

REPORT ON
DIAMOND DRILLING
ON THE
IRON LAKE PROPERTY
CLINTON MINING DIVISION, BC.

NTS: 092P096 GPS 645500E, 5757000N (NAD 83) Latitude 51° 57' N, Longitude 120° 54' W (centre)

for
ARGENT MINING CORP.
and
EASTFIELD RESOURCES LTD.

by

J.W.(Bill) Morton P.Geo. And Ginette Carter P.Geo.

March 25, 2007

TABLE OF CONTENTS

SUMMARY:	PAGE 1
PROPERTY DESCRIPTION AND LOCATION:	1
ACCESSIBILITY, CLIMATE LOCAL RESOURCES,	
INFRASTRUCTURE AND PHYSIOGRAPHY:	2
HISTORY:	2
LOCATION MAP	4
CLAIM MAP	5
GEOLOGY:	6
MINERALIZATION:	6
SOIL GEOCHEMISTRY:	7
GEOPHYSICS:	7
DRILL HOLE LOCATION MAP	8
SUMMARY OF 2005 DRILLING:	9
CONCLUSIONS AND DISCUSSION	9
2006 DDRILL HOLES ON 2006 GRID	11
COST STATEMENT	12
STATEMENT OF AUTHOR QUALIFICATIONS	13
ANALOGUES FOR MINERALIZATION AT IRON LAKE:	14
DRILL LOGS (05-01, 05-02, 05-03 & 05-04)	Appendix
GEOCHEMICAL CERTIFICATES	Appendix

SUMMARY:

Eastfield Resources Ltd. holds a 100 % interest in the 7300 hectare Iron Lake property located northeast of the city of 100 Mile House, BC. Argent Mining Corp. has an option agreement with Eastfield that will allow it to earn a 55% interest in the property. Iron Lake covers a large mafic to ultramafic intrusive body in which pyroxenite, olivine pyroxenite, gabbro and sodic pegmatite occur in a complex that is comparable to the Turnagain Ultramafic Complex in northern BC and to a lesser extent to the Lac Des Isles deposit in Ontario. Important criteria present at this project include the large size of the igneous complex, the presence of multiple phases of magma dominated by mafic and ultramafic components and strong palladium and platinum soil anomalies.

In 2004 Argent commissioned a 603-kilometer airborne geophysical survey on the Iron Lake property from which a number of electromagnetic conductors were detected. An initial program of diamond drilling was completed in 2005 in which four holes totaling 487 metres were drilled. Massive sulphide intercepts varying in thickness from 1.2 to 6.1 metres were obtained in two of the holes. The massive sulphide intercepts were largely pyrrhotite with lesser chalcopyrite grading up to 1.10% copper, 0.10% nickel and 0.13% cobalt over individual 1.1 metre sample intervals.

Prior exploration on the property completed in the early 1970's and later in the early 1990's established the presence of significant copper, palladium, platinum and gold anomalies in soil and resulted in the location of roadside rock exposures which assayed up to 0.93 g/t Pt. Mineralized olivine-pyroxenite rubble was subsequently discovered in 2000. Several large angular pieces of this rubble, found in a single location thought to be a glacial moraine, consistently grade approximately 0.60% copper, 0.55 g/t gold and 0.30g/t Pd+Pt. The mode of this mineralization (disseminated bornite and chalcopyrite) allows for a "porphyry copper scale" target.

Early in 2006 19 kilometers of grid was cut in an area outbound from three of the 2005 drill holes, extending to the north and south from them. A UTEM survey was then completed on seventeen kilometres of grid line. The UTEM survey confirmed the results of the airborne survey and provided greater detail and identified several weaker (deeper) conductors. On May 17, 2006 a five-hole diamond drill program totaling 681 metres was initiated.

PROPERTY DESCRIPTION AND LOCATION:

The Iron Lake property is located in the Clinton Mining Division of British Columbia. The claims cover an area of approximately 7300 hectares and are summarized as follows:

#	Name	Expiry	Area	Owner
506294	Norilsk 8	2008/Feb/08	498	Eastfield
506292	Norilsk 7	2008/Feb/08	498	Eastfield
506286	Norilsk 1	2008/Feb/08	498	Eastfield
506302	Norilsk 10	2008/Feb/08	398	Eastfield
506289	Norilsk 6	2008/Feb/08	398	Eastfield
504252	Iron	2009/Jan/19	418	Eastfield
506332	Norilsk 11	2008/Feb/08	498	Eastfield
513527	-	2008/Aug/30	637	Eastfield

513528	-	2008/Aug/30	819	Eastfield
506297	Norilsk 9	2008/Feb/08	498	Eastfield
516280	-	2008/Aug/30	578	Eastfield
374482	Iron Lake 1	2009/Aug/30	500	Eastfield
377521	Norilsk 5	2008/Aug/30	400	Eastfield
517528	Northstrip	2008/Jul/12	239	Eastfield
528293	Susan Lake	2009/Feb/15	498	Eastfield

ACCESSIBILITY, CLIMATE LOCAL RESOURCES, INFRASTRUCTURE AND PYSIOGRAPHY:

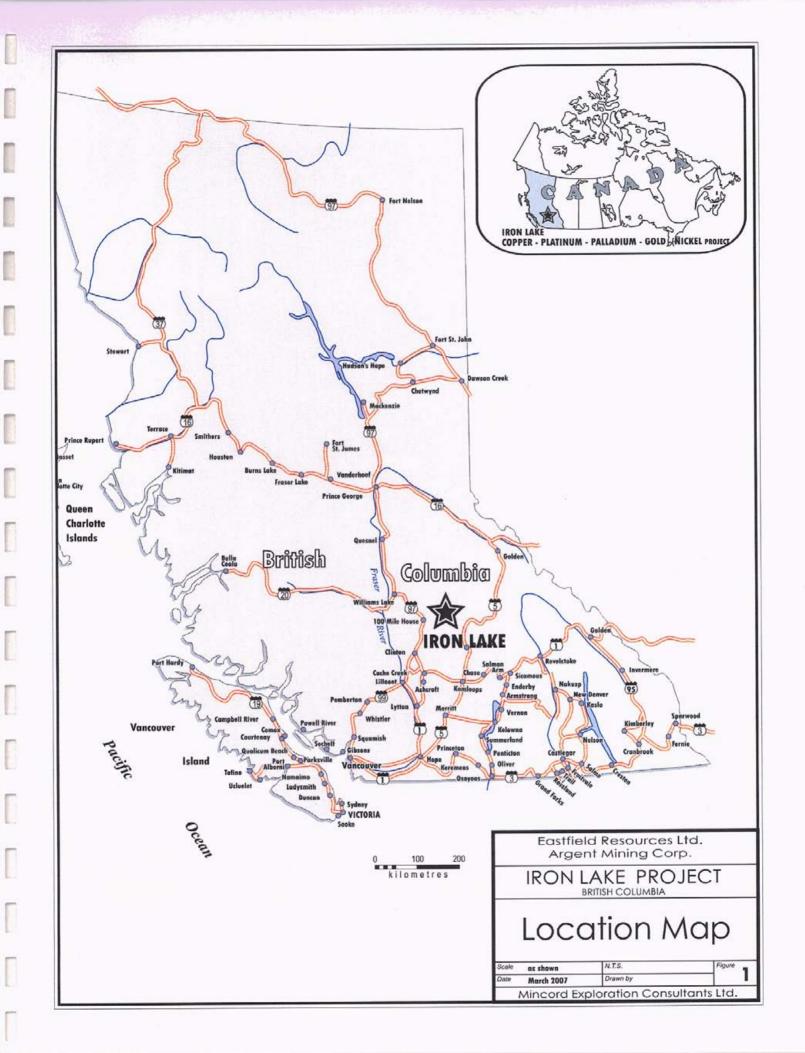
The Iron lake property is located 45 kilometres northeast of the city of 100 Mile House BC. The property is accessed by paved road to the settlement of Eagle Creek and then by all weather logging roads a further 15 kilometres to the centre of the property. The entire claim group was originally covered by mature stands of Douglas fir, spruce and pine. Some of the area covered by the claims was selectively logged in the 1960's and clearcut logged in more recent times. The terrain is undulating with higher elevations present on the eastern side. Swampy areas are common in the lower elevations in the centre and western region of the claims. Elevations on the property range between 1000 metres (3300 feet) and 1500 metres (5030 feet) and numerous areas of subtle topographic relief exist presenting a wide range of future infrastructure development options. Glacial moraine is extensive although the depth to bedrock is generally not excessive. A British Columbia Hydro power line passes within ten kilometers of the property.

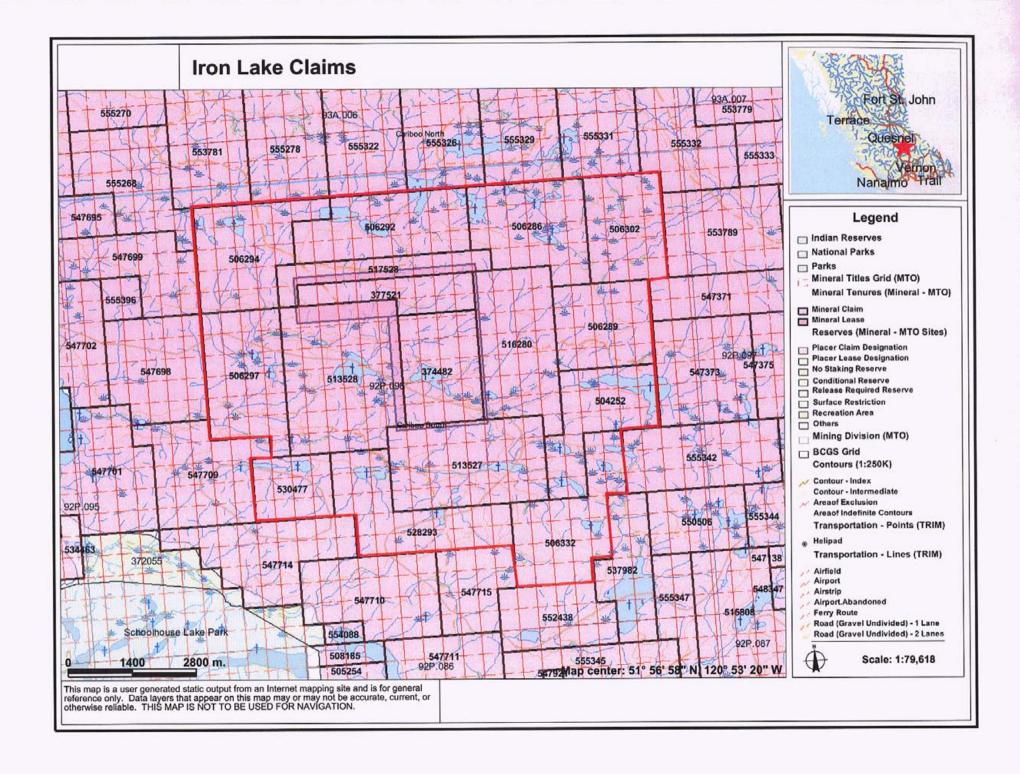
HISTORY:

The first known exploration in the area of the prospect occurred in the early 1970's when Pickands Mather and Company. Pickands Mather were, at his time, conducting exploration for porphyry copper. The area of the Iron Lake Prospect was targeted because of a very strong airborne magnetic anomaly. An initial geochemical survey outlined some modest copper anomalies and a six-hole diamond drill program was initiated. Results of the drill program did not include significant porphyry copper intercepts but indicated that the airborne magnetic anomaly was due to heavy accumulations of magnetite. The magnetite was found to occur in zoned mafic to ultramafic rocks (gabbro to olivine pyroxenite) in concentrations sufficient that the company conducted several sophisticated tests (Davis tube) to evaluate the potential of the property hosting a (magnetite) iron ore deposit. The magnetite content was ultimately determined to be too low and the claims were dropped in 1974.

In the late 1980's Canevex Resources Ltd. (Morton and Garratt) staked the occurrence. The property was first optioned to a private group and later to a dormant public company (Cepeda Minerals Inc.) that completed a program on the claims as part of a restructuring plan. The emphasis of exploration was on gold there was potential to discover porphyry copper with gold (particularly around the periphery of the intrusion). Platinum group metals were for the first time assayed in deference to the

extreme mafic character of the rocks. This work indicated a number of significant palladium and platinum soil anomalies.


Shortly after completing this program Cepeda returned the claims. Canevex along with a private individual continued exploration and completed an induced polarization survey over part of the intrusion in 1989. Despite the detection of significant induced polarization responses in the survey the claims were allowed to expire in 1992. Eastfield Resources Ltd. staked the area of the Iron Lake occurrence in February 2000. In October 2000 Eastfield, while investigating soil palladium anomalies from the 1989 soil survey, discovered mineralized olivine-pyroxenite rubble containing significant disseminated bornite and chalcopyrite (several specimens of this rubble graded, on average, 0.60% copper, 0.55 g/t gold and 0.30g/t Pd+Pt).


In 2001 Eastield optioned a 60% interest in the property to Lysander Minerals Corp who conducted modest surface prospecting programs subsequent to terminating the option in 2002.

In 2003 Eastfield granted an option to Argent Mining Corp to earn a 55% interest in the project. Argent subsequently completed expansions to the 1989 soil grid in 2003 and in 2004 completed 603 line kilometers of helicopter borne geophysical survey including total field magnetics and multifrequency electromagnetics (DigHem). A large and very strong magnetic anomaly was outlined within which were detected a number of (discrete) bedrock conductors.

In 2005 Argent completed four diamond drill holes with two of the holes targeting electromagnetic conductors. A massive sulphide intercept of 1.2 metres was obtained in the hole targeting the first electromagnetic anomaly and an aggregate intercept of 6.1 metres of massive sulphide was obtained (from within a 20-metre interval) in the hole targeting the second electromagnetic anomaly. The massive sulphide intercepts are largely pyrrhotite with lesser chalcopyrite grading up to 1.10% copper, 0.09% nickel and 0.13% cobalt over individual 1.1 metre sample intervals. The fourth hole of the 2005 program targeted an induced polarization response indicated in the 1989 survey completed by Canevex Resources Ltd. This hole, drilled some distance to the east of the other holes, encountered olivine-pyroxenite which is believed to be the important lithology in hosting the platinum group mineralization discovered in rubble in 2000. This hole intersected an interval of disseminated mineralization anomalous in nickel with values to 956 ppm over 2.5 metre sample intervals and ended in anomalous platinum and palladium mineralization with the last 2.5 metre interval of the hole returning 69 ppb platinum and 68 ppb palladium.

In 2006, previous to the drill program that is the subject matter of this report, Argent completed 17 kilometres of ground based UTEM survey. The UTEM survey was completed over a portion of the property to the north and south of the first three 2005 drill holes but did not extend as far east as the fourth hole. The survey was successful in further detailing and extending the lengths of the 2004 airborne anomalies and detecting weaker and deeper conductors missed by the 2004 survey. In May and June, 2006 five holes totaling 681 metres was completed.

GEOLOGY:

Iron Lake covers a large mafic to ultramafic intrusive body composed of pyroxenite, olivine pyroxenite, gabbro and sodic pegmatite. The complex measures at least seven kilometres by five kilometres (the northern and eastern edge of the complex are not exposed and the size of the complex could be substantially larger). The complex is believed to be part of the Jurassic aged Quesnel Terrane. The Quesnel Terrane is well known for its large volume of alkalic intrusive and volcanic rock.

Pegmatitic zones cross cut pyroxenite and hornblendite. The pegmatites consist of varying proportions of megacrystic albite, pyroxene, hornblende and magnetite. Some regions of pegmatite are extensively altered to sericite and carbonate. Lamprophyre dykes (indicated in petrographic descriptions) have been described cross cutting the pyroxenite and pegmatitic rocks.

Magnetite content of much of the intrusion exceeds 10% with some areas exceeding 40%. Cumulate textures have been noted in several regions of the intrusion and apatite occurs in elevated concentrations to 9% by volume.

MINERALIZATION:

Important criteria present at this property include the significant size of the intrusive complex, the presence of multiple phases of magma dominated by mafic and ultramafic components, extensive areas of pegmatite and strong palladium and platinum soil anomalies.

The most widespread form of mineralization known consists of widespread weak pyrite occasionally containing low-grade chalcopyrite as blebs within pyroxene, homblende and albite. A related mode of mineralization consisting of disseminated and replacement-textured bornite (with chalcopyrite) occurs in olivine-pyroxenite float/rubble.

Minor concentrations of nickel bearing pyrrhotite with elevated nickel responses have been obtained from samples obtained from two areas of copper-gold-PGM mineralization in carbonate-sericite altered material located in the bottom of roadside borrow pits (on the road on the east end of the area between Island and Iron lakes). Pyrrhotite veinlets, possibly occurring with trace amounts of pentlandite, occur in these same exposures that have returned anomalous values of palladium and platinum (up to 258 ppb Pd and 933 ppb Pt).

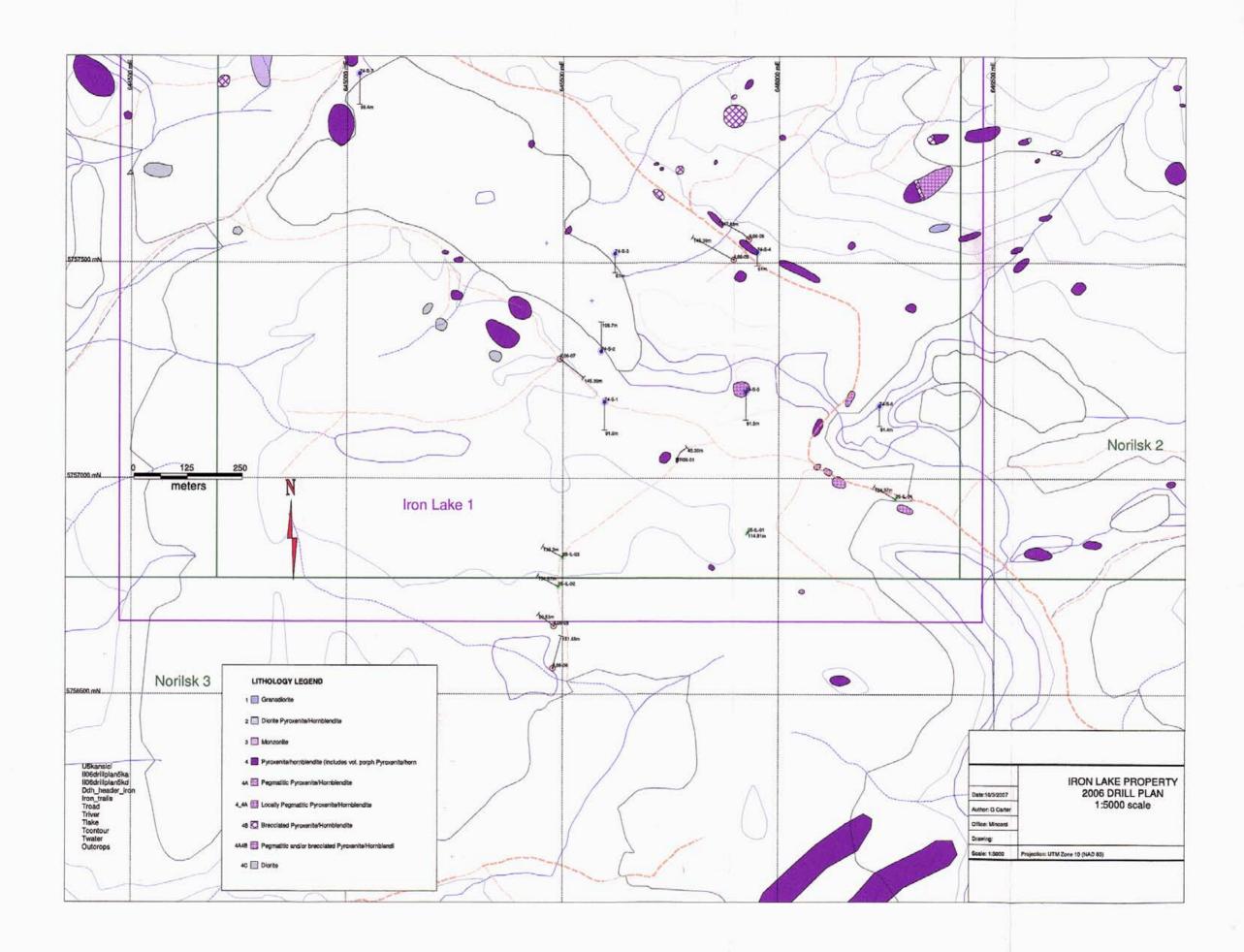
A third style of mineralization was identified in 2005 when massive pyrrhotite with lesser chalcopyrite was intercepted in two drill holes. This mineralization, which is up to 6.1 metres in aggregate thickness, can be described as domains of several centimeters to greater than one metre of pure sulphide interrupted with inclusions of pyroxenite such that the volume of sulphide through the entire interval is 60-70%. The sulphide is dominantly a slightly pink coloured pyrrhotite with lesser chalcopyrite. The most copper rich sample intervals (up to 1.10% copper) contain approximately

0.09% nickel and 0.13% cobalt. Significant platinum group mineral and gold assays were not returned from the 2005 massive sulphide intercepts.

SOIL GEOCHEMISTRY:

A wide spaced soil survey consisting of 706 samples (100 meter spaced lines with 50 meter spaced samples) was completed in 1989 and indicated that a number of platinum group soil anomalies existed. In 2002 an additional 1.6 kilometre of soil grid was established (16 samples). In 2003 an additional 10 line kilometers of soil grid was established (216 samples). The soil anomalies for these elements contain many spikes but hold together at a +20ppb threshold. Anomalous values reach 392 ppb palladium, 260 ppb platinum and 449 ppb gold.

Considerable areas of greater than 100-ppm soil copper anomalies exist and partially overly the Pd, Pt and Au anomalies.


The airborne conductors identified in 2004, and subsequently drill tested into massive sulphides in 2005, occur on the extreme southwestern side of the soil grid and further grid expansion in this quadrant is warranted.

GEOPHYSICS:

Induced polarization surveys were completed on a portion of the northern region of the claims in 1991 while a small area in the southern area of the claims was surveyed in 1972. A large area of the induced polarization survey is highly conductive with chargeability commonly exceeding 20 mV/v. Interpretation of these results is complex due to the large surface extent of the response and the possibility that some of it is correlative with magnetite content. Some discrete anomalous zones can nevertheless be determined. A very strong chargeability and coincident total field magnetic anomaly is outlined in the 1972 survey of the southern region of the property (just west of Beverley Lake). This anomaly, which is open ended to the north, occupies an area 250 meters by 425 meters has peak chargeability values of 50 mV/v and total field magnetic relief of 8,230 gammas. It occurs near a pyritic road ballast quarry where heavy concentrations of pyrite occur in pyroxenite and lesser diorite.

In 2004 Fugro Airborne Surveys Corp. completed 603 line kilometers of DIGHEM multicoil, multifrequency electromagnetic survey supplemented with a high sensitivity magnetometer survey. The electromagnetic survey identified 405 conductors of which 15 were interpreted to be derived from discrete bedrock sources and one from a conductive bedrock unit with the remaining 389 conductors interpreted to be conductive cover. The magnetic survey detected a large broad and highly magnetic feature covering an area of more than 5 km². The magnetic survey had a dynamic range of 9500 nT across the survey area.

In 2006 Argent Mining Corp. completed 17 kilometers of UTEM surface electromagnetic survey over an the area flanking, and extending to the north and south of, the first three diamond drill holes drilled in 2005. This survey confirmed the features in this area indicated in the 2004 airborne survey and detected additional weaker features not detected by that survey. Hole 05-IL-04, which

intersected olivine-pyroxenite containing weak nickel mineralization (to 956 ppm Ni) was not included within the area of the UTEM survey.

SUMMARY OF 2006 DRILLING:

Number	Begin	Finish	Depth (m)	Till (m)	Azimuth	Dip
IL-06-05	May 17	May 20	90.5	1.5	309°	-60°
IL-06-06	May 21	May 24	151.5	9.1	15°	-60°
IL-06-07	May 25	May 27	145.4	3.1	129°	-60°
IL-06-08	May 27	May 28	147.8	1.5	313°	-62°
IL-06-09	May 29	June 1	145.4	7.6	298°	-50°

Drill core is permanently stored in square piles near hole 2005-01. Logs for the drilling occur in the appendix (logs for several of the holes are brief as a consequence of a theft of a computer and data from the Eastfield office).

A summary of the most significant results for the 2006 drilling is as follows:

Hole #	
IL-06-05	Pyroxenite/hornblendite with a 2.3m massive sulphide intercept from
	73.4-75.7m, pyrrhotite > pyrite > chalcopyrite, hole abandoned because
	the drill stem seized at 91.0 metres (possibly still in a zone of interest),
	best intercept 0.54% Cu, 170 ppm Ni, 366 ppm Co from 73.4-75.7m
IL-06-06	Pyroxenite/homblenite with 2.2 m massive and semi-massive sulphide
	intercept from 136.2-138.4m, pyrrhotite > pyrite > chalcopyrite, best
	intercept 0.13% Cu, 139 ppm Ni, 267 ppm Co from 136.2-138.4m, this
	hole was accidentally drilled at right angles to the planned orientation and
}	never the less resulted in an unexpected intercept of massive sulphide
	mineralization suggesting that additional parallel zones may exist on the
	hanging wall side of the conductive target.
IL-06-07	Minor chalcopyrite with pyrite in pyroxenite host, elevated platinum
	palladium geochemical values.
IL-06-08	Carbonate veined and brecciated pyroxenite.
IL-06-09	Olivine? pyroxenite with elevated nickel content (200-400 ppm Ni from
	20.4m to 123.4 m). 9.7 metre intercept of 0.18% Cu from 129.6 m to
	139.3 m.

CONCLUSSIONS AND DISCUSSION

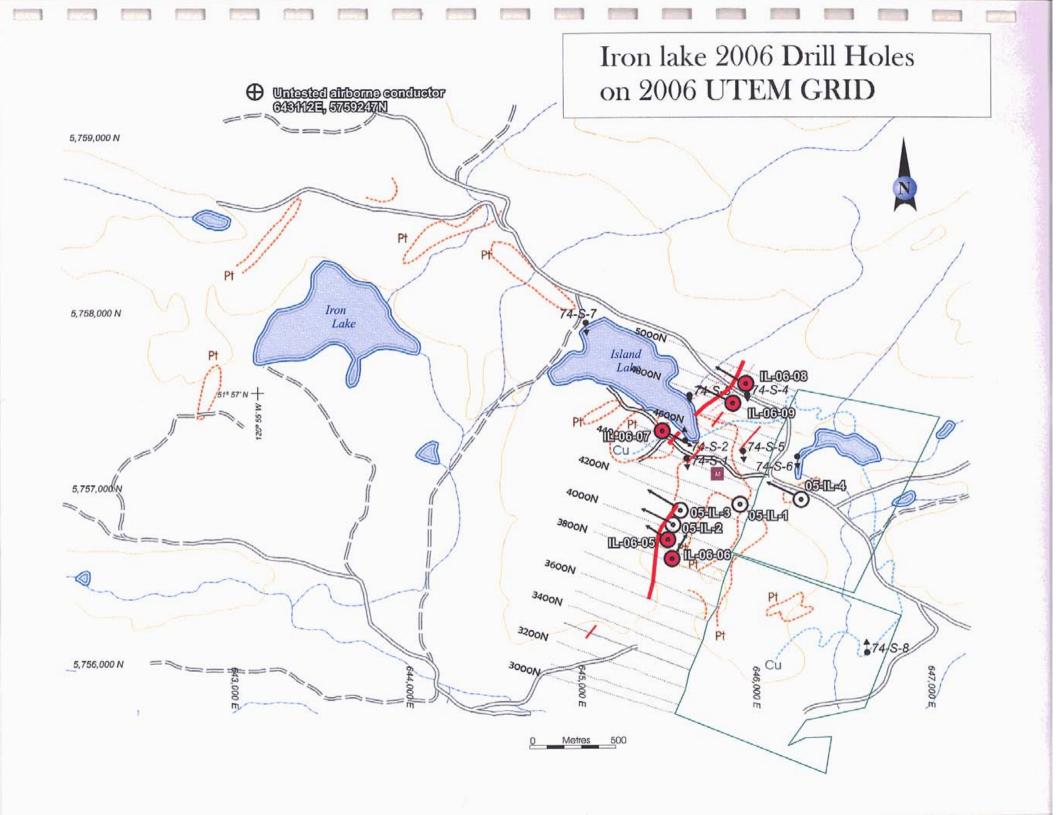
The Iron Lake property has potential for copper and perhaps nickel massive sulphides (cobalt rich) and also for weakly sulphide mineralized ultramafic rock containing economic concentrations of copper, gold, palladium and platinum (and perhaps nickel).

The observation that copper sulphide occurs at Iron Lake (at least in part) as spherical "immiscible" blebs suggests that copper sulphide will have accumulated through a variety of processes including gravity.

The probability that the Iron Lake magma is largely sulfur deficient makes it likely that higher concentrations of sulphide will occur at places where the magma has either become contaminated during emplacement or mixed as new magma entered the magma chamber. This expectation suggests that searching for conductors (either by ground or airborne methods) may be effective.

Clearly one of the exploration objectives of the iron lake project is to explore fore nickel, either as a stand alone commodity such as occurs in northern BC at the Turnagain Nickel Project (Hard Creek Nickel Corporation) or as a pathfinder to copper-(nickel)-platinum-palladium-gold mineralization such as has been found as mineralized rubble. Although nickel minerals have only been observed fleetingly at Iron Lake some discussion is warranted. Nickel has been detected in the following locations on the property:

Massive sulphide source.


1.) Massive surphide mineralization intersected in hole 05-IL-03 returned two samples, 1.5 metres and 1.6 metres in length respectively which returned 775 and 825 ppm Ni. This mineralization is pyrrhotite dominant and an increase to pentlandite content would be necessary to achieve acceptable nickel grades (this could theoretically) happen either laterally or vertically.

Olivine pyroxenite sources in drill core

- 2.) four consecutive samples of olivine pyroxenite in hole 05-IL-04 returned 579, 634, 956 and 415 ppm Ni respectively from within a 17.6 metre interval. Sulphide content in this interval is estimated at less that 0.5% indicating that a greater concentration of this sulphide would be expected to have a much higher nickel grade (20% sulphide could theoretically equate to 40 times 956 ppm or approximately 4% Ni. The assumption being that the nickel is sourced from the observed sulphides and not the silicates.)
- 3.) sepentinized ultramafic units (probably olivine-pyroxenite) containing a trace of visible sulphide occurs in hole 74-S-06. Core from this hole, selectively analyzed in 1988 returned three consecutive samples returning 507, 448 and 311 ppm Ni.
- 4.) altered course grained hornblendite occurring in hole 74-S-07. Core from this hole, selectively analyzed in 1988 returned an analysis of 353 ppm Ni.
- 5.) Pyroxenite possibly with cumulate textures and anomalous nickel values was intersected over a large interval in 2006 in hole IL-06-09 (values of 200 to 400 ppm Ni were routinely returned from a plus 100 metre interval in this hole.

Mineralized (Cu, Pt, Pd, Au) Olivine pyroxenite float/rubble

6.) Mineralized olivine pyroxenite rubble collected in the vicinity of grid location L 52E, 50+50N routinely contains 300 to 550 ppm Ni (example sample 02-05-10 collected in 2002 - Cu 1.16%, Au 1,011 ppb, Pd 348 ppb, Pt 127 ppb and Ni 565 ppb. Samples of this float consistently return an analysis of 6 to 8% magnesium probably reflecting the olivine and possibly lending to a geochemical exploration tool which has yet to be employed.

COST STATEMENT:

Date	Item	Details	Cost
March 31/06	Professional Fees	J.W. (Bill) Morton P.Geo, 1 days @ \$550	\$550
March 31/076	Professional Fees	Ginette Carter, P. Geo, 18 days @ \$550	\$9,900
Apr 1-30, 06	Professional Fees	J.W. (Bill) Morton P.Geo, 1 days @ \$600	\$600
Apr 1-30, 06	Professional Fees	Ginette Carter, P. Geo, 11/2 days @ \$550	\$825
May 1-31,06	Professional Fees	J.W. (Bill) Morton P.Geo, 2 days @ \$600	\$1,200
May 1-31,06	Professional Fees	Ginette Carter, P. Geo, 5.7 days @ \$550	\$3,135
May 1-31,06	Professional Fees	Ginette Carter, P. Geo, 17 days @ \$600	\$10,200
May 1-31,06	Professional Fees	G.Charbonneau, Field Tech, 18 days @ \$320	\$5,760
June 1-15, 06	Professional Fees	J.W. (Bill) Morton P.Geo, 1 days @ \$600	\$600
June 1-5, 06	Professional Fees	Ginette Carter, P. Geo, 5 days @ \$600	\$3,000
Jun 12-13, 06	Professional Fees	Ginette Carter, P. Geo, 2 days @ \$550	\$1,100
July 1-2, 06	Professional Fees	Ginette Carter, P. Geo, 11/2 days @ \$550	\$825
	Sat phone rental (Mincord)	1 @ \$10 day for 18 days	\$180
	Radios rental (Mincord)	2 @ \$5 day for 18 days	\$180
	OI Stove	1 @ \$10 day for 18 days	\$180
	Truck rental Morton	2 days @ \$80 day	\$160
	Truck rental (Val-Geo-Tech)	18 days @ \$80 day + PST	\$1,5 41
	Truck Rental Hertz	23 days @ \$105.53	\$2,427
	ATV rental (Val-Geo-Tech)	18 days @ \$70 + PST	\$1,348
	Travel expenses		\$1,722
	Field equipment consumed		\$2,992
	Freight		\$1,979
	Communications		\$47
	Food		\$1,289
	Analytical costs	316 samples @ \$27.37	\$8,648
	Accomodation		\$7,535
	Sub contractor- Roads	47 hrs excavator @ \$120 hr+ Cat + lowbed	\$11,150
	Drill contractor costs	681 metres @ @\$144	\$97,784
	GST Charged		\$2,410
Feb 5-6, 07	Professional Fees	J.W. (Bill) Morton P.Geo, 2 days @ \$600	\$1,200
	Total		\$180,467

AUTHOR QUALIFICATIONS:

Author Qualifications JW. (Bill) Morton P.Geo

- I, J.W. Morton am a graduate of Carleton University Ottawa with a B.Sc. (1972) in Geology and a graduate of the University of British Columbia with a M. Sc. (1976) in Graduate Studies.
- I, J.W Morton have been a member of the Association of Professional Engineers and Geoscientists of the Province of BC (P.Geo.) since 1991.
- I, J.W. Morton have practiced my profession since graduation throughout Western Canada, the Western USA and Mexico.
- I, J.W Morton supervised the work outlined in this report.

Signed this 25 day of March, 2007

Author Qualifications Ginette Carter P.Geo

- I, Ginette Carter, P.Geo. do hereby certify that:
- 1. I am currently employed as a Consulting Geologist:
- 2. I graduated with a B.Sc. in Geology from the University of Quebec at Montreal in 1981 and a M.Sc. from the University of Calgary, in 1984.
- 3. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia since 1991, and a Member of the Northwest Territories Association of Professional Geologists since 1985.
- 4. I have worked as a geologist for at least 20 years since graduation from university.
- 5. I am a co-author of the technical report titled Report on Diamond Drilling on the Iron Lake Property, Clinton Mining Division, BC, dated March 25, 2007.
- 6. I spent most of May and some of June 2006 on the Iron Lake property. I have personally logged the core, marked the sample intervals, supervised all sampling of the core and conducted a review of the quality control of the analytical results which I have concluded to be satisfactory.

ANALOGUES FOR MINERALIZATION AT IRON LAKE

Analogue	Commonalties with Analogue	Differences with Analogue
Tournagain Nickel (Hard Creek) BC	Both Mesozoic age, both in BC. Both clinopyroxene dominant Both somewhat "Alaskan type" i.e zoned	Nickel dominant Presence of more olivine dominant phases i.e dunite
Lac des Isles Ontario	mixed mafic and ultramafic magmas (possibly zoned) sympathetic with copper pegmatitic in part	orthopyroxene vs. clinopyroxene dominant Archean vs. Jurassic
Norilsk Russia	mixed mafic and ultramafic magmas (differentiated i.e. zoned) associated with Triassic volcanism clinopyroxene dominant picrites (olivine-pyroxene-fspar) sympathetic with copper pegmatitic in part	Nickel dominant local evaporitic sediments
Wellgreen Yukon	mixed mafic and ultramafic magmas	layered vs. zoned
TUROII	Triassic-Jurassic clinopyroxene dominant	contains more olivine dominant differentiates (dunite) Nickel dominant
Aquablanca Spain	mineralization in pyroxenite bodies on edge of edge of predominantly diorite stock (i.e.) zoned. Breccia common	Carboniferous vs Triassic
Salt Chuck Alaska	mixed mafic and ultramafic magmas (possibly zoned) sympathetic with copper pegmatitic in part clinopyroxene dominant Jurassic	does not contain olivine bearing differentiates

······				1			, .				_			
				<u> </u>	<u> </u>				_			₩		
			Eastfield Resources Ltd DRILL HOLE LOG	HOLE: ILO				.		\sqcup		₩		
			PROPERTY: Iron Lake	Date Begu				<u> </u>	<u> </u>	\vdash		╀┈┼	_	
			ZONE:	Date Finisl		y zoth	2006	ļ <u> </u>	<u> </u>			\vdash		
			UTM: NAD 83	Logged by	': -				<u> </u>	Ш		₩		
				Depth: 90.			1		ļ	Ш		\vdash		
				Core size:								${igspace}$		
			ELEVATION:	Overburde		ţ			<u> </u>	Ш		₩		
			AZIMUTH: 309°	Units in Me	etres		,			نط		\sqcup		
			DIP: -60°							<u>. </u>		\sqcup		
						ļ		<u> </u>				<u> </u>		
ĺ							Analyse	es Cu, Ni, (Co (p	pm),	Au, I	²d, Pt	(pp	၁)
From	То	Length	DESCRIPTION	SAMPLE#	From	Τo	Length	Recov %	Cu	Ni	c	Au [Pt	Pd
0.00	2.13	2.13	Casing											
2.10	5.18	3.08	Dk grey f m grained mafic intrusive - Mottled appearance with ser, cc, alt Weak chlor in		T									
- 1	i		m grain pyx.sl reddish grey. Tiny locally disseminated coppery brown sulphides +/-						1					
			rounded 2mm blebs +/- 0.5% possibly pyrrhotite? Unit very magnetic, Tr cpy at 5.00m.			ì								
					ļ	ļ	<u> </u>		ļ	'		ightarrow	!	
5.18	9.34	4.16	Talcose ser altered dull green pegmatitic/megacrystic hyperstene ? Amphibolite. Str	1			1					1		i
			Ser/Chi alt. Tripy. Fine mesh of co hairline seams likely as co flodding in micro fractures.	1				i				1 1		i
			Trisl iridescent sulph - possibly bornite or pentandite assoc with Mtite blotchy alt at 6.30m			ŀ		1		}		1 1		i
9.34	14.21	4 97	At 6.80 1% py. Grey dk m to coarse mafic intrusive with local phenocryst. Likely mixed pyrox - with lg			 	+	 		 -		+	\dashv	
9.34	14.21	4.07	army green hyperstene phenocrysts - pegm (almost color of dunite). Weakly-mod ser											i
]			and cc alt. From a distance the fresh surface is a st reddish hue of brownish grey											i
			incipient hematite? Quite unique. Here and there more greenish from chl alteration.											i
			Almost conchoidal fractures from splitter. Not silicified but hard to break. Moderate to				ļ		ļ					i
I			strong sporadic blotchy magnetite alt all way to 29.50, 14.00 trace iridescent sulph - ox								Ì		i	i
			py or bormite.						<u> </u>	L		Ш		
14.21	16.73	2.52	More pegmatitic interlocking large dk grn hysperstene (?) crystals and stronger ser and		}	1							- !	i
			chlorite alteration. Irregular blotchy mtite here and there 14.50 and 15.00 tr copperish		1	1		İ		}			. !	1
			sulph - pentlandite or local po?.	ļ	 	_	<u> </u>	<u> </u>	_	-		₩		
16.73	18.76	2.03	Back at unit-like 9.3 to 14.2. Few cm thick monzo dyke surounded with m mtitic blotchy	ļ	1		1	ļ						1
40.00	40.54	0.71	alt.	 	<u> </u>			├	 	├	ļ	╂─┤		
18.80	19.51	0.71	Strong ser/chl altered pegmatitic pyrox/amphib. Talcose slippery joints. Strong phylic alt.					1						1
19.51	22.00	2 40	Grey dk m to coarse mafic intrusive with local phenocryst. Likely mixed pyrox-amphibole		 	 	·	 	 	\vdash		+		
13.51	22.00	2.40	- Si reddishbrown hue. Sporadic blotchy w-m mtitc alt.						1				, ,	1
22.00	25.00	3.00	Grey dk m to greenish m to coarse mafic intrusive with local - hyperstene? Phenocrysts.	1	\vdash							\Box		
	_5.50	2,30	Likely mixed pyrox - less reddish brown hue. W ser and chl start again. 22.00-22.80										,	1
			Trace diss and fracture coating po and or py.24.50 to 25.30 fract coating with po and/or			1					}		. '	1
		<u>_</u>	py as a flat mesh texture			<u> </u>								
25.00	29.55	4.55	Still variation between megacryst and pegmatitic pyx/hnbl. Intense ser chl in basal 60]									
ļ	;		cm.25.50-26.80 tripy and po. 28.00 Py-po vnlet, 29.26 Very mottled (narrow monzo	1										1
			intrusive?) black bladed phenocryst (black amphibole?) surrounded with cloudy white				1			ļ		1		ĺ
			matrix. Non carbonate, non qtz = some plag?	1	1	1	1	i		1				<u> </u>

From	То	Length	DESCRIPTION	SAMPLE#	From	То	Length	Recov %	Cu	Ni	Co	Au	Pt	Pd
29.55	35.66		Still variation between megacryst and pegmatitic pyx/hnbl all coarse hnbl/pyx crystal supported. Intense ser/chl in narrow bands Getting 15-20 cm bands of leuco felsic intrusives (syenite? Dyklets) from 31.00 downwards - minimal cc alt. alternating more or less chl and ser associated around the felsic intrusive dykes. 29.26 tr po. 29.55 Blotchy Mtitte+/- chl. At 32 more blotchy mtite. Fract py at 35.38 then diss within mottled monzo Dyklet.											
35.66	39.76	4.10	Still variation between megacryst and pegmatitic pyx/hnbl. Intense ser/chl alt all through; 35.11 -36.00 Mottled white on dk grey metasom? Not really a breccia or a vein - more like a localized replacemennt. Same felsic (plag? Not qtz and not cc.) unit in that smaller interval. 35.60 to 38.00 few mica - phlogopite and some greenish blue phylo - leucoxene?). From 38.71 to 41 fracture py and diss py 1 % locally 2%										į	
39.76	43.72	3.96	Fine grained intrusive greyish it brown intrusive diorite dike - fine plag porphyritic. It seems to be spatially directly related to the "banded mottled replacement veining texture" seen below. 2-3% disseminated and fracture pyrite											
43.72	45.72	2.00	A very mottled mafic hosted pseudo breccia. With Ig dk green bladed amphibole (?) in a matrix of felds (Plag?). Not the crackled hydrothermal kind. More like a replacement texture - metasomatised texture? Fine Chlor biotite mitte altered blotchy zone. 15-20 % felsic components. Likely felds (Not cc or dol or qtz). Some metasomatized monzo??? Or K alt. 1 to 2% cpy as fracture coating or diss blotches often associated with fine mesh of chl/biot mitte alt. Cannot find proper code for it. It is an alteration+ metasom unit								:			
45.72	46.60		Back in main host of interlocking megacryst hyspersthene-pyrox. Soapy talcose fracture small interval before starting unit				ļ							
46.60	52.00	5.40	A series of main host of interlocking megacryst hyperstene-pyrox and narrow zones of intuding (?) metasomatized monzo (?). Soapy talcose - sericite - fracture small interval before starting unit. Fracture po @ 52.4 — Main unit is strongly choritized with fine biotite alt. Very talcose fractures.											
52.00	61.00	9.00	Back in main host of interlocking megacryst hyperstene-pyrox. Quite mittic, A 3cm wide vein of mitte at 59,00 30 deg TCA. Relatively weak chl ait. Trace to 1% py as diss and fracture coating,											
61.00	72.40	11.40	Same unit of interlocking dk army green megacrystic hyperstene- pegmatite hnbl/pyrox. This unit has multiple sheets of intense chlorit/biotite (+/_) sericite alteration cutting through it possibly linked to the few metasomatized monzo (?) spacially associated with it - (62.70-63.00; 66.70-70.10) every meter or so the rock is relatively fresh or strongl; y altered. Scattered diss cpy within the mottled chlor/biot altered monzo (?) 66.80-67 narrow felsic metasom inrusive. Mottled as the others 30-40 % white felds (?) with v f gr motled mtite assoc.											
72.40	73.45	1.05	Just before getting into Semi- massive sulphides. V f gr black unit - hardly magnetic - almost like a fine diabase or basalt. Show v f granular chloritic biotite alt. Hardly magnetic. Contact with overlying unit about 35 deg TCA. Only 5-10 % pyr - with hair line fractures filled with cryst py. Mafic dyke is best guess for the host rock from choice given above.											
73.45	75.66	2.21	Spectacular massive sulphides Pinkish pyrrhotite> pyrite>> weak later chalcopyrite in fractured SM. V f grained magnetite replaced much of host. Host rock appears to be interlocking pyroxenite.											
75.70	77.10	1.40												

From	To	Length	DESCRIPTION	SAMPLE#	From	То	Length	Recov %	Cu	Ni	Co	Au	Pt	Pd
77.10	77.72	0.62	Same peg mafic host with blebs and patches of sulphide. 20% sulph 15% Po>>4%py>>0.5%cpy. No room for po in box so included combined po+ py = 19%				_							
77.70	7 9 .55	1.85	Intensely ch/biot alt peg mafic intrusive. Many homfels like texture f gr laminates and mittic. Narrow felsic enriched mottled metasomatitic Monzo (?) Very little cc cementing felds: 0-40% felds. About 1% hairline vnlet of py. Rare cpy small clusters. Significantly magnetite poor.			-								
79.55	84.50	4.95	As above, lesser sulphides - all as hairline veinlets. All py +/-1%. Very regular felsic metasomatite or pseudo breccia through out. @ 80.30 a 30 cm (70 deg to core axis) diabase dyke seems immediately adjacent to increased mottled felsic/psudo breccia content. Significantly magnetite poor as well.											
84.50	90.50	6.00	Extremely strong cht/biotite alt of likely pegrnatitic pyrox/amph unit weakly magnetic except for narrow magnetite veins at 85.64- 85.74, 87.10-87.60. Hairline weak py veinlets exept for local cluster of coarse py 10% at 86.50-86.70. Narrow diabase f gr mafic dike at 87.85-87.95 with intense magnetitic alteration for 50 cm above dike.											
90.50	91.00	0.50	Hole stuck beneath casing - lost 110 feet of rod. Hole abandonned.											
				365001	2.13	5.18	3.05		10		22			1 '
				365002	5.18	· · · · · · · · · · · · · · · · · · ·	2.40		17					
				365003			1.76		12		27			<u> </u>
				365004	9.34			<u> </u>	8	I				1
				365005	11.28		2.93	ļ	12	L	1		13 11	
				365006		16.73		ļ	26 16		12			1
				365007 365009	16.73 19.51	19.51 21.00	2.78 1.49		10		,			
				365008					6		40			-
\vdash				365010			2.84		14	_		1		
				365011	26.52			 	21					
				365012			1.20	ļ	14			_		
 			<u></u>	365013			2.99	-	11					1
				365014			2.84		15		19		34	6
				365015	1		2.79		28		20	2	16	8
				365016			1.57		10			_	26	4
		·		365017	39.76		2.37		34	8	9	2	-3	4
				365018	42.13	43.72	1.59		15	55	21	3	39	-2
	•••			365019	43.72	45.72	2.00		258	10	24	5	-3	4
				365020	45.72	46.60	0.87		40	41	16	5	13	10
i - i				365021	46.60		1.25		59	23	13	4	12	2 2
				365022			2.60	1	27	21	10	2	6	3
				365023					16		1			1
				365024			 		43	1	28	1		
				365025			<u> </u>	<u>. </u>	14					
		ļ		365026			!	}	15		11			
				365030			!		\$	1	1	1	L	1
		<u> </u>		365029					11			1		.1
		ļ		365027	67.05				21				1	
$\vdash \vdash$		ļ		365028				ļ	16				7	19
1 1		1	<u></u>	365031	71.93	73.45	1.51	l	99	21	24	2	<u> </u>	<u> 8</u>

From	To	Length	DESCRIPTION	SAMPLE#	From	Το	Length	Recov %	Cu	Ni .	Co	Au	Pt	Pd
				365032	73.45	75.66	2.21		5428	170	366	11	-3	10
				365033	75.66	77,10	1.43		226	15	18	49	10	5
				365034	77.10	77.72	0.62		1110	101	99	11	12	8
				365035	77.72	79.55	1.83		158	10	20	4	5	11
				365036	79.55	82.60	3.04		119	29	19	5	25	29
				365037	82.60	84.95	2.34		146	21	24	2	6	47
				365038	84.95	87.85	2.90		148	45	23	4	23	8
	· ·			365039	87.85	90.50	2.65		48	25	13	-2	18	5

		· · · · · ·		1			ı	Ι						
			Eastfield Resources Ltd DRILL HOLE LOG	HOLE: ILO	6.06		ļ		 		<u></u>		↓ —	└
	· · · · · ·		PROPERTY: Iron Lake	Date Begu		24-4-20				\vdash	<u> </u>		├	
·····			ZONE:						├	\vdash			—	<u> </u>
		ł	UTM: NAD 83	Date Finisi		y 24th	2006		<u> </u>	 			—	├ ─
+			EASTING:	Logged by					 		· <u>-</u>		 	<u> </u>
				Depth: 151			· ·		<u> </u>	-			⊢	ــــ
		-	NORTHING:	Core size:			:		<u> </u>				↓	Щ.
		ļ	ELEVATION:	Overburde			i i		<u> </u>				—	Ь.
		 	AZIMUTH: 15°	Units in Me	etres					ļ			—	<u> </u>
		<u> </u>	DIP: -60°	,					<u> </u>	ļ			↓	—
		 					ļ						⊥	<u> </u>
_		 						s Cu, Ni,						
From	То	Length	DESCRIPTION	SAMPLE#	From	То	Length	Recov %	Cu	Ni	Co	Au	Pt	Pd
		1	Drilled directly south of and almost at 90 degrees to 1L06-05, IL06-06. This hole also	i	<u> </u>				Ī.					
			intersected a massive sulphide zone at depth. Associated with the massive sulphides were				ļ							
			also minor fracture coatings of chalcopyrite (0.11-0.12% copper) between 136.25-				ļ							
			138.38m).	ļ									ļ	
				365040	24.00	25.52	1.52		22	47	24	-2	18	6
				365042					6		10	3		
				365041	26.52	28.20	1.68		9	43	15	16	_	
				365043	28.20	29.88	1.67		10	24	12	2	_	
]		365044	29.88	32.61	2.73		10		26	-2		
-				365045					5	-	14	8	-	
				365046	35.66	38.71	3.04		4	61	22	3	-	
				365047	38.71	41.76			6	32	12	3	-	
				365048	41.76	43.59			7		12	4	,	
				365049					10		16	-2	_	
ĺ				365050		49.82			4		10	3	_	
	_	1		365451	49.82	51.65			6		13	2	_	
		1		365452	51.65				3		8	3		
				365453		55.65			19		14	2		_
				365454	55.65	58.52			12		19	13		
				365455		60.05			14	_	24	3		
				365456	•	61.57			10			2		
		 		365457	61.57	64.22			37		24	4	_	
				365458	• • • • • • • • • • • • • • • • • • • •	66.75			16		26	3		
		†		365459		68.70			84	-	18	-2		
		 		365460		70.15			32		12	2		
				365461	70.15	70.18			7	52		-2		_
				365462		74.37	1.99		9	_	13	-2		_
		 		365463	\vdash	76.00			6	-		-2		
		 			76.00			<u> </u>					_	_
		 		365465						38		-2 3		
		 							10	_	-			_
		1		365466				<u> </u>	8	_		2	-	
·· ·		 		365467			_	<u> </u>	109			4	_	
		 		365468					67	-		4	_	
		 		365469		85.60	_		33		21	5		
i		I	<u> </u>	365470	85.60	87.48	1.88	l	10	31	13	2	11	4

1L08-06Log.x/s 1 of 2

From	To	Length	DESCRIPTION	SAMPLE#	From	To	Length	Recov %	Cu	Ni (Co	Αu	Pt	Pd
				365471	87.48		3.01		50	17	15	6	5	6
				365472	90.50	91.85	1.34		19	19	12	-2	6	2
				365473	91.85	94.25	2.4		10	31	11	3	17	3
				365474	94.25	95.22	0.97		7	46	16	5	23	4
<u> </u>				365475	95.22	97.00	1.77		14	19	8	6	7	-2
				365476	97.00	99.66	2.66		10	51	17	2	15	4
				365477	99.66	102.71	3.04		9	45	16	8	20	4
				365478	102.71	103.95	1.23		36	46	17	6	18	2
				365479	103.95	106.12	2.17		23	78	28	5	26	5
				365480	106.12	108.81	2.68		15	50	17	5	19	3
				365481	108.81	111.86	3.05		10	38	14	4	18	7
L				365482	111.86	112,75	0.88		16	28	9	5	19	-2
				365483	112.75	114.53	1.77		18	59	22	7	12	-2
				365484	114.53	117.50	2.97		22	41	19	4	14	-2
				365485	117.50	118.25	0.75		11	5	10	4	-3	-2
				365486	118.25	121.30	3.05		14	57	21	2	8	-2
		L		365487	121.30	124.05	2.75		12	75	24	-2	31	-2
				365488	124.05	125.15	1.09		15	41	13	4	46	2
	_			365489	125.15	128.66	3.51		25	21	12	34	12	6
				365490	128.66	131.92	3.25		[19]	35	14	3	29	5
				365491	131,92	133.48	1.55		39	39	18	3	22	-2
				365492	133.48	136.25	2.77		74	55	21	3	30	-2
		L		365493	136.25	137.13	0.88		1253	219	392	4	16	13
				365494	137.13	138.38	1.25		1441	59	143	6	16	2
				365495	138.38	139.29	0.9		20	34	14	2	27	-2
L				365496	139.29	141.72	2.43		47	45	16	3	35	4
				365497	141.72	143.15	1.42		9	50	19	4	31	3
		}		365498	143.15	144.78	1.63		7	26	9	3	17	2
]		365499	144.78	147.35	2.57		12	33	12	3	31	-2
				365500	147.35	149.85	2.5		15	22	9	5	20	2
				365101	149.85	151.49	1.63		10	34	11	5	9	3

IL06-06Log.xis 2 of 2

ELEMENT A SAMPLES p	p b	Pt** ppb	Pd** ppb
	2	<3	2
365041	16	12	6
365042	. 3	22	2
365043 365044 <	2	13 	10
365045	£ 8	27	5 3
365046	3	19	
365047	3	20	2 4
365048	4	11	3
RE 365048	3	11	3
RRE 36504 <	2	11	3
365049 <	2	23	9
365050	3	20	5
365101	5	9	3
365102	15	25	99
365103	20	42	88
365104	2	19	10
365105 <		19	19
365106	4	19	12
365107	3	28	33 46
365108 365109	4 4	35 21	25
365110	4	29	25
365111	3	41	83
365112	4	61	57
365113 <	•	161	41
365114	- 6	95	46
365115	5	44	82
365116	4	13	15
365117 <	2	27	17
365118	3	38	73
365119	4	84	13
365120	4	51	28
365121	8	62	51
365122	3	41	4
STANDAR	500	476	486
G-1 365123	2 4	<3 43	10 33
365124	4	34	47
365125	4	35	31
365126	10	20	26
365127	3	34	46
365128	3	29	35
365129	4	21	36
365130 <	2	58	57
365131	3	45	74
365132	7	56	40
365133 <2	2	<3	6
365134	2 5	47	45
365135	5	71	64

365136	6	62	46
365137	4	26	34
365138	2	28	50
365139 <2		22	13
365140	3	9	53
365141	3	64	32
365142	4	51	72
365143	3	13	16
365144	3	40	65
365145	3	20	29
365146	24	77 20	162
365147	3	30	51
365148	4	31	58
RE 365148	5	35	58
RRE 36514	5	34	53
365149	3	21	27
365150	2	17	24
365151	5	22	32
365152	2	16	12
365153 <2		21	22
365451	2	15 <2	
STANDAR	501	499	492
G-1 <2	001	4 <2	, • •
365452	3	20	2
365453	2	13 <2	2
			c
365454	13	30	6
365455	3	31	3
365456	2	17 <2	_
365457	4	17	6
365458	3	31	2
365459 <2		7	14
365460	2	9	2
365461 <2		5	4
365462 <2		12 <2	
365463 <2		11 <2	
365464 <2		21 <2	
RE 365464	6	23	2
RRE 36546	3	20	6
365465	3	17 <2	
365466	2	15	3
365467	4	5	23
365468	4	9	24
365469	5	7	31
365470	2	11	4
365471	6	5	6
	0	6	2
365472 <2	^		2
365473	3	17	3
365474	5	23	4
365475	6	7 <2	_
365476	2	15	4
365477	8	20	4
365478	6	18	2

		1		Г			 					, ,		
					<u> </u>				<u> </u>	\sqcup		\vdash		لا
			Eastfield Resources Ltd DRILL HOLE LOG	HOLE: ILO			:		 -			igspace		\square
			PROPERTY: Iron Lake	Date Begu				ļ <u> </u>	 '	igwdot	لـــــــا	igspace	!	
-			ZONE:	Date Finis		y 2/th	2006		 '	igwdown	 		-	
<u> </u>			UTM: NAD 83	Logged by		· - ·		<u> </u>	!	├	igsqcut	⊢		<u> </u>
		ļ	EASTING:	Depth: 14		: 		<u> </u>	_	 _	<u> </u>	\sqcup		
		ļ	NORTHING:	Core size:	•						<u> </u>	⊢ ↓	<u> </u>	igsquare
			ELEVATION:	Overburde		<u>.</u>		ļ	[⊢ l		<u> </u>
			AZIMUTH: 129°	Units in M	etres		:	ļ	1	 	igwdow	\vdash	<u> </u>	<u> </u>
		ļ	DIP: -60°		 			ļ		igwdown	igwdapprox igwedge	 	<u> </u>	
		<u> </u>		ļ				L	لــــــــــــــــــــــــــــــــــــــ	لبا		ليا	<u> </u>	L
				ļ			Analyse	s Cu, Ni,	Co (pr	<u>/m), /</u>	Au, Po			
From	To	Length	DESCRIPTION	SAMPLE#	From	То	Length	Recov %	Cu	Ni	Co	Au	Pt	Pd
			ILO6-07 intersected tested a weaker south trending conductor SW of the eastern tip of Iron							1 1	,	Į		
			Lake. Minute amount of chalcopyrite were encountered along a large part of this hole. The											
			chalcopyrite traces were associated with traces of disseminated fine-grained pyrite.							1 1	1			
			Moderate fine chlorite/biotite to argillic alteration pervaded most of this hole. Vanadium										i '	
			was anomalous throughout most of the hole. Fault gouge was intersected at 32.61 to				!		'				, '	
ļļ		ļ	33.50m. Rare sulphides occurred as isolated pyrite specks between 73.30m and 110.30m.						<u>-</u> '	\square		╙	<u> </u>	
	•			365102		5.18			496					99
		1		365103					296					88
i				365104				 	34					
		1		365105		14.20			81	42	20	-2		
		ļ		365106			+-		32	71	25	4		
		ļ .		365107					42					
				365108			3.04		66		31			. 46
				365109		•			6		30		21	
		ļ		365110				•	29		27		29	25
-				365111	<u>. </u>				15					83
-				365112			3.04		58				_	57
			<u> </u>	365113		35.66	+	• • • • • • • • • • • • • • • • • • • •	22		27			41
		ļ		365114		•	3.04		120		29			46
<u> </u>		-		365115		41.76			92		31			
		-		365116	• •••			 -	67		27		13	
				365117					18		33			17
		 	1	365118		•		•	101	52				
		-		365119	<u> </u>			 	8		28		84	13
· · · · · ·		<u> </u>	<u> </u>	365120		•			33				51	28
		 		365121					55		31		_	_
		1		365122		 -	+		4	_		_		4
		1		365123		58.42				41			_	
		 		365124	_				44				34	
		-		365125		66.14			23					
		-		365126						179				
		<u> </u>		365127		72.24			50				—	
		1		365128					15				_	
		J	<u></u>	365129	74.28	76.25	1.97	1	212	38	130	<u> </u>	21] 36

and the control of th

iL06-07Log.xis 1 of 2

From	То	Length	DESCRIPTION	SAMPLE#	From	To	Length	Recov %	Cu	Ni	Co	Au	Pt	Pd
		\		365130	76.25	78.33	2.08		63		42	-2	58	57
				365131	78.33	81.80	3.47		285	40	39	3	45	74
				365132	• • • • • • • • • • • • • • • • • • • •				241	32	30	7	56	40
				365133		-			165	_	26	-2	-3	6
				365134					74	29	35	_ 2	47	45
				365135			3.04		295		42	5	71	64
		<u> </u>		365136	•				479	_	49	6	62	46
				365137					69	_	33	4	26	34
				365138			3.04		220		30		28	50
:				365139			3.05		29		24		_22	13
				 	102.72	105.77	3.04		8	-	29	3		53
				365141	105.77	108.81	3.04		17	25	31		64	32
				+	108.81				133		37		51	
		ļ		 	111.86		3.05	÷	33	51	33		13	
		<u> </u>			114.91				50	63	33		40	
					117.96		3.05		77	40	30	3	20	
ļ	<u> </u>	ļ		365146	121.01	124.05			285		34		_	162
					124.05				312	53	54		30	
				365148	127.10	129.85			501	54	63	4	31	58
				,	129.85				106	38	29	3	21	27
				365150		136.15			228	47	25	2	17	24
		<u> </u>		365151	+	139.29			199	44	74	5	22	32
		ļ		365152	+				18	42	32	2	16	
				365153	142.34	145.39	3.05		28	64	29	-2	21	22

1L06-07Log.xls 2 of 2

_														
														
			Eastfield Resources Ltd DRILL HOLE LOG	HOLE: IL0	=				<u> </u>	<u> </u>				
			PROPERTY: Iron Lake	Date Begu					<u> </u>	<u> </u>	ļ'	↓'	<u> </u>	<u> </u> '
			ZONE:	Date Finis		y 28th	2006				<u> </u>	ļ'	L	
			UTM: NAD 83	Logged by		:	:		<u> </u>			Ш'	 -	
			EASTING:	Depth: 147		:			ļ		<u> </u>	└	ـــ	ļ'
1			NORTHING:	Core size:					ļ'		ļ <u>.</u>	<u> </u>	—	.
		<u> </u>	ELEVATION:	Overburde		j			↓	ļ	ļ <u>.</u>	Щ'	<u> </u>	<u> </u>
		ļ	AZIMUTH: 313°	Units in M	etres					<u> </u>	<u> </u>	<u> </u>	—	<u> </u>
			DIP: -62°	·	, .			 	↓—	<u> </u>	├	—	ـــــ	↓
								<u></u>	<u></u>	<u>l. </u>	<u>Ļ</u>	<u> </u>	Ļ	<u> </u>
					<u> </u>			s Cu, Ni,						
From	То	Length	DESCRIPTION	SAMPLE#	From	То	Length	Recov %	Cu	Ní	Co	Au	Pt	Pd
1			and the second of the second o											
		İ	Drilled towards a UTEM conductor, intersected multiple intermittent						}	Į				
			pseudobreccia/feldspar-carbonate veining, shear zones in a medium coarse pyroxenite to				}	ļ	1	1	}			ļ
			fine grained mafic units. Hole IL-06-08 was cored into a major shear zone. A meter thick]
			monzonite unit was encountered at 63.90m, and a 17m wide zone of rubble broken zone									1]
			with narrow aplitic dikes ran between 81.25-98.88m. The lower part of the hole also held		1									
			multiple zones of mottled shear veining with up to a 40% feldspar content.	ļ	<u> </u>				+		 		-	₩.
				365154	+				48		25			
		ļ <u> </u>		365155	•				50				_	
		<u> </u>		365156					80					
				365157					31					
				365158					36					
				365159	+	•	•	•——	41					24
<u>-</u>				365160					78					
				365161					110					
		ļ		365162					124				•	
		1		365163	•			+	68					
				365164	-				28					_
		ļ		365165					25					
				365166					45					
		ļ		365167					49					
				365168	+	 	•	-	56					14
		 		365169			 -	}	150					3 27
				365170					124				_	2 18
		1		365171			•	•	107					
				365172					90					
_ 		 		365173					111				_	
		ļ		365174	_	+			61	_	_	_	_	_
		ļ		365175					99	$\overline{}$			_	
		 		365176			+		73					
		ļ		365177	_				49				_	
		 		365178		•			49					
ļ. . ,		_		365179		+			224					_
		<u> </u>		365180		_	+		68				+	_
	l	1		365181	70.40	72.20	1.79)	176	33	3 33	3 -2	21 16	S 18

IL06-08Log.xls

1 of 2

From	To	Length	DESCRIPTION	SAMPLE#	From	То	Length	Recov % Cu	N	i (C	0	Au I	Pt	Pd
				365182	72.20			2	11	37	30	2	20	20
				365183	74.45		3.27			41	55	7	25	12
				365184	77.72	80.55	2.83			61	58	50		14
				365185	80.55		0.69		60	43	42	13		8
				365186	81.25	83.82	2.57			34	28	5	12	2
		1		365187	83.82		1.62			36	30	6	18	5
				365188		88.25	2.80			27	22	8	11	3
		ļ		365189		89, <u>10</u>				38	_33	7	8	4
		ļ <u></u>		365190		91.85				33	27	2	6	11
				365191	91.85	94.50	2.65			37	28	_7	9	16
				365192			1.69			69	43	4	. 7	9
				365193			2.68			46	36	7	9	
				365194				1		47	37	6	9	4
		L		365195			2.47			39	30	2	4	3
				365196		107.80	2.65			40	31	2	4	7
					107.80		3,44			28	33		3	. 8
		<u> </u>			111.25		1.38			23	35	3	3	4
					112.64		2.70			31	29	. 5	-3	11
					115.35		1.98			29	31	4	3	- 8
		1			117.34		1.88			30	25	4	-3	-2
		1			119.22		2.11			28	26	4	-3	6
		<u> </u>		365203			2.91		_	38	29	2	-3	3
					124.25		1.47			42	33	3	-3	. 4
		<u> </u>		365205			2.92			46	36	5	4	9
		<u> </u>		365206						40	34	5	-3	6 7
		<u> </u>		365207			2.38			33	33	_	-3]	
				365208			3.05			49	32	6	4	10
		<u> </u>		365209		138.68				26	24		7	4
				365210		141.73	3.05		_	40	27	. 8	12	. 9
					141.73					43	32	9	9	15
				365212		146.60				44	36	4	6	6
				365213	146.60	147.82	1.22		25	33	18	8	14	-2

11.06-08Log.xls 2 of 2

1		1		I	1	Τ	· · · · ·							
			Eastfield Resources Ltd DRILL HOLE LOG	HOLE: ILO	E-UG	<u> </u>	 		 			$\vdash \vdash$		\dashv
			PROPERTY: Iron Lake	Date Begu		20th 20	! 06		 		-	$\vdash \vdash \vdash$		-
			ZONE	Date Finis								├─┤		\vdash \dashv
1				Logged by		116 1312	.000	· · · · ·	 			 	;	
			CARTINO.	Depth: 14	5. 4 ma				 			\longmapsto		
		 	NORTHING:	Core size:	o.4m	<u> </u>	i		 -			\mapsto		\vdash
·· -	-			Overburde		i <u></u>			<u> </u>				<u> </u>	
						<u>.</u>						⊢ - ↓	<u> </u>	
		<u> </u>	AZIMUTH: 298°	Units in M	etres	;	.					├	<u> </u>	
			DIP: -50°						ļ			⊢		
				1		<u> </u>	<u> </u>	L	<u></u>	لبا		لبيا	<u></u>	L
				1	ļ.,			s Cu, Ni,						
From	То	Length	DESCRIPTION	SAMPLE#	From	То	Length	Recov %	Cu	Ni	Co	Au	Pt	Pd
			Dominated with medium coarse crystalline pyroxenite. Feldspar-carbonate breccia veining									1 1		
			surrounds narrow meagerysttic homblende pegmatite dikes. Intermittent concentration of										l '	
			subrounded olivine (?) pyroxenite as potential cumulates. Strongly magnetite to weakly			İ							l '	
			magnetitic. Faults and major fractures at 74.80-76.10m; 91.40-100.60m and 104.35-	ŀ					ł			1 1		
		1	107.70m. A massive white pink carbonate vein at 123.45-138.30m (6 metres of which is										i '	
			massive) with an intense argillic alteration halo beneath. Clotty magnetite up to 30% more						1				i '	
		[or less oxidized and locally replaced by hematite. Coarse chalcopyrite occurs scattered										i '	
			within the altered unit underlaying the pink carbonate vein. Alteration diminishes below		1		1						l '	
			138.30m.		ļ		1					1	l '	
		<u> </u>		365214	0.00	5.18	5.18		84	22	19	-2	6	- 6
				365215	_	1			73					
				365216	_	-			64		16			
				365217	_	-		<u> </u>	25		41	3		-2
				365218				 	38		27			
		<u> </u>		365219			•	<u> </u>	7			-2		
		 		365220	+			-	<u> </u>	200	49			_
				365221	-					104	31		_	
-				365222	· · · · · · · · · · · · · · · · · · ·					140	39		_	_
				365223	+			<u> </u>	7	_	49		_	
		 		365224					6		28			
		 		365225					8	-	35			
		 		365226					-		37			
		 		365227	+	-		 	249		20		_	
		+							10					-2
		 		365228	-			 	10		22			
		-		365229					13		25			
		 		365230				ļ	30				-	-2
		ļ—	<u> </u>	365231			·		57		25			
		ļ <u> </u>		365232	1		 		25	_	41	_	-3	
				365233	***	50.90	_		•	391			-3	
				365234	+	53.94				418		_		
				365235		55.32				222		_	_	_
				365236	•	•			_	130				
				365237	•	···				156				_
ļ		ļ		365238	,					185		_		
		ļ		365239	†					227		_	-3	
				365240	, 				63	118	25		_	
				365241	63.65	65.07	1.41		9	187	36	-2	7	-2

1 of 2

From	Τo	Length	DESCRIPTION	SAMPLE#	From	То	Length	Recov %	Cu	Ni	Co	Au	Pt	Pd
				365242	65.07	67.75	2.68	ľ	162	202	46	_	3	_
				365243	67.75	69.05	1.30			402	72	2		
	Ċ			365244	69.05		2.52		83	124	35	10		
				365245	71.58		1.61		10	222	48	2	-3	-2
	-			365246	73.20		2.90			124	32	2	-3	2
				365247			2.23			183	42	-2	-3	
		_		365248			1.72			253	37	-2 -2	18	-2 15 29 -2 2 10
				365249			3.09			122	39	-2		29
				365250			0.90			240	61	4	8	-2
				365251			2.59		20		30			2
				365252			1.11		26	182	41			
				365253			2.51			175	38		. 7	
				365254			1.12		13		18	2	6	
				365255			1.29		39		34 52	14	6	12 59
		<u> </u>		365256			1.20		29		52			59
				365257			1.59			195	48		27	31
				365258			1.84			204	50			_ 17
				365259			2.75		17		39			
				365260			2.36		129		29	2	28	38
				365261			1.88			219	65	3	40	44
				365262		105.25	0.90		43		56			41
				365263			0.69		90		41	7		75
			<u> </u>	365264			1.75		93		46			37
		<u> </u>		365265		109.10			38		46			75 37 38 49
i				365266		111.86	2.76		32		52			49
					111.86					192	45			
					114.90		3.04	ļ	67		45	-2		15
					117.95		1.92		49		40			
<u> </u>					119.87		2.00		68		42			
				365271					152		85			
<u></u>					123.45	124.54	1.09		17		9			
]		365273			2.55		29		6		5	
				365274	127.10	129.60	2.50		64		9			
]			365275		131.70	2.09		1862		49		12	
				365276	131.70		1.55		1435		32			
L				365277		134.65	1.39		4310		39	22	17	
				365278		136.80	2.15		994		62			6
				365279		139.29	2.48		1212		39	24		-2
				365280		142.34	3.05		329		31		40	41
				365281	142.34	145.38	3.04		123	43	21	6	12	10

IL06-09Log.xls 2 of 2

SAMPLES ppb 365154 5 8 11 365155 2 13 9 365156 3 14 11 365157 6 9 16 365157 6 9 16 365158 5 13 33 365159 3 16 24 365160 2 11 13 365161 4 11 18 365162 2 7 12 365163 6 11 7 365164 2 11 6 365165 12 3 4 365166 5 10 8 365167 25 11 5 365168 2 15 14 365169 14 23 27 365170 6 22 18 365171 7 16 23 365172 8 23 17 365174 8 26 15 365176 <2 16 5 365176 <2 16 5 365176 \$2 16 5 365177 5 27 6 365178 2 23 3 6 365179 8 39 21 365181 <2 23 365180 5 14 9 365181 <2 33 365181 <2 23 365180 5 14 9 365181 <2 33 365181 <2 23 365180 5 14 9 365181 <2 33 365181 <2 23 365180 5 14 9 365181 <2 33 365181 <2 23 365180 5 14 9 365181 <2 33 365181 <2 23 365180 5 14 9 365181 <2 23 365180 5 14 9 365181 <2 23 365180 5 14 9 365181 <2 23 365180 5 14 9 365181 <2 23 365180 5 14 9 3 365181 <2 23 365180 5 14 9 3 365181 <2 23 365180 5 14 9 3 365181 <2 23 365180 5 14 9 3 365181 <2 23 365180 5 14 9 3 365181 <2 23 365180 5 14 9 3 365181 <2 23 365180 5 14 9 3 365181 <2 23 365180 5 14 9 3 365181 <2 23 365180 5 14 9 3 365181 <2 23 365180 5 14 9 3 365181 <2 23 365180 5 14 9 3 365180 7 14 365180	ELEMENT Au**	Pt**	Pď**	
365154 5 8 11 365155 2 13 9 365156 3 14 11 365157 6 9 16 365158 5 13 33 365159 3 16 24 365160 2 11 13 365161 4 11 18 365162 2 7 12 365163 6 11 7 365164 2 11 6 365165 12 3 4 365166 5 10 8 365166 5 10 8 365166 5 10 8 365167 25 11 5 365168 2 15 14 365168 2 15 14 365169 14 23 27 365170 6 22 18 365171 7 16 23 365172 8 23 17 365172 8 23 17 365173 5 28 33 365174 8 26 15 365176 <2 16 5 365176 <2 16 5 365176 <2 16 5 365177 5 7 6 365178 2 23 6 365179 8 39 21 365180 5 14 9 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365180 5 14 9 365180 5 14 9 365180 5 14 9 365180 5 14 9 365180 5 14 9 365180 5 14 9 365180 5 14 9 365180 5 14 9 365180 5 14 9 365180 5 14 9 365180 5 14 9 365180 5 14 9 365180 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RRE 365197 5 3 8 RRE 365197 2 <3 RRE 365197 RRE 365197 8 3 RRE 365197 2 <3 RRE 365197 RRE 365197 8 3 RRE 365197 2 <3 RRE 365197 8 3 RRE 365197 2 <3 RRE 365197 8 3				
365155				11
365156				
365157 6 9 16 365158 5 13 33 365159 3 16 24 365160 2 11 13 365161 4 11 18 365162 2 7 12 365163 6 11 7 365164 2 11 6 365165 12 3 4 365166 5 10 8 365167 25 11 5 365168 2 15 14 365169 14 23 27 365170 6 22 18 365171 7 16 23 365171 7 16 23 365172 8 23 17 365173 5 28 33 365174 8 26 15 365175 6 25 7 365176 <2 16 5 365177 5 27 6 365178 2 23 6 365179 8 39 21 365181 <2 16 18 RE 365181 7 23 21 RRE 365181 7 23 21 RRE 365181 7 23 21 RRE 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365190 2 6 11 365191 7 9 16 365191 7 9 16 365192 4 7 9 365195 2 4 3 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RRE 365197 7 5 3 8				
365158				
365159 3 16 24 365160 2 11 13 365161 4 11 18 365162 2 7 12 365163 6 11 7 365164 2 11 6 365165 12 3 4 365166 5 10 8 365167 25 11 5 365168 2 15 14 365169 14 23 27 365170 6 22 18 365171 7 16 23 365172 8 23 17 365173 5 28 33 365174 8 26 15 365175 6 25 7 365176 <2 16 5 365176 <2 16 5 365177 5 27 6 365178 2 23 6 365179 8 39 21 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365181 7 23 21 RRE 365182 2 20 20 365183 7 25 12 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365194 6 9 4 365195 2 4 3 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RRE 365197 7 5 3 8				
365160 2 11 13 365161 4 11 18 365162 2 7 12 365163 6 11 7 365164 2 11 6 365165 12 3 4 365166 5 10 8 365167 25 11 5 365168 2 15 14 365169 14 23 27 365170 6 22 18 365171 7 16 23 365171 7 16 23 365172 8 23 17 365173 5 28 33 365174 8 26 15 365176 <2 365176 <2 365176 <2 365176 <2 365176 <2 365177 5 27 365178 2 23 6 365179 8 39 21 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 7 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RRE 365197 7 5 3 8				
365161				
365162 2 7 12 365163 6 11 7 365164 2 11 6 365165 12 3 4 365166 5 10 8 365167 25 11 5 365168 2 15 14 365169 14 23 27 365170 6 22 18 365171 7 16 23 365172 8 23 17 365173 5 28 33 365174 8 26 15 365176 <2 16 5 365176 <2 16 5 365176 <2 16 5 365177 5 27 6 365178 2 23 6 365179 8 39 21 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8				
365163 6 11 7 365164 2 11 6 365165 12 3 4 365166 5 10 8 365167 25 11 5 365168 2 15 14 365169 14 23 27 365170 6 22 18 365171 7 16 23 365172 8 23 17 365173 5 28 33 365174 8 26 15 365176 <2 16 5 365176 <2 16 5 365176 <2 16 5 365177 5 27 6 365178 2 23 6 365179 8 39 21 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 7 5 3 8 RE 365197 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8 RE 365197 7 5 3 8				
365164				
365165 12 3 4 365166 5 10 8 365167 25 11 5 365168 2 15 14 365169 14 23 27 365170 6 22 18 365171 7 16 23 365172 8 23 17 365173 5 28 33 365174 8 26 15 365176 <2 16 5 365176 <2 16 5 365177 5 27 6 365178 2 23 6 365179 8 39 21 365181 7 23 21 RRE 365181 7 23 21 RRE 365181 7 23 21 RRE 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365189 7 8 4 365190 2 6 11 365191 7 9 16 365191 7 9 16 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RE 365197 5 3 8 RRE 365197 7 5 3 8 RRE 365197 7 5 3 8 RRE 365197 7 5 3 8 RRE 365197 7 5 3 8 RRE 365197 7 5 3 8 RRE 365197 7 5 3 8 RRE 365197 7 5 3 8 RRE 365197 7 5 3 8 RRE 365197 7 5 3 8 RRE 365197 7 5 3 8 RRE 365197 7 5 3 8 RRE 365197 7 5 3 8 RRE 365197 7 5 3 8 RRE 365197 7 5 3 8 RRE 365197 7 5 3 8				
365166				
365167				
365168				
365169 14 23 27 365170 6 22 18 365171 7 16 23 365172 8 23 17 365173 5 28 33 365174 8 26 15 365175 6 25 7 365176 <2 16 5 365177 5 27 6 365178 2 23 6 365179 8 39 21 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365189 7 8 4 365190 2 6 11 365191 7 9 16 365191 7 9 16 365192 4 7 9 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 RE 365197 5 3 RRE 365197 5 3 RRE 365197 RRE 365197 5 3 RRE 365197 RRE 365197 5 3 RRE 365197 RRE 365197 5 3 RRE 365197				
365170 6 22 18 365171 7 16 23 365172 8 23 17 365173 5 28 33 365174 8 26 15 365175 6 25 7 365176 <2 16 5 365177 5 27 6 365178 2 23 6 365179 8 39 21 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 RE 365197 5 3 RRE 365197 5 3 RRE 365197 7 5 3 RRE 365197 7 5 3 RRE 365197 7 5 3 RRE 365197 5 3 RRE 365197 7 5 3 RRE 365197 7 5 3 RRE 365197 7 5 3 RRE 365197 7 5 3 RRE 365197 7 5 3 RRE 365197 7 5 3 RRE 365197 7 5 3				
365171 7 16 23 365172 8 23 17 365173 5 28 33 365174 8 26 15 365175 6 25 7 365176 <2 16 5 365177 5 27 6 365178 2 23 6 365179 8 39 21 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 RE 365197 5 3 RRE 365197 5 3 RRE 365197 2 <3 RRE 365197 5 3 RRE 365197 7 5 3 RRE 365197 5 3 RRE 365197 5 3 RRE 365197 5 3 RRE 365197 5 3 RRE 365197 5 3				
365172 8 23 17 365173 5 28 33 365174 8 26 15 365175 6 25 7 365176 <2 16 5 365177 5 27 6 365178 2 23 6 365179 8 39 21 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365197 5 3 8 RE 365197 5 3 RE 365197				
365173				
365174 8 26 15 365175 6 25 7 365176 <2 16 5 365177 5 27 6 365178 2 23 6 365179 8 39 21 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE				
365175 6 25 7 365176 <2 16 5 365177 5 27 6 365178 2 23 6 365179 8 39 21 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365182 2 20 20 365183 7 25 12 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 3 8				
365176 <2 16 5 365177 5 27 6 365178 2 23 6 365179 8 39 21 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 3 8				
365177 5 27 6 365178 2 23 6 365179 8 39 21 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365188 8 11 3 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 3 8	365175	6		
365178 2 23 6 365179 8 39 21 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365188 8 11 3 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 2 <3	365176 <2		16	5
365179 8 39 21 365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 365182 2 23 21 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365188 8 11 3 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 5 3 8 RE 365197 2 <3 RRE 365197	365177	5	27	6
365180 5 14 9 365181 <2 16 18 RE 365181 7 23 21 RRE 36518<2 23 21 365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365188 8 11 3 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 RRE 365197	365178	2	23	6
365181 <2	365179	8	39	21
RE 365181 7 23 21 RRE 365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 RRE 365197	365180	5	14	9
RRE 36518<2 23 21 365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 2 <3 RRE 365197 8 8	365181 <2		16	18
365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 RRE 36519	RE 365181	7	23	21
365182 2 20 20 365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 RRE 365197	RRE 3651{<2		23	21
365183 7 25 12 365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 RRE 365197		2	20	20
365184 50 6 14 365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365195 2 4 7 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 RRE 36519			25	12
365185 13 20 8 STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 8		50		14
STANDAR 487 488 474 365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 < 3				
365186 5 12 2 365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 8		487	488	474
365187 6 18 5 365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 8				
365188 8 11 3 365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 8 8				
365189 7 8 4 365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 2 <3 RRE 365197 8				
365190 2 6 11 365191 7 9 16 365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 2 <3 RRE 365197 8 8				
365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 4 <3		2		
365192 4 7 9 365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3 RRE 365197 4 <3		7		
365193 7 9 7 365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3				
365194 6 9 4 365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3				
365195 2 4 3 365196 2 4 7 365197 5 3 8 RE 365197 2 <3				
365196 2 4 7 365197 5 3 8 RE 365197 2 <3 3 RRE 36519 4 <3 8		2		
365197 5 3 8 RE 365197 2 <3 3 RRE 36519 4 <3 8		2		
RE 365197 2 <3 3 RRE 36519 4 <3 8		<u>د</u> 5		
RRE 36519 4 <3 8			3	
303190 3 53 4				
	303198	ر× د د		4

365199	5 <3		11
365200	4	3	8
365201	4 <3	<2	
365202	4 <3		6
365203	2 <3		3
365204	3 <3		4
365205	5	4	9
365206	5 <3		6
365207	7 <3		7
365208	6	4	10
365209	5	7	4
365210	8	12	9
365211	9	9	15
365212	4	6	6
365213	8	14 <2	
STANDAR	490	479	474

852 R. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Mincord Exploration Consultants Ltd. PROJECT Iron Lake File # A602580 Page 1

		110 - 325	S Howe St., Vancouver	r BC VSC 127 SUDMIT	ited by: Ginette Carter		—
SAMPLE#	Mo Cu Pb Zr	n Ag Ni Co Min Fe	e As U Au Th Sr	Cd Sb 8i V	Ca P La Cr Mg Ba	Ti B Al Na	K W Sample
	plan blan blan blan	т ррт ррт ррт ррт %	% рот рот орт орт рот	u bbu bbu bbu bbu	% % ррт ррт % ррт	% ppm % %	% ppm kg
G-1	; <1 2 <3 46	6 <.3 3 4 561 1.95	5 <2 <8 <2 5 79	7 < .5 <3 <3 36 .	63 .073 10 11 .59 209	.14 <3 1.10 .12	.52 2 -
365214	1 84 <3 42	2 <.3 22 19 479 3.65	5 <2 <8 <2 2 60) < .5 <3 6 143 1.	79 .112 3 44 1.41 117	.18 6 1.82 .09	.34 <2 1.70
745215	1 73 3 43	7 × 7 77 15 541 7 75	5 7 /9 /2 /2 00	1 < 5 < 3 6 107 2	3/ 11/ / /1 1 30 120	16 5 1 93 10	32 /2 1 04

SAMPLE#	ppm Mo				-				fe %						ppm			ppm v	Ca %		ppm ppm	Mg Ba % ppm	Ti %pp				ppm W	Sample kg	
G-1 365214 365215 365216 365217	<1 1 1 1 1 <1	2 84 73 64 25	<3 3 <3	42 43 38	<.3 <.3	22 23 31	19 15 16	479 541 465	1.95 3.65 3.25 3.38 3.74	<2 7 3	<8 <8 <8	<5 <5 <5	2 <2 2	60 90 92	<.5 <.5 <.5 <.5	<3 <3 3	6 6	143 107 129	1.79	.112 .116	4 41 3 54	.59 209 1.41 117 1.30 129 1.36 445 3.03 194	.18 .16	6 1.83 5 1.83 7 1.64	.09	.52 .34 .32 .35	2 <2 <2 <2 <2	1.70 1.86 2.62 4.42	
365218 365219 365220 365221 365222	1 <1 <1	9 15	ও ও	21 32 26	<.3 <.3 <.3	129 200 104	31 49 31	358 540 492	3.50 3.06 4.34 3.49 3.55	3 6 4	<8 <8	<2 <2 <3	<2 <2 <2	47 33 125	<.5 <.5 <.5 <.5	<3 <3 <3	9 14 7	92 61 62 80 67	.60 1.10	.033 .012	1 361 1 487 2 324	2.54 318 2.90 140 4.73 92 3.96 301 3.46 91		6 .83	.06 .04 .03	.14	<2 <2 2	6.08 6.58 5.62 2.80 3.40	
365223 365224 365225 365226 365227		7 6 8 249 10	<3 <3 4	20 21 25	<.3 <.3 <.3	104 118 84	28 35 37	340 353 474	4.36 2.93 3.09 3.21 2.57	3 3 2	<8 <8	<2 <2	<2 <2 <2	50 66 108		<3 <3 3	6 7	62 50 81	.61 1.07 1.37 2.80 2.00	.007 .116	1 423 1 373 3 230	5.12 84 2.80 76 2.35 352 2.09 165 2.40 426	-09		.04 .03 .05	.14 .10 .09 .34	<2 <3 <5 <5	6.38 6.80 4.32 5.60 2.88	
RE 365227 RRE 365227 365228 365229 365230	<1 <1 <1	10 10 10 13 30	<3 <3 3	29 25 27	<.3 <.3 <.3	77 102	20 22 25	517 385 492	2.61 2.54 2.37 2.90 3.62	2 5 3	<8 <8 <8	<5 <5	<2 <2 <2	240 258 323	<.5 <.5	<3 <3 <3	<3 <3 <3	60 49 63	2.00 1.51 1.55	.144 .138 .203 .163 .204	2 181 3 199 3 257	2.25 436 2.55 438 2.62 285 3.37 965 3.42 232	.10 .06 .08	5 1.6° 4 1.7° 9 1.6° 5 1.8° 0 1.9°	.09 .04 .05	.10 .10 .06 .07	<2 <2 3	2.52 4.44 4.60	
365231 365232 365233 365234 365235	<1 <1	57 25 8 15 29	6 3 <3	28 42 49	<.3 <.3 <.3	210 391 418	41 64 68	590 817 916	3.94 3.77 5.44 6.09 3.82	6 <2 4	<8 <8	<s 5 <s< td=""><td><2 <2 <2</td><td>61 23 31</td><td><.5 <.5 <.5 <.5</td><td><3 3 <3</td><td>13 19</td><td>64 48 56</td><td></td><td></td><td>1 478 1 534 1 480</td><td>3.97 36 4.71 61 7.66 35 8.15 93 3.88 44</td><td>.09 1 .05 3 .04 4 .06 7</td><td>2 .93 8 .45 2 .75</td><td>.03 .02 .04</td><td>.05</td><td><2</td><td>4.18 2.94 6.72 6.36 2.58</td><td></td></s<></s 	<2 <2 <2	61 23 31	<.5 <.5 <.5 <.5	<3 3 <3	13 19	64 48 56			1 478 1 534 1 480	3.97 36 4.71 61 7.66 35 8.15 93 3.88 44	.09 1 .05 3 .04 4 .06 7	2 .93 8 .45 2 .75	.03 .02 .04	.05	<2	4.18 2.94 6.72 6.36 2.58	
365236 365237 365238 365239 365240	<1 <1 1	74 54 41 19 63	4 3 3	28 29 28	<.3 <.3 <.3	156 185 227	32 38 46	435 494 473	3.31 3.48 3.79 3.68 2.87	2 <2 3	<8 <8	<5 <5 <5	<2 <2 <2	141 81 87	<.5	<3 <3	7 8		.88	.055 .047 .028 .008 .036	1 360 1 408 <1 502	3.62 109 3.25 198 3.79 80 2.48 169 2.42 210	.10 1 .08 1 .06 3 .05 4	7 1.00 3 .82 4 .55	.06 .04 .04	.10 .08 .11	<2	6.44 3.76 2.80 2.32 1.60	
365241 365242 365243 365244 365245	<1 <1 <1	9 162 31 83 10	3 3 4	40 56 37	<.3 <.3 <.3	202 402 124	46 72 35	605 989 451	3.30 4.81 6.76 5.04 3.90	3 <2 3	13 8 <8	<2 <2	<2 2 <2	124 84 214	<.5	<3 <3 <3	14 22	121 69 157	1.04 1.37 .81 1.18 .80	.076	2 310 2 292 2 393	3.35 73 4.29 145 8.54 101 2.96 192 4.65 90	.05 2 .11 2 .05 5 .10 10	7 1.47 5 .94 5 1.15	.09	. 24 . 16 . 13	<2 <2	2.80 6.08 3.92 4.22 3.34	
STANDARD DS6	10	118	29	141	.4	23	10	677	2.85	22	<8	<2	4	43	6.0	<3	7	54	.87	.076	13 165	.60 159	.08 1	6 1.98	80.	. 16	_3_		

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY (CP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns - 15-2003 P04:37

DATE RECEIVED: JUN 6 2006 DATE REPORT MAILED:.....

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Mincord Exploration Consultants Ltd. PROJECT Iron Lake FILE # A602580 Page 2

SAMPLE#										F 6		- 11	A.,	Th		Cd	eh.	0.5	· · · ·	Са		La Cr		- 			Αl	li a				A-MCTITCAL
SAMPLE#																				%		bbu bbu					%			ppm mqq	Sample kg	
										-		-						-								``						
G-1																						9 13							.52		-	
365246																						3 215								<2	4.38	
365247	١.	<1	18	<3	24	<.3	183	42	352	3.65	4	<8	<2	<2	78	<.5	<3	11	67	1.24	.030	1 452	3.15	162	.06	13	.92	. 05	.07	<2	6.00	
365248		<1	122	4	39	<.3	253	37	502	4.13	2	<8	<2	<2	120	<.5	<3	8	116	1.12	. 129	2 518	4.60	461	.13	7	2.32	.08	-99	<2	3.96	
365249		<1	238	3	46	<.3	122	39	673	5.15	3	<8	<2	<2	285	<.5	<3	14	144	2.17	.214	3 235	3.91	239	.11	8	2.66	.05			6.18	
	ļ																															
365250	i .	<1	25	<3	39	<.3	240	61	338	4.43	3	<8	<2	<2	36	<.5	<3	15	66	.92	.020	1 469	3.12	91	.06	27	.65	.05	. 16	<2	1.64	
365251																						4 60							.08			
365252																						2 388								_	2.70	
365253																						1 397										
365254																						3 142								<2	2.58	
303234		`'	13	٠,,		٠	,,	,	00,	3.30	_	٠.			207	`	٠,,	•••	-	2.07	. (//	J 14E	L.4/	05	.00	-	L.LO	.05	.00	`_	6.50	
365255	١.	1	30	۷3	34	٠ ٦	152	34	840	3 80	7	<8	- 12	٠,	132	< 5	٠3	7	94	3 1 8	040	2 320	4 44	51	กล	4	2 12	nΔ	.08	-2	2.12	
365256																						1 393										
365257																						1 417							.52			
365258																						2 567										
365259	İ	1	17	4	23	<.5	140	39	470	3.04	8	<8	<2	<2	42	۲.5	<2	В	80	1.31	.013	1 404	1.54	68	.07	3	.//	, UO	- 14	<2	5.66	
365260	1	-1	120	-7	/ 0		01	20	077	, ,,	3	-0		-3	174		-2	7	117	1 /0	100	3 188	3 74	47	07	,	2 22	07	11	-7	4.44	
365261																						2 637								<2		
365262																						2 592									1.76	
365263																						2 144									1.20	
365264	•	<1	93	<3	47	<.3	168	46	836	4.54	. 4	<8	<2	<2	162	<.5	3	10	134	1.12	,158	3 278	2.10	249	.05	7	1.88	.09	.48	<2	2.08	
DE 745047	. ;	.4	OE.	-7	E 1	. 7	17/	. 7	047			-0	-2	-3	145	- E	7	10	170	1 14	145	3 285	3 11	254	OΕ		1 07	00	-49	-3		
RE 365264																															-	
RRE 36526																						3 288							.50		, 10	
365265																						1 454										
365266																						1 533										
365267		<1	24	<3	32	<.3	192	45	519	4.54	. 5	<8	<2	<5	191	<.5	<3	12	92	2.11	.017	1 487	3.43	96	.08	3	-97	.05	- 18	<2	6.12	
365268		-1	47	.7	77	, 7	100	15	447			-0	-3	-2	157	- 5	-7	12	117	2 /2	022	1 398	2 52	2/7	11	-7	1 07	OF	.33	-2	5.26	
365269																						2 545										
1																																
365270																						2 611							.73	_		
365271																						3 232							.37			
365272		55	17	<3	10	<.3	11	9	285	2.64	19	<8	<2	<2	46	<.5	6	4	18	1.53	.082	29	.68	30	<.01	<3	.27	.08	.11	<2	2.06	
7/577		2	20	.7	17		7	,	7/7	2 47	• •/	ء د	ور	در	EE	, -	-2	,	27	1 /3	OE 2	7 7	11	77	- 04	.7	12	10	07	-3	E 22	
365273																						3 3					.17					
365274																						3 3									4.38	
365275																						2 33										
365276																						2 164										
365277		<1 4	310	3	51	1.8	47	39	1243	6.41	<2	<8	<2	<2	122	<.5	7	18	204	1.50	.020	2 104	2.09	165	. 14	5	1.62	.12	.24	<2	2.56	
4540								4.0								, .	-	,	r.	96		47 470	,.				4 00	00	4.			
STANDARD	U\$6 '	11	125	27	150	<.3	25	10	689	2.91		8	<2	4	44	6.1	_ >		54	.89	.079	15 170	.61	164	.08	17	1.99	08	.16	4	<u>-</u>	

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Mincord Exploration Consultants Ltd. PROJECT Iron Lake FILE # A602580 Page 3

															-		_													7070	WE IT I CAL
SAMPLE#	Mo				Ag ppm			Mn ppm		As ppm					Cd		8 i ppm	V ppm	Ca %		La C ppm pp		Mg Ba % ppm	Ťi %	B ppm	Al %	Na %	K %	ppm	Sample kg	·
G-1	<1	2	3	47	<.3	3	4	536	1.95	<2	<8	<2	ć	67	' <.5	<3	3	36	.56	.074	9 1	1	.60 208	.13	<3	1.03	.09	.51	<2	-	
365278	<1	994	<3	71	.8	91	62	1722	10.86	<2	<8	2	<2	143	<.5	18	34	300	1.71	. 046	3 3	5	1.54 46	.05	13	1.16	.04	.21	<2	3.54	
365279	<1	1212	<3	53	.6	39	39	1124	7.68	<2	<8	<2	7	186	<.5	12	21	313	5.17	.010	2 11	5	3.26 224	.08	7	1.49	.08	.26	<2	4.30	
365280	<1	329	3	32	.5	66	31	1001	6.92	<2	<8	≺2	2	195	<.5	5	20	344	8.11	.010	19	8	2.53 115	.07	4	1.35	.07	.16	<2	5.96	
365281	<1	123	<3	29	<.3	43	21	794	3.42	<2	<8	<2	2	167	′ <.5	<3	6	122	6.59	.036	2 16	1	2.35 241	.08	3	1.11	.08	. 22	<2	6.22	
STANDARD DS6	11	120	28	149	<.3	24	10	668	2.86	20	<8	<2	ć	41	6.3	4	6	53	.85	.079	13 16	8	.59 158	.08	16	1.94	.08	. 15	4	-	

Sample type: DRILL CORE R150.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEM PRECIOUS METALS ANALYSIS

21

GEOCHEM FRECIOUS MEINES AMADISTS

Mincord Exploration Consultants Ltd. PROJECT Iron Lake File # A602580 Page 1 110 - 325 Howe St., Vancouver BC V6C 127 Submitted by: Ginette Carter

 SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	
G-1 365214 365215 365216 365217	3 <2 2 <2 <3	<3 6 7 4 <3	3 6 3 20 <2	
365218 365219 365220 365221 365222	<2 <2 <2 <2 <2	<3 89 63 <3	<2 <2 <2 <5 <2	
365223 365224 365225 365226 365227	32 <22 <6	6 3 3 22 7	<2 <2 <2 15 <2	
RE 365227 RRE 365227 365228 365229 365230	4 2 2 <2 4	<3 <3 <3 <4	<2 <2 <2 <2 <2	
365231 365232 365233 365234 365235	<2 17 <2 <2 <2	6 <3 <3 <3	5 <2 <2 <2 <2	
365236 365237 365238 365239 365240	<2 <2 <2 2 3	5 5 <3 <3 5	4 <2 <2 <2 <2	
365241 365242 365243 365244 365245	<2 4 2 10 2	7 3 <3 4 <3	<2 <2 <2 <2 <2	
 STANDARD FA-10R	484	491	481	TO COMPANY OF THE PARTY OF THE

GROUP 3B - FIRE GEOCHEM AU, PT, PD - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM. - SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA DATE RECEIVED: JUN 6 2006 DATE REPORT MAILED:....

STATE OF THE PARTY

 SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	
G-1 365246 365247 365248 365249	2 2 <2 <2 <2 <2	6 <3 <3 18 32	2 2 <2 15 29	
365250 365251 365252 365253 365254	4 5 3 2 2	8 12 7 6	<2 2 10 2 6	
365255 365256 365257 365258 365259	14 6 14 <2 2	6 52 27 24 19	12 59 31 17 13	
365260 365261 365262 365263 365264	2 3 <2 7 4	28 40 33 66 40	38 44 41 75 37	
RE 365264 RRE 365264 365265 365266 365267	2 5 <2 4 <2	38 43 35 60 16	34 40 38 49 16	
365268 365269 365270 365271 365272	<2 4 2 8 64	15 19 8 14 10	15 17 7 12 5	
365273 365274 365275 365276 365277	61 16 21 3 22	5 5 12 17 17	4 2 9 4 6	
STANDARD FA-10R	480	484	466	

		MENE MINELTIFICAL .
SAMPLE#	Au** Pt** Pd** ppb ppb ppb	
G-1 365278 365279 365280 365281	3 <3 <2 17 7 6 24 6 <2 10 40 41 6 12 10	
STANDARD FA-10R	490 481 474	

Sample type: DRILL CORE R150.

HASTINGS ST. VANCOUVER BC

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Mincord Exploration Consultants Ltd. PROJECT Iron Lake File # A602579 Page 1 310 - 325 Howe St., Vancouver BC V6C 127 Submitted by: Ginette Carter

																										<u></u>					
SAMPLE#	Мо Си ррт ррт			_						U ppm (-						V ppm	Ca %		La ppm		Mg %p		Ti % p		Al %	Na %		W S ppm	ample kg	
G-1 365154 365155 365156 365157	<1 3 1 48 3 50 <1 80 <1 31	3 3 3 3	29 28 33	<.3 <.3	22 25 30	25 3 22 3 26 4	77 : 17 :	4.09 3.17 3.60	<2 <2 2	<8 <8 <8	<2 <2 <2	<2 <2 <2	134	<.5 <.5 <.5	7 <3 5	4	213 126 137	2.22 1.88	.074 .135	2 3 3	30 38 44	.60 2 1.66 1.63 1.84 1 1.79	89 82 25		10 8 9	1.14 2.39 2.14 2.30 2.18	.11 .13 .14 .13	.52 .17 .13 .12	<2 <2	7.08 5.72 6.22 7.44	
365158 365159 365160 365161 365162	<1 36 <1 41 <1 78 <1 110 <1 124	3 3 3	48 34 33	.3 <.3 3.	23 29 27	26 S	144 118 188	6.55 3.99 4.24	<2 <2 <2	<8 <8 <8	<5 <5 <5	<2 <2 2	140 179	<.5 <.5 <.5	5 5 4	20 7 10	361 153 185	2.73 2.92	.106 .106	2 2 3	20 54 47	1.14 1 1.65 2.05 1 1.81 1.97	63 62	.15 .18 .12 .16	3 7			.07 .12 .16 .09	<2 <2	2.82 3.40 6.34 6.16 5.94	
365163 365164 365165 365166 365167	<1 68 1 28 <1 25 <1 45 <1 49	3 3 3	28 31 49	<.3 <.3 <.3	35	31 3 29 4	67 : 85 :	3.06 3.49 7.29	17 11	<8 <8 <8 <8 <8	<5 <5 <5	<2 <2 <2	151 195 153	<.5 <.5 <.5	<3 5	<3 4 21	82 116 340	2.16 2.00 2.36 1.27 1.59	.023 .026 .015	1 1 1	27 14	2.25 2.34 2.17 1.81 1.64	21 23 18	.08 .07 .09 .16	10 12 5	2.63 2.82 2.81 2.13 1.92	.03	.12 .11 .07 .04	<2 <2	6.16 6.48 5.54 3.88 5.38	
365168 365169 365170 365171 365172	<1 56 <1 150 <1 124 <1 107 <1 90	3 <3 3 <3	34 31 42	<.3 <.3 <.3	27 33 28	29 4	26 20 95	4.45 2.98 5.23	<2 <2	<8 <8	<5 <5 <5	<5 <5 <5	162 104 124	<.5 <.5 <.5	<3 <3 3	10 5 15	211 114 243	2.14 1.90 2.04 2.05 1.27	.035 .121 .139	1 3 3	24 73 54	1.48 1.52 1.40 2 1.67 1 1.80 1	69 !78 32	. 17 . 12 . 17	3 3 4	1.73 1.29		.13 .10	<2 <2	3.32 3.70 2.52 6.82 6.64	
365173 365174 365175 365176 365177	<1 111 <1 61 <1 99 1 73 <1 49	3 7 3 3	23 26 16	<.3 <.3 <.3	35 34 45	27 3 27 4	320 319 259	4.10 3.26 2.47	2 <2 3	<8>	<2 <2 <2	2 <2 <2	119 119 43	<.5 <.5 <.5	<3 <3	12 4 4	145 109 72	1.59 1.91 2.21 1.36 1.33	.079 .090 .029	1 2 1	102 75 120	1.94 1.72 1.94 1.94 1.66	87 57 88		4	1.64	.06 .07 .15 .10	.09 .06 .11 .14 .10	<2 <2	3.98 5.00 4.74 6.44 6.42	
365178 365179 365180 365181 RE 365181	1 49 <1 224 <1 68 <1 176 <1 176	3 3 3 3 3	23 14 24	<.3 <.3 <.3	39 43 33	25 2 33 3	511 284 343	4.45 3.91 5.69	3 2 <2		<5 <5 <5	<2 <2 <2	105 71 148	<.5 <.5 <.5	3 <3 4	11 9 17	195 142 232		.032 .030 .083 .179 .180	2 4	54 167 46	1.92 1.76 1.91 1.97 1.97	83 84 95	. 15 . 13 . 15	3 3 3	1.54 1.21 1.84		.17	<2 <2 <2	6.36 5.48 5.80 3.98	
RRE 365181 365182 365183 365184 365185	<1 177 <1 211 <1 421 <1 425 <1 160	1 4 1 <3 3 5	25 39 38	<.3 <.3	37 41 61	55 4	59 59 99	4.50 9.39 7.71	3 7 10	<8 <8 <8	<2 <2	<2 <2 <2	117 99 72	<.5 <.5 <.5	3 3 <3	13 31 25	158 301 303	2.32 1.99 2.11 1.79 1.99	.075 .127 .068	2 5 2	92 77 177	1.90 1.87 1 1.77 1.86 1.34	20 61 72	.17 .20	3 4 <3	1.73 1.73 1.61 1.52 1.36	.12 .14 .17 .20	.16 .15 .14 .13	<2 <2 <2	5.00 7.54 6.28 1.64	
STANDARD DS6	10 124	31	145	.3	25	10 7	708	2.92	21	<8	<2	3	44	5.9	4	5	55	.88	.077	14	169	.62 1	62	.08	16	2.03	.08	.16	4	<u></u>	

GROUP 10 - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns 86-19-2006 A09:56

Data FA DATE RECEIVED: JUN 6 2006 DATE REPORT MAILED:.....

SAMPLE#	l				_		Со		fe %		U mgg								Ca %			Cr ppm		Ba ppm		B ppm	Al %			₩ . ppm	Sample kg	
G-1 365186		2 84																	.56				.60 1.63				1.01		.48			-
365187																			1.47	.059			1.69		.17		1.45	.09	.07	_	6.14 4.26	
365188																			1,75				1.28			_	1.15				5.58	
365189																			1.54				1.57				1.36				1.82	
365190																			1.57				1.69				1.69		.07	_	6.72	
365191																			1.70				1.64				1.51		-	_	5.94	
365192 365193																			1.52				1.78				1.38				3.74 5.48	
365193																			1.61				1.53		.19		1.62		.06	<2	8.74	
363174	`'	0,	٠,	40	.,	-41	٠,	J-40	0.57	-	٠.	~_	_	100	`.,	7	L	-4-4 1	1.01	.023	,	37	1.23	2)		,	1.02	.00	.00	~2	0.14	
365195	<1	79	<3	34	<.3	39	30	392	3.94	<2	<8	<2	<2	159	<.5	<3	6	154	2.38	.039	1	101	1.92	41	.12	10	2.54	.09	.12	<2	5.56	
365196		49																	1.68				1.38								5.76	
365197																			2.42								2.68				7.72	
RE 365197	1 :																		2.45								2.66				-	
RRE 365197	<1	29	<3	38	<.3	28	32	424	5.87	<2	<8	<2	<2	224	<.5	3	12	324	2.54	.017	1	12	1.77	31	. 16	14	2.81	.10	.12	<s< td=""><td>*</td><td></td></s<>	*	
365198	<1	21	<3	41	.3	23	35	451	6.88	<2	<8	<2	2	165	<.5	5	21	374	2.39	.013	1	6	1.67	29	.15	17	2.37	.10	.13	<2	3.06	
365199		66																	2.12				1.87				2.22			<2		
365200																			1.96				1.58				1.95			_		
365201																			2.01								1.54				4.04	
365202	<1	48	<3	51	<.3	28	26	328	3.80	<2	<8	<2	<2	169	<.5	<3)	179	2.20	.019	1	17	1.76	33	.12	14	2.64	.10	.12	<2	4.62	
365203	<1	56	<3	31	<.3	38	29	310	5.86	<2	<8	<2	<2	83	<.5	4	19	311	1.58	.039	1	54	1.45	19	.16	6	1.53	.09	.08	<2	6.54	
365204																			1.50				1.54				1.58		.06	<2	5.92	
365205																			1.52				1.36				1.31			<2	4.00	
365206																			1.65				1.62				1.74	.08	.07	_	3.28	
365207	1	101	<3	39	<.3	33	33	402	5.44	2	<8	<2	<2	173	<.5	5	15	254	1.93	.105	2	39	1.77	24	. 19	10	1.89	.09	.08	<5	5.48	
365208	<1	56	<3	39	<.3	49	32	379	5.41	<2	<8	<2	2	139	<.5	<3	15	238	1,63	.082	2	165	1.98	25	.18	9	1.80	.08	.06	<2	7.12	
365209	<1	35	<3	27	<.3	26	24	331	3.67	<2	<8	<2	<2	134	<.5	<3			1.74				1.61		. 15	7	1.62	.08	.07	<2	6.74	
365210			_						3.29										1.90				1.64		.12		1.13			_	7.06	
365211									3.83											.036			2.36		.13		1.98				6.76	
365212	1	104	<3	32	.4	44	36	413	4.00	<2	<8	<2	<2	92	<.5	<3	7	127	1.39	.040	1	48	2.72	34	.11	5	2.22	.13	.20	<2	3.78	
365213																			1.38												2.48	
STANDARD DS6	11	118	29	143	<.3	25	10	686	2.90	23	10	<2	4	44	6.1	4	6	55	.88	.078	14	178	<u>.6</u> 1	162	.09	15	2.03	.08	.16	5		

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 B. HASTINGS ST. VANCOUVER BC V6A 1RO

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEM PRECIOUS METALS ANALYSIS

Mincord Exploration Consultants Ltd. PROJECT Iron Lake File # A602579 Page 1

110 - 325 Howe St., Vancouver 8C V6C 127 Submitted by: Ginette Carter

10 - 323 ROWE St., Validoovel BC VOC	out in Summittee by Strictle backer	
SAMPLE#	Au** Pt** Pd** ppb ppb ppb	
365154 365155 365156 365157 365158	5 8 11 2 13 9 3 14 11 6 9 16 5 13 33	
365159 365160 365161 365162 365163	3 16 24 2 11 13 4 11 18 2 7 12 6 11 7	
365164 365165 365166 365167 365168	2 11 6 12 3 4 5 10 8 25 11 5 2 15 14	
365169 365170 365171 365172 365173	14 23 27 6 22 18 7 16 23 8 23 17 5 28 33	
365174 365175 365176 365177 365178	8 26 15 6 25 7 <2 16 5 5 27 6 2 23 6	
365179 365180 365181 RE 365181 RRE 365181	8 39 21 5 14 9 <2 16 18 7 23 21 <2 23 21	

GROUP 3B - FIRE GEOCHEM AU, PT, PD - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM.
- SAMPLE TYPE: ORIEL CORE R150 Samples beginning 'RE' are Reguns and 'RRE' are Reject Reruns.

STANDARD FA-10R

SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	
365186 365187 365188 365189 365190	5 6 8 7 2	12 18 11 8 6	2 5 3 4 11	
365191 365192 365193 365194 365195	7 4 7 6 2	9 7 9 9 4	16 9 7 4 3	
365196 365197 RE 365197 RRE 365197 365198	2 5 2 4 3	4 3 <3 <3 <3	7 8 3 8 4	
365199 365200 365201 365202 365203	5 4 4 4 2	<3 <3 <3 <3	11 8 <2 6 3	
365204 365205 365206 365207 365208	3557 6	<3 <3 <3 <4	4 9 6 7 10	
365209 365210 365211 365212 365213	5 8 9 4 8	7 12 9 6 14	4 9 15 6 <2	
STANDARD FA-10R	490	479	474	

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Mincord Exploration Consultants Ltd. PROJECT Iron Lake File # A602408 110 - 325 Howe St., Vancouver 8C V6C 127 Submitted by: Ginette Carter

Page 1

																																	
	SAMPLE#	Mo ppm s				~		Со										8i ppm p		Ca %		La ppm			Ва ррп	Ti %	B ppm	Al %	Na %		ws ppm	ample kg	
	G-1	1 -	-							1.88											.071			.56		.13		. 94				-	
	365041	<1	9					15		1.88										6.81	.020			1.75		.05	4	. 75		.08	2	3.46	
	365042										<2					<.5					.012			1.35		.04	<3	.55		.04	-	3.76	
ı	365043									1.43										1.72				2.32						.31		3.11	
	365044	<1	10	<3	15	<.3	67	56	210	2.43	17	<8	<2	<2	19	<.5	<3	<3	39	.86	.009	<1 :	273	1.87	7	.04	6	.49	-01	.02	<2	6.26	
	365045	<1	5	<3	10	<.3	40	14	199	1.45	4							<3			.012	1	282	1.87	27		<3	.64		.05	<2	5.73	
	365046	<1	4	3	15	<.3	61	22	274	2.33								<3		.74	.009			1.95	4		10	.35	.01	.01	<2	6.39	
	365047	i <1	6	<3	8	<.3	32	12	144	1.20	2	<8	<2	<2	23	<.5	<3	<3	19	1.15	.008	1	137	1.28	11	.04	<3	.45	.02	.05	<2	7.58	
	365048	<1	7	<3	8	<.3	33	12	140	1.37	4	<8	<2	<2	26	<.5	<3	<3	27	.90	.013	1	176	1.26	7	.03	<3	.43	.02	.03	<2	4.76	
	RE 365048	<1	7	<3	8	<.3	34	12	145	1.41	2	<8	<2	<2	27	<.5	<3	<3	28	.93	.013	1	181	1.26	7	.03	<3	.44	.02	.03	<2	-	
	RRE 365048	<1	8	<3	8	<.3	36	13	138	1.39	2	8	<2	<2	24	<.5	<3	<3	27	. 93	.012	<1	178	1,25	7	.03	<3	.41	.02	.03	2	-	
	365049	<1	10	<3	11	<.3	43	16	187	1.73	2	<8	<2	<2	49	<.5	<3	<3	33	.81	.022	1	106	1.37	26	.05	<3	.58	.02	.10	<2	9.11	
	365050								173	1.12	<2	<8	<2	<2	22	<.5	<3	<3	21	1.14	.011	3	100	1.31	19	.04	<3	.44	.02	.10	<2	4.78	
	365101																			1.10				1.35		.05	14	1.00	.05	.14	<2	3.35	
	365102	<1 4	196	<3	32	<.3	33	38	368	6.79	<2	<8	<2	<2	82	<.5	<3	<3 4	05	1.87	.011	1	46	2.03	104			1.59				4.29	
	303102	'''	,,,	• •	72	••••				••••	-	_	_	_			_	_			•												
	365103			_						7.23						<.5				1.48								1.28				6.31	
	365104	1 '		_			28	25	315		<2									1.66				1.51				1.13		.13		6.27	
	3 65105																			1.36								1.01				6.85	
	365106	1	32	<3	19	<.3	71	25	343	2.70								<3										.51				5.87	
	365107	<1	42	<3	32	<.3	46	32	39 0	6.45	<2	<8	<2	<2	88	<.5	<3	<3 3	69	1.88	.028	1	101	2.18	92	. 24	4	1.50	.27	.23	<2	7.53	
	365108	<1	66	<3	35	<.3	50	31	464	6.19	<2	<8	<2	<2	116	<.5	<3	<3 3	37	2.45	.043	1		2.03				1.46				6.75	
	365109	<1					35	30	323	7.81	<2	<8	<2	<2	71	<.5	<3	<3 6	42	1.61	.053	<1	42	1.57	62	.20	6	1.19	.18	.13	<2	4.11	
	365110	<1	29	<3	24	<.3	64	27	316	5.11	<2	<8	<2	<2	59	<.5	<3	<3 2	267	1.25	.017	1		2.16		. 17	4	1.15	.15	.19	<2	4.29	
	365111	<1	15	<3	24	<.3	65	27	312	5.39	<2	<8	<2	<2	50	<.5	<3	<3 2	284	1.16	.013	<1	121	2.01	112	.16	5	1.03	.11	.20	<5	6.87	
	365112	<1								8.40	3	<8	<2	<2	55	<.5	<3	<3 6	59	1.45	.018	<1	157	1.73	150	.21	4	1.14	-14	.26	<2	7.11	
	365113	1	22	a	26	٠ ٦	43	27	460	5.63	ς	<8	<2	<2	94	<.5	<3	<3.2	81	2.69	-016	1	113	1.42	77	.16	5	.97	.12	. 14	<2	6.22	
	365114																			1.98						.22		1.22				6.51	
																				1.82						.23		1.31		.22		6.73	
	365115																			2.17				1,77		.18		1.58				1.91	
	365116		0/	<2	22	`	50	77	770	2.77							·)	-2 /	7.0	1.11	000	-1				.20			.10	.10		2.11	
	365117	<1	18	٥	31	<.3	29	33	330	8.70	2	<8	٠.	``	57	\. 5	4	·	147	1.11	.000	` '	77	1.51	04	. 20	4	.72	. 10	. 10	``	2.11	
	365118	: <1	101	<3	27	.3	52													1.93						.26		1.52		.26		3.75	
	365119	<1	8				35																	1.36		. 19			. 14			6.71	
	365120	5	33	≺3	30	<.3	30	30	380	7.34	<2	<8	<2	<2	95	<.5	<3	<3 4	27	2.14	.025			1.86		. 25				.23		7.85	
	365121	; <1	55	5	29	<.3	42	31	321	6.82	<2	<8	<2	<2	115	<.5	<3	<3.3	889	1.78	.086			1.81		.20	_	1.27				6.87	
	365122	<1	4	<3	28	<.3	43	25	397	5.25	<2	<8	<2	<2	105	<.5	<3	<3 2	284	2.29	. 199	2	160	2.22	80	.20	5	1.59	.30	.21	<2	2.53	
	STANDARD DS6	11	114	25	138	<.3	23	Q	703	2.78	19	<8	<2	3	40	5.8	4	7	51	.84	.075	12	166	.57	156	.07	16	1.91	.08	. 15	4	-	
ı	C. MICHIGO COC							,				-	_	_																			

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PP8 - SAMPLE TYPE: Drill Core R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: MAY 30 2006 DATE REPORT MAILED:.

Raymond Chan

SAI	MPLE#	Mo ppm				-				Fe %								Bi ppor p					Çr ppm		Ва	Ti %		Al %	Na %		W : ppm	Sample	
	1	<u></u> -						• •	•		•	··-							-			···			•		• •					ĸg	
1 -	1																			.57											_		
	5123																			1.29												8.17	
	5124																															10.22	
	5125																			1.92								1.55				8.11	
36	5126	1	74	<3	29	<.3	179	32	348	4.34	<2	<8	<2	<2	59	<.5	<3	<3	191	1.14	.023	1	524	3.45	451	.20	3	1.78	.19	.93	<2	7.08	
36	5127	1	50	<3	25	<.3	87	29	288	5.76	<2	<8	<2	<2	63	<.5	<3	4 :	335	1.40	.012	<1	302	1.85	138	.19	3	1.28	.17	.32	<2	6.91	
36	55128	1	15	4	31	<.3	54	42	299	8.46	<2	<8	<2	<2	53	<.5	<3	<3 (481	1.57	.016	<1	174	1.52	42	.20	<3	1.13	.11	.11	<2	5.33	
36	55129	1	212	<3	32	<.3	38	130	316	6.82	8	<8	<2	<2	51	<.5	<3	<3 :	358	1.47	.009	<1	67	1.62	30	. 19	<3	1.21	-06	.06	<2	4.95	
36	55130	1	63	<3	30	<.3	38	42	308	5.90	15	<8	<2	≺2	58	<.5	<3	<3 :	345	1.90	.013	<1	106	1.32	35	.17	<3	.94	.09	.11	<2	5.11	
36	55131	1	285	<3	29	.3	40	39	273	6.30	3	<8	<2	<2	94	<.5	3	<3 :	365	1.29	.015	<1	78	1.55	58	.19	<3	1.18	.15	.14	<2	8.37	
36	55132	1	241	<3	29	<.3	32	30	382	4.96	2	<8	<2	<2	568	<.5	<3	<3 3	301	2.05	.019	1	57	2.29	186	.27	<3	1.81	.35	.30	<2	4.68	
	5133																			3.06				1.95				1.96					
	5134																															2.07	
	5135																															7.55	
	55136																			1.99												7.65	
74	55137	,	69	7	20		7.	77	370	4.9/	-2	e R	-2	-7	70	2.5	٠3	* .	425	1.78	015	1	54	1 68	75	21	-3	1 31	21	20	-2	7.25	
	55138																															6.84	
	55139																															6.75	
	55140																															7.22	
	55141																															7.79	
, ,	22141	'	17	,	27	`	2.5	31	3)7	7.54	,E	٠,	٦٢.	```	00	`.,	~	٠.	130	1.10	.033	'	,,	1.00	0,			1.37	.23	. 17	٦٢.	1.17	
	55142																															7.35	
	55143																															6.97	
36	55144																															7.68	
36	55145																											1.28	-17	.32	<2	7.33	
36	55146	1	285	<3	26	<.3	61	34	325	7.67	3	<8	<2	<2	53	<.5	<3	<3 :	399	1.38	.029	<1	79	1.88	76	.17	4	. 93	.11	. 15	<2	7.48	
36	55147	1	312	<3	29	<.3	53	54	261	7.64	10	<8	<2	2	51	<.5	<3	<3 /	457	1.39	.015	<1	63	1.55	63	.20	<3	1.08	.12	.14	<2	7.59	
	55148	1	501	<3	31	<.3	54	63	263	8.38	3	<8	<2	<5	46	<.5	<3	5 4	464	1.19	.023	<1	45	1.68	38	.20	3	1.14	.09	. 15	<2	6.87	
	365148																			1.20							5	1.15	.09	. 15	<2	-	
1	RE 365148																			1.12												-	
		<1	106	<3	26	<.3	38	29	247	5.74	2	<8	<2	<2	44	<.5	<3	<3 3	341	1.26	.012	<1	127	1.51	22	.16	5	.94	.05	.05	<2	8.21	
74	55150 :	<1	228	3	20	< 3	47	25	225	4.70	,	<8	د2	<2	ፈበ	<.5	<3	<3 :	274	1.07	.017	∢ 1	82	1,41	52	_14	<۲	_03	_08	. 11	<2	7.31	
										5.45										1.33								1.00					
																																7.33	
																																7.46	
•																				.87												5.19	
																																3.17	
ST	FANDARD DS6	11	113	29	135	<.3	23	10	700	2.77	22	8	<2	4	41	5.8	5	6	51	.84	.076	12	164	.57	156	.07	15	1.88	.08	.16	5	-	

SAMPLE#																			Ca %			Ppm Cr	Mg %				Al %	Na %		ppm W	Sample kg	
G-1	<1	2	3	47	′ <.3	3	4	560	2.03	2	<8	<2	5	67	<.5	3	<3	40	.60	.079	8	6	.60	216	.14	<3	.99	.08	.48	<2		
365452	<1	3	<3	12	2 < .3	27	8	170	.93	2	<8	<2	<2	41	<.5	<3	3	22	1.20	.027	1	114	1.50	36	.05	3	.69	.03	.09	<2	3.22	
365453	1	19	5	19	<.3	31	14	281	1.97	2	<8	<2	<2	73	<.5	<3	3	53	1.47	.068	2	136	1.59	104	.10	5	1.01	.07	.25	2	7.51	
365454																			.92												2.53	
365455																			1.11												4.31	
365456	1	10	∢ ₹	17	7 < 3	79	28	382	2.91	4	<8	<2	<2	14	<.5	<3	3	36	.74	.012	1	484	2.34	2	.04	18	.37	. 01	. 01	<2	4.22	
365457																															4.59	
365458	1		_				_												.92												4.77	
																															4.39	
365459																																
365460	<1	32	<5	14	<.5	12	12	514	1.88	4	<8	<2	<2	22	<.5	<3	3	30	1.89	.055	3	56	1.24	22	.08	4	1.32	.04	- 14	<2	2.96	
365461																															5.71	
365462	<1	9	<3	12	· <.3	36	13	180	1.26	<2	<8	<2	<2	41	<.5	<3	<3	25	1.03	.020	1	200	1.61	55	.05	<3	.73	.02	.17	2	3.95	
365463	√ <1	6	<3	1′	<.3	55	18	209	1.73	4	<8	<2	<2	15	<.5	<3	<3	29	1.04	.004	<1	376	1.54	3	.03	9	.26	.01	.01	5	4.22	
365464	<1	12	<3	11	<.3	38	14	157	1.48	2	<8	<2	<2	44	<.5	<3	<3	28	1.02	.024	1	293	1.05	18	.05	<3	.58	.02	.07	<2	4.15	
RE 365464	1	12	<3	1′	·.3	38	14	158	1.51	2	<8	<2	<2	43	<.5	<3	<3	28	1.02	.024	1	295	1.10	18	. 05	3	.58	.02	.07	<2	-	
RRE 365464	<1	12	4	1	i <.3	38	15	170	1.52	4	<8	<2	<2	46	<.5	<3	<3	31	1.09	.025	1	309	1.14	18	. 05	3	.61	.03	.07	<2	-	
365465																			.96				1.34								6.39	
365466																			.99												3.71	
365467																															2,94	
365468																															2.11	
303400	'	D/	٠,	33	, \	30	, 35	317	J.02	٠.	~0	٠.	٠.	173	`	,	,	234	1.12	. 323	,	50	2.65	121	. 1.3	۲,	2,60	.07		`~	2.11	
365469																															2.85	
365470																															3.89	
365471																															6.35	
365472	1	19	<3	16	· <.3	19	12	275	1.57	2	<8	<2	<2	101	<.5	<3	<3	52	2.06	.075	3	101	1.32	88	.11	4	.95	.06	. 19	<2	3.10	
365473	1	10	<3	10	·.3	31	11	146	1.20	<2	<8	<2	<5	27	<.5	<3	<3	27	. 9 0	.027	1	194	1.68	45	.05	<3	.76	.03	.23	<2	5.12	
365474	1	7	3	8	3 <.3	46	16	162	1.61	3	<8	<2	<2	11	<.5	<3	<3	26	.61	.008	1	398	1.23	4	.03	4	.32	.01	.03	<2	2.14	
365475																												.03	.13	<2	3.90	
365476																															5.83	
365477																															6.50	
365478																			2.06												2.20	
745/70	┨.	77	,	4.		70	20	272	2 07	c	٥ر	-2	رر	16	ء د	-7	-7	70	.57	03/	1	554	2.15	30	0/	9	55	.01	10	-2	4.95	
365479									2.93																							
365480																															5.84	
365481																			1.49								.93					
365482																															1.99	
365483	1 <1	18	<3	17	2 < . 3	59	22	205	2.05	7	<8	<2	<2	24	<.5	<3	<3	27	.96	.012	<1	329	1.56	13	.04	8	.48	.02	.05	<2	4.50	
STANDARD DS6	11	120	29	144	. <.3	24	10	701	2.85	21	<8	<2	3	42	5.9	3	5	54	.85	.077	13	168	.59	158	.08	17	1.94	.08	.16	4	_	

											 _																	~~.	- TILLE
SAMPLE#	:				_		Co M		e As								Ca %		La Cr ppm ppm		Ba ppm		В		Na %	K		Sample	_
 	, bbui	Ppii	РМи	ppiii	ppii	ppiii	bbu bb	11	% ррп	PP	hhii	PPH	ppm ppm	Phil	PPII	ppn	·		bhu bhu	70	ppιι	*	ppm	<u>/</u> •		- /-	ppm	kg	
G-1	<1	2	4	42	<.3	3	4 51	5 1.9	3 3	. 9	<2	4	64 <.5	<3	<3	36	.57	.075	7 6	.57	215	_13	<3	.93	.08	.48	≺ 2	-	
365484	2	22	6	17	<.3	41	19 32	4 2.2	9 92	· <8	<2	<2	151 <.5	<3	3	50	1.49	.116	2 165	2.08	74	.09	5	1.37	.06	.20	<2	6.71	
365485	1	11	3	18	<.3	5	10 33	1 2.1	1 8	<8	<2	2	207 < .5	<3	<3	48	2.14	.091	5 7	1.21	24	.16	8	2.21	.09	.13	<2	1.82	
RE 365485	1	11	<3	18	<.3		10 32							<3	<3	48	2.10			1.21		.16		2.18			<2		
RRE 365485	1						10 32				<2		208 <.5							1.19				2.17			_	-	
365486	5	14	۲3	14	٠,٦	57	21 24	3 2 N	र 27	<Я	<2	د2	112 <.5	۲,	5	31	1 03	023	1 221	1.78	٥	.06	7	77	.03	.05	2	6.53	
365487	1												19 <.5					.014			-		-	.46		.05	_	6.59	
365488	1		_	6			13 11												<1 234			.03			.01	.02		2.71	
365489	`;		_	14			12 25											.096				.08				.23		6.42	
	¦		_				14 28				<2															.27	_	4.78	
365490		19	4	10	۲.5	33	14 20	5 1.5	/ 10	`	٠	٠2	1093 4.5	د.	٠,	29	3.20	.023	£ 240	1.75	110	.07	٠,	-01	.03	-21	۲2	4./0	
365491	4	39	4	11	<.3	39	18 15	0 1.4	2 5	<8	<2	<2	36 < .5	<3	<3	27	1.09	.026	1 121	1.14	23	.06	<3	.50	.03	. 13	<2	5.35	
365492	1	74	<3	11	<.3	55	21 15	3 1.9	1 16	<8	<2	<2	20 <.5	<3	<3	25	.70	.013	1 277	2.04	31	.04	<3	.89	.02	. 29	<2	6.23	
365493							392 10			· <8	<2	<2	5 <.5	<3	<3	8			<1 82						.03			2.20	
365494							143 13							<3	<3	13			<1 216	.87		.03	<3	.32	.04			3.07	
365495			_				14 18					_							1 247						.04	.37		2.09	
365496	1	4.7	ح.	10	- 3	45	16 21	. 1 R	n a	A	<2	-2	36 < 5	-3	<3	28	1 73	051	1 309	1 86	82	กล	رع	.96	กร	.34	-2	4.41	
365497							19 21				<2							.026				.06			.03			4.35	
365498	`		_				9 12		_													.05			.04			3.52	
365499	1 ¦						12 19															.07				.34		4.92	
******	'																					-					_		
365500	-	כו	۲,	•	٠.১	22	9 17	0 1.3	c < c	. 50	٠	54	33 <.5	د.	٠,	20	1.30	.023	1 288	1.29	44	.05	۲.	.59	.10	.17	٠,	4.88	
STANDARD DS6	11	121	28	134	.4	22	9 63	3 2.6	6 19	9	<2	4	40 5.8	4	7	49	.81	.073	13 156	.55	152	.08	15	1.81	.08	. 16	2	<u>-</u>	

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEM PRECIOUS METALS ANALYSIS

44

0200000 100000 100000

Mincord Exploration Consultants Ltd. PROJECT Iron Lake File # A602408 Page 1
110 - 325 Howe St., Vancouver BC V6C 127 Submitted by: Ginette Carter

The SES float City to float						<u>,</u>
SAMPLE#	Au** ppb	Pt** ppb	ppb			
G-1 365041 365042 365043 365044	<2 16 3 2 <2	<3 12 22 13 69	2 6 2 10 5			
365045 365046 365047 365048 RE 365048	8 3 3 4 3	27 19 20 11 11	3 2 4 3 3			
RRE 365048 365049 365050 365101 365102	<2 <2 3 5 15	11 23 20 9 25	3 9 5 3 9 9			
365103 365104 365105 365106 365107	20 2 <2 4 3	42 19 19 19 28	88 10 19 12 33			
365108 365109 365110 365111 365112	4 4 4 3 4	35 21 29 41 61	46 25 25 83 57			
365113 365114 365115 365116 365117	<2 6 5 4 <2	161 95 44 13 27	41 46 82 15 17			
365118 365119 365120 365121 365122	3 4 4 8 3	38 84 51 62 41	73 13 28 51 4			
STANDARD FA	A-10R 500	476	486	<u> </u>	TI / CO	· -
						ti.

GROUP 3B - FIRE GEOCHEM AU, PT, PD - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AGUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM. - SAMPLE TYPE: Drill Core R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

96-06-2006 PA3:1

Data FA DATE RECEIVED: MAY 30 2006 DATE REPORT MAILED:.....

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	
G-1 365123 365124 365125 365126	2 4 4 4 10	<3 43 34 35 20	10 33 47 31 26	
365127 365128 365129 365130 365131	3 4 <2 3	34 29 21 58 45	46 35 36 57 74	
365132 365133 365134 365135 365136	7 <22 5 6	56 <3 47 71 62	40 45 64 46	
365137 365138 365139 365140 365141	4 2 <2 3 3	26 28 22 9 64	34 50 13 53 32	
365142 365143 365144 365145 365146	4 3 3 3 24	51 13 40 20 77	72 16 65 29 162	
365147 365148 RE 365148 RRE 365148 365149	3 4 5 5 3	30 31 35 34 21	51 58 58 53 27	
365150 365151 365152 365153 365451	2 5 2 <2 2	17 22 16 21 15	24 32 12 22 <2	
 STANDARD FA-10R	501	499	492	

ACME ANALYTICAL					
	SAMPLE#	Au** ppb	ppb_	ppb pb	
	G-1 365452 365453 365454 365455	<2 3 2 13 3	20 13 30 31	<2 <2 <6 3	
	365456 365457 365458 365459 365460	2 4 3 <2 2	17 17 31 7 9	<2 6 2 14 2	
	365461 365462 365463 365464 RE 365464	<2 <2 <2 <2 <6	5 12 11 21 23	4 <2 <2 <2 <2	
	RRE 365464 365465 365466 365467 365468	3 3 2 4 4	20 17 15 9	6 <2 3 23 24	
	365469 365470 365471 365472 365473	5 2 6 <2 3	7 11 5 6 17	31 6 2 3	
	365474 365475 365476 365477 365478	56286	23 7 15 20 18	4 <2 4 4 2	
	365479 365480 365481 365482 365483	5 5 4 5 7	26 19 18 19 12	5 7 <2 <2	
	STANDARD FA-10R	492	481	491	

SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	
G-1 365484 365485 RE 365485 RRE 365485	3 4 4 2 2	<3 14 <3 4 3	<2 <2 <2 <2 <2	
365486 365487 365488 365489 365490	2 <2 4 34 3	8 31 46 12 29	<2 <2 <2 5	
365491 365492 365493 365494 365495	3 3 4 6 2	22 30 16 16 27	<2 <2 13 <2 <2	
365496 365497 365498 365499 365500	3 4 3 3 5	35 31 17 31 20	4 3 2 <2 2	
STANDARD FA-10R	489	495	497	

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

44

Mincord Exploration Consultants Ltd. PROJECT Iron Lake File # A602394

110 - 325 Howe St., Vancouver BC V6C 127 Submitted by: Ginette Carter

. —	_											·																		
· <u>-</u>	SAMPLE#	Mo Cu ppm ppm			-												Bi V ppm ppm	Ca %		La ppm		Mg Ba % ppm	⊺i %	B	Al %	Na %		w s ppm	Sample kg	
	G-1	1 3				5	4 5	555	1.85	<2	<8	<2	4	70	۲.۶	<3	3 37	.62	.069		15	.59 226					.48	_	-	
	A201301	1 208	4	41	<.3	34	35 5	520	7.23	<2	<8	<2	<2	118	<.১	3	<3 415	1.86	.141			2.36 238			2.11	.27	. 22	_	3.76	
	A201302	1 256	<3	35	<.3	32	34 4	+48	8.30	<2	<8	<2	<2	110	<.5	<3	<3 475	1.82	.090			1.96 145				.27	. 18		7.85	
	A201303	1 265	<3	43	<.3	41	39 5	343	9.60	<2	<8	<2	<2	111	<.5	<3	<3 524	2.09	.029			2.45 153			2.03				6.87	
	A201304	<1 297	3	42	<.3	19	35 5	352	7.81	<2	<8	<2	<2	115	<.5	<3	4 456	2.00	.063	4	20	2.40 172	.30	3	2.04	.35	.27	<2	6.48	
	A201305	1 138	3	37	<.3	29	34 5	514	7.64	<2	<8	<2	<2	140	<.5	<3	4 440	2.09	.136			2.24 140							6.52	
	A201306	1 100	4	35	<.3	26	30 4	452	6.75	<5	<8	<2	<2	120	<.5	<3	3 386	1.78	.201			1.73 115				.22			5.59	
	A201307	1 53	3	33	<.3	40	36 4	415	9.08	<2	<8>	<2	2	117	<.5	<3	5 516	1.69	.058	3	38	1.87 109	.26	3	1.66	.24	.16	<2	3.45	
	RE A201307	<1 55	3	33	<.3	41	37 (435	9.40	<2	<8	<2	<2	119	<.5	<3	3 526	1.72	.058			1.91 111							-	
	A201308	1 252	5	42	<.3	21	33 5	502	7.45	<2	<8	<2	<2	165	<.5	<3	<3 443	1.71	.056	3	24	2.10 161	.28	<3	1.86	.26	. 15	<5	3.75	
	A201309	1 313	3	45	<.3	16	36 5	509	7.64	2	<8	<2	<2	258	<.5	4	<3 421	2.25	.319	6	14	2.12 152	.20	3	2.20	.26	.20	<2	3.81	
	A201310	<1 28	<3	33	< 3	78	47 (427 1	15.36	<2	<8	<2	<2	30	<.5	<3	3 796	1.21	.010	3	112	1.25 49	.26	<3	.86	.11	.05	<2	4.21	
	A201311	1 330	- <3	43	< 3	30	41	568 1	0.59	<2	<8	<2	<2	185	<.5	4	<3 554	2.11	.116	4	35	2.43 122	.31	4	2.11	.28	. 19	<2	3.75	
	A201311	1 34	7	77	- · · · · · · · · · · · · · · · · · · ·	37	33 /	487	7.07	<2	<8	<2	<2	140	<.5	<3	4 418	2.07	.040			2.40 107			2.09	.32			2.11	
	A201313	1 29	5	34).J	3/.	31 /	476	6 16	- 22	ŏ	<2	٠,2	140	< 5	<3	<3 365	2.09	-012			2.37 119			2.19		.23		1.18	
	AZUISIS	1 27																												
	A201314	<1 29	3	36	<.3	43	35 4	458	9.25	<2	<8	<2	<2	115	<.5	<3	3 492	1.59	.022			1.72 73				.18	.12	<2	4.25	
	A201315	1 68	4	36	<.3	39	36 5	529	8.10	<2	<8	<2	<2	101	<.5	<3	<3 477	2.02	.025	3	133	2.41 123	.32	<3	1.80	.33	.19	<2	2.67	
	A201316	1 25	<3	27	<.3	56	39 /	436 1	10.72	<2	<8	<2	<2	37	<.5	<3	<3 568	1.36	.009	2	124	1.44 52	.27	4	.96	.13	.08	<2	2.78	
	A201317	<1 120	<3	38	<.3	25	42 5	546 1	10.22	4	<8	<2	<2	189	<.5	<3	5 542	3.13	.696	9	39	1.91 107	.07	4	1.65	.24	. 17	<2	5.94	
	A201318	1 99	3	39	<.3	23	39 5	581	8.18	<2	<8	<2	<2	144	<.5	3	<3 506	2.52	.096	4	13	2.88 163	.33	3	2.29	.46	.29	<2	4.83	
	A201319	1 197	7	30	٠ ٦	R	37 '	504	7 17	<2	∢8	۲2	٠2	232	<.5	<3	<3 417	3.64	-813	12	9	2.23 178	.07	4	2.06	.31	-24	<2	5.73	
	A201319	1 143	, 3	40	~ 3	11	38 (560	7 47	<2	<8	<2	₹2	166	<.5	<3	4 442	2.62	.314			2.65 175			2.15		.26	<2	2.27	
	A201321	<1 39		28	· · · · · · · · · · · · · · · · · · ·	02	46	756 1	16 06	-22	<8	<2	₹2	50	< 5	<3	<3 698	1.75	.038			1.64 60		_	1,11	.18	. 09		1.87	
	A201321	1 243	7	43	- 3	11	37 '	502	9 58	7	-8	25	-22	100	2.5	<3	<3 460	2 95	580			2.31 147			2.02		.20		4.11	
	A201322 A201323	1 524		74	`	11	21 1	500	7 37	-2	-9	72	-2	82	2.5	-73	3 437	1 45	035	۵.	7	2.24 342	31				.29		4.39	
	A201323	1 324	o	30		11	31.	177	1.31	~~	۰۵	~2	76	QL.	`.,	٠,	2 42	1.45	.033	7	•	E.LT 37L		•	.,,,		,	_	7.27	
	A201324	1 253															<3 286		.099			1.40 260			1.31		.21		3.75	
	A201325	1 110	5	14	<.3	4	9 7	330	2.29	9	<8	<2	<2	40	<.5	8	<3 96		.052		. 7	.25 225	.03	<3	.41	.10			1.93	
	A201326	1 218	5	40	<.3	17	36 (634	6.85	<2	<8	<2	<2	119	< . 5	<3	<3 395	1.87	150			2.58 235			2.06		.31		10.22	
	A201327	1 70	3	34	<.3	24	30 :	511	6.02	<2	<8	<2	<2	149	<.5	<3	<3 358	2.10	.050			2.54 162			2.09				5.65	
	TR-06-01	<1 23	4	23	<.3	82	41 3	384	12.62	<2	<8	<2	<2	34	<.5	<3	<3 640	1.29	.022	3	33	1.24 44	.26	<3	. 85	.14	.06	<2	2.20	
	STANDARD DS6	11 121	30	139	<.3	24	10 (691	2.81	21	<8	<2	2	40	5.8	4	4 55	.85	.078	14	183	-57 165	.08	16	1.91	.07	.15	4	-	<u>.</u>

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: ROCK R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: MAY 29 2006 DATE REPORT MAILED:....

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEM PRECIOUS METALS ANALYSIS

22

Mincord Exploration Consultants Ltd. PROJECT Iron Lake File # A602394 110 - 325 Howe St., Vancouver BC V6C 127 Submitted by: Ginette Carter

SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb	
G-1 A201301 A201302 A201303 A201304	5 14 26 12 15	<3 8 4 4 5	<2 50 13 9 21	
A201305 A201306 A201307 RE A201307 A201308	17 3 7 6 7	3 7 9 <3 3	26 16 14 12 12	
A201309 A201310 A201311 A201312 A201313	12 4 13 6 4	5 <3 <3 8	6 3 6 2 6	
A201314 A201315 A201316 A201317 A201318	5 18 <2 6 8	29 12 14 <3 5	21 73 9 8 120	
A201319 A201320 A201321 A201322 A201323	112 6 9 89	<3 <3 3 <3	5 67 3 20 4	
A201324 A201325 A201326 A201327 TR-06-01	31 12 21 7 4	5 <3 <3 4 <3	18 8 126 86 2	
STANDARD FA-10R	489	491	492	

GROUP 3B - FIRE GEOCHEM AU, PT, PD - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM. - SAMPLE TYPE: ROCK R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

06-05-2006 A09:14

a FA DATE RECEIVED: MAY 29 2006 DATE REPORT MAILED:.....

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Mincord Exploration Consultants Ltd. PROJECT Iron Lake File # A602393 110 - 325 Howe St., Vancouver BC V6C 1Z7 Submitted by: Ginette Carter

Page 1

								110		110#		, ,					<u>-</u>		ANT C CCG		31116666	- 001										
SAMPLE#	Mo	Cu			_			Mn ppm		As					Cd ppm				Ca %		La C		Mg 8		 [i % pp		Al %	Na %	K %	bbw ₩	Sample kg	22
G-1 365001 365002 365003 365004	! <1 2 11 6	2 10 17 12 8	<3 <3	19	<.3 <.3	78	22 13 27	281 198 285	2.04 1.99 1.39 2.24 1.82	<2 <2 4			<2	6 63 11	<.5 <.5 <.5 <.5	3 <3 <3	<3	26 26 28	.56 .40 1.12 .82 .72	.080 .007 .029 .007	7 2 <1 56 1 27 <1 46 <1 47	6 2 3 1 8 3	.61 6 .11	8 .6 1. 5 1. 8)3)5)4 1	3 9 3 2 7	1.00 .26 .99 .86	.08 .01 .03 .01	.52 .01 .20 .11		6.89 3.45 3.37 4.39	
365005 365006 365007 365008 365009	1 8 1 1 1	12 26 16 6 10	ও ও ও	15 9 25	<.3 <.3 .4		12 14 40	210 149 530	2.10 1.32 1.32 2.94 1.60	<2 <2 <2	10 <8	<5 <5 <5	<2 <2 2	59 15 8	<.5 <.5 <.5 <.5	<3 <3 <3	<3 <3 <3 <3 <3	22 25	.50 1.16 .67 .32 .94	.008 .043 .005 .004 .038	1 56 2 18 <1 31 1 46 1 21	30 1 3 1 4 5	.49 6	4 .1 6 .1 4 .1	06 < 03 02 2	9 3 4 6 4	.50 .89 .35 .19	.02 .06 .01 <.01	.21 .23 .07 .03 .16	<s <<="" <s="" td=""><td>7.26 5.75 6.21 3.38 7.56</td><td></td></s>	7.26 5.75 6.21 3.38 7.56	
365010 365011 365012 365013 365014	1 1 <1 <1 <1	14 21 14 11 15	<3 <3	17 14 15	<.3 <.3 <.3	49 38 66	18 14 22	311 220 311	1.91 2.17 1.61 2.41 2.06	<2 <2 <2	<8 <8 <8	<2 <2	<2 <2 <2	45 61 25	<.5	उ उ उ	ও ও ও	46 42 33	.61	.033 .063 .066 .011 .014	1 27 2 39 1 33 <1 48 1 41	97 1 14 1 13 2	.83 5 .86 12	2 .1 4 .1 9 .1	06 08 04	3 9 3 9 7	.73 .66 1.10 .40 .47	.04 .04 .05 .01	.23 .11 .44 .03	<5 <5 <5 <5 <5	7.24 4.81 3.65 5.84 6.85	
365015 RE 365015 RRE 365015 365016 365017	1 <1 <1 <1 <1	28 28 28 10 34	<3 <3 <3 <3 <3	17 18 7	<.3		20 21 9	299 309 111	2.29 2.27 2.28 1.03 2.51	2 2 <2	<8 <8	<2 <2 <2 <2 <2	<2 <2 <2	46 47 18		∢ ∢ ∢	<3	48 48 19	1.21 1.18 1.24 .78 1.39	.063 .063 .061 .015	2 32 2 31 2 32 1 23 4 3	6 1 20 2 36	.98 7 .09 7 .98 1), 3), 3), 3	07 08 04	5 5 3	1.03 1.00 1.04 .45 1.10	.06 .05 .06 .03	.20 .20 .21 .04	<2 <3 <5 <5 <5	6.11 3.09 4.59	
365018 365019 365020 365021 365022	1 1 <1 1	15 258 40 59 27	<3 <3 <3	45 14 20	<.3 <.3 <.3	10 41	24 16 13	734 224	2.48 4.83 1.80 1.96 1.41	<2 <2 <2	<8 <8	<2 <2	<2 <2 <2	248 39 108	<.5 <.5 <.5	∢ ∢ ∢	্ত ব্য	231 53 65	1.12 3.40 1.26 1.56 1.56	.478 .062	6 4 1 25	4 2 3 1 5 1	.47 1 .52 12 .45 5 .38 15	4 . 2 .(18 07 10	4 3	.88 2.97 .87 1.30 1.09	.03 .20 .06 .09	.04 .35 .14 .16	\$\$ \$\$ \$\$	3.27 3.13 2.15 2.53 4.89	
365023 365024 365025 365026 365027	1 2 1 1 1	16 43 14 15 21	<3 <3 <3	15 18 10	<.3 <.3 <.3	92 31	28 30 11	409 156	1.64 2.26 2.77 1.32 1.82	3 <2	<8 <8	<2	<2 <2 <2	29		<3 <3 <3	ও ও ও ও	34 35 31	.96 .78 .52 .92	.018 .010 .030 .026 .059	1 33 1 25 1 33 1 23 1 32	7 3 7 3 6 1	.20 1 .75 2 .27 2	9 .1 20 .1 24 .1	04 2 04 2 05	5 20 21 4 5	.57 .63 .35 .51 .74	.02 .01 .01 .03	.05 .14 .06 .08	<2	8.01 7.15 7.29 6.35 7.11	
365028 365029 365030 365031 365032	1 <1 <1 10 77	16 11 9 99 5428	3 <3 <3	11 8 20	<.3 <.3 <.3	21	18 11 24	189 121 315	1.45 1.97 1.24 2.96 31.81	3 <2 2	<8 <8	<2 <2 <2	<2 <2 <2	27 12 129	<.5	∢ ∢ ∢ ∢	<3 <3	38 26 77	1.19 .93 .87 1.75 .98	.088 .025 .016 .231 .182	3 6 1 48 1 22 3 7 49 1	36 1 25 1 73 1	.19 .95 2	2 .1	05 04	9	1.66 .55 .44 1.43	.07 .02 .02 .09	.35 .06 .01 .13	\$ \$ \$ \$ \$ \$ \$	1.22 5.11 5.31 2.75 5.83	
STANDARD DS6	11	122	29	147	.3	24	10	691	2.91	20	9	<2	_ 3	43	6.4	3	5	54	.89	.080	13 17	' 1	.61 16	1 .	08 1	7	2.03	.08	.16	4	নান 7	~

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns - SAMPLE TYPE: DRILL CORE R150

DATE RECEIVED: MAY 29 2006 DATE REPORT MAILED:

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co Mn ppm ppm	Fe %		D mdd	Au ppm	,		Çd ppm (Bi V moyolmoyo	Ca %	P %	La Cr ppm ppm	Mg %	Ba ppm	1 i %	ppm	Al %	Na %	К %	bbш H	Sample kg
365033	1	226	<3	13	<.3	15	18 361	5.96	11	<8	<2	<2	25	<.5	<3	3 107	2.10	.099	3 155	1,61	10	.08	11	1.06	.10	.09	<2	2.93
365034	52	1110	<3	15	<.3	101	99 296	17.26	80	<8	<2	<2	24	<.5	<3	<3 119	1.55	.114	2 131	1.20	14	.05	16	.83	.04	.09	<2	1.25
365035	19	158	<3	20	<.3	10	20 339	6.39	3	<8	<2	2	143	<.5	<3	<3 150	2.71	.433	18 21	1.91	23	. 13	12	2.12	.09	.21	<2	4.37
365036	2	119	<3	17	<.3	29	19 357	4.64	2	<8	<2	<2	106	<.5	<3	<3 165	2.52	.318	4 95	1.88	32	.16	7	1.71	.11	.20	<2	5.97
365037	2	146	4	19	<.3	21	24 365	5.01	4	<8	<2	<2	118	<.5	<3	<3 200	2.95	.580	7 26	2.09	81	.16	12	2.39	.13	.44	<2	5.18
365038	<1	148	<3	13	<.3	45	23 302	6.87	5	<8	<2	<2	44	<.5	<3	<3 128	2.01	.028	1 349	1.73	36	.09	8	. 92	.04	.27	<2	6.85
365039	<1	48	<3	13	<.3	25	13 207	3.18	<5	<8	<2	<2	29	<.5	3	<3 72	1.40	.045	1 148	1.33	54	.08	3	.71	.06	.22	<2	5.79
365040	<1	22	<3	25	<.3	47	24 268	4.28	2	<8	<2	<2	40	<.5	<3	<3 236	1.29	.030	1 314	1.77	88	. 15	7	.93	.06	.30	<2	-85
STANDARD DS6	10	119	28	145	<.3	25	10 688	2.88	22	<8	<2	3	42	6.1	5	5 54	.85	.078	13 170	.60	160	.08	16	1.97	.08	.16	3	•

Sample type: DRILL CORE R150.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEM PRECIOUS METALS ANALYSIS

44

Mincord Exploration Consultants Ltd. PROJECT Iron Lake File # A602393

Page 1

110 - 33	25 Howe St., Vancouver BC V6C	127 SUD	mitted by	: Ginette	e Carter Mar Mar	•
	SAMPLE#	Au** ppb	Pt** ppb	Pd** ppb		
	G-1 365001 365002 365003 365004	<2 2 9 <2 <2	<3 26 23 18 26	25 25 23 <2		
	365005 365006 365007 365008 365009	4 3 <2 <2 <2	13 11 21 27 17	<2 10 3 4 3		
	365010 365011 365012 365013 365014	2 3 2 3 4	16 14 26 26 34	4 2 3 6 6		
	365015 RE 365015 RRE 365015 365016 365017	<2 <2 <2 <2 2	16 14 14 26 <3	8 11 6 4 4		
	365018 365019 365020 365021 365022	3 5 5 4 2	39 <3 13 12 6	<2 4 10 2 3		
	365023 365024 365025 365026 365027	3 2 2 <2 2	18 10 14 16 21	7 6 5 3 9		
	365028 365029 365030 365031 365032	6 <2 2 2 11	7 12 6 4 <3	19 2 6 8 10		
	STANDARD FA-10R	491	478	491		

GROUP 3B - FIRE GEOCHEM AU, PT, PD - 30 GM SAMPLE FUSION, DORE DISSOLVED IN AQUA - REGIA, ICP ANALYSIS. UPPER LIMITS = 10 PPM. - SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

05-02-2006 A11:47

Data FA DATE RECEIVED: MAY 29 2006 DATE REPORT MAILED:.....

Raymond Chan

ACME ANALYTICAL	<u></u>		ACITE ARACTICAL
	SAMPLE#	Au** Pt** Pd** ppb ppb ppb	
	G~1 365033 365034 365035 365036	<2 <3 <2 49 10 5 11 12 8 4 5 11 5 25 29	
	365037 365038 365039 365040 STANDARD FA-	2 6 47 4 23 8 <2 18 5 <2 18 6 10R 490 489 480	

Sample type: DRILL CORE R150.