Technical Report

2006 Reconnaissance Exploration Program on the Engineer Claim Group

Atlin Mining Division
NTS 104M08 and 104M09
TRIM 104M039, 104M049 and 104M050
59°27'45" North Latitude, 134°12'00" East Longitude
Tenures 411090, 411091, 411092, 411093, 411094, 503984,
521228, 525258, 525419, 525445, 525536, 526505, 526506,
526691 and 526885

Prepared for Blind Creek Resources Limited

(owner/operator)
15th Floor, 675 West Hastings Street
Vancouver, British Columbia
V6B 1N2

by

Brad Davies 3980 Goldquartz Drive Wells, British Columbia V0K 2R0

Angelique Justason 3972 Goldquartz Drive Wells, British Columbia V0K 2R0

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

September 6, 2007

TABLE	OF CONTENTS
	Page
	ion3
Physiogra	aphy and Access4
Mining a	nd Mineral Exploration History5
	Geology5
	ology7
	or's Discussion
	ppling and Analytical Procedure9
	tion and Conclusions
_	endations
	<u>13</u>
LIST OF	FIGURES
Figure 1	Location Map4
	Regional Geological Setting
	Property Location Mapafter 13 (in pocket)
	2006 Sample Location Mapafter 13 (in pocket)
LIST OF	TABLES
Table 1	Tenure List
	2006 Sample List

APPENDICIES

APPENDIX I: Cost Statement

APPENDIX II: Statement of Qualifications APPENDIX III: Prospector's Daily Log

APPENDIX IV: Blind Creek Resources Ltd. Mineral Tenure List: Atlin Mining District

APPENDIX V: MINFILE Reports APPENDIX VI: Assay Certificates

APPENDIX VII: List of Software Applications

INTRODUCTION

Blind Creek Resources Ltd. of Vancouver, British Columbia mobilized a small field crew to the Atlin area in the late summer of 2006 to conduct assessment work on several blocks of non-contiguous mineral tenures. The following report described work conducted on the "Engineer Claim Group". This past season's work comprised of reconnaissance scouting for mineralized rock exposures and subsurface anomalies, via soil sampling of the B-horizon, within this claim group located on NTS map sheet 104M/08 and 104M/09.

The mineral property is 100% owned and operated by Blind Creek Resources Ltd. and acquisition of this block of mineral tenures began in 2004 after interest in the area was heightened by positive exploration ventures on the Prize Mining Company's neighbouring ground. To date, Blind Creek has conducted two seasons of field work for assessment purposes and has, since the original acquisition in 2004, added several more mineral tenures to the Engineer claim block (see Table 1 and appendices).

This past season a total area of about 35 hectares was explored at or adjacent to the Engineer Claim Block, and a total of 23 samples (one float, one soil and twenty one rock samples as seen in Table 2), were collected by prospectors Brad Davies and Jeff Merrick. Sample locations had their UTM coordinates noted and all reconnaissance samples were shipped to and analysed by Eco Tech Laboratory Ltd of Kamloops, British Columbia. Analytical results include a 28 element ICP and a gold fire assay with atomic absorption finish. This report and its data will be reviewed by Blind Creek Resources Ltd. contract geologists in an effort to streamline proposed exploration in the 2007 season.

TENURE NUMBER	CLAIM NAME	AREA (ha)
411090	Hope 2	25.00
411091	Норе 3	25.00
411092	Hope 4	25.00
411093	Hope 7	25.00
411094	Hope 1	450.00
503984	Eng	16.44
521228	Hope 7	345.28
525258	Whine	115.22
525419	Tagish #1	197.40
525445	Tagish #2	395.24
525536	Tagish #3	16.452
526505	Tagish 5	362.13
525506	Tagish 6	345.87
526691	Franks	411.31
526885	Contiguous	82.28

Table 1: List of Engineer Group of tenures held by Blind Creek Resources

PHYSIOGRAPHY and ACCESS

The Engineer Group, consisting of 2,837.62 hectares of land at the time of the original 2006 filing of work, is located to the east of Tagish Lake and some 30 km west of Atlin, British Columbia. 100% owned and operated by Blind Creek Resources Ltd., the Engineer Group is located within the NTS 104M/08 and 104M/09 map sheets. Work was centered at approximately UTM Zone8V 545400E, 6591875N (NAD 83). Combined with the above described claim group, at the time of the writing of this report, Blind Creek Resources holds a total of 42,814.58 hectares of non-contiguous mineral tenure in the Atlin area.

Figure 1: Location map of Blind Creek Resources Ltd. mineral property at Atlin, BC

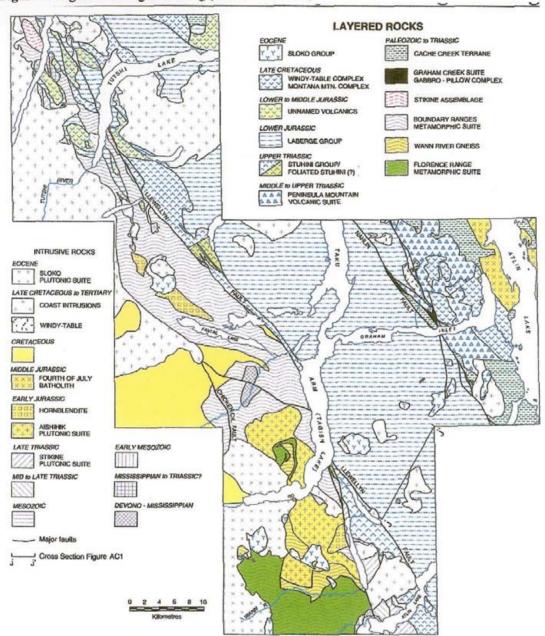
The work area, accessible by helicopter, is located in the alpine area of the Engineer and Gleaner Mountains, east of the Engineer mine site on Tagish Lake and north of Edgar Lake. Typical elevations at the work site average 5000 to 5500 feet above sea level. Furthermore, glaciers of this region are quickly retreating and exposing new rock outcrops for adventurous prospectors to geologists to discover.

MINING and MINERAL EXPLORATION HISTORY

The Tagish area, according to Bulletin 105, has a recorded history of exploration dating back to 1878; however, the remains of abandoned Russian placer operations discovered near Atlin may predate historical accounts by 50 years. Bulletin 105 also described the areas mining and exploration history as follows:

Photo 1: Engineer Mine site (from www.bcgoldcorp.com)

Prospectors began to filter into the area enroute to the Klondike gold fields between 1897and 1898, and the Atlin gold camp was established between 1901 and 1903. prospectors combed the area via the Tagish and Atlin Lake systems, they discovered and developed many small vein-type gold occurrences. Only the Engineer Mine, discovered in 1899 by engineers surveying a route for the White Pass railroad, became a significant producer, yielding approximately 560,000 grams of gold.


Several other showings for the area have been documented in the BC Ministry of Energy and Mines MINFILE records and have been included in the appendices of this report.

Other exploration companies, government agencies and, of course, prospectors have held mineral tenure in the area for some time; and companies reported by Aspinall to have worked in the area include, but are not limited to, Placer Dome, Adanac Mining and Exploration Ltd., Canadian Johns-Manville Co. Ltd., Glacier Mining and others. Some of the exploration conducted in the area has included regional to detailed mapping, geochemical work, trenching, ground and air geophysical surveys and drilling.

REGIONAL GEOLOGY

The regional geology, as described by Thompson (1990), states that the area lies within the northwest trending intermontane tectonic province and is bounded by two long deep seated faults. The west is bounded by the sub-vertical Llewellyn Fault system and the coast crystalline complex consisting of palaeozoic metamorphic and plutonic rocks of the NiSling Assemblage. The region around the claim is bounded to the east by the northeast dipping northwest trending Nahlin Fault and the Cache Creek group, cherts, argillites, basalts, andesite, ultramafics, and limestones. The lithology also consists of lower to middle Jurassic Laberge Group argillites, feldspathic wacke, siliciclastics, and conglomerates complicated by splay faults off the Llewellyn and Nahlin Faults and Jurassic to Eocene volcanics.

Figure 2: Regional Geological Setting (from Bulletin 105)

LOCAL GEOLOGY

The geology of Tagish Lake finds its best, most exhaustive treatment in Mihalynuk's Bulletin 105. Mihalynuk has separated the area into four domains, each of which is dominated by northwest-trending structural grain. None of these domains, however, started out with a northwest trend, and the boundaries of most of the domains correspond to the boundaries of terranes, which accreted to the continent at various times through the tectonic history of BC.

Most westerly is Domain I, which encompasses the young intrusive rocks of the Coast belt, and does not represent a distinct terrane. Domain II includes mainly deformed metamorphic rocks, which can be subdivided into a quartz-rich clastic succession of "pericratonic" (near the continent) origin, and a suite of volcanic arc strata which can be traced to the Stikine Terrane. Domain III includes all of the rocks of the "Whitehorse Trough", so called because it originated as deep-ocean basin, though folding and thrusting has shortened the width of this domain considerably. The rocks of the Whitehorse Trough that occurs within the area of this report are called the Laberge Group. The eastern-most domain – Domain IV – contains rocks of the Cache Creek Group, which has already been discussed.

As a part of the structural grain, two crustal-scale faults occur. These faults pass deep enough to serve as conduits for magma intrusions and mineralizing fluids. The Llewellyn Fault forms the boundary between Domains II and III, and marks the eastern-most limits of the deformation and metamorphism that took place in Domain II.

Photo 2: View of Tagish Lake from Engineer Mountain (from www.bcgoldcorp.com)

The Nahlin Fault forms the boundary between Domains III and IV, and thus it can be seen that the rocks of the Laberge Group (the Whitehorse Trough), are bounded on both sides by these two crucial crustal-scale faults.

PROSPECTOR'S DISCUSSION by Brad Davies

Engineer Mountain brings together quite a few of the geological formations that are found within the Tagish Lake region. Located just east of the Llewellyn fault, the basement rocks are mafic flows and volcaniclastic sediments of the Stuhini Group. (This goes part of the way towards explaining the presence of mariposite within the mountain, as recorded by miners who worked the Engineer Mine.) Overlying this group are the siltstones and argillites of the Laberge Group, which have been intensely deformed and intruded by plutons and volcanic flows of the "recent" Sloko magmatic event. These rocks of the Sloko Group vary considerably in composition and grain-size, depending on their distance from the surface when cooling took place. The rocks of the Sloko Group are the only rocks that have not been deformed.

Two major shear zones have been found on the Mine property, and it is said that all of the veining within the Mine can be traced to these zones. It's also said that the mineralization within the Mine only took place in the rocks of the Laberge Group.

At the south end of Engineer Mountain there is a steep, west-facing slope which—if facing north—would be the remnants of a cirque, since a steep, razor-backed ridge or arête bounds the slope along the southern edge. The heights of the mountainside are stained a deep orange here, and thus an attempt was made to climb the ridge to gain access to this band of coloured scree. Though it proved feasible to climb that ridge for a short distance, it became apparent that only professional rock-climbers can be permitted to work across the actual slope. The friability of the (clastic?) rock causes it to fall apart into fist-sized chunks beneath one's feet, and though there were still handholds beckoning from the highest point reached along the ridge, a certain trembling between the knees dictated a final retreat.

Everything looked interesting, and sampling began with some hefty, coarse-grained rock that was rusty and "dirty" looking (104321-322). As one climbed the ridge, the stain grew a deeper orange, the rock itself shaded greyer and more siliceous, and the presence of sulphides became apparent (104323). Finally a point was reached where "flat white" quartz with an orange stain became the predominant litter across the slope, and this quartz was found to have a good heft. A sample was taken from an outcrop as far out onto the slope as it was possible to get (104324...pyritized, but quartz-free). Back on the ridge and climbing again, it was within a few feet of this that the whisper of mortality settled over the enterprise, and sample 104325 was taken from an orange-stained quartz outcrop on the way back down the ridge.

The orange band across the slope has a definite strike towards the northwest from the location of sample 104324, and *needs* prospecting. Some very long rock-bolts would be in order.

Since it was scarcely mid-afternoon, and little (if any) of the surrounding terrain offered both access and egress along the same path, the retreat was continued southwest to the furthest edge of a promontory at the foot of the ridge. Upon reaching the grassy knoll at

the western end of this promontory, it was discovered that this was the location for the photograph that graces the front of Mitch Mihalynuk's Bulletin 105 (the picture of him looking west along Tagish Lake towards Ben-My-Chree). Below the western edge of this knob, a "burned and rusty" tuff (mudstone) can be found, and samples 104326 and 104327 were taken from this.

Signed: Brad Davin

FIELD SAMPLING and ANALYTICAL PROCEDURE

All rock and soil samples collected in the field were gathered by prospectors Brad Davies and Jeff Merrick. Each sample was noted to type, position according to a Garmin GPS and general description of the sample taken. Rock samples were mostly representative grab samples of rock outcrops, rare chip sampling was conducted and few rock samples were of float material. These were taken with an appropriate rock hammer and placed then sealed in clearly labeled and tagged clear plastic bags. Soil samples were collected from the B-horizon and carefully placed in brown kraft paper bags appropriate for soil sampling purposes. Each bag was clearly labeled on the outside with a felt tip marker and sealed for shipping.

Each sample was carefully packaged and shipped via Greyhound Canada Transportation Corporation to Eco Tech Laboratory Ltd of Kamloops, British Columbia for geochemical analysis. Eco Tech Laboratory Ltd. completed all of the analysis associated with the 2006 Blind Creek Resources Exploration Program in Atlin. The following data, received from them, addresses the issues of sample preparation and analysis:

• Analytical Method – gold assay

Samples are sorted and dried (if necessary). A sub-sample is pulverized in a ring & puck pulverizer to 95% -140 mesh. The sample is rolled to homogenize. Concentrates will be processed in our concentrate sample preparation area.

A 10 to 30g sample, run in triplicate, is fire assayed using appropriate fluxes. Concentrate will be fused in a dedicated furnace to ensure no cross contamination. The resultant dore bead is parted and then digested with aqua regia and then analyzed on an AA instrument.

Appropriate standards (Quality Control Components) accompany the samples on the data sheet.

Analytical procedure assessment report - metallic gold assay

Samples are catalogued and dried. Rock samples are two stage crushed to minus 10 mesh, then split to achieve a 250 gram (approximate) sub-sample. The sample is

TABLE 2: 2006 Sample List									
SAMPLE	<u>"</u>	LOCATION			TENURE #	AS\$AY			
TAG#	TYPE	Easting	Northing			CERTIFICATE			
104318	rock	550232	6595594	Gossanized mountaintop. Hefty sample of host-rock.	open	AK6-1619			
104319	rock	550162	6595720	Rhyolite dike; some mineralization. Rhyolite resembles concrete.	open	AK6-1619			
104320	rock	550127	6595739	Rhyolite dike (approx 300/50 NE). Well mineralized, but lacks heft.	open	AK6-1619			
104321	rock	545401	6591698	(Clastics?) Rusty, dirty, coarse-grained, fairly hefty.	525419	AK6-1619			
104322	rock	545414	6591741	(Clastics?) Rusty, dirty, coarse-grained, fairly hefty.	525419	AK6-1619			
104323	rock	545414	6591927	Deep orange stain. Grey, siliceous, definite mineralization.	525419	AK6-1619			
104324	rock	545412	6591932	Deep orange stain. Grey, siliceous, definite mineralization.	525419	AK6-1619			
104325	rock	545417	6591809	"Flat white" qtz outcrop; stained orange, and hefty.	525419	AK6-1619			
104326	rock	544631	6591024	Volcanic mudstone. Rusty and dirty. Soil sample SGL015 taken here.	***	AK6-1619			
104327	rock	544631	6591024	Volcanic mudstone. Rusty and dirty. Soil sample SGL015 taken here.	***	AK6-1619			
104415	rock	546547	6595279	no comment by prospector	***	AK6-1619			
104416	rock	546552	6595292	no comment by prospector	***	AK6-1619			
104417	rock	546544	6595329	no comment by prospector	***	AK6-1619			
104418	float	546331	6594664	no comment by prospector	***	AK6-1619			
104419	rock	546331	6594591	no comment by prospector	***	AK6-1619			
104420	rock	546331	6594591	no comment by prospector	***	AK6-1619			
104421	rock	546539		no comment by prospector	***	AK6-1619			
104422	rock	546731		no comment by prospector	***	AK6-1619			
104423	rock	546949		no comment by prospector	***	AK6-1619			
104424	rock	546966		no comment by prospector	***	AK6-1619			
104425	rock	547080		no comment by prospector	***	AK6-1619			
104426	rock	547088		no comment by prospector	***	AK6-1619			
015sgl	soil	544631	6591024		***	AK6-1912			

Note: *** Samples collected from areas next to but not of BCR tenures.

pulverized to 95% -140 mesh. The sample is weighed, then rolled and homogenized and screened at 140 mesh.

The -140 mesh fraction is homogenized and 2 samples are fire assayed for Au. The +140 mesh material is assayed entirely. The resultant fire assay bead is digested with acid and after parting is analyzed on a Perkin Elmer atomic absorption machine using air-acetylene flame to 0.03 grams/t detection limit.

The entire set of samples is redone if the quality control standard is outside 2 standard deviations or if the blank is greater than 0.015 g/t.

The values are calculated back to the original sample weight providing a net gold value as well as 2-140 values and a single +140 mesh value.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and or mailed to the client.

Analytical procedure assessment report

- Sample preparation: Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram sub-sample is pulverized on a ring mill pulverizer to -140 mesh. The sub-sample is rolled, homogenized and bagged in a pre-numbered bag.
- Geochemical gold analysis: The sample is weighed to 30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods. Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.
- Multi element ICP analysis: A 0.5 gram sample is digested with 3ml of a 3:1:2 (HCl:HNO₃:H₂O) which contains beryllium which acts as an internal standard for 90 minutes in a water bath at 95°C. The sample is then diluted to 10ml with water. The sample is analyzed on a Jarrell Ash ICP unit. Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

	Detection Limit			Detect	tion Limit
	Low	Upper	Low	τ	J pper
Ag	0.2ppm	30.0ppm	Mn	1ppm	10,000ppm
Al	0.01%	10.0%	Mo	1ppm	10,000ppm
As	5ppm	10,000ppm	Na	0.01%	10.00%
Ba	5ppm	10,000ppm	Ni	1ppm	10,000ppm
Bi	5ppm	10,000ppm	P	10ppm	10,000ppm
Ca	0.01%	10.00%	Pb	2ppm	10,000ppm
Cd	1ppm	10,000ppm	Sb	5ppm	10,000ppm
Co	1ppm	10,000ppm	Sn	20ppm	10,000ppm
Cr	1ppm	10,000ppm	Sr	1ppm	10,000ppm
$\mathbf{C}\mathbf{u}$	1ppm	10,000ppm	Ti	0.01%	10.00%
Fe	0.01%	10.00%	U	10ppm	10,000ppm
La	10ppm	10,000ppm	V	1ppm	10,000ppm
Mg	0.01%	10.00%	Y	1ppm	10,000ppm
			Zn	1ppm	10,000ppm

Each of the 2006 Blind Creek Resources Ltd. sample locations are plotted on maps included at the rear of this report; the table of specific locations and sample descriptions are included in Table 2; and the assay certificates from Eco Tech Laboratory are included in the appendices.

INTERPRETATION AND CONCLUSIONS

Based solely on the discourse given by the prospector, the limited data presented from the 2006 reconnaissance sampling and the authors basic knowledge, the following can be said:

 Rock samples taken at the Engineer Claim group, although apparently mineralized upon initial field inspection, showed no significant assay results for base metals.

The authors conclude that more work is required at the Engineer Claim Group.

RECOMMENDATIONS

Based on the above presented data and knowledge of the property, the authors of this report highly recommend further grassroots exploration activities on the Engineer Claim group with a minimum of the following work:

- 1. Have a geologist or qualified person follow up on the 2006 geochemistry.
- 2. Summarize past exploration and professional recommendations at or near the Engineer Mine site to help aid in future exploration of possible extensions of the mineralization found at this area.
- Conduct geophysical and geochemical research to help determine trends which
 may point to a correlation with known mineralized rock or a potential for
 mineralized rock locations.
- 4. Systematically conduct detailed geologic mapping and reconnaissance prospecting of all rock exposures, within the confines of the property, along Tagish Lake, in drainage basins and in alpine areas in an effort to better understand the geology of the claim block and mineral potential it holds. Note all outcrops in detail and track all traverses by GPS, each named by date.

REFERENCES

Aitken, J.D. (1959). <u>Atlin Map-Area, British Columbia.</u> Geological Survey of Canada Memoir 307.

Aspinall, Clive. (2005). The 2005 Geochemical Orientation Survey on Blind Creek Resources Ltd. Como Lake Claim Block, North of Atlin, BC.

Bloodgood, M.A, et al. (1989). <u>Geology and Mineralization of the Atlin Area,</u>
<u>Northwestern British Columbia (104N/11W and 12E).</u> BCMEMP Geological Fieldwork 1988. Paper 1989-1. pp311-321.

Harris, M.J., et al. (2003). <u>Travels of the Cache Creek Terrane: A paleomagnetic, geobarometric and 40Ar/39Ar study of the Jurassic Fourth of July batholith</u>, Canadian Cordillera. Tectonophysics. 362: 137-159

Hulstein, Roger. (1990). <u>Report on the 1989 Geological, Geochemical and Geophysical Fieldwork on the Taku Arm Property.</u> Assessment Report #19827.

Kerr, John R. (1982). <u>Geological & Geochemical Report on the GV, Eagle, Raven, Ptarmigan & Hawk Claims</u>. Assessment Report #10537.

Mihalynuk, M.G. (1999). <u>Geology and Mineral Resources of the Tagish Lake Area, Northwestern British Columbia (NTS 104M/8, 9, 10E, 15 and 104N/12W).</u> BCMEM Bulletin 105.

Wallis, J.E. (1983). <u>Geological and Geochemical Report on the GV15, 23, 24 & 26 Mineral Claims.</u> Assessment Report #12051.

www.atlin.net

www.bcgoldcorp.com

www.em.gov.bc.ca/DL/GSBPubs/Bulletin/Bull108/Bull108 2.pdf

www.empr.gov.bc.ca/DL/GSBPubs/GeoFldWk/1991/221-228-mihalynuk.pdf

www.prizemining.com

www.travel-british-columbia.com/northern british columbia/atlin.aspx

Internal or Unpublished Reports

Davies, Brad. (2006) <u>Blind Creek Resources Ltd., Report on the Prospecting Expidition,</u> <u>Atlin, BC., 2006.</u> Unpublished internal company report.

APPENDIX I COST STATEMENT

COST STATEMENT – Engineer

Wages: (September 7, 16 and 17 2006)

Prospectors:	Brad Davies	30 hrs @ \$20.	.00	\$600.00	
•	Jeff Merrick	30 hrs @ \$20.		\$600.00	
	Brad White	30 hrs @ \$20.		\$600.00	
	Doug Merrick	30 hrs@ \$30.		\$900.00	
Total Wages	_	11 10 1			\$2700.00
Food & Lodg	ging: (September 7	, 16 and 17 200)6)		\$1200.00
Vehicle Rem	t <u>al</u>				
2 truck days	@ \$50 per day				\$150.00
Assays & Sa	mples				
(NOTE: 40 sam	ncluding shipping apples accounted for in recent filing adjusts re	original assessmer			\$575.00
Research, da Technical Re	or assays actually a ta entry and map c eport (A.Justason administration cos	ompilation (A) 12 hours@\$30	Justason 2 /hr)	5 hours@\$30/hr)	\$(405.00) \$750.00 \$360.00 <u>\$55.50</u>
SUBTOTAL	٤				\$5385.50
<u>Fuel</u>					\$390.00
Helicopter					\$1350.00

TOTAL COSTS \$7,125.50

APPENDIX II STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS - Angelique Justason

- I, Angelique Justason, of 3972 Goldquartz Drive, Wells, British Columbia certify the following:
 - I have studied geology and earth science at Camosun College and the University of Victoria.
 - I have studied Civil Engineering Technology and Mining Engineering courses at BCIT of Burnaby, British Columbia.
 - I have been employed in the Cariboo Mining District as a geotechnician and mine surveyor for over 7 years.
 - I have a total of 4 full seasons of work experience as a field assistant with the BC Geological Survey and the Geological Survey of Canada in various regions throughout British Columbia and the Yukon.
 - I have successfully completed and received certificates for the Advanced Prospectors Course (1991) and Petrology for Prospectors Course (1992).
 - I have been an avid prospector for over 15 years.
 - I currently own and operate a mineral exploration services business, Tenorex GeoServices, which opened in January of 2007 and is based in Wells, British Columbia.
 - I was not directly involved in any of the prospecting or exploration activities for Blind Creek Resources Ltd. of the Atlin area until such time it came necessary for the company to file a technical report. At that time, I supervised the compilation and data management of the field samples and technical report.
 - I hold no interest in Blind Creek Resources Ltd., any of it's sister companies, nor any other properties within the Atlin Mining District.

Signed,

Angelique Justason

August 2007

STATEMENT OF QUALIFICATIONS – Brad Davies

- I, T. Bradley Davies, of 3980 Gold Quartz Drive, Wells, British Columbia, certify the following:
 - I have been an avid prospector since growing up near Barkerville, BC. in the sixties.
 - I have attended the Prospecting and Exploration Field School in Oliver, BC, as presented by AME BC and BCIT (2006).
 - I have been employed in the Mineral Exploration sector for 13 years, conducting geochemical and geophysical surveys, compass and GPS traverses, grid layouts and claim acquisitions.
 - I have occasionally been employed as a diamond driller's helper, also hard-rock and quarry miner for 22 years.
 - I attended a business college in 2001 for an intensive 10-week course in the use of all of Microsoft Office's applications.
 - I am a certified hand-faller, also a BCFS Fire Warden, with experience dating back to the early seventies.
 - I have been involved with the properties from which these samples were taken for three years, first as a claim-staker, then as a diamond driller's helper, and finally as a prospector.
 - I personally took over half the samples that are referred to in this report, and have some knowledge of the samples that were taken by the other crew.
 - I hold no shares in Blind Creek Resources, Ltd., and have no material interest in the properties from which these samples were taken, nor do I hold any properties in Northwestern British Columbia.

Signed,

Brad Davies,

August 20, 2007

APPENDIX III

Prospector's Daily Log for all non-contiguous Blind Creek Resources Ltd. 2006 field work August 24, 2006 to October 12, 2006 written by Brad Davies at Atlin, BC

Aug 24

Trend: ~ 20°NNE The three of us went through the quarry alongside the highway just north of Attin. Strike of country rock was 340°. Jeff found sulfides @ Send, and there was folding & alteration just S of that. We went up Otter Ck Rd to Spruce mountain, where the drilling had taken place last fall. Jeff explored a gtz seam S of the last drill hole and found galena. I explored N of the frist drill hole and took a reference sample of the mariposite. We looked at a barren gtz seam down the road near Otter Pit.

Jeff's crew went west along the ridge while I explored a glacial cirque on the west side of Spruce (Mt. The W. Shoulder of Spruce (east rim of cirque) has the Some nineralization as is found where we drilled (mariposite). There are many gossans on the Sface of the cirque, and much oxidized /ankeritized rock. I found pyritos with glts on one out cropping, but gtz is hard to find in this cirque.

Aug 26

I returned to the cirque and ran two profiles with the dip needle. Collected 3 rock sample & 3 soil samples.

Aug 27

There is a hump between Other and Wright Pits (closer to Wright). At N end of the hump there is a Pass or Gap. Bull gtz predominates as float on N side of this Other-Wright Gap. Faulting? I teaded N across hump to the road. It did somethat the rock graded from very siliceous near the Gap to common silfite at the N end of the hump.

Aug 29

Leaving the Gossan-quarry beside Allin guarry near duns, passed Swend of Como Lk and climbel up to rocky peak. Found galena on fracture planes of silfite where a gtz veinlet ran across the Strike of the rock. No other gtz & nothing of value was found, so descended other side and found the blaze line from 2 yrs ago.

Aucr 30 Leaving same position as ysterday, explored hump SE. Nothing of value, just siltite, ankeritized and sometimes micaceous.

Aug 31
Climbed Mtn. SE (beside) Como Llr. All granite - probable a botholith. No contact exposed; probably under vallies on either side. Drove around to individual cell just N of Atlin on 4th July Bay Rd, took single sample of Ferro-sandstone; no heft to rock, but very rusty.

Sept of Toured Spruce CK Rd. Main Spruce CK Rd loads to esters & overburden, no bedrock. Recon of Noland's camp. Research & photocopies in PM.

Sept 02 Found Union fault. Recon around SE corner (Wilson Ck, etc). Lots of Limestone. Remember: 0591998 x 6588292 320° ~ 2.5 km. 280° ~ 1 km. Sept 03
Found contact (N: lime/S=Arg) just past "end of driving" on Burdett CK. Tried to trace it; probably the foot of the Sentinels is a contact (see: Jeff's report near "cinnabar "stain).

Discovered the Dominion CK Rd. Located the E end of Union Fault. Much 9tz & 9tzite, vitreous & carbonatized. Some Ox. No pyrites.

Followed Fault E to Diduck's property, then came back to follow branch of fault SE. Peak of obsidian (chert?) just above yesterday's gtzite. Found trace mariposite & phyllitization on E traverse. Still no ore!

Started on someone else's property just SW of Lineston Mtm. and began to trace probable fault. With line on all sides, found outcrop of altered, silicified rock. Found Mariposite trench on their property and proceeded S down valley. Found Mariposite all the way down, as well as gossan swamp near mouth of valley.

Sept 08

Had been discussing "Black Mtn" as we were working towards

it. Jeff's crew found sulfides on NNE Goot, so today I began
to explore. Found "phyllitized" vertical bed out front on NNW. Then
distinctive ribboned, toothpaste calcite on mini-volcano out front on NNW!
Wariposite @ Foot of talus slope. Boxwork qtz. halfway up. Sulfides
in scree. More metals right to NNW side of N. nose (top).

Sept 09

Hit the hill again on ESE. Metals all the way up, and outcrops. Then to N. Nose, then down NNE. Metal and outcrops all over.

Sapt 10
Trying to approach volcanics on NE slope just above Eldorado, coming from McKee. Can't get there through willow jungle.
Sampled someone else's gound to from Eldorado up along McKee. Many quartz stringers E-W strike, bound in rusty gravel matrix (arg base-rock). Then down to McKee pit, where Jeff found massive sulfides along ck.

Middle Pire bridge @ falls. Following creek above at top of campon along trail. Campon walls gossanize & fold lower down. Pictour fault? If so, juncture with Pine fault is at the lower end of the hydraulic pit, where it joins Pine Ck. Probably they followed Pine fault with hydraullicing. Some gullies at top of hill on left bank might be the two faults. Looking back along (Pictour fault?) am always looking @ Imperial minesite.

Take Eldorado trail into alpine. Walk to volcanics area. Lg. red volcanic ridge with quartz seam as spine. All of the 9tz seams seem to run perpendicular to faults: the "Black Mtm" proposed fault may continue on this side of Mckee. Therefore, there is a juncture with Mckee somewhere downstream of Mckee dam. More green obsidien.

Sept 14

Explored most of the rest of the cirque at head of Eldoralo trail. All sediments, no mineral or gtz. Much jaspar, including a 4 acre hill of it.

Sept 15
Rupert, start at top of mountain. Black stuff grades to grey siliceous as I descend. At N end of airstrip follow road to W for 100m and go down to Ck. Outcrops are fault zone, well mineralized. Traced black "slate" against it (on N) to the E, as far as falls. "Slate" dips S, strikes E-W.

Sept 16
Red Mtn, east across valley from back end of Engineer Mtn.
Same stuff as Black Mtn, poorly mireralized. Found intrusive contact (rhyolite) that is mireralized throughous, though lacks haft.
No iron Stain, looks like concrete. Strike may carry to back end of Engineer Mtn. On N side of intrusive (dike) large outcrop of Cault breccia. No (rhyolite) below breccia, seems confined to alpine depression or gully.

Sept 17
5W corner of (Gleaner) Mfn. Redband across face.
Climbed ridge, but rock crumbles and cannot be trusted.
Sampled ridge, and found minerals. Red band appears to follow strike, but will take rock bolts & climbing gear to sample it.
Probably needs to be sampled. Walked to furthest knob to the W, where volcanic mudstone outergos.

Sept 18 SW corner Union Mtn. Within sight of Black Mtn, metal splashes are in the volcanics. Out of sight, no metal.

Sept 19

Paralleling the pass" between Wright Pit & Otter (k

(maybe 150 m S of "pass") Definite alteration zones,
seemingly based on series of N-S gullies (jointing?)

Maddeningly, the float is enticing, but can't be traced
back to anything.

Sept 20 Loney day in granite on Nof (Switzer?) travelling around cirque. To the Son Switzer proper can see a very red ridge. Training Brad White. Sent him 350m S of "Wright Pass" and went through center to Other CK.
The gullies & alteration don't extend S as far as Brad's walk, but would seem to hold (alteration anymny) to the N.

Sept 22/23 [- I've missed a day in the last 5]

Sampled from property boundary along Blue Canyon Rd. Linestone, chert & "indurated carboniferous sediments." One floatstone of "indurated siliceous sediments" carried pyrites.

Sept 25.

Returned to Como Lake to establish contact with 4th of July Batholith. It probably troubs beneath 5 side of swamp but can be found along hury. Tound alteration zone / 9te nearer town.

Sept 26

Rose Ck near month. Probable intrusion has brought mineralization to state shale along contact. NE strike, dips @ 25° to S. Beds are exposed for 50 m along Ck, and again down by main rd.

Sapt 27

At seam appears on E side of N Sentinel volcaires intrusion, contact, etc. Sill? Hove photo. Traces pyrites in volcanics.

On location@ big find. Chopper basin. Tink (Seldspar?) at veins well defined and run everywhile way in granite. Found rusty vein with trace payrite while steep at head of chopper basin. Two meh, with black matir material. 333/W 75°. Climb into "stockwork" basin, which is scoured clean (relatively). Other members are calling me to "stockwork" vein, but their outerop is 20m long and disappears into hill to the N and creek to S, with 5-inches on strike with gossan on helsit to N, which can be used for definition. Trace vein very easily to 5, until it disappears into S lobe of glareier, approx 340m. Rubble where veins disappear heavily oxidized. Alongway stand bereath (relatively) vertical face with evidence of at least 4 parallel veins. Pyrites are heavy along all of the veins, wherever they are found. Min 15%, max 60%. One vein is 2-inch, at least 2 are 4-5 inch, and they are all within a 15 m span. Strike is frim @ 333 and dip is around 80°, or almost vertical, dipping Winto Erosion has occured at vein surface, adding definition. Wish I'd had time to view the "stockwork" vein, though I'm told that the best mineralsation is in the parallel veins. Also I'm told that the granite itself carries, when near the veins and stockwork. Certainly the wall rock does.

Sept 29 Checking out Linestone in SEcours of property, Unload the shit.

Sept 30: Checking lone outrerop of ultramefics, surrould by limestone. Unload the shirt.

Oct 1 Soil Grid @ Como

ORIGIN: 0+00 E/W = 574693 x 6607356

BL: 0+50W = 574735 x 6607326 1+00W = 574769 x 6607297 1+50W = 574807 x 6607263

S trains

S: 0+50W x 1+25S = 574640 x 6607236 1+00W x 1+25S = 574689 x 6607206 1+50W x 1+25S = 574723 x 6607174 (Poor Epe)

Oct 2. Checking out linestone on E boundary of Sentinel. Unload the Shit.

Oct 3
Using metal detectors up Wright CK. Damn Grarrett squals when it hits mineralized shale, also surpertenized, quartzose afteration rock in Otter Pit.

Oct 4-8
Exploring around mouth of Spruce Ck. Definite fault @ 3080 converging with Pire Fault & Pictou Fault in same area, near airstrip.

Also checked Ott showing towards McKee Ck.
Approx. Juncture of 3 faults = 575891 x 6605820

Oct 10
Start@ SW corner Spruce, walk S side to Bay. Some evidence volcanics@ Bay.

Searching for drill core. Establish location, steal some hi-grade. Better have someone save this resource, before all the hi-grade gets stoken. Also find road up Pine Ck, passing to N of NW corner Spruce Mtn. Might take a walk.

Oct 12/13

SW Corner of "lonely" block. Found heavy alteration on hill-side. Seems to be extension of "Spruce" fault.

APPENDIX IV

Blind Creek Resources Ltd. Mineral Tenure List Atlin Mining District

Tenure Number	Tenure Type	Claim Name	Owner	Map Number	Good To Date	Status	Area (ha)	Tag Number
411090	Mineral	HOPE 2	203166 (100%)	104M049	2007/dec/30	GOOD	25.00	728103M
411091	Minera)	HOPE 3	203166 (100%)	104M049	2007/dec/30	GOOD	25.00	728104M
411092	Mineral	HOPE 4	203166 (100%)	104M049	2007/dec/30	GOOD	25.00	724413M
411093	Mineral	HOPE 7	203166 (100%)	104M049	2007/dec/30	GOOD	25.00	728101M
411094	Mineral	HOPE 1	203166 (100%)	104M049	2007/dec/30	GOOD	450.00	246932
503984	Mineral	ENG	203166 (100%)	104M	2007/dec/30	GOOD	16.44	
510928	Mineral	BLIND CREEK	203166 (100%)	104N	2007/sep/15	GOOD	395.08	
510932	Mineral	BLIND CREEK 2	203166 (100%)	104N	2007/sep/15	GOOD	329.44	
521228	Mineral	HOPE 7	203166 (100%)	104M	2007/dec/30	GOOD	345.28	
521544	Mineral	•	203166 (100%)	104N	2007/sep/15	GOOD	1000.27	
521545	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	1163.14	
521547	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	884.00	
521549	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	1147.66	
521550	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	1284.00	
521552	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	1200.91	·
521554	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	641.13	
521555	Mineral	•	203166 (100%)	104N	2007/sep/15	GOOD	823.40	
521556	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	1368.30	
521557	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	918.90	
521558	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	1169.62	
521559	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	1070.80	
521560	Mineral	•	203166 (100%)	104N	2007/sep/15	GOOD	969.63	
521561	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	985.84	
521562	Mineral	•	203166 (100%)	104N	2007/sep/15	GOOD	936.06	
521563	Mineral	_	203166 (100%)	104N	2007/sep/15	GOOD	1082.49	
521564	Mineral		203166 (100%)	104N	2007/sep/15	GOOD	1165.26	
521565	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	969.81	
521575	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	985.35	
521576	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	1167.23	
521577	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	823.07	
521578	Mineral	•	203166 (100%)	104N	2007/sep/15	GOOD	1167.91	
521579	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	805.51	
521581	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	887.09	
521587	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	724.17	
521589	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	723.85	
521590	Mineral		203166 (100%)	104N	2007/sep/15	GOOD	657.22	1
521591	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	984.68	
521593	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	721.76	Ì
521594	Mineral	_	203166 (100%)	104N	2007/sep/15	GOOD	721.94	

Tenure Number	Tenure Type	Claim Name	Owner	Map Number	Good To Date	Status	Area (ha)	Tag Number
521595	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	787.08	
521597	Mineral	•	203166 (100%)	104N	2007/sep/15	GOOD	475.60	
521599	Mineral	-	203166 (100%)	104N	2007/sep/15	GOOD	426.69	
521600	Mineral		203166 (100%)	104N	2007/sep/15	GOOD	245.88	
521602	Mineral	-	203166 (100%)	104N	2008/dec/15	GOOD	819.43	
521603	Mineral	-	203166 (100%)	104N	2008/dec/15	GOOD	950.34	
521604	Mineral	•	203166 (100%)	104N	2008/dec/15	GOOD	409.50	
522314	Mineral	ROSE TOP	203166 (100%)	104N	2007/sep/15	GOOD	410.47	
522315	Mineral	ROSE BOTTOM	203166 (100%)	104N	2007/sep/15	GOOD	410.62	
522316	Mineral	LEFT OF SLATE	203166 (100%)	104N	2007/sep/15	GOOD	410.74	
522317	Mineral	JOHNSON NINE	203166 (100%)	104N	2007/sep/15	GOOD	147.89	
525258	Mineral	WHINE	203166 (100%)	104M	2007/dec/30	GOOD	115.22	
525419	Mineral	TAGISH #1	203166 (100%)	104M	2007/dec/30	GOOD	197.40	
525445	Mineral	TAGISH #2	203166 (100%)	104M	2007/dec/30	GOOD	395.24	
525452	Mineral	TAGISH #3	203166 (100%)	104M	2010/mar/15	GOOD	163.89	
525456	Mineral	COMO #1	203166 (100%)	104N	2008/dec/15	GOOD	65.52	
525458	Mineral	COMO #2	203166 (100%)	104N	2010/dec/15	GOOD	16.39	
525536	Mineral	TAGISH#3	203166 (100%)	104M	2007/dec/30	GOOD	16.45	
526505	Mineral	TAGISH 5	203166 (100%)	104M	2007/dec/30	GOOD	362.13	
526506	Mineral	TAGISH 6	203166 (100%)	104M	2007/dec/30	GOOD	345.87	
526691	Mineral	FRANKS	203166 (100%)	104M	2007/dec/30	GOOD	411.31	
526885	Mineral	CONTIGUOUS	203166 (100%)	104M	2007/dec/30	GOOD	82.28	
541649	Mineral	EDGAR	203166 (100%)	104M	2007/dec/30	GOOD	164.40	
541829	Mineral	GLACIER	203166 (100%)	104M	2007/dec/30	GOOD	412.05	
541942	Mineral	DOUGLAS	203166 (100%)	104M	2007/sep/25	GOOD	412.14	
542085	Mineral	DOUGLAS 2	203166 (100%)	104M	2007/sep/28	GOOD	395.47	
542086	Mineral	DOUGLAS 3	203166 (100%)	104M	2007/sep/28	GOOD	346.28	
548471	Mineral	EAST	203166 (100%)	104N	2008/jan/02	GOOD	410.61	
548472	Mineral	EAST 2	203166 (100%)	104N	2008/jan/02	GOOD	410.83	
548940	Mineral	EAST 3	203166 (100%)	104N	2008/jan/09	GOOD	410.92	
548941	Mineral	EAST 4	203166 (100%)	104N	2008/jan/09	GOOD	411.15	
548942	Mineral	EAST 5	203166 (100%)	104N	2008/jan/09	GOOD	411.35	
548943	Mineral	EAST 6	203166 (100%)	104N	2008/jan/09	GOOD	378.62	
548944	Mineral	EAST 7	203166 (100%)	104N	2008/jan/09	GOOD	197.61	

APPENDIX V

MINFILE Reports

Programs & Services

 Government of British Columbia Willistry of Energy, Mines and Petroleum Resources

Ministry News Ministry Search Reports & Publications Site Map Contacts

MINFILE Home page ARIS Home page MINFILE Search Property Search

MINFILE Record Summary MINFILE No 104M 014

Print Preview PDF -- SELECT REPORT -- 🔻 File Created: 24-Jul-85 by BC Geological Survey Last Edit: 30-Jun-93 Mike H. Gunning

104M049

104M08E

08 (NAD 83)

XML Extract/Production Report/Inventory Report

SUMMARY Summary Help

Name

ENGINEER, ENGINEER MINE, ENGINEER 1 (L. 19), NORTHERN PARTNERSHIP 1(L. 918), NORTHERN PARTNERSHIP 2(L. 20), NORTHERN PARTNERSHIP 4(L. 209), NORTHERN PARTNERSHIP 5(L. 972), MICKEY (L. 967), DAISY (L. 970),

BOULDER, DOUBLE DECKER

Status Latitude Longitude Past Producer 59º 29' 14" N 134º 14' 06" W

Commodities Tectonic Belt Gold, Silver, Antimony, Tellurium

Intermontane

Mining Division Atlin

BCGS Map NTS Map UTM Northina

6594556 Easting 543328

Deposit Types Terrane

H05: Epithermal Au-Aq: low sulphidation

Inklin

Capsule Geology

The Engineer mine is located on the east side of Tagish Lake about 15 kilometres south of Graham Inlet and 30 kilometres west of Atlin. The property was discovered in 1899 and operated for 3 years. Underground work and production then took place from 1910 to 1918, from 1922 to 1928, during the summer only from 1929 to 1930, and hand mined from 1932 to 1934. Minor production (stockpile?) is recorded for 1944-1946, 1949 and 1952. Sporadic work occurred in 1948, 1952, 1962, 1982-1983 and in 1987 (by Total Erickson).

The mine is associated with several vertical, northeast- southwest striking quartz-calcite veins hosted in well bedded sediments of the Lower Jurassic Laberge Group. Shale, siltstone, and greywacke show excellent graded bedding, load casts, flame structures and contain rare ammonites and other fossil debris. Regional bedding strikes northwest-southeast and dips moderately northeast. Isoclinal folds are orientated northwestsoutheast parallel to the main shear zones which run through the property. The veins are perpendicular to these structures and discordant to bedding. A second phase of buckling occurred perpendicular to the first phase. "Quartz hubs" or zones of massive bull quartz occur where the ore-producing veins intersect the shear zones, although these "hubs" are barren.

The Engineer mine quartz veins are narrow, less than 2 metres wide, but have consistent orientations. Ore grades however, are very sporadic ranging from trace to 50 grams per tonne gold. Native gold is the main metallic mineral and occurs in pockets. Minor pyrite, tetrahedrite, chalcopyrite, mariposite, antimony, berthierite, and tellurides are also reported. Veins are very vuggy with many open space textures which exhibit very "clean" contacts with the host rock and commonly graphitic banding. The Double Decker and Engineer veins lie to the southwest of the shear zone and the Boulder vein lies to the northeast. The Engineer and Double Decker veins have been most extensively developed.

The Engineer Mine is considered to be a transitional epi-meso thermal deposit (Bulletin 105, pages 168-167). Features that support this transitional classification include a lower than usual silver/gold ration (.5 to 1typical of mesothermal values) combined with depositional features indicative of open space filling and episodic filling and other shallow features. The ore grade vein material shows vuggy and drusy mmm long quartz crystals ranging from green to blue to brown, and abundant cockscomb and colloform textures in successive layers quartz and calcite coating country rock fragments and vein material.

Estimated reserves at the Engineer mine are 20,000 tonnes grading 34 grams per tonne gold (Information Circular 1994-1, page 19).

Ampex Mining, under an agreement with Winslow Gold Corporation, mined and milled approximately 345 tonnes of vein material from stopes on the Engineer and Double Decker veins during a bulk sampling program. Ampex installed tracks and mobilized equipment to improve mining efficiency. A further program of exploration, limited milling of material from near-surface veins and preparation for dewatering the lower levels

on the Engineer vein is planned. The company hopes to bring the 27,500 to 45,300 tonnes of indicated reserves into the proven reserves category (Information Circular 1995-9, page 17).

In 1995, Ampex Mining carried out a program of test milling and underground rehabilitation and sampling with support from the Explore B.C. Program with a view of upgrading indicated reserves to the proven reserves category. Results of this program were not conclusive but encouraging and further sampling and dewatering of lower levels is planned (Explore B.C. Program 95/96 - M30).

Bibliography

EMPR AR 1900-760,778; 1902-39; 1903-44; 1904-80; 1908-50; *1910-53,57,246; 1911-60,287; 1912-60,324; 1913-72; *1914-79,89, 512; 1915-64; 1916-46,438; 1917-80; *1918-90; 1919-91; 1922-91; 1923-90; 1924-77; *1925-113,355; 1926-106; 1927-112,480; 1928-123; 1929-120,505; 1930-132; 1932-65; *1933-73; 1934-B35; 1944-40; 1945-43,61; 1946-60; 1948-60; 1952-39 EMPR ASS RPT 7923, *9049, 10511, 17253 EMPR BULL 1, p. 24; *3, p.8; 105 EMPR EXPL *1987-A12,A42,B83-87 EMPR Explore B.C. Program 95/96 - M30 EMPR FIELDWORK 1985, pp. 184-189; 1989, pp. 175-179, 181-196, 197-203; 1990, pp. 139-144, 153-159 EMPR INF CIRC 1993-13 EMPR OF *1990-4: 1994-1 EMPR PF (In 104M General File - Claim map of 104M, 1970 and Claim map 104M 08 and 09, 1970; *Morgan, D.R., (1982); A Geological Report on the Reverted Crown Grants and Located Mineral Claims of Windarra Minerals Ltd., Surrounding the "Engineer" Gold Mine; In 104M General File - Mihalynuk, M.G., et al (1988): A Closer Look at the Llewellyn Fault-Tectonic Implications and Economic Mineral Potential; In Abstracts: Smithers Exploration Group Workshop, October 1988) EMPR RGS 37, 1993 EMR MP CORPFILE (Engineer Gold Mines) EMR MIN BR OTTAWA RPT. 763, Invest. 609 GSC BULL 5, pp. 22-23 GSC MAP 19-1957; 94A; 218A; 711; 1418A; 1426 GSC MEM *37, pp. 74-89 GSC OF 427; 2225 p. 42; 2694 GSC P 77-01A; 69-01A pp. 23-27; 78-01A pp. 69-70; 90-01E pp. 113-119; 91-01A pp. 147-153; 92-01A GSC SUM RPT 1906 pp. 26-32; 1911 pp. 27-58; 1930A, p. 11 CMJ Oct. 15, 1916, p. 489 GCNL Mar.1, June 24, July 8, 1975; #166, #242, 1980; #5, 1982 N MINER Jul.24, 1975; Jan.7, 1982; Aug.25, 1983 WWW http://www.infomine.com/index/properties/ENGINEER_MINE.html Placer Dome File

-fon +Capyright +D ≤ Nomen +From

*English |

Programs & Services

Ministry of Energy, Mines and Petroleum Resources

· Government of British Columbia

Ministry News Ministry Search Reports & Publications Site Map Contacts

MINFILE Home page ARIS Home page MINFILE Search Property Search

MINFILE Record Summary

MINFILE No 104M 015

Print Preview

PDF

Summary Help

File Created: Last Edit:

24-Jul-85 07-Nov-88 by BC Geological Survey

by John Bradford

XML Extract

SUMMARY

Name

Status

Latitude

KIRKLAND, KIRTLAND, JERSEY LILY,

Mining Division

Atlin

ENGINEER

59º 28' 44" N

Showing

BCGS Map NTS Map UTM Northing

104M08E 08 (NAD 83) 6593624 543024

104M049

Longitude 134º 14' 26" W Gold

Easting **Deposit Types**

H05: Epithermal Au-Aq: low

sulphidation

Tectonic Belt

Commodities

Intermontane

Terrane

Inklin

Capsule Geology

The Kirkland showing, as part of the Engineer gold camp, is located on the east side of Taku Arm about 10 kilometres east of the eastern edge of the Coast Plutonic Complex.

In the area, Lower Jurassic Laberge Group greywackes, shales and argillites are folded into a syncline with a northwest trending fold axis. Sediments on the west limb strike about 120 degrees and dip 30 to 40 degrees northeast. Small granodiorite plugs outcrop west of Engineer Mountain and south of Bee Peak. To the east of the plug on Engineer Mountain a subcircular volcanic cap or neck, about 4 kilometres across, is preserved predominantly as a down-dropped block. The volcanic cap or neck comprises Cretaceous or later rhyolites, trachytes, and volcanic breccias (probalby equivalent to the Sloko Group. Feldspar porphyry, trachyte, and andesite dikes can be seen in underground workings and are reportedly offset by veins.

Veins belonging to the Kirkland occurrence represent the southerly extension of the Engineer vein system. Two shafts and several trenches have explored these veins. The main vein, the Jersey Lily, is about 60 centimetres wide and has an indicated length of 425 metres. It has been exposed in trenches for 75 metres, and consists of vuggy comb-structured quartz. Only a small amount of gold was found.

Bibliography

EMPR AR 1913-73; 1914-93; 1918-93; 1925-115

EMPR ASS RPT *9049, 17253

EMPR BULL 105

EMPR EXPL 1980-498,499

EMPR FIELDWORK *1985, pp. 184-189; 1989, pp. 175-179, 181-196, 197-203; 1990, pp. 139-144, 153-159

EMPR OF *1990-4

EMPR PF (In 104M General File - Claim map of 104M, 1970 and Claim map of 104M 08 and 09, 1970; *Morgan, D. R. (1982): A geological report on the reverted crown grants and located mineral claims of Windarra Minerals Ltd. surrounding the "Engineer" gold mine; In 104M General File -Mihalynuk, M.G., et al (1988): A Closer Look at the Llewellyn Fault-Tectonic Implications and Economic Mineral Potential; In Abstracts: Smithers Exploration Group Workshop, October 1988) EMPR RGS 37, 1993

GSC MAP 19-1957; *93A; 94A; 711; 1418A; 1426

GSC MEM *37, pp. 91-92

GSC OF 427; 2225 p. 42; 2694

GSC P 77-01A; 69-01A pp. 23-27; 78-01A pp. 69-70; 90-01E pp. 113-119; 91-01A pp. 147-153; 92-01A

GSC SUM RPT 1906 pp. 26-32; 1911 pp. 27-58; 1930A, p. 13

GCNL Mar 1, June 24, July 8, 1975; #41, 1976; #139, #166, #206, #242 1980; #5, #62, 1982

N MINER July 24, 1975 (p. 22); Jan 7, 1982

For the period of second of the second of t

Government of British Columbia Ministry of Energy, Mines and Petroleum Resources

Ministry News Ministry Search Reports & Publications Site Map Contacts

MINFILE Home page ARIS Home page MINFILE Search Property Search

MINFILE Record Summary MINFILE No 104M 016

Print Preview

PDF

-- SELECT REPORT -- ▼

ド New Window

Summary Help

File Created: Last Edit:

24-Jul-85 22-Jul-93 by BC Geological Survey by Dorthe E. Jakobsen

XML Extract/Inventory Report

SUMMARY

Name

GLEANER, TAKU CHIEF (L. 240),

MICKEY (L. 967), MYOSOTIS (L. 239), LAKEVIEW (L. 241), LUMSDEN,

ENGINEER

Status Latitude Longitude

Commodities

Tectonic Belt

Showing 59º 28' 54" N 134º 13' 56" W

Gold, Silver

Intermontane

Mining Division

Atlin

104M049

104M08E

BCGS Map NTS Map UTM **Northing**

08 (NAD 83) 6593939 **Easting** 543492 Deposit Types H05: Epithermal Au-Ag: low

sulphidation

Terrane

Inklin

Capsule Geology The Gleaner veins are located on the north and south sides of Butler Creek 30 kilometres west of Atlin. The property surrounds the Engineer mine (104M 014), and the veins are about 0.5 kilometres northeast of the main Engineer veins and workings.

Mr. Lumsden has been prospecting these claims since 1971. In 1991, trenching at the Gleaner adit and on the Mickey vein and rock sampling was done by J.W. Mcleod.

The Engineer gold camp is on the east side of Taku Arm about 10 kilometres east of the eastern edge of the Cretaceous to Tertiary Coast Plutonic Complex. Lower Jurassic Laberge Group greywacke, shale, slate and argillites is folded into a syncline with a northwest trending fold axis, and host the vein systems.

Small granodiorite plugs outcrop west of Engineer Mountain and south of Bee Peak. To the east of the plug on Engineer Mountain a subcircular volcanic cap or neck, about 4 kilometres across, comprises Cretaceous or later Hutshi Group rhyolites, trachytes and volcanic breccias. Feldspar porphyry, trachyte, and andesite dikes occur in the vicinity of the veins and are locally offset by them.

The Gleaner showing comprises the Mickey vein (on the Mickey claim) the Gleaner adit (on the Taku Chief claim) and the Myosotis adit (on the Myosotis claim).

The Gleaner veins, situated on the northeast side of a major northwest trending shear zone, strike north-south and dip to the west. They have been explored by several open cuts and the 210 metre long Gleaner cross-cut tunnel.

Veins range up to 1.2 metres in width, and consist of sets of quartz stringers cutting sediments. brecciated wall rock fragments cemented by quartz, and massive quartz veins. Mineralization consists of pyrite and native gold. Gold occurs as fine disseminations, thin leaves and flakes in small pockets.

In 1991, grab samples assayed up to 1.275 grams per tonne gold (Assessment Report 22075). A sample from the Mickey vein assayed 1.23 grams per tonne gold (Assessment Report 22075, sample 5008).

Bibliography

EMPR AR 1901-985; 1918-92; 1925-115; 1926-106; 1933-74,75 EMPR ASS RPT *7923, *9049, 17253, *22075

EMPR BULL 105 EMPR EXPL 1980-498,499 EMPR FIELDWORK 1989, pp. 175-179, 181-196, 197-203; 1990, pp. 139-144, 153-159 EMPR OF *1990-4 EMPR PF (In 104M General File - Claim map of 104M, 1970 and Claim map of 104M 08 and 09, 1970; *Morgan, D.R. (1982): A geological report on the reverted crown grants and located mineral claims on Windarra Minerals Ltd. surrounding the "Engineer" gold mine; in 104M General File -Mihalynuk, M.G., et al (1988): A Closer Look at the Llewellyn Fault-Tectonic Implications and Economic Mineral Potential; In Abstracts: Smithers Exploration Group Workshop, October 1988) EMPR RGS 37, 1993 EMR MP CORPFILE (Gleaner Mining and Milling Co. Ltd.) GSC MAP 19-1957; 93A; 94A; 711; 1418A; 1426 GSC MEM *37, pp. 89-91 GSC OF 427; 2225 p. 42; 2694 GSC P 77-01A; 69-01A pp. 23-27; 78-01A pp. 69-70; 90-01E pp. 113-119; 91-01A pp. 147-153; 92-01A GSC SUM RPT 1906 pp. 26-32; 1911 pp. 27-58 GCNL #139, #206, 1980; #62, #138, 1982; #142, 1983 N MINER Apr 8, 1982

Ministry M Energy, Mines and Petroleum Resources

Government of British Columbia

Ministry News Ministry Search Reports & Publications Site Map Contacts

MINFILE Home page ARIS Home page MINFILE Search Property Search

MINFILE Record Summary
MINFILE No 104M 017

Print Preview

PDF -

-- SELECT REPORT -- 🔽 🔽 New Window

File Created: Last Edit:

24-Jul-85 07-Nov-88 by BC Geological Survey by Sandra E. Dumais

XML Extract/Inventory Report

SUMMARY

Summary Help

Name Status

Latitude

Longitude

ANYOX-RODEO (L.4657,4670)

Mining Division BCGS Map

104M049 104M08E

Atlin

Showing 59º 26' 19" N 134º 13' 51" W NTS Map UTM Northing Easting

08 (NAD 83) 6589145 543626

Commodities Tectonic Belt

Copper, Nickel, Cobalt Intermontane

Deposit Types

M01: Flood Basalt-Associated Ni-Cu

Terrane

Inklin

Capsule Geology A copper-nickel occurrence, called the Anyox-Rodeo, is shown on Geological Survey of Canada Map 19-1957. This may correlate with an adit and pit beside a dam on Wann River and a second adit upstream, shown on a map in Assessment Report 1628. No description is available.

The area is underlain by chloritic schist of the Lower Jurassic Laberge Group.

In Bulletin 105 it is described as a copper-nickel-platinum-palladium massive sulphide lens hosted within Boundary ranges chlorite-actinolite schist near its contact with Upper Triassic Stuhini Volcanics. Fractured actinolite porphyroblasts up to 3 centimetres are accompanied by interstitial or fracture filling pentlandite, pyrrhotite, chalcopyrite and pyrite. Precious metal values seem erratic and not reproducible. The deposit may be an example of "basaltic copper (M01) or marine volcanic association (G04/06).

A sample taken by the B.C. Geological Survey assayed 0.15 per cent copper, 0.60 per cent nickel and 0.12 per cent cobalt (Personal Communication - Mihalynuk, M., Jan. 1990).

Bibliography

EMPR ASS RPT *1628

EMPR BULL 105

EMPR FIELDWORK 1989, pp. 175-179, 181-196, 197-203; 1990, pp. 139-144, 153-159

EMPR OF *1990-4

EMPR PF (In 104M General File - Claim map of 104M, 1970, Claim map of 104M 08 and 09, 1970 and Mihalynuk, M.G., et al (1988): A Closer Look at the Liewellyn Fault-Tectonic Implications and Economic Mineral Potential; In Abstracts: Smithers Exploration Group Workshop, October 1988)

EMPR RGS 37, 1993

GSC MAP *19-1957; 94A; 711; 1418A; 1426

GSC MEM 37

GSC OF 427; 2225 p. 42; 2694

GSC P 77-01A; 69-01A pp. 23-27; 78-01A pp. 69-70; 90-01E pp. 113-119; 91-01A pp. 147-153; 92-01A

GSC SUM RPT 1906 pp. 26-32; 1911 pp. 27-58

-*Sep - •Copyright - •Descap mer •Procacy

*Feedback

Ministry of Effergy, Mines and Petroleum Resources

Government of British Columbia

Ministry News Ministry Search Reports & Publications Site Map Contacts

MINFILE Home page ARIS Home page MINFILE Search Property Search

MINFILE Record Summary

MINFILE No 104M 019

Print Preview

PDF

-- SELECT REPORT -- 🔻

New Window

Summary Help

File Created: Last Edit:

24-Jul-85 07-Nov-90 by BC Geological Survey

by John Bradford

XML Extract/Inventory Report

SUMMARY

Name

Status

NELSON LAKE

Mining Division BCGS Map

Atlin

Showing

104M040 104M08E 08 (NAD 83)

59º 18' 59" N Latitude Longitude 134º 11' 27" W

6575563 Northing Easting 546061

Commodities Silver, Gold, Copper, Lead **Deposit Types**

I05 : Polymetallic veins Ag-Pb-Zn+/-

Δп

Tectonic Belt

Intermontane

Terrane

NTS Map

UTM

Stikine

Capsule Geology On the western shore of Nelson Lake a silver-lead occurrence is shown on Geological Survey of Canada

Map 19-1957.

The area is underlain by metamorphic rocks of the Devonian to Permian and older Boundary Ranges Metamorphic Suite. Highly deformed pelitic schists and marbles host sulphide-rich veins.

A grab sample assayed 4.6 grams per tonne gold, 198 grams per tonne silver, 3.9 per cent lead and 1.25 per cent copper (Personal Communication - Mihalynuk, M.G., Jan. 1990).

Bibliography

EMPR BULL 105

EMPR FIELDWORK 1985, p. 184; 1989, pp. 175-179, 181-196, 197-203; 1990, pp. 139-144, 153-159

EMPR OF *1990-4

EMPR PF (In 104M General File - Claim map of 104M, 1970; Claim map of 104M 08 and 09, 1970)

EMPR RGS 37, 1993

GSC MAP *19-1957; 94A; 711; 1418A; 1426

GSC MEM 37

GSC OF 427; 2225 p. 42; 2694

GSC P 77-01A; 69-01A pp. 23-27; 78-01A pp. 69-70; 90-01E pp. 113-119; 91-01A pp. 147-153; 92-

GSC SUM RPT 1906 pp. 26-32; 1911 pp. 27-58

+€eedLack

Ministry News Ministry Search Reports & Publications Site Map Contacts

MINFILE Home page ARIS Home page MINFILE Search Property Search

MINFILE Record Summary MINFILE No 104M 026

Print Preview

-- SELECT REPORT -- ▼ 🔽 New Window

Summary Help

File Created: Last Edit:

24-Jul-85 03-Sep-89

PDF

by BC Geological Survey by Mitch G. Mihalynuk

XML Extract/Inventory Report

SUMMARY

Name

BROWN, HARLEY #2, BROWNIE Mining Division Atlin

(L.4652-4653), JACKPINE (L.4360),

WANN FRACTION (L.4655)

Status Showing 59º 26' 54" N Latitude 134º 14' 57" W Longitude

Commodities Silver, Gold, Copper, Lead, Zinc,

Molybdenum

Intermontane

104M049 **BCGS Map NTS Map** 104M08E 08 (NAD 83) UTM Northing 6590216 Easting 542574

Deposit Types 105: Polymetallic veins Aq-Pb-Zn+/-

Au Terrane Stikine

Capsule Geology

Tectonic Belt

The Brown vein is located about 0.6 kilometres up the Wann River above Taku Arm.

The area is underlain by the Upper Triassic Stuhini Group and the Devonian to Permian and older Boundary Ranges Metamorphic Suite which are intruded by Late Triassic hornblende granodiorite. The Llewellyn fault zone hosts mineralized synkinematic quartz veins.

A 10 metre adit has been driven along a zone containing quartz veins and stringers. The veins form an anastomosing network subparallel to the foliation of the country rocks. Individual veins range in thickness from less than 1 centimetre up to 35 centimetres, splitting and rejoining along their length.

Mineralization consists of tetrahedrite, chalcopyrite, malachite, azurite, molybdenite, pyrite, sphalerite and galena. On the surface, mineralized veins, up to 60 centimetres wide (mainly 1-15 centimetres), occur over a distance of 70 metres perpendicular to the fabric of the zone. These veins have been variably disrupted by brittle faulting suggesting syn-kinematic origins. Of the few well exposed veins, two main orientations were observed: 070/85, 101/74. Country rocks include a variety of lithologies admixed within the Llewellyn fault zone.

Some identifiable but strongly sheared rocks include: chlorite-actinolite schists of the Devonian to Permian Boundary Ranges Metamorphics: Upper Triassic Stuhini Group volcaniclastics. Norian carbonate (Sinwa Formation) and a coarse grained Late Triassic(?) granodiorite intrusive. Most rocks within the 20 by 10 metre exposure are bleached, highly pyritic (up to 5 per cent), cut by quartz and carbonate stringers and clay altered.

The highest grades come from material along the northern hangingwall of the 2.5 metre vein/shear system exposed by the adit. A chip sample, also from vein material, assayed 8.6 grams per tonne gold and 315.38 grams per tonne silver (Mihalynuk, M.G. Personal Communication, Sept. 1989). Grab sample MMI89-59-2A assayed 347 grams per tonne silver, 17.9 grams per tonne gold, 2.62 per cent lead, 0.56 per cent copper, and 1.0 per cent zinc (Fieldwork 1989).

Bibliography

EMPR AR 1913-73; 1918-93

EMPR ASS RPT 1628 **EMPR BULL 105**

EMPR FIELDWORK *1985, Fig. 26-1; 1989, pp. 175-179, 181-196, 197-203; 1990, pp. 139-144, 153-

159

EMPR OF *1990-4

EMPR PF (In 104M General File - Claim map of 104M, 1970; Claim map of 104M 08 and 09, 1970)

EMPR RGS 37, 1993
GSC MAP 19-1957; 94A; 711; 1418A; 1426
GSC MEM 37
GSC OF 427; 2225 p. 42; 2694
GSC P 77-01A; 69-01A pp. 23-27; 78-01A pp. 69-70; 90-01E pp. 113-119; 91-01A pp. 147-153; 92-01A
GSC SUM RPT 1906 pp. 26-32; 1911 pp. 27-58

* p * selvoidin, stokt ji min, sep mi

•Ferrill ari

Government of British Columbia

Ministry News Ministry Search Reports & Publications Site Map Contacts

MINFILE Home page ARIS Home page MINFILE Search Property Search

MINFILE Record Summary MINFILE No 104M 078

Print Preview

PDF -- SELECT REPORT -- ▼ IV New Window

File Created: Last Edit:

15-Jul-93 15-Jul-93 by Dorthe E. Jakobsen by Dorthe E. Jakobsen

XML Extract/Inventory Report

SUMMARY

Summary Help

Name

GLEAN, GM 1, GB 2, GOLDEN BEE,

GLEANER MOUNTAIN

Mining Division

Atlin

Status Latitude

Showing 59º 28' 41" N 134º 11' 06" W

Arsenic, Antimony

NTS Map UTM Northing

BCGS Map

104M08E 08 (NAD 83) 6593569

104M050

546172

Longitude

Commodities

Silver, Gold, Copper, Lead, Zinc,

Easting **Deposit Types**

IO5: Polymetallic veins Ag-Pb-Zn+/-

Αu

H05: Epithermal Au-Ag: low

sulphidation

Tectonic Belt

Intermontane

Terrane

Stikine

Capsule Geology The Glean showing is located 30 kilometres west of Atlin, on the east side of Taku Arm near Gleaner Mountain, 6 kilometres south of Bee Peak. There are several other occurrences on the Golden Bee property (104M 076-080).

The claims were staked by Golden Bee Minerals in 1989. Golden Bee Minerals conducted a program of sampling, mapping, prospecting and geochemical surveys in 1989 and 1990.

The area, bounded by faults, is underlain by sediments of the Lower Jurassic Laberge Group. These comprise greywacke, argillite, shale and conglomerate intruded by granite near Bee Peak. The Llewellyn fault is 2 kilometres to the west and separates these rocks from the Coast Plutonic Complex. To the east, the Nahlin fault separates the rocks from the Cache Creek Group. The area of the showing contains splays from these major faults. The bedding generally trends north to northwest.

At the Glean showing, mineralization is hosted in rhyolite, basalt, andesite and tuff of the Paleocene Tagish Volcanic Suite.

Mineralization occurs in several silicified shears, 1 to 8 metres wide, displaying parallel, stacked and en echelon zoning. Mineralization, as sparse disseminations and concentrations of up to 40 per cent, consists of pyrite, arsenopyrite, chalcopyrite, galena and pyrrhotite. Sulphides, 1 per cent or less, also occur within large altered units of andesite and rhyolite. A copper zone has been identified by malachite staining on the east face of the rhyolite talus. Alteration consisting of silicification +/-chlorite and sericite is associated with mineralized zones.

Samples were taken from the altered contact zone between andesite and banded brecciated rhyolite flows of uncertain age. The zone, 1 metre wide and exposed for 75 metres in length, trends northsouth and dips 50 degrees east.

The highest sample (89-5R03) assayed 3.2 grams per tonne gold, 58.9 grams per tonne silver, 0.095 per cent copper, 0.986 per cent lead, 0.203 per cent zinc, 8 per cent arsenic and 0.06 per cent antimony (Assessment Report 19631). Samples in 1990 confirmed these values and further delineated the zone (Assessment Report 21327).

Bibliography

EMPR ASS RPT *19631, *21327

EMPR BULL 105

EMPR EXPL 1979-294
EMPR FIELDWORK 1990, pp. 139-144, 153-159
EMPR OF *1990-4
EMPR PF (In 104M General File - Claim map of 104M, 1970; Claim map of 104M 08 and 09, 1970)
EMPR RGS 37, 1993
GSC MAP 19-1957; 94A; 711; 1418A; 1426
GSC MEM 37
GSC OF 427; 2225 p. 42; 2694
GSC P 69-01A pp. 23-27, 78-01A pp. 69-70, 91-01A pp. 147-153, 92-01A
GSC SUM RPT 1906 pp. 26-32; 1911 pp. 27-58

APPENDIX VI

Assay Certificates

ANALYTICAL CHEMISTRY **ENVIRONMENTAL TESTING**

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Pax (250) 573-4557

B-mail: info@ecotechlab.com

www.ecotechiab.com

CERTIFICATE OF ASSAY AK 2006-1619

Blind Creek Resources

7-Nov-06

Box 247 Wells, BC **V0K 2R0**

No. of samples received: 44

Sample type: Rock Project: Blind Creek

Samples submitted by: D. Merrick

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
1	104307	0.06	0.002	
2	104308	0.09	0.003	
3	104309	0.12	0.003	
4	104310	0.05	0.001	
5	104311	0.07	0.002	
6	104312	0.07	0.002	
7	104313	0.06	0.002	
8	104314	0.07	0.002	
9	104315	0.06	0.002	
10	104316	0.04	0.001	
11	104317	0.05	0.001	
12	104318	0.06	0.002	
13	104319	0.06	0.002	
14	104320	0.06	0.002	
15	104321	0.05	0.001	
16	104322	0.06	0.002	
17	104323	0.06	0.002	
18	104324	0.08	0.002	
19	104325	0.04	0.001	
20	104326	0.03	0.001	
21	104327	0.03	0.001	
22	104401	0.04	0.001	
23	104402	0.03	0.001	
24	104403	0.03	0.001	_
25	104404	0.04	0.001	 ~ /

Blind Creek Resources AK6-1619

7-Nov-06

		Au	Au	
ET #	. Tag#	(g/t)	(oz/t)	
26	104405	0.04	0.001	
27	104406	0.07	0.002	
28	104407	0.05	0.001	
29	104409	0.04	0.001	
30	104411	0.04	0.001	
31	104413	0.96	0.028	
32	104414	0.05	0.001	
33	104415	0.04	0.001	
34	104416	0.03	0.001	
35	104417	0.03	0.001	
36	104418	0.03	0.001	
37	104419	0.06	0.002	
38	104420	0.03	0.001	
39	104421	0.04	0.001	
40	104422	0.04	0.001	•
41	104423	0.04	0.001	
42	104424	0.03	0.001	
43	104425	0.04	0.001	
44	104426	0.04	<0.001	
00.54	- 4			
QC DA	I A: =			
				
Repeat		• • •		
1	104307	0.06	0.002	
10	104316	0.07	0.002	
19	104325	0.04	0.001	
31 36	104413	0.87	0.025	
36	104418	0.03	0.001	
Resplit	;			
1	104307	0.03	< 0.001	
36	104418	0.04	0.001	
Standar	rd:			
OXJ47		2.37	0.069	
OXJ47		2.38	0.069	

JJ/sa XLS/06 ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

Eco Tech LABORATORY LTD.
Page 2

6-Nov-06

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 ICP CERTIFICATE OF ANALYSIS AK 2006-1619

Blind Creek Resources Box 247 Wells, BC VOK 2R0

Phone: 250-573-5700 Fax : 250-573-4557

No. of samples received: 44
Sample Type: Rock
Project: Bilind Creek
Submitted by: D. Merrick

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ва_	Bi	Ca %	Cd	Со	Cr	Си	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	٧	w	Υ	Zn
1	104307	0.2 1.60	5	300	10	1.12	<1	10	47	10	2.78	<10	0.75	396	<1	0.19	4	850	32	5	<20	53	0.18	<10	96	<10	<1	43
2	104308	0.3 3.16	10	50	<5	0.93	<1	41	117				3.42	752	<1	0.02	60	640	52	25	<20	3	0.35	<10	137	<10	<1	55
3	10430 9	<0.2 0.19	40	<5	<5	1.03	<1	15	389	9	0.92	<10	3.57	159	<1	<0.01	322	10	6	25	<20	32	<0.01	<10	10	<10	<1	2
4	104310	<0.2 0.18	45	<5	<5	0.07	<1	43	481	21	3.10		>10	670		<0.01	490	<10	<2		<20	<1	<0.01	<10	13	<10	<1	4
5	104311	<0.2 0.15	40	<5	<5	0.21	<1	28	508	3	1.54	<10	6.90	181	<1	<0.01	500	<10	4	25	<20	9	<0.01	<10	11	<10	<1	4
6	104312	<0.2 1.14	<5	20	<5	0.68	<1	22	76	58	2.11	<10	0.81	346	<1	0.02	29	320	24	15	<20	9	0.23	<10	47	<10	2	28
7	104313	0.3 1.76	10	100	5	0.75	<1	16	54	58	3.29	<10	1.60	511	<1	0.05	24	960	50	15	<20	42	0.14	<10	62	<10	14	75
8	104314	<0.2 1.29	10	175	<5	0.87	<1	15	51	35	2.53	10	1.08	474	<1	0.05	15	980	34	<5	<20	29	0.12	<10	60	<10	10	72
. 9	104315	0.2 1.87	10	65	<5	1.24	<1	18	116	31	3.09	<10	1.52	395	<1	0.22	19	590	36	10	<20	56	0.18	<10	130	<10	3	45
10	104316	<0.2 1.68	10	110	10	3.69	<1	11	26	13	3.27	<10	1.21	794	8	0.03	2	760	32	10	<20	190	<0.01	<10	77	<10	15	51
11	104317	<0.2 1.50	15	65	<5	3.66	<1	11	37	7	3.22	<10	0.98	783	5	0.03	5	760	32	15	<20	181	<0.01	<10	66	<10	13	47
12	104318	0.4 5.71	40	60	<5	4.04	<1	14	100	44	2.16	<10	0.57	177	<1	0.66	26	660	106	15	<20	331	0.09	<10	84	<10	10	104
13	104319	0.2 2.64	10	35	10	3.18	<1	29	187	8	3.81	<10	3.33	1239	<1	0.02	52	1080	46	20	<20	156	0.09	<10	127	<10	5	65
14	104320	0.2 2.30	15	35	10	1.57	<1	38	86	17	4.55	<10	2.42	590	<1	0.03	47	1080	44	15	<20	47	0.10	<10	126	<10	5	62
15	104321	<0.2 1.81	5	65	10	1.55	<1	8	32	18	3.58	10	0.78	447	<1	0.16	2	1610	38	<5	<20	75	0.10	<10	56	<10	15	62
16	104322	<0.2 0.88	<5	150	10	0.43	<1	6	50	12	2.72	10	0.46	287	2	0.09	2	800	26	5	<20	18	0.09	<10	42	<10	12	37
17	104323	<0.2 0.23	5	65	<5	0.07	<1	2	67	36	1.76	40	0.03	50	6	0.07	1	100	10	<5	<20	7	<0.01	<10	<1	<10	25	4
18	104324	<0.2 0.24	30	85	<5	0.03	<1	<1	58	7	0.92	<10	<0.01	16	7	0.07	2	70	12	<5	<20	8	<0.01	<10	1	<10	7	19
19	104325	<0.2 0.22	<5	35	<5	0.02	<1	1	51	6	1.24	20	0.03	49	5	0.05	- 1	120	12	<5	<20	4	<0.01	<10	1	<10	11	26
20	104326	0.2 1.58	10	60	5	1.16	<1	6	37	28	4.18	10	0.83	168	2	0.15	2	2510	36	5	<20	54	0.10	<10	152	<10	27	32
21	104327	0.2 2.26	35	145	10	1.41	<1	7	47	21	3.90	10	1.18	190	2	0.27	4	2220	50	10	<20	99	0.10	<10	143	<10	29	33
22	104401	<0.2 0.61	5	95	<5	0.02	<1	2	87	47	1.13	<10	0.23	53	<1	<0.01	7	110	18	<5	<20	5	0.01	<10	11	<10	<1	25
23	104402	<0.2 2.07	10	20	<5	0.94	1	36	49	97	4.54	<10	1.40	614	<1	0.03	9	650	38	15	<20	54	0.35	<10	98	<10	8	45
24	104403	< 0.2 1.85	5	35	<5	0.85	<1	33	48	253	4.68	<10	1.13	753	<1	0.04	29	700	36	5	<20	8	0.34	<10	146	<10	5	60
25	104404	0.2 3.89	10	55	<5		<1	43	176	367	7.80	<10	3.79	771	<1	<0.01	40	50	66	15	<20	6	0.27	<10	279	<10	<1	80

n

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Şr	Ti %	U	v	w	Υ	Zn
26	104405	0.2	0.25	5	75	15	>10	<1	45	360	12	3.71	<10	7.53	902	1	0.01	546	220	<2	40	<20	181	<0.01	<10	49	<10	<1	33
27	104406	0.2	0.47	55	80	10	2.66	<1	64	466	37	4.83	<10	>10	895	<1	<0.01	941	50	12	30	<20	113	< 0.01	<10	56	<10	<1	43
28	104407	<0.2	0.04	10	30	<5	0.37	<1	4	142	12	0.96	<10	0.17	601	<1	<0.01	49	40	4	<5	<20	14	<0.01	<10	9	<10	3	9
29	104409	<0.2	1.67	10	65	5	1.02	<1	21	116	40	3.49	<10	1.71	474	<1	0.04	25	680	34	15	<20	33	0.16	<10	143	<10	4	52
30	104411	0.2	1.52	15	50	10	2.40	<1	10	39	3	3.18	<10	0.94	604	4	0.03	3	760	32	10	<20	147	<0.01	<10	53	<10	13	54
31	104413	0.4	0.14	640	20	<5	0.04	<1	2	143	4	0.88	<10	0.05	32	2	<0.01	3	120	10	15	<20	13	<0.01	<10	6	<10	2	5
32	104414	0.2	1.45	10	105	5	3.58	<1	11	38	4	3.17	<10	0.98	886	2	0.03	3	790	30	5	<20	216	<0.01	<10	51	<10	16	50
33	104415	0.2	3.12	20	80	10	1.65	<1	17	97	54	3.25	<10	0.95	292	4	0.38	26	1110	60	15	<20	198	0.12	<10	143	<10	15	67
34	104416	<0.2	3.23	10	90	5	1.46	<1	10	53	31	3.92	<10	1.27	322	<1	0.38	8	1030	60	5	<20	133	0.10	<10	106	<10	10	55
35	104417	<0.2	2.59	15	195	10	1.56	<1	13	53	20	2.67	<10	0.99	276	<1	0.28	10	1000	54	10	<20	121	0.12	<10	92	<10	15	62
36	104418	0.3	0.06	170	10	_	0.02	<1	2	153	32			<0.01	61		<0.01	5	20	8		<20	3	<0.01	<10	29	<10	<1	18
37	104419		0.79	65	115	10		<1	4	36	9	3.14	10	0.21	499	7	0.05	2		32	_	<20	6	<0.01	<10	17		16	75
38	104420		0.86	10	50	10		<1	3	24	5	2.42	<10	0.14	271	<1		1	170	36	<5	<20	<1		<10	3	<10	4	44
39	104421		0.27	30	95	<5		<1	1	81	5		20	0.02	43	2			180	18		<20	8	<0.01		1		10	57
40	104422	0.6	1.71	5	45	10	1.86	<1	19	21	50	5.86	20	0.63	927	<1	0.04	3	3590	66	<5	<20	24	0.13	<10	45	<10	38	70
41	104423		0.46			<5	-	<1	1	60		2.19		<0.01		19		1	60	204	<5	<20		<0.01		•		3	69
42	104424		0.61	<5	110	<5		<1	2	33	23			0.08		4	-	<1		88	<5	<20	14	<0.01	-	2	<10	42	115
43	104425	0.7	1.83	90	60	25	0.16	2	11	14	24	>10	<10	0.23	963	11	0.03	6	620	48	<5	<20	11	0.11	<10	14	<10	<1	61
44	104426	2.7	0.37	<5	35	<5	0.08	2	5	46	65	3.11	<10	0.10	122	5	0.08	1	520	338	<5	<20	9	0.01	<10	6	<10	14	69
OC DA																													
1	104307	0.2	1.71	10	315	10	1.18	<1	11	49	11	2.87	<10	0.80	417	<1	0.20	4	880	32	<5	<20	61	0.19	<10	100	<10	1	44
10	104316		1.66			10		<1	10	27		3.24		1.18		5			770	32	5		-	<0.01		76		15	50
19	104325		0.24			<5		<1	1	56		1.29				5			120	14	<5			<0.01			<10	14	27
Respi	h:																												
` i	104307	< 0.2	1.62	10	315	5	1.13	<1	11	50	- 11	2.81	<10	0.77	406	<1	0.19	4	870	32	<5	<20	58	0.19	<10	97	<10	<1	43
36	104418	0.3	0.06	160	10	10	0.02	<1	3	160	31	2.37	<10	<0.01	64	6	<0.01	5	20	8	<5	<20	4	<0.01	<10	29	<10	<1	16
Stand	ard:																												
Рь108		>30	0.57	275	60	<5	1.76	34	4	40	6222	1.69	<10	0.25	561	27	0.02	: 4	276	5252	60	<20	144	<0.01	<10	13	10	<1	8359
Pb108		>30	0.56	260	65	<5	1.76	35	4	40	6298	1.69	<10	0.24	561	26	0.02	? 3	280	5300	60	<20	141	<0.01	<10	13	10	<1	8357

JJ/bp dV1619 XLS/06 ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

13-Dec-06

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2006-1912

Blind Creek Resources Box 247 Wells, BC V0K 2R0

Phone: 250-573-5700 Fax : 250-573-4557

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

No. of samples received: 39 Sample Type: Soil Project: Blind Creek Submitted by: D. Merrick

Values in ppm unless otherwise reported

Et #.	Tag#	Au(ppb)	Ag Al %	As	Ва	Bi (Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	TI %	U	v	w	Υ	Zn
- 1	104408	10	<0.2 1.86	15	20	<5	0.16	<1	21	267	40	3.36	<10	2.84	241	3	<0.01	84	330	22	5	<20	1	<0.01	<10	100	<10	<1	49
2	104410	5	<0.2 1.57	20	70	<5	0.16	<1	10	37	20	3.87	<10	0.35	201	5	0.01	11	220	24	<5	<20	14	0.02	<10	108	<10	<1	56
3	104412	290	<0.2 0.45	270	85	10	0.34	<1	15	3	12	6.06	<10	0.11	648	7	0.01	5	570	14	10	<20	42	<0.01	<10	34	<10	20	59
4	104651	15	<0.2 1.69	10	525	<5	3.78	7	21	27	79	3.33	30	0.40	2725	3	<0.01	62	1990	34	<5	<20	20	0.03	<10	44	<10	77	191
5	104652	15	0.2 1.35	15	200	<5	>10	2	9	27	47	2.10	20	0.34	568	<1	0.01	40	1780	18	<5	<20	60	0.03	<10	44	<10	52	96
6	SRU014	5	<0.2 1.46	70		10	0.33	1	16	43	38	6.93	<10	0.44		6	0.02		2140	24	<5	<20	29	0.03	<10	78	<10	<1	144
7	SGL015	5	<0.2 1.82	10		15	0.51	<1	16	19	78	9.68	10	0.96		5	0.06	9	2390	22	<5	<20	32	0.13	<10	156	<10	20	108
8	BL1+50W 00+00N	<5	<0.2 0.67	<5	145	5	0.33	<1	14	55	8	2.16	<10		515	<1	0.02	42	500	10	<5	<20	11	0.06	<10	46	<10	4	41
9	BL1+50W 00+25N	5	0.2 0.86	10	145	<5	0.34	<1	23	105	14	3.01	<10	0.92		<1	0.02		530	12	<5	<20	12	0.05	<10	57	<10	2	46
10	BL1+50W 00+50N	5	0.2 0.75	<5	420	5	0.39	<1	28	49	16	2.72	<10	0.36	1300	<1	0.02	63	710	16	<5	<20	19	0.05	<10	58	<10	3	62
11	BL1+50W 00+75N	5	<0.2 0.76	15	205	10	0.35	<1	14	65	13	2.89	<10	0.42	238	2	0.01	56	390	12	<5	<20	14	0.03	<10	65	<10	3	29
12	BL1+50W 01+00N	5	<0.2 1.17	10	325	<5	0.40	<1	18	76	20	2.55	<10	0.75	637	<1	0.02	71	350	18	<5	<20	17	0.06	<10	55	<10	4	39
13	BL1+50W 00+25S	<5	0.2 0.67	15	195	5	0.37	<1	16	73	11	2.41	<10	0.48	626	<1	0.02	60	390	12	<5	<20	17	0.07	<10	53	<10	4	52
14	BL1+50W 00+50S	<5	<0.2 0.76	5	105	<5	0.30	<1	9	63	8	1.89	<10	0.52	160	<1	0.01	51	360	10	<5	<20	11	0.05	<10	47	<10	3	23
15	BL1+50W 00+75S	5	<0.2 0.72	<5	120	<5	0.29	<1	10	60	8	1.78	<10	0.50	157	<1	0.01	56	340	10	<5	<20	11	0.04	<10	40	<10	3	19
16	BL1+50W 01+00S	5	<0.2 0.64	5	110	5	0.27	<1	16	76	9	2.08	<10	0.58	488	<1	0.01	63	460	12	<5	<20	10	0.06	<10	45	<10	4	28
17	BL1+50W 01+25S	<5	0.2 0.56	<5	150	5	0.30	<1	15	48	12	2.53	<10	0.27	324	<1	0.02	41	270	18	<5	<20	15	0.06	<10	58	<10	4	55
18	BL1+00W 00+00N	5	<0.2 1.02	15	255	5	3.33	<1	54	66	71	6.82	<10	0.99	1980	7	0.04	126	540	10	<5	<20	84	0.02	<10	101	<10	32	85
19	BL1+00W 00+25N	5	<0.2 1.16	15	170	<5	0.45	<1	180	47	328	>10	<10	0.63	2620	18	0.04	313	260	8	<5	<20	16	0.04	<10	190	<10	7	107
20	BL1+00W 00+50N	15	<0.2 0.88	20	185	5	0.36	<1	18	80	20	2.99	<10	0.72	365	1	0.02	81	530	14	<5	<20	13	0.05	<10	65	<10	3	40
21	BL1+00W 00+75N	5	0.2 0.75	-	160	5	0.34	<1	12	60	11		<10	0.49	-	<1	0.01	54	290	16	<5	-	13			55	-	3	32
22	BL1+00W 01+00N	5	0.2 0.67	_	150	<5	0.28	<1	14	100	10	–	<10	0.78		<1	0.02	100	340	12	<5		12			36		5	24
23	BL1+00W 01+25N	5	<0.2 1.02	-	160	10	0.24	<1	19	93	21	2.63	<10	0.84	-	<1	0.02	71	780	18	<5	<20	14		_	63		7	36
24	BL1+00W 00+25S	10	<0.2 0.93		130	<5	0.34	<1	23	95	41			1.04		<1	0.02	159	240	14	<5	<20	13			68		13	37
25	BL1+00W 00+50S	5	0.3 0.75	5	170	5	0.46	<1	20	81	12	2.40	<10	0.63	976	<1	0.02	80	740	16	<5	<20	18	0.05	<10	43	<10	3	41
26	BL1+00W 00+75S	5	<0.2 0.84	10	140	5	0.42	<1	20	104	13	2.74	<10	0.89	413	<1	0.02	103	560	18	<5	<20	17	0.06	<10	58	<10	3	32
27	BL1+00W 01+00S	5	0.2 0.78	10	130	5	0.46	<1	16	75	13	2.34	<10	0.76	463	<1	0.02	82	470	16	<5	<20	18	0.05	<10	53	<10	4	37
28	BL1+00W 01+25S	5	<0.2 0.43	5	100	<5	0.30	<1	11	50	8	1.82	<10	0.30	500	<1	0.01	36	470	14	<5	<20	12	0.04	<10	44	<10	3	33
29	BL0+50W 00+00N	10	<0.2 1.37	25	85	<5	2.19	<1	78	91	181	6.99	<10	1.26	925	5	0.03	97	300	16	<5	<20	25	0.03	<10	136	<10	16	46
30	BL0+50W 00+25N	5	<0.2 1.10	65	135	<5	1.95	<1	51	89	130	6.40	<10	1.30	949	5	0.03	82	420	10	<5	<20	43	0.05	<10	121	<10	15	59

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2006-1912

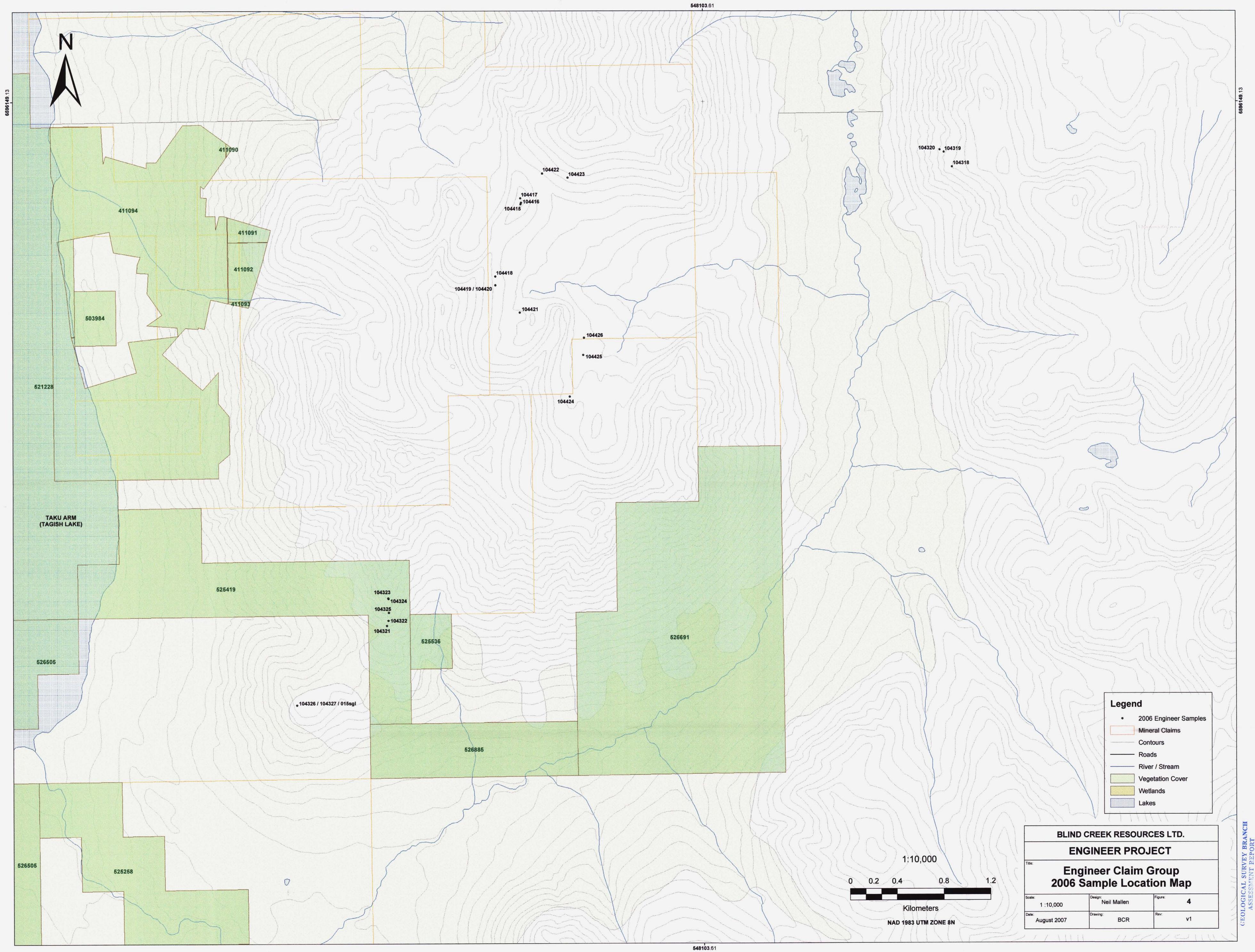
Blind Creek Resources

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ba	Ві	Ca %	Cđ	Со	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	П%	U	٧	w	Υ	Zn
31	BL0+50W 00+50N	10	0.2 1.03	35	140	<5	1.10	<1	32	81	80	4.06	<10	1.26	564	1	0.03	133	520	10	<5	<20	25	0.06	<10	86	<10	14	43
32	BL0+50W 00+75N	5	<0.2 1.04	25	135	<5	0.35	<1	21	102	25	3.18	<10	0.97	369	<1	0.02	101	500	14	<5	<20	14	0.06	<10	66	<10	5	44
33	BL0+50W 01+00N	50	<0.2 0.94	10	90	10	0.29	<1	17	121	25	2.55	<10	1.20	273	<1	0.02	130	240	14	<5	<20	12	0.06	<10	51	<10	9	32
34	BL0+50W 01+25N	10	<0.2 0.88	10	110	5	0.29	<1	16	103	14	2.29	<10	1.00	321	<1	0.02	98	470	12	<5	<20	11	0.04	<10	47	<10	6	29
35	BL0+50W 00+25S	<5	<0.2 0.86	10	340	10	3.72	<1	54	72	67	6.49	<10	1.58	1352	7	0.02	117	420	8	<5	<20	136	<0.01	<10	130	<10	32	82
36	BL0+50W 00+50S N	vs.																											
37	BL0+50W 00+75S	5	0.2 0.98	10	110	<5	0.33	<1	25	161	17	3.29	<10	1.31	331	<1	0.02	165	270	14	<5	<20	14	0.06	<10	67	<10	3	31
38	BL0+50W 01+00S	5	0.3 1.13	5	280	10	0.40	<1	24	75	18	3.50	<10	0.85	512	<1	0.02	66	270	14	<5	<20	16	0.11	<10	98	<10	5	50
39	BL0+50W 01+25S	10	0.2 1.16	10	220	10	0.67	<1	40	27	32	6.99	<10	0.47	723	4	0.02	27	1090	12	<5	<20	27	0.07	<10	179	<10	2	73
OC DA																													
1	104408	5	<0.2 2.17	10	25	<5	0.17	<1	24	294	42	3.61	<10	3.08	267	2	0.01	89	330	18	5	<20	2	< 0.01	<10	104	<10	<1	49
3	104412	325																											
10	BL1+50W 00+50N	5	0.2 0.73	<5	435	5	0.42	<1	29	45	16	2.72	<10	0.35	1368	<1	0.02	64	740	16	<5	<20	20	0.05	<10	56	<10	4	64
19	BL1+00W 00+25N	5	<0.2 1.08	15	165	<5	0.43	<1	173	47	301	>10	<10	0.57	2620	17	0.04	292	250	10	<5	<20	16	0.04	<10	179	<10	6	108
20	BL1+00W 00+50N	5																											
28	BL1+00W 01+25S	5	<0.2 0.48	<5	115	<5	0.34	<1	11	47	9	1.86	<10	0.33	535	<1	0.02	37	470	16	<5	<20	12	0.05	<10	47	<10	3	32
33	BL0+50W 01+00N	30																											
37	BL0+50W 00+75S	5																											
Standa	rd:																												
Till-3			1.5 1.11	85	40	<5	0.55	<1	12	59	20	1.89	10	0.58	311	<1	0.03	29	450	28	<5	<20	10	0.07	<10	39	<10	9	35
Till-3			1.4 1.09	80	40	<5	0.55	<1	12	59	20	1.89	10	0.58	311	<1	0.03	29	450	29	<5	<20	10	0.07	<10	39	<10	10	36
OXE42		620																											
OXE42		615																											
OXE42		615																											

JJ/bp dl/1912 XLS/06 ECO TECH ABORATORY LTD.
Jutta Jeakfuse
B.C. Certified Assayer

APPENDIX VII

List of Software Applications


I, Angelique Justason, of 3972 Goldquartz Drive, Wells, British Columbia certify that the following is, to the best of my knowledge, a complete list of the software programs used in the support of the exploration and development of the Blind Creek Resources Ltd. tenures as well as in the preparation of the related report.

- Garmin MapSource
- OziExplorer version 3.95.4q
- MapInfo Professional 5.5
- Tatuk GIS
- ArcView 9.2
- Google Earth
- ARIS Map Builder
- Adobe Acrobat 6.0
- Internet Explorer
- MS Word
- MS Excel
- MS Outlook
- Windows Picture and Fax Viewer

Signed,

Angelique Justason

August 2007

ASSESSMENT REPORT

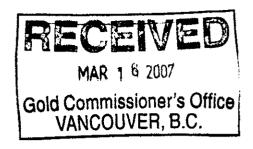
TABLE OF CONTENTS

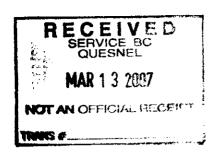
New title page	-	-	-	-	-1
Original title pag	e	-	-	-	-2
Introduction -	-	_	-	-	-3
Detailed cost stat	emei	nt	-		-4
Development/dat	e cha	ange	form	1-	-5
Discourse on find	dings	by p	rosp	ecto	r-6
Assays	-	_	-	-	-7,8
B.C. map. Proper	ty lo	catio	n	-	-9
Claim maps -	-	-	-	10,1	1
Sample location	maps	;	-	12-1	16
Report of explora	ation	-	-	17,1	8
Qualifications of	repo	rt wi	iter-	19,2	20

Prospecting report Atlin B.C. Engineer Mine area, Tagish Lake.

A ground search through alpine and timbered area, for exposed rock. Sampling where appropriate. Tenure 411090,411091,411092,411093,411094,503984,5212 28,525258,525419,525445,525536,526505,506506,5 26691,526885 Atlin Mining division

Map sheet 104M


59.4593N 134.2417W


Property owned by Blind Creek Resources. Work paid for by Blind Creek.

Report prepared by Doug Merrick, crew coordinator.

Reference assessment report 28931

Original report submitted Oct 12/06, March 13/07, re submitted July 07

Prospecting Report Atlin B.C.

Blind Creek Resources Ltd.

Report Preparation D.Merrick

Certified prospectors - Brad Davies

- Jeff Merrick

Aug 23 to Oct 15, 2006

ENGINEER

3

Introduction

The claim area is in north western B.C., 27 km west of Atlin B.C. Tenure numbers 411090,411091,411092,411093,411094,503984,521228,525258,525419,525445,525536, 526505,526506,526691,526885

The Engineer mine is on the east shore of Tagish lake. Blind creeks property lies around the Engineer site, southward along the shoreline of Tagish lake and eastward to include some of the high ground. The claim area extends from waters edge, to the mountain top. The only practical access is by air. Costs being similar, helicopter was chosen over fixed wing. The advantage being landing on top rather than on the beach.

Property was acquired by Clive Aspinall, local geologist, for Blind Creek. Though there is no history of mining on it, he felt its proximity to other current activities made it a worthwhile site.

The Engineer mine has a long history of exploration and production, and this is what drives the search for gold here.

The crew landed in several places on the mountain top and worked there way downhill, through the block. In some areas the ground is so steep it was not possible to land or even to traverse on foot. Other areas are heavily forested with not a lot of bedrock exposed. Where rock could be found it was inspected and sampled wherever was appropriate.

Field work carried out by Brad Davies and Jeff Merrick, certified prospectors.

Results and GPS locations attached.

The results of this work will now be assessed by a geologist for recommendations on proposed work for 2007.

Detailed Cost Statement

Four men 3 ten hour shifts

3 men x3 x 10 x \$20.00--- ---\$1800.00 1 man x3 x 10 x \$30.00---- \$900.00

Vehicle Wells/Atlin/Wells Atlin/airport/Atlin---- \$540.00

Food and lodging Atlin Inn and Pinetree cafe 4 men 3 days 4@ \$100 ----\$1200.00

-----\$1350.00 Helicopter

Ship and assay 40 samples ---- \$980.00

Total cost

\$6770.00

The Tagish/Engineer Zone

Engineer Mountain brings together quite a few of the geological formations that are found within the Tagish Lake region. Located just east of the Llewellyn fault, the basement rocks are mafic flows and volcaniclastic sediments of the Stuhini Group. (This goes part of the way towards explaining the presence of mariposite within the mountain, as recorded by miners who worked the Engineer Mine.) Overlying this group are the siltstones and argillites of the Laberge Group, which have been intensely deformed and intruded by plutons and volcanic flows of the "recent" Sloko magmatic event. These rocks of the Sloko Group vary considerably in composition and grain-size, depending on their distance from the surface when cooling took place. The rocks of the Sloko Group are the only rocks that have not been deformed.

Two major shear zones have been found on the Mine property, and it is said that all of the veining within the Mine can be traced to these zones. It's also said that the mineralization within the Mine only took place in the rocks of the Laberge Group.

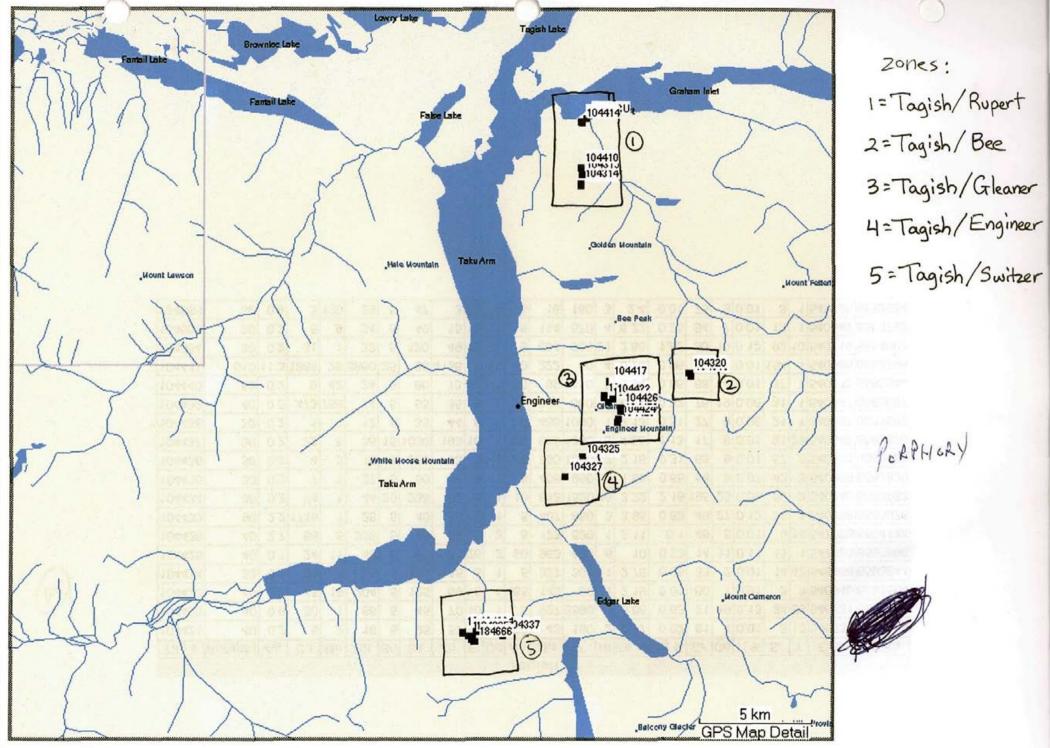
At the south end of Engineer Mountain there is a steep, west-facing slope which—if facing north—would be the remnants of a cirque, since a steep, razor-backed ridge or arête bounds the slope along the southern edge. The heights of the mountainside are stained a deep orange here, and thus an attempt was made to climb the ridge to gain access to this band of coloured scree. Though it proved feasible to climb that ridge for a short distance, it became apparent that only professional rock-climbers can be permitted to work across the actual slope. The friability of the (clastic?) rock causes it to fall apart into fist-sized chunks beneath one's feet, and though there were still handholds beckoning from the highest point reached along the ridge, a certain trembling between the knees dictated a final retreat.

Everything looked interesting, and sampling began with some fairly hefty, coarse-grained rock that was rusty and "dirty" looking (104321-322). As one climbed the ridge, the stain grew a deeper orange, the rock itself shaded greyer and more siliceous, and the presence of sulphides became apparent (104323). Finally a point was reached where "flat white" quartz with an orange stain became the predominant litter across the slope, and this quartz was found to have a good heft. A sample was taken here from an outcrop as far out onto the slope as it was possible to get (104324...pyritized, but quartz-free). Back on the ridge and climbing again, it was within a few feet of this that the whisper of mortality settled over the enterprise, and sample 104325 was taken from an orange-stained quartz outcrop on the way down the ridge.

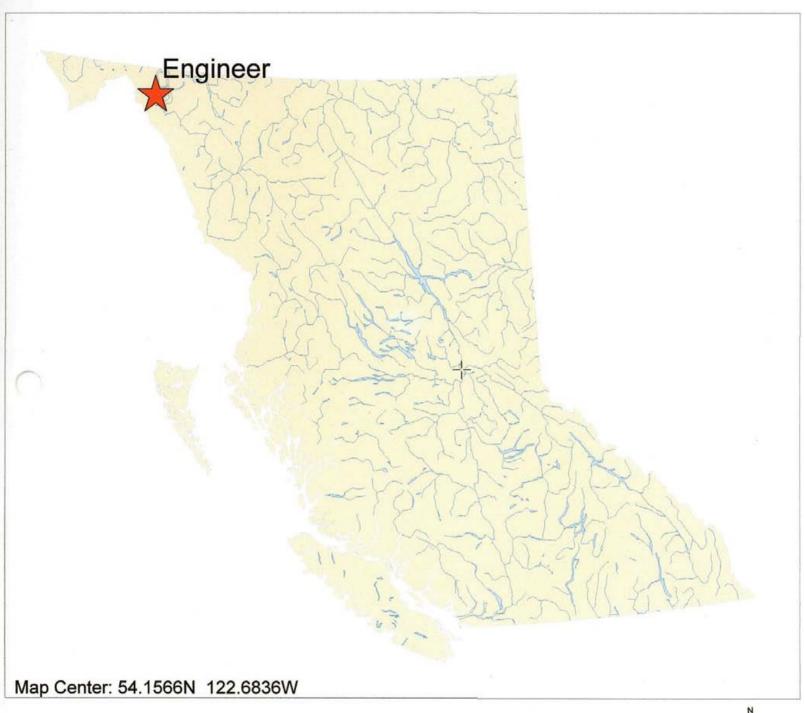
The orange band across the slope has a definite strike towards the northwest from the location of sample 104324, and *needs* prospecting. Some very long rock-bolts would be in order.

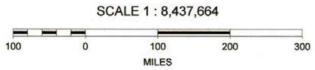
Since it was scarcely mid-afternoon, and little (if any) of the surrounding terrain offered both access and egress along the same path, the retreat was continued southwest to the furthest edge of a promontory at the foot of the ridge. Upon reaching the grassy knoll at the western end of this promontory, it was discovered that this was the location for the photograph that graces the front of Mitch Mihalynuk's Bulletin 105 (the picture of him looking west along Tagish Lake towards Ben-My-Chree). Below the western edge of this knob, "burned and rusty" tuff can be found, and samples 104326 and 104327 were taken from this.

Bras Davi


1936.3

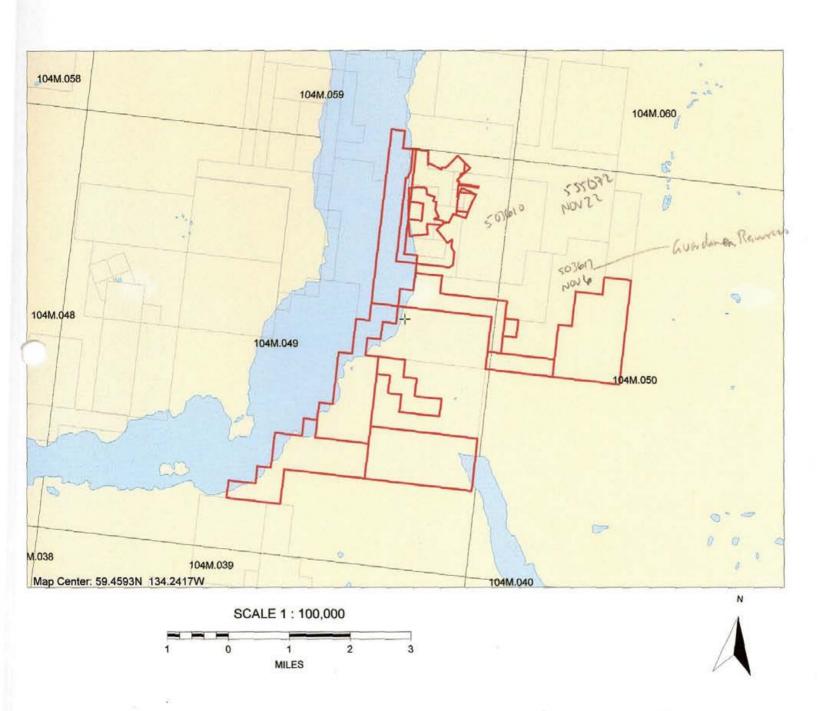
				330			7.E				Tag	gish							32	ige .	All y		
Tag #	Au(ppb)	Ag	Cu	Мо	Pb	Sb	Ва	Zn	Bi	Cd	As	Mn	P	Ni	Fe %	Mg %	Cr	Co	Ti %	Sr	Y	East	North
014sru	5	0.2	38	6	24	5	175	144	10	1	70	1851	2140	23	6.93	0.44	43	16	0.03	29	1	545393	6607075
104313	60	0.3	58	1	50	15	100	75	5	1	10	511	960	24	3.29	1.6	54	16	0.14	42	14	545167	6604059
104314	70	0.2	35	1	34	5	175	72	5	1	10	474	980	15	2.53	1.08	51	15	0.12	29	10	545168	6604148
104315	60	0.2	31	1	36	10	65	45	5	1	10	395	590	19	3.09	1.52	116	18	0.18	56	3	545179	6604578
104316	55	0.2	13	7	32	8	110	51	10	1	10	789	765	2	3.25	1.2	26	11	0.01	187	15	545165	6606885
104317	50	0.2	7	5	32	15	65	47	5	1	15	783	760	5	3.22	0.98	37	11	0.01	181	13	545148	6606919
104318	60	0.4	44	1	106	15	60	104	5	1	40	177	660	26	2.16	0.57	100	14	0.09	331	10	550232	6595594
104319	60	0.2	8	1	46	20	35	65	10	1	10	1239	1080	52	3.81	3.33	187	29	0.09	156	5	550162	6595720
104320	60	0.2	17	1	44	15	35	62	10	1	15	590	1080	47	4.55	2.42	86	38	0.1	47	5	550127	6595739
104321	50	0.2	18	1	38	5	65	62	10	1	5	447	1610	2	3.58	0.78	32	8	0.1	75	15	545401	6591698
104322	60	0.2	12	2	26	5	150	37	10	1	5	287	800	2	2.72	0.46	50	6	0.09	18	12	545414	6591741
104323	60	0.2	36	6	10	5	65	4		1	5	50	100	1	1.76	0.03	67	2	0.01	7	25	545414	6591927
104324	80	0.2	7	7	12	5	85	19	5	1	30	16	70	2	0.92	0.01	58	1	0.01	8	7	545412	6591932
104325	40	0.2	6	5	13	5	38	26	5	1	5	50	120	2	1.26	0.04	54	1	0.01	6	12	545417	6591809
104326	30	0.2	28	2	36	5	60	32	5	1	10	168	2510	2	4.18	0.83	37	6	0.1	54	27	544631	6591024
104327	30	0.2	21	2	50	10	145	33	10	1	35	190	2220	4	3.9	1.18	47	7		and the second			6591024
104336	30	0.2	3	3	14	-	1435	98	10	1	10	2500	520	6	5.03	1.88	34	-	and the latest and	- Company	-		6583831
104337	30	0.2	35	6	60	25	590	64	5	1	10	1085	1380	96	5.67		320	34	0.01	263	11	541948	6583880
104409	40	0.2	40	1	34	15	65	52	5	1	10	474	680	25	3.49	1.71	116		0.16	33			6604846
104410	5	0.2	20	5	24	5	70	56	5	1	20	201	220	11	3.87	0.35	37		0.02	14	_		6604846
104411	40	0.2	3	4	32	10	50		10	1	15	604	760	3	3.18	0.94	39	10	0.01				6606885
104412	308	0.2	12	7	14	10	85	0.00.000	10		270	648	570	5	6.06	0.11	3	_	0.01				6606885
104413	920	0.4	4	2	10	15	20	5	5	1	640	32	120	3	0.88	0.05	143		0.01	13		Part 1 (2) (2) (2)	6606885
104414	50	0.2	4	2	30	5	105	50	5	1	10	886	790	3	3.17	0.98	38	_					6606885
104415	40	0.2	54	4	60	15	80		10	1	20				3.25	0.95	97	17	0.12	198	15	546547	6595279
104416	30	0.2	31	1	60	5	90	55	5	1	10		1030	_	3.92	1.27	53	10			_		6595292
104417	30	0.2	20	1	54	10	195	62		1	15		1000	_	2.67	0.99	53	_		121			6595329
104418	30	0.3	32	7	8	5	10	17	8	1	165	62	20	5	2.38	0.01	157	_	0.01	3	-	-	6594664
104419	60	0.3	9	7	32	5	115	75		1	65	499	720	2	3.14	0.21	36		0.01	6	-		6594591
104420	30	0.2	5	1	36	5	50	44	10	1	10	271	170	1	2.42	0.14	24	3	0.05	1	4	546331	6594591

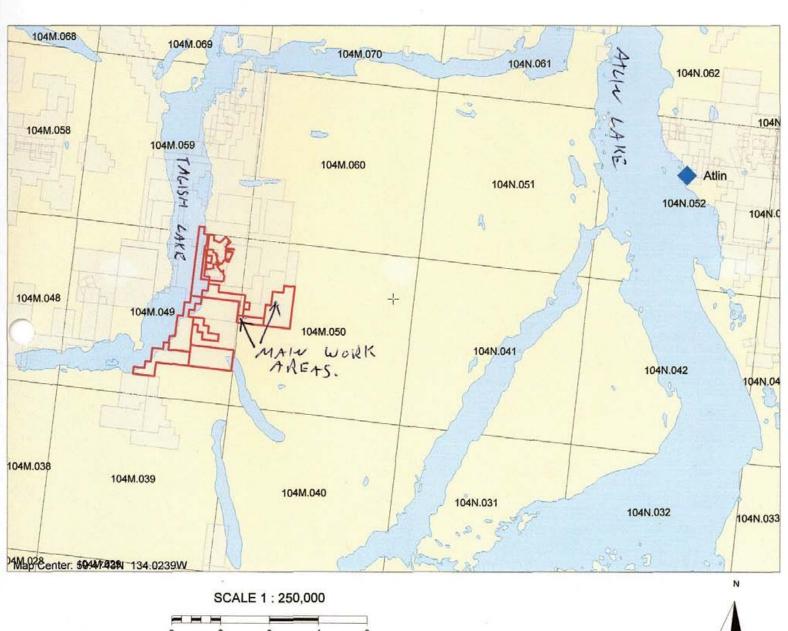

									TY'S		Tag	ish								1000	000		entere her
Tag#	Au(ppb)	Ag	Cu	Мо	Pb	Sb	Ва	Zn	Bi	Cd		Mn	P	Ni	Fe %	Mg %	Cr	Co	Ti %	Sr	Y	East	North
104421	40	0.2	5	2	18	5	95	57	5	1	30	43	180	2	0.77	0.02	81	1	0.01	8	10	546539	6594359
104422	40	0.6	50	1	66	5	45	70	10	1	5	927	3590	3	5.86	0.63	21	19	0.13	24	38	546731	6594540
104423	40	3.3	45	19	204	5	125	69	5	1	165	143	60	1	2.19	0.01	60	1	0.01	3	3	546949	6593504
104424	30	0.2	23	4	88	5	110	115	5	1	5	327	300	1	2.76	0.08	33	2	0.01	14	42	546966	6593644
104425	40	0.7	24	11	48	5	60	61	25	2	90	963	620	6	10	0.23	14	11	0.11	11	1	547080	6593998
104426	40	2.7	65	5	338	5	35	69	5	2	5	122	520	1	3.11	0.1	46	5	0.01	9	14	547088	6594144
104433	90	2.2	1718	1	26	5	40	73	5	1	5	407	880	3	3.95	0.63	48	27	0.12	78	1	540138	6583976
104434	30	0.2	74	1	44	20	235	62	5	1	10	618	1520	46	3.22	2.16	195	23	0.09	50	2	540140	6583983
104435	30	0.2	7	1	27	5	50	44	8	1	5	406	960	2	1.95	0.65	58	9	0.07	43	3	540369	6583820
104436	50	0.2	4	3	16	5	350	43	5	1	25	795	1070	2	2.16	0.31	63	6	0.01	57	5	540543	6583680
104437	30	0.2	22	5	36	15	1030	193	10	1	20	965	1340	3	4.55	1.13	17	8	0.01	91	23	540543	6583680
104438	30	0.2	1	1	12	5	35	44	5	1	20	460	1080	1	2.13	0.51	27	9	0.05	21	1	540567	6583682
104439	40	0.5	473	768	14	5	55	35	5	1	25	236	600	3	4.54	0.32	76	19	0.06	31	1	540597	6583687
104440	50	0.2	9	42	24	5	80	13	20	1	20	99	410	5	3.94	0.05	88	14	0.01	37	7	540632	6583544
104441	610	11.3	1868	29	6860	25	85	4136	5	12	30	222	50	4	0.74	0.06	2	1	0.01	154	1	540566	6583796
184664	30	0.2	31	1	22	5	120	49	10	1	5	594	900	21	2.86	1.52	50	19	0.12	92	10	540719	6584002
184665	30	0.2	5	9	24	5	40	15	10	1	5	114	570	4	6.22	0.23	54	7	0.01	13	1	540549	6583792
184666	30	0.9	3	120	29	5	47	3	60	1	5	18	180	3	2.4	0.01	75	3	0.01	3	1	540685	6583534

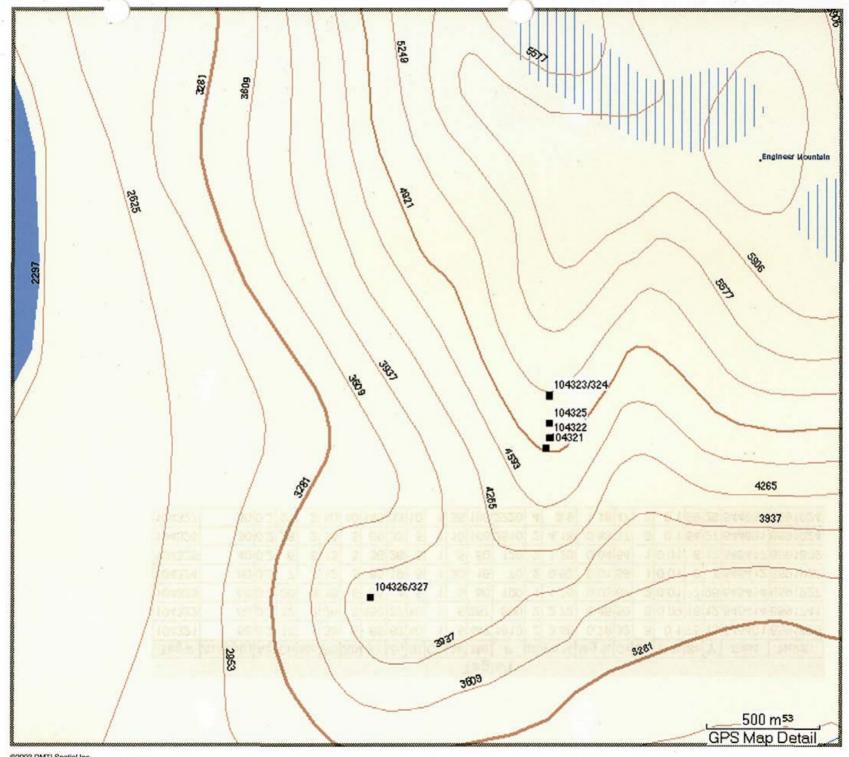


©2003 DMTI Spatial Inc.
© Garmin Ltd. or its subsidiaries 1995-2004
CenMap®, DM (1) Spatial and the DMTI Spatial logo are trademarks of DMTI Spatial Inc., Markham, Ontario

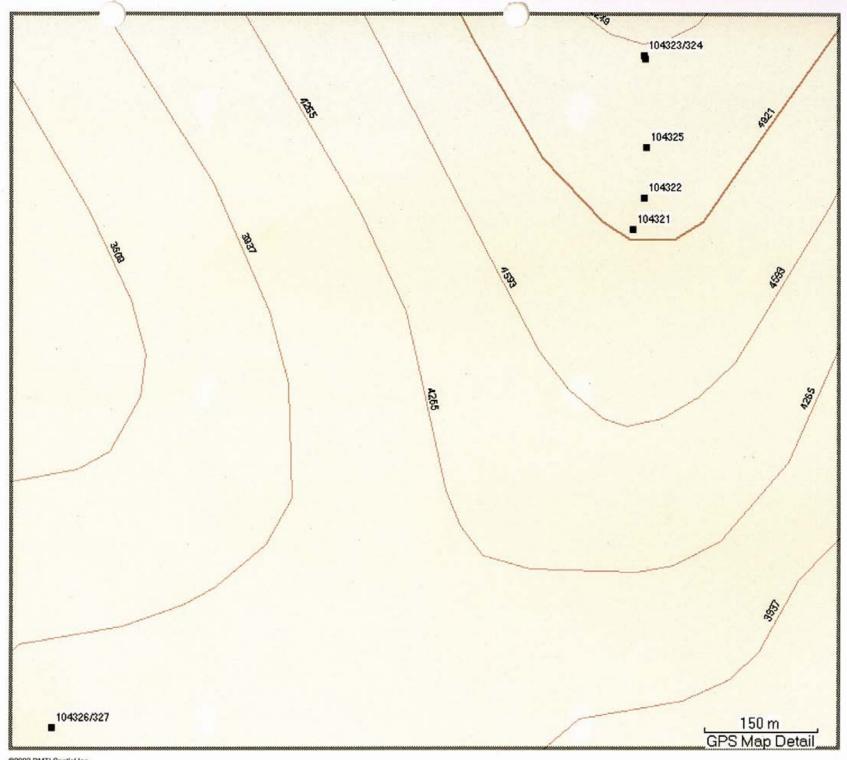
Engineer

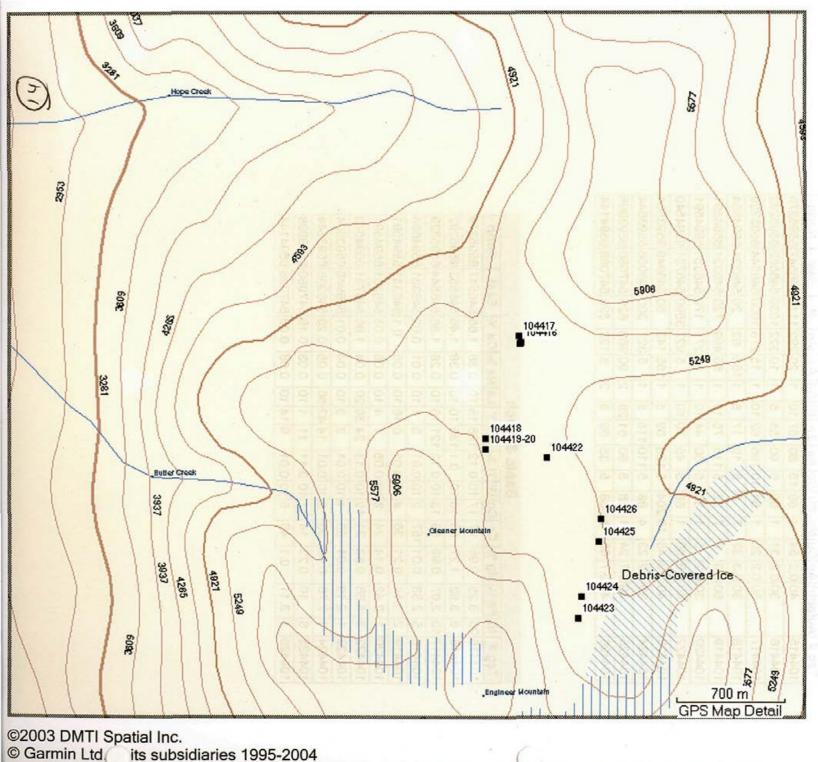


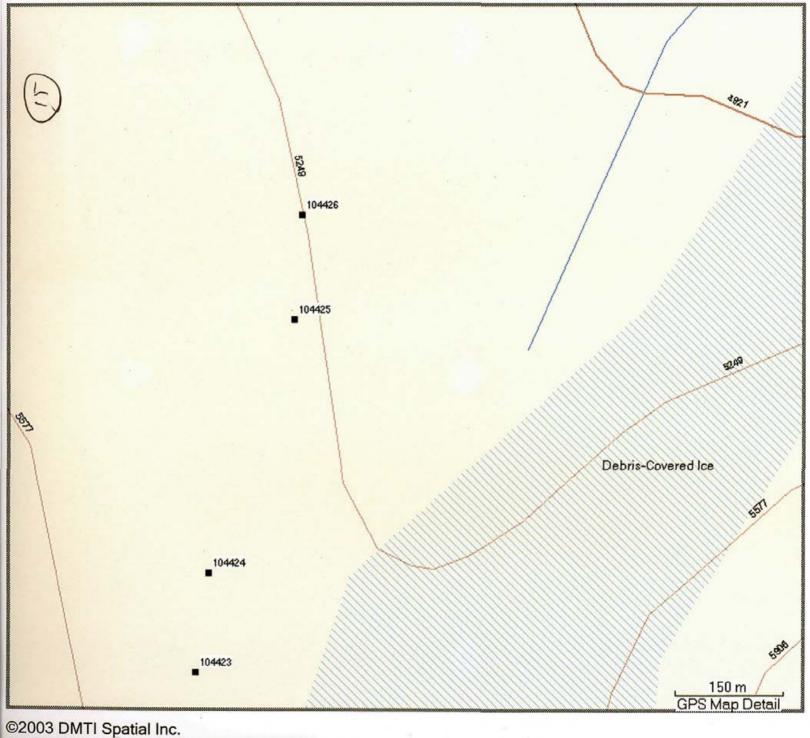

Engineer



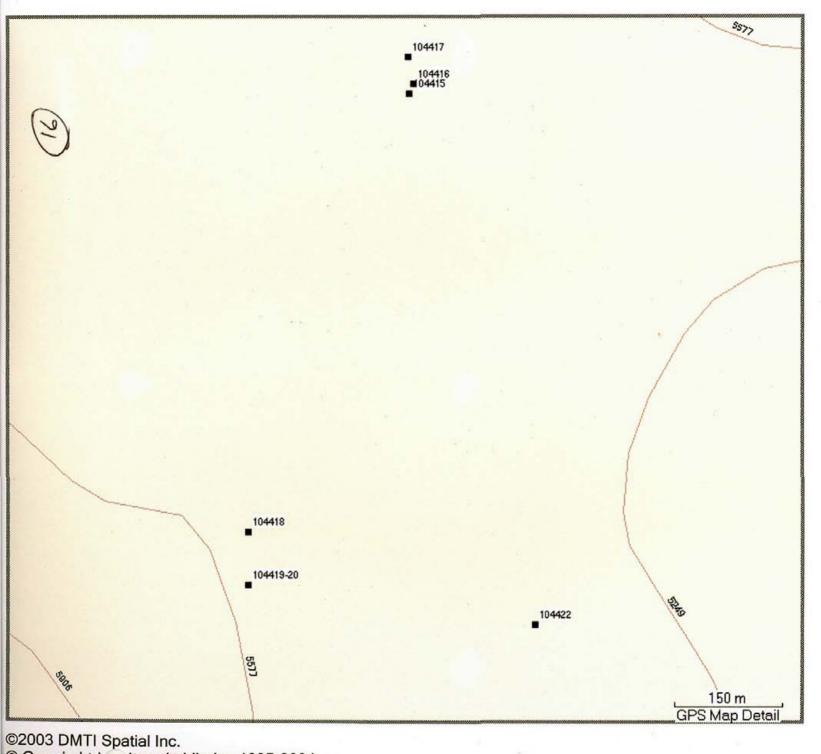
Atlin Engineer







©2003 DMTI Spatial Inc.
© Garmin Ltd. or its subsidiaries 1995-2004
CanMap®, DMTI Spatial and the DMTI Spatial logo are trademarks of DMTI Spatial Inc., Markham, Ontario



CanMap®, DM 11 Spatial and the DMTI Spatial logo are trademarks of DM 11 Spatial Inc., Markham, Ontario

© Garmin Ltd its subsidiaries 1995-2004
CanMap®, DM 1 Spatial and the DMTI Spatial logo are trademarks of Div 1 Spatial Inc., Markham, Ontario

© Garmin Ltd its subsidiaries 1995-2004
CanMap®, DM 11 Spatial and the DMTI Spatial logo are trademarks of Dw 11 Spatial Inc., Markham, Ontario

REPORT OF PHYSICAL EXPLORATION AND DEVELOPMENT Section 15 - Mineral Tenure Act Regulation

2 (2 () 2 /	1228, 525258, 525419, 525447,5255	3. Type of Tenure: Mineral, or Placer
4. Recorded holder:	Address: BLIND CREEK RESOURCES 1500-675 W. HASTINGS VALCOURER BC V6B	Phone: 1N2 1-800-663-1688
5. Operator:	Address:	Phone:
6. Report author:	Address:	Phone: 250-994-3398
7. Qualifications of operator	JEFF MERRICK 30 YEARS MAPPINGS JEFF MERRICK BRAD D'AVIES CER	AROSPECTICA TIFIED PROSPECTORS
8. Brief summary of work activity on claim(s) in recent years:	FIRST WORK ON NEW STAKING	MINERAL TITLES BRANC Rec'd. OCT 1 2 2006
NEW W	ORK (Attach additional sheets if more space is rec	File
9. Start date: AUG30/06 Stop date: SEP 17 /06	10. Tenure number(s) of claim(s) that v 52669/ 524885	vork was performed on:
11. Detailed written descript the work activity and results obtained: (If ground control or survey we being claimed please attach p as required by Section 15 of t Regulations)	SEVERAL LOCATIONS, WALKED WORK IS BREAKING ROCK AND SAMPLING BARRING ROCK AND SAMPLING BARRING ROCK AND SAMPLING	C. MUCH OF AIDE
12. Metric dimensions of workings: (Open cuts, adits, pits, shafts,	SAMPLES ONLY	

SAMPLES ONLY

104 M049

BY AIR TO S.E. ENGINEER MT. TAGISH LAKE

trenches)

(metric units)

map coordinates)

13. Amount of material excavated

14. Geographic location of work

(access description, map numbers,

Attach 1:10,000 scale MTO map

and tested or processed:

Continue on following page

15. Was GPS used to map work sites?

If yes, specify make and model:

GARMW 12

17. Are photographs of work sites attached?

16. Work site(s) marking (flagging, cut lines, other):

METAL TAG + FLAGGUG AT

EACH SAMPLE LOCATION

18. Was Notice of work filed?

Permit number:

HAND ONLY

COST STATEMENT

19. Expense(s):	Total Hours	Hourly Rate	Daily Rate	Total(s) (\$)
Labour cost: (specify type) / @ 330	30	30		900 00
36820	90	20		1800 00
Equipment & Machinery cost: (specify type)				

20. Transportation: (specify type)	Rate(s	3)	Days / Distance	Total(s) (\$)	
4×4 CREW CAB	20%			780 00	540
HELI COPTER				283000	1350
Lodging / Foód:	46 \$ 100 /DAY -	-3 DAYS	3	1200	1.00
Other: (specify)					
ASSAT 40 SAMPLES				8000]
SHIP SAMPLES				849000	
			Total costs:		6771
		Amount cla	imed for assessment:	7314:13	1,77

6770 00

(Signature of Recorded Holder / Agent)

Please ensure you attach the map.

This report must be submitted within 30 days of the date you registered the exploration and development work in MTO.

Submit the report to any Government Agent, Mineral Titles Office, or you can mail to:
Mineral Titles Branch
Ministry of Energy, Mines and Petroleum Resources
300 - 865 Hornby Street

Vancouver, BC V6Z 2G3

2700.00 540.00 1350.00 1200.00 1200.00

Qualifications of report writer. D.W.Merrick

Began field work in April 1966. Trained by B.C. Forest Service to field locate, map, and cruise timber. First put in charge of small field crews 1967. Seventeen years with Forest Service, always field location, mapping, crew supervision. Vancouver, Courtenay, Powell River, Texada Island, Tatla Lake, Quesnel, Wells.

Prospecting hobby started to become employment, to point where last many years work entirely mining industry.

I have located thousands of claims, usually with a small crew, both placer and hardrock, and field located many boundaries.

I have prospected with ancient prospectors like Bob Mickle and Harold McGowan and Arnie Drinkwater. I have been in the field with many geologists, Dr. Norman Tribe, Dr Richard Hall, Ned Reid, Jean Poutler.

I have hunted claim posts with claims inspector Dennis Lieutard.

Have attended numerous seminars etc sponsored by mines ministry and others over the years. Have attended both Kamloops and Vancouver mining shows. Roundup.

Have received and carried out prospector grant, Mt Tom, Wells area.

Have many times taken samples, both rock and soil, and submitted for assay. Have done this on property held by myself and have done the same work many times for others. Ray Adams. Evan Williams, International Wayside, Gemco Minerals, Alan Tipman.

Have held mining ground for many years. Currently hold interest in several mineral tenures Wells and Princeton areas, as well as 4 placer LPM's Wells area.

I have carried out over 50 claim to lease conversions for myself and others. Lease of Placer Minerals.

Worked at Mosquito creek gold mine mill for over one full year. Worked for Bruce MacGregor placer mining little swift river one whole season. Worked two seasons placer mining for Nelbar Services, Pinus creek, swift river, Burns creek.

My main function on the Atlin job was to ensure efficient use of crew time and to see that all access was explored. We were trying to find something new in a camp many

times explored, but not well reported or mapped. Much of the area is covered with overburden, but by a great deal of walking on ridge tops and other likely areas, bedrock was often found and explored. Wherever there was any sign of mineralization, samples were taken.

I've printed maps of these sample locations at a scale that gives some perspective and some topographic features. They can be reproduced at any other scale if desired.

Doug Merrick