Geophysical and Geochemical Assessment Report on the Nechako Property

Ominica Mining Division, BC

NTS MAP SHEET 93F 53° 35' North Latitude, 125° 26" West Longitude UTM coordinates of 338858 mE, and 5941086 mN, NAD'83 Zone 10

For:

GOLDMEMBER VENTURES CORP. 302-675 West Hastings Street Vancouver, B.C.

By:

George Nicholson, P.Geo., FRGS

April 25, 2007

Table of Contents

TAB	LE OF	CONTENTS	2
LIST	OF T	ABLES	3
LIST	OF F	IGURES	3
1	INT	RODUCTION AND TERMS OF REFERENCE	5
Z.	PRU	DPERTY DESCRIPTION AND LOCATION	7
3.		ESSIBILITY, CLIMATE, LOCAL RESOURCES,	14
	2 1		14
	3.1	Access	14
4.	HIS	TORY	15
	4.1	1987-1991 Mingold (Subsidiary of Hudsons Bay Mining and Smelting)	15
	4.2	1986-1988 Newmont Exploration of Canada Limited	16
	4.3	1992-1994 Cogema Resources Ltd.	16
	4.4	1995 Phelps Dodge Corporation of Canada	17
	4.5	Government Programs	17
5.	GEC	DLOGICAL SETTING	18
	5.1	Regional Geology	18
		Basement Rocks – Lower Upper Cretaceous and Older	20
		Upper Cretaceous to Miocene	21
	5.0	Pliocene-Pleistocene	23
	5.2	Regional Structure	23
	5.3	Property Geology	25
	5.4	Deposit Types	Z1
6.	MIN	VERALIZATION	31
	6.1	093F 065 Gusty	31
	6.2	093F054 Rhub	32
	6.3	093F058 Yellow Moose	32
7.	EXP	PLORATION	34
	7.1	Nechako Study Area	34
8.	RES	ULTS	40
	8.1	Grid 1	40
	8.2	Grids 2 & 3	49
	8.3	Grid 2	49
	8.4	Grid 3	54
	8.5	Sampling Method and Approach	57
	8.6	Sample Preparation, Analyses and Security	58
	8.7	Data Verification	59

9.	INT	ERPRETATION	. 60
	9.1	Grid 1	60
	9.2	Grid 2	60
	9.3	Grid 3	61
10.	CON	CLUSIONS	. 62
11.	REC	OMMENDATIONS	. 62
	11.1	Phase I – Budget	62
12.	STA	TEMENT OF COSTS	. 64
13.	STA	TEMENT OF QUALIFICATIONS	65
14.	REF	ERENCES	. 66
APPI	ENDL	K I. MMI SURVEY ANALYTICAL CERTIFICATES	. 69
APPI	ENDI	K II. REGIONAL GEOPHYSICAL INTERPRETATION	70
APPI	ENDIX	K III. 3D INDUCED POLARIZATION SURVEY	71

List of Tables

Table 1. Claims Data - Nechako Property	7
Table 2. Summary of Anomalous Assay Results: 1991 Drilling Equity Silver Mines	16
Table 3. Main Geologic Map Units of the Nechako Basin	. 20
Table 4. Summary Statistics Mobile Metal Ions	. 49

List of Figures

Figure 1. Location Map	6
Figure 2. Claim Map	.12
Figure 3. Regional Geology	.19
Figure 4. Structural Interpretation	24
Figure 5. Property Geology	26
Figure 6. BC Epithermal Model	28
Figure 7. Government Airborne Magnetic Data	35
Figure 8. 3D Magnetic Inversion	36
Figure 9. 3-View of Gravity and Magnetic Inversion Results	.37

Figure 10. Grid Locations and Geological Sample Locations for Nechako Property	38
Figure 11. IP Survey Grid 1	41
Figure 12. Grid 1 – Inverted Resistivity	42
Figure 13. Grid 1 – Inverted Chargeability	43
Figure 14. 2006 MMI Geochemistry Selenium	44
Figure 15. 2006 MMI Geochemistry Lead	45
Figure 16. 2006 MMI Geochemistry Antimony	46
Figure 17. 2006 MMI Geochemistry Arsenic	47
Figure 18. 2006 MMI Geochemistry Molybdenum	48
Figure 19. IP Grids 2 and 3 – Relative Magnetic Field Intensity	50
Figure 20. IP Grid 2 – Resistivity Inversion on Magnetic Colour Contour Map	52
Figure 21. IP Grid 2 – Chargeability Intervsion – 300 m Depth Below Ground Surface	53
Figure 22. IP Grid 3 – Resistivity Intervsion – 200 m Depth Below Ground Surface	55
Figure 23. IP Grid 3 – Chargeability Inversion – 100 m Depth Below Ground Surface 5	56

1. Introduction and Terms of Reference

This technical report was commissioned by Goldmember Ventures Corp. to summarize the geology, mineralization and geochemical and geophysical exploration programs conducted on the Nechako group of claims situated in the Ominica Mining division, British Columbia, Canada (Figure 1). The work described in this report was conducted between May 1, 2006 and October 31, 2006; a total of \$652,250.00 dollars was spent which will be applied to the property as exploration assessment credits. The author was retained by the Directors of Goldmember Ventures Corp to complete this assessment report.

FIGURE 1. LOCATION MAP

2. Property Description and Location

The Nechako group of claims consists of 157 newly staked mineral claims using the "cell system" of Mineral Titles Online (BC) totaling approximately 72,753.74 hectares in surface area. The center of the property is situated approximately 60 kilometres by road from Burns Lake and is bounded by Cheslata Lake to the north and Intata Reach of the Nechako Reservoir on the west and south. The property is situated on National Topograhic System 1:50,000 Map sheets 93F/11, 93F/12, 93F/06 and B.C. Provincial 1:20,000 map sheets 093F044, 093F045, 093F053, 093F054, 093F055, 093F062, 093F063, 093F064, and 093F065 respectively. The geographical centre of the property is 53° 35' North Latitude and 125° 26" West Longitude with corresponding UTM coordinates of 338858 mE, and 5941086 mN, NAD'83, Zone 10. The property shape and boundary are displayed on Figure 2. Details of the claims are tabled as follows.

TENURE #	NAME	OWNER FMC	MAP	GOOD TO DATE	STATUS	AREA
524105	AP 1	146491 (100%)	093F	2007/DEC/20	GOOD	478.71
524106	AP 2	146491 (100%)	093F	2007/DEC/20	GOOD	478.947
524107	AP 3	146491 (100%)	093F	2007/DEC/20	GOOD	479.18
524108	AP 4	146491 (100%)	093F	2007/DEC/20	GOOD	460.256
524109	AP 5	146491 (100%)	093F	2007/DEC/20	GOOD	478.709
524110	AP 6	146491 (100%)	093F	2007/DEC/20	GOOD	478.949
524111	AP 7	146491 (100%)	093F	2007/DEC/20	GOOD	479.185
524112	AP 8	146491 (100%)	093F	2007/DEC/20	GOOD	460.217
524113	AP 9	146491 (100%)	093F	2007/DEC/20	GOOD	460.394
524114	AP 10	146491 (100%)	093F	2007/DEC/20	GOOD	478.704
524115	AP 11	146491 (100%)	093F	2007/DEC/20	GOOD	478.944
524116	AP 12	146491 (100%)	093F	2007/DEC/20	GOOD	479.185
524117	AP 13	146491 (100%)	093F	2007/DEC/20	GOOD	479.418
524118	AP 14	146491 (100%)	093F	2007/DEC/20	GOOD	479.65
524119	AP 15	146491 (100%)	093F	2007/DEC/20	GOOD	478.701
524120	AP 16	146491 (100%)	093F	2007/DEC/20	GOOD	478.939
524121	AP 17	146491 (100%)	093F	2007/DEC/20	GOOD	479.181
524123	AP 18	146491 (100%)	093F	2007/DEC/20	GOOD	479.416
524124	AP 19	146491 (100%)	093F	2007/DEC/20	GOOD	460.487
524125	AP 20	146491 (100%)	093F	2007/DEC/20	GOOD	421.227
524126	AP 21	146491 (100%)	093F	2007/DEC/20	GOOD	478.89

Table 1. Claims Data - Nechako Property

TENURE #	NAME	OWNER FMC	MAP	GOOD TO DATE	STATUS	AREA
524127	AP 22	146491 (100%)	093F	2007/DEC/20	GOOD	479.135
524128	AP 23	146491 (100%)	093F	2007/DEC/20	GOOD	479.37
524129	AP 24	146491 (100%)	093F	2007/DEC/20	GOOD	441.217
524130	AP 25	146491 (100%)	093F	2007/DEC/20	GOOD	403.009
524160	AP 26	146491 (100%)	093F	2007/DEC/21	GOOD	440.326
524161	AP 27	146491 (100%)	093F	2007/DEC/21	GOOD	478.841
524162	AP 28	146491 (100%)	093F	2007/DEC/21	GOOD	479.087
524163	AP 29	146491 (100%)	093F	2007/DEC/21	GOOD	479.321
524164	AP 30	146491 (100%)	093F	2007/DEC/21	GOOD	479.556
524165	AP 31	146491 (100%)	093F	2007/DEC/21	GOOD	460.577
524166	AP 32	146491 (100%)	093F	2007/DEC/21	GOOD	422.344
524167	AP 33	146491 (100%)	093F	2007/DEC/21	GOOD	478.61
524168	AP 34	146491 (100%)	093F	2007/DEC/21	GOOD	478.843
524169	AP 35	146491 (100%)	093F	2007/DEC/21	GOOD	479.086
524170	AP 36	146491 (100%)	093F	2007/DEC/21	GOOD	440.97
524171	AP 36	146491 (100%)	093F	2007/DEC/21	GOOD	479.556
524172	AP 37	146491 (100%)	093F	2007/DEC/21	GOOD	383.814
524173	AP 38	146491 (100%)	093F	2007/DEC/21	GOOD	479.982
524182	FC 1	146491 (100%)	093F	2007/DEC/21	GOOD	478.541
524184	FC 2	146491 (100%)	093F	2007/DEC/21	GOOD	421.313
524187	FC 3	146491 (100%)	093F	2007/DEC/21	GOOD	478.989
524189	FC 3	146491 (100%)	093F	2007/DEC/21	GOOD	479.227
524191	FC 4	146491 (100%)	093F	2007/DEC/21	GOOD	441.181
526208	FC 5	146491 (100%)	093F	2008/JAN/25	GOOD	383.813
526210	FC 6	146491 (100%)	093F	2008/JAN/25	GOOD	287.988
526212	FC 7	146491 (100%)	093F	2008/JAN/25	GOOD	478.38
526213	FC 8	146491 (100%)	093F	2008/JAN/25	GOOD	478.614
526215	FC 9	146491 (100%)	093F	2008/JAN/25	GOOD	478.847
526217	FC 10	146491 (100%)	093F	2008/JAN/25	GOOD	479.086
526219	FC 11	146491 (100%)	093F	2008/JAN/25	GOOD	479.321
526220	FC 12	146491 (100%)	093F	2008/JAN/25	GOOD	479.555
526221	FC 13	146491 (100%)	093F	2008/JAN/25	GOOD	479.79
526222	FC 14	146491 (100%)	093F	2008/JAN/25	GOOD	441.617
526225	FC 15	146491 (100%)	093F	2008/JAN/25	GOOD	479.463
526226	FC 16	146491 (100%)	093F	2008/JAN/25	GOOD	479.698
526229	FC 17	146491 (100%)	093F	2008/JAN/25	GOOD	479.931
526230	FC 18	146491 (100%)	093F	2008/JAN/25	GOOD	403.33
526231	FC 19	146491 (100%)	093F	2008/JAN/25	GOOD	479.464
526232	FC 20	146491 (100%)	093F	2008/JAN/25	GOOD	479.699

TENURE #	NAME	OWNER FMC	MAP	GOOD TO DATE	STATUS	AREA
526235	FC 21	146491 (100%)	093F	2008/JAN/25	GOOD	479.93
526236	FC 22	146491 (100%)	093F	2008/JAN/25	GOOD	480.165
526237	FC 23	146491 (100%)	093F	2008/JAN/25	GOOD	461.209
526238	FC 24	146491 (100%)	093F	2008/JAN/25	GOOD	479.465
526239	FC 25	146491 (100%)	093F	2008/JAN/25	GOOD	479.7
526240	FC 26	146491 (100%)	093F	2008/JAN/25	GOOD	479.93
526241	FC 27	146491 (100%)	093F	2008/JAN/25	GOOD	480.163
526242	FC 28	146491 (100%)	093F	2008/JAN/25	GOOD	480.399
526243	FC 29	146491 (100%)	093F	2008/JAN/25	GOOD	480.636
526244	FC 30	146491 (100%)	093F	2008/JAN/25	GOOD	480.837
526245	FC 31	146491 (100%)	093F	2008/JAN/25	GOOD	480.634
526246	FC 32	146491 (100%)	093F	2008/JAN/25	GOOD	480.398
526247	FC 33	146491 (100%)	093F	2008/JAN/25	GOOD	480.162
526248	FC 34	146491 (100%)	093F	2008/JAN/25	GOOD	479.93
526249	FC 35	146491 (100%)	093F	2008/JAN/25	GOOD	479.702
526250	FC 36	146491 (100%)	093F	2008/JAN/25	GOOD	479.468
526251	FB 1	146491 (100%)	093F	2008/JAN/25	GOOD	479.469
526252	FB 2	146491 (100%)	093F	2008/JAN/25	GOOD	479.704
526253	FB 3	146491 (100%)	093F	2008/JAN/25	GOOD	479.93
526254	FB 4	146491 (100%)	093F	2008/JAN/25	GOOD	480.161
526256	FB 5	146491 (100%)	093F	2008/JAN/25	GOOD	480.397
526257	FB 6	146491 (100%)	093F	2008/JAN/25	GOOD	480.633
526259	FB 7	146491 (100%)	093F	2008/JAN/25	GOOD	480.899
526261	FB 8	146491 (100%)	093F	2008/JAN/25	GOOD	461.616
526263	FB 9	146491 (100%)	093F	2008/JAN/25	GOOD	442.554
526266	FB 10	146491 (100%)	093F	2008/JAN/25	GOOD	480.633
526337	FB 11	146491 (100%)	093F	2008/JAN/26	GOOD	480.397
526338	FB 12	146491 (100%)	093F	2008/JAN/26	GOOD	480.161
526339	FB 13	146491 (100%)	093F	2008/JAN/26	GOOD	479.931
526341	FB 14	146491 (100%)	093F	2008/JAN/26	GOOD	479.705
526342	FB 15	146491 (100%)	093F	2008/JAN/26	GOOD	479.47
526344	GM 1	146491 (100%)	093F	2008/JAN/26	GOOD	479.47
526345	GM 2	146491 (100%)	093F	2008/JAN/26	GOOD	479.705
526346	GM 3	146491 (100%)	093F	2008/JAN/26	GOOD	479.931
526347	GM 4	146491 (100%)	093F	2008/JAN/26	GOOD	480.161
526349	GM 5	146491 (100%)	093F	2008/JAN/26	GOOD	480.397
526351	GM 6	146491 (100%)	093F	2008/JAN/26	GOOD	480.633
526352	GM 7	146491 (100%)	093F	2008/JAN/26	GOOD	480.875
526353	GM 8	146491 (100%)	093F	2008/JAN/26	GOOD	481.112

TENURE #	NAME	OWNER FMC	MAP	GOOD TO DATE	STATUS	AREA
526356	GM 9	146491 (100%)	093F	2008/JAN/26	GOOD	442.737
526359	GM 10	146491 (100%)	093F	2008/JAN/26	GOOD	481.019
526360	GM 11	146491 (100%)	093F	2008/JAN/26	GOOD	480.777
526362	GM 12	146491 (100%)	093F	2008/JAN/26	GOOD	480.539
526363	GM 13	146491 (100%)	093F	2008/JAN/26	GOOD	480.304
526364	GM 14	146491 (100%)	093F	2008/JAN/26	GOOD	480.069
526366	GM 15	146491 (100%)	093F	2008/JAN/26	GOOD	479.844
526368	GM 16	146491 (100%)	093F	2008/JAN/26	GOOD	479.612
526370	GM 17	146491 (100%)	093F	2008/JAN/26	GOOD	287.654
526372	GM 18	146491 (100%)	093F	2008/JAN/26	GOOD	479.47
526373	GM 19	146491 (100%)	093F	2008/JAN/26	GOOD	479.705
526375	GM 20	146491 (100%)	093F	2008/JAN/26	GOOD	479.933
526377	GM 21	146491 (100%)	093F	2008/JAN/26	GOOD	480.164
526378	GM 22	146491 (100%)	093F	2008/JAN/26	GOOD	480.4
526379	GM 23	146491 (100%)	093F	2008/JAN/26	GOOD	480.635
526380	GM 24	146491 (100%)	093F	2008/JAN/26	GOOD	480.876
526381	GM 25	146491 (100%)	093F	2008/JAN/26	GOOD	481.114
526382	GM 26	146491 (100%)	093F	2008/JAN/26	GOOD	308.035
526383	GM 27	146491 (100%)	093F	2008/JAN/26	GOOD	423.615
526384	GM 28	146491 (100%)	093F	2008/JAN/26	GOOD	481.161
526385	GM 29	146491 (100%)	093F	2008/JAN/26	GOOD	480.926
526386	GM 30	146491 (100%)	093F	2008/JAN/26	GOOD	480.683
526492	GM 31	146491 (100%)	093F	2008/JAN/27	GOOD	461.185
526494	GM 32	146491 (100%)	093F	2008/JAN/27	GOOD	480.167
526495	GM 33	146491 (100%)	093F	2008/JAN/27	GOOD	383.966
526497	GM 34	146491 (100%)	093F	2008/JAN/27	GOOD	479.8
526498	GM 35	146491 (100%)	093F	2008/JAN/27	GOOD	460.315
526499	GM 36	146491 (100%)	093F	2008/JAN/27	GOOD	421.828
526501	MM 1	146491 (100%)	093F	2008/JAN/27	GOOD	442.313
526502	MM 2	146491 (100%)	093F	2008/JAN/27	GOOD	480.943
531373	WEST 1	146491 (100%)	093F	2008/Apr/06	GOOD	479.772
531374	WEST 2	146491 (100%)	093F	2008/Apr/06	GOOD	479.778
531375	WEST 3	146491 (100%)	093F	2008/Apr/06	GOOD	460.611
531376	WEST 4	146491 (100%)	093F	2008/Apr/06	GOOD	480.031
531377	WEST 5	146491 (100%)	093F	2008/Apr/06	GOOD	480.03
531378	WEST 6	146491 (100%)	093F	2008/Apr/06	GOOD	480.03
531379	WEST 7	146491 (100%)	093F	2008/Apr/06	GOOD	480.263
531380	WEST 8	146491 (100%)	093F	2008/Apr/06	GOOD	480.263

NAME	OWNER FMC	MAP	GOOD TO DATE	STATUS	AREA
WEST 9	146491 (100%)	093F	2008/Apr/06	GOOD	480.263
WEST 10	146491 (100%)	093F	2008/Apr/06	GOOD	480.495
WEST 11	146491 (100%)	093F	2008/Apr/06	GOOD	480.496
WEST 12	146491 (100%)	093F	2008/Apr/06	GOOD	480.496
WEST 13	146491 (100%)	093F	2008/Apr/06	GOOD	480.31
EAST 1	146491 (100%)	093F	2008/Apr/06	GOOD	479.24
EAST 2	146491 (100%)	093F	2008/Apr/06	GOOD	479.24
EAST 3	146491 (100%)	093F	2008/Apr/06	GOOD	459.89
EAST 4	146491 (100%)	093F	2008/Apr/06	GOOD	421.58
EAST 5	146491 (100%)	093F	2008/Apr/06	GOOD	479.19
EAST 6	146491 (100%)	093F	2008/Apr/06	GOOD	479.19
EAST 7	146491 (100%)	093F	2008/Apr/06	GOOD	460.23
EAST 8	146491 (100%)	093F	2008/Apr/06	GOOD	460.23
EAST 9	146491 (100%)	093F	2008/Apr/06	GOOD	460.41
EAST 10	146491 (100%)	093F	2008/Apr/06	GOOD	460.41
EAST 11	146491 (100%)	093F	2008/Apr/06	GOOD	479.78
EAST 12	146491 (100%)	093F	2008/Apr/06	GOOD	460.59
EAST 13	146491 (100%)	093F	2008/Apr/06	GOOD	479.98
EAST 14	146491 (100%)	093F	2008/Apr/06	GOOD	479.98
EAST 15	146491 (100%)	093F	2008/Apr/06	GOOD	479.99
EAST 16	146491 (100%)	093F	2008/Apr/06	GOOD	480.22
EAST 17	146491 (100%)	093F	2008/Apr/06	GOOD	480.22
EAST 18	146491 (100%)	093F	2008/Apr/06	GOOD	480.22
EAST 19	146491 (100%)	093F	2008/Apr/06	GOOD	384.09
	NAME WEST 9 WEST 10 WEST 11 WEST 12 WEST 13 EAST 1 EAST 1 EAST 3 EAST 4 EAST 5 EAST 6 EAST 7 EAST 10 EAST 11 EAST 12 EAST 14 EAST 10 EAST 11 EAST 12 EAST 13 EAST 14 EAST 15 EAST 14 EAST 15 EAST 14 EAST 15 EAST 14 EAST 15 EAST 16 EAST 17 EAST 18 EAST 14 EAST 15 EAST 16 EAST 17 EAST 18 EAST 18 <td>NAMEOWNER FMCWEST 9146491 (100%)WEST 10146491 (100%)WEST 11146491 (100%)WEST 12146491 (100%)EAST 1146491 (100%)EAST 2146491 (100%)EAST 4146491 (100%)EAST 5146491 (100%)EAST 6146491 (100%)EAST 7146491 (100%)EAST 7146491 (100%)EAST 10146491 (100%)EAST 11146491 (100%)EAST 12146491 (100%)EAST 13146491 (100%)EAST 14146491 (100%)EAST 15146491 (100%)EAST 16146491 (100%)EAST 17146491 (100%)EAST 16146491 (100%)EAST 17146491 (100%)EAST 16146491 (100%)EAST 17146491 (100%)EAST 16146491 (100%)EAST 17146491 (100%)EAST 18146491 (100%)EAST 19146491 (100%)EAST 11146491 (100%)EAST 12146491 (100%)EAST 13146491 (100%)EAST 14146491 (100%)EAST 15146491 (100%)EAST 16146491 (100%)EAST 17146491 (100%)EAST 18146491 (100%)EAST 19146491 (100%)</td> <td>NAMEOWNER FMCMAPWEST 9146491 (100%)093FWEST 10146491 (100%)093FWEST 11146491 (100%)093FWEST 12146491 (100%)093FEAST 1146491 (100%)093FEAST 2146491 (100%)093FEAST 3146491 (100%)093FEAST 4146491 (100%)093FEAST 5146491 (100%)093FEAST 6146491 (100%)093FEAST 7146491 (100%)093FEAST 8146491 (100%)093FEAST 9146491 (100%)093FEAST 10146491 (100%)093FEAST 11146491 (100%)093FEAST 12146491 (100%)093FEAST 13146491 (100%)093FEAST 14146491 (100%)093FEAST 15146491 (100%)093FEAST 16146491 (100%)093FEAST 17146491 (100%)093FEAST 16146491 (100%)093FEAST 17146491 (100%)093FEAST 16146491 (100%)093FEAST 17146491 (100%)093FEAST 18146491 (100%)093FEAST 18146491 (100%)093FEAST 18146491 (100%)093FEAST 18146491 (100%)093FEAST 19146491 (100%)093FEAST 18146491 (100%)093FEAST 19146491 (100%)093FEAST 19146491 (100%)093F</td> <td>NAMEOWNER FMCMAPGOOD TO DATEWEST 9146491 (100%)093F2008/Apr/06WEST 10146491 (100%)093F2008/Apr/06WEST 11146491 (100%)093F2008/Apr/06WEST 12146491 (100%)093F2008/Apr/06WEST 13146491 (100%)093F2008/Apr/06EAST 1146491 (100%)093F2008/Apr/06EAST 2146491 (100%)093F2008/Apr/06EAST 3146491 (100%)093F2008/Apr/06EAST 4146491 (100%)093F2008/Apr/06EAST 5146491 (100%)093F2008/Apr/06EAST 6146491 (100%)093F2008/Apr/06EAST 7146491 (100%)093F2008/Apr/06EAST 8146491 (100%)093F2008/Apr/06EAST 9146491 (100%)093F2008/Apr/06EAST 10146491 (100%)093F2008/Apr/06EAST 12146491 (100%)093F2008/Apr/06EAST 13146491 (100%)093F2008/Apr/06EAST 14146491 (100%)093F2008/Apr/06EAST 15146491 (100%)093F2008/Apr/06EAST 16146491 (100%)093F2008/Apr/06EAST 17146491 (100%)093F2008/Apr/06EAST 16146491 (100%)093F2008/Apr/06EAST 16146491 (100%)093F2008/Apr/06EAST 16146491 (100%)093F2008/Apr/06EAST 16146491 (100%)093F</td> <td>NAMEOWNER FMCMAPGOOD TO DATESTATUSWEST 9146491 (100%)093F2008/Apr/06GOODWEST 10146491 (100%)093F2008/Apr/06GOODWEST 11146491 (100%)093F2008/Apr/06GOODWEST 12146491 (100%)093F2008/Apr/06GOODWEST 13146491 (100%)093F2008/Apr/06GOODEAST 1146491 (100%)093F2008/Apr/06GOODEAST 2146491 (100%)093F2008/Apr/06GOODEAST 3146491 (100%)093F2008/Apr/06GOODEAST 4146491 (100%)093F2008/Apr/06GOODEAST 5146491 (100%)093F2008/Apr/06GOODEAST 6146491 (100%)093F2008/Apr/06GOODEAST 7146491 (100%)093F2008/Apr/06GOODEAST 8146491 (100%)093F2008/Apr/06GOODEAST 9146491 (100%)093F2008/Apr/06GOODEAST 10146491 (100%)093F2008/Apr/06GOODEAST 11146491 (100%)093F2008/Apr/06GOODEAST 12146491 (100%)093F2008/Apr/06GOODEAST 13146491 (100%)093F2008/Apr/06GOODEAST 14146491 (100%)093F2008/Apr/06GOODEAST 15146491 (100%)093F2008/Apr/06GOODEAST 16146491 (100%)093F2008/Apr/06GOOD<td< td=""></td<></td>	NAMEOWNER FMCWEST 9146491 (100%)WEST 10146491 (100%)WEST 11146491 (100%)WEST 12146491 (100%)EAST 1146491 (100%)EAST 2146491 (100%)EAST 4146491 (100%)EAST 5146491 (100%)EAST 6146491 (100%)EAST 7146491 (100%)EAST 7146491 (100%)EAST 10146491 (100%)EAST 11146491 (100%)EAST 12146491 (100%)EAST 13146491 (100%)EAST 14146491 (100%)EAST 15146491 (100%)EAST 16146491 (100%)EAST 17146491 (100%)EAST 16146491 (100%)EAST 17146491 (100%)EAST 16146491 (100%)EAST 17146491 (100%)EAST 16146491 (100%)EAST 17146491 (100%)EAST 18146491 (100%)EAST 19146491 (100%)EAST 11146491 (100%)EAST 12146491 (100%)EAST 13146491 (100%)EAST 14146491 (100%)EAST 15146491 (100%)EAST 16146491 (100%)EAST 17146491 (100%)EAST 18146491 (100%)EAST 19146491 (100%)	NAMEOWNER FMCMAPWEST 9146491 (100%)093FWEST 10146491 (100%)093FWEST 11146491 (100%)093FWEST 12146491 (100%)093FEAST 1146491 (100%)093FEAST 2146491 (100%)093FEAST 3146491 (100%)093FEAST 4146491 (100%)093FEAST 5146491 (100%)093FEAST 6146491 (100%)093FEAST 7146491 (100%)093FEAST 8146491 (100%)093FEAST 9146491 (100%)093FEAST 10146491 (100%)093FEAST 11146491 (100%)093FEAST 12146491 (100%)093FEAST 13146491 (100%)093FEAST 14146491 (100%)093FEAST 15146491 (100%)093FEAST 16146491 (100%)093FEAST 17146491 (100%)093FEAST 16146491 (100%)093FEAST 17146491 (100%)093FEAST 16146491 (100%)093FEAST 17146491 (100%)093FEAST 18146491 (100%)093FEAST 18146491 (100%)093FEAST 18146491 (100%)093FEAST 18146491 (100%)093FEAST 19146491 (100%)093FEAST 18146491 (100%)093FEAST 19146491 (100%)093FEAST 19146491 (100%)093F	NAMEOWNER FMCMAPGOOD TO DATEWEST 9146491 (100%)093F2008/Apr/06WEST 10146491 (100%)093F2008/Apr/06WEST 11146491 (100%)093F2008/Apr/06WEST 12146491 (100%)093F2008/Apr/06WEST 13146491 (100%)093F2008/Apr/06EAST 1146491 (100%)093F2008/Apr/06EAST 2146491 (100%)093F2008/Apr/06EAST 3146491 (100%)093F2008/Apr/06EAST 4146491 (100%)093F2008/Apr/06EAST 5146491 (100%)093F2008/Apr/06EAST 6146491 (100%)093F2008/Apr/06EAST 7146491 (100%)093F2008/Apr/06EAST 8146491 (100%)093F2008/Apr/06EAST 9146491 (100%)093F2008/Apr/06EAST 10146491 (100%)093F2008/Apr/06EAST 12146491 (100%)093F2008/Apr/06EAST 13146491 (100%)093F2008/Apr/06EAST 14146491 (100%)093F2008/Apr/06EAST 15146491 (100%)093F2008/Apr/06EAST 16146491 (100%)093F2008/Apr/06EAST 17146491 (100%)093F2008/Apr/06EAST 16146491 (100%)093F2008/Apr/06EAST 16146491 (100%)093F2008/Apr/06EAST 16146491 (100%)093F2008/Apr/06EAST 16146491 (100%)093F	NAMEOWNER FMCMAPGOOD TO DATESTATUSWEST 9146491 (100%)093F2008/Apr/06GOODWEST 10146491 (100%)093F2008/Apr/06GOODWEST 11146491 (100%)093F2008/Apr/06GOODWEST 12146491 (100%)093F2008/Apr/06GOODWEST 13146491 (100%)093F2008/Apr/06GOODEAST 1146491 (100%)093F2008/Apr/06GOODEAST 2146491 (100%)093F2008/Apr/06GOODEAST 3146491 (100%)093F2008/Apr/06GOODEAST 4146491 (100%)093F2008/Apr/06GOODEAST 5146491 (100%)093F2008/Apr/06GOODEAST 6146491 (100%)093F2008/Apr/06GOODEAST 7146491 (100%)093F2008/Apr/06GOODEAST 8146491 (100%)093F2008/Apr/06GOODEAST 9146491 (100%)093F2008/Apr/06GOODEAST 10146491 (100%)093F2008/Apr/06GOODEAST 11146491 (100%)093F2008/Apr/06GOODEAST 12146491 (100%)093F2008/Apr/06GOODEAST 13146491 (100%)093F2008/Apr/06GOODEAST 14146491 (100%)093F2008/Apr/06GOODEAST 15146491 (100%)093F2008/Apr/06GOODEAST 16146491 (100%)093F2008/Apr/06GOOD <td< td=""></td<>

* The good to dates reflect assessment credit applied for in this report

All claims staked in British Columbia require \$4.00 worth of assessment work per hectare per year to be undertaken in years 1 - 3, followed by \$8.00 per hectare per year thereafter. There is a filing fee of \$0.40 per hectare. There are no known environmental concerns or parks designated for any area contained within the claims. The property has no encumbrances.

FIGURE 2. CLAIM MAP

Goldmember Ventures Corp. has an option to acquire an outright 100% interest in the property subject to a 2.5% NSR for a combination of \$250,000 cash and stock payments 4 million units of the "Initial Prospectus Offering," consisting of one share and one warrant at the "IPO" price, upon regulatory approval and incurring \$2.4 million of exploration expenditures by December of 2009. According to information supplied by the company's solicitor the agreement is in good standing.

The method of acquiring mineral titles (other than crown grants) has recently changed, and titles may be acquired over the internet by selection of one or more "cells, each approximately 19 hectares in size referenced to a grid in degrees, minutes and seconds of Latitude and Longitude, and subject to payment of fees and completion of assessment work or cash in lieu of work.

3. Accessibility, Climate, Local Resources, Infrastructure and Physiography

3.1 ACCESS

The properties are located on the Nechako Plateau which maintains a fairly constant overall elevation, but contains areas quite dissected at the local scale in a distinctive basin and range (horst and graben) topography. Elevations vary from 1,417 metres at the top of Deerhorn Hill to 715 metres on François Lake. To the west, the area abuts on the Quanchus Range with a chain of peaks in the 2,100 to 2,300 metre range.

Access to and throughout the properties is good. Major highways border the Nechako Basin: to the north (Hwy. 16), the east (Hwy. 97) and the south (Hwy 20), and a paved road reaches Nazko. More locally, access is through several networks of forestry roads starting in the south at Alexis Creek and at Nazko, in the centre, at Vanderhoof and for the easternmost part at Nazko, and in the north from Vanderhoof and various points along Highway 16 west to Burns Lake.

The main economic activity in the area is logging. There are a few ranches along the lower Nechako River, and some farming northwest of Cheslatta Lake in the Takysie-Grassy Plains area. Tourism is a minor activity and consists mostly of fishing and, in the fall, hunting. Vegetation is dominated by evergreens (pine and spruce) with poplar and cottonwood in low-lying areas. The climate is typical of central British Columbia with below freezing temperatures (0° C to -40° C) from November to April and periods of hot weather in the summer ranging from 20° to 40° C. Precipitation averages 427.8 millimetres a year, with a substantial portion in the form of snow averaging 90.5 centimetres per year.

The region has been severely damaged by infestations of the Rocky Mountain Pine beetle. Vast areas have been affected by this insect, which has killed large stands of commercial timber. Because of these infestations forest fires may pose a threat to exploration activities during the summer months. Along the Nechako Reservoir, any area below 300 metres ASL is potentially liable to be flooded, with no compensation.

Goldmember Ventures Corp., at the date of this report, has made applications for ground exploration with the BC Minister of Mines, Energy and Petroleum Resources.

4. History

The Nechako claim area has been investigated by several regional exploration programs dating back to the 1960's. Early on most of the work was concentrated on exploring for copper-molybdenum mineralization, by the 1980's, the interior plateau region of central British Columbia was recognized to have comparable structural and lithological characteristics to gold producing regions in the basin and range structural province in Nevada. Exploration intensified in the area during the late 1980's and early to mid 1990's. Several major mining companies including Hudson's Bay Mining and Smelting, Cogema Resources, Newmont Mining and Phelps Dodge Corporation of Canada conducted gold exploration programs in the region. Exploration was greatly aided by regional studies conducted by both the Geological Survey of Canada conducting aeromagnetic surveys and the Province of British Columbia's regional lake sediment and water geochemistry surveys completed in 1994.

A brief description of the gold exploration programs conducted by the major mining companies are summarized below:

4.1 1987-1991 MINGOLD (SUBSIDIARY OF HUDSONS BAY MINING AND SMELTING)

In 1986 staked the Barb 1 and Rhub 1 to 14 claims and during the following two years conducted programs of geochemistry, trenching (1,405 metres), geophysics, geological mapping and reverse circulation drilling totaling 1,214.9 metres and diamond drilling totaling 1,036.9 metres. The most significant result from this program was a grab sample reported from the zone which ran 18.32 ounce per ton silver, a 7.0 meter wide zone from trench MBHT-6 which averaged 4.73 ounce per ton silver and 0.017 ounce per ton gold, and 0.209 ounce per ton gold over 1.52 metres in diamond drill hole SDH-9. In 1989 Mingold contracted Target Surveys to conduct a 24.87 line-kilometre Induced Polarization survey. In 1991 the claims were optioned to Equity Silver Mines who conducted exploration based on Mingold's prospecting gold successes. During this follow up work several showings displaying epithermal alteration were discovered, most of the development work conducted during this phase was concentrated on the Silver Discovery zone and the Barb zone. Equity Silver conducted 942.9 metres of diamond drilling a summary of the anomalous assay results is tabled as follows:

Drill Hole	From (m)	To (m)	Length (m)	Au gpt gram per tonne	Ag gpt gram per tonne	Comments
RB91CH-02	132.86	135.75	2.89	0.25	71.0	TUFF
RB91CH-03	152.64	154.75	2.11	0.06	64.0	LAHAR
RB91CH-03	170.93	172.72	1.79	0.28	14.5	LAHAR
RB91CH-03	197.31	199.96	2.65	0.11	12.0	LAHAR
RB91CH-04	86.59	86.61	0.02	1.03	3.0	PYRITE VEIN
RB91CH-05	10.32	19.17	8.85	0.13	<3.0	FLOW BANDED

Table 2. Summary of Anomalous Assay Results:1991 Drilling Equity Silver Mines

4.2 1986-1988 NEWMONT EXPLORATION OF CANADA LIMITED

Reconnaissance fieldwork was initially carried out by Newmont in the summer of 1986 and after a full compilation was completed. The study concluded that the area cited favourable target areas for volcanic-hosted epithermal precious metal deposits near intersecting Late Cretaceous and Tertiary related structures. The Nechako River map sheet displayed the greatest concentration of lineaments and potential targets within felsic volcanic flows of the Oosta Lake Group. Regional exploration in the Lucas Lake area was conducted in 1986 and continued in 1987. The programs consisted of prospecting, soil and stream geochemistry, rock chip sampling, and magnetic and electromagnetic resistivity surveys completed over 27.9 line-kilometres of grid.

4.3 1992-1994 COGEMA RESOURCES LTD.

In 1992 Cogema Resources began exploring the area by conducting a regional till geochemical and prospecting program covering the entire Nechako basin. Results from this work lead to the company acquiring several mineral claims through staking throughout the area specifically the Yellow Moose claims. In 1993 an airborne magnetometer and electromagnetic survey covering the Yellow Moose property totaling 377 line-kilometres was completed. In the summer of that year follow up prospecting, geological mapping and till geochemistry surveys were conducted over the property. In late 1993 Cogema staked the Lucas Lake, Lucas West and the Saunders claims primarily based on data released from the B.C. Provincial Governments Regional Geochemical Survey for the area.

The 1994 program for the area included 353 metres of trenching, and 625.7 metres of diamond drilling. Work on the Lucas and Saunders properties consisted of till sampling and prospecting.

4.4 1995 PHELPS DODGE CORPORATION OF CANADA

Phelps Dodge optioned Cogema's claims in the area and conducted soil geochemistry, rock sampling, prospecting and geological mapping during the summer of 1995. In the summer of 1996 the company conducted an Induced polarization/ resistivity survey on the Yellow Moose Claims.

4.5 GOVERNMENT PROGRAMS

The first recorded work done in the area was a Geological Survey of Canada mapping program, lead by H. W. Tipper in 1949. The results of this program were published in GSC Memoir 324 (Tipper, 1963). The GSC has been active in the area, mapping bedrock and surficial deposits of NTS 93F/3 and portions of the 93F/2 and 92F/3 map sheets, map sheets 93F/11, 12, 13, and 14 received a lake sediment geochemical survey. The B.C. Geological Survey also did miscellaneous detailed surveys of showings and geochemical anomalies within the area. The Geological Survey of Canada flew an airborne magnetic survey covering most or all of the area from latitudes 53°15' to 51°15' and from the Fraser River to the Coast Range.

5. Geological Setting

5.1 REGIONAL GEOLOGY

The Tertiary geologic elements of the Nechako Plateau area are part of a regional extensional system that extends from the Republic area of northern Washington State, northwesterly for some 1,000 kilometres into the Babine district of north-central British Columbia. This belt trends northwest with the approximate dimensions of 1,000 X 200 kilometres. It crosses all major terrane boundaries and underlies the Quesnel, Kootenay and Omineca Terranes in the south and the Stikine Terrane in the north, crossing the oceanic Cache Creek Group. It overlaps the southern margin of the Bowser Basin where it continues northward as a thin strip along the eastern margin of the Coast Range.

Stratigraphic and intrusive rocks in the Stikine Terrane range in age from Paleozoic to Pleistocene (Figure 3). With respect to the Eocene mineral setting, the geologic elements of the Stikine Terrane may be divided into three separate packages: basement rocks, lower Upper Cretaceous-Eocene rocks associated with mineralization, and cover rocks (Table 3).

FIGURE 3. REGIONAL GEOLOGY

	Stratified Rocks		Intrusive and Metamorphic Rocks
11.	Anahim Volcanics (Pliocene-Pleistocene)		
10.	Chilcotin Volcanics (Miocene)		
9.	Endako Group (Eocene-Oligocene)		
8.	Ootsa Lake Group (Eocene and Palaeocene)	G.	Eocene (stocks, plugs, dykes, rhyolite, felsite, porphyry, dio- rite, gabbro)
7.	Kasalka-Kingsvale Groups (Upper Cretaceous)	F.	Upper Cretaceous-Paleocene (Quanchus Intrusions: stocks and batholiths, diorite to quartz monzonite)
6.	Skeena-Jackass Mountain Groups (Lower Cretaceous)	E.	Mid-Cretaceous (mainly tonalite to quartz monzonite of Coast Range complex)
5.	Gambier Group (Upper Jurassic-Lower Cretaceous)	D.	Jurassic-Cretaceous (François Lake Batholith; quartz diorite to granite, includes quartz-feldspar porphyry)
4.	Relay Mountain-Bowser Groups (Upper Jurassic-Lower Cretaceous)		
3.	Hazelton Group (Lower and Middle Jurassic)	C.	Middle Jurassic (locally foliated granodiorite and quartz monzonite)
2.	Stuhini Group (Upper Triassic)		
1.	Cache Creek Group (Upper Palaeozoic)	B.	Permian (mainly granodiorite in lower Chilcotin River)
		A.	Metamorphic Rocks (gneiss, schist, metavolcanics, cataclasites)

Table 3. Main Geologic Map Units of the Nechako Basin

Basement Rocks – Lower Upper Cretaceous and Older

Basement rocks to the Tertiary in the Stikine Terrane comprise Upper Paleozoic to lower Upper Cretaceous strata grouped into two major time-stratigraphic assemblages.

The oldest assemblage consists of arc volcanics of Upper Paleozoic to Middle Jurassic age that includes limestone, volcanics and sediments of the Upper Paleozoic Cache Creek Assemblage, submarine and marine island arc volcanics and sediments of the Carnian to Norian subalkaline, basaltic Stuhini (Takla) Group, and the Sinemurian to Bajocian calcalkaline Hazelton Group.

The arc volcanic assemblages are overlain by two sedimentary assemblages, the Middle Jurassic to Lower Cretaceous Bowser Lake Group and the Lower and Upper Cretaceous Skeena Group. Deltaic assemblages of the Bowser Lake Group were deposited mainly in the Bower Basin to the north of the Nechako reconnaissance area, except for its basal beds. These basal beds belong to the Ashman Formation and represent a black clastic-chert pebble conglomerate unit that covers much of the Stikine Terrane. Marine and nonmarine sediments of the Neocomian to Cenomanian Skeena and Jackass Mountain Groups blanketed much of the Stikine Terrane and sourced from the east, off the Cache Creek, Quesnel and Omineca Terranes. The blanket of Skeena Group clastics across Stikinia outlines a regional datum to which deformation and deposition of younger strata may be related. This surface represents one of three main erosional surfaces in central B.C.

The basement rocks have been affected by regional compressive tectonics. Westerly verging compression along the east margin of the Stikine Terrane, associated with the amalgamation of Stikinia, Quesnellia and the Cache Creek Terranes to the North American Craton, affects rocks as young as Upper Jurassic. Easterly verging compression along the west margin of the Stikine Terrane, associated with the amalgamation of the Wrangellia with Stikinia affects rocks as young as Late Cretaceous.

Intrusive rocks associated with the basement strata include the Upper Jurassic-Lower Cretaceous François Lake intrusions to the northeast of the reconnaissance area, and mid-Cretaceous plutons of the Coast Crystalline Complex.

Many of the northwest and northeast trending fault zones that control the distribution of the Tertiary geologic elements are fault zones whose activity can be traced back to the Upper Triassic and Lower Jurassic.

Upper Cretaceous to Miocene

The Upper Cretaceous to Eocene metallogenic event is associated with three stratigraphic assemblages, the late Upper Cretaceous andesitic Kasalka Group, the felsic Eocene Ootsa Lake Group and the basaltic Eocene to Oligocene Endako Group. These assemblages represent a generalized cycle of early andesitic volcanism, explosive felsic volcanism, bimodal felsite-basic volcanism and later basic volcanism. The early andesitic Kasalka Group, and the felsic Ootsa Lake Group strata were deposited in calderas and caldera complexes. The distribution of the older facies of the Endako Group are in part controlled by the felsic calderas. The felsic calderas are large, composite features that may measure more than 50 kilometres in diameter and are nested caldera complexes. The volcanic assemblages are associated with a fault array whose main expression is extensional. This sequence of caldera associated volcanism and extensional faulting is a common sequence through the length of the extensional belt, from the Mexican border to Babine Lake and is associated with a vast array of significant mineral deposits.

The Kasalka Group volcanics (McIntrye, 1985) occur as a number of caldera basins throughout west central British Columbia, on the Stikine Terrane between the Blackwater Linear zone and the north flank of the Skeena Arch. They are mainly feldspathic andesitic volcanics but local basins include explosive and passive felsic volcanism. They are associated with granodioritic stocks and plugs of the Quanchus and Bulkley Intrusions. In a number of locations in central BC, red and green polylithic volcanics and granitic cobble conglomerate underlies basal Kasalka strata. Age of Kasalka volcanics and associated intrusives range from 85My to 60My and fall mainly in the 72 to 67 My interval.

The Ootsa Lake Group volcanics (Duffel, 1959) are typified by light coloured felsic volcanics. They underlie broad areas of the southern Stikine Terrane from Babine Lake to the Chilcotin River and include a variety of depositional types. They occur in structurally controlled basins and in large caldera complexes. Two caldera complexes underlie the Nechako Reconnaissance area, the Mt. Dent Caldera Complex in the south (South Area) and the Cheslatta Caldera Complex in the north, (North Area). Subvolcanic intrusives are common; coeval plutonic rocks are rare within the caldera complexes but common in the basement. The Ootsa Lake Group ranges in age from 58 to 47 My with the interval of 52 to 48 My representing timing of the main felsic eruptive events.

The Endako Group (Armstrong, 1949) is a wide ranging assemblage of mainly basaltic rocks. In a general sense, the Endako Group overlies and is younger than the Ootsa Lake Group. Basaltic and andesitic rocks are commonly associated with felsic rocks in the calderas. Ages of the Endako Group show a range from 50 to 37 My. The early basaltic rocks of the Endako Group overlap in both ages and depositional sites with the felsites of the Ootsa

Lake Group. Although the Ootsa Lake Group and the early Endako Group are mapped as separate entities, the interval of their coincidence in space and time infers a genetic relationship.

Post-Ootsa Lake Group basaltic volcanism occurred intermittently throughout the area, from 45 My to Recent. (Mathews, 1984 and 1989; Rouse, 1988). Basaltic volcanics younger than 35 My are correlated with the Chilcotin Group. Felsic volcanics are known to be locally associated with intervals of this basalt event but no significant centre has yet been recognized.

Pliocene-Pleistocene

"During the Pleistocene all of Central British Columbia was covered by glacier ice that molded a multitude of features from which the glacial events can be interpreted" (Tipper, 1971). The bulk of glacial features in Central British Columbia have been produced by the Fraser Glaciation, the last major advance. Minor late re-advances are observed around the Anahim volcanoes and along the Coast Ranges.

Within the study area glacial transport direction varies from N O° to 30°, south of the Blackwater lineament, to N 60° to 90° north of it. Glacial deposits consist mostly of lodgement till with some areas of ablation till, esker systems, and fluvio-glacial material. A thin veneer of ablation till may occasionally overlie lodgement till. There are no extensive glacial lake deposits (sands and clays). Evidence of multiple glaciation were observed in a few localities in the form of lodgement till overlying fluvio-glacial deposits.

5.2 **REGIONAL STRUCTURE**

The Nechako Basin is within the Intermontane Belt of the Canadian Cordillera, mainly on the Stikinia Terrane, but overlapping onto the Cache Creek Terrane. *"A regional dextral transcurrent strain regime appears to have been important in the evolution of early Cenozoic structures in the southern part of the Intermontane Belt … These structures have been related to right lateral transform motions and to regional extension"* (Gabrielse et al., 1992). This regime resulted in alternating basins and arches along the Intermontane Belt: Nechako Basin, Skeena Arch, Bowser Basin, Stikine Arch (Figure 4). The Nechako Basin

FIGURE 4. STRUCTURAL INTERPRETATION

can be assimilated to a pull-apart basin formed between the Fraser River Fault System and the Coast Range Megalineament or one of its parallel structures extending north from the Yalakom Fault. As will be shown below, the internal structure of the Nechako Basin reflects the same structural regime.

5.3 PROPERTY GEOLOGY

The Nechako Property is underlain by the Cheslatta Caldera Complex which is a broad, circular area some 60 kilometres across enclosing about 3,000 square kilometres (Figure 5). The southern border of the caldera abuts against the Nechako Arch and the contact closely follows the linear trace of Knewstubb and Natalkuz Lakes. This contact is suggested to be fault controlled. The western border of the caldera is a broad, gently rolling area underlain mainly by Endako basalts. To the north it is bounded by an irregular, blocky area approximating the trace of François Lake. To the east, it appears to die out irregularly against the Jurassic-Cretaceous François Lake Intrusions.

The caldera is situated on the obtuse side of a major kink on the north flank of the Nechako Arch. This kink zone is defined by the area of intersection of regional northwest and northeast trending faults. The caldera overlaps this zone and the margin of the caldera is outlined by the disappearance of the trace of these faults into the caldera.

The caldera complex is underlain dominantly by Early Tertiary felsic volcanics of Ootsa Lake Group and basic volcanics of the Endako Group. A number of different facies assemblages of Tertiary volcanic and sedimentary rocks are distributed throughout the caldera complex. This suggests the presence of a number of separate volcanic centres and indicates that the Cheslatta Caldera Complex consists of a nested array of smaller scale calderas within the larger structure.

The Cheslatta Caldera Complex is rimmed by a suite of intermediate volcanics correlative with volcanics of the late Upper Cretaceous Kasalka Group (McIntyre, 1985). These mainly andesitic volcanics occur in small discrete areas 5 to 10 kilometres across that are interpreted to represent separate volcanic basins or calderas. These volcanics are included with the Ootsa Lake and Endako Groups as a part of the Cheslatta Caldera Complex and the andesites represent the beginning stages of the evolution of the caldera complex.

FIGURE 5. PROPERTY GEOLOGY

Basement to the Upper Cretaceous and Tertiary volcanics of the Cheslatta Complex is similar to the Nechako Arch and includes volcanics and sediments of the Upper Triassic Stuhini Group, the Lower and Middle Jurassic Hazelton Group, the Middle and Upper Jurassic Bowser Lake Group and the Lower Cretaceous Skeena Group. A unit not found in the South and Centre Areas comprises red and green volcanic-polylithic conglomerate, fanglomerate, sandstone and mudstone that appear to be younger than the Skeena Group. These rocks have been found in scattered remnants throughout west central British Columbia and are informally known as the *"basal Kasalka beds"* (Woodsworth, 1979). Geologic data is presented on Map 1 and interpreted on Map 4.

5.4 DEPOSIT TYPES

The following description on low sulphidation epithermal gold-silver mineralization is adapted from A. Panteleyev, 1996 from the British Columbia Geological Survey

The depositional environment/geological setting of this type of deposit is generally in highlevel hydrothermal systems from depths of ~1 kilometre to surficial hotspring settings (Figure 6). The deposits are hosted in regional-scale fracture systems related to grabens, (resurgent) calderas, flow-dome complexes and rarely, maar diatremes. Extensional structures in volcanic fields (normal faults, fault splays, ladder veins and cymoid loops, etc.) are common, and locally graben or caldera-fill clastic rocks are present. High-level (subvolcanic) stocks and/or dikes and pebble breccia diatremes occur in some areas. Locally resurgent or domal structures are related to underlying intrusive bodies.

Host lithologies can include most types of volcanic rocks, but calcalkaline andesitic compositions predominate. Some deposits occur in areas with bimodal volcanism and extensive subaerial ashflow deposits. A less common association is with alkalic intrusive rocks and shoshonitic volcanics.

The mineralized zones are typically localized in structures, but may occur in permeable lithologies. Upward-flaring mineralized zones centred on structurally controlled hydrothermal conduits are typical. Large (> 1 metre wide and hundreds of metres in strike length) to small veins and stockworks are common with lesser disseminations and replacements. Vein systems can be laterally extensive but ore shoots have relatively restricted vertical extent.

FIGURE 6. BC EPITHERMAL MODEL

High-grade ores are commonly found in dilational zones in faults at flexures, splays and in cymoid loops. Typically the veins display textures including open-space filling, symmetrical and other layering, crustification, comb structure, colloform banding and multiple brecciation. The veins generally consist of quartz, amethyst, chalcedony, quartz pseudomorphs after calcite, calcite, adularia, sericite, barite, fluorite, and Ca- Mg-Mn-Fe carbonate minerals such as rhodochrosite, hematite and chlorite.

The predominant minerals in these types of deposits include pyrite, electrum, gold, silver, and argentite with lesser amount of chalcopyrite, sphalerite, galena, tetrahedrite, silver sulphosalt and/or selenide minerals. Deposits can be strongly zoned along strike and vertically. Deposits are commonly zoned vertically over 250 to 350 m from a base metal poor, Au-Ag-rich top to a relatively Ag-rich base metal zone and an underlying base metal rich zone grading at depth into a sparse base metal, pyritic zone. From surface to depth, metal zones contain: Au-Ag-As-Sb-Hg, Au-Ag-Pb-Zn-Cu, and Ag-Pb-Zn. In alkalic host rocks tellurides, V-mica (roscoelite) and fluorite may be abundant, with lesser molybdenite.

Silicification is extensive in ores as multiple generations of quartz and chalcedony are commonly accompanied by adularia and calcite. Pervasive silicification in vein envelopes is flanked by sericite-illite- kaolinite assemblages. Intermediate argillic alteration [kaoliniteillite-montmorillonite (smectite)] formed adjacent to some veins; advanced argillic alteration (kaolinite-alunite) may form along the tops of mineralized zones. Propylitic alteration dominates at depth and peripherally.

In some districts the epithermal mineralization is tied to a specific metallogenic event, either structural, magmatic, or both. The veins are emplaced within a restricted stratigraphic interval generally within 1 kilometre of the paleosurface. Mineralization near surface takes place in hotspring systems, or the deeper underlying hydrothermal conduits. At greater depth it can be postulated to occur above or peripheral to, porphyry and possibly skarn mineralization. Normal faults, margins of grabens, coarse clastic caldera moat-fill units, radial and ring dike fracture sets and both hydrothermal and tectonic breccias are all ore fluid channeling structures. Through-going, branching, bifurcating, anastamosing and intersecting fracture systems are commonly mineralized. Ore shoots form where dilational openings and cymoid loops develop, typically where the strike or dip of veins change. Hangingwall fractures in mineralized structures are particularly favourable for high-grade ore. These deposits form in both subaerial, predominantly felsic, volcanic fields in extensional and strike-slip structural regimes and island arc or continental andesitic stratovolcanoes above active subduction zones. Near- surface hydrothermal systems, ranging from hotspring at surface to deeper, structurally and permeability focused fluid flow zones are the sites of mineralization. The ore fluids are relatively dilute and cool solutions that are mixtures of magmatic and meteoric fluids. Mineral deposition takes place as the solutions undergo cooling and degassing by fluid mixing, boiling and decompression.

6. Mineralization

The following descriptions are summarized from the B.C. Minfile database and from various company reports

6.1 093F 065 GUSTY

Gold and silver mineralization on the Barb-Gusty claim group is associated with north to northeasterly trending fracture/shear zones. These zones contain translucent to milky white quartz and/or dark grey to black cherty chalcedonic quartz. Stockwork quartz or intense silica replacement zones rarely exceed several metres in width. Significant mineralization occurs in close proximity to major northeast trending fault lineaments.

The Gusty showing, which covers a 125 by 175 metre area, consists of numerous, subparallel, north-northeast trending fracture sets. The discovery subcrop consists of cross-cutting 1 to 5 millimetre wide silica veinlets hosted in a platy, siliceous, flow-banded rhyolite. Mineralization consists of pyrite and arsenopyrite and possibly a telluride mineral (calaverite?). Alteration includes potassic, argillic, silicification, sericite, chlorite and fine sulfides. Multiple generations of quartz veining are locally restricted within the rhyolite host. The rhyolite unit has a strike length of 800 metres before being faulted off and may be up to 125 metres wide. The best values were up to 0.955 grams per tonne gold and 1.8 grams per tonne silver over 0.5 metres and these coincide with a narrow zone of intense fracturing and small scale brecciation (Assessment Report 18092).

At the Barb showing, about 4 kilometres to the northeast of the Gusty showing, at least 6 en echelon vein systems are exposed in an area 100 metres across by 200 metres along strike. Finely disseminated pyrite occurs in grey to black chalcedony veins with traces of amethyst and rose quartz. Other zones display banded, cream-grey to varicolored chalcedony veins up to 0.2 to 0.3 metres wide in north-northeast trending subvertical shears. Tiny fracture coatings contain arsenopyrite and pyrite. Narrow, fracture controlled chalcedony veins are straddled by barren stockwork quartz veinlet haloes up to 1.5 metres wide. A chip sample across a 0.15 metre wide shear zone assayed 0.360 grams per tonne gold and 1.6 grams per tonne silver.

Just west of the Barb showing, a 1.5 metre wide zone (the Bar fault zone) of friable gouge, dark chalcedonic quartz breccia and heterogeneous lithic quartz breccia was exposed in trenching. The high angle, 015 degree trending structure marks the contact between a light green tuffaceous andesite and a siliceous rhyolite. In the brecciated matrix, 1 to 3 per cent sulfides, mainly cubic pyrite, form irregular pods and clusters. Samples showed anastomotic milky white to grey quartz veinlets, 1 to 5 millimetres wide, hosted in both the bleached andesite and rhyolite. Assays ranged between 0.001 to 0.092 grams per tonne gold, 0.1 to 9.3 grams per tonne silver (Assessment Report 18092).

6.2 093F054 RHUB

Gold-bearing boulders were initially discovered and subsequently several zones of silica flooding and argillic alteration were delineated. These zones occur within rhyolite and rhyolite tuff of the Upper Cretaceous to Lower Tertiary Ootsa Lake Group. A felsic flow unit is distinguished by the presence of perlite. The zones comprise brecciated rhyolite healed by amorphous silica, a series of stockwork veins or amorphous silica with varying amounts of pyrite and marcasite. The main controls on mineralization appear to be fracture intensity and the porosity of the hostrock, rhyolite flows and tuffs being preferable.

The Barb zone is 10 kilometres to the west of the discovery boulder area at the west end of the property. Veins are up to 1 metre wide. The main vein system here trends 140 degrees and a secondary set trends 045 degrees. Siliceous rhyolite breccia with pyrite and black silica was encountered in several drillholes. The best intersection was 2.16 grams per tonne gold over 1.52 metres (Property File - Alta Ventures Inc. Prospectus, Oct. 25, 1989).

6.3 093F058 YELLOW MOOSE

Two known showings, the Gus and Arrow, comprise the Yellow Moose property. All occur south of Arrow Lake, approximately 9 kilometres west of Kenney Dam and are accessible by logging roads to within about 1 kilometre. The showings are marked by anomalous antimony, arsenic and mercury soil anomalies. The Arrow showing, located on the south shore of Arrow Lake, consists of drusy quartz veins and chalcedonic quartz flooding in siliceous rhyolite and arkosic sandstone. Mineralization consists of coarse-grained stibnite, pyrite, marcasite and traces of cinnabar.

The Gus showing consists of diffuse silicification and minor quartz chalcedony veining in brecciated rhyolite and crystal lapilli tuff. Mineralized zones trend northeast and consist of narrow veins, stockworks and breccias. Mineralization consists of 1 to 2 per cent fine-grained disseminated arsenopyrite, stibnite and pyrite in intensely fractured and pervasively clay-altered rhyolite.

7. Exploration

The 2006 exploration program undertaken by the company consisted of a regional study and reprocessing of the existing government geophysical data. The company employed consultants from SJ Geophysics and SJV Consultants of Delta B.C. to reprocess airborne magnetic and gravity data covering the Nechako project, and to produce a series of 3 dimensional inversion maps and to offer their conclusions and recommendations to aid the company in its exploration programs. The full regional reports produced by SJ Geophysics appear in the Appendix II. The following is summary of the reports.

7.1 NECHAKO STUDY AREA

The area covered by this study is centered near 53°35" North Latitude and 125°16 West Longitude and encompasses a rectangular block approximately 50 kilometres east-west by 35 kilometres north-south. The initial interpretation shows the magnetic data with the top and bottom 1% of the data removed. This procedure expands the colour distribution within the bulk of the data and effectively highlights the more subtle trends not clearly evident in linear display. Results of the interpretation have outlined three parallel northwest trending magnetic lineations that are bisected by two north to north-westerly trending magnetic highs, and a series of board circular magnetic lineations (Figure 7). A 3D inversion of government airborne magnetic and gravity data was also conducted by SJ Geophysics Ltd. and S.J.V. Consultants Ltd. The magnetic inversion solution suggests the strong magnetic highs in the northeast corner of the area are generated by near vertical "plug" like bodies that approach very close to surface. All other trends are attributed to very deep regional features. These are dominated by a large, north-westerly trending low susceptibility zone that enters the area from the southeast. This feature is flanked to the northeast and southwest by high susceptibility trends that appear to have steep near vertical contacts with the low susceptibility core. A northerly trending high susceptibility zone intersects the low trend. This results in the magnetic low appearing as a large deep, basinal type feature. The circular magnetic features described above coincide with the northern flank of this feature (see Figures 8 and 9). The results of the gravity inversion shows good correlation to the magnetic inversion in that conformable structures are evident in both data sets. The strong magnetic highs within the northeastern magnetic high trend are located around the periphery of a large, circular high density body. The concentric circular

NECHAKO AREA

Government Airborne Magnetic Data - Regional Magnetic Trends - Study area enhanced with shadow display - White lines highlight NW and Northerly trending lineations - Black lines highlight circular magnetic lineations - Red outline with white hatch pattern highlights geologically mapped intrusions.

FIGURE 7. GOVERNMENT AIRBORNE MAGNETIC DATA

NECHAKO AREA 3D MAGNETIC INVERSION-LOW SUSCEPTIBILITY MATERIAL REMOVED. VIEWED THROUGH TRANSPARENT OVERLAY OF MAGNETIC SURVEY DATA.

View from SE-elevated shows basinal type feature.

FIGURE 8. 3D MAGNETIC INVERSION

NECHAKO AREA

3-VIEW OF GRAVITY AND MAGNETIC INVERSION RESULTS. HIGH MAGNETIC SUSCEPTIBILITY BODY IN RED. HIGH DENSITY BODY IN GREEN. LOW DENSITY BODY IN BLUE, VIEW FROM GRID SW.

FIGURE 9. 3-VIEW OF GRAVITY AND MAGNETIC INVERSION RESULTS

magnetic features flank a cylindrical, low density body. A regional high density body runs parallel to and immediately west of the northerly striking high magnetic trend.

Upon completion of the interpretation of the regional data the company engaged crews from Nicholson and Associates Natural Resources Development Inc. and SJ Geophysics Ltd. to establish grids and conduct 3D induced polarization surveys on the property (Figure 10). Three grids totaling 143.775 line-kilometres were established on the property. The grids were oriented along north-south baselines with winglines running east-west. The grids were established at 200

Grid Locations and Geological Sample Locations for Nechako Property

FIGURE 10. GRID LOCATIONS AND GEOLOGICAL SAMPLE LOCATIONS FOR NECHAKO PROPERTY

meter line spacing with stations every 50 metres. A full copy of the 3D IP surveys appears in Appendix III.

Concurrent with the geophysical surveys a program of road prospecting was undertaken to verify zones of mineralization identified by previous explorers. A Mobile Metal Ion (MMI) geochemical survey was initiated over Grid 1.

8. Results

The grids were located to cover strong magnetic susceptibility highs identified from the regional data, strong multi-element geochemical signatures and regional structures.

8.1 GRID 1

Grid 1 was located along the eastern boundary of the claims, regional magnetic data identifies a strong magnetic high striking at 318° which cuts the northeast corner of the grid (Figure 11). The resistivity component of the IP survey identifies a northwest trending break separating higher resistivity to the northeast and lower resistivity material to the southwest (Figure 12). The chargeability component of the IP survey has outlined two areas of high chargeability (Figure 13). The smaller of the two anomalies forms an ellipsoid shape approximately 200 metres on its short axis (NE) and 250 metres along its long axis (NW), this anomaly is estimated to be 150 metres thick. It appears to come to surface and is interpreted as plunging at a shallow angle to the northeast. Several coincidental geochemical anomalies occur proximal to this chargeability anomaly. The second and larger chargeability anomaly is located in the southern portion of the grid well away from the magnetic and resistivity defined contact. The anomaly measures 1,600 metres along it long axis (NW) and 400 metres along its short axis (SW) and is interpreted to be 100m below surface. The greatest amplitude response occurs in the center of the anomaly and is 500 metres along its long axis and 400 metres along its short axis. Two smaller lobes are also associated with the broader anomaly and may represent a faulted section of the main body. These lobes are located either side of the high amplitude response along the northwest-southeast trend of the anomaly.

The MMI soil-till geochemical survey data are displayed on series of thematic maps (Figures 14 to 18) showing the 90th to 99th percentiles of the various elements tested for. Mercury did not return any significant values and all values returned were below the detection limit. The summary statistics of the results from the survey are tabulated and displayed in Table 6; the full analytical certificates are presented in Appendix I.

Nechako Property IP Survey Grid 1 - Relative Magnetic Field Intensity FIGURE 11. IP SURVEY GRID 1

Nechako Property Grid 1 - Inverted Resistivity - 800m elevation (average 200m depth)

FIGURE 12. GRID 1 – INVERTED RESISTIVITY

Nechako Property Grid 1 - Inverted Chargeability - 800m elevation (average 200m depth)

FIGURE 13. GRID 1 – INVERTED CHARGEABILITY

	As ppm	Fe ppm	Hg ppm	Mo ppm	Sb ppm	Se ppm
Mean	0.038	318.40	N/A	0.016	0.006	0.009
Median	0.029	281.00	N/A	0.012	0.004	0.007
Mode	0.028	272.00	N/A	0.007	0.003	0.006
Standard deviation	0.031	163.26	N/A	0.013	0.008	0.008
Minimum	0.002	24.60	N/A	0.005	0.001	0.002
Maximum	0.265	1280.00	N/A	0.103	0.081	0.09
90 th	0.075	493.0	N/A	0.031	0.014	0.016
95 th	0.101	604.0	N/A	0.043	0.023	0.023
98 th	0.136	826.2	N/A	0.058	0.033	0.035
99 th	0.155	978.7	N/A	0.070	0.041	0.042

Table 4. Summary Statistics Mobile Metal Ions

8.2 GRIDS 2 & 3

Both grid 2 and grid 3 are located along the western edge of the claim group. The area is completely covered with Quaternary alluvium. Regional magnetic studies show intersecting NW and NE magnetic breaks as dominant regional structures. Grid 2 is located along the NW arm of this large "X" pattern. More subtle magnetic trends (both high and lows) suggest a NE strike to the background lithologies or structures (Figure 19).

The road network has been geochemically sampled. Anomalous values (most notably in Au) are observed along the road that follows the eastern and northern edges of grid 2.

8.3 GRID 2

The survey results show that there is a reasonable agreement between the resistivity and magnetics. The large "X" pattern of the NW and NE magnetic trends are roughly paralleled by high resistivity trends. Resistivity responses are more detailed and in the near surface which may suggest localized sequences of sub-parallel, narrow, linear zones. These trends

FIGURE 19. IP GRIDS 2 AND 3 – RELATIVE MAGNETIC FIELD INTENSITY

appear to coalesce at depth and give the general impression of ringed structures defined by moderately resistive centers being surrounded by halos of lower resistivity materials. A coincidental large magnetic low and low resistivity surface layer occur along the northcentral edge of grid. Figure 20 shows the resistivity distribution at 200m depth below the ground surface, superimposed over a regional magnetic color contour map.

The four anomalous chargeability responses are shown on Figure 21 and are described below:

1. Eastern strip - 321300E / 5940300N. This large buried high chargeability zone is located to the east of the road. This might be related to a much smaller zone at ground surface that lies immediately to the west and along the road. The chargeable body appears to dip at a shallow angle to the west however it also contains a central core that is more vertically oriented and plunges to the north. The chargeability zone appears to be flanked both above and below by high resistivity units.

2. Northwest target - 317400E / 5941670N. This is an elliptical shaped body with 4 smaller satellite highs. The main target extends from surface to depth while the satellite targets are confined to the near surface. The anomaly is located along a NW trending structure as outlined by regional mag and resistivity highs. It is also associated with the edge of the mag low and surface resistivity low. There is an anomalous conductivity zone along the southeast edge of the chargeability feature. This conductivity zone is anomalous in that it appears to be a vertical structure, while most of the other high conductivity zones appear to be flat, near surface layers.

3. Southwest target – 317775E / 5939650N. This target is similar to the Northwest target in that it appears to be conformable with the regional magnetic and resistivity trends (except in this area those trends strike NE). The chargeability target appears to be concentrated at depth (>200 metres) and is covered by a resistive cap. A large portion of this anomaly coincides with a high conductivity pipe, plunging towards the SW.

4. Central target – This area is noted but not considered a high priority feature. The zone is primarily defined by a northeasterly trending zone of high resistivity. It is flanked by 3 weak chargeability anomalies. These chargeability targets show a similar relationship to the mag and resistivity trends as the other target areas.

FIGURE 21. IP GRID 2 – CHARGEABILITY INTERVSION – 300 M DEPTH BELOW GROUND SURFACE

8.4 GRID 3

Grid 3 is located immediately south of Grid 2 and like Grid 2 the area is completely covered with Quaternary alluvium. Regional magnetic studies show intersecting NW and NE magnetic breaks as dominant regional structures. Grid 3 is located at a structural intersection and along the SW arm of this large "X" pattern (Figure 20).

Two northerly trending roads cross the survey grid and have been geochemically sampled. No strongly anomalous zones are noted. Concentrations appear to be slightly higher along the road crossing the western portion of the survey grid.

There are no strong IP or resistivity responses noted in the eastern and southern portions of the survey grid. Weak background trends suggest northerly and northeasterly striking trends that generally follow the local topography, with lower resistivities following the valleys and streams and higher resistivities associated with topographic highs (see Figure 22).

The northwestern corner of the survey grid exhibits more interesting structures. A northwesterly trending hill is associated with a strong resistivity high that extends from surface to depth. This feature is disrupted in several places and these lower resistivity sections coincide with moderately sized but significant chargeability anomalies. There appears to be one main chargeability zone and several smaller zones surrounding it. This main zone forms a sill like body, some 25 to 50 metres thick and buried about 100 metres below ground surface Figure 23. The zone dips at a shallow angle to the west. The smaller chargeability zones appear as irregularly shaped bodies.

The 3D inversion infers several east-west elongated resistivity and chargeability responses evident near surface. It is possible that these are associated with surface (overburden) inhomogeneities but may also be artifacts from the inversion algorithm. In either event, they are not considered to be valid geological targets.

FIGURE 22. IP GRID 3 – RESISTIVITY INTERVSION – 200 M DEPTH BELOW GROUND SURFACE

FIGURE 23. IP GRID 3 – CHARGEABILITY INVERSION – 100 M DEPTH BELOW GROUND SURFACE

8.5 SAMPLING METHOD AND APPROACH

The writers' have not researched the past sampling programs in detail, but have no reason to doubt that the methods and approach have been typical methods, involving chip and channel sampling and typical core splitting for diamond drilling programs.

The data collection method for the 3D Induced Polarization survey consisted of grid lines being established and cleared to allow line of sight between stations of 50 metres. A wooden picket with a buttersoft tag identifying the line number and the station number was affixed to the picket with a staple gun, the picket was then flagged with pink flagging.

The three dimensional IP surveys were designed to take advantage of the interpretational functionality offered by 3D inversion techniques. Unlike conventional IP, the electrode arrays are no longer restricted to in-line geometry. Typically, current electrodes and receiver electrodes are located on adjacent lines. Under these conditions, multiple current locations can be applied to a single receiver electrode array and data acquisition rates can be significantly improved over conventional surveys. In a common 3DIP configuration, a receiver array is established end-to-end along a survey line while current electrodes are located on two adjacent lines. The survey typically starts at one end of the line and proceeds to the other end. A typical 8 dipole array normally consists of two 100 metre dipoles, followed by four 50 metre dipoles and then two more 100 metre dipoles at the end of the array. In some areas these spacings are modified to compensate for local conditions such as inaccessible sites, streams, and overall conductivity of ground. Current electrodes are advanced along the adjacent lines, starting at approximately 200m from the center of the array and advancing approximately 400 metres through the array at 50 metre increments. At this point, the receiver array is advanced 400 metres and the process is repeated down the line.

The dipole array for the Nechako and Alexis survey's consisted of a modified pole-dipole configuration that was used with a combination of 6 to 12 dipoles depending on ground conditions, for a total array length of 1,600 metres. For both IP surveys, all data was collected using the proprietary SJ-24 Full Waveform Digital Receiver (Rx). The current was injected with a 2 seconds on, 2 seconds off duty cycle into the ground via a transmitter (Tx). A GDD Tx II 3.6 KW transmitter was utilized for the duration of the program.

The dipole array was implemented using standard 8 conductor cables configured with 100 metre takeouts for the potential rods. At each current station, the electrodes used consisted

of 5/8" stainless steel rods of approximately 1m in length. For the potential line, the electrodes consisted of 3/8" stainless steel "pins" of 0.5 metres length.

A soil- till sampling program was initiated over Grid 1 on the Nechako property. Samples were collected at stations established for the geophysical survey. Samples were collected using shovels and by digging to a depth of 25 centimetres where a sample of the material was collected and placed in a kraft styled paper sample bag that was identified by the line number and station written on the bag with a felt marker.

8.6 SAMPLE PREPARATION, ANALYSES AND SECURITY

In a similar manner, the writers' have not independently verified past sample preparation and analytical methods.

The IP readings from each day's surveying were downloaded to a computer and entered into a database archive every evening. The database program allows the operator to display the IP decay curves in an efficient manner, and this provides a visual review of the data quality on site.

For soil-till samples the material was dried then screened to a -180 um, the prepared sample (0.50 g) is digested with aqua regia for 45 minutes in a graphite-heating block. After cooling, the resulting solution is diluted to 12.5 mL with demineralised water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. The analytical results are corrected for inter-element spectral interferences.

Quality control for the soil-till program involved the taking duplicate samples throughout the survey. These duplicate samples are in addition to QA/QC procedures employed by ALS Chemex as part of that company's internal control. All of the results from the standard analyses were within acceptable deviations of the known values.

At all times access to the samples was limited to authorized personnel. Results from the laboratory are reported directly to the Qualified Person who disseminates the information as required. It is the author's opinion that the sampling methodology, sample preparation, security, analytical procedures and quality assurance practices used by Goldmember Ventures Corp. and the laboratory were both adequate and conducted in compliance with dard industry practices.

8.7 DATA VERIFICATION

No independent data verification was undertaken on samples collected by previous operators.

The sample analysis methods employed by Goldmember Ventures Corp. as described in the "Sample Preparation, Analysis and Security" section of this report are considered to be adequate and within current industry accepted practices.

9. Interpretation

9.1 GRID 1

This is located along a northwesterly trending contact, delineated by both magnetic and resistivity data. The area is likely cut by several northeasterly trending faults. Two high chargeability anomalies that could be related to disseminated sulphides are identified within the grid area. The smaller of these anomalies is elongated along the contact, coincident with one of the northeast trending faults. This anomaly extends from the ground surface to approximately 150 metres depth. A larger chargeability anomaly is located to the southeast of the contact and parallels it. This later feature is buried some 100 metres below ground surface and may be comprised of three separate zones, displaced from each other by northeasterly trending faults.

9.2 GRID 2

This was located to cover a northwesterly trending regional magnetic feature. Localized magnetic and resistivity data imply the localized lithologies strike northeasterly. Four chargeability anomalies that may characterize disseminated sulphide bodies are mapped across this grid. The strongest of these chargeability anomalies is located on the eastern portion of the grid and forms a westerly dipping layer flanked both above and below by high resistivity units. The anomaly was identified across all three survey lines in the area and is considered open along strike to the north and south.

The second anomaly is located along the north-central section of the grid and is comprised of a central, elliptical shaped body that extends from close to ground surface to depth. It is surrounded by several smaller, surficial bodies. This cluster of anomalies appears to lie along a regional, northwesterly trending structure.

The third anomaly is located in the southwestern portion of the grid coincidental with northeasterly trending magnetic and resistivity structures. The chargeable body appears to be buried some 200 metres below ground surface and is covered by a resistive cap.

The fourth anomaly is located in the central and northeastern portion of the grid. It appears as a weakly chargeable halo surrounding a northeasterly trending resistive body.

9.3 GRID 3

This grid was located to cover the intersection of major northwest and northeasterly trending regional magnetic lineations. Weak resistivity highs generally follow the topography in the area and are likely mapping overburden changes between the valleys and hills. High resistivities are mapped following a northwesterly trending hill located in the northwestern corner of the grid. Within this area a strong, elliptical shaped chargeability high forms a slight westerly dipping sill that is buried about 100 metres below the ground surface. This chargeability anomaly coincides with a distinct break in the high resistivity body. Several smaller, near surface chargeability anomalies appear to be scattered around the periphery of the large resistive unit.

10. Conclusions

Data from the regional geophysical and geochemical surveys have outlined areas hosting deep seated structures buried under more recent Eocene volcanics. A strong correlation exists between interpreted faults and higher geochemical values. The 3 dimensional Induced Polarization surveys conducted over the 3 grids have identified several areas hosting chargeability anomalies which occur generally at 100 metres or greater below surface. The Mobile Metal Ion (MMI) geochemical survey conducted over grid 1 showed a correlation between mobile metals and the resistivity contact trending northwest-southeast. A total of 7 chargeability anomalies were identified by the 3D induced polarization surveys.

11. Recommendations

In order to advance the property it is recommended that a two phased exploration program be implemented. A \$856,000 Phase I program is recommended, the program will consist of property wide geochemical sampling, geological mapping and prospecting of all known showings, roads and outcrops, ground magnetometer surveys over the existing grids, infill and expansion of the 3D Induced Polarization surveys conducted in 2006 and 2,500 metres of diamond drilling. The exploration program on the property should consists of magnetometer surveys over established grids 1, 2, 3, with the 3D Induced polarization surveys designed to infill and expand anomaly 1 on grid 2.

11.1 PHASE I – BUDGET

PERSONNEL

Subtotal	121,500.00
Line cutter 60 days @ \$275 per day	16,500.00
Line cutter 60 days @ \$275 per day	16,500.00
Line cutter 60 days @ \$275 per day	16,500.00
Field Manager 60 days @ \$350.00 per day	21,000.00
Junior geologist 60 days @ \$350.00 per day	21,000.00
Senior geologist 60 days @ \$500.00 per day	30,000.00

ACCOMMODATIONS

600 man days @ \$100.00 per day (includes food and lodging) (assumes geophysical crew 30 days diamond drill crew 30 days)	60,000.00
4x4 truck 60 days @ \$90.00 per day	5,400.00
4x4 truck 60 days @ \$90.00 per day	5,400.00
ATV 60 days @ 50 per day	3,000.00
ATV 60 days @ 50 per day	3,000.00
Fuel, chainsaws, accessory equipment	27,000.00
Geophysical Surveys (3D IP, Magnetometer) (assumes 60 line-kilometres of 3D I.P. @ \$2000.00 per line- kilometre 250 line-kilometres of mag @ \$100 per line kilometre, 25,000 for reporting)	170,000.00
Property Wide Silt Sampling (incl. labour, assays)	5,000.00
Prospecting, Sampling, Data digitizing	10,000.00
DIAMOND DRILLING	
2,500 m @ \$150/m (including assays)	375,000.00
Permits , Reclamation Bonding	20,000.00
Subtotal	778,300.00
Contingency (10%)	77,700.00
TOTAL Phase I	\$ 856,000.00

12. Statement of Costs

	GOLDMEMBER VENTURE	S	
	NECHAKO PROJECT		
PERSONNEL	DAYS	RATE/DAY	TOTAL
G. NICHOLSON P.Geo	29	500	14500.00
W.ROBB P.Geo	24	500	12000.00
M. MULBERRY Prospector	82	325	26650.00
R. SIMPSON Prospector	52	425	22100.00
E.CLASSEN	43	285	12255.00
M. HALL	39	285	11115.00
B. VALLEE	13	295	3835.00
R.EWAN	11	300	3300.00
G. McNAUGHTON	15	285	4275.00
N. BERNIER	15	285	4275.00
R. BELANGER	4	325	1300.00
D. LUNDBERG	8	285	2280.00
P. WASHPAN	5	285	1425.00
D. WILLIAMS	31	285	8835.00
B. McMICHEALS	13	285	3705.00
A. McLENNAN	28	285	7980.00
ACCOMMODATION	820	100	82000.00
INCLUDES GEOPHYSICS CREWS			
TRUCKS			
4X4	84	90	7560.00
4X4	84	90	7560.00
ATV	15	50	750.00
FUEL EQUIPMENT RENTALS, COMMUNICATION			60000.00
GEOPHYSICS	143.775 LINE KM	2000/LINE KM	287550.00
ANALYSIS			17000.00
GEOPHYSICS REPORTING			25000.00
FINAL REPORTING and DRAFTING			25000.00
TOTAL			\$652,250.00

13. Statement of Qualifications

I, GEORGE E. NICHOLSON, of 21910 – 61st Avenue, Langley, British Columbia

hereby certify that:

- 1. I am a coauthor of the report entitled "Geophysical and Geochemical Assessment Report on the Nechako Property," dated April 25, 2007.
- I am a graduate of the University of British Columbia with a degree in Geology (B.Sc., 1986);
- 3. I have practiced my profession as a Geologist continuously since graduation;
- 4. I directed the exploration program during the year 2006;
- 5. I am a member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia (No. 19796);
- 6. I am a Fellow of the Royal Geographic Society (No. 423161);
- 7. There are no material facts or material changes in the subject matter of this report that would mislead the reader;
- 8. I hereby grant my permission for Goldmember Ventures Corp. to use this Report for any corporate use normal to their business.

DATED at Vancouver, British Columbia this <u>25th</u> day of April, 2007.

George E. Nicholson, P.Geo., FRGS

14. References

- Armstrong, J.E. (1949), Fort St. James map area, Cassiar and Coast Districts, B.C., GSC Memoir, 252.
- Armstrong, R.L. (1988), Mesozoic and Early Cenozoic magmatic evolution of the Canadian Cordillera, Geol. Soc. Amer., Special Paper 218, pp 55-91.
- Armstrong, R.L. and Ward, P. (1991), Evolving Geographic Patterns of Cenozoic Magmatism in the North American Cordillera: The Temporal and Spatial Association of Magmatism and Metamorphic Core Complexes, Journ. of Geophysical Research, Vol 96, No. 88, pp 13,201-13,224.
- Andrew, K.P.E. (1988), Geology and Genesis of the Wolf Precious Metal Epithermal Prospect and the Capoose Base and Precious Metal Porphyry Style Prospect, Capoose Lake Area, Central British Columbia, M.Sc. Thesis UBC.
- Carter, N.C. (1981), Porphyry Copper and Molybdenum deposits, west central B.C., MEMPR, Bull 64.
- Crawford, M.L., Hollister, L.S., and Woodsworth, G.J. (1987), Crustal deformations and regional metamorphism across a terrane boundary, Coast Plutonic Belt, B.C., Tectonics, Vol 6, No. 3, pp 343-361.
- Cyr, J.B., Pease, R.B., and Schroeter, T.G. (1984), Geology and Mineralization at Equity Silver, Ec., Geol., Vol 79, pp 947-968.
- Dawson, G.M. (1875), Chilcotin Area, GSC Rept, 1875.
- Diakow, L.J. and Mihalynuk, M. (1987), Geology of Whitesail Reach and Troitsa Lake map areas, MEMPR Paper 1987-1, pp 171-180.
- Duffell, S. (1959), Whitesail Lake map area, GSC Memoir 299.
- Ewing, T.E. (1980), Paleogene tectonic evolution of the Pacific Northwest, Journ. of Geol., Vol 88, pp 619-639.
- Ewing, T.E. (1981), Regional stratigraphy and structural setting of the Kamloops Group, south-central British Columbia, Can. J. Earth Sci, Vol 18, pp 1,464-1,477.
- Friedman, R.M. (1988), Geology and geochronology of the Eocene Tatla Lake Metamorphic Core Complex, western edge of the Intermontane Belt, B.C., unpub Ph.D. Thesis, UBC.
- Gabrielse, H. (1986), Major dextral transcurrent displacements along the Northern Rocky Mountain Trench and related lineations in north-central B.C., G.S.A., Bull, Vol 96, pp 1-14.
- Gabrielse, H., Monger, J.W.H., Tempelman-Kluit, and Woodsworth, G.J. (1992), Chapt. 17, Structural Styles, Part C. Intermontane Belt in Geology of Canada, No. 4, Geology of the Cordilleran Orogen in Canada, Gabrielse H. and Yorath. E.J. ed. (DNAG).
- Gans, P.B., Mahood, B.A. and Schedrmer, E. (1989), Synextensional magmatism in the Basin and Range Province, A case study form the eastern Great Basin, G.S.A. Special Paper, 233.
- Green, K.C., and Diakow, L.J. (1993), The Fawnie Range Project, Geology of the Natalkuz Lake Map Area (93/F6), MEMPR Paper 1993-1, pp 57-68.

- Heah, T.S.T. (1990), Eastern margin of the Central Gneiss Complex in the Shames River area, Terrace, B.C., GSC, Paper 90-1A, pp 159-169.
- Hickson, C.J., Read, P., Mathews, W.H., Hunt, J., Johansson, G. and Rouse, G.E. (1991), Revised geological mapping of northeastern Taseko Lake map sheet, B.C., GSC, Paper 91-1A, pp 207-217.
- Holland, S.S. (1964), Landforms of British Columbia, A physiographic outline, BCDMPR, Bull 48.
- Hutchinson, W.W., Berg, H.C. and Okulitch, A.V. (1979), Skeena River map sheet-103, GSC map 1385A, 1:1,000,000.
- Klienspehn, K.L. (1985), Cretaceous sedimentation and tectonics, Tyaughton-Methow Basin, southwestern B.C., Can. J. Earth Sci, Vol 22, pp 154-174.
- Lipman, P.W. (1975), Evolution of the Platoro Caldera Complex and Related Volcanic Rocks, southeastern San Juan Mountains, Colorado, USGS Professional Paper, 852.
- Long, D.G.G. (1981), Dextral strike-slip faults in the Canadian Cordillera and deposition environments of related fresh water Intermontane coal basins, <u>in</u> Sedimentation and Tectonics in Alluvial Basins, ed. A.D. Maill, GAC Special Paper 23, pp 154-186.
- Mathews, W.H. and Rouse, G.E. (1984), the Gang Ranch-Big Bar area, south-central British Columbia: stratigraphy, geochronology and palynology of the Tertiary beds and their stratigraphic relationship to the Fraser Fault, Can. J. Earth Sci, Vol 21, pp 1,132-1,144.
- Mathews, E.H. (1989), Neogene Chilcotin basalts in south-central British Columbia: geology, ages and geomorphic history, Can. J. Earth Sci, Vol 26, pp 969-982.
- MacIntyre, D.G. (1985), Geology and Mineral Deposits of the Tahtsa Lake District, west central British Columbia, MEMPR Bull 75.
- Parrish, R.R., Carr, S.D. and Parkinson, D.L. (1988), Eocene extensional tectonics of the southern Omineca Belt, British Columbia and Washington, Tectonics, Vol 7, No. 2, pp 181-212.
- Richards, T.A. (1988), Geologic setting of the Stikine Terrane, <u>in</u> Geology and metallogeny of Northwest B.C., GAC Oct, abs., pp 75-81.
- Rouse, G.E. and Mathews, W.H. (1988), Palynology and geochronology of Eocene Beds from Cheslatta Falls and Nazko areas; central British Columbia, Can. J. of Earth Sci, pp 1,268-1,276.
- Schimann, K (1992) Cogema internal reports on the Nechako basin
- Schimann, K (1993) Cogema internal reports on the properties of the Nechako basin
- Schimann, K (1993) Cogema assessment reports
- Schimann, K (1993)
- Schimann, K (1993)
- Schimann, K (1993)
- Sinclair, A.J. (1986), Statistical Interpretation of Soil Geochemical Data. Review in Economic Geology, v.3, 97-116.

- Tipper, H.W. (1959), Geology, Quesnel (93B), GSC Map 12-1959, 1:253,440.
- Tipper, H.W. (1960), Geology, Prince George (93G), GSC Map 49-1960, 1:253,440.
- Tipper, H.W. (1963), Nechako River Map Area, B.C., GSC Memoir 324.
- Tipper, H.W. (1969a), Geology, Anahim Map Area, 93C, GSC Map 1202A.
- Tipper, H.W. (1969b), Mesozoic and Cenozoic geology of the northwest part of the Mt. Waddington Map Sheet (92N), Coast District, B.C., GSC Paper 68-33, 103p.
- Tipper, H.W. (1971), Glacial Geomorphology and Pleistocene History of Central British Columbia, GSC Bull 196.
- Tipper, H.W. (1978), Geology, Taseko Lake (920), GSC Open File 534, 1:250,000.
- Tipper, H.W. and Richards, T.A. (1976), Geology, Smithers Map Area (93L), GSC Open File 351.
- Tipper, H.W., Woodsworth, G.W. and Gabrielse, H. (1982), Tectonic assemblage map of the Canadian Cordillera, GSC Map 1505A.
- Woodsworth, G.J. (1979), Geology of the Whitesail Lake Map Area, B.C. GSC Paper 79-1A, pp 25-29.
- Woodsworth, G.J. (1980), Geology, Whitesail Lake (93E), GSC Open File 708, 1:250,000.

Appendix I.

MMI Survey Analytical Certificates

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 1 Finalized Date: 12-SEP-2006 This copy reported on 1-NOV-2006 Account: GOVECO

CERTIFICATE VA06073025	SAMPLE PREPARATION		
	ALS CODE	DESCRIPTION	
Project: Nechako	WEI-21 LOG-22	Received Sample Weight Sample login - Rcd w/o BarCode	
This report is for 141 Soil samples submitted to our lab in Vancouver, BC, Canada on 20-JUL-2006.		ANALYTICAL PROCEDUR	ES
The following have access to data associated with this certificate:	ALS CODE	DESCRIPTION	INSTRUMENT
MARK GEORGE NICHOLSON	ME-MS13	MMI-F Leach-Pathfinder Element	ICP-MS

To: GOLDMEMBER VENTURES CORP ATTN: GEORGE NICHOLSON C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

1).allt Signature:

Wayne Abbott, Operations Manager, Western Australia

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 2 - A Total # Pages: 5 (A) Finalized Date: 12-SEP-2006 Account: GOVECO

Project: Nechako

									CERTIFICATE OF ANALYSIS VA06	073025
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002		
G1 L50+00N 50+00E G1 L50+00N 50+50E G1 L50+00N 51+00E G1 L50+00N 51+50E G1 L50+00N 52+00E		0.90 0.80 1.32 0.64 1.08	0.021 0.020 0.035 0.008 0.016	355 204 358 286 343	<0.003 <0.003 <0.003 <0.003 <0.003	0.011 0.008 0.017 <0.005 0.014	0.005 0.003 0.007 0.002 0.003	0.007 0.006 0.008 0.006 0.007		
G1 L50+00N 52+50E G1 L50+00N 53+00E G1 L50+00N 53+50E G1 L50+00N 54+00E G1 L50+00N 54+50E		0.50 0.60 0.66 0.72 0.90	0.012 0.017 0.008 0.009 0.011	369 380 312 146.0 238	<0.003 <0.003 <0.003 <0.003 <0.003	0.011 0.017 0.005 <0.005 <0.005	0.002 0.002 0.001 0.002 0.002	0.005 0.007 0.006 0.006 0.007		
G1 L50+00N 55+00E G1 L50+00N 55+50E G1 L50+00N 56+00E G1 L50+00N 56+50E G1 L50+00N 57+00E		0.56 0.80 0.74 0.56 0.58	0.008 0.011 0.023 0.009 0.024	138.0 143.0 252 146.5 388	<0.003 <0.003 <0.003 <0.003 <0.003	0.015 <0.005 0.005 0.005 0.009	0.001 0.002 0.003 0.002 0.003	0.005 0.007 0.008 0.006 0.006		
G1 L50+00N 57+50E G1 L50+00N 58+00E G1 L50+00N 58+50E G1 L50+00N 59+00E G1 L50+00N 59+50E		0.60 0.56 0.88 0.54 0.70	0.015 0.019 0.029 0.023 0.020	159.5 166.0 272 230 221	<0.003 <0.003 <0.003 <0.003 <0.003	0.010 0.009 0.013 0.008 0.007	0.002 0.003 0.003 0.006 0.002	0.004 0.004 0.007 0.006 0.007		
G1 L50+00N 60+00E G1 L50+00N 60+50E G1 L50+00N 61+00E G1 L50+00N 61+50E G1 L50+00N 62+00E		0.74 0.44 0.60 0.72 0.50	0.023 0.051 0.032 0.034 0.006	159.5 537 259 396 103.0	<0.003 <0.003 <0.003 <0.003 <0.003	0.009 0.033 0.008 0.017 0.005	0.003 0.008 0.007 0.003 0.003	0.006 0.011 0.010 0.008 0.006		
G1 L50+00N 62+50E G1 L50+00N 63+00E G1 L50+00N 63+50E G1 L50+00N 64+00E G1 L50+00N 64+50E		0.92 0.46 0.92 0.44 0.80	0.015 0.034 0.029 0.040 0.033	205 280 258 207 121.5	<0.003 <0.003 <0.003 <0.003 <0.003	0.007 0.033 0.011 0.005 0.006	0.002 0.008 0.002 0.004 0.004	0.003 0.008 0.006 0.006 0.008		
G1 L50+00N 65+00E G1 L50+00N 65+50E G1 L50+00N 66+00E G1 L50+00N 66+50E G1 L50+00N 67+00E		0.52 0.52 0.46 0.76 0.52	0.107 0.018 0.035 0.017 0.025	155.5 141.0 324 148.0 197.5	<0.003 <0.003 <0.003 <0.003 <0.003	0.007 0.013 0.017 0.007 0.009	0.028 0.005 0.007 0.004 0.006	0.035 0.007 0.027 0.008 0.010		
G1 L50+00N 67+50E G1 L50+00N 68+00E G1 L50+00N 68+50E G1 L50+00N 69+00E G1 L50+00N 69+50E		0.70 0.46 0.54 0.48 0.64	0.032 0.037 0.039 0.036 0.024	226 473 456 334 177.0	<0.003 <0.003 <0.003 <0.003 <0.003	0.009 0.022 0.017 0.013 <0.005	0.005 0.008 0.004 0.006 0.002	0.011 0.013 0.006 0.006 0.006		

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

CERTIFICATE OF ANALYSIS VA06073025

Page: 3 - A Total # Pages: 5 (A) Finalized Date: 12-SEP-2006 Account: GOVECO

Project: Nechako

								-	
	Method	WEI-21	ME-MS13	ME-MS13	ME-MS13	ME-MS13	ME-MS13	ME-MS13	
	Analyte	Recvd Wt.	As	Fe	Hg	Mo	Sb	Se	
Sample Description	Units	kg	ppm	ppm	ppm	ppm	ppm	ppm	
Sample Description	LOK	0.02	0.001	0.1	0.003	0.005	0.001	0.002	
G1 L50+00N 70+00E		0.70	0.031	265	<0.003	0.009	0.006	0.008	
G1 L50+00N 70+50E		0.48	0.034	294	<0.003	0.013	0.005	0.013	
G1 L50+00N 71+00E		0.60	0.052	241	<0.003	0.010	0.005	0.011	
G1 L50+00N 71+50E		0.92	0.015	116.0	<0.003	0.006	0.003	0.006	
G1 L50+00N 72+00E		0.86	0.028	151.5	<0.003	<0.005	0.005	0.008	
G1 L50+00N 72+50E		0.82	0.017	106.5	<0.003	<0.005	0.004	0.008	
G1 L50+00N 73+00E		0.80	0.026	186.5	<0.003	0.010	0.003	0.005	
G1 L50+00N 73+50E		1.00	0.033	272	<0.003	0.006	0.004	0.027	
G1 L50+00N /4+00E		0.52	0.020	146.0	<0.003	0.010	0.021	0.010	
G1 L30+00N 30+30E		1.00	0.010	130.5	<0.003	0.007	0.003	0.000	
G1 L56+00N 51+50E		0.74	0.034	317	<0.003	0.008	0.004	0.005	
G1 L50+00N 54+00E		0.70	0.032	204	<0.003	0.005	0.003	0.007	
G1 L56+00N 56+00EA		0.62	0.027	116.0	<0.003	0.010	0.003	0.004	
G1 L56+00N 56+00EB		0.70	0.059	596	<0.003	0.020	0.005	0.012	
C1156+00N 56+50E		0.79	0.042	380	<0.003	0.019	0.005	0.005	
G1156+00N 57+00EA		0.70	0.042	373	<0.003	0.013	0.003	0.005	
G1156+00N 57+00EB		0.64	0.023	410	<0.003	0.023	0.003	0.006	
G1 L56+00N 57+50E		0.76	0.017	396	<0.003	0.009	0.004	0.005	
G1 L56+00N 58+00E		0.72	0.013	232	< 0.003	0.013	0.005	0.008	
G1 L56+00N 58+50E		0.76	0.012	409	< 0.003	0.012	0.004	0.009	
G1 L56+00N 59+00E		0.64	0.017	198.0	<0.003	0.012	0.003	0.007	
G1 L56+00N 59+50E		1.00	0.017	296	<0.003	0.011	0.002	0.005	
G1 L56+00N 60+00E		0.58	0.018	206	<0.003	0.007	0.007	0.010	
G1 L56+00N 60+50E		0.76	0.018	981	<0.003	0.015	0.004	0.008	
G1 L56+00N 61+00E		0.62	0.008	218	< 0.003	0.011	0.003	0.006	
G1 L56+00N 61+50EA		0.80	0.012	221	<0.003	0.007	0.002	0.006	
G1 L56+00N 61+50EB		0.76	0.025	193.5	<0.003	0.009	0.004	0.007	
G1 L56+00N 62+00E		0.66	0.020	499	<0.003	0.009	0.006	0.008	
GT L30+00N 02+30E		1.10	0.016	200.0	<0.003	0.005	0.003	0.004	
G1 L56+00N 63+00E		0.56	0.022	319	<0.003	0.023	0.006	0.011	
G1 L56+00N 63+50E		0.86	0.019	286	<0.003	0.007	0.002	0.007	
G1 L50+00N 64+00E		0.44	0.021	4/0	<0.003	0.012	0.001	0.008	
G1 L56+00N 65+00E		0.60	0.024	423	<0.003	0.014	0.004	0.009	
C1 56+00N 65+50E		0.52	0.001	1025	<0.000	0.016	0.010	0.011	
G1 L56+00N 65+50E		0.50	0.014	499	<0.003	0.016	0.010	0.015	
G1156+00N 66+50E		0.72	0.020	440	<0.003	0.023	0.003	0.011	
G1 L56+00N 67+00E		0.44	0.030	223	<0.003	0.013	0.001	0.003	
G1 L56+00N 67+50E		0.78	0.026	363	<0.003	0.006	0.003	0.008	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 4 - A Total # Pages: 5 (A) Finalized Date: 12-SEP-2006 Account: GOVECO

Project: Nechako

									CERTIFICATE OF ANALYSIS VA06073025
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
G1 L56+00N 68+00E G1 L56+00N 68+50E G1 L56+00N 69+00E G1 L56+00N 69+50E G1 L56+00N 70+00E		0.42 0.70 0.54 0.52 0.44	0.021 0.029 0.017 0.011 0.019	222 366 320 269 371	<0.003 <0.003 <0.003 <0.003 <0.003	0.020 0.029 0.036 0.034 0.045	0.006 0.002 0.002 0.002 0.002	0.013 0.004 0.003 0.003 0.003	
G1 L56+00N 70+50E G1 L56+00N 71+00E G1 L56+00N 71+50E G1 L56+00N 72+00E G1 L56+00N 72+50E		0.56 0.54 0.80 0.52 0.58	0.016 0.030 0.022 0.019 0.019	322 380 291 233 259	<0.003 <0.003 <0.003 <0.003 <0.003	0.015 0.040 0.006 <0.005 0.013	0.002 0.003 0.001 0.003 0.003	0.007 0.007 0.008 0.006 0.006	
G1 L56+00N 73+00E G1 L56+00N 73+50E G1 L56+00N 74+00E G1 L60+00N 50+00E G1 L60+00N 50+50E		0.48 0.50 0.50 0.66 0.66	0.026 0.041 0.028 0.034 0.009	323 201 272 207 252	<0.003 <0.003 <0.003 <0.003 <0.003	0.011 0.010 0.007 0.008 <0.005	0.003 0.002 0.005 0.009 0.002	0.043 0.005 0.006 0.018 0.005	
G1 L60+00N 51+00E G1 L60+00N 51+50E G1 L60+00N 52+00E G1 L60+00N 52+50E G1 L60+00N 53+00E		0.48 0.62 0.58 0.68 0.42	0.044 0.027 0.013 0.022 0.033	248 389 380 265 348	<0.003 <0.003 <0.003 <0.003 <0.003	0.011 0.005 0.006 <0.005 0.006	0.010 0.005 0.002 0.004 0.003	0.011 0.007 0.008 0.005 0.006	
G1 L60+00N 53+50E G1 L60+00N 54+00E G1 L60+00N 54+50E G1 L60+00N 55+00E G1 L60+00N 55+50E		0.54 0.56 0.58 0.74 0.74	0.098 0.088 0.137 0.101 0.034	524 255 346 262 265	<0.003 <0.003 <0.003 <0.003 <0.003	0.091 0.017 0.014 0.008 0.007	0.017 0.007 0.023 0.008 0.004	0.010 0.006 0.008 0.006 0.008	
G1 L60+00N 56+00E G1 L60+00N 56+50E G1 L60+00N 57+00E G1 L60+00N 57+50E G1 L60+00N 58+00E		0.50 0.62 0.34 0.36 0.74	0.094 0.024 0.008 0.024 0.042	333 410 128.5 478 254	<0.003 <0.003 <0.003 <0.003 <0.003	0.010 0.011 0.006 0.044 0.009	0.005 0.003 0.001 0.008 0.005	0.005 0.004 0.003 0.014 0.008	
G1 L60+00N 58+50E G1 L60+00N 59+50E G1 L60+00N 60+00E G1 L60+00N 60+50E G1 L60+00N 61+00E		0.48 0.70 0.62 0.46 0.66	0.030 0.044 0.030 0.033 0.052	607 533 213 503 325	<0.003 <0.003 <0.003 <0.003 <0.003	0.042 0.043 0.007 0.023 0.014	0.005 0.011 0.004 0.009 0.006	0.013 0.012 0.004 0.015 0.009	
G1 L60+00N 61+50E G1 L60+00N 62+00E G1 L60+00N 62+50E G1 L60+00N 63+00E G1 L60+00N 63+50E		0.64 0.54 0.68 0.62 0.80	0.038 0.046 0.020 0.025 0.022	284 397 264 285 156.5	<0.003 <0.003 <0.003 <0.003 <0.003	0.011 0.023 0.009 0.009 <0.005	0.004 0.005 0.004 0.004 0.003	0.006 0.011 0.007 0.006 0.004	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 5 - A Total # Pages: 5 (A) Finalized Date: 12-SEP-2006 Account: GOVECO

Project: Nechako

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
G1 L60+00N 64+00E G1 L60+00N 64+50E G1 L60+00N 65+00E G1 L60+00N 65+50E G1 L60+00N 66+00E		0.70 0.68 0.64 0.60 0.42	0.037 0.021 0.041 0.034 0.013	269 267 305 514 741	<0.003 <0.003 <0.003 <0.003 <0.003	0.013 0.018 0.010 0.013 0.013	0.008 0.004 0.006 0.003 0.012	0.006 0.004 0.005 0.006 0.019	
G1 L60+00N 66+50E G1 L60+00N 67+00E G1 L60+00N 67+50E G1 L60+00N 68+00E G1 L60+00N 68+50E		0.42 0.56 0.76 0.78 0.68	0.024 0.040 0.038 0.038 0.028	269 410 370 238 253	<0.003 <0.003 <0.003 <0.003 <0.003	0.020 0.018 0.013 0.010 0.011	0.003 0.003 0.005 0.005 0.005	0.005 0.006 0.006 0.006 0.006	
G1 L60+00N 69+00E G1 L60+00N 69+50E G1 L60+00N 70+00E G1 L60+00N 70+50E G1 L60+00N 71+00E		0.82 0.78 0.72 0.88 0.86	0.038 0.039 0.042 0.036 0.029	332 421 258 299 347	<0.003 <0.003 <0.003 <0.003 <0.003	0.013 0.007 <0.005 0.005 0.010	0.003 0.005 0.003 0.005 0.004	0.006 0.008 0.010 0.005 0.006	
G1 L60+00N 71+50E G1 L60+00N 72+00E G1 L60+00N 72+50E G1 L60+00N 73+00E G1 L60+00N 73+50E		0.94 0.66 0.80 0.76 0.88	0.051 0.039 0.037 0.038 0.137	483 495 213 326 353	<0.003 <0.003 <0.003 <0.003 <0.003	0.010 0.017 0.013 0.021 0.031	0.008 0.006 0.007 0.004 0.041	0.024 0.005 0.011 0.010 0.018	
G1 L60+00N 74+00E		0.80	0.136	198.0	<0.003	0.044	0.050	0.037	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 1 Finalized Date: 12-SEP-2006 This copy reported on 1-NOV-2006 Account: GOVECO

CERTIFICATE VA06073130		SAMPLE PREPARATION	l
	ALS CODE	DESCRIPTION	
Project: Nechako	WEI-21	Received Sample Weight Sample login - Rcd w/o BarCode	
P.O. No.: This report is far 199 Soil complex submitted to our lob in Venceuver, BC, Canada an	20022		
20-JUL-2006.		ANALYTICAL PROCEDUR	ES
The following have access to data associated with this certificate:	ALS CODE	DESCRIPTION	INSTRUMENT
MARK GEORGE NICHOLSON	ME-MS13	MMI-F Leach-Pathfinder Element	ICP-MS

To: GOLDMEMBER VENTURES CORP ATTN: GEORGE NICHOLSON C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Wallott Signature:

Wayne Abbott, Operations Manager, Western Australia

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

CERTIFICATE OF ANALYSIS VA06073130

Page: 2 - A Total # Pages: 5 (A) Finalized Date: 12-SEP-2006 Account: GOVECO

Project: Nechako

Г

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
G1 L62+00N 50+00E G1 L62+00N 50+50E G1 L62+00N 51+00E G1 L62+00N 51+50E G1 L62+00N 52+00E		0.76 0.74 0.58 0.58 0.58	0.026 0.068 0.027 0.026 0.043	138.0 208 311 278 302	<0.003 <0.003 <0.003 <0.003 <0.003	0.008 0.006 0.009 <0.005 0.005	0.005 0.009 0.009 0.003 0.003	0.008 0.015 0.007 0.004 0.009	
G1 L62+00N 52+50E G1 L62+00N 53+00E G1 L62+00N 53+50E G1 L62+00N 53+50E G1 L62+00N 54+00EA G1 L62+00N 54+00EB		0.86 0.68 0.86 0.84 0.82	0.041 0.036 0.031 0.030 0.018	237 380 295 212 251	<0.003 <0.003 <0.003 <0.003 <0.003	0.006 <0.005 0.006 0.007 0.005	0.003 0.006 0.003 0.005 0.004	0.004 0.016 0.009 0.006 0.013	
G1 L62+00N 54+50E G1 L62+00N 55+50E G1 L62+00N 56+00E G1 L62+00N 56+50E G1 L62+00N 57+00E		0.56 0.88 0.80 1.04 0.58	0.068 0.061 0.048 0.029 0.111	1115 504 260 355 256	<0.003 <0.003 <0.003 <0.003 <0.003	0.031 0.010 0.007 0.009 0.012	0.017 0.006 0.006 0.006 0.013	0.013 0.010 0.007 0.012 0.007	
G1 L62+00N 57+50E G1 L62+00N 58+00E G1 L62+00N 58+50E G1 L62+00N 59+00E G1 L62+00N 59+50E		0.66 0.64 0.88 0.60 0.80	0.023 0.119 0.070 0.026 0.053	781 472 255 525 852	<0.003 <0.003 <0.003 <0.003 <0.003	0.057 0.012 0.007 0.009 0.017	0.034 0.021 0.007 0.003 0.015	0.016 0.018 0.004 0.009 0.017	
G1 L62+00N 60+00E G1 L62+00N 60+50E G1 L62+00N 61+00E G1 L62+00N 62+00E G1 L62+00N 62+50E		0.64 0.98 0.60 0.68 0.70	0.046 0.054 0.045 0.046 0.050	337 436 487 291 348	<0.003 <0.003 <0.003 <0.003 <0.003	0.017 0.014 0.022 0.012 0.017	0.008 0.006 0.011 0.009 0.006	0.008 0.009 0.017 0.012 0.011	
G1 L62+00N 63+00E G1 L62+00N 63+50E G1 L62+00N 64+00E G1 L62+00N 64+50E G1 L62+00N 65+00E		0.48 0.66 0.56 0.64 0.30	0.024 0.039 0.023 0.062 0.061	519 326 269 660 418	<0.003 <0.003 <0.003 <0.003 <0.003	0.022 0.022 0.014 0.016 0.015	0.008 0.006 0.003 0.004 0.005	0.012 0.012 0.011 0.012 0.010	
G1 L62+00N 65+50E G1 L62+00N 66+00E G1 L62+00N 66+50E G1 L62+00N 67+00E G1 L62+00N 67+50E		0.28 0.60 0.78 0.46 0.82	0.045 0.025 0.026 0.010 0.089	636 458 216 228 460	<0.003 <0.003 <0.003 <0.003 <0.003	0.013 0.005 <0.005 <0.005 0.011	0.004 0.004 0.003 0.003 0.007	0.014 0.009 0.004 0.005 0.014	
G1 L62+00N 68+00E G1 L62+00N 68+50E G1 L62+00N 69+00E G1 L62+00N 69+50E G1 L62+00N 70+00E		0.56 0.66 0.72 0.86 0.72	0.028 0.038 0.071 0.041 0.054	873 313 318 355 320	<0.003 <0.003 <0.003 <0.003 <0.003	0.014 0.018 0.016 0.013 0.011	0.024 0.007 0.008 0.009 0.007	0.025 0.011 0.011 0.014 0.009	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 3 - A Total # Pages: 5 (A) Finalized Date: 12-SEP-2006 Account: GOVECO

Project: Nechako

									CERTIFICATE OF ANALYSIS VA06073130
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
G1 L62+00N 70+50E G1 L62+00N 71+00E G1 L62+00N 71+50E G1 L62+00N 72+00E G1 L62+00N 72+50E		1.02 0.74 0.74 0.70 0.88	0.039 0.028 0.037 0.057 0.042	736 316 396 515 259	<0.003 <0.003 <0.003 <0.003 <0.003	0.030 0.008 0.006 0.014 0.006	0.011 0.005 0.003 0.005 0.005	0.016 0.010 0.008 0.015 0.009	
G1 L62+00N 73+00E G1 L62+00N 73+50E G1 L62+00N 74+00E G1 L64+00N 50+00E G1 L64+00N 50+50E		0.68 0.90 0.50 0.92 0.54	0.061 0.043 0.046 0.052 0.042	373 287 404 371 1155	<0.003 <0.003 <0.003 <0.003 <0.003	0.013 0.016 0.024 0.017 0.015	0.010 0.009 0.019 0.011 0.028	0.020 0.012 0.023 0.026 0.027	
G1 L64+00N 51+00E G1 L64+00N 51+50E G1 L64+00N 52+00E G1 L64+00N 52+50E G1 L64+00N 53+00E		0.92 0.80 0.76 0.88 0.74	0.045 0.019 0.013 0.010 0.011	567 340 246 170.5 209	<0.003 <0.003 <0.003 <0.003 <0.003	0.013 0.011 0.011 <0.005 <0.005	0.007 0.002 0.002 0.002 0.002	0.018 0.005 0.007 0.006 0.004	
G1 L64+00N 53+50E G1 L64+00N 54+00E G1 L64+00N 54+50E G1 L64+00N 55+00E G1 L64+00N 55+50E		0.74 0.72 0.86 0.90 0.90	0.007 0.028 0.033 0.043 0.034	167.0 244 339 282 273	<0.003 <0.003 <0.003 <0.003 <0.003	0.007 0.015 0.011 0.017 0.011	0.001 0.008 0.007 0.007 0.003	0.006 0.019 0.008 0.018 0.007	
G1 L64+00N 56+00E G1 L64+00N 56+50E G1 L64+00N 57+00E G1 L64+00N 57+50E G1 L64+00N 58+00E		1.04 0.86 0.90 0.64 0.70	0.023 0.015 0.032 0.024 0.023	207 351 252 391 471	<0.003 <0.003 <0.003 <0.003 <0.003	0.009 0.005 0.014 0.026 0.070	0.006 0.002 0.009 0.002 0.017	0.008 0.009 0.009 0.007 0.012	
G1 L64+00N 58+50E G1 L64+00N 59+00E G1 L64+00N 59+50E G1 L64+00N 60+00E G1 L64+00N 60+50E		0.76 1.06 0.72 0.78 0.78	0.018 0.075 0.026 0.012 0.023	252 806 272 378 247	<0.003 <0.003 <0.003 <0.003 <0.003	0.012 0.076 0.007 0.044 0.017	0.003 0.015 0.003 0.002 0.003	0.007 0.023 0.007 0.004 0.008	
G1 L64+00N 61+00E G1 L64+00N 61+50E G1 L64+00N 62+00E G1 L64+00N 62+50E G1 L64+00N 63+00E		0.86 0.86 0.62 0.70 0.74	0.037 0.026 0.009 0.012 0.010	444 361 228 304 179.5	<0.003 <0.003 <0.003 <0.003 <0.003	0.023 0.008 0.005 0.006 0.005	0.004 0.003 0.002 0.004 0.002	0.007 0.007 0.005 0.008 0.006	
G1 L64+00N 63+50E G1 L64+00N 64+00E G1 L64+00N 64+50E G1 L64+00N 65+00E G1 L64+00N 65+50E		0.98 0.68 0.96 0.74 1.02	0.028 0.025 0.019 0.089 0.123	206 361 406 899 976	<0.003 <0.003 <0.003 <0.003 <0.003	0.022 0.007 0.005 0.038 0.021	0.005 0.005 0.004 0.016 0.008	0.008 0.009 0.008 0.011 0.018	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 4 - A Total # Pages: 5 (A) Finalized Date: 12-SEP-2006 Account: GOVECO

Project: Nechako

Г

									CERTIFICATE OF ANALYSIS VA06073130
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
G1 L64+00N 66+00E G1 L64+00N 66+50E G1 L64+00N 67+00E G1 L64+00N 67+50E G1 L64+00N 68+00E		0.60 0.78 0.84 0.56 0.46	0.059 0.101 0.095 0.028 0.058	445 582 731 729 1270	<0.003 <0.003 <0.003 <0.003 <0.003	0.015 0.047 0.031 0.049 0.043	0.006 0.026 0.005 0.036 0.029	0.010 0.017 0.007 0.090 0.033	
G1 L64+00N 68+50E G1 L64+00N 69+00E G1 L64+00N 69+50E G1 L64+00N 70+00E G1 L64+00N 70+50E		0.64 1.28 0.66 0.82 0.92	0.050 0.153 0.237 0.050 0.073	1010 685 692 824 414	<0.003 <0.003 <0.003 <0.003 <0.003	0.028 0.051 0.058 0.027 0.028	0.073 0.041 0.024 0.021 0.008	0.057 0.032 0.013 0.040 0.012	
G1 L64+00N 71+00E G1 L64+00N 71+50E G1 L64+00N 72+00E G1 L64+00N 72+50E G1 L64+00N 73+00E		0.68 0.76 1.02 0.98 0.66	0.080 0.062 0.073 0.094 0.069	642 449 514 564 898	<0.003 <0.003 <0.003 <0.003 <0.003	0.038 0.018 0.020 0.026 0.028	0.006 0.009 0.010 0.030 0.011	0.008 0.012 0.013 0.032 0.018	
G1 L64+00N 74+00E G1 L68+00N 58+00E G1 L68+00N 58+50E G1 L68+00N 59+00E G1 L68+00N 59+50E		0.64 0.98 1.00 0.74 1.02	0.037 0.051 0.050 0.032 0.044	448 493 452 398 346	<0.003 <0.003 <0.003 <0.003 <0.003	0.013 0.007 0.009 0.007 0.009	0.004 0.003 0.005 0.004 0.008	0.009 0.008 0.010 0.010 0.016	
G1 L68+00N 60+00E G1 L68+00N 60+50E G1 L68+00N 61+00E G1 L68+00N 61+50E G1 L68+00N 62+00E		0.90 0.78 0.74 0.92 0.96	0.032 0.200 0.047 0.072 0.053	257 520 420 268 284	<0.003 <0.003 <0.003 <0.003 <0.003	0.005 0.033 0.033 0.007 0.010	0.002 0.026 0.002 0.007 0.003	0.004 0.019 0.004 0.007 0.005	
G1 L68+00N 62+50E G1 L68+00N 63+00E G1 L68+00N 63+50E G1 L68+00N 64+00E G1 L68+00N 64+50E		1.12 1.02 0.74 0.96 0.90	0.092 0.075 0.026 0.038 0.022	309 488 457 320 369	<0.003 <0.003 <0.003 <0.003 <0.003	0.012 0.013 0.015 0.057 0.012	0.008 0.006 0.003 0.003 0.002	0.006 0.014 0.009 0.006 0.008	
G1 L68+00N 65+00E G1 L68+00N 65+50E G1 L68+00N 66+00E G1 L68+00N 66+50E G1 L68+00N 67+00E		0.78 0.72 0.82 0.82 0.82	0.085 0.031 0.015 0.046 0.084	1280 525 257 349 753	<0.003 <0.003 <0.003 <0.003 <0.003	0.046 0.008 <0.005 0.010 0.013	0.024 0.004 0.003 0.006 0.008	0.020 0.010 0.009 0.010 0.010	
G1 L68+00N 67+50E G1 L68+00N 68+00E G1 L68+00N 68+50E G1 L68+00N 69+00E G1 L68+00N 69+50E		1.58 1.04 1.22 0.58 0.88	0.056 0.028 0.047 0.016 0.028	544 482 227 328 924	<0.003 <0.003 <0.003 <0.003 <0.003	0.010 0.031 0.010 0.009 0.056	0.013 0.004 0.003 0.002 0.018	0.011 0.010 0.005 0.007 0.038	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

CERTIFICATE OF ANALYSIS VA06073130

Page: 5 - A Total # Pages: 5 (A) Finalized Date: 12-SEP-2006 Account: GOVECO

Project: Nechako

									-
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
G1 L68+00N 70+00E		1.06	0.011	249	<0.003	0.005	0.003	0.009	
G1 L68+00N 70+50E		0.88	0.040	641	<0.003	0.012	0.002	0.005	
G1 L68+00N 71+00E		0.80	0.039	279	< 0.003	0.007	0.002	0.006	
G1 L68+00N 71+50E		0.88	0.029	233	< 0.003	0.008	0.006	0.011	
G1 L68+00N 72+00E		0.78	0.070	471	<0.003	0.017	0.009	0.019	
G1 L68+00N 72+50E		0.86	0.025	256	<0.003	0.013	0.005	0.014	1
G1 L68+00N 73+00E		0.90	0.038	320	< 0.003	0.049	0.020	0.034	
G1 L68+00N 73+50E		0.86	0.013	290	< 0.003	0.007	0.002	0.005	
G1 L68+00N 74+00E		1.42	0.012	169.5	< 0.003	0.008	0.010	0.013	
G1 L70+00N 67+00E		0.74	0.049	485	<0.003	0.013	0.005	0.014	
G1 L70+00N 68+00E		0.76	0.020	225	< 0.003	0.029	0.003	0.007	1
G1 L70+00N 68+50E		0.60	0.022	442	<0.003	0.016	0.003	0.005	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 1 Finalized Date: 14-SEP-2006 This copy reported on 1-NOV-2006 Account: GOVECO

CEF	RTIFICATE VA06073132		SAMPLE PREPARATION	N
		ALS CODE	DESCRIPTION	
Project: Nechako P.O. No.:		WEI-21 LOG-22	Received Sample Weight Sample login - Rcd w/o BarCode	
This report is for 168 Soil samp 20-JUL-2006.	oles submitted to our lab in Vancouver, BC, Canada on		ANALYTICAL PROCEDUR	ES
The following have access t	o data associated with this certificate:	ALS CODE	DESCRIPTION	INSTRUMENT
MARK	GEORGE NICHOLSON	ME-MS13	MMI-F Leach-Pathfinder Element	ICP-MS

To: GOLDMEMBER VENTURES CORP ATTN: GEORGE NICHOLSON C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

1). all th Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Wayne Abbott, Operations Manager, Western Australia

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 2 - A Total # Pages: 6 (A) Finalized Date: 14-SEP-2006 Account: GOVECO

Project: Nechako

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
G1 L74+00N 50+00E G1 L74+00N 50+50E G1 L74+00N 51+00E G1 L74+00N 51+50E G1 L74+00N 51+50E G1 L74+00N 52+00E		0.88 0.68 1.22 0.56 1.02	0.015 0.005 0.027 0.009 0.016	284 193.0 263 222 233	<0.003 <0.003 <0.003 <0.003 <0.003	0.005 <0.005 <0.005 0.005 0.005	0.003 0.001 0.003 0.001 0.003	0.007 0.007 0.013 0.006 0.013	
G1 L74+00N 52+50E G1 L74+00N 53+00E G1 L74+00N 53+50E G1 L74+00N 53+50E G1 L74+00N 54+50E		0.76 1.04 1.28 1.16 1.10	0.013 0.053 0.037 0.052 0.022	207 392 188.0 439 209	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 0.015 <0.005 0.019 0.008	0.001 0.017 0.002 0.014 0.003	0.007 0.035 0.006 0.013 0.004	
G1 L74+00N 55+00E G1 L74+00N 55+50E G1 L74+00N 56+00E G1 L74+00N 56+50E G1 L74+00N 57+00E		0.84 0.88 0.82 0.94 1.16	0.015 0.038 0.022 0.010 0.033	234 283 286 179.0 219	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 0.007 <0.005 <0.005 0.005	0.002 0.002 0.002 0.002 0.006	0.007 0.006 0.006 0.005 0.006	
G1 L74+00N 57+50E G1 L74+00N 58+00E G1 L74+00N 58+50E G1 L74+00N 59+00E G1 L74+00N 59+50E		1.68 1.06 0.84 0.70 1.36	0.038 0.011 0.031 0.038 0.073	218 104.0 226 466 294	<0.003 <0.003 <0.003 <0.003 <0.003	0.005 <0.005 0.010 0.020 0.010	0.007 0.007 0.020 0.016 0.006	0.008 0.008 0.013 0.022 0.007	
G1 L74+00N 60+00E G1 L74+00N 60+50E G1 L74+00N 61+00E G1 L74+00N 61+50E G1 L74+00N 62+00E		0.86 0.88 0.96 0.80 0.72	0.112 0.071 0.069 0.030 0.024	554 425 274 328 346	<0.003 <0.003 <0.003 <0.003 <0.003	0.022 0.018 0.018 0.007 0.007	0.049 0.021 0.025 0.003 0.004	0.035 0.017 0.022 0.007 0.009	
G1 L74+00N 62+50E G1 L74+00N 63+00E G1 L74+00N 63+50E G1 L74+00N 64+00E G1 L74+00N 64+50E		0.78 0.80 0.80 0.76 0.84	0.055 0.037 0.044 0.014 0.029	532 329 293 390 372	<0.003 <0.003 <0.003 <0.003 <0.003	0.021 0.027 0.015 0.024 0.013	0.003 0.002 0.003 0.001 0.001	0.008 0.004 0.007 0.005 0.004	
G1 L74+00N 65+50E G1 L74+00N 66+00E G1 L74+00N 66+50E G1 L74+00N 67+00E G1 L74+00N 67+50E		0.96 0.82 0.76 0.70 0.78	0.029 0.051 0.048 0.010 0.036	268 243 466 267 320	<0.003 <0.003 <0.003 <0.003 <0.003	0.013 0.007 0.019 0.012 0.017	0.011 0.002 0.002 0.001 0.006	0.006 0.006 0.009 0.006 0.015	
G1 L74+00N 68+00E G1 L74+00N 68+50E G1 L74+00N 69+00E G1 L74+00N 69+50E G1 L74+00N 70+00E		0.72 1.00 0.76 0.90 0.94	0.009 0.031 0.098 0.037 0.165	374 431 450 285 489	<0.003 <0.003 <0.003 <0.003 <0.003	0.012 0.015 0.018 0.008 0.008	0.005 0.010 0.014 0.004 0.023	0.016 0.010 0.009 0.003 0.010	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 3 - A Total # Pages: 6 (A) Finalized Date: 14-SEP-2006 Account: GOVECO

Project: Nechako

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
G1 L74+00N 70+50E G1 L74+00N 71+00E G1 L74+00N 71+50E G1 L74+00N 72+00E G1 L74+00N 72+50E		0.86 0.92 1.32 0.74 0.84	0.036 0.024 0.030 0.069 0.056	197.5 350 422 447 414	<0.003 <0.003 <0.003 <0.003 <0.003	0.009 0.007 0.012 0.019 0.016	0.005 0.002 0.005 0.009 0.005	0.009 0.005 0.005 0.027 0.027	
G1 L74+00N 73+00E G1 L74+00N 73+50E G1 L74+00N 74+00E G1 L74+00N 50+50EA G1 L76+00N 50+50EB		1.32 1.44 1.54 0.82 0.62	0.080 0.020 0.033 0.031 0.019	372 172.5 189.0 345 205	<0.003 <0.003 <0.003 <0.003 <0.003	0.027 <0.005 0.012 0.021 0.011	0.011 0.004 0.005 0.003 0.002	0.007 0.005 0.004 0.003 <0.002	
G1 L76+00N 51+00E G1 L76+00N 51+50E G1 L76+00N 52+00E G1 L76+00N 52+50E G1 L76+00N 52+50E G1 L76+00N 53+00E		0.64 1.02 0.58 0.60 0.60	0.022 0.060 0.046 0.089 0.047	342 338 301 297 263	<0.003 <0.003 <0.003 <0.003 <0.003	0.012 0.013 0.030 0.014 0.010	0.002 0.007 0.005 0.003 0.005	0.004 0.005 0.007 0.003 0.005	
G1 L76+00N 53+50E G1 L76+00N 54+00E G1 L76+00N 54+50E G1 L76+00N 55+00E G1 L76+00N 55+50E		0.56 0.66 0.86 0.62 0.62	0.035 0.018 0.059 0.018 0.023	168.0 261 201 208 268	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 0.023 0.013 0.024 0.030	0.002 0.004 0.005 0.003 0.002	0.002 0.002 0.004 0.003 0.002	
G1 L76+00N 56+00E G1 L76+00N 56+50E G1 L76+00N 57+00E G1 L76+00N 57+50E G1 L76+00N 58+00E		0.90 0.36 0.82 0.68 0.78	0.039 0.021 0.067 0.033 0.048	198.5 272 514 239 252	<0.003 <0.003 <0.003 <0.003 <0.003	0.005 0.006 0.024 0.031 0.027	0.001 0.002 0.015 0.004 0.018	0.036 0.004 0.004 0.003 0.010	
G1 L76+00N 58+50E G1 L76+00N 59+00E G1 L76+00N 59+50E G1 L76+00N 60+00E G1 L76+00N 60+50E		0.50 0.44 0.60 0.94 0.62	0.065 0.041 0.059 0.052 0.034	231 772 197.5 327 542	<0.003 <0.003 <0.003 <0.003 <0.003	0.051 0.018 0.011 0.009 0.065	0.026 0.066 0.011 0.011 0.081	0.018 0.052 0.009 0.010 0.068	
G1 L76+00N 61+00E G1 L76+00N 61+50E G1 L76+00N 62+00E G1 L76+00N 62+50E G1 L76+00N 62+50E G1 L76+00N 63+00E		0.62 0.76 0.82 0.98 0.66	0.008 0.092 0.065 0.157 0.099	258 265 311 545 641	<0.003 <0.003 <0.003 <0.003 <0.003	0.005 0.012 0.015 0.025 0.070	0.002 0.007 0.009 0.029 0.009	0.004 0.002 0.008 0.018 0.009	
G1 L76+00N 63+50EA G1 L76+00N 63+00EB G1 L76+00N 64+50E G1 L76+00N 65+00E G1 L76+00N 65+50E G1 L76+00N 65+50E		0.82 0.88 0.56 0.80 0.54	0.019 0.039 0.033 0.018 0.031	284 299 152.5 294 265	<0.003 <0.003 <0.003 <0.003 <0.003	0.008 0.018 0.045 0.017 0.020	0.002 0.005 0.002 0.004 0.007	0.003 0.003 0.003 0.006 0.015	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

CERTIFICATE OF ANALYSIS VA06073132

Page: 4 - A Total # Pages: 6 (A) Finalized Date: 14-SEP-2006 Account: GOVECO

Project: Nechako

Method Analyte Units LOR WEI-21 Me-MS13 ME-MS13 ME-MS13 ME-MS13 ME-MS13 ME-MS13 ME-MS13 ME-MS13 ME-MS13 Sample Description Method LOR As Fe Hg Mo Sb Se g1 L76+00N 66+00E 1.02 0.001 0.1 0.003 0.005 0.001 0.002 G1 L76+00N 66+50E 0.84 0.040 330 <0.003 0.012 0.014 G1 L76+00N 67+50E 0.76 0.062 271 <0.003 0.016 0.012 0.014 G1 L76+00N 67+50E 0.90 0.037 314 <0.003 0.007 0.005 0.001 G1 L76+00N 68+00E 1.00 0.014 336 <0.003 0.010 0.005 0.011	
Analyte Units LOR Recvd Wt. As Fe Hg Mo Sb Se Sample Description Units LOR kg ppm 0.002 0.001 0.002 0.001 0.002 0.011 0.002 0.015 0.012 0.015 0.016 0.012 0.014 0.012 0.014 0.012 0.014 0.012 0.014 0.012 0.014 0.016 0.022 0.014 0.016 0.022 0.014 0.016 0.022 0.016 0.022 0.016 0.022 0.016 0.022 0.016 0.022 0.016 0.022 0.016 0.021 0.016 0.022 0.016 0.005	
Vinits LOR kg ppm p	
G1 L76+00N 66+00E 1.02 0.001 0.1 0.003 0.005 0.001 0.002 G1 L76+00N 66+00E 1.02 0.050 251 <0.003	
G1 L76+00N 66+00E 1.02 0.050 251 <0.003	
G1 L76+00N 66+50E 0.84 0.040 330 <0.003 0.012 0.014 G1 L76+00N 67+00E 0.76 0.062 271 <0.003	
G1 L76+00N 67+00E 0.76 0.062 271 <0.003 0.016 0.012 G1 L76+00N 67+50E 0.90 0.037 314 <0.003 0.007 0.005 0.006 G1 L76+00N 68+00E 1.00 0.014 336 <0.003 0.010 0.005 0.011	
G1 L76+00N 67+50E 0.90 0.037 314 <0.003 0.007 0.005 0.006 G1 L76+00N 68+00E 1.00 0.014 336 <0.003 0.010 0.005 0.011	
G1 L76+00N 68+00E 1.00 0.014 336 <0.003 0.010 0.005 0.011	
G1 L76+00N 68+50E 0.74 0.006 299 <0.003 0.009 0.008 0.009	
G1 L76+00N 69+00E 0.98 0.009 283 <0.003 0.010 0.003 0.005	
G1 L76+00N 69+50E 0.80 0.037 725 <0.003 0.024 0.005 0.008	
G1 L76+00N 70+00E 0.80 0.023 346 <0.003 0.012 0.003 0.007	
G1 L76+00N 70+50E 1.00 0.074 370 <0.003 0.022 0.004 0.006	
G1 L76+00N 71+00E 0.82 0.028 325 <0.003 0.025 0.003 0.006	
G1 L76+00N 71+50E 0.72 0.020 218 <0.003 0.008 0.003 0.007	
G1 L76+00N 72+00E 0.88 0.014 295 <0.003 0.008 0.004 0.006	
G1 L76+00N 72+50E 1.04 0.023 345 <0.003 0.008 0.009 0.007	
G1 L76+00N 73+00E 0.92 0.013 192.0 <0.003 0.007 0.003 0.004	
G1 L76+00N 73+50E 0.70 0.015 325 <0.003 0.022 0.002 0.004	
G1 L76+00N 74+00E 0.60 0.021 217 <0.003 0.007 0.003 0.005	
G1 L77+50N 50+00E 0.78 0.019 168.5 <0.003 0.014 0.002 0.005	
G1 L77+50N 50+50E 0.62 0.006 260 <0.003 0.042 0.002 0.011	
G1 L77+50N 51+00E 1.18 0.092 405 <0.003 0.033 0.030 0.038	
G1 L77+50N 51+50E 0.98 0.068 354 <0.003 0.030 0.018 0.020	
G1 L77+50N 52+50E 0.92 0.021 385 <0.003 0.015 0.003 0.007	
G1 L77+50N 53+00E 0.86 0.024 160.0 <0.003 0.010 0.002 0.004	
G1 L77+50N 54+00EA 1.04 0.075 205 <0.003 0.012 0.003 0.005	
G1 L77+50N 54+00EB 1.00 0.022 380 <0.003 0.039 0.003 0.007	
G1 L77+50N 54+50E 1.16 0.025 198.5 <0.003 0.008 0.002 0.005	
G1 L77+50N 55+00E 0.46 0.043 196.0 <0.003 0.103 0.002 0.007	
G1 L77+50N 55+50E 1.10 0.077 375 <0.003 0.036 0.008 0.009	
G1 L77+50N 56+00E 1.10 0.044 272 <0.003 0.007 0.004 0.004	
G1 L77+50N 56+50E 0.96 0.108 495 <0.003 0.041 0.017 0.012	
G1 L77+50N 57+00E 1.20 0.150 310 <0.003 0.024 0.014 0.009	
G1 L77+50N 58+50E 0.94 0.071 315 <0.003 0.032 0.004 0.005	
G1 L77+50N 59+00E 0.70 0.010 268 <0.003 0.005 0.002 0.005	
G1 L77+50N 59+50E 1.12 0.136 278 <0.003 0.019 0.026 0.016	
G1 L77+50N 60+00E 0.60 0.080 442 <0.003 0.051 0.042 0.021	
G1 L77+50N 60+50E 1.02 0.072 435 <0.003 0.007 0.007 0.007	
G1 L77+50N 61+00E 1.16 0.049 214 <0.003 0.012 0.003 0.006	
G1 L77+50N 61+50E 0.98 0.027 309 <0.003 0.005 0.002 0.005	
G1 L77+50N 62+00E 0.84 0.018 194.5 <0.003 0.013 0.002 0.004	
G1 L77+50N 62+50E 0.94 0.034 175.5 <0.003 0.009 0.002 0.003	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 5 - A Total # Pages: 6 (A) Finalized Date: 14-SEP-2006 Account: GOVECO

Project: Nechako

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
G1 L77+50N 63+00E G1 L77+50N 63+50E G1 L77+50N 64+00E G1 L77+50N 64+50E G1 L77+50N 65+00E		0.80 1.02 0.82 0.82 Not Recvd	0.025 0.022 0.188 0.078	264 132.0 750 489	<0.003 <0.003 <0.003 <0.003	0.025 <0.005 0.085 0.026	0.002 0.001 0.038 0.025	0.007 0.004 0.071 0.018	
G1 L77+50N 65+50E G1 L77+50N 66+00E G1 L77+50N 66+50E G1 L77+50N 67+00E G1 L78 5200E		0.94 Not Recvd Not Recvd Not Recvd 0.74	0.025	383 255	<0.003	0.018	0.008	0.011	
G1 L80+00N 59+00E G1 L80+00N 59+50E G1 L80+00N 60+00E G1 L80+00N 60+50E G1 L80+00N 62+00E		1.58 1.64 0.88 0.96 0.94	0.160 0.136 0.025 0.032 0.038	410 570 264 164.5 322	<0.003 <0.003 <0.003 <0.003 <0.003	0.018 0.036 0.015 0.006 0.015	0.018 0.041 0.002 0.003 0.004	0.012 0.024 0.004 0.006 0.005	
G1 L80+00N 63+50E G1 L80+00N 65+00E G1 L84+00N 59+00E G1 L84+00N 59+50E G1 L84+00N 60+00E		0.62 0.86 0.96 0.70 0.84	0.014 0.046 0.043 0.020 0.015	84.9 357 956 300 421	<0.003 <0.003 <0.003 <0.003 <0.003	0.014 0.046 0.036 0.021 0.037	0.012 0.017 0.071 0.002 0.003	0.009 0.009 0.043 0.005 0.005	
G1 L84+00N 60+50E G1 L84+00N 61+00E G1 L84+00N 61+50E G1 L84+00N 62+00E G1 L84+00N 62+50E		0.88 0.92 0.78 0.92 0.92	0.044 0.024 0.008 0.011 0.017	359 204 297 216 549	<0.003 <0.003 <0.003 <0.003 <0.003	0.029 0.006 0.011 0.007 0.016	0.005 0.001 0.001 0.001 0.001	0.005 0.004 0.004 0.005 0.002	
G1 L84+00N 63+00E G1 L84+00N 63+50E G1 L84+00N 64+00E G1 L84+00N 64+50E G1 L84+00N 65+00E		0.82 0.94 0.86 1.00 0.98	0.050 0.006 0.011 0.043 0.025	402 155.5 290 171.0 145.5	<0.003 <0.003 <0.003 <0.003 <0.003	0.007 0.007 0.018 0.008 <0.005	0.001 0.001 0.001 0.002 0.003	0.004 0.003 0.003 0.003 0.003	
G1 L84+00N 65+50E G1 L84+00N 66+00E G1 L84+00N 66+50E G1 L84+00N 67+00E G1 L84+00N 67+50E		1.02 1.14 1.10 0.96 0.80	0.011 0.026 0.023 0.018 0.012	223 229 316 180.0 242	<0.003 <0.003 <0.003 <0.003 <0.003	0.009 0.011 0.012 0.007 <0.005	0.001 0.002 0.002 0.002 0.002	0.004 0.004 0.005 0.005 0.004	
G1 L84+00N 68+00E G1 L84+00N 68+50E G1 L84+00N 69+00E G1 L84+00N 69+50E G1 L84+00N 70+00E		0.70 0.88 1.00 0.74 0.86	0.021 0.014 0.015 0.016 0.019	171.0 214 272 268 447	<0.003 <0.003 <0.003 <0.003 <0.003	0.007 0.007 0.008 0.013 0.007	0.001 0.002 0.001 0.002 0.003	0.002 0.005 0.005 0.005 0.005	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 6 - A Total # Pages: 6 (A) Finalized Date: 14-SEP-2006 Account: GOVECO

Project: Nechako

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
G1 L84+00N 70+50E G1 L84+00N 71+00E G1 L84+00N 71+50E G1 L84+00N 72+00E G1 L84+00N 72+50E		0.88 0.90 0.84 1.04 1.04	0.016 0.008 0.031 0.041 0.118	117.5 147.5 198.0 352 183.5	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 0.006 0.010 0.034 0.013	0.002 0.002 0.002 0.004 0.020	0.004 0.004 0.005 0.005 0.012	
G1 L84+00N 73+00E G1 L84+00N 73+50E G1 L84+00N 74+00E		0.86 1.06 1.08	0.089 0.105 0.036	405 255 302	<0.003 <0.003 <0.003	0.013 0.011 0.006	0.012 0.025 0.003	0.010 0.023 0.007	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 1 Finalized Date: 14-SEP-2006 This copy reported on 1-NOV-2006 Account: GOVECO

CERTIFICATE VA06073452	SAMPLE PREPARATION				
	ALS CODE	DESCRIPTION			
Project: Nechaco/ Grid 1	WEI-21 Received Sample Weight				
P.O. No.:	100-22	Sample login - Rcd w/o Barcode			
This report is for 189 Soil samples submitted to our lab in Vancouver, BC, Canada on 20-JUL-2006.		ANALYTICAL PROCEDURE	s		
The following have access to data associated with this certificate:	ALS CODE	DESCRIPTION	INSTRUMENT		
MARK GEORGE NICHOLSON	ME-MS13	MMI-F Leach-Pathfinder Element	ICP-MS		

TO: GOLDMEMBER VENTURES CORP ATTN: GEORGE NICHOLSON C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

pages of this report have been checked and approved for release.

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All Signature:

Wallt

Wayne Abbott, Operations Manager, Western Australia

Line 52 66+00E

Line 52 66+50E

Line 52 67+00E

Line 52 67+50E Line 52 68+00E

Line 52 68+50E

Line 52 69+00E

Line 52 69+50E

0.78

0.86

0.46

0.74

0.88

0.60

0.78

0.62

0.028

0.022

0.013

0.021

0.028

0.020

0.022

0.022

221

141.5

142.0

130.5

197.5

145.5

154.5

171.0

< 0.003

< 0.003

< 0.003

<0.003

< 0.003

< 0.003

< 0.003

< 0.003

0.014

0.008

0.010

0.010

0.007

0.008

0.012

0.009

0.003

0.002

0.002

0.003

0.002

0.002

0.004

0.003

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 2 - A Total # Pages: 6 (A) Finalized Date: 14-SEP-2006 Account: GOVECO

Project: Nechaco/ Grid 1

CERTIFICATE OF ANALYSIS VA06073452 WEI-21 ME-MS13 ME-MS13 ME-MS13 ME-MS13 ME-MS13 ME-MS13 Method Analyte Recvd Wt. As Fe Hg Mo Sb Se Units kg ppm ppm ppm ppm ppm ppm Sample Description LOR 0.001 0.003 0.005 0.02 0.1 0.001 0.002 Line 52 50+00E 0.88 0.041 446 < 0.003 0.066 0.008 0.015 Line 52 50+50E 0.72 0.009 216 < 0.003 0.009 0.002 0.003 Line 52 51+00E 1.10 0.013 236 < 0.003 0.013 0.004 0.004 Line 52 51+50E 0.62 0.016 295 < 0.003 0.019 0.004 0.007 Line 52 52+00E 0.66 0.012 276 <0.003 0.009 0.003 0.006 Line 52 52+50E 0.72 0.026 388 <0.003 0.014 0.003 0.007 Line 52 53+00E 0.50 0.018 412 < 0.003 0.009 0.002 0.006 Line 52 53+50E 1.28 0.021 383 < 0.003 0.013 0.003 0.006 Line 52 54+00E 0.023 < 0.003 0.002 0.013 1.22 323 0.005 Line 52 54+50E 1.32 0.025 361 < 0.003 0.004 0.015 0.007 Line 52 55+00E 1.50 0.028 199.0 < 0.003 0.007 0.003 0.006 Line 52 55+50E 1.24 0.005 233 < 0.003 0.005 0.001 0.004 Line 52 56+00E 0.58 0.017 597 < 0.003 0.020 0.003 0.010 Line 52 56+50E 0.66 0.010 255 < 0.003 0.006 0.002 0.006 Line 52 57+00E 0.60 0.024 482 < 0.003 0.012 0.002 0.006 Line 52 57+50E 0.021 189.0 < 0.003 0.007 0.002 0.62 0.006 Line 52 58+00E 0.88 0.012 178.5 < 0.003 0.007 0.004 0.010 Line 52 58+50E 0.56 0.013 116.0 < 0.003 <0.005 0.001 0.004 Line 52 59+00E 0.70 0.011 163.5 < 0.003 < 0.005 0.001 0.003 0.88 Line 52 59+50E 0.024 309 < 0.003 0.016 0.007 0.011 0.60 0.020 254 <0.003 0.014 0.003 0.006 Line 52 60+00E Line 52 60+50E 0.70 0.019 < 0.003 0.003 108.5 0.011 0.004 Line 52 61+00E 0.68 0.032 146.0 < 0.003 0.013 0.005 0.003 Line 52 61+50E 1.26 0.017 159.5 < 0.003 0.009 0.003 0.005 Line 52 62+00E 1.14 0.027 292 < 0.003 0.013 0.005 0.007 Line 52 62+50E 1.38 0.036 293 < 0.003 0.012 0.005 0.006 Line 52 63+00E 1.24 0.043 196.0 < 0.003 0.010 0.004 0.006 Line 52 63+50E 0.92 0.027 227 < 0.003 0.018 0.004 0.007 Line 52 64+00E 1.16 0.031 219 < 0.003 0.015 0.004 0.008 Line 52 64+50E 0.92 0.028 209 < 0.003 0.015 0.004 0.009 Line 52 65+00E 0.78 0.043 214 <0.003 0.023 0.005 0.008 Line 52 65+50E 0.62 0.026 129.0 < 0.003 0.016 0.004 0.006

0.006

0.005

0.005

0.007

0.007

0.006

0.009

0.008

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 3 - A Total # Pages: 6 (A) Finalized Date: 14-SEP-2006 Account: GOVECO

Project: Nechaco/ Grid 1

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
Line 52 70+00E Line 52 70+50E Line 52 71+00E Line 52 71+50E Line 52 72+00E		0.64 0.56 0.44 0.78 0.52	0.029 0.028 0.025 0.025 0.025 0.076	283 240 369 165.0 287	<0.003 <0.003 <0.003 <0.003 <0.003	0.028 0.010 0.026 0.014 0.014	0.006 0.002 0.002 0.011 0.036	0.011 0.006 0.006 0.023 0.017	
Line 52 72+50E Line 52 73+00E Line 52 73+50E Line 52 74+00E Line 54 50+50E		0.48 0.52 0.58 0.36 0.50	0.054 0.049 0.039 0.025 0.035	402 172.0 366 475 484	<0.003 <0.003 <0.003 <0.003 <0.003	0.019 0.005 0.012 0.017 0.036	0.005 0.002 0.004 0.008 0.006	0.028 0.011 0.005 0.015 0.009	
Line 54 51+00E Line 54 51+50E Line 54 52+00E Line 54 52+50E Line 54 54+00E		0.82 0.84 0.60 0.54 0.60	0.024 0.101 0.015 0.002 0.014	263 303 377 86.0 134.5	<0.003 <0.003 <0.003 <0.003 <0.003	0.011 0.013 0.008 <0.005 0.006	0.005 0.004 0.003 0.001 0.003	0.006 0.005 0.006 0.002 0.005	
Line 54 54+50E Line 54 55+00E Line 54 55+50E Line 54 56+00E Line 54 56+50E		0.44 0.58 0.82 0.96 0.94	0.025 0.034 0.038 0.018 0.026	256 243 260 238 195.5	<0.003 <0.003 <0.003 <0.003 <0.003	0.016 0.015 0.016 0.014 0.014	0.004 0.004 0.006 0.004 0.006	0.006 0.006 0.007 0.005 0.005	
Line 54 57+00E Line 54 57+50E Line 54 58+00E Line 54 58+50E Line 54 59+00E		0.70 0.70 0.80 0.72 0.56	0.010 0.016 0.025 0.026 0.009	254 359 242 222 105.5	<0.003 <0.003 <0.003 <0.003 <0.003	0.006 0.011 0.009 0.011 0.008	0.003 0.003 0.004 0.003 0.002	0.007 0.005 0.005 0.004 0.003	
Line 54 59+50E Line 54 60+00E Line 54 60+50E Line 54 61+50E Line 54 62+00E		0.72 0.72 0.38 0.44 0.62	0.008 0.032 0.006 0.018 0.019	185.5 251 110.5 472 172.5	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 0.012 0.005 0.027 0.015	0.002 0.003 0.002 0.021 0.004	0.005 0.005 0.010 0.074 0.008	
Line 54 62+50E Line 54 63+00E Line 54 63+50E Line 54 64+00E Line 54 64+50E		0.52 0.48 0.60 0.92 0.64	0.017 0.011 0.012 0.013 0.009	533 171.5 367 361 235	<0.003 <0.003 <0.003 <0.003 <0.003	0.008 0.015 0.010 0.012 0.008	0.003 0.002 0.002 0.002 0.002	0.009 0.003 0.009 0.006 0.004	
Line 54 65+00E Line 54 65+50E Line 54 66+00E Line 54 66+50E Line 54 67+00E		0.76 0.64 0.80 0.68 0.70	0.021 0.035 0.038 0.040 0.037	268 258 321 324 299	<0.003 <0.003 <0.003 <0.003 <0.003	0.011 0.009 0.020 0.005 0.016	0.003 0.004 0.004 0.004 0.004	0.006 0.007 0.005 0.007 0.004	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

CERTIFICATE OF ANALYSIS VA06073452

Page: 4 - A Total # Pages: 6 (A) Finalized Date: 14-SEP-2006 Account: GOVECO

Project: Nechaco/ Grid 1

	Method Analyte Units	WEI-21 Recvd Wt. kg	ME-MS13 As ppm	ME-MS13 Fe ppm	ME-MS13 Hg ppm	ME-MS13 Mo ppm	ME-MS13 Sb ppm	ME-MS13 Se ppm	
Sample Description	LOR	0.02	0.001	0.1	0.003	0.005	0.001	0.002	
Line 54 67+50E		0.90	0.051	206	~0.002	0.012	0.002	0.004	
Line 54 67+50E		0.00	0.031	200	<0.003	0.012	0.003	0.004	
Line 54 68+50E		0.50	0.047	250	<0.003	0.003	0.004	0.003	
Line 54 60+30E		0.66	0.020	230	<0.003	0.032	0.003	0.004	
Line 54 69+60E A		0.50	0.015	1/8.0	<0.003	<0.025	0.001	0.004	
Line 34 03430E A		0.04	0.020	140.0	~0.005	<0.005	0.001	0.002	
Line 54 69+50E B		0.64	0.011	112.5	<0.003	<0.005	0.001	0.004	
Line 54 70+50E		0.56	0.018	236	<0.003	0.010	0.001	0.003	
Line 54 /1+00E		0.60	0.015	263	<0.003	0.018	0.003	0.005	
Line 54 7 1+50E		0.52	0.013	240	<0.003	0.000	0.001	0.028	
Line 54 / 2+00E		0.64	0.012	93.9	<0.003	0.010	0.004	0.026	
Line 54 72+50E		0.42	0.006	200	<0.003	<0.005	0.001	0.005	
Line 54 73+00E		0.52	0.029	417	<0.003	0.014	0.012	0.014	
Line 54 73+50E		0.58	0.031	360	<0.003	0.021	0.005	0.007	
Line 54 /4+00E		0.74	0.041	327	<0.003	0.008	0.003	0.004	
Line 58 50+00E		0.90	0.061	274	<0.003	0.014	0.004	0.006	
Line 58 50+50E		0.98	0.010	274	<0.003	<0.005	0.002	0.007	
Line 58 51+00E		0.84	0.019	220	<0.003	0.012	0.002	0.005	
Line 58 51+50E		1.44	0.026	262	<0.003	0.014	0.003	0.005	
Line 58 52+00E		1.24	0.017	134.5	<0.003	0.007	0.003	0.006	
Line 58 52+50E		1.38	0.023	243	<0.003	0.008	0.004	0.008	
Line 58 53+00E		0.86	0.114	350	<0.003	0.013	0.005	0.007	
Line 58 53+50E		0.76	0.032	371	<0.003	0.012	0.003	0.006	
Line 58 54+00E		1.00	0.010	187.5	<0.003	<0.005	0.001	0.004	
Line 58 54+50E		1.14	0.043	215	<0.003	0.006	0.003	0.004	
Line 58 55+00E		1.10	0.059	290	<0.003	0.012	0.006	0.006	
Line 58 55+50E		0.94	0.043	291	<0.003	0.032	0.003	0.006	
Line 58 56+00E		1.26	0.036	245	<0.003	0.017	0.005	0.006	
Line 58 56+50E		1.28	0.014	152.5	<0.003	0.008	0.003	0.003	
Line 58 57+00E		1.14	0.032	455	<0.003	0.025	0.005	0.006	
Line 58 57+50E		0.92	0.041	252	<0.003	0.017	0.004	0.005	
Line 58 58+00E		1.16	0.024	277	<0.003	0.027	0.005	0.011	
Line 58 58+50E		1.24	0.021	194.5	<0.003	0.008	0.003	0.006	
Line 58 59+00E		1.08	0.020	150.0	<0.003	0.008	0.003	0.005	
Line 58 59+50E		0.94	0.029	294	<0.003	0.017	0.003	0.007	
Line 58 60+00E		1.02	0.024	159.5	<0.003	0.009	0.003	0.004	
Line 58 60+50E		1.18	0.028	212	<0.003	0.015	0.005	0.008	
Line 58 61+00E		0.56	0.023	224	<0.003	0.035	0.004	0.007	
Line 58 61+50E		0.72	0.032	432	<0.003	0.032	0.007	0.011	
Line 58 62+00E A		0.78	0.029	193.5	<0.003	0.011	0.005	0.008	
Line 58 62+00E B		0.60	0.017	420	<0.003	0.039	0.006	0.013	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

CERTIFICATE OF ANALYSIS VA06073452

Page: 5 - A Total # Pages: 6 (A) Finalized Date: 14-SEP-2006 Account: GOVECO

Project: Nechaco/ Grid 1

Г

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
Line 58 63+00E Line 58 63+50E Line 58 64+00E Line 58 64+50E Line 58 65+00E		1.04 1.06 0.94 1.66 1.04	0.031 0.030 0.036 0.027 0.021	379 363 381 162.5 217	<0.003 <0.003 <0.003 <0.003 <0.003	0.018 0.013 0.012 0.006 0.012	0.004 0.003 0.003 0.003 0.004	0.007 0.007 0.007 0.007 0.007	
Line 58 65+50E Line 58 66+00E Line 58 66+50E Line 58 67+00E Line 58 67+50E		1.02 0.80 1.28 1.08 1.12	0.044 0.064 0.023 0.024 0.024	411 495 369 270 306	<0.003 <0.003 <0.003 <0.003 <0.003	0.016 0.013 0.016 0.013 0.009	0.006 0.002 0.006 0.005 0.005	0.011 0.005 0.009 0.006 0.008	
Line 58 68+00E Line 58 68+50E Line 58 69+00E Line 58 69+50E Line 58 70+50E		1.22 0.62 1.02 1.08 1.16	0.044 0.017 0.032 0.036 0.025	210 257 249 203 333	<0.003 <0.003 <0.003 <0.003 <0.003	0.010 0.025 0.007 0.011 0.026	0.011 0.001 0.004 0.004 0.006	0.009 0.003 0.007 0.006 0.010	
Line 58 71+00E Line 58 71+50E Line 58 72+00E Line 58 72+50E Line 58 73+00E		1.04 1.00 1.04 1.14 1.02	0.046 0.028 0.061 0.037 0.055	353 321 232 461 339	<0.003 <0.003 <0.003 <0.003 <0.003	0.017 0.020 0.060 0.011 0.022	0.002 0.002 0.017 0.003 0.007	0.011 0.005 0.016 0.007 0.009	
Line 58 73+50E Line 66 50+00E Line 66 50+50E Line 66 51+00E Line 66 51+50E		0.66 1.04 0.94 1.00 0.94	0.081 0.013 0.072 0.084 0.095	380 187.5 304 240 245	<0.003 <0.003 <0.003 <0.003 <0.003	0.045 0.005 0.008 0.010 0.010	0.028 0.002 0.008 0.007 0.010	0.019 0.004 0.009 0.009 0.009	
Line 66 52+00E Line 66 52+50E Line 66 53+00E Line 66 53+50E Line 66 54+00E		0.92 1.06 0.56 0.90 1.02	0.110 0.115 0.042 0.070 0.043	390 348 465 378 262	<0.003 <0.003 <0.003 <0.003 <0.003	0.024 0.016 0.066 0.013 0.010	0.006 0.007 0.012 0.006 0.004	0.008 0.008 0.009 0.006 0.008	
Line 66 54+50E Line 66 55+00E Line 66 55+50E Line 66 56+00E Line 66 56+50E		0.98 0.98 0.98 0.72 0.98	0.029 0.027 0.078 0.077 0.095	132.0 345 414 518 360	<0.003 <0.003 <0.003 <0.003 <0.003	0.006 0.029 0.011 0.022 0.018	0.003 0.007 0.004 0.007 0.005	0.005 0.011 0.006 0.006 0.007	
Line 66 57+00E Line 66 57+50E Line 66 58+00E Line 66 58+50E Line 66 59+00E		0.74 0.86 1.04 0.76 0.80	0.062 0.042 0.142 0.012 0.017	266 309 487 258 275	<0.003 <0.003 <0.003 <0.003 <0.003	0.010 0.006 0.017 0.008 0.010	0.002 0.004 0.010 0.003 0.001	0.004 0.004 0.011 0.006 0.006	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 6 - A Total # Pages: 6 (A) Finalized Date: 14-SEP-2006 Account: GOVECO

Project: Nechaco/ Grid 1

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
Line 66 59+50E Line 66 60+00E Line 66 60+50E Line 66 61+00E Line 66 61+50E		0.74 0.76 0.84 0.48 0.60	0.035 0.047 0.039 0.192 0.106	332 479 423 478 445	<0.003 <0.003 <0.003 <0.003 <0.003	0.013 0.019 0.011 0.096 0.044	0.002 0.003 0.002 0.012 0.005	0.007 0.006 0.008 0.009 0.006	
Line 66 62+00E Line 66 62+50E Line 66 63+50EA Line 66 63+50EB Line 66 64+00E		0.66 0.86 0.82 0.70 0.60	0.033 0.042 0.105 0.098 0.037	421 505 493 330 422	<0.003 <0.003 <0.003 <0.003 <0.003	0.026 0.007 0.027 0.013 0.067	0.003 0.003 0.016 0.006 0.018	0.008 0.006 0.009 0.009 0.009	
Line 66 64+50E Line 66 65+00E Line 66 66+00E Line 66 66+50EA Line 66 66+50EB		0.82 0.64 0.76 0.76 0.76	0.265 0.013 0.022 0.029 0.017	553 324 276 204 295	<0.003 <0.003 <0.003 <0.003 <0.003	0.017 0.079 0.011 0.012 0.010	0.010 0.002 0.002 0.007 0.002	0.005 0.004 0.011 0.005 0.008	
Line 66 67+00EA Line 66 67+00EB Line 66 68+00E Line 66 68+50E Line 66 69+00E		0.94 0.32 0.68 0.76 0.42	0.019 0.005 0.032 0.028 0.018	196.0 24.6 260 240 212	<0.003 <0.003 <0.003 <0.003 <0.003	0.006 0.016 0.009 0.006 0.023	0.005 0.001 0.003 0.002 0.007	0.006 0.005 0.009 0.006 0.005	
Line 66 70+00E Line 66 70+50E Line 66 71+00E Line 66 71+50E Line 66 72+00E		1.02 0.52 1.04 0.96 1.02	0.028 0.061 0.033 0.028 0.031	177.5 1075 187.0 168.5 159.5	<0.003 <0.003 <0.003 <0.003 <0.003	0.021 0.023 0.007 0.008 0.009	0.005 0.006 0.004 0.004 0.005	0.007 0.010 0.007 0.006 0.007	
Line 66 72+50E Line 66 73+00E Line 66 73+50E Line 66 74+00E		0.84 0.86 0.78 0.74	0.057 0.042 0.032 0.020	319 246 357 137.0	<0.003 <0.003 <0.003 <0.003	0.017 0.009 0.007 <0.005	0.007 0.004 0.003 0.003	0.010 0.005 0.006 0.004	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 1 Finalized Date: 14-SEP-2006 This copy reported on 1-NOV-2006 Account: GOVECO

CEF	RTIFICATE VA06073453	SAMPLE PREPARATION				
			ALS CODE	DESCRIPTION		
Project: Nechaco/Grid P.O. No.:			WEI-21 LOG-22	Received Sample Weight Sample login - Rcd w/o BarCode		
This report is for 123 Soil samp 20-JUL-2006.	les submitted to our lab in Vancouver, B0	C, Canada on		ANALYTICAL PROCEDURE	S	
The following have access t	o data associated with this certificate		ALS CODE	DESCRIPTION	INSTRUMENT	
MARK	GEORGE NICHOLSON		ME-MS13	MMI-F Leach-Pathfinder Element	ICP-MS	

To: GOLDMEMBER VENTURES CORP ATTN: GEORGE NICHOLSON C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Wallt Signature:

Wayne Abbott, Operations Manager, Western Australia

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 2 - A Total # Pages: 5 (A) Finalized Date: 14-SEP-2006 Account: GOVECO

Project: Nechaco/Grid

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
Line 68 50+00E Line 68 50+50E Line 68 51+00E Line 68 51+50E Line 68 52+00E		0.66 0.88 0.98 1.04 0.88	0.018 0.030 0.042 0.031 0.051	320 414 268 177.5 345	<0.003 <0.003 <0.003 <0.003 <0.003	0.009 0.009 0.010 0.006 0.008	0.003 0.003 0.004 0.002 0.006	0.007 0.006 0.006 0.005 0.011	
Line 68 52+50E Line 68 53+00E Line 68 53+50E Line 68 54+00E Line 68 54+50E		0.90 0.96 0.72 0.76 1.04	0.034 0.076 0.033 0.038 0.049	174.5 322 113.5 233 148.0	<0.003 <0.003 <0.003 <0.003 <0.003	0.010 0.012 0.005 0.007 0.009	0.008 0.007 0.004 0.004 0.005	0.006 0.008 0.004 0.008 0.003	
Line 68 55+00E Line 68 55+50E Line 68 56+00E Line 68 56+50E Line 68 57+00E		0.46 0.62 0.68 0.74 0.92	0.023 0.072 0.038 0.049 0.049	181.0 281 171.0 245 299	<0.003 <0.003 <0.003 <0.003 <0.003	0.021 0.014 0.006 0.007 0.010	0.003 0.006 0.003 0.003 0.005	0.005 0.007 0.005 0.005 0.008	
Line 68 57+50E Line 70 50+00E Line 70 50+50E Line 70 51+00E Line 70 51+50E		0.90 0.76 1.02 1.16 0.96	0.036 0.020 0.018 0.049 0.009	277 233 160.0 276 118.5	<0.003 <0.003 <0.003 <0.003 <0.003	0.017 0.009 0.005 0.008 0.005	0.003 0.002 0.003 0.006 0.002	0.006 0.006 0.011 0.010	
Line 70 52+00E Line 70 52+50E Line 70 53+00E Line 70 53+50E Line 70 54+00E		1.10 1.14 1.28 0.96 0.94	0.044 0.020 0.030 0.025 0.067	232 180.0 486 294 301	<0.003 <0.003 <0.003 <0.003 <0.003	0.006 0.010 0.013 0.019 0.014	0.003 0.002 0.005 0.003 0.008	0.004 0.004 0.008 0.003 0.009	
Line 70 54+50E Line 70 55+50E Line 70 56+00E Line 70 56+50E Line 70 57+00E		1.06 1.10 1.06 1.12 1.26	0.059 0.043 0.047 0.049 0.039	609 220 262 197.5 177.0	<0.003 <0.003 <0.003 <0.003 <0.003	0.030 0.010 0.014 0.008 0.007	0.015 0.007 0.006 0.005 0.004	0.013 0.003 0.005 0.005 0.006	
Line 70 57+50E Line 70 58+50E Line 70 59+50E Line 70 60+00E Line 70 60+50E		1.12 1.20 0.94 0.86 0.76	0.026 0.134 0.048 0.022 0.017	142.5 642 196.5 166.0 141.5	<0.003 <0.003 <0.003 <0.003 <0.003	0.005 0.011 0.006 0.005 0.009	0.003 0.007 0.006 0.005 0.003	0.002 0.011 0.006 0.005 <0.002	
Line 70 61+00E Line 70 61+50E Line 70 62+00E Line 70 62+50E Line 70 63+00E		0.94 1.04 1.28 0.68 0.74	0.015 0.050 0.020 0.008 0.050	194.0 200 302 143.0 410	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 0.005 <0.005 0.008 0.059	0.003 0.005 0.001 ⊲0.001 0.015	0.006 0.003 0.006 0.004 0.014	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 3 - A Total # Pages: 5 (A) Finalized Date: 14-SEP-2006 Account: GOVECO

Project: Nechaco/Grid

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
Line 70 63+50E Line 70 64+00E Line 70 64+50E Line 70 66+00E Line 70 67+50E		1.18 0.88 0.62 0.86 0.74	0.056 0.006 0.009 0.009 0.005	285 183.5 234 155.0 169.5	<0.003 <0.003 <0.003 <0.003 <0.003	0.005 <0.005 0.010 0.010 0.006	0.004 <0.001 <0.001 0.002 <0.001	0.011 0.029 0.004 0.006 <0.002	
Line 70 69+00E Line 70 69+50E Line 70 70+00E Line 70 70+50E Line 70 71+00E		0.68 0.82 0.78 1.18 0.96	0.014 0.022 0.013 0.011 0.022	167.5 326 411 225 213	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 0.010 0.018 0.010 0.006	<0.001 0.001 0.002 <0.001 <0.001	<0.002 0.006 0.004 0.003 0.005	
Line 70 71+50E Line 70 72+00E Line 70 72+50E Line 70 73+00E Line 70 73+50E		0.90 0.86 0.94 0.94 0.30	0.019 0.023 0.015 0.019 0.112	207 160.5 165.0 254 700	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 0.011 0.009 0.027	<0.001 <0.001 0.002 <0.001 0.009	<0.002 <0.002 0.003 0.002 0.011	
Line 70 74+00E SAMPLE 1E SAMPLE 2E SAMPLE 3E Line 72 50+00E		0.86 0.78 0.76 0.88 1.00	0.022 0.004 0.004 0.034 0.016	276 136.5 166.5 287 165.0	<0.003 <0.003 <0.003 <0.003 <0.003	0.014 0.018 <0.005 0.031 <0.005	0.001 0.001 0.002 0.001 0.001	0.004 0.005 0.005 0.004 0.004	
Line 72 50+50E Line 72 51+00E Line 72 51+50E Line 72 52+00E Line 72 52+50E		0.46 0.58 0.46 0.56 0.38	0.005 0.008 0.006 0.021 0.008	178.5 317 167.0 217 272	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 <0.005 0.023 <0.005	<0.001 <0.001 <0.001 0.004 <0.001	0.003 0.005 0.005 0.008 0.008	
Line 72 53+00E Line 72 53+50E Line 72 54+00E Line 72 54+50E Line 72 55+00E		0.44 0.56 0.54 0.50 0.54	0.009 0.014 0.044 0.038 0.031	194.5 236 163.5 338 372	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 0.014 0.010	<0.001 <0.001 0.011 0.024 0.001	<0.002 0.005 0.037 0.018 0.004	
Line 72 55+50E Line 72 56+00E Line 72 56+50E Line 72 57+00E A Line 72 57+00E B		0.62 0.64 0.90 0.58 0.36	0.024 0.024 0.026 0.025 0.013	146.0 154.5 144.5 142.5 168.5	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 <0.005 <0.005 <0.005 <0.005	0.005 0.005 0.001 0.003 <0.001	0.006 0.002 <0.002 0.002 0.002	
Line 72 58+00E Line 72 58+50E Line 72 59+00E Line 72 59+50E Line 72 60+00E		0.48 0.42 0.74 0.56 0.66	0.016 0.031 0.015 0.023 0.040	278 190.0 162.5 161.5 273	<0.003 <0.003 <0.003 <0.003 <0.003	<0.005 0.007 <0.005 0.007 0.007	0.001 0.002 <0.001 0.003 0.003	0.005 <0.002 0.002 0.004 0.004	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 4 - A Total # Pages: 5 (A) Finalized Date: 14-SEP-2006 Account: GOVECO

Project: Nechaco/Grid

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
Line 72 60+50E Line 72 61+00E Line 72 61+50E Line 72 62+00E Line 72 62+50E		0.60 0.64 0.68 0.78 0.82	0.045 0.023 0.008 0.025 0.095	344 356 194.0 329 342	<0.003 <0.003 <0.003 <0.003 <0.003	0.009 <0.005 <0.005 0.015 0.006	0.003 0.002 0.002 0.003 0.004	0.010 0.004 0.003 0.006 0.004	
Line 72 63+00E Line 72 63+50E Line 72 64+00E Line 72 64+50E Line 72 65+00E		0.70 0.70 0.72 0.84 0.60	0.043 0.119 0.106 0.086 0.033	430 366 333 178.0 417	<0.003 <0.003 <0.003 <0.003 <0.003	0.016 0.016 0.034 0.006 0.015	0.004 0.013 0.032 0.006 0.002	0.008 0.005 0.014 0.004 0.005	
Line 72 65+50E Line 72 66+00E Line 72 66+50E Line 72 67+00E Line 72 67+50E		0.70 0.78 0.76 0.76 0.76	0.144 0.049 0.033 0.042 0.032	218 622 409 461 382	<0.003 <0.003 <0.003 <0.003 <0.003	0.009 0.012 0.014 0.013 0.024	0.007 0.013 0.009 0.005 0.002	<0.002 0.010 0.009 0.004 0.004	
Line 72 68+00E Line 72 68+50E Line 72 69+00E Line 72 69+50E Line 72 70+00E		0.74 0.94 1.10 0.88 0.68	0.093 0.038 0.018 0.013 0.021	525 175.0 224 254 318	<0.003 <0.003 <0.003 <0.003 <0.003	0.040 0.007 0.006 0.012 0.009	0.022 0.002 0.002 0.002 0.003	0.014 0.004 0.003 0.003 0.003	
Line 72 70+50E Line 72 71+00E Line 72 71+50E Line 72 72+00E Line 72 72+50E		0.90 0.80 0.90 0.52 1.02	0.028 0.105 0.076 0.057 0.043	266 548 332 370 408	<0.003 <0.003 <0.003 <0.003 <0.003	0.005 0.013 0.012 0.032 0.019	0.002 0.015 0.025 0.019 0.002	0.004 0.015 0.017 0.023 0.005	
Line 72 73+00E Line 72 73+50E Line 72 74+00E Line 82 59+00E Line 82 59+50E		0.84 0.92 0.68 1.00 0.84	0.056 0.037 0.026 0.032 0.039	342 444 267 313 264	<0.003 <0.003 <0.003 <0.003 <0.003	0.008 0.011 0.016 0.010 0.011	0.020 0.006 0.005 0.001 0.004	0.019 0.011 0.004 0.004 0.004	
Line 82 60+00E Line 82 60+50E Line 82 61+00E Line 82 61+50E Line 82 62+00E		0.86 0.84 0.94 0.86 0.82	0.026 0.053 0.054 0.117 0.041	266 185.5 400 257 87.3	<0.003 <0.003 <0.003 <0.003 <0.003	0.007 <0.005 0.011 0.011 <0.005	0.003 0.002 0.009 0.006 0.037	0.004 0.003 0.006 0.003 0.025	
Line 82 62+50E Line 82 63+00E Line 82 63+50E Line 82 64+00E Line 82 64+50E		0.92 0.82 1.00 0.70 1.16	0.039 0.002 0.004 0.002 0.011	132.5 165.0 196.5 170.0 172.5	<0.003 <0.003 <0.003 <0.003 <0.003	0.005 0.006 0.006 0.006 0.007	0.002 0.001 0.001 0.001 0.002	0.002 0.003 0.003 <0.002 0.002	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GOLDMEMBER VENTURES CORP C/O UNITED EXPLORATION MANAGEMENT 620-800 WEST PENDER ST. VANCOUVER BC V6C 2V6

Page: 5 - A Total # Pages: 5 (A) Finalized Date: 14-SEP-2006 Account: GOVECO

Project: Nechaco/Grid

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-MS13 As ppm 0.001	ME-MS13 Fe ppm 0.1	ME-MS13 Hg ppm 0.003	ME-MS13 Mo ppm 0.005	ME-MS13 Sb ppm 0.001	ME-MS13 Se ppm 0.002	
Line 82 65+00E Line 82 65+50E Line 82 66+00E		0.98 1.00 0.92	0.015 0.041 0.013	195.0 177.0 230	<0.003 <0.003 <0.003	0.013 0.005 0.010	0.003 0.002 0.002	0.004 0.003 0.002	

Appendix II.

Regional Geophysical Interpretation

SJ Geophysics Ltd. S.J.V. Consultants Ltd.

11762-94th Avenue, Delta BC V4C 3R7 CANADA

 Bus: (604) 582-1100
 Fax: (604) 589-7466

 E-mail: trent@sjgeophysics.com
 www.sjgeophysics.com

Memorandum

To: George Nicholson Goldmember Ventures Corp.

From: E. Trent Pezzot

Date: March 20, 2006

Re: Nechako River study

George:

I have completed the data processing and 3D inversion of the government airborne magnetic and gravity data covering the Nechako River Project area in central B.C. The area of interest is a rectangular block approximately 50 km east-west by 35 km north-south, centered near latitude 53⁰ 35' N and longitude 125⁰ 16'W.

This memo includes several images and summarizes the results of this study. Larger, properly scaled versions of any of the maps included with this memo are available.

The federal government airborne magnetic data was obtained from their NRCAN website as a binary file with data spaced on a regular 200m grid. The original data was flown as east west traverse lines spaced on 800 metre centres with a mean terrain clearance of around 305m. Gravity data was obtained from the same facility and included residual bouguer values spaced on a regular 2 km grid. Topographic information was acquired from two sources: the GeoBase website provided a free DEM based on a 50m grid; more detailed DEM and contour plan maps were purchased as BC government trim maps. 20 trim maps were purchase (93F042-046, 93F052-056, 93F062-066, 93F072-076) to cover the project area. These files have been combined to produce a detailed topographic and DEM base map (15 metre grid) that is available for future work. These databases show substantial relief across the survey area, ranging from approximately 800 to 1400m above mean sea level. Topographic information was included in the geophysical analysis.

Regional Geology

An image of the regional geology (1:250,000 scale) was downloaded from the BC government website and registered to the project area. This map shows three major volcanic rock units underlying the project area: the Paleogene Ootsa Lake group (EOOo), the Paleogene Endako Group (EOEn) and the lower to middle Jurassic Hazelton Group volcanics (lmJHz). The Hazelton rocks are primarily located in the southern portion of the property (south of Natalukuz Lake). While significant portions of the area are covered by Quaternary alluvium (Qal) that mask the geology, these rock groups appear to align along northwesterly trending zones. There are several small intrusive bodies mapped across the area. These are mostly of Cretaceous age and vary between diorites, granites, gabbros and granodiorites.

There are several faults mapped across the project area as shown on Figure 1.

Figure 1: 1:250,000 Geology Map – BC Trim Map contours and Lakes. Black rectangle represents project area

Mineral Inventory

The BC Mineral Inventory map shows 12 mineral occurrences within the project area.

Ci anno	<u></u> .	Minanal	Inviontom	· 110m	D1	a alt ma at	amala.	nomnoconto	manaia at a	-
гіуше	1.2	witherat	invenior	/ iviad	- DD	аск гест	angle	represents	ргојест а	rea
8		1.1110101		1.1.1.1	~ ~ ~		angre .	- oprosento	projecta	

Mapsheet	Minfile #	Minfile	commodities	deposit type	lat (north)	long (west)
093F	2	Tet	Cu, Mo	porphyry Mo (Low F- type)	53 ⁰ 21' 54"	124 ⁰ 34' 30"
093F	17	Exo	Tungsten, Cu, Mo, Ag, Zn	Sn, Mo skarn	53 ⁰ 24' 53"	125 ⁰ 42' 22"
093F	25	Chelselie Arm	Мо		53 ⁰ 29' 55"	125 ⁰ 37' 55"
093F	27	Cheslatta Lake, park 1-8	Perlite	Volcanic glass	53 ⁰ 42' 30"	125 ⁰ 27' 27"
093F	28	Henson Hills, Ootsa lake	Perlite	Volcanic glass	53 ⁰ 36' 25"	125 ⁰ 39' 19"
093F	31	Wt	Cu, Mo	Porphyry Cu + Mo + Au, Cu skarn	53 ⁰ 28' 25"	125 ⁰ 32' 46"
093F	35	Godot, Chelaslie	Cu, Mo		53 ⁰ 25' 40"	125 ⁰ 38' 13"
093F	51	Ootsa 1	Fluorite		53 ⁰ 31' 41"	125 ⁰ 10' 21"
093F	54	Rhub (etc)	Cu. Au, Ag		53 ⁰ 37' 25"	125 [°] 30' 33"
093F	58	Yellow Moose (etc)	Au	epithermal Au-Ag, Low sulphidation	53 ⁰ 30' 10"	125 ⁰ 04' 50"
093F	63	Bull (etc)	Au, Ag, Pb, Zn	Au quartz veins, polymetallic veins	53 ⁰ 26' 35"	125 ⁰ 30' 55"
093F	65	Gusty (etc)	Au, Ag, Mo		53 ⁰ 35' 26"	125 [°] 25' 46"

Figures 3a and 3b on the following pages shows the regional magnetic coverage obtained from the government. The project area is outlined by the black rectangle. On figure 3a the magnetic data is rendered as a false colour contour map with a linear colour distribution. This display highlights the relative amplitudes of the various magnetic events and shows the bulk of the project area is underlain by relatively quiet magnetic responses, ranging between -100 and +400 nTs. There is a cluster of prominent magnetic highs located in the northeast corner of the project area.

Figure 3b displays the magnetic data with the top and bottom 1% of the data removed. This procedure expands the colour distribution within the bulk of the data and effectively highlights the more subtle trends not clearly evident in the linear display.

Figure 3c is a copy of 3b annotated to highlight some of the observations noted below. There is a regional northwesterly trending magnetic low (approximately 15 km wide) crossing project area. This low is flanked on both sides by wider bands of magnetic highs, both of which include several clusters of very high magnetic responses including the strong magnetic highs in the northeast corner of the project area. Several subparallel lineations delineate the edges of these trends.

Figure 3c also highlights a northerly trending band of moderate magnetic highs crossing the western portion of the study block that cuts the northwesterly trending regional features.

These magnetic trends are likely related to large scale geological units. The lower magnetic values (< -100 nTs) loosely coincide with the Hazelton Group volcanics while the moderate magnetic values (0 to 300nTs) generally coincide with the Ootsa Lake and Endako groups.

There are several instances noted where small intrusions are directly associated with strong magnetic highs. There is a cluster of intrusive bodies mapped in the extreme northeast corner of the project area. While these do not directly tie with the extremely high magnetic values in this sector of the study area, it is possible that the magnetic responses are related to unmapped intrusions.

There appears to be a large (20 km diameter) circular feature located in the north-central portion of the study area, straddling the northeastern flank of the regional magnetic low. This is outlined by several discontinuous narrow, arcuate magnetic lineations.

It is clear that the magnetic data is outlining a significantly more complex geology than that which is represented by the regional geological mapping.

Figure 3a: Government Airborne Magnetic Data - 50 km x 35 km Nechako Project Area outlined in black. Linear colour distribution

Figure 3b: Government Airborne Magnetic Data - 50 km x 35 km Nechako Project Area outlined in black. Custom colour distribution highlights local trends.

Figure 3c: Government Airborne Magnetic Data - Regional Magnetic Trends – Study area enhanced with shadow display - White lines highlight NW and Northerly trending lineations – Black lines highlight circular magnetic lineations – Red outline with white hatch pattern highlights geologically mapped intrusions.

Figure 4 below displays regional gravity in false colour contour form. The responses noted in this data set are associated with large scale regional features. There are trends evident in the gravity data that complement trends evident in the magnetic data. The northerly elongated, strong gravity high to the northwest of the project area is roughly mirrored by a magnetic low. Three moderate magnetic highs, located in the northeast corner of and immediately east of the project area, are all flanked and rimmed by strong, localized magnetic highs. The northerly trending magnetic high crossing the western portion of the study area is also evident as a weak gravity gradient, suggesting a geological contact.

Figure 4: Government Gravity Data – 50 km x 35 km Nechako Project Area outlined in black. Linear colour distribution

Image processing techniques are an effective way of visualizing the geophysical data to enhance different aspects of it. The use of sun shading or colour draping techniques can enhance linear features such as faults and contacts. Displaying the amplitude as a topographic surface in a 3dimensional viewing program highlights subtle amplitude changes that might be related to geological units or structures. Because the magnetic field has both an amplitude and a direction, the topography has a significant influence on the measured signal. Magnetic features located along the flanks of topographic features are often generated by source bodies to the side of the anomaly. Draping the geophysical data over a topographic surface often resolves some of these effects.

The two images below shows the magnetic data across the project area with a linear colour distribution. One image is a standard colour contour map. The second is the same data set rendered as a colour draped image, illuminated from the southwest. The shadow effects on the colour draped image clearly enhance several trends that are not readily apparent on the standard colour contour map. Moving the illumination source around will enhance trends in different orientations.

Figure 5a: False Colour Magnetic Contour Map Figure 5b: Colour draped magnetic contour map – sun angle from SW

3-D perspective images of the magnetic data draped over the surface topography are presented below as figures 6a - 6h. These images view the data from different angles. These displays clearly show how some of the magnetic trends directly coincide with topographic features (and are possibly caused by them) while others cross topography and are likely related to geological sources.

(6a) View from South

(6b) View from East

(6c) View from North

Figure 6a – 6d: Magnetic Data draped over topography. 3-D perspective views from 4 sides

3-D Inversions

Both the magnetic and gravity data were combined with the topographic data and used as input for the UBC GIF 3D inversion programs. These programs calculate a 3-dimensional block model, based on varying magnetic susceptibilities (in the case of the magnetic data) and varying density (for the gravity data) that would produce the observed measurements. It must be kept in mind that there is no unique solution to this type of problem. An anomaly of a specific amplitude might be generated from a small, near surface body or from a larger, deeper body. Additional information (geology, drilling, etc.) is often useful in setting limits and restrictions to guide the inversion process towards a geologically sound interpretation.

It is most useful to examine these inversion solutions in a 3-D viewer, where the model can be rotated, cut and sliced and viewed from different angles. We have provided such a viewer with the solution files on CD. The images included below are snapshots from that viewing program and were selected to illustrate the features discussed below.

A 3-D mesh was constructed with individual cell dimensions of 500m east by 500m north by 125 m thick. Excluding padding cells (which were used to shift edge effects away from the area of interest, then later removed from the solution) the block model is some 50 km east-west x 40 km N-S and 15.0 km thick. Coordinates within this block are registered to the UTM coordinates provided with the airborne data (NAD 83 zone 10N) and absolute elevation (metres above mean sea level).

The regional nature of the survey (high altitude airborne and widely spaced gravity) and subsequent gridding processes have effectively acted as a low pass filter. Consequently, the data can only be used to evaluate the large scale, regional trends. Detailed, near surface geological features that would undoubtedly be evident in a detailed ground based survey cannot be interpreted from this data.

The magnetic inversion solution suggests the strong magnetic highs in the northeast corner of the claim group are generated by near vertical plug like bodies that approach very close to the surface. All of the other trends (as expected) are attributed to very deep regional features. These are dominated by a large, northwesterly trending low susceptibility zone that enters the study area from the southeast. This feature is flanked to the northeast and southwest by high susceptibility trends that appear to have steep, near vertical contacts with the low susceptibility core. A northerly trending high susceptibility zone intersects the low trend. This results in the magnetic low appearing as a large deep, basinal type feature. The narrow, circular magnetic feature described above coincides with the northern flank of this feature.

7(b)

Figure 7: 3D Magnetic Inversion – Low susceptibility material removed.-viewed through transparent overlay of magnetic survey data 7(a) view from SE-elevated shows basinal type feature. 7(b) view from southeast-ground level shows steep sides and depth from surface.

There are no significant surprises in the gravity inversion results. The inversions have generally produced deep, higher density bodies directly beneath the high gravity readings and lower density bodies below the lows. There is a good correlation between the gravity inversion results and the magnetic inversion in that conformable structures are evident in both data sets. As a general observation, the strong, magnetic highs (intrusions) within the northeastern magnetic high trend are located around the periphery of a large, circular high density body. The concentric circular magnetic features flank a cylindrical, low density body. A regional, high density body runs parallel to and immediately west of the northerly striking high magnetic trend.

Figure 8: 3-D view of Gravity and Magnetic Inversion Results. High magnetic susceptibility body in red. High density body in green. Low density body in blue. View from grid SW.

Recommendations

Due to the nature of the input data, this study has focused on large and deep, regional features. While the local variations in the near surface rocks might exhibit different structural features and orientations, it is reasonable to assume that the dominant trends will be controlled by the deeper, underlying structures. Consequently, future ground surveying should generally be configured with grid lines running perpendicular to the expected northwesterly geological strike of these deep features however local conditions might dictate other configurations.

Line and station intervals will depend on the size of the exploration target. Historically, reconnaissance style survey grids in this environment are commonly established with lines spaced on 100 to 200 metre centres and flagged with stations at 25 to 50 metre intervals. Tie lines should be established at 1000 to 2000 metre intervals.

Respectfully submitted per S.J.V. Consultants Ltd.

E. Trent Pezzot, B.Sc., P.Geo. Geology, Geophysics Appendix III.

3D Induced Polarization Survey

GEOPHYSICAL REPORT

<u>FOR</u>

GOLDMEMBER VENTURES CORP.

520 – 700 West Pender Street Vancouver, BC V6C 2T8

<u>3D Induced Polarization</u> <u>on 3 Grids the</u> <u>Nechako Property – Nechako Area</u>

Approximate Locations:

Grid 1: 53° 37' 36" N, 125° 73' 21" W

Grid 2: 53° 35' 01" N, 125° 44' 00" W

Grid 3: 53° 32' 11" N, 125° 42' 23" W

Central British Columbia

N.T.S. Sheet: 93F12, 93F11, 93F06

Omineca Mining Division

Survey Conducted by SJ Geophysics Ltd. May - August 2006

Report Written by: E. Trent Pezzot, BSC., PGeo. Date: March 2, 2007

TABLE OF CONTENTS

1	Summary	1	
2	Introduction	2	
3	Property		
4	Location and Access		
5	Survey Grids	5	
6	Field Work and Instrumentation	6	
	6.1 Field Logistics6.2 Survey Parameters and Field Instrumentation	6 8	
7	Geophysical Techniques	10	
	 7.1 IP Method	10 11 11	
8	Data Presentation	12	
	8.1 Inversion Model8.2 Plan Maps	12 13	
9	Discussion of Results	14	
	9.1 Grid 1 9.2 Grid 2 9.3 Grid 3	14 20 26	
10) Conclusions	30	
	10.1 Grid 1 10.2 Grid 2 10.3 Grid 3	30 30 31	
11	Recommendations	32	
12	2 Appendix 1 – Statement of Qualifications	33	
13	3 Appendix 2: Nechako Claims	34	
14	Appendix 3 – Summary Tables (IP Only)	40	
15	5 Appendix 4 – Instrument Specifications	43	
	15.1 SJ-24 Full-Waveform Digital IP Receiver.15.2 GDD Tx II IP Transmitter.	43 43	
16	5 Appendix 5 – Plan Maps	44	

LIST OF FIGURES

Figure 1: Location Map: Google Earth Map – Property Outline in Red	4
Figure 2: Claim Outline - IP Survey Grids	5
Figure 3: IP Grid 1 - Relative Magnetic Field Intensity	15
Figure 4: Grid 1: Inverted Resistivity - 800m elevation (average 200m depth)	16
Figure 5: Grid 1: Inverted Chargeability - 800m Elevation (average 200m depth)	18
Figure 6: Grid 1: IP Inversion - 3D Perspective View from Top	19
Figure 7:Grid 1: IP Inversion - 3D Perspective View from Southwest	19
Figure 8: Grid 1: IP Inversion - 3D Perspective View from Southeast	20
Figure 9: IP Grids 2 and 3 – Relative Magnetic Field Intensity	21
Figure 10: Grid 2 -Resistivity Inversion – 200m depth below ground surface	22
Figure 11: Grid 2 -Chargeability Inversion – 300m depth below ground surface	23
Figure 12: Grid 2: Resistivity Inversion - 3D Perspective View from SSW	25
Figure 13: Grid 2: Chargeability Inversion - 3D Perspective View from SSW	25
Figure 14: Grid 3- Resistivity Inversion – 200m depth below ground surface	27
Figure 15: Grid 3-Chargeability Inversion – 100m depth below ground surface	28
Figure 16: Grid 3-IP Inversion - 3D Perspective View from Southeast	29

LIST OF PLAN MAPS

The following maps are supplied as PDF documents in Appendix 5:

3DIP Color Contour Plan Maps – Grid 1		

3DIP Color Contour Plan Maps – Grid 2		
Inverted Resistivity – 100m Below Topography		
Inverted Resistivity – 200m Below Topography		
Inverted Resistivity – 300m Below Topography		
Inverted Resistivity – 350m Below Topography		
Inverted Chargeability – 100m Below Topography		
Inverted Chargeability – 200m Below Topography		
Inverted Chargeability – 300m Below Topography		
Inverted Chargeability – 350m Below Topography		

3DIP Color Contour Plan Maps – Grid 3
Inverted Resistivity – 50m Below Topography
Inverted Resistivity – 100m Below Topography
Inverted Resistivity – 150m Below Topography
Inverted Resistivity – 200m Below Topography
Inverted Resistivity – 250m Below Topography
Inverted Chargeability – 50m Below Topography
Inverted Chargeability – 100m Below Topography
Inverted Chargeability – 150m Below Topography
Inverted Chargeability – 200m Below Topography
Inverted Chargeability – 250m Below Topography

1 SUMMARY

3D Induced Polarization surveys were conducted for Goldmember Ventures Corp. across three grids on their Nechako property. The property is situated approximately 530 km NNW of Vancouver, and 180 km west of Prince George. The ground geophysical program was completed by SJ Geophysics Ltd. From May to August in 2006. The acquired geophysical data was inverted to produce three dimensional models and provided to the client in the form of plan maps and as a digital block model which can be used with visualization programs to view the data in three dimensions.

The geophysical program was conducted to followup areas of interest that were identified from a review of the regional geological, geochemical and geophysical data. Target areas were selected primarily on the basis of anomalous geochemical samples coincident with geophysically delineated structures and contacts. The primary exploration targets are sulphides (hopefully Au enriched) of no particular genesis (skarn, porphyry, massive sulphide, alteration).

Grid 1 is located along a NW-SE trending magnetically defined contact on the eastern portion of the claim group. The contact was confirmed and detailed by the resistivity component of the IP survey. Two areas exhibiting elevated chargeability values were outlined. The smaller anomaly coincides with the northwesterly trending contact and a northeasterly trending fault. Several rock and till geochemical samples gathered across this target were anomalous in Au and Ag. The larger IP anomaly parallels the northwesterly trending contact and may be separated into three lobes by northeasterly trending faults. This zone has not been sampled geochemically.

Grids 2 and 3 are located in the southwest corner of the claim group, on the south shore of Ootsa Lake (Nechako Reservoir). Both grids are located in an area of relatively subdued magnetic responses, although the regional trends outline intersecting NW and NE structures. Both of these areas are covered by Quaternary alluvium.

The resistivity component of the IP survey across grid 2 generally conforms with the magnetic trends however it shows more detail and delineates several narrow, sub parallel zones. The chargeability component outlines 4 separate targets on grid 2 that require further

investigation.

The IP survey across grid 3 outlines a high resistivity zone and large chargeability anomaly in the northwest corner of the grid. There are several smaller chargeability anomalies mapped around the perimeter of the resistive zone.

This report is written as an addendum to a more complete report being prepared by the client; therefore, this does not cover items such as history, discussion of background geology, or costs associated with the survey.

2 INTRODUCTION

In March, 2006 Nicholson and Associates commissioned S.J.V. Consultants Ltd. to research and gather historical exploration data covering a 40km x 50km area in the Nechako region of central British Columbia. Four sets of exploration data were examined: regional airborne magnetics, gravity, geochemistry and geology (including the MinFile data base) with the intention of identifying regional geological structures and trends. The results were encouraging and a large block of mineral claims were staked and vended to Goldmember Ventures Corp.

Three areas, based primarily on a combination of elevated geochemical values and geophysically implied structural complexity, were selected as having high potential for sulphide mineralization. A 3D induced polarization technique was chosen with the intention of using resistivity to map lithology and structures and chargeability for the direct detection of sulphides. Survey grids with lines spaced at 200m intervals were established for this reconnaissance phase. Followup is expected to consist of geological mapping and geochemical sampling. Based on the initial results, detailed magnetics and/or detailed IP surveying may also be recommended.

This report summarizes the operational aspects of the project and the survey methodologies used and provides a geophysical interpretation. This report is expected to be an addendum to a more complete geological report; therefore, this does not cover such items as previous exploration work, regional and local geology, costs associated with the survey or history of the property.

3 PROPERTY

The Nechako claim group is comprised of 142 mineral claims, totaling some 66,352 hectares. A map showing the location of the claims and a listing of the claims is provided in Appendix 2.

4 LOCATION AND ACCESS

The Nechako project claims are located in the Nechako Basin in central B.C., approximately 530 km NNW of Vancouver and 180 km west of Prince George, in NTS Mapsheets 93F06, 93F11 and 93F12 and the Omineca Mining Division. The approximate geographical coordinates of the center of the claim block are latitude 53^o 35'N and longitude 125^o 20'W (Figure 1).

The base camp for grid 1 was established at the Nechako Lodge. These fishing cabins are about 90 km southwest of Vanderhoof, which can be reached after two and half hours driving from Prince George. A logging camp near Ootsa lake was chosen as the base camp for the other two grids. This camp is accessed by driving approximately one hour west from the Nechako Lodge.

Figure 2: Claim Outline - IP Survey Grids Goldmember Ventures Corp Nechako Claim Group (yellow) – IP Survey Grids (black) – Regional Study Area (Red Dash)- UTM Coordinates (NAD83, Zone 10)

Three survey grids were established within the Nechako claim group as illustrated above. Survey lines were oriented east-west on 200 metre centres, with stations flagged at 50 metre intervals along the lines.

The geophysical grids were established with reference to suitable baselines crossing the grids. The baseline stations were used as starting points for the line cutting and chainage, that was done by the client using a hip chain, compass and hand held GPS. The geophysical crew occasionally participated in the line cutting but was most often involved with clinometer readings to get the slopes along the lines and taking control points with a hand held GPS while performing the IP survey. A total of 58 lines for all three grids were marked out. Baselines were oriented north-south and variable length cross lines were establish east-west at 200m intervals. The survey grids are delineated on the geophysical plan maps. A detailed breakdown of the lengths of individual survey lines are provided in Appendix 3. Stations were labeled with the approximate distance from the reference station on the baseline. GPS control points were collected every 200 to 300 m along the lines wherever possible in NAD83 Zone 10N, UTM coordinates.

The ground was covered with dense vegetation and big trees and it was necessary for the line cutters to use chainsaws to clear the lines. Grid 1 presented the most topographic relief, with some deep creeks. The northern portion was almost flat, with some very swampy areas. Grids 2 and 3 presented predominantly smooth rolling relief, and bushes were common to all three grids. White Eye Lake, in the southwestern portion of grid 3, prevented surveying the western sides of the planned program in this area.

6 FIELD WORK AND INSTRUMENTATION

6.1 Field Logistics

The SJ Geophysics Ltd. crew consisted of six SJ Geophysics employees working at a time. The grids were so big that continuous personnel rotation was necessary. The table below summarizes the personnel that was involved in the fieldwork:

SJ Personnel	GRID1	GRID2	GRID3
Frank Consuegra	•		
Ryan Vondervoort	•		•
Ramiro Caceres	•		•
Ashley Vondervoort	•		•
Ryan Tapp	•		•
Travis Forsyth	•	•	•
Katee Doyon	•	•	•
Kyle Reynolds		•	•

Goldmember	Ventures	Corp.	Nechako	Project

Andrew Fitzgerald	•	•
Louis Bruyere	•	•
Valery Kungurov	•	•
Ashley Bezembinder	•	•
Marvin Skulsh	•	•
Dustin Menard	•	•
Lauren Devlin	•	

The first crew working on grid 1 mobilized with the geophysical instrumentation from Vancouver, B.C. on May 20. Two more crew members joined the team in Vanderhoof. Initial accommodations were provided by the client in the Nechako Lodge, 90 km southwest of Vanderhoof. For the first five days, the geophysical crew worked with the client's crew helping with line cutting and soil sampling. May 26 was devoted to setting up and the IP survey started May 27. A total of 18 lines were surveyed on grid 1 with a total production of 37.65 km. During the execution of the survey the prevailing weather conditions were hot and dry with subsequent high contact resistances. The last line for grid 1 was completed June 22 and the next day the crew picked up everything, completed locations and moved to Vanderhoof to spend the weekend making minor repairs.

The crew mobilized to start working on grid 3 on June 25, after changing some personnel (Katee and Kyle). Accommodations were provided in a logging camp near Ootsa Lake from where the crew mobilized to the grid by driving 5 minutes to the barge that crosses to the south side of Intata Reach, followed by a further 15 minutes driving. The barge was not available on weekends. On those days it was necessary to use a small boat provided by the client to cross the lake. Surveying progressed from south to north for a total of 25 lines of variable length (the northernmost being the longer ones) and a total production of 54.325 line km. The baseline for this grid was established at station 3000E. On July 4, crew member Andrew Fitzgerald replaced Ashley Vandervoort. On July 13 crew members Valery Kungurov and Louis Bruyere joined the crew, replacing Ryan Tapp and Ramiro Caceres. While surveying this grid occasional heavy rainfall generated problems with the cables (crosstalk), delaying the work. Also, heavy logging

machinery moving inside the grid occasionally broke some cables. Although the planned survey was not completed, work on this grid was temporarily suspended on July 19.

Lauren Devlin replaced Ryan Vandervoort on July 20 and work started on grid 2. Mobilization to this grid was the same as for grid 3, with the only difference of driving northwards after reaching the north side of grid 3. Marvin Skulsh joined the crew on July 26; and on August 09 Andrew Fitzgerald and Kyle Reynolds were replaced by Dustin Menard and Ashley Bezembinder. Valery Kungurov demobilized August 12. On August 15 Louis Bruyere left camp and Katee Doyon came back. The total coverage for this grid was 51.8 line km for 15 traverses.

The crew returned to finish surveying the north side of grid 3 on August 18 and over the next couple of days the crew started reconnaissance of the grid and set up remotes and current lines. Lauren Devlin demobilized to Vancouver. Production surveying re-started on August 20, with lines progressing from south to north. The grid was completed on August 29 and the crew started demobilization the next day.

Over the entire survey, the average IP production was approximately 1.65 km/day. A significant amount of time was required moving wire and cables each day. The numerous rabbits in the region hindered production because all cables, and the majority of the current wire, had to picked up at the end of each day to avoid damage from the rabbits chewing on the cables.

Safety meetings were observed routinely with regard to hazards when working with electrical power in order to avoid starting a fire. Warning signals were deployed in strategic places. Another issue of concern was wild animals (particularly bears). These meetings also served the purpose of planning the working day.

6.2 Survey Parameters and Field Instrumentation

For the production phase, the 3D configuration consists of two current lines being recorded into the receiver line. The current lines were located on either side of the receiver line, and subsequent lines were surveyed with a single current line overlap.

Goldmember Ventures Corp. Nechako Project

For the entire survey (3D) the dipole array consisted of a modified pole-dipole configuration that used a combination of 12 dipoles (8x100m and 4x200m) for a total array length of 1600m. The most frequently used arrays were:

100,100,100,100,100,100,100,200,200,200,	end of line
200,200,100,100,100,100,100,100,100,200,2	middle of line
200,200,200,200,100,100,100,100,100,100,	opposite end of line

A single remote current stake was used for grid 1, set up perpendicular to the grid. The south portion of grid 3 was surveyed in the same way, but its' northern side was surveyed with a modified gradient array, using one of two remotes laid out on either side of the grid. These efforts were made to achieve better depth penetration in this area. The eastern remotes were used when surveying the western sides of the lines, and vice versa whenever possible. Gradient shots were also taken using the western and eastern remotes as the two current injection locations. All of grid 2 was surveyed with the same type of modified gradient array.

The potential array was implemented using specialized 8 conductor IP cables configured with 100 m takeouts for the potential rods. At each current station, electrodes consisted of two 1.0m stainless steel rods, 15mm in diameter. For the potential line, one stainless steel electrode approximately half the height and diameter of the current electrode was used at each takeout station. A salt water and dish soap solution was often poured onto current electrodes just prior to power injection to achieve higher current values.

The remote current locations consisted of four 1m stainless steel rods, 15mm in diameter. The exact locations of the remote currents were acquired by GPS for use in the geophysical calculations.

For the entire IP survey, all data was collected using the internal SJV 24 Full Waveform Digital Receiver (Rx). The current was injected with a 2 seconds on, 2 seconds off duty cycle into the ground via a transmitter (Tx). A single GDD Tx II 3.6 kW transmitter was utilized during for duration of the program. Instrument specifications are included in Appendix 4.

The IP readings from each day's surveying were downloaded to a computer and entered into a database archive every evening. The database program allows the operator to display the IP decay curves in an efficient manner, and this provides a visual review of the data quality on site.

7 **Geophysical Techniques**

7.1 IP Method

The time domain IP technique energizes the ground surface with an alternating square wave pulse via a pair of current electrodes. On most surveys, like this one, the IP/Resistivity measurements are made on a regular grid of stations along survey lines.

After the transmitter (Tx) pulse has been transmitted into the ground via the current electrodes, the IP effect is measured as a time diminishing voltage at the receiver electrodes. The IP effect is a measure of the amount of IP polarizable materials in the subsurface rock. Under ideal circumstances, IP chargeability responses are a measure of the amount of disseminated metallic sulfides in the subsurface rocks.

Unfortunately, there are other rock materials that give rise to IP effects, including some graphitic rocks, clays and some metamorphic rocks (serpentinite for example). So from a geological point of view, IP responses are almost never uniquely interpretable. Because of the non-uniqueness of geophysical measurements it is always prudent to incorporate other data sets to assist in interpretation.

Also, from the IP measurements the apparent (bulk) resistivity of the ground is calculated from the input current and the measured primary voltage.

IP/resistivity measurements are generally considered to be repeatable to within about five percent. However, they will exceed that if field conditions change due to variable water content or variable electrode contact. IP/resistivity measurements are influenced, to a large degree, by the rock materials nearest the surface (or, more precisely, nearest the measuring electrodes), and the interpretation of the traditional pseudosection presentation of IP data in the past has often been uncertain. This is because stronger responses that are located near surface could mask a weaker

one that is located at depth.

7.2 3DIP Method

Three dimensional IP surveys are designed to take advantage of the interpretational functionality offered by 3D inversion techniques. Unlike conventional IP, the electrode arrays are no longer restricted to in-line geometry. Typically, current electrodes and receiver electrodes are located on adjacent lines. Under these conditions, multiple current locations can be applied to a single receiver electrode array and data acquisition rates can be significantly improved over conventional surveys.

In a common 3DIP configuration, a receiver array is established, end-to-end along a survey line while current electrodes are located on two adjacent lines. The survey typically starts at one end of the line and proceeds to the other end. A typical 8 dipole array normally consists of two 100m dipoles, followed by four 50m dipoles and then two more 100m dipoles at the end of the array. In some areas these spacings are modified to compensate for local conditions such as inaccessible sites, streams, and overall conductivity of ground. Current electrodes are advanced along the adjacent lines, starting at approximately 200m from the centre of the array and advancing approximately 400m through the array at 50m increments. At this point, the receiver array is advanced 400m and the process is repeated down the line. Receiver arrays are typically established on every second line (200m apart) thereby a current line is repeated. The second pass of the current lines, the currents are injected on half stations (ie. 25) with the same 50m increment.

7.3 Inversion Programs

"Inversion" programs have recently become available that allow a more definitive interpretation, although the process remains subjective.

The purpose of the inversion process is to convert surface IP/Resistivity measurements into a realistic "Interpreted Depth Section." However, note that the term is left in quotation marks. The use of the inversion routine is a subjective one because the input into the inversion routine calls for a number of user selectable variables whose adjustment can greatly influence the output. The

Goldmember Ventures Corp. Nechako Project

output from the inversion routines do assist in providing a more reliable interpretation of IP/Resistivity data, however, they are relatively new to the exploration industry and are, to some degree, still in the experimental stage.

The inversion programs are generally applied iteratively to evaluate the output with regard to what is geologically known, to estimate the depth of detection, and to determine the viability of specific measurements.

The Inversion Program (DCINV3D) used by the SJ Geophysical Group was developed by a consortium of major mining companies under the auspices of the UBC-Geophysical Inversion Facility. It solves two inverse problems. The DC potentials are first inverted to recover the spatial distribution of electrical resistivity, and, secondly, the chargeability data (IP) are inverted to recover the spatial distribution of IP polarizable particles in the rocks.

The interpreted depth section maps represent the cross sectional distribution of polarizable materials, in the case of IP effect, and the cross sectional distribution of the apparent resistivity, in the case of the resistivity parameter.

8 DATA PRESENTATION

8.1 Inversion Model

As described above, the IP data is processed through an inversion program that outputs one possible subsurface distribution of resistivity and polarizable materials that would produce the observed data. These results are generated as a 3 dimensional block model, with rectangular cells assigned values of resistivity and chargeability.

With the computer technology that exists today, the 3D inversion results can be easily viewed using a 3D visualization program such as UBC-GIF's Dicer3d program or open-source software packages such as Paraview. These programs manipulate the data and allow a user to view the model from infinite viewing angles, or to create infinite cross-sections or plan maps. In addition, these visualization programs allow the user to isolate different isosurfaces/volumes to facilitate interpretation of the data. Surface layers can be draped across the model and drill hole

information projected through it to allow an easy correlation between the IP interpretation and other exploration data.

The inversion results have been supplied to the client in both the UBC Meshtools3D and Parview file formats.

8.2 Plan Maps

False color contour maps of the inverted resistivity and chargeability results have been generated to illustrate the regional distribution of the geophysical trends, outlining strike orientations and possible fault offsets.

Plan maps can be displayed in two ways: depth below topography or as horizontal slices in terms of elevation. For the purposes of this report, the plan maps produced were created at depths below the surface. However, elevation slices may be easily viewed from the 3D inversion model with the use of a 3D viewer as described in the previous section.

Color contour plan maps are plotted for both resistivity and chargeability at depths from 50m to 400m below surface, as warranted by the data. These are included in digital PDF form as page sized plots in Appendix 5.

9 DISCUSSION OF RESULTS

In March, 2006 Nicholson and Associates commissioned S.J.V. Consultants Ltd. to research and gather historical exploration data covering a 40km x 50km area in the Nechako region of central British Columbia. Four sets of exploration data were examined: regional airborne magnetics, gravity, geochemistry and geology (including the MinFile data base) with the intention of identifying regional geological structures and trends. The results were encouraging, mineral claims were staked and three areas were selected for further exploration with the 3D induced polarization technique.

9.1 Grid 1

Grid 1 is located along the eastern boundary of the claim group. The geological mapping shows the southwestern portion of the survey grid as underlain by Endako group volcanics. The northeastern portion is overlain by Quaternary cover (overburden) and the bedrock geology is undefined. Regional magnetic data shows a strong magnetic high, striking 318[°], crossing the northwest corner of the grid. It is roughly paralleled by a weak magnetic low that crosses diagonally through the centre of the grid. It also shows that the Endako unit to the southwest contains several localized magnetic bodies and structures, including evidence of northeasterly trending faults. Analysis suggests the magnetic responses are generated from susceptibility changes at depth, some 1000 metres below surface.

Geochemical sampling is concentrated along the Endako – Quaternary contact. Several samples and groups of samples are anomalous in gold and silver. A scattering of anomalous Cu, Pb, Sb and As values are also observed however no patterns for these elements are obvious.

Figure 3: IP Grid 1 - Relative Magnetic Field Intensity False Color Contour Map of Magnetic Field Intensity – Shadow Enhanced – Illumination from Southeast

The resistivity component of the IP survey delineates a northwesterly trending contact, separating high resistivity material to the northeast from lower resistivity material to the southwest. This contact is oriented slightly more northerly (333°) than the strong magnetic high and coincides with the eastern edge of the weaker magnetic low. Although it is likely that the magnetic responses are delineating deeper sources, the similar strike of the magnetic and resistivity responses suggest they could be related to the same geological structure. The high resistivity values could be associated with overburden. There is evidence in the resistivity data that suggests there is more northeasterly trending faulting than is apparent in the magnetic data.

This evidence takes the form of offsets and discontinuities of the northwesterly trending contact

Figure 4: Grid 1: Inverted Resistivity - 800m elevation (average 200m depth) Thematic Map of Rock Geochemistry - Au

Goldmember Ventures Corp. Nechako Project

The chargeability component of the IP survey outlines two areas of increased chargeability. The smaller anomaly is located along the resistivity and magnetically defined contact and coincides with one of the northeasterly interpreted faults that crosses this contact. The source body appears to be an ellipsoid, roughly 200m across(NE), 250m long (NW) and 150m thick. The source appears to come to surface and plunge at a shallow angle to the northeast. Many of the rock geochemical samples in this area show anomalous Au and Ag concentrations. Till samples across this anomaly show high Cu concentrations.

The larger chargeability anomaly is located to the southwest of the magnetic and resistivity defined contact, within the Endako group volcanics. It appears to be buried approximately 100m below the surface. It is also ellipsoidal and elongated to the northwest and may also have a slight, northeasterly dip. The anomaly is some 1.6 km long and 400m wide although it seems to be comprised of three separate lobes. The largest and highest amplitude response is located at the center of the anomaly and is some 500m long and 400m wide. Two smaller lobes, possibly faulted off sections of the main body, are located to the northwest and southeast. There is only one geochemical silt sample taken over this anomaly and it shows slightly elevated Au, Ag, Sb and Cu concentrations.

Figure 5: Grid 1: Inverted Chargeability - 800m Elevation (average 200m depth) Thematic Map of Rock Geochemistry - Ag

Figure 6: Grid 1: IP Inversion - 3D Perspective View from Top Relative Magnetic Field Intensity (Transparent Overlay) – Interpreted High Resistivity Zone (red) – Interpreted High Chargeability Zone (green)

Figure 7: Grid 1: IP Inversion - 3D Perspective View from Southwest Relative Magnetic Field Intensity (Transparent Overlay) – Interpreted High Resistivity Zone (red) – Interpreted High Chargeability Zone (green)

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u>

Figure 8: Grid 1: IP Inversion - 3D Perspective View from Southeast Interpreted Low Resistivity Zone (blue) -Interpreted High Resistivity Zone (red) – Interpreted High Chargeability Zone (green)

9.2 Grid 2

Both grid 2 and grid 3 are located along the western edge of the claim group. The area is completely covered with Quaternary alluvium. Regional magnetic studies (including results from detailed investigation over the Looney Tunes project immediately to the west) show intersecting NW and NE magnetic breaks as dominant regional structures. Grid 2 is located along the NW arm of this large "X" pattern. More subtle magnetic trends (both high and lows) suggest a NE strike to the background lithologies or structures.

The road network has been geochemically sampled. Anomalous values (most notably in Au) are observed along the road that follows the eastern and northern edges of grid 2.

Goldmember Ventures Corp. Nechako Project

Figure 9: IP Grids 2 and 3 – Relative Magnetic Field Intensity False Color Contour Map of Magnetic Field Intensity – Interpreted Regional Structures

Goldmember Ventures Corp. Nechako Project

There is a reasonable agreement between the resistivity and magnetics. Both the NW and NE magnetic trends are paralleled by high resistivity trends. The resistivity responses are naturally more detailed and in the near surface suggest localized sequences of sub-parallel, narrow, linear zones. These trends coalesce at depth and give the general impression of ringed structures defined by moderately resistive centers being being surrounded by halos of lower resistivity materials. A large magnetic low along the north-central edge of grid coincides with a large, low resistivity surface layer. The image below shows the resistivity distribution at 200m depth below the ground surface, superimposed over a regional magnetic color contour map.

Figure 10: Grid 2 -Resistivity Inversion – 200m depth below ground surface Background magnetic color contour map – Rock and Till Geochemical Samples - Au

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u>

Goldmember Ventures Corp. Nechako Project

The chargeability inversion outlines four areas of increased chargeability. The highest values are noted on the eastern side of the grid and appears to be associated with a resistivity high. The other three anomalous areas all coincide with resistivity lows that flank resistivity highs. These anomalies could be generated by sulphide accumulations and are considered to be high priorities for further exploration. The image below shows the chargeability distribution at 300m depth below ground surface, superimposed over a regional magnetic color contour map.

Figure 11: Grid 2 -Chargeability Inversion – 300m depth below ground surface Background magnetic color contour map – Rock and Till Geochemical Samples - Ag

The four anomalous chargeability responses are described below.

- Eastern strip 321300E / 5940300N. This large buried high chargeability zone is located to the east of the road. This might be related to a much smaller zone at ground surface that lies immediately to the west and along the road. The chargeable body appears to dip at a shallow angle to the west however it also contains a central core that is more vertically oriented and plunges to the north. The chargeability zone appears to be flanked both above and below by high resistivity units.
- 2. Northwest target 317400E / 5941670N. This is an elliptical shaped body with 4 smaller satellite highs. The main target extends from surface to depth while the satellite targets are confined to the near surface. The anomaly is located along a NW trending structure as outlined by regional mag and resistivity highs. It is also associated with the edge of the mag low and surface resistivity low. There is an anomalous conductivity zone along the southeast edge of the chargeability feature. This conductivity zone is anomalous in that it appears to be a vertical structure, while most of the other high conductivity zones appear to be flat, near surface layers.
- 3. Southwest target 317775E / 5939650N. This target is similar to the Northwest target in that it appears to be conformable with the regional magnetic and resistivity trends (except in this area those trends strike NE). The chargeability target appears to be concentrated at depth (>200m) and is covered by a resistive cap. A large portion of this anomaly coincides with a high conductivity pipe, plunging towards the SW.
- 4. Central target This area is noted but not considered a high priority feature. The zone is primarily defined by a northeasterly trending zone of high resistivity. It is flanked by 3 weak chargeability anomalies. These chargeability targets show a similar relationship to the mag and resistivity trends as the other target areas.

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u>

9.3 Grid 3

Grid 3 is located immediately south of Grid 2 and (like Grid 2) the area is completely covered with Quaternary alluvium. Regional magnetic studies (including results from detailed investigation over the Looney Tunes project immediately to the west) show intersecting NW and NE magnetic breaks as dominant regional structures. Grid 3 is located at intersection and along the SW arm of this large "X" pattern (Figure 9 above).

Two northerly trending roads cross the survey grid and have been geochemically sampled. No strongly anomalous zones are noted. Concentrations appear to be slightly higher along the road crossing the western portion of the survey grid.

There are no strong IP or resistivity responses noted in the eastern and southern portions of the survey grid. Weak background trends suggest northerly and northeasterly striking trends that generally follow the local topography, with lower resistivities following the valleys and streams and higher resistivities associated with topographic highs.

The northwestern corner of the survey grid exhibits more interesting structures. A northwesterly trending hill is associated with a strong resistivity high that extends from surface to depth. This feature is disrupted in several places and these lower resistivity sections coincide with moderate (but significant) chargeability anomalies. There appears to be one main chargeability zone and several several smaller zones surrounding it. This main zone forms a sill like body, some 25 to 50m thick and buried about 100m below ground surface. The zone dips at a shallow angle to the west. The smaller chargeability zones appear as irregularly shaped bodies.

The 3D inversion has placed several east-west elongated resistivity and chargeability responses evident in the near surface. It is possible that these are associated with surface (overburden) inhomogeneities but may also be artifacts from the inversion algorithm. In either event, they are not considered to be valid geological targets.

Figure 14: Grid 3- Resistivity Inversion – 200m depth below ground surface Background magnetic color contour map – Rock and Till Geochemical Samples - Au

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u>

Figure 15: Grid 3-Chargeability Inversion – 100m depth below ground surface Background magnetic color contour map – Rock and Till Geochemical Samples - Ag

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u>

Figure 16: Grid 3-IP Inversion - 3D Perspective View from Southeast Topographic Surface and Survey Grid Lines (Transparent Overlay) – Interpreted High Resistivity Zone (red) – Interpreted High Chargeability Zone (green)

10 CONCLUSIONS

10.1 Grid 1

Grid 1 is located along a northwesterly trending contact, delineated by both magnetic and resistivity data. The area is likely cut by several northeasterly trending faults. Two high chargeability anomalies that could be related to disseminated sulphides are identified within the grid area. The smaller of these anomalies is elongated along the contact, coincident with one of the northeast trending faults. This anomaly extends from the ground surface to approximately 150m depth. A larger chargeability anomaly is located to the southeast of the contact and parallels it. This later feature is buried some 100m below ground surface and may be comprised of three separate zones, displaced from each other by northeasterly trending faults.

10.2 Grid 2

Grid 2 is located along a northwesterly trending regional magnetic feature. Localized magnetic and resistivity data imply the localized lithologies strike northeasterly. Four chargeability anomalies that might represent disseminated sulphide bodies are mapped across this grid.

The strongest of these is located in the southeastern portion of the grid and forms a westerly dipping layer flanked both above and below by high resistivity units. The anomaly was identified across all three survey lines in the area and is considered open along strike to the north and south.

A second anomaly is located in the north central section of the grid and is comprised of a central, elliptical shaped body that extends from close to ground surface to depth. It is surrounded by several smaller, surfacial bodies. This cluster of anomalies lies along a regional, northwesterly trending structure.

The third anomaly is located in the southwestern portion of the grid and conforms with northeasterly trending magnetic and resistivity structures. The chargeable mass appears to be buried some 200m below ground surface and is covered by a resistive cap.

The fourth anomaly is located in the central and northeastern portion of the grid. It appears as a weakly chargeable halo surrounding a northeasterly trending resistive body.

10.3 Grid 3

Grid 3 is located near the intersection of major northwest and northeasterly trending regional magnetic lineations. Weak resistivity highs follow the topographic hills in the area and are likely mapping overburden changes between the valleys and hills. Anomalously high resistivities are mapped following a northwesterly trending hill in the northwestern corner of the grid. This area also hosts a strong, elliptical shaped chargeability high which forms a slight westerly dipping sill, buried about 100m below the ground surface. This chargeability anomaly coincides with a distinct break in the high resistivity body. Several smaller, near surface chargeability anomalies appear to be scattered around the periphery of the large resistive unit.

11 RECOMMENDATIONS

The chargeability anomalies on all three grids warrant further exploration as potential disseminated sulphide bodies.

General prospecting and geological mapping are recommended even though the extensive Quaternary cover will likely limit the usefulness of these techniques. Depending on the thickness of the overburden, trenching might be a viable alternative.

The next exploration phase should include a systematic soil geochemical sampling program that covers the surfacial footprint of the chargeability targets as well as the immediate surrounding areas.

All three survey grids would benefit from a ground magnetometer survey. This data should be gathered at 25 metre station intervals on 100m spaced lines.

More detailed 3D IP surveying is recommended to help delineate the shallow IP anomalies. The deeper IP targets (>100m) have been adequately resolved by the recent survey.

The IP anomalies will require fence drilling to be properly evaluated. The results from the recommended geochemical and geological surveying should be used to prioritize these IP targets.

Respectfully submitted,

as per S.J.V. Consultants Ltd.

E. Trent Pezzot, BSc., PGeo.

(Geophysics, Geology)

12 Appendix 1 – Statement of Qualifications

E. Trent Pezzot

I, E. Trent Pezzot, of the city of Surrey, Province of British Columbia, hereby certify that:

- 1) I graduated from the University of British Columbia in 1974 with a B.Sc. degree in the combined Honours Geology and Geophysics program.
- 2) I have practised my profession continuously from that date.
- 3) I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia.
- 4) I have no interest in Goldmember Ventures Corp. or any of their subsidiaries or related companies, nor do I expect to receive any.

Signed by: _____

E. Trent Pezzot, BSc., PGeo. Geophysicist/Geologist

13 APPENDIX 2: NECHAKO CLAIMS

34

Tenure #	Туре	Claim	FMC #	Мар	Expiry Date	Status	Area (Ha)
	-) F -	Name		Sheet			
524105	Mineral	AP 1	146491 (100%)	093F	2007/dec/20	GOOD	478.71
524106	Mineral	AP 2	146491 (100%)	093F	2007/dec/20	GOOD	478.947
524107	Mineral	AP 3	146491 (100%)	093F	2007/dec/20	GOOD	479.18
524108	Mineral	AP 4	146491 (100%)	093F	2007/dec/20	GOOD	460.256
524109	Mineral	AP 5	146491 (100%)	093F	2007/dec/20	GOOD	478.709
524110	Mineral	AP 6	146491 (100%)	093F	2007/dec/20	GOOD	478.949
524111	Mineral	AP 7	146491 (100%)	093F	2007/dec/20	GOOD	479.185
524112	Mineral	AP 8	146491 (100%)	093F	2007/dec/20	GOOD	460.217
524113	Mineral	AP 9	146491 (100%)	093F	2007/dec/20	GOOD	460.394
524114	Mineral	AP 10	146491 (100%)	093F	2007/dec/20	GOOD	478.704
524115	Mineral	AP 11	146491 (100%)	093F	2007/dec/20	GOOD	478.944
524116	Mineral	AP 12	146491 (100%)	093F	2007/dec/20	GOOD	479.185
524117	Mineral	AP 13	146491 (100%)	093F	2007/dec/20	GOOD	479.418
524118	Mineral	AP 14	146491 (100%)	093F	2007/dec/20	GOOD	479.65
524119	Mineral	AP 15	146491 (100%)	093F	2007/dec/20	GOOD	478.701
524120	Mineral	AP 16	146491 (100%)	093F	2007/dec/20	GOOD	478.939
524121	Mineral	AP 17	146491 (100%)	093F	2007/dec/20	GOOD	479.181
524123	Mineral	AP 18	146491 (100%)	093F	2007/dec/20	GOOD	479.416
524124	Mineral	AP 19	146491 (100%)	093F	2007/dec/20	GOOD	460.487
524125	Mineral	AP 20	146491 (100%)	093F	2007/dec/20	GOOD	421.227
524126	Mineral	AP 21	146491 (100%)	093F	2007/dec/20	GOOD	478.89
524127	Mineral	AP 22	146491 (100%)	093F	2007/dec/20	GOOD	479.135
524128	Mineral	AP 23	146491 (100%)	093F	2007/dec/20	GOOD	479.37
524129	Mineral	AP 24	146491 (100%)	093F	2007/dec/20	GOOD	441.217
524130	Mineral	AP 25	146491 (100%)	093F	2007/dec/20	GOOD	403.009
524160	Mineral	AP 26	146491 (100%)	093F	2007/dec/21	GOOD	440.326
524161	Mineral	AP 27	146491 (100%)	093F	2007/dec/21	GOOD	478.841
524162	Mineral	AP 28	146491 (100%)	093F	2007/dec/21	GOOD	479.087
524163	Mineral	AP 29	146491 (100%)	093F	2007/dec/21	GOOD	479.321
524164	Mineral	AP 30	146491 (100%)	093F	2007/dec/21	GOOD	479.556
524165	Mineral	AP 31	146491 (100%)	093F	2007/dec/21	GOOD	460.577
524166	Mineral	AP 32	146491 (100%)	093F	2007/dec/21	GOOD	422.344
524167	Mineral	AP 33	146491 (100%)	093F	2007/dec/21	GOOD	478.61

SJ Geophysics Ltd. / S.J.V. Consultants Ltd.11762-94th Ave., Delta, BC Canada35Tel: (604) 582-1100Fax: (604) 589-7466E-mail: sydv@sjgeophysics.com35

Tenure #	Type	Claim	FMC #	Map	Expiry Date	Status	Area (Ha)
i chui c #	i ype	Name		Sheet	Expiry Dute	Status	riicu (iiu)
524168	Mineral	AP 34	146491 (100%)	093F	2007/dec/21	GOOD	478.843
524169	Mineral	AP 35	146491 (100%)	093F	2007/dec/21	GOOD	479.086
524170	Mineral	AP 36	146491 (100%)	093F	2007/dec/21	GOOD	440.97
524171	Mineral	AP 36	146491 (100%)	093F	2007/dec/21	GOOD	479.556
524172	Mineral	AP 37	146491 (100%)	093F	2007/dec/21	GOOD	383.814
524173	Mineral	AP 38	146491 (100%)	093F	2007/dec/21	GOOD	479.982
524182	Mineral	FC 1	146491 (100%)	093F	2007/dec/21	GOOD	478.541
524184	Mineral	FC 2	146491 (100%)	093F	2007/dec/21	GOOD	421.313
524187	Mineral	FC 3	146491 (100%)	093F	2007/dec/21	GOOD	478.989
524189	Mineral	FC 3	146491 (100%)	093F	2007/dec/21	GOOD	479.227
524191	Mineral	FC 4	146491 (100%)	093F	2007/dec/21	GOOD	441.181
526208	Mineral	FC 5	146491 (100%)	093F	2008/jan/25	GOOD	383.813
526210	Mineral	FC 6	146491 (100%)	093F	2008/jan/25	GOOD	287.988
526212	Mineral	FC 7	146491 (100%)	093F	2008/jan/25	GOOD	478.38
526213	Mineral	FC 8	146491 (100%)	093F	2008/jan/25	GOOD	478.614
526215	Mineral	FC 9	146491 (100%)	093F	2008/jan/25	GOOD	478.847
526217	Mineral	FC 10	146491 (100%)	093F	2008/jan/25	GOOD	479.086
526219	Mineral	FC 11	146491 (100%)	093F	2008/jan/25	GOOD	479.321
526220	Mineral	FC 12	146491 (100%)	093F	2008/jan/25	GOOD	479.555
526221	Mineral	FC 13	146491 (100%)	093F	2008/jan/25	GOOD	479.79
526222	Mineral	FC 14	146491 (100%)	093F	2008/jan/25	GOOD	441.617
526225	Mineral	FC 15	146491 (100%)	093F	2008/jan/25	GOOD	479.463
526226	Mineral	FC 16	146491 (100%)	093F	2008/jan/25	GOOD	479.698
526229	Mineral	FC 17	146491 (100%)	093F	2008/jan/25	GOOD	479.931
526230	Mineral	FC 18	146491 (100%)	093F	2008/jan/25	GOOD	403.33
526231	Mineral	FC 19	146491 (100%)	093F	2008/jan/25	GOOD	479.464
526232	Mineral	FC 20	146491 (100%)	093F	2008/jan/25	GOOD	479.699
526235	Mineral	FC 21	146491 (100%)	093F	2008/jan/25	GOOD	479.93
526236	Mineral	FC 22	146491 (100%)	093F	2008/jan/25	GOOD	480.165
526237	Mineral	FC 23	146491 (100%)	093F	2008/jan/25	GOOD	461.209
526238	Mineral	FC 24	146491 (100%)	093F	2008/jan/25	GOOD	479.465
526239	Mineral	FC 25	146491 (100%)	093F	2008/jan/25	GOOD	479.7
526240	Mineral	FC 26	146491 (100%)	093F	2008/jan/25	GOOD	479.93

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u>

Tenure #	Туре	Claim	FMC #	Map	Expiry Date	Status	Area (Ha)
	51	Name		Sheet	1 2		× ,
526241	Mineral	FC 27	146491 (100%)	093F	2008/jan/25	GOOD	480.163
526242	Mineral	FC 28	146491 (100%)	093F	2008/jan/25	GOOD	480.399
526243	Mineral	FC 29	146491 (100%)	093F	2008/jan/25	GOOD	480.636
526244	Mineral	FC 30	146491 (100%)	093F	2008/jan/25	GOOD	480.837
526245	Mineral	FC 31	146491 (100%)	093F	2008/jan/25	GOOD	480.634
526246	Mineral	FC 32	146491 (100%)	093F	2008/jan/25	GOOD	480.398
526247	Mineral	FC 33	146491 (100%)	093F	2008/jan/25	GOOD	480.162
526248	Mineral	FC 34	146491 (100%)	093F	2008/jan/25	GOOD	479.93
526249	Mineral	FC 35	146491 (100%)	093F	2008/jan/25	GOOD	479.702
526250	Mineral	FC 36	146491 (100%)	093F	2008/jan/25	GOOD	479.468
526251	Mineral	FB 1	146491 (100%)	093F	2008/jan/25	GOOD	479.469
526252	Mineral	FB 2	146491 (100%)	093F	2008/jan/25	GOOD	479.704
526253	Mineral	FB 3	146491 (100%)	093F	2008/jan/25	GOOD	479.93
526254	Mineral	FB 4	146491 (100%)	093F	2008/jan/25	GOOD	480.161
526256	Mineral	FB 5	146491 (100%)	093F	2008/jan/25	GOOD	480.397
526257	Mineral	FB 6	146491 (100%)	093F	2008/jan/25	GOOD	480.633
526259	Mineral	FB 7	146491 (100%)	093F	2008/jan/25	GOOD	480.899
526261	Mineral	FB 8	146491 (100%)	093F	2008/jan/25	GOOD	461.616
526263	Mineral	FB 9	146491 (100%)	093F	2008/jan/25	GOOD	442.554
526266	Mineral	FB 10	146491 (100%)	093F	2008/jan/25	GOOD	480.633
526337	Mineral	FB 11	146491 (100%)	093F	2008/jan/26	GOOD	480.397
526338	Mineral	FB 12	146491 (100%)	093F	2008/jan/26	GOOD	480.161
526339	Mineral	FB 13	146491 (100%)	093F	2008/jan/26	GOOD	479.931
526341	Mineral	FB 14	146491 (100%)	093F	2008/jan/26	GOOD	479.705
526342	Mineral	FB 15	146491 (100%)	093F	2008/jan/26	GOOD	479.47
526344	Mineral	GM 1	146491 (100%)	093F	2008/jan/26	GOOD	479.47
526345	Mineral	GM 2	146491 (100%)	093F	2008/jan/26	GOOD	479.705
526346	Mineral	GM 3	146491 (100%)	093F	2008/jan/26	GOOD	479.931
526347	Mineral	GM 4	146491 (100%)	093F	2008/jan/26	GOOD	480.161
526349	Mineral	GM 5	146491 (100%)	093F	2008/jan/26	GOOD	480.397
526351	Mineral	GM 6	146491 (100%)	093F	2008/jan/26	GOOD	480.633
526352	Mineral	GM 7	146491 (100%)	093F	2008/jan/26	GOOD	480.875
526353	Mineral	GM 8	146491 (100%)	093F	2008/jan/26	GOOD	481.112

SJ Geophysics Ltd. / S.J.V. Consultants Ltd.11762-94th Ave., Delta, BC Canada37Tel: (604) 582-1100Fax: (604) 589-7466E-mail: sydv@sjgeophysics.com37

Tenure #	Туре	Claim Name	FMC #	Map	Expiry Date	Status	Area (Ha)
526256		CN ()	14(401 (1000/)	Sheet	2000/: /2/	COOD	442 727
526356	Mineral	GM 9	146491 (100%)	093F	2008/jan/26	GOOD	442.737
526359	Mineral	GM 10	146491 (100%)	093F	2008/jan/26	GOOD	481.019
526360	Mineral	GMII	146491 (100%)	093F	2008/jan/26	GOOD	480.777
526362	Mineral	GM 12	146491 (100%)	093F	2008/jan/26	GOOD	480.539
526363	Mineral	GM 13	146491 (100%)	093F	2008/jan/26	GOOD	480.304
526364	Mineral	GM 14	146491 (100%)	093F	2008/jan/26	GOOD	480.069
526366	Mineral	GM 15	146491 (100%)	093F	2008/jan/26	GOOD	479.844
526368	Mineral	GM 16	146491 (100%)	093F	2008/jan/26	GOOD	479.612
526370	Mineral	GM 17	146491 (100%)	093F	2008/jan/26	GOOD	287.654
526372	Mineral	GM 18	146491 (100%)	093F	2008/jan/26	GOOD	479.47
526373	Mineral	GM 19	146491 (100%)	093F	2008/jan/26	GOOD	479.705
526375	Mineral	GM 20	146491 (100%)	093F	2008/jan/26	GOOD	479.933
526377	Mineral	GM 21	146491 (100%)	093F	2008/jan/26	GOOD	480.164
526378	Mineral	GM 22	146491 (100%)	093F	2008/jan/26	GOOD	480.4
526379	Mineral	GM 23	146491 (100%)	093F	2008/jan/26	GOOD	480.635
526380	Mineral	GM 24	146491 (100%)	093F	2008/jan/26	GOOD	480.876
526381	Mineral	GM 25	146491 (100%)	093F	2008/jan/26	GOOD	481.114
526382	Mineral	GM 26	146491 (100%)	093F	2008/jan/26	GOOD	308.035
526383	Mineral	GM 27	146491 (100%)	093F	2008/jan/26	GOOD	423.615
526384	Mineral	GM 28	146491 (100%)	093F	2008/jan/26	GOOD	481.161
526385	Mineral	GM 29	146491 (100%)	093F	2008/jan/26	GOOD	480.926
526386	Mineral	GM 30	146491 (100%)	093F	2008/jan/26	GOOD	480.683
526492	Mineral	GM 31	146491 (100%)	093F	2008/jan/27	GOOD	461.185
526494	Mineral	GM 32	146491 (100%)	093F	2008/jan/27	GOOD	480.167
526495	Mineral	GM 33	146491 (100%)	093F	2008/jan/27	GOOD	383.966
526497	Mineral	GM 34	146491 (100%)	093F	2008/jan/27	GOOD	479.8
526498	Mineral	GM 35	146491 (100%)	093F	2008/jan/27	GOOD	460.315
526499	Mineral	GM 36	146491 (100%)	093F	2008/jan/27	GOOD	421.828
526501	Mineral	MM 1	146491 (100%)	093F	2008/jan/27	GOOD	442.313
526502	Mineral	MM 2	146491 (100%)	093F	2008/jan/27	GOOD	480.943
531373	Mineral	WEST 1	146491 (100%)	093F	2008/apr/06	GOOD	479.772
531374	Mineral	WEST 2	146491 (100%)	093F	2008/apr/06	GOOD	479.778
531375	Mineral	WEST 3	146491 (100%)	093F	2008/apr/06	GOOD	460.611

Goldmember Ventures Corp. Nechako Project

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u>

Tenure #	Туре	Claim Name	FMC #	Map Sheet	Expiry Date	Status	Area (Ha)
531376	Mineral	WEST 4	146491 (100%)	093F	2008/apr/06	GOOD	480.031
531377	Mineral	WEST 5	146491 (100%)	093F	2008/apr/06	GOOD	480.03
531378	Mineral	WEST 6	146491 (100%)	093F	2008/apr/06	GOOD	480.03
531379	Mineral	WEST 7	146491 (100%)	093F	2008/apr/06	GOOD	480.263
531380	Mineral	WEST 8	146491 (100%)	093F	2008/apr/06	GOOD	480.263
531381	Mineral	WEST 9	146491 (100%)	093F	2008/apr/06	GOOD	480.263
531382	Mineral	WEST 10	146491 (100%)	093F	2008/apr/06	GOOD	480.495
531383	Mineral	WEST 11	146491 (100%)	093F	2008/apr/06	GOOD	480.496
531384	Mineral	WEST 12	146491 (100%)	093F	2008/apr/06	GOOD	480.496
531386	Mineral	WEST 13	146491 (100%)	093F	2008/apr/06	GOOD	480.31

Goldmember Ventures Corp. Nechako Project

14 APPENDIX 3 – SUMMARY TABLES (IP ONLY)

	GIIUI						
Line	BOL Station	EOL Station	Remote used	Туре	Surveyed Length		
5000N	5000	7400		Tx	2400		
5200N	5000	7400	7550N/6600	Rx	2400		
5400N	5300	7400		Tx	2100		
5600N	5000	7400	7550N/6600	Rx	2400		
5800N	5000	7250		Tx	2250		
6000N	5000	7400	4460N/3790	Rx	2400		
6200N	5000	7400		Tx	2400		
6400N	5000	7400	4460N/3790	Rx	2400		
6600N	5000	7400		Tx	2400		
6800N	5000	7400	4782N/4737	Rx	2400		
7000N	5000	7400		Tx	2400		
7200N	5000	7400	4782N/4737	Rx	2400		
7400N	5000	7400		Tx	2400		
7600N	5000	7400	5350N/5520	Rx	2400		
7750N	5000	6700		Tx	1700		
8000N	5900	6650	7440N/4787	Rx	750		
8200N	5900	6650		Tx	750		
8400N	5900	7200	7440N/4787	Rx	1300		

Grid 1

Total Survey Length = 37,650 m

Line	BOL Station	EOL Station	Remote used	Туре	Surveyed Length
2200	2200	4800		Tx	2600
2400	2200	5000	3401N/5100 3402N/2100	Rx	2800
2600	2200	5100		Tx	2900
2800	2200	5200	3401N/5100 3402N/2100	Rx	3000
3000	2200	7800		Tx	5600
3200	2200	7800	3401N/5100 3402N/2100 3403N/4500 3404N/8000	Rx	5600
3400	2200	7800		Tx	5600
3600	4500	6100	4202N/6150 4203N/3700	Rx	1600
3800	4450	6200		Tx	1750
4000	4500	6100	4202N/6150 4203N/3700	Rx	1600
4200	2250	6150		Tx	3900
4400	2200	6000	4201N/2100 4202N/6150	Rx	3800
4600	2200	6050		Tx	3850
4800	2200	6000	4201N/2100 4202N/6150	Rx	3800
5000	2200	5600		Tx	3400

Grid 2

Total Survey Length = 51,800 m

Line	BOL Station	EOL Station	Remote used	Туре	Surveyed Length
1000	2200	4000		Tx	1800
1200	2200	4000	3410N/3085	Rx	1800
1400	2200	4000		Tx	1800
1600	2300	4000	3410N/3085	Rx	1700
1800	2150	4000		Tx	1850
2000	2300	4000	5128N/3256	Rx	1700
2200	2350	3975		Tx	1625
2400	2400	4000	5128N/3256	Rx	1600
2600	2400	4000		Tx	1600
2800	2400	4000	5128N/3256	Rx	1600
3000	2450	4000		Tx	1550
3200	2400	4000	5128N/3256	Rx	1600
3400	1050	4000		Tx	2950
3600	1000	4000	1750N/3000	Rx	3000
3800	1000	4000		Tx	3000
4000	1000	4000	1750N/3000	Rx	3000
4200	1000	4000		Tx	3000
4400	1200	3800	5401N/801 5402N/4201	Rx	2600
4600	1100	4000		Tx	2900
4800	1250	3800	5401N/801 5402N/4201	Rx	2550
5000	1050	4000		Tx	2950
5200	1200	3800	5404N/4360 5403N/700	Rx	2600
5400	1000	3950		Tx	2950
5600	1000	2400	5404N/4360 5403N/700	Rx	1400
5800	1200	2400		Tx	1200

Grid 3

Total Survey Length = 54,325 *m*

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u>

15 Appendix 4 – Instrument Specifications

15.1 SJ-24 Full-Waveform Digital IP Receiver

Technical:	
Input impedance:	10 Mohm
Input overvoltage protection:	up to 1000V
External memory:	Unlimited readings
Number of dipoles:	4 to 16 +, expandable.
Synchronization:	Software signal post-processing user selectable
Common mode rejection:	More than 100 dB (for Rs =0)
Self potential (Sp):	Range: $-5V$ to $+5V$
	Resolution: 0.1 mV
	Proprietary intelligent stacking process rejecting
	strong non-linear SP drifts
Primary voltage:	Range: $1\mu V - 10V$ (24bit)
	Resolution: 1µV
	Accuracy: typ. <1.0%
Chargeability:	Resolution: 1µV/V
	Accuracy: typ. <1.0%
General (4 dipole unit):	
Dimensions:	18x16x9 cm
Weight:	1.1 Kg
Battery:	12V External
Operating temperature range:	-20°C to 40°C

15.2 GDD Tx II IP Transmitter

Input voltage:

120V / 60 Hz or 240V / 50Hz (optional)

Output power: Output voltage: Output current: Time domain: Operating temp. range: Display: Dimensions (h w d): Weight: 3.6kW maximum.
150 to 2000 Volts
5 ma to 10Amperes
Transmission cycle is 2 seconds ON, 2 seconds OFF -40° to +65° C
Digital LCD read to 0.001A
34 x 21 x 39 cm
20kg.

16 Appendix 5 – **P**LAN MAPS

3DIP Color Contour Plan Maps – Grid 1
Inverted Resistivity – 100m Below Topography
Inverted Resistivity – 200m Below Topography
Inverted Resistivity – 300m Below Topography
Inverted Resistivity – 400m Below Topography
Inverted Chargeability – 100m Below Topography
Inverted Chargeability – 200m Below Topography
Inverted Chargeability – 300m Below Topography
Inverted Chargeability – 400m Below Topography

UTM Coordinates NAD83, Zone 10N

SJ Geophysics Ltd. S.J.V. Consultants Ltd.

Goldmember Ventures Corp. Nechako Project Grid 1 Inverted Resistivity (ohm-m) Depth = 100m below surface

UTM Coordinates NAD83, Zone 10N

SJ Geophysics Ltd.

Goldmember Ventures Corp. Nechako Project Grid 1 Inverted Resistivity (ohm-m) Depth = 200m below surface

UTM Coordinates NAD83, Zone 10N SJ Geophysics Ltd. SJ Geophysics Ltd. Metres Goldmember Ventures Corp. Nechako Project Grid 1 Inverted Resistivity (ohm-m) Depth = 300m below surface

UTM Coordinates NAD83, Zone 10N

SJ Geophysics Ltd. S.J.V. Consultants Ltd.

Goldmember Ventures Corp. Nechako Project Grid 1 Inverted Resistivity (ohm-m) Depth = 400m below surface

UTM Coordinates NAD83, Zone 10N 500 1,000 Λ SJ Geophysics Ltd. S.J.V. Consultants Ltd. metres

Goldmember Ventures Corp. Nechako Project Grid 1 Inverted Chargeability (ms) Depth = 100m below surface

Goldmember Ventures Corp. Nechako Project Grid 1 Inverted Chargeability (ms) Depth = 200m below surface

UTM Coordinates NAD83, Zone 10N *SJ Geophysics Ltd. Sal Y. Consultants Led.*

Goldmember Ventures Corp. Nechako Project Grid 1 Inverted Chargeability (ms) Depth = 300m below surface

UTM Coordinates NAD83, Zone 10N SJ Geophysics Ltd. Market Market

3DIP Color Contour Plan Maps – Grid 2
Inverted Resistivity – 100m Below Topography
Inverted Resistivity – 200m Below Topography
Inverted Resistivity – 300m Below Topography
Inverted Resistivity – 350m Below Topography
Inverted Chargeability – 100m Below Topography
Inverted Chargeability – 200m Below Topography
Inverted Chargeability – 300m Below Topography
Inverted Chargeability – 350m Below Topography

3DIP Color Contour Plan Maps – Grid 3	
Inverted Resistivity – 50m Below Topography	
Inverted Resistivity – 100m Below Topography	
Inverted Resistivity – 150m Below Topography	
Inverted Resistivity – 200m Below Topography	
Inverted Resistivity – 250m Below Topography	
Inverted Chargeability – 50m Below Topography	
Inverted Chargeability – 100m Below Topography	
Inverted Chargeability – 150m Below Topography	
Inverted Chargeability – 200m Below Topography	
Inverted Chargeability – 250m Below Topography	

