
PROSPECTING REPORT

ON

HASKINS MOUNTAIN CLAIMS

HOT LAKE AREA

LIARD MINING DIVISION BRITISH COLUMBIA

TABLE OF CONTENTS

- -

~

-

÷

.

-

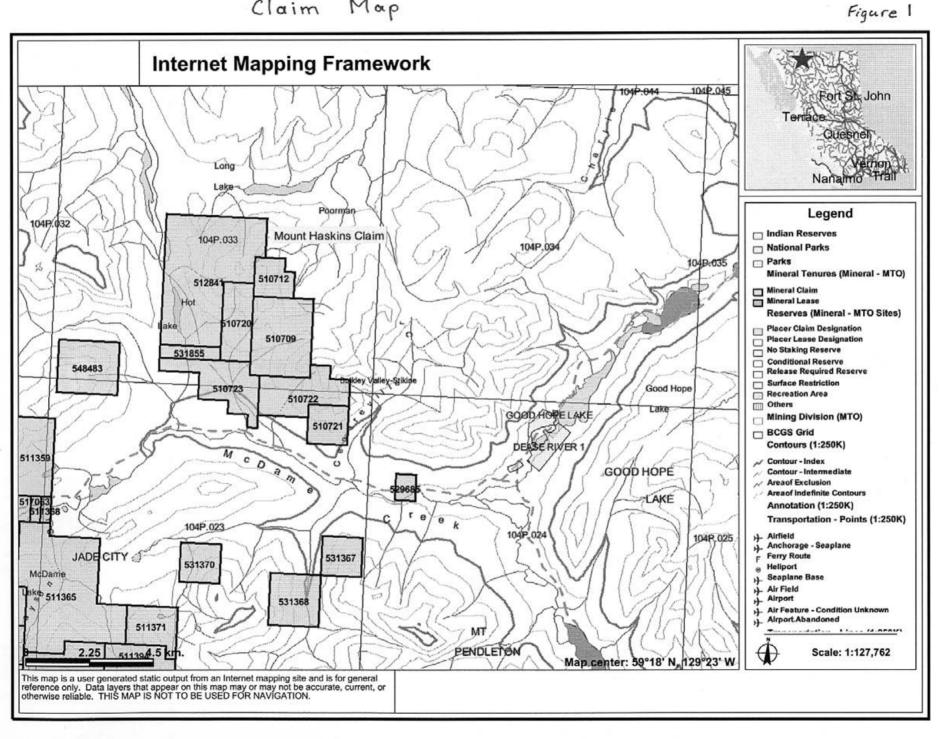
Summary
Conclusions
Recommendations
Introduction
Location and Access
Terrain and Vegetation
History
Geology
Prospecting Traverses
Geochemical Survey9
Statement of Qualifications
Affidavit of Expenses14
Index of Assays

LIST OF FIGUIRES AND MAPS

Figure 1 Claim Map	Page 4
Figure 2 Crown Grants	Page 6
Figure 3 Prospecting Traverse and Geochemical survey	Page 10
Figure 4 Cu-Zn Bar Graph	.Page 11
Figure 6 Mo-Ag Bar Graph	Page 12

Summary

The Haskin Claim tenure # 512844 (Figure 1) was prospected between Sept. 22 and Oct. 6th 2006. The prospecting was done by Gerry Diakow, and John Hope. Kelly Bates assisted with the exploration work maintained camp and cooked. Outcrop was mapped and numerous trenches from earlier explorers were located and sampled. A reconnaissance geochemical line 2 kilometers in length was sampled at a 50 meter interval. Forty-one (41) soil samples were analyzed by International Plasma Labs Ltd. of Richmond, B.C.


The Haskins property warrants further exploration. The size, grade of mineralization and location near a paved highway make it an attractive target for gold, silver, molybdenum and the base metals copper, zinc and lead deposits. Previous operators have contributed valuable exploration work in delineating surface showings. This valuable early work consisted of diamond drilling, stripping to bedrock and trenching.

Conclusion

- The Haskins Mountain claim tenure number 512841 has very good road access. A modern microwave station at the top of Mount Haskins allows year round access to the upper claim area and the road to Hot Lake allows access to the lower claim area, the Hot Lake road is difficult to traverse in wet conditions.
- Old drilling on the upper showings had been performed by Della Mines Etd. Demand Gold Etd. explored the property in 1997. Eight drill holes where drilled where Della had previously established a drill inferred resource of 275,200 tons grading 5 percent zinc, 3 percent lead and 34.29 grams per tonne silver (GCNI # 233 (Nov. 20), 1997).

3

Claim Map

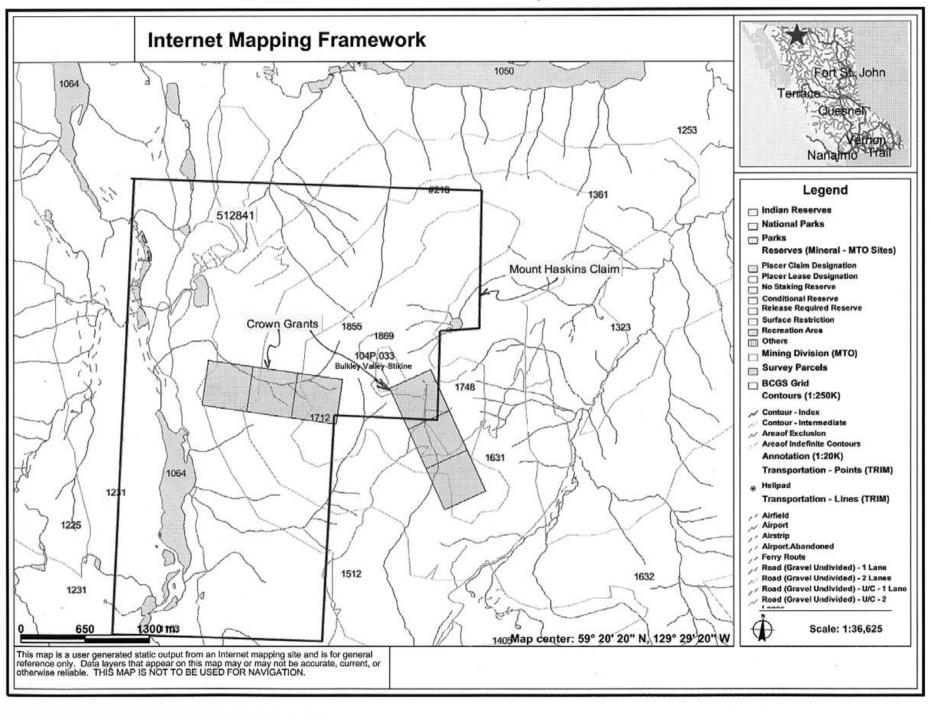
The B.C. government Ministry of Energy and Mines *Minfile 104P059* refers to a indicated reserve of 12,245,850 tonnes grading 0.15 percent MoS2 (Iso Mining Ltd. Annual Report 1971). 3. The 2006 geochemical sampling indicates two anomalous zones the first at approximately 600 meters north is high in zinc, copper, molybdenum and silver and the second at 1500 meters west is high in molybdenum.

Recommendations

Depending on the exploration budget available:

 Plan a drilling program that would bring the resource up to National Instrument 43-101 standards.

 2. Follow up the geochemical sampling with further geochemical sampling in a grid configuration incorporating the 2006 survey line as part of the grid.
3. Follow up the geochemical survey with prospecting to locate new showings.


Introduction

This report discusses the prospecting and geochemical sampling on Mount Haskins. Work was performed on the following claim Haskins Mountain tenure # 512841 1287.852 ha Figure 2 shows Crown Granted claims which underlie the Mount Haskin claim. All the crown grants shown in Figure 2 are in good standing and their mineral rights preempt the Mount Haskin claim (512841).

Location and Access

The Haskin prospect is located on the top and west flank of Haskins Mountain in the McDame Map area, about 6km by Highway 37 southwest of Good Hope Lake and a further 5km by mine road to the claim area. Grown Grants

Figure 2

Terrain and Vegetation

The McDame map-area lies within the Interior System of the Wesrtern Cordillera of Canada (Bostock, 1948). Two major physiographic divisions are represented: Liard Plain, including the northernmost part of the Rocky Mountain trench; and Cassiar Mountains, including Dease Plateau, Horseranch, Stikine and Kechida Ranges (Gabrielse 1963). The claim lies in the Cassiar Mountains this rugged area exhibits many features typical of alpine glaciation and having a maiximum relief of about 4000 feet. The Cassiar Mountains are characterized by irregular mountain masses deeply dissected by stream valleys and glacial cirques.

The Cassiar Mountains receive moderate precipitation.

Generally, prospecting can be carried out from May to October but in the Cassiar Mountains snow may hamper work before mid-June and after mid-September. Unsettled weather is common during the summer months when the region gets its maximum precipitation. On average the latter part of July until the end of August provides the best weather for travel in the high mountains. Occasionally September affords ideal conditions because of low water, pleasant temperatures, and relatively few insects.

Timber line ranges from about 4593 to 5249 feet above sea level but good stands of timber are generally restricted to much lower elevations along the main river valleys. White Spruce and cottonwood, the largest trees grow mainly in the valley bottoms whereas lodgepole pine, trembling aspen, and minor birch are found commonly on flanking gravel and sand terraces.

Edible wild fruits include raspberry, strawberry, cranberry, several varieties of blueberry, and saskatoon (service berry).

Big-game animals include moose, Osbourne's caribou, black, brown and grizzly bear, Stone's sheep and mountain goat.

7

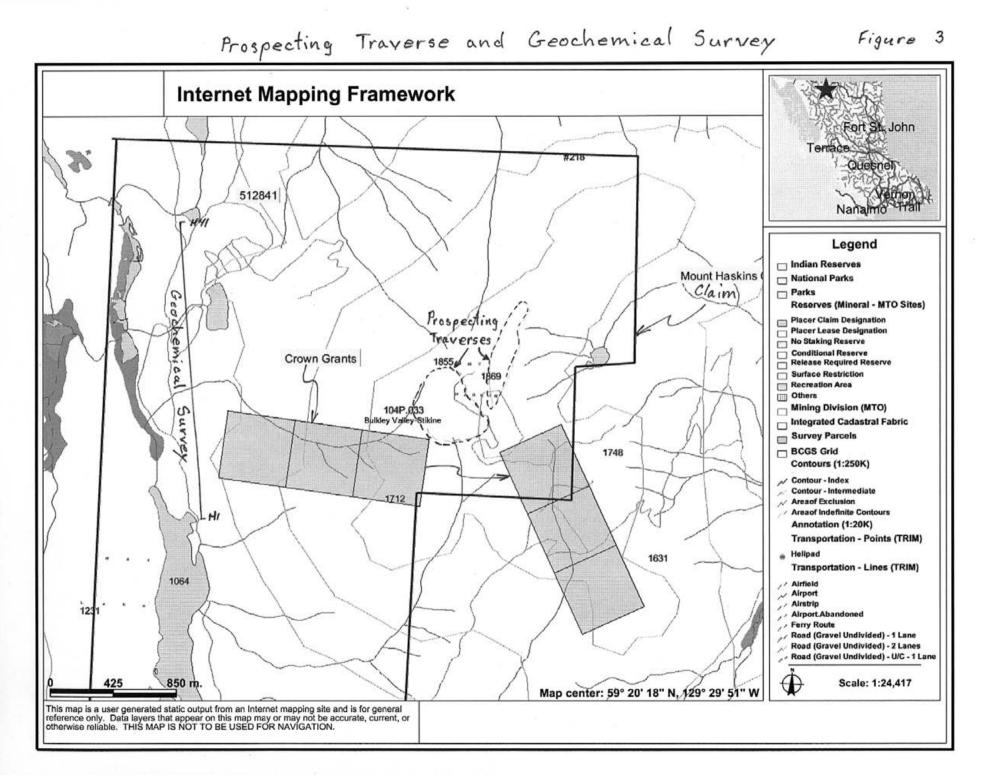
History

The area was first staked in part by Yukon Ranges Prospecting Syndicate in the spring of 1948. The property had been staked originally about 40 years before this and was the centre of a promotion that collapsed with the death of the promoter, Haskins. Since 1948 two claims and a fraction have lapsed and were re-staked in 1954 by G. Hope of Quartzrock Creek and J. Thompson of Watson Lake. Three claims owned by Mr. Turner of Tetegraph Creek and two owned by G. C. F. Dalziel of Watson Lake were Crown-granted. Since these first miners the claims have been dropped and restaked many times as the price of metals fluctuated.

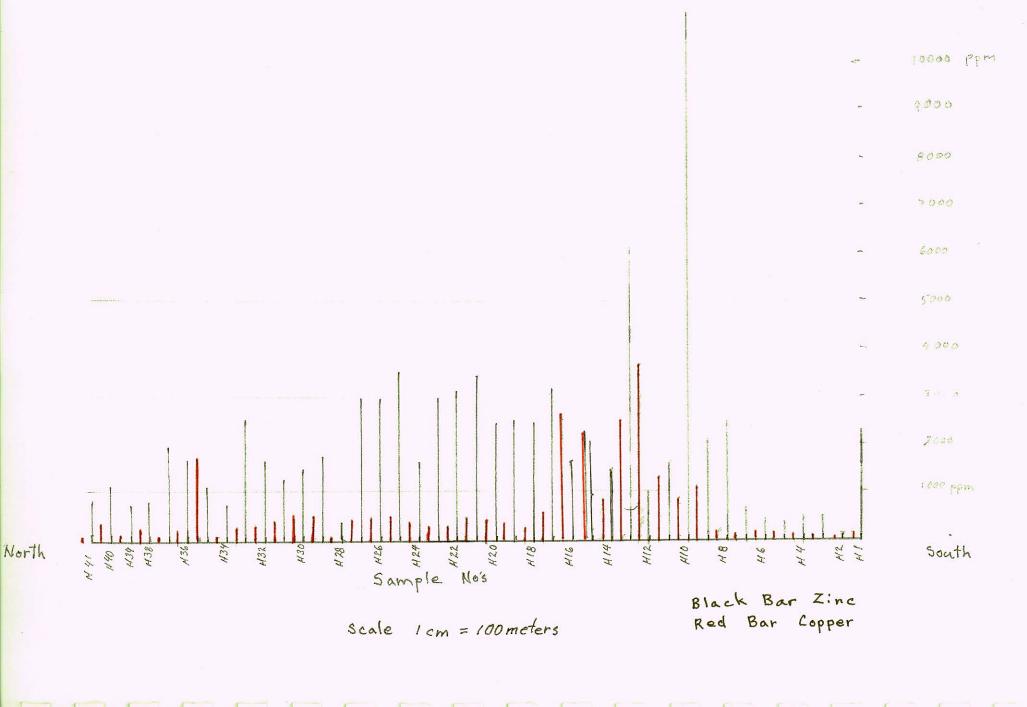
Geology

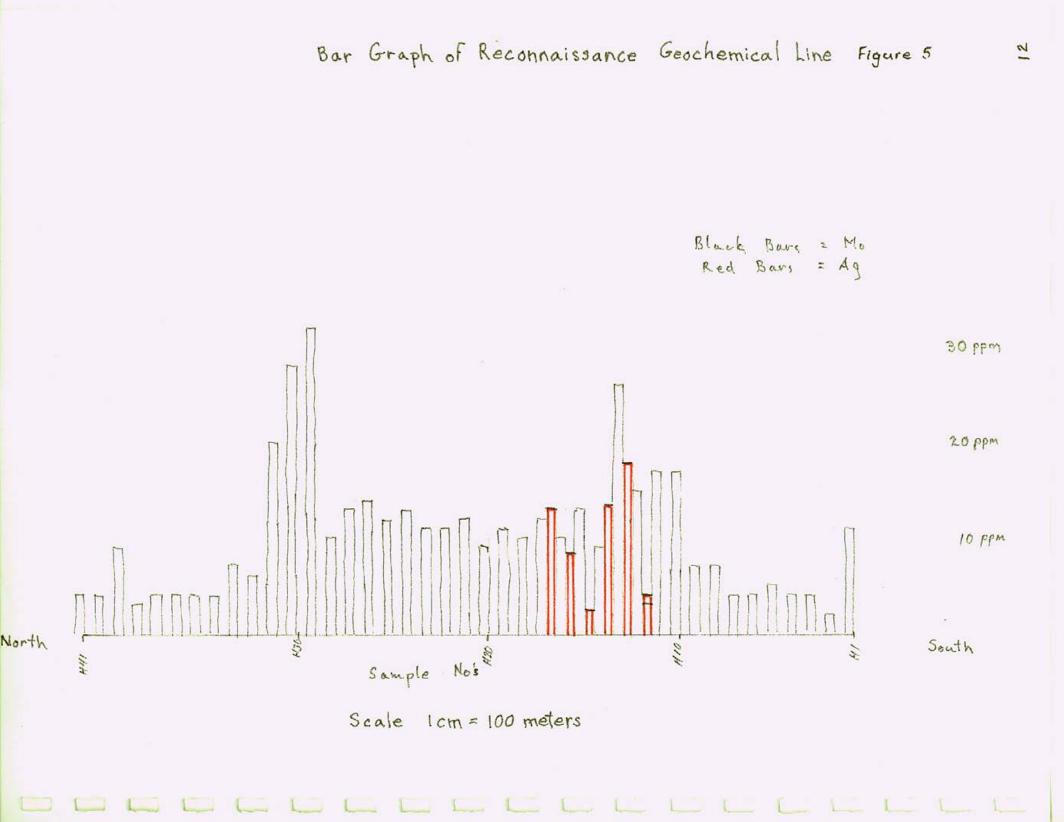
Dr. Gabrilse of the Geological Survey of Canada in Memoir 319 describes the showing thus "mineralized rocks on Mount Haskin belong to the Atan Group. Light grey weathering granite porphyry, possibly a sill about 100 feet thick, underlies part of the northwest flank of the mountain. Argillaceous rocks near the porphyry have been metamorphosed to hornfels, and limestones have been metamorphorsed to light grey skarn, chert and cherty limestone. A pronounced fault striking northward and dippng steeply trends through the top of the mountain and near the fault the rocks are contorted. Mineralized rocks are restricted largely to the main fault and to the contact between quartzite and overlying grey limestone. A mineralized zone exposed in a steep gully on the northwest side of the mountain can be traced southeasterly for more than 1000 feet to the crest of the mountain. The zone has a maximum width of about 25 feet at the head of the gulley. Pyrrhotite and shalerite are the most abundant sulphides, which also include galena, pyrite, and chalcopyrite. Oxidized material is widespread."

8


PROSPECTING TRAVERSES

Traverses were made across the property with the intent of locating samples for promoting the property. Samples were collected from old workings. The traverses and sample locations are shown on the prospecting map (figures 3).


Samples collected consisted of massive pyrrhotite skarn rich in copper minerals and large blocks of massive sphalerite-galena. The samples collected were solid unfractured pieces suitable for cutting and polishing. At the time of writing this report the samples had not been assayed. Once the samples have been prepared for display the remaining sample material will then be assayed.


GEOCHEMICAL SURVEY LINE

A two kilometer long reconnaissance survey line was sampled at 50 meter intervals (Figure 3). The samples were taken from the "B" soil horizon bagged, dried and analyzed by 30 element Induced Couple Plasma spectrophotometer (ICP) plus an ICP for uranium was added (Index). The soil sampling has been interpreted into two bar graphs the first shows the concentration of Copper and Zinc along the survey line (Figure 4) and the second shows Molybdenum and Silver along the survey line (Figure 5). The bar graphs show the position of anomatous samples relative to their position along the survey line.

STATEMENT OF QUALIFICATION STEPHEN G. DIAKOW

- I attended Vancouver City College and the University of British Columbia completing courses leading to a B.Sc. in chemistry.
- Studied Civil and Structural Engineering at British Columbia Institute of Technology.
- I have worked in Mineral Exploration for the past 40 years. Including the major companies Union Carbide Mining Exploration, Canadian Superior Mining Exploration and Anaconda Mining Exploration.
- I have received 3 British Columbia prospector assistance grants, the first from Dr. Grove in 1975 and last in 1998.
- 5. Member of the Society Of Economic Geologists

AFFIDAVIT OF EXPENSES

Prospecting and sampling of old workings was carried out within the Mount Haskins claim tenure number 512841 from Sept.22nd to Sept 25th, 2006. Work was carried out on the claims located on Haskins Mountain within the Liard Mining Division, British Columbia, to the value of the following:

Mob/Demob:

No Charge

Field:

	Grand total:	\$5302.75				
Report		\$500.00				
Laboratory 41 samples @\$12.75		\$522.75				
	Total	\$4280.00				
Truck & fuel,. 4 days @ \$100/day						
Fuel and food at camp \$40/man/day for 4 o	lays	\$480.00				
Cook and assitant Kelly Bates 4 days @ \$	250/day	\$1000.00				
Prospectors Gerry Diakow and John Hope,	\$2400.00					

Respectfully submitted ,

N. D. Diakou

Gerry Diakow

#200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5

Phone: 604/879-7878 604/272-7819 Fax: 604/879-7898 604/272-0851 Website: www.ipl.ca Email: info@ipl.ca

Method of Uranium by Multi-acid digestion/ICP

- (a) 0.25 to 1.0 grams of sample is weighed accurately and transferred into a 150 ml Teflon beaker, HCl, HNO3, HCLO4 and HF acid solutions are added and digested on hot plate until dryness, re-boil with 80 ml of 5 % HCl for 10 minutes and let cooled, bulked up to a fixed volume with de-mineralized water, and thoroughly mixed.
- (b) The specific elements are determined using an Inductively Coupled Plasma spectrophotometer. All elements are corrected for inter-element interference. All data are subsequently stored onto computer diskette.

QUALITY CONTROL

The machine is first calibrated using three known standards and a blank. The test samples are then run in batches.

A sample batch consists of 38 or less samples. Two tubes are placed before a set. These are an In-house standard and an acid blank, which are both digested with the samples. A known standard with characteristics best matching the samples is chosen and placed after every fifteenth sample. After every 38th sample (not including standards), Every 20th sample is re-weighed and analyzed at the end of the batch, the standard and blank used at the beginning is rerun. The readings for these known are compared with the pre-rack known to detect any calibration drift.

Elanalytical method/icpmuac-u

ISO 9001:2000 Certified Company

Certificate#: 07A0155 Client: Velocity Resources Canada Ltd. Project: None Given PO#: None Given No. of Samples: 41 Analysis #1: ICP(Multi-Acid)30 + U Analysis #2: Analysis #3: Comment #1: Comment #1: Comment #2: Date In: Jan 16, 2007 Date Out: Jan 23, 2007

#200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5

Phone: 604/879-7678 604/272-7818 Fax: 604/879-7898 604/272-0851 Website: www.ipl.ca Email: info@ipl.ca

Date In: Jan 16, 2007 Date Out: Jan 23, 2007					
Sample Name	SampleType	U	Ag	Cu	Pb
		ppm	ppm	ppm	ppm
H1	Soil	<10	<0.5	50	174
H2	Soil	<10	<0.5	44	7
H3	Soil	<10	<0.5	50	141
H4	Soil	<10	<0.5	98	151
H5	Soil	<10	<0.5	113	1 6 2
H6	Soil	<10	<0.5	87	156
H7	Soil	<10	<0.5	60	129
H8	Soil	<10	<0.5	53	150
H9	Soil	<10	<0.5	43	1159
H10	Soil	<10	<0.5	171	725
H11	Soil	<10	3.9	254	1358
H12	Soil	<10	17.6	178	3646
H13	Soil	<10	13.5	128	2419
H14	Soil	<10	2.4	164	882
H15	Soil	<10	8.4	186	2246
H16	Soit	<10	13.1	156	2642
H17	Soil	<10	<0.5	230	515
H18	Soil	<10	<0.5	195	207
H19	Soil	<10	<0.5	174	310
H20	Soit	<10	<0.5	177	411
H21	Soil	<10	<0.5	245	484
H22	Soil	<10	<0.5	198	296
H23	Soil	<10	<0.5	190	268
H24	Soil	<10	<0.5	135	400
H25	Soil	<10	<0.5	242	485

<10

<0.5

217

486

Soil

H26

H27	Soil	<10	<0.5	213	456
H28	Soil	<10	<0.5	26	79
H29	Soil	<10	<0.5	47	555
H30	Soil	<10	<0.5	87	475
H31	Soil	<10	<0.5	49	439
H32	Soil	<10	<0.5	22	346
H33	Soil	<10	<0.5	59	250
H34	Soil	<10	<0.5	11	81
H35	Soil	<10	<0.5	15	60
H36	Soil	<10	<0.5	34	207
H37	Soil	<10	<0.5	68	113
H38	Soil	<10	<0.5	35	239
H39	Soil	<10	<0.5	40	1 51
H40	Soil	<10	<0.5	48	430
H41	Soil	<10	<0.5	47	172
RE H1	Repeat	<10	<0.5	51	177
RE H20	Repeat	<10	<0.5	173	403
RE H40	Repeat	<10	<0.5	48	429
Minimum detection		10	0.5	1	2
Maximum detection		1000	500	20000	10000
Method		ICPM	ICPM	ICPM	ICPM

* Values highlighted (in yellow) are over the high detection limit for the corresponding methods. Other testing

-

Zn	As	Sb	Hg	Мо	ТІ	Bi	Cd
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
2291	291	7	<3	11	<2	13	<0.2
151	61	<5	<3	2	<2	<2	<0.2
485	410	8	<3	4	<2	27	<0.2
509	404	7	<3	4	<2	22	<0.2
373	375	6	<3	5	<2	24	<0.2
410	289	<5	<3	4	<2	19	<0.2
680	296	6	<3	4	<2	11	<0.2
2496	335	10	<3	7	<2	22	<0.2
2156	230	15	<3	7	<2	32	<0.2
10978	201	25	<3	17	<2	11	<0.2
1632	1479	13	<3	17	<2	60	<0.2
957	574	39	<3	15	<2	60	<0.2
6062	960	25	<3	26	<2	63	<0.2
1532	483	24	<3	9	<2	32	<0.2
2040	715	36	<3	13	<2	51	<0.2
1655	1812	44	<3	10	<2	52	<0.2
3163	382	22	<3	12	<2	40	<0.2
2444	208	14	<3	10	<2	27	<0.2
2498	297	18	<3	11	<2	25	<0.2
2427	292	16	<3	9	<2	35	<0.2
3442	352	26	<3	12	<2	48	<0.2
2102	288	18	<3	11	<2	32	<0.2
1987	269	18	<3	11	<2	34	<0.2
1615	580	16	<3	13	<2	21	<0.2
3572	371	22	<3	12	<2	44	<0.2
2966	489	24	<3	14	<2	37	<0.2

•

-

•

· -

. : -

.

-

.

2990	458	23	<3	13	<2	31	<0.2
391	166	<5	<3	10	<2	<2	<0.2
1757	1543	12	<3	32	<2	16	<0.2
1543	1065	12	<3	28	<2	14	<0.2
1318	900	13	<3	20	<2	10	<0.2
1675	873	28	<3	6	<2	55	<0.2
2543	1316	29	<3	7	<2	46	<0.2
765	174	5	<3	4	<2	<2	<0.2
1166	168	<5	<3	4	<2	<2	<0.2
1628	381	14	<3	4	<2	22	<0.2
1963	205	<5	<3	4	<2	39	<0.2
791	497	16	<3	3	<2	4	<0.2
768	374	10	<3	9	<2	16	<0.2
1140	600	8	<3	4	<2	12	<0.2
827	318	<5	<3	4	<2	10	<0.2
2368	294	6	<3	10	<2	14	<0.2
2452	288	19	<3	9	<2	32	<0.2
1171	587	9	<3	4	<2	13	<0.2
1	5	5	3	1	2	2	0.2
10000	10000	2000	10000	1000	1000	2000	2000
ICPM	ICPM	1CPM	ICPM	ICPM	ICPM	ICPM	(CPM

methods would be suggested. Please call for details.

....

~

Co	Ni	Ва	w	Cr	v	Mn	La
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
14	40	901	<5	65	100	600	20
14	42				128	623	22
10	15	1585	10	72	110	564	25
12	28	1391	25	59	106	605	31
15	34	1491	27	63	104	652	31
13	33	1509	60	66	120	609	29
11	33	1421	38	64	114	542	30
20	36	874	17	69	71	661	32
15	32	1291	<5	66	98	673	25
13	11	1643	11	66	74	641	32
14	46	734	69	59	52	733	26
14	13	561	60	57	46	722	30
5	9	596	46	47	35	697	26
10	12	1104	8	57	43	512	30
10	7	673	32	48	36	1921	30
11	16	1062	148	52	42	1 480	29
9	15	870	40	54	44	1261	28
14	25	552	24	46	43	2715	30
8	7	397	48	36	25	3243	24
8	11	520	76	45	37	2575	33
13	22	6 18	23	47	46	2248	31
13	18	504	27	42	36	3186	31
11	19	586	43	52	44	2537	36
11	20	577	46	48	42	2497	35
14	21	799	29	56	46	2138	33
14	30	598	29	51	46	3108	34
16	29	643	22	59	55	2923	35
		VIV	~~	¥4	**	2020	~~

-

.

.

•

-

.

.

.

19	22	816	16	64	66	2616	34
12	15	1126	5	62	93	986	20
16	28	928	6	71	78	1599	27
12	19	838	7	55	52	2119	29
11	22	894	20	67	59	1235	36
17	8	735	43	65	72	1578	30
16	17	900	<5	63	49	786	36
14	17	814	<5	86	112	442	21
16	23	934	24	85	104	789	22
9	10	988	<5	58	60	723	46
11	9	887	<5	39	30	1235	47
9	17	855	5	65	69	558	32
9	19	832	147	64	62	873	33
13	18	733	5	58	50	1358	33
14	20	823	28	65	74	1341	34
15	43	909	<5	66	130	630	23
10	25	610	26	46	45	2273	30
11	18	748	6	57	50	1382	35
1	1	2	5	1	1	1	2
10000	10000	10000	1000	10000	10000	10000	10000
ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM

.

Sr	Zr	Sc	Ti	AI	Ca	Fe	Mg
ppm	ppm	ppm	%	%	%	%	%
197	175	9	0.41	6.24	1.59	4.69	1.16
133	119	11	0.35	5.24	1.33	3.01	0.99
188	164	10	0.29	5.69	2.42	4.73	1.58
210	160	10	0.30	6.32	2.55	4.54	1.64
202	131	10	0.29	6.12	2.53	4.53	1.69
186	133	10	0.29	5.83	2.15	4.38	1.59
170	161	11	0.37	7.70	1.81	4.68	1.44
161	134	11	0.30	6.09	2.38	4.82	1.45
169	203	10	0.42	5.93	3.51	6.63	1.76
197	137	10	0.28	6.33	3.27	5.81	1.49
137	223	11	0.30	6.86	3.42	11.23	1.70
109	200	9	0.26	6.30	2.93	12.78	1.88
196	195	10	0.27	6.61	3.03	6.63	2.28
191	154	8	0.23	5.62	6.97	5.33	2.32
173	179	9	0.25	6.03	4.69	7.22	2.20
183	173	10	0.24	6.31	3.97	5.79	1.96
182	129	9	0.23	5.53	5.97	5.77	2.46
191	115	6	0.16	4.04	11.09	4.45	2.64
185	115	8	0.20	4.98	7.45	5.08	2.28
198	127	8	0.22	4.98	6.03	5.11	2.44
200	137	8	0.21	5.09	7.99	5.84	2.61
199	146	9	0.23	5.69	6.15	5.27	2.23
214	159	9	0.23	5.51	7.72	5.34	2.32
189	157	10	0.25	5.92	5.23	5.18	2.11
186	142	10	0.26	6.19	4.85	6.11	2.48
171	146	11	0.26	5.93	5.05	5.87	2.53

0

[

Γ

Γ

Γ

Γ

Γ

Γ

[

[

Γ

Γ

Γ

[

[

169	150	11	0.33	6.74	3.07	6.12	2.14
153	163	8	0.45	5.46	1.46	3.93	1.31
149	155	11	0.37	6.67	2.07	5.70	1.33
152	124	9	0.23	5.41	2.43	4.41	1.18
155	114	10	0.27	5.92	2.86	4.02	1.44
157	178	9	0.39	6.01	3.04	6.05	1.61
132	210	10	0.32	7.83	1.37	7.38	1.52
170	283	9	0.68	7.68	1.33	6.23	0.91
162	204	10	0.52	7.09	1.59	5.46	1.03
127	197	10	0.35	6.67	1.92	4.97	1.62
84	163	7	0.19	5.50	0.87	7.80	2.68
157	129	10	0.31	6.21	1.99	3.74	1.24
144	125	10	0.32	6.20	2.27	3.90	1.52
210	170	10	0.29	6.59	2.92	4.10	1.47
188	154	10	0.36	6.61	2.75	4.51	1.33
197	177	9	0.43	6.28	1.61	4.68	1.19
198	129	8	0.22	5.00	6.04	5.11	2.45
214	124	9	0.28	6.64	2.91	4.11	1.47
1	1	1	0.01	0.01	0.01	0.01	0.01
10000	10000	10000	10	5	10	5	10
ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM

[

Γ

Γ

Γ

[

Γ

[

[]

[

Γ

Γ

Į,

Π

к	Na	Р
%	%	%
1.86	1.23	0.06
1.78	1.02	0.06
2.48	0.62	0.10
2.52	0.58	0.09
2.39	0.60	0.09
2.22	0.64	0.09
2.00	0.86	0.06
1.94	0.69	0.13
2.64	0.73	0.07
2.40	0.65	0.07
2.41	0.37	0.13
2.07	0.31	0.13
4.83	0.17	0.09
2.83	0.30	0.08
2.86	0.37	0.09
3.73	0.35	0.08
2.00	0.34	0.09
1.95	0.22	0.06
2.17	0.32	0.08
1,72	0.42	0.09
1.74	0.30	0.08
2.35	0.37	0.10
2.35	0.36	0.09
2.80	0.45	0.09
2.00	0.40	0.10
1.98	0.43	0.10

-

2.17	0.61	0.10
1.58	1.10	0.08
2.03	1.02	0.08
1.90	0.69	0.12
2.30	0.80	0.13
2.82	0.67	0.06
2.51	0.60	0.11
2.15	1.74	0.08
1.90	1.42	0.07
3.54	0.39	0.13
2.76	0.06	0.06
2.16	0.95	0.07
2.41	0.84	0.07
2.43	0.67	0.08
2.18	0.93	0.06
1.89	1.25	0.07
1.77	0.43	0.09
2.43	0.68	0.08
0.01	0.01	0.01
10	10	5
ICPM	ICPM	ICPM

ŗ

ŗ

:

÷

:

1

.