Rock Geochemistry Report

CEIVED Good Golly Property Sanca Creek APR 2 5 2007 Nelson Mining District Gold Commissioner's Office VANCOUVER, B.C.

NTS 82F 047, 048, 037, 038

Operator: Kootenay Gold Inc.

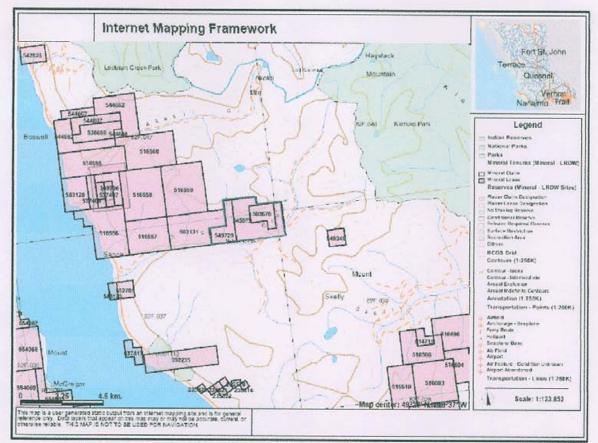
> Owners: Sean Kennedy

Work Performed Fall of 2006

Report Written By Sean Kennedy, Prospector

March, 2007

Table of Contents


1.0	Introduction	Page	3
2.0	Property	Page	3
3.0	Access	Page	4
4.0	Physiography	Page	4
5.0	Property Geology	Page	4
6.0	Prospecting and Rock Geochemistry	Page	4
7.0	Conclusions and Recommendations	Page	5
8.0	Statement of Costs	Page	6
9.0	Statement of Qualifications	Page	7
Appendix 1	Sample Locations and Descriptions	Page	8
Appendix 2	Assay Results	Page	10
6.0Prospecting and Rock Geochemistry7.0Conclusions and Recommendations8.0Statement of Costs9.0Statement of QualificationsAppendix 1Sample Locations and DescriptionsAppendix 2Assay ResultsList of Illustrations: Property Location Map		Page	3
1:10,000 San	ple Location/Prospecting Map With Au in ppb	Page	11

1.0 Introduction

The Good Golly was staked to cover a shear zone within Bayonne suite granite intrusions north of Creston. Prospecting and rock sampling in 2005 identified a parallel shear zone with similar characteristics to the original showing. Rock geochemistry returned anomalous gold values. The program in 2006 called for more detailed prospecting and rock sampling in the area.

2.0 Property

The property is comprised of tenure numbers 549729, 545975, and 503676 all of which are owned by Sean Kennedy.

Property location highlighted in blue, regional location in top right.

3.0 Access

The property is located in the Sanca Creek watershed on an S/SE facing slope, above where Sanca Creek forks. Sanca Creek is a westerly flowing creek, which drains into Kootenay Lake approximately 40 kilometres north of the town of Creston. The property's southern margin is approximately 10 kilometres up the main Sanca Creek Forest Service road. Access is provided by a good network of logging roads that dissect the property.

4.0 Physiography

Elevation on the property ranges from 1300 meters to over 2000. Near the valley bottom hillsides are generally steep with some cliffy sections. A number of benches with shallow grades occur on the hillside before cresting in a rocky ridge close to the treeline. Forest cover is comprised mainly of lodgepole pine with cedar, hemlock, and spruce growing in the valley bottoms and wetter areas.

5.0 Property Geology

Mapping by Logan and Mann (2000) at 1:50,000 for the government has occurred in the area, based on previous mapping by Reesor (1996). The property is underlain by the Mount Skelly pluton, a fine to medium grained biotite monzonite/granite and the Sanca stock a medium to coarse grained biotite granodiorite. Sedimentary rocks, probably belonging to Proterozoic age Creston formation of the Purcell Supergroup, on the property have been metamorphosed and assimilated along the intrusion margin, and metamorphosed to mica schist and slate further from the contact. A number of pegmatite dykes were noted in the area.

6.0 Prospecting and Rock Geochemistry

38 rock samples, GG-13 to 51, were collected and analyzed by ICP for a standard 30 element package with gold in ppb, full descriptions and assay results are in Appendix 1 and 2 respectively. Three samples returned values over 1000 ppb Au with the highest coming from GG-27 at 7664.5. The majority of the samples were collected from NS to just east of north trending shears and veins hosted by the granite.

Shearing within the granite is characterized by argillic alteration zones with strong manganese, sericite and carbonate mineralization, these zones range in size with the largest being over five meters wide. Quartz veining, often characteristically a dense mass of quartz crystals with large vugs and massive limonite and fresh pyrite, and brecciation are common with these zones. Minor arseno-pyrite and galena has been noted. Most of the known mineralization occurs near a change in the granite from a fine to medium grained biotite monzogranite, the Mount Skelly pluton, to a medium to coarse grained biotite granodiorite called the Sanca stock (Logan and Mann, 2000). The Sanca stock intrudes into the Mount Skelly pluton in a southerly trending "tongue-like" body with a

corresponding magnetic low, the prospective mineralization appears close to this interchange.

A series of old trenches were discovered on the property along a NS quartz vein in the Mount Skelly pluton (?). Mineralization was similar to what was seen in other zones.

7.0 Conclusions and Recommendations

The presence of multigram gold values associated with mid-Cretaceous age granites on the Good Golly property is very exciting as the geology readily lends itself to analogues in the Tintina Trough gold belt of the Yukon.

More prospecting and rock geochemistry is needed on the property to identify other zones and create a database where potential mineral zoning can be seen. The use of certain pathfinder elements associated with intrusion related gold systems could be key in discovering buried targets. Soil sampling could be done along contours where bedrock exposure is poor. As of now some trenching could be completed on zones that are partially exposed on existing roads.

8.0 Statement of Costs

Total	<u>\$2280</u>
Report (includes office expenses)	<u>\$295</u>
38 samples @ \$20/samples	760
Rock Geochemistry	
Sara Kennedy, Prospector 1 day @ \$125/day	125
1 day @ \$400/day (includes vehicle rate)	400
Tom Kennedy, Prospector	
1 day @ \$400/day (includes vehicle rate)	400
Mike Kennedy, Prospector	
1 day @ \$300/day	\$300
Sean Kennedy, Prospector	

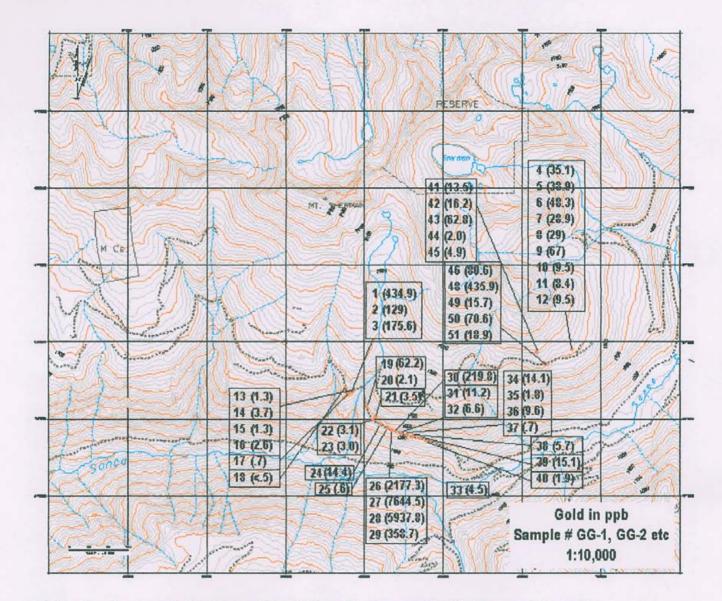
9.0 Statement of Qualifications

- I, Sean Kennedy, certify that:
 - 1. I am an independent prospector residing at 272 Kimbrook Crescent, Kimberley, BC.
 - 2. I have been actively prospecting in the East Kootenay district of BC for the past 15 years, and have made my living solely by prospecting for the past 7 years.
 - 3. I have been employed as a professional prospector by junior mineral exploration companies.
 - 4. I own and maintain mineral claims in BC, and have optioned claims to exploration companies

Sean Kennedy March, 2007

<u>APPENDIX 1</u>

GG-13	525780	5471335 Flat pegmatitic crystalline qtz vein, orangey alt'n halo, lim, biotite	
GG-14	525780	5471335 Same type of vein, q tz is mostly white	
GG-15	525780	5471335Zone parallel to #1, 75 cm wide argillic gouge zone, lim/py, qtz	
GG-16	525780	5471335 Same structure as 15, Mn alt'n, large qtz crystal vein, lim/py, carb alt'n	
GG-17	525780	5471340 Clean crystalline pegmatitic veins with big py/lim and biotites	
GG-18	5257 6 4	5471356 Flat orangey qtz-pegmatite vein with lim/py	
GG-19, 20	526036	5471063 Hairline sheated veins, lim/py, sauceritization, carb alt'n, Mn alt'n, 1.5 m wide zone, strike 26, dip 58 SE	
GG-21	52 6131	5471029 Limonite rich qtz crystal vein, intense Mn/carbonate alteration, py	
GG-22, 23	52 6095	5471002 Argillic zone, sauceritized, qtz veining with py/lim, Mn/carb alt'n, malachite strike 50, dip 58 SE	
GG-24	526108	547099510-15 degree trending sheated qtz veins, Mn/carb ait'n, lim/py	
GG-25	526227	5470912 Narrow qtz slips with Mn/carb alt'n, lim, strike 28, dip vertical	
GG-26-28	526304	5470888 Vuggy qtz vein with lim wad, goethite, fresh py. 45 cm wide, strike 30, dip vert	
GG-29	526340	5470866 340 degree trending qtz vei, 3 cm wide, lim'py, sheared margins	
G G-30	526420	5470819 Milky qtz float, sericite, minor py	
GG-31, 32	526449	5470815 Sericite rich, Mn/carb altered sheared granite, horsetailed qtz veins, vuggy, lim	
GG-33	526488	5470775 Milky qtz vein, ribboned tourmaline needles, 30 cm wide, strike 320, dip 38 SW	r
GG- 34 , 35	526451	5470774348 degree trending argillic gouge zone, qtz veining with lim/py, sauceritized	
GG-36	526543	5470757 Qtz vein in sericitic granite, py/lim, Mn/carb alt'n	
GG-37	526543	5470757 Qtz vein with ribboned tourmaline/chlorite?, sericite, lim, strike 354, dip 74 SW	
GG-38	526574	5440785 Qtz vein, vuggy, lim/py, sheared up, micaceous, strike NS, dip 60 W $\!$	
GG-39	526661	5470779 Sugary qtz (epithermal?), intruding older qtz, lim/py, vuggy, punky iron	
GG-40	526763	5470763 Flat pegmatitic veins, lim/py	
GG-41-45	528205	5471855 NS trending trenches/pits on > 1 m wide qtz crystal vug vein, lim wad, massive	
Good Golly, I	Rock Geo	ochemistry, 2006	8


	Mn, carb alt'n, sheared granite on margins, strikes 18, dip 60 SE
41	Qtz vein with fresh py/lim, ribboned texture
42	Lim wad material
43	Qtz vein with lots of Py along margin, black lim
44	Sericitic granite with Mn/carb alt'n, qtz, py
45	Footwall zone
GG-46-51 528	5471655 Same system on strike?, >2 m wide, sericitic sheared granite, strikes 15, dips 70 SE
46	10 cm wide qtz vein, lim wad along margins
47	Sheared granite along vein margins
48	Qtz vein with lim wad, py
49	Sheared granite with qtz veining, py/lim
50	Qtz vein with lim wad, py

APPENDIX 2

SAMPLE						N1 ppm		Mri ppm							Cd ppm				Co X		La pps			Ba		B	AL X	Na X	K	W ppm	Au* ppb
6-1 00-13 06-14 00-15 06-16	2.02.02	37302	9 53	31	<.3 <.3	1 2	4 4 1 1 1	566 79 433 1534 1617	1.95 2.81 1.17 1.41 1.08	22 2 13	<8	44444	62566	48	.9		07000		.66 .06 .20 .27 .09	.073 .012 .026 .013 .022	6 12 19	12 7 6 9 5	.05	109	.03	30	1.31 .44 .70 1.40 .59	.12 .05 .08 .01 .03	.58 .23 .29 .27 .37	26329	3.5 1.3 3.7 1.3 2.6
66-17 60-18 60-19 66-20 66-21		7	761 62	13	×.3 .8 1.5	4	1	423 205 1176 63 938	.92 .91 .76 .90 .72	220	4444	00000	55505	62 11 3		waaaa	Q M Q Q Q Q	8-0 M - M	.17 .13 .08 .01	.018 .020 .024 .002 .029	14	86614	.01	77 190 65	.02 .04 <.01 <.01 <.01	00000	.58 .56 .62 .11 .33	.07 .07 .03 .01 .03	.27 .26 .39 .06 .34	2225555	.7 <.5 2.1 62.2 3.5
06-22 06-23 06-24 00-25 03-26	1	105 3	114 201 17	6 50 36	.5 <.3 1.1 .3 3.9	1 1	3	1208 257 1123 772 50000	1.37	250	~8 ~8	AAAAA	5 6 6	25 9 34	.6	444	33733	37	.10 .13 .07 .19	.018 .022 .024 .024 .024	21 22 14	76445	-02 -02 -06	114 202 91	<.01 <.01 <.01 <.01 <.01	000	.54 .51 .55 .76 .13	.03	.23 .34 .23 .24	2 2 4 3 18	3.1 2.0 14.4 .6 2177.3
66-27 66-28 66-29 66-30 66-31		21	712 141 45	543 46 28	5.4 3.1 2.3 1.6	225	41 ×1	50000 50000 7359 6001 1237		255 19 16	689889 99889	88888 8	16 2 3	636 49 51	1.2	00		\$16535	.03 .04 .03 .01	.048 .076 .010 .008 .039	22 23 5 4 22	<1 <1 8 10 6	<.01 .01 <.01	67 94 16	<.01 <.01 <.01 <.01 <.01	00000	.22	.01 .01 .01 <.01 .04	.13 .17 .13 .06 .40	5 18 6 4 ¥2	7664.5 5937.8 358.7 219.8 11.2
08-32 06-33 RE 69-33 66-34 00-35	1-1-5	11 2 451 31	329	<1 15	.3 4.3 2.2	13	2 <1 50 3	1070 266 269 302 1040	.82 .47 .49 16.71 1.61	23	48 4 8 48 48	00000	82867	558	<.5	-00000	9-2000	52399	.09 .03 .03 .04 .20	.039 .002 .002 .053 .036	20 6 6 20 18	7 12 13 9 6	.04 .01 .01 .03 .12	35 35 68	<.01 <.01 <.01 <.01 <.01	00400	.22.	.03 <.01 <.01 <.01 <.01	.40 .16 .16 .23 .27	ANNNA	6.6 4.5 4.1 14.1 1.8
00-36 06-37 00-38 60-39 60-40	1 3 1	11 2 41 13 17		<1 66 36	.5	1	8 <1 14 2 1	550 340 103 1979 272	1.72 .40 9.06 1.18 3.15	N CO N	48	AAAAA	Newwa	10 10 12		00	003900	22	.02 .05 .04 .03 .26	.008 .022 .036 .008 .015	4 27 5 4 6	11 12 13 10 7	.01	66 41 437	<.01 <.01 <.01 <.01 <.01	00010	.18 .25	.01 .01 .01 •.01 .06	.20 .21 .12 .17 .50	√2 ≻100 16 40	9.6 .7 5.7 15.1 1.9
66-41 69-42 66-43 55-44 66-45	1 36 8 1 1	30 6 3 2	43	315 56 25	.9	124	122503	3056 41	5.70 >40 21.78 2.89 2.73		\$ 80 10 \$ \$	A&&&&	483112	954	\$.5	340	00000	581 56 33	.01 .02 <.01 .01 <.01	.019 .311 .047 .023 .014	6 11 4 28 3	12 35 16 7 12	<.01 10. 50.	223 29 236	<,01 <,01 <,01 <,01 <,01	000	.21 .05 .38	<.01 <.01	.11 .01 .03 .31 .05	8 17 5 5 72	13.5 16.2 62.8 2.0 4.9
STANDARD DS7/AU-R	20	103	75	432	1.0	56	8	688	2.63	51	<8	<2	6	70	6.6	7	5	82	1.02	.077	13	198	1.13	417	.13	37	1.08	.08	.49	-	450.1
GROUP 10 - 0.50 GR (>) CONCENTRATION ASSAY RECOMMENDED - SAMPLE TYPE: RO: Samples beginning	FOR K R1	EDS ROCI 50	UPPI C AND	ER L D CO AU#	1911 RE 8. 1091	S. S AMPLE TED,	OME S LF ACED	LEACH	LS MAY ZN AS ED, AS	A BE	PART X, A	TALL G >	Y AT 30 P	PPH	KED. & AU	REF > 10	RACT 00 P	DTLU ORY PB	TED TO AND SR	10 MI APHITI	, AN	ALYS MPLE	ED 5Y IS CAN	LIN	-ES. IT AU	salu	BILIT	Same	N	200	CERT

44				Ko	oot	ena	ıy	Gold	In	с.	PR	03	ECT	G	000	Ġ	011	Ly	FI	LE (# A	601	7977				Pag	je 1	2		44
SAMPLE#	Мо ррт				Ag ppm					As	U ppm				Ed ppm			V ppri	Ca %		La ppm		Mg X	Sa ppn		6 ppm	AL X	Ne X	× z	W ppm	AU* ppb
6-1 66-46 66-48 66-49 66-50	9	19 19	31 199 109	26 218 143	<,3 .7 3.6 1.3 1.1	567	22 14	546 2690 28797 15620 7248	15.53 7.18	92 114 24	<8 26 26	000	6 14	11	*.5	«3 4	5	16 75	.63 .01 .05 .12 .02	.072 .026 .095 .135 .044	6 22	9	.59 .01 .03 .11 .02	931 658	.14 <.01 <.01 <.01 <.01	400	.31	<.01 .01 .01	.10 .22 .38		1,4 80.6 435.9 15.7 70.6
GG-51 STANDARD DS7/AU-R			157 65		1.3		34	7649 627	6.03 2.45	16 48		22	20 5		8. 8.a	35	6	70 86	.33 .98	.152		10 190	.45		<.01 .12		1.25		.41	2	18.9

Good Golly, Rock Geochemistry, 2006

Map showing sample locations with gold in ppb, only samples 13-51 were collected in 2006; previous sampling was done in 2005

0