

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT [type of survey(s)]	TOTAL COST
AUTHOR(S) David M. Jenskins P. Gasig	NATURE(S)
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S)	YEAR OF WORK 2006/2007
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S)	100.15,2006 Event: 4111488
PROPERTY NAME Addie 1	
CLAIM NAME(S) (on which work was done) Spanish, Span HGASSBAU, Addiel, Ad	iish 4, PY, Carlin, Carlinz, Idie Z
COMMODITIES SOUGHT Go/d	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN	
MINING DIVISION Cariboo	093 A 059
LATITUDE <u>52° 33</u> LONGITUDE <u>1</u>	2_/_o (at centre of work)
owner(s) 1) <u>Lloyd John Addie</u> 2)	Dajin Resources Corp.
MAILING ADDRESS 1102 Gondon Rol. A SOI NELSON BC VIC 3M4	Soite 483 -789W. Pender St Vancouver, BC VGC 1HZ
OPERATOR(S) [who paid for the work] 1) Dajin Resources Corp 2)	£
MAILING ADDRESS Suite 480-789 W. Pendes St. Vancouver, BC V6C 1HZ	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alter	ration, mineralization, size and attitude):
Quesnel Terranie, Nicola G	roup, Metasediments
•	
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REF	PORT NUMBERS 10262, 12513
	(OVER)

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil		1 . Clain	#122 2027
sit 83 Soct San	ples	page 1 this Porm	427, 693-T
Rock		1 - J - F - For the	
Other			
DRILLING			
(total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			1
PREPARATORY/PHYSICAL		34	
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			-
Legal surveys (scale, area)			
Road, local access (kilometres)/trail			
Trench (metres)			
Underground dev. (metres)			
Other			H
		TOTAL COS	177797.75

ASSESSMENT REPORT FOR THE ADDIE 1 AREA CLAIMS CARIBOO MINING DIVISION, BC

MINERAL TITLES REFERENCE MAP: 093A054

UTM: 614000E 5823000N

GEOLOGY AND GEOCHEMICAL SAMPLING REPORT

Owners

LLOYD JOHN ADDIE Client Number: 100221

And

DAJIN RESOURCES CORP. Client Number: 202300

David Jenkins, P.Geo. (Consultant)

February 7, 2007

EXECUTIVE SUMMARY

Mr Lloyd Addie has staked the Cedar, Cedar 2, Spanish, Spanish 4, PY, Thrust, Thrust2, Thrust3, Carlin, C, C1, Carlin2, HGASSBAU claims, located to the north, east and south of the southeast end of Spanish Lake and north of Hobsons Arm on Quesnel Lake in Cariboo Mining District of British Columbia. Dajin Resources Corporation has optioned the claims from Mr Addie, acquired the Addie 1 and Addie 2 claims and acted as the operator in this work. The claims comprising the Addie 1 Project are all contiguous and total 5425.66 hectares. A programme of stream sediment sampling was carried out by Mr. D.M. Jenkins P.Geo.., BC and Mr. R.Anctil, geologist, as follow-up to work performed in 2005.

The claims comprising the Addie 1 Claim group were staked to cover potentially favourable geological ground east and south of an area where Skygold Ventures Ltd. and Wildrose Resources Ltd. have located a high grade gold mineralization in metamorphic rocks of the Quesnel Terrane. The Addie 1 Claims which cover the south easterly extensions of the Spanish Fault and the Eureka Fault, both of which are associated with significant showings of gold mineralization.

This report describes the results of stream sampling investigations of the contiguous claims of the Addie 1 Claim Group. Several areas of geological interest have been identified and some stream sediment samples returned anomalous gold values that merit follow-up with detailed prospecting geological mapping and soil sampling.

TABLE OF CONTENTS

	Page
Executive Summary	Ī
Introduction and Terms of Reference	1
Scope and Limitations	1
Sources of Information	1
Property Location and Description	4
Access, Climate, Local Resources and Infrastructure	8
History	8
Geology	9
Deposit Type	9
Economic Mineralization	9
Summary of Work Completed	10
Interpretation and Conclusions	13
Cost Statement	13
Recommendation	14
References	15
Certificate	17

TABLES

Table 1. List of Claims	4
Table 2. Geochemical Signatures of AD1122 and AD1123	12

FIGURES

Property Location Map	2
Property Regional Location Map	3
Claim Location Map	5
Claim Geology Map	6
Claim Geology Map Explanation	7
Sample Location Map	Appendix III
Gold in Silts Map	Appendix III
Gold in Silts Bubble Map	Appendix III
Arsenic in Silts Map	Appendix III
Arsenic in Silts Bubble Map	Appendix III
	Property Location Map Property Regional Location Map Claim Location Map Claim Geology Map Claim Geology Map Explanation Sample Location Map Gold in Silts Map Gold in Silts Bubble Map Arsenic in Silts Bubble Map

APPENDICES

Appendix I Appendix II Appendix III Analytical Certificates Sample Coordinates Geochemical Maps

INTRODUCTION AND TERMS OF REFERENCE

This report describes a programme of stream sediment sampling completed in 2006 and the results thereof. The 2006 sampling programme is a follow-up of a programme of stream sampling and regional scale geological investigation carried out in 2005 to assess the potential for gold mineralization in an area adjacent to the Skygold Ventures and Wildrose Resources gold project on the west end of Spanish Lake, BC. The region has seen a marked increase in exploration activity and the discoveries of new gold mineralization in this area reflect a persistent effort using the exploration tools available today and taking advantage of much improved access due to the development an extensive new network of logging roads. The work carried out by Dajin Resources Corporation has indicated some favourable geological environments and a follow-up programme is recommended.

This report is written as a follow-up to the report written by Mr. B. Ainsworth, P.Eng. in April of 2006. As such, with the permission of Mr. Ainsworth, this report uses much of the descriptive narrative of Ainsworth's report. The undersigned is responsible for any of the errors, omissions or other short comings of this report.

Scope and Limitations

Research was limited to a review of historical work that related to the immediate area of the property. The field work was carried out under the supervision of Mr. D.M.Jenkins PGeo, BC. By Mr. R.Anctil and Mr. Ernest Barnes. Mr. Jenkins has more than 30 years professional experience with more than ten years experience in geochemical exploration. Mr. Anctil has more than 20 years experience as a geologist and was initially trained in stream sediment and soil sampling by the professional geochemists at Placer Development Limited. Mr. Barnes has worked as a placer miner and prospector for more than 10 years and was trained in stream sediment sampling during the progress of the Addie 1 sampling. This report is for the purpose of filing assessment work.

Sources of Information

Sources of information are detailed below and include both the public domain information available and personally acquired data.

- Research of the Minfile data available for the area
- Review of field notes of Mr. D.M. Jenkins, PGeo BC and Mr. R. Anctil, geologist.
- Review of geological maps and reports completed by the BC Geological Survey Branch or its predecessors

ADDIE 1 Location Map

FIGURE 1

Fig 1a. The Addie 1 Claims coloured in yellow are located on the north side of Quesnel Lake.

PROPERTY LOCATION AND DESCRIPTION

Mr. Lloyd Addie acquired the Addie 1 claims in the Cariboo Mining District by online staking. Dajin acquired by purchase 2 claims which had been staked online. Jointly the 15 claims comprising the Addie 1 claim group cover a recorded 5425.66 hectares (approximately 13,406.806 acres). The tenure numbers of the claims are listed below and the tenure locations are shown on Figure 2. These maps were taken recently from resources available through Mineral Titles Online. The claim names are: Thrust, Thrust 2, Thrust 3, Carlin, C1, C, Carlin 2, HGASSSBAU, Spanish, Spanish 4, Cedar, Cedar 2 and Py.

Tenure	Туре	Claim Name	Good Until	Area (ha.)
Number				
502355	Mineral	Spanish	2008/01/12	471.761
503342	Mineral	Spanish 4	2008/01/14	393.197
504627	Mineral	Cedar	2008/01/22	491.559
504628	Mineral	Cedar 2	2008/01/22	235.971
514946	Mineral	PY	2008/11/15	393.148
517840	Mineral	Thrust	2008/11/15	471.531
517841	Mineral	Thrust 2	2008/11/15	294.722
517842	Mineral	Thrust 3	2008/11/15	392.875
518216	Mineral	Carlin	2008/11/15	491.698
518217	Mineral	C1	2008/11/15	235.938
518218	Mineral	Carlin 2	2008/11/15	353.971
518438	Mineral	HGASSBAU	2008/11/15	471.993
518439	Mineral	C	2008/11/15	98.364
536786	Mineral	Addie 2	2007/07/08	235.83
536787	Mineral	Addie 1	2007/07/08	393.102

Table 1. Claim Information

Total Area: 5425.66 ha

The nearest major center to the claim area is Williams Lake, approximately 70 kms by air to the southwest. Quesnel is 95 kms by air to the northwest and connects by good roads to the village of Likely which lies approximately 20 kms northwest of the claims which are accessible to Likely by a network of logging roads. The Addie 1 claims wrap around the southeast end of Spanish Lake and adjoin claims of the Skygold-Wildrose joint venture on the northwest corner of the block.

Addie 1 Claim Group Claim Map

			TISH COLUM	
			a off	
	BC	,	1 1 1 1 3	r:
	Ministry of Energy, Min Petroleum	les and Resources	COCICAL SUR	
		PA	FIGURE 5	
	GEO	LOGY OF	THE EUREKA PEAK -	-
	MA	CKAY RIV	ER AREA AND THE	5
	CE	ENTRAL BI	RITISH COLUMBIA	_200
		BY MARY	S 93A/7, 11	
		(SEE BELOW FOR	ADDITIONAL SOURCES OF DATA)	
	KILOWETRES		2 3 4 KILOMETRES	Ч.
		SCA	LE 1 : 50 000	
LN)	QUATERNARY			
RECE	Qai Till, altur	rium, colluvium		
7.		INTERMO	NTANE BELT	÷.
1	LATE TRIASSIC - EA	ARLY JURASSIC		P
	JTb Massive	up porphyritic flows, bi	reccia and tuff	2
1	JTa Massive	flows, agglomerate:	s, ashflow tuffs, pillow basalts, mafic dikes	
- 1	MIDDLE - LATE TRI	ASSIC		- <u>1</u>
0	NICOLA GRO	UP		
ozos	Tid Volcanic	sandstone and was	cke	397
ME	Ttb Banded	slates and tuffs, min	or fisslie phyllites and limestone	
- 1	V. = Vok	canic flows and fulfs		
1	ha6 Gra	phitic black phyllites stone	s, with interbedded quartz sandstone and	
	had Lan had Phy	/ states ninated phyllite and flittic siltstone	porphyroblastic phyllite	- 3.1
1	hal Mic	aceous black phyllit aceous quartzite	e and tuff	
SOIC	MISSISSIPPIAN - EA	RLY PERMIAN (?)		
ALEO	Pca Crooked schist, ul	Amphibolite; amphi tramafic nodules	ibole - chlorite schist, chlorite - epidote	
-77 L		OMINE		ő s
8 (LATE DEVONIAN TO			
LEO2	QUESNEL LAP			
PA (OLG Quartz fe	Idspar gneiss, auge	n gneiss	
Soc	SNOWSHOE F	M		
ALEO	HPa Alkali feic	ispar augen gneiss		ц.,
- E.P	HPsm Sandy m	arbles layers and ler	nses	
i	HPu Undiffere	ntiated		
	Geological contact (observed Inferred o		4
	Fault contact			
	Cross-cutting fault			
	Bedding (strike/dip)			8 2
	Foliation		حلب حلب	
	Primary metamorphi	c follation (Omineca	Bett)	16
	Axial trace of minor s	structures	And a second	- 1
	Anti	form		V
	Syn	lom		
	Ove	rturned	- <u>Q</u>	
				320
	Mineral Occurrences MINFILE No.	Property	Commodity	
		Frasergold Eureka Peak	Au, Ag, Cu, Zn, Pb Cu, Au	
	Based on British Col	CPW umbla Ministry of En	Au, Pb, Zn ergy, Mines and Petroleum Resources	
	MINFILE data.	Moose	Au, Ag, Cu, Pb, Zn	
		Providence	Ag, Pb, Au, Zn	
		Big	Ag, Pb, Au	ADE
			CE	OI O

Figure 2B ADDIE 1 CLAIM GROUP GEOLOGY MAP EXPLANATION

ACCESS, CLIMATE, PHYSIOGRAPHY AND INFRASTRUCTURE

The property is currently reached by a network of logging roads from the village of Likely, a distance of approximately 20 kilometers. Paved road connects Likely to Highway 97 at 150 Mile House. The new network of logging roads has opened up the country for exploration and is this has probably contributed to some of the exploration success in the area.

Climatic conditions for the area are modified continental, with cold snowy winters and generally warm summers. The area lies on the east side of the BC Interior dry belt and has about 40 cms of annual precipitation, most of which is delivered as winter snow.

The Spanish Lake area is located in the Quesnel Highland of the Interior Plateau. The topography is marked by rolling hills/mountains with some deep dissected valleys. Glacial tills and glaciofluviatile sediments cover much of the area in an irregular fashion. The main valleys and rivers appear to conform with some of the larger structures and faulting of the area.

The area is one of considerable industrial activity from both the logging and the new mining exploration projects being carried out. Likely has basic amenities such as a restaurant, motel and cabins for accommodation and some general goods, food and fuel are available. The population of the village is in the order of a few 100 persons who are mostly employed by the logging, tourism and placer-gold mining industries. Most equipment and supplies are sourced from the town of Williams Lake on Highway 97.

HISTORY

The area just to the west of the Addie 1 claims has been an active exploration location since placer gold was discovered in the Horsefly and Quesnel Rivers in 1859. The Spanish Mountain area was reactivated in 1921 when gold was found in terraces missed by the old miners higher up on Cedar Creek.

Gold veins were located on the flank of Spanish Mountain in 1933 by A.Bayley and F. Dickson. Subsequent work maintained interest and exploration has been almost continuous to the present time with junior and senior companies all taking positions to unlock the resources of the area. The property, now migrated somewhat easterly from the original showing, is currently subject to a joint venture between Skygold Resources Ltd and Wildrose Resources Ltd.

The Addie 1 claims are located on rocks and structures that constitute the easterly extension of the geology of the Spanish Mountain exploration area.

GEOLOGY

REGIONAL GEOLOGY

The Property Location Map indicates the regional geological setting in plan. The Spanish Mountain area is close to the east margin of the Quesnel Terrane of the Intermontane Belt. A major tectonic boundary between the Omineca Belt and the Intermontane Belt is defined by the Eureka Thrust fault (Struik 1986). This fault runs southeasterly through the Spanish Mountain property of Skygold-Wildrose. The Eureka fault is paralleled by the Spanish Fault and the southeasterly extension of these structures appears to pass through the centre of the Addie 1 claim block. The principal lithologies associated with the Quesnel Terrane in the area are metamorphic sediments, siltstones, quartzites and basaltic volcanics.

PROPERTY GEOLOGY

Dajin has not to this time mapped the geology of the Addie 1 claim group or detail prospected the property. With the exception of a few road cuts and exposures along the shores of Spanish Lake. The property is believed to be largely till covered. Figure 2A and Figure 2B show the geology of the claims as mapped by Bloodgood (1990).

The rocks underlying the property are reportedly mainly Upper Triassic to Middle Jurassic age metasediments and volcanics with a strong northwest to southeast grain. The Spanish Lake Anticline dominates the south flank of the Spanish Lake valley. On the north side of the axis of the anticline the stratigraphy is dominated by tuffaceous phyllite, argillite and subordinate associated sedimentary rock types. On the north side of Spanish Lake the principal rock type is mapped as graphitic pelite. This contrasts with the mixture of volcanic wacke, serpentinite and volcanic debris flow rocks reported on the south side of the axis. The work described in the Ainsworth report of 2006 confirms the general geological setting.

DEPOSIT TYPE

The description of mineralization on the Skygold-Wildrose joint venture property indicates that the mineralization is related to major structural events in the area. There is not a clear relationship with identifiable epithermal systems working within the older metamorphic terrane rocks. A more probable model is that the gold may be in part syngenetic and remobilized as in the Ballarat (Australia) and Meguma (Nova Scotia) gold camps.

ECONOMIC MINERALIZATION

No economic mineralization has been identified to date on the subject claims. The work completed does suggest potential for similar geology to that described in the Spanish Mountain area and anomalous gold values were located in stream sediment samples taken in this work.

SUMMARY OF WORK COMPLETED

83 stream sediment samples were collected during the work period April 1 2006 and January 7 2007. Samplers were mobilized to the property on three occasions in an attempt to avoid inclement weather and high water conditions. The samples were for the most part collected as follow-up samples sited at nominal 200 metre intervals up drainage from samples judged to be anomalous in the 2005 sampling program. A total of 9 heavy mineral samples were collected at selected sites near conventional silt samples. The locations of the silt collected in the 2005 and 2006 sampling programmes and the 2006 heavy mineral samples are shown on Figure 3. The analytical results are posted in Appendix I. UTM coordinates for sample sites are listed in Appendix II. In addition, a number of rock samples were collected in the field, but were not submitted for assay. For convenience of the geologists, rock sample numbers are posted on Figure 3, but no assessment credit is assigned to or derived from these samples.

Stream sediment samples were collected from active stream channels and air dried in kraft envelopes. Sample locations were defined, where possible, using GPS positioning based on NAD 83, the datum for the maps used. Sample locations were marked in the field with a combination of flagging tape and aluminum tags. The samples were air dried in the field and then shipped to Acme Analytical Laboratories (Acme) in Vancouver for analysis. After completion of drying at the laboratory, the samples were screened to recover the -80 mesh fraction for analysis. A 15 gram aliquot of each sample was analyzed by ICP-MS following an aqua regia leach as described in the heading of each certificate. All values reported by Acme are listed in Appendix I. The aqua regia leach does not attack resistate minerals, such as chromite, well and some consideration should be given to a four acid digestion which will liberate more of those elements that have resistate mineral forms.

The heavy mineral samples were collected in heavy plastic bags. Sample locations were located in the field and marked as was done for conventional stream sediment samples. Heavy mineral samples were treated by washing and sieving to produce a minus 10 mesh fraction. The coarse fraction was checked by panning to determine the presence or absence of coarse placer gold. The fine fraction was washed in a patented bowl used to clean very fine grained placer gold concentrates. Zero gold particles were recovered from any of the heavy mineral samples. As a consequence the absence of gold in the heavy mineral samples was not posted on the maps.

Analytical data for silt samples were posted on maps by Discovery Consultants and anomalous intervals for posting on the bubble plots were selected based on inspection of the data and the combined experience of Discovery Consultants and David Jenkins.

The analytical results for gold in conventional silt samples are posted on Figure 4 and bubble diagram showing the abundance of gold in silts comprises Figure 5. The

analytical results for arsenic are shown on Figure 6 and a bubble diagram of arsenic results comprises figure 7.

Work in 2006 was completed on tenure numbers 518216, 518218, 518438, 503342, 502355, 514946, 536786 and 536787. The area of the stream sampling has highly variable surficial cover, with drainages deeply incised in Pleistocene gravels which are often truncated or overlain by younger basal and lodgement tills. The contribution of this exotic material to the stream sediments leaves in question any statistical analysis of the analytical data. The streams sampled are quite varied in terms of the drainage areas upstream of the sample sites further complicating any comparison or statistical analysis. Furthermore since most of the samples were collected from drainages believed to be anomalous on the basis of previous work, the data sets might be expected to show considerable biases which would reduce the merits of strict statistical approach to evaluation

The median gold value determined in the samples collected in 2006 was 4.8 ppb while the highest gold content determined was 42 ppb. Only three samples contained more than 20 ppb gold.

The highest arsenic content determined was 124 ppm. The median arsenic content for the data set is 33 ppm. With but 5 exceptions all arsenic contents determined above 50 ppm were obtained from two drainages in Tenure 502355. In that tenure there is an upstream cut-off of anomalous arsenic above sample AD1093 which returned 111.3 ppm arsenic. Above this point the arsenic content of silts returned to levels near the median arsenic content. The adjacent drainage at approximately the same elevation was sampled by sample AD1105 which contained 108 ppm arsenic. The cause of this up slope cut-off in arsenic needs to be investigated in the interest of understanding the regional geochemical patterns and sources. Gold, unfortunately, does not appear to be associated in quantity with arsenic in Tenure 502355.

Elsewhere on the property arsenic values are consistently lower than reported above. Howeve,r in Tenure 518216 two of the higher arsenic value seem to be positively correlated with gold. Sample AD1059 contains 35 ppb gold and 88.9 ppm arsenic. In the same region sample AD1074 contains 19.1 ppb gold 34.9 ppm arsenic and 6.7 ppm antimony (one of the higher antimony values determined for this data set). However, the next sample, located 200 metres downstream, contains 58 ppm arsenic and the highest antimony content of any of the 2006 samples, 11.5 ppm antimony.. Furthermore a line drawn through the locations of samples AD1074 and AD1059 follows the trend of two creeks and passes immediately adjacent to two of the remaining higher gold values; sample AD1055 with 32 ppb gold and sample AD1049 with 29 ppb gold. The coincidence of a lineal trend of higher gold values correlated with both higher arsenic contents and a parallel linear topographic feature warrants a prospecting and soil sampling program as a follow-up procedure.

In Tenure 503342 sample AD1125 contains 42.4 ppb gold and 38 ppm arsenic. This is an isolated gold occurrence and is accompanied by only moderately elevated arsenic. It is

however only approximately 400 metres from sample AD1016 which was found in the 2005 program to contain 211 ppb gold.. The region in the vicinity of samples AD1016 and AD1125 warrant a prospecting and limited soil sampling program in order to determine if there is a local source for the anomalous gold.

While this stream sediment sampling program was focused on defining the gold potential of the Addie 1 claim group Samples AD1122 and AD1123 may have identified a multielement target. The two samples are located east of the eastern end of Spanish Lake and are tributaries that flow generally westward into Spanish Creek. Sample AD112 is located in Tenure 536786 at UTM coordinate 614160E and 614160N. Sample AD1123 is located near the northern boundary of Tenure 514946 at UTM coordinate 614000E and 5824860N. The geochemical signatures of the two samples are shown in Table 2.

ELEMENT	SAMPLE	SAMPLE	COMMENT
	AD1122	AD1123	
Mo (ppm)	18.9	51.2	HIGHEST IN DATA SET
Cu (ppm)	179.3	41.4	HIGHEST IN DATA SET
Zn (ppm)	328	494	TWO HIGHEST IN DATA SET
Ag (ppm)	11.2	3.1	HIGHEST IN DATA SET
As (ppm)	23.2	46.2	HIGHEST IN DATA SET
Mn (ppm)	2141	23,025	HIGHEST IN DATA SET
Fe (%)	6.23	11.1	HIGHEST IN DATA SET
U (ppm)	22.7	11.5	HIGHEST IN DATA SET
Au (ppb)	17.1	4.9	HIGHEST IN DATA SET
Ba (ppm)	467	804	HIGHEST IN DATA SET
Al (%)	3.59	1.9	HIGHEST IN DATA SET
K (%)	0.44	0.13	HIGHEST IN DATA SET
Sc (ppm)	9.1	2.7	HIGHEST IN DATA SET
Ga (ppm)	8	6	HIGHEST IN DATA SET
Se (ppm)	4.5	7.8	2 nd HIGHEST IN DATA SET

 Table 2. Geochemical Signature Of Samples AD1122 and AD1123

As shown in Table 2 either sample AD1122 or sample AD1123 contained the maximum value determined in the 2006 data set for a long list of elements. In the case of a number of elements the values determined for both samples were among the top 5% of the values determined for that element. Given the very high contents of manganese and iron found in these two samples an initial examination of the data suggests this geochemical signature is due to the scavenging of metals from water by the manganese and the iron. However, a sample collected in an adjacent stream during the 2005 sampling program contained, sample AD1007 contained a similar quantity of manganese (11122 ppm) and iron (5.12%). In the latter sample base metals and silver were slightly elevated but not to the levels seen in samples AD1122 and AD1123, and uranium was only present at background levels. This difference in geochemical signatures can be interpreted to suggest there is an additional multi-element source of metals in the drainages upstream

from samples Ad1122 and AD1123 that does not exist above sample AD1007. These sites need to be examined by a skilled geochemists and the headwaters above samples AD1007 AD1122 and AD1123 need to be sampled at short intervals. Water pH should be an additional datum acquired in the field in such sampling.

INTERPRETATION AND CONCLUSIONS

The results indicate some potential for gold mineralization in the drainages with samples that returned anomalous gold with supporting values from arsenic and the transition elements. High iron values associated with some of these anomalous gold values may reflect some degree of natural heavy mineral concentration or nearby alteration with iron sulphides.

The graphitic phyllites appear to be associated with elevated transition element values that have some similarity in their grouping to those associated with sedimentary PGM showings located in the Selwyn Basin, YT. Further work is required to follow up the anomalous gold samples and the PGM potential indicated in the samples AD1006 and AD 1007.

The drainages sampled by AD1007, AD1122 and AD1123 are anomalous in a number of elements. This anomalous condition can be a result of either deposit containing base metals, precious metal and uranium among other elements or it may be the result of ion scavenging by iron and manganese. The drainages sampled by AD1122 and AD1123 need to be examined and sampled to determine if there is a base metal deposit in those drainages.

COST STATEMENT

The cost of the work completed was:	
David Jenkins, P.Geo., 6 days @\$500/day supervision and report preparation	\$3,180
Labour:	
Rick Anctil, geologist, 21 days @ \$360/day field supervision/sampling	\$7550
Ernest Barnes, field assistant 18 days @ \$200/day	\$3600
Field Expenses:	
Accommodations and meals (Various hotels and local lease)	\$4120
Vehicle rentals and expense	\$4256
Field Expenses	\$3251
Analytical Expense:	
Acme Analytical Laboratories	\$3848
Total Costs	\$29,805

Of the amount shown on the above cost statement only \$27,293.75 was claimed for credit on the statement of work filed on line on November 15, 2006.

RECOMMENDATIONS

There is sufficient potential to warrant further evaluation of the claim block. The variable and at times heavy glacial till has potential to obscure high grade gold targets with restricted haloes of related metals such as antimony and arsenic. The areas with geology indicated as potential amphibolites or altered greenstones would appear to be a high priority for a detailed prospecting effort. The direct association of graphitic phyllites and an anomalous elemental assemblage that suggests a possible PGM source such as is known in black shales in China and in the Ordovician-Silurian sedimentary rocks of the Selwin basin. Furthermore, the gold and arsenic anomalous stream sediments obtained in the 2005 and 2006 stream sediment sampling programs and described above warrant prospecting, trenching of till in an orientation survey and limited soil sampling as a follow-up procedure.

The base metal and uranium anomalies in the drainages sampled by AD1122 and AD1123 should be examined by an experienced geochemist and the causes of the anomalous conditions determined.

D 151 February 7, 2007 David Jenkins, P.Geo. CIEN

REFERENCES

Bailey, D.G., (1990): Geology of the Central Quesnel Belt, British Columbia; B.C. Ministry of Energy Mines and Petroleum Resources, Open File 1990-31, Map with notes, 100,000.

Bloodgood, M.A., (1988): Geology of the Quesnel Terrane in the Spanish Lake area, Central British Columbia; B.C. Ministry of Energy Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1. pp. 139-145.

Campbell, R.R., (1978): Quesnel Lake; Geological Survey of Canada, Open File Map 574.

Clary, R., (1994): Metallurgical Report on Eastfield Resources Ltd. Cariboo Operation Concentrate; Westmin Resources Ltd., Premier Gold Project, Private Company Report, 3p.

Christie, J.S., (1986): Diamond Drilling Report, PESO Mineral Claim; Hycroft Resources and Development Ltd., Assessment Report No. 14,468 8 pages with attachments.

Cogema, (1995): Trench 29 - Section; Compilation of Trench Sections, Cogema Resources Ltd.

Dunn, D.C., (1983): Report on Line Cutting, Soil Sampling, Rock Sampling, VLF Survey and Geological Mapping on the DON 1-4, Mar 1, PESO, JUL 2, MY, APR, FR, Mineral Claims; Lacana Mining Corporation, Assessment Report No. 11,428 6 pages with attachments.

Eyles N. and S.P. Kocsis, (1988): Sedimentological Controls on Gold Distribution in Pleistocene Placer Deposits of the Cariboo Mining District, British Columbia; B.C. Ministry of Energy Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1, pp. 377-385.

Gabrielse, H., J.W.H. Monger, J.O. Wheeler, and C.J. Yorath, (1991): Part A. Morphogeological Belts, Tectonic Assemblages, and Terranes; in Chapter 2 of Geology of the Cordilleran Orogen in Canada; Geological Survey of Canada, Geology of Canada, No. 4, pp.15-28.

Giroux, G.H., (1981): Geochemical and Geophysical Report on the PESO, PESO B and PESO E Mineral Claims; Aquarius Resources Ltd. 25 pages with attachments.

Godfrey, J.D., (1979): Survey of Mineral Prospects in the Likely District. British Columbia; Aquarius Resources Ltd. and Carolin Mines Ltd., Private Company Report, 31 p.

Goodall, G.N. and P.E. Fox, (1988): Percussion Drilling Report on the Carolin Option, Cariboo Mining Division, British Columbia; Fox Geological Consultants Ltd. for Placer Dome Inc., 13 pages with attachments.

Holland, S.S., (1987): *Placer Gold Production of British Columbia*; British Columbia Ministry of Energy, Mines and Petroleum Resources, Bulletin 28, 89p.

Honsinger, R. and K.V. Campbell, (1988): Results of the 1987/88 Exploration Program; Pundata Gold Corporation, Volume 1, Private Company Report, 93p.

Hurley, T. and M. Ben, (1996): Spanish Mountain Project, Report on the 1996 Exploration Program; Cyprus Canada Inc., Private Company Report, 25 pages with attachments.

Livgard, E., (1995): Summary Report on the Spanish Mountain Property, Likely, British Columbia; Consolidated Logan Mines Ltd., Private Company report, 27 pages with attachments.

McClintock, J.A., (1985a): Proposed 1986 Exploration Program Cariboo – Likely Project; Mt. Calvery Resources Ltd. Private Company Report, 13 pages with attachments.

McClintock, J.A., (1985b): 1985 Phase III – Exploration Report on the PESO-CPW Gold Prospect, Spanish Mountain Area; Mt. Calvery Resources Ltd., Assessment Report No. 14,682 23 pages with attachments.

Morton, J.W., (2001): Geological Reconnaissance and soil sampling completed on Cedar Creek Property; Wildrose Resources Ltd., Private Company Report, 7 pages with attachments.

Morton, J.W., (2002): Spanish Mountain Property, Cariboo Mining Division, BC: Wildrose Resources Ltd., Private Company Report, 9 pages with attachments.

Morton, J.W., (2003): 2002 Rock sampling Program on the Armada Claim; Wildrose Resources Ltd., Private Company Report, 11p.

Nicholson, R.J. (1987): Report on 1986 Prospecting, Trenching, sampling, Line Cutting, Geophysical Surveying, Geological Mapping and Percussion Drilling; Mandusa Resources Ltd., Assessment Report No. 15,880, 12 pages with attachments.

Province of British Columbia, (1933): Cariboo District – Mariner I; Annual Report of the Minister of Mines for the Year Ended 31 of December 1933; pp. A134-A135.

Province of British Columbia, (1947): El Toro Mines B. C. Ltd.; Annual Report of the Minister of Mines for the Year Ended 31 of December 1947; pp. A123-A127.

Province of British Columbia, (1963): Notes on Placer Mining in British Columbia; Department of Mines and Petroleum Resources, Bulletin 21, 42p.

Robertson, S.B., (2001a): Report on the Spanish Mountain property, British Columbia; Imperial Metals Corporation, Private Company Report, 30p.

Robertson, S.B., (2001b): Report on the Placer Claims of the Spanish Mountain property, British Columbia; Imperial Metals Corporation, Private Company Report, 17p.

Stacy, N.W., (1976): Preliminary Report on ther Mariner II Property; Assessment Report No. 6460, 3 pages with attachments.

Struik, L.C., (1988): Regional Imbrication within Quesnel Terrane, Central British Columbia, as Suggested by Conodont Ages; Canadian Journal of Earth Sci., Volume 25, pp.1608-1617.

Tribe, N.L., (1979): Report on Reconnaissance Geological Mapping and Sampling, Mariner II Claim Group; Assessment Report No. 8636, 12 pages with attachments.

Venkataramani, (1971): Magnetometer Survey; Sapnallen Mining Ltd. Assessment Report 3121.

Wallster, D.E., (1984): Geochemical Report concerning a Soil Sampling Survey of the CPW Claim; Whitecap Energy Inc., Assessment Report No. 11,822, 25 pages with attachments.

CERTIFICATE

I David M. Jenkins with offices at Suite 480, 789 west Pender Street, Vancouver, British Columbia do hereby certify:

- I am the author of this report.
- I am a professional geologist registered in the Province of British Columbia.
- I have an MS degree in Geology from the University of Florida.
- I have practiced as a mineral exploration geologist and/or mining executive since 1970, including ten years spent in the planning, execution and interpretation of geochemical sampling programs and in paid research in the field of mineral
 A exploration geochemistry.

dur February 7, 2007 M. JENKINS David M. Jenkins, P. Geol. BRITISH SCIEN

APPENDIX I Certificates of Analyses

					Da	jir	ı R	les	our	ce	s (Cor	p.	PI	RO	JEC	T A	ADD	IE	1	F:	lle	: #	A6	02	951		Pag	je	1						44
• 6									480	789	W.	Pen	der	St.,	Var	ncou	ver B	C V6	C 1H	2	Subm	itted	d by	: Ric	k Ar	ctil				SCHOOL SCHOOL	_					L
SAMPLE#	Mo ppm	Cu ppm	Pt ppr	o Zn n ppr	Ag ppm	N pp	ni mi p	Co pm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	ppm	n Sr n ppr	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm p	Cr opm	Mg B % pp	a m	fi l % ppr	B A	1 Na 2 2	K %	W ppm	Hg ppm (Sc ppm p	T1 pm	S Ga % ppn	Se ppm	Sample gm
G-1 AD1052 AD1053 AD1054 AD1055	.2 1.7 2.2 3.0 2.8	2.1 18.2 22.5 21.5 21.6	3.2 6.7 9.2 9.2	2 44 7 71 9 104 3 99 5 98	<.1 .3 .4 .5	3, 32, 38, 38, 40,	8 4 3 10 8 13 2 12 1 13	1.7 1.5 3.0 2.2 3.1	555 822 1376 1284 1569	1.99 2.03 2.41 2.23 2.44	<.5 4.6 6.8 7.4 6.9	1.9 1.1 2.0 2.4 2.5	<.5 2.4 3.8 11.1 32.0	5 4.0 4 4.1 3 3.7 1 3.6 0 3.8	0 63 27 34 5 34 3 37	<.1 .7 1.0 .9 1.1	<.1 .2 .1 .2 .2	.1 .2 .2 .2 .3	39 18 23 20 24	.52 .43 .48 .47 .50	.088 .076 .087 .088 .093	7 15 17 18 20	8 22 29 29 33	.66 21 .46 6 .49 9 .51 9 .52 10	1 .13 9 .04 6 .04 0 .04 3 .04	34 41 45 44 < 47 <	2 1.1 1 .9 1 1.1 1 1.1 1 1.2	5 .085 0 .007 2 .007 4 .007 3 .007	.56 .10 .12 .12 .13	.1< .2 .4 .3 .5	.01 .02 .05 .04 .05	2.3 1.7 2.0 2.0 2.3	.3<.0 ,1<.0 .1<.0 .1<.0 .1<.0	15 5 15 3 15 3 15 3	<.5 1.2 1.7 2.5 2.2	15.0 15.0 15.0 15.0 15.0
AD1056 AD1057 AD1058 AD1059 AD1060	13.1 5.9 1.0 10.8 1.6	53.9 20.0 18.6 23.8 26.1	7.4 5.6 4.2 6.2	4 312 5 168 2 70 3 142 2 59	2.2 1.0 .9 1.1 1.4	73. 43. 31. 47. 29.	8 29 7 15 3 5 0 14 0 7).8 1 5.0 5.3 1.9 7.4	3017 7241 713 4756 963	7.56 3.41 1.14 8.28 1.58	31.4 14.8 2.9 88.9 3.8	5,5 2,8 2,1 2,5 1,3	4.8 2.7 1.1 35.0 2.1	3 1.1 7 1.2 1 1.7 2.2 1 1.8	165 82 47 2 113 3 34	9.1 4.3 1.5 3.8 1.4	.3 .1 .2 .2	.2 .1 .1 .2	25 1 24 15 29 1 16	. 52 . 96 . 64 . 05 . 41	.119 .091 .075 .199 .055	14 12 13 18 16	25 30 25 29 18	.29 46 .24 27 .29 4 .30 25 .24 8	1 .0 7 .0 8 .0 6 .0 5 .0	19 19 31 21 32	3 1.0 1 .9 2 .6 2 .9 1 1.0	8 .013 0 .007 6 .008 2 .009 3 .006	.08 .09 .07 .10 .09	.1 .2 .9 .1	.24 .10 .04 .08 .08	1.6 1.4 1.0 1.6 2.5	.2 .1 .1<.0 .1<.0 .1<.0 .1<.0	2 3 15 2 15 2 17 2 15 2	11.9 5.8 4.4 6.5 1.7	7.5 15.0 15.0 7.5 15.0
AD1061 AD1062 RE AD1062 AD1063 AD1064	7,1 2.8 2.4 3.4 3.4	21.6 26.2 26.6 35.6 46.0	7.3 9.1 9.2 12.9 10.6	3 110 1 121 2 122 9 190 5 179	1.7 .7 1.5 2.4	38. 43. 41. 51. 63.	8 11 2 12 6 12 3 14 3 14	.1 2.8 2.6 4.8	2085 846 831 1332 1709	2.51 2.21 2.18 2.91 3.08	4.6 16.1 15.9 31.3 11.1	2.6 1.4 1.3 1.9 2.7	9.7 4.8 4.2 8.4 5.3	7 1.8 3 3.4 2 3.2 1 2.4 3 2.7	43 4 28 2 28 4 42 4 42	3 2.0 3 1.4 3 1.4 2 2.3 9 2.4	.2 .4 .7 .5	22.22.3	18 19 19 24 26	.48 .32 .32 .48 .62	.071 .071 .064 .078 .085	17 15 15 16 21	21 21 21 29 33	.30 15 .39 10 .36 9 .44 15 .45 18	4 .0: 0 .04 5 .04 9 .04 3 .04	30 < 44 43 < 46 44	1 1.4 1 1.1 1 1.0 1 1.5 2 1.7	5 .007 1 .008 5 .008 8 .009 5 .010	.14 .14 .14 .14 .18	.1 .2 .2 .2	.09 .05 .05 .09 .13	2.1 2.1 2.2 3.0 3.9	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	15 3 15 3 15 3 18 4 15 4	2.3 1.8 1.9 3.6 2.7	15.0 15.0 15.0 15.0 7.5
AD1065 AD1066 AD1067 AD1068 AD1069	5.2 3.6 1.5 2.5 3.3	33.4 57.3 34.9 18.1 23.7	10 . 15 . 8 . 4 . 6 .	5 212 3 310 5 65 9 70 3 96	1.6 1.9 .5 .3	62. 102. 34. 27. 36.	6 16 5 17 1 8 4 8 2 11	5.6 7.4 3.7 3.1	3265 2044 1264 2061 3319	3.59 4.12 1.36 1.44 2.15	9.9 18.1 6.7 11.4 14.8	2.1 5.2 3.7 1.5 1.6	2.9 6.3 3.8 2.2	9 2.1 3 3.2 3 1.5 2 1.1 5 2.0	L 52 2 60 5 39 L 37 0 41	2.6	.7 1.9 .5 .4	.3 .4 .1 .1	29 39 21 14 18	. 59 . 72 . 57 . 47 . 60	.094 .085 .062 .074 .085	21 27 13 10 12	35 47 34 21 24	.51 21 .64 22 .36 20 .31 13 .35 14	1 .0 3 .0 2 .0 6 .0 4 .0	52 53 33 21 37	2 1.9 1 2.6 2 1,2 1 .8 1 1.0	0 .008 5 .017 0 .007 8 .007 1 .008	8 .19 .30 .11 .07 8 .09	.2 .1 .2 .2	.09 .18 .09 .07 .07	3.2 5.4 3.1 1.8 2.4	.1<.0 .2<.0 .1<.0 .1<.0 .1<.0	15 5 15 7 15 3 15 3	2.4 1.3 4.2 2.9 3.2	15.0 15.0 7.5 7.5 15.0
AD1070 AD1071 AD1072 AD1073 AD1074	2.1 7.2 6.1 7.0 6.4	24.5 41.3 38.8 41.5 43.7	6.0 12,9 11,1 13,4 11,1	5 95 5 165 1 143 4 142 3 146	.4 .5 .5 .5	35. 52. 52. 50. 49.	1 11 1 15 0 16 2 14 6 15	5.7 5.3 1.9 5.8	1794 2573 2461 1825 2164	1.98 3.33 3.20 2.95 3.07	10.8 36.3 32.0 34.9 34.9	1.2 2.3 1.9 2.1 2.3	4.9 4.7 4.1 4.3 19.1	9 2.8 7 2.4 1 2.4 3 2.6 1 2.1	3 37 4 36 4 37 5 35 1 38	.9 5 1.6 7 1.2 5 1.3 8 1.4	.4 7.2 4.8 7.2 6.7	.1 .2 .2 .2	18 24 22 17 19	.50 .48 .54 .45 .55	080 089 086 086 086	11 12 12 11 11	22 29 26 22 27	.39 10 .43 13 .43 11 .38 10 .39 11	6 .04 2 .0 8 .0 5 .0 4 .0	42 35 31 25 26	2 .9 2 1.0 2 .9 2 .8 2 .8	5 .008 4 .008 8 .009 6 .008 8 .001	8 .10 8 .10 9 .10 8 .08 7 .08	.3 .2 .2 .2 .2	.06 .10 .10 .11	2.2 2,4 2.2 2.1 2.2	.1<.0 .1<.0 .1 .0 .1 .1 .1 .1)5 3)5 3)7 3 .8 3 .4 3	3.0 3.8 3.6 4.5 3.6	15.0 15.0 7.5 15.0 15.0
AD1075 AD1076 AD1077 AD1078 AD1079	13.6 8.1 8.8 11.7 5.1	74.0 47.1 51.8 63.3 35.0	19.0 13.1 14.4 19.0 10.1	5 239 7 151 4 153 0 167 7 150	.6 .5 .4 .6	81. 53. 58. 69. 51.	7 23 5 17 1 17 6 20 9 14	3,4 7,0 7,4 1,6 1,6	2717 1963 1549 2072 1254	4.54 3.36 3.38 4.02 2.65	58.4 37.7 41.6 53.2 26.4	3.7 2.8 2.8 3.6 1.9	1.9 2.5 3.0 2.7 3.2	2 2 7 5 2 4 7 2 5 7 2 5 2 2 8	7 39 4 38 5 32 3 39 3 39	2.4 3 1.3 2 1.4 9 1.7 9 1.7	11.5 6.8 7.0 9.9 3.0	22232	21 20 19 21 16	. 53 . 52 . 45 . 49 . 45	.098 .086 .089 .092 .067	10 11 11 11 13	29 29 31 36 21	.36 12 .41 10 .41 9 .44 10 .37 10	26 .0 16 .0 14 .0 17 .0 11 .0	17 26 21 19 27	2 .8 1 .8 2 .7 2 .8 1 1.0	1 .007 2 .008 7 .008 7 .008 5 .007	.08 .08 .07 .07 .07	.1 .2 .2 .2 .1	.22 .13 .14 .20 .09	2.9 2.4 2.4 2.8 2.1	.3 .4 .1 .1 .1 .1 .2 .1 .1 .1	10 2 .7 2 .7 2 .6 2 .2 3	5.9 4.2 3.9 5.3 2.4	7,5 7,5 15,0 15,0 15,0
AD1080 AD1081 AD1082 AD1083 AD1084	2.4 4.0 5.9 6.7 5.9	25.1 30.9 38.1 43.6 40.4	9.1 10.1 11.1 10.1	B 114 D 157 B 162 B 117 7 106	.7 1.1 .9 .3	32. 51. 54. 50. 47.	1 13 6 13 0 15 2 15 7 14	3.4 3.7 5.2 5.7 4.5	1798 2037 1350 1335 1005	3.02 2.49 2.94 2.81 2.62	10.6 17.6 29.1 36.6 30.6	1.7 2.4 2.6 1.3 1.1	2.2 7.8 3.8 4.3	2 2.1 8 2.5 8 3.1 3 2.2 3 2.7	L 68 5 48 1 38 2 24 7 25	3 1.1 3 2.3 3 2.0 4 1.2 5 1.0	.3 1.1 3.1 3.0 2.8	.2	25 20 19 26 25	.75 .57 .46 .33 .33	.082 .072 .073 .065 .063	18 17 14 10 11	24 23 23 35 31	.41 12 .38 12 .38 10 .42 8 .40 8	10 .0 19 .0 15 .0 15 .0	33 35 32 34 38	3 1.4 2 1.2 2 1.1 2 .9 1 .9	4 .009 4 .008 9 .003 2 .009 1 .009	0 .16 3 .13 7 .12 5 .07 5 .08	.2 .3 .1 .1	.08 .10 .10 .04 .05	2.1 2.4 2.6 2.6 2.6	.2<,0 .1<,0 .1 .1 .1 .(.1<,0	15 4 15 3 1 3 17 3 15 2	1.5 2.3 2.9 1.6 1.6	15.0 15.0 15.0 15.0 15.0
STANDARD DS6	11.8	125.7	29.	143	.3	25.	5 11	.1	695	2.84	21.2	6.5	48.4	4 3.1	L 40	6.0	3,4	5.0	57	. 84	.078	13	192	.57 10	7 .0	81 1	8 1.9	5 .07	. 15	3.5	.22	3.2 1	- <mark>8</mark> <.(15 6	4.8	15.0
GROUP 1DX - (>) CONCENTI - SAMPLE TY	15.00 RATION PE: SI	GM S EXCI	SAMPI EEDS S80	LE L UPP 50C	EACH ER L	ED W IMITS Samp	ITH S. les	90 M SOME begi	NIN MIN	2-2 ERAL g 'R	HCL- S MA E' a	HNO3 Y BE	-H2C PAR	D AT RTIA	95 LLY nd 1	DEG. ATTA RRE'	C FC CKED. are	OR O Ri Rej	NE HO EFRAG ect F	DUR, CTORY Rerun	DILU Y AND	TED GRA	TO PHI	300 M TIC S	L, A AMPL	NALYS ES CA	SED B	Y ICF MIT A	-MS. U SC	LUBI	LITY	COLE	MBIA	N		CE
ata 🖡 🗑	Δ.			TAC	ਕ ਸ	RCF	TVI	FD.	.11	N 21	200	16	DAT	ज्य १	REP	ORT	MA	TT.B	П.	07	-00	5-2	00	6 A1	:80	52						HE		Raym	ond C	han

Dajin Resources Corp. PROJECT ADDIE 1 FILE # A602951

Page 2

SAMPLE# Mo Cu Pb Zn Ag Nĩ Co Mn Fe As U Au Th Sr Cd Sb Bĩ V Ca P La Cr Mg Ba Tỉ B Al Na K W Hg Sc Tỉ S Ga Se Sa ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	mple gm
G-1 .1 2.0 2.7 44 .1 3.8 4.3 526 1.91 <.5	15.0 15.0 15.0 15.0 15.0
AD1089 6.1 83.0 12.6 184 .7 87.8 20.5 1366 3.13 37.4 1.0 11.8 1.2 31 1.7 2.4 2 35 .46 .061 10 47 .55 103 .014 <1	15.0 7.5 7.5 7.5 15.0
AD1094 11.1 55.7 14.8 170 1.0 74.0 26.0 2607 3.60 75.4 2.4 10.4 .7 57 3.9 2.6 .2 29 .77 .098 11 56 42 163 .010 2 1.26 .007 .08 .1 13 3.2 .2 .11 3 4.6 AD1095 9.2 58.4 12.3 186 .6 62.8 23.7 3019 4.29 84.1 1.5 11.0 .6 79 2.8 2.0 .1 32 1.23 .102 16 47 .42 146 .012 2 1.21 .007 .04 .1 .08 2.5 .1 .08 2.9 AD1096 12.5 88.8 15.7 164 .4 91.0 29.0 2036 4.87 90.2 1.8 12.5 2.0 35 2.1 3.9 .2 39 .50 .084 12 61 .65 10.015 2 1.15 .007 .7 .2 .07 </td <td>7.5 7.5 7.5 7.5 15.0</td>	7.5 7.5 7.5 7.5 15.0
AD1099 13.5 84.7 18.0 175 .5 99.9 27.6 2374 4.55 85.5 1.6 5.6 1.9 33 2.1 3.6 .2 39 .44 .085 11 76 67 114 .019 1 1.11 .008 .07 .2 .07 3.8 .1 .11 3 3.8 AD1100 15.4 83.5 16.6 162 .4 87.9 23.5 1439 4.05 71.7 1.3 12.6 2.7 21 1.5 2.6 .2 35 .28 .072 9 67 .60 68 .025 2 .83 .005 .05 .1 .04 3.0 .1 .17 2 4.3 AD1101 13.7 80.6 16.4 151 .4 86.8 23.2 1543 4.02 70.0 1.2 7.2 2.6 21 1.5 2.4 2 33 .29 .071 9 68 .60 69 .025 <1	7.5 15.0 15.0 15.0 15.0
AD1104 14.1 82.4 17.1 152 .4 90.8 24.1 1558 3.97 68.0 1.3 9.2 2.9 23 1.7 2.5 .2 38 .28 .074 10 73 .68 67 .026 1 .90 .006 .05 .1 .03 3.1 .1 .07 2 3.7 AD1105 7.2 45.6 11.8 144 .6 41.0 29.4 5210 4.36 108.0 1.2 1.4 .6 70 1.8 .9 .1 37 .93 .100 9 39 .50 219 .008 2 1.31 .012 .04 .1 .12 2.5 .1 .09 .006 .05 .1 .03 .01 .03 .01 .01 .02 .01 .03 .01 .01 .02 .01 .02 .01 .01 .03 .01 .03 .01 .03 .01 .03 .01 .03 .01 .03 .01 .03 .01 .03 <t< td=""><td>15.0 .5 15.0 15.0 .5</td></t<>	15.0 .5 15.0 15.0 .5
AD1109 10.1 68.8 14.1 212 .8 66.9 24.2 3992 3.96 84.1 2.2 4.7 .6 60 2.3 1.5 .2 37 .83 .104 9 53 .58 169 .008 2 1.37 .008 .05 .2 .11 3.0 .1 .2 .1 .2 .1 .2 .1 .2 .1 .2 .1 .2 .1 .2 .2 .1 .1 .1 .2 .1 .2 <t< td=""><td>.5 7.5 7.5 15.0 7.5</td></t<>	.5 7.5 7.5 15.0 7.5
AD1114 13.8 97.2 23.3 198 .6 100.2 29.1 4240 4.61 103.1 2.0 11.4 1.0 45 2.3 2.7 .3 31 .61 .091 9 68 .56 143 .009 2 1.20 .006 .05 .1 .09 3.3 .2 .05 3 4.1 AD1115 5.8 64.2 14.6 198 3.4 150.1 24.4 5023 3.91 19.1 7.1 .5 2.0 63 8.2 .4 .3 30 .91 .102 39 48 59 315 .026 2 1.97 .015 .17 .2 .16 4.3 .3 .07 4 5.1 AD1116 5.5 45.5 12.1 153 2.0 114.8 23.2 5675 3.34 16.9 4.5 1.9 2.7 49 5.0 .3 30 .63 .097 27 46 69 243 .028 2 1.04 0.3<	15.0 7.5 7.5 15.0 7.5
STANDARD DS6 11.9 122.9 30.0 142 .3 25.3 10.7 688 2.81 21.1 6.7 47.5 3.1 40 5.9 3.4 5.0 57 .84 .080 12 187 .58 162 .080 17 1.95 .071 .16 3.6 .23 3.2 1.8<.05 6 4.9	15.0

Sample type: SILT SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data 🖡 FA

Dajin Resources Corp. PROJECT ADDIE 1 FILE # A602951

Marie Marie I Lane																	_													A	A ANNAL AND A	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb p	Th S opm pp	r m	Cd Sb ppm ppm	Bi ppm	V mqq	Ca %	P %	La ppm p	Cr ppm	Mg Ba % ppm	Ti %	B Al ppm %	Na %	K % pp	W om p	Hg Sc pm ppm p	TI S ppm %	Ga Se S ppm ppm	ample gm	
G-1 AD1118 AD1119 AD1120 AD1121	.1 10.6 36.9 18.0 8.0	1.8 46.9 30.3 26.1 45.4	3.1 17.6 13.3 10.0 16.4	42 245 233 193 273	<.1 2.8 3.0 2.4 4.5	3.7 91.3 72.3 72.9 91.2	3.7 24.6 31.7 29.4 14.6	532 7038 4535 9795 2761	1.77 5.59 11.51 5.56 4.03	<.5 13.5 80.2 13.1 11.2	2.9 2.9 3.2 2.3 3.3	1.0 4 9.4 2 3.8 2 2.7 1 10.3 2	1.2 7 2.3 6 2.2 4 1.8 5 2.0 6	1 3 0 4	<.1 <.1 5.2 .4 4.6 .3 5.4 .3 8.3 .5	.1 .4 .3 .4	37 30 34 26 28	- 55 - 67 - 45 - 56 - 79	.076 .137 .214 .106 .103	9 29 41 23 19	7 45 32 32 32	.57 197 .53 290 .35 236 .42 291 .45 294	.134 .022 .017 .021 .024	3 1.06 2 1.87 <1 1.89 2 1.45 3 1.63	.102 .007 .012 .009 .010	.45 .15 .12 .09 .17	1<. 4 .2 .3 .2	01 2.4 14 3.2 11 2.8 13 2.2 12 3.1	.4<.05 .2 .11 .2 .13 .2<.05 .2<.05	5 <.5 3 5.4 3 3.4 3 4.0 4 7.4	15.0 7.5 7.5 7.5 7.5 7.5	
RE AD1124 AD1122 AD1123 AD1124 AD1125	7.6 18.9 51.2 8.0 7.8	46.1 179.3 41.4 46.1 45.6	11.6 25.3 14.3 11.5 11.5	125 328 494 124 122	,4 11.2 3,1 .5 ,4	55.8 166.4 132.2 58.3 59.3	16.0 26.8 118.0 16.8 17.3	1742 2141 23025 1786 1727	2.89 6.23 11.10 2.96 3.01	38.0 23.2 46.2 37.0 38.1	1.7 22.7 11.5 1.7 1.7	6.1 2 17.1 5 4.9 2 8.6 2 42.4 2	2.3 2 5.6 7 2.3 8 2.4 2 2.6 2	9 0 2 1 9 8	1.5 2.9 5.6 .8 4.2 .8 1.6 3.1 1.3 2.9	.2	32 51 42 31 34	. 36 . 84 . 65 . 38 . 36	.064 .143 .142 .065 .066	14 33 21 13 14	40 64 30 41 45	.48 96 .73 467 .36 804 .48 97 .46 99	.039 .036 .016 .035 .041	2 1.14 2 3.59 2 1.90 1 1.10 2 1.09	.007 .015 .007 .007 .007	.07 .44 .13 .06 .06	1.2.1.2.1.2.1.2.1.1.1.1.1.1.1.1.1.1.1.1	06 2.6 25 9.1 17 2.7 05 2.9 05 2.8	.1<.05 .3<.05 .3 .10 .2 .06 .2 .08	3 1.6 8 4.5 6 7.8 3 1.9 3 2.0	15.0 7.5 7.5 15.0 15.0	
AD1126 AD1127 AD1128 AD1129 AD1129	7.6 7.3 5.0 2.5 2.8	44.1 38.4 61.6 42.1 77.2	10.7 10.3 14.8 7.7 8.4	118 99 165 82 93	.4 .5 1.5 .4 .5	54.9 46.7 83.3 45.0 48.7	15.9 11.9 15.8 12.2 14.5	1669 1401 937 787 945	2.83 2.33 3.56 2.14 2.64	37.1 28.6 21.7 18.3 23.9	1.3 1.6 2.1 1.3 .9	4.6 2 3.6 2 2.6 2 3.6 2 2.6 1	2.4 2 2.0 4 2.4 4 2.0 4 1.2 5	9 0 9 9	1.4 2.4 1.2 2.6 2.1 1.7 1.0 1.2 1.0 1.5	2 2 3 1	32 26 42 30 48	. 34 . 48 . 55 . 66 1.05	.062 .060 .075 .059 .063	15 16 19 14 13	40 37 60 41 62	.46 104 .41 99 .54 233 .45 94 .61 130	.040 .032 .047 .044 .057	1 1.10 2 1.05 2 2.40 2 1.05 3 1.45	.007 .007 .012 .007 .009	.06 .08 .23 .09 .10	1 . 2 . 1 . 1 .	04 2.7 07 2.3 09 4.0 06 2.5 09 4.3	.1<.05 .1<.05 .2<.05 .1<.05 .1<.05 .1 .06	3 1.7 3 1.4 5 1.7 3 1.4 3 1.8	7.5 15.0 15.0 15.0 7.5	
AD1131 AD1132 AD1133 AD1134 AD1135	2.6 1.9 2.3 6.5 7.3	96.9 56.2 53.2 53.3 79.9	9.8 7.7 7.2 9.9 14.2	118 98 89 109 141	1.1 1.0 .5 .6 .8	61.6 46.0 50.5 65.8 91.4	14.8 12.0 19.6 15.2 18.7	708 1162 3226 1497 1804	3.15 2.46 3.07 2.88 3.21	45.6 26.0 35.7 33.1 39.7	1.2 .9 .8 1.1 1.9	4.8 1 1.4 1 .8 1 9.1 3 3.9 1	L.3 6 L.0 5 L.9 5 3.0 3 L.9 3	i0 7 0 2 5	1.0 1.9 1.4 1.4 1.1 1.3 1.2 1.1 1.9 1.5	.2 .1 .1 .1	54 42 58 25 42	1.08 1.02 .78 .49 .66	.071 .073 .055 .071 .084	13 13 11 13 16	75 66 67 44 70	.59 166 .55 139 .68 148 .49 105 .67 140	.055 .057 .081 .028 .030	2 1.91 2 1.56 3 1.47 1 .78 2 1.24	.010 .012 .008 .006 .007	.15 .13 .09 .09 .13	.1 . .1 . .2 . .1 .	13 6.3 09 4.1 07 3.4 04 2.3 06 3.1	.2<.05 .1<.05 .1<.05 .1 .06 .2<.05	4 2.4 3 2.4 4 1.6 2 3.2 3 3.1	7.5 7.5 7.5 15.0 15.0	
STANDARD DS6	11.8	124.4	29.5	142	.3	25.5	11.0	715	2.88	21.2	6.5	47.3 3	3.2 3	9	6.0 3.5	4.9	58	.88	.079	14	191	.59 165	.082	17 1.98	.073	.16 3	.4 .	23 3.4	1.8<.05	64.1	15.0	

Sample type: SILT SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖡 FA

APPENDIX II SAMPLE COORDINATES

DAJIN RESOURCES CORP. - ADDIE 1 2005 and 2006 Sample Locations

SAMPLE ID	EASTING	<u>NORTHING</u>
AD1001	614523	5826230
AD1002	614007	5826179
AD1003	613139	5826585
AD1004	613084	5826557
AD1005	612446	5827025
AD1006	611926	5824860
AD1007	614990	5825176
AD1008	615723	5825416
AD1009	615585	5825336
AD1010	616330	5823952
AD1011	614243	5825245
AD1012	614351	5825349
AD1013	613313	5822535
AD1014	613242	5822635
AD1015	613863	5822783
AD1016	613194	5822944
AD1017	613269	5822643
AD1018	611964	5823353
AD1019	611483	5823060
AD1020	611308	5823240
AD1021	611260	5824120
AD1022	619556	5822815
AD1023	619660	5821911
AD1024	618800	5823550
AD1025	616440	5822140
AD1026	616400	5822100
AD1027	616340	5821500
AD1028	609650	5822320
AD1029	609530	5822460
AD1030	608900	5821800
AD1031	609000	5821540
AD1032	608000	5821520
AD1033	607500	5822150
AD1034	609760	5821650
AD1035	612180	5824380
AD1036	613204	5821679
AD1037	612784	5821400
AD1036	017004	0021090 5001570
AD1039	617662	5021370
AD1040	617600	59225423
AD1041	617000	5022040
AD1042	617010	5800010
AD1043 AD1043	01/010 6100/0	5022210
ΔD1044	611583	5820123
ΔD1046	611670	5820202
	011070	0020002

SAMPLE ID	EASTING	<u>NORTHING</u>
AD1047	611730	5829032
AD1048	611984	5828548
AD1049	612080	5828500
AD1050	611814	5828051
AD1051	610227	5825205
AD1052	619147	5822953
AD1053	618992	5823027
AD1054	618990	5823210
AD1055	618914	5823330
AD1056	618139	5822564
AD1057	617974	5822497
AD1058	617912	5822456
AD1059	617880	5822340
AD1060	617840	5822280
AD1061	617950	5822280
AD1062	617650	5822200
AD1063	617490	5822330
AD1064	617500	5822320
AD1065	617400	5822460
AD1066	616260	5822140
AD1067	615824	5822474
AD1068	616080	5822420
AD1069	616213	5822350
AD1070	616420	5822300
AD1071	616580	5822020
AD1072	616780	5821980
AD1073	616960	5821870
AD1074	617160	5821770
AD1075	617200	5821620
AD1076	617400	5821570
AD1077	617480	5821480
AD1078	617500	5821380
AD1079	617700	5821540
AD1080	617760	5821540
AD1081	617680	5821920
AD1082	617700	5821730
AD1083	613800	5823170
AD1064	613700	5023100
AD1065	61200	5023190
AD1000	610420	5823200
AD1007	612710	5024590
AD 1000	012303	5822460
AD1009	610230	5822409
AD1090	610210	5872500
AD1091	610591	5873665
AD1032	610678	5823780
AD 1033	010070	0020108

AD1094	610678	5823789
AD1095	610759	5823883
AD1096	610860	5823833
AD1097	611100	5824000
AD1098	611147	5824071
AD1099	611268	5824191
AD1100	611400	5824500
AD1101	611500	5824570
AD1102	611580	5824640
AD1103	611640	5824800
AD1104	611720	5824940
AD1105	610374	5824133
AD1106	610374	5824133
AD1107	610392	5824301
AD1108	610396	5824431
AD1109	610396	5824431
AD1110	610401	5824585
AD1111	610260	5824680
AD1112	610316	5824797
AD1113	610200	5825080
AD1114		1
AD1115	615835	5825579
AD1116	616180	5825400
AD1117	616033	5825651
AD1118	616660	5825360
AD1119	615826	5825206
AD1120	616000	5825140
AD1121	615826	5825212
AD1122	614160	5825163
AD1123	614000	5824860
AD1124	613090	5823262
AD1125	613000	5823240
AD1126	612696	5823283
AD1127	612696	5823283
AD1128	612624	5823089
AD1129	612641	5823023
AD1130	612611	5822804
AD1131	616625	5822523
AD1132	612771	5822614

ROCK	SAMPLES	
SAMPLE ID	EASTING	NORTHING
AD1R004	617030	5821810
AD1R005	617125	5821780
AD1R006	617510	5821570
AD1R007	613770	5823099
AD1R008	610969	5824279
AD1R009	610400	5824500
AD1R010	614600	5825100
AD1R011	641600	5825100
AD1R012	614600	5825100
AD1R013	613584	5824803
AD1R014	613584	5824803
AD1R015	613532	5822969
AD1R016	613550	5823010
AD1R017	613150	5822905
AD1R018	613792	5823595
HEAVY	MINERAL	SAMPLES
SAMPLE ID	EASTING	NORTHING
ADH1006	611855	5825059
ADH1016	613098	5823146
ADH1043	617867	5822182
AD1H001	617634	5822014
AD1H021	611180	5824173
AD1H041	617601	5822480
AD1H051	610299	5824787
AD1H078	617529	5821394
AD1H083	613849	5823167

APPENDIX III GEOCHEMICAL MAPS

Sample Location Map

()			50	00 10	00	1500		
								Location:	S
metres Topographic contour interval = 20 metres							^{Datum:} NAD83	M	
]	8	T					Project: 757	1

Location:	Spanish Lake	Mining Jurisdiction: (Cariboo	
^{Datum:} NAD83	Map Ref.: 093A.054	^{Scale:} 1:20000	^{UTM:} 10	
Project: 757	^{Date:} Dec.30, 2006	Drawn By: RM	Figure: 3	

Gold Values

0				500	10	000	15	500			
									Location:		Span
metres Topographic contour interval = 20 metres						1	Datum: N	IAD83	Map R		
	re)- ~ r					/		Project:	757	Date:

Location:	Spanish Lake	Mining Jurisdiction:	Cariboo	
^{Datum:} NAD83	Map Ref.: 093A.054	^{Scale:} 1:20000	^{UTM:} 10	
Project: 757	^{Date:} Dec.30, 2006	^{Drawn By:} RM	Figure: 4	

