ASSESSMENT REPORT

DIAMOND DRILLING ON THE CLIFF CREEK ZONE LAWYERS PROPERTY

TOODOGGONE AREA NORTHERN BRITISH COLUMBIA

OMINECA MINING DIVISION LATITUDE 57° 20' N LONGITUDE 127° 11' W NTS MAP SHEET 94E/06 MINERAL CLAIM SHEETS 94E/024, 025, 034, 035

CLAIMS:

- 19 converted legacy claims (510068-510185, 514101)

- Law 1 (506499), Law 2 (506501), Wo Fraction (517518), Bishop Fraction (517521), Attorney Creek (517522),

Fraction (517525), Stealth Fraction (517527), Marmot

Lake 1 (542125), Marmot Lake 2 (542121)

- Wo 1, 2, 4, 7 (383411, 383412, 383414, 383417)

- Shotgun 4, 5, 7, 8 (389432, 389433, 389435, 389436)

OWNER:

Guardsmen Resources Inc., Langley, B.C.

OPERATOR:

Bishop Gold Inc., Vancouver, B.C.

REPORT AUTHOR: B. K. (Barney) Bowen, P. Eng., Consulting Geologist 12470 99A Avenue, Surrey, B.C., Canada, V3V 2R5

REPORT DATE:

April 15, 2007

ASSESSMENT REPORT

DIAMOND DRILLING ON THE CLIFF CREEK ZONE LAWYERS PROPERTY

TOODOGGONE AREA NORTHERN BRITISH COLUMBIA

OMINECA MINING DIVISION
LATITUDE 57° 20' N LONGITUDE 127° 11' W
NTS MAP SHEET 94E/06
MINERAL CLAIM SHEETS 94E/024, 025, 034, 035

CLAIMS:

- 19 converted legacy claims (510068-510185, 514101)

- Law 1 (506499), Law 2 (506501), Wo Fraction (517518), Bishop Fraction (517521), Attorney Creek (517522), Fraction (517525), Stealth Fraction (517527), Marmot Lake 1 (542125), Marmot Lake 2 (542121)

- Wo 1, 2, 4, 7 (383411, 383412, 383414, 383417)

- Shotgun 4, 5, 7, 8 (389432, 389433, 389435, 389436)

TABLE OF CONTENTS

			<u>PAGE</u>
1.0	SUM	MARY	1
2.0	CON	CLUSIONS	1
3.0	REC	OMMENDATIONS	2
4.0	INTE	RODUCTION	3
	4.1	Location and Access	3
	4.2	Claims	3
	4.3	Topography, Vegetation and Climate	3
	4.4	History and Development	4
	4.5	Summary of Work Done	4
5.0	GEO	LOGY AND MINERALIZATION	4
	5.1	Regional Geology and Mineral Deposits	4
	5.2	Property Geology and Mineralization	6
6.0	2006	DIAMOND DRILL PROGRAM	8
	6.1	Introduction	8
	6.2	Results	9
7.0	PRO	POSED WORK	11
8.0	REF	ERENCES	13
9.0	STA'	TEMENTS OF QUALIFICATIONS	14

FIGURES

		AFTER PAGE
FIGURE 1	LAWYERS PROPERTY LOCATION MAP Scale (as shown)	3
FIGURE 2	LAWYERS PROPERTY CLAIM MAP Scale 1:75,000	3
FIGURE 3	LAWYERS PROPERTY REGIONAL GEOLOGY Scale (as shown)	4
FIGURE 4	LAWYERS PROPERTY PROPERTY GEOLOGY Scale (as shown)	6
	PLATES	
PLATE I	DIAMOND DRILL HOLE PLAN CLIFF CREEK ZONE Scale 1:2,500	(in map pocket)
PLATE II	DDH CROSS SECTION 650 NW CLIFF CREEK ZONE Scale 1:500	(in map pocket)
PLATE III	DDH CROSS SECTION 750 NW CLIFF CREEK ZONE Scale 1:500	(in map pocket)
PLATE IV	DDH CROSS SECTION 850 NW CLIFF CREEK ZONE Scale 1:500	(in map pocket)
PLATE V	DDH CROSS SECTION 950 NW CLIFF CREEK ZONE Scale 1:500	(in map pocket)
PLATE VI	DDH CROSS SECTION 1050 NW CLIFF CREEK ZONE Scale 1:500	(in map pocket)

TABLES

		AFTER PAGE
TABLE I	LAWYERS PROPERTY CLAIMS DATA	3
TABLE 2	LAWYERS PROPERTY SUMMARY OF PAST WORK	4
TABLE 3	LAWYERS PROPERTY – CLIFF CREEK ZONE SUMMARY OF 2006 DIAMOND DRILL HOLES	(on page 8)
TABLE 4	LAWYERS PROPERTY – CLIFF CREEK ZONE DIFFERENTIAL GPS SURVEY RESULTS FOR DRILL HOLE COLLARS	9
TABLE 5	LAWYERS PROPERTY – CLIFF CREEK ZONE EXPLANATION OF 2006 ROCK CODES	(in Appendix 1)
	SUMMARY LOGS	
	HOLE 06-CC-06	10
	HOLE 06-CC-07	10
	HOLE 06-CC-08	10
	HOLE 06-CC-09	10
	HOLE 06-CC-10	10
	APPENDICES	
APPENDIX 1	2006 DIAMOND DRILL HOLE RECORDS, SAM & CORE RECOVERY RECORDS FOR HOLES 00 06-CC-10	
APPENDIX 2	ALS CHEMEX CERTIFICATES OF ANALYSIS & CHEMICAL F	PROCEDURES
APPENDIX 3	LAWYERS 2006 PROJECT COSTS	
APPENDIX 4	STATEMENT OF WORK	

SUMMARY

1.0

The Lawyers property of Guardsmen Resources Inc., located in the Toodoggone area of northern British Columbia, hosts a large, low sulphidation epithermal gold-silver system which was explored from the mid-1970s until the early 1990s. During that time, four north to west-northwest trending precious metal zones were identified. Three of these (Amethyst Gold Breccia, Cliff Creek and Duke's Ridge) collectively produced over 171,000 ounces of gold and 3,548,000 ounces of silver between 1989 and 1992.

Past diamond drilling in the Cliff Creek zone, carried out by Cheni Mines Ltd. from 1987 to 1990, outlined a gold-bearing quartz vein and stockwork system over a strike length of about 1,500 metres with widths up to 58 metres. The area mined was a small section in the northern part of the zone, with no near-surface follow-up done on the wide stockwork zone in the southern portion of the Cliff Creek structure.

In October 2005, Bishop Gold Inc. completed five NQ diamond drill holes totaling 845 metres to test both bulk and higher-grade vein potential in the southern part of the Cliff Creek zone. Four of five holes intersected 12 to 81 metre-wide zones of quartz breccia and stockwork veining which crosscut altered andesitic porphyry volcanic rocks. Although the overall gold-silver grades of the wider stockwork zones were generally low, two holes did intercept narrower, higher-grade intervals of potential economic interest. Hole 05-CC-03 returned 3.0 metres grading 12.34 g/t Au and 71.9 g/t Ag and Hole 05-CC-05 returned 2.03 metres grading 6.69 g/t Au and 37.93 g/t Ag. The latter hole bottomed in mineralization at 53.0 metres; it was terminated prematurely due to equipment problems and weather constraints.

Bishop's 2006 drill program, completed during the period June 28 to July 4, was a northwesterly continuation of the 2005 program. It targeted the central part of the Cliff Creek zone over about a 400 metre strike length. Five NQ2 diamond drill holes totaling 647.7 metres were completed. All holes cut wide zones of quartz stockwork alteration grading, overall, less than 1.0 g/t Au. Within the wider stockwork zone, all holes intersected one or more zones of intense silicification, brecciation and fine grained disseminated sulphides over core lengths from 1.1 to 5.6 metres. Although the latter zones are similar in appearance to the higher grade zones intersected in Holes 05-CC-03 and 05-CC-05, their precious metals content are lower than those reported in the 2005 drilling. Two of the better 2006 intercepts include 4 metres grading 2.65 g/t Au and 69.9 g/t Ag in 06-CC-08 and 2.65 metres grading 3.79 g/t Au and 97.3 g/t Ag in Hole 06-CC-10.

2.0 CONCLUSIONS

The 2006 drilling results fell short of expectations in that near-surface testing of the central part of the Cliff Creek zone did not return any ore-grade intercepts that might encourage one to further drill this part of the structure. Therefore, no further drilling of this target area is recommended at this time.

RECOMMENDATIONS

3.0

Two avenues of thought warrant further study and data compilation in the southern and central parts of the Cliff Creek zone. They are:

- (1) In Holes 06-CC-08 to 06-CC-10, at the hangingwall of the main Cliff Creek stockwork zone, intercepts characterized by intense pervasive silicification and locally-developed breccias define a possibly continuous zone of gold-silver mineralization which averages about 2.0 metres in true width and may persist for at least 200 metres along strike. Although average tenor of mineralization is less than ore grade, individual one-metre samples do attain grades of up to 5.87 g/t Au and 133 g/t Ag. If a comparative study of past production and drill exploration data in mined portions of the Cliff Creek zone were to indicate that sub-ore grade intercepts in drill core were an indication of potentially mineable, ore-grade shoots within the structure, further near-surface drill testing in the vicinity of Holes 06-CC-08 to 06-CC-10 may be warranted.
- (2) There are several narrow high-grade intercepts, in the hangingwall of the main Cliff Creek quartz stockwork zone, which warrant further investigations, initially by way of data compilation. The intercepts include: 2.0 metres grading 13.19 g/t Au and 333.1 g/t Ag, 1.0 metre grading 5.60 g/t Au and 457.4 g/t Ag, 0.5 metre grading 34.46 g/t Au and 2,590.30 g/t Ag and 0.5 metre grading 16.46 g/t Au and 48 g/t Ag. There are several holes in the vicinity of these intercepts for which no assay data has been located to date. An effort should be made to locate the missing data and plot it on the sections. Following this, further interpretive work should be carried out in order to examine whether or not additional drill targets are present in the hangingwall block of the main Cliff Creek quartz stockwork zone.

INTRODUCTION

Location and Access

4.0

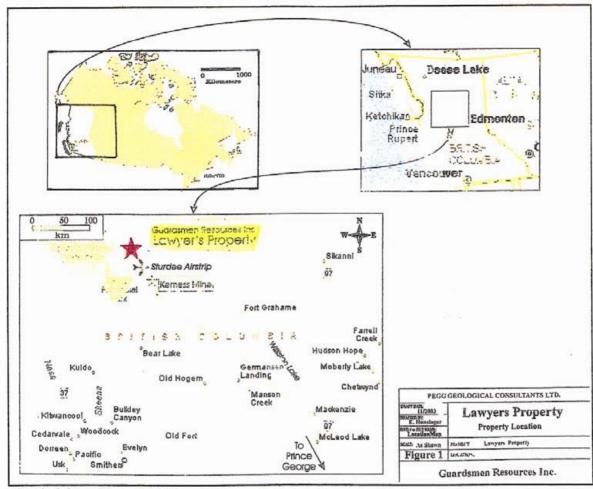
4.1

The Lawyers property is located in the Toodoggone area of northern British Columbia about 45 km northwest of the Kemess South mine (Figure 1). Specifically, the claims are located on map sheet 94E/06 at coordinates 57°20' N and 127°11' W and are in the Omineca Mining Division.

Access to the claims is by summer-road which continues beyond the end of the Kemess South mine access road, past the Sturdee Airstrip and Baker mine, to the property. Driving distance from Kemess to the Lawyers property is about 50 km. Numerous old drill roads provide good access throughout most of the property. Alternate access during summer months is by helicopter based at the Kemess South mine.

Regular fixed-wing service connects an airstrip at the mine to airports at Vancouver, Prince George and Smithers. Prince George and Mackenzie are the two main centers which provide logistical support to the area, via the Kemess mine access road.

4.2 Claims

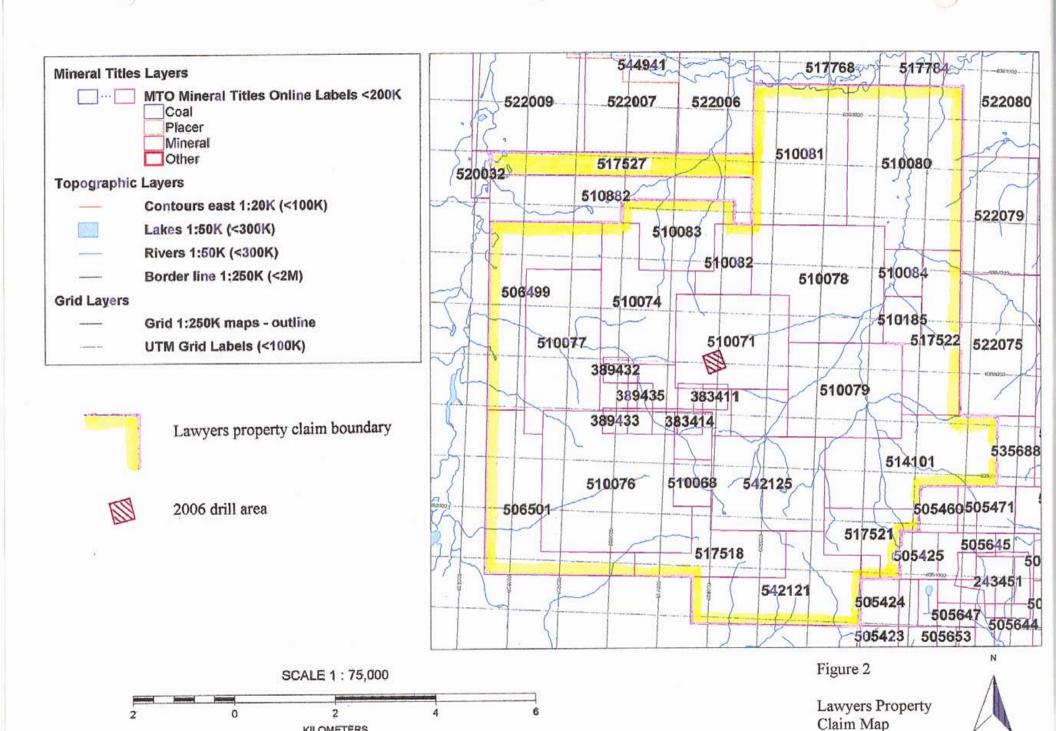

The Lawyers property consists of 19 converted legacy claims, 9 MT-online claims and 8 legacy two-post claims. The latter are overlapped by some of the other claims. Total property area (excluding the two-post claims) is 8,299 hectares (Figure 2 and Table 1). The property is 100%-owned by Guardsmen Resources Inc. of Langley, B.C. and is under option to Bishop Gold Inc. of Vancouver, B.C.

4.3 Topography, Vegetation and Climate

The property is situated in moderate terrain somewhat atypical of generally steeper, mountainous areas commonly found in the Toodoggone region. Elevations range from about 1,200 metres along Attorney Creek in the northeastern part of the property to about 1,900 metres in the central portion of the property.

Most of the property lies above tree line which is at an elevation of about 1,630 metres. Below tree line, sparse cover consists of birch and willow shrubs and scattered groves of white spruce and sub-alpine fir. In the alpine areas, dwarf shrubs, grassy meadows, lichens and rocky tundra are common. Bedrock exposures are relatively scarce and are primarily limited to ridges and steeper creek gulleys.

Typically, the summer field season runs from the beginning of June until late September. The temperatures and climate can be quite erratic during this period and sporadic rain and snow showers can occur at any time. Temperatures range, approximately, from a minimum of -32° C in January to a maximum of +26° C in June.



Copied from Pegg (2003)

Figure 1

Lawyers Property Location Map

Scale as shown

KILOMETERS

Table 1

Lawyers Property Claims Data

(as of March 31, 2007)

Claim Name	Tenure #	<u>Area</u>	Expiry Date
		(hectares)	
Law 1	506499	419.1	09-Nov-10
Law 2	506501	437.1	09-Nov-10
CLC (converted legacy claim)	510068	69.9	09-Nov-10
CLC	510069	69.9	09-Nov-10
CLC	510070	52.4	09-Nov-10
CLC	510071	419.3	09-Nov-10
CLC	510072	87.4	09-Nov-10
CLC	510073	69.9	09-Nov-10
CLC	510074	366.8	09-Nov-10
CLC	510075	104.9	09-Nov-10
CLC	510076	769.2	09-Nov-10
CLC	510077	436.7	09-Nov-10
CLC	510078	541.4	09-Nov-10
CLC	510079	419.4	09-Nov-10
CLC	510080	698.2	09-Nov-10
CLC	510081	523.6	09-Nov-10
CLC	510082	122.2	09-Nov-10
CLC	510083	244.4	09-Nov-10
CLC	510084	69.9	09-Nov-10
CLC	510185	69.9	09-Nov-10
CLC	514101	489.4	09-Nov-09
Wo Fraction	517518	244.8	09-Nov-10
Bishop Fraction	517521	174.9	09-Nov-10
Attorney Creek	517522	297	09-Nov-10
Fraction	517525	17.5	09-Nov-10
Stealth Fraction	517527	244.4	09-Nov-10
Marmot Lake 2	542121	419.8	29-Sep-07
Marmot Lake 1	542125	419.6	29-Sep-07
Wo 1	383411	25	09-Nov-10
Wo 2	383412	25	09-Nov-10
Wo 4	383414	25	09-Nov-10
Wo 7	383417	25	09-Nov-10
Shotgun 4	389432	25	09-Nov-10
Shotgun 5	389433	25	09-Nov-10
Shotgun 7	389435	25	09-Nov-10
Shotgun 8	389436	25	09-Nov-10
	Total:	8,299*	
ote: Total area excludes the Wo			
claims which are overlapped	by some of the o	ther claims in th	e above listing

4.4 History and Development

The past history and development of the Lawyers property has been well presented in earlier assessment reports #27291 (Pegg, 2003), #27663 (Blann, 2005) and #28322 (Jacob and Nordin, 2006). A summary of past work on the Lawyers property is presented in Table 2.

4.5 Summary of Work Done

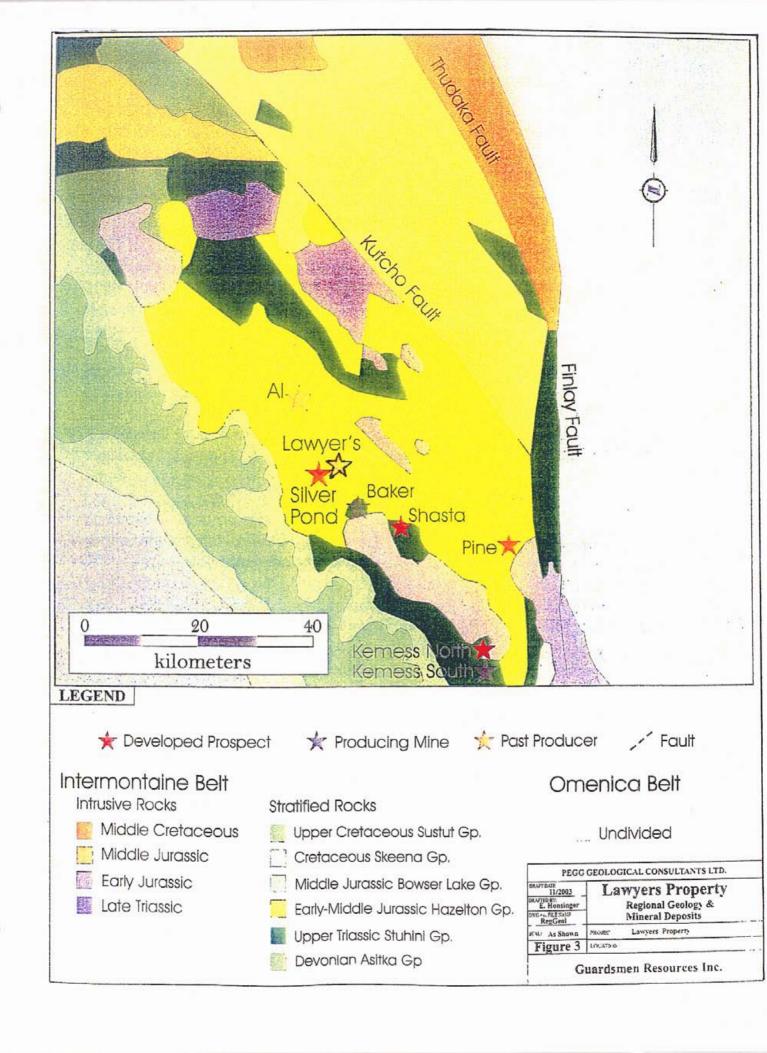
During the period June 28 to July 4, 2006, Bishop Gold Inc. completed five NQ2 diamond drill holes totaling 647.7 m in the southern and central parts of the Cliff Creek Zone on a converted legacy claim (tenure #510071) in the central part of the property. The 2006 drill area is shown on Figure 2.

The drilling was carried out as a continuation to the northwest of a similar-sized drill program completed in October 2005, in which two zones of higher grade mineralization associated with intense silicification and fine grained sulphides were intersected. Hole 05-CC-03 returned 3.0 metres grading 12.34 g/t Au and 71.9 g/t Ag and Hole 05-CC-05 returned 2.03 metres grading 6.69 g/t Au and 37.93 g/t Ag. The latter hole bottomed in mineralization at 53.0 metres. It was terminated prematurely due to equipment problems and weather constraints.

Cost of the 2006 work totaled \$228,213.97, \$57,360.05 of which was applied as assessment credits on the Lawyers property (see Appendices 3 and 4).

5.0 GEOLOGY AND MINERALIZATION

5.1 Regional Geology and Mineral Deposits


The regional geology and mineralization of the Lawyers area has been well-described by Pegg and others in earlier assessment reports. A repetition of Pegg's (2003) comments are presented below. A map (also after Pegg, 2003) showing regional geology and principal mineral deposits is shown in Figure 3.

The Lawyers property is located within Stikine Terrane, a 1,500 km² sequence of Paleozoic to Mesozoic island are assemblages and overlying Mesozoic sedimentary packages within the Intermontane Belt of the Canadian Cordillera. The property is underlain by the bimodal volcanic and sedimentary strata of the Toodoggone Formation of the Hazelton Group (Lower Jurassic age). In general this formation consists of a subaerial pyroclastic assemblage of andesitic to dacitic composition. This has been broken down into six lithostratigraphic members, consisting of sub-aerial, high potassium, calcalkaline latitic and dacitic volcanics emplaced along a north-northwest trending volcanotectonic depression.

Table 2

Lawyers Property Summary of Past Work

1925	Individual placer miners
1930's	Prospecting by Cominco
1960's	Prospecting by Kennco Exploration
1969 -1975	Exploration by Kennco Exploration discovers gold on Lawyers property
1973	Discovery of AGB Zone by Kennco
1978	Exploration by Semco Mining and Serem Inc.
1984,1985	St. Joe, Canada diamond drill the Silver Pond prospect
1987	Serem Inc. changed to Cheni Gold Mines
1989	Test production by Cheni Gold Mines of Lawyers Mine
1992	Cheni terminates production on property after test mining at Cliff Creek and Phoenix Zones
1997	Antares Mining + Americas Gold Corporation acquire property and do detailed airborne EM-Survey
2000	Guardsmen Resources stakes and acquires complete property
2000-2003	Exploration by Guardsmen Resources
2003	Guardsmen options property to Bishop Gold; hand trenching carried out
	on M Grid
2004	Bishop Gold carries out backhoe trenching on M Grid
2005	Bishop Gold drills 5 DDH on southern part of Cliff Creek Zone

The lithostratigraphic column of the Toodoggone Formation is summarized as follows:

FORMATION	ERUPTIVE	AGE	MEMBER DESCRIPTIONS
MEMBER	CYCLE	(Ma)	
		192.9 to	
Saunders	Upper	194	Trachyandesite tuffs
Attycelley		193.8	Dacite tuffs and related feeder dikes
			and sub-volcanic domes
			Heterogeneous lithic tuffs, andesite
McClair			flows
			and sub-volcanic dikes and plugs
Metsantan	Lower	197 to 200	Trachyandesite latite flows and tuffs
Moyez			Well-layered crystal and ash tuffs
Adoogacho		197.6	Trachyandesite ash flows to lapilli tuffs
			and reworked equivalents

(after Daikow et. al, 1993)

The Toodoggone Formation is underlain by mafic volcanics of the Upper Takla Group, which is unconformably underlain by crystalline limestone of the Astika Group (Devonian age). The Toodoggone is unconformably overlain by Cretaceous sediments, which include chert pebble conglomerate and finer-grained sedimentary interbeds of the Sustut Group and fine-grained clastic strata of the Skeena Group. Late Triassic to Middle Cretaceous age intrusive bodies are found throughout the area.

Steeply dipping normal faults, which define a northwest-trending fabric, are the dominant regional structures in the area. These northwest faults are truncated by later east-west trending faults, with apparent right lateral displacements.

The Toodoggone area hosts a number of variably explored mineral deposits and prospects, including the past-producing gold-silver deposits at the Lawyers, Baker, Shasta and Al/Bonanza properties. These deposits include both high and low sulphidation, epithermal vein types. They are hosted, primarily, by the Toodoggone Formation, but to a lesser degree by coeval intrusives and underlying Takla Group rocks. This mineralization displays a strong structural control and shows both lateral and vertical zonations in alteration and mineralization.

Calc-alkaline, porphyry copper-gold mineralization is present at the Kemess South Mine and the Pine prospect. Mineralization is hosted by granodioritic to quartz monzonitic intrusions of Early Jurassic age. Prior to commencement of open pit mining at South Kemess, reported geological reserves (1995) totaled 250 Mt grading 0.22% Cu and 0.62 g/t Au. Since the early to mid 1990's, additional large copper-gold resources have been identified in the Kemess North area.

5.2 Property Geology and Mineralization

The geology and mineralization of the Lawyers property has been well-described by Pegg and others in earlier assessment reports. A collated, condensed version of Pegg's (2003) and Jacob and Nordin's (2006) descriptions is presented below. A map (after Kaip, 2001) showing simplified property geology and the principal mineralized zones on the Lawyers property is shown in Figure 4.

5.2.1 Geology

Volcanic strata of the Lower Volcanic Cycle of the Toodoggone Formation underlie most of the Lawyers property. In general these consist of two distinctive mappable units (Vulimiri et al, 1986): a lower quartz andesite which is overlain by a sequence of trachyandesites. A thick package of basaltic rocks, which correlates to the mafic volcanic activity in the Upper Volcanic Cycle, overlies the trachyandesites.

Quartz-bearing andesite crystal tuffs and ash tuffs of the Adoogacho Member, the oldest rocks on the property, are exposed to the east of the Amethyst Gold Breccia (AGB) zone. Here, brown coloured, fine-grained ash tuffs, one to thirty metres thick, overlie the crystal tuffs (Vulimiri et al, 1986).

To the west of the AGB zone is, dominantly, a thick sequence of andesite to trachyandesite. Welded tuffs of this sequence overlie the ash tuffs of the Adoogacho Member. Trachyandesite tuffs, which locally contain block-sized fragments of trachyte porphyry, overlie the welded tuffs. These grade vertically into lapilli tuffs with epiclastic greywacke interbeds.

In the eastern half of the property the top of the Metsantan Member is exposed. It consists of a thick sequence of trachytic, potassium feldspar megacrystic ash fall and flows best exposed along the cliffs on the north side of Duke's Ridge. Overlying these strata are hornblende-bearing andesite crystal tuffs which contain flattened chlorite-altered fragments. Structural data suggests that the trachyandesite was focused along graben faults (Vulimiri et al, 1986).

Exposures of intrusive rocks are relatively scarce on the property. Unaltered mafic dykes, which strike northwest, dip sub-vertically and cut the epithermal mineralization are believed to be feeder dykes to the pyroxene basalt flows of the Attycelley Member, east of the Attorney fault. A series of northwest-trending rhyolite dykes has been observed along the structures that host the Silver Pond mineralization, on the west side of the property.

The dominant structures appear to be a series of northwest to north-northwest striking faults, interpreted as extensional faults related to graben development during the formation of the Toodoggone depression.

Pyroxene basalt

Andesite

Trachyte flows

Lapilli tuff & greywacke

Tracyandesite

Welded tuff

Quartz andesite luff

Silicification+adularia & argillic Pervasive argillic

Chlorite - pyrite - quartz

Vein

Mineralized zones

PEGG GEOLOGICAL CONSULTANTS LID.

11 2002 Lawyers Property
Property Geology
after Kaip. 2001
1 35.000 Lawyers Property
Figure 4

Bishop Gold Inc.

Claim boundary (not current)

principal to the

. . . .

5.2.2 Mineralization

Four main northwest-trending zones of mineralization have been identified on the Lawyers property. They are, from east to west, Amethyst Gold Breccia, Duke's Ridge, Cliff Creek and Silver Pond West (see Figure 4). All are classified as low sulphidation, epithermal types of mineralization. They occur as quartz veins, chalcedony breccia zones and stockwork bodies that appear to be structurally controlled. They have formed within and/or adjacent to graben faults and are controlled by fracture systems related to the extensional faulting.

Mineralization consists of fine-grained pyrite, native gold, electrum, native silver and acanthite and minor amounts of chalcopyrite, sphalerite and galena. Gangue consists of chalcedony, quartz and minor calcite, hematite and barite. Detailed investigations indicate that a minimum of four phases of chalcedony and quartz deposition are present, of which amethystine quartz is the latest (Vulimiri et al, 1986). Alteration of the zones displays vertical zonation, with argillic at higher elevations, silicification-adularia-sericite at intermediate levels and silicification-adularia at lower elevations. These are bounded laterally by zones of propylitic alteration which consist of chlorite and minor epidote, calcite and hematite veinlets.

Pegg describes in some detail the alteration and mineralization of each of the four main zones of mineralization. In this report, only the detailed descriptions of Pegg (2003) and Jacob and Nordin (2006) that pertain to the Cliff Creek zone are summarized.

The north-northwest striking and steeply westerly-dipping Cliff Creek zone extends for a strike length in excess of 1,500 metres. The zone was traced by drilling as surface exposures are extremely scarce. It is hosted by trachyandesite tuffs and flows and underlying quartz andesite tuffs. Multi-phase chalcedony and quartz filled fractures, stockwork veins and breccia zones are present, although silicified breccias are less abundant than at the Amethyst Gold Breccia zone. Argillic alteration, as envelopes of kaolinite and minor illite up to 10 metres thick, is commonly present and is associated with ubiquitous pyrite (Daikow et al. 1993). Propylitic alteration occurs peripheral to the argillic envelopes. A supergene assemblage of various clays and limonite, which is superimposed on the zone's alteration package, extends for up to 30 metres below surface.

Drilling by Bishop Gold Inc. in 2005, in the southern part of the Cliff Creek zone, encountered a major zone of quartz veining and stockworks, from 65 to 80 metres in width, which remained open along strike to the northwest. Its overall grade is variable, generally in the 0.1 to 3.0 g/t Au range. It contains narrower, higher-grade zones such as those intersected in Holes 05-CC-03 and 05-CC-05 (described in Section 4.5 of this report). It was hoped that the 2006 drilling would intersect similar zones of higher-grade mineralization that, when collated with the 2005 drill data, would identify near-surface zones of potentially economic gold-silver mineralization.

6.1 **Introduction**

Diamond drilling was carried out during the period June 28 to July 4, 2006 by Radius Drilling Ltd. of Prince George, B.C. Five NQ2 holes totaling 647.7 m were completed in the central parts of the Cliff Creek zone immediately along strike to the northwest of the drilling completed by Bishop Gold Inc. in 2005.

Hole 06-CC-06 was designed as a twin and continuation of Hole 05-CC-05 which was terminated prematurely in higher-grade gold-silver mineralization at a depth of 53.0 metres. Holes 06-CC-07 to 06-CC-10 were drilled as a series of approximately 100 metre step-outs to the northwest of Holes 05-CC-05 and 06-CC-06. A summary of 2006 holes is presented in Table 3.

Table 3

Lawyers Property – Cliff Creek Zone
Summary of 2006 Diamond Drill Holes

Hole #		Azimuth, dip &		
	Total	(elevation	Nad 83	Nad 83
	Depth	in metres)	(Zone 9)	(Zone 9)
	(m) _	@ collar	East	North
06-CC-06	<u> </u>	078°/-50°		
	126.75	(1892.7)	608004.7	6354902.1
06-CC-07		075°/-50°		
	142.34	(1889.2)	607945.3	6354988.9
06-CC-08	•	075°/-45°		
	124.45	(1883.7)	607887.6	6355063.9
06-CC-09		075°/-45°		
	127.10	(1870.9)	607828.2	6355149.6
06-CC-10		078°/-42°		
	127.10	(1859.6)	607764.6	6355237.1
Total:	647.74			

All ten 2005-06 drill hole collars were surveyed using a Geo Explorer XT differential GPS unit which has a horizontal accuracy of less than 0.5 metre and a vertical accuracy of about 1 to 2 metres. In addition, the collars of 20 diamond drill holes completed by Cheni Mines Ltd. in 1987 and 1990 were also surveyed using the same unit. This survey

data is summarized in Table 4. Down-hole surveys were executed with an EZI Digital Reflex System, supplied by Westcoast Drilling Supplies out of Vancouver, B.C.

All core was photographed then logged in detail at the site. The main zone of quartz veining and stockworks was sampled continuously, with a sample interval of mainly 1.0 metre. Hangingwall rocks (where encountered) and footwall rocks were sampled for a few metres out from the main stockwork zone over sample intervals generally in the 1.5-2.0 metres range. Half of the sawed core was retained in the core box and the other half was placed into numbered plastic sample bags which were then placed into labeled and numbered five-gallon pails. The latter were sealed with a lid before they were shipped by truck to the ALS Chemex laboratory in North Vancouver for gold and silver analyses. A total of 482 samples were analyzed. All retained core was shipped by truck to Prince George where it is being stored in an enclosed and locked warehouse.

Results of the 2006 drilling program are discussed in Section 6.2. A diamond drill hole plan is shown on Plate I and 1:500 scale detailed cross-sections are presented in Plates II to VI. All plates are folded maps in plastic pockets at the end of the report.

Appendix 1 contains the 2006 diamond drill hole records, sample records and core recovery records, as well as Table 5 which provides an explanation of the rock codes used on the detailed cross-sections and in the sample record sheets. In Appendix 2, certificates of analysis and chemical procedures have been compiled. The Lawyers 2006 project costs are presented in Appendix 3 and a copy of the Statement of Work, filed online on February 3, 2007, is presented in Appendix 4.

6.2 Results

6.2.1 General Statement

The target zone was the northwest extension of a wide zone of quartz stockwork alteration which hosts narrower zones of higher grade mineralization identified in the 2005 drilling. It was intersected in all five 2006 drill holes over a strike length of about 400 metres. The zone strikes northwesterly and dips moderately to steeply to the southwest.

In the 2006 drilling, quartz veining and stockworks were encountered over core lengths of about 80 to 100 metres, with the true width of the zone estimated to be approximately 80% of the cored length. The overall gold grade of the wider stockwork zone is less than 1.0 g/t. Within the wider stockwork zone, all holes intersected one or more zones of intense silicification, brecciation and fine grained disseminated sulphides over core lengths from 1.1 to 5.6 metres. Although the latter zones are similar in appearance to the higher grade zones intersected in the 2005 drilling, their precious metals contents are lower than those reported in 2005.

Summary logs for the 2006 drill holes are presented after page 10 in the report. Some highlights are discussed in Section 6.2.2 below.

Table 4
Lawyers Property - Cliff Creek Zone
Differential GPS Survey Results for Drill Hole Collars

		NAD83 UTM-	NAD83 UTM-	Canada HT2.0
Data File	Hole # / Comment	09 East	09 North	Elevation(m)
I50NW1.cor	05cc02	608133.18	6354720.73	1895.58
I50NW1.cor	87cc39	608130.54	6354727.61	1895.66
50NW3.cor	90cc98	607738,61	6354620.05	1893.97
550NW1.cor	05cc01	607852.53	6354753.22	1904.15
550NW1.cor	87cc80	607872.89	6354707.12	1907.79
550NW1.cor	90cc103	607816.87	6354770.13	1902.43
550NW1.cor	90cc106	607783.25	6354708.18	1900.95
550NW2.cor	05cc03	608058.74	6354812.90	1896.12
550NW2.cor	87cc42	608062.70	6354813.79	1895.41
550NW2.cor	87cc47	608043.28	6354778.31	1897.16
550NW3.cor	05cc04	608272.79	6354878.62	1865.31
350NW1.cor	05cc05	608005.77	6354900.59	1892.59
350NW1.cor	06cc06	608004.74	6354902.08	1892.68
350NW2.cor	90cc96	607674.06	6354809.30	1886.09
350NW3.cor	87cc67	607891.49	6354867.61	1900.66
650NW3.cor	87cc79	607809.37	6354793.06	1901.18
650NW3.cor	87cc81	607781.12	6354837.14	1897.59
850NW3.cor	90cc97	607843.10	6354801.37	1901.55
750NW1.cor	06cc07	607945.31	6354988.89	1889.18
750NW2.cor	90cc94	607751.51	6354933.89	1893.44
750NW2.cor	90cc95	607669.58	6354912.31	1882.28
850NW1.cor	06cc08	607887.56	6355063.87	1883.67
850NW2.cor	90cc92	607603.64	6354996.76	1874.50
850NW2.cor	90cc93	607707.55	6355025.01	1881.72
950NW1.cor	06cc09	607828.18	6355149.64	1870.89
950NW2.cor	90cc90	607682.06	6355121.95	1870.86
950NW2.cor	90cc91	607595.18	6355098.30	1865.23
1050NW1.cor	06cc10	607764.55	6355237.14	1859.64
1050NW2.cor	90cc87	607542.39	The second second second second	
1050NW2.cor	90cc89	607561.99		
Monuments				
AGB.cor	bccs8268	609408.55	6356700.25	1857.08
AGBCLIFF.cor	70255/77026	608297.04		
CLIFF.cor	7026	607310.85		
Published vs. GPS	1020	007010.00	0000001.00	1700.2
bccs8268 (GCM160481)	Published	609408.689	6356700.42	1856.199
DUCS0200 (GCIVI 100401)	Difference			

6.2.2 Highlights

Hole 06-CC-06 (see summary log and Plate II in map pocket)

Hole 06-CC-06 was drilled as a twin to and continuation of Hole 05-CC-05 which was terminated prematurely at 53.0 m in a 2.03 m zone of mineralization grading 6.69 g/t Au and 37.93 g/t Ag. The 2006 hole failed to return any significant precious metals grades at a similar depth. From 39 to 44.6 metres, it did intersect a zone characterized by strongly developed quartz veinlets and stockworks and the presence of 0.1 to 0.2 metre-long sections of 100% silica replacement with locally brecciated textures. This zone carried elevated silver and gold values to 20.9 g/t and 0.74 g/t respectively, but it is not known what its relationship is to the higher grade intercept at the bottom of Hole 05-CC-05.

Other sample intervals returned values to 1.3 g/t Au over 1 metre from 90 to 91 metres and 154 g/t Ag over 1.5 metres from 103 to 104.5 m (see sample descriptions in summary log).

Hole 06-CC-07 (see summary log and Plate III in map pocket)

Hole 06-CC-07 was drilled as a near-surface test of the northwest-trending quartz stockwork zone that had been identified in Bishop Gold's 2005 drilling. The hole was collared about 100 metres northwest of Holes 05-CC-05 and 06-CC-06.

Only one mineralized interval of interest was intersected in this hole. It grades 3.0 g/t Au and 26.7 g/t Ag over 2 metres from 86 to 88 metres. The interval occurs towards the footwall contact of the main quartz stockwork zone and locally contains 3 to 4% disseminated pyrite. It is in the immediate hangingwall of a fault from 88.87 to 89.05 metres. Wallrocks to the fault are vuggy with limonite and manganese oxides infilling vugs.

Hole 06-CC-08 (see summary log and Plate IV in map pocket)

Hole 06-CC-08 was drilled as a near-surface test of the main quartz stockwork zone and was collared about 100 metres northwest of Hole 06-CC-07. The best mineralized interval occurs near the hangingwall contact of the main stockwork zone, over a 4 metres interval from 30 to 34 metres grading 2.65 g/t Au and 69.9 g/t Ag. The interval exhibits strongly developed quartz veinlets and stockworks with sections of intense pervasive silicification. Faulting is present from 27.33 to 31.84 metres and from 33.41 to 33.52 metres. A second intercept of interest, from 65 to 66 metres, grades 2.0 g/t Au and 24.7 g/t Ag. It is hosted in a weakly to moderately developed quartz stockwork zone which exhibits minor faulting from 66.14 to 66.3 metres.

Hole 06-CC-09 (see summary log and Plate V in map pocket)

Hole 06-CC-09 was drilled as a near-surface test of the main quartz stockwork zone and was collared about 100 metres northwest of Hole 06-CC-08. The main quartz stockwork

Hole No: 06-CC-06

Lawyers Project - Cliff Creek Zone 2006 Diamond Drill Hole Summary Log

Page:

1 of 1

From	To	Interval	Sample No	o. Series	Lithology		Alteration	Remarks
(m)	(m)	(m)	From	То				
0	4.6	4.6			OVERBU	IRDEN		·
4.6	39	34.4	32001	32034	ANDESITE	PORPH.	quartz stockwork	weakly to moderately well developed
		l						
39	44.6	5.6	32035	32040	ANDESIT	PORPH.	quartz stkwk. + perv.	intensely silicified - some brecciated zones
44.6	101.52	56.92	32041	32096	ANDESITE	E PORPH.	quartz stockwork	variably developed - mostly moderate
							11	Tanada, Social States and States
101.52	109.03	7.78	32097	32101	ANDESIT	PORPH.	transition to footwall	mixed quartz stkwk. & relatively fresh rock
109.03	113	3.97	32102	32103	ANDESIT	PORPH.	unaltered	relatively fresh footwall rock
113	126.75	13.75			ANDESIT	E PORPH.	unaltered	relatively fresh footwall rock - not sampled
	EOH @ 12	6.75 m				-		
Analytical I	highlights:				ppm Au	ppm Ag		
15	16	1	32011	······································	1.045	3.5	weak guartz veining	Fault Zone: str. limonite + MnO2, quartz
						-		veining weak, some gouge present
90	91	1	32086		1.3	34.1	mod. quartz stockwork	locally brecciated wallrock w/ silica infilling;
								minor fine Py diss.
103	104.5	1.5	32098		0.347	154	transition to footwall	mixed quartz stkwk. & relatively fresh rock;
								at 103.2 - 103.5 m: Fault - str. chlorite-clay
							<u> </u>	altered; locally 1% fine diss. Py
	<u>1</u>					<u></u>		

Hole No: 06-CC-07

1 of 1

Lawyers Project - Cliff Creek Zone 2006 Diamond Drill Hole Summary Log

Page:

From	To	Interval	Sample N	o. Series	<u>Lithology</u>		<u>Alteration</u>	<u>Remarks</u>
(m)	(m)	(m)	From	То				:
0	4.57	4.57			OVERBU	RDEN		
			<u> </u>	·	<u> </u>			
4.57	23.91	19.34	32104	32116	ANDESITE	PORPH.	transition from HW	very weak quartz vits some fresh rock
23.91	75.1	51.19	20117	20467	ANDESITE	- 00000	mund- otlant	uspiebly developed week to moderate
23.91	15.1	51.19	32117	32107	ANDESITE	PURPH.	quartz stkwk.	variably developed - weak to moderate
75.1	78.33	3.23	32168	32170	ANDESITE	PORPH.	quartz stkwk. + perv.	very strongly silicified; limonite + MnO2 vlts.
78.33	96.43	18.1	32171	32188	ANDESITE	PORPH.	quartz stkwk.	variably developed - mod. to locally strong
96.43	98,45	2.02	32189	32190	ANDESITE	PORPH.	quartz stkwk. + perv.	very strongly silicified; locally brecciated
98.45	106.8	8.35	32191	32197	ANDESITE	PORPH.	quartz stkwk.	decreasing intensity towards FW of zone
106.8	115	8.2	32198	32201	ANDESITE	E PORPH.	FW rock	relatively fresh - porphyritic texture clear
115	142.34	27.34			ANDESIT	E PORPH.	FW rock	relatively fresh - not sampled
····	EOH @ 14	2.34 m						
Analytical	highlights:				ppm Au	ppm Ag		
86	88	2	32179	32180	3	26.7	quartz stkwk.	locally 3-4% Py diss.; interval is in hanging-
								wall of fault from 88.87 - 89.05 m, wallrocks
			 					to fault are vuggy w/ limonite-MnO2 infilling
	<u> </u>	<u> </u>						

Lawyers Project - Cliff Creek Zone 2006 Diamond Drill Hole Summary Log

Hole No: 06-CC-08

Page: 1 of 1

From	To	Interval	Sample N	o. Series	<u>Lithology</u>		<u>Alteration</u>	Remarks
(m)	(m)	(m)	From	То				
0	3.04	3.04			OVERBU	RDEN		
ļ								
3.04	11	7.96		 -	ANDESITE	PORPH.	HW rock	relatively fresh - not sampled
<u> </u>								
11	15.25	4.25	32202	32203	ANDESITE	PORPH.	HW rock	relatively fresh - sampled
15.25	27.05	11.8	32204	20040	ANDESITE	- DODDU	quartz stkwk.	woolshy doveloped, come relatively freely real
13.23	21.05	11.0	32204	32212	ANDESTI	PORPH.	quanz sikwk.	weakly developed; some relatively fresh rock
27.05	32.05	5	32213	32217	ANDESITE	PORPH	quartz stkwk. + perv.	very strongly silicified; some fine sulphides
1	3 - 3 - 3			02217		-, -, , , , , , ,	quarte ottern porr.	very otterigiy amouned, come into durpinged
32.05	113.9	81.85	32218	32298	ANDESITE	PORPH.	quartz stkwk.	variably developed - weak to moderate
							· · · · · · · · · · · · · · · · · · ·	
113.9	120	6.1	32299	32301	ANDESITE	PORPH.	FW rock	relatively fresh - sampled
	<u> </u>							
120	124.45	4.45			ANDESITE	PORPH.	FW rock	relatively fresh - not sampled
	EOU @ 40	4.45	·	-				
	EOH @ 12	4.45 JTI	·	· <u>.</u>		 		
	<u> </u>				·		<u></u>	
Analytical	hiahliahts:				ppm Au	ppm Ag		
, , , , , , , , , , , , , , , , , , , ,	[ppiii / iu	ppinng	··· ··· · · · · · · · · · · · · · · ·	
30	34	4	32216	32219	2.65	69.6	quartz stkwk. + perv.	27.05 - 32.05 m; str. quartz veinlets + stock-
								work w/ sections of intense pervasive silicifi-
								cation (~100% replacement); faulting from
								27.33 - 31.84 m and 33.41 - 33.52 m
<u></u>	<u> </u>							
65	66	1	32251		2	24.7	quartz stkwk.	variably developed - weak to moderate
	ļ							at 66.14 - 66.30 m: Minor fault - str. broken
<u> </u>	1		<u></u>					core, str. limonitic, mod. clay-altered

Lawyers Project - Cliff Creek Zone 2006 Diamond Drill Hole Summary Log

Hole No: 06-CC-09

Page: 1 of 1

From	To	interval	Sample N	o. Series	<u>Lithology</u>		Alteration	Remarks
(m)	(m)	(m)	From	То				
0	3	3			OVERBL	IRDEN		
3	20	17			ANDESIT	PORPH.	HW rock	relatively fresh - not sampled
		·						
20	24.06	4.06	32302	32303	ANDESITE	PORPH.	HW rock	relatively fresh - sampled
24.06	28.25	4.19	32304	32305	ANDESITE	PORPH	bleached and, porph.	fault zone from 24.06 - 25.80 m
		7.10	02001	02000	ANDEON	- 1 O/(1/1/.	bicacinea ana, porpri.	1201 2010 11011 24.00 - 20.00 111
28.25	29.36	1.11	32306		ANDESITE	PORPH.	intensely silicified	vague breccia texture; fine grey sulphides
29.36	72.44	43.08	32307	32349	ANDESIT	E PÖRPH.	quartz stkwk.	variably developed - mainly weak
_				·				
72.44	88.23	15.79	32350	32360	ANDESIT	PORPH.	weak quartz vlts.	relatively fresh - sampled @ 1.5 m intervals
88.23	113.26	25.03	32361	32385	ANDESIT	E PORPH.	quartz stkwk.	variably developed - mainly moderate
112.26	110	5.74	22200	00000	ANDERS	- DODDII	5-14/	
113.26	119	5.74	32386	32388	ANDESIT	E PORPH.	FW rock	relatively fresh - sampled
119	127.1	8.1			ANDESIT	E PORPH.	FW rock	relatively fresh - not sampled
	EOH @ 12	7.10 m						
Apolitical	highlighter							
Analytical	nigniignis:				ppm Au	ppm Ag		
28.25	29.3	1.05	32306		1.82	76.9	intensely silicified	vague breccia texture; locally, fine grained sul-
						- -		phides give greyish hue to quartz
88.23	90	1.77	32361	32362	2.4	5.3	quartz stkwk.	modstr. stockwork; 1-2% very f. grained Py
<u> </u>	1	l					<u> </u>	diss.; possible grey sulphide locally

Lawyers Project - Cliff Creek Zone 2006 Diamond Drill Hole Summary Log

Hole No: 06-CC-10

Page:

1 of 1

From	To	interval	Sample No. Series		Lithology		Alteration	Remarks
(m)	(m)	(m)	From	To				•
0	4.57	4.57			OVERBURDEN			
4.57	19	14.43			ANDESITE PORPH.		HW rock	relatively fresh - not sampled
19	25.23	6.23	32389	32391	ANDESITE PORPH.		HW rock	relatively fresh - some buff-coloured zones
25.23	31.77	6.54	32392	22209	ANDESITE PORPH.		quartz stkwk.	variably developed - weak to moderate
20.20	31,77	0.34	32392	32390	ANDESTI	L FORFIL	quariz sirwi.	variably developed - weak to injuderate
31.77	34.42	2.65	32399	32400	ANDESITE	E PORPH.	intensely silicified	common breccia texture; fine sulphides
34.42	65.6	31.18	32401	32431	ANDESITE PORPH.		quartz stkwk.	variably developed - weak to moderate
65.6	71.22	5.62	32432	32436	ANDESITE PORPH.		intensely silicified	common breccia texture; fine sulphides
71.22	102.82	31.6	32437	32467*	ANDESITE PORPH.		quartz stkwk.	variably developed - weak to moderate
	102.02		<u> </u>	02.107	ANDLONE FORFIL		quarte ottern.	Valuesty developed Weak to Medicate
102.82	127.1	24.28	32468	32483	ANDESIT	E PORPH.	weak quartz stkwk.	possible jasperoid veins & vlts (dark grey
								to reddish in colour); no definite footwall
<u> </u>								andesite encountered; sampling continued to
								end of hole; casing left in hole
<u></u>	EOH @ 12	7.10 m					<u> </u>	
Analytical	highlights:				ppm Au	ррт Ag		
31.77	34.42	2.65	32399	32400	3.70	07.2	intensely silicified	common toyture is branciated and cities
31.77	34.42	2.00	32338	32400	3.79 97.3		intensely shichled	common texture is brecciated andesite por- phyry w/ 100% silica matrix (locally dk. grey)
 							··· · · · · · · · · · · · · · · · · ·	priji w 100 % silica matrix (locally dk. grey)
50	56	6	32416	32421	2.07	3.1	micro-quartz stkwk.	lots of micro-quartz veinlets & abundant fine
							(pervasively silicified)	grained diss. Py; modstr. perv. silicification

zone in this hole appears to bifurcate near surface, with a zone of relatively fresh andesite porphyry from 72.44 to 88.23 metres separating upper and lower quartz stockwork zones.

Two mineralized zones of interest were intersected in this hole. The first occurs from 28.25 to 29.3 metres at the hangingwall contact of the upper quartz stockwork zone. It grades 1.82 g/t Au and 76.9 g/t Ag and is hosted in intensely silicified rock exhibiting vague breccia texture. Locally fine grained sulphides give the quartz a greyish hue. This narrow interval may correlate with the wider, 4 metre zone of mineralization described above in Hole 06-CC-08.

A second mineralized interval occurs from 88.23 to 90.0 metres at the hangingwall contact of the lower quartz stockwork zone. It grades 2.40 g/t Au and 5.30 g/t Ag and is hosted in a zone of moderately to strongly developed quartz stockwork carrying 1 to 2% very fine grained disseminated pyrite.

Hole 06-CC-10 (see summary log and Plate VI in map pocket)

Hole 06-CC-10 was drilled as a near-surface test of the main quartz stockwork zone and was collared about 100 metres northwest of Hole 06-CC-09. The best mineralized intercept occurs near the hangingwall contact of the main stockwork zone, over a 2.65 metres interval from 31.77 to 34.42 metres grading 3.79 g/t Au and 97.3 g/t Ag. A common texture in this interval is brecciated andesite porphyry with 100% silica in the matrix. The silica is locally dark grey in colour, likely due to the presence of very fine grained disseminated sulphides. This interval may correlate with mineralized intercepts in Holes 06-CC-08 and 06-CC-09 which also occur at the hangingwall contact of the main quartz stockwork zone.

A second, wider mineralized intercept occurs from 50.0 to 56.0 metres and grades 2.07 g/t Au and 3.1 g/t Ag. It exhibits moderate to strong pervasive silicification and contains abundant micro-quartz veinlets and fine grained disseminated pyrite.

7.0 PROPOSED WORK

The 2006 drilling results fell short of expectations in that near-surface testing of the central parts of the Cliff Creek zone did not return any ore-grade intercepts that might encourage one to further drill this part of the structure. Therefore, no further drilling of this target area is recommended at this time.

There are, however, two avenues of thought which warrant further study and data compilation. They are:

(1) In Holes 06-CC-08 to 06-CC-10, at the hangingwall of the main quartz stockwork zone, intercepts characterized by intense pervasive silicification and locally-developed breccias define a possibly continuous zone of gold-silver mineralization which averages about 2.0 metres in true width and may persist for at least 200 metres along strike. Although average tenor of mineralization is less

than ore grade, individual one-metre samples do attain grades of up to 5.87 g/t Au and 133 g/t Ag. If a comparative study of past production and drill exploration data in mined portions of the Cliff Creek zone were to indicate that sub-ore grade intercepts in drill core were an indication of potentially mineable, ore-grade shoots within the structure, further near-surface drill testing in the vicinity of Holes 06-CC-08 to 06-CC-10 may be warranted.

(2) On Sections 650 NW to 850 NW (see Plates II to IV), there are several narrow, high-grade intercepts, in the hangingwall of the main Cliff Creek quartz stockwork zone, which warrant further investigations, initially by way of data compilation. The intercepts include: 2.0 metres grading 13.19 g/t Au and 333.1 g/t Ag and (separately) 1.0 metre grading 5.60 g/t Au and 457.4 g/t Ag in Hole 90-CC-96 on Section 650 NW; 0.5 metre grading 34.46 g/t Au and 2,590.30 g/t Ag in Hole 90-CC-95 on Section 750 NW; and 0.5 metre grading 16.46 g/t Au and 48 g/t Ag in Hole 90-CC-92 on Section 850 NW. There are several holes on these sections for which no assay data has been located to date. An effort should be made to locate the missing data and plot it on the sections. Following this, further interpretive work should be carried out in order to examine whether or not additional drill targets are present in the hangingwall block of the main Cliff Creek quartz stockwork zone.

REFERENCES

8.0

Jacob, G. and Nordin, G (2006): BCDM Assessment Report #28322, Diamond Drilling Report on the Lawyers Property, April 2006.

Blann, D. (2005): BCDM Assessment Report #27663, Geochemical and Trenching Report on the Lawyers Property, February 2005.

Pegg, R. (2003): BCDM Assessment Report #27291, Geochemical, Geophysical and Geological Report on the Lawyers Property, November 2003.

Hawkins, P. (2003): A Technical Report Covering the Lawyers and Al (Ranch) Properties for Bishop Resources Inc., June 2003.

Cheni Gold Mines Inc. (2002): Lawyers Project, Regional Geology: latest revision dated January 2002.

Kaip, A. and Childe, F (2001): BCDM Assessment Report #26728, Summary Report on the Lawyers Property, November 2001.

Hawkins, P. (1997): A Summary Report Covering the Lawyers and Al Properties, Toodoggone River Area, B.C., Guardsmen Resources Inc. private files, December 1997.

Rebagliati, M., Bowen, B., Copeland, D. and Niosi, D. (1995): Kemess South and Kemess North Porphyry Copper-Gold Deposits, Northern British Columbia; CIMM Special Volume 46, Porphyry Deposits of the Northwestern Cordillera of North America, (edited by T.G. Schroeter), pp. 377-396, 1995.

MacIntyre, D.G., Ash, C., Britton, J. (1994): Geological Compilation of the Skeena-Nass Area, West Central British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Open File Map 1994-14.

MacIntyre, D.G., Desjardins, P. and Tercier, P. (1989): Jurassic Stratigraphic Relationships in the Babine and Telkwa Ranges, in Geological Fieldwork, 1988; B.C. Ministry of Energy, Mines and Petroleum Resources Paper 1989-1, pages 195-208.

Vulimiri, M, Tegart, P. and Stammers, M. (1983): Lawyers Gold-Silver Deposit, British Columbia; CIM District 6 Meeting, Smithers, B.C., October 1983

- I, Brian K. Bowen, of Surrey, in the Province of British Columbia, DO HEREBY CERTIFY THAT:
 - 1. I am a Consulting Geological Engineer with an office at 12470 99A Avenue, Surrey, British Columbia, V3V 2R5, Telephone (604) 930-0177.
 - 2. I am a graduate of the University of British Columbia with a degree of Bachelor of Applied Science in Geological Engineering, obtained in 1970. I have been practicing my profession continuously in Canada and elsewhere since graduation.
 - 3. I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
 - 4. This report is based on my personal knowledge of the Lawyers property obtained from on-site supervision of a diamond drilling program carried out during the period June 28 to July 4, 2006 and from my review of a number of reports that pertain to the property.
 - 5. I have no interests in Bishop Gold Inc., Guardsmen Resources Inc. nor on the property reported on herein, nor do I expect to receive any.

Dated at Surrey, British Columbia, this fifteenth day of April, 2007.

April 15, 2007 Surrey, B.C. BKB/bb B. K. Bowen, P. Eng. Consulting Geologist

B.K. BOW

B. W. Bour

Statements of Qualifications (continued):

I, Gary D. Nordin, an independent consulting geologist, resident at 24-3750 Edgemont Blvd., North Vancouver, V7R 2P8 in the province of British Columbia, do certify that:

1. I am a graduate of the Faculty of Science, University of Alberta, 1970, with a B. Sc. Degree in Geology, Honours.

2. I am registered with the Association of Professional Engineers and Geoscientists of British Columbia, Registration No. 19495 and I am a Fellow of the Geological Association of Canada, Registration No. 0357. I have practiced my profession in North America, South America, Europe and Asia for major and junior mining companies for 37 years.

3. The information for this report was obtained from sources as cited in this report and from personal experience gained while consulting for Bishop Gold Inc. in August 2003, August 2004, September-October 2005 and June-July 2006.

4. I am a Qualified Person responsible for supervision of the exploration program at the Lawyers Gold Project and responsible for writing this geological report in conjunction with Barney Bowen, Consulting Geologist, who worked under my supervision.

5. I am not aware of any material fact or material change with respect to the subject matter of this technical report, which is not reflected in the report or omission to disclose information, which would make the technical report misleading.

Dated at Vancouver, B.C. this fifteenth day of April, 2007.

Gary D. Nordin, P. Geol., F.G.A.C.

APPENDIX 1

2006 DIAMOND DRILL HOLE RECORDS, SAMPLE RECORDS & CORE RECOVERY RECORDS FOR HOLES 06-CC-06 TO 06-CC-10

Table 5

Lawyers Property - Cliff Creek Zone Explanation of 2006 Rock Codes

Rock Code	Description
a	- porphyritic andesite: relatively fresh, little or no veining
av	- porphyritic andesite: feldspar phenocrysts usually still visible, variably veined w/ quartz +/- carbonate, no stockwork developed
av + st	- similar to av, w/ weak quartz (+/- carbonate locally) stockwork; some remnant porphyritic texture may still be visible
st + av	 weak to moderate quartz (+/- carbonate locally) stockwork; rock mainly tan or pinkish cast, porphyritic texture vague
st	- moderate, strong or intense quartz stockwork development; includes zones of intense pervasive silica (up to ~100% silica replacement); rock tan or pinkish cast, no primary textures remain
br	- brecciated andesite porphyry wallrock or brecciated quartz vein material w/ matrix infilled w/ later fine grained silica; matrix silica commonly dark grey in colour due to the presence of very fine grained sulphides
fault	- fault or faults of variable size and intensity; if fault zone spans two or more intervals, "fault" code is shown in each sample interval
jasp	- relatively abundant jasperoid veining noted in the bottom of Hole 06-CC-10 past a down-hole depth of 102 m

Hole No: 06-CC-06

Lawyers Project - Cliff Creek Zone 2006 Diamond Drill Hole Record

Page: 1 of 7

UTM Coordinates (NAD 83 - Zone 9):		Coilar Da	ta	Total Depth:	126.75 m
North:	6354902.08	Azimuth:	78	Date Started:	28-Jun-06
East:	608004.74	Dip:	-50	Date Completed:	29-Jun-06
		TOC:		Logged By:	B.K. Bowen
Elevation:	1892.68	Hole Size:	NQ2	Date:	29-Jun-06

Collar Survey: Differential GPS	Total Casing:	4.8 m	Contractor:	Radius Drilling
Multishot Survey:	Casing LIH:	No	Core Storage:	Prince George
RQD Log:	Hole Plugged:	Yes		
Pulse EM Survey:				

Purpose: Hole 06-CC-06 was drilled as a twin to and continuation of Hole 05-CC-05 which was terminated prematurely in mineralization due to difficult drilling conditions.

epth (m)	Azimuth	Dip	Test Type	Depth (m)	Azimuth	Dip	Test Type
122.53	74.1	-50	Reflex Easy Shot			·····	
		1					· · · · · · · · · · · · · · · · · · ·
							•
				······································		······································	
	ľ			····			
					-		
			······································		-		

Hole Number: 06-CC-06			2006 Diamond Drill Hole Record				Page:	2 of 7	
From To		Lithology	Graphic			Structure, Alteration & Mineralizatio	ucture, Alteration & Mineralization		
(m)	(m)	<u>. </u>	Column	Sub Interval	CA	Remarks			
0	4.63	OVERBURDEN							
			_						
		Includes some granodioritic cobbles &	_		<u> </u>	[
		likely andesite porphyry felsenmeer	4		ऻ				
4.63	126.75	PORPHYRITIC ANDESITE	-						
		Textures vague; pervasive sericitic +/-	-	4.63 - 7.3		Strongly broken, some possible fault	gouge, pervi	asive limonite.	
	<u></u>	argillic alteration	~			strong MnO2 on fractures or slip sur			
			7		 	stockwork veining; some fine grey so			
]			give veins smokey colour locally			
	 ,,								
	<u> </u>			7.3 - 12.7	ļ	Rock more competent except for 0.1			
			_		<u> </u>	where rock is intensely broken & lim			
			_ '		_	fault; clusters of fine disseminated P			
						margins; some veins vuggy w/ quart	z termination:	s; moderate	
	 				 	quartz stockwork continues		<u> .</u>	
			- i	407 400	}	18-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2		.1	
				12.7 - 13.2	╄	Decrease in quartz veiniet stockwort			
	-		-		 	porphyritic texture visible locally; roc	K Still limoniti	c; MnO2 on	
			-		┼	fractures	,,	 — —	
	 .,		┪	13.2 - 13.4	 	Minor fault: rock strongly broken; str	ona limonite	& lesser	
			7		1	MnO2; weak quartz veinlets			
]					······································	
]	13.4 - 14.0		Core solid, weak-mod. limonitic, min	or MnO2 on f	fractures;	
						minor quartz veinlets; porphyritic tex	dure more ob	vious	
			-		↓				
			4 '	14.0 - 17.0	}	Fault Zone: Intensely broken core w			
			_		_	limonite-MnO2; locally feldspars kad			
			4		ـــ	continues generally weak; trace yell	<u>ow sulphide (</u> 1	?) mineral =	
			_		1	Сру (?)			
				L		<u>l</u>		•	

Hole Number: 06-CC-06 2006 Diamond Drill Hole Record Page: 3 of 7

From To (m) (m) Column Sub Interval CA Remarks Porphyritic Andesite - continued 17.0 - 17.3 Core solid - spotted appearance because of clay-altered feld-spar phenos; minor quartz veinlets 17.3 - 17.7 Fault Zone: Intensely broken core similar to 14.0 - 17.0 17.7 - 18.0 Core solid - similar to 17.0 - 17.3 18.0 - 19.2 Fault Zone: Intensely broken core similar to 14.0 - 17.0 19.2 - 21.8 Core mostly solid; quartz veinlets + stockwork mod. to locally str. developed; groundmass locally pervasively stlicified; abundant finely disseminated Py & grey sulphide locally 21.8 - 22.1 Minor fault: core str. broken w/ some gouge; mod. limonite & MnO2 MnO2 22.1 - 25.5 Core mostly solid; mod. to locally str. quartz veinlet stockwork, locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh, hue w/ local pervasives sitical infine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 on fractures. 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive sitica; locally bundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on fractures.	Hole N		U0-CC-U0		amona Dhii Hoi	e Rec	
Porphyritic Andesite - continued 17.0 - 17.3		To	Lithology				
spar phenos; minor quartz veinlets 17.3 - 17.7 Fault Zone: Intensely broken core similar to 14.0 - 17.0 17.7 - 18.0 Core solid - similar to 17.0 - 17.3 18.0 - 19.2 Fault Zone: Intensely broken core similar to 14.0 - 17.0 19.2 - 21.8 Core mostly solid; quartz veinlets + stockwork mod. to locally str. developed; groundmass locally pervasively silicified; abundant finely disseminated Py & grey sulphide locally 21.8 - 22.1 Minor fault: core str. broken w/ some gouge; mod. limonite & MinO2 22.1 - 25.5 Core mostly solid; mod. to locally str. quartz veinlet stockwork, locally vugy; locally abundant fine diss. Py & grey sulphide; locally vugy; locally abundant fine diss. Py & grey sulphide; locally vugy; locally abundant fine diss. Py & grey sulphide; locally vugy; locally abundant fine diss. Py & grey sulphide; locally call prevasive silica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive suilica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on	(m)	(m)		Column	Sub Interval	CA	Remarks
17.3 - 17.7 Fault Zone: Intensely broken core similar to 14.0 - 17.0 17.7 - 18.0 Core solid - similar to 17.0 - 17.3 18.0 - 19.2 Fault Zone: Intensely broken core similar to 14.0 - 17.0 19.2 - 21.8 Core mostly solid; quartz veinlets + stockwork mod. to locally str. developed; groundmass locally pervasively silicified; abundant finely disseminated Py & grey sulphide locally and finely disseminated Py & grey sulphide locally wind finely disseminated Py & grey sulphide; abundant finely disseminated Py & grey sulphide; locally wind finely disseminated Py & grey sulphide; locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive silica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on			Porphyritic Andesite - continued		17.0 - 17.3		Core solid - spotted appearance because of clay-altered feld-
17.7 - 18.0 Core solid - similar to 17.0 - 17.3 18.0 - 19.2 Fault Zone: Intensely broken core similar to 14.0 - 17.0 19.2 - 21.8 Core mostly solid; quartz veinlets + stockwork mod. to locally str. developed; groundmass locally pervasively silicified; abundant finely disseminated Py & grey sulphide locally 21.8 - 22.1 Minor fault: core str. broken w/ some gouge; mod. limonite & MnO2 22.1 - 25.5 Core mostly solid; mod. to locally str. quartz veinlet stockwork, locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive silica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; imnorite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							spar phenos; minor quartz veinlets
17.7 - 18.0 Core solid - similar to 17.0 - 17.3 18.0 - 19.2 Fault Zone: Intensely broken core similar to 14.0 - 17.0 19.2 - 21.8 Core mostly solid; quartz veinlets + stockwork mod. to locally str. developed; groundmass locally pervasively silicified; abundant finely disseminated Py & grey sulphide locally 21.8 - 22.1 Minor fault: core str. broken w/ some gouge; mod. limonite & MnO2 22.1 - 25.5 Core mostly solid; mod. to locally str. quartz veinlet stockwork, locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive silica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; imnorite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							
18.0 - 19.2 Fault Zone: Intensely broken core similar to 14.0 - 17.0 19.2 - 21.8 Core mostly solid; quartz veinlets + stockwork mod. to locally str. developed; groundmass locally pervasively silicified; abundant finely disseminated Py & grey sulphide locally 21.8 - 22.1 Minor fault: core str. broken w/ some gouge; mod. limonite & MnO2 22.1 - 25.5 Core mostly solid; mod. to locally str. quartz veinlet stockwork, locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive silica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on					17.3 - 17.7		Fault Zone: Intensely broken core similar to 14.0 - 17.0
18.0 - 19.2 Fault Zone: Intensely broken core similar to 14.0 - 17.0 19.2 - 21.8 Core mostly solid; quartz veinlets + stockwork mod. to locally str. developed; groundmass locally pervasively silicified; abundant finely disseminated Py & grey sulphide locally 21.8 - 22.1 Minor fault: core str. broken w/ some gouge; mod. limonite & MnO2 22.1 - 25.5 Core mostly solid; mod. to locally str. quartz veinlet stockwork, locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive silica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							
19.2 - 21.8 Core mostly solid; quartz veinlets + stockwork mod. to locally str. developed; groundmass locally pervasively silicified; abundant finely disseminated Py & grey sulphide locally 21.8 - 22.1 Minor fault: core str. broken w/ some gouge; mod. limonite & MnO2 22.1 - 25.5 Core mostly solid; mod. to locally str. quartz veinlet stockwork, locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive silica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on					17.7 - 18.0		Core solid - similar to 17.0 - 17.3
19.2 - 21.8 Core mostly solid; quartz veinlets + stockwork mod. to locally str. developed; groundmass locally pervasively silicified; abundant finely disseminated Py & grey sulphide locally 21.8 - 22.1 Minor fault: core str. broken w/ some gouge; mod. limonite & MnO2 22.1 - 25.5 Core mostly solid; mod. to locally str. quartz veinlet stockwork, locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive silica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							
str. developed; groundmass locally pervasively silicified; abundant finely disseminated Py & grey sulphide locally 21.8 - 22.1 Minor fault: core str. broken w/ some gouge; mod. limonite & MnO2 22.1 - 25.5 Core mostly solid; mod. to locally str. quartz veinlet stockwork, locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive silica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on					18.0 - 19.2]	Fault Zone: Intensely broken core similar to 14.0 - 17.0
str. developed; groundmass locally pervasively silicified; abundant finely disseminated Py & grey sulphide locally 21.8 - 22.1 Minor fault: core str. broken w/ some gouge; mod. limonite & MnO2 22.1 - 25.5 Core mostly solid; mod. to locally str. quartz veinlet stockwork, locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive silica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							
dant finely disseminated Py & grey sulphide locally 21.8 - 22.1					19.2 - 21.8		
21.8 - 22.1 Minor fault: core str. broken w/ some gouge; mod. limonite & MnO2 22.1 - 25.5 Core mostly solid; mod. to locally str. quartz veinlet stockwork, locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive silica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on						<u> </u>	
MnO2 22.1 - 25.5 Core mostly solid; mod. to locally str. quartz veinlet stockwork, locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive sitica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite fine Py diss. locally but mainly veins not mineralized; limonite MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							dant finely disseminated Py & grey sulphide locally
MnO2 22.1 - 25.5 Core mostly solid; mod. to locally str. quartz veinlet stockwork, locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive sitica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite fine Py diss. locally but mainly veins not mineralized; limonite MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							
22.1 - 25.5 Core mostly solid; mod. to locally str. quartz veinlet stockwork, locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive silica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on					21.8 - 22.1	<u> </u>	Minor fault: core str. broken w/ some gouge; mod. limonite &
locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive silica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							MnO2
locally vuggy; locally abundant fine diss. Py & grey sulphide; also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive silica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							
also trace yellow sulphide (Cpy?); overall rock has pink or flesh hue w/ local pervasive silica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on		_			22.1 - 25.5		Core mostly solid; mod. to locally str. quartz veinlet stockwork,
hue w/ local pervasive sitica 25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive sitica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive sitica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							locally vuggy; locally abundant fine diss. Py & grey sulphide;
25.5 - 27.1 Modstr. quartz veinlets + stockwork w/ some pervasive silica; fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							
fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							hue w/ local pervasive silica
fine Py diss. locally but mainly veins not mineralized; limonite & MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							
8. MnO2 on fractures; some short 0.1 to 0.2 m sections of str. broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on					25.5 - 27.1	1	
broken core w/ mod. to str. limonite & MnO2 (minor faulting) 27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							
27.1 - 28.8 Mod. quartz veinlets + stockwork w/ some pervasive silica; locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							
locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on						<u> </u>	broken core w/ mod. to str. limonite & MnO2 (minor faulting)
locally abundant fine diss. Py + trace Cpy (?); from 27.3 - 28.4, core moderately broken - minor faulting; limonite & MnO2 on							
core moderately broken - minor faulting; limonite & MnO2 on					27.1 - 28.8		
fractures	<u> </u>	<u></u>					core moderately broken - minor faulting; limonite & MnO2 on
	<u></u>					1_	fractures
	L						
	L	<u> </u>					

Hole No	umber:	06-CC-06	2006 Dia	mond Drill Hol	e Rec	cord Page: 4 of 7
From	To	Lithology	Graphic			Structure, Alteration & Mineralization
(m)	(m)		Column	Sub Interval	CA	Remarks
		Porphyritic Andesite - continued		28.8 - 31.0		Weak quartz veinlets; porphyry texture mostly obvious; ground-
					T	mass silicified in part - silica could be primary; some biotite
						phenocrysts present; rock may be more dacitic
				31.0 - 32.2		Mod. quartz veinlets + stockwork; locally broken core w/ str.
						MnO2 on fractures; locally pervasive silica; trace fine diss. Py
1						
				32.2 - 33.2		Weak quartz veinlets; porphyritic texture generally obvious,
					Γ	also some biotite phenocrysts present; groundmass is sili-
						ceous (primary or secondary?); locally 1% very fine grained Py
						diss usually associated w/ veining
				33.2 - 34.2	<u> </u>	Mod. quartz veins + stockwork; at 33.75 m is 3 cm wide quartz
						vein, vuggy w/ str. MnO2; adjacent core has yellow mineral w/
						flat habit (electrum?)
					<u> </u>	
				34.2 - 35.4	<u>L</u>	Weak quartz veinlets; porphyritic texture visible; biotite pheno-
					<u> </u>	crysts present; locally 1-2% diss. fine Py usually in close
L				****	<u> </u>	proximity to quartz veins
			_		1	
				35.4 - 38.3	↓	Mod. quartz veinlets + stockwork; overall, wallrock has pinkish
			_		↓	cast; locally 1-2% very fine grained Py & possible trace Cpy;
					↓	locally groundmass is siliceous
					<u> </u>	
				38.3 - 39.0	40	Str. brecciated andesite porphyry w/ very str. pervasive silica
						in matrix which carries abundant fine diss. Py imparting grey
					↓	colour to matrix silica; upper contact of brecciated zone sharp
			_		_	at 40 degrees CA
					ļ	· · · · · · · · · · · · · · · · · · ·
				39.0 - 43.6	↓	Str. quartz veinlets + stockwork; locally short, 0.1 to 0.2 sec-
		·		ļ	-	tions w/ 100% silica replacement & locally brecciated sections
	<u>-</u>	<u> </u>			\bot	(~0.1 m wide) similar to 38.3 - 39.0 m; wallrock mainly perva-
L.,						sively silicified; minor fine Py diss; limonite & MnO2 on fract.

Hole N	ımber:	06-CC-06	2006 Dia	mond Drill Hol	e Rec	······································	je:	5 of 7
From	To	Lithology	Graphic			Structure, Atteration & Mineralization		
(m)	(m)		Column	Sub interval	CA	Remarks		
		Porphyritic Andesite - continued		43.6 - 43.8		Minor fault: strongly broken w/ mod. clay go	uge; s	ome quartz
						veinlets, limonite & hematite		**
				43.8 - 44.6	45	Strong quartz veinlets + stockwork; similar t	o 39.0	- 43.6 m; no
						brecciated sections; limonite + goethite on f	racture	s at 45
						degrees CA		
				44.6 - 45.3		Mod. quartz veinlets + stockwork; locally me	odstr.	pervasive
						silica		
	 			45.3 - 46.1		Fault Zone: upper contact at 50 degrees CA		r contact at
				,,,,,	40	40 degrees CA; str. MnO2, mod. clay gouge)	
				46.1 - 56.2	╁	[Mod. quartz veinlets + stockwork; variably s	oricitis	rad w/ 1-294
	····			40.1 - 50.2	1	fine diss. Py or mod. silicified w/ pinkish cas		
			 		 	some fine sulphides in quartz veinlets impa		
-				····	\vdash	limonite & MnO2 on fractures locally;	H HILL	001001, 30.
		· · · · · · · · · · · · · · · · · · ·		<u> </u>		50.9 - 51.0 m: 80-100% silica replacement;	nast 5	1 () m nomby-
					\vdash	ritic texture more clear, some biotite pheno-		
					1	equals mod. to str. pervasive silica, feldspa		
	 					tized, locally 0.5% fine diss. Py w/ some co		
	 				\top	ted w/ quartz veinlets		
	<u> </u>					at 54.8 - 54.9 m: strongly broken core = Min	or fau	t
<u> </u>					_			
				56.2 - 58.0	Ļ	Fault Zone: Mod. broken core, minor gouge		
					ļ	crysts locally argillized; mod. limonite & goo		
					├	weak-mod. quartz veinlets, some w/ fine gr	ey sulp	hides
				500 700	├			
	· · · · · · · · · · · · · · · · · · ·	 	—	58.0 - 76.2		Mod. quartz veinlets + stockwork; mod. per		
		 			┼	weak-mod. pervasive silica locally; 1% fine		
					₩-	some veinlets vuggy; overall colour of zone	is tan	or pinkish
			 -	-	 			.
		<u> </u>		l		L		

Hole Nu	Hole Number: 06-CC-06		2006 Dia	amond Drill Hol	e Rec	cord Page: 6 of 7	
From	To	Lithology	Graphic			Structure, Alteration & Mineralization	
(m)	(m)		Column	Sub Interval	CA	Remarks	
		Porphyritic Andesite - continued		76.2 - 79.6		Weak quartz veinlets + local stockwork; porphyry texture visi	ble
						w/ feldspar phenocryts sericite-clay altered; 0.5% fine diss. P	<u> </u>
	·					locally	
				79.6 - 81.4		Mod. quartz veinlets + stockwork, similar to 58.0 - 76.2 m;	
						locally str. limonite & goethite on fractures	
					40	at 81.3 - 81.4 m: broken core = Minor fault	
	· –						
LI				81.4 - 87.5		Weak-mod. quartz veinlets + stockwork; vague porphyry tex-	
						ture; pervasive sericite +/- silica alteration; overall colour is ta	an-
					<u> </u>	pink; 1% fine diss. Py locally	
					75	at 86.0 m: 1 cm massive MnO2 vein	
				87.5 - 92.7		Mod. quartz veinlets + stockwork; locally carbonate gangue w	
					<u> </u>	quartz or infilling brecciated quartz; locally brecciated wallroc	
<u> </u>						w/ silica infilling; locally MnO2 & limonite on fractures; minor	
 	 .				<u> </u>	fine Py diss.	
 			<u></u>				
				92.7 - 96.2	<u> </u>	Weak to locally mod+. quartz veinlets + stockwork; similar to	
]			81.4 - 87.5 m, now w/ hairline carbonate veinlets common; a	so
lacksquare					<u> </u>	carbonate gangue w/ quartz veins; 1% fine diss. Py locally	
L			[<u></u>	60	at 95.1 m: 3 cm wide chalcedony vein, banded in part, w/ trac	ce
				<u> </u>		diss. Py; cut by numerous hairline carbonate veinlets	
 _							
ļ	<u>-</u>			96.2 - 100.45		Str. to locally mod. quartz veinlets + stockwork; wallrock is	
ļ					<u> </u>	tan-pink cast; locally 1% Py; locally vein quartz is brecciated	
]					_	and infilled w/ carbonate gangue	
 	·				45	at 96.5 m: 2 cm wide quartz vein w/ narrow Py selvage	
 					<u> </u>		
				100.45 - 101.5	45	Fault: intense chlorite-(clay) gouge at 45 degrees CA; ~1%	
						very fine grained Py diss.; at upper contact, silicified andesite	e
						porphyry is brecciated w/ chlorite in matrix	
					<u> </u>		

Liala Mi	bas	00.00.00		imond Drill Hoi		cord Page: 7 of 7
Hole No		06-CC-06			# Kec	
From	To	Lithology	Graphic			Structure, Alteration & Mineralization
(m)	(m)		Column	Sub Interval	CA	Remarks
		Porphyritic Andesite - continued] {	101.5 - 109.0		Transition zone from quartz veined & silicified andesite porphy
						to unaltered andesite porphyry; brecciated textures common w
	•••		<u>l</u>			local hematite-coloured infilling (but siliceous); hairline chlorite
			1			or carbonate veinlets common; locally 1% Py as diss. & aggre-
						gates
<u> </u>]			at 103.2 - 103.5 m: Fault - str. chlorite-clay altered; locally 1%
]			fine diss. Py
		<u> </u>	j		45	at 107.4 - 107.9 m; Fault or Shear Zone - str. shear fabric at
						45 degrees CA; clay-chlorite-(sericite) altered; 0.5% Py diss.;
]			a few brecciated quartz vein fragments
]	· .		
		"Footwall rock": 40-50% an-subhedrai] '	109.0 - 126.75		Relatively unaltered andesite porphyry ("footwall rock") - see
		pink or flesh-coloured feldspar pheno-]			description opposite; carbonate veinlets common; trace diss.
		crysts, few mm in dimension, set in dark				lPy
		greyish-green, fine grained to aphanitic]			at 113.65 - 114.3 m: pink-flesh coloured alteration envelopes
		groundmass; latter locally siliceous and/]		Γ	around grey siliceous quartz veins (K-feldspar alteration?);
		or reddish in colour.	1			some pervasive sericite w/ minor diss. Py
			1			
			1			
		End of hole at 126.75 m	1			
			1			1
			1			· ·
			1			
			1			
	_		1			
			1		1	
			1		1	
			1		1	-
		<u> </u>	1		t	
			†	 	 	
			1		┿	<u> </u>
<u> </u>			-	 	+	
L		<u>.l</u>	1	L <u>. </u>	ل	

Hole No: 06-CC-06

Lawyers Project - Cliff Creek Zone 2006 DDH Analytical Record

Date Sampled: 28-Jun-06 Date Shipped: 07-Jul-06

page 1 of 4

Sample	From	To	Length	Au-A	23	AuGRA-21	Ag-AA45	Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32001	4.63	6.00	1.37	0.317			7.2		st
32002	6.00	7.00	1.00	0.169			4		st
32003	7.00	8.00	1.00	0.182			4.4		st
32004	8.00	9.00	1.00	0.145			3.8		st
32005	9.00	10.00	1.00	0.538			4.3		st
32006	10.00	11.00	1.00	0.238			2.2		st + fault
32007	11.00	12.00	1.00	0.106			2.4		st
32008	12.00	13.00	1.00	0.126			2.9		st
32009	13.00	14.00	1.00	0.45			2.5		av + fault
32010	14.00	15.00	1.00	0.409			2.5		av + fault
32011	15.00	16.00	1.00	1.045			3.5		av + fault
32012	16.00	17.00	1.00	0.106			2	<u> </u>	av + fault
32013	17.00	18.00	1.00	0.151			1.6		av + fault
32014	18.00	19.00	1.00	0.035	,,,,	<u> </u>	1		av + fault
32015	19.00	20.00	1.00	0.089			2.1		st + fault
32016	20.00	21.00	1.00	0.035	<u> </u>	<u> </u>	1.8		st
32017	21.00	22.00	1.00	0.047		.	1.8		st
32018	22.00	23.00	1.00	0.037			1.8		st
32019	23.00	24.00	1.00	0.045			1.3		st
32020	24.00	25.00	1.00	0.016	j.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.1		st
32021	25.00	26.00	1.00	0.069	<u></u>		5.7	<u> </u>	st + fault
32022	26.00	27.00	1.00	0.04			3.1		st + fault
32023	27.00	28.00	1.00	0.069			4.6		st + fault
32024	28.00	29.00	1.00	0.047			1.6		st + fault
32025	29.00	30.00	1.00	0.005			0.6		av
32026	30.00	31.00	1.00	0.009			0.8		av
32027	31.00	32.00	1.00	0.019			0.7		st + fault
32028	32.00	33.00	1.00	0.009			0.8		av
32029	33.00	34.00	1.00	0.048	<u> </u>	<u> </u>	0.9	L	st

Hole No:	06-CC-06	3			2006 DE	OH Analytical	Record		page 2 of 4
Sample	From	To	Length	Au-A/	A23	AuGRA-21	Ag-AA45	Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32030	34.00	35.00	1.00	0.023			3.2		av
32031	35.00	36.00	1.00	0.068			1		st
32032	36.00	37.00	1.00	0.082			1.6		st
32033	37.00	38.00	1.00	0.034			0.9		st
32034	38.00	39.00	1.00	0.024			2.5		st + br
32035	39.00	40.00	1.00	0.033			8.1		st + br
32036	40.00	41.00	1.00	0.516			20.9		st + br
32037	41.00	42.00	1.00	0.26			12.9		st + br
32038	42.00	43.00	1.00	0.74			13.8		st + br
32039	43.00	44.00	1.00	0.366			6.5		st + br + fault
32040	44.00	44.60	0.60	0.052			19.8		st
32041	44.60	46.00	1.40	0.032			3.9		st + fault
32042	46.00	47.00	1.00	0.025			2.8		st
32043	47.00	48.00	1.00	0.084			1.7		st
32044	48.00	49.00	1.00	0.057			3.2		st
32045	49.00	50.00	1.00	0.146			2		st
32046	50.00	51.00	1.00	0.032			4.5		st
32047	51.00	52.00	1.00	0.024	1		2.7		st
32048	52.00	53.00	1.00	0.739			1.9		st
32049	53.00	54.00	1.00	0.5			2.4		st
32050	54.00	55.00	1.00	0.09			1.9		st + fault
32051	55.00	56.00	1.00	0.115			3.7		st
32052	56.00	57.00	1.00	0.042			1.3		av + fault
32053	57.00	58.00	1.00	0.071			2		av + fault
32054	58.00	59.00	1.00	0.039			2.7		st
32055	59.00	60.00	1.00	0.03	I.		2.4	·	st
32056	60.00	61.00	1.00	0.038			2.6		st
32057	61.00	62.00	1.00	0.085			2.3		st
32058	62.00	63.00	1.00	0.035			3.7	·	st
32059	63.00	64.00	1.00	0.308			4		st
32060	64.00	65.00	1.00	0.041			2.2		st
32061	65.00	66.00	1.00	0.033			2.4		st
32062	66.00	67.00	1.00	0.029			1.2		st
32063	67.00	68.00	1.00	0.271			5.6		st

Hole No: 06-CC-06

2006 DDH Analytical Record

page 3 of 4

	W-CC-W					JI i Alialyucai	7100010		page 3 01 4
Sample	From	To	Length	Au-A	\23	AuGRA-21	Ag-AA45	Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32064	68.00	69.00	1.00	0.22			2.1		st
32065	69.00	70.00	1.00	0.07			2.1		st
32066	70.00	71.00	1.00	0.025			1.8		st
32067	71.00	72.00	1.00	0.016			0.5		st
32068	72.00	73.00	1.00	0.064			1.1		st
32069	73.00	74.00	1.00	0.173			1.2		st
32070	74.00	75.00	1.00	0.033			1.6		st
32071	75.00	76.00	1.00	0.175			0.8		st
32072	76.00	77.00	1.00	0.156			1.4		av + st
32073	77.00	78.00	1.00	0.023			0.9		av + st
32074	78.00	79.00	1.00	0.076			1.2		av + st
32075	79.00	80.00	1.00	0.064			1.2		av + st
32076	80.00	81.00	1.00	0.185			4.4		st
32077	81.00	82.00	1.00	0.081			1.7		st + av + fault
32078	82.00	83.00	1.00	0.043			2.5		st + av
32079	83.00	84.00	1.00	0.149			2.4		st + av
32080	84.00	85.00	1.00	0.042			2.4		st + av
32081	85.00	86.00	1.00	0.486			2.7		st + av
32082	86.00	87.00	1.00	0.121			1.7		st + av
32083	87.00	88.00	1.00	0.095			1.8		st + br
32084	88.00	89.00	1.00	0.045			1.9		st + br
32085	89.00	90.00	1.00	0.029			2.4		st + br
32086	90.00	91.00	1.00	1.3			34.1	•	st + br
32087	91.00	92.00	1.00	0.293			4.8		st + br
32088	92.00	93.00	1.00	0.089			4		st + br
32089	93.00	94.00	1.00	0.124			3.9		st + av
32090	94.00	95.00	1.00	0.149			4		st + av
32091	95.00	96.00	1.00	0.648			13.6		st + av
32092	96.00	97.00	1.00	0.256			5.9		st
32093	97.00	98.00	1.00	0.249			7.5		st
32094	98.00	99.00	1.00	0.133			4.1		st
32095	99.00	100.00	1.00	0.208			2.7		st
32096	100.00	101.52	1.52	0.587			45.8		fault
32097	101.52	103.00	1.48	0.031			1.7		a + av + br

Hole No: 06-CC-06

2006 DDH Analytical Record

page 4 of 4

11016 140.						or raining local		4 - 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Park Code
Sample	From	To	Length			AuGRA-21		Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32098	103.00		1.50	0.347			>100		a + av + br + fault
32099		106.00	1.50	0.017			6.6		a + av + br
32100	106.00	107.50	1.50	0.02			3.6		a + av + br + fault
32101	107.50	109.03	1.53	0.044			8.7		a + av + br + fault
32102	109.03	111.00	1.97	0.014			2		a
32103		113.00	2.00	0.006			0.7		a
	1							······································	
 	 	-	·						
<u> </u>	 					·	··	· ·	
	 						·····		
							 		
	 	ļ <u>.</u>	├ ──┤				 		
	 								
	ļ <u>.</u>	ļ							
	<u> </u>	<u> </u>							
								<u> </u>	
	<u> </u>		l						
	1		 						
	1								
			İ						
ļ — — —	 		 				 		
	 						•		
<u> </u>	 -	 -					 	}	
ł	 		 			ļ	 	 	
	 			 	ļ		 	 	
<u> </u>	 	 	 		 	 	 		
	 		ļ <u>.</u>		ļ	ļ	↓		
	ļ		 						
,. J	1					<u> </u>		<u> </u>	<u> </u>
	<u> </u>	<u> </u>			<u> </u>		<u> </u>		
						L	I	I	
						I	I		
					,		1	1	1
	1				<u> </u>	1	 	†	
			}	<u> </u>			<u></u>		<u> </u>

Hole No: 06-CC-06

Lawyers Project - Cliff Creek Zone 2006 Core Recovery Record

Date: 28-Jun-06

Meterag	e Block	Interval	Rec.	Rec.	Meterage	e Block	interval	Rec.	Rec.
From	To	(m)	Core (m)	(%)	From	To	(m)	Core (m)	(%)
5.17	7.29	2.12	0.77	36%	101.52	102,43	0.91	0.91	100%
7.29	9.12	1.83	0.48	26%	102.43	103.65	1.22	0.91	75%
9.12	10.33	1.21	1.20	99%	103.65	105.47	1.82	2.23	100%
10.33	11.25	0.92	0.50	54%	105.47	108.51	3.04	3.02	99%
11.25	13.37	2.12	1.60	75%	108.51	111.55	3.04	3.18	100%
13.37	16.71	3.34	1.86	56%	111.55	114.59	3.04	3.14	100%
16.71	19.15	2.44	1.90	78%	114.59	117.63	3.04	3.04	100%
19.15	22.19	3.04	3.29	100%	117.63	120.66	3.03	2.9	96%
22.19	22.79	0.60	0.59	98%	120.66	123.71	3.05	3.04	100%
22.79	25.84	3.05	2.60	85%	123.71	126.75	3.04	3.03	100%
25.84	26.44	0.60	0.40	67%		En	d of Hole	06	· · · · · · · · · · · · · · · · · · ·
26.44	27.36	0.92	1.04	100%					
27.36	28.27	0.91	0.60	66%					
28.27	29.18	0.91	1.02	100%					
29.18	30.70	1.52	1.32	87%			<u> </u>		
30.70	32.52	1.82	2.05	100%					
32.52	35.56	3.04	2.85	94%					
35.56	38.60	3.04	2.88	95%					
38.60	41.64	3.04	2.57	85%					
41.64	44.38	2.74	2.30	84%					
44.38	46.50	2.12	1.70	80%					
46.50	48.94	2.44	2.71	100%					
48.94	50.76	1.82	1.79	98%					
50.76	53.80	3.04	3.21	100%					
53.80	55.62	1.82	2.14	100%	<u> </u>				
55.62	55.93	0.31	0.51	100%					·
55.93	57.95	2.02	1.52	75%					
57.95	59.88	1.93	2.34	100%					
59.88	62.92	3.04	2.90	95%					
62.92	65.96	3.04	3.04	100%					
65.96	68.69	2.73	2.57	94%					
68.69	71.73	3.04	2.90	95%					
71.73	74.77	3.04	3.04	100%					
74.77	77.81	3.04	3.06	100%					
77.81	80.85	3.04	3.29	100%					
80.85	83.89	3.04	3.13	100%					•
83.89	86.93	3.04	3.06	100%					
86.93	90.12	3.19	3.12	98%			·		
90.12	93.16	3.04	3.12	100%					
93.16	96.20	3.04	3.04	100%					
96.20	99.39	3.19	2.58	81%					
99.39	100.61	1.22	1.57	100%					
100.61	101.52	0.91	0.34	37%	ry Record			Page: 1	

Hole No: 06-CC-06

Core Recovery Record

Page: 1 of 1

Hole No: 06-CC-07

Lawyers Project - Cliff Creek Zone 2006 Diamond Drill Hole Record

Page:

1 of 5

UTM Coordinate	s (NAD 83 - Zone 9):	Collar Da	la	Total Depth:	142.34 m
North:	6354988.89	Azimuth:	75	Date Started:	29-Jun-06
East:	607945.31	Dip:	-50	Date Completed:	30-Jun-06
		TOC:		Logged By:	B.K. Bowen
Elevation:	1889.18	Hole Size:	NQ2	Date:	02-Jul-06

Collar Survey:	Differential GPS	Total Casing:	4.6 m	Contractor:	Radius Drilling
Multishot Survey:		Casing LIH:	No	Core Storage:	Prince George
RQD Log:		Hole Plugged:	Yes		
Pulse EM Survey:					

Purpose: Hole 06-CC-07 was drilled as a near-surface test of the northwest-trending quartz-stockwork zone that had been identified in Bishop Gold's 2005 drilling. The hole was collared about 100 m northwest of Holes 05-CC-05 and 06-CC-06.

Down-Hole	e Survey Data	a: N	lote: Azim	uth & dip shov	n are avera	ige of two readings	. Also azimu	th reading	was flashing - "propert	y reset"				
		fe	or magneti	cs on reflex in	strument no	x done until before	Hole 06-CC	-08						
	Depth (m) Azimuth Dip Test Type Depth (m) Azimuth Dip Test Type													
	136.25	74.9	-50.3	Reflex Easy	Shot									
									·					
							<u> </u>							
	<u> </u>													

iole Nu	ımber:	06-CC-07		imond Drill Hol		cord Page: 2 of 5
From	To	Lithology	Graphic			Structure, Alteration & Mineralization
(m)	(m)		Column		CA	Remarks
0		OVERBURDEN		· · · · · · · · · · · · · · · · · · ·		
4.57	142.34	PORPHYRITIC ANDESITE				
	 -	Bleached, tan to light pink-coloured,		4.57 - 16.29		Weak quartz veinlets & local stockwork; tan-coloured section
		some minor broken sections; limonite &				relatively soft = argillically altered; light pink-coloured section
		MnO2 common on fractures]			are locally weakly pervasively silicified; limonite & MnO2 on
]			fractures
				16.29 - 23.91		Very weak quartz veinlets - no stockwork; generally pinkish-
						cast, but some short sections somewhat greenish w/ obvious
1]			porphyry texture (ie. relatively fresh); pinkish cast = weak pe
]		L	vasive silicification & associated minor diss. Py; minor grey
] '		_	diss. metallic - possible specularite; limonite & MnO2 on fra
	 		1	23.91 - 36.05	-	Weak quartz veinlets + stockwork; similar to 4.57 - 16.29 m
İ						possibly some sericite associated w/ pervasive silica; minor
						diss., some grey metallic = specularite (?); limonite & MnO2
] [fractures
]		40	at 24.0 m: 2 cm wide drusy quartz vein w/ minor MnO2 coat
				<u> </u>	 	vugs
			1	36.05 - 38.37	 	Very weak quartz veinlets - no stockwork; porphyry texture i
]			clear; overall colour is greenish-grey
			1	38.37 - 42.54	╁	
			1		 	mod. silicification +/- sericite locally; 0.5% Py diss.
]		35	at 39.8 m: 2 cm wide quartz vein
]			
]	42.54 - 75.1		Mod. to locally str. quartz veinlets + stockwork
-	·				35	at 42.95 - 43.2 m: Minor fault - limonitic clay gouge & broke
	 	<u> </u>	1		1	quartz vein material

Hole No	ımber:	06-CC-07	2006 Dia	mond Drill Hole	e Rec	cond	Page:	3 of 5
From	To	Lithology	Graphic			Structure, Afteration & Mineralization		
(m)	(m)		Column	Sub interval	CA	Remarks		
		Porphyritic Andesite - continued			60	at 43.38 - 43.5 m: Minor fault - as per		
						rock to both faults argillically altered (an-coloured)
					40	at 45.9 - 46.0 m: Minor fault - breccial		
						ingwall rocks are str. silicified & brecc		
						sulphide in matrix to breccia fragment	s; minor Py	diss.
					Ĺ			
						w/in overall sub-interval, in areas of s		
					<u> </u>	have micro-brecciated andesite porph	yry w/ matri:	x silica infil-
						ling; some silica w/ darker grey hue		
					60	at 56.5 - 56.67 m: Minor fault - broker		
						clay-altered; upper contact possibly at	60 degrees	CA
					1			
						at 59.4 - 59.7 m: Minor fault - mod. bi	oken core; v	veak-mod.
				[<u>.</u>	Ì	clay atteration		
					<u> </u>			
		<u> </u>		<u> </u>		w/in overall sub-interval, generally pir		
						lesser sericitic pervasive alteration; m	inor very fin	e diss. Py
1								
!					40	at 70.5 - 70.6 m: Minor fault - 0.1 m s	tr. broken co	ore, limonite-
 						stained, minor clay gouge		
 					1			
			_	75.1 - 78.33		Very str. quartz stockwork to intensely		
—				<u> </u>	ļ	ly); criss-crossed w/ hairline fractures		
				<u> </u>	.	where silicification is <100%, wallrock		
		<u> </u>			Ļ	patches w/ very fine grained diss. sul	phides locall	<u>Y.</u>
		<u> </u>			ļ			
		<u> </u>		78.33 - 81.61		Mod. to locally str. quartz veins + stoo		
 		<u> </u>				terized by str. vuggy texture; very str.		
}		ļ		ļ	 	voids; locally fine Py as aggregates &		
	 				!	at 81.3 - 81.61 m: Minor fault - simila	r to sub-inte	rval, but core
		L		<u> </u>	<u> </u>	broken		

2006 Diamond Drill Hole Record Hole Number: 06-CC-07 Page: 4 of 5 Structure, Alteration & Mineralization From Graphic Lithology Column Sub Interval CA Remarks (m) (m) Porphyritic Andesite - continued 81.61 - 96.43 Mod. to locally str. quartz veins + stockwork; locally Py diss. 3-4% (tends to be somewhat coarser grained than usual); locally, quartz veinlets brecciated w/ calcite infilling at 88 87 - 89 05 m: Fault - mod, to str. broken core; on hang-

	 				filling noted; carbonate veinlets common
	 				in general sub-interval, minor Py fine diss. & one Py fracture-
	 				shear fabric & some gouge; sharp contacts
<u> </u>	 			50	at 111.25 - 111.4 m: Minor fault - chlorite & clay-altered, w/
					quartz veinlets + local stockwork to ~114.5 m
		}	106.8 - 142.34		Relatively fresh andesite porphyry, porphyry texture clear; minor
					Py in wallrocks and in some quartz veinlets
					some carbonate gangue w/ quartz veinlets; minor very fine diss.
			100.1 - 106.8		Weak quartz veinlets + stockwork; overall colour is tan-pinkish;
	 		1		degrees CA; 1% very fine diss. Py locally
	 		99.67 - 100.1	60	Fault - str. chlorite-clay aftered; possible shear fabric at 60
			<u> </u>		control aggingates
					coarser aggregates
			30.43 - 30.07		because of proximity to fault below; 2-3% diss. Py w/ some
			98.45 - 99.67		Weak-mod. quartz veinlets + stockwork; mod. clay-altered
	 				pervasively silicified; locally fine diss. Py
	 		96.43 - 98.45		Str. quartz veinlets & stockwork; locally brecciated and/or
	 		00.42 00.45		
					indurated
	 				in sub-interval below fault, wallrocks locally argillized & limonite
					filled
					ing wall & footwall of fault, core is vuggy & limonite-MnO2 in-
	 	1			at 88.87 - 89.05 m; Fauk - mod. to str. broken core; on hang-

Hole Nu	ımber:	06-CC-07	2006 Dia	ona Drill Hol	Page:	5 of 5		
From	То	Lithology	Graphic		Structure, Alteration & Mineralization			
(m)	(m)	Littlology	Column	Sub Interval	CA	Remarks		
		Porphyritic Andesite - continued				at 121.3 m: 1 cm wide str. chlorite she	er	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		- Coprignation and Continued	┤ :		 			
					50	at 123.3 m: 5 cm wide quartz-carbonal	le vein	
					1		1	
			1		1			
		End of hole at 142.34 m			I			
					ļ			
\longrightarrow					<u> </u>			
				·	 			, <u>.,</u>
					 			
					├			
-		·			├			
				····	 -		-	
					╅	<u> </u>		
	· · · · · · · · · · · · · · · · · · ·				╂──			
					╁		· · · · · · · · · · · · · · · · · · ·	
					\vdash	****		
	*****		_		 			,
		**************************************			1			
	_ 		\dashv		T			
					†			
					Ī			
						L		
		<u> </u>						
				ļ	1			
		<u></u>		L				

Lawyers Project - Cliff Creek Zone 2006 DDH Analytical Record

Date Sampled: 02-Jul-06
Date Shipped: 07-Jul-06

Hole No: 06-CC-07

page 1 of 4

··_ ··									page 1 of 4
Sample	From	To	Length	Au-A/		AuGRA-21	Ag-AA45	Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32104	4.57	6.00	1.43	<0.005			2		av + st
32105	6.00	7.50	1.50	0.052			3		av + st
32106	7.50	9.00	1.50	0.035			2.5		av + st
32107	9.00	10.50	1.50	0.066			3.1		av + st
32108	10.50	12.00	1.50	0.033			1.9		av + st
32109	12.00	13.50	1.50	0.028			2.1		av + st
32110	13.50	15.00	1.50	0.025			2.2		av + st
32111	15.00	16.50	1.50	0.024			1.3		av + st
32112	16.50	18.00	1.50	0.019			2		av + a
32113	18.00	19.50	1.50	0.007			0.9	-	av + a
32114	19.50	21.00	1.50	0.017			1.2		av + a
32115	21.00	22.50	1.50	0.074			1.1		av + a
32116	22.50	23.91	1.41	0.02			1.1		av + a
32117	23.91	25.00	1.09	0.022			1.4	-	av + st
32118	25.00	26.00	1.00	0.025			1.5		av + st
32119	26.00	27.00	1.00	0.031			1.6		av + st
32120	27.00	28.00	1.00	0.034			1.3		av + st
32121	28.00	29.00	1.00	0.013			1.8		av + st
32122	29.00	30.00	1.00	0.024			1.3		av + st
32123	30.00	31.00	1.00	0.229			2.1		av + st
32124	31.00	32.00	1.00	0.053			2.9		av + st
32125	32.00	33.00	1.00	0.045			3.4		av + st
32126	33.00	34.00	1.00	0.019			5.8		av + st
32127	34.00	35.00	1.00	0.009			0.5		av + st
32128	35.00	36.00	1.00	0.022			2.8		av + st
32129	36.00	37.00	1.00	0.033			4.1		av
32130	37.00	38.00	1.00	0.009			0.9		av
32131	38.00	39.00	1.00	0.039			3.4		av + st
32132	39.00	40.00	1.00	0.056			4.1		av + st

Hole No: 06-CC-07

2006	DDH	Analytical	Record
------	-----	------------	--------

page 2 of 4

Sample	From	To	Length	Au-A/		AuGRA-21		Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32133	40.00	41.00	1.00	0.02	·		2.8		av + st
32134	41.00	42.00	1.00	0.039			2.2		av + st
32135	42.00	43.00	1.00	0.085	, ,		5.5		av + st + fault
32136	43.00	44.00	1.00	0.04			3.5		st + fault
32137	44.00	45.00	1.00	0.072			7.3		st
32138	45.00	46.00	1.00	0.151	_		7.2		st + br + fault
32139	46.00	47.00	1.00	0.107			16.2		st
32140	47.00	48.00	1.00	0.246			6.2		st
32141	48.00	49.00	1.00	0.085			1.7		st
32142	49.00	50.00	1.00	0.603			3.3		st
32143	50.00	51.00	1.00	0.096			2		st
32144	51.00	52.00	1.00	0.214			2.3		st
32145	52.00	53.00	1.00	0.043			1.3		st
32146	53.00	54.00	1.00	0.027			1.9		st
32147	54.00	55.00	1.00	0.048			1.5		st
32148	55.00	56.00	1.00	0.07			2		st
32149	56.00	57.00	1.00	0.029			1.8		st + fault
32150	57.00	58.00	1.00	0.047			1.7		st
32151	58.00	59.00	1.00	0.053			1.6		st
32152	59.00	60.00	1.00	0.159			1.6		st + fault
32153	60.00	61.00	1.00	0.062			3.4		st
32154	61.00	62.00	1.00	0.084			1.3		st
32155	62.00	63.00	1.00	0.097			2.1		st
32156	63.00	64.00	1.00	0.071			2		st
32157	64.00	65.00	1.00	0.086	4				st
32158	65.00	66.00	1.00	0.161			2.9		st
32159	66.00	67.00	1.00	0.198	<u>. </u>		2.8		st
32160	67.00	68.00	1.00	0.225			3.2		st
32161	68.00	69.00	1.00	0.195			3.1		st
32162	69.00	70.00	1.00	0.146			3.1		st
32163	70.00	71.00	1.00	0.07			2.6		st + fault
32164	71.00	72.00	1.00	0.101			2.1		st
32165	72.00	73.00	1.00	0.054			2.5	A	st
32166	73.00	74.00	1.00	0.224			3.8		st

Hole No:	06-CC-07	7			2006 DI	OH Analytical	Record		page 3 of 4
Sample	From	To	Length	Au-A/	23	AuGRA-21	Ag-AA45	Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32167	74.00	75.10	1.10	0.046			5.2		st
32168	75.10	76.00	0.90	0.122			3.3		st
32169	76.00	77.00	1.00	0.143			2.4		st
32170	77.00	78.33	1.33	0.536		-	6.2		st
32171	78.33	79.00	0.67	0.146			4.5		st
32172	79.00	80.00	1.00	0.075			3		st
32173	80.00	81.00	1.00	0.425			10.6		st
32174	81.00	81.61	0.61	0.244			3.3		st + fault
32175	81.61	83.00	1.39	0.287			3		st
32176	83.00	84.00	1.00	0.126			3.4		st
32177	84.00	85.00	1.00	0.266			3		st
32178	85.00	86.00	1.00	0.509			4.5		st
32179	86.00	87.00	1.00	1.01			13.7		st
32180	87.00	88.00	1.00	5			39.7		st
32181	88.00	89.00	1.00	0.948			6.9		st + fault
32182	89.00	90.00	1.00	0.747			3.8		st + fault
32183	90.00	91.00	1.00	0.129			2.4		st
32184	91.00	92.00	1.00	0.297		l	2.3		st
32185	92.00	93.00	1.00	0.32			2.1	-	st
32186	93.00	94.00	1.00	0.242			2		st
32187	94.00	95.00	1.00	0.116			3.2		st
32188	95.00	96.43	1.43	0.068			3.2		st
32189	96.43	97.50	1.07	0.199			2.8		st + br
32190	97.50	98.45	0.95	0.11	<u> </u>		2.6		st + br
32191	98.45	100.00	1.55	0.045			1		av + st + fault
32192	100.00	101.00	1.00	0.196			1.6		av + st + fauit
32193	101.00	102.00	1.00	0.02	 	<u> </u>	1.3		av + st
32194	102.00	103.00	1.00	0.015			0.9		av + st
32195	103.00	104.00	1.00	0.011			0.7	<u> </u>	av + st
32196	104.00	105.00	1.00	0.031			2.9		av + st
32197	105.00	106.80	1.80	0.037	1		2.8		av + st
32198	106.80	109.00	2.20	0.021			2.2		a + av
32199	109.00	111.00	2.00	0.012			1		a + av
32200	111.00	113.00	2.00	0.038	1		3.9		a + av + fault

Hole No: 06-CC-07

2006 DDH Analytical Record

page 4 of 4

Sample		To	Length	Au-A/	123	AuGRA-21		Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32201	113.00	115.00	2.00	(ppm) 0.45			7.9		a + av
	· · · -							•	
				· · · · · · · · · · · · · · · · · · ·					
				· · · · · · · · · · · · · · · · · · ·					
·								· · · · · · · · · · · · · · · · · · ·	
				·					
	:								<u> </u>
					<u> </u>				
					<u> </u>		<u></u>		
			<u> </u>	···	<u> </u>		ļ		
·· <u> </u>		<u> </u>	ļ			<u></u>			
		 	ļ		ļ		<u> </u>	<u> </u>	
	<u> </u>	ļ					<u> </u>	ļ	
, ,	<u> </u>	ļ			}	<u> </u>	<u> </u>		
		_	Ļ		ļ	<u> </u>	1		
		<u> </u>	 	<u> </u>	L	 .			
		<u> </u>	1		ļ		ļ		
		<u> </u>	ļ		 	ļ			
		 _	 	<u></u>	-		}		
···		ļ <u>. </u>	ļ		 	!		ļ	
	<u> </u>		ļ. 	ļ		ļ			
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>L</u>

Hole No: 06-CC-07

Lawyers Project - Cliff Creek Zone 2006 Core Recovery Record

Date: 02-Jul-06

Meterag	e Block	Interval	Rec.	Rec.	Meterag	e Block	Interval	Rec.	Rec.
From	То	(m)	Core (m)	(%)	From	To	(m)	Core (m)	(%)
4.57	5.18	0.61	0.67	100%	117.96	121.01	3.05	3.02	99%
5.18	8.23	3.05	3.03	99%	121.01	124.06	3.05	3.17	100%
8.23	11.28	3.05	2.42	79%	124.06	127.10	3.04	3.04	100%
11.28	14.33	3.05	3.05	100%	127.10	130.15	3.05	3.10	100%
14.33	15.54	1.21	1.42	100%	130.15	133.20	3.05	3.07	100%
15.54	17.37	1.83	1.89	100%	133.20	136.25	3.05	3.15	100%
17.37	20.42	3.05	2.96	97%	136.25	139.30	3.05	3.15	100%
20.42	23.47	3.05	3.15	100%	139.30	142.34	3.04	3.17	100%
23.47	26.52	3.05	3.09	100%		En	d of Hole	07	
26.52	29.57	3.05	3.14	100%					
29.57	32.81	3.04	3.16	100%					
32.61	35.66	3.05	3.13	100%					
35.6 <u>6</u>	38.71	3.05	3.04	100%					
38.71	41.76	3.05	3.05	100%					
41.76	44,81	3.05	3.03	99%					
44.81	47.85	3.04	3.09	100%					
47.85	50.90	3.05	2.99	98%					
50.90	53.95	3.05	2.90	95%					
53.95	56.69	2.74	2.68	98%					
56.69	57.00	0.31	0.33	100%					
57.00	60.05	3.05	2.85	93%					
60.05	63.09	3.04	3.10	100%					
63.09	66.14	3.05	3.00	98%		···· · · · · · · · · · · · · · · · · ·	··· · · · ·		
66.14	69.19	3.05	2.98	98%					
69.19	72.24	3.05	3.03	99%					
72.24	75.29	3.05	3.04	100%					
75.29	78.33	3.04	3.06	100%					
78.33	81.38	3.05	2.52	83%					
81.38 82.00	82.00	0.62 2.43	0.56	90% 83%		 			
84.43	84.43 87.48	3.05	2.02 3.25	100%					
87.48	89.00	1.52	1.34	88%					
89.00	90.53	1.53	1.80	100%	 				
90.53	93.58	3.05	3.05	100%			-		
93.58	98.62	3.04	2.94	97%			+		
96.62	99.67	3.05	3.07	100%	 			 	
99.87	102.72	3.05	3.02	99%		- 	+		
102.72	103.63	0.91	0.91	100%					
103.83	105.77	2.14	2.24	100%	 				
105.77	108,81	3.04	3.08	100%				<u>-</u>	
108.81	111.86	3.05	3.07	100%			<u> </u>		
111.86	114.91	3.05	3.00	98%					
114.91	117.96	3.05	3.05	100%					
	117.90	3.05	3.05	10076			<u> i</u>	1	

Hole No: 08-CC-07

Core Recovery Record

Page: 1 of 1

Hole No: 06-CC-08

Lawyers Project - Cliff Creek Zone 2006 Diamond Drill Hole Record

Page:

1 of 4

UTM Coordinate	s (NAD 83 - Zone 9):	Collar Da	ta	Total Depth:	124.45 m
North:	6355063.87	Azimuth:	75	Date Started:	30-Jun-06
East:	607887.56	Dip:	-45	Date Completed:	01-Jul-06
		TOC:		Logged By:	B.K. Bowen
Elevation:	1883.67	Hole Size:	NQ2	Date:	03-Jul-06

Collar Survey:	Differential GPS	Total Casing:	3.04 m	Contractor:	Radius Drilling
Multishot Survey:		Casing LIH:	No	Core Storage:	Prince George
RQD Log:		Hole Plugged:	Yes		
Pulse EM Survey:					

Purpose: Hole 06-CC-08 was drilled as a near-surface test of the northwest-trending quartz-stockwork zone that had been identified in Bishop Gold's 2005 drilling. The hole was collared about 100 m northwest of Hole 06-CC-07.

Depth (m)	Azimuth	Dip	Test Type	Depth (m)	Azimuth	Dip	Test Type
121.01	76.7	-43.5	Reflex Easy Shot				

Hole N	umber:	06-CC-08	2006 Dia	mond Drill Hole	e Rec		Page:	2 of 4
From	To	Lithology	Graphic			Structure, Alteration & Mineralization		
(m)	(m)	·	Column	Sub Interval	CA	Remarks		
0	3.04	OVERBURDEN						
ļ								
3.04	124.45	ANDESITE PORPHYRY	_	3.04 - 15.25		Andesite porphyry is relatively fresh in		
					L	groundmass is pervasively silicified; m	inor carbona	nte veinlets &
			-	7		fracture-fillings; trace diss. Py		
	·-		-	15.25 - 19.2	<u> </u>	Weak quartz veinlets + stockwork; mo	d to de one	rocina cilica
┝─┤	-		-] ;	15.25 - 18.2		locally; trace Py diss.; overall colour is		
			-		-	ser MnO2 on fractures; some limonite		THIRD OF 162-
		<u> </u>	- ∮		-	per minoz on naciones, some innomine	SUGNITU	
			~	····	-	at 16.14 - 16.24 m; <i>Minor fault -</i> str. br	oken core. I	monitic
	···	*************************************	7					
		 	7		40	at 16.32 - 16.5 m; Minor fault - mod. b	roken core,	limonite on
	· ·			<u> </u>		fractures, upper contact at 40 degrees	CA	
				·				
	·			19.2 - 27.05		Andesite porphyry is relatively fresh in		
]			sections of weak-mod, quartz veinlets		
						carbonate veinlets, possibly minor spe		generally
					<u> </u>	minor Py, locally 1-2% near some qua	ntz veins	
		· · · · · · · · · · · · · · · · · · ·	_		<u> </u>	<u> </u>		
ļ			_	27.05 - 32.05		Str. quartz veinlets + stockwork w/ sec		nse perva-
ļ		· · · · · · · · · · · · · · · · · · ·	4	}	<u> </u>	sive silicification (~100% replacement	<u>) </u>	·
 			4	<u> </u>				
ļ			4		 	at 27.33 - 31.84 m: Fault Zone - core		
			4		├	pieces w/ clay alteration, limonite stail	ning commo	Л
—			\dashv		En	Chart of out interval of 07.05	4 5 4 6 5 5 5	
			\dashv		1 20	Start of sub-interval at 27.05 m marke		
	\ <u>-</u>		-		\vdash	seam at 50 degrees CA followed by 0		aateo per-
	·		-	 	┼	vasive silica w/ clay-limonite in matrix	 	·· · ····
···			┥	 	╁━-	Locally some year fine sulphide impo-	tion arou on	love to cilias
		· · · · · · · · · · · · · · · · · · ·	⊢		 	Locally some very fine sulphide impar	usy grey co	OUI IO SIRCE
}	,		 		1—			
L		<u> </u>		L	<u> </u>	l		

Hole No	umber:	06-CC-08	2006 Dia	mond Drill Hole	e Rec	ord Page: 3 of 4
From	Τo	Lithology	Graphic			Structure, Alteration & Mineralization
(m)	(m)	1	Column	Sub Interval	CA	Remarks
		Andesite Porphyry - continued		32.05 - 84.1		Weak-mod. quartz veiniets + stockwork; locally very fine Py
						gives quartz darker colour
	······································					
					40	at 33.41 - 33.52 m: Minor fault - str. broken core, modstr.
						clay gouge, str. limonite
	···				30	at 48.56 m: 1 cm wide quartz vein w/ dark grey-coloured sel-
						vages (few mm wide) due to very fine grained sulphides
				#::		
						In general sub-interval, pinkish cast = mod. pervasive silica +
						sericite; some sections w/ stronger limonite & MnO2 on frac-
						tures & coating vugs - these zones appear to be associated w
						stronger pervasive silicification (reason for vuggy character =
						brittle rock?)
						
				<u></u>		at 66.14 - 66.30 m: Minor fault - str. broken core, str. limonitio
			7			mod. clay-altered
						In general sub-interval: 1% fine diss. Py, locally silica is chalc
						donic & banded
				84.1 - 92.67		Mod. quartz veinlets + stockwork; common texture is finely
						brecciated andesite porphyry (textures vague) w/ silica in
						matrix; very minor carbonate veinlets
				92.67 - 93.43		Intensely pervasively silicified; dark grey chalcedonic quartz i
						common
				93.43 - 94.15		Mod. quartz veinlets + stockwork; 0.5% fine diss. Py, chalce-
						donic quartz common; some argillic alteration because of
						proximity to fault below
				94.15 - 94.32	65	Fault - str. chloritized & shear foliated; ~0.5% fine diss. Py

Hole No	ımber.	06-CC-08		amond Drill Hok		cord Page: 4 of 4	•
From	To	Lithology	Graphic			Structure, Alteration & Mineralization	
(m)	(m)	1			CA	Remarks	
		Andesite Porphyry - continued		94.32 - 97.0		Weak-mod. quartz veinlets + stockwork; interval has catac	las-
						tic texture because of proximity to chloritic faults above an	d
						below; mod. carbonate veinlets & weak-mod. argillic altera	tion
					60	at 97.0 m: Fault - 5 cm wide, str. chloritic & shear foliated	
				97.0 - 113.9		Weak to locally mod. quartz veinlets + stockwork; some po	
						phyry texture visible, feldspar phenocrysts locally argillized	t;
						weak carbonate veinlets; minor diss. Py	
					50	at 99.95 m: 1.5 cm wide chloritic slip w/ minor diss. Py & s	om
						clay afteration	
						In general sub-interval, local sections of finely brecciated	
						andesite porphyry w/ chalcedonic infilling (sometimes asso	ocia
						ted w/ Py+)	
]					60	at 105.95 m: quartz-chalcedony vein, 4 cm wide w/ >3% P	<u>'Y</u>
						diss.; crosscut by carbonate veinlets	
					<u> </u>		
				113.9 - 124.45		Andesite porphyry - textures clear; some short sections w	
	······					weak-mod. quartz veinlets + stockwork but rock remains re	
					<u> </u>	tively fresh in appearance; several quartz-carbonate veins	
						degrees CA; locally 2% Py diss. & very minor fracture-filling	
]	past 112.53 m to end of hole, some broken core & minor of	Jay
						alteration (minor faulting)	
				1			
		*					
							
		End of hole at 124.45 m			Ь—		
	·			<u> </u>	<u> </u>		
	·- ···································	·				<u> </u>	
		1			<u> </u>		

Lawyers Project - Cliff Creek Zone 2006 DDH Analytical Record

Date Sampled: 04-Jul-06

Hole No: 06-CC-08

Date Shipped: 07-Jul-06

page 1 of 4

Sample	From	To	Length	Au-A	23	AuGRA-21	Ag-AA45	Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32202	11.00	13.00	2.00	0.006			1		a
32203	13.00	15.25	2.25	0.008			1.3		a
32204	15.25	16.00	0.75	0.01			1.3		av + st
32205	16.00	17.00	1.00	0.017			1.7		av + st + fault
32206	17.00	18,00	1.00	0.014			1.5		av + st
32207	18.00	19,20	1.20	0.017			1.3		av + st
32208	19.20	21.00	1.80	0.011			1.3		a + st
32209	21.00	22.50	1.50	0.009			1		a + st
32210	22.50	24.00	1.50	0.021			1.2		a + st
32211	24.00	25.50	1.50	800.0			0.8		a + st
32212	25.50	27.05	1.55	0.006			0.9		a + st
32213	27.05	28.00	0.95	1.88			29.5		st + br + fault
32214	28.00	29.00	1.00	0.466			14.7		st + fault
32215	29.00	30.00	1.00	0.5			11.4		st + fault
32216	30.00	31.00	1.00	3.55			94.8		st + fault
32217	31.00	32.00	1.00	3.03			>100	133	st + fault
32218	32.00	33.00	1.00	1.82			30.4		st + av
32219	33.00	34.00	1.00	2.21			20.1		st + av + fault
32220	34.00	35.00	1.00	0.052			2.1		st + av
32221	35.00	36.00	1.00	0.166			2.7		st + av
32222	36.00	37.00	1.00	0.171			2.6		st + av
32223	37.00	38.00	1.00	0.098			2.7		st + av
32224	38.00	39.00	1.00	0.21			3.3		st + av
32225	39.00	40.00	1.00	0.404			4.6	-	st + av
32226	40.00	41.00	1.00	0.266			2.8		st + av
32227	41.00	42.00	1.00	0.175			2.7		st + av_
32228	42.00	43.00	1.00	0.107			1.4		st + av
32229	43.00	44.00	1.00	0.029			1.3	<u> </u>	st + av
32230	44.00	45.00	1.00	0.061			1.4		st + av

Hole No:	06-CC-08	3			2006 D	DH Analytical	Record		page 2 of 4
Sample	From	To	Length	Au-A/	\23	AuGRA-21	Ag-AA45	Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32231	45.00	46.00	1.00	0.286			2.4	-	st + av
32232	46.00	47.00	1.00	0.122			2		st + av
32233	47.00	48.00	1.00	0.093			2.6		st + av
32234	48.00	49.00	1.00	0.084			3.7		st + av
32235	49.00	50.00	1.00	0.045			3.2		st + av
32236	50.00	51.00	1.00	0.06			2.1		st + av
32237	51.00	52.00	1.00	0.031			2		st + av
32238	52.00	53.00	1.00	0.031			1.5		st + av
32239	53.00	54.00	1.00	0.041			1.5		st + av
32240	54.00	55.00	1.00	0.072			1.3	•	st + av
32241	55.00	56.00	1.00	0.061			1.3		st + av
32242	56.00	57.00	1.00	0.863			2.4		st + av
32243	57.00	58.00	1.00	0.171			2.2		st + av
32244	58.00	59.00	1.00	0.817			3.8		st + av
32245	59.00	60.00	1.00	0.123	7.7.		2.2	·	st + av
32246	60.00	61.00	1.00	0.05			1.4		st + av
32247	61.00	62.00	1.00	0.04			1.4		st + av
32248	62.00	63.00	1.00	0.032			1.4		st + av
32249	63.00	64.00	1.00	0.056			2.5		st + av
32250	64.00	65.00	1.00	0.048			0.8		st + av
32251	65.00	66.00	1.00	2			24.7		st + av
32252	66.00	67.00	1.00	0.545			6.9	· · · · · · · · · · · · · · · · · · ·	st + av + fault
32253	67.00	68.00	1.00	0.11			1.3		st + av
32254	68.00	69.00	1.00	0.048			2.1		st + av
32255	69.00	70.00	1.00	0.061			1.4		st + av
32256	70.00	71.00	1.00	0.655			2.9	[st + av
32257	71.00	72.00	1.00	1.25			6.8		st + av
32258	72.00	73.00	1.00	0.47			1.9		st + av
32259	73.00	74.00	1.00	0.316			1.5		st + av
32260	74.00	75.00	1.00	1.545			10		st + av
32261	75.00	76.00	1.00	0.326			2.4		st + av
32262	76.00	77.00	1.00	0.302			2.1		st + av
32263	77.00	78.00	1.00	0.328		T	1.8		st + av
32264	78.00	79.00	1.00	0.508			1.6		st + av

Hole No: 06-CC-08

2006 DDH Analytical Record

page 3 of 4

Sample	From	To	Length	Au-A/	\23	AuGRA-21	Ag-AA45	Ag-AA46	Rock Code
No.	<u>(m)</u>	(m)	(m)	(ррпт)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32265	79.00	80.00	1.00	0.334			3.4		st + av
32266	80.00	81.00	1.00	0.231			2.3		st + av
32267	81.00	82.00	1.00	0.082			1.2		st + av
32268	82.00	83.00	1.00	0.107			2.7		st + av
32269	83.00	84.00	1.00	0.256			7.4		st + av
32270	84.00	85.00	1.00	0.294			3.6		st + br
32271	85.00	86.00	1.00	0.274			3.2		st + br
32272	86.00	87.00	1.00	0.079			1.9		st + br
32273	87.00	88.00	1.00	0.122			2.6		st + br
32274	88.00	89.00	1.00	0.221			3.2		st + br
32275	89.00	90.00	1.00	0.232			5		st + br
32276	90.00	91.00	1.00	0.193			2.8		st + br
32277	91.00	92.00	1.00	0.228			3.5		st + br
32278	92.00	92.67	0.67	0.49			8.8		st + br
32279	92.67	95.00	2.33	80.0	1]	3.8		st + av + fault
32280	95.00	96.00	1.00	0.084			4.3		av + st
32281	96.00	97.00	1.00	0.028		1	2.5		av + st
32282	97.00	98.00	1.00	0.023	1		1.4		av + st + fault
32283	98.00	99.00	1.00	0.017			1.4		av + st
32284	99.00	100.00	1.00	0.018			0.8	T	av + st
32285	100.00	101.00	1.00	0.088			1.3		av + st
32286	101.00	102.00	1.00	0.035			1.8		av + st
32287	102.00	103.00	1.00	0.022			0.9		av + st
32288	103.00	104.00	1.00	0.015			0.9	:	av + st
32289	104.00	105.00	1.00	0.022			0.8		av + st
32290	105.00	106.00	1.00	0.012			1		av + st
32291	106.00	107.00	1.00	0.027	I	I	2.2		av + st
32292	107.00	108.00	1.00	0.013			0.7		av + st
32293	108.00	109.00	1.00	0.009			0.7		av + st
32294	109.00	110.00	1.00	0.009			0.7		av + st
32295	110.00	111.00	1.00	0.01			1		av + st
32296	111.00	112.00	1.00	0.018			1.5	1	av + st
32297	112.00	113.00	1.00	0.236			4.1		av + st
32298	113.00	113.90	0.90	0.03			1.6		av + st

Hole No: 06-CC-08

2006 DDH Analytical Record

page 4 of 4

	00-00-00					DDA MINISTER			page + or +
Sample	From	To	Length	Au-A/	\23	AuGRA-21		Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm) (ppm)	(ppm)	(ppm)	<u> </u>
32299	113.90	116.00	2.10	0.026			1.3		a + av
32300	116.00	118.00	2.00	0.017			0.6		a + av
32301	118.00	120,00	2.00	0.027			0.7		a + av
		· ·						· · · · · · · · · · · · · · · · · · ·	
		···············							
					<u>-</u>			······	
	<u> </u>					-	···············		
	 					 		·	
						+			·····
	 	 	 			 	L·······		
	 		 	 		+			
	 		 			-	-	·	
	 		· · ·			-			
	 	ļ	 	<u> </u>			 		——————————————————————————————————————
	 		 			- 	 	 	· · · · · · · · · · · · · · · · · · ·
	 			<u> </u>		+		<u> </u>	
	 	 	├	<u> </u>		+	<u> </u>	<u>. </u>	
	 	<u></u>	 -	···· - · ···. · · · · · · · · · ·		_	ļ	 	
<u> </u>	.		<u> </u>	 			ļ	ļ	
	-		 				ļ	<u></u>	
			ļ	<u>-</u>					
 –	 		 _						
	1	<u> </u>	 _			_			
	ļ	<u> </u>	<u> </u>	ļ <u>.</u>				<u></u>	
	1	<u> </u>	<u> </u>					<u> </u>	
	<u> </u>						<u> </u>		
	<u></u>					1			
			<u> </u>			}			
			T	1					
			<u> </u>	 			1	<u> </u>	
		}					<u> </u>		

Hole No: 06-CC-08

Lawyers Project - Cliff Creek Zone 2006 Core Recovery Record

Date: 04-Jul-06

Meterage	e Block	Interval	Reç.	Rec.	Meterage	e Block	Interval	Rec.	Rec.
From	То	(m)	Core (m)	(%)	From	To	(m)	Core (m)	(%)
3.04	4.57	1.53	0.85	56%	121.00	124.05	3.05	2.95	97%
4.57	8.23	3.66	2.15	59%			nd of Hol	e	
8.23	11.28	3.05	3.05	100%			[
11.28	14.33	3.05	3.05	100%					
14.33	17.37	3.04	3.02	99%					
17.37	20.42	3.05	3.13	100%					
20.42	23.47	3.05	3.05	100%					
23.47	26.52	3.05	3.05	100%					
26.52	28.65	2.13	3.08	100%			[
28.65	29.57	0.92	0.90	98%					
29.57	30.79	1.22	0.78	64%					•
30.79	31.09	0.30	0.16	53%					
31.09	31.70	0.61	0.48	79%					
31.70	32.61	0.91	0.93	100%					
32.61	35.66	3.05	2.97	97%					
35.66	38.71	3.05	3.00	98%					_
38.71	41.76	3.05	3.05	100%					
41.76	44.81	3.05	3.00	98%					
44.81	47.85	3.04	3.05	100%					
47.85	50.90	3.05	2.98	98%					
50.90	53.95	3.05	3.03	98%					
53.95	57.00	3.05	3.05	100%					·······
57.00	60.05	3.05	3.04	100%					
60.05	63.09	3.04	3.05	100%					
63.09	69.19	6.10	3.08	50%					
69.19	71.63	2.44	3.05	100%					
71.63	74.68	3.05	3.08	100%					
74.68	77.72	3.04	3.10	100%		·			<u> </u>
77.72	80.77	3.05	3.07	100%					
80.77	81.38	0.61	0.63	100%				ļļ	
81.38	84.43	3.05	3.13	100%				L	
84.43	87.48	3.05	3.03	99%					
87.48	90.53	3.05	3.07	100%					
90.53	93.57	3.04	3.00	99%					
93.57	96.62	3.05	3.09	100%					
96.62	99.67	3.05	3.00	98%					
99.67	102.72	3.05	3.12	100%					
102.72	105.77	3.05	3,05	100%					
105.77	108.81	3.04	3.02	99%					
108.81	111.86	3.05	2.96	97%					
111.86	114.91	3.05	3.01	99%	ļļ				
114,91	117.96	3.05	2.97	97%					
117.96	121.00	3.04	3.09	100%					

Hole No: 06-CC-08

Core Recovery Record

Page: 1 of 1

Hole No: 06-CC-09

Lawyers Project - Cliff Creek Zone 2006 Diamond Drill Hole Record

Page:

1 of 5

UTM Coordinates	s (NAD 83 - Zone 9):	Collar Da	ta	Total Depth:	127.10 m
North:	6355149.64	Azimuth:	75	Date Started:	01-Jul-06
East:	607828.18	Dip:	-4 5	Date Completed:	02-Jul-06
		TOC:		Logged By:	B.K. Bowen
Elevation:	1870.89	Hole Size:	NQ2	Date:	05-Jul-06

Collar Survey: Differential GPS	Total Casing: 3.04 m	Contractor:	Radius Drilling
Multishot Survey:	Casing LIH: No	Core Storage:	Prince George
RQD Log:	Hole Plugged: Yes		-
Pulse EM Survey:			

Purpose: Hole 06-CC-09 was drilled as a near-surface test of the northwest-trending quartz-stockwork zone that had been identified in Bishop Gold's 2005 drilling. The hole was collared about 100 m northwest of Hole 06-CC-08.

Depth (m)	Azimuth	Dip	Test Type	1	Depth (m)	Azimuth	Dip	Test Type	Т
121.01	74.9	-45	Reflex Easy Shot	1					T
				1	<u> </u>				T
—					t				✝
			······································	 	╂╌				╋┈
				 	 				╄
					.	<u></u>	<u> </u>	~ ~~	L
.					<u> </u>	_			
									Т
·1··		···		····	 				╋
	<u>.</u>			<u></u>					┸

Hole N	umber:	06-CC-09	2006 Dia	mond Drill Hok	e Rec	cord Page: 2 of 5
From	To	Lithology	Graphic			Structure, Alteration & Mineralization
(m)	(m)	-	Column	Sub Interval	CA	Remarks
0	3	OVERBURDEN				
			lí			
3	127.1	ANDESITE PORPHYRY				
				3.0 - 24.06		Mainly relatively fresh andesite porphyry; dark grey-green in
] [colour, porphyritic texture clear, minor carbonate and/or quartz
] [veinlets; some minor faulting; locally weak sericitization w/
<u> </u>] [0.5% diss. Py
] [
]		30	at 14.14 m: Minor fault - ~0.1 m (6 cm true width) str. broken
		***	}			core + some gouge; str. limonite
	· · · · · · · · · · · · · · · · · · ·					
	<u> </u>				30	at 19.10 m: 1 cm wide quartz-(chlorite) veinlet w/ 2 cm selvag
	·				<u> </u>	of 2% diss. Py
	· · · · · · · · · · · · · · · · · · ·		1			
			1			In general sub-interval, where have quartz and/or carbonate
			1		 	veinlets or matrix gangue to brecciated andesite porphyry, have
					ļ	weak pervasive sericite w/ 2-3% Py diss.
			ł l	04.00 05.0	<u> </u>	5. 47
<u> </u>			Į	24.06 - 25.8		Fault Zone - mod. to str. broken core w/ mod. limonite & MnO
 	,					on fractures
 -			1	25.8 - 28.25	ļ	Andrews the second seco
···		* +**	·	25.0 - 20.25	 	Andesite porphyry - bleached, tan-coloured overall, slightly vuggy w/ abundant limonite & minor MnO2 filling vugs
		· · · · · · · · · · · · · · · · · · ·				voggy w abundant innoine a minor miloz ming vogs
 			1	28.25 - 29.36	┢	Intensely silicified rock; vague breccia texture; locally fine gre
<u> </u>			1	20.23 - 29.30	\vdash	sulphide imparts greyish hue to quartz; timonite & MnO2 on
			1		 	fractures
			1		 	
			1		 	
			1		 	
-			1		1	
<u> </u>	······································	HP	1	· ···· · · · · · · · · · · · · · · · ·	 	
		**************************************	1		 	
-	<u> </u>	<u> </u>	<u> </u>			

Hole N	umber:	06-CC-09	2006 Dia	amond Drill Hol	e Rec	cord Page: 3 of 5
From	To	Lithology	Graphic			Structure, Alteration & Mineralization
(m)	(m)	<u> </u>	Column	Sub Interval	CA	Remarks
		Andesite porphyry - continued		29.36 - 35.92		Weak to locally mod. quartz veinlets + stockwork; locally por-
						phyritic texture visible; locally weak-mod. silica-sericite perva-
						sive w/ 1-2% diss. Py; rock is locally brecciated
				35.92 - 51.86		Weak quartz veinlets + very local stockwork; tan-coloured w/
						1-2% Py diss. locally; weak-mod. silica-sericite alteration
						locally; minor chlorite as fracture fillings, also limonite & (MnO2)
						on fractures locally; locally, rock is brecciated w/ silica in
						matrix
				51.86 - 52.49		Weak quartz veinlets; mod. broken core; str. limonite & MnO2
						on fractures
				52.49 - 53.18		Weak quartz veinlets or hairline quartz fracture fillings; minor
				·		fine grained Py diss.; overall tan colour; weak pervasive silica-
						sericite alteration
				53.18 - 53.8		Similar to 51.86 - 52.49 m
ļ						
				53.8 - 64.83	<u> </u>	Weak quartz veinlets; locally mod. quartz stockwork over 0.1-
						0.2 m wide intervals (w/ finely brecciated andesite porphyry &
					<u> </u>	matrix silica infilling); locally very fine grained Py imparts grey
					<u> </u>	hue to quartz veins
ļ			_		<u> </u>	
					30	at 64.7 m: 2 x 3 cm wide brecciated quartz veins w/ sericite as
			_		<u> </u>	matrix to quartz fragments
						
ļ				64.83 - 65.07		Intensely silicified & brecciated rock; fine diss. Py (& other
		***	_	······································	<u> </u>	sulphide?) impart grey colour to some quartz; limonite & (hema-
			_		ــــــ	tite-MnO2) on fractures
ļ					<u> </u>	
		-		65.07 - 72.44	Ļ	Weak quartz veinlets & local stockworks; locally limonite soak-
		1				ing on fractures at 40-50 degrees CA; 1% diss. Py locally

Hole No	ımber	06-CC-09	2006 Dia	amond Drill Hole	Rec	cord Page: 4 of 5	
From To		Lithology	Graphic			Structure, Alteration & Mineralization	
(m)	(m)		Column	Sub Interval	CA	Remarks	
	Andesite porphyry - continued			72.44 - 88.23		Relatively fresh w/ weak quartz veinlets & local stockworks;	
						zones alternate from dark greyish-green w/ clear porphyritic	
			7			texture to pinkish cast zones w/ mod. silica-sericite pervasive	,
			7			& 1-2% Py diss.; locally irregular carbonate fracture fillings;	
						contacts between pink cast & relatively fresh rocks can be	
						sharp (ie. contacts are marking alteration fronts)	
				88.23 - 90.25		Modstr. quartz veinlets + stockwork; 1-2% very fine grained	
						diss. Py; possible grey sulphide locally	
				90.25 - 92.87		Mod. quartz veinlets + stockwork; zone of chlorite-clay altered	
	· •,,,,,,		_]		60	faults w/ shear foliation at 50-60 degrees CA; mod. clay after	8-
ļ	· · · · · · · · · · · · · · · · · · ·				L	tion; irregular carbonate fracture filling	
				,	<u> </u>		
				 	<u>L</u>	at 91.1 m: strong yellowish-coloured mineral imbedded in	·
	·				L	quartz (native gold?)	
							
<u> </u>	· · · · · · · · · · · · · · · · · · ·			92.87 - 102.3	<u> </u>	Weak-mod. quartz veinlets + stockwork; local chlorite-clay	
			_		<u> </u>	altered faults; fine diss. Py, locally abundant in some quartz	
	·····					veins; some micro-brecciated andesite porphyry w/ silica and	
	<u> </u>					diss. Py in matrix to fragments; local cataclastic texture due t	lo
	·			<u> </u>	ــــــ	chlorite-clay faulting	
					—		
			_	102.3 - 111.86	ļ	Generally weak quartz veinlets + stockwork; local chlorite-cla	
			_	<u> </u>	ļ	altered faults; past 104.42, pinkish-tan alteration ends - main	
ļ	<u> </u>				ļ	greyish-green andesite porphyry; minor carbonate filling irreg	ᆘ
ļ				<u> </u>	ــــــ	lar fractures; locally silica stockwork & pervasive alteration	
ļ	··		_		L	modstr.	
 			_		 		
			_	ļ	40	at 111.86 m: chlorite-clay gouge contact at 40 degrees CA	
		<u> </u>			<u> </u>		
		<u> </u>			Ь—		
				<u>l</u>	l.		

Hole No		06-CC-09		amond Drill Hole	e Rec	
From	To	Lithology	Graphic			Structure, Alteration & Mineralization
(m)	(m)	l.,	Column	Sub Interval		Remarks
		Andesite porphyry - continued		111.86 - 113.3		Out of zones of chlorite-clay altered faults; weak to locally mx
]			quartz veinlets and/or pervasive silica (some w/ reddish hue
]			to hematite?); 1-2% Py diss.
			1			
				113.3 - 127.1		Mainly relatively fresh andesite porphyry; overall colour is gre
						ish-green; porphyritic texture clear; minor quartz +/- carbonat
			7			veining; minor siliceous hematitic veining; some sections w/
			7			1-2% Py diss.
			1			
			T			
		[1	<u> </u>		
		End of hole at 127.1 m	7		1	
			7	**************************************	<u> </u>	
			7		 	
			┪	· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·		
 	*** - 7		7	· · · · · · · · ·	1	
			7	····	 	
			1		 	
1	· · · · · · · · · · · · · · · · · · ·		┥		 	
		*	┪	 · · · · · · · · · · · · · · · · · · ·	 	**************************************
	*************	***************************************	╡		 	<u> </u>
	**********		┪		 	
			-		 	
			~		 	<u> </u>
		· · · · · · · · · · · · · · · · · · ·	4	········	 	
 			┪		 -	
}		77 7	⊣	 	 	
 					┿	<u> </u>
 					╁	<u> </u>
 					₩	
ļi			{		 	
					1	
<u></u>				<u> </u>	1	

Lawyers Project - Cliff Creek Zone 2006 DDH Analytical Record

Date Sampled: 5-Jul-06 Date Shipped: 07-Jul-06

Hole No: 06-CC-09

page 1 of 3

Sample	From	То	Length	Au-AA23		AuGRA-21	Ag-AA45	Ag-AA46	Rock Code	
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)		
32302	20.00	22.00	2.00	0.016			0.9		a + av	
32303	22.00	24.06	2.06	0.013			0.7		a + av	
32304	24.06	25.80	1.74	0.629			4.1		a + fault	
32305	25.80	28.25	2.45	0.062			4.5		8	
32306	28.25	29.30	1.05	1.82			76.9		st + br	
32307	29.30	30.00	0.70	0.125		-	14.3		av + st	
32308	30.00	31.00	1.00	0.028		Ĺ	3.6		av + st	
32309	31.00	32.00	1.00	0.077			8.8		av + st	
32310	32.00	33.00	1.00	0.02			2.8		av + st	
32311	33.00	34.00	1.00	0.024			3.3		av + st	
32312	34.00	35.00	1.00	0.11			5.7		av + st	
32313	35.00	36.00	1.00	0.024		<u> </u>	2.5		av + st	
32314	36.00	37.00	1.00	0.131			1.4	<u> </u>	av + st	
32315	37.00	38.00	1.00	0.016		<u></u>	2.2		av + st	
32316	38.00	39.00	1.00	0.022			3.3		av + st	
32317	39.00	40.00	1.00	0.023		[3.6		av + st	
32318	40.00	41.00	1.00	0.024		<u> </u>	3.1		av + st	
32319	41.00	42.00	1.00	0.018			2.1		av + st	
32320	42.00	43.00	1.00	0.044		<u></u>	1.8		av + st	
32321	43.00	44.00	1.00	0.01			1.4		av + st	
32322	44.00	45.00	1.00	0.017		<u> </u>	1.5		av + st	
32323	45.00	46.00	1.00	0.008			2.7	ļ	av + st	
32324	46.00	47.00	1.00	0.009			5.4	<u> </u>	av + st	
32325	47.00	48.00	1.00	0.043		L	0.6		av + st	
32326	48.00	49.00	1.00	0.04			1.5		av + st	
32327	49.00	50.00	1.00	0.525			2.1	<u> </u>	av + st	
32328	50.00	51.00	1.00	0.117		ļ	2.1	1	av + st	
32329	51.00	51.86	0.86	0.159			2.2		av + st	
32330	51.86	52.49	0.63	0.261			1.4	L	av	

Hole No: 06-CC-09 2006 DDH Analytical Record page 2 of 3

Sample No. No. (m) (m) (pm) (pm) (chk. (ppm) (ppm)	HOIE NO.	ole No. 06-CC-09 Zouo DDH Ahalytical Record							page z or 3	
32331 52.49 54.00 1.51 0.075 1.8 av st 32332 54.00 55.00 1.00 0.014 1.8 av + st 32333 55.00 56.00 1.00 0.044 1.8 av + st 32333 55.00 56.00 1.00 0.044 1.8 av + st 32335 57.00 58.00 1.00 0.044 2.3 av + st 32335 57.00 58.00 1.00 0.035 1.3 av + st 32336 58.00 59.00 1.00 0.036 1.5 av + st 32336 58.00 59.00 1.00 0.036 1.5 av + st 32337 59.00 60.00 1.00 0.024 1.8 av + st 32338 60.00 61.00 1.00 0.029 1.7 av + st 32339 61.00 62.00 1.00 0.029 1.7 av + st 32340 62.00 63.00 1.00 0.011 1.3 av + st 32341 64.00 65.00 1.00 0.015 1.4 av + st + br 32343 66.00 65.00 1.00 0.015 1.4 av + st br 32344 66.00 67.00 1.00 0.056 2.1 av + st 32346 67.00 68.00 1.00 0.019 1.1 av + st 32347 69.00 70.00 1.00 0.019 1.1 av + st 32347 69.00 70.00 1.00 0.019 1.1 av + st 32347 69.00 70.00 1.00 0.034 1.3 av + st 32348 70.00 71.00 1.00 0.034 1.3 av + st 32348 70.00 71.00 1.00 0.037 32348 70.00 71.00 1.00 0.037 32349 74.00 75.50 1.50 0.028 1.50 0.028 1.50 0.028 1.50 0.028 1.50 0.028 1.50 0.023 1.50 0.023 1.50 0.023 1.50 0.023 1.50 0.023 1.50 0.023 1.50 0.023 1.50 0.023 1.50 0.023 1.50 0.023 1.50 0.023 1.50 0.023 1.50 0.023 1.50 0.023 1.50 0.023 1.50 0.023 1.50 0.024 1.50 0.033	Sample	From	To	Length	Au-A/	A23	AuGRA-21	Ag-AA45	Ag-AA46	Rock Code
32332 54.00 55.00 1.00 0.018 1.8 av + st	No.	(m)	(m)	(m)			(ppm)	(ppm)	(ppm)	
32333 55.00 56.00 1.00 0.044 1.8 av + st	32331	52.49	54.00	1.51	0.075			1.8		av
32334 \$6.00 \$5.00 1.00 0.044 2.3 av + st	32332	54.00	55.00	1.00	0.018	·		1.8		av + st
32335 57,00 58,00 1.00 0.035 1.3 av + st 32336 58,00 59,00 1.00 0.038 1.5 av + st 32337 59,00 60,00 1.00 0.024 1.8 av + st 32338 60,00 61,00 1.00 0.038 1.6 av + st 32339 61,00 62,00 1.00 0.029 1.7 av + st 32340 62,00 63,00 1.00 0.011 1.3 av + st 32341 63,00 64,00 1.00 0.012 1.8 av + st 32342 64,00 65,00 1.00 0.015 1.4 av + st + br 32343 65,00 66,00 1.00 0.056 2.4 av + st + br 32344 66,00 67,00 1.00 0.056 2.1 av + st 32345 67,00 68,00 1.00 0.019 1.1 av + st 32346 68,00 69,00 1.00 0.019 1.1 av + st 32347 69,00 70,00 1.00 0.034 1.3 av + st 32348 70,00 71,00 1.00 0.034 1.3 av + st 32349 71,00 72,44 1.44 0.032 1.1 av + st 32349 77,00 75,50 1.50 0.028 1.6 a + av 32350 72,44 74,00 1.56 0.007 0.8 a + av 32351 74,00 75,50 1.50 0.028 1.6 a + av 32352 75,50 77,00 1.50 0.028 1.6 a + av 32353 83,00 84,50 1.50 0.028 1.5 a + av 32351 83,00 84,50 1.50 0.028 1.50 0.028 1.50 a + av 32351 83,00 84,50 1.50 0.028 1.50 0.031 2.3 a + av 32352 83,00 84,50 1.50 0.044 1.5 2.6 a + av 32353 83,00 84,50 1.50 0.044 1.5 2.6 a + av 32360 87,50 80,00 1.50 0.154 1.5 a + av 32361 88,23 89,00 0.77 2.5 6 st 32362 89,00 90,00 91,00 1.00 0.041 5.2 st	32333	55.00		1.00						av + st
32336 58,00 59,00 1,00 0,036 1,5 av + st 32337 59,00 60,00 1,00 0,024 1,6 av + st 32338 60,00 61,00 1,00 0,036 1,6 av + st 32339 61,00 62,00 1,00 0,029 1,7 av + st 32340 62,00 63,00 1,00 0,011 1,3 av + st 32341 63,00 64,00 1,00 0,012 1,8 av + st 32342 64,00 65,00 1,00 0,015 1,4 av + st + br 32343 65,00 66,00 1,00 0,095 2,4 av + st 32344 66,00 67,00 1,00 0,096 2,1 av + st 32345 67,00 68,00 1,00 0,019 1,1 av + st 32346 68,00 69,00 1,00 0,013 1,1 av + st 32347 69,00 70,00 1,00 0,034 1,3 av + st 32348 70,00 71,00 1,00 0,037 2,1 av + st 32349 71,00 72,44 1,44 0,032 1,1 av + st 32349 71,00 75,50 1,50 0,028 1,6 a + av 32351 74,00 75,50 1,50 0,028 1,50	32334	56.00	57.00	1.00				2.3		av + st
32337 59,00 60,00 1,00 0,024 1,8 av + st 32338 60,00 61,00 1,00 0,036 1,6 av + st 32340 62,00 63,00 1,00 0,011 1,3 av + st 32341 63,00 64,00 1,00 0,012 1,8 av + st 32342 64,00 65,00 1,00 0,015 1,4 av + st 32343 65,00 66,00 1,00 0,015 1,4 av + st + br 32344 65,00 66,00 1,00 0,095 2,4 av + st + br 32344 66,00 67,00 1,00 0,095 2,4 av + st + br 32344 66,00 67,00 1,00 0,096 2,1 av + st 32345 67,00 68,00 1,00 0,096 2,1 av + st 32346 68,00 69,00 1,00 0,013 1,1 av + st 32347 69,00 70,00 1,00 0,034 1,3 av + st 32348 70,00 71,00 1,00 0,034 1,3 av + st 32349 70,00 72,44 1,44 0,032 1,1 av + st 32350 72,44 74,00 1,56 0,007 0,8 a + av 32351 74,00 75,50 1,50 0,028 1,6 a + av 32352 75,50 77,00 78,50 1,50 0,028 1,6 a + av 32355 83,00 84,50 1,50 0,054 1,5 a + av 32356 81,50 83,00 1,50 0,041 1,5 a + av 32357 83,00 84,50 1,50 0,024 1,5 a + av 32358 84,50 86,00 1,50 0,041 1,5 a + av 32360 87,50 88,23 0,73 0,418 2,8 a + av 32361 88,23 89,00 0,77 2,5 6 st 32363 90,00 91,00 1,00 0,041 5,2 st + fault	32335	57.00	58.00	1.00	0.035			1.3		av + st
32338 60.00 61.00 1.00 0.036 1.6 av + st 32339 61.00 62.00 1.00 0.029 1.7 av + st 32340 62.00 63.00 1.00 0.011 1.3 av + st 32341 63.00 64.00 1.00 0.012 1.8 av + st 32342 64.00 65.00 1.00 0.015 1.4 av + st + br 32342 64.00 65.00 1.00 0.095 2.4 av + st + br 32344 66.00 67.00 1.00 0.095 2.4 av + st + br 32345 67.00 68.00 1.00 0.095 2.4 av + st 32345 67.00 68.00 1.00 0.019 1.1 av + st 32346 68.00 69.00 1.00 0.019 1.1 av + st 32347 69.00 70.00 1.00 0.034 1.3 av + st 32348 70.00 71.00 1.00 0.037 2.1 av + st 32349 71.00 72.44 1.44 0.032 1.1 av + st 32349 71.00 72.44 1.44 0.032 1.1 av + st 32350 72.44 74.00 1.56 0.007 0.08 a + av 32352 75.50 77.00 1.50 0.028 1.6 a + av 32353 77.00 78.50 1.50 0.028 1.6 a + av 32355 77.00 78.50 1.50 0.028 1.50 32355 75.00 77.00 1.50 0.028 1.50 32356 81.50 83.00 1.50 0.066 1.50 0.228 1.9 a + av 32356 81.50 83.00 1.50 0.028 32351 1.50 0.246 1.55 a + av 32358 84.50 86.00 1.50 0.020 2.26 a + av 32358 84.50 86.00 1.50 0.020 2.25 6 st 32363 80.00 91.00 1.00 0.041 5.2 5.2 st + fault 32363 90.00 91.00 1.00 0.041 5.2 st + fault 32363 90.00 91.00 1.00 0.041 5.2 st + fault 32363 90.00 91.00 1.00 0.041 5.2 st + fault 32363 90.00 91.00 1.00 0.041 5.2 st + fault 32363 90.00 91.00 1.00 0.041 5.2 st + fault 32363 90.00 91.00 1.00 0.041 5.2 st + fault 32363 90.00 91.00 1.00 0.041 5.2 st + fault 32363 90.00 91.00 1.00 0.041 5.2 st + fault 32363 90.00 91.00 1.00 0.041 5.2 st + fault 32363 90.00 91.00 1.00 0.041 5.2 st + fault 32363 90.00 91.00 1.00 0.041 5.2 st + fault 32363 90.00 91.00 1.00 0.041 5.2	32336	58.00	59.00	1.00	0.036			1.5		av + st
32349		59.00	60.00	1.00	0.024			1.6		av + st
32340 62.00 63.00 1.00 0.011 1.3 av + st		60.00	61.00	1.00	0.036			1.6		av + st
32341 63.00 64.00 1.00 0.012 1.8 av + st		61.00	62.00	1.00	0.029			1.7		av + st
32342 64.00 65.00 1.00 0.015 1.4 av + st + br 32343 65.00 66.00 1.00 0.095 2.4 av + st + br 32344 66.00 67.00 1.00 0.056 2.1 av + st 32345 67.00 68.00 1.00 0.019 1.1 av + st 32346 68.00 69.00 1.00 0.033 1.1 av + st 32347 69.00 70.00 1.00 0.034 1.3 av + st 32348 70.00 71.00 1.00 0.037 2.1 av + st 32348 71.00 72.44 1.44 0.032 1.1 av + st 32349 71.00 72.44 1.44 0.032 1.1 av + st 32350 72.44 74.00 1.56 0.007 0.8 a + av 32351 74.00 75.50 1.50 0.028 1.6 a + av 32352 75.50 77.00 1.50 0.051 1.1 a + av 32353 77.00 </td <td></td> <td>62.00</td> <td>63.00</td> <td>1.00</td> <td>0.011</td> <td></td> <td></td> <td>1.3</td> <td></td> <td>av + st</td>		62.00	63.00	1.00	0.011			1.3		av + st
32343 65.00 66.00 1.00 0.095 2.4 av + st + br 32344 66.00 67.00 1.00 0.056 2.1 av + st 32345 67.00 68.00 1.00 0.019 1.1 av + st 32346 68.00 69.00 1.00 0.013 1.1 av + st 32347 69.00 70.00 1.00 0.034 1.3 av + st 32348 70.00 71.00 1.00 0.037 2.1 av + st 32349 71.00 72.44 1.44 0.032 1.1 av + st 32350 72.44 74.00 1.56 0.007 0.8 a + av 32351 74.00 75.50 1.50 0.028 1.6 a + av 32352 75.50 77.00 1.50 0.051 1.1 a + av 32353 77.00 78.50 1.50 0.051 1.1 a + av 32355 80.00 81.50 </td <td>32341</td> <td>63.00</td> <td>64.00</td> <td>1.00</td> <td>0.012</td> <td></td> <td></td> <td>1.8</td> <td></td> <td>av + st</td>	32341	63.00	64.00	1.00	0.012			1.8		av + st
32344 66.00 67.00 1.00 0.056 2.1 av + st 32345 67.00 68.00 1.00 0.019 1.1 av + st 32346 68.00 69.00 1.00 0.034 1.3 av + st 32347 69.00 70.00 1.00 0.034 1.3 av + st 32348 70.00 71.00 1.00 0.037 2.1 av + st 32349 71.00 72.44 1.44 0.032 1.1 av + st 32350 72.44 74.00 1.56 0.007 0.8 a + av 32351 74.00 75.50 1.50 0.028 1.6 a + av 32352 75.50 77.00 1.50 0.023 1.6 a + av 32353 77.00 78.50 1.50 0.023 1.1 a + av 32353 77.00 78.50 1.50 0.051 1.1 a + av 32355 80.00 81.50 1.50 0.228 1.9 a + av 32355 80.00 <td< td=""><td>32342</td><td></td><td>65.00</td><td>1.00</td><td>0.015</td><td></td><td></td><td>1.4</td><td></td><td>av + st + br</td></td<>	32342		65.00	1.00	0.015			1.4		av + st + br
32345 67.00 68.00 1.00 0.019 1.1 av + st 32346 68.00 69.00 1.00 0.013 1.1 av + st 32347 69.00 70.00 1.00 0.034 1.3 av + st 32348 70.00 71.00 1.00 0.037 2.1 av + st 32349 71.00 72.44 1.44 0.032 1.1 av + st 32350 72.44 74.00 1.56 0.007 0.8 a + av 32351 74.00 75.50 1.50 0.028 1.6 a + av 32352 75.50 77.00 1.50 0.023 1.6 a + av 32353 77.00 78.50 1.50 0.051 1.1 a + av 32353 77.50 80.00 1.50 0.051 1.1 a + av 32355 80.00 1.50 0.054 1.4 a + av 32355 80.00 1.50 0.054 1.4 a + av 32356 81.50 83.00 1.50 0		65.00	66.00	1.00	0.095			2.4		av + st + br
32346 68.00 69.00 1.00 0.013 1.1 av + st 32347 69.00 70.00 1.00 0.034 1.3 av + st 32348 70.00 71.00 1.00 0.037 2.1 av + st 32349 71.00 72.44 1.44 0.032 1.1 av + st 32350 72.44 74.00 1.56 0.007 0.8 a + av 32351 74.00 75.50 1.50 0.028 1.6 a + av 32352 75.50 1.50 0.023 1.6 a + av 32353 77.00 78.50 1.50 0.023 1.6 a + av 32354 78.50 80.00 1.50 0.051 1.1 a + av 32355 80.00 81.50 1.50 0.228 1.9 a + av 32355 80.00 81.50 0.066 1.5 a + av 32356 81.50 83.00 1.50 0.066 1.5 a + av 32358 84.50 86.00 1.50 0					0.056			2.1		av + st
32347 69.00 70.00 1.00 0.034 1.3 av + st 32348 70.00 71.00 1.00 0.037 2.1 av + st 32349 71.00 72.44 1.44 0.032 1.1 av + st 32350 72.44 74.00 1.56 0.007 0.8 a + av 32351 74.00 75.50 1.50 0.028 1.6 a + av 32352 75.50 77.00 1.50 0.023 1.6 a + av 32353 77.00 78.50 1.50 0.051 1.1 a + av 32354 78.50 80.00 1.50 0.051 1.1 a + av 32355 80.00 81.50 0.054 1.4 a + av 32355 80.00 81.50 0.068 1.5 a + av 32357 83.00 80.00 1.50 0.068 1.5 a + av 32358 84.50 86.00 1.50 0.246 1.5 a + av 32358 84.50 86.00 1.50 0								1.1		av + st
32348 70.00 71.00 1.00 0.037 2.1 av + st 32349 71.00 72.44 1.44 0.032 1.1 av + st 32350 72.44 74.00 1.56 0.007 0.8 a + av 32351 74.00 75.50 1.50 0.028 1.6 a + av 32352 75.50 77.00 1.50 0.023 1.6 a + av 32353 77.00 78.50 1.50 0.051 1.1 a + av 32354 78.50 80.00 1.50 0.154 1.4 a + av 32355 80.00 81.50 1.50 0.228 1.9 a + av 32356 81.50 83.00 1.50 0.068 1.5 a + av 32357 83.00 84.50 1.50 0.246 1.5 a + av 32358 84.50 86.00 1.50 0.313 2.3 a + av 32358 84.50 86.00 1.50 0.202 2.6 a + av 32360 87.50 88.		68.00	69.00	1.00	0.013			1.1		av + st
32349 71.00 72.44 1.44 0.032 1.1 ay + st 32350 72.44 74.00 1.56 0.007 0.8 a + av 32351 74.00 75.50 1.50 0.028 1.6 a + av 32352 75.50 77.00 1.50 0.023 1.6 a + av 32353 77.00 78.50 1.50 0.051 1.1 a + av 32354 78.50 80.00 1.50 0.154 1.4 a + av 32355 80.00 81.50 1.50 0.228 1.9 a + av 32356 81.50 83.00 1.50 0.066 1.5 a + av 32357 83.00 84.50 86.00 1.50 0.246 1.5 a + av 32358 84.50 86.00 1.50 0.202 2.3 a + av 32359 86.00 87.50 1.50 0.202 2.6 a + av 32361 88.23 89.00 0.77 2.5 6 st 32362 89.00		69.00	70.00	1.00	0.034			1.3		av + st
32350 72.44 74.00 1.56 0.007 0.8 a + av 32351 74.00 75.50 1.50 0.028 1.6 a + av 32352 75.50 77.00 1.50 0.023 1.6 a + av 32353 77.00 78.50 1.50 0.051 1.1 a + av 32354 78.50 80.00 1.50 0.154 1.4 a + av 32355 80.00 81.50 1.50 0.228 1.9 a + av 32356 81.50 83.00 1.50 0.068 1.5 a + av 32357 83.00 84.50 1.50 0.246 1.5 a + av 32358 84.50 86.00 1.50 0.313 2.3 a + av 32360 87.50 88.23 0.73 0.418 2.6 a + av 32361 88.23 89.00 0.77 2.5 6 st 32363 90.00 90.00 1.00 0.041 5.2 st + fault				1.00	0.037			2.1		av + st
32351 74.00 75.50 1.50 0.028 1.6 a + av 32352 75.50 77.00 1.50 0.023 1.6 a + av 32353 77.00 78.50 1.50 0.051 1.1 a + av 32354 78.50 80.00 1.50 0.154 1.4 a + av 32355 80.00 81.50 1.50 0.228 1.9 a + av 32356 81.50 83.00 1.50 0.066 1.5 a + av 32357 83.00 84.50 1.50 0.246 1.5 a + av 32358 84.50 86.00 1.50 0.313 2.3 a + av 32359 86.00 87.50 1.50 0.202 2.6 a + av 32360 87.50 88.23 0.73 0.418 2.6 a + av 32361 88.23 89.00 0.77 2.5 6 st 32363 90.00 91.00 1.00 0.041 5.2 st + fault	32349	71.00	72.44	1.44	0.032			1.1		av + st
32352 75.50 77.00 1.50 0.023 1.6 a + av 32353 77.00 78.50 1.50 0.051 1.1 a + av 32354 78.50 80.00 1.50 0.154 1.4 a + av 32355 80.00 81.50 1.50 0.228 1.9 a + av 32356 81.50 83.00 1.50 0.066 1.5 a + av 32357 83.00 84.50 1.50 0.246 1.5 a + av 32358 84.50 86.00 1.50 0.313 2.3 a + av 32360 87.50 88.23 0.73 0.418 2.6 a + av 32361 88.23 89.00 0.077 2.5 6 st 32363 90.00 90.00 1.00 0.041 5.2 st + fault				1.56				0.8		a + av
32353 77.00 78.50 1.50 0.051 1.1 a + av 32354 78.50 80.00 1.50 0.154 1.4 a + av 32355 80.00 81.50 1.50 0.228 1.9 a + av 32356 81.50 83.00 1.50 0.068 1.5 a + av 32357 83.00 84.50 1.50 0.246 1.5 a + av 32358 84.50 86.00 1.50 0.313 2.3 a + av 32359 86.00 87.50 1.50 0.202 2.6 a + av 32360 87.50 88.23 0.73 0.418 2.6 a + av 32361 88.23 89.00 0.077 2.5 6 st 32362 89.00 90.00 1.00 2.32 4.8 st 32363 90.00 91.00 1.00 0.041 5.2 st + fault			75.50	1.50	0.028			1.6		a + av
32354 78.50 80.00 1.50 0.154 1.4 a + av 32355 80.00 81.50 1.50 0.228 1.9 a + av 32356 81.50 83.00 1.50 0.068 1.5 a + av 32357 83.00 84.50 1.50 0.246 1.5 a + av 32358 84.50 86.00 1.50 0.313 2.3 a + av 32359 86.00 87.50 1.50 0.202 2.6 a + av 32360 87.50 88.23 0.73 0.418 2.6 a + av 32361 88.23 89.00 0.77 2.5 6 st 32362 89.00 90.00 1.00 2.32 4.8 st 32363 90.00 91.00 1.00 0.041 5.2 st + fault										a + av
32355 80.00 81.50 1.50 0.228 1.9 a + av 32356 81.50 83.00 1.50 0.066 1.5 a + av 32357 83.00 84.50 1.50 0.246 1.5 a + av 32358 84.50 86.00 1.50 0.313 2.3 a + av 32359 86.00 87.50 1.50 0.202 2.6 a + av 32360 87.50 88.23 0.73 0.418 2.6 a + av 32361 88.23 89.00 0.77 2.5 6 st 32362 89.00 90.00 1.00 2.32 4.8 st 32363 90.00 91.00 1.00 0.041 5.2 st + fault	<u> </u>		78.50		0.051			1.1		a + av
32356 81.50 83.00 1.50 0.066 1.5 a + av 32357 83.00 84.50 1.50 0.246 1.5 a + av 32358 84.50 86.00 1.50 0.313 2.3 a + av 32359 86.00 87.50 1.50 0.202 2.6 a + av 32360 87.50 88.23 0.73 0.418 2.6 a + av 32361 88.23 89.00 0.77 2.5 6 st 32362 89.00 90.00 1.00 2.32 4.8 st 32363 90.00 91.00 1.00 0.041 5.2 st + fault								1.4		a + av
32357 83.00 84.50 1.50 0.246 1.5 a + av 32358 84.50 86.00 1.50 0.313 2.3 a + av 32359 86.00 87.50 1.50 0.202 2.6 a + av 32360 87.50 88.23 0.73 0.418 2.6 a + av 32361 88.23 89.00 0.77 2.5 6 st 32362 89.00 90.00 1.00 2.32 4.8 st 32363 90.00 91.00 1.00 0.041 5.2 st + fault										a + av
32358 84.50 86.00 1.50 0.313 2.3 a + av 32359 86.00 87.50 1.50 0.202 2.6 a + av 32360 87.50 88.23 0.73 0.418 2.6 a + av 32361 88.23 89.00 0.77 2.5 6 st 32362 89.00 90.00 1.00 2.32 4.8 st 32363 90.00 91.00 1.00 0.041 5.2 st + fault						<u> </u>				a + av
32359 86.00 87.50 1.50 0.202 2.6 a + av 32360 87.50 88.23 0.73 0.418 2.6 a + av 32361 88.23 89.00 0.77 2.5 6 st 32362 89.00 90.00 1.00 2.32 4.8 st 32363 90.00 91.00 1.00 0.041 5.2 st + fault				_	0.246					a + av
32360 87.50 88.23 0.73 0.418 2.6 a + av 32361 88.23 89.00 0.77 2.5 6 st 32362 89.00 90.00 1.00 2.32 4.8 st 32363 90.00 91.00 1.00 0.041 5.2 st + fault										a + av
32361 88.23 89.00 0.77 2.5 6 st 32362 89.00 90.00 1.00 2.32 4.8 st 32363 90.00 91.00 1.00 0.041 5.2 st + fault								2.6		a + av
32362 89.00 90.00 1.00 2.32 4.8 st 32363 90.00 91.00 1.00 0.041 5.2 st + fault	1							2.6		a + av
32363 90.00 91.00 1.00 0.041 5.2 st + fault						<u> </u>				•
				1.00						st
32384 91.00 92.00 1.00 0.030 2.4 et + forest				1.00					A	st + fault
22007 31.00 32.00 1.00 0.038	32364	91.00	92.00	1.00	0.039			2.4		st + fault

11-1- No. 00 00 00

ACCORDING A LIVER DOLLAR

Hole No:	Hole No: 06-CC-09			2006 DI	DH Analytical	page 3 of 3			
Sample	From	To	Length	Au-A	\2 3	AuGRA-21	Ag-AA45	Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32365	92.00	93.00	1.00	0.065	·		2.5		st + fault
32366	93.00	94.00	1.00	0.049			1.8		st + av + fault
32367	94.00	95.00	1.00	0.041			1.8		st + av + fault
32368	95.00	96.00	1.00	0.023		-	1.4		st + av + fault
32369	96.00	97.00	1.00	0.017			0.5		st + av + fault
32370	97.00	98.00	1.00	0.012	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	0.6		st + av + fault
32371	98.00	99.00	1.00	0.012			1.2		st + av + fault
32372	99.00	100.00	1.00	0.019			1		st + av + fault
32373	100.00	101.00	1.00	0.021			2.2		st + av + fault
32374	101.00	102.00	1.00	0.013			1.7		st + av + fault
32375	102.00	103.00	1.00	0.007			0.4		av + st + fault
32376	103.00	104.00	1.00	0.015			1		av + st + fault
32377	104.00	105.00	1.00	0.011			1.2		av + st + fault
32378	105.00	106.00	1.00	0.012			1.1		av + st + fault
32379	106.00	107.00	1.00	0.012			0.9		av + st + fault
32380	107.00	108.00	1.00	0.012			0.4	1	av + st + fault
32381	108.00	109.00	1.00	0.007			0.4		av + st + fault
32382	109.00	110.00	1.00	0.017		,	0.9		av + st + fault
32383	110.00	111.00	1.00	0.027			5.1		av + st + fault
32384	111.00	112.00	1.00	0.011			3.5		av + st + fault
32385	112.00	113.00	1.00	0.019			4.3		av
32386	113.00	115.00	2.00	0.006			0.6		a + av
32387	115.00	117.00	2.00	0.011			0.5		a + av
32388	117.00	119.00	2.00	0.012			0.7		a + av
								ļ	
								<u> </u>	
							l		
	<u> </u>								
		[
	1	1			1		1	1	

Hole No: 06-CC-09

Lawyers Project - Cliff Creek Zone 2006 Core Recovery Record

Date: 5-Jul-06

Meterage	e Block	Interval	Rec.	Rec.	Meterage	e Slock	Interval	Rec.	Rec.
From	То	(m)	Core (m)	(%)	From	To	(m)	Core (m)	(%)
3.05	5.18	2.13	0.77	38%			 	` '	, ,
5.18	8.23	3.05	0.48	16%	<u> </u>				
8.23	11.28	3.05	1.20	39%					
11.28	14.33	3.05	0.50	16%					
14.33	17.37	3.04	1.60	53%					
17.37	19.81	2.44	1.86	76%					•
19.81	22.86	3.05	1.90	62%			Ì		
22.86	25.91	3.05	3.29	100%					
25.91	28.96	3.05	0.59	19%					
28,96	30.79	1.83	2.60	100%				Ì.	
30.79	32.81	1.82	0.40	22%					
32.61	35.66	3.05	1.04	34%					
35.66	38.71	3.05	0.60	20%					
38.71	41.76	3.05	1.02	33%					
41.76	44.81	3.05	1.32	43%					
44.81	47.85	3.04	2.05	67%			<u> </u>		
47.85	50.90	3.05	2.85	93%					
50.90	53.95	3.05	2.88	94%					
53.95	57.00	3.05	2.57	84%					
57.00	80.05	3.05	2.30	75%					
60.05	63.09	3.04	1.70	56%			ļ		
63.09	66.14	3.05	2.71	89%					
66.14	69.19	3.05	1.79	59%				.	
69.19	72.24	3.05	3.21	100%	<u>. </u>				
72.24	75.29	3.05	2.14	70%					
75.29	78.33	3.04	0.51	17%			ļ		
78.33	81.38	3.05	1.52	50%			ļ		
81.38	84.43	3.05	2.34	77%					
84.43	87.48	3.05	2.90	95%					
87.48	90.53	3.05	3.04	100%					· -
90.53	93.57	3.04	2.57	85%					
93.57	96.62	3.05	2.90	95%					
96.62	99.67	3.05	3.04	100%		<u> </u>			
99.67	102.72	3.05	3.06	100%			ļi		
102.72	105.77	3.05	3.29	100%					
105.77	108.81	3.04	3.13	100%					
108.81	111.86	3.05	3.06	100%			ļ		
111.86	114.91	3.05	3.12	100%					
114.91	117.98	3.05	3.12	100%			 		
117.96	121.00	3.04	3.04	100%					
121.00	124.05	3.05	2.58	85%					
		nd of Hole	Đ [<u>. </u>	i	41°-6'A

Hole No: 06-CC-09

Core Recovery Record

Page: 1 of 1

Hole No: 06-CC-10

Lawyers Project - Cliff Creek Zone 2006 Diamond Drill Hole Record

Page:

1 of 5

UTM Coordinate:	s (NAD 83 - Zone 9):	Collar Da	ta	Total Depth:	127.10 m
North:	6355237.14	Azimuth:	78	Date Started:	02-Jul-06
East:	607764.55	Dip:	-42	Date Completed:	04-Jul-06
		TOC:	· · · · · · · · · · · · · · · · · · ·	Logged By:	B.K. Bowen
Elevation:	1859.64	Hole Size:	NQ2	Date:	06-Jul-06

Collar Survey: Differential GPS	Total Casing:	4.57 m	Contractor:	Radius Drilling
Multishot Survey:	Casing LIH:	4.57 m	Core Storage:	Prince George
RQD Log:	Hole Plugged:	casing capped		
Pulse EM Survey:				

Purpose: Hole 06-CC-10 was drilled as a near-surface test of the northwest-trending quartz-stockwork zone that had been identified in Bishop Gold's 2005 drilling. The hole was collared about 100 m northwest of Hole 06-CC-09.

epth (m)	Azimuth	Dip	Test Type	Depth (m)	Azimuth	Dip	Test Type
121.01	80.9	-40.7	Reflex Easy Shot				
i							
							·····
					 		·····

Hole Nu	ımber:	06-CC-10	2006 Dia	mond Drill Hole	Rec	T
From	To	Lithology	Graphic			Structure, Alteration & Mineralization
(m)	(m)		Column	Sub Interval	CA	Remarks
0	4.57	OVERBURDEN				
		-		·		
		Cased to 4.57 m (casing left in hole)				
4.57	127.1	ANDESITE PORPHYRY				
		Typical andesite porphyry; overall colour	['	4.57 - 21.7		Relatively fresh; very minor quartz veinlets, some w/ carbonat
		is dark greyish-green; feldspar pheno-	1			gangue; carbonate also as irregular fracture fillings; minor fine
		crysts are clearly visible	j l			diss. Py
1			,	21.7 - 25.23		Transitional zone of relatively fresh andesite porphyry alterna-
			1			ting w/ short sections of buff to pink-coloured zones; minor
] ,			carbonate & quartz veinlets; locally some hematitic, siliceous
					· · · · ·	veinlets & fracture fillings = jasper (?); minor fine diss. Py
	•]			
				25.23 - 30.2		Mainly buff-coloured, altered andesite porphyry; some short
]			sections of relatively fresh andesite porphyry; minor quartz ve
	·]			lets; siliceous, hematitic veinlets still present; locally few cm
						wide sections w/ brecciated andesite porphyry w/ dark siliceou
]		l	matrix; minor fine grained diss. Py
]			
]		25	at 28.38 m: Minor fault - 1 cm wide clay-limonite gouge
]			
•				30.2 - 31.77	I	Mod. quartz veinlets + stockwork; overall colour is buff to light
_						grey; some short relatively fresh sections; hematitic, siliceous
]			veinlets & fracture fillings still present; minor fine grained diss
						Py
				31.77 - 34.42		Intensely siliceous (pervasive) rock; common texture is brec-
						ciated andesite porphyry w/ 100% silica matrix; latter locally
]			dark grey in colour due to very fine grained diss. Py (& other?
]			limonite & MnO2 on fractures
			1		T	

Hole Na	ımhec	06-CC-10		amond Drill Hol		cord Page: 3 of 5
From	To	Lithology	Graphic		6 NG	Structure, Alteration & Mineralization
(m)	(m)	Littlology		Sub Interval	T CA	
1	(111)	Andesite Porphyry - continued	Column	Sub lineral	 \^	31.77 - 33.1 m: Mod. broken core - minor fault (?), or is the
l		Andesite Forpriyry - Continued			┼	siliceous rock just brittle (?)
├	-	······			 	Isliceous rock just brittle (7)
╂──╂		····		34.42 - 36.05	╂	Mod. quartz veinlets + stockwork; locally pervasive silica as
├─ ┤			—	34.42 - 30.03	 -	matrix to micro-brecciated andesite perphyry; some dark grey
				 	ļ	silica associated w/ very fine grained diss. sulphides
 	 				-	Sinca associated w/ very title granted diss. surprides
				36.05 - 48.68	┡	Weak-mod. quartz veinlets + stockwork; locally dark grey silica
·				30.00 * 40.00	 -	because of very fine grained sulphides; 1-2% Py diss. locally;
<u>├</u> —					 	modstr. limonite & MnO2 on fractures & coating vugs;
 	• • • • • • • • • • • • • • • • • • • •	——————————————————————————————————————		 	├	at 40.03 m: good example of dark grey silica because of very
 	·			<u></u>	 	fine grained sulphides
 					 	Inne granieu sulpritues
 			·· -[48.68 - 49.71	┼	Mod. quartz veinlets + stockwork; locally pervasively silicified
 				40.00 - 49.71	╂	w/ patches of very fine grained sulphides; 2-3% Py diss. in
-				·	\vdash	altered wallrock and in some micro-brecciated andesite
l			 		┰	porphyry
 					┿┈	porpriyry
┝─┤			⊣	49.71 - 57.21	 	Weak quartz veinlets to relatively fresh andesite porphyry;
┟──┤				48.71 - 37.21	╂	some local stockworks; note: under binocular microscope, lots
 	··			-	+	of micro-quartz veinlets & abundant fine grained diss. Py - even
					+	though rock looks fresh w/ porphyritic texture intact, it is in fact
 					╂	modstr. pervasively silicified
			\dashv		+	Intonor. hot adstagt sulcitor
 				57.21 - 65.6	╅	Mod. quartz veinlets + stockwork; also numerous micro-quartz
1			 	37.21-03.0	╅┈┈	veinlets resulting in a "micro-stockwork"; also micro-brecciated
├					+	andesite porphyry present
 			 -{	<u> </u>	╁┄	ancesic porpriyry present
				65.6 - 71.22	+	Intensely silicified rock; brecciated to micro-brecciated textures
		 		00.0 - 71.22	+	common; not sulphide-rich, but some very fine grained sul-
 			⊣ i		+	phides impart a grey colour to the quartz; mod. limonite &
\vdash				 	₩-	MnO2 on fractures or coating vuggy cavities
1					+—	MINOS OIL RECORDS OF CORNING ACCOUNTS CRAMMER
لييسيا		<u> </u>		<u></u>	ــــــــــــــــــــــــــــــــــــــ	

Hole Number: 06-CC-10 2006 Diamond Drill Hole Record Page: 4 of 5 Structure, Alteration & Mineralization Lithology Graphic From To Column Sub Interval CA (m) (m)Remarks at 56.14 - 56.35 m; Fault Zone - mod. broken core Andesite Porphyry - continued at 67.82 - 71.4 m: Fault Zone - mod.-str. broken core (note: broken core may be more a function of the brittleness of intensely silicified rock when cored) 71.22 - 86.17 Weak-mod, quartz veinlets + stockwork; wallrocks generally buff-tan coloured w/ porphyritic textures visible locally; short sections of brecciated to micro-brecciated andesite porphyry w/ dark silica infilling; minor siliceous, hematitic veinlets locally; 1% fine grained Py diss. in wallrock & in quartz veinlets & siliceous matrix material 55 at 86.07 m: Minor fault - 1 cm wide limonitic clay gouge 86.17 - 93.41 Weak quartz veinlets + stockwork; wallrocks generally buff to tan-coloured: minor carbonate veinlets: <1% fine diss. Pv: some quartz veinlets grey due to fine sulphides; limonite +/-MnO2 on fractures - limonite soaking out from some of the stronger fractures 93.41 - 94.76 Mod. quartz veinlets + stockwork; sub-interval characterized by str. brecciated texture w/ dark silica infilling (not necessarily due to fine grained sulphides, but they are present); minor carbonate gangue in matrix to fragments 94.76 - 102.82 Weak quartz veinlets + stockwork; overall colour is buff to tan; some micro-breccia texture associated w/ some quartz veins; minor Py diss. 102.82 - 111.2 Similar to above sub-interval, but now have first appearance of salmon to dark brown-coloured, siliceous vein material appears jasper-like - cryptocrystalline, finely banded, w/

Hole Nu	ımber:	06-CC-10	2006 Dia	amond Drill Hol	e Rec	eordi	Page:	5 of 5
From	To	Lithology	Graphic			Structure, Alteration & Mineralization		
(m)	(m)	<u></u>	Column	Sub interval	CA	Remarks		
		Andesite Porphyry - continued				extremely fine grained Py (difficult to	see w/ bind	cular micro-
	•••					scope even at high power); this type of	of jasperoid	veln material
						cross-cut by more regular quartz vein	lets which r	nake up the
						stockworks of the main target zone		
				111.2 - 127.1		Regular-type quartz veinlets very wea	ak but jaspe	roid-type vein-
						ing persists to end of the hole; some		
						cm wide & some exhibit micro-brecci	a tecture; v	ery fine grained
						diss. Py associated w/ the jasperoid v	eins; coars	er-grained
						diss. Py in wallrock		
					•			
					55	at 113.39 m: 2 cm wide micro-breccia	vein w/ ca	rbonate clasts
						in jasperoid matrix		
					T			
				<u> </u>		in general sub-interval, porphyritic tex	dure of and	lesite variably
						intact, but not seeing dark grey-green		
						as seen in Holes 06-CC-06 to 09		
				<u> </u>				
						note: casing left in hole because of a	umbiguity of	footwall rocks
			 1			& the presence of jasperoid veins & v	einlets to ti	he end of the
	_				1	hole		
					1			
		End of hole at 127.1 m			1			
					1			····
				[1			
			1				<u> </u>	
				· · · · · · · · · · · · · · · · · · ·	1			
) ,				
	<u>_</u>	["			1-	<u> </u>		

Hole No: 06-CC-10

Lawyers Project - Cliff Creek Zone 2006 DDH Analytical Record

Date Sampled: 07-Jul-06
Date Shipped: 07-Jul-06

Sample	From	To	Length	Au-A/	123	AuGRA-21	Ag-AA45	Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32389	19.00	21.00	2.00	0.029			2.8	· · · · · · · · · · · · · · · · · · ·	а
32390	21.00	23.00	2.00	0.283			4		a + av
32391	23.00	25.23	2.23	0.035			1		a + av
32392	25.23	26.00	0.77	0.013			0.6		av
32393	26.00	27.00	1.00	0.034			1.1		av
32394	27,00	28.00	1.00	0.037			1.8		av
32395	28.00	29.00	1.00	0.08			8.2		av + fault
32396	29.00	30.00	1.00	0.174			7		av
32397	30.00	31.00	1.00	0.481			10.2		st
32398	31.00	31.77	0.77	1.645			12.2		st
32399	31.77	33.00	1.23	5.87			>100	106	st + br
32400	33.00	34.42	1.42	1.995			89.7		st + br
32401	34.42	36.00	1.58	0.123			9.9		st + br
32402	36.00	37.00	1.00	0.091			6.9		st + av
32403	37.00	38.00	1.00	0.051			5.4		st + av
32404	38.00	39.00	1.00	0.039			4		st + av
32405	39.00	40.00	1.00	0.034			3.7		st + av
32406	40.00	41.00	1.00	0.258			3		st + av
32407	41.00	42.00	1.00	0.139			2.3		st + av
32408	42.00	43.00	1.00	0.05			3		st + av
32409	43.00	44.00	1.00	0.411			1.7		st + av
32410	44.00	45.00	1.00	0.165			1.4		st + av
32411	45.00	46.00	1.00	0.1		<u> </u>	2		st + av
32412	46.00	47.00	1.00	0.393			1.7		st + av
32413	47.00	48.00	1.00	0.04			1.1		st + av
32414	48.00	49.00	1.00	0.522			1.3		st + av + br
32415	49.00	50.00	1.00	0.416			1.7		st + av + br
32416	50.00	51.00	1.00	4.31			1.3		st + av
32417	51.00	52.00	1.00	1.305			9.1		st + av

Hole No: 06-CC-10

2006 DDH Analytical Record

page 2 of 3

Sample	From	To	Length	Au-A/		AuGRA-21		Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32418	52.00	53.00	1.00	0.33			2.1		st + av
32419	53.00	54.00	1.00	2.31			2.1		st + av
32420	54.00	55.00	1.00	3.13			2.7		st + av
32421	55.00	56.00	1.00	1.035			1.4		st + av
32422	56.00	57.00	1.00	0.165			1.6		st + av
32423	57.00	58.00	1.00	0.609			2		st + br
32424	58.00	59.00	1.00	0.916			2.5		st + br
32425	59.00	60.00	1.00	1.025			2.6		st + br
32426	60.00	61.00	1.00	0.284			1.7		st + br
32427	61.00	62.00	1.00	0.806			1.8		st + br
32428	62.00	63.00	1.00	0.102			1.9		st + br
32429	63.00	64.00	1.00	0.639			2		st + br
32430	64.00	65.00	1.00	0.33			2.7		st + br
32431	65.00	65.60	0.60	0.138			1.7		st + br
32432	65.60	67.00	1.40	0.318			10.1		st + br + fault
32433	67.00	68.00	1.00	0.494			12.2		st + br + fault
32434	68.00	69.00	1.00	1.37			24.8		st + br + fault
32435	69.00	70.00	1.00	0.475			16.8		st + br + fault
32436	70.00	71.22	1.22	1.185			14		st + br + fault
32437	71.22	73.00	1.78	0.264			4.8		st + av
32438		ag not use					·		
32439	73.00	74.00	1.00	0.217			<0.2		st + av
32440	74.00	75.00	1.00	0.597	_		1.2		st + av
32441	75.00	76.00	1.00	1.145			12.5		st + av
32442	76.00	77.00	1.00	0.019			0.9		st + av
32443	77.00	78.00	1.00	0.107	L		1.6		st + av
32444	78.00	79.00	1.00	0.034	<u> </u>		2.4	L	st + av
32445	79.00	80.00	1.00	0.017			1.7		st + av
32446	80.00	81.00	1.00	0.013			1.2		st + av
32447	81.00	82.00	1.00	0.023			1.7		st + av
32448	82.00	83.00	1.00	0.044			3.2		st + av
32449	83.00	84.00	1.00	0.03			2.9		st + av
32450	84.00	85.00	1.00	0.11			1.9		st + av
32451	85.00	86.00	1.00	0.053			1.5		st + av

Hole No: 06-CC-10

06 DI	DH Analytical	Record		page 3 of 3
	AuGRA-21	Ag-AA45	Ag-AA46	Rock Code
pm)	(ppm)	(mag)	(mag)	

Sample	From	To	Length	Au-A/		ÄuGRA-21	Ag-AA45	Ag-AA46	Rock Code
No.	(m)	(m)	(m)	(ppm)	chk. (ppm)	(ppm)	(ppm)	(ppm)	
32452	86.00	87.00	1.00	0.017			1.4		av + st + fault
32453	87.00	88.00	1.00	0.015			1.3		av + st
32454	88.00	89.00	1.00	0.014			1.6		av + st
32455	89.00	90.00	1.00	0.011			0.8		av + st
32456	90.00	91.00	1.00	0.015			0.7	·	av + st
32457	91.00	92.00	1.00	0.043			1.7		av + st
32458	92.00	93.00	1.00	0.026			1.6		av + st
32459	93.00	94.00	1.00	0.052			1.7		st + br
32460	94.00	95.00	1.00	0.048			1.4		st + br
32461	95.00	96.00	1.00	0.046			1.6		av + st
32462	96.00	97.00	1.00	0.124			1.1	1	av + st
32463	97.00	98.00	1.00	0.037			1.3		av + st
32464	98.00	99.00	1.00	0.03			1.2		av + st
32465	99.00	100.00	1.00	0.028			0.7		av + st
32466	100.00	101.00	1.00	0.042			1.2		av + st
32467	101.00	102.72	1.72	0.027			1.1		av + st
32468	102.72	104.00	1.28	0.025			1		av + st + jasp
32469	104.00	105.50	1.50	0.057			3		av + st + jasp
32470	105.50	107.00	1.50	0.012			0.9		av + st + jasp
32471	107.00	108.50	1.50	0.064			1		av + st + jasp
32472	108.50	110.00	1.50	0.023			1.3		av + st + jasp
32473	110.00	111.50	1.50	0.025			1.3		av + st + jasp
32474	111.50	113.00	1.50	0.013			0.8		av + jasp
32475	113.00	114.50	1.50	0.025			0.9		av + jasp
32476	114.50	116.00	1.50	0.05			1		av + jasp
32477	116.00	117.50	1.50	0.026			1.3		av + jasp
32478	117.50	119.00	1.50	0.044			1.2		av + jasp
32479	119.00	120.50	1.50	0.021			1.1		av + jasp
32480	120.50	122.00	1.50	0.015			8.0		av + jasp
32481	122.00	123.50	1.50	0.013		<u> </u>	0.8		av + jasp
32482	123.50	125.00	1.50	0.026			0.9		av + jasp
32483	125.00	126.88	1.88	0.035			1.8		av + jasp

Hole No: 08-CC-10

Lawyers Project - Cliff Creek Zone 2006 Core Recovery Record

Date: 07-Jul-06

Meterag	e Block	Interval	Rec.	Rec.	Meterag	e Block	Interval	Rec.	Rec.
From	To	(m)	Core (m)	(%)	From	To	(m)	Core (m)	(%)
4.57	7.82	3.05	3.04	100%	111.86	114.91	3.05	3.00	98%
7.62	10.70	3.08	3.01	98%	114.91	117.96	3.05	3.04	100%
10.70	11.28	0.58	0.69	100%	117.96	121.01	3.05	3.05	100%
11.28	14.33	3.05	2.96	97%	121.01	124.06	3.05	3.02	99%
14.33	17.37	3.04	2.96	97%	124.06	126.88	2.82	2.92	100%
17.37	20.42	3.05	3.05	100%			nd of Hol	θ	
20.42	23.47	3.05	3.06	100%					
23.47	28.52	3.05	3.03	99%]	
26.52	29.57	3.05	2.77	91%			[
29.57	32.61	3.04	3.03	100%					
32.61	35,66	3.05	2.90	95%					
35.66	38,41	2.75	2.97	100%					
38.41	39,93	1.52	1.52	100%				<u> </u>	
39.93	41.78	1.83	1.75	96%					
41.76	44.50	2.74	2.52	92%					
44.50	47.55	3.05	3.05	100%					
47.55	50.60	3.05	3.09	100%		_			
50.60	53.65	3.05	2.90	95%					
53.65	56.69	3.04	2.79	92%					
56.69	58.83	2.14	1.86	87%					
58.83	59.44	0.61	0.45	74%					
59.44	62.48	3.04	3.03	100%					
62.48	64.01	1.53	1.68	100%					
64.01	66.14	2.13	1.38	65%					
66.14	67.97	1.83	1.00	55%					
67.97	69.19	1.22	0.49	40%					
69.19	70.71	1.52	0.50	33%					
70.71	71.32	0.61	0.70	100%					
71.32	74.68	3.36	2.05	61%					
74.68	75.29	0.61	0.33	54%			· · · · · · ·		
75.29	78.33	3.04	2.92	96%					. <u>.</u>
78.33	81.08	2.75	2.35	85%					
81.08	82.60	1.52	1.73	100%	ļ				
82.60	84.43	1.83	2.15	100%	 				
84.43	87.48	3.05	2.95	97%			-		
87.48	90.53	3.05	3.05	100%					
90.53	93.57	3.04	3.04	100%	—				
93.57 96.62	96.62	3.05	2.99	98%					
99.67	99.67	3.05	3.03	99%					
	102.72	3.05	3.00	98%	-				
102.72 105.77	105.77	3.05	3.08	100%					
	108.81	3.04	2.92	96%					
108.81	111,86	3.05	3.05	100%					

Hole No: 06-CC-10

Core Recovery Record

Page: 1 of 1

APPENDIX 2

ALS CHEMEX CERTIFICATES OF ANALYSIS & CHEMICAL PROCEDURES

EXCELLENCE IN ANALYTICAL CHIMIETRY ALE Casada Ltd.

212 Brooksbank Avenue North Vencouver BC V7J 2C1

Phone: 604 984 0221 Fex: 604 984 0218 www.alschemex.com

To: GUARDSMEN RESOURCES INC. \$25 - 1027 DAVIE STREET **VANCOUVER BC V&E 4L2**

Page: 1 Finalized Date: 11-AUG-2006

Account: KFP

QC CERTIFICATE VA06066953

Project Lawyer 2006 P.O. No.: HOLE: 06-CC-06

This report is for 103 Drill Core samples submitted to our lab in Vancouver, BC, Canada on

10-JUL-2006.

The following have access to data associated with this certificate:

KURT BORDIAN GARY NORDIN BARNEY BOMEN SCOTT GIFFORD

SAMPLE PREPARATION		
ALS CODE	DESCRIPTION	
WEI-21	Received Semple Weight	
CRU-QC	Crushing QC Test	
LOG-22	Sample togin - Rod w/o BerCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - rittle splitter	
PUL-31	Pulverize split to 85% <75 um	

TRUMENT
3
3
3

To: GUARDSMEN RESOURCES INC.

ATTN: BARNEY BOWEN 525 - 1027 DAVIE STREET VANCOUVER BC V8E 4L2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

Pline Com

VA06066953 - Finalized

CLIENT: "KFP - Guardsmen Resources Inc."

of SAMPLES: 103

DATE RECEIVED: 2006-07-10 DATE FINALIZED: 2006-08-11

PROJECT: "Lawyer 2006"
CERTIFICATE COMMENTS: ""
PO NUMBER: "HOLE: 06-CC-06"

	Au-AA23	Ag-AA45	Ag-AA46
SAMPLE	Au	Ag	Ag
	ppm	ppm	ppm
32001	0.317	7.2	PER
32002	0.169	4	
32003	0.182	4.4	
32004	0.145	3.8	1
32005	0.538	4.3	
32006	0.238	2.2	i
32007	0.106	2.4	ļ <u></u>
32008	0.126	2.9	1
32009	0.45	2.5	
32010	0.409	2.5	
32011	1.045	3.5	
32012	0.106	2.	
32013	0.151	1.6	1
32014	0.035	1	[
32015	0.089	2.1	†
32016	0.035	1.8	
32017	0.047	1.8	
32018	0.037	1.8	ĺ
32019	0.045	1.3	
32020	0.016	1.1	. [
32021	0.069	5.7	ŀ
32022	0.04	3.1	
32023	0.069	4.6	
32024	0.047	1.6	1
32025	0.005	0.6	-
32026	0.009	8.0	-
32027	0.019	0.7	
32028	0.009	0.8	
32029	0.048	0.9	1
32030	0.023	3.2	-
32031	0.068	1	
32032	0.082	1.6	1
32033	0.034	0.9	1
32034	0.024	2.5	[
32035	0.033	8.1	-
32036	0.516	20.9	
32037	0.26	12.9	j
32038	0.74	13.8	İ
32039	0.366	6.5	
32040	0.052	19.8	l

	Au-AA23	Ag-AA45	Ag-AA48
SAMPLE	Au	Ag	Ag
-	ppm	ppm	ppm
32041	0.032	3.9	F F-111
32042	0.025	2.8	
32043	0.084	1.7	
32044	0.057	3.2	
32045	0.148	2	
32046	0.032	4.5	
32047	0.024	2.7	
32048	0.739	1.9	
32049	0.5	2.4	
32050	0.09	1.9	ł
32051	0.115	3.7	
32052	0.042	1.3	
32053	0.071	2	
32054	0.039	2.7	
32055	0.03	2.4	i
32056	0.038	2.6	ł
32057	0.085	2.3	1
32058	0.035	3.7	
32059	0.308	4	
32060	0.041	2.2	i
32061	0.033	2.4	
32082	0.029	1.2	-
32063	0.271	5.6	i
32064	0.22	2.1	
32065	0.07	2.1	- 1
32066	0.025	1.8	i
32067	0.016	0.5	
32068	0.064	1.1	1
32069	0.173	1.2	1
32070	0.033	1.6	ļ
32071	0.175	0.8	
32072	0.156	1.4	1
32073	0.023	0.9	1
32074	0.076	1.2	j
32075	0.064	1.2	
32076	0.185	4.4	
32077	0.081	1.7	
32078	0.043	2.5	
32079	0.149	2.4	
32080	0.042	2.4	
32081	0.486	2.7	1
32082	0.121	1.7	1
32083	0.095	1.8	
32084	0.045	1.9	İ
32085	0.029	2.4	
32086	1.3	34.1	
		•	•

	Au-AA23	Ag-AA45	Ag-AA46
SAMPLE	Au	Ag	Ag
DESCRIPTION	ppm	ррт	ррт
32087	0.293	4.8	
32088	0.089	4	
32089	0.124	3.9	
32090	0.149	4	
32091	0.648	13.6	
32092	0.256	5.9	
32 09 3	0.249	7.5	
32094	0.133	4.1	
32095	0.208	2.7	
32096	0.587	45.8	
32097	0.031	1.7	
32098	0.347	>100	154
32099	0.017	5.8	
32100	0.02	3. 6	
32101	0.044	8.7	
32102	0.014	2	1
32103	0.006	0.7	•

GARY NORDIN

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GUARDSMEN RESOURCES INC. 525 - 1027 DAVIE STREET VANCOUVER BC V6E 4L2 Page: 1 Finalized Date: 8-AUG-2006

Account: KFP

QC CERTIFICATE VA06066954

Project Lawyer 2006
P.O. No.: HOLE: 06-CC-07
This report is for 98 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 10-JUL-2006.
The following have access to data associated with this certificate:

KURT BORDIAN

| BARNEY BOWEN | SCOTT GIFFORD

SAMPLE PREPARATION		
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
PUL-QC	Pulverizing QC Test	
LOG-22	Sample login - Rod w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	

ANALYTICAL PROCEDU	RES
DESCRIPTION	INSTRUMENT
Au 30g FA-AA finish	AAS
Trace Ag - aqua regis/AAS	AAS
	DESCRIPTION Au 30g FA-AA finish

To: GUARDSMEN RESOURCES INC. ATTN: BARNEY BOWEN 525 - 1027 DAVIE STREET VANCOUVER BC V6E 4L2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Kaith Rogers, Executive Manager Vancouver Laboratory

Phillips

VA06066954 - Finalized

CLIENT: "KFP - Guardsmen Resources Inc."

of SAMPLES: 98

DATE RECEIVED: 2006-07-10 DATE FINALIZED: 2006-08-08

PROJECT: "Lawyer 2006"

CERTIFICATE COMMENTS: "Additional Ag-AA45 result for sample 32179 is 13.5pt

PO NUMBER: "HOLE: 08-CC-07"

	Ag-AA45
	Ag
	ppm
i ·	2
	3
	2.5
	3.1
	1.9
	2.1
	2.2
	1.3
	2
	0.9
	1.2
	1.1
	1.1
	1.4
	1.5
	1.6
	1.3
•	1.8
	1.3
	2.1
1	2.9
	3.4
	5.8
	0.5
	2.8
	4.1
i	0.9
	3.4
	4.1
	2.8
	2.2
	5.5
	3.5
	7.3
	7.2
	16.2
,	6.2
	1.7
	3.3
0.096	2
	Au-AA23 Au ppm <0.005 0.052 0.035 0.066 0.033 0.026 0.025 0.024 0.019 0.007 0.017 0.074 0.02 0.025 0.031 0.034 0.013 0.024 0.229 0.053 0.045 0.019 0.009 0.022 0.033 0.009 0.039 0.056 0.02 0.039 0.056 0.02 0.039 0.056 0.02 0.039 0.056 0.02 0.039 0.056 0.02 0.039 0.056 0.02 0.039 0.056 0.02 0.039 0.056 0.02 0.039 0.056 0.02 0.039 0.056 0.02

	Au-AA23	Ag-AA45
SAMPLE	Au	Ag
DESCRIPTION	ppm	ppm
32144		2.3
32145	0.043	1.3
32146	0.027	1.9
32147	0.048	1.5
32148	0.07	2
32149	0.029	1.8
32150		1.7
32151	0.053	1.6
32152	0.159	1.6
32153	0.082	3.4
32154	0.084	1.3
32155	0.097	2.1
32156	0.071	2
32157	0.086	
32158	0.161	2.9
32159	0.198	2.8
32160	0.225	3.2
32161	0.195	3.1
32162	0.146	3.1
32163 32164	0.07	2.6
32165	0.101	2.1
32188	0.054 0.224	2.5 3.8
32167	0.046	5.2
32168	0.122	3.3
32169	0.143	2.4
32170	0.536	6.2
32171	0.146	4.5
32172	0.075	3
32173	0.425	10.6
32174	0.244	3.3
32175	0.287	3
32176	0.126	3.4
32177	0.266	3
32178	0.509	4.5
32179	1.01	13.7
32180	5	39.7
32181	0.948	6.9
32182	0.747	3.8
32183	0.129	2.4
32184	0.297	2.3
32185	0.32	2.1
32186	0.242	2
32187	0.116	3.2
32188	0.068	3.2
32189	0.199	2.8

	Au-AA23	Ag-AA45
SAMPLE	Au	Ag
DESCRIPTION	ppm	ppm
32190	0.11	2.6
32191	0.045	1
32192	0.196	1.6
32193	0.02	1.3
32194	0.015	0.9
3 219 5	0.011	0.7
32196	0.031	2.9
32197	0.037	2.8
32198	0.021	2.2
32199	0.012	1
32200	0.038	3.9
32201	0.45	7.9

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GUARDSMEN RESOURCES INC. **\$25 - 1027 DAVIE STREET VANCOUVER BC V6E 4L2**

Page: 1 Finalized Date: 11-AUG-2006 This copy reported on 13-AUG-2006

Account: KFP

QC CERTIFICATE VA06066955

Project Lawyer 2006 P.O. No.: HOLE: 06-CC-08 This report is for 100 Drift Core samples submitted to our lab in Vancouver, BC, Canada on 10-JUL-2006. The following have access to data associated with this certificate: KURT BÖRDIAN BARNEY BOWEN SCOTT GIFFORD GARY NORDIN

SAMPLE PREPARATION		
ALS CODE	DESCRIPTION	
W(E)-21	Received Sample Weight	
LOG-22	Sample login - Rod wto BarCode	
CRU-31	Fine crushing - 70% ≪mm	
SPL-21	Spikt sample - riffle splitter	
PUL-31	Pulveripe split to 85% <75 um	

ANALYTICAL PROCEDURES				
ALS CODE	DESCRIPTION	INSTRUMENT		
Au-AA23	Au 30g FA-AA finish	AAS		
Ag-AA45	Trace Ag - aqua regis/AAS	AAS		
Ag-AA46	Ose grade Ag - aqua regis/AA	AAS		

To: GUARDSMEN RESOURCES INC. **ATTN: BARNEY BOWEN 526 - 1027 DAVIE STREET VANCOUVER BC V6E 4L2**

Signature:

Keith Rogers, Executive Manager Varicouver Laboratory

Plan Boy

VA06066955 - Finalized

CLIENT: "KFP - Guardsmen Resources Inc."

of SAMPLES: 100

DATE RECEIVED: 2008-07-10 DATE FINALIZED: 2008-08-11

PROJECT: "Lawyer 2006"
CERTIFICATE COMMENTS: ""
PO NUMBER: "HOLE: 06-CC-08"

	Au-AA23	Ag-AA45	Ag-AA48
SAMPLE	Au	Ag	Ag
DESCRIPTION	ppm		1
32202	0.008	ppm 1	ppm
32203	0.008	1.3	
32204	0.01	1.3	
32205	0.017	1.7	
32206	0.014	1.5	
32207	0.017	1.3	
32208	0.011	1.3	}
32209	0.009	1	
32210	0.021	1.2	
32211	0.008	0.8	
32212	0.006	0.9	
32213	1.88	29.5	: 1
32214	0.466	14.7	
32215	0.5	11.4	ĺ
32216	3.55	94.8	F
32217	3.03	>100	133
32218	1.82	30.4	
32219	2.21	20.1	
32220	0.052	2.1	
32221	0.166	2.7	1
32222	0.171	2.6	
32223	0.098	2.7	
32224	0.21	3.3	1
32225	0.404	4.8	1
32226	0.266	2.8	1
32227	0.175	2.7	
32228	0.107	1.4	•
32229	0.029	1.3	j
32230	0.061	1.4	
32231	0.286	2.4	i
32232	0.122	2	·
32233	0.093	2.6	f
32234	0.084	3.7	
32235	0.045	3.2	
32236	0.06	2.1	
32237	0.031	2	
32238	0.031	1.5	
32239	0.041	1.5	
32240	0.072	1.3	
32241	0.061	1.3	

	Au-AA23	Ag-AA45	Ag-AA46
SAMPLE	Au	Ağ	Ag
a san a san a san a san a san a san a san a san a san a san a san a san a san a san a san a san a san a san a	ррпз	ppm	ppm
32242	0.863	2.4	
32243	l I	2.2	
32244	0.817	3.8	}
32245	0.123	2.2	1
32246	0.05	1.4	
32247	0.04	1.4	
32248	0.032	1.4	
32249	0.058	2.5	Į
32250	0.048	0.8	
32251	2	24.7	
32252	0.545	6.9	
32253	0.11	1.3	
32254	0.048	2.1	
32255	0.061	1.4	}
32256	0.655	2.9	
32257	1.25	6.8	
32258	0.47	1.9	1
32259	0.316	1.5	Ī
32260	1.545	10	
32261	0.326	2.4	İ
32262	0.302	2.1	- 1
32283	0.328	1.8	ì
32264	0.508	1.6	
32265	0.334	3.4	
32266	0.231	2.3	
32267	0.082	1.2	[
32268	0.107	2.7	
32269	0.256	7.4	!
32270	0.294	3.6	
32271	0.274	3.2	
32272	0.079	1.9	
32273	0.122	2.6	1
32274	0.221	3.2	
32275	0.232	5	
32276	0.193	2.8	
32277	0.228	3.5	
32278	0.49	8.8	
32279	0.08	3.8	
32280	0.084	4.3	
32281	0.028	2.5	
32282	0.023	1.4	
32283	0.017	1.4	
32284	0.018	0.8	
32285	0.088	1.3	[
32286	0.035	1.8	j
32287	0.022	0.9	ļ
1			ř

	Au-AA23	Ag-AA45	Ag-AA46
SAMPLE	Au	Ag	Ag
DESCRIPTION	ppm	ppm	ppm
32288	0.015	0.9	
32289	0.022	8.0	}
32290	0.012	1	
32291	0.027	2.2	
32292	0.013	0.7	
32293	0.009	0.7	
32294	0.009	0.7	
32295	0.01	1	1
3 2296	0.018	1.5	į
32297	0.236	4.1	
32298	0.03	1.6	Ī
3 2299	0.026	1.3	
32300	0.017	0.6	1
32301	0.027	0.7	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Careda Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GUARDSMEN RESOURCES INC. 525 - 1027 DAVIE STREET **VANCOUVER BC V6E 4L2**

Page: 1 Finalized Date: 10-AUG-2006 This copy reported on 12-APR-2007

Account: KFP

QC CERTIFICATE VA06066956

Project Lawyer 2006

P.O. No.: HOLE: 06-CC-09

This report is for 87 Drill Core samples submitted to our lab in Vancouver, BC, Canada on

10-JUL-2006.

The following have access to data associated with this certificate:

KURT BORDIAN SCOTT GIFFORD

GARY NORDIN

SAMPLE PREPARATION			
ALS CODE	DESCRIPTION		
WEI-21	Received Sample Weight		
CRU-QC	Crushing QC Test		
PUL-QC	Pulverizing QC Test		
LOG-22	Sample login - Rod w/o BerCode		
CRU-31	Fine crushing - 70% <2mm		
SPL-21	Split sample - riffle splitter		
PUL-31	Pulverize split to 85% <75 um		

ANALYTICAL PROCEDURES				
ALS CODE	DESCRIPTION	INSTRUMENT		
Au-AA23	Au 30g FA-AA finish	AAS		
Ag-AA45	Trace Ag - aqua regia/AAS	AAS		

To: GUARDSMEN RESOURCES INC.

ATTN: BARNEY BOWEN 525 - 1927 DAVIE STREET **VANCOUVER BC V6E 4L2**

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Keith Rogers, Executive Manager Vancouver Laboratory

Paralley

VA06066956 - Finalized

CLIENT: "KFP - Guardsmen Resources Inc."

of SAMPLES: 87

DATE RECEIVED : 2008-07-10 DATE FINALIZED : 2008-08-10

PROJECT: "Lawyer 2006"
CERTIFICATE COMMENTS: ""
PO NUMBER: "HOLE: 06-CC-09"

	Au-AA23	Ag-AA45
SAMPLE	Au	Ag
DESCRIPTION	ppm	ppm
32302	0.016	0.9
32303	0.013	0.7
32304	0.629	4.1
32305	0.062	4.5
3230 6	1.82	76.9
32307	0.125	14.3
32308	0.028	3.6
32309	0.077	8.8
32310	0.02	2.8
32311	0.024	3.3
32312	0.11	5.7
32313	0.024	2.5
32314	0.131	1.4
32315	0.018	2.2
3231 6	0.022	3.3
32317	0.023	3.6
32318	0.024	3.1
32319	0.018	2.1
32320	0.044	1.8
32321	0.01	1.4
32322	0.017	1.5
3 2323	0,008	2.7
32324	0.009	5.4
32325	0.043	0.8
32326	0.04	1.5
32327	0.525	2.1
32328	0.117	2.1
32329	0.159	2.2
32330	0.261	1.4
32331	0.075	1.8
32332	0.018	1.8
32333	0.044	1.8
32334	0.044	2.3
32335	0.035	1.3
32338	0.038	1.5
32337	0.024	1.6
32338	0.036	1.6
32339	0.029	1.7
32340	0.011	1.3
32341	0.012	1.8

	Au-AA23	Ag-AA45
SAMPLE	Au	Ag
	ppm	ppm
32342	0.015	1.4
32343	0.095	2.4
32344	0.056	2.1
32345	0.019	1.1
32348	0.013	1.1
32347	0.034	1.3
32348	0.037	2.1
32349	0.032	1.1
32350	0.007	0.8
32351	0.028	1.8
32352	0.023	1.6
32353	0.051	1.1
32354	0.154	1.4
32355	0.134	1.9
32356	0.066	1.5
32357	0.248	1.5
32358	0.313	2.3
32359	0.202	2.6
32360	0.418	2.6
32361	2.5	6
32362	2.32	4.8
32363	0.041	5.2
32364	0.039	2.4
32365	0.065	2.5
32366 32366	0.049	
32367	0.041	1.8
32368	0.023	1.8
32369	0.023	1.4 0.5
32370	0.017	- 1
32371	0.012	0.6
32372	0.012	1.2
32373	0.019	1 2.2
32374		
· · · · · · · · · · · · · · · · · · ·	0.013 0.007	1.7
32375		0.4
32376	0.015	1
32377	0.011	1.2
32378	0.012	1.1
32379	0.012	0.9
32380	0.012	0.4
32381	0.007	0.4
32382	0.017	0.9
32383	0.027	5.1
32384	0.011	3.5
32385	0.019	4.3
32386	0.006	0.6
32387	0.011	0.5

	Au-AA23	Ag-AA45
	Au	Ag
DESCRIPTION	ppm	ppm
32388	0.012	0.7

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Carneda Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemax.com

To: GUARDSMEN RESOURCES INC. 525 - 1927 DAVIE STREET VANCOUVER BC V6E 4L2 Page: 1 Finalized Date: 11-AUG-2006 This copy reported on 12-APR-2007

Account KFP

QC CERTIFICATE VA06066957

Project Lawyer 2006

P.O. No.: HOLE: 06-CC-10

This report is for 98 Drill Core samples submitted to our lab in Vancouver, EC, Canada on

10-JUL-2006.

The following have access to data associated with this certificate:

KURT BORDIAN

SCOTT GIFFORD

GARY NORDIN

SAMPLE PREPARATION			
DESCRIPTION			
Received Sample Weight			
Crushing QC Test			
Sample login - Rod wto BarCode			
Fine crushing - 70% <2mm			
Split sample - riffle splitter			
Pulverize split to 85% <75 um			

ANALYTICAL PROCEDURES			
ALS CODE	DESCRIPTION	INSTRUMENT	
Au-AA23	Au 30g FA-AA finish	AAS	
Ag-AA45	Trace Ag - aqua regis/AAS	AAS	
Ag-AA46	Ore grade Ag - aqua regia/AA	AAS	

To: GUARDSMEN RESOURCES INC.

ATTN: BARNEY BOWEN 525 - 1027 DAVIE STREET VANCOUVER BC V6E 4L2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Keith Rogers, Executive Marrager Vancouver Laboratory

Phone Com

VA06066957 - Finalized

CLIENT: "KFP - Guardsmen Resources Inc."

of SAMPLES: 98

DATE RECEIVED: 2006-07-10 DATE FINALIZED: 2006-08-11

PROJECT: "Lawyer 2006"
CERTIFICATE COMMENTS: ""
PO NUMBER: "HOLE: 08-CC-10"

	Au-AA23	Ag-AA45	Ag-AA45	Ag-AA45	Ag-AA48
SAMPLE	Au	Ag	Ag Check	Ag Check2	
	ppm	ppm	ppm	ppm	ppm
32389	0.029	2.8			
32390	0.283	4	1	,	
32391	0.035	1			l 1
32392	0.013	0.6			
32393	0.034	1.1	[ĺ	1
32394	0.037	1.8	ł	•	
32395	0.08	8.2			
32396	0.174	7			
323 9 7	0.481	10.2]
32398	1.645	12.2			
3239 9		>100			106
32400	1.995	89.7			
32401	0.123	9.9			
32402	0.091	5.9			
32403	0.051	5.4			
32404	0.039	4			
32405	0.034	3.7			
32406	0.258	3			
32407	0.139	2.3			
32408	0.05	3		:	
32409	0.411	1.7			.
32410	0.165	1.4			
32411 32412	0.1 0.3 9 3	2 1.7			
32413	0.04	1.7			
32413 32414	0.522	1.3			
32415	0.322	1.7		:	ŀ
32416	4.31	1.3			
32417	1.305	9.1	33.2	1.8	!
32418	0.33	2.1	2.2	,	
32419	2.31	2.1	5.2	1.3	ŀ
32420	3.13	2.7	1.5	1.1	
32421	1.035	1.4	1.2	•	
32422	0.165	1.6		i	1
32423	0.609	2	Į		
32424	0.916	2.5			
32425	1.025	2.6			
32426	0.284	1.7			
32427	0.806	1.8			
32428	0.102	1.9			

	AU-AA23	Ag-AA45	Ac-AA45	Ag-AAA5	Ag-AA46
SAMPLE	Au	Ag		Ag Check2	, –
DESCRIPTION	ľ	ppm	ppm	ppm	ppm
32429	0.639	2	PE	PP1	PP
32430	0.33	2.7		İ	
32431	0.138	1.7		ŀ	ŀ
32432	•	10.1		ŀ	j
32433	,	12.2	:		
32434	1.37				
32435					
32436	1.185	14			
32437	0.284	4.8			
32438	5.20	7.0			
32439	0.217	<0.2			
32440		1.2			
32441	1.145				
32442					
32443	1	1.6			
32444	0.034	2.4	2.2		
32445	1	1.7	1.5		
32446		1.2			
32447	0.023	1.7			
32448	0.044	3.2		•	
32449	0.03	2.9			
32450	0.11	1.9			
32451	0.053	1.5			:
32452	0.017	1.4			
32453	0.015	1.3			
32454	0.014	1.6			
32455	0.011	0.8		·]
32456	0.015	0.7			
32457	0.043	1.7]
32458	0.026	1.6			
32459	0.052	1.7	:		
32460	0.048	1.4			
32451	0.046	1.6			
32462	0.124	1.1			
32463	0.037	1.3			1
32464	0.03	1.2			ļ
32465	0.028	0.7			
32466	0.042	1.2			
32467	0.027	1.1	İ		ļ
32468	0.025	1			Į
32469	0.057	3]	ļ
32470	0.012	0.9			i
32471	0.064	1	Ì		
32472	0.023	1.3			1
32473	0.025	1.3]	ļ
32474	0.013	0.8		1	i

SAMPLE	Au-AA23 Au	Ag-AA45 Ag	Ag-AA45 Ag Check	Ag-AA45 Ag Check2	Ag-AA46
DESCRIPTION		ppm	ppm	ppm	ppm
32475	0.025	0.9		1	
32476	0.05	1			
32477	0.026	1.3		ł	
32478	0.044	1.2			1
32479	0.021	1.1			
32480	0.015	0.8	•		
32481	0.013	0.8			
32482	0.026	0.9			
32483	0.035	1.8			

Fire Assay Procedure – Au-AA23 & Au-AA24 Fire Assay Fusion, AAS Finish

Sample Decomposition:

Fire Assay Fusion (FA-FUS01 & FA-

FUS02)

Analytical Method:

Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 mL dilute nitric acid in the microwave oven, 0.5 mL concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 mL with de-mineralized water, and analyzed by atomic absorption spectroscopy against matrix-matched standards.

Method Code	Element	Symbol	Units	Sample Weight (g)	Lower Limit	Upper Limit	Default Overlimit Method
Au-AA23	Gold	Au	ppm	30	0.005	10.0	Au- GRA21
Au-AA24	Gold	Au	ppm	50	0.005	10.0	Au- GRA22

<u>Geochemical Procedure</u> – ME-AA45 Atomic Absorption Spectroscopy – Aqua Regia Digestion

Sample Decomposition:

HNO₃ – HCl Aqua Regia Digestion (GEO-AR01)

Analytical Method:

Atomic Absorption Spectroscopy (AAS)

A prepared sample (0.50 g) is digested with aqua regia for 45 minutes in a graphite heating block. After cooling, the resulting solution is diluted to 12.5 mL with demineralized water, mixed and analysed by atomic absorption spectrometry.

Note: Although some base metals may dissolve quantitatively in the majority of geological matrices, data reported from an aqua regia digestion should be considered as representing only the leachable portion of a particular analyte. The recovery percentage of many analytes from more resistive minerals can be very low, but the acid leachable portion can be an excellent exploration too.

Element	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Silver	Ag	ppm	0.2	100	Ag-AA46
Arsenic	As	ppm	5	10000	As-AA46
Cobalt	Co	ppm	1	10000	Co-AA62
Copper	Cu	ppm	1	10000	Cu-AA46
Molybdenum	Mo	ppm	1	10000	Mo-AA46
Nickel	Ni	ppm	1	10000	Ni-AA62
Lead	Pb	ppm	1	10000	Pb-AA46
Zinc	Zn	ppm	1	10000	Zn-AA46

Assay Procedure – ME-AA46 Evaluation of Ores and High Grade Materials by Aqua Regia Digestion – AAS

Sample Decomposition: Analytical Method:

Aqua Regia Digestion (ASY-AR01)
Atomic Absorption Spectroscopy (AAS)

A prepared sample (0.4) g is digested with concentrated nitric acid for one half hour. After cooling, hydrochloric acid is added to produce aqua regia and the mixture is then digested for an additional hour and a half. An ionization suppressant is added if molybdenum is to be measured. The resulting solution is diluted to volume (100 or 250) mL with demineralized water, mixed and then analyzed by atomic absorption spectrometry against matrix-matched standards.

Element	Symbol	Units	Lower Limit	Upper Limit	Default Over Limit Method
Silver	Ag	ppm	1	1500	Ag-GRA21
Arsenic	As	%	0.01	30	
Bismuth	Bi	%	0.001	30	
Cadmium	Cd	%	0.0001	10	
Cobait	Co	%	0.01	50	
Copper	Cu	%	0.01	50	
Iron	Fe	%	0.01	30	
Manganese*	Mn	%	0.01	50	
Molybdenum	Мо	%	0.001	10	
Nickel	Ni	%	0.01	50	
Lead	Pb	%	0.01	30	
Antimony	Sb	%	0.01	20	
Zinc	Zn	%	0.01	30	

^{*} Element generally reported as oxide.

APPENDIX 3 LAWYERS 2006 PROJECT COSTS

APPENDIX 3

LAWYERS 2006 PROJECT COSTS

Guardsmen Resources Inc.

Bishop Gold Inc. Lawyers 2006 Final Project Costs Aug. 21/06

11-Man Camp		13,200.00
Accounting		4,217.80
Assays		10,776,08
Crew		28,587.50
Diesel Generator		2,086.50
Drilling Supplies		2,231.07
Expediting		1,413.75
FM Radios		210.51
Fuel		3,323.84
Geologist		7,225.00
Misc		4,143.13
Other Costs (Meals/Hotel/T	ravel & Comm)	4,995.81
Road Construction		21,656.57
Trailer Rental		1,016.50
Truck Rentals		8,737.84
	Total Project Costs	113,821.90
Drilling		80,564.7
Drilling - Mob & DeMob		7,330.00
	Total Drilling Costs	87,894.74
Management Fees on Pro	pject Costs 10%	11,382.1
Management Fees on Dri	lling Costs 2.5%	2,197.3
	Subtotal Project Costs	215,296.2
	GST 6%	12,917.7
	TOTAL PROJECT COSTS	228,213,9

Crew Name	Position	Payment Date	Days Worked	Daily Rate	Total Notes	
lan Brett	General Labourer	June 30/06	3.00	125.00	375.00 June 23,24,25/06	
Kristian Rasmussen	General Labourer	June 30/06	6.00	125.00	750.00 June 20,21,22,23,24,25/06	
Erl Chambers	Carpenter	June 30/06	6.00	150.00	900.00 June 20,21,22,23,24,25/06	
		July 10/06	3.00	300.00	900.00 July 8,9,10/06 1,800.00	
Scott Gifford	Project Manager	June 30/06	8.00	200.00	1,600.00 June 16,19,20,21,22,23,24,25/	06
		June 30/06	5.00	400.00	2,000.00 June 26,27,28,29,30/06	
		July 7/06	7.00	400.00 _	2,800.00 July 1,2,3,4,5,6,7/06 6,400.00	
Lee Gifford	Geological Assistant	June 30/06	8.00	150.00	1,200.00 June 16,19,20,21,22,23,24,25/	06
		July 30/06	5.00	300.00	1,500.00 June 26,27,28,29,30/06	
		July 7/06	7.00	300.00	2,100.00 July 1,2,3,4,5,6,7/06 4,800.00	
Rafael Diaz	Field Chief/Geo Assistant	June 30/06	7.00	175.00	1,225.00 June 19,20,21,22,23,24,25/06	
		June 30/06	5.00	350.00	1,750.00 June 26,27,28,29,30/06	
		July 7/06	7.00	350.00 _	2,450.00 July 1,2,3,4,5,6,7/06 5,425.00	
Harry Huffels	Field Co-ordinator	June 30/06	8.00	175.00	1,400.00 June 16,19,20,21,22,23,24,25/	06
		June 30/06	5.00	350.00	1,750.00 June 26,27,28,29,30/06	
		July 7/06	7.00	350.00	2,450.00 July 1,2,3,4,5,6,7/06	
				_	5,600.00	
Gonzalo Zuniga	Gastronomic Art Cook	June 30/06	1.00	137.50	137.50 June 25/06	
		June 30/06	5.00	275.00	1,375.00 June 26,27,28,29,30/06	
		July 7/06	7.00	275.00 <u> </u>	1,925.00 July 1,2,3,4,5,6,7/06 3,437.50	
TOTALS		<u> </u>	110.00		\$28,587.50	

Guardsmen Resources Inc.. Projects Allocation Detail Lawyers 2006 Detail Report from 06/01/2006 to 12/31/2006

ROAD MAINTENANCI

71265 Road Maintenance

LOMAK DETAILS		HRS	Rate	Total	
June 30/06	Lomak Road Maintenance Corp. Lowbed Grader Excavator Labourer & Pickup Pilot Vehicle CD sent to Guardsmen Resources	Inv R00638 14.5 19.5 76 2 10	100 127.2 143.45 55	1,450.00 2,480.40 10,902.20 110.00 550.00 16.47 15,509.07	
July 7/06	Lomak Road Maintenance Corp (Guardsmen Supplied fuel)	Fuel Ded		-4,319.50	
July 31/06	Lomak Road Maintenance Corp Excavator Lowbed Pilot Vehicle	Inv R00656 60 12 12 207	143.45 100	8,607.00 1,200.00 660.00 10,467.00 21,656.57	
ROAD MAINTENANCE SUMMARY:					
06/30/2006 07/07/2006 07/31/2006	Lomak Road Maintenance Corp Lomak Road Maintenance Corp Lomak Road Maintenance Corp	R00635 Fuel Deduc R00656	15,509.07 -4,319.50 10,467.00 21,656.57		

E - LAWYERS 2006

APPENDIX 4 STATEMENT OF WORK

APPENDIX 4

STATEMENT OF WORK

(filed on-line February 3, 2007)

From: MT_online@gov.bc.ca [mailto:MT.online@gov.bc.ca]

Sent: Saturday, February 03, 2007 8:46 AM

To: bishopgold@shaw.ca

Subject: SOW-M (4126265) 2007/FEB/03 8:46:11 Mineral Titles Online,

Transaction event, Email confirmation

Event Number: 4126265

Event Type: Exploration and Development Work / Expiry Date Change

Work Type Code: T

Required Work Amount: 57360.05

Total Work Amount: 228213.97

Total Amount Paid: 2868.0

PAC Name: bishop

PAC Debit: 0.00

Tenure Number: 510068

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 559,40

Tenure Submission Fee: 27.97

Tenure Number: 510069

Tenure Type: M
Tenure Subtype: C
Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 559,26

Tenure Submission Fee: 27.96

Tenure Number: 510070

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 419.39

Tenure Submission Fee: 20.97

Tenure Number: 510071

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09

Tenure Required Work Amount: 3354.05

Tenure Submission Fee: 167.70

Tenure Number: 510072

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 698.93

Tenure Submission Fee: 34.95

Tenure Number: 510073

Tenure Type: M Tenure Subtype: C

Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 559.14

Tenure Submission Fee: 27.96

Tenure Number: 510074

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09

Tenure Required Work Amount: 2934.24

Tenure Submission Fee: 146.71

Tenure Number: 510075

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 838.81

Tenure Submission Fee: 41.94

Tenure Number: 510076

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 6153.34

Tenure Submission Fee: 307.67

Tenure Number: 510077

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09

Tenure Required Work Amount: 3493.74

Tenure Submission Fee: 174.69

Tenure Number: 510078

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 4331.12

Tenure Submission Fee: 216,56

Tenure Number: 510079

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 3355.00

Tenure Submission Fee: 167,75

Tenure Number: 510080

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 5585.63

Tenure Submission Fee: 279.28

Tenure Number: 510081

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09

Tenure Required Work Amount: 4188.82

Tenure Submission Fee: 209.44

Tenure Number: 510082

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 977.89

Tenure Submission Fee: 48.89

Tenure Number: 510083

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09

New Good To Date: 2010/nov/09

Tenure Required Work Amount: 1955.50

Tenure Submission Fee: 97.78

Tenure Number: 510084

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 558.86

Tenure Submission Fee: 27.94

Tenure Number: 510185

Tenure Type: M Tenure Subtype: C Claim Name:

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 558.99

Tenure Submission Fee: 27.95

Tenure Number: 383411

Tenure Type: M Tenure Subtype: C Claim Name: WO 1

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 200.00

Tenure Submission Fee: 10.00

Tenure Number: 383412

Tenure Type: M Tenure Subtype: C Claim Name: WO 2

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 200.00

Tenure Submission Fee: 10.00

Tenure Number: 383414

Tenure Type: M Tenure Subtype: C Claim Name: WO 4

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 200.00

Tenure Submission Fee: 10.00

Tenure Number: 383417

Tenure Type: M Tenure Subtype: C Claim Name: WO 7

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 200.00 Tenure Submission Fee: 10.00

Tenure Number: 389432

Tenure Type: M Tenure Subtype: C

Claim Name: SHOTGUN 4
Old Good To Date: 2009/nov/09
New Good To Date: 2010/nov/09
Tenure Required Work Amount: 200.00

Tenure Submission Fee: 10.00

Tenure Number: 389433 Tenure Type: M Tenure Subtype: C

Claim Name: SHOTGUN 5 Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09 Tenure Required Work Amount: 200.00

Tenure Submission Fee: 10.00

Tenure Number: 389435

Tenure Type: M Tenure Subtype: C

Claim Name: SHOTGUN 7
Old Good To Date: 2009/nov/09
New Good To Date: 2010/nov/09
Tenure Required Work Amount: 200.00

Tenure Submission Fee: 10.00

Tenure Number: 389436

Tenure Type: M
Tenure Subtype: C

Claim Name: SHOTGUN 8
Old Good To Date: 2009/nov/09
New Good To Date: 2010/nov/09
Tenun Popular Work Amount 200

Tenure Required Work Amount: 200.00

Tenure Submission Fee: 10.00

Tenure Number: 506499

Tenure Type: M Tenure Subtype: C Claim Name: Law 1

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09

Tenure Required Work Amount: 3353.18

Tenure Submission Fee: 167.66

Tenure Number: 506501

Tenure Type: M Tenure Subtype: C Claim Name: Law 2

Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09

Tenure Required Work Amount: 3496.58

Tenure Submission Fee: 174.83

Tenure Number: 517518

Tenure Type: M Tenure Subtype: C

Claim Name: WO FRACTION Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09

Tenure Required Work Amount: 1958.57

Tenure Submission Fee: 97.93

Tenure Number: 517521 Tenure Type: M Tenure Subtype: C

Claim Name: BISHOP FRACTION Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09

Tenure Required Work Amount: 1398.90

Tenure Submission Fee: 69.95

Tenure Number: 517522

Tenure Type: M Tenure Subtype: C

Claim Name: ATTORNEY CREEK Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09

Tenure Required Work Amount: 2375.94

Tenure Submission Fee: 118.80

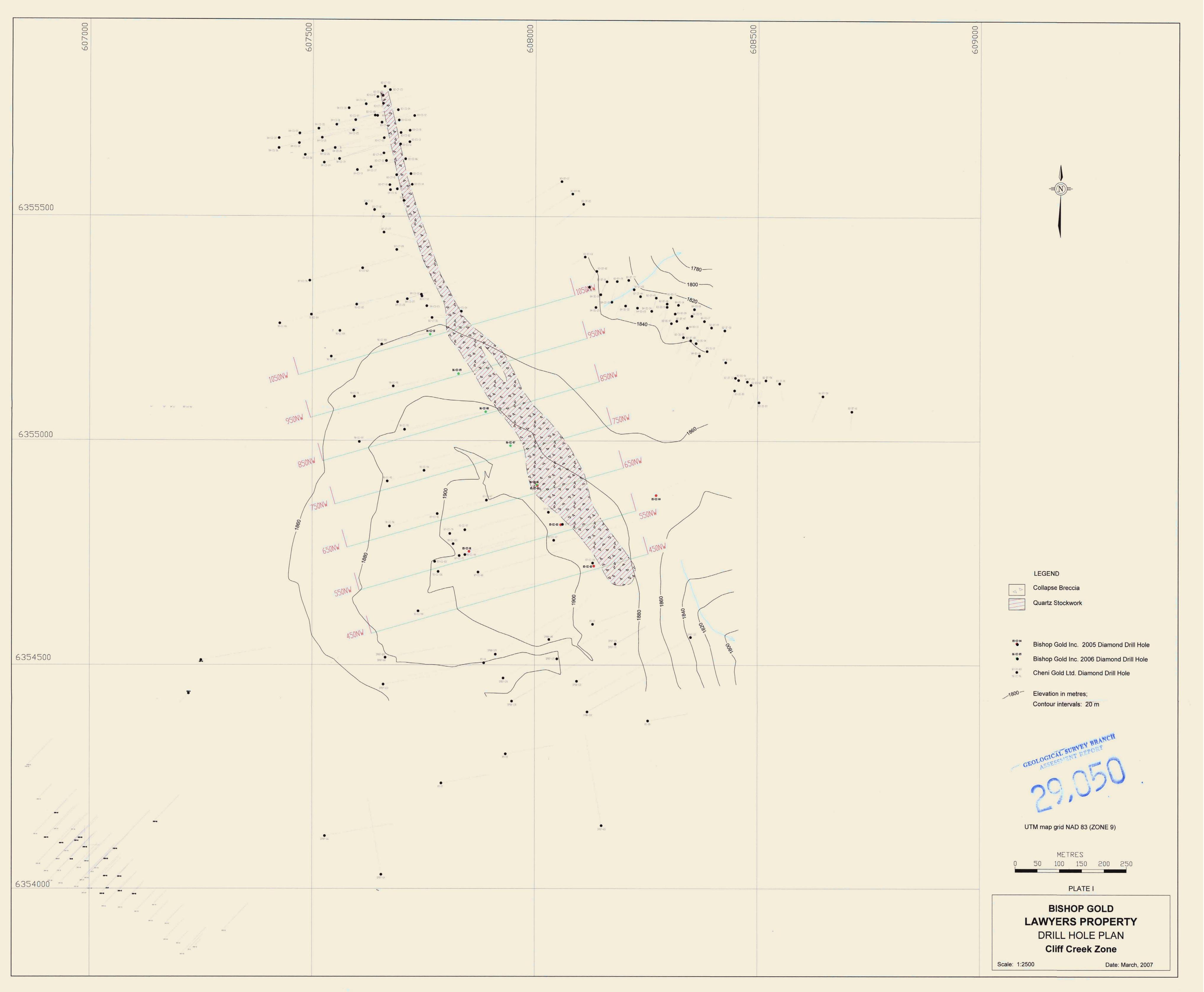
Tenure Number: 517525

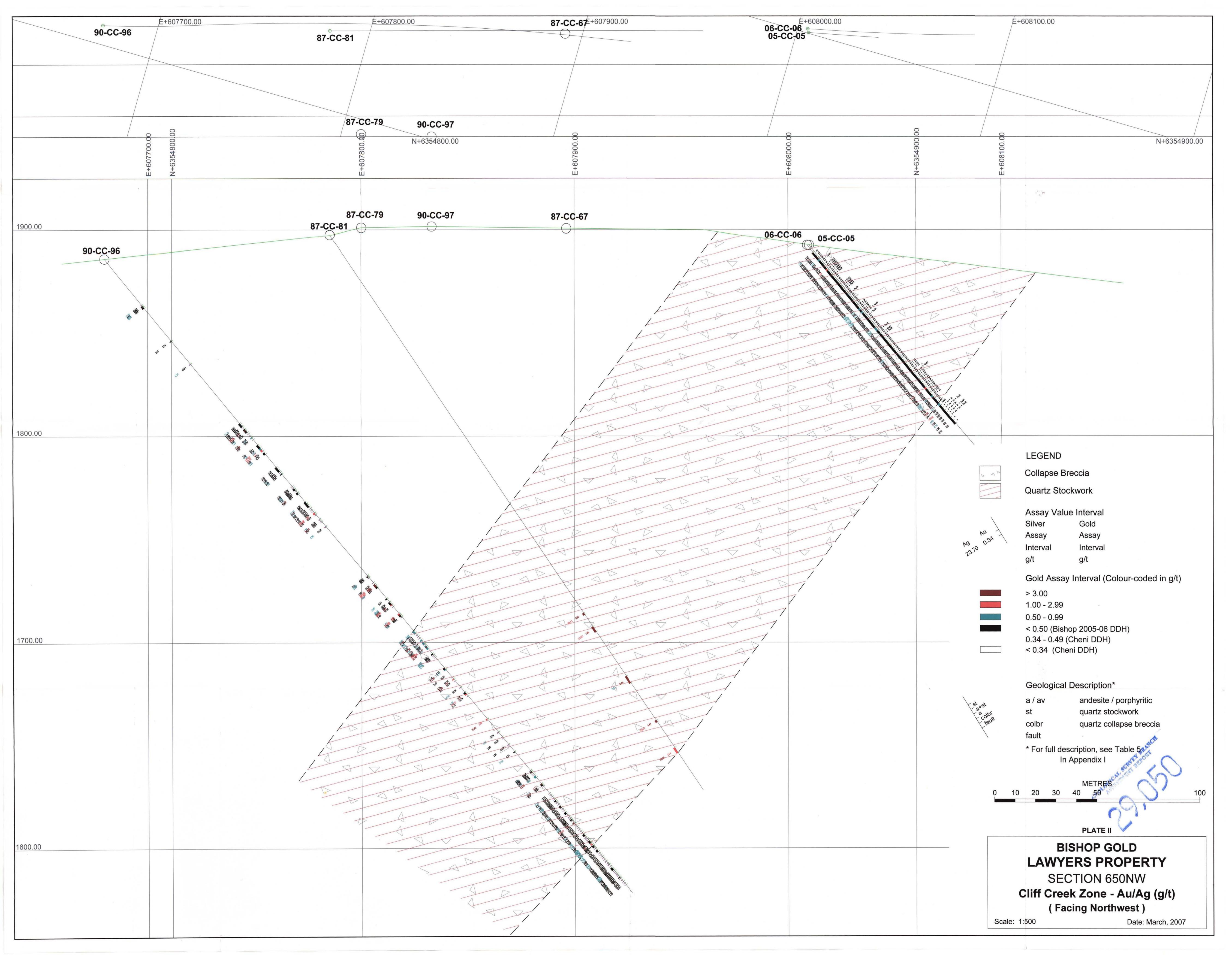
Tenure Type: M
Tenure Subtype: C
Claim Name: FRACTION
Old Good To Date: 2009/nov/09
New Good To Date: 2010/nov/09
Tenure Required Work Amount: 139.91

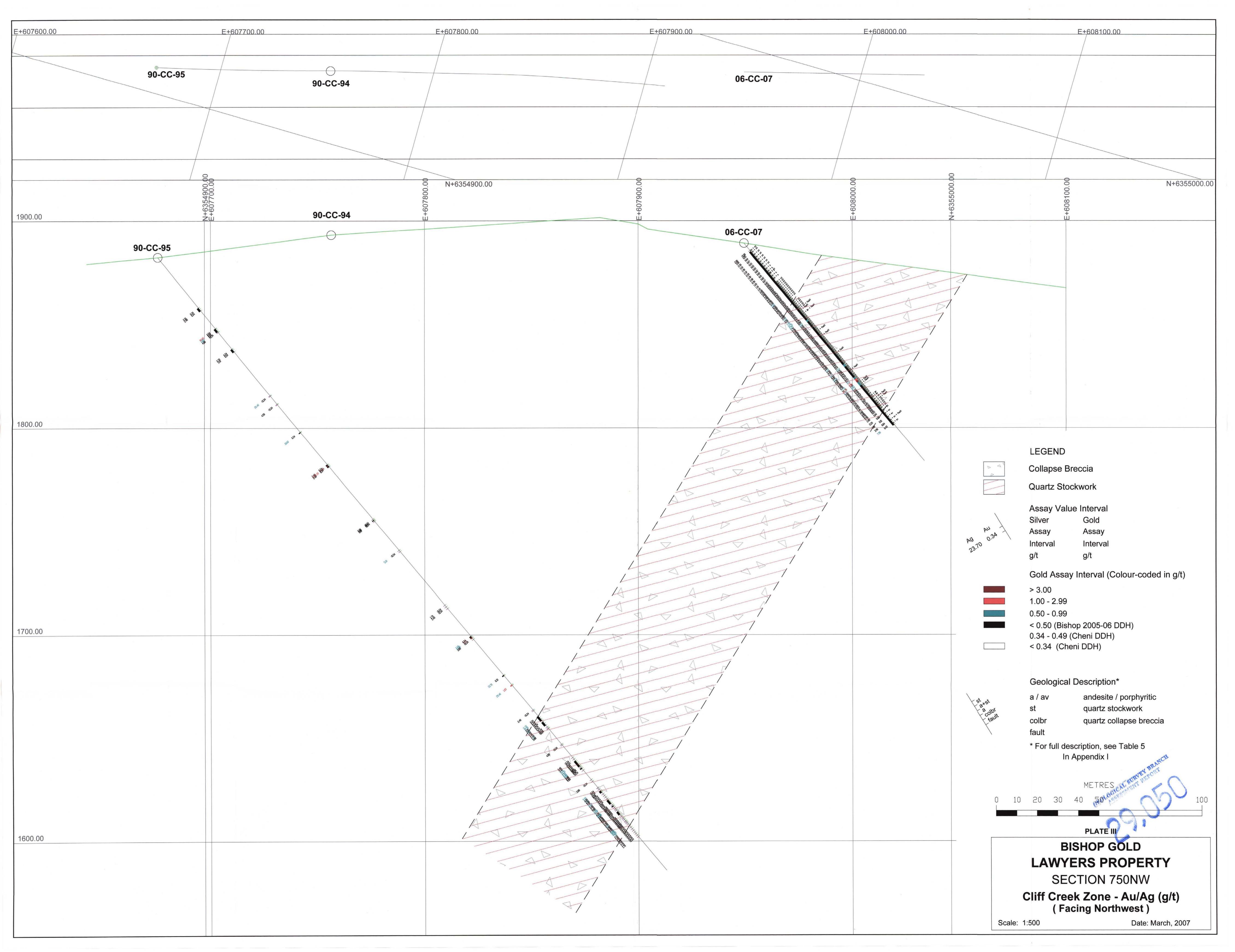
Tenure Submission Fee: 7.00

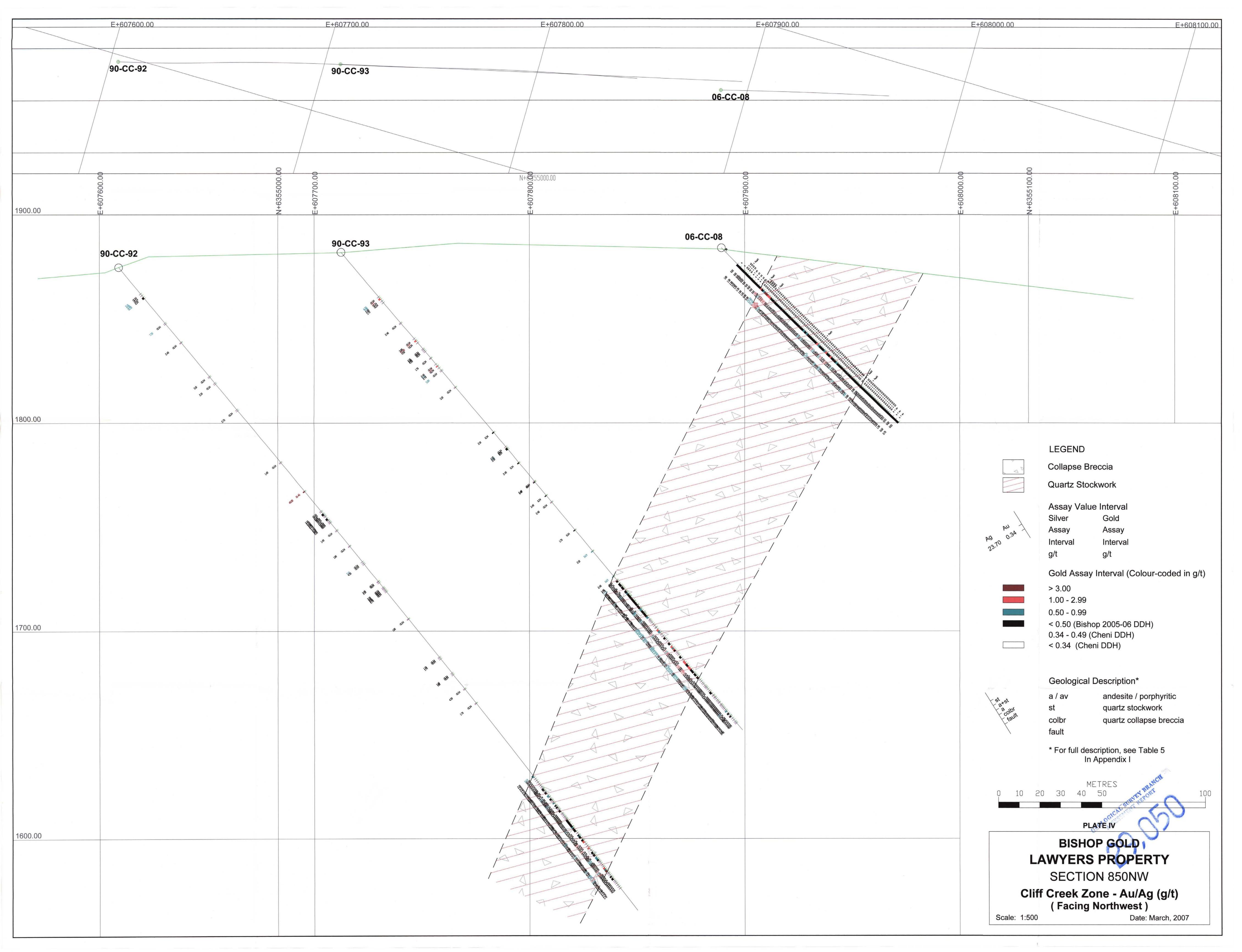
Tenure Number: 517527

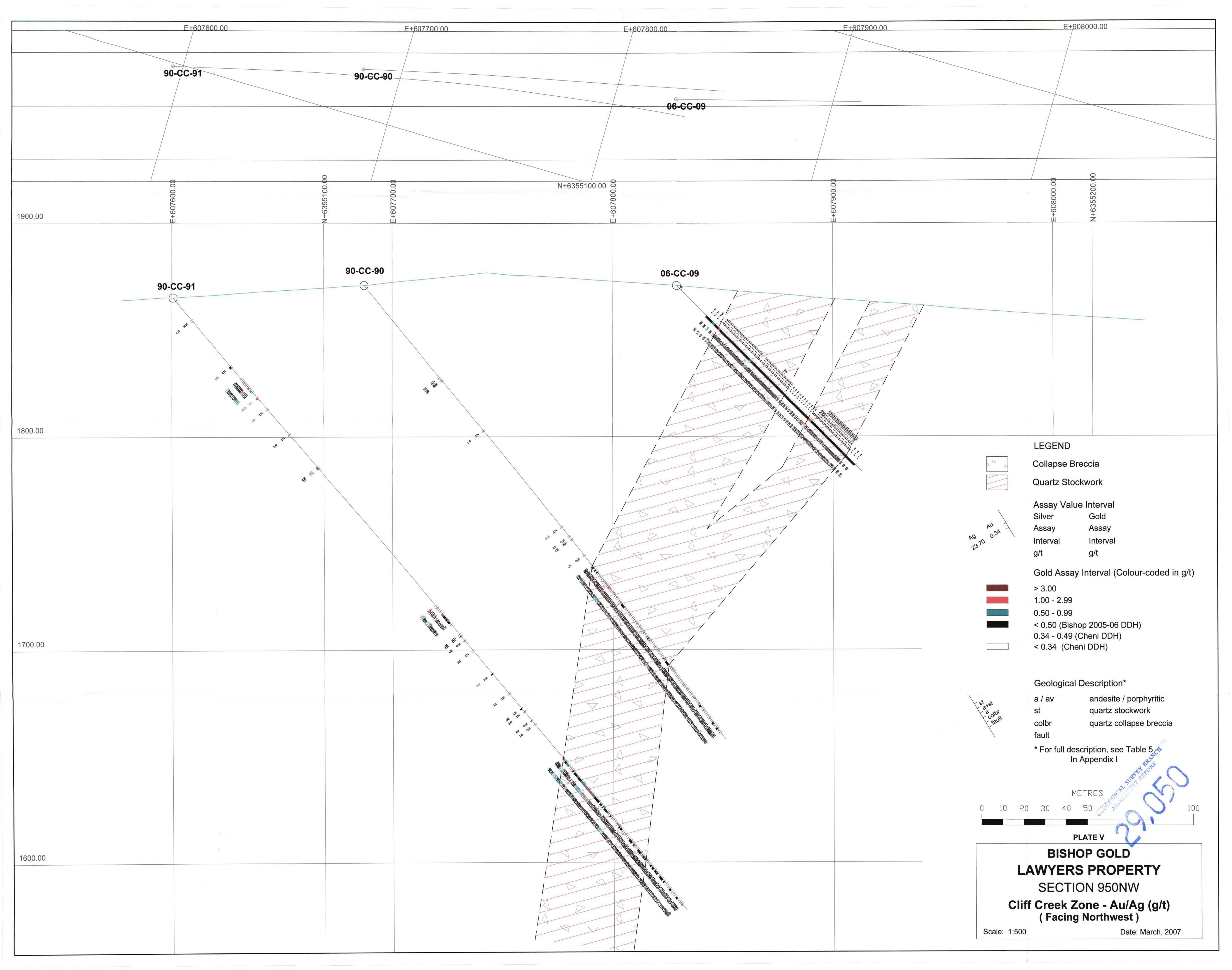
Tenure Type: M Tenure Subtype: C


Claim Name: STEALTH FRACTION Old Good To Date: 2009/nov/09 New Good To Date: 2010/nov/09


Tenure Required Work Amount: 1954.86


Tenure Submission Fee: 97.74


Your technical work report is due in 90 days as per Section 33 of the Mineral Tenure Act and Section 16 and Schedule A of the Mineral Tenure Act Regulation. Please attach a copy of your confirmation page to the front of your report.


Server Name: PRODUCTION

