70 Alaskite Fine grained ALSK (leuco-granite). Rock texture is not distinct, perhaps crushed / sheared, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90-241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « ② 247.00 Shearing intensity diminishes. › 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90-286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » « ② 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. « ② 297.00 Pegmatite 2-4cm » « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long	·				
Fine grained ALSK (leuco-granite). Rock texture is not distinct, perhaps crushed / sheared, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90- 241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « @ 247.00 Shearing intensity diminishes. > 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » « @ 281.30 Fault 60° to CA with increased clay. > 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. « @ 297.00 Pegmatite 2-4cm > « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long	common aplite veining, (possible large breccia), commonly 20 10 CA.				
Fine grained ALSK (leuco-granite). Rock texture is not distinct, perhaps crushed / sheared, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90- 241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « ② 247.00 Shearing intensity diminishes. › 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » « ② 281.30 Fault 60° to CA with increased clay. › 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. 《 ② 297.00 Pegmatite 2-4cm › « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long			- -		
Fine grained ALSK (leuco-granite). Rock texture is not distinct, perhaps crushed / sheared, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90- 241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « ② 247.00 Shearing intensity diminishes. › 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » « ② 281.30 Fault 60° to CA with increased clay. › 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. 《 ② 297.00 Pegmatite 2-4cm › « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long		<u> </u>			
Fine grained ALSK (leuco-granite). Rock texture is not distinct, perhaps crushed / sheared, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90- 241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « ② 247.00 Shearing intensity diminishes. › 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » « ② 281.30 Fault 60° to CA with increased clay. › 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. « ② 297.00 Pegmatite 2-4cm » « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long]			
crushed / sheared, but shearing is not planar. Strongly broken with black ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90- 241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « ② 247.00 Shearing intensity diminishes. › 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » « ② 281.30 Fault 60° to CA with increased clay. › 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. « ② 297.00 Pegmatite 2-4cm › « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long					
ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90- 241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « @ 247.00 Shearing intensity diminishes. > 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » « @ 281.30 Fault 60° to CA with increased clay. > 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. « @ 297.00 Pegmatite 2-4cm > « 299.30- 300.50 with clots of Bismuthinite, py, minor cpy, long	Fine grained ALSK (leuco-granite). Rock texture is not distinct, perhaps	l			ļ
sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts are Qtz rich. « 240.90- 241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » « @ 247.00 Shearing intensity diminishes. › 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (@ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. (@ 297.00 Pegmatite 2-4cm) « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long	crushed / sheared, but shearing is not planar. Strongly broken with black				<u> </u>
are Qtz rich. « 240.90- 241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » (② 247.00 Shearing intensity diminishes.) 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (③ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. (② 297.00 Pegmatite 2-4cm) « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long	ground up sulphides, including MoS2 on shear fabric. 30 to 40° to CA. Black				<u> </u>
« 240.90- 241.70 Andesite: sheared, grey, with black sulphides and clasts of sheared Alaskite. » (② 247.00 Shearing intensity diminishes.) 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (③ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. (③ 297.00 Pegmatite 2-4cm) « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long	sulphide vividly outlines fragments and clasts, matrix is sericite rich, clasts				
clasts of sheared Alaskite. » (② 247.00 Shearing intensity diminishes.) 248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (③ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. (③ 297.00 Pegmatite 2-4cm) « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long	are Qtz rich.				
248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (@ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. (@ 297.00 Pegmatite 2-4cm) « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long	« 240.90- 241.70 Andesite: sheared, grey, with black sulphides and				
248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (@ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. (@ 297.00 Pegmatite 2-4cm) « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long	clasts of sheared Alaskite. »				· · · · · · · · · · · · · · · · · · ·
248.70 286.00 Alaskite Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (@ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. (@ 297.00 Pegmatite 2-4cm) « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long					
Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (@ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. (@ 297.00 Pegmatite 2-4cm) « 299.30- 300.50 with clots of Bismuthinite, py, minor cpy, long	2 17.00 Shouling monois, ammiores		-		
Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (@ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. (@ 297.00 Pegmatite 2-4cm) « 299.30- 300.50 with clots of Bismuthinite, py, minor cpy, long					
Alaskite has returned to normal texture. « 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (@ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. (@ 297.00 Pegmatite 2-4cm) « 299.30- 300.50 with clots of Bismuthinite, py, minor cpy, long	240 70 200 00 Alaskits				
« 259.90- 286.00 Alaskite: Fractured Alaskite similar to above. Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (@ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. (@ 297.00 Pegmatite 2-4cm.) « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long		ļ <u></u>	· · · {		
Fractures are both irregular and regular at 30 to 50° to CA. Qtz veins are broken and slightly offset. Brecciation is incipient. » (@ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. (@ 297.00 Pegmatite 2-4cm) « 299.30- 300.50 with clots of Bismuthinite, py, minor cpy, long					<u> </u>
broken and slightly offset. Brecciation is incipient. » (@ 281.30 Fault 60° to CA with increased clay.) 286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. (@ 297.00 Pegmatite 2-4cm) « 299.30-300.50 with clots of Bismuthinite, py, minor cpy, long		ļ. — —		' 	<u> </u>
286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. © 297.00 Pegmatite 2-4cm > « 299.30- 300.50 with clots of Bismuthinite, py, minor cpy, long					
286.00 322.50 Volcanic Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. © 297.00 Pegmatite 2-4cm > « 299.30- 300.50 with clots of Bismuthinite, py, minor cpy, long					
Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. @ 297.00 Pegmatite 2-4cm > « 299.30- 300.50 with clots of Bismuthinite, py, minor cpy, long	⟨@ 281.30 Fault 60° to CA with increased clay. >		`-		
Contact is arbitrary- altered volcs appear with granitic clasts and occasional pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. @ 297.00 Pegmatite 2-4cm > « 299.30- 300.50 with clots of Bismuthinite, py, minor cpy, long					
pegmatitic veinlets. The irregular fractures are less abundant with less ground sulphides. @ 297.00 Pegmatite 2-4cm > « 299.30- 300.50 with clots of Bismuthinite, py, minor cpy, long	286.00 322.50 Volcanic			L	<u> </u>
sulphides. © 297.00 Pegmatite 2-4cm >	Contact is arbitrary- altered volcs appear with granitic clasts and occasional		_		
« 299.30- 300.50 with clots of Bismuthinite, py, minor cpy, long	pegmatitic veinlets. The irregular fractures are less abundant with less ground				
	sulphides. @ 297.00 Pegmatite 2-4cm >				1
fractures subparallel to CA. Fracts 25 ° Pegmatite 0°»	« 299.30- 300.50 with clots of Bismuthinite, py, minor cpy, long				
	fractures subparallel to CA. Fracts 25 ° Pegmatite 0°»				t
			†	L <u>-</u>	
					· -
					 -
					+
	<u></u>				

	Crazy Fox				ber:Fox	
From	То	Rocktype & Description	S_from	S_to	Sample	Width
322.50	322.50 EOH					
			·			l
						1
			İ	ļ		1
		•				}
				1		
				}		
				į		
						·
				}		•
				l		
				ľ		
			}			
						İ
				1		
]		
			1	1		
				1		
			i			
	-			-		
				1		
				1		
						
7/02/01			1 1	1	Page	I

DDH Fox 06 - 8

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-8

Logged by: W. A. Howell

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Mar 19, 2006.

Finished: Mar 23, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686928

Northing: 5718692

Collar elev: 1262 m

Az: 360°

Dip: -60°

Length: 282.9 m

	Crazy Fox		S_to	mber:Fox 06-0 Sample Wid	
From	To Rocktype & Description	S_from	3_10	Sample	Width
0.00	8.50 Casing				
8.50	11.50 Overburden				
11.50	99.20 QFP	93.20	96.20	5043	3.00
Local sm	all faults, increased clay. Ep. green coloured vfgr sericite, f	eldspar 96.20	99.20	5044	3.00
pseudon	orphs. White sugary textured rock matrix. 2-3 mm 'corrodec	d' Qtz 'eye']
phenocry	sts. Fractures 40-50° to CA with fg Py. & green sericite. F	ractures			
andd Qtz	/ser/Py. 20 - 30° to CA at 30 m. Feldspar are apparent	vith			
increase	d K-spar and pervasive sericite sections.				
« 59.	00- 63.00 Sheeted rhyolite dykes with QP. Sheeting 40 to	50° to			
CA »					
« 68.	00- 69.00 Rhyolite dykes with QP. » @ 74.00 Pervasive	sericite			
appears	as dark grey/green mottling of core. × @ 78.60 Silicious su	lphide			Ţ
gouge 40	o to CA. Sheeted Aplite with QP → @ 82.00 Strong local se	ricite / Py.			
local she	eting. >			··	1
99.20	109.00 QP	99.20	102.20	5045	3.00
QP / apli	te inter veined and sheeted. Fine grained aplite with Qtz eye	es, 102.20	105.20	5046	3.00
perhaps	chilled Qp(?)	105.20	107.50	5047	2.30
		107.50	109.00	5048	1.50
109.00	111.60 Aplite	109.00	111.60	5049	2.60
Transitio	n, hybrid aplite / QP.				1
111.60	120.00 Alaskite				
Weak to	moderate fractures. @ 120.00 Local Peg. Qtz vein 10° to	CA with			1
coarse F	y. >				Ī
120.00	124.40 QP	120.40	123.40	5050	3.00
Hybrid a	olite.	123.40	124.40	5051	1.00
124.40	146.50 Alaskite	124.40	127.40	5052	3.00
At 136 N	Peg. Qtz with strong sericite selvages on fractures 10 - 30	to CA. 127.40	130.40	5053	3.00
Local ind	reased yellow-green Sericite.	130.40	133.40	5054	3.00
		133.40	136.40	5055	3.00
		136.40	139.40	5056	3.00
		139.40	142.40	5057	3.00
		142.40	145.40	5058	3.00
		145.40	146.50	5059	1.10
146.50	150.80 Aplite	146.50	148.70	5060	2.20
Local Qt	z Peg. at 147.5 , 148.6 and 149. K-spar / Fluorite, Peg.	148.70	150.80	5061	2.10
150.80	171.50 Alaskite	150.80	153.80	5062	3.00
Several	small Qtz veins with Py (+?) Clay is strongest on or near fra	ctures, 153.80	156.80	5063	3.00
					†

roject: Crazy Fox From To Rocktype & Description	S from	S_to	Sample	Width
Tion to thousand				
sericite is pervasive with Qtz. K-spar is weakly to moderate ubiquitous,	156.80	159.80	5064	3.00
ocally along fractures.		162.80	5065	3.00
	162.80	165.80	5066	3.00
	165.80	168.80	5067	3.00
	168.80	171.30	5068	2.50
171.50 173.10 Hybrid				
	171.30	173.10	5069	1.80
Granite / Breccia / Pegmatite / Aplite				L
173.10 185.00 QP	173.10	176.10	5070	3.00
Clay on fractures only, sericite is pervasive. QP / Aplite (chilled)	176.10	179.10	5071	3.00
	179.10	182.10	5072	3.00
	182.10	185.10	5073	3.00
185.00 260.50 Alaskite	185.10	188.10	5074	3.00
Pervasive sericite from pale green to yellow.	188.10	191.10	5075	3.00
Qtz / Py / Ser. veins, sub parallel to CA. Ground Py, 35 to 45° to CA. Also	191.10	194.10	5076	3.00
tight fractures with local Bx. with black matrix.	194.10	197.10	5077	3.00
« 198.00- 225.00 Local fracture stockwork, Mo with soft silver grey	197.10	200.10	5078	3.00
sulphides with Py, trace Cpy and possible Bismuthinite »	200.10	203.10	5079	3.00
This section is remarkable for its degree of mineralization. Fractures are	203.10	206.10	5080	3.00
irregular about 30° to CA and are reminiscent of near Ppy environment, at 206	206.10	209.10	5081	3.00
M. Alteration is generally stronger clay and less silica, sericite is	209.10	212.10	5082	3.00
pervasive, Qtz diminishes with depth and clay increases. Severity of shearing	212.10	215.10	5083	3.00
also increases with depth.∢ @ 258.00 Highly sheared is argillic altered,	215.10	218.10	5084	3.00
general fabric 50 to 60° to CA >	218.10	221.10	5085	3.00
	221.10	224.10	5086	3.00
	224.10	227.10	5087	3.00
	227.10	230.10	5088	3.00
	230.10	233.10	5089	3.00
	233.10	236.10	5090	3.00
	236.10	239.10	5091	3.00
	239.10	242.10	5092	3.00
	242.10	245.10	5093	3.00
	245.10	248.10	5094	3.00
ϵ	248.10	251.10	5095	3.00
	251.10	254.10	5096	3.00
	254.10	257.10	5097	3.00
	257.10		5098	3.40
260.50 283.92 Agglomerate	260.50		5099	3.00
Altered greenstone, initially strongly sheared.c@ 270.00 Shattered volcanic	263.50		5100	3.00
· -				

oject: (Crazy Fox				ber:Fox	
From	То	Rocktype & Description	S_from	S_to	Sample	Width
agglome	rate, occasio	nal common carb./silica stringers. >	266.50	269.80	510 1	3.30
	283.92 EOH					ļ
			į			}
			,			
			ľ			
	-					
		•				
		·				
07/02/01			i I	ŀ	Page	ı

DDH Fox 06 - 9

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-9

Logged by: W. A. Howell

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Mar 23, 2006.

Finished: Mar 27, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686924

Northing: 5718689

Collar elev: 1262 m

Az: 270°

Dip: -60°

Length: 310.4 m

roject: Crazy Fox	Ho	le Num	ber:Fox	06-09
From To Rocktype & Description	S_from	S_to	Sample	Width
0.00 14.70 Casing				
		i		
14.70 141.60 QFP				·
Grey 'ghost' white feldspars, silicified, vfgr sericite matrix. Rock has weak				†
foliation and parting 70° to CA. Fractures are weak to moderate, subparallel				
to CA to 30° to CA. Long fractures, 10-20° commonly have Qtz / Py / Sericite.				<u> </u>
@ 36.00 Strong fluoro / sericite alteration of felds. and along fractures >		···		
Relict biotite, alt. from phlogopite-muscovite, occasional aplite 'vein' 45°		<u> </u>		
		 	— —	
to CA at 40M. Aplite forms 'clots' within the QFP, similar to 'clots' of		- ··		
intense sericite. Fractures 10-15° to CA have Py / Ser and ground sulphides.				-
'Fabric' to alteration and mineral allignment is ~60° to CA. Core remains grey		ļ		 -
coloured, Qtz flooded with pervasive sericite. Some aplitic sections along the				·
'fabric'. Qtz eyes remain prominent. At 66 M Qtz pegmatite 'veins',		<u> </u>		
convoluted 'UST' texture with MoS2. Long fractures with black sulphides, 15°				ļ:-:
to CA. At 70 M local fractures, 60° to CA, clay (?), or sericite (?) with		<u> </u> i		
horizontal sliks. Common narrow, (up to 1M aplitic) dikes, Qtz / Ser / Py				
stringers aplite. Increased K-spar on Qtz / Py secondary Bi is variable in				<u> </u>
minor amounts at 82 M.(@ 90.00 QP. and minor aplite (50° to CA) dikes. At				
107M Qtz / Peg ~ local increased clay , well developed "UST" or "BrainRock"				
structure of terminated Qtz intergrowths with MoS2, local strong fracture clay \pm				
white mica. (@ 116.00 Local minor aplite.) (@ 126.70 QP. common yellow	-			
sericite, aplitic sections, with Qtz eyes and long Qtz / Py fractures × @				1
136.00 Yellow sericite on fractures, core is hard, silicified, minor weak		1		1
pegmatite. >< @ 140.00 QP >		<u> </u>	· · · · · · · · · · ·	
141.60 310.40 Alaskite				<u> </u>
Contact is a Qtz / Py / Ser and misc. filled fracture @ 60° to CA. At 152 M				<u> </u>
continuous to 218 M , Qtz / Py fractures parallel to CA have enhanced K-spar		1		
selvages. Yellow sericite surrounds fractures with Bt (?), Py, granite. Yellow		 		
sericite, occasional fractures with ground sulphide and Bi (?) Local QF		i		<u></u>
pegmatite with kaolin and fluorite. Yellow sericite, Py / bismuth (?)				
Qtz-Sericite on fractures. Minor clay on some fractures, minor white section		łi		
is probably kaolin rich and sericite poor. @ 218.00 Local white Kaolin × @		<u> </u>		
220.00 Yellow sericite >	 	} 	· · · · · · · · · · · · · · · · · · ·	
		-		
At 222 M Pink K-spar is weak but persistant in rock matrix. Split core has a				
slight 'chalkey' appearance. @ 232.00 Qtz. vein with Py / Sericite along CA ×]	· · · · · · · · · · · · · · · · · · ·	ļ
@ 238.00 K-spar has increased. > At 242M Local pegmatite, Qtz / Feld. plus Py		 		
traces of orange-brown mineral, like dirty feldspar. @ 268.00 Local Qtz /				.
fluorite / muscovite > At 270 M core is 'chalkey', minor pink K-spar. Rock		ļ l		ļ
matrix is a mixture of fine grained adularia, Qtz, Sericite and Kaolin (?) and		<u> </u>		<u> </u>
007/02/01			Page	1

.

					ber:Fox	
From	То	Rocktype & Description	S_from	S_to	Sample	Width
trace pir	nk/orange co	olour (rhodonite?) or very fine grained hematite (?).‹ @				
		Qtz, (UST) local development.				
310.4 E	ОН					
						
310.40	310.40 EOH					†·· ··-·· -·
•			·			
				Í		
				· [
				}		j
						i
				}		
				Ì		
						}
						1
		•				
						1
07/02/01			1		Page	1

DDH Fox 06 - 10

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-10

Logged by: W. A. Howell

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Mar 27, 2006.

Finished: Mar 31, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 687009

Northing: 5719058

Collar elev: 1353 m

Az: 100°

Dip: -60°

Length: 304.3 m

oject: Crazy Fox	S_from	le Num S_to	S_to Sample	
From To Rocktype & Description	3_110111	3_10		Width
0.00 1.50 Casing				ļ
1.50 30.00 QFP	1.50	4.50	5202	3.00
QFP, Rusty fractures to 7 M. Hard, fresh looking alaskite. Chlorite on	4.50	7.50	5203	3.00
original Bt, fresh secondary Bt. Local clay / chlorite on some fractures to ~	7.50	10.50	5204	3.00
10 M. Albite appears to have repl. plag. Yellow / green sericite on	10.50	13.50	5205	3.00
fractures.	13.50	16.50	5206	3.00
Fracture clay increases.	16.50	19.50	5207	3.00
At 20 M clay (kaolin) alteration of orth. matrix. Minor aplite; Qtz+Po+musc.	19.50	22.50	5208	3.00
on stringers 45° to CA. in Aplite. Ground sulphides on fractures. @ 29.00	22.50	25.50	5209	3.00
Local Qtz. pegmatite >	25.50	28.50	5210	3.00
, ,	28.50	31.50	5211	3.00
30.00 55.30 QP	31.50	34.50	5212	3.00
Contact at 29.9M. More Qtz stringers, hard rock, minor local Chl after Bt (?).	34.50	37.50	5213	3.00
Fractures have black sulphides and sericite. Local Qtz Peg., increasing	37.50	40.50	5214	3.00
clay. @ 44.00 Minor faulting 50° to CA, ground black sulphides × @ 48.00	40.50	43.50	5215	3.00
Increased fractures, green sericite + Py and vfgr black sulphides, green	43.50	46.50	5216	3.00
sericite selvages.	46.50	49.50	5217	3.00
Sheeted fractures with vfgr black and yellow sulphides and fine grained	49.50	52.50	5218	3.00
sericite. @ 55.30 Tight fracture contact with Alaskite.				T
		·		†
55.30 58.00 Alaskite				
	52.50	55.50	5219	3.00
	55.50	58.50	5220	3.00
Alaskite at 55.3, pale cream and chalky. Peq. Qtz. at 58.0M.				1
58.00 168.50 QP	58.50	61.50	5221	3.00
QP to QFP with aplitic matrix, seriticized green colour Py / Po Quartz. QP with	61.50	64.50	5222	3.00
increasing clay to 69.5 M, then increased Qtz.(@ 78.00 Aplitic QP with	64.50	67.50	5223	3.00
zenoliths of Bt rich material, fluorite pegmatite and yellow sericite.	67.50	70.50	5224	3.00
Locally increased clay to fault 60° to CA at 82.6, clay, green and yellow	70.50	73.50	5225	3.00
sericite; ground sulphides on fractures. (@ 96.00 Moderately fractured, MoS2	73.50	76.50	5226	3.00
on occasional fractures and veins. Occasional Peg. >	76.50	79.50	5227	3.00
K-spar follows quartz vein selvages, host is clay-sericite altered. Minor clay	79.50	82.50	5228	3.00
on fractures. Occasional vein Qtz-Po-Py-Fl-Wf; ground sulphides and green	82.50	85.50	5229	3.00
sericite on fractures.	85.50	88.50	5230	3.00
Local secondary breccia.∢ @ 118.00 Increasing clay, green sericite with quartz	88.50	91.50	5231	3.00
vein and on fractures local K-spar with all selvages on QV. → @ 165.00	91.50	94.50	5232	3.00
Fracture 5.00° × @ 166.00 Weak green and yellow sericite. Fractures 60° to CA.	94.50	97.50	5233	3.00
,	97.50	100.50	5234	3.00
				

pject: Crazy Fox From To Rocktype & Description	S_from	S_to	Sample	Width	
FIOIH 10 ROCKLYPE & Description				 	
	ļ	103.50	5235	3.00	
	-	106.50	5236	3.00	
		109.50	5237	3.00	
	L	112.50	5238	3.00	
	l	115.50	5239	3.00	
	ļ -	118.50	5240	3.00	
	.	121.50	5241	3.00	
		124.50	5242	3.00	
	j	127.50	5243	3.00	
	1	130.50	5244	3.00	
		133.50	5245	3.00	
		136.50	5246	3.00	
		139.50	5247	3.00	
		142.50	5248	3.00	
		145.50	5249	3.00	
		148.50	5250	3.00	
		151.50	5251	3.00	
	151.50		5252	3.00	
	154.50		5253	3.00	
		160.50	5254	3.00	
		163.50	5255	3.00	
•		166.50	5256	3.00	
	166.50	169.50	5257	3.00	
68.50 196.50 Alaskite				1	
Moderate Fractures 10-40°» Sliks approx 50° /CA					
	169.50	172.50	5258	3.00	
	172.50	175.50	5259	3.00	
	175.50	178.50	5260	3.00	
	178.50	181.50	5261	3.00	
	181 50	184.50	5262	3.00	
	101.50	104.00	J2U2	3.00	
07/02/01	I I	1	Page	I	

From	Crazy Fox To	Rocktype & Description	S_from	S_to	Sample	Width
				_		
			184 50	187.50	5263	3.00
				107.00		
			187.50	190.50	5264	3.00
				 	· · · · · · - · -	
			190.50	193.50	5265	3.00
			193.50	196.50	5266	3.00
			196.50	199.50	5267	3.00
			199.50		5268	3.00
		•	202.50	205.50	5269	3.00
			205.50	208.50	5270	3.00
٠			208.50	211.50	5271	3.00
			211.50	214.50	5272	3.00
			214.50	217.50	5273	3.00
			217.50	220.50	5274	3.00
196.50	196.70 Peg					1
« Quartz	strong yello	v sericite. Intrusive »	199.50	202.50	5268	3.00
196.70	221.00 Alask	ite				Ī
ALSK, H	ybrid granite	some Qtz eye ppy with clots of aggregated Qtz; (Perhaps	202.50	205.50	5269	3.00
dislocate	d UST?) Loc	al Qtz clusters commonly exhibit 'comb' texture.	205.50	208.50	5270	3.00
« Fractui	es 50-60°»		208.50	211.50	5271	3.00
			211.50	214.50	5272	3.00
			214.50	217.50	5273	3.00
			217.50	220.50	5274	3.00
			220.50	223.50	5275	3.00
221.00	279.80 QFP		223.50	226.50	5276	3.00
QFP, We	eak overprint	of yellow sericite, stronger on local fractures, minor	226.50	229.50	5277	3.00
seconda	ry Bt. < @ 23	7.00 Fault 30° > At 242M most fractures are high angle,	229.50	232.50	5278	3.00
occasion	ally 20° to CA	A	232.50	235.50	5279	3.00
.« 261	.20- 261.40	Well developed, convoluted UST »	235.50	238.50	5280	3.00
« 261	.20- 276.20	Hybrid. 50% aplite, 50% QFP, with local occasional Qtz	238.50	241.50	5281	3.00
veinlets (QFP»		241.50	244.50	5282	3.00
« 276	.20- 279.80	Gouge Fault 30°»	244.50	247.50	5283	3.00
			247.50	250.50	5284	3.00
			250.50	253.50	5285	3.00
07/02/01			l		Page	T

····	Hole Number: Fox 06-10				
From To Rocktype & Description	S_from	S_to	Sample	Width	
	253.50	256.50	5286	3.00	
	256.50		5287	3.00	
	259.50	262.50	5288	3.00	
	262.50	265.50	5289	3.00	
	265.50	268.50	5290	3.00	
	268.50	271.50	5291	3.00	
	271.50	274.50	5292	3.00	
	274.50	277.50	5293	3.00	
279.80 282.00 Volcanic Sediments					
	277.50	280.50	5294	3.00	
	280.50	283.50	5295	3.00	
licola sediments, tuffs, sheared.					
282.00 304.30 Volcanic	283.50	286.50	5296	3.00	
licola greenstone	286.50	289.50	5297	3.00	
	LL	292.50	5298	3.00	
@ 304.30 EOH >	292.50	295.50	5299	3.00	
	l	298.50	5300	3.00	
	298.50	301.50	5301	3.00	
	301.50	304.20	5302	2.70	
304.30 304.30 EOH			·		
		1			
		İ			
		1		ļ	
•					
	į į				
				1	

DDH Fox 06 - 11

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-11

Logged by: W. A. Howell

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Mar 31, 2006.

Finished: Apr. 04, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686774

Northing: 5718637

Collar elev: 1270 m

Az: 270°

Dip: -60°

Length: 316.5 m

oject: Crazy Fox	Hole Number:Fox 06-			
From To Rocktype & Description	S_from	S_to	Sample	Width
0.00 8.90 Casing				
8.90 20.00 Aplite	10.60	13.60	5303	3.00
Qtz feldspar. Distinct euhedral Qtz and pale pink / creamy orthoclase 2° xtls.	13.60	16.60	5304	3.00
Weak foliation 80° to CA. Matix Aplite is fine grained, sugary textured,	16.60	19.60	5305	3.00
relict orthoclase (?) is totally sericite altered, relict « Bt » altered to				<u> </u>
Ser / Chl , occ. 2º Bt. Fracts 25º to CA are Qtz / Ser / « py » Ser is yellow				ļ
green and pale green.				<u></u>
(20.00 is arbitrary)				l
20.00 to EOH has not been logged.	1 1			<u>.</u>
(Log data is incomplete)				
				<u> </u>
				<u> </u>
		[ļ
	19.60	22.60	5306	3.00
20.00 316.50 EOH	22.60	25.60	5307	3.00
Not logged from arbitrary 20M.	25.60	28.60	5308	3.00
	28.60	31.60	5309	3.00
	31.60	34.60	5310	3.00
	34.60	37.60	5311	3.00
	37.60	40.60	5312	3.00
·	40.60	43.60	5313	3.00
	43.60	46.60	5314	3.00
	46.60	49.60	5315	3.00
	49.60	52.60	5316	3.00
	52.60	55.60	5317	3.00
	55.60	58.60	5318	3.00
	58.60	61.60	5319	3.00
	61.60	64.60	5320	3.00
	64.60	67.60	5321	3.00
	67.60	70.60	5322	3.00
	70.60	73.60	5323	3.00
	73.60	76.60	5324	3.00
	76.60	79.60	5325	3.00
	79.60	81.20	5326	1.60
316.50 316.50 EOH				<u> </u>
		}		
07/02/01			Page	+

DDH Fox 06 - 12

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-12

Logged by: R. Montgomery

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Apr 04, 2006.

Finished: Apr. 08, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686776

Northing: 5718636

Collar elev: 1270 m

Az: 360°

Dip: -60°

Length: 316.5 m

	Crazy Fox	S from	S_from S_to Sample		
From	To Rocktype & Description	3_110111	3_10	Janipie	1410
0.00	9.10 Overburden				
					1
9.10	54.30 QFP	[]			
QFP, 15	6 subhedral pale grey, 1 - 3 mm Qtz. phenos and 'eyes'. 1	5-20%, 2-3			L
mm,					
subhedra	l othoclase phenos, and some white to cream coloured pl	ag phenos at			
top					
of hole.	The dominant feldspar from ~15M on, is a pale salmon pi	nk			
orthoclas	e. Mafics to 1% (2° Bt)				
c@ 17.4	0 Qtz. feldspar Peg. ›				
« 40.	00- 43.00 Weak Bx accompanied by increased green Se	r / Kaolinite			Ţ
on fracts	Fracturing » @ 47.80 3cm Aplite band 45° to CA >				
54.30	58.10 Aplite				
Aplite / C	FP / weak UST comb structure, transitional section to unc	lerlying			
'brain roo	k' UST				1
58.10	60.00 UST				
Brain roo	k, comb structure. Unidirectional Seriate Texture (UST)				1
	72.10 QFP	}			1
					Ţ
72.10	79.10 QFP				1
Altered a	nd highly fractured. locally sheared and brecciated. Local	ly intense			<u> </u>
(almost o	omplete) sericitic.	}			1
« 76.	90- 76.60 »				†
د @ 76.0	0, fluorite xtls to 1.5cm >				1
79.10	80.65 UST				1
Banded	plite, QFP, Brain rock, Aplite somewhat coarser.				<u> </u>
80.65	84.60 Aplite				1
Banded	plite / QFP / UST Brain Rock. Aplite is somewhat coarse	r than is			1
typically	seen. (.5mm, Qtz / feldspar)				T
84.60	87.55 Fault				1
Sheared	brecciated 1-2cm wide. shear zones of white clay gouge	/ green		· · · ·	·
sericite a	t 35-45° to CA				1
87.55	94.50 Aplite				1
	ecciated Aplite / UST comb textures.				†
	ion is quite variable. Locally QFP exhibits moderate to str	ong comb			†
	From 92 M to underlying contact with brainrock, Aplite / Q				†
	d with Py content increasing.	<u> </u>	}		†
	96.30 UST		,		
Brain roo					<u> </u>
					

oject: (Crazy Fox		 		ber:Fox	
From	То	Rocktype & Description	S_from	S_to	Sample	Width
96.30	119.65 QFP					
QFP / Ap	lite & Minor U	JST This consists of ~ 35% well banded (40° to CA) tan to		<u> </u>		
•		~ 60% of interval comprised of pale brown / pinkish				
		ration due to increasing K-spar phenos as well as minor				T
	•	acent to fractures / vein selvages.				1
		its fine to coarse banded comb structures , UST (30-40° to				
CA.)		·				
-	.90- 102.50 I	Medium to coarse textures. »				
=		Fine parallel UST comb textures. Higher MoS2 than above				
section »		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				l
	126.20 Peg					
	•	olitic sections, grey / brecciated vuggy Qtz veins to 2				<u> </u>
-3 cm.	-p p-g., -p					†· ···-·
•	148.60 QFP			· · · · · · · · · · · · · · · ·		†
	-	P to Alaskite. Over this interval a transition from Qtz /				· · · · ·
		ally crowded porphyry) to a relatively equigranular				<u> </u>
		A distinct contact is not evident. We may be drilling		l		ļ
		ct (evidence for this is noted @ 137.6M, where a sharp				<u> </u>
•		en between pinkish alaskite and QFP) Notable above in				
		s and potassic alteration, flooding				
•	·	rrow seritic 50° >				<u> </u>
-		Qtz / Feldspar Peg »		····		
* 140	.00- 140.00	gaz / i didopui / og //				†
148.60	303.20 Alask	tite	223.80	226.80	5327	3.00
Rock has	s a pale yello	w green to green to creamy white colour due to weak to	226.80	229.80	5328	3.00
moderate	e sericite altei	ration of feldspar phenos ~ 30-35% grey subhedral Qtz,	229.80	232.80	5329	3.00
65% feld	spar. (35% K	-spar, 30% plag.) also 1% mafics (Bt, altering to chl /	232.80	235.80	5330	3.00
sericite)	Fluorite is ver	ry widely scattered, occuring as small specks along	235.80	238.80	5331	3.00
hairline f	ractures. Very	y fine MoS2 is rarely seen in association with fluorite	238.80	241.80	5332	3.00
and alon	g hairline frac	etures.	241.80	244.80	5333	3.00
			244.80	247.80	5334	3.00
« 184	.00- 201.00	Similar to vein @ 155.6 to 161.0 M, locally vuggy, open	247.80	250.80	5335	3.00
spaces.	Qtz vein 0° 10	0-15mm»	250.80	253.80	5336	3.00
-			253.80	L	5337	3.00
« 208	.80- 209.10	Qtz / feldspar / muscovite / peg »	F	259.80	5338	3.00
		. • •	259.80	··	5339	3.00
« 214	.20- 215.85	U/C 70° to CA, grad. contact L/C 30° to CA Shear		265.80	5340	3.00
		over top 15cm, with black / bluish spans of sulfides .	265.80	L	5341	3.00
	-	coarser MoS2. (suspect there may be more MoS2 than	268.80	l	5342	3.00
				I		

From To Rocktype & Description visually noted.)» « 224.85- 226.65 2 cm wide Qtz / Py / fl / Bt » @ 303.20 80° to CA, Fault >	S_from 271.80	S_to	Sample	Width
« 224.85- 226.65 2 cm wide Qtz / Py / fl / Bt »	271.80			
« 224.85- 226.65 2 cm wide Qtz / Py / fl / Bt »		274.80	5343	3.00
	274.80	277.80	5344	3:00
	277.80	280.80	5345	3.00
	280.80	283.80	5346	3.00
	283.80	286.80	5347	3.00
	286.80	289.80	5348	3.00
	289.80	292.80	5349	3.00
	292.80	295.80	5350	3.00
	295.80	298.80	5351	3.00
	298.80	301.80	5352	3.00
	301.80	304.80	5353	3.00
303.20 316.40 Volcanic	304.80	307.80	5354	3.00
Nicola volcanics, weak calc. / silicate, altered. Local hornfelsing, high Bt,	307.80	310.80	5355	3.00
ocal bedding is well preserved at 70° to CA, 20° to CA. Locally sheared with	h 310.80	313.80	5356	3.00
elay / chlorite gouge.	313.80	316.40	5357	2.60
@ 316.40 EOH >				
316.40 316.40 EOH				
V10.40 V10.40 E011				
·		i		
		}		
				}
				İ
				1
				ļ
	1			
	1	[1
07/02/01		 	Page	

DDH Fox 06 - 13

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-13

Logged by: R. Montgomery

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Apr 08, 2006.

Finished: Apr. 11, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686397

Northing: 5718870

Collar elev: 1296 m

Az: 90°

Dip: -45°

Length: 157.9 m

oject: Crazy Fox	Ho	Hole Number: Fox 06-13				
From To Rocktype & Description	S_from	S_to	Sample	Width		
0.00 3.00 Casing	1					
3.00 15.00 QFP	3.00	6.00	5358	3.00		
QFP, Pale grey green. ~ 10% phenos, 10% feldspar, top 12 M of interval has	6.00	9.00	5359	3.00		
imonite fractures / Mn coatings , dendrites also common @ 11.4M Qtz ± feld.	9.00	12.00	5360	3.00		
peg.	12.00	15.00	5361	3.00		
« 13.00- 13.25 Weakly defined comb textures. Very fine MoS2 along				ļ		
rregular sutures. UST »	1					
15.00 17.80 Aplite				<u>†</u>		
	15.00	18.00	5362	3.00		
Banded Aplite with narrow UST comb structures.	1			T		
				1		
« 17.45- 17.75 Cut by Qtz/Py/Ser/± Mo veins Banding						
40.00-45.00°»						
			-	1		
				1		
17.80 24.00 Aplite	18.00	21.00	5363	3.00		
	21.00	24.00	5364	3.00		
« 21.55- 21.65 UST, Minor brain rock»				1		
Banded Aplite to 20.85 M, QFP / minor aplite to end of interval				T		
24.00 28.90 UST	24.00	27.00	5365	3.00		
« Brain rock ,UST ,Comb structures »	27.00	28.90	5366	1.90		
@ 26.30 10 cm wide, cutting well developed Brain rock Shear Zone (U/c 75° to)					
CA, L/c at 40° to CA)> White clay gouge, fine grained black ground sulphides						
n shear. 'Fabric' of comb structures quite variable (10° to 80° to CA)‹ @						
28.30 cuts host rock (QP / QFP) at 40° to CA. Banded Aplite is in turn cut by						
narrow Py±Qtz veinlets 30° to CA., Aplite at right angles. > A second fracture				1		
set cuts the first at an oblique angle.						
28.90 47.00 QFP	28.90	32.00	5367	3.10		
QFP, Competent widely spread fractures (ser, Py, trace musc., trace MoS2) 30	32.00	35.00	5368	3.00		
to 40° to CA. Locally in K-spar envelopes.	35.00	38.00	5369	3.00		
	38.00	41.00	5370	3.00		
	41.00	44.00	5371	3.00		
	44.00	47.00	5372	3.00		
47.00 51.50 Aplite	47.00	50.00	5373	3.00		
	50.00	53.00	5374	3.00		
Intercalated aplite with USTcomb textures. Hosted within QFP (as above)				T		
51.50 71.90 QFP	53.00	56.00	5375	3.00		
QFP with minor aplite. Notable increase in K-spar alteration, decreasing	56.00	59.00	5376	3.00		
				+		

oject: Crazy Fox		Hole Number:Fox 06-13				
From To Rocktype & Description	S_from	S_to	Sample	Width		
sericite.	59.00	62.00	5377	3.00		
	62.00	65.00	5378	3.00		
	65.00	68.00	5379	3.00		
	68.00	71.00	5380	3.00		
71.90 75.20 Aplite				ļ		
	71.00	74.00	5381	3.00		
	74.00	77.00	5382	3.00		
With minor QFP. Peg. contact between QFP / Aplite. Prominent parallel						
structure set at 30° to CA. Contact of highly altered intrusive to aplite at 60°						
⟨ @ 73.00 Fracture post (Py / Mo) at 30°. fluidal (flow banded) 30° >						
75.20 93.65 QFP	77.00	80.00	5383	3.00		
QFP, Bt rich / Peg phase cut by narrow Aplite, 4 - 6 cm bands of Aplite, 40 -	80.00	83.00	5384	3.00		
45° to CA.	83.00	86.00	5385	3.00		
	86.00	89.00	5386	3.00		
« 87.95- 90.40 Pegmatitic phase of QFP, less K-spar, more Bt / ser , Fault 45°»	89.00	92.00	5387	3.00		
« 90.40- 93.65 BQFP with Aplitic phases, xenoliths of QFP replaced with secondary Bt, cut by secondary K-spar, Qtz fractures @ 40° to CA, Breccia »						
	92.00	93.70	5388	1.70		
93.65 157.90 Alaskite	93.70	96.70	5389	3.00		
Section fairly fresh but K-spar alteration along Qtz / Py vein selvages, minor	96.70	99.70	5390	3.00		
wolframite / Mo / « Bt »		102.70	5391	3.00		
« 118.80- 119.90 Host Alaskite with strong kaolinization, u/c 40° to		105.70	5392	3.00		
CA movement along slikensides same as previous, Fault »		108.70	5393	3.00		
(@ 133.30 High density of fracturing (multidirectional) 5 - 45°, increased		111.70	5394	3.00		
green sericite and increased kaolinite.>		114.70	5395	3.00		
@ 140.00 Very equigranular, weak clay, weak sericite, 'fresher' looking, less	+	117.70	5396	3.00		
altered, less fractured section. Alaskite >		120.70	5397	3.00		
⟨@ 157.90 EOH⟩		123.70	5398	3.00		
		126.70	5399	3.00		
		129.70	5400	3.00		
	i	132.70	5401	3.00		
	·	135.70	5402	3.00		
	135.70	138.70	5403	3.00		

oject: Crazy Fox					ber:Fox	
From	То	Rocktype & Description	S_from	S_to	Sample	Width
			138.70	141.70	5404	3.00
				144.70	5405	3.00
			144.70	147.70	5406	3.00
			147.70	150.70	5407	3.00
			150.70	153.70	5408	3.00
			153.70	156.70	5409	3.00
			156.70	157.90	5410	1.20
157.90 1	157.90 EOH					
			1	i		
						ļ
				1		
					•	
				ļ		
				1		
					Page	

DDH Fox 06 - 14

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-14

Logged by: B. Callaghan

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Apr11, 2006.

Finished: Apr. 12, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686397

Northing: 5718870

Collar elev: 1296 m

Az: Vertical

Dip: -90°

Length: 96.9m

roject: Crazy Fox	Hole Number: Fox 06				
From To Rock	type & Description	S_from	S_to	Sample	Width
0.00 2.10 Casing					
					†···
2.10 11.80 QFP					·
QFP with Aplite. 10% subhedral	grey Qtz phenos, 2mm. 1% « Bt » limonite along	·			
	ly spread 0 to 15° to CA. Pitted limonitic				†- '
with smokey grey Qtz pyrite and s					1 .
(@ 9.85 Subtle UST for 20 cm.	•				
@ 10.20 Qtz Feldspar and Peg		·			
-	ed UST comb textures at 80° to CA. »				
10.20 11.80 Peg					╆.
10.20 11.00 1 eg					
11.80 38.70 QFP			· · · · · · · · 		
	of weakly silicified (?) QFP with minor				 -
Aplitic phases. (i.e. at 30 - 30.75n	-				
Aplitic priases. (i.e. at 30 - 30.73h	1, 34.2 - 34.1 III and 37.0 - 37.3My				
. © 27.00 Strelitic comb structur					
< @ 27.00 Styelitic comb structur	es.)				
0.04.00144.84	04. CA) UST south structures host souists				·
•	o to CA), UST comb structures, host seriate				ļ
	als (med., coarse) form faint UST comb				ļ
structures.					ļ
38.70 39.70 UST					
	, UST comb structures at 70° to CA	ļ			ļ
39.70 50.50 QFP					<u> </u>
QFP with minor aplitic phases.					ļ
					<u> </u>
	condary silica) vfgr aplite, banding weak				ļ
to absent, Kaolinite on fractures	,				
50.50 54.10 UST					
Extremely well developed UST co	mb textures. Section has a bluish grey colour	·			<u> </u>
due to abundant MoS2. This inte	rval is very similar to the brain rock noted in				
06-09 at ~ 107 M. Upper contact	with aplite 45° to CA, lower contact with QFP				<u> </u>
gradational.					
54.10 66.50 QFP					
Aplite + QFP + Biotite / pegmatition	phases. Aplite exhibits well developed				
banding (60° to CA). Locally K-sp	ar crystals form crude USTcomb structures.				
Biotite rich sections and narrow p	egmatites seem to indicate proximity to the	1			
contact with the underlying graniti	c rocks. This relationship has been noted				1
in several holes (i.e. 06-12) Lowe	r contact with Alaskite gradational at 70° to				T
					+

ŀ

•

Project: Crazy Fox	Но	le Nun	ber:Fox	06-14
From To Rocktype & Description	S_from	S_to	Sample	Width
CA.				
« 56.00- 56.30 Bt, Calcite, Py rich Inclusion »				
« 65.30- 65.45 QTZ/Feldspar/Pegmatite Fault 85°»		<u> </u>		
66.50 96.90 Alaskite				
⟨ @ 80.80 Green sericite shear 80° 5cm > Clay / chlorite gouge. K-spar				
envelope in aplite (u/c), (l/c) in Alaskite				
arrotopo ir apino (aro), foo ir riadotino	. ——— <u>-——</u> .			
« 81.25- 84.85 Peg 5-12cm»These appear to be ~ 90° to CA. Associated				
with these Pegmatites are sparse large Py blebs, trace MoS2, green sericite /				
muscvite and local K-spar envelopes.				
muscylle and local N-spar envelopes.	·			
← @ 92.50 cross cut each other, several 1 to 2 mm MoS2 blebs occur adjacent to			··· ·	
this intersectiona. Qtz Veinlets. 1cm >				
this intersectiona. Qtz veiniets. 1cm >				
At a condition to the condition of the c				
Note: 99% core recovery in this hole.				
⟨@ 96.90 EOH⟩				
96.90 96.90 EOH				
		ĺ		
				'
			İ	
		1		
			:	
2007/02/01	ı	i	Page	2

DDH Fox 06 - 15

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-15

Logged by: B. Callaghan

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Apr13, 2006.

Finished: Apr. 14, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686397

Northing: 5718870

Collar elev: 1296 m

Az: 270°

Dip: -50°

Length: 78.7 m

oject: Crazy Fox				Hole Number:Fox 06-1				
From	То	Rocktype & Description	S_from	S_to	Sample	Width		
0.00	3.00 Casir	ng						
3.00	11.65 QFP	•						
QFP, sili	cified with mir	nor fine grained aplite phases, limonite & manganese				<u></u>		
dendrites	coat fracture	es. Qtz, Py veinlets, 1-3mm wide, subparallel to 30° to				1.		
CA. ,1mi	n Qtz, sericite	e moly veinlet at 45° to CA.< @ 8.00 Fractures 45°				1		
11.65	13.20 UST							
Locally o	eveloped US	T Comb / styolitic textures in Aplite at 13 M, silicified						
aplite (ba	anded) with co	omb textures.						
13.20	15.70 QFP					<u></u>		
Silicified	QFP.			<u> </u>		<u></u>		
15.70	17.50 UST	•						
Brain roc	k UST in QF	FP (silicified), well developed in QFP, no aplite, fluidal				<u> </u>		
(?) (flow	banded) text	ures 20-40° to CA.						
17.50	20.70 QFP		4					
QFP, Sil.	icified, Qtz/s	sericite / Lim / ± Mo along fractures crosscut by	ļ			T		
hairline f	ractures with	fluorite.						
« 18.	95- 20.40 S	illicified, with comb textures. QFP »						
20.70	21.10 Fault	1						
Fault, up	per contact 4	15°, lower contact 20°]		
Qtz, seri	cite, fluorite, f	Kaolinite and Limonite in						
slikensid	es across fra	octure surface at 80° to CA.						
21.10	26.80 QFP							
QFP, Ka	olinite increa:	ses with depth, silicification decreasing with depth.				I		
26.80	27.20 QFP							
QFP, US	ST comb textu	ures, abundant kaolinite, kaolin partially infills pitted						
Qtz. Co.	mb textures s	stylolitic, no Aplite.						
27.20	37.75 QFP							
QFP / ka	nolin / Breccia	a / comb textures. Developement of K-spar envelopes, cu	t					
by kaolir	altered fract	ures. Variable silicification, cut by kaolin towards						
bottom c	f interval. 🕻 🤇	34.70 Well developed UST comb structure. Evidence of	of					
moveme	nt along 30°	shear with slickensides at 80 ° to shear. >				T		
« 36.	00- 37.75 R	Rock locally Brecciated, vuggy from contact for 36 cm						
above fa	ult. Fault »							
37.75	57.30 Volca	anic Sediments						
-Nicola v	olcanic, blaci	k sediments. (manganese wad) Black silty clay / mudstor	ne			1		
with swe	lling clays. Ir	n contact (right angle) with Nicola volcaпic flows.	V			1		
Interbed	ded mudston	es with volcanic flows at 44.8. M, contact at 10° to CA.				T		
57.30	60.00 Fault	1				T		

oject: Crazy Fox	ie Num	ber:Fox	06-15	
From To Rocktype & Description	S_from	S_to	Sample	Width
Contacts destroyed) Grey clay gouge. Wall rock meta-seds (tuff?) cut by low				
ight angle Qtz / musc / Py.				1
60.00 62.15 QFP		<u>-</u>		1
QFP and or aplite phases. QFP cut by grey Qtz (weak stockworks), 30° to				
CA.				
« 61.85- 62.15 Grey clay gouge (swelling clays) Fault 30-60°»				1
62.15 78.60 Volcanic		- · · · · · · · · · · · · · · · · · · ·		
Nicola volcanics. flows, intermitent faulting. « Bt » rich , cut by late				
videly spaced calcite (±Py) veinlets at 40° to CA, these are cross-cut by finer	l			
palcite (late stage calcite).				
« 66.83- 67.58 Black clay gouge. Fault »				<u> </u>
« 68.25- 68.60 Black clay gouge. Fault »				
« 68.60- 68.85 Intrusive grey Qtz 40° to CA. »				
« 77.20- 77.70 Black / grey calcite gouge. Upper / lower contact 30° to		· }		-
CA., Fault » Calcite 1mm to CA.				-
@ 78.60 EOH >		 		†
(a) 70.00 EST.		· ·		†
78.60 78.60 EOH				+
70.00 70.00 £011		· ·		
	i			
				1
	İ			
				1
				1
				}
				ļ
				-

. •

DDH Fox 06 - 16

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-16

Logged by: R. Montgomery

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Apr. 20, 2006.

Finished: Apr. 21, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686392

Northing: 5719023

Collar elev: 1317 m

Az: 140°

Dip: -60°

Length: 94.8 m

	Crazy Fox To Rocktype & Description				Number:Fox (
From	To Re	ocktype & Description	S_from	S_to	Sample	Width
0.00	1.50 Casing					ļ
1.50	4.60 QFP		1.50	4.50	6430	3.00
		sified, 7-10% sub-rounded Qtz 'eyes'. Strongly				
	Mn dendrites.	, , , , , , , , , , , , , , , , , , , ,		+		<u> </u>
4.60	5.15 Peg		<u> </u>			1
	•		4.50	7.50	6431	3.00
Qtz feldsi	ar Pegmatite. Qtz cr	ystals to 3cm.	ļ			1
•	28.55 QFP		7.50	10.50	6432	3.00
		10% sub rounded Qtz 'eyes' (1-3mm), ~50%	10.50	13.50	6433	3.00
sub-hedr		, , ,	t t			†
olagiocia:	e phenocrysts. Loca	lly 0.5 to 1 % secondary « Bt » phenos. Strongly	13.50	16.50	6434	3.00
-		dite fractures. Black Mn coatings and	16.50	19.20	6435	2.70
	-	hing down section. * Interval is moderately to	19.20	21.10	6436	1.90
strongly s		•	21.10	23.10	6437	2.00
			23.10	26.10	6438	3.00
x Brain ro	ck_UST, convolute	ed Mo bearing layers with a pronounced fabric @				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
60° to CA						
« 19.	15- 20.10 Subtel cor	mb textures with a silica overprint. UST »		· · · · · · ·		1
« 25.	0- 28.55 Decrease	in density of limonitic fractures. »				†
28.55	30.50 Alaskite					
			26.10	29.10	6439	3.00
		,	29.10	32.10	6440	3.00
Pale grey	, medium grained, eq	quigranular texture (crystals clearly		<u> </u>		
nterlocki	ng). Ap / Peg at lower	r contact.				
30.50	47.60 QFP		32.10	35.10	6441	3.00
QFP Witt	aplite. Interval of in	tercalated banded Aplite and QFP. Entire	35.10	38.10	6442	3.00
section h	ghly silicious; very ha	ard, competent core.	38.10	41.10	6443	3.00
Locally s	ıbtle UST structures	s have developed. These have been subsequently	41.10	44.10	6444	3.00
silica floc	ded (ie 42.2 to 43.3 M	M)	44.10	47.60	6445	3.50
Very well	developed fabric witl	hin banded aplite at 60° to CA. (average)				
Green se	ricite and small Py cu	ibes on late fractures.				
« 40.	80- 40.90 Medium g	rey, medium green Alaskite cutting aplitic / QFP				T
sequenc	. Alaskite »					T
@ 47.0	0 Coarse Qtz. Comb	Structures. >				
Terminat	ed Qtz crystals to 1 c	m point up-hole. Fabric 75º to CA.				1
47.00	48.25 Peg		47.60	48.20	6446	0.60

oject: Crazy Fox From To Rocktype & Description	S_from	S_to Sample		Width
From To Rocktype & Description	3_1,0111		Campic	TTIGUI
	48.20	50.20	6447	2.00
Extremely coarse Qtz / feldspar pegmatite.				ļ
48.25 59.50 QFP	50.20	52.30	6448	2.10
QFP « Bt » rich QFP phase. This section less silicified than previous	52.30	55.30	6449	3.00
intervals, « Bt »	55.30	58.30	6450	3.00
Locally to 20%, as fresh 2-4 mm long crystals (ie: @ 49.50 to 49.80).				
« 52.30- 56.40 Locall 1% scattered 2º Bt. QFP »				\ \
15-20% large (3-5mm) sub-rounded Qtz phenos, 15-25% subhedral plag. phenos \sim				
locally clay / sericite altered.				ļ
« 56.40- 59.50 Significantly less 2° Bt than previous section. patchy				
kaolinization. Weakly silica overprint. QFP »				
	58.30	61.30	6451	3.00
59.50 80.50 Alaskite	61.30	64.30	6452	3.00
ALSK, Medium grey, medium grained equigranular alaskite. Weak to moderate clay	64.30	67.30	6453	3.00
/ sericite alteration of plagioclase.	67.30	70.30	6454	3.00
0.5% weakly scattered 2° « Bt » crystals. ‹ @ 67.50 Cream coloured aplite at	70.30	73.30	6455	3.00
30° to CA Dyke 7cm >	73.30	76.30	6456	3.00
oo to on byte form,	76.30	79.30	6457	3.00
« 78.90- 80.50 Possible UST comb structures in silica bands 20°»				
	79.30	82.30	6458	3.00
80.50 94.80 QFP	82.30	85.30	6459	3.00
QFP, Megacrystic.	85.30	88.30	6460	3.00
~3 - 5% feldspar megacrysts. Megacrysts are sub-hedral to euhedral and up to	88.30	91.30	6461	3.00
1.5 cm long. Most are plagioclase, a few large phenocrysts of orthoclase are noted.	91.30	94.80	6462	3.50
2% 2° Bt. (This unit may turn out to be a new rock unit or phase of the				}
QFP.)	ļ			l
Moderate silicification over middle portion of interval.	ļ			
woderate silicilication over middle portion of interval.	 			
« 86.00- 87.85 Core exhibits a patchy brick red colour due to hematitic				<u></u>
staining. »				ļ
⟨ @ 94.80 EOH ›				
			Page	

					ber:Fox 06-1	
rom	То	Rocktype & Description	S_from	S_to	Sample	Width
		•	<u>.</u>			
94.80	94.80 EOH				.,	ļ.
		•		1		
				Ī		
		,				
				Ì		
						İ
				}		
				`		
			·			
7/02/01					Page	

DDH Fox 06 - 17

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-17

Logged by: R. Montgomery

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Apr. 21, 2006.

Finished: Apr. 24, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686406

Northing: 5718996

Collar elev: 1318 m

Az: 140°

Dip: -60°

Length: 72.9 m

roject: Crazy Fox		ber:Fox	т——	
From To Rocktype & Description	S_from	S_to	Sample	Width
0.00 1.50 Casing				ļ
1.50 20.55 QFP	1.50	4.50	6463	3.00
QFP, Pale to medium grey bleached, silicified Qtz feldspar porphyry. 7 - 10%	4.50	7.50	6464	3.00
sub-rounded 1-2 mm Qtz 'eyes', 10-15% sub-hedral feldspar phenos.	7.50	10.50	6465	3.00
(predominantly plag.) Overall 1-2% 2° « Bt » , local biotite rich phases, up to	10.50	13.50	6466	3.00
20% biotite. (ie: 7.3-7.55 M, 7.9-8.3 M, 10.9-11.10M0).	13.50	16.50	6467	3.00
Upper 11 M of hole extremely limonitic, also Manganese and Mn dendrites on	16.50	19.50	6468	3.00
fractures. Core is brittle, broken over first 10-12 M. Pervasive	19.50	20.50	6469	1.00
silicification.c @ 6.40 Discontinuous micro-comb structures within a				1
silicified QFP. x @ 18.80 Qtz / feldspar Peg. Minor interstitial fluorite /				Ţ
MoS2. 10cm >				T
20.55 22.00 UST				1
	20.50	22.00	6470	1.50
Brain Rock, UST. Extremely well developed, moly-rich comb structures. Fabric				1
variable, but generally at ~70° to CA. (Note: 2cm wide aplite dike cross cuts		1		1
Brain Rock at 25° to CA)	}	f		
22.00 31.60 Aplite	22.00	25.00	6471	3.00
APLITE, light grey silicious, vfgr Aplite exhibits local ghost-like banding	25.00	28.00	6472	3.00
fabric ~60-70° to CA. Interbedded QFP consists of 10-15% rounded Qtz 'eyes',	28.00	31.60	6473	3.60
10-20 %, 2-3 mm, plg. phenos set in an aphanitic cream coloured to light grey	i i			T
groundmass. Fractures limonitic / jarositic.				† — ·
« 25.15- 25.35 Finely banded brain rock is cut by a medium grained				
aplite dyke. UST 10cm» (true width)]			Ť
31.60 32.10 UST]			
	31.60	32.70	6474	1.10
Pegmatite and UST brain rock. Section of highly contorted comb layers,				Ť
truncated Qtz fragments and coarse Qtz / feldspar Pegmatite.				<u> </u>
32.10 53.70 Aplite	32.70	35.70	6475	3.00
Aplite, Same as 22-0 - 31.60 M section.	35.70	38.70	6476	3.00
« 34.85- 35.30 UST, Brain rock. »	38.70	41.70	6477	3.00
Pyritic / sericitic fractures.	41.70	42.70	6478	1.00
« 42.70- 43.20 UST, Brain rock: Deeper comb structures carry less MoS2	42.70	43.30	6479	0.60
than at 20.55-22.00. MoS2 occurs as finer and less concentrated disseminations	43.30	46.30	6480	3.00
within comb Qtz layers.»	46.30	49.30	6481	3.00
« 44.50- 47.10 Coarse megacrystic. Sericite / Bt alt'd. QFP »	49.30	52.30	6482	3.00
@ 52.50 Well developed banding (65° to CA), strongly silicified. QFP	52.30	53.70	6483	1.40
07/02/01			Page	

oject: Crazy Fox	Hole Number: Fox 06-17				
From To Rocktype & Description	S_from	S_to	Sample	Width	
53.70 66.80 QFP	53.70	56.70	6484	3.00	
FP, Megascrystic. Pale to medium grey porphyry. Sparse euhedral to	56.70	59.70	6485	3.00	
ub-hedral plag. megacrysts to 1.8 cm. This interval is similar to: 06-16,	59.70	62.40	6486	2.70	
0.50 - 94.80M however there are fewer megacrysts in 06-17. section well	62.40	65.70	6487	3.30	
	65.70	68.70	6488	3.00	
ilicified.				İ	
66.80 72.90 Alaskite	68.70	71.70	6489	3.00	
LSK, Equigranular sericite / clay altered alaskite. Minor MoS2, associated	71.70	72.80	6490	1.10	
vith 20-25° to CA. 1/2 - 1 % 2° « Bt »					
				1	
« 72.70- 72.80 Aplite at 35° to CA. Dyke 10.00cm»					
@ 72.90 EOH >					
72.90 72.90 EOH					
		1		į	
		}			
)			
		1			
	1	1			
				1	
				i	
	j i				
				1	

DDH Fox 06 - 18

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-18

Logged by: R. Montgomery

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Apr. 24, 2006.

Finished: Apr. 25, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686414

Northing: 5718960

Collar elev: 1314 m

Az: 160°

Dip: -60°

Length: 103.0 m

1.50 31.70 QFP QFP, pale to med. bleached, silicified porphyry. Limonitic stains on fractures. imonite soaks several cm's into rock fractures. Manganese coatings and lendrites to ~ 12M. Rock varies from sparsley porphyritic to a crowded porphyry. Phenos generally set in a fine aphanitic ground mass. ~ 7-10% pub-rounded 1-2 mm grey Qtz 'eyes'. 5-10% sub-hedral 2-3mm plag. phenos. Plag. Poally alt'd to fg green ser. Locally 1/2% 2° « Bt » « 12.30- 12.55 Pale grey Aplite, broken core at contacts. aplite cut by several sericite ± muskovite / Py micro veinlets. Dyke 40.00°» « 22.40- 22.60 Aplite, as previous section, u/c at 60° to CA, l/c at 10° to CA. Dyke » 31.70 71.90 Aplite @ 32.30 Pegmatite > Sequence of QFP, aplitic phases, Qtz / feldspar Peg, combinant tructures and brain rock. Comb structures / brain rock developed in Aplite, appers, in turn, later aplite dykes cut comb structures. @ 48.20 Weakly panded Aplite truncates well developed comb features. Dyke 12cm > A 2 mm wide, 50° to CA, grey Qtz vein in turn cuts the aplite and adjacent QFP. « @ 15.10 Micro scale comb structures. Late stage fractures with green ser. / musc. / fluorite. Peg. » @ 44.00 Terminated Qtz xtals in comb structures property in turn phole. >	1.50 4.50 7.50 10.50 13.50 16.50 22.50 22.50 28.50 31.70 35.00 38.00 41.00 47.00	4.50 7.50 10.50 13.50 16.50 19.50 22.50 25.50 28.50 31.70 35.00 38.00 41.00 44.00 47.00 50.00	6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 4551 4552 4553 4554	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.20 3.30 3.00 3.0
1.50 31.70 QFP OFP, pale to med. bleached, silicified porphyry. Limonitic stains on fractures. imonite soaks several cm's into rock fractures. Manganese coatings and dendrites to ~ 12M. Rock varies from sparsley porphyritic to a crowded porphyry. Phenos generally set in a fine aphanitic ground mass. ~ 7-10% pub-rounded 1-2 mm grey Qtz 'eyes'. 5-10% sub-hedral 2-3mm plag. phenos. Plag. Ocally alt'd to fig green ser. Locally 1/2% 2° « Bt » « 12.30- 12.55 Pale grey Aplite, broken core at contacts. aplite cut by several sericite ± muskovite / Py micro veinlets. Dyke 40.00° » « 22.40- 22.60 Aplite, as previous section, u/c at 60° to CA, l/c at 10° to CA. Dyke » 31.70 71.90 Aplite ② 32.30 Pegmatite >Sequence of QFP, aplitic phases, Qtz / feldspar Peg, combinativativational Aplite / QFP. Multiple aplite phases occur within combinatives and brain rock. Combistructures / brain rock developed in Aplite, QFP and transitional Aplite / QFP. Multiple aplite phases occur within combinatives, in turn, later aplite dykes cut combistructures. ② 48.20 Weakly appeared Aplite truncates well developed combifeatures. Dyke 12cm > A 2 mm applied by the combinative of the property of the phase occur with green ser. / musc. / fluorite. Peg. > ② 44.00 Terminated Qtz xtals in combistructures opening up hole. >	4.50 7.50 10.50 13.50 16.50 19.50 22.50 25.50 28.50 31.70 35.00 38.00 41.00 44.00	7.50 10.50 13.50 16.50 19.50 22.50 25.50 28.50 31.70 35.00 38.00 41.00 47.00	6492 6493 6494 6495 6496 6497 6498 6499 6500 4551 4552 4553 4554 4555	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.20 3.30 3.00 3.0
OFP, pale to med. bleached, silicified porphyry. Limonitic stains on fractures. imonite soaks several cm's into rock fractures. Manganese coatings and lendrites to ~ 12M. Rock varies from sparsley porphyritic to a crowded lorphyry. Phenos generally set in a fine aphanitic ground mass. ~ 7-10% pub-rounded 1-2 mm grey Qtz 'eyes'. 5-10% sub-hedral 2-3mm plag. phenos. Plag. Ocally alt'd to fig green ser. Locally 1/2% 2° « Bt » « 12.30- 12.55 Pale grey Aplite, broken core at contacts. aplite cut by several sericite ± muskovite / Py micro veinlets. Dyke 40.00° » « 22.40- 22.60 Aplite, as previous section, u/c at 60° to CA, l/c at 10° to CA. Dyke » 31.70 71.90 Aplite ② 32.30 Pegmatite >Sequence of QFP, aplitic phases, Qtz / feldspar Peg, combitant tructures and brain rock. Comb structures / brain rock developed in Aplite, QFP and transitional Aplite / QFP. Multiple aplite phases occur within combinates in turn, later aplite dykes cut comb structures. ② 48.20 Weakly pended Aplite truncates well developed comb features. Dyke 12cm > A 2 mm 100 per 100	4.50 7.50 10.50 13.50 16.50 19.50 22.50 25.50 28.50 31.70 35.00 38.00 41.00 44.00	7.50 10.50 13.50 16.50 19.50 22.50 25.50 28.50 31.70 35.00 38.00 41.00 47.00	6492 6493 6494 6495 6496 6497 6498 6499 6500 4551 4552 4553 4554 4555	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.20 3.30 3.00 3.0
lendrites to ~ 12M. Rock varies from sparsley porphyritic to a crowded lendrites to ~ 12M. Rock varies from sparsley porphyritic to a crowded lendrites to ~ 12M. Rock varies from sparsley porphyritic to a crowded lendrites to ~ 12M. Rock varies from sparsley porphyritic to a crowded lendrites to ~ 12M. Rock varies from sparsley porphyritic to a crowded lendrites to ~ 12M. Rock varies from sparsley porphyritic to a crowded lendrites. ~ 7-10% lendrites. ~ 7-10% lendrites. ~ 7-10% lendrites. Palag. Pla	7.50 10.50 13.50 16.50 19.50 22.50 25.50 28.50 31.70 35.00 38.00 41.00 44.00	10.50 13.50 16.50 19.50 22.50 25.50 28.50 31.70 35.00 38.00 41.00 47.00	6493 6494 6495 6496 6497 6498 6499 6500 4551 4552 4553 4554 4555	3.00 3.00 3.00 3.00 3.00 3.00 3.20 3.30 3.00 3.0
representation of the compositio	10.50 13.50 16.50 19.50 22.50 25.50 28.50 31.70 35.00 38.00 41.00 44.00	13.50 16.50 19.50 22.50 25.50 28.50 31.70 35.00 38.00 41.00 44.00 47.00	6494 6495 6496 6497 6498 6499 6500 4551 4552 4553 4554 4555	3.00 3.00 3.00 3.00 3.00 3.20 3.30 3.00 3.0
corphyry. Phenos generally set in a fine aphanitic ground mass. ~ 7-10% aub-rounded 1-2 mm grey Qtz 'eyes'. 5-10% sub-hedral 2-3mm plag. phenos. Plag. Cocally alt'd to fig green ser. Locally 1/2% 2° « Bt » « 12.30- 12.55 Pale grey Aplite, broken core at contacts. aplite cut by several sericite ± muskovite / Py micro veinlets. Dyke 40.00° » « 22.40- 22.60 Aplite, as previous section, u/c at 60° to CA, l/c at 10° to CA. Dyke » 31.70 71.90 Aplite ② 32.30 Pegmatite > Sequence of QFP, aplitic phases, Qtz / feldspar Peg, combostructures and brain rock. Comb structures / brain rock developed in Aplite, QFP and transitional Aplite / QFP. Multiple aplite phases occur within combosyers, in turn, later aplite dykes cut comb structures. « ② 48.20 Weakly planded Aplite truncates well developed comb features. Dyke 12cm > A 2 mm wide, 50° to CA, grey Qtz vein in turn cuts the aplite and adjacent QFP. « ② 15.10 Micro scale comb structures. Late stage fractures with green ser. / musc. / fluorite. Peg. » ② 44.00 Terminated Qtz xtals in comb structures point up hole. >	13.50 16.50 19.50 22.50 25.50 28.50 31.70 35.00 38.00 41.00 44.00	16.50 19.50 22.50 25.50 28.50 31.70 35.00 38.00 41.00 44.00 47.00	6495 6496 6497 6498 6499 6500 4551 4552 4553 4554 4555	3.00 3.00 3.00 3.00 3.20 3.30 3.00 3.00
corphyry. Phenos generally set in a fine aphanitic ground mass. ~ 7-10% aub-rounded 1-2 mm grey Qtz 'eyes'. 5-10% sub-hedral 2-3mm plag. phenos. Plag. Cocally alt'd to fig green ser. Locally 1/2% 2° « Bt » « 12.30- 12.55 Pale grey Aplite, broken core at contacts. aplite cut by several sericite ± muskovite / Py micro veinlets. Dyke 40.00° » « 22.40- 22.60 Aplite, as previous section, u/c at 60° to CA, l/c at 10° to CA. Dyke » 31.70 71.90 Aplite ② 32.30 Pegmatite > Sequence of QFP, aplitic phases, Qtz / feldspar Peg, combostructures and brain rock. Comb structures / brain rock developed in Aplite, QFP and transitional Aplite / QFP. Multiple aplite phases occur within combosyers, in turn, later aplite dykes cut comb structures. « ② 48.20 Weakly planded Aplite truncates well developed comb features. Dyke 12cm > A 2 mm wide, 50° to CA, grey Qtz vein in turn cuts the aplite and adjacent QFP. « ② 15.10 Micro scale comb structures. Late stage fractures with green ser. / musc. / fluorite. Peg. » ② 44.00 Terminated Qtz xtals in comb structures point up hole. >	19.50 22.50 25.50 28.50 31.70 35.00 38.00 41.00 44.00	19.50 22.50 25.50 28.50 31.70 35.00 38.00 41.00 44.00 47.00	6496 6497 6498 6499 6500 4551 4552 4553 4554 4555	3.00 3.00 3.00 3.20 3.30 3.00 3.00 3.00
Plag. Pl	19.50 22.50 25.50 28.50 31.70 35.00 38.00 41.00 44.00	22.50 25.50 28.50 31.70 35.00 38.00 41.00 44.00 47.00	6497 6498 6499 6500 4551 4552 4553 4554 4555	3.00 3.00 3.20 3.30 3.00 3.00 3.00 3.00
acally alt'd to fg green ser. Locally 1/2% 2° « Bt » « 12.30- 12.55 Pale grey Aplite, broken core at contacts. aplite cut by several sericite ± muskovite / Py micro veinlets. Dyke 40.00°» « 22.40- 22.60 Aplite, as previous section, u/c at 60° to CA, l/c at 10° to CA. Dyke » 31.70 71.90 Aplite ② 32.30 Pegmatite > Sequence of QFP, aplitic phases, Qtz / feldspar Peg, comb attructures and brain rock. Comb structures / brain rock developed in Aplite, QFP and transitional Aplite / QFP. Multiple aplite phases occur within comb ayers, in turn, later aplite dykes cut comb structures. ② 48.20 Weakly branded Aplite truncates well developed comb features. Dyke 12cm > A 2 mm avide, 50° to CA, grey Qtz vein in turn cuts the aplite and adjacent QFP. « ② 15.10 Micro scale comb structures. Late stage fractures with green ser. / anusc. / fluorite. Peg. > « ② 44.00 Terminated Qtz xtals in comb structures boint up hole. >	22.50 25.50 28.50 31.70 35.00 38.00 41.00 44.00	25.50 28.50 31.70 35.00 38.00 41.00 44.00 47.00	6498 6499 6500 4551 4552 4553 4554 4555	3.00 3.00 3.20 3.30 3.00 3.00 3.00 3.00
« 12.30- 12.55 Pale grey Aplite, broken core at contacts. aplite cut by several sericite ± muskovite / Py micro veinlets. Dyke 40.00°» « 22.40- 22.60 Aplite, as previous section, u/c at 60° to CA, l/c at 10° to CA. Dyke » 31.70 71.90 Aplite ② 32.30 Pegmatite >Sequence of QFP, aplitic phases, Qtz / feldspar Peg, combustructures and brain rock. Comb structures / brain rock developed in Aplite, QFP and transitional Aplite / QFP. Multiple aplite phases occur within combusyers, in turn, later aplite dykes cut comb structures. (② 48.20 Weakly panded Aplite truncates well developed comb features. Dyke 12cm > A 2 mm wide, 50° to CA, grey Qtz vein in turn cuts the aplite and adjacent QFP. (② 15.10 Micro scale comb structures. Late stage fractures with green ser. / musc. / fluorite. Peg. > (② 44.00 Terminated Qtz xtals in comb structures	25.50 28.50 31.70 35.00 38.00 41.00 44.00	28.50 31.70 35.00 38.00 41.00 44.00 47.00	6499 6500 4551 4552 4553 4554 4555	3.00 3.20 3.30 3.00 3.00 3.00 3.00
y several sericite ± muskovite / Py micro veinlets. Dyke 40.00°» « 22.40- 22.60 Aplite, as previous section, u/c at 60° to CA, l/c at 10° to CA. Dyke » 31.70 71.90 Aplite ② 32.30 Pegmatite > Sequence of QFP, aplitic phases, Qtz / feldspar Peg, comb itructures and brain rock. Comb structures / brain rock developed in Aplite, QFP and transitional Aplite / QFP. Multiple aplite phases occur within comb ayers, in turn, later aplite dykes cut comb structures. (② 48.20 Weakly panded Aplite truncates well developed comb features. Dyke 12cm > A 2 mm vide, 50° to CA, grey Qtz vein in turn cuts the aplite and adjacent QFP. (② 15.10 Micro scale comb structures. Late stage fractures with green ser. / musc. / fluorite. Peg. > (② 44.00 Terminated Qtz xtals in comb structures	31.70 35.00 38.00 41.00 44.00	31.70 35.00 38.00 41.00 44.00 47.00	4551 4552 4553 4554 4555	3.20 3.30 3.00 3.00 3.00 3.00
« 22.40- 22.60 Aplite, as previous section, u/c at 60° to CA, l/c at 10° to CA. Dyke » 31.70 71.90 Aplite @ 32.30 Pegmatite >Sequence of QFP, aplitic phases, Qtz / feldspar Peg, comb itructures and brain rock. Comb structures / brain rock developed in Aplite, QFP and transitional Aplite / QFP. Multiple aplite phases occur within comb ayers, in turn, later aplite dykes cut comb structures. (48.20 Weakly branded Aplite truncates well developed comb features. Dyke 12cm > A 2 mm avide, 50° to CA, grey Qtz vein in turn cuts the aplite and adjacent QFP. (15.10 Micro scale comb structures. Late stage fractures with green ser. / anusc. / fluorite. Peg. > (44.00 Terminated Qtz xtals in comb structures) input to CA, like the comb structures opinit up hole. >	31.70 35.00 38.00 41.00 44.00	35.00 38.00 41.00 44.00 47.00	4551 4552 4553 4554 4555	3.30 3.00 3.00 3.00 3.00
31.70 71.90 Aplite @ 32.30 Pegmatite >Sequence of QFP, aplitic phases, Qtz / feldspar Peg, comb structures and brain rock. Comb structures / brain rock developed in Aplite, QFP and transitional Aplite / QFP. Multiple aplite phases occur within comb ayers, in turn, later aplite dykes cut comb structures. (@ 48.20 Weakly branded Aplite truncates well developed comb features. Dyke 12cm > A 2 mm avide, 50° to CA, grey Qtz vein in turn cuts the aplite and adjacent QFP. (@ 45.10 Micro scale comb structures. Late stage fractures with green ser. / anusc. / fluorite. Peg. > (@ 44.00 Terminated Qtz xtals in comb structures) applied to the property of t	35.00 38.00 41.00 44.00	38.00 41.00 44.00 47.00	4552 4553 4554 4555	3.00 3.00 3.00 3.00
@ 32.30 Pegmatite >Sequence of QFP, aplitic phases, Qtz / feldspar Peg, comb structures and brain rock. Comb structures / brain rock developed in Aplite, QFP and transitional Aplite / QFP. Multiple aplite phases occur within comb ayers, in turn, later aplite dykes cut comb structures. @ 48.20 Weakly randed Aplite truncates well developed comb features. Dyke 12cm > A 2 mm vide, 50° to CA, grey Qtz vein in turn cuts the aplite and adjacent QFP. < @ 45.10 Micro scale comb structures. Late stage fractures with green ser. / musc. / fluorite. Peg. > @ 44.00 Terminated Qtz xtals in comb structures point up hole. >	35.00 38.00 41.00 44.00	38.00 41.00 44.00 47.00	4552 4553 4554 4555	3.00 3.00 3.00 3.00
tructures and brain rock. Comb structures / brain rock developed in Aplite, QFP and transitional Aplite / QFP. Multiple aplite phases occur within comb ayers, in turn, later aplite dykes cut comb structures. (@ 48.20 Weakly branded Aplite truncates well developed comb features. Dyke 12cm > A 2 mm vide, 50° to CA, grey Qtz vein in turn cuts the aplite and adjacent QFP. (@ 15.10 Micro scale comb structures. Late stage fractures with green ser. / musc. / fluorite. Peg. > (@ 44.00 Terminated Qtz xtals in comb structures point up hole. >	38.00 41.00 44.00	41.00 44.00 47.00	4553 4554 4555	3.00 3.00 3.00
QFP and transitional Aplite / QFP. Multiple aplite phases occur within comb ayers, in turn, later aplite dykes cut comb structures. @ 48.20 Weakly panded Aplite truncates well developed comb features. Dyke 12cm > A 2 mm avide, 50° to CA, grey Qtz vein in turn cuts the aplite and adjacent QFP. < @ 45.10 Micro scale comb structures. Late stage fractures with green ser. / musc. / fluorite. Peg. > < @ 44.00 Terminated Qtz xtals in comb structures point up hole. >	41.00 44.00	44.00 47.00	4554 4555	3.00
ayers, in turn, later aplite dykes cut comb structures. @ 48.20 Weakly reanded Aplite truncates well developed comb features. Dyke 12cm > A 2 mm vide, 50° to CA, grey Qtz vein in turn cuts the aplite and adjacent QFP. < @ 15.10 Micro scale comb structures. Late stage fractures with green ser. / nusc. / fluorite. Peg. >< @ 44.00 Terminated Qtz xtals in comb structures point up hole. >	44.00	47.00	4555	3.00
vanded Aplite truncates well developed comb features. Dyke 12cm > A 2 mm vide, 50° to CA, grey Qtz vein in turn cuts the aplite and adjacent QFP. < @ 45.10 Micro scale comb structures. Late stage fractures with green ser. / nusc. / fluorite. Peg. >< @ 44.00 Terminated Qtz xtals in comb structures point up hole. >				 -
vide, 50° to CA, grey Qtz vein in turn cuts the aplite and adjacent QFP. < @ 15.10 Micro scale comb structures. Late stage fractures with green ser. / nusc. / fluorite. Peg. >< @ 44.00 Terminated Qtz xtals in comb structures point up hole. >	47.00	50.00	AFFC	2.00
15.10 Micro scale comb structures. Late stage fractures with green ser. / nusc. / fluorite. Peg. >< @ 44.00 Terminated Qtz xtals in comb structures point up hole. >	- · · +		4556	3.00
nusc. / fluorite. Peg. >< @ 44.00 Terminated Qtz xtals in comb structures point up hole. >	50.00	52.00	4557	2.00
point up hole. >	52.00	55.00	4558	3.00
· · · · · · · · · · · · · · · · · · ·	55.00	58.00	4559	3.00
# 47.15, 49.00 Pegmatitic Otz / feld / + fl. musc. Vain 35° 2cms	58.00	61.00	4560	3.00
W TI. 10 TO TOURISM WELFIELD. I III. HUGO, VOIL OF ZOIL	61.00	64.00	4561	3.00
« 47.95- 48.30 Brain rock, comb layer sub to CA. UST »	64.00	67.00	4562	3.00
@ 52.70 Banded Aplite, (60° to CA) >	67.00	69.50	4563	2.50
« 53.50- 53.90 Low MoS2 »	69.50	71.50	4564	2.00
@ 66.00 Low MoS2 >	71.50	71.90	4565	0.40
« 67.20- 67.50 U/c 50° to CA. L/c 35° to CA Alaskite »				
« 71.50- 71.90 Well developed Brain rock in contact with underlying				
panded aplite (50° to CA fabric of B.R. and aplite.) UST »		{		
71.90 78.35 QFP	71.90	74.90	4566	3.00
QFP,Brown to pale grey, variably silicified porphyry ~ 7% 2 mm Qtz 'eyes'.	74.90	77.90	4567	3.00
-5-10% plag. phenos. (weakly clay / ser. altered with a silica overprint.)				
Brown to grey vf aphanitic groundmass.				
	77.90	80.90	4568	3.00
78.35 88.20 Alaskite	80.90	83.90	4569	3.00
Medium grained equigranular alaskite, med. grey to salmon pink (due to weak	83.90	86.90	4570	3.00

roject: Crazy Fox			Hole Number: Fox 06-18				
From	То	Rocktype & Description	S_from	S_to	Sample	Width	
ootassic	altn) Patch	ny 2° « Bt » alteration / ± K-spar alteration.					
	•	te toward bottom of interval.				ļ	
78.55	94.50 Peg		80.90	83.90	4569	3.00	
	d. Peg. trace	fluorite.	83.90	86.90	4570	3.00	
			86.90	89.90	4571	3.00	
			89.90	92.90	4572	3.00	
			92.90	94.50	4573	1.60	
88.20	78.55 QFP					İ	
QFP, Sa	me as above	(71.90-78.34M)				T	
« 91.	.40- 91.80 C	Qtz / feldspar Peg., Py / Ser, on Fractures »					
94.50	103.00 QFP		94.50	97.50	4574	3.00	
« Bt » ric	ch phase of th	he QFP,. Local 10cm widths of 15-25% Bt.< @ 98.40	97.50	100.50	4575	3.00	
nclusior	of Qtz / feld	peg and alaskite. >< @ 102.00 Qtz / feld Peg. >	100.50	103.00	4576	2.50	
@ 103.	.00 EOH >						
103.00	103.00 EOH						
			,			Ī	
						ļ	
				1			
		•		ļ		İ	
				j			
	•						
			}				
					•		
				1		1	
	•						
				ļ			
07/02/01					Page		

.

.

DDH Fox 06 - 19

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-19

Logged by: B. Callaghan

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Apr. 24, 2006.

Finished: Apr. 30, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686827

Northing: 5719249

Collar elev: 1358 m

Az: 180°

Dip: -60°

Length: 364.3 m

pject: Crazy Fox From To Rocktype & Description	S_from	S_to	Sample	Width
From To Rocktype & Description	3_110111			-
0.00 5.20 Casing	\]
· ·				
5.20 25.10 Alaskite	5.20	8.00	5701	2.80
laskite with Intense limonite along fractures at 20 - 70° to 6.30 M	8.00	11.00	5702	3.00
- · · · · · · · · · · · · · · · · · · ·	11.00	14.00	5703	3.00
« 6.30- 6.70 Black crushed sulphides with Py. Fault 60°»	14.00	17.00	5704	3.00
Veak K-spar alteration envelopes along fractures.	17.00	20.00	5705	3.00
@ 11.00 With Py, MoS2, Qtz veinlet 5°,1cm	20.00	23.00	5706	3.00
1.20 - 17.50 Less fractured.>	23.00	25.01	5707	2.01
]			
25.10 27.20 Peg	l · · · · · · · · · · - · - · - · - · -			1
20.10 27.20 1 09	25.01	27.02	5708	2.01
	27.02	30.00	5709	2.98
Pegmatite, With Qtz. Spectacular Py, pyrrhotite, wolframite, MoS2 in vuggy				<u> </u>
rey Qtz. U/c 15° to CA.				}
27.20 132.30 Alaskite	30.00	32.03	5710	2.03
Maskite, 40° contact with Peg. to CA.	32.03	35.00	5711	2.97
waskite, 40° contact with reg. to CA. « 24.00- 38.41 Hybrid vfgr Qtz 'eyes' alaskite with aphanitic	35.00	38.00	5712	3.00
	38.00	41.00	5712	3.00
roundmass ~ 10% Qtz eyes in Aplite »	41.00			3.00
@ 30.41 Stronger clay, sericite selvages with pervasive silicification as	1	44.00	5714	
reins flooding groundmass, multidirectional and Pegmatitic.	44.00	47.00	5715	3.00
@ 41.60 Weak UST comb development. >	47.00	50.00	5716	3.00
44,00-47.00 Pervasive Ser. Musc. Qtz running down CA. Intervals up to 25 cms	50.00	53.00	5717	3.00
·	53.00	56.00	5718	3.00
« 50.90- 58.00 Interval highly silicious with hybrid Qtz eye Aplitic	56.00	59.00	5719	3.00
phases, cut by grey Qtz up to 1~1.5 cms with Py, MoS2. QFP 10-15°»	59.00	62.00	5720	3.00
Veakly brecciated, primary textures obliterated.	62.00	65.00	5721	3.00
« 58.00- 82.00 Lower contact 80° to CA, Fresher, less pervasive	65.00	68.00	5722	3.00
ilicification, less fracturing, Ser in selvages. Grey Qtz occurs as local	68.00	71.00	5723	3.00
looding with Py masses, Fluorite?, Po, MoS2, ± FeWo4 » Widely spaced Qtz	71.00	74.00	5724	3.00
reinlets up to 3 mm at 10°, 20°, 40° to CA. At 74m, 1% « Bt » up to 2 mm	74.00	77.00	5725	3.00
ncreases with depth, fresh, flakey. Development of Qtz stockwork with Qtz	77.00	80.00	5726	3.00
reinlets from 1 mm to 1.5 mm at 20 °, 30° and 40° to CA, cut by stylolitic moly	80.00	83.00	5727	3.00
ractures.	83.00	86.00	5728	3.00
« 90.00- 92.10 Mixed QFP »	86.00	88.00	5729	2.00
« 90.00- 90.80 Hybrid Qtz eye, Aplite , very silicious.»	88.00	91.00	5730	3.00
« 96.00- 97.50 Close spaced, crushed sulphides: Py, Mo. In more	91.00	93.00	5731	2.00
ntense kaolinized shear zone, cut by stylolitic Moly. Fracture 80° 1mm»	93.00	96.00	5732	3.00

« 99.00- 106.50 Less fractured, variable clay alteration. » ⊕ 106.50 Wide spaced fractures up to 3 mm at 30° ~ 5° cut by styolitic fractures at 50°.) « 108.00- 132.30 Weak Qtz stockwork development, variably 5°~30°~40°, 2mm to 4 mm in variably silicious alaskite, cut by intermittent narrow aplite. ⊕ K-spar envelopes with grey Qtz , walled with MoS2, to CA. 132.30 132.68 QFP QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (② 144.80 Fluorite interstitial (minor).) « 145.60- 146.00 Extends to CA. QFP 40cm» (③ 149.00 Moly with weak comb texture , 40° fracture with 1-2mm MoS2 , slickensided at 10° >	108.00 111.00 114.00 120.00 123.00 126.00 129.00 132.00 135.00 138.00 141.00	102.00 105.00 108.00 111.00 114.00 120.00 123.00 126.00 129.00 132.00	5742 5743 5744 5745 5746 5747	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
(a) 106.50 Wide spaced fractures up to 3 mm at 30° ~ 5° cut by styolitic fractures at 50°.) « 108.00- 132.30 Weak Qtz stockwork development, variably 5°~30°~40°, 2mm to 4 mm in variably silicious alaskite, cut by intermittent narrow aplite. »K-spar envelopes with grey Qtz, walled with MoS2, to CA. 132.68 QFP QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (a) 144.80 Fluorite interstitial (minor). > « 145.60- 146.00 Extends to CA. QFP 40cm» (a) 149.00 Moly with weak comb texture, 40° fracture with 1-2mm MoS2, slickensided at 10° >	99.00 102.00 105.00 108.00 111.00 114.00 120.00 123.00 126.00 129.00 135.00 138.00 141.00 144.00	102.00 105.00 108.00 111.00 114.00 120.00 123.00 126.00 129.00 132.00 135.00	5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5744	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
fractures at 50°, > « 108,00- 132.30 Weak Qtz stockwork development, variably 5°~30°~40°, 2mm to 4 mm in variably silicious alaskite, cut by intermittent narrow aplite. »K-spar envelopes with grey Qtz , walled with MoS2, to CA. 132.30 132.68 QFP QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. « ① 144.80 Fluorite interstitial (minor). > « 145.60- 146.00 Extends to CA. QFP 40cm» « ② 149.00 Moly with weak comb texture , 40° fracture with 1-2mm MoS2 , slickensided at 10° >	102.00 105.00 108.00 111.00 114.00 120.00 123.00 126.00 129.00 132.00 135.00 138.00 141.00 144.00	105.00 108.00 111.00 117.00 120.00 123.00 126.00 129.00 132.00 135.00	5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5744 5745	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
« 108.00- 132.30 Weak Qtz stockwork development, variably 5°~30°~40°, 2mm to 4 mm in variably silicious alaskite, cut by intermittent narrow aplite. »K-spar envelopes with grey Qtz , walled with MoS2, to CA. QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA.,and FeWO4. « 145.60- 146.00 Extends to CA. QFP 40cm» « 149.00 Moly with weak comb texture , 40° fracture with 1-2mm MoS2 ,slickensided at 10° >	105.00 108.00 111.00 114.00 120.00 123.00 126.00 129.00 135.00 135.00 141.00 144.00	108.00 111.00 114.00 117.00 120.00 123.00 126.00 129.00 132.00 135.00	5736 5737 5738 5739 5740 5741 5742 5743 5744 5744	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
2mm to 4 mm in variably silicious alaskite, cut by intermittent narrow aplite. »K-spar envelopes with grey Qtz, walled with MoS2, to CA. 132.30 132.68 QFP QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (@ 144.80 Fluorite interstitial (minor).) « 145.60-146.00 Extends to CA. QFP 40cm» (@ 149.00 Moly with weak comb texture, 40° fracture with 1-2mm MoS2, slickensided at 10°)	108.00 111.00 114.00 120.00 123.00 126.00 129.00 132.00 135.00 138.00 141.00	111.00 114.00 117.00 120.00 123.00 126.00 129.00 132.00 135.00	5737 5738 5739 5740 5741 5742 5743 5744 5744	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
***N-Spar envelopes with grey Qtz , walled with MoS2, to CA. **132.30 132.68 QFP **QFP with K-spar envelopes and massive Py in Qtz. **132.68 187.00 Alaskite** Stockwork of grey Qtz is well developed and fairly consistent in this interval. **Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. **(**@ 144.80 Fluorite interstitial (minor). > **(** 145.60-146.00 Extends to CA. QFP 40cm.*) **(**@ 149.00 Moly with weak comb texture , 40° fracture with 1-2mm MoS2 , slickensided at 10° >	111.00 114.00 117.00 120.00 123.00 126.00 129.00 135.00 135.00 141.00 144.00	114.00 117.00 120.00 123.00 126.00 129.00 132.00 135.00	5738 5739 5740 5741 5742 5743 5744 5744	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
132.30 132.68 QFP QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (@ 144.80 Fluorite interstitial (minor). > « 145.60- 146.00 Extends to CA. QFP 40cm» (@ 0 149.00 Moly with weak comb texture, 40° fracture with 1-2mm MoS2, slickensided at 10° >	114.00 117.00 120.00 123.00 126.00 129.00 135.00 135.00 141.00 144.00	117.00 120.00 123.00 126.00 129.00 132.00 135.00 138.00 141.00	5739 5740 5741 5742 5743 5744 5744	3.00 3.00 3.00 3.00 3.00 3.00 3.00
132.30 132.68 QFP QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (a) 144.80 Fluorite interstitial (minor). > (a) 145.60-146.00 Extends to CA. QFP 40cm.> (b) 149.00 Moly with weak comb texture, 40° fracture with 1-2mm MoS2 consickensided at 10° >	117.00 120.00 123.00 126.00 129.00 132.00 135.00 138.00 141.00	120.00 123.00 126.00 129.00 132.00 135.00 138.00 141.00	5740 5741 5742 5743 5744 5745 5746 5747	3.00 3.00 3.00 3.00 3.00 3.00 3.00
132.30 132.68 QFP QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (1) (2) 144.80 Fluorite interstitial (minor). > (3) (4) 145.60- 146.00 Extends to CA. QFP 40cm.> (4) (2) 149.00 Moly with weak comb texture, 40° fracture with 1-2mm MoS2. (5) (s) lickensided at 10° >	120.00 123.00 126.00 129.00 132.00 135.00 138.00 141.00	123.00 126.00 129.00 132.00 135.00 138.00 141.00	5741 5742 5743 5744 5745 5745	3.00 3.00 3.00 3.00 3.00 3.00
132.30 132.68 QFP QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (1) (1) 144.80 Fluorite interstitial (minor). > (2) (1) 145.60- 146.00 Extends to CA. QFP 40cm > (3) (1) 149.00 Moly with weak comb texture, 40° fracture with 1-2mm MoS2, slickensided at 10° >	123.00 126.00 129.00 132.00 135.00 138.00 141.00	126.00 129.00 132.00 135.00 138.00 141.00	5742 5743 5744 5745 5746 5747	3.00 3.00 3.00 3.00 3.00 3.00
132.30 132.68 QFP QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (a) 144.80 Fluorite interstitial (minor). > (b) 145.60-146.00 Extends to CA. QFP 40cm. (c) 149.00 Moly with weak comb texture, 40° fracture with 1-2mm MoS2 inslickensided at 10°.	126.00 129.00 132.00 135.00 138.00 141.00	129.00 132.00 135.00 138.00 141.00	5743 5744 5745 5746 5747	3.00 3.00 3.00 3.00 3.00
132.30 132.68 QFP QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (a) 144.80 Fluorite interstitial (minor). > (a) 145.60- 146.00 Extends to CA. QFP 40cm> (b) 149.00 Moly with weak comb texture, 40° fracture with 1-2mm MoS2 is lickensided at 10° >	132.00 135.00 138.00 141.00 144.00	135.00 138.00 141.00	5744 5745 5746 5747	3.00 3.00 3.00 3.00
132.30 132.68 QFP QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (@ 144.80 Fluorite interstitial (minor).) « 145.60- 146.00 Extends to CA. QFP 40cm» (@ 149.00 Moly with weak comb texture, 40° fracture with 1-2mm MoS2, slickensided at 10°)	132.00 135.00 138.00 141.00 144.00	135.00 138.00 141.00	5745 5746 5747	3.00 3.00 3.00
QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (@ 144.80 Fluorite interstitial (minor). > « 145.60- 146.00 Extends to CA. QFP 40cm» (@ 149.00 Moly with weak comb texture , 40° fracture with 1-2mm MoS2 , slickensided at 10° >	135.00 138.00 141.00 144.00	138.00 141.00	5746 5747	3.00 3.00
QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (@ 144.80 Fluorite interstitial (minor). > « 145.60- 146.00 Extends to CA. QFP 40cm» (@ 149.00 Moly with weak comb texture , 40° fracture with 1-2mm MoS2 , slickensided at 10° >	135.00 138.00 141.00 144.00	138.00 141.00	5746 5747	3.00 3.00
QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (@ 144.80 Fluorite interstitial (minor). > « 145.60- 146.00 Extends to CA. QFP 40cm» (@ 149.00 Moly with weak comb texture , 40° fracture with 1-2mm MoS2 , slickensided at 10° >	135.00 138.00 141.00 144.00	138.00 141.00	5746 5747	3.00 3.00
QFP with K-spar envelopes and massive Py in Qtz. 132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (@ 144.80 Fluorite interstitial (minor). > « 145.60- 146.00 Extends to CA. QFP 40cm» (@ 149.00 Moly with weak comb texture , 40° fracture with 1-2mm MoS2 slickensided at 10° >	135.00 138.00 141.00 144.00	138.00 141.00	5746 5747	3.00 3.00
132.68 187.00 Alaskite Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (a) 144.80 Fluorite interstitial (minor). > (a) 145.60-146.00 Extends to CA. QFP 40cm> (b) 149.00 Moly with weak comb texture, 40° fracture with 1-2mm MoS2 (c) slickensided at 10° >	138.00 141.00 144.00	141.00	5747	3.00
Stockwork of grey Qtz is well developed and fairly consistent in this interval. Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (a) 144.80 Fluorite interstitial (minor). > (a) 145.60-146.00 Extends to CA. QFP 40cm» (b) 149.00 Moly with weak comb texture, 40° fracture with 1-2mm MoS2 (c) slickensided at 10° >	138.00 141.00 144.00	141.00	5747	3.00
Wide vuggy Qtz zones contains; massive Py patches at 5-20° to CA. and by styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (@ 144.80 Fluorite interstitial (minor). > « 145.60- 146.00 Extends to CA. QFP 40cm» (@ 149.00 Moly with weak comb texture , 40° fracture with 1-2mm MoS2 slickensided at 10° >	141.00 144.00			
styolitic crushed sulphides (MoS2?) at app. 30-45° to CA., and FeWO4. (@ 144.80 Fluorite interstitial (minor). > « 145.60- 146.00 Extends to CA. QFP 40cm» (@ 149.00 Moly with weak comb texture , 40° fracture with 1-2mm MoS2 slickensided at 10° >	144.00	144.00	E740	3.00
(@ 144.80 Fluorite interstitial (minor).) « 145.60- 146.00 Extends to CA. QFP 40cm» (@ 149.00 Moly with weak comb texture , 40° fracture with 1-2mm MoS2 slickensided at 10° >			5748	
« 145.60- 146.00 Extends to CA. QFP 40cm» (@ 149.00 Moly with weak comb texture , 40° fracture with 1-2mm MoS2 slickensided at 10° >	447 00		5749	3.00
@ 149.00 Moly with weak comb texture , 40° fracture with 1-2mm MoS2 slickensided at 10° >		150.00	5750	3.00
slickensided at 10° >	150.00	153.00	5751	3.00
<u></u>		156.00		3.00
« 164.50- 167.50 with narrow inclusions of QFP at contact with QTZ	156.00	159.00	5753	3.00
<u> </u>		162.00		3.00
Alaskite »	162.00	165.00	5755	3.00
@ 167.90 Py, MoS2, Fe WO4, up to 1.5cms in grey Qtz stockwork.	165.00	168.00	5756	3.00
« 169.19-196.28 Stockwork Qtz predominantly sub to 20° to CA. »	168.00	171.00	5757	3.00
« 179.30- 180.30 U/C with ALSK weak, QFP 45°»Hybrid ALSK / QFP.	171.00	174.00	5758	3.00
	174.00	177.00	5759	3.00
	177.00	180.00	5760	3.00
	180.00	183.00	5761	3.00
	183.00	186.00	5762	3.00
	186.00	189.00	5763	3.00
187.00 218.25 QFP	189.00	192.00	5764	3.00
« 190.00- 194.00 Highly fractured, comb UST, weakly developed. styolitic with	192.00	195.00	5765	3.00

.

rushed sulphides, Py, MoS2. Highly fractured zones. 40-60° UST. « 194.00- 196.00 More silicious, less clay. stockwork Qtz, series of sub Veins. 20° 5-10mm»	S_from 195.00	S_to	Sample	Width
« 194.00- 196.00 More silicious, less clay. stockwork Qtz, series of sub	195.00			
« 194.00- 196.00 More silicious, less clay. stockwork Qtz, series of sub		198.00	5766	3.00
Veins. 20° 5-10mm»	198.00	201.00	5767	3.00
	201.00	204.00	5768	3.00
« 196.00- 197.40 Mafic rich, possible zenoliths, Hb?, fg Bt ,Ser, cut by	204.00	207.00	5769	3.00
tz stkwrk. »	207.00	210.00	5770	3.00
« 197.40- 204.60 Stkwrk well developed in highly fractured alaskite. 8X	210.00	213.00	5771	3.00
cm sub , closely spaced Qtz veins minor sulphides, moly. 40-60°»	213.00	216.00	5772	3.00
« 204.60- 211.80 Ser., highly fractured with close spaced 1mm grey black				1
actures. Sericitized, brecciated ~ grey Qtz, vuggy at 60°., Fracture				1
0-60°»	<u> </u>			1
18.25 218.65 QFP				
	216.00	219.00	5773	3.00
FP with Sericite and Qtz.				Ť
18.65 246.20 Alaskite	219.00	222.00	5774	3.00
laskite with well developed stockwork of Qtz, intercalated with close spaced,	222.00	225.00	5775	3.00
ighly fractured, sericitized, crushed sulphide and MoS2/ Py zones that	225.00	228.00	5776	3.00
rosscut 60° to CA Qtz 60° to CA Moly hairline 0° to CA, offsets 1	228.00	231.00	5777	3.00
m.	231.00	234.00	5778	3.00
« 228.10- 232.10 Less hairline fractures and less Qtz stockwork. »	234.00	237.00	5779	3.00
« 232.10- 4.45 Ser./ Qtz fracture zone with less Qtz stockwork, more	237.00	240.00	5780	3.00
ntense downhole. Fracture »	240.00	243.00	5781	3.00
« 234.45- 246.20 Closely spaced black hairline fractures, with grey black	243.00	246.00	5782	3.00
rushed sulphides with MoS2. Py has blue tinge. Fracture intensity.				1
5-70°»				
246.20 248.30 QFP		· · · · · ·		
	246.00	248.30	5783	2.30
rey / brown aphanitic (graphic) locally brecciated, cut by black hairline				
actures with Py & crushed sulphide, Qtz eyes replaced with pyrite.				
248.30 339.30 Alaskite	248.30	252.00	5784	3.70
laskite with mod. developed Qtz stockwork with grey Qtz up to 3 cms, avg 2	252.00	254.00	5785	2.00
nm. Becomes more widely spaced with variable intensity of sericite / Qtz zones.	254.00	257.00	5786	3.00
ore has hairline black MoS2 fractures, that crosscut Qtz . (eg: Qtz 60° to CA,	257.00	260.00	5787	3.00
noly up to 3 mm at 10° to CA.)	260.00	263.00	5788	3.00
« 266.00- 277.10 Sericitized alaskite with qv to 2 mm commonly cutting	263.00	266.00	5789	3.00
ore to 60° to CA. Stockwork of crushed sulphides with MoS2 up to 1.5 cm at	266.00	269.00	5790	3.00
ow angles to CA, cross cut the QV. »	269.00	272.00	5791	3.00
« 270.90- 271.30 Black crushed sulphides in Bx along clay Ser. fault	272.00	275.00	5792	3.00
tructure. Fault 10° 15mm»	275.00	278.00	5793	3.00
« 276.10- 277.50 Lower contact 70°. »	278.00	281.00	5794	3.00

oject: Crazy Fox 	1		ber:Fox		
From To	Rocktype & Description	S_from	S_to	Sample	Width
« 277.00- 277.50 it	ntermixed QFP with alaskite, with very weak comb	281.00	284.00	5795	3.00
	Locally Bx'd cut by late sub series of Qtz veinlets	284.00	287.00	5796	3.00
	to 2 mm that is discontinuous and offset by 60° hairline fractures with fg				3.00
•	oly ? (crushed sulphides). QFP »			5798	3.00
« 299.50- 310.00 S	Sericitized, faulted fracture stockwork with less grey	293.00	296.00	5799	3.00
	sulphides and moly , 1 mm fractures with MoS2. Fracture.	296.00	299.00	5800	3.00
,		299.00	302.00	5801	3.00
« 310.00- 339.00 L	ess ser., fresher alaskite, less fracturing, less	302.00	305.00	5802	3.00
stockwork. »		305.00	308.00	5803	3.00
@ 316.10 Grey Qtz v	rein ,10 cm,45° to CA. Py is locally massive, MoS2	308.00	311.00	5804	3.00
-	ractures with Qtz., 45° 10cm >	311.00	314.00	5805	3.00
	Qtz / Ser /clay in stockwork with crushed sulphides .Py	314.00	317.00	5806	3.00
	Bx'd. Fractures 40-50°»	317.00	320.00	5807	3.00
	at 339.30, Increase in Kaolin⇒	320.00	323.00	5808	3.00
•		323.00	326.00	5809	3.00
		326.00	329.00	5810	3.00
		329.00	332.00	5811	3.00
		332.00	335.00	5812	3.00
		335.00	338.00	5813	3.00
		338.00	339.00	5814	1.00
•		339.00	342.00	5815	3.00
339.30 358.20 Voica	nic Sediments	342.00	345.00	5816	3.00
Nicola. Faulted, Blead	ched, highly fractured, intermixed QFP. With meta	345.00	348.00	5817	3.00
volcanics\ flows and se	eds, possible mariposite in bleached zones cut by late	348.00	349.60	5818	1.60
calcite and local hema	tite. Bedding 70° to CA,. 20 M with muddy black Bx.	349.60	352.00	5819	2.40
@ 358.20 EOH >		352.00	355.00	5820	3.00
		355.00	358.20	5821	3.20
358.20 358.20 EOH					
		!			
			ļ l		

DDH Fox 06 - 20

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-20

Logged by: R. Montgomery

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Apr. 25, 2006.

Finished: Apr. 27, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686432

Northing: 5718936

Collar elev: 1316 m

Az: 148°

Dip: -60°

Length: 139.6 m

roject: Crazy Fox			ber:Fox	Υ
From To Rocktype & Description	S_from	S_to	Sample	Width
0.00		1		
•	0.06	3.60	4577	3.54
0.60 47.00 QFP	3.60	6.60	4578	3.00
QFP, Pale grey, bleached, silicified sequence of QFP with narrow aplitic	6.60	9.60	4579	3.00
phases. Locally weak developement of UST comb structures. (5-10 CM widths)	9.60	12.60	4580	3.00
Strongly limonitic fractures . Limonite soaking to 19.3 M. Manganese fracture	12.60	15.60	4581	3.00
coatings and dendrites to ~ 13 M.	15.60	18.60	4582	3.00
« 13.00- 15.00 Green sericite / Py ± fluorite on fractures: 1.) 45 -	18.60	21.60	4583	3.00
60° to CA. 2.); 30-35° to CA; this set hosts narrow Qtz veins as well as	21.60	24.60	4584	3.00
mineralized fractures. Fractures. »	24.60	27.60	4585	3.00
« 22.15- 37.15 Narrow Qtz / Mo rich UST comb layers developed over a 15	27.60	30.60	4586	3.00
cm interval 1/2 -1% MoS2 over 15 cm. Comb UST structures cut by late stage	30.60	33.60	4587	3.00
sericite / Py fractures at 35°, fractures»	33.60	36.60	4588	3.00
« 26.00- 26.05 Aplite dyke ,sharp contacts with surrounding QFP. Dyke	36.60	39.60	4589	3.00
45°»	39.60	42.60	4590	3.00
⟨ @ 37.20 Fine Qtz UST comb layers have undergone compression / folding.	42.60	45.60	4591	3.00
These convoluted comb structures measure 1.0-1.5cm in height.>				
⟨ @ 46.20 White, late stage gypsum veinlets infilling irregular extension	1		·	T
fractures.				
« 46.20- 47.00 Low angle shearing / bx in aplitic host, with fluorite				1
fracture filling, Breccia. Fault / shearing 5° 3-5mm» >			·	
47.00 48.85 UST	l		· 2	
	45.60	48.60	4592	3.00
	48.60	51.60	4593	3.00
UST, QFP / Aplite hosts Qtz / feldspar pegmatite and to convoluted Qtz				İ
layers.				†
48.85 71.10 QFP	51.60	54.60	4594	3.00
Pale grey, silicified Qtz / feldspar porphyry, weak clay / « ser » is	54.60	57.60	4595	3.00
overprinted with silicification. Core generally very competent, increased clay	57.60	60.60	4596	3.00
in the alteration.	60.60	63.60	4597	3.00
« 69.50- 71.10 Broken rubbly core. Shear »	63.60	66.60	4598	3.00
< ② 58.80 Qtz comb layer. Comb structure is cut and offset by a conjugate	66.60	69.60	4599	3.00
late stage 2 mm wide Qtz / ser and Py veinlet. 45° 5mm >	69.60	71.10	4600	1.50
< @ 69.00 Qtz comb structure, no MoS2 evident. 45° 2mm >				1
71.10 76.15 QFP	71.10	74.10	4601	3.00
Weakly developed UST comb structures in a bleached silicified QFP. (Aphanitic	74.10	76.10	4602	2.00
groundmass.)				ļ
				

	Crazy Fox		,		ber:Fox	Width
From	То	Rocktype & Description	S_from	S_to	Sample	AAIGRI
			76.10	79.10	4603	3.00
76.15	86.60 QFP		79.10	82.10	4604	3.00
Dry' frac	tures at 60 -	80° to CA. Py / Ser ± trace fluorite. Fractures at 25°	82.10	85.10	4605	3.00
to CA. (o CA.‹ @ 79.80 Narrow Qtz / feldspar pegmatite. >					1
« 80.	01- 80.4 H	ematite staining of QFP. »				T
			85.10	88.10	4606	3.00
86.60	94.20 Apli	te	88.10	91.10	4607	3.00
Pale gre	y / brown ap	lite, locally well developed banding at 50-60° to CA.	91.10	94.20	4608	3.10
Locally 2	?-3 % small (1 mm avg.) Qtz 'eyes'.				
_						
94.20	95.50 UST		94.20	95.50	4609	1.30
Moly rich	n, finely lamii	nated UST comb structures (Brain Rock). Comb layers are				
-	-	CA. These 'laminae' are ~ 75% MoS2 and are hosted within				T
the band	led aplite.					1
	102.70 Apli	te	95.50	98.50	4610	3.00
Pale gre	y / brown sili	icious, local banding at 60° to CA. < @ 99.15 Hazy,	98.50	100.50	4611	2.00
partial re	eabsorbed fe	Idspar rich comb structures. 5°> Broken core at upper	100.50	102.70	4612	2.20
		ngles unknown.				1
102.70	106.00 QFP	,	102.70	106.00	4613	3.30
Locally ι	ip to 15% Bt	Interval locally weakly pegmatitic. Minor K-spar				T
alteratio	n associated	with Bt.				
						1
106.00	108.85 Peg					T
	_		106.00	109.00	4614	3.00
Qtz / feld	dspar ± muse	c. pegmatite. 0.5 - 1 mm MoS2 blebs occasionally noted				†
along fra	ctures within	n feldspars. Trace fluorite.				
108.85	124.70 QFP	•	109.00	112.00	4615	3.00
QFP Cro	wded. 15%	sub rounded Qtz 'eyès', 2-3 mm. 35% euhedral plag.	112.00	115.00	4616	3.00
phenos	(4			 	 .	
- 10 mm). Occasion	al equant plag. megacryst to 1 cm. Phenos overall quite	115.00	118.00	4617	3.00
large, th	nis section lik	cely connects with the megacrystic porphyry seen in	118.00	121.00	4618	3.00
06-16 ar	nd 18.		121.00	124.00	4619	3.00
« 110	0.20- 110.00	Crushed, sheared, local grey clay gouge. Shear »				
« 122	2.90- 124.70	Shear / fault 50°»	ļ · · · · -			1
			124.00	127.00	4620	3.00
124.70	139.60 Alas	skite	127.00	130.00	4621	3.00
Alaskite	,Transitiona	l, Most xtals of Qtz. plag / orthoclase euhedral and	130.00	133.00	4622	3.00
		noting local sub rounded Qtz eyes: transitional	133.00	136.00	4623	3.00
alskite.	=	·		139.60	4624	3.60
				 		<u> </u>

oject: Crazy Fox Hole Number: Fox 06-					06-20	
From	То	Rocktype & Description	S_from	S_to	Sample	Width
« 127	.00- 128.00	Weak hematite staining of alaskite. »				
	eak K-spar envelopes along low angle Qtz / Py veinlets.					
	60 EOH >	-				<u> </u>
139.60	139.60 EOH					ļ
						ļ
			}			1
			·			
			ŀ]
			ļ			
			[ļ
				ĺ		
.						
7/02/01			•	•	Page	

DDH Fox 06 - 21

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-21

Logged by: R. Montgomery

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Apr. 27, 2006.

Finished: Apr. 28, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686447

Northing: 5718908

Collar elev: 1313 m

Az: Vertical

Dip: -90°

Length: 105.8 m

oject: Crazy Fox	Ho	ber:Fox	06-21	
From To Rocktype & Description	S_from	S_to	Sample	Width
0.00 2.10 Casing				
5.55 2.15 5.55g				·
2.10 32.50 QFP				
Pale grey bleached / silicified. Fractures strongly limonitic.				1
Mn coatings and dendrites to ~ 12 M, 15% clay / Ser alt'd Feldspar, 10% sub	<u> </u>			
· · · · · · · · · · · · · · · · · · ·				
rounded Qtz eyes. 2 fracture sets: 1.) 50-70° to CA (unmineralized) 2.) 10-20				
o to CA, these typcally host Py / Ser / ± musc Qtz veinlets.				
« 4.30- 5.30 Creamy white, fg, very weakly prophyritic, non				.
silicified. Dyke »	ļ			ļ
@ 4.40, 5 cm long xenolith of silicified QFP within fg dyke material. >				
@ 17.20 Limonite fractures >				
« 28.00- 28.85 Weak hematitic staining of silicified QFP. »				
32.50 35.40 UST				T
Fine, highly convoluted Qtz_UST comb layers within a silicified QFP.				1
	L			1
35.40 45.80 QFP				†
33.40 43.60 Qt i		·· -		
40.40 A4.00 Sub angular electe of cilipitied AEP in a Sar, altered				
« 42.10- 44.00 Sub angular clasts of silicified QFP in a Ser. altered		}.		ł
groundmass. Clast supported Bx. Breccia 20°»		}		
45.80 47.15 Aplite				
Vfgr aplitic phase at low angle to CA.				_
47.15 65.60 QFP				ļ
QFP, Intermittent UST comb structures / pegmatite seen over interval. Well				<u> </u>
developed fine to med width Qtz comb layers at 56.0 M. These are cut by a 2				1
mm		}		1
wide Qtz / Py / Ser. veinlet.		ļ		1
« 62.20- 63.10 Moly rich UST comb structures within weakly silicified		······		T
QFP. Low angle Py and Ser veins cross cutting. UST »				1
65.60 66.20 Aplite				†
Aplitic / porphyritic aplite phase with weakly developed banding.				<u> </u>
Anno, horby, mo abuse buses in morning according a continue.				
66.20 73.50 QFP				
				}
QFP, Low angle Py / Ser / ± musc cross cutting fractures.				<u> </u>
(@ 71.30 Moly rich finely layered UST comb features. 70°)	ļ	}		ļ
Widely scattered, narrow aplitic phases. (~ 10 cm)				ļ
73.50 82.65 Aplite		[
Aplite, Cream to light brown, fine grained. Locally weak developed banding at	<u> </u>			1
70° to CA.				
Aplite transitional to QFP at bottom of interval. This porphyry consists of 5	ļ · · · · ·			T

Project: Crazy Fox Hole Number: F						
From	То	Rocktype & Description	S_from	S_to	Sample	Width
10 % sma	all (1 mm av	erage) Qtz eyes and 7 - 10 % sub hedral feldspar phenos				
		brown groundmass.				
	0.50 QFP					
		2° « Bt » in patches and segregations up to 15%.				
		so associated with Qtz / feldspar pegmatite as well as				
-	K-spar alte					1
	5.80 Alask					 -
			ļi			-
	ock relatively equgranular but still contains several percent 2 - 3 mm rounded					
≬tz eyes.	Alaskite trai	nsitional phase with QFP.				<u> </u>
						<u> </u>
		nt increase in clat / Ser. alteration. Decreased				<u> </u>
ilicificatio	7.					<u>.</u>
						<u> </u>
05.80 10	5.80 EOH					Ī
						
				:		
]			
						-
				. 1		
			İ			
			}			
			l	1		1
				-		
				į		[
				Ī		
			[. [
]		•	
			j			1
				1		ı

DDH Fox 06 - 22

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-22

Logged by: R. Montgomery

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Apr. 29, 2006.

Finished: Apr. 30, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686406

Northing: 5718855

Collar elev: 1292 m

Az: Vertical

Dip: -90°

Length: 112.8 m

oject: Crazy Fox	S_from	S_to	Sample	Width
From To Rocktype & Description	3_110111		Campic	THE
0.00 3.70 Casing				ļ —
3.70 41.40 QFP	3.70	6.70	4625	3.00
QFP, Pale to med. grey bleached, silicified porphyry. 7 - 10% 10-20 mm rounded	6.70	9.70	4626	3.00
Qtz eyes. Locally 2° « Bt » to 1/2% prominent fracture set at 0-5° to CA. 2nd	9.70	12.70	4627	3.00
fracture set to 60-70° to CA. Limonitic fractures to 13.2 M. Also Manganese	12.70	15.70	4628	3.00
coatings and dendrites.	15.70	18.70	4629	3.00
« 19.90- 20.00 Banded Aplite. Dyke 60-75°»	18.70	21.70	4630	3.00
(@, 22.20 Fine UST comb structures, Minor disseminated MoS2 35°)	21.70	24.70	4631	3,00
« 30.75- 30.90 Grey green clay gouge, fluorite on fine fractures. Shear	24.70	27.70	4632	3.00
35°»	27.70	30.70	4633	3.00
(@ 40.20 Polished MoS2, Py slickensided fracture 35°)	30.70	33.70	4634	3.00
10.20 / 3.10.100 1.1002, 1 / 4.10.101.000	33.70	36.70	4635	3.00
	36.70	39.70	4636	3.00
	39.70	42.70	4637	3.00
41.40 46.75 UST	42.70	46.70	4638	4.00
	46.70	48.70	4639	2.00
Fine seriate UST comb structures with locally well developed brain rock.				<u> </u>
(44.3-44.7). MoS2 content quite low but increases towards bottom of section.]
Comb structures are hosted in a silicified QFP with a fine grey / brown				
aphanitic groundmass.]
46.75 58.80 QFP	48.70	53.80	4640	5.10
Highly silicious pale grey-brown / salmon pink (K-spar alteration) QFP. Aplite	53.80	56.80	4641	3.00
lenses to 30 cm. Narrow sections of Qtz / feldspar pegmatite. (ie:54.1-54.5M.)	56.80	58.80	4642	2.00
« 56.00- 57.50 Very well developed fine moly rich UST comb structures.				
Terminated Qtz xtals point downhole. UST 50°»				
58.80 64.75 Aplite	58.80	61.80	4643	3.00
Light grey to white, locally banded aplite with QFP interbeds. Banding 70-80°	61.80	64.70	4644	2.90
_g.i.g.o, to time, toom, randor apme that Q. i. timesees _conting to es	64.70	67.70	4645	3.00
to CA. Feldspar growth layers perpendicular to bands, reach widths of 1cm.			,	
64.75 81.00 QFP	67.70	70.70	4646	3.00
Weakly developed QFP / Aplite breccia over top 5 m of interval. Weakly	70.70	73.70	4647	3.00
developed potassic alteration. (@ 70.50 Qtz / feldspar pegmatite. >	73.70	76.70	4648	3.00
« 70.50- 74.00 %5 2° Bt (locally Bt to 15%). Bt »	76.70	79.00	4649	2.30
c @ 77.40 Several 1 ~ 2 mm pale green gypsum veinlets. 65° >	79.00	81.00	4650	2.00
(@ 77.20 Narrow zone shear)				
81.00 84.70 Peg	81.00	84.70	4651	3.70
Narrow plag / orthoclase / Qtz pegmatites in a QFP host. Unusual fluidal				.+
, , ,	<u> </u>			+

roject: Crazy Fox	Ho	e Num	ber:Fox		
From To Rocktype & Description	S_from	S_to	Sample	Width	
texture seen in K-spar / Qtz xtals at 84.65 m.				ļ	
Brain like texture (photo taken)			·		
84.70 92.70 QFP	84.70	87.70	4652	3.00	
QFP, Locally crowded porphyry.	87.70	90.70	4653	3.00	
« 85.50- 87.00 Weak hematite staining. » Hematitic QFP overprinted	90.70	92.70	4654	2.00	
with silicification.					
92.70 112.80 Alaskite	92.70	95.70	4655	3.00	
Med. grey, med grained, equigranular. Distinct interlocking xtal structure.	l · · · ·	t			
Weak to moderate clay / sericite alteration of feldspar phenos. Weak potassic	l				
envelopes associated with low angle Qtz veins. Very competent, relatively fresh					
alaskite.					
« 108.50- 111.80 2° Bt to 2%. »		·		<u> </u>	
		Ī			
112.80 112.80 EOH					
		[
		-			
	ĺĺ				
		-			
07/02/01	l		Page	-	

DDH Fox 06 - 23

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-23

Logged by: R. Montgomery

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Apr. 29, 2006.

Finished: Apr. 30, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686406

Northing: 5718855

Collar elev: 1292 m

Az: -90°

Dip: -80°

Length: 122.0 m

DDH Fox 06 - 24

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-24

Logged by: R. Montgomery

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Apr. 30, 2006.

Finished: May 01, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686830

Northing: 5718683

Collar elev: 1292 m

Az: -90°

Dip: -80°

Length: 169.8 m

DDH Fox 06 - 25

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-25

Logged by: B. Callaghan

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: Apr. 30, 2006.

Finished: May 03, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686827

Northing: 5719250

Collar elev: 1358 m

Az: Vertical

Dip: -90°

Length: 285.4 m

From	To	Rocktype & Description	S_from	S_to	Sample	Width
		Tools, year and a second secon			·	
0.00	6.10 Casir	a				<u> </u>
C 40	a en Ando	0140	6.90	9.80	5467	2.90
6.10	9.80 Ande		0.00			
-		ey colour, (@ 9.80 Contact 60°)				.
9.80	10.45 Alask	ite				ļ·
10.45	11.17 QFP					
			9.80	12.80	5468	3.00
QFP, Tra	nsitional. Ble	eached.].		
11.17	22.00 Alask	rite	12.80	15.80	5469	3.00
ALSK, S	ericite increa	ses down hole	15.80	18.80	5470	3.00
@ 14.7	'8 Intense se	r / musc. clays with moly. Smeared out by closely spaced	18.80	21.80	5471	3.00
shears w	ith Bx'd claly	gouge. 20-60°>				
@ 20.2	0 Alaskite w	ith ser. musc. alteration. Brown, orange transluscent,				
soft alter	ation as anhe	edral masses.				T
22.00	22.80 Ande	site				Ī
			21.80	24.80	5472	3.00
Andesite,	micro diorite	e? Aplite ?				
22.80	31.70 Alasi	rite	24.80	27.80	5473	3.00
ALSK, V	Veaker clay, :	sericite alt'n, less fracturing, 1% euhedral « Bt » up to	27.80	31.70	5474	3.90
1 <i>mm.</i> ∢@	25.50 Grey	Qtz to CA 1cm, well developed micro fracturing with clay				
_		vith smeared sulphides.				†
31.70	33.75 Aplite		31.70	33.70	5475	2.00
	•	Nicola dyke? Grey Bt? Mafics to sericite and calcite.				
•	35.60 QFP	•	- ···	-		†
			33.70	36.70	5476	3.00
						<u> </u>
35.60	41.50 Alasi	(ite	36.70	39.70	5477	3.00
			39.70	42.70	5478	3.00
ALSK. M	ore clav / ser	icite alteration. locally Musc./ Moly along slickensided				
•	•	Slicks at 30°. K-spar alteration increases to contact.				†
	49.00 QFP		42.70	45.70	5479	3.00
		tional. Highly fractured cut by grey Qtz of veinlets,	45.70	48.70	5480	3.00
_, - - · ·			48.70	51.70	5481	3.00
bleached	l, Qtz eyes uj	o to 20%				1
49.00	59.10 Alasi		51.70	54.70	5482	3.00
ALSK	July Minds		54.70	57.70	5483	3.00
	70 Otz veinlet	s over 60 cms. 30° 3mm × @ 54.00 Sericite clays and	57.70	59.10	5484	1.40
_		o contact, with 1% euhedral Bt sericite along fractures.	37.70	00.10		
n acturning	, decidases i	o contact, with 170 cancaral bi sericite along fractities.				

oject: Crazy Fox	S from	S_to	Sample	Width
From To Rocktype & Description	3_110111	3_10	Janpie	
Shear				
59.10 76.98 qtz Diorite	59.10	62.10	5485	3.00
Fine grained,micro qtz diorite, grey with 25% « Bt » , 5% hornblende, plag.	62.10	65.10	5486	3.00
35-40% Qtz.				ļ
Calcite veinlets widely spaced 1 - 3 mm.				
76.98 81.00 Alaskite	[]			<u> </u>
@ 78.40 K spar mostly as envelopes around Qtz veinlets 20°, 30°, 5° to CA.				<u></u>
2 mm to .5 cm. >				<u>.</u>
81.00 82.35 QFP				L
	76.90	79.90	5487	3.00
	79.90	82.90	5488	3.00
82.35 87.00 Alaskite	82.90	85.90	5489	3.00
	85.90	88.90	5490	3.00
Increase in K-spar alteration. Sericite moly along fractures, locally closely spaced.				
87.00 99.50 QFP	88.90	91.90	5491	3.00
QFP, weaker sericite, stronger clay Qtz eyes, 25%. Micro fractures 80° to CA	91.90	94.90	5492	3.00
cross cut Qtz veinlets at 20°. Sericite more prevalent along fractures	94.90	97.90	5493	3.00
downhole to contact and more sheared. QFP less silicious, blocky, fractures				T
coated with white soft clays, no carbonate.< @ 97.10 Qtz veins, offset 1 cm by		· · · · · · · · · · · · · · · · · · ·		1
hairline fractures at 70° to CA. Slicks along 50° fracture with sericite. 30°	1			
3mm >				
	97.90	100.90	5494	3.00
99.50 108.75 Alaskite	100.90	103.90	5495	3.00
ALSK, K-spar envelopes surrounding grey Qtz veins with weak stockwork	103.90	106.90	5496	3.00
development. K-spar more pervasive, stockwork more developed at 101 M with vuggy Qtz				
« 104.70- 105.50 More developed with locally up to 80% Qtz with series of				
sub veins. Stockwork 10-40°»	·			
	106.90	109.90	5497	3.00
108.75 122.50 QFP	109.90	112.90	5498	3.00
QFP, Highly fractured, bleached sericitized , clay altered porphyry. Locally	112.90	115.90	5499	3.00
up to 25% Qtz eyes. More silicious downhole with wide spaced Qtz vein	115.90	118.90	5500	3.00
stockwork and associated minerals between 5 and 15° with sericite. Crushed	118.90	121.90	5501	3.00
sulphides coating slickensided surfaces. Slicks 70° along low angle fractures				
15 - 30°.				ļ
(@ 117.00 Vuggy Qtz Peg with minor clay altered K~spar.)	ļ ļ			<u> </u>
< @ 122.00 Moly and crushed sulphides and sericite. 20° 1-3mm→	1			1

roject: Crazy Fox	Hole Number: Fox 0				
From To Rocktype & Description	S_from	S_to	Sample	Width	
	121.90	124.90	5502	3.00	
122.50 131.45 Alaskite	124.90	127.90	5503	3.00	
ALSK mixed, Chill zone with minor QFP, variably silicificified.	127.90	130.90	5504	3.00	
silicification is Mostly associated with QFP which is more highly fractured					
downhole, less vein Qtz Locally brecciated along fractures in sericitized				1	
clay altered QFP. More moly mineralization, hairline 10º fractures.		•		1	
« 122.50- 123.80 Pervasive K~spar alteration. Alaskite »					
				†	
	130.90	133.90	5505	3.00	
131.45 141.45 Alaskite	133.90	136.90	5506	3.00	
@ 131.45 Faulted. Contact 40° >	136.90	139.90	5507	3.00	
« 131.45- 133.00 Bleached, highly kaolinized, sericitized at shear				<u> </u>	
contact with porphyry. Alaskite 40°»				+ · · · · · · · · · · · · · · · · · · ·	
« 133.00- 135.60 Black crushed gouge with Kaolin along fracture surfaces.				 	
Fracture 60°»		1			
« 135.45- 135.60 Grey gouge and sericite. Fault 60° 15cm»				 	
« 135.60- 141.45 Extends to contact. Stockwork. » @ 139.80 Qtz up to 3				 	
cm with abundant fluorite.	• · · · · · · · · · · · · · · · · · · ·				
141.45 144.40 Andesite					
	139.90	142.90	5508	3.00	
		145.90	5509	3.00	
Andesite dyke, high level upper contact 15° to CA. Bleached fracture grey.				t	
(Aplite?)					
144.40 162.80 Alaskite	145.90	148.90	5510	3.00	
	148.90	151.90	5511	3.00	
« 145.40- 148.76 Strongly sericitized, bleached, clay altered, cut by		154.90	5512	3.00	
high angle up to 60° crushed sulphides, sericite. Alaskite 60°»	154.90	157.90	5513	3.00	
« 148.76- 154.50 Strong sericite, clay altered, stockwork. Fractures	157.90	160.90	5514	3.00	
with sericite, crushed sulphides MoS2. Alaskite 40-60°»				<u> </u>	
« 154.50- 162.80 Well developed Qtz stockwork, pegmatitic with locally				·	
episodic MoS2 anf Py mineralization near contact with alaskite and bleached				-	
QFP. Minor intervals of QFP are pervasively silicified. Alaskite »	v. x			 	
	160.90	163.90	5515	3.00	
162.80 177.70 QFP	163.90		5516	3.00	
Bleached, variably silicious, sericitic QFP with transitional alaskite. Qtz,	166.90	169.90	5517	3.00	
locally Pegmatitic stockwork , well developed with veinlets cut by hairline	169.90	172.90	5518	3.00	
moly / Py fracture filling. Veins to 2 cm, 10 - 40 °. Strong sericite along	ļ	175.90	5519	3.00	
fractures. @ 172.50 Auto brecciated QFP fragments. Sub angular, rounded.					
07/02/01	 		Page	 	

From	То	Rocktype & Description	\$_from	S_to	Sample	Width
	, , , , -					
2 - 30 m						
	179.95 Alask			+		
@ 179.85 With strong sericite, clay, black gouge. Shear 20° 5cm >						
179.95	184.43 QFP		475.00	470.00	F500	2.00
				178.90	5520	3.00
				181.90	5521	3.00
			181.90	184.90	5522	3.00
		ably silicified, bleached grey green sericite, locally				ļ —
sheared	with locally w	ell developed grey Qtz stockwork.∢ @ 179.95 Fault 10-30°				ļ
,						<u> </u>
	263.73 Alasi			187.90	5523	3.00
_		gouge. Strongly sericitized kaolin alteration of		191.40	5524	3.50
		cm › At 189 M Alaskite bleached locally patchy K-spar		194.40	5525	3.00
alteratio	n and as enve	elopes, variably silicious and less fractured down hole.		197.40	5526	3.00
		70° to CA with Py, moly.	197.40	200.40	5527	3.00
« 19	1.45- 192.10	Breccia over 50 cm's. Alaskite 15.00° 3.00mm @ 199.90	200.40	203.40	5528	3.00
Start to	get more exte	ensive Qtz Peg with wider zones of Qtz with pyrhotite and	203.40	206.40	5529	3.00
bismuth	inite, less mol	y x @ 208.40 Brecciated alaskite with silicified	206.40	208.20	5530	1.80
fragmer	its in sulphide	moly mud matrix ,down axis of core. >	208.20	210.20	5531	2.00
@ 215	.00 Yellow gre	een sericite. >	210.20	213.20	5532	3.00
(@ 215	.30 Sericite, n	o moly, crushed sulphides. Fault 50.00°>	213.20	216.20	5533	3.00
« 21	8.00- 218.40 F	Fractures wider spaced with fluorite pyrrhotite Py	216.20	219.20	5534	3.00
mostly o	on edges of co	ore. Qtz veining. »	219.20	222.20	5535	3.00
« 22	0.70- 224.00	Yellow green sericite. QFP »	222.20	225.20	5536	3.00
« 22	4.30- 228.10	Small inclusion. QFP » @ 225.70 lower contact between	225.20	228.20	5537	3.00
QFP an	d Alaskite ext	ends 15.00cm >	228.20	231.20	5538	3.00
« 22	7.30- 243.00	More intense Kaolin sericite alteration with increased	231.20	234.20	5539	3.00
fracture	density, with	crushed sulphides, MoS2 and Qtz. Stockwork development	234.20	237.20	5540	3.00
with hig	her grades .Fi	racture. c@ 235.70 1 X 2 cm Qtz, Py, Pyrrhotite,	237.20	240.20	5541	3.00
wolfram	ite and moly.	30° c @ 237.25 Movement along sheared granites evident	240.20	243.20	5542	3.00
as						
slickens	ides , movem	ent at 20° 30-60°>	243.20	246.20	5543	3.00
(@ 243	.20 Crushed	sulphide clay gouge Bx of alaskite extends for 3.5cm,	246.20	249.20	5544	3.00
alaskite	much fresher	; less sericite and clays. less fracturing. >	249.20	252.20	5545	3.00
« 24	7.43- 251.40	More intense sericite alteration with hairline fractures	252.20	255.20	5546	3.00
of Py ar	nd moly. 10-3	0°»	255.20	258.20	5547	3.00
« 25	1.23- 251.40	Sericite / Qtz flooding with Py patches and blebs of	258.20	261.20	5548	3.00
moly. 2			261.20	263.70	5549	2.50
-		sericite clay crushed sulphide fault gouge. Wall rock				†

			mber:Fox 06		
From To Rocktype & Description S_from S_to					
alaskite, less fracturing. Surfaces pitted grey with clays cut by gouge at		1			
Fault 80° >				 	
aun oo)					
				 	
	000.70	200 70	5550	1	
		266.70	5550	3.00	
263.73 285.30 Volcanic Sediments	266.70	269.70	5551	3.00	
Salmon, light brown, pale green , bleached meta volcanic Bx. (green stone) cut				ļ	
y Qtz calcite veinlets. Fractures green serpentine mariposite					
				1	
]	
				1	
285,30 285,30 EOH	<u> </u>				
				 	
	<u> </u>			İ	
				ļ	
	;				
•				1	
				İ	
·					
		1			
	1		Page	1	

DDH Fox 06 - 26

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-26

Logged by: R. Montgomery

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: May 01, 2006.

Finished: May 04, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 687358

Northing: 5718842

Collar elev: 1293 m

Az: Vertical

Dip: -90°

Length: 246.6 m

roject: Crazy Fox From To Rocktype & Description				Hole Number: Fox		
From	То	Rocktype & Description	S_from	S_to	Sample	Width
0.00 2	46.60 Volc	anic	Ì			
		ence, hole did not intersect intrusive rock				
	46.60 EOH					
				ļ		
						1
						1
				ļ		
				ĺ		
				.]		
				•		
					Page	

DDH Fox 06 - 27

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-27

Logged by: B. Callaghan

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: May 03, 2006.

Finished: May 06, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686827

Northing: 5719251

Collar elev: 1358 m

Az: 360°

Dip: -60°

Length: 298.0 m

	Crazy Fox	Doolston & Docarintian	S_from	S_to	ber:Fox Sample	Width
From	То	Rocktype & Description	3_110111	3_10	Sample	*********
0.00	7.60 Casir	og .				<u> </u>
7.60	10.30 Aplite	:				ļ
			7.60	10.60	5635	3.00
Pale gre	y sand colour	ed, fine grained, non silicious, intense K-spar altered.		1		l
contact r	nargins chille	d.				
10.30	171.30 Alasi	tite	10.60	13.60	5636	3.00
ALSK, P	ale orange, s	and coloured due to moderate pervasive K-spar alteration,	13.60	16.60	5637	3.00
as well a	s envelopes.	Locally transitional with Qtz eye ghosts in QFP, but not	16.60	19.60	5638	3.00
rue QFF	unit. Surfac	es pitted with yellow green sericite alteration of	19.60	22.60	5639	3.00
feldspar	s. « Bt » Qtz.	+= 25-30%, feldspars = 60%. Limonite coats fractures to	22.60	25.60	5640	3.00
13.5 M.			25.60	28.60	5641	3.00
« 19.	75- 20.67 S	28.60	31.60	5642	3.00	
« 20.	67- 21.17 S	lickensided, sericite, to core axis. Fracture 40°»	31.60	34.60	5643	3.00
« 25.	50- 33.00 V	/eak developement of stockwork. »	34.60	37.60	5644	3.00
« 27.	.10- 29.00 G	tz, Peg, vuggy set in K~spar altered zones. Qtz	37.60	40.60	5645	3.00
feldspar	up to. 15cm	,	40.60	43.60	5646	3.00
@ 31.0	00 K-spar alte	eration decreases, mostly as envelopes, less moly	43.60	46.60	5647	3.00
fractures	S. >		46.60	49.60	5648	3.00
« 33.	.90- 35.30 G	rey green sericite-clay altered with crushed sulphide?	49.60	52.60	5649	3.00
black go	uge. Fault 15	°»	52.60	55.60	5650	3.00
« 35.	.30- 37.80 N	fore intense K-spar alteration with green olive	55.60	58.60	5651	3.00
sericite.	»		58.60	61.60	5652	3.00
@ 49.	50 Qtz sericit	e in intense K-spar zone with olive yellow sericite. 40°	61.60	64.60	5653	3.00
10cm >			64.60	67.60	5654	3.00
« 52.	.50- 61.45 lr	cludes approx. 14 grey vuggy Qtz veins over 10M, with	67.60	70.60	5655	3.00
Ру, Мо,	sericite, crusi	ned sulphides along fractures. K-spar enveloped with	70.60	73.60	5656	3.00
weak to	moderate per	vasive alteration. Stockwork 20 - 40°	73.60	76.60	5657	3.00
@ 61.	45 Sericite or	ange yellow clays, vuggy Qtz peg. with very minor	76.60	79.60	5658	3.00
sulphite	clusters with	K-spar envelopes. >	79.60	82.60	5659	3.00
@ 63.	40 Slickensid	es to CA, around Qtz stockwork, vuggy veins with Py,	82.60	85.60	5660	3.00
Po, Fe V	Vo4, MoS2, fl	uorite, sericite surfaces pitted bleached. Shear 5-15° >	85.60	88.60	5661	3.00
@ 66.	70 Sericite m	ore green olive, less intense K-spar alteration, less	88.60	91.60	5662	3.00
fracturin	g, less Qtz ve	ining. Core weakly silicious. >	91.60	94.60	5663	3.00
At 73 M	fractures seri	citized at 30 - 50 °.	94.60	97.60	5664	3.00
« 75	.10- 78.70 C	Contact of intense green sericite alteration, intense	97.60	100.60	5665	3.00
fracturin	g. 20-50°»		100.60	103.60	5666	3.00
« 78	.70- 117.10 1	Veak stockwork developement in variably sericite Kaolin	103.60	106.60	5667	3.00
		widely spaced vuggy Qtz with K-spar envelopes.	106.60		5668	3.00
						

roject: Crazy Fox	S_from	S_to	Sample	Width
From To Rocktype & Description	<u> </u>	3_10	- Cumple	-
Fracture sericite coated with crushed sulphides. Alaskite »	109.60	112.60	5669	3.00
@ 83.40 Movement along slickensides along fractures. 60°>	112.60	115.60	5670	3.00
« 95.80- 105.65 Slicks 14 x with Qtz sericite fractures. Fractures.	115.60	118.60	5671	3.00
40-55° 2-20mm»	118.60	121.60	5672	3.00
@ 105.90 Qtz Peg. vuggy sericite along contacts with brown 2 Bt? plus K-spar	121.60	124.60	5673	3.00
envelopes. >	124.60	127.60	5674	3.00
@ 111.45 1x 1cm Py, moly core in Qtz sericite enveloped by K~spar . 60° >	127.60	130.60	5675	3.00
@ 111.80 Sericite & crushed sulphides movement along slicks. fracture 30° >	130.60	133.60	5676	3.00
@ 117.00 1 x 1.5cm Qtz sericite Bx with moly, Py crushed slphide matrix	133.60	136.60	5677	3.00
adjacent to zenolith of QFP. 60°>	136.60	140.20	5678	3.60
« 117.10- 119.70 More developed stockwork with grey Qtz fractures with	140.20	142.20	5679	2.00
crushed sulphides and moly in fractures with stylolitic texture. Fractures. »	142.20	142.40	5680	0.20
@ 121.85 K-spar alteration more intense around vein. >	142.40	145.40	5681	3.00
« 127.50- 129.00 Core less altered with K-spar envelopes, black pyritic	145.40	148.40	5682	3.00
crushed sulphides withPy, crushed sulphides and MoS2. »	148.40	151.40	5683	3.00
@ 133.10 K-spar sericite altered QFP, trace moly.	151.40	154.40	5684	3.00
@ 134.10 Offset inclusion as aplitic QFP.	154.40	157.40	5685	3.00
@ 136.80 Host Qtz veining, fractures strongly sericitized.c 50° 2-70mm >	157.40	160.40	5686	3.00
(a) 140.00 Well developed stockwork in blackm, strongly fractured, bleached,	160.40	163.40	5687	3.00
less sericitized, kaolin altered alaskite, cut by vuggy Qtz Peg veins.	163.40	166.40	5688	3.00
« 144.10- 144.85 Mostly clay, minor sericite with weak K~spar envelopes	166.40	169.40	5689	3.00
around Qtz peg. » Moderaltely fractured, but locally intense with sericite				ļ
fractures as 15° with movement along 30° slickensides cross cutting moly				t
fractures with styolitic textures that increase downhole.				
« 150.38- 171.30 Vein Qtz, blue grey weak USTcomb strctures host				<u> </u>
stylolitic moly bands on margins surrounding Py masses. UST »				† ·
« 160.00- 162.00 9 over 2 M. Qtz veins 20-40° 3mm»	 			1
< ℚ 165.00 Vuggy Qtz peg assoc with sericite, K-spar envelopes with brown				
sericite. 40° 10cm >				ļ
⟨ @ 169.80 Styolitic moly and Py in Qtz gangue. 40° 1cm >]			1
	169.40	172.40	5690	3.00
171.30 175.95 Alaskite		175.40	5691	3.00
ALSK, Transitional with QFP. Increased sericite, less clay, more silica, less				1
blue grey Qtz veins and K-spar envelopes.				
175.95 178.70 QFP				-
	175.40	178.40	5692	3.00
		181.40	5693	3.00
Qfp and Aplite phases. Grey micro comb structures with micro peg, open space				
filling with pink K-spar and terminated Qtz.				
				}=

Project: Crazy Fox	Hole Number: Fox 06-27					
From To Rocktype & Description	S_from	S_to	Sample	Width		
178.70 228.18 Alaskite	181.40	184.40	5694	3.00		
ALSK, Hybrid, with QFP. Core blocky. (Qtz eyes?)	184.40	187.40	5695	3.00		
« 184.00- 186.00 Weakly sericite, clay altered with K-spar envelopes	187.40	190.40	5696	3.00		
around grey Qtz veins. 10°»	190.40	193.40	5697	3.00		
⟨ @ 185.50 Moly crushed sulphides. Qtz Peg with salmon pink orange feldspars.	193.40	196.40	5698	3.00		
· ·	196.40	199.40	5699	3.00		
⟨ @, 188.70 Crushed sulphides moly. 5° >	199.40	203.20	5700	3.80		
« 190.30- 193.30 Grey green clay fault with sericite in more sericitic	203.20	206.20	5822	3.00		
K-spar altered fractured Alaskite. Fault »	206.20	209.20	5823	3.00		
∢ @ 193.30 Variable sericite, more K-spar envelopes. Qtz Peg. 70º 5cm.	209.20	212.20	5824	3.00		
Fractured Qtz with feldspar intergrowths along offset margins.	212.20	215.20	5825	3.00		
< @ 195.30 Weak development of USTcomb structures, seriate texture of Qtz,	215.20	218.20	5826	3.00		
sericite, Py and MoS2. 5cm >	218.20	221.20	5827	3.00		
« 197.40- 198.05 Qtz Peg and stockwork. Qtz in K-spar envelopes. 80°»		224.20	5828	3.00		
< @ 199.60 More developed stockwork with grey Qtz , fluorite, sericite with		227.20	5829	3.00		
styolitic textures.						
Silicified, locally heavily seriticized, kaolin k-spar altered alaskite with						
pegmatitic phases with fluorite, moly, wolframite, Py. at 30° to Ca.		· · · - · - ·				
< @ 212.75 Sericite clays black crushed sulphides and moly. U /c .& l/c - 40°						
,		····		 · · ·		
< @ 219.99 Crushed sulphides and MoS2, alaskite, FeWo4? MoS2, trace Py,				 		
Trace						
fluorite. Strongly sericitized with Musc, K-spar Fault						
@ 222.65 QFP inclusion with stylolitic textures, moly, Py, along contact						
margins. 25cm >						
< @ 226.60 Sericite, clay altered UST comb structures in Bx'd sericite.						
Movement along slickensides. Fault. 70° 32cm >						
228.18 229.43 QFP						
	227 20	230.20	5830	3.00		
QFP, Grey, light brown , 5-10% Qtz eyes, weakly silicious, close spaced moly	227.20	200.20		- 5.00		
stylolitic fractures.				<u></u>		
229.43 279.19 Alaskite	230.20	233.20	5831	3.00		
ALSK Moderate to intense kaolin altered, more intensely seriticized along						
fractures, locally pervasively silicified overprinted with subtle developement	233.20 236.20		5832	3.00		
of USTcomb structures with stylolitic and seriate textures. « Bt » locally up			5833	3.00		
to 1%. Fractures locally Bx'd , noticeably no K-spar envelopes.	239.20		5834	3.00		
	242.20		5835	3.00		
© 232.30 Weakly developed, rounded Qtz, sericite, Py, trace Po, moly, cut by		248.20	5836	3.00		
60° UST comb Qtz K-spar veinlets up to .3mm, Py, Po, Fe Wo4, trace MoS2. 70°	248.20	251.20	5837	3.00		
07/02/01	j	į	Page	l 3		

From	Crazy Fox To	Rocktype & Description	S_from	S_to	Sample	Width
		Tooks, pod a door, pass				
)				254.20	5838	3.00
« 236	.45- 236.58	Weakly developed rounded Qtz, Sericite, flakey Musc with		257.20	5839	3.00
•	2, FeWo4. 6	•		260.20	5840	3.00
_	_	t of QFP in well developed comb layers with stylolitic	260.20	263.20	5841	3.00
textures	with offset (Qtz veinlets, Qtz sericite, Py, crushed sulphides MoS2.		266.20	5842	3.00
30-80° 1	0cm >		266.20	269.20	5843	3.00
c @ 247.	77 Grey blue	e disrupted Qtz comb UST layers with Py, MoS2 and fluorite.	269.20	272.20	5844	3.00
60° >		•	272.20	275.20	5845	3.00
« 253	3.00- 261.97	Similar structure and USTcomb textures, less grey blue	275.20	279.10	5846	3.90
Qtz veini	iets, less ser	icite, less silicious and less fracturing. UST »				<u> </u>
c @ 256.	20 Seriate (JST crushed sulphide Qtz comb structures with Py and Mo,				
fractures	at 50° with	crushed sulphides. Fracture 30° 11cm >		·		
« 262	2.50- 266.00	Locally highly fracture kaolin, sericite altered				
alaskite (with USTcon	nb layers. Compression, tensional features with central				
		stylolitic textures. UST »				
	•	e Qtz , strong fracture to CA. >				<u> </u>
_	-	actured in Qtz sericite Py alaskite.				
_		-spar. Less UST comb structured stylolitic textures on				<u> </u>
_		S2?, silicious grey QFP. 50°>				
	282.40 QFP					
			279.10	282.40	5847	3.30
OFP Gr	ev silicious.	cut buy offset stylolitic Py, moly, grey Qtz stockwork. at				
30-50° to	•	,				†
		anic Sediments	282.40	286.60	5848	4.20
		ed grey sand, fine grained, cut by calcite stringers. QFP		288.30	5849	1.70
	s. 80° with o					
	.30 Brecciate					·
_		Mariposite. Fault 80° >		·		
. @ 201.	ro r olidaoir,	marpooto, radicos ,	288 30	291.30	5850	3.00
288 35	294.55 Apli	to .	291.30		5851	3.20
	-	Basal thrust fault material, grey white Qtz aplitic with	201.00	204.00		0.20
		Aphanitic porcelain texture, offset stylolitic textures on				
	• •	up to 1m. Widely spaced with crushed sulphides, Py and				
	s, at 30-300°	up to this visitely spaced with Grushed Sulphides, Fy and				-
moly.	200 00 1/-1-	anic Sediments				
		1.00				
	-	diments with stretched mafics up to 25% foliation 60° cut		 		ļ
uy calciti	e micro slum	μ.		 		ļ
			<u></u>			<u> </u>
		;				1

Project: Crazy Fox From To	Rocktyne & Description	Rocktype & Description S_from S_to Sa		Sample	Wid
	Tooksyps a Decempaien			p	
298.00 298.00 EOH					1
					1
			!		
		İ			
		İ			
			}		
					İ
•					
					1
	4				
			!		
•					
•] [
			`		
					<u>L.</u> .
007/02/01		-	I T	Page	

DDH Fox 06 - 28

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-28

Logged by: B. Callaghan

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: May 01, 2006.

Finished: May 07, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686888

Northing: 5718875

Collar elev: 1300 m

Az: 360°

Dip: -75°

Length: 258.8 m

oject: Crazy Fox	S_from	S to	ber:Fox Sample	Width
From To Rocktype & Description	3_110111	3_10		TVICE
0.00 3.00 Casing				
3.00 14.80 QFP	3.00	6.00	5552	3.00
Hybrid , QFP, Bx'd. 5 - 10% Qtz eyes.Sericite, K-spar altered subsequently	6.00	9.00	5553	3.00
overprinted with silica alteration. Locally 1-2% fine grained 2° « Bt » fabric	9.00	12.00	5554	3.00
40°. Faint Bx fragments avg.1-2 cm (frags are same composition as host rocks.)				
These frags have been highly altered due to silica alteration and are widely				
scattered. Weakly developed Qtz (grey) stockwork from 2mm to 1.5 cm at 40°				Ţ
and to CA. Over 2 feet of grey Qtz veins.	ļ			1
•	12.00	15.00	5555	3.00
14.80 32.10 QFP	15.00	18.00	5556	3.00
Upper contact exhibits claly /+ sericite fluorite brecciation offset in Qtz	18.00	21.00	5557	3.00
veinlets (narrow veinlets) vuggy.	21.00	24.00	5558	3.00
@ 17.50 Start of disruptive structural features, possibly related to weak	24.00	27.00	5559	3.00
comb textures which are noted down section. (to end of interval) >	27.00	30.00	5560	3.00
« 24.00- 32.10 UST Comb structure developed in more silicified rock.				
Fractures previous to comb textures typified by black sericite / sulphide				
textures. UST » (Note: Over this interval ,silicification overprints sericite		··· †		
alteration, late fractures, Sericite / clay altered with crushed sulfides. 30°				
to CA)				
	30.00	33.00	5561	3.00
32.10 54.55 Alaskite	33.00	36.00	5562	3.00
With aplite. Pervasively potassically altered at the top of interval to 36.3M.	36.00	39.00	5563	3.00
Downsection K-spar alteration restricted to envelopes along fractures.	39.00	42.00	5564	3.00
Fractures with crushed black sulphides and fluorite.	42.00	45.00	5565	3.00
« 41.85- 42.20 Grey salmon orange, strong silicification cut by grey	45.00	48.00	5566	3.00
Qtz ± stockwork. This aplitic material continues 50 to 60. QFP 50-60°»	48.00	51.00	5567	3.00
« 46.80- 47.63 Sericite altered overprinted by silica alteration, QFP	51.00	54.00	5568	3.00
»				
⟨ @ 51.50 Irregular offset Qtz veins. Contact 50° >				
« 50.40- 50.80 Salmon orange pervasively silicified aplitic / QFP cut				
by Qtz feldspar peg. / stockwork. Narrow offsets. Aplite 30°»				
⟨@ 51.80 Pale grey sericite / clay. 30° ›				
(This continues intermittently with isolated W., Fluorite and truncated Qtz /				
feldspar xtals.)				
54.55 56.50 QFP				1
	54.00	57.00	5569	3.00
Salmon orange, variably silicified, fluorite, flakey Musc. (Very distinctive	[
orance colour, likely due to pervasive potassic alteration.)				

<u> </u>	rom To Rocktype & Description				Sample	Width
From 1		коскіуре в Безсприон	S_from	S_to		
56.50 128	.35 Alask	ite	57.00	60.00	5570	3.00
resher less	fractured,	to 69.0 M, then increased fracturing and veining.	60.00	63.00	5571	3.00
Locally up to	2% 2° « E	Bt » . K-spar alteration along grey / blue Qtz Py / Mo	63.00	66.00	5572	3.00
ractures.			66.00	69.00	5573	3.00
« 69.00-	80.40 No	otable increase in Qtz stockwork development. Qtz	69.00	72.00	5574	3.00
veinlets (.2	to 1.5 cm,	[30 fracture controlled veins / stockworks over	72.00	75.00	5575	3.00
nterval.] Stockwork development. 20-30°»				78.00	5576	3.00
@ 74.75 Green sericite, flakey Musc., fluorite, and minor Mo along fracture.			78.00	81.00	5577	3.00
30°>			81.00	84.00	5578	3.00
@ 80.30 \$	Same lithol	ogy but definitely less in K-spar, weak sericite, local	84.00	87.00	5579	3.00
K-spar alter	ation. Ove	rall rock is much fresher than in previous intrusive.	87.00	90.00	5580	3.00
ncreased 2	° « Bt » to	90.00	93.00	5581	3.00	
@ 93.10	Start of gre	y fracture stockwork veined Alaskite.	93.00	96.00	5582	3.00
« 98.00-	115.00 5	0 Stockwork veins. Some cross cutting and off setting	96.00	99.00	5583	3.00
each other.	Still noting	g K-spar envelopes along fractures. Locally 2º Bt to	99.00	102.00	5584	3.00
1%. Veins 2	0-30°»		102.00	105.00	5585	3.00
« 115.00	- 128.35 (Grey Qtz veins with Mo along vein margins, as well as	105.00	108.00	5586	3.00
Wolframite i	blebs ± 3m	m. Veins 15-25°»	108.00	111.00	5587	3.00
@ 125.00	K-spar en	velopes along fractures (low angle to CA) >	111.00	114.00	5588	3.00
			114.00	117.00	5589	3.00
			117.00	120.00	5590	3.00
			120.00	123.00	5591	3.00
			123.00	126.00	5592	3.00
			126.00	129.00	5593	3.00
128.35 132	2.50 QFP		129.00	132.50	5594	3.50
Pink salmor	to orange	, (similar to 54.55-56.50M), but much paler: less potassic				
alteration.	Trace FI, Id	cal shearing at 45° to CA with associated Mo,				
Wolframite i	and coarse	Muscovite.		Ţ		T
132.50 143	3.00 QFP		132.50	135.50	5595	3.00
Hybrid QFP	. this sect	ion is gradational between alaskite and QFP. The QFP is	135.50	138.50	5596	3.00
weakly silici	fied (locall	y moderate) somewhat sericitized and locally well Bx'd	138.50	143.00	5597	4.50
c @ 133.00	Patchy K-	spar alteration noted, especially over lower half of				
interval.>				1		1
143.00 145.70 QFP			143.00	145.70	5598	2.70
Orange / sa	lmon pink	coloured potassic altered, this section is analogous with		····		1
54.55 - 56.5	50 M.					1
« Pitting of e	core possil	oly due to destruction of original felds. (clay				T
altered) Su	bsequent _l	pervasive K-spar ± silica alteration has produced a very	ļ			1
hard rock.		· · · · · · · · · · · · · · · · · · ·		 		

oject: Crazy Fox From To Rocktype & Description	S_from	S_to	Sample	Width
Profit 10 Rocklybe & Description	0			
145.70 229.80 Alaskite	145.70	148.70	5599	3.00
Pale grey, Qtz veined alaskite, This unit is very competent and is	148.70	151.70	5600	3.00
characterized by numerous crosscutting blue / grey Qtz veins. (5 - 10 mm	151.70	154.70	5601	3.00
average width.), they cut the core axis at 20 - 25 °. Weak K-spar alteration	154.70	157.70	5602	3.00
is observed adjacent to fratures, Feldspar phenos are typcally sericitized.	157.70	160.70	5603	3.00
Sericite alteration increases down section. k-spar alteration decreasing down	160.70	163.70	5604	3.00
section. Minor offset 1-2 cm often seen in Qtz veins.	163.70	166.70	5605	3.00
« 178.50- 179.80 Intermediate, sharp. Dyke. 45-60°»	166.70	169.70	5606	3.00
« 182.30- 182.55 K-spar flooding. »	169.70	172.70	5607	3.00
@ 195.30 Black ground sulphides on fractures. 45-60°>	172.70	175.70	5608	3.00
« 195.65- 196.05 Grey green clay gouge, 30% grey / bluish Qtz with coarse	175.70	178.70	5609	3.00
Py, minor MoS2. Qtz is pitted / vuggy. Shear Zone. 30 - 45 °»	178.70	181.70	5610	3.00
@ 204.15 Dyke? feldspar porphyry, 5 to 7 % Qtz eyes on a vfgr tan coloured	181.70	184.70	5611	3.00
groundmass. 30°>	184.70	187.70	5612	3.00
@ 205.80 Grey Qtz with Py / Mo *traces of comb textures* ie: terminated Qtz.	187.70	190.70	5613	3.00
30° 3cm >	190.70	193.70	5614	3.00
« 205.85 - 229.80 Highly sheared alaskite with ground black sulphides on	193.70	196.90	5615	3.20
205.85 - 229.80 Highly sheared alaskite with ground black sulphides on regular, often non planar fractures. Shear. Narrow grey blue Qtz veins		199.90	5616	3.00
commonly shows multiple minor offsets of 3 - 10 mm »	199.90	202.90	5617	3.00
« 206.20- 224.70 Multiple small grey clay gouge faults. Shearing. 45-70°	202.90	205.90	5618	3.00
3-10mm»	205.90	208.90	5619	3.00
@ 224.70 Occasional stylolitic textures noted. Stylolitic Mo ± Py seam. →	208.90	211.90	5620	3.00
∉ @ 221.50 Stylolitic sulphide seam. >	211.90	214.90	5621	3.00
	214.90	217.90	5622	3.00
	217.90	220.90	5623	3.00
	220.90	223.90	5624	3.00
	223.90	226.90	5625	3.00
	226.90	229.80	5626	2.90
229.80 252.80 Volcanic Sediments	229.80	232.80	5627	3.00
Nicola. Ash tuff. ? Pale grey / green, locally maroon (Bt hornfels) well	232.80	235.80	5628	3.00
bedded ash tuff. (Bedding 45° to CA) Abundent late stage cross cutting?	235.80	238.80	5629	3.00
irregularly oriented calcite ± Qtz / Py veinlets. Much of the interval	238.80	241.80	5630	3.00
strongly fractured, Narrow shear zones with grey / green clay gouge common.	241.80	244.80	5631	3.00
Tension gashes with carbonate ± Qtz infillings, as well as small scale vein	244.80	247.80	5632	3.00
offsets common.	247.80	250.80	5633	3.00
« 232.15- 232.50 Large inclusion within volcanic sequence. Alaskite »				
« 236.75- 237.25 Mineralized intrusive, faint feldspar phenos noted. Dyke]		1
»			-	

Project:	Crazy Fo	ox		Но	le Num	ber:Fox	06-28
From	То	Rocktype & Descript	ion	S_from	S_to	Sample	Width
« 240	0.00- 252.8	O Significant increase in the inte	ensity of shearing /				
deforma	tion last 2 t	o 3 M of section,highly convolut	ed / sheared tan coloured,				
bleached	d ash tuffs .	/ black fg seds? / black sulphide	s. Shearing. »				
c@ 230.	20 Excelle	nt slickensides with smeared Py	/ Mo on a calcite fracture.				
Slickens	ides cut ac	ross fracture at angles to axis	of the core. (Therefore				
moveme	nt is north	- south with a dip slip componer	nt.) 40° >				
252.80	258.80 Vo	Icanic					
Nicola, r	nedium to d	dark green, massive to locally fe	ldspar porphyritic, flows.				
Top of s	ection is pa	ile green / grey bleached with bi	right green mineral				
(Maripos	ite?). This	interval is much more compete	nt and fresher than previous				
section o	of tuffs. Nu	merous late stage calcite veinle	ts often contain selvage				
hematite	Locally n	ninor epidote alteration.				,	,
258.80	258.80 EC	Н		***************************************			
		•					
		,					
							:
							;
			•				
					Ì		
]		
			<u> </u>				
2007/02/01		•		1 1	ı	Page	4

DDH Fox 06 - 29

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-29

Logged by: B. Callaghan

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: May 06, 2006.

Finished: May 10, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686723

Northing: 5719246

Collar elev: 1366 m

Az: 180°

Dip: -60°

Length: 398.1 m

oject: Crazy Fox From To Rocktype & Description	S from	S_to	Sample	Width
From 10 Rocklybe & Description				
0.00 7.90 Casing				}
7.90 14.35 Alaskite	7.90	10.90	5952	3.00
ALSK, Well developed fracture Qtz stockwork for / 20 M. Veins up to 2 cm's at	10.90	13.90	5953	3.00
80-40° sub parrallel to CA. Cream kaolin /sericite altered alaskite. Surfaces				
oitted with tan brown aleration of feldspars to 28 M.				
	13.90	16.90	5954	3.00
14.35 115.30 QFP	16.90	19.90	5955	3.00
Hybrid QFP with alaskite. aplitic cream brown, locally Bx'd variable silicious	19.90	22.90	5956	3.00
with purple fluorite in groundmass and partially in grey Qtz, Py, Fe Wo4, musc	22.90	25.90	5957	3.00
cavities.	25.90	28.90	5958	3.00
@ 24.20 Aplitic porcelain texture QFP inclusion in alaskite, pervasively	28.90	31.90	5959	3.00
silicified Musc, Qtz.	31.90	34.90	5960	3.00
« 26.06- 26.34 Fabric to QFP, silicious, Bx'd, cut by 1 x 2 mm with	34.90	37.90	5961	3.00
Qtz, Py, Mo. 50°»	37.90	40.90	5962	3.00
@ 26.34 1 x 2 cm partial cavity filling with Qtz growths, Musc. and	40.90	43.90	5963	3.00
fluorite. 30° >	43.90	46.90	5964	3.00
« 27.00- 28.50 Cut by mostly barren Qtz. (Peg) and Musc and fluorite,	46.90	49.90	5965	3.00
partially infilling cavities. Alaskite »	49.90	52.90	5966	3.00
@ 28.50 Slickensides with pale yellow green sericite and crushed sulphides.	52.90	55.90	5967	3.00
	55.90	58.90	5968	3.00
@ 42.10 Partially filled cavities with large musc. xtls fluorite, local Py	58.90	61.90	5969	3.00
within a K-spar envelope.	61.90	64.90	5970	3.00
« 48.00- 64.50 Section of competent alaskite, partial open space	64.90	67.90	5971	3.00
fillings of euhedral Qtz xtl's, large musc. xtls and fluorite. Narrow	67.90	70.90	5972	3.00
inclusions of aplitic QFP throughout. Alaskite »Locally Bx'd, (large QFP	70.90	73.90	5973	3.00
clasts) (Note: overall less mineralized veins, increased coarse Musc /	73.90	76.90	5974	3.00
fluorite.)	76.90	79.90	5975	3.00
@ 57.90 Possible UST comb textures, in feldspar, interlayer Qtz. UST 20° x	79.90	82.90	5976	3.00
@ 53.00 Narrow Qtz offsets / Bx at contact with QFP> >	82.90	85.90	5977	3.00
@ 51.80 Section of Peg. (coarse Musc, Fluorite) >	85.90	88.90	5978	3.00
« 57.00- 64.55 Aplite QFP, Local Bx well developed. Aplitic Dyke? with	88.90	91.90	5979	3.00
contact. This section of Bx to end. Dyke 40°»	91.90	94.90	5980	3.00
« 64.55- 66.15 Cream to orange coloured potassic altered alaskite.	94.90	97.90	5981	3.00
K-spar / musc / Fl / sericite cuts rock. Alaskite »	97.90	100.90	5982	3.00
@ 69.45 Sericite / crushed black sulphide / greyish clay gouge. Wall rock	100.90	103.90	5983	3.00
QFP and alaskite. Shear 60° 15cm ›	103.90	106.90	5984	3.00
« 66.15- 79.20 Predominately alaskite with sporadic inclusions or	106.90	109.90	5985	3.00
xenoliths of aplite ± QFP. Locally weak Bx. Alaskite »	109.90	112.90	5986	3.00

Project: Crazy Fox Hole Number: Fox 06-29					
From To Rocktype & Description	S_from	S_to	Sample	Width	
« 74.65- 75.09 Well developed UST comb structures. Aplite / Qtz layers					
(Qtz purplish grey) fluorite inclusions. Upper contact indiscernable lower					
contact Aplite 30°»					
« 78.00- 79.00 Increased Bt , Py to 1%. »				<u></u> .	
« 79.20- 93.20 Crowded QFP. Grey light brown. 20 to 30 % sub hedral,					
grey 2mm average Qtz phenos. Plag phenos 25% and 1 cm, average.3 mm.					
Fractures with sericite / clays on fractures (locally slickensided.) 0 and 60		· 7			
° QFP »				[
« 86.80- 87.30 Clay alteration zone. Alaskite 20°»				I	
@ 91.00 Slickensides. Movement at 40° along these to CA. several				T	
examples of these orientations observed.	1				
« Only minor silicification, core blocky, highly fractured with clay / sericite				T	
/ crushed sulphide along low angle slicks fracs. Local Bx'n with Qtz, Fl ,Mo.					
Weak comb structure developement is noted. Fractures. »	 			1	
⟨ @ 100.50 start of UST comb structure. Shear >					
« 100.50- 105.50 Possible USTcomb structures in micro Peg, aplite. This				}	
is seen in truncated Qtz / feldspar xtals. (very good example at 105.00M)				1	
Adjacent to this section is a Qtz / « feld » musc / Py peg.				ţ ··· ·· -	
UST » (@ 107.60 Slickensides 5°)				l	
« 100.50- 107.60 Intense shearing, UST comb textures. fracturing »		- ·		·	
•	112.90	115.90	5987	3.00	
115.30 159.80 Alaskite	115.90	118.90	5988	3.00	
Hybrid QFP / ALSK. Significantly K-spar altered, Peg. Qtz veined. Interval	118.90	121.90	5989	3.00	
less fractured with veining downsection to fault at 119.80 M.	121.90	124.90	5990	3.00	
« 119.95- 120.60 Parallel to CA grey vein with Py, coarse green sericite,	124.90	127.90	5991	3.00	
minor Mo. Qtz vein. »	127.90	130.90	5992	3.00	
« 123.50- 123.75 Crude Bx intrusive with QFP fragments; highly silicious,	130.90	133.90	5993	3.00	
cut by multidirectional Qtz / Py / Fl veinlets. »	133.90	136.90	5994	3.00	
« 123.98- 124.29 As above, but contsains a few greyish mineralized Qtz	136.90	139.90	5995	3.00	
fragments. (These contain Mo) 2 to 3 mm late stage mineralized veinlets. »	139.90	142.90	5996	3.00	
« 125.55- 131.60 With Py / sericite / musc ± Mo. This zone extends to	142.90	145.90	5997	3.00	
shear Bx. Qtz stockwork. »	145.90	148.90	5998	3.00	
c @ 131.60 Bx. upper contact crushed grey / black Mo(?) sulphides. 20 cm of	148.90	151.90	5999	3.00	
Bx'd QFP fragments, bleached pale grey / light brown, sub rounded . 2-15mm >		154.90	6000	3.00	
	154.90	157.90	6001	3.00	
« 145.30- 146.60 Qtz stockwork. Fracture »	<u> </u>				
← @ 148.30 Bx with Qtz, fluorite, moly and crushed sulphides. Shear 25cm >					
« 157.45- 157.50 Peg. phases of Qtz feldspar in Bt phase with 1 to 2 %			· · · · · · · · · · · · · · · · · · ·	 	
»				• • -	
007/02/01			Page	2	

oject: Crazy Fox From To Rocktype & Description				S_to	Sample	Width
From	10	Rocktype & Description	S_from			-
@ 159	.00 Stockwort	k of grey Qtz veins with equal Py and moly. 35cm >				
159.80	162.58 Aplit	e .				
Fine gra	ined QFP wit	h UST comb structures. Light grey brown, aphanitic, 5%	1 .,			<u> </u>
Qtz eyes	s, combs.			\ 	_ ·	<u> </u>
162.58	166.80 Alasi	kite				ļ <u></u>
			157.90	160.90	6002	3.00
			L	163.90	6003	3.00
			163.90	166.90	6004	3.00
Hybrid	ALSK / QFP,	Weak K-spar. Qtz veins 70 ° 3- 7 cms. Moly slicks on				<u> </u>
Qtz mar	gins. Sigma 1	' - 50°, sigma 2 - 80°.				<u> </u>
166.80	241.03 QFP		166.90	169.90	6005	3.00
QFP/A	laskite hybrid	. 1 to 2 M intervals of alsaskite in app. 90% QFP cut by	169.90	172.90	6006	3.00
narrow a	aplitic phases	, up to 50 cm at 45 - 55 °, sharp and irregular.	172.90	175.90	6007	3.00
Groundi	mass in QFP	is aphanitic, bleached, pervasively silicified. the silica	175.90	178.90	6008	3.00
overprin	ts sericite alte	eration of feldspars. Alaskite variably kaolin /	178.90	181.90	6009	3.00
sericite :	altered and lo	cally pitted. Core is competent. Fracture density	181.90	184.90	6010	3.00
арргох.	7 - 10 per M.	Noticable high angle fractures 60 - 80 ° to CA with clay	184.90	187.90	6011	3.00
/ minor s	sericite , have	less mineralization - mostly Py. 〈 @ 189.00 Low angle,	187.90	190.90	6012	3.00
increase	ed mineralizat	ion. Fractures 5-25° >	190.90	193.90	6013	3.00
(@ 192	.20 Aplitic QF	P in alaskite. Contains fluorite, blue grey Qtz, Moly	193.90	196.90	6014	3.00
along m	argins of frag	. 5 cm Fragment / clast. >	196.90	199.90	6015	3.00
« 194	4.10- 194.65	QFP with weak comb structure, blue grey Qtz / Py / moly	199.90	202.90	6016	3.00
. Aplite (50-40° 55cmx		202.90	205.90	6017	3.00
a @ 194	.30 Slickensi	des. S1~5°,. S2_ 15° to elipsoidal axis. >	205.90	208.90	6055	3.00
« 19	5.20- 195.30	Crowded. QFP »	208.90	211.90	6056	3.00
« 19:	5.30- 195.60	Aph. ppy. Lt grey, bleached, perv. sil. Qtz eyes 20 to	211.90	214.90	6057	3.00
25 %, fe	ldspars 25 %	. QFP »	214.90	217.90	6058	3.00
« Wie	dely spaced.,	stylolitic texture with Mo / Py. Fractures 45° 1mm»	217.90	220.90	6059	3.00
« 20!	9.60- 210.50	Qtz truncates pink K~spar vein with coarse Py and	220.90	223.90	6060	3.00
crushed	sulphides. V	ein 5° 3mm»	223.90	226.90	6061	3.00
« 21:	5.00- 215.40	Grey black gouge, sericite, crushed sulphides. Fault	226.90	229.90	6062	3.00
80°»			229.90	232.90	6063	3.00
∢@ 222	.00 Core bloc	ky, low angle fracture surfaces with crushed sulphides,	232.90	235.90	6064	3.00
sericite,	Py. Fracture.	20-30°	235.90	238.90	6065	3.00
« 22·	4.60- 225.50	Start development of stylolitic textures with crushed				1
	es, Py, Moly.	•		 		·
-		sulphides 1 to 40°, s 2 to 5° to CA 40° 3mm >		·		
_		bed grey Qtz and cream feldspar, layered in offset			<u></u>	†
inclusio		, , , ,				†
			+	 - 		

oject:	Crazy Fox				ber:Fox	
From	То	Rocktype & Description	S_from	S_to	Sample	Width
in white	feldspar enve	lopes. >				
« 232	2.90- 233.50	Crushed sulphide, clay gouge. Fault »				
« 233	3.50- 241.03	QFP transitional. Stylolitic tex. fracture density,				
intense i	n trans. zone	of QFP. Locally insitu auto Bx'd, with black crushed				
sulphide	matrix, other	fracts with white soft opaline sericite clay material.				
	40-50° 1cm»					
			238.90	241.90	6066	3.00
241.03	268.89 QFP		241.90	244.90	6067	3.00
QFP, Br	ecciated, apli	te Peg vein, Qtz clasts, « Bt » rich clasts in matrix	244.90	247.90	6068	3.00
		lasts subrounded, sub angular, vein Qtz angular	247.90	250.90	6069	3.00
truncate			250.90	253.90	6070	3.00
Clasts c	emented with	crush sulphide cement? Variably weakly silicious clasts	253.90	256.90	6071	3.00
	15 cms. Moly	256.90	259.90	6072	3.00	
zones.	•		259.90	262.90	6073	3.00
« 250	3.85- 254.64	Possible clast of QFP, siliciious in clay sericite	262.90	265.90	6074	3.00
altered a	alaskite. QFP	»		}		
« 262	2.60- 263.05	Grey Qtz with cream coloured sericite altered feldspar				T
margins	seriate with F	Py and moly .05% Peg »		1		T '
« 160	6.70- 268.89	Bleached Bx'd with intense fracturing with moly along				Ī
fracture	and crushed	sulphides. Fracturing. 30°»		1		
و 268 ش	.80 Blue grey	fault gouge. Fault 7cm >		1		
						1
			265.90	268.90	6075	3.00
268.89	345.70 QFP		268.90	271.90	6076	3.00
More Bx	'd cream blea	ched porphyry. Sericite K-spar altered with up to 20% Qtz	271.90	274.90	6077	3.00
eyes. A	verage 2mm.	locally weakly Bx'd with aplite clasts. Variable	274.90	277.90	6078	3.00
silicifica	tion. QFP gre	y silicious fluorite Bx fragments up to 12 cms of QFP «	277.90	280.90	6079	3.00
Bt » gra	nular 15 cms	fault gouge white clay silicious fragments.	280.90	283.90	6080	3.00
c @ 279	.47 Bleached	cream fluorite QFP, weak moderate pervasive silicification	283.90	286.90	6081	3.00
overprin	t K-spar,fluon	ite dissemination with larger clots up to 2 . 3% >	286.90	289.90	6082	3.00
« 28-	4.32- 303.90	Breccia, grey, locally it is bleached QFP. Vein Qtz, Bt	289.90	292.90	6083	3.00
rich clas	ts up to 20 cr	ns. Locally weak potassic altn with weak, variable	292.90	295.90	6084	3.00
silicifica	tion. Alaskite	»	295.90	298.90	6085	3.00
c @ 287	.90 Truncated	d Qtz xtls and coarse Peg Qtz and coarse Musc × @ 294.40	298.90	301.90	6086	3.00
Fabric.	40°>		301.90	304.90	6087	3.00
« 29:	3.90- 294.40	Coated with white (opaline) soft clay (gypsum?) and	304.90	307.90	6088	3.00
sericite,	Py up to 0.1%	% fg disseminated with traces of fg disseminated moly.	307.90	310.90	6089	3.00
Fracture	s. 40°»		310.90	313.90	6090	3.00
د @ 303	.90 QFP Bx a	laskite with noticeable clay alteration with weak variable	313.90	316.90	6091	3.00
						

roject: Crazy Fox					ber:Fox	
From	То	Rocktype & Description	S_from	S_to	Sample	Width
silicificati	ion. >		316.90	319.90	6092	3.00
		Noticeable white grey swelling clays along fracs, in	319.90	322.90	6093	3.00
	Ition. > 18.70-313.20 Noticeable white grey swelling clays along fracs, in the tan coloured Bx'd alaskite cut by widely spaced moly and crushed as Stylolitic textured. 19.60 Locally Bx zones exhibit UST seriate textures in vuggy Qtz feldspare of Fractures. 30-40° > 19.70 Clay gouge. Shear > 19.10 Bx'd QFP + Peg clasts supported in black matrix. 60° 10cm > 19.35 Matrix filled and cut by blue grey Qtz with moly + massive Py and fluorite. > 19.70 Increased clay alteration of feldspars to white kaolin surfaces. Thighly fractured with sericite clays, gypsum, moly smears + crushed as. > 19.70 Pale grey green gouge. Fault 80° > 19.70 Pale grey green gouge. Fault 80° > 19.70 Pale stylolide zone. Highly bleached, kaolinized, sericite altered, Bx'd alaskite, cut by closely spaced blue oxidized Bx'd fractures 1mm as. Crenulated, , 30°. 40-80° to CA with sooty fine Py crushed		322.90	325.90	6094	3.00
• , ,			325.90	328.90	6095	3.00
•	-		328.90	331.90	6096	3.00
_	-		331.90	334.90	6097	3.00
-		\cdot	334.90	337.90	6098	3.00
~		~	337.90	340.90	6099	3.00
_			340.90	343.90	6100	3.00
-						
_						1
sulphide	•					
•		green gouge. Fault 80°>				T
•			343.90	346.00	6101	2.10
345.70	378.65 Alas	kite	346.00	349.00	6102	3.00
ALSK, C	rushed sulph	nide zone. Highly bleached, kaolinized, sericite altered,	349.00	352.00	6103	3.00
	378.65 Alaskite Crushed sulphide zone. Highly bleached, kaolinized, sericite altered, Bx'd alaskite, cut by closely spaced blue oxidized Bx'd fractures 1mm as. Crenulated, , 30°. 40-80° to CA with sooty fine Py crushed be moly in Qtz gangue. Primary textures obliterated, surfaced pitted.			355.00	6104	3.00
			355.00	358.00	6105	3.00
			358.00	361.00	6106	3.00
« 373	3.70- 378.65	Black grey clay myloritic gouge, foliation of pitted	361.00	364.00	6107	3.00
			364.00	367.00	6108	3.00
		•	367.00	370.00	6109	3.00
			370.00	373.00	6110	3.00
			373.00	375.60	6111	2.60
			375.80	378.60	6112	2.80
			378.60	381.40	6113	2.80
378.65	398.00 Volc	anic Sediments	381.40	384.60	6114	3.20
Nicola. V	/olcanic Bx m	nafic rich dark green cut by wispy truncated calcite	384.60	387.60	6115	3.00
hematite	? late stage	veinlets. Chill margins extend to 380.85 M, light brown	387.60	390.60	6116	3.00
open cav	vity tension g	ash tears at 80° to CA. @ 380.85 Dark green mafic rich Bx	390.60	393.60	6117	3.00
with calc	iteand hema	tite. >	393.60	396.60	6118	3.00
						1
						T
						1
398.00	398.00 EOH					
						T
•						
	 		 	 		

DDH Fox 06 - 30

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-30

Logged by: B. Callaghan

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: May 07, 2006.

Finished: May 10, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686873

Northing: 5719004

Collar elev: 1324 m

Az: 360°

Dip: -60°

Length: 295.2 m

Project: Crazy Fox	Но	le Num	ber:Fox	06-30
From To Rocktype & Description	S_from	S_to	Sample	Width
0.00 2.20 Casing				
				
2.20 23.00 Alaskite	2.20	5.20	5853	3.00
ALSK, Weak Qtz stockwork development at surface in variably silicious sericitic	5.20	8.20	5854	3.00
alaskite with very weak local k-spar alteration. Vein Qtz average 2mm sub	8.20	11.20	5855	3.00
to CA and at low angles, 1 -2 % « Bt » up to 2mm Heavy limonite to 4.50M cut	11.20	14.20	5856	3.00
off buy 70° fractures with crushed sulphides. Intense olive green sericite to	14.20	17.20	5857	3.00
6M.	17.20	20.20	5858	3.00
c @ 11.50 UST Comb structures with pink K-spar and terminated Qtz in QFP,				
aplitic phase over 4 cms, no visible moly. 50° >				
@ 14.70 Stylolitic textured fractures with blue grey Qtz + moly.				
Discontinuous offset and associated with Bx'd QFP fragments? in sericite, Musc		T		
clay altered alaskite variably overprinted with moderate pervasive				
silicification. >				
« 21.00- 23.00 Intense sericite, locally Bx'd along crushed sulphide.				
Weak stylolitic textured fractures with Py moly. Fractures 30°»				
23.00 25.20 QFP				
	20.20	23.20	5859	3.00
•	23.20	26.20	5860	3.00
QFP, Grey moderate silicious 10% Qtz, fg locally Bx'd with Qtz stockwork vuggy				
Qtz.		Ţ		
25.20 51.70 Alaskite	26.20	29.20	5861	3.00
ALSK, Blue grey Qtz, semi massive Py, pyrrhotite with trace moly between QFP	29.20	32.20	5862	3.00
and alaskite.	32.20	35.20	5863	3.00
« 31.00- 51.60 Subtle UST comb interstitial Qtz layers, very localized	35.20	38.20	5864	3.00
cut by fractures coated with crushed sulphides and Py. Fractures. 30°»	38.20	41.20	5865	3.00
Weakly fractured from 31.0M in variably weak pervasive K-spar altered alaskite	41.20	44.20	5866	3.00
with localized, subtle weakly developed UST comb structures without Qtz layers	44.20	47.20	5867	3.00
but with stylolitic textures and narrow offset fracture Qtz stockwork.	47.20	50.20	5868	3.00
⟨ @ 41.50 Crushed sulphides, movement at 10° to CA, weak clay /sericite. 30°				- · · - · · · ·
1cm × @ 44.30 Intensive moly up to 1%. No Qtz veining but subtle UST comb				
structures with K-spar envelopes. 30°>				
← @ 48.90 Possible UST comb structure, disruptive texture, Bt rich with				1
sericite along fractures. >				
∢ @ 49.47 Green olive sericite, cream pink feldspar clays. >				
	50.20	53.20	5869	3.00
51.70 81.25 QFP	53.20	56.20	5870	3.00
« 51.70- 52.90 Very silicious overprinting of Bt rich phase cut by grey Qtz	56.20	59.20	5871	3.00
vein, vuggy,partially filled with massive pyπhotite & Py clusters surrounded	59.20	62.20	5872	3.00
				

oject: Crazy Fox			ber:Fox Sample	Width	
From To	Rocktype & Description	S_from	S_to	Sample	AAIGUI
by K-spar. 30° 2cm» j	@ 52.90 Variably bleached, less silicified clay sericite	62.20	65.20	5873	3.00
alteration more intense	∍ Bt locally to 3%, →	65.20	68.20	5874	3.00
« 54.00- 56.00 De	ominant with sericite clays. Fractures 50°»	68.20	71.20	5875	3.00
« 56.55- 68.50 W	ell developed with grey vuggy Qtz Peg. locally Bx'd	71.20	74.20	5876	3.00
with K-spar silica enve	lopes. Fracture stockwork. 30° 3cm»	74.20	77.20	5877	3.00
@ 65.60 Silicified ble	eached with K-spar envelopes, Qtz eyes avg 20% 1-2mm	77.20	80.20	5878	3.00
) Grey blue Qtz vein coi	mmon (1-2 per 30 cm) These cut CA at 25 - 40°, and range				<u> </u>
in size from .5-10mm (avg .5mm) Veins carry 3 - 5% coarse Py and 1/2 to 1%				<u> </u>
local Moly as fine diss	eminations along vein margins and as blebs to 5+mm				<u> </u>
« 70.75- 70.90 Ce	parse, (clast supported) ground black sulphides on				
upper/lower contact.	Breccia 20-35°»				
« 79.30- 79.50 SI	near zone / Breccia 70-45°»				
« 71.00- 72.40 In	crease in potassic alteration. »				
		80.20	83.20	5879	3.00
81.25 87.55 Alask	ite	83.20	86.20	5880	3.00
		86.20	89.20	5881	3.00
ALSK, Hybrid aplite. (Consisting of potassically altered alaskite and aplite				
(±QFP) phases. Shee	ted to locally weakly stockwork veined; Qtz veins avg. 3 -				
5 mm width and cut C	A at 15°.				
87.55 267.30 Alask	ite	89.20	92.20	5882	3.00
ALSK, Relatively com	petent section of Qtz veined equigranular alaskite.	92.20	95.20	5883	3.00
Locally, narrow QFP p	hases and widely spaced 5-10cm wide, aplite dykes cut the	95.20	98.20	5884	3.00
alaskite at all angles to	the CA.	98.20	101.20	5885	3.00
Local Qtz stockwork w	rith weak to moderate silica overprinting.	101.20	104.20	5886	3.00
(@ 101.00 Pyritic slic	kensides cut the long axis of the elipse. 15-160° >	104.20	107.20	5887	3.00
c @ 104.00 Possible U	IST comb fragments in weakly K-spar altered alaskite. >	107.20	110.20	5888	3.00
« 105.60- 110.35 I	ntense bright green sericite alt'n of feldspars.	110.20	113.20	5889	3.00
Patches of coarse Mu	sc., clots of coarse Py, local small blebs of Wolframite.	113.20	116.20	5890	3.00
»	•	116.20	119.20	5891	3.00
c @ 111.80 Bx , sub a	ngular clasts of alaskite and QFP. 10cm × @ 114.25	119.20	122.20	5892	3.00
Sulphide smeared slic	kensides. The slickensides cut across the long axis of the	122.20	125.20	5893	3.00
ellipse at 25°. Fracture	9. 45°)	125.20	128.20	5894	3.00
« Coring to a 1 cm w	vide blue / grey Qtz vein with ~ 5% Py, 0.5% Mo, >25% Wf.	128.20		5895	3.00
minor FI .Section has	a salmon pink colour. (K-spar) Potassic »	131.20	134.20	5896	3.00
c @ 118.00 Qtz / felds	par Peg. >	134.20	137.20	5897	3.00
« 121.65- 121.95 l	Black ground sulphides (Py, Mo) and milled Qtz	137.20	140.20	5898	3.00
fragments. Shear »		140.20	143.20	5899	3.00
« 125.00 - 138.00	Elevated amounts of Fl. Blebs and irregular masses to	143.20	146.20	5900	3.00

	oject: Crazy Fox From To Rocktype & Description				ber:Fox	T
From	То	Rocktype & Description	S_from	S_to	Sample	Width
2 cm. »			146.20	149.20	5901	3.00
« 138	.60- 142.00	Qtz ± Bx zone. Coarse Bx (Matrix Supported), contains	149.20	152.20	5902	3.00
large sul	angular clas	sts of Qtz vein material. Stockwork »	152.20	155.20	5903	3.00
_		olitic textures and faint UST comb structures are hosted in	155.20	158.20	5904	3.00
alaskite i	/QFP.→		158.20	161.20	5905	3.00
« 149	.80- 163.00	Series of narrow (5 to 30 cm) wide aplite dykes cut	161.20	164.20	5906	3.00
alaskite.	These tend	to repeat due to a low angle to CA. Dykes. »	164.20	167.20	5907	3.00
« 149	.80- 154.00	Prominent set to sub to CA. Fracture. »	167.20	170.20	5908	3.00
ر @ 161.	35 VF stylolit	ic textures noted. >	170.20	172.10	5909	1.90
« 172	2.10- 173.90	Intense. A low angle shear with white clay gouge marks	172.10	173.90	5910	1.80
the UC.	Several narro	w shears with white clay gouge cut the zone. Sericite 45 -	173.90	176.90	5911	3.00
60 °»		•	176.90	179.90	5912	3.00
« 173	3.90- 177.20	Pale grey phase, ~ 15% sub rounded Qts 'eyes' Weakly	179.90	182.90	5913	3.00
silicified,	bleached, 1	to 2 cm wide lenses of aplite. QFP »	182.90	185.90	5914	3.00
« 177	7.20- 186.40	Black ground sulphides within pale grey clay altered	185.90	188.90	5915	3.00
alaskite.	(feldspar phe	enos almost completely clay altered.) Fractures. »	188.90	191.90	5916	3.00
c @ 108.	50 Narrow B	x with blackground sulphides on margins and within matrix.	191.90	194.90	5917	3.00
,			194.90	197.90	5918	3.00
« 190	0.70- 190.85	Aplite, irregular. Dyke 40°»	197.90	200.90	5919	3.00
c @ 192.	20 Stylolitic f	ractures in ser / clay alt'd alaskite. (Mo /Py fillings)	200.90	203.90	5920	3.00
Fracture	•)		203.90	206.90	5921	3.00
« 194	.40- 197.90	Strong, Bx'd, locally Qtz veined clay / sericite altered	206.90	209.90	5922	3.00
alaskite?	Shear »		209.90	212.90	5923	3.00
< @ 197.	50 Slick on f	racture. Mo on slicks. 80°>	212.90	215.90	5924	3.00
c @ 197.	.80 1.5cm wid	de, with grey clay gouge and marginal ground, black	215.90	218.90	5925	3.00
sulphide	s. Shear.→		218.90	221.90	5926	3.00
« 197	7.30- 198.60	Core pitted due to clay alteration along fracts.	221.90	224.90	5927	3.00
Fracture	. »		224.90	227.90	5928	3.00
c @ 203.	.90 Stylolitic I	eatures in altered QFP? >	227.90	230.90	5929	3.00
« 204	1.00- 204.70	Pale grey 10 to 15% Qtz 'eyes'. QFP »	230.90	233.90	5930	3:00
« 215	5.80- 217.20	Clay / sericte altered alaskite cut by several white to	233.90	236.90	5931	3.00
	•	phases. Deep purple fluorite relatively common in this	236.90	239.90	5932	3.00
interval.	»(Note: The	e lower portion of this interval exhibits an overall	239.90	242.90	5933	3.00
increase	in the degre	e of clay / sericite alteration, as well as shearing /	242.90	245.90	5934	3.00
faulting a	and Qtz veini	ng. Local semi-massive seams and blebs of Py, Po.)		248.90	5935	3.00
« 226	6.80- 281.30	Several narrow (±10cm) Aplite / QFP (5 to 10% Qtz eyes)	248.90	251.90	5936	3.00
This sec	tion also con	tains minor amounts of Fl. Aplite »	251.90	254.90	5937	3.00
ر @ 247	.10 3 cm wide	e, with crushed Qtz, black sulphides and grey clay gouge.	254.90	257.90	5938	3.00
Shear.			257.90	260.90	5939	3.00

2007/02/01

Page

3

From To Rocktype & Description					ber:Fox	
From	To	Rocktype & Description	S_from	S_to	Sample	Width
@ 256.	05 Qtz / felds	par Peg. >	260.90	263.90	5940	3.00
« 258	.50- 260.50	Strongly sericite / clay altered alaskite. Bright	263.90	267.30	5941	3.40
yellow gi	reen coarse s	ericite. Section is sheared / highly clay altered.				1
_						1
-	=					<u> </u>
•						1
						1
						1
267.30	56.05 Qtz / feldspar Peg. > 56.05 Qtz / feldspar Peg. > 58.50- 260.50 Strongly sericite / clay altered alaskite. Bright green coarse sericite. Section is sheared / highly clay altered. e: nearing the contact with Nicola volcanics / seds, rock is becoming deformed / sheared.) 0 268.85 Fault sulphide rich, to grey clay gouge 1/2 of faulted material is Alaskite. 1/2 is volcanic. 5 295.00 Volcanic Sediments 1 volcanics. 168.85- 283.05 Pale green / grey bleached locally Bx'd intermediate cut by late stage calcite veinlets. Fine hematitic fractures, clay tion of feldspars. > 178.20- 281.30 Faulting with white to green / grey clay gouge.	267.30	268.80	5942	1.50	
	50- 260.50 Strongly sericite / clay altered alaskite. Bright een coarse sericite. Section is sheared / highly clay altered. earing the contact with Nicola volcanics / seds, rock is becoming formed / sheared.) 268.85 Fault Iphide rich, to grey clay gouge 1/2 of faulted material is Alaskite. 2 is volcanic. 295.00 Volcanic Sediments Ideanics. 85- 283.05 Pale green / grey bleached locally Bx'd intermediate to by late stage calcite veinlets. Fine hematitic fractures, clay of feldspars. * 20- 281.30 Faulting with white to green / grey clay gouge. ** ** ** ** ** ** ** ** ** ** ** ** *	268.80	271.80	5943	3.00	
Black. si	ulphide rich, to	grey clay gouge 1/2 of faulted material is Alaskite.				1
	•	- 3,, 3 2				
		nic Sediments	271.80	274.80	5944	3.00
			274.80	277.80	5945	3.00
	8.05 Qtz / feldspar Peg. > 8.50- 260.50 Strongly sericite / clay altered alaskite. Bright green coarse sericite. Section is sheared / highly clay altered. nearing the contact with Nicola volcanics / seds, rock is becoming deformed / sheared.) 9. 268.85 Fault 8. 268.85 Fault 8. 295.00 Volcanic. 10. 295.00 Volcanic Sediments volcanics. 10. 88.5- 283.05 Pale green / grey bleached locally Bx'd intermediate exit by late stage calcite veinlets. Fine hematitic fractures, clay on of feldspars. > 8. 820- 281.30 Faulting with white to green / grey clay gouge. 10. 9. 31.30- 283.05 Abundant hematite / bright green mineral (Mariposite). 13.05- 295.00 Dark green intermediate of mafic massive, volcanic. coarse fragmental. Clasts up to 5cm. Local epidote alteration. Late cross cutting calcite veinlets common. Less hematite overlying bleached. Flows >		277.80		5946	3.50
			281.30		5947	4.70
	•		286.00		5948	3.00
	-			292.00	5949	3.00
Shearing		denting that time to give in group oral, groups		295.00	5950	3.00
-		Abundant hematite / bright green mineral (Mariposite).				-
» 20.	.00 200.00 /	bulldan normalito / singin groom minoral (manposito).		·		
	8 05- 295 00 1	Dark green intermediate of mafic massive, volcanic.				+
		_				-} -
•	_		ļ	L		
_	-	iono vonnoto common. Ecconomina o vonymy sicucincu				.
	J. 10 "					-
						1
			<u></u>			-
				i		
295 00	295 NN FOH					
255.00	200.00 LOII					
				[
				}		
<u> </u>						_

DDH Fox 06 - 31

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-31

Logged by: B. Callaghan

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: May 10, 2006.

Finished: May 13, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686723

Northing: 5718958

Collar elev: 1365 m

Az: 360°

Dip: -60°

Length: 333.1 m

oject: Crazy Fox			ber:Fox		
From To Rocktype & Description	S_from	S_to	Sample	Width	
0.00 4.60 Casing					
4.60 81.20 Alaskite	4.60	7.60	6018	3.00	
Pale grey equigranular alaskite. 1 -2 % 0.5 - 1 mm . « Bt » xtls Limonite	7.60	10.60	6019	3.00	
fractures to 16.4 M, overall core very competent. Scattered fluorite associated	10.60	13.60	6020	3.00	
with Qtz veinlets, also local clots of coarse Muscovite.	13.60	16.60	6021	3.00	
@ 10.30 Crushed sulphides (Py ? Mo). Shear	16.60	19.60	6022	3.00	
@ 11.03 Slickensides. 30°)	19.60	22.60	6023	3.00	
@ 30.50 Shear 25° 1cm >	22.60	25.60	6024	3.00	
« 36.10- 36.45 this interval contains coarse FI blebs as well as	25.60	28.60	6025	3.00	
elevated MoS2. QFP 25°»	28.60	31.60	6026	3.00	
« 41.50- 42.00 Repeat, weak K-spar alteration. QFP »	31.60	34.60	6027	3.00	
@ 54.00 Section of auto Brecciation, minor clay / green sericite along	34.60	37.60	6028	3.00	
ractures. >	37.60	40.60	6029	3.00	
@ 59.00 Crushed, bleached alaskite. >	40.60	43.60	6030	3.00	
@ 73.10 Slickensides (sericite, Py, ± Mo) 30°>	43.60	47.60	6031	4.00	
(@ 77.20 Slickensides 5°)	47.60	50.60	6032	3.00	
« 77.50- 79.00 Crushed broken core. Shear »	50.60	53.60	6033	3.00	
	53.60	56.60	6034	3.00	
	56.60	59.60	6035	3.00	
	59.60	62.60	6036	3.00	
	62.60	65.60	6037	3.00	
	65.60	68.60	6038	3.00	
	68.60	71.60	6039	3.00	
	71.60	74.60	6040	3.00	
	74.60	77.60	6041	3.00	
	77.60	80.60	6042	3.00	
81.20 84.10 aplite					
	80.60	83.60	6043	3.00	
	83.60	86.60	6044	3.00	
Aplite / with QFP clasts to 20 cm depth, locally « Bt » rich. ‹ @ 82.20					
Aplite / QFP / Peg Breccia (Qtz / feldspar) >		-			
84.10 100.55 Alaskite	86.60	89.60	6045	3.00	
Pale to medium grey / green sericite, clay altered alaskite. Low angle blue /	89.60	92.60	6046	3.00	
grey Qtz /Mo veins common. these cut CA at 5 - 25 °.	92.60	95.60	6047	3.00	
	95.60	98.60	6048	3.00	
« 93.90- 95.50 Increase in density. (10 to 15 fractures / 30 cms)	98.60	100.50	6049	1.90	
Fractures 50°»					
07/02/01	1		Page	1-	

	Crazy Fox			S_to	Sample	Width
From	To 	Rocktype & Description	S_from	3_10		***************************************
			100.50	103.50	6050	3.00
100.55 267.75 Breccia			103.50	106.50	6051	3.00
Brecciated , Aplite / QFP / Peg / Qtz veins. Fragment Bx, hosted in a matrix of			106.50	109.50	6052	3.00
alaskite.	The alaskite	host rock is seen in sub metre sections and is less	109.50	111.50	6053	2.00
altered (less K-spar a	and silicification) than adjacent Bx. Clasts are up to	111.50	115.50	6054	4.00
30cm wi	de and are ty	rpically sub-rounded, Truncated Qtz vein fragments tend to	115.50	118.50	6120	3.00
be sub-ε	angular. Core	e is grey green to pale salmon pink. (variable colour is	118.50	121.50	6121	3.00
related t	o the degree	of potassic alteration, silicification, and sericitic /	121.50	124.50	6122	3.00
argillic a	Iteration.) Up	oper section of interval salmon pink due to pervasive	124.50	127.50	6123	3.00
weak to	moderate po	tassic alteration, overprinted with weak silicification.	127.50	130.50	6124	3.00
Lower p	ortion of inter	val pale to medium grey bleached and silicified.	130.50	133.50	6125	3.00
Core co	mpetent , 3 -	4 fractures per metre.40-50° to CA	133.50	136.50	6126	3.00
	=	Contains large clasts of Qtz / feldspar / ± musc. peg.	136.50	139.50	6127	3.00
		ctls and fragments. Breccia »	139.50	142.50	6128	3.00
		T comb structure in silicified pale salmon pink aplitic	142.50	145.50	6129	3.00
clast.>			145.50	148.50	6130	3.00
(@ 131	.00 Py slicke	nsides. >	148.50	151.50	6131	3.00
_	-	y rich slickensides on a fracture to CA. Slicks cut	151.50	154.50	6132	3.00
across fracture plans. 40° >		154.50	157.50	6133	3.00	
	•	Coarse patches / clots of fluorite / Musc / Py and minor	157.50	160.50	6134	3.00
MoS2.			160.50	163.50	6135	3.00
		one and honeycomb textures in plagioclase and grey Qtz.	163.50	166.50	6136	3.00
_	_	Broken, ground core, therefore minor core loss. »		169.50		3.00
		icro scale UST comb textures noted within a 10 cm creamy	169.50	172.50	6138	3.00
to						1
pale salmon pink aplite clast. Similar comb textures at 169.6 M and 170.70 M.		172.50	175.50	6139	3.00	
,	, ,		175.50	178.50	6140	3.00
« 167	7.00- 170.00	Scattered blebs of coarse FI / Musc / ± Py and trace Mo.	178.50	181.50	6141	3.00
»			181.50	184.50	6142	3.00
د @ 175	.00 Pronound	eed fracture. 30° × @ 182.00 Grey Qtz veinlets in this	184.50	187.50	6143	3.00
_		ontained within clasts, as well as along the margins of	187.50	190.50	6144	3.00
the alaskite host.			193.50	6145	3.00	
c @ 191.00 Overall decrease in degree of silicification downhole, increasing		193.50	196.50	6146	3.00	
clay alteration.			199.50	6147	3.00	
« 206.70- 206.85 Ground core. Silicified, Py, bleached QFP. (10 to 15%			202.50	6148	3.00	
sub rounded grey Qtz eyes.) QFP »			205.50	6149	3.00	
⟨ @ 218.50 Banded white / grey silica. Banding = tops up? >			208.50	6150	3.00	
⟨ @ 216.75 Gypsum slickensides. Movement NE. >			211.50	6151	3.00	
_		lear gypsum veinlet. Late stage. 25° 7mm × @ 232.50	ļ	214.50	6152	3.00
		37,				

Project: Crazy Fox			Hole Number: Fox 06-31				
From	То	Rocktype & Description	S_from	S_to	Sample	Width	
Stylolitic	MoS2 seam.	40° >	214.50	217.50	6153	3.00	
-		c / feldspar and FI infilling open spaces formed at the	217.50	220.50	6154	3.00	
junction of 2 large aplite clasts and alaskite clast.		220.50	223.50	6155	3.00		
(@, 237.10 (DWG in notes) >		223.50	226.50	6156	3.00		
« 244.	50- 246.60	Grey clay gouge and ground black sulphide to CA.	226.50	229.50	6157	3.00	
Shear. »			229.50	232.50	6158	3.00	
⟨@ 257.0	00 Flow band	ding in a light grey, bleached QFP clast. 35°>	232.50	235.50	6159	3.00	
⟨ @ 257.20 Grey clay gouge. >		235.50	238.50	6160	3.00		
			238.50	241.50	6161	3.00	
			241.50	244.50	6162	3.00	
			244.50	247.50	6163	3.00	
			247.50	250.50	6164	3.00	
			250.50	253.50	6165	3.00	
			253.50	256.50	6166	3.00	
			256.50	259.50	6167	3.00	
			259.50	262.50	6168	3.00	
			262.50	265.50	6169	3.00	
			265.50	267.70	6170	2.20	
			267.70	270.70	6171	3.00	
267.75	282.90 Alasi	kite	270.70	273.70	6172	3.00	
Alaskite ,	clay altered,	, highly fractured, weak to moderate pervasive sericite	273.70	276.70	6173	3.00	
alteration	of feldspar p	ohenos. Disrupted stylolitic textures within Py ± Mo «	276.70	279.70	6174	3.00	
stringers	» common. ((ie: 279.50,273.00 & 281.8M) Bx textures locally well	279.70	282.90	6175	3.20	
develope	d (ie: at 277.	3 & 279.7 M) Sulphide fractures often curved, indicating					
a rotation	al aspect to	the movement.					
282.90 2	286.00 Fault		282.90	286.00	6176	3.10	
White to	grey clay gou	uge. Host alaskite strongly clay altered, Sulphide					
cemented	d Bx's. Black	Py ± Mo, Po, seams to 2cm wide. U/c 40° to CA.					
286.00	318.30 Alasi	cite	286.00	289.00	6177	3.00	
Clay alter	red, sheared,	, brecciated, with black crushed sulphides. Intensity of	289.00	292.00	6178	3.00	
shearing,	clay alteration	on increasing downhole towards content with Nicola	292.00	295.00	6179	3.00	
volcanics	@ 295.00	General fabric. 45° × @ 297.00 Disrupted stylolitic	295.00	298.00	6180	3.00	
fractures	seen in blac	k sulphide seams. >	298.00	301.00	6181	3.00	
		•	301.00	304.00	6182	3.00	
		•	304.00	306.50	6183	2.50	
			306.50	308.80	6184	2.30	
			308.80	310.30	6185	1.50	
			310.30	313.80	6186	3.50	
			313.80	316.30	6187	2.50	
			313.80	3 10.30	010/	Z.5	

Project: Crazy Fox			Hole Number: Fox 06-31				
From	То	Rocktype & Description	S_from	S_to	Sample	Width	
318.30	319.10 Fault						
			316.30	319.10	6188	2.80	
White grey clay gouge, black ground sulphides / seds.						<u> </u>	
319.10	333.10 Volca	nic Sediments	319.10	322.10	6189	3.00	
Jpper 2	M of Nicola c	onsists of pale green / grey bleached epidote altered to	322.10	325.10	6190	3.00	
arbonn	ate ash tuffs (?).	325.10	328.10	6191	3.00	
« 321	.00- 321.15	Coarse lapilli tuff. Alternating green / bleached tan /	328.10	331.10	6192	3.00	
olack lay	ers. »						
« 321	.15- 333.10	Medium dark green coarse pyroclastic flows. Fragments					
of 1 to 3	cm common	and often exhibit ductile deformation. »					
						<u> </u>	
						<u></u>	
		•					
						ļ	
			ļ				
333.10	333.10 EOH						
			ļ				
						-	
	· ·			1			
						-	
			·				
07/02/01		· · -			Page	1	

.

DDH Fox 06 - 32

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-32

Logged by: B. Callaghan

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: May 10, 2006.

Finished: May 14, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686724

Northing: 5719251

Collar elev: 1370 m

Az: Vertical

Dip: -90°

Length: 306.3 m

oject: Crazy Fox	Hole Number: Fox 06-32				
From To Rocktype & Description	S_from	S_to	Sample	Width	
0.00 8.00 Casing	3.00	6.00	6193	3.00	
	6.00	9.00	6194	3.00	
8.00 14.45 QFP	9.00	12.00	6195	3.00	
Variable weathered limonite, locally Bx'd porphyry with yellow oxide (ferro	12.00	14.40	6196	2.40	
molybdite)? with grey qtz up tp 40° to CA. Stockwork grey Qtz well developed					
from 4.5 to 14.45M. Clay on fracts and in phenos, yellow ochre. Fracture				ļ	
stockwork Peg. with bx'd porphyry clasts in vuggy grey Qtz, with fluorite,					
coarse musc. Veins with noticeable Fe Wo4 at 6.70M. Slickensides along					
fractures.					
	14.40	16.50	6197	2.10	
14.45 18.80 fault	16.50	18.80	6198	2.30	
Fault breccia, yellow orange +brown clay altered QFP, cut by fractures at 50°				<u> </u>	
to CA, with crushed sulphide and Py. Surface pitted - fabric at 30° to CA.					
18.80 28.60 QFP	18.80	21.80	6199	3.00	
Crowded. feldspar at contact with fault rox? white kaolin. Plag sub hedral up	21.80	24.80	6200	3.00	
to 1 cm, surfaced pitted.	24.80	27.80	6201	3.00	
(@ 19.00 Fresh with weak pale green clay, sericite alteration along					
fractures. >				ļ	
Typcally crowded 20 - 25% Qtz eyes in aphanitic bleached light grey brown					
groundmass cut by 1 x 3 mm at 5° to CA.					
	27.80	30.80	6202	3.00	
28.60 34.90 Alaskite	30.80	33.80	6203	3.00	
	33.80	36.80	6204	3.00	
ALSK, Transitional with QFP. Vaguely interlocking feldspar phenocrysts with					
rounded Qtz eyes + 1% « Bt » in weak K-spar + sericite alt'n, overprinted with				ļ	
weak pervasive silica alteration. Less equigranular intense silicification				ļ	
associated with aplitic lenses cut by grey blue Qtz veins.				<u> </u>	
34.90 63.90 QFP	36.80	39.80	6205	3.00	
QFP, Pale pistacio green, intense sericite altered QFP with pervasive silica	39.80	42.80	6206	3.00	
overprinting , cut by grey Qtz, Fl, Musc, Py, FeWo4, ± Moly.	42.80	45.80	6207	3.00	
« @ 36.60 Clay and toffee coloured sericite altered feldspar phenocrysts in the ball also little and by a supplied of the feet was a supplied of the feet	45.80	48.80	6208	3.00	
hybrid alaskite, cut by crushed sulphide Py fractures and barren grey fracture	48.80	51.80	6209	3.00	
Qtz. 30° >	51.80	54.80	6210	3.00	
« 46.00- 63.15 Mostly widely spaced low angle, avg. 20°, grey Qtz	54.80 57.80	57.80	6211	3.00	
veinlets, locally with narrow offsets containing Py and FeWo4 and Moly. Moly		60.80	6212	3.00	
also disseminated along fractures of K-spar envelopes around Qtz. 3 mm»		63.10	6213	2.30	
 ← @ 55.10 Pervasive silica flooding, enveloped by weak K~spar alteration. > ← 63.15- 63.90 Salmon pink angular clasts with fl in silicious brown 	63.10	63.90	6214	0.80	
" 05.15- 05.90 Saimon print angular Gasts with it in sinclous brown	ļ				

Project: Crazy Fox			Hole Number:Fox		
From To	Rocktype & Description	S_from	S_to	Sample	Width
matrix. Downhole he	eavily seriticized, green coarse Sericite with crushed		. [
	and bismuthinite. also Py with vuggy Qtz, fl. 40° Fault »				†··
63.90 201.60 Alaskite			66.90	6215	3.00
Intense kaolin serici	te alteration at lower fault contact, decreasing downhole	66.90	69.90	6216	3.00
	tite, Pegmatitic phase at 64.75M, 30° to CA, with orange	69.90	72.90	6217	3.00
	e along margins and fl (narrow) also trace moly, Bis, and	72.90	75.90	6218	3.00
Py.		75.90	78.90	6219	3.00
-	Qtz feldspar pegmatite with truncated Qtz cream orange	78.90	81.90	6220	3.00
pink K-spar. 7cm »		81.90	84.90	6221	3.00
	ve K-spar alteration in transitional alaskite. >	84.90	87.90	6222	3.00
-	QFP, cut by low angle grey Qtz veinlets with truncated	87.90	90.90	6223	3.00
	K-spar in 3mm veinlets at low angles to core. QFP, qtz	90.90	93.90	6224	3.00
veinlets 3mm»	•	93.90	96.90	6225	3.00
	Veak to moderate sericite and clay alteration develops down	96.90	99.90	6226	3.00
_	par alteration forming along envelopes.	99.90	102.90	6227	3.00
=	Surfaces coated with sericite and crushed grey sulphides	102.90		6228	3.00
	ariable movement directions. Fracture 30-40°»	105.90		6229	3.00
	offsets of dark blue Qtz veinlet offset along fractures.	108.90	111.90	6230	3.00
Qtz, Py, moly. Fraci		111.90		6231	3.00
	5M relatively uniform interval of clay sericite altered	114.90		6232	3.00
	cally exhibits a well developed interlocking xtal	117.90		6233	3.00
	nd characteristic); most of section shows only a 'ghost'	120.90		6234	3.00
,	ure due to kaolinization and sericitization of	123.90		6235	3.00
_	ften displays a pitted texture due to complete destruction		129.90	6236	3.00
of Plag.		129.90	132.90	6237	3.00
•	sides are variable. 5-45° >	132.90	135.90	6238	3.00
_	increase in Qtz vein intensity, local Qtz stockworks,	L	138.90	6239	3.00
	ntent. Qtz veins typcally surrounded by K-spar envelopes.	138.90		6240	3.00
Stockwork »		141.90		6241	3.00
« 134.50- 136.10	Weak, moderate. Potassic alt'n»	ļ	147.90	6242	3.00
	gypsum slickensides. >	147.90		6243	3.00
_) Increasing 2° bt, pale green sericite. »	150.90	 	6244	3.00
« 155.60- 156.30 Blue / grey pitted vuggy Qtz., Scattered large blebs		153.90		6245	3.00
and xtals of wolframite. Stockwork 3.00-5.00mm»			159.90	6246	3.00
(@, 163.50 Narrow Qtz vein Bx. Blue / grey Qtz with disseminated MoS2, trace			162.90	6247	3.00
Gyp, Py and white decomposing Gypsum.			165.90	6248	3.00
« 170.90- 172.00 Aplite With QFP, white to pale grey, locally			168.90	6249	3.00
porphyritic. MoS2 on fractures and as disseminated and larger blebs. Aplite »			171.90	6250	3.00
⟨ @ 182.90 Peg. Qtz vein . Pale salmon pink K-spar envelope. 25.00° 1.00cm >				6251	3.00
	2 - Chi r alo dalirion plant is opar distributo. 20.00 1.000m	171.90			1

From	Crazy Fox To	Rocktype & Description	S_from	S_to	Sample	Width
			 		<u> </u>	
		ALSK, Clay / sericite altered alaskite with narrow		177.90	6252	3.00
lenses o	f light grey a _l	olite. Core broken / sheared / crumbly. Alaskite »	177.90	180.90	6253	3.00
			180.90		6254	3.00
			183.90	186.90	6255	3.00
			186.90		6256	3.00
			189.90		6257	3.00
				195.90	6258	3.00
			195.90	198.90	6259	3.00
		·	198.90	201.60	6260	2.70
201.60	203.70 Aplit	te	201.60	203.70	6261	2.10
APLITE	With QFP. F	Fine equigranular groundmass, Qtz porphyritic aplite, (QP?).				<u> </u>
Constitu	ents are grey	√ Qtz phenos and sub hedral plag.				
203.70	229.80 Alas	kite	203.70	206.70	6262	3.00
Alaskite	is pale grey,	clay / sericite altered, locally sheared and Bx'd. Qtz	206.70	209.70	6263	3.00
veining a	and weakly d	eveloped stockworks throughout. This interval displays a	209.70	212.70	6264	3.00
greater d	degree of alte	eration than the alaskite seen up-hole. (@ 74.80-201.60M)	212.70	215.70	6265	3.00
			215.70	218.70	6266	3.00
« 203	3.70- 207.60	Weak K-spar, sericite, clay alteration with Fl. (reddish	218.70	221.70	6267	3.00
to bright	purple) seen	throughout this section as fracture fillings and on vein	221.70	224.70	6268	3.00
margins.	. Patchy coai	rse Musc. Fracture.»	224.70	227.70	6269	3.00
« 20€	6.90- 213.50	Increasing sericite alteration in a sheared Bx's section.	227.70	229.80	6270	2.10
»						
« 219	9.00- 229.80	Qtz zone. Grey veins cut CA at low angles. Stockwork 25°				
2-5cm»						
229.80	233.75 QFP		229.80	233.70	6271	3.90
			233.70	236.70	6272	3.00
QFP Plu	is aplite. 30 i	to 40 % Qtz phenos (0.5 -1.0 mm) in a fg groundmass of				
Qtz / pla	g/sericite.	With minor MoS2 along fractures.			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
233.75	281.05 Alas	kite	236.70	239.70	6273	3.00
ALSK, F	Pale grey clay	/ sericite altered alaskite. Weak to moderate silica	239.70	242.70	6274	3.00
overprin	t. Bleached	appearance.	242.70	245.70	6275	3.00
د @ 239	.00 Local Bre	ecciation.	245.70	248.70	6276	3.00
c @ 241.	.60 Well deve	eloped slickenside fractures. Py / Mo smears on	248.70	251.70	6277	3.00
slickens	ided surface.	70°>	251.70	254.50	6278	2.80
« 254	4.00- 254.50	Cushed / clay / sericite altered core. Fault. »	254.50	257.50	6279	3.00
« 254	4.50- 281.05	Crushed sulphide. »	257.50	260.50	6280	3.00
c @ 254	.50 Strongly	clay / sericite altered, sheared and crushed alaskite. >	260.50	263.50	6281	3.00
« 255	5.10- 255.25	Aplite, Pale grey / green, bleached / clay altered,	263.50	266.50	6282	3.00
Sheared	l . Aplite 30-8	30°»	266.50	269.50	6283	3.00
· · · · · · · · · · · · · · · · · · ·						 -

oject:	Crazy Fox				ber:Fox	
From	То	Rocktype & Description	S_from	S_to	Sample	Width
« 262	.00- 262.30	Black gouge. Fault 80-75°»	269.50	272.50	6284	3.00
		Black gouge. Fault 45°»	272.50	275.50	6285	3.00
		Alaskite / QFP clasts in a kaolinized / sericite matrix.	275.50	278.50	6286	3.00
Breccia :			278.50	281.00	6287	2.50
« 275	.00- 281.05	Increased faulting at bottom of interval. Shearing »				
	283.65 Faul				. ,——,	1
			281.00	283.60	6288	2.60
			283.60	286.60	6289	3.00
Grey to I	balck clay go	uge. Broken / sheared Nicola clast at bottom of interval.				1
-		anic Sediments	286.60	289.60	6290	3.00
Nicola.			289.60	291.10	6291	1.50
« 283	2.65- 287.60	Bleached grey brown to olive green fg, locally				T
oorphyrit	tic. Flows »					<u> </u>
		Dark green, locally porphyritic volcanic flows. Large				
ghost lik	e fragments	seen over lower part of interval, suggest these may be				
- oartially	reabsorbed p	pyroclastic rocks. (lapilli tuffs) »				
@ 306.	30 Late carb	onate fractures to bottom of hole. Hematitic fractures			· · · · ·	
-	ng downhole.					
						ļ
306.30	306.30 EOH					
						1
	•			· 		
				ļ		1
		,				
					*	

DDH Fox 06 - 33

Project: Crazy Fox

Location: Little Fort, BC.

Hole #: 06-33

Logged by: B. Callaghan

Drilled by: DJ Drilling

Assayed by: Acme

Core size: NQ

Started: May 14, 2006.

Finished: May 18, 2006.

UTM Zone 10 U, NAD 83

Map sheet: 92P _ 059, 069.

Easting: 686782

Northing: 5719271

Collar elev: 1357 m

Az: 176°

Dip: -50°

Length: 410.0 m

oject: Crazy Fox			ber:Fox	
From To Rocktype & Description	S_from	S_to	Sample	Width
	24.00	27.00	6299	3.00
0.00 3.00 Casing				Ī
-	3.00	6.00	6292	3.00
3.00 26.75 Alaskite	1			
Medium grey, medium grained, limonite fractures to 13.5M. Interval contains	6.00	9.00	6293	3.00
grey to blue Qtz veins and local weak stockworks. Potassic alteration haloes	9.00	12.00	6294	3.00
adjustment to Qtz veins. Pervasive sericite alteration of feldspar Phenos.	12.00	15.00	6295	3.00
Sericite is stained an orange / brown colour. Local occurances of Fl. with Qtz	15.00	18.00	6296	3.00
veins.	18.00	21.00	6297	3.00
(@, 21.90 Narrow shear. Ground black sulphides and auto Bx'd alaskite on	21.00	24.00	6298	3.00
either side of shear. Shear 60°)				Ť·
26.75 43.60 QFP	27.00	30.00	6300	3.00
QFP, 30% subrounded, 1 - 2 mm avg. Qtz eyes. 15% sub-hedral 2 - 3 mm avg.	30.00	33.00	6301	3.00
feldspar phenos. Phenocrysts are set in a creamy, white to pale grey aphanitic	33.00	36.00	6302	3.00
groundmass. Section relatively unaltered, low in sulphides.	36.00	39.00	6303	3.00
	l 1			<u> </u>
	39.00	42.00	6304	3.00
	42.00	45.00	6305	3.00
43.60 59.95 Alaskite	45.00	48.00	6306	3.00
ALSK + Crowded QFP. Section consists of weakly clay / sericite altered alaskite	48.00	51.00	6307	3.00
with minor QFP ± aplite. Qtz veins locally pegmatitic / vuggy. QFP / aplite	51.00	54.00	6308	3.00
phases are narrow. In one case (57.8 M) a 5 cm xenolith of fine aphanitic	54.00	57.00	6309	3.00
porphyritic crowded QFP is contained within a weakly clay altered QFP.	1			1
« 58.00- 58.70 Clay alt'd alaskite? Shear »]			
59.95 62.00 Aplite	} 			†
•	57.00	60.00	6310	3.00
	60.00	63.00	6311	3.00
Pale grey to tan coloured aplite, upper contact sharp, lower contact similar.	63.00	66.00	6312	3.00
at 45° to CA.				
		i		1
62.00 226.85 Alaskite	l			1
ALSK With minor Aplite. Pale grey to salmon pink, medium grained equigranular	66.00	69.00	6313	3.00
alaskite. At the top of the interval the alaskite texture locally grades to	69.00	72.00	6314	3.00
QFP. Xenoliths or inclusions of 'sugary' aplite are up to 20 cm in size and	72.00	75.00	6315	3.00
typically have sharp contacts to the Alaskite. Interval displays extensive Qtz	75.00	78.00	6316	3.00
veining to local stockworks. Mineralized blue grey veins are commonly at low	78.00	81.00	6317	3.00
angles to the CA.	81.00	84.00	6318	3.00
	84.00	87.00	6319	3.00
« 84.50- 85.80 Mixed rock types, alaskite / aplite / QFP / Peg. »	87.00	90.00	6320	3.00
				+

oject: Crazy Fox		· — ,	ber:Fox	1 —
From To Rocktype & Description	S_from	S_to	Sample	Width
@ 91.00 Aplite Dyke 25° 1cm >	90.00	93.00	6321	3.00
« 95.40- 97.30 Section notable for high Qtz content and massive to semi	93.00	95.40	6322	2,40
massive Py. Potassice alteration adjacent to Qtz veining. Local patches of	95.40	97.30	6323	1.90
coarse Musc. Qtz vuggy peg. *Py extremely coarse grained. »	97.30	100.30	6324	3.00
« 106.85- 226.85 With aplite and QFP. Zone of weak clay / sericite alt'n	100.30	103.30	6325	3.00
with sub metre aplite dykes and Local QFP phases. Alaskite »(Note: this is a	103.30	106.30	6326	3.00
highly variable section which is difficult to further subdivide due to numerous	106.30	109.30	6327	3.00
narrow QFP / aplitic phases.)	109.30	112.30	6328	3.00
« 106.85- 107.40 Bx'd. Several narrow clay / black sulphide shears over	112.30	115.30	6329	3.00
the length of interval. Shear 70°»	115.30	118.30	6330	3.00
« 113.85- 123.50 Weakly developed crushed (black) sulphide zone.	118.30	121.30	6331	3.00
Stylolitic textures are seen throughout this interval. Section is clay ±	121.30	124.30	6332	3.00
sericite altered. »	124.30	127.30	6333	3.00
« 112.60- 113.70 Clay altered, cut by irregular, sheared / stylolitic, FI	127.30	130.30	6334	3.00
/ Mo / Py veinlets. QFP »	130.30	133.30	6335	3.00
« 135.60- 136.40 Bt rich, clay altered. Narrow white gypsum veinlets. QFP	133.30	136.30	6336	3.00
»	136.30	139.30	6337	3.00
« 145.15- 146.60 Bt rich, Py (1% diss. Py) aplite. Aplite »	139.30	142.30	6338	3.00
« 146.30- 146.60 Breccia »	142.30	145.30	6339	3.00
⟨ @ 151,30 Gypsum vein. 90° ⟩	145.30	148.30	6340	3.00
« 151.30- 153.75 Large clasts, Aplite, alaskite, crowded QFP and	148.30	151.30	6341	3.00
truncated QTZ. QFP »	151.30	154.30	6342	3.00
@ 151.60 Peg. Qtz / fldsp / Fl spacially associated. MoS2 blebs. Plagioclase	154.30	157.30	6343	3.00
phenos? completely altered to sericite. 3mm >	157.30	160.30	6344	3.00
@ 160.00 Mo., Py smears on a fracture to CA. Slickensides cut across this	160.30	163.30	6345	3.00
fracture. 45°)	163.30	166.30	6346	3.00
⟨ @ 169.60 Pegmatitic aplite. →	166.30	169.30	6347	3.00
@ 169.75 Late low angle grey Qtz vein cuts both the aplite and the adj	169.30	172.30	6348	3.00
alaskite. >	172.30	175.30	6349	3.00
⟨ @ 175.80 White gypsum veinlet. 65° 1cm >	175.30	178.30	6350	3.00
« 186.30- 186.80 Bx'd, weakly developed within QFP, aplite clasts. Offset	178.30	181.30	6351	3.00
Qtz veinlets, black ground sulphides on fractures. QFP »	181.30	184.30	6352	3.00
« 186.80- 187.00 Bx. Green / grey sericite / Py gouge in upper and lower	184.30	187.30	6353	3.00
contacts. Fault 80°» Well developed fracture set over this interval 80° to	187.30	190.30	6354	3.00
CA.	190.30	193.30	6355	3.00
« 194.40- 198.50 with Qtz eye porphyry (QP); sericite / clay altered.	193.30		6356	3.00
Aplite »	196.30		6357	3.00
« 198.00- 206.70 Creamy white to pale grey clay / sericite altered		202.30	6358	3.00
alaskite. Occasional low angle grey Qtz with minor MoS2. Alaskite »	202.30		6359	3.00
	 			

	Crazy Fox	D. Li 9 Describation	S from	S_to	ber:Fox Sample	Width
From	То	Rocktype & Description	2_1roiii	3_10	Sample	widen
« 206	.70- 208.60	Bt rich aplite / porphyritic Aplite. Minor diss. MoS2,	205.30	208.30	6360	3.00
vein Mos	S2 and Fl. Ap	olite »	208.30	211.30	6361	3.00
« 208	.60- 216.50	Clay, sericite altered. Weak overprint of	211.30	214.30	6362	3.00
silicificat	ion / potassic	alteration. Core has a pale pink colour due to weak	214.30	217.30	6363	3.00
potassic	alteration. Al	askite »	217.30	220.30	6364	3.00
« 216	.00- 223.50	Low angle, sulphide rich (Py>Mo), as well as stylolitic	220.30	223.30	6365	3.00
moly frac	cture fillings a	re seen. Fractures »	223.30	226.30	6366	3.00
_		les on a 0° to CA fracture. Slickensides cut across				
	plane. 45°> :00. 226.95	Increasing clay / sericite alteration to contact with				
		n fractures / local Wulf /± Fl. »				
QFF, 1110	reased MO O	Tractures / Total Wall / I FT. W				
			226.30	229.30	6367	3.00
226.85	285.00 QFP	•		232.30	6368	3.00
		alaskite and aplite with crushed sulphide. Interval		235.30	6369	3.00
	ed predomina	ntly of pale grey / green, bleached QFP. ~25% sub		238.30	6370	3.00
		white gypsum veins common in this section. Minor	238 30	241.30	6371	3.00
-		/ sericite altered.) Aplitic sections up to ~ 1 M in		244.30	6372	3.00
		nly shows elevated FI content. (+ trace very finely diss		247.30	6373	3.00
MoS2.)	pinto commo	y choice character, containing mass very many many		250.30	6374	3.00
•	8.80- 239.40	Minor diss. Fl, trace Mo. Aplite »		253.30	6375	3.00
		ith grey clay gouge. Shear 40%		256.30	6376	3.00
_		and possible UST comb structures. >		259.30	6377	3.00
_	•	spar Peg. Feldspars are altered to clays and green	259.30	262.30	6378	3.00
_	20.00cm >	, ,	262.30	265.30	6379	3.00
		Numerous, irregularly oriented fractures with crushed	265.30	268.30	6380	3.00
		2) This zone is also clay ± sericite altered. Narrow Aplite		271.30	6381	3.00
phases i	to 20 cm. Cru	shed sulphide zone. »	271.30	274.30	6382	3.00
د @ 269.	30 Grey Qtz	vein is offset by a fracture. 40.00°>	274.30	277.30	6383	3.00
« 275	5.00- 277.00	Pale grey to white Qtz porphyritic aplite. Stylolitic	277.30	280.30	6384	3.00
textures	are seen at 2	275.5. These are comprised predominantly of FG Mo. Aplite	280.30	283.30	6385	3.00
<i>»</i>						·
« 281	1.55- 281.85	Grey Qtz vein. Shear. 75.00-70.00°»	202 20	206 20		3.00
285 00	334.60 Brec	cia	286.30	286.30 289.30	6386 6387	3.00
		ped Bx (QFP) (much more poorly developed than in 06-31)		292.30	6388	3.00
•	· ·	lay the same pervasive silicification as in 06-31. Clasts	·	295.30	6389	3.00
	•	e (often >30cm) and consist of: alaskite, QFP (typically	295.30	 	6390	3.00
		(Abbreal)				+===

From	To	Rocktype & Description	S_from	S_to	Sample	Width
						<u> </u>
clay / se	ricite altered)	crowded QFP, Qtz vein fragments and aplite		301.30	6391	3.00
c @ 302.	00 White gy	osum. Fracture 45° >		304.30	6392	3.00
« 303	.45- 303.65	Bx / shear zone. 65°»		307.30	6393	3.00
« 307	.00- 312.00	Weak silicification overprints clay / sericite		310.30	6394	3.00
alteratio			l	313.30	6395	3.00
« 310	.00- 319.00	Coarse Bx sections of crowded QFP. (creamy white		316.30	6396	3.00
aphanitic	groundmas	s) weak silicification. Core quite broken, pyritic		319.30	6397	3.00
fractures	, QFP »			322.30	6398	3.00
« 318	330.00	Increased deformation, black ground sulphides / gypsum		325.30	6399	3.00
	res. Shearin	-	325.30	328.30	6400	3.00
c @ 320.	20 Large clo	ts of FI within a white to grey pitted Qtz vein. 2-4mm >		331.30	6401	3.00
			331.30	334.30	6402	3.00
« 330	.00- 331.65	Crowded. 25 to 30% rounded 2mm (avg) Qtz eyes in a				<u> </u>
creamy (white, aphan	itic groundmass. QFP »				
« 334	.45- 334.60	Sheared pytritic. QFP 50°»				<u> </u>
			334.30	337.30	6403	3.00
334.60	350.50 Alas	kite	337.30	340.30	6404	3.00
ALSK wi	th Minor QFI	P. Clay ± sericite altered, locally Qtz veined alaskite.	340.30	343.30	6405	3.00
Black gr	ound sulphid	es on some fractures. (Py ± vf diss, MoS2) Late stage	343.30	346.30	6406	3.00
gypsum	veins (to 3 m	nm wide) cut core axis at 40 - 50 °	346.30	349.30	6407	3.00
c @ 343.	00 With gro	und sulphides and grey clay gouge. Shear 25° >				<u> </u>
« 3 45	5.50- 350.00	Increasing fracturing / Bx and green sericite				
alteratio	n. Fracture. 1)				ļ
				352.30	6408	3.00
	354.00 QFP			354.00	6409	1.70
	d QFP. Sam	e as at 330.0-331.65M Moderately strong sericite alteration	354.00	357.00	6410	3.00
of				ļ		
feldspar	phenos.					
	371.80 Alas					1
		e + QFP = Aplite + crush zone. Clay altered, sheared,	357.00	·- ·	6411	3.00
_	•	alaskite. Crushed black sulphides throughout. Medium	360.00		6412	3.00
•		tion to 356.2 M.	363.00		6413	3.00
_		fracture filling. Fractures filled with large aplite / QFP		369.00	6414	3.00
		r material overlies these clasts therefore fining?	369.00	371.80	6415	2.80
•		noto 06-33 361.5M)				1
		Creamy white fine grained. Soft pitted appearance as a				<u> </u>
result of	kaolinization	of fg feldspars. Aplite »	1			1

oject: Crazy Fox			ber:Fox	1
From To Rocktype & Description	S_from	S_to	Sample	Width
371.80 375.80 QFP	371.80	373.80	6416	2.00
Crowded. Lithology and mineralization similatr to unit @ 350.50-354.00M. U/c	373.80	375.80	6417	2.00
gradational; angle not discernable. L/c sharp @ 45° to CA. 25-30% sub hedral				ļ
grey Qtz phenos in a light tan to light grey graundmass.				
375.80 381.60 QFP	375.80	378.80	6418	3.00
Plus transitional alaskite. Clay sericite alteration. sub rounded Qtz phenos	378.80	381.60	6419	2.80
in a finer groundmass of Qtz / feldspar.				
« 376.70- 377.30 1 TO 2 % diss. and fracture filling fl, finely sheeted				
fl rich fracture. Fracture. 50°»				
381.60 384.20 Alaskite	381.60	384.20	6420	2.60
Sericite / fluorite altered. Weak silica overprint.	384.20	387.20	6421	3.00
384.20 397.10 Alaskite				<u> </u>
Clay altered. Several narrow clay filled shears (eg: 30 - 40 ° to CA)	387.20	390.20	6422	3.00
Pervasive clay / sericite alteration, locally weak silica overprint.	390.20	393.20	6423	3.00
Stylolitic textures seen as Py ± moS2 fractures. @ 397.10 Upper contact 40°	393.20	397.10	6424	3.90
)	397.10	400.10	6425	3.00
397.10 408.30 Fault				-
Strongly clay altered, sheared, faulted Alaskite?. Original rock almost	400.10	403.10	6426	3.00
completely obliterated by alteration / shearing. Top 3 M o finterval ~ 25%	403.10	406.10	6427	3.00
nmilky white to light grey Qtz veins. @ 402.10 Large accumulations of bright	406.10	408.30	6428	2.20
purple FI along fractures. (±1.5 cm) >				
408.30 410.00 Volcanic Sediments	408.30	410.00	6429	1.70
Nicola. Strongly sheared. bleached, carbonate altered ash tuffs(?). U/c appears to be at 45 ° to CA. Locally 2 - 3% finely diss. Py, trace Po.				
410.00 410.00 EOH				
] }		
	,			
07/02/01				

APPENDIX IV

Assay Certificates and Results

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE

Newmac Resources Inc. File # A602814R
2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

, variouster de van Elle Dal	iani ani di da Ciri da	<u> </u>	
SAMPLE#	W %		
4599 4619 4631 4643 STANDARD R-2a	.04 .03 .04 .03		

GROUP 7KP - 0.500 GM SAMPLE BY PHOSPHORIC ACID LEACH, ANALYSIS BY ICP-ES. - SAMPLE TYPE: Core Pulp

07-11-2006 A10:15

Data FA

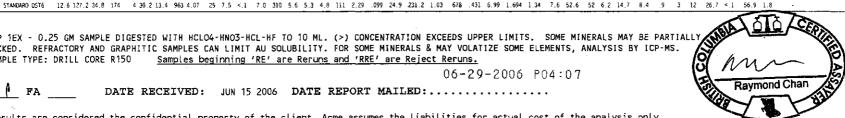
DATE RECEIVED: JUN 30 2006 DATE REPORT MAILED:....

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE


Newmac Resources Inc. File # A602814 2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

Mo Cu Pb Zn Ag Ni Co Mh Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Hig Ba Ti Al Ha K W Zr Ce Sn Y Nb Ta Be Sc Li S Rb Hf Sample .2 6 8 20 1 52 < 1 4 2 4 1 708 2 20 < 1 4 0 < 1 6 5 726 .1 .1 .1 48 2 67 .076 19.5 11.4 .58 1061 .255 7.67 3 .003 2 .76 .2 8 .7 41 1.3 14 1 19.9 1 9 2 5 38 2 < 1 115.6 .7 G-1 71.3 5.3 13.7 11 11 1.1 .4 223 .83 1 11.0 < 1 31.8 30 11 .3 6.4 7 .42 .007 23.3 5.5 .07 126 .051 6.02 2.261 3.40 28.1 24.2 40 5.7 9.2 22.9 2.8 3 3 22.1 .5 148.6 12 6.46 4551 24,2 20.2 16.7 12 .1 4.8 .5 267 .73 <1 9.7 <1 33,2 31 <1 .2 2.2 5 .49 .007 25.2 7.1 .07 140 .061 6.22 2.742 4.05 15.6 28.9 44 4.9 12.5 31.5 3.3 5 3 24.8 .3 181.5 1.5 6.68 4552 24.1 5.2 16.9 11 < 1. 7 .3 285 .66 1 7.4 < 1 36.0 27 < 1 .2 2.5 6 .53 .006 23.8 4.8 .06 108 .052 6.46 2.804 3.65 10.2 29.3 41 3.2 12.4 28.1 2.5 6 3 23.4 .2 175.4 1.4 6.34 4553 36.2 20.7 25.0 28 .1 2.9 .4 497 .83 2 13.1 <1 41.4 28 .2 .3 1.4 5 .45 .007 26.4 6.0 .06 104 .058 6.46 2.818 4.05 19.9 29.6 46 4.9 12.5 31.6 3.7 8 3 27.2 .4 183.4 1.5 6.22 4554 4555 14.1 9.614.4 9 .1 18 .3 209 .61 111.0 <1 34.2 27 .1 13 1.5 4 .40 .006 24.8 9.3 .05 114 .053 5.81 2.330 4.18 32.8 26.5 42 2.9 9.9 26.8 3.1 4 3 26.4 .2 163.4 1 4 6.23 4556 56.0 20.2 13.7 17 < .1 3.7 .3 180 .74 1 11.1 < .1 25.5 18 .1 .2 2.4 4 .41 .005 15.3 6.0 .04 58 .040 5.26 2.219 2.84 42.5 19.3 27 4.6 8.6 23.6 2.8 10 2 17.5 .5 133.9 1.0 3.66 4557 4.7 5.6 15.9 11 < 1 6 3 253 60 1 10.1 < 1 32.9 22 < 1 .2 2.8 4 .43 .004 20.8 4.3 .05 94 .048 6.13 2.822 3.56 11.2 25.9 36 2.7 8.7 27.4 3.0 4 3 16.0 .2 149.7 1.3 6.12 4558 43.4 12.0 17.2 7 <1 2.3 .2 158 .57 <1 10.8 <1 39.7 20 .1 .2 1.2 3 .34 .004 17.7 7.3 .04 78 .046 6.40 2.813 4.23 59.1 28.4 32 4.5 11.0 34.3 4.2 6 3 18.9 .3 191.1 1.5 6.18 4559 11 4 3 3 17 0 9 < 1 7 2 221 61 <1 3 3 < 1 38 8 20 1 2 2 4 4 46 004 21 5 11 6 04 78 048 616 2 824 3 86 20 5 30 7 37 4 4 11 9 35 9 3 7 5 3 20 1 3 166 0 1 5 6 48 4560 7.7 6.2 16.6 6 < 1. 2.3 .2 134 .59 1 14.7 < 1 37.0 20 < 1 .2 2.0 4 .37 ,004 21.8 6.1 .05 70 .042 6.15 2.727 3.97 12.8 28.5 38 3.2 11.1 26.6 3.1 4 3 22.0 .3 160.2 1.4 5.56 4561 26.0 4.9 19.5 17 < 1 1.6 .2 228 .57 <1 9.5 <1 35.8 20 <1 2.2 4.3 .38 .005 22.0 7.1 .05 79 .052 6.41 3.052 4.14 8.7 28.8 38 2.4 14.6 38.2 4.2 3 4 16.9 .1 151.6 1.5 7.08 4562 59.0 4.4 17.7 10 < 1, 7, 2 260 .61 1 9.4 < 1 33.4 19 < 1, 1.6 3 .42 .005 19.4 3.3 .04 70 .051 6.32 2.655 3.84 8.6 27.7 34 1.8 13.0 36.0 4.1 4 3 17.9 .2 151.7 1.6 5.90 11.1 4.5 20.6 12 < 1 1.0 . 2 285 .65 1 7.4 < 1 34.4 17 < 1 1.1 1.0 3 .38 .003 19.5 3.8 .04 57 .049 6.31 2.923 3.79 7.3 26.5 33 2.0 11.6 33.7 3.2 4 3 17.3 .1 134.0 1.5 4.48 4565 1409.4 2.5 16.6 6 .1 .7 < .2 186 .59 <1 7.6 < .1 28.7 16 .1 .2 .2 3 .38 .002 14.1 7.8 .02 39 .038 5.23 1 846 4.10 7.7 17.8 25 1.8 10.9 33.0 3,7 3 3 12.4 .3 143.7 1.1 .78 4566 3 2 3 3 19 2 13 < 1 9 2 296 70 1 8 4 < 1 32.7 15 < 1 1 6 3 39 .004 19.5 5 2 .04 55 .048 6.02 2 8 4 3 57 21.1 24.7 33 1.7 12 3 34.6 3.8 4 4 19.7 .1 125 0 1 4 6 26 4.5 4.5 44.5 94 .1 .5 .4 546 .87 1 10.9 < 1 40.2 19 1.1 .3 .6 5 .41 .004 23.0 3.7 .06 60 .054 6.02 2.511 3.57 12.3 34.1 41 4.2 16.9 36.3 4.7 6 4 27.5 3 143.4 1.7 5.58 4567 7.1 6.2 17.1 13 < 1 .8 .2 313 .88 1 9.3 < 1 34.7 24 .1 .2 .9 5 .50 .005 22.0 5.2 .05 75 .058 5.90 2.433 3.31 11.7 30.8 37 1.6 13.1 29.7 3.3 4 3 211 .2 120.0 1.7 6.28 4568 8.3 2.5 19.1 15 < 1 .4 .2 290 .77 < 1 8.2 < 1 35.1 21 < 1 .1 .3 4 .49 .005 21.2 6.6 .04 72 .059 6.24 2.904 3.55 9.9 26.6 35 1.5 14.6 31.8 3 5 4 3 15.6 .1 130 3 1.4 6.54 4569 4570 2.5 4.1 19.8 12 < 1 .9 .2 275 .71 1 13.5 < 1 37.2 24 .1 .1 .8 5 .47 .004 24.5 5.6 .05 81 .053 6.09 2.740 3.42 11.4 33.8 44 2.2 15.8 38.7 4.5 4 4 21.0 .2 148.3 1.6 644 30.0 3.1 15.7 14 < 1. 5 .4 307 1.00 1 7.0 < 1 41.2 28 < 1. 1 1.0 6 .60 .006 25.9 3.9 .07 73 .069 6.45 3.156 3.01 13.6 30.2 46 3.0 15.0 34.5 3.8 4 3 25.4 .3 113.9 1.5 6.36 4571 13.5 3.6 19.1 13 < 1 .6 .4 253 .80 1 12.5 < 1 40.5 25 .1 .1 .9 4 .43 .005 24.5 3.3 .06 80 .062 6.03 2.504 4.25 11.6 32.9 44 2.3 14.7 43.7 5.3 4 4 31.4 .3 172.9 1.7 5.44 4572 27.0 3.8 19.0 10 < 1. 2 3 241 .77 1 8.9 < 1 36.9 27 < 1 1. 9 5 .47 .005 24.9 3.5 .07 88 .054 6.56 2.753 4.30 15.8 29.0 45 3.0 13.1 32.1 4.8 7 4 39.7 .3 190.8 1.5 4.02 4573 22.1 3.7 21.0 31 <1 1.0 .6 441 1.37 1 8.4 <1 61.1 42 .1 1.0 .9 8 .59 .011 40.6 5.5 .12 153 .119 6.66 3.283 3.87 19.7 40.6 69 3.0 16.0 36.0 3.8 5 3 43.2 .3 145.8 1.8 6.54 4575 4.4 2.5 23.3 16 < 1 .5 .5 340 1.29 < 1 9.4 < 1 47.8 31 < 1 4.5 2.4 6 .52 .006 25.0 4.3 .10 68 .071 6.36 2.594 3.27 20.7 34.8 45 3.8 14.2 32.7 3.3 4 3 100.5 .6 140.0 1.4 6.72 15.1 6.1 18.2 21 < 1.1 1.0 .9 379 1.40 1 10.1 < 1. 35.1 64 .1 .3 1.5 12 .72 .019 24.2 6.3 .12 176 .091 6.40 2.798 3.12 23.8 29.4 46 5.5 17.0 41.2 4.3 4 4 72.5 .7 146.6 1.3 5.43 4576 63.6 2.1 15.8 22 < 1.1 1.1 .9 289 1.05 2 7.1 < 1. 37.2 37 .1 .5 1.7 14 .23 .019 33.3 8.5 .12 172 .088 6.26 2.471 3.70 21.4 35.4 59 3.8 11.2 26.4 2.7 3 3 36.3 .1 147.0 1 6 5 90 4577 78.7 6.7 16.2 16 < 1.1.4 .5 239 .81 1 9.5 < 1.32.6 36 < 1 .1 3.6 6 .39 .010 27.0 7.4 .08 151 .054 6.08 2.219 3.97 28.5 26.8 46 5.0 9.7 20.7 2.4 4 3 29.7 .3 176.0 1.2 5.12 4578 60.6 1,914.9 20 < .1 .6 .5 313 .78 1 8.6 < .1 37.2 32 .1 .2 .4 7 .40 .010 26.0 3.3 .08 143 .066 6.53 2.701 4.17 30.2 33.1 45 3.5 11.2 29.7 3.1 5 3 25.4 .2 155.9 1.6 5.58 54. 4 7 14.8 13 < 1 1.4 4 325 72 2 9.1 < 1 35.5 33 < 1 .3 .4 6 .44 .008 26.4 4.6 .08 139 .063 6.36 2 422 4.13 13.8 31.2 45 3.0 11.1 28.3 3.1 4 3 24.4 .2 154.9 1.5 6.58 4580 34.0 4.0 23.2 21 < 1 2 4.677 73 30 8.3 < 1 36.0 34 .2 .3 .9 6 .36 .009 26.0 4.7 .07 149 .063 6.24 2.816 4.07 20.0 29.5 45 3.8 11.2 29.2 3.1 4 3 27.5 .2 170.4 1.4 6.38 4581 33.4 4.2 22.5 21 < 1 .6 .5 708 .73 27 8.5 < 1 35.4 33 .4 .3 .9 6 .37 .008 25.4 4.1 .07 150 .063 6.30 2.711 3.95 20.0 30.1 44 3.8 11.2 29.0 3.2 4 3 24.2 .2 159.6 1.5 RE 4581 80F 4581 26,6 3,6 30,7 21 1 .7 5 1005 79 42 9.2 < 1 36.5 34 .1 .4 .8 6 .37 009 26.5 6.9 .07 153 .065 6.39 2.737 4.28 23.3 30.5 46 4.1 12.0 30.1 3.3 4 3 28.8 .2 171.5 1.5 9.4 4.5 16.3 13 < 1 .4 .3 238 .69 1 8.9 < 1 34.3 28 .1 .2 .6 5 .38 .006 21.9 3.8 .06 132 .049 6.27 2.677 3.94 35.7 25.1 38 4.7 10.1 26.2 2.8 5 3 29.4 .3 166.1 1.3 6.78

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HN03-HCL-HF TO 10 ML. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-MS. - SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

06-29-2006 P04:07

DATE RECEIVED: JUN 15 2006 DATE REPORT MAILED:.....

FILE # A602814

Page 2

ACITE AIMETTE																																							AUT	ME ANALTETCAL
SA	MPLE#	Mo	Cu Pt	Zo	Aq	Ni	Co Mn	Fe	As	ш	Au T	h 9	r Cd	Sb	Bi	٧	Сə	Р	La	Cr	Ma	6a	T1	A1	Na.	К	w	7г	Ce	Sn	Y	Νh	Ta	Re	Sc	Li	٠ ،	th HE	Sample	
57			ррт ррг		-																															_	_			
		PP		. pp	p p ···	p.p	Abr. Phys.			ъ р	Pr. PP		4 P.P	PP	- P	pp				- PP		pp							pp	pp.	pp	ppm	pp	1000			- 1/	, ppin		
G-	1	3	30.5 23.2	53	.1	7.2	4 7 746	2 39	1 4	.6 <	.1 8.	0 74	5 .1	1	2	51	2.74	.086	23.6	9.0	61	1076	284	7 85	3 033	2 94	3	10.2	47	1.5	15.1	21.6	1 9	3	5 30	3 4 2	: 1 121	a e		
45			3.5 16.2																																					
45			5.1 22.4																																					
45	-		2.0 19.2																																					
45			3.2 25.9																																					
	do		0.2 0		•		. 2 0.00					•			0.5		.00		2	5.5		0.	.000	0.55	0.000	0.10					•0.4	00.0		,	٠.,			7 1.0	3.04	
45	87	29.8	2.9 27.0	17	.1	.4	.2 296	. 64	2 14	.5 <	.1 43.	1 2	5 .1	. 6	4.2	4	.34	.004	26.6	5.7	. 05	96	.046	7.09	2.805	4.20	18.8	35.6	47	4.4	13.7	35.5	3.9	4	3 28	3.5	.2 212	8 1 9	5 08	
45	88		3.2 17.2																																					
45	89	88.4	2.7 13.5	7	<.1	.4	.2 215	63	<1.13	.5 <	.1 33	4 3	0 <.1	. 2	1.3	5	.31	.005	21.0	5.5	.06	129	.053	6.07	2.200	3.68	16.5	27.4	37	3.9	8.2	23.8	2.4	4	2 24	1.8	.3 158	6 1.4	6.08	
45	90		4,2 17.1																																					
45	91	17.7	3.8 16.6	12	<.1	.6	.3 256	.66	1 11	.1 <	.1 39.	0 2	8 .2	.3	3.7	5	. 45	.006	24.6	5.1	.06	117	.056	6.83	2.971	4.02	16.7	28.8	42	3.2	11.6	28.3	3.2	4	3 21	1.7	.2 180.	9 1.4	5.86	
45	92	26.3	9.8 14.4	12	۲.1	.9	.2 658	.92	4 15	.6 <	.1 35.	5 3	1 .1	.8	1.5	5	.38	.007	29.1	6.3	.06	105	.054	6.19	1.815	3.76	10.9	32.5	50	12.3	12.6	32.7	3.3	4	3 33	1.5	.4 169.	1 1.4	6,44	
45	93	31.7	4.7 17.6	22	<.1	.8	.3 195	.70	1 11	.6 <	.1 37.	9 2	9 <.1	. 4	1.7	5	.38	.006	24.7	8.1	.06	124	.045	6.43	2.462	4.39	12.3	27.8	42	4.9	10.I	24.1	3.1	4	3 24	1.1	.4 188.	0 1.3	6.36	
45	94	15.6	3.1 22.3	11	<.1	.7	.3 293	.79	1 14	.1 <	.1 39.	D 3	1 .1	. 3	5.0	5	. 43	.007	25.9	5.3	.06	126	.048	6.69	2.717	4.05	18.5	30.3	44	6.2	11.1	27.7	2.8	4	3 21	8	.4 173.	0 1.4	6.10	
45	95	6.4	3.7 16.9	9	<.1	.8	.2 211	. 66	1 13	.6 <	.1 36.	5 2	4 .1	. 2	1.3	4	. 45	.005	23.3	7.0	.05	91	.038	6.43	2.546	3.98	34.1	27.2	41	4.0	10.1	25.6	2.9	5	3 18	1.0	.3 172.	5 1.4	6.32	
45	96	6.2	2.7 34.4	42	.2	.4	<.2 619	.59	2 1€	.3 <	.1 37.	6 2	6 .6	. 3	3.7	3	.41	.004	23.6	4.8	.05	100	.046	6.68	2.536	4.18	20.7	29.8	41	4.4	12.4	34.8	3.8	5	3 20	1.7	.3 175.	2 1.6	5.64	
l																																								
45	97	6.6	5.2 21.8	8	<.1	.6	.2 258	. 69	1 9	.6 <	.1 41.	5 2	5 .1	. 3	2.6	. 3	.41	.005	24,0	5.5	.05	99	.047	7.12	3.003	4.14	10.7	28.2	41	2.9	12.7	31.7	3.4	4	3 22	5	.2 170.	7 1.5	7.02	
45	98	41.9	4.1 19.6	8	<.1	.3	<.2 254	. 55	1 10	.0 <	.1 36.	1 2	7 <.1	. 2	2.1	4	.48	.004	21.8	7.6	.05	88	.042	6.57	2.723	4.01	48.1	28.3	37	4,5	11.5	25.4	2.7	5	3 20	1.5	.2 169.	4 1.4	6.82	
45	99	17.0 1	10.4 25.5	28	. 1	.4	.2 506	.74	8 10	.0 <	.1 36.1	3 2	0.4	3.3	10.8	5	.40	.003	21.7	4.7	. 05	71	.045	6.82	2.301	3.63	>200	27 4	37	7.7	14.1	37.0	3.7	4	3 32	:.3	.3 152.	4 1.4	6.18	
46	00	7.2	12.6 25.2	18	. 1	.4	.3 354	.80	3 12	.3 <	.1 38	6 3	2 .1	. 5	12.2	3	. 29	005	22.4	5.6	.06	86	.049	6.38	1.750	3.63	11.1	31.3	38	6.0	12.1	28.0	2.7	3	3 52	. 2	.3 163.	7 1.6	2 52	
46	01	21.2	6.9 20.1	5	<.1	.б	4.2 230	. 63	1 9	.4 <.	. I 38.	4 2	4 .1	. 4	5.2	3	. 29	.004	21.6	4.1	.04	95	.053	6.59	2.370	4.17	12.7	31.7	36	5.2	11.6	29.7	3.1	3	3 22	3	.3 179.	3 1.6	4.92	
46			3.4 17.6																																					
46			2.5 21.7																																					
46	-		3.3 22.3																																				-	
	4604		2.4 21.0																																					
KR	E 4604	5 .7	3.9 18.6	lb	<.1	.9	.2 336	. 81	1 9	.B <.	1 37.	2 2	2 .1	. 2	1.5	9	. 50	.005	21.1	9.2	.06	58	. 050	6.38	2.617	3.23	1B.0	29.3	35	1.3	12.7	31.1	3.1	4	4 29	.9 .	.3 152.	B 1.6	•	
46	۸۶	0.3	2.7 20.7	10	- 1	٠.	- 2 279	EQ	1 11	n -	1 20 /	1 2	2 - 1	,		,	40	ana	20.0	6 1	0.4	50	0.45	£ 64	2 702	2 00	12.0	26.6	25	2 0	12.2	21.4	2 2		2 16	. a	7 154	n 1 f	6 50	
46			5.5 22.3																																					
46			1.9 23.3																																					
46			2.4 23.3																																					
46			1.6 20.0																																					
10	• /		1.0 20.0		•							•										••	. • • •	5.25				.,	O.					•						
46	10	32.7	2.5 21.9	9	<.1	.5	<.2 198	.73	1 16	.1 <.	.1 38.0) i	8 .1	.2	5.5	4	.40	.002	18.6	4.5	.04	41	040	6.55	2.737	4.05	14.0	30.7	35	2.7	16.4	49.9	5.2	5	4 19	.4	.3 164.	0 1.6	5.94	
46	11	8.3	4.2 15.7	16	<.1	.5	.2 221	.62	1 11	.0 <.	1 27.	5 2	5 <.1	.2	.8	3	.53	.003	15.0	7.1	.04	72	.041	6.26	2.656	3.25	17.6	20.5	26	1.7	9.4	31.9	3.5	4	3 21	.5	.2 125.	3 1.1	3.62	
46	12		3.5 18.2																																					
46	13		4.7 22.9																																					
. 46	14	33 3	5.0 17.2	16	<.1	.5	.2 216	.59	1 9	.5 <.	1 22.0	2	9 <.1	.2	1.4	3	.54	.025	16.9	6.5	.05	102	.051	5.99	2.873	3.17	9.3	18.7	33	1.6	14.0	23.7	2.6	5	2 26	. 3	.2 148.	1 .9	6.12	
ì																																								
57	ANDARD DST6	12.3 1	26.0 34.6	176	.4 (9.7 1	3.0 962	4.07	25 7	.4 <.	1 6.8	30	4 5.4	5.3	4.6	113	2.28	.098	24.6	226.7	1.02	668	. 426	6.96	1.706	1.35	7.6	52.2	51	6.1	14.5	8.4	. 8	3	11 26	,3 <.	.1 56.	2 1.8	-	

FILE # A602814

Page 3

·	 											===											-						_			=			_				
	SAMPLE#	Мо	Cu Pt	b Zn	Ag	Ni	Co	Mn F	e A	s U	Au	Th	5r (cd s	b B1	٧	Ca	P L	a Cr	Mg	Ba	Ti a	Αì	Na I	K	w Zr	. Ce	Sn	Υ	Nb	Ta	Be !	Sc L	.i	5 1	≀ь н	f Samo`	ıle	
1		ppm	ppm ppr	m ppm	ppm	ppm	opm	ppm :	t po	т ррт	ppm	DOM t	opm pg	рт рр	m ppm	ppm	1	% ppr	n ppm	:	ppm	*	*	t :	\$ pp	и ррв	ppm	ppm	ppm	opm	ррт р	opm pr	om pp	m	\$ pp	от рол	n 5	kg	
	· · · · ·																											•		-									
	G-1	.4	14.7 43.8	8 63	.1	4 1.	4.2	733 2.3	10	1 4.0	<.1	7.5	706	.1 .7	5 .2	49	2.53	.078 23.9	10.8	.60	1034	261 7.	68 2.8	879 2.9	2 .	4 8.6	47	1.4	14.4 2	20.9	1.9	2	5 36	1 <	1 116	.9 .7	7		
	4615	14.3	6.4 20.2	2 17	<.1	.9	.5	381 1.0	16	1 15.B	<.13	1.9	43	.1 .:	3 2.1	В	.54	.011 22.9	4.5	.10	116 .	073 6.3	37 2.4	434 3.2	2 42.	7 29.4	43	2.7	16.5 5	3.1	5.9	5	4 50.	.8	3 161	5 1.5	6 1	16	
	4616	68.3	2.5 27.1	1 35	<.1	.7	.6	559 1.49	19	2 18.4	<.1 3	6.7	46	.2 .	4 10.7	10	.78	.016 28.2	7.4	.10	144	085 6.5	54 2.7	713 3.00	3 43.	4 30.2	52	24.7	17.8 4	17.3	4.3	5	4 56.	.1	7 200	1 1.5	6.9	96	
ļ	4617	60 8	4.1 37.2	2 75	.2	. 6	.4	500 .9	9 .	2 18.9	<.13	3.2	34 1.	.0 1.	1 20.5	7	.48	.010 25.4	5.6	.08	140 .	057 6.3	24 2.5	578 3.6	1 13.	8 28.9	46	9.8	13,4 4	15.4	4.5	4	4 38.	.4	4 215	6 1.4	6.6	64	
	4618	96.6	2.7 51.4	4 17	.3	.8	.5	439 1.3	2	1 25.3	<.13	4.6	34 .	.1 1.5	5 46.7	7	.55	.009 24.3	8.8	.08	133 .	054 6.4	62 2.4	408 3.8	7 196.	4 30.0	44	21.1	14.1 4	4.0	4.3	5	4 55.	.3	8 245	.2 1.€	6.1	14	
	4619	88.7	3.9 90.5	5 54	. 6	1.2	1.4	782 2.44	6	3 21.1	<.14	2.2	57 .	.7 3.	7 74.6	16	.70	.027 32.6	9.9	.19	166 .	110 6.4	42 1.3	376 3.3	1 >20	0 36.1	59	34.3	16.4 4	7.3	3.9	8	5 218.	7 1	7 263	2 1.7	6.3	10	
	RE 4619	83.6	3.0 83.4	4 50	.5	1.1	1.2	743 2.29	5	2 19.8	<.1 4	0.2	53	.4 3.	2 71.9	15	.66	.025 29.3	8.2	.18	149	099 6.1	09 1.3	325 3.14	4 >20	0 36.9	55	32.0	16.1 4	4.7	3.6	7	4 215.	4 1	5 243	0 1.7	,	_	
	RRE 4619	98.1	3 7 88.1	1 45	.5	.7	1.4	737 2.39	9	3 22.2	<.1 4	3.5	61	.6 4.	1 72.9	16	. 63	.024 32.5	7.4	.18	160 .	114 6.1	08 1.4	416 3.0	B >20	0 36.8	58	32.0	16.1 4	8.9	4.0	8	5 256.	9 1	6 248	2 1.7	,		
	4620		3.1 33.7																																				
	4621		1.9 26.5																																				
																																•		•			0.,		
ł	4622	53 B	3.7 32.4	4 33	<.1	. 8	.5	554 .99	9	1 20.7	<.1.3	4.8	58 .	.1 .!	5 3.4	В	.55	.013 23 0	5.5	.08	198 .	072 6.5	52 3.2	221 3.65	5 43.5	9 39.7	40	3.6 1	11.1.3	9 6	3 8	6	4 41	3	4 240	ก 2 ก	6.5	58	
]	4623		2.8 24.4																																				
	4624		2,7 25.9																																				
Ì	4625		3,6 16.5																																				
	4626		1.7 15.2																																				
	4020	20.4	1.7 15.0	2 10	1			273 .0.			-,1 0	9.0	٠- د		- 1.5	7	.20	.003 23.3	3.3		20 .	UJE U		, o, o, o,	J	1 31.6	42	2.0 1	11.7 3		J. L	-	3 20.		1 1/4.	4 1.0	3.7	.0	
	4627	18.9	2.0 13.7	7 8	< 1	5	2	160 63	7 <	1 6 8	< 1.3	1 5	25	1 :	7 2 4	3	33	007 21 2	4.0	D.A	101 (039 5 3	79 2 1	97 3 86	6 7	7 25 9	38	6.4	9.8.2	34	, ,	3	2 22	2	3 160	5 1 2	6 1	18	
	4628		1.5 16.4																																				
	4629		2.2 20.1																																				
	4630		2.2 20.1																																				
			3.7 27.4																																				
	4631	62.2	3.7 27.4	+ 24	. 2		٠.٧	313 .0:	9 .	1 13.3	1 3	3.4	۷ .		32.1	2	.40 .	.004 15.3	3.2	.04	/3 .1	045 0.1	19 2.0	946 3.04	4 -200	0 31.3	34	12.0 1	10.03	3.5 .	3.5	•	3 24.6	۷.	o zus.	0 1.0	5.7	-0	
[4632	14 5	3.3 20.0	1 27	1 1		٠,٠	210 6	, ,	1 0 0	- 1 3		22	2 1		2	12	004 16 0	3.5	0.4	94 4	043 6 3	20 2 8	125 2 91	2 21 2	2 26 4	20	7 2	a n 2	-C A -	2 7		2 10	a	2 174	0 1 6	c 10	0.0	
			3.1 16.5																																				
1			3,1 23.3																																				
	4635		2.0 19.6																																				
	4636		2.1 19.0																																				
	4030	42.0	2.1 15.0	, 15	~.1	-/ -		223 .00		1 10.0	3.	J. L	1, .		. 4.5	U	.ur .	.004 15.0	2.1	.03	73.0	040 0.1	10 4.9	20 3.00	0	3 47.0	33	10.5 1	11.03	1.0	, J	,	2 ZI.:	, .	a 1/D.	7 1.0	0.3	32	
	4637	en a	3.0 20.2	7 20	2	2	- 2 .	104 04		2 12 0	- 1 2	4 1	22	,	1 0 0	2	40	004 10 3	4.1	D.E.	79 (044 6 0	27.24	100 7 20	. 7	7 25 0	22	76 D I	1122	7 0 3		c	່າ າາ	4	£ 110			on.	
	4638		2.9 23.0																																				
}			3.1 26.7																																				
			1.5 30.2																																				
			4.3 25.7																																				
	4641	2.5	4.3 20.7	21	. 4	.4	٠	330 1.10	•	2 14.4	<. 1 4t	1.9	25 .	. 1	0.7	,	. 33 .	.000 21.2	0.0	.03	ου .ι	USI 0.3	30 Z. 4	20 3.91	25.5	25.6	36	12.6 1	2.5 3	2.4 :	1.4	4	3 25.3	٥.	в 197.	U 1.4	7.0	14	
	4647	00.0				^	,	222 1 84		1 10 0	- 1 3		20				r 2	40C 10 4	E 4	on	en r	DA7 6 A	41 n E	TC 4 10	111		22	12 0 1					3 11 1	,	7.000			ria.	
1			5.2 25.4																																				
	4643		3.1 19.3						-																														i
	4644		1.8 27.4																																				!
	4645		2.6 21.3																																				
1	4646	1.8	2.7 23.1	34	<.1	.3 •	<.2	316 .83	3 1	1 10.8	<,1 30	0.2	19 .	.3 .2	2 2.4	3	.40 .	.003 11.4	4.1	.06	64 .0	052 6.8	80 2.9	25 4.40	12.3	21.7	23	5.4	9.7 3	5.8 3	1.3	3	2 24.5	ć	3 175.	6 1.1	5.5	,4	
ł																																							
	STANDARD DST6	12.5 1	27.4 34.4	1 172	.4 3	(G.O 1	3.1	966 4.07	7 25	5 7.4	1.4	5.8 3	507 5.	4 5.2	4.6	114 2	.29	097 25.0	230.3	1.03	673 .4	427 7.0	00 1.6	77 1.39	7.7	52.7	52	6.0 1	4.8	8.4	.7	4 1	1 26.1	l <.	1 58.	1 1.7		<u>. </u>	
																																							1

Page 4

10010 71190011																																							NUIL ARM,	1100
	SAMPLE#	Ma	ŕ	Ob.	70 10	. 614	- (-	Mn E	E0 4	s U A				Ch.	Ds.	и	٠.		1.5	r.	Mar.	D-	Ye	Al	N-	ν.	1.1	7.	٠.			· ·		r						
	SAMPLER	-				•															-									5n 🕶 '				Sc i			Rb F			
		ppm	d wood	ibw bi	рп ррп	ppm	ppm	ppm	4 ppr	m bbw bt	m pp	п роп	ppm	ppm	Dibu 1	DQM .		*	ppm	ppm	. ×	DDU:		¥			ppm	ppm	DiDui Di	om pp	прр	m ppm	ppm	bbu bi)IN	t p	opm pp	PILL	kg	
	G-1	. 6	12 9 21	.2	56 <.1	3.9	4.2	741 2.3	33	1 3.9 <.	1 6.	9 695	<.1	.1	.2	50 2	.65 .	076 2	2.6	9.9	.61	1017	. 259	7.81	2.761	2.91	.3	9.9	45 2	.0 13.2	2 20	4 1.7	3	5 38	.6 <	.1 114	1.9	. 6		
	4647	215.1	30.8 17	.9	25 < .1		.8	501 1.5	52	2 24.4 <	I 90.	8 27	<.I	.5	13.5	В.	.70 .	010 5	3.7	6.3	.12	63	.139	6.51	3.093	3.32	19.5	84.2	97 4	.2 20.5	54.	9 4.5	5	4 37	.3	6 154	1.6 3	.2 6	.94	
	4648	3.5	4 6 45	9 :	26 5	. 4	5	418 1 1	14	1 18.6 <	1 30	5 75	3	7	41 6	7	50	ang 2	1 7	5.1	ng.	128	059	6 28	2 650	3 50	24 5	31 4	39 7	7 11 2	42	n 37	5	4 37	R	5 171	2 1	6 7	na.	
	4649									1 15.4 <.																														
																																								1
l	4650	1.8	2.6 21	.4	16 <.1	.8	.5	3/5 .8	j4 .	1 22.0 <.	1 15.	4 39	<.↓	.2	2.2	ь.	.49 .	009 2	5.6	4./	.08	195	.068	6.39	2.949	3.73	10.7	35.1	45 2	.4 12.5	51.	1 4.5	4	4 29	, В	.1 169	.5 1.	.7 4	.32	1
,	4651	2 2	2.1 39	.5	19 .1	6	. 4	383 .9	30 <	1 17,4 <.	1 30.	9 36	. 1	.8	39.7	6	.51 .	008 2	1.0	5.4	. 07	142	.053	6.38	2.491	3.69	53.7	30.8	37 8	8 12.8	47.	9 4.5	5	3 34	. б	.3 177	.6 1	4 7	.38	
	4652	1.1	1.2 22	.D 2	21 < 1	4	.4	429 .8	38	1 14.0 <.	1 31.	8 : 38	<.1	.3	3.2	7	.48 .	010 2	3.1	5.9	.09	167	.064	6.13	2.461	3.59	23.3	30.9	41 3	8 13.2	46.	0 4.1	5	4 29	.7	.1 158	6.6 1.	4 6	.86	,
	4653	3.8	3.5 21	.4	19 < .1	6	.В	479 1.0	J5	1 13.2 <.	1 30.	9 67	<.1	.3	3.6	10 .	. 69 .	018 2	1.2	6.7	.15	209	. 090	6.56	2.594	3,55	14.1	29.4	37 2	7 12.1	40.	3 3.7	4	4 52	В	.1 153	. 9 1.	4 6	56	
	4654									1 14.8 <.																												-		
	4655									1 25.2 <.																									-			-	-	
	4000	.9	2.0 29	.0 4	23 5.1	.0	. Ф	410 .9	-10	1 25,2 %	1 35.	D 43	٠.1	.,	15.5	′ .	.41 ,	011 2	4.7	3.1	.00	147	. 107	0.70	4.740	J.04	34.0	40.1	47 2	.3 13.4	48.	9 4.1	,	4 53.	ď	.2 192	.0 5.	9 6	.48	
	6430	23.9	7.3 21	.3	12 <.1	.7	.3	269 .7	2 (4 11.7 <.	1 38.	3 22	<.1	.7	2.6	4 .	. 25	005 2	1.6	4.6	.02	114	.065	6.81	2.854	4.03	9.1	32.9	40 2	9 15.0	46.1	9 4,4	5	4 16	.7 <	.1 176	.1 1.	5 5	.92	1
	6431	8.6	10.7 16	.1 3	11 < .1	. 5	.4	117 .6	9 .	3 8.9 <.	1 31.	28	.1	.4	2.3 `	5.	. 28	007 2	0.6	3.7	.03	127	.066	6.24	2.738	3.92	10.9	27.8	36 Z	5 10.4	35.	5 4.3	6	3 16.	.1	.1 179	.4 1.	4 5	.32	1
	RE 6431	9.8	12.7 17	.4]	13 <.1	. 6	.5	113 .6	57 °	3 9.2 <.	1 33.	2 31	. 1	.4	2.4	5 .	. 27	007 2	1.9	4.8	.03	133	.072	6.04	2.830	3.87	11.4	29.6	38 2	6 11.7	40	4 4.5	5	3 17	. 3	.1 184	.2 1.	5		
	RRE 6431	8.8	11.9 16	6 1	3 < 1	. 7	.3	124 .6	59	3 8.6 <.	1 32.	4 30	. 1	.5	2.3	5 .	28 .	006 2	2.6	4.4	.03	131	.071	6.36	2.780	3.96	11.1	26.4	39 2	6 11 3	38	3 4 4	5	3 16	9	1 182	4 1	4		
	6432									3 13.2 <.																													56	
	0452	11.5	13.7 17					L-14 .7		U 15.2		, , ,			• •	•			4.0	7.0	,04		.005	4.00		0.30	13.0	20.0	40 0	J 14.,	40.	4.0	′	4 15	′	. 2 107	.6 1.	, ,	.00	
	****												,				24	AD 7		2.0		153	000	C 46	2 205	2.00	10.0								:					
	6433									2 10.4 <.																													-	
	6434									2 12.9 <.																														•
	6435	287.0	10.3 19	.2 2	23 < .1	1.9	.7	328 .6	. B ∶	3 12.8 <.	1 39.	43	< .1	.6	4.6	5.	47 .	009 2	7.2	6.1	.06	162	.079	6.58	2.986	4.10	17.2	30.4	47 3.	3 13.1	36.	2 3.5	б	3 20.	.1	.2 180	.1 1.	6 4	.82	1
	6436	1917.0	9.5 12	.3 2	20 < 1	.5	. 2	350 .6	i6 :	2 10.4 <.	1 30.	34	.3	.4	2.4	5.	47 .	006 Z	2.9	7.8	.03	135	.059	5.36	2.136	3.48	70.9	23.6	39 3	2 10.4	28	1 2.7	10	2 15	.3	.4 171	.6 1.	3 1	.46	1
	6437	53.2	4.6 18	.1 2	27 <.1	.5	.5	413 .8	16	2 14.0 <.	1 47.	30	<.1	.5	.8	6.	.36	009 3	0.1	4.9	.06	134	.093	6.49	2,606	3.58	16.4	38.0	51 2	8 13.9	43.5	3.5	6	4 22.	.7	.2 151	3 1.	7 6	.08	
																																								1
	6438	233 8	13 0 17	2 1	18 <.1	. 2	.2	130 .5	.8	2 9.5 <.	1 39.9	27	<.1	.5	2.1	3.	28 .	004 2	3.1	2.9	.03	70	.051	6.39	2.518	3.95	16.1	34.2	41 2	7 12.8	34.1	1 4 8	4	4 25	6	2 211	3 1	9 4	20	
	6439									2 13.2 <.																														1
																																								1
	6440									1 19.4 <.																												_		
	6441									1 12.0 <.																														
	6442	20.3	8.7 19	.2 1	.0 < .1	. 2	.3	279 .6	5	1 14.0 <.	1 37.4	17	<.1	.3	1.6	З.	37 .	002 1	7.6	2.9	.04	49	.055	6.37	2.850	3.88	13.7	30.3	33 2.	2 15.3	\$1.6	4.9	5	4 14.	.3	.2 155	.5 1.	B 5	.62	
	6443	18.8	11.4 20	.6 l	2 <.1	.2	.3	273 .7	8 7	2 15.8 <.	1 36.	32	.1	.3	1.4	5 .	48 .	007 Z	1.1	3.8	.06	119	.065	6.31	2.588	3.84	12.6	29.4	37 2.	3 13.5	40	4.0	4	4 22.	1	.2 170	.8 1.	6 5	96	
	6444	8.9	9.2.23	.5 Z	4 <.1	<.1	.2	236 .6	.8	2 11.4 <.	1 30.3	33	.2	. 5	5.3	3.	46 .	005 1	5.1	4.4	.05	136	.054	6.69	2.545	4.35	11.6	17.8	26 4.	5 9.5	28 (3.1	3	3 22.	1	.2 170	.8 1.	0 6	06	
	6445									4 17.9 <.																														
	6446									2 4.7 <.																														
	6447	68.2	17.4 18	.7 2	1.> 8	. 1	.5	548 1.3	6 4	4 [4.8 <.	1 58.4	32	<. !	.5	5.0	9.	63 .	J12 3	1.4	4.8	. 16	96	.147	6.37	3.183	2.88	19.2	48.2	55 2.	0 16.4	36.2	2.8	5	4 34.	4.	.3 149	.7 2.	1 4	20	1
	6448	16.0	9.5 23	.0 2	23 < .1	.5	.9	412 1.2	.3 7	3 12.8 <.	1 35.7	76	<,1	. 5	6.7	12 .	79.	020 2	4.3	7.1	.12	239	.126	6.55	3.497	2.84	11.7	31.6	42 2.	1 19.1	36.5	4.0	5	3 33.	4 .	.2 120	.9 1.	5 4	68	
	6449	11.6	6 0 19	.1 1	15 <.1	1	.5	329 .8	17	1 16.8 <.	1 29.4	52	.1	. 3	2.3	7.	62 .	010 20	0.6	3.6	.07	160	.071	6.46	2.725	3.25	7.8	27.9	35 1.	4 14.4	39.9	4.2	3	3 21.	7 .	.2 134	.4 1.	6 6	42	Ì
	6450									6 16.8 <.																														-
	6451									9 21.8 <.																														
	6452									4 16.0 <.																														ļ
	0402	3.0	0.2 24	. 3 1	15 ×.1	. 3	.5	J04 ./	, 14	4 10.0 %	1 30,,	, ,10	. 1	. 4	J. U	٠.	٠ .	ATT 6.	•.,	5.0	. ya	510	.011	V.JU	2.004	J.71	11.0	<i>33.1</i>	c.	, 1C.5	33.7	4.0	U	4 20.	٠.			′ ′	V-7	
																																								ľ
	STANDARD DST6	12.3	126.4 34	.6 17	5 .3	30.1	13.ł	965 4.0	7 25	5 7.5 <.	1 7.1	312	5.5	5.3	4.7 1	13 2.	29 .	199 2	5.2 23	90.8 1	.04	ь91	. 428	7.00	1.715	1.40	7.6	52.B	53 6.	2 15.0	8.5	.7		12 25.	9 <.	1 58	.8 1.1	Ŕ	•	
		-																																						

FILE # A602814

Page 5

	SAMPLE#	Mo	Cu Pb	. Zn	Ag	Ni	Co M	n Fe	As	U	Au	Th	Sr	Cd	Sto	Bi	γ	Са		La	Cr	Mg	Ва	Ti	Αl	N-a	К.	IJ	Zr	Ce.	Sn	Y	NЬ	Ta B	ie (ic Li	5	2h	Hf Si	amnlo	
	BCC		תעם חוקם		•							DDM					n)	1	ı		ppm	*		2										pom po					рря		
																	_																								
	G-1	.4	5.5 24.1	62	.1	4.4	4.8 78	1 2.48	<1	3.9	<.1	7.2	763	.1	. 1	.2	55 3	2.62	.086	21.9	11.5	.62	1063	.291	7.71	2.843	3.00	. 2	9.1	46	1.4	13.8	20.4	2.0	4	6 45.1	< 1	126.4	.1		
	6453	7,4	7.0 26.6	26	.1	1.1	.5 44	5 .74	2	20.4	<.1	36.5	71	.2	.4	2.9	8	. 63	.013	23.9	7.1	.10	242	.075	5.67	2.911	3.93	13.3	37.0	43	2.7	12.6	38.4	4.0	6	4 32.4	.1	229.4	1.8	6 10	
	6454	14.2	4.8 27.3	25	<.1	1.3	.7 48	.79	36	19.2	<.1	37.4	80	.1	. 5	2.3	9	.65	.015	28.2	8.1	11	326	. 084	6.67	2.783	3.88	28.1	39.6	51	3.0	13.1	41.3	3.7	6	4 36.8	.1	256.1	1.9	6 70	
	6455	72.3	5.0 27.3	26	.1	.6	1.0 47	2 93	2	17.7	<.1	35.8	86 -	<.1	. 6	5.2	11	. 58	.019	28.9	6.2	.11	388	.092	6.84	2.738	3.90	28.8	36.7	52	3.0	13.7	45.8	4.7	6	4 47.7	.3	8.085	1.9	6.80	
	6456	14.1	4.8 24.0	27	<.1	.7	.9 45	9 .82	1	15.9	<.1	37.3	89	.1	. 4	5.7	11	.60	.OlB	33.9	5.4	.11	389	.096	6.89	2.739	3.84	27.0	32.2	58	3.2	13.5	44.4	4.2	5	4 45.5	.1	243.6	1.6	6.42	
	6457	18.1	10.2 51.6	44	.3	. 8	.8 43	7 .79	10	23.0	<.1	37.8	82	.4 3	.4 2	2.0	10	.64	.020	30.4	6.0	. 10	401	.003	6.60	2:540	4.22	43.6	38.4	54	5.6	14.0	38.3	3.7	6	3 47.9	. 2	283.3	1.8	6.58	
	6458	2.8	5.0 28.4	23	1	1.0	.7 410	.76	1	15.3	<.1	36.4	81	.1	.6	6.8	9	. 69	.014	27.1	5.2	. 10	275	.079	6.87	3.088	3.77	23.6	42.4	46	3.7	10.9	36.6	3.3	4	4 44.1	. 2	247 3	2.0	6.59	
	6459	2 2	1.8 30.5	29	<.1	1.1	.5 44	.75	<l< th=""><th>13.1</th><th><.1</th><th>34.1</th><th>82 -</th><th>1</th><th>.5</th><th>6.2</th><th>8</th><th>. 68</th><th>.013</th><th>25.6</th><th>6.2</th><th>.09</th><th>261</th><th>.078</th><th>6.73</th><th>2.825</th><th>3.75</th><th>14.3</th><th>43.2</th><th>44</th><th>3.4</th><th>11.7</th><th>35.7</th><th>3.2</th><th>5</th><th>4 40.6</th><th>.1</th><th>239.3</th><th>1.9</th><th>6.72</th><th></th></l<>	13.1	<.1	34.1	82 -	1	.5	6.2	8	. 68	.013	25.6	6.2	.09	2 6 1	.078	6.73	2.825	3.75	14.3	43.2	44	3.4	11.7	35.7	3.2	5	4 40.6	.1	239.3	1.9	6.72	
	6460	8	2.1 31.3	29	<.1	.9	.6 44	7 .78	<1	10.7	<.1	36.4	96	.1	.4 .	2.5	8	. 6 7	.013	26.7	7.2	.09	320	.079	6.81	3.203	3.85	11.6	39.2	47	2.8	12.4	39.8	3.6	5	4 30.8	. 1	234.5	18	6.46	
•	6461	15 3	5.3 27.5	39	<.1	.8	.5 45	.73	Z	20.6	<.1	33.7	68	.3	. 4	1.9	7	.58	.011	25.7	4.8	.08	555	.072	6.89	3.194	3.58	75.6	35.5	44	2.2	12.1	40.9	1.0	7	4 33.1	.1	253.3	1.7	5.96	
	6462		4.0 32.0																																						
	6463		4.0 19.0																																						
	6464		5.1 18.7																																						
	6465		12.0 21.8																																						
	6466	42.6	11.7 22.0	24	<.1	.9	.7 39	5 .94	2	24.9	<. j	48.4	32 •	s. 1	.3	3.8	7	. 46	.009	32.3	6.6	.07	133	.094	7.27	3.459	3.93	18.2	35.2	55	5.0	15.6	38.5	\$.7 ·	6	4 31.4	2	241.6	1 7	6.72	
	6467	220 7	5.6 23.2	. 1.0	,	1.0	- 21	ח חים	,	12.1	. 1	n 2	10.	- 1	c 1	n =	_	E.4	nna	no t		nc	177	063	۷	2 762	4 15	40.0	20.1	4D	7 41	12.6	90 A	1 2		. 11 1		224.4		F F2	
	6467 6468		2.7 17.6																																						
	6469		2.7 17.0																																						
			3 1 17 3																		6.9															3 21.0					
	• •		3.1 20.7																																						
	6472	110.7	1.6 22.1	7	<.1	.3	<.2 170	.50	1	12.4	<.1	36.2	20 •	-1	5 2	.5	2	.38	.002	16.4	4.2	.03	50	.036	6.39	2.500	4.34	14.8	34.5	32	4.4	12.7	38.0	4.5	3	4 15.3	. 2	212.0	1.9	5 74	
	6473	22.4	2.0 18.1	7	<.1	.5	<.2 120	.52	1	9.6	<.1	39.7	22 -	.1	.3	.4	2	.27	.003	16.0	6.5	.03	68	.033	6.87	2.468	4.43	5.6	31.3	30	5.2	9.4	23.8	2.8	4	3 19.1	.3	205.5	1.6	6.96	
	6474	68.2	2.0 14.5	6	<.1	. 5	<.2 12	.94	2	8.0	<.1	27.2	43 •	.1	.2	2.6	2	.77	017	40.7	9.1	.03	89	.026	4.85	1.485	3,45	14.0	19.1	82	8.0	19.3	17.7	2.1	3	3 24.9	.9	189.4	.9	1.92	
	6475	34.9	4 0 20 2	15	<.1	.4	. 2 284	1 .59	<1	12.6	<.1	37.9	30	.1	.3	1.9	3	.39	006	25.8	5.1	.05	74	.045	6.65	3.103	3.95	15.7	31.5	50	3.6	14.1	36.9	4.4	5	5 17.9	. 2	198.3	1.7	5.54	
	6476	10.4	3 7 20.9	11	<.1	. 5	<.2 24	.54	<[13.2	۲.۱	39.1	22	.1	4	2.2	1	.33	Q02	20.2	6.5	04	67	.048	6.77	2.962	3.94	9.9	29.9	38	3.6	12.8	44.8	ا 2.د	5	5 19.9	. 2	202.0	1.7	4 78	
	6477	16.3	7.1 23.7																																	5 20.6					
	6478		8.3 28.0																																	3 19.8				1.90	
	RE 6478		8.1 30.1																																						
	RRE 6478		8.2 23.0																																	4 17.7			-		
	6479	266.3	1.3 14.7	9	<.1	<.1	< . 2 230	.56	1	13.1	<.1	36.2	22 •	1	.4	1.1	2	. 49	.002	18.2	3.3	.03	57	.040	6.53	2.417	4.41	8.4	20.7	33	3.9	11.8	35.2	1 5	5	4 17.7	.3	196.9	1.1	1 20	
	6480	25 4	10.9 24.8	20		2	4 20	. 02		21 7	- 1	22 0	26	,	۵ .	, ,	4	44	ans	17 1	5.0	0.7	195	062	7 33	2 004	1 97	21.0	27 1	30	3 A	2 7	46.2 °	2 0	6	4 21 £	,	231 2	1.1	5 16	
	6481		6.9 28.2																																						
	6482		5 1 25.5																																	5 22.1					
	6483		10.5 62.5																																						
	6484		4.6 22.6																																						
	V101	45.0	U CE.U	10	- 1			/1	-		••		**				,		200	VO.7				. 507	J J	3.040	3.37	29.1	70 .7	J.								2.3.1			
	STANDARO DST6	12.3	28.0 34.7	175	.4	29.5 1	3.0 96	2 4.07	25	7.5	< 1	7.0	304 5	.\$ \$	э .	1.8 1	12 2	28	096	24.7	231.5	1.03	684	.426	6.97	1.635	1.35	7.8	52.9	51	6.3	14.8	8.6	.8	4 E	2 26.8	<.1	57.0	1.B	•	

ample type: DRILL CORE RISO. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

REVISED COPY

* dota adjusted mainly for Mo

JUN 3 0 2006

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data___ FA _

Page 6

ME ANALTICAL											_			_	==																				.—-				_				CME ANALYTECAL
SAMPLE#	MQ	Cu	Pb	Zα	Ag	Ni	Co	Mn	Fe	As	Ü	Au	Th	5r	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	Al	Na	K	W	Zr	Ce	Sn	Υ	Nb	ĭa	8e	\$c	ţí	S	R	b H1	Sample	
	ррт	ррт р	Du t	ppm	ppm	ppm	ppm	ppm	1	bbu	ppm	ррт	ppm	ppm (ppm r	ppm	ррп	ppm	*	Ţ	ppm	ppm		ppm		x	*	1	ppm	ppm	ррпі	. ppm	ppm	ррп	ppm	ppm	ppm	bbw	*	ppr	n ppr	n ke	1
			-																																								
G-1		3.6 21																				9.6															-						
6485		3.8 22													.1							4.3																19.0				6.80	
6486		4.1 22																									2.772											16.9		155.5	5 1.6	6.64	
6487	50.3	10.3 44	.3 1	196	3	.4	.6	1725	1.04	59 1	8.3	c.1 3	9.0	40 3	2.8	.7	2.7	10	.40	.014	21.0	4.1	.11	149	.093	5.56	2.413	3.56	19.1	32.9	40	5.1	10.8	39.7	3.7	4	3	34.9	.2	211.6	0 1.5	6.00	l .
6488	45.0	5.9 77	0	33	1.4	. 3	. 4	5015	1.09	16 I	3.9	c.1 2	9.0	38	4	3.2	39.3	7	.50	.009	18.4	6.2	.10	180	. 056	5.40	2.246	3,50	24.6	32.5	34	6.2	9.8	34.8	3.0	5	3	33.3	. 3	217.0	0 1.7	5.02	!
6489	52.4	9.0 24	. 6	22	. 2	.3	. 4	367	.84	5 1	6.1 -	<.1 2	7.6	41	<.1	.7	19.5	7	. 45	.011	19.2	3.9	.07	175	. 053	5.32	2.256	3.65	64.0	31.2	35	9.5	8.8	33.3	3.0	3	3	41.3	. 3	232.	7 1.7	6.13	
6490	49.3	5.2.26	.1	16	. 1	. 3	. 3	412	. 78	2 1	6.7	<.1 3	1.0	40 .	٤.1	.4	7.8	6	.43	.009	20.8	4.8	.06	157	.059	5.81	2.656	3.61	15.1	33.1	37	2.7	11.8	44.1	4.1	5	3	23.6	.1	214.6	6 1.9	2.40	
6491	38.8	6.1 35	. 6	15	. 2	.7	. 3	423	.72	29	7.9	<.1 3	9.7	21	. 1	.7	5.4	5	.41	.006	20.9	5.1	.03	105	.061	6.08	2.514	3.72	12.8	29.B	36	4.3	11.3	32.6	3.3	4	3	16.2	<.1	169	1 1.9	4.26	i
6492	40.1	10.6 15	.4	14	1.>	.5	.3	265	.69	10 1	3.7 -	<.1 3	8.3	23	<.1	.5	1.0	5	. 23	.007	20.6	4.0	.03	100	.063	6.01	2.062	4,03	9.9	31.8	37	3.4	10.0	30.5	2.9	4	3	26.5	. 1	192.0	1.5	4.98	
6493	34.5	6.3 13	.0	13	<.1	.3	. 5	272	.79	2	B.6	<.1 3	4.4	31 .	۲.1	.3	. 9	7	.41	.012	24.4	4.0	.07	141	.068	5.54	2.360	3.86	24.7	33.4	44	5.2	10.4	28.1	2.8	3	3	27.8	.3	173.	3 1.6	6.24	
6494	32.8	5.0 12	.2	20	< 1	.5	.3	352	.69	2	9.3	<.1 3	1.2	26	.1	.3	. 9	8	. 33	.010	19.5	5.7	.07	132	.057	5.51	1.968	3.82	42.7	30.0	35	11.4	8.4	23.7	2.4	3	3	31.2	.2	195.6	5 1.4	4.82	
RE 6494	34.1	5.1 13	.1	21	< .1	.4	.4	363	.75	2 1	0.5	< 1 3	6.0	30	.1	.3	1.0	8	.36	.009	22.4	6.5	. 07	137	.063	5.96	2.203	4.13	48.4	34.7	39	12.0	9.2	26.5	2.7	4	3	34.9	. 2	201.7	7 1.6		
RRE 6494	48.1	5.4 13	. 2	21	<.1	.5	.4	361	.68	3 1	0.1	<.1 3	2.6	28	.1	.4	1.1	8	.34	.009	19.8	4.9	.07	125	.060	5.59	2.063	3.97	48.1	30.7	35	11.9	8.7	23.9	2.6	4	3	34.3	. 2	204.2	2 1.5		
6495	46.5	6.4 15	.1	40	<.1	. 2	.4	267	.78	1 .	8.6 -	<.1 3	7.5	26 .	۲.1	.3	.7	6	.38	.007	23.8	4.6	.06	112	.067	5.92	2.483	3.72	25.0	32.9	43	2.9	10.4	29.5	3.0	4	3	19.8	. 2	171.2	2 1.6	6.38	
6496	32.9	5.4 14	. 0	12	<.1	۲.1	.3	213	.75	1	9.5	ء.1 3	3.3	28 -	٤,1	. 2	.6	6	.32	.007	21.9	4.5	. 05	133	.065	5.29	2.510	3.77	13.5	3D.1	39	3.5	8.7	27.1	2.9	4	3	25.5	.3	164.6	5 1.5	5.98	
6497	54.2	3.9 15	.9	11	1	<.1	.3	25 ì	. 75	1	8.6	<.1 3	6.5	29 •	<.1	. 2	1.2	5	.31	.006	22.7	5.2	.05	126	.061	5.93	2.462	3.73	9.9	28.9	40	3.2	9.5	28.3	2.9	4	3	26.5	. 3	177.3	3 1.4	5.22	
6498	14.9	4.5 16	.3	16	<.1	<.1	.2	284	. 64	<1	7.9	<.1 3	2.6	31	.2	.4	.8	5	.33	.007	21.7	5.1	.06	131	.060	5.39	2.553	3.68	8.2	28.6	39	2.7	8.1	25.7	2.7	4	2	20.7	. 2	155.9	1.6	6.12	
6499	12 9	5.0 15	.0	12	< 1	<.1	.3	239	. 62	<1	9.0	<.1 3	3.7	- 28	. 1	.3	.6	5	.39	.006	22.0	4.5	.05	123	.062	5.53	2.719	3.82	1.8	29.9	40	2.1	9.0	28. i	2.9	4	3	16.0	.1	144.6	3 1.6	6.94	
6500	14.4	9.3 15	.2	26	<.1	<.1	. 2	285	.64	2 1	0.3	<.1 3	3.6	30	.4	.3	.9	6	.43	.006	23.2	3.7	.07	127	.059	5.76	2.207	3.85	32.1	28.7	41	5.6	9.1	24.7	2.5	3	3	20.7	.2	176.9	1.5	6.72	
STANDARD DST	6 12.8	127.9 35	0 1	174	.4 3	30.3	13.3	965	4.08	25	7.6	s.1	ő.9	317 1	5.7 E	5.4	4.8	113	2.29	.100	25.5	236.9	1.04	692	.436	7.00	1.703	1.37	7.B	54.3	53	6.3	14.9	8.6	.8	4	12	27.1	<.1	58.2	2 1.7		

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE

Newmac Resources Inc. File # A602733R 2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

			gert Bart gewone it to have	<u> </u>	4 12 44 4 4	 <u></u>
SAMPLE#	W %				· · · · · · · · · · · · · · · · · · ·	
4515 STANDARD R-2a	.28	·				

GROUP 7KP - 0.500 GM SAMPLE BY PHOSPHORIC ACID LEACH, ANALYSIS BY ICP-ES. - SAMPLE TYPE: Rock Pulp

07-04-2006 A11:24

DATE RECEIVED: JUN 28 2006 DATE REPORT MAILED:....

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Newmac Resources Inc. File # A602733 2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

SAMPLE# HO CU PD Zn Ag Ni CO Mn Fe As U Au Th Sr Cd SD 81 V Ca P La Cr Hg Ba Ti Al Na K W Zr Ce Sn Y Nb Ta Be Sc Li S Rb Hf 2 2.9 21.9 51 .1 3.4 4.2 742 2.32 1 4.3 <.1 8.0 708 <.1 <.1 <.2 52 2.64 .081 25.0 9.9 .58 1035 .271 8.14 3.071 3.08 .2 8.7 50 1.2 13.4 20.2 1.8 2 6 40.3 <.1 120.2 .8 G-1 62 4 47 4 98 7 58 1.5 11.8 3.1 823 5.66 3 4.4 < 1 2.5 308 .4 9.4 218.5 422 1.45 .092 6.5 84.8 1.24 176 .339 5.57 1.673 2.45 > 200 31.7 13 45.3 8.7 3.9 .2 4 17 201 8 6 356 1 1 3 4515 4516 364.4 3.2 27.3 35 .1 .6 .2 45 .92 5 5.0 < .1 14.8 45 .2 2.0 3.7 7 .08 .014 21.0 2.5 .06 267 .052 6.01 1.205 4.31 37.6 33.7 33 4.5 4.0 31.7 1.9 3 2 56.9 .1 241.9 1.6 3.7 56.2 8.1 70 .1 9.6 15.1 558 4.65 1 1.6 < 1 2.7 391 .3 1.1 1.5 162 3.39 .118 10.7 18.4 1.21 787 .339 8.88 4.492 1.82 12.2 37.0 22 .8 10.2 3.0 .2 1 14 17.8 1.1 51.7 1.3 4517 5.5 33.5 14.0 53 .9 3.7 1.0 165 2.70 6 4.1 < 1 4.9 195 .1 3.1 .3 399 .19 .110 3.9 72.0 .87 1241 .530 8.18 2.321 2.72 2.7 73.1 7 1.3 12.1 5.7 .4 1 23 18.4 1 95.7 2.3 4518 2,2 102,7 6.6 96 ,2 26.0 35.2 1332 8.00 1 1.2 <1 2.4 575 .3 1.5 .1 349 5.37 .154 10.3 42.8 3.24 1360 .674 8.45 2.846 2.19 2.7 35.1 23 ,8 16.7 2.8 ,2 1 33 31.2 .8 52.5 1.4 4519 3.9 77.5 5.3 95 .2 47.3 43.0 1615 8.31 6 1.1 < 1 1.9 289 .3 6.1 .4 415 7.33 .112 8.7 94.0 3.79 117 .719 7.49 2.152 1.55 4.6 35.6 20 .8 14.6 2.5 .1 1 44 21.4 21.4 21.5 86.0 1.4 4520 4521 5 118.1 5.3 73 .3 21.4 29.6 1225 6.30 21 .5 .8 1.1 1148 .1 .7 .2 227 10.89 .113 7.0 44.3 2.22 232 .378 6.36 2.226 .60 2.8 16.3 14 .5 11.2 1.4 .1 <1 25 21.1 .1 15.5 .8 .2 42.3 2.4 72 .1 31.8 28.2 1073 6.65 27 .2 < 1. 5 924 < 1 .4 < 1 218 6.72 .101 3.1 48.1 3.16 176 .184 9.01 4.207 .42 1.6 5.9 7 .2 9.3 .4 < 1 <1 24 21.1 < 1 8.6 .3 4522 10.9 155.4 2.2 61 .4 63.5 29.2 1096 7.83 2 1.7 < 1 1.1 567 .2 1.1 1.3 567 .2 1.1 1.3 567 .2 1.1 1.3 567 .2 1.1 1.3 267 8.13 .134 6.8 133.9 2.70 53 .518 5.93 .853 4.89 2.5 26.9 15 .5 15.4 2.4 .2 1 34 5.4 2.2 143.0 1.2 3.9 183.2 4.2 107 .4 115.2 28.1 1467 6.76 2 1.8 <.1 1.5 741 .4 .3 1.3 300 9.65 .167 5.4 146.9 3.59 34 .434 6.55 .791 3.72 5.3 29.3 14 3.0 13.8 2.3 .2 4 25 51.1 1.7 167.0 1.2 4524 8.9 512.2 6.1 114 8 170.3 72.6 1042 11.92 3 1.7 < 1 1.2 378 4 8 7.3 296 4.83 1.182 7.8 198.6 3.48 11 5.54 5.53 1.555 2.59 4.3 25.1 17 2.2 13.4 4.6 4 2 33 44.5 7.7 55.1 1.1 4525 1,7 149.6 7.8 109 ,3 48.5 47.5 1338 8.61 13 1.2 < 1 2.0 608 .4 1.0 .1 334 4.28 .228 9.2 105.1 3.35 34 .564 7.21 2.438 1.75 12.30.3 21 .7 15.4 2.0 .2 < 1 33 23.2 1.8 42.9 1.2 4526 7.7 6.0 8.6 12 < 1 9.1 8 237 88 29 9.4 < 1 18.6 110 1.2 1 3.3 3 19 0.008 13.0 5.4 1.19 329 0.045 6.86 3.192 3.75 2.2 47.7 28 3.7 15.7 43.7 4.1 4 5 6.4 122.1 3.2 4527 9 2 1 7 2 21 < 1 2 0 6 400 84 73 6 8 < 1 19 1 25 3 3 2 < 1 1 06 008 12 8 1 7 20 252 045 7 28 1 084 4 35 1 8 50 7 29 9 2 16 5 47 7 4 5 4 5 10 8 3 222 1 3 6 4528 .5 2.0 7 2 22 < 1 2.1 .6 401 .83 74 6.8 < 18.6 25 .3 3.2 < 1 < 1 .05 .008 12.7 1.1 .20 253 .046 7.26 1.032 4.05 1.9 52.8 28 9.1 16.5 47.4 4.4 5 5 10.2 .3 207.2 3.6 RF 4528 2.0 1.8 8.3 10 < 1 2.3 .5 334 .61 170 8.1 < 1.17.0 37 .1 2.2 .5 <1 .13 .007 11.1 2.7 .11 215 .040 7.18 2.791 3.15 2.0 43.7 24 4.8 22.5 41.9 3.7 4 4 8.5 1 139 9 2 9 4529 .7 78.3 5.4 81 .1 12.8 19.4 1380 5.98 28 1.1 < 1 2.2 561 .1 8.4 .1 245 5.04 .129 10.2 24.5 1.57 849 .486 7.92 2.209 1.85 1.1 29.2 21 .7 13.4 2.5 .2 1 18 18.6 .1 53.5 1.1 4530 630.6 1.9 11.8 3 8 1.0 .5 \$1 .90 4 4.7 < 1 3.4 20 .1 1.2 6.5 1 .03 .003 6.1 7.0 .02 124 .015 3.05 .101 3.60 11.8 11.3 10 5.9 1.4 8.9 .7 1 1 17.2 7 241.1 .7 4531 9.7 273.7 4.5 54 .2 127.6 43.2 1107 7.62 <1 1.0 <.1 1.5 443 .1 1.9 .2 310 7.13 .182 5.6 343.6 3.97 51 .391 6.08 2.579 1.24 1.0 20.8 12 .6 11.0 1.3 .1 1 30 4.3 1.3 34.4 .9 4532 3.0 129.2 1.7 71 2 79.1 44.9 1302 7.88 18 .7 < 1.1 .4 333 .1 3.2 .1 323 7.74 .130 8.7 202.5 4.26 140 .551 6.60 2.866 .78 .8 27.8 18 .5 15.0 1.8 .1 < 1 45 17.9 .1 24.5 1.3 4533 4534 9 118 7 8.7 153 .2 17.7 30.9 1519 8.04 2 1.4 < 1 2.7 1181 .2 .8 2.9 313 6.15 .211 12.7 34.9 2.62 1324 .563 7.90 2.671 2.15 1.1 21.7 25 1.1 16.5 2.4 .2 2 27 33.4 .6 114.4 1.2 2.9.204.2 2.9 113 .2 49.2 45.6 1474 8.85 77 .5 <.1 1.2 709 .3 1.5 .1 459 6.19 .176 9.0 140.1 2.00 406 .410 8.01 3.048 1.11 .8 19.7 19 .5 11.8 .8 .1 1 46 48.9 .2 34.5 .9 4535 .4 141.2 2.9 109 .1 55.9 45.3 1555 9.66 69 .5 <.1 1.2 355 .4 .9 <.1 452 4.07 .168 7.0 180.1 4.34 626 .708 7.19 1.526 1.39 1.0 19.3 16 .8 14.8 1.5 .1 <1 49 36.7 .1 17.4 .9 4536 392.6 6.4 9.7 6 < 1 4.2 .8 57 .37 2 2.8 < 1 23.4 12 < 1 .3 .9 2 .15 .006 4.3 2.1 .07 32 .034 5.02 1.597 3.52 6.3 18.9 8 1.5 6.0 23.6 3.0 2 2 15.6 < 1 137.9 1.1 4537 2.8 2.0 10.3 12 1 1.6 .4 311 .66 102 8.2 < 1.16.2 33 .1 3.0 .6 <1 .16 .008 12.0 3.8 .12 207 .042 7.05 3.434 2.64 2.5 40.1 25 40.4 20.9 36.2 3.7 2 4 9.6 .2 117.0 3.0 4538 4539 3.1 61.5 8.0 105 .2 21.2 18.7 725 5.65 15 1.0 < 1 2.2 436 .3 1.6 .1 269 1.48 .126 9.2 71.9 1.73 1225 .569 8.64 2.335 2.04 .9 34.0 20 .8 12.8 2.6 .2 1 18 30.6 .2 55.4 1.3 5 93 9 6.7 91 1 33.6 38.4 1520 8.80 2 .7 < 1 1.4 537 .1 1.4 464 8.89 .185 9.3 94.8 3.21 313 .682 7.69 2.666 1.38 .5 27.9 19 .7 15.2 1.4 .1 1 41 35.3 < 1 40.8 13 .4 80.9 4.4 94 .1 44.9 38.0 1597 8.72 90 .4 <.1 1.0 660 .3 1.7 <.1 430 5.95 .143 7.3 122.0 2.91 548 .362 6.73 2.667 1.24 1.9 11 2 15 .3 12.4 .6 .1 1 42 28.4 <.1 24.0 .5 11 2,6 39,0 Bi .1 1.5 .4 475 .58 5 7,8 < 117,4 60 .8 4.3 .2 B .26 .007 17.9 2.8 .07 130 .055 7.04 2,566 3,73 1.2 45.9 36 4,7 17.3 33.6 3.9 5 5 6.7 .1 148,8 3.2 4543 4.2 1.5 18.6 46 < 1 .9 .3 468 .65 2 9.7 < 1 15.6 39 .2 .6 .7 3 .07 .013 15.5 3.3 .04 109 .051 7.00 4.235 2.91 2.0 49.0 31 2.8 16.2 35.1 3.8 1 4 5.1 < 1 122.2 3.4 3 7 192.2 3.9 109 5 93.8 31.9 1401 7.39 2 1.8 <1 1.8 774 .3 5 3.6 346 10.40 .180 9.1 177.8 3.29 37 .520 6.80 1.102 2.56 2.7 31.7 19 3.3 16.9 3.0 .3 1 33 39.0 1.9 120.3 1.3 4544 3.0 47.1 8.4 106 .2 24.5 11.7 2826 3.30 9 1.5 < 1 2.2 63 1.2 4.2 .2 65 .82 .061 18.5 16.5 .84 1675 .192 4.42 1.233 .78 .4 36.2 35 .6 10.2 2.1 .2 1 10 29.2 .1 26.6 1.2 4545 1 5 5 29.8 3.1 175 1.1 68.0 4 5.0 1910 8.11 236 .8 <1 1.5 166 1.7 24.7 .2 310 4.93 1.71 9.9 179.3 3.16 476 .516 7.57 .075 2.05 30.9 26.1 20 1.7 16.0 2.4 .2 5 35 89.6 .5 148.6 1.0 4546 31.7 124.7 10.2 448 1.6 41.3 9.5 320 4.42 584 5.5 <.1 4.3 27 4.7 26.0 .3 679 .15 .055 20.7 123.1 .77 323 .379 7.29 .051 3.77 4.5 71.8 35 1.5 14.5 6.0 .5 2 19 21.4 .3 189.4 2.3 STANDARD DST6 12 5 126.6 34.6 174 .4 30.0 13.1 963 4.08 26 7.4 <1.6 9.311 5.6 5.4 4.6 114 2.28 .100 25.8 228.5 1.00 674 .426 6.99 1.678 1.41 7.7 54.2 52 6.2 15.0 8.5 .7 3 12 26.4 <1.1 58.3

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HN03-HCL-HF TO 10 ML, (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY. ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-MS. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK R150

DATE RECEIVED: JUN 12 2006 DATE REPORT MAILED:

06-27-2006 P03:25

ASSAY CERTIFICATE

Raymond Chan

Newmac Resources Inc. File # A602765R Page 1 2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

CAMPLE#	T-7	
SAMPLE#	W १	
6193 6194 6195 6196 6197	.03 .09 .04 .11	
6202 6211 6217 6218 6226	.02 .03 .02 .04 .04	
RE 6226 6234 6235 6237 6240	.03 .02 .02 .03 .03	
6242 6243 6245 6247 6261	.03 .02 .03 .04 .02	
6262 6263 6269 6270 6273	.08 .06 .03 .03	
6277 6278 6281 6282 6288	.04 .04 .03 .07	
6292 6293 6294 6298 STANDARD R-2a	.04 .03 .05 .09	

GROUP 7KP - 0.500 GM SAMPLE BY PHOSPHORIC ACID LEACH, ANALYSIS BY ICP-ES.

- SAMPLE TYPE: CORE PULP

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

FILE # A602765R

Page 2

ACME ANALYTICAL			ACME ANALYTICAL
	SAMPLE#	W %	
	6299 6305 6306 6307 6308	.06 .02 .02 .13 .03	
	6309 6310 6312 6313 6314	.15 .05 .05 .14 .04	
	RE 6314 6315 6316 6317 6319	.04 .04 .06 .06 .07	
	6320 6321 6322 6323 6324	.06 .03 .02 .14 .03	,
	6327 6328 6329 6330 6331	.07 .09 .03 .02	
	6332 6333 6334 6336 6337	.05 .02 .02 .09 .08	
	6338 6340 6341 6342 STANDARD R-2a	.02 .03 .02 .04 .09	

FILE # A602765R

Page 3

SAMPLE#	W %
6344 6347 6348 6349 6351	.05 .03 .04 .03 .03
6353 6354 6357 6358 6359	.04 .05 .07 .04 .04
6360 6361 6362 6363 6364	.05 .02 .03 .11 .03
6369 6370 6371 6372 6373	.02 .02 .05 .04 .05
6375 6376 6377 6379 6381	.03 .06 .03 .13 .02
RE 6381 6382 6383 6384 6385	.03 .04 .05 .04 .08
6386 6391 6392 6398 STANDARD R-2a	.03 .03 .02 .03 .09

Sample type: CORE PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data KFA

FILE # A602765R

Page 4

ACME ANALYTICAL			ACME ANALYTICAL
	SAMPLE#	W %	
	6400 6404 RE 6404 6405 6408	.03 .07 .07 .02 .04	
	6411 6412 6413 6415 6418	.05 .02 .02 .04 .12	
	6419 6421 6422 6423 6424	.04 .08 .04 .04	
	6429 STANDARD R-2a	.04	

AGME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Newmac Resources Inc. File # A602765 Page 1 2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

MO CU PD Zn Ag Ni Co Mn Fe As. U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Fi Al Na · K. Ni Zr Ce Sn Y Mb Ta Be Sc Li S. Rb Hf Samole 3 2.3 19.9 48 .1 3.5 4.3 757 2.52 1 4.1 < 1 7.1 699 .1 < 1 .2 53 2.42 .085 20.3 14.5 .64 948 .255 7.55 2.635 2.81 .2 8.4 43 1.3 13.8 21.0 1.7 3 5 38.8 < 1 112.4 .7 86.8 15.0 34.6 9 .2 1.0 1.5 105 1.11 136 26.1 < 1.57.5 32 < 1 3.2 9.9 19 .07 .023 24.4 7.3 .14 185 .097 6.59 .212 3.71 >200 53.1 43 21.7 9.1 32.7 3.1 5 5 93.5 6.305.0 2.6 6.00 170 7 13.7 27.3 31 .1 .6 1.7 100 .78 37 20.5 <1 29.0 32 .5 1.4 7.9 12 .57 .019 28.3 4.6 .10 183 .046 5.67 .482 3.78 >200 33.0 53 17.4 14.3 22.7 2.0 5 3 71.8 .5 286.8 1.7 6.70 53.4 4.4 19.4 44 < 1 .8 1.4 343 1.08 28 10.2 < 1.24.5 19 .2 1.2 1.8 23 .95 010 17.2 6.9 .13 122 .039 5.58 .102 3.57 > 200 29.2 29 29.3 13.2 19.0 1.8 5 5 90.7 .8 279.7 1.5 5.00 6195 266.4 5.8 70.8 91 .3 .4 1.5 634 1.12 445 23.0 <1 22.3 24 1.5 1.7 2.5 30 1.40 .010 17.8 4.3 .17 150 .048 5.91 .235 3.72 >200 25.2 33 78.2 14.1 21.8 1.7 5 10 125.6 .6 377.6 1.2 5.00 137.0 11 2 21.6 17 .1 1.1 1.9 467 .97 13 16.6 < 1 28.4 70 .1 1.7 3.7 10 .24 .022 19.6 3.2 .15 71 .052 5.73 .045 2.46 >200 35.3 34 11.8 9.9 29.8 2.8 8 4 117.1 .6 226 9 2.1 4 18 6197 40.4 8.8 18.2 5 < 1 .9 2.1 378 1.29 11 11.2 < 1 24.7 66 .1 1.3 10.1 15 .36 .017 20.5 3.6 .16 126 .048 5.78 .087 2.72 176.1 37.5 37 22.8 11.9 29.1 2.9 9 5 155.5 1.0 235.6 2.1 4.15 6198 1.4 4.8 17.2 13 < 1. 5 .4 263 .47 2 19.0 < 117.0 86 < 1 .4 1.4 8 .52 .015 18.5 7.0 .12 300 .046 6.42 1.651 3.75 41.7 33.5 34 5.4 12.9 34.9 3.9 7 5 47.9 1.267 3.2 0 5 60 6199 5.6 5.6 17.5 11 < 1, 7, 5, 214, 45 1, 19.8 < 1, 17.5 85 , 4, 1, 1, 73.9 8, 53, 017, 19.0 5.9 , 10, 288, 046, 6, 70, 2, 454, 3, 73, 41, 6, 33, 1, 35, 9, 3, 13.9, 34.3, 3, 8, 11, 5, 39.8, 1, 246, 4, 2, 2, 5, 10. 6200 6.1 1.5 19.2 2 < 1. .4 .8 198 .55 1 16.9 < .4 17.8 77 .4 1.2 126.2 8 .53 .015 18.1 7.8 .10 231 .039 6.47 2.288 3.39 9.5 37.4 33 19.4 12.8 27.6 3.2 9 6 61.3 .3 252.8 2.1 5.42 6201 4.5 1.5 20.5 7 < 1 .7 1.0 194 .57 2 17.1 < 118.1 75 < 1 1.2 129.0 8 .53 .016 17.9 9.7 .10 225 .037 6.51 2.440 3.42 9.3 32.4 33 18.7 12.3 26.8 3.0 8 6 62.5 .3 235.3 2.1 RF 6201 5.2 1.4 19.7 4 < 1. 7 .9 200 .58 1 16.1 < 1 16.7 77 .1 1.0 87.2 8 .54 .015 17.4 8.2 .10 227 .037 6.49 2.376 3.49 8.7 34.8 32 18.7 12.3 27.0 2.9 9 6 63.4 ,3 245.4 2.0 -RRF 6201 56.2 3.7 26.7 5 < 1 1.0 3.1 241 1.09 14 12.9 < 1 24.0 70 < 1 24.0 89.5 9 .57 .016 20.8 6.6 .10 258 .045 6.61 2.432 3.88 >200 35.9 37 15.3 11.7 26.4 2.7 10 5 50.9 .9 281.7 1.9 7.60 238.4 13.2 19.7 11 < 1 .9 2.7 247 1.10 58 19.4 < 1.28.2 52 < 1 .8 8.0 8 .60 .012 16.4 11.2 .10 165 .047 6.07 2.329 3.67 109.9 32.7 30 8.7 8.9 26.5 2.2 7 3 32.6 .7 240.1 1.6 5.96 6203 30.2 7.5 20.2 5 < 1 .7 1.3 240 .72 13 13.6 < 1 30.0 40 < 1 4.8 1.3 8 .47 .013 15.9 5.7 .11 104 .044 6.48 1.064 3.38 175.3 23.2 29 10.5 8.4 24.5 2.5 8 4 54.8 .4 253.8 1.2 5.86 9.2 4.4 15.6 3 < 1 1.0 1.0 1.0 171 .63 18 10.0 < 1 19.8 31 < 1 6.2 .7 7 .28 .016 18.3 4.1 .14 57 .037 6.47 .042 2.61 20.0 28.9 33 6.5 11.7 29.8 3.4 11 4 62.9 .3 201.6 2.0 5.50 6205 19,7 13,5 20,2 6 < 1,1 0 2.4 218 .86 36 11.1 < 1.30.8 20 < 1.1 2.7 1.1 8 .11 .015 21.8 3.1 .11 131 .058 6.40 .071 3.46 30,2 36.5 40 4.8 10.5 32 2 3.2 8 4 48.9 .5 255.6 1.8 5 70 6206 29.3 20.0 21.3 7 < 1 1.3 2.8 254 1.18 8 16.6 < .1 31.2 40 < .1 2.7 1.2 8 .33 .014 23.9 7.7 .10 217 .056 6.37 1.751 3.93 89.0 32.1 40 5.1 10.2 27.8 2.9 6 3 42.6 7 249.6 1.6 6.00 47.4 21.0 21.9 11 <1 1.0 1.5 344 .95 7 32.9 <1 32.7 47 <1 1.1 .5 9 .35 .015 22.7 4.6 .07 227 .074 6.21 2.141 3.84 199.7 33.5 40 4.5 11.2 40.9 3.5 5 4 43.4 .4 237.9 1.6 6.00 6208 40 0 17.9 20 7 11 < 1 1.1 2.1 249 .99 5 26.9 < 1 33.0 50 < 1 .6 .6 7 .39 .015 24.0 8.9 .08 247 .066 6.31 2 267 3.93 75.0 32.4 41 5.3 10.5 32.4 2.9 5 3 47.5 6 248.1 1.6 6.08 36, 6 16, 3 21, 8 103 < 1, 9 1.5 336 .87 4 26.8 < 1 33.2 53 < 1, 5 1.1 8 .44 .016 26.5 5.0 .09 242 .069 6.44 2.273 3.88 32.6 34.5 44 4.9 10.7 35.0 3.1 6 4 42.6 .4 251.0 1.5 5.56 24.0 14.7 20.0 6 < 1 1.1 1.6 338 1.03 5 16.0 < 1 32.0 45 < 1 .4 .7 10 .35 .016 22.3 6.3 .08 241 .061 6.15 1.821 3.89 > 200 32.1 36 10.8 9.7 28.9 2.5 5 4 60.8 .6 256.0 1.5 5.62 96.9 12.9 19.8 8 < 1 .7 1.5 348 1.01 9 28.1 < 1 29.3 43 < 1 .4 1.7 9 .37 .015 21.9 4.7 .08 230 .061 6.07 1.737 4.03 100.7 30.0 38 10.0 9.5 29.5 2.6 4 3 50.2 .6 261.4 1.5 5.78 66.7 16.7 22.5 12 <1. 1.0 1.5 330 1.09 7 32.6 <1 33.6 49 1. 4 1.3 10 41 .017 25.2 7.8 .08 267 .069 6.45 1.917 4.10 112.7 33.8 41 13.2 10.3 34.3 2.7 5 4 55.0 ,7 293.8 1.7 3.90 6213 312.8 4.1 174.7 130 1.0 5 .3 11743 3.93 9424 140.9 .5 36.9 19 1.6 20.2 15.2 13 .74 .012 8.4 2.4 .18 138 .047 5.75 .082 3.20 48.7 36.5 16 97.5 23.6 55.4 2.5 7 5 70.0 1.8 362.1 1.2 1.20 6214 30.7 9.5 26.5 11 < 1 1 3 .9 340 1.08 12 19.3 < 1 29.3 45 < 1 1 2.8 1.8 12 .41 .014 22.0 6.2 .08 260 .064 6.41 1.608 4.19 97.6 30.1 38 11,5 9.3 34.2 2 4 5 4 52.5 .6 289.1 1.5 5.90 140.9 10.0 53.2 14 .2 .9 1.2 307 1.39 41 22.2 < 124.7 49 .1 3.4 67.5 12 .36 .012 18.5 5.8 .09 267 .054 6.44 1.662 4.72 82.9 26.6 30 17.8 7.7 23.1 1.9 5 4 62.0 1.0 348.8 1.2 6.60 89.4 8.8 23.1 12 < 1 .9 1.4 202 .75 4 31.2 < 1 31.7 54 < 1 .6 14.7 9 .44 .013 27.4 7.3 .08 276 .048 6.60 1.990 4.92 >200 34.9 45 19.3 11.4 20.1 2.0 5 4 70.1 .4 427.2 1.7 5.50 115.4 4.6 16.7 10 < 1.7 1.0 147 .82 4 12.3 < 1 28.8 41 < 1 .2 2.0 8 .46 .014 21.3 4.6 .08 215 .040 5.93 1.783 3.80 > 200 27.2 36 13.1 10.6 19.9 1.7 4 3 62.8 .6 289.3 1.5 5.20 153.6 8.8 21.7 10 < 1 1.2 2.0 234 1.12 6 16.7 < 1 32.4 46 < 1 .5 4.3 10 .37 .016 21.9 6.5 .08 253 .056 6.15 1.737 3.88 55.5 32.6 37 14.1 9.2 30.3 2.4 5 4 69.4 .9 287.4 1.8 6.00 79.0 7.7 19.4 12 < 1 .8 1.6 212 .91 5 15.4 < 1.31.8 43 < 1 .2 .6 10 .36 .015 21.4 4.6 .08 244 .056 6.08 1.589 3.97 87.5 29.1 36 14.0 8.8 28.4 2.0 4 4 60.3 .6 274 5 1.5 5.20 74.7 15.5 25.0 11 <1.1 1.2 1.8 243 .91 3 25.8 <1.37.5 51 <1. 6 14.6 9 .37 .017 27.0 5.0 .08 269 .076 6.29 1.628 3.84 122.1 35.5 45 10.6 11.0 38.3 3.0 5 4 75.0 .5 286.3 1.8 6.00 31.1 10.3 22.5 11 < 1 8 1.2 410 .91 5 19.5 < 1 34.5 54 < 1 4.0 .91 5 19.5 < 1 34.5 54 < 1 .4 .4 .0 .34 .017 23.7 5.4 .08 260 .077 6.41 1.818 3.77 56.1 32.9 39 6.4 11.3 37.9 2.9 5 3 91.1 .4 232.7 1.4 5.70 67.2 9.1 22.9 11 < 1.1 1.2 1.2 332 .93 30 18.3 < 1.35.3 56 < 1. .3 1.7 18. .42 .017 26.8 7.4 .10 287 .075 6.52 2.124 4.07 150.1 33.7 46 16.4 12.0 33.6 3.2 6 4 76.0 .4 323.8 1.7 6.00 6223 37.7 7.9 22.4 8 < 1.1 1.3 353 .96 3 17.4 < 1.31.7 49 < 1 .6 13.4 10 .30 .017 24.3 4.0 .08 246 .074 6.52 1.648 3.89 62.9 37.5 42 7.7 9.8 35.0 2.8 7 3 67.3 .4 241.4 1.6 6.09

STANDARO 0576 12.5 125.3 34.7 175 4 30.3 13.3 963 4.07 25 7.6 < 1 7.0 314 5.7 5.5 4.7 112 2.29 101 25.4 234.7 1.03 701 4.36 7.00 1.705 1.36 7.8 53.7 52 6.4 14.7 8.5 .7 3 12 27.4 < 1 57.4 1.7

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HN03-HCL-HF TO 10 ML. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-MS. - SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

06-30-2006 P03:21

DATE RECEIVED: JUN 12 2006 DATE REPORT MAILED:.....

Page 2

SAMPLE#	Mo Cu	Ph	7n A	ta Ni	Co	Mo	Fe	As	u	Áμ	Th	Sr	Cd	Sh	Вi	¥	Ca	ρ	La	Cr	Ma	Ba	Ťi	Al	Na	K	u .	7.0	Ce	Sri	Y	Nb	Ta	Re	Sr	Li	5	RID	Hf S	amnlu	
JAIN ECC	ррт рут																				-																		-		
	ры ры	рып р	Den Dh	nn 5/04	, pp.	- Phi			ps.	PP46	- PPIN	- DPIII	Ph.	ppiii	ррш	PPIII			ррін	PPH.		- Dhair				- 1	Ppin	- PP-III	PPIII	- Den	- DPRIII	Ppin	ppm	pper !	DP4II	- Dheil		ррш	ppin	Ky .	
		24.2	٠.			200	2 20					700		,	-		2	004	22 1	10.1		1010	255	7 01	2 (20	2 02	,		40		15.6	21. ^				40.4					
G-1	.4 2.9																																								
6225	91.3 4 3																																								
6226	12.8 5.0																																		-						
6227	B.O 5.B																																								
6228	94 8 3.3	25.3	9 <	1 .7	.8	294	. 80	3 1	14.0	<.1	34.5	67	1.	.4	.6	19	.46	.017	26.0	4.7	. 15	234	.070	6.30	1.996	4.95	165.9	38.7	45	11.9	12.3	35.4	3.0	5	5 i	06.5	.3	289.0	1.9	5.18	
6229	16.2 3.6	22.2	II ≤.	1 .9	. 8.	330	.83	3.7	15.2	<.1	30.8	57	<.1	.3	.7	21	.55	.016	22.7	6.4	. 15	231	.064	6.18	1.311	4.60	49.4	37.3	39	9.3	10.8	34.3	2.6	5	5 ì	12.1	.3	242.6	1.6	6.24	
6230	42.0 6.8	27.9	13 <.	1 .8	8.	268	.86	6.7	18.0	<.1	32.9	55	<.1	.4	1.8	28	.47	.017	24.0	4.8	. 13	242	.077	6.15	2.114	5.09	52.3	38.1	42	7.5	11.7	41.6	2.9	6	4	64.8	.3	272.2	1.7	5.54	
6231	8.7 4.9	29.4	16 <.	1 1.2	1.2	348	96	56 !	16.0	<.1	33.7	57	. 1	.6	9.2	23	.52	.017	25.D	9.9	. 13	246	.074	6.25	2.028	4.79	128.5	39.4	43	8.9	12.9	42.1	2.8	5	5	77.8	.4	261.8	1.7	6.06	
6232	19.9 6.4	28.I	16 <.	1 .8	1.7	374	.98	9 !	12.0	<.1	33.1	59	.1	.4	.6	21	,52	.016	23.0	4.2	. 14	231	.077	6.01	1.287	4.40	144.8	36.7	39	6.9	12.1	43.1	2 9	6	4 2	02.4	4	238.1	1.7	6.06	
6233	6.4 7.5	30.3	17 <.	1 1.4	1.1	407	. 95	10 3	18.4	<.1	39.2	63	<.1	.6	7.0	28	.32	.019	26.0	6.3	.13	279	.097	6.71	. 804	4.87	B9 4	41.9	44	5.6	12.9	51.3	3.5	7	4 2	:08.3	.3	253.4	1.9	5.12	
6234	69.6 5.4	30.Z	17 <.	1 1.0	1.6	428	.86	14 /	12.0	<.1	34.7	67	.1	1.0	43.2	28	.27	.018	24.0	3.7	.12	222	.077	6.04	. 197	4.27	>200	37.B	41	15.5	10.9	36.2	2.8	9	4 3	49.2	.4	256.4	1.6	5.36	
6235	90.5 6.7	35.3	24 <.	1 1.0	2.0	248	.97	21 7	13.4	<.1	32.7	66	.2	1.0	30.5	24	. 45	.019	23.7	6.9	. 15	240	.051	6.11	.996	4.87	>200	39.6	40	13.0	11.7	22.6	2.0	7	4 1	.66.3	. 6	275.0	1.7	5.92	
6236	41.8 6.2	26.1	27 <.	1 .9	1.9	254	1.17	12.1	13.9	<.1	30.5	66	. 2	.8	13.7	18	.41	.015	24.2	4.8	.15	245	.047	5.85	1.327	5.04	171.3	34.5	41	17.3	10.7	20.7	1.8	5	4 1	90.2	.9	278.0	1.7	6.24	
6237	46.6 10.4 3	37.6	17 <.	1 1.3	2.0	276	1.08	9 1	17.1	< 1	34.7	56	<.1	1.7	64.9	21	.37	.018	25.7	9.4	.13	276	.064	6.12	1.564	5.39	>200	38.9	43	21.1	11.2	31.7	2.5	5	5 1	06.4	8	322 2	1 B	5 64	
6238	80.9 11.6																																								
																						-		•					-						_					•	
6239	18 7 17.3 2	27.5	11 <.	1 1.2	2.0	211	.92	6 1	11.4	<.1	35.2	72	.1	.5	1.1	16	.34	.017	23.7	4.6	.13	228	.077	6.18	.436	4.42	43.0	35.5	39	6.2	11.3	32.0	2.8	8	3 2	58 6	6	248 R	1.6	5.16	
RE 6239	20.3 16.7 2																																								
RRE 6239	16.4 15.4																																								
6240	8.4 6.7 3																																								
6241	196.4 6.8 2																																								
0241	170.4 0.0			,	,	200						٧.	•			•								5.5.				0		V		CL.,			4			204.2	4.5	3.72	
6242	31.4 9.2 8	25 6	11 -	1 0	2 5	378	1 44	,	12 ก	e 1	3/1 /	66	<i>c</i> 1	2	2 11	17	45	016	2A B	4 9	15	250	076	6 20	1 974	A 86	>200	30 9	42	2n 2	12.6	37.4	2.1	6	F 1	EQ 4	1.0	າດາາ	1 7	6 22	
6243	43.8 9.4 2																																		-						
6244	70.7 9.0 2																																								
	103.6 7.2 5																																								
6245																																									
6246	58.0 6.6 2	29.2	13 <.	1 .8	1.8	303	.94	4 1	15.0	<.1	34.8	60	<.1	.3	.9	15	.46	.018	24.6	5.1	.13	220	.079	6.41	2./59	4.79	50.4	36.0	41	7.0	12.5	43.4	3.4	5	5 :	54.5	.4	274.0	2.1	5.38	
***						000		٠.			20.4								22.2			107	200			4 50	. 220		2.5					,							
6247	23.9 8.0 3																																								
6248	47.3 8.B 2					-																																			
	116.0 12.2 2																																								
6250	91.5 7.7 2																																								
6251	55.9 7.5 3	30.0 a	24 < .	1 1.0	2.3	351	.96	2 2	21.3	<.1	32.2	56	<.1	. 6	3.6	18	45	.016	24.0	5.8	.14	222	.052	6.45	2.551	5.94	165.2	36.7	41	18.2	10.9	28.2	2.3	6	5	72.6	.7 3	327.6	1.4	6.28	
6252	84 2 16.3 4																																								
6253	84.6 12.5 2																																								
6254	152.5 5.3 8	24.6	19 <.	i 1.1	1.8	231	.87	2 1	14.9	<.1	32.4	68	<.1	. 4	2.2	7	.51	.018	27.3	3.0	. 13	222	.062	6.13	1.267	5.29	49.9	36,5	46	8.2	9.3	31.5	2.0	5	4]	36.6	.5 7	293.5	1.5	6.00	
6255	79.4 8.0 2	25.3	13 <.	1 1.0	4.3	247	.94	2 1	4.1	<.1	33.0	79	<.1	.5	2.4	8	.47	.016	25.7	3.3	. 13	224	.066	6.21	. 996	4.76	45.1	36.7	42	7.3	8.1	30.7	2.3	12	3 3	31.7	.5 7	255.1	1.6	6.00	
6256	111.2 9.5 2	26 8	23 <.	1 1.2	3.5	305	.99	2 1	8.5	<.1	36 6	78	<.1	. 4	1.8	16	. 68	.017	26.0	4.4	.16	240	.081	6.17	1.970	4.96	42.6	33.7	42	8.4	9.6	35.2	8.5	6	4 19	53.5	.5 7	262 0	1.4	6.00	
STANDARD DST6	12 3 126.6 3	35.4 1	77 .	3 31.1	13.4	965 -	4.08	26	7.7	<.1	7.1	308	5.8	5.6	4.8	114	2.29	.101	25.1	231.4	1.00	690	.431	7.01	1.702	1.49	8.1	53.6	52	6.5	14.6	8.5	.7	3	12 2	28.9	<.1	56.9	1.8	-	

Page 3

<u> </u>			_							_									- ::	-																	··-	=			_			TWHILE IT TOTAL
SAMPLI		Мо	Cu	. Рь	Zn	. Aq	. Ni	Ca	Mn	Fe	As	U	Au	Th	Sr	Co	Sib	81	¥	Ca		P La	£r	Mq	Ba	a T	1 A	1 N	a K		Zr	Сe	Sn	Υ	Nb	Τa	8e :	Sc	Lι	S	Rb	Hf :	Samole	
						_																		_							n ppm										_			
		PPI		. pp	PP	PP	. pp.	Pp	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			P.P	- Ph.	Pp	PP		PP	PP.				- pp			PP						- pp.ii	pp	pp	PP	- PPIE		-	P	ψ.	•	יייעע	- PPIII		
6-1		_	2.7	21 0	55	- 1	2 6		772	2 45	,	2 0	ء 1	6.5	764		- 1	2	52	2 72	ne	r 10 4	2.4	63	1020	n 25	2 0 7	7 2 02	0 2 01		8.8	42	1.2	12.4	20.4	1.0	1	c	20 6	- 1	111 6	7		
6257																															36.9													
6258																															35.5													
6259																															45.1													
6260		71.2	5.3	23.2	16	<.1	1.0	2.8	63	.75	4	19.9	<.1	28.0	51	<.1	. 4	3.2	8	.21	.01	3 20.1	2.1	.07	192	2 .04	9 6.14	4 .80	1 2.97	71.9	33.4	34	11.7	6.7	25.3	2.0	4	3 1	12.3	.5	261.6	1.7	4.70	
																										_																		
6261																															36.5													
RE 624																															34.8													
RRE 6																															34.4													
6262		175.6	2.5	19.1	17	<.1	1.0	2.4	71	.82	7	19.2	<.1	28.9	69	<.1	.5	14.1	6	.73	.01	5 15.4	2.4	.07	185	5 .03	3 5.95	5 1.16	9 4.00	>200	37.2	27	12.1	8.8	20.2	1.6	5	4	77.9	. Б	321.7	1.7	6.02	
6263		73.9	6.6	22.5	10	<.1	.9	1.7	187	. 75	4	21.4	<.1	32.3	81	. 1	. 5	2.2	9	. 29	.01	23.0	2.7	. 13	177	7 .06	3 6.68	.74	6 3.93	>200	40.6	37	7.8	8.5	33.6	2.6	7	4]	102.3	.3	304.2	1.8	5.96	
6264		81.4	8.4	25.4	12	<.1	1.0	2.3	150	. 62	5	22.7	<.1	32.8	78	. 1	, В	4.8	10	. 22	.01	23.6	2.3	.11	202	2 .074	4 6.73	3 1,394	6 4.10	158.1	41.1	39	7.3	8.3	31.2	2.6	6	3	61.6	. 4	282.5	1.7	5.74	
6265		87.1	7.6	35.0	17	. 3	1.2	2.8	126	. 91	4	17.8	<.1	30.5	64	. 1	1.2	14.4	10	.30	.01	23.7	3.9	.09	208	8 .05	7 6.39	1.36	2 4.13	128.1	35.0	40	8.2	8.1	24.0	2.1	6	3	83.4	6	289.4	1.5	5.80	
6266		56.2	10.8	26.7	13	.1	. 9	2.1	256	.81	7	16.4	<.1	33.1	59	.1	. 6	2.6	9	. 24	.01	24.4	3.3	.07	213	.064	4 6.60	1.61	6 4.12	50.B	34.1	40	6.2	8.1	27.7	2.3	5	3	81.4	4	293.8	1.3	6.50	
6267		78.5	10.0	35.4	32	. 3	I.O	2.2	173	.71	4	13.5	<.I	26.9	60	. 4	.7	5.4	8	. 30	.014	21.1	3.0	.08	169	.059	5 5.82	2 1.23	4 3.65	73.6	30.8	34	7.1	7.8	23.5	2.1	5	3	81.4	. 4	262.3	1.4	6.00	
6268		181.7	7.1	32.3	14	. 3	. 8	1.7	213	.71	3	17.2	< .1	27.8	48	.1	.9	10.0	6	.41	.01	19.6	2.7	.07	194	4 .048	8 5.71	1.43	5 3.86	130.5	27.2	32	5.6	7.9	22.6	1.6	6	3	51.5	.4	258.7	1.4	7,00	
6269		163.5	6.0	23.1	16	<,1	1.5	4.8	246	1.56	8	15.8	<.1	27.9	56	<.1	.5	1.6	9	. 47	.014	19.6	5.6	.09	184	4 .04	7 5.77	7 1.23	7 3.81	>200	30.8	31	7.4	8.9	24.7	2.1	7	3 1	06.1	1.3	290.9	1.4	6.44	
6270		134.1	10.4	20.7	10	<.1	. 9	1.1	244	.81	4	14.7	< .1	30.3	69	<.1	.6	. В	9	.74	.019	19.3	1.7	.10	195	5 .051	1 5.91	.310	6 3.89	>200	32.7	33	6.2	8.5	25.9	2.2	9	3 2	267.1	.4	266.4	1.7	4.52	
6271		47.0	2.3	31.4	20	<.1	4	1.0	274	.80	3	16.5	< .1	27.5	40	. 1	.5	2.5	6	.66	.00	3 13.4	3.2	.08	58	B .046	6.08	1.169	9 3.41	73.0	32.1	23	4.2	7.8	25.9	2.8	6	3 1	83.6	3	247.2	1.8	8.28	
6272		39.6	6.9	29.2	17	<. I	.9	1.2	288	.88	2	13.2	< 1	30.7	66	< 1	.5	.9	9	.78	.014	21.4	2.9	.11	170	.064	4 6.53	.53	5 3.73	126.4	32.6	37	5.0	9.6	33.2	3.3	8	3 2	253.2	. 2	244.6	1.8	6.20	
6273		75.8	5.8	22.5	15	<.1	1.0	1.2	266	. 90	2	13.1	<.1	30.4	59	<.1	. 6	.4	10	.49	.019	22.1	4.1	.12	166	5 .062	2 6.20	1.284	4 3.71	>200	30.8	37	6.2	9.1	28.1	2.5	6	3	69.4	.3	250.6	1.6	5.88	
6274		80.1	6.5	26.9	13	<.1	. 9	1.1	276	.90	2	14.2	< 1	32.3	61	<.1	.6	. 2	10	. 55	.015	24.8	4.4	.12	191	. 062	2 6.31	1.56	3.67	55.4	37.3	42	5.1	8.6	29.3	2.6	6	4	97 4	. 3	260.8	2.0	6.34	
6275		39 4	6.2	24.7	15	< 1	1.0	1.1	264	.84	2	13.0	<.1	30.0	57	< .1	.4	. 2	8	.55	.014	22.3	2.9	.12	190	.064	4 6.23	1.841	1 3.5B	191.0	35.4	36	5.1	8.6	27.8	2.7	6	3	38.4	.3	244.4	1.8	5 96	
6276																															37.6										-			
6277																															35.3													
6278																															32.8													
40.0								•	-				-							-																	-							
6279		68.9	5.6	28 5	131	1	3.1	3.1	568	L 16	13	16.6	< 1	29 1	113	2 1	2.6	22 7	18	57	024	23.2	6.1	27	185	103	3 6 24	1 100	3 34	153 B	50.0	39	R 4	11 1	34 4	3.0	10	5	38.6	2	283 5	2 4	6 66	
6280																															41.4													
6281																															48.6													
6282																															49.0													
6283																															46.4													
6283		230.2	4.3	40.J	13	~.1	1.0	2.3	332	1.02	11	0.0	-	30.4	113	٦.1	3.0	31.4	10	. •1	.01.	24.1	4.0	.12	136		3.31		, J.JL	150.4	40.4	40		7.5	33.4	۷.,	13	*	02.2	. 4	2/1.9	2.2	0.30	
****		50.2	14.7	חם ר	21	. 1	, ,		יחב	2 20	1.4	6.6	. 1	20.5	00	٠,		06.7	n	ro.	014	22.7	E 0	12	100	1 ncc	2 6 01	1 202)] FE	100 1	41.6	40	z 7		20 /	, _E	7	٨	co o -	1 2	204.0	2 1	c co	
6284																																												
6285					-																										47.6													
6286																															45.6													
6287																															43.1													
6288		133.4	27 9	41.9	76	. 4	13.3	4.5	579	2.00	45	12.1	<]	24.7	261	.5	2.6	42.1	53	1.68	.031	. 21.2	15.7	.57	318	5 .108	5.17	. 078	s 2. 6 1	>200	49.8	35]	18.6]	1.0	35.9	2.8	58	8	17.0	1.1	262.1	2.1	6.00	
														_																														
STANDA	ARD DST6	12.6	125.9	34.5	169	. 3	30.4	13.2	966	4.09	25	7.5	<.1	6.9	314	5.B	5.4	4.7	113	2.29	. 100	24.9	231.7	1.04	698	.442	7.01	1.696	1.38	8.1	54.4	50	6.3 1	14.8	8.6	В	4 1	l 1	28.3	<.1	58.1	1.7		

Page 4

ALME ANA	RLYTICAL																																									ACN	E ANAL	_YT[CAL
	SAMPLE#	Mo	Cu	Ph	7 n	Aq	Ní	Ca	Mn	Fe	As	U A	u T		Sr C	1 Sh	В-	. V	Ca		P La	Cr	Ma	Ba	T1	A1	Na Na	. K		Zr	r _e	Sn	Y	Nh	Ta	Be	Sc	U	5	QF	Hf	Samol		
				_		-				-	oom od	-			-		-	t pom			t pom	_	•	DDM										ppm					*		, ppm		-	
														:																													-	
	G-1	1.8	2.6	23.3	62	. 1	3.3	4.1 7	728 2.	.32	<1 4	.6 <.	1 8.4	} 70	13 <.	l <.1	.3	49	2.38	.08	3 21.6	13.4	. 61	1032	. 297	7.36	2.697	2.83	. 6	9.2	45	1.5	14.7	20.5	2.6	2	5	40.1	<.1	114.3	ı a			
	6289	3.4	94.8	8.4	111	.2 2		8.8 12	22I 6.	16	24 13	.4 <.	1 1.8	58	34 .1	1.2	2.5	237	5.68	.11	3 7.1	64.0	2.93	1125	. 439	6.08	1,443	1.84	53.3	15.4	14	2.3	11.4	4.1	.2	19	26	63.8	. 2	100.7	.8	7.1	4	
	6290	1.2	101.7	6.4	79	.1 1	9.2 2	8.6 10	079 7.	06	10	.8 <.	1 2.0	114	11 .	1.6	.1	271	7.36	.129	9 7.6	28.7	3.12	560	.539	7.00	2.415	1.19	7.2	16.3	17	.7	13.1	2.5	.1	В	27	38.1	<.1	46.3	8.	7.5	4	
	6291	1.2	109.5	7.5	98	.1 2	10.7 3	4.4 12	224 8.	08	4 .	.9 <.	1 2.6	169	1 .:	2.2	.1	296	6.92	.12	8.4	26.0	2.88	554	. 596	7.62	2.410	1.37	2.1	19.9	18	. 6	15.2	2.0	.2	1	30	24.4	< .1	46.1	1.0	3.6	50	
	6292	26.5	11.9	26.0	13	.1	1.0	2.0 2	295 I.	82	64 13.	.4 <.	1 34.3	9 5	9 <	.7	17.9	12	.36	.01	2 24.8	11.9	. 10	265	.060	5.86	1.994	4.17	>200	37.3	43	31.8	10.7	26.9	2.4	32	5	65.5	1.3	293.2	1.9	6.3	30	
	6293	253.0	12.1	29.3	23	. 1	1.2	2.2 2	271 1.	56	17 31.	.6 <.	1 34.	' !	54 <.	1.4	39.0	11	.30	.01	23.8	7.2	. 09	246	.054	5.78	1.778	4.37	>200	42.3	41	27.7	11.0	26.9	2.4	23	4	56.8	1.0	338.5	1.9	5.8	34	
	6294	315.0	7,7	33.1	19	.1	1.0	1.6 3	327 1.	49	6 25	.2 <.	1 35.0) 3	38 <.:	1.9	56.0	13	. 26	.010	22.6	8.9	.08	168	.056	5.52	1.512	3.64	>200	39.4	40	40.7	11.2	28.0	2.5	42	5	68.2	1.0	273.0	1.9	5.8	34	
	6295																											3.63																
1	6296																											3.41																
	6297	418.0	33.8	26.5	23	< 1	1.0 4	4.2 4	170 1.	54	5 39.	.7 <.	1 32.5	2	4	1.7	5.4	8	. 22	.01	24.0	7.0	.06	208	. 060	5.61	1.976	3.52	94.8	39.5	41	13.0	9.9	30.7	2.7	7	4	46.7	1.0	209.8	1.7	6.0	10	
1																																												
	6298																											3.36																
	6299																											3.84																
	6300																											2.92																
	6301																											3.44															20	
	RE 6301	2.1	3.3	34.9	19	<.1	.6	.5 b	.54 .	12	15 15.	ь <.	1 18.6	,	ъ.	1.1	12.5	′	. 39	.016	5 19.6	2.1	.09	209	.054	b.47	.728	3.17	b b.↓	35.9	36	11.7	15.1	35.3	3.9	1	6	126.0	. 2	219.3	2.2		-	
ł	RRE 630I	1 9	2 2	21.5	17	- 1	,	7 6	275	71	12 16	2 -	1 10 1		и .		7 7	6	30	613	7 10 7	2.0	no	220	056	6 46	775	3.30	56.6	26.2	24	10.0	14.7	7.6 E	2 0	,		121 1	1	207.1	2.5			
	6302																											3.15																
	6303																											3.04																
ļ	6304																											3.31									-						-	
İ	6305																											3.26																
	6306	34.4	8.4	23.6	11	<.1	.8	.9 2	273 .	78	2 16.	.6 <.	31.5	4	16 <.]	6	6.1	7	. 28	.013	22.5	6.9	.06	222	.064	5.98	1.747	3.04	>200	38.2	37	8.5	10.1	30.2	3.0	5	3	70.9	.4	157.1	1.9	6. I	.5	
ļ	6307	40.2	B.0	26.3	9	<.1	.9 1	1.2 3	158 1.1	00	3 22.	.1 <.1	34.3	. 4	6 <.1	8	58.8	9	.33	.012	22.8	7.9	.08	240	.058	5.89	2.146	3.52	>200	38.0	39	20.3	9.8	30.3	8.5	6	5	69.1	.7	213.6	2.1	5.6	0	
	6308	106.0	3.2	27.4	9	< .1	.6	.7 2	166 .1	64	28 12.	.3 <.	32.2	. 4	1 <.1	1.2	46.8	8	.23	.012	23.1	8.6	.06	220	.048	5.71	1.655	3,06	>200	35.4	37	14.B	8.4	23.5	2.1	4	4	67.5	3	196.1	1.9	6.2	10	
ł	6309	141.0	3.7	24.8	19	<.1	1.1 1	1.0 4	61 .!	98	31 14.	.4 <.	1 32.7	4	8 <.1	1.0	22.7	В	. 26	.016	23.7	8.5	.07	274	.050	5.51	1.529	3.10	>200	32.8	39	15.3	10.3	29.1	2.1	5	5	79.0	.6	213.3	E.7	5.5	0	
ŀ	6310	187.0	4.0	61.7	24	. 1	1.2 2	2.2 3	193 1.7	26	26 10.	9 <	31.8	4	4 .1	4.8	234.6	9	. 25	.014	23.4	8.5	.07	205	.044	5.37	1.134	3.23	>200	32.7	39	20.7	10.9	20.9	2.0	5	6	130.2	.9	221.2	1.8	6.4	0	
l	6311																											3.02																
ľ	6312																											3.46															•	
ļ																												3.00																
Ì																												3,71																
ļ	6315	128.0	3.9	55.1	12	. 1	.В	.5 2	.64 .6	69	6 16.	7 <.1	32.4	4	3 <.1	3.6	84.9	8	.33	.012	24.2	7.6	.07	199	.047	5.64	2.346	3.30	>200	38.4	43	13.2	9.7	26.5	2.3	6	4	50.6	.4	223.7	1.9	6.0	0	
1	6316	02.5	- r	22.0	11	- 1		10 1	100 I -	an.	2 10	2 -	ינטו	r	1 - 1	1.4	125 0	,	20	014	י מו מי	7 0	AP.	2017	ne ?	E 24	2 200	3.16	>200	47 7	42	10.6	0.0	22.7	2.0	٠	r	44.4	,	176 4	9.3		•	
						-																						3.16			-					-	-						-	
	6317 6318																											3.32																
					-																							3.94																
	6319 6320																											3.19																
	9320	00.3	2.0	JU . 4	14	1	1.1	0 2	1	14	c 61.	٠.٠	. JE.5	4	ا ر	1.1	44.0	ū	. 49	.011	20.1	g.)	.07	613	. 047	3.74	4.234	3.17	- 400	30.D	41	13.0	14.4	£7.0	۷.۶	•	*	JE. 0	.0	614.4	٤.1	0.0	•	
	STANDARD DST6	12.0	(30 B	34 1	177	3 3	101	3 3 4	368 4 (09	23 7	4 <	6 P	30	7 5 4	5.2	4.5	114	2 30	.099	24.1	222.4	1 04	674	.427	7.03	1.671	1.39	7.8	52.9	51	6 3	14.7	8.5	7	3	11	24 7	< i	57.2	1 7			
1			-50.0			0				'														• •																				

Page 5

ALME ANAL	.11 IUAL																	·																		ALME A	NALYTICAL [
	SAMPLE#	Ma	Cu Pb	70	Δα	Ni C	n Mn	Fe	A 5	I Au	Th	Sr ('d Sh	Rí	ν	Ca	P	La	Cr	Mer R	a Ti	i 4'	l Na	. K		7r	Ce :	in Y	/ Mb	Ta	Be S		Li S		Rb Hf	Samole	
	See ii CC3		ppm ppm		-										nom.			ppm	-	t pp			: :								מם מימע					-	
		- India	plan plan	DDe.	DDIK D	ypin p pi	וועקק, וו	•	ועק יוענ) ppie	pp	ppin pi	ин рри	Phyl	ppm			ppm	DD.	• 00			• •	•	Dimi	ppm j	open p	All Divis	ppm	DDmi	DDm DD		<i>3</i> 301 . 4		ibu bbu		
		•	2 2 20 5					2 40		1	1.0	707	, ,	- 1		40	007 (C4 00	. 20			- 2 40	,		٠, ,										
	G-1		3 0 22.5																																.9 .7		
	6321		7.0 34.3																																		
	6322		7.6 54.4																																		
	6323	1112.8	9.1 86 5	68	.4 1	7 30.8	8 408 B	3.96	12 22.9	<.1	17.6	26 2	5 7.6	463.6	5.	.35	.006 1	.0.2	17.0	.03 12	0 .017	7 3,71	l 1,000	3.01	>200	23.9	18 13	.5 8.9	20.2	1.0	2	5 37	2.9 9.3	265	.7 1.0	4.68	Ì
	6324	122.1	4.1 31.0	14	<.1	B 1.6	6 252 1	1.43	3 18.5	<.1	33.2	45	1 1.9	94.4	8	.30	.Q11 2	3.6	12.0	.07 21	4 .042	2 5.76	5 2.099	4.42	>200	43.1	40 21	.6 9.8	22.5	1.8	4	6 73	3.0 1.2	319	.4 1.7	5.70	ļ
	6325	17.5	2.4 23.3	15	<.i }	0 1.5	9 305 ì	00.1	6 15.4	<.1	32.7	51	1 .5	7.3	7	.33	.011 2	2.4	9.6	.07 22	7 .055	5 5.94	2.401	4.03	60.8	40.9	39 10	.3 11.3	28.4	2.5	3	4 4/	5.5 .6	190	.6 1.9	6.28	
	6326	109.9	4.0 26 2	14	<.1	.7 3.f	1 005 2	. 22	4 13.9	<.1	30.1	46 <	1 1.0	15.3	7	.26	.011 2	0.6	9.8	.07 19	6 .041	1 6.03	2.126	4.41	143.0	37.7	33 10	B 9.2	22.8	2.5	4 .	4 47	2.4 1.0	234	9 1.8	6.52	i
	RE 6326	102.0	3.7 29.B	15	<.1	.9 3.1	7 201 1	1.21	5 15.9	<.1	34.1	46 .	1 1.0	16.8	7	. 27	.011 2	1.6	9.2	.07 19	7 .043	3 6.20	2.093	4.41	144.0	38.2	36 12	0 9.B	22.4	2.4	4	4 4	8.7 1.0	280	.0 1.8		
	RRE 6326	122.8	5.6 27.5	22	.I I	.4 4.	3 212 1	1.40	8 15.8	<.1	35.3	47 .	2 1.0	18.0	7	.28	.011 2	2.5	12.3	.07 19	8 .044	4 6.23	3 1.930	4.37	159.0	38.9	38 13.	0 10.3	21.7	2.7	3 .	4 4	7.2 1.0	315	.2 2.0		
	6327	439.5	6.6 22.4	27	< 1	.8 1.4	9 282 1	. 27	7 13.1	< 1	27.3	43 .	8 .9	33.7	13	.54	.010 1	7.0	5.3	.10 16	8 .033	3 5.47	907	3.95	>200	33.0	28 26	1 9.4	16.4	1.5	6	5 11	7.6 1.0	336	.5 1.6	6.40	
	6328	173 9	4,5 43.2	25	1	9 1 /	4 353 1	34	3 R 2	< 1	ลก เ	44	2 2 5	79.2	10 1	. B1	đ12 3	R O	R 5	Л9 18	4 632	2 5 59	1 329	3 84	>200	36.3	30 20	3 12 3	16.1	1.5	5	4 10/	4 N 1 1	129	2 1 7	nr a	
	6329		6.8 23.5																																		
	6330		4.5 26.9																																		
			3.8 24.7																																		
	6331 6332		4.4 16.2																																		
	0332	143.0	4.4 10.2	17	.1 1	.0 1.6	2 362 1	. /4	3 20.7	×.1	20.0	93 .	1 1.4	4.4	13	.00	.014 2	2.3 .	10.2	.11 1/1	0 .040	J 5.30	.012			39.9	JO 23.	1 10.8	17.2	1.0		a 190).tj 1.4	302	.4 1.9	b. 68	
	ć-10.0	76.6			- 1			- 17			ac a	· .	, ,			20	011 2	a c		00 00	0.040					20.1	20 20			٠,	_						ļ
	6333		3.5 22.7																																		
	6334		6.4 28.2																																		
	6335		4.2 27.2																																		
	6336		7.5 32.0																																		
	6337	333.1	2.4 29.5	27	<.1 1	0 1.8	3 458 3	1.00	23 17.1	<.1	29.3	43 .	5 .9	8.4	19	.32 .	.017 1	7.7	8.4	.13 149	5 .047	7 5.62	1.044	3.80	>200	31.5	30 38.	8 8.6	17.2	1.5	4 8	8 117	.2 2.9	327	.2 1.7	6.12	ŀ
	6338		2.7 27.7																																		ŀ
	6339		2.6 37.9																																		
	6340	109.6	8.4 28.5	29	<.1 1	.7 2.3	J 508 1	.52	5 15.4	<.1	14.6	90 <.	1 1.0	13.9	14	.58 .	036 3	2.4	9.7	.15 220	6 .085	6.18	1.877	4.21	>200	49.1	56 18.	1 13.1	26.3	2.2	5 5	5 98	1.8 1.0	342	.2 2.2	6 46	
	6341	187.4	3.2 30.4	30	<.1	.7 1.1	1 491 1	.06	1 15.9	< 1	33.1	79 .	2 .8	6.3	14	.60 .	028 2	6.9	8.0	.15 284	.065	6.17	1.715	4.43	>200	38.4	44 25.	0 9.8	19.0	1.6	5 5	5 99	1,4 .7	403	.6 1.8	6.38	
	6342	186.8	2.5 37.5	17	.1	.8 .8	3 368 1	. 24	4 7.6	< 1	29.7	6 9 .	1 2.0	13.3	g	.55 .	015 2	1.1 1	12.6	.10 210	.040	5.60	.338	4.39	>200	41.6	35 25.	6 8.3	15.7	1.2	5 5	5 131	8 9	332	.8 1.8	6.98	
	6343	82.3	1.7 25.1	12	<.1	.6 .3	3 2 9 6	. 81	3 10.3	<.1	33.6	60 <.	1 1.2	.6	8	.52 .	011 1	5.2	5.8	.08 218	.032	6.42	.586	5.03	189.7	37.4	26 15.	8 7.3	15.6	1.5	5 3	3 70	1.2 .5	378	6 1.8	6.28	į
	6344	226.8	1.8 25.5	16	<.1 1	05	364 1	30	15 16.1	<.1	32.3	53 .	1 1.8	4.5	10	.45	011 1	8.8	8.9	.09 194	044	5.83	1.010	4.25	>200	39.4	33 24.	6 8.1	23.0	1.8	4 4	4 81	7 1.0	321.	2 1.8	7.26	i
	6345	125.3	2.5 23.B	9	<.1	.7 .6	5 2 9 0	.74	3 12.0	< 1	35.8	59 <.	1 .7	.5	6	.39 .	011 2	3.4	5.1	.08 219	048	6.08	2.134	4.35	141.2	38.8	41 12.	0.8.9	25.3	2.3	3 4	4 42	2.2 .5	293	1 2.0	6.62	
	6346	156.7	2.1 25.0	12	<.1 1	.2 .7	269 1	. 13	3 11.0	< I	35.2	60 <.	1 .4	.8	9	.40 .	012 2	5.5 1	10.1	.09 202	2 .042	6.42	1.890	4.77	90.5	12.5	43 18.	0 10.2	22 3	2.1	4 4	4 69	8. 0.4	370	9 1.8	6.62	
	6347	67.2	2.2 33.4	13	<.1	.6 .F	3 272	.94	2 16.6	<.1	33.0	54 <	1 1.3	13 3	8	.34 .	013 2	0.0	4.3	.08 209	.040	6.08	1.033	4.62	>200	38.4	36 18.	3 9.0	20.6	1.9	4 4	4 89	7.1 .7	346	6 1.8	6.02	
	6348	149 4	1.9 43.1	10	4.1	.7 1.1	1 235 1	. 34	21 14.1	<.1	31.9	42 <.	1 1.9	60.6	7	.30 .	010 2	0.9	8.0	.07 209	.034	5.92	1.521	4.69	>200	36.0	36 18.	5 B.5	18.8	1.8	3 4	4 61	.1 1.1	364.	5 1.7	6.54	
	6349		3.7 32.0																																		
	6350		4.3 28 4																																		ļ
	6351		1.7 25.0]
	6352		2.9 27.7																																		ļ
	V232	00.0	2.9 41.7	,	~.1	5	, 307	- 00	z 13.9	~.1 .	11.3	JO 5.	1 1.1	47.0	,	. 43 .	ATC 5	1.0	0.11	.10 200	, ,645	0.00	2.130	4.00	1/1.5	er . L	J, 11.	U 8.6	Z1.J	2.1	J 4	. 41	د. ه.	253.	7 1.0	0.34	Ì
	STANGAGO DETE	10.71	22 0 25 2	172	7 25	. 0 12 .	064 4	. 62	26 7 7	- 1	7 1	200 5			111 2	20	00¢ °	40 27	,, ,	12 (0)	4 400	£ 00	1 462	1 26	,,,			4 14 P	0.7	7	2	, 2/			2 1 2		
	STANDARO DST6	12.3 l	cr.u 36.0	1/2	2 30	.0 13.0	, yo4 4	. 07	co 7.6	< .I	1.1	308 5.	3.5	4.B	111 2	٠ دی .	סאנו Z	4.9 23	∌/.5 I	.uz 684	. 4ZI	. 0.99	1.663	1.35	7.7 5	ر کر <u>ح</u>	⊃ <i>ć</i> b	9 14.8	ъ.5	/	J II	. 26	.u < .	56.	2 L./		

Page 6

				-													_																									_			_
	SAMPLE#	Мо	Си	Pb	Zn	Aa	Ni	Со	Mri	Fe	As	и	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ва	Tí	Αl	Na	K	W	Zr	Ce	Sn	Y	Nh	Ţa.	Re	Sc	Li	ς.	Rb	Hf 4	ample		_
						-																		-						ppm									-	-					
		pp	PP		P D	- PP	Pp···	pp-ii			ppin	PP P		pp	pp	pp	P P	PPIII	PP		<u> </u>	Pp	PP	-						- PP					PP	- I	pp i		ррш	•	ppiii	Ppiii			_
	6-1	< 1	1.6	18 9	51	< 1	2.5	4 2	718 2	34	1	3.6 <	< 1	6 4	689	< 1	<)	2	50	2 43	080	19.0	8.3	.57	930	282	7 31	2 584	2 20	.2	8.7	41	1.3	13.2	20.4	1.8	3	5	13 2	< 1	01.8	,			
1	6353																													>200															
1	6354																													>200															
ŀ	6355																													58.6															
	6356																													94.0															
	6336	40.1	4.6	£1.4	- '	1	.1		310	.41	1 1	1.0		JJ	JI	1			,		.010	22.0	4.0	.05	.,-	.001	0.42	2.101	3.50	34, U	30.0	40	, .0	0.7	20.3	4.1	3	4	03. b	. 2	39.4	1.9	0.04		
	6357	120.7	3 7	22 A	12	- 1	1	1.4	205 1	05	4.1	16 <	. 1	2 0 a	63	- 1	1 2	EQ /	a	20	015	16.6	40	12	172	0.45	6 14	1 205	2 97	>200	25 4	an ·	12 2	0 0	2E 1	2.4	E	£	ยก ว	0 1	25.2	1 7	c 0c		
	6358																													>200															
	6359																													>200													-		
	6360																													>200															
	6361																													>200															
ĺ	0301	/1.0	2.1	uo. 3	10	. 1		3.6	201 1		3 1	2.6		12.3	33		3.6	£/4.7	0	.37	.014	17.3	7.3	.12	. 50	.009	3.79	1.37/	3.70	~200	30.9	32 8	.,.2	ь.з	19.5	1.0	4	b	/3.L	1.0 0	J/ .5	1.7	5.80		
	6362	00 2	1 5	22 A	10	- 1	,	6	204	61	2 1	43.		34 4	S.n	1	,	1 6	12	44	015	18 1	0 9	13	212	n#1 #	6 24	1 500	4 46	>200	74 0	71 1	77 8	a n	16.0		4	4	70 £		41 7	1 7	C 62		
	6363						-																							>200								-							
	6364																													>200															
	6365																													163.3															
Į	6366	316.7																																											
Į	0000	310.7			10		•			.,,					••				·		.010						0.02	. 305	55	142.0	54.0	D1 2		,.0	14.5	1.0	J	•	JJ . 1	., .	-1.1	1.0	Ų. ŲO		
ł	6367	110.6	1.2	26.8	45	<.1	.1	4	279	.74	2	9.6 <	: 1 :	33.5	44	. 5	4	.4	7	. 34	.014	12.8	4.B	.12	198	041 9	5.98	1.254	4.53	190.2	30 9	22 2	3 A	5 4	16.5	1.7	3	4	50.3	6 3	71.5	1.6	6 16		
1	6368																													196.5															
	6369	95.9	3.5	21.9	16	< .1	. 6	1.2	331	.81	3 1	4.8 <	.1 :	33.2	57	<.1 .	1.2	.3	5	. 44	.015	18.6	5.4	.13 2	223 .	048 5	5.88	.922	4.10	>200	30.6	32 1	7.7	8.7	18.5	1.7	4	4	7B 7	.6 3	52.2	1.6	6 62		
	6370																													>200															
	6371	51.0	3.2	23.6	64	<.1	.1	1.0	342 1	.16	5 1	1.5 <	:1 :	14.5	81	1.I	1.4	.7	2	.93	.011	18.7	4.7	.09 2	215 .	044 6	6.43	.923	4.41	>200	35.8	33 1	1.8	9.5	18.5	1.7	4	3	77.3	1.2 3	41.6	1.6	5.94		
	6372	115.8	1.4	22.0	16	<.1	1.2	. 4	263	. 68	4 1	3.0 <	.1 :	15.6	62	.1	.9	. 2	5	.41	.013	18.6	12.5	.10 2	200 .	044 €	6.23	1.285	4.35	>200	37.3	31 1	6.1	8.2	20.0	1.8	5	3 6	64.9	.6 3	13.0	2 0	7.22		
	6373	141.1	.8	17.4	11	< 1	<.1	. 2	324	. 56	4	6.9 <	.1 2	27.0	47	<.1	.7	.4	7	.80	.010	9.0	7.0	.09 1	.32	031 4	4.91	.446	3.37	>200	27.3	16 1	0.5	7.3	14.2	1.5	4	3 6	53.2	.5 2	67.8	1.5	6.78		
ĺ	6374	147.0	2.3	20.7	17	< 1	.3	.7	335	. 62	4	7.9 <	.1 3	15.5	63	<.1	1.3	. 2	10	.50	.013	17.9	5.5	.12	77	043 5	5.87	.134	3.87	149.4	29.8	31 1	2.9	6.9	17.9	1.7	4	4 13	20.7	.5 3	09.8	1.6	6.68		
	6375	141.1	1.8	24.4	20	<.1	. 5	.6	331	.99	7 1	4.0 <	.1 3	14.1	70	.1	1.4	.4	4	.55	.015	15.2	6.6	.13 1	69 .	037 5	5.88	. 191	4.02	>200	35.5	28 1	4.9	7.0	20.9	1.7	6	4 10	5.2	1.0 3	39 4	1.6	6.14		
	6376	173.3	1.5	28.2	35	< 1	. 6	1.1	309 1	. 47	32 1	1.7 <	.1 3	3.3	62	.3	1.1	.8	<1	.40	.012	12.1	8.5	.12 2	40 .	033 €	6.33	1.419	5.31	>200	33.7	22 1	3.9	7.2	17.5	1.5	4	4 :	39.9	1.5 3	16.3	1.7	6.50		
	6377	64.3	2.4	24.5	13	<.1	.3	1.5	255	.87	44 1	3.1 <	.1 3	34.1	60	.1	Lo	.5	<1	.40	.009	19.6	5.8	.08 3	. 08	031 5	5.77	1.683	4.05	>200	37.7	35	6.4	9.1	20.1	2 2	3	3 2	2.5	.8 3	19.8	1.8	6.20		
	6378	52.3	3.8	24.3	10	<.1	. 3	1.5	345	.73	11 b	4.9 <	.1 3	37.2	90	<.1	1.6	.3	<1	.53	.014	25.0	4.6	.12 2	35 .	053 6	5.37	.463	4.08	120.8	43.0	43	6.0	9.7	29.7	3.1	5	4 8	36.6	.6 2	84.0	2.2	6.34		
	6379	192.3	5.6	33.8	54	<.1	. S	4.0	264 1	. 63	20 1	4.6 <	.1 3	8.B	104	.4 2	2.9	8.6	2	.45	.013	18.5	4.9	.11 1	.58	034 5	5.57	.198	3.76	>200	33.5	32 1	0.D	7.9	24.5	1.8	5	3 8	2.4	1.8 2	78.7	1.7	6.54		
	6380	88.1	1.9	38.7	39	.1	.5	5.3	320 1	.36	10 1	5.4 <	.1 3	32.3	87	.3	2.5	16.6	4	.56	.014	17.7	7.5	.11 3	.69	034 5	5.17	.218	3.55	195.2	31.8	31	9.2	6.9	18.7	1.6	5	3 7	1.4	1.5 2	77.4	1.5	6.64		
	6381	127.0	1.6	25.7	18	<.1	3	3.6	392	.68	16 1	3.3 <	.1 3	10.7	89	.1	1.6	5.2	7	.68	.014	14.2	7.6	.11 1	.B3 .	037 5	5.48	. 220	3.46	>200	37.1	27	9.8	7.3	22.7	1.8	4	3 4	9.9	.6 2	54 4	1.8	5.90		
	RE 6381	126.2	2.1	27.7	17	< .1	.4	3.5	405	.73	14 1	5.6 <	.1 3	4.6	97	< .1	1.9	5.3	5	.69	.016	15.2	4.6	.11 2	. 80	040 5	5.61	. 235	3.69	>200	39.3	28 1	0.8	8.3	25.2	2.2	5	3 5	6.1	.7 2	78.B	8.1			
	RRE 6381	141.1	2.0	27.7	21	< .1	S	4.0	399	.77	15 1	5.3 <	.1 3	5.6	94	<.1	L.6	6.8	4	.74	.016	17.0	4.8	.11 1	95 .	041 5	5.88	.243	3.30	>200	41.2	31 1	8.0	8.0	23.8	2.0	5	3 5	6.5	.7 2	40.6	1.8	-		
	6382	127.0	2.5	24.9	25	<.1	. 3	5.2	348	.70	12 1	7.7 <	.1 3	4.6	90	.1	1.3	.6	1	.52	.014	24.2	5.5	.11 2	04	036 5	5.82	.811	4.09	>200	35.3	44 1	2.3	8.3	22.3	1.9	3	3 3	5.3	.6 2	69.8	1.7	6.12		
	6383	153.2	2.6	26.3	33	. 1	. 1	9.6	192 1	13	17 13	2.2 <	.1 3	19.3	67	.3	1.3	4 3	1	.70	.016	10.5	7.5	.08 2	.00	031 6	5.66	1.868	3.84	>200	41.6	19	9.1	9.5	20.0	1.6	5	2 1	9.9	1.2 2	63.2	2.0	6.46		
	6384	239.9	2.0	25.9	21	< .1	.6	3.5	266	.60	12 1	6.6 <	.1 3	4.2	65	<.1	1.5	19.4	7	. 50	.012	16.1	4.8	.09 1	69 .	032 5	5.69	1.447	3.97	>200	33.4	29	6.2	7.8	20.1	2.2	4	3 1	5.5	.6 2	77.5	1.8	6.20		
	STANDARD DSF6	12.5.1	28.8	35.2	175	. 3	30.0	13.1	967 4	.08	25	7.6 <	.1	7.0	308	5.5	3.3	4.7	114	2.29	.098	24.3	229.6	1.00 6	76 .	421 7	7.01	1.665	1.37	7.8	52.1	51	6.2	14.6	8.3	.7	3	12 2	5.8	<.1	56.3	1.6	-		

Page 7

Second Property	<u> </u>													_	:-			_								_	_																		ic rosscrittone	
Col. 2 + 6 7 6 6 7 7 7 7 7 7		SAMPLE#	Мо	Cu	Pb	Zn	Aq	Ni	Co	Mn	Fe	As	U	Au	Th	Şr	Cd	Şb	Bí	γ	Ça	ρ	La	Çr	Mg	Ва	T1	Al	Na	K	H	Zr	Ce	Sn	Υ	Nb	Ta	Be	Sc	Li	s	Rt	Hf	Sample		
G1 2 6 0 2 4 6 2 4 6 2 5 1 5 1 2 4 5 1 5 4 5 1 5 4 5 1 5 4 5 1 1 1 1 1 1							-																																							
1865 1875 4 2 30 6 186 7 2 4 7 5 2 32 3 3 1 3 1 2 7 6 4 10 7 5 7 6 10 7 2 6 4 10 7 5 7 6 10 7 2 6 4 10 7 5 7 6 10 7 2 6 1 1 1 2 7 5 7 6 10 7 2 6 1 1 2 7 6 1 2																					_																									
1865 1875 4 2 30 6 186 7 2 4 7 5 2 32 3 3 1 3 1 2 7 6 4 10 7 5 7 6 10 7 2 6 4 10 7 5 7 6 10 7 2 6 4 10 7 5 7 6 10 7 2 6 1 1 1 2 7 5 7 6 10 7 2 6 1 1 2 7 6 1 2		6-1	2	9.02	1 4	63 <	< 1 .	12	4 9	754.2	2 42	2	4.2	< ì	7 9	754	< 1	1	1	53	2 64	084	25 4	7.4	53	1012	279	7 90	2 808	2 84	4	8.8	49	1.9	14 3	20.2	1.7	3	5	37 1	< 1	IIR C	. 7	_		
586 72. 8 18 28 18 18 28 28 17 7 8 18 7 8 18 7 18 18																																														
1007 1017 25 4.1 5 4.2 1.1 7 1.2 26 4.5 6.1 25 1.4 2.1 1.7 1.2 26 5.5 7.5 26 4.5 1.5 5.5 1.7 1.2 4.5 1.5 5.5 7.5 26 1.5 1.5 1.5 1.5 5.5 7.5 26 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5																																														
185 15.0 2.5 13.7 2.5 13.7 12.2 1.5 1.5 2.5 2.7 7.6 12.6 1.5 2.5 2.5 1.6 3.0 7.7 7.6 12.6 1.5 3.0 7.7 7.6 12.6 1.5 3.0 7.7 7.6 12.6 1.5 3.0 7.7 7.6 12.6 1.5 3.0 7.7 7.6 12.6 1.5 3.0 7.7 7.6 12.6 1.5 3.0 7.7 7.6 12.6 1.5 3.0 7.7 1.5 1.5 3.0 7.7 1.5 1.5 3.0 7.7 1.5 1.5 3.0 7.7 1.5 1.5 3.0 7.7 1.5 1.5 3.0 7.7 1.5 1.5 3.0 7.7 1.5 1.5 3.0 7.7 1.5 1.5 3.0 7.7 1.5 1.5 3.0 7.7 1.5 1.5 3.0 7.5 1.5 1.5 3.0 7.5 1.5 1.5 3.0 7.5 1.5 1.5 3.0 7.5 1.5 1.5 3.0 7.5 1.5 1.5 3.0 7.5 1.5 3.0 7.5 1.5 1.5 1.5 3.0 7.5 1.5 1.5 1.5 3.0 7.5 1.5 1.5 1.5 3.0 7.5 1.5 1.5 1.5 3.0 7.5 1.5 1.5 1.5 1.5 3.0 7.5 1.5																																														
## 1258 1377 4 6 21 6 32 41 7 12 326 75 83 11.7 41 33 6 91 41 13 13 71 703 142 53 13 7 306 67 68 130 430 106 64 7 30 105 52 12 13 67 68 7 13 13 7 7 7 7 7 7 7 7 7																																														
986 (988) 889 9 48 205 3 41 6 12 280 77 77 19 5 (3) 18 91 3 15 5 12 68 200 18 5 2 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 7		odba	100.2	4.3 1	· · ·	J		. 0	1.0	300		70	22.0	٠.٠	45.0			1.0		٠		- 020	17.1	4.0		207	.071	0.40	1.050	3.43	JL.4	-0.5	20	17.0	0.0	23.3	1.0	,	4	40.0	. •	390.3	1.9	0.74		
986 (988) 889 9 48 205 3 41 6 12 280 77 77 19 5 (3) 18 91 3 15 5 12 68 200 18 5 2 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 5 18 7 18 7		DE 6300	127 7	402	11 4	22 .	- 1	7	1 2	254	76	91	11.7	- 1	22 B	0.4	- 1	1.4	1.1	12	71	026	14.2	2.2	17	20.4	072	E 16	1 700	1 02	104 6	44.7	26	10 E	0.0	26 1	1.0			42.0		202.6				
599 151. 5 9 4.5 16 5 6 1.0 31.7 2 0 14.2 4.1 22.2 94 4.3 10 36 1 1 0 10 10 10 10 10 10 10 10 10 10 10																																														
599 (37) 7 3 7 3 197 2 41 5 1 4 347 72 31 19.7 4 1 72 3 19 4 11.0 11 5 15 43 10.5 12 5 40 11.0 11 12 19.8 4 12 3 19.7 4 12 19.7 4 12 19.7 4 12 19.7 4 12 19.7 4 12 19.7 4 12 19.7 4 12 19.7 4																																														
1371 1372 14 9 8 22 9 9 2 7 7 2 6 49711 178 16 8 1 28 6 8 6 1.8 6 8 6 44 05 25 9 48 14 27 6 04 622 1398 40 200 38 4 22 8 9 3 27 8 7 6 9 5 90 3 8 3 11 18 6 82 8 8 8 1 8 1 8 1 8 5 1 8 13 8 9 3 2 2 2 1 9 4 82 11 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	ł																																													
133 15 4 15 3 26 1 1 5 5 5 44 1 20 43 139 4 1 30 9 50 2 2 2 15 4 82 01 24 2 45 14 152 50 60 80 1 64 1 164 42 120 3 37.2 51 7.1 8.7 251 2.6 5 3 45,1 7 2727 19 6.88 483 1 187 79 6 62 4 10 2 4 12 88 8.7 1 2 415 5 12 5 13 9 10 48 003 90 3 7.5 16 006 80 1 64 1 164 42 120 3 37.2 51 7.1 8.7 251 2.6 5 3 45,1 7 2727 19 6.88 485 1 187 79 6 62 4 10 2 4 12 88 8.7 1 2 415 5 1 12 5 13 5 9 10 48 003 273 4.2 1 10 4.2 1 10 4.2 1 10 12 5 1 10 4 10 12 1 10 12 1 10 1 10 1 10 1 1																																														- 1
6933 1987 37 52 43 3 66 2 1.2 5.1 40 1.22 19 16.1 1.1 1.4 1.6 1.2 4 3.8 18 4 90 13 90.3 7.5 18 96 961 1.8 1.1 1.86 1.87 2.7 1.8 7 28.1 2.6 5 3 4.51 7 2.7 1.9 6.88 62 16 17 1.8 7 28.1 2.6 5 3 4.51 7 2.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8		6391	124.4	9.8 2	2.9	55	. 2	.7	2.5	407 1	11	178	16.8	<.1	29.0	88	.6	1.8	6.8	6	. 45	.015	26.9	4.8	.14	276	.061	6.23	1.788	4.90	>200	39.8	48	22.B	9.3	27.8	2.6	5	5	69.3	.8	301 1	1.8	6.82		i
6933 1987 37 52 43 3 66 2 1.2 5.1 40 1.22 19 16.1 1.1 1.4 1.6 1.2 4 3.8 18 4 90 13 90.3 7.5 18 96 961 1.8 1.1 1.86 1.87 2.7 1.8 7 28.1 2.6 5 3 4.51 7 2.7 1.9 6.88 62 16 17 1.8 7 28.1 2.6 5 3 4.51 7 2.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8						24									70. 4	٠.	_						24.5			,								••				-				4				
639 16.796 63 4 10.2842 88 8 251 <1 37.6 112 6 1.3 59 10 .48 620 124 3 6 1.8 59 10 .48 620 124 3 6 1.8 545 697 6.27 188 15.17 287, 24 20 6 2 2 1.8 13 6 2 1.8 545 697 6.27 188 15.17 287, 25 2 2 3 5 4 52.0 3 13 0.3 2 2 3 1 3 8 2 9 388 87 13 418 <1 27.4 111 <1 13 46 15 13 46 15 13 46 15 13 2 38 4 13 418 <1 27.4 111 <1 13 46 15 13 46 15 13 2 38 4 13 418 <1 27.4 111 <1 13 48 18 18 13 3 9 1.7 9 18 13 14 18 11 3 1 3 18 18 18 18 18 18 18 18 18 18 18 18 18																																														ľ
635 28.3 19.8 30 2 33 3 8 2.9 38 8.7 13 41.5 <1.27 4 111 <1.13 4.6 15 4.6 202 27.3 6.2 15 45 0.0 62 1.55 1.57 28.7 28.7 39.6 48 5.6 2 10.4 31.0 3.2 5 4 47.1 5.2 200.7 2.2 5.12 6.9 6.9 1.0 3.2 5 6 1.																																														
2167 10 3 2 9 8 61 2 6 1 5 6 6 6 81 2 1 3 5 9 < 1 3 3 6 8 3 9 1 7 9 . 55 . 621 3 5 4 3 4 . 19 3 26 . 607 6 . 60 2 . 025 4 . 99 120 9 4 2 6 5 15 3 10 2 2 5 8 2 3 3 6 2 2 1 5 . 78 2101 9 10 7 3 5 7 88 3 7 1 3 3 4 8 . 69 29 13 5 5 < 1 35 7 80 . 8 1.1 3 9 9 . 55 . 10 6 4 2 4 5 4 1 4 29 7 . 60 6 . 69 1 . 60 6 . 82 6 7 9 4 5 5 6 18 9 10 6 28 9 2 9 6 4 11 3 3 4 3 15 5 2 1 5 . 66 2209 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ì																																													
6397 101 9 10 7 35 7 88 3 7 13 348 .69 28 135 5 <1 35 7 89 .8 1.1 3 9 9 .56 .316 42 4 5 .4 14 297 .069 6.39 1.066 5.82 67 9 48.5 56 18.9 10.8 28.9 2.9 6 4 113 3 .4 315 5 .2 1 5.66 6398 88 12 0 56.9 92 9 .6 1.5 287 .68 25 114 4 <1 28.4 115 9 3.1 33 6 8 .2 1 .016 27 1 2.3 12 299 .085 5.53 .053 4.08 ×200 46 1 44 16.3 99 22.8 2.5 8 3 177 4 220 1 1.9 5.82 6399 92 9 .6 1.5 287 .68 12 2.9 1 1.03 59 23.4 <1 1 32.0 155 .3 3.6 25 5 11 .59 .012 26 1 7.2 15 236 .075 5.98 .138 4.65 75.6 45 5 43 15.0 10.3 38.7 3.3 8 4 118 5 7 269.3 2.4 5.2 14 50 95 20 1 1.0 1 1.0 15 .2 1 1.0 12 1.0 1																																														
6398 98, 82, 0 56, 99, 92, 9, 6, 1,5, 247, 68, 25, 114, 4 < 1, 28, 4, 115, 9, 31, 33, 6, 8, 22, 10, 127, 123, 12, 289, 1055, 53, 063, 4, 68, 240, 46, 1, 44, 16, 3, 9, 9, 28, 8, 25, 8, 8, 117, 4, 220, 1, 19, 5, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18		6396	216.7	10.3 2	9.8	61	.2	. 6	1.5	676	.81	21	35.9	<.1	33.5	85	. 3	. 9	1.7	9	. 55	.021	35.4	3.4	.19	326	. 087	6.03	2.025	4.99	130.9	43.6	59	15.3	10.2	25 . 0	2.3	5	4	53.0	.3	305.Z	2.1	5.78		į
6398 98, 82, 0 56, 99, 92, 9, 6, 1,5, 247, 68, 25, 114, 4 < 1, 28, 4, 115, 9, 31, 33, 6, 8, 22, 10, 127, 123, 12, 289, 1055, 53, 063, 4, 68, 240, 46, 1, 44, 16, 3, 9, 9, 28, 8, 25, 8, 8, 117, 4, 220, 1, 19, 5, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18																																														Ì
6899 79 4 18 3 5 9 1 40 8 7 3 3 39 1 1 0 9 24 4 < 1 32 0 155 3 3 16 25 5 11 .99 .017 26 1 .72 15 206 .075 .588 .136 4 .65 .75 6 45 .5 43 15 0 10 .3 8 7 3 3 8 4 118 .5 7 269 3 2 4 5.62 600 96 2 8 1 25 9 37 .2 .5 2 1 74 .99 .66 481 .1 30 127 3 1 9 6 .8 1 .93 .014 25 1 .49 .10 25 .5 4 .05 .5 80 .05 .5 79 .1179 4 .68 .200 45 .7 44 15 .5 10 .1 31 6 .8 5 4 .25 .2 1 .8 3 .3 31 21 47 103 25 .5 1 25 .1 2 9 .1 15 .8 0 .8 1 .39 .014 25 1 .49 .11 25 .00 5 .6 6 .00 .1 2 .26 .05 .5 79 .1 1 .79 4 .68 .200 45 .7 44 15 .5 10 .1 31 6 .8 5 25 2 .2 .3 3 .2 20 .8 1 .5 .7 3 .69 .2 1 .5 .7 3 .69 .2 1 .5 .8 3 .5 .4 .40 .1 3 .200 .1 18 .5 .8 20 .2 1 .8 3 .3 31 21 47 103 25 .5 1 .2 29 .1 15 .8 0 .8 1 .39 .014 25 .1 4 .9 .11 25 .00 .66 .64 .41 .1.25 .5 .44 15 .5 10 .1 31 6 .8 5 .5 2 .4 46 .1 3 .200 .1 3 .200 .1 18 .5 .8 20 .2 1 .8 3 .3 31 21 47 103 25 .5 1 .2 29 .1 10 .5 10 .1 1 .7 .7 .0 8 .65 .017 18 .8 7 .6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0		6397	101.9	10.7 3	5.7	88	.3	,7 .	1.3	348	.69	29 1	.35 . 5	<.1	35.7	80	.8	i.1	3.9	9	.56	.016	42.4	5.4	. 14	297	. 069	6.39	1.066	5.82	67.9	48.5	68	18.9	10.6	28.9	2.9	6	4]	113.3	.4	315.5	2.I	5.66		- !
6400 96 2 8.1 25.9 37 .2 .5 2.1 374 99 66 48.1 <1 31.0 127 3 1.9 6.8 8 .75 .015 26.0 8.0 .12 256 .055 5.79 1.179 4.68 ×200 45.7 44 15.5 10.1 31.6 2.8 5 4 50.5 .7 316.9 2.1 4.90 6401 343 2 6.4 22.0 22 1 .8 3.3 312 1.47 103 26.5 <1 26.7 92 <1 1.5 8.0 8 .39 .014 25.1 4.9 .11 258 .056 6.03 1.926 4.56 149.3 35.5 42 13.1 8.5 25.2 2.3 5 4 .467 1.3 270.8 1.8 5.78 140 25.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		6398	80.8	12.0 5	6.9	92 -	.9	. 6	1.5	247	. 68	25 1	.14 . 4	<.1	28.4	115	. 9	3.1	33.6	8	.21	.016	27.1	2.3	.12	269	. 065	5.53	.093	4.08	>200	46.1	44	16.3	9.9	28.8	2.5	8	3 1	171.7	. 4	220.1	1.9	5.82		l
6401 343.2 6, 4 22.0 22 1 .8 3.3 312 1.47 103 26.5 <1 26.7 92 <1 1.5 8.0 8 .39 .014 25.1 4.9 .11 258 .956 6.03 1.926 4.56 149.3 35.5 42 13.1 8.5 25.2 2.3 5 4 .46.7 1.3 270.8 1.8 5.78 6402 52.0 3.7 25.2 17 .1 6 9 314 .70 41 58.7 <1 25.9 105 1.1 1.4 7.0 8 .65 .017 18.8 7.6 .14 269 .066 6.44 1.725 5.44 161.8 44.7 33 15.0 10.1 32.4 3.2 6 5 50.9 4. 343.3 2.3 6.64 6403 136.7 5.9 18.2 39 .1 9 3.0 291.1 52 184 83.3 <1 27.9 64 .4 1.5 1.9 7 .33 .010 21.2 7.3 0.7 228 .040 5.61 1.659 4.16 158.7 34.2 35 11.7 7.4 15.3 2.0 4 3 26.7 1.3 274.7 1.6 5.76 6404 217.3 9 4.26 3 283 .2 8 3.7 308 1.49 64 4.2 <1 29.4 72 5.1 2.6 4.7 6 .38 .013 24.0 7.2 .09 236 .049 6.10 1.899 4.70 -200 34.6 41 10.9 10.0 24.4 3.2 3 43.2 24.8 1.2 294.7 1.8 6.48 6405 123.9 10.3 21.4 30 1 .8 3.3 309 1.16 10.75 <1 33.4 82 .3 2.0 21 7 .44 .012 25.5 9.7 .10 231 .064 6.22 1371 4.43 220 34.6 43 9.1 92 25.6 2.5 4 3 45.7 8.294.3 1.8 6.64 6407 68 6 5.6 21.6 24 <1 6 2.1 372 .99 245 16.8 <1 25.3 101 1.1 1.8 1.8 9 .77 .013 22.4 7.5 1.2 212 .056 5.96 .240 4.80 180.7 36.7 36 13.6 9.7 29.7 2.6 6 4 77.3 .7 297.3 1.9 6.84 6408 26.0 4.3 27.8 21 <1 6 1.1 305 .79 20 17.3 <1 17.2 129 1.1 4.5 5.1 2 4.5 .01 19 9.3 64 1.2 23.5 9.7 10 20 .054 6.29 1371 4.05 20.9 35.8 34 15.1 10.6 34.4 3.4 8 5 138.9 5.2 25.2 2.7 0.6 6409 9.4 8 2 10.5 4 1 <1 8 1.0 291 5.3 8 46.9 <1 18.1 132 5.5 1.8 9 9 5.1 1.4 5.8 12 45.0 17 19.8 5 6 1.2 204 .051 6.24 4.55 4.42 200 35.8 34 15.1 10.6 34.4 3.4 8 5 138.9 5.2 25.2 2.2 7.04 6416 89.6 4.0 26.5 16 .1 4 1.8 348 .85 13 10.3 <1 23.4 133 <1 1.5 5.8 6 1.9 10.17 2.0 24 .13 17.0 04 5.81 4.0 4.74 200 35.1 44 12.1 8.6 25.9 2.2 6 4 72.0 6 310.8 1.6 6.45 6417 174 0.7 6 21.0 19 <1 5 3.5 406 1.11 22 8.7 <1 33.7 94 <1 1.1 4.6 7 .0 10.5 25.5 7.0 1.3 178 0.00 4.5 1.1 2.0 20 .051 5.7 1.0 1.3 178 0.00 4.0 1.2 25.0 2.0 34.3 31 1.0 10.8 1.3 1.5 7 4 77.0 4 30.6.9 2.1 6.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		6399	79.4	18.3 5	0.1	40	.8	.7	3.3	391 I	03	59	28.4	<.1	32.0	155	.3	3.6	25.5	11	.59	.017	26.I	1.2	.15	236	075	5.98	.136	4.65	75.6	45.5	43	15.0	10.3	38.7	3.3	8	4]	118.5	.7	269.3	2.4	5.62		ľ
52.0 3.7 25 2 17 .1 6 9. 314 .70 41 58.7 <1 29.9 105 .1 1.4 7.0 8 .65 .017 18.8 7.6 .14 269 .066 6.44 1.725 5.44 161.8 44.7 33 15.0 10.1 32.4 3.2 6 5 50.9 .4 343.3 2.3 6.64 18.60 136.7 55 18.2 39 .1 9 3.0 291 1.52 184 83.3 <1 27.9 64 .4 1.5 1.9 7 .33 .010 212 7.3 07 228 .049 5.61 1.659 4.16 158.7 34.2 25 11.7 7.4 19.3 2.0 4 3 26.7 1.3 27.4 71.6 5.76 6404 217.3 9.4 26.3 283 .2 8 3.7 308 1.49 64 40.2 <1 29.4 72 5.1 2.6 4.7 6 .38 .013 24.0 7.2 .09 235 .049 6.10 1.899 4.70 >200 34.6 41 10.9 10.0 24.4 2.3 4 3 24.8 1.2 294.7 18. 6.48 6405 122.9 18.0 32.1 9 2 .6 4.3 378 1.44 70 7.6 <1 29.7 79 <1 2.8 8.1 5 42 011 23.3 4.4 10 255 .97 10 251 .056 6.25 1371 4.83 >200 36.6 43 9.1 9.2 25.6 2.5 4 3 45.7 8. 294.3 1.8 6.64 6406 222.9 8.0 29.1 9 2 .6 4.3 378 1.44 70 7.6 <1 29.7 79 <1 2.8 8.1 5 42 011 23.3 4.4 10 255 .040 5.62 .154 4.86 107.2 34.5 18.1 2.7 7.5 18.9 1.8 4 3 66.2 1.0 295.2 1.6 6.54 6406 6409 9.4 8.2 30.5 41 <1.1 8.1 0.2 91 .53 84 16.9 <1 18.1 132 .5 1.8 2.9 9 .51 .019 19.3 6.4 12 253 .054 6.29 .728 5.17 53.5 38.9 33 10.2 11.5 34 3.3 3.4 6 5 105.4 2.7 7.0 4 336.9 2.1 6.60 6410 174.0 7.6 2.1 0.9 9 .25 1.6 1.4 1.8 3.8 95 1.3 10.3 <1.5 5.8 6 .79 .017 22.0 2.4 1.3 12.7 0.9 25 .1 1.8 6.0 34 1.3 4 8 5 13.0 3.1 1.5 5.8 6 .79 .017 22.0 2.4 1.3 12.7 0.9 25 .1 1.5 1.5 24 .1 1.5 1.5 2		6400	96.2	8.1 2	5.9	37	.2	.5	2.1	374	99	66	48.1	<.1	31.0	127	.3	1.9	6.8	8	.75	.015	26.0	8.0	.12	256	.056	5.79	1.179	4.68	>200	45.7	44	15.5	10.1	31.6	2.8	5	4	53.5	.7	316.9	2.1	4.90		
6403 136,7 5,918,2 39 ,1 9, 3,0 291 1,52 184 83,3 <1,279 64 ,4 1,5 1,9 7 ,33 010 21,2 7,3 0,7 228 040 5,61 1,669 4,16 158,7 34,2 35 11,7 7,4 19,3 2,0 4 3 26,7 1,3 274,7 1,6 5,76 6004 217,3 9,4 26,3 228 3,2 8,3 7,308 1,49 64 40,2 <1,294 72 51 2,6 4,7 6 38 0,13 24,0 7,2 0,9 236 049 6,10 1,899 4,70 >200 34,6 41 10,9 10,0 24,4 2,3 4 3 24,8 1,2 294,7 1,8 6,48 6405 123,9 10,3 21,4 30 1,8 3,3 309 1,16 101 275,5 134,8 2,0 2,0 1,1 8,6 6,48 6406 223,9 8 0,23,1 9 2 6,6 4,3 378 1,44 70 7,6 <1 29,7 79 <1 2,8 8,1 5 42 011 23,3 4.4 10 205 040 5,62 1,54 4,86 107,2 34,5 38 13,2 7,5 18,9 1,8 4 3 66,2 1,0 295,2 1,6 6,54 6,54 6,64 6,64 6,64 6,64 6,64 6,	ì	6401	343.2	6.4 2	2.0	22	1	.8	3.3	312 1	47	103	26.5	<.1	26.7	92	<.1	1.5	8.0	В	.39	.014	25.1	4.9	.11	258	.056	6.03	1.926	4.56	149.3	35.5	42	13.1	8.5	25.2	2.3	5	4	46.7	1.3	270.8	1.8	5.78		
6403 136,7 5,918,2 39 ,1 9, 3,0 291 1,52 184 83,3 <1,279 64 ,4 1,5 1,9 7 ,33 010 21,2 7,3 0,7 228 040 5,61 1,669 4,16 158,7 34,2 35 11,7 7,4 19,3 2,0 4 3 26,7 1,3 274,7 1,6 5,76 6004 217,3 9,4 26,3 228 3,2 8,3 7,308 1,49 64 40,2 <1,294 72 51 2,6 4,7 6 38 0,13 24,0 7,2 0,9 236 049 6,10 1,899 4,70 >200 34,6 41 10,9 10,0 24,4 2,3 4 3 24,8 1,2 294,7 1,8 6,48 6405 123,9 10,3 21,4 30 1,8 3,3 309 1,16 101 275,5 134,8 2,0 2,0 1,1 8,6 6,48 6406 223,9 8 0,23,1 9 2 6,6 4,3 378 1,44 70 7,6 <1 29,7 79 <1 2,8 8,1 5 42 011 23,3 4.4 10 205 040 5,62 1,54 4,86 107,2 34,5 38 13,2 7,5 18,9 1,8 4 3 66,2 1,0 295,2 1,6 6,54 6,54 6,64 6,64 6,64 6,64 6,64 6,																																														
6494 217.3 9.4 26.3 283 . 2 8 3.7 308 1.49 64 40.2 < 1 29.4 72 5.1 2.6 4.7 6 .38 .013 24.0 7.2 .09 236 .649 6.10 1.899 4.70 > 200 34.6 41 10.9 10.0 24.4 2.3 4 3 24.8 1,2 294.7 1.8 6.48 6405 123.9 10.3 21.4 30 1 .8 3.3 309 1.16 101 27.5 < 1 33.4 82 .3 2.0 2.1 7 .44 .012 25.5 9.7 .10 231 .054 6.23 1371 4.83 > 200 36.6 43 9.1 9.2 25.6 2.5 4 3 45.7 .8 294.3 1.8 6.64 6406 223.9 8.0 29.1 9 2 .6 4.3 378 1.44 70 7.6 < 1 29.7 79 < 1 2.8 8.1 5 .42 .011 23.3 4.4 .10 205 .040 5.62 .154 4.86 107.2 34.5 38 13.2 7.5 18.9 1.8 4 3 66.2 1.0 295.2 1.6 6.54 6.49 6406 26.0 4.3 27.8 21 < 1 .6 1.1 305 .79 20 17.3 < 1 17.2 129 .1 1.4 5.8 12 .45 .017 19.8 5.6 1.2 204 .051 6.24 .465 4.42 > 200 35.8 34 15.1 10.5 34.4 3.4 8 5 136.9 .5 265.2 2.2 7.04 6409 9.4 8.2 30.5 64 1.2 4.8 10.3 21.8 1.3 21	ļ	6402	52.0	3.7.2	5.2	17	.1	.6	.9	314	.70	41	58.7	<.1	29.9	105	.1	1.4	7.0	8	. 65	.017	18.8	7.6	. 14	268	.066	6.44	1.725	5.44	161.8	44.7	33	15.0	10.1	32.4	3.2	6	5	50.9	.4	343.3	2.3	6.64		
6405 123.9 10.3 21.4 30 1 1 .8 3.3 309 1.16 101 27.5 < 1 33.4 82 .3 2.0 2.1 7 .44 .012 25.5 9.7 .10 231 .054 6.23 1 371 4.83 >200 36.6 43 9.1 9.2 25.6 2.5 4 3 45.7 .8 294.3 1.8 6.64 6406 223.9 8.0 29.1 9 2 .6 4.3 378 1.44 70 7.6 < 1 29.7 79 < 1 2.8 8.1 5 .42 .011 23.3 4.4 .10 205 .040 5.62 .154 4.86 107.2 34.5 38 13.2 7.5 18.9 1.8 4 3 66.2 1.0 295.2 1.6 6.54 6406 26.0 4.3 27.8 21 < 1 .6 1.1 305 .79 20 17.3 < 1 17.2 129 .1 1.4 5.8 12 .45 .017 19.8 5.6 .12 204 .051 6.24 .465 4.42 >200 35.8 34 15.1 10.6 34.4 3.4 8 5 136.9 .5 265.2 2.2 7.04 6409 9.4 8.2 30.5 41 < 1 .8 1.0 291 .53 84 16.9 < 1 18.1 132 .5 1.8 2.9 9 .51 .019 19.3 6.4 .12 253 .054 6.29 .728 51.7 53.5 38.9 33 10.2 11.5 34.3 3.4 6 5 105.4 .2 272.6 2.2 3.84 6410 80.6 4.0 26.5 16 .1 4 1.8 38 .85 13 10.3 < 1 23.4 133 < 1 1.5 5.8 6 .79 .017 22.0 2.4 13 217 .049 6.26 160 5.46 181.2 36.9 37. 11.0 10.8 34.1 3.5 7 4 77.0 4 336.9 21 6.60 6411 174.0 7.6 21.0 19 < 1 .5 3.5 406 1.11 22 87 < 1 .3 3.2 160 < 1 2.1 4.6 9 .35 .019 32.9 4.9 .14 177 .072 5.73 .088 3.97 >200 35.7 54 10.5 9.1 30.0 2.6 7 3 126.6 1.2 254.5 1.9 5.62 6.44 18.9 9.7 10.5 26.5 7.0 13 10.3 2.9 4.9 .14 177 .072 5.73 .088 3.97 >200 36.7 54 10.5 9.1 30.0 2.6 7 3 126.6 1.2 254.5 1.9 5.62 2.2 3.84 6413 99.7 12.6 17.5 22 < 1 .9 4.2 250 1.50 46 8.3 < 1 30.3 104 < 1 2.6 4.1 9 .40 .013 20.8 6.9 13 151 .049 5.78 .086 4.02 >200 34.3 35 14.4 8.6 25.9 2.2 6 4 72.0 6 310.8 1.6 6.44 89.9 10.0 30.6 256 .1 7 4.8 512 1.76 116 8.5 < 1 30.0 79 4.4 2.2 13.1 6 .57 .014 28.0 4.1 12 21 .055 5.9 .20 41.3 41 24.0 9.2 28.5 2.7 6 5 142.7 4 315.0 2.0 6.30 6416 9.0 2.5 32.2 12 1 5 5 5 28.1 78 59 9.6 < 1 19.3 133 .2 12.1 19.7 8 .45 .020 20.2 3.1 13 285 .051 6.51 .159 5.38 94.2 42.4 36 13.8 9.4 33.3 3.5 7 6 212.9 6 324.5 2.2 3.92	į	6403	136.7	5.9 1	8.2	39	. 1	.9	3.0	291 L	. 52	184	83.3	<.1	27.9	64	.4	1.5	1.9	7	.33	.010	21.2	7.3	.07	228	.040	5.61	1.669	4.16	158.7	34.2	35	11.7	7.4	19.3	2.0	4	3	26.7	1.3	274.7	1.6	5.76		
6406 223 9 8.0 29.1 9 2 .6 4.3 378 1.44 70 7.6 <1 29.7 79 <1 2.8 8.1 5 .42 .011 23.3 4.4 1.0 205 .040 5.62 .154 4.86 107.2 34.5 38 13.2 7.5 18.9 1.8 4 3 66.2 1.0 295.2 1.6 6.54 6407 68 6 5.6 21.6 24 <1 .6 2.1 372 .99 245 16.8 <1 26.3 101 .1 1.8 1.8 9 .77 .013 22.4 7.5 .12 212 .056 5.96 .240 4.80 180.7 36.7 36 13.6 9.7 29.7 2.6 6 4 77.3 .7 297.3 1.9 6.84 6408 26.0 4.3 27.8 21 <1 .6 1.1 305 .79 20 17.3 <1 17.2 129 .1 1.4 5.8 12 45 .017 19.8 5.6 .12 204 .051 6.24 465 4.42 >200 35.8 34 15.1 10.6 34.4 3.4 8 5 136.9 .5 265.2 2.2 7.84 6409 9.4 8.2 30.5 41 <1 .8 1.0 291 .53 84 16.9 <1 18.1 132 .5 1.8 2.9 9 .51 .019 19.3 6.4 .12 253 .054 6.29 .728 5.17 53.5 38.9 33 10.2 11.5 34.3 3.4 6 5 105.4 2 272.6 2.2 3.84 6410 80.6 4.0 26.5 16 .1 4 1.8 348 .85 13 10.3 <1 23.4 133 <1 1.5 5.8 6 .79 .017 22.0 2.4 .13 217 .049 6.26 160 5.46 181.2 36.9 37 11.0 10.8 34.1 3.5 7 4 77.0 4 336.9 2.1 6.60 6411 174.0 7.6 21.0 19 <1 .5 3.5 406 1.11 22 8.7 <1 33.7 94 <1 1.9 3.9 12 .47 .015 26.5 7.0 .13 178 .054 5.81 .430 4.74 >200 35.1 44 12.1 8.6 25.9 2.2 6 4 72.0 16 310.8 1.6 6.48 6412 150.4 10.0 20.9 25 <1 .8 6.0 341 1.52 95 11.2 <1 33.2 160 <1 2.1 4.6 9 .35 .019 32.9 4.9 .14 177 .072 5.73 .088 3.97 >200 35.7 54 10.5 9.1 30.0 2.6 7 3 126.6 1.2 254.5 1.9 5.62 6413 99.7 12.6 17.5 22 <1 .9 4.2 250 1.50 46 8.3 <1 30.3 10.4 <1 2.6 4.1 9 .40 .013 20.8 6.9 .13 151 .049 5.78 .086 4.02 >200 34.3 35 14.4 8.6 25.8 2.0 8 3 109.8 13. 249.9 1.8 6.30 6414 89.9 10.0 30.6 256 1. 7 4.8 512.16 116 8.5 <1 33.0 79 4.4 2.2 13.1 6 .57 .014 28.0 4.1 12 29 .051 5.99 >200 41.3 41 24.0 9.2 28.5 2.7 6 5 142.7 4 315.0 2.0 6.30 6415 82.8 6.7 24.4 25 <1 9 1.4 335 .71 59 9.8 <1 26.8 125 1.1 4.6 6.7 43 .018 23.7 6.9 1.4 305 .055 5.05 1.15 5.8 9.4 24.4 25 2.1 1.5 5.5 281 .78 59 9.6 <1 19.4 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	į	6404	217.3	9.4.2	6.3 2	283	.2	.8 .	3.7	306 1	49	64	40.2	<.1	29.4	72	5.1	2.6	4.7	6	38	.013	24.0	7.2	.09	236	.049	6.10	1.899	4.70	>200	34.6	41	16.9	10.0	24.4	2.3	4	3	24.8	1.2	294.7	1.8	6.48		1
6407 68 6 5.6 21.6 24 <1 .6 2.1 372 .99 245 16.8 <1 26.3 101 .1 1.8 1.8 9 .77 .013 22.4 7.5 .12 212 .056 5.96 .240 4.80 180.7 36.7 36 13.6 9.7 29.7 2.6 6 4 77.3 .7 297.3 1.9 6.84 6408 26.0 4.3 27.8 21 <1 .6 1.1 305 .79 20 17.3 <1 17.2 129 .1 1.4 5.8 12 .45 .017 19.8 5.6 .12 204 .051 6.24 .465 4.42 ×200 35.8 34 15.1 10.6 34.4 3.4 8 5 136.9 .5 265.2 2.2 7.04 6409 91.4 61.2 61.1 8.1 0.2 21 .5 1.8 2.9 9 .51 .019 19.3 6.4 .1 253 .054 6.29 .72 5.17 53.5 38.9 33 10.2 11.5 34.3 3.4 6 5 136.9 .5 265.2 2.2 7.04 6410 80.6 4.0 26.5 16 .1 4 1.8 348 .85 13 10.3 <1 23.4 133 <1 13.5 5.8 6 .79 .017 22.0 24 .13 217 .049 6.26 160 5.46 181.2 36.9 37. 11.0 10.8 34.1 3.5 7 4 77.0 4 336.9 2.1 6.60 6411 174.0 7.6 210 19 <1 .5 3.5 406 1.11 22 8.7 <1 33.7 94 <1 1.9 3.9 12 .47 .015 26.5 7.0 .13 178 .054 5.81 .430 4.74 ×200 35.1 44 12.1 8.6 25.9 2.2 6 4 72.0 .6 310.8 1.6 6.48 6.3 99.7 12.6 17.5 12.6 1.9 4.2 253 .504 6.2 1.0 19 .2 1 .5 1.0 19 .2 1.0 19 .2 1 .5 1.0 19 .2 1 .5 1.0 19 .2 1 .5 1.0 19 .2 1 .5 1.0 1	•	6405	123.9	10.3 2	1.4	30	1	.8 :	3.3	309 1	. 16	101	27.5	<.1	33.4	B2	.3	2.0	2.1	7	44	.012	25.5	9.7	.10	231	.054	6.23	1 371	4.83	>200	36.6	43	9.1	9.2	25.6	2.5	4	3	45.7	.8	294.3	1.8	6.64		1
6407 68 6 5.6 21.6 24 <1 .6 2.1 372 .99 245 16.8 <1 26.3 101 .1 1.8 1.8 9 .77 .013 22.4 7.5 .12 212 .056 5.96 .240 4.80 180.7 36.7 36 13.6 9.7 29.7 2.6 6 4 77.3 .7 297.3 1.9 6.84 6408 26.0 4.3 27.8 21 <1 .6 1.1 305 .79 20 17.3 <1 17.2 129 .1 1.4 5.8 12 .45 .017 19.8 5.6 .12 204 .051 6.24 .465 4.42 ×200 35.8 34 15.1 10.6 34.4 3.4 8 5 136.9 .5 265.2 2.2 7.04 6409 91.4 61.2 61.1 8.1 0.2 21 .5 1.8 2.9 9 .51 .019 19.3 6.4 .1 253 .054 6.29 .72 5.17 53.5 38.9 33 10.2 11.5 34.3 3.4 6 5 136.9 .5 265.2 2.2 7.04 6410 80.6 4.0 26.5 16 .1 4 1.8 348 .85 13 10.3 <1 23.4 133 <1 13.5 5.8 6 .79 .017 22.0 24 .13 217 .049 6.26 160 5.46 181.2 36.9 37. 11.0 10.8 34.1 3.5 7 4 77.0 4 336.9 2.1 6.60 6411 174.0 7.6 210 19 <1 .5 3.5 406 1.11 22 8.7 <1 33.7 94 <1 1.9 3.9 12 .47 .015 26.5 7.0 .13 178 .054 5.81 .430 4.74 ×200 35.1 44 12.1 8.6 25.9 2.2 6 4 72.0 .6 310.8 1.6 6.48 6.3 99.7 12.6 17.5 12.6 1.9 4.2 253 .504 6.2 1.0 19 .2 1 .5 1.0 19 .2 1.0 19 .2 1 .5 1.0 19 .2 1 .5 1.0 19 .2 1 .5 1.0 19 .2 1 .5 1.0 1		6406	223.9	8.0-2	9.1	9 .	2	.6	4.3	378 1	.44	70	7.6	<.1	29.7	79	<.1	2.8	8.1	5	42	.011	23.3	4.4	.10	205	.040	5.62	. 154	4.86	107.2	34.5	38	13.2	7.5	18.9	1.B	4	3	66.2	1.0	295.2	1.6	6.54		l
6408 26.0 4.3 27.8 21 < 1. 6 1.1 305 .79 20 17.3 < 1 17.2 129 .1 1.4 5.8 12 .45 .017 19.8 5.6 .12 204 .051 6.24 .465 4.42 >200 35.8 34 15.1 10.6 34.4 3.4 8 5 136.9 .5 265.2 2.2 7.04 6409 9.4 8.2 30.5 41 < 1. 8 1.0 291 53 84 16.9 < 1 18.1 132 .5 1.8 2.9 9 .51 .019 19.3 6.4 .12 253 .054 6.29 .728 5.17 53.5 38.9 33 10.2 11.5 34.3 .3 .4 6 5 105.4 .2 272.6 2.2 3.84 6410 80.6 4.0 26.5 16 .1 4 1.8 348 .85 13 10.3 < 1 23.4 133 < 1 1.5 5.8 6 .79 .017 22.0 2.4 13 217 .049 6.26 .160 5.46 181.2 36.9 37 .11.0 10.8 34.1 3.5 7 4 77.0 4 336.9 2.1 6.60 6411 174.0 7.6 210 19 < 1 .5 3.5 406 1.11 22 8.7 < 1 33.7 94 < 1 1.9 3.9 12 .47 .015 26.5 7.0 .13 178 .054 5.81 .430 4.74 >200 35.1 44 12.1 8.6 25.9 2.2 6 4 72.0 .6 310.8 1.6 6.46 642 150.4 10.0 20.9 25 < 1 .8 6.0 341 1.52 95 11.2 < 1 33.2 160 < 1 2.1 4.6 9 .35 .019 32.9 4.9 1.4 177 .072 5.73 .088 3.97 >200 36.7 54 10.5 9.1 30.0 2.6 7 3 126.6 1.2 254.5 1.9 5.62 630 6414 89.9 10.0 33.6 256 .1 7 4.8 512 1.78 16 8.5 < 1 33.0 79 4.4 2.2 13.1 6 .57 .014 28.0 4.1 1.2 219 .051 5.98 .20 4.97 199.8 38.9 45 11.8 10.2 21.3 2.1 5 4 89.5 1.6 286.8 2.0 6.30 6416 9.0 2.5 32.2 12 1 5.5 .5 281 .78 59 9.6 < 1 19.3 133 .2 12.2 19.7 8 .45 .020 20.2 3.1 1.3 285 .051 6.51 .159 5.38 94.2 42.4 36 13.8 9.4 33.3 3.5 7 6 212.9 6 324.5 2.2 3.92																																														
6408 26.0 4.3 27.8 21 < 1. 6 1.1 305 .79 20 17.3 < 1 17.2 129 .1 1.4 5.8 12 .45 .017 19.8 5.6 .12 204 .051 6.24 .465 4.42 >200 35.8 34 15.1 10.6 34.4 3.4 8 5 136.9 .5 265.2 2.2 7.04 6409 9.4 8.2 30.5 41 < 1. 8 1.0 291 53 84 16.9 < 1 18.1 132 .5 1.8 2.9 9 .51 .019 19.3 6.4 .12 253 .054 6.29 .728 5.17 53.5 38.9 33 10.2 11.5 34.3 .3 .4 6 5 105.4 .2 272.6 2.2 3.84 6410 80.6 4.0 26.5 16 .1 4 1.8 348 .85 13 10.3 < 1 23.4 133 < 1 1.5 5.8 6 .79 .017 22.0 2.4 13 217 .049 6.26 .160 5.46 181.2 36.9 37 .11.0 10.8 34.1 3.5 7 4 77.0 4 336.9 2.1 6.60 6411 174.0 7.6 210 19 < 1 .5 3.5 406 1.11 22 8.7 < 1 33.7 94 < 1 1.9 3.9 12 .47 .015 26.5 7.0 .13 178 .054 5.81 .430 4.74 >200 35.1 44 12.1 8.6 25.9 2.2 6 4 72.0 .6 310.8 1.6 6.46 642 150.4 10.0 20.9 25 < 1 .8 6.0 341 1.52 95 11.2 < 1 33.2 160 < 1 2.1 4.6 9 .35 .019 32.9 4.9 1.4 177 .072 5.73 .088 3.97 >200 36.7 54 10.5 9.1 30.0 2.6 7 3 126.6 1.2 254.5 1.9 5.62 630 6414 89.9 10.0 33.6 256 .1 7 4.8 512 1.78 16 8.5 < 1 33.0 79 4.4 2.2 13.1 6 .57 .014 28.0 4.1 1.2 219 .051 5.98 .20 4.97 199.8 38.9 45 11.8 10.2 21.3 2.1 5 4 89.5 1.6 286.8 2.0 6.30 6416 9.0 2.5 32.2 12 1 5.5 .5 281 .78 59 9.6 < 1 19.3 133 .2 12.2 19.7 8 .45 .020 20.2 3.1 1.3 285 .051 6.51 .159 5.38 94.2 42.4 36 13.8 9.4 33.3 3.5 7 6 212.9 6 324.5 2.2 3.92		6407	68 6	5.6.2	1.6	24 <	1.1	.6	2.1	372	99	245	16.8	<.1	26.3	101	.1	1.8	1.8	9	.77	.013	22.4	7.5	.12	212	.056	5.96	.240	4.80	180.7	36.7	36	13.6	9.7	29.7	2.6	6	4	77.3	7	297.3	19	6.84		ľ
6409 9, 4 8, 2 30.5 41 <1 8 1.0 291 .53 84 16.9 <1 18.1 132 .5 1.8 2.9 9 .51 .019 19.3 6.4 .12 253 .054 6.29 .728 5.17 53.5 38.9 33 10.2 11.5 34.3 .3 .4 6 5 105.4 .2 272.6 2.2 3.84 6410 80.6 4.0 26.5 16 .1 .4 1.8 348 .85 13 10.3 <1 23.4 133 <1 1.5 5.8 6 .79 .017 22.0 2.4 .13 217 .049 6.26 .160 5.46 181.2 36.9 37. 11.0 10.8 34.1 3.5 7 4 77.0 4 336.9 2.1 6.60 6411 174.0 7.6 21 0 19 <1 .5 3.5 406 1.11 22 8.7 <1 33.7 94 <1 1.9 3.9 12 .47 .015 26.5 7.0 .13 178 .054 5.81 .430 4.74 >200 35.1 44 12.1 8.6 25.9 2.2 6 4 72.0 .6 310.8 1.6 6.46 642 6412 150.4 10.0 20.9 25 <1 .8 6.0 341 1.52 95 11.2 <1 33.2 160 <1 2.1 4.6 9 .35 .019 32.9 4.9 .14 177 .072 5.73 .088 3.97 >200 36.7 54 10.5 9.1 30.0 2.6 7 3 126.6 1.2 254.5 1.9 5.62 6413 99.7 12.6 17.5 22 <1 .9 4.2 250 1.50 46 8.3 <1 30.3 104 <1 2.6 4.1 9 .40 .013 20.8 6.9 .13 151 .049 5.78 .086 4.02 >200 34.3 35 14.4 8.6 25.8 2.0 8 3 109.8 1.3 249.9 1.8 6.30 6414 89.9 10.0 30.6 256 .1 .7 4.8 512 1.78 116 8.5 <1 33.0 79 4.4 2.2 13.1 6 .57 .014 28.0 4.1 1.2 219 .051 5.98 .220 4.97 199.8 38.9 45 11.8 10.2 21.3 21.5 5 4 89.5 1.6 286.8 2.0 6 30 6416 9.0 2.5 32.2 12 1 .5 .5 281 .78 59 9.6 <1 19.3 133 .2 1.2 19.7 8 .45 .020 20.2 3.1 .13 285 .051 6.51 .159 5.38 94.2 42.4 36 13.8 9.4 33.3 3.5 7 6 212.9 .6 324.5 2.2 3.92	·																																													
6410 80.6 4.0 26.5 16 .1 .4 1.8 348 .85 13 10.3 <1 23.4 133 <1 1.5 5.8 6 .79 .017 22.0 2.4 .13 217 .049 6.26 .160 5.46 181.2 36.9 37. 11.0 10.8 34.1 3.5 7 4 77.0 4 336.9 2.1 6.60 6411 174.0 7.6 21 0 19 <1 .5 3.5 406 1.11 22 8.7 <1 33.7 94 <1 1.9 3.9 12 .47 .015 26.5 7.0 .13 178 .054 5.81 .430 4.74 >200 35.1 44 12.1 8.6 25.9 2.2 6 4 72.0 6 310.8 1.6 6.46 642 150.4 10.0 20.9 25 <1 .8 6.0 341 1.52 95 11.2 <1 33.2 160 <1 2.1 4.6 9 .35 .019 32.9 4.9 .14 177 .072 5.73 .088 3.97 >200 36.7 54 10.5 9.1 30.0 2.6 7 3 126.6 1.2 254.5 1.9 5.62 6413 99.7 12.6 17.5 22 <1 .9 4.2 250 1.50 46 8.3 <1 30.3 104 <1 2.6 4.1 9 .40 .013 20.8 6.9 .13 151 .049 5.78 .086 4.02 >200 34.3 35 14.4 8.6 25.8 20.8 8 3 109.8 1.3 249.9 18.8 6.30 6414 89.9 10.0 30.6 256 .1 .7 4.8 512 1.78 116 8.5 <1 33.0 79 4.4 2.2 13.1 6 .57 .014 28.0 4.1 1.2 219 .051 5.98 .220 4.97 199.8 38.9 45 11.8 10.2 21.3 21.5 4 89.5 1.6 266.8 2.0 6 53 650 6416 9.0 2.5 32.2 12 1 .5 .5 281 .78 59 9.6 <1 19.3 133 .2 1.2 19.7 8 .45 .020 20.2 3.1 .13 285 .051 6.51 .159 5.38 94.2 42.4 36 13.8 9.4 33.3 3.5 7 6 212.9 .6 324.5 2.2 3.92		•																																												
6412 150.4 10.0 20.9 25 <1 .8 6.0 341 1.52 95 11.2 <1. 33.2 160 <1 2.1 4.6 9 .35 .019 32.9 4.9 .14 177 .072 5.73 .088 3.97 >200 36.7 54 10.5 9.1 30.0 2.6 7 3 126.6 1.2 254.5 1.9 5.62 6413 99.7 12.6 17.5 22 <1 .9 4.2 250 1.50 46 8.3 <1 30.3 104 <1 2.6 4.1 9 .40 .013 20.8 6.9 .13 151 .049 5.78 .086 4.02 >200 34.3 35 14.4 8.6 25.9 2.2 6 4 72.0 .6 310.8 1.6 6.46 8.3 <1 30.3 104 <1 2.6 4.1 9 .40 .013 20.8 6.9 .13 151 .049 5.78 .086 4.02 >200 34.3 35 14.4 8.6 25.8 2.0 8 3 109.8 1.3 249.9 1.8 6.30 6414 89.9 10.0 30.6 256 .1 .7 4.8 512 1.78 116 8.5 <1 33.0 79 4.4 2.2 13.1 6 .57 .014 28.0 41.1 .12 219.051 5.98 .220 4.97 199.8 38.9 45 11.8 10.2 21.3 21.3 21.5 4 89.5 1.6 286.8 2.0 6 30 6415 82.8 6.7 24.4 25 <1 .9 1.4 335 .71 59 9.8 <1 26.8 125 .1 1.4 4.6 7 .43 .018 23.7 6.9 .14 305 .053 6.57 .169 5.09 >200 41.3 41 24.0 9.2 28.5 2.7 6 5 142.7 4 315.0 2.0 6.30 6416 9.0 2.5 32.2 12 1 .5 .5 281 .78 59 9.6 <1 19.3 133 .2 1.2 19.7 8 .45 .020 20.2 3.1 .13 285 .051 6.51 .159 5.38 94.2 42.4 36 13.8 9.4 33.3 3.5 7 6 212.9 .6 324.5 2.2 3.92																																														
6412 150.4 10.0 20.9 25 < 1																																														
6413 99.7 12.6 17.5 22 <1 .9 4.2 250 1.50 46 8.3 <1 30.3 104 <1 2.6 4.1 9 .40 .013 20.8 6.9 .13 151 .049 5.78 .086 4.02 >200 34.3 35 14.4 8.6 25.8 2.0 8 3 109.8 1.3 249.9 1.8 6.30 6414 89.9 10.0 30.6 256 .1 .7 4.8 512 1.78 116 8.5 <1 33.0 79 4.4 2.2 13.1 6 .57 .014 28.0 4.1 .12 219 .051 5.98 .220 4.97 199.8 38.9 45 11.8 10.2 21.3 2.1 5 4 89.5 1.6 286.8 2.0 6.30 6415 82.8 6.7 24.4 25 <1 .9 1.4 335 .71 59 9.8 <1 26.8 125 .1 1.4 .6 7 .43 .018 23.7 6.9 .14 305 .053 6.57 .169 5.09 >200 41.3 41 24.0 9.2 28.5 2.7 6 5 142.7 .4 315.0 2.0 6.30 6416 9.0 2.5 32.2 12 1 .5 .5 281 .78 59 9.6 <1 19.3 133 .2 1.2 19.7 8 .45 .020 20.2 3.1 .13 285 .051 6.51 .159 5.38 94.2 42.4 36 13.8 9.4 33.3 3.5 7 6 212.9 .6 324.5 2.2 3.92		V-111				• /	•								, , ,				.,	•••															V. v				-			540.0	*.0	V.40		
6413 99.7 12.6 17.5 22 <1 .9 4.2 250 1.50 46 8.3 <1 30.3 104 <1 2.6 4.1 9 .40 .013 20.8 6.9 .13 151 .049 5.78 .086 4.02 >200 34.3 35 14.4 8.6 25.8 2.0 8 3 109.8 1.3 249.9 1.8 6.30 6414 89.9 10.0 30.6 256 .1 .7 4.8 512 1.78 116 8.5 <1 33.0 79 4.4 2.2 13.1 6 .57 .014 28.0 4.1 .12 219 .051 5.98 .220 4.97 199.8 38.9 45 11.8 10.2 21.3 2.1 5 4 89.5 1.6 286.8 2.0 6.30 6415 82.8 6.7 24.4 25 <1 .9 1.4 335 .71 59 9.8 <1 26.8 125 .1 1.4 .6 7 .43 .018 23.7 6.9 .14 305 .053 6.57 .169 5.09 >200 41.3 41 24.0 9.2 28.5 2.7 6 5 142.7 .4 315.0 2.0 6.30 6416 9.0 2.5 32.2 12 1 .5 .5 281 .78 59 9.6 <1 19.3 133 .2 1.2 19.7 8 .45 .020 20.2 3.1 .13 285 .051 6.51 .159 5.38 94.2 42.4 36 13.8 9.4 33.3 3.5 7 6 212.9 .6 324.5 2.2 3.92	İ	6412	156.4	10 0 24	n a	25 -	: 1		6.0	2/1 1	62	qs.	11 2	e 1	31.2	160	< 1	2 1	4.6	q	35	010	32 a	4 6	1.4	377	072	5 77	дра	3 97	> 20⊓	36.7	5.6	16.5	9 1	an n	2.6	7	3 1	126 6	1 2	254 6	1.0	5 67		
6414 89,9 10.0 30.6 256 .1 .7 4.8 512 1,78 116 8.5 <.1 33.0 79 4.4 2.2 13.1 6 .57 .014 28.0 4.1 .12 219 .051 5.98 .220 4.97 199.8 38.9 45 11.8 10.2 21.3 2.1 5 4 89.5 1.6 286.8 2.0 6 30 6415 82.8 6.7 24.4 25 <.1 .9 1.4 335 .71 59 9.8 <.1 26.8 125 .1 1.4 .6 7 .43 .018 23.7 6.9 .14 305 .053 6.57 .169 5.09 >200 41.3 41 24.0 9.2 28.5 2.7 6 5 142.7 .4 315.0 2.0 6.30 6416 9.0 2.5 32.2 12 1 .5 .5 281 .78 59 9.6 <.1 19.3 133 .2 1.2 19.7 8 .45 .020 20.2 3.1 .13 285 .051 6.51 .159 5.38 94.2 42.4 36 13.8 9.4 33.3 3.5 7 6 212.9 .6 324.5 2.2 3.92																																											-			ł
6415 82,8 6.7 24.4 25 <1 .9 1.4 335 .71 59 9.8 <.1 26.8 125 .1 1.4 .6 7 .43 .018 23.7 6.9 .14 305 .053 6.57 .169 5.09 >200 41.3 41 24.0 9.2 28.5 2.7 6 5 142.7 .6 315.0 2.8 6.30 6416 9.0 2.5 32.2 12 1 .5 .5 281 .78 59 9.6 <.1 19.3 133 .2 1.2 19.7 8 .45 .020 20.2 3.1 .13 285 .051 6.51 .159 5.38 94.2 42.4 36 13.8 9.4 33.3 3.5 7 6 212.9 .6 324.5 2.2 3.92																																														
6416 9.0 2.5 32.2 12 1 .5 .5 281 .78 59 9.6 <.1 19.3 133 .2 1.2 19.7 8 .45 .020 20.2 3.1 .13 285 .051 6.51 .159 5.38 94.2 42.4 36 13.8 9.4 33.3 3.5 7 6 212.9 .6 324.5 2.2 3.92																																														ı
																																														ſ
STANDARD DST6 12.6 128.5 35.7 178 .3 30.3 13.2 965 4.08 26 7.6 < 1 7.1 316 5.4 5.5 4.8 114 2.29 .098 24.9 224.9 .99 694 .432 7.00 1.645 1.43 7.7 53.5 52 6.3 15.1 8.4 .7 4 11 25.0 < 1 57.7 1.9 -		6416	9.0	2.5 3	6.2	12	1	.5	.5	591	.78	59	9.6	<.1	19.3	133	. 2	1.2	19.7	в	45	. 020	20.2	3.1	.13	285	.051	0.51	. 159	5.38	94.2	42.4	36	15.8	9,4	35.5	1.5	/	ь 2	.12.9	.6	324.5	2.2	3.92		
STAMDARD DST6 12.6 128.5 35.7 178 .3 30.3 13.2 965 4.08 26 7.6 < 1 7.1 316 5.4 5.5 4.8 114 2.79 .098 24.9 224.9 .99 694 .432 7.00 1.645 1.43 7.7 53.5 52 6.3 15.1 8.4 .7 4 11 25.0 < 1 57.7 1.9																											48-										_									
		STANDARD DST6	12.6 1	28.5 3	b./]	1/8	.3 30	.3 1	5.2	965 4	UB	26	7.6	<.↓	7.1	316	5.4	3.5	4.B	114	2.29	.098	24.9	224.9	.99	694	452	7.00	1.645	1.43	1.7	53.5	52	b.J .	15.1	ð.4	. I	4	11	25.0	< 1	57.7	1.9	<u>.</u>		

Page 8

ACHE ANAL	TITCAL							_	_											-														_									ACME A	IAI,Y11CAL
	SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mri	Fe	As	U	Au	Th	\$r	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ва	Ti	Al	Na	K	W	Zr	Ce	Sn	Y	Nb	ra	Ве	Sc	Ļi	S	Rb	Hf S	ample	
		ррп	ppm	рря	ppm	ppm	ppm	ppm	pom	*	ppm	ppm p	pm ·	opm c	spm r	ppnt	ppm	ppm	opm	*	1	ррп	ppm	1	DDM	ž	*	2	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	PPM	opm	*	ррп	pon	kg	
																														_														
	G-1				-	1.					-	4.4 <			-	. 1	. 1		53				10.8														_		35.2	<.1	126.1	6		
	6417	10.6	3.2	26.6	22	. 2	. б	. 5	294	. 70	22	8.8 <	.1 1	8.0 1	.28	.3 .	1.8	7.8	6	. 44	.017	19.0	3.8	.10	231	. 041	6.10	.146	3.60	79.8	39.0	35	15.3	9.2	26.2	3.1	6	5	164.0	. 4	265.1	2.2	4.48	
	6418	126.0	5.7	30.2	34	. 2	. Б	1.4	315	1.05	36	6.5 <	.1 3	4.2	92	.3	2.4	7.1	5	. 79	.012	9.2	7.4	.11	219	.041	6.75	.169	4.88	>200	45.8	18	17.0	10.1	23.4	18	6	4	88.7	.7	414.0	2.0	6.56	
	6419	130.3	7.4	25.0	39	.1	. 5	.9	331	.55	16	8.8	.1 3	6.3	66	.2 .	2.3	8.0	4	.89	.014	8.3	3.2	.06	204	.035	6.19	1.037	4.64	>200	43.9	16	8.3	11.2	21.4	2.2	4	3	43.1	.2	328.8	2.2	6.14 -	
	6420	169.9	6.0	34.8	26	. 1	.1	1.2	570	.55	42	9.8 <	.1 3	7.8	55 -	<.1	6.0	4.3	4	1.45	.012	11.1	3.7	.10	56	.041	7.44	.032	3.70	127.8	40.9	20	8.5	13.2	25.0	2.5	10	3	53.7	.2	293.5	2.0	6.22	
	6421	173.0	25.5	51.1	70	.3	.5	7.6	513	1.71	17	6.0 <	.1 2	9.9	76	.7	5.7	12.0	4	.88	.009	11.3	4.3	.09	217	.030	6.32	.364	4.50	>200	37.B	21	8.3	9.5	18.4	1.7	5	3	48.8	1.0	258.3	1.8	6.48	
	6422	169.2	3.7	16.9	16	<.1	.3	1.4	270	. 55	10	5.8 <	.1 3	5.1	94	.1 .	1.8	.6	4	. 65	.011	15.8	5.6	.10	177	.037	6.22	.118	4.16	>200	41.3	27	8.8	8.3	25.1	2.3	7	3	72.9	. 2	296,1	2.2	6.72	
	6423	173 Z	5.6	22.0	27	<.1	.8	1.8	320	. 62	В	B.1 <	.1 3	5.5	86 -	<.1	1.9	1.1	5	.64	.012	16.2	4.1	.09	223	.043	6.18	1.027	4.37	>200	40.2	28	9.8	8.9	26.8	2.4	5	3	40.9	.3	312.9	2.0	6.28	
	RE 6423	172.3	5 4	20.9	25	< .1	.7	2.0	317	.61	7	7.7 <	.1 3	2.4	81 .	<.1	1.6	1.1	4	.62	.012	14.5	5.1	.09	207	.041	5.97	1.021	4.33	>200	39.6	25	9.2	9.2	24.2	2.3	5	3	39.8	. 2	301.3	2.2		
	RRE 6423	177.2	6.3	22.6	23	<.1	2.2	2.1	319	.70	7	7.6 <	. I 3	3.2	86	. 3	1.8	1.2	5	.61	.011	14.9	5.3	.09	211	. 042	5.90	.970	4.39	>200	39.8	27	9.8	8.8	24.3	2.4	4	3	39.1	.3	306.7	2.2		
	6424	119.3	10.4	24 2	40	. 1	.8	3.7	324	.86	25	8.3 <	.1 3	4.9	90	.5	2.7	.9	6	. 61	.012	18.1	7.0	.10	231	.041	6.09	1.283	4,44	>200	39.1	32	12.4	9.0	20.1	2.2	5	4	53.3	.5	321.7	1.8	8.24	
	6425	121.2	1.4	16.7	9	<.i	. 3	. 6	145	.43	5	4.8 <	1 2	3.6	90 •	<.1	1.2	1.9	5	. 59	.010	13.2	2.8	.09	194	.034	5.15	066	2.98	46.8	34.2	23	11.5	7.1	21.3	2.0	7	2	103.5	.2	191.7	1.9	6.14	
	6426	77.5	2.1	24.7	9	. 1	.8	1.0	118	. 61	9	5.0 <	.1 30	J.4	97 •	<.1	1.5	7.4	4	.48	.010	16.2	6.7	.10	263	.036	5.53	.073	3.03	61.7	32.4	28	11.8	7.5	20.8	1.9	9	3	151.9	. 4	188.9	1.6	6.38	
	6427	57.7	83.9	154.0	200	2.8	21.5	7.3	1243	3.18	32	9.8 <	.1 2	5.0 2	.97	2.4	7.2	131.6	115	2.52	.074	16.2	39.6	.77	301	. 186	6.82	.087	2.97	107.6	35.8	30	27.7	13.3	34.4	2.9	16	12	482.0	1.9	265.8	1.8	6.16	
	6428	38.8	23.1	13.5	19	.1	6.1	2.4	662	1.18	12	6.7 <	.1 30	2.3 2	/60	.1 2	2.3	5.7	46	1.38	.036	18.2	10.3	.40	290	.086	7.04	.068	2.99	116.4	30.4	33	9.0	14.4	27.0	4.6	11	6	412.4	.5	221,9	1.8	4,64	
	6429	114.8	81.2	103.6	121	.9	54.7	21.6	1942 (6.23	29	9.0 <	.1 .	3.7 4	183	.6 4	1.0	228.9	250	8.34	.116	7.3	109.7	2.24	58	.354	6.92	.059	2.60	>200	21.8	15	28.6	18.3	24.1	. 9	13	22	278.8	3.3	232.6	.8	4.80	
	STANDARD DST6	12.5 1	30.6	35.1	171	.3	30.0	13.1	962 4	4.07	25	7.7 <	.1	7,1 3	:15 -5	5.7	5,4	4.7	112	2.28	.099	25.6	235.9	1.02	690	425	6.93	1.658	1.35	7,7	51.8	51	6.4	15.0	8.4	. 7	3	11	28.3	< 1	5B.0	1.7		

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(ISO 9001 Accredited Co.)

ASSAY CERTIFICATE

Newmac Resources Inc. PROJECT Fox File # A602520R2 2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

SAMPLE#	W %
5952	.12
5954	.03
5956	.02
5959	.04
RE 5959	.04
5961	.04
5962	.03
5965	.03
5967	.03
5968	.03
5969	.05
5970	.02
5971	.06
5972	.08
5973	.03
5974	.06
5983	.04
5984	.03
5985	.05
5986	.03
5987 5989 5990 5991 5993	.03 .05 .04 .03
5994	.06
5995	.03
5996	.04
5997	.06
5998	.17
5999	.03
6000	.02
6001	.04
6004	.05
STANDARD R-2a	.08

GROUP 7KP - 0.500 GM SAMPLE BY PHOSPHORIC ACID LEACH, ANALYSIS BY 1CP-ES.

- SAMPLE TYPE: Core Pulp

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

07-04-2006 P12:10

DATE RECEIVED: JUN 26 2006 DATE REPORT MAILED:.....

Newmac Resources Inc. PROJECT Fox FILE # A602520R2

Page 2

ACME ANALYTICAL		AC:	ME ANALYTICAL
	SAMPLE#	W 8	
	6014 6028 6030 RE 6030 6044	.08 .03 .03 .03 .02	
	6053 6059 6061 6104 6105	.02 .04 .02 .04 .06	
	6106 6107 6108 6109 6110	.03 .06 .03 .09 .03	
	6111 6112 6130 6131 6173	.04 .10 .02 .02 .05	
	6174 6175 6176 6177 6178	.04 .07 .08 .03 .02	
	6180 6181 6185 6186 6187	.10 .02 .05 .03 .08	
	STANDARD R-2a	.08	

Sample type: Core Pulp. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(ISO 9001 Accredited Co.)

ASSAY CERTIFICATE

Newmac Resources Inc. PROJECT Fox File # A602520R
2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

SAMPLE#	Mo %
6176	.194
6185	.720
STANDARD R-2a	.048

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. - SAMPLE TYPE: Core Pulp

05-30-2006 A11:51

DATE RECEIVED: JUN 26 2006 DATE REPORT MAILED:.....

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Newmac Resources Inc. PROJECT Fox File # A602520 2605 Jane St., Vancouver BC V3H ZK6 Submitted by: W.A. Howell

Page 1

SAMPL	LE#	Ho	Си	Pb	Zn	Ag	N1	Co	М	n F	e i	As	U A	NU .	Ťh	Sr	Çđ	\$b	81	¥	Ca	P			-	Ва				la ¥		4 Zr	Ce	Sn	Y	Nb	Ta	Вe	Sc	L1	S	F	€b H	f San	ub j e	
		ppm	ppm	ppm	ррп	ppm	ррп	ı ppn	п рр	m	\$ D	pm or	an pp	en p	opm p	ppm	ppm	ppm	ррп	ppm	X	*	ррп	. ppm	1	ppn	_ 1		ĭ	1 1	pp.	n ppn	ppm	р р т	ppm	ррп	i ppin	ppm	ppm	ppm	1	P	om pp	en .	kg	
G-1		.2	2.9	22.0	60	.1	3.2	4.7	7 78	7 2.6	4 -	<1 3.	4 <.	1 7	7.4 6	327	.1	.1	.2	57	2.80	.096	26.2	6.8	.70	1103	.309	8.6	9 2.98	3 2.90) .	9.1	54	1.6	16.0	20.6	2.0	3	6	38.2	<.1	128	9	7		
5952																								5.9		198		5.9		0 4.26		32.3													.82	
5953		124.0																						1.8				6.3		3 3.82		39.6								87.0		224				
5954		115.4	7,1	22.6	25	<.1	.4	1.5	5 36	9 .8	6	23 17.	9 <.	1 29	9.5	41	.i	.5	1.1	10	.51	.018	18.8	4.8	.09	201	.049	6.4	2 1.52	0 4.22	>20	35.8	34	20.3	10.8	23.7	2.1	6	4	76.9	.5	308.	1 1.	8 6	5.22	
5955		90.2	21.4	21.9	19	.1	.3	2.4	1 53	1 .8	2	11 24.	5 <,	1 32	2. I	56	<.1	.7	1.8	g	. 45	.019	23.9	2.4	.07	236	.072	6.4	3 1.41	7 4.12	84.	37.5	42	7.7	10.3	37.3	3.0	6	3	52.0	.4	222	4 1.1	8 6	5.10	
5 9 56		134.8	11.0	19.2	14	.1	. 6	2.1	36	4 .7	3	11 15.	6 <.	1 30	1.6	44 -	<.1	.4	.8	8	, 4 4	.014	22.3	3.7	.09	202	.054	6:1	1 1.B6	2 4.19	>20	30.9	39	13.2	9.0	27.0	2.6	6	3	38.7	.4	251.	1 1.	6 5	.80	
5957		145.8	16.0	20.2	11	.1	. 2	1.7	38	1 .7	0	6 18.	9 <.	1 37	1.5	48 -	۲.1	.6 -	.6	7	. 35	.012	21.7	3,2	.07	229	.061	5.4	7 1.71	9 4.28	196.	36.1	37	8.0	10.2	32.9	3.1	5	3	35.1	.4	241.	1 1.	9 5	.74	
5958		63.9	8.0	20.0	10	.1	. 6	1.8	3 40	6 .9	9 :	14 21.	7 <.	1 33	1.0	51 .	<.1	1.0	6.6	9	.36	.015	23.1	3.3	.10	193	.056	6.0	.95	7 3.97	78.	34.5	38	13.1	9.9	29.2	2.8	6	3	48.5	.7	253	5 1.	6 6	5.00	
5959		74.3	8.5	19.3	11	<.1	.2	1.6	32	7.9	2	15 14.	3 <.	1 32	2.3	46	.1	.4	1.1	10	.70	.014	20.5	4,2	.10	199	.053	6.3	3 2.00	6 4.27	>20	38.9	35	21.2	11.6	28.5	2.9	5	3	44.4	.6	274.	9 1.	7 6	5.36	
5960		98. i	7.5	19.1	9	<.1	.2	1.6	22	5 .7	4	9 16.	2 <.	1 31	1.7	47 -	4.1	.4	8,	9	.79	.013	21.4	2.3	.08	214	.057	6.4	1.98	7 4.05	143.	36.9	36	18.3	10.9	26.8	2.5	5	3	43.6	.5	275.	1 1.	9 6	. 46	
5961		268.1	9.9	18.8	11	<.1	.4	2.9	28	.7	5	6 12.	8 <.	1 30	9.0	55 -	<.1	.4	1.2	10	. 59	.015	21.9	5.2	.11	222	. 055	6.0	2.12	8 3.95	>200	31.8	37	13.9	9.3	23.4	2.1	7	3	38.8	.4	243.	8 1.1	6 6	. 80	
5962		181.2	12.2	19.5	14	<.1	.2	1.1	30	1 .9	7]	15 14.	5 <.	1 30	1.2	54	.1	. 2	1.6	12	. 90	.015	20.4	4.8	.12	206	.066	6.1	2.04	2 3,96	>200	35.5	35	18.3	11.7	31.9	3.0	8	4	42.9	.5	258.	8 1.4	8 6	.80	
5963		108.5	11.6	20.0	17	< 1	.1	1.9	38	8. 0	1	9 25.	1 <.	1 30	1.3	51 -	۲.1	.4	.6	9	.94	.017	22.6	6.4	.10	214	.063	5.9	3 1.90	8 3.93	167.	31.1	38	15.4	11.6	27.4	2.7	7	3	38.6	.4	246	8 1.	7 6	.36	
5964		56.0	7.4	19.5	15	<. i	. 4	1.6	36	5 .8	5	5 12.	7 <.	1 32	2.2	57 -	۲.1	.3	1.0	9	.52	.016	22.9	3.6	.11	232	.072	6.3	2.36	1 3.98	102.5	32.8	38	4.9	9.5	25.4	2.6	8	3	29.7	.3	220.	4 1.0	6 5	. 74	
5965		136.4	13.5	22.2	17	<.1	.4	1.5	37	9 .7	7	10 15.	4 <.	1 29	3.4	56	1,3	.4	.6	9	. 63	.016	21.2	5.8	.09	Z38	. 059	6.19	2.21	9 4.09	>200	32.4	36	10.3	10.6	29.1	2.8	9	3	35.1	. 4	252.	6 1.	7 8	. 20	
5966		123.2									-	8 13.						.3		12			17.8		.10					4 3.77		30.5														
5967		110.3										5 12.							6.5				16.8		.10	239				5 3.69		27.7								4B.5						
5968		107.6										2 11.								10	.59		22.3		.10	212				8 3.97		29.9								49.7						
5969		119.5										5 12.											19.7 23.1			206 238				0 3.83		29.4														
5970		140.5	5.6	26.1	25	<.1	1.	1.2	39	9 .81	u	9 12.	0 	1 0	9.9	40 .	¢.1	1.0	6.4	10	. 05	.017	23.1	4.1	.09	238	.051	0.5	2.11	5 4.57	>20(27.9	38	23.0	11.3	22.9	2.5	/	4	46.3	.5	335.	6 I.	7 6	1.58	
5971		173.7	24	45 8	48	1	2	4	1 31	0 .3	a 2	25 7.	5 <	1 23	3 9	49	2	3	.5	8	.70	.017	20.2	2.1	.08	298	.036	7.16	1.40	6 6.89	>200	26.9	33	24 2	12 9	17 1	19	3	4	51.5	1	451	9 1 1	6 5	. RA	
5972		213.2				.1						9 12.											18.6							1 3.69		27.0								65.4						
5973		128.8								4 2.5		4 11.							1.5				22.1		.11	98				3 4.09		32.4		16.4						44.0						
5974		62.8	3.1	19.7								2 11.	8 <.	1 28	3.2	41	.1	.3	2.1	13	.49	014	18.2	5.6	.11	185				7 4,19		32.9								76.8						
5975		72.1	3.8	22.2	12	<.1	.4	1.3	24	3 . 6	8	2 16.	5 <.	1 27	.5	57 4	1.1	.9	67.8	1	.42	.014	21.5	4.1	.08	248				0 4.13		35.4	36	15.0	11.6	28.8	2.7	7	4	75.5	.7	271	5 2.0	0 5	.74	
5976		3.4	4.5	19.1	6	<.1	.4	.5	32	4 .51	7	1 10.	8 <.	1 17	.0	48	.1	.5	12.4	6	.36	.018	16.5	4.3	.10	187	.044	6.0	. 13	B 3.20	18.8	34.0	30	8.8	12.3	32.9	3.7	10	5	172.4	. 3	219.	0 2.2	2 5	.64	
5977		4.8	.9	21.8	15	<.1	.5	. 5	17	5 .40	6	1 18.	6 <.	1 17	8.	56	.2	.4	.7	6	.41	.017	17.1	4.0	.10	202	.043	6.75	2.37	3 3.74	12.8	33.1	30	3.8	14.0	31.0	3.9	11	5	49.2	.2	231.	1 2.2	2 5	.70	
RE 59	377	4.4	.9 .	22.3	13	<.1	2	. 5	17	4 .4	6	1 18.	5 <.	1 17	.6	53	.1	.4	.8	6	. 40	.017	17.5	5.6	.10	196	.043	6.63	2.34	1 3.69	12.6	32.3	31	3.8	13.1	29.2	3.7	9	5	46.7	.2	224.	3 1.5	9	-	
RRE 5	977	4.7	.6	23.5	8	< .1	.6	. 5	17	7 .4	5	1 18.	0 <.	1 18	1.2	57	.1	.4	. В	. 5	. 43	.019	20.4	3.4	.10	197	.044	7.03	2.43	1 3.88	13.1	33.8	37	3.9	14.2	31.4	3.9	11	5	49.3	. 2	242.	0 2.1	1		
5978		1.5	2.1	25.1	13	< .1	.3	.3	18	7 .44	4	1 13.	4 <.	1 18	.5	60	.1	.4	8.9	5	. 55	.017	20.2	3.8	.10	213	.043	7.09	2.76	2 4.04	13.4	32.7	35	5.7	14.9	32,1	3.8	8	5	36.6	.1	244.	2 2.0	0 5	.60	
5979		4.3	1.5	23.5	6	<.1	<.1	.4	23	9 .54	4	1 13.	1 <.	1 15	. 7	54 4	1.1	,4	3.4	6	.54	.016	18.3	2.8	.10	190	.036	6.38	1.94	1 3.60	198.7	33.3	32	11.3	13.5	29,4	3.2	10	5	84.4	.3	239	3 2.0	D 5	. 22	
5980		42.7	.9	24.7	31	<.1	.7	1.4	29	2 .9	2	1 10.	8 <.	1 21	.8	46	.2	.4	6.2	16	.44	.016	21.3	4.0	.13	182	.044	6.31	2.18	3.90	177.8	30.2	36	44.0	10.9	21.3	2.4	6	6	88.9	.7	315.	6 1.6	5 4	. 26	
5981		74.4	2.9	22.9	11	<.1	.9	2.0	281	3 .7(0	1 10.	4 <.	1 28	1.0	65 4	.1	.5	11.2	10	.52	.018	24.3	2.3	.11	250	.052	6.53	2.12	4.16	140.8	35.8	40	20.8	11.7	27.8	3.0	9	5	81.0	.4	292	8 1.9	9 4	.54	
5982		45.6	11.1.	31.B	14	<.1	1.0	2.4	42	8 . 8	4	3 18.	6 <.	1 31	8	56 <	.1	1.4	61.0	11	.43	.020	25.3	5.6	.10	202	.069	6.64	1.98	4 4.11	71.0	37.1	43	9.2	10.8	35.5	3.3	10	4	139.4	.5	261.	9 1.8	9 5	.24	
5983		222.1	6.6	31.0	24	. 1	.8	3.0	37	5 1.0	6	3 13.	0 <.	1 29	8.8	66 <	1.1	1.5	8.0	13	.57	.017	23.2	2.9	.15	194	.053	6.12	. 65	3 3.93	>200	38.3	39	26.2	10.6	25.6	2.4	19	4	183.8	.8	286.	0 1.8	9 5	. 68	

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HN03-HCL-HF TO 10 ML. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALL ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-MS. - SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

06-26-2006 A11:15

DATE RECEIVED: JUN 3 2006 DATE REPORT MAILED:.....

Newmac Resources Inc. PROJECT Fox FILE # A602520

Page 2

POIC HIELD				_					_																												===			AUTO PRODUCT	Tagette
	SAMPLE#	Мо	Cu Pt	5 Z	n Ag	Ni	Со	Hn	Fe	As	U A	ų Ti	Sr	Cd	5b	81	٧	Ça	P	La	Cr	Mg	Ва	Ti	A)	Na	ĸ	¥	Zr	Ce	Sn	Y	Nb 1	Ta Be	Sc	Li	S	Rb	Hf Sa	mp le	
		ррт	ppm ppr	п рр	m) ppm	ppm	ppm	ppm	1	ppm pr	от рр	m ppr	n ppar	ррт	роп	ppm	ppm	1	ţ	ppm	ppm	ı	ppm	z	r	*	1	ppm	DDw	ррп	ppm	ppm	ppm pp	от ррп	ngq ı	ppm	*	ppm p	mqc	kg	
	G-1		4.4 21.3																																						
	5984		10.8 25.2																																						
	5985		7.3 32.2																																						
	5986		4.3 43.0																																						
	5987	68.7	6.8 19.6	5 1.	4 <.1	2.0	6.5	339 1	49	1 24.	.9 <,	1 34.	. 65	<.1	.6	14.5	14	. 64	.027	28.9	6.7	. 15	231	.078	6.48	2.054	4.36	>200	43.3	51 2	7.1 1	1.9 2	29.5 2.	.7 18	5	75.8	1.0	299.7 2	7.1	5.86	
	rane	ana a	0.0.10.5					267	0.7						-	27.4	10			22.2		00	217	054	C 74	1 020	4 24	171 0	25.0	40. 0							_	000 1 1			
	5988		8.9 19.7																																						
	5989		4.7 17.2																																						
	5990		6.4 22.3																																						
	5991		14.1 33.5																																						
	5992	102.4	9.0 23.5	1	2 .1	1.2	1.8	256 1	.40	3 11.	.8 <,	1 31.2	46	. 1	1.2	46.9	13	.44	.014	22.9	5.3	.11	208	.052	6.13	1.666	4.37	117.9	35.9	40 2	7.2	8.6 2	25.8 2.	.7 6	4	80.5	1.0	305.9 1	8	6.02	
	5993	(0.0	6.2 21.3		1 - 1	1 2	2.1	260	07	2.14		1 25 4		,	0	2 7	12	40	010	22 0	2.7	12	100	062	c 41	2 054	4.00	~200	36 E	41 7			NO 2	. 41	-	20 0		204.0 1		. aa	
	5994		4.6 61.5																																						
			5.9 21.3																																						
	5996		6.4 27.2																																						
	5997		5.9 31.7																																						
	333/	2/4.3	3.9 31.7	•		1.2	3.5	333 1.	. 30	2 13.		1 31.	33	. 1	1.0	43.3	,	. • ,	.013	23.5	7.4	. 10	220	.040	J. 54	1.013	00	-200	JU, £	44 1		3.1 6	.O. 5 E.	, ,	•	63.2	1.3	199.9 1	. 0 ;	3.44	
	5998	240.3	4.1 21.2	1:	3 .2	1.1	2.2	382 1	. 10	2 20	. 5 < .	1 27.7	60	<.1	1.0	21.3	12	.56	.017	22.9	3.5	.11	231	.050	5.99	1.647	3.81	>200	33.3	40 2	3.0 1	1.1 2	8,1 2,	1 7	5	82.7	.8	276.5 1	.в	6.34	
	RE 5998	245.8	4.5 19.9	1	3 .1	1.2	2.2	393 1	. 13	3 20	.4 <.	1 27.6	62	.1	.9	22.1	11	.58	.017	23.5	3.9	.11	231	.052	6.10	1.770	3.85	>200	35.9	41 2	3.8 1	1.1 3	1.4 2.	4 5	5	84.2	.8	284.5 1	.8		
	RRE 5998	315.9	5.0 23.4	1	2 .2	1.2	2.7	395 ì	. 28	2 22	2 <.	1 28.6	60	.3	1.0	34.3	13	.57	.017	23.2	6.1	.12	231	.052	6.12	1.639	3.90	>200	33.5	40 2	5.9 1	1.7 3	2.9 2.	4 5	5	88.3	1.0	278.9 1	.6		
	5999	71.0	6.0 35.2	11	0 .6	1.2	4.1	278	.97	2 14	9 <.	1 32.6	61	<.1	1.6	25.7	. 9	.54	.018	23.1	9.4	.11	254	.052	6.14	2.251	4.17	>200	35,0	41 2	1.6 1	0.2 2	7.1 2.	6 8	4	72.2	.6	315.2 1	. 6	6.10	
	6000	76.5	7.6 32.8	1	8 .4	.9	4.0	333	99	2 12.	6 <.	1 32.4	59	.2	1.2	33.5	9	.61	.019	23.0	4.4	.12	231	.058	6.18	2.174	4.08	>200	36.2	40 1	6.7	9.4 2	7.5 2.	7 9	4	67.6	.6	280.6 2	2.0	6.32	
	6001	184.1	7.5 29.1	2	2 .5	1.3	3.9	411 1	.01	2 19.	2 <.	1 33.9	74	<.1	1.0	7.8	12	.66	.027	27.6	4.0	,16	292	.084	6.14	2.405	3.97	>200	42.6	47 1	1.8 1	1.0 2	7.5 2.	5 13	4	52.4	.5 7	265.1 2	2	5.66	
	6002	206.5	4.2 26.0) 20	.1	1.1	3.2	293	. 90	2 12.	.0 <.	1 28.1	68	.1	.5	3.0	6	. 55	.019	20.4	4.7	.09	206	.046	6.18	2.002	4.42	152.9	30.3	36	7.8 1	0.9 2	3.0 2.	3 11	4	43.2	.6 7	279.9 1	6	6.2 6	
	6003	142.2	3.0 32.0	2	2 .2	.8	1.6	318	.51	1 14	8 <.	1 21.3	65	.3	. 9	14.5	5	.55	.020	18.4	2.5	.08	164	.039	6.17	1.981	4.28	95.2	27.0	32	4.3 1	1.8 2	5.7 2.	4 8	4	34.3	.2 ?	277.8 1	4	6.30	
	6004	163.1	6.1 45.9	1	6.6	1.0	1.3	434	.65	9 18.	5 <.	1 30.1	61	.1	2.2	17.1	7	.57	.014	23.2	3.1	.09	222	.050	5.90	1.937	3.94	>200	35.3	40	7,4]	0.4 2	6,5 2.	5 6	4	45.6	.3 7	253.2 1	7	6.22	
	6005	10.2	6.1 72.3	29	9 1.1	.6	.4	312	.47	7 26.	.7 <.	1 20.7	98	.4	3.7	98.5	6	.59	.016	18.9	3.0	.09	222	.051	6.56	1.599	3.82	58.9	33.5	34	6.1 1	3,1 3	4.6 4.	0 6	4	76.6	.1 7	256.1 2		5.76	
	6006		5.1 25.1																																						
	6007		6.6 24.0																																						
	6008		8.0 28.0																																						
	6009		8.5 30.1																																						
	6010	75.6	9.0 19.6	15	5 <.i	1.3	1.6	86 .	.62	4 16.	5 <.	1 24.4	68	<.1	.3	2.3	8	.30	.016	23.9	3.8	.06	251	.053	5.13	2.391	3.76	51.6	29.3	40 :	3.4 1	1.6 3	0.9 3.	6 5	4	35.5	.4 2	235.4 1	.7	5.38	
	C011	4.1	4,7 33,2				4	143		2 22		1 10 2	100	,		12 5	7	24	D17	20.7		αz	204	nea .	6 48	7 577	2 70		24.0	26		. 1 2	70 1			41.6		14F 0 1		- 00	
	6011		6.3 31.2																																						
	6012		9.2 26.8		-																																				
	6013		9.2 25.8 8.8 33.2																																						
	6014 6015		6.0 23.2																																						
	0012	3.3	U.V £3.2	. 14	1	٠.	.1	12U .	.44	& CI.	o *.	10.1	09	. 1	. 0	10.0	0	.24	.017	10.0	1.0	.07	417	.031	3.31	£.361	J. 03	č1.1	JJ. J	33 '	·.0 1	J.E 3	y.J 4.		•	33.→		.20.0 1		U. / E	
	STANDARD DST6	12.5 1	29.2 35 0	1 179	5 .4	29.9	13.0	969 4	. 09	25 7	5 <	1 6 9	309	5.5	5.3	4.7	114	2.30	.102	25.4	227.4	1.04	682	.432	7.06	1.687	1.39	6.1	53.8	52	5.3 1	5.0	8.4	8 3	11	26.3	<.1	58.1 3	. 8		
						34.0					-			5.5									,						-5.0				,								

Newmac Resources Inc. PROJECT Fox FILE # A602520

Page 3

 									_																_																	
SAMPLE#	Мо	Çu F	Pb :	Zn A	ıg N	ri Çi	o Hr	n F	e A	is t	Au	Th	Sr	Çd	Sb	81	٧	Ca	ρ	La	Cr	Mg	Ва	T1	A1	Na	K	¥	Zr	Ce	Sn	Y	Nb	Ta	Be	Sc	Li	s	Rb	Hf 5	ample	
	pom	ррт ру	om pi	om pp	an ob	m pp	т ррг	n :	t pp	им ррп	ррт	ppm	ppm	ppm	ppπ	ppm	ppm	*	×	ppm	ррт	* (ppm	*	*	2	x	ррп	ррп	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	1	ppm	ppm	kg	
																										-															.,	-
G-1	.3	2.9 22	.2	58 <.	1 5.	0 4.	1 783	3 2.5	3	6 4.5	<.1	7.9	732	<.1	<.1	.3	53	2.73	.085	26.7	5.7	.68 9	994 .	278 8	8.83	2.867	3.01	1.1	9.6	51	1.3	15.2	21.1	1.9	2	5	40.2	<.1	127.0	.7		
6016	2.4	6.2 23.	.7	13 <.	1 1.	1 .:	3 150	0 .46	6 1	1 20,8	<.1	17.9	86	.1	.9	9.2	7	.29	.018	19.1	2.5	.07 2	232 .	.057 e	5.75	2.555	3.84	64.2	36.6	35	5.4	13.2	39.4	4.4	4	5	37.5	.1	245.4	2.2	5.76	
6017	2.5	6.4 24	.4	12 <.	1.	9 .:	3 51	E .4!	1 1	0 18.6	<.1	17.7	74	.1	.5	5.6	7	.30	.018	20.0	2.0	.07 2	219 .	051 6	5.94	2.736	3.93	49.1	33.5	35	7.9	12.2	34.2	3.9	4	4	32.5	.2	245.4	1.9	6.20	
6018	23.0	6,6 26	.6	20 .	31.	5 .1	8 313	3 .79	9 1	1 10.4	<.1	34.2	73	. 1	.7	8.7	9	. 53	.011	23.2	2.9	.10 1	139 .	.060 6	5.55	2.482	3.96	155.1	40.6	40	3.5	11.7	37.8	3.9	4	4	26.3	. 2	225.0	2.0	6.90	
6019	28.7	8.8 25	.1		2 1.	0 .	5 251	1 .7	1 1	2 12.5	<.1	34.9	37	.1	.5	4.5	5	.45	.007	23.5	4.1	.06	138 .	053 6	5.48	2.617	4.20	195.5	45.0	40	4.9	13.1	38.9	4.1	4	4	27.4	.3	259.6	2.0	7.08	
5020	5.3	11.1 24	.5	.:	1 1.	0 .	4 258	a .76	6 1	3 13.7	<.1	37.2	37	<.1	.5	2.5	5	.45	.008	24.4	3.1	.06	.49	D60 6	6,80	2.973	4.21	81.7	45.8	42	2.9	13.0	44.8	5.3	5	4	26.0	.2	230.7	2.0	6.54	
6021	8.0	6.6 25	.4	19 <.	1.	8 .:	3 285	5 .7:	1 1	3 15.8	<.1	37.1	40	.1	.4	2.1	6	.46	.010	24.2	4.3	.06 1	152 .	065 6	5.58	2.813	3.95	33.4	41.5	42	4.3	13.0	46.5	4.9	5	4	33.7	.2	219.9	1.9	6.80	
6022	51.2	7.5 23.	.8 3	26 .:	3 1.	0 .	8 293	3 .81	8 1	0 12.3	<.1	32.0	53	.3	.6	9.0	7	.52	.014	23.8	4.6	.09 1	189 .	062 6	5.22	2.696	3.90	109.4	43.9	40	6.3	12.0	36.8	3.8	4	4	35.9	.4	231.9	2.2	6.44	
6023	15.1	8.5 25	.6	32 <.	1 1.	2 .	6 365	5 .8	Ø 1	4 26.2	<.1	33.2	64	.3	.4	3.0	8	.51	.016	23.8	5.4	.09 2	221 .	076	5.59	2.742	3.84	96.2	46.2	43	4.4	14.2	46.2	4,1	5	4	33.8	.2	235.1	2.1	6.50	
6024	18.2	7.6 23.	.6 :	23 <.:	1 1.	1 ,	7 360	a .8:	1 1	4 21.8	<.1	34.2	65	.1	.3	1.6	8	.56	.016	26.0	2.3	.10 2	251 .	083 6	5.51	2.891	3.80	43.3	36.6	45	3.4	12.2	46.1	4.4	5	4	34.6	.2	213.7	1.7	6.92	
6025	77.3	8.1 22.	.2 :	32 .	1 1.	6 .	9 391	1 .80	6 1	3 15.8	<.1	32.3	87	.2	.5	10.8	11	.70	.018	26.8	2.8	.13 3	365	084 6	5.52	2.683	3.87	124.0	33.5	46	4.3	13.2	37.1	3.5	6	3	37.1	.2 :	225.0	1.7	6.58	
6026	43.2	8.9 23	.5 3	31 <	1 1.	6 .	8 405	5 .95	5 1	6 22.4	<.1	32.4	79	. 2	.5	3.0	11	.58	.021	30.7	3.5	.12 3	397 .	106 6	5.55	2.751	3.72	64.2	36.2	53	4.5	14.9	52.7	4.2	5	4	39.2	.2	208.8	1.7	6.88	
6027	9.1	6.1 21.	.3	7 <.	1 1.	1 .	6 326	6 ,8	1 1	5 17.3	<.1	33.2	70	.2	.4	.9	9	.53	.017	26.5	3.6	.09 3	307 .	089 6	.32	2.684	3.56	38.1	38.6	45	3.0	14.4	48.9	3.8	5	3	37.7	.2	189.2	1.8	6.64	
6028	97.1	9.3 23.	.4 :	. 16	1.	9 .	4 320	J .75	5 1	2 14.6	<.1	34.8	58	.4	.8	3.7	7	.67	.012	24.0	4.3	.09 2	218 .	067 6	5.53	2.555	4.25	>200	39.1	41	4,4	13.1	38.6	4.0	5	4	38.5	.2	244.3	1.9	6.58	
6029	56.3	8.6 23	.7	18 <.:	1 1.	2 .	5 280	3 .66	6 1	2 13.7	<.1	37.0	55	.1	.7	3.3	6	.56	.011	26.8	3.1	.07 2	229 .	065 8	.36	2.605	4.15	172.4	35.5	46	3.7	11.8	34.8	3.7	5	4	29.6	.2 (237.8	1.7	6.52	
6030	5.4	5.1 22.	.4 2	22 .:	ì.	9	3 321	1 .60	0 1	1 10.3	<.1	36.6	49	.2	.4	2.6	7	.57	.013	24.6	2.2	.09 2	201 .	061 6	5.48	2.533	4.36	>200	33.2	44	9.5	11.6	33.4	3.6	5	4	45.9	.2	280.5	1.5	6.66	
6031	23.7	7.7 24	.2 3	20 <.:	11.	3 ,	6 343	3 .77	7 1	5 15.2	<.1	32.6	44	.1	.6	2.2	6	.46	.010	22.0	5.1	.07 1	182 .	071 6	.03	2.621	3.53	93.4	33.3	38	2.4	12.3	45.4	5.2	5	4	33.0	.2	205.5	1.7	8.20	
6032	63.2	8.4 25	.3 2	21 <.	1.	6 .	5 341	1 .73	3 1	5 16.6	<.1	29.8	46	.2	.5	2.1	6	.41	.010	19.0	2.8	.06 1	165 .	066 6	5.08	2.708	3.45	67.0	30.3	34	2.5	12.1	48.2	4.5	5	4	31.7	.2	214.0	1.6	6.16	
6033	56.9	7.8 25	.7	20 <.	1 1.	0 .	5 375	á .87	2 1	5 19.0	<.1	31.6	47	.1	.4	.7	6	.46	.010	20.1	2.2	.06 1	177 .	068 5	.79	3.055	3.32	44.7	29.3	35	2.5	12.2	44.4	5.8	5	3	31.6	.2	228.7	1.6	4.62	
6034	22.6	13.8 23.	.8 3	4 .	2 .	8 .6	8 236	5 .91	1 1	4 21.3	<.1	32.5	49	.3	1.0	6.1	6	.44	010.	22.3	1.8	.07 2	206 .	061 E	.03 2	2.546	3.59	101.7	30.9	39	4.5	13.7	36.3	4,0	5	3	48.6	.4	229.1	1.7	6.30	
6935	31.6	8.9 22.	.7 2	20 <	1.	9 .:	5 326	5 .BC	0 1	4 22.4	<.1	31.6	48	.1	.9	9.8	7	.42	.012	24.3	2.9	.07 1	.94 .	070 6	.05	2.347	3.52	40.0	31.1	41	3.4	11.7	40.0	4.8	6	3	53.8	.2 2	204.5	1.8	5.68	
603 6	74.8	9.3 22.	.8 2	24 < .	1.	8 .:	7 297	.77	7 1	5 34.5	<.1	33.2	54	.1	.6	1.1	6	47	.010	23.4	2.3	.08 1	.99	067 6	.30	2.785	3.61	75.7	34.0	39	2.9	13.0	41.1	4.1	6	3	36.8	.2	233.3	1.9	6.18	
6037	305.5	12.5 24.	.3 2	24 < .	1 1.	2 .	6 288	91	1 1	3 16.5	<.1	33.7	58	.5	.6	3.2	7	.52	.012	25.0	5.2	.10 1	.97	065 6	.47	2.473	3.94	173.4	42.9	43	5.1	13.2	42.3	4.2	5	4	45.9	.3 7	254.9	2.0	6.98	
6038	4.5	7.0 26	.2	2 <.:	1.	9 .	5 336	. 73	3 17	3 14.5	<.1	35.5	51	<.1	.6	1.2	5	.47	.011	27.3	3.0	.07 1	.94 .	070 6	.78	2.857	4.07	56.5	40.3	47	2.7	12.0	47.4	4.4	4	4	32.6	. 2	239.7	1.9	6.32	
6039	49.8	11.1 24.	.4	1 <.1	1 1.	2 .8	ß 290	94	4 1	1 14.2	<.1	31.8	50	.1	1.0	8.3	6	.47	.011	23.5	4.0	.09 1	.88	057 6	35	2. <i>292</i>	4.11	168.8	36.4	41	7.9	11.4	35.9	3.4	5	3	43.5	.4 2	244.6	1.8	6.06	
6040	96.0	11.9 29.	6 1	7 .1	1-1.	0 1.3	2 263	11.06	6 1	I 14.8	<.1	37.1	60	. 2	1.5	17.8	6	. 47	.014	27.6	5.1	.09 2	26 .	056 6	.56	2.258	4.84	173.6	44,1	47	7.3	12.0	34.1	3.3	4	3	43.4	.6 2	299.2	2.1	6.44	
6041	26.4	10.0 22.	.5 1	6 <.1	1 1.	1 1.0	0 248	J 1.05	5 1	0 16.1	<.1	33.8	52	<.1	.6	2.6	7	.39	.013	25.6	4.0	.09 2	23 .	056 6	.51 2	2.401	4.47	64.5	44.5	45	6.0	10.5	32.7	3.1	4	3	37.5	.6 8	257.5	2.0	3.92	
6042	24.6	9.3 25.	.3 1	6 <.1	1 1.	2 .6	6 292	2 .97	2 1	2 16.8	<.1	33.6	54	<.1	.8	4.0	7	.43	.013	24.9	2.5	.11 2	214 .	059 6	.59	2.288	4.42	144.1	41.1	45	7.3	10.5	34.9	3.4	4	4	44.4	.4 2	260.8	1.9	5.62	
6043	31.4	13.6 18.	.2 3	8 <.1	1 2.	2 1.6	6 472	2 1.37	2 1	4 15 2	<.1	36.8	76	.1	.5	.8	21	.68	.038	30.9	4.1	.20 2	78 .	135 6	.47	1.961	4.56	99.6	53.7	57	13.2	13.8	42.3	3.7	4	5	44.8	.3 2	249.9	2.3	6.74	
6044	189.1	10.4 22.	0 3	8 <.1	1 1.	2 1.6	6 329	£ 1.18	8 1	2 14.5	<.1	32.2	63	.1	.9	7.2	12	.54	.021	25.0	4.0	.14 2	20 .	079 5	.82 2	2.205	3.75	>200	44.3	45	7.9	10.4	36.4	3.4	5	4	41.1	.6 2	227.8	2.0	6.76	
6045	26.4	11.9 27.	.6 1	5 <.3	1 .	9 1.5	5 299	.79	9 :	3 16.6	<.1	29.8	49	<.1	8.	4.3	12	.38	.018	18.6	6.6	.14 2	32 .	079 6	.39 2	2.550	3.81	27.6	40.5	35	4.9	8.5	40.7	3.9	5	3	55.3	.6 2	234.6	1.9	6.77	
RE 6045	27.3	12.2 26.	.4]	5 <.	1 1.	4 1.2	2 314	4 .83	3	2 16.2	<.1	30.9	53	<.1	.7	4.2	13	.36	.018	19.4	5.8	.14 2	40 .	081 6	.23 2	2.543	3.87	27.5	46.9	37	5.1	9.7	44.0	3.8	6	3	52.5	.6 2	242.5	1.9	-	
RRE 6045	25.8	11.1 27	.2	4 <.:	1.	8 1.4	4 304	4 .87	2	2 16.0	<.1	28.7	47	<.1	.7	4.2	12	.38	.019	19.2	5.4	.14 2	36 .	078 6	.45	2.768	3.90	32.2	45.6	35	4.7	8.6	42.4	3.7	6	3	55.7	.6 2	25.3	2.1		
6046	447.4	12.2 25	. 7 i	LS <	1 i.	4 1.2	2 317	7 .80	6 1	3 16.0	<.1	33.9	54	.2	.7	2.7	9	.52	.014	24.3	3.9	.09 2	216 .	071 6	.47	2- 281	3.91	77.3	44.2	44	3.5	10.9	44.0	4.3	5	4	53.6	.3 2	246.2	2.0	6.84	
6047	26.0	10.6 23.	.0	l5 <.:	1 1.	2 .	9 287	7 .91	1 1	3 15.5	<.1	32.3	53	<.1	.6	2.4	8	.43	.016	23.8	4.3	.10 2	. 22	072 6	.18 2	2.046	3.78	45.8	40.8	42	3.5	10.3	41.3	3.8	5	4	69.5	.4 2	234.4	1.9	5.64	
STANDARD DST6	12.5 1	29.6 35.	.4 13	75 .4	4 29.	9 13.0	0 966	á 4.09	9 2	5 7.5	<. i	7.0	312	5.5	5.3	4.7	114	2.30	.103	25.1 2	223.7	1.04 6	92 .	429 7	.06 1	1.671	1.39	7.9	53.8	52	6.3	15.0	8.5	.8	3	12	27.2	<.1	58.8	1.8	-	

Page 4

70 L 70 L	11100-2																																										HIVICITION
	SAMPLE#	Mo.	Cu I	Dh :	7n 6	A.	Ni C	`o Mr	n E.	a 1	c 11	Au	Th.	۲,	C4	Sh	B+	ν	Ca.	٥	La	r-	Мп	Ra	Τr	41	No.	ı r	u	70	Co	Sn.	v	Nh	Ta	Bo .	۲-	1.6		Dh	HF S	amolo.	
	JAY LLE	-	ppm pp			-																																_	-				
		ppn	ppii pj	ры р	hiii bh		dru bh	אַען ווא		- 00	iii ppiii	рри	рри	ppa	ppiii	וותאָק	Phr.	ррпі		<u>.</u>	μμιι	ppik		ppiii				• •	ppii	- Dpili	рин	ИМ	PPI	ppii	ppiir i	DDII D	Parr	ppa	•	ppn	DENR	K G	
	G-1	1.5	2.0 23	, ,	5.R <	1 2		4 700	0 2 5	.1 «	1 45	e 1	7 Q	ana	< 1 ·	e 1	2	56	2 74	097	27 5	12.2	66	1094	300	9 97	2 041	3.06	5	9 2	52	21	17.3	23 9	21	2	6	45 T	٠١ ،	42 n	a		
	5048		19.3 25																																								
	6049		15.2 23								-																																
	6050		11.0 14																																								
	6051		7.1 19																																								
	0051	23.0	1.1 13	٠.٤	•	. 1		0 202	2 .0	9	1 15.7	٠.١	33.3	01	3	, в	1			,013	20.0	3.0	.10	CE4	.005	0.72	. 1,300	, 7.00	77.3	41.7		7.0	9.3	30.7	3.0	3	,	10.3	. 3 2	57.9	2.2	0.40	
	5052	120.2	21.1 16	.9 .	58 .	.2 1	3 2.	2 369	5 .9	3	B 13.5	<.1	33.9	67	.8	1.1	6.3	13	.45	.017	31.1	3.6	.12	268	.088	6.29	1.298	4.02	179.4	44.2	52	9.7	9.4	33.1	3.1	5	3	86.1	4 2	29.5	2.2	6.62	
	6053	44.3	23.3 16	.2	21 .	.2	.8 1.	5 342	2 .8'	9 l	0 18.4	<.1	31.2	74	.2	1.2	6.9	11	, 49	.015	29.1	6.0	.11	303	.091	6,20	1.736	4.08	>200	41.4	48	8.9	10.0	35.9	3.6	4	3	44.5	4 2	230.7	1.9	6.90	
	6054	46.7	14.0 20.	.5 :	50 .	.4 1	.1 .	6 302	2 .7	0	7 17.9	<.1	33.0	60	.4	1.3	8.5	12	.41	.014	30.5	4.6	.08	300	.096	6.43	2.531	3.99	180.3	42.9	52	9.2	10.1	35.1	3.7	5	3	27.3	.2 8	25.5	2.0	6.04	
	6055	4.8	4.7 29	.2	17 .	.1	.6 .	5 475	5 .7.	1	1 21.0	<.1	19.4	88	,1	.7 1	1.2	7	.32	.021	20.5	2.3	.07	245	.056	7.08	2.709	4.18	33.7	37.9	35	7.8	13.3	36.9	4.3	6	6	47.0	.2 2	50.3	2.4	5.32	
	6056	4.6	5.9 28.	.1 1	16 <.	.1	.7 .	6 236	6 .6:	2	4 20.2	<.1	19.8	101	.1	.8	5.9	6	.36	.021	21.5	3.1	.07	279	.056	7.79	2.857	4.15	19.9	40.2	38	9.2	15.6	39.6	4.5	6	6	65.1	2 2	283.1	2.4	5,14	
1																																											
1	6057	4.0	4.6 25	.4	15 <.	.1	,4 .	9 99	9 .5	6 .	2 21.0	<.1	17.8	103	.1	.6 1	4.7	7	. 24	.019	18.8	3.1	.07	248	.051	6.98	2.202	3.87	18.1	35.3	34	11.0	12.0	37.1	4.1	7	5 1	11.5	.2 2	66.6	2.1	5.82	
	6058	5.6	5.1 25.	.7	12 .	.1	.8 .	6 94	4 .6	7 .	2 20.3	<.1	18.5	94	<.1	.8 1	8.2	7	.30	.019	19.2	2.5	.08	227	.050	7.10	2.057	4.40	54.0	38.5	34	10.4	12.0	33.6	3.9	,	5	93.3	.3 2	SB.2	2.1	6.00	
	6059	4.7	B.0 54.	.5	17 1.	1 1	.0 .	5 132	2 .6	6 4	4 20.9	<.1	17.8	73	.3	2.3 3	8.8	7	.34	.018	17.6	4.0	.07	245	.047	6.82	2.654	4.47	>200	35.1	31	10.6	13.1	32.4	3.7	4	5	43.9	.3 2	72.6	2.1	5.24	
	6060	1.9	5.3 29.	.3 1	10 .	.1	.8 .	4 83	3 .5!	5	3 14.8	<.1	18.0	90	<.1	1.0	1.1	8	.32	.019	19.3	2.5	.08	253	.046	7.00	2.493	4.05	156.7	37.6	34	11.0	12.9	30.4	3.3	5	5	56.0	:2 2	76.0	2.3	5.40	
	RE 6060	2.2	6.3 30	.8 1	13 .	.3	.9 .	4 87	7 .5	6	4 14.9	<.1	18.4	91	.1	1.0 1	0.2	8	.32	.020	18.7	3.2	.08	266	.046	7.12	2.455	4.10	153.1	36.5	34	10.8	12.3	28.8	3.5	5	5	58.1	.2 2	73.7	2.3		
ļ	RRE 6060	2.4	7.5 29.	.6	13 .	. 1	.8 .	5 79	9 .5	3	3 15.1	<.1	18.8	91	<.1	1.0	8.9	8	.33	.020	19.0	5.2	.08	267	.047	7.06	2.498	4,31	171.8	35.6	33	10.4	12.7	29.8	3.3	5	5	55.6	.2 2	71.9	2.2		
1	6061	5.1	6.5 28.	.5	18 .	2	.9 .	5 186	6 .79	9 1	0 15.8	<.1	16.9	98	.1	. 8 I	4.6	9	.36	.018	18.1	2.6	.10	247	.044	6.62	1.617	4.47	>200	35.1	32	18.7	11.5	29.9	3.4	5	5	75.6	.3 2	B6.3	2.2	5.34	
	6062	5.0	4.6 26.	.9 1	15 .	.1	.5 .	4 222	2 .69	5	5 15.7	<.1	17.6	97	.1	.7 1	2,5	8	.43	.018	18.6	2.3	.10	253	.047	6.77	2.174	3.94	100.1	34.9	33	13.1	11.6	30.7	3.4	5	5	49.4	.2 2	88.7	2.2	5.82	
	6063	7.5	5.4 32.	.1 8	20 .	1 1	.0 .	5 259	9 .65	9	7 19.2	<.1	17.8	103	.2	.8 1	3.2	9	.57	.019	19.6	3.3	.10	255	.047	6.87	2.126	3.89	77.7	34.1	34	14.0	12.0	32.9	3.B	6	5	70.0	.3 2	85.4	2.1	4.70	
	6064	8.6	3.6 31.	.6	14 .	4	.3 .	3 243	3 .6	1 1:	1 19.5	<.1	17.2	119	.2	L.4 2	3.4	8	.56	.017	18.5	2.3	.12	176	.048	6.37	.526	3.41	41,3	32.2	33	10.6	10.3	33.2	3.7	6	5	94.0	.2 2	45.B	2.1	5.80	
	6065	11.2	3.6 24.	.1 . 1	14 .	.1	.9 .	6 226	5 .71	8	7 13.5	<.1	17.7	116	.1	.9 1	0.1	9	.41	.016	18.2	2.0	.11	204	.044	6.53	.154	3.38	76.9	35.4	32	12.8	9.3	31.2	3.5	6	5 1	47.8	.4 2	42.8	2.2	6.64	
•	6066	113.1	12.5 23.	.6	23 .	.3	.4 1.	3 384	1 .94	4 1:	3 16.3	<.1	21.6	162	.1 1	L. 5	9.0	13	.83	.024	25.6	2.2	. 18	257	.081	6.67	. 242	3.17	78.5	38.0	44	13.0	10.8	34.8	3.8	7	5 1	32.4	.4 2	34.5	2.3	5.92	
	6067	131.7	18.2 21.	.9 2	25 .	3 1	.3 1.	9 410	1.0	7 2	11.6	<.1	36.8	124	<.1	1.5	B.4	12	.57	.019	31.9	4.6	.17	204	.103	6.59	1.188	3.61	26.0	40.1	54	8.4	11.8	27.0	3.4	5	4	64.1	.4 2	41.8	2.2	6.42	
ł	6068	0.815	12.9 19.	.6 &	60 .	.2 1	.0 1.	6 634	1.3	1 4	7 11.0	<.1	33.0	166	.3	1.3	9.6	24	. 69	.030	83.1	3.5	. 28	378	.104	7.45	2.093	3.95	169.8	39.1	132	50.7	11.5	23.5	1.9	9	9 1	37.1	.6 3	22.2	2.0	6.08	
	6069	154.9	26.6 32.	.7 2	26 1.	0 1	.8 3.	6 446	1.64	4 4	8 10.3	<.1	31.0	133	.1 1	1.6 1	5.6	20	.87	.026	35.4	5.5	.24	310	.107	6.75	1.515	3.63	46.3	38.3	60	17.9	12.3	24.1	2.3	6	4	90.B	.9 2	74.9	1.9	6.58	
	6070	28.9	6.4 21.	.8 8	25 .	3 1	.2 2.	2 355	5 1.00	0 10]4.4	<.1	28.3	118	.1	.8	6.8	15	.50	. 032	32.4	3.6	.24	279	.091	7.06	1.936	3.95	51.9	38.9	57	14.5	10.9	28.5	3.4	8	4	66.1	.4 2	92.9	2.1	6.14	
	6071	131.9	21.6 19.	0 4	45 .	2 9	.7 6.	3 1069	2.2	2 1	5 11.2	<.1	22.3	183	,4]	.8	5.4	44 1	. 29	.069	33.2	14.3	. 63	423	196	7.32	1.839	3.85	27.3	80.4	58	17.2	13.6	30.4	2.8	10	7	74.8	.8 3	18.7	2.5	6.86	
	6072	100.5	17.9 20.	.2 3	32 .	3 1	.9 2.	3 497	7 1.38	8 2	10.5	<.1	29.8	111	.3	.8	3.8	16	63	.034	36.8	4,7	. 24	441	.124	6.41	2.284	4.73	20.1	40.2	63	7.9	10,4	25.1	2.4	4	3	38.7	.6 2	30.7	1.8	6.58	
	6073	157.9	24.9 43.	.5 5	51 1.	0 2	4 3.	3 442	1.8	4 2	11.3	<.1	29.0	107	.3 1	.4 3	3.0	13	49	.022	30.9	5.7	. 19	280	.074	6.18	1.815	3.71	13.9	37.9	54	12.0	9.9	22.7	2.3	6	3	61.8	1.3 2	59.9	1.8	5.70	
f	6074	92.7	14.1 37.	.6 6	61 .	6 1	.5 1.	3 612	2 .90	6 1	5 10.9	<.1	27.9	111	.5	.7	6.0	16	. 64	.029	33.5	4.1	.22	403	.107	6.47	2,180	3.59	20.4	36.7	57	12.7	9.6	23.4	1.9	6	4	58.4	.3 2	61.6	1.7	6.86	
	6075	138.I	14.1 31.	7 5	SB .	5 I	.8 2.	1 803	3 1.48	8 1	12.9	<.1	28.5	210	.4	3	8.3	27	.66	044	35.3	5.5	. 33	366	. 155	6.93	1.180	3.96	36.1	51.6	62	15.7	10.9	33.0	2.1	7	4 1	53.4	.5 3	06.2	2.2	6.14	
	6076	38.5	18.1 37.	.7 2	22 .	2 1	.7 1.:	9 284	.86	6 1	2 20.9	<.1	36.8	93	.3 1	.2	5.4	8	.21	.017	27.5	3.0	.09	278	.086	6.95	1.812	4.16	68.1	52.4	48	4.9	10.3	40.1	1.3	6	4	47.4	.3 2	66.1	2.8	5.68	
	6077	27.6	8.3 64.	.3 3	34 .	8 1	.0 1.	0 439	.70	0 (6 13.2	<.1	33.4	62	.4 2	2.3 2	5.0	6	. 33	.013	21.8	1.6	.09	221	.055	6.70	1.696	4.23	12.8	39.1	38	4.5	8.1	27.7	2.8	4	3	38.0	.2 2	76.7	2.0	5.86	
	6078	159.9	20.0 23.	.3 2	22 .	1 1	.1 1.	9 561	1.00	6 1	17.8	<.1	32.8	86	.1	.8	3.5	13	.46	.022	32.5	3.1	.18	317	.102	6.53	1.786	4.61	18.6	38.9	57	6.3	9.7	27.9	2.9	6	3	30.9	.4 2	68.4	1.8	5.58	
	6079	74.6	5.0 56	.1 37	71 .	.2	.6 .	3 1012	2 .62	2 :	\$ 11.8	<.1	42.6	139	4.6	.5	.8	11 1	.39	.032	16.1	1.9	.20	350	.075	8.68	3.450	4.83	10.2	44.9	30	6.0	12.6	21.1	8.1	7	3	38.0	.1 3	07.3	1.9	5.62	
l	STANDARD DST6	12.4 1	.27.0 35.	.8 17	73 .	4 29	.4 12.	7 963	4.06	6 2	7.5	<.1	7.1	313	5.5 5	.4	4.6 1	10 2	.29	.101	26.0	219.4	1.03	688	.425	7.01	1.672	1.34	8.1	52.9	53	6.4	15.2	8.6	.8	4 3	z	26.9	<.1	58.1	1.8	-	
				_																_																							

Page 5

 		_	_	_		_			=					_									_								_==							_		_				
 SAMPLE#	Мо	Cu	Pt	20	п А	g I	15 C	.o Mr	in Fo	e A	5 l	J Au	Th	Sr	Ç	l Sb	В	i 1	Ca		P Li	a Ci	r F	Hg	Ва	T1.	A)	Na	K	W	Zr	Ce	Sn	Y	Nb	Ta	Be	\$c	Li	5	Rb	Hf	Sample	,
 	ppm	ppn	pp	п ррг	т ррг	n pp	om pp	m pps	m S	ž ppi	m ppr	п ррт	ppr	н рра	i ppn	т рірп	ppe	п ррп	1 2	ľ	\$ pp	n pp	TI	*	ррп	*	ı.	ı	ı	ppm	ppm	ррт	ррп	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	kç	l
G-1	1.0	2 6	20 8	3 79	5 <.i	1 4	5 4.	4 78(0.2.56	6	1 4.3	3 < 1	7.5	731	<.1	.1		2 52	2.6	2 .08	9 24.4	5 12.4	4 .6	62 1	025	.289 8	3.33	2.801	2.96	5	11.0	49	1.6	15.4	22 4	2 0	3	5	41.1	« 1	130 1	я		
6080																																							67.7					
6081	254.1	15.4	13.8	3 3	2 .1	1 2	0 1.	6 347	7 1.09	5	6 17.0	} <.1	31.0	120	4	.6	5.3	3 16	.63	3 .03	3 31.4	4 5.	4 .	21	434	.111 6	5.58	2.521	4.16	20.7	42.3	56	10.5	11.3	23.5	2.0	5	3	44.0	.5	254.0	1.8	5.26	i
6082	158.5	7.4	26.4	1 2	, ,	1 1.	7 1.	1 427	7 .9	2 .	4 15.1	1 <.1	27.1	. 121	2	1.2	21.0	14	. 70	.03	1 30.	5 5.	2 .	21	444	.101 6	5.39	2.032	3.88	24.5	39.2	53	10.5	9.6	22.8	1.9	5	3	63.8	.4	254.4	1.7	6.64	
6083	213.7	6.4	68.4	31	1 1.3	2 1.	9 1.	0 455	5 .88	8 !	5 12.1	i <.1	27.7	139	.4	4.0	109.	1 13	.82	2 .02	9 30.0	4.0		21	421	.089 6	5.26	1.093	3.81	20,5	37.0	54	12.1	10.3	21.5	2.0	5	3	147.2	.4	279.0	1.7	6.42	!
6084	126.6	6.6	124.	3	2.3	7 1.	.4 .	8 566	6 .9:	3 1	9 11.1	1 <.1	31.3	109	.5	7.6	279.	2 12	86	.02	5 24.	7 2.5	9 .2	23	348	.078 6	5.88	1.322	4.09	16.2	40.3	45	19.1	10.3	19.4	1.8	6	3	168.8	.5	286.8	1.8	6.76	i
6085	126.9	7.7	60.9	6	5 1.5	5 2	.1 .	7 743	3 _90	0 7	7 11.0	J <.1	29.8	146	7	2.6	41.	7 15	1.5	.03	1 24.	5 4.	3 .2	26	325	.095	5.20	. 343	3.49	18.1	40.2	44	19.2	10.8	20.7	1.8	5	3	203.7	.4	277.8	1.9	6.24	
6086	80.7	6.0	70.2	2 54	4 1.3	3 1.	3.	7 677	7 .80	0 /	4 10.4	4 <.1	29.2	132	3	.7	B.6	15	.84	.03	0 23 3	3 4.5	5 .2	25	355	.097 6	5.67	. 828	3.88	17.8	40.7	41	14.0	10.9	22.1	1.9	7	3	158.2	.2	274.5	1.8	6.22	!
6087																									-						-						_		197.4					
6088	49.4	7.7	60.5	72	2 .7	7 1.	6 1.	2 607	7 .90)	7 8.0) <.1	31.7	142	7	. 6	9.1	13	. 55	. 03	0 25.8	3.5	2. 6	22	334	.092 6	5.39	.350	3.74	18.8	45.9	46	10.3	11.2	23.3	2.6	7	3	247.1	.4	257.2	2.2	6.26	
6089																																							213.8					
6090																																							320.5					
6091																																							286.7					
6092																																							297 . 8					
6093	199.1	6.0	39.2	4:		. 1.	5 .	3 612	2 .94	1 16	1 /.4		28.9	1/1	. 3	.5	4.8	. 16	.56	. U2	9 25.	3.5	.2	27	319	.094 6	1.42	.081	3.56	18.1	37.5	4/	18.9	9.5	22.0	1.7	8	4 .	353.4	.4	274,0	1.8	6.42	
6094	117.1	6.8	40.3	70		5 1.	9 1.	0 661	1 .98	8 :	7 11.0) <.1	28.4	146	.5	. 6	6.2	2 17	.90	.03	4 26.7	3.5	2	27	387	.105 E	.41	.860	3.83	20.6	39.6	46	19.1	10.6	21.0	1.7	7	4	205.6	,4	296.4	1.6	7.16	
6095	251.3	6.1	54.6	7	7 .4	1.	7 1.	3 733	3 1.08	8 1	16.4	4 <.1	29.0	142	7	.5	2.5	19	.74	.03	5 27.2	5.3	2 .2	29	416	,121 €	.73	1.860	3.81	22.8	36.5	47	16.9	10.7	24.9	1.8	7	4	149.4	.3	287.3	1.8	6.48	
6096	106.0	6.4	54.6	5 71	1 .6	5 1.	8 1.	1 695	5 1.01	1 (3 15.6	5 <.1	28.2	144	. 5	.5	3.5	18	.66	. 03	4 25.4	4.3	L . 2	27	393	.116 6	.68	1.002	3.92	28.3	38.1	46	17.4	10.1	23.3	1.7	7	4	200.9	.3	299.1	2.0	6.20	
6097	70.8	6.6	23.6	38		1.	6 1.	1 435	5 .90	ŭ f	5 13.2	2 <.1	29.3	126	.2	6	. 9	14	. 60	.02	6 26.1	3.€	2	21 3	355	094 6	.38	1.482	3,89	20.4	35.8	45	8.5	10.3	22.9	2.1	6	4	122.3	.3	247.3	1.9	6.92	
RE 6097	69.7	6.9	23.2	33	3 .1	1 1.	5 1.	0 429	9 .94	1 6	5 12.6	5 <.1	29.3	122	I	. 6	. 8	3 14	. 58	.02	6 27.0	4.5	2	21 :	355	.099 6	.33	1.413	3.80	20.6	38.7	46	8.5	10.0	22.5	2.1	6	4	121.6	.3	248.0	1.9	٠	
RRE 6097	67.4	7.8	23.8	37	7 ,1	l i.	4 1.	2 44]	1 .99	5 /	5 13.4	t <.1	30.4	130	.2	.7	.8	3 14	.59	.02	7 26.6	4.2	2	21 :	357	.101 6	. 26	1.464	3.79	21.3	39.5	45	8.5	10.4	23.7	2.3	6	4	121.8	.3	260.9	1.9		
6098	91.4	7.6	70.5	45	5 1.1	1.	6 1.3	3 336	6 .96	6 17	13.1	L <.1	29.4	150	. 2	1.0	B.5	16	.52	.02	6 28.9	3.7	2	22 :	377 .	112 6	. 62	.821	3.89	25.1	38.4	49	8.5	11.9	27.7	2.3	7	4	176.8	.4	237.1	1.9	6.16	
6099	13.2	8.1	21.6	26	<.1	1.	3 .	7 228	8 .71	1 11	17.4	1 <.1	19.7	169	.1	.8	20.4	1 9	.37	.02	20.5	2.9	1.1	5	292	076 6	. 65	. 223	3.92	10.1	35.4	37	11.6	12.7	39.6	5.1	9	5	376.7	.2	228.2	2.3	5.68	
6100	49.7	12.4	26.9	35	5 <.1	1.	3 1.3	3 325	5 .87	7 13	9.5	< .1	23.1	228	.4	1.0	2.6	11	.46	.02	6 31.0	2.9	.1	8	304	.099 6	.48	.110	3.26	22.6	40.2	51	5.4	14.0	38.0	4.2	10	4	413.7	.4	214.3	2.1	6.42	
6101	1.7	5.7	18.8	17	7 <.1	1.	1 .	6 211	1 .59	9 5	7.9	4.1	18.0	175	2	.7	6.7	7	.32	.02	19.0	1.4	.1	5	155	058 6	.37	.086	3.09	14.6	37.9	33	5.9	13.1	39.4	4.6	10	5	325.2	.2	211.6	2.3	4.14	
***												1							47						20.6	655 6		677	2.00		45.7						••		233.9					
6102																																							233.9 124.2					
6103 6104																																							124.2 173.0					
6105						-																															-		173.0					
6106	-																																						188.5					
0100	140.0					• •						•	00.0																•		•••					•	·		100.0				0.10	
6107	314.9	4.9	25.1	15	5 <.1	1 1.	6 1.	3 295	5 1.00	a 19	5.8	3 <.1	26.6	140	.3	1.8	20.2	11	.49	,01	5 20.9	3.1	1	2	175 .	043 4	.86	.092	3.15	>200	32.5	35	19.6	8.8	20.4	1.8	7	4 /	266.5	.4	245.6	1.9	5.80	
6108	102.4	9.2	21.4		3 <.1	1 1.	1 1.	6 344	4 1.09	5 9	5.2	2 <.1	28.5	132	.1	1.9	8.4	10	.71	01	2 21.3	2.9	.1	3	197 .	.062 5	.49	.094	3.14	>200	33.5	35	6.3	9.4	27.9	2.9	6	5	141.5	.4	217.2	2.0	6.84	
6109																																							162.3					
6110																																							228 . I					
6111	616.8	26.4	46.4	9	9 <.1	2.	0 3.	4 368	8 1.87	7 35	10.3	3 <.1	25.5	166	.9	7.8	242.7	11	1.03	.01	7 18.5	5.0	.1	15 2	234	.045 4	. 69	.052	2.35	>200	37.0	32	27.4	7.3	26.2	2.1	8	4 7	202.6	1.2	187.1	1.8	5.54	
STANDARD DST6	12.5	127 6	35 3	176	5 4	1 29	9 13	3 966	5 4 05	B 20	5 7 4	1 < 1	7.0	3)2	5.6	5.3	4 7	113	2.29	.10	2 25 2	. Z27 3	1.0	14 6	689	421 7	.05	1.671	1.37	7.R	53.9	53	6.2	14.9	8.6	.7	3	11	27.3	<.I	58.7	1.7	_	
 2.7200-00 0070																																								 -				

Page 6

	SAMPLE#	Mo	Cu	Pb	Zn	Ág	Ni (Co Mn	Fe	As	U	Au Th	5r	Cd	Sb 8	31 1	/ Ça	ρ	La	Cr I	ng Ba	s Ti	ΑÌ	Na	K I	/ Zr	Ce	5n	Y ND	Ta	Be	Sc	Li	\$	Rb F	if San	to le	
		aom	non	PROP	TOOT	nom i	DOM D	om com	¥	DDM	DOM D	om den	Dom	DOM	DOM DO	om do	n t	¥	DOM	DOM	\$ 000	n I	1	r	K DEX	пооп	DOM	ррт рр	m DOM	DOT	non r	лки	DÓM	1	nom nom	ITR	kσ	
			P.P		P P							. ,,,,					_	_			. ,,										,, ,	,,			, , , , , , , , , , , , , , , , , , ,	-		
	G-1		- 1	77 1		- 1 ·	20.4	4 707	2 67	,	. 1 .		721	- 1	. 1	2 5	1 7 67	DOA :	2n e		E 1045	. 204 0		710 2 0		10.0	67	1.5 16.	n 44 4		-		10.0			,		
																																-						
																												11.0 10.										
	6113																											9.1 13.					-					
	6114	34.5	131.3	103.5	293	1.1 1	7.9 33	.9 2178	7.16	24	2.0 <	.1 3.2	708	2.1	1.4 8.	5 275	6.75	.155	9.2	25.2 1.9	95 904	4 .445 6	5.48 2	.226 1.9	1 32.3	17.1	20	7.8 12.	7 4.2	.3	4	21	61.4	.5 10	6.3	8 8	5.60	
	61,15	1.6	122.0	7.4	102	.22	8.8 34	.5 1481	7.75	9	8.9 <	1 1.1	635	.2	1.0 .	4 313	6.23	. 163	6.3	51,6 2.	51 625	5 .651 5	5,62 2.	316 1.7	5 15.6	16.6	16	1.2 14.	4 2.7	.2	4	24	58.1	.2 6	1.0	9 5	5.72	
	6116	2.5	108.2	6.5	189	.2 4	1.8 41	.0 1619	8.79	4	.8 <	.1 .9	730	1.9	1.5 6.	0 349	6.15	.156	6.1	73.2 3.	74 807	7 .727 5	5.29 2.	291 1.7	3 3.2	15.7	15	2.7 15.	3 2.6	.2	2	24	49.0	.2 3	3.7	8 8	6 94	
	6117																											.9 13.				-				-		
	6118																											1.8 14.										
																																				-		
	6119		-																									1.9 16.			-	_						
	6120	74.1	8.9	14.6	17	.1	.4 1	.4 265	.84	6 1	4.6 <	1 30.7	65	.1	.7 4.	5 13	. 49	.016	31.7	3.9	0 286	3 .092 (5.78 2.	.734 4.1	8 151.7	41.4	55	8.9 11.	2 30.3	2.7	4	3	22.6	.4 26	3.0 1.	B 🖯	7.02	
	6121	96.5	27.8	15.6	16	<.1	.3 2	.1 327	1.00	12 1	8.8 <	1 33.5	58	.1	.9 3.	6 1	.41	.016	32.4	2.6	19 25	7 .098 6	5.81 2.	670 4.0	2 157.0	42.0	57	8.8 11.	7 35.4	3.1	4	3	24.7	.6 25	2.1 2.	0 6	5.94	
	6122	86.5	22.8	16.3	25	<.1	.4 1	.7 293	1.14	15 1	B.3 <	1 33.7	61	. 2	.9 7.	9 17	.42	.014 3	31.6	5.1 .0	9 309	.080 6	5.64 2.	799 3.9	4 91.1	43.6	54	11.4 10.	7 27.7	2.5	4	3	26.8	.5 26	3.8 1.	9 6	5.82	
	6123	88 3	14 7	18 0	51	.1	<.1 13	.8 482	.99	11 2	1.1 <	1 32.3	63	.5	9 7	2 11	.61	.016 3	31.7	3.9 .	1 312	.095 6	5.61.2.	695 3.9	3 142.1	39 7	54	15.2 11.3	2 31 1	2 A	4	3	27 1	5 25	9 A 1	7 6	5 14	
	6124																											18.0 11.										
	6125																											20.7 11,										
	6123	78.1	1.5	20.5	34		1	.0 321	.02		0.2 -	1 33,u	43		1.1 13.	• 1		. 414 3	23.4	1.0 ,	13 21	.072).43 Z.	.439 3.0	U 130.:	30.9	30	20.7 11.	1 25.1	2.4	-	3	44.5	.3 21	3.0 1.	,	.42	
						_								_																								
	6126																											19.7 11.			-	-						
	6127	72.6	2.4	38.7	18	.2	1.2	.6 408	.71	5 1	1.8 <	1 30.9	55	.1	2.0 10.	7 11	.74	.014 2	29.7	2.0 .:	2 233	.074 6	5.34 2.	.501 3.7	1 51.3	33.5	50	17.7 10.	8 28.3	2.7	5	3	44.0	.4 25	7.4 1.	7 5	5.42	
	6128	71:4	1.6	35.7	64	. 2	.4	.2 377	. 45	2 1	2.6 <	1 31,9	45	.5	.9 6.	4 9	.58	.013 3	30.6	2.7 .0	IB 245	.061.6	5.27 2.	641 3.5	8 166.2	37.1	52	14.5 10.5	9 20.8	2.1	7	3	44.0	.2 25	8.3 1.	7 6	5.56	
	6129	91.7	3.1	37.9	43	.1	1.1	6 397	.81	1 1	7.1 <	1 34.0	60	.3	1.8 18.	0 11	. 66	.016 3	38.3	4.2 .	9 334	.085 6	.43 2.	706 3.8	7 153.1	39.6	64	14.6 12.0	0 25.5	2.3	5	2	29.0	.3 26	1.3 1.	7 6	5.20	
	6130	89.1	5.8	64.2	32	.4	1.4	7 494	.91	2 1	3.1 <	1 34.7	56	.3	4.2 49.	8 12	.80	.018 3	34.6	7.9 .1	1 286	.083 6	5.47 2.	392 3.5	9 >200	37.4	58	22.6 12.1	8 26.3	2.5	7	3	80.2	.5 28	3.3 2.	0 6	5.54	
	6131	51 R	3.0	47 2	22	7	A	5 465	79	1 1	19 <	1 31 7	52	3	2 8 35	n 17	94	015.3	2 4	3.5	3 259	076.6	4R 2	642 3 6	7 193 4	36.5	53	24.4 12.1	1 24 5	2 4	5	3	57 4	4 27	1 4 1	0 4	64	
	RE 6131																											25.0 11.4				-						
			•										-															25.5 12.1			-					-	•	
	RRE 6131					-																														_		
	6132			-																								14.7 10.5						-				
	6133	81.1	5.8	24.2	16	<.l	.4	.6 338	. 61	3 1	5.7 <.	1 36.5	56	. 1	.7 3.	8 9	. 60	.014 3	34.1	3.3 .0	9 244	.082 6	1.24 2.	403 3.5	3 43.5	36.7	56	12.9 10.	9 30.2	2.8	6	3	42.5	.3 23	0.7 1.	9 6	5.56	
																					•																	
	6134	51.3	6.3	36.8	23	.2	1.6 1.	0 305	.72	4 1	3.2 <.	1 31.7	60	.1	1.8 17.	1 9	.61	.014 3	11.8	3.2 .1	.2 222	.065 6	.44 2.	161 3.6	6 91.7	40.2	55	14.4 10.0	3 23.9	2.6	5	3	48.9	.4 24	8.9 1.	8 5	.74	
	6135	50.8	8.7	30.8	28	.1	1.2 1.	4 471	.75	2 1	5.3 <.	1 32.1	61	. 1	.9 5.	5 12	. 62	.017 2	29.2	3.2 .1	2 218	.094 6	.30 Z.	543 3.5	8 62.7	38.2	51	12.8 10.9	34.3	3.2	5	3	23.7	.3 21	3.3 1.	7 6	.06	
	6136	59.9	5.1	22.6	35	.1	1.0	8 399	.65	1 1	7.5 <.	1 36.6	68	. 2	3 1.	7 10	.67	.015 3	33.4	3.4 .1	2 250	.075 6	.68 2.	615 3.7	5 63.7	40.2	58	4.6 10.9	25.7	2.6	6	3	51.5	.2 25	4.1 2.	0 5	.98	
	6137																											12.0 9.7										
	6138				-																							15.2 11.5										
	6138	20.1	3.U	21.5	31	.1	4	429	. 30	3 1	+.9 ~.	1 34.1	01	. 2	.4 2.	, 12	/ 0	.01/ 3		3.0 .1	3 223	.077 6	7.33 2.	0/0 3.0	3 3u.c	40.5	04 .	15.2 11.3	25.1	2.5	,	3	01.0	.2 20	4.5 1.	a 6	.58	
	6139	79.5	5.4	18.6	13	.1	1.1	.3 309	. 59	1 1	3.1 <	1 33.9	65	<.1	.4 .	7 10	.59	.013 2	9.4	2.6 .1	3 196	.062 6	.40 1.	904 3.6	6 68.7	41.9	51 3	10.5 10.0	28.0	2.9	5	3	46.9	. 2 23	5.9 2.	1 6	.70	
	6140	131.1	4.8	18.6	21	<.1	i.0 .	4 310	.56	2 1	1.6 <	1 36.2	64	<.1	.4 .	8 11	59	.016 3	12.6	3.3 .1	2 237	.086 6	.46 2.	384 3.8	4 20.6	41.0	57 1	11.7 10.0	28.8	2.7	5	2 .	45.6	.1 24	5.0 2.	0 5	.10	
	6141	55.3	3.6	23.6	18	.1	8.1	2 360	.61	2 1	3.8 <.	1 34.2	55	.1	.4 2.	9 12	.80	.013 3	0.5	3.8 .1	3 196	.060 6	.54 2.	777 3.7	3 38.1	40.0	52 1	15.9 10.4	25.5	2.6	-8	3	58.5	.2 26	5.2 1.	8 7	.08	
	6142	39.8	7.1	28.0	48	.1	1.1	.3 353	.44	1 1	1,4 <	1 31.8	55	.5	.3 1.	1 10	.72	.014 3	0.1	3.7 .1	1 232	.060 6	.57 2.	720 3.7	4 48.7	36.4	51 1	11.5 9.8	22.2	2.3	5	2 .	35.8	.1 25	1.0 1.	8 5	.70	
	6143	48.1	4.6	27.5	46	.1	1.3	2 319	.46	2 1	5.0 <	1 36.5	54	.4	.2 .	6 5	.63	.014 3	3.1	4.7 1	1 227	.061 6	.38 2.	930 3.6	9 23.4	41.1	58 1	15.8 9.6	22.8	2.3	6	3	45.0	.1 26	4.3 1.	8 6	.62	
	-		.,		-		-		•																													
	STANDARD DST6	1251	128 B	34 1	174	4 24	2 12	2 969	4 08	25	7 3	1 6 7	307	5 6	534	6 109	2.30	100 2	482	23.6) (4 6P7	427 7	05.1	613 1 2	R 79	51 9	52	5 9 16 6	9.4	R	3	16	24 2 <	1 5	5 Q 1	7		
	3:000000 0318	12.3	120.0	J4. I	1/4	.4 3	2.2 13	. 208	4.U0	23		4 0.7	307	J. 0	J.J 4.	- 103	2.30	. 200 2	u Z	20.0 1.0	- 00/	.44, ,	. 73 1.	D10 1.0	, ,.3	34.9	ac.	V.2 44.E	, 0.4	. 0		40 .		. 2 31	7.3 1.	<u>, </u>		

Page 7

Series Pro De De 10 de 1	MORE PROPE	111012															_																										nu	E AIGNETTIN
Company Comp		CAMPIES	Ho.	Cu Di	7.0	40	N1	ſo	Mn	Fa	åc	11	Au	Th	Sc	Cd	Sh	Ri	v	۲a	ρ	l a	Cr	Ma	Ra	T1		Na.	K	⊌.	70	re-	Sn	Y	Nh.	Ta	Ře.	۲,	11	۲.	Dh	HF	Samala	
G1 13 2 4834 89 <1 40 45 159 262 4 44 4 5 159 782 1 4 1 2 3 281 48 7177 4 1 32 27 7 8 5 5 21 27 588 27 4 284 4 2 45 159 262 4 44 4 5 159 782 4 4 4 4 1 2 3 281 48 7177 4 1 32 2 8 7 7 8 5 5 21 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2		SMITCHE			-	•				-		-	-				-							-																				
644 28.2 6 8.3 7 9.5 85.2 7 5 3 24.4 (2.91.10 4.0 95 4.6) 1.4 2 7 8 8 9.5 8 3 8 9 1 9 1 10 6,4 6 66 68 28 9 3 9 1 10 10 10 10 10 10 10 10 10 10 10 10 1			- PPIII	Divis Divis	п ррп	PPRI	ppii	Dha			фы	hibiti h	d'u	PPIII	Spin	ppn 3	JJAIN	hhw.	htve	•		- ppil	μи		PPIII					ppn	рун	ppia	hNu	Phil	- Phi	Mu	Phu.	hthan	Phil		- Upin	hhur		
644 28.2 6 8.3 7 9.5 85.2 7 5 3 24.4 (2.91.10 4.0 95 4.6) 1.4 2 7 8 8 9.5 8 3 8 9 1 9 1 10 6,4 6 66 68 28 9 3 9 1 10 10 10 10 10 10 10 10 10 10 10 10 1		6.1	1 2	2 4 20 4		- 1	4.5	4 5	ann ·	2 62				2 0	704		. 1	2	E 7	2 75	000	27 0	9.1	67	1126	204		2 964	2 24	2	10.1		1 0	15 6	21 6	1 0	2	e	42.1	- 1	122.2	,		
646																																												
644 624 7.6 64 1 3. 3 1.3 4. 44 57 19 13 19 4. 19 13 19 13 19 4. 19 13 1		*																																										
544 530 5 231 5 1 1 2 44 8 79 83 7135 4 1 3 2 5 3 5 2 9 3 8 7 15 4 1 3 2 5 5 5 3 10 9 7 10 4 42 4 5 1 1 2 20 85 68 299 39 46 47 60 17 10 2 26 26 26 8 5 4 90 4 1 24 22 1 8 5 6 1 4 4 1 3 2 9 4 6 4 1 2 1 1 4 5 5 5 5 3 10 9 7 1 2 4 1 2 2 1 8 5 6 1 4 2 1 3 1 2 1 4 4 1 2 1 2 2 1 2 2 1 8 5 6 1 4 2 3 1 3 1 4 8 4 79 8 3 7 11 5 4 1 1 8 5 1 5 2 1 3 1 8 1 9 7 1 4 4 1 1 2 1 2 2 2 1 8 5 1 4 4 1 1 3 2 9 4 6 7 15 4 1 1 1 2 1 2 1 2 4 1 1 1 2 1 2 2 4 1 4 4 1 1 3 5 9 5 6 7 15 4 1 1 1 2 1 2 1 2 2 1 1 6 1 1 1 2 1 2 1 2																																												
546 51.0 5.27.1 55 .1 1.8 4 70 6.0 171.5 < 1 31.2 67 5 3 1.0 9 .77 014 47 6 45 1.77 024 271 684 2799 3.78 559 384 70 14.8 16.1 256 2.3 8 3 61.7 1 251.2 1.8 6.54 648 648 7 .68 1.9 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0																																												
949 964 7, 1273 55 51, 18 4 337 46 12139 53 30.0 51 2 3.3 5 50 300 592 35 14 40 125 25 30 30.6 54 54 2682 30 20.6 589 484 5821 484 13 357 56 1515 55 53 35 56 15 2 3.3 16 5 2 3.3 16 14 15 25 30 36 59 14 15 23 25 36 59 30 45 28 32 32 14 14 15 25 26 59 3 47 41 127 127 12 54 5 3 50 44 11 12 54 30 36 59 14 15 25 20 36 59 14 15 20 36 59 14 15 25 20 36 59 14 15 20 36 59 14 15 25 20 36 59 14 15 25 20 36 59 14 15 20 36 59		6147	103.9	3.8 30.4	2 43	. 4	1.1	.2	443	. 40	15 [۰ 0.0		33.2	90	. 3	. 2	.9	3	.00	.010	30.4	2.1	.12	220	.033	9.63	2.390	3.90	40.0	49.7	φV	11.7	10.2	20.0	2.0	a	3	49.0	۲.1	254.2	1.6	6.20	
949 964 7.1273 85 1, 8 4 337 44 12139 53 30.0 51 2 33 35 5 90 300 522 143 6.08 195 646 647 282 386 265 265 94 303 30.0 5 2 34 5 1 242 12 6.38 95 65 64 44 45 14 3 57 65 15 15 6 5 3 45 6 5 2 13 10 6 61 22 5 14 6 10 6 30 6 99 6 90 6 5 2 6 5 13 14 5 15 20 6 10 6 5 2 6 5 1 17 6 6 10 6 99 6 90 6 5 14 6 15 22 6 10 6 6 10 6 10 6 99 6 90 6 14 6 15 22 6 10 6 10 6 10 6 99 6 10 6 10 6 10 6 99 6 10 6 10		714D	51 A	r a a 7					100		12.1	٠.				-	,		•	77	014	** *		17	040	021		1 2 750	2 70	26.0	30	70	14.0	10.1	25.0				60.3	,	261.0			
619																																												
6131																																									-			
91.9	ļ																																					-						
86 6152 109 7 4,2 18 37 < 1 1.0 3 284 57 8 17.9 < 1 31.2 68 3 2 2 5 8 55 015 95.1 27 17 27 077 64 5 287 189 11.2 37 8 65 135 108 25 6 2 4 6 3 667 1 252.1 18 5 67 6153 127 7 62 4 1 10 7 7 77 64 1 12 15 4 1 12 15 4 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																																												
8E 6152		6152	97.9	4./ 21.8	36	<.1	1.1	.5	403	.58	8 1	/./ <	.1 3	51.U	58	. 3	.2	. Б	8	.56	. 016	36.7	b. b	.17	268	.077	6.75	2.946	3.89	10.8	41.7	6/	14.0	11.1	26.9	2.7	5	3	69.4	. 1	256.7	1.9	6.40	
8E 6152								_								_		_																			_							
6157 72.8 7 28 × 1 1.0 7 377 × 44 11.21 × 1 32.6 131 × 2. 4 8 5 6 - 52 016 91.8 × 2.9 1.5 136 885 665 2.306 4.5 8 1.7 3.9 6 52 18 × 1 4 7 7 11.6 1 14 13.3 × 1 2.6 13.6 1.5 7 5 1.6 10.1 2 27.3 1.7 1.2 21 .90 6.36 .73 3.9 88.9 37.2 44 6.5 14.7 35.9 3.7 4 4 94.2 3.3 16.8 1.8 7.55 6155 155.8 38 37.1 52 7 .2 7 .5 41.6 1 41.3 3.0 71 .3 1.0 6.6 8 .63 0.00 22.7 3 7 .9 .21 245 .006 5.87 .378 3.54 4.10 23.3 40.0 65 19.7 11.4 86 2.2 5 3 194.5 1.9 6.34 6157 72.8 3.8 24.9 24 1.7 3.3 345.58 7 6.9 × 1 35.5 8 × 1 4 5 .9 × 1 4 5 .5 14.7 35.9 3.7 4 4 .5 14.7 5 .9 × 1 4 .5 14.	1					-	-																													-	-	-					-	
6154 625 9.8 2.12 18 x 1	ļ																																							-			•	
6155 16.8 3.6 37.1 52 .2 .7 .5 419 .62 7 12.7 <1 34.7 86 .2 .8 8.1 10 .30 62 137.1 1.1 .20 252 .089 6.35 .364 4.10 23.3 42.0 65 10.7 11.4 26.6 2.2 5 3 154.5 .3 264.6 1.9 6.74 6156 108.6 3.1 57.8 46 .4 .9 .4 455 .55 6 10.1 ×1 32.0 71 .3 10 .6 .6 8 .63 020 28.7 .9 .21 245 .076 5.87 .978 3.75 16.7 34.5 56 12.7 11.2 20.6 1.9 5 3 128.7 .2 257.3 1.8 6.84 6157 72.8 3.8 2.4 22 ×1 .7 .5 419 .62 7 11.4 13.0 19 5 .1 .4 .5 1 .3 .10 6.6 8 .63 020 28.7 .9 .21 245 .076 5.87 .978 3.75 16.7 34.8 42 10.0 11.9 259 2.6 5 3 111.1 2 255 5.2 0 5.66 6158 147.1 44.28.0 3 1 1 .1 0 .6 458 60 7 110.4 1 .31 .1 0 .9 1 .4 .5 1 .3 .1 0 .6 .1 .4 .5 1 .3 .1 0 .6 .1 .4 .5 1 .3 .1 0 .4 .5 1 .3 .3 .4 .5 .4 .3 .4 .5 1 .4 .5 1 .4 .5 1 .3 .4 .5 1 .4 .5 1 .4 .5 1 .3 .4 .5 1 .4						-																									-	-					-							
6156																																												
6157 72.8 3.8 24.9 24 .1 7 3.9 45 58 7 5.9 <1.3 5.5 84 <1 .4 .6 7 .55 .06 22.8 1.3 1.8 250 .074 6.44 1.251 4.25 16.4 39.8 42 10.0 11.9 25 0 2.6 5 3 11.1 .2 256.5 2.0 5.66 6155 147.1 4(3.0. 3) 1 1 1.0 .6 458 68 7 10.0 <1 33.1 90 <1 .4 .5 11 .57 .021 31.2 2.2 23 262 .099 6.39 2.216 4.07 17.6 37.4 60 11.5 11.4 <18.2 2.5 5 3 55.9 1.9 7.46 6159 67.3 6.8 22.4 25 <1 .7 .6 439 62 71.1 <1 33.0 90 <1 .4 .5 11 .57 .021 31.2 2.2 23 262 .099 6.39 2.216 4.07 17.6 37.4 60 11.5 11.4 <18.2 2.5 5 3 55.9 1.9 7.46 6159 67.3 6.8 22.4 25 <1 .7 .6 439 62 71.1 <1 33.1 90 <1 .4 .5 11 .57 .021 31.2 2.2 3 62 .099 6.39 2.216 4.07 17.6 37.4 60 11.5 11.4 <18.2 2.5 5 3 55.9 1.9 7.46 6.92 11.7 3.5 25.4 99 <1 .3 .4 514 .59 6 9.0 <1 31.1 11.3 2 .3 .4 11 .63 .022 22.5 5 2.5 .20 259 .085 6.13 2.178 3.67 13.8 36.4 40 12.8 10.5 20.6 1.9 6 3 104.7 .1 251.9 1.8 6.74 11.4 11.4 11.4 11.4 11.4 11.4 11.4 1	,	6155	156.8	3.8 37.1	52	. 2	.1	.5	419	.62	7 1	2.7 <	.1 3	4./	86	.2	.8	8.1	Ţΰ	. 58	.021	37.1	1.1	. 20	252	.089	6.35	.364	4.10	23.3	42.0	65	10.7	11.4	26.6	2.2	5	3	154.5	.3	264.6	1.9	6.74	
6157 72.8 3.8 24.9 24 .1 7 3.9 45 58 7 5.9 <1.3 5.5 84 <1 .4 .6 7 .55 .06 22.8 1.3 1.8 250 .074 6.44 1.251 4.25 16.4 39.8 42 10.0 11.9 25 0 2.6 5 3 11.1 .2 256.5 2.0 5.66 6155 147.1 4(3.0. 3) 1 1 1.0 .6 458 68 7 10.0 <1 33.1 90 <1 .4 .5 11 .57 .021 31.2 2.2 23 262 .099 6.39 2.216 4.07 17.6 37.4 60 11.5 11.4 <18.2 2.5 5 3 55.9 1.9 7.46 6159 67.3 6.8 22.4 25 <1 .7 .6 439 62 71.1 <1 33.0 90 <1 .4 .5 11 .57 .021 31.2 2.2 23 262 .099 6.39 2.216 4.07 17.6 37.4 60 11.5 11.4 <18.2 2.5 5 3 55.9 1.9 7.46 6159 67.3 6.8 22.4 25 <1 .7 .6 439 62 71.1 <1 33.1 90 <1 .4 .5 11 .57 .021 31.2 2.2 3 62 .099 6.39 2.216 4.07 17.6 37.4 60 11.5 11.4 <18.2 2.5 5 3 55.9 1.9 7.46 6.92 11.7 3.5 25.4 99 <1 .3 .4 514 .59 6 9.0 <1 31.1 11.3 2 .3 .4 11 .63 .022 22.5 5 2.5 .20 259 .085 6.13 2.178 3.67 13.8 36.4 40 12.8 10.5 20.6 1.9 6 3 104.7 .1 251.9 1.8 6.74 11.4 11.4 11.4 11.4 11.4 11.4 11.4 1	1		100.6																	C3					245	076			1 36	16.3			10.7					^						
6158 147.1 4.4 29.0 3 1 1 1.0 6. 458 68 7 10.0 < 1 33.1 90 < 1 .4 .5 11 57 .021 31.2 2.2 .23 282 .099 6.39 7 2.16 4.07 17.6 37.4 60 11.5 11.4 24.8 2.6 5 4 87.3 .2 255.8 1.9 7.46 6159 673 6.8 22.4 25 < 1.7 .5 439 .62 7 11.1 < 1 33.0 95 .1 .4 .3 8 .5 6.10 5 21.7 3.0 .19 285 .077 6.00 2.273 3.77 16.7 33.8 33 7.8 10.0 23.2 2.5 5 3 55.9 .2 228.5 1.8 6.92 11.7 7 3.5 25.4 39 < 1 .1 8 .4 514 .599 6.9 0 < 1 31.1 11.3 2 .3 .4 11 63 .022 25 .5 .5 20 25 .05 .05 6.10 5 21.7 3.7 16.7 33.8 34 .4 40 12.8 10.5 20.6 1.9 6 3 104.7 1 253.1 6.74 16.7 11.2 2.3 .4 11 6.3 10.2 25 .5 .2 25 .5 20 25 .05 .05 6.16 2.7 3.7 16.7 33.8 34 .4 40 12.8 10.5 20.6 1.9 6 3 104.7 1 253.1 6.74 1.0 10.1 11.2 2.3 .4 11.2 2	1																																											
6159 67.3 6.8 22.4 25 < 1 .7 .6 439 .62 7 11.1 < 1 33.0 95 .1 .4 .3 .8 .56 .018 21.7 3.0 .19 .25 .077 6.00 2.273 3.77 16.7 33.8 39 .78 10.0 23.2 2.5 5 3 55.9 .2 228.5 1.8 6.92 117.7 3.5 25.4 39 < 1 .8 .4 .514 .59 6 9.0 < 1 .31.1 113 .2 .3 .4 .11 .63 .022 22.5 2 .5 .20 .258 .085 6.13 2.178 3.6 13.8 36.4 40 12.8 10.5 20.6 1.9 6 3 104.7 .1 .251.9 1.8 6.74 11.1 11.7 .3 .383 .38	1																																											
117.7 3.5 25.4 39 <1 .8 .4 514 .59 6 9.0 <1 31.1 113 .2 .3 .4 11 .63 .022 22.5 2.5 .20 259 .085 6.13 2.178 3.67 13.8 36.4 40 12.8 10.5 26.6 1.9 6 3 104.7 .1 251.9 1.8 6.74 6161 97.3 2.5 23.0 47 <1 .8 .3 366 .58 6 14.0 <1 .3 3.9 88 .2 .3 .2 8 .65 .015 24.5 2.1 .18 294 .081 6.16 2.092 3.87 16.3 34.1 43 9.3 10.5 20.0 2.1 5 3 95.1 .2 206.0 1.7 6.22 6162 84.9 2.5 2.4 61 1 .7 .3 333 .55 8 10.7 <1 36.3 141 5 .4 .3 7 .70 .107 26.3 1.0 19 238 .076 6.09 .997 4.08 13.1 35.4 45 18.7 10.2 22.5 1.9 6 3 138.0 .2 239.2 11.8 5.04 6163 125.0 3.4 46.6 41 .5 1.1 .6 416 .63 141.3 2 .1 30.4 19 .3 .5 1.8 11 .77 .027 22.0 2.1 .24 320 .079 6.51 .131 4.31 16.9 44.4 40 17.4 8.9 21.2 1.6 6 40 25.6 1.9 6 3 138.0 .2 239.2 1.8 5.04 6164 164.0 4.1 4.7 54 .2 1.1 .6 568 .69 7 7.6 <1 30.4 139 .3 .5 1.8 11 .77 .027 22.0 2.1 .24 320 .079 6.51 .131 4.31 16.9 44.4 40 17.4 8.9 21.2 1.6 6 4 225.1 4.299.7 2.0 6.44 6165 86.9 5.8 26.5 42 .2 8 .5 593 .57 6 13.5 <1 28.8 100 .1 .5 3.0 13 .73 .024 20.0 1.9 .21 330 .076 6.39 1.520 3.9 1 44.8 39.0 36 15.8 9.0 19.6 1.7 5 3 131.3 .2 276.0 1.7 6.82 6166 86.9 5.8 26.5 42 .2 8 .5 593 .57 6 13.5 <1 28.8 100 .1 .5 3.0 13 .73 .024 20.0 1.9 .21 330 .076 6.39 1.520 3.9 1 44.8 39.0 36 15.8 9.0 19.6 1.7 5 3 131.3 .2 276.0 1.7 6.82 6167 155.6 6.8 45.0 84 .8 1.2 .5 599 .67 8 14.5 <1 31.2 155 .7 .7 .5 13 .65 .082 25.5 7 .59 22.2 45.5 1.6 .22 460 .68 .68 .1 .4 20 12.2 36.6 44 .9 .7 9 .0 .2 13 1.8 .9 .7 9 .7 2 <1 32.2 147 .3 .7 6.5 10 .68 .027 25.7 1.8 .22 382 .096 .6.69 .30 1.7 6.40 1.9 5 5.0 1.8 7 3 131.3 .2 276.0 1.7 6.82 6169 92.2 6.4 69.0 55 1.1 4.2 .8 600 .77 9 7.2 <1 32.2 147 .3 .7 6.5 10 .68 .027 25.7 1.8 .22 382 .096 6.08 .68 .71 1.0 2.4 0.2 1.2 5.0 9.0 1.1 1.1 1.0 2.2 4.0 2.1 5 3 134.0 1.5 2.2 6 1.4 0.4 19.8 2.3 1.0 0.0 0.68 .71 1.0 2.0 3.0 4.0 0.1 1.5 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	l																																											
6161 97.3 2.5 23.0 47 <1 .8 .3 366 .58 6 14.0 <1.1 33.9 88 .2 .3 .2 8 .65 .015 24.5 21 .18 294 .081 6.16 2.092 3.87 16.3 34.1 43 9.3 10.5 20.0 2.1 5 3 95.1 .2 206.0 1.7 6.22 6.1 6.2 84.9 2.5 23.0 47 <1 .1 .1 .1 .6 416 .63 14 13.2 <1 .38.1 210 .2 .8 5.5 14 .61 .027 25.3 .9 .22 259 .108 6.21 .318 3.77 22.1 54.3 44 14.6 12.5 35.2 2.6 11 4 208.0 .3 262.7 2.7 5.94 6184 164.0 4.1 44.7 54 .2 .1 .1 .6 588 .69 7 7.6 <1 .30.4 139 .3 .5 1.8 11 .77 .027 22.0 2.1 .2 430.0 .079 6.51 .131 4.31 16.9 44.4 40 17.4 8.9 21.2 1.6 6 4 225.1 .4 299.7 2.0 6.44 6185 105.3 4.3 35.2 33 .3 1.0 .6 583 .65 8 8.3 <1 31.2 153 1 .7 5.9 10 .59 .026 22.6 1.3 .2 25 10.0 8 6.27 .536 4.13 17.1 40.6 40 9.0 8.6 23.6 1.9 5 3 131.3 .2 276.0 1.7 6.82 6167 155.6 6 84.5 0 84 .8 1.2 1.5 599 .67 814.5 <1 31.2 153 1 .7 5.9 10 .51 .2 20.0 24.5 10 .2 43 .00 .079 6.59 .385 4.16 23.8 415 44 14.1 9.5 25.0 1.8 7 3 181.6 3.2 28.2 10.0 16.16 2.092 2.0 2.1 .2 43 .00 .079 6.59 .30 1.50 .00 15.7 5.50 41.3 17.1 40.6 40 9.0 8.6 23.6 1.9 5 3 131.3 .2 276.0 1.7 6.82 6167 155.6 6 84.5 0 84 .8 1.2 1.5 599 .67 814.5 <1 31.2 155 7.7 5.5 13 .65 .028 25.0 2.0 .2 44 22 .008 5.09 3.85 4.16 23.8 41.5 44 14.1 9.5 25.0 1.8 7 3 181.6 3.2 28.2 10.0 16.16 6.20 6169 92.2 64.69.0 55 1.1 1.2 .8 600 .77 9.7 2 6 6.2 <1 27.9 210 .4 1.0 14.8 10 .56 .029 25.4 8. 22 335 .008 6.60 .064 3.00 17.6 33.8 45 9.5 8.7 20.3 1.5 7 3 326.0 4.1 90.6 1.0 14.8 10 .56 .029 25.4 8. 22 335 .008 6.60 .064 3.00 17.6 33.8 45 9.5 8.7 20.3 1.5 7 3 326.0 4.1 93.6 1.0 4.50 1.0 14.8 10 .56 .029 25.4 8. 22 335 .008 6.60 .064 3.00 17.6 33.8 45 9.5 8.7 20.3 1.5 7 3 326.0 4.1 93.6 1.6 4.4 1.50 1.0 1.0 1.2 1.1 1.1 1.6 362.104 17 7.0 <1 23.2 266 4.1 10.0 2.4 11 1.4 1.5 12.5 12.5 10.9 1.1 1.0 23.1 4 3.0 11 1.2 1.5 12.5 10.0 1.1 1.5 1.2 1.2 1.2 1.1 1.1 1.6 362.104 17 7.0 5.1 12.2 2.2 10.9 1.1 1.0 2.1 1.0 1.0 14.8 10 .55 1.0 12.2 1.0 1.0 1.0 14.8 10 .55 1.0 12.2 1.0 1.0 1.0 14.8 10 .55 1.0 12.2 1.0 1.0 1.0 14.8 10 .55 1.0 12.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1					-																																						
84.9 2,5 42,4 61 .1 ,7 ,3 383 .53 8 10,7 <1 36.3 141 .5 ,4 ,3 7 ,70 .017 26.3 1.0 .19 238 .076 6.09 .97 4.08 13.1 35.4 45 18.7 10.2 22.5 1.9 6 3 138.0 .2 29.2 1.8 5.04 125.0 3,4 44.6 41 .5 1.1 .6 416 .63 14 13.2 <1 38.1 210 .2 .8 5.5 14 .61 .027 25.3 .9 .9 .22 259 .108 6.21 .318 3.7 22.1 54.3 44 14.6 12.5 35.2 2.6 11 4 200.8 .9 326.2 7.7 5.54 16.4 10.2 25.3 1.9 5.0 105.3 4.3 35.2 33 .3 1.0 .6 588 .69 7 7.6 <1 30.4 139 .3 .5 1.8 11 .7 7 .027 22.0 2.1 .24 .20 .27 5.3 14.4 10.7 4.4 40 17.4 40 17.4 8.9 21.2 1.6 6 4 25.1 1.4 29.0 7.0 5.6 6.4 4 1.5 1.5 5.99 .67 8 14.5 <1 31.2 153 .1 .7 5.9 10 .69 .026 22.6 13 .2 291 .080 6.57 .536 41.3 17.1 40.6 40 9.0 8.6 23.6 1.9 5 3 131.3 .2 276.0 1.7 6.82 16.7 155.6 6.8 45.0 84 .8 1.2 .5 599 .67 8 14.5 <1 31.2 155 .7 .7 .5 13 .65 .028 25.0 2.0 .2 4 432 .089 6.89 .385 41.6 23.8 41.5 45 14.1 9.5 25.0 1.8 7 3 181.6 .3 288.2 1.9 6.28 16.9 16.9 92.2 6.4 69.0 55 1.1 1.2 .8 600 .77 9 7.2 <1 32.2 147 .3 .7 6.5 10 .68 .027 25.7 1.8 .22 382 .095 6.74 .304 4.00 4.0 4.9 .0 5 8.7 1.0 2.2 4.0 2.1 5 3 184.9 3 262.7 1.8 6.10 11.1 3.7 54.2 50 .9 11.1 1.1 1.6 362 1.04 17 7.0 <1 23.2 286 <1 1.0 2.4 1.0 4.0 14.8 10 .56 .029 25.4 8. 23 33 35 .003 6.06 .064 3.00 17.6 33.8 45.9 45 9.7 20.3 1.5 7 3 326.0 4.19 5 5.9 1.0 4 1.0 14.8 10 .56 .029 25.4 8. 23 335 .093 6.06 .064 3.00 17.6 33.8 45.9 45 9.7 20.3 1.5 7 3 326.0 4.19 5 5.9 13.1 1.1 1.1 1.6 6.24 14.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	ľ	6160	117.7	3.5 25.4	39	<.1	8.	.4	514	.59	ь :	9.0 <	.1 2	1.1	113	.2	.3	,4	11	. 63	.022	22.5	2.5	. 20	259	.085	6,13	2.178	3.67	13.8	36.4	40	12.8	10.5	20.6	1.9	6	3 :	104.7	.1	251.9	1.8	6.74	
84.9 2,5 42,4 61 .1 ,7 ,3 383 .53 8 10,7 <1 36.3 141 .5 ,4 ,3 7 ,70 .017 26.3 1.0 .19 238 .076 6.09 .97 4.08 13.1 35.4 45 18.7 10.2 22.5 1.9 6 3 138.0 .2 29.2 1.8 5.04 125.0 3,4 44.6 41 .5 1.1 .6 416 .63 14 13.2 <1 38.1 210 .2 .8 5.5 14 .61 .027 25.3 .9 .9 .22 259 .108 6.21 .318 3.7 22.1 54.3 44 14.6 12.5 35.2 2.6 11 4 200.8 .9 326.2 7.7 5.54 16.4 10.2 25.3 1.9 5.0 105.3 4.3 35.2 33 .3 1.0 .6 588 .69 7 7.6 <1 30.4 139 .3 .5 1.8 11 .7 7 .027 22.0 2.1 .24 .20 .27 5.3 14.4 10.7 4.4 40 17.4 40 17.4 8.9 21.2 1.6 6 4 25.1 1.4 29.0 7.0 5.6 6.4 4 1.5 1.5 5.99 .67 8 14.5 <1 31.2 153 .1 .7 5.9 10 .69 .026 22.6 13 .2 291 .080 6.57 .536 41.3 17.1 40.6 40 9.0 8.6 23.6 1.9 5 3 131.3 .2 276.0 1.7 6.82 16.7 155.6 6.8 45.0 84 .8 1.2 .5 599 .67 8 14.5 <1 31.2 155 .7 .7 .5 13 .65 .028 25.0 2.0 .2 4 432 .089 6.89 .385 41.6 23.8 41.5 45 14.1 9.5 25.0 1.8 7 3 181.6 .3 288.2 1.9 6.28 16.9 16.9 92.2 6.4 69.0 55 1.1 1.2 .8 600 .77 9 7.2 <1 32.2 147 .3 .7 6.5 10 .68 .027 25.7 1.8 .22 382 .095 6.74 .304 4.00 4.0 4.9 .0 5 8.7 1.0 2.2 4.0 2.1 5 3 184.9 3 262.7 1.8 6.10 11.1 3.7 54.2 50 .9 11.1 1.1 1.6 362 1.04 17 7.0 <1 23.2 286 <1 1.0 2.4 1.0 4.0 14.8 10 .56 .029 25.4 8. 23 33 35 .003 6.06 .064 3.00 17.6 33.8 45.9 45 9.7 20.3 1.5 7 3 326.0 4.19 5 5.9 1.0 4 1.0 14.8 10 .56 .029 25.4 8. 23 335 .093 6.06 .064 3.00 17.6 33.8 45.9 45 9.7 20.3 1.5 7 3 326.0 4.19 5 5.9 13.1 1.1 1.1 1.6 6.24 14.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1							_									_		_																				_		_				
1653 125.0 3,4 46.6 41 .5 1.1 .6 416 .63 14 13.2 <1 38.1 210 .2 .8 5.5 14 .61 .027 25.3 .9 .22 259 .108 6.21 .318 3.77 22.1 54.3 44 14.6 12.5 35.2 2.6 11 4 208.0 .3 262.7 2.7 5.94 6164 164.0 4.1 44.7 54 .2 1.1 .6 568 .69 7 7.6 <1 30.4 139 .3 .5 1.8 11 .77 .027 22.0 2.1 .24 320 .079 6.51 .131 4.31 16.9 44.4 46 17.4 8.9 21.2 1.6 6 4 225.1 .4 299.7 2.0 6.44 6165 105.3 4.3 35.2 33 .3 1.0 .6 583 .65 8 8.3 <1 31.2 153 .1 .7 5.9 10 .69 .026 22.6 1.3 .22 231 .000 6.57 .536 4.13 17.1 40.6 40 9.0 8.6 23.6 1.9 5 3 131.3 .3 265.7 1.8 5.76 16166 88.9 5.8 26.5 42 .2 .8 .5 593 .57 6 13.5 <1 28.8 100 .1 .5 3.0 13 .73 .024 20.0 1.9 .21 330 .076 6.39 1.520 3.91 14.8 39.0 36 15.8 9.0 19.6 1.7 5 3 131.3 .2 276.0 1.7 6.82 16167 155.6 6.8 45.0 84 .8 1.2 .5 599 .67 8 14.5 <1 31.2 155 .7 .7 .5 13 .65 .028 25.0 2.0 .24 432 .009 6.89 .385 4.16 23.8 41.5 45 14.1 9.5 50 .18 7 3 181.6 .3 288.2 1.9 6.28 16169 92.2 6.4 69.0 55 1.1 1.2 .8 600 .77 9 7.2 <1 32.2 147 .3 .7 6.5 10 .68 .027 25.7 1.8 22 382 .095 6.74 .360 4.06 18.6 40.3 45 7.1 10.2 24.0 21.5 15.0 1.8 7 7.0 5.9 10 .69 .027 25.7 1.8 22 382 .095 6.74 .360 4.06 18.6 40.3 45 7.1 10.2 24.0 21.5 5 1.8 2.2 147 .3 .7 6.5 10 .68 .027 25.7 1.8 22 382 .095 6.74 .360 4.06 18.6 40.3 45 7.1 10.2 24.0 21.5 5 1.8 2.2 147 .3 .7 6.5 10 .68 .027 25.7 1.8 22 382 .095 6.74 .360 4.06 18.6 40.3 45 7.1 10.2 24.0 21.5 5 3.1 14.0 2.0 14.5 10.0 14.8 10 .56 .029 25.4 8.2 23 335 .083 6.06 .064 3.00 17.6 33.8 45 9.5 8.7 20.3 1.5 7 3 326.0 .4 193.6 1.6 4.58 12.1 11.1 1.6 362 1.04 17 7.0 <1 23.2 286 <1 1.0 2.4 11 4.6 .029 29.7 1.5 20 211 .086 5.36 .037 2.10 19.0 35.0 55 .9 7.6 27.7 2.0 9 3 307.0 7 141.8 1.6 6.24 1374 13.5 1.5 1.8 1.2 1.2 1.2 1.1 1.1 1.1 1.6 362 1.04 17 7.0 <1 23.2 286 <1 1.0 2.4 11 4.8 0.29 29.7 1.5 20 211 .086 5.36 .037 2.10 19.0 35.0 55 .9 7.6 27.7 2.0 9 3 307.0 7 141.8 1.6 6.24 1374 13.0 13.5 14.8 12.1 12.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	1																																											
6164 164.0 4.1 44.7 54 .2 1.1 .6 568 .69 7 7.6 <1 30.4 139 .3 .5 1.8 11 .77 .027 22.0 2.1 .24 320 .079 6.51 .131 4.31 16.9 44.4 40 17.4 8.9 21.2 1.6 6 4 225.1 .4 299.7 2.0 6.44 6165 105.3 4.3 35.2 33 .3 1.0 .6 583 .65 8 8.3 <1 31.2 153 .1 .7 5.9 10 .69 .026 22.6 1.3 .22 291 .080 6.57 .536 4.13 17.1 40.6 40 9.0 8.6 23.6 1.9 5 3 131.3 .3 265.7 1.8 5.76 105.6 6.8 45.0 84 .8 1.2 .5 599 .67 8 14.5 <1 31.2 155 .7 .7 .5 13 .65 .028 25.0 2.0 .24 432 .089 6.89 .385 4.16 23.8 41.5 45 14.1 9.5 25.0 1.8 7 3 181.6 .3 288.2 1.9 6.28 6169 92.2 6.4 69.0 55 11. 1.2 .8 600 .77 9 7.2 <1 32.2 14 7.3 .7 6.5 10 .68 .027 25.7 1.8 .22 382 .095 6.74 .360 4.06 18.6 40.3 45 7.1 10.2 24.0 2.1 5 3 184.9 .3 252.7 1.8 6.10 111.1 3.7 54.2 50 .9 1.2 .7 577 .72 8 6.2 <1 27.9 210 .4 1.0 14.8 10 .56 .029 25.4 .8 .23 335 .083 6.08 6.08 .345 32.6 38.7 39 6.2 11.3 32.9 32.9 32.0 37.0 4.5 18.9 13.2 15.5 4.8 16.2 29.9 7.1 11.1 1.6 .362 1.04 17 7.0 <1 23.1 2.2 15.5 19.9 1.1 1.5 1.5 1.0 23.1 4 .38 .012 21.4 1.1 1.1 1.5 187 .063 6.18 .082 3.45 32.6 38.7 39 6.2 11.3 32.9 32.9 5.7 6 27.7 2.0 9 3 307.0 .7 141.8 1.6 6.24 6173 303.3 6.2 28.9 16 .1 8 2.2 209 .72 14 33.9 <1 2.7 12.3 6 .39 .017 22.6 .9 1.8 171 1.0 48 5.95 .064 4.8 8 20 37.6 97 4.1 1.3 2.0 382 .97 12 23.2 <1 31.6 102 .7 5.7 12.3 6 .44 .015 20.6 .9 1.8 171 .048 5.95 .064 4.8 8 20 37.6 97 4.1 1.9 7 4 5.97 7.4 305.1 1.9 5.7 12.7 6.1 1.9 5.5 12.3 6 .44 .015 20.6 .20 1.8 11.1 1.4 1.6 .8 23.7 6 9 .1 1.3 2.0 382 .97 12 23.2 <1 31.6 102 .7 5.7 12.3 6 .44 .015 20.6 .9 1.8 171 .048 5.95 .064 4.08 > 200 37.4 35 .4 1.9 7 4 5.97 7.4 305.1 1.9 5.4 1.9 5.4 1.9 5.4 1.9 5.8 1.9 6 5 .8 1.1 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5																																												
5165 105.3 4.3 35.2 33 .3 1.0 6 583 .65 8 8.3 <1 31.2 153 .1 7 5.9 10 .69 .026 22.6 1.3 .22 291 .080 6.57 .536 4.13 17.1 40.6 40 9.0 8.6 23.6 1.9 5 3 131.3 .3 267.7 1.6 5.76 6166 86.9 5,8 26.5 42 .2 8 .5 593 .57 6 13.5 <1 28.8 100 .1 .5 3.0 13 .73 .024 20.0 1.9 .21 330 .076 6.39 1.520 3.91 14.8 39.0 36 15.8 9.0 19.6 1.7 5 3 131.3 .2 276.0 1.7 6.82 6167 155.6 6 8 85.9 84 .8 1.2 .5 599 67 8 14.5 <1 31.2 155 .7 .7 .5 13 .65 .028 25.0 2.0 .24 432 .089 6.89 385 4.16 23 8 41.5 45 14.1 9.5 25.0 1.8 7 3 181.6 .3 288.2 1.9 6.28 6168 67.7 8.0 46.3 73 .4 .9 .8 554 .62 8 7.2 <1 30.6 110 .6 .5 2.5 7 .59 .023 24.5 1.6 .22 406 .080 6.68 .71 4.02 12.2 36.6 44 9.7 9.0 21.3 1.8 5 3 134.0 3 266.3 1.6 6.20 6169 92.2 6.4 69.0 55 1.1 1.2 .8 600 .77 9 7.2 <1 32.2 147 .3 .7 6.5 10 .68 .027 25.7 1.8 .22 382 .095 6.74 .360 4.06 18.6 40.3 45 7.1 10.2 24.0 2.1 5 3 184.9 .3 252.7 1.8 6.10 6170 111.1 3.7 54.2 50 .9 1.2 .7 577 .72 8 6.2 <1 27.9 210 .4 1.0 14.8 10 .56 .029 25.4 .8 .23 335 .083 6.06 .064 3.00 17.6 33.8 45 9.5 8.7 20.3 1.5 7 3 326.0 .4 193.6 1.6 4.58 6171 167.6 13.9 17.4 21 .1 1.1 1.6 362 1.04 17 7.0 <1 23.2 286 <1 1.0 2.4 11 .46 .029 29.7 1.5 .20 211 .086 5.36 .037 2.10 19.0 35.0 53 5.9 7.6 27.7 2.0 9 3 307.0 .7 141.8 1.6 6.24 6172 54.4 4.7 21.5 25 .2 .7 .5 261 .70 17 12.7 <1 29.5 109 .1 1.0 23.1 4 .38 .012 21.4 1.1 .15 187 .063 6.18 .082 3.45 32.6 38.7 39 6.2 11.3 32.9 3.2 5 3 179.2 .4 209.4 1.9 5.54 6173 135.5 4.8 16.9 25 <1 1.0 2.0 142 90 16 22.3 <1 25.9 93 .1 1.5 2.2 6 .24 0.14 19.8 2.3 1.6 162 .049 6.10 .071 3.59 >200 37.4 35 9.3 7.7 26.1 2.3 6 3 57.6 6 246.7 1.8 5.64 6174 300.3 6.2 28.9 16 .1 .8 2.2 209 .72 14 33.9 <1 32.0 136 <1 2.7 12.3 6 .39 .017 22.6 .9 1.8 171 .048 5.95 .068 4.08 >200 40.6 40 13.0 8.5 27.1 1.9 7 4 59.7 .4 305.1 1.9 5.72 6175 345.8 8.2 37.6 79 <1 1.3 2.0 382 .97 12 23.2 <1 31.6 102 .7 2.5 12.3 6 .39 .017 22.6 .9 1.8 171 .048 5.95 .068 4.08 >200 40.6 40 13.0 8.5 27.1 1.9 7 4 59.7 .4 305.1 1.9 5.72 6175 345.8 8.2 37.6 79 <1 1.3 2.0 382 .97 12 23.2 <1 31.6 102 .7 2.5 12.3 6 .39 .017 22.6 .9 1																																												
6166 86.9 5.8 26.5 42 .2 .8 .5 593 .57 6 13.5 <1 28.8 100 .1 .5 3.0 13 .73 .024 20.0 1.9 .21 330 .076 6.39 1.520 3.91 14.8 39.0 36 15.8 9.0 19.6 1.7 5 3 131.3 .2 276.0 1.7 6.82 6167 155.6 6.8 45.0 84 .8 1.2 .5 599 .67 8 14.5 <1 31.2 155 .7 .7 .5 13 .65 .028 25.0 2.0 .24 432 .089 6.89 .385 4.16 23.8 41.5 45 14.1 9.5 25.0 1.8 7 3 181.6 .3 288.2 1.9 6.28 6168 67.7 8.0 46.3 73 .4 .9 .8 554 .62 8 7.2 <1 30.6 110 .6 .5 2.5 7 .59 .023 24.5 1.6 .22 406 .080 6.68 .751 4.02 12.2 36.6 44 9.7 9.0 21.3 1.8 5 3 134.0 .3 266.3 1.6 6.20 6.69 6169 92.2 6.4 69.0 55 1.1 12.2 8.6 00 .77 9 7.2 <1 32.2 147 .3 .7 6.5 10 .68 .027 25.7 1.8 .22 382 .095 6.74 .360 4.06 18.6 40.3 45 7.1 10.2 24.0 2.1 5 3 184.9 .3 252.7 1.8 6.10 6170 11111 3.7 54.2 50 .9 1.2 .7 577 .72 8 6.2 <1 27.9 210 .4 1.0 14.8 10 .56 .029 25.4 .8 .23 335 .083 6.06 .064 3.00 17.6 33.8 45 9.5 8.7 20.3 1.5 7 3 326.0 .4 193.6 1.6 4.28 6172 54.4 4.7 21.5 25 .2 .7 .5 26 1.70 17 12.2 <1.1 2.2 2.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0					-											-																												
6167 155.6 6.8 45.0 84 .8 1.2 .5 599 .67 8 14.5 <1 31.2 155 .7 .7 .5 13 .65 .028 25.0 2.0 .24 432 .089 6.89 .385 4.16 23 8 41.5 45 14.1 9.5 25.0 1.8 7 3 181.6 .3 288.2 1.9 6.28 6168 67.7 8.0 46.3 73 .4 .9 .8 554 .62 8 7.2 <1 30.6 110 .6 .5 2.5 7 .59 .023 24.5 1.6 .22 406 .080 6.68 .751 4.02 12.2 36.6 44 9.7 9.0 21.3 1.8 5 3 134.0 .3 266.3 1.6 6.20 6169 92.2 6.4 69.0 55 1.1 1.2 .8 600 .77 9 7.2 <1 32.2 147 .3 .7 6.5 10 .68 .027 25.7 1.8 .22 382 .095 6.74 .360 4.06 18.6 40.3 45 7.1 10.2 24.0 2.1 5 3 184.9 .3 252.7 1.8 6.10 6170 111.1 3.7 54.2 50 .9 1.2 .7 577 .72 8 6.2 <1 27.9 210 .4 1.0 14.8 10 .56 .029 25.4 .8 .23 335 .083 6.06 .064 3.00 17.6 33.8 45 9.5 8.7 20.3 1.5 7 3 326.0 .4 193.6 1.6 4.58 6171 167.6 13.9 17.4 21 .1 1.1 1.6 362 1.04 17 7.0 <1 23.2 286 <1 1.0 2.4 11 .46 .029 29.7 1.5 .20 211 .086 5.36 .037 2.10 19.0 35.0 53 5.9 7.6 27.7 2.0 9 3 307.0 .7 141.8 1.6 6.24 6172 54.4 4.7 21.5 25 .2 7 .5 261 .70 17 12.7 <1 29.5 109 .1 1.0 23.1 4 .38 .012 21.4 1.1 .15 187 .063 6.18 .082 3.45 32.6 38.7 39 6.2 11.3 32.9 3.2 5 3 179.2 4 209.4 1.9 5.54 6174 300.3 6.2 28.9 16 .1 8 2.2 209 .72 14 33.9 <1 32.0 136 <1 2.7 12.3 6 .39 .017 22.6 .9 .18 171 .048 5.95 .068 4.08 >200 40.6 40 13.0 8.5 27.1 1.9 7 4 59.7 7 4 305.1 1.9 5.72 6175 345.8 8.2 37.6 79 <1 1.3 2.0 382 .97 12 23.2 <1.1 31.6 102 .7 2.5 12.3 6 .46 .015 20.6 2.2 1.6 238 .044 5.83 .111 4.63 >200 39.6 37 16.7 9.2 26.8 1.9 6 5 81.1 4 334.9 1.9 5.80		6165	105.3	4.3 35.2	2 33	.3	1.0	.6	583	. 65	8 :	3.3 <	.1 3	11.2	153	. 1	.7	5.9	10	. 69	. 026	22.6	1.3	.72	591	.080	6.57	.536	4.13	17.1	40.6	40	9.0	8.6	23.6	1.9	5	3	131.3	. 3	265.7	1.8	5.76	
6167 155.6 6.8 45.0 84 .8 1.2 .5 599 .67 8 14.5 <1 31.2 155 .7 .7 .5 13 .65 .028 25.0 2.0 .24 432 .089 6.89 .385 4.16 23 8 41.5 45 14.1 9.5 25.0 1.8 7 3 181.6 .3 288.2 1.9 6.28 6168 67.7 8.0 46.3 73 .4 .9 .8 554 .62 8 7.2 <1 30.6 110 .6 .5 2.5 7 .59 .023 24.5 1.6 .22 406 .080 6.68 .751 4.02 12.2 36.6 44 9.7 9.0 21.3 1.8 5 3 134.0 .3 266.3 1.6 6.20 6169 92.2 6.4 69.0 55 1.1 1.2 .8 600 .77 9 7.2 <1 32.2 147 .3 .7 6.5 10 .68 .027 25.7 1.8 .22 382 .095 6.74 .360 4.06 18.6 40.3 45 7.1 10.2 24.0 2.1 5 3 184.9 .3 252.7 1.8 6.10 6170 111.1 3.7 54.2 50 .9 1.2 .7 577 .72 8 6.2 <1 27.9 210 .4 1.0 14.8 10 .56 .029 25.4 .8 .23 335 .083 6.06 .064 3.00 17.6 33.8 45 9.5 8.7 20.3 1.5 7 3 326.0 .4 193.6 1.6 4.58 6171 167.6 13.9 17.4 21 .1 1.1 1.6 362 1.04 17 7.0 <1 23.2 286 <1 1.0 2.4 11 .46 .029 29.7 1.5 .20 211 .086 5.36 .037 2.10 19.0 35.0 53 5.9 7.6 27.7 2.0 9 3 307.0 .7 141.8 1.6 6.24 6172 54.4 4.7 21.5 25 .2 7 .5 261 .70 17 12.7 <1 29.5 109 .1 1.0 23.1 4 .38 .012 21.4 1.1 .15 187 .063 6.18 .082 3.45 32.6 38.7 39 6.2 11.3 32.9 3.2 5 3 179.2 4 209.4 1.9 5.54 6174 300.3 6.2 28.9 16 .1 8 2.2 209 .72 14 33.9 <1 32.0 136 <1 2.7 12.3 6 .39 .017 22.6 .9 .18 171 .048 5.95 .068 4.08 >200 40.6 40 13.0 8.5 27.1 1.9 7 4 59.7 7 4 305.1 1.9 5.72 6175 345.8 8.2 37.6 79 <1 1.3 2.0 382 .97 12 23.2 <1.1 31.6 102 .7 2.5 12.3 6 .46 .015 20.6 2.2 1.6 238 .044 5.83 .111 4.63 >200 39.6 37 16.7 9.2 26.8 1.9 6 5 81.1 4 334.9 1.9 5.80	[_	_													70					244																			
6169 67.7 8.0 46.3 73 .4 .9 .8 554 .62 8 7.2 <1 30.6 110 .6 .5 2.5 7 .59 .023 24.5 1.6 .22 406 .080 6.68 .751 4.02 12.2 36.6 44 9.7 9.0 21.3 1.8 5 3 134.0 .3 256.3 1.6 6.20 6169 92.2 6.4 69.0 55 1.1 1.2 .8 600 .77 9 7.2 <1 32.2 147 .3 .7 6.5 10 .68 .027 25.7 1.8 .22 382 .095 6.74 .360 4.06 18.6 40.3 45 7.1 10.2 24.0 2.1 5 3 184.9 .3 252.7 1.8 6.10 111.1 3.7 54.2 50 .9 1.2 .7 577 .72 8 6.2 <1 27.9 210 .4 1.0 14.8 10 .56 .029 25.4 8 .23 335 .083 6.06 .064 3.00 17.6 33.8 45 9.5 8.7 20.3 1.5 7 3 326.0 .4 193.6 1.6 4.58 111 167.6 13.9 17.4 21 .1 1.1 1.6 362 1.04 17 7.0 <1 23.2 286 <1 1.0 2.4 11 .46 .029 29.7 1.5 .20 211 .086 5.36 .037 2.10 19.0 35.0 53 5.9 7.6 27.7 2.0 9 3 307.0 .7 141.8 1.6 6.24 112.2 4.8 16.9 25 <1 1.0 2.4 12.7 1.2 1.1 1.1 1.6 362 1.04 17 7.0 <1 23.2 286 <1 1.0 2.4 11 .46 .029 29.7 1.5 .20 211 .086 5.36 .037 2.10 19.0 35.0 53 5.9 7.6 27.7 2.0 9 3 307.0 .7 141.8 1.6 6.24 112.2 11.1 1.1 1.6 362 1.04 17 7.0 <1 29.5 109 .1 1.0 23.1 4 .38 .012 21.4 1.1 1.5 187 .063 6.18 .082 3.45 32.6 38.7 39 6.2 11.3 32.9 32. 5 3 179.2 .4 209.4 1.9 5.54 131.5 5 4.8 16.9 25 <1 1.0 2.0 142 .90 16 22.3 <1 29.9 93 .1 1.5 2.2 6 .24 .014 19.8 2.3 1.6 162 .049 6.10 .071 3.50 200 37.4 35 9.3 7.7 26.1 2.3 6 3 57.7																																												
6169 92.2 6.4 69.0 55 1.1 1.2 .8 600 .77 9 7.2 <1 32.2 147 .3 .7 6.5 10 .68 .027 25.7 1.8 .22 382 .095 6.74 .360 4.06 18.6 40.3 45 7.1 10.2 24.0 2.1 5 3 184.9 .3 252.7 1.8 6.10 111.1 3.7 54.2 50 .9 1.2 .7 577 .72 8 6.2 <1 27.9 210 .4 1.0 14.8 10 .56 .029 25.4 8 .23 335 .083 6.06 .064 3.00 17.6 33.8 45 9.5 8.7 20.3 1.5 7 3 326.0 .4 193.6 1.6 4.58 111 11.1 1.6 362 1.04 17 7.0 <1 23.2 286 <1 1.0 2.4 11 .46 .029 29.7 1.5 .20 211 .086 5.36 .037 2.10 19.0 35.0 53 5.9 7.6 27.7 2.0 9 3 307.0 .7 141.8 1.6 6.24 11.2 1.1 1.1 1.6 362 1.04 17 7.0 <1 23.2 286 <1 1.0 2.4 11 .46 .029 29.7 1.5 .20 211 .086 5.36 .037 2.10 19.0 35.0 53 5.9 7.6 27.7 2.0 9 3 307.0 .7 141.8 1.6 6.24 11.2 1.1 1.1 1.6 362 1.04 17 7.0 <1 23.2 286 <1 1.0 2.4 11 .4 38 .012 21.4 1.1 1.5 187 .063 6.18 .082 3.45 32.6 38.7 39 6.2 11.3 32.9 32.5 3 179.2 .4 209.4 1.9 5.54 133.5 4.8 16.9 25 <1 1.0 2.0 142 .90 16 22.3 <1 29.9 93 .1 1.5 2.2 6 .24 .014 19.8 2.3 .16 162 .049 6.10 .071 3.50 >200 37.4 35 9.3 7.7 26.1 2.3 6 3 57.6 6 246.7 1.8 5.64 134 135.5 4.8 16.9 25 <1 1.0 2.0 142 .90 16 22.3 <1 32.0 136 <1 2.7 12.3 6 .39 .017 22.6 .9 .18 171 .048 5.95 .068 4.08 >200 40.6 40 13.0 8.5 27.1 1.9 7 4 59.7 4 335.1 1.9 5.72 135.5 4.8 12.3 12.5 136 12.7 12.3 6 .39 .017 22.6 .9 .18 171 .048 5.95 .068 4.08 >200 40.6 40 13.0 8.5 27.1 1.9 7 4 59.7 4 335.1 1.9 5.72 135.1 1.9 5.72 135.1 1.9 5.72 135.1 1.9 5.72 135.1 1.9 5.72 135.1 1.9 5.72 135.1 1.9 5.80 135.1 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1	İ																																											
6170 111.1 3.7 54.2 50 .9 1.2 .7 577 .72 8 6.2 <1 27.9 210 .4 1.0 14.8 10 .56 .029 25.4 .8 .23 335 .083 6.06 .064 3.00 17.6 33.8 45 9.5 8.7 20.3 1.5 7 3 326.0 .4 193.6 1.6 4.58 6171 167.6 13.9 17.4 21 .1 1.1 1.6 362 1.04 17 7.0 <1 23.2 286 <1 1.0 2.4 11 .46 .029 29.7 1.5 .20 211 .086 5.36 .037 2.10 19.0 35.0 53 5.9 7.6 27.7 2.0 9 3 307.0 .7 141.8 1.6 6.24 6172 54.4 4.7 21.5 25 .2 .7 .5 261 .70 17 12.7 <1 29.5 109 .1 1.0 23.1 4 .38 .012 21.4 1.1 .15 187 .063 6.18 .082 3.45 32.6 38.7 39 6.2 11.3 32.9 3.2 5 3 179.2 .4 209.4 1.9 5.54 6173 135.5 4.8 16.9 25 <1 1.0 2.0 142 .90 16 22.3 <1 29.9 93 .1 1.5 2.2 6 .24 .014 19.8 2.3 .16 162 .049 6.10 .071 3.50 >200 37.4 35 9.3 7.7 26.1 2.3 6 3 57.6 .6 246.7 1.8 5.64 6174 300.3 6.2 28.9 16 .1 .8 2.2 209 .72 14 33.9 <1 32.0 136 <1 2.7 12.3 6 .39 .017 22.6 .9 .18 171 .048 5.95 .068 4.08 >200 40.6 40 13.0 8.5 27.1 1.9 7 4 59.7 .4 305.1 1.9 5.72 6175 345.8 8.2 37.6 79 <1 1.3 2.0 382 .97 12 23.2 <1 31.6 102 .7 2.5 12.3 6 .46 .015 20.6 2.2 .16 238 .044 5.83 .111 4.63 >200 39.6 37 16.7 9.2 26.8 1.9 6 5 81.1 .4 334.9 1.9 5.80																																												
6171 167.6 13.9 17.4 21 .1 1.1 1.6 362 1.04 17 7.0 <.1 23.2 286 <.1 1.0 2.4 11 .46 .029 29.7 1.5 .20 211 .086 5.36 .037 2.10 19.0 35.0 53 5.9 7.6 27.7 2.0 9 3 307.0 .7 141.8 1.6 6.24 6172 54.4 4.7 21.5 25 .2 7 .5 261 .70 17 12.7 <.1 29.5 109 .1 1.0 23.1 4 .38 .012 21.4 1.1 .15 187 .063 6.18 .082 3.45 32.6 38.7 39 6.2 11.3 32.9 3.2 5 3 179.2 4 209.4 1.9 5.54 6173 135.5 4.8 16.9 25 <.1 1.0 2.0 142 .90 16 22.3 <.1 29.9 93 .1 1.5 2.2 6 .24 .014 19.8 2.3 .16 162 .049 6.10 .071 3.50 >200 37.4 35 9.3 7.7 26.1 2.3 6 3 57.6 .6 246.7 1.8 5.64 6174 300.3 6.2 28.9 16 .1 .8 2.2 209 .72 14 33.9 <.1 32.0 136 <.1 2.7 12.3 6 .39 .017 22.6 .9 .18 171 .048 5.95 .068 4.08 >200 40.6 40 13.0 8.5 27.1 1.9 7 4 59.7 4 305.1 1.9 5.72 6175 345.8 8.2 37.6 79 <.1 1.3 2.0 382 .97 12 23.2 <.1 31.6 102 .7 2.5 12.3 6 .46 .015 20.6 2.2 1.6 238 .044 5.83 .111 4.63 >200 39.6 37 16.7 9.2 26.8 1.9 6 5 81.1 4 334.9 1.9 5.80	•																																											
6172 54,4 4,7 21.5 25 .2 .7 .5 261 .70 17 12.7 <1 29.5 109 .1 1.0 23.1 4 .38 .012 21.4 1.1 .15 187 .063 6.18 .082 3.45 32.6 38.7 39 6.2 11.3 32.9 3.2 5 3 179.2 4 209.4 1.9 5.54 6173 135.5 4.8 16.9 25 <1 1.0 2.0 142 .90 16 22.3 <1 29.9 93 .1 1.5 2.2 6 .24 .014 19.8 2.3 .16 162 .049 6.10 .071 3.50 >200 37.4 35 9.3 7.7 26.1 2.3 6 3 57.6 .6 246.7 1.8 5.64 6174 300.3 6.2 28.9 16 .1 .8 2.2 209 .72 14 33.9 <1 32.0 136 <1 2.7 12.3 6 .39 .017 22.6 .9 .18 171 .048 5.95 .068 4.08 >200 40.6 40 13.0 8.5 27.1 1.9 7 4 59.7 .4 305.1 1.9 5.72 6175 345.8 8.2 37.6 79 <1 1.3 2.0 382 .97 12 23.2 <1 31.6 102 .7 2.5 12.3 6 .46 .015 20.6 2.2 .16 238 .044 5.83 .111 4.63 >200 39.6 37 16.7 9.2 26.8 1.9 6 5 81.1 .4 334.9 1.9 5.80		6170	111.1	3.7 54.2	50	.9	1.2	.7	577	.72	6	5.2 <	,1 2	7.9	210	.4]	.0	4.8	10	.56	. 029	25.4	.8	. 23	335	.083	6.06	.064	3.00	17.6	33.8	45	9.5	8.7	20.3	1.5	7	3 3	326.0	.4	193.6	1.6	4.58	
6172 54,4 4,7 21,5 25 .2 .7 .5 261 .70 17 12,7 <1, 29.5 109 .1 1.0 23,1 4 .38 .012 21.4 1.1 .15 187 .063 6.18 .082 3.45 32.6 38.7 39 6.2 11.3 32.9 3.2 5 3 179.2 .4 209.4 1.9 5.54 6173 135.5 4.8 16.9 25 <1 1.0 2.0 142 .90 16 22.3 <1 29.9 93 .1 1.5 2.2 6 .24 .014 19.8 2.3 .16 162 .049 6.10 .071 3.50 >200 37.4 35 9.3 7.7 26.1 2.3 6 3 57.6 .6 246.7 1.8 5.64 6174 300.3 6.2 28.9 16 .1 .8 2.2 209 .72 14 33.9 <1 32.0 136 <1 2.7 12.3 6 .39 .017 22.6 .9 .18 171 .048 5.95 .068 4.08 >200 40.6 40 13.0 8.5 27.1 1.9 7 4 59.7 .4 305.1 1.9 5.72 6175 345.8 8.2 37.6 79 <1 1.3 2.0 382 .97 12 23.2 <1 31.6 102 .7 2.5 12.3 6 .46 .015 20.6 2.2 .16 238 .044 5.83 .111 4.63 >200 39.6 37 16.7 9.2 26.8 1.9 6 5 81.1 .4 334.9 1.9 5.80	1								***									- 4			400	- ·				201				10.5									202 6		144 -			
6173 135.5 4.8 16.9 25 <.1 1.0 2.0 142 .90 16 22.3 <.1 29.9 93 .1 1.5 2.2 6 .24 .014 19.8 2.3 .16 162 .049 6.10 .071 3.50 >200 37.4 35 9.3 7.7 26.1 2.3 6 3 57.6 .6 246.7 1.8 5.64 6174 300.3 6.2 28.9 16 .1 .8 2.2 209 .72 14 33.9 <.1 32.0 136 <.1 2.7 12.3 6 .39 .017 22.6 .9 .18 171 .048 5.95 .068 4.08 >200 40.6 40 13.0 8.5 27.1 1.9 7 4 59.7 .4 305.1 1.9 5.72 6175 345.8 8.2 37.6 79 <.1 1.3 2.0 382 .97 12 23.2 <.1 31.6 102 .7 2.5 12.3 6 .46 .015 20.6 2.2 .16 238 .044 5.83 .111 4.63 >200 39.6 37 16.7 9.2 26.8 1.9 6 5 81.1 .4 334.9 1.9 5.80	İ																																											
6174 300.3 6,2 28.9 16 .1 .8 2.2 209 .72 14 33.9 <.1 32.0 136 <.1 2.7 12.3 6 .39 .017 22.6 .9 .18 171 .048 5.95 .068 4.08 >200 40.6 40 13.0 8.5 27.1 1.9 7 4 59.7 .4 305.1 1.9 5.72 6175 345.8 8,2 37.6 79 <.1 1.3 2.0 382 .97 12 23.2 <.1 31.6 102 .7 2.5 12.3 6 .46 .015 20.6 2.2 .16 238 .044 5.83 .111 4.63 >200 39.6 37 16.7 9.2 26.8 1.9 6 5 81.1 .4 334.9 1.9 5.80	ļ																																											
6175 345.8 8.2 37.6 79 <.1 1.3 2.0 382 .97 12 23.2 <.1 31.6 102 .7 2.5 12.3 6 .46 .015 20.6 2.2 .16 238 .044 5.83 .111 4.63 >200 39.6 37 16.7 9.2 26.8 1.9 6 5 81.1 .4 334.9 1.9 5.80	l .																																											
	1																																											
STAMDARD DST6 12.7 127.8 35.1 175 .3 31.1 13.3 969 4.10 25 7.5 <.1 7.0 318 5.5 5.5 4.8 115 2.30 .104 25.6 227.0 1.00 699 .432 7.07 1.664 1.41 7.7 54.0 52 6.3 15.1 8.7 .7 3 12 26.4 <.1 58.8 1.8 -	1	6175	345.8	8.2 37.6	79	<.1	1.3	2.0	382	.97	12 2	3.2 <	.1 3	1.6	102	.7 2	.5	12.3	6	.46	.015	20.6	2.2	. 16	238	044	5.83	.111	4.63	>200	39.6	37	16.7	9.2	26.8	1.9	6	5	B1.1	.4	334.9	1.9	5.80	
STAMDARD DST6 12.7 127.8 35.1 175 .3 31.1 13.3 969 4.10 25 7.5 <.1 7.0 318 5.5 5.5 4.8 115 2.30 104 25.6 227.0 1.00 699 .432 7.07 1.664 1.41 7.7 54.0 52 6.3 15.1 8.7 .7 3 12 26.4 <.1 58.8 1.8 -	1													_																						_								
		STANDARD DST6	12.7	27,8 35.1	175	.3	31.1	13.3	969 4	. 10	25	7.5 <	.1	7.0	318	5.5 5	.5	4.8	115	2.30	.104	25.6	227.0	1.00	699	. 432	7.07	1.664	1.41	7,7	54.0	52	6.3	15.1	8.7	.7	3	12	26.4	<.1	58.8	1.8		

Sample type: DRILL CORE RISO. Samples beginning "RE" are Reruns and "RRE" are Reject Reruns.

Data FA

Page 8

 											_					_			-						_					_								_							_								
SAMPLE#	Mo	Cu	Pi	2	n	Ag	Ní	Со	м	n	Fe	A5	U	Au		Ŧ'n	Sr	Cd	SŁ	ı	B1	٧	C	1	P	La	Cr		19	Ba	Ŧί	A1	1.	Na	K		W	Zr	Ce	Sn	Y	N	b T	8	Вe	Sc	Li	S	-	Rb	Hf Sa	ub j 6	
 	ppm	ppm	ppr	ı bb	m p	pm	P(P)	ppm	pp	m	*	ppm	ррп	ррп	_ p	pm y	pm	ppm	ppn		ppm	ppm			¥	ppm	ppr	I	*	ррп	ĭ		*	*	*	pp	m	ppm	ppm	ppm	ppm	pp	прр	m p	koue b	ppm	ppm	*	Pļ	pm p	pπ	kg	
G-1	,	27	22 :	, ,	4 -	, .		12	70	,,	44	1	5 5	< 1		5	795	e 1	٠,		2	51	27		90		14 8		(7 1	nee	296	8 30	9 2	862	7 05	1.	n	5 2	5.7	1 9	16.2	21	٤,	0	,		16 7	_ 1	124		7		
	2137.0											_			-																						-							•	-	-							
	322.1				-				-																-								_											_	-	_							
	1323.1																																																		-		
	300.2																																													-					,-	•	
0113	300.2	0.0	44,;	, ,	U			1.0	71	٠	43	,			J.E.		22	1	٤.٠		27.0	′			10	20.0	3.1		LU	136	.000	U. 1.		1,2	3.72	DQ.	0 3	J.U	34	0.0	0.0	33.	, J.	٥	0	4 1	.27 .0	. •	204	. 6 2	.1	.00	
6180	187.0	21.2	42.3	3 3	5 <	.1	1.0	2.0	41	3 1.	38	15	14.0	< 1	36	.7	L20	<.1	4.2	!	8D.6	9	.4	2 .0	15	25.2	4.0		4	199	.073	6.63	1 .	131	3.87	>20	o 4	3.2	43	8.6	11 9	36	2 3	6	8	4 :	(87)	А	256	72	۵.	. 34	
	244.5																																																				
6182	184.4																																																	-			
6183	93.7																																																				
RE 6183	91.7																																																				
																																																		-			
RRE 6183	98.9	7.2	46.7	7 3	1	.4	.6	.9	38	5.	93	17	13.5	<.1	31	.4	L04	. 2	3.3		42.3	6	. 6.	0	10 .	21.4	2.7		.0	204	.051	5.88	Θ.	128	3.84	70.	7 3	5.5	38	10.1	9.4	25.	3 2.	4	.6	4 ;	42.5	. 4	243	.2 1	.9	-	
6184	199.9	15.0	50.4	1	9	. 2	.9	1.6	37	01.	12	9	9.9	<,1	31	.0	103	.1	3.7		72.5	8	.7	.0	11 .	22.3	3.6		1	195	.054	6.50	0.	170	5.14	111	7 3	3.6	41	13.3	12.6	29.	3 2.	8	6	5 2	23.4	.6	372.	.7 z	.0 -	.70	
6185	>4000	54.4	67.5	3	3	.3	.4	.8	53	9 1.	85	103	30.2	<.1	21	.8	98	.5	14,1	12	71.2	12	3.6	.0	09	17.3	4.0		.0	206	.028	6.23	3 .:	201	6.42	>20	0 2	5.4	31	16.3	49.5	18.3	3 1.	4	4	9 1	.00.1	1.9	514.	4 1	.3 :	.76	
6185	373.1	22.9	45.7	2	5	.1	.9	2.3	56	4 1.	41	21	8.3	<.1	31	.4	109	.1	3.7		83.0	9	.5	0	11 :	21.9	2.8		.4	170	.056	5.92	2 .	128	4.05	>20	0 3	5.0	38	14.5	10.4	30.	3.	1	6	6 3	93.3	.7	271	8 1	.9	.78	
6187	243,4	56.2	106.8	18	6	.9	.7	2.5	86	3 2.	59	125	7.6	<.1	33	.1 :	107	2.4	8.1	2	57.5	9	.57	.0	11	21.6	5.3	:	.5	175	.050	5.86	5 .	114	3.84	>20	0 4	3.7	39	25.5	11.0	29.	2.	5	9	7 4	41.5	1.8	286.	.2 2	.0 (.68	
6188	273.9	23.0	46.7	' 6	4	.2 (5.4	4.7	61	9 1.	89	130	8.8	<.1	26	.0	235	.4	2.5		34.9	41	1.50	.0.	24	18.7	12.9		4	228	.094	5.46	5 .:	106	3.19	180.	6 3	7.1	33	10.0	9,5	26.	2.	3	9	7 3	33.3	.7	233.	3 2	.0	.66	
6189	3.9 1	03.6	6.4	. 9	9	.2 40	1.6 3	7.7	188	5 7,	42	31	52.9	<.1	1	.7	56	.2	1.3		1.9	284	9.20	.1	14	7.2	84.5	3.	6	506	.532	7.01	L 1.	547	1.72	60.	0 1	9.1	15	1.0	13.8	5.4	٠.,	2	12	28 1	11.6	.1	115.	6	.9 (.98	
6190	3.5 1	24.3	5.5	9	3	.2 43	3.7	16.6	177	8 8.	35	6	1.8	<.1	1	.7 .5	92	. 3	1.2		1.0	327	9.14	.1	19	7.0	107.9	4.	2	470	.663	7.96	5 2.	120	1.07	4.	9 1	8.1	15	1.9	15.8	1.4	3 .	2	1	39	40.0	.1	35.	.0 1	.0 7	.00	
6191	1.4 1	07.2	4.6	, 8	2	.1 43	3.3 4	4.9	157	5 B.	18	5	1.2	<.1	1	.6 :	67	.1	1.1		.3	330	9.48	.1	17	6.9	110.2	4.	.6	424	. 634	7.86	5 2.	151	1.02	1.3	2 1	7.9	15	.6	15.5	1.6	5 ,:	2	1	38	19.9	<.1	25.	.7	.9	.78	
6192	1.7.1	02.3	4.8	8	2	.1 46	5.8 4	13. 3	144	2 7.	91	2	1,4	<.1	1	.7 (31	. 2	1.0		.3	316	9.05	.1	18	7.7	143.9	4.	.3	509	.512	7.70	2.	144	1.19	1.	3 1	i.5	16	.6	15.3	1.4	3	2	1	36	31.2	<.1	31.	8 1	.0 6	.22	
STANDARD DST6	12.7 1	28.3	34.6	1_17	2	.4 30	3.7 1	3.2	96	74.	09	25	7.5	<.1	7	.0 3	312	5.7	5.4		4.8	115	2.29	.1	02	24.8	230.3	1.0	3	687	. 438	7.01	1.1.	675	1.39	8.	0 5	3.8	52	6.3	15.1	8.8	3 .	7	3	12	26.8	<.1	58.	1 1	9	-	

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT To Newmac Resources Inc.

Acme file # A602401R Page 1 Received: JUN 12 2006 * 129 samples in this disk file.

Analysis: GROUP 7KP - 0.500 GM SAMPLE BY PHOSPHORIC ACID LEACH, ANALYSIS BY ICP-ES.

ELEMENT W	
SAMPLES %	
5636	0.06
5637	0.04
5638	0.05
5639	0.04
5640	0.05
5642	80.0
RE 5642	0.08
5643	0.03
5644	0.04
5647	0.02
5648	0.02
5649	0.08
5 6 50	0.05
56 52	0.02
5653	0.23
5654	0.03
.STD CT-1	1.07
5656	0.02
5658	0.06
5659	0.03
5662	0.02
5664	0.02
5667	0.02
5668	0.03
5672	0.16
5677	0.04
5678	0.03
5679	0.05
5680	0.11
5681	0.02
5682	0.07
5683	0.05
5686	0.08
5687	0.04
STANDARD I	0.09
5688	0.08

5689	0.02
5692	0.58
5693	0.04
5694	0.02
5695	0.03
5696	0.03
5698	0.02
5699	0.03
5700	0.13
5826	0.03
5831	0.06
5833	0.04
5834	0.05
5835	0.03
5836	0.04
5837	0.03
5838	0.03
5839	0.04
5842	0.04
.STD CT-1	1.12
5844	0.03
5845	0.44
5 84 6	0.02
5858	0.02
RE 5858	0.02
5859	0.05
5860	0.06
5861	0.03
5862	0.03
5864	0.03
5866	0.02
5867	0.02
5869	0.06
STANDARD I	0.09
5870	0.02
5872	0.07
5873	0.03
5874	0.07
5876	0.06
5879	0.02
5880	0.08
5881	0.06

RE 5881	0.06
5882	0.06
5883	0.03
5885	0.04
5886	0.07
5888	0.06
5889	0.03
5890	0.03
5891	0.08
5892	0.07
5893	0.03
.STD CT-1	1.11
5895	0.03
5896	0.05
5897	0.06
5898	0.07
589 9	0.05
5900	0.08
5901	0.04
5902	0.04
5903	0.07
5905	0.05
5906	0.04
5907	0.03
5908	0.04
5909	0.06
STANDARD F	0.09
5910	0.03
5911	0.04
5912	0.08
5913	0.05
5914	0.05
5915	0.12
5916	0.02
5918	0.03
5919	0.05
5920	0.04
5921	0.06
5922	0.03
5923	0.03
5924	0.04
5925	0.08

5926	0.04
5927	0.03
STD CT-1	1.06
5931	0.03
5932	0.03
5933	0.1
5934	0.02
5936	0.03
59 37	0.02
5940	0.02
RE 5940	0.02
5941	0.02
STANDARD F	0.09

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Newmac Resources Inc. File # A602401 Page 1 2605 Jame St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

Mo Cu Ph Zn Ag Nì Co Mn Fe As U Au Th Sr Cd Sb Bì V Ca P La Cr Mg Ba Tì Al Na K W 2r Ce Sn Y Mb Ta Be Sc Lì S Rb Hf Sample 14 2.7 23.5 61 <1 3.0 5.0 745 2.36 5 4.2 <1 9.2 813 <1 .1 .2 52 2.68 .093 31.9 12.6 .65 1117 .295 9.14 3.078 3.14 .2 8.4 63 1.4 15.9 24.5 2.2 3 5 41.5 <1 134.4 7 G-1 74.5 131.3 5.2 252 .4 67.4 30.8 1496 5.64 1 2.3 <.1 1.7 513 1.4 2.5 20.1 317 4.84 .147 8.8 106.8 2.19 123 .462 7.05 2.799 2.33 55.3 20.0 17 4.2 16.0 2.8 .2 6 19 68.3 2.5 149.7 .7 6.92 5631 42,1 144,3 32,6 177 1,0 66.5 28.2 1629 6.61 19 2.3 <.1 1.7 702 .7 3.3 6.8 291 5.30 .150 8.4 98.6 2.20 125 .435 6.60 2.026 1.94 147.1 19.0 17 7.6 14.4 8.1 .3 12 18 100.6 2.3 140.5 .9 9.46 5632 2.5 145.8 17.0 129 .6 20.9 42.3 1774 7.93 3 .8 < 1 1.9 696 .3 .8 1.4 311 5.45 .187 8.6 30.2 2.14 852 .486 6.43 2.573 1.75 65.9 14.8 19 1.2 12.7 5.2 .2 10 23 56.6 .2 99.3 .7 4.68 5633 1.2 | 139,6 | 19,8 | 122 | .6 | 19,5 | 36,5 | 1727 | 7.56 | 2 | .9 | <1 | 1.5 | 753 | .4 | .7 | 2.1 | 272 | 6.75 | .160 | 7.5 | 22.4 | 2.60 | 958 | .442 | 6.19 | 2.577 | 1.58 | 14.7 | 12.5 | 17 | 1.6 | 13.4 | 1.8 | .2 | 7 | 21 | 72.1 | .2 | 88.3 | .6 | 6.76 26.5 8.7 11.7 84 < 1. 25.4 17.6 1862 3.82 64 23.5 < 1. 16.1 209 .5 1.7 9.7 105 2.30 .140 37.3 51.6 1.04 765 .448 8.38 1.106 3.17 169.1 112.9 70 12.4 22.0 68.2 2.1 24 11 99.5 .5 217.9 3.4 2.46 5635 67.1 12.4 29.2 24 .2 1.7 3.0 346 1.03 13 18.6 < 1 34.5 79 .4 1.6 6.9 13 .42 .019 25.0 3.6 .17 310 .054 6.28 1.096 4.82 >200 39.8 46 12.0 10.3 24.9 2.8 8 3 52.1 .5 319.4 1.7 5.38 5636 67.0 7.8 40.3 24 .5 .8 2.1 543 .66 13 14.3 < .1 28.1 72 .3 1.9 14.9 7 .28 .016 21.0 2.5 .12 236 .037 6.05 .207 4.24 >200 38.5 38 11.6 9.9 24.2 2.6 7 3 89.6 .3 301.5 1.8 5.44 5637 217.6 11.4 41.0 17 6 .8 2.0 564 1.20 33 12.8 < 1 32.5 51 .2 2.8 17.0 7 .35 .011 19.6 3.3 .11 206 .036 5.76 1.188 4.54 >200 38.8 36 16.1 8.7 21.2 2.0 8 3 57.1 .7 318.1 1.8 6.04 5638 302.9 4.9 30.9 68 1 1.3 1.3 459 .75 69 32.8 4.1 37.4 51 .8 .9 4.4 29 .48 .009 21.2 1.5 .17 282 .054 7.79 1.393 6.55 >200 40.6 38 81.9 9.7 23.6 2.0 68 10 121.3 .3 521.1 1.6 5.70 5639 46.7 6.8 26.3 16 < 1 8 2.3 489 1.14 12 14.0 < 1 36.6 50 .1 .7 3.0 5 .29 .012 22.9 3.5 .08 290 .058 6.60 1.375 4.77 > 20 44 8 39 11.2 10.5 33 0 3.1 8 4 94.3 .7 298.9 2.0 6.68 5640 158,3 8,2 28,1 23 .1 .8 1.8 545 1.07 13 39.1 < 1 36.0 40 .1 .8 1.2 7 .25 .011 20.1 4.5 .07 211 .048 5.58 .671 4.78 179.3 39.5 37 13.7 9.7 25.9 2.5 35 3 84.6 .5 293.8 1.8 5.94 5641 330,5 15,9 29,2 14 .2 .9 3,3 622 1,95 54 18.9 <1, 34.8 54 <1, 1,9 15.5 6 .26 .01 22.8 4.2 .10 197 .052 6.04 .295 4.39 >200 40.1 41 14.7 11.2 33.1 3.0 18 4 83.5 1.3 301.2 1.9 7.12 5642 132 2 11 1 34 5 16 3 8 2 7 378 1 37 14 21 1 < 1 33 1 82 < 1 1 7 10 5 6 .24 .012 22 7 4 .5 .11 185 .052 6 .25 .200 3 91 > 200 40 6 40 11 3 9 .8 32 0 3 0 3 3 3 190 1 .7 276 .4 1 9 5 .98 5643 105.8 8.9 85.2 26 1.3 .8 1.5 364 1.00 26 17.7 <1 34.0 96 .4 3.5 74.0 9 .37 .016 22.4 3.4 .11 193 .046 5.68 .818 4.07 >200 39.8 39 26.8 9.9 27.7 2.3 42 4 151.1 .5 287.9 1.8 5.92 92.2 9,7 52.6 11 .8 .9 1,6 374 1.17 21 19.9 <.1 34.5 46 .1 2.3 42.2 8 .39 .012 26.1 5.6 .09 221 .055 6.16 2.061 4.69 156.2 37.8 44 14.1 10.8 30.2 2.7 7 3 52.0 .7 288.0 1.7 5.58 5645 78.0 7 0 40.0 9 .4 .5 2.0 285 1.01 13 17.8 < 1 35.6 50 .1 1.4 27.4 6 .38 .012 26.9 4.3 .07 241 .059 6.46 2.562 4.73 158.5 41.8 45 10.1 10.8 33.2 3.1 7 3 50.3 .6 285.9 1.8 5.98 5646 66.1 7.9 25.6 9 .1 8 1.3 297 1.07 26 23.8 < 1 34.0 47 < 1 .7 4.4 6 .34 .012 23.7 6.5 .07 232 .049 6.25 2.159 4.99 > 20 39 5 40 15.6 10.7 26.0 2.7 7 3 51.4 .7 331.1 1.7 7.08 5647 240,9 8.3 30,7 10 1 1.0 1.8 347 1.05 10 18.8 <1 33,7 39 .1 1.3 10.8 8 .24 .010 22.9 4.5 .06 241 .052 5.96 1.070 5.04 >200 35.9 39 19.2 9.2 26.3 3.0 6 4 66.1 .6 317.8 1.7 6.52 5648 137, 9 8,4 43,6 19 6 8 1,6 459 1,05 10 23.2 < 1, 35,0 53 .2 1,9 21.2 7 .35 .010 23.5 4.2 .11 203 .059 6.02 1.846 4,60 >200 39.3 39 17.3 11.1 27.8 2.9 4 5 61.6 .5 284.3 1.8 6.70 118.5 11 7 26.1 11 1.1 1.0 3.6 236 1.28 16 26.2 < 1. 35.0 48 .1 9 3.0 5 .18 .012 25.0 3.5 .07 211 .051 6.00 .961 4.51 >200 39.5 40 10.7 13.1 27.6 3.0 5 3 119.7 1.0 278.3 1.9 5 20 5650 58.2 8.5 31.4 35 < 1 7 5.7 242 1.26 101 13.2 < 1 33.4 41 .3 .7 2.0 5 .21 .010 22.7 6.1 .05 230 .045 6.08 1.817 4.76 196.3 31.7 37 13.9 9.0 25.5 2.7 5 3 69.8 1.0 289.4 1.6 5.32 5651 53.5 15.5 37.0 22 .4 .8 3.0 494 1.44 21 16.4 < 1 34.9 46 2 1.6 9.5 6 .20 .013 26.9 3.7 .07 231 .049 5.90 1.511 4.88 >200 36.2 44 21.3 9.8 23.3 3.2 8 3 107.4 .9 318.0 1.9 5.92 317.7 10.0 39.1 74 .6 .6 4.6 836 1.46 161 27.2 <1 25.7 28 .9 2.1 16.2 22 .25 .007 21.9 4.6 .16 167 .055 5.54 1.014 3.69 >20 34.3 36 108.4 9.1 29.9 2.5 475 10 164.2 .9 341.9 1.7 6.26 5653 79,8 9,676,4 36 1.2 9 2,4 257 1.08 39 20.5 < 1 35.6 39 .4 3,2 37.7 7 .15 .011 25.0 3.2 .06 224 .050 6.05 .963 4.84 >200 38.2 41 22.8 10.3 28.9 3.4 7 3 82.7 .7 288.3 1.9 6.30 5654 17.2 7.3 44.6 12 .4 7 1.3 426 1.03 46 15.4 < 1 38.1 46 < 1 1.4 16.4 7 .29 .012 27.0 4.0 .07 252 .073 6.12 2.210 4.84 157.1 36.5 43 16.3 10.9 30.8 3.5 26 4 66.6 4 292.9 1.9 6.66 5655 34,1 4,6 45,9 13 .2 .7 1.3 395 1.03 65 13.0 <.1 40,3 44 <.1 1.9 66.0 7 .23 .011 24.8 3.1 .06 222 .065 6.58 2.112 4.99 >200 38.4 43 14.8 11.9 32.9 3.8 5 4 66.5 .5 307.1 2.0 6.88 5656 86,7 3,7 43,7 20 ,1 7 1,6 449 .99 25 15.8 < 1 35.9 50 < 1 1.7 29.4 7 .15 .011 23.9 3.6 .09 189 .052 6.43 .811 4.11 192.7 41.7 43 16.1 11.4 32.8 3.6 8 3 99.8 .3 281.2 1.9 5.30 5657 194.5 4.3 29.2 21 <1 9 3.8 462 1.28 33 19.6 <1 34.0 47 <1 1.1 5.2 12 .30 .011 25.4 3.8 .12 198 .072 6.26 1.122 4.32 >200 40.1 44 27.4 12.4 35.9 3.4 8 6 116.5 .7 291.0 1.8 6.42 5658 45.4 3.4 39.2 12 .2 .5 1.6 399 1.02 35 16.8 < 1 39.6 45 .1 1.5 17.1 8 .34 .014 27.0 3.5 .09 211 .059 6.35 2.036 4.59 > 20 38.1 45 13.3 10.3 27.6 2.8 5 4 56.5 .4 280.9 1.8 6.80 5659 45.5 3.8 42.0 13 .1 .7 1.6 392 .99 37 18.1 < 1 42.1 49 .1 1.9 17.5 9 .34 .614 30.7 3.5 .09 222 .069 6.35 2.236 5.00 >20 42.1 51 15.5 11.3 32.8 3.2 6 4 62.4 .4 312.8 2.0 -43.2 3.5 31.1 13 < 1 .6 1.3 392 1.05 48 16.5 < 1 38.1 45 < 1 1.0 10.4 8 .34 .013 27.6 3.4 .09 211 .061 6.45 2.057 4.47 > 200 41.2 50 13.5 10.8 29.4 2.8 7 4 54.6 .4 286.1 1.9 71.5 5.1 29.7 14 .1 1.0 2.7 295 1.21 34 10.0 <1 36.7 50 <1 1.0 2.7 295 1.21 34 10.0 <1 36.7 50 <1 1.0 6.8 9 .33 .012 25.1 4.3 .09 202 .052 6.30 1.610 4.50 133.9 36.3 44 15.3 11.0 25.3 2.5 6 3 109.5 .7 299.1 1.7 5.90 61.1 2.4 32.9 12 < 1 .8 1.6 362 .93 9 11.1 < 1 .3 1.6 362 .93 9 11.1 < 1 .3 1.4 49 < 1 1.2 14.6 7 .25 .011 23.5 1.8 .09 192 .060 5.96 .832 4.03 79.7 34.5 41 7.8 10.6 29.9 3.5 9 4 132.9 .4 242.8 1.8 4.38 5661 25.9 3 0 34.9 10 < 1 8 4.9 370 1.13 13 11.3 < 1 41.8 47 < 1 1.3 8.8 8 .33 .014 27.0 6.5 .09 261 .065 6.58 1.350 4.94 >200 38.7 46 14.7 10.8 32.9 3.2 6 5 109.9 .6 294.7 2.0 5.74 STAMDARD 05T6 12.4 128.1 35.0 178 .4 29.9 12.9 967 4.09 26 7.9 <.1 7.2 315 5.8 5.3 4.7 112 2.30 .101 24.9 228.8 1.04 676 .428 7.03 1.659 1.41 7.7 53.5 52 6.4 15.0 8.4 .8 3 11 26.1 <.1

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIAL ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-MS. - SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA DATE RECEIVED: MAY 29 2006 DATE REPORT MAILED: 06-12-2006 A08:33

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

AL Raymond Chan

FILE # A602401

Page 2

98-144	ACME ANALYTICAL																																										ACME AN	NALYT1CAL
64. 4. 3, 7, 25. 65, 7, 14, 15, 17, 17, 18, 18, 19, 19, 19, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19	CAMPI F	Mo	- Cu	Ph	7n	Δn	Ni	Co	Mn	Fe	Δς	- 11	40	Th		Cd	Sh	A í	······································	Ca		1.8	Cr	Ma	Ra	Tí	Δ1		r		u 7	· Ca		· v	Nh	Ta	Ro	50	13		Dh	uf /	Samia	
61	SAFECE#											•						-					-	-				-					-	nor.						_	-			
1867 15 27 71 4 2 9 17 17 18 15 15 2 4 1 5 1 2 9 17 17 18 15 15 2 4 1 5 1 2 9 17 17 18 15 15 2 4 1 5 1 2 9 17 18 18 18 18 18 18 18 18 18 18 18 18 18		ppiii	PPIII	ppii	ppii	ppiii	Phin	ppiii	ppiii		ייעע	ppm	ppin	ppiii	ppiii	P)VIII	hbw	Ppin	PDIII			Ppii	ppii		ppm						ii yyr	PLAN	ppiii	- ppili	ppa	ppiii	рри	ррп	рри		Pipin	ppiii	Kg	
1867 15 27 71 4 2 9 17 17 18 15 15 2 4 1 5 1 2 9 17 17 18 15 15 2 4 1 5 1 2 9 17 17 18 15 15 2 4 1 5 1 2 9 17 18 18 18 18 18 18 18 18 18 18 18 18 18	G_1	c 1	3.7	22.5	65	< 1	43	4 9	803	2 46	5	4.6	< 1	7.6	ana	< t	1	1	55	2 71	094	22 1	13.0	69	1139	297	Q 1R	7 189	3 22		2 8 8	. 44	1.5	14 9	22.7	2.1	7	5	46.7	- 1	120 0	7		
566 1964																																					-	-						
9566 42, 4 5 05 5 4 4 1 8 3 5 20 11 0 912 5 4 5 4 6 1 7 2 3 6 3 4 012 294 30 1 20 294 30 1 3 5 4 1 7 1 6 1 7 2 2 10 2 4 5 1 7 1 1 3 1 3 1 1 5 1 1 3 2 6 1 5 1 4 7 1 6 7 28 10 244 50 1 7 2 1 2 1 4 1 1 2 20 2 3 7 8 1 1 1 3 8 1 3 1 1 5 1 6 1 8 3 1 2 1 4 7 1 6 7 28 10 2 4 5 1 7 1 4 1 1 2 20 2 3 7 8 1 1 1 3 8 1 3 1 1 5 1 6 1 8 3 1 4 1 7 1 6 7 28 10 2 4 3 1 7 1 4 1 1 2 20 2 3 7 8 1 1 1 3 4 1 3 1 1 5 1 6 8 1 8 3 1 4 1 7 1 6 7 28 10 2 4 3 1 7 1 4 1 1 2 20 2 3 7 8 1 1 1 3 8 1 3 1 1 5 1 6 8 1 8 3 1 4 1 7 1 6 7 28 10 2 4 3 1 7 1 4 1 1 2 20 2 3 7 8 1 1 1 3 4 1 3 1 1 5 1 6 8 1 8 3 1 4 1 1 1 9 1 7 7 2 8 10 2 4 1 1 1 1 2 1 2 1 1 3 4 1 1 1 1 2 1 2 1 3 1 1 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1																																												
946 26 4 3 21 1 4 5 1 1 1 1 1 1 1 2 3 2 6 1 1 1 1 1 1 2 3 2 6 1 1 2 1 1 2 1 3 2 7 2 3 2 7 2 3 2 7 2 3 1 2 3 2 7 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	and the second s																																											
5667 566 4.6 4.5 16 4.1 7 2.4 80 1.02 736 18.5 4.1 52.3 52 1.4 17 1.6 7 26 100 24.4 5.4 1.1 122 807 5.94 5.90 4.7 42 11.4 11.2 30 2 3.3 8 3 130 9 .4 20 3 1.9 6.02 5668 18.8 2.8 87 11.5 1.3 8.3 1.38 1.08 1 15.2 4.1 27.4 54 1.1 9 9 7 7 28 501 2.0 1.5 5 70 221 19.9 6.8 11.7 19.0 4.7 70 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.																																												
5668 15.8 2.8 2.5 7 11. < 1. 8 3.1 35.1 10.6 13 15.2 < 1.3 14. 54 1.1 9 9 7 7 28 10.1 26.1 7.8 5 16 1.2 2.7 2.7 2. 10.2 2.8 3.8 7 8 2.8 10.0 12.5 10.0 2.7 2.8 10.0 2.8 10.0 2.7 2.8 10.0 2.8 10.0 2.7 2.8 10.0 2.8 10.0 2.7 2.8 10.0 2.8 10.	2000	20.0	4.3	20.1	10	€.1	1.0	1.4	J32	.00	10	10.2	~.1	42.J	DJ	`.1	.,	3,4	,	. 23	.012	23,4	3.0	.07	243	.070	D.40	1.007	4.07	30.	9 44.3	- 5U	5.4	13.3	40.1	4.3	- /	4 .	116.3	.4 .	290.1	2.0	6.16	
5666 158 2.8 2.7 11 < 1 .8 3.1 351 LOG 13152 < 1.7 14 54 .1 .9 .7 4 .7 2.7 12 2.8 1 .5 .5 .0 .22 12 .1 .2 .5 .2 .5 .0 .2 .2 .5 .5 .0 .2 .2 .5 .5 .0 .2 .2 .5 .5 .0 .2 .2 .5 .5 .0 .2 .2 .5 .5 .6 .2 .2 .5 .2 .5 .5 .6 .2 .5 .5 .6 .2 .5 .5 .6 .2 .5 .5 .6 .5 .6 .2 .5 .5 .6 .5 .5 .6 .2 .5 .5 .6 .5 .5 .6 .2 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	5667	45.0	4 4	41 5	148	< 1	7	2 4	4D0	1 02	736	18.5	< 1	35.3	52	1 4	1 7	1.6	7	26	010	24 4	5.4	13	182	057	5 94	560	4 15	>20	n 4n 7	42	11 4	11.2	30.2	3 3	R	3	130 9	4	265.3	1.9	6.02	
560 560 560 560 560 560 560 560 560 560																																												
5970 5970 2 21 32 2 32 2 32 3 2 32 1 3 3 24 1 3 3 28 1 1 3 9 42 63 2 2 32 1 3 6 1 2 5 1 5 1 4 7 33 611 24 1 5 5 4 1 3 6 1 2 5 1 5 1 4 7 3 61 2 1 3 6 1 4 5 2 5 1 5 1 4 7 3 61 2 1 3 6 1 4 5 2 5 1 5 1 4 7 3 61 2 1 3 6 1 4 5 2 5 1 5 1 4 7 3 61 2 1 3 6 1 4 5 2 5 1 5 1 4 7 3 61 2 1 3 6 1 4 5 2 5 1 5 1 4 7 3 61 2 1 3 6 1 4 5 2 5 1 5 1 4 7 3 61 2 1 3 6 1 4 5 2 5 1 5 1 4 7 3 6 1 4 5 2 5 1 5 1 4 7 3 6 1 4 5 2 5 1 4 7 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4																																												
5671 130.2 21 33.2 33 <1 8 3.3 24 1.8 3.3 26 1.1 4 1.5 5 <1 35.9 66 1 2.5 136.4 8 8 25 011 26.5 4.8 1.0 197 046 6.12 .808 4.08 150.0 30.5 82 12 10 2.0 12.0 12.0 12.0 12.0 12.0 12.																																												
5672 161.1 9 6 56.3 53 1.1 9 4 2 64.2 207 244 29.1 < 1 26.6 4 5 6 5 6 82.9 12 17. 0.07 23.9 9.1 65 165 0.05 5.08 479 379																																												
5673 127. 3 3 26.9 13 < 1.1 1 2.2 28 1.45 24.74 < 1 34.3 45. 18.1 36. 52 1.7 1 34.9 36. 52 1.8 56. 18.0 12.1 7 6.56 55. 56. 56. 15.0 12.1 7 6.56 55. 56. 56. 56. 56. 56. 56. 56. 56	307 1	150.6		30 · E	-			0.0	E-1-1		•	10.0	.,1	55.7	40	•	6.0	100,4			.011	20.0	7.0	, 20	***		V. 12	, , , , ,	4,00	100.	40,0		12.0	20.0	24.5	2.0	,	٠,	140.2	.,	403.1	1.7	0.12	
5673 127. 3 3 26.9 13 < 1.1 1 2.2 28 1.45 24.74 < 1 34.3 45. 18.1 36. 52 1.7 1 34.9 36. 52 1.8 56. 18.0 12.1 7 6.56 55. 56. 56. 15.0 12.1 7 6.56 55. 56. 56. 56. 56. 56. 56. 56. 56	5672	163.1	9.6	56.3	53	1	9	4.2	643	2 07	244	39 1	< 1	26.6	45	- 6	5.6	A2 9	13	17	007	23 9	Q 1	90	156	036	5 08	497	3.79	>20	1 33 9	42	17.0	B 1	34.5	22	4	ς .	81.8	1.2	267.7	1 4	6.29	
556 1918 0 3 2 24 1 10 < 1 9 3 2 23 25 95 8 8 0 0 1 36 0 5 1 1 5 0 2 1 1 5 5 8 2 7 20 20 11 55 2 7 14 1 7 12 20 3 3 26 6 8 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																																												
5976 27 28 4 28 4 28 4 28 4 28 4 28 4 28 4 2																																												
5676 127.8 2.4 23.4 8 -1 6 1.8 242 1.07 11 5.7 < 1 34.2 51 < 1 1.5 1 1.5 8.8 8 1 1.5																																												
5677	Ÿ																																											
5678 118 5 2 7 25 8 8 8 1 7 1 9 3 9 1 0 0 7 9 5 4 1 32 9 58 4 1 8 8 7 7 30 010 24 9 4 4 08 191 046 5 92 1.666 4 30 >200 32 3 44 8 4 10 0 26 9 3 2 5 4 118 6 4 264.8 1 7 6 62 567 6 568 1 157 3 3 9 3 5 4 3 7 2 4 1 9 6 5 4 9 1 7 1 15 25 7 6 1 3 1 1 5 4 1 5 2 6 9 1 9 9 2 8 00 9 25 3 9 0 10 10 10 10 10 10 10 10 10 10 10 10 1	3070	127.0	2.7	Lu				1.0		1.0,					J 1			0.0	٠	. 50	.011	20.2	0		200	.000	0.24	2.120	4.00	100.			3.0		32.1	7.0	,	•	00.5	.5	234.0	1.0	0.30	
5679 695, 7 5,4 33,7 32 <1, 1,9 6,5 4 17,7 15 25,7 <1 31,1 54 1.5 2,6 91,9 9 28 009 25,3 9.0 10 180 0.042 5,33 .987 4,44 >20 8,6 4 4 15,4 11,1 23,7 2,7 8 6 181,2 1,0 288,2 1.8 4,48 1560 1357,3 38,9 35,4 37 .1 2,9 6,6 76,7 12,48 118 31,2 <1 20.0 27 23 10.7 11.4 <1 .21 0.06 15,6 75 .07 38 .01 3.5 .97 3.16	5677	146.4	2.0	29.9	14	<.1	.8	3.3	297	1.32	11	15.4	<.1	32.0	56	<.1	1.0	17.7	9	.31	. 009	22.4	5.7	. 10	191	.047	5.80	.881	4.52	>20	38.8	39	16.7	11.4	24.7	3.0	6	5	152.7	.7	294.2	1.7	5.92	
5680 1357.3 38.9 35.4 37 .1 2.9 76.6 767 12.48 118 31.2 <1. 20.0 27 2.3 10.7 11.4 <1 .21 006 15.6 7.5 .07 38 .017 3.52 .973 3.16 >200 21.8 27 12.9 6.6 14.3 1.3 3 5 34.2 8.7 225.6 9 1.52 131.0 115.6 79 .2 8 6.0 607 2.26 69 26.6 <1 .27.1 41.10 14.4 939.8 12 .29 01.4 20.4 99.0 .09 151 .047 4.65 .714 3.40 >200 35.8 35 17.9 8.9 24.9 2.6 8 5 144.0 1.3 229.3 1.6 5.72 14.1 1.0 14.4 939.8 12 .29 01.4 20.4 99.0 .09 151 .047 4.65 .714 3.40 >200 35.8 35 17.9 8.9 24.9 2.6 8 5 144.0 1.3 229.3 1.6 5.72 14.1 1.0 14.4 939.8 12 .29 01.4 20.4 99.0 .09 151 .047 4.65 .714 3.40 >200 35.8 35 17.9 8.9 24.9 2.6 8 5 144.0 1.3 229.3 1.6 5.72 14.1 1.0 14.4 939.8 12 .29 01.4 20.4 99.0 .09 151 .047 4.65 .714 3.40 >200 35.8 35 17.9 8.9 24.9 2.6 8 5 144.0 1.3 229.3 1.6 5.72 14.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	5678	118.5	2.7	25.8	8	<.1	.7	1.9	319	1,00	17	9.5	<.1	32.9	58	<.1	. 8	8.7	7	.30	.010	24.9	4.4	.08	191	.046	5.92	1.666	4.30	>20	32.3	. 44	8.4	10.D	26.9	3.2	5	4	118.6	.4	264.B	1.7	6.62	
5680 1357.3 38.9 35.4 37 .1 2.9 76.6 767 12.48 118 31.2 <1. 20.0 27 23 10.7 11.4 <1. 21 006 15.6 7.5 .07 38 .01 3.5 .07 38.01 3.5 .09 21.8 27 12.9 6.6 14.3 1.3 3 5 34.2 8.7 225.6 9 5.5 .09 5.5 .1 27.1 41.10 14.4 933.8 12 .29 10.4 20.4 99.0 .09 151 .047 4.65 .714 3.40 ×200 35.8 35 17.9 8.9 24.9 2.6 8 5 144.9 1.3 229.3 1.6 5.72 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.	5679	695.7	5.4	33.7	32	<.1	.9	6.5	419	1.77	15	25.7	<.1	31.1	54	1.5	2.6	91.9	9	. 28	.009	25.3	9.0	.10	180	.042	5.33	.987	4.44															
5681 1343 10.0 115.6 79 .2 .8 6.0 67 2.26 69 26.6 < 1 27.1 41 1.0 14.4 393.8 12 .29 10.4 20.4 9.0 10.9 151 .047 4.65 .714 3.40 .200 35.8 35 17.9 8.9 24.9 2.6 8 5 14.0 1.3 229.3 1.6 5.72 5682 479.4 2.4 26.6 8 < 1 8 3 2 273 1.22 10 9.5 < 1 32.2 58 .7 1.1 36.5 11	5680	1357.3	38.9	35.4	37	.1	2.9 7	/6.6	767 1	2.48	118	31.2	<.1	20.0	27	2.3	10.7	11.4	<1	.21	.006	15.6	7.5	.07	38	.017	3.52	.973	3.16	>20	21.8	. 27	12.9	6.6	14.3	1.3	3	5	34.2	B. 7	225.6	. 9	.52	
5682		134.3	10.0	115.6	79	.2	.8	6.0	607	2.26	69	26.6	< 1	27.1	41	1.0	14.4	393.8	12	. 29	:014	20.4	9.0	.09	151	,047	4.65	.714	3,40															
5683 308.3 2.5 28.6 35 < 1. 9 2.2 275 1.22 13 16.9 < 1. 28.8 49 .7 1.5 13.0 12 1.5 1.008 21.5 7.9 1.09 182 1.07 5.684 1.186 4.27 2.00 32.5 37 23.2 10.1 25.9 2.3 9 .7 116.5 .7 268.8 1.6 6.54 5.684 372.1 2.4 26.7 12 < 1. 7 1.7 338 1.00 9 10.9 < 1 32.4 59 .4 9. 9 .33.5 9 .4 1.00 24.4 3.9 1.0 199 .000 5.9 1.816 4.25 190.6 37.0 41 17.4 11.7 27.7 3.0 96 .7 121.2 4. 28.5 1.9 7.58 5.85 20.3 2.5 25.8 10 < 1 9 1.6 33.4 193 9 9.5 < 1 35.1 61 1. 7 15.4 7 .41 0.10 25.2 4.3 10 25.2 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		•																																										
5684 37.1 2.4 26.7 12 1.7 1.7 338 1.00 9 10.9 1.7 32.4 59 1.4 1.0 9 13.5 9 1.4 1.0 9 24.4 3.9 1.0 9 24.5 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	5682	479.4	2.4	26.6	8	<.1	.8	3.2	273	1.22	10	9.5	<.1	32.2	58	.7	1.1	36.5	11	.36	.010	26.4	6.8	.09	195	.056	6.27	1.540	4.63	>20	38.4	45	16.7	11.5	32.5	3.3	7	5	117.8	.7	2B2.3	1.9	5.94	
5685 240,3 2.5 25.8 10 <1 9 1.6 334 93 9 9.5 <1 35.1 61 .1 7 15.4 7 .41 .010 25.2 4.3 .09 202 .071 6.21 1.992 4.28 182.6 39.6 43 10.8 12.3 34.3 3.8 11 4 153.0 .3 255.9 2.0 6.74 5686 215.1 2.1 24.3 10 <1 9 1.4 333 1.02 12 13.5 <1 35.6 67 <1 1.8 165.0 9 .45 .010 24.5 5.3 .12 186 .054 5.97 1.225 4.46 \$200 38.5 41 19.5 12.4 29.8 2.9 52 7 127.9 .3 297.2 1.8 5.86 \$1.60 3.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	5683	308.3	2.5	28.6	35	<.I	.9	2.2	275	1.22	13	16.9	<.1	28.8	49	.7	1.5	13.0	12	.51	.008	21.5	7.9	.09	182	.047	5.44	1.186	4.27	>200	32.5	37	23.2	10.1	25.9	2.3	9	7	116.5	.7	268.8	1.6	6.54	
5686 215.1 2.1 24.3 10 <1 9 1.4 333 1.02 12 13.5 <1 13.9 61 4 3.3 1.02 12 13.5 <1 13.9 61 4 3.3 157.6 9 .45 101 22.5 5.7 .09 192 .057 5.84 .479 4.32 >200 46.9 38 12.9 10.3 27.3 3.3 12 7 126.8 .5 282.4 2.2 6.20 5688 142.8 5.03 51.1 52 <1 6 1.4 598 1.53 48 20.3 <1 7 1.6 393 .97 12 13.5 <1 37.1 70 .2 1.9 28.5 8 .33 .012 25.9 3.6 .09 202 .064 6.17 1.103 4.04 .20 41.1 42.3 12.6 30.8 34.2 6 .5 21.8 3.2 84.8 2.0 6.68 5690 325.7 3.4 37.8 24 <1 7 1.6 393 .97 12 13.5 <1 37.1 70 .2 1.9 28.5 8 .33 .012 25.9 3.6 .09 202 .064 6.17 1.103 4.04 .20 41.1 42.3 12.6 30.8 3.4 26 5 211.8 3.2 84.8 2.0 6.68 5691 36.7 6.3 48.5 28 <1 1.2 1.7 6.7 3 1.42 129 17.6 <1 31.9 12.9 17.6 <1 31.9 12.9 17.6 <1 31.9 12.9 17.6 <1 31.9 12.9 17.6 <1 31.9 12.9 17.6 <1 31.9 12.9 17.6 <1 31.9 12.9 17.6 <1 31.9 12.9 17.6 <1 31.9 12.9 17.6 <1 31.9 12.9 17.6 <1 31.9 12.9 17.6 <1 31.9 12.9 17.6 <1 31.9 12.9 17.6 12.9 17.6 12.9 12.5 5.7 12.9 12.6 12.8 12.9 12.8 12.9 12.9 12.5 5.7 12.9 12.8 12.9 12.9 12.5 5.7 12.9 12.8 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9	5684	372.1	2.4	26.7	12	<.1	.7	1.7	338	1.00	9	10.9	<.1	32.4	59	.4	.9	33.5	9	.41	.009	24.4	3.9	.10	199	.060	5.95	1.816	4.25	190	37.0	41	17.4	11.7	27.7	3.0	96	7	121.2	.4	258.5	1.9	7.58	
5687 322.3 3.2 38.1 15 <1 8 1.2 378 1.10 29 17.4 <1.1 33.9 61 .4 3.3 157.6 9 .34 .010 22.5 5.7 .09 192 .057 5.84 .479 4.32 >200 46.9 38 12.9 10.3 27.3 3.3 12 7 126.8 .5 282.4 2.2 6.20 5688 142.8 6 0 35.1 52 <1 .6 1.4 598 1.53 48 20.3 <1 31.3 49 .6 2.8 92.7 12 .30 .010 23.3 7.9 1.0 174 .042 5.32 1.39 4.15 >200 46.9 38 12.9 10.3 27.3 3.3 12 7 126.8 .5 282.4 2.2 6.20 5699 205.1 2.0 31.1 20 <1 .7 1.6 349 1.2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5 <1 37.1 70 .2 13.5	5685	240.3	2.5	25.8	10	<.1	.9	1.6	334	.93	9	9.5	<.1	35.1	61	.1	.7	15.4	7	.41	.010	25.2	4.3	. 09	202	.071	6.21	1.992	4.28	182.	39.6	43	10.8	12.3	34.3	3.8	11	4 '	153.0	.3	255.9	2.0	6.74	
5688 142.8 56.0 35.1 52 <1 6 1.4 598 1.53 48 20.3 <1 131.3 49 1.6 2.8 92.7 12 13.5 <1 7 1.6 93 1.7 12 13.5 <1 131.3 49 1.6 2.8 92.7 12 13.5 <1 131.3 49 1.6 2.8 92.7 12 13.5 4.1 12 13.5 4.1 13.1 49 1.6 2.8 92.7 13.1 40.1 42.8 92.8 92.8 92.7 13.1 40.1 42.8 92.8 92.8 92.8 92.8 92.8 92.8 92.8 9	5686	215.1	2.1	24.3	10	<.1	. 9	1.4	333	1.02	12	13.5	<.1	35.6	67	<.1	1.8	165.0	9	.45	.010	24.5	5.3	.12	186	.054	5.97	1.225	4.46	>20	38.5	41	19.5	12.4	29.8	2.9	52	7 .	127.9	. 3	297.2	1.8	5.86	
5688 142.8 56.0 35.1 52 <1 6 1.4 598 1.53 48 20.3 <1 131.3 49 1.6 2.8 92.7 12 13.5 <1 7 1.6 93 1.7 12 13.5 <1 131.3 49 1.6 2.8 92.7 12 13.5 <1 131.3 49 1.6 2.8 92.7 12 13.5 4.1 12 13.5 4.1 13.1 49 1.6 2.8 92.7 13.1 40.1 42.8 92.8 92.8 92.7 13.1 40.1 42.8 92.8 92.8 92.8 92.8 92.8 92.8 92.8 9																																												
5699 205.1 2.0 31.1 20 <1 .7 1.6 993 .97 12 13.5 <1 37.1 70 .2 1.9 28.5 8 .33 .012 25.9 3.6 .09 202 .064 6.17 1.103 4.40 >200 40.1 44 12.3 12.6 30.8 3.4 26 5 211.8 .3 284.8 2.0 6.68 5690 325.7 3.4 37.8 24 <1 .7 1.6 464 1.26 17 18.9 <1 35.7 88 .5 2.1 17.3 8 .43 .013 25.6 4.1 .11 213 .071 6.22 1.305 4.16 188.0 42.3 45 11.5 12.9 31.8 3.7 32 5 272.7 .5 259.6 2.2 6.92 5691 36.7 6.3 48.5 28 <1 1.2 1.7 673 1.42 129 17.6 <1 31.0 120 .2 3.7 74.3 13 .66 026 36.7 5.4 .16 470 .098 6.39 2.108 4.47 96.4 44.1 61 14.5 14.3 37.6 3.5 21 7 95.9 .5 289.4 2.3 6.24 8E 5691 37.8 6.5 50.2 34 <1 1.1 1.8 666 1.46 123 16.9 <1 32.9 126 .2 3.8 75.4 13 .67 .028 36.8 6.6 .17 486 .105 6.84 2.224 4.60 128.6 46.5 61 16.9 15.0 38.8 3.9 25 7 117.1 .5 298.8 2.6 5692 125.8 16.9 71.5 96 .1 .9 1.9 1408 1.41 29 39.2 <1 31.0 70 1.4 6.6 112.3 7 .46 .017 30.5 6.1 .09 307 .063 6.16 1.815 4.88 >200 34.8 >200 34.8 40 18.3 11.7 31.3 3.3 22 7 78.6 .5 295.5 21. 5.10	5687	322.3	3.2	38.1	15	<.1	.8	1.2	378	1.10	29	17.4	<.1	33.9	61	.4	3.3	157.6	9	.34	.010	22.5	5.7	.09	192	. 057	5.64	. 479	4.32	>20	46.9	38	12.9	10.3	27.3	3.3	12	7 :	126.8	.5	282.4	2.2	6.20	
5690 325,7 3.4 37.8 24 <1 .7 1.6 464 1.25 17 18.9 <1.1 35.7 88 .5 2.1 17.3 8 .43 .013 26.6 4.1 .11 213 .071 6.22 1.305 4.16 188.0 42.3 45 11.5 12.9 31.8 3.7 32 5 272 7 .5 259.6 2.2 6.92 5691 36.7 6.3 48.5 28 <1 1.2 1.7 673 1.42 129 17.6 <1 31.0 120 .2 3.7 74.3 13 .66 .026 36.7 5.4 .16 470 .098 6.39 2.108 4.47 96.4 44.1 61 14.5 14.3 37.6 3.5 21 7 95.9 .5 289.4 2.3 6.24 88 5691 37.8 6.5 50.2 34 <1 1.1 1.8 666 1.46 123 16.9 <1 32.9 126 .2 3.8 75.4 13 .67 .028 36.8 6.6 .17 486 .105 6.84 2.224 4.60 128.6 45.5 61 16.9 15.0 38.8 3.9 25 7 117.1 .5 298.8 2.6 -5692 125.8 16.9 71.5 96 .1 .9 1.9 1408 1.41 29 39.2 <1 31.0 70 1.4 6.6 112.3 7 .46 .017 30.5 6.1 .09 307 .063 6.16 1.815 4.88 >200 34.3 49 18.0 14.0 78.1 7 .11 17 75.1 .8 323.7 1.9 6.68 130.4 12 1 38.5 62 <1 .7 .8 735 1.17 94 23.9 <1 35.0 61 .7 2.5 44.7 9 .44 .011 23.7 6.3 1.0 214 .062 5.80 1.602 4.88 >200 35.8 40 18.3 11.7 31.3 3.3 22 7 78.6 .5 295.5 21. 5.10	5688	142.8	5.0	35.1	52	<.1	. 6	1.4	598	1.53	48	20.3	<.1	31.3	49	6	2.8	92.7	12	. 30	.010	23.3	7.9	. 10	174	.042	5.32	1.399	4.15	>201	36.0	38	20.6	8.7	20.4	2.4	23	7	74.8	.8	285.8	1.7	5.52	
36.7 6.3 48.5 28 <1 1.2 1.7 673 1.47 129 17.6 <1 31.0 120 .2 3.7 74.3 13 .66 .026 36.7 5.4 .16 470 .098 6.39 2.108 4.47 96.4 44.1 61 14.5 14.3 37.6 3.5 21 7 95.9 .5 289.4 2.3 6.24 RE 5691 37.8 6.5 50.2 34 <1 1.1 1.8 666 1.46 123 16.9 <1 32.9 126 .2 3.8 75.4 13 .67 .028 36.4 6.4 .16 481 .099 6.51 2.178 4.44 93.0 45.5 60 14.9 14.8 38.3 3.8 22 6 101.0 .6 307.2 2.5 RRE 5691 42.0 8.5 59.0 33 .1 1.3 1.8 721 1.45 79 19.6 <1 33.1 126 .2 4.6 115.6 14 .72 .028 36.8 6.6 .17 486 .105 6.84 2.224 4.60 128.6 46.5 61 16.9 15.0 38.8 3.9 25 7 117.1 .5 298.8 2.6 - 5692 125.8 16.9 71.5 96 .1 9 1.9 1408 1.41 29 39.2 <1 31.0 70 1.4 6.6 112.3 7 .46 .017 30.5 6.1 .09 307 .063 6.16 1.815 4.88 >200 34.3 49 18.0 14.0 78.1 .7 11 17 75.1 8 323.7 1.9 6.68 5693 130.4 12 1 38.5 62 <1 .7 8 735 1.17 94 23.9 <1 35.0 61 .7 2.5 44.7 9 .44 .011 23.7 6.3 1.0 214 .062 5.80 1.602 4.38 >200 35.8 40 18.3 11.7 31.3 3.3 22 7 78.6 .5 295.5 2.1 5.10	5689	205.1	2.0	31.1	20	<.1	.7	1.6	393	.97	12	13.5	<.1	37.1	70	.2	1.9	28.5	В	. 33	.012	25.9	3.6	.09	202	.064	6.17	1.103	4.40	>201	40.1	44	12.3	12.6	30.8	3.4	26	5 1	8.115	.3	284.8	2.0	6.68	
RE 5691 37.8 6.S 50.2 34 <1 1.1 1.8 666 1.46 123 16.9 <1 32.9 126 .2 3.8 75.4 13 .67 .028 36.4 6.4 .16 481 .099 6.51 2.178 4.44 93.0 45.5 60 14.9 14.8 38.3 3.8 22 6 101.0 .6 307.2 2.5 - RRE 5691 42.0 8.5 59.0 33 .1 1.3 1.8 721 1.45 79 19.6 <1 33.1 126 .2 4.6 115.6 14 .72 .028 36.8 6.6 .17 486 .105 6.84 2.224 4.60 128.6 46.5 61 16.9 15.0 38.8 3.9 25 7 117.1 .5 298.8 2.6 - 5692 125.8 16.9 71.5 96 .1 .9 1.9 1408 1.41 29 39.2 <1 31.0 70 1.4 6.6 112.3 7 .46 .017 30.5 61 .09 307 .063 6.16 1.815 4.88 >200 34.3 49 18.0 14.0 78.1 .7 11 17 75.1 .8 323.7 1.9 6.68 5693 130.4 121 38.5 62 <1 .7 .8 735 1.17 94 23.9 <1 35.0 61 .7 2.5 44.7 9 .44 .011 23.7 6.3 .10 214 .062 5.80 1.602 4.38 >200 35.8 40 18.3 11.7 31.3 3.3 22 7 78.6 .5 295.5 2.1 5.10	5690	325.7	3.4	37.B	24	<.1	.7	1.6	464	1.26	17	18.9	<.1	35.7	88	. 5	2.1	17.3	8	.43	.013	26.6	4.1	.11	213	.071	6.22	1.305	4.16	188.1	42.3	45	11.5	12.9	31.8	3.7	32	5 :	272.7	.5	259.6	2.2	6.92	
RRE 5691 42 0 8.5 59.0 33 .1 1.3 1.8 721 1.45 79 19.6 < 1 33.1 126 .2 4.6 115.6 14 .72 .028 36.8 6.6 .17 486 .105 6.84 2.224 4.60 128.6 46.5 61 16.9 15.0 38.8 3.9 25 7 117.1 .5 298.8 2.6 - 5692 125.8 16.9 71.5 96 .1 .9 1.9 1408 1.41 29 39.2 < 1 31.0 70 1.4 6.6 112.3 7 .46 .017 30.5 6.1 .09 307 .063 6.16 1.815 4.88 >200 34.3 49 18.0 14.0 78.1 .7 11 17 75.1 .8 323.7 1.9 6.68 5693 130.4 121 38.5 62 < 1 .7 .8 735 1.17 94 23.9 < 1 35.0 61 .7 2.5 44.7 9 .44 .011 23.7 6.3 .10 214 .062 5.80 1.602 4.38 >200 35.8 40 18.3 11.7 31.3 3.3 22 7 78.6 .5 295.5 2.1 5.10	5691	36.7	6.3	48.5	28	<.1	1.2	1.7	673	1.42	129	17.6	<.1	31.0	120	.2	3.7	74.3	13	. 66	.026	36.7	5.4	.16	470	.09B	6.39	2.108	4,47	96.4	44.1	61	14.5	14.3	37.6	3.5	21	7	95.9	.5	289.4	2.3	6.24	
RRE 5691 42 0 8.5 59.0 33 .1 1.3 1.8 721 1.45 79 19.6 < 1 33.1 126 .2 4.6 115.6 14 .72 .028 36.8 6.6 .17 486 .105 6.84 2.224 4.60 128.6 46.5 61 16.9 15.0 38.8 3.9 25 7 117.1 .5 298.8 2.6 - 5692 125.8 16.9 71.5 96 .1 .9 1.9 1408 1.41 29 39.2 < 1 31.0 70 1.4 6.6 112.3 7 .46 .017 30.5 6.1 .09 307 .063 6.16 1.815 4.88 >200 34.3 49 18.0 14.0 78.1 .7 11 17 75.1 .8 323.7 1.9 6.68 5693 130.4 121 38.5 62 < 1 .7 .8 735 1.17 94 23.9 < 1 35.0 61 .7 2.5 44.7 9 .44 .011 23.7 6.3 .10 214 .062 5.80 1.602 4.38 >200 35.8 40 18.3 11.7 31.3 3.3 22 7 78.6 .5 295.5 2.1 5.10																																												
5692 125.8 16.9 71.5 96 .1 .9 1.9 1408 1.41 29 39.2 < 1 31.0 70 1.4 6.6 112.3 7 .46 .017 39.5 6.1 .09 307 .063 6.16 1.815 4.88 >200 34.3 49 18.0 14.0 78.1 .7 11 17 75.1 .8 323.7 1.9 6.68 5693 130.4 12 1 38.5 62 < 1 .7 .8 735 1.17 94 23.9 < 1 35.0 61 .7 2.5 44.7 9 .44 .011 23.7 6.3 .10 214 .062 5.80 1.602 4.38 >200 35.8 40 18.3 11.7 31.3 3.3 22 7 78.6 .5 295.5 2.1 5.10	RE 5691	37.8	6.5	50.2	34	<.1	1.1.	1.8	666	1.46	123	16.9	<.1	32.9	126	. 2	3.8	75.4	13	.67	.028	36.4	6.4	.16	481	.099	6.51	2.178	4,44	93.1	45.5	60	14.9	14.8	38.3	3.8	22	6 !	101.0	.6	307.2	2.5	-	
5693 130.4 12 1 38.5 62 < 1 .7 .8 735 1.17 94 23.9 < 1 35.0 61 .7 2.5 44.7 9 .44 .011 23.7 6.3 .10 214 .062 5.80 1.602 4.38 >200 35.8 40 18.3 11.7 31.3 3.3 22 7 78.6 .5 295.5 2.1 5.10	RRE 5691	42.0	8.5	59.0	33	. 1	1.3	1.8	721	1.45	79	19.6	<.1	33.1	126	.2	4.6	115.6	14	.72	.028	36.8	6.6	.17	486	.105	6.84	2.224	4.60	128.6	46.5	51	15.9	15.0	38.8	3.9	25	7.2	117.1	.5	298.8	2.6	-	
	5692	125.8	16.9	71.5	96	. 1	.9	1.9 1	408	1.41	29	39.2	<.1	31.0	70	1.4	6.6	112.3	7	.46	.017	30.5	6.1	.09	307	.063	6.16	1.815	4.88	>201	34.3	49	18.0	14.0	78.1	.7	11	17	75.1	.в	323.7	1.9	6.68	
	5693	130.4	12 1	38.5	62	< .1	. 7	.8	735	1.17	94	23 9	<.1	35.0	61	.7	2.5	44.7	9	.44	.011	23.7	6.3	. 10	214	.062	5.80	1.602	4.38	>200	35.8	40	18.3	11.7	31.3	3.3	22	7	78.6	.5	295.5	2.1	5.10	
STANDARD DST6 12.6 129.0 34.5 175 .3 30.3 13.4 965 4.08 25 7.6 < 1 7.0 309 5.7 5.3 4.7 112 2.29 .099 24.8 229.9 1.04 685 428 7.02 1.644 1.40 7.7 52.0 52 6.3 14.7 8.4 .9 4 11 26.4 < 1 56.6 1.7	STANDARD DST6	12.6	129.0	34.5	175	.3 (30.3	3.4	965	4.08	25	7.6	<.1	7.0	309	5.7	5.3	4.7	112	2.29	.099	24.8	229.9	1.04	685	. 428	7.02	1.644	1.40	7.	52.0	52	6.3	14.7	8.4	.9	4	11	26.4	<.1	56.6	1.7	-	

FILE # A602401

Page 3

ALME ANALTITLAL													_											_																			AC	ME ANAL	TILLAL
SAMPLEA		Mo	Ću	ρh	7n	- 40	Ni	٠.	n Mr	Fe		· ·	II A		h S		d Sb	B1		· c	a	Р	La	Cr	Mg	Ba	Ti	Αl	Na	. К		7.	Ce	Sn	Υ	Nh	Ta	Re.	Sc		5	Rb H	of Came	10	
37.11.5511		nana	рряп		-								-				n ppm	_	n ode	-	_	\$ p			*		*				one.	_		ppm	enua.			חמס			•	מם האמם		ka	
		P.P.	PP	PPIN	-	pp	PP.		. ,				PP	,	PW					_					·-	PP							, pp		pp		PP	PP				7011111		·	
G-1		5	4.0	22 A	62	1	3 P	5 F	1 792	2 48	à	4 4	5 <	1 8	0 77:	, .	1 <.1	,	5.3	2.6	7 05	15 23	9 11	1.2	65 1	HIR	296	8 88	2 791	3.14			49	1.5	14 9	22 h	1 9	3	5 41	n «	1 12	7 4	7	_	
5695	5																													4.78								-	6 37						
5696												1 18.																		4.60									6 86						
5697												B 16.5																		4.89									6 51						
5698												7 18.3																		4,81									5 57						
0030					•						-							10.7															.,			50.1		••					J J.		
5699	9	6.0	14.5	43.7	21	.2	1.1	2.1	527	2.00	j z	6 19.	7 <.	1 34.	9 54	١ <.	1 2.4	65.5	, 9	.34	10. 4	9 23	.1 7	7.4	.11	208	.055	6.11	1.789	4.50	>200	42.4	40	19.7	9.7	26.6	2.7	6	6 45	.4 1	.1 28	2.6 1.	9 6.	24	
5700	9	0.1	13.3	42.1	161	.6	.8	1.1	1044	1,55	. 11	4 26,	0 <.	1 33.	5 54	2.	4 1,7	23.7	10	11	3 .00	19 23	.5 4	4.9	.10	199	.047	5,89	1.166	4,47									8 54					-	
5822																																							9 73						
5823	4	7 1	7 4	28 8	24	2	5	g	444	.99	3 5	1 19	0 <	39.	1 74	١.	2 7	3.0	8	. 2	7 .01	2 25	9 3	3.1	.09	203	.068	6.35	1.906	4.47	55.8	53.5	45	13.7	9 B	32 9	3.1	9	3 43	2	3 26	85 2	3 6	20	
5824																														5.08									4 46						
											_																											-							
5825	2	9.1	8.4	38.5	38	.2	. 7	1.0	372	.96	i 1	4 17.	7 <.	34.	8 66		4 1.0	13.8	. 6	. 20	. 01	2 24	.1 2	2.8	.07	221	.060	6.27	1.565	4.96	53.2	48.3	43	12.2	8.8	31.5	3.1	В	4 66	. я	.4 29	982	3 5	72	
5826																														4.90									4 48						
5827																																							3 38						
5828		8.4	2.7	33.7	15	.1	. \$. 6	409	.91	: 1	6 13.	2 <.	1 39.	5 67	· .	1 .9	2.2	. 6	. 32	2 .01	1 25.	.6 2	2.8	.09	198	.070	6.54	2.363	5.02	88.8	50.4	46	8.1	12.7	41.0	4.3	10	4 46	. 3	.3 30	1.2 2.	6 5	82	
5829	5	5.5	4.3	33.4	44	.1	.8	. 8	416	1.00) 1	9 18.	5 <.	37.	2 76		4 1.6	2.7	9	.28	3 . 00	9 25	.3 4	4.4	.11	190	.064	6.49	1.594	4.84									5 68						
5830	7	2.8	4.7	32.6	11	.2	. 2	. 5	346	1.02	1 1	5 24.	2 <.	29.	60	١.	1 1.4	5.9	7	. 23	00.	7 17	.5 2	2.1	.09	106	.052	6.38	1.514	4.23	154.7	47.0	33	11.2	16.2	51.5	5.8	12	4 36	.7	.5 28	9.7 2.	6 5.	88	
5831	3	3.9	4.8	43.2	23	.4	. 6	1.0	414	1.43	11	0 16.	7 <,	35.	5 53	١.	2 2.0	21.2	10	.27	.01	1 24	.7 5	5.5	.09	178	.050	5.97	1.316	4.69	>200	43.4	42	27.8	9.9	24.9	2.6	В	5 50	.6	.9 31	3.0 2.	2 6.	38	
5832	В	5.3	4.1	26.7	12	.1	.5	1.4	275	1.54	1/	0 14.5	9 <.	l 36,	2 53	<.	i .9	2.3	9	.27	.01	1 25	.6 6	5.4	, 10	185	.055	6.44	1.557	5.00	166.9	46.6	44	24.5	9.1	28.3	2.7	7	4 46	.9 1	.0 33	0.3 Z.	4 7	02	
5833	8	1.8	6.7	39.1	33	. 2	. 6	1.2	455	1.71	. 1	1 15.6	0 <.	1 36.	3 49	١.	3 1.4	9.0	11	. 27	.01	1 26	.2 5	5.1	,11	176	.052	6.16	1,197	4.77	>200	47.9	44	27.3	8.8	25.7	2.4	8	4 56	.2 1	.1 31	7.0 2.	3 6.	46	
RE 5833	8	4.4	6.5	38.0	33	.2	. 5	1.1	454	1.71	. 1	2 15.7	3 <	l 36.	4 5		2 1.2	7.3	11	.2	7 .01	0 26.	.0 4	1.0	.11	179	.053	6.12	1.197	5.06	>200	46.3	44	28.6	8.4	25.3	2.4	8	4 59	7 1	.0 32	8.1 2.	3		
RRE 583	30 8	6.0	6.0	35.3	30	. 2	. 6	1.2	440	1.66	ı 1'	1 13.7	7 <.	L 35.	2 50	٠.	2 1.2	5.9	11	. 26	.00	9 26.	5 4	1.5	.11	177	. 052	5.93	1.139	4.93	>200	48.3	44	28.4	9.0	25.1	2.3	5	4 56	.6 l	.0 32	5.5 2.	5	-	
5834																														4.88									4 46						
5835																														4.74									4 37						
5836																														4.30									4 41				-		
5837	6	2.9	3.4	26.4	20	.1	. 4	. 6	302	1.40	11	1 13.f	6 <.	34.	58		2 1.2	4 2	10	. 33	.00	9 23.	2 4	.0	. 10	162	.051	6.25	1.197	4.52	>200	44.6	40	22.8	9.0	28.2	2.7	11	4 67	.2	.9 ZB	5.9 2.4	4 6.6	60	
								,												20					00	102	OCT.		2 021		- 200	45.0	42			22.1									
5838																														4.75									4 43						
5839																														4.71				-					4 44						
5840																																							4 44						
5841		-										5 32.0																											5 39						
5842	2	3. Z	5.3	29.0	10	. 1	.4	, b	425	1.13	1.	2 21.6	b °.	. 35.1	5 04		1 1.0	7.8		. 23	.00	0 22.	ь з	5.1	.12	100	.000	0.00	1.434	4.30	>200	57.0	41	15.5	13.1	41./	4.4	29	5 37	1 .	.5 21	1.7 2.3	£ 5.8	84	
5843		. 0	6.2	A2 2	20	,		4	415	96	. 1	7 14		30	54		4 1 2	10.4	5	26	e du	6 25	2 2	1 1	0.7	133	056	6 28	2 353	4 48	139.9	4Q B	44	6.9	11.5	38.0	3.7	14	4 27	7	4 26	11 2	5 6.	44	
5844																														4.10									4 44						
5845																														4.09									8 37						
5846	-																													3.99									4 58						
5847																														3.27									7 42						
3d47	1	J. O	12.1	LUU . O	*1	3.1	2.2	4.2	. 1203	.03	311	. 61.4	• •	27.	, 104		J.1	444.2	. 12	.,,			J 2			30		J. L4	1.700	U. E.	70.7	-r.u	JŁ	0.4	w/ . L		0.0	,	, 42				. 0.3	,.	
STANDAD	RD DST6 1	2 4 1	29. 9	34.2	176	ø	30 5	13.5	dee	4.09	1 2	5 7.	4 <	. 2	1 317	5	6 6 2	4.7	111	2.30	חן כ	0 25	0 229	13 1	04	683	424	7 03	1 646	1 40	7.8	52.1	52	6.2	14 7	R 4	я	4	11 26	3 <	1 50	5 9 1 1	7		
JIANDAN	o date I	L	LU . U	J 2	2/0	. 4	JU . J		, ,00	00	۲.				- 511			-,,	+11	2.00	4	- LJ.		1					1.040			JE . L		٧.٤	* * * *	u. *		•	-1 -0						

FILE # A602401

Page 4

ACHE AI	NAL YT1ÇAL																																								ACME	ANALYTICAL
	SAMPLE#	Mo	€u	Ph	7 n	Δn	Ni	ľα	Mn	Fe	As	U A	T h	Sr	Cd	Sh	Bi	γ	Ca	Р	La	Cr	Ma	Ва	Ti		Na.	ĸ	u	7r	Ce	Sn	Y	Nh.	Та Ве		: L	i S	: 1	Rb Hf	of one 2	
	SN4 LLE	-		_	-			• • •	ppm	-							Digital Control				ppm		•				-						•	ppm pp			_			pin pom		
		ррип	Ppin	- PPINI	PPN	- Physic	- Ppin	- Dpin	- PPIII		- pp	, pp	ppii	- Politi	PPI	PPIN		- PPI				ppn		Ppin					Phil	ppa		ppiii	DDan .	ppii pi	in blu	i bbu			- р	m ppm	Kg	
1	G-1	2	7.4	24 1	£6	,	1 2	E 2	BUB 2	72	5 /	4 - 1	7 0	827	1	1	1	50	2 00	ngs	25.2	7.1	72	1 200	212	0 76	3 054	2 25	1		E1	101	* n n	21 1 1		, ,	41	2 - 1	120	.0 7		
	5848																																							.4 1.8		
1	5849																																							.4 1.6		
1	5850																																							.4 .6		
																																								.3 2.7		
	5851	5.5	142.1	5.3	10	5	3.5	13.0	O4 1.	02 43	10C 0.	1 5.1	19.7	600	٠. د	23.7	3.2	5	1.04	.007	13.5	10.0	.32	246	.047	5.9/	4.412	.59	10.6	40.1	JZ	.8 1	3.1 Z	3.3 Z.	9 4	3	16.0	J .J	1 35	.\$ 2.1	5.38	
	****		100 7					70.0	\500 T	42	0.7			ADD					7 50	004	2.4	767.0	11 00	26		1 70	056	45												.4 .5		
	5852																																							-		
ļ	5853																																							.9 2.1		
i	5854																																							.0 2.1		
ł	5855																																							.4 2.0		
	5856	18.1	1.9	32.1	32	.2	1.1	.8	463 1.	30	19 19.	7 <.1	35.5	53	.5	. 8	7.3	8	. 39	.012	26.8	6.5	.09	253	.069	6.70	2.578	4.79	144.2	49.0	47 2	1.7 1	2.4 4	2.3 4.	.8	. 4	51.8	3 .4	301	.7 2.3	6.56	
ļ								_										_	2.																							
l																																								.0 2.2		
į	5858																																			_				.5 2.0	•	
	RE 5858																																							.B 2.1		•
	RRE 5858																																							.3 2.1		
	5859	114.7	5.0	38.9	42	.3	2.2	1.9	481 1.	56	16 21.	0 <.1	34.3	47	. 5	1.7	15.8	,	. 34	.009	Z3.7	7.2	. 11	191	.053	6.29	2.010	4.84	>200	46.8	41 3	1.8 1).7 3	1.6 3.	.2 10	3	53.4	. 6	321	.7 2.0	5.90	
\$	5860																																							.6 1.9		
)																																								.9 2.0		
ł	5862																																							.9 1.9		
																																								.1 2.0		
	5864	170.4	2.7	38.1	18	.1	.5	1.3	345 1.	10	14 9.	7 <.1	35.7	51	<.1	1.2	52.7	6	.45	.011	24.0	4.2	.10	207	.065	6.63	2.210	5.09	>200	43.1	41 1	4.4	3.4 2	5.7 1.	9 7	4	4 5.6	3 .6	284	.8 1.9	6.22	
																_																			_							
																																								.9 2.1		
																																								.5 2.0		
ļ																																								.1 2.3		
ĺ	5868																																							.8 2.3		
Ì	5869	65.8	3.4	31.7	37	1.	1.7	2.5	581 1.	65	79 37.	0 < 1	35.4	54	. 3	1.5	19.7	9	. 55	.020	25.3	9.9	. 12	187	.075	6.24	2.173	4.68	>200	48.8	43 I	4.2	3.7	0.4 2.	4 5	4	46.9	1 .8	243.	.8 2.7	5.16	
	5870																																							.9 2.4		
	5871																																							.9 1.9		
ļ	5872																																							2 1.9		
ļ	5873	74.4	.4	26.3	15	<.1	. 6	1.0	416 1.	16	9 10.	3 < 1	31.4	47	.1	.8	32.6	8	.52	.013	23.4	6.3	.10	193	.069	5.78	2.083	4.22	>200	39.5	39 1	5.5 10	3 3	1.1 3.	0 7	5	64.1	5	269	,9 2.0	5.84	
	5874	139.7	1.3	25.4	18	<.1	.9	3.2	357 1.	64	11 13.	3 <.1	26.7	46	<.1	1.9	119.5	7	.42	.012	19.8	6.1	. 10	181	.062	5.21	1.501	3.69	>200	38.1	33 1	9.0 10	0.1 2	4.9 2.	5 5	6	77 9	1.2	245	.7 2.0	6.18	
	5875	107.4	2.0	26.4	15	<.1	. 8	1.2	308 1.	31	11 22.	9 <.1	34.0	55	.1	1.6	62.3	8	.46	.013	21.7	6.7	.10	187	.066	6.10	1.891	4.48	130.8	39.5	36 13	3.4][.2 2	9.5 2.	.9 9	4	113.0	8. t	280.	.2 2.0	6.66	
	5876	110.2	4.8	30.5	13	<.1	. 2	1.3	336 .	93	18 14.	7 <.1	31.8	48	<.1	1.4	33.9	7	.49	.013	19.2	4.1	.09	219	.057	6.33	2.293	4.88	>200	38.7	33 14	1.5 9	6 2	8.7 2.	8 8	. 5	46.5	. 6	335.	4 2.1	5.98	
	5877	121.5	2.6	35.4	15	<.1	.9	.9	313 1.	04	10 14.	2 <.1	34.0	47	.1	1.6	36.2	8	.48	.014	23.9	6.4	.09	206	.058	5.94	1.765	4.41	135.6	36.1	39 1	5.5 9	9.9 2	4.9 2.	7 5	. 4	56.5	. 6	291	0 1.9	6.60	
1	5878	64.6	2.0	27.3	12	<.1	.8	2.1	314 1.	16	12 14.	4 < .1	33.2	51	.1	1.4	23.5	8	35	.013	23.7	6.6	.09	219	.066	6.06	1.654	4.53	151.0	35.3	39 1	5.2	7.7 2	8.5 2.	8 6	. 4	53.6	. В	281	9 1.8	6.68	
	5879	49.7	1.2	26.6	15	<.1	.7	2.3	289 1.	.05	8 11.	9 < .1	33.5	52	.1	1.2	13.6	7	.46	.015	18.4	4.8	.08	224	.055	6.90	1.884	5.83	>200	42.7	32 1	5.3 8	3.5 2	5.6 2.	4 5	. 3	55.0	.7	400	.3 2.D	6.01	
ļ																																										
	STANDARD DST6	12.7	129.1	34.1	176	. 4	30.2	13.4	964 4.	07	25 7.	5 < . 1	7.0	309	5.8	5.3	4.7	111	2.29	.100	24.9	224.5	1.03	672	. 433	7.00	1.654	1.40	7.6	53.3	52	5.2 14	.8	8.5 .	8 4	- 11	25.8	<.1	57	2 1.7		
																																									•	

Newmac Resources Inc. FILE # A602401

Page 5

ACME ANALYTICAL																									_													AU	ME ANALYTICAL
SAMPLE#		Cu Pb	7.0	40	us c			Ac	11 8	o Th		Cd .	Ch.	Bí	ų.	Ca	ь	La	Cr	Ho	Ва	Tí	Al	Na	к	i.i	7-	Сe	Sn	γ	Mh	τ,	Be Sc		Li		Rb Hf	f Camil	
SATIFECH	110	pom pom	-	-										-													_		-										-
,	µpiii	Diblii Dibiii	ppir p	, iii/ji	Du Dhi	пры		Dun b		и руп	Pipan	hham h	JAII .	ppiii p		*	•	ppm	hbiii		DD:	-	<u> </u>			- indo	Phil	Phu	HAIG	Pilan	ppiii ;	JUNI D	hen lober	- 9	Lexu		ppm ppm	6 k	,
											700																											_	
G-1		3.6 21.0																																					
5880		1.1 48.9																																					
58B1		1.1 36.0																																					
5882		1.4 27.6																																					
5983	317.9	4.0 64.4	19	.1	.9 1.6	3 470	1.18	7 14	i.8 <.	1 32.3	47	.2 5	.0 42	7.0	10	.45	014	22.2	8.8	. 10	195	.052	5.90	2.014	4.33	>200	30.6	39	24,4	8,7	26.2	2.3	8 5	. 54	1.1 .	B 300	1.1 1.4	6.1	6
5884	113.5	3.9 31.2	2I <	.1 1	0 3.7	1 424	1.29	9 15	.3 <.	1 31.3	58	.2 3	.0 2	9.1	9	.46 .	014	22.3	8.9	.11	189	.051	6.03	1.889	4.42	197.7	32.0	38	17.9	9,1	24.8	2.4	5 4	54	1.5 1.	0 291	LB 1.4	6.0	6
5885	864.0	2.5 54.2	45	. 2	.9 4.5	8 591	1.56	9 17	.2 <.	1 31.3	59	.6 4	.7 20	6.0	8	.42	016	24.1	7.6	.12	196	.045	5.51	1.304	4.52	>200	35.5	42	18.0	9.0	22.5	.9	4 5	65	.3 1.	4 321	1.7 1.6	4.9	8
5886	91.1	3.3 34 8	34	. i 1	5 2.5	9 772	1.30	22 13	1.5 <.	1 30.7	52	.3 3	.1 4	9.4	В	. 43 .	014	20.3	8.2	.11	191	.050	5.68	1.534	4.05	>200	35.5	35	19.0	8.7	25.1	2.2	3 6	67	.5 1.	1 270	1.8 1.6	6.7	4
5887	78.1	1.5 47.0	83	. 2	.6 .4	4 619	.53	6 10	1.2 <.	1 30.3	44	1.0 6	.4 6	6.3	B	47	012	17.5	5.0	.09	233	.038	5.61	1.474	4.86	193.0	35.6	31	19.4	9.0	17.5	1.9	3 6	57	CO .	3 354	1.2 1.9	5.9	8
5888	141.5	8 33.9	74	. 2	4 2.5	5 460	1.36	434 18	.8 <.	1 34.8	34	.9 6	.7	6.2	5	.53	011	8.3	4.4	.08	166	.025	6.11	. 260	4.06	>200	30.4	15	14.6	9.8	16.8	1.3	4 4	60	1.9 1.	3 289	1.9 1.5	6.1	8
5889	96.3	1.9 41.7	119	2	7 2	4 602	99	50 19	0 <	1 34 7	48	1.4 3	2 1	5.4	б	41	011	24.0	6.8	.09	216	.029	5.79	1.100	4 94	>200	36 0	41	19.7	9 4	16.4	B	4 5	70	6	R 337	75 18	1 5 R	6
RE 5889		2.0 42.4																																					
RRE 5889		1.7 43.7																																					
5890		6.0 49.2																																					n
5891		4.9 50.3																																					
3031	270 0	4.7 50.5	, ,		.0 5.0	. 010	1.17	140 67				., ,					00,	10.0	7,7		1,70	.000	J., L	1.300	4.00	. 200	3 0. .		*U. u	10.0	10.0		•	.,		7 320	1.9	0.2	
5892	140 6	1.4 34.0	AG	1	7 1 1	n 567	56	36 12	1 -	1 20 6	12	3 2	n	9 5	6	45	ano	12 1	4.5	л7	109	030	6 N2	1 905	s ng	>200	37 5	21	17 6		16.7	o.		i sa		2 260	1'9 1 C		
5893		2.1 61.9																																					
5894		2.5 33.5																																					
5895		2.6 55.1																																					-
		2.0 33.1																																					-
5896	197.6	2.1 47.0	107	. 1	.0 .3	, 034	. 50	6/ 13		1 30.4	35	1.2 3	4 0	J. 0	•	. 40	פטט	10.3	5.3	.07	191	. 033	J.10	1.04/	4.34	2200	33.5	20	12.3	9.0	19.5		3 4	30		3 304	3 1.8	6.00	,
5897	220.0	3.3 52.8	67	,	2 7.	מבים ל	an	46 17		1 24 0	47	E 2	a 0	1 2	7	0.0	200	20.7		กอ	20.6	030	E E0	1 649	4 47	>200	20.2	25	10.0	120	22 4		2 4	. 42	. a	c 916	:		
		3.3 26.8																																					
5898		1.4 31.3																																					
5899																																							
5900		6.3 29.4																																					
5901	158.0	2.0 36.3	28 <	- 1	.6 1.4	1 567	.90	40 16		1 31.7	51	.5 1		1.2	ъ.	48 .	ATT	16.8	5.4	.IV	519	.034	5.85	1.418	5.14	>200	32.2	29	14.2	8.U	18.6	/	3 5	5/	.5	/ 356	.4 1.5	6.58	,
																	63.0	10.6		**	100	D 70				. 200	24.1	20		n 3									_
5902		3.6 27.5																																					
5903		3.5 44.1																																					
5904		3.0 23.4																																					
5905		3.0 28.4	-																																				
5906	96.4	2.8 21.9	15 <	. 1	.4 2.5	251	.97	563 16	.0 <.	1 32,8	55	.1 1	4	. 6	4 .	58 .	800	14.1	6.2	.07	218	.035	6.14	1.472	5.48	>200	39.0	25	11.8	11.3	21.5	.0	3 3	38	.7 .1	8 355	8 1.8	6.04	1
													_		_																		_		_				
5907		1.7 22.0		-																																			-
5908		1.7 27.5																																					
5909		3.1 27.3				-																																	-
5910	188.7	3.4 25.9	62 <	.1	.9 3.9	280	1.04	214 26	.0 <.	1 30.6	35	.6 5	4	1.8	7 .	18 .	012	17.9	5.5	.13	75	.037	5.82	.115	3.44	>200	37.3	32	18.8	8.2	21.9	.9	7 4	80	.9 .1	8 270	9 1.8	4.00	i
5911	86.7	2.3 24.2	24 <	.1	.1 1.4	4 359	.73	35 11	.1 <	1 31.1	56	.2 1	2	9.4	5 .	89 .	800	16.7	3.5	.07	158	.036	5.901	1.480	4.49	>200	36.8	29	9.4	11.6	22.1 2	. 4	4 3	62	.6 ./	5 299	.8 1.9	6.67	2
STANDARD DST6	12.7 1	27.7 35.1	175	.3 30	.2 13.7	3 965	4.08	26 7	.6 <.	1 7.0	316	5.6 5	4	1.8 1	12 2	29 .	101	24.9 2	231.9 1	.03	681	.431	7.D4	1.648	1.43	7.7	53.2	52	6.3	14.8	8.5	.8	3 11	27	1 <.	1 57	.9 1.8		
_																																							

FILE # A602401

Page 6

ACIE ARCITICAL																																									WEITICAL
SAMPLE	F-#	Mo	Ćα	Ph	7n	40	N1	Co.	Mn Fe	a 4s		ab.	Th	50	ra s	n F		Ca	p	La	Cr	Ma	Ra.	T1	Δl	Na	ĸ	U	2 c	Ce	Sn	Y	Nb T	a Ro	Sr			D'	b Hf	Samola	
. 5446	40																					-						ppm								200	*		п роп		
		hhu	PPIII	ррп	יותוע	phii	ppn :	Dhen 1	. 194	ı ppin	L/L/L	Palm	ppiii	ppm	hts: hh		iii ppi			ppiii	ppiii		ppiii					Pyliii	ры	hhm	ppm	Lilinii.	рри рр	п ррна	Dist				п ррн	kg	
									332.0.2					760	,		2 6		000	25.4			. nar	200		2 040	2 53	2.8		**	. .				_			, ,			
G-1						-							-																					-	-		-		-		
5912																												>200													
5913																												>200													
5914																												>200													
5915	2	265.6	3.9	22.7	26	< 1	.7	1.7 3	353 . 67	/ 22	15.8	<.1	34.0	75	.3 1.	4.	4 :	.49	.012	20.8	2.5	10	193	.042	6.32	. 780	4.92	>200	42.6	35 1	5.7 1	1.0	27.5 2.	5 4	4	103.3	.4	325.7	2 2.1	5.86	
5916	3	72.2	2.6	23.2	31	.1	.6	2.6	301 .57	/ 31	16.1	<.1	34.6	70	.3 1.	1 9.	7 1	.47	.012	19.4	3.7	.09	194	.041	6.12	.878	5.03	>200	40.0	34 1	2.6	8.4	2.2 2.	2 4	3	71.3	.3	316.	1 2.0	6.12	
5917		25.8	2.9	20.1	13	.3	.7	4.3 2	264 .73	1 9	15.1	<. I	33.4	70	<.I 1.	Ι.	5 7	. 70	.012	16.6	3.6	.09	197	.051	6.47	1.033	5.05	108.6	44.3	28	7.5	9.1 2	6.8 2.	8 6	4	93.8	4	329.6	6 2.2	6.02	
5918	7	16.3	8.2	22.2	19	<.1	.9	3.2 1	188 .7	1 15	29.6	<.1	37.1	92	<.1 3.	2 13.	2 8	.31	.014	23.2	3.7	.11	174	.062	6.62	. 696	4.65	>200	47.3	40	9.5 1	0.1 3	5.6 3.	1 8	4	126.0	.4	289.5	5 2.3	6.36	
5919		271.5	4.2	23.1	23	<.1	.7	4.4)	177 1.1	1 21	21.8	<.1	31.8	76	.1 2.	5 5.	5 (.35	.012	25.3	4.0	.09	198	.038	5.94	.836	4.33	>200	39.4	43 1	1.0	8.8	5.3 2.	4 5	4	97.5	.9	303.5	5 2.1	5.92	
5920	1	43.7	2.8	32 4	14	. 1	.7 9	5 2 3	330 . 21	8 13	14.7	c . 1	32.9	83	< 1 1.	21.	R 6	.47	.013	24.5	3.6	.10	272	.042	6.13	1.421	4.57	>200	37.6	42 1	0.5	9.3 2	5.2 2.1	6 4	4	60.8	4	302 1	9 1 9	6.22	
***************************************					•						•					•••					***							•								•••				0.00	
5921		ec 2	7 2	20 A	20	,		21.	124 70	£ 23	47.2	<i>c</i> 1	32.7	05	3 2 .	1 3	3 6	55	017	24 3	2.0	11	257	054	5 05	1 340	4 66	>200	44.5	40 1	20	0 / 1	2 2 2 1	a 6		94.2		207	2 2 6	6 1B	
5922	-												-															>200								-					
5923																												>200													
5924																												>200													
5925	2	60.2	8.3	101.B	19	. 7	.9	2.7 2	245 1.B3	s 83	15.5	<.1	30.4	72	.3 6.4	418.	1 5	.96	.014	15.8	3.7	.08	267	.044	6.14	.728	5.39	>200	34.8	26 1	5.7 1	1.4 2	5.I 2.	1 6	4	155.1	1.6	354.1	1.B	6.38	
5926																												>200													
5927		70.3	6.1	27.8	11	<.1	.9	2.2 2	259 .94	1 14	8.3	<.1	39.5	97	.1 2.1	. 6.	0 6	.58	.014	23.0	3.0	.09	245	.059	6.37	.763	5.34	>200	42.5	39 l	3.7 1	0.0 3	3.5 3.3	1 9	4	288.B	. 5	297.5	5 2.3	6.14	
\$928	1	43.2	6.1	35.0	24	<.1	.8	1.6 2	250 .83	53	9.8	<.1	37.5	105	<.1 3.	86.	0 6	.56	.013	21.1	3.0	.11	164	. 055	5.92	.399	4.58	175.6	44.4	35 1	7.4	8.7 3	6.7 3.5	3 8	4	168.1	.3	283.7	7 2.0	5.96	
5929		53.9	3.8	32.6	23	<.i	.9	.6 3	319 .66	δ 13	8.4	<.1	38.5	103	.2 3.1	122.	5 7	. 52	.013	21.3	2.8	.10	227	.062	6.31	.476	5.20	142.9	43.0	34 1	9.0	9.7 3	6.3 3.4	3 7	4	252.0	.2	301.3	3 2.2	7.08	
5930	1	53.0	7.1	28.0	15	<.1	.5 1	1.0 2	279 .94	1 13	7.7	<.1	33.3	78	.1 2.4	13.	1 3	.42	.011	16.6	3.1	.09	180	.051	5.74	.340	4.34	126.6	36.2	27 I	B.6	7.3 3	0.6 3.3	3 8	4	190.7	.4	268 .	9 2.0	6.38	
5931		54.1	8.3	31.2	19	<,]	.4	1.7 2	251 86	5 18	9.2	<.1	36.1	84	.2 2.0	10.	1 6	.69	.012	17.1	2.6	.08	233	.048	5.81	.790	4.69	>200	37.6	29 1	5.6	9.9 2	6.4 2.9	9 9	4	277.7	.3	271.5	3 1.8	7.02	
5932		93.7	5.7	31.0	29	.1	.5	1.5 3	320 .73	3 36	6.8	<.1	31.B	76	.2 2.1	. 14.	5 7	.50	.011	14.7	3.0	.08	193	.047	5.44	244	3.97	>200	34.9	25 1	7.1	7.7 2	9.4 3.1	1 10	4	433.3	. 3	236.7	3 1.8	6.28	
RE 593	12	94 5	5.4	31.5	28	.1	.3	1.5 3	320 .72	2 44	6.1	<.1	29.6	73	.2 2.1	. 14.	5 7	.50	.011	15.1	2.8	.08	186	.046	5.46	.246	3.95	>200	33.8	25 1	7.1	B.1 2	6.8 3.0	J 10	4	435.0	.3	237.	1 1.6		_
RRE 59																												>200													
5933																												>200													
2933	4	13.3	0.6	32.d	20	٠.			20 1.1.				31.6	00		45.	,	.03	.011				.0.	.045	4,00	.000	7,27	- 600	00,0	J. L				, ,		30.3		252.1	. 1.0	0.54	
540.4			٠,	00.1	22		,		20 1 1			. 1	24.0	02				En	012	10.7	A D	11	170	0.42	E 02	201	2 76	>200	26.4	24 1					,	166.0		250.1			
5934																																									
5935							-				-																	99.9										-			
5936																												>200													
5937																												>200													
5938		17.0	11.1	25.5	9	<.1	.9	1.0 3	136 .93	12	6.0	<.1	32.7	102	.1 1.3	10.	9	.49	.018	27.6	3.1	.13	318	.069	6.22	1,771	5.27	138.3	39.8	47 2	1.1 14	0.0 2	9.7 2.8	1 4	4	45.4	. 4	288.2	1.8	6.28	
5939		65.2	10.4	27.6	18	.2	1.0	1.0 3	97 .97	ž 13	6.2	<.1	33.3	98	.3 2.2	9.	3 10	.71	.015	26.6	3.6	. 15	227	.061	5.97	.306	4.46	122.3	44.2	46 1	9.7	9.0 3	1.6 3.1	. 8	5	68.1	.3	281.6	2.2	6.42	
5940		34.6	16.5	48.1	46	. 2	.5	1.1 5	558 1.46	i 104	7.9	<.1	33.0	108	.7 3.1	42.	9 9	.53	.015	25.5	4.3	.12	258	.067	5.87	629	4.16	>200	45.0	44 1	7.2 10	0.9 3	7.6 4.1	. 6	4	100.8	.8.	251.5	2.0	6.58	
5941																												>200													
5942																												79.8													
5943																												64.8													
3943		. ~		30.0	*+"			43	-1.47				1.0						0		30.0	0-	-55		2.70	2.0-0	2.04	V		٠, ،	11				2.4	PV.3		+70.3			
CTANGA	RD OST6	12.7	131 0	25 1	170		20 7 2	3 7 e	20 4 24	n 26	7 6	- 1	7.0	212			2 114	2 70	101	24 0	221 0	1 04	504	430	-7 .04	1 651	1 43	7 P	52.5	E2 4	: 2 1:	: n	9 6 7	, ,	1.1	26 2	. 1	E7 (4 1 D		
STANDA	MD 0210	12.J	131.9	35.1	1/6	4	50./ Is	3.3 9	700 4 .10	. 25	7.6	۲.۱	7.0	213	5.8 5.4	4.	3 114	۷. . ۷	.101	24.7	731 A	1.04	034	. 430	7.04	1.001	1.43	7.6	33.5	32 ().J 1	5.U	3.3 .t			20.2	4.1	57.6	1.8		

FILE # A602401

Page 7

SAMPLE#	Mo	ε.	ı Pb	Zn	Aç	 Ni	Co	Mn	Fe	As	· U	AL	, τ	h S	r	Cd	SÞ	Bi	٧	Ca	р	La	Cr	Mg	Ва	Ti	A1	Na	K	W	Zr	Се	Sn	Y	₩b	Τą	Вę	5c	Li	5	Rb	Нf	Sample	
	ppm	ppr	п ррт	рря	, ppq	я ррт	ppm	ppr	1 . 1	орг	ı ppm	ррп) pp	m pp	пр	pm	ppm p	рп	ррп	;	ţ	ррп	ppm	1	ppm	*		t	*	ррп	ррп	medd	ppm	ррп	ppm	ppm	ppm	ppm	ppm		рфп	ρpm	kg	
G-1			2220	£7		2.0	40	704	2 20		4.0	[مما	7	A 76	0 -	1	1	1	52	2 70	0.87	24 8	11 0	£1	1,066	277	0.00	2.961	3 32	,	9.7	40	1 4	14.4	70.6	1.0	2		37.5	- 1	124.2			
				_		1 26 5		-		-							-								-			1.831					-	-			-	-	146.1					
5944			29.7																																								6.52	
5945	. 6	113.3	20.2	111	. 5	26.7	35.1	1582	7.23	16	9.6	۲.]	1.	5 80	3	. 1	. 9	.7	270	7.13	. 151	7.6	43.6	2.91	168	. 490	6.70	1.652	1.89	51.3	16.0	16	1.2	14.3	7.3	. 2	25	28	6 9.3	. 3	145.8	.8	5.84	
5946	1.2	100.5	10.8	91	.3	34.6	31.2	1517	6.67	23	5.6	<.]	1.	3 105	9	.3	1.4	.5	241	8.51	.143	7.1	57.5	2.74	444	. 449	5.43	. 201	1.66	32.4	16.2	15	1.1	13.1	5.9	. 1	25	25	158.8	. 2	107.2	.7	7.40	
5947	. 6	123.5	5.8	88		41.0	32.1	1262	6.62	13	57.2	<.]	1.	3 45	4	. 2	1.4	. 5	261	7.53	.139	6.5	58.5	3.00	428	.440	5.97	1.260	1.65	37.2	12.4	14	2.0	12.4	2.1	. 1	14	25	246.5	. 1	86.6	. 6	4.20	
5948	1.6	135.4	10.5	103	;	68.9	41.5	1598	8.12	9	1.1	<.]	1.	6 82	2	. 5	2.6	.4	316	8.81	.153	7.5	82.9	3.75	793	. 543	7.48	1.909	1.63	8.4	17.8	16	.8	14.4	1.8	, 2	1	34	33.9	<.1	66.1	.9	8.26	
5949	.6	143.0	8.7	94		64.4	42.1	1573	8.16	14	1.1	<.1	1.	5 86	8	.3	2.1	.5	324	7.86	.151	8.0	84.5	3.88	770	. 575	7.53	2.267	1.34	4.5	18.4	17	.9	15.3	1.7	. 1	1	34	37.8	<.1	41.0	. 9	8.02	
5950	.8	132.6	7.4	102		49.3	40.B	1474	8.32	4	. 8	<.]	1.	6 115	9	.2	1.4	.1	335	8.19	.169	8.3	70.9	3.99	816	.581	7.75	2.191	1.30	1.3	17.8	17	.7	15.9	1.7	. 1	1	37	34.6	<.1	33.6	1.0	8.08	
5951	1.2	138.5	7.6	98		39.7	42.2	1656	8.39	3	. 8	<,]	1.	5 106	9	. 2	1.3	.1	331	8.40	.146	7.9	56.8	3.91	1001	.595	8.00	2.162	1.37	1.9	17.1	17	.6	15.1	1.7	.1	2	36	28.7	<.1	29.3	1.0	7.50	
STANDARD DST6	12.9	127.	34.9	173	4	30.5	13.0	967	4.09	25	7.8	<.1	7.	0 31	4 5	.7	5.4 4	.7	114	2.29	.103	24.B	232.1	1.00	687	430	7.03	1.720	1.46	7.7	52.8	51	6.3	14.8	8.4	.8	3	12	27.0	<.1	58.4	1.6	-	

Sample type: DRILL CORE R150.

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT To Newmac Resources Inc.

Acme file # A602092R Page 1 Received: MAY 23 2006 * 76 samples in this disk file.

Analysis: GROUP 7KP - 0.500 GM SAMPLE BY PHOSPHORIC ACID LEACH, ANALYSIS BY ICP-ES.

ELEMENT	W
SAMPLES	%
5466	0.02
5702	0.05
5703	0.03
5704	0.07
5705	0.02
RE 5705	0.02
5708	3.91
5710	0.13
5711	0.04
5712	0.02
5713	0.06
5714	0.05
5715	0.07
5716	0.05
5717	0.19
5718	0.04
5719	0.1
5720	0.18
5721	0.21
5722	0.04
5725	0.03
5732	0.09
5733	0.05
5734	0.03
5737	0.13
5740	0.03
5744	0.04
5745	0.03
5747	0.05
5748	0.04
5750	0.08

5751	0.12
5752	0.03
5756	0.08
STANDARD I	0.1
5757	0.03
5758	0.03
5759	0.03
5761	0.03
5762	0.03
5763	0.2
5764	0.07
5765	0.05
5766	0.03
5767	0.18
5768	0.03
5769	0.04
5770	0.03
5771	0.06
5773	0.19
5774	0.06
577 5	0.05
5776	0.02
RE 5776	0.03
5777	0.03
5778	0.05
5779	0.06
5780	80.0
5782	0.04
5786	0.02
5790	0.02
5791	0.09
5792	0.08
5793	0.03
5794	0.04
5795	0.06
5796	0.06
5797	0.07

5798	0.02
STANDARD I	0.09
STANDARD (1.08
5799.	0.04
5800	0.09
5801	0.04
5802	0.02
5807	0.03
5810	0.06
STANDARD I	0.08

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT To Newmac Resources Inc.

Acme file # A602274R Page 1 Received: JUN 7 2006 * 96 samples in this disk file.

Analysis: GROUP 7KP - 0.500 GM SAMPLE BY PHOSPHORIC ACID LEACH, ANALYSIS BY ICP-ES.

Analysis: GROL	JP 7KP - 0.50
ELEMENT W	1
SAMPLES %	•
5427	0.02
5431	0.02
5433	0.3
5434	0.08
5437	0.03
5449	0.02
5454	0.04
5461	0.06
5462	0.13
5468	0.03
5473	0.04
5474	0.02
5477	0.02
5478	0.02
5480	0.03
5481	0.04
5482	0.02
5484	0.02
5487	0.07
5488	0.05
.STD CT-1	1.05
5494	0.03
5495	0.03
RE 5495	0.04
5496	0.09
5497	0.04
5499	0.03
5500	0.04
5501	0.03
5502	0.06
5503	0.05
5504	0.06
5505	0.06
5506	0.08
STANDARD F	0.08

5507

0.03

5511	0.03
5512	0.06
5513	0.12
5514	0.11
5515	0.42
RE 5515	0.42
5516	0.02
5517	0.05
5518	0.02
5519	0.03
5521	0.02
5523	0.02
5524	0.03
5525	0.05
5527	0.08
5528	0.05
5529	0.04
5530	0.02
5531	0.06
5534	0.18
. 5535	0.04
5536	0.02
5537	0.03
5538	0.06
5539	0.04
5540	0.07
5541	0.02
5542	0.1
.STD CT-1	1.05
5544	0.03
5548	0.03
5552	0.02
5574	0.03
STANDARD F	0.08
5575	0.03
5576	0.03
5577	0.06
5582	0.03
5583	0.05
5584	0.03
5585	0.03
5586	0.04

5587	0.04
5589	0.02
5590	0.03
5591	0.04
5592	0.04
5596	0.02
RE 5596	0.02
5599	0.07
.STD CT-1	1.05
5601	0.11
5602	0.04
5603	0.03
5616	0.07
5618	0.03
5620	0.03
5622	0.08
5624	0.02
5627	0.04
5628	0.04
. 5630	0.02
STANDARD I	0.08

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

Page 1

GEOCHEMICAL ANALYSIS CERTIFICATE

2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

Newmac Resources Inc. File # A602274

Mo Cu Pb Zn Ao Ni Co Mn Fe As U Au Th Sn Cd Sb B1 V Ca P La Cn Mo Ba T1 A1 Na K N Zn Ce Sn Y Nb Ta Be Sn Li S Rh HrSamnha G-1 .1 2.8 21.6 57 < 1 4.3 4.7 794 2.53 5 4.9 < 1 8.8 801 < 1 .1 .2 56 2.73 .091 31.8 12.5 .64 1078 .287 8.60 2.980 3.14 .1 8.2 59 1.5 14.7 21.1 1.7 3 6 40.3 < 1 124.9 7 221.1 2,1 17.6 11 < 1.7 .6 171 .69 6 7.6 < 1.35.5 45 .5 .3 2.5 6 .26 .010 29.2 4.7 .08 205 .067 6.35 2,993 4.15 23.7 33.3 53 4.9 10.4 26.5 2.5 3 3 21.7 .2 174.0 1.5 4.50 5411 182.0 2.5 17.6 13 < 1 5 .4 331 .65 5 7.8 < 1 33.8 38 .3 .3 .7 6 .26 .008 24.4 3.1 .08 217 .056 6.42 2.709 3.94 7.5 29.8 43 2.0 8.5 22.4 2.2 3 3 16.5 .1 141.4 1.5 4.52 5412 126.1 2.1 28.4 14 . Z . 7 . 4 262 .75 \$10.3 < 1 38.4 44 .3 .3 24.1 \$.29 009 27.6 6.3 .10 197 .057 6.29 2.706 4.38 32.0 34.9 47 6.0 9.1 21.3 2 1 4 3 24.1 .3 158 9 1 8 5.56 5413 5414 21 5 1 7 17 3 10 < 1 4 4 241 81 5 17 0 < 1 35.9 38 < 1 .2 9.2 5 .28 .007 27.0 3.6 .08 130 .050 6.00 2.692 3.82 66.8 32.5 47 6.6 8 6 21.7 21 3 3 23.7 4 168.0 1.6 6 32 117.2 1,2 16.9 12 <1, 7 .3 242 .57 6 9.2 <1, 36.9 37 .1 .3 2.2 4 .26 .008 24.4 7.3 .07 135 .055 6.10 2.901 4.28 11.9 31.0 44 3.0 9.3 27.3 2.5 3 3 15.6 .1 146.4 1.5 5.76 5/15 37.0 .8 13.1 9 < 1. 4 .3 222 .55 6 8.2 < 1 35.4 34 .1 .2 .5 5 .26 .008 24.3 2.6 .00 128 .057 6.16 2.748 3.85 8.9 29.3 41 1.7 8.9 26.6 2.7 3 3 16.2 < 1 138.7 1.5 5 32 5416 163 1 2 0 17 9 10 1 6 5 249 66 6 13 4 < 1 41 6 33 .3 .3 8.2 6 .21 .009 29 0 5 3 .09 131 .071 6 .00 2 .658 4 .21 16 .8 33 .6 51 3 5 10 2 27 3 2 6 3 3 22 7 2 167 6 1 6 5 56 5417 35.8 1.3 16.4 9 < 1 4 3 195 .55 6 12.0 < 1 35.0 28 .1 .3 6.7 4 .23 .006 22.3 2.8 .05 98 .049 6.12 2.590 3.95 31.3 29.2 39 4.4 9.1 26.7 2.5 3 3 18.6 .1 157.8 1.5 5.92 5419 57 4 1 1 1 7 0 10 < 1 6 3 219 66 7 10 9 < 1 38.5 28 .1 .4 3.6 5 .26 .006 25.3 4.0 .06 111 .051 6.27 2.926 4.00 38.1 29.8 45 3.9 10.1 30.1 2.9 4 3 20.1 2 126.9 1.5 5.56 5419 5420 46 0 1.2 18.5 12 < 3 5 3 239 80 7 10.4 < 1 38.8 24 .1 .3 11.6 5 .28 .006 22.8 3.5 .06 86 .046 6.24 2.704 3.77 44 9 27.9 41 5.4 9.6 29.1 2.9 4 3 18.2 4 182.2 14 5.46 66.3 15 15.3 10 < 1, 7 .3 179 .73 6 10.4 < 1 35.4 29 .1 .3 2.1 4 .17 .005 21.4 4.3 .06 76 .048 6.08 2.329 3.64 49.7 29.2 38 3.6 8.5 25.8 2.5 3 2 17.9 3 160.7 16 5.52 5421 87.8 1.3 13.8 13 < 1. 4 .3 85 .74 5 19.8 < 1 35.5 31 < 1 .3 6.6 4 .14 .006 22.9 1.5 .07 105 .045 6.17 1.666 4.10 22.7 31.4 39 5.9 8.9 20.7 2.3 2 3 29.2 .5 171.7 17 6.36 5422 5423 42.4 1.2 16.3 11 < 1. 7 .3 180 .72 7 19.1 < 1. 37.0 27 .1 .4 13.7 5 .18 .006 23.5 8.7 .05 110 .050 6.16 2.350 3.84 38.1 29.1 42 5.3 9.2 25.2 2.6 3 3 20.4 4 174.6 1.7 5.66 393 18189 12 < 1 7 4 251 82 6 14 9 < 1 38 3 23 1 4 17 9 5 27 .007 23 6 3 4 06 87 051 6 12 2 667 3 82 60 9 28 6 40 7 1 9 1 25 4 2 7 3 3 20 3 4 185 4 16 6 62 5424 147.3 1.5 17.7 10 < 1 .4 .3 211 .67 7 11.5 < 1 38.0 25 .1 .3 3.2 4 .28 .006 24.8 6.4 .05 104 .051 6.04 2.830 4.25 91.5 29.5 43 6.8 10.8 29.7 2 9 3 3 19.6 3 188.5 1.5 6.30 5425 17 7 1 3 16 1 7 < 1 4 .2 233 61 8 14 3 < 1 37.3 18 .1 .3 .4 3 .23 .004 21.7 4.1 .04 58 .050 6.04 2.695 3.92 24.8 28.5 37 1.6 9.8 34 9 3.6 3 3 17 2 2 163 7 1.4 7 68 5426 5427 648.4 2.2 13.5 18 < 1, 7, 3, 44, 63, 3, 9.2 < 1, 30.6 18, 1, 2, 8, 46.6 2, 20, 003, 11.1, 9.7, .02, 57, .026, 4.61, 2.088, 3.72, >200, 26.1, 20, 2.4, 6.9, 11.5, 1.2, 2, 1, 9.6, .5, 155, 4, 14, 3, 86 2) 9 1.8 16.1 6 < 1 .4 1.0 142 .77 6 13.1 < 1 .34.5 22 .1 .3 6.1 2 .24 .004 18.2 4.1 .04 69 .038 6.13 2.551 3.93 112.7 29.0 32 5.0 8.6 20 6 2.4 3 3 15.7 .6 189.0 1.6 6.24 5428 24.7 1.9 18.2 10 < 1. 0 3.2 50 69 7 11.7 < 1.3 6.2 24 < 1. 3 2.2 3 .27 .004 21.3 3.7 .05 68 .043 6.17 2.766 3.73 59.9 29.6 36 3.9 10.4 26.9 2.9 4 3 14.4 3 184.4 1.7 6.62 37.2 1.9 22.9 17 < 1 .3 1.5 245 .92 9 13.2 < 1. 35.9 23 < 1. 1.5 245 .92 9 13.2 < 1. 35.9 23 < 1. 1.5 40.3 3 .23 .004 22.1 3.5 .04 66 .043 5.97 2.703 4.01 89.0 30.8 38 4.7 10.5 26.6 2.9 3 3 13.3 .6 182.3 1.9 4.82 5430 17.2 3.5 70.6 311 2 .6 .5 165 .82 7 20.6 <1 38 6 27 2.0 .7 25.6 3 .38 .004 23.8 6.7 .05 77 .041 6.07 2.303 4.73 >200 32.0 40 16.6 12.6 24 6 2 8 4 3 20.6 .6 252 8 1 9 4 72 5431 17.3 1.8 27.9 12 < 1 .3 4 239 .86 8 14.0 < 1 34.7 31 .1 7 27.4 3 .28 .004 19.5 2.7 .07 70 .038 5.65 1.645 3.65 83.0 31.4 33 11.3 11.1 24.0 2.5 4 3 22.8 .6 175.7 1.7 5.88 5432 61.7 1.8 62 3 83 .2 .3 .2 1535 1.72 23 42.2 < 1 40.7 27 1.0 2.4 190.9 21 .89 .008 21.5 4.1 .15 97 .060 9.26 1.349 4.92 >200 36.0 37 148.2 18.2 64.1 3.2 7 5 67.1 1.3 480.7 2.0 6.02 5433 65.0 1.5 19.3 10 < 1 5 < 2 397 .73 10 18.7 < 1 35 0 22 .1 .8 47.9 5 .33 .004 20.6 2.7 .05 53 .045 6.09 2.455 3.72 > 200 29.0 35 21.8 12.3 39.3 4 0 4 4 18.8 .5 21.6 7 1.8 5.72 5434 58.2 1,0 18.2 9 < 1, 2 < 2 390 ,70 9 18.8 < 1 33.3 20 < 1 .9 45.1 5 .33 .003 18.4 2.3 .05 49 .042 5.85 2.234 3.47 > 200 26.7 32 20.2 11.0 38.3 3.7 4 3 18.4 .4 191 2 1.6 . RE 5434 54,2 1,3 18,3 9 < 1, 4 < 2, 399 .72 8 17.0 < 1 33,2 19 .1 .6 22.9 5 .33 .003 18.8 1.8 .04 50 .643 5.94 2.150 3.46 >200 27.0 32 17.4 11.1 34,9 3.5 4 3 18.1 .4 188.4 1.6 RRE 5434 18.9 1.5 23.1 23 < .1 .4 .2 232 .67 10 10.9 < .1 37.6 15 .2 .5 3.8 2 .20 .003 21.3 4.4 .04 .56 .045 5.95 2.381 3.85 26.9 23.4 36 9.7 10.2 00.0 3.5 3 3 11.4 4 191.0 1.4 6.32 5435 21.1 1,2 19.1 13 < 1 5 .3 221 .81 13 10.8 < 1 35.2 42 .1 .8 18.2 3 .17 .005 19.6 1.5 .08 56 .048 5.91 1.664 3.44 64.8 33.3 33 11.6 11.7 35.1 3.7 5 3 28.8 .5 206.1 2 7 5.92 5436 220 5 2.1 19.1 10 < 1 .4 .2 224 .78 8 13.4 < 1 37.8 24 < 1 .5 18.1 5 .26 .004 20.2 4.0 .06 51 .049 5.58 2.286 3.69 >200 27.7 34 17.1 11.9 28.6 3.2 4 3 24.1 .5 199.3 1.7 6.72 5437 20.8 1.3 20.4 10 < 1 3 3 262 .86 8 12.4 < 1 32.2 22 .1 .5 6.3 4 .22 .003 17.7 3.6 .05 49 .042 5.74 2.080 3.50 155.1 24.3 30 11.4 11.1 27.7 3.1 4 3 21.2 .6 178 4 1.4 6.24 5438 20,6 2,168.5 196 .4 .3 .3 382,1,13 14,17.1 <1 37.5 20 2,2 2,2 29.5 5 .21 004 21 3 5 4 .06 42 049 5.83 2,040 3.39 43,7 31.9 36 14.6 12.9 38.5 3.9 5 4 23.6 .9 187.5 2.0 2.62 5439 45,5 1,6 24,8 14 .1 .3 .4 224 .87 8 13.1 < 1 28.7 14 .2 .5 11.5 3 .25 .002 13.1 2.8 .03 43 .036 5.14 1.673 3.38 71.6 20.1 23 11.7 8.7 28.5 3.2 4 2 15.7 .7 170 8 1 3 4 1.8 5440 32 5 1.6 26.6 14 < 1 .4 .7 263 1.25 9 13.4 < 1 32.9 22 .1 .6 22.4 4 .32 .003 16.5 7.1 .05 46 .037 6.14 2.056 3.44 169.9 29.8 29 21.3 11.1 31.6 3.4 4 3 23.5 1.1 210.6 1.7 6.03 5441 8 9 1 2 7 2 7 9 < 1 4 1 4 286 71 8 14 8 < 1 35 5 22 .1 .3 1.4 3 .26 .004 17.8 2.4 .04 52 .042 6 48 2.591 4 13 33 4 27 8 32 3.2 11.6 33 8 3.3 4 3 13 2 .3 199 2 1.6 5 84 5442 STANDARD DST6 12,5 129,8 35,0 174 3 31.1 13.5 970 4.10 25 7.5 <1 7.0 309 5.6 5.4 4.7 116 2.31 .102 25.4 230.8 1.00 693 .433 7.07 1.684 1.43 7.8 52.5 53 6.4 14.9 8.6 .7 4 11 24.1 <1

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HN03-HCL-HF TO 10 ML. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTICIPATED. ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-M Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. U0-07-2006 A09:02 - SAMPLE TYPE: DRILL CORE R150

DATE RECEIVED: MAY 23 2006 DATE REPORT MAILED:...... Data FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Raymond Char

Newmac Resources Inc. FILE # A602274

Page 2

99.00 99.00	ACME ANALYTICAL																																									A	CME AN	IAL YT I CAL
Section Column	COMDIF#	Mo	εu	Ph	7 n		N1	Co	Min	Fe	As		Δ1>	Ih	Sr	ra s		B1	v				Cr.	Ma	Ra	T i	(2	Na	к	—	7r	ſa	Sn	Y	Nh	Ta	Ro.	Sc	11		Dh	Lif S	iamo) o	
G1	3	-				-																	-					_			_			nom									-	
949		bbu	PPIII	pp	Ppin	ppiii	ppin	וויעק				— P		Py p	···			ppii.	pp.ii			hbw	ppi		· ppis					- Ppin	ррін	pp		ppe	ppiii			htxu	рри		рри			
949	C.1	,	2 2	20.7	22	. 1	1 2	4.7	enn s	64	4 /		. ,	Q 1 7	23	-1 -		3	57	. 40	กดต	27 g	13 6	66	1025	282	8 53	2 950	3 22	0	9.5	65	1 2	16.2	21 0	1 0	2	c	46.0	- 1	122 7	7		
544																																												
546																																												
946 9, 2, 2, 11, 13 6, 3, 399, 77, 12, 22 4, 13 6, 13, 15, 14, 12, 13 6, 13, 15, 14, 15, 15, 14, 15, 15, 14, 15, 15, 14, 15, 15, 14, 15, 15, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	-																																											
540° 1539 3.2 12 26 <1 3 6 181 62 10 125 <1 39.3 21 2 3 5 5 5 2 20 094 13 6 181 62 10 125 <1 39.3 21 3 5 5 5 2 20 094 13 7 6 18 18 18 18 18 18 18 18 18 18 18 18 18	}																																											
548	5446	9.3	2.3	21.1	13	<.1	. 6	.3	379 .	. 77	13 20	1.2 <	.1 3	8.9	15	.1	.5	2.4	2	. 25	. 004	18.0	4.0	.06	42	.044	6.34	2.490	3.99	27.1	35.2	37	4.2	13.4	54.4	5.9	7	4	19.0	.3	181.5	2.3	6.06	
548	1																																											
446	5447																																											
540 27 3.9 18.4 18.4 1.5 2.8 316.128 5.7 1.4 12.5 22 4.1 4. 22 40 20 30 4. 6 18.7 2.5 2.8 2.0 7 18.4 18.5 12.3 29 42 4.6 18.7 12.3 29 42 4. 6 18.7 12.3 29 42 4. 6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.6 18.7 12.3 29 42 4. 7 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.7 12.3 29 42 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6 18.6 18.7 12.3 29 4. 7 18.6 18.6	5448	46.0	3.6	17,4	17	<.1	. 4	.8	284	.74	9 12	∴9 <	.1 3	2.8	20	<.1	. 6	. 4	4	.27	.005	18.8	3.6	. 05	68	.046	6.01	2,459	3.64	114.1	23.1	35	2.7	11.5	38.9	3.8	6	3	16.1	. 3	174.1	1.3	7.08	
5451 5.1 2.3 27.7 29 ~1. 5 1.1 139 .99 11 15.5 ~1 46.3 21 2 .3 .4 6 .28 .009 21.4 5.6 .07 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	5449	40.4	6.5	20.B	26	4.1	.4	1.2	451	.93	9 14	.9 <	.1 4	2.2	20	.1	.8	1.1	4	.40	. 005	27.3	4.5	.08	63	.055	6.04	2.063	3.73	>200	26.9	47	6.9	12.3	38.1	3.8	5	3	23.4	. 4	183.0	1.5	5.72	
5452 11 0 2 0 21 1 58 <1 7 1 1 346 87 10 18 3 <1 33 0 22 8 5 8 5 22 (07 18 6 42 06 114 0.83 5.99 2.246 0.89 46.0 26.6 36 4.0 124 380 4.0 6 4 207 1 4 205 0.14 5.65 544 544 545 1.0 1.0 1.0 4 68 91 11 23 4 1.0 13 6 50 <1 4 8 8 8 25 0.4 4 20 6 114 0.83 5.99 2.246 0.89 46.0 26.5 36 4.0 124 380 4.0 6 4 207 1 4 205 0.14 5.64 544 121 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5450	20.7	3.9	18.4	18	<.1	.5	2.0	316 1	. 28	5 7	.1 <	.1 3	2.5	22	١. ٢	.4	2.2	4	. 23	.006	17.7	5.3	.08	71	.046	5.91	2.260	3.68	88.6	18.7	32	5.0	7.4	19.6	2.0	3	2	26.4	.8	188.9	1.0	7.54	
5452 156 3 4 21 0 1 2 < 1 1 10 1 0 40 50 11 11 3 < 3 0 10 50 < 1 4 8 8 8 2 0 10 2 < 2 9 30 612 25 6 3 6 3 6 3 6 4 2 8 9 4 2 8 9 5 7 4 3 16 4 4 4 6 3 4 2 8 9 3 6 4 2 8 9 5 7 6 8 4 1 2 8 1 8 2 8 9 5 7 4 3 16 4 3 4 8 6 3 4 2 8 9 1 2 6 7 8 8 8 1 4 1 3 1 5 4 7 7 2 5 611 2 5 6 8 9 50 2 50 8 6 2 8 2 8 9 5 7 4 3 16 4 2 3 3 5 3 5 2 4 8 2 4 1 3 1 5 1 3 7 1 0 5 2 8 3 1 1 1 3 7 1 0 5 2 8 3 1 1 1 3 7 1 0 5 2 8 3 1 1 1 3 7 1 0 5 2 8 3 1 1 1 3 7 1 0 5 2 8 3 1 1 1 3 7 1 0 5 2 8 3 1 1 1 3 7 1 0 5 2 8 3 1 1 1 1 3 8 1 3 5 4 8 1 1 1 1 3 8 1 3 5 4 8 1 1 1 1 3 8 1 3 5 4 8 1 1 1 1 3 8 1 3 5 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5451	5.1	2.3	22.7	20	<.1	.5	1.1	370	.90	11 15	.5 <	.1 4	0.3	21	.2 .	.3	.4	6	. 28	. D09	21.4	6.6	. 07	95	.054	6.23	2,540	4.34	74.D	32.9	42	4.9	18.6	52.7	5.1	4	4	27.2	. 4	202.4	1.8	6.96	
5452 156 3 4 21 0 1 2 < 1 1 10 1 0 40 50 11 11 3 < 3 0 10 50 < 1 4 8 8 8 2 0 10 2 < 2 9 30 612 25 6 3 6 3 6 3 6 4 2 8 9 4 2 8 9 5 7 4 3 16 4 4 4 6 3 4 2 8 9 3 6 4 2 8 9 5 7 6 8 4 1 2 8 1 8 2 8 9 5 7 4 3 16 4 3 4 8 6 3 4 2 8 9 1 2 6 7 8 8 8 1 4 1 3 1 5 4 7 7 2 5 611 2 5 6 8 9 50 2 50 8 6 2 8 2 8 9 5 7 4 3 16 4 2 3 3 5 3 5 2 4 8 2 4 1 3 1 5 1 3 7 1 0 5 2 8 3 1 1 1 3 7 1 0 5 2 8 3 1 1 1 3 7 1 0 5 2 8 3 1 1 1 3 7 1 0 5 2 8 3 1 1 1 3 7 1 0 5 2 8 3 1 1 1 3 7 1 0 5 2 8 3 1 1 1 3 7 1 0 5 2 8 3 1 1 1 1 3 8 1 3 5 4 8 1 1 1 1 3 8 1 3 5 4 8 1 1 1 1 3 8 1 3 5 4 8 1 1 1 1 3 8 1 3 5 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																																												
5454 221 1.7 68.8 61.5 . 6 1.4 981.98 6 813.4 × 1 34.0 44 .6 .3 .2 .3 .9 .0 .412.5 63.7 .99 181 .088 6.84 .254 5.94 .249 .254 .6 .1 .9 .1 .7 .2 .2 .266 .54 .94 .8 .174 .1 .34.1 .34 .1 .5 .4 .7 .7 .2 .201.2 .25 .5 .3 .10 .22 .685 .6.2 .28 .54 .4 .2 .4 .5 .37 .4 .3 .1 .3 .4 .3 .4 .4 .4 .4 .5 .3 .2 .2 .9 .5 .4 .1 .5 .4 .7 .7 .2 .201.2 .25 .5 .5 .1 .1 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	5452	13.9	2.9	23.1	58	<.1	.7	1.1	346	.83	10 18	1.3 <	.1 3	3.0	23	.8	5	.8	5	.22	.007	19.6	4.2	.06	114	.043	5.99	2.246	3.89	48.0	26.6	36	4.0	12.4	39.0	4.0	4	4	20.7	. 4	206.0	1.4	5.50	
5455 21 2 3 6 25 4 39 <1 7 2 3 28 94 8 11.4 < 1 34.1 34 1 34 1 3 5 4 7 7 25 011 20 5 89 5 20 120 368 62 2 584 4.5 18.4 2 15 2 5 34 4.3 10.4 32.4 33 5 3 26.4 . 224.7 1.4 5.20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5453	15.6	3.4	21.0	17	<.1	1.0	1.0	405	.91	11 13	1.4 <	.1 3	0.0	50	<.1 .	.4	.8	8	. 25	.014	20.5	6.7	.08	264	.068	6.40	2.387	4.47	54.3	25.5	37	3.2	11.6	43.4	3.5	4	4	20.7	. 3	217.6	1.4	5.64	
4466 7.8 4.5 23.1 22 <1.1 9 2.3 464 1.19 9 12.6 <1 99.9 51 1.1 .3 7 10 27 .015 28.5 3.6 .10 222 .903 6.08 2.051 4.32 12.6 28.2 50 4.3 11.5 39.4 3.3 4 3 29.4 5 216.5 1.6 6.12 2 44 .017 49.9 7.8 .11 144 .008 6.02 2477 3.73 93.4 52.8 69 5.7 20.4 475 4.0 5 4 32.6 6 201.5 2.4 6.02 48.9 51 1.5 16 1.0 5 67.1 11.5 11.5 11.5 11.5 11.5 11.5 11.5 1	5454	32.1	1.7	88.8	61	.5	.6	1.4	381	. 98	8 13	.4 <	.1 3	4.0	44	. 6	.3	2.3	9	.30	.012	25.6	3.7	.09	181	.058	6.86	2.254	5.09	>200	26.8	45	11.4	10.5	34.7	3.4	4	4	46.3	. 4	289.1	1.3	6.70	
5457	5455	21 2	3.6	25.4	19	<.1	.7	23	296	94	8 17	.4 <	.1 3	4.1	34	.1 .	5	4.7	7	.26	.011	20.6	8.9	.07	128	.058	6.24	2.548	4,45	161.4	24.5	37	4.3	10.4	32.4	3.3	5	3	26.4	.4	234.7	1.4	5.20	
5457	5456	7.B	3.5	23.1	20	<.1	.9	2.3	464 1	.19	9 12	2.8 <	.1 3	0.9	51	.1 .	3	.7	10	.27	.015	28.5	3.6	.10	222	.083	6.0B	2.051	4.32	126.2	28.2	50	4.3	11.5	39.4	3.3	4	3	29.4	.5	216.5	1.6	6.52	
5488 5.3 13.5 18.3 55 <1 1.7 1.7 428 1.48 1.2 15.1 <1 79.6 46 1. 7 2.1 14 4.6 0.22 51.1 4.9 13 121 1.12 6.22 2.857 2.81 71.4 62.6 91 4.6 2.2 8.05 5 4.1 6 5 28.5 4.1 16.9 2.8 2.40 54.9 54.0 7.7 2.3 2.9 49 4.0 22.0 32 <1 1.0 2.5 6571.38 14 16.1 <1 47.8 77 1.1 5 1.8 13 .44 .013 32.1 4.4 .17 161 097 5.92 2.056 54.8 99.9 46.9 75 56 14.3 45.5 3.7 8 4 33.7 5 1988 2.4 6.18 54.0 12.5 54.1 12.5 3.7 3.1 4 1.9 1.9 1.9 <1 6 2.8 384 1.2 5 818.5 <1 32.7 48 <1 5 .0 15 27.5 1.5 1.8 13 .44 .013 32.1 4.4 .17 161 097 5.92 2.05 2.40 54.8 31.4 4.3 49 10.7 11.5 33.7 3.1 6 3 33.9 2.2 257.2 2.0 6.24 54.1 12.5 1.0 12.5 54.1 19.9 19 <1 6 2.8 384 1.2 5 818.5 <1 32.7 48 <1 5 .0 15 27.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1																																												
5488 5.3 13.5 18.3 55 <1 1.7 1.7 428 1.48 1.2 15.1 <1 79.6 46 1. 7 2.1 14 4.6 0.22 51.1 4.9 13 121 1.12 6.22 2.857 2.81 71.4 62.6 91 4.6 2.2 8.05 5 4.1 6 5 28.5 4.1 16.9 2.8 2.40 54.9 54.0 7.7 2.3 2.9 49 4.0 22.0 32 <1 1.0 2.5 6571.38 14 16.1 <1 47.8 77 1.1 5 1.8 13 .44 .013 32.1 4.4 .17 161 097 5.92 2.056 54.8 99.9 46.9 75 56 14.3 45.5 3.7 8 4 33.7 5 1988 2.4 6.18 54.0 12.5 54.1 12.5 3.7 3.1 4 1.9 1.9 1.9 <1 6 2.8 384 1.2 5 818.5 <1 32.7 48 <1 5 .0 15 27.5 1.5 1.8 13 .44 .013 32.1 4.4 .17 161 097 5.92 2.05 2.40 54.8 31.4 4.3 49 10.7 11.5 33.7 3.1 6 3 33.9 2.2 257.2 2.0 6.24 54.1 12.5 1.0 12.5 54.1 19.9 19 <1 6 2.8 384 1.2 5 818.5 <1 32.7 48 <1 5 .0 15 27.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	5457	23.3	6.4	28.9	35	<.1	.7	2.7	522 1	.33	11 15	.3 <	.1 6	6.1	46	.1	3	1.2	12	.41	.017	49.9	7.8	.11	144	.098	6.02	2.477	3.73	93.4	52.8	89	5.7	20.4	47 5	4.0	5	4	32 6	. 6	201.5	2 4	6 02	
5469 8,9 4,0 23,0 32 < 1,0 2,5 6571,38 14 16.1 < 1 47,8 77 1, 5 1.8 33 ,44 ,019 32.1 44 ,17 16, 60 77 5,92 2,036 3,48 99,9 46,9 57 5,6 14,3 45,8 3,7 8,4 33,7 5, 198,8 2,4 6,18 540 77 7, 25 32,9 49 < 1,7 6 456 ,75 916.8 < 1,4 4, 58 4, 13 7, 8 8,5 1,3 2,7 48 8, 52 1,3 2,7 48 8, 52 1,3 2,7 48 8, 52 1,3 2,7 48 8, 52 1,3 2,7 48 8, 52 1,3 2,7 48 8, 52 1,3 2,7 48 8, 52 1,3 2,7 48 8, 52 1,3 2,7 48 8, 52 1,3 2,7 48 8, 52 1,3 2,7 48 8, 52 1,3 2,7 48 8, 52 1,3 2,7 48 8, 52 1,3 2,7 48 8, 52 1,3 2,7 48 8, 52 1,3 2,3 4,3 4,3 4,3 4,3 4,3 4,3 4,3 4,3 4,3 4	5458	5.3	13.5	18 3	35	< .1	1.2	1.7	628 1	48	12 15	.1 <	.1 7	9.6	46	.1	7	2.1	14	.46	.022	51.1	4.9	.13	131	.127	6.22	2.857	2.81	71.4	62.6	91	4.6	22.8	50.5	4.1	6	5	28.5	. 4	166.9	2.8	2 48	
5460 7.7 2.5 32.9 49 <1 7. 6 458 75 9 16.8 <1 40.4 58 4 3 7.7 8 .55 .015 27.6 3.0 1.0 240 .068 6.97 2.427 4.48 33.1 41.3 48 10.7 11.5 33.7 3.1 6 3 33.9 .2 257.3 2.0 6.24 5461 102.5 4.4 18.9 19 <1 6 2.8 384 1.25 8 18.5 <1 32.7 48 <1 6 4.4 8 .52 .015 20.5 6.6 12 147 .050 4.74 1.746 3.26 200 33.5 36 7.4 10.9 29.1 2.5 5 3 35.9 9 202.5 1.7 6.86 5461 102.5 4.4 18.9 19 <1 72 <1 22.9 18.1 15.1 1.3 1.3 1.4 1.3 48 1.0 1.7 1.1 1.8 15.3 <1 34.3 45 1.3 1.4 2.4 17 .59 .017 30.3 3.9 1.6 259 .055 7.14 1.855 5.91 200 37.9 52 40.5 12.3 29.0 2.7 6 5 111.7 8 442.8 2.0 5.98 5467 4.0 3.9 15.2 2 <1 22.9 18.0 1355 4.19 87 3.4 <1 7.7 556 1.3 2.3 1.3 127 3.62 117 3.6 20.8 12.7 11.5 684 .567 7.64 11.66 2.54 61.6 10.6 1.4 5.8 18.5 25.5 1.4 2 0 13 261.0 2.2 11.8 1.8 13.8 2.3 7.26 5469 15.8 3 16.5 2.5 11.4 2.4 12.5 563 .2 1.5 1.3 9 1.00 .020 15.8 1.9 1.0 2.5 17 3.6 2.5 17 3.0 2.5 17 3.6 2.5 17 3.6 2.5 17 3.5 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	*																																											
5461 102.5 4.4 18.9 19 4.1 6 2.8 384 1.25 8 18.5 4.1 32.7 48 44 1.6 4.7 1.11 8 15.3 4.1 32.7 48 4.1 6.5 4.4 8 .52 .015 20.5 6.6 .12 147 .050 4.74 1.746 3.26 200 33.5 36 7.4 10.9 29.1 2.5 5 3 35.9 .9 202.5 1.7 6.86 5468 5468 15.4 3.9 16.7 426 .2 1.3 9 465 1.2 127 14.3 4.1 7.5 956 .3 2.3 4.3 127 13.6 56.0 18.4 4.2 23 17.0 0.52 6.45 1.6 1.6 1.6 4.5 8 18.5 25.5 1.4 20 13 26.0 0. 2 18.6 3.1 5.6 5469 15.8 6 .8 15.4 3.9 16.7 426 .2 1.3 9 465 1.2 27 14.3 4.1 16.9 9.3 4.9 1.7 11.2 15.5 1.3 9 1.00 .020 18.8 1.9 1.0 20 18.8 1.9 1.0 26 47 .056 6.45 1.0 26.5 1.3 20.0 2.7 1.7 1.3 7 4.6 1.6 1.0 23.8 1.0 1.2 27 14.3 4.1 16.9 19.3 4.1 1.0 1.0 20 18.8 1.9 1.0 20 18.8 1.9 1.0 26 47 .056 6.45 1.0 10.0 20 18.8 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0																																												
5462 56.6 2.3 30.2 38 <1 4 1.6 477 1.11 8 15.3 <1 34.3 45 .3 .4 2.4 17 .59 .017 30.3 3.9 .16 259 055 7.14 1.855 591 >200 37.9 52 40.5 12.3 29.0 2.7 6 5 111.7 8 442,8 2.0 5.98 5467 40 3.9 5.2 72 <128.9 18.0 1355 419 87 3.4 <1.7 7.9 356 .3 2.3 .3 127 3.62 117 36.5 848 567 7.64 1.658 2.54 60.6 106.1 64 5.8 18.5 25.5 1.4 20 13 265.0 .2 218.6 3.1 5.66 5468 15.4 3.9 162.7 426 .2 1.3 .9 485 1.22 127 14.3 <1 16.9 93 4.9 1.7 112.7 13 .65 .620 18.4 4.2 .23 170 .052 6.45 .403 3.72 >200 34.6 32 25.1 12.6 31.2 30 13 5 161.1 1.0 313.8 2.3 7.26 5469 15.8 16.9 15.0 1.5 52114 .82 67 14.2 <1 23.5 63 .2 1.5 1.3 9 1.00 0.20 18.8 1.9 2.6 47 056 80 3.0 45 3.98 32.0 37.0 35 27.1 17.1 33.7 4.4 16 6 105.1 4.3 36.64 2.6 6.72 5470 53.5 13 708.4 506 .3 1. <2 5790 1.05 102 38.3 <1. 28.6 101 5.2 1.7 8. 16 2.04 .041 4.9 1.0 .51 83 135 16.0 .0 .40 1.4 9 1.0 .51 83 135 16.1 17.17 .040 8.37 24.6 95.5 1 17.5 26.1 79.1 10.7 17 6 77.5 .2 671.9 4.6 6.60 1.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .																																												
5467 4.0 3.9 5.2 72 <1.28,9 18.0 1355 4.19 87 3.4 <1, 7.7 356 .3 2.3 1.3 127 3.62 1172 36.3 82.7 1.76 684 .567 7.64 1.688 2.54 60.6 106.1 64 5.8 18.5 25.5 1.4 20 13 205.0 2 218.6 3.1 5.66 5468 154 3.9 162.7 426 .2 1.3 .9 485 1.22 127 14.3 <1 16.9 9 34 4.9 1.7 112.7 13 .65 020 18.4 4.2 23 170 052 6.45 040 3.7.2 >200 34.6 32 25.1 12.6 31.2 30 13 516.1 1.0 313.8 2.3 7.26 5469 15.8 6 85.6 30 .1 .5 .5 2114 .82 67 14.2 <1.2 3.5 63 4.9 1.7 112.7 13 .65 020 18.4 4.2 23 170 052 6.45 040 3.7.2 >200 34.6 32 25.1 12.6 31.2 30 13 516.1 1.0 313.8 2.3 7.26 5470 53.5 1.3 708.4 506 .3 .1 <2 5790 15 102 38.3 <1.2 5.5 1.3 708.4 506 1.3 .1 <2 5790 15 102 38.3 <1.2 5.5 1.6 8.1 5.2 1.7 8 16 2.0 04 .94 1.9 1.0 1.5 183 15.5 16.9 1.0 0.7 1.9 1.0 0.2	3401	100.0		•0.7	• • •						٠			•					~				•.•		•			2	0.40			•••					•		50.5		202.0	4	0.00	
5467 4.0 3.9 5.2 72 <1.28,9 18.0 1355 4.19 87 3.4 <1, 7.7 356 .3 2.3 1.3 127 3.62 1172 36.3 82.7 1.76 684 .567 7.64 1.688 2.54 60.6 106.1 64 5.8 18.5 25.5 1.4 20 13 205.0 2 218.6 3.1 5.66 5468 154 3.9 162.7 426 .2 1.3 .9 485 1.22 127 14.3 <1 16.9 9 34 4.9 1.7 112.7 13 .65 020 18.4 4.2 23 170 052 6.45 040 3.7.2 >200 34.6 32 25.1 12.6 31.2 30 13 516.1 1.0 313.8 2.3 7.26 5469 15.8 6 85.6 30 .1 .5 .5 2114 .82 67 14.2 <1.2 3.5 63 4.9 1.7 112.7 13 .65 020 18.4 4.2 23 170 052 6.45 040 3.7.2 >200 34.6 32 25.1 12.6 31.2 30 13 516.1 1.0 313.8 2.3 7.26 5470 53.5 1.3 708.4 506 .3 .1 <2 5790 15 102 38.3 <1.2 5.5 1.3 708.4 506 1.3 .1 <2 5790 15 102 38.3 <1.2 5.5 1.6 8.1 5.2 1.7 8 16 2.0 04 .94 1.9 1.0 1.5 183 15.5 16.9 1.0 0.7 1.9 1.0 0.2	5462	56.6	2 1	30.2	3,0	< 1	4	16.	477 1	11	R 1=	. 3 <	1 3	4.3	15	3	ā	2.4	17	59	017	30.3	3.9	16	259	055	7 14	1 855	5 91	>200	37 Q	52	40.5	12.3	29 N	2.3	6	5 1	211 7	R	442.9	2 h	5 QR	
5468 15.4 3.9 162.7 426 .2 1.3 .9 485 1.22 127 14.3 <1 16.9 93 4.9 1.7 112.7 13 .65 .620 18.4 4.2 .23 170 .052 6.45 .483 3.72 > 200 34.6 32 25.1 12.6 31.2 3 0 13 5 16.1 1.0 313.8 2.3 7.26 5469 15.8 6 .6 85.6 30 .1 5 .5 2114 .82 67 14.2 <1 25.5 63 .2 1.5 1.3 9 1 00 .020 19.8 1.9 .26 47 .056 8.03 .045 3.98 32.0 37.0 35 27.1 17.1 33.7 4.4 16 6 105.1 4 326.4 2.6 6.72 5470 53.5 1.3 708.4 506 .3 1. <2 5790 1.05 102 38.3 <1 28.6 101 5.2 1.7 8.8 16 2.04 .041 4.9 1.0 .51 83 .135 16.91 .040 7.94 24.9 69.5 11 73.6 26.1 79.1 10.7 17 6 77.5 .2 671.9 4.6 6.60 88.5470 53.9 8.73 60.5 50 .4 .2 <2 5844 1.03 99 37.5 <1 29.2 104 5.5 1.6 8.8 15 2.07 .042 5.5 1.3 .51 87 130 16.97 .099 7.83 23.0 68.7 12 70.5 27.0 76.0 10.0 17 6 74.0 .2 6551 4.4 54.5 54.6 10.1 1.5 110.1 6 .1 <2 5695 1.00 68 30.5 <1 28.6 96 12.0 1.5 .9 16 2.00 .042 5.5 .3 .51 87 130 16.97 .099 7.83 23.0 68.7 12 70.5 27.0 76.0 10.0 17 6 74.0 .2 6551 4.4 54.5 54.6 131 12.8 <1 30.0 158 .3 .9 .7 28 1.13 .09 26.0 13.0 42 357 1.44 6.29 1.918 4.23 74.2 53 40.4 17.7 22.7 2.7 10 7 7 6.1 1.4 401.1 2.5 5.70 5473 324.8 4.6 20.7 10 <1 6 1.0 246 1.05 6 19.5 <1 30.7 54 <1 30.0 158 .3 .9 1.2 21.0 3.8 110.5 1.01 2.2 2.0 7.9 19 247 .040 5.80 1.67 4.38 > 200 33.8 37 30.4 11.2 18.2 18.8 5 4 60.6 6.3 48.3 1.9 6.10 5476 5478 59.2 1.2 3.3 17.1 1308 4.02 28 3.3 <1 7.9 496 .2 1.2 7 12 3.88 1.86 37.0 62.1 17.9 90 5.46 8.52 3.078 2.25 18.6 117.9 6 7.8 17.4 20.6 13.7 7 14 108.4 .3 152.0 2.9 4.62 5476 52.8 3.7 33.0 31 <1 1.4 18.1 884 9.9 9914 2 <1 21.6 105 2.1 9.6 4.1 7.60 0.022 18.8 3.2 2.6 50 0.05 6.15 9.18 4.37 135.9 40.6 53 30.0 9.9 24.7 2.4 41 6 14.9 0.5 531.2 2.0 6.94 5478 99.0 3.6 95.0 217 1.1 5.1 2.09 5.2 9 9.6 <1 20.3 71.0 1.05 12.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	l																																							-				
5469 15.8 .6 85.6 30 .1 .5 .5 2114 .82 67 14.2 <1 23.5 63 .2 1.5 1.3 9 1.00 .820 19.8 1.9 .26 47 .056 8.03 .045 3.98 32.0 37.0 35 27.1 17.1 33.7 4.4 16 6 105.1 .4 326.4 2.6 6.72 5470 53.5 1.3 708.4 506 .3 .1 <2 5790 1.05 102 38.3 <1. 28.6 101 5.2 1.7 .8 16 2.04 .041 4.9 1.0 .51 83 135 16.91 .040 7.94 24.9 69.5 11 73.6 26.1 79.1 10.7 17 6 77.5 .2 671.9 4.6 6.60 88.5470 53.5 1.3 708.4 506 .3 .1 <2 2 5844 1.03 99 37.5 <1. 29.2 104 5.5 1.6 .8 15 2.07 .042 5.5 1.3 .51 86 .131 17.17 .040 8.37 24.6 72.9 12 71.8 28.0 79.0 10.6 17 7 76.5 .2 713.9 4.7 .5 841 4.5 73 166.7 447 .5 .7 1.2 6570 1.13 28 16.4 <1. 42.7 78 5.1 1.3 1.4 15 1.82 .018 32.2 2.2 .38 158 .055 8.53 .283 4.87 192.3 47.2 53 40.4 17.7 22.7 2.7 10 7 76.1 .4 401.1 2.5 5.70 5472 94.7 6.8 21.0 43 1.5 8.4 5 524 1.48 13 12.8 <1. 30.0 158 .3 .9 .7 28 1.13 .039 26.0 13.0 4.2 357 .144 6.29 1.918 4.23 74.2 50.3 44.6 51.2 61.6 21.6 5 38.8 .4 266.7 2.3 5.71 5473 324.8 4.6 20.7 10 <1. 6 1.0 246 1.05 6 19.5 <1. 30.7 54 <1. 38.7 11 .51 .012 22.0 7.9 .19 247 .040 5.80 1.67 4.38 >200 33.8 39 10.9 12.9 34.1 3.0 6 5 64.7 4 323.6 2.1 8.4 524 1.48 13 12.8 <1. 30.7 54 <1. 38.7 11 .51 .012 22.0 7.9 .19 247 .040 5.80 1.67 4.38 >200 33.8 39 10.9 12.9 34.1 3.0 6 5 64.7 4 323.6 2.1 8.4 524 1.48 13 12.8 <1. 30.7 54 <1. 38.7 11 .51 .012 22.0 7.9 .19 247 .040 5.80 1.67 4.38 >200 33.8 39 10.9 12.9 34.1 3.0 6 5 64.7 4 323.6 2.1 8.4 524 1.48 13 12.8 <1. 30.7 54 <1. 38.7 11 .51 .012 22.0 7.9 .19 247 .040 5.80 1.67 4.38 >200 33.8 39 10.9 12.9 34.1 3.0 6 5 64.7 4 323.6 2.1 8.4 524 1.48 13 12.0 14.1 1.8 18.4 1.8 18.4 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	1																																											
53.5 1.3 708.4 506 .3 1. < 2 5790 1.05 102 38.3 < 1. 28.6 101 5.2 1.7 8 16 2.04 .041 4.9 1.0 .51 83 .135 16.91 .040 7.94 24.9 69.5 11 73.6 26.1 79.1 10.7 17 6 77.5 .2 671.9 4.6 6.60 RE 5470 53.9 .8 736.0 550 .4 .2 < 2 5844 1.03 99 37.5 < 1. 29.2 104 5.5 1.6 .8 15 2.07 .042 5.5 1.3 .51 86 .131 17.17 .040 8.37 24.6 72 9 12 71.8 28.0 79.0 10.6 17 7 76.5 .2 713.9 4.7 . RRE 5470 56.7 1.0 1181.5 1101 .6 .1 < 2 5695 1.00 68 30.5 < 1. 28.6 96 12.0 1.5 .9 16 2.00 .042 5.5 .3 .51 87 .130 16.97 .039 7.83 23.0 68.7 12 70.5 27.0 76.0 10.0 17 7 76.5 .2 713.9 4.7 . 5471 44.5 7.3 166.7 447 .5 7 1.2 6570 1.13 28 16.4 < 1. 42.7 78 5.1 1.3 1.4 15 1.82 .018 32.2 2.2 .38 158 .055 8.53 .283 4.87 192.3 47.2 53 40.4 17.7 22.7 2.7 10 7 76.1 4 401.1 2.5 5.70 1.4 1.4 1.5 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	I																																											
RE 5470 53.9 .8 736.0 550 .4 .2 < 2 5844 1.03 99 37.5 < 1 29.2 104 5.5 1.6 .8 15 2.07 .042 5.5 1.3 .51 86 .131 17.17 .040 8.37 24.6 72 9 12 71.8 28.0 79.0 10.6 17 7 76.5 .2 713.9 4.7 - 88E 5470 56.7 1.0 1181.5 1101 .6 .1 < 2 5695 1.00 689 30.5 < 1 28.6 96 12.0 1.5 .9 16 2.00 .042 5.5 .3 .51 87 .130 16.97 .039 7.83 23.0 68.7 12 70.5 27.0 76.0 10.0 17 6 74.0 .2 655.1 4.4 - 5471 44.5 7.3 166.7 447 .5 .7 1.2 6570 1.13 28 16.4 < 1 42.7 78 5.1 1.3 1.4 15 1.82 .018 32.2 2.2 .3 8 158 .055 8.53 .283 4.87 192.3 47.2 53 40.4 17.7 22.7 2.7 10 7 76.1 .4 401.1 2.5 5.70 15472 94.7 6.8 21.0 43 1 5.8 4.5 524 1.48 13 12.8 < 1 30.0 158 .3 .9 .7 28 1.13 .039 26.0 13.0 42 357 144 6.29 1.918 4.23 74.2 50.3 44 6.3 12.6 21.6 2.1 6 5 38.8 4 266.7 2.3 5.71 5473 324.8 4.6 20.7 10 < 1 6 1.0 246 1.05 6 19.5 < 1 30.7 54 < 1 .3 8.7 11 .51 .012 22.0 7.9 19 247 .040 5.80 1.677 4.38 >200 38.8 37 30.4 11.2 18.2 18.8 5 4 69.6 6 348.3 1.9 610 5475 99.2 4.8 6.2 52 1.2 33.17.1 1308 4.02 28 3.3 < 1 7.9 940 .2 1.2 1.0 10.8 18.8 1.0 12.8 1.0 12.8 1.0 12.2 1.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 12																																												
RRE 5470 56.7 1.0 1181.5 1101 .6 .1 <2 5695 1.00 68 30.5 <1 28.6 96 12.0 1.5 .9 16 2.00 .042 5.5 .3 .51 87 .130 16.97 .039 7.83 23.0 68.7 12 70.5 27.0 76.0 10.0 17 6 74.0 .2 655.1 4.4 - 5471 44.5 7.3 166.7 447 .5 .7 1.2 6570 1.13 28 16.4 <1 42.7 78 5.1 1.3 1.4 15 1.82 .018 32.2 2.2 .38 158 .055 8.53 .283 4.87 192.3 47.2 53 40.4 17.7 22.7 2.7 10 7 76.1 .4 401.1 2.5 5.70 5472 94.7 6.8 21.0 43 .1 5.8 4.5 524 1.48 13 12.8 <1.3 30.0 158 .3 9 .7 28 1.13 .039 26.0 13.0 .42 357 .144 6.29 1.918 4.23 74.2 50.3 44 6.3 12.6 21.6 21.1 6 5 38.8 .4 266.7 2.3 5.71 5473 324.8 4.6 20.7 10 <1 6.1 0.2 46 1.05 6 19.5 <1 30.7 54 <1 3 8.7 11 .51 .012 22.0 7.9 19 247 .040 5.80 1.677 4.38 >200 33.8 37 30.4 11.2 18.2 1.8 5 4 60.6 .6 348.3 1.9 6.10 5474 75.3 4.3 22.1 29 <1 2.3 37.1 1308 4.02 28 3.3 <1 7.9 496 .2 1.2 .7 120 3.88 1.86 37.0 62.1 1.79 990 .546 8.52 3.078 2.25 18.6 117.9 69 7.8 17.4 20.6 1.3 7 14 108.4 3 152.0 2.9 4.62 5476 62.8 3.7 33.0 31 <1 1.4 1.8 38 .99 99 14.2 <1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.	5470	53.5	1.3	/08.4	300	. 3	.1 .	·.2 3	/90 1.	. 05	102 36		.1 2	0.6 1	11	0.2 1.		. 0	10 4		.041	4.9	1.0	.51	63	. 135	10.91	.040	7.94	24.9	D7.3	11	/3.0	20.1	79.1	10.7	17	ь	77.5	. 2	D/1.9	4.6	b.60	
RRE 5470 56.7 1.0 1181.5 1101 .6 .1 <2 5695 1.00 68 30.5 <1 28.6 96 12.0 1.5 .9 16 2.00 .042 5.5 .3 .51 87 .130 16.97 .039 7.83 23.0 68.7 12 70.5 27.0 76.0 10.0 17 6 74.0 .2 655.1 4.4 - 5471 44.5 7.3 166.7 447 .5 .7 1.2 6570 1.13 28 16.4 <1 42.7 78 5.1 1.3 1.4 15 1.82 .018 32.2 2.2 .38 158 .055 8.53 .283 4.87 192.3 47.2 53 40.4 17.7 22.7 2.7 10 7 76.1 .4 401.1 2.5 5.70 5472 94.7 6.8 21.0 43 .1 5.8 4.5 524 1.48 13 12.8 <1.3 30.0 158 .3 9 .7 28 1.13 .039 26.0 13.0 .42 357 .144 6.29 1.918 4.23 74.2 50.3 44 6.3 12.6 21.6 21.1 6 5 38.8 .4 266.7 2.3 5.71 5473 324.8 4.6 20.7 10 <1 6.1 0.2 46 1.05 6 19.5 <1 30.7 54 <1 3 8.7 11 .51 .012 22.0 7.9 19 247 .040 5.80 1.677 4.38 >200 33.8 37 30.4 11.2 18.2 1.8 5 4 60.6 .6 348.3 1.9 6.10 5474 75.3 4.3 22.1 29 <1 2.3 37.1 1308 4.02 28 3.3 <1 7.9 496 .2 1.2 .7 120 3.88 1.86 37.0 62.1 1.79 990 .546 8.52 3.078 2.25 18.6 117.9 69 7.8 17.4 20.6 1.3 7 14 108.4 3 152.0 2.9 4.62 5476 62.8 3.7 33.0 31 <1 1.4 1.8 38 .99 99 14.2 <1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.	05 5470	53.0		776.0			1	- 1 =	044 1	02	00 27							a	12 '		042		1 2	E1	96	121	17 17	D.A.D.	0 27	24 5	77.0	12	71 5	20.0	70.0	10 6	17	,	76.5	2	712.0			
5471 44.5 7.3 166.7 447 .5 .7 1.2 6570 1.13 28 16.4 <1 42.7 78 5.1 1.3 1.4 15 1.82 .018 32.2 2.2 .38 158 .055 8.53 .283 4.87 192.3 47.2 53 40.4 17.7 22.7 2.7 10 7 76.1 .4 401.1 2.5 5.70 5472 94.7 6.8 21.0 43 .1 5.8 4.5 524 1.48 13 12.8 <1 30.0 158 .3 .9 .7 28 1.13 .039 26.0 13.0 .42 357 .144 6.29 1.918 4.23 74.2 50.3 44 6.3 12.6 21.6 2.1 6 5 38.8 .4 266.7 2.3 5.71 5473 324.8 4.6 20.7 10 <1 6 1.0 246 1.05 6 19.5 <1 30.7 54 <1 3 8.7 11 .51 .012 22.0 7.9 19 247 .040 5.80 1.677 4.38 >200 33.8 37 30.4 11.2 18.2 1.8 5 4 69.6 .6 348.3 1.9 6.10 5474 75.3 4.3 22.1 29 <1 2.9 2.3 372 1.09 12 15.9 <1 20.0 110 <1 1.1 .8 17 .63 .031 23.4 10.2 .23 350 .093 6.26 2.038 4.76 >200 38.8 39 10.9 12.9 34.1 3.0 6 5 64.7 .4 323.6 2.1 8.42 5475 9.2 4.8 6.2 52 1.2 3.3 17.1 1308 4.02 28 3.3 <1.7 9 496 .2 1.2 .7 120 3.88 1.86 37.0 62.1 1.79 990 .546 8.52 3.078 2.25 18.6 117.9 69 7.8 17.4 20.6 1.3 7 14 108.4 .3 152.0 2.9 4.62 5476 62.8 3.7 33.0 31 <1 1 1.4 1.8 384 .99 99 14.2 <1 21.6 105 .2 1.9 6.4 17 .60 .022 18.8 3.2 2.6 60 .053 6.15 .918 4.37 136.9 40.6 33 30.0 9.9 24.7 2.4 41 6 149.0 .5 312.2 2.0 6.94 5476 85.7 7.2 117.4 339 .1 9 1.5 875 .86 133 16.3 <1 39.6 39 4.0 13 15.5 9 .20 .015 28.9 3.1 14 270 .056 6.87 .960 5.57 >200 44.0 52 12.1 11.2 26.8 2.6 6 8 4 54.5 5 368.7 1.9 5.50 5478 99.0 3.6 95.0 217 .1 5 1.2 309 .52 9 9.6 <1 20.3 71 2.4 .3 3.4 9 .36 .018 18.7 1.9 .12 209 .037 5.86 1.124 4.34 >200 35.8 34 19.1 13.1 24.2 2.6 5 6 96.0 .3 289.8 2.0 5.90																																											•	
5472 94,7 6.8 21,0 43 .1 5.8 4.5 524 1.48 13 12.8 <1 30.0 158 .3 .9 .7 28 1.13 .039 26.0 13.0 .42 357 1.44 6.29 1.918 4.23 74.2 50.3 44 6.3 12.6 21.6 2.1 6 5 38.8 .4 266.7 2.3 5.71 5473 324.8 4.6 20.7 10 <1 1.6 1.0 246 1.05 6 19.5 <1 30.7 54 <1 3.0 158 .3 .9 .7 28 1.13 .039 26.0 13.0 .42 357 1.44 6.29 1.918 4.23 74.2 50.3 34.8 37 30.4 11.2 18.2 1.8 5 4 60.6 .6 348.3 1.9 6.10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0																																												
5473 324.8 4.6 20.7 10 < 1 6 1.0 246 1.05 6 19.5 < 1 30.7 54 < 1 .3 8.7 11 .51 .012 22.0 7.9 .19 247 .040 5.80 1.677 4.38 > 200 33.8 37 30.4 11.2 18.2 1.8 5 4 69.6 .6 348.3 1.9 6.10 5474 75.3 4.3 22.1 29 < 1 2.9 2.3 372 1.09 12 15.9 < 1 20.0 110 < 1 1.1 .8 17 .63 .031 23.4 10.2 .23 350 .093 6.26 2.038 4.76 > 200 38.8 39 10.9 12.9 34.1 3.0 6 5 64.7 .4 323.6 2.1 8.42 5475 9.2 4.8 6.2 52 .1 23.3 17.1 1308 4.02 28 3.3 < 1 7.9 496 .2 1.2 .7 120 3.88 1.86 37.0 62.1 1.79 990 .546 8.52 3.078 2.25 18.6 117.9 69 7.8 17.4 20.6 1.3 7 14 108.4 3 152.0 2.9 4.62 5476 62.8 3.7 33.0 31 < 1 1.4 1.8 384 .99 99 14.2 < 1 21.6 105 .2 1.9 6.4 17 .60 .022 18.8 3.2 2.6 260 .053 6.15 .918 4.37 136.9 40.6 33 30.0 9.9 2.47 2.4 41 6 149.0 .5 331.2 2.0 6.94 5477 85.7 7.2 117.4 339 .1 9 1.5 875 .86 133 16.3 < 1 39.6 39 4.0 1.3 1.5 9 .20 .015 28.9 3.1 14 270 .056 6.87 .960 5.57 > 200 44.0 52 12.1 11.2 26.8 2.6 8 4 54.5 5 .5 368.7 1.9 5.50 5478 98.0 3.6 95.0 217 .1 .5 1.2 309 .52 9 9.6 < 1 20.3 71 2.4 .3 3.4 9 .36 .018 18.7 1.9 .12 209 .037 5.86 1.124 4.34 > 200 35.8 34 19.1 13.1 24.2 2.6 5 6 96.0 .3 28.8 2.0 5.90																																												
5474 75,3 4.3 22.1 29 <.1 2.9 2.3 372 1.09 12 15.9 <.1 20.0 110 <.1 1.1 .8 17 .63 .031 23.4 10.2 .23 350 .093 6.26 2.038 4.76 >200 38.8 39 10.9 12.9 34.1 3.0 6 5 64.7 .4 323.6 2.1 8.42 5475 9.2 4.8 6.2 52 .1 23.3 17.1 1308 4.02 28 3.3 <.1 7.9 496 .2 1.2 .7 120 3.88 1.86 37.0 62.1 1.79 990 .546 8.52 3.078 2.25 18.6 117.9 69 7.8 17.4 20.6 1.3 7 14 108.4 3 152.0 2.9 4.62 5476 62.8 3.7 33.0 31 <.1 1.4 1.8 384 .99 99 14.2 <.1 21.6 105 .2 1.9 6.4 17 .60 .022 18.8 3.2 2.6 260 .053 6.15 .918 4.37 136.9 40.6 33 30.0 9.9 24.7 2.4 41 6 149.0 5 331.2 2.0 6.94 5476 85.7 7.2 117.4 339 .1 9 1.5 875 .86 133 16.3 <.1 39.6 39 4.0 1.3 1.5 9 .20 .015 28.9 3.1 14 270 .056 6.87 .960 5.57 >200 44.0 52 12.1 11.2 26.8 2.6 8 4 54.5 .5 368.7 1.9 5.50 5478 99.0 3.6 95.0 217 .1 .5 1.2 309 .52 9 9.6 <.1 20.3 71 2.4 .3 3.4 9 .36 .018 18.7 1.9 .12 209 .037 5.86 1.124 4.34 >200 35.8 34 19.1 13.1 24.2 2.6 5 6 96.0 3 289.8 2.0 5.90																																												
5475 9,2 4,8 6,2 52 .1 23,3 17,1 1308 4,02 28 3,3 <1, 7,9 496 .2 1.2 .7 120 3,88 1,86 37,0 62,1 1,79 990 .546 8,52 3,078 2,25 18,6 117,9 69 7,8 17,4 20.6 1,3 7 14 108.4 .3 152.0 2,9 4,62 5476 62,8 3,7 3,0 31 <1, 1,4 1,8 384 .99 99 14,2 <1, 21,6 105 .2 1,9 6,4 17 .60 .022 18.8 3,2 .26 260 .053 6,15 .918 4,37 136.9 40,6 33 30.0 9,9 24.7 2,4 41 6 149.0 .5 331.2 2,0 6,94 5477 85,7 7,2 117,4 339 .1 9 1,5 875 .86 133 16.3 <1 39,6 39 4.0 1,3 1,5 9 .20 .015 28.9 3,1 .14 270 .056 6.87 .960 5,57 >200 44.0 52 12.1 11,2 26.8 2,6 8 4 54.5 .5 368.7 1,9 5,50 5478 98.0 3,6 95.0 217 .1 .5 1,2 309 .52 9 9,6 <1 20,3 71 2.4 .3 3,4 9 .36 .018 18.7 1.9 .12 209 .037 5,86 1,124 4,34 >200 35.8 34 19.1 13.1 24.2 2,6 5 6 96.0 .3 289.8 2,0 5,90	5473	324.B	4.6	20.7	10	<.1	.6	1.0 2	246 1.	. 05	6 19	.5 <	.1 3).Z	54	:1 .	3	8.7	11	.51	.012	22.0	7.9	.19	247	.040	5.80	1.677	4.38	>200	33.8	37	30.4	11.2	18.2	1.8	5	4	60.6	.6	348.3	1.9	6.10	
5475 9,2 4,8 6,2 52 .1,23,3,17,1,1308,4,02 28 3,3 <1, 7,9 496 .2 1.2 .7 120 3,88 1,86 37,0 62,1 1,79 990 .546 8,52 3,078 2,25 18,6 117,9 69 7.8 17,4 20.6 1,3 7 14 108.4 .3 152.0 2,9 4,62 5476 62,8 3,7 3,0 31 <1, 1,4 1,8 384 .99 99 14,2 <1, 21,6 105 .2 1,9 6,4 17 .60 .022 18.8 3,2 .26 260 .053 6,15 .918 4,37 136.9 40.6 33 30.0 9,9 24.7 2,4 41 6 149.0 .5 331.2 2,0 6,94 5477 85,7 7,2 117,4 339 .1 9 1,5 875 .86 133 16.3 <1, 39.6 39 4.0 1,3 1,5 9 .20 .015 28.9 3,1 .14 270 .056 6.87 960 5,57 >200 44.0 52 12.1 11.2 26.8 2.6 8 4 54.5 .5 368.7 1,9 5,50 5478 98.0 3,6 95.0 217 .1 .5 1,2 309 .52 9 9,6 <1, 20,3 71 2.4 .3 3,4 9 .36 .018 18.7 1.9 .12 209 .037 5,86 1,124 4,34 >200 35.8 34 19.1 13.1 24.2 2.6 5 6 96.0 .3 289.8 2.0 5,90																																												
5476 62.8 3.7 33.0 31 <.1 1.4 1.8 384 .99 99 14.2 <.1 21.6 105 .2 1.9 6.4 17 .60 .022 18.8 3.2 .26 260 .053 6.15 .918 4.37 136.9 40.6 33 30.0 9.9 24.7 2.4 41 6 149.0 .5 331.2 2.0 6.94 5477 85.7 7.2 117.4 339 .1 9 1.5 875 .86 133 16.3 <.1 39.6 39 4.0 1.3 1.5 9 .20 .015 28.9 3.1 .14 270 .056 6.87 .960 5.57 >200 44.0 52 12.1 11.2 26.8 2.6 8 4 54.5 .5 368.7 1.9 5.50 5478 98.0 3.6 95.0 217 .1 .5 1.2 309 .52 9 9.6 <.1 20.3 71 2.4 .3 3.4 9 .36 .018 18.7 1.9 .12 209 .037 5.86 1.124 4.34 >200 35.8 34 19.1 13.1 24.2 2.6 5 6 96.0 .3 289.8 2.0 5.90	-																																											
5477 85.7 7.2 117.4 339 .1 9 1.5 875 .86 133 16.3 <.1 39.6 39 4.0 1.3 1.5 9 .20 .015 28.9 3.1 .14 270 .056 6.87 .960 5.57 >200 44.0 52 12.1 11.2 26.8 2.6 8 4 54.5 .5 368.7 1.9 5.50 5478 98.0 3.6 95.0 217 .1 .5 1.2 309 .52 9 9.6 <.1 20.3 71 2.4 .3 3.4 9 .36 .018 18.7 1.9 .12 209 .037 5.86 1.124 4.34 >200 35.8 34 19.1 13.1 24.2 2.6 5 6 96.0 .3 289.8 2.0 5.90	5475	9.2	4.8	6.2	52	1 2	3.3 1	7.1 13	308 4.	.ez	28 3	.3 <	.1	7.9 4) 6	.2 1.	2	.7 1	120 3	.88	. 186	37.0	62.1	1.79	990	.546	8.52	3.078	2.25	18.6	117.9	69	7.8	17.4	20.6	1.3	7	14 1	08.4	. 3	152.0	2.9	4.62	
5478 98.0 3.6 95.0 217 .1 .5 1.2 309 .52 9 9.6 < 1 20.3 71 2.4 .3 3.4 9 .36 .018 18.7 1.9 .12 209 .037 5.86 1.124 4.34 >200 35.8 34 19.1 13.1 24.2 2.6 5 6 96.0 .3 289.8 2.0 5.90	5476	62.8	3.7	33.0	31	<.1	1.4	1.8	384	.99	99 14	.2 <	.1 2	1.6 1	15	.2 1.	9	6.4	17	.60	.022	18.8	3.2	.26	260	.053	6.15	.918	4.37	136.9	40.6	33	30.0	9.9	24.7	2.4	41	6 1	49.0	.5	331.2	2.0	6.94	
	5477	85.7	7.2	117.4	339	.1	9	1.5 8	875	.86	133 16	3 <	.1 3	9.6	39	.0 1.	3	1.5	9	. 20	.015	28.9	3.1	. 14	270	.056	6.87	. 960	5.57	>200	44.0	52	12.1	11.2	26.8	2.6	8	4	54.5	.5	368.7	1.9	5.50	
STANDARD DSTG 12.7 130.7 35.7 176 .4 31.4 13.6 972 4.10 26 7.5 <.1 7.1 314 5.8 5.4 4.8 115 2.31 .103 25.5 234.1 1.00 695 .432 7.06 1.715 1.45 8.0 54.6 53 6.4 15.1 8.5 .8 3 11 27.1 <.1 57.8 1.8	S478	98.0	3.6	95.0	217	. 1	.5	1.2 3	309 .	. 52	9 9	.6 <	.1 2	3.3	71 :	2.4 .	3	3.4	9	.36	.018	18.7	1.9	.12	209	.037	5.86	1.124	4.34	>200	35.8	34	19.1	13.1	24.2	2.6	5	6	96.0	.3	289.8	2.0	5.90	
STANDARD 0ST6 12.7 130.7 35.7 176 .4 31.4 13.6 972 4.10 26 7.5 <.1 7.1 314 5.8 5.4 4.8 115 2.31 .103 25.5 234.1 1.00 695 .432 7.06 1.715 1.45 8.0 54.6 53 6.4 15.1 8.5 .8 3 11 27.1 <.1 57.8 1.8 .															-																													
	STANDARD DST6	12.7 1	30.7	35.7	176	. 4 3	1.4 1	3.6	972 4.	.10	26 7	.5 <	.1	7.1 3.	14 :	.8 5.	4	4.8	15 2	. 31	.103	25.5	234.1	1.00	695	.432	7.06	1.715	1.45	8.0	54.6	53	6.4	15.1	B.5	.8.	3	11	27.1	<.1	57.8	1.8		

FILE # A602274

Page 3

ALME AMAI	LITTUAL																																								ACTIE	ANALTTICAL	
	SAMPLE#	Ma	Cu	Ph	Zn	Aa	Ní	£o i	Mn F	- J	As I	J Au	Th	Sr	Crt	Sb	Bi	٧	Ca	Р.	La.	Cr	Mq	Ва	Ti	A1	Na	К.	¥	Zr	Ce	Sn	Y	Nth	Ta B	e 5	r	Li	5	Rb Hf	Sample		
		DDM	DEM	DOM	DOR	DOM	DIONI D	ion bi	D/¶	\$ pr	om govi	n dori	торп	орт	DOM	DOM	oom.	Dom		*	ppm	DOM	•	DOM	*	x	1	4	DOM				DDM							inga ma			
			-:-							<u> </u>				<u> </u>										<u> </u>							 -							_					
	G-1	.2	2.0	22.9	53	<.1	3.3 4	.1 7	81 2.4	7	5 4.1	3 < 1	7.3	710	.1	<.1	.2	53	2.62	.086	23.D	6.2	.61	1010	.272	8.42	2.917	3.16	.3	8.0	46	2.6	14.0	20.8	8.3	3 -	5 39	.4 <	1 123	.4 .7			
	5479	86.5	2.3	26.9	9	<.1	1.0 1	.6 1	70 .7	70	8 16.0) <.1	17.9	81	<.1	.2	5.2	6	.44	.017	19.1	6.6	.11	244	.035	6.73	2.632	5.16	179.3	36.4	35	10.5	13.7	29.2	2.9	5	4 50	.9	4 314	.2 2.2	6.34		
	5480																																							.7 2.2			
	5481	243.3	4.9	30.8	6	.1	.8 1	.1 14	87 .6	54]	16 17.5	5 < 1	34.0	57	.2	1.2	12.7	6	.47	.014	22.9	6.6	.12	244	.038	6.29	2.349	4.93	>200	41.6	41	7.9	10.7	23.6	2.4	6	3 33	1.7	3 306	.4 2.0	6.86		
	5482	84.3	2.9	21.6	8	. 1	.7	.4 1	56 .4	18	7 14.4	4 < 1	35.3	60	.1	.4	1.8	5	.45	.012	27.4	2.3	.12	241	.037	6.24	2.167	4,70	>200	37.5	48	7.2	9.8	20.6	2.1	8	3 47	.6	.1 295	.2 1.6	7.08		
	5483	30.0	3.7	23.6	7	<.1	.7 1	.2 2	35 . 6	54	7 12.5	3 <.1	28.1	70	<.1	.4	1.4	7	.50	.015	20.9	5.7	.13	274	042	6.43	2.464	4.80	187.5	37.3	37	8.5	11.2	24.4 2	2.7	6	3 35	.1	.2 306	.3 2.0	6.82		
	5484	26.8	3.4	20.6	14	<.1	.6 2	.9 1	83 .6	32 I	14 20.	<.1	34.6	62	.1	.5	.8	6	.46	.012	18.2	3.1	. 13	302	.049	6.31	2.533	4.52	>200	41.0	32	7.3	9.7	25.7.2	2.8	5	3 23	.8	.2 272	.0 1.9	3.18		
	5485	3.6	4.7	5.7	58	.1 2	7.9 17	.9 11	63 4.4	17 2	30 2.1	< 1	7.8	536	.2	.9	.5	132	3.69	.178	37.5	66.2	2.05	1126	.577	8.46	2.879	2.35	5.0	125.2	71	16.0	19.7	19.3	1.3	3 1	4 96	.3 .	.3 175	.6 3.2	7.40		
	5486	2.8	6.4	5.4	53	,13	1.1 17	.1 12:	34 4.1	18 5	57 2.8	3 <.1	7.5	478	.1	.6	.6	126	3.35	.174	36.8	69.2	2.02	1125	554	8.10	2.933	2.28	5.B	121.1	69	17.5	18.7	19.0	1.2	3 1	3 85	.1	4 151	.4 3.0	5.94		
	5487	177.8	5.2	27.0	13	. 2	.9 2	.2 2	47 .8	16 1	12 10.F	5 <.1	29.5	45	.1	.5	4.1	6	.35	.011	22.2	5.4	.12	217	033	6.23	1.711	4,82	>200	33.7	38	10.9	8.6	17.2	1.6	3	3 32	.3	5 328	.6 1.7	5 74		
			-																																								
	5488	77.6	7.9	32.5	51	.3	.5 4	.5 2	75 .9	J7	B 15.4	4 <.1	34.3	61	.6	1.1	5.2	7	.57	.014	18.7	2.2	.10	253	.033	7.16	1.440	5.61	>200	39.2	32	10.0	12.2	17.6 1	1.6	5	3 72	_4	.6 389	.0 1.9	5.16		
	5489	60.1	10.1	28.3	12	. 2	.7 4	.3 38	86 1.2	26	7 11.6	5 <.1	32.8	48	.1	.9	3.5	8	.37	.012	26.0	5.2	.11	238	.043	5.98	1.070	4.70	167.1	37.6	44	15.0	9.5	19.8 1	1.6	5	3 96	.6 .	7 309	.6 1.7	7.54		
	5490	28.8	4.3	39.7	16	.5	.5 2	.2 30	09 .6	i6 1	11 13.5	5 <.1	23.5	71	2	1.1	11.1	7	.42	.016	21.0	4.0	.11	229	.044	6.60	1.682	4.38	130.1	33.7	37	9.1	10.8	27.6 2	2.8	5	4 102	.5 .	3 297	.0 1.9	6.04		
	5491	22.4	3.8	35.7	14	. 1	.6 3	.7 3	37 .7	8 2	20 9.1	l <.1	17.2	68	. 2	.6	4.6	6	.32	.016	19.0	3.5	.12	194	.036	6.47	.241	3.94	112.6	35.0	34	12.5	11.9	27.6	3.0	7	4 181	.3 .	.5 281	.7 2.0	6.36		
	5492	10.7	5.0	38.5	14	.3	.4 3	.0 30	07 .5	i8 1	11 15.7	7 <.1	15.8	74	.2	.8	9.8	6	.39	.016	18.1	2.0	.12	229	.033	6.60	1.276	4.17	55.4	34.3	32	9.6	12.9.	26.D 2	2.9	7	4 118	.4 .	3 317	.8 1.9	5.66		
	5493	15.4	4 9	29.0	9	<.1	7	.7 29	56 .4	9 1	.O 12.6	5 <.1	16.6	74	. 1	.4	5.7	7	.42	.017	16.6	3.9	.11	206	.036	6.60	2.273	3.83	91.5	31.6	30	11.0	1.2	24.2 2	.9	5	5 60	.6 .	2 269	.2 1.8	6.46		
	5494	61.6	8.1	38.5	12	.4	.8 3	.6 3	40 .7	4 1	.2 14.0) <.l	22.5	57	.1	1.3	18.6	7	.38	.014	20.2	2.7	.10	223	.033	5.99	1.439	4.11	>200	33.2	35	11.3	10.2	20.6 2	2.3	4	4 5 1	.9 .	4 309	.6 1.8	6.38		
	5495	66.2	12.2	52.0	16	1.0	1.1 4	.4 40	95 1.0	15 Î	10 14.6	5 <.1	32.5	44	.2	2.3	22.8	8	.36	.013	25.7	7.6	.10	243	043	5.88	1.884	4.87	>200	35.9	44	16.0	9.3	19.9 1	. 6	3	4 46	.3 .	6 321	.9 1,6	7.06		
	5495	126.4	16.7	46.8	25	3.6	.7 6	.1 59	94 1.5	. 8	8 23.5	5 <.1	28.3	47	. 5	9.3	215.1	8	. 40	012	19.7	3.5	.13	191	.030	5.55	763	4 05	>200	30.7	34	23.5	9.6	14.9 1	.2	4 .	4 127	.1 1.	1 288	.3 1.4	6.76		
	5497	27.0	7.8	48.1	27	.7	.6 2	.9 3	94 .9	1 0.	1 31.5	5 <.1	21.9	69	. 3	1.7	49.9	7	. 44	.016	20.8	4.4	.12	231	034	5.38	1.954	4.24	>200	35.0	37	17.1	12.4	23.2 2	.5	5	4 98	.3 .	5 313	.8 1.9	5.98		
	5498																																							.3 2.2			
	5499																																							.9 1.9			
	5500																																							.2 1.9			
	5501																																							.2 19			
	RE 5501	47.7	5.4	62.1	27	1.0	.5 1	.3 40	04 .6	3	8 13.0	J <.1	17.7	71	.4	2.4	44.8	7	.47	.018	20.4	6.0	.11	228	036	6.20	1.940	4.21	>200	31.4	36	17.0	12.6	21.0 2	.6	4 .	5 77	.3 .	3 332	.2 1.9	•		
	RRE 5501	52. 3		co e	20				10 5	:0	0.14	1	17 6			2.0	42.1	7	16	017	20.4		11	224	020	e 04	2 020	4.00	×200	21.0	22 1		12.1	21 0 2					2 212	.3 2.1			
	5502																																							.5 1.7			
	5502																																							.4 1.8			
																																								.3 2.0			
	5505																																							.1 2.0			
	5505	239.0	7.U	40.0	40	.,	.6 2	. 4 31	.7	9 1	.3 17.2		30.2	03	.0	3.0	42.3	u	. 31	.011	61.4	4.0	.13	tas	.043	J.44	.504	3.53	-200	34,4	30 2	2.2	9.0	64.U E			4 202		4 203	.1 2.0	7.10		
	5506	162 4	6.3	28.6	19	2	5 2	9 51	12 8	an 1	4 13 :	, < 1	31.3	59	ı	4	2.6	7	50	012	18.0	2.0	14	192	DAR	5 52	1 041	4 41	>200	33.4	3) 1	22	a R	23 1 2	2	, ,	4 177	ß	3 289	.2 1.9	7 12		
	5507																																							.9 1.8			
	5508																																							.4 2.5			
	5509																																							.4 2.7			
	5510																																							.6 3.2			
	5510	ų r		.,,	,,		10	+0:					0.5	707	.,	J		110		,	30.4	56.1					2.000			-20.4	v			1									
	STANDARD DS76	12.7 1	28.6	35.1	176	.3 3	1.2 13	.2 9	68 4.0	19 2	25 7 6	< 1	7.3	314	5.6	5.4	4.8	114	2.30	.105	25.3	232.8	1.00	695	,434	7.04	1.672	1.41	7.9	55.0	52	6.3 1	4.9	8.6	.7	3 E	1 26.	.0 <.	1 5B	.3 1.8	-		
		•						- "																																			

Newmac Resources Inc. FILE # A602274

Page 4

ACME ANALYTICAL																																																				AC	ME ANA	AL YTICA	d.
SAHPLE#		Mo		٠	Ph	7.0			Ni	Ć0	Mn	E0.	۸.		۸.		Th .	۲.	Cd	Sit		B i	٧	Ca		_	La	Ċr	Mo	_	Ba	Tí	A1	,	Na	K	v	7r	Ce	5:		~	Nb	Ta	Po.	Sc		i :		Dh	Hf	C	1-		
2HULTE#		HU				-		-				-	-									-						ppm	-						*					_							_								
		- ppii	ı p	נואנ	ppm	ppin	ı əpr	n p	рия р	Jpm	ppm		- Pom	ppm	ppr	- PI	яп р) III) pin	DDII		pan ş							<u> </u>	P	ppa -		- 4	*		•	DDee	ppin	ppiii	ppi	n Di	JRE		ppin	ppm	- DDm	- DDa	n :	<u>. </u>	ppm	ppm				
, ,																			,			2				on (20.0					221			700 2 0				••									_			_				
G-1																																			762 3.0		.2																		
5511																																			949 4.2		>200																		
5512																																			656 4.5		>200						-		-				-						
5513																																			423 6.2																				
5514		516.2	5	9 9	0.0	216	2.1	1	.5 1	5	897	. 64	37	20.5	<.]	. 27	5	51 3	3.6	3.5	100	. 9	8	.80	.01	14 1	.5.8	2.2	.10	. 2	214	.036	5.86	5 1.4	492 4.9	90	>200	30.0	27	15.	3 10	.9 1	.9.6	1.6	3	4	53.	4 .	3 3	54.7	1.5	6.	52		
5515		137.6	23	.8 .8	37.9	111	1.5	5 2	.3 5	. 3	901 1	1.79	21	19.7	<]	. 26	1	71	2.0	4.0	38	.9	8	.79	.01	16 1	16.1	5.7	. 10) Z	221	.040	6.39	1.5	561 4.7	72	>200	35.9	29	17.	3 15	.9 3	š 4 . 4	. 8	6	6	147.1	0 1.	1 4	02.1	1.7	6.	40		
5516		25.5	4	.1 4	14.3	11	1	1	. 5	.8	326	.60	12	15 7	<.	. 18	3	82	.1	1.3	42	.0	6	.46	.02	20 1	18.7	3.0	. 10	1 1	196	.055	6.61	2.6	671 3.8	84	>200	37.6	34	8.	11	.9 3	8.4	4.0	5	5	B9 .:	2 .	2 3	08.4	2.2	6.	48		
5517		92.0	10	6 6	60.4	17	2	2	.4 2	. 4	411 I	10.1	16	17.0	< .	16	4	76	.3	2.8	64	.9	6	. 56	.01	16 1	17.5	4.8	.09	20	200	.043	5.99	1.7	700 3.6	56	>200	36.1	31	9.1	5 10	.5 3	12.7	3.1	3	5	96.8	a ./	5 2	81.1	2.0	6.	54		
5518		56.8	3	8 3	35.3	17	1	l	.6 1	2	286	.54	11	16.9	<, }	16.	2	77	.2	1.3	8	.В	6	.43	.01	15]	17.9	3.0	.09	2	219	.044	6.22	2.0	018 4.1	17	>200	33.5	31	8.	3 10	.5 2	9.9	3.1	4	5	56.	7"	2 30	00.4	1.9	5.	86		
5519		103.3	5	7 3	34.2	13	. 1	1	.7 2	2.2	373	. 78	12	29.9	<. }	16.	3	B7	.2	1.2	12	.6	6	. 40	.01	17 1	18.9	6.4	.10	. 1	178	.047	6.40	2.2	236 3.7	72	>200	37.7	34	7.	? 11	.0 3	34.4	3.3	5	5	50.6	8 .	3 2	80.1	2.1	6	74		
																																																							l
5520		132.8	. 6	4 3	35.0	13	<.]	1	.6 1	1.6	279	.57	11	21.6	< .)	. 17.	3	77	.1	1.5	8	.6	7	. 47	. 01	17)	17.9	3.2	. 09	<i>i</i> 1'	99	.044	6.91	2.7	781 4.0	07	193.7	36.0	32	7.	10.	.5 3	12.4	2.9	4	5	40.	1 .	2 2	94.5	2.0	7.	08		
5521		89.5	5	6 4	14.7	18	1	ı	9 1	. 9	31B	.75	16	21.1	< 1	. 16.	9	88	.2	2.2	18	.1	6	.38	.03	19 1	19.1	3.0	.09	1	191	.046	6.56	2.4	142 3.8	33	>200	33.6	34	11.0	9.	.6 3	36.2	3.2	4	6	62.1	2 .	3 21	96.B	2.0	6	2B		
5522		60.4	5	5 2	28.5	11	<.1	ı	.8 1	3	229	. 48	11	12.5	<.1	18.	1	95	.1	1.4	23	4	8	.44	.01	18 1	LB.5	1.5	.10	2	236	.045	6.62	2 1.8	336 4.2	26	196.2	32.9	34	7.6	10	.8 2	27.5	2.8	4	5	60.5	9	2 2	82.9	1 9	6	52		
5523																																			344 4.1																				
5524																																			578 4.4																				
5525		619.5	10	4 3	4.8	17	. 1	1.	.4 5	. 4	250 2	2.88	57	19.3	<.3	32	0	59	.7	4.9	187	5	22	.32	.01	13 7	25.2	8.6	.13	1/	61	.046	6.06	9	165 4,2	22	>200	37.4	42	39.3		9 2	24.7	2.0	5	6	93 :	3 2	6 3	43.6	1 9	6	2R		
5526																																			940 4.5																				
5527																																			304 3.3																				
5528																																			065 4.2																				
5529																																			37B 4.2																				
3327		550.5	-			1.	•	•					••			00.	•			2.0	0,		,	. 52				4.5					0.10		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		200	50.5	٠.	10.		~ ~	2.0	• • •	•	3	3 0.1		- 21	. L	1.0	٠.	۲		
RE 5529		361 1		a 2	16.2	11	< 1	i	7 2	, n	235	qs.	12	26.8	< 1	32	4	SR.	3	21	37	4	7	55	D1	13 2	22 7	4 q	10	, ,	707	050	5 9R	. 19	923 4.2	73	>200	45 R	38	14		g 2	28.3	1 9	4	4	37 -	વ	a ar	n 2 5	1.7				
RRE 5529					-																														754 4.2																				
5530																																			52 3.8																				
5531																																			64 3.8																				
																																			987 4.0																				
5532		323.5	4	4 2	3.3	17	٠.١	. 1.	.a 5	. 2 .	200 1	72	21	55.5	٠.1	34.	1 :	90	. 0	1.9	,14	,	,	.30	.01	2	.2.0	0.5	. 00	41	כט:	.uou	0.12	1.9	707 4.0	פו	01.7	30.0	3/	19.4	10.	2 2	D. /	2.4	9	4	28. L	1 1.5	3 20	D1.0	1.8	1.	12		
			,			1.4					71.2	0.7	40	14.0	- 1	24	,		,	1 7	10	,	a	42	л	14 5	27 0	4.0	00	. 1/	o.c	nce	c 06	. 1 3	86 4.0		ee 0	36.4				2 7		2 5	,		05.	_				,	••		
5533						_																													185 3.5																	-	-		
5534				-										-																					100 J.S 193 J.7										-										
5535			_																																										-							-			
5536																																			18 3.9																				
5537		106.6	8.	5 3	11.9	16	< . 1	1 1.	.0 4	.9 :	394 1	95	24	35.4	<.1	30.	1 :	57 <	. 1	3.0	34	2	8	.36	.01	.2 2	1.3	5.5	.08	14	15	.056	5.44	1.9	02 3.7	O.	>200	34.9	36	22.5	10.	3 3	5.6	3.0	4	6	42.8) 1.d	J 25	19	1.7	5.6	38		į.
																					500																									_									
5538																																			17 3.7																				ļ
5539																																			79 3.8																				Ì
5540																																			51 4.0																				
5541									_																										86 4.3																				ļ
5542		324.7	3.	7 4	7.7	25	<.1	1.	.1 1	.8	351 1	16	17	12.9	< .1	36.	0	73	.6	4.1	157	.1	7	.44	.01	.4 2	8.9	3.0	. 10	21	12	. 057	6.56	2.2	46 4.5	6	>200	43.9	51	18.1	11.	2 4	U.2	3.0	9	6	40.2	5	o 30	7. טנ	2.3	6.8	52		
														_				_		_		_																				_													
STANDARD D	DST6	12.6	130	1 3	5.2	175	.4	30	.8 13	.1 9	964 4	+.0B	26	7.4	<.1	7.	1 3	19 5	. 7	5.5	4	1 1	12	2.29	10	.2 2	5.2	230.6	1.02	69	98	.429	7.02	1.6	22 1.3	18	7.7	52.8	52	6.3	14.	9 8	8.2	.6	3	12	27.5	<)	1 5	i≝.l	1.8				
																																																							- 1

FILE # A602274

Page 5

													=-																													
	SAMPLE#	Mo	٠	Oh	7 n	۸۵	Mis	Co	Mn	50	A.c.	II A	. Th		. ra	Ch.	0.	v	٠.			Cr	Ma	0.	T:	A1	и.	v .	u :	r (a	\$0	٧	Alb	т.	Be		Li		Db	Hf Sa		
	SAMPLER					-																	-																			
		ppm	ppm	bbu	ppm	pom	ppm	pom p	1Du	1 p)pm pp	om pp	ii ppii	i ppr) ppm	ppm	ppm	ppm		- 4	ppm	ppm	¥ 1	opm -		*	*	1	opm pr	и рра	i ppm	ppm	ppm	ppm	ppm f	ррт	ppm	1	ppm	ppm	kg .	
	G-1	. 3	7,4 2	23.0	55	<.1	3.3	4.5 F	800 Z.	.52	4 4	.5 <.	8.4	725	<.1	.1	. 2	56	2.63	.081	28.2	8.6	.64	999 .	259 8	.65 2.	853 2.9	99	.4 7	9 54	1.2	15.2	19.9	1.7	2	5	39.9	<.1 1	16.2	. 6		
	5543	51.7	9.0 2	27.1	14	< .1	. 6	.7	314 .	.82	10 9	.2 <.	33.5	- 58	<.1	1.3	22.6	6	.52	.010	23.5	2.8	.10 2	205 .	049 6	.09 2.	226 4.4	2 9	0.9 34.	2 40	9.9	10.1	30.5	3.1	5	4	30.7	.2 2	34.8	1.7	7.24	
	5544	183.9	603	32.5	32 -	<.1	.6	1.3	298 1.	.02	26 12	.5 <.	L 35.6	6	3	2.2	13.6	7	.33	.011	22.7	4.0	.11	194 .	051 5	.88 1.	691 4.4	16 >	200 40	5 40	15.3	9.7	31.3	2.8	В	5	77.7	.4 2	40.5	2.2	6.96	
	5545	124.0	10.2 3	0.0	13 -	<.1	.6	.5	390 .	.85	18 7	.6 <.	35.4	8	<.1	1.9	8.3	8	.56	.014	29.7	3.4	.14 2	258	067 5	.77 1.5	971 4.5	15 15	2,4 41.	1 51	7.4	10.6	34.5	2.8	5	5	32 4	.3 2	62.0	2.1	7.18	
	5546																					4.6																				
	2040	10.1	0.2			•				,.	•• ••				•	•		·			4.14	.,,							0.0 00.				-7.7		~					2.0	0.30	
	5547	150.7	11.0.4	16 5	72	,	,	1 4 4	155 1	20	42 7	2 -	26.7	10	,	2.4	40.0	10	27	014	27 9	3.4	10 5	en i	nea e	£2 1	202 4 2	0 10	2 0 40	. 47	15.0	0.2	26 F	2.2	11		20.1	, ,	V72 /			
	5548																					6.4																				
	5549																					3.6																				
}	5550	.9]	10.0	5.7	84	.1 5	3.23	1.6 11	148 6.	84	19 14.	1 <.	1.6	771	.2	2.3	.4	305	5.51	. 144	7.5	71.7	2.63 7	789 .	539 6	.99 2.	472 2.1	7 5	2.6 19.	1 16	. 7	14.1	8.2	.2	26	28	38.7	.1 1	09.7	. 9	7.84	
}	5551	1.2 1	13.6	6.0	81	.1 4	0.43	1.5 13	374 7.	. 30	11 .	7 <	1.5	1357	. 1	4.4	. 2	310	80.8	.141	7.0	52.B	3.71 5	. 616	522 7	.14 2.	265 1.2	9 2	2.0 14.	9 15	.6	13.8	2.7	. 1	5	26	92.8	<.1	50.6	. В	7.54	
	5552	121.4	3.9 3	14.6	25	.3	1.0	1.2 2	416 1.	.98	6 8.	6 <.	31.2	42	<.1	1.0	47.6	11	.45	.013	30.2	10.9	.15 2	256 .	056 5	.68 2	126 3.8	15 >	200 25.	0 52	10.8	10.2	19.6	2.2	6	3	40.6	1.7 2	20.2	1,3	5.60	
	5553	25.B	3.8 2	3.6	19	<.1	1.8	1.0 7	356 1.	. 20	8 8	1 <.	30.9	49	<.1	.7	9.0	10	. 48	.012	27.9	4.5	.14 2	247 .1	061 6	.21 2.3	207 4.2	7 7	6.8 25.	9 49	7.0	10.7	24.3	2.2	4	3	35.1	.8 1	89.2	1.4	6.60	
	5554	23.5	4 4 2	9.3	19	< 1	A	9 :	399 1	19	9 9	4 <	34.3	46	. 1	В	18.2	10	47	D13	32.1	4.6	13 2	39	072 6	44 2	288 4 2	3 13	6.8 3D.	1 54	9.0	12.7	27.6	2 R	4	3	46 B	7 2	28.7	1.5	5 64	
	5555																					4.7																				
	5556																					5.8																				
	3550	20.5	3.7 4		23			1.0 4	.0. 1		J 12.		. 55.5			1.1	10.0	10	,40	.017	37.3	3 .0	.10 2		DQ1 D	. 10 2.4	26- 4.0	.5 10.	J.E 35.	3 00	22.0	10.5	23.4	2.4	,		03.1	./ 6.	.27.3	2.7	0.00	
	5557	22.2		17 4	20 .	- 1			1	21	0.15		22.6		,	1 2	4 5	D	AG	017	26 1	4.8	17 1	ono i	no. 6	10 1 6	004 4 7	1 10	0 7 25	2 60	20.1	12.6	22 0	2.1	-	•	66 E	n =	41 2			
	5558																					5.7																				
	5559																					3.4																				
	5560			-																		3.7																				
(5561	36.6	5.3 3	1.6	40	-1	.5	.7 3	. 181	94	12 15.	5 <.3	41.9	30	.3	1.2	16.2	2	.32	.011	25.8	2.1	.08 1	.30 .1	063 5	90 2.0	309 3.9	5 15	5.5 39.	1 47	10.5	14.4	38.9	3.8	4	4	30.6	.5 <i>2</i>	13.2	2.1	4.98	
	5562	22.9	3.1.4	7.3	24	.5	.3	.4 2	284	81	13 18.	0 <.	34.2	23	. 2	2.4	44.2	8	, 28	.005	21.2	3.2	.06 1	.02 .1	046 5	.99 2.3	360 4.1	9 108	8.0 37.	5 36	13.9	12.4	37.6	4.0	5	3	30.5	.5 2	42.6	2.0	5.32	
	5563	94.9	2.8 3	1.1	14	.1	. 4	.7 2	295 .	66	14-13.	5 <.1	35.7	30	<.1	.7	6.3	4	. 25	.006	21.9	2.9	.06 1	.21 .1	048 5	.97 2.5	550 4.2	8 17	2.8 34.	5 38	5.9	12.0	35.6	3.6	4	3	27.6	.3 2	34.4	2.1	6.18	
	5564	28.0	3.1 2	6.9	15	د.1	.5	4 ?	319 .	68	12 15.	5 <.3	34.5	25	<.1	.7	3.5	<1	. 25	.006	22.3	3.8	.06 1	.13 .0	052 6	10 2.4	447 4.4	2 10	1.5 37.	9 38	4.8	11.6	35.3	3.9	5	4	26.5	.3 2	26.9	2.1	5.78	
	5565	27.0	2.5 2	4.4	18 -	<.1	.6	.5 2	280 .	.77	10 12	5 < .	33.2	26	<.1	.4	1.1	2	. 27	.005	19.7	4.2	.05 1	15 .1	047 5	.84 2.4	496 3.9	7 7	2.3 33.	9 33	4.3	11.0	31.7	3.2	4	3	30.3	.4 2	21.2	1.9	6.54	
	RE 5565																					4.5																				
ļ																																										
	RRE 5565	24.6	252	2 7	14 4	< 1	5	4 7	27 A	77	10 11	4 < 1	31.2	26	1	5	1.0	9	26	005	21.1	3,4	05 1	0A 1	047 5	58 2 1	198 4 2	5 6	1 9 35	0 35	4.1	10 9	31 B	3.2	4	3	28.6	4 2	19 1	1 9		
	5566			-	-				-													4.2									-					-						
	5567																					3.2																				
	5568																					3.7																				
	5569	53.8	1.9 2	5.B	14 <	٤.1	. 3	.3 2	65	49	9 21.	1 <.1	35.8	59	<.1	.4	1.0	13	. 60	.013	29.7	2.8	.07 3	105 .1	056 7	.56 Z.2	200 6.9	7 52	2.0 37.	8 50	15.1	13.5	29.3	2.4	4	2	39.9	.2 43	21.5	2.0	6.36	
	5570																					4.3																				
	5571	42.2	2.6 2	5.0	18 <	د.1	1.4	1.2 2	297 .	99	99.	1 <.1	30.8	51	.2	.6	6.8	3	. 39	.014	26.1	4.9	.09 2	43 .0	061 5	92 2.1	124 4.1	7 181	.2 30.	7 42	8.2	12.3	29.3	2.8	4	3	46.7	.6 2	35.4	1.6	5.66	
	5572	25.5	4.8 2	2.6	17	<.1	.7	.8 3	311 .	79	13-13.	2 <.1	34.1	45	.1	.4	1.9	7	.37	.011	24.7	3.9	.07 1	.81 .0	56 5.	77 2.8	244 3.9	8 127	7.7 38,	3 43	6.8	10.4	30.9	2.8	4	3	37.5	.4 2	23.8	1.8	5 94	
}	5573	15.8	2.3 2	3.0	27	< .1	.7	.9 3	381 .	86	8 10.	4 <,]	32.8	53	.2	.4	1.3	4	. 43	.010	23.7	3.4	.09 2	14 .0	158 6	01 2.4	411 4.2	2 99	5.0 37.	3 41	6.0	8.9	28.5	2.5	3	3	37.1	.4 2	19.7	1.7	7.32	
	5574	103.7	2.6 4	3.4	71	.3	.7	.8 2	132 1.	.02	11 14.	4 <.]	29.4	39	.9	1.8	23.1	2	.41	.009	20.6	5.4	.08 1	52 .0	044 6.	.08 2.€	509 3.7	ì >2	200 30.	38	10.7	10.4	35.6	3.8	6	3	41.6	.7 2	59.8	1.6	7.30	
ł	STANDARD DST6	12.8 1	28.0.3	5.8	176	.4 30	0.0 1:	3.3 5)68 4	.09	26 7.	6 <.1	7.0	318	5.6	5.5	4.7	114	2,30	.103	24.8	236.4	1.00 6	93 .4	434 7.	.05 1.7	21 1.4	4 7	1.9 53.	1 52	6.3	14.7	8.5	. 7	3	11	26.9	<.1	57.9	1.9	-	
								<u> </u>							. •																					<u> </u>						

FILE # A602274

Page 6

ACME ANALYTICAL																																									A	CME ANA	LYTI
SAMPLE#	Мо	Co	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U /	₩.	Th	 Sr	Cd	Sb	91	V	Са	,	, fa	Çr	Mg		Τŕ	A1	Na	K		Zr	Ce	Sr	,	γ	Nb T	a Be	e Sc	Li	s	Rb H	of Sam	Dle	
	ppm	ppr	т рри	ррга	ppm.	ppm	ppm	ppm	1	ррт р	io mai	р пж	от р	OUF	ppm	ppm	mag	ррт	¥	,	ppm	ррп	*	ppn	1	*	*	*	ppin	ррп	ppm	ррп	п рр	nn g	орт ор	п рри	и рри	ррт	* 1	ppm pp)m	kg	
													_															-															
6-1	.2	2.5	22.5	62	< 1	3.4	4.1	834 2	2.66	5 4	.,4 <	1 7	.5 7	53	<.1	. i	.2	56	2.73	. 089	24.3	5.2	. 64	1071	. 278	8.93	2.935	3.26	.3	9.4	50	1.4	14.	0 20	.9 1.	7 3	5	40.6 <	1 12	72.	.7		
5575	82.8	4.	136.9	375	1.2	.5	1.1	606 1	1.10	12 23	. 0 <	.1 29	.6	41	4.7	5.3	160.1	10	.54	.008	20.5	7.0	.13	161	.051	6.41	2.471	4.22	>200	28.6	36	32.8	1 1.	0 35	3.4 3.	7 7	1 4	52.1	.7 299	5.5 1.	.5 5	.82	
5576	64.1	2.8	46.0	196	.4	.6	1.0	574 1	1.03	11 15	.,7 <	1 32	.0	39	2.4	1.6	19.5	7	.40	.009	25.1	5.8	.10	175	.953	6.17	2.373	4.31	>200	37.1	45	12.5	11.	1 39	1.3 4.	0 9	; 4	39.1	. 6 26	5.0 2.	.0 6	. 50	
5577	53.0	4.8	121.3	274	1.1	. 6	1.6	694 1	1.29	12 14	.9 <	1 31	.9	41	3.8	5.7	175.0	9	.31	.009	23.5	7.9	.12	164	. 050	6.40	2.149	3.98	>200	33.2	42	26.0	12.	5 39	1.6 3.	7 8	j 4	54.5	.9 293	7.B 1.	B 6	.48	
5578	18.4	2.6	27,7	33	<.1	.5	.6	515	.72	14 12	6 <	1 34	.2	43	. 2	. 4	1.4	6	.33	.010	22.3	4.3	.07	182	. 065	6.43	2.801	3.89	60.3	33.4	40	3.3	12.	3 49	1.5 4.	5 7	4	34.B	. 2 231	J.O 1.	9 6	. 50	
5579	61.9	5.0	26.7	58	. 1	. 6	1.4	399	.78	12 14	.5 <	1 32	. 1	44	.6	. 6	1.3	6	. 29	.011	22.2	4.2	.08	208	.060	6.03	2.612	4,48	191.0	34.9	39	5.3	11.	4 39	1.6 3.	7 6	j 4	32.8	.4 275	∌.5 1.	9 6	. 74	
5580	31.6	2.6	25.0	40	< 1	. 5	1.4	338	.77	10 14	.3 <.	1 30	.0	44	.3	. 3	1.5	5	. 33	.010	22.8	7.1	.08	188	.051	6.08	2.445	4,02	139.3	35.7	41	5.9	11.	2 35	i. 9 3.	0 5	i 3	36.7	.4 267	7.0 1.	9 6	.62	
5581	23.2	3.7	25.0	24	< 1	.6	1.1	356	.75	10 14	.1 <.	1 32	. 6	4 5	. 2	. 4	2.6	5	. 39	.010	22.2	3.8	.09	212	. 053	6.28	2.631	4.19	123.4	35.3	38	5.0	11.	4 35	.1 3.	4 6	, 4	38.6	.4 258	3.0 2.	.0 6	. 58	
5582	36.3	2.8	37.9	240	< 1	. 6	1.0	434	.75	12 13	1 <.	1 33	.9	47	2.9	. 9	20.0	5	.40	.011	24.9	4.8	. 09	220	.047	6.08	2.148	4.86	>200	35.6	45	14.9	11.	4 36	i.1 3.	2 4	1 3	41.0	.4 338	3.5 2.	.0 6	.64	
5583	105.1	5.4	104.7	243	. 4	.6	4.1	658 1	. 26	13 14	.0 <.	1 31	.3	44	2.8	1.0	62.2	9	.40	.011	23.4	4.5	. 13	188	.053	6.14	1.968	4.69	>200	37.2	41	23.7	11.	5 31	.4 2.	8 15	<i>i</i> 4	46.0 1	0 327	7.0 1.	6 7	.08	
5584	86.8	4,1	30.0	29	<.1	.6	2.4	488 1	00	11 12	.2 <.	1 31	.2	43	.2	.7	12.2																					32.3					
5585			35.9							10 11					-		6.6																					35.1 1					
5586	175.8	4 (31.4	20	.1	1.1	1.7	367 1	42	11 16	.2 <.	1 33	.7	49	<.1	.9	11.4	8	.31	.012	25.4	12.5	.10	251	. 055	5.93	2.446	4.37	>200	36.4	45	11.5	10.	4 35	.2 2.	6 5	. 4	40.2 1	2 276	i.3 1.	7 6	.70	
5587																																						42.0					
5588	53.1	3.2	25.1	16	<.1	.4	1.4	389	.89	10 12	.5 <.	1 29	.1	41	<.1	.7	2.0	7	.27	. 009	18.2	4.9	.07	187	. 055	5.93	2.300	3.89	177.0	29.6	33	9.3	10.	5 36	.2 2.1	3 73	3	33.5	.5 212	2.4 1.	6 7	.02	
5589																																						31.7					
5590																																						34.6			-	.84	
RE 5590																																						35.7					
RRE 5590										10 16																												35.2			-	•	
5591	75.7	3.0	24.6	14	<.1	.6	3.4	370	.98	9 15	.7 <.	1 28	.3	38	.1	.3	1.6	5	. 34	.009	18.5	6.1	.08	180	.046	5.74	2.052	3.97	>200	27.5	32	10.1	10.	4 30	.5 2.	1 3	4	33.0	.7 253	0 1.	5 6	.72	
5592	60.7	2 7	27 E	12	- 1		24.2	206 1	. 71	10 15	. 4 .	1 22	2	43	,	5	12.2		33	010	21 2		na	190	047	5 59	7 332	4 47	>200	32.6	72		11	2 21	0 2	, ,		34.4 1	£ 76*	1 n 1	о г	53	
5593																																						28.7					
5594																						1.1																25.3					
5595										12 10					.1		1.6																					28.0					
5596										16 12																												47.7					
5350	104.0	7.6	20.0	-			2.0	OLO 1				- 00		••			•	••				0.0											•••	. 50				-1	.,			. • •	
5597	66.3	3.7	26.5	41	<.1	1.1	4.1	469 1	1.10	10 11	.8 <.	1 30	.8	49	.2	.5	6.1	9	.43	.014	21.7	6.4	.12	204	.062	5.48	2.392	3.72	139.0	32.2	37	8.9	9.	9 31	.6 2.	1 7	4	37.4	.6 247	7.7 1.	8 9	.02	
5598				_	-	-		-							5.2	1.9	17.2	2	1.34	.023	29.6	2.1	.05	451	.030	B.37	2.497	8.45	35.2	36.4	52	9.5	19.	2 17	8 1.5	5 4	1	13.3	.1 585	11 2	0 6	26	
5599																																						42.1 1					
5600	17.5	5.5	22.2	29	<.1	1 2	3.9	431	.97	9 14	.5 <.	I 28	. 3	48	.3	.2	1.1	8	.43	.014	21.9	6.3	.12	219	.066	5.78	2.373	3,36	123.5	31.9	37	7.4	9.	2 29	.5 2.4	5	. 3	37.9	1.5 238	1.9 1.	7 6.	.82	
5601	87.3	3.9	47.9	242	Z	7	5.7	532 1	.36	12 13	.5 <.	1 28	.2	45	3.0	8,1	77.6	9	.36	.013	20.7	6.8	.12	188	. 056	5.13	1.817	3.68	>200	29.8	33	21.9	8.	6 28	.2 2.1	2 5	4	49.4]	.2 263	3.1 1.	7 5.	.74	
				٠,																																							
5602	55.6	6.1	30.0	68	.1	1.0	3.3	476 1	.18	63 13	.1 <.	1 26	. 6	36	.1	1.0	10.6	9	.30	.011	20.6	6.2	.10	184	.063	5.30	1.451	3.79	>200	29.2	34	13.6	8.4	4 29	.8 2.!	. 6	4	36.1	.B 241	3 1.	7 7.	. 24	
5603																																						35.0					
5604																																						44.4					
5605		-																																				38 D					
5606																																						22.6					
•												,																															
STANDARD DS	r6 12 7	127.4	35.8	169	.4	30.6	13.4	969 4	. 10	25 7	.7 <.	1 7	.2 3	18	5,8	5.5	4.7	115	2.30	.104	25.4	228.5	1.00	692	434	7.07	1.654	1.47	7.B	53.4	53	6.4	15.	2 8	.6 .7	4	11	25.3 <	.1 58	.0 2.	0		
																							-																				

FILE # A602274

Page 7

ACME ANALYTICAL																																																			ACI	AE ANA	ALYTICAL	
SAMPLE#	Мо	Cu	P	b 7	Zn	Ag	Ni	Ço	M:	n f	-e	As	U	Αu	TI	1 5	r	Çd	Şb	Ε	i	٧	Ca	ρ	Ļ	a	Çr	Mg	Ba	a	Τi	ΑΊ	Na	3	ĸ	w	Žr	Ce	S	n .	Y	Nb	Та	Be	Sc	- L	i	s	Rb) Hf	Sampl	le le	<u> </u>	
	ppm	PDF	pp	m pp	om t	ומקכ	ppm	ррт	pp	Л	1 p	ן וחסג	pπ	ppm	ppi	n pp	m p	pm	ppm	pp	m p	ρŧΠ	Į	ı	ppr	m	ррт	1	ppr	II)	:	1		1	¥	ppm	ppm	ppm	pp	n pe	ann -	ррт р	ppm	ppm	ppm	ppn	m	t	ррп	н ррп	; k	kg		
														_									_																					_				_						
G-1	3.3	3.8	23.	2 5	8 6	<.1	3.6	4.9	79:	3 2.4	15	5 /	i.3	<.}	7.1	3 77	4 <	.1	1.7		2	53	2,84	.089	26.5	5	8.9	.64	1000	0.2	98	9.04	2.874	4 3.	43	1.3	8.4	53	1.3	3 15.	B 2	1.2	1.7	3	6	39.5	9 <	.1 1	122.0	7		-		
5607	23.3	10.4	224.	9 37	77 2	2.0	. 7	2.8	749	5 1.4	18	52 2	. 6	۲.1	35.4) 5	5 6	. 6	2.2	21.	2	<1	. 5D	. 015	22.5	5	5.9	.16	201	1 .0	74	6.25	2 224	4 4.	4]	89.7	38.4	38	20.	9.	2 3	3.0	2.9	5	3	39	4	.6 2	233.3	1.8	6.4	46		
5608	20.8	5.6	103.	2 15	6	.7	. 5	1.9	697	2 .9	12	37 17	.2	<.1	35.3	6	2 3	.0	. 6	3.	4	<1 _.	. 59	.018	26 .	ċ	5.0	.17	244	4 .0	85	6.67	2.26	4.	94 1	143.B	37.7	46	17.	3 10.	4 3	2.5	3.1	6	4	56	7	.3 2	260.6	. 1.8	6.6	54		
RE 5698	22.3	5.6	96.	0 15	4	.6	. 7	1.6	668	3 .8	19	32 10	. 6	<.1	32.5	5	6 2	.6	. 4	3.	0	<1	.55	.016	25.	1	4.6	.16	22€	6.0	73	6.23	2.15	4.	65 1	25.8	30.8	43	15.	5 10.	0 2	9.3	2.7	5	3	50 . f	0	.3 2	256,6	1.7		٠		
RRE 5608	21.7	5.2	118.	3 15	0	.7	.4	1.8	655) .8	.8	36 17	.9	<.1	32.0	5	9 2	.6	.5	3.	6	<]	.56	.016	23.5	ĵ.	3.9	. 16	224	4 .D	74	6.30	2.205	5 4.3	B5 1	126.5	36.7	41	16.	1 10.	0 3	0.1 2	2.6	6	4	53.8	8	.3 2	259.7	1.8				
5609	33.2	4.9	55.	0 22	27	.3	2.9	2.4	96	, ,	J5 }	21 21	i.0	<.1	31.3	1, 7	2 2	.7	.8	3.	1	6	.73	. 024	28.5	5	6.5	. 22	285	9 .0	96	6.47	2.230	4,1	64	86.8	40.3	48	16.4	3 9.	7 2	8.3	2.5	4	4	42.	3	.3 2	266.7	1.8	6.	72		
5610	30.0	6.8	24.	6 5	55	2 1	5.3	9.0	115	1 2.3	12	21 15	. 6	<.1	24.3	26	7	. 1	1.5	1.	1	57	. 73	.079	32.2	2 2	22.8	.77	459	9.2	57	7.02	2.253	3.	74	73.8	73.9	55	7.3	3 11.	9 2	9.2	2.1	9	8	111.7	2	.4 2	269.1	2.5	6.5	58		,
5611	12.7	3.1	32.	1 2	29 <	٤.1	1.4	1.4	483	3 .E	14	12 7	.8	<.1	31.1	. 5	4	. 4	.3	10.	0	<1	.43	.017	23.	1	5.2	.13	21F	В.О	65	5.10	2.22	4.	54	96.1	34.0	39	14 .:	3 9.	0 21	8.2	2.4	5	3	59.1	0	.2 2	248.1	1.4	6.5	52		
5612	24.9	4.1	26.	7 2	21 <	4.1	1.9	1.4	473	2 .9	10	10 7	.4	<.1	33.	5	7 <	.1	.3	4.	5	<1	.49	.017	24.6	3	5.0	. 14	227	2 .0	76	5.64	2.300	4.3	12	92.8	34.6	43	5.3	7 8.	6 3	4.6	3.2	6	3	81.	1	.2 2	235 . \$	1.7	5.7	72		
5613	67.9	6.3	21.	3 2	20 <	1.3	.9	1.2	398	5 .8	11	10 17	.1	<.1	30	5	7 <	.1	.2		В	<1	.47	.015	21.5	9	4.1	. 13	211	1 .0	71	5.31	2.067	7 4.4)6	73 <i>2</i>	31.9	38	3.9	9.	3 3.	3.8 2	2.7	5	3	65.4	4	.2 2	209.0	1.6	6.9	34		i
5614	70.9	7.0	27.	9 2	22 <	¢.1	1.1	1.0	432	2 .F	38	13 /	1.4	<.1	35.3	8 6	,0 <	.1	1.7		7	<1	.43	.018	24.1	3	4.3	. 13	22:	3 .0-	86	5.33	2.504	1 4.4	51	81.0	37.3	42	5.:	3 10.	7 3	7.9	2.9	5	4	69	1	.2 2	238.0	1.8	6 1	84		
5615	101.7	8.6	68.	3 7	74	. 4	1.1	3.8	572	2 1.7	33	16 (.9	<.1	32.6	6	5 1	.0	1.4	2.	2	<1	.39	.015	24	2	5.0	.16	207	2 .0	76	5.15	1.915	4.	77 1	67.8	40.5	41	27.	9.	2 30	0.7	2.4	7	4	73.	2	.6 2	267.2	1.8	7.	16		- :
5616	80 9	3.4	53.	2 3	iż	. 3	.5	2.4	503	a 1.7	19	8 17	1.1	<.1	29.4	, 5	2	.3	1.6	155.	6 .	۲۱	.43	.014	22.1	i	8.7	. 12	189	9 .0:	53	5.65	1.912	2 4,1	13	>200	30.0	39	20.5	8.	3 2	5.5	2.0	23	3	46.	4 1	.0 2	262.1	1.5	6	22		
5617	57.1	4.6	75	8 2	25	.7	.7	1.1	479	و. و	18	47 15	7.3	<.1	33.7	5	5	. 2	2.1	52.	6	5	.49	.016	24.7	7	4.0	.13	200	0.0	71	5.47	2.218	4.4	46 1	95.9	40.7	42	20.0	5 9.	4 2'	9.0 :	2.6	6	4	42	2	.4 2	282.6	1.9	6.7	24		
5618	186.2	4.0	39.	3	12	.1	1.3	3.0	446	5 1.E	1	20 31	. 4	۲.1	31.0	6	0	. 1	.8	42.	9	3	. 44	.014	22.3	3	6.3	. 13	182	2 .0	6D !	5.63	1.580	4.2	25	>200	35.5	39	24.8	8.	3 2	7.6 2	2.3	5	4	75.)	1 1	.1 2	237.7	1.8	5.7	76		
5619	90.6	27	30	3 3	16	1	1 6	3.5	418	a 1 :) B	14 1	2	< 1	32 (1 7	6	3	б	7	3	2	47	015	23 (4	5.8	14	21:	3 00	60 1	5 24	1 629	3 4 3	75 1	55.3	40 2	40	18 4	1 8	9 2	6.2	2.1	А	3	57	2	а -	งกก ร	. 18	6 '	20		
5620	145.5																																																					
5621	154.1																																																					
5622	215.3																																																					
5623	258.1	8.9	31.	1 1	.7	.1	.8	3.1	394	1 1.3)4	12 :	.1	٠.1	31.6	9	2 <	.1	3.6	41.	0 .	-1	. 63	.015	21.5	3	4.4	. 15	262	2 .0	60	5.26	1.064	4.	25 1	95.8	39:7	35	15.2	2 8.	4 2	7.4 ;	2.1	6	4	50.8	9	.6 2	241.0	1.9	6.6	58		
																																															_							
5624	334 9																																																					
5625	32.7																																															_						
5626	18.9																																																			-		
5627	30.B																																																					
5628	48.3	121.8	31	3 16	10	./ 4	1.1	16.6	1593	5.0	J	9 10	.0	1.	4.4	- 61	,	. в	4.8	Zð.	/ 20	J t	.07	.162	11.3	; 4.	13.0	1.68	55	.3.	31 (.97	1.014	2.4	y	-200	27.4	22	17.5	16.	1 5	y.0	.8	11	16	£30.3	; 2.	.3 2	:56.4	1.1	6.5	.4		
5629	57.5																	-																					-									+						
5630	20.3																																												-							16		ĺ
STANDARD DST6	12.5	128.4	35.	2 17	8	.3 3	0.5	13 3	971	. 4.1	0	25 7	-5	4.1	7.0	31	5 5	.7	5.4	4.	5 1	15 2	.30	.103	25.1	. 23	31.2	1.00	683	3 .4	26	.06	1.707	1.4		7.6	52.7	52	6.1	15.	0 8	3.4	.6		11	26.0], <	1	57.3	1.8		<u>-</u>		

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

ACME ANALYTICAL LABORATORIES LTD.

852 R HASTINGS ST VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

Page 1

(ISO 9001 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

Newmac Resources Inc. File # A602092 Pa 2605 Jame St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

MO CO PO Zn Ag Ni CO Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Hg Ba Ti Al Ma K W Zr Ce Sn Y No Ta Be Sc Li S Rb Hf Samole 2 2 3 19 4 50 < 1 3 5 3 8 740 2 36 4 3 9 < 1 7.1 701 < 1 < 1 2 53 2.65 .078 24 6 10 2 .63 972 .260 8.47 2.644 2.61 .3 8.1 47 1.2 12.6 19 2 1 6 3 5 3 6 3 < 1 119 7 6 G-1 24 0 3 5 7 7 9 < 1 7 2 272 60 6 7 3 < 1 34 9 23 < 1 .2 2.6 3 .37 .004 19 4 2.4 .05 68 045 6.32 2.503 3.40 12.1 30 7 34 3.1 10.5 31.5 2.9 3 2 14.4 .2 148 9 1 5 6 60 5271 48 28 20 8 13 <1 .5 .3 .310 64 6 8.9 <1 .37.0 22 .1 .2 .5 .3 .45 .005 23.4 .2.7 .06 .83 .048 6.64 2.719 3.58 19.8 32.1 41 2.9 11.3 32.3 3.0 4 .3 12.8 .2 146.8 1.5 .6 14 E772 594 25454 7 < 1 3 < 2 183 43 613 8 < 1 30 9 15 < 1 4 6 2 37 003 18 9 17 004 51 038 647 2371 3.64 5 0 248 34 1 1 10 0 33 3 0 3 2 9 1 1 122 8 1 4 5 08 5272 275 7 2 8 48 6 44 4 4 < 2 471 80 7 11 8 < 1 33 4 21 .5 2 5 4 3 5 4 004 19 5 2 7 05 50 037 6 45 2 196 3 26 3 4 8 30 5 34 4 7 10 5 29 2 3 0 4 3 20 3 4 15 6 7 14 6 22 5374 5375 4.9 1.6 20.2 9 < 1 .5 < 2 204 53 7 11.9 < 1 38.1 20 .1 .2 .3 2 .51 .004 20.0 2.1 .05 61 .043 6.41 2.728 3.94 8.4 32.7 35 2.9 11.2 34.8 3.5 4 3 14.1 1 165.1 1.5 5.94 4.1 5 2 5 0.8 185 2 7 2 5 8 0 66 9 12.8 < 1 38 0 21 3.1 3 2.7 3 52 9 0 4 21.2 3.4 9 6 5 6 9 43 6 32 2 6 9 2 3 9 6 2 9 5 3 6 3 8 8 9 11 9 3 4 0 3 6 5 3 18 5 3 19 4 4 1 5 5 3 6 5376 5377 5) 36249 53 < 1 8 < 2 311 60 8 13 0 < 1 31 2 15 7 2 .9 2 .41 .003 14.9 3 8 04 37 .033 6 10 2.395 3.52 11 0 27.9 28 3.5 12 0 37 0 3.6 4 3 12.6 3 160.6 1.4 6 % 5378 20 30 18 5 14 < 1 4 < 2 314 59 7 13 2 < 1 35 7 15 1 2 .8 3 .48 003 18 1 3 3 .85 39 .036 6 44 2 679 3 51 20 2 27 7 34 3 8 12 3 34 5 3 1 5 3 14 3 2 161 4 1 4 5 28 5379 36 22183 11 < 1 4 2242 74 7 8 9 < 1 36 2 19 < 1 1 7 3 43 005 21 4 3 1 05 64 044 6 40 2 780 3 40 13 6 28 7 39 2 8 13 6 36 9 3 5 5 3 15 0 2 15 12 13 7 02 . 5380 1.7 1.9 17.8 9 < 1 .4 .2 218 .73 7 9.7 < 1 39.5 16 .1 .1 .5 5 .42 .004 22.2 3.3 .05 50 .046 6.63 2.694 3.63 12.9 33.6 40 3.7 14.1 36.9 3.8 4 3 19.4 .2 165.8 1 6 5.44 4.6 2.0 21.7 11 <1 .3 < 2 248 .64 8 12.6 <1 35.4 17 .1 .2 .9 3 .32 .003 18.7 3.6 .04 57 .043 6.27 2.391 3.86 15.0 26.0 35 2.8 11.0 45.4 4.3 4 3 17.0 .2 166.2 1.3 6.94 1.7 4.6 22.8 19 < 1 5 .5 380 1.28 7 13.7 < 1 66.1 21 < 1 .3 9.9 8 .58 .008 40.8 4.5 .12 65 .097 6.84 2.674 3.68 23.3 58.5 73 4.4 16.5 50.3 4.8 5 4 25.7 .4 166.3 2.5 6.34 5382 5383 5.2 1.6 17.3 15 < 1. 4 .3 287 .89 7 8.8 < 1 46.6 18 < 1 1.3 5 .45 .005 27.9 5.4 .06 57 .065 6.48 2.682 3.48 15.3 38.5 49 2.3 14.2 37.7 3.9 3 3 14.9 .2 124.4 1.7 6 10 5384 90 28166 8 < 1 5 .3 206 75 7 10 7 < 1 39.8 23 1 2 .5 5 .37 .006 27 2 3.5 06 70 .053 6.46 2.754 3.26 14 3 34.4 48 2.4 15.4 35 3.4 2 4 3 31.8 3 150 3 1.4 5 36 5385 68 4 1 19 4 18 < 1 8 3 304 1 05 6 8 1 < 1 44 5 32 1 .3 .7 9 .45 .007 31 5 27 06 133 077 6 86 2 743 3 46 16 8 35 7 54 3.4 14 5 33 3 3 2 3 3 25 7 3 139 1 1 5 6 29 183 53197 17 < 1 6 4 373 1 10 7 9 7 < 1 46 2 26 1 3 8 6 37 010 22 8 3 0 08 96 077 6 87 2 380 3 90 19 8 34 2 39 3 0 9 8 27 3 2 4 4 2 70 7 4 169 2 13 5 64 5396 5397 14 7 6 7 19 1 39 < 1 10 10 597 1.70 9 11.6 < 1 38.3 65 .1 .3 3.1 16 .85 .025 30.5 3.5 16 198 .121 6.53 2.365 2.70 33.8 37.4 53 7.2 19.8 56.5 3.7 5 3 88.9 5 132.3 17 3.54 5388 70 41226 21 cl 5 3 376 89 12188 cl 351 34 2 2 18 5 47 008 232 35 07 150 058 648 2516 3 66 11 7 357 38 3 6 13 9 40 9 4 2 4 3 31 3 2 182 2 1 5 5 80 6290 7.7 3.6 23.7 21 < 1 .7 .5 372 .76 12 18.3 < 1 36.1 45 .1 .3 1.6 6 56 .012 21.6 8.9 .09 152 .062 6.26 2.929 3.70 17.6 34.1 38 2.0 14.8 50.3 4.7 5 3 31.3 .1 185.7 1.5 6.62 5390 8.9 3.9 35.7 24 < 1. 7 .6 476 .99 8 13.1 < 1 36.0 45 .2 .8 12.9 8 .50 .011 21.0 4.5 .09 175 .070 6.67 2 534 3.49 14.1 39.7 38 3.0 12.3 42.8 3.7 4 3 43.3 .2 219 9 2.0 6 16 5391 32.0 7.8 28.3 26 < 1 7 .5 483 .80 8 25.5 < 1 33.8 43 .1 .5 4.9 7 .43 .010 22.5 2.6 .08 177 .064 6.64 2.649 3.54 15.5 42.8 38 2.2 11.1 42.0 3.6 4 3 40.8 .1 227.8 2.1 6.36 5392 95 45 30 0 72 < 1 7 4 484 75 15 23 0 < 1 32.4 41 .1 .4 8.8 6 .46 .009 21.2 2.6 .07 161 .059 6.53 2.633 3.61 14.0 37 0 37 2 3 12.2 45.9 3.9 4 3 32.3 1 243 0 1 8 6 80 5363 5394 61 7.132.4 28 < 1 .9 .4 427 .83 16 20.2 < 1 33.9 44 .3 .6 8.1 7 .52 .010 21.4 3.6 .08 155 .055 6.81 2.830 3.78 23.6 42.0 38 5.1 12.9 49.3 4.5 6 4 39.2 .2 267.8 2.0 6.34 5.195 1.6 5 0 31.8 24 < 1 .8 5 451 .89 10 21.2 < 1 36.9 50 .2 .7 10.7 7 .55 .009 24.4 5.6 .08 169 .066 6.65 2.758 3.55 17.5 42.9 43 3.5 11.7 45.9 4.3 5 3 31.5 .3 227.5 1.8 7 08 RF 5395 1.7 5.3 30.3 24 < 1 .5 5 440 .89 15 19 9 < 1 33.4 50 .2 .6 11.1 7 .55 .010 22.8 4.0 .08 166 .063 6.49 2.741 3.60 16.0 42.3 40 3.5 11.8 42.4 3.7 5 3 31.3 .3 232.6 1.8 1.4 4.4 27.3 21 < 1 7 5 447 92 12 18.9 < 1 32.7 50 1 .5 8.1 7 .56 .009 21.5 4.5 .08 165 .059 6.59 2.729 3.60 15.7 40.7 37 3.3 11.6 41.9 3.8 5 3 30.9 3 224 6 1.9 5.2 6625.9 18 < 1. 5 4 392 .79 12 17.8 < 1 32.6 49 .1 .4 4.7 6 .55 .009 21.3 3.9 .08 158 .059 6.39 2.673 3.53 17.8 45.9 37 2.5 11.7 39.9 3.6 5 3 29.5 .2 223.4 1.8 6.60 7.8 5.9 31 9 24 < 1, 7 5 493 85 10 18.4 < 1 34.7 52 .3 .4 3.1 8 .52 .011 23.7 2.5 .12 179 .063 6.88 1.981 3.68 18.6 45.5 40 3.7 11.0 41.3 3.4 5 3 88.2 .1 225.9 2.0 5.42 5397 13.8 5,7 30.0 66 < 1 .6 .4 450 .91 49 16.0 < 1 36.1 48 .9 .4 2.3 9 .51 .011 23.1 2.9 .09 181 .056 6.57 2.270 3.73 81.5 38.1 39 6.6 9.3 33.2 3.2 4 3 61.1 .3 228.7 1.6 7.02 3.0 3.9 24.7 25 < 1 7 15 534 .77 36 15.3 < 1 35.1 49 .2 .4 2.2 7 .52 .011 24.0 4.3 .08 198 .060 6.42 2.453 3.62 19.9 44.2 40 3.3 8.7 32.0 2 3 4 3 32.0 1 200.9 1.8 6.56 5.199 14.1 7,430.8 39 < 1, 7 5 524 1,03 44 17.9 < 1 31.1 45 .5 5.4 4.0 7 .52 .010 22.0 4.1 .08 165 .053 6.33 2.491 3.26 53.9 33.9 39 4.8 9.9 35.7 3.8 4 3 32.9 .4 207.2 1.5 6.28 5400 40.6 9.3 35.2 44 < 1 .8 .4 461 .90 80 24.7 < 1 34.0 46 .5 .6 4.7 8 .54 .010 25.6 4.0 .07 175 .058 6.67 2.560 3.72 32.6 39.1 43 6.7 13.8 51.3 4.5 12 4 40.7 .3 250.4 1.9 6.66 5401 29.8 48 30.2 29 < 1 .8 .6 538 .88 27 18.0 < 1 36.8 52 .2 .6 5.0 7 .34 .011 22.6 2.4 .12 133 .065 6.75 1.428 3.55 27.2 43.2 40 3.8 12.9 47.1 4.3 6 3 101.1 .2 245.8 2.0 6.04 5402

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTICALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-MS - SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

STANDARD DST6 12.7 127.4 35.2 175 .3 30.5 13.2 963 4.06 23 7.6 < 1.7 0.0 312 5.6 5.3 4.8 109 2.29 .102 24.8 226.0 .99 693 .439 6.98 1.641 1.37 7.7 58.6 52 6.2 14.4 8.5 .7 3 11 25.6

05-23-2006 A10:58

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Zácky Wang

Newmac Resources Inc. FILE # A602092

Page 2

<u> </u>							_	-					-				· · · · · · · · · · · · · · · · · · ·			<u> </u>		·										_					
	SAMPLE#	Mo	Cu	Pb	2n	Ag	Ni	Co	Mr. F	Fe A	s U	Au	Th S	r Cd	Sb	Bi	v c	a P	La	Cr	Mg B	a Ti	Αl	Na	K	w Zr	Ce	Sn	Y Nb	Ta	Вe	Sc	Li	S R	b Hf	Sample	
		ppm	ppm	ppm	ppm	ppm	ррт	DOM	ppm	1 pp	m ppm	ppm p	pm pp	m ppm	ppm	ppm	ppm :	1 1	ррт	ppm	\$ pp	n t	*	*	X p	add add	ppm	орип рр	пррп	ppm	ppm 1	ррип р	vpm.	t pp	m ppm	kg	
					-																								•						-		
	G-1	3	2.4	20.7	49	<.1	3.5	4.0	754 2.4	40	4 4.1	<.1 7	. 3 73	3 <.1	<.1	. 2	51 2.6	8 .080 2	2.3	9.4 .	61 98	4 .262 1	8.49 2	2,691 2.8	37	.4 9.5	44	2.5 15.	21.7	1.8	2	5 40	1,7 <.	.1 127.	4 .6	-	
	5403	10.4	6.6	44.7	34	.2	.7	.5	559 .8	B9 4	5 14.1	<.1 34	.1 4	5 .4	1.2	20.8	4 3	4 .011 2	3.6	3.4 .	11 19	1 .062	6.74 2	2.060 3.6	59 31	.7 41.0	41	7.7 12.0	6 40.4	4.1	4	4 61	3	.2 260.	3 1.9	5.80	
	5404	27.5	7.5	25.0	13	<.1	.6	.5	360 .8	B1 1	0 26.3	<.1 34	.5 5	3 <.1	. 5	4.4	<1 .4	9 .010 2	3.7	4.2 .	D9 I9	8 .061	6.59 2	2.626 3.6	53 18	.B 42.0	40	2.8 12.	42.7	4.0	4	3 31	. 8 .	.2 241.	0 1.8	6.96	
	5405	38.3	5.7	28.1	22	<.1	.6	.5	487 .7	79	9 20.0	<.1 34	.4 5	7 .1	.6	3.0	3 .5	1 .011 2	4.5	2.9 .	11 19	9 .060 (6.79 2	2.339 3.5	6 14	.3 41.6	42	.2 13.4	43.0	4.1	4	4 34	1.9	.2 245.	5 1.8	5.46	
	5406	23.6	4.0	27.7	25	<.1	.7	.5	555 .8	87 1	3 15.4	<.1 35	.8 5	4 .2	.4	2.5	2 .5	2 .011 2	5.3	3.3 .	09 20	3 .067	6.78 2	2.460 3.3	36 20	.4 3B.6	43	3.1 14.	1 46.3	3.5	4	3 37	7.1	.1 211.	0 1 6	6 44	
	5407	5.8	3.7	26.8	24	< 1	6	5	486 B	92 1	0 17 4	< 1.34	1 4	9 2	5	2.6	5 5	0 0122	55	4 1	66 20	2 064 6	6 52 2	2,406 3.5	1 18	8 41 2	43	R A 13 6	1 47 6	3.7	4	3 33	₹ 1	1 218	5 1 8	6.28	
	5408																							2.366 3.9													
	5409																							2.444 3.8								-					
	5410																							2,876 3,8													
	5463																																				
_	5463	10.1	2.9	44.1	21	٧.1	.0	. D	452 .9	90	/ 15.1	.1 31	.4 3	9 .1	. 3	.8	D .5	2 .014 2	4.8	3.3 .	11 22	5 .002 0	0.29 2	2.296 3.6	37 I4Z	.3 44.1	43 1). n 11.4	30.3	4.5	5	3 32	.а.	. Z 251.:	8 1.9	5.74	
															_	_																					
	5464																							2.574 3.6													
Ì	5465																							2.633 3.5													
	5466																							2.434 3.5											-		
	5701																							.477 4.1													
}	5702	61.6	7.0	32.5	18	<.1	.8	1.3	542 1.0)2	8 18.5	.4 36	.1 4	9 .1	1.7	16.5	6 .4	.011 2	5.6	3.8 .	12 19	6 .044 6	6.33 1	1.531 4.3	1 >2	00 43.B	43 17	.4 22.5	26.6	4.7	16	4 90	.3 .	4 313.4	8 2.0	6.34	
	5703	80.9	5.7	30.6	16	<.1	.8	1.2	541 1.0))	9 14.5	.3 36	.3 4	4 .1	1.0	19.3	7 .3	011 2	6.9	3.9 .	11 21	2 .045 6	6.26 1	.759 4.4	5 >21	00 46.0	45 20	.8 12.8	26.5	4.3	9	4 69	.9 .	4 326.	2 2.1	6.20	
	5704	73.5	11.8	37.6	23	<.1	.B 4	4.2	621 2.2	20 1.	2 45.1	.7 33	.5 3	9 <.1	2.5	34.8	8 3	7 .010 2	5.3	6.2 .	12 19	7 .045 5	5.84 1	.326 4.3	1 >2	00 44.0	42 3	.5 16.0	27.9	5.7	6	5 77	,D 1.	4 313.3	3 2.0	5.16	
	5705	30.9	6.5	57.8	215	<.1	.8	1.0	608 .8	37 3	9.6	.2 33	.5 3	8 2.3	1.6	34.5	5 2	2 .009 2	2.8	4.5 .	10 22	2 .047 5	5.55	.887 4.1	3 >2	00 44.1	37 16	.4 10.6	26.8	3.7	. 6	4 74	.2 .	3 302.	1 1.9	6.30	
	5706	88.5	9.5	51.3	9	<,1	.6	1.2	493 .9	97 5	4 14.9	.1 35	.1 4	4 .1	2.3	87.5	7 .35	.010 2	3.4	з.з.	09 20	4 .052 (6.25 1	.783 4.2	3 162	.3 44.3	38	.0 10.2	2B.4	4,0	6	3 66	.9 .	4 287.	3 1.9	6.34	
	5707	33.1	6.0	26.3	12	<.1	.9 8	2.5	428 1.0	17 1	1 20.0	.2 32	.5 5	6 .1	.7	9.9	2 .49	.012 2	4,0	3.0 .	10 18	7 .052 6	5,40 1	.869 3.3	1 168	.6 46.5	41 6	6.6 11.9	33.9	4.1	5	3 57	.8 .	5 219.1	0.5	4.98	
	5708	476.5	43.1.5	66.4	32	. 6	1.2.15	5.3.6	608 7.1	4 I	4 40.9	.3 13	.3 4	1 .4	33.6	>4000	1 1.43	2 .003 1	1.9 1	8.5 .	12 50	.007 2	2.14	.328 1.2	1 >20	00 20.8	21.30	.2 32.0	3	1.0	45	11 49	.0 4.	2 126.5	5 .7	4.82	
ļ	5709																							.035 4.2												_	
	5710																							.136 4.3													
	5711																							.854 4.1													
	RF 5711																							.856 3.9													
ĺ	KE 3/11	a5.7	3.2	17.2	,	1.	.1	1.7	103 1.3	13 1.	21.0	.4 67	. 9 3	01	.4	0.0	1 .2	3 .003 2	0.0	3,0 .	U/ 14:	.000	7.70 1		3 -20	00 31.0	30 0	.4 10.5	20.0	4.5	3	3 20.	.v 1	3 200.4	2 1.3	,	
	RRE 5711	00.6		15.0		. 1		2 0	100 1 4	n 1	2 23 4	2 21		0 - 1			~1 2°	010.7			02 15	2 040 6	. 14.3	.930 4.2	e -20	00.21.7	20 (7 10 4	71.0	4.7		2 23		0.071			
Į					-					-				-																							
	5712																							.270 4.1													
ì	5713									•														.237 4.1													
1																								.744 4.3													
	5715	165.5	9.9	87.8	12	<.1	.7 4	4.5	496 2.8	34 18	8 15.0	.6 29	.9 2	5 < .1	3.9	229.5	34 .3	2 .009 1	9.8	9.2 .	14 141	040 5	.26 1	.157 3.8	5 >20	00 42.4	35 83	.2 8.3	18.2	4.6	97	6 104.	.5 2	1 379.9	1.8	7.22	
Ì	5716	59.8	4.7	23 7	7	<.1	.7 2	2.0	294 .8	36	8 15.0	.4 33	.4 4	3.1	.6	13.9	3 .30	5 .011 1	9.7	4.2	09 195	.042 6	. 20 2	.055 4.7	0 >20	00 48.9	35 16	.4 9.5	26.2	4.7	9	3 47.	.2 .	4 351 4	2.1	6.60	
	5717	135.9	7.2	32.1	11	<.1	.8 5	5.6	530 1.7	76	9 12 0	1 5 31	.2 3	9 <.1	1.6	38.6	6 .51	1 110.	5.B 12	2.3 .	11 179	038 5	5.72 1	.987 3.74	4 >20	00 37.4	30 20	.6 11.7	23.0	8.4	7	4 59.	.0 1.5	3 309.1	1.6	7.06	
1	5718	172.4	5.5	36.5	11	<.1	.6	2.1	339 1.2	1 1	1 15.7	.3 31	.3 3	6 < 1	1.3	43.2	6 35	.011 2	7.3	4.4 .	11 173	.047 6	5.12 2	.120 3.7	2 >20	00 44.3	48 27	0 10.9	27 9	4.6	14	4 59.	.1 .	7 302.9	2.1	6.08	
	5719	150.3	4.2	26.1	12	<.1	.в :	1.5	385 .9	37 2	9 14.3	.9 32	.0 5	8 < 1	. 6	10.1	1 .48	.015 2	2.9	7.2 .	12 248	.053 6	.48 2	.454 3.59	9 >20	00 44.7	40 12	.9 12.5	30.7	7.1	7	4 45	.9	5 269.2	2.1	6.54	•
																								.776 4.1													
}					-									•			_ /4		-	- '																	
'	STANDARD DST6	12 4 3	26 D	36 4	173	12	on 11	a 1 ·	964 4 1	17 2	2 7 6	< 1 7	0 71	1 5 5	5.1	4 7	114 2 20	} 101 2	4 R 211	3.2	00 6R/	440 6	98 1	652 1 3	Д 7	8 58 2	52 6	2 14 B	8.0	я	3	11 25	3 -	1 55 0	1 1 2		
	a menunu paro	16.4 1	20.0				0.0 1.	v . 4	J.14 U	41				ı J.3	J .J	7.7		. 101 2	0 610	٠.٤ .	27 000						JE 0		0.4								

Newmac Resources Inc. FILE # A602092

Page 3

														-																<u></u>		
	SAMPLE#																				₩Z											
		ppm	obu obu	Shu bbw	opm	ppm pp	xn %	bbu bbu	pçm p	юм общ	0pm	ррт рр	u bou	ž.	% ppm	D-Date	# ppr	1 1	2	1 1	ррт рр	ont pipo	m ppm	ppm pp	n pp	т роп	ppm	ppm	\$ pp	nt ppm	kg	
																								•								
(G-1	3	2.3 22.6	56 .1	3.4	4.2 76	1 2.36	4 4.6	<.1 8	.9 743	< .1	<.1 .	2 48 2	2.67	.083 28.3	11.7	.65 1034	.287 9.	64 2.	750 2.83	.3 9.	B 54	4 2.8 1	5.9 21.	32.	5 3	5 4	0.5	< 1 11B.	4 .7		,
ţ	5721	203.3	4.3 70.0	8 < 1	.8	1.6 35	8 .64	9 15.6	2.1 31	.3 41	<.1	3.8 342.	7 <1	.40	.010 19.6	8.1	.10 175	.036 6.	.28 1.	740 4.47	>200 35.	2 3	3 13.6	9.2 30.	B 10.	5 5	4 4	0.5	.3 339.	7 1.6	7.44	
	722	111.8	3.7 26.1	7 < 1	.6	2.8 19	7 .99	5 16.5	.4 29	.3 36	<.1	.7 26.	8 <1	. 35	.009 20.6	14.2	.07 168	.029 5.	.89 1	545 4.16	>200 34.5	9 34	4 11.8	8.4 17.	B 3.	5 4	3 3	7.5	.6 334.	9 1.6	6.60	
	723																				93.8 37.4											
	5724																				37,7 40.											
,	,,,,,,,	13.1	2.0 27.0	111	.0	.3 21	0 .23	1 14.7	1.1 23	.0 57			+ -1	. 33	.012 29.5	10.0	.11 210		. 12 4.	JJ4 J.09	31,7 90.	., -	1 5.4 5	12.0 33.	2 3.	4 3	3 3	4 . Z	.J Z31.	0 1.0	0.34	- 1
																																- 1
	725																				>200 35.											Į.
	5726																				101.7 34.5											- 1
	727	119.4	7 4 22.7	11 <.1	.6	2.2 25	8 1.06	11 14.3	.2 34	.3 48	<. l	.4 .	9 3	. 63	.011 22.0	10.0	.09 212	.054 6.	.40 2.	177 4.29	165.5 38.4	4 36	6 7.5 1	2.8 30.	7 3.	9 5	3 3	5.3	.6 283.	4 1.6	7.18	ĺ
5	728	97.5	2.4 21.1	9 < 1	. 4	.5 15	0 .53	6 10.3	.1 31	.4 40	<.1	.4 2.	5 2	.77	.009 17.7	5.7	.06 197	.034 6	27 1.	864 4.60	143.3 34.3	3 2	9 7.7 1	4.1 19.	7 2.:	5 3	2 3	1 4	.2 324.	4 1.5	6.18	
	729	523.6	3.5 22.3	8 < 1	7	1.4 19	1 .82	8 12.6	< .1 29	.7 37	<.1	.5 3.	1 3	. 35	010 22.7	6.4	.07 175	.039 5	.82 1.	624 3.92	87.1 33.	2 38	8 6.5	8.5 25.	2 2.	9 3	3 3	1.3	.5 272.	3 1.6	4.90	
	730	296.4	1.5 33.3	10 < I	.7	.3 26	2 .95	6 16.9	.1 31	.B 35	<,1	.7 24.	5 5	.39	.012 22.9	11.1	.D9 187	.046 6.	.33 1.	968 3.98	117.4 39.3	3 39	9 7,7 1	0.7 24.	2 3.	5 4	3 3	5.1	.5 271.	0 1.7	7 22	
	5731	231.4	2.1 40.5	14 < 1	.7	2.3 28	2 .90	20 16.6	.2 28	.3 32	.1	2.0 21.	6 6	.43	.008 22.2	7.3	.09 156	.032 6	01 1.	695 3.99	168.0 34.5	5 3	7 12.8 1	1.5 19.	1 2.	7 3	3 4	7.0	5 293	6 1.6	4.22	
	732																				>200 38.											
_																					>200 38.1											i
																																1
•	734	69.5	3.9 26.8	12 <.1	./ .	1.2 33	9 1.07	/ 13./	.3 3/	. 2 44	<.1	.6 10.	9 3	.36	.011 25.0	5.9	.10 193	.052 6.	./9 1.	/55 4.2/	>200 40.3	3 41	N R.H I	0.5 30.4	4 4.	5 5	3 8	3.3	.7 290.	1 1.9	6.02	1
																						_										[
	735																				177.1 38.2						-					ŀ
=	736	196.9	4.2 22.2	15 < 1	9	.7 30	3 .63	6 10.3	<.1 31	.4 46	<.1	.6 2.	} 1	. 46	.010 25.1	4.6	.11 170	.042 6.	.38 1.	990 3.79	78.7 36.	7 4	1 5.2	9.1 24.	3.	1 7	3 3	5.4	4 256.	7 1.7	7.04	
	737	74.4	2.6 37.0	11 .1	1.3	1.1 39	0 1.72	7 10.2	1.2 32	.1 41	. 1	1.5 34.	5 6	.46	.008 21.1	8.1	.10 156	.033 5.	73 1.1	669 3.85	>200 36.	3 34	4 10.8	9.5 19.	5 7	1 5	3 4	2.1	1.6 282.	5 1.6	6.78	1
5	738	116.5	3.9 42.4	40 .1	.7	2.6 42	9 1.58	9 11.6	.1 31	.6 49	.6	1.3 16.	3 8	.47	.012 26.0	8.5	.12 193	.045 6.	22 1.	830 4.16	106.8 40.3	3 42	2 14.7 1	0.6 20.4	3 2.4	8 4	4 6	4.0]	L.4 303.	3 1.7	5.76	ŀ
	739	58.4	4.2 31.5	54 < .1	.6	.9 30	9 .74	7 11.0	< 1 29	.5 37	.6	.5 2.	3 <1	. 39	.009 20.5	8.5	.08 159	.033 6.	13 1.4	811 3.68	112.3 37.4	4 35	5 6.6	9.0 22.3	2 3	1 4	3 4	3.7	.6 270.	0 1.8	7.86	
																																,
	740	525.1	2.9 26.6	8 < 1	.5	.4 25	6 .93	7 15.5	.2 31	4 36	<.1	.7 7.	5 3	.34	.009 18.7	5.2	.07 161	.037 6.	48 1.	738 4.15	>200 38.0	0 31	1 5.8	7.7 25.6	3.5	5 4	3 3	1.2	8 287	7 1.9	6.84	
	741	43.5	3 7 31 0	18 < 1	,	1 32	1 75	10 15 8	< 1.32	4 42	2	11 6	5 3	39	010 22 6	5.0	09 190	045 6	65 1	837 4 33	52.3 39.6	6 40	7.3	9 6 27 6	5 3 (0 3	3 4	1 4	6 274	4 1 8	6 52	
																					88.2 39.6											
																					87.1.39.6											
																									•							1
	RRE 5742	99 6	4.2 26 2	21 < 1	.b .	4 29	8 .80	10 18.1	<.1 31	.8 44	. 3	.5 1.		. 39	.011 21.0	4.5	.09 184	.040 6.	48 1.4	65/ 4.29	93.1 37.0	0 35	7.0	8,8 26	J. 3.0	Ų J	3 3	,.4	.6 285.	1 1.7	-	
											_																					1
· ·	743																				142.0 34.2											
-	744																				>200 36.5											- 1
	745	106.9	2.2 48.7	40 .3	.7	.3 35	9 .51	22 12.2	.3 29	.6 59	.5	1.5 17.	7 6	.37	.010 18.7	4.1	.09 168	.037 6.	42 .	776 4.14	>200 35.8	B 32	2 10.1	7.9 24.	3.3	7 7	3 15	1.3	.3 299.	7 1.8	6.04	ļ
5	746	74.2	3.2 24.7	33 < .1	.6	.3 36	7 .73	12 9.2	.2 28	.6 41	. 5	.4 3.	29	.40	.010 18.8	4.4	.08 191	.030 6.	09 1.5	570 4.44	148.7 30.4	4 32	2 8.7	7.9 18.5	2.5	5 3	3 3	4.5	.6 321.	9 1.4	5.76	
5	747	72.2	3.5 21.5	28 < .1	.5	1.6 41	1 .85	12 12.6	.4 28	.8 46	.4	.3 1.	3 5	.38	.010 20.3	5.2	.09 164	.035 6.	18 1.4	439 3.94	>200 34.9	9 35	7.3	8.3 22.2	3.5	9 4	3 4	2.0	.7 282.	3 1.6	6.16	
																																j
5	748	160.6	2.5 45 1	35 2	.7	.4 38	6 1.77	14 13.6	.4 25	.2 43	.5	1.7 23,	4 3	.46	.009 18.4	3.6	.09 141	.024 5.	65 .8	836 3.83	>200 31.9	9 33	12.6	8.8 16.5	3.2	2 3	4 6	3.8)	8 287.1	9 1.4	6.56	
	749	163.7	4.0.45.0	76 2	.7.16	2 31	2 2.32	16 14 3	.2.26	8 28	1.1	1.4 18	1 1	.32	.008 18.3	3.9	.07 110	.019 5.	D4 .	885 3.86	177.0 28.6	6 31	11.5	6.6 17.8	2.1	1 2	3 3	7.1 7	4 286	1 1.2	5.72	
	750																				>200 36 8											1
	751																				>200 31 8											1
																					>200 31.6											
•	752	440.0	4.4 DU.U	ია .4		.p 5/	0 1.10	a 12.8	.5 21	.1 31	1.0	z.c 44.	د ر	.41	.007 10.3	0.0	.07 134	.022 3.	L1 1.4	-JE 3.01	~200 £3.6		6.5	/ .J 13.3	ا.د		J 3.	, a 1	U 201.	J 1.4	0.10	.
_	TANDADD OFF				20.2.			22 7 4	. 1 .				. 114 ^	1 70	100 04 5	220 1	DO 400	400 4	00.1	ce2 1 2c	0.050	,			, ,		11 7	. 1	. 1	1 10		ļ
	TANDARD DST6	12.9 1	C1.U 34.8	1/4 .3	30.7 1	J.I 96	5 4.0/	23 /.4	<.1 6	.5 311	5.5	⊋.∆ 4.·	114 2	29	. 102 24.5	(37.1	.99 688	.438 6.	35 1.f	00/ 1.36	B.U 59.1	1 51	1 b.Z I	5.4 6.8		5 3	41 2). I <	. 1 56.	3 1.B	-	

FILE # A602092

Page 4

							_										====			_							=										-								 	긕
	SAMPLE#	Mo	Cu	, 1	Pb	Zπ	Ag	Ni	Co	Min	Fe	As	U .	Au Ti	h Sr	Co	d Sb	Bi	¥	Ça	P	La	Cr	Mg	Вa	Ti	Αì	Na	ĸ		Źr	Ce	Sn	Y	Nb	Tà	Вe	Sc	Ļi	\$	Rb	Hf	Sampi	le		ŀ
		ppm	рог	п р	pm p	pm ş	эряг	ppm	ppm	ppm	1	фрт р	рт р	рт рр	п ррп	роп	п ррт	ppr	т ролг	*	2	ppm	ppm	1	ppm	*	t	t	4	ppm	ppm	ppm	ppm	ррт	DDB	ppm s	ppm	ppm	ppm	1	ррп	ppm		ta .		ŀ
														·																				· · ·				_				 -		<u></u> -	 	닉
	6-1	. 3	3.3	3 20	.7	53 -	s. 1	3.1	4.0	739 2	. 48	4 4	.1 <	.1 7.3	2 686	. <.]	<.1	.1	49	2.55	.081	21.7	8.4	.61	990	.259 8	.04 2	2.651 2	2.83	.4	10.3	45	3.5	12.8.2	0.4	1.B	3	5	34.2	< .1	118.9	7		_		1
	5753	191.2																																										72		-
	5754											15 13																																-		ı
	5755																																													ł
		93.8																																												ł
	5756	97.7	8.5	> 5/.	. 5	39	1	.8	1.9	586	.83	B 12	. 1	.9 24.	5 3b	. 6	2.9	111.9	4	.4/	.011	20.8	4.2	.10	146	.029 5	.00 1	1.255	. 65	>200	29.4	35	12.6	1.11	8.2	4./	3	4	52.5	. 5	269.6	1.3	7.0	16		
	5757	48.9	2.3	40.	.8	59	. 1	. 3	1.0	467	.67	29 16	. 0	.5 31.3	2 48	. 8	1.7	25.1	. В	.47	.014	23.7	2.5	.11	197	.041 5	.56]	1.181 3	. 87	>200	38.9	41	B.3	8.6 2	2.6	4.1	4	4	59.8	. 3	29 1.7	1.9	6.0	16		
	5758	117.6	2.3	39.	. 8	23	. 2	. 6	1.0	393	.91	20 12	.2	3 30.	1 47	. 2	1.5	17.2	8	.42	.012	23.6	7.6	.10	200	.040 6	.15	1.711 3	7.93	>200	37.1	41	8.0	8.8 2	3.5	3.5	4	4	50.4	.6	283.9	1.5	6.9	90		
	RE 5758	120.4	2.3	41.	. 7	22	. 2	.6	1.0	394	.93	16 12	.9	.3 30.	i 46	. 2	1.5	17.4	7	.43	.012	24.3	7.3	.10	202	.038 6	.23	1.723 4	.07	>200	35.7	42	0.0	8.6 2	2.5	3.6	3	3	49.9	. 6	276.9	1.6		-		
	RRE 5758	131.7	2.3	35	9	26	.1	.7	1.0	375	.87	17 12	.5	3 30.	i 47	. 2	1.2	11.0	5	.43	.012 2	21.9	6.4	.10	203	.038 6	.23	1.761 4	.06	>200	33.9	38	7.9	8.7 2	1.8	3.5	3	3	50.8	.6	288.9	1.5				ı
	5759	156.8	2.6	34.	9	13	.1	.6	1.2	375	.82	11 14	.8	3 28.5	5 42	<.1	1.3	20.0	1	.28	.010 2	20.9	2.2	.QB	179	.042 5	.90 3	1.128 3	.81	>200	35.7	- 36	8.7	7.1 2	8.2	4.0	4	4 1	04.3	.5	253.4	1.7	6.9	4		- 1
																																														ı
	5760	206.5	1.3	30	. 5	27	.1	. 5	1.0	320	70	20 IB	.2	.2 28	L 52	. 2	1.0	6.9	2	.36	.011	24.5	2.9	.09	208	.040 6	.40 1	1.538 4	.72	128.2	38.1	41	7.3	7.2 2	3.2	2.9	4	3	52.5	.5	344 N	1.5	6.2	24		-
		206.1																																												1
		458.0																																												
		133.3																																												
	5764	581.2	4.6	33.	. 0	27	.2	.4	1.7	463	.78	42 17	.7	.8 27.5	5 51	.2	2.1	13.4	3	.48	.010	18.4	3.4	.10	150	.025 5	.42	.778 3	. 79	>200	32.2	32	9.1	7.4 1	8.6	4.4	4	3	B1.4	. 6	287.5	1.5	9.4	В		
	5765	557.7	5.7	38	9	36	.3	. 6	2.8	400 1	.11	26 11	. 2	6 28.	2 51	. 3	2.4	18.5	5	. 53	.011	9.3	2.9	. 10	151	.027 5	.73 1	1.606 3	.94	>200	35.1	33	7.0	7.5 1	6.5	4.2	3	3	32.3	1.0	292.1	1.6	3.4	16		1
	5766	441.5	5.ì	123	4	48]	2	1.0	2.3	581 1	.11	104 17	.4	4 25.8	3 58	. 8	7.4	312.2	12	.53	.027	17.6	6.0	. 18	327	:049 5	.85 1	1.506 4	.46	>200	36.4	32	22.8	7.4 1	5.6	2.7	3	5	83.2	.8	357.9	1.7	7.9	16		
	5767	308.5	4.6	25.	. 7	18	.2	. 6	1.0	492	.74	15 14	.5 2	2 30.2	2 50	.1	1.3	6.4	В	. 54	.013	6.1	4.3	. 10	194 .	.030 5	.61 1	.744 4	. 22	>200	33.8	26	7.3	9.02	1.0 1	Ð.O	3	4	30.3	.5	293.9	1.5	6.1	2		-
	5768	236.4	3.5	46	.7	48	.4	. 5	4	146	48	24 15	.4	4 25.4	52	. 5	2.7	33.6	7	.37	.014	8.9	3.4	.08	179 .	.029 5	.71	.539 3	.62	>200	32.2	32	10.3	6.5 1	7.2	3.0	4	3 1	16.0	.3	280.9	1.6	6.0	12		
	5769	209.6	3.5	31.	8	24 <	. 1	.4	1.6	316 1	.01	17 28	.0	5 26.6	6 64	. 1	2.1	36.0	4	.32	.011 3	8.6	2.0	. 11	120 .	.036 5	.41	.876 3	.64	>200	41.D	32	9.B	6.5 2	4.3	3.B	4	3	49.2	.8	291.7	1.9	6.5	2		-
																																														-
	5770	164.8	2.0	23.	4	55 <	. 1	.7	2.1	343	.90	18 22	.9	5 28.7	82	. 8	2.6	10.5	3	. 30	.016	9.3	3.6	.16	127 .	.051 5	.85	.550 3	.51	>200	46.4	33	10.2	6.7 2	9.3	4.1	6	4	40.1	.7	287.7	2.1	6.7	o		-
	5771	206.8	2.2	31	5	62 <	.1	1.0	1.3	433 1	.12	293 24	.5	8 28 8	3 90	.5	2.8	43.B	14	. 57	.031 2	4.6	4.5	. 18	188	.065 5	.02	.272 3	.93	>200	45.3	42	12.9	8.3 2	7.4	4.9	5	5	85.2	.9	301.2	1.9	6.5	6		ł
	5772	417.6	1.5	19.	0	12 <	. 1	.4	.7	199	.82	23 12	.6	1 30.5	44	<.1	. 9	16.9	3	. 34	.014 1	3.3	4.2	.08	171 .	.031 5	.74	.996 4	.10	114.9	37.9	23	7.0	6.3 1	5.6	2.2	4	3	59.1	.7	293.1	1.7	6.2	20		ı
		384.7																																												
		190.6																																												-
	3774	170.0	, ,	, , ,		••	. •	- '	0.5	, ,	,	60 15	. •		, 50		4.7			0	.016.2					DEC 5	. 55	.0.1		- 200	٠.,	00		0.01			-	•	J u	1.0	200.1	1.0	٠.,			
	5775	1083.4	2 2	- 22			,		4.4	255	og.	22 14	1	6 a1 :		- 1	4.4	14.2		45	010 1	. 7	4 2	0.7	140	027 6	20 1	ene 4	12	>200	27 2	22	٤.	4 7 10	3 2 .	4 6	2	2	7E E	ъ.	207.0	1 7	6.3			ł
		360.7																																												
																																														(
		442.8																																												1
		405.7																																												1
	5779	541.8	4.3	35.	5	24 <	.1	. 3	1 0	321	.71	49 19	. 2	9 30 .4	64	1	3.4	11.1	3	. 50	.009 1	8.5	1.2	.12	106 .	.037 6.	. 10	.089 3	. 47	>200	40.2	31	9.5	7.6 2	7.8 :	5.7	7	4 9	94.4	.4	252.6	1.9	6.2	4		-
																																														ĺ
	5780	184.9	2.4	25.	4	34 <	. 1	3	3.8	360	.B5	15 13	.1 1	1 29.6	5 59	. 2	1.3	5.3	. 2	.59	.010 1	.5.0	3.3	.09	171 .	032 5	.B7	.520 4	.20	>200	33.9	25	9.0	7.9 19	92 (5.2	5	3 19	57.4	.5 2	288.7	1.5	6.2	0		1
	5781	164.1	3.1	35	5	24 <	.1	.5	3 2	335	.92	14 15	,7	1 30.6	72	.1	1.9	5.4	3	.46	.012 1	8.2	1.4	.12	149 .	041 6.	. 67	.443 3	.97	122.1	41.1	30	8.9	7.0 2	3.4 2	2.9	7	3 15	57.5	5 2	64.1	1.9	6.5	D		ļ
	5782	148.5	14.2	67.	1	29	.3	1.2	9.5	469 1	.79	30 27	.1	6 34.7	138	.1	4.8	54.7	7	. 85	.017 2	1.3	5.0	.14	146 .	054 6.	.05	.111 3	.76	>200	45.8	37]	11.3	0.4 30),7 4	1,4	8	4 19	59.4	1.3	273.2	2 0	7.0	6		
	5783	6.2	15.4	10.	8 1	14 <	.1 2	B,4 1	5.8	1787 3	.76	148 29	9 <	1 6.6	786	1.2	5.B	1.1	119	3.79	.156 2	5.0 5	51.7 1	.64	403 .	515 7.	. 21	.826 3	.13	60.2	130.4	52 3	6.7	4.5 36	5.9 1	.7	15	11	94.9	1.0 2	28.9	3.4	4.9	0		
	5784	781.3	6.2	35.	2	57	.1	3.8	3.4	477 1	.10	47 22	.4	1 34.4	283	. 2	3.7	17.9	22	.81	.034 2	6.4	5.9	.34	180 .	100 6.	.43	.147 3	.77	84.5	56.0	45	9.2	9.9 34	1.6	1.0	9	4	90.0	.7 3	318.6	2.1	5.6	4		
										٠		_		-		_		_	-	Ī	-							_						-								_				
	STANDARD DST6	13 0 1	27 A	34	4 ?	73	4 3	087	3.0	965 4	BO	24 7	6 <	1 7 f	317	5.6	5.2	4.7	114	2.29	.102 7	4.7.23	33.0	.99	693	439 7	.00 1	.679 1	.38	7.7	60.0	52	6.2	4.5 9	}.5	.8	3	11	25.4	<.1	57.0	1.8				
	5					_							-	-																					-	-	•								 	4
																																														- 1

FILE # A602092

Page 5

SAMPLE#	Мо	ξu	Pb	Zn	Ag i	¥i Cc) Mri	Fe	As U	Au Ti	Şr	Cd :	5b 81	٧	Ça	P La	Çr	Mq	8a	Ti Al	1 Na	К	₩ Zr	Ce	Sn	Y Nb	Ta	Вe	Sc Li	i S	Rb	Hf S	amole	 =
	ppm	ppm	ppm	ppm g	ומ ויים	om ppm	проп	*	ויוסקים ויוסקים	pipm pipm	проп	орт р	m ppm	ррп	1	‡ ppm	opm	ž	ррт	X 1		. x	ррт ррт	ppm g	рт рр	at Dibili	ppm	ppm p	nogo mojo	11 %	фрm	DDM .	kg	
 										,																						_		
G-1																							.2 10.5											
*																							170.9 42.3											
									-														>200 39.7											- 1
																							167.4 40.4											ĺ
5788	270.3	3.7	83.5	21 1	1.2 .	.7 .4	333	.49	7 11.3	<.1 29.0	58	.4 3	.7 32.0	1	.63 .	.016 18.2	6.1	.12	155 .0	142 5.37	1.660	3.44	45.0 34.8	32 7	.6 7.	7 19.7	1.7	3	3 37.0	1 .1	260.7	1.6	7.18	
5789	261.8	44 R 1	ine 1	21 1	2 1	0 1 2	2 402	78	16 10 4	2 30 3	72	2 4	n 45 1	2	58	015 23 1	5 Q	14	ารเก	155 6 NO	1 1 995	3 68	154.6 39.9	an e	1 4	6 26 5	3 1	4	a 71 5	. 2	265 B	2.0	2.34	
																							>200 43.6											1
																							>200 41.2											ļ
																							>200 42.7											,
																							>200 39 7											ļ
	.,				-																											•		
5794	60.5	8.8	24.8	4 <	<.1 .	.9 3.1	336	1.26	16 14.3	.4 27.5	62	<.1 2	1 23.2	18	.55 .	021 18.4	5.4	.13	174 .0	058 5 .08	3 1.558	3.58	>200 39.7	31 5	.2 7.	4 24.4	3.2	5	4 84.1	. 6	246.1	1.8	7.20	
5795	129.3	19.4	35.8	6 <	<.1 1.	0 1.5	314	.77	12 13.6	.6 31.3	86	<.1 1	8 25.3	8	.60 .	018 23.5	5.1	.15	265 .0	72 6.29	1.645	3.79	>200 45.6	40 7	.7 9.	8 32.3	4.5	5	5 75.8	.2	265.8	2.0	7.02	
5796	122.3	5.3	40.9	13	Α.	7 1.1	291	.75	8 6.9	.7 28.0	52	.2 2	1 23.5	. 2	.77 .	013 9.1	7.2	.10	237 .0	39 5.71	1.250	4.62	>200 35.7	17 11	.7 8,	5 20.2	4.0	3	4 59.6	3	349.7	1.6	5.72	
5797	254.2	10.9	27.9	2 <	.1 .	5 .6	260	.50	11 7.5	.9 25.3	74	<.1 1	4 15.4	7	.91 .	011 11.5	4.8	.09	201 .0	38 5.31	. 448	3.75	>200 38.4	20 11	.4 9.	3 24.7	4,6	4	4 79.1	.2	264.4	1.8	6.02]
5798	205.9	3.4	31.1	4 <	4.1 .	6 .8	329	.91	21 9.9	.2 31.3	118	<.1 1	7 39.2	9	.78 .	014 20.7	6.5	.12	162 .0	56 5.50	.140	3.57	>200 47.8	35 17	-6 9.	3 33.7	3.2	7	4 127.6	.4	253.0	2.1	6.04	1
5799	69.6	11.7	48.5	<1 <	1.1	0 1.9	250	1.34	31 7.9	.5 32.0	96	c.1 2	3 94.4	5	.44 .	012 23.8	7.4	.11	178 .0	144 5.62	. 462	3.86	>200 43.4	40 19	.3 8.	8 26.7	3.8	5	4 106.3	. 7	260.7	2.0	6.02	
RE 5799				-																			>200 42.8										-	1
RRE 5799																							>200 40.3									-	-	
****						-								_									>200 43.9					-						
5801	51.8	20.0	57.7	29	.3 .	6 2.4	359	1.55	19 20.3	.5 32.2	92	.2 4	9 62.2	5	. 60 .	012 23.6	6.0	. 12	190 .0	160 5.59	1.144	3.44	>200 42.5	39 16	.4 9.	6 33.4	4.3	6	5 36.6	.7	239.9	2.1	7.30	- {
5000	140.4		70.4	2.0			400		23 73 6	2 21 2	01					010 01 5		12	201 0	E2 E 70		2.75	>200 4E 0	20.15	0 0	7 21 1	2.5	,	4 102 2		431.3			
5802 5803																							>200 45.9 47.4 37.1											
5804																							68.7 44.0											
5805																							60.2 43.3											
																							129.0 36.5											
3000				••				2.70	30 10.0					•					•					•										- 1
5807	107.4	38.0 2	29 9	36 1	. 0 .	7 2.1	553	2.15	92 10.3	.4 27.7	49	.9 15	7 246.9	27	.41 .	009 20.4	8.4	.09	172 .0	47 5.63	1.307	3.58	>200 35.0	34 16	.6 7.	26.2	3.7	3	5 32.0	1.2	241.1	15	6.50	- 1
5808	50.9	20.3	30.9	27	.1 .	3 1.0	501	1.31	41 6.3	.1 28.6	57	.3 2	9 24.9	20	.51 .	008 20.7	6.5	.10	198 .0	47 5.92	1.129	3.87	108.8 35.1	35 12	.7 6.1	3 23.9	2.6	3	5 46.0	. 6	253.2	1.7	6.44	- 1
5809	357.5	28.9	25.6	45 <	.1 .	9 2.0	461	1.95	32 7.3	<.1 28.8	55	.6 3	2 9.5	9	.38 .	010 21.6	7.9	.09	189 .0	48 5.55	1.338	3.83	89.2 34.9	35 8	4 7	26.6	2.8	3	4 31.4	.8	236.8	I.8	6.67	ł
5810	1047.4	60.4	74.3	93	.1 2.	4 3.9	472	3.10	42 10.0	.8 29.9	65	1.4 6	7 151.1	17	.43 .	010 21.8	10.3	.11	201 .D	53 5.27	1.038	4.16	>200 38.5	36 11	.5 9.	30.1	5.3	4	4 54.6	1.9	268.7	1.8	6.52	
5811	49.5	39.3	41.7	8 <	:.1	7 2.5	509	2.33	35 10.5	.1 32.1	66	.1 5	3 45.9	5	.36 .	011 21.6	8.5	.11	190 .0	60 6.39	1.710	3.40	106.2 38.8	3B 3	.7 10.	33.5	3.4	4	3 26.9	1.3	219.1	1.8	6.68	
]
5812	108.7	14.3	30.4	63	.1 .	6 .8	429	1.05	85 9.0	<.1 31.8	74	.8 1	9 4.6	5	.37 .	011 22.2	5.B	.10	198 .0	61 6.38	1.B43	3.80	98.5 40.2	39 4	.4 9.	32.0	3.5	4	3 31.2	.4	236.B	1 B	6.36	
5813	47.1	14.5	29.2	51	.1 1.	0 1.0	423	1.30	36 6.9	<.1 27.6	78	1.0 2	3 5.1	6	.40 .	010 19.7	5.1	.11	190 .0	55 6.21	1.388	3.35	57.6 35.6	34 8	.6 7.	29.4	2.7	4	4 37.6	.5	221.9	1.7	7.10	{
5814																							27.5 39.0											Ì
5815									-														101.9 27.0											
5816	53 .0 1	54.4	18.6	910	.5 89.	2 27.7	1764	6.37	41 6.0	.1 2.3	465 1	2.5 5	4 12.4	290	7,03 .	147 9.5	145.2 2	2.10	61 .4	17 7.10	.089	3.14	107.0 22.9	18 17	.1 13.	12.0	.6	13	21 153.0	3.3	274.6	.9	6.76	

 STANDARD DST6	12 9 1	26.D	35.0	171	.3 30.	7 13.3	963	4.07	25 7.4	<.1 6.9	310	5.5 5	3 4.5	114	. 28 .	103 24.5	229.3	.99	562 4	J5 5.97	1.682	1.38	7.7 55.1	51 6	.1 13.9	B.6	.7	3	11 25.8	<.1	56.3	8.1	·	—

FILE # A602092

Page 6

SAMPLE#	Mo	Çu	Pb	Zn	Ag	Ñ۱	C	o M	in f	e :	A ₅	U	Αu	Th	Sr	Cd	Sb	Вi	٧	Ca	P	La	Cr	Mg	Ва	Ti	Αì	Na	ĸ	W	Zr	Се	Sn	Y	Nb	Ta	Вe	Sc	Lí	5	R	Hf	Sample
	роп	ppm	рря	opm	ρρπ	ppn	в ррг	п ор	m .	¥ p	pm p	bus t	pm i	ррπ	ppm	ррт	ррп	ppm	орт	- 4	*	ppm	ppm		ррпт	x	1	*	t	оря	opm	роп	рош	ppm	ppm	ppm	ppm	ppm	ppm	. 1	ppr	ppm	kç
G-1	.2	3.0	19.0	52	<.1	4.1	4.6	3 77	7 2.5	64	4 3	.6 <	.1	7.6	587	<.1	<.1	.2	50 (. 79 .	082 2	25.2	9.1	. 59	951	.254 8	1.68 2	.655 2	.80	.3	9.4	48	1.2	11.5	18.9	1.5	2	5	40.0	<.1	111.6	. 7	
5817	25.4	96.8	93	341	.4	75.2	22.	2 159	5 5.2	20	27 9	.3 4	.1	1.3	157	3.8	3.1	10.7	226 8	.08 .	113	7.8 1	62.4	2.19	151	.375 6	. 26	.481 2	.37	57.5 2	20.9	15	5.5	11.9	8.5	. 4	12	20	149.9	2.1	182	1.0	6.70
5818	71.1	88.3	H1.7	166	. 3	59.5	24.	3 151	8 5.8	32	90 20	.7	.1 .	2.5	733	.8	4.2	12.2	225 9	.12 .	120	8.2 1	06.4	2.65	160	.371 6	. 49	.052 2	.02	92.5 2	9.5	15	6.6	10.4	15.9	.7	20	21	161.6	2.4	178.4	. 8	4.08
5819	2.2	109.5	8 3	91	.2	54.0	34.	126	7 7.5	U	53 4	.7 <	.1	2.0	BS6	.3	2.7	3.9	273 8	.01 .	162 1	0.2	82.9	2.47	930	.495 8	1.11 2	.084 2	.37	58.0 1	7.6	20	.7	12.8	8.4	.4	15	29	42.5	2	152.9	.8	5.54
5820	6.7	93.4	7.3	94	.2	66.0	31.	7 127	6 7.8	23	25 1	.2 <	.1	2.0 1	D5	.3	2.1	.5	260 8	.90 .	146	9.1 1	38.8	2.57	948	.484 7	.71 2	.047 2	.11	18.4 7	4.4	18	.7	12.4	3.1	. 2	4	28	44.2	.1	117.1	.7	6.64
5821	2.1	99.1	7.9	93	. 2	57.5	35.	130	3 7.7	9	96 1	.0 <	:.1	1.9	957	.3	2.3	.6	275 8	. 9 7 .	162	9.5 1	04.1	2.73	792	.487 7	.86-2	.582 1	.57	21.6 2	9.8	19	.8	12.5	2.1	. 2	2	29	55.1	.1	60.2	9	7.58
STANDARD DST6	12.9	128.2	35.7	176	. 3	31.5	13.5	5 96	2 4.0	6	25 7	.5 <	.1	7.0	312	5.5	5.3	4.7	114 3	. 27 .	102 2	4.8 2	37.9	99	691	.436 6	. 91 1	.658 1	.38	7.7.5	3.8	51	6.2	12.7	8.7	. 7	4	11	27.9	<.1	57.5	1.8	

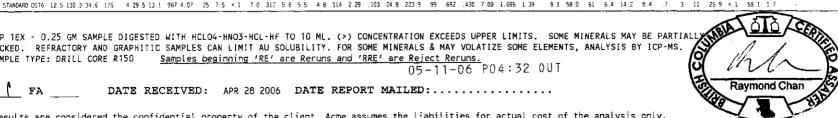
Sample type: DRILL CORE R150

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE


Newmac Resources Inc. File # A601826 Page 1 2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti Al Ma K W Zr Ce Sn Y Nb Ta Be Sc Li S Rb Hf Samole א אומן מוסף אינון .4 13.3 23.2 60 < .1 3.5 4.9 789 2.72 4 4.7 < .1 7.2 776 .1 < .1 < .1 2 59 2.83 .094 22.6 6.1 .68 1079 .293 8.41 2.694 3.00 ... 4 9.8 46 1.5 14.5 21.0 1.6 3 6 42.8 < .1 115.3 .6 57.2 13.0 26.3 46 .2 .6 .9 516 2.09 11 36.8 < 1 34.4 72 .2 1.8 7.3 8 .75 .011 26.3 3.5 .14 210 .067 6.22 .446 3.65 > 200 49.9 44 24.2 10.9 32.9 2.8 6 4 168.9 1.1 248.6 2.1 6.12 6.6 5.6 28.7 38 1 .8 .5 332 1.28 10 17.1 < 1 36.4 55 .2 1.0 44.9 5 .39 .010 25.3 5.6 .10 201 .072 6.07 1.831 3.52 163.4 46.4 43 11.5 10.0 32.9 3.5 3 4 48.7 .7 206.1 2.1 6.30 5257 12.3 6.0 28.0 21 1 .7 .7 331 1.43 13 15.5 < 1 36.7 58 .2 1.2 5.0 1 .32 .012 28.8 4.8 .11 231 .070 6.38 1.315 3.53 119.9 47.8 49 12.9 9.8 30.8 2.9 5 4 107.2 .9 222.2 2.1 6.50 9.9 7.5 24.0 27 .1 .8 .8 256 1.55 16 29.6 <.1 36.1 51 .2 1.2 2.0 1 .26 .014 26.5 9.8 .10 285 .063 6.58 1.831 3.70 >200 44.6 45 23.6 9.9 31.2 2.9 3 4 65.7 .9 259.1 1.8 6.68 7.4 3.6 27.7 17 < 1. 9 .8 307 1.06 18 33.1 < 1. 36.3 69 .1 .9 3.3 11 .26 .016 29.8 4.8 .10 362 .085 6.33 .850 3.35 88.2 47.8 53 9.7 12.4 49.5 4.4 4 4 92.6 .6 202.6 2.0 6.10 5259 24.2 5.6 38 1 25 < 1 1.3 1.1 347 1.31 13 21.3 < 1 31.8 74 .1 1.2 21.0 15 .33 .015 27.3 13.8 .12 367 .076 6.32 1.587 3.52 >200 42.8 46 10.9 11.3 39.7 2.9 4 4 105.6 7 208.5 18 6.52 5260 61 4 5 32 4 19 < 1 9 9 380 1 0.05 10 18 1 < 1 34 1 90 .2 .8 6 .8 11 .39 .017 26 0 9 .2 .13 352 .081 6 .27 1 .321 3 .29 46 .5 45 .3 45 7 .3 13 .1 40 2 3 .7 6 4 119 .6 .4 189 5 2 0 6 .27 5261 5262 29 3 9 30 0 14 1 1 1 8 359 1 03 8 13 9 < 1 33 7 97 1 1 0 6 2 7 41 015 27 3 5 6 16 297 076 6 29 1 189 3 24 130 1 47 6 47 9 0 11 5 30 1 3 2 5 4 88 6 3 191 7 2 0 5 0 6 11 9 7 0 41 3 14 .1 6 6 387 1.00 35 15.8 < 1 36.7 59 .2 1.6 12 2 5 .32 .010 24.9 4.5 .10 191 .067 6.24 2.247 3.93 87.8 47.3 42 8.6 10 1 32 5 3.0 4 4 43 2 4 229 3 2 1 6 36 5263 75 4.4 29 7 16 < 1 6 5 379 99 10 16 8 < 1 37.0 66 1 .7 4.2 3 .34 .011 28.6 6.4 .10 193 .072 6.69 2.367 3.96 46.6 49.6 49 7 0 10.6 35.5 3.0 4 4 57.8 3 241.6 2.0 6.72 5264 9.3 6.6 3.7 9 79 .1 .5 .8 369 1.06 366 21.6 < 1 35.8 58 .4 1.6 23.6 6 .46 .009 25.3 5.1 .10 180 .059 6.72 .950 3.80 >200 47.8 42 8.1 12.2 31.7 2.7 5 4 85.0 5 239.0 2.0 6.42 5265 5266 33 0 9 3 33 6 46 .1 .6 .4 351 1.18 47 23 1 < 1 30 8 63 .4 1.9 13 9 3 .36 .008 21 1 5 .1 .10 146 .053 5 .72 1 .395 3 .47 83 6 41 .7 36 10 7 10 .2 33 0 3 0 5 4 97 1 6 227 6 1 8 6 84 5267 14.3 7.3 51.5 16 1 .5 5 395 .96 13 13.6 < 1 33.2 60 .3 2.4 58.9 7 .34 .008 23.2 5.5 .10 164 .057 5.81 2.069 3.73 181.7 42.7 40 10 7 11.0 30.6 2.8 4 4 75.3 4 242.0 1.7 6.78 5268 27 7 0 39 9 25 < 1 7 5 364 1.03 17 39 9 < 1 38.0 78 3 1.3 7.5 9 .20 .010 27.8 6.5 .10 187 .068 6.68 .491 4.10 >200 51.4 48 10.9 12.2 39.2 3.9 6 4 .223 7 5 .249 7 2.1 6.68 5269 3.1 3.9 31 3 20 < 1 5 5 385 92 11 45 0 < 1 36.1 78 2 7 1.6 7 .44 .009 26.5 3.7 .11 182 .069 6.63 .212 3.77 175 2 55 0 45 8.9 11 9 36.1 3.4 5 4 197 6 3 234 4 2.3 6 40 29.9 9.6 42.3 49 1 5 5 419 1.33 28 30.0 < 1 35.3 78 6 1.4 25.0 7 .48 .010 25.3 8.2 .13 175 .062 6.52 .754 3.58 96.0 51.9 42 12.5 10.7 34.4 3.2 7 4 233.8 .6 230.1 2.1 6.80 5270 527t 85 0 7 8 29 1 18 < 1 5 5 4 15 1 18 33 10 7 < 1 34 2 68 1 1 0 4 0 14 80 009 24 2 5 4 .11 178 .056 6 11 .986 3 73 82 5 47 2 41 15 1 9 6 29 9 2 9 5 5 196 5 5 228 8 2 0 6 42 29 7 5 9 37 1 112 . 1 6 5 580 1.16 15 15.0 < 1 37.6 53 1.7 8 5.8 16 46 .008 26 7 61 .14 177 .066 6.59 1.534 4.21 >200 44 9 45 22.5 11.6 34.0 3.4 5 5 87.4 6 300 5 2.0 6.26 5272 46 6 11.1 44.5 151 . 1 . 5 . 4 366 1.55 33 96.1 < 1 34.9 49 2.0 1.3 13.8 14 .17 .008 25.9 6.2 .12 164 .048 6.20 .645 4.29 >200 46.0 43 29.1 8.2 29.1 2.4 4 4 117.9 .9 293.8 1.8 6.94 5274 18.5 5,742.6 17 1, 1, 4 5491.09 13 12 1 < 1 33.7 99 .3 1.4 50.8 4 1.82 .009 20.6 3.9 .13 139 .058 6.08 128 3.36 163.1 51.7 36 10.5 11.6 34.4 2.7 8 4 382 1 5 212.6 1 8 7.12 4.7 3.0 43.9 25 .1 .4 .5 496 .83 14 11.4 < 1 34.8 105 .2 1.1 36.0 7 .75 .010 22.9 5.9 .12 180 .069 6.18 1.018 3.65 137.4 52.5 39 7.4 11.6 38.0 3.1 7 4 350.4 .2 214.6 2.1 6.46 3,1 2,2 35,6 24 < 1, 7, 5 492 77 77 11,2 < 1, 33,7 73 .2 ,7 12,9 7 .52 .008 24,2 8.4 .10 185 .067 6.18 2.400 3.62 49.5 41.8 40 5.8 10,1 32.0 3.0 5 4 89.5 .2 196.2 1.8 6.82 3.6 2.5 34.0 50 < 1 .5 .6 537 .81 29 10.9 < 1 36.5 78 .5 .8 65.1 8 .51 .009 24.5 5.0 .10 181 .075 6.26 2.040 3.92 103.7 53.2 42 5.7 10.7 37.4 3.2 4 4 93.4 .2 212.5 2.4 6.80 5277 2.1 2.2 34.7 23 < 1 7 .5 524 .79 30 8.9 < 1 37.4 127 .1 .8 12.6 8 .55 .013 27.8 6.6 .15 173 .079 6.36 .635 3.71 43.9 65.5 47 6.4 11.2 41.4 3.8 8 4 255.3 .1 211.8 2.8 6.84 5278 4.4 1.8 35.4 26 <1 .7 .6 520 82 18 12.0 <1 39.9 102 .1 .6 10.6 6 .55 .010 27.6 5.9 .11 181 .079 6.41 2.187 3.58 47.9 58.9 46 6.0 11.1 40.0 3.5 6 4 145.3 .1 210.8 2.5 6.28 5279 73 1 9 30 1 26 < 1 7 5 480 80 23 10 2 < 1 37 5 116 2 7 10 0 7 .46 .912 27.6 80 .12 151 080 6.41 1.851 3.32 102.6 59.4 45 6 9 11.0 42.4 3.6 9 4 2861 1 191.6 2.8 6.70 5280 6.3 1.4 29.2 24 < 1 .7 .5 471 .77 20 9.8 < 1 36.6 111 .2 .6 10.4 5 .46 .011 25.4 3.7 .12 148 .076 6.43 1.770 3.45 108.0 56.4 42 6.5 10.3 39.0 3.6 9 4 283.2 .1 199.6 2.5 RF 5280 7.1 1.8 31.9 26 < 1. 7 .6 481 .84 20 10.4 < 1. 37.8 113 .2 .7 9.6 6 .45 .011 26.9 4.9 .12 151 .075 6.39 1.720 3.40 125.6 57.4 45 6.9 10.4 39.3 3.8 8 4 280.6 .1 203.0 2.6 RRF 5280 5.3 2.1 30.9 23 < 1 .6 .6 491 .82 19 11.1 < 1 38.6 99 .1 .7 38.1 9 .51 .010 27.1 5.2 .11 206 .080 6.60 2 534 3.80 59.5 50.9 46 5.2 10.7 37.6 3.8 7 4 100.3 .1 217.6 2.5 6.38 6.6 1.7 36.1 29 1. 5 5 559 84 39 16.7 <1. 38.5 93 .2 6 13.5 10 55 8.010 25.4 9.2 1.2 191 .080 6.32 2.465 2.48 >200 50.2 43 9.7 11.4 39.9 3.8 5 5 71.5 1.2 200.8 2.4 6.94 26, 7 2 7 30, 2 31 < 1 7 , 5 574 ,82 20 40, 2 < 1 38.4 96 < 1 .8 11.8 8 .53 .010 26.8 7.2 .11 166 .077 6.41 2.270 3.61 >200 55.6 44 9.5 11.2 42.9 4.0 8 5 158.9 .2 210.7 2.6 6.70 54.1 11 5 28.8 49 3 5 .5 553 2.69 17 8.0 < 1 33 3 87 .7 2.2 12.6 12 .68 .007 24.3 6.4 .14 479 .055 5.64 .847 3.45 59.8 45.4 43 29.2 10.9 32.3 2.8 6 6 191.6 2.0 212.4 2.2 7.02 17.4 3.2 43.4 29 1 1 6 .3 508 .90 32 12.8 <. 1 42.8 100 .5 .9 45.6 8 .51 .008 26.8 3.9 .14 175 .070 6.69 1.304 3.91 >200 58.2 48 17.6 12.4 42.7 3.7 8 5 274.2 .3 226.4 2.5 6.74 5285 11 8 4.5 49.6 31 2 .4 .3 511 .88 28 12 9 <.1 44.2 86 .3 1.2 96.7 9 1.39 .007 25.5 4.3 .13 147 .070 6.41 .686 3.77 153.6 57 8 46 15 7 13.3 42.2 4.0 8 5 342.1 .3 211.3 2.6 6.44

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HN03-HCL-HF TO 10 ML. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS. ANALYSIS BY ICP-MS. - SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. 05-11-06 P04:32 OUT

DATE RECEIVED: APR 28 2006 DATE REPORT MAILED:.....

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 2

ACME ANAL	YTICAL																											ACME A	MALYTICAL
	SAMPLE#	Mo Cu Ph	7n An N	ti Co Mr. Fe	ta ii An	Th	Sr (d Sh	Rí	v Ca	Р	La (Cr Ma	Ba	Ţi	A) N	a K	u	Zr	ra	5n	לא ץ	. 7a	Be :	Sc	L1	5	Яb Иf	Cample.	
	340 000			яп ропп ров 3,							-	. ,			1										DDM		ppm ppm		
		Dhu bhu bhu	phu bhu bh	ы ррш рры ч	рри рри рри	Digit is	ри рри рри	DD VI	-		, p	-	Pipil				ppm	ррн	DAIR D	diii bh	an ppm		DIA SI	ptii	DIAII .		HICH HICK	- Kg	
	6-1	4 20220	60 - 1 3	9 4.8 770 2.68	4 4 4 - 1	06 7	en - 1 1	4 0	E 2 01	007 27		5 65	1101	270 6	17 2 76	0 2 45	2.1	0.7	c) 1	E 14	0 10 1	1 5	2		122				
	5287			4 .4 415 .97																									
		14.4 5.2 44.9																											
	5288																											•	
	5289	15.5 4.5 37.6																											
	5290	16.2 8.9 85.3	22 .5	4 .3 4// ./6	277 12.4 4.1	38.1	36 .J 1.7	77.4	2 .50	.004 16	o.b 2	.6 .11	11	.052 6	5.71 1.U/	5 1.75	62.5	33.8	32 5	.3 14.	.5 33.B	4.1	′	4 20	·3.2 .	. 2 91	1.7 1.4	5.34	
	5201	12.1 9 6 47.7	70 2	C 1 7 017 7 40	67.14.2 - 1	02.0 1	F4 2 2 2	100 4 3		016 50		1 20	100	105 (- rn - cs	1 1 100	F000	05.0	147 21	4 24				7 1/					
	5291			.3 .3 379 1 14																									
	5292																												
	5293	28.1 7.8 32.1																											
	5294	14.6 82 1 17.9																											
	5295	.8 131.7 7.3	91 .1 59.	5 33.7 1368 7.36	15 10.4 <.1	2.4 5	79 .2 1.6	.4 33	6 6.23	.172 9	1.0 94.	.7 3.16	1104	.514 8	3.05 2.53	1 1.89	13.1	22.6	19	.8 16.	3 3.4	. 3	4 3	32 2	5.5 .	.1 69	8, E.t	7.30	
																						_	_						
	5296			.0 35.0 1457 7.71											1.29 2.30														
	5297			.0 35.2 1517 7.74											3.24 2.36														
	5298			.1 36.8 1696 8.15											3.01 2.08														
	5299			.1 33.5 1512 7.82											.83 2.06														
	5300	.9 146.2 7 1	93 .1 78.	8 36.6 1433 7.86	5 1.0 <.1	1.9 9	32 .2 1.4	<.1 35	3 7.85	.171 B	i.B 115	.9 3.66	764	.543 8	1.44 2.49	5 1.48	25.2	23.7	18	.7 16.	8 2.1	. 2	1 3	32 1	9.4 <.	.1 37	2.B 1.D	7.44	:
	5301	9 05 4 5 9	02 1 12	4 30.7 1312 7.29	c 9 / 1	15 4	00 2 1 2	- 1 20	5 5 22	127 7	1 26	n 2 g2	1003	611 0	42 2 05	S 1 79	1.7	TD 2	16	g 17	4 2 4	2	,	21 2	12 2 -	1 2/	42 0	7.00	
	5302			0 35.7 1538 7.87																									
	5303	50.1 4 9 23.3																											
	5304	55.5 2 9 18.8																											
	5305	105.2 2.3 19.0																											
	5305	103.2 2.3 19.0	12 5,1 ,:	5 .5 204 .03	3 11.0 4.1	41.2	441 .3	17.0	4 .23	.our au	.0 0.	. 2	137	.000 0	.uo 2.uu.	3 3.35	JE.C	40.4	30 11	.1 11.	2 24.0	4.6	4	٠ .	o.4 .	.J 141	.2 1.7	5.54	
	5305	25.8 2.1 22.0	13 1 .:	7 .4 304 .96	6 12.0 <.1	38.1	36 <.1 .7	45.8	7 .31	.007 29	.3 9.	.1 .08	150	.060 6	.51 2.59	3.55	117.9	34.6	48 17	.6 11.	1 25.4	2.3	3	3 2	2.5	.5 159	9.5 1.5	5.32	
	5307	24.9 2.1 15.8	11 <.1 .6	6 .4 312 .69	4 12.4 < 1	35.3	46 .1 .3	6.9	5 .21	.007 24	.1 5.	.8 .07	129	.055 6	.24 2.49	2.87	22.6	33.0	41 5	.1 8.	9 23.7	2.1	3	3 2	1.9	.2 12:	3.9 1.4	5.50	
	5308	89.7 2.2 16.8	10 1 +	6 .3 257 .78	5 11.7 < 1	37.9	33 <.1 .4	14.1	7 .27	.006 26	.1 6.	.8 .07	131	.059 6	.48 2.74	3.59	40.2	33.3	44 8	.5 10.	0 26.7	2.4	3	3 2	4.5	3 177	3 8 1.4	6.66	
	5309	40.6 2.9 16.3	9 < 1 .6	6 .4 183 .74	6 11.6 < 1	37.6	32 < .1 .3	4.5	6 .24	.006 24	.3 5.	.9 .06	111	.059 6	.64 2.81	3.69	71.7	36.9	41 6	.0 10.	7 29.5	2.6	3	3 2	0.7	.3 167	2.3 1.5	4.92	
	5310	35.0 1.5 15.2		-																			-	-					
	3010	4.0 11.0																						•				0.00	-
	5311	41.3 2.2 15.B	10 < .1 .4	4 .3 259 .66	6 12.4 <.1	37.7	32 <.1 .4	3.2	3 .22	005 24	.7 4.	.6 .06	103	.060 6	.75 3.04	2 3.87	20.9	37.6	42 3	.4 12.	0 33.2	2. B	4	3 1	6.5	.1 167	3.9 1.6	4.86	į
	RE 5311	40.0 2.0 15.9	10 < 1	5 .3 255 .67	5 12.5 <.1	38.0	31 < .1 .4	4.0	2 .22	.005 24	.1 4.	.2 .06	99	.058 6	.68 3.048	3.65	22.8	38.3	42 3	.3 11.	7 31.1	2.7	4	3 1	6.9	.1 15f	5.2 1.5		
	RRE 5311	45.2 2.2 16.6	10 < 1	B .3 270 .68	6 12.5 < .1	38.0	33 .1 .3	2.6	2 .22	.005 24	.1 9.	.1 .06	105	.060 6	.66 2.82	3.26	15.3	39.6	41 3	.2 11.	6 33.1	2.8	4	3 1	7.0	.1 137	2.7 1.6		
	5312	84 1 1.5 15.3																											-
	5313	32.4 1.6 17.3																											
,	5314	320.t 1.7 14 9	9 <.1	5 .3 210 .71	5 13.7 <.1	38.1	33 <.1 .5	2.0	2 .19	.005 24	1,5 7.	.0 .05	123	.054 6	.70 2.55	2 2.25	72.0	36.1	41 3	.4 9,	3 25.6	2.3	3	3 1	9.2	3 88	3.7 1.6	5.44	
	5315	124 3 2 7 28.9	11 .7 .1	6 .5 382 1.25	6 15.4 < .1	41.4	29 .1 .8	38.0	7 .27	.006 26	.0 6	.7 .02	116	.060 6	.67 2.750	3.11	>200	36.2	43 24	.5 10.	8 <i>2</i> 9.2	2.6	10	3 2	3.2 .	.9 159	1.2 1.5	5.42	
	5316	84.7 2.4 22.2	11 .2	5 .4 297 1.00	7 10.9 <.1	39.2	40 .1 .7	48.5	4 .23	.006 25	.9 12.	.9 .08	103	.059 6	.78 2.347	3.03	116.7	37.4	43 9	.7 10.5	9 30.8	2.7	4	3 2	6.0 .	.5 134	1.9 1.6	6.28	
		145.2 1 9 15.6	10 < 1 .	7 .3 354 .84	5 13.7 <.1	38.5	31 < .1 .5	5.6	4 .27	.005 23	.9 4.	.9 .06	119	.056 6	.83 2.89	3.43	35.6	34.6	40 6	.1 10.	2 28.3	2.5	4	3 1	6.2	3 130	1.3 1.6	6.18	
	5318	75.2 2.3 15.3	8 <.1	5 4 204 1.01	5 14.1 <.1	38.5	26 .1 .5	9 6	4 . 25	.005 25	.2 6.	1 .06	94	.049 6	.77 2.61	3.29	146.9	35.4	42 13	.0 10.	5 24.5	2.2	3	3 t	9.2	.7 150	J.1 1.5	5.80	
	STANDARD DST6	12.3 128.1 34.9	176 3 29	8 13.3 958 4.05	26 7.5 <.1	7 1 3	10 5.7 5.5	4.8 11	2 2.28	.102 24	.9 223	.2 .98	681	.419 6	.94 1.672	1.36	7.5	56.8	51 6	.3 15.	1 8.3	. 7	3 7	ì1 2	5.8 <	1 57	7.7 1.7		
																							-	$\overline{}$		$\overline{}$	$\overline{}$	$\overline{}$	

Page 3

ACME ANALYT	ICAL																																										ACME ANAL	YTICAL
	SAMPLE#	Мо	Cu	Pb	Zn	Ag	יוא (Co f	Mn Fe	e As	. U	Αų	Σħ	Sr	Cđ	\$b	θi	٧	Ça	Р	La	Çr	Mg	Ва	Tı	A1	Na	K	W	Zr	Ce	Sn	Y	Nb	Та	Đe '	\$c	Li	5	Rr	tb Hf	Sampl	le	
		ppm	ppm	ppm	ppm p	pom p	iou bt	bu bl	pm \$	(ррп	е ррп	ррт	роп	ppm p	om p	pm 1	open p	pm	*	ı	ppm	ppm	X	ppm	1	*	¥	1	ppm	ррп	ppm	maq	DDW	ppm	ppm	оря о)pm	ppm	¥	ppr	т рот	k	(g	
	G-1	.8	6.4	21 7	53	.2 5	.2 4.	.3 74	43 2.46	5 4	3.3	<.1	6.8	724	. 1	. 1	. 2	52 2	. 59	.088	20.2	52.5	. 61	950	.262	7.99	2.947	2.62	.4	8.5	41	1.3	13 4	17.4	1.4	3	5	39.3	<.1	112.7	2 .6			
	5319	34.7	2.2	30.3	14	3	.6 .	.3 29	94 1.26	<i>i</i> 5	12.1	<.1	37.2	24	. 1	.6 3	9.3	7	. 29	.004	23.7	6.6	.05	89	. 053	6.02	2.277	3.56	60.4	30.9	40	17.4	11.0	26.6	2.5	3	3	20.7	.9	174 €	0 1.4	6.0	18	
	5320	57.3	2 1	14.9	5 4	4.1	. 6	.2 16	61 .60) 4	11.4	< . 1	38.2	i9 -	.1	.5 1	2.3	S	.18	.003	23.1	3.2	.04	64	.050	6.24	2.665	3.92	25.2	29.9	40	2.7	10.3	25.9	2.3	3	3	13.5	. 3	162.6	0 1.3	5.7	12	
	5321	39.2	1.7	19.5	9 <	ć.1	. 5	2 33	11 .61	1 6	9.8	<.1	36.9	27 •	1	.4	5.8	4	.21	.004	22.2	2.9	.05	78	.052	6.32	2.685	3.96	17.8	32.4	38	4.7	10.2	31.0	2.4	3	3	19.0	. 2	184 /	4 1.5	5.3	\$O	
	5322	56 5	2.0	21 9	13 <	<.1	.4 .	.3 32	27 .85	5 7	12.9	<.1	36.9	36 4	.1	. 4 2	1.3	6	.20	.004	21.8	3.5	.06	71	. 055	6.20	2.636	3.53	52.2	36.1	37	4.B	11.1	35.1	2.8	3	3	22.6	.4	176.5	5 1.7	4.8	\$2	
	5323	27.5	1.9	16.4	9 <	5.1 3	ł.0 .	.2 24	49 .5B	3 6	12.0	<.1	35.9	30 •	.1	.4	2.9	5	.19	.004	21.6	4.4	.05	75	.053	6.18	2.520	3.92	35.0	35.1	37	3.8	10.5	28.4	2.6	3	3	21.0	. 2	178.8	8 1.7	5.6	iÐ	
	5324	8.5	1.8	21.4	11 -	4.1	.5 .	. 2 37	29 .71	1 7	16.3	<.1	35.6	26	. 1	.5	3.9	9	.23	.003	21.6	3.4	.06	71	.052	6.28	2.521	3.58	150.8	36.7	37	4.4	11.1	31.9	3.0	4	3	23.5	. 2	185.7	2 1.8	5.0	14	
	5325	18.0	1.9	19.8	8 4	4.1	,5 .	.2 27	79 .68	3 7	12.4	<.1	36.5	23 <	.1	.3	9.1	8	. 26	E00.	20.8	3.8	.04	66	.051	6.33	2.743	3.71	1308	34.7	35	4.6	10.9	32.9	2.6	3	3	15.9	. 3	188.	1 1.6	6.2	<u>2</u> 0	
	5326	30 0	2.4	17.6	9 4	4.1	.5 .	.2 2f	50 .79) 6	i 12.1	<.1	35.4	23 •	. 1	.3 2	2.6	6	.32	.003	19.4	5.8	.04	58	.047	6.18	3.012	3.59	95.3	34.5	34	3.4	11.5	30.4	2.8	4	3	16.7	.4	186.9	9 1.7	3.6	j 4	
	5327	25.0	5.8	80.4	89	.2 I	3 2.	.5 70	01 2.36	j 14	20.4	<.1	29.4	52	.0	.3	2.7	19 1	. 68	.014	21.8	8.4	. 21	212	.051	6.18	1.745	4.29	>200	39.3	37	48.7	19.2	21.1	1.4	5	5 1	125 2	1.9	377.F	6 1.4	6.3	12	
]																																												
	5328 -	38.7	3.5	33.5	35	4.1	.7 .	.7 4)	17 .79) 7	12.6	<.1	31.2	57	. 3	.4	.5	12	.78	015	22.5	4.6	. 13	226	.069	6.25	2.134	4.15	>200	40.0	39	17.5	10.9	30.2	2.3	5	4	49.2	2	265.8	8 1.6	6.4	·8	
	5329	10.5	4.0	25.8	21 <	<.1	.8 .	.7 41	18 .85	8 ذ	10.1	<.1	34.8	63	. 1	. 2	.3	10	.94	.015	23.2	5.6	.12	228	.079	6.00	2.798	3.57	27.4	41.1	40	3.4	10.8	33.2	29	4	3	15.3	.1	215.3	3 1.7	7.5	n ·	
	5330	22.9	5.5	28.7	37	s.1 1	1 1.	.0 37	73 .81	1 10	1 14.8	<.1	31.8	57	.3	.3	.4	11	.47	.014	23.0	3.9	.11	224	.076	6.29	2.667	3.80	57.3	43.0	39	5.7	8.6	31.9	2.6	4	3	19.8	.2	238.0	0-1.8	6.3	iO	
	5331	5.1	4.0	25.9	24 4	£.1 1	1 .	.8 40	02 .83	3 7	12.2	<.1	33.0	60	.1	.3	.4	14	. 48	.015	23.2	5.3	.12	234	.085	6.34	2.676	3.69	25.2	44.8	38	2.5	9.0	34.2	2.9	4	3	13.0	. 1	220.4	4 2.1	6.7	2	
	RE 5331	5.3	4.4	25.6	22 <	4.1 1	1 .	.8 39	95 .82	2 7	12.1	<.1	32.1	59	.1	.3	.3	12	. 46	015	22.4	5.1	.12	223	.080	6.03	2.714	3.60	22.0	43.6	38	2.4	8.4	33.2	2.6	5	3	12.3	. 1	213.3	3 1.9			l
	RRE 5331	6.2	4.6	26.9	25 <	:.1 l	2 .	.9 41	15 .89) B	13.6	<.1	34.0	63	.1	.3	.4	13	. 49	.016	24.1	6:3	.13	239	.087	6.47	2.812	3.63	26.7	48.4	41	2.7	9.7	36.1	3.0	5	3	12.7	.1	222.0	0 2.1			
	5332	3. i	3.0	22.7	23 <	1,1	.9 1.	.0 43	31 .86	; 7	13.4	<.1	33.1	62	.1	. 2	. 2	8	.50	016	24 . 4	3.5	. 13	231	.081	6.21	2.812	3.68	22.3	44.2	41	3.0	9.2	35.7	2.7	5	4	16.3	. 1	217.0	0 1.9	6.5	8-	
	5333	15.4	5.6	25.7	25 <	1 3	.9 1.	.1 42	27 . 94	1 8	12.5	<.1	33.8	70	. 1	. 2	.3	14	.59	017	24.3	6.2	. 13	232	.084	6.38	2.779	3.85	28.4	43.7	4)	3.7	10.8	35.7	2.8	6	4	17.8	.1	216.5	5 1.9	6.1	0	
	5334	75.3	10.7	38.4	41 <	<.1 1	1 1.	.2 38	81 .86	, 9	10.4	<.1	31.6	64	. 2	.3	.3	14	. 55	116	25.7	5.3	.11	228	.078	6.34	2.694	3.78	24.4	40.9	43	3.3	10.2	37.6	2.7	5	3	17.7	. 1	228.7	2 1.8	6.2	,4	
	5335	12.9	2.0	23.8	27 <	r.1 1	0 .	8 45	58 .77	7	7.9	<.1	31.9	69	. 1	. 2	.2	10	. 63	016	25.4	5.7	. 13	237	.085	6.53	3.073	3.60	21.6	37.1	42	2.2	10.1	38.4	2.8	5	4	15.0	<.1	217.€	5 1.8	7.4	.0	
	5336	37.6																																										
	5337	136.2																																										
	5338	13.3																																										
	5339								31 90																																		•	
	5340	15.3	3.8	49.B	35	.1 1	.0 .	.7 40	16 .83	J 8	. 11.3	<.1	36.5	66	.2 2	.0 1	7.3	8	. 64	016	27.3	5.6	.13	242	.084	6.30	3.170	3.86	26.2	45.7	46	2.9	10.5	37.8	3.0	5	4	19.5	<.1	224.7	7 2.6	6.5	0	
																		_						016				0.05	41. 0		4.1					,			_					
	5341	78.3																																										
	5342	55.5			_																																							
	5343	42 9																																										
	5344	49 0																																										
	5345	140.4	6.6	25.4	25 <	1 1	.1 1.	.3 37	6 1.06	, 9	10.3	<.1	31.9	84 4	.1	.3	. 3	15	.68	.016	23.5	6.7	.17	228	.077	5.98	2,424	3.67	52.2	45.6	39	5.2	9.2	32.9	2.5	ь	4 :	23.D	. 3	225.2	2 2.0	6. D	6	
					**								24.5	100	,	_				01.1	~ ^	2.0		200	200		7 256	2.00	26.6	F0 0	45	٠,		40.0	2.0	,		22.0	2	225 /				
		131.1																																										
	5347	95.4																																										
		386.9																																										
		186.6																																										
	5350	232.1	3.9	17.7	54	.4	.6 .	.ь 31	.d .67	12	. 11.1	<.1	35.8	В/	.J 3	. 0	5.B	Ą	.51	UZU	24.1	2.5	TR	∠44	.069	7.76	1.408	5.11	65.9	56.3	42	46.4	8.2	33.0	2.3	,	3	05./	. 2	3/5.6	3 2.4	b.5	4	
									ca 4 aa					312 -					20	102	34.0	224 1	00	cas	ann :	7 .01	1 715	1 40	7.5	60.0	£1		15.4	0.5	7		11	26.5	c 1	F0 :				
	STANDARO DST6	17.5 1	29.4	35.2	174	.3 29	.7 13.	.z 96	J 4.08	, 26	8.1	<.1	7.1	JIJ 5	.7 5	ء ء.	1.B 1	14 2	. 29	. 103	24.B	224.1	.99	693	.420	7.01	1.716	1 40	1.5	56.9	21	6.4	15.4	5.5	.1	ا ب ——	11	20 >	<.!	58 7	1 1 7			

Page 4

 											_			_																												
 SAMPLE#	_	Cu pom i	-	-	-								Th ppm				-	V ppm					-					, K		Zr ppn		_	Y		Ta ppm			_	5	-		Sample kg
 																																····										
G-1	1.5	3.9 2	2.9	52 -	<.1	6.2	4.7	766	2.47	5	3.7	<.1	7.5	714	<.1	<.1	. 2	52	2.70	.087	26.7	151.3	.62	1010	.274	8.42	2.767	2.89	.2	8.2	51	1.5	15.3	20.4	1.5	3	5	40.1	<.1	123.1	.,	
5351	202.6	6.2 3	5.0	26	1	.6	1.5	405	1.19	17	12.9	<.1	31.4	94	.1	1.2	1.2	4	.82	.016	23.3	4.2	.14	272	.064	6.47	1.580	3.96	92.3	39.9	40	9.0	8.0	30.9	2.3	7	3	41.8	.7	281.9	1.8	6.44
5352	37.6	7.2.78	3.3	51	. 7	. 6	. 6	417	. 95	494	10.7	< .1	35.4	114	1.0	3.7	46.1	3	. 28	.012	23.7	7.	. 14	161	. 050	6.39	.106	2.77	165.7	55.9	43	12.5	10.4	35.2	2.7	16	3	609.6	. 4	233.9	2.6	6.22
5353	32.9	71.1.76	5.6	80	1.1	39.1	14.2	1036	3.42	188	15.0	< 1	14.0	397	. 6	7.6	101.2	131	3.65	.060	12.0	76.4	1.36	155	. 230	5.58	.412	1.86	>200	32.0	23	10.4	11.0	20.5	1.4	12	14	477.6	1.5	177.4	1.5	6.14
5354	56.2 1	16.0 26	5.0	128	7 1	104.2	25.9	1954	6.00	25	7.1	<.1	1.9	706	.3	6.0	33.5	249	7.41	. 131	8.5	207.7	2.45	80	392	6.23	.520	2.01	150.4	18.7	16	13.6	13.2	13.7	.2	13	22	289.1	2.5	220.6	.7	7.18
5355	23.6 1	34.0	.4	166	. 4	77.9	24.3	1327	5.61	6	2.9	<.1	2.5	788	. 6	2.8	18.1	321	6.83	163	10.7	118.8	2,16	94	.449	7.33	1.718	2.33	154.5	24.3	20	7.5	16.8	6.0	.3	10	20	171.9	2.9	209.5	1.0	6 46
5356	38.0 1	33.0 13	2.8	271	6	B3.7	23.5	1812	5.43	26	2.6	<.1	2.2	503	1.8	1.7	19.2	264	8.22	153	11.3	114.0	1.82	373	.395	6.89	1.273	2.24	140.0	27.0	22	14.2	16.0	3.1	. 2	13	17	214.4	2.7	286.2	1.0	5,90
5357	7.4 1	03.7 19	8	286	4 1	.21.0	30.0	3170	6.68	14	1.7	<.1	1.6	600	1.0	2.7	16.5	247	9.77	145	9.0	190.3	2.78	104	.416	6.32	1.435	1.79	>200	17.9	17	14.7	13.7	2.3	.2	16	23	144.7	1.9	208.7	.6	5.78
5358	28.0	4.9 16	.2	15	1	2.7	1.2	282	1.05	8	10.3	<.1	36.5	48	. 1	.4	4.3	7	. 43	.011	28.2	10.4	.13	142	.060	6.55	2.523	3.90	13.2	34.7	48	5.6	11.1	29.5	2.7	3	3	28.7	. 3	187 7	1.7	5.48
5359	45.6	2.5 18	3.4	12	1	1.4	. 6	309	.83	7	8.3	<.1	34.8	29	.1	.2	9.5	2	.42	906	22.0	14.3	. 09	95	.048	6.33	2.219	3.47	16.4	29.5	36	8.5	12.3	25.9	2.3	4	3	25.0	.4	178.B	1.4	6.16
 5360	81.4	1.3 13	3.7	6	<.1	. 5	. 3	132	. 92	7	10.0	<.1	34.6	24	< .1	.3	7.1	1	. 38	.006	23.0	10.7	.06	96	.044	6.04	2.161	3.97	94.1	33.9	38	7.7	10.5	24.8	2.3	7	3	23.0	.6	190.0	1.6	4.92
5361	40.0	1.5 16	.3	7 •	< 1	. 5	. 4	136	. 70	5	16.2	<.1	36.5	35	<.1	.2	1.8	< <u>1</u>	. 26	.005	23.2	12.4	.07	108	.044	6.18	2.229	3.90	12.5	31.2	40	5.9	10.9	23.1	2.0	4	3	20.8	.4	187.B	1.5	5.46
5362	41.6	1.0.14	1.1	6 -	<.1	.3	. 2	177	.61	6	11.5	<.1	32.3	26	<.1	.1	.4	<1	. 26	.004	26.3	6.3	.05	89	.034	5.85	1,704	4.04	6.8	26.9	45	4.0	11.7	22.4	2.1	4	3	24.8	.3	177.9	1.3	5.14
\$363	22.3	2 2 13	3.5	7 -	<.1	1.0	. 2	139	. 61	7	11.8	<.1	32.2	24	<.1	.2	1.2	4	.33	.005	24.8	10.2	. 05	71	.036	5.72	1.626	4.04	11.3	26.5	44	3.8	12.1	27.7	2.5	5	3	24.6	.3	180.6	1.4	6.04
5364	29.8	4.0 14	1.6	9 .	< 1	.4	. 2	213	.76	8	12.6	<.1	38.1	23	<.1	. 2	4.0	7	.52	.004	20.6	7.5	. 05	67	.044	6.24	2.587	3.96	21.0	30.3	37	3.7	11.9	29.7	2.8	5	3	19.5	.4	175.5	1.8	4.74
								•		,			20.0	0.5		•				and				45	074			2.00		** *												
5365	518.2																																									
5366	90.1																																									
5367																																										6.76
5368				-								_																									_					5.98
5369	0.51	3.8 31	1.5	66	. 3	.6	. 2	291	.71	8	9.4	<.1	36.2	24	1.0	.3	6.5	4	. 32	.004	19.4	13.7	.05	81	.041	6.17	2.482	3.39	21.0	31.1	34	10.3	10.0	24.7	2.3	3	3	17.5	.4	170.9	1.6	5 46
RE 5369	15.1	3 3 33	9	67	4	2	2	297	71	9	9.5	< .1	36.3	24	9	.3	7.2	5	.33	.004	20.4	8.6	.06	84	.043	6.26	2.511	3.56	21.2	33.8	35	10.9	10.3	26.8	2.5	5	3	16.8	4	173 9	2 4	_
RRE 5369	11.6			-					-			-																						-		-	-					
5370																																										6.43
STANDARD DST6	-																																									
J. POLEG GUARANTE	46.7 3	27.0 3				00.0	40.1	. 00									7,0			.102			-,00	200	. 107	. , 00		-,,,,				•	22.5					-7.1		QQ.,		

Sample type: DRILL CORE RISO. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data___FA

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE

Newmac Resources Inc. File # A601826R 2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

SAI	IPLE#	W %
		8
525 526 526 526 526 526	55	.03 .02 .02 .07 .02
525	8	.02
526	55	.07
526		.02
521	'2	.11
$5\overline{2}$	<u>'</u> 3	.05
528	32	.03
52° 52° 528 528 528 528	35	.11 .05 .03 .02
		· · · · · · · · · · · · · · · · · · ·
. \$7	7 TD CT-1 1	.03
529	21	.03
523 533	.5	.03 .03 .03 .02
	[
532 533 533 535 535 535	8	.08 .03 .08 .03 .02
533	7	. 08
535	3	.03
RE	5357	.02
STA	5357 6 NDARD R-2a	.02 .02 .10

GROUP 7KP - 0.500 GM SAMPLE BY PHOSPHORIC ACID LEACH, ANALYSIS BY ICP-ES.

- SAMPLE TYPE: Core Pulp

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

05-19-2006 P01:13

DATE RECEIVED: MAY 13 2006 DATE REPORT MAILED:....

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Newmac Resources Inc. PROJECT Fox File # A601604 Page 1 2605 Jane St., Vancouver BC V3H 2K6 Submitted by: David Hjerpe **22**

 SAMPLE#	Sample kg
5139 5140 5141 5142 5143	6.41 6.48 6.53 6.75 6.38
5144 5145 5146 5147 5148	6.97 5.71 7.22 6.76 7.23
5149 5150 5151 5152 5153	6.97 7.49 5.73 6.83 6.89
5154 5155 5156 5157 5158	6.48 6.79 7.46 6.68 6.87
5159 5160 5161 5162 5163	6.45 7.76 6.06 6.24 7.30
5164 5165 5166 5167 5168	6.38 6.14 6.67 5.53 5.81
5169 5170 5171 5172 5173	6.54 6.79 6.67 7.16 6.58
5174 5175 5176 5177	6.83 6.57 7.39 7.66

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: DRILL CORE R150 05-11-06 PO 3:33 OUT

Data___ FA ____ DATE RECEIVED: APR 17 2006 DATE REPORT MAILED:....

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 2

SAMPI	E# Sample kg
5178	7.38
5179	6.12
5180	6.68
5181	7.17
5182	6.96
5183	6.87
5184	7.22
5185	5.83
5186	7.22
5187	6.38
5188	7.49
5189	6.53
5190	6.62
5191	6.87
5192	6.73
5193	6.56
5194	6.83
5195	6.42
5196	5.87
5197	7.13
5198	6.85
5199	6.47
5200	3.29
5201	4.45
5202	3.59
5203	6.84
5204	4.53
5205	6.77
5206	5.63
5207	6.89
5208	5.53
5209	6.75
5210	4.52
5211	4.69
5212	5.97
5213	5.08
5214	5.11
5215	7.73
5216	6.87

Sample type: DRILL CORE R150.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data___ FA

Page 3

SAMPLE#	Sample kg
5217	6.93
5218	5.59
5219	6.75
5220	6.81
5221	5.89
5222	6.78
5223	6.97
5224	6.85
5225	7.31
5226	6.85
5227	7.65
5228	6.94
5229	6.75
5230	7.13
5231	7.08
5232	6.99
5233	6.85
5234	7.11
5235	6.80
5236	6.85
5237	6.43
5238	6.62
5239	6.18
5240	6.41
5241	6.75
5242	6.64
5243	7.08
5244	6.78
5245	6.24
5246	6.72
5247	6.17
5248	7.38
5249	6.35
5250	6.41
5251	6.22
5252	7.17
5253	6.79
5254	6.51

Sample type: DRILL CORE R150.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data___FA

Page 1

(ISO 9001 Accredited Co.)

ASSAY CERTIFICATE

Newmac Resources Inc. PROJECT Fox File # A601604R2 2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

SAMPLE#	W %
5150	.03
5154	.03
5160	.02
5167	.02
5175	.04
5177	.06
5180	.03
5182	.03
5204	.07
5206	.03
5207	.03
5208	.02
5209	.03
5210	.05
5211	.07
.STD CT- 5213 5214 5215 5217	1
5218	.04
RE 5218	.04
5219	.03
5220	.05
5221	.03
5222	.02
5223	.04
5224	.04
5225	.05
5226	.03
5227	.08
5228	.05
5229	.03
5230	.10
STANDARI	R-2a .08

GROUP 7KP - 0.500 GM SAMPLE BY PHOSPHORIC ACID LEACH, ANALYSIS BY ICP-ES.

- SAMPLE TYPE: Core Pulp

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: MAY 9 2006 DATE REPORT MAILED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 2

ACME ANALYTICAL		ACME ANALYTICAL
	SAMPLE# W %	
	5231 .05 5232 .08 5233 .04 5234 .02 5235 .03	
	5236 5237 5238 5239 5240 .02 .04 .03 .03	
	5241 .10 5242 .13 RE 5242 .13 5243 .05 5244 .02	
	5245 .STD CT-1 1.04 5250 .04 5251 .02 5252 .06	
	5253 .02 STANDARD R-2a .08	

Sample type: Core Pulp. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT

To Newmac Resources Inc. PROJECT Fox

Acme file # A601473R Received: APR 25 2006 * 2 samples in this disk file.

Analysis: GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HN03-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES.

ELEMENT Mo

SAMPLES %

5133

0.351

STANDARD I

0.047

ACM& ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Newmac Resources Inc. PROJECT Fox File # A601473

2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

Page 1 (a)

	<u>ng UPSuk</u>					00000						Couve	<u> </u>			Jubilite				0.000					Austria:	220 1 444				128	
SAMPLE#	Ва	Вe	Со	Cs	Ga	Hf	Nb	Rb	Sn.	\$r	Ta	Th	U	٧	W	Zr	Y	La	Се	Pr	Nd	Sm	≣u 0	d Tb	Dy	Ho	Er	Tm	Υb	Lu	
	ppm	ppm	ppm	$pp \mathfrak{m}$	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррш	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	bbw b	om bb	m bbw	ppm	ppm	ppm	ppm	ppm	ppm	
4962 4963 4964 4965 4966		5 3 7	<.5 <.5 <.5	3.5 1.9 3.2	17.7 15.9 19.8	3.4 3.6 4.7	37.7 37.3 43.0	224.6 229.1 180.9 232.7 194.3	13 3 14	33.0 34.6 29.2	2.8 3.2 3.5	36.8 37.1 41.5	8.3 10.3 15.5	9 9 8	195.7 26.6	77.2 80.3 93.5	16.1 16.0 20.4	26.1 26.0 25.7	45.6 45.6 47.1	4.19 4.10 4.40	12.7 12.4 12.6	2.3 . 2.2 . 2.4 .	19 1.7 23 1.7 27 2.0	3 .34 8 .37 1 .38	1.88 2.03 2.27	.47 .44 .57	1.49 1.38 1.79	.29 .27 .37	1.72 1.71 2.41	.32 .32 .42	
4967 4968 4969 4970 4971	75.3 127.5	4 4	<.5 1.6 <.5	2.2 2.3 2.1	16.4 17.1 17.0	4.0 4.1 3.7	39.2 37.3 36.9	198.3 210.3 209.7 210.9 200.8	6 6	22.1 73.8 25.3	3.2 3.1 3.0	35.1 34.0 35.5	14.3 11.7 16.9	<5 16 5	28.6 103.5 28.1 147.8 47.1	74.8 80.8 75.2	16.9 16.6 17.7	21.4 22.3 22.6	39.1 40.3 38.9	3.61 3.84 3.65	10.2 11.2 11.3	1.9 . 2.2 . 2.0 .	17 1.4 25 1.6 19 1.5	8 .35 3 .36 2 .34	2.04 2.02 2.02	.45 .46 .48	1.55 1.55 1.63	.29 .27 .33	1.88 1.82 2.18	.33 .35 .35	
4972 4973 4974 4975 4976	83.9 78.2	3 3 4	<.5 <.5 <.5	2.3 3.3 2.8	18.5 18.7 17.8	3.8 3.6 3.6	40.9 38.7 42.4	202.8 214.1 232.6 243.5 208.3	9 12 12	21.5 20.6 20.4	3.3 3.3 3.2	35.1 35.1 31.9	15.9 20.1 20.2	<5 <5 <5	302.9	81.0 74.4 75.3	16.9 17.0 17.6	22.4 22.5 23.1	40.8 40.3 43.4	3.73 3.83 3.92	10.5 11.5 12.0	2.1 2.3 . 2.1 .	20 1.6 15 1.8 19 1.8	5 .31 1 .33 5 .37	2.20 2.35 2.10	.48 .41 .46	1.62 1.52 1.58	.29 .29 .28	2.30 2.13 2.09	.36 .35 .40	
4977 4978 4979 4980 4981	68.2	3	<.5 <.5 <.5	2.4 2.2 2.1	16.5 17.4 17.2	3.4 3.8 4.4	44.3 35.4 33.1	222.5 203.7 186.7 191.5 211.7	9 15 5	18.3 19.9 23.1	3.3 3.4 3.1	32.9 33.1 35.6	19.6 14.5 17.5	<5 <5 <5	94.9 68.6 56.9	68.1 70.0 79.9	17.1 16.4 14.5	19.4 21.3 19.9	34.8 39.7 37.8	3.23 3.71 3.54	10.0 11.0 10.1	1.9 . 2.1 . 1.8 .;	17 1.4 14 1.7 23 1.5	3 .33 6 .34 5 .32	2.06 2.06 1.83	.50 .44 .40	1.55 1.57 1.36	.31 .32 .24	2.32 2.09 1.87	.38 .35 .33	
4982 4983 4984 4985 4986	58.7 54.3 81.7 69.9 86.4	5 6 5	<.5 <.5 <.5	1.6 1.9 2.3	16.9 18.3 17.7	4.3 4.0 3.9	53.3 51.5 53.3	214,6 199.5 204.2 188.0 227.5	3 4 3	20.2 20.8 18.6	4.6 4.2 4.2	36.7 37.5 35.3	22.3 21.6 20.3	<5 <5 <5	256.2 61.4 55.2 144.2 118.5	79.7 81.2 77.0	22.4 20.4 21.4	20.7 20.6 19.3	39.9 40.2 37.4	3.87 3.62 3.60	12.4 10.3 11.3	2.5 . 2.3 . 2.4 .	15 2.2 20 2.0 18 1.8	2 .46 9 .43 6 .48	2.91 2.57 2.85	.66 .54 .57	2.17 1.90 2.07	.37 .34 .40	2.77 2.46 2.96	.43 .45 .46	
4987 4988 4989 4990 4991		7 10 7	<.5 .6 .6	1.9 3.0 2.5	19.0 22.5 17.7	4.1 5.3 4.4	57.4 71.2 59.2	238.9 177.6 241.6 206.0 237.3	12 5	12.7 18.0 33.5	5.0 5.8 5.7	43.2 48.9 33.4	14.2 18.9 15.4	<5 7 5	79.5 96.7	87.7 101.1 85.9	27.1 30.4 23.3	23.3 24.2 20.8	47.8 50.4 41.4	4.75 5.04 4.06	17.4 17.4 14.5	3.9 . 3.9 . 2.7 .	21 2.9 20 3.5 27 2.6	8 .61 7 .68 8 .58	3.78 4.28 3.09	.84 .86 .69	2.71 2.94 2.19	.49 .53 .38	3.24 3.42 2.97	.54 .61 .50	
RE 4991 RRE 4991 4992 4993 STANDARD SO-18		21 13 33	.7 .5 3.5	2.7 2.6 2.8	17.0 16.3 18.0	4.3 3.9 3.4	61.4 55.1 56.5	232.4 233.1 230.4 247.6 28.6	4 4 8	31.2 33.5	5.0 4.7 4.3	37.5 31.6 32.8	22.2 26.0 21.0	5 5 5	75.4 87.1 118.5 94.9 15.9	80.9 68.1 70.8	23.1 18.4 19.0	23.7 20.4 22.5	46.7 39.7 43.7	4.40 3.65 3.94	14.6 11.6 13.5	2.9 .; 2.2 .; 2.4 .;	24 2.4 24 1.7 23 1.9	1 .50 9 .37 2 .41	3.12 2.54 2.32	.68 .57 .55	2.41 1.91 1.95	.42 .32 .39	2.84 2.37 2.66	.49 .46 .44	

GROUP 4B - REE - 0.200 GM BY LiBOZ/LIZB407 FUSION, ICP/MS FINISHED.

- SAMPLE TYPE: DRILL CORE R150

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data / FA ____ DATE RECEIVED: APR 7 2006 DATE REPORT MAILED: 1777. 24.0

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 2 (a)

OMBLE#			· ·			11.4	N/S	B.L.	C			Th				7					l Lad				76						nine i i tore
SAMPLE#		Be	Co ppm	Cs ppm	Ga ppm	Hf ppm			Sn ppm				ppm	V	W ppm	יוב ממס						m2 maa	Eti mag	Gd ppm		,	Но	Er ppm		dY maa	
	Page 1	P-F				 -			···		···			···								·			·						
4994	119.9														413.5																
4995	241.7														137.9																
4996	190.4	-						255.6							73.8																
4997	270.1														80.1																
4998	204.0	9	2.7	3.9	18.4	5.1	55.1	310.4	15	57.4	5.7	32.5	15.5	9	257.6	90.1	18.9	29.1	49.2	4.76	15.3	2.4	.27	1.78	.31	1.91	.45	1.79	.32	2.37	.40
4999	192.5	7	3.7	4.0	18.4	4.3	51.6	298.7	14	65.0	4.1	37.3	14.2	8	315.5	85.9	16.2	31.0	50.9	4.99	14.1	2.1	-26	1.52	-30	1.86	. 38	1.53	.20	2 25	36
5000	212.6														379.5																
5001	118.2							269.2		40.2					151.2																
RE 5001	111.0	6	1.2	3.7	14.9	4.0	47.7	260.4	6	38.6	3.7	38.8	18.9																		
RRE 5001	110.0	7	1.6	3.6	16.5	3.9	47.8	263.5	6	40.0	3.7	41.5	17.7	7	175.7	93.8	16.1	29.6	48.4	4.42	12.8	2.1	. 23	1.43	.28	1.68	.39	1.51	. 25	2.23	.38
5002	227.9		1 7	7 /	17 /	, ,	E1 7	204 7	٠,	E0 7	c 7	72 E	1/ 0	_	2/1.0	97 O	10 0	20 /	/ O O	(()	17 0	2 1	ne	1 75	7/	1 0/	. 1	1 //	75	- ro	
5002	217.7							282.5							137.3																
5004	189.6														149.8																
5005	215.4																														
5006	216.2														291.1																
3000	210.2	•	7.1	٠,,	17.0	٥.0	40.,	312.3	•	24.3	٥.٠	JU.2	().2	_	27141	0,.5	15.0	20.5	77.6	7.71			,	1.46	. 50	1.00	.50	1.54	.50	2.02	.43
5007	251.6														158.2																
5008	235.3	4						384.0							433.3																
5009	163.0	4						250.2							56.8																
5010	192.3							248.5							44.9																
5011	199.7	5	6.2	4.8	17.2	5.0	52.0	261.8	8	90.6	4.0	55.0	16.3	19	68.5	128.6	23.1	39.8	69.2	7.32	23.3	4.0	.48	3.24	.52	3.22	,63	2.21	.39	2.67	.47
5012	210.2	5	2.3	4.8	16.9	3.8	44.6	279.0	7	70.2	3.8	34.2	13.2	10	70.7	85.8	13.7	26.3	43.8	4.17	12.4	2.0	.27	1.50	.29	1.70	.35	1.44	. 23	2.04	.36
5013	235.9	8	2.0	6.6	17.8	4.4	47.7	299.2	10	88.3	3.2	33.1	13.0	10	161.7	93.6	16.2	30.3	50.8	4.95	14.0	2.3	.33	1.48	.31	1.93	.44	1.50	.31	2.09	.38
5014	186.4	6	2.5	5.2	15.2	3.4	37.2	272.2	9	61.3	2.3	34.6	15.5	7	136.9	77.9	13.1	26.8	43.5	4.09	12,7	1.9	.27	1.50	.24	1.44	.36	1.34	.24	1.68	.34
5015	604.1																														
5016	223.3	8	1.4	6.3	18.4	4.1	41.2	279.8	13	71.7	3.2	33.1	16.9	8	60.2	89.1	13.3	26.8	45.4	4.18	12.8	2.0	.29	1.36	. 25	1.62	.38	1.32	. 25	1.86	.36
5017	217.8	6	4.2	5 2	17 6	3 6	40.6	289 0	22	50 1	3.4	33.6	50.7	Q	201.7	R3 1	14 A	25.5	43 3	4 08	11 6	2 N	33	1 55	25	1 75	30	1 49	24	1 97	37
5018	222.8							314.6							392.7																
5019	213.1														88.6																
5020	214.0														110.0																
5021	204.7							285.4							86.0																
					_																										
5022	247.0														118.8																
5023	209.0														72.2																
5024	180.6														75.1																
5025	213.2														171.2																
STANDARD SO-18	1514.7	1	26.0	7.4	18.2	10.2	19.4	28.2	14	396.6	1.4	10.4	15.9	202	16.0	289.4	34.1	12.8	27.9	5.45	14.2	5.2	.95	2.96	.51	5.10	.65	1.86	. 29	1.82	.29

Page 3 (a)

ACITE ANALTSTEAL		-																													ARAC ITTUAL
SAMPLE#	Ba	Вe	Co	Cs	Ga	Нf	Nb	Rb	Sm	Sr	Ta	Th	- 11	٧	u	Zr	Y	La	Се	Pr	Nd	Sm	Eu	Gd	Th	ĐV	Но	Fr	Tm	Yh	Lu
57 till 22 %					ppm	ppm							рpm		ppm	mag				ppm											
	ppii	ppiii	ppa	Ppii	PPIII	PPIII	ppn	PPIII	ppin	PPIII	PPHII	PPIII	- hħiii	PPIII	Phil	Phi	Ppiii	PMII	Ppili	ppiii	ppiii	ppiii	РРШ	PPIII I	Pin	PPIII	ppiii	ppm	PPIII.	bb⊪	ppii
F024	100.7		- F	, ,	40.4	-, -,	/7 7	207 7	40	12.1	7 2	77 2	42.0	25	77 5	70.0	41 =	27.0	// 0	, 45	42.7	4.0	70		27	4 00	٦,	4 17			
5026								297.7							77.5																
5027	174.4														340.2																
5028	222.9	5	2.1	4.6	18.2	4.2	43.0	306.7	28	53.1	3.5	32.1	16.0	21	183.7	83.4	14.8	26.2	43.8	4.12	12.3	1.8	.24	1.54	.29	1.65	.41	1.44	. 29	2.09	.34
5029	225.5	5	1.4	3.9	17.7	4.2	45.3	288.5	12	62.0	4.0	34.7	15.0	23	77.8	88.6	15.0	29.9	47.7	4.55	13.3	2.0	. 28	1.70	29	1.75	38	1.40	.32	1.86	.40
5030	210.2														74.4																
2020	10.2	7	1	5.0	1, . ,	3.7	71.5	277.0		47.0	٠.٦	33.2	13.0	Ε.	17.7	04.2	17.1	L7.0	73.3	7.17	11.5			1.03	. C-4	1.04	.30	1.44	. 24	2.12	,,,
5074		_	_							F	- /									, ,,	44.0										
5031	203.9														64.9																
5032	212.7														41.2																
5033	241.2	5	1.7	4.2	16.9	3.7	46.8	322.4	16	62.3	3.3	33.3	15.9	16	198.9	83.2	14.7	26.0	44.6	4.16	11.6	1.8	.26	1.64	.28	1.77	.42	1.42	-24	1.96	.32
5034	181.3														919.8																
5035	175.9														51.6																
2033	173.7	4	٥. د	3.7	17.0	5.5	40.5	272.0	33	44.7	٠.,	30.3	(3.3	12	٠٥	42.1	10.1	20.5	47.0	4.05	14.0	2.0	. 24	1.70	40 /	2.21	.40	1.51	-21	2.00	.33
		_			~					-4 -					447.0																
5036	206.5														113.0																
5037	215.8	5	2.2	3.1	17.2	3.8	40.0	293.9	15	50.2	3.2	34.0	12.8	14	105.9	88.9	15.0	25.3	43.4	4.20	13.3	1.8	.29 '	1.62 .	. 28	1.78	.39	1.48	.26	2.19	.35
5038	202.5	4	1.3	3.8	17.1	4.1	43.5	288.6	14	60.8	3.5	35.0	16.7	11	134.7	84.7	14.5	25.5	43.1	3.99	11.2	1.8	.24	1.40	.28	1.71	.33	1.39	.28	1.84	.33
5039	214.0														70.6																
RE 5039	202.3																														
KE DUDY	202.3)	1.0	3.2	17.1	3.0	44.0	291.1	13	30.4	3.4	32.1	14.0	1 1	69.1	70.0	14.2	23.0	42.0	3.71	12.4	1.7		1.71 .	20	1.00	. 54	1.39	. 23	2.00	. 34
RRE 5039	206.8	4	1.3	3.4	18.0	3.4	47.2	298.8	14	52.0	3.4	33.3	14.9	11	65.3																
5040	244.1	3	1.3	3.6	17.3	4.1	46.8	308.0	15	54.9	3.8	34.4	16.1	11	61.1	85.2	14.4	28.1	45.5	4.39	14.3	1.8	.27	1.49 .	26	1.60	.38	1.49	.26	2.04	.39
5041	202.8	5	1.8	4.9	18.9	3.5	42.7	338.4	21	53.1	3.3	31.7	13.0	10	94.6	77.7	13.6	24.6	41.6	3.98	11.0	1.7	.24 1	1.11	24	1.38	. 33	1.32	.23	2.02	32
5042	200.1														348.5																
5043	51.4	3	1.0	2.2	17.5	4.2	43.0	229.4	- /	21.2	4.1	33.0	10.2	0	365.5	75.4	21.0	21.3	30,4	3.00	11.9	1.9	. 17	1.00	20 1	2.43	. 74	1.98	.40	2.68	.42
	1																														
5044	59.8	5	1.5	2.5	17.3	3.9	42.2	220.2	7	19.4	4.2	34.8	18.6	5	248.8	71.9	19.6	21.6	37.9	3.70	10.6	1.6	.18 1	1.73 .	, 35	2.09	.49	1.93	. 33	2.39	.41
5045	59.0	4	.9	2.7	19.4	4.4	44.7	276.6	8	24.8	4.1	42.7	16.4	5	156.0	81.0	20.3	23.7	40.3	4.05	11.8	2.1	.18 1	1.84 .	37	2.54	.55	2.03	.36	2.64	_44
5046	44.1	5	7	1 6	16.5	4 1	52 n	187.5							55.6																
5047	35.3							177.7							137.7																
5048	42.7	/	<.5	2.4	19.7	3.9	51.6	184.0	6	15.8	5.2	54.2	20.2	<5	221.2	67.6	23.8	18.0	34.9	5./1	13.0	2.4	.19 4	2.36 .	.45	2.75	.63	2.37	-42	2.72	.44
5049	118.7	6	1.2	3.3	18.4	4.3	45.9	202.4	20	38.4	4.3	57.4	16.5	10	141.6	104.5	27.2	30.1	55.7	5.98	19.4	3.9	.39 3	5.47 .	65	3.63	.81	2.71	.44	2.60	.48
5050															89.2																
5051	176.1														80.8																
5052	236.1														94.3																
5053	220.0	5	3.2	3.7	16.3	3.3	43.4	280.8	36	62.5	3 .3	36.3	17.6	9	203.9	80.8	16.8	27.8	45.9	4.61	12.1	2.1	.26 1	1.80 .	33 2	2.03	.42	1.65	.31	2.06	.38
	1																														
5054	176.3	5	29	4.0	16.1	3.6	39.5	274.3	16	53.3	3.5	31.4	14.2	10	215.5	80.9	15.0	25.4	42.7	4 19	11.9	2.2	. 25 1	1.47	31	1.56	-40	1.40	.26	1.83	.34
5055	165.7														1673.2																
5056	169.5														75.0																
5057	170.1														310.3																
STANDARD SO-18	502.7														16.6																
	12000																					•									

Page 4 (a)

AUME ARALTTICAL																														ACT IL	ANALTITUAL	
SAMPLE#	Ra	Ве	۲۵	Cs	Ga	Hf	Nb	Ph	Sn	Sr	Ta	Th	U	V	W	Zr	у	La	Ce	Pr	Nd	Sm	FIZ	6d	Tb	Dv	Но	Εn	Tm	Υb	111	
SAFII CE#					ppm						mdd		_		mag		mag			mag						ppm				ppm		
	PPIII	PPIII	PPill	PPIII	PMII	PPIII	ppiii	Phi	ppill	PMI	PPIII	PM	PP	PPIII	μMi	ppii	PPIII	PPIII	PPAII	ppin	PPIII	PPIII	PPIII	PPIII	PP"	_ hbiii	Ppin	Ppili	PPIII	PPI	ppiii	
5058	162.7	7	1.0	7.0	17 1	7 9	// 7	270.9	7	E7 0	7 7	20 0	15 4	11	318.7	70 5	14 N	27 E	E2 /	/ 73	1/ 0	2 /	70	1 00	74	2.07	/ E	1 57	20	2 70	77	
5059	190.7														111.3																	
								292.6 285.6																								
5060	222.1	_													677.1																	
5061	227.5							299.3																								
5062	190.9	6	2.0	5.5	16.6	5.5	43.9	264.3	6	49.9	3.7	38.1	18.9	15	514.7	77.8	14.9	25.6	48.0	4.25	12.6	2.0	. 29	1.82	.55	1.77	.39	1.46	.24	2.10	.36	
	: :																															
5063	198.5							249.1							120.5																	
5064	189.0							235.2					-		64.4																	
5065	139.9							236.1	_				15.3		117.9																	
5066	154.8	7	1.2	3.8	17.0	3.5	48.5	244.2	7	54.0	4.0	32.9	15.8	8	172.8	70.9	14.1	24.2	45.4	4.02	11.9	2.0	.24	1.57	. 29	1.60	.36	1.23	.23	1.99	.33	
5067	163.4	7	2.0	3.2	17.3	4.5	54.6	226.9	6	49.5	5.6	34.7	18.2	11	317.1	75.4	17.1	24.0	46.9	4.28	11.9	2.0	.20	1,66	.30	1.59	.42	1.53	.29	2.47	.43	
5068	195.5	9	1.6	2.6	16.7	4.2	50.2	242.2	7	52.6	5.0	31.7	21.3	10	272.6	78.0	15.6	25.6	48.1	4.38	13.1	1.9	.26	1.66	.29	1.67	.42	1.46	.27	2.15	.41	
5069	144.3	5	3.6	4.5	17.4	4.0	46.4	325.0	56	51.7	3.2	53.0	19.3	25	221.7	114.3	18.7	31.1	60.4	5.63	18.3	3.3	.40	2.57	.44	2.35	.47	1.77	.30	2.05	.33	
5070	124.0							273.3							82.7																	
5071	119.9							258.1							176.6																	
5072	155.2							294.0																								
3012	1,33,6	•	, , , ,				٠,٠,٠	_,,,,		-,				• •							, , .		•									
5073	170.8	6	1.0	3 2	16.5	3.6	45 5	251.7	4	43.0	3.3	32.9	27.0	14	46.7	77 6	11.7	21 7	4n n	3 42	9.6	15	27	1 26	24	1 44	20	1 21	24	1 81	31	
5074	184.7							358.6																								
5075	1							279.1																								
5076								272.5																								
5077	199.1	12	2.4	٥.٤	17.4	3.0	43.5	287.5	10	13.0	3.0	34.0	13.9	12	223.1	10.2	14.1	24.2	47.0	4.00	10.5	1.9	. 29	1.03	.20	1.65	.34	1.28	. 24	1.95	.33	
		_				~ ~				7. (• •	70.	~~ -		~~~ ~	77.0	4					• •	~.								~.	
5078	194.5	_						273.7							203.7																	
5079								297.5																								
5080								295.8																								
5081								303.3																								
5082	179.5	5	1.3	3.8	15.8	3.3	42.5	309.6	22	52.0	3.0	31.5	9.8	10	317.1	75.3	14.0	23.9	44.9	3.86	10.1	1.8	.21	1.39	.28	1.47	.35	1.31	.25	2.15	.36	
	-																															
5083	218.2							282.9							215.1																	
5084	206.8	6	1.8	3.5	16.6	3.7	45.0	291.4	13	64.7	3.6	33.0	9.9	9	79.2	78.5	13.3	25.2	47.0	4.06	11.8	1.9	.28	1.49	.31	1.70	.34	1.23	.24	1.84	.31	
RE 5084	206.7	6	1.8	3.6	17.0	3.7	44.8	288.1	13	62.3	3.1	32.0	10.0	8	81.1	85.6	13.7	25.0	46.1	4.12	11.3	2.0	. 25	1.46	.25	1.53	.33	1.29	.24	1.87	.34	
RRE 5084	202.5	7	1.9	3.6	16.8	3.5	44.8	295.5	13	62.8	3.3	32.3	10.2	12	78.7	82.5	13.5	25.0	45.5	3.99	10.8	1.8	.23	1.46	.26	1.42	.36	1.30	. 25	1.93	.34	
5085	198.2	7	1.9	3.1	15.8	3.2	43.0	290.0	10	57.7	3,2	33.9	11.3	8	99.4	78.2	13.6	25.2	45.1	3.97	11.1	1.8	.22	1.50	.25	1.68	.39	1.27	. 25	1.94	.32	
*	• • • •		-		_	_	_	•			-					_		•												·		
5086	197.7	7	3.3	4.3	18.9	3.7	46.7	332.4	19	68.7	3.3	33.B	13.3	10	161.5	78.8	15.7	25.8	48.1	4.20	12.2	1.9	. 25	1.51	.30	1.78	-40	1.47	.28	2.33	-41	
5087	195.2							297.3							421.0																	
5088	211.3							349.6																						2.08		
5089	195.9							368.4																								
								26.8														-										
STANDARD SO-18	1210.2	ı	0.زے	7.0	11.2	10.1	17.7	20.0	12	J74,D	1.0	10.6	10.1	200	۵, ۱	٠٥٢.٥	J1.7	12.0	20.3	٠.٤٥	13.3	٠.٠	.07	2.70		2.70	.01	1.02	.20	1.14		

Page 5 (a)

ALME ANALYTICAL .																				 -										ALIIL	ANALYTICAL
SAMPLE#	Вa	8e	Co	Cs	Ga	€ Hf	Nb	Rb	Sn			· Th	ប	٧	W	Zr	-		Ce			Sm			Τb	•	Нo		Tm	Yb	
	ppm	ppm	ppm	ppm	ррп	ı ppm	ppm	ppm	ppm	ppm	ppm	ppm	þþm	ppm	bbw	ppm	þþm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
5090 5091	172.4 163.3							299.5 278.2							224.4 417.5																
5092	205.3	5	1.7	4.8	16.5	3.4	43.0	273.4	7	82.2	3.5	35.8	11.8	20	226.4	73.9	15.7	25.2	44.2	4.20	12.7	2.2	.22	1.46	.35	1.82	.41	1.55	.30	2.23	.37
5093	299.1							272.2							86.0																
5094	197.7	-				_		289.3							83.3																
5095	297.3							306.4							186.0																
5096															938.1																
5097	1659.8														496.8																
5098															92.4																
5099	533.4	13	16.3	11.1	14.8	2.4	30.3	104.9	8	757.7	1.3	10.6	145.3	165	94.2	68.9	18.4	14.9	27.2	3.15	11.7	2.5	.60	2.43	.51	2.32	.49	1.70	.27	1.78	. 29
5100	681.9							123.7							54.9																
5101	1092.7			_				162.3							75.9																
5102	223.7							193.6							93.9																
5103	1155.3														54.6																
5104	165.3	2	1.0	3.4	16.9	3.6	30.6	209.2	-	44.8	2.8	38.3	15.7	11	144.1	91.1	17.6	29.3	50.7	4.79	14,9	2.5	.27	1.82	.38	2.13	.46	1.65	.29	1,97	.33
5105 5106	1064.2 154.3	_						197.2 204.5	_				14.5 14.3		35.1 146.9																
RE 5106	109.8							206.7							149.5																
RRE 5106	106.7							206.3							146.1																
5107	315.6							216.3							62.7																
5108	116.9	3	<.5	4.4	17.1	4.1	35.3	215.4							48.8																
5109	21.5	4	<.5	8.5	16.0	3.9	33.1	156.8	4	13.2	2.9	39.7	12.2	<5	15.9	83.5	16.8	24.7	43.7	4.17	12.3	2.0	.22	1.82	.35	1.99	.45	1.54	.30	2.09	.34
5110	57.7														263.2																
5111	95.7	3	<.5	2.1	15.7	3.7	34.5	205.0							43.1																
5112	107.3	3	<.5	1.9	15.7	3.8	35.3	192.3	3	26.2	3.1	40.1	14.7	<5	56.3	84.6	18.0	25.0	43.3	4.33	12.3	2.1	.23	1.65	.38	2.12	.48	1.75	.33	2.04	.36
5113	79.8	4	<.5	1.7	16.0	3.8	36.4	179.7							58.1																
5114	80.9	3	<.5	2.4	15.8	3.9	34.7	193.7							36.9																
5115	91.6	3	<.5	2.1	16.0	3.7	38.2	195.1							78.1																
5116	69.8							206.8							90.8																
5117	71.5	3	<.5	2.1	16.4	3.5	38.2	212.2	3	21.8	3.1	38.4	14.4	<5	113.1	75.5	17.6	22.3	40.8	3.78	10.7	1.9	.21	1.64	.35	1.96	.44	1.59	.29	2.05	.35
5118	65.0														236.5																
5119	53.9							225.9							204.2														_		
5120	66.3	4	<.5	2.1	15.9	3.9	38.3	214.8							152.9																
5121	63.4							246.6							102.1																
STANDARD SO-18	490.8	1	27.0	7.3	17.2	9.6	20.1	28.3	12	397.3	7.7	10.3	16.9	199	16.0	286.0	33.8	12.4	28.4	3.35	13.6	3.0	.98	2.90	.51	3.14	.64	1.84	.28	1.79	.28

Page 6 (a)

ACME ANALYTICAL																								<u> </u>						AUME	AMALT I ! LAL
SAMPLE#	Ba ppm p		Co	Cs	Ga ppm	H f maga	dN mag		n? maga	Sr PPff	Та ррт	Tin mag	-	ν Ppm	ppm W	Zr	y ppm	La ppm		Pr mag	Nd ppm		Eu ppm	Gd ppm ;	Tb	Dy		Er ppm	mT maga		Lu ppm
	 	·																													• •
5122	68.7	3	<.5	2.5	16.2	4.3	40.6	203.4	3	39.8	3.4	37.8	13.3	12	81.0	73.5	18.0	22.5	40.9	3.73	11.7	1.9	.20	1.57	.40	2.19	.48	1.77	.28	2.32	₋ 37
5123	66.1	5						210.5	3	26.4	4.2	35.9	17.5		107.5															2.34	
5124	50.7	4	. 5	2.0	16.6	4.9	47.7	202.9	2	18.4	4.3	37.7	17.2	8	101.5															2.82	
5125	49 1	3	.5	1.9	16.5	4.4	43.1	211.0	_				18.8		72.9																
5126	40.8	5						195.4	_				19.1		52.2																
3,50	, , , ,	-							•									2011		/-						~	• • • •	,,		2.02	. 71
RE 5126	42.2	5	< 5	1 8	17 8	4.5	48 7	195.7	4	15 7	4.3	37 2	18.6	6	50.5	73 N	10 4	20 8	ΔΩ 1	7 65	11 %	2 2	1/-	1 80	37	2 30	7.0	1 R7	22	2 55	70
RRE 5126	41.5	7						197.1					19.3			79.5															
5127	96.2	7.						269.0					22.8			89.1															
5128	76.3	-						277.5					22.9		399.9																
5129	40.3	ر د						261.0		11.9					226.7																
2129	40.3	0	1.0	2.0	20.5	4.4	70.3	201.0	4	11.7	0.0	27.0	30.1	,	220.1	/ 1 - 1	21.0	17.1	34.3	3,30	10.6	۱ ۵۰	- 1 1	1 - / /	. 33	2.33	. 55	1.99	.40	3.03	.58
5130	120.9	,	1 5	, 0	17.0	7 0	E7 0	248.8	E	77 4		/0 2	18.0		78.2	74.4	21 4	77 2	41 N	E 20	17 /	2 7	20 '	2 / 2	C 4	n n/	E /	1 05	70	2 /0	(3
5131	93.1	0						251.3	-				27.2		46.2																
5132	43.6	2						178.4	-	15.9					47.8																
		2						164.1	_				17.3		224.7																
5133	46.6 58.5	4						198.8					18.8																		
5134	20.5	4	• (1.7	10.0	5.0	46.1	190.0	4	17.4	3.9	37.0	10.0	\ 3	47.4	91.4	20.0	24.0	43.7	4.37	14.6	د.د	. 10 4	2.20	. 34	3.07	.07	2.41	. 39	3.05	.48
5475	F0 /	,	_	2 2	47 5	, ,	F2 0	200 0	,	47 7	/ 2	(0.7	25 4	д Е	72.0	02.0	20.0	2/ /	,, -	/ /0	4/ 0	2.0	40.		F0 .	7 50	-	2		7.51	F.4
5135	58.4	4						200.0							32.9																
5136	86.9	4						8.002					28.7		126.2																
5137	91.1							229.8					19.7		87.4																
5138	91.0 1			***			. ,	224.4							93.4																
STANDARD SO-18	485.0	1 7	26.7	7.3	17.8	10.0	20.2	30.8	12	401.2	1.7	10.2	16.8	199	16.7	291.6	35.6	14.3	28.1	5.46	15.8	5.1	.94	5.UT	.52	3.10	.65	1.96	.30	1.76	.29

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Page 1 (b)

Newmac Resources Inc. PROJECT Fox File # A601473

2605 Jame St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

			2005 Jane St.	, varicouve	:	2,00 30	Entra Cedi	by: w.a.				<u> </u>	Participation Color	
SAMPLE#	Mo ppm	Cu ppm	Pb Zr ppm ppm		As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au I ppb pp	g Tl m ppm	Se ppm	Sample kg	
4962 4963 4964 4965 4966	120.7 30.6 18.9 9.2 4.4	2.2 2.3 1.0 1.7 1.2	4.8 7 9.7 7 5.1 8 5.2 25	.6 .7 .9	.7 .6 <.5 .7 .5	<.1 <.1 <.1 <.1	.1 .4 .1 .1	2.0 59.4 1.7 3.5 1.7	<.1 <.1 <.1 <.1	1.4 <.0 1.7 <.0 .9 <.0 1.7 <.0	1 .1 1 <.1 1 <.1	<.5 <.5 <.5 <.5	6.10 6.60 5.42 5.36 6.48	
4967 4968 4969 4970 4971	68.7 23.6 9.7 18.8 20.5	1.3 .9 6.2 1.7	8.0 6 6.9 8 5.9 13 7.5 4 7.2 4	.5 1.5 .5 .5	.7 .7 1.4 .6 .6	<.1 <.1 <.1 <.1	.1 .1 .1 .1	.9 .4 3.6 .7 .5	<.1 <.1 <.1 <.1	1.3 <.0 1.4 <.0 1.1 <.0 .9 <.0 1.6 <.0	1 < .1 1 .1 1 .1	<.5 <.5 <.5 <.5	5.44 6.24 5.44 6.32 6.74	
4972 4973 4974 4975 4976	34.2 21.8 19.7 30.3 158.9	3.8 2.1 1 2.6 1 4.2 3	8.3 7 6.1 17 4.3 5 0.2 21 3.0 9	. 7 . 5 . 4 . 8	.5 .6 1.0 1.0	<.1 .2 .1 .2 .1	.3 .1 .2 .3	7.1 5.7 3.4 12.0 10.7	<.1 <.1 <.1 <.1	.8 <.0 .7 <.0 .6 <.0 2.0 <.0 1.1 <.0	1 <.1 1 .1 1 .1	< < <	5.66 6.30 5.36 6.00	
4977 4978 4979 4980 4981	42.8 13.9 9.2 5.7	2.5 1; 2.0 1.6 2.6 2.1	3.1 10 7.9 10 7.5 4 6.8 3 8.2 4	. 8 . 5 . 9	. 5 8 5 8 5 7 7 8 8 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9	.1 <.1 <.1 <.1	.2 .1 .1	9.6 6.1 4.2 1.7	<.1 <.1 <.1 <.1	.6 <.0 1.5 <.0 .9 .0 1.4 <.0 <.5 <.0	1 .1 1 <.1 1 <.1	<5 <5 <5 <5	5.32 6.36 5.88 4.60 5.98	
4982 4983 4984 4985 4986	7.0 182.0 6.2 14.6 17.5	2.0 2.7 1.8	7.1 5 9.8 5 8.6 11 8.5 9 2.2 7	. 4 . 6 . 4 . 5	.5 .6 .7	<.1 .1 <.1 <.1	.1 .1 .2 .2	1.2 7.3 1.6 6.3	<.1 <.1 <.1 <.1	.8 <.0 <.5 <.0 .9 <.0 1.3 <.0	1 <.1 1 <.1 1 <.1	 	4.08 6.92 6.12 6.80 6.04	
4987 4988 4989 4990 4991	39.7 7.3 7.9 31.7 13.1	4.4 2.1 1.8 2.3 1.4	5.4 10 5.8 16 5.1 18 6.5 13 7.2 13	.5 .4 .7 .6	.7 .9 1.2 .9	<.1 <.1 <.1 <.1	.1 .1 .1 .2	1.2 .4 .9 .9	<.1 <.1 <.1 <.1	.9 <.0 <.5 .0 .5 <.0 1.2 .0	1 < .1 1 .1 1 .1	<.55 <5 <5 <5	6.92 6.14 6.51 6.58 6.82	
RE 4991 RRE 4991 4992 4993 STANDARD DS6	12.9 12.8 4.1 3.7 11.8	1.6	6.6 13 7.4 12 8.3 18 7.2 39 0.4 141	.8 .5 .7 .5 25.6	.8 1.2 1.0 21.2	<.1 <.1 .2 .4 6.1	.2 .1 .2 .1 3.6	6.3 6.6 .5 3.7 5.1	<.1 <.1 <.1 .3	<.5 .0 <.5 <.0 .5 <.0 <.5 <.0 47.9 .2	1 <.1 1 <.1 1 <.1	<.5 <.5 <.5 4.2	3.78 4.08	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY 1CP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILI Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: DRILL CORE R150

DATE RECEIVED: APR 7 2006 DATE REPORT MAILED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 2 (b)

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	ppm Hg	Tl ppm	Se ppm	Sample kg	
4994 4995 4996 4997 4998	25.8 5.4 43.1 33.9 59.1	2.0 2.2 2.4 3.1 4.7	7.7	106 17 15 17 23	.5 1.1 .8 .8 1.2	.8 1.1 .9 1.5 2.2	1.6 .1 .1 <.1	.2 .2 .3 1.5	.8 2.0 .9 8.4 67.2	<.1 <.1 <.1 <.3	1.7 2.6 3.3 1.6 2.3	.13 .03 <.01 .01	.1 .1 .1 .1	<pre>55555</pre> <pre>< < < < < < < < < < < < < < < < < < <</pre>	5.92 7.34 5.74 6.92 6.60	
4999 5000 5001 RE 5001 RRE 5001	72.3 64.4 15.8 12.6 11.8	2.9 3.1 3.0 3.5	26.2 14.0 12.3 13.4 13.5	19 10 11 11 12	.7 1.3 1.1 1.0	4.3 1.0 1.2 1.1 1.0	<.1 <.1 <.1 <.1	.3 .2 .2 .2	2.4 1.6 2.2 2.5 3.2	.2 <.1 <.1 <.1	3.2 <.5 1.0 1.4 2.1	.10 .09 .04 .03	.1 .1 .1 .1	<.5 <.5 <.5 <.5	4.80 5.00 2.34	
5002 5003 5004 5005 5006	61.2 42.9 16.0 48.7 134.7	3.5 6.1 2.0 3.2 4.3	10.5 11.6 12.6 17.7 19.2	10 10 10 14 7	.7 1.3 .7 .9 1.1	.8 1.2 1.3 .7	<.1 <.1 <.1 <.1	.2 .4 .1 .1	2.6 .8 .6 .5 1.4	<.1 <.1 <.1 <.1	.6 <.5 <.5 .8	.07 .05 .04 .03	.1 .1 .1 .1	<.5 <.5 <.5 <.5	7.08 6.46 6.18 7.12 6.88	
5007 5008 5009 5010 5011	9.3 158.7 10.8 8.2 22.5	3.6 2.4 3.5 1.8 4.1	12.5 19.1 14.4 7.1 16.6	61 20 9 11 34	.7 .7 .9 .8 1.5	.9 1.1 .5 .8 1.3	.8 .3 <.1 <.1	.1 .1 .1 .3	.6 .6 .3 .7 16.8	<.1 <.1 <.1 <.1	1.8 1.7 .9 .5 <.5	.04 .07 <.01 .01 .02	.1 .1 <.1 <.1	<.55 <.55 <.55 <.75	6.30 6.60 5.90 7.16 6.18	
5012 5013 5014 5015 5016	37.2 166.0 53.7 10.8 58.4	5.5 7.8 3.2 8.2 1.6	12.7 20.3 46.2 11.7 17.3	12 11 8 76 14	1.1 .9 .8 28.5	1.0 2.7 2.9 19.2 2.8	<.1 .1 .2 .2 .1	.1 .4 .5 1.1 .2	1.1 3.8 51.6 .9 7.7	<.1 <.1 <.1 <.1	.7 1.3 1.1 <.5 1.4	.01 .04 .03 .09	.1 .1 .4 .2	<.5 <.5 <.5 <.5	6.56 6.08 6.92 1.76 6.04	
5017 5018 5019 5020 5021	372.4 186.9 44.9 90.8 61.5	1.7 3.3 3.3 2.2 2.7	18.0 24.7 18.4 45.7 21.0	18 24 22 8 11	.8 1.1 .6 .6	5.7 5.6 6.4 19.0 16.7	.2 .4 .2 .1	.7 .8 .6 2.2 1.1	9.2 25.6 7.4 67.2 13.3	.1 .1 .3	1.8 1.1 1.3 1.9	.02 .06 .01 .02 .01	.3 .2 .1 .1	<pre><.55</pre> <pre><.55</pre> <pre><.55</pre> <pre><.55</pre>	7.02 6.54 6.60 6.88 7.26	
5022 5023 5024 5025 STANDARD DS6	91.2 123.2 689.7 79.2 11.4	4.0 2.7 2.9 3.8 122.1	16.1 20.0 32.1 75.9 29.0	289 24 29 29 140	1.9 .8 1.2 1.2 24.7	15.4 7.7 7.2 20.8 19.7	6.0 .4 .3 .5 6.0	1.3 1.0 1.8 4.1 3.4	7.6 27.1 32.1 128.8 5.0	<.1 .1 .2 .3	1.8 <.5 2.1 1.1 45.4	.08 .01 .01 .02 .21	.3 .1 .2 .2	.6 <.5 .5 4.1	6.22 6.20 6.78 5.76	

Page 3

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	ppm Hg	Tl ppm	Se ppm	Sample kg	
5026 5027 5028 5029 5030	102.9 476.5 165.4 17.6 42.7	2.9 3.5 12.6	18.5 36.6 17.5 15.1 23.0	32 39 28 18 15	.9 1.5 1.3 1.1	31.6 29.9 8.3 4.6 7.5	.5 .8 .1	.9 2.0 1.1 .5 1.0	9.2 80.2 10.2 14.2 34.8	.1 .2 <.1 <.1	8.1 3.6 1.8 1.1 2.2	.02 .08 .05 .01	.2 .3 .1	<.5 1.0 .6 <.5 <.5	7.12 5.80 6.88 5.34 4.10	
5031 5032 5033 5034 5035	43.5 180.1 64.5 54.7 206.6	2.7 3.8 2.9 5.1	16.1 12.4 17.9 33.1 35.3	22 33 17 67 42	1.1 1.4 1.7 1.2	5.5 12.6 4.5 27.5 39.0	.2 .4 <.1 1.1	.7 .9 1.2 1.6 2.1	17.8 23.9 45.3 49.9 203.2	< .1 < .1 < .2 .2	.9 1.6 1.2 1.3 1.5	.01 .01 .05 .07	.1 .2 .2 .2	<.55 <.55 <.1.0	6.88 6.72 6.86 6.08 5.82	
5036 5037 5038 5039 RE 5039	159.8 94.4 81.7 92.6 94.6	$\frac{3.1}{2.4}$	17.3 21.8 18.9 17.4 16.9	41 20 23 13 14	1.4 .8 1.3 1.5	3.5 2.6 4.7 2.8 2.6	.6 .2 .1 .2	.6 1.1 .9 .9	13.7 41.3 31.4 51.9 53.9	<.1 .2 .1 <.1 .1	1.2 .5 <.5 .8 .6	.03 .02 .02 .02	.2 .1 .1	<.5 <.5 <.5 <.5 <.5	6.42 6.62 7.10 6.76	
RRE 5039 5040 5041 5042 5043	105.7 90.5 198.0 246.1 292.1	3.9	15.9 15.7 16.2 26.5 11.5	15 15 18 22 20	1.2 1.3 .9	2.6 3.2 3.4 4.2 4.0	.1 .2 .4	.8 .7 .9 1.4 1.4	49.3 16.5 22.4 28.5 3.7	.1 <.1 .2 <.1	1.0 1.4 <.5 1.8 1.2	.01 .01 .02 .07	.1 .2 .3 .1	55555 < < < <	6.06 6.72 7.76 6.50	
5044 5045 5046 5047 5048	161.6 77.8 37.9 376.0 14.0	4.3	10.7 10.3 10.3 9.6 9.1	16 9 8 14 12	.967 65	2.0 1.4 1.7 1.3 1.1	<.1 <.1 .1 .1	.6 .4 .7 .3	3.0 1.2 1.6 1.2 1.9	<.1 <.1 <.1 <.1	<.5 .9 <.2 1.9	.05 .03 .02 .04 .05	.1 .1 .1	.5 <.5 <.5 <.5	4.26 5.74 6.48 3.54 3.80	
5049 5050 5051 5052 5053	9.8 31.4 79.9 34.6 53.1	4.4	11.3 22.8 28.5 14.3 17.1	108 29 27 25 21	1.0 1.4 1.1 .9	2.3 1.4 2.1 1.0 1.4	1.5 .2 .2 .2	.4 .3 .4 .2	4.2 1.4 2.5 1.3	<.1 .3 <.1 .1	1.0 2.1 2.2 2.0 1.8	.03 .02 .03 .01	.1 .1 .1	<.5 <.5 <.5 <.8	5.54 6.30 2.38 6.30 6.70	
5054 5055 5056 5057 STANDARD DS6	48.1 215.6 44.0 50.1 11.7	3.6 3.4 2.5	16.4 53.8 13.3 41.1 30.3	15 46 14 50 143	.8 .6 1.2 .7 25.6	.8 .6 .8 1.2 21.3	.1 .4 .1 .6 6.0	.3 .7 .3 .7 3.5	5.0 8.6 3.7 22.1 5.2	<.1 <.1 <.3	1.6 1.9 1.4 1.4 47.8	.03 .03 .01 .04	.1 .1 .1 1.8	<.5 <.5 <.5 4.2	7.32 5.86 7.02 7.06	

Page 4 (b)

	4
ACME	ANALYTICAL

SAMPLE#	Mo ppm	Cu ppm	Pb mqq	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	Tl ppm	Se ppm	Sample kg	AAALTICAL
5058 5059 5060 5061 5062	13.4 11.4 362.5 161.4 36.4	1.7 1.8 7.0 6.6 7.4	15.3 12.9 13.0 9.6 8.7	19 11 20 15 10	.7 1.0 1.1 .8 1.0	2.0 5.5 3.5 2.0 1.4	.2 .1 .2 .2 <.1	.3 .6 1.2 .8	2.7 1.7 4.0 1.3 4.7	<.1 <.1 <.1 <.1	1.5 2.2 2.1 1.1 1.5	.03 .03 .06 .01	.1 .1 .2 .2	55665 V V V	6.50 2.30 5.48 3.98 7.30	
5063 5064 5065 5066 5067	34.7 15.6 22.1 53.4 40.9	5.3 2.7 2.8 4.1 6.3	7.4 8.3 11.9 12.8 25.0	10 14 9 9	1.2 .8 .9 .9	1.0 .9 1.8 1.4 1.8	<.1 <.1 <.1 .1	.2 .1 .3 .5	2.2 2.8 8.4 12.3 93.4	<.1 <.1 <.1 <.1	2.5 <.5 1.6 1.8	<.01 .01 <.01 .02 .04	.1 .1 .1 .1	55555	6.26 7.40 5.90 6.24 7.50	
5068 5069 5070 5071 5072	35.7 36.9 59.8 32.8 51.4	7.1 9.4 1.3 2.1 2.2	8.2 26.3 9.7 11.2 15.5	10 13 15 12 10	1.1 1.7 .7 1.0 1.0	1.5 5.8 .7 1.1 2.5	.1 <.1 <.1 <.1	.3 .1 .2 .3	1.5 4.8 2.0 11.3 9.6	<.1 .2 <.1 <.1	2.0	<.01 .01 <.01 <.01 .01	.1 .1 .1	<pre><.5 <5 <5 <5 </pre>	5.08 4.40 6.62 7.00 6.30	
5073 5074 5075 5076 5077	15.9 148.1 63.5 136.3 68.7	2.9 3.9 5.9 2.2	9.5 18.3 10.5 25.7 21.8	7 7 10 24 18	.9 1.1 .9 1.2 1.0	1.5 1.9 1.2 4.5 3.7	<.1 <.1 <.1 .2 .3	.2 .6 .3 .4	1.3 9.7 1.6 9.3 30.0	<.1 <.1 <.1 .1	<.5 1.2 .5 <.5	.01 .01 <.01 .02 .02	.1 .1 .1	55555	5.86 6.68 7.08 6.44 6.90	
5078 5079 5080 5081 5082	110.4 315.8 518.7 214.8 269.2	2.2 2.6 1.9	22.7 23.8 21.4 27.8 18.3	27 22 23 23 29	1.3 1.3 1.0 1.3	8.0 8.6 5.8 4.6 11.9	.5 .3 .1 .4	.7 .9 1.0 1.2	10.4 11.6 8.9 50.1 9.1	.2 .3 .2 .2	.9 .6 1.7 .7 2.2	.03 .01 .02 .01 <.01	.1 .2 .4 .2	<pre></pre>	6.86 6.64 6.46 6.82 6.16	
5083 5084 RE 5084 RRE 5084 5085	376.3 475.8 476.7 491.2 308.6	2.4 1.7 1.4 1.4 2.2	24.2 14.2 13.8 14.5 12.9	32 9 11 10 14	1.4 1.2 1.6 1.0	8.9 4.3 4.2 4.6 4.0	.5 .2 <.1 .1 <.1	. 8 . 6 . 6 . 4	26.1 7.1 6.7 6.2 5.1	.2 <.1 <.1 <.1	.8 <.5 1.1 1.3 .8	.02 .01 <.01 .01 .01	.2 .1 .2 .1	<.5 <.5 <.5 <.5	6.88 7.00 6.46	
5086 5087 5088 5089 STANDARD DS6	433.1 235.8 244.3 204.6 11.4	2.0 10.3 2.9 2.4 122.1	15.9 33.4 59.7 23.5 30.2	14 37 20 180 143	1.2 .9 1.2 1.2 25.3	19.9 73.7 8.8 9.1 21.4	.1 .5 .4 3.2 6.0	.8 2.2 3.8 1.4 3.5	8.8 73.4 276.4 24.5 5.1	.1 .3 .4 .2	1.7 3.6 2.2 <.5 45.9	.01 .03 <.01 .04 .23	.2 .3 .2 1.8	<.5 1.0 <.5 4.4	7.02 6.30 7.40 6.06	. Th

Page 5 (b)

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	ppm Hg	Tl ppm	Se ppm	Sample kg	
5090 5091 5092 5093 5094	47.1 182.3 71.2 23.6 61.3	25.2 22.2 19.6 11.3 12.7	46.1 29.3 27.4 62.6 18.4	24 23 21 17 30	4.7 3.6 4.2 1.6	23.1 62.7 28.0 290.2 24.4	.4635.6	2.7 2.0 1.8 3.3 1.1	104.9 43.6 32.3 62.7 4.5	.3 .1 .4 <.1	2.9 3.8 3.3 7.6 3.1	.05 .07 .05 .02	.2 .2 .2 .1	 	6.64 7.34 6.56 6.84 6.62	
5095 5096 5097 5098 5099	43.9 124.6 54.1 29.7 26.2	17.2 29.0 20.8 12.0 86.3	33.9 25.0 26.1 52.5 17.5	21 61 62 20 224	1.5 1.1 .8 1.6 52.2	25.7 18.8 128.1 78.8 90.0	.5 1.6 1.3 .4 2.3	1.2 1.2 .7 1.3 3.0	31.3 10.3 8.0 49.0 4.4	.3 .2 .5 .5	2.3 3.8 3.1 4.1 2.8	.07 .10 .11 .05	.2 .1 .2 1.3	<5 <5 <0 4.0	6.92 6.66 6.48 7.06	
5100 5101 5102 5103 5104	6.2 1.3 48.2 96.3 34.5	75.5 104.3 4.1 4.7 5.1	17.2 11.0 6.3 6.5 7.1	206 93 16 13 9	47.7 17.3 1.0 1.5	33.1 31.4 1.7 1.6 3.5	3.1 .6 .1 <.1 <.1	5.4 .4 .1 .3	2.6 4.9 1.8 1.5 3.5	.5 .3 <.1 <.1	1.2 4.9 .7 .7	.04 .01 .03 .02 .03	.9 .2 .1 .1	4.2 <.5 <.5 <.5	6.20 5.88 5.50 6.02 4.70	
5105 5106 RE 5106 RRE 5106 5107	104.6 166.6 184.1 168.9 26.6	3.2 6.5 7.1 6.9 3.5	8.6 6.4 7.2 6.7 7.1	7 7 8 7 7	.6 .7 .6	1.0 1.1 1.2 1.0	.1 .1 .1 <.1	.2 1.0 1.1 1.0 .8	4.3 3.1 3.0 2.8 3.5	<.1 <.1 <.1 <.1	.6 .5 .5 <.5	.02 .04 .04 .04	<.1 <.1 .1 .1	<.55 <.55 <5 <5	5.12 5.88 - 6.46	
5108 5109 5110 5111 5112	56.5 122.2 22.4 33.5 16.4	2.6 3.0 2.1 2.5 2.8	6.9 13.2 12.7 6.7 5.3	6 2 5 8 7	. 66559	1.0 12.0 6.2 .7	<.1 <.1 <.1 <.1	.4 .3 .2 .3 .2	7.6 3.7 .7 1.5 1.5	<.1 <.1 <.1 <.1	1.2 10.0 4.4 .7 <.5	.02 .04 .05 .01	.1	<.55 <5 <5 <5	5.16 6.18 6.00 6.24 6.48	
5113 5114 5115 5116 5117	25.2 10.8 7.8 18.1 28.6	1.8 2.0 4.0 3.3 6.0	6.1 6.9 6.7 10.7 7.5	7 6 7 4 5	66556	.6 .9 1.3 1.2	<.1 <.1 <.1 <.1	.2 .7 .2 .3	1.0 1.1 6.7 9.5 2.1	<	<.5 .7 .9 1.2 <.5	.01 .01 .01 .02	<.1 .1 .1 .1	<.5 <.5 <.5 <.5	6.26 6.10 5.74 5.18 5.34	
5118 5119 5120 5121 STANDARD DS6	54.7 72.2 11.3 24.3 11.7	18.4 7.4 3.5 4.9 123.2	6.8 16.7 11.5 11.5 30.4	16 11 12 13 143	.6 .4 .5 24.9	4.6 5.8 1.6 21.9	.1 .1 .2 7.5	2.0 1.5 .2 .3 3.6	1.4 1.6 7.6 1.6 5.2	<.1 <.1 <.1 <.3	1.3 1.1 1.1 43.4	.05 .03 .03 .02	.1 .1 .1 1.7	<pre><.55.55 </pre> <pre><.4.1</pre>	5.94 5.06 5.92 3.72	•

Page 6 (b)

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	ppm Hg	Tl ppm	Se ppm	Sample kg	
5122 5123 5124 5125 5126	15.2 33.4 2.6 47.6 11.3	6.2 4.1 13.8 6.4 5.8	10.5 10.4 8.0 9.1 8.6	88688	. 5 . 8 . 3 . 7	2.9 1.7 2.4 2.2 1.7	<.1 <.1 <.1 <.1	.2 .1 .2 .5	1.5 1.3 1.4 32.2 .8	<.1 <.1 <.1 <.1	.9 1.3 1.7 1.5	.03 .02 .02 <.01 .01	<.1 <.1 <.1 <.1	555555 V V V V V	6.20 6.18 5.88 5.90	
RE 5126 RRE 5126 5127 5128 5129	13.8 11.5 3.7 28.5 48.9	5.7 3.1 4.3 6.1	8.2 8.1 12.9 11.7 10.8	9 7 14 13 8	. 2 . 6 . 5 . 4	1.5 1.3 1.2 1.6	<.1 <.1 .1 <.1	.2 .1 .3 .3	.8 .7 25.5 7.3 6.6	<.1 <.1 <.1 <.1 <.1	.5 <.5 .8 2.9 1.5	.02 .03 .08 .10	<.1 <.1 <.1 <.1	<.5 <.5 <.5 <.5	6.98 7.50 6.26	
5130 5131 5132 5133 5134	4.2 6.3 34.0 >2000 90.2	2.9 1.8 1.4 7.8	10.9 11.3 7.9 9.3 9.4	16 8 4 7 18	.9 .5 .7 1.4	1.0 1.3 .7 .6 2.4	.1 <.1 <.1 2.0 .1	.3 .1 .1 .2	19.0 1.8 1.7 8.6 .9	<.1 <.1 <.1 <.1	1.6 1.6 .9 .7	.03 .02 .01 .05	.1 <.1 <.1 <.1	<pre></pre>	7.02 4.90 6.26 4.34 2.84	
5135 5136 5137 5138 STANDARD DS6	21.1 46.2 32.6 23.1 11.5	6.8 2.5 1.3 1.9 122.5	10.4 11.2 9.6 19.5 30.2	8 15 10 12 141	.5 .8 .4 .8 24.2	6.1 2.4 1.9 1.2 22.0	.1 <.1 <.1 6.2	.5 .4 .2 .8 3.6	1.5 3.7 3.3 14.7 5.2	<.1 <.1 <.1 .1	.9 1.1 <.5 2.3 45.0	.01 .03 .02 .02	<.1 <.1 <.1 <.1 1.7	<.5 <.5 <.5 4.2	3.84 5.50 6.48 6.74	

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEM PRECIOUS METALS ANALYSIS

2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

Newmac Resources Inc. PROJECT Fox File # A601474

Page 1

<u> </u>	SAMPLE#	Au Pt Pd Rh ppb ppb ppb
	4962 4967 RE 4967 4972 4977	<pre></pre>
	4982 4987 4992 4997 5002	<pre></pre>
	5007 5012 5017 5022 5027	<pre></pre>
	5032 5037 5042 5047 5052	<pre></pre>
	5057 5062 5067 5072 5077	<1 <.1 <.5 <.1 <.1 <.5 <.1 <1 <.1 <.5 <.1 <1 <.1 <.5 <.1 <1 <.1 <.5 <.1 <1 <.1 <.5 <.1 <1 <.1 <.5 <.1 <1 <.1 <.5 <.1 <1 <.1 <.5 <.1 <1 <.1 <.5 <.1 <1 <.1 <.5 <.1 <1 <.1 <.5 <.1 <1 <.1 <.5 <.1 <1 <.1 <.5 <.1 <.1 <.5 <.1 <.1 <.1 <.5 <.1 <.1 <.1 <.5 <.1 <.1 <.1 <.5 <.1 <.1 <.1 <.1 <.5 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1
	5082 5087 5092 5097 5102	<pre></pre>
	5107 5112 5117 5122 STANDARD FA-10R	<pre></pre>

GROUP 3B-MS - FIRE GEOCHEM AU PT PD RH - 30 GM SAMPLE FUSION, DORE DISSOLVED IN ACID, ANALYZED BY ICP-MS. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: CORE PULP

DATE RECEIVED: APR 7 2006 DATE REPORT MAILED:.

Page 2

SAMPLE#	Au ppb	Pt ppb	Pd ppb	Rh ppb	
5127 5132 5137 STANDARD FA-10R	<1 <1 <1 493	.1 .2 .2 485.1	<.5 <.5 <.5 469.2	.7 1.6 .4 -	

Sample type: CORE PULP.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE

Newmac Resources Inc. PROJECT Fox File # A601247R 2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

SAMPLE#	₩ %
4849 4850 4880 4886 4914	.03 .47 .04 .04 .02
4918 4919 4927 RE 4927 4928	.07 .03 .02 .02
4933 4934 .STD CT 4936 4937	.04 .04 1.05 .04 .05
4938 4939 4940 4947 4948	.02 .02 .02 .03 .04
4956 STANDAR	D R-2a .07

GROUP 7KP - 0.500 GM SAMPLE BY PHOSPHORIC ACID LEACH, ANALYSIS BY ICP-ES.

- SAMPLE TYPE: Core Pulp

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

05-19-2006 P02:40 DATE RECEIVED: MAY 15 2006 DATE REPORT MAILED:....

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

2605 Jane St., Vancouver BC V3H 2K6 Submitted by: W.A. Howell

Newmac Resources Inc. PROJECT Fox File # A601247

Page 1

G-1 4 4842 122.9 4843 234.5 4844 206.7 4845 342.1 4846 42.1 4847 63.5 4848 16.4 4849 78.5 4850 132.9 4851 86.0 4852 142.2 4863 30.5 4854 3.9 RRE 4854 3.9 RRE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	4 3 7 7 2 7 7 2 7 7 2 7 1 2 7	3.1 2 2.7.0 2 2.7.3 2 2.7.4 2 2.7.0 1 3.7.1 1 2.0 1 1 2.0 6 3 1 2.0 5 5 5 5 1 1 5 5 5 5 1 5 5 5 5 1	3.7 7.3 4.3 4.0 1.8 8.1 7.2 4.8 1.7 7.1 4.7 9.8 6.6 9.8 6.6 9.8	223	1 6.1 1 2 2.8 2 2.6 3 1.2 1 2.8 1 2.8 1 2.4 1 1.8 4 23.0 8 4.4 1 .3 7 2.6 1 22.4 1 23.4	1.2 .4 .3 .3 .5 .2 .2 .3 20.4 1 6.5 .6 .5 1.9 15.4 3 15.2 3	743 2.36 728 1.43 886 .94 378 .88 242 .65 327 .77 313 .63 307 .67 1997 5.45 761 1.90 307 .63 343 .73 905 1.47 3157 4.81	3 8 16 4 8 10 8 6 7 5 5 6 7 6 8 3 6 11 7 7 11 9 14 14 0 1499 12 3 26 10 3 18 11 7 75 15 1 12 9 1 13 8	.1 <.1 .1 <.1 .1 <.1	8.0 40.0 46.6 30.7 29.1 28.5 29.6 30.8 6.0 28.6 36.4 33.8 36.1 7.1 6.8	801 51 53 35 26 44 43 66 290 75 62 54 80 340 333	.1 <.1 <.1 .1 .1 .1 .1 .1 <.1	.1 1.2 .8 2.2 .8 .7 .5 .3 2.9 .6.9 H	2 9.9 6.5 40.6 5.6 3.5 .7 .3 30.0 868.0	53 2 13 8 4 6 241 3 3 4 2 16 121 3	59 .086 61 .02 57 .02 31 .01 23 .00 50 .01 54 .00 69 .00 54 .18 79 .02 33 .01 46 .01 66 .02 30 .16	5 24.1 4 98.4 4 85.6 0 30.6 7 22.9 0 22.7 6 19.8 8 23.2 9 14.1 5 23.4 1 25.8 4 26.6 6 29.3	12.7 5.7 4.0 2.8 4.7 3.9 4.6 5.5 28.4: 5.8	.62 10 .20 1 .19 2 .09 1 .05 1 .14 1 .14 .22 1 .41 5 .34 1	82 .289 64 .113 16 .090 57 .048 13 .044 45 .057 95 .049 19 .057 99 .373 81 .083 67 .071 70 .069	9 8.24 : 3 6.85 : 3 6.63 : 3 6.71 : 1 6.42 : 7 6.48 : 9 6.18 : 7 6.11 : 3 8.56 : 3 6.34 : 1 6.49 : 9 6.21 :	.830 3.28 2.455 3.89 2.107 3.87	.8 84.6 34.0 41.4 11.5 15.1 8.3 7.5 >200 >200	8.3 35.5 30.6 22.0 20.2 22.2 24.5 28.4 30.0	46 147 137 52 41 40 33 38 25 39	1.6 1 25.4 1 63.5 1 27.1 1 14.6 17.6 1 11.1 3.9 41.5 1 58.7 1	5.4 21. 3.2 29. 3.2 24. 0.1 17. 9.6 18. 1.2 23. 8.6 22. 9.4 29. 6.9 34. 5.5 40.	.3 1.5 .8 2.6 .7 2.6 .6 1.8 .0 2.6 .1 2.8 .9 2.6 .1 3.2 .6 1.6 .9 2.7	9 3 6 3 8 2 0 3 8 3 6 3 2 3 0 7 7 8 6 4	5 3 4 2 3 3 2 2 1 2 1 2 1 1 1 1 1 4 1 8 2 2 2	39.3 - 28.7 36.1 21.4 14.9 17.3 12.3 9.4 19.6 232.6 29.8 22.5	.4 196 .3 244 .4 184 .2 175 .2 176 .2 179 .1 174 2.4 191 .9 197 .2 174 .3 161	2 .7 7 1.6 0 1.5 9 1.2 2 1.0 8 1.2 2 1.2 4 1.3 5 1.5 6 1.5 8 1.6	6.7 6.5 6.6 6.1 6.0 2.6 3.6 5.6 3.7
4842 122.9 4843 234.5 4844 206.7 4845 342.1 4846 42.1 4847 63.5 4848 16.4 4849 78.5 4850 132.9 4851 86.0 4852 142.2 4853 30.5 4854 3.9 RRE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.0 2 7.3 2 2.7 4 2.7 4 2.0 1 3.7 1 2.0 1 4.7 1 4.7 1 4.7 1 4.7 1 5.5 3 1 5.5 4	7.3 4.3 4.0 1.8 8.1 6.8 1 7.2 4.8 1 4.7 7.1 4 4.7 9.8 55.6 55.6 55.6 7.2	330	2 2.8 2 2.6 3 1.2 2 2.6 1 2.8 1 2.8 1 2.8 1 2.8 1 3.0 8 4.4 1 3.7 2.6 1 22.6 1 22.4 1 23.4 1 23.4	1.2 .4 .3 .3 .5 .2 .2 .3 20.4 1 6.5 .6 .5 1.9 15.4 3 15.2 3	728 1.43 886 .94 378 .86 242 .65 327 .77 313 .63 307 .57 1997 5.45 761 1.90 307 .63 343 .73 905 1.47 3157 4.81 3117 4.86	3 8 16 4 8 10 8 6 7 5 5 6 7 6 8 3 6 11 7 7 11 9 14 14 0 1499 12 3 26 10 3 18 11 7 75 15 1 12 9 1 13 8	.1 < .1 .5 < .1 .4 < .1 .9 < .1 .4 < .1 .5 < .1 .8 < 1 .3 .5 .5 < .1 .1 < .1 .2 < .1 .3 < .1 .6 < .1	40.0 46.6 30.7 29.1 28.5 29.6 30.8 6.0 28.6 36.4 33.8 36.1 7.1 6.8	51 53 35 26 44 43 66 290 75 62 54 80 340 333	<.1 <.1 .1 <.1 1.6 .1 .4 .7.3 4 <.1 <.1 <.1 <.1	1.2 .8 2.2 .8 .7 .5 .3 2.9 .66.9 H	9.9 6.5 40.6 5.6 3.5 .7 .3 30.0 868.0	13 8 <1 <1 <1 6 4 6 241 3 33 4 2 16 121 3	61 .02 57 .02 31 .01 23 .00 50 .01 54 .00 69 .00 54 .18 79 .02 33 .01 46 .01 66 .02 30 .16	4 98.4 4 85.6 0 30.6 7 22.9 0 22.7 6 19.8 8 23.2 9 14.1 5 23.4 1 25.8 4 26.6 6 29.3	5.7 4.0 2.8 4.7 3.9 4.6 5.5 28.4 5.8 3.6 2.3	.20 1 .19 2 .09 1 .05 1 .14 1 .14 .22 1 .41 5 .34 1	64 113 16 090 57 048 13 044 45 057 95 049 19 057 99 373 81 083 67 071 70 069	3 6.85 3 6.63 3 6.71 4 6.42 3 7 6.48 3 7 6.18 3 7 6.11 3 8.56 3 6.34 4 6.49 3 9 6.21 3	2 988 4 .10 2 .061 4 .37 2 .452 4 .35 2 .560 4 .21 2 .763 4 .19 2 .602 4 .00 2 .929 4 .17 2 .628 2 .50 .830 3 .28 2 .455 3 .89 2 .107 3 .87	84.6 34.0 41.4 11.5 15.1 8.3 7.5 >200 >200	35.5 30.6 22.0 20.2 22.2 24.5 28.4 30.0	147 137 52 41 40 33 38 25 39	25.4 1 63.5 1 27.1 1 14.6 17.6 1 11.1 3.9 41.5 1 58.7 1	3.2 29. 3.2 24. 0.1 17. 9.6 18. 1.2 23. 8.6 22. 9.4 29. 6.9 34. 5.5 40. 8.3 22.	.8 2.6 .7 2.6 .6 1.8 .0 2.0 .1 2.8 .9 2.6 .1 3.2 .6 1.0 .9 2.7	6 3 6 3 8 2 0 3 8 3 6 3 2 3 0 7 7 8	4 2 3 3 3 2 2 2 1 1 2 1 1 1 1 4 18 2 2 2	28.7 36.1 21.4 14.9 17.3 12.3 9.4 19.6 32.6	.4 196 .3 244 .4 184 .2 175 .2 176 .2 179 .1 174 2.4 191 .9 197 .2 174 .3 161	7 1.6 0 1.5 9 1.2 2 1.0 8 1.2 2 1.2 4 1.3 2 1.3 5 1.5 6 1.5 8 1.6	6.5 6.6 6.1 6.0 2.6 3.6 5.6 3.7
4843 234.5 4844 206.7 4845 342.1 4846 42.1 4847 63.5 4848 16.4 4849 78.5 4850 132.9 4851 86.0 4852 142.2 4853 30.5 4854 3.9 RRE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4869 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	5 7 2 1 2 1 7 5 5 3 4 2 5 13 6 2 5 5 12 8 5 5 12 8 6 2 5 5 12 8 6 2 5 5 12 8 6 2 5 5 12 8 6 2 5 12	7.3 2 2.7 4 2.7 4 2.7 7.0 1	4.3 4.0 1.8 8.1 6.8 1 7.2 4.8 1 4.7 1 4.7 1 4.7 1 4.7 1 4.7 1 4.8 1 4.7 1 4.7 1 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7	23	2 2.6 3 1.2 1 2.8 1 2.4 1 1.8 1 .8 4 23.0 8 4.4 1 .3 1 .3 1 .3 1 .3 1 .2 2.6 1 22.6	.4 .3 .3 .5 .2 .3 .20.4 1 6.5 .6 .5 .1.9 15.4 3 15.2 3	886 944 378 886 242 65 327 .77 313 .63 307 .57 1997 5.45 761 1.90 307 .63 343 .73 3905 1.47 3117 4.81 3077 4.86	4 8 10 8 6 7 7 5 6 8 8 3 6 11 7 7 11 9 14 14 14 10 1499 12 3 26 10 3 18 11 7 75 15 1 12 9 1 13 8 6 14 9 9	.5 < .1 .4 < .1 .9 < .1 .4 < .1 .5 < .1 .8 < 1 .3 .5 .5 < .1 .1 < .1 .2 < .1 .3 < .1 .6 < .1	. 46.6 . 30.7 . 29.1 . 28.5 . 29.6 . 30.8 . 6.0 . 28.6 . 36.4 . 33.8 . 36.1 . 7.1 . 6.8	53 35 26 44 43 66 290 75 62 54 80 340 333	<.1 .1 .1 <.1 1.6 .1 .4 .7.3 4 <.1 <.1 .5 .4 :	.8 2.2 .8 .7 .5 .3 2.9 6.9 H	6.5 40.6 5.6 3.5 .7 .3 30.0 868.0 1.9 10.2 20.2 5.1	8 <1 <1 <1 6 4 6 241 3 33 4 2 16 121 3	57 .02 31 .01 23 .00 50 .01 54 .00 69 .00 54 .18 79 .02 33 .01 46 .01 66 .02 30 .16	4 85.6 0 30.6 7 22.9 0 22.7 6 19.8 8 23.2 9 14.1 5 23.4 1 25.8 4 26.6 6 29.3	4.0 2.8 4.7 3.9 4.6 5.5 28.4 5.8 3.6 2.3	.19 2 .09 1 .05 1 .14 1 .14 .22 1 .41 5 .34 1	16 090 57 048 13 044 45 057 95 049 19 057 99 373 81 083 67 071 70 069	0 6.63 ; 3 6.71 ; 1 6.42 ; 7 6.48 ; 9 6.18 ; 7 6.11 ; 3 8.56 ; 3 6.34 ; 1 6.49 ; 9 6.21 ;	2.061 4.37 2.452 4.35 2.560 4.21 2.763 4.19 2.602 4.00 2.929 4.17 2.628 2.50 .830 3.28 2.455 3.89 2.107 3.87	34.0 41.4 11.5 15.1 8.3 7.5 >200 >200	30.6 22.0 20.2 22.0 22.2 24.5 28.4 30.0	137 52 41 40 33 38 25 39	63.5 1 27.1 1 14.6 17.6 1 11.1 3.9 41.5 1 58.7 1	3.2 24. 0.1 17. 9.6 18. 1.2 23. 8.6 22. 9.4 29. 6.9 34. 5.5 40.	.7 2.6 .6 1.8 .0 2.0 .1 2.8 .9 2.6 .1 3.2 .6 1.6 .9 2.7	6 3 8 2 0 3 8 3 6 3 2 3 0 7 7 8	3 3 2 2 2 1 3 1 2 1 2 1 4 18 2 2 2	36.1 21.4 14.9 17.3 12.3 9.4 19.6 32.6	.3 244 .4 184 .2 175 .2 176 .2 179 .1 174 2.4 191 .9 197 .2 174 .3 161	0 1.5 9 1.2 2 1.0 8 1.2 2 1.2 4 1.3 2 1.3 5 1.5 6 1.5 8 1.6	6.5 6.6 6.1 6.0 2.6 3.6 5.6 3.7
4844 206.7 4845 342 1 4846 42.1 4847 63.5 4848 16.4 4849 78.5 4850 132.9 4851 86.0 4852 142.2 4853 30.5 4854 3.9 RE 4854 3.9 RE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	7 2 1 2 1 7 5 3 3 4 2 5 12 6 2 5 5 12 8 5 12 8 6 2 5 5 12 8 6 2 5 5 12 8 6 2	2.7 4 2.4 2 7.0 1 7.	4.0 1.8 8.1 7.2 4.8 1 4.7 1 4.7 1 4.7 1 4.7 1 4.7 1 4.8 1 4.7 1 4.8 1 4.7 4.8 1 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7	29	3 1.2 1 2.8 1 2.4 1 1.8 1 .8 4 23.0 8 4.4 1 .3 1 .3 7 2.6 1 22.6 1 22.4	.3 .5 .2 .3 20.4 1 6.5 .6 .5 1.9 15.4 3 15.2 3	378	8 6 7 5 6 8 8 3 6 11 7 7 11 9 14 14 10 1499 12 3 26 10 3 18 11 7 75 15 1 12 9 1 13 8 6 14 9 9	.4 < .1 .4 < .1 .9 < .1 .5 < .1 .8 < 1 .3 .5 .5 < .1 .1 < .1 .2 < .1 .3 < .1	28.5 29.6 30.8 6.0 28.6 36.4 33.8 36.1 7.1 6.8	35 26 44 43 66 290 75 62 54 80 340 333	.1 .1 <.1 1.6 .1 .4 .7.3 4 <.1 <.1 <.1	2.2 .8 .7 .5 .3 2.9 6.9 H .6 1.0 3.0 3.1	40.6 5.6 3.5 .7 .3 30.0 868.0 1.9 10.2 20.2 5.1	<1 <1 6 4 6 241 3 33 4 2 16 121 3	31 .01 23 .00 50 .01 54 .00 69 .00 54 .18 79 .02 33 .01 46 .01 66 .02 30 .16	0 30.6 7 22.9 0 22.7 6 19.8 8 23.2 9 14.1 5 23.4 1 25.8 4 26.6 6 29.3	2.8 4.7 3.9 4.6 5.5 28.4: 5.8 3.6 2.3	.09 1 .05 1 .14 1 .14 .22 1 .41 5 .34 1	57 048 13 044 45 057 95 049 19 057 99 373 81 083 67 071 70 069	3 6.71 1 6.42 1 6.48 1 6.18 1 7 6.18 1 8.56 1 3 6.34 1 6.49 1 9 6.21 1	2,452 4,35 2,560 4,21 2,763 4,19 2,602 4,00 2,929 4,17 2,628 2,50 830 3,28 2,455 3,89 2,107 3,87	41.4 11.5 15.1 8.3 7.5 >200 >200	22.0 20.2 22.0 22.2 24.5 28.4 30.0	52 41 40 33 38 25 39	27.1 1 14.6 17.6 1 11.1 3.9 41.5 1 58.7 1	0.1 17. 9.6 18. 1.2 23. 8.6 22. 9.4 29. 6.9 34. 5.5 40.	1.6 1.6 1.6 1.0 2.0 1.1 2.8 1.9 2.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	8 2 3 3 8 3 7 7 8 6 4	2 2 2 1 3 1 2 1 2 1 1 1 1 4 1 8 2 2 2	21 . 4 14 . 9 17 . 3 12 . 3 9 . 4 19 . 6 32 . 6	.4 184 .2 175 .2 176 .2 179 .1 174 .2 4 191 .9 197 .2 174 .3 161	9 1.2 2 1.0 8 1.2 2 1.2 4 1.3 5 1.5 6 1.5 8 1.6	6.6 6.1 6.0 2.6 3.6 5.6 3.7
4845 342 1 4846 42.1 4847 63.5 4848 16.4 4849 78.5 4850 132.9 4851 86.0 4852 142.2 4853 30.5 4854 3.9 RRE 4854 3.9 RRE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4860 29.8 4861 187.2 4862 210.5 4863 181.8	1 2 5 130 5 130 9 40 0 7 2 4 5 125 9 25 5 128 5 128 6 25 5 128	2.4 2 77.0 1 3.7 1 2.0 1 3.0 63 77.6 1 4.7 1 2.0 4 5.5 1 5.5 3	1.8 8.1 6.8 1 7.2 4.8 1 4.7 7.1 4 4.7 9.8 5.6 6.3 3.5 6.8 7.2 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	10	1 2.8 1 2.4 1 1.8 1 .8 4 23.0 8 4.4 1 .3 7 2.6 1 22.6 1 22.4	.3 .5 .2 .3 20.4 1 6.5 .6 .5 1.9 15.4 3 15.2 3	242 .65 327 .77 313 .63 307 .57 1997 5.49 761 1.90 307 .63 343 .73 905 1.47 3157 4.81 3117 4.81	5 5 6 8 8 8 11 17 7 11 1. 9 14 14 14 14 10 1499 12 13 26 10 3 18 11 7 75 15 1 12 9 1 1 13 8 16 14 9 16	.4 < .1 .9 < .1 .4 < .1 .5 < .1 .8 < 1 .3 .5 .5 < .1 .1 < .1 .2 < .1 .3 < .1 .6 < .1	28.5 29.6 30.8 6.0 28.6 36.4 33.8 36.1 7.1 6.8	26 44 43 66 290 75 62 54 80 340 333	.1 <.1 1.6 .1 .4 .7.3 4 <.1 <.1 .5	.8 .7 .5 .3 2.9 .6.9 18 .6 1.0 3.0 3.1	5.6 3.5 .7 .3 30.0 868.0 1.9 10.2 20.2 5.1	6 4 6 241 3 33 4 2 16 121 3	23 .000 50 .01 54 .000 69 .000 54 .18 79 .02 33 .01 46 .01 66 .02 30 .16	7 22.9 0 22.7 6 19.8 8 23.2 9 14.1 5 23.4 1 25.8 4 26.6 6 29.3	4.7 3.9 4.6 5.5 28.4 5.8 3.6 2.3 10.1	.05 1 .14 1 .14 .22 1 .41 5 .34 1 .12 1 .16 1	13 044 45 057 95 049 19 057 99 373 81 083 67 071 70 069	1 6.42 ; 7 6.48 ; 7 6.11 ; 7 6.11 ; 3 8.56 ; 3 6.34 ; 1 6.49 ; 9 6.21 ;	2.560 4.21 2.763 4.19 2.602 4.00 2.929 4.17 2.628 2.50 .830 3.28 2.455 3.89 2.107 3.87	11.5 15.1 8.3 7.5 >200 >200	20.2 22.0 22.2 24.5 28.4 30.0	40 33 38 25 39	14.6 17.6 1 11.1 3.9 41.5 1 58.7 1	9.6 18. 1.2 23. 8.6 22. 9.4 29. 6.9 34. 5.5 40.	.0 2.6 .1 2.8 .9 2.6 .1 3.2 .6 1.6 .9 2.7	0 3 8 3 6 3 2 3 0 7 7 8	2 1 3 1 2 1 2 1 11 11 4 18	14.9 17.3 12.3 9.4 19.6 32.6 29.8	.2 175 .2 176 .2 179 .1 174 .4 191 .9 197 .2 174 .3 161	2 1.0 8 1.2 2 1.2 4 1.3 2 1.3 5 1.5 6 1.5 8 1.6	6.1 6.0 2.6 3.6 5.6 3.7
4846 42.1 4847 63.5 4848 16.4 4849 78.5 4850 132.9 4851 86.0 4852 142.2 4853 30.5 4854 3.9 RE 4854 3.9 RE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	1 7 5 3 4 2 5 13 6 7 2 4 6 25 5 12 8 6 25 5 12 8	7.0 1 3.7 1 2.0 1 5.0 63 7.6 1 4.7 1 4.7 1 5.5 1 5.3 1	8.1 6.8 1 7.2 4.8 1 7.1 4 4.7 9.8 5.6 3.5 2.9	05 <	1 2.4 1 1.8 1 .8 4 23.0 8 4.4 1 .3 7 2.6 1 22.6 1 22.4	.5 .2 .3 20.4 1 6.5 .6 .5 1.9 15.4 3 15.2 3	327 .77 313 .63 307 .57 1997 5.49 761 1.90 307 .63 343 .73 905 1.47 3157 4.81 3117 4.81	7 6 8 8 3 6 11. 7 7 11. 9 14 14. 0 1499 12 3 26 10 3 18 11. 7 75 15 1 12 9 1 13 8 6 14 9 9	.9 < .1 .4 < .1 .5 < .1 .8 < 1 .3 .5 .5 .1 < .1 .2 < .1 .3 < .1 .6 < .1	28.5 29.6 30.8 6.0 28.6 36.4 33.8 36.1 7.1 6.8	44 43 66 290 75 62 54 80 340 333	<.1 1.6 .1 .4 7.3 4 <.1 <.1 .5 .4 .1	.7 .5 .3 2.9 16.9 18 .6 1.0 3.0 3.1	3.5 .7 .3 30.0 868.0 1.9 10.2 20.2 5.1	6 4 6 241 3 33 4 2 16 121 3	50 .01 54 .00 69 .00 54 .18 79 .02 33 .01 46 .01 66 .02 30 .16	0 22.7 6 19.8 8 23.2 9 14.1 5 23.4 1 25.8 4 26.6 6 29.3	3.9 4.6 5.5 28.4 5.8 3.6 2.3 10.1	.14 1 .14 .22 1 .41 5 .34 1	45 .057 95 .049 19 .057 99 .373 81 .083 67 .071 70 .069	7 6.48 ; 9 6.18 ; 7 6.11 ; 3 8.56 ; 3 6.34 ; 1 6.49 ; 9 6.21 ;	2.763 4.19 2.602 4.00 2.929 4.17 2.628 2.50 .830 3.28 2.455 3.89 2.107 3.87	15.1 8.3 7.5 >200 >200	22.0 22.2 24.5 28.4 30.0	40 33 38 25 39	17.6 1 11.1 3.9 41.5 1 58.7 1	1.2 23. 8.6 22. 9.4 29. 6.9 34. 5.5 40.	1.1 2.8 1.9 2.6 1.1 3.2 1.6 1.0 1.9 2.7	8 3 6 3 2 3 0 7 7 8 6 4	3 1 2 1 2 11 11 4 18	17.3 12.3 9.4 19.6 32.6 29.8	.2 176 .2 179 .1 174 2.4 191 .9 197 .2 174 .3 161	8 1.2 2 1.2 4 1.3 2 1.3 5 1.5 6 1.5 8 1.6	6.0 2.6 3.6 5.6 3.7 5.4 6.2
4847 63.5 4848 16.4 4849 78.5 4850 132.9 4851 86.0 4852 142.2 4853 30.5 4854 3.9 RE 4854 3.9 RRE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	5 3 4 2 5 130 9 40 0 7 2 4 5 12 9 25 9 26 3 25 6 25 5 128	3.7 1 2.0 1 3.0 63 7.6 1 4.7 1 2.0 4 5.5 1 5.3 1	6.8 1 7.2 4.8 1 7.1 4 4.7 9.8 5.6 3.5 2.9	05 < . 11 < . 65 . 45 11 . 14 < . 17 . 68 . 94 . 90 .	1 1.8 1 .8 4 23.0 8 4.4 1 .3 1 .3 7 2.6 1 22.6 1 22.4	.2 .3 20.4 1 6.5 .6 .5 1.9 15.4 3 15.2 3	313 .63 307 .57 1997 5.45 761 1.90 307 .63 343 .73 905 1.47 3117 4.81	3 6 11. 7 7 11. 9 14 14. 0 1499 12. 3 26 10. 3 18 11. 7 75 15. 1 12 9. 1 13 8.	.4 < .1 .5 < .1 .8 < 1 .3 .5 .5 < .1 .1 < .1 .2 < .1 .3 < .1 .6 < .1	29.6 30.8 6.0 28.6 36.4 33.8 36.1 7.1 6.8	43 66 290 75 62 54 80 340 333	1.6 .1 .4 .7.3 4 <.1 <.1 .5	.5 .3 2.9 6.9 18 .6 1.0 3.0 3.1	.7 .3 30.0 868.0 1.9 10.2 20.2 5.1	4 6 241 3 33 4 2 16 121 3	54 .00 69 .00 54 .18 79 .02 33 .01 46 .01 66 .02 30 .16	6 19.8 8 23.2 9 14.1 5 23.4 1 25.8 4 26.6 6 29.3	4.6 5.5 28.4 5.8 3.6 2.3 10.1	.14 .22 1 .41 5 .34 1 .12 1 .16 1	95 049 19 057 99 373 81 083 67 071 70 069	9 6.18 ; 7 6.11 ; 3 8.56 ; 3 6.34 ; 1 6.49 ; 9 6.21 ;	2.602 4.00 2.929 4.17 2.628 2.50 .830 3.28 2.455 3.89 2.107 3.87	8.3 7.5 >200 >200	22.2 24.5 28.4 30.0	33 38 25 39	11.1 3.9 41.5 1 58.7 1	8.6 22. 9.4 29. 6.9 34. 5.5 40.	.9 2.6 .1 3.2 .6 1.6 .9 2.7	6 3 2 3 0 7 7 8 6 4	2 1 2 11 11 4 18	12.3 9.4 19.6 32.6 29.8 22.5	.2 179 .1 174 2.4 191 .9 197 .2 174 .3 161	2 1.2 4 1.3 2 1.3 5 1.5 6 1.5 8 1.6	2.6 3.6 5.6 3.7 5.4 6.2
4848 16.4 4849 78.5 4850 132.9 4851 86.0 4852 142.2 4853 30.5 4854 3.9 RE 4854 3.9 RRE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	4 2 5 130 9 40 0 7 2 4 5 12 9 25 9 26 3 25 5 128	2.0 1 0.0 1 0.0 63 7.6 1 4.7 1 2.0 4 5.5 1 5.3 1	7.2 4.8 1 7.1 4 4.7 9.8 6.6 3.5 2.9	11 <	1 .8 4 23.0 8 4.4 1 .3 1 .3 7 2.6 1 22.6 1 22.4	.3 20.4 1 6.5 .6 .5 1.9 15.4 3 15.2 3	307 .57 1997 5.45 761 1.90 307 .63 343 .73 905 1.47 3117 4.81	3 6 11. 7 7 11. 9 14 14. 9 149 12. 3 26 10. 3 18 11. 7 75 15. 1 12 9 1 13 8. 6 14 9.	.4 < .1 .5 < .1 .8 < 1 .3 .5 .5 < .1 .1 < .1 .2 < .1 .3 < .1 .6 < .1	29.6 30.8 6.0 28.6 36.4 33.8 36.1 7.1 6.8	43 66 290 75 62 54 80 340 333	1.6 .1 .4 .7.3 4 <.1 <.1 .5	.5 .3 2.9 6.9 18 .6 1.0 3.0 3.1	.7 .3 30.0 868.0 1.9 10.2 20.2 5.1	4 6 241 3 33 4 2 16 121 3	54 .00 69 .00 54 .18 79 .02 33 .01 46 .01 66 .02 30 .16	6 19.8 8 23.2 9 14.1 5 23.4 1 25.8 4 26.6 6 29.3	4.6 5.5 28.4 5.8 3.6 2.3 10.1	.14 .22 1 .41 5 .34 1 .12 1 .16 1	95 049 19 057 99 373 81 083 67 071 70 069	9 6.18 ; 7 6.11 ; 3 8.56 ; 3 6.34 ; 1 6.49 ; 9 6.21 ;	2.602 4.00 2.929 4.17 2.628 2.50 .830 3.28 2.455 3.89 2.107 3.87	8.3 7.5 >200 >200	22.2 24.5 28.4 30.0	33 38 25 39	11.1 3.9 41.5 1 58.7 1	8.6 22. 9.4 29. 6.9 34. 5.5 40.	.9 2.6 .1 3.2 .6 1.6 .9 2.7	6 3 2 3 0 7 7 8 6 4	2 1 2 11 11 4 18	12.3 9.4 19.6 32.6 29.8 22.5	.2 179 .1 174 2.4 191 .9 197 .2 174 .3 161	2 1.2 4 1.3 2 1.3 5 1.5 6 1.5 8 1.6	2.6 3.6 5.6 3.7 5.4 6.2
4849 78.5 4850 132.9 4851 86.0 4852 142.2 4853 30.5 4854 3.9 RRE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	5 130 9 40 0 7 2 4 5 12 9 25 9 26 3 25 6 26 5 128	7.6 1 4.7 1 2.0 4 5.5 1 5.3 1	4.8 1 7.1 4 4.7 9.8 5.6 3.5 2.9	65 11. 45 11. 14 < . 17 68 94 990 92 .	4 23.0 8 4.4 1 .3 7 2.6 1 22.6 1 22.4	20.4 1 6.5 .6 .5 1.9 15.4 3 15.2 3	1997 5.45 761 1.90 307 .63 343 .73 905 1.47 3157 4.81 3117 4.81	9 14 14. 0 1499 12. 3 26 10. 3 18 11. 7 75 15. 1 12 9. 1 13 8.	.8 < 1 .3 .5 .5 < 1 .1 < 1 .2 < 1 .3 < 1 .6 < 1	. 6.0 5 28.6 . 36.4 . 33.8 . 36.1 . 7.1 . 6.8	290 75 62 54 80 340 333	.4 .7.3 4 <.1 <.1 .54	2.9 16.9 18 1.6 1.0 3.0 3.1	.3 30.0 868.0 1.9 10.2 20.2 5.1	6 241 3 33 4 2 16 121 3	69 .00 54 .18 79 .02 33 .01 46 .01 66 .02 30 .16	8 23.2 9 14.1 5 23.4 1 25.8 4 26.6 6 29.3	5.5 28.4 5.8 3.6 2.3 10.1	.22 1 .41 5 .34 1 .12 1 .16 1	19 057 99 373 81 083 67 071 70 069	7 6.11 : 3 8.56 : 3 6.34 : 1 6.49 : 9 6.21 :	2.929 4.17 2.628 2.50 .830 3.28 2.455 3.89 2.107 3.87	7.5 >200 >200	24.5 28.4 30.0 29.8	38 25 39	3.9 41.5 1 58.7 1	9.4 29. 6.9 34. 5.5 40. 8.3 22.	.1 3.2 .6 1.0 .9 2.7	2 3 0 7 7 8 6 4	2 11 11 4 18 2 2	9.4 19.6 32.6 29.8 22.5	.1 174. 2.4 191 .9 197. .2 174. .3 161	4 1.3 2 1.3 5 1.5 6 1.5 8 1.6	3.6 5.6 3.7 5.4 6.2
4850 132.9 4851 86.0 4852 142.2 4853 30.5 4854 3.9 RE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	9 40 0 7 2 4 5 12 9 25 9 26 3 25 6 25 5 128	7.6 1 4.7 1 2.0 4 5.5 1 5.3 1	7.1 4 4.7 9.8 5.6 3.5 2.9	45 11. 14 < . 17 . 68 . 94 . 90 .	8 4.4 1 .3 1 .3 7 2.6 1 22.6 1 22.4 1 23.4	6.5 .6 .5 1.9 15.4 3 15.2 3	761 1.90 307 .63 343 .73 905 1.47 3157 4.81 3117 4.81	0 1499 12 3 26 10 3 18 11 7 75 15 1 12 9 1 13 8 6 14 9	.3 .5 .5 <.1 .1 <.1 .2 <.1 .3 <.1 .6 <.1	28.6 . 36.4 . 33.8 . 36.1 . 7.1 . 6.8	75 62 54 80 340 333	7.3 4 <.1 <.1 .5 .4	.6 1.0 3.0 3.1	1.9 10.2 20.2 5.1	33 4 2 16 121 3	79 .02 33 .01 46 .01 66 .02 30 .16	5 23.4 1 25.8 4 26.6 6 29.3	5.8 3.6 2.3 10.1	.12 1 .16 1	81 083 67 071 70 069	6.34 1 6.49 9 6.21	.830 3.28 2.455 3.89 2.107 3.87	>200 10.6	30.0	39 42	58.7 1 13.0	5.5 40. 8.3 22.	.9 2.7 .7 2.6	7 8 6 4	4 18 2 2	32.6 29.8 22.5	.9 197 .2 174 .3 161	5 1.5 6 1.5 8 1.6	3.7 5.4 6.2
A861 86 0 4852 142.2 4853 30.5 4854 3.9 RE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	0 7 2 4 5 12 9 25 9 26 3 25 6 25 5 128	7.6 1 4.7 1 2.0 4 5.5 1 5.3 1	4.7 9.8 5.6 3.5 2.9	14 <. 17 . 68 . 94 . 90 .	1 .3 1 .3 7 2.6 1 22.6 1 22.4	.6 .5 1.9 15.4 3 15.2 3	307 .63 343 .73 905 1.47 3157 4.81 3117 4.81	3 26 10 3 18 11 7 75 15 1 12 9 1 13 8 6 14 9	.5 <.1 .1 <.1 .2 <.1 .3 <.1 .6 <.1	. 36.4 . 33.8 . 36.1 . 7.1 . 6.8	62 54 80 340 333	<.1 <.1 .5	.6 1.0 3.0 3.1	1.9 10.2 20.2 5.1	4 2 16 121 3	33 .01 46 .01 66 .02 30 .16	1 25.8 4 26.6 6 29.3	3.6 2.3 10.1	.12 1 .16 1	67 .071 70 .069	1 6.49 ; 9 6.21 ;	2.455 3.89 2.107 3.87	10.6	29.8	42	13.0	8.3 22.	.7 2.6	6 4	2 2	29.8 22.5	.2 174	6 1.5 8 1.6	5.4 6.2
4852 142.2 4853 30.5 4854 3.9 RE 4854 3.9 RRE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	2	4.7 1 2.0 4 5.5 1 5.3 1 5.5 1 5.4	9.8 5.6 3.5 2.9 2.5 7.4	17 68 94 90 92	1 .3 7 2.6 1 22.6 1 22.4 1 23.4	.5 1.9 15.4 3 15.2 3	343 .73 905 1.47 3157 4.81 3117 4.81	3 18 11. 7 75 15. 1 12 9. 1 13 8. 6 14 9.	.1 <.1 .2 <.1 .3 <.1 .6 <.1	33.8 36.1 7.1 6.8	54 80 340 333	<.1 .5 .4	1.0 3.0 3.1	10.2 20.2 5.1	2 16 121 3	46 .01 66 .02 30 .16	4 26.6 6 29.3	2.3 10.1	.16 1	70 .069	6.21	2.107 3.87									22.5	.3 161	8 1.6	6.2
4852 142.2 4853 30.5 4854 3.9 RE 4854 3.9 RRE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	2	4.7 1 2.0 4 5.5 1 5.3 1 5.5 1 5.4	9.8 5.6 3.5 2.9 2.5 7.4	17 68 94 90 92	1 .3 7 2.6 1 22.6 1 22.4 1 23.4	.5 1.9 15.4 3 15.2 3	343 .73 905 1.47 3157 4.81 3117 4.81	3 18 11. 7 75 15. 1 12 9. 1 13 8. 6 14 9.	.1 <.1 .2 <.1 .3 <.1 .6 <.1	33.8 36.1 7.1 6.8	54 80 340 333	<.1 .5 .4	1.0 3.0 3.1	10.2 20.2 5.1	2 16 121 3	46 .01 66 .02 30 .16	4 26.6 6 29.3	2.3 10.1	.16 1	70 .069	6.21	2.107 3.87									22.5	.3 161	8 1.6	6.2
4853 30.5 4854 3.9 RE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4859 67.2 4860 29.8 4860 29.8 4861 187.2 4862 210.5 4863 181.8	5 12 9 25 9 26 3 25 6 25 5 128	2.0 4 5.5 1 5.3 1 5.5 1 5.4	5.6 3.5 2.9 2.5 7.4	68 94 90 92	7 2.6 1 22.6 1 22.4 1 23.4	1.9 15.4 3 15.2 3	905 1.47 3157 4.81 3117 4.81 3077 4.86	7 75 15. 1 12 9. 1 13 8. 6 14 9.	.2 < 1 .3 < 1 .6 < 1	36.1 7.1 6.8	80 340 333	.5 . 4	3.0 3.1	20.2 5.1	16 . 121 3	66 .02 30 .16	6 29.3	10.1																
RE 4854 3.9 RRE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	9 26 3 25 6 25 5 128	5.3 1 5.5 1 5.4	2.9 2.5 7.4	90 92 . 67	1 22. 4 1 23. 4	15.2 3 15.2 3	3117 4.81 3077 4.86	1 13 8. 6 14 9.	.6 <.1	6.8	333						5 32.9				0.33	2.414 4.09	26.7	39.8	48	39.6 1	1.4 23.	.1 2.4		4 4	4.0	.6 240.		
RRE 4854 4.3 4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	3 25 6 25 5 128	5.5 1 5.4	2.5	92 . 67 .	1 23.4	15.2 3	3077 4.86	6 14 9				.4	2.8	5.9	122 3.			55.8	.80 8	27 416	7.74	1.740 3.20	14.5	100.9	60 1	12.2 1	7.4 16.	.7 .0	9 6	12 17	/8.2	.3 422	2 2.7	3.4
4855 3.6 4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	6 25 5 128	5.4	7.4	67					.2 < .1	7.0						25 .16	1 32.7	52.7	.77 8	11 .435	7.61	1.632 3.15	14.6	99.8	58 1	10.7 1	7.0 16.	.6 .9	9 6	12 17	5.2	.3 416	5 2.7	
4856 25.5 4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	5 128				1 26.0	16.6 1	ECA A 95			. /.u	350	.4	3.1	5.7	127 3	32 .17	1 32.9	53.9	79 8	33 .443	3 7.76	1.795 3.14	13.3	106.4	59 1	12.9 1	6.9 16.	.5 .5	9 5	12 17	73.7	1.3 403.	2 2.8	
4857 11.3 4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8		3.5	8.7 2	DÜ .			.504 4.82	2 12 4	.6 <.1	6.6	456	.1	1.9	4.7	124 3	25 .16	5 32.6	61.1	90 8	33 .395	7.50	2.210 2.57	8.3	102.2	58 1	35.0 1	4.4 14.	.1 .5	9 4	12 15	2.0	. 2 345	6 2.6	9.0
4858 31.9 4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8	3 3				2-17.1	27.3 2	2069 6.46	6 6 9.	.4 <.1	5.8	335	. 2	1.1	7.9	296 3	42 .18	9 12.0	32.1	2.29 18	25 .472	8.01	3.014 2.93	40.4	16.6	23	6.1.1	6.4 16.	.2 .7	7 6	16 9	15.5	.2 159	7 .8	5.8
4859 67.2 4860 29.8 4861 187.2 4862 210.5 4863 181.8		3.4 1	9.E	40 <	1 13.4	7.6	930 2.20	0 9 9.	.6 <.1	23.8	248	.1	.6	.8	58 1.	91 .07	5 32.5	26.7	.82 5	23 . 241	6.63	2.392 3.31	11.6	66.6	55	23.5 1	2.3 23.	.8 1.5	9 3	7 9	14.9	.4 191	5 2.2	6.€
4860 29.8 4861 187.2 4862 210.5 4863 181.8	9 1	1.9 1	6.4	15 <.	1 .3	.4	297 .66	6 8 9.	.8 <.1	35.9	44	<.1	.4	. 7	9.	38 .00	8 26.2	2.9	.10 1	67 .073	6.22	2.412 4.09	14.8	31.4	43	3.9	9.7 27.	.7 2.7	7 3	3 3	17 9	.I 151	0 1.6	5.9
4861 187.2 4862 210.5 4863 181.8	2 5	5.1 2	4.9	12 .	1 .3	.3	296 .70	0 14 8	.7 < 1	35.0	37	<.1	.6	10.7	2	33 .00	8 23.4	4.7	.09 1	19 .060	6.26	2.325 4.11	34.2	28.7	39	5.1	9.3 25.	.7 2.5	5 3	3 2	27.8	.3 151	6 1.4	5.€
4862 210.5 4863 181.8	8 5	7 4	0.3 3	71 .	3 .5	.3	462 .83	3 14 9.	.2 <.1	37.9	38	5.4	1.3	16.3	5	39 .00	8 23.4	4.4	.11 1	09 .060	6.44	2.212 3.82	89.5	29.0	39	11.9 1	1.2 27.	4 2.5	8 3	3 5	8.8	.3 180	1 1.4	5.9
4863 181.8	2 3	.4 1	4.2	18 <.	1 .8	.4	236 .70	0 5 5.	.7 <.1	31.3	58	<.1	.4	.9	6	29 .01	4 35.3	7.0	.07 3	27 .079	6.38	2.418 3.82	6.6	26.5	57	3.5 1	0.3 22.	.2 2.0	0 3	2 2	1.1	.1 140	0 1.2	6.2
	5 2	2.0 1	2.6	18 <	1 .9	. 5	195 .61	1 4 5	.8 < .1	. 30.4	57	<.1	3	.9	7	27 .01	5 31.7	4.2	.10 3	44 .079	6.28	2.289 4.06	6.2	25.9	51	4.8	9.2 21.	.9 2.0	0 3	2 2	7.2	.1 153	1 1.2	6.4
4864 99.8	8 1	1.7 1	2.1	17 <.	1 1.1	.6	259 .68	8 5 5.	.6 <.1	30.4	61	<.1	.2	. 2	5	41 .01	3 29.1	11.0	.11 3	31 .078	6.32	2.447 3.91	5.1	29.4	47	3.8	9.6 23.	.8 2.1	1 2	2 2	.1.4	.1 133	8 1.4	6.5
	8 1	1.3 1	3.6	16 .	1.9	.6	209 .67	7 5 4	.i <.1	31.8	66	<.1	.2	. 1	7	37 .01	3 30.2	6.8	.10 3	49 .079	6.38	2.653 3.98	4.4	25.1	50	1.2	9.6 25.	.4 2.7	2 3	2 1	8.5	.1 122	5 1.2	6.€
4865 176.7	7 2	.3 1	2.4	12 <.	1 .5	. 6	245 .70	0 4 4	.5 <.1	. 33.1	56	<.1	.2	.1	6	37 .01	3 31.3	5.0	.11 2	75 .077	6.51	2.518 4.07	4.4	28.0	51	1.0 1	0.3 25	.1 2.2	2 3	2 1	5.4	.1 123	5 1.3	6.7
4866 60.5	5	1.6 1	4.5	17 <.	1 .6	.6	315 .76	6 5 5.	.8 <.1	32.3	64	<.1	.2	.1	8	47 .01	2 30.0	6.1	.12 3	78 .D84	6.51	2.621 4.20	5.0	29.9	48	1.6 1	1.5 26	.1 2.5	3 3	2]	5.9	.1 139	6 1.4	6.9
4867 83 2	2 1	1.0 1	4.8	17 <.	1 .7	.5	283 .70	0 4 5	.6 <.1	33.0	64	<.1	.1	<.1	11	44 .01	2 31.4	7.5	.12 3	45 .083	6.28	2.534 4.11	5.9	28.5	52	1.0 1	1.2 26	.2 2.0	3 3	2 2	5.7	.1 122	9 1.4	6.7
4868 231.9	9]	1.0 1	4.6	18 <	1 .7	. 6	321 .76	6 5 6	.0 <.1	32.6	63	<.1	.1	<.1	7	44 .01	3 31.7	5.7	.12 3	04 .077	6.45	2.483 3.95	6.3	28 1	52	1.2 1	0.4 24.	.7 2.1	1 3	2 3	2.4	.1 119	7 1.3	6.3
4869 89.9	9 1	111	3.6	15 <	1 .6	. 6	270 .69	9 5 5.	.8 <.1	34.9	47	<.1	.1	<.1	6	33 .01	1 28.8	5.6	.11 2	07 .077	6.30	2.338 4.15	4.2	30.9	48	1.0 i	0.7 27.	.3 2.4	4 3	2 7	2.2	.1 124	7 1.4	4.9
4870 61 9	9 5	5.4 1	3.6	II <.	1 .4	. 5	290 .67	7 5 9	.3 <.1	36.0	41	<.1	. 1	<.1	4	34 .01	4 26.6	3.6	.09 1	73 .072	6.15	2.491 3.60	5.5	33.7	45	1.2	9.0 26.	.3 2.3	3 3	2 3	15.2	. 1 127	0 1.6	5.9
4871 133.6	6 1	3.4 1	6.1	14 <	1 .4	. 3	298 .60	0 5 7.	.9 <.1	33.7	39	<.1	.2	< 1	3 .	30 .00	6 23.8	5.2	.09 1	86 .065	6.23	2.767 4.07	3.9	33.4	40	1.0	8.2 27.	.3 2.4	4 4	2 2	8.9	1 144	6 1.7	6.0
4872 191 4		3.5 1	5.4	12 <.	1 .6	.4	304 .59	9 5 7.	.2 <.1	. 33.7	43	<.1	.1	<.1	2 .	38 .00	7 23.9	3.4	.09 1	90 .064	6.27	2.657 3.92	4.3	32.7	39	1.1	8.2 25.	.8 2.7	3 3	2 3	10.4	.1 144	9 1.6	6.1
4873 160.5			۵ ء	12 <	1 .3	.4	317 .63	3 6 8	.8 <.1	. 34.3	44	<.1	.3	. 1	4	40 .00	8 24.8	3.8	.10 1	82 .071	6.34	2.762 3.99	7.2	34.4	41	1.2	8.7 26.	.9 2.5	5 3	2 2	.7.3	.1 154	6 1.7	6.0

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HN03-HCL-HF TO 10 ML. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-MS.

- SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

DATE RECEIVED: MAR 27 2006 DATE REPORT MAILED: ./.

Mar 29/2006

Page 2

	SAMPLE#	Mo	€u Pb	Zn.	Ag	Ni	Co	Mn F	e As	Ų	Au	Τh	Sr	Cd S	b B	i V	Ca	P	La	Cr	Ma	Ba	Tı	A1	Na	К	W	Zr	Се	Sn	Y	Nb T	а Ве	 e S/	c Li	s	Rb	Hf S	Sample	
		ppm	ррт ррт	n ppm	ррп	ррт ј	opm p	ρm	≇ ppm	ррт	ppm	ррт	ppm p	om pp	прр	ві ррт	*	ž	ррп	ppm	ž	ppm	ı	1	1	2	рртя	ppm	ppm	ррт	ppm	ррив рр	т рря	n ppr	п ррп	1	ppm	ppm	kg	
												_																												
	G-1	. 2	3.0 25.3	61	<.1	58	4.0 7	36 2.3	3 5	4.0	<.1	8.0	795 <	.1 .	1.	2 53	2.65	.080	26.0	12.8	. 61	1075	. 295	8.30	2.897	3.03	. 2	8.7	50	1.3	14.7	21.1 1.	7 3	3 5	5 42.4	<.1	127.8	7	-	
-	4874	239.6	4.2 16.7	11	<.1	.5	.4 2	93 .6	4 5	10.3	<.1 4	10 0	50 <	.1 .	2.	1 3	.55	.008	28.3	4.9	.12	214	.070	6.70	2.601	3.93	7.0	36.6	47	.9	9.1	24.8 2.	1 3	3 ?	3 32.3	.1	145.8	1.8	5.30	
			2.3 18.3																																					
			3.9 18.9																																					
	4877	327.1	2.8 26.6	15	. 3	.6	.5 3	24 .6	8 5	11.0	<.1 3	32.7	49 <	.1 .	6 25.	4 3	. 21	.007	22.3	2.8	.09	175	. 067	6.70	1.861	4.20	94.0	33.4	36	12.6	6.5	21.6 1.	8 3	3 2	2 35.8	.3	188.6	1.8	5.96	
			2.0 15.3																																					
			1.6 20.7																																					
			2.9 27.0																																					
	4881		1.4 18.8																																					
	4882	198.5	2.3 27.3	31	< . 1	.7	.4 2	67 .5	3 6	9.3	<.1 3	39.0	36 <	.1 .	3.	2 3	. 72	.007	27.6	2.9	. 05	150	.066	6.75	2.572	3.95	7.7	28.5	46	3.9	9.3	26.5 2.	6 3	3 2	2 26.1	.1	166.4	1.6	6.40	
									_						_																			_						
	4883		1.1 19.2																																					
	4884		1.6 18.7																																					
	4885		3.2 36.3																																					
	4886 4887		2.2 37.2																																					
	4887	69.9	2.6 20.2	24	<.1	.5	.2 5	13 .6	5 b	12.6	<.1 -	16.7	32 <	.1 .	4 2.	b 5	. 28	.005	23,4	4.8	.07	126	.058	b.3b	2.400	3.87	51.3	32.2	39	6.4	9.4	27.0 2.	3 3	1 3	3 28.3	.1	1/5.3	1.7	4.24	
	4888	92.1	2.4 26.3	26	- 1	4	2 6	11 6	2 2	14.3	-1	10 6	40	2	. 2	. 2	35	nne	27 0	3 1	na	127	066	6 /3	2 671	4.14	32.2	35.5	46	11 2	11 0	33 N 2	9 /	, ,	3 65 6	1	206 3	1.8	4 NR	
	4889		.8 17.5						-													-																		
	4890		1.1 16.0																																					
	4891		2.3 18.3																																					
			1.5 20.9																																					
		• • • • •	1.5 20.5		_					3.0			50						2	• •											•									
	4893	139.4	1.4 16.7	9	< 1	. 4	.2 2	34 .4	7 5	10.5	<.1 3	39.4	31 <	1 .	3 1	2 1	.18	.005	28.8	4.1	. 05	133	.062	6.67	2.589	4.48	18.4	32.0	48	3.8	9.8	26.0 2.	4 3	3 :	18.8	.1	169.0	1.5	6.10	
	4894	50.8	.7 15.2	11	<.1	7	.2 3	57 .5	1 6	14.8	<.1	39.0	35 <	.1	3 .	9 4	.17	.007	27.7	2.6	.06	116	G64	6.53	2.045	4.35	16.9	31.1	46	4.0	10.2	30.4 2.	5 3	3 7	3 65.2	.1	158.2	1.6	5.70	
	4895	106.5	2.6 31.6	143	.5	.4	.2 5	33 .8	6 10	14.0	<.1 :	38.4	20 1	. 8	7 35.	9	.27	. 005	24.8	5.2	.08	94	.056	5.99	1.726	3.96	27.4	29.2	41	42.2	9.6	22.4 2.	1 3	3 ?	3 48.2	.4	249.0	1.4	5.28	
	4896	66.1	1.1 18.6	82	< 1	.5	<.2 4	87 .5	9 8	12.2	<.1	10 4	23 1	0 .	5 2.	6 4	.40	.005	25.8	5.7	.07	89	067	6.43	2.739	4.18	28.8	37.8	44	13.0	10.4	35.8 3.	1 4	4 3	40.2	.1	178.5	1.8	5.56	
	4897	15.4	.9 18.5	18	<.1	.6	.2 4	33 .5	8 6	15.1	<.1 3	39.8	27	.1 .	3 1	4 3	. 27	.005	24.5	6.1	.06	99	060	6.79	2.825	4.07	20.7	31.5	40	4.0	10.3	28.3 2.	6 3	3, 3	3 49.4	.1	175.6	1.4	6.64	
	4898	23.2	3.8 58.4	47	1.1	.9	.2 4	87 .8	6 8	17.4	<.1 3	35.1	18	.5 1.	4 95.	4 4	. 27	.007	22.0	5.6	.05	69	.048	6.35	2.555	3.82	109.8	28.1	38	19.0	10.7	28.1 2.	6 3	3 3	38.4	.4	233.3	1.3	6.54	
	4899	14.7	2.4 30.0	26	.1	. 5	.2 4	37 .8	4 10	18.2	<.1 3	39.4	21	.3 .	6 22.	7 3	.22	.004	24.0	5.1	. 05	89	.055	6.95	3.129	4.24	158.0	32.9	40	11.1	11.O	34.6 3.	0 4	4 3	3 25.9	. 4	219.1	1.5	5 38	
	4900	28.4	1.6 29 9	52	.2	.7	<.2 3	19 .5	4 8	18.5	<.1	37.0	17	.6 .	5 18.	9 1	. 19	.004	23.1	7 6	.06	70	.049	6.35	2.505	3.91	106.5	28.5	39	28.1	10.5	28.8 2.	7 3	3 3	3 30.6	. 2	223.4	1 4	6.90	
	4901		1.3 37.1																																					
	4902	96.5	1.4 19.1	. 17	< <u>, l</u>	.4	<.2 2	59 .5	1 7	13.6	<.1	34.2	17 <	.1 .	4 1.	4 2	. 23	.003	21.3	4.3	. 04	70	.053	6.32	2.699	4.03	28.7	29.3	35	4.9	9.7	31.8 2.	8 3	3 3	3 13.1	. 2	174.3	1 4	6.36	
	4903		1.4 18.0													_																								
	RE 4903		1.4 18.9																																				•	
	RRE 4903		1.4 19.2						_																															
	4904		1.7 23.3																																					
	4905	9.5	2.9 19.9	18	<.1	.9	<.2 3	50 .5	2 8	12.1	<.1 3	sQ.7	20	.1 .	5 1.	b 1	. 24	.007	19.0	6.1	.Ų4	55	. 647	6.00	2.632	5.62	53.3	26.6	32	5.5	10.6	31.b 2.	э 3	3	51.6	.1	170.9	1.3	0.36	
	CTANDADD CCTC	10.6			2.0	10 E 1	21.2					ć a	200 0			c 114	2 20	000	25.3	227.6	00	C7E	140	6.00	1 667	1 40	7 5	62.2	61	6 2	15.0	a 1	٠ -	5 11	24.4	- 1	ε ε :	1 7		
	STANDARD DST6	12.4	127.8 35.0	173	.3 3	90.5 l	5.1 9	b2 4.0	b 25	7.3	۲.,	b.B	JU6 5	.4 5.	. 4	0 114	2.29	.099	25.1	231.6	. 99	0/5	.442	0.98	1.66/	1.40	7.5	52.2	56	0.2	15.0	D.1 .	0 3) 11	1 24.4	۷.1	50.1	1./	<u> </u>	

Page 3

	SAMPLE#	Mo	Cu	Ph	7n	Ac	Ní	Co	Min	FΔ	Δc	11	Au Th	5	- CA	Sh	R	V	Ca		1 2	Cr	Ma	B > .	T	17 N	r	S.I	Zr	r _a	Sn	Y N	th Ta	Be	Sc	1 i	5	Rb	Hf Sa	mn1a	
	5 P 12.5					-							реп ррп									ppm	_														-				
		polii	ppiii	PPIII	ppiii	ppili	ppui		- III		- I	Diri Di	hai bhi		п рран	ppii.	- PPI	и БЪШ		*	Ppm	ррю	- P	рін	<u> </u>	<u> </u>			þþill	ppiii	ypiii pt	JIII PP	in ppin	- ppm	ppiii	———		υμш	hhu	- Kg	
	G-1	2	2.4	22.0	r.r	- 1	2.0	4	744.0	25	4 1		1 7 0	721		- 1			2 (5	004	22.7		50 0	07 79	01 0 1	00 0 70	0 : 0 04	,		40	1 14	0 10		2		27.1	-1 1	101 1	7		
i																						5.2																			
	4913																					3.4																			
																						1.5																			
1	4915																					4.0																			
	4916	70.1	9.9	128.1	98	1.1	1.0	4 7	763 1.	.09	17 22	.4 <	.1 36.1	3:	7 1.3	5.1	85	5	.15	.006	20.8	3.0	.07 1	09 .01	52 6.2	29 2.14	6 3.73	147.6	42.4	39 1	.0 11	0 37.	0 3.3	4	4	67.0	.5 2	242.8	2.3	6.80	
	4917	39.8	5.8	47.3	49	. 2	. 5	.4 5	590 .	.92	12 22	.9 <	.1 34.2	. 39	3 [4	1.5	22.	2 4	.17	.007	23.4	1.9	.07 1	11 .0	50 6.5	1 2.16	7 4.00	137.8	38.3	42 1	2.8 11.	.1 37.	9 3.1	4	4	73.5	.4 2	254.6	2.1	6.56	
	4918	57.4	12.0	203.3	239	3.4	.7	.6 10	008 1.	.40	52 42	.9 <	.1 32.1	28	3 2.9	10.1	142.5	3	.12	.006	23.1	6.4	.07 1	15 .0	47 5.9	91 2.00	4 3.62	>200	39.6	41 2	.9 11.	.4 42.	5 3.6	3	4	34.1	.7 2	258.5	2.D	6.84	
	4919	32.8	4.6	101.3	104	.9	1.3	.3 8	801 .	.88	17 26	.4 <	.1 36.6	- 20	5 1.2	4.8	97.9	2	.16	.006	23.9	2.5	.06 1	19 .0:	58 6.3	32 2.42	3 3.92	>200	36.6	43 1	5.5 12.	0 46.	6 3.7	3	4	27.8	.3 2	256.3	1.9	6.80	
	4920	32.6	8.9	107.4	100	1.4	6	.5 7	743 1.	.34	20 39	.6 <	.1 33.0	30	3 1.1	5.1	69.	5 5	.21	.007	20.5	4.2	.06 10	04 .09	57 6.E	19 2.34	9 3.58	154.7	40.8	36 18	3.3 12.	2 43.	3 3.4	4	3	37.4	.6 2	232.1	2.0	6.60	
	4921	66.9	2.9	458	24	. 1	.4	4 E	535 .	. 69	10 32	.4 <	.1 37 8	33	3 1	1 3	19.1	()	. 26	.007	23.2	1.8	.04 1	11 .0	69 6.3	30 3.02	1 4.05	53.7	44.1	41	3 12	.0 51.	4 3.9	4	3	35.7	.1 2	238.2	2.3	7.06	
	4922	13.7	3 6	44.9	24	.2	.5	4 4	450	. 75	9 21	.4 <	.1 35.1	39	9 .3	1.5	17.4	1 1	.16	.006	22.6	.8	.06 1	19 .0	56 6.4	6 2.60	8 3.99	85.9	43.2	39 10	1.5 13.	.2 38.	4 3.1	4	3	51.4	.2 2	248.7	2.2	5.36	
	4923	10.6	3.0	28.5	18	< .]	4	3 €	601	77	9 14	7 <	1 35 4	4	1 1	4	1 1	. 1	14	006	23.3	.6	06 1	19 0	62 6 6	S8 1 84	1 3 85	57.7	39 9	41	10 10	5 43	9 3 5	6	3	232 fi	2 2	232 9	2 2	6 24	
																						1.3																			
	4925																					1.1																			
																						2.6																			
	,	42.0	2.0	30.3	4.7	-		. 5 4	130 ,	,11	7 10		.1 99.1	٠.	7 7.1	. 0	10.1	, ,	.21	. 000	21.0	۷. ن	.05 11		JJ 6.4	·5 2.55	J J.72	33.0	33.1	J	, J 10.	., .,	2 6.7	7		31.7	.2 2	.17.4	L . L	0.10	
	4927	en 2	2 6	24 0	76	- 1	z	E /	150	0 1	10.25	2 -	1 26 0		1 - 1	,	14.4	: 1	20	003	25 6	4.5	07 7	97 n	c1 6 2	12 7 72	c 4 no	>200	42.7	AE .	2 11	0 42	0 2 4	£	2	46.1	2 -	240 2	2 1	£ 10	
																						1.4																			
+	4929																					1.7																			
																						1.3																			
	4931	10.5	2.2	56.2	45	.5	.1	.4 5	512 .	.87.	11-17	.u <	.1 33.6	/(/. د	1.2	27.1) 3	.18	.013	24.5	2.2	U/ 13	89 .01	69 6.5	2 2.44	9 4,14	82.8	49.6	42 Į.	Z 11.	.5 41.	0 3.2	. 5	d	82.8	.2 2	254.4	2. i	1.44	
																																		_							
ſ	4932																					1.4																			
ſ	4933																					2.6																			
l																						3.3																			
	4935	18.8	7.5	45.8	34	.3	. 7	.2 3	385 1.	.06	29 13	.5 <	.1 36.1	71	5 .4	2.0	43.	4	.53	.007	24.2	1.4	10 18	80 .0	53 6.6	1.55	0 3.84	157.2	52.9	42 1	i.4 11.	.2 42.	5 3.4	14	3	61.6	.4 2	239.8	2.7	7.12	
	4936	31.6	7.3	36.8	40	.1	.5	.3 5	512 1.	. 35	28 12	.3 <	.1 33.4	6	1 .5	2.0	37.	5 4	.46	.005	21.1	3.1	09 1	46 .04	49 6.0	1.72	0 3.51	>200	47.7	37 2	.4 11.	.2 42.	9 3.2	12	4	28.6	.6 2	215.9	2.5	7.14	
	RE 4936	32.7	6.8	39.4	39	. 1	.6	.3 5	515 1.	. 37	30 12	.8 <	.1 33.0	6	3 .4	2.1	40.1) 6	. 46	.006	21.3	3.9	.09 1	50 .04	49 5.9	9 1.76	2 3.45	>200	48.2	37 27	2.3 11.	4 44.	6 3.4	11	4	28.3	.6 2	214.7	2.6	-	
	RRE 4936	34.9	6.1	38.4	44	.2	.3	.2 4	496 1.	. 25	34 12	.4 <	.1 34.1	61	5 .5	1.9	30.	5	. 47	.006	22.8	3.0	.09 1	70 .04	49 6.1	4 1.73	8 3.55	>200	53.5	39 2	.6 12.	0 43.	8 3.5	13	4	28.5	.5 2	220.2	2.9	-	
	4937	6.9	3.4	34.0	16	<.1	. 5	.3 2	265 1.	.16	18 18	6 <	.1 33.6	6	3 .2	1.7	20	. 5	. 43	.006	23.6	2.5	.07 1	62 .04	42 6.2	27 1.89	0 3.83	>200	50.7	39 2	1.6 11.	5 34.	4 3.0	7	4	60.8	.6 2	227.6	3.0	6.96	
	4938	7.7	6.B	56.2	25	.1	. 3	.3 3	374 1.	. 26	20 26	.1 <	.1 36.1	78	.4	2.6	47.	5 2	.47	.006	21.6	1.7	.09	96 .0	55 6.5	50 1.62	2 3.85	>200	52.6	37 18	6.6 12.	.7 44.	9 3.7	8	4	88.1	.5 2	223.3	2.8	7.88	
	4939	8.4	6.1	38.3	40	.1	. 6	.2 3	397 .	. 90	13 19	.8 <	.1 33.0	64	3 .5	1.1	20	7 6	.48	.007	20.7	1.4	.09	84 .0!	52 5.9	.80	9 3.38	>200	48.5	35 1	.9 11	7 39.	8 3.6	7	4	113.5	.2 1	194.6	2.5	6.18	
	4940	38.5	11.5	53.4	43	.3	1.8	9 5	517 1.	26	89 21	.0 <	.1 34.1	17	3 .4	2.4	54.1	16	.86	.015	23.3	2.1	. 20 1	02 .04	68 6.0	35 .11:	5 2.82	>200	54.2	3B 29	.8 13.	7 44,	7 4.0	14	4	144.9	.5 1	189.0	3.0	3.06	
ļ																						83.2																			
1	4942																					81.5																			
1	4943																					102.5																			
1	4943 4944																					13.5																			
	7744	J0. U	14.3	10.J	30	.1.1	14.7	7.0 12	207 I.	. 01	10 44	., <	. 4 29.0	13	1	2.7	10.	, 34	.43	. 005	J-4 . U	U. U.	. 2.3 4		<u>.</u>	A 2.00	u u.os	70.6	U	UU 14	13.		۰ د ۷	-	,	J. 1	2				
}	CTANDADD BCTC	10 (1	י דח	25.3	170				007 1	07	ar ·	·	1 7 1	30				: 114	1 20	607	24.0	220 6	1.00 €	75 4	A) 6.7	na 1.76	6 1 An	7 -	EC 1	63	1 14	0 0	2 6	4	16	24.0	e 1	57 7	1 7		
	STANDARD DST6	12.5 l	27.1	35 . I	1/6	.3	JU.Y 1	J.U 9	90Z 4.	.0/	25 <i>1</i>	.5 <	.1 /.1	30	5.5	5.4	4.	114	2.29	.097	24.9	23U.b	I.UU b	70 .4	41 0.5	93 I.06	7 1.4⊍	7.5	JD . 4	30 1	, 1 14.	. 7 6.	د .b		10	ć4.9 °	~.1	J1.1	4 . /		

Page 4

SAMPLE#	Mo	Cu f	b 2	n.	Ag	Ni	Со	Mri	Fe	As .	U Au	ťh	Şr	Çd	Sb	B1	٧	Ca	ı	, [:	a ()r 1	4g	Ва	Tí	Αì	Na	ĸ	W	Zr	Сe	Şn	γ	Nb	Ta	Be	Sc	Li	\$	Rb	Hf	Sample	
 	ppm	ppm pp	m pş	om p	pm p	pm	ррт	ppm	ţ	ррт рр	m ppa	ррт	ррт	ppm	ppm	ppn	n ppm	1	:	pp	m pp	anc	¥	ppm	Į.	1	ţ	ı	ppm	ppm	ppm	ррп	ppm	ppm	ppm	ppm	ррт	ppm	1	ррп	ppm	kg	
6-1	2	2.7 23		: .	1 0		4 2		25	9 2	E - 1		760	_ ,	- 1		F1	2 10	001	21	F 0	c .	ro 11	06	274	7 04	2 005	2.05		7 5	47	1.2	12.0	21.4	1.6			26.3	- 1	112 6			
4945																																											
.,		2.4 15																																									
4946		3.2 63															-								-																		
4947	101.4	2.0 71	5	70	4	.5	.5	306	1.12	7 11.	5 <.1	35.5	34	. 5	2.4	36.0	4	.12	.00	23.	5 - 2.	3 .	10	97 .	050	5.93	1.160	3.63	>200	31.2	42	20.3	7.4	23.3	1.9	4	2	31.3	. 7	217.1	1.4	5.08	
4948	84.8	2.4 57	8 7	12	.3	.6	. 3	955 1	. 59	6 11.	9 < .1	32.7	37	.4	2.1	80.7	4	. 23	.00	23.4	0 4.	.6	18	131 .	047	5.49	1.678	3.38	>200	27 . 4	41	22.5	7.9	21.7	1.9	3	2	26.5	1.2	215.8	1.2	4.44	
4949	E1 4	4.0 16		14 -	,	0	,	242	70		7 - 1	22 0	27	- 1	1.0	7 ,	,	20	Da.	, 10	, ,		no .	160	000	E 70	2 550	2 67	42.4	20.0	12	4.1	0.7	25.0	2.2	2	-	10.6	,	176 2	1 2	E 10	i
										-							-																										
4950		4.1 16																																									
RE 4950		4.3 18.																																									
RRE 4950	94.4	4.1 16	5]	11 <	.1	.5	.3	385	.76	5 10.	1 <.1	32.7	39	< .1	.5	6.7	4	. 34	.007	24.	4 2.	6 .1	38	161	064	6.08	2.634	3.64	13.8	32.8	43	2.5	8.5	25.5	2.3	3	Z	13.6	. 2	169.1	1.4	-	
4951	77.5	5.0 18	1 1	0 <	.1	.7	. 4	317	.72	5 9.	9 <.1	33.1	39	<.1	.5	.6	5	. 29	.008	25.0	0 2.	.4 .1	38	173 .	860	6.01	2.656	3.57	11.2	34.2	43	2.0	8.5	27.0	2.3	3	2	14.9	. 1	158.3	1.5	6.26	
4952	112 1	4.4 14.	1	7 -	1	4	,	106	61	4.10	9 - 1	32 6	22	- 1		1.2		15	ĐO:	2 22 .	3 1	7 1	16 1	151	057	E 03	2 401	2 93	10 5	32.2	41	2 0	7.6	22 0	10	3	2	20 3	2	164 3	1.4	5 5/	
4953																																											
		4.8 14.																																									
4954		3.1 27																																			_						
4955		2.1 24															_					-																					
4956	86.1	2.3 50	4 5	57	. 1	. 6	. 3	505	. 9 0	6 12.	5 <.1	32.9	26	. 3	1.3	6.0	4	. 18	.006	24.3	3 1.	8 .	07]	126 .	056	6.31	1.968	3.70	>200	29.9	42	9.7	8.0	24.9	2.3	3	2	23.8	. 5	192.9	1.3	5.48	
4957	47 7	2.0 15	2 1	14 <	1	R	2	382	73	4 11	∆ < 1	32.5	25	< 1	5	4 8	, ,	24	609	21:	2 1	RI	16 1	104	047	5 RR	2 107	3 96	61.4	27 2	38	7 A	7.0	20.4	1.8	3	2	18 4	3	179 6	12	4 58	i
4958		2.1 14	-														_					-			-																		
4959		1.8 14	_	-									_				_					-									-			-	-								
			-	_													_					-						7.			-												
4960		2.3 15																																									
4961	22.5	1.7 17	1 1	1 <	.1	.5	.2	301	.72	5 13.	2 <.1	37.7	29	<.1	.3	1.7	3	. 33	.005	24.0	0 4.	6 .()6	93 .	052	6.30	2.811	3.95	62.4	31.4	43	5.5	9.3	30.6	2.8	5	3	16.4	. 3	193.3	1.5	6.26	
STANDARD DST6	12.6	28.8 35	4 17	17	.3 30	.1 1	3.3	967 4	1.07	25 7.	6 <.1	7.1	309	5.6	5.3	4.7	114	2.29	.098	24.6	6 231.	2 .9	99 6	579 .	430	6.99	1.713	1.41	7.5	55.4	52	6.2	12.8	8.2	. 6	3	11	25.2	<.1	56.8	1.9	-	

From ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE To Newmac Resources Inc.

Acme file # A601112R3 Received: APR 4 2006 * 14 samples in this disk file.

Analysis: GROUP 4B - REE - 0.200 GM BY LiBO2/LI2B4O7 FUSION, ICP/MS FINISHED.

ELEMENT	Ва	Ве	Co	Cs	Ga	Hf	Nb	Rb	Sn	Sr	Ta	Th	U	٧	W	Zr	
SAMPLES	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
4710	200.3	. 3	1.4	2.6	18.2	4	33	226.3	8	45.1	2.3	37.2	11.7	12	46.4	103.6	
4720	122.2	3	<.5	2	16.1	3.5	31	205.7	12	33.7	2.4	37.2	15	8	29.4	86.7	
4730	75.2	4	<.5	3.2	18.9	4.5	40.5	252.8	10	28.5	2.9	40.9	16.6	6	125.4	86.8	
4740	- 103.3	3	0.5	3.2	19	4.5	48.4	245.8	11	32.7	3.9	37.5	18.9	7	75.9	95.4	
4750	150.2	3	<.5	3.9	20.2	3.8	49.4	408.6	17	39.4	3.9	37.8	29.8	6	367.9	80.4	
4760	168.3	4	<.5	3.9	17.5	3.9	50.7	278	5	62.9	3.4	39.7	16.9	5	48.3	83.3	
4770	155	3	<.5	2.5	15.8	4.1	30	221	7	35.5	2.3	36.5	10.4	5	10	96	
4780	145.3	3	0.6	2.4	17	3.4	33.4	214.7	6	44.4	2.4	40.6	14	5	40.1	94.8	
RE 4780	169.5	3	<.5	2.8	17.6	3.9	33.8	224.9	6	46.6	2.5	39.7	14	<5	42.6	104.4	
4800	184.9	33	0.6	5.2	21.7	3.7	44.1	377.5	42	46.6	3.1	35.5	31.7	8	65.6	81	
4810	1010.4	4	34.1	9.9	18.5	2.4	16.7	96.9	3	690.7	1.3	5.1	7.3	399	47.3	80.1	
4820	782.1	8	18.8	21.7	19	1.6	16.1	195.1	15	534.1	0.3	3.7	2.8	207	97.8	57.6	
4830	157.9	3	1.6	5.3	20	4.2	26.5	296.2	39	73.7	1.9	36	10.8	14	23.2	95.9	
4840	137.5	3	0.6	3	19.6	7.4	37.6	201.7	35	59.2	1.7	50.9	11.2	12	70.2	233.8	
STANDAR	503.5	1	28	7.8	18.8	10.5	20.3	32.1	14	428	6.8	10.8	17.1	207	16.9	305.8	

(604)253-3158 FAX(604)253-1716 @ CSV TEXT FORMAT

Υ	La	Ce	Pr	Nd	Sm	Εu	Gđ	Tb	Dy	Ho	Er	Τm	Yb	Lu
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
17	32.4	53.7	4.99	17.1	2.8	0.3	2.23	0.36	2.34	0.45	1.73	0.31	1.97	0.35
15.8	25.9	43.4	4.08	12.3	2.1	0.23	1.76	0.33	2.05	0.4	1.49	0.27	1.74	0.3
17.4	26	45.6	4.41	14	2.2	0.24	1.73	0.37	2	0.48	1.76	0.33	2.11	0.4
22.8	25.3	44.8	4.49	14.4	2.8	0.25	2.57	0.45	3.1	0.6	2.32	0.37	2.8	0.52
18.6	23.8	41,2	4.09	12	2.2	0.24	1.66	0.32	2.05	0.49	1.88	0.32	2.28	0.42
16.9	28.2	47.7	4.52	13.7	2.5	0.25	1.76	0.33	1.9	0.48	1.72	0.33	2.24	0.4
16.8	26.3	45.5	4.54	14.4	2.4	0.28	1.88	0.33	2.22	0.46	1.68	0.3	2.03	0.32
17.1	29.2	49.5	4.68	14.8	2.5	0.27	1.74	0.35	2.17	0.48	1.69	0.3	2.04	0.34
17.6	29.4	50.6	4.76	15	2.4	0.26	1.86	0.38	2.19	0.51	1.74	0.31	1.92	0.36
15.6	23.9	41.7	3.9	11.9	1.8	0.26	1,52	0.29	1.69	0.43	1.45	0.29	2.38	0.39
19.2	12.8	22.7	3.23	12.9	3.3	0.89	3.29	0.59	3.1	0.63	1.94	0.32	1.75	0.33
18.8	14.6	27.6	3.47	15.4	3.7	1.06	3.35	0.52	2.85	0.63	2.08	0.27	1.69	0.28
23.7	18.5	38.3	4.32	15.7	3.8	0.37	3	0.52	3.52	0.7	2.36	0.35	2.44	0.42
22	177.5	283.2	25.46	71.9	9	0.65	4.89	0.69	3.43	0.68	2.32	0.33	2.61	0.38
35.4	13.7	28.6	3.65	14.2	3.1	0.99	3.02	0.56	3.29	0.66	2.15	0.3	1.92	0.29

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

A <u>Newm</u>a

Newmac Resources Inc. File # A601112 Page 1 2605 Jane St., Vancouver BC V3H 2K6 Submitted by: David Hjerpe

全全

SAMPLE#		Cu Pb		-																																								
	ррп	ррт фрт	ppm	ppm	ppm	ppm	ppm	1 %	ppr	ı ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm			x pp	m ppr	n 	¥ pr	m	-	<u> </u>		*	ppm	ppm	ppm	ppm	ppm	ррп	ppm		ppm	pp	₩ ———	* 	D Dm	ppm		_
G-1	1.0	4.6 22.3	62	<.1	4 . fi	5.6	802	2.82	2 !	3.7	<.1	7.0	783	.1	.1	.2	57	2.89	. OA	6 24.	8 8	1 6	6 107	'B 3	809 B	1.52	2.750	3.03	.3	10.7	48	1.5	14.3	19.7	1.6	3	F	38	ጸ <	.1 17	14.0	R		
		3.2 13.0																																										
		2.2 12.5																																										
		4.9 16.1																																			_		•				-	
-		3.2 15.6																																									-	
7,07	113.1	3.2 15.0	20		2.0		٠. ر	.,.	,			• • • • • • • • • • • • • • • • • • • •	VL.				·										2.00,	00	3.5				2.0	£7.7		Ü	~	•••	•	,	1.5	1,-	J	٠.
4705	186.2	3.0 15.6	20	<.1	1.7	.7	313	.76	;	13.6	<.1	33.9	54	.1	.3	.3	9	. 26	.01	2 32.	3 6.7	.0	9 29	0 .0	173 6	.61	2.452	4.29	6.3	32.9	52	3.0	10.1	23.8	2.2	3	2	16.	7 .	.1 15	37.7	1.4	6	6.
4706	113.1	3.5 14.9	10	<.1	2.0	.5	251	.74	. 6	11.5	<.1	34.1	41	<.1	.3	.3	7	. 25	.00	9 28.	0 9.5	0	6 20	3 .0	72 6	.33 2	2.431	4.81	7.9	34.3	46	2.7	9.3	23.5	2.2	3	3	18.	2 .	.1 18	18.3	1.4	6	6.
4707	255.0	4.2 14.9	12	<.1	1.1	.5	236	. 69		16.6	<.1	36.5	39	<.1	. 4	.4	7	. 19	.00	8 26.	8 9.8	10	6 21	1 .0	69 6	.31 2	2.528	4.11	10.1	39.7	45	7.2	9.6	21.6	2.4	3	2	19.	7 .	.3 18	19.5	1.6	5	5.
4708	135 6	5.9 17.3	13	<.1	1.0	.5	296	. 64	. 8	14.2	<.1	36.8	49	<.1	. 4	.2	7	. 26	.00	8 26.	7 7.0	. 0	6 20	7 .0	80 6	.48 2	2.768	3.99	8.1	40.9	46	1.8	10.8	28.6	2.8	4	3	16.	6 .	.1 16	5.0	1.8	6	6.
4709	229.9	6.4 19.0	20	۲.1	1.3	.6	295	. 75	;	13.6	<.1	34.0	51	<.1	.4	. 7	8	. 26	.00	9 27.	0 6.3	.0	7 20	1 .0	75 6	.59 2	2.577	3.81	9.0	40.3	45	6.4	10.2	25 . 5	2.6	3	3	18.	4 .	.2 17	6.6	1.8	5	5.
4710	262 9	4.3 19.1	15	ر ع	1.6		351	gc.	, ,	i√1n a	ر ا	36 4	44	< 1	4	1 2	,	21	nn	9 20	3 50		a on	12 F	173 6	63 :	2 450	3 84	37 /	38 A	47	7 7	13 0	26 1	2.4	2	2	10	7	9 15	/R 5	1 7	0	٥
		1.4 17.7	-																																	-	-						-	٠.
		2.9 18.0																																		-	-						-	-
4713		1.7 15.6																																			-						-	
		2.7 18.7																																										
***		2 20		•		, ,									•		-																			•	•	•					,	٠.
4715	370.6	1.4 18.2	8	<.1	.3	.3	269	.61	. 7	11.1	<.1	34.5	38	<.1	. 5	4.0	5	. 22	.00	5 23.	4 1.6	.0	7 11	3 .0	55 6	.16	1.832	4.78	48.5	31.6	38	9.3	9.5	23.3	2.1	3	2	24	.5 .	.2 20	12.0	1.5	11	1.
4716	239.5	1.8 19.2	12	<.1	1.2	.4	361	. 64	,	10.8	<.1	36.4	33	<.1	.3	3.3	5	. 37	.00	6 25.	0 7.]	0	8 13	5 .0	69 6	.46 2	2.462	4.35	29.4	34.I	42	5.7	9.8	27.4	2.5	3	3	23	0.	.1 15	8.8	1.5	6	6.
4717	96.9	.9 18.4	14	<.1	. 7	.3	194	. 55	. 7	11.0	<.1	36.9	28	<.1	.2	.8	4	. 25	.00	6 24.	9 3.6	. 0	5 12	1 .0	61 6	.58 2	2.540	3.89	50.9	34.5	43	5.4	10.3	25.6	2.4	3	3	19.	2 .	.2 16	2.5	1.5	6	6.
4718	95.3	1.8 17.2	9	<.1	1.1	.4	157	.55	7	12.1	<.1	38.5	31	<.1	.3	2.4	4	. 21	.00	5 24.	2.7	.0	4 11	8 .0	64 6	.64 2	2.630	4.67	26.6	36.1	42	3.5	10.1	30.2	2.8	3	3	14.	9.	.1 17	3.6	1.7	5	5.
4719	157.1	.8 13.0	4	<.1	.4	<.2	55	. 30	5	9.9	<.1	35.0	32	<.1	.2	.4	3	. 14	.00	4 17.:	5 1.9	0	3 11	4 .0	56 6	.40 2	2.392	4.56	6.5	27.8	30	1.5	8.0	23.6	2.3	2	2	14.	5 <.	1 14	2.9	1.3	3	3.
4700	20.0	1.2 18.4		. 1	,	,	071			12.4		25.0		- 1	2	2.4		22	nn	c 22	1 2 1	n	. 10			22 -	2 5 2 5	4.00	25.0	20.0	20	7.0		20 1	7 E	,	-	12	p	2 16	. 7 1		,	2
4720		1.0 18.1																																										
		2.5 22.5																																										
4722																																												
4723		1.2 23.4	-																		_																						_	
4724	51.4	1.0 17.3	9	<.1	.6	. 3	313	.62		9.7	<.1	3/.4	2/	<.1	. ع	.8	5	. 24	.00	4 22.1	0 3.5		10	5 .0	63 6	.40 2	2.45/	4.09	18.0	34.7	39	3.2	11.7	32./	3.0	3	3	18.	1 .	1 13	9.9	1.6	ь.	ь.
4725	158.6	.9 15.0	8	<.1	. 2	. 2	265	.43	. 6	12.2	<.1	38.1	34	<.1	. 3	.1	4	. 16	.00	4 24.3	3 1.6	.0	1 11	6 .0	60 6	.41 2	2.203	4.30	15.6	32.9	41	2.1	10.5	27.8	2.6	2	2	25.	6.	.1 14	4.4	1.6	4	4.
RE 4725	163.1	1.1 14.6	10	<.1	.4	.2	248	.42	. 7	12.2	<.1	37.8	34	<.1	. 3	.1	4	. 16	.00	4 26.	4 1.7	.0	4 11	4 .0	62 6	.30 2	2.161	4.29	15.4	33.0	45	2.1	10.0	28.1	2.6	3	2	24.	5.	.1 13	4.7	1.6		
RRE 4725	152.5	1.3 14.8	8	<.1	.5	. 2	252	.48	7	12.3	<.1	37.6	34	<.1	.3	.2	4	. 15	.00	5 24.5	9 2.2	. 0-	1 11	6 .0	63 6	.53 2	2.156	4.38	14.6	34.5	44	2.2	10.8	27.7	2.7	3	3	25.	3.	1 13	6.0	1.6		
4726	27.6	1.8 15.5	11	<.1	.4	.3	425	. 63		11.3	<.1	35.6	23	<.1	. 2	.7	4	. 26	.00	6 21.3	3 5.3	. 0-	1 9	1 .0	61 6	.01 2	2.395	3.19	9.4	33.1	37	2.0	10.0	30.4	2.6	3	3	13.	3 <.	i 10	7.7	1.5	5	5.
4727	203.4	1.6 11.5	7	<.1	.3	<.2	148	.32	ε	11.4	<.1	31.6	25	<.1	.2	. 1	4	.17	.00	6 17.4	8 1.8	. 0:	3 9	7 .0	57 5	.48 2	2.072	3.20	5.5	28.3	33	1.6	10.7	28.3	2.4	2	2	13.	4 <.	1 9	5.8	1.4	2	2
4728	6.4	.8 18.5	13	<.1	. 4	.3	375	. 60		9.5	<.1	34.7	28	<. I	.3	. В	4	. 30	.00	5 20.	3.8	. 0-	4 10	7.0	60 6	.56 2	2.875	3.79	11.0	30.8	35	2.3	10.5	31.0	2.6	3	3	21.	2 <.	1 14	1.9	1.3	5	5.
4729	17.3	2.2 22.9	13	<.1	. 5	.2	329	.71	8	15.6	<.1	38.7	27	.1	.3	7.7	4	.18	.00	4 21.3	3 2.5	. 0!	5 8	0. 0	55 6	.62 2	2.548	3.74	31.0	35.0	38	6.6	11.2	31.4	3.0	4	3	51.5	5 .	2 18	6.9	1.7	6	5.
4730	33.7	2.7 38.9	10	<.1	. 3	.2	348	.72	10	14.7	٢.١	36.8	28	. 1	.5	40.5	4	. 19	.00	4 22.5	9 2.4	. 0	,	7 .0	56 6	.46 2	2.486	3.73	93.B	37.1	41	7.8	10.9	33.7	3.0	3	3	43.	4 .	2 18	8.9	1.7	4	1.
4731	8.4	.2 19.1	4	<.1	.3	۲.2	79	.38	ϵ	12.4	<.1	33.8	20	. 1	. 2	3.4	2	. 13	.00	3 19.	3 1.8	. 0.	3 8	1 .0	49 6	.17 2	2.359	3.95	13.2	25.2	34	4.4	8.7	22.0	2.3	3	2	16.	2 .	1 15	4.8	1.1	5	ā./
4732	20.3	3.9 22.0	16	<.1	. 3	.4	564	1.20	12	20.0	<.1	38.5	22	.1	. 4	2.0	6	. 23	.00	4 21.4	B 4.1	. 0:	5 8	4 .0	49 6	.32 2	2.362	3.84	>200	37.3	40	15.2	13.8	33.6	3.4	4	3	26.	1 .	7 20	2.3	1.7	5	5.

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-MS.

STANDARD D576 | 12.6 131.7 36.0 179 | .3 36.1 13.5 968 4.09 | 25 8.0 <.1 7.2 307 5.7 5.4 4.8 113 2.30 .096 25.7 229.7 1.00 684 .434 7.02 1.616 1.39 7.5 59.0 51 6.2 15.0 8.4 .7 3 11 24.3 <.1

- SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data A FA ____ DATE RECEIVED: MAR 15 2006 DATE REPORT MAILED: ...

Mar 23/2006

liabilities for actual cost of the analysis only.

All resul. The considered the confidential property of the client. Acme assumes

Page 2

ACME ANALYTICAL	-																																												ACME	ANALYTICAL
SAMPLE	E#	Ma	Cu	P	b 8	Zn	Aq	Ní	Со	Mn	Fe	As	U	Αυ	Th	Sr	Cd	Sb		B1	٧	Ca	Р	La	Cr	Mq	Ва	T	1 A	1 +	Na K	••	W Zr	Ce	Sn	γ	Nb	Ta	Be	Sc -	Li	<u> </u>	Rb	Hf :	Sample	
		DDM	ÐDM	00	m bo	ם וחכ	opm c	om	pom p	mac	*	d mod	ют р	om.	DOM	pom	DDM	ppm	_ D	om ot	m	ž	¥	оря	ppm	*	DDM	. :	ĩ	2	x x	DD	м орп	n DDM	ppm	ppm	ppm	DDm	DDM I	DDM	DDFF	¥.	mag	DOM	ka	
													·	·																	····-															
G-1		.4	10.1	22.	5 6	50 <	.1 5	. 3	4.8 7	758 2.	.69	4 4	.2 <	.1	6.9	794	<.1	.1		.1 :	i9 2	.74	.088	20.7	11.9	.62	1045	.30	9 7.8	9 2.74	09 3.07	1.	0 10.4	41	1.6	13.5	19.6	1.4	3	5 4	42.9	< . I	8.00	.7	-	
4733		36.1	8.4	22.	3	9	.1 1	3	.2 2	263 .	.71	8 20	,0 <	.1 3	39.4	22	<.1	. 2	4	.1	5	.16	.003	21.5	3.7	.05	84	. 05	3 6.1	3 2.5	82 3.77	102.	5 38.5	37	10.7	13.1	36.2	3.6	4	3	19.9	.3	191.9	1.8	6.28	
4734																															00 3.95															
4735														•																	31 3.84															
4736																															39 4.11															
																																												_		
4737		15.9	7.1	89.	, ,	70	.5	. 4	.3 4	197 1.	34	25 20	.2 <	.1 4	5.2	30	.7	1.8	30	.5	6	.16	004	21.8	3.6	.11	54	.05	8 6.3	2 1.9	20 3.33	112.	6 42.1	39	26.9	13.7	44.5	4.1	5	3 4	47.8	.6	197.6	19	5.82	
4738		5.4	7.3	53.	8 2	28	.4	.7	.3 5	86 1.	.00	14 18	.3 <	.1 3	6.5	36	.4	1.2	18	. D	5	.16	.005	20.1	3.5	.08	85	.050	0 6.4	4 1.93	34 3.64	>20	0 32.4	36	10.8	15.8	45.6	4.3	4	3 4	49.3	2	194.7	1.4	4.23	
4739		3.7	5.7	24.	4 2	21 <	.1 1	.3	.3 4	122 .	72	8 17	1 <	.1 3	15.0	31	.2	.3	2	.1	5	.16	006	20.4	4.7	.06	116	.049	9 6.2	5 2.4	14 3.74	90.	5 28.3	36	10,3	13.0	39.3	3.8	4	3 :	31.7	.1 .	203.1	1.1	2.44	
4740		.9	5.3	34.	4 4	-6	.1	.9	.4 6	36 .	82	10 18	.5 <	.1 3	36.7	32	.5	.5	5	.7	5	.21	.007	21.6	5.0	.06	114	. 05	7 6.4	0 2.43	79 3.80	61.	5 29.7	37	11.2	13.8	44.4	3.9	4	3 :	26.5	.1	187.1	1.4	6.47	
4741																															03 3.93															
4742		1.3	6.9	34 .:	8 1	1.5	.2	.9	.3 3	162 .	75	8 17	.3 <	.1 3	32.2	35	. 2	1.1	8	.4	6.	.17	.006	19.3	3.9	.06	110	.04	B 5.7	3 2.36	63 3.85	100.	7 46.9	34	8.9	10.9	39.2	3.3	4	3 :	31.3	.1 2	223.1	2.2	6.48	
4743		4.7	9.3	72.	3 3	38	.5 1	. 2	.5 6	604 1.	.07	9 17	.2 <	.1 3	37.3	57	.6	2.3	33	9]	.0	.17 .	013	27.2	5.4	.11	202	.06	2 6.3	5 1.94	48 4.01	196.	9 50.3	45	18.3	13.7	38.5	3.1	4	4 f	57.8	.3 2	262.0	2.4	6.24	
4744		2.2	9.6	78	2 5	4	.6 1	.0	.6 5	39 1.	11	12 17	.6 <	.1 3	6.9	39	.6	2.5	32	9	9.	.19	800	24.8	4.7	.08	158	. 054	6 6.2	1 2.25	58 3.83	187.	5 44.8	41	19.1	13.5	39.1	3.0	4	3 3	37.8	. э г	234.7	2.0	6 68	
4745		3 8	7 0	766.	5 9	95 5	.7 1	.2	.3 8	87 1.	16	55 22	.0 <	.1 3	5.3	38	1.3	2.5	43	.6	7.	.11	009	21.2	3.9	.08	127	. 045	5 6.69	9 1.74	44 4.32	129.:	3 48.5	37	34.7	13.1	34.9	2.9	4	4 (51.4	.4 2	290.2	2.1	6.08	
4746		4.9	2.8	421	6 45	2 2	. 8	.4	.7 14	04 1.	.25	265 34	.6 <	.1 4	2.0	42	5.3	2.5	16	9 1	. 0	. 18	035	25.7	3.1	.12	155	.068	8 8.2	5 1.78	82 5.21	80.	4 59.3	45	64.5	19.1	52.1	4.1	6	4 (58.1	.4 3	382.4	2.5	5.92	
ļ																																														
4747		3.8	4.6	44 .	4 2	25	.2	.7	.4 4	12 .	83	9 16	.9 <	.1 3	6.4	40	.3	1.1	10	6	6.	. 16	006	22.7	3.4	.06	123	.050	0 6.29	9 2.18	31 - 3.94	89.	1 44.9	38	12.8	10.8	35.3	2.9	4	3 5	51.1	.2 2	243.1	2.2	6.45	
4748		3.7	9.5	222.	6 29	0 1	.7	.4	.3 5	71 .	99	218 16	.1 <	.1 3	15.7	70	4.3	5.4	53	1	7.	10	007	22.4	2.9	.07	193	.040	0 8.3	4 1.19	92 6.76	>201	56.0	38	46.4	14.3	52.3	3.0	4	2 5	55.9	.4 4	166.5	2.5	6.55	
4749		1.7	5.6	87.	6 47	79	.4	.6	.2 4	41 .	70	96 29	.0 <	.1 3	7.7	37	5.8	1.0	3	1	8 .	.14 .	005	20.9-	2.5	.06	165	.050	0 7.30	3 2.00	06 5.28	>20	0 60.6	37	37.8	15.9	33.7	3.0	3	2 5	32.5	.2 3	353.8	2.5	4.92	
4750		2.4	7.1	105.3	2 9	13	.б	.9	.4 5	22 .	88	46 25	.9 <	.1 3	3.1	35	1.2	3.3	40	.3	6 .	15 .	006	19.7	4.0	.04	143	.044	4 6.40	2.14	15 4.44	>20	0 46.7	33	14.6	12.6	33.7	3.0	3	2 3	39.4	.2 2	295.8	1.9	6.87	
4751		8.9	13.3	365	1 51	.7 4	.1 1	.3	.3 6	71 .	89	64 16	.5 <	.1 3	5.9	32	7.1	9.4	136	.5 1	.4 .	.07 .	006	20.5	4.6	.08	187	.048	8 7.85	5 1.77	73 5.95	>20	0 45.0	37	73.0	10.0	26.5	3.0	3	2 3	35.5	.4 4	138.6	1.9	7.16	
4752		2.5	9.4	392.	4 79	7 4	.9	.7 ≺	<.2 11	44 .	81	108 14	.8 <	.1 3	6.4	34	11.2	7.9	109	7 1	2.	.07 .	006	23.1	2.3	.06	246	.039	9 8.30	3 1.63	31 6.99	>200	0 49.1	41	62.5	9.1	21.9	2.6	2	1 2	22.5	.4 5	24.7	2.0	6.38	
4753		5.1	8.9	729.3	3 70	4 10	.1 1	.2	.3 7	64 1.	01 1	121 44	.2 <	.1 4	0.2	39	9.B	14.0	184	1 1	.0 .	.12	010	23.1	2.4	.06	221	.036	6 7.57	7 1.83	34 5.95	145.	1 59.4	42	37.8	10.0	3.08	2.4	3	2 2	8.8	.5 4	117.3	2.2	6.82	
4754	3	3.7	21.5	229.9	9 13	1 2	.8	.6	.8 5	5 7 1.	55 2	206 39	.1 <	.1 3	0.8	46	1.8	8.4	73	.6	9.	.21 .	011	17.7	6.1	.08	153	.026	6 6.16	5 1.44	14 5.04	>200	39.7	33	23.4	10.B	23.2	1.8	3	3 3	34.2	1.0 3	348.1	1.6	6.26	
4755	11	8.7	13.5	59.0	0 1	2	.5 1	. 0	.9 3	40 1.	20	8 25	.9 <	.1 2	9.6	31	<.1	3.5	30.	7	4 .	22 .	005	17.4	4.7	.05	109	. 028	5.62	1.94	15 3.70	>200	9 41.2	31	6.7	10.7	25.1	1.9	3	2 2	29.3	.7 2	228.6	1.7	6.57	
4756		2.4	8.1	33.0	0 1	9	. 1	.9	.7 3	49 1.	11	8 28	.2 <	.1 Э	3.9	38	.1	1.3	7.	7	5 .	25 .	006	21.1	6.8	.06	112	.041	1 5.78	3 2.16	3.69	182.	3 51.3	37	5.5	11.1	30.3	2.4	4	3 5	8.08	.3 2	225.4	2.1	7.30	
4757							-																								6 3.98															
4758																															3.80															
4759					-																									4	8 3.87														7.02	
RE 475																															9 3.75						37.9								-	
RRE 47	'59	7.2	5.9	31.8	8 1	4 <	.1	.8	.4 4	05	93	9 17	.6 <	.1 3	3.4	42	.1	.8	5.	2	6.	31 .	006	23.4	4.6	. 07	119	. 054	4 6.00	2.36	3 3.62	58.3	3 47.3	40	4.9	10.4	39.5	3.2	4	3 5	2.5	.2 2	17.8	2.1	-	
4760		3.2	d 1	28.1	n 1	6 <	1 1	2	4 4	53	7 8	9 14	8 <	.1 3	4.6	57	. 2	.6	3	0	7	37	009	24.7	6.2	.08	166	.063	3 6.23	2.37	1 3.55	38.5	47.6	4)	4.5	13.3	42.5	3.2	4	3 5	4.5	.1 2	207.2	2.0	6.35	
4761																															3 3.82															
4762		-					-																								0 3.82															
4763	_						-																								9 3.89															
4764																															2 3.52															
1 4704	•			10.1		. `						5 20								•	٠,	٠,			*											,			-	- ^					J	
STANDA	RD DST6	2.5 1	30.1	35.6	6 17	7	.3 30	.3 13	3.3 9	65 4.	08	24 7	,7 <	.1	7.1	311	5.8	5.3	4.	8 11	0 2.	30 .	096	25.1	231.2	1.00	686	. 409	7.02	2 1.64	8 1.38	7.7	7 59.5	52	6.2	15.3	8.2	.6	3	10 2	4.8 <	.1	56.6	1.8		

Page 3

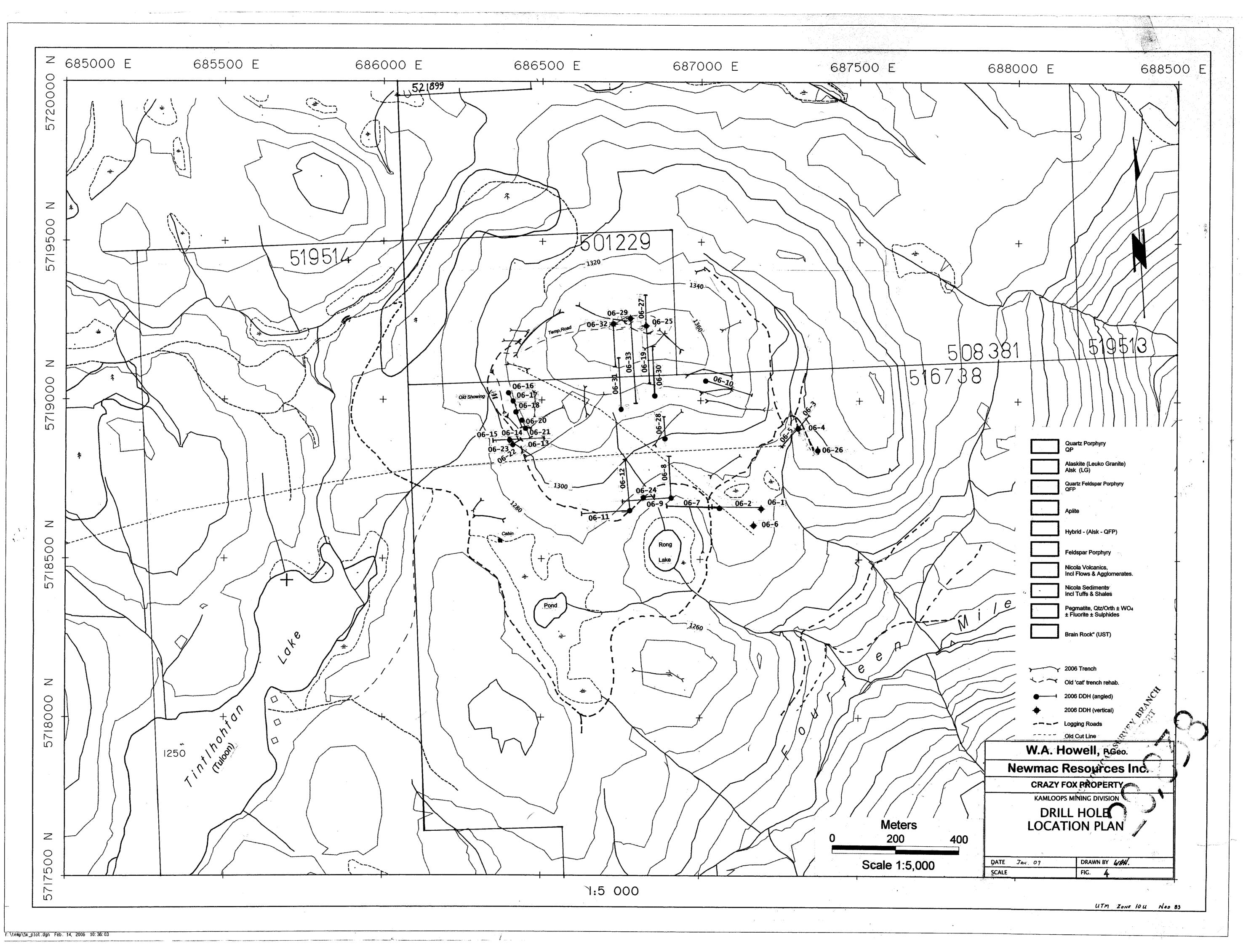
ALME ANALY	I CAL																																					ALME A	ANALY11C
	SAMPLE#	Мо	Cu Pt	o Zn	Ag	Ni (Co M	n Fe	As U	Au	Th	Sr	Cd S	b 81	٧	Ca	P	La	(r	Mg	Ва	Tí	Αl	Na	ĸ	H	Zr	Ce	Sn	γ	Nb	Ta E	3e Sr	: Li	5	Rb	Hf S	ample	
		ppm	ppm ppn	т ррт	ррт	opm or	om opr	m %	рря ррп	ррп	ррт	ppm p	оп ор	n ppr	пррп	1	ĭ	ppm	ppm	1	ppm	*	*	1	ĭ	ppm	ppm	ррп	ppm	ppm	ppm	ppm pp	от ррг	п ррп	*	ррт	ppm	kg	
	-									•									•			·· · · · · · ·			•														
	6-1	.4	27.3 24.9	63	<.1	3.7 5	.9 776	6 2.66	4 5.1	<.1	9.6	821 <	.1 .	1 .	63	2.82	.097	29.9	14.6	.69	1081	325	8.53	2.782	3.18	1.3	9.0	59	1.7	16.3	21.8	1.6	3 €	44.2	<.1	135.7	.7		
	4765	156.9	7.1 19.7	7 18	<.1	1.0 .	.8 416	6 .82	5 12.6	<.1	39.8	58 <	.1 .	3 1.9	11	. 34	.014	35.2	6.4	.11	308	.079	6.61	2.442	4.18	9.9	33.1	61	6.1	11.5	25.2	2.2	4 3	3 21.2	.1	165.1	1.6	6.91	
	4766	321.6	14.2 18.9	9 19	<.1	.9 .	.6 390	.77	6 12.4	<.1	42.2	52 <	.1 .	3 .5	2	. 27	.013	33.6	5.3	.08	265	.081	6.80	2.462	4.58	9.2	36.6	58	6.9	11.2	27.0	2.1	3 3	24.0	. 2	180.1	1.6	5.92	
	4767	442.8	9.5 27.8	34	<.1	.9 .	.7 459	.80	6 6.2	<.1	38.8	54	4 .	3.8	? 1	. 38	.013	33.0	5.0	.10	289	078	6.77	2.474	4.10	6.3	34.9	57	4.1	12.0	30.3	2.2	3 3	3 18.3	.1	164.0	1.5	6.02	
	4768	161.2	6.1 16.9	17	< .1	,7 .	6 409	5 .70	5 10.3	<.1	39.2	4] <	.1	3 .2	? <1	32	.010	30.1	4.3	.09	193	. D68	6,68	2.509	4.15	7.1	36.5	53	5.6	11.0	25.7	2.1	4 3	3 20.9	.1	171.0	1.7	6.12	
	4769	129.0	8.7 16.7	7 13	<.1	.8 .	.5 335	. 67	5 13.8	<.1	40.8	43 <	Ι.	3 .6	<1	.35	.008	28.1	3.7	. 08	199	.069	6.88	2.664	4,39	15.7	38 0	50	5.3	10.1	26.0	2.2	4 3	16.6	.2	191.1	1.8	6.57	
	4770	110.2	5.8 19.2	2 16	<.1	. 6	.4 35/	4 .65	5 11.7	<.1	41.5	39 <	.1	3 .6	3	.32	.009	28.8	6.0	. 08	191	.065	6.68	2.542	4.31	8.3	36.8	50	8.5	11.3	25.4	2.2	4 3	3 17.8	.2	206.8	8.1	5.82	
	4771	112.6	6.9 39.4	4 61	. 2	.8	.4 578	8 .74	6 11.6	<.1	39.9	40	6 .	3 4.5	9	.39	.008	28.5	6.1	.08	196	.065	6.40	2.382	4.26	58.9	36.5	50	14.1	10.8	24.7	2.1	4 3	25.0	.2	224.7	1.7	5.33	
	4772	117.8	8.0 19.2	2 18	<.1	.9 .	.5 451	2 .76	6 12.7	<.1	38.5	45	.1	3 1.2	3	. 41	.009	28.4	3.6	. 09	196	.065	6.62	2.630	4.22	51.7	37.7	49	9.4	10.7	24.8	2.1	3 3	17.2	. 3	198.0	1.9	5.24	
	4773	113.5	6.4 18.3	3 12	<.1	1.5 .	.5 36f	6 .67	6 11.8	<.1	39.2	50 <	1 .	3 .7	3	.46	.009	28.3	7.4	.09	206	.071	6.55	2.670	4.28	7.6	38.8	49	2.4	10.6	27.8	2.2	4 3	3 14.1	.1	167.7	2.0	6.23	
	4774	76.7	3.7 19.7	7 13	<.1	.8	.5 308	8 .65	6 10.3	<.1	39.0	53 <	.1	2 2.1	. 2	.39	.009	28.7	3.5	.10	213	.071	6.62	2.705	4.53	12.3	36.2	50	2.0	10.3	27.7	2.1	4 3	13.6	.1	161.3	1.7	6.02	
	RE 4774	75.1	3.8 20.7	11	< 1	.8 .	.5 299	. 63	5 9.9	<.1	39.7	51 <	1 .:	2 2.7	6	. 38	.010	29.3	4.1	.10	216	.065	6.41	2.624	4.66	9.0	34.4	53	2.0	10.2	25.2	2.0	4 3	13.5	.1	156.0	1.6		
	RRE 4774	68.0	6.0 22.2	2 11	< 1	1.2 .	.6 310	. 67	5 10.1	<.1	38.3	51 <	.1 .3	3 4.2	8	.39	.009	27.2	6.9	.10	213	.068	6.67	2.729	4.54	7.9	35.5	48	2.4	10,1	27.3	2.1	4 3	3 14.6	.1	155.9	1.8		
	4775	40.3	5.1 18.9	11	<.1	.9 .	.4 321	.63	5 9.6	<.1	35.7	43 <	.1 .:	3 1.3	. 4	.33	.008	25.3	5.9	.08	175	.057	6.30	2.438	4.18	29.7	30.6	45	3.7	8.8	21.9	1.8	3 3	12.6	. 1	150.3	1.5	5.82	
	4776	43.6	5.2 31.9	33	.1	.7 .	.5 56F	5 .77	6 12.0	<.1	37.0	48	.3 .4	3.6	1	. 37	.010	27.3	4.1	.11	139	.071	6.51	1.734	4.27	>200	37.1	50	6.4	9.3	25.6	2.1	4 3	28.0	.2	191.4	1.9	6.58	
	4777		8.1 26.4																																				
			3.4 19.2																																				
			2.0 19.3		-																												_					•	
	•		4.1 21.3																																				
	4781	41.5	2.7 20.0	30	<.1	.5 .	.4 349	. 60	5 12.5	<.1	36.6	41	.3 .:	3 2.9	12	. 24	.008	28.0	6.3	.05	160	.063	6.41	2.491	4.05	27.5	30.7	48	6.2	9.9	25.5	2.1	3 3	15.0	. 1	167.5	1.4	6.74	
	4782	£1 £	2.4 19.4	21	1	4	A 100		C 15 0	- 1	70 7	27 -	1 .		Ω	20	007	27.6	3 1	06	159	063	6 10	2 337	1 66	22.6	33 8	47	P 0	0.7	26 0 -	, ,	4 7	14.5	2	106 6	1 4	E 70	
			2.4 22.2																																				
			2.1 22.5																																				
	. •		2.3 20.9																																_				
			2.1 23.9	_																																			
	4750	30.7	2.1 20.5	, ,,			3 10,	. 50	0 14.5		55.7				•		.000	20.0			***	.005	0.00	2.20,	7.10	47.5	JC.,	70		3.0	20.5		- 3	20.0		105.5	1.0	J.16	
	4787	34.4	2.9 24.5	42	<.1	.6	3 217	2 .49	7 18.0	< .1	38.4	29	4 .4	9.4	<1	. 23	.006	23.6	2.1	.04	124	.061	6.74	2.642	3.95	27.8	32.3	4D	4.7	10.8	32.6 2	2.9	4 3	13.1	.1	171.3	1.7	4.36	
		31.2	2.1 28.8	3 32	.1	. 8	.6 490	1.43	8 15.7	<. I	32.8	41	3 1.4	23.1	3	. 28	.010	22.2	5.0	80.	162	.049	6.04	1.904	4.20	87.1	36.7	37	32.9	9.0	25.4	1.7 1	.5 6	57.4	.6	288.1	1.7	7.04	
	4796	12.0	2.1 33.0	25	.1	1.1	.6 426	5 1.24	10 21.6	< .1	34,5	44	3 1.0	26.2	<1	. 27	.010	21.0	2.9	.07	172	.049	6.42	2.116	4.25	75.0	37.1	36	26.8	9.9	29.2	2.3	9 4	61.2	.6	275.7	1.8	6.80	
	4797	12.2	1.7 36.1	. 21	.1	.6 .	.5 435	5 1.28	7 20.3	<.1	32.0	36	3 1.	35.0	6	. 26	.010	21.4	5.4	.06	168	.045	6.28	1.948	4.29	103.3	34.4	36	28.3	9.4	25.7 2	2.1 1	0 4	47.9	.6	273.8	1.7	6.89	
	4798	8.3	1.5 38.7	22	. 2	.7 .	.5 423	3 1.11	8 15.2	<.1	32.6	45	4 1.0	55.8	8	. 21	.010	21.6	4.1	.06	164	.050	6.22	1.987	4.37	158.5	38.6	37	21.2	11.1	29.2	2.3 2	0 4	36.0	.4	262.8	1.8	6.79	
	4799	28.5	1.8 51.1	171	. 2	.5 .	.6 825	5 1.14	13 17.2	<.1	33.7	43 3	1 2.0	36.3	3	. 34	.015	24.3	3.9	.09	195	.047	6.91	2.013	4.99	>200	36.2	40	55.4	12.5	38.6 2	2.5	7 6	57.5	.5	349.8	1.9	6.86	
	4800	17.8	2.0 47.9	22	.4	.6 .	.7 448	3 1.62	11 30.1	<.1	29.9	43	4 2.	49.2	4	. 23	.010	20.1	4.4	.08	190	.045	6.32	1.871	4.57	49.3	37.6	36	34.9	8.4	25.4	.9 3	8 5	45.8	1.0	296.1	2.0	5.71	
	4801	25.1	1.9 37.0	125	.1	.8 .	.6 486	5 1.33	12 12.0	<.1	29.9	76 2.	3 2.3	28.2	1	. 35	.010	20.7	2.9	.09	151	.056	6.18	1.442	4.11	72.4	45.7	36	23.9	9.1	34.6 2	2.6 2	8 4	32.1	.6	249.8	2.3	6.95	
	4802	21.0	3.5 46.9	28	.2	.6	.7 49€	5 1.19	10 9.5	<.1	32.1	79	4 1.8	62.8	3	.49	.010	22.2	2.0	.10	173	.059	6.27	1.610	4.29	183.7	46.5	39	22.9	9.7	35.9 2	2.8 1	2 4	25.1	. 5	249.3	2.2	5.98	
	4803	37.7	4.0 51.9	52	.3	.5	.3 393	.93	11 10.9	<.1	33.5	79	8 2.3	39.9	4	.52	.010	22.6	1.7	.11	194	.058	6.33	1.677	4.61	>200	43.2	40	27.9	10.4	35.8 3	3.0 1	4 4	27.5	4	286.2	2.3	6.89	
	STANDARD DST6	12.3 1	26.7 34.6	175	.3 3	0.3 13.	.3 966	5 4.08	24 7.3	<.1	7.0	305 5	9 5.	4.6	114	2.30	.099	25.2	26.3	.99	681	. 402	7.01	1.627	1.40	7.7	51.1	53	6.2	14.9	8.2	.7	3 11	25.5	<.1	58.3	1.8	-	

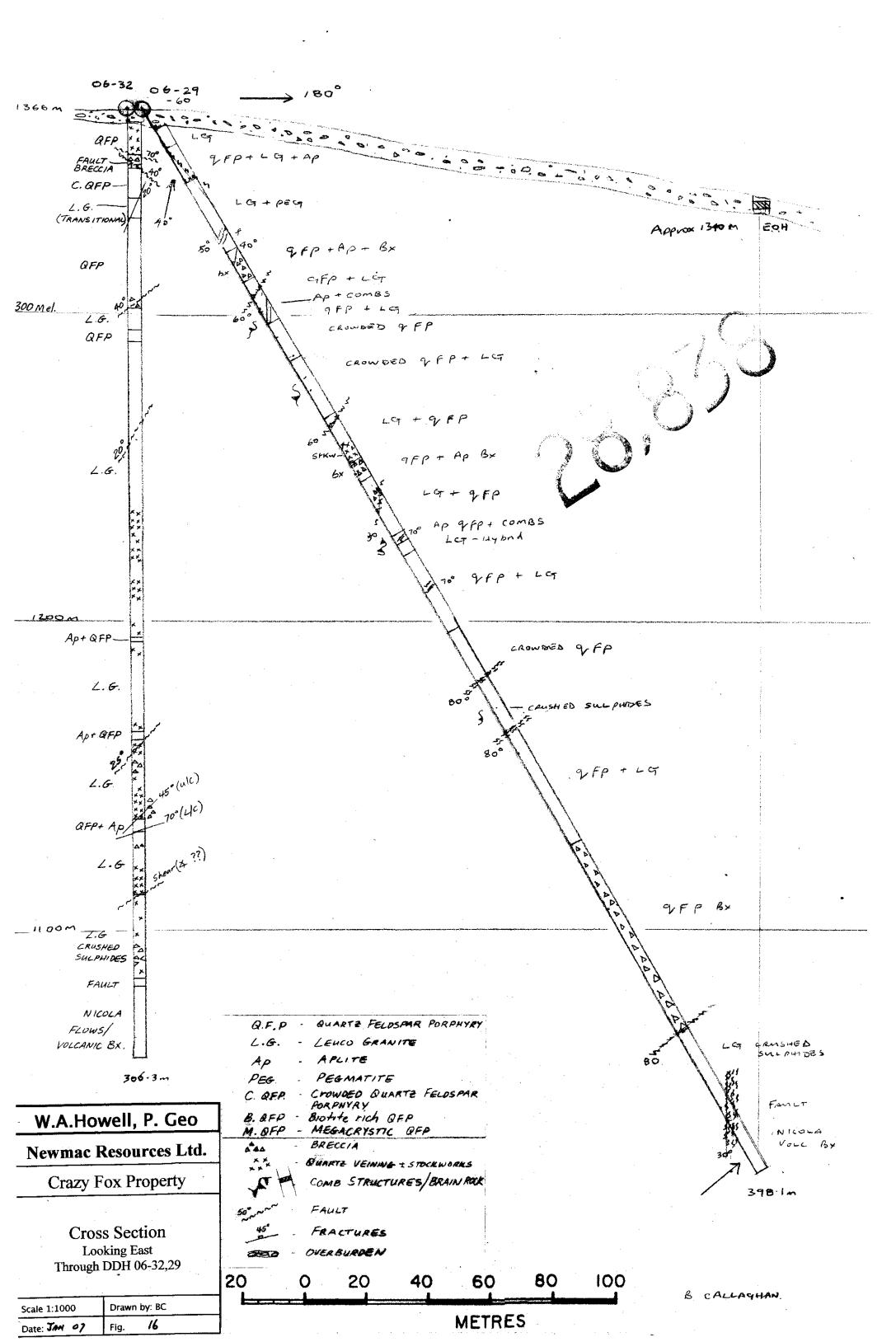
Page 4

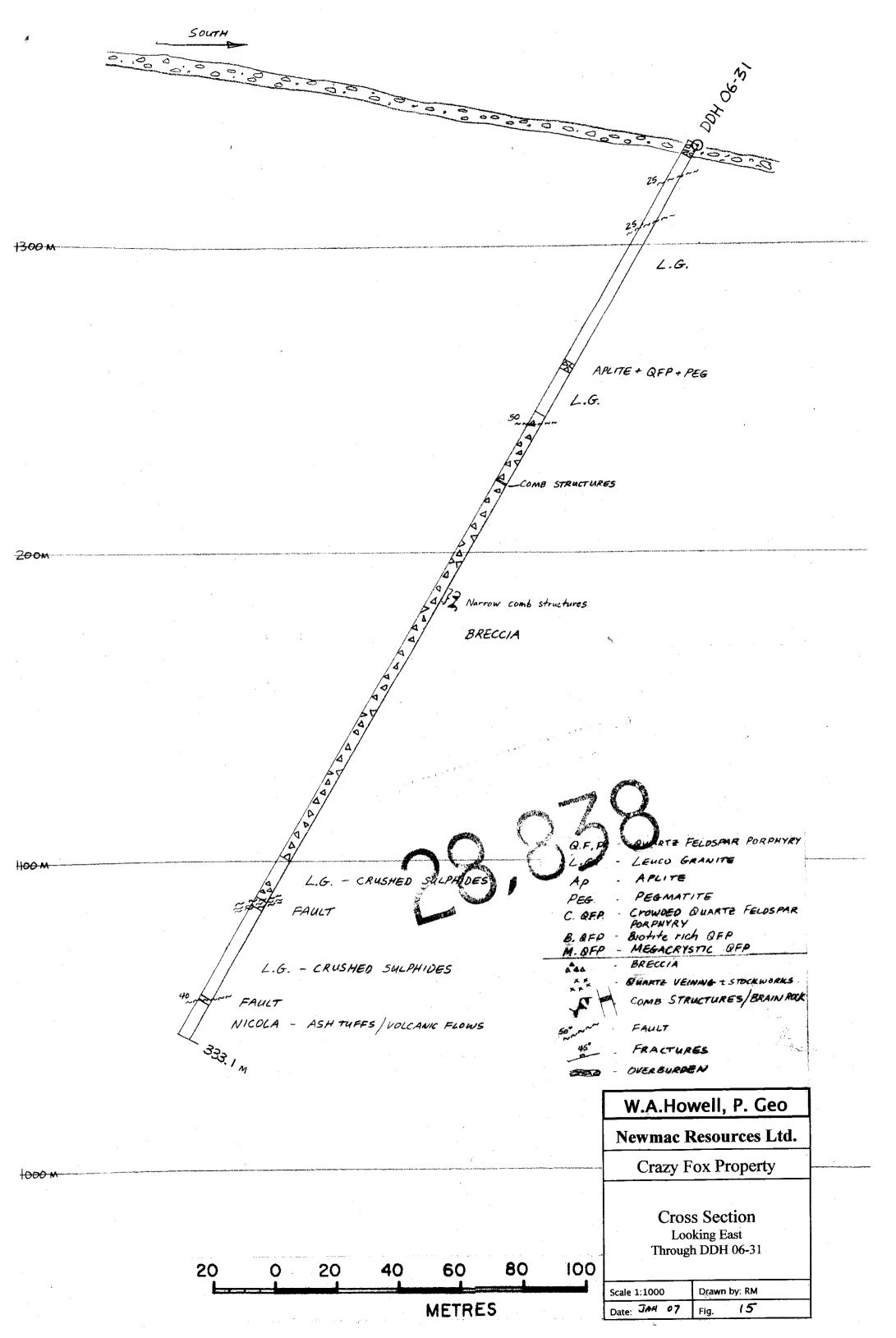
ALME AN	RETTILAL																																									AUNE A	ANALYTICAL
	SAMPLE#	Ma	Cu	Dh	7-	۸۵	- NS	<u></u>	Mn	Eo.	Ac 1	_ Au	Th		Cd	Sh.	Bi	v	Ca	Р		Cr	Mg	Ва	Ti	A1	Na	к	W	7r	Ce	Sn		Nb	Ta	Be 5		Li	s	- Dh	LIF S	Samole	
	SMALLER		•••								-			•				•									_						T	-				-					
<u> </u>		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	a p	pm ppn	и ррп	ррп	ppm	ppm	ррт	ppm p	ppm	x	4	ppm	ppm	4	ppm		1		*	ррп	ppm	ppm	ppm	ppm	ppm	ppm p	our bb	2m	ppm	7.	ррп	ppm	kg	
Ì																																											
ĺ	G-1	. 6	2.3	2 3 .3	63	< .1	3.8	4.9	781 2.	.49	4 3.8	3 < .1	7.6	774	. 1	.i	.4	54	2.79	.089	25.2	14.5	. 63	1069	.316	8.14	2.753	3.00	1.6	8.7	50	1.5	14.3	21.2	1.6	3	5	39.5	<.1	105.6	.8		
	4804	11.4	4.4	34.3	21	<.1	.9	.4	426 1.	.01	10 10.4	4 <. i	36.3	88	. 4	1.8	16.3	8	.54	800	24.9	4.5	.11	188	.057	6.35	1.300	3.90	143.8	45.3	42	13.8	10.9	38.5	3.4	10	4	75.3	.3	254.0	2.5	6.27	
	4805	14.2	13.6	29.9	24	.1	2.8	2.6	513 1.	.08	17 B.3	3 < .1	33.8	246	. 2	1.8	3.4	22	1.01	.021	21.7	5.8	.32	168	.090	6.52	.091	2.91	25.1	38.7	38	3.2	13.7	39.5	3.3	11	4 1	62.1	.1	194.6	1.9	6.76	
	4806	61.2	55.9	17.8	135	.2	25.4	11.8	719 2.	.91	21 7.	7 < .1	14.7	535	. 6	3.8	.4]	44	4.45	.082	16.2	57.7	1.21	470	.287	6.72	.544	2.63	38.7	26.4	28	1.4	14.0	22.7	1.7	14]	12 . 1	90.5	.8	147.8	1.4	6,42	
	4807	6.5 1	97.8	5.7	114	.4	76.9	36.5	848 6.	.99	2 3.	<.1	2.3	631	.6	.9	1.2 2	227	7.33	.134	8.5	150.7	2.47	36	.469	6.34	1.364	1.91	77.8	16.0	18	1.8	14.5	15.0	. 3	8 2	26	78.B	3.2	111.4	.7	5.38	
	4808	12 2 1	85 7	6.5	137	5	96.4	23.2	769 6.	3.8	<1 3	1 < 1	2.2	ธาต	7	7	173	122	∆ 27	152	11.0	157 2	1 99	45	512	7 65	2 376	2.62	42 R	21 7	21	1.8	17 2	3.7	7	4 3	21	58.6	2.8	99.7	1.0	3 65	
	4809								805 6.										-										-						-								
	4810								990 6.																																		
	4811								1054 6.																																		
	4812	17.3 1	129.8	7.4	332	.3 1	115.5 2	29.8	986 6.	.43	10 3.5	<.1	3.0	669	2.2	1.4	.5 3	376	4.58	.147	9.7	166.8	2.41	64	.476	7.59	2.631	1.94	7.6	26.1	19	2.1	18.0	6.3	. 5	2 1	19	69.8	1.8	83.3	1.1	6.31	
i																																											
ļ	4813	17.1	96.8	5.0	311	.3 1	125.9 1	30.3	1386 6.	.30	10 3.7	2 <.1	3.2	739	1.5	2.3	.4 3	319	6.99	.137	9.0	169.2	3.25	59	456	6.81	2.038	1.63	30.8	27.0	18	2.4	16.4	6.4	.9	3 1	18	70.8	1.4	80.4	1.1	6.65	
}	4814	18.5 1	51.3	6 1	396	.5 1	199.6	39.8	1047 7	.39	1 3.7	<.1	3.0	744	4.7	1.1	.9 4	801	6.52	.163	9.7	221.2	3.83	37	.496	7.30	2.137	1.73	16.4	28.9	19	2.1	18.0	5.2	.4	2 1	19	59.3	1.9	79.8	1.1	5.93	
	4815	19.6 t	41.9	8.2	350	.5.1	190.5	37.1	1111 7.	.12	4 3.8	3 <.1	2.9	771	4.5	1.9	.4 4	118	7.97	.159	11.0	207.1	3.68	85	. 501	7.19	2.102	1.68	10.3	30.7	20	1.8	18.4	5.1	.4	2 2	20	42.4	1.8	68.5	1.3	7,59	
	4816	3.7 1	03.0	2.8	214	.3 1	146.5	42.4	1367 7.	.17	3 1.5	5 <.1	1.4	745	.7	1.0	.4 2	166 1	2.13	.155	8.1	334,7	4.89	215	. 545	6.09	.860	1,23	4.2	16.6	17	3.9	14.8	3.4	.2	1 3	33	88.4	1.2	82.5	. В	8.33	
	4817								1328 7.								.4 3	no i	9 41	157	8.5	30n 3 -	4 55	174	527	6.57	1.360	1 42	4.6	20 4	17	1.5	14 6	3.3	2	1 3	RU .	64 6	1 1	69 1	В	6 98	
	4011			2												•								•			2.002	2			•	1.0		0.5	. •				*	٠,		0.50	
	4818	14.0.1	12.0	5 2	202	A 1	122 7 1	21 0	1023 7.4	u3	14 2 6	1	2 1	570	1 6	1 4		142	6 21	163	10.2	169 0	2 86	50	507	D 10	2 203	2 0/	27	24 7	20	1.1	16.7	-3.6	2	1 2	'n	50 l	١.	74.2	١.	C 61	
									1815 5																																		
	4819																																										
	4820								2470 5																																		
	RE 4820								2419 5.																																	-	
	RRE 4820	12.1 1	69.4	20.1	163	.4	19.4 1	19.6	2530 5.1	.33	9 2.4	<.1	3.2	503	.3	2.2	1.8 2	12	4.36	. 201	13.2	25.9	1.83	819	. 375	8.57	3.012	2.11	85.7	16.4	24	17.3	15.7	16.6	. 3	8	9 1	05.3	1.6	160.3	.6	-	
	4821	7.4 1	65.0	11.6	193	. 2	13.4 2	20.3	1972 5.1	.04	5 3.8	<.1	3.0	481	.6	1.4	.3 1	89	3.52	. 190	13.2	22.1	1.71	221	.356	9.62	3.258	2.39	110.3	14.6	25	4.3	16.1	17.2	. Э	8	7 .	8.98	1.3	94.2	.5	6.95	
	4822	23.1 1	95.3	14.7	182	.5	22.3 7	21.9	2000 6.3	. 23	7 5.1	<.1	2.8	554	.9	2.4	3.2 2	38	4.30	164	10.4	41.3	1.78	37	.415	8.67	1.884	3.30	80.7	24.4	21	9.6	14.9	16.9	.3	7 1	.2	98.0	2.7	195.1	1.1	5.94	
	4823	9.7 1	67.3	10.7	311	. 3	16.6 !	19.4	2189 5.1	.87	3 3.3	<.1	2.9	610	1.4	1.0	2.1 2	29	4.16	.214	12.6	36.5	2.08	313	.402	8.81	3.384	2.03	90.8	15.8	24	7.2	14.5	9.5	. 2	7 1	4	70.6	1.9	153.5	.1	7.02	
	4824	9.61	99.3	9.8	226	.3	22.0 /	24.9	1762 6.5	. 55	7 2.1	< .1	2.6	518	1.0	1.3	1.2 2	62	3.72	. 202	11.9	28.5	2.01	131	. 436	9.26	3.264	2.07	134.0	16.6	23	5.7	15.5	32.9	. 2	9 1	2	86.8	2.2	108.3	.7	7.75	
Ì	4825	15 0 1	46.2	7.6	342	4	47.8	18 2	1045 5.4	.45	5 2.8	< I	2.4	522	3.4	.8.	.1 3	23	5.06	166	11.5	47.8	1.86	113	. 382	8.10	2.455	2.71	16.3	25.9	20	1.0	15.2	7.3	.2	.0 1	3 2	95.9	1.5	107.8	1.1	6.53	
	4020	20.2								-																															•		
	4826	10 5 3	20 1	<i>4 1</i>	170	2	76.7	24.2	1448 5.4	40	5 2 (2.1	507	6	a	9 2	27	6 33	179	11 2	53.5	1 89	410	410	7 69	1 798	2 64	27 2	20.8	21	2 R	15.3	9.8	2 1	1 1	6 3	n3 2	Q	126 /	7	7 16	
									1149 5.1																																		
	4827																																										
	4828								1351 6.4																																		
	4829								953 6.4																																		
ł	4830	12.6	15.9	27 6	58	.9	6.7	2.0	334 1.	.15	10 10.3	< 1	32.8	73	. 6	1.7	.5	27	.49	.015	17.2	10.1	. 29	155	.087	6.56	1.848	3.79	18.8	43.5	33 4	11.5	3.2	24.4	2.0	3	4	31.0	.2 .	244.6	1.9	1.01	
ļ	4831	23.1	8.3	19.5	13	.1	1.6	.9	29 .	.52	4 6.8	<.1	25.9	53	<.1	.9	1.4	7	. 24	.003	14.7	2.7	.07	220	.051	6.41	2.242	3.86	12.3	24.8	23	3.2	5.9	14.5	1.0	2	1 ;	33.5	.2	171.4	1.3	1.03	
ļ	4832	59.0	16.1	22.5	68	.2	3.6	2.5	1148 2.	. 15	7 14.4	<.1	24.1	117	.4	1 4	7.7	25	.53	.032	34.4	8.4	.34	420	144	7.35	1.680	3.26	33.3	36.8	53 1	7.8	6.1	28.3	1.3	5	5	71.1	.4	196.4	1.9	4.91	
ļ	4833	855.3	68.6	17.1	125	. 1	8.4	10.9	1416 3.3	. 29	10 B.4	<.1	17.2	215	<.1	2.0	3.4	94	2.09	.099	39.6	14.9	.76	267	. 274	7.95	2.341	3.49	47.0	32.3	63	8.6	5.7	31.1	1.6	5	8	77.5	1.0	216.3	1.2	6.23	
									1054 2.4																																		
	•-								1145 1.5																																		
	7033	£00.0			113	1.1	۷.٤	c.4 .	14-3 1.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4.1	24.3	7-1	1						~, , ,	0.5	.00	V	. 202	. , ,,	2.004	2.37			-							2.0				0.40	
	STANDARO DST6	124.	20. 7	35.3	170		20 1	12.2	062.4	0.7	22 7 /		7.0	204	4 A		4 O 1	10	2 20	nac	26 2	226 A	. nn	675	400	7 00	1 616) 39	7.4	51.2	50	62 1	4.7	g n		2 14	n ·	249.	- 1	55.6	1 7		
	STANUAKU USIB	14.4 1	29.1	33.6	1/5	.4	30.1 1	13.2	204 4.1	v/ (7.6 ب	, <u>~. l</u>	1.0	304	0.0	د. د	4.0 1	10	4.67	V20	٥. د			5/3	103		1.010	1.50	- ' . "	71.5	20	٠.٤ .		0.0		J 1			-, 4		• • •		

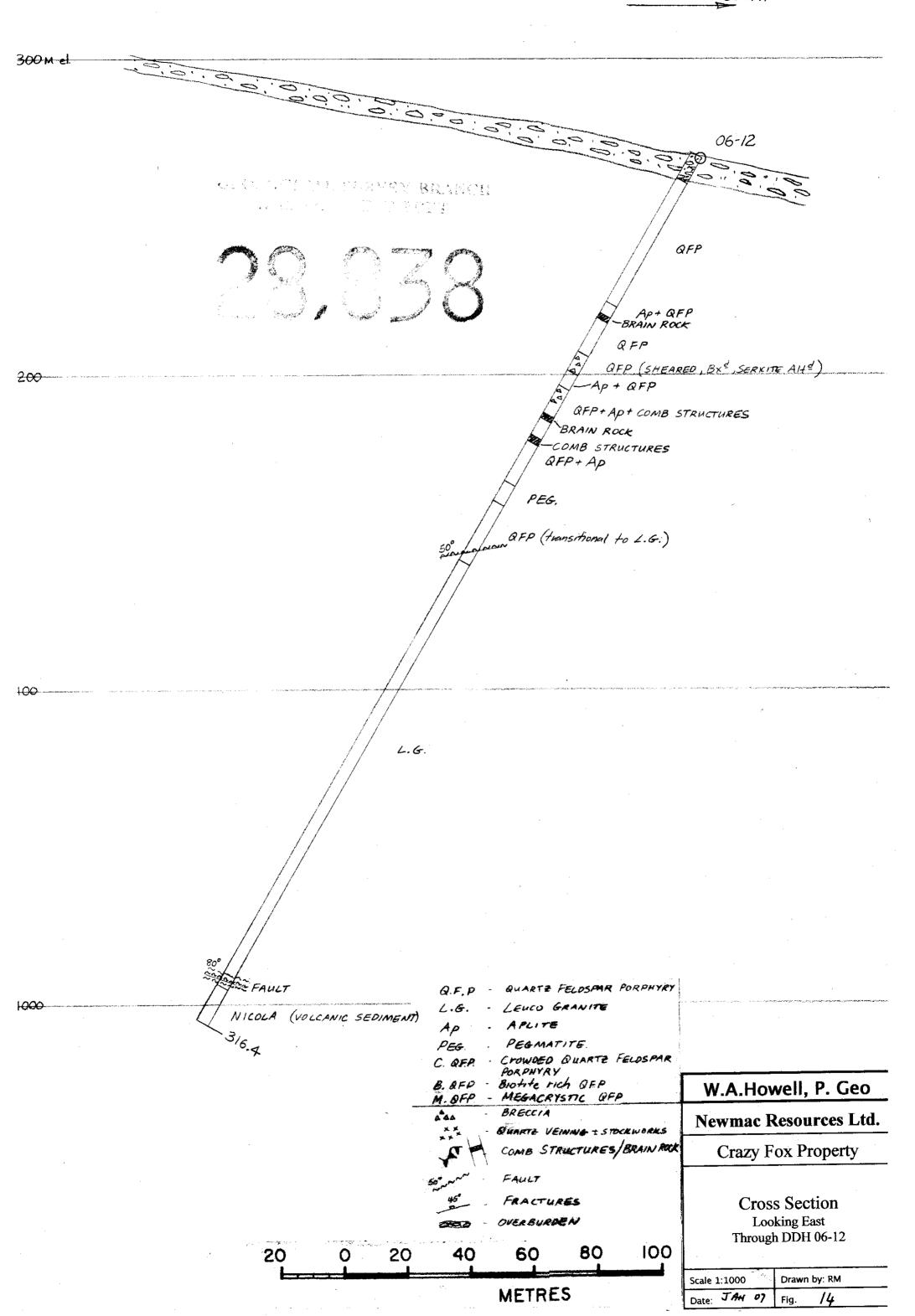
Newmac Resources Inc.

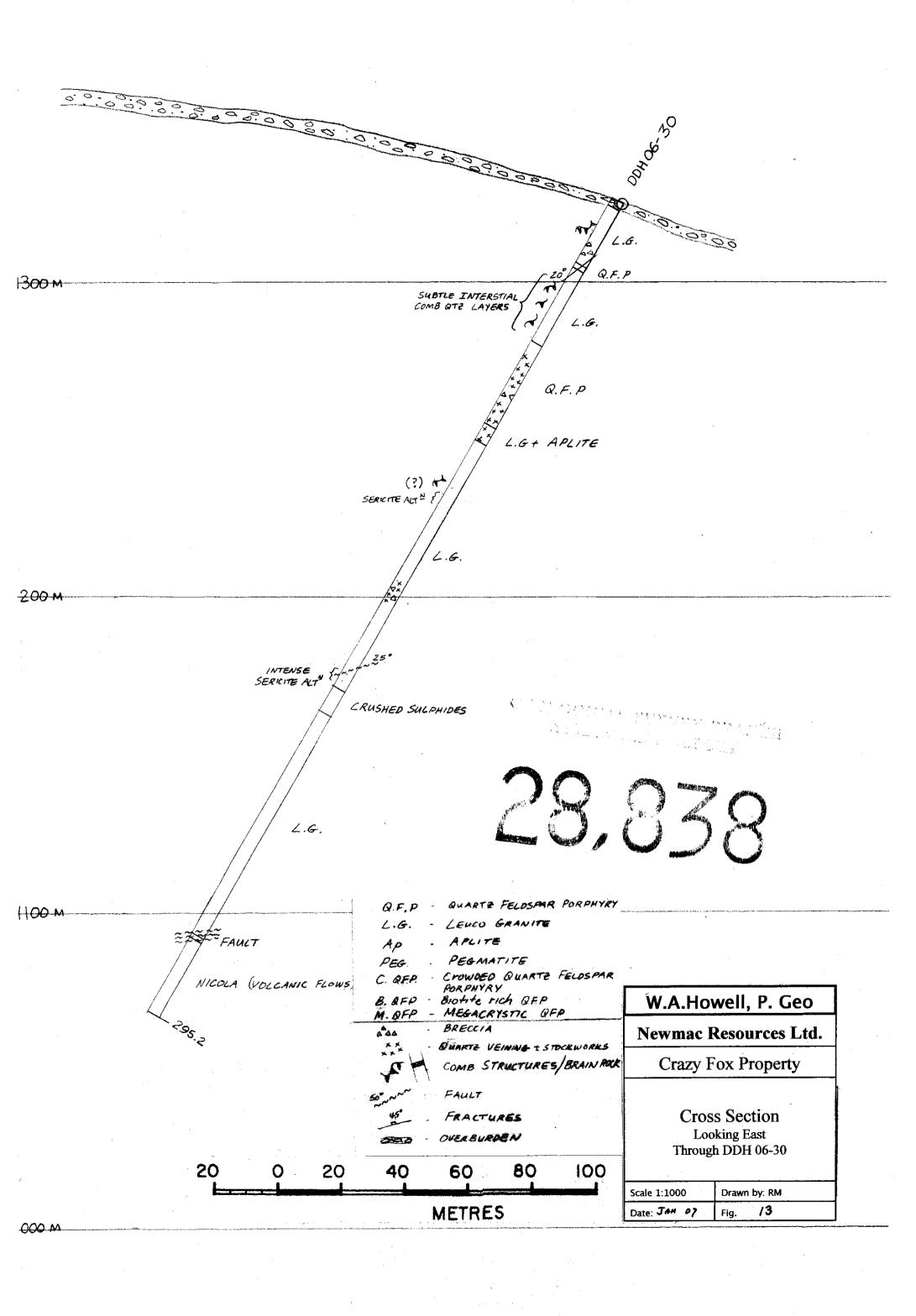
FILE # A601112

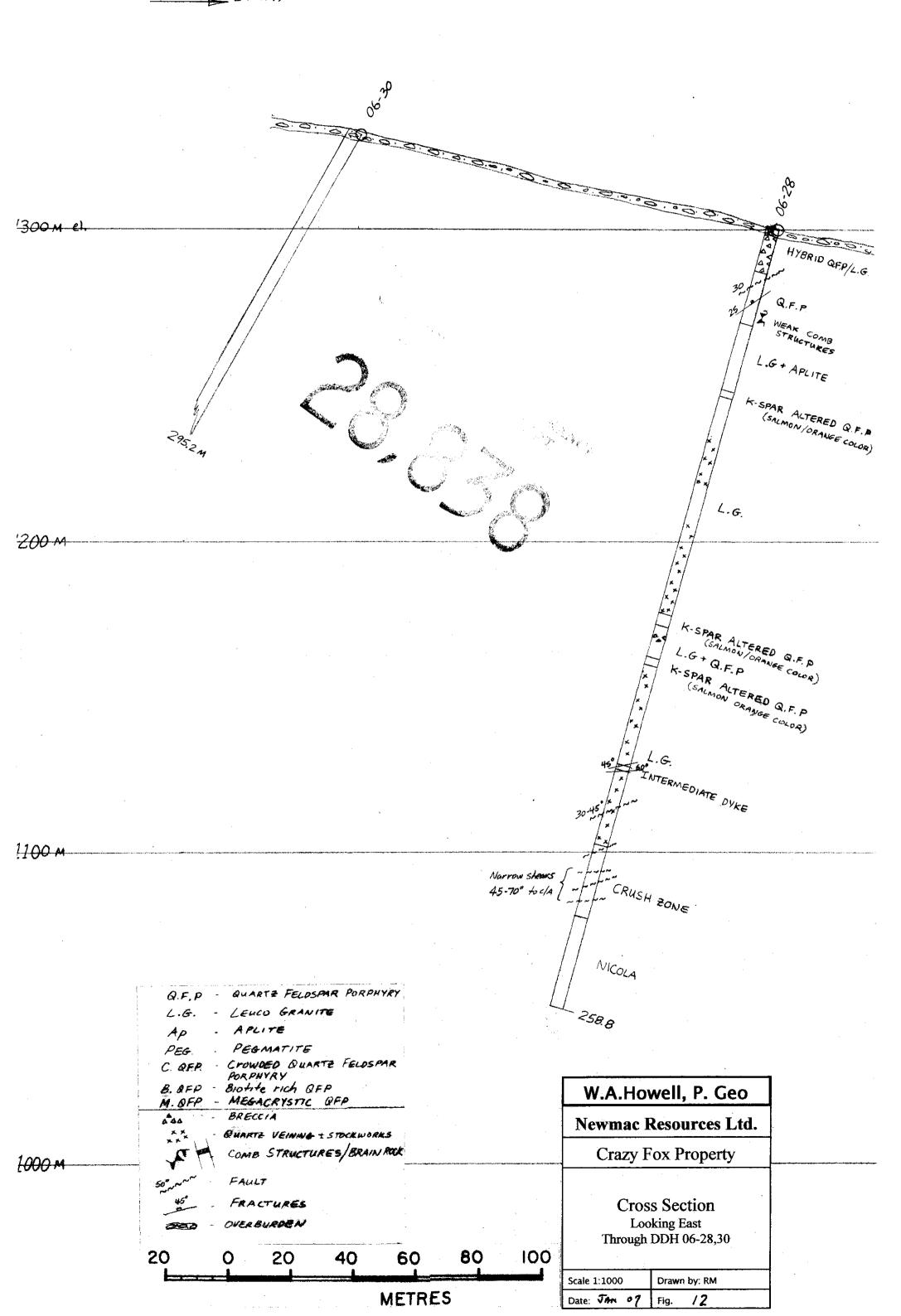

Page 5

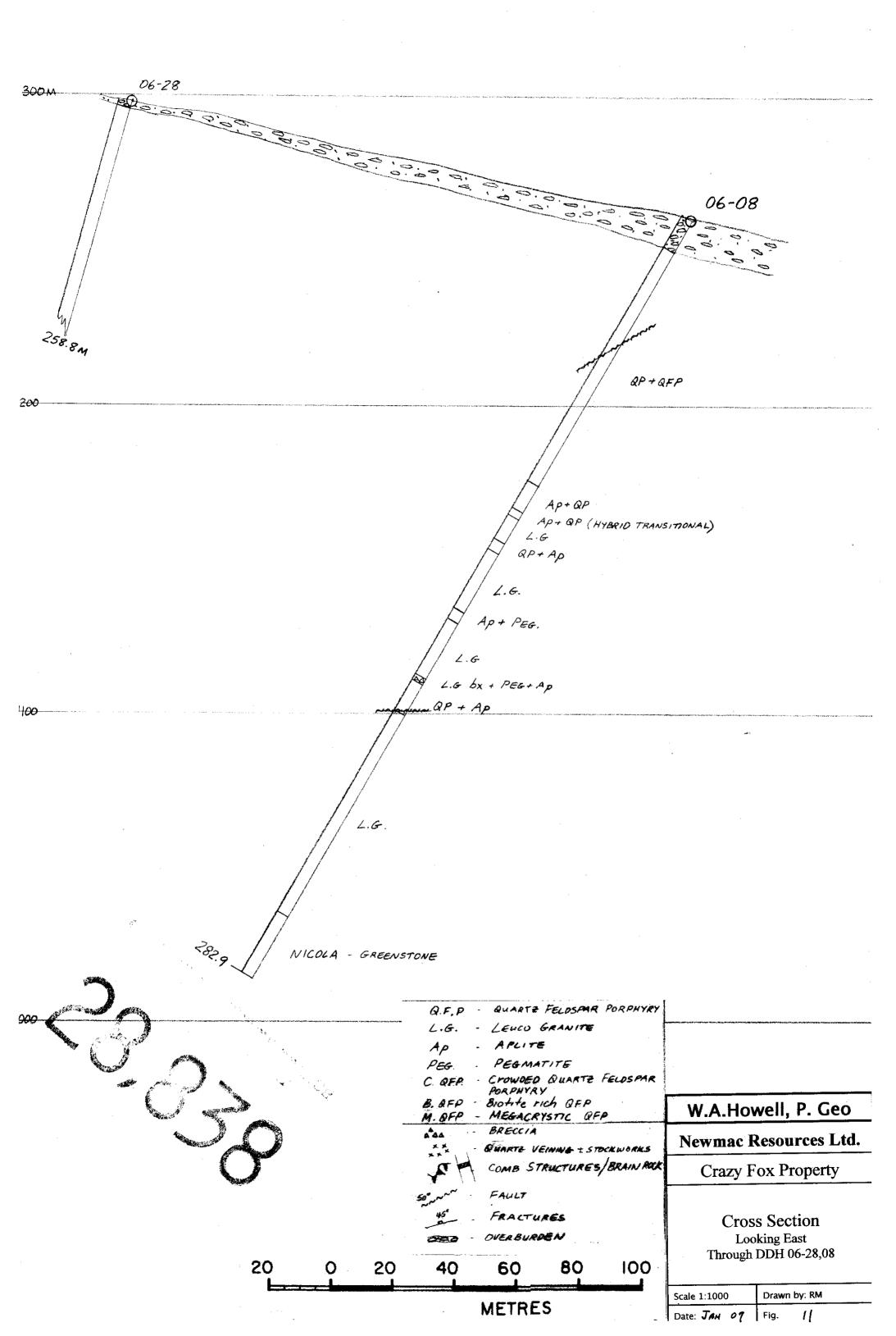


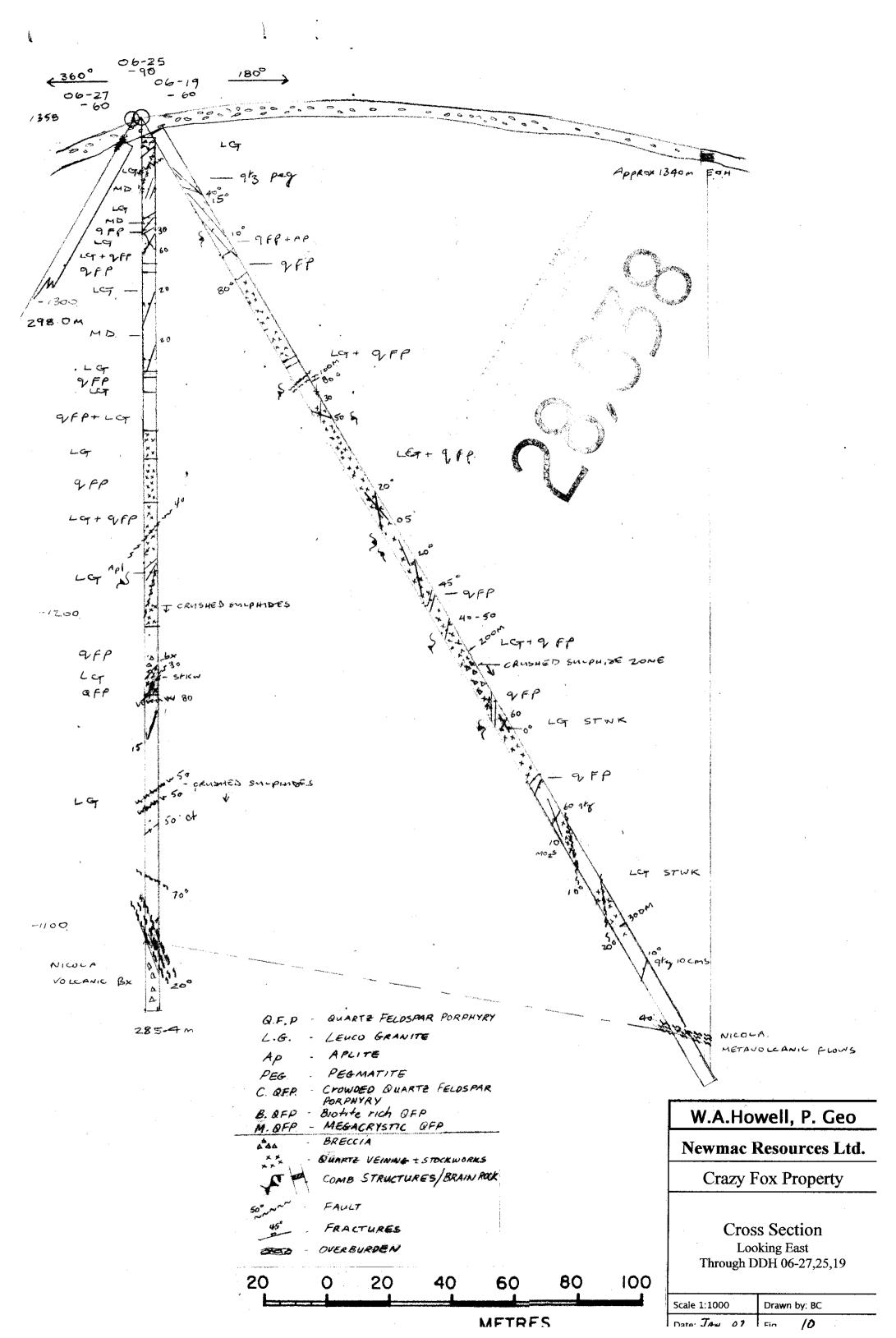

MERIC AIME	1110AL																																												ACI	IL MINETI	1 CML
	SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	/ fin	n Fe	A	i U	Au	Tr	Sr		J Sb	В	i	γ	Ca	Р	La	Cŕ	Mg	Ba	Ti	Αl	N	a l	ς	W	Zr	Ce	ŝn	Y	Nb	Tā	Be	Sc	Li	s	Rb	Hf	Sample		
		ppm	ррп	00m	ppm	ppm	ppm	ppr	ppr	n %	ppr	п ррг	ppm	ppr	1 ррп	, cbr	n ppm	pp	т рр	M	ž	ž	ppm	ppm	*	ppm	¥			t	k p	pm p	bw b	om p	ן חוכ	mqc	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	kç	;	
																								••																			-				
	G-1	1.8	3.0	23.5	71	<.1	4.2	6.1	84	1 2.78		3.8	< 1	7.6	786		. 3	2.	9 6	6 2.	94 .	089	24.6	13.7	. 70	1102	.324	8.69	2.68	4 3.1	5 6	.9 8	. 7	50 1	.9 1:	3.5	21.2	1.6	3	6	45.7	< . 1	121.0	.7			
	4836	85.7	23.9	72.5	122	1.3	3.0	3.2	105	3 2.47	27	18.0	< 1	27.3	108	1.1	6.6	58.	3 5	2 .	85 .	044	47.1	9.8	.37	317	.172	7.20	1.68	1 3.8	7 >2	00 28	.3	76 88	4 1	1.9	27.3	1.5	5	6	91.0	.9	264.1	1.3	7.0		
	4837	141.4	10.5	81.5	25	1.0	.5	. 5	472	2 1.27	7	5.1	< .1	37.3	52	2	3.7	103.	Û	4 .	30 .	800	83.3	3.5	.08	243	.092	6.85	2.16	8 3.9	74	.0 24	.6 1	39 20	.9	7.4	17.5	.7	2	2	38.8	.4	174.4	1.0	5.74	ı	
	4838	139.8	6.1	31.3	24	.2	. 7	. 6	454	1.07	5	5.8	<.1	31.0	71	<.]	1.3	14	3	2 .	35 .	012	75.2	2.7	.11	376	. 101	6.96	2.44	9 4.1.	76	.2 25	.1 1.	22 11	.2	7.9	17.4	. 6	3	2	54.5	. 3	172.1	1.0	6.14		
	4839	28.9	2.0	24.9	22	<.1	.7	. 4	370	.90	4	4.6	<.1	30.2	46	1	4	1.	1 <	1 .	48 .	800	65.8	2.7	.08	177	.081	7.08	2.60	2 3.9	3 18	.3 29	.7 1	37 3	.8	8.6	19.8	1.2	2	2	35.0	.1	138.1	1.3	6.90	3	
	4840	138.4	2.3	34.5	26	< 1	1.2	.9	658	1.83	7	9.8	<.1	45.9	55	<.1	. 8	5.	5 ì	0	41 .	016	152.7	8.8	.12	135	. 141	7.15	2.67	1 3.7	7 56	.5 46	.9 2	55 23	.6 14	1.0	30.2	1.7	4	4	62.9	.3	176.3	1.8	6.1	,	
	4841	84.4	10.9	22.9	61	. 1	5.8	2.1	999	2.61	. 8	7.9	<.1	36.8	83	. 1	1.5	7.	7 3	8 .	79 .	033	101.4	12.6	. 25	345	. 183	7.34	2.90	9 3.4	5 43	.1 41	.2 1	73 24	7 1	5.3	30.3	1.9	3	5	50.0	.5	173.7	1.7	6.7/	3	
	STANDARD DST6	12.6	129.3	35.2	176	. 3	30.6	13.5	964	4.08	24	7.6	<.1	7.0	312	5.9	5.4	4.	B 11	4 2.	29 .	099	24.6	225.5	1.00	686	.414	6.98	1.63	5 1.4	7	.7 54	.6	52 6	4 13	3.7	8.3	. 6	3	11	25.9	< 1	53.8	1.8			

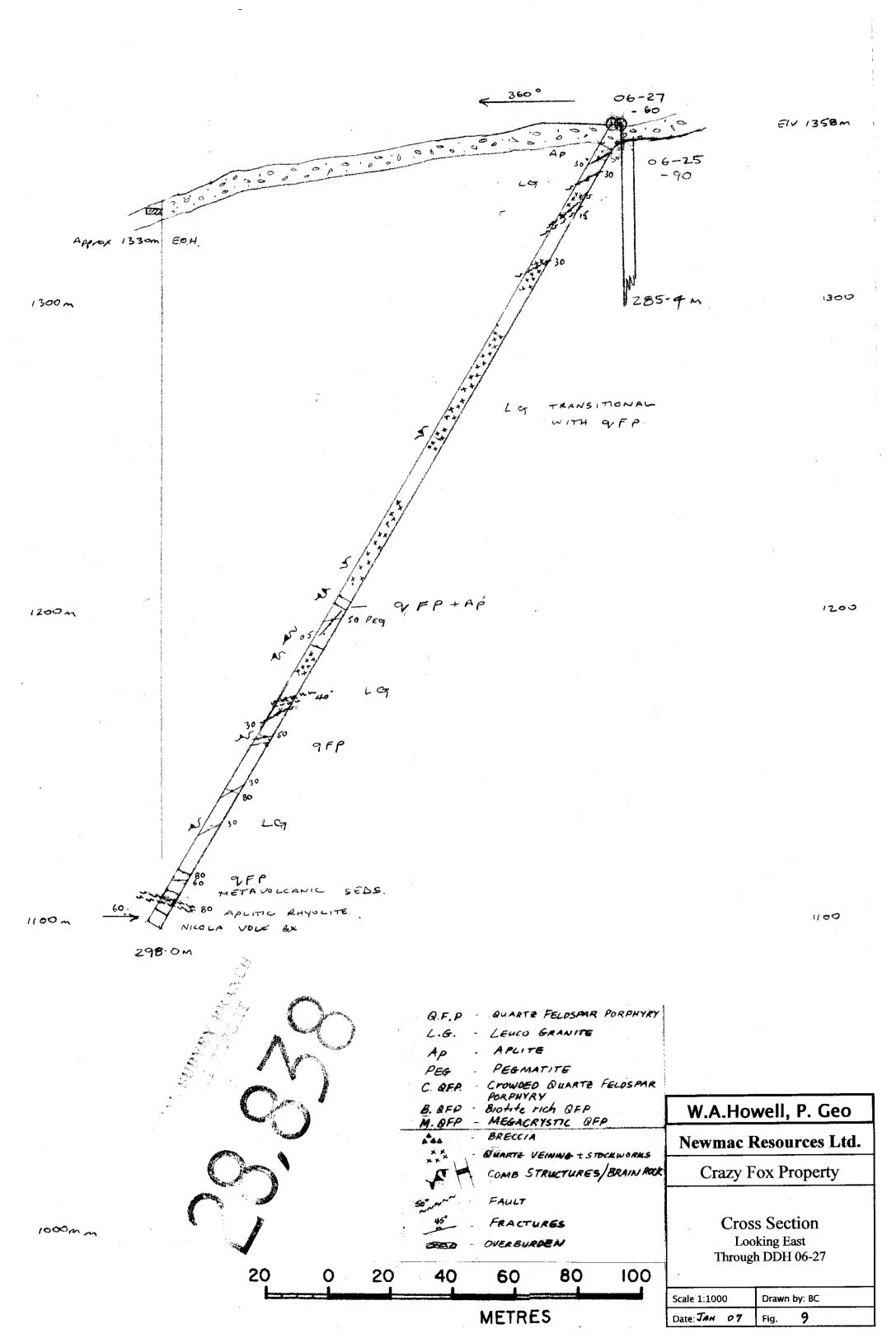

Sample type: DRILL CORE R150.

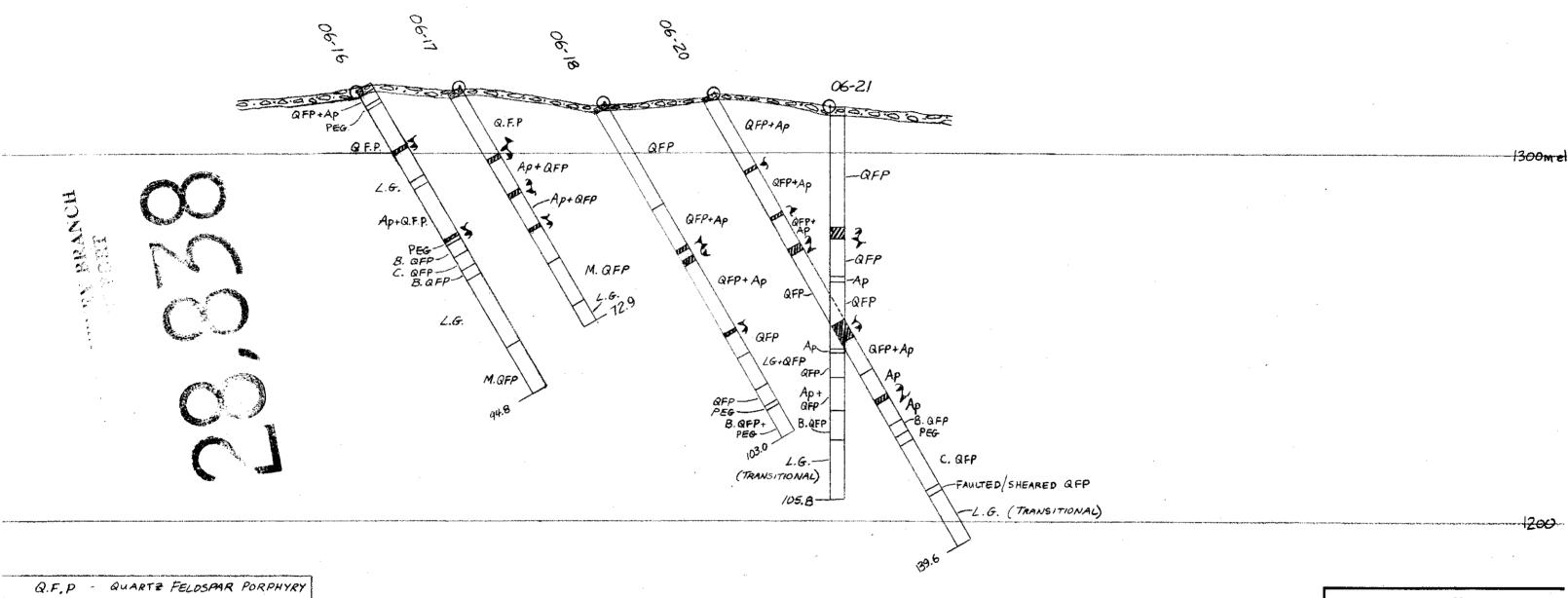

ـ ۶۸ ـ

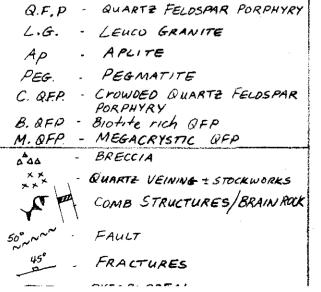


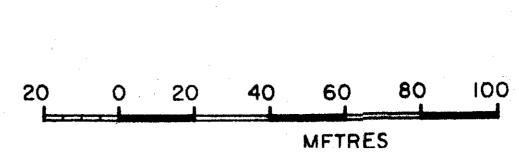


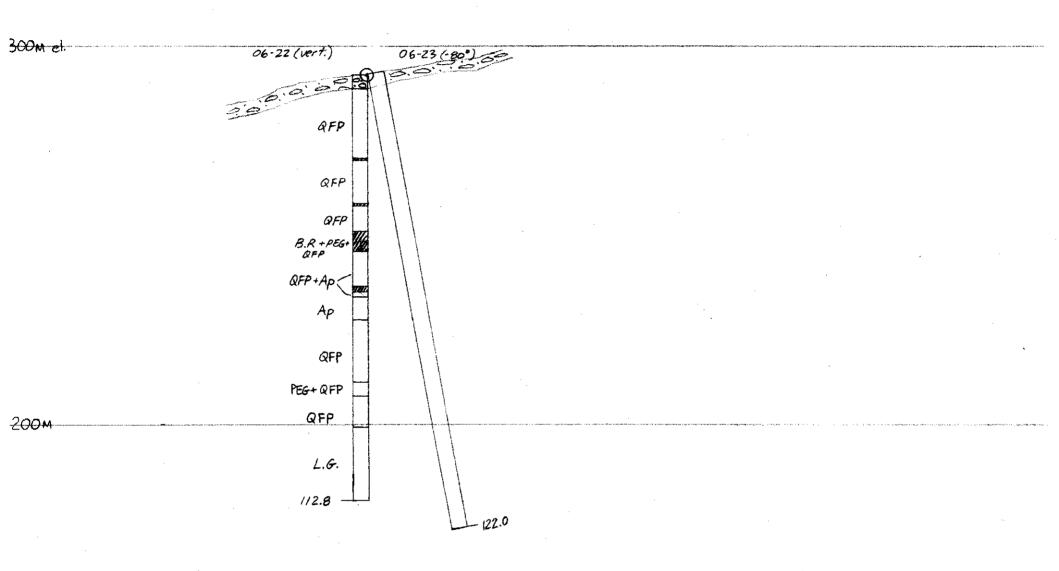


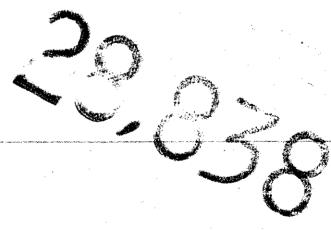




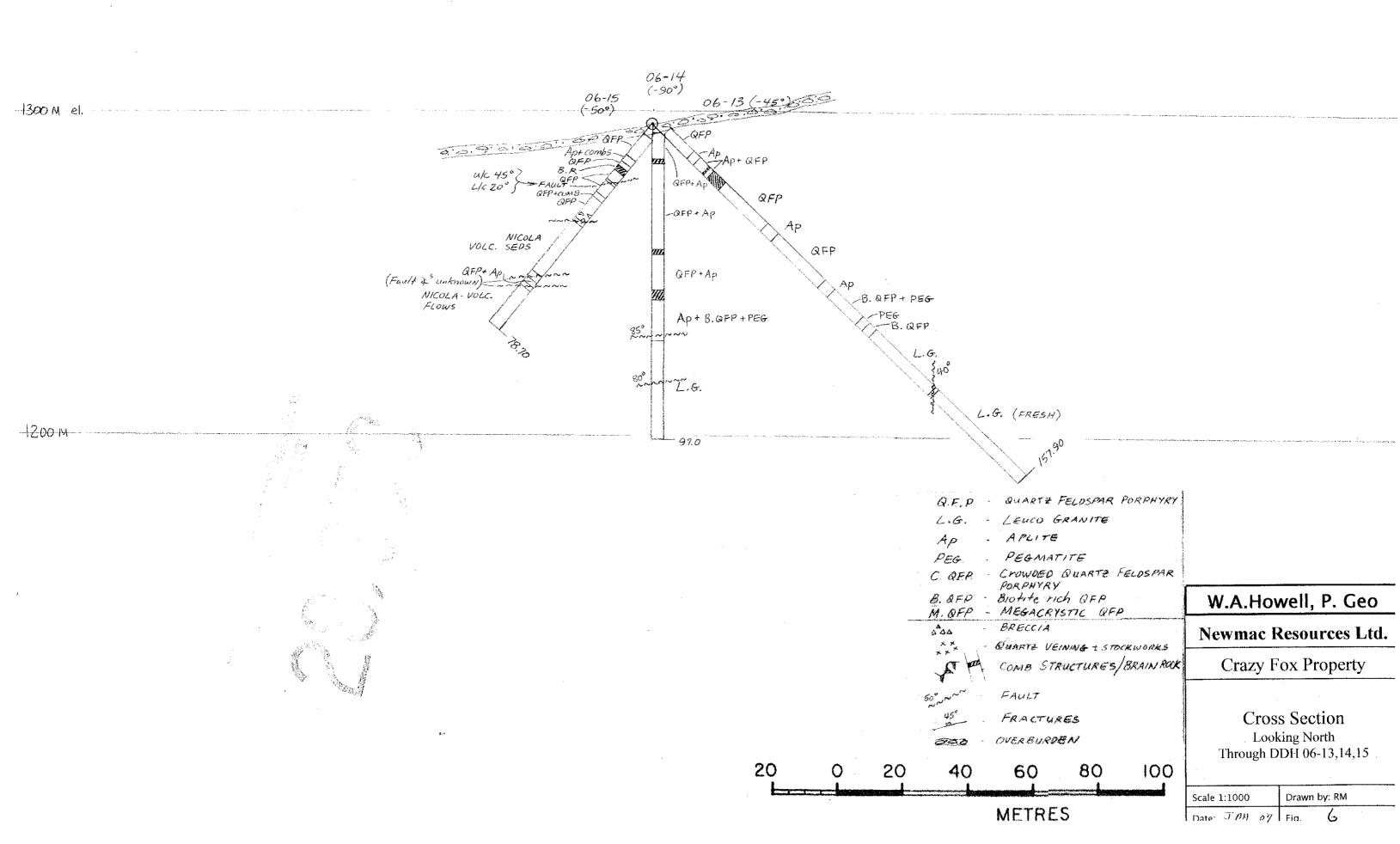


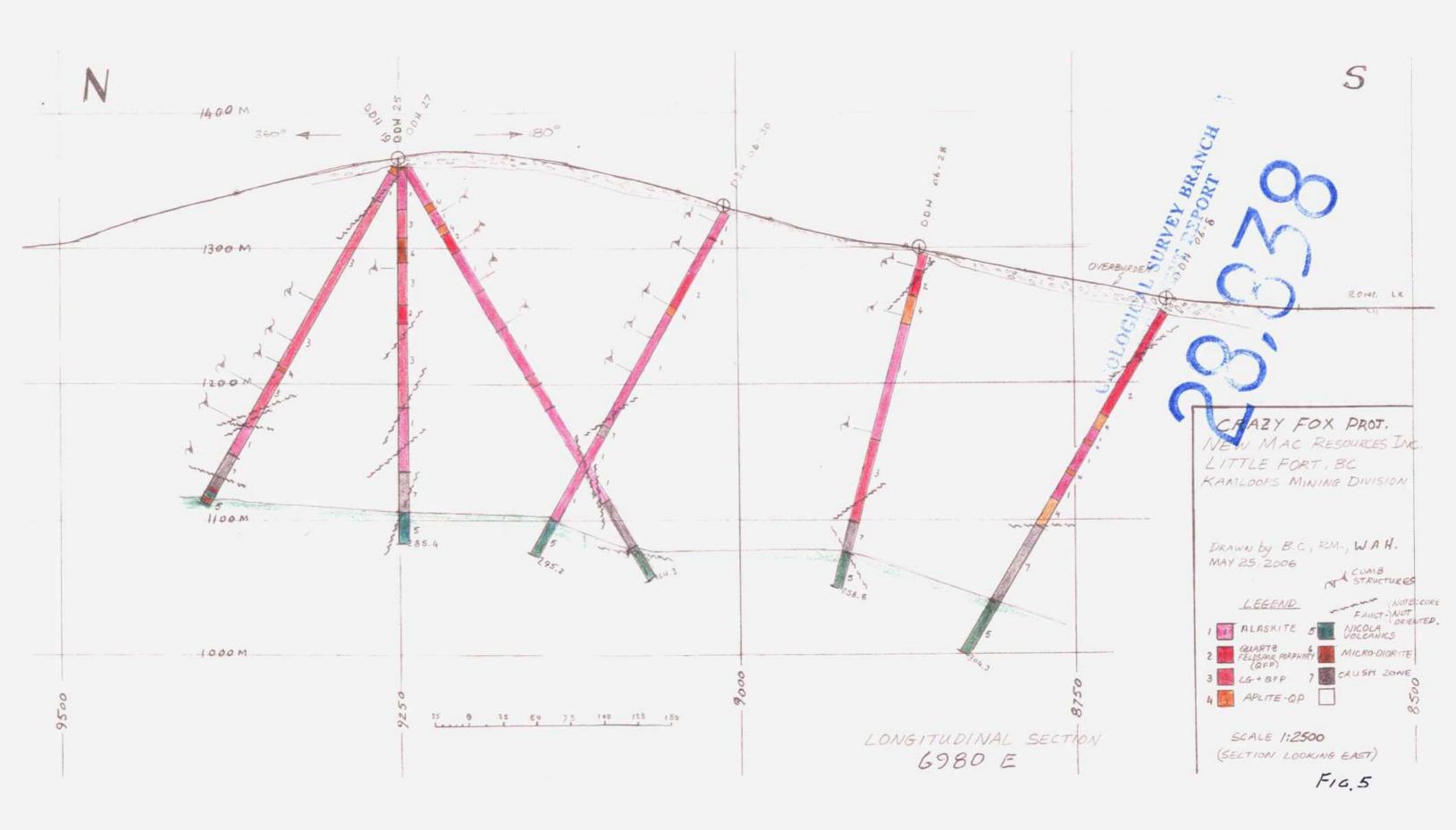


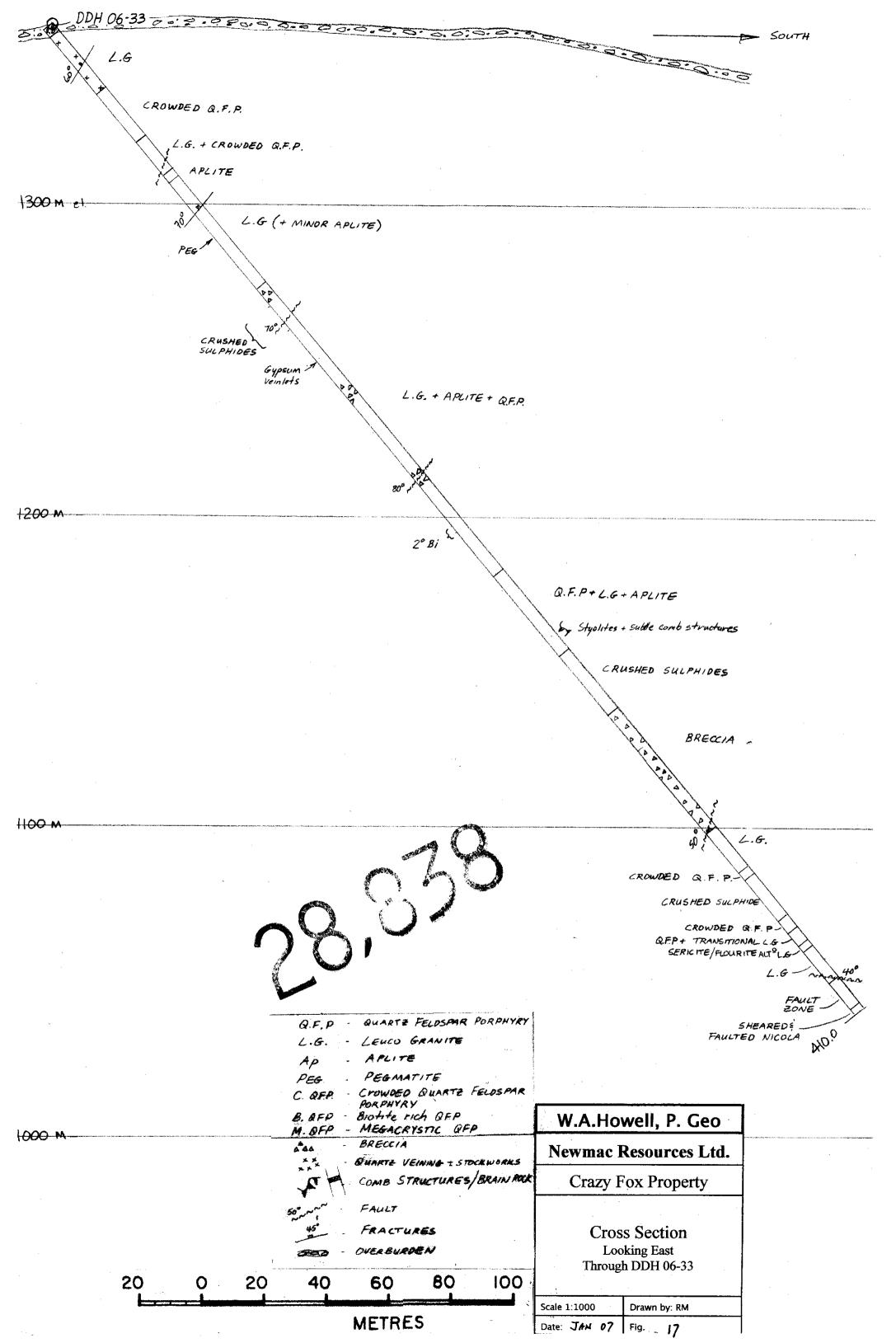

W.A.Howell, P. Geo Newmac Resources Ltd.


Crazy Fox Property

Cross Section
Looking East
Through DDH 06-16,17,18,20,21


Scale 1:1000 Drawn by: RM


Date: Tan 07 Fig. 8



QUARTE FELDSPAR PORPHYRY Q.F.P -LEUCO GRANITE APLITE Ap PEGMATITE PEG. CrOWDED QUARTE FELDSPAR C. QFP. Brotite rich QFP B. AFP W.A.Howell, P. Geo - MEGACRYSTIC OFP BRECCIA A 4A Newmac Resources Ltd. QUARTE VERNING & STOCKWORKS COMB STRUCTURES/BRAIN ROCK Crazy Fox Property FAULT FRACTURES **Cross Section** OVER BURDEN Looking North مجنى Through DDH 06-22,23 100 20 40 60 80 20 Drawn by: RM Scale 1:1000 METRES Date: JAN 07 Fig.

