Assessment Report
 on
 Drilling Work On The Following Claim

Mountain Boy RCG
253825
Hard Money RCG 253823

Statement of Exploration \#4121046

Work permit \# MX-1-551

located
22 Km North Of Stewart, British Columbia Skeena Mining Division

LATITUDE 5609 ,
LONGITUDE 129 55'

NTS 104A/4W

Project Period: June 1 to November 15, 2006

On Behalf Of
Mountain Boy Minerals Ltd
Stewart, BC

Report By

E.R. Kruchkowski, B.Sc., P.Geo.

TABLE OF CONTENTS

Page
SUMMARY 1
INTRODUCTION 3
Location and Access 3
Physiography and Topography 3
Personnel and Operations 4
Property Ownership 5
Previous Work 5
GEOLOGICAL SURVEYS 8
Regional Geology 9
Local Geology 10
Mineralization 12
DIAMOND DRILLING 19
CONCLUSIONS 32
RECOMMENDATIONS 33
REFERENCES 35
STATEMENT OF CERTIFICATE 36
STATEMENT OF EXPENDITURES 37

LIST OF FIGURES

After Page
Figure 1 Location Map 38
Figure 2 Claim Map 38
Figure 3 Geology Map 38
Figure 4 Plan of Underground Workings and location Of Veins 38
Figure 5 Map Showing Area of Drilling 38
Figure 6 Geological Cross-Section DDH -MB-2006-1-2 38
Figure 7 Geological Cross-Section DDH -MB-2006-3-4-5 38
Figure 8 Geological Cross-Section DDH -MB-2006-6-7-8-9 38
Figure 9 Geological Cross-Section DDH -MB-2006-10-11-12-13-14 38
Figure 10 Geological Cross-Section DDH -MB-2006-15-16-17 38
Figure 11 Geological Cross-Section DDH -MB-2006-18-19 38
Figure 12 Assay Section Showing DDH -MB-2006-3-4-5 38
Figure 13 Assay Section Showing DDH-MB-2006-6-7-8-9 38
Figure 14 Assay Section Showing DDH -MB-2006-10-11-12-13-14 38
Figure 15 Assay Section Showing DDH -MB-2006-15-16-17 38
Figure 16 Assay Section Showing DDH -MB-2006-18-19 38

LIST OF APPENDICES

APPENDIX I | Laboratory Methods and Specifications for Sample |
| :--- |
| Analysis |

APPENDIX II Drill Hole Logs - DDH -MB-2006-1 to 19 inclusive
APPENDIX II I Assay Results - DDH -MB-2006-1 to 19 inclusive
APPENDIX IV Calculations of Drill Hole Intercept Results

SUMMARY

The Mountain Boy property, optioned by Mountain Boy Minerals Ltd is located about 22 kilometers north of Stewart, British Columbia in the Skeena Mining Division. The property covers an area of Hazelton pyroclastic volcanic rocks in contact with a variety of intrusive plutons associated with the main Coast Range Batholith.

The property contains approximately 500 hectares within 41 units in 4 Reverted Crown Granted claims and 3 Modified Grid claims.

The property lies within a belt of Jurassic volcanic rocks extending from the Kitsault area, south of Stewart, to north of the Stikine River. This belt is host to numerous gold deposits, in a variety of geological settings, including the producing Eskay Creek and formerly producing Snip and, Premier-Big Missouri mines. Reserves have been reported from a number of other properties including Silver Coin, Red Mountain, the Brucejack Lake area and Georgia River. In addition, exploration companies, have reported numerous gold-silver showings along this belt of rocks At least three porphyry type deposits with either $\mathrm{Cu}-\mathrm{Mo}, \mathrm{Cu}-\mathrm{Mo}-\mathrm{Au}$ or $\mathrm{Cu}-\mathrm{Au}$ mineralization are also present. A recent Kurko type VMS horizon has also been outlined just east of the FR claim group.

Mineralization on the property consists of at least seven main (Mann, High Grade, No. 3, DeMann, Franmar, Four Bees and South Mann) and four minor (North, WoMann, Waterfall and Fault Breccia) replacement zones tested with past trenching, previous open cuts and/or adits. The mineralization occurs along wide bodies consisting of mainly barite, quartz, jasper, carbonates (calcite, siderite, rhodochrosite and possibly smithsonite and witherite) and sulfides (sphalerite, galena and minor chalcopyrite, bornite, tetrahedrite, jamesonite, covellite, acanthite, stromeyerite and greenockite) as well as inclusions of altered country rock. Native silver occurs along a zone traced for at least 20 meters of strike length on the High Grade vein. Secondary weathering minerals namely malachite, azurite and hydrozincite are common particularly in underground workings and along surface fractures.

During the period June 1 to November 15, 2006, Mountain Boy Minerals Ltd conducted an exploration program on the Mountain Boy Reverted Crown Granted claim and Hard Money Reverted Crown Granted claim in the central portion of the property consisting of pad construction and diamond drilling to test the silver tenor of the No 3, High Grade and Mann veins. During the 2006 exploration program, 19 diamond drill holes totaling 888.40 meters of BTW size drilling were completed from 3 different drill pad sites

$$
\begin{aligned}
& \text { Mountain Boy Minerals Ltd-Pinnacle Mines Ltd. } \\
& \text { Skeena Mining Division } \\
& \text { Stewart, British Columbia } \\
& \text { Report on MB Property }
\end{aligned}
$$

Best silver values were obtained on the High Grade vein in DDH-MB-2006-10 which yielded 5.18 meters of $5258.0 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.66 \% \mathrm{Cu}, 0.05 \% \mathrm{~Pb}$ and $0.05 \% \mathrm{Zn}$ and DDH-MB-2006-19 which yielded 6.10 meters of $2260.0 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.404 \% \mathrm{Cu}, 0.48 \% \mathrm{~Pb}$ and $0.56 \% \mathrm{Zn}$. Best drill result on the Mann vein yielded 7.01 meters of $281.7 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.03 \% \mathrm{Cu}, 0.28 \% \mathrm{~Pb}$ and $0.52 \% \mathrm{Zn}$.

Based on the favorable results in the 2006 work on both the High Grade and Mann veins, an exploration program involving approximately $\$ 300,000$ is recommended for the MB property.

INTRODUCTION

This report is based on drill results of an exploration program conducted by Mountain Boy Minerals Ltd. on the property during the period June 1 to November 15, 2006.

In addition to data accumulated during this work program the report was also prepared on data obtained by the author from other surveys in the property area.

Location and Access

The claims in the property are contiguous and are located about 22 kilometers north of Stewart, British Columbia in the American Creek valley. The claim area is approximately 56 degrees 09 minutes latitude and 129 degrees 55 minutes longitude on NTS sheet 104A/4W. Figure 1 shows the location of the claim area.

Access to the property at the present time is by road and/or helicopter from Stewart about 22 kilometers to the south of the claim area. Nearest major road is the paved Highway 37A running between Stewart and Meziadin Junction which passes within 7 kilometers of the northern portion of the property. Two-wheel drive vehicle access is possible to within 1 kilometer of the Mann workings at an elevation of approximately 425 meters above sea level along the American Creek valley. From the valley bottom, a 1-kilometer 4 -wheel drive road provides access to the Mann workings.

Physiography and Topography

The area of the Mountain Boy property claims encompasses steep mountain slopes typical of the Coast Range region of British Columbia. The property is situated along the eastern slope of Bear Ridge and includes the west slope of the American Creek valley. Slopes range from moderate to precipitous. Elevations vary from about 300 meters along American Creek to about 1700 meters along Bear Ridge on the Stromeyerite 2 claim. Between 300 meters to 1000 meters elevation above sea level, the property is cut by a series of steep gullies giving rise to a series of hog back ridges. These ridges consist of 20-30 meter vertical rock faces with grasses and alders growing on talus between the rock faces. At approximately 1000 meters elevation, the steep gullies terminate in nearly vertical rock faces. Above the top of these gullies, the topography becomes gentler with grasses and clumps of hemlock covering the slopes. A large creek, the Mountain Boy (Ruby) is present along the south portion of the claim area. Creek walls are locally vertical along this stream. Easy access to the upper slopes is along grassy slopes north of the Mountain Boy Creek and south of the area of the mineralized zones.

The upper slopes of the property above 1500 meters are mainly rock outcrops, talus slopes and permanent snow patches.

Spruce and hemlock trees as well as small patches of tag spruce are present along the lower slopes of the mountain valleys, particularly the north facing edges. Alders grow along avalanche slopes and moraines. Alpine grasses, heather and arctic willow grows in patches along the talus, moraine and outcrops in the upper regions of the property.

Personnel and Operations

Personnel involved during the exploration program are listed below:

E. Kruchkowski	Consulting Geologist
Randy Kasum	Operations Manager
Sheila Ballantyne	Consulting Geologist
Hugh Samson	Consulting Geologist
Rob Pelkey	Consulting Geologist
Kaitlin Cherniwchan	Geological Assistant
Tim Kruchkowski	Geological Assistant
Peter Leigh	Geological Assistant
Lou Kamermans	Geological Assistant
Dennis Olynk	Excavator Operator
Rob Currie	Miner/Blaster
Richard Lemieux	Core Cutting

Personnel mobilized either out of Stewart or the American Creek area, British Columbia to the job site on a daily basis utilizing a Bell 206 helicopter, contracted from Hayes Helicopters, based in Stewart.

Drilling was provided by an underground drill capable of flat and up holes owned by Mountain Boy Minerals Ltd.

The upper pad on the Mountain Boy Reverted Crown Granted claim was built from timbers on a rock ledge overlooking the veins on the property area. The lower pads were built on a flat area prepared by using a compressor, jackleg and explosives to break the rock. A Quantum Helicopters Bell 205 from Terrace, BC was used to fly in a Kubota K-41 excavator to the area of the pad 2 in order to move the broken rock.

Personnel stayed in rented accommodations in Stewart and acquired meals at local restaurants.

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property

Core was flown to Stewart, where it was logged, cut in half with a diamond saw with half the core sent for analysis and the other half put back in the core box. The core remaining in the coreboxes is stored in core rack facilities at Stewart BC.

All samples were prepared and analyzed by Assayers Canada in Vancouver, British Columbia.

Property Ownership

The property consists of 4 reverted Crown Grants and 37 units in 3 modified grid claims. Due to overlap over existing reverted Crown Grants, the modified grid claims only contain approximately 50% of the area claimed. Relevant claim information is summarized below:

Name	Tenure \#	Units		Expiry Date
Hard Money	253823	1	22 March 2015	
Northern Belle	253824	1	22 March 2015	
Mountain Boy	253825	1	22 March 2015	
American Girl	253826	1	22 March 2015	
Stromeyerite 1	354133	18	08 March 2015	
Stromeyerite 2	356397	15	08 June 2015	
Stromeyerite 3	361179	4	10 January 2015	

(After filing of assessment work).
Claim locations are illustrated in Figure 2, copied after available NTS maps. Mountain Boy Minerals Ltd owns an undivided 100% interest in the property.

Previous Work

The section on previous work has been excerpted from a report by McIntyre as follows:
"The property was first staked in 1902 after high grade silver ore was discovered in the valley of American Creek.

In 1908 the claims were acquired by Sir Donald Mann of Canadian Northern Railway fame. His company's work resulted in the location of the Mann Vein and other mineralized showings.

The Mountain Boy Mining Company owned a claim group in 1910, which included the key Mountain Boy, Hard Nut and Northern Belle claims. The claims were acquired by Pacific Coast

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property
Page 6

Exploration Company, which carried out exploration on all of the claims but concentrated on the Mountain Boy claim where the Mann adit was driven for 150 feet with 25 feet of crosscutting and a 10-foot winze.

A second level was controlled below and driven under the upper workings where similar material was encountered. An adit was collared on the Hard Nut claim and driven for 70 feet on an 11.5 foot wide mineralized zone. Work on the Northern Belle consisted of drifting totaling 32 feet in length. The zone contained quartz and galena across a width of 18 feet. A second occurrence of the Northern Belle some 35 feet wide, was prepared for underground development but none was done.

During the First World War in 1914, the Pacific Coast Exploration Company returned the property to the owners. Some prospecting was carried out over the next few years.

In 1920 the key claims were Crown granted and little was done until 1927 when the property was optioned to William Tolin and the Pat Daly Mining Company was organized to carry out further exploration and development. The High Grade Vein was discovered and was believed to have been the source of high-grade float previously found in 1908. Four tons of sorted material was shipped which assayed 949.5 oz silver per ton. Other veins were also encountered.

Between 1928 and 1930, most of the present workings were completed and numerous geological reports were written on the property. The Mountain Boy Mining Company further developed the Mann Adit to a length of 200 feet with 25 -foot crosscuts from the footwall to the hanging wall. The High Grade Vein was explored by the driving of two adits. The vein was faulted off and crosscutting to the east and west failed to locate the faulted sections. It was planned to test High Grade Vein from the Mann workings.

In July 1928, the Daly adit was driven to test the High Grade Vein at depth. The Fagan adit was driven in 1929 to also test the same vein. In 1930, the Tolin adit was collared and driven from a point 70 feet below and to the east of the Mann adit to explore the Mann vein and it was planned to continue the drive to facilitate exploration of the High Grade Vein. A raise to the Mann adit connected the Tolin adit.

Some mining was carried out as late at 1939 and a little prospecting was done up to 1943.
During the early era between 1928 and 1938, some 60 tons of hand sorted high grade was shipped with an average reported grade of 547 oz/tons silver, 3.1% lead and 2.9% copper. In 1947 Van Sea Ventures Ltd. diamond drilled two short holes on a structure to the north of the Mann orebody.

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd. Skeena Mining Division
Stewart, British Columbia
Report on MB Property
Page 7

In 1976, Mr. R.F. Schumacher carried out prospecting and sampling. In 1978, Northern Lights Resources Ltd. (N.P.I.) drilled one diamond hole to test the Mann vein at depth.

During 1981, Pride Resources Ltd. upgraded 4.8 kilometers of the road leading up American Creek from the Stewart highway. This included the construction of a long bridge over the lower end of American Creek and another crossing a tributary creek. This work failed to reach the property.

In late 1983, Pride Resources Ltd. carried out a prospecting, sampling and diamond-drilling program supported by helicopter from Stewart. Surface exposures of the High Grade Vein in the vicinity of the Daly and Fagan adits were sampled. The underground exposures of the Mann orebody in the Mann adit were sampled. Three short diamond drill holes were put down at the portal of the Mann adit to test the extent of the ore below the surface exposure.

In 1997, Ranmar Ventures Ltd. acquired rights to the four key claims in which the Mann and High Grade ore structures occur. They carried out a very extensive re-building of the access road from the Stewart highway to a point in the valley immediately below the Mann adit. This followed along the road previously built by Pride Resources. They then constructed a bulldozer trail, with switchbacks up the talus slope to the Mann adit suitable for 4 -wheel drive vehicles. In addition they drilled and blasted a single round of the Mann ore at the adit to provide fresh exposure and a bulk sample of the ore. A few tons of hand-sorted ore were bagged and transported to a work area at the base of the talus.

In the early summer of 1998, this company carried out further extensive improvements to the road from the Stewart highway to the work area below the Mann adit, through the application of large amounts of gravel and fine grading."

During the period 1997-1998, Ranmar Ventures Ltd. conducted a program consisting of road building, bulk sampling and reconnaissance work to locate all the underground workings and reported mineral occurrences. A total of 7 km of road along with bridgework was completed to the base of the Mountain Boy property. Then approximately 1 km of 4 -wheel drive road was constructed to the portal of the Mann Tunnel. A total of 200 tons of zone material was extracted and trucked to the paved highway 37A. Sampling by Ranmar has yielded values ranging from $32.4-24,149 \mathrm{~g} /$ tonne $\mathrm{Ag}(1.04-776.5 \mathrm{oz} /$ tonne $), 0.221-0.785 \% \mathrm{Cu}, 0.45-0.48 \% \mathrm{~Pb}$ and $0.89-$ $9.70 \% \mathrm{Zn}$ in random grabs from the muck piles after successive blasts.

Page 8

Grab sampling by Ranmar from surface on the High Grade zone has yielded 24.4-29,568 $\mathrm{g} /$ tonne $\mathrm{Ag}(0.78-950.7 \mathrm{oz} /$ tonne $), 6.5 \% \mathrm{Cu}$ and $2.91 \% \mathrm{Zn}$. Sampling by Ranmar on the surface showings along the High Grade zone confirmed the previous results obtained by past explorers. It should be noted that all samples were run for silver while only several samples were analyzed for Cu, Pb or zinc. Sampling by Ranmar on the part of the 200 ton sample stored on Highway 37 A has yielded a grade of approximately $15.8 \mathrm{oz} /$ tonne ($492 \mathrm{~g} /$ tonne) silver with $4-5 \% \mathrm{Zn}$.

Grab sampling by Ranmar of three bornite-chalcopyrite-acanthite boulders returned assays ranging from $740-14900 \mathrm{~g} /$ tonne ($23.8-479.1 \mathrm{oz} /$ tonne) silver, $7.41-9.51 \% \mathrm{Cu}, 0.11-0.15 \%$ Pb and $5.43-11.10 \% \mathrm{Zn}$. It should be noted that not all the samples from the boulders were assayed for Zn, Pb and Cu .

During July to November 1999, an exploration including mapping of the veins, underground sampling, preliminary geological mapping of the rocks, trenching was completed. In addition, this program included trail and road building, bulk sampling and locating all previous adits as well as clearing of all located portal areas. Based on high silver assays from the High Grade vein, a 13.6 tonne (15 ton) sample was extracted from the High Grade vein during 1999 and shipped to the Cominco smelter at Trail, B.C. Sampling of the bulk sample by Mountain Boy Minerals indicated a grade of $15,920-\mathrm{g} /$ tonne ($511.9-\mathrm{oz} /$ tonne) silver, 2.14% copper and 2.45% lead. Results from the smelter indicate a value of 18,854 -grams/tonne silver ($550 \mathrm{oz} / \mathrm{ton}$), 1.1% zinc and 2.5% lead.

During August to September 2000, an exploration including with minor surface sampling and diamond drilling was completed. Two BTW drill holes totaling 268.3 meters, one located at the Cameron portal was designed to intersect an off-shoot of the Mann vein and the other on the east side of the 4 -Bees vein were completed. Because of the flat westerly dip of both hole, neither hit the intended target. Encouraged by the high grading results in 1999, Mountain Boy extracted 38 tonnes of hand cobbed mineralization in 2000 and shipped to the smelter. Final settlement is in dispute and there is a legal action between Cominco and Mountain Boy

During July to September 2000, an exploration including bulk sampling with minor surface sampling was completed. Nineteen BTW drill holes totaling 605.79 meters were completed. Twelve holes were from a pad immediately west of the area of high grading on the High-Grade vein. Five holes were off a second pad approximately 26 meters west of pad one but much higher in elevation. Two holes tested narrow chalcopyrite bearing quartz veinlets along a basalt/rhyolite contact.

GEOLOGICAL SURVEYS

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd. Skeena Mining Division
Stewart, British Columbia
Report on MB Property

Page 9

Regional Geology

The Mountain Boy property lies in the Stewart area, east of the Coast Crystalline Complex and within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic Stuhini Group, Hazelton Group and Bowser Lake Group that have been intruded by plugs of both Cenozoic and Mesozoic age.

According to C.F. Greig, in G.S.C. Open File 2931, portions of the general Stewart area are underlain by Triassic age Stuhini Group. The Stuhini Group rocks are either underlying or in fault contact with the Hazelton Group. These Triassic age rocks consist of dark gray, laminated to thickly bedded silty mudstone, and fine to medium grained and locally coarse-grained sandstone. Local heterolitic pebble to cobble conglomerate, massive tuffaceous mudstone and thick-bedded sedimentary breccia and conglomerate also form part of the Stuhini Group.

At the base of the Hazelton Group is the lower Lower Jurassic Marine (submergent) and nonmarine (emergent) volcaniclastic Unuk River Formation. This is overlain at steep discordant angles by a second, lithologically similar, middle Lower Jurassic volcanic cycle (Betty Creek Formation), in turn overlain by an upper Lower Jurassic tuff horizon (Mt. Dilworth Formation). Middle Jurassic non-marine sediments with minor volcanics of the Salmon River Formation unconformably overlie the above sequence.

The lower Lower Jurassic Unuk River Formation forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, volcanic conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.

In the property area, the Unuk River Formation is unconformably overlain by middle Lower Jurassic rocks from the Betty Creek Formation. The Betty Creek Formation is another cycle of trough filling sub-marine pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, with self erosional conglomerate, sandstone and siltstone and minor crystal and lithic tuffs, chert, limestone and lava.

The upper Lower Jurassic Mt. Dilworth Formation consists of a thin sequence varying from black carbonaceous tuffs to siliceous massive tuffs and felsic ash flows. Minor sediments and limestone are present in the sequence. Locally pyritic varieties form strong gossans.

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd. Skeena Mining Division
Stewart, British Columbia
Report on MB Property
Page 10

The Middle Jurassic Salmon River Formation is a late to post volcanic episode of banded, predominantly dark colored siltstone, greywacke, sandstone, intercalated calcarenite rocks, minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows.

Overlying the above sequences are the Upper Jurassic Bowser Lake Group rocks. These rocks mark the western edge of the Bowser Basin and are also located as remnants on mountaintops in the Stewart area. These rocks consist of dark gray to black clastic rocks including silty mudstone and thick beds of massive, dark green to dark gray, fine to medium grained arkosic litharenite.

According to E.W. Grove, the majority of the rocks from the Hazelton Group were derived from the erosion of andesitic volcanoes subsequently deposited as overlapping lenticular beds varying laterally in grain size from breccia to siltstone.
D. Aldrick's work to the north of Stewart has shown several volcanic centers in the surveyed area. Lower Jurassic volcanic centers in the Unuk River Formation are located in the Big Missouri Premier area and in the Brucejack Lake area. Volcanic centers within the Lower Jurassic Betty Creek Formation are in the Mitchell Glacier and Knipple Glacier areas.

There are various intrusives in the area. The granodiorites of the Coast Plutonic Complex largely engulf the Mesozoic volcanic terrain to the west. East of these (in the property area), smaller intrusive plugs range from quartz monzonite to granite to highly felsic. Some are likely related to the late phase offshoots of the Coast plutonism, other is synvolcanic and tertiary. Double plunging, northwesterly - trending synclinal folds of the Salmon River and underlying Betty Creek Formations dominate the structural setting of the area. These folds are locally disrupted by small east-over thrusts on strikes parallel to the major fold axis, cross-axis steep wrench faults which locally turn beds, selective tectonization of tuff units and major northwest faults which turn beds.

Local Geology

Figure 3 shows the general property geology as mapped by Grove in BCEMPR Bulletin 58.
According to Grove, the area of the reverted Crown Grants and Stromeyerite 1 claim is underlain by Lower Middle Jurassic rocks of the Hazelton Assemblage. Red and green volcanic conglomerate and sandstone of the Betty Creek Formation occur in a north trending belt. To the west of the reverted Crown Grants, Middle Upper Jurassic rocks of the Bowser Assemblage overly the Hazelton Assemblage. Green, red and black volcanic breccia is overlain by green, red and buff volcanic sandstone, conglomerate and breccia which in turn is overlain by sediments

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property
consisting of siltstone, greywacke, argillite, chert and calcarenite to the west. Dip measurements by Grove indicate a 20-40 degree dip to the west for the Bowser Assemblage.

During the program of locating and sampling the various vein systems; both on surface and in adits, preliminary mapping was conducted. Survey control was provided by chain and compass distances from known underground workings and previous trenches. The area of the known veins is predominantly underlain by outcrop except at lower elevations. Minor talus along the gulches and alder patches along ridges obscure the geology above the Mann adit level.

Figure 4 shows the geology in the immediate area of the known vein systems. The surveyed area along the west side of American Creek contained three main rock units. These consisted of a lower undivided red to maroon fragmental andesite overlain by a sericitic, pyritic volcanic that was weakly silicified. This unit in turn is overlain by coarse red to green volcanic agglomerate to the west. Mineralized vein systems appear to be restricted to the lower red to maroon fragmental volcanic. Narrow diabase dykes were noted cutting both the mineralization and country rocks. Post mineral faults are common but appear to have little or no apparent slip movement.

The lower undivided red and maroon volcanics consist of interbedded tuffs, volcanic breccia and thinly bedded volcanic sandstones. The unit was noted over elevations ranging from 640 to 920 meters above sea level. The unit is very calcareous and is generally highly sheared and very chloritic. Commonly specularite occurs along slip faces; derived from the hematite rich volcanics. Locally numerous barren quartz veinlets occur across short distances and across widths up to 2 meters. Individual veinlets vary from 1 to 6 cm and comprise up to 30% of the rock. Minor spotty rhodochrosite as well as abundant calcite veinlets $1-2 \mathrm{~cm}$ wide were noted throughout the area surveyed. Local strong epidote patches are common within the volcanic breccias, particularly as alteration of feldspars in the clasts.

The volcanic sandstones appear to occur along the lower levels, generally in the area of the Tolin, Cameron and Mann adits. The bedding is $4-8 \mathrm{~cm}$ wide and overall strike measurements show a trend approximately north south. The breccias appear to occur in the area of and above the adits while the tuffs are mainly present in the area of the Daly adit roughly 150 meters above the Mann adit. The tuffs are a deep red color and are very thinly bedded. Calcite content in the tuffs appears to be much less than for the breccias.

The silicified unit was noted at 920 meters above sea level in elevation and occurs as a zone trending north south and up to 100 meters wide. It weathers a very distinct light brown-yellow. The rock contains up to 10% sparse barren quartz veinlets $0.5-1 \mathrm{~cm}$ wide. Pyrite occurs as very fine grains in amounts up to $3-4 \%$. The unit, which has been moderately sericite altered, appears to occur conformably along the west side of the red to maroon volcanics.

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd. Skeena Mining Division
Stewart, British Columbia
Report on MB Property

West of the silicified unit, coarse red and green agglomerates occur. The rocks are locally hematite rich and show strong epidote content. Clasts vary in size from sand sized particles up to 0.5 meters in diameter. Barren quartz veins occurring along short distances and up to 1 meter wide were noted in the agglomerate. The unit has a highly calcareous matrix and locally contains numerous calcite veinlets.

Barite-quartz-calcite-sulfide replacement bodies appeared to be restricted to the lower undivided volcanic unit. These appear to be fault controlled, as it is common to find fault gouge separating the wall rocks from the replacement bodies. The replacement bodies appear to be the widest at zones of fault intersection. Widths of the replacement zones may vary from 1 meter up to 26 meters.

The diabase dykes noted appear to be 2-3 meters in width and were probably emplaced along post mineral fault zones. The contact areas of the dykes with country rock contain fault gouge. The dykes are generally vertical but have a strong flat fracturing. Underground, the dykes present a problem as the flat fracturing and wall area faults cause caving of the backs.

The diabase is a dark grey, very dense homogenous rock. It is very fine grained and locally pyrite may occur in the wall to the dyke.

Abundant fault planes varying from approximately 300 to 330 degrees azimuth were noted. These faults vary greatly over short distances. One to two meters of gouge and crushed rock along the faults may pinch down to a tight fracture within a strike length of a few meters. Displacement along these faults appears to be only in the order of a few meters. The exception to this appears in the area of the High Grade vein, where the above zone has been cut and apparently displaced along a fault striking 353 -degree azimuth. Slickensides measurements indicated a plunge of 25 degrees to the west.

A large fault striking 056 degrees azimuth and dipping 65 degrees north-containing $0.3-0.6$ meters of gouge and crushed rock has been mapped approximately 20 meters below and just east of the Tolin adit.

Mineralization

To date, at least seven main and four minor quartz-barite carbonate replacement occurrences containing sulfides have been discovered within the property area. The replacement occurrences

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property
Page 13
generally weather a pale gray to dark gray color and sulfides are not readily apparent except where secondary minerals have formed as weathering products. In many of the localities, the zones are difficult to distinguish from the surrounding country rock. Figure 4 shows the location of the veins and underground workings.

The mineralogy of these occurrences are distinctive in that they all appear to contain varying amounts of barite, quartz-jasper and carbonate with sparse to abundant sulfides. Barite and carbonate appear to be the most common minerals with lesser quartz. Sulfides vary from less that 1% up to 100% locally and consist of sphalerite, galena, chalcopyrite, bornite, tetrahedrite, jamesonite, covellite, and minor greenockite, acanthite (argentite) and stromeyerite. Native silver has been noted over a strike length of 20 meters in the High Grade vein. It occurs as fine grains, wires and small 1-millimeter plates. Sphalerite varies in colour from dark black to pale green and amber with the black variety being by far the most common. Locally malachite, azurite and hydrozincite occur as weathering products in areas of sulfide enrichment. Green chlorite occurs as wisps, fracture coatings and blebs generally paralleled to banding in the zone. Based on the high carbonate content and the presence of both zinc and barium, it is likely that both witherite and smithsonite are present in the veins.

The zones show the following minerals in order of abundance:

Gangue	Sulfide	Native
Barite	Sphalerite	Silver
Calcite	Galena	
Quartz	Chalcopyrite	
Jasper	Bornite	
Wall Rock Inclusions	Tetrahedrite	
Chlorite	Jamesonite	
Siderite	Covellite	
Rhodochrosite	Greenockite	
Smithsonite?	Acanthite (argentite)	
Witherite?	Stromeyerite	

The occurrences are generally banded with contrasting bands consisting of barite and/or quartz carbonate. Bands also can form local colloform structures and are usually parallel to the nearest country rock wall zone. Locally tabular barite crystals up to 2 centimeters long form radiating patterns with sulfides filling spaces between the crystals. Sulfides also appear to occur as coarse grains, wispy stringers and semi-massive veinlets associated with discrete lenses and stringers of quartz rich material bound by low sulfide bearing barite and calcite. High sulfide content appears

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property
to be directly dependent on quartz or silica content. Sphalerite is by far the most dominant sulfide and comprises over 70% of the sulfide content. Based on the previous explorers work, it appears that sulfide values are enhanced along the footwall side of the replacement zones. It is also apparent that high sulfide values do not necessarily correlate directly with highest silver values.

Work during the 1999 program indicated that veins occurred along three dominant strike directions but with varying dips. At present, the North (formerly the North Mann) and South Mann have an east-west strike and both dip 30 to 45 degrees to the south. Narrower veins in this strike direction include the WoMann, Waterfall and Fault Breccia. The Franmar, High Grade and No. 3 vein strike at 320 degrees azimuth direction and dip gently to the west. Veins striking in the northeast direction; namely the Mann, DeMann and Four Bees zones show great widths. Below the Four Bees zone and just above the Franmar vein, narrow 1-2 meter mineralized veins striking northeast were noted.

The wall of the mineralized replacement bodies can vary from a sharp contact to an irregular zone consisting of small calcite-quartz veinlets mineralized with sulfides in sheared red volcanics. Locally abundant malachite extends for several meters in to the footwall rock adjacent to the replacement zones.

The zones on the Mountain Boy property show a good correlation with the replacement deposits along the Kitsault valley, which have produced $19,000,000$ ounces of silver from 1,000,000 tons of ore. Both zones are barite-carbonate-silver-sulfide bodies that show similar textures and great widths and contain little or no gold value. They are both distinctive in that greenockite (cadmium sulfide) is a common constituent of the sphalerite. In addition, both occurrences appear to be within Betty Creek Formation rocks with pyritized, silicified horizons nearby.

The two principal zones examined by E. Kruchkowski in September 1998 were the Mann and High Grade. During 1999, all the zones except the No. 3 vein were mapped and sampled by the above author.

A variety of open cuts and the 1998 bulk sample pit as well as the Mann, Tolin and Cameron adits have exposed the Mann zone. The zone shows an arcuate nature just above the Mann adit. This may be the result of intersecting mineralized structures; namely the WoMann and the Mann itself. The Mann has a width of at least 10 meters and has been traced over a strike length of at least 100 meters. If further work indicates that the DeMann vein is an offshoot or a continuation of the Mann, the strike length would be over 220 meters in total. In the area just above the Mann adit, coarse blebs and stringers of sphalerite strike at an oblique angle to the overall strike of the zone. This area of abundant sphalerite was also noted in the No. 1 crosscut of the Mann adit,

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd. Skeena Mining Division
Stewart, British Columbia
Report on MB Property
approximately 6 meters below surface. Strong sphalerite mineralization was noted over a width of 6 meters in the crosscut. Also, coarse-grained galena and sphalerite with minor chalcopyrite and local acanthite are present in the footwall region of the zone at the portal to the adit. Based on the surface and underground observations, it appears that mineralized bands do not conform to the overall strike of the zone. Rather, it appears that mineralization may have been emplaced along later fractures at an oblique angle to the main zone. Calcite and /or barite veinlets extend for several meters into the footwall country rock. Just SW of the bulk sample pit, sheared wall rock contains abundant malachite extending for 2-3 m away from the replacement body.

In the Tolin adit, due to caving, only the footwall region of the Mann zone was examined. This area contains 1 meter of chlorite schist with minor jamesonite and sphalerite forming the footwall to the barite rich replacement zone. In the replacement zone, sparse sphalerite and chalcopyrite were noted. However, only 3 meters of the overall 10 -meter zone were examined due to inaccessibility. Based on the surface exposures and underground workings, the Mann vein has been traced for over 70 meters along dip in the immediate area of the Mann adit. Above the adit, a pinnacle of rock exposes the vein for over 50 meters of height and 70 meters of length. Based on its nature of occurrence, this pinnacle of rock would provide easily mined rock if future work indicates that it is economic.

In the Cameron Tunnel, a fault zone has displaced the Mann zone and only 2 narrow quartz barite zones were noted. This correlates with 2 barite veins mapped at surface about 30 meters in elevation above the tunnel. The east zone noted consisted of 2.3 meters of barite-quartz-calcite with strong sphalerite and chalcopyrite mineralization. Approximately 5.6 meters of crushed chloritic red volcanic with weak calcite veining and minor galena and sphalerite separated the above barite zone from the west vein. The west zone consisted of banded quartz-barite-calcite with minor jasper over a width of 1.5 meters. It contained 0.4 meters of massive sphalerite and minor galena on the footwall area (west side) with sulfides averaging $10-15 \%$ overall.

The High Grade zone, which lies about 160 m west and 160 m above the Mann zone strikes 320 degrees azimuth and dips 25 degrees west.

The zone was observed in the area of the Daly Tunnel, Open Cut and the area of the 1937 highgrading efforts or along a strike length of approximately 60 meters. The zone varies from approximately 2.1 up to 6 meters in width and appears to be steepening in dip south of the Daly adit from 25 degrees west to a dip of 45 degrees west.

The High Grade zone contains more abundant jasper versus the Mann zone, which is barite-rich. In the Daly adit, the southerly crosscut is predominantly jasper with little if any sulfide. However, the drift has not intersected the full zone as it stopped before the footwall. In the

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd. Skeena Mining Division
Stewart, British Columbia
Report on MB Property
northerly crosscut, the zone is intersected across a width of 7 meters (3.4 meters true width). It consists of locally strong jasper with minor barite-quartz-calcite and sparse sphalerite, galena and chalcopyrite mineralization. Near the hanging wall, a 1-meter zone of massive to semi-massive galena and sphalerite was noted.

In the Open Cut area, jamesonite, galena, sphalerite, tetrahedrite and sparse chalcopyrite are present as stringers and coarse blebs along a 0.5 -meter zone along the hanging wall of the vein. Below the above mineralization, in the center of the approximately 4 meter wide zone, local abundant native silver occurs with a sparse black sulfide over a width of 0.5 meters. Approximately 20 meters north of the Open Cut, in the area of the 1937 high grading efforts and 1999-bulk sample, stromeyerite, acanthite (argentite), tetrahedrite, bornite, chalcopyrite, covellite, galena and sphalerite form massive stringers, fracture coatings and veinlets. The stringers are generally conformable to the banding in the jasper-barite, while the veinlets are at right angles to and cut through the massive stringers. Stringers can be up to 0.15 meters in width while veinlets are generally 1-2 centimeters in width. The massive stringers consist of black crumbly stromeyerite and acanthite, coarse blebs of bornite and chalcopyrite up to 4 centimeters across, minor crystalline galena and abundant malachite filling vugs in the mineralization. The above mineralization is generally restricted to a zone 0.5 meters in overall width in a jasperbarite vein up to 6 meters wide. Sparse sphalerite, chalcopyrite and galena were noted in the vein rock surrounding the massive stringer mineralization.

The High Grade zone has been described in a 1937 newspaper article as follows:
The vein, known as the high-grade vein on the Mountain Boy property at the point where the ore was being extracted, showed a width of some twenty feet with two feet of highgrade on the foot-wall, showing stromeyerite and argentite distributed through the ore in great globs, while running with high-grade shoot in stringers of stromeyerite that comes away in regular plates of silver and gives a return of 8,000 ounces to the ton.

At the elevation of 3,000 feet the vein running along the mountain strikes north-east and south-east and dips to the west into the hill and has been traced on the surface for some 1,699 feet.

Grab samples from the massive mineralized stringers rich in acanthite and stromeyerite yielded assay values of 3,633 and $4,115 \mathrm{oz}$. /tonne silver respectively. These samples confirm that the 1937 assay value reported above is in all likelihood valid but was also probably a select silver rich specimen.

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property
Page 17

In the hanging wall area to the High Grade vein, mineralization extends into the country rock along fractures for distances of up to 3 meters. The mineralized wall regions appear to be restricted to an area extending from 20 to 40 meters north of the Open Cut. These fracture, controlled veinlets are generally $5-10 \%$ of the rock and carry massive sphalerite, chalcopyrite, galena and occasionally barite. The High Grade zone has been displaced by several faults immediately north of the 1937 high-grading efforts and 1999-bulk sample site. It appears that the zone may have been faulted west and uphill. If this were the case, it would explain why the Fagan adit was unsuccessful in intersecting the High Grade vein.

The Frammer showing consists of a jasper-barite-quartz-calcite stockwork in red to maroon volcanic breccia approximately 160 meters southeast and 70 meters lower in elevation from the Mann adit. The zone strikes 320 degrees azimuth and dip 45 degrees to the west. It is exposed over a strike length of only 30 meters with both the north and south sides obscured by overburden. The zone, up to 7 meters wide, contains generally sparsely mineralized quartz stringers cutting silicified volcanics mineralized with sphalerite, galena and chalcopyrite as well as minor barite and tetrahedrite. The quartz veinlets contain sparse blebs of tetrahedrite and bornite. Strong hydrozincite and minor malachite were noted along fractures.

The Four-Bees zone is a wide northeast trending zone approximately 160 meters south of the Mann zone and 40 meters west of the Franmar zone. It consists of a mineralized zone up to 26 meters wide exposed over a length of 40 meters on a narrow ridge along the lower slopes of the property. It consists of 16.5 meters of a sparsely mineralized barite-quartz-calcite-jasper vein with 9.9 meters of fractured and mineralized wall rock along its west side. The barite-quartz-calcite-jasper vein contains sparse sphalerite, galena and chalcopyrite as well as minor bornite and local tetrahedrite. Sulfides are generally less than 5% of the zone. The wall zone contains semi-massive veinlets of sphalerite and galena as well as coarse blebs of chalcopyrite in quartz veinlets. Overall sulfides content of the wall zone is less than 3% over the 9.9 meters.

The DeMann zone has been the least tested of the zones due to the steep nature of the area in which it occurs. It outcrops along the south bank of Big Rock Gulch and appears to strike approximately 260 degrees azimuth and dip to the southeast. It has been traced over a length of 120 meters with the width of the zone varying from 2 up to 13 meters but generally averaging 8 meters. It is speculated that the DeMann vein is the location of the reported "Jewelry Shop" in McIntyre's report. Apparently, the Cameron Tunnel was driven in order to intersect the "Jewelry Shop" at depth. Based on field observations, the DeMann vein consists of barite-jasper-quartzcalcite with local concentrations of sphalerite, galena, chalcopyrite and tetrahedrite. Minor float rock approximately 70 meters west of the Cameron adit carries abundant tetrahedrite. This float may be from the "Jewelry Shop". Frost action has spalled large blocks of the DeMann vein
about 100 meters above the Cameron adit and these large fragments fill Big Rock Gulch just above the adit.

The south Mann zone strikes approximately east west and dips to the south at about 35 degrees. It varies from 4 up to 6 meters in width and has been traced over a strike length of 200 meters (from the Cameron adit area to the South Mann adit). The South Mann adit was located just below the most southeast exposure of the vein. The back to the adit has broken through to surface along a diabase dyke.

The vein is predominantly barite-quartz-calcite-jasper with generally sparse sphalerite, galena and chalcopyrite. Sulfides are generally less than 5% of the rock. However, in Trench 16, coarse-grained galena and sphalerite formed up to 20% of the rock over widths up to 1 meter.

The North zone is an east west trending vein that is up to 4 meters wide exposed along a strike length of 50 meters. It is obscured by overburden to the east and it splits into a series of mineralized stringers to the west. It consists of a barite-quartz-calcite-siderite-jasper zone with stringers of massive galena stringers up to 0.15 meters in width. Minor sphalerite and chalcopyrite are also present within the zone. Immediately above the North adit, abundant rhodochrosite associated with green sphalerite was noted in Trench 3. Overall sulfide content of the North zone is approximately 5%.

The No. 3 zone was sampled in only one location just above the Daly Tunnel and Open Cut on the High Grade zone. It is a narrow zone of barite-quartz-calcite-jasper with local strong sphalerite, galena and chalcopyrite mineralization. It is reported to be parallel to the High Grade vein but the 1999 work was not extensive enough to confirm this.

The WoMann vein is just above the Mann adit and consists of several narrow 1 -meter veins striking approximately east west and dipping 45 to 50 degrees to the south. Overall width of the zone is approximately 4 meters with 0.9 to 1 meter of barite-calcite-quartz separated by $1-2$ meters of sheared chloritic, calcareous red volcanic. This vein has been traced for roughly 60 meters up hill from the Mann vein. It carries generally sparse sphalerite with minor chalcopyrite, bornite and tetrahedrite. At its most westerly exposure, coarse bornite, chalcopyrite and tetrahedrite occur with barite in a vein approximately 0.5 meters wide. Near the Mann vein, an unidentified green mineral in the WoMann vein may be smithsonite.

The Waterfall and Fault Breccia zones consist of remobilized gangue and sulfide mineralization from the veins into post-mineral fault zones. The zones consist of $30-40 \%$ vein material filling spaces and voids created by fracturing over widths up to 1-2 meters. Clasts of mineralized vein may be up to 6 centimeters in diameter. These zones appear to be restricted to the hanging wall

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd. Skeena Mining Division
Stewart, British Columbia
Report on MB Property

Page 19
side of nearby mineralized zones and seem to have strike lengths less than 30 meters. The Fault Breccia zone is immediately above the High Grade Zone while the Waterfall zone appears above the Franmar zone.

The Crackle Breccia zone consists of a stockwork carrying barite-quartz-calcite veins and veinlets sparsely mineralized with sphalerite and minor galena and chalcopyrite. The zone strikes approximately 220 degrees azimuth and varies from over 8 up to 14 meters in width. It is just south of the Mann adit and appears to strike into the Mann vein. It has been exposed over a strike length of only 30 meters. The barite-quartz-calcite appears to form about 25% of the overall zone. Locally, minor quartz veinlets contain a black, platy mineral occurring as fine 1-2 millimeter grains.

In 1998, Ranmar Ventures Ltd. located a number of mineralized boulders; several in Goat Gulch and one in Copper Gulch. These boulders contained abundant bornite and chalcopyrite occurring as stringers associated with barite and fine acanthite. Based on the 1999 work, the boulders in Goat Gulch appear to have been eroded from the upper part of the WoMann vein where coarse bornite, chalcopyrite and tetrahedrite occur in a barite vein. The source of the boulder in Copper Gulch appears to be from the hanging wall area to the High Grade vein approximately 160 meters up hill where narrow fractures contain coarse sphalerite, chalcopyrite, and bornite and galena stringers.

DIAMOND DRILLING

During the period June 1 to November 15, 2006, Mountain Boy Minerals Ltd conducted an exploration program on the Mountain Boy Reverted Crown Granted claim and Hard Money Reverted Crown Granted claim in the central portion of the property consisting of pad construction and diamond drilling to test the silver tenor of the No 3, High Grade and Mann veins.

The upper pad on the Mountain Boy Reverted Crown Granted claim was built from timbers on a rock ledge overlooking the veins on the property area. The lower pads were built on a flat area prepared by using a compressor, jackleg and explosives to break the rock. A Quantum Helicopters Bell 205 from Terrace was used to fly in a Kubota K-41 excavator to the area of the pad 2 in order to move the broken rock and create enough space for the drill pads.

During the 2006 exploration program, 19 diamond drill holes totaling 888.40 meters of BTW size drilling were completed from 3 different drill pad sites

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property

The main rock types intersected were red andesite tuffs and replacement zone carrying variable amounts of sulphides.

Drill hole azimuths, dips and total depth of hole are summarized below:
Table 1-Drilling Summary

| Drill Hole
 by Number | Pad No. | Azimuth
 Degrees | Dip
 Degrees |
| :--- | :--- | :--- | :--- | Total Depth (m)

MB-2006-1	Pad 1	138	-80	93.60
MB-2006-2	Pad 1	Vertical	-90	35.67
MB-2006-3	Pad 2	102	-45	193.29
MB-2006-4	Pad 2	102	-50	194.51
MB-2006-5	Pad 2	102	-55	170.12
MB-2006-6	Pad 3	315	-15	5.49
MB-2006-7	Pad 3	315	-20	8.53
MB-2006-8	Pad 3	315	-25	21.95
MB-2006-9	Pad 3	315	-30	5.79
MB-2006-10	Pad 3	308	-15	14.33
MB-2006-11	Pad 3	308	-20	20.43
MB-2006-12	Pad 3	308	-25	15.24
MB-2006-13	Pad 3	308	-30	14.63
MB-2006-14	Pad 3	308	-35	14.33
MB-2006-15	Pad 3	275	-15	22.87
MB-2006-16	Pad 3	275	-20	13.42
MB-2006-17	Pad 3	275	-25	5.18
MB-2006-18	Pad 3	262	-15	21.34
MB-2006-19	Pad 3	262	-20	17.68

Total 888.4 m
Figure 5 shows the location of the drill holes relative to the claim boundaries and underground workings particularly the Daly adit.

Drill log summaries are as follows:

MB-2006-1

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property
Page 21

Reddish-purple, aphanitic andesite flaws intercalated with porphyritic intrusive and breccia with $2-3 \%$ quartz-carbonate-epidote as veins and replacements was intersected by the hole at 1.22 to 90.85 m

The hole came to greenish-grey, fine grained andesitic dyke at 90.85 to 93.60 m .
Reddish-purple, aphanitic andesite flaws intercalated with porphyritic intrusive and breccia with $2-3 \%$ quartz-carbonate-epidote as veins and replacements was met by the hole at 93.60 m .

The hole was terminated at 93.60 m .

MB-2006-2

At 0.00 to 34.15 m the hole ran across reddish-brown, hematite and epidote rich andesite with 2$5 \%$ quartz-carbonate as irregular stringers.

Reddish-brown, fine grained, hematite rich crystal andesite tuff containing 2-5\% quartzcarbonate as irregular stringers, $1-3 \%$ epidote as irregular stringers, and highly fractured and rubbly core was encountered by the hole at 34.15 to 35.67 m .

The hole hit upon reddish-brown, hematite and epidote rich andesite with 2-5\% quartz-carbonate as irregular stringers at 35.67 m .

The hole came to a conclusion at 35.67 m .

MB-2006-3

From 3.05 to 12.20 m the hole came to red-brown, hematite rich andesite tuff containing $2-4 \%$ quartz-carbonate as irregular stringers and replacements and trace sphalerite associated with quartz-carbonate stringers.

Minor quartz-carbonate containing minor epidote was observed within an interval of greenishgrey diabase dyke intercepted by the hole at 12.20 to 18.50 m .

The hole met reddish-brown, hematite rich porphyritic intrusive with feldspar phenocrysts, 7$10 \%$ quartz-carbonate, and possible barite containing trace sphalerite at 18.50 to 19.51 m .

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property

Greenish-grey diabase dyke with minor quartz-carbonate containing minor epidote was encountered by the hole at 19.51 to 22.26 m .

At 22.26 to 40.55 m the hole hit reddish-brown, hematite rich, fragmented porphyritic intrusive containing $10-12 \%$ quartz-carbonate and barite as irregular stringers and replacements.

Minor quartz-carbonate containing minor epidote was observed within an interval of greenishgrey diabase dyke intersected by the hole at 40.55 to 42.38 m .

The hole ran across red-brown, hematite rich andesite tuff containing $2-4 \%$ quartz-carbonate as irregular stringers and replacements and trace sphalerite associated with quartz-carbonate stringers at 42.38 to 109.15 m .

A strongly carbonate-hematite altered interval with several quartz-carbonate-barite stringers and replacements, patches of strong silicification, and minor sphalerite was met by the hole at 109.15 to 111.89 m .

From 111.89 to 122.26 m the hole encountered red-brown, hematite rich andesite tuff containing $2-4 \%$ quartz-carbonate as irregular stringers and replacements and trace sphalerite associated with quartz-carbonate stringers.

Intercepted by the hole at 122.26 to 126.68 m was a strongly carbonate-hematite altered interval with several quartz-carbonate-barite stringers and replacements, patches of strong silicification, and minor sphalerite.

The hole hit red-brown, hematite rich andesite tuff containing 2-4\% quartz-carbonate as irregular stringers and replacements and trace sphalerite associated with quartz-carbonate stringers at 126.68 to 134.76 m .

A strongly carbonate-hematite altered interval with several quartz-carbonate-barite stringers and replacements, patches of strong silicification, abundant galena, possible silver, and minor sphalerite was met by the hole at 134.76 to 141.77 m .

At 141.77 to 158.23 m the hole came to red-brown, hematite rich andesite tuff containing $2-4 \%$ quartz-carbonate as irregular stringers and replacements and trace sphalerite associated with quartz-carbonate stringers.

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property

The hole encountered a strongly carbonate-hematite altered interval with several quartz-carbonate-barite stringers and replacements, patches of strong silicification, and minor sphalerite at 158.23 to 162.80 m .

Red-brown, hematite rich andesite tuff containing 2-4\% quartz-carbonate as irregular stringers and replacements and trace sphalerite associated with quartz-carbonate stringers was intersected by the hole at 162.80 to 179.27 m .

From 179.27 to 187.80 m the hole ran across a carbonate altered zone with $10-15 \%$ quartzcarbonate, barite veins and stringers containing minor chalcopyrite and visible malachite, rhodochrozite, and sphalerite.

The hole hit upon red-brown, hematite rich andesite tuff containing 2-4\% quartz-carbonate as irregular stringers and replacements and trace sphalerite associated with quartz-carbonate stringers at 187.80 to 193.29 m .

The hole was stopped at 193.29 m .

MB-2006-4

From 0.00 to 13.72 m the hole came to reddish-brown, hematite rich andesite tuff with $2-5 \%$ quartz-carbonate and possible barite as stringers and replacements.

The hole intercepted greenish-grey diabase dyke containing minor quartz-carbonate as stringers at 13.72 to 16.31 m .

Reddish-brown, hematite rich andesite tuff with $2-5 \%$ quartz-carbonate and possible barite as stringers and replacements was met by the hole at 16.31 to 20.27 m .

At 20.27 to 46.65 m the hole ran across greenish-grey diabase dyke containing minor quartzcarbonate as stringers.

The hole hit upon reddish-brown, hematite rich andesite tuff with 2-5\% quartz-carbonate and possible barite as stringers and replacements at 46.65 to 49.39 m .

Minor quartz-carbonate as stringers was observed in an interval of greenish-grey diabase dyke intersected by the hole at 49.39 to 74.09 m .

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property

From 74.09 to 93.90 m the hole encountered reddish-brown, hematite rich andesite tuff with 2-5\% quartz-carbonate and possible barite as stringers and replacements.

Reddish-brown andesite tuff with abundant green, visible chlorite, possible dark black argillite, and multiple intervals of quartz-carbonate veining and replacements containing $1-3 \%$ yellow sphalerite was met by the hole at 93.90 to 144.51 m .

The hole came to reddish-brown, hematite rich andesite tuff with 2-5\% quartz-carbonate and possible barite as stringers and replacements and minor quartz-carbonate veining at 144.51 to 151.22 m .

At 151.22 to 156.40 m the hole hit a strongly carbonate altered, strongly silicified interval of andesite tuff containing minor sphalerite and chalcopyrite.

Reddish-brown andesite tuff with abundant green, visible chlorite, possible dark black argillite, and multiple intervals of quartz-carbonate veining and replacements containing $1-3 \%$ yellow sphalerite was intercepted by the hole at 156.40 to 158.54 m .

The hole ran across greenish-grey diabase dyke containing minor quartz-carbonate as stringers at 158.54 to 159.60 m ,

Encountered by the hole at 159.60 to 162.20 m was reddish-brown andesite tuff with abundant green, visible chlorite, possible dark black argillite, and multiple intervals of quartz-carbonate veining and replacements containing $1-3 \%$ yellow sphalerite.

From 162.20 to 172.26 m the hole came to weakly carbonate-hematite altered purple andesite with minor carbonate veins, minor sphalerite, and minor jasper.

Reddish-brown, hematite rich andesite tuff with $2-5 \%$ quartz-carbonate and possible barite as stringers and replacements, minor argillite, possible silver, tetrahedrite, and minor quartzcarbonate veining was met by the hole at 172.26 to 173.17 m .

The hole hit intersected weakly carbonate-hematite altered purple andesite with minor carbonate veins, minor sphalerite, and minor jasper at 173.17 to 175.00 m .

At 175.00 to 182.01 m the hole hit upon reddish-brown andesite tuff with abundant green, visible chlorite, possible dark black argillite, and multiple intervals of quartz-carbonate veining and replacements containing 1-3\% yellow sphalerite.

Weakly carbonate-hematite altered purple andesite with minor carbonate veins, minor sphalerite, and minor jasper was encountered by the hole at 182.01 to 194.51 m .

The hole came to a close at 194.51 m .

MB-2006-5

Purple andesite with patches of weak to moderate carbonate and hematite alteration, 2-3\% quartz-carbonate stringers, minor jasper veinlets, and sphalerite was met by the hole at 1.83 to 17.07 m .

The hole came to greenish-grey, porphyritic diabase dyke with minor quartz-carbonate in stringers at 17.07 to 21.65 m .

From 21.65 to 26.98 m the hole intercepted purple andesite with patches of weak to moderate carbonate and hematite alteration, $2-3 \%$ quartz-carbonate stringers, minor jasper veinlets, and sphalerite.

Greenish-grey, porphyritic diabase dyke with minor quartz-carbonate in stringers was encountered by the hole at 26.98 to 35.06 m .

Hit upon by the hole at 35.06 to 51.83 m was purple andesite with patches of weak to moderate carbonate and hematite alteration, $2-3 \%$ quartz-carbonate stringers, minor jasper veinlets, and sphalerite.

The hole ran across highly sheared, greyish-green, andesite volcaniclastic with several clay gouge intervals at 51.83 to 55.79 m .

At 55.79 to 58.54 m the hole intersected dark grey-green porphyritic dyke containing minor carbonate stringers.

Highly sheared, greyish-green, andesite volcaniclastic with several clay gouge intervals was met by the hole at 58.54 to 63.41 m .

Minor jasper veinlets, minor sphalerite, 2-10\% quartz-carbonate stringers, and patches of silicification were observed within an interval of weakly to strongly carbonate-hematite altered purple andesite tuff encountered by the hole at 63.41 to 90.85 m .

$$
\begin{aligned}
& \text { Mountain Boy Minerals Ltd-Pinnacle Mines Ltd. } \\
& \text { Skeena Mining Division } \\
& \text { Stewart, British Columbia } \\
& \text { Report on MB Property }
\end{aligned}
$$

From 90.85 to 100.61 m the hole hit purple andesite with patches of weak to moderate carbonate and hematite alteration, 2-3\% quartz-carbonate stringers, minor jasper veinlets, and sphalerite.

Intercepted by the hole at 100.61 to 106.71 m was minor jasper veinlets, minor sphalerite, 2-10\% quartz-carbonate stringers, and patches of silicification were observed within an interval of weakly to strongly carbonate-hematite altered purple andesite tuff.

The hole came to purple andesite with patches of weak to moderate carbonate and hematite alteration, $2-3 \%$ quartz-carbonate stringers, minor jasper veinlets, and sphalerite at 106.71 to 110.98 m .

At 110.98 to 111.89 m the hole met an interval of strongly carbonate altered, moderately silicified purple andesite with minor sphalerite.

Minor jasper veinlets, minor sphalerite, 2-10\% quartz-carbonate stringers, and patches of silicification were observed within an interval of weakly to strongly carbonate-hematite altered purple andesite tuff was encountered by the hole at 111.89 to 156.40 m .

The hole ran across a fault zone in andesite marked by crushed core at 156.40 to 170.12 m .
The hole was finished at 170.12 m .

MB-2006-6

From 0.00 to 5.49 m the hole came to reddish-brown hematite and chlorite rich andesite containing 5-10\% quartz-carbonate and 3-5\% barite as irregular stringers and replacements.

The hole came to an end at 5.49 m .

MB-2006-7

The hole encountered a high grade vein at 0.00 to 8.53 m containing red, fractured andesite, minor quartz-carbonate-barite veinlets, trace malachite, minor jasper, and strong rhodochrosite.

The hole was terminated at 8.53 m .

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.

Skeena Mining Division
Stewart, British Columbia
Report on MB Property Page 27

MB-2006-8

A variable carbonate-jasper-barite vein containing local minor argentite and stromeyerite was met by the hole at 0.00 to 15.55 m

Dense, fine grained red tuff with 5% barite-carbonate veins was intersected by the hole at 15.55 to 21.95 m .

The hole came to a conclusion at 21.95 m .

MB-2006-9

A high grade quartz-barite vein containing minor malachite, traces of argentite, and minor jasper was hit upon by the hole at 0.00 to 5.79 m .

The hole came to a stop at 5.79 m .

MB-2006-10

From 0.00 to 14.33 m the hole ran across a mixture of brecciated red volcanic tuff containing veins and stockwork of quartz, carbonate, and barite.

The hole was completed at 14.33 m .

MB-2006-11

Minor sulphides were observed within a high grade jasper-barite-calcite vein encountered by the hole at 0.00 to 5.18 m .

The hole came to brecciated red tuff containing 10% jasper-calcite veins at 5.18 to 7.93 m .
At 7.93 to 12.20 m the hole met a jasper-barite vein containing traces of argentite and minor chalcopyrite.

Highly brecciated red tuff bedding parallel to the core axis was intercepted by the hole at 12.20 to 20.43m.

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property
Page 28

The hole was ended at 20.43 m .

MB-2006-12

The hole ran across a high grade barite-calcite-jasper vein containing trace argentite and minor galena at 0.00 to 3.05 m .

Encountered by the hole at 3.05 to 9.60 m was red tuff with minor quartz-carbonate veinlets and local narrow malachite stained fractures.

From 9.60 to 11.77 the hole hit upon a high grade barite-calcite-jasper vein.
Red tuff was intersected by the hole at 11.77 to 15.24 m .
The hole came to a close at 15.24 m .

MB-2006-13

A high grade barite-calcite-jasper vein containing minor malachite in fractures and trace to minor argentite was met by the hole at 0.00 to 2.29 m .

The hole came to weakly brecciated red tuff with $5-10 \%$ quartz-carbonate stockwork at 2.29 to 7.62 m .

At 7.62 to 11.13 m the hole intercepted a barite-jasper vein with trace malachite staining.
Red tuff was encountered by the hole at 11.13 to 14.63 m .
The hole was finished at 14.63 m .

MB-2006-14

A mixture of red tuff and jasper-barite veins was hit by the hole at 0.00 to 8.69 m .
From 8.69 to 14.33 m the hole ran across friable and highly sheared red tuff containing narrow calcite veinlets.

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property

The hole was stopped at 14.33 m .

MB-2006-15

Brecciated and sheared red tuff containing hematite in fractures was encountered by the hole at 0.00 to 2.13 m .

The hole met a barite-calcite vein with minor jasper and trace malachite at 2.13 to 9.45 m .
Minor carbonate veins were observed within a fault zone of highly broken red tuff intercepted by the hole at 9.45 to 15.70 m .

At 15.70 to 18.60 m the hole came across a high grade barite-jasper vein.
Highly brecciated, friable red tuff was met by the hole at 18.60 to 22.87 m .
The hole came to a conclusion at 22.87 m .

MB-2006-16

From 0.00 to 2.13 m highly fractured red tuff with minor calcite veinlets was intersected by the hole.

The hole ran across a high grade barite-calcite-jasper vein with traces of malachite and argentite at 2.13 to 5.79 m .

Highly shattered and fractured red tuff containing minor quartz-carbonate stockwork was encountered by the hole at 5.79 to 13.42 m .

The hole was terminated at 13.42 m .

MB-2006-17

The hole came to a barite-calcite-jasper vein containing minor malachite at 0.00 to 5.18 m .

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property

The hole was completed at 5.18 m .

MB-2006-18

At 0.00 to 21.34 m a jasper-barite-calcite vein with local minor argentite was met by the hole.
The hole came to an end at 21.34 m .

MB-2006-19

Local chlorite and traces of strongly banded argentite were observed within a red and white jasper-barite vein hit by the hole at 0.00 to 17.68 m .

The hole was finished at 17.68 m .
Figures 6-11 show the geological section for $\mathrm{DDH}-2006-\mathrm{MB}-1$ to 19 inclusive.
Assay results greater than $34 \mathrm{~g} / \mathrm{t}$ silver are plotted on the figures and are listed in the section below. Tabulated assays for the core from the drilling are as follows:

Table 2 Significant Silver Results

DDH_	From (\mathbf{m})	To (m)_	Width (\mathbf{m})	Au g/t.	Ag g/t.	Cu \%	Pb \%	$\mathbf{Z n} \%_{-}$
MB-2006-3	132.62	139.63	7.01	0.04	281.7	0.03	0.28	0.52
and	156.4	161.28	4.88	0.03	55.49	0.02	0.17	0.88
MB-2006-4	148.17	151.37	3.66	0.33	125.1	0.06	0.39	1.35
and	172.26	173.17	0.91	0.01	48.2	0.02	0.15	1.12
MB-2006-6	0	0.62	0.62	$\mathrm{~N} / \mathrm{A}$	36.0	0.018	0.05	0.18
and	0.62	1.34	0.72	$\mathrm{~N} / \mathrm{A}$	172.5	0.055	0.09	0.22
MB-2006-7	2.32	5.03	2.71	$\mathrm{~N} / \mathrm{A}$	1501.0	0.185	0.14	0.268
and	5.03	6.10	1.07	$\mathrm{~N} / \mathrm{A}$	34.6	0.049	0.06	0.08

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property

Page 31

and	6.10	8.54	2.44	N/A	103.7	0.024	0.06	0.09
MB-2006-8	2.13	4.27	2.14	N/A	2215.0	0.202	0.01	0.28
and	4.27	5.64	1.37	N/A	154.3	0.039	0.04	0.24
and	5.64	6.40	0.76	N/A	3068	0.283	0.44	0.39
MB-2006-9	0	3.66	3.66		1588.0	0.211	0.01	0.16
MB-2006-10	0	2.53	2.53	N/A	10620	1.29	0.08	0.02
and	2.53	5.18	2.65	N/A	138.4	0.064	0.02	0.07
and	5.18	8.23	3.05	N/A	57.3	0.016	0.02	0.01
MB-2006-11	0	2.13	2.13	N/A	914	0.125	0.020	0.15
and	2.13	3.66	1.53	N/A	646	0.106	0.06	0.13
MB-2006-12	0	3.05	3.05	N/A	441	0.079	0.50	0.26

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd. Skeena Mining Division
Stewart, British Columbia
Report on MB Property
Page 32

and	8.54	11.59	3.05	$\mathrm{~N} / \mathrm{A}$	716.0	0.143	0.34	0.34
and	11.59	14.63	3.05	$\mathrm{~N} / \mathrm{A}$	3670.0	0.75	0.76	0.90

Figure 12 shows the assay section for DDH 2006-MB-3 to 5 inclusive. Figure 13 shows the assay section for DDH 2006-MB- 6 to 9 inclusive. Figure 14 shows the assay section for DDH 2006-MB-10 - 14 inclusive. Figure 15 shows the assay section for DDH 2006-MB-15-17 inclusive while Figure 16 shows the assay section for DDH 2006-MB-18 - 19. Best silver values were obtained on the High Grade vein in DDH-MB-2006-10 which yielded 5.18 meters of $5258.0 \mathrm{~g} / \mathrm{t}$ $\mathrm{Ag}, 0.66 \% \mathrm{Cu}, 0.05 \% \mathrm{~Pb}$ and $0.05 \% \mathrm{Zn}$ and $\mathrm{DDH}-\mathrm{MB}-2006-19$ which yielded 6.10 meters of $2260.0 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.404 \% \mathrm{Cu}, 0.48 \% \mathrm{~Pb}$ and $0.56 \% \mathrm{Zn}$. Best drill result on the Mann vein yielded 7.01 meters of $281.7 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.03 \% \mathrm{Cu}, 0.28 \% \mathrm{~Pb}$ and $0.52 \% \mathrm{Zn}$.

Analytical procedures for assays are shown in Appendix I. Complete drill logs with assay results for DDH-2005-FR 1-15 inclusive are located in Appendix II. Complete assay results for the drilling are located in Appendix III while Appendix IV shows the calculations for each drill hole with widths and assays used in determining Table 2.

CONCLUSIONS

1. The Mountain Boy property, optioned by Mountain Boy Minerals Ltd is located about 22 kilometers north of Stewart, British Columbia in the Skeena Mining Division. The property covers an area of Hazelton pyroclastic volcanic rocks in contact with a variety of intrusive plutons associated with the main Coast Range Batholith.
2. The property contains approximately 500 hectares within 41 units in 4 Reverted Crown Granted claims and 3 Modified Grid claims.
3. Mineralization on the property consists of at least seven main (Mann, High Grade, No. 3, DeMann, Franmar, Four Bees and South Mann) and four minor (North, WoMann, Waterfall and Fault Breccia) replacement zones tested with past trenching, previous open cuts and/or adits.
4. The mineralization occurs along wide bodies consisting of mainly barite, quartz, jasper, carbonates (calcite, siderite, rhodochrosite and possibly smithsonite and witherite) and sulfides (sphalerite, galena and minor chalcopyrite, bornite, tetrahedrite, jamesonite, covellite, acanthite, stromeyerite and greenockite) as well as inclusions of altered country rock. Native silver occurs along a zone traced for at least 20 meters of strike length on the High Grade vein. Secondary weathering minerals namely malachite, azurite and hydrozincite are common particularly in underground workings and along surface fractures.
5. During the period June 1 to November 15, 2006, Mountain Boy Minerals Ltd conducted an exploration program on the Mountain Boy Reverted Crown Granted claim and Hard Money Reverted Crown Granted claim in the central portion of the property consisting of pad construction and diamond drilling to test the silver tenor of the No 3, High Grade and Mann veins. During the 2006 exploration program, 19 diamond drill holes totaling 888.40 meters of BTW size drilling were completed from 3 different drill pad sites.
6. Best silver values were obtained on the High Grade vein in DDH-MB-2006-10 which yielded 5.18 meters of $5258.0 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.66 \% \mathrm{Cu}, 0.05 \% \mathrm{~Pb}$ and $0.05 \% \mathrm{Zn}$ and $\mathrm{DDH}-\mathrm{MB}-$ $2006-19$ which yielded 6.10 meters of $2260.0 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.404 \% \mathrm{Cu}, 0.48 \% \mathrm{~Pb}$ and 0.56% Zn . Best drill result on the Mann vein yielded $\quad 7.01$ meters of $281.7 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.03 \%$ $\mathrm{Cu}, 0.28 \% \mathrm{~Pb}$ and $0.52 \% \mathrm{Zn}$.
7. Based on the favorable results in the 2006 work on both the High Grade and Mann veins, an exploration program involving approximately $\$ 300,000$ is recommended for the MB property.

RECOMMENDATIONS

The recommended program is outlined as follows:

1. Diamond drilling

Diamond Drilling is recommended to complete 1000 meters of drilling along the High Grade and Mann vein to test for vein width silver tenor.

Estimated Cost of the Program

Helicopter

Helicopter - 75 hours @ $\$ 1200.00$ hour- $\$ 90,000.00$
1000 Rock Samples @ \$25.00 All Inclusive-\$25,000.00
1 geologists @ \$400.00/day for 40 days $-\$ 16,000,00$
2 assistants @ $\$ 360.00 /$ day for 40 days - $\$ 7,200.00$
$\mathbf{\$ 1 3 9 , 2 0 0 . 0 0}$

Diamond Drilling

1000 meters @ \$80.00/meter
$\mathbf{\$ 8 0 , 0 0 0 . 0 0}$

Accommodation

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property Page 34
120 man days @ \$60.00/day \$7,200.00
Vehicle rental $\$ 5,000.00$
Mob/Demob $\$ 6,000.00$
Consumables (plastic bags, fuel, explosives, etc.) $\$ 3,000.00$Reporting\$10,000.00
Contingency \$49,600.00

REFERENCES

1. AUSTIN, J. B. (2000); Preliminary Flotation Test for the Recovery of Lead, Zinc and Silver.
2. AUSTIN, J. B. (2000); Letter Report for the Recovery of Barite,
3. ALLDRICK, D.J. (1958); "Stratigraphy and Petrology of the Stewart Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
4. BLACK, J.M. (1951); "Upper Kitsault Valley Area", 1951 Annual Report Minister of Mines, B.C., p. 76.
5. BRITISH COLUMBIA DEPARTMENT OF MINES, Bulletin 1910, 1919, 1922, 1927, 1929, 1940
6. CAMPBELL, A.F. (1959); "The Geology of Torbrit Silver Mine", Economic Geology, Vol. 54, 1959, pp. 1461-1495.
7. CREMONESE, D. (1995); Assessment Report on Geochemical Work on the Following Claims: Pepe 7, Red Dog, Leszek 1-4.
8. EVANS, D.S. AND KRUCHKOWSKI, E.R.; Report on Mountain Boy Property.
9. GREIG, C.J. ET AL (1994); "Geology of the Cambria Icefield: Stewart, Bear River and parts of Meziadin Lake and Paw Lake map areas, northwestern British Columbia; Geological Survey of Canada, Open File 2931.
10. GROVE, E.W. (1971); Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
11. KRUCHKOWSKI, E. R (1998); Report on Mountain Boy Property.
12. MATHEWS, W. (1943); Summary Report, Mountain Boy Mine
13. MCINTYRE, R.F. (1998); Report on Mountain Boy Property
14. PHENDLER, R.W. (1978); Report on the Mountain Boy Silver Property
15. STEWART NEWS and NORTHERN B.C NEWSPAPER, 15 October 1937

Mountain Boy Minerals Ltd-Pinnacle Mines Ltd. Skeena Mining Division
Stewart, British Columbia
Report on MB Property

CERTIFICATE

I, Edward R. Kruchkowski, geologist, residing at 23 Templeside Bay, N.E., in the City of Calgary, in the Province of Alberta, hereby certify that:

1. I received a Bachelor of Science degree in Geology from the University of Alberta in 1972.
2. I have been practicing my profession continuously since graduation.
3. I am a member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
4. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia.
5. I am a consulting geologist working on behalf of Mountain Boy Minerals.
6. The main source of information has been the 2006 drilling program, geological and sampling programs conducted by the author in previous years. The author also has a general knowledge on the Stewart region gained in exploration programs in the period 1969-2006.
7. I am familiar with epithermal deposits having visited and worked on these types of deposits in Canada, USA and Mexico and have conducted exploration programs on these type of occurrences in the Stewart region.

Date:
E.R. Kruchkowski, B.Sc.
Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB PropertyPage 37
STATEMENT OF EXPENDITURES
Field Personnel---June 1 to November 15, 2006
E. R. Kruchkowski, geologist 20 days at $\$ 450.00 /$ day \$9,000.00
Sheila Ballantyne, geologist 3 days @ \$300.00/day $\$ 1,500.00$
Hugh Samson, Geologist
3 days @ \$225.00/day \$2,250.00
Rob Pelkey, geologist 5 days @ \$225.00/day $\$ 4,500.00$
R Kasum, operations manager 20 days at $\$ 300.00$ /day $\$ 6,000.00$
Kaitlin Cherniwchan, geological assistant 5 days at $\$ 180.00 /$ day $\$ 900.00$
Tim Kruchkowski, geological assistant 35 days at $\$ 330.00$ /day \$11,550.00
Rob Currie blaster/miner 35 days at $\$ 430.00 /$ day \$10,500.00
Dennis Olynk, excavator operator 300 hours at $\$ 35.00 /$ hour $\$ 15,050.00$
Alexandra Cremonese, geological assistant 5 days at $\$ 180.00 /$ day $\$ 900.00$
Peter Leigh, geological assistant 10 days at $\$ 180.00 /$ day $\$ 1,800.00$
Lou Kamermans, geological assistant 10 days at $\$ 180.00 /$ day $\$ 1,800.00$
Helicopter---Hayes Helicopters-contact machine based in Stewart, B.C.
Crew drop-off/pick-ups-June 1-November 15, 2006Invoices\$58,037.97
K-41 Excavator 30 days @ $\$ 250.00$ day $\$ 7,500.00$
Diamond Drilling 880.4 meters @ \$90.00/m \$79,236.00
Sample Analysis \$4,455.94
Diamond Drill Core 135 samples @ \$22.65/sample \$3,057.75
Wood for Drill Pads 3@\$1600.00/pad $\$ 4,800.00$
Mountain Boy Minerals Ltd-Pinnacle Mines Ltd.
Skeena Mining Division
Stewart, British Columbia
Report on MB Property
Page 38
Freight on Samples $\$ 500.00$
Core Cutting 5 days @ $\$ 230,00$ $\$ 1,150.00$
Mob/Demob for crew $\$ 5,000.00$
Vehicle Rental $\$ 2,000.00$20 days @ \$100.00/day
Food/Accommodation \$12,000.00
120 days @\$100/day
Drafting, as per invoice $\$ 720.00$
Report writing \$3,000.00

Mountain Boy

253825

LEGEND
 (to figs 6 through 16)

1 Red to purple andesite, porphyritic to aphanitic

2

3
Andesite dykes, fine grained

Replacement zones, carbonate, barite, sulphides

5
Diabase dyke, black, fine grained

ZnS Sphalerite

PbS Galena

ARG Argentite

Str Stromeyerite

Cpy Chalcopyrite

Fault

Scale

DDH-MB-2006-1
EOH 93.60 m
-85°

Mountain Boy Minerals Ltd.		
MB PROJECT SKEENA MIIING DIVIIION, B.C.		
Geological MB		
Section Showing		
NTS:	104A	
DATE:	March 2007	

Mountain Boy Minerals Ltd.	
MB PROJECT SKEENA MINING DIVISION, B.C.	
Geological Section ShowingMB - 2006-3-5	
NTS: 104A	SCALE: 1:1000
DATE: March 2007	FIGURE:

Mountain Boy Minerals Ltd.	
MB PROJECT SKEENA MINING DIVISION, B.C.	
Assay Section ShowingMB - 2006-3-5	
NTS: 104A	SCALE: 1:1000
DATE: March 2007	FIGURE: 12

Mountain Boy Minerals Ltd.			
MB PROJECT SKEEVAMINING DNISION, B.G			
Assay Section Showing$\text { MB - } 2006-18-19$			
NTS:	$104 \mathrm{~N} / 4$	SCALE:	1:100
DATE:	March 2007	FIGURE:	16

APPENDIX I

LABORATORY METHODS AND SPECIFICATIONS FOR SAMPLE ANALYSIS

Procedure Summary:

Gold (Au) Assay Analysis
Element(s) Analyzed:
Gold (Au)

Procedure:

The samples are fluxed, silver is added and mixed. The assays are fused in batches of 24 assays along with a natural standard and a blank. This batch of 26 assays is carried through the whole procedure as a set. After cupellation the precious metal beads are transferred into new glassware, dissolved with aqua regia solution, diluted to volume and mixed.

These resulting solutions are analyzed on an atomic absorption spectrometer using a suitable standard set. The natural standard fused along with this set must be within 2 standard deviations of its known or the whole set is re-assayed.

A minimum of 10% of all assays are rechecked, then reported in grams per metric ton (g/tonne).

Detection Limit: $0.01 \mathrm{~g} /$ tonne

Procedure Summary:

Base Metal Assay

Element(s) Analyzed:
Copper, Lead, Silver, $\operatorname{Zinc}(\mathrm{Cu}, \mathrm{Pb}, \mathrm{Ag}, \mathrm{Zn})$

Procedure:

A 1.000 gram sub-sample is weighed from the pulp bag for analysis. Each batch of 30 assays has, three duplicates, two natural standards and a reagent blank included. The samples are digested with $\mathrm{HNO}_{3}, \mathrm{HBr}$, and HCl . After digestion is complete, extra HCl is added to the flask to bring the concentration of HCl to 25% in solution. This is to prevent precipitation of lead and silver chloride.

The resulting solutions are analyzed on an atomic absorption spectrometer (AAS), using appropriate calibration standard sets.

The natural standard(s) digested along with this set must be within 2 standard deviations of the known or the whole set is re-assayed. If any of the samples assay over the concentration range of the calibration curve, the sample is re-assayed using a smaller sample weight. At least 10% of samples are assayed in duplicate.

Detection limit: $0.1 \mathrm{~g} /$ tonne for Ag
0.001% for Cu
0.01% for Pb and Zn

APPENDIX II

Drill Hole Logs - DDH -2006 -MB 1 to 19 inclusive

MTB DIAMOND DRILL LOGS

MTB DIAMOND DRILL LOGS

MTB DIAMOND DRILL LOGS

			and quartz-carbonate veins and trace yellow sphalerite	7273	134.76	139.63	4.87	<0.01	180.7	0.042	0.13	0.14
			and possible	7274	139.63	141.01	1.38	<0.01	7.5	0.002	<0.01	0.22
				7275	141.01	141.92	0.91	<0.01	2.8	0.001	0.01	0.24
			At 107.32 t 109.45m-Clay gauge intervals and highly	7276	141.92	143.29	1.37	<0.01	3.2	0.001	0.02	0.25
			fractured core.	7277	143.29	144.36	1.07	<0.01	4.6	0.001	0.01	0.2
				7278	144.36	146.04	1.68	<0.01	2.7	0.001	0.01	0.38
109.15	111.89	Carbonate	Strongly carbonate-hematite altered interval. Several	7279	146.04	147.40	1.36	0.01	4.2	0.002	0.16	1.28
		Altered	quartz-carbonate barite stringers and replacements.	7280	147.40	149.09	1.69	<0.01	3	0.001	0.01	0.7
		Zone	Patches of strong silcification. Minor sphalerite.	7281	149.09	150.76	1.67	0.01	3.6	0.001	<0.01	0.41
				7282	150.76	151.83	1.07	0.01	1.8	0.001	<0.01	0.23
111.89	122.26	Andesite	Same as 3.05 to 12.20 m	7283	151.83	153.35	1.52	0.01	5	0.003	<0.01	0.27
		Tuff		7284	153.35	154.88	1.53	0.01	10.5	0.013	0.01	0.44
				7285	154.88	156.40	1.52	0.03	27.5	0.011	0.07	1.88
122.26	126.68	Carbonate	Same as 109.15 to 111.89m.	7286	156.40	158.23	1.83	0.03	53.7	0.03	0.11	0.7
		altered zone		7287	158.23	159.76	1.53	0.05	64.5	0.034	0.17	1.35
				7288	159.76	161.28	1.52	0.02	48.6	0.005	0.07	0.61
126.68	134.76	Andesite	Same as 3.05 to 12.20 m .	7289	161.28	162.96	1.68	0.04	25.7	0.007	0.08	0.51
		Tuff		7290	162.96	164.02	1.06	0.02	10.5	0.008	0.1	0.36
				7291	164.02	165.55	1.53	0.01	18.5	0.009	0.11	0.36
134.76	141.77	Carbonate	Same as 109.15 to 111.89m with abundant galena,	7292	165.55	167.07	1.52	<0.01	7.9	0.011	0.03	0.19
		altered zone	possible native silver (133.17m).	7293	170.12	171.65	1.53	0.01	23.2	0.012	0.06	0.31
141.77	158.23	Andesite	Andesite tuff, same as 3.05 to 12.20m.									
		Tuff										
			At 141.77 to 142.38 m - fault marked by rubbly core.									
			At 151.52 to 156.10 m - several intervals of rubbly core									
			and clay gauges.									
158.23	162.80	Carbonate	Same as 109.15 to 111.89 m .									
		altered zone										
162.80	171.04	Andesite	Same as 3.05 to 12.20 m .									
		Tuff										
			At 171.04m - fault zone marked by rubbly core and clay									
			gauge.									

171.04	179.27	Andesite	Same as 3.05 to 12.20 m .										
		Tuff											
179.27	187.80	Carbonate	10-15\% quartz carbonate and barite veins and stringers										
		altered zone	containing minor chalcopyrite and visible malachite										
			rhodozorite, sphalerite.										
187.80	193.29	Andesite	Same as 3.05 to 12.20 m .										
		Tuff											
			E.O.H. 193.29 m.										

MTB DIAMOND DRILL LOGS

			and possible dark black argellite.										
144.51	151.22	Andesite	Same as 0 to 13.72 m - with minor quartz-carbonate										
		Tuff	veining.										
			At 100 to 103.66 m - Intervals of quartz-carbonate										
			veining containing sphalerite and galena.										
			At 119.51 to 103.66 m - intervals of moderate carbonate										
			alteration. Minor sphalerite.										
			At 130.49 to 125.91 m - same as 119.51 to 125.91 m .										
151.22	156.40	Carbonate	Strongly carbonate altered, strongly silicified interval										
		Altered	of andesite tuff. Minor sphalerite and chalcopyrite.										
		Zone											
			At 148.17 to 148.57 m - (rush sampled) abundant										
			chalcopyrite, tetrahedrite, argelite and native silver.										
													.
156.40	158.54	Andesite	Same as 93.90 to 144.52m.										
		Tuff											
158.54	159.60	Diabase	Same as 13.73 to 16.31 m .										
		Dyke											
159.60	162.20	Andesite	Same as 93.90 to 144.52m.										
		Tuff											
162.20	172.26	Andesite	Weakly carbonate/ hematite altered, purple andesite.										
		Tuff	Minor carbonate veinlets. Minor sphalerite. Minor										
			jasper.										
172.26	173.17	Carbonate	Same as 144.51 to 151.22 m - minor argelite,										
		Altered	tetrahedrite andpossible silver.										
		Zone											
173.17	175.00	Andesite	Same as 162.20 to 172.26 m .										

MTB DIAMOND DRILL LOGS

MTB DIAMOND DRILL LOGS

MTB DIAMOND DRILL LOGS

DDH \# 2006-7			Core Size BQ		Logged by:_E. Kruchkowski									
Azimuth 315 degrees			Start September 18/2006		Total depth 8.53 m									
Dip__-2	degrees		Completion September 18/2006		Co-ordinate_442951E 6221889N									
Reflex Survey				Depth (m)Azimuth (degrees)	-									
Elevati					Dip (degrees)									
MET	AGE	ROCK TYPE	ROCK, ALTER	, MINERALIZATION	SAMPL	EINTER	AL(me	ters)		ASS	Y/GEOC	EM		
FROM	TO		STRUCTURE DES	RIPTION	Sple No.	FROM	TO	Width	Au g/t	$\mathrm{Ag} \mathrm{g} / \mathrm{t}$	$\mathrm{Cu} \%$	Pb \%	Zn \%	
0	8.53	High Grade	At 0 to 2.32m - red	actured andesite containing minor	8551	0.00	2.32	2.32		10.8	0.01	0.02	0.2	
		Vein	qtz-carbonate- bar	veinlets ($5-6 \%$).	8552	2.32	2.65	0.33		8410	0.903	0.6	0.76	
					8553	2.65	5.03	2.38		543	0.086	0.08	0.2	
			At 2.32 to 2.65 m -	ark chloritic vein with traces of malachite.	8554	5.03	6.10	1.07		34.6	0.049	0.06	0.08	
					8555	6.10	8.54	2.44		103.7	0.024	0.06	0.09	
			At 5.49 to 6.1 m -	ng rhodochrosite with minor jasper.										
			E.O.H. 8.54 m.											

MTB DIAMOND DRILL LOGS

DDH	2006		Core Size \quad B		Logged	by: E.	Kruch	kowski					
Azimut	315 de	grees	Start Septe	ber 18/2006	Total de	pth_2	95 m						
Dip__-2	degrees		Completion	September 19/2006	Co-ordin	nate	2951 E	62218	889N				
		eflex Sur		Depth (m)									
		ex Sur		Azimuth (degrees)									
Elevat				Dip (degrees)									
MET	RAGE	ROCK TYPE	ROCK, ALTERAT	On, MINERALIZATION	SAMPL	E INTER	AL (me	ters)		ASS	Y/GEOC	EM	
FROM	TO		STRUCTURE DES	RIPTION	Sple No.	FROM	TO	Width	Au g/t	$\mathrm{Ag} \mathrm{g} / \mathrm{t}$	$\mathrm{Cu} \%$	Pb \%	Zn \%
0	15.55	High Grade	Variable carbonate	asper/barite vein containing local minor	8556	0.00	2.13	2.13		10.4	0.008	0.02	0.16
		Vein	argentite and strom	yerite.	8557	2.13	4.27	2.14		2215	0.202	0.1	0.28
					8558	4.27	5.64	1.37		154.3	0.039	0.04	0.24
			At 0 to 2.13 m - red	ndesite tuff containing minor qtz-	8559	5.64	6.40	0.76		3068	0.283	0.44	0.39
			carbonate veins.		8560	6.40	8.54	2.14		20.9	0.032	0.1	0.08
					8561	8.54	11.23	2.69		30.4	0.018	0.06	0.07
:			At 2.13 to 4.27 m -	cal argentite veinlets up to 2 cm - silver	8562	11.23	12.80	1.57		5.6	0.021	0.02	0.05
			minerals apprx 2\%		8563	12.80	14.63	1.83		5.4	0.003	0.01	0.04
					8564	14.63	15.55	0.92		3.4	0.003	0.01	0.08
			Local malachite on	fractures.									
			At 4.27 to 5.18 m -	d tuff.									
			At 5.58 to 6.40 m -	inor argentite?									
			At 6.40 to 11.23 m	ed tuff containing veinlets/stckwk of									
			jasper/barite and c	bonate (25\%).									
			At 11.23 to 12.8 m	black chlorite, trace malachite and argen									
15.55	21.95	Red Tuff	Dense, fine-graine	tuff containing 5\% barite/carbonate									
			veinlets.										
			E.O.H. 21.95 m.										

MTB DIAMOND DRILL LOGS

MTB DIAMOND DRILL LOGS

MTB DIAMOND DRILL LOGS

MTB DIAMOND DRILL LOGS

DDH	2006	-16	Core Size _B		Logged	by:_E	Kruch	kowsh					
Azimut	275 d	egrees	Start_Septe	ber 26/2006	Total de	pth_1	42 m						
Dip_-	degree		Completion	September 26/2006	Co-ordi	nate	2951 L	6221	889 N				
				Depth (m)									
		Reflex Sur	vey	Azimuth (degrees)									
Elevat				Dip (degrees)									
MET	Rage	ROCK TYPE	ROCK, ALTERA	On, Mineralization	SAMPL	EINTER	ALIm	ters)			V/GEOC	EM	
FROM	T0		Structure des	Ription	Sple No.	FROM	то	Width	Aug/t	Ag g/t	Cu\%	$\mathrm{Pb} \%$	Zn \%
0	2.13	Red Tuff	Highly fractured, m	or calcite veinlets.	8595	0.00	2.13	2.13		5.4	0.01	0.01	0.15
					8596	2.13	3.96	1.83		665	0.091	0.1	0.16
2.13	5.79	High Grade	Barite/calcite/jaspe	vein, trace malachite and argentite.	8597	3.96	5.79	1.83		479	0.105	0.11	0.41
		Vein											
5.79	13.42	Red Tuff	Highy shattered, fra	ctured, containing minor qtz -carbonate									
			stckwk.										
			E.O.H. 13.42 m .										

MTB DIAMOND DRILL LOGS

MTB DIAMOND DRILL LOGS

MTB DIAMOND DRILL LOGS

APPENDIX III

ASSAY RESULTS - DDH - 2006 - MB- 1 TO 19 inclusive

Assay Certifīcate

Company: Mountain Boy Minerals Ltd.
Prajuct.
Atn: Randy Kasum
We heroby certify the following assay of 8 rock samples
subnuited Jan-17-07

Certited by

Assay Cerfificate

Company：Vountain Boy Minerals Ltd

Assayers Cannda
8282 Sherponke St． vancouver B．C．
$\vee 5 \times 26$
Tel：1504：327－3430
＝ax：（1504） $327-3425$

$6 \mathrm{~V}-2804-\mathrm{RA} 2$

Tan－05－07

Fmiect：
An．n．
Randy Kosum
We hereby cortify the following asay of 24 core samples sulomitted Nox－－i3－06

Sample Name	$\begin{array}{r} \mathrm{Ag} \\ \text { g/tomne } \end{array}$	$\underset{\%}{C u}$	Ph	$\begin{gathered} \mathrm{Zn} \\ \% \end{gathered}$
6566	17.5	0.013	0.0%	0.04
－5， 7	-16000	1.29	0． 0	0.0
P55	138.4	0.084	0.00	1．1）
35ヶ9	57．3	0.016	d．da	0.01
5570	9.5	0.045	0.03	3.91
257）	E． 0	6．006	0.02	3.02
§ら7？	$9.2 \div 0$	C．125	1． 210	3．15
85.38	$6<6.0$	4.106	0.06	ก． 23
8574	8.0	0．01．	2．1．	a 87
－5\％5	5.3	0.015	3． 06	3.33
¢576	12．	9.007	3.07	$\cdots 35$
25．77	4.	1）．0．2	9．93	0.15
¢5？	411.0	0.070	9． 5 －	O． 26
¢！79	10.5	0.069	O．0 0	2．E2
¢90：	6.5	1）． 027	0.01	0.63
8581	3.7	0.0	9．02	－13
450\％	－185．0	0.221	a． 81	［1］ 4
85931	25.9	0． $0 \div 3$	0.05	1）． Cl
8584	10.4	－COM	0．02	1． 53
6585	7.4	$0.9-4$	0.03	7．${ }^{4}$
8585	264.3	0.068	3.15	2．13
858%	23.3	C．017	0.36	1）． 39
858．	166.8	c．037	ก．12	0． 31
858.8	1． 1	0.003	O．01	2．25
＋WVE 5555	18.2	0.013	0.93	0.14
＋RUE 8575	5.9	c．028	10．02	0．8？
＋ous 85e5	7.4	6.024	7．02	0． 21
	127.5		5.35	4.01
－C2』－3		0.681		
＊BLANK	crib	C． 001	0．0\％	0.01

Assayers Canada 8282 Sherbrooke St ． Vancouver．B．C．
$\checkmark 5 \times 4 R 5$
Tel：（604）327－3436
Fax．（504）327－3423

Assay Certificate

$6 \mathrm{~V}-2804 \mathrm{RA} 3$
Cumpay Mnuntain Boy Minerals Ltd．
Tan－05－07
Ater．Randy kastme
We twe her erifi the following assay of 23 core samples

Sample Name	$\begin{array}{r} \text { Ag } \\ \text { gitomic } \end{array}$	Cu	Pb	$\mathrm{Zn}_{\mathrm{\%} / \mathrm{n}}$
¢5：1	815．0	$\because 205$	6.49	C． 32
8 B	993.0	3.147	0.23	c． 29
0532	173.7	0.056	0.06	0.12
－5\％	29.3	0.021	$0 .-0$	$0 . \therefore 6$
85，${ }^{4}$	8.9	0.02 B	0.02	P． 0.9
682\％	5.5	2.010	1.01	C． 25
6596	665．3	9． 09.7	0.20	1． 2.6
－\％	479.9	2． 105	0． 11.	C． 41
$\therefore 2.8$	41.4	2.713	C． 0.04	0．－8
	15．	2.1709	5． 02	$0 . \mathrm{C} 6$
3600	19.2	－ 0.3	6.07	0－ 5
065	26.9	0.022	C． 11	0.19
द\％	842.0	6.117	C． 3.3	0.15
a，	4.3	C． 005	C． 02	0.01
	16．1	6.000	0． 02	0.03
565	4.5	－．005	（3．02	0.02
10－0	6.3	6.1004	（i． 02	0.03
96－：	55.3	0.014	0.61	（1．08
35^{-2}	14.9	2.008	0.03	0.04
5\％	$2 \leq 29.0$	0.299	0.29	［． 4.1
3674	71.6 .0	（1．143	［． 3.3	6． 34
9675	3670.6	0.750	0.76	$\therefore .90$
○－	11．2	0.010	0.012	$\therefore 02$
$\because \mathrm{GE}$	955．C	11． 205	0.49	63
－50－50	$11 . E$	0.093	$\cdots \mathrm{OE}$	よ． 1 －
サ以下 297	26560	1）． 363	$\begin{array}{r} 2.29 \\ 0.31 \end{array}$	$\begin{aligned} & 0.40 \\ & 1.05 \end{aligned}$
＋－1－3		i）． 60 i		
－Bixar	＜0． 3.	$60 . \mathrm{CO}-$	60.01	＜0．01

Certifed by

Assay Certificate

6V-2244-RA1
Company: Mountain Boy Minerals Ltd.
Pegicet:
Atrin:

BA
Randy Kasum

We hereby certity the following itssay of 9 drill core samples subnitted Oct-13-06

Assay Certificate

Company:	Mountain Boy Minerals Lid.
Rovict:	BA
sul:	Randy Kasum

We hereby rerrift the following assay of S drill core samples submatled Oct-13-06

sample Nime	$\underset{\text { g/tonne }}{\text { Ag }}$	C.4	Pb \%/u	Zn $\%$
mu0e173	3-0	O.C13	6.05	0.18
-00e274	172.5	0.055	0.09	0.2こ
4008-75	2.9	0.003	$0 \cdot \mathrm{C} 2$	C.04
¢0917	3.9	0.006	0.03	0.08
\therefore thanoty	$5 \ni .4$	O.C23	1212	C. 44
- LuE Baoel?	35.5	0.01%	$4.0 \leq$	(.20
- -	130.3			4.01
* $\mathrm{F}^{\prime} \mathrm{C}-1-$		0. $52 \leq$	2.24	
- E-ANK	<u. 1	<0.001	<0.01	8.00

Assay Certificate

Cumpany：Mountain Boy Minerals Ltd．
Project：
BA
Arm： Randy Kasım

We hereby cer tity the following assay of 14 dill core samples submitted Oct－13－06

Sample Name	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{~g} / \mathrm{tonme} \end{array}$	Cu	Pb $\%$	$2 n$ $4 / 8$
2008551	10.8	0.010	9． 22	0.20
A0U3552	8420．0）	0.903	i）． 60	9．76
20085．3	543.0	0.086	9．08	0.20
A00．954	34.6	0．049	0.06	3.108
A008555	103.7	2.024	0.06	0.19
A0085Se	10.4	0.008	0.02	0.15
A008557	ニ215．0	0.202	0.10	0． 28
4008558	154.8	0.039	0.04	1．2．1
4009559	3058.9	（1．283	0.44	0．301
H0testo．	20.9	4．032	6． 10	0．18
A00es61	30.4	6.018	0.06	C． C
2.008562	5.8	0.021	0.02	0.95
A008563	5.4	8.003	0．01	0.04
4005564	3.4	0.003	2.101	C． 08
－CUE AODE 551	11.5	1． 009	0．19	C． 21
＊DU 4009560	21.1	0.330	\％． 16	6.19
＊－6u－lc	128．1			4.33
${ }^{*} \mathrm{~F}$－${ }^{\text {a }}$		－．624	2．22	
${ }^{*}$ BLATTK	＜0． 1	＜．901	0．01	0.01

C A N A D A

Assay Certificate

Qumpsy: Mountain Boy Minerals Ltd.
liojee Nountain Boy Rush
Atr: Randy Kasum
We herebl certity the following assay of 4 drill cone samples subuitted Sep-12-06

\qquad

Assay Certificate
Company: Mountain Boy Minerals Ltd.
Propec: Special \#1
Aun: Randy Kasum

6 -1943-R+2

Sep-20-06

We herelli cerfity the following assay of 22 drili core samples
subnitled Sep-13-(16

Sample Niume	A! g/tonne	$\begin{array}{r} \text { Ag } \\ \text { g/tonne } \end{array}$	$\underset{\mathcal{U}}{\boldsymbol{C} \mathbf{u}}$	Pb	2 L
A0072? 9	0.01	4.2	0.002	0.26	1. 26
A007280	<0.61	3.0	0.001	2.01	0.70
A007281	0.01	3.6	0.0101	$\therefore 3.01$	1). 41
A007282	0.01	-. 8	0.101	80.01	9.23
A007283	0.01	5.0	0. 1003	$\therefore 1.91$	9.2?
AOCTS4	0.01	-0. 5	c. 015	8.01	1). 44
AL0723?	0.05	64.5	0.034	S. -7	1.35
A007288	0.02	43.6	C. 005	Q. 07	0.81
A00720y	0.04	25.7	c. 0.007	0.08	0.51
suL7290	0.02	10.5	0.008	0.10	0.36
300729.	0.01	18.5	0.009	-. 1	0.36
A007292	<0.01	7.9	0.011	0.03	0.19
Au0729\%	0.01	23.2	C. 012	0.06	0. 31
Sun7.350	0.12	30.9	C. 018	S. 12	0.25
2007381	0.01	6.4	0.002	U. 01	11. 114
2007362	80.01	23.4	0.010	3. 01	0.07
410\%363	0.01	57.6	0.037	0.02	i) 10
AJU73E4	0.01	4.2	c. 001	<0.07	9. 114
\& 407365	60.01	76.6	C. 029	3.02	0.10
4007.366	00.0 .1	6.5	0.002	0.01	9.95
A007367	0.01	2.0	0.001	<-.01	0.02
2007368	0.01	2.0	<0.001	0.01	0.01
- DJF 2007279	0.01	4.1	0.091	0.27	-25
- LJF A007290	0.01	10. 5	0.008	0.10	1.35
* LIJe a0n7.366	0.01	7. 5	0.001	<0.01	0.05
* Aus	1.47				
*Ccu-1c		128.2			3.94
* $\mathrm{k}=-1 \mathrm{a}$			0. 6.32	2.28	
* BLANK	8.01	<0.1	60.001	<0.01	$\bigcirc 0.01$

Assayers Canada 8282 Sherbrooke 5 t. vancouver, B.C. V5× 486
Tel: (604) 327-3436
Fax: (604) 327-3423

Assay Certificate

Compuns: Mountain Boy Minerals Ltd.

Broject: Special
Aun: Rancly Kasum
[We herebr cerifi: the following assay of 5 drill cone samples submitted Sèp-15-06

APPENDIX IV

Calculations of Drill Hole Intercept Results

MB-2006-3											
Sample No.	Interval (M)	$g / t A u$	$\mathrm{g} / \mathrm{t} \mathrm{Ag}$	\% Cu	\% Pb	\% Zn	I xght Au	$1 \times \mathrm{g} / \mathrm{t}$ Ag	$1 \times \% \mathrm{Cu}$	$1 \times \% \mathrm{~Pb}$	$1 \times \% \mathrm{Zn}$
							0	0	0	0	0
7272	2.14	0.12	511.7	0.143	0.62	1.38	0.2568	1095.038	0.30602	1.3268	2.9532
7273	4.87	0.01	180.7	0.042	0.13	0.14	0.0487	880.009	0.20454	0.6331	0.6818
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
-							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
	7.01						0.0435806	281.74708	0.0728331	0.2795863	0.5185449

MB-2006-3											
Sample No.	Interval (M)	$\mathrm{g} / \mathrm{t} \mathbf{A u}$	$\mathrm{g} / \mathrm{t} \mathrm{Ag}$	\% Cu	\% Pb	\% Zn	$1 \mathrm{xg} / \mathrm{t}$ Au	$1 \times \mathrm{g} / \mathrm{tag}$	$1 \times \% \mathrm{Cu}$	$1 \times \% \mathrm{~Pb}$	$1 \times \% \mathrm{Zn}$
							0	0	0	0	0
7286	1.83	0.03	53.7	0.03	0.11	0.7	0.0549	98.271	0.0549	0.2013	1.281
7287	1.53	0.05	64.5	0.034	0.17	1.35	0.0765	98.685	0.05202	0.2601	2.0655
7288	1.52	0.02	48.6	0.005	0.07	0.61	0.0304	73.872	0.0076	0.1064	0.9272
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
\cdots							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
	4.88						0.0331557	55.497541	0.0234672	0.1163525	0.8757582

MB-2006-4											
Sample No.	Interval (M)	g/t Au	gtt Ag	\% Cu	\% Pb	\% Zn	$1 \times \mathrm{xg} / \mathrm{tau}$	I \times g/t Ag	$1 \times \% \mathrm{Cu}$	$1 \times \% \mathrm{~Pb}$	$1 \times \% \mathrm{Zn}$
							0	0	0	0	0
7259	0.4	1.16	794	0.243	2.61	2.23	0.464	317.6	0.0972	1.044	0.892
7265	0.46	1.08	17.4	0.118	0.05	2.72	0.4968	8.004	0.05428	0.023	1.2512
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
.							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
	0.86						1.1172093	378.6093	0.1761395	1.2406977	2.492093

MB-2006-4											
Sample No.	Interval (M)	g/t Au	$\mathrm{g} / \mathrm{t} \mathrm{Ag}$	\% Cu	\% Pb	$\% \mathrm{Zn}$	I xg/t Au	$1 \times \mathrm{g} / \mathrm{t} \mathrm{Ag}$	$1 \times \% \mathrm{Cu}$	$1 \times \% \mathrm{~Pb}$	$1 \times \% \mathrm{Zn}$
							0	0	0	0	0
7259	0.4	1.16	794	0.243	2.61	2.23	0.464	317.6	0.0972	1.044	0.892
7265	0.46	1.08	17.4	0.118	0.05	2.72	0.4968	8.004	0.05428	0.023	1.2512
7262	1.43	0.14	23.7	0.035	0.07	0.65	0.2002	33.891	0.05005	0.1001	0.9295
7263	1.37	0.03	71.8	0.008	0.18	1.36	0.0411	98.366	0.01096	0.2466	1.8632
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
.							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
	3.66						0.3284426	125.09863	0.0580574	0.3862568	1.3486066

MB-2006-6											
Sample No.	Interval (M)	g/t Au	g / Ag	\% Cu	\% Pb	\% Zn	1xgt Au	1xg/t Ag	$1 \times \% \mathrm{Cu}$	$1 \times \% \mathrm{~Pb}$	$1 \times \% \mathrm{Zn}$
							0	0	0	0	0
8174	0.72		172.5	0.055	0.09	0.22	0	124.2	0.0396	0.0648	0.1584
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
	0.72						0	172.5	0.055	0.09	0.22

MB-2006-7											
Sample No.	Interval (M)	$\mathrm{g} / \mathrm{t} \mathrm{Au}$	$\mathrm{g} / \mathrm{t} \mathrm{Ag}$	\% Cu	\% Pb	$\% \mathrm{Zn}$	$1 \mathrm{xg} / \mathrm{tau}$	$1 \times \mathrm{g} / \mathrm{tag}$	$1 \times \% \mathrm{Cu}$	$1 \times \% \mathrm{~Pb}$	$1 \times \% \mathrm{Zn}$
							0	0	0	0	0
8552	0.33		8410	0.903	0.6	0.76	0	2775.3	0.29799	0.198	0.2508
8553	2.38		543	0.086	0.08	0.2	0	1292.34	0.20468	0.1904	0.476
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
	2.71						0	1500.9742	0.1854871	0.143321	0.2681919

MB-2006-8											
Sample No.	Interval (M)	$\mathrm{g} / \mathrm{tau}$	$\mathrm{g} / \mathrm{t} \mathrm{Ag}$	\% Cu	\% Pb	\% Zn	$1 \mathrm{xg} / \mathrm{t} \mathrm{Au}$	$1 \times \mathrm{g} / \mathrm{t} \mathrm{Ag}$	$1 \times \% \mathrm{Cu}$	$1 \times \% \mathrm{~Pb}$	$1 \times \% \mathrm{Zn}$
							0	0	0	0	0
8557	2.14		2215	0.202	0.1	0.28	0	4740.1	0.43228	0.214	0.5992
8558	1.37		154.3	0.039	0.04	0.24	0	211.391	0.05343	0.0548	0.3288
8559	0.76		3068	0.283	0.44	0.39	0	2331.68	0.21508	0.3344	0.2964
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
.							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
	4.27						0	1705.6607	0.1641194	0.1412646	0.2867447

MB-2006-10											
Sample No.	Interval (M)	g/t Au	$\mathrm{g} / \mathrm{t} \mathrm{Ag}$	\% Cu	\% Pb	\% Zn	$1 \mathrm{xg} / \mathrm{tau}$	$1 \times \mathrm{g} / \mathrm{t} \mathrm{Ag}$	$1 \times \% \mathrm{Cu}$	$1 \times \% \mathrm{~Pb}$	$1 \times \% \mathrm{Zn}$
							0	0	0	0	0
8567	2.53		10620	1.29	0.08	0.02	0	26868.6	3.2637	0.2024	0.0506
8568	2.65		138.4	0.064	0.02	0.07	0	366.76	0.1696	0.053	0.1855
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
	5.18						0	5257.7915	0.6627992	0.049305	0.0455792

MB-2006-11											
Sample No.	Interval (M)	$\mathrm{g} / \mathrm{tau}$	g / t Ag	\% Cu	\% Pb	$\% \mathrm{Zn}$	$1 \mathrm{xg} / \mathrm{tau}$	$1 \times \mathrm{g} / \mathrm{tag}$	$1 \times \% \mathrm{Cu}$	$1 \times \% \mathrm{~Pb}$	$1 \times \% \mathrm{Zn}$
							0	0	0	0	0
8572	2.13		914	0.125	0.2	0.15	0	1946.82	0.26625	0.426	0.3195
8573	1.53		646	0.106	0.06	0.13	0	988.38	0.16218	0.0918	0.1989
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
.							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
	3.66						0	801.96721	0.1170574	0.1414754	0.1416393

MB-2006-14											
Sample No.	Interval (M)	g/t Au	g/t Ag	\% Cu	\% Pb	\% Zn	$1 \mathrm{xg} / \mathrm{t} \mathrm{Au}$	$1 \times \mathrm{g} / \mathrm{tag}$	$1 \times \% \mathrm{Cu}$	$1 \times \% \mathrm{~Pb}$	$1 \times \% \mathrm{Zn}$
							0	0	0	0	0
8586	1.52		264.3	0.066	0.06	0.43	0	401.736	0.10032	0.0912	0.6536
8587	1.53		23.3	0.017	0.06	0.09	0	35.649	0.02601	0.0918	0.1377
8588	1.98		166.8	0.037	0.12	0.34	0	330.264	0.07326	0.2376	0.6732
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
.							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
	5.03						0	152.61412	0.0396799	0.0836183	0.2911531

MB-2006-15											
Sample No.	Interval (M)	ght Au	$\mathrm{g} / \mathrm{t} \mathrm{Ag}$	\% Cu	\% Pb	\% Zn	$1 \mathrm{xg} / \mathrm{t}$ Au	$1 \times \mathrm{g} / \mathrm{tag}$	$1 \times \% \mathrm{Cu}$	$1 \times \% \mathrm{~Pb}$	$1 \times \% \mathrm{Zn}$
							0	0	0	0	0
8590	2.44		815	0.205	0.49	0.32	0	1988.6	0.5002	1.1956	0.7808
8591	1.53		993	0.147	0.23	0.19	0	1519.29	0.22491	0.3519	0.2907
8592	1.82		173.7	0.056	0.06	0.12	0	316.134	0.10192	0.1092	0.2184
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
:							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
	5.79						0	660.4532	0.1428377	0.2861313	0.2227807

MB-2006-16											
Sample No.	Interval (M)	ght Au	gtt Ag	\% Cu	\% Pb	\% Zn	$1 \mathrm{xg} / \mathrm{tau}$	$1 \times \mathrm{ght} \mathrm{Ag}$	I \times \% Cu	I \times \% Pb	$1 \times \% \mathrm{Zn}$
							0	0	0	0	0
8596	1.83		665	0.091	0.1	0.16	0	1216.95	0.16653	0.183	0.2928
8597	1.83		479	0.105	0.11	0.41	0	876.57	0.19215	0.2013	0.7503
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
	3.66						0	572	0.098	0.105	0.285

MB-2006-19											
Sample No.	Interval (M)	ght Au	gtt Ag	\% Cu	\% Pb	$\% \mathrm{Zn}$	$1 \mathrm{xg} / \mathrm{tau}$	$1 \times \mathrm{g} / \mathrm{t} \mathrm{Ag}$	$1 \times \% \mathrm{Cu}$	$1 \times \% \mathrm{~Pb}$	$1 \times \% \mathrm{Zn}$
							0	0	0	0	0
9973	2.44		2429	0.299	0.29	0.41	0	5924.3902	0.7292683	0.7073171	1
9974	3.05		716	0.143	0.34	0.34	0	2182.9268	0.4359756	1.0365854	1.0365854
9975	3.05		3670	0.75	0.76	0.9	0	11189.024	2.2865854	2.3170732	2.7439024
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
							0	0	0	0	0
	8.5365854						0	2260.4286	0.4043571	0.4757143	0.56

