EVENT NO. 4125190

Assessment work Report

GEORGE CLAIM GROUP

Tenures: 531574, 531575, 531576 533550, 550171 And 552308 late addition on Map sheets: 092H066 & 076

Owner: Bryan Livgard Operator: Bryan Livgard

0

000000000

0000

000

0

C

C

0

C

000

0

000

000

00000

6601061

Egil Livgard P.Eng. Coquitlam B.C. MARCH 7th 2007

INDEX

Summary	page 1
Recommendations	66
Estimated costs of recommendatio	ns 2
Introduction	3
Property	3
Tenures	
Location and access	
Topography and climate	
History	4
Geology	4
Rock types	
Structure	
Mineralization	
Stream silt sampling (2006)	5
Cost of the 2006 silt sampling	
Evaluation	
References	6
Appendix – Analysis sheets 2	

MAPS:

Location map after	pag	e 3
Claim map	"	3
Geology map	"	4
Orthophoto	66	4
Stream silt sample location	66	5

Summary

The property consists of six claims that cover 1776 hectares of favorable rock types and mineralization. The claims are owned by Bryan Livgard and they are in good standing till September 9th 2007, January 24th 2008 and February 19th 2008. The property is about 70 kilometers of paved and dirt logging roads south of Merritt B.C.

The rocks types on the claims have been mapped as the Triassic Nicola Group consisting of andesitic flows, tuff, argillite and limestone. Three mineral showings have located and received minor exploration work consisting of pitting, geology, sampling and a magnetic survey. A limited stream silt survey was carried last year (2006). The historical mapping and sampling revealed copper, gold and silver mineralization in altered layered rocks partly in the vicinity of and certainly related to intrusive activity. The mineralization has been classified as skarn deposition that can occur as disseminations in altered rock or as massive replacement of limestone. Lawless Creek headwaters are the creeks in the vicinity of the property skarn deposits. The creek flows southerly through all the claims and another 16 kilometers to its confluence with the Tulameen River. This entire 16 kilometer distance of its channel is covered with placer claims. The source of the gold has not been located. Skarn copper-gold deposits on the claim ground, fracture deposits or fault zones are possible sources of gold.

Recommendations

1. It is recommended that the property be geologically mapped in order to extend known mineralization and locate new, to locate new intrusive bodies, to outline alteration zones and to better understand the general geological picture. At the same time more detailed and focused stream silt or alternatively soil sampling should be carried out.

2. Following the above work and based on the achieved results an excavator should be brought in to carry out trenching and to prepare drill roads and drill sites. Recommendations for Diamond drilling should await the results of the above work.

tin	nated costs of recommendat	ions	2
1.	First stage costs:		
	Geologist and helper wages \$600/day	7 -25 days	\$15000
	Vehicle, travel, camp, etc. \$ 150/day	– 30 days	\$ 4 500
	Assaying 100 s @ \$ 20		\$ 2000
	Report and maps		\$ 4000
		÷===	\$ 25 500
		Contingency	\$ 2 500
		Total	\$ 28 000
2.	Second stage	<u>_</u>	==== = = = = = = = <i>= , </i>
	Excavator \$ 1500/day -14 days		\$ 21 000
	Geologis ,helper all incl. \$ 750/day -	-16 days	\$ 12 000
	Report and maps, assaying misc.		\$ 4 000
		-	\$ 37 000
		Contingency	\$ 4 000
		Total	\$ 41 000

Introduction

The writer examined the northern claim briefly on June 19th 2006 and was asked by the owner to correlate all available information on the property, evaluate the planned stream silt sampling program and prepare a report.

Property

Tenures

The property consists of six claims containing 85 cells that cover a total of 1776 hectares of favorable exploration ground. The Tenures: good to 2007/Sep/09 417.756 Ha 100% B. Livgard 531574 20 cells 531575 " 417.901 Ha " 66 " 531576 418.045 Ha " " 313.629 Ha 533550 15 cells " " 550171 3 cells 2008/Jan/24 62.726 Ha 6 2008/Feb/19 146.233 Ha 552308 7 cells 44 1776.290 Ha Total 6 claims with 85 cells covering

Location and Access

The centre of the property lies approximately at UTM 5507000N and 648000E on map sheets 092H066 and 076. The northern claims can be accessed by 13 km of logging road from the small village of Brookmere that lies about 7 km south of the Coaldstream bridge on the Coquihalla Hwy about 50 km south of Merritt B.C. The southern claims can be reached by 23 km of logging roads from the village of Tulameen west of Princeton B.C.

Topography and Climate

The terrain is in a general way up-land at elevations from about 1600 m to 1800m asl(above sea level) which has been sculpted by Lawless Creek and its tributaries to a minimum elevation at the southern boundary of about 1400 m asl. Mount Tynne is the highest point on the claims of just over 2000 m asl. At these elevations relatively close to the coast the snow fall will be heavy although the southern part of the claims is lower and close to a dry interior type climate.

C

George claim group

000

http://webmap.em.gov.bc.ca/mapplace/maps/minpot/dep_find.MWF

History

1

Three mineral showings have been written up as **Minfiles** (Ref.) and have received a minor amount of exploration. A few pits were excavated by hand and sampled. The geology at the pits was noted and a magnetic survey of about 15 sq. kilometers about half of which was on the present northern claim and half outside the claim boundary to the east. The survey is related to mineral claims in 1964 and very uncertain topography. The locations of the showings are also relatively uncertain and it does appear that survey lies east of the (minfile) showings!. A 44 stream silt sample survey was carried out in 2006 by the present owner of the ground.

Geology

Rock types

The mapped (map place) geology on the claim ground consists of Upper Triassic volcanics of the Nicola Group. The mapping around the showings notes that the mineralization is hosted in a sequence of northward trending steeply dipping andesitic flows, tuffs, argillites and limestone of the Nicola Group. A diorite stock of Late Triassic to early Jurassic age has intruded these rocks. Other occurrences of intrusive rocks are noted to the south. (Ref. 3) These are described as boulder granite, peridotite, pyroxenite, augite syenite and granodiorite.

Structure

Little is known about structures in the area. A fault strikes southerly along the west boundary of the claims to an intersection with two other faults striking SE and SW. This three fault intersection area is of exploration interest. The layered rocks strike Northerly and dip steeply or to the west. The orthophoto shows northerly striking lineaments – probable expressions of faulting or bedding. A northeasterly striking pattern may be expressions of fracturing and perhaps small faulting.

Mineralization

Mineralization that has been located on the property consists of copper in chalcopyrite, gold and silver values together with pyrite and magnetite disseminated in volcanic rocks adjoining limestone. The showings have been identified as skarn deposition and therefore are found in the vicinity of intrusives that outcrop or occur below the showings. The minfile showings are numbered as follows: 092H#046 named B&R and #068 named Mount Thynne and #127 named Dawn. These showings are located respectively 2.75 km NW, 2.0 km NW and 2.5 km WNW of Mount Tynne

George Claims Geology

00000

0

000

C

C

0

C

C

00

0

0

C

0

C

C

C

0

C

0

George Property Orthophoto

http://webmap.em.gov.bc.ca/mapplace/maps/minpot/dep_find.MWF

Monday, January 29, 2007 8:30 PM

George Claims Stream silt samples

http://webmap.em.gov.bc.ca/mapplace/maps/minpot/dep find.MWF

Contact metamorphic or skarn deposits can be quite large and may by found some distance from the intrusive.

Lawless creek has been known as a placer creek for more than a hundred years. Placer claims cover the creek bed continuously for more than 16 kilometers from the southern George claims to the creeks confluence with the Tulameen River. The source of the creek gold has never been discovered.

Stream silt sampling 2006

The owner, Bryan Livgard, a geo-technician carried out a 44 sample stream silt sampling program in June of 2006. Two samples (1,1A-2,2A ---) were collected nearby each other from each creek to increase repeatability. The values were very low. A bell curve indicates that the threshold value is about 28 ppm Cu and anomalous values may be about 36-38 ppm Cu. Samples 12, 13 gave low anomalous values. They were taken from creeks which may receive some drainage from showing # 046. Sample # 14 gave low anomalous values probably by drainage from showing #068. The low values may be due to the alkaline nature of the rocks in the area.

Cost of program

Wages \$200/day 5 days		\$ 3	1000.00
Vehicle – gas \$ 60/day	5days	\$	300.00
Accom meals \$80/day	5days	\$	400.00
Assaying	•	\$	412.76
Misc.		\$	50.00
Report		\$	1000.00
	<i>TOT</i> ()		
	TOTAL	\$	3162.76
		: 	

Evaluation

The mineral showings on the George claims may perhaps be either large disseminated copper-gold deposits in rocks altered by an intrusive body, such as the skarn deposits in the Cariboo region of B.C (Ref. 093A121) that are found at the indurated alteration front caused by an intrusive body about 300 meters away from the contact, or as massive replacement mineralization in limestone (Ref. #4). Another area of exploration interest is the tree fault intersection on the southwestern George claims. This area may be strongly fractured and broken up, providing channel ways and deposition room for potential mineralization. The writer concludes that the George Property warrants an exploration program.

References

(1) Minfiles 092H 046 B&R

092H068 Mt. Thynne 092H127 Dawn 093A121 QR mine

Assessment reports

(2) # 0659 Geophysical Report

Magnetic Survey by D.W. Smellie P.Eng. Oct 2nd 1964 For Bardale Mining & Development Co.

(3) # 16505 Geophysical Report on the Lawless placer claims By M.K. Lorimer P.Eng. Oct. 3rd 1987

(4) US geological Survey Circular 559 Bowser Creek Skarn Deposits

- (5) B.C. Govt. Map place and MTO (mineral titles on line)
- (6) CJES Vol. 24 pp 2521-253

Appendix : Following two pages of analysis sheets

Certificate

I, Egil Livgard, of 1990 King Albert Ave., Coquitlam B.C. do hereby certify:

1. I am a geological engineer practicing from my home address.

2. I am a graduate of the University of B.C. with a B.Sc. degree in geological sciences and have regularly updated and expanded my geological knowledge through many short courses given by MDRU (Mineral Deposits Research Unit) U.B.C., GAC and AME (B.C. Chamber of Mines).

3. I am a registered member in good standing of the Association of Professional Engineers and Geoscientists of the Province of B.C., with registration number 7236.

4. I have practiced my profession for 46 years.

5. This report is based on the references as listed and on the work described in this report.

6. I confirm that I have a part interest in the claim ground.

Dated at Coquitlam, B.C. this seventh day of March 2007

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

Livgard, Egil File # A603363 Page 1

SAMPLE#	oM niqq	Cu ppm	РЬ ррат	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	Fe %	As ppm	U Inqq	Au ppm	Th ppm	Sr ppni	Cd ppm	Sb ppm	₿i pprn	V PPM	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	B ppm	Al %	Na %	K %	W ppm
G-1 G-01 G-02 G-03 G-04	1 2 1 1 2	1 7 14 20 16•	<3 9 11 13 8	41 50 71 83 52	<.3 <.3 <.3 <.3 <.3	2 5 9 17 8	3 5 8 10 5	487 840 685 916 425	1.83 1.78 2.77 3.02 1.86	<2 4 5 5 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 ~2 ~2 ~2 ~2	59 24 32 32 23	<.5 <.5 <.5 <.5 <.5	उ उ उ उ उ	র র র র র	34 42 64 67 40	.51 .23 .37 .40 .25	.071 .030 .043 .057 .078	6 12 12 15 17	7 13 18 22 16	.56 .34 .55 .75 .53	195 75 119 101 71	.12 .03 .04 .03 .02	ব্য ব্য ব্য ব্য ব্য	.88 .91 1.48 1.70 1.95	.07 .01 .01 .01 .01	.44 .03 .04 .05 .03	<2 <2 <2 <2 <2 <2 <2 <2
G-05 G-06 G-07 G-08 G-09	1 1 1 1	21 21 28 14 - 18-	8 4 7 5 6	82 60 66 83	<.3 <.3 <.3 <.3 <.3	26 12 16 9 21	14 11 12 9 12	666 621 667 600 589	4.32 3.09 2.83 2.67 3.51	2 5 3 2 4	<8 <8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 <2 2 <2 2	35 30 42 18 35	<.5 <.5 <.5 <.5 <.5	4 <3 <3 <3 <3	5 <3 <3 <3 <3	150 81 70 52 108	.57 .36 .50 .33 .53	.075 .043 .054 .038 .068	14 8 10 9 10	69 27 29 17 47	1.25 .64 .78 .71 1.05	63 63 78 59 56	.12 .06 .06 .03 .10	3 <3 <3 <3 <3	1.51 1.85 1.67 1.53 1.47	.02 .01 .02 .01 .02	.05 .03 .04 .04 .04	<2 <2 <2 <2 <2 <2
G-10 G-11 G-12 G-13 G-14	1 1 1 1	13 12- 287 34- 50	<3 6 5 7 7 10	68 52 82 65 95	<.3 <.3 <.3 <.3 <.3	11 25 19 20 41	8 13 13 13 20	465 2187 1109 925 1065	2.26 2.91 3.52 3.17 3.96	3 2 3 6 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2 <2 <2 <2	19 31 23 27 24	<.5 <.5 <.5 <.6	<3 3 4 <3 <3	3 3 3 3 4	47 50 66 69 81	.25 .45 .30 .44 .65	.036 .072 .061 .044 .064	9 8 19 9 7	18 34 40 37 77	.51 .82 .60 .92 1.45	49 74 85 76 67	.02 .05 .02 .07 .05	ব্য ব্য ব্য ব্য	1.08 1.54 1.72 1.82 2.10	.01 .01 .01 .01 .01	.04 .04 .04 .04 .03	<2 <2 <2 <2 <2 <2
G-15 G-16 G-17 G-18 G-19	1 1 <1 <1	18 12 15 21 29	3 4 4 4	63 73 59 77 88	<.3 <.3 <.3 <.3 <.3	18 14 16 12 17	13 10 10 12 12	580 607 602 745 752	2.74 2.59 2.95 3.85 3.27	4 3 7 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 2	37 38 51 30 44	<.5 <.5 <.5 <.5 <.5	<3 <3 <3 <3 <3	<3 <3 <3 <3 <3	63 65 80 108 90	.43 .53 .60 .49 .66	.053 .056 .043 .037 .058	9 9 11 8 9	20 23 22 26 33	.80 .81 .79 .80 .90	85 64 121 79 74	.08 .09 .07 .11 .09	য় ব্য ব্য ব্য ব্য	1.64 1.56 2.04 1.78 2.10	.01 .02 .02 .01 .02	.03 .03 .04 .04 .04	<2 <2 <2 <2 <2 <2
G-20 G-21 G-22 G-01A G-02A	1 1 1 2 2	19 19 20 7 16	11 11 10 9 16	62 61 57 46 74	<.3 <.3 <.3 <.3 <.3	11 11 13 5 9	9 9 10 5 8	621 607 577 984 750	2.69 2.99 3.40 1.65 2.93	4 5 4 3 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2	39 37 34 27 33	<.5 <.5 <.5 <.5 <.5	<3 3 <3 <3 <3 <3	<3 <3 <3 <3 <3	62 73 84 36 68	.44 .43 .44 .26 .42	.062 .062 .065 .036 .049	9 9 13 13	23 26 31 9 19	.69 .71 .76 .32 .55	58 54 50 78 115	.06 .07 .08 .02 .04	<3 <3 <3 <3 <3	1.22 1.22 1.15 .92 1.49	.02 .01 .02 .01 .01	.04 .04 .04 .03 .04	<2 <2 <2 <2 <2 <2
G-03A G-04A G-05A G-06A G-07A	2 2 1 1 2	21 15 22 22 32	15 6 7 6 7 5	81 46 73 63 63	<.3 <.3 <.3 <.3 <.3	16 7 22 12 16	10 5 13 11 13	1026 782 639 728 697	3.03 1.71 3.75 2.99 3.12	5 3 5 4 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	35 24 32 34 48	<.5 <.5 <.5 <.5 <,5	3 3 3 3 3 3 3 3 3	<3 <3 <3 <3 <3	65 38 114 76 79	.45 .28 .49 .41 .56	.062 .081 .071 .047 .060	18 21 12 9 11	22 13 55 26 31	.73 .45 1.10 .63 .80	109 68 63 72 85	.03 .01 .11 .06 .06	<3 <3 <3 <3 <3	1.81 1.64 1.54 1.91 1.76	.01 .01 .02 .02 .02	.05 .03 .05 .04 .05	3 <2 <2 <2 <2 <2
G-08A G-09A G-10A G-11A RE G-11A	1 1 1 1	15 19 18 9 9	4 5 4 3 3	69 77 76 40 40	<.3 <.3 <.3 <.3 <.3	9 19 13 32 32	10 12 10 12 11	564 591 711 912 895	2.85 3.18 2.92 2.70 2.65	3 3 4 5 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	19 34 23 28 27	<.5 <.5 <.5 <.5 <.5	3 3 3 3 3 3 3 3 3	८३ ८३ ८३ ८३ ८३	58 86 58 50 50	.32 .51 .33 .38 .38	.039 .061 .051 .065 .065	9 10 12 7 7	18 39 23 40 40	.71 1.03 .56 .89 .87	54 56 60 42 41	.04 .09 .02 .07 .07	ও ও ও ও ও ও	1.54 1.52 1.28 1.25 1.23	.01 .02 .01 .01 .01	.04 .04 .05 .03 .03	<2 <2 <2 <2 <2 <2
STANDARD DS7	20	92	64	386	1.0	47	8	572	2.22	43	<8	<2	4	63	6.1	7	<3	74	.85	.070	11	154	.98	354	.11	34	.88	.07	.41	5
GROUP 1D - (>) CONCEN - SAMPLE T	0.50 TRATIO (PE: S	GM SA DN EXC SILT S	MPLE EEDS S80 6	LEACH UPPER OC	IED W1 8 LIM1 <u>Sam</u>	TH 3 TS. ples	ML 2- SOME begir	2-2 MINE	HCL-HN RALS N 'RE'	IO3-H2 IAY BE are F	20 AT E PART Teruns	95 DE IALLY and	G. C ATTA <u>'RRE'</u>	FOR C CKED. are	NE HO REF Rejec	UR, D RACTO t Rer	ILUTE RY AN <u>'UNS -</u>	D TO D GRA	10 мL РНІТІ - С. / -	, ANAI C SAMI	YSED PLES C	BY IC AN LI	P-ES. MIT AU	SOLU	BILIT	Ϋ.	CULLAR CULLAR	Φ N	<u>010</u>	
Data_	FA			DA	TE R	ECEI	IVED		JUL 5	2006	DA	TE R	EPOI	RT M	AIL	D:.	••••	• • • •	• • • •	••••	•	10						Ray	/monr	I Chan
All results	аге с	onsid	ered	the c	onfid	entia	l pro	pert	∕of t	he cl	ient.	Acme	assu	mes t	he li	abili	ties	for a	ctual	cost	of th	e ana	lysis	only.				\triangleleft		

Livgard, Egil FILE # A603363

All results are considered the confide	tial property of the client	Acme assumes the liabilities for	actual cost of the analysis only.
--	-----------------------------	----------------------------------	-----------------------------------

NUL ONCE STUDI						· · — — — — — — — — — — — — — — — — — —																								
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррт	Mn ppm	Fe %	As ppm	U maq	Au ppm	⊺h ppmr	Sr ppm	Cd ppm	sb ppm	Bi ppm	V ppm	Ca %	P %	1.a ppm	Cr ppm	Mg %	8a ppm	⊺i %	В ррт	Al %	Na %	к %	W ppm
G-1	<1	3	<3	42	<.3	2	3	503	1.84	2	<8	<2	3	58	<.5	<3	<3	34	.55	.074	6	6	.58	207	.12	<3	.91	.07	.46	2
G-12A	1	30-	/ 3	89	<.3	21	13	1161	3.72	5	<8	<2	<2	25	<.5	<3	<3	68	.32	.067	19	41	.64	89	.02	<3	1.89	.01	.05	<2
G-13A	2	43	11	67	<.3	16	11	2871	3.05	5	8	<2	<2	25	1.8	<3	<3	50	.74	.238	21	22	.59	101	.04	3	1.90	.01	.03	2
G-14A	1	46	¥ 6	92	<.3	38	18	909	3.69	6	<8	<2	<2	23	.7	<3	<3	78	.61	.061	6	67	1.33	61	.05	<3	1.96	.01	.03	<2
G-15A	1	15	7	66	۲.۶	12	8	608	2.52	3	<8	<2	<2	42	<.5	<3	<3	61	-45	.050	11	1 9	.64	98	-07	<3	1.64	.01	.03	<2
RE G-15A	1	15	4	66	<.3	13	8	590	2.47	3	<8	<2	<2	41	<.5	<3	<3	61	.44	.048	10	19	.62	95	.07	<3	1.59	.01	.03	<2
G-16A	1	16	3	92	<.3	15	10	654 (2.97	5	<8	<2	<2	45	<.5	<3	<3	71	.58	.059	9	23	.83	79	.09	<3	1.70	.02	.04	2
G-17A	. 1	17	8	61	<.3	18	10	663	3.21	6	<8	<2	<2	51	<.5	3	<3	86	. 62	.045	11	25	.83	121	,08	<3	2.13	.03	.04	2
G-18A	1	25	6	81	<.3	13	12	770 🕻	3.83	5	<8	<2	<2	33	.6	<3	<3	99	.54	.041	9	22	.81	88	.10	<3	1.87	.01	.05	2
G-19A	1	28	7	98	<.3	18	13	751 3	3.48	4	<8	<2	<2	46	<.5	<3	<3	96	.67	.057	9	34	.96	71	.10	<3	2.07	.02	.04	<2
G-20A	1	22	10	61	<.3	12	9	66 0	2.78	3	<8	<2	<2	41	<.5	4	<3	60	.46	.064	9	24	.75	60	.07	3	1.30	.02	-04	<2
G-21A	1	21	10	63	<.3	12	9	619	2.85	3	<8	<2	<2	41	<.5	<3	<3	66	.48	.065	10	24	. 71	57	.06	<3	1.26	.02	.04	<2
G-22A	, 1	21	9	62	<.3	12	11	544 -	4.21	3	<8	<2	2	31	<.5	<3	<3	113	.44	.066	8	34	.71	43	.10	<3	1.03	.01	.04	<2
STANDARD DS7	7 19	93	65	383	1.0	48	8	587	2.32	48	8	<2	3	65	6.2	6	<3	81	.88	.073	11	152	1.02	369	. 11	36	. 92	.07	.42	- 4

Sample type: SILT SS80 600. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 2
