Diamond Drilling Assessment Report on the

FIREWEED PROPERTY

Babine Lake Area, Omineca Mining Division BC Ger and Bajo Claims

NTS map 093M-01W Lat. 55°00'43" Long. 126°25'56" 6098915 N; 664200 E UTM zone10U:

For:

JANTAR RESOURCES LTD.

Suite 817, 938 Howe Street Vancouver BC V6Z 1N9 Tel 604-684-9333 Fax 604-684-9331

BY:

W.A. Howell, P.Geo.

GROLOGICAL SURVEY BRANCH

ASSECSMENT REPORT

15294 96 A Avenue, Surrey BC Canada V3R 8P5 Tel: 604 583-2049 Fax: 604 583-2079 E-mail: wahowell@telus.net

April 24, 2007

Gold Commissioner's Office

SUMMARY

The Fireweed claim group is located on the southwest side of Babine Lake, in north central British Columbia, near the summer resort of Smithers Landing, 60 kilometres northeast of the town of Smithers.

The centre of the claims is at 55° 01' North latitude and 126° 25' W. Longitude. Elevations on the property range from 710 meters (2,335 feet) at the level of Babine Lake up to 1,160 meters (3,800 feet) along the south edge of the claims.

The claim group comprises 12 contiguous claims or approximately 4230 hectares in area. The claims are owned outright by Mansfield Minerals Inc., with a capped 2% NSR held by J. Leask and partners.

Under an agreement with Mansfield, Jantar can earn 50% working interest in the Fireweed property by completing a series of cash payments, share allocations and work commitments over 5 years totalling: \$500,000 cash, 200,000 shares and \$1.50 million in exploration expenditures. The above terms are covered by a formal option and joint venture agreement.

The Fireweed deposit is a polymetallic deposit of massive sulphide, sulphide breccia and disseminated sulphide replacement type mineralization in Upper Cretaceous Skeena Group sedimentary rocks on the southern margin of the Bowser Basin. The main mineralized trend, which may consist of a number of faulted zones, covers more than 3 kilometres of strike length, 50-100 meters of stratigraphy and 175 -200+ meters of dip extent.

Mineralization is present in several zones which are known as the Jan, Mn, Zinc, West, Far West, East, Far East, 1600, 3200, and South zones. Of these the West Zone and 1600 zone are best known through the drill programs conducted by others.

The Current program was designed to expand and fill in information on certain sections of the mineralization. All of the 2006 drilling was completed on the West Zone.

Hole FW 06-1 probed the western portion of the West Zone at a depth of approx. 80m and filled in information on an E-W section through DDH 88-31,-39,-57,-77. The hole encountered weak mineralization. The hole did not encounter expected mineralization projected from nearby drill holes.

Hole FW 06-2 probed the West zone on the same section at a depth of approx. 135m. It also encountered weak mineralization.

Hole FW 06-3 probed the West Zone at an approximate depth of 230m on the same section as the previous holes and did not encounter any significant mineralization.

Hole FW 06-4 probed the "vent zone" on a N-S section through hole 88-51. It penetrated a mineralized zone containing several 'beds' of massive mineralization and intercepts of stockwork and breccia filling mineralization.

Hole FW 06 -5 explored the same section, above hole 88-51. It encountered deeper than expected overburden and collared into the bedrock below the sulphide intercept.

WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada, V3R 8P5.

ŧ

A total of 937.5 m of NQ Diamond drilling was completed in the 2006 drill program. The rather spectacular success of Hole FW 06-4 requires additional drilling to define the limits of mineralization to depth and laterally on strike. Additional drilling will also serve to shed more light on the possibility of metal zoning of the deposit and the different mineralizing events previously identified.

Core is stacked and stored on site adjacent to the area of 2006 drilling. (See detailed drill hole location plan, Fig. 5)

.

WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada, V3R 8P5.

TABLE OF CONTENTS

Summary	1
Table of Contents	3
Introduction	4
Location and Access	5
General Setting	5
Mineral Claims	9
History and Previous Work	9
Regional Geology	10
Mineralization	15
2006 Work Program	16
Observations	17
Conclusions	18
Recommendations	24
Estimated costs	25
References	26
Software used	27
Signature page	29
Statement of Qualifications	- 30

List of Figures & Tables

Property Location Map	Fig.1	6
Project detail location & property access plan	Fig 1a	7
Claim Map	Fig. 2	8
Regional Geology & mineral deposits of the Skeena Gro	oup Fig. 3 a	11
Stratigraphy of the Skeena Group	Fig 3 b	12
Regional Geology of the Babine lake Area	Fig. 4a	13
Stratigraphy of the Babine Lake area	Fig. 4 b	14
Drill hole location Map	Fig. 5	pocket
E-W section through FW06-1, 2, 3, and 88-31,-39,-57	,-77 Fig. 6	pocket
N-S Section through FW06- 4 and 5	Fig. 7	pocket
Table 1 List of Claims		9
Table 2 Drill Collar Survey Data		17
Table 3 Summarized Assay Data		20

Appendices

APPENDIX 1	Statement of Costs
APPENDIX II	Drill Logs
APPENDIX III	Assay Results

WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada, FAX: 604-583-2079

E-Mail: wahowell@telus.net

V3R 8P5.

Introduction

This Report has been commissioned by Jantar Resources Limited as part of the 2006 diamond drill program on the Fireweed Property. It is prepared for the purpose of filing for assessment credit on the Fireweed property and to record the work and results of the drill program.

The drill program took place between October 9, 2006 and October 30, 2006.

A total of 936.7 m of NQ drilling was completed in 5 holes, resulting in 106 assay/geochemical analyses. Twenty-one elements including copper lead zinc were determined by geochemical ICP-ES (Induction coupled Plasma- Emission spectrometry). Gold and silver were determined by fire assay techniques and mercury analyses were performed by ICP-MS (Induction Coupled Plasma - mass spectrometry), for a total of 24 elemental determinations.

Previous grids and drill holes were readily Identifiable in the field and permitted very accurate location of drill holes relative to the previous work. Many of the old drill collar marks are deteriorating and it would be advantageous to relocate and remark as many old features as possible using differential GPS survey techniques and permanent tags.

The writer has relied heavily on the NI 43-101 report prepared by B.J.Price, P.Geo. (2005) for Jantar Resources Ltd.. The drill program has followed his recommendations and suggestions.

The 2004 Paper by D.G. MacIntyre, R.H. McMillan and M.E. Villeneuve, "The Mid-Cretaceous Rocky Ridge Formation- Important Host Rocks for VMS and Related Deposits in Central British Columbia" provides the regional setting for the Fireweed stratigraphy and makes a compelling case for an exciting new look at the area and the potential for finding more VMS deposits in the marine sedimentary/volcanic packages of the mid Cretaceous Skeena Group.

The author has benefitted greatly from conversations and various discussions with Mr. B.J. Price, P.Geo. and Mr. Anthony L'Orsa P.Geo., both of whom have a history of previous technical work on the property. Mr. L'Orsa is familiar with the prospect from a long association as a consultant to Mansfield Minerals Inc., owner of the property, and has explored a large number of properties in the same geological terrain.

Mr. Price has worked previously on the property and conducted exploration during the 2000 field season. He is also the author of the 2005 NI 43-101 technical report for Jantar Resources in connection with it's listing as a Public Company. The contributions by these two gentlemen is hereby acknowledged. Any errors or omissions in this report are the responsibility of the author.

WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada, V3R 8P5.

LOCATION AND ACCESS

The Fireweed claim group is situated in the Omineca Mining District and is located on the southwest side of Babine Lake, in north central British Columbia, near the summer resort of Smithers Landing, 60 kilometers northeast of the town of Smithers.

The centre of the claims is at **55° 01' North latitude and 126° 25' W. Longitude**. Elevations on the property range from 710 meters (2,335 feet) at the level of Babine Lake up to 1,160 meters (3,800 feet) along the south edge of the claims. The claims are located on the junction of 4 NTS map sheets : 093-M/1, 093-M/2, 093-L/15, 093-L/16

Access to the property from Smithers is excellent. The government maintained secondary access road between Smithers and Babine Lake, passes within a kilometre to the west of the claims. This road is gravel but in good repair, and is used by logging companies.

From kilometre 51 on this road, a network of rough, but passable, logging roads cross the property, giving access to practically all areas. The Logging roads also connect to the town of Granisle some 28 km SW of the property.

GENERAL SETTING

The property lies within the physiographic Intermontane belt of Central British Columbia. approx. 70 km NE of the town of Smithers BC.

Climate is typical of northern British Columbia with occasional long cold winters and summers which may be hot. The property could be explored year 'round.

Topography is gently sloping to flat. Large areas of the claims have been logged and replanted. Logging is active in the area with additional logging scheduled in the immediately adjacent areas to the current drilling. The remaining area is generally well timbered with balsam fir and lesser spruce and pine, along with alder, willows and devil's club, commonly in wetter areas and along creeks.

Elevations on the property range from 710 meters (2,335 feet) at the level of Babine Lake up to 1,160 meters (3,800 feet) along the south edge of the claims

Smithers is an important supply and service centre, supporting an area population of about 25,000. Major Industries in the area are logging, mining, ranching and farming. Tourism and regional government are also important local industries. Smithers is situated on a major highway (Yellowhead Highway 16) and rail line (CNR northern mainline) and is served by a good airport, with twice daily flights to and from Vancouver. As proposed major development of the Port of Prince Rupert continues, Smithers and the Bulkley Valley will also experience growth and Development.

BC is presently undergoing negotiations with First Nations Groups regarding Land claims. Negotiations are at various stages across the province. There are a number of Indian Reservations clustered along Babine Lake. One such reserve is within 1000 meters of the east boundary of the claims. Jantar and its contractors must conduct exploration within the larger framework of the land claim issue.

WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada, V3R 8P5. TEL: 604-583-2049 FAX: 604-583-2079 E-Mail: wahowell@telus.net JANTAR RESOURCES LTD. FIREWEED PROPERTY April 2007

PROPERTY LOCATION MAP

JANTAR RESOURCES LTD

FIGURE 1 LOCATION MAP OF BRITISH COLUMBIA

FIG. 1

V3R 8P5.

WA HOWELL P.Geo.

TEL: 604-583-2049

FAX: 604-583-2079

15294 96 A Avenue,

E-Mail: wahowell@telus.net

Surrey BC Canada,

TEL: 604-583-2049

FAX:

604-583-2079

E-Mail:

wahowell@telus.net

FIG.

MINERAL CLAIM MAP

JANTAR RESOURCES LTD.

FIREWEED PROPERTY

April 2007

Fig. 1a

 ∞

MINERAL CLAIMS - Table 1

The claim group comprises 12 contiguous claims or approximately 4730 hectares in area

Tenure Number	Tenure Type	Claim Name	Owner	Map Number	Good To Date	Status	Area
			116762				
505019	Mineral	Bajo 1	(100%) 116762	093M	2008/jan/27	GOOD	463.552
505023	Mineral	Bajo 2	(100%)	093M	2008/jan/27	GOOD	463.548
505024	Mineral	Bajo 3	(100%)	093M	2008/jan/27	GOOD	463.541
505025	Mineral	Bajo 4	(100%)	093M	2008/jan/27	GOOD	444.992
505027	Mineral	Bajo 5	(100%)	093M	2008/jan/27	GOOD	463.696
505029	Mineral	Bajo 6	(100%)	093L	2008/jan/27	GOOD	445.299
505032	Mineral	Bajo 7	(100%)	093L	2008/jan/27	GOOD	463.785
505035	Mineral	Bajo 8	116762 (100%)	093L	2008/jan/27	GOOD	111.338
505039	Mineral	Bajo 9	116762 (100%)	093L	2008/jan/27	GOOD	18.554
512005	Mineral		116762 (100%)	093L	2010/aug/10	GOOD	556.536
512006	Mineral		116762 (100%)	093M	2007/aug/31	GOOD	593.572
512007	Mineral		116762 (100%)	093L	- 2007/sep/01	GOOD	241.182

Table 1 Claims in the Fireweed Property

Dates above are prior to work applied by this report.

HISTORY AND PREVIOUS WORK

There is no evidence of early historical exploration work on the Fireweed claims (prior to 1987), although coal had been reported from the area.

Mineralized float was found in the area in 1987 by John Leask and partners, prospecting geologists, who staked the original claims in July 1987.

In August 1987, an option agreement was reached between the owners and Canadian-United Minerals. Inc. whereby Canadian - United could earn 100% interest in the claims. In September 1987, the company commenced work programs that included geological mapping and evaluation, soil geochemistry, magnetometer, very low frequency electromagnetic (VLF-EM), and Induced Polarization (IP) surveys, back hoe trenching and drilling.

In 1988 and '89 under a joint venture agreement with Canadian United Minerals, Gunnar Gold Inc. funded considerable work, including drilling.

Up to 1990, Canadian United Minerals Inc., (now Mansfield Minerals Inc.) and their JV partners have expended in excess of \$1,700,000.00 on the property, mainly in grid preparation, geophysics, geochemistry and drilling.

In 1991, Minnova Inc., (now Inmet Mining) spent \$250,000 on additional drilling. Thus the total expenditures since discovery have been approximately \$2 million. Price (2005) has roughly estimated the present cost of completing all exploration done on the property in the past. The amount is well in excess of \$2 million and likely in the order of \$2.5 million.

In 1991, Minnova Inc, (now Inmet Mining Ltd.), optioned the property and completed an additional drilling program, substantially outside of the known deposits, before returning the property to the vendors.

In 2004, Argentor Resources concluded an agreement with J.Leask and Partners. (Mansfield Resources) In July and August 2005, Argentor staked additional claims to protect the original claims held by Mansfield. They then completed approximately 25 kilometers of grid, followed by a geophysical program by SJ Geophysics Ltd. (under the supervision of Syd Visser. P.Geo) A 3-D Induced Polarization survey was completed across part of the property. The survey concentrated on the area between the east and west zones. The IP survey assisted in the spotting of new drill holes planned by Argentor for the 2006 drill program.

In 2006, at the suggestion of the TSX, Argentor underwent a name change to Jantar Resources Ltd.

In 2006, Jantar commisioned their drill program and this report.

REGIONAL GEOLOGY

The Fireweed property lies within a structurally complex area at the south margin of the Skeena sedimentary basin in an area known as the Skeena Arch, characterized by a number of porphyritic igneous intrusions cutting rocks as old as Triassic. The Babine Lake porphyry copper belt is host to a number of large porphyry copper deposits, two of which have been productive and have large tonnages of low grade copper mineralization remaining, but which resources are not likely to be re-developed. Considerable geological work has been done in the Babine Lake - Fulton Lake area by the British Columbia Geological Survey Branch in the past 10 years.

Overall, the regional depositional environment for the Skeena Group is a continental margin setting along western North America. Skeena Group volcanics, (the Rocky Ridge Formation) occur in isolated geographic areas within otherwise continuous clastic sediments of the Skeena Group. They are a bimodal group of volcanic rocks and related sediments separated by hundreds of meters of clastic sedimentary rocks . (summarized from DJ Alldrick et al, BCGS, Geological Fiedwork 2006, Paper 2007-1) Intrusive 'Rhyolite" plugs are widespread throughout Skeena Group rocks and were originally mapped as Eocene stocks. Close to the Bell Mine and Granisle mine, the "plugs" have been shown to be Cretaceous aged extrusive Rhyolite domes or cryptodomes by D.J. McIntyre of the BCGS. By inference, several similar features may turn out to have similar origins and age. A large dome of Rocky Ridge Rhyolite underlies the eastern half of McKendrick Island, 3 km north of The Fireweed deposit. D.J. McIntyre and M.E. Villeneuve (BCEMPR Geofile 2007-4) have determined the age of a rhyolite dike in drill core at Fireweed to be 103± 0.4 my.

WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada, V3R 8P5. TEL: 604-583-2049 FAX: 604-583-2079 E-Mail: wahowell@telus.net

REGIONAL GEOLOGY AND MINERAL DEPOSITS IN THE SKEENA GROUP SEDIMENTS From MacIntyre et al (2005)

Fig.3a

11

V3R 8P5. WA HOWELL P.Geo. Surrey BC Canada, 15294 96 A Avenue, TEL: 604-583-2049 FAX: 604-583-2079 E-Mail: wahowell@telus.net

GENERALIZED STRATIGRAPHY OF THE SKEENA GROUP

(MacIntyre et al 2005)

Fig. 3b

V3R 8P5.

WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada,

TEL: 604-583-2049

REGIONAL GEOLOGY OF BABINE LAKE AREA

MacIntyre et al 1997 (Paper 1997-1) See Next Page for Legend

Scale bar approx 5 km

Fig. 4a

WA HOWELL P.Geo. 15294 96 A Avenue, Canada, V3R 8P5. Surrey BC TEL: 604-583-2049 FAX: 604-583-2079 E-Mail: wahowell@telus.net

FIREWEED PROPERTY

STRATIGRAPHIC SECTION

MacIntyre et al 1997 (Paper 1997-1)

Figure 3. Stratigraphic column for the Fulton Lake map area. Fossil control shown by F inside a circle.

STRATIGRAPHIC SECTION - BABINE LAKE AREA

After MacIntyre et. Al., (1997)

WA HOWELL P.Geo. TEL: 604-583-2049 Surrev BC Canada. E-Mail: wahowell@telus.net

Fig. 4b

V3R 8P5 .

The model for the Fireweed and related deposits is advanced by D.G. MacIntyre, R.H. McMillan and M.E. Villeneuve (2005) as summarized below:

"It seems likely that both the mid-Cretaceous Pb-Zn-Ag mineralization at the Knoll, Cronin and Fireweed prospects and possible younger Late Cretaceous or Early Tertiary mineralization at Equity, Beamont and Bob Creek are related to the evolution of major volcanic centers that were periodically active from the mid-Cretaceous to Eocene time. Earliest stages of volcanism, as represented by the Rocky Ridge formation, involved cauldron subsidence in a nascent island arc setting with attendant Pb-Zn-Ag VMS and related epithermal mineralization associated with shallow, submarine eruption of rhyolite flow domes. Younger, Late Cretaceous or Early Tertiary magmatic events resulted in building of stratovolcances in an Andean continental arc setting with attendant sub-volcanic Cu-Au-Ag and porphyry Cu-Mo type mineralization. A genetic model depicting these evolutionary stages is presented" (in D.G. MacIntyre et al (2005)).

• Precious metal rich, massive sulphide occurrences at the Fireweed, Knoll and Cronin properties appear to be related to submarine rhyolite flow domes that were emplaced along rifts that formed during mid-Cretaceous cauldron subsidence.

• This was followed by eruption of thick piles of alkali basalt. The inferred geologic setting (nascent arc, bimodal, submarine, rift related) is similar to that proposed for classical Kuroko and Eskay Creek-type VMS deposits and therefore, areas of Rocky Ridge volcanics in central British Columbia are interpreted to be highly prospective for these types of deposits."

MINERALIZATION

Mineralization at Fireweed is present in several zones which are known as the Jan, Mn, Zinc, West, Far West, East, Far East, 1600, 3200, and South Zones. Of these the West Zone and 1600 zone are best known through the drill programs conducted by others.

Jantar's 2006 drill program was designed to test known areas of mineralization in the WEST zone for continuity and to fill in part of a section through the "FEEDER ZONE" area where information to depth had not been determined.

The West Zone is defined by an east trending horseshoe-shaped induced polarization conductor. The original outcrop discoveries, the Mn and the Sphalerite showings, lie at the westerly end of each of the prongs of the horseshoe. Previous drilling has defined a mineralized area 300 metres long which is open along strike and depth.

Mineralization has been found in Skeena Group sediments to 200 metres depth. The bulk of the mineralization is hosted by a coarse sandstone, in two parallel south to southwest plunging shoots.

A flat-lying, funnel-shaped, Feeder Zone, near the eastern limits of the West zone, covers an area 90 by 90 metres and extends to a depth of at least 97 m, (hole FW 06-4) but does not outcrop. Sandstone and mudstone interfinger throughout this area. Pyrrhotite, pyrite, sphalerite and chalcopyrite occur as massive sulphide mineralization associated with breccia and veins which cement mudstone and sandstone fragments that are millimetres to several metres in size. These zones of mineralization grade into unbrecciated or weakly veined areas. The sulphide content is variable and there are two distinct generations of veining:

2. The other massive pyrite and pyrrhotite with silver and base metal values.

The breccia veins cut sericitized latite dikes which are thought to be related to the mineralization event. The feeder zone also contains minor gold and copper values. The main mineralized zone is a sheet-like body dipping moderately to the south, with post-mineral faulting, and intrusion by quartz-latite dykes.

The Feeder Zone is believed to be the expression of a growth fault. The main sandstone body hosting the mineralization thickens and wedges out against the fault. Slumping and fragmental textures ascribed to intra-formational de-watering are common. The mineralized zone appears to be folded as the strike changes from west southwest to southerly.

The writer has summarized the West Zone and the Feeder zone here. Both features were the subject of the 2006 exploration program. The reader is referred to the Technical Report, (B.J. Price, 2005) for a complete description of mineralization elsewhere on the property.

2006 FIREWEED WORK PROGRAM

The Current program of diamond drilling was designed to expand and fill in information on certain sections of the mineralization. All of the 2006 drilling was completed on the West Zone.

Drilling was performed by Driftwood Diamond Drilling From Smithers BC. using a Longyear "Super 38" drill mounted on skids. The drill, with a skid mounted rod sloop was hauled to the site using normal Highway tractor and low-bed equipment. A caterpillar D-6 'dozer' was supplied by Driftwood and used to haul the drill and sloop and to clear and build drill sites. The program was conducted in the late fall of 2006, between Oct.09 and Nov. 4, 2006. Problems were immediately encountered finding enough local water to supply the drill the problem was overcome using a water hauling truck provided by Bulkley Valley Water Ltd. Water was brought a distance of approx 22 km from beaver ponds adjacent to the Smithers Landing Road at approx. Km 58. Water was loaded using appropriate screens and filters and discharged into an excavated sump near the drill area.

Drill crews commuted daily from their homes in the Smithers area. Jantar personnel stayed in Smithers at a local hotel and also commuted daily.

The logging roads in the fireweed area connect to Granisle, about 28km distant, whereas, Smithers is about 70 or 80 km from the drill site. On a short project the added distance is not too onerous but significant savings in time and efficiency might be realized by housing a larger crew in Granisle.

Samples consisted of mechanically split core over nominally 2 meter intervals. Sections of core were designated for splitting based on the presence of visual mineralization. Additional samples were taken beyond visual mineralization to try and ensure that the mineralized section was adequately and completely sampled. Samples were submitted to ACME ANALYTICAL LABORATORY in Vancouver and subjected to ACME Group 7AR analysis, where the split core is crushed and split to 150 mesh, then a 1.000 gram sample is subjected to an aqua regia (HCI-HNO₃-H₂O) digestion to 100ml then analysed by ICP - ES. Au and Ag are determined by fire assay from a 1 assay-tonne sample. There is a visual similarity of the host rock, (sandstone, siltstone and shales) to host rocks at Eskay Creek, where mercury is found in highly anomalous geochemical amounts. With this slender affiliation of the two deposits, (and McIntyre et al published affinities noted) it was decided to analyse samples for mercury as well as base metals (The mercury was determined by Acme Group 1C analysis method). As can be seen from the summarized assays, there is a very close association between mercury and base and precious metal mineralization. The association has obvious important exploration implications.

WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada, V3R 8P5. TEL: 604-583-2049 FAX: 604-583-2079 E-Mail: wahowell@telus.net

OBSERVATIONS & Descriptions of the Diamond Drill Results

Hole FW 06-1 probed the western portion of the West Zone at a depth of approx. 80m. It filled in information on an E-W section through DDH 88-31,-39,-57,-77. The hole encountered weak mineralization. The hole did not encounter expected mineralization projected from nearby drill holes.

Hole FW 06-2 probed the West zone on the same section at a depth of approx. 135m. It also encountered weak mineralization.

Hole FW 06-3 probed the West Zone at an approximate depth of 230m on the same section as the previous holes and did not encounter any significant mineralization.

Hole FW 06-4 probed the "vent zone" on a N-S section through hole 88-51. It penetrated a mineralized zone containing several 'beds' and intercepts of stockwork and breccia filling of massive sulphide mineralization. The massive sulphide zones are evident within a 24.7 meter section between 102.0 m and 126.7m. In addition to the drill log descriptions, selected "character" samples were collected by the writer to represent typical styles of mineralization, these samples have been described by David Bridge, M. App.Sc., P.Geo. The descriptions are included below. All intersections reported are **drill intersections** and are not true widths. True widths will approximate 60% of the drill intersections but more complete and detailed survey data is required to define true widths accurately.

Hole FW 06 -5 explored the same section, above hole 88-51. It encountered deeper than expected overburden and collared into the bedrock below (beyond ?) the anticipated sulphide intercept.

A total of 936.7 m of NQ Diamond drilling was completed in the 2006 drill program. The rather spectacular success of Hole FW 06-4 requires additional drilling to define the limits of mineralization to depth and laterally on strike. Additional drilling will also serve to shed more light on the possibility of metal zoning of the deposit and the different mineralizing events previously identified.

Core is stacked and stored on site adjacent to the area of 2006 drilling. (See detailed drill hole location plan, Fig. 5)

A summary of drill hole survey and collar data is presented below.

TABLE 2

	Zone 10 U (N	IAD 83)	Length				
DDH	Easting	Northing	Az.	Dip	Elev	m	ft
FW 06-1	663863	6098731	270	-45	895	163.7	537
FW 06-2	663938	6098735	270	-48	895	243.0	797
FW 06-3	663938	6098735	270	-60	895	288.7	947
FW 06-4	663970	6098798	000	-50	895	160.7	527
FW 06-5	663962	6098845	000	-45	895	81.4	267

WA HOV	VELL P.Geo.	15294 96	A Avenue,	Surrey	BC	Canada,	V3R 8P5
TEL:	604-583-2049	FAX:	604-583-20	79 E-	Mail:	wahowell	Øtelus.net

Fireweed Specimen Descriptions:

David Bridge, P.Geo December 6, 2006

FW 06-4 85.1m

Sample of split core

Massive fgr purplish - brown sphalerite with 2-5 mm thick wisps and patches of pyrrhotite - 10% of rock. Sphalerite is massive and not bedded - pyrrhotite is brassy - yellow in colour.

FW 06-4 106.0m

Sample of split core

Chlorite altered, black shale breccia with angular to rounded clasts cemented by a mixture of pyrrhotite 10% and chalcopyrite 5%. Breccia fragments range in size from 2 mm to 22 mm – Breccia is matrix supported.

FW 06-4 76.1m

Sample of split core

Massive pyrhotite with a 15 mm vein of quartz-pyrite - chalcopyrite cutting across it. 1% chalcopyrite in sample.

FW 06-4 103.9m

Sample of split core

Massive pyrhotite with veinlets of pyrite cutting across the sample. Center of these veins is 1-1.5 mm veinlets of sphalerite – trace sphalerite in sample.

FW 06-4 90.5m

Sample of split core

Black argillite with a 10 mm thick vein of pyrrhotite - spahlerite - galena. 15% pyrrhotite in sample, 5% sphalerite and 5% galena. Paragenesis Pyrrhotite first then spahlerite and galena.

FW 06-4 105.8m

Sample of split core

Pyrrhotite cemented chlorite altered argillite clast breccia - 40% pyrrhotite - 2 % chalcopyrite - breccia clasts are 2-3 mm in size.

FW 06-4 105.5m

Sample of split core

Pyrrhotite cemented breccia with 5% veinlets of sphalerite cutting across the pyrrhotite +/chalcopyrite - trace. Breccia clasts are rounded 2-3 mm in size - 60% pyrrhotite in sample. The pyrrhotite is also cut by later pyrite/marcasite veinlets.

FW 06-4 108.7 m

Sample of split core

Clast supported argillite angular breccia with up to 10 mm thick breccia infilling of pyrrhotite with trace chalcopyrite. 1-2 mm thick pale grey envelopes to sulphides

FW 06-04 76.0m

Sample of split core

Bedded pyrrhotite - layers 1-2 mm thick with rare layers of purplish - brown sphalerite. Layers 30 degrees to core axis.

WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada, V3R 8P5. TEL: 604-583-2049 FAX: 604-583-2079 E-Mail: wahowell@telus.net

FW 06-4 103.7m

Sample of split core

Massive sulphide composed of 50% sphalerite, 30% pyrrhotite, 10% pyrite, 5% galena and 5% carbonate.

FW 06-4 104.2m

Sample of split core

Massive pyrrhotite cut by veinlets of sphalerite up to 2 mm thick - 5% of unit. 2% open spaced fractures rock. 2% open veinlets of pyrite - marcasite - late.

FW 06-4 77.6m

Sample of split core

Bedded sulphide - layers of 70% sphalerite - 2-5 mm thick, pyrrhotite 1-3 mm thick - 25% and calcite 5%. The layers are at 70 degrees to core axis.

FW 06-4 104.8m

Sample of split core

Sphalerite cemented breccia – 80% of unit with 10% blebs of galena, 5% rounded chlorite altered argillite fragements 1–3 mm in size. Rare 0.1mm thick pyrite veinlets cutting across the sample.

FW 06-4 75.8m

Sample of split core

Bedded sphalerite. Beds 1-10 mm thick with 0.5 to 1.0mm beds of pyrrhotite 1%. Wisps and discontinuous layers of argillite between the beds - 10% of unit.

FW 06-4 106.5 to 106.7m

Whole core

Chloritic greywacke with quartz - chalcopyrite veins 2-6 mm thick - 2% chalcopyrite in rock cut by later carbonate veins.

inalysis: GROUP 7AF	R - 1.000 GM S	AMPLE	E, AQUA - RE	EGIA (HCL-H	NO3-	H2O)	DIGE	STION	TO 10	0 MI	, ANALYS	ED BY ICP	ES.	Analy	/sis
LEMENT ASSAY	DDH From	To	Mo	Cu	Au**		Pb		Zn		Ag**	Mn	As	Hg	
AMPLES CERT. NO			%	%	gm/n	nt	%		%		gm/mt	%	%	bbp	
				Threshold	Thre	shold	Three	shold	Thresho	bld	Threshold	Thrashold	Threshold	Throst	hold
	and the other states and the			0.30%	1 gm	/mt	().30%	0.3	0%	3 gm/mt	1%	>fa 0.01%		100
			<.001	0.004	<,01	0.01	<:01		<.01	00	52	0.06	< 01		
9701 A608611	FW 06_1 9	8.5 1	01.5 <.001	0.007		0.01	<.01		0	02	<2	1.02	< 01		33
9702 A608611	10	1.5 1	03.5 <.001	0.007		0.02		0.03	0	00	4	1 19	9.0		64
9703 A608611	10	3.5	05.5 <.001	0.008	<.01	0.04		0.04	0	11	0	1.01	10.0	12000	110
9704 A608611	10	5.5	107.5 <.001	0.003		0.01	stores and	0.14		32	59	0.65			220
9705 A608611	10	1.5	109.5 <.001	0.000		0.05		1.14	4	30	385	0.55			781
9706 A608611	10	9.5	11.5 <.001	0.01		0.05	i faring	1.00		10	080	0.33	1997 - 1997 -		948
9707 4008611	11	1.0 1	112.1 <.001	0.000	an	0.04	1745 State	0.02	1	00	436	0.20	- 01		054
9708 A008011	11	4.1	114 .001	0.000	<.01			0.03	0	00	10	0.03	<.01		21
9709 A008011		14	119 < 001	0.000	~.01	0.01		0.01	0	12	19	0.79	5.01	12	00
9710 A000011		10	120 < 001	0.004		0.01		0.02	0	40	107	6 20		In the second	444
9711 A000011		10	120 - 001	0.000	100	0.01		0.10	(SNEERS N	93	191	7 44		1.5.14	204
9712 4000011	and particular history of	20	122001	0.004	1200	UUZ	un constant	CO. CO.	10000107	0.44	100	Susancer's		- BANKETTLE	201
RE 2712 A608811			122 4.001	0.004		0.02		0.18		39	107		0.05		395
9713 A608611		22 1	124.1 <.001	0.003	1	0.02		0.09	0	22	50	8.06	0.01		221
9714 A608611	12	4.1	126 <.001	0.007	<.01		<.01		0	03	3	0.72	0.01		24
9715 A608611		26	128 <.001	0.007		0.01	<.01		0	02	2	0.4	<.01		29
9716 A608611		28	130 < 001	0.006	3	0.01	< 01		0	02	<2	0.16	<.01		48
9717 A608611		30	132 <.001	0.01	<.01		<.01		0	03	<2	0.11	<.01		27
9718 A608611		32	134 <.001	0.005	<.01		<.01		0	01	<2	0.1	<.01		57
9719 A608611		36	135 <.001	0.007	<.01		<.01		0	01	<2	0.11	<.01		31
9720 A608611		35 1	136.4 <.001	< 001	<.01		<.01		<.01	4.69	<2	0.07	<.01	<10	
9721 A608611	13	6.4	138 <.001	0.004	<.01		<.01		<.01		<2	0.09	<.01		30
9722 A608611		38	140 <.001	0.007	<.01		<.01		0	01	<2	0.12	<.01		12
9723 A608611		40	142 <.001	0.008	1 <.01		<.01		0	.02	<2	0.11	<.01		37
9724 A608611		42	144 <.001	0.000	1 <.01		<.01		0	02	<2	0.07	<.01		35
9725 A608611		44	146 <.001	0.007		0.01	<.01		0	01	<2	0.09	<.01		45
0726 4609011	EW OR 1	46	100 > 1 941	0.005	< 01		< 01		0	01	<2	0.12	< 01		33

Table 3

WA HOWELL P.Geo. TEL: 604-583-2049

15294 96 A Avenue, Surrey BC Canada, V3R 8P5. FAX: 604-583-2079 E-Mail: wahowell@telus.net

...

To Howell, W.A. PF	OJECT FIF	REWEED)	-	100										Hg is By	0
Acme file # A60861	1 Page 1	Receive	d: NOV 2	2006	100 sample	s in this	disk.	tile.	THOMAS	TO 100 1					Gp 1C	
Analysis: GROUP /	AR - 1.000	GM SAN	APLE, AU	JUA - H	-GIA (HUL-H	NO3-HZ	(0)	JIGES	HON	10 100 N	IL, ANALY	SEDBYI	CP-ES.		Analyse	65
ELEMENT ASSAY	DOH	From	То	Mo	Gu	Au		PD	2	n (Ag	MO	AS		rig	
SAMPLES CERT. NO	2			70	%	gm/mt		79	7	0	gm/mt	70	%		ppo	
					Threshold	Threah	old	Threah	old T	hreshold	Threshol	d Thresho	id Thre	shold	Threshol	k
					0.30%	1 gm/m		0	30%	0.30%	3 gm/mt		1% >/# 0	.01%	(and the	100
9727 A60861	1 FW 06_	2 19.8	3 21	<.001	0.006	<.01		<.01		0.01	<2	0	14 <.01			14
9728 A60861	1	21	23.4	<.001	0.007	0	0.01	<.01		0.01	<2	0	12 <.01		<10	
9729 A60861	1	41	4 46	5 <.001	0.005	0	0.01	<.01	<	.01	<2	0	11 <.01			11
9730 A60861	1	46	6 48	3 <.001	0.005	<.01		<.01		0.01	<2	0	13 <.01			11
9731 A60861	1	41	8 50) <.001	0.005	<.01		<.01		0.01	<2	0	11 <.01			22
9732 A60861	1	5(0 52	2 <.001	0.005	<.01		<.01		0.01	<2	0	11 <.01			18
STANDAR A60861	10.000			0.03	0 778		6.1		0.92	1,07		4 0	42 < 01			203
G-1 A60861	1. 1. 1. 1.			< 001	0.003	< 01		< 01	2: C. S	01	<2	0	06 < 01		<10	
9733 A60861	1	53	2 54	1 <.001	0.005	0).01 ·	<.01		0.02	<2	0	13 <.01			11
9734 A60861	1	5	4 5€	5 <.001	0.007	0	0.02	<.01		0.02	<2	0	12 < 01			21
9735 A60861	1	50	6 57.7	<.001	0.006	0	0.01	<.01		0.01	<2	0	13 <.01			21
9736 A60861	1	57.	7 59	9 < 001	0.006	<.01	100	<.01		0.02	<2	0	14 <.01			24
9737 A60861	1	-51	9 61	<.001	0.004	0	01	<.01		0.02	<2	0	27 <.01			26
9738 A60861	1	- 6	1 63	3 <.001	0.005	<.01	1.1	< 01		0.02	<2	0	18 <.01			12
9739 A60861	1	6	3 65	5 <.001	0.005	0	0.01	<.01		0.02	<2	0	13 <.01			21
9740 A60861	1	6	5 67	<.001	0.005	0	0.01	<.01		0.01	<2	0	24 < 01			14
9741 A60861	1	6	7 69	9 <.001	0.005	<.01		<.01	<	.01	<2	0	18 <.01			20
9742 A60861	1	185.	2 187	7 <.001	0.005	0	0.01	<.01		0.01	<2	0	36 <.01			11
9743 A60861	1	18	7 188.9	001	0.005	0	0.01	<.01		0.03	TOR SHARE	4	0.9 <.01			22
9744 A60861	1	188.	9 19	1 <.001	0.004	0	0.01	(0.02	0.06	E.C. Statist	7 1	27	0.01		57
9745 A60861	1		193	3 <.001	0.002	0	0.04	(0.15	0.27	6	10 1	11	0.01	:	235
9746 A60861	1		195	5 <.001	0.003	0	0.02	(0.31	0.67	17	7 5	05	0.02	!	579
9747 A60861	1		197	7 <.001	0.007	0	80.0	1	0.57	0.99	33	6 1	14	0.09	8	871
9748 A60861	1		195	9 <.001	0.005	0	0.05	1	0.65	1.33	22	1 1	44	0.03	17	224
9749 A60861	1		200.3	3 <.001	0.006	0	0.01	(0.01	0.05		5 0	66	0.01		30
9750 A6086	1		203	2 <.001	0.008	0	0.01	<.01		0.01	<2		0.2 <.01			26
9751 A6086	1 EW 06	2 22	1 223	3 <.001	0.007	0	0.01	<.01		0.02	<2	0	11 <.01			38

Courses.

100.001

JANTAR RESOURCES LTD.

100

21

WA HOWELL P.Geo.

15294 96 A Avenue,

Surrey BC

Canada,

V3R 8P5.

TEL: 604-583-2049

FAX: 604-583-2079

E-Mail:

wahowell@telus.net

Acme file # A60861 Analysis: GROUP 7	1 Page 1 1 AR - 1.000	GM SAM	I: NOV 2 IPLE, AC	2006 * UA - RE	100 sample GIA (HCL-H	s in this dis NO3-H2O)	DIGESTIO	N TO 100 N	L. ANALYS	SED BY ICP	-ES.	Gp 1C Analysis
SAMPLES CERT NO	DUN	From	10	%	%	am/mt	26	24	am/mt	Witt %	%	ng
Crime Made Generation					Threshold	Threshold	Threshold	Threshold	Threshold	Thrashold	Threshold	Threshold
- 12 12 12 23 23					0.30%	1 am/mt	0,30%	0.30%	3 am/mt	1%	>/* 0.01%	100
9752 A60861	FW 06	15.3	17.3	<.001	0.004	<.01	<.01	0.24	2	0.32	<.01	43
9753 A60861	1	17.3	20.3	<.001	0.001	0.01	<.01	0.16	<2	0.39	<.01	65
9754 A60861	1		22.3	<.001	0.004	0.01	<.01	0.69	<2	0.37	<.01	359
9755 A60861	1		24.3	< 001	0.026	0.01	0.03	1.08	3	0.4	<.01	416
9756 A60861	1		25.3	<.001	0.009	0.01	0.05	0.22	<2	0.36	0.01	108
9757 A60861	1		27.3	0.001	0.002	0.01	0.07	0.22	2	0.25	<.01	100
9758 A60861	1		29.3	0.001	<.001	0.01	0.04	0.3	<2	0.27	<.01	80
9759 A60861	1		31.3	0.001	<.001	<.01	0.12	0.28	2	0.23	<.01	112
9760 A60861	1		33.3	<.001	0.002	0.05	0.02	0.55	<2	0.17	<.01	306
9761 A60861	1		35.3	0.001	0.003	0.01	<.01.	0.42	<2	0.24	<.01	219
RE 9761 A60861			36-3	< 001	0 005	0.01	<.01	0.42	-2	0.24	< 01	223
RRE 9761 A60861			36 5	1 < 001	0 004	< 01	<.01	0,43	-2	0.23	< 01	211
9762 A60861	1		37.3	<.001	0.03	0.01	<.01	0.72	<2	0.27	<.01	421
9763 A60861	1		39.3	<.001	<.001	0.03	0.07	0.07	2	0.26	<.01	24
9764 A60861	1	1	41.3	0.001	0.001	0.13	0.1	0.19	<2	0.23	<.01	110
STANDAR				0 032	0 783	6,12	0,93	1.04	54	0.43	< 01	194
G-1				<.001	0 002	< 01	< 01	< 01	42	0.06	< 01	<10
9765 A60861	1		43.3	<.001	0 006	0.02	0.11	0.43	<2	0.26	<.01	258
9766 A60861	1		45.3	<.001	0.005	0.01	0.06	0.64	<2	0.22	<.01	339
9782 A60861	1	74.8	76.2	<.001	0.109	0.53	2.5	13.65	59	0.38	<.01	1471
9783 A60861	1		77.0	<.001	0.009	0.04	0.02	0.06	<2	0.2	<.01	16
9784 A60861	1	81.4	82.2	<.001	0.157	0.14	0.59	3.3	38	0.37	<.01	562
9785 A60861	1		83.5	<.001	0.007	0.03	<.01	0.04	Property and	0.32	<.01	21
9786 A60861	1		85.1	<.001	0.019	0.37	0.64	6.77	44	0.77	0.01	2305
9787 A60861	1		86.5	<.001	0.008	0.03	0.25	3.90	20	1.09	< 01	.1666
9788 A60861			87.9	<.001	0.008	0.04	0.31	4,98	27	1.11	<.01	2519
9789 A60861	1		90.8	<.001	0.011	0.06	1.89	4,97	82	1.05	0.01	1206
9790 A60861	1		92.8	<.001	0.012	0.06	1.44	3.59	50	1.19	0.01	768
9791 A60861	1 FW 06	4 92.8	95.5	<.001	0.054	0.27	2.43	7.00	150	1.06	Der Dah	1832

15.25

WA HOWELL P.Geo. TEL: 604-583-2049 100

1233

1

15294 96 A Avenue, Surrey BC Canada, V3R 8P5 . FAX: 604-583-2079 E-Mail: wahowell@telus.net

...

22

JANTAR RESOURCES LTD. FIREWEED PROPERTY April 2007

Analysis: GROUP 7A	R - 1.000 (GM SAM	IPLE, AQ	UA - REC	GIA (HCL-H	NO3-H2O)	DIGESTIO	N TO 100 N	IL, ANALYS	ED BY ICP	ES.	Analysis
ELEMENT ASSAY	DDH	From	То	Mo	Cu	Au**	Pb	Zn	Ag**	Mn	As	Hg
SAMPLES CERT. NO				%	%	gm/mt	%	%	gm/mt	%	%	ppb
					Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold
0700 4000044	EW 02 4	. DE E	07.5	0.004	0.30%	1 gm/mt	0.30%	0.30%	3 gm/mt	1%	>/# 0.04%	100
9792 A008011	- F-WV 00_4	95.0	97.5	0.001	0.014	0.09	0.11	0.27	10	0.26	<.01	129
0704 A608611			102	< 001	0.043	0.17	0.04	0.34	e e	0.32	<.01	10
9795 A608611			103.5	< 001	0.418	2.35	2 9	0.20	134	0.25	< 01	1750
9796 A608611			105	<.001	0.451	0.88	3.9	11.34	108	0.16	< 01	2210
RE 1798 ANURCAL			105	< 001	0.453	0.63	3 89	0.01139	107	0.16	101	HEREN
RRE 9798 A608611			105	<.001	0.448	0.97	3 34	10 44	97	0.15	< 01	Carlo and an
9797 A608611			106.3	<.001	2 224	1.26	0.51	2.08	111	0.19	<.01	504
9798 A608611		107.5	109	<.001	0.598	0.04	0.02	0.07	26	0.35	<.01	4
9799 A608611			110.9	<.001	0.19	0.02	0.02	0.09	10	0.4	<.01	2
9800 A608611			111.9	<.001	0.152	0.02	0.08	0.34	9	0.38	0,01	7
9801 A608611		121.4	122.7	<.001	0.662	0.13	0.08	0.25	37	0.25	0.01	7.
9802 A608611			124.3	<.001	0.255	0.37	0.16	0.79	20	0.39	0.01	15
9803 A608611			125.5	<.001	0.633	2.91	2.95	13.95	132	0.16	0.01	1790
9804 A608611	FW 06_4		126.7	<.001	0.545	3.44	0.78	9,36	84	0.17	<.01	220
9805 A608611	FW 06_5	5 59.7	61.3	< 001	0.029	0.38	1.24	2.06	31	0.8	0.02	1420
9806 A608611	Fw 06_5	61.3	62.8	<.001	0.026	0.33	88.0	1,98	14	0.83	<.01	132
STANDARD SF. USI	20			0.031	0.784	6 28	F.O.D.	1 05	S.S.	0.43	105	10/

and and

.,

23

JANTAR RESOURCES LTD.

The above assays can be readily seen to group into two categories: the first is lead /zinc dominated and is represented by mineralization in holes FW 06-1, FW 06-2 and the upper portion of mineralization in hole FW06-4. The second category is observed in the deeper portion of mineralization in Hole FW 06-4 where copper and anomalous gold values to 3 grams/tonne are detected. The change or difference in mineralogy may be due to metal zoning and indicate a shift to copper and precious metals with depth (the deposit is open to depth) values for silver range up to 595 grams /tonne but appear to follow higher lead and zinc values. (category one)

There is also a possibility that multiple mineralization episodes have occurred at Fireweed. Such events may also account for differences in composition of mineral deposition.

CONCLUSIONS

- 1) A massive sulphide environment of deposition exists at Fireweed.
- 2) Drilling to date has not yet defined the extent of mineralization. The deposit is open to depth and room also exists for lateral expansion.
- 3) Additional Drilling is warranted. It should be conducted with attention paid to downhole survey accuracy.

RECCOMMENDATIONS

1)

It would be very advantageous to complete a compilation and accurate location of existing features such as grids and old drill collars, some of which are almost 20 years old. These features were well marked in the field at the time of execution and although they are often difficult to see on the ground today, the Identification is still discernable but is rapidly deteriorating. There is a relatively short window of opportunity (just a few years) where they may be accurately located and correlated, thereby creating a positional 3-D digital database and allowing confident planning for future exploration and development.

2)

3000 m of NQ diamond drilling, primarily on the West Zone and the Vent Zone with detailed downhole surveys to explore and evaluate potential to depth and help to accurately define the shape and structure of the mineralization. Such a program might be completed in conjunction with the relocations and compilations recommended in (1)

ESTIMATED COSTS (2007 Canadian Dollars)

Diamond drill project: (Est. 60 days)

Drilling 3000 m @ 100.00 per meter (incl. downhole surv.) 300,000 **Room and Board** 50.000 Site prep and road maintenance 40.000 2 Geologists, 2 technicians (est 100 man days) 60,000 Assays 20,000 core racks, field supplies, etc. 5,000 15,000 Transportation, vehicle rentals, fuel, freight **Report and documentation** 15,000 Contingency 50,000

Total estimated cost \$ 560,000.00

Compilation project: (Est. 21 days)

location surveys (2 men)12,000Room and Board3,500Transportation, vehicle rentals, fuel3,000Report and Documentation8,000Contingency2,500

Total estimated cost

\$ 29,000.00

V3R 8P5.

WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada,

REFERENCES .

Alldrick, D.J., (2005); Eskay Rift Project, (NTS 1030, P, 104A, B, G, H) Northwestern British Columbia. in Geological Fieldwork 2005, British Columbia Geological Survey Paper 2006-1.

L'Orsa, Anthony, (1987); Geological Report. Fireweed Property. Private Report for Canadian United Minerals Inc. dated 15 October 1987.

L'Orsa, Anthony, (2000); Summary Report. Fireweed Drilling Project Notes for Cedar Capital Corp. including drill logs, comments and Assays. dated 2000.

Malott, M.L., (1989); Fireweed, (093M151) (Brief report on Fireweed property). BCMEMPR Exploration 1988 Part B, pp. 127-131

McIntyre, D.G., et al. (1996); Babine Porphyry Belt Project: Bedrock Geology of the Fulton Lake Map-Area. (93L-16) British Columbia. Ministry of Employment. Geological Fieldwork 1995, Paper 1996-1. pp. 11-35.

McIntyre, D.G., et al. (1997); Babine Porphyry belt Project: Bedrock Geology of the Old Fort Mountain area, (93M/1) British Columbia. Ministry of Employment. Geological Fieldwork 1996, Paper 1997-1. pp. 47-67.

MacIntyre, D.G., R.H. McMillan, and M.E. Villeneuve, (2003); The Mid-cretaceous Rocky Ridge Formation -Important Host Rocks for Vms and Related Deposits In Central British Columbia. Excerpt from Report of Activities 2003.

Price, B.J., (1997); Geological Report, Ascot Property, Dome Mountain Area, Smithers, B.C. Private Report for Alliance Mining Inc., Dated March 1, 1997.

Price, B.J., (1997); Valuation of Fireweed property, Smithers, B.C. Private Report for Cedar Capital Corp., Dated March, 1997.

Price, B.J., (1999); Geological Report – Fireweed property, Smithers, B.C. Private Report for Cedar Capital Corp., Dated March 1, 1999.

Price, B.J., (2005); Technical Report, Fireweed Silver-Lead Zinc Deposit Technical Report for Argentor Resources Ltd., Dated December 19, 2005.

Price, B.J., (2005); Technical Report, Fireweed Silver-Lead Zinc Deposit Technical Report for Argentor Resources Ltd., Dated December 19, 2005.

Fireweed Minfile 093M 151 Bibliography:

EM OF 2001-03 EMPR ASS RPT *17774, 18501, 21353, 21879 EMPR BULL 110 EMPR EXPL *1988-A34 B127-B131 C175:: 1999-1-11 EMPR FIELDWORK 2000, pp. 253-268 EMPR MAP 1: 65, 1989 EMPR OF 1992-1; 1992-3; 1997-10; 1998-10 EMR MIN BULL MR 223 B.C. 240 GSC MAP 971A GSC OF 720; 351; 215; *2322 (#230) GCNL #37,#153,#155,#163,#167,#222,#243, 1988; #4,#9,#19,#26,#56, *#66,#75,#85, 1989; #32, #181, 1991 N MINER Aug. 22, 1988; Feb. 6, Mar. 6, 27, 1989; Oct. 21, 1991 NW PROSP Jan/Feb, 1989; May/June, 1989 PR REL Canadian United Minerals, Jan. 19, 1988 V STOCKWATCH Jan. 19, 1988; April 19, 1989 WWW http://www.infomine.com/ Placer Dome File

WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada, V3R 8P5.

TEL: 604-583-2049 FAX: 604-583-2079 E-Mail: wahowell@telus.net

SOFTWARE USED IN PREPARATION OF THIS REPORT

Micosoft Windows XP Microsoft Office Suite 2003 Adobe Acrobat Pro v.8 Snagit v8 Corel graphics suite X3 Corel Wordperfect office X3 Garmin Trip and waypoint manager GPS Trackmaker Pro British Columbia TRIM II data Lagger 3D Exploration Google Earth plus Picassa copyright Microsoft corp. copyright Microsoft corp. copyright Adobe Systems Incorporated. copyright Techsmith software corp. copyright Corel Corporation copyright Corel Corporation copyright Garmin Ltd. copyright Odilon Fererria Jr. copyright Province of BC copyright North Face Software. Google Corporation Google Corporation

WA HOWELL P.Geo.15294 96 A Avenue,Surrey BC Canada,V3R 8P5 .TEL:604-583-2049FAX:604-583-2079E-Mail: wahowell@telus.net

FIREWEED PROPERTY

April 2007

SIGNATURE PAGE

This report, "Diamond Drilling Assessment Report on the Fireweed project, Omineca Mining District, Babine Lake area, BC" was prepared for: Jantar Resources Ltd. suite 817, 938 Howe St. Vancouver BC V6Z 1N9,

The project was managed, technically directed, and the report written by W.A. Howell, P.Geo.

Respectfully submitted this 24th day of April 2007,

W.A. Howell, P.Geo.

WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada, V3R 8P5. TEL: 604-583-2049 FAX: 604-583-2079 E-Mail: wahowell@telus.net

STATEMENT OF QUALIFICATIONS

- I, William A. Howell, certify the following:
- 1. I am a registered and practicing member of the Association of Professional Engineers and Geoscientists of British Columbia, Licence # 20440.
- 2. I reside and conduct my business at 15294 96 A Avenue, Surrey B.C. V3R 8P5. Tel. 604 583-2049 Fax: 604 583-2079 E-mail: wahowell@telus.net
- **3.** I graduated from the University of British Columbia in 1971 with a Batchelor of Science Degree (Geology)
- 4. I have practiced my profession as a Geologist since 1971.
- 5. I have gained geological experience working with several major companies and several junior companies.
- 6. I Have worked on a wide variety of mineral deposit types including exploration for porphyry copper/moly, Molybdenum, Massive Sulphide deposits, vein gold and base metals, bulk mineable gold deposits. I have gained underground as well as surface experience.
- 7. I have practiced my profession as a consultant and contractor since 1983, and have conducted and managed exploration programs in British Columbia, Alberta, Yukon, and Northwest Territories, Western and South Western U.S.A., Central and North Western Mexico and the Republic of Panama.
- 8. I did manage and technically supervise the 2006 drill program described herein and perform geological services for Jantar Resources on the FIREWEED PROJECT.

HOWELL

W.A. Howell, P.Geo.

AR. 24 200

Date

FIREWEED PROPERTY April 2007

APPENDIX I

STATEMENT OF COSTS

Jantar Resources Ltd. Fireweed Project. Omineca Mining District, Babine Lake Area BC

Labour

Jantar Personnel-

W.A. Howell, P.Geo. Oct 08, 2006 to Nov.,31, 2 Christopher Hjerpe, Technician, Oct 09 to 31	007 23 man (<u>20 man (</u> 44 man	days @ 700/ <u>days</u> @ 150/ days	16100.00 3000.00
Contract Personnel-			
2 drillers and 2 helpers included in contract price	, Oct 13 to 28,	48 man days	
1 water truck driver, wages incl in truck rate	Oct.13 to 28	16 man days	
site cleanup and rehab. Tim 1 days @ 200/	Oct.29	1 <u>man days</u>	200.00
TOTAL	8	108 man days	

Drill contract, Driftwood Diamond Drilling Ltd.: Incl. Water hauling, 11 days @1100/	104,100.00
Room and Board	4468.17
Fuel	953.53
Transportation and equipment rentals (Truck, sat phone, chain saw, coresplitter, etc.)	2840.00
Consumable field supplies; (Tarps, sample bags, sacks, ribbon, posts, 2x4s etc.)	1085.00
Assays (ACME LABS)	3926.00
Report and maps	<u>6000.00</u>

TOTAL PROJECT COST (Can. \$) \$ 142,672.70

V3R 8P5. WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada, TEL: 604-583-2049 FAX: 604-583-2079 E-Mail: wahowell@telus.net

30

APPENDIX II

DRILL LOGS

WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada, V3R 8P5 . TEL: 604-583-2049 FAX: 604-583-2079 E-Mail: wahowell@telus.net

Project: f	FIREWEED	Но	le Nur	ber:FW-0)6-01
From	To Rocktype & Description	S_from	S_to	Sample	Width
0.00	17.30 Casing				
sandy bo	ulder clay till				
17.30	50.00 Argillite				e E
Black	with arey sandy interbods, graded hedding is accessionally obvious				
Tops are	un Bedding is variable 10 to 70/CA. Sandy lavers occasionally show				
minor cro	up: Bodding is vunding, rene reneral canay layers eccacionary energy				
core.					
« 20.4	40- 23.50 ground core /rubble »				P
« 29.4	40- 30.40 grey clay gouge Fault 20.00°»				
« 30.	40- 30.60 good bedding 10.00°»				
« 30.0	60- 36.00 shattered and broken, minor gouge Fault 10-15°»				
« 45.	00- 48.0 good bedding 60-70°»				· · · · · · · · · · · · · · · · · · ·
50.00	54.00 Argillite / fine sandstone				
Mixed Bia	ack arguinte and grey sandy carbonate supported sandstone layers,				
	are arbitrary, arginite is about 50%, SS is about 50% sand grains are				
<a>(2) 53 0	n, occ. while caulte suringers.				
sand gra	ins are < 40 mesh. Occ. white calcite « stringers » present				
3					
54.00	104.80 Argillite with grey Sandstone	99.50	101.50	9701	2.00
Mixed Ar	gillite and med.grained, grey, Sandstone. 2/3 : 1/3. bedding is occ.	101.50	103.50	9702	2.00
well grad	ed and continuous upwards from SS to Argillite. rare « py 0.10-0.20%»				
<u>(@ 57.0</u>	0 gouge fault_2mm⇒ in bedding plane, 60 to CA	╉			
2007/04/21					Page 1

Project: FIREWEED	Hole Number:FW-06-01					
From To Rocktype & Description	S_from	S_to	Sample	Width		
 @ 64.00 gouge fault 15° 2mm > bedding plane, 60 to CA 						
< @ 73.50 gouge parallel bedding fault 50 2mm >						
« 79.40- 79.50 gouge, parallel bedding fault 50° 10cm»						
« 79.50- 89.70 grey colour, soft, becomes interlayered with v.f.g.SS						
towards bottom of interval. Argillite »						
« 89.70- 104.80 Mixed Argillite and medium f.g. Sandstone. Black						
Argillite is common along beds in the SS, as 'rip-up clasts 2-3 cm						
occ. white to slightly pink carbonate (MnCO3) »						
	102 50	105 50	0702	2.00		
	105,50	105.50	9703	2.00		
104.80 112.10 Sandstone	105.50	107.50	9704	2.00		
Dark Grey, Medium graned SS, 3-5% suprides, py, cp, gn, sp, enargie (7),	109.50	109.50	9705	2.00		
internitial grains ? blobs or accreates of minoral grains _ pu/on is 85% of	111 50	112 10	9707	0.60		
TS. Grey-Green bladed mineral with the gn,sp, etc. may be Barite.	111.00	112.10	5707			
440 40 448 00 Augulta	112 10	114.00	9708	1 90		
112.10 113.90 Arginite	114.00	115.00	9709	1 90		
grains and on local fracts. Sulphides tend to follow sandy portions.	114.00	115.50	3103	1.50		
Occaional white calcite stringer is present.						
115.90 124.10 Sandstone	115.90	118.00	9710	2.10		
			0744	1.0.00		

Project: FIREWEED	Но	le Num	06-01	
From To Rocktype & Description	S_from	S_to	Sample	Width
are <1% overall. Black shale clasts form about 25 - 30 % of the SS. The clast	120.00	122.00	9712	2.00
size is up to 8 mm. the SS is graded with coarser lower portions of a cycle	122.00	124.10	9713	2.10
always in sharp contact with the shale in the finer upper portions of the				
underlying cycle.		l		
Very minor pyrite is observed.				
124 10 125 00 Argillity follotono	124 10	126.00	9714	1.90
Riack arcillite with Fine grained sittstone & minor interhedded Sandstone White	126.00	128.00	9715	2.00
carbonate veinlets contrast and are common, they are weakly effervescent	128.00	130.00	9716	2.00
(perhaps dolomitic or Sideritic (?)) There is minor extensional movement along	130.00	132.00	9717	2.00
the Carb veinlets No Vis Sulphides	132.00	134 00	9718	2 00
(@ 132.30 Black clav gouge Fault 60° 5cm >	134.00	135.00	9719	1.00
135.00 136.40 Qtz-Latite	135.00	136.40	9720	1.40
Grey colour, Hard, flinty. plag 'ghosts' are up to 1mm.				
136.40 148.40 Argillite	136.40	138.00	9721	1.60
Black Argillite & Argillite/SS	138.00	140.00	9722	2.00
« 141.80- 141.90 thinly laminate Arg / SS 50°»	140.00	142.00	9723	2.00
	142.00	1 44.0 0	9724	2.00
« 136.40- 143.30 occ. py lens Argillite »	144.00	146.00	9725	2.00
	146.00	148.40	9726	2.40
« 142.00- 142.02 SS with crosscutting fract.filled with Honey Sphalerite.				
»				
« 142.02- 142.30 shale frags are supported by fine grey SS . Looks like				
soft sed. def'm & fill which cuts across laminar beds in the BS . Occ trace				
gn is visible. Arg / SS »				
2007/04/21				Page 3

.

Project: FIREWEED				le Num	ber:FW-(06-01	<u></u>	
From	То	Rocktype & Description	S_from	S_to	Sample	Width	<u> </u>	
« SS over	r Black shale abo	ut 60:40. Local small sandy zones have rich sulphides,						
ie: py > 6	5 to 70% . SS/An	; »						
r @ 148.4	40 small , gouge i	illed Fault 45.00° 5.00mm >						
148.40 1	163.70 Argillite							
7								
Black Arg	jillite with minor le	enses of grey siliceous SS cut by fine gr. to						
coarse ca	arb/silica veinlets	& stringers. SS and BS appear sheared & locally						
distorted	along planar feat	ues. core is soft and scratches easily.						
« 150	00- 150 05_smal	I segments with bedding plane shear bondaries appear						
similar to	124.1 to 135.0, s	hearing 40°»						
		-						
« 157.	56-157.60 grey	fault gouge in bedding plane fault 40°»						
no vis ible	e sulphide in this	section . Core has been sheared and healed locally						
with qtz/c	arb.							
163.70 1	163.70 EOH							
<u> </u>								
2007/04/21						P	age 4	4

•

Project: FIREWEED	Но	le Num	ber:FW-0	06-02
From To Rocktype & Description	S_from	S_to	Sample	Width
0.00 19.80 Casing				
Boulder sandy clay till.				
19.80 21.00 Sandstone	19.80	21.00	9727	1.20
Medium grained, Grey colour, occasional white calcitic tesion gash type				
stringer, minor Black shale interbeds.				
« 20.20- 20.60 a few local fractures have radiating clots of shiny				
brass yellow filaments, very soft, very fine. »				
21.00 23.40 SS/Arg	21.00	23.40	9728	2.40
Fine Grained sandy Siltstone/Argillite, soft, bedded 30 CA. Intercalated with				
local med.fine SS				
< @ 22.00 Black Gouge fault 3cm >				
section is well broken and is continuous with the section below.				·
23.40 46.00 Arg / SS	44.00	46.00	9729	2.00
Black shale and minor SS, less broken than above , occasional minor white				
carbonate fractures.				
« 33.54- 33.95 shattered and broken shatter zone »				
« 33.95- 34.15 black clay gouge fault 65° 20cm no vis sulphides .»				
below 34.15, slight increase in black/dark green SSt.				
« 36.40- 36.50 black clay gouge, selvages have white carb stringers				
parallel fault_for .4m either side. fault 30° 10cm»				
< @ 37.60 black clay gouge, fault 30° 2cm >				
« 38.40- 38.60 clasts of shale are shale hosted Breccia »				
2007/04/21			····	Page 1

Project: I	FIREWE	EED	Ho	le Num	ber:FW-	06-02	
From	То	Rocktype & Description	S_from	S_to	Sample	Width	
« 42. pod. Arg	40- 46.0 /SS »	0 increased siltstone with occasional Py bleb or small					
46.00	57.70 S	S/Arg	46.00	48.00	9730	2.00	
Interlaye	red Black	argillite and black siltstone with grey sandy layers.	48.00	50.00	9731	2.00	
< @ 46.	50 beddin	g 40° →	50.00	52.00	9732	2.00	
			52.00	54.00	9733	2.00	
			54.00	56.00	973 4	2.00	
			56.00	57.70	9735	1.70	
57.70	69.00 A	.rg / SS	57.70	59.00	9736	1.30	
Irregulai	r, chaotic	mixing of sediments. soft sed movement on bedding planes 20	59.00	61.00	9737	2.00	
to 30 de	g. /CA.		61.00	63.00	9738	2.00	
local qtz	, convolu	ted laminations in the Arg.	63.00	65.00	9739	2.00	
			65.00	67.00	9740	2.00	
« 58	.55- 58.7	0 black clay gouge fault »	67.00	69.00	9741	2.00	
« 61	.00- 61.4	0 highly contorted, dislocated, with qtz matrix »					
« 61	.40- 61.5	i0 bx SS in Black shale gouge. »					
« 61	.50- 62.1	0 similar to 61.0 to 61.4, highly contorted,local qtz rich					
mash. 🤉	"						
2007/04/2						Page	2

Project: FIREWEED	Но	le Num	ber:FW-(06-02
From To Rocktype & Description	S_from	S_to	Sample	Width
69.00 71.90 SS/Arg				
Mixed grey SS and black shale. about 50:50. laminated and interbedded. local				
bedding laminations are 10 deg to CA. Rare Py in SS portions.				
71.90 77.50 SS/Arg				
Mixed grey SS and Black argillite (Shale) about 70:30. locally convoluted soft				
sed deformation and decollement. lowermost portion of the section shows trace				
Py & honey coloured Sphalerite.				
77.50 84.50 Arg / SS				
Black argillit with fine sandy siltstone. competent, occ white stringer,(not				
carb)				
« 81.40- 84.50 Broken and Shattered, shearing 30-40°»				
84.50 88.00 Arg / SS				
Convoluted, sheared, broken Black argillite and Black fine sandy siltstone.				
fragments have commonly been previously sheared 30 deg to CA and filled with				
white qtz(?) « stringers » veinlets. local sections are uniform Black shale				
(Argillite) (this resembles flysch or turbidite sequences.)				
88.00 108.00 Arg / SS				
Black shale and black fine sandy siltstone. locally sheared 30 deg to CA				
section of Bx'd /Qtz healed Black shale. Well developed bedding , 30 deg to CA				
is very thinly laminar with grey fg SS & fine gr siltstone. Gradually grades				
coarser and coarser over many small cycles. (turbidity sequences(?))				
@ 102.70 light grey SS alternates with Black siltstone &occ Black shale.				
@ 105.70 white veinlets and convoluted / sheared Black shale with sandy				
sections. Confused, beddingplane shears &slikensides are 35/CA >				
< @ 108.00 white qtz / silica stringers end >				
(This unit, 88 to 108, may be a complete episodic interval and is variably				
continuous from relatively coarse sand and silica up through sandy silts &				
silty shales to shales. Little or no sulphides observed.)				
2007/04/21	1	1		Page 3

Project: FIREWEED Hole Number: FW-06-02							
From	То	Rocktype & Description	S_from	S_to	Sample	Width	
<u></u>					<u> </u>		
108.00	134.40 Arg	/ \$\$					
The sec	ction starts v	vith Black argillite and Black argillaceous siltstone,					
(BSst) ii	nitially very l	ittle SS or disrupted silica veined core, It does not					
fit well w	vith the previ	ious hypothesis.					
« 11	8.55- 118.70) grey fault gouge fault »					
« 12	0.70- 123.90) weak, shearing, white fracture fillings , core is					
locally n	nixed fine SS	S& BSst above white fractures. White fractures continue to					
123.90.							
	r						
« 12	3.90- 134.4	Starts a new cycle of Black Shale (BS), BSst, fine SS,					
all interl	eaved but g	radually getting coarser to sheared, broken, with white					
silica sti	ringers. Epis	odic bedding cycle »					
(@ 134	40 bedding	35-40° >					
		,					
134.40	185.20 Arg	1/SS					
Starts v	vith uniform	fine grained Black Shale,(BS) with fine grained sandy					
silstone	, (Sst). and	continues with Black Sst. there are probably several weak					
"episod	es" in this se	action , separated by minor crush zones and white siliceous					
filled fra	octures	· · · · · · · · · · · · · · · · · · ·				······································	

Project: FIREWEED	Но	le Num	ber:FW-0	06-02
From To Rocktype & Description	S_from	S_to	Sample	Width
« 156.70- 157.20 minor "episodic cycle" episodic cycle »				
« 160.70- 162.70 minor cycle, episodic cycle »				
« 162.70- 185.20 multiple minor cycles become indistinguishable from				
cyclical variability (A time of almost continual deposition) »				
185.20 188.90 Ara / SS	185.20	187.00	9742	1.80
This is a transition zone between Black shaley silty seds(BSst) and lower SS.	187.00	188.90	9743	1.90
the zone consists of interbedded , sometimes laminar beds of fine grev SS and				
Black Sst or BS_flattened 'Rip up clasts are common. Bedding is consistent @				
40 to CA.				
188.90 200.30 Sandstone	188.90	191.00	9744	2.10
Grey , bedded, silicified minor sphalerite in SS matrix. and as 'blebs' in the	191.00	193.00	9745	2.00
BS.	193.00	195.00	9746	2.00
< @ 197.20 well developed local fracture with Galena and sphalerite.	195.00	197.00	9747	2.00
mineralized fracture >	197.00	199.00	9748	2.00
SS grain size varies from med. to coarse grained. (up to 5 to 8 mm, usually as shale clasts)	199.00	200.30	9749	1.30
below 198.5 m SSbegins transition to BS. It gets finer grained, becomes				
Interbedded, sheared broken and locally convoluted. (Is this the sole of a				
turblaity bed?) The transition zone also has P.G. matrix				
	200.20	202.00	0750	1 70
	200.30	202.00	9750	1.70
Initiality with pale green/white sinceous stringers.				
top of Hole 06.02 (clootrum 2) (outvice isor same unknown mineral as at the				
(op of Hole 06 02(electrum ?) (owyneelle ?) parting? fracture?				
(w 201. ou unitorni, dense, sun, nu vis sulprides beyond uns point. Diack				
2007/04/21	1			Page 5

Project: FIREWEED	На	le Num	ber:FW-0	06-02
From To Rocktype & Description	S_from	S_to	Sample	Width
202.00 243.00 Arg / SS	221.00	223.00	9751	2.00
Black Shale and siltstone (BS and BSst) minor grey SS and basal				
sheared&convluted zone.				
« 202.00- 218.60 Black Shale (BS) Argillite »				
« 218.60- 220.40 BSst becomes laminar BS with grey, fine SS.				
Arg / SS »				
« 220.40- 220.60 convoluted basal section »				
« 220.60- 222.30 BS withinterlayers of grey SS, minor Py. Argillite »				
« 222.30- 227.50 BS grades into BSst. Arg / SS »				
« 227.50- 228.50 increased grey SS. Sandstone/Siltstone »				
« 228.50- 230.30 Sheared, convoluted/Bx,clasts of Bx'd white stringer				
boxwork between layers of BS Brecciated Sediments »				
$<$ @ 231.20 white tension gash like fractures ,enechelon, $~45^{\circ}$ >				
« 231.20- 243.00 BS and confused BS and sheared and convoluted rock to				
EOH, The last of the core is very confused,local fracts feel like talc				
coating.Minor grey SS with BS and fragmented grey/green siliceous rx				
interleaved with deformed BS. There is a general sense of layeringat 40 /CA.				
Theblack shale commonly shows slikensides on partings. Only trace of Py obs.				
throughout. Argillite »				
2007/04/21	+	 		Page 6

2007/04/21

_

Project: FIREWEED				le Nun	ber:FW-0	06-02
From	То	Rocktype & Description	S_from	S_to	Sample	Width
243.00	243.00 EOH					
			1			
			·			
						-
e e e e e e e e e e e e e e e e e e e						
2007/04/21			ł	1	ĺ	Page 7

.

Project: FIREWEED	Но	le Num	ber:FW-0	76-03
From To Rocktype & Description	S_from	S_to	Sample	Width
0.00 18.20 Casing				
18.20 51.41 Argillite / Sandstone				
BS, BSst. includes local soft, dark grey argillite. Bedding is 35/CA,				
occasional white tension gash filling.				
< @ 35.40 small fault 60°, 5cm >				
« 36.20- 36.80 small fault / Rubble 60°, 5cm»				
« 47.20- 48.00 white clay gouge with silicic fracts. fault and fracts				
30°»				
51.40 59.90 Sandstone				
Fine to med grained Grey SS. with interleaved and laminar BSst.				
bedding is a little closer to CA, (25 to 30/CA)				
White carb. tension gash filling, cut bedding at close to 90 / CA		[
< @ 57.80 Qtz./ carb filled fract fracture/vein 10° 15mm >				
< @ 58.00 gouge parallel bedding >				
59.90 92.80 Mixed Sandstone/Argillite				
Interleaved Grey SS with BS&BSst, Grey SS commonly contains rip up clasts of	of			
BS. BS clasts reach 30 to 50% of the rock. occasional trace Pyrite . no other				
sulphides obs.				
« 67.20- 67.30 gouge with white grushed qtz/carb , fault 50°»			<u> </u>	
2007/04/26	1 1	1		Page 1

Project: Fl	Project: FIREWEED			le Num	ber:FW-(06-03		
From	To Ro	cktype & Description	S_from	S_to	Sample	Width		
graphitic s ‹ @ 73.10 gouge ›	liks on contacts, grap) black gouge, on loca	hitic slik faces are common throughout. I contact, BS/SS(SS is <10 cm thick) fault						
« 73.8	0- 74.80 Broken, Sh	sared, Gouge, bedding fault 45°»						
 < 78.9 Iaminar BS (@ 81.20 < 92.7 present or contact » 	0- 79.00 local black (S/BSst and SS. fault 4) sandy gouge in grey 0- 92.80 Black goug : are <<1% Py in the b	gouge, between grey SS with BS clasts& 0» SS fault > e on contact with BS. sulphides are either not eottom of the section. only Py observed. faulted						
92.80 1 Black sha	88.70 Argillite / Sanc le and black siltstone,	Istone (BSand BSst), interbedded with locally laminar						
fine gr. SS	S.							
« 116.0 ‹ @ 122.5 ›	00- 116.50 gouge, fai 0 fine silty gouge in B	ılt, long fracture 10°» Sst, local graphitic shears. Small fault. 60°						
« 128.0	00- 128.20 gouge/bx	with white carb/qtz matrix »						
« 136.0 ‹ @ 136.8	50- 136.80 locally cru 0 curved shear plane	mpled, confused bedding. Breccia » >						
« 140.(.5-15° 1cm	00- 143.00 broken co 1»	re, grey gouge, long fractures,minor faulting						
2007/04/26			1				Page	2

Project: FIREV	Но	le Nur	ber:FW-(06-03	٦	
From To	Rocktype & Description	S_from	S_to	Sample	Width	1
< @ 146.00 no v	vis sulphides bedding 35° ›					
« 168.20- 16	58.60 Broken, minor gouge, fault 45°»					
« 181.70- 18	32.20 minor shearing 10-15°»					
a @ 184.00 grey (y clay gouge fault 45° 5cm >					
< @ 185.50 Min	or shiny slik surface shear/fault 0° >					
						ł
	· · · · ·					
188.70 209.40	Argillite / Sandstone					
Mixed shale and	d SS, interbedded, often gradational, No Vis Sulphides.					
209.40 210.20	Sandstone					
Grey SS, med g	grained,trace Py, no other sulphides visible.					
210.20 213.30	Argillite / Sandstone					
mixed shale,BS	Sst and grey SS.					
« 209.40- 20	09.60 grey gravelly gouge, fault 75° 20cm»					
no visible sulph	ides in this section.					_
2007/04/26		r i	r †		Page 3	

^{>} roject:	FIRE	EWEED		Но	le Num	ber:FW-0	06-03		
From	То	Rocktype	e & Description	S_from	S_to	Sample	Width	· · · · · · · · · · · · · · · · · · ·	
213.30	237.8	80 Argiilite / Sandstone							
BS,BSs	st,& fin	e gr.SS, core is soft, and	l fairly competent.						
« beddi	ing 40'	°»∢ @ 237.80 sheared co	ntact 40° >						
237.80	238.2	20 Sandstone							
Grey, h	ornfel	s, minor secondary Bt, L	ower contact sheared Bedding. No						
sulphide	es ass	ociated with this feature.							
238.20	243.	50 Argillite / Sandstone	,						
BS,BSs	st,grey	r SS, as before.							
243.50	244.	40 Sandstone							
Grey S	S, Hor	mfels. Minor secondary	Bt.						
244.40	247.	30 Argillite / Sandstone	•						
BS, BS	st, Sc	oft, Grey to black colour (Drill bit "chatter" has reduced core						
diamete	er by a	as much as 1cm.)							
247.30	284.	10 Arg							
Fractur	ed, co	onfused, brecciated & fille	d with « carb » « qtz » and						
rebrecia	ated. r	much movement and ma	ny polished slip planes. No Vis Sulphides						
(NVS)									
277.00	288.	70 Argillite / Sandstone) hundant alik hadding plagas in all						
BS, BS	SI, WII	n minor 55, convoluted,a	adundant silk bedding planes in all						
oorb/at	nis,airi z stoci	kwork Bedding is offen	a distinctive, almost brecolated,						
with sh	inv slil	k faces on shear planes	Core is generally soft poorly friable						
« comn	non st	hears/faults 60-70°»							
۰ ۵ (۲۵) 28	8 70 F	End of Hole >							
2007/04/2	26			f	-	I	1	Page	4

2007/04/26

•

•

-

Project: FIREWEED	Но	le Num	ber:FW-(06-04
From To Rocktype & Description	S_from	S_to	Sample	Width
0.00 15.30 Casing	15.20	17.30	9752	2.10
Sandy clay till		-		
15.30 25.35 Arg / SS	17.30	20.30	9753	3.00
BS, BSSt, Grey SS. interbedded sometimes laminar,bedding is 35/CA, core is	20.30	22.30	9754	2.00
soft, with sandy sections being a little harder but still easily scratchable.	22.30	24.30	9755	2.00
Sandy section have minor to trace Py with possible vfg intergrain honey brown	24.30	25.35	9756	1.05
Sphalerite.				
25.35 50.55 Latite	25.35	27.30	9757	1.95
Dike, pale creamy colour, silicified, ghost plagioclase, small spots of	27.30	29.30	9758	2.00
sphalerite at 30m on fracture surfaces.	29.30	31.30	9759	2.00
-	31.30	33.30	9760	2.00
	33.30	35.30	9761	2.00
a	35.30	37.30	9762	2.00
	37.30	39.30	9763	2.00
	39.30	41.30	9764	2.00
	41.30	43.30	9765	2.00
	43.30	45.30	9766	2.00
	45.30	47.30	9767	2.00
	47.30	49.30	97 6 8	2.00
	49.30	50.55	9769	1.25
50.55 52.90 Argillite	50.55	52.90	9770	2.35
with common white Carb/qtz stringers. Bedding is convoluted,confused, core is				
brecciated and healed.(Does this represent a soft sed plane of movement ?				
perhaps a slump feature?)		1		
52.90 55.80 Sandstone/Siltstone	52.90	54.90	9771	2.00
fine grained, SS, with laminar BS. Minor Py& interstitial Sph(?), fine brown	54.90	55.80	9772	0.90
shiny flakes: not Bt.				
55.80 58.00 Sandstone	55.80	58.00	9773	2.20
confused / convoluted bedding, slump(?), core is highly broken,cut by				
2007/04/21	ı 1	I		Page 1

Project: FIREWEED	Но	le Num	ber:FW-0	96-04
From To Rocktype & Description	S_from	S_to	Sample	Width
2_3mmwhite carb/qtz « stringers » are broken and brecciated.				
58.00 72.80 Sandstone	58.00	60.00	9774	2.00
Grey, sandstone, initially is laminar with BS and BSst. sand becomes coarser	60.00	62.00	9775	2.00
with depth to 71.	62.00	64.00	9776	2.00
« 71.00- 72.40 fine to coarse sediment cycle 140cm» (@ 72.40 mud	64.00	66.00	9777	2.00
seam contains occ. Py, rare Galena, trace Sphalerite (is this structure	66.00	68.00	9778	2.00
connected to nearby mineralization) mud seam >	68.00	70.00	9779	2.00
	70.00	72.00	9780	2.00
	72.00	74.80	9781	2.80
72.80 76.20 min Sed	74.80	76.20	9782	1.40
Black shale is brecciated, matrix is a mixture of massive PY,Po,Sph,with minor				
Сру.				
« poorly developed bedding 40°»				
« 75.60- 76.20 less rock component. sulphides show fine framboidal				
texture and slight bedding or layering. massive sulphide »				
76.20 81.40 Latite dike	76.20	77.60	9783	1.40
Dike. fine grained, occasional pod or bleb of « py » , ghost breccia texture	77.60	81.40	ns	3.80
outlined by a fine black mineral.				
81.40 82.20 mineralization	81.40	82.20	9784	0.80
Massive Sulphide zone. Po, Py, minor cpy, Gn, interspersed with Bedded BSst				
and				
brecciated BSst, where MS is the Bx matrix. Sulphides are predominantly Po.				
bedding is 35/CA.				
		00.75	0705	
82.20 83.50 Argillite	82.20	83.50	9785	1.30
biack snale with commonly sulphide tilled tractures, predom, Po, some Sph.				+
2007/04/21				Page 2

Project: FIREWEED	Но	le Num	06-04	
From To Rocktype & Description	S_from	S_to	Sample	Width
83.50 85.10 Sandstone	83.50	85.10	9786	1.60
Fine grained grey sandy SS				· ·
« 83.80- 84.00 MS mixed with SS clasts. Massive pyrrhotite 20cm»				
« 84.80- 85.10 Massive Pyrrhotite with Sphalerite, minor				
galena,chalcopyrite,and pyrite. Massive Sulphide »				
85.10 86.50 Arg / SS	85.10	86.50	9787	1.40
BSst with sulphide filled fracts, also epidote fracts, some fracts .5cm wide,TS approx. 2%				
« sulphide filled breccia/stockwork sulphide stockwork 2%»				
86.50 87.90 Fault	86.50	87.90	9788	1.40
Broken SS and rubble, Brown sphalerite in HW of fault				
« 87.10- 87.20 gouge, sph in the HW. fault 15°»				
87.90 94.90 Arg / SS	87.90	90.80	9789	2.90
Mixed BSst and fine Grey SS. Several fractures 20 to 30 to CA & up to 3 cm wide	90.80	92.80	9790	2.00
are sulphide filled, similar to 85.1 to 86.5. Texture is locally brecciated				
with sulphide filled matrix. mostly brown sphalerite.				
94.90 95.50 Siltstone				
	92.80	95.50	9791	2.70
BSst, fractured and broken, filled with Sulphide. Local section (.2m) is Bedded				
MS with vfg grey sulphide, po,py,&cpy. ("Bedding" may be flow banding).				
95.50 102.00 Qtz-Latite	95.50	97.50	9792	2.00
Qtz Latite Dike, fine grained,Bx / stockwork. matrix/stockwork is mostly	97.50	99.50	9793	2.00
Po,Sph, « py » filled . TS is 10%.	99.50	102.00	9794	2.50
102.00 106.30 mineralization	102.00	103.50	9795	1.50
Massive Sulphide: Po, Py, Gn,Sph. (black) with BSst . fine fracts,5/CA, accross	103.50	105.00	9796	1.50
core section are filled with remob sulphide and chlorite(?) .	105.00	106.30	9797	1.30
« 105.80- 106.30 mineralization is about 40% of rock in Bx matrix.				

Project: FIREWEED	Но	le Num	ber:FW-0	06-04
From To Rocktype & Description	S_from	S_to	Sample	Width
mineralized Bx 40%»				
106.30 107.50 Sandstone				
medium grained Grey SS. guickly becomes BSst. Afew po/cpy fracts in the initial				
level, then barren core.				
107.50 110.90 min Sed	107.50	109.00	9798	1.50
BSst with MS matrix . about 15% sulphide, Po:Py is about 10:1 Bx becomes	109.00	110.90	9799	1.90
weak				
stockwork by 110.9				
110.90 111.90 Siltstone	110.90	111.90	9800	1.00
BSst with 20 cm of MS (Po + minorcpy, Py) quickly becomes Bx then Stockwork.				
111.90 117.80 Siltstone				
BSst is nearly barren, occasional Po filled fracture , commonly at 5/CA.				
117.80 121.40 Sandstone				
SS Grey colour, occ fract mineralized with Po/Py.< @ 119.00 open spaces in qtz				
and MS., sulphides are Po,Cpy,Py. fracture 45° >				
121.40 122.70 min Sed	121.40	122.70	9801	1.30
BSst, Sheared, convoluted and confused bedding, generally about 30/CA				
rock is a « qtz » , broken and shattered with Sulphidesforming much of the				
matrix from 10 to 155 at 121.4 to 100 5 massive Po at 122.1 to 122.4. then				
becomes Bx with 40% matrix Sulphides from 122.4 to 122.7				
122.70 124.30 Arg / SS	122.70	124.30	9802	1.60
weak stockwork with fracts and Matrix composed of quartz or Po with minor cpy.				
124.30 126.70 mineralization	124.30	125.50	9803	1.20
Massive sulphide, Massive Po/Sph , trace cpy,py., minor grey SS component to	125.50	126.70	9804	1.20
core throughout interval. Sulphides are 90 to 95 % of core.		ĺ		
This section marks the end of the massive sulphide sections of the hole.				
126.70 160.70 Sandstone/Siltstone				
Mixed Sandstone and siltstone. with Black argillite.	<u> </u>			
2007/04/21	r	•	1	Page 4

•	-	-	2	•	1	-	

Project: FIRE	Ho	Hole Number:FW-06-04				
From To	······································	Rocktype & Description	S_from	S_to	Sample	Width
BS becomes	more grap	hitic with depth. (In retrospect, graphite diminishes				
around minera	alization n	d silica increases.				
EOH at 160.7						
160 70 160 7						
100.70 100.1	U LON					
				ļ		
				†		Dama

Project: FIREWEED	Но	le Num	ber:FW-0	06-05
From To Rocktype & Description	S_from	S_to	Sample	Width
 0.00 30.10 Casing casing in sandy clay till 30.10 58.80 Arg / SS BS & BSst with occasional small interbeds of fine grey SS. Shales and Siltstones are soft and strongly graphitic. 58.80 61.30 Sandstone SS Med.fine grained grey SS occasionally grading into BSst. with occasional small interbeds of fine grey SS. Initially the SS is soft and scratches easily. « 59.70- 59.90 grey SS gouge, mineralized fracts on FW side. fault 40°» 	59.70	61.30	9805	1.60
 « 60.10- 60.20 mineralized fracts on FW side. fault » « 60.10- 61.30 SS below 60.10 to 61.30, shows occ. po/py/zn. on fracts 5mm» similar to SS zone in 06_04 around 106.5, but mineralization is weaker in FW 06_05. 61.30 66.50 Sandstone SS softens and scratches more easily . trace « py » in SS 66.50 78.40 Argillite BS ,BSst, , Soft , graphitic. « @ 69.20 shear zone 30° » @ 72.00 minor 	61.30	62.80	9806	1.50
gouge, broken core. fault 15-65° > < @ 73.50 gouge fault 40° 1cm > < @ 73.70 gouge fault 40° 1cm < @ 73.90 gouge fault 40° 1 cm>> occ long fracture CA < @ 75.30 core becomes mor sandy > 2007/04/21				Page 1

•

Project: l	FIREWEED			lole Nur	nber:FW-0	06-05
From	То	Rocktype & Description	S_fro	n S_to	Sample	Width
78.40	80.30 Sandst	one				
Grev SS	interhedded wi	th BSst & BS				
(aouae ir	n black araphitic	: Sst. @ 80.30 fault 40° 2cm >				
33					1	
80.30	80.60 Arg / S	3				
mixed se	ds, convoluted,	disrupted BS & Grey SS.				
80.60	81.40 Siltstor	le				
BSst with	h minor interbed	Is of Fine Grained Grey SS.				
81.40	81.40 EOH				[
			e			
				ł		
				1		
				-		
				Ì		
					1	
2007/04/21			1	1	T	Page 2

APPENDIX III

ASSAY RESULTS

V3R 8P5. WA HOWELL P.Geo. 15294 96 A Avenue, Surrey BC Canada, E-Mail: wahowell@telus.net FAX: 604-583-2079 TEL: 604-583-2049

ACME ANALYTICAL LABORATORIES LTD. ____(ISO 9001 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

VODUI CRUITLICUIS	ASSAY	CERTIFICATE
-------------------	-------	-------------

Howell, W.A. PROJECT FIREWEED File # A608611 Page 1 15294 - 96A Ave, Surrey BC V3R 8P5 Submitted by: W.A. Howell

	· - · · · · · · · · · · · · · · · · · ·																	<u></u>						·····. ···	· · · · · · · · · · · · · · · · · · ·	······································
S	SAMPLE#	Мо %	Ըս %	РЬ %	Zn %	Ag** gm/mt	N 1 %	Co %	Mn %	Fe %	As %	Sr %	Cd %	5b %	B1 %	Ca %	р %	Cr %	Mg %	AL %	Na %	K %	W %	Hg %	Au** gm/mt	
G	S−1 <	.001	.004	<.01	<.01	<2	.001<	.001	.06	2.21	<.01	.011<	.001<	.001	<.01	.74	.072	.001	. 58	1.50	.38	.68	<.001	<.001	<.01	
9	701 <	.001	.007	<.01	.02	<2	.012	.002	1.02	4.78	<.01	.002<	.001<	.001	<.01	.76	.039	.006	1.13	. 93	.11	. 18	<.001	<.001	.01	
9	702 <	.001	.007	.03	.06	4	.015	.003	1.19	4.58	.01	.002<	.001<	.001	<.01	.41	.055	.007	1.09	1.16	.08	.23	<.001	<.001	.02	
9	703 🔹	.001	.006	.04	.11	5	.012	.002	1.01	4.45	.01	.001<	.001	.002	<.01	.31	.056	-006	,78	1.20	.31	.47	<.001	<.001	<_01	
9	704 <	.001	. 003	. 14	- 35	59	.010	.002	.66	5.57	.01	. 002 .	.001	.001	<.01	.48	.023	.007	.64	1.35	. 18	.16	<.001	<.001	.01	
9	705	.001	.006	1.14	2.35	385	.008	.001	.56	6.43	- 13	.001	007	.011	<.01	.08	.028	.006	.34	1.39	. 18	.24	.002	<.001	. 05	
9	706	.001	.010	1.68	3.48	595	.005	.002	.33	8,91	- 18	.002	.009	.015	<.01	.09	.030	.004	. 18	1.04	. 18	.07	.003	<.001	.05	
9	707	.001	.008	1.01	1.96	432	.009	-002	.26	6.82	.03	.001 .	.006	.005	<.01	.32	.023	.002	.24	.74	- 15	-41	.002	<.001	.04	
9	708	.001	.006	.03	- 08	10	.015	.005	.65	5.26	<.01	.002<	.001<	.001	< 01	.34	.094	.004	- 69	1.07	.18	- 52	<.001	<.001	<.01	
9	709 <	.001	.006	.01	.04	9	.016	.003	.79	5.51	<.01	.002<.	.001<	.801	<.01	.02	.081	.005	.94	1.09	. 18	. 38	<.001	<.001	< 01	
9	710	.001	.004	.02	.13	18	.008	. 002	1.54	3.84	.01	.002<	.001<	.001	<.01	1.05	.031	.005	.44	.81	<.01	.33	.001	<.001	.01	
. 9	711	.001	.005	,18	.43	167	.006	.001	5.39	1.94	.06	.002	.001	.006	<.01	.92	.021	.002	. 35	- 52	<.01	. 18	<.001	<.001	.01	
9	712	.001	.004	.17	.40	111	.004	.001	7.41	2.58	.03	.003	.001	.002	<.01	1.46	-044	.003	.67	.53	. 12	. 12	<.001	<.001	.02	
R	E 9712	.001	.003	. 17	.39	109	.005	.001	7.25	2.50	.03	.004	.001	.003	<.01	1.44	.042	.003	.65	.51	. 18	<.01	<.001	<.001	.01	
R	RE 9712	.001	.004	.18	-39	107	.004	.001	7.19	2.49	.03	.003<	.001	.003	<.01	1.43	.046	.003	.65	.49	.07	.05	<.001	<.001	.02	
0	713	001	.013	. 69	.22	50	.605	.001	8.06	3.66	.01	.004<.	.001	.094	<.01	1.54	114	.004	1.17	1.34	. 15	<.01	<.001	<.001	.02	
, ó	714	001	.007	<.01	.03	3	013	.003	72	5.88	.01	.002<	001<	.001	<.01	.54	.084	.006	1.16	2.41	.48	.42	<.001	<.001	<.01	
9	715	001	.007	<.01	.02	2	010	.002	.40	5.75	<.01	.002<	.001	.001	<.01	.86	.106	.005	1.05	2.08	.15	.39	<.001	<.001	.01	
9	716	.001	.006	<.01	.02	<2	.013	.002	.16	5.56	<.01	.002<	.001	.001	<.01	.49	.104	.006	1.05	2.86	- 66	.37	<.001	<.001	.01	
9	717	.001	.010	<.01	.03	≺2	.013	.003	. 11	5.59	<.01	.003<	,001<	.001	<.01	.61	.096	.005	.93	2.57	.37	.29	<.001	<.001	<.01	
Q	0718	001	005	< 01	01	<2	011	003	10	5.31	<.01	.003<	.001<	:.001	<.01	.49	.078	.005	.84	2.48	.26	.35	<.001	.001	<.01	
ó	710	001	007	< 01	.01	2	010	.002	.11	5.19	<_01	.003<	.001	.001	<.01	.40	.095	.004	.95	2.70	.23	.41	<.001	<.001	<.01	
ý	720	001<	001	<_01	<.01	-ź	.004<	. 001	.07	1.48	<.01	.004<	.001	.001	<.01	.92	.013	<.001	.46	.95	.25	<.01	<.001	<.001	<.01	
ý	721	.001	.004	<.01	<.01	<2	.006	.001	.09	4.52	<.01	.003<	.001<	.001	<.01	.86	.058	.004	.80	1.86	.26	.26	<.001	.001	<.01	
9	722	.001	.007	<.01	.01	<2	015	.002	. 12	5.58	<.01	.002<	.001	.001	<.01	.57	.131	. 009	1.22	3.21	.25	.29	<.001	<.001	<.01	
0	777	001	008	< .01	.02	<2	014	003	11	5.64	<.01	.002<	.001	.002	<.01	.39	. 113	.008	1.16	3.35	.20	.13	<.001	.001	<.01	
ý.	774	001	.006	<.01	.02	<2	014	.002	07	4.26	<.01	.002<	001	. 002	< 01	.21	.049	.007	.81	2.47	.14	.40	<.001	<.001	<.D1	
9	725	.001	.007	<.01	.01	<2	.014	003	.09	5.77	<.01	.003<	.001	.001	<.01	-61	071	.006	.83	2.03	.25	. 29	<_001	<.001	.01	
9	726	.001	.005	<.01	.01	<2	.010	.002	.12	4.62	<.01	.002<.	.001<	.001	<.01	.70	.050	.007	1.00	2.27	.22	.29	<.001	<.001	<.01	
9	727	.001	.006	<.01	.01	<2	.018	.003	. 14	5.69	<.01	.003<	.001<	.001	<.01	1.47	.050	.013	1.27	3.17	.16	.25	<.001	<.001	<.01	
a	728	001	007	< 01	01	<2	015	003	12	5 96	< 01	003<	.001	-001	<.01	.33	.082	-010	1.34	3.56	. 19	. 20	<.001	.001	.01	
ģ	729	001	.005	<_01	<.01	<2	.016	.003	.11	5.38	<.01	.002<	.001	.001	<.01	.29	.064	.007	1.05	1.92	.13	.35	<.001	<.001	.01	
ó	730	. 001	.005	<.01	.01	<2	.016	.002	13	5.45	<.01	.003<	.001	.001	<.01	.66	.086	.007	1.12	1.32	.16	.23	<.001	.001	<.01	
, 9	731	.001	.005	<.01	.01	<2	.013	.003	.11	5.02	<.01	.003<	.001<	.001	<.01	.97	.059	.006	1.30	1.16	.16	.31	<.001	<.001	<.01	
9	732	.001	.005	<.01	.01	<2	.013	.002	.11	4.97	<.01	.001<	.001<	.001	<.01	.81	.071	. 006	1.18	1.11	.27	. 29	<.001	<.001	<.01	
s	TANDARD SF-3/SL20	.032	.778	.92	1.07	54	.333	.017	.42	7.89	<.01	.006	.005	.002	<.01	2.49	.055	.017	4.09	1.02	,58	1.05	<.001	<.001	18	7~
																								NBIA-	∖₽₽₽	1-SERTA
	GROU	P 7AR	- 1.	.000 (M SAM	PLE, A	QUA -	REGI	A (HC	L – HNC	13-H2C) DIG	ESTIC	IN TO	100 M	IL, ANA	LYSED	BY ICP	-ES.				13	· ,	/ 1/1	1012
	- SA	MPLE	TYPE	DRII	L COR	E R150		Sampt	es be	ginni	ng 'R	E' are	e Rer	uns a	and 'R	RE' ar	e Reje	ct Rer	uns.				Ŭ	- 6-	://A	\mathcal{H}
																							E	//	acky Wa	ing to
Data	FA	DA	TE F	ECE	IVED	: NO	v 2 2	006	DAT	E RI	SPOR	т ма	ILE	D:			<i>.</i> .						- X	€a√		THE .
	· · · · · · · · · · · · · · · · · · ·																			, <i>-</i>				Z	- 40	
All resu	Its are considered	the c	onfic	ientia	it pro	perty	of th	e cli	ent.	Acme	assum	es the	e lia	ווומ	ties t	or act	ualco	st of	the an	atysis	s only	•				

Howell, W.A. PROJECT FIREWEED FILE # A608611

ACMI ANALYTICAL																									ACHE ANALY FI' AL
SAMPLE#	Mo %	Cu %	Pb %	Zn %	Ag** gm/mt	Ni %	Co %	Mn %	Fe %	As %	Sr %	Cd %	Sb %	Bi %	Ca %	Р %	Cr %	Mg %	Ai %	Na %	K %	W %	Hg %	Au** gm/mt	
G-1	<.001	.003	<.01	<.01	<2	.001	<.001	.06	2.17	<.01	.011<	.001<	.001	<.01	.71	.077	.001	.55	1.41	.33	.73	<.001	.001	<.01	
9733	4.001	,005	<.01	. 02	<2	.014	.002	.13	5.13	<.01	.002<	.001<	<.001	<.01	1.21	.061	.006	1.12	.94	.31	.35	<.001	.001	.01	
9734	₹.001	.007	<.01	.02	<2	.016	.003	. 12	5.09	<.01	-002<	.001<	.001	<.01	. 89	.071	.007	1.15	1.18	.05	.20	<.001	<.001	.02	
9735	↓ .001	.006	<.01	.01	<2	.012	.003	. 13	5.07	<.01	.002<	.001<	.001	<.01	.85	.063	.005	1.18	. 93	.04	.30	<.001	<.001	.01	
9736	4.001	.006	<.01	.02	<2	.013	.002	. 14	4.26	<.01	.002<	.001<	.001	<.01	1.28	.083	.005	. 95	.94	. 13	.21	<.001	<.001	<.D1	
9737	₹.001	.004	<.01	.02	<2	.01 1	.002	.27	4.65	<.01	.003<	.001	.001	<.01	1.64	.040	.005	1.01	.75	.10	.26	<.001	.001	.01	
9738	₹.001	.005	<.01	.02	<2	.013	.003	. 18	5.12	<.01	.005<	.001<	.001	<.01	2.37	. 688	.005	1.39	. 91	< 01	.26	<.001	<.001	<.01	
9739	.¢001	,005	<.01	.02	<2	.012	.002	.13	4.55	<.01	.001<	:.001	.003	<.01	.98	.046	.005	1.05	.91	.03	.20	<.001	<.001	.01	
9740	÷.001	.005	<.01	.01	<2	.013	.003	-24	5.67	<.01	.002<	.001<	.001	<.01	1.57	.133	.006	1.02	.99	.06	.36	<.001	<.001	.01	
9741	≮.001	.005	<.01	<.01	<2	.013	.002	. 18	4.17	<.01	,002<	.001<	<.001	<.01	.99	.088	.005	.75	.80	<.01	.29	<.001	<.001	<.01	
9742	<.001	.005	<.01	.01	<2	.015	.002	.36	5.61	<.01	.001<	.001<	<.001	<.01	. 65	. 059	.009	1.26	2.87	.06	.48	<.001	<.001	.01	
9743	<. 001	-005	<.01	.03	4	.015	.003	.90	6.16	<.01	.002<	.001	.002	<.01	.47	. 088	.012	1.29	3.11	.17	.47	<.001	<.001	.01	
9744	4.001	.004	.02	.06	7	.010	.002	1.27	5.03	- 01	.002<	.001<	<.001	<.01	.49	.054	.008	.76	1.57	.05	.16	<.001	<.001	.01	
9745	₹.001	.002	, 15	.27	60	.011	.002	1.11	5.76	.01	.003	.001	.001	<.01	.90	.030	.006	- 65	.91	.02	.22	<.001	<.001	- 04	
9746	*.001	.003	.31	.57	177	.004	.001	5.05	6.78	. 02	.003	.001<	<.001	<.01	1.73	.029	.004	.70	.73	<.01	.20	<.001	<.001	. 02	
9747	↓.001	.007	.57	, 99	336	.006	.001	1.14	7.49	. 09	.001	.003	.002	<.01	.88	.025	.006	.57	1.38	.04	.14	<.001	<.001	.08	
9748	₹.001	.005	.65	1,33	221	.008	.001	1.44	7.29	.03	.001	.004	.002	<.01	.86	.050	.007	.81	1.85	.13	.25	.001	<.001	. 05	
9749	₹.001	.006	.01	.05	5	.021	.003	.66	5.78	.01	.001<	.001	.001	<.01	.50	.083	.010	1.15	2.36	.22	.33	<.001	<.001	.01	
9750	₹-001	.008	<.01	.01	<2	.015	.003	.20	5.99	<.01	.002<	.001<	<.001	<.01	.4/	.152	.007	1.10	5.19	. 54	. 15	<.001	<.001	.01	
9751	¢.001	.007	<.01	.02	<2	.015	.005	- 11	5.77	<.01	,005<	.001	.002	<.01	.72	.076	.006	1.03	1.90	. 19	.41	<.001	<,001	.01	
9752	₹.001	.094	<.01	.24	<2	.016	.003	.32	6.03	<.01	,003	.001<	.001	<.01	.43	.075	.005	.86	1.35	< 01	.38	.001	<.001	<.01	
9753	.001	.001	<.01	. 16	<2	.014	.002	.39	8.13	<.01	.001	.001	.001	<.01	.27	.073	.010	.97	3.28	.08	.34	.001	<.001	.01	
9754	4.001	.004	<.01	.69	<2	.012	.002	.37	8.11	<.01	.001	-004<	<.001	<.01	. 29	.063	.010	-90	2,93	,05	.39	<.001	<.001	.01	
9755	↓.001	.026	.03	1.08	3	.016	.003	.40	9.60	<.01	.001	.006	.001	<.01	.28	.088	.007	.89	3.36	<.01	.47	.001	<.001	.01	
9756	4.001	.009	. 05	.22	<2	.016	.003	.36	6.71	.01	.001	.001	.001	<.01	.31	.058	.005	.69	1.93	.14	.41	<.001	<.001	.01	
9757	.001	.002	.07	.22	Z٠	<.001	.001	.25	2.44	<.01	<.001	.001	.002	<.01	_14	.014	.001	. 15	.91	.08	.64	<.001	<.001	.01	
9758	.001<	.001	.04	.30	<2•	:.001	.001	.27	2.78	<.01	<.001	.001	.002	<.01	.10	.001	<.001	. 14	.90	.13	.57	<.001	<.001	.01	
9759	.001<	.001	. 12	.28	2.	.001	<.001	. 23	1.97	<.01	<.001	.001	.001	<.01	.06	.008	<.001	_ 11	. 79	. 12	.68	<.001	<.001	<_01	
9760	∻. 001	.002	. 02	.55	<2<	<.001	<.001	. 17	3.22	<.01	<.001	.003	.002	<.01	.09	.005	<.001	-13	.97	<.01	.62	.001	<.001	.05	
9761	.001	.003	<.01	.42	<2*	.001	<.001	. 24	4.84	<;01	<.001	.002	.001	<.01	.12	.004	<.001	.20	.88	.03	.51	.001	.001	.01	
RE 9761	₹.001	.005	<.01	.42	<2•	<.001·	<.001	.24	4.85	<.01	<.001	.002<	.001	<.01	.11	.008	<.001	.21	.91	.03	-40	.001	<.001	.01	
RRE 9761	.001	.004	<.01	.43	<2•	<.001	<.001	.23	4.87	<.01	<.001	.002<	<.001	<.01	.11	.012	<.001	.19	. 99	.15	.41	<.001	.001	<.01	
9762	₹ .001	.030	<.01	.72	<2	.005	.001	.27	7.64	<.01	.001	.004	.001	<.01	.23	.020	.001	.32	1.05	<.01	_41	.001	<.001	.01	
9763	₹.001 <	.001	.07	.07	<2-	<.001	.001	.26	4.14	<.01	<.001<	.001<	<.001	<.01	. 16	.016	. 003	.22	1,02	<.01	.47	<.001	<.001	.03	
9764	.001	.001	.10	. 19	<2•	.001	<.001	.23	2.19	<.01	<.001	.001	.001	<.01	.09	.008	<.001	.12	.84	<.01	.47	<.001	<.001	.13	
STANDARD SF-3/SL20	.032	.783	. 93	1.04	54	.332	.017	.43	7.90	<.01	.006	.005	.001	<.01	2.53	.057	.018	4.14	1.11	.58	1.08	.001	<.001	6.12	

Sample type; DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 👖 FA

Page 2

- 			Ho	owel	1, W	.A.	PF	OJE	СТ	FIR	EWEI	ΞD	FI	LE ‡	‡ A6	0861	. 1				Pa	ge :	3	
SAMPLE#	Mo %	Cu %	Pb %	Zn %	Ag** gni/mt	Ni %	Co %	Mn %	Fe %	As %	Sr %	Cơ %	sb %	Bi %	Ca %	P %	Cr %	Mg %	Al %	Na %	— К %	W %	Hg %	Au** gm/mt
G-1	₹.001	.002	<.01	<.01	<2<	.001	.001	.06	2.14	<.01	.007<	.001<	.001	<.01	.56	.074	.001	.55	1.16	.15	.66	<.001	.001	<.01
9765	4.001	.006	11	.43	<2<	.001<	.001	. 26	4.08	<.01	<.001	.003	.001	<.01	.12	.007	.001	.20	.60	.11	.41	<.001	<.001	.02
9766	↓ 001	005	.06	.64	<2<	.001<	.001	.22	3.80	<.01	<.001	.003	.001	<.01	.13	.011	<.001	.17	.66	-04	.46	<.001	<.001	.01
9782	< 001	109	2 50	13.65	59	804	008	-38	18.78	<.01-	001	077	.006	<.01	. 11	022	002	25	. 95	.07	.24	<.001	<.001	53
9783	₹.001	.009	.02	.06	<2<	001	.001	.20	7.79	<.01	:.001<	.001	.001	<.01	.06	.007	< 001	.25	1.53	.06	.52	<.001	<.001	.04
9784	4.001	.157	.59	3.30	38	.002	.011	.37	31.18	<.01	.001	.021	.003	<.01	. 22	.057	.002	.35	1.02	.06	.20	.002	<.001	. 14
9785	∤.001	.007	<.01	.04	3	.006	.003	.32	8.40	<.01	-001<	.001<	:_001	<.01	.28	.057	.003	.48	.84	.25	. 33	<.001	<.001	.03
9786	Ł.001	.019	.64	6.77	44	.005	.004	,77	18.91	.01	.002	.025	.007	<.01	. 29	.024	.005	.63	1.28	. 19	.02	<.001	<.001	.37
9787	≮.001	.008	. 25	3,96	20	.004	.001	1.09	14.31	<.01	<.001	.015	.001	<.01	. 29	.044	.007	.84	2.00	.18	.02	.003	<.001	.03
9788	{.001	.008	.31	4.98	27	.005	.003	1.11	16.43	<.01	.003	.018	.004	<.01	. 45	.022	.005	.87	.75	<.01	.20	.002	<.001	. 04
9789	4.001	.011	1.89	4.97	82	.004	.002	1.05	15.55	.01	.002	.019	.008	<.01	.35	.042	.006	.73	1.72	.30	.04	.001	<.001	- 06
9790	₹ _001	.012	1.44	3.59	50	.004	.001	1.19	16.68	.01	.001	.013	.005	<.01	.26	.026	.005	1.00	3.97	<.01	<.01	.004	<.001	.06
9791	4,001	.054	2.43	7.06	150	.004	.003	1.06	18.72	.01	<.001	.029	.013	<.01	.17	.034	.004	.87	3.55	14	.09	<.001	<.001	.27
9792	.001	.014	.11	.27	10<	.001	.002	.26	7.55	<.01	<.001	.001	.002	<.01	. 14	.007	<.001	.30	.78	. 14	.53	<.001	<.001	.09
9793	<_001	-043	.14	.34	17<	.001	.007	.32	15. 9 9	<.01	.001	.001	.002	<.01	. 15	.004	<.001	.35	.83	.14	.18	<.001	<.001	.80
9794	4.001	.022	.06	. 25	6<	.001	.003	.23	8.45	<.01	.001	.001	.001	<.01	.20	.006	<.001	.33	.76	.20	.30	<.001	<.001	. 17
9795	₹.001	.418	2.90	9.30	134	.002	.019	.15	37.19	<.01	.001	.055	.004	.01	.20	.012	.001	.31	.41	. 16	<.01	<.001	<.001	2.35
9796	<.001	.451	3.90	11.34	108	.008	.029	. 16	38.59	<.01	.001	.062	.005	<.01	.21	-019	.001	. 32	.43	.09	.18	<.001	<.001	.88
RE 9796	∤.001	.453	3.89	11.39	107	.009	.028	.16	38.86	<.01	.001	.062	.006	.01	,20	.013	.001	.32	.40	.02	. 12	<.001	<.001	.83
RRE 9796	<.001	-448	3.34	10.44	97	.009	.031	- 15 ×	43.65	<.01-	.001	.056	.006	.01	. 19	.006	.001	.31	.34	. 18	.22	<.001	.001	.97
9797	.001	2.224	.51	2.08	111	.013	.046	. 19	41.09	<.01	.001	.010	.001	<.01	.09	.019	.003	.42	1.38	.05	.14	.002	<.001	1.26
9798	≮. 001	.598	.02	.07	26	.009	.034	.35	31.15	<.01	.001	.001	.001	<.01	. 14	.052	.008	.98	4.68	. 11	<.01	<.001	<.001	.04
9799	<.001	. 190	.02	.09	10	.006	.010	.40	21.17	<.01	<.001<	.001	.002	<.01	. 18	.050	-012	1.22	5.94	. 11	.03	<.001	<.001	.02
9800	<.001	.152	.08	.34	9	.009	.021	.38	24.08	.01	<.001	.002<	.001	<.01	.20	.049	.010	1.06	4.97	.17	.17	<.001	<.001	. 02
9801	<.001	.662	.08	.25	37	.007	.037	. 25	35.60	.01	<.001	.002	.001	<.01	.16	.018	.004	.56	1.80	.07	.14	<.001	<.001	.13
9802	<.001	.255	.16	.79	20	.004	.016	.39	21.61	.01	<.001	.005	.003	<.01	.14	.029	.009	.90	4.08	.10	.08	<.001	<.001	.37
9803	<.001	.633	2.95	13.95	132	.006	.023	, 16	40.65	.01	.001	.080	.006	.01	.06	.005	.001	.20	.61	, 09	- 18	.001	<.001	2,91
9804	<.001	.545	.78	9.36	84	.009	.024	.17	39.36	<.01	.001	.058	,002	<.01	.06	.015	.003	.31	1.66	<.01	.09	<.001	.001	3.44
9805	<. 001	.029	1.24	2.06	31	.012	.004	. 80	10.61	.02	.001	.009	.003	<.01	.33	.023	.010	1.18	3.11	. 16	.22	.001	<.001	.38
9806	<.001	026	86	1 98	14	n12	001	83	9.61	<.01	001	009	001	<.01	25	032	010	1 33	3 53	< 01	16	082	< 001	3

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ţ

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Howell, W.A. PROJECT FIREWEED File # A608611 P 15294 - 96A Ave, Surrey BC V3R 8P5 Submitted by: W.A. Howell

Page 1

	SAMPLE#	Hg S ppb	ample kg	······································		
	G-1 9701 9702 9703 9704	10 33 64 115 220	5.9 5.4 6.0 4.3		· • · · ·	
	9705 9706 9707 9708 9708 9709	781 948 654 27 33	5.5 6.0 2.1 4.7 4.5			
-	9710 9711 9712 RE 9712 RRE 9712	59 444 361 390 393	5.9 5.5 5.0 -			
	9713 9714 9715 9716 9717	221 24 29 48 27	6.1 4.5 4.5 5.2 4.9			
	9718 9719 9720 9721 9722	57 31 <10 30 13	4.9 2.3 3.9 4.0 3.6			
	9723 9724 9725 9726 9727	37 35 45 37 14	7.9 2.8 5.1 7.0 2.0			
	9728 9729 9730 9731 9732	<10 11 11 22 18	2.5 4.2 5.5 5.2 5.0	•		
	STANDARD DS7	203	-		A.F.	G A
	HG GROUP 1C - AQUA REGIA DIGESTION, ANAL - SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'R	YSIS BY ICF RE: are Rej	ect Reruns.		HARA O	
Data FA DATE R	ECEIVED: NOV 2 2006 DATE REPORT MA	ILED:	• • • • • • • • • • • • •	••	NOT T	J BEAN
All results are considered the confide	ential property of the client. Acme assumes the	e liabiliti	es for actual cos	t of the analysis on	ily.	

Howell, W.A. PROJECT FIREWEED FILE # A608611

-----Hg Sample SAMPLE# ррБ kg G-1 9733 9734 <10 ----11 21 21 24 5.04.64.6 3.5 9735 9736 9737 9738 26 12 21 14 3.6 4.7 4.6 9739 4.0 9740 20 9741 11 22 57 235 5.0 9742 4.6 9743 5.1 9744 5.0 5.7 9745 579 9746 6.5 871 9747 $1224 \\ 30$ 9748 9749 26 38 4.6 9750 9751 4.43.4 7.5 43 9752 65 9753 359 416 4.6 9754 4.6 9755 108 3.4 9756 100 5.1 9757 4.8 80 9758 5.0 5.1 112 9759 306 9760 Žľ9 4.9 9761 RE 9761 RRE 9761 233 ---218 5.5 3.9 5.1 421 9762 24 110 9763 9764 STANDARD DS7 194 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. Sample type: DRILL CORE R150.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 2

ž

Data FA

ł

ACME AND VILLE

Howell, W.A. PROJECT FIREWEED FILE # A608611

Page 3

____;

ALME ANALYTICA			
	SAMPLE#	Hg Sample ppb kg	
	G-1 9765 9766 9782 9783	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	9784 9785 9786 9787 9788	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	9789 9790 9791 9792 9793	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	÷
	9794 9795 9796 RE 9796 RRE 9796	68 6.6 1759 5.0 2219 5.7 2357 - 2291 -	
	9797 9798 9799 9800 9801	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	9802 9803 9804 9805 9806	151 4.5 1796 4.4 2202 4.2 1426 4.4 1325 4.0	
	STANDARD DS7	196 -	
<u>Sample type: DRILL CORE R150.</u>	Samples beginnin	.ng 'RE' are Reruns and 'RRE' are Reject Reruns.	
All results are considered the confidential property of	of the client. Acme assumes t	the liabilities for actual cost of the analysis only. Data Data FA	