GEOCHEMICAL REPORT

BURN PROPERTY

Latitude 55°23'N Longitude: 127°45'W NTS: 93M/5W

OMINECA MINING DIVISION

OWNER/OPERATOR:

TENAJON RESOURCES CORP. 860-625 Howe Street, Vancouver, B.C., V6C-2T6

Report By:

Dave Visagie, P. Geo. Exploration Manager The Northair Group

February 22, 2007

TABLE OF CONTENTS

Page

	LIST OF FIGURES	
14.0	COST STATEMENT	8
13.0	STATEMENT OF QUALIFICATIONS	7
12.0	RECOMMENDATIONS	6
11.0	10.2 Soil Profile Results SUMMARY AND CONCLUSIONS	6 6
10.0	RESULTS 10.1 Soil Sample Results	6 6
10.0	9.1 Field Procedure-Soil Samples	5
9.0	GEOCHEMICAL PROCEDURES	5
8.0	2006 WORK PROGRAM	5
7.0	PROPERTY GEOLOGY	4
6.0	REGIONAL GEOLOGY	4
5.0	PROPERTY HISTORY	4
4.0	CLAIM STATUS	1
3.0	TOPOGRAPHY AND VEGETATION	1
2.0	LOCATION AND ACCESS	1
1.0	INTRODUCTION	1

1	PROPERTY LOCATION	2
2	CLAIM MAP	3
3	SAMPLE LOCATIONS AND GOLD ASSAY RESULTS	9

LIST OF APPENDICES

10

1.0 INTRODUCTION

Between November 2nd and November 4th, 2006, personnel from CJL Enterprises Ltd. completed a soil sampling program on Tenajon Resources Corp.'s Burn Property located near Kispiox, northwestern British Columbia. The purpose of the survey was to sample an area north of a large open-ended in soil molybdenum anomaly outlined by Noranda in 1970's. The survey resulted in 62 samples being collected. The cost of the program is calculated to be \$5,230.95

2.0 LOCATION AND ACCESS (Figure 1)

The Burn Property is located approximately 18 kilometers north of Hazelton, B.C. It is centred at latitude 55°24'N, longitude 127°45'W. It occurs on 1:50,000 NTS Sheet 93M 5W.

Access to the north end of the property is by secondary gravel roads. An overgrown dirt road extending 6.5 kilometers to the centre of the group branches from the main Kispiox-Date Creek road 1.3 kilometers north of the Kispiox River Bridge

3.0 TOPOGRAPHY AND VEGETATION

The property occurs within the Omineca Mountain Range. Regional topography is characterized by isolated rugged mountain peaks separated by broad wooded valleys. Many of the peaks are over 2000 metres high and are surrounded by ice and snow fields. At the property topography is relatively moderate. Local elevations range from 900 to 1200 metres.

There has been limited logging completed at the north end of the property. The area has been replanted and the growth is thick.

4.0 CLAIM STATUS (Figure 2)

The Burn Property is located in the Omineca Mining Division. It consists of the following claims.

Claim	Tenure #	Size (Ha)	Due Date
Burn 1	505118	441.063	Jan 28/2009*
Burn 2	505119	441.252	Jan 28/2008*
Burn 3	505933	220.493	Feb 04/2008*d

* Contingent upon the report being approved.

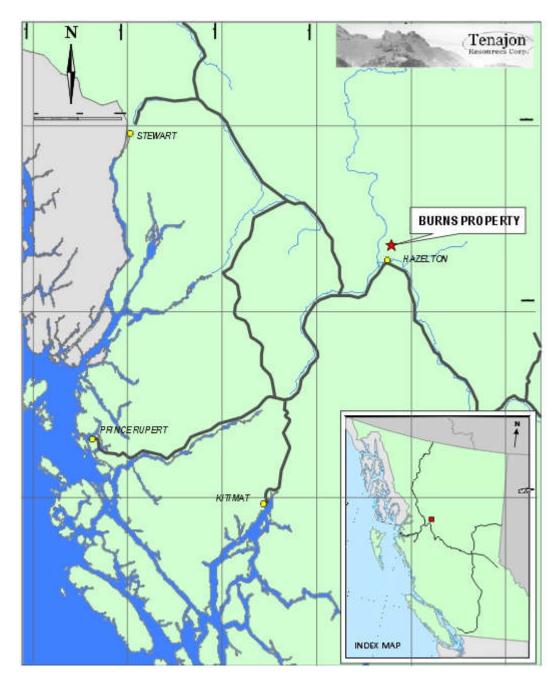


Figure 1-Burn Property Location

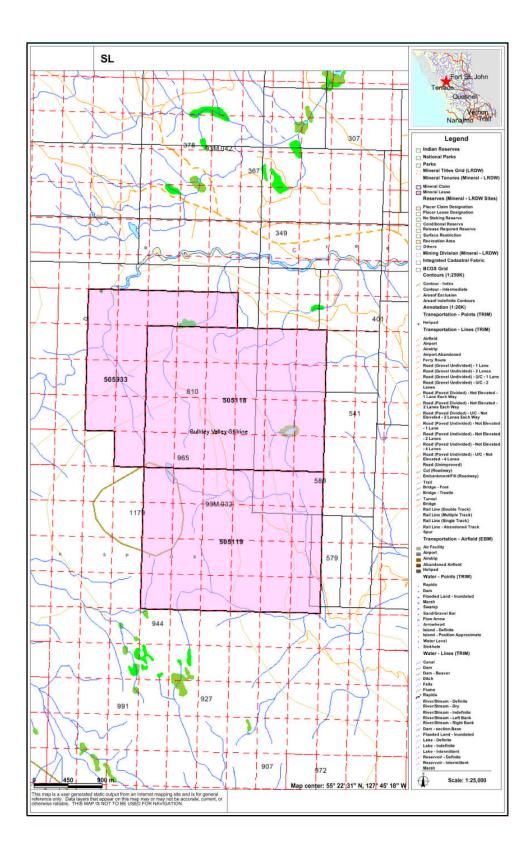


Figure 2: Claim Map-Burn Property

5.0 PROPERTY HISTORY

Molybdenum was first noted on the Burn Property in 1973 when E. Sargent located molybdenum within and adjacent to a granodiorite stock while prospecting for Hazelton Joint Ventures. Follow-up work included soil sampling, geological mapping and the drilling of one AQ sized, 105.4 metre long (346 feet) diamond drill hole. In 1975, Sargent restaked the property and optioned it to Noranda Mines Ltd. Noranda personnel subsequently completed soil sampling, mapping, magnetometer, V.L.F. and an I.P. survey. In 1976 the property was returned to the vendor.

In 1979, Amoco Canada Petroleum Ltd. optioned the property. Amoco personnel subsequently completed line-cutting, geophysical and geochemical surveying, mapping and the drilling of six (3 in 1979, 3 in 1980) NQ-sized diamond drill holes totaling 2,439.51 metres in length. A search of the assessment records shows only the results for Hole BBC-80-6 which was drilled to test tenor of the western side of the granodiorite stock. The hole intersected a 117 metre section, between 27 and 144 metres, averaging 0.088% MoS_2 . In addition, a second zone was intersected between 207 to 231 metres averaging 0.082% MoS_2 . Both zones are hosted by granodiorite. From 300.55 to 571.43 metres feldspar porphyry was intersected, the first 214 metres of which averaged 0.044% MoS_2 . Within the intersections, molybdenite occurs as disseminations, fracture fillings, and as rims along the edges of quartz veins.

There is no record of any work being completed on the property since 1980.

6.0 REGIONAL GEOLOGY

The property is underlain by Jurassic and Cretaceous rocks of Stikinnia terrane.

7.0 PROPERTY GEOLOGY

The property is underlain by a series of north striking sediments consisting of argillites, sandstones, and shales that locally have been intruded by a small stock of granodiorite and several narrow dikes of biotite-feldspar porphyry. The stock is up to 300 metres wide and over 600 metres long, with the northern contact being overburden covered. The sediments have been altered to a biotite hornfels around the contact, with the alteration extending 100's of metres from the contact.

The sediments are cross-cut by a series of north trending biotite-feldspar porphyry dikes around the stock, particularly on the south side. No contact relationships have been observed between these dikes and the stock so the age relationship is not known. These dikes carry pyrite along with minor chalcopyrite and molybdenite. The intrusive and the surrounding hornfels have been cross-cut by a quartz stockwork of variable intensity. The density of the quartz stockwork on surface appears to increase to the north. This may be a function of the level of erosion, being more deeply eroded to the north.

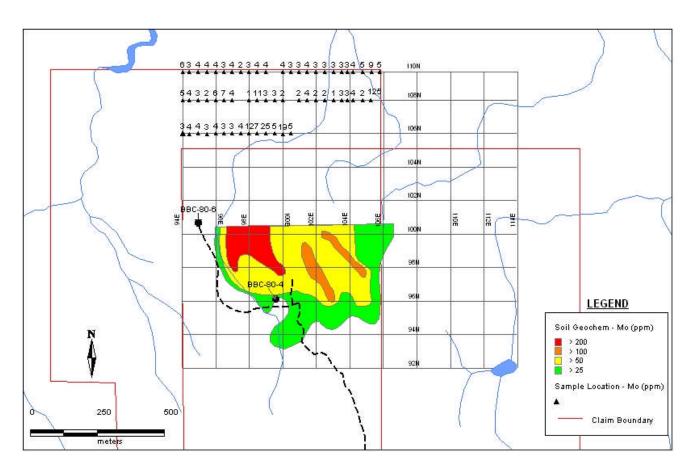
Up to 5% disseminated pyrite and pyrrhotite along with minor chalcopyrite and molybdenite occur in the hornfels. Molybdenite occurs in virtually all of the outcrops of the intrusive with the overall content appearing to increase to the north. Within the intrusive it occurs in a fine quartz stockwork, disseminations, and along fracture faces.

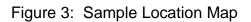
8.0 2006 WORK PROGRAM

The purpose of the 2006 work program was to determine the northern limits of the in-soil molybdenum anomaly as outlined previously.

The work was contracted to CJL Enterprises, Box 662, Smithers, British Columbia. The work resulted in the taking of 65 soil samples. The program required 9 man days to complete. The program was designed by Dave Visagie. The crew and days worked are listed below.

Name	Days Worked	Total
Victor Mowat	Nov. 02-04	2.5 days
Ray Mowat	Nov. 02-04	2.5 days
Justin Pierre	Nov 02-03	2 days
Darren Fargie	Nov 02-03	2 days


The soil samples were assayed at Eco-Tech Laboratories, 10041 Dallas Drive, Kamloops, B.C.


9.0 GEOCHEMICAL PROCEDURES

Sampling at the Burn Property was completed on three compass, flagged and chained lines. The lines were located at 106, 108 and 109+50N. The lines were selected on the basis of prevailing snow conditions. Line 100+00N was the most northerly line sampled by Noranda. Line length varies from 600 to 1200 metres. Sample sites were at 50 metre intervals along the lines.

9.1 Field Procedure-Soil Samples

Where possible the soil samples were collected from the B horizon using a mattock, identified, stored in kraft sample bags and dried. In the sampled area the overburden is thick with river bottom sediments and thick organic cover related to swamps occurring throughout. The sample locations are plotted on Figure 3.

9.2 Assay Procedure

For the ICP analysis, a 15 gram sample is digested with 3 ml of 2:2:2 nitric acid to hydrochloric acid to water at 95° for 1.0 hour after being left in a test tube at room temperature for a ½ hour. The sample is then diluted to 20 mls with demineralized water and analyzed by ICP-MS (mass spectrometry). The leach is partial for AI, B, Ba. Ca, Cr, Fe, K, Mg, Mn, Na, P, Sb, Ti, U and W. The sample locations are plotted on Figure 3.

10.0 RESULTS

The results for all of the elements are listed in Appendix 1. The in-soil molybdenum values are plotted on Figure 3

10.1 Soil Sample Results

Only three of the sample sites assayed >10 ppm Mo with the highest value being 125 ppm Mo. No patterns were outlined.

11.0 SUMMARY AND CONCLUSIONS

Previous work at Tenajon Resources Corp.'s Burn Property identified a widespread in soil molybdenum that was open to the north. The anomaly is coincidental with the intrusion of a granodiorite plug into sediments. The intrusion and surrounding sediments host molybenite as fracture fillings, within stockwork and as disseminations. Limited drilling has returned positive results including a 114 metre intercept averaging 0.089% MoS_2 . In an effort to determine the limit of the anomaly, soil sampling was complete on three lines located between 600 and 950 metres to the north. The survey required nine man days of labour to complete. The survey did not detect anything of interest reflecting the extensive overburden cover.

12.0 RECOMMENDATIONS

It is recommended that additional soil sampling be undertaken. The sampling would be completed when the snow has gone and would be completed on Lines 102 and 104 N in an attempt to better define the anomaly.

13.0 STATEMENT OF QUALIFICATIONS

David A Visagie, B.Sc 860-625 Howe Street, Vancouver, B.C. V6C 2T6 Tel: 604-687-7545 E-Mail: <u>visagie@northair.com</u>

I, David A Visagie, do hereby certify that:

I graduated from the University of British Columbia in 1976 with a Bachelor of Science Degree Majoring in Geology.

I have been continuously employed within the mining industry since that time.

I am a member of the Association of Professional Engineers and Geoscientist of B.C. (#19520).

I am currently employed by the Northair Group, which acts as an umbrella group for a group of exploration companies including International Northair Mines Ltd. as the Group Exploration Manager.

Dated this 25th day of November, 2007 in Vancouver, B.C.

Dave Visagie, P. Geo. Senior Geologist The Northair Group

14.0 COST STATEMENT

Company L	abour			\$	330.00
D. Visagie	0.75 man-days Preparation	@	\$440/manday		
CJL Invoice				\$ 3	3,204.91
Includes 9 m and sample	nan-days labour @ \$275/manday, t shipping	truck a	nd equipment rental		
Assaying				\$	520.50
•	prep and ICP analysis: total as she les GST	own or	invoice		
Report				\$	700.00
Includes lab	our, drafting, copying		Sub Total	\$ 4	1,755.41
Manageme	nt			<u>\$</u>	475.54
10%			Total	\$ 5	5,230.95

											_					_										_			
	27-Nov-06			ICF	CE	RTI	FICAT	E OF	AN	ALY	SIS	S AS	2006	-1961										source we Stre					
					ECO	О ТЕ	CHL	АВО	RAT	OR	ΥĽ	TD.					<u> </u>			H				we oure er, BC	el	⊢			
							10041															Ve	3C 2	Τ6					
							KAML	00P 2C6		.C.	_					-	<u> </u>			No	đ	eamr	lac i	eceive	d 82	<u> </u>			
						\vdash			~	H								\vdash		/10	_			pe: Soil					
							hone::																	Bush					
						Fε	ax :2	50-5	73-4	557	_					-	<u> </u>			uhmi				t#:1 Enterp	rico I	51			
																					400	cy.		Lineip	1661				
	Values in ppm					Γ																							
	uniess otherwise																												
	reported																												
						\vdash					_						<u> </u>												
										\vdash							<u> </u>									⊢			
Et	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	۷	w	Y	Zn
#.	L106N 9400E	0.4	2.54	10	95	<5	0.06	<1	12	20	21	7o 4.15	<10	0.47	350	3	< 0.01	22	1230	26	<5	<20	8	< 0.01	<10	54	<10	<1	113
2	L106N 9450E	0.3	2.14	10	90	<5	0.15	<1	14	22	25	3.85	<10	0.74	514	4	< 0.01	31	1180	22	<5	<20	8	< 0.01	<10	54	<10	<1	105
3	L106N 9500E L106N 9550E	0.2	1.94	10	135	-	0.22	2	13	22	26 18	3.44	<u> </u>	0.59	628 461	4	< 0.01	28 20	810 490	20 18	<5 <5	√20 \%		< 0.01	<10 <10	54 50	<10	3	96 77
5	L106N 9600E	0.3		10	105	_		7	9	20	19	_	_	0.34	276	4		21		22	< <5	20		< 0.01	<10	53		1	108
_	Linebi eccel		1.51				0.17				10	0.77		<i>c</i> / <i>c</i>	100	-							10					_	
6	L106N 9650E L106N 9700E	0.5	1.21	<5 10	110	_	0.25	<1 <1	4	12 25	11 23	2.37		0.18	192 362	3	< 0.01	9 30	960 1470	14 26	<5 <5	<20 <20	I	< 0.01	<10 <10	47 56	<10	3 <1	50 127
8	L106N 9750E	0.5		5	95	5	0.15	<1	7	18		3.25		0.24	304	4				24	<5	<20		< 0.01		_	<10	<1	105
9	L106N 9800E	0.2	1.84	25	155	_	0.48	<1	13	25	33	_	_	0.61	1190	12	0.01	29	500	24	<5	<20	44	< 0.01	<10	55	<10	5	63
10	L106N 9850E	0.2	1.57	10	120	5	0.21	<1	7	15	15	3.85	<10	0.26	190	7	<0.01	12	740	18	<5	<20	14	0.02	<10	62	<10	<1	122
11	L106N 9900E	0.6	2.54	30	235	<5	0.55	<1	19	30	53	5.81	10	0.65	2906	25	0.01	35	1180	28	<5	<20	56	< 0.01	<10	70	<10	30	83
12	L106N 9950E L106N 10100E	0.3	1.59	<5	120	_	0.23	77	7	17		3.56		0.36	229	5 19	< 0.01	18 8	360 460	14	<5 <5	00 ₩		0.01	<10 <10	62 77	<10	<1	62 67
	L106N 10150E	0.4	1.74	<5 10	105 75	10 5	0.07	<1	6	16	10		<10	0.17	133 170	5	< 0.01	11	610	16 22	<5	<20	6	0.02	<10	60	<10	<1	85
15	L108N 9400E	0.2	1.99	10	70	10	0.09	<1	11	19	18	4.34	<10	0.45	357	5	< 0.01	17	1780	24	<5	<20	5	< 0.01	<10	59	<10	<1	128
16	L108N 9450E	0.3	1.77	10	110	5	0.06	<1	8	15	15	3.28	<10	0.35	220	4	< 0.01	15	300	18	<5	<20	5	< 0.01	<10	53	<10	-1	68
17	L108N 9500E	0.4		10	110		_	<1	11	21	_	3.52	_	0.47	278	3	< 0.01	26	990	20	<5	<20	I	< 0.01	<10	52		<1	120
18	L108N 9550E	0.4	1.30	5	180			<1	8	13	_	2.67	_	0.31	470	2		12		18	<5	<20		0.01	<10	_	<10	<1	106
19	L108N 9600E L108N 9650E	0.3	2.31	15 10	215 245	_	_	2	13	24 20	_	4.17	_	0.54	737	6	< 0.01	27 27	550 1000	24 22	<5 <5	<20 √20	Ι	<0.01	<10 <10	66 42	<10	1 36	116 56
20	Elogit Doore		2.04	10	Ĩ	~~	1.10	7		20		0.14	20	0.40		ŕ	0.01		1000		2	1		20.01	~ 10		~10	3	5
21	L108N 9700E	0.5	1.57		175	_	0.76	4	9	_		2.57		0.44	691	4	_	20	610	16	<5	<20	I	< 0.01	<10	_	<10	9	54
22	L108N 9800E L108N 9850E	0.2	1.16	<5 <5	130 160	_	_	<1	6	13 16	_	1.95	_	0.38	248 947	1	< 0.01	14		16 14	<5 <5	<20 <20		0.01	<10 <10	35 34	<10	<1 5	82 97
24	L108N 9900E	0.2	1.62	5	145	10	0.18	<1	10	17	15	3.24	<10	0.40	497	3	< 0.01	18	1160	22	<5	<20	12	< 0.01	<10	51	<10	<1	109
25	L108N 9950E	0.3	1.38	5	110	<5	0.21	<1	7	16	11	3.66	<10	0.28	214	3	< 0.01	11	1330	20	<5	<20	22	0.02	<10	67	<10	<1	117
						EC	O TEC	нL	ABO	RA	O	YLT	D.								Ter	najor	Re	source	s				
				100			1047	0			(Calle	10	0000	1004															
Η				ICI-	UE	RIII	FICAT	2 01	AN	ALÌ	315	AS	2006	-1901		-		\vdash		\vdash	\vdash		\vdash			\vdash		\vdash	
Et#							Ca %							Mg %		_	Na %						I	Ti %			W		
	L108N 10000E L108N 10100E		1.68	10			0.10	<1 √	8 11			3.05			241 1069	2	< 0.01	17	1050 690	22 28	<5 <5			0.01	<10	48 51	<10 <10		96 112
28	L108N 10150E	0.4	2.26	10	140	5	0.12	<1	8	19	11	3.44	<10	0.32	230	4	< 0.01	20	900	30	<5	<20	9	< 0.01	<10	52	<10	<1	211
	L108N 10200E		1.12	<5 <5				2 2	5	12		1.62		0.24	367	2		11	680 360	16 20	<5 <5	<20 <20		< 0.01	<10	29	<10 <10		78
30	L108N 10250E	0.5	1,46	<5	80	<5	0.07	<1	4	12	9	1.61	<10	0.18	128	2	<0.01	10	360	20	<5	<20	3	<0.01	<10	30	<10	<1	73
	L108N 10300E			<5			0.36	<1		12		1.32			271	1	< 0.01					<20		< 0.01	<10		<10		50
	L108N 10350E L108N 10400E				_	_	0.13	2				3.04			510 276	3	< 0.01					<20 <20		0.01 <0.01		47 47			93
	L108N 10400E							<1				3.67			396	4	< 0.01	-	_	_				< 0.01		_	<10		87 115
	L108N 10500E											1.78			182	2	< 0.01							0.01		_			55
36	L108N 10550E	<0.2	1.61	5	140	<5	0.28	<1	15	22	34	3.68	<10	0.60	798	125	< 0.01	28	350	22	<5	<20	24	< 0.01	<10	52	<10	6	51
	L110N 9400E							7				_	_	0.00		6	_						I	< 0.01		_	<10		113
38	L110N 9450E	0.2	2.01	10	75	5	0.04	1	9	16	9	3.68	<10	0.26	398	3	< 0.01	13	2470	28	<5	<20	1	< 0.01	<10	56	<10		
39	L110N 9500E	0.3	2.36	10	85	10	0.06	<1	11	20	16	4.11	<10	0.42	370	4	< 0.01	20	1380	32	<5	<20	3	< 0.01	<10	57	<10	<1	152

APPENDIX 1: SAMPLE DESCRIPTIONS

Et	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	۷	w	Y	Zn
40	L110N 9550E	<0.2	1.74	10	45	5	0.09	<1	6	14	9	3.65	<10	0.21	414	4	<0.01	9	2140	26	<5	<20	4	0.01	<10	58	<10	<1	72
41	L110N 9600E	0.3	2.15	10	65	5	0.05	<1	6	15	10	3.93	<10	0.13	217	4	< 0.01	9	2150	30	<5	<20	2	< 0.01	<10	62	<10	<1	102
42	L110N 9650E	0.2	1.04	5	95	<5	0.20	<1	6	11	8	2.93	<10	0.25	213	3	< 0.01	10	550	18	<5	<20	17	0.02	<10	50	<10	<1	94
	L110N 9700E	<0.2	1.81	10	95	5	0.24	1	13	23	24	3.16	<10	0.70	731	4	< 0.01	30	420	22	<5	<20	13	0.01	<10	50	<10	5	60
		0.2	1.82	10	165		0.34	<1		19		2.82		0.45	1047	2	< 0.01	21	750	24		_	26	< 0.01	<10	_	<10	8	120
45	L110N 9800E	0.2	1.13	<5	125	<5	0.36	<1	10	14	15	2.57	<10	0.33	524	3	< 0.01	14	690	20	<5	<20	25	0.01	<10	42	<10	3	97
46	L110N 9850E	<0.2	1.56	10	160	5	0.27	<1	15	21	18	3.85	<10	0.45	2473	4	< 0.01	21	1500	30	<5	<20	17	0.01	<10	59	<10	<1	117
47	L110N 9950E	<0.2	1.81	10	85	<5	0.13	<u>~</u>	9	20	16	4.07	<10	0.37	249	4	< 0.01	19	1830	28	<5	<20	8	< 0.01	<10	56	<10	<1	117
	L110N 10000E	0.2	1.62	10	75	5	0.14	<1	9	18	16	4.00	<10	0.40	388	4	< 0.01	17	2130	22	<5	<20	5	< 0.01	<10	58	<10	<1	107
	L110N 10050E		1.22	5	125	<5		<1	8	11	_	2.09	<10	0.27	919	3	0.01	14	640	16	<5	<20	33	< 0.01	<10	37		15	52
50 I	L110N 10100E	0.2	0.87	<5	80	<5	0.21	<1	6	10	10	2.34	<10	0.22	316	3	0.01	8	920	12	<5	<20	16	0.01	<10	50	<10	<1	81
24 1	LitabliatesE	~ ~	1.50	-	100	-	0.00	-1	10	4.7	10	2.50	-10	0.47	400		-0.01	10	1000	10		-20	1.4	-0.01		50	-10	- 11	100
	L110N 10150E L110N 10200E	0.2	1.59	5	100		0.20	<1	10	17	10	3.59	<10	0.47	406 499	4	< 0.01		1560 1340	18 24	<5 <5	<20 <20	14	<0.01	<10	53 53	<10	<1	123
	L110N 10250E		0.94	5	90		0.33	<1		11	8	3,16	<10	0.18	182	3	< 0.01	8	2320	18	<5	<20		0.01	<10	61	_	<1	75
	L110N 10300E	0.2	1.75	5	70	<5		<1	12	21	15	4.18	<10	0.50	707	3	< 0.01	19	2760	24	<5	<20	10	< 0.01	<10	58	<10	<1	129
	L110N 10350E	0.2	2.05	5	75		0.05	<1	10	21		4.08		0.37	379	3	< 0.01	17	2930	24	<5	<20	4	0.01	<10	58	<10	<1	140
56 I	L110N 10400E	<0.2	1.93	10	70	5	0.11	~ 1	11	19	16	3.72	<10	0.53	528	3	< 0.01	22	970	22	<5	<20	3	< 0.01	<10	55	<10	<1	104
		<0.2	1.58	10	95	5	0.04	v	9	17	13	4.08	<10	0.40	255	4	< 0.01	16	910	22	<5	<20	5	0.01	<10	66	<10	<1	111
_		<0.2	1.65	10	105	5	0.06	<1	10	18			<10	0.44	276	5	< 0.01	18	460	22	_	<20	6	< 0.01	<10	59	<10	<1	122
	L110N 10550E	0.3	1.72	10	90	5	0.14	<1	9	17	12	4.30		0.35	265	9	< 0.01	15	1010	24	<5	<20	14	0.01	<10	63	<10	<1	103
60 I	L110N 10600E	<0.2	1.92	10	80	5	0.06	<1	12	20	14	4.09	<10	0.44	346	5	< 0.01	20	1910	28	<5	<20	2	0.01	<10	60	<10	<1	121
	L110N 10650E	<0.2	1.80	10	100	10	0.11	<1	14	20	15	3.99	<10	0.59	468	5	< 0.01	25	1500	28	<5	<20	7	< 0.01	<10	54	<10	- 1	122
	L110N 10700E			_		_	0.11		13			3.86		0.55	628	5	_		2110	_	_	_	-	< 0.01			<10	<1	103
~~ .	Entertorove	-0.2		1.0		Ť	0.11	~.		20		0.00	~	0.01	020	-	~~~		2110	~~	~~		Ť		~	0,	~	~ .	
					E	00	TECH	LAB	ORA	то	RY	LTD.									Ter	najon	Rea	source	s				
\vdash				ICP	CE	RTH	FICATI	E OF	AN/	ALY	SIS	AS	2006	-1961						\vdash	_		_		_	_		_	_
Et #	Tag #				D _o	D:	C - 0/	64	~	<u> </u>	<u>C</u>	- 0/		M ~ 0/				112		Dh	Sh	Sn	Ċ,	Ti %			W	Υ	Zn
DAT		Ag	AI %	As	Da	DI	Ca %	00	Co	G	υu	re 76	La	Mg 76	Mn	Mo	Na %	NI	P	1.0	50	911	5		0	v			
peat		Ag	AI %	AS	Da	ы	Ca %	^{cu}	Co	Gr	00	re 76	La	Mg 76	Mn	Mo	Na %	NI	Р		50		51			v			
	t:																												
1	t: L106N 9400E	0.4	2.41	10	90	5	0.08	~		20	20	4.10	<10	0.44	346	4	<0.01	23	1270	30	<5	<20	5	<0.01	<10	52	<10	<1	115
1	t: L106N 9400E L106N 9850E	0.4	2.41 1.63	10 <5	90 135	5 5	0.08	2 2	12 7		20 16	4.10 3.88	<10 <10	0.44	346 196	4	<0.01 <0.01	23 12	1270 720	30 18	<5 <5	<20	5 14	<0.01	<10 <10	52 64	<10 <10	1	124
1 10 19	t: L106N 9400E L106N 9850E L108N 9600E	0.4 0.2 0.3	2.41 1.63 2.11	10 <5 15	90 135 190	55	0.08 0.21 0.28	2 2 2	12 7 14	20	20 16 34	4.10 3.88 4.06	<10 <10 <10	0.44 0.27 0.50	346 196 711	4	<0.01 <0.01 <0.01	23 12 27	1270 720 560	30 18 30	<5 <5	<20 <20 <20	5 14 24	<0.01 0.02 <0.01	<10 <10 <10	52 64 63	<10 <10 <10	1 1 2	124
1 10 19 28 1	t: L106N 9400E L106N 9850E L108N 9600E L108N 10150E	0.4 0.2 0.3 0.4	2.41 1.63 2.11 2.30	10 <5 15	90 135 190 135	5555	0.08 0.21 0.28 0.12	2222	12 7 14 8	20	20 16	4.10 3.88 4.06 3.43	<10 <10 <10 <10	0.44 0.27 0.50 0.33	346 196 711 233	4 6 5 2	<0.01 <0.01 <0.01 <0.01	23 12 27 21	1270 720 560 890	30 18 30 28	<5 <5 <5	20 20 20 20 20	5 14 24 8	<0.01 0.02 <0.01 0.01	<10 <10 <10 <10	52 64 63 52	<10 <10 <10 <10	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	124 125 210
1 10 19 28 36	t: L106N 9400E L106N 9850E L108N 9600E	0.4 0.2 0.3	2.41 1.63 2.11	10 <5 15	90 135 190 135	5555	0.08 0.21 0.28	2 2 2	12 7 14 8	20	20 16 34	4.10 3.88 4.06	<10 <10 <10	0.44 0.27 0.50	346 196 711 233 794	4	<0.01 <0.01 <0.01	23 12 27	1270 720 560	30 18 30 28 24	<5 <5 <5 <5	<20 <20 <20	5 14 24	<0.01 0.02 <0.01	<10 <10 <10	52 64 63	<10 <10 <10 <10	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	124
1 10 19 28 36 45	t: L106N 9400E L106N 9850E L108N 9600E L108N 10150E L108N 10550E	0.4 0.2 0.3 0.4 <0.2	2.41 1.63 2.11 2.30 1.69	10 <5 15 10	90 135 190 135 140	55500	0.08 0.21 0.28 0.12 0.28	2 2 2 2 2	12 7 14 8 16	20 16 23 19 23	20 16 34 11 37 15	4.10 3.88 4.06 3.43 3.76	<10 <10 <10 <10	0.44 0.27 0.50 0.33 0.62	346 196 711 233	4 6 5 2	<0.01 <0.01 <0.01 <0.01 <0.01	23 12 27 21 27	1270 720 560 890 340	30 18 30 28	<5 <5 <5	20 20 20 20 20 20 20	5 14 24 8 25	<0.01 0.02 <0.01 0.01 <0.01	<10 <10 <10 <10 <10	52 64 63 52 54	<10 <10 <10 <10 <10 <10	V V V V 0 0 V	124 125 210 52
1 10 19 28 36 45	t: L106N 9400E L106N 9850E L108N 9600E L108N 10150E L108N 10550E L108N 10550E	0.4 0.2 0.3 0.4 <0.2	2.41 1.63 2.11 2.30 1.69 1.18	10 <5 15 10 <5	90 135 190 135 140 125	55500	0.08 0.21 0.28 0.12 0.28 0.36	~ ~ ~ ~ ~ ~ ~	12 7 14 8 16	20 16 23 19 23	20 16 34 11 37 15	4.10 3.88 4.06 3.43 3.76 2.63	<10 <10 <10 <10 <10 <10	0.44 0.27 0.50 0.33 0.62 0.34	346 196 711 233 794 531	4 6 5 2 128 2	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	23 12 27 21 27 13	1270 720 560 890 340 690	30 18 30 28 24 18	<5 <5 <5 <5 <5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5 14 24 8 25 25	<0.01 0.02 <0.01 0.01 <0.01 0.01	<10 <10 <10 <10 <10 <10	52 64 63 52 54 45	<10 <10 <10 <10 <10 <10	7 7 7 7 8 3 7	124 125 210 52 97
1 10 19 28 36 45	t: L106N 9400E L106N 9850E L108N 9800E L108N 10150E L108N 10550E L110N 9800E L110N 10300E	0.4 0.2 0.3 0.4 <0.2	2.41 1.63 2.11 2.30 1.69 1.18	10 <5 15 10 <5	90 135 190 135 140 125	55500	0.08 0.21 0.28 0.12 0.28 0.36	~ ~ ~ ~ ~ ~ ~	12 7 14 8 16	20 16 23 19 23	20 16 34 11 37 15	4.10 3.88 4.06 3.43 3.76 2.63	<10 <10 <10 <10 <10 <10	0.44 0.27 0.50 0.33 0.62 0.34	346 196 711 233 794 531	4 6 5 2 128 2	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	23 12 27 21 27 13	1270 720 560 890 340 690	30 18 30 28 24 18	<5 <5 <5 <5 <5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5 14 24 8 25 25	<0.01 0.02 <0.01 0.01 <0.01 0.01	<10 <10 <10 <10 <10 <10	52 64 63 52 54 45	<10 <10 <10 <10 <10 <10	V V V V 6 3 V	124 125 210 52 97
1 10 28 36 45 54	t: L106N 9400E L106N 9850E L108N 9600E L108N 10150E L108N 10550E L108N 10550E	0.4 0.2 0.3 0.4 <0.2 0.2 0.2	2.41 1.63 2.11 2.30 1.69 1.16 1.97	10 <5 15 10 10 5 5	90 135 190 135 140 125 70	5 5 5 5 5 5 0 10 10 10 10 10 10 10 10 10 10 10 10 1	0.08 0.21 0.28 0.12 0.28 0.36 0.14	2 2 2 2 2 2 2	12 7 14 8 16 10 13	20 16 23 19 23 15 22	20 16 34 11 37 16	4.10 3.88 4.06 3.43 3.76 2.63 4.47	<10 <10 <10 <10 <10 <10 <10 <10 <10	0.44 0.27 0.50 0.33 0.62 0.34 0.56	346 196 711 233 794 531 737	4 6 5 2 128 2 4	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	23 12 27 21 27 13 22	1270 720 560 340 690 2830	30 18 30 28 24 18 22	<5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5 14 24 8 25 8	<0.01 0.02 <0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10 <10 <10 <10	52 64 63 52 54 63 63	<10 <10 <10 <10 <10 <10 <10	3<1	124 125 210 52 97 130
1 10 19 28 36 45 54	t: L106N 9400E L106N 9850E L108N 9800E L108N 10150E L108N 10550E L110N 9800E L110N 10300E	0.4 0.2 0.3 0.4 <0.2 0.2 0.2	2.41 1.63 2.11 2.30 1.69 1.18 1.97 1.04	10 \sqrt{5} 15 10 10 \sqrt{5} 5 80	90 135 190 135 140 125 70 35	5 5 5 5 5 5 10 V 5	0.08 0.21 0.28 0.12 0.28 0.36 0.14 0.48	2 2 2 2 2 2 2 2 2	12 7 14 8 16 10 13	20 16 23 19 23 15 22 58	20 16 34 11 37 15 16	4.10 3.88 4.06 3.43 3.76 2.63 4.47 1.91	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0.44 0.27 0.50 0.33 0.62 0.34 0.56	346 196 711 233 794 531 737 298	4 5 2 128 2 4	<0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01	23 12 27 21 27 13 22 28	1270 720 560 890 340 690 2830 430	30 18 30 28 24 18 22 29	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5 14 24 8 25 25 8 11	<0.01 0.02 <0.01 0.01 0.01 0.01 <0.01 0.01	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	52 64 63 52 54 63 37	<10 <10 <10 <10 <10 <10 <10 <10	3<1	124 125 210 52 97 130 36
1 10 28 36 45 54	t: L106N 9400E L106N 9850E L108N 9800E L108N 10150E L108N 10550E L110N 9800E L110N 10300E	0.4 0.2 0.3 0.4 <0.2 0.2 0.2	2.41 1.63 2.11 2.30 1.69 1.16 1.97	10 <5 15 10 10 5 5	90 135 190 135 140 125 70	5 5 5 5 5 5 10 V 5	0.08 0.21 0.28 0.12 0.28 0.36 0.14	2 2 2 2 2 2 2	12 7 14 8 16 10 13	20 16 23 19 23 15 22	20 16 34 11 37 16	4.10 3.88 4.06 3.43 3.76 2.63 4.47	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0.44 0.27 0.50 0.33 0.62 0.34 0.56	346 196 711 233 794 531 737	4 6 5 2 128 2 4	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	23 12 27 21 27 13 22	1270 720 560 340 690 2830	30 18 30 28 24 18 22	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5 14 24 8 25 25 8 11	<0.01 0.02 <0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10 <10 <10 <10	52 64 63 52 54 63 37	<10 <10 <10 <10 <10 <10 <10	3<1	124 125 210 52 97 130
1 10 19 28 36 45 54	t: L106N 9400E L106N 9850E L108N 9800E L108N 10150E L108N 10550E L110N 9800E L110N 10300E	0.4 0.2 0.3 0.4 <0.2 0.2 0.2	2.41 1.63 2.11 2.30 1.69 1.18 1.97 1.04	10 \sqrt{5} 15 10 10 \sqrt{5} 5 80	90 135 190 135 140 125 70 35	5 5 5 5 5 5 10 V 5	0.08 0.21 0.28 0.12 0.28 0.36 0.14 0.48	2 2 2 2 2 2 2 2 2	12 7 14 8 16 10 13	20 16 23 19 23 15 22 58	20 16 34 11 37 15 16	4.10 3.88 4.06 3.43 3.76 2.63 4.47 1.91	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0.44 0.27 0.50 0.33 0.62 0.34 0.56	346 196 711 233 794 531 737 298	4 5 2 128 2 4	<0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01	23 12 27 21 27 13 22 28	1270 720 560 890 340 690 2830 430	30 18 30 28 24 18 22 29	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5 14 24 8 25 25 8 11	<0.01 0.02 <0.01 0.01 0.01 0.01 <0.01 0.01	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	52 64 63 52 54 63 37	<10 <10 <10 <10 <10 <10 <10 <10	3<1	124 125 210 52 97 130 36
1 10 19 28 36 45 54	t: L106N 9400E L106N 9850E L108N 9800E L108N 10150E L108N 10550E L110N 9800E L110N 10300E	0.4 0.2 0.3 0.4 <0.2 0.2 0.2	2.41 1.63 2.11 2.30 1.69 1.18 1.97 1.04	10 \sqrt{5} 15 10 10 \sqrt{5} 5 80	90 135 190 135 140 125 70 35	5 5 5 5 5 5 10 V 5	0.08 0.21 0.28 0.12 0.28 0.36 0.14 0.48	2 2 2 2 2 2 2 2 2	12 7 14 8 16 10 13	20 16 23 19 23 15 22 58	20 16 34 11 37 15 16	4.10 3.88 4.06 3.43 3.76 2.63 4.47 1.91	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0.44 0.27 0.50 0.33 0.62 0.34 0.56	346 196 711 233 794 531 737 298	4 5 2 128 2 4	<0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01	23 12 27 21 27 13 22 28	1270 720 560 890 340 690 2830 430	30 18 30 28 24 18 22 29	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5 14 24 8 25 25 8 11	<0.01 0.02 <0.01 0.01 0.01 0.01 <0.01 0.01	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	52 64 63 52 54 63 37	<10 <10 <10 <10 <10 <10 <10 <10	3<1	124 125 210 52 97 130 36
1 10 19 28 36 45 54	t: L106N 9400E L106N 9850E L108N 9800E L108N 10150E L108N 10550E L110N 9800E L110N 10300E	0.4 0.2 0.3 0.4 <0.2 0.2 0.2	2.41 1.63 2.11 2.30 1.69 1.18 1.97 1.04	10 \sqrt{5} 15 10 10 \sqrt{5} 5 80	90 135 190 135 140 125 70 35	5 5 5 5 5 5 10 V 5	0.08 0.21 0.28 0.12 0.28 0.36 0.14 0.48	2 2 2 2 2 2 2 2 2	12 7 14 8 16 10 13	20 16 23 19 23 15 22 58	20 16 34 11 37 15 16	4.10 3.88 4.06 3.43 3.76 2.63 4.47 1.91	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0.44 0.27 0.50 0.33 0.62 0.34 0.56	346 196 711 233 794 531 737 298	4 5 2 128 2 4	<0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01	23 12 27 21 27 13 22 28	1270 720 560 890 340 690 2830 430	30 18 30 28 24 18 22 29	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5 14 24 8 25 25 8 11	<0.01 0.02 <0.01 0.01 0.01 0.01 <0.01 0.01	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	52 64 63 52 54 63 37	<10 <10 <10 <10 <10 <10 <10 <10	3<1	124 125 210 52 97 130 36
1 10 19 28 36 45 54	t: L106N 9400E L106N 9850E L108N 9800E L108N 10150E L108N 10550E L110N 9800E L110N 10300E	0.4 0.2 0.3 0.4 <0.2 0.2 0.2	2.41 1.63 2.11 2.30 1.69 1.18 1.97 1.04	10 \sqrt{5} 15 10 10 \sqrt{5} 5 80	90 135 190 135 140 125 70 35	5 5 5 5 5 5 10 V 5	0.08 0.21 0.28 0.12 0.28 0.36 0.14 0.48	2 2 2 2 2 2 2 2 2	12 7 14 8 16 10 13	20 16 23 19 23 15 22 58	20 16 34 11 37 15 16	4.10 3.88 4.06 3.43 3.76 2.63 4.47 1.91	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0.44 0.27 0.50 0.33 0.62 0.34 0.56	346 196 711 233 794 531 737 298	4 5 2 128 2 4	<0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01	23 12 27 21 27 13 22 28	1270 720 560 890 340 690 2830 430	30 18 30 28 24 18 22 29	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5 14 24 8 25 25 8 11	<0.01 0.02 <0.01 0.01 0.01 0.01 <0.01 0.01	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	52 64 63 52 54 63 37	<10 <10 <10 <10 <10 <10 <10 <10	3<1	124 125 210 52 97 130 36
1 10 19 28 36 45 54	t: L106N 9400E L106N 9650E L108N 9600E L108N 10150E L108N 10550E L110N 9600E L110N 9600E L110N 10300E	0.4 0.2 0.3 0.4 <0.2 0.2 0.2	2.41 1.63 2.11 2.30 1.69 1.18 1.97 1.04	10 \sqrt{5} 15 10 10 \sqrt{5} 5 80	90 135 190 135 140 125 70 35	5 5 5 5 5 5 10 V 5	0.08 0.21 0.28 0.12 0.28 0.36 0.14 0.48	2 2 2 2 2 2 2 2 2	12 7 14 8 16 10 13	20 16 23 19 23 15 22 58	20 16 34 11 37 15 16	4.10 3.88 4.06 3.43 3.76 2.63 4.47 1.91	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0.44 0.27 0.50 0.33 0.62 0.34 0.56	346 196 711 233 794 531 737 298	4 5 2 128 2 4	<0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.02 0.02	23 12 27 21 27 13 22 28 29	1270 720 560 890 340 690 2830 430	30 18 30 28 24 18 22 29 29 29	5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	20 20 20 20 20 20 20 20 20 20 20 20	5 14 24 8 25 25 8 11 10	<0.01 0.02 <0.01 0.01 <0.01 <0.01 <0.01 0.06 0.05	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	52 64 63 52 54 63 37	<10 <10 <10 <10 <10 <10 <10 <10	3<1	124 125 210 52 97 130 36
1 10 19 28 36 45 54	t: L106N 9400E L106N 9850E L108N 9800E L108N 10150E L108N 10550E L110N 9800E L110N 9800E Standard: Standard:	0.4 0.2 0.3 0.4 <0.2 0.2 0.2	2.41 1.63 2.11 2.30 1.69 1.18 1.97 1.04	10 \sqrt{5} 15 10 10 \sqrt{5} 5 80	90 135 190 135 140 125 70 35	5 5 5 5 5 5 10 V 5	0.08 0.21 0.28 0.12 0.28 0.36 0.14 0.48	2 2 2 2 2 2 2 2 2	12 7 14 8 16 10 13	20 16 23 19 23 15 22 58	20 16 34 11 37 15 16	4.10 3.88 4.06 3.43 3.76 2.63 4.47 1.91	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0.44 0.27 0.50 0.33 0.62 0.34 0.56	346 196 711 233 794 531 737 298	4 5 2 128 2 4	<0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.02 0.02	23 12 27 21 27 13 22 28 29	1270 720 560 890 340 690 2830 430 450	30 28 24 18 22 29 29	< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5 14 24 8 25 25 8 11 10 DRY	<0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	52 64 63 52 54 63 37	<10 <10 <10 <10 <10 <10 <10 <10	3<1	124 125 210 52 97 130 36