GEOPHYSICAL, GEOCHEMICAL AND TRENCHING ASSESSMENT REPORT

on the

Joseph E.L. Lindinger, P.Gea.

Table of Contents

SUMMARY 1
INTRODUCTION AND TERMS OF REFERENCE 3
PROPERTY DESCRIPTION AND LOCATION 3
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY 5
HISTORY 9
GEOLOGICAL SETTING 10
Regional Geology 10
PROPERTG GEOLOGY 10
DEPOSIT TYPES 15
MINERALIZATION 15
2006 EXPLORATION PROGAM 18
Gridmeng. 18
Grofnd Magnettc Suryey. 18
ROCI GEOCHEMISTRY AND PROSFECTING. 19
Trenching 19
SAMPLING METHOD AND APPROACH 19
Son samples 19
Rock Sampies 19
SAMPLE PREPARATION, ANAIYSES ANO SECURITY 19
DATA VERIFICATION 20
INTERPRETATION AND CONCLUSIONS 21
MAGNETOMETER SURVEY 21
SOL SAMPLING 22
ROCI SAMPLNG 22
Trencining 22
Dents area 22
Mike Area. 23
Preilminary Denis-Mire Sfnopsis 23
RECOMENDATIONS 26
REFERENCES 29
CERTIFICATE AND SIGNATORY PAGE 31
APPENDIX 9 - ANALYTICAL RESULTS I
APPENDIX 2-2006 ROCK SAMPLE DESCRIPTIONS AND SUMMARIZED ANALYTICAL RESULTS. II

Geophysical, Geochemical and Trenching Assessment Report on the Broken Hill - Leo Property
 Fimer Explorations Inc.

List of Tables

TABLE I - BROKEN HILL - LEO PROPERTY MINERAL CLAIMS 4
TABLE 2 - SOIL STANDARD 20
TABLE 3 - CONTAMINATION PROFILE 20
TABLE 4 - ROCK STANDARD COMPARISON 21
TABLE 5-I006 EXPLORATTON EXPENDITURES 26
TABLE 6-RECOMENDED PROJECT EXPENDITJRES 28
List of Figures
FIGURE 1 - PROPERTY LOCATION MAP 6
FIGURE 2 - TOPOGRAPHY AND ACCESS 7
FIGURE 3 -MINERAL TENURE MAP 8
FIGURE 4-REGIONAL GEOLOGY 12
FIGURE 5 - PRELIMINARY PROPERTY GEOLOGY AND NDDEX PLAN 13
FIGURE 6 - GEOLOGICAL LEGEND-BROKEN HILL PROJECT 14
FIGURE 7 - DENIS GRID - CONTOURED GROUND MAGNETIC RESULTS BACK POCKET
FIGURE 8 - PAUTLER SHOWING AREA - CONTOURED GOROUND MAGNETIC DATA
BACK POCKET
FIGURE 9 - 2006 DENIS GRD - CONTOURED SOIL GEOCHEMICAL RESULTS (PPM AG, PB, ZN) AND ROCK SAMPLE LOCATHONS BACK POCKET
FGGURE 10-206 DENIS GRID - CONTOURED SOIL GEOCHEMICAL RESULTS (PPM CU, NI PPB AU)
FIGURE 11 - MIKE FLOAT SHOWING TRENCH LOCATION MAP 24
FIGURE 12 - TRENCH M-1 24
FIGURE 13 -TRENCH M-2 25
FIGURE 14 - TRENCH M-3 25

Geophyskal, Geochemical and Trenching Assessment Report on the Broken Hill - Leo Property

 Timer Explorations inc.
Summary

The 133 unit (approximately 3,325 hectares) Broken Hill - Leo Minetal Property is located approximately I50 kilometres north-northeast of Karnloops and is centered 6 kilometest northeast to east of the village of Avola, British Columbia on NTS map sheea 082M/14.

The property covers eight showings and oceurenoes discovered between September 2000 and September 2004 over a strike distance of 6 kilometers. These are the Vista ($15.9 \% \mathrm{Zn}$ over 0.3 m), Navan $\mathrm{A}(21.5 \% \mathrm{Zn}, 3.8 \% \mathrm{~Pb}$ and $1 \mathrm{l} \mathrm{g} / \mathrm{Ag}$ in float), Navan B, Navan C (foat), Navan D (float), Pautler (10.2% Zn over 0.33 meters), Mike (7 to $20 \% \mathrm{Zn}$ in float over a 250 meter distance) and Denis (15.5% zinc over 20 cm), $1.68 \mathrm{~g} / \mathrm{t}$ Au in subcrop) occurrences. All showings were discovered by Leo Lindinger with the exception of the Yautler and Denis showings which were discovered by Jean Pautler and Denis Delisle respectively

On October 7, 2002, Cross Gold Copporation entered into an option agreement with Mr. Linditger to acquire a 100 percent right, title and interest in the Broken Fill-5eo property, subject to a 2% purchasable Net Smelter Retum (NSR). To fulfill the terms of the egreement, Cross Gold Goporation (wes to make $\$ 46_{r} 200$ in cash payments and comiplete $\$ 270,000 \mathrm{in}$ work commitments over a 4 -year period. On October 25, 2003, B2B Solutions lac. aceuired the Option from Cross Gold Copp. On August 10, 2004, B28 Solutions Inc. changed is name to Timer Explorations Inc..

The Broken Hill - Leo Property is underlain by highly deformed, bigh-grade metamorphic rocks of the Proterozoic to Paicozoic Shuswap Metamephic Complex within the pericratonic Kootenay Terrane. Similar rocks to the east are assigned to the Proterozoic Horsethief Creek Group. The Group consists of three lithological packages; a lower amphübolite-biotite greiss unit, : middie biotite goneiss - calc-siticate unit wish minor marble and chert, and an upper mixed siliceons biotite schist and quartzite unit. The middle unit bosts most known zincolead-riluer deposits in the region, including the nearby Ruddock Creek (discovered 19\%1), CK (discovered 1972) and Finn (discovered 1978) occurences. All lithologies are intruded by Devonian orthogneriss, Cretweoous mil Teriary fetsic stocks, pluges sills and dykes. Late Tertiary andesitic to mafte plugs and dykes, and lamprophyric dykes are locally common. Olacial till cover is extensive with a generally thin burt locally thick venecr and fluvial and lecustrine deposits in occupy most lower relief areas.

The Broken Hill - Leo Propety covers a 9 kilometre strike extent of the carbonate straigraphy on the east side of the North Thompson River valley, fevourable for hosting high-grace zinc-lead-sifver 'Shuswap-style' mineraliztion similar to the aearby Rudeock Creek, CX and Finn Deposits. To date eight showings are known. The Visto Showing is the most northwesterly known occurrence. The sub surfice Paurler occurrence is 500 meters to the east, and the 4 Navan Showings are tocated 1.3 bo southeast of the Vista Sbowing. The Mike float showing is socaled 4 kilometres south of the Navan occurrense and the Denis showing is 500 mpters antheast of the Mike showing. The Denis showing also hosts gold enriched massive pymiotite veins. The Finn prospect liss 2 kikmeters aorth of the property

The property has no recorded mineral exploration bistory prior to the September 2000 discovery of the Vista and Navan occurences. Cassidy Gold Corp. optioned the discovery claims and expanded the property. The Mike showing was discovered later that month. From late September to carly February 2001, Cassidy established a control grid and completed a $\$ 160,000$ multi-phased, geocherrical, gravity and diamond drilling program over parts of the Broken Hill-Leo property to test for Shuswap style zinc-lead-silver mineralization.

Results from 2000 geochemical progran partially outlined several strong zinc, lead and silver geochemical soil momalies. The rock sampling program detailed and expanded the mineralization in and arcund the known showings.

The gravity survey was completed over the prospective area of moderate tersain between the Vista and Navan showings and produced several moderate intensity anomalies considered worthy for drill testing.

In early 2001, Cassidy compteted a 930 -metre, 13 -hole dimond drill program. The holes tested approximately 1.2 filometers of strike length of the mineralized horizon between the Vista and Navan showings, mainly on gravity aromaties and the down dip projections of known mineralization at the Vistr , ind Naven Showings. The drill program was successful in intersecting down dip extensions of both the Vista and Navan mineralized horizons and resulted in the discovery of the Pauter cceurrence. The driling also indicated that the Vista, Navan and Pautler horizons are the same.

The Pautler prospect occurs within mineralized portions of the Viste Horizon approximately 500 metres east-southeast of the Vista Showing and was intersected in DDH-BH-01-03 and DDH-BH-01-13. The mineralized intersection in DDH-BH-$01-03$ although interrupted by a pegnatite sill graded $1.2 \% \mathrm{Zn}$ over 1.1 metres (trut width). A weighted average of the folded mineralized more in hole DDH-BH-01-13 graded $2.5 \% \mathrm{Zn}$ over 3.9 metres (2.3 metres true width).

Geophysical, Geochemical and Trenching Assessment Report on the Broken Hill - Leo Property Timer Explorations Inc.
 March 20. 2007

At the Navan prospect DDH-日H 01-06 successfully intersected the Navan Horizon 25 metres down dip from the surface showing. The mineratization was disrupted by a pegmatite sill. This diluted intersection grades $1.2 \% \mathrm{Zn}$ with $0.1 \% \mathrm{~Pb}$ over 0.25 metres. The Navan Horizon should also have been intersected in DDH-BH 01-05, 01-07 and possibly in the very top of DDH-BH-01-08, but the stratigraphy has been invaded by pegmatitic leucogranite-tonalite intrusives and updip may have feen folded up and skied out.

B2日 Sotutions Inc. completed a lare October 2003 soil sampling program in the Mike area, co-incident with a propertywide geological mapping and rock sampling program. The soil sample results indicate that the Mike zone can be traced as a combined zinc, lead, silver and manganese anomaly for 700 meters. Smaller anomalies oceur to the rorthwest and south. The anomaly is truncated to the southeast by thick masking glacial till. The mapping-prospecting program followed the prospective carbonate borizon at the Mike Zone to the northwest, and an the Leo claims a fower elevation carbonate horizon was followed. No new zinc mineralization was discovered, however a bedrock showing of sulphide bearing skanified carbonate or "Bizar style" bismuth-copper-tungsten+/-gold mineralization, in the northern part of the Mike Grid was discovered.

A September 2004 property wide geochenical soil, silt, moss mat and rock sampling progranb was completed by Timer Explorations lic. (renemed from B28). The Denis Showing wis discowered 500 meters northeast of the Mike showing. Semples of a 20 cm thick oroken sphaierite rich massive sulphide exposure returned 15.5% zinc, and 11.0% zinc and 2.2% lead. A nearby float sample of a massive pyntorite vein retumed $1.28 \mathrm{~g} / \mathrm{g}$ gold. The geochenical anomalies south of the Mike and torth of the Nayan showing were expanded.

In June 2005, a small 5 thole, 183.9 meter dianond drilling progran was mompleted in the Vista area (two holes), the Paulter occurrence (2 holes) and the Navan area (one hole). Sub economic zinc-iead-silver mineralization was intersected in the Parter area. Hote BH-04-14 intersected 5.88% zinc over a drili width of 0.83 meters. Hole BH 04-15 intersected 10.2% zinc over a drill width of 0.33 meters with a wider interval of 2.1% zine over 1.9 meters. Both boles are near to and bracket to the nortiwest and southeast hole BHO1-03. The intersection in Hole 15 is $\mathbf{2 5 - 3 0}$ meters down dip from the intersection int Hole BH-DDH-01-33. Hole BH05-16, 150 meters east of the Vista showing tucountered a nurrow 5.96\% zinc over 0.15 meters in a horizon eqpartatty higher than the Vista horizon. BH-05-17 it the sarne locationt failed to encounter any significant mineralization. Hole BH-c5-18 at the Navan area was abar-doned before reaching the Navan A and B horizon targets.

Dusing October and November 2006 a geochemitical (multielement JCP pius gold by AA) geophysical (ground magnetometer; and beckhoe trenching progran was completed over the Denis showing area. Tranching and grount magnetometer surveys were completed own the Mike area and a preliminay ground magnetorneter survey was completed over the fautler ares. The anagnetometer was able to distinguish betwern calc silicate and other lithologies including probnbly late Tertiary intrusives and or magnetite skam of calc-silicate. The geochemistry outlines several anomalies northeast and northwest of the Denis showing. The trenching progran exposed more zine bearing boulders near the discovery area at the Mike showing. Tranching failed to expose bedrock mineralization at the Denis showing. Preliminary geological observations indicate the prospective zinc bearing horizon between the Mike and Denis showing occurs as at least two possibly isoclinally folded layers in a synfom.

In conclusion, the areas north and east of the Vista occurrence remains to be drill sested. The inc mineralized zone at the Pautler occurrence is opens to the north and east. The strong zinc and lead anomalies down hill from the Navan B and C showings require additional exploration including trenching and drill testing. The Mike 700 meter by 100 meter soil anomaly and a subparallel anomaly 200 meters south has been determined by trenching to originate north and east of the float. Drill targets exist in a synformal structure northeast of the Mike and west of the Denis showing. The Denis zincgold showing produced several zinc-lead anomalies that require foliownp work, including drilling. The prospective horizon between the 2006 Denis grid and the Fowler Lake is a high priority target for additional surface work. The prospective stratigraphy between the Vista-Navan-Mike Horizon and the bottom of the North Thompson River valley, the extensions of the calc-silicate horizon southeast of the Navan occurrence, and many other prospective areas of the property remain poorly explored. Prospective struigraphy needs to be traced and mapped along strike and down-dip. In particular, fold closures need to be further defined in order to target areas of potential thickening. Excellent infrastructure add to this property's attractiveress.

A $\$ 200,000$ explonation budget is recommended, beginting with a $\$ 6 \$, 000$ property wide programm of grid rehabilitalion and construction, detailed geological and structural mapping, prospecting, rock and soil geochemical sampling, and more ground magnetic surveys. A $\$ 25,000$ excavator trenching program of the Vista, and Denis showings, and any newly discovered mineralization is recommended. And finally a $\$ 90,000,850$ meter diamond drilling program is proposed for Pautler, Navan, Mike, Denis and Vista areas. Auditional exploration expenditures are contingent on exploration success.

Introduction and Terms of Reference

The work documented in this report discussed the results of a 2006. gmond magnetic, soil and rock sampling and trenching program completed on the Broken Hill-Leo property between September 15 and Novermber 20, 2006. This exploration program was funded by and is completed for Times Explorations inc.

The conclusions made and recommendations for future exploration expencitzures in this report are those of J. E.L. (Leo) Lindinger, P.Geo.

Property Description and Lacation

The Broken Hill-Leo Property covers approximately 3325 bectares in east-central Brisish Columbia, 150 kilometres north-northeast of Kamloops, B.C., within the Kamloops Mining Division (Figure 1). The centre of the property sits at $55^{\circ} 50^{\circ} \mathrm{N}$ and $\mathrm{t} 59^{\circ} \mathrm{t} 5^{\prime} \mathrm{W}(\mathrm{NTS} 082 \mathrm{M} / 14$) and 5744540 N and 345500 mE , UTM Grid Zone 11 (NAD 83).

The property consists of eight 20 -unit modified grid and 482 -post contiguous mineral claims (Figure 3). Table 1 contains information on the individual claims. The claims are currently 100% owned by Leo Lindinger (FMC 1 15758). No legal survey has been completed on the property.

Timer Explorations Inc. (formerty B2B Solutions lic.) holds an option to acquire a $!00 \%$ right, title and interest int the property, subject to a 2% aet smelter returas royalty reserved in favour of Leo Lindinger, pursuant to an October 7, 2002 Property Option Agreement with Leo Lindinger with Cross Gold Corp. On October 25, 2003, B2B Solutions Inc. (now Timer Explorations inc.) acquired the Option from Cross Goid Corp. In order to utaintain the Option in good standing, Timer Expkorations Inc. must: (1) make scheduled cash payments to Leo Lindinger totalling \$46,200 by October 7,2005 (completed); and (2) incur at least \$270,000 in exploration and/or development expenses on the Broken Hills-i.eo Property by August 31, 2007 pursuant to a revised Option Agreement dated September 26, 2006. The net smeltet teturn royalty may be bought for $\$ 1,500,000$.

The Broken Hill-ieo property is aot subject to any known environmental liabilizies. A portion of the property is within an ecological rescrve surounding Fowler Lake. The surface rights are owned by the Crown.

The claims cover the recently discovered Vista, Navan, Mike and Denis high grade carbonate associated risct/lead + /-silver occurrences (Figure 5). There are also indications of intrusion associsted gold-bismuth-copper veins There are no known mineral resburtes, mineral reserves or mine workings on the property.

The work program discussed in this report has been filed with the Ministry of Energy, Mines and Petroleum Resources under Statement of Work Event numbers 4109788 , and 4138828.

In preparation for additional planded but deferred trenching and drilling program a $\$ 1,500.00$ bond with the Ministry of Energy and Mine (MX-4-369) has been created and maintained.

Geophysical, Geochemicat and Trenching Assessment Report on the Broken Hill - Leo Property Timer Explorations Inc.

Table 1-Broken Hiall Leo Property Mineral Clairas

Claim	Record No.	Enits	Expiry Date	Ctaim	Record No.	Units	Expiry Date
VISTA	$3 \mathrm{S075} 5$	4	November 2, 2008*	NAVAN 15	389786	1	November 2.2008*
VISTA 1	380753	1	November 2, 2008**.	NAVAN 17	360788	1	November 2, 2008*
VISTA 2	380754	1	November 2,2008*	NAVAN 18	380789	1	November 2, 2008*
VISTA 3	380755	1	November 2, 2008*	NAVAN 19	360790	1	Nevember 3, 2008*
VISTA 4	380756	1	Noveriber 2, 2008*	NAVAN 20	380791	1	Novermber 3, 2008*
VISTAS	380757	1	November 2, 2008*	NAVAN 21	360792	1	Novtmber 3, 2008*
VISTA 6	380758	1	Nowanber 2, 2008*	NAVAN 22	380793	1	November 3, 2908*
VISTA?	380759	1	November 2, 2008*	NAVAN 23	380794	i	November 3, 2008*
VISTA 8	380760	1	Nowanber 2, 2008*	NAVAN 24	380793	I	Norember 3, 2008*
VISTA 10	380762	1	November $2,2008^{*}$	NAVAN 25	380796	I	November 2, 20008*
VISTA 11	380763	1	Noventere 2,2008*	Navan 26	3008099	1	November 2, 2008*
VISTA 14	380766	1	Nowernber 2, 2008*	MIKE	380890	20	Nowember 3, 2008*
VISTA 15	380767	1	Noveniler 2, 2008*	VISTA A	3009991	8	Nowember 2, 2008**
VISTA 16	360768	1	November 2,2008*	MIK1	381767	I	Nowember 2, 2008*
VISTA 17	389769	1	Noventber 2, 2008*	MIK2	381768	1	Nowember 2, 2008*
VISTA 18	380770	1	Nowtruber 2, 2008*	MIKY	381777	8	November 3, 2008**
VISTA 19	380771	1	Nowtanber 2, 2008*	IMMM	381778	3	Nowtmber 3, 2008*
Navano	380772	1	November 3, 2008**	DIAN	381779	2	November 2,2008*
NAVAN 1	380773	I	Novermber 2, 2000**	EEO 1	381891	20	November 2,2008*
NAVAN2	380774	!	November 2, 2008*	LEO2	381892	20	November 2, 2008*
NAVAN 3	380775	1	Noveruber 2, 2008*	LLI	381393	1	Nevanber 2, 2008*
NAVANS	380776	:	Nowauber 2. 2008*	12	381894	1	Novtmber 2, 2008*
NAVAN6	380777	1	November 3, 2008*	Li3	38:595	1	Nowtember 2, 2008*
NAVAN ;	. 380778	2	Noveniber 3, 2008*	LT4	3818\%	1	Novtember 2, 2008
NAVAN 8	380779	1	Noventrer 2. 2008*	Lis	381597	1	November 2, 2008*
NAVAN9	380780	1	November 2.2008*	LLS	381898	1	November 2, 2008*
NAVAN 10	-380781	1	Nowernber 2, 2008*	LL?	381899	1	Nowember 2, 2008*
NAVAN 11	; 380782	1	November 2. 2008*	Lis	381900	1	Nowember 2, 2008**

* upon acceptance for assessment credit of the work documented in this report.

Accessiblity, Climate, Local Resources, Infrastructure and Physiography

The Broken Hili-Leo property is located on the east side of the steep-sided North Thompson River valley, 150 km north-northeast of Kamloops, and 6 km northeast and east of the village of Avola, British Columbia (Figure 2). The region lies at the northwest end of the Shuswap Highland portion of the Interior Plateau, in an area of moderate to steep topographic relief. The Norti Thompson River occupies a south draining, steeply incised valley, approximatefy t 200 metres below the surounding plateau. The property ranges from 580 metres elevation in the North Thompson valley to $\mathbf{2 , 7 5 0}$ metres on the Mike, jimn and Dian claims east and south of Shannon Lake. The vegetation on the lower parts of the property consists of lodgepole pine, interior fir and black spruce. Balsam predominates at upper elevations, with lodgepole pine on dry, substrate deficient cliffs. These pine groves are currently being innpacted by the Mountair Pine beetle infestation.

Road access to the property is via Highway 5 (Yellowhead Highway and east onto the Shannon Creek Forest Service Road, 0.5 kilometres north of Avola. The Shannon Creek FSR crosses through the property between 12.J and 19 kilometres. The Comice logging road originates at the ! i S kilometres mark of the Shamon Creek FSR, and nuns north onto the property near the 3 kilometre mark, accessing the areas west of Fowier lake. The northeast directed now deactivated Fowler logging road originates at 17.5 kilometres on the Shannon Creek FSR and accesses the eastcentral side of the property eventualiy meeting the Cornice logging road northeast of Fowler Lake. The south directed Dastin-Shannon spur originates at 15.5 kilometres on the \$hannon Creek FSR and accesses the east side of Shannon Lake. Road access to the north part of the property is vis Highway $\$, 19$ kilometres north of Avola, east onto the Finn Creek FSR, and soutl onto the Camp Creek logging yoand from the 10 kitometre mark.

Basic accommodation, food, and fuel are available in the village of Avola immedistely southeast of the property. The village of Blue River 20 kibutetres antio of the property, has good accommodations, food and fuel, and is serviced by Greytound Canada. Basic supplies can be obtained form Clearwater 70 kilometers west of the property. The City of Kamloops, located 190 road kilometres south, is the main centre of service and supply for the region. Logging is the primary resource activity in the region. Access to numerous equipment contractors are available on reladively short notice.

The CN Rail mainisine in the north Thompson River valley is less than 2.5 kilometres west of the property, A medium sized high tension power line strikes througin the west side of the valley. Gas and oil pipelines are located in the valley. Sufficient water and room for potential waste disposai, tailings storage, and processing plant sites afl exist in the general project area.

The elimate is moderately wet continental. Srowtall can exceed 4 metres at higher elevationts, sad rain showers are common in the summer and fall. Temperatures range from $-25^{\circ} \mathrm{C}$ in winter to $+30^{\circ} \mathrm{C}$ in summer. Most surface mineral exploration can be conducted between May and early November, Geophysical exploration, drilling and minting can take place year round.

Figure I - Property Location Map

Figure 2 - Topography and Access

Geophysical, Geochemical and Trenching Assessment Report on the Broken Hill - Leo Property

Figure 3 - Mineral Tenure Map

History

The oldest known significant zinc-lead-silver massive suiphide base metal discoveries in the region inciude Coton Belt (1905) and Rucdock Creek (1961) to the east in the Monashee Mountains. With increased access due to logging activity, occurrences such as the CK (1972) and Finn (1978) zinc-lead-silver massive suiphide deposits, Dimac tungsten skam, and the Tsio and Hydro molybdenum prospects were discovered. More recent discoveries include the Bizar $\mathrm{Au}-\mathrm{Bi}-\mathrm{Cu}$ veins (1998) east of Ground Hog Motuntain, the Readymix $\mathrm{Au}-\mathrm{Bi}-\mathrm{Cu}$ veins (2000) about 10 km to the west, and the Broken Hill massive sulphide showings (2000).

A government regional geochemical silt survey was compieted in 1972. Results indicate that drainages originating from the current Broken Hill - Leo property are moderately to weakly anomalous in zinc, lead and gold. Since 1979, various prospectors and mining companies have staked claims north, south and east of the area now covered by the Broken Hill - Leo Property.

Prior to the discovery of the Vista, Navap and Mike (Broken Hill) zincolead-sitver massive salphide showings in September 2000, mineral exploration on the current Broken Hitl ~ Leo Property was limited to prospecting.

In September 2000, the newly staked Broken Hill Property was optioned to Cassidy Gold Corporation. In October 2000, Cassidy conducted limited geolegical mapping and soil and rock sampling over approximately 5 square ketionetres in the central part of the Broken Hill Property. A total of 479 soil samples and 30 rock samples were collected under the supervision of Wamer Gruenwald, P.Geo. (Gruenwald, 2000). This program produced several open-ended soil anomalies. Subsequently, additiont claims were staked, including the Leo claims north of the Vista ares.

In December 2000, a gravity survey was compieted by Discovery Geophysics Ltd. (Kubo and Wcods, 2001). In late January and eariy Febnuary, 2001, a 13 hole, 930 metre diamond drill program was completed by LDS Diamond Driling Ltd. of Kamloops, B.C. The drill program targeted gravity and geocbemical anomalies and down dip extensions of the Vista and Navan mineralized horizons (Lindinger and Pautier, 2001).

Cassidy terminated the Option Agrement on September 6, 2001 ,
On October 7, 2002, Cross Gold Corporation entered into an optiot agreement with Mr. Lindinger to eara a 100 percent right, title and interest in the Broken Hill - leo property, subject to a 2% purchasabie net smelter return royalty.

On November 5, 2002, B2B Solutions Inc. entered into an option to acquire a 100 percent right, tile and interest in the property, subject to a 2% met smelter return toyaity reserved in favour of the underlying owner.

On October 2S, 2003, B2B Solutions Inc. acquired the Option on the Broken Hill - Leo Property from Cross Gold Corp.

Between October 25 and November 1, 2003, a program of soil sampling, geological mapping and rock sampling was compieted at a total cost of approximately $\$ 25,000$, prior to the November 2, 2003, tenure expiry date.

On August 10, 2004 B2B Solutions Inc. changed its name to Timer Explarations inc.
In Iate August and September 2004, a program of soil, moss mat and rock sampling was completed at a total cost of approximately $\$ 20,000$, prior to the September 15 , amended date to fillsil the work commitment tems of the Option Agreement. Further exploration requirements ander the Option Agreement were deferred till the summer of 2005.

During May and fune 2005 a small diamond drilling and trenching program was completed over the Vista, Pautler and Navan areas. This program was successful in extending the Pautler horizon with intersections of 5.88% zinc over a drill width of 0.83 meters and 10.2% zinc over a drill width of 0.33 meters with a wider interval of 2.1% zinc over 1.9 meters, and discovering a mineralized horizon itigher than the Vista

Geological Setting

Reglonal Geolagy

The northern Monashee Mounttirs are underiain by rocks of Kootenay Terrane within the Omineca Belt. The property is underlain by the Shuswap Meramorphic Complex consisting of late Proterozoic to early Paleozoic marine sediments and sare volcanic rocks, derived from the ancestral margin of North America (Wheeler 1992), and tentatively assigned to the Horsethief Creek Group (Gibson, 1991). The Compiex has undergone extensive metamorphism and muttiple episodes of deformation, due to collisional orogenic episodes during the Devonian, eariy Jurassic, mid to late Cretaceous and early to mid Tertiary (Figure 4). Coincident with these orogenic episodes, magmatic rocks intruded the rock package. Host lithologies underwent deep burial and deformation until the earliest Tertiary. Significant uplif, and erosion occuted from the mid to late Teriary. The uplift was accompanied by north trending trans-tensional (basin and range) faulting and contemporaneous emplacement of felsic to intermediate stock and dikes, and recent basaltic and lamprophyric dykes.

Property Geology

The Broken Hill - Leo Property is underlain by deformed upper amphibolite metamophic grade rocks of the Shuswap Metamorphic Complex portion of the pericratonic Kootenay Terrane. At least three phases of ductile to semi ductile deformation can be identified. The sequence is interpreted to consist of three distinct lithological packages that are usually but not universally strongly intruded by pegmstite sills and dykes (Evans, 1993).

The overall stratigraphic sequence of the property has not been mapped in any detail (Figure 5). The general lithologic trend strikes to the north to west with moderate to steep east dips, however many local variations occur. A series of parallel late stage open and zupright folds plunge to the east. The general stratigraphy near the mineralized horizons is the Vista and Navan areas is somewhat better known and is described by Lindinger and Pautler (2901) as follows:
"The lowest structural peckege consists of amphicolite witt lesser diotite gneiss and forms a thick monotoncus sequeace. This is overlain by a sequence dominated by biotite gneiss The third package consists of calc-silicate rocks with minor marble and chert. This paciage hosts the known zinc-leed-silyer mineralization at the Vista, Navan and Mike Showings, on the property. The Broken Hill-Leo property covers an unexplored 9 km extent of the favorrable lithology. In addition the Finp and Pica zinc-kead-silver occurrences lie 4 km and 3 km to the rorth-northwest of the jroperty, respectively (Evans, 1993).

The rocks, athough thighly folded, have a common north to northwesterly strike with moderate easterly dips. Secondary and tertiary fold structures observed elsewhere, inciude bate easterly trending roli folds that may reflect larger structures.

Invading the host lithologies is an augen orthogneiss of assumed Devonian Age, which has been observed along the east side of the property. The rocks have been further intruded by weakly deformed to massive leucogranites of late Cretaceous and early Tertiary ages. Accompanying andfor post dating in part, the larger intrusive bodies, are at least two generations of coarse grained leucogranite intrusions, including pegmatite. These occur as tabular to highly irregular cross cutting and concordant pods, masses, dykes ank sills. Undeformed mid Tertiary (and later?) intrusions include grey 'dacitic' feldspar porphyry stocks and dykes intrude steeply dipping brittle tensional fractures. Very late melanocratic lamprophyric dykes also intrude similar structures. (Wheeler $1992, \mathrm{pp} .508,514$, and Lindinger, personal observations).

The carbonate forizon associated with Mike Showing mineralization appears to be shallowiy dipping near the showing, gradually steepening to the northwest becoming nearly vertical at the property boundary.

The southeast striking projection of the carbonate horizon from the Navan area to the Denis showing appears to be shallowly south west dipping west of the Denis showing.

North of the north striking, east dipping Navan A showing is the nerthwest striking southeast dipping Navan B showing. The subparrallel slope and mineralized stratigraphy is probably responsible for the large zinc-lead soil anomaly in this area. These radical changes in dip may be caused by late rotational fault movement and or stoping by the large felsic plug underlying Fowler Lake to the east.

The carbonate horizon extending south of the Finn Occurrence 3 kilometers north of the Broken hill property appears to be east dipping with both north and south plunging open fold sections. This fold pattern appears to be a stage 3 event. Tight to isoclinal F1 folds were observed in massive carbenate horizons 1.5 km nort of the property boundary.

Soil sampling of the prospective carbonate horizons at the Mike and Denis areas indicate possibie F1 fold repetition of the mineralized horizon(s) and a F3 synform between and to the north of the Mike and Denis showings.

Figure 17.30. Soulheastern Omineca Belt showing the dislribution of lertanes, some of the regural structures, and the location of slinctural cross-sections in Figures 17.40, 17.41 and 17.44.
FIGURE 4 - REGIONAL GEOLOGY
From Wheeler, 1992. Page 608

FIGURE 6

GEOLOGICAL LEGEND-BROKEN HHLL PROJECT to accompany Figure 5 (2005 amengied)

TERTIARY

TDYKE \quad Grey fine to medium grainedintermediate intrusive rock. Fine to medium grainediomblende and feldspars in a grey aphanitic groundmass. Fautler Unit 6)

CRETACEOUS AND/OREarly TERTIARY

PEG. -Peguatite sitils and dykes. Leucocratic medium but usually coarse grained quarplagioclase biotite or muscovite intrusive. Often 'contaminated' with partisllyssimilated wali rocks. (Pautler Unit 5)

GRANO- Leococratic fine grained granodioritic intrusive. Fautler Unit 4)
QPIOR or TONA Leucocratic quartz diorite. Ususlly fine to medium grainedMay grade to pegmatite.

PROTEROZOIC to PALAEOZOIC: KOOTENAY TERRANE (Shuswap Metomorphle Comples)

DEVONLAN?

ORTHGN -Feldspar auger orthogneiss ranges from dionitic to quartz dioritic. (not seen in dimbe).

PROTEROZOIC?-HORSETHEF CREEK GROUP?

QFGN \quad Pale grey massive to laminated quatzo feldspathic gneiss with minor biotite and muscovite
BIOGN \quad Metapelitic medium grained usually siliceous biotite greiss. Fautler Unit 2)
BIOGNSIL Highly siliceous Biotite Gneiss (incorporated into Pautler Unit 2)
CALCSIL -Red-pink to grten usually coarse grain- coarsely bansed garneamphibolequartz calc silicate and skarn with remnant calcite rich pods. Pautler Unit 3)

MARB -Lewcocratic grey to white crystaline marbieOften contains and grades into wollastonite and actimolite games skam and catc silicate(Pautler Enit 3-mb)

LST - Limestone. Varicoloured cyptocrystalline carbonate rock recrystallizes into marble (MARB) and alters to actinolite garnet skarn and calc sinicate

SILCC \quad-Siliceous calosilicate subUnit of CALCSiL. Leucocratic laminated and bandednoderately to highly siliceous rock. Over 35\% fee cryptocrystalline quartz. (incorporated intdPautler Unit 3)

CRERT Cryptocrystalline laminated siliceous subunit of CALESIL. Possibly meta-exhalite. Over 75\% free quartz (incorporated into PautlerUnit 3)

BIOHBGN -Intermediate fine to medium gained banded metapelite? Similar to BIOGN butwith less quartz and the appearance of trace to 15% amplibole. (incopporated into PautlerDit 1)

AMPHGN -Melanocratic grey to greygreen fine to medium grained banded amphibole gneiss.Often bidite rich. Trace quartz (Paytler Unit I). Basal unit of sequence.

Geophysical, Geochemical and Trenching Assessment Report on the Broken Hill - Leo Property
 Timer Explorations $/ n c$.
 March 20, 2007

Deposit Types

The Shuswap Metamorphic Complex hosts several significant "syngenetic" sediment-volcanic-hosted zinc-leadsilver massive suiphide deposits, hosted within carbonate bearing lithologies at the transition between platformai carbonates and pelitic sediments. These occurences include Ruddock Creek, Cottonbelt, King Fissure, Big Ledge, CK (2003 43-101 compliant calculation 360,180 "inferred" tonnes grading 11.29% zinc and 1.98% lead). A "preliminary mineral resource" for Ruddock Creek, reported by Cominco and restated by Doublestar Resources in June 2000, includes 2.7 million tonnes grading approximately $8.4 \% \mathrm{Zn}$ and $1.6 \% \mathrm{~Pb}$. No classification is detailed but the report indicates the "calculations were not rigorous", (A. Tiver, P.Eng., personal communication.) The Ruddock Creek calculation was made prior to the requirements referred to in National Instrument 43-101. Clusters of zine rich sulphide occurrences are generaily aligned along north-trending large-scale folds. The mineralized horizons tend to be laterally extensive but thin. Significant thicknesses may be present near inferred vent areas and fold hinges. Structurally induced thickening can occur over shert distances. The newly discovered Vista, Navan, Mike and Denis Showings are located 25 kilometres west of actively explored Ruddock Creek and 25 kilometres east of the CK oceurences and are hosted in very similar rocks.

Atso occurring within similar lithologies are carbonatite-hosted niobium-tantaium showings and deposits like the active Mount Grace and Bhe River occurences.

Other deposit types with Shuswap Metamophic Complex lithologies in the region are epigeneric in origin, commonly related to one or more of many intrusive events. Some of these are modium to high grade gold-bismuth-copper-arsenic veins of possibie late Cretsceous to early Tertiary age (e.g. Sizar, Readymix, Denis Gold), related? copper, tungsten (Dimac), molybdenum, cinc-lesd-silver and gold bearing intrusive and associated skarn and wallrock+hosted deposits. Gemstone and industrial mineral (i.e. garuet) deposits are also known to oceur.

Minerplizetion

The following descriptions of the Vista, Navan and Mike showings are from the MINFILE database administered by the Geological Survey Branch of the Ministry of Energy and Mines with additional information fron Lindinger (2002, 2004, 2005 and 2006).

MENFILE Number: $\quad 082 \mathrm{M} 280$
Names: VISTA, BROKEN HLLL, VISTA A, VISTA B, VISTA C
The Vista A showing is a partially exposed band of very dark brown fine to medium grained massive sphalerite with subordinate galena, pyanotite, chalcopyrite and pyrite(?). The band was exposed by biasting to establish a road sirface for the Cortice logging road at about kilometre 9.3. The band is at the contact of sulphidie siliceous greisses on the structural footwall, and an overlying 2 (p lus) metre thick band of calc-silicate rocks that appear to be highly metamorphosed limestones. The showing appears to be part of a moderately ($10-20$ degrees) southeast plunging partially eroded antiform or northeast dipping monocline. Rocks to the northeast change dip to moderate to steep northeast dips. Exposures to the south-west are eroded off, and covered by glacial debris, or have not been mapped.

The observed mineralization is in the form of planar to swirling bands of nearly massive sulphides up to 35 centimetres thick that grade up into bands of semi-massive sulphides in a cale-silicate host. The contact with the underlying silicate rock appears very sharp. The band of Vista A type mineralization is exposed discontinuously over about 20 metres; it is assumed to be continuous although it is truncated at sufface to the northwest by a northwest striking, moderately northeast dipping fault that brings a pegmatite dyke into direct contact with the mineralization. To the suutheast it plunges below the logging road. Selected grab samples from bedrock exposures assayed up to 24% zinc, 4.9% lead and 72 grams per tonne silver (iindinger, personal communication, Jan. 2001).

Vis1a B rype mineralizstion occurs 2 to 3 meters structurally above the Vista A horizon in calc-
silicate rocks. This zone is also stratiform, exposed as a 5 to 10 -centimetre thick band of dark brown coarse grained massive to semi-massive sphalerite. No lead, silver or copper is reported. This band is exposed in its unweathered form for at least 5 meters about 20 meters southeast of the Vista A discovery outcrop. To the nortiwest it is eroded off. To the south-east it also plunges below the road. To the northeast, if continuous il would dip to the northeast as part of the stratigraphic package and remains open in that direction. Trenching in 2005 exposed the down dip extension of the Vista horizon and it pinched out 30 meters down dip to the east. Structural observations suggest that the thickened exposures in the road cut may be near s small antiform.

Vista C fype mimeralization (discovered by Warner Gruenwald, P.Geo.) are fault-hosted(f) 4 to 6 centimetre thick silvery-grey medium to fine grained massive to semi-massive sphalerite and galens bands that appear to both occupy the top of and crosscut the calc-silicate horizon hosting the Vista A and B mineralization. Weathered exposures are visible over a planar 8 by 2.5 metre expesure of the top of the calc-silicate horizon above the fresh exposures of the Vista B mineral band. A sampie (0.8 metres long by 8 centimetres thick) taken by Mr. Gnuenwald yielded 6.6% zinc, 4.1% lead and 6.2 grams per tonne silver (Lindinger, personal communication, Jan. 2001).

The calc-silicate unit hosting the various types of zinc-rich sulphide mineralization appears to contain erratically distrituted, weakly disseminated sphalerite with possibly galens. Traces of other iron and copper bearing sulphides ary also present. This uncertainty is che to the generaily well weathered nature of the surface exposures and lack of sample assay data

Name UPPER VISTA

The dilling in 2006 intersected a thin mineralized horizon (that outcrops) about 30 meters stratigraphically above and 100 meters northeast of the Vista discovery horizon. The horizon did not occur in a steeper drill bote to the nordwest. This horizons relationstip to the Vista and Pautler horizon is unknown but if it represents a structural reperition above the Vista Pautler horizon with a possible fold closure (and a thickening of the zinc mineralization) to the northwest.

Name PAETLEER

The Pautler Showing was discovered by Jean Pautler in February 2001 in Hole BH DDH-0i-13 while following up a zinc intercept in hoie BH DDH- $01-03$. The miveralized intersection in DDH-BH-0]-03 although internupted by a pegmatite sill graded $1.2 \% \mathrm{Zn}$ over 1.1 metres (true width). A weighted average of the foided cherty mineralized zone in hole DDH-BH-01-13 graded $2.5 \% \mathrm{Zn}$ ovet 3.9 metres (2.3 metres true width). Soil sampling in 2004 outlined lead and zinc anomalies 50 to ! 00 meters to the west which could represent the up dip expressions of the mineralization intersected in these holes. Hoie BH-05-14 intersected 5.88% zinc over a drill width of 0.83 meters. Hole BH 05-15 intersented 10.2% zine aver a drill width of 0.33 meters with a wider interval of 2.1% zinc over 1.9 meters. Both holes are near to and bracket to the northwest and southeast bole $\mathrm{BH} \mathrm{Hl}+03$. The intersection in Hole 15 is $\mathbf{2 5 - 3 0}$ meters down dip from the intersection in Hole $\mathrm{BH}-$ DDH-04-13. The mineralization is hosted within or adjacent to calc-silicate rocks near the top of a $30-50$ meter thick carbonate sequence. Tentatively this is geologically very similar to the Vista showing which is thte would indicate that the Vista may be in a late stage down dropped block of the same stratigraphy. This remains a priority drill target.

MINFILE Number: $\quad 082 \mathrm{M} 279$
Names: NAVAN, NAVAN A, NAVAN B, BROKEN HILL
The Navan Ashowing is hosted within north striking moderately east dipping open carbonate antiform or dome. The sulphides accur as several poorly exposed, partially weathered bands of dark brown fine- grained massive sulphites (sphalerite and gatena) hosted by disrupted (frost heaved?) calc-silicates and impure quartzites, probably correlative with the cover sequence of the done. The grade and style of mineralization are very similar to the Vista A type showing (082 M 280); however, the highest grade exposures of Navan A are totally within calc-silicate host rocks. Massive sulphide mineralization tup to $2 S$ centimetres across and grading up to 23% zinc, 4.05%
lead and 17 grams per tonne silver occur as bouiders that were excavated out of subcrop expostures during road construction. Exposed hangingwall focks include thin, impure quartzite layers with minor disseminated pymhotite. A second 25 centimetre thick fayer of semi massive stilphides occurs less than I metre above the massive sulphide horizon. Still higher are disseminated medium grained sulphides in highly weathered pitted (weathered sulphides?) gametiferous calcsilicate rock.

The Navan B showing is about 130 meters north of the Navan A exposure. Here, a 1.5 -metre long 5 to locally 22 -centimetre thick band thick of massive sphaterite occurs in northwest striking soulh west-dipping quartz-rich schistose rock. A (2000) 0.3 -metre thick sample which included the massive sulphide mineralization yielded 5.6% zine, 0.6% lead and 8.4 grams per tonne silver. The host rocks are very different tian those of the Navan A showing and mineralization is likely a fistinct layer. More detailed examination in 2005 resulted in the discovery of 30 by 25 by 20 cm massive sphalerite boulders.

The Navan C float showing 200 meters grid north of the Navan A showing is a $\mathbf{3 0}$ centimetre diameter piece of siliceous calc-silicate and biotite greiss float occuring in basal till that has on one side part of a massive sulphide layer. The remnamt sulphide layer is about 12 centimetres thick. Based on glacial information the source of the boulder was to the northeast and away from the Navan A and Navan B showings.

The Navan D float showing occurs 300 metres south of the Navan A showing at approximately 7.4 kilometres on the Connike togging road. Here clusters of fragments less than 10 centimetres in diameter of zinc-bearing serni-arassive sulphides hosted by caic-silicate and chert occur in basal till and actinolite skarn and bleached marble subcrop nubble in a road out. This is the area of the original rock sample taken by the writer in July 2000 that returned nearly 1% zinc, with anomalous copper, lead silver and tungsten values.

An open ended to the north soil anomaly immediately north (up ice) and west (down-hill) of the Navan B showing contains the highest zinc (2590 ppm) and lead (412 ppm) values in soil found to date. The intensity and shape of the soit anomaly bere may reflect a suface expression of folded mizeralized horizons.

MINFILE Number: $\quad 082 \mathrm{M} 281$
Names:
MIKE, BROKEN HILL, MIKE FLOAT
The Mike float showing contain cobbles and boulders of dark brown massive, semi massive and disseminated, tine to coarse grained sphalerite and pyrthotite associated with garnetiferous caicsilicate, pynhotitic silicate and coarse grained pegmatitic rocks that are exposed over 250 meters in a series of pits dug for materal to uprade the Shannon Creek logging road between 15.1 and 15.35 km . The boulders and cobbles can be dug out of the bank and occur within discrete stratigraphic zones near to and overlying possibly disnupted pegoratitic bedrock. The western exposures of the boulders occur in a dense basal till that is overlain by several glaciofiuvial and silty boulder till layers. The boulders appear to occur at higher levels in the till to the east indicating a source to the west and north. Northwest of the float occurrence is an arta of nearly flat lying to northeast dipping calc-silicate tloat and bedrock extending for over 2 kilometres. The stratigraphy tow kilometres west is subvertical to steeply nortit dipping. To the northeast, east and south-east is deep glacial till extending to Shannon Lake. This till terminates and may mask the soil anomaly. The significance of the soil anomalits from the higher till sheets are unknown.

One sample of a massive sphaierite (-15 cm thick) boulder retumed $\$ 9.6 \%$ zinc and 352 ppm cadmium (Gruenwaid, personal communication, 2000). The lead content of this and other samples have consistently lower lead values than the Navan (082 M 279) and Vista (082 M 280) prospects of the Broken Hill property, aithough moderate lead in soil anomalies occur here.,

Names: DENIS ZINC, DENIS GOLD

The Denis Zine showing was discovered by Denis DeLisle in September 2004 and is 500 meters northeast of the Mike showing and is in the west uphill side of a road cut in an unrechaimed skidder road. The showing is a one meter square "outcropping" exposure of a 20 cm thick north striking subvertically dipping massive sphalerite slab that is truncated to the north by intrusives, but is open to the south and at depth. Representative samples returned from 11 to 15.5% zinc with lesser lead and silver. Partially defined moderate zinc and lead soil anomalies occur down hill to the northeast. The area is characterized by very large ($4-5$ meter) boulders. Ans trenching rosults indicate the stratigraphy is shallowly southwest dipping. Therefore the current interpretation is that the showing may be within a large rotated boulder or may be a rotated block contained within pegratite.

The Denis Gold was also discovered by Denis DeLisle and oceurs as a west striking massive to semi massive pyrihotite-quartz breccia vein hosted by pegmatite about 3 meters north of the Denis Zinc showing. Float samples of massive and semi massive pytanotite mineralized gneiss returned up to $1.28 \mathrm{~g} /$ Au with associated bismuth (up to 896 ppm) and copper (up to 1160 ppm).

Abstract

Other potential deposit types located on the property include tungsten skarn and intrusion associated gold zones. Known types of mineralization nearby include molybidenum stockwork veins and high grade intrusion associated gold veins such as the nearby Biza, and Readymix gold occurrences, pyamotite hosted gold skam mineralization. and copper bearing quartz veins and stockworks represented by the Denis gold and Mike gold showings. Carbonatite deposits prospective for Niobium and Tantalum are known to occur in the region, but not as yet on the property

2006 Exploration Progam

Gridding (Figure 9)

A 1.4 by 400 to 700 meter gid was established centered on the Denis showing at BH grid co-ordinate 4525 N 1575E. A new compessed base line 6600 E striking 325 degrees was estahlished and extended from 3800 N to 5400 N . Compassed cross lines spaced 50 meters apart were established concurrent with soil sampling and extended from at least 1425 E to 1750 E . Stations at 25 meter spacing were established on alil lines and along the baseline. Most of the grid was in a poorty regrown clear-cut with thick cane growth. Therefore the stations were picketed with 1 meter ! $\times 2$ wooden pickets with the grid co-ordinate stations written with indelible markers onto downward facing Tyvek tags. To improve visibility the $t o p 30 \mathrm{~cm}$ of the pickets were painted with fluorescent orange paint and the vegetation at the station flagged with winter grade orange and blue fagging. The grid lines were outimed by orange winter grade flagging.

Gronind Magnetk Survey (Figures 7. 8)

A GSM-19 total field "Overhauser" "walking" magnetometer and base station were rented from Terraplus lnc. of Toronte. The walking magnetometer automatically takes readings from 0.2 to 3 second intervals and records thern in a self contained memory bank. This allows the technician to have readings taken along the traverse route between stations. The technician stoys at each station and enters the co-ordinate allowing the instrument to calibrate sample spacing between stations. Accuracy is $+/ \sim 1$ nanoTesla (nT). The Base station magretometer was placed near the south end of the grid and when active took readings every 5 seconds. The base station and mobile magnetoneters were calibrated before and after each day of readings and the original and adjusted readings stored for later study. For the pupose of this survey readings were taken at 0.5 and later at 1 second intervals along the lines and 5 second intervals. During the survey, lines were extended if anomalous magnetometer readings were encountered. in addition to the Denis Grid lines were also completed over the Mike sno Paulter areas using the existing grid established between 2000 and 2004. The contoured results are plotted on Figures 7 and 8 . Due to the enomous number of readings generated bit the magnetometer theses values are not plotted and not included in the appendices.

Soil samples were taken on the newly established Denis Grid. Most samples were taken on the grid lines at 25 meter spacing. The deep samples were generally taken at 50 meter spacing and averaged 60 cm deep.

Rock Geochemistry and Prospecting (Figure 9)

The clear-cut perimeter road northwest of the Denis showing exposed "interesting" float that the author considered warranted sampling. Most of these were altered and weakly mineralized and in some cases skamified calc-silicate rocks with varying degrees of weathered sulphides. For rock sample descriptions please refer to Appendix 2.

Trenching

A Hitachi 220 Backhoe (Cat 215 equivalent) owned and operated by Sedgwick Logging Ltd. was atained for trenching in the Denis and Mike areas. Three test pits wert excavated at the Denis showing along the trace of the mintralized float (Figure 9), and three 150 meter trenches at the Mike showing (Figures ll-14). Rock sampies in interesting foat were taken for antalyses from the Mike trenches. Description and summary results are discussed in Appendix 2

Sampling Method and Approach

Soll sumples.

Samples were taken of B and C horizon material with a Mattack by employees of Sabrex Contracting Ltd. Soil depth ranged from 30 to 35 cm . In the someth part of the Denis Grid the author determined that the area was deeply overburden covered with silty material that would mask prospective material at depth. A power auger was used to drill up to 1.5 meters deep (average $\sim 70 \mathrm{~cm}$) from which a C horizos sample was taken of hopefully residual material. Due to time and budget constraints these auger samples were taken ot 50 meter spacing. The soil material was placed into paper sample bags that had the co-ordinate written on them. Proor to shipping, they were dried and sorted. They wete shipped in sealed individually numbered and labeied rice bags to the analytical facility via greythound courier.

Rack Sanules

4 rack float samples from the Denis grid and 5 subsurface foat samples from the Mike trenches were collected by 5 . Lindinger, P.Geo accompanied by Tricia Suilivan, contractor. The rock samples were given a unique sample number and placed in numbered plastic or fabric bags. The sock sample number then was writen on a Tyvek tag or winter grade plastic flag and ptaced near the bedrock or float exposure or tied securely to a sapling beside the sample location. Sample locations were recorded either by GPS where the UTM location was recorded or the existing grid co-ordinate, or referenced from end of trench. Samples were then sent to Ecotech Laboratories in Kamloops, B.C., for ICP and gold analysis.

Sample Preparation, Aralysea and Security

The rock and samples collected in 2006 were stored at the Bine River Motel by employees of Sabrex Contracting Ltd. then delivered to Eco-Tech Laboratories Lid, in Kamloops, B.C. for analysis by Greyhound Courier. Atl samples were analyzed for 28 -elements using a standard muti-eiement ICP and for gold by fire assay with atomic absorption (AA) finish procedure. A "blank" field standard was created for the soil samples using $\$ 5$ kilograms of clayey silt taken from the north Thomson River from a site about 10 km north of Avola. The blank standard was calibrated by repeated analyses of 20200 gram subsamples of this silt. (Appendix 1, Table 2). Additional "Blarks" were inserted into the sample steam and given a designation of C in addition to the sample co-ordinate. A base metal standard (Pb 113) was used as a field standard for the rock analyses. Field standards and blarks were inserted by employees of Sabrex Contracting under the direction of Mr. Lindinger, P.Geo.

The following list of procedures was supplied by Eco-Tech Laboratorites Lid.

Sample Preparation

Samples are catalogued and dried. Soils are prepared by sieving shrough an 80 mesh screen to obtain a minur 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock and core samples are 2 stage crushed to minus 10 mesh and a 250 gram swbsample is pulverized on a ring mill pulverizer to -140 mesh. The subsample is rolled, homogenized and bagged in a premumbered bag.

Muli-Element $/ C P$ Analysis

A 0.5 gram sample is digested with $3 m 1$ of a 3:1:2 (HCl:HN03:H20), which contains berylfium, which acts as an internal stondard for 90 minutes in a water bath ar $95^{\circ} \mathrm{C}$. The sample is then diluted to 10 mi with water. The sample is aralyzed on a Jartell Ash ICP unit.

Restuls are collated by computer and are printed along with accomparying quality conirol data (repeats and standords). Restuls are printed on a laser printer and are faxed and/or mailed to the cliert.

Result data is entered along with standards and repent values and are faced andor malled to the client.

Data Verification

All samples were collected under the direct supervision of independent field technicians, and transported directly to Eco-Tech Laboratories Ltd. in Kamioops, a certified anslytical jaboratory. Certificates of Analysis are appended in this report (Appendix 1).

The author arranged to have both field stanciards and "blanks" inserted into the soil sample sequence. The blanks were designated C and the standards were designated B after the sample co-ordinate. The "blanks" were tusually inserted directly after the standard used for the soil survey. Results indicate that some pulp contamination oecurred which is consistent with a specific run. As three runs were made to andyze the 399 surficial soil and the 40 deep soil samples were included in one of the runs. The standard used was a standard the Author retained from Ecotech Laboratories Litd. and had the following elemental characteristics.

This standard is too high in economic elements to be truly effective as a standard for soils. Howevet it indicates that less than 1% cross sample (AK1863) and for other two runs less than 0.4% cross sample contamintation occurred. The contamination probably occurred in the 1CP analysis according to 3utta Jealouse of Eecotech Analytical Laboratories.

A field standard Pb 113 from WCM minerals was used as a standard for the rock samples taken in 2006. The values were compared with the returned values from EcoTech and detailed in Table 4. Silver and lead were marginally lower that the lowest values obtained from the standard. Copper and Zinc were within the reported analytical range but marginally lower than the average. Surprisingly, gold, although not reported in the standard returned over $2 \mathrm{~g} / \mathrm{t}$ when analyzed by Ecotech.

Interpretation and Conclusions

Magnetometer survey (Figure 7, 8)

The magnetometer Survey was completed in three areas, the 2006 Denis grid, the Mike showing area and the Pautler showing area.

Geophysical, Geochemical and Trenching Assessment Report on the Broken Hill - Leo Property Timer Explorations Inc.

The Denis grid had an average reading of $\$ 6800 \mathrm{nT}$ and ranged from over $\$ 8000$ and less than 55800 nT . The survey is dominated by two north trending features that cross the top lef (northwest) and bothom right (southeast) of the survey area. These anomalies can be caused by two features, late Tertiary magnetic andesite dykes and/or magnetic pyrthotite and magnetite bearing skam or calc-silicate. The former is more likely due to the linear pattern seen. The area is crossed by numerous evenly spaced almost due north trending topographic linears that could host magnetic tertiary intrusives. The northwest feature is also spatially associated with skamified-calcsilicate suiphidic rocks that returned anomalous gold in float samples. A strong single station mag hi at $46+50 \mathrm{~N} 15+40 \mathrm{E}$ near the Denis showing has an undetermined source. It is spatially close to the Denis gold showing 100 meters south, and. Within the central part of the survey area a weak north to northwest tend may be discemable. However the tithologies are very weakly magnetic. Contouring this low relief area with a 50 or 25 nT interval area at finer interval may bring out additional features.

In the Pautler area the trace of the mineralized horizon oceupies a weak magnetic low.

Soll Sampling (fgures 9, Jo)

The results of the soil sampling produced four multielement anomalous areas. None are on the Denis showing. The gaps and discontinuous pattern of tie anomalies may be due to primary lithology, and/or masking overburden. Figure 9 displays zinc, lead and silver values and contoured anomalous areas. Figure 10 displays copper, nickel and gold results, and contoured anomalous rreas. All zinc anomalies were usually also anomalous in lead, silver, copper, nickel and cadmium. The multielement strongest anomaly begins 50 meters due east of the Denis showing and extends off the areas sampled in 2006 but not to BL $25+60 \mathrm{E}$ or $48+00 \mathrm{~N}$ although there is a very weak silver. lead and zinc anomaly at $48+00 \mathrm{~N} 2!+60 E$. Above the Dexis showing to the west is an open ended zinc-lead-copper nickel anomaly at $44+50 \mathrm{~N} 14+00 \mathrm{E}$. that extends towards the south end of the Mike anomaly some 200 meters west. The other multielement momalies liee notheast and north of the Dentis sbowing and centered at $47+00 \mathrm{~N}, 17+00 \mathrm{E}$ and $47+75 N, 14+00 \mathrm{E}$ and are both northe trending. Numerous calc-silicate boulders are present at these locations. The latter anomaly is near the location of the 2006 rock samples inclucing those anomatous for gold and arsenic. Elsewhere on the gid are two bands of weak discontinuous north trending zinc anomalies. The pattern of the anomalous areas may indicate foldirg with the Denis showing near the south east end of a foid Several low grade lead anomalies suggest at least two and sometimes moft nofth northwest trends thm the entire survey area. The program was suczessful in outlining areas requiring further testing. These tendis are mughly 90 degrees different from the Mike trends.

Where both deep and "shallow soil samples were taken the deep sampies usualiy had significantly higher metai content suggesting the this procedure is successfiul in penemating shallow depts. of masking overturden. Figure 9 and 10)

Rock \$ampling (Figure 9, Appendix 2)

Mineralized subcrop and float samples from the area near $48+00 \mathrm{~N} 14+00 \mathrm{E}$ some 350 meter west of the Denis Showing retumed several rocks weakly anomalous in gold, bismuth and copper (ULLO6-04) and arsenic (Ullo602). These are indications of "Bizar" syle gold mineralization. ULL06-0) was also weakly anomatous in tead.

Subsurface float samples from the Mike trenching teturned only one "ore grade" sample. Sample Mi-1 from trench MI (Figure 10 , 11) returned 11.3% zinc, 45 ppb gold, 2.3 ppm silver, 981 ppm cadmitum and 172 ppm leaxi. This sample was removed from an 8 to 15 cm thick massive sulphide band within a large boulder near the south end of trench M1 and very near the east end and above of the float discovery site. Sample Mi-2 was moderately anomalous in zinc, however this may be due to cross contamination. The remaining rock samples from trenches 2 and 3 did not report any anomalous metal grades.

Trenchtang

Denis area (Figure 9)

Backhoe trenching was completed in the Denis and Mike showing areas. Although siliceous gneisses were encountered from thee pits dag at the Dennis showing area no mineralization was exposed. The "bedrock" at this

Geophysical, Geochemical and Trenching Assessment Report on the Broken Hill - Leo Praperty Timer Explorations inc.

location is extremely fractured and broken and has moved an unknowa but probakly smail distance down hill to the northeast. The source of the mineralization is an undetemined distance up hili. As discussed in the soil section the area hosting the mineralization is not anomalous for metais from the soil samples taken, however the pattem may indicate that the Denis showing may be near the south end of a fold hosing mineralized material and short distance up hill to the west. The stratigraphy exposed by backhoe trenching and by observations of outcrops 200 meters southwest indicates a shallow west dip.

Mike Area (Figures II-14)

Three 150 meter long north south trenches were dug into the Mike showing. The trenches had the following characteristics. The upper (northern) $1 / 2$ to $2 / 3$ encountered very deep overburden characterized as a silty matrix supported pegmatite boulder till up to 7 meters deep. This unit was underlain by more locally derived silty and gravely basal tills in the area of the trenches. West of the trenches in a scraped for road construction the lowest till layer is a packed basal cobble basal till hosting numerous massive sulphide cobble and small boulders over a 200 sq meter area. The stratigraphy where exposed (only in trench M3) was flat lying to shallowly east dipping. Tentative conclusions are that the trenches did not extend south and deep enough to expose possibly mineralized bedrock and the bedrock source of the over 50 mineralized boulders found to date. The source appears to be an undeteminted but thot large distance to the oorth. Overall less than 10% of the trencined area reached bedrock. Other difficulties were very large boulders exceeding the lifting capacity of the hoe that inpeded successful excavation. The trenching also exposed at least 4 different tili layers over the vertical distance of up to 15 meters. The bottom layers appear to be proximal basal tills and the top layer is very thick sijty matrix cobble-boulder till sourced and unknown distance from the north. A discontinuous glaciolacustrine to glacionnvial fluvial silty cobble till overlies the basal tills and appears to underlie the areas of weaker soil resuits in the Mike anomaly.

Due to weather difficulties (0.7 meter of new snow) only portions of the trench bottoms could be examined safely.

Prellombary Denis-Mike Symopsts

Preliminary geological observations from the Mike and Denis areas suggest the flat area containing innumerable calc-silicate boulders west of the Denis and north of the Mike showings contains a F3 synform. The relationstip between the shailowly west dipping lithologites at tite Denis showings and the shatlowly to moderately east dipping stratigraphy further notil at Fowler Lake is uniknown. The pattern of the soil amomaties in the Denis and Mike areas attiough sometimes in areas of deep overburden cover may suggest additional F! and F2 fold hinges in the area near the Denis slowing. A possible antiform may exist with a fold hinge crossing near and to the east of the Denis showing or much further east under ceep overourden.

TABLES-2006 PROGRAMEXPENDTURES

Recommeadations

The results of the 2006 program helped to clarify where additional exploration expenditures are warranted. The following $\$ 200,000$ staged exploration program is recommended.

A proposed $\$ 65,000$ surficial exploration program includes the establishment of an expanded grid between the 2006 Denis grid and the Navan arta. Work on this grid would inciude prospecting, geological mapping, soil and rock geochemical surveys, and ground magnetics surveys. The magnetic survey would be very inportant especially in areas of deep masking overburden east of the Denis showing. Geological mapping would concentrate on tracing prospective stratigraphy and identifying zones of potential structural thickening. Sail geochemical and magnetic surveys will attempt to extend and detain the mineraized horizons along strike from the Navan, Mike and Denis Showings. The effectiventess of prospecting and geological mapping is seasonally sensitive and should be conducted between fune 1 and Oct 15 .

- In the Navan 3 area the strong anomaly must be prospected, mapped and hand trenched to determine the actual source and trend of the mineralized horizan(s). There may be fold closures present that contain mineralization missed in drill hole BH-HHD-00-08.
- Geological observations and soil patterns suggest the a symform exists between the Mike and Denis showings. Drilling this target is a priority. The besl target would be 300 west of the Denis showing and the same distance north of the Mike showing.

A $\$ 24,000$ excavator trenctiong program is proposed to attemゆt to expose near-surface bedrock for structural mapping and lithogeochemical sampling in the Mike, Denis and Navan areas. The existing Mike trenches should be rexamined

A proposed $\$ 90,000 \sim 850$ meter diamond drill program targeting fold closures, town dip and strike extensions of the Vista area, Pauter showing, Navan and Mike-Denis horizons. Fold closures have excellent potential to host thickened massive sulphide bodies. The Mike-Denis and Pautler targets would be priority.

A reclamation permit MX-4-369 has been established for the recommended trenching and drilling phases.
Recommended drill holes in the Vista-Pautler Area.

- line $8700 \mathrm{~N}, 2400 \mathrm{E}$
-60° @ 200° azimuth
130 meters
- line $8500 \mathrm{~N}, 2575 \mathrm{E}-90^{\circ}$ 100 meters
-

Pautler Showing

- line $8450 \mathrm{~N}, 2500 \mathrm{E}$ @320-48 $\quad 50$ meters, down dip extension of Pautler horizon
- line $8435 \mathrm{~N}, 2550 \mathrm{E}-90^{\circ} \quad 50$ meters, down dip extension of Pautler therizon
- line 8435N, 2550玉 @320-50 70 meters, down dip extension of Pautler horizon
- line $8420 \mathrm{~N}, 2600 \mathrm{E} @ 320-90^{\circ} 80$ meters, down dip extension of Pautler forizon

Navan area

- $7750 \mathrm{~N}, 2560 \mathrm{E}$
- $7960 \mathrm{~N}, 2500 \mathrm{E}$
-45° @ 230° Aximuti
-45 @ 230° Azimuth
70 meters 50 meters

Soil anomaty up ice of Nayan Soil anomaly pre ice of Navan

Mike Area-Denis Area

- $4800 \mathrm{~N}, 1350 \mathrm{E}$

100 meters Intexpeted synform between Mike \& Denis showings.

- $4700 \mathrm{~N}-1350 \mathrm{E} \quad-90 \quad 100$ meters Intespeted synform between Mike $\&$ Denis showings.

Additional expenditures are contingent on the successful devekpment of the targets mecommended to be explored in this report.

TABLE 6. RECOMHENOED PROJECT EXPENDITURES			
Hem	Amount	Charge	Total
Mobilization-camp set up			\$2,000.00
Linecutting girdwork (mandays)	10	\$400.00	\$4,000.00
Prospecting (mandays)	15	\$500.00	\$7.500.00
Soil sampling (mandays)	20	\$400.00	\$8,000.00
Soil samples	400	\$14.00	\$5,600.00
Rock samptes	30	\$24.00	\$720.00
Geological mapping (mandays)	20	\$800.00	\$15,000.00
Project management mandays	6	\$800.00	54,800.00
Magnetometer survey Km	200	\$80.00	\$16,000.00
Supplies			\$800.00
Total surface program			\$85,420.00
Excavator trenching including reclamation			
Vista area (hours)	10	\$150.00	\$1,500.00
Navan area (hours)	15	\$150.00	\$2,250.00
Mike area (hours)	15	\$150.00	\$2,250.00
Other targets \hours)	10	\$150.00	\$1,500.00
Geological mapping-trenching (mandays)	10	\$800.00	\$8,000.00
Sampler (mandays)	10	\$400.00	\$4,000.00
Rock samples total digestion ICP Mass spec.	50	\$35.00	\$1,750.00
Project maragement (mandays)	3	\$800.00	\$2,400.00
Supplies			\$400.00
Total Trenching Program			\$24,050,00
Diamond drilling (feet)	2500	\$30.00	\$75,000.00
Geological and logistical support (mandays)	10	\$800.00	\$8,000.00
Core sampling (mandays)	5	\$400.00	\$2,000.00
Core samples	50	\$35.00	\$1,750.00
Supplies and equipment chargeouts			\$3,500.00
Total Drilling Program			\$ $888,250.00$
Demob			\$2,000.00
Report			\$10,000.00
Contingency@ 5\%			\$10,000.00
Grand Total			

Additional trenching and drilling would be contingent on favourple exploration results.

REFERENCES

Evans, G., (I993): Geological, Geochemical and Geophysical Assessment Report on the Blue River Property for Teck Corporation. British Cohumbia Ministry of Energy, Mines, and Petroleum Resources Assessment Report\# 22742,10 pages.

Greenwald, W., (2000): Preliminary Report on the Broken Hill Property. Unpublished report for Cassidy Gold Corporation. 3 pages.

Hoy, T, (1996): Jrish-Type Carbonate Hosted Zn-Pb. British Columbia Mineral Deposit Model E13.
Hoy, T., (1996): Broken Hilk-Type $\mathrm{Pb}-\mathrm{Zn}-\mathrm{AB}+/-\mathrm{Cu}$. British Columbia Mineral Deposit Model S01.
Lewis, T.D., (1983): Geological and Geochemical Report on the Otter Creek Property, for Noranda Exploration Company, Ldd. British Columbia Ministry of Energy, Mines, and Petroleum Resources Assessment Report\# 11904, 5 pages.

Lindinger, J.E.L., (2000): Report on the Leo Property. Unpublished report for La Rock Mining Corporation. 10 pages.

Lindinger, J.E.L. and Pautler, (2001); Report on the 2001 Diamond Drill Program on the Broken Hitl Property. Unpublished report for Cassidy Gold Corporation. 17 pages.

Lindinger, J.E.L., (2002): Geochemical, Geophysical and Diamond Drilling Assessment Report on the Brokea Hill-Leo Property. British Columbia Ministry of Energy and Mines Assessment Report 26692. 24 pages plus attachments.

Lindinger, J.E.L., (2003): Geochemical, Assessment Report on the Broken Hill-Leo Property. British Columbia Ministry of Energy and Mines Assessment Report 27271. 23 pages, plus attachments.

Lindinger, J.E.L., (2005): Geochemical, Assessment Report On The Broken Hill-Leo Property. British Columbia Ministry Of Energy And Mines Assessment Report 2729 : 24 Pages, Plus Attachments. 619

Lindinger, J.E.L., (2006): Diamond Drilting, Trenching And Geochemical Assessment Report On The Broken Hill-Leo Property. British Columbia Ministry Of Energy And Mines Assessment Report 28047. 25 Pages, Plus Attachments.

MacIntyre D., (1992): Sedimentary Exhalative Zn-Pb-Ag. British Colambia Mineral Deposit Modeis E14, 4 pages.

Murrell, M, (1980): Geochemical Assessment Report on the Finn 1 Claim for Cominco Ltd. 2 pages plus attachments. British Columbia Ministry of Energy, Mines, and Petroleum Resources Assessment Report 9027.

Oliver, j., (9988): Drilling and Geological Report on the 1987 Exploration of the CK Property. British Colambia Ministry of Energy, Mines, and Petroleum Resources Assessment Report 17539, 54 pages.

Geophysical, Geochemical and Trenching Assessment Report on the Broken HIII - Leo Property Timer Explorations Inc.

Scammell, R.3., (1990): Preliminary Resuts of Stratigraphy, Structure, and Metamorphism in the Southern Scrip and Northern Seymour Ranges, Southern Omineca Belt, British Columbia. In Current Research, Part E, Geological Survey of Canada, Paper 90-IE: pp 97-106.

Wheeler J.O. and Palmer A.R., ed, (1992): Geology of the Cordilieran Orogen in Canada. Geology of North America, Volume G-2; Geology of Canada No. 4, pages 146, 162, 195-196, 293, 508, 514 , $545-546,607-610,619,621-622,715$.

Wild, CJ. and Lindinger, J.E.L. 2003, Report on Exploration Activities, 32 pages plus attachnents.

CERTIFICATE AND SIGNATORY PAGE

I. Joseph Eugene Leopold (Leo) Lindinger, P. Geo.
of 680 Dairy Road, Kambops, B.C. V2B-8N5
Tel. 250-579-9680
Fax 250-554-6887
Email joslind@telus.net

HEREBY OO CERTIFY THAT:

1. I currently own the British Columbia Mineral Claims called the "Broken Hill Property" which are now under option by Timer Explorations Inc.
2. I graduated in 1980 from the University of Waterloo, Ontario with a Bachelor of Sciences (Sc) in Honours Earth Sciences.
3. I am a member in good standing as a Professional Geoscientist (* 19155) with the Association of Professional Engineers and Geoscientists of the Province of British Columbia since 1992.
4. I have worked continuously as a geoscientist since graduating in 1980.
5. 1 am responsible for presenting the exploration results in the "Geophysical, Geochemical and Trenching Assessment Report Broken HIII - Leo Property" and dated $20^{\text {Th }}$ day of March 2007. I have participated in, directly or in a supervisory capacity in all of the exploration programs discussed in the report between September 2000 and Novernber 25. 2006 with the exception of work completed by Avila Industries Ltd. in August 2002 on the Leo Claims.

Dated this 20^{m} day of March 2007

$\angle D O$ SOLO
Printed name of 3 E. L. lindinger, P.Geo.

Geophysical, Geochemical and Trenching Assessment Report on the Broken Fill-Leo Property Timer Explorations inc.

Apperdlx 1
Analytical Results

ECQ TECH LAI TORY LTO.
10041 Dallas Drive
KAMLOOPS, B.C.
vac GTA

No. of sampies received: 185
Sample Type: Soil
Project: Broken Hifs
Submithed by: Cilif Schroeder

Wartues int ppm infless otherwise reported

Eli.	Tag:	Auf(ppd]		A \%	As	Bs	Bi	Ca\%	Cd	Co	Or	Cu	Fe\%	La	Mg\%	Mn	Mo	Na\%	Ni	p	Pb	Sb	5 n	S_{8}	Ti, $\%$	U	Y	W	\boldsymbol{r}	$\mathbf{2 n}$
\%	L38-50N 14+50E	<5	0.2	1.25	15	40	<5	0.07	<1	5	18	7	2.31	<10	0.31	143	<1	0.02	8	320	18	45	<20	5	0.06	<10	33	<10	3	31
2	L38-50N 15+00E	<5	<02	2.09	20	15	<5	0.11	<1	2	6	8	0.88	<10	0.10	187	<1	0.03	4	570	24	< 5	<20	6	0.03	<10	15	<10	5	12
3	L38+50N $15+50 \mathrm{E}$	<5	0.3	1.08	10	10	<	0.06	<1	2	4	7	1.14	<10	0.04	27	<1	0.03	2	280	16	< 5	<20	4	0.04	<10	17	<10	2	日
4	L38+50N $16+00 \mathrm{E}$	< 5	<0.2	1.30	15	70	< 5	0.05	<1	7	25	21	1.84	20	0.55	190	<1	0.02	20	100	20	< 5	<20	7	0.07	<10	29	<10	9	43
5	L38+SON 16+50E	< 5	0.2	1.67	20	35	<5	0.03	<1	7	19	24	3.00	<10	0.28	135	<1	0.02	10	230	26	<5	<20	4	0.10	<10	37	<10	3	29
6	L38+5(N) 17+00E	5	<0.2	2.49	25	40	<5	0.00	<1	6	26	23	3.84	<10	0.28	151	3	0.03	9	436	32	<5	<20	3	0.12	<10	44	<10	5	34
7	L38+50 N 17+50E	< 5	0.2	1.14	15	25	<5	0.02	<1	4	19	8	2.04	<10	0.20	144	1	0.02	5	290	18	< 5	<20	2	0.09	<10	35	<10	2	18
8	$38+501414+50 E$	< 5	0.2	1.32	15	50	c5	0.09	<1	4	14	7	3.34	<10	0.21	141	<1	0.02	5	340	22	< 5	20	9	0.09	<10	51	<10	3	25
9	$38+50 \mathrm{NN} 14+75 \mathrm{E}$	< 5	<0.2	0.36	<	20	<5	0.03	<1	2	3	4	0.62	<10	0.04	35	<1	0.02	2	170	12	< 5	<20	4	0.06	<10	14	<10	2	8
10	$38+50 \mathrm{~N} 15+00 \mathrm{E}$	< 5	<0.2	1.00	10	10	< 5	0.09	<1	2	3	3	0.58	<10	0.06	39	<1	0.02	3	410	12	<5	<20	4	0.04	<10	21	<10	4	7
11	$38+50 \times 15+25 E$	5	0.2	0.17	< 5	20	< 5	0.02	<1	1	2	2	0.16	<10	0.01	14	<1	0.02	2	110	12	<5	20	4	0.04	<10	9	<10	<1	6
12	38+50N 15+50E	<5	0.3	1.46	15	10	4	0.07	<1	2	4	${ }^{6}$	1.28	<10	0.05	27	<1	0.03	2	350	16	< 5	<20	5	0.04	-10	19	<10	3	8
13	$38+5 \mathrm{CNN} 15+75 \mathrm{E}$	<5	-0.2	2.27	25	70	< 5	0.04	<1	12	29	11	9.41	<10	0.36	629	13	0.04	7	460	34	<5	<20	7	0.13	<10	60	<10	5	50
14	$38+50 \times 116+25 E$	<	<0.2	1.98	20	20	<5	0.03	<1	2	8	26	1.83	20	0.03	22	1	0.02	8	240	30	<5	<20	5	0.06	<10	17	<10	15	to
15	$38+500 \mathrm{~N} 16+50 \mathrm{E}$	<5	<0.2	2.48	25	30	c5	0.03	<1	5	17	11	2.73	<10	0.25	113	<1	0.02	7	280	30	< 5	40	3	0.09	<10	38	<10	3	25
16	38+50N 16+75E	5	0.2	0.15	<5	5	< 5	0.01	<1	1	2	1	0.43	<10	0.01	21	<1	0.02	1	70	4	< 5	-20	1	0.02	<10	13	<10	<1	6
17	$39+50 \times 1.17+00 E$	< 5	<0.2	0.96	10	25	<5	0.02	<1	2	7	5	1.08	<10	0.07	47	<1	0.02	3	200	16	<5	<20	3	0.06	<10	19	<10	2	11
18	$38+50 \mathrm{~N} 17+25 \mathrm{E}$	5	0.2	0.73	10	45	<5	0.03	<1	6	26	6	1.88	<10	0.29	104	<1	0.02	6	210	14	<5	<20	2	0.15	<10	43	<10	1	19
19	$38+50 \times 117+50 \mathrm{E}$	5	0.2	2.63	25	10	< 5	0.03	< \dagger	2	3	8	1.65	<10	0.03	32	<1	0.02	2	310	30	< 5	<20	3	0.05	<10	16	<10	3	5
20	$38+00 \mathrm{~N} 16+00 \mathrm{E}$	210	>30	0.39	515	25	c	1.04	98	7	19	163	3.103	<10	0.1	2228	156	0.03	11	570	9734	105	< 2	118	<0.01	<10	10	<10		∞
21	38+002 16+00C	5	<0.2	1.70	15	140	<5	0.33	<1	18	41	41	3.28	10	1.09	298	<1	0.04	34	670	3	< 5	<20	17	0.16	<10	39	<10	11	85
22	$38+00 \mathrm{~N} 14+50 \mathrm{E}$	< 5	<0.2	1.24	10	15	<	0.03	<1	3	6	9	0.64	<10	0.68	70	3	0.02	4	290	28	< 5	<20	3	0.07	<10	17	c10	3	15
23	$38+$ CON $15+25 E$	-5	0.2	1.99	20	30	<5	0.04	<1	1	14	45	0.24	20	0.06	16	1	0.01	12	710	32	<5	-20	4	0.03	<10	13	<10	12	11
24	$38+00 \mathrm{~N} 15+50 \mathrm{E}$	< 5	<0.2	1.99	20	20	<5	0.13	-1	5	6	11	1.79	20	0.08	94	4	0.03	10	680	24	<	<20	7	0.06	<10	20	-10	12	21
25	$38+00 \mathrm{~N} 15+75 \mathrm{E}$	< 5	0.4	1.38	15	40	<5	0.05	<1	32	14	14	2.22	<10	0.25	586	4	0.02	10	230	28	<5	<20	6	0.10	<10	27	<10	3	36
25	38+00N 16+00E	5	0.2	0.77	10	10	L	0.02	<1	1	,	5	0.65	<10	0.01	17	<1	0.02	2	190	12	< 5	<20	3	0.03	< 10	3	<10	2	6
27	$38+00 \mathrm{~N} 16+25 E$	< 5	0.2	0.80	10	15	<5	0.03	<1	2	3	5	1.62	<10	0.03	37	<1	0.02	2	240	12	< 5	<20	4	0.05	<10	21	<10	2	10
28	$38+00116+50 E$	<5	0.2	1.88	20	20	<5	0.01	<1	5	10	9	2.10	<10	0.08	83	1	0.02	4	260	34	<	<20	2	0.15	<10	34	<10	4	13
29	39+00N 16+75E	<5	<0.2	2.65	25	50	4	0.03	<1	9	51	25	3.99	<10	0.54	178	<1	0.02	20	450	34	<	<20	4	0.12	<10	45	<10	3	47
30	$38+00 \mathrm{~N} 13+00 \mathrm{E}$	<	0.2	1.69	20	15	< 5	0.02	<1	2	6	6	1.04	<10	0.03	22	<1	0.02	3	320	24	< 5	<20	3	0.05	<10	13	<10	3	6

El 1.	T.	Autpph		内\%	As	Ba	B	Ca*	Ca	Co	Cr				19*	Mn		Na\%	Ni	p	Pb	Sb	Sn	St	$\%$	U		W	Y	Z
31	38+00N 17-25E	<	0.2	1.74	२0	20	<5	0.02	<1	2	4	5	1.26	<10	0.02	29	<1	0.02	3	260	24	<5	<20	3	0.06	<10	1,	<10	3	4
32	38+00N 17-50E	4	<0.2	1.24	15	45	<5	0.00	<1	7	26	9	3.07	<10	0.28	159	<1	0.08	6	260	24	<5	<20	4	0.16	<10	50	10	3	27
33	L. $38+00 \mathrm{~N} 14+505 \mathrm{E}$	<5	<0.2	1.30	10	35	<5	0.03	<1	5	16	10	1.74	<10	0.27	124	4	0.02	10	270	20	<5	20	4	0.07	<10	25	<10	4	39
34	1 3 38+100N 14+75E	< 5	0.4	2.68	25	145	<5	0.23	<1	7	31	73	1.45	100	0.40	128	6	0.02	77	430	46	<5	<20	26	0.04	<10	28	10	9	103
35	L38+00N $15+\infty$ O	5	<0.2	0.87	10	45	<5	0.06	<1	4	15	13	0.91	10	0.31	101	2	0.01	15	190	14	<5	<20	4	0.04	<10	16	<10	8	43
36	L38+00N 15+50E	<5	<0. 2	1.92	3	60	<5	0.06	1	38	26	32	>10	30	0.40	1380	10	0.05	22	650	40	< 5	<20	B	0.06	<16	35	<10	27	106
37	L38+CON 16+00E	< 5	0.3	1.84	20	20	<5	0.06	<1	3	9	16	1.62	<10	0.04	60	2	0.02	4	390	26	<	<20	5	0.0	10	15	<10	5	17
38	L38+00N1 16+50E	< 5	0.2	1.47	15	25	45	0.02	<1	3	14	8	1.78	<10	0. 15	82	1	0.02	5	300	22	< 5	<20	3	0.0	<10	27	<10	3	16
39	L38+00* 117+00E	< 5	0.2	1.64	15	30	< 5	0.02	<1	3	12	7	1.12	<10	0.10	31	<1	0.02	4	300	22	< 5	<20	3	0.06	<10	17	<10	3	8
40	L38+00N 17+50E	<5	0.2	1.48	15	25	<5	0.03	<1	3	11	9	1.70	<10	0.08	119	1	0.02	5	310	24	< 5	<20	4	B. 0	<10	21	<10	4	12
41	L10+00N $0+00 \mathrm{E}$	< 5	<0.2	1.79	15	135	45	0.34	<1	19	41	31	3.28	20	1.11	248	<1	0.04	35	700	22	<5	<20	16	0.15	<10	39	<10	12	63
42	L10 $+00 \mathrm{~N} \mathrm{~N} 0+10 \mathrm{E}$	< 5	<0.2	1.83	15	135	< 5	0.36	<1	19	42	32	3.27	20	1.12	258	<1	0.04	36	750	22	<5	<20	17	0.16	<10	39	<16	12	65
43	L10+00N $0-20 E$	5	<0.2	1.73	15	130	<5	0.33	<1	18	41	31	3.21	20	1.07	243	<1	0.04	35	700	22	<	<80	16	0.15	<10	37	<10	11	63
44	L10+00N $0+30 E$	-5	<0.2	1.43	15	120	< 5	0.35	<1	18	39	30	3.02	20	1.03	241	<1	0.04	33	740	22	<	<0	15	0.15	<10	6	<10	11	60
45	L10+00N $0+405$	< 5	<0.2	1.69	15	125	<5	0.32	<1	19	40	31	3.24	20	1.06	270	<1	0.04	35	68	2	<5	<20	16	0.15	<1]	36	<10	11	63
46	L10+00N $1+505$	<5	<0.2	1.54	15	125	< 5	0.37	<1	18	40	29	3.07	10	1.4	240	<1	0.04	34	760	22	< 5	-20	16	0.15	<10	36	<10	11	62
47	L10+00N $0+605$	5	<0.2	1.62	15	125	<	0.31	<1	18	39	31	3.13	10	1.04	248	<1	0.03	33	670	20	<5	<20	16	0.15	<11	36	<10	11	60
49	L10-00N $0+705$	<5	0.2	1.67	15	125	< 5	0.33	<1	18	39	30	3.18	10	1.05	251	<1	0.04	34	710	20	<	<20	15	0.15	<10	36	<10	11	62
49	L10-00N $0+80 \mathrm{E}$	5	<0.2	1.49	15	125	5	0.34	<1	18	40	30	3.12	10	1.04	255	<	0.0	34	710	22	<	<20	15	0.15	<10	37	<10	11	62
50	L10-CONN 0+90E	5	<0.2	1.68	15	125	<5	0.34	<1	19	39	30	3.13	20	1.6	256	<	0.03	35	710	22	<5	<20	16	0.1	<10	36	<10	11	61
51	L10+00N 1+00E	<5	<0.2	1.74	15	135	<5	0.36	<1	19	41	32	3.22	20	1.11	233	<1	0.04	35	710	22	4	<20	17	0.16	<10	39	<10	11	63
52	L10+0CN $1+10 \mathrm{E}$	<5	<0.2	1.54	15	120	< 5	0.34	<1	18	38	29	3.08	10	1.03	244	<1	0.04	33	30	22	<5	<20	16	0.14	<10	35	<10	1	60
53	L10+00N 1+20E	<5	<0.2	1.72	15	130	-	0.35	<1	19	42	31	3.26	20	1.09	250	<1	0.04	36	730	22	< 5	<20	16	0.16	<10	38	<10	12	65
54	L10+00N 1+30E	<5	<0. 2	1.62	15	125	-5	0.33	<1	18	39	29	3.14	10	. 03	234	<1	0.04	33	720	22	< 5	<20	15	1	<10	35	10	11	61
55	L10+00N 1+40E	5	<0.2	1.59	15	115	-5	0.34	<1	17	37	29	294	10	0.9	253	<1	0.0	32	72	20	<5	<20	16	0.14	$<$	34	<16	11	59
56	L10+50N 1+50E	<5	<0.2	1.55	15	115	<	0.35	<1	18	38	30	2.96	10	0.99	244	<1	0.04	33	750	20	< 5	<20	16	0.14	<10	35	<10	11	59
57	$39+$ OON 14+50E	< 5	<0.2	1.51	15	W	<5	0.02	<1	3	14	7	3.54	<10	0.19	126	<1	0.02	4	200	24	<5	<20	3	0.06	<10	49	<10	3	22
56	$39+00 \mathrm{~N} 14+75 E$	< 5	co. 2	1.74	15	10	<5	0.06	<1	2	5	6	0.90	<10	0.05	27	<1	0.08	3	320	27	<5	40	4	0.05	<10	18	10	4	9
59	$39+00011515005$	< 5	<0.2	2.66	30	25	<5	0.02	<1	4	12	13	2.13	<10	0.13	136	1	0.08	5	410	34	<5	<0	3	0.06	<10	29	<10	5	18
60	39+00N 15-25E	< 5	<0.2	0.93	10	25	$\stackrel{5}{3}$	0.02	<1	3	6	7	1.69	<10	0.06	81	<1	0.08	2	230	16	<5	<0	3	0.06	<10	25	<10	2	9
61	39+00N 15+50E	<5	<0.2	2.05	20	25	< 5	0.02	<1	3	14	8	2.26	<10	0.21	87	<1	0.02	6	270	28	<5	<20	3	0.06	<10	29	<10	5	21
62	39+00N 15+75E	<	<0.2	0.49	<	25	< 5	0.03	<1	2	4	4	0.67	<10	0.08	76	<1	0.02	2	170	10	<5	<20	5	0	<10	11	<10	2	7
63	39+00N 16+006	5	<0.2	1.29	15	25	<5	0.04	<1	1	5	${ }^{8}$	0.25	<10	0.68	22	<1	0.01	4	520	22	<	<20	4	0.02	<10	8	<10	3	${ }_{0} 7$
84	$39+00 N 16+\infty$ ces	195	>30	0.39	575	25	<5.	1.8	99	7	20	9556	3.03	<10	0.17	300	170	0.0	11	610	9687	110	<20	17	08	0	9	<10		0000
65	$39+00 N 16+25 E$	5	<0.2	0.94	10	45	<5	0.03	<1	5	17	9	1.12	<10	0.35	115	1	0.01	10	90	36	< 5	<20	3	0.11	<10	19	<10	3	61
66	39-60才 $16+75 \mathrm{E}$	5	0.2	1.95	20	40	<5	0.02	<1	6	17	11	2.82	10	0.28	110:	<1	0.02	8	220	30	< 5	<20	3	0.12	<10	40	<10	3	26
67	39-60t 17+00E	<5	0.2	1.65	20	25	<	0.02	<1	6	9	12	2.81	<10	0.07	154	1	0.02	5	300	30	< 5	<20	3	0.10	<10	35	<10	5	1
69	$39+0$ CN4 17+25E	5	<0.2	0.34	<5	15	<	0.01	<1	2	4	5	0.68	<10	0.04	56	<1	0.02	3	110	8	< 5	<20	2	0.05	<10	17	<10	1	8
69	$39+0 \mathrm{CNH} 17+50 \mathrm{E}$	<5	<0.2	1.19	10	10	<	0.06	<1	3	6	10	077	<10	0.04	57	<1	0.02	4	350	16	< 5	<20	3	0.05	<	26	<10	4	9
70	$139+00 \mathrm{~N} 15+00 \mathrm{E}$	<5	<0.2	0.42	<5	15	<5	0.01	<1	1	3	3	0.41	<10	0.03	28	<1	0.02	1	110	10	< 5	<20	2	0.04	<10	11	<10	<1	5

eco tech laboratory lto.

\#,					As	Ba		C8\%	Cd	Co	Cr		fa'		H0\%	Mn		Na \%	Nj	P	Pb	Sb	Sn	Sr	T1\%	U		w	Y	Zn
71	L39+00N 15+50E	- 5	<0.2	1.58	15	30	<5	0.04	<1	4	16	10	1.86	410	0.31	114	c1	0.02	9	260	22	< 5	<20	3	0.05	<10	-	-10	4	26
72	L39+00N 16+00E	5	<0.2	1.14	10	50	45	0.04	<1	5	20	4	1.54	+ 10	0.37	126	<1	0.02	7	190	20	< 5	<20	4	0.09	410	25	<10	3	30
73	L39+00N 16+00EC	5	<0.2	1.61	15	130	45	0.35	<1	19	40	30	3.13	10	1.06	286	<1	0.04	34	720	22	45	<20	16	0.15	<10	19	<10	5	62 30
74	L39+00N 16+50E	< 5	<0.2	0.78	10	45	-5	0.10	<1	5	17	9	1.34	10	0.41	7	<1	0.02	5	180	12	<5	<20	2	0.06	<10	23	<10	2	15
75	L39+00N 17+00E	5	<0.2	0.66	5	25	<	0.02	<1	3	11	5	1.39	<10	0.18															
	L39+00N 17+50E	<5	0.2	1.34	15	40	c5	0.05	<1	7	18	33	1.63	20	0.36	186	<1	0.02	23	280	20	45	420	3	0.06	-10	19	<10	10	40
77	L39+50N 15+50E	5	40.2	1.46	15	25	< 5	0.03	<1	4	15	6	2.14	<10	0.23	167	4	0.02	6	330	22	<5	<20	3	0.06	<10	27	<10	3	23
78	L39+50N 16+00E	5	40.2	2.01	20	40	< 5	0.03	<1	6	18	13	2.24	-10	0.21	184	2	0.02	6	240	32	<5	<20	4	0.08	<10	26	410	3	31
79	L39+50N 16+50E	5	<02	2.60	30	50	45	0.16	41	4	13	10	0.72	20	0.22	72	<1	0.02	13	480	38	<5	<20	11	0.08	<10	15	<10	14	23
80	L39+50N 17+00E	5	c0.2	1.06	10	35	<5	0.03	<1	4	16	7	0.93	$\leqslant 10$	0.29	86	<1	0.01	8	150	20	< 5	<20	3	0.97	<10				
					15	85	< 5	0.11	<1	5	26	25	1.22	30	0.43	130	4	0.02	26	290	20	-5	<20	11	0.07	<10	31	<10	19	40
81	L39+50N 17+50E	<5	<0.2	1.17				0.1	-	2			1.50	410	<0.01	52	4	0.01	5	140	14	<5	<20	2	0.01	$\leqslant 10$	18	<10	1	33
82	39+50N 14+50E	<5	< 0.2	0.39	10	10		0.01	< 1	2	6	3	1.34	+10	0.02	20	c1	0.01	3	110	22	< 5	<20	2	0.06	<10	37	<10	2	7
83	39+50N 14+75E	<5	20.2	1.14	15	15	<5	0.02	<1	5	25	10	3.05	<10	0.37	12\%	c1	0.02	6	370	42	-5	$\therefore 20$	3	0.08	<10	37	$\leqslant 10$	3	36
64	39+50N 15+00E	<5	<0.2	2.71	30	40	< 5	0.03	<1		3		0.88	<10	0.01	11	<1	0.01	2	180	14	<5	<20	2	0.04	<10	11	<10	3	4
B5	39+50N 15+25E	<5	0.2	0.78	10	15		<0.01	<1	1	3	4	0.88	<10	0.0															
R6	$39+50 \mathrm{~N} 15+50 \mathrm{E}$	< 5	0.2	1.43	15	25	<5	0.04	<1	2	6	4	1.12	< 10	0.03	59	<1	0.02	2	210	22	<5	<20	4	0.06	<10	20	<10	2	10
86				1.07	10	35	<5	0.02	$\leqslant 1$	4	16	7	2.26	$\leqslant 10$	0.31	129	<1	0.02	7	170	18	c. 5	<20	3	0.07	<10	33	<10	3	26
87	39+50N 15+75E	<5	<0.2				45		<1	6	16	14	3.26	<10	0.20	125	1	0.02	6	220	24	< 5	<20	5	0.12	-10	46	<10	2	34
88	$39+50 \mathrm{~N} 16+00 \mathrm{E}$	-5	<0.2	1.08	15	45	4	0.04		78	22	16	5.35	<10	0.19	5276	4	0.03	7	410	62	¢ 5	<20	4	0.13	<10	53	<10	5	50
89	$39+50 \mathrm{~N} 16+25 \mathrm{E}$	<5	<0.2	3.47	40	70	45	0.02	<				0.13	<10	0.02	25	<1	0.03	3	340	14	$\leftarrow 5$	420	12	0.02	<10	5	<10	4	4
90	$39+50 \mathrm{~N} 16+50 \mathrm{E}$	< 5	0.2	0.94	10	15	<5	0.14	<1	\&	2	5	0.13	<10																
91	$39+50 \mathrm{~N} 16+75 \mathrm{E}$		co. 2	1.219	15	10	< 5	0.04	<1	<1	3	4	0.13	10	0.01	8	~ 1	0.02	5	300	18	45	<20	4	0.03	<10	7	<10	7	¢ 1
				1.26	15	25	< 5	0.02	<1	5	19	11	2.15	$\leqslant 10$	0.38	118	<1	0.02	8	130	20	< 5	<20	2	0.09	<10	37	<10	3	28
92	$39+50 \mathrm{~N} 77+00 \mathrm{E}$		<0.2	1.26		40	-5	0.02	<1	6	17	7	3.35	$\times 10$	0.32	203	-1	0.02	5	260	28	< 5	<20	4	0.14	$\leqslant 10$	56	<10	3	27
93	$39+50 \mathrm{~N} 17+25 \mathrm{E}$	<5	<0.2	1.71	20	40	-5	0.02	<1	4	10	11	1.53	$\times 10$	0.07	31	4	0.02	5	190	24	< 5	<20	2	0.13	-10	29	<10	5	9
94	39+50N 17-50E	<	<0.2	1.44	15	20	-5	0.02	<1					10	0.44	185	<1	0.02	13	270	20	-5	-20	3	0.05	< 10	23	<10	6	35
95	L40+60N 16+00E	<5	<0.2	1.41	15	45	< 5	0.07	c1	6	19	12	1.85	10	0.4	180	\&	0.02												
9				1.53	15	125	45	0.35	く1	18	40	30	3.12	10	1.05	250	c1	0.04	34	710	20	< 5	<20	17	0.15	<10	36	<10	11	61
96	L40+CON 16+COEC	<		1.81	20	40	<5	0.09	<1	6	20	20	1.90	10	0.37	188	<1	0.02	14	490	26	<	<20	4	0.05	<10	25	<10	7	33
97	L40+CON 16+50E		<0.2	1.81	15	45	- 5	0.09	<1	7	21	14	1.87	10	0.47	217	<1	0.02	15	360	20	45	-20	5	0.06	-10	25	<10	6	36
98	L40+00N 16+75E	< 5	<0.2	1.43	15	45	< 5	0.09	-1		9	5	0.42	<10	0.13	77	<1	0.02	8	310	18	-5	-20	10	0.03	-10	9	<10	3	17
99	L40+00N 17+00E	5	<0.2	0.85	10	35	4	0.09	4 <1	5	20	11	1.18	10	0.43	136	<1	0.02	13	290	18	< 5	<20	4	0.05	<10	25	<10	5	27
100	$\mathbf{L 4 0 + 0 0 N ~ 1 7 + 2 5 E ~}$	<5	<0.2	1.17	15	35	< 5	0.09	<1	5	20																			
101	+OON 17+50E	<5	20.2	1.45	15	20	<5	0.03	$\leqslant 1$	2	8	10	0.30	-10	0.06	20	<1	0.02	5	220	22	- 5	<20	3	0.06	<10	10	<10	4	8
102	$40+00 \mathrm{~N} 14+50 \mathrm{E}$	<5	-0.2	1.64	20	35	45	0.02	<1	5	17	9	2.53	10	0.29	115	<1	0.02	9	140	26	< 5	<20	3	0.05	$\times 10$	32	410	5	38
103	$40+00 \mathrm{~N}$ 14+75E	< 5	<0.2	1.52	20	30	<5	0.04	<1	3	14	6	2.47	-10	0.15	50	-1	0.02	3	170	26	< 5	<20	4	0.06	-10	29	<10	2	13
104	$40+00 \mathrm{~N} 15+00 \mathrm{E}$	<	<0.2	2.21	25	30	<5	0.02	-1	4	14	6	3.18	<10	0.12	215	$\leqslant 1$	0.02	4	320	34	<	<20	3	0.07	<10	46	-10	5	22
105	$40+00 \mathrm{~N} 15+25 E$	< 5	<0.2	1.39	15	30	<5	0.02	-1	4	12	6	2.76	<10	0.14	123	1	0.02	4	160	26	<	<20	3	0.69	<10	41	<10	3	16
										3	12	6	2.74	<10	0.14	143	<1	0.02	3	270	26	< 5	<20	4	0.05	< 10	32	410	2	17
106	40+00N 15+50E	< 5			25	35		0.07	<1		17	10	2.41	<10	0.30	204	1	0.02	9	330	28	<5	<20	6	0.05	< 10	28	<10	5	32
107	$40+00 \mathrm{~N} 15+75 \mathrm{E}$	< 5	<0.2	2.10	25	45	5	0.07		-	19	11	2.10	10	0.41	157	4	0.02	11	240	22	<5	<20	3	0.05	<10	24	-10	6	32
108	$40+00 \mathrm{~N} 16+00 \mathrm{E}$	<5	$\alpha 0.2$	1.71	20	35	< 5	0.03	c1	7		8514	3.04	<10		2218	165	0.04	10	560	9742	110	<20	117	<0.01	$\times 10$	9	<10		0000
109	$40+00 \mathrm{~N} 16+005 B$	200	330	0.37	540	25	c	1.05	9	7		3	3.04			104	1	0.02	5	200	32	4	<20	3	0.06	<10	32	<10	3	39
10	$40+00 \mathrm{~N} 16+25 E$	45	¢0.2	1.07	15	25	<5	0.03	く1	3	14	13	2.28	<10	0.1	104	1	0.02												

*,	1	Au(ppb)	Ag	Al \%	A	Ba	Bl	Cg \%	Cd	Co	Cr	Cu	Fs	青	Mr \%	Mn	Ho	$\mathrm{Na} \%$	Nj	P	Pb	Sb	Sn	St	Ti\%	U		W	γ	Zn
151	L41+50N 17400E	45	50.2	2.02	25	40	45	0.12	<1	7	12	9	3.15	10	0.14	520	3	0.02	7	570	34	<5	<20	9	0.06	<10	-	c10	星	27
152	L41+50N 17+50E	< 5	40.2	1.24	15	50	<5	0.08	c \uparrow	14	12	8	2.26	<10	0.17	3262	1	0.02	7	530	26	< 5	420	7	0.04	-10	22	$\leqslant 10$	5	23
153	$41+50 \mathrm{~N} 16+00 \mathrm{E}$	< 5	<0.2	0.86	10	15	<5	0.08	$\leqslant 1$	3	5	6	1.24	<10	0.06	70	<1	0.02	3	300	16	< 5	420	5	0.05	<10	20	<10	4	10
154	$42+00 \mathrm{~N}$ 14+50E	<5	0.2	0.83	10	50	45	0.06	<1	3	15	10	1,55	$\leqslant 10$	0.18	96	1	0.02	6	690	18	45	420	14	0.01	$\leqslant 10$	18	$\leqslant 10$	2	34
155	42+00N 14+75E	<5	<0.2	2.30	25	50	<5	0.07	4	6	19	13	3.00	<10	0.29	337	<1	0.02	8	2330	42	<5	$\times 20$	7	0.07	$\leqslant 10$	31	<10	3	43
156	$42+00 \mathrm{~N} 15+00 \mathrm{E}$	45	<0.2	1.88	25	40	<5	0.03	<1	5	14	0	2.87	<10	0.20	174	$\leqslant 1$	0.02	5	1830	34	<5	420	5	0.08	<10	32	<10	2	45
157	42+00N 15+25E	-5	0.2	0.76	10	30	45	0.04	<t	4	11	18	1.32	10	0.20	94	<1	0.02	10	190	16	c 5	<20	5	0.04	$\leqslant 10$	19	$\leqslant 10$	7	23
158	$42+00 \mathrm{~N} 15+50 \mathrm{E}$	<5	<0.2	0.98	10	45	< 5	0.04	<1	5	17	12	1.94	10	0.30	153	$\leqslant 1$	0.02	11	170	18	4	$\times 20$	4	0.05	410	26	$\leqslant 10$	7	29
159	42+00N 15+75E	45	0.3	1.90	20	95	45	0.13	<1	11	28	37	\$.52	20	0.49	441	3	0.03	25	370	36	45	<20	13	0.07	410	41	$\leqslant 10$	16	78
160	$42+00 \mathrm{~N} 16+00 \mathrm{C}$	4	40.2	1.45	15	130	< 5	0.34	* 1	18	40	33	3.12	10	1.04	244	<1	0.04	34	710	22	< 5	$: 20$	16	0.15	$\leqslant 10$	37	$\times 10$	11	61
161	$42+00 \mathrm{~N} 16+40 \mathrm{OE}$	190	-30	0.35	560	25	<5	1.07	101	7	16	655	3.02	<10	0.17	225	151	0.04	11	5.50	9671	100	<20	118	40.01	410	9	$\times 10$	3	>1000
162	$42+00 \mathrm{~N} 16+25 \mathrm{E}$	<5	$\kappa 0.2$	0.76	10	30	-5	0.13	<1	2	9	15	0.46	$\times 10$	0.13	52	1	0.02	6	640	32	c 5	$\times 20$	10	0.01	$\times 10$	9	$+10$	4	37
163	$42+00 \mathrm{~N} 16+50 \mathrm{E}$	5	<0.2	1.58	20	80	$\times 5$	0.11	<1	6	24	16	1.21	20	0.35	108	<1	0.02	19	330	38	< 5	<20	11	0.06	<10	19	<10	10	56
164	$42+(0) \mathrm{N} 16+75 \mathrm{E}$	<5	co.2	1.03	10	55	< 5	0.10	$\leqslant 1$	6	15	10	1.46	<10	0.32	180	<1	0.02	10	350	22	45	<20	8	0.05	-10	19	<10	4	35
165	$42+00 \mathrm{NV} 17+00 \mathrm{E}$	45	*0.2	0.50	5	20	45	0.04	<1	3	12	2	0.87	<10	0.24	78	<1	0.01	6	80	8	45	<20		0.05	$\leqslant 10$	15	<10	2	21
166	$42+00 \mathrm{~N} 17+50 \mathrm{E}$	<5	e0.2	1.42	15	55	45	0.04	$\leqslant 1$	11	22	12	2.34	10	0.52	1238	<1	0.02	17	140	22	4	<20	3	0.08	810	25	<10	7	62

oc DATA:
Hepast:
$1 \quad L 38+50 \mathrm{~N} 14+50 \mathrm{E}$

<50.2	1.23	15	40	<5	0.07	<1	4	16	7	2.25	<10	0.31	142	$\leqslant 1$	0.02	8	340	18	<5	<20	5	0.06	<10	33	<10	4	30
$<5<0.2$	1.00	10	5	<5	0.09	$\leqslant 1$	2	3	4	0.60	$\times 10$	0.05	40	$\leqslant 1$	0.02	3	430	12	<5	<20	4	0.05	<10	20	$\checkmark 10$	4	7
< 0.2	2. 61	25	10	$\leqslant 5$	0.03	$\leqslant 1$	2	3	7	1.04	<10	0.03	31	$\leqslant 1$	0.02	2	310	30	<5	<20	3	0.05	$\times 10$	16	<10	3	5
5 <0.2	1.93	20	25	45	0.02	<1	5	10	9	2.18	$\leqslant 10$	0.08	85	1	0.02	4	270	34	$\times 5$	<20	3	0.15	<10	36	$\leqslant 10$	4	13
<5	2.05	35	60	<5	0.06	1	37	27	32	>10	30	0.40	1404	11	0.06	23	670	40	$\star 5$	<20	8	0.06	$\times 10$	36	$\leqslant 10$	27	108
5 $<5<0.2$	1.79	15	130	45	0.33	cit	19	41	33	3.32	20	1.10	278	<1	0.04	36	680	22	<5	<20	16	0.15	$\leqslant 10$	38	$\leqslant 10$	12	65
5 $5<0.2$	1.69	15	125	45	0.33	<1	18	39	30	3.15	20	1.04	236	c1	0.04	34	720	22	< 5	420	16	0.15	410	36	+10	1%	62
<0.2	1.25	15	30	45	0.04	$\leftarrow 1$	1	6	7	0.25	<10	0.06	21	$\leqslant 1$	0.01	4	520	22	<5	$\times 20$	4	0.02	$\leqslant 10$	8	<10	3	7
$\begin{gathered} 5 \\ <5<0.2 \\ 5 \\ 5 \end{gathered}$	1.52	15	30	<5	0.04	<1	4	16	10	1.85	10	0.31	116	$\leqslant 1$	0.02	9	260	22	<5	<20	3	0.05	<10	24	<10	4	27
$\begin{aligned} & 5 \\ & <5<0.2 \\ & <5 \end{aligned}$	1.05	10	35	<5	0.03	81	4	18	6	0.96	<10	0.30	90	$\leqslant 1$	0.02	8	150	20	<5	<20	3	0.07	<10	27	<10	3	23
$<5<0.2$	3.35	40	65	c5	0.02	<1	68	21	16	5.31	<10	0.48	5228	4	0.03	7	410	58	45	<20	4	0.12	<10	50	$\leqslant 10$	4	47
$\begin{array}{r} <5 \\ 5 \end{array}$																											
$5^{<0.2}$	1.33	15	45	45	0.10	$\leqslant 1$	7	21	13	1.87	10	0.47	209	$\leqslant 1$	0.02	15	340	20	45	420	5	0.06	<10	26	<10	6	35
45	1		,	.			-																				

Et \#. ${ }_{\text {H }}$	Autppb ${ }^{\text {a }}$ A!	Al \%	As	Ba	Bi	Ce\%	Cd	Co	Cr	Cu	F* ${ }^{\text {c }}$	a	2\%	Mn		Na\%	Ni	P	Pb	5b	5 n	St	Ti\%	4		W	Y	Zn
Reperat:																												
$10640+00 \mathrm{~N} \mathrm{15+50E}$	< $5<0.2$	1.40	15	35	<5	0.04	$\leqslant 1$	3	12	6	2.73	<10	0.14	158	<1	0.02	4	310	26	< 5	<20	4	0.06	$\times 10$	32	<10	2	18
113 40+50N 14+50E	< 5																											
$11540+50 \mathrm{~N} 15+00 \mathrm{C}$	80.2	0.56	10	25	$\leqslant 5$	0.08	41	41	3	\$	0.38	<10	0.02	13	$\leqslant 1$	0.02	3	770	14	45	<20	8	0.01	<10	6	<10	2	2
117 40450N 15+50E	5																											
$124 \quad 40+50 \mathrm{~N} 16+50 \mathrm{E}$	$<5<0.2$	1.12	15	45	45	0.08	$\leqslant 1$	5	25	5	1.43	10	0.42	165	$\leqslant 1$	0.02	12	200	20	<5	<20	7	0.07	<10	26	<10	3	30
133 41+OON 16+00E	$<5<0.2$	0.48	5	40	45	0.05	$\leqslant 1$	2	9	2	0.37	<10	0.13	50	<1	0.01	6	180	10	<5	<20	4	0.03	<10	10	<10	3	14
$141 \mathrm{L41+00N17+50E}$	$<5<0.2$	0.61	5	30	45	0.05	<1	10	9	4	1.45	<10	0.15	404	1	0.02	6	340	16	- 5	<20	5	0.03	$\leqslant 10$	17	$\leqslant 10$	3	18
$150 \mathrm{L4} 1+50 \mathrm{~N}$ 16+50E	$10<0.2$	1.08	15	45	45	0.07	$\leqslant 1$	7	18	11	1.09	10	0.32	104	2	0.02	13	170	22	<5	420	7	0.06	$=10$	24	<10	9	41
159 42+CON 15+75E	0.3	2.02	25	95	45	0.14	$\leqslant 1$	12	30	38	3.59	20	0.50	484	3	0.03	26	400	38	<5	<20	13	0.07	<10	42	<10	16	80
$160 \quad 42+00 N 16+00 E$	45																											
Staridard:																												
Till-3	1.5	0.92	85	45	45	0.49	<1	13	60	18	1.92	10	0.56	294	41	0.03	31	440	26	-5	<20	13	0.07	<10	29	$\leqslant 10$	8	34
Tirl-3	1.4	1.09	85	40	45	0.50	$\leqslant 1$	13	80	18	1.90	10	0.57	299	$\leqslant 1$	0.03	32	440	28	45	<20	12	0.06	<10	30	$\leqslant 10$	9	35
Tibl-3	1.4	1.12	85	45	45	0.49	<1	13	59	18	1.90	10	0.55	296	41	0.03	31	440	26	< 5	$\cdots 20$	12	0.07	<10	28	<10	9	33
Till 3	1.5	1.10	85	40	$\checkmark 5$	0.50	<1	13	60	19	1.94	10	0.56	298	41	0.03	32	440	28	c 5	<20	13	0.06	<10	30	<10	8	35
Till-3	1.5	1.12	85	40	-5	0.50	c1	13	61	19	1.94	10	0.56	290	<1	0.03	32	400	28	< 5	<20	14	0.07	≤ 10	30	<10	10	35

Renaissance
pcience
gao Dairy Roal
Kamloops, BC
v2B 8H3
Noa ot samples received: 97
Sample Type: Soll
Project: Broken Hill
Shipment f: 0601
Subtryted by: Cilif Schneder

Et 1.	Tag	Hutppb)		A 5	As	Ba	Bi	Ca\%	Cd	Co	Cr	Cu	Fe\%	La	Mg\%	Hn	Ho	Ha \%	Ni	P	Pb	Sb	Sn	Sr	Ti \% U	ψ	W	Y	Z
1	$45+50 \mathrm{~N} 14+50 \mathrm{E}$	<5	<0.2	0.08	<5	10	≤ 5	0.04	<1	$\leqslant 1$	2	2	0.29	<10	<0.01	18	<1	0.02	1	70	4	< 5	<	4	$0.31<10$	12	<10	<1	E
2	45+50* 14+75E	<5	$\leqslant 0.2$	0.08	45	10	<5	0.05	<1	1	2	2	0.35	<10	0.01	23	<1	0.02	<1	∞	2	<5	<20	4	$0.02<10$	14	<10	<1	
3	$45+50 \mathrm{~N} \cdot 15+00 \mathrm{E}$	<5	<0.2	0.14	< 5	10	<5	0.02	<1	<1	1	2	0.27	<10	<0.01	16	<1	0.03	<1	80	4	<5	<20	4	$0.01<10$	B	<10	41	
4	$45+50 \times 115+25 E$	<5	<0.2	0.08	<5	5	<5	0.03	<1	<1	1	<1	0.22	<10	<0.01	14	<1	0.02	<1	70	2	<	<20	3	$0.01<10$	9	<10	<1	
5	$45+50 \mathrm{~N} 15+50 \mathrm{E}$	<5	<0.2	1.28	15	20	4	0.03	<1	3	0	4	2.02	<10	0.17	34	<1	0.02	5	510	22	< 5	$<2 \mathrm{O}$	5	$0.03<10$	41	<10	2	25
6	$45+50 * 15+75 \mathrm{E}$	<5	4.2	1.68	15	30	<5	0.03	<1	3	9	5	1.78	<10	0.14	122	<1	0.02	4	330	30	< 5	<20	5	$0.03<10$	23	<10	3	4
7	$45+50 \mathrm{~N} 16+00 \mathrm{E}$	<5	0.2	0.44	<5	40	<5	0.17	<1	5	5	9	1.00	20	0.07	214	<1	0.02	\%	240	22	<5	<20	15	$0.04<10$	15	<10	13	62
9	$45+50 \mathrm{~N} 16+25 \mathrm{E}$	5	0.2	1.36	15	40	<5	0.03	<1	4	12	5	2.51	<10	0.11	70	1	0.03	3	220	26	<5	<20	6	$0.12<10$	57	<10	2	$2 E$
9	$45+50 \mathrm{~N} 16+50 \mathrm{E}$	<5	0.3	1.45	15	40	<5	0.11	<1	4	16	11	1.66	<10	0.28	161	<1	0.02	9	400	24	< 5	<20	θ	$0.06<10$	24	<10	3	55
10	$45+50 \mathrm{~N} 16$-75E	<5	0.3	1.81	20	60	<5	0.40	3	10	13	47	1.33	90	0.23	1356	3	0.03	46	770	236	<	<20	25	$0.04<10$	29	<1	83	965
11	45+50N 17+COE	<5.	<0.2	0.12	<5	15	<5	0.03	<1	c1	1	3	0.26	<10	<0.01	19	<1	0.03	<1	80	4	<5	<20	5	$0.01<10$	8	<10	<1	
12	45+50N1720	< 5	0.2	1.37	15	20	${ }_{4}^{5}$	0.03	<1	2	5	4	1.35	<10	0.03	25	<1	0.02	1	235	24	<5	<20	3	$0.05<10$	17	<10	2	1
13	45*50N 17+50E	<5	0.2	0.34	<5	30	< 5	0.24	3	2	2	9	0.59	10	0.09	608	<1	0.03	B	230	8	-5	<20	18	$0.03<140$	14	<10	14	S
14	$45+00 \mathrm{~N} 14+50 \mathrm{E}$	< 5	<0.2	0.06	<5	15	<5	0.05	<1	2	2	2	0.49	<10	0.01	154	<1	0.02	1	130	4	< 5	<20	4	$0.03<10$	19	<10	<1	
15	$45+001414+75 \mathrm{E}$	<5	<0.2	0.14	<5	10	<5	0.02	<1	<1	2	2	0.30	<10	<0.01	19	<1	0.02	<1	90	4	<	<20	3	$0.02<10$	10	<10	<1	
16	45400N 15+00E	$\times 5$	0.2	0.21	<5	10	45	0.03	<1	<1	2	1	0.21	<10	0.01	10	<1	0.02	2	100	8	<5	<20	3	$0.04<10$	B	<10	<1	
13	$45+00415+25 E$	<5	0.4	2.11	25	15	4	0.03	<1	2	4	4	1.41	<10	80.01	17	<1	0.08	<1	420	28	< 5	<20	5	$0.06<10$	20	<10	2	
18	$45+\infty \times 15+50 E$	< 5	0.2	0.14	45	15	<5	0.02	<1	<1	1	2	0.17	<10	<0.01	43	<1	0.02	<1	90	6	< 5	<20	3	$0.01<10$	7	<10	<1	
19	$45+0 \mathrm{NN} 15+75 \mathrm{E}$	< 5	0.2	0.24	<5	20	<5	0.07	<1	2	3	2	0.48	<10	0.62	99	<1	0.02	1	190	12	45	<20	5	$0.06<10$	1	<10	<1	
20	$45+00 \mathrm{~N} 16+00 \mathrm{E}$	<5	<0.2	0.13	<5	10	<5	0.02	<1	<1	2	1	0.23	<10	0.01	13	<1	0.02	1	80	4	< 5	<20	3	$0.01<13$	a	<10	<1	

OOE $45+00$ N $16-25 E$ $45+00 \mathrm{~N} 16+50 \mathrm{C}$ $45+00$ N 16-75E
$45+00 \mathrm{~N} 17+00 \mathrm{E}$ $45+00 \mathrm{~N} 17+25 \mathrm{E}$ $45-00$ 셔 17+50E $44+50 \mathrm{~N} 14+50 \mathrm{E}$ $44+50 \mathrm{~N} 14+35 \mathrm{E}$

$185>300.4352$ $<5<0.21 .691$ | | 0.2 | 1.69 | 15 |
| :--- | :--- | :--- | :--- | 130 $\begin{array}{llll}5 & 1.3 & 2.46 & 25\end{array}$ $<5 \quad 0.0 \quad 2.64 \quad 25 \quad 1$

$\begin{array}{lll}5 & 0.6 & 1.29\end{array}$ $<50.21 .84$ c5 $0.2 \quad 1.38$ $<5<0.20 .09 \quad<5$

<5

$\begin{array}{llll} & 1.05 & 97 & 7\end{array}$ $\begin{array}{lllll}0.34 & <1 & 18 & 38 & 37\end{array}$
$\begin{array}{llllllllll}5 & 0.07 & <1 & 3 & 7 & 5 & 1.19 & <10 & 0.11 & 79\end{array}$

<5	0.51	3	8	23	5

$\begin{array}{llllllll} & 0.51 & 3 & 9 & 24 & 74 & 2.64 & 110\end{array}$
510.04
<10.04
10.03
20.03

30

10.02 $\begin{array}{rll}<1 & 0.02 & 2 \\ 2 & 0.02 & 1\end{array}$
$116100058 \quad 105<20 \quad 121<0.01<10 \quad 10<10$
$658 \quad 105<20 \quad 121<0.01<10 \quad 10<10 \quad 3$

${ }^{x}$

$2 \approx$
$45 i$

63
63

178
178
178
172
$12 ?$
:

Page 2

Et ${ }^{\text {\# }}$		b)		A \%	As	Ba	Bi	Cs \%	Cd	Co	Cr			L¢	Mr \%	Mn	Mo	$\mathrm{Na} \%$	Ni	P	Pb	Sb	Sn	Sr	T\% \%			W	Y	zn
71	$43+00 \mathrm{~N} 14+7 \mathrm{SE}$	<	0.3	0.70	10	15	45	0.02	<1	$\leqslant 1$	2	5	0.40	<10	<0.01	12	< 1	0.02	2	420	14	4	<20	4	<0.01	<10	1	$\times 10$	2	4
72	$43+00 \mathrm{~N} 15+00 \mathrm{E}$	45	40.2	0.11	4	10	45	0.02	-1	1	2	1	0.31	<10	0.01	104	c)	0.02	<1	100	4	<5	<20	3	0.02	<10	12	<10	<1	5
73	$43+00 \mathrm{~N} 15+25 \mathrm{E}$	< 5	0.2	0.10	45	15	45	0.03	41	-1	1	3	0.19	-10	0.13	114	<1	0.02	41	400	20	<5	<20	4	0.04	<10	23	-10	2	19
74	$43+00 \mathrm{~N} 15+50 \mathrm{E}$	<5	<0.2	1.23	15	30	45	0.02	$\leqslant 1$	3	${ }^{7}$	5	1.70	<10 <10	0.13	217	<1	0.02	9	740	24	< 5	<20	4	0.03	<10	24	-10	4	42
75	43+00N 15+75E	<5	<0.2	1.59	20	30	<	0.06	c1	5	15	8	2.37	<10	0.32															
76	$43+00 \mathrm{~N} 16+00 \mathrm{E}$	45	<0.2	0.56	5	20	<5	0.05	<1	2	5	3	1.05	<10	0.08	72	<1	0.02	3	310	12	<5	-20	5	0.03		15	-10	1	10
77	$43+00 \mathrm{~N} 16+$ OOEB	210	>30	0.42	530	25	45	1.06	96	7	199	944	3.13	<10	0.18	2332	161	0.04	11	670	8686	105	<20	122	<0.01	<10	9	<10	3	0000
78	$43+00 \mathrm{~N} 16+00 \mathrm{EC}$	<5	0.2	1.67	20	125	45	0.33	<1	18	38	48	3.24	20	1.06	264	1	0.04	35	700	46	$\bigcirc 5$	<20	18	0.15	< 10	37	$\times 10$	11	105
79	$43+00 \mathrm{~N} 16+25 E$	<	0.2	1.29	15	25	< 5	0.02	c1	3	7	11	1.23	<1	0.06	8	4	0.02	4	250	24	<5	<20	4	0.04	<10	23	$\leqslant 10$	3	13 25
80	$43+00 \mathrm{~N} 16+50 \mathrm{E}$	<5	0.2	1.01	10	35	4	0.04	c 1	5	13	9	1.58	10	0.29	225	$\leqslant 1$	0.62	9	220	16									
		45	0.2	1.63	20	35	<5	0.15	<1	5	17	9	2.77	10	0.37	183	1	0.02	9	200	24	< 5	<20	10	0.06		33	≤ 10	5	36
82	$43+00 \mathrm{~N} 17+00 \mathrm{E}$	4	40.2	1.08	15	25	<5	0.03	<1	4	11	6	1.75	10	0.28	144	<1	0.02	θ	180	16	<	<20	3	0.04	<10	29	<10	4	22
83	43+00N 17+25E	<5	<0.2	1.15	10	40	4	0.69	<1	5	16	6	1.25	10	0.44	141	$\leqslant 1$	0.02	13	310	18	<	<20	4	0.05		19	$\times 10$	5	36
84	$43+00 \mathrm{~N} 17+50 \mathrm{E}$	<5	<0.2	1.62	20	25	<5	0.05	<1	4	9	13	1.50	10	0.12	195	10	0.02	6	430	28	<	-20	3	0.02		14	$\times 10$	<1	7
85	42+50N 14+50E	<5	<0.2	0.08	45	10	45	0.04	く1	1	1	4	0.46	<10	0.02	32	C	0.02	a	70	2									
									41	2	2	4	0.48	<10	0.02	22	$\leqslant 1$	0.02	1	200	8	< 5	<20	4	0.02		15	<10	<1	10
86	42+50N 14+75E	<5	0.2	0.17 3.12	$\stackrel{4}{4}$	40	<5	0.08	\& 1	2	16	11	3.53	$\leqslant 10$	0.19	229	1	0.03	6	1470	50	-5	-20	7	0.11	-10	34	$\leqslant 10$	3	41
87	42+50N 15+00E	<5	0.5	3.12 1.18 0.9	35 15	40	<5	0.00	<1	9	15	1	2.12	10	0.77	472	1	0.02	9	240	20	45	<20	6	0.05	<10	23	<10	4	49
88	$42+50 \mathrm{~N} 15+25 \mathrm{E}$	<5	0.2	1.18 0.99	15 10	40	< 5	0.04 0.04	<1	3	5	5	1.50	<10	0.05	131	c1	0.02	3	310	24	< 5	<20	5	0.07	<10	23	<10	3	14
89	$42+50 \mathrm{~N} 15+50 \mathrm{E}$	45	0.2	0.99 1.43	15	35	<5	0.04	<1	4	10	7	2.09	-10	0.12	275	41	0.02	4	260	26	< 5	<20	5	0.05	<10	28	$\leqslant 10$	3	26
90	42+50N $15+75 \mathrm{E}$	<5	0.2	\%.43																										
91	50N 16+00E	45	0.3	1.52	20	45	$\alpha 5$	0.07	41	5	10	12	2.19	410	0.14	255	$\leqslant 1$	0.02	6	270	28	4	<20	8			26	<10	6	27
92	42+50N 16+25E	5	<0.2	1.39	15	30	<5	0.04	<1	5	16	9	1.90	10	0.36	143	41	0.02	10	200	22	< 5	420	4		+10	34	<10	8	53
93	$42+50 N 16+50 E$	5	<0.2	1.32	15	85	<5	0.08	<1	12	27	20	2.3	20	0.60	360	41	0.02	23	370	22	5	-20	6		$\times 10$	26	<10	3	32
94	$42+50 \mathrm{~N} 16+75 \mathrm{E}$	<5	<0.2	1.20	15	40	< 5	0.06	$\leqslant 1$	5	13	11	1.95	<10	0.27	208	1	0.02	E	210	2	-5	<20	9	$\times 0.01$	<10	7	-10	5	8
95	$42+50 \mathrm{~N} 17+00 \mathrm{E}$	<5	0.4	1.02	10	30	<5	0.08	<1	c	6	10	0.33	10	0.07	29	<1	0.03	6											
96	$42+50 \mathrm{~N} 17+25 \mathrm{E}$	<5	<0.2	0.65	10	40	<5	0.10	<1	5	11	4	1.27	410	0.20	213	2	0.02	6	340	16	<5	<20	8			22	410	2	29
97	$42+50 \mathrm{~N} \cdot 17+50 \mathrm{E}$	<5	0.2	1.12	15	25	< 5	0.07	<1	3	7	10	1.00	10	0.08	159	2	0.02	7	470	24	<5	<20	7	0.04	<10	19	0	7	,

cepeat:

$45+50 \mathrm{~N} 14+50 \mathrm{E}$ $45+50 \mathrm{~N} 16+75 \mathrm{E}$ $45+50 \mathrm{~N} 17+25 E$ $45+00 \mathrm{~N} 15+75 \mathrm{E}$ $45+1$ ON 17+50E $44+50 \mathrm{~N} 16+25 E$ $44+00 \mathrm{~N} 15+25 E$ $44+00 \mathrm{~N} 17+00 \mathrm{E}$ $44+00 \mathrm{~N} 17+50 \mathrm{E}$ $43+50 \mathrm{~N} 16+00 \mathrm{E}$ $43+50 \mathrm{~N} 16+50 \mathrm{E}$ $43+00 \mathrm{~N} 14+75 \mathrm{E}$ $43+00 \mathrm{~N}$ 16+50E $42+50 \mathrm{~N} 15+75 \mathrm{E}$

$$
\begin{aligned}
& \begin{array}{llllllllllllllllllllllllllllll}
0.4 & 1.90 & 20 & 60 & <5 & 0.40 & 3 & 10 & 14 & 47 & 1.94 & 90 & 0.23 & 1365 & 3 & 0.03 & 46 & 810 & 236 & <5 & 20 & 25 & 0.04 & <70 & 28 & <10 & 82
\end{array} \\
& <5
\end{aligned}
$$

$$
\begin{aligned}
& <5<0.2 \begin{array}{llllllllllllllllllllllllllllll}
& 0.16 & <5 & 10 & <5 & 0.03 & <1 & <1 & 1 & <1 & 0.26 & <10 & <0.01 & 11 & <1 & 0.02 & 1 & 100 & 6 & <5 & <20 & 3 & 0.02 & <10 & 7 & <10 & <1 & 5
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 45 \\
& <^{<0.21156 \quad 15} \\
& \begin{array}{lll}
4.5 & & \\
4 & 0.3 & 0.68
\end{array} \\
& \begin{array}{r}
4 \\
<5
\end{array}
\end{aligned}
$$

\qquad

ECO TECH LABORATORY LTD.

\$tandard:																												
Tfll-3	1.		85	35	<5	0.58	<1	11	58	19	1.93	10	0.56	302	$\leqslant 1$	0.03	32	440	$2{ }^{6}$	45	420	10	0.07×10	39	$\checkmark 10$	9	35	
Til\| 3	1.4		85	35	4	0.56	<1	11	60	18	1.89	10	0.55	308	41	0.03	32	460	28	* 5	<20	10	$0.05<10$	38	- 10	9	35	
Ti\|	-3	1.3	1.05	80	35	< 5	0.54	<1	11	60	18	1.89	10	0.55	303	$\leqslant 1$	0.03	31	470	26	c5	-20	11	$0.06<10$	40	c10	9	36

JJ/sa/kk

dtiol.a63
XLSIO6

ECO TECH LA ,TORY LTD.
ICP CERTIFICATE C
10041 Dallas Drive
KAMLOOPS, B.C.
U2C 6T4
Phone: $250-573-5700$
Fax : $250-573-4557$

Renalssance Ge
Hnce
soo Dairy Roa
Kamloops, BC
W2B 8H3

No. of sarmpies recemeo: 231
Sample Type: Soul
Proiect: Broken fill
Shipment : : ac-a
Submited by: Cliff Schroeder

Et	Tag ${ }^{\text {\% }}$	Au\{ppb		A ${ }^{\text {\% }}$ ' ${ }^{\prime}$	As	Ba	B	Ca \%	Cd	Co	Cr	Cu	Fe\%	La	$\mathrm{Mg} \%$	Mn		$\mathrm{Na} \%$	Ni	P	Pb	Sb Sn	Sr	IT\%	U	4 \%	r	2 n
1	$52+00 \mathrm{~N} 14+50 \mathrm{E}$	< 5	<0.2	0.09	< 5	10	<	0.02	<1	<1	2	1	0.26	<10	0.02	20	<1	0.02	1	110	4	$<5<20$	2	0.01	<10	$9<10$	<1	6
2	$52+00 \mathrm{~N} 14+75 E$	<5	<0.2	1.53	15	15	<5	0.01	<1	2	4	4	1.21	<10	0.08	5 ?	<1	0.02	1	350	22	$<5<20$	2	0.05	<10	$24<10$	2	5
3	$52+00 \mathrm{~N} 15+00 \mathrm{E}$	< 5	<0.2	0.30	<5	10	-5	0.02	<1	1	2	1	0.37	<10	0.01	16	<1	0.01	2	100	8	<5 <20	2	0.03	<10	$10<10$	1	5
4	$52+00$ N 15 +25 E	< 5	<0. 2	0.89	10	25	<	0.03	<1	2	10	4	2.51	$\leqslant 10$	0.14	97	ci	0.02	4	360	15	<5 <20	3	0.03	<10	$32<10$	2	20
5	52+100N 15+5CE	< 5	<0.2	0.41	-5	20	<5	0.03	<1	2	4	2	0.72	<10	0.02	104	<1	0.01	2	340	12	<5 <20	5	0.05	<10	$19<10$	<1	6
6	$52+\operatorname{CON~15+75E}$	<5	<0.2	2.85	30	30	<5	003	<1	3	11	6	2.01	<10	010	179	<1	0.02	4	450	39	$<5<20$	3	0.06	<10	$24<10$	3	18
7	$52+00 \mathrm{NV} 16+00 \mathrm{E}$	<5	0.2	0.85	10	70	< 5	0.26	<1	7	9	9	1.35	20	0.14	1194	3	0.02	11	480	24	$<5<20$	20	005	<10	$22<10$	6	23
8	$52+00+16+00 E B$	220	>30	0.37	485	25	<5	1.00	91	6	17	550	3.01	<10	0.17	2110	134	0.03	10	490	9654	$100<20$	119	<0.01	<10	$9<10$		000
9	$52+00 \mathrm{~N} 16+00 E C$	< 5	<02	1.64	15	140	c 5	0.33	<1	18	40	35	3.35	10	1-11	250	<1	0.04	34	700	28	$<5<20$	17	0.15	<10	$39<10$	11	73
10	$52+00 \mathrm{~N} 16+25 \mathrm{E}$	<5	0.2	2.47	25	45	$\times 5$	0.69	<1	6	12	11	1.75	<10	0.12	337	1	0.07		150	44	$<5<0$	94	0.04	<10	20 <10	9	25
11	$52+00 \mathrm{~N} 16.50 \mathrm{E}$	<5	0.2	0.25	<5	10	<5	0.03	<1	<1	2	2	0.41	<10	0.01	18	<1	0.08	1	200	8	$<5<20$	3	0.02	<10	$11<10$	<1	6
12	$52+00 \mathrm{~N} 16+75 \mathrm{E}$	<5	<0.2	0.30	< 5	20	< 5	0.02	<1	2	3	\pm	0.50	<10	0.08	34	<1	0.02	1	120	10	$<5<20$	3	0.05	<10	$16<10$	<1	7
13	$52+00 \mathrm{~N} 17+00 E$	<	<0.2	1.79	20	20	< 5	0.6	<1	2	11	5	1.5	<10	0.10	71	1	0.02	3	570	28	$<5<20$	5	0.05	<10	$25<10$	2	19
14	$52+00 \mathrm{~N} 17+25 E$	<	<0. 2	1.33	15	25	<5	0.04	<1	3	4	5	1.73	<10	0.02	236	2	0.02	<1	340	26	$<5 \times 20$	4	0.69	<10	<10	2	10
15	$52+00 \mathrm{~N} \times 17+50 E$	< 5	40.2	2.27	25	35	<5	0.10	<1	6	10	8	1.53	<10	0.09	782	3	0.02	5	470	32	$<5<20$	13	0.06	<10	$20<10$	6	26
16	$52+00 \mathrm{~N} 17+75 \mathrm{E}$	<5	<0.2	3.40	40	30	<5	0.05	<1	5	11	7	314	<10	0.07	318	3	0.02	2	830	57	<5 <20	4	0.12	<10	$39<10$	3	31
17	$52+00 \mathrm{~N}$ 18+00E	5	<0.2	3.56	40	50	<5	0.18	<1	7	32	11	2.56	10	0.42	169	<1	0.02	15	550	50	$<5<20$	10	0.07	<10	$28<10$	8	91
18	$51+50 \times 14+50 \mathrm{E}$	< 5	<0.2	0.91	15	25	-5	0.02	<1	1	7	4	1.33	<10	0.10	36	<1	0.02	3	290	18	$<5<20$	3	0.01	<10	$19<10$	1	12
19	51+50 ${ }^{14+75 E}$	< 5	<0.2	0.11	5	10	45	0.02	<1	<1	1	1	0.15	<10	<0.01	10	<1	0.02	<1	80	4	$<5<20$	2	01	<10	$6<10$	<1	5
20	$51+50 \times 15+00 \mathrm{E}$	<5	40.2	0.05	<5	5	<5	0.01	<1	<1	1	<1	0.24	<10	<0.01	14	<1	0.0	<1	50	<2	$<5<20$	2	0.11	<10	$9<1$	<1	4
21	51+56*N 15+25E	<5	<0.2	0.10	< 5	10	<5	0.04	< 1	<1	1	<1	0.14	<10	0.01	44	<1	0.01	4	100	4	$<5<0$	3	0.02	<10	$7<10$	<1	4
22	$51+50 \mathrm{~N} 15+50 \mathrm{E}$	<5	<0.2	0.45	5	25	<5	0.07	< 1	2	7	3	1.02	<10	0.14	77	<1	0.01	5	330	10	$<5<20$	5	0.02	<10	$16<10$	1	24
23	$51+50 \mathrm{~N} 15 \rightarrow 75 E$	<5	0.3	0.83	10	20	<	0.08	<1	3	10	4	1.59	<10	0.05	175	1	0.08	3	680	2	$<5<20$	4	0.10	<10	$35<10$	1	9
24	$51+50 \mathrm{~N} 16+00 \mathrm{E}$	<5	<0.2	2.06	20	20	-5	0.03	<1	2	6	4	1.61	<10	0.02	66	1	0.08	1	350	32	<5 <20	3	0.07	<10	0	2	
25	$51+50 \mathrm{~N} 16-25 E$	< 5	<0.2	0.43	< 5	35	<5	0.14	<1	4	16	3	1.	<10	0.20	134	<1	0.02	5	260	10	<5 <20	7	0.08	<1	$29<10$	1	21
26	51+50 ${ }^{\text {d }} 16-50 \mathrm{E}$	< 5	<0.2	0.28	<5	20	<	0.05	<1	3	7	2	0.92	<10	0.08	38	<1	0.02	2	210	10	$<5<20$	4	0. 10	<10	$31<10$	<1	9
27	51+50N $16+75 E$	-5	<0.2	0.69	5	20	< 5	0.03	<1	2	7	3	1.17	<10	0.69	128	< 1	0.02	3	250	12	$<5<20$	4	0.03	<10	$20<10$	2	16
28	51+501\$17+0CE	<5	<0.2	0.57	5	25	-5	0.04	<1	2	4	2	0.97	<10	0.03	60	<1	0.02	1	190	14	$<5<20$	4	0.07	<10	$22<10$	1	
29	51+50N 17+25E	<5	<0.2	0.10	<5	10	<5	0.05	<1	1	2	<1	0.18	<10	0.01	23	1	0.02	1	90	a	$<5<20$	4	0.05	<10	$10<10$	<1	A
30	$51+50 \mathrm{~N} 17+50 \mathrm{E}$		<0.2	1.51	15	30	5	0.04	<1	2	7	4	1.96	<10	0.05	69	3	0.02	2	280	26	$<5<20$	5	0.06	<10	$28<10$	2	18

El．	Ta，	Autppbl		A）\％	4 s	Ea	Bi	Ca\％	Cd	Co	Cr	Cu	Fe＊		斯券	畋吅	Mo	Ha\％	Ni	P	Pb	Sb Sn	St	T1\％	\checkmark	W	Y	Zn
31	51＋50N 17－75E	＜	＜0．2	0.08	45	10	<5	0.02	＜1	＜1	1	<1	0.31	＜10	＜0．01	16	<1	0.02	＜1	60	2	$<5<20$	2	0.08	<10	<10	4	5
32	$51+50 \mathrm{~N} 18+0 \mathrm{CE}$	＜ 5	0.2	1.35	15	30	＜5	0.06	＜1	3	12	7	2.22	<10	0.17	81	<1	0.02	4	430	24	$<5<20$	5	0.05	<10	$28<10$	3	39
33	$51+00 \mathrm{~N} 14+5 \mathrm{CE}$	＜ 5	<0.2	0.27	＜5	10	＜5	0.03	＜1	＜1	1	1	0.19	<10	＜0．01	11	<1	0.02	1	550	10	$<5<20$	3	0.02	<10	$5<10$	<1	2
34	$51+00 \mathrm{~N} 14+75 E$	＜ 5	＜0．2	0.07	＜ 5	5	＜5	0.01	＜1	＜1	1	<1	0.19	<10	＜0．01	10	<1	0.02	＜1	60	2	$<5<20$	2	0.01	<10	$8<10$	＜ 1	3
35	$51+00 \mathrm{~N} 15+$ COE	<5	<0.2	0.08	<5	10	＜ 5	0.01	＜1	＜1	1	<1	0.16	<10	＜0．01	12	<1	0.02	<1	70	4	$<5<20$	2	0.01	<10	$7<10$	＜ 1	3
36	$51+00 \mathrm{~N} 15+25 \mathrm{E}$	45	＜0．2	1.91	\gtrless	40	<5	0.64	＜1	2	4	3	1.32	<10	0.01	129	<1	0.02	c 1	1110	28	$<5<20$	6	0.07	<10	$18<10$	1	7
37	51＋00N 15＋50，	＜5	＜0．2	0.10	＜ 5	10	＜5	0.03	＜1	＜1	2	＜1	0.25	＜10	0.01	27	<1	0.02	1	110	4	$<5<20$	2	0.02	<10	$9<10$	4	4
38	$51+00 \mathrm{~N} 15+75 \mathrm{E}$	＜ 5	0.4	2.89	30	45	＜ 5	0.08	＜1	5	20	8	3.49	<10	0.07	233	3	0.02	4	900	42	$<5<20$	7	0.15	<10	$55<10$	3	13
39	51＋00N 16＋00	＜ 5	0.3	3.22	35	25	＜ 5	0.6	＜1	4	18	11	2.60	<10	0.12	64	<1	0.08	5	520	44	$<5<20$	6	0.08	＜10	$35<10$	3	20
40	$51+00+16+00 E 8$	220	＞30	0.27	520	25	＜5	1.07	95	7	16	680	2.96	＜10	0.17	2312	142	0.04	10	470	9718	$100<20$	121	＜0．01	<10	$10<10$		000
41	$51+00 \mathrm{~N} 16+00 \mathrm{CC}$	＜5	0.2	1.53	15	135	＜5	0.33	<1	18	39	39	3.26	10	1.06	247	<1	0.04	33	700	30	$<5<20$	16.	0.14	<10	$37<16$	12	74
42	$51+00 \mathrm{~N} 16+25 \mathrm{E}$	＜ 5	0.2	1.27	15	30	＜ 5	0.6	＜1	3	9	5	1.72	<10	0.08	56	＜1	0.02	3	290	24	$<5<20$	5	0.09	<10	29 <10	2	22
43	51＋00N 16＋50E	＜ 5	＜02	0．07	<5	10	＜5	0.04	＜1	<1	2	1	0.27	<10	0.01	14	<1	0.01	＜1	90	2	$<5<20$	3	0.02	<10	$11<10$	＜1	5
4.	51＋00N 16＋75E	＜	＜0．2	0．30	＜	10	c5	0.03	＜1	2	3	2	0.72	<10	<0.01	16	<1	0.02	1	180	12	$<5<20$	4	0.07	<10	$17<10$	<1	5
45	51＋00N 17＋00E	＜ 5	＜02	0.13	－5	10	＜5	0.04	＜1	<1	1	1	0.16	<10	<0.01	25	＜1	0.02	1	130	4	$<5<20$	3	0.02	＜10	$6<10$	＜1	4
46	51＋00 ${ }^{\text {d }} 17+25 \mathrm{E}$	＜5	＜0．2	0.24	＜5	15	45	0.06	＜1	2	2	1	0.47	<10	0.02	40	<1	0.02	<1	110	6	$<5<20$	3	0.04	<10	$14<10$	＜1	8
47	51＋00N 17＋50E	＜5	＜0． 2	0.21	＜5	15	＜ 5	0.03	＜1	2	2	1	0.33	<10	0.08	27	<1	0.01	2	100	10	$<5 \ll 0$	2	0.06	<10	$12<10$	<1	7
48	51＋60N 17＋75E	5	＜0． 2	1.87	20	35	c 5	0.04	＜1	3	8	4	1.85	<10	0.06	167	<1	0.02	2	460	30	$<5<20$	5	0.06	<10	$31<10$	2	18
49	$51+00 \mathrm{~N} 18+00 \mathrm{E}$	5	0.2	1.45	15	40	＜	0.21	＜1	3	9	7	1.33	<10	0.15	465	＜1	0.02	6	750	26	$<5<20$	11	0.03	<16	$20<10$	2	34
50	$50+50 \mathrm{~N} 14+50 \mathrm{E}$	＜ 5	＜0．2	3.14	35	15	<5	0.03	<1	2	5	5	1.47	<10	0.01	59	＜1	0.02	＜1	400	36	$<5<20$	3	0.06	<10	$19<10$	2	7
51	50＋50＊14＋75E	4	<0.2	1.17	15	20	＜	0.04	＜1	3	3	2	1.68	<10	0.03	24	＜1	0.02	<1	380	18	$<5<0$	5	0.88	<10	$36<10$	1	7
52	$50+50 \mathrm{~N} 15+00 \mathrm{E}$	－ 5	＜0． 2	1.29	15	20	＜ 5	0.05	＜1	3	B	8	1.58	<10	0.07	440	＜1	0.02	2	890	20	$<5<20$	4	0.05	<10	$29<10$	1	11
53	50＋50N 15＋25E	＜ 5	0.2	209	25	50	<5	0.06	<1	4	16	9	2.93	<10	0.24	153	1	0.02	11	930	32	$<5<20$	7	0.03	<10	$31<10$	2	37
54	$50+50 \mathrm{~N} 15+50 \mathrm{E}$	<5	<0.2	0.17	c	10	<5	0.01	＜1	1	2	1	0.41	<10	0.60	31	<1	0.01	1	120	6	$<5<20$	1	0.02	<10	$12<10$	<1	5
55	50＋50N 15＋75E	5	0.2	0.45	5	20	＜5	0.04	<1	1	3	3	0.96	<1.10	0.01	68	<1	0.02	＜1	250	14	$<5<20$	3	0.04	<10	$21<10$	<1	5
56	50＋50 $16+005$	<5	<0.2	0.22	<5	10	<5	0.03	＜1	2	2	2	0.63	<10	0.02	00	<1	0.02	＜1	200	8	$<5<20$	3	0.05	<10	$16<10$	1	8
57	50＋50N 16－25E	<5	0.2	1.60	15	15	<5	0.15	＜1	2	3	4	0.83	<10	＜0．01	96	<1	0.02	3	500	26	$<5<20$	11	0.04	<10	14×10	3	6
58	$50+50 \mathrm{~N} 16+50 \mathrm{E}$	<5	0.2	1.28	15	25	<5	0.13	＜1	4	14	6	2.15	<10	0.18	127	<1	0.02	5	350	24	$<5<20$	10	0.05	＜10	$33<10$	3	37
59	50＋50N116＋75E	5	0.2	0.09	＜ 5	10	<5	0.01	＜1	＜1	＜1	<1	0.16	<10	＜0．01	10	<1	0.08	＜1	70	4	$<5<20$	1	0.02	<10	$7<10$	<1	3
60	50＋50N 17＋00E	<5	0.2	0.51	5	20	<5	0.15	＜1	2	5	2	1.11	＜10	0.05	53	$\leqslant 1$	0.02	2	500	14	$<5<20$	6	0.06	<10	$21<10$	1	12
61	50＋50N 17＋25E	－5	0.2	0.52	5	15	<5	0.04	＜ 1	1	3	3	0.68	<10	0.02	15	＜ 1	0.02	1	230	12	$<5<20$	3	0.04	<10	$12<10$	<1	4
62	50＋50N 17＋50E	＜ 5	0.2	2.07	20	30	＜5	0.11	＜1	4	6	7	1.70	<10	0.04	723	<1	0.02	1	820	30	$<5<20$	9	0.07	<10	$27<10$	2	17
63	50＋50N 17＋75E	10	4.2	1.31	15	30	＜5	0.14	＜1	5	11	7	2.81	<10	0.11	345	1	0.02	3	600	30	$<5 \times 20$	13	0.09	<10	$48<10$	1	37
64	$50+50 \mathrm{~N} 18+00 \mathrm{E}$	<5	<0.2	0.05	＜ 5	10	＜ 5	0.02	＜1	＜1	＜1	<1	0.15	＜10	＜0．01	18	<1	0.02	<1	80	\bigcirc	＜5＜20	3	0.01	<10	$6<10$	$\leqslant 1$	3
65	$50+0$ N $14+50 \mathrm{E}$	<5	0.2	3.06	30	45	45	0.03	＜	8	31	9	3.65	<10	0.31	159	1	0.02	日	340	40	$<5<20$	5	0.15	<10	$62<10$	4	52
66	50＋00N 14＋75E	<5	<0.2	0.11	＜ 5	5	<5	0.01	<1	1	2	1	0.34	＜10	0.01	16	<1	0.02	＜1	110	6	$<5<20$	2	0.04	＜10	$13<10$	＜1	6
67	$50+00 \mathrm{~N} 15+00 \mathrm{E}$	$\times 5$	0.2	1.11	10	20	＜5	0.03	<1	3	8	5	1.48	<10	0.09	34	<1	0.02	4	280	20	$<5<20$	4	008	<10	$28<10$	1	10
¢	50＋00N 15＋25E	5	0.1	0．98	15	25	<5	0.06	＜1	6	4	5	2.97	<10	0.02	42	2	0.02	＜1	410	28	$<5 \times 20$	5	0.27	<10	$7 \mathrm{~T}<10$	<1	8
69	$50+00 \mathrm{~N} 15+50 \mathrm{E}$	45	0.4	0.27	<5	20	＜ 5	0.06	＜1	2	2	1	0.63	<10	0.01	27	<1	0.02	1	320	${ }^{8}$	$<5<20$	6	0.05	<10	$16<10$	<1	7
70	$50+00 \mathrm{~N} 15+75 \mathrm{E}$	＜5	<0.2	2.75	30	20	<5	0.04	＜1	3	6	6	2.22	＜10	0.02	51	＜1	0.02	＜1	640	40	$<5<20$	4	0.11	<10	$28<10$	2	7

E1者．	Tas，	Aulppl		A 6	H5	Ba	BH	Ca＊	Cd	Co	Cr	Cu	Fe ${ }^{\text {a }}$		Mg ${ }^{6}$	An	Ho	Nat \％	H1	P	Pt	Sb Sn	Sr	Ti＊	U	H	Y	Zn
71	50＋00才 16＋00E	＜5	<0.2	0.78	10	30	<5	0.09	＜1	2	3	3	1.23	<10	0.01	34	1	0.02	＜1	600	18	$<5<20$	6	0.09	$<1 \mathfrak{1}$	cu <10	1	7
32	$50+00 \mathrm{~N} 16+00 \mathrm{E}$（	240	＞30	0.36	515	25	<5	1.02	95	7	17	9831	3.09	<10	0.17	173	141	0.04	10	490	9706	$105<20$	120	＜0．01	<10	$9<10$		000
73	$50+00 \mathrm{~N} 16+00 \mathrm{CC}$	5	<0.2	1.56	15	135	4	0.31	＜1	18	40	39	3.35	10	1.09	248	＜1	0.04	33	700	30	$<5<20$	16	0.15	<10	$39<10$	12	74
34	50＋00N 16＋25E	<5	＜0．2	0.13	<5	10	<5	0.02	＜1	1	2	2	0.18	<10	0.02	12	<1	0.02	1	90	8	$<5<20$	3	0.04	<10	$B<10$	<1	5
75	$50+00 N 16+50 \mathrm{E}$	<5	0.2	0.14	<5	10	<5	0.02	<1	<1	1	1	0.15	<10	<0.01	12	＜1	0.02	1	110	6	$<5<20$	2	0.02	<10	$7<10$	<1	5
76	$50+00 \mathrm{~N} 16+75 \mathrm{E}$	5	0.2	0.99	10	15	<5	0.03	<1	2	3	2	1.15	<10	0.01	14	<1	0.02	<1	180	16	$<5<20$	4	0.07	<10	$23<10$	1	6
77	50＋00ㅊ 17＋00E	<5	cl 2	0.23	＜5	10	＜	0.06	＜1	<1	1	1	0.31	<1.0	0.02	21	<1	0.01	2	150	6	$<5<20$	3	0.02	<10	$9<10$	<1	7
76	$50+00 \mathrm{~N}+17+25 \mathrm{E}$	＜5	0.2	2.24	25	20	＜ 5	0.05	<1	3	6	6	$1 . \infty$	<10	0.04	632	<1	0.02	1	730	34	$<5<20$	3	0.05	<10	$23<10$	2	17
79	50， $000 \mathrm{~N} 17+50 \mathrm{C}$	＜5	0.2	2.25	25	30	<5	0.07	<1	4	19	6	2.95	<10	0.20	175	2	0.02	5	570	35	$<5<20$	5	0.07	<10	$45<10$	2	39
80	50＋50N 17＋75E	＜5	＜0．2	0.40	5	30	＜ 5	0.07	＜1	2	4	3	1.05	<10	0.03	21	<1	0.02	2	280	16	$<5<20$	6	0.08	<10	$25<10$	<1	10
81	50＋00N 18＋00E	<5.	<02	1.11	10	55	45	0.11	＜1	7	28	14	3.68	<10	0.29	235	<1	0.03	9	550	26	$<5<20$	9	0.15	<10	$57<10$	2	33
82	49＋50N14＋50E	＜ 5	＜0．2	1.74	20	25	＜ 5	0.02	<1	4	11	4	3.24	<10	0.13	199	<1	0.02	3	1660	30	＜5． 20	3	0.13	<10	$65<10$	1	12
83	$49+50 \times 114+75 E$	＜ 5	＜0．2	0.07	＜ 5	10	＜ 5	0.02	＜1	<1	1	<1	0.15	<10	＜0．01	14	<1	0.02	<1	90	2	$<5<20$	2	0.01	<10	$7<10$	<1	2
84	$49+50 \mathrm{NN} 15+00 \mathrm{OE}$	<5	<0.2	0.04	＜ 5	5	4	0.02	<1	1	1	<1	0.31	<10	<0.01	15	<1	0.02	<1	B0	<2	＜5＜20	2	0.02	<10	$12<10$	＜1	5
85	49＋5CA1 15＋25E	＜5	＜0．2	1.39	15	25	＜5	0.01	<1	<1	3	2	1.00	＜10	0.03	22	<1	0.01	1	160	22	$<5<20$	2	0.02	<10	$14<10$	2	10
85	$49+50 \mathrm{~N} 15+50 \mathrm{E}$	<5	<0.2	0.16	4	10	<5	0.04	4	＜1	1	2	0.33	<10	＜0．01	27	<1	0.02	<1	270	6	$<5<20$	3	0.01	<10	$8<10$	<1	5
87	49＋50书15＋75E	<5	0.4	1.12	15	10	－5	0.03	＜1	1	2	3	0.92	<10	<0.01	9	<1	0.02	<1	190	16	$<5<20$	3	0.04	<10	$12<10$	1	3
8	$49+50 \mathrm{~N} 16+006$	<5	<0.2	0.32	<5	10	<5	＜0．01	<1	1	1	1	0.38	<10	<0.01	10	<1	0.02	2	60	8	$<5<20$	2	0.04	<10	$12<10$	1	4
88	$49+50 \mathrm{~N} 16+25 \mathrm{E}$	＜ 5	<0.2	0.23	<5	10	＜ 5	0.01	＜i	<1	41	＜1	0.13	<10	＜0．01	4	＜1	0.01	2	90	6	$<5<20$	1	0.01	<16	$5<10$	<1	2
50	$49+50 \mathrm{~N} 16-50 \mathrm{~F}$	<5	<0.2	0.05	<5	10	－5	0.04	＜1	<1	1	<1	0.24	<10	＜0．01	20	＜1	0.02	＜1	70	2	$<5<20$	2	0.01	<10	$9<10$	＜1	5
91	49＋50N16－75E	<5	<0.2	0.08	<5	15	＜ 5	0.02	＜1	＜1	1	2	0.15	<10	<0.01	86	<1	0.02	<1	70	4	$<5<20$	2	0.02	<10	$7<10$	<1	4
92	49＋50 N 17－00E	<5	<0.2	1.49	20	50	<5	0.10	<1	5	14	7	2.44	<10	0.25	96	<1	0.02	10	680	28	$<5<20$	8	0.04	<10	$32<10$	3	43
93	$49+50 \times 17 \div 25 E$	5	<0.2	1.47	20	60	<5	0.14	<1	6	18	14	2.52	<10	0.29	170	＜1	0.02	$1 t$	369	32	$<5<820$	10	0.01	＜10	$20<10$	5	74
94	$49+50 \times 17+50 E$	<5	＜0．2	0.12	<5	10	＜ 5	0.02	<1	1	2	1	0.21	<10	0.01	12	＜1	0.01	<1	70	8	$<5<20$	3	0.05	<16	$10<14$	＜1	5
95	49＋50 ${ }^{\text {N }} 17+75 \mathrm{~F}$	<5	<0.2	1.90	20	45.	<5	0.05	<1	4	19	7	4.01	<10	0.20	67	1	0.02	5	630	33	＜ $5<20$	7	0.11	<10	$59<70$	3	24
96	49＋50N 18＋60E	<5	0.5	1.55	15	35	－5	0.69	<1	3	13	10	2.96	<10	0.20	160	<1	0.02	4	1770	30	$<5<20$	8	0.06	<10	$31<10$	3	28
97	49＋00＊14＋50E	＜ 5	＜0．2	1.63	20	30	<5	0.04	＜1	4	15	5	3.22	<10	0.26	79	<1	0.02	6	350	28	$<5<20$	4	0.09	<10	47×10	4	29
98	49＋00N 14＋75E	<5	0.3	2.99	35	20	<5	0.02	<1	3	6	7	2.42	<10	0.02	36	<1	0.02	1	450	40	$<5<00$	3	0.10	<10	$35<10$	3	7
99	49＋00N 15＋00E	<5	＜0．2	2.75	30	25	＜	0.02	<1	2	6	4	1.89	<10	0.04	38	<1	0.02	1	260	38	$<5<20$	4	0.05	<10	$24<10$	3	11
100	$49+00 \mathrm{~N} 15+25 \mathrm{E}$	<5	0.6	1.90	20	25	＜5	0.03	<1	2	4	8	1.93	<10	<0.01	6	<1	0.02	＜1	360	30	$<5<20$	4	0.08	<10	$23<10$	2	4
101	49＋00＊＊15＋50E	<5	col 2	0.42	5	15	<5	0.03	<1	1	4	4	0.80	<10	0.06	52	<1	0.01	2	230	12	$<5<20$	2	0.02	<10	12×10	2	12
102	49＋00N 15＋75E	＜5	<0.2	0.08	＜ 5	10	<5	0.04	＜1	<1	1	1	0.24	<10	<0.01	24	<1	0.02	<1	100	4	$<5<0$	3	0.02	<10	$9<10$	<1	6
103	49＋00＊16＋COE	＜ 5	0.4	1.65	20	20	＜ 5	0.15	<1	3	4	4	2.13	<10	0.02	38	<1	0.02	<1	880	28	$<5<20$	3	0.13	<10	$33<10$	2	6
104	$49+00 \times 16+00 E B$	195	＞30	0.37	525	25	<5	1.04	96	6	17	9596	3.60	<10	0.17	2177	143	0.04	10	500	S690	$100<20$	121	＜0．01	<10	$10<10$		000
105	49＋00N $16+00 \mathrm{EC}$	＜5	<0.2	1.56	15	135	＜ 5	0.35	<1	18	40	41	3.30	20	1.08	266	<1	0.04	34	750	42	$<5<20$	18	0.15	<10	$38<10$	12	85
106	$49+00 \mathrm{~N} 16+25 \mathrm{E}$	5	＜0．2	2.31	25	40	45	0.67	<1	4	10	6	1.81	<10	0.17	63	<1	0.02	6	540	34	$<5<20$	8	0.104	<10	$23<10$	4	40
107	49＋00N16＋50E	5	02	2．17，	25	25	<5	0.05	<1	3	5	5	2.50	＜10	0.03	30	$\leqslant 1$	0.02	＜	280	34	$<5<20$	5	0.10	<10	$34<10$	3	11
108	$49+00 \mathrm{~N} 16+75 \mathrm{E}$	<5		1.29	15	35	－5	0.12	<1	4	13	6	3.00	<10	0.17	111	1	0.02		1000	30	$<5<20$	B	0.09	<10	$50<10$	2	36
109	49＋00N 17＋00E	5	02	2.30	25	30	＜ 5	0.08	<1	4	14	7	1.89	<10	0.12	119	1	0.02	d	390	36	$45<20$	7	0.05	<10	$24<10$	3	23
110	$49+00 \mathrm{~N} 17+25 E$	<5	0.2	1.22	15	15	<5	0.11	<1	1	4	2	1.14	<10	0.01	57	<1	0.02	1	090	20	$<5<20$	6	0.05	<10	$19<10$	1	7

					As	E9	E	Ca\%	Cd	Co	Cr				Mr \%	Mn	Ho	$\mathrm{Na} \%$	Ni	P	Pb	$\mathbf{S b} \mathbf{S n}$	Sr	T1\%	U	W	Y	2n
Etis.		Au(ppb)		A \%	An	E8	- 5	6.07	<1	2	2	2	0.53	$=10$	0.01	21	$\leqslant 1$	0.02	2	150	10	$45<20$	4	0.04	<10	$\leqslant 10$	<1	8
111	$49+00 \mathrm{~N} 17+50 \mathrm{E}$	5	<0.2	0.29	45	15	<	0.03	<1	2	11	2	2.5	-10 <10	0.05	59	<1	0.02	6	640	42	$<5<20$	9	0.07	$\leqslant 10$	30 <10	3	15
112	$49+$ OON 17+75E	5	0.3	3.22	35	30	45	0.08	$\leqslant 1$	4	11	7	2.16 0.93	<10	0.05 0.02	24	<1	0.02	2	240	14	$45<20$	5	0.02	<10	$13<10$	2	8
113	$49+00 \mathrm{~N} 18+00 \mathrm{~N}$	5	<0.2	0.87	10	15	45	0.04	<1	1	4	4	0.93	<10	0.02 0.02	34	<1	0.02	1	100	6	$45<20$	2	0.03	410	$12<10$	$\leqslant 1$	d
114	$48+50 \mathrm{~N} 14+50 \mathrm{E}$	< 5	40.2	0.14	45	10	<5	0.02	<1	1	2	2	0.81	4	0.03	23	<1	0.04	2	130	12	$<5<20$	2	0.06	$\leqslant 10$	$10<10$	1	θ
115	48+50N 14+75E	5	<0.2	0.46	5	15	< 5	0.01	<1	2	4	3	0.81	$\leqslant 10$	0.03	22	<1	0.01	2									
								0.06	<1	3	9	5	2.95	<10	0.14	79	<1	0.02	2	430	18	<5 <20	5	0.07	<10	$44<10$	2	35
116	48+50N 15+00E	5	<0.2	0.68	35	15	45	0.08	<1	2	3	6	1.55	$\times 10$	0.04	22	<1	0.03	1	740	40	$<5<20$	5	0.05	$\leqslant 10$	22-10	4	6
117	$48+50 \mathrm{~N} 15+25 \mathrm{E}$	45	0.3	3.39	35	15	4	0.08 0.21	<1	2	4	4	1.35 1.33	<10	0.03	32	<1	0.02	5	330	26	$45<20$	15	0.05	410	$20<10$	14	11
118	$48+50 \mathrm{~N} \mathrm{15+50E}$	45	0.3	1.15	10	25	<5	0.21 0.03	<1	2	4 3	4	1.38 1.18	<10	0.02	27	<1	0.02	1	270	16	$<5<20$	3	0.04	-10	$16-10$	2	9
119	48+50N 15+75E	4	0.3	0.69	10	15	<5	0.03	<1	4	10	7	1.18 3.76	<10	0.04	43	<1	0.02	2	420	70	$<5<20$	3	0.15	$\leqslant 10$	$44<10$	6	22
120	$48+50 \mathrm{~N} 16+005$	< 5	0.2	5.55	60	30	$\leqslant 5$	0.03	<1	4	10	7	3.76	<10	0.04	43	*	0.02	2									
										1	2	<1	0.30	410	0.01	19	<1	0.02	1	80	4	$<5<20$	3	0.02	$\times 10$	$11<10$	<1	6
121	48+50N 16+25E	$\checkmark 5$	<0.2	0.12	45	10	$\times 5$	0.04 0.02	<1	1	3	3	0.57	<10	-0.01	15	<1	0.02	1	300	16	$<5<20$	3	0.04	<10	$10<10$	1	4
122	$48+50 \mathrm{~N} 16+50 \mathrm{E}$	5	0.2	0.82 1.42	10	15 45	4	0.02 0.06	<1	5	15	8	0.57 2.67	10	0.27	380	4	0.02	8	680	28	$\checkmark 5 \times 20$	6	0.06	$\checkmark 10$	$37<10$	5	37
123	48+50N 16+75E	45	$\times 0.2$	1.42 2.03	15	60	<5	0.06 0.10	<1	4	15	8	2.07	410	0.21	111	<1	0.02	6	660	30	$45<20$	11	0.04	<10	$24 \leqslant 10$	3	40
124	48+50N 17+00E	-5	0.4	2.03 0.39	20	60	<5 <5	0.11	<1	5	7	4	1,24	≤ 10	0.10	330	<1	0.02	4	150	14	$<5<20$	12	0.06	$\leqslant 10$	$32<10$	2	28
125	$48+50 \mathrm{~N} 17+25 E$	45	<0.2	0.39	<5	45	<5	0.11	4																			
											8	35	1.89	20	0.08	94	$\leqslant 1$	0.02	14	360	58	$<5 \times 20$	19	0.07	< 10	16×10	29	16.
126	48+50N 17+50E	45	0.5	2.97	30	35	45	0.2	\leqslant	1	2	3	0.43	<10	0.03	20	<1	0.01	2	100	6	$<5 \times 20$	4	0.03	$\leqslant 10$	$8<10$	1	11
127	$48+50 \mathrm{~N} 17+75 \mathrm{E}$	45	0.2	0.26	45	15	45	0.05	<1	2	4	3	1.36	<10	0.05	48	4	0.01	1	220	18	$45<20$	4	0.05	$\times 10$	$16<10$	1	16
128	48450N 184+00E	< 5	<0.2	0.88	10	20	45	0.03	<1	1	4	4	0.34	+10	<0.01	32	<1	0.02	1	170	12	45×20	2	0.03	410	8×10	<1	4
129	48+00N 13-60.	5	0.2	0.35	4	10	45	0.02	<1	+1	1	1	0.24	<10	<0.01	20	$\leqslant 1$	0.02	1	140	6	$45<20$	3	0.02	<10	9×10	<1	3
130	4B+00N 13-25E	<5	40.2	0.22	$<$	10	c5	0.03	<1	<	1	1	0.24	<10	<0.01	2	<	0.02										
								0.0	<1	2	6	4	1.28	<10	0.03	55	c1	0.02	2	640	28	$<5<20$	5	0.08	- 30	$23<10$	1	9
131	$48+00 \mathrm{~N} \mathrm{13}+50 \mathrm{E}$	45	0.3	1.77	20	25	<5	0.03	-1	1	2	2	0.62	810	0.01	14	<1	0.02	$\leqslant 1$	130	8	$45<20$	3	0.05	<10	$16<10$	<1	6
132	4B+CON 13+75E	< 5	0.2	0.99	-5	15	<5	0.03	$\leqslant 1$	2	4	3	0.97	<10	0.03	159	<1	0.02	2	240	12	$<5<20$	8	0.05	<10	22×10	<1	14
133	48+00N 14+00E	5	0.2	0.33	< 10	30 60	4	0.12 0.12	<1	3	4 7	6	1.08	+10	0.10	1103	4	0.02	4	360	18	$<5 \times 20$	7	0.05	<10	18×10	2	34
134	$4 \mathrm{C}+00 \mathrm{~N} \mathrm{14+25E}$	5	0.2	0.92 4.70	10	60 250	45	0.12 0.52	<1	14	41	58	3.84	40	0.57	769	c	0.04	67	360	68	$45<20$	47	0.08	<10	45×10	49	200
135	48+00N 14+50E	<5	0.5	4.70	45	250	45	0.52	\leqslant	14	41	58	3.84	\bigcirc	0.37	26.		0.0										
								0.04		2	3	3	0.60	<10	0.02	31	<1	0.01	3	50	4	$<5 \times 20$	4	0.03	$\leqslant 10$	25×10	<1	11
136	$48+\mathrm{OON} \mathrm{14+75E}$	45	<0.2	0.11	<5	10	$\leqslant 5$	0.04	<1	2	4	2	0.93	<10	0.05	32	<1	0.01	3	80	12	$<5<20$	3	0.06	<10	30×10	2	12
137	$48+(1) N$ N $15+(0) \mathrm{E}$	45	40.2	0.37	<5	25	4	0.02	<1	2 3	6	5	1.72	$\leqslant 10$	0.01	10	33	0.02	2	360	40	$<5<20$	4	0.11	$\leqslant 10$	24×10	3	6
138	$48+00 \mathrm{~N} 15+25 \mathrm{E}$	45	40.2	2.76	30	20	45	0.02	<1		-1	<1	0.20	<10	<0.01	11	<1	0.02	<1	60	<2	$<5<20$	2	0.01	<10	$8<10$	$\leqslant 1$	4
139	$48+00 \mathrm{~N} 15+50 \mathrm{E}$	<5	40.2	0.05	< 5	45	45	0.02	<1	<1	-1	4	0.38	<10	0.03	45	c1	0.02	1	100	4	$<5<20$	3	0.02	<10	$12<10$	<1	8
140	$48+00 \mathrm{~N} 15+75 \mathrm{E}$	<5	40.2	0.17	< 5	15	<5	0.04	<1	1	3	2	0.38	<10	0.03	45	c	0.02	1	100								
								0.03	<1	1	1	1	0.27	<10	<0.01	23	$\leqslant 1$	0.02	<1	80	2	$<5<20$	3	0.02	<10	$10<10$	$\leqslant 1$	5
141	$48+00 \mathrm{~N} 16+00 \mathrm{E}$	45	<0.2	0.08	$\times 5$	10	<5	0.03 1.05	<1	7	19	73	3.04	<10	0.17	2374	140	0.03	10	650	9706	$100<20$	118	<0.01	<10	9×10		0000
142	$48+00 \mathrm{~N} 16+00 \mathrm{~EB}$	205	>30	0.40	525	25	5	1.03	1	18		33	3.10	20	1.00	283	<1	0.04	31	730	22	$<5<20$	16	0.14	810	35×10	12	72
143	$48+00 \mathrm{~N} 16+00 \mathrm{EC}$	5	<0.2	1.68	15	120	45	0.33 0.03	<1	18	34 3	33	0.47	20 <10	0.02	45	<1	0.02	+	60	2	<5<20	3	0.03	<10	$19<10$	<1	7
144	$48+00 \mathrm{~N} 16+25 E$	45	<0.2	0.08	<5	10	<5	0.03	<1	2	3 16	8	0.47 2.14	<10	0.29	190	<1	0.02	9	690	20	-5 <20	9	0.04	<10	$27<10$	2	50
145	$48+00 \mathrm{~N} 16+50 \mathrm{E}$	5	50.2	1.23	10	40	45	0.16	<1	4	16	8	2.14	<10	0.29	190	<1	0.02	9	65	20	-5						
										2	3	4	0.78	20	0.02	572	<1	0.02	9	180	12	45×20	8	0.03	810	15×10	19	8
146	48+00* 16+75E	45	0.2	0.57	5	30	<5	0.09	41	2	2		0.38	-10	0.02	21	ci	0.01	2	110	6	$45<20$	4	0.03	<10	$12<10$	1	8
147	48+00N 17+00E	45	0.2	0.20	45	15	<5	0.04	<1	3	9	8	+	$\leqslant 10$	0.09	203	41	0.02	4	220	12	$<5<20$	20	0.08	410	$27<10$	2	40
148	$48+$ OON 17+25E	<5	0.2	0.36	45	60 50	<5	0.36 0.20	<1	2	3	4	0.81	-10	0.03	64	4	0.02	2	160	9	45×20	17	0.06	<10	$21<10$	1	24
149	$4 \mathrm{~B}+00 \mathrm{~N} 17+50 \mathrm{EE}$	45	<0.2	0.20	<5	50	<5	0.20	-1	3	6	5	1.81 1.30	10	0.14	87	$\leqslant 1$	0.02	6	140	12	$<5<20$	9	0.05	-10	$15<10$	11	17
150	$48+00 \mathrm{~N} 17+75 \mathrm{E}$	45	0.2	0.86	10	20	< 5	0.11	<1	3	O																	

E1.	Tz	Au(ppb)		Al\%	As	Ba		Ca\%	Cad	Co	Cr	Cu	$\mathrm{FP}_{8}{ }^{\text {\% }}$		Mg\%	Mn	Mo	$\mathrm{Na} \%$	NI	p	Ph	Sb \$n	Sr	T1\%	U	W	Y	Zn
157	48+00N 18, 000 E	- 5	<0. 2	3.80	35	60	< 5	0.17	<1	3	8	8	2.31	- 10	0.04	57	$\stackrel{5}{4}$	0.02	2	350	40	$45<20$	11	0.07	$\leqslant 10$	-10	4	21
152	47+50N 13+002	-5	0.3	2.56	25	35	45	0.10	$\leqslant 1$	5	16	9	3.16	$\times 10$	0.20	155	<1	0.02	5	700	30	45×20	6	0.11	<10	$52<10$	3	37
153	47+50N 13+25E	5	<0.2	0.08	<5	10	<5	0.04	al	<1	1	<1	0.18	<10	<0.01	36	<1	0.02	<1	70	2	$<5<20$	3	0.02	$\leftarrow 10$	$7<10$	c1	3
154	$47+50 \mathrm{~N} 13+50 \mathrm{E}$	-5	0.4	2.73	25	10	45	0.03	c1	1	4	4	1.10	$\leqslant 10$	0.02	20	<1	0.02	4	220	28	45×20	3	0.04	$\leqslant 10$	$21<10$	2	6
155	$47+50 \mathrm{~N} 13 \rightarrow 75 \mathrm{E}$	-5	0.3	1.23	10	35	$\checkmark 5$	0.09	41	2	4	5	1.58	<10	0.02	58	$\leqslant 1$	0.02	1	260	20	$<5 \times 20$	7	0.09	$\times 10$	$25<10$	2	10
156	$47+50 \mathrm{~N} 14+00 \mathrm{E}$	5	0.2	1.59	15	25	45	0.03	4	2	4	5	1.41	<10	0.01	15	¢ 1	0.02	2	180	22	$<5<20$	4	0.07	<10	$20<10$	3	6
157	47+50N 14+25E	-5	0.7	1.57	15	30	<5	0.08	<1	3	9	7	2.72	<10	0.13	150	<1	0.02	3	260	24	$<5 \times 20$	6	0.08	<10	$31<10$	3	27
158	$47+50 \mathrm{~N} 14+50 \mathrm{E}$	<5	0.4	3.05	25	90	< 5	0.11	51	10	25	46	2.53	80	0.30	643	2	0.03	52	350	72	$<5 \times 20$	12	0.08	<10	$27<10$	84	101
159	47+50N 14+75E	-5	0.5	1.38	15	80	<5	0.13	<1	7	14	11	2.44	10	0.31	502	<1	0.02	12	260	32	$<5<20$	13	0.07	<10	$32<10$	9	74
160	$47+50 \mathrm{~N} 15+\infty 0 \mathrm{E}$	5	<0.2	0.86 ${ }^{\prime}$	10	25	< 5	0.19	<1	3	3	10	0.57	20	0.06	346	C)	0.03	9	1030	12	< 5×20	11	0.02	<10	$10<10$	19	21
161	47+50N 15+25E	$\checkmark 5$	0.5	4.80	40	135	< 5	0.44	<1	12	30	30	4.34	30	0.43	218	1	0.04	49	390	74	<5 < 20	29	0.13	<10	$43<10$	37	153
162	47+50N 15+50E	15	0.2	1.39	10	40	15	0.20	<1	4	15	28	2.14	20	0.23	287	4	0.62	17	890	20	$<5<20$	12	0.04	<10	1920	27	61
163	47+50N 15+75E	<	<0.2	0.16	<5	25	< 5	0.11	<1	2	3	3	0.60	<10	0.02	33	<1	0.02	2	160	-	$<5<20$	11	0.03	<10	$20<60$	4	13
164	47+50N 16+00E	< 5	0.2	0.12	< 5	25	< 5	0.13	<1	1	2	3	0.39	<10	0.02	30	$\leqslant 1$	0.02	2	140	4	$<5<20$	9	0.02	<10	$14<10$	<1	11
165	47+50N 16+25E	45	0.3	1.08	10	75	< 5	0.31	<1	6	8	8	2.40	<10	0.13	733	$\leqslant 1$	0.03	6	430	24	$45<20$	20	0.09	410	$29<10$	5	75
166	47+50N 16-508	c	0.2	0.32	<5	25	<5	0.04	<1	1	3	3	0.56	<10	0.03	26	-1	0.01	2	100	10	$45<20$	4	0.05	$\leqslant 10$	$14<10$	1	11
167	47+50N 16+75E	-5	0.3	1.02	10	60	45	0.48	<1	4	10	10	1.96	<10	0.18	171	<1	0.02	6	290	20	45×20	12	0.06	<10	$21<10$	5	45
168	47+50N 17+00E	-5	1.1	1.17	10	55	45	0.29	< 1	5	9	15	1.26	50	0.12	1424	1	0.02	23	430	28	< $5<20$	19	0.02	410	16×10	44	59
169	$47+50 \mathrm{~N} \mathrm{17+25E}$	5	0.2	0.45	10	15	$\times 5$	0.04	<1	4	5	4	1.55	410	0.09	40	c1	0.01	3	110	to	<5<20	5	0.09	$\leqslant 10$	45×10	1	15
170	47+50N 17+50E	45	0.2	0.48	5	15	$\times 5$	0.05	<1	2	3	2	1.10	$\times 10$	0.02	16	$\leqslant 1$	0.01	<1	280	10	$<5<20$	4	0.08	<10	$23<10$	4	5
171	47+00N 13+00E		40.2	0.26	<5	20	< 5	0.13	al	3	6	7	0.95	<10	0.04	112	51	0.02	2	340	8	$<5<20$	6	0.07	<10	$32<10$	c1	16
172	47+00N 13+25E	5	0.5	0.70	5	35	45	0.06	< 1	4	14	4	1.60	<10	0.18	d3	<1	0.02	4	440	14	< $5<20$	5	0.13	<10	$36<10$	2	14
173	47+00N 13+50E	< 5	<0.2	2.03	20	20	< 5	0.09	<1	3	10		1.55	<10	0.07	61	a 1	0.02	2	210	22	$<5 \times 20$	3	0.11	$\leqslant 10$	$30<10$	2	13
174	47+CON 13+75E	45	<0.2	0.10	<5	5	c5	0.06	<1	1	2	2	0.43	<10	0.01	48	c	0.02	-1	90	2	< 5×20	3	0.02	$\times 10$	$13<10$	<1	7
175	$47+00 \mathrm{~N} 14+00 \mathrm{E}$	<5	0.4	2.06	20	35	$\checkmark 5$	0.04	c1	3	11	10	3.35	<10	0.12	139	<1	0.02	3	700	28	$<5 \times 20$	4	0.06	<10	$37<10$	3	16
176	47+00N 14+25E	<5	0.3	0.78	5	15	45	0.04	<1	1	3	6	0.61	10	0.02	38	41	0.01	6	250	22	< 5×20	5	0.01	<10	$13<10$	10	,
177	47+00N 14+50E	45	0.2	0.41	45	40	45	0.12	a)	2	6		0.87	<10	0.08	103	<1	0.01	3	200	12	$<5<20$	8	0.04	<10	22×10	2	20
178	$47+00 \mathrm{~N} 14+75 \mathrm{E}$	< 5	-0.2	0.72	5	30	45	0.02	<1	2	7	3	1.01	<10	0.08	53	$\leqslant 1$	0.02	2	140	10	$<5 \times 20$	3	0.06	<10	$21<10$	1	10
179	47+00N 15+00E	45	0.2	1.87	20	50	45	0.07	<1	10	12	13	1.87	20	0.19	725	1	0.02	17	240	28	$<5<20$?	0.06	<10	26×10	18	53
180	$47+00 \mathrm{~N} 15+25 \mathrm{E}$	< 5	0.2	1.11	15	40	4	0.21	<1	5	22	9	3.09	<10	0.36	162	$\leqslant 1$	0.02	10	950	20	$<5<20$	11	0.07	<10	42×10	3	51
181	$47+0$ ON 15+50E	< 5	<0.2	0.09	<5	15	<5	0.03	≤ 1	<1	1	2	0.23	<10	*0.01	15	41	0.02	4	70	42	$45<20$	3	0.01	510	$7<10$	<1	4
182	47+00N 15+76E	< 5	<0.2	0.49	5	20	< 5	0.03	<1	3	7	3	0.96	$\leqslant 10$	0.07	39	-1	0.01	4	230	12	< $5<20$	3	0.09	$\leqslant 10$	26:10	1	18
183	$47+00 \mathrm{~N} 16+00 \mathrm{E}$	45	<0.2	0.21	<5	10	4	0.03	<1	<1	<1	2	0.18	<to	-0.01	10	<1	0.01	2	120	4	< $5<20$	3	0.02	$\leqslant 10$	6×10	c1	4
184	$47+00 \mathrm{~N} 16+0088$	230	>30	0.42	530	25	45	1.12	93	7		9549	3.10	<to	0.18	2392	159	0.04	10	660	9676	$105<20$	120	<0.01	<10	10×10	3.	0000
185	47+00N 16+00EC	45	40.2	1.76	15	130	\&	0.35	<1	20	38	33	3.20	10	1.07	276	<1	0.04	34	730	20	$<5<20$	16	0.16	$\leqslant 10$	$38 \leqslant 10$	11	69
186	47+00N 16+25E	<5	0.2	0.11	45	10	< 5	0.02	$\leqslant 1$	<1	1	1	0.14	$\times 10$	-0.01	13	<1	0.02	<1	90	4	< $5<20$		<0.01	$\leqslant 10$	$6<10$	c1	3
187	47400N 16+50E	<	40.2	0.71	5	20	- 5	0.02	<1	1	2	2	0.75	<10	0.01	27	<1	0.02	<1	160	14	$<5<20$	3	0.06	<10	$16<10$	1	6
188	$47+00 \mathrm{~N} 16+75 \mathrm{E}$	5	0.6	5.01	45	110	<5	0.20	<1	12	26	61	3.13	110	0.41	931	2	0.03	67	530	74	$<5<20$	20	0.09	<10	$31<10$	105	249
189	$47+00 \mathrm{~N} \mathrm{17+00E}$	<5	0.4	3.02	30	35	<	0.24	< \uparrow	7	9	23	1.87	70	0.14	765	2	0.03	31	470	42	$<5<20$	16	0.07	<10	24×10	59	81
190	$47+00 \mathrm{~N} 17+25 E$	45	<0.2	0.21	<5	15	-5	0.03	<1	1	2	2	0.42	<10	0.01	22	<1	0.01	2	140	4	$<5<20$	3	0.02	<10	$14<10$	<1	7

ECO TECH LABORATORY LTD.

Etr.	Ta	Au(ppb)		A \%	A ${ }^{\text {a }}$	8.	B	Cam	Cd	Co	Cr		-		Mr\%	Mn	Mo	$\mathrm{Na} \%$	Ni	p	Pb	Sb Sn	Sr	Ti\%	U	W	Y	Zn
191	$47+0$ Ni $17+50 \mathrm{E}$	Au(ppb)	20.2	0.12	45	10	45	0.07	<1	1	2	1	0.26	210	0.02	19	$\leqslant 1$	0.02	1	80	4	$<5<20$	4	0.03	<10	<10	$\leqslant 1$	5
191	$47+00 N$ N $13+00 E$	-5	<0.2	0.09	45	10	45	0.02	<1	2	2	<1	0.42	<10	0.01	24	e1	0.02	$<\uparrow$	90	4	$<5<20$	2	0.05	$\leqslant 10$	17×10	<1	5
193	$46+50 \mathrm{~N} 13+25 \mathrm{E}$	45	<0.2	0.14	< 5	10	< 5	0.02	41	2	2	$\leqslant 1$	0.29	<10	0.02	44	<1	0.02	1	80	0	$<5<20$	2	0.06	<10	14×10	$\leqslant 1$	5
194	$46+50 \mathrm{~N} \mathrm{13+50E}$	<5	0.3	0.45	<5	15	< 5	0.06	s1	2	2	3	0.86	<10	0.01	17	41	0.02	1	300	10	$<5<20$	5	0.07	<10	$16<10$	1	5
195	$46+50 \mathrm{~N} 13+75 \mathrm{E}$	45	< 0.2	0.04	${ }_{4} 5$	10	45	0.04	<1	1	1	1	0.30	<10	0.01	35	4	0.01	41	60	2	$<5<20$	3	0.02	<10	$13<10$	<1	6
196	$46+50 \mathrm{~N} 14+00 \mathrm{E}$	45	0.2	0.07	<5	10	< 5	0.08	<1	$\leqslant 1$	1	2	0.22	<10	$\leqslant 0.01$	43	4	0.02	c1	90	<2	$<5<20$	4	0.01	<10	9×10	$\leqslant 1$	7
190	$46+50 \mathrm{~N} 14+25 \mathrm{E}$	45	80.2	0.08	45	5	4	0.02	<1	2	2	1	0.46	<10	0.01	28	$\leqslant 1$	0.02	1	90	4	$<5 \times 20$	2	0.04	<10	$19<10$	<1	7
198	$46+50 \mathrm{~N} 14+50 \mathrm{E}$	45	0.3	0.19	< 5	20	<5	0.08	<1	$\leqslant 1$	2	2	0.27	$\leqslant 10$	40.01	15	<1	0.02	1	230	8	45×20	6	0.03	<10	6×10	<1	5
199	46+50N 14+75E	c 5	0.2	0.09	<5	10	<5	0.06	$\leqslant 1$	<1	1	1	0.20	<10	0.01	26	<1	0.01	1	60	4	$<5<20$	3	0.01	$\leqslant 10$	$8<10$	<1	3
200	$46+50 \mathrm{~N} 15+00 \mathrm{E}$	<5	0.2	0.09	<5	5	45	0.03	<1	$\leqslant 1$	1	1	0.23	<10	0.01	18	<1	0.02	$\leqslant 1$	80	2	$<5<20$	3	0.02	<10	$9<10$	<1	4
201	46+50N 15+25E	5	<0.2	1.48	15	30	4	0.07	<1	4	14	7	1.81	<10	0.25	142	<1	0.02	8	400	20	$<5<20$	4	0.03	$\leqslant 10$	27×10	4	50
202	$46+50 \mathrm{~N}+5+50 \mathrm{E}$	< 5	0.2	0.05	45	10	45	0.05	<1	2	3	1	0.59	<10	0.02	37	$\leqslant 1$	0.01	1	110	4	$<5<20$	2	0.03	<10	$24<10$	<1	10
203	$46+50 \mathrm{~N} 15+75 \mathrm{E}$	¢ 5	0.2	1.34	15	40	45	0.12	41	4	11	7	1.68	$\leqslant 10$	0.27	288	ci	0.02	6	460	22	$<5 \times 20$	6	0.04	$\leqslant 10$	26×10	3	5
204	$46+50 \mathrm{~N} 16+00 \mathrm{E}$	45	<0.2	0.06	<5	10	<5	0.03	<1	$\leqslant 1$	1	61	0.19	$\leqslant 10$	0.01	13	1	0.02	<1	80	42	$<5<20$	3	0.01	<10	0	<1	5
205	46+50 N 16+25E	<5	0.3	1.08	10	30	<5	0.04	$\leqslant 1$	2	7	5	1.36	<10	0.08	52	$\leqslant 1$	0.02	3	280	16	$<5<20$	5	0.04	<1	21×10		2
206	46+50N 16+50E	<5	0.2	1.60	15	20	<5	0.03	<1	2	5	3	1.42	<10	0.03	45	<1	0.02	2	430	22	$<5<20$	4	0.05	<10	$23-10$	2	6
207	48+50N 16+75E	<5	<0.2	1.48	15	30	<5	0.03	<1	3	10	5	2.92	<10	0.15	76	$\leqslant 1$	0.02	3	280	22	$<5<20$	4	0.06	<10	$43<10$	2	22
208	$46+50 \mathrm{~N} 17+00 \mathrm{E}$	-5	$\leqslant 0.2$	0.96	10	15	4	0.02	$\leqslant 1$	2	2	2	0.97	<10	0.01	14	<1	0.02	4	160	14	$<5<20$	3	0.06	<10	15×10	2	4
209	$46+50 \mathrm{~N} 17+25 \mathrm{E}$	45	0.2	0.16	4.5	15	45	0.06	<1	<1	1	<1	0.35	<10	0.01	16	<1	0.02	<1	180	4	$<5<20$	4	0.02	10	9	1	5
210	$46+50 \mathrm{~N} 17+50 \mathrm{E}$	-5	0.2	0.13	<5	15	45	0.04	<1	<1	1	1	0.18	<10	0.01	32	<1	0.02	<1	130	6	$<5 \times 20$	3	0.03	<10	7 -	$\leqslant 1$	5
214	46+D0N 13+00E	45	<0.2	1.20	10	25	45	0.02	<1	2	7	3	0.99	<10	0.09	55	<1	0.02	4	180	16	$<5 \times 20$	2	0.03	<10	$15<10$	3	18
212	46+00N 13+25E	- 5	0.2	2.04	20	25	<5	0.06	<1	3	4	4	1.46	<10	0.02	67	<1	0.02	1	320	28	$<5<20$	5	0.10	<10	24×10	2	9
213	46+00N 13+50E	<5	0.3	2.88	30	25	c5	0.03	<1	3	8	5	2.06	<10	0.02	50	<1	0.02	<1	480	36	$<5<20$	3	0.10	<10	31×10	2	6
214	$46+00 \mathrm{~N} 13+75 \mathrm{E}$	$\checkmark 5$	<0.2	0.12	<5	5	<5	0.01	<1	41	<1	1	0.14	<10	20.01	9	<1	0.01	<1	60	2	$<5<20$	2	<0.01	<10	$5<10$	<1	3
215	$46+00 \mathrm{~N} 14+00 \mathrm{E}$	-5	0.2	0.26	<5	10	<5	0.03	$\leqslant 1$	<1	2	2	0.43	$\leqslant 10$	0.02	22	<t	0.02	1	310	4	$<5<20$	3	0.01	<10	$11<10$	<1	5
216	46+(00N 14+25E	<5	0.3	0.15	<5	10	45	0.03	<1	<1	1	<1	0.23	<10	$\leqslant 0.01$	19	c1	0.01	< 1	120	4	$<5 \times 20$	2	0.02	$\leqslant 10$	$7<10$	$\leqslant 1$	5
217	$48+00 \mathrm{~N} 14+50 \mathrm{E}$	5	0.3	0.37	<5	25	< 5	0.04	<1	3	2	1	0.88	<10	0.01	14	$\leqslant 1$	0.02	$\leqslant 1$	180	44	$<5<20$	4	0.13	<10	22×10	$\leqslant 1$	4
218	46+00N 14+75E	< 5	80.2	0.07	4	10	45	0.03	41	41	1	<1	0.27	<10	0.01	21	<1	0.02	41	80	2	$\times 5 \times 20$	2	0.02	<10	$9<10$	$\leqslant 1$	5
219	46+00N 15+00E	45	0.2	0.48	5	15	45	0.05	<1	4	3	3	1.27	<10	0.02	$8{ }^{\text {8 }}$	<1	0.02	<1	520	22	<5 <20	3	0.17	<10	$33<10$	<1	20
220	$46+00 \mathrm{~N} 15+25 \mathrm{~F}$	<5	<0.2	0.29	45	10	<	0.04	41	<1	2	1	0.47	<10	0.04	29	<1	0.01	1	230	10	$<5<20$	3	0.01	410	$9 \times$		33
221	45+00N 15+50E	45	<0.2	0.35	45	5	4	0.02	<1	1	1	41	0.52	<10	<0,01	9	$\leqslant 1$	0.02	$\leqslant 1$	170	6	$<5 \times 20$	2	0.04	<10	10×10	$\leqslant 1$	3
222	$46+00 \mathrm{~N} 15+75 \mathrm{E}$	5	<0.2	2.55	25	35	45	0.09	<1	4	18	7	2.41	<10	0.30	154	<1	0.02	8	480	30	< $5<20$	4	0.05	<10	$26<10$	4	47
223	46+00N 16+60E	10	$\leqslant 0.2$	2.02	20	30	45	0.03	<1	3	15	5	2.01	<10	0.24	04	$\leqslant 1$	0.02	7	390	24	$\times 5<20$	4	0.04	<10	25×10	3	35
224	$46+00 \mathrm{~N} 16+00 \mathrm{~EB}$	200	\$30	0.38	520	25	-5	1.15	95	7	19	9513	3.09	<10	0.17	2288	160	0.03	10	530	9756	100×20	114	0.01	<10	$9<10$		0 O 0
225	46+00K 16+00EC	<5	<0.2	1.49	15	125	¢5	0.36	<1	18	37	37	3.16	10	1.02	274	<1	0.04	31	750	28	$<5<20$	17	0.14	<10	35×10	12	70
225	46+00N 16+25E	45	$c 0.2$	0.11	45	20	45	0.07	<1	$\leqslant 1$	$\leqslant 1$	1	0.08	<10	0.01	61	<1	0.02	2	70	6	$<5<20$	3	0.02	<10	$5<10$	1	0
227	46+00N 16+50E	5	0.4	0.94	10	20	< 5	0.07	<1	1	3	5	1.07	<10	0.01	15	<1	0.02	<1	540	16	< 5420	5	0.05	<10	11×10	1	6
228	$46+00 \mathrm{~N} 16+75 \mathrm{E}$	45	0.3	0.05	4	20	<5	0.12	<1	41	1	2	0.26	<10	0.01	165	<1	0.02	<1	160	2	$<5<20$	5	0.01	<10	$9<10$	<1	0
229	$46+00 \mathrm{~N} \mathrm{17}+00 \mathrm{E}$	45	40	0.89	10	20	<5	0.04	<1	2	8	4	2.02	<10	0.11	58	41	0.02	3	500	14	-5 4.20		0.05	<10	$32=10$	2	24
230	$46+00 \mathrm{~N} \mathrm{17}+25 \mathrm{E}$	45	<0.2	1.14	15	30	<5	0.13	<1	3	8	4	1.43	<10	0.18	132	$\leqslant 1$	0.02	4	920	18	$<5<20$	6	0.05	<10	$18<10$	2	50
231	$46+00 \mathrm{~N} 17+50 \mathrm{E}$	<5	0.4	0.10	c 5	10	-5	0.07	<1	\& 1	1	2	0.33	<10	0.02	15	<1	0.01	2	160	16	$<5<20$	3	0.02	<10	9×10	<1	14

Et 1.	Ta	Au(ppb)		A1\%	As	Ba	Bi	Ca\%	cd	Co	Cr				H0\%	Nn		$\mathrm{Na} \%$	Ni	p	Fb	Sb Sn	sr	$\pi \%$	U	W	Y	2 n
gcoata																												
Repea														<10	0.02	20	<1	0.02	1	100	4	$<5<20$	2	0.04	<10	$10<10$	<1	6
1	$52+00 \mathrm{~N} 14+50 \mathrm{E}$		0.2	0.09	c5	10	< 5	0.02	s	¢1	2	2	0.29	<10	0.02	20	<	0.02	1									
5	$52+00 \mathrm{~N} 15+50 \mathrm{E}$	45													0.12	364	1	0.07		1120	48	$4.5<20$	9	0.04	<10	$21<10$	10	25
10	52+00N 16+25E		<0.2	2.72	30	50	<5	0.69	<1	6	12	11	1.84	<10	0.12	364	1	0.08			4	4.5820						
11	$52+00 \mathrm{~N} 16+50 \mathrm{E}$	5									1	1	0.16	<10	<0.01	10	$\leqslant 1$	0.02	$\leqslant 1$	80	4	$45<20$	2	<0.01	<10	7×10	-1	5
19	$51+50 \mathrm{~N} 14+75 \mathrm{E}$ $51+50 \mathrm{~N} 15+00 \mathrm{E}$	<5	<0.2	0.12	<5	10	<5	0.02	く1	<1	1	1	0.16	<10	$\alpha 0.01$	10	* 1	0.02	4	8	14							
28	$51+50 \mathrm{~N} 17+00 \mathrm{E}$	$\checkmark 5$	<0.2	0.59	5	25	45	0.04	<1	2	5	3	0.97	<10	0.03	64	41	0.02	2	210	14	45×20	4	0.08	$\times 10$	$23<10$	1	10
36	$51+00 \mathrm{~N} 15+25 E$		<0.2	1.95	20	40	4	0.04	<1	2	4	3	1.34	<10	0.02	133	<1	0.02	<1	1120	28	$45<20$	6	0.08	<10	-19<10	-1	8
45	$51+00 \mathrm{~N} 17+00 \mathrm{E}$		<0.2	0.13	45	10	4	0.04	<1	<1	1	1	0.16	<10	<0.01	31	41	0.02	1	130	4	$<5<20$	4	0.02	410	<10	<1	4
49	$51+00 \mathrm{~N} 18+00 \mathrm{C}$	<5												<10	0.02	44	<1	0.02	2	130	6	$<5<20$	1	0.02	<10	$13<10$	<1	5
54	50+50N 15+50E		<0.2	0.18	<5	15	<	0.02	4	1	2	$\leqslant 1$	0.43	<10	0.02	44	<1	0.02	2	130	-	-5 20						
58	50+50N 16+50E	<5							<1	5	12	?	2.80	≤ 10	0.12	354	1	0.02	4	600	32	$<5 \times 20$	14	0.10	410	$49<10$	1	39
63	$50+50 \mathrm{~N} 17+75 \mathrm{E}$	5	<0.2	1.49 0.78	15	30 30	-5	0.14 0.09	<1	2	12 3	2	1.15	<10	0.01	30	1	0.02	<1	590	18	45×20	6	0.09	<10	24 <10	1	7
71 80	$50+0 \mathrm{ONN} 16+00 \mathrm{E}$ $50+0 \mathrm{~N} 17+75 E$	<5	0.2	0.44	10	30	<5	0.07	<1	2	4	3	t. 12	<10	0.03	22	41	0.02	2	280	16	$45<20$	6	0.08	$\leqslant 10$	25×10	1	10
89	$49+50 \mathrm{~N} 16+25 \mathrm{E}$		<0.2	0.25	<5	10	-5	0.01	al	<1	$\leqslant 1$	4	0.45	<10	<0.01	5	<1	0.01	2	100	6	$<5<20$	2	0.02	<10	6 < 10	41	2
92	$49+50 \mathrm{~N} 17+00 \mathrm{E}$	< 5													0.02	36	<1	0.02	2	440	40	<5 <20	4	0.10	<10	$35<10$	3	8
98	49+00N 14+75E	<5	0.3	2.98	35	20	<5	0.02	<1	3	${ }_{11}$	6	1.72	< 10	0.18	66	<1	0.02	2	510	34	$<5<20$	8	0.04	<10	$23<10$	3	43
106	49+00N 16+25E		40.2	2.23	25	40	<5	0.06	a1	4	11	6	1.79	$\alpha 10$	0.18	6	\leqslant	0.02	7	510								
108	49+00N 16475E	< 5														22	<1	0.02	2	120	12	$<5<20$	2	0.06	$\leqslant 10$	$20<10$	1	8
115	48+50N 14+75E		<0.2	0.50	5	15	< 5	20.01	<1	2	3	3	0.83	<10	0.03	22	<1	0.02	2	120	12	<5 <20	2	0.06		20 -10		
116	48+50N 15+00E	<5										8		<10	0.21	122	<1	0.02	6	650	30	$<5<20$	11	0.05	<10	25×10	3	41
124	48+50N 17+00E		0.4	2.02	20	60	$\leqslant 5$	0.10	<1	4	15	8	2.05	$\leqslant 10$	0.21	122	<	0.02	6	050		454						
125	$48+50 \mathrm{~N} 17+25 \mathrm{E}$	45													0.03	155	<1	0.02	3	240	10	$<5<20$	7	0.05	<10	$21<10$	<1	14
133	$48+00 \mathrm{~N} 14+00 \mathrm{E}$		0.2	0.34	45	30	< 5	0.12	<1	2	4	3	0.96	$\leqslant 10$	0.03	155	<	0.02				45						
136	$48+00 \mathrm{~N} 14+50 \mathrm{E}$ $48+00 \mathrm{~N} 16+00 \mathrm{E}$	5	0.2				45	0.04	<1	1	1	2	0.28	<10	*0.01	23	<1	0.02	41	80	2	$<5<20$	3	0.03	<10	$11<10$	4	5
141	$48+00 \mathrm{~N} 16+00 \mathrm{E}$ $48+00 \mathrm{~N} 17+00 \mathrm{E}$	4	80.2	0.09	<	10	45																					
150	48+00N 17+75E	- 5	0.2	0.87	10	20	< 5	0.12	$\leqslant 1$	3	6	5	1.31	10	0.14	94	c)	0.02	7	150	12	$<5<20$	10	0.06	$\leqslant 10$	$15<10$	12	18
159	47+50N 14+75E		0.5	1.50	15	85	< 5	0.14	<1	8	15	11	2.52	10	0.32	509	1	0.03	13	290	36	$<5<20$	13	0.08	<10	$34<10$	9	79
165	47+50N 16+25E	< 5															1	0.02	23	470	28	$45<20$	19	0.02	-10	17×10	45	59
168	47+50N 17+00E	<5	1.1	1.13	10	55	45	0.29	$\leqslant 1$	5	10	16					<1		6	250	22	< $5<20$	5	0.02	c 10	$13<10$	10	7
176	47+00N 14+25E		0.4	0.75	10	15	< 5	0.05	<1	1	3	6	0.59	10	0.02	39	<1	0.02		20		< 520						
178	47+DON 14+75E	< 5															c1	0.02	1	320	10	$45<20$	4	0.07	410	17×10	γ	6
194	$46+50 \mathrm{~N} 13+50 \mathrm{E}$		0.3	0.45	<5	20	<5	0.06	<1	2	2	4	0.88	$\times 10$	0.01	19	<1	0.02	1	320	10	45420	4		\& 1	17 \&		
199	46+50N 14+75E	<5															<1	0.02	ε	450	20	<5 420	6	0.05	<10	27×10	4	56
203	$46+50 \mathrm{~N} 15+75 E$ $46+00 \mathrm{~N} 13+00 E$	<5	<0.2		15 10		<5		<1	4	12 8	3	1.70 1.02	$\times 10$	0.22 0.09	55	<1	0.01	4	180	18	< $5<20$	2	0.03	<10	16:10	3	19
211	$46+00 \mathrm{~N} 13+00 \mathrm{E}$	<5	<0.2	1.24 0.29	10	25 10	< 6	0.04	ar	<1	2	1	0.48	$\leqslant 10$	0.03	26	e1	0.02	1	230	8	-5 <20	2	0.07	<10	7×10	c	34

Et M. Ta	Au(ppb)	Ag: Al \%	A*	Ba	目	Ca\%	Cd	Co	Cr	Cu	F\% $\%$		A\% \%	Mn	No	$\mathrm{Na} \%$	Ni	9	Pb	\$b Sn	Sr	TI \%	U	W	$\boldsymbol{\gamma}$	Z
Standard*																										
Till-3		1.41 .08	85	40	<5	0.53	<1	10	57	19	1.96	-10	0.57	313	$\leqslant 1$	0.02	28	470	32	$<5<20$	9	0.07	$\times 10$	$36 \leq 10$	10	35
Till-3		1.31 .01	80	40	45	0.54	<1	10	58	19	1.99	$\leqslant 10$	0.58	310	<1	0.02	25	440	32	$<5<20$	10	0.07	$\leqslant 10$	$35<10$	10	36
Till-3		1.41 .02	80	45	45	0.53	<1	10	58	19	1.98	<10	0.59	310	41	0.02	25	440	32	$<5<20$	10	0.07	<10	40×10	10	37
Titio3		1.41 .01	75	40	45	0.52	<1	10	60	19	1.94	<10	0.57	312	<1	0.02	27	480	32	$<5<20$	10	0.07	$\times 10$	37×10	9	36
Till-3		1.31 .02	85	40	45	0.54	c1	11	59	19	1.96	<10	0.57	308	<1	0.02	27	470	30	$<5<20$	10	0.07	-10	37×10	9	35
Titiol 3		1.31 .03	80	45	45	0.57	<1	11	58	20	1.90	$\leqslant 10$	0.58	310	<1	0.02	25	450	32	$45<20$	9	0.07	<10	$36<10$	9	36
Till-3		1.51 .03	85	40	45	0.50	$\leqslant 1$	11	60	48	1.97	10	0.56	308	$\leqslant 1$	0.103	$2{ }^{2}$	470	30	$<5<20$	10	0.07	<10	$39<10$	8	35
OxE42																										
OxEd2	600																									
OxE42	610																									
OXE42	620																									
OxE42	595																									
OXE42	625																									
OxE42	600																									

JJibpike

XLS/O

ECO TECH LASM	ORY LTD.	KPP CEFTIFMATE OF/	YSIS AK 20¢6-1873	Fenaispance Geor
10041 Dalias Drive				680 Dairy Rosd
KANLOOPS, 8.c.				Kamloops, EC
V2C 6T4				V28 8H3

Mo. of samples received: 9
Sample Type: Rock
Project: Erotem HiM
Shlohent t: 0601
Submitteot by: L. Linalinger

Vaidurat in ponn unfess otherwien noportand

ECO TECH LAB	ORY LTD.	SCP CERIIFICATE OF AN	치S AK 2006-2038	Renaissance Geosr
10041 Dallas Drive				680 Dairy Frad
KAMLOOPS, B.C.				Kamloops, BC
V2C ET4				V2B BH3

No. of samples recerked: 5
Sample Type: Pulo
Project: 049
Shipment i: 2006-02
Submitred by: L. Lindinger

Values in ppin unitess atherwise reported

XLS06

ASSAYING
GEOCHEMISTRY
ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING
680 Dairy Road
Kamloops, BC
V2B 843
No. of samples received: 5
Sampte Type: Pulp
Project: 049
Shipment \#: 2006-02
Submitled by: L. Lindinger
Zn
ET \#.

OC DATA:

Repeat:
1 M1-1 11.3
Standard:
Pb106 0.84
Renalssance Geoscience 15-Dec-06
$\mathrm{JJ} / \mathrm{kc}$${ }^{〔}$ LS 106
A/ane Lrace/pes
Juta Jealouse
B.C. Certified Assayer

Renaissance Geo
1ce
ro041 Oallas Dtive
KAMLOOPS, E.C.
V2C 5 T 4

Phone: 250-573-5700
Fax : 250.573.4557

Sample Type: Pulp

No. of samples received:

Project: 049
Shipment \#: 2006-02
Subrnitted by: L. Lindinger

Values in ppn uniess otherwise reported

QC DATA:

Repeat:

$1 \mathrm{BH}-1$	2500	19.8	0.40	115	45	45	3.12	70	5	104722	2.00	<10	0.17	2729	106	0.03	1	150	10000	25	420	123	0.02	c 10	14	40		>10000
Stendard:																												
P106		>30	0.59	270	80	< 5	1.67	32	4	436296	1.66	$\leqslant 10$	0.15	538	38	0.01	7	290	5236	55	<20	137	<0.01	<10	13	10	$\leqslant 1$	8363

OXE42
620
w/sa
d1/2022
XLS/O

Renaissance Geoscience
680 Dairy Road
Kamloops, BC
V 2 B 8 H 3

No. of samples received: 1
Sample Type: Pulp
Project: 045
Shipment \#: 2006-02
Submitted by: L. Lindinger

订泩. Tag\#	Ad (a / t)	$\begin{array}{r} \mathrm{Au} \\ (\mathrm{O} 2 \mathrm{t}) \end{array}$	$\begin{aligned} & \mathrm{Pb} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{Zn} \\ & (\%) \end{aligned}$
1 8ra-1	2.45	0.071	1.02	1.36

OC DATA:

Standard:					
\$125		1.80	0.052	0.54	0.85

Appendix 2

2006 Rock Sample Descriptions and Summarized Analyticsi Results

2066 ROCK DESCRIPTIQNS AND SUMHARY ANALYTICAL RESULTS											
Tag *	GRID N	GRID E	DESCRIPTION	Au (ppb)	Ag	As	BI	Cd	Cu	Pb	Zn
VLLD6-01	4880	1415	oxidized calcsilicate and siliceous rock	5	80.2	10	20	<1	4	74	86
VLL06-01	4875	1405	oxidized tatctiticate and sificeous rock	30	$\infty 0.2$	270	<5	2	2	8	18
VLL0e-01	4820	1310	oxidizad ealesilicate and siticeous rock	20	$\leqslant 0.2$	75	<	$\leqslant 1$	3	12	21
	4820	1300	fine grained semi masslve suliphides pyrite and pyrrhotite in wollastoritic eate-siltate gangue	275	0.3	<5	160	<1	316	32	108
M+1-1	SEE FIGU	IRE 12	Semi massive sphalerite in larde cale silitate and siliceous bidtite gneiss boukder. Massive suophide layer varles form 6 to 28 cm thick.	45	2.3	<	10	981	69	172	11300
M1-2	SEE FIGU	IRE 12	Black "rotten" cal-silicate with possible highty weather sulphides	10	0.2	<5	<	2	8	56	433
M2-1	SEE FIGL	JRE 13	"Granite" containing weathered rusty zones indicating weathered biolte and or sulphides	10	$\leqslant 0.2$	4	5	<1	17	22	125
M2-2	SEE FIGU	JRE 13	rothen cal-silitate	10	<0.2	<5	<5	<1	5	10	43
M3-1	SEE FIGL	IRE 14	Fine grained biotite leldspar gneiss.	<5	<0.2	<5	10	<1	32	30	74

我

 SAMPLES som silver, zore

\qquad

\not

5200

> 路 ${ }^{2}$?
> \% \% 鹤
> \%ో
> \%
\％） O
皆

 \％ \％ \％⿳士口䒑口心 \％\％\％

BRDKEN HILL PRDJECT BRDKEN HILL CLAIMS KAMLIDPS MINING DIVISIIN BCGS MAP SHEETS O82M－084，085 52.45 LAT， 112.53 LORN
cantoured soil gecchemical results
DEEP
SAMPLES
ppm Cu，Ni，ppb Au
FIGURE 10

