NTS 94K/4, 5, 6, 11, 12 Lat: 58° 23' N Long: 125° 24' W

ASSESMENT REPORT on the ox Property (tenure 501462)

Liard Mining Division British Columbia, Canada

for

ARIES RESOURCE CORP 1255 West Pender Street Vancouver, BC V6E 2V1 Tel: 604-681-0004 Fax: 604-681-0014 Tel: 604-681-0004 Fax: 604-681-0014

4 SOLANCE

erotoetent.

ACTION MINERALS INC

Vancouver, BC V6E 2V1

1255 West Pender Street

George Coetzee, BSc..Geo. (Honors)

by

#1-1255 West Pender St. Vancouver, BC V6E 2V1 Tel: 604-839-7392 Fax: 604-681-0014

> 22 May 2007 1

TABLE OF CONTENTS

1.0	INTR	ODUCTION	4									
2.0	DES	CRIPTIONS, LOCATIONS AND OWNERSHIP OF CLAIMS	4									
3.0	ACCESSIBILITY, CLIMATE and PHISIOGRAPHY											
4.0	SOX PROPERTY HISTORY & PREVIOUS WORK											
5.0	REGI	ONAL GEOLOGY AND STRUCTURE	29									
	5.1	Regional Structure	29									
	5.2	Property Geology	34									
	5.3	Surface Mineralization	34									
	5.4	Deposit Types	35									
	5.5	IOCG Comparison - Olympic Dam and Wernecke Mountains	36									
	5.6	Nico and Sue-Dianne IOCG Deposits										
6.0	MIN	ERALIZATION	40									
7.0	EXP	LORATION	41									
	7.1	Surface Geology	41									
	7.1 7.2	Surface Geology										
			42									
	7.2	Sampling Program	42 43									
	7.2 7.3	Sampling Program Drill Program	42 43 48									
	7.2 7.3 7.4	Sampling Program Drill Program Mineralization in Drill Holes	42 43 48 48									
	7.27.37.47.5	Sampling Program Drill Program Mineralization in Drill Holes Drill Hole Results	42 43 48 48 49									
8.0	 7.2 7.3 7.4 7.5 7.6 7.7 	Sampling Program Drill Program Mineralization in Drill Holes Drill Hole Results Interpretation and conclusions	42 43 48 48 48 49 50									
-	7.2 7.3 7.4 7.5 7.6 7.7 SAMF	Sampling Program Drill Program Mineralization in Drill Holes Drill Hole Results Interpretation and conclusions Recommendations										
8.1	7.2 7.3 7.4 7.5 7.6 7.7 SAMF SAMF	Sampling Program Drill Program Mineralization in Drill Holes Drill Hole Results Interpretation and conclusions Recommendations PLING METHOD and APPROACH										
8.1 9.0	7.2 7.3 7.4 7.5 7.6 7.7 SAMF SAMF	Sampling Program Drill Program Mineralization in Drill Holes Drill Hole Results Interpretation and conclusions Recommendations PLING METHOD and APPROACH PLE PREPARATION, ANALYSIS and SECURITY										
8.1 9.0 10.0	7.2 7.3 7.4 7.5 7.6 7.7 SAMF SAMF STAT REFE	Sampling Program Drill Program Mineralization in Drill Holes Drill Hole Results Interpretation and conclusions Recommendations PLING METHOD and APPROACH PLE PREPARATION, ANALYSIS and SECURITY EMENT OF COSTS										

-

LIST OF FIGURES

Figure 1	Regional Location	21
Figure 2	Claim Locations	22
Figure 3	Area B Compilation	28
Figure 4	Regional & Property Geology	31
Figure 5	Cross-section C-C'	33
Figure 6	Sox Drill Site Locations	46
Figure 6A	SOX Property Drill Section Location	47

LIST OF TABLES

Table 1	Payments o Seguro	11
Table 2	List of Common Stock Payments to Seguro	15
Table 3	List of Common Stock Payments to Doctors	17
Table 4	Payment to Aries	18
Table 5	Geology Legend	32
Table 6	IOCG Comparison - Olympic Dam and Wernecke Mountains	
Table 7	Drill hole collar coordinates on the Sox property	44
Table 8	Sox Drilling	45

LIST OF APPENDICES

APPENDIX A	Claim Information
APPENDIX B	Muskwa-Kechika SMZ
APPENDIX C	Assays
APPENDIX D	Racing River Claims
APPENDIX E	Drill & Geotechnical Logs

1.0 INTRODUCTION

This Assessment Report outlines drilling and other work carried out in 2006 on the Sox Property (the "Claim"), tenure number 501462, which are part of the group of 580 mineral claims comprising the Trident Copper Project.

At the request of Aries Resource Corp and Action Minerals Inc. (the "Companies" or "Action" or Aries"), the accompanying technical report was prepared on the Trident Copper Project properties (the "Property"), Fort Nelson Area, Laird Mining Division, British Columbia Canada to summarize previous work, appraise the exploration potential of the Property, and to make recommendations for future work. The trident Copper Project comprises a group of 580 un-surveyed mineral claims totaling over 223,595 hectares (ha).

2.0 DESCRIPTIONS, LOCATIONS and OWNERSHIP OF CLAIMS

The Trident Copper Project comprises a group of 580 contiguous mineral claims totaling 223,595 hectares (ha). The claims are located in the Liard Mining Division, British Columbia, Canada, and is shown on Map Sheets NTS 94K/4, 5, 6, 11, and 12. The Property area is centered at latitude 58°23' North, longitude 125°24' West, and UTM 6476000 m North, and UTM 360000 m East. Detailed claim information is provided in Appendix A.

Aries holds an interest in claims through option agreements with seven arms-length parties: Twenty-Seven Capital Corp., GWN Investment Ltd., Saints Investment Ltd. Laird Rice, Ryan Gibson, Seguro Projects Inc and Doctors Investment Group Ltd. Action has acquired an interest in the Missy, Okey, Sox, and Talus claims through a non arm's length agreement with Aries. Action also holds an interest in claims through option agreements with six arms-length parties: Minero Majestuoso Limitado,

GWN Investment Ltd., Saints Investment Ltd. Laird Rice, Ryan Gibson, and Doctors Investment Group Ltd. The following is a summary of the Trident Copper project acquisitions:

.

Property Location	Nature of Ownership Claim Numbers	Current Use or Operations Conducted on the Property	Financial Terms Related to the Company's Ownership of its Interest in the Properties
Neil, Liard Talus, Sox Joint Division, Venture Property Columbia	50% 504054 501462 510008	exploration	The Owner hereby grants Action an exclusive and irrevocable option (the "Option") to acquire an undivided fifty (50%) per cent interest in the Mineral Claims by making the following payments/commitments (the "Option Payments") to the Owner: the issuance of 500,000 common shares and a cash payment of \$50,000 to be paid within 10 days of exchange approval; a cash payment of \$75,000 on or before 180 days of exchange approval; Before the first (1 st) anniversary of this Agreement 500,000 common shares shall be issued to the Owner and, by such time, Action shall have performed exploration and development work costing \$400,000 on the Mineral Claims or any properties forming part of the Mineral Claims (including any properties acquired with borders within thirty kilometres of the nearest portion of the Mineral Claims ["Proximate Properties"]), subject to Aries having previously received a National Instrument 43- 101 compliant property report recommending such work; On the second (2nd) anniversary of this Agreement 500,000 common shares shall be issued to the Owner and, by such time, Action shall have performed exploration and development work costing \$1,100,000 on the Mineral Claims or any properties forming part of the Mineral Claims (including any properties acquired with borders within thirty kilometres of the nearest portion of the Mineral Claims ["Proximate Properties"]), subject to Aries having previously received a National Instrument 43- 101 compliant property report recommending such work; and On the third (3rd) anniversary of this Agreement 1,000,000 common shares shall be issued to the Owner and, by such time, Action shall have performed exploration and development work costing \$1,500,000 on the Mineral Claims or any properties forming part of the Mineral Claims (including any properties acquired with borders within thirty kilometres of the nearest portion of the Mineral Claims or any properties forming part of the Mineral Claims (including any properties acquired with borders within thirty kilometres of t

Missy ^o roperty	Liard Mining	50%	exploration	(i)	the issuance of 500,000 common shares and a cash payment of \$100,000 to be paid within 10 days of exchange
	Division, British Columbia	501534		(ii)	approval; On or after the first (1 st) anniversary of this Agreement 500,000 common shares shall be issued to the Owner and, by such time, Action shall have performed exploration and development work costing \$400,000 on the Mineral Claim or any properties forming part of the Mineral Claim (including any properties acquired with borders within thirty kilometres of the nearest portion of the Mineral Claim ["Proximate Properties"]),
				(iii)	On the second (2nd) anniversary of this Agreement 1,000,000 common shares shall be issued to the Owner and, by such time, Action shall have performed exploration and development work costing \$400,000 on the Mineral Claim or any properties forming part of the Mineral Claim (including any properties acquired with borders within thirty kilometres of the nearest portion of the Mineral Claim ["Proximate Properties"]),
				(iv)	On the third (3rd) anniversary of this Agreement 1,000,000 common shares shall be issued to the Owner and, by such time, Action shall have performed exploration and development work costing \$400,000 on the Mineral Claim or any properties forming part of the Mineral Claim (including any properties acquired with borders within thirty kilometres of the nearest portion of the Mineral Claim ["Proximate Properties"]),
Yedhe Mountain Property	Liard Mining Division, British Columbia	100% 519444 519445 519446	exploration	"Option") to acqui	y grants Action an exclusive and irrevocable option (the re an undivided one hundred (100%) per cent interest ir ms by making the following payments (the "Option of Owner:
		519447 519448 519449		issued within 30 d	of \$20,000 and 400,000 Common shares to be paid and lays of TSX Venture Exchange approval. be reserved unto the Owner hereunder which may be
		519450 519451 519452 519453		purchased at any	time by Action paying to the Owner \$1,000,000, less al sly received by Owner as NSR payments.
		519454 519455 519456 519457			

Nelson Property	Liard Mining Division, British Columbia	100% 520701 520702 520703 520704 520707	exploration	 a) The Owner hereby grants Action an exclusive and irrevocable option (the "Option") to acquire an undivided one hundred (100%) per cent interest in the Mineral Claims by making the following payments (the "Option Payments") to the Owner: (v) A cash payment of \$10,000, and (vi) 500,000 Common shares shall be issued to the Owner no later than 10-business days after the receipt of regulatory approval to this Agreement. b) A 1% NSR shall be reserved unto the Owner hereunder which may be purchased at any time by Action paying to the Owner \$1,000,000, less all amounts previously received by Owner as NSR payments.
Goliath Property	Liard Mining Division, British Columbia	100% 529843 529844 529845 529846 529847 529848 529849 529850 529851	exploration	 a) The Owner hereby grants Action an exclusive and irrevocable option (the "Option") to acquire an undivided one hundred (100%) percent interest in the Mineral Claims by making the following payments (the "Option Payments") to the Owner: (vii) A cash payment of \$20,000, and (viii) 600,000 Common shares shall be issued to the Owner no later than 10-business days after the receipt of regulatory approval to this Agreement. b) A 1% NSR shall be reserved unto the Owner hereunder which may be purchased at any time by Action paying to the Owner \$1,000,000 less all amounts previously received by Owner as NSR payments.
Tusk Property	Liard Mining Division, British Columbia	100% 537943 537945 537947 537948 537950 537951 537952 537953 537954 537955	exploration	 a) The Owner hereby grants Action an exclusive and irrevocable option (the "Option") to acquire an undivided one hundred (100%) pe cent interest in the Mineral Claims by making the following payments (the "Option Payments") to the Owner: (ix) 2,000,000 Common shares shall be issued to the Owner no later than 10 days after exchange acceptance, (x) A cash consideration of \$25,000 upon exchange acceptance.

Peace River	Liard Mining	100%	exploration	a) The Owner hereby grants Action an exclusive and irrevocable option (the "Option") to acquire an undivided one hundred (100%) pe
Property	Division,	537944		cent interest in the Mineral Claims by making the following payments (the
	British	538056		"Option Payments") to the Owner:
	Columbia	538054		
		538053		(xi) A cash payment of \$20,000, and
	1			(xii) 4,000,000 Common shares shall be issued to the
		538050		Owner no later than 10-business days after the
		538047		receipt of regulatory approval to this Agreement.
		538052		
	[538066		
		538064		b) A 1% NSR shall be reserved unto the Owner hereunder which
	1	538063	ł	
	ł	538061	ł	may be purchased at any time by Action paying to the Owner \$1,000,000
	1	538058		Thay be purchased at any time by Action paying to the Owner \$1,000,000
		538057	}	less all amounts previously received by Owner as NSR payments.
)	538048]	less all allound previously received by Owner as NOR payments.
		538045]	
	[537941	[
		538069		
		538078		
	1	538083		
		538088		
		538090		
		538093		
		538095		
	{	538098		
		538076		
		538075		
		538072		
		538071		
		538055		
		•	ļ	
		538038	}	
		538036	1	
		538081	1	
		538080		
		538067	1	
	1	538065		
		538062	1	
	1	538060		
	1	538070		
	}	538073		
	[538084		
		538091		
		538085		
		538092		
	1	538097		
		538087		
		538089		
		538099		
		538096		
		538082		
	1	538079		8
	1	538077		
	•	000011		

_ . _

.

Summit ^{>} roperty	Liard Mining Division, British	100% 517930 517932	exploration	option (the "Option	er hereby grants Action an exclusive and irrevocable on") to acquire an undivided one hundred (100%) per e Mineral Claims by making the following payments (the s") to the Owner:
	Columbia	517931 517929 517928 517927 517926 517925		(xiii) (xiv)	2,000,000 Common shares shall be issued to the Owner within 10 days of TSX Venture Exchange acceptance, A cash consideration of \$25,000 within 10 days of TSX Venture Exchange acceptance.
		517924 517878 517877 517875 517882			
		517893 517879 517891 517890 517888 517888			
		517885 517892 517894 517895 517898			
l L		517899 517900			

یہ 	Racing रांver Property	Liard Mining Division, British Columbia	50% (claim numbers attached	exploration	irrevocable (100%) per payments a	Optionor hereby grants the Optionees an exclusive and option (the "Option") to acquire an undivided one hundred cent interest in the Mineral Claims by making the following nd performing the following work programs (collectively the ments") to the Optionor:
			as schedule "B")		(i)	No later than 2 (two) business days after signing of the agreement, a cash deposit of \$150,000 (one hundred and fifty thousand dollars) shall be paid to the Optionor. The deposit shall be refundable to the Optionees in the event that this agreement, in this or any amended form, is not accepted for filing with the TSX Venture Exchange;
					(ii)	No later than 180 days after the receipt of regulatory approval of this Agreement, an additional cash payment of \$300,000 (three hundred thousand dollars) shall be paid to the Optionor;
					(iii)	No later than 270 days after the receipt of regulatory approval of this Agreement, an additional cash payment of \$300,000 (three hundred thousand dollars) shall be paid to the Optionor;
					(iv)	On or before the third (3 rd) anniversary of regulatory approval of this Agreement, the Optionees shall have performed an aggregate amount of \$5,000,000 (five million dollars) in exploration work (the "exploration commitment") on the Mineral Claims, or on any claims within the Trident Copper Project area;
i					(v)	On the third (3 rd) anniversary date, and with the Optionees having successfully performed the exploration commitment described in 2.01a.(iv), the Optionor shall, at its sole discretion, through the process of giving written notice to the Optionees, receive one of the following:
						 i. 2,500,000 common shares in Action Minerals Inc. and 2,500,000 common shares in Aries Resource Corp., to be issued within 5 business days of having given the aforementioned written notice. In the event that the Optionees vend, joint venture or otherwise dispose of the Mineral Claims to an "area partner" during the term of this agreement, the Optionor shall have the right to receive its aggregate 5,000,000 shares from each of the area partners on a pro-rata basis based upon claim area, or
						ii. \$5,000,000 in cash, to be paid within 90 days of having given the aforementioned written notice.
						I% NSR shall be reserved unto the Optionor hereunder. L0
					c) Th Op	e Optionees shall have the right at any time to accelerate the tion Payments for the purpose of shortening the time period exercising the Option.
					 	e Optionor shall be solely responsible for making all

Rush Property	Liard Mining Division, British Columbia	100% 534724 534725 534726	exploration	 a) The Owner hereby grants Action an exclusive and irrevocable option (the "Option") to acquire an undivided one hundred (100%) per cent interest in the Mineral Claims by making the following payments (the "Option Payments") to the Owner: (xv) A cash payment of \$20,000, and (xvi) 2,500,000 Common shares shall be issued to the Owner no later than 10-business days after the receipt of regulatory approval to this Agreement.
				b) A 1% NSR shall be reserved unto the Owner hereunder which may be purchased at any time by Action paying to the Owner \$1,000,000, less all amounts previously received by Owner as NSR payments.

Aries Resource Corp and Seguro Projects Inc:

Key Property and Okey Claim

This option agreement (Agreement) between Aries Resource Corp, 1255 West Pender Street, Vancouver, B.C. (Aries), and Seguro Projects Inc, 330 East 23rd Street, North Vancouver, B.C. (Seguro), includes the Key Property and the Okey claim and is effectively dated December 14, 2004. The Agreement is subject to approval, which has been obtained, of the TSX Venture Exchange of both this Agreement and the agreement between Seguro and Senator Minerals Inc, 418 East 14th Street, North Vancouver, B.C. (Senator), canceling the option agreement held by Senator to acquire a 50% interest in the Key Property and the Okey claim. The following table details Aries' payments under the Agreement.

Table 1: Payments to Seguro

Monetary Payments CAN\$							
To be paid within 2 days of TSX Venture Exchange Agreement approval	\$10,000						
To be paid within 30 days of TSX Venture Exchange Agreement approval	\$32,500						
To be paid within 60 days of TSX Venture Exchange Agreement approval	\$32,500						

To be paid within 6 months of TSX Venture Exchange Agreement approval	\$75,000
Total	\$150,000
Payments of Aries Common Stoc	k
To be issued within 10 days of TSX Venture Exchange Agreement approval	300,000 shares
To be issued within 10 days of receipt of independent report of first work program or no later than 30 Nov 2005.	300,000 shares
To be issued upon commencement of commercial production	500,000 shares
Total	1,100,000 shares

The Agreement gives Aries an option to control 100% of the properties, net of a 3% Net Smelter Return Royalty (NSR). Commencing with the date of the Agreement and continuing until the date of commercial production, Aries is to pay a retainer for consulting and operating activities to Seguro, in the amount of CAN\$12,000, by the end of the first month in each quarter.

For the duration of the Agreement, Aries has the right to designate an Operator entitled to charge an Operator fee equal to 9% of Exploration and Development Expenditures. In the event that Seguro is the designated Operator, 50% of Seguro's retainer fee will be applied as a payment toward the total Operator fee.

Under the Agreement, Aries must keep the claims in good standing and ensure that all exploration work is carried out by qualified parties paid at industry standard rates.

Seguro Projects Inc, Donald A. Simon, and Doctors Investment Group Ltd: NBC Copper Properties Acquisition Agreement

Donald A. Simon, 330 East 23rd Street, North Vancouver, B.C. (Simon), registered with the British Columbia Ministry of Energy and Mines, Mineral Titles branch, as Free Miner Certificate #124708, holds title on behalf of Seguro to the following ten

mineral claims with Tenure Numbers 501389, 501321, 501416, 501446, 501462, 501482, 501497, 501523, 501534, and 510811 (Simon Claims).

The acquisition agreement (Agreement) between Doctors Investment Group Ltd , 29 Retirement Road, PO Box N-7777, Nassau, Bahamas (Doctors) and Seguro includes the Simon Claims and is effectively dated January 5, 2005. The Agreement between Doctors and Seguro allows Doctors to acquire an undivided 100% interest in the Simon Claims, net of a 1% Net Smelter Return Royalty (NSR), for the following considerations:

- Upon confirmation of the value of any of the Simon Claims through the acceptance by any recognized stock exchange of any option agreement by a listed company to earn an interest in any of the claims, Doctors will pay to Simon \$1,000 for each claim so approved;
- If work is commenced on any of the Simon Claims, Seguro is to be retained as the operator, and if circumstances preclude Seguro from being the operator, Doctors will retain Seguro on a consulting basis at industry standard rates; and
- If any claim is dropped by Doctors or any optionee, Seguro will be notified thirty (30) days in advance, and Seguro will be allowed first right of ownership of said claim or partial claim at no cost to Seguro.

All Simon Claims are registered in the name of Simon, who acts as registered claimholder only. Upon written request and providing that all above considerations have been met, Simon will provide Doctors and Seguro with executed registerable transfers of interests in the claims.

Doctors and Seguro may assign rights and obligations without the prior written consent of the other party. Any assignee chosen by Doctors must assume all Agreement obligations, and Doctors retains any liabilities and obligations occurring prior to such assignment.

Doctors may terminate the Agreement at any time upon written notice to Seguro thirty (30) days prior to the termination date. Upon termination, Seguro is entitled to retain all payments made by Doctors to the date of termination, and, at Seguro's option, is entitled to beneficial ownership of all terminated claims.

Gilbert Santos and Doctors Investment Group Ltd: NBC Copper Properties Acquisition Agreement

Gilbert Santos, 2795 East 18th Avenue, Vancouver, B.C. (Santos), registered with the British Columbia Ministry of Energy and Mines, Mineral Titles branch, as Free Miner Certificate #146887, holds title to twelve mineral claims with Tenure Numbers 504049, 504054, 504060, 504064, 504085, 509540, 509544, 509549, 509553, 509563, 509567, and 509576 (Santos Claims).

The acquisition agreement (Agreement) between Doctors and Santos includes the Santos Claims and is effectively dated January 5, 2005. The Agreement allows Doctors to acquire an undivided 100% interest, net of a 1% Net Smelter Return Royalty (NSR), in the Santos Claims for the following considerations:

- Upon confirmation of the value of any of the Santos Claims through the acceptance by any recognized stock exchange of any option agreement by a listed company to earn an interest in any of the claims, Doctors will pay to Santos \$1,000 for each claim so approved;
- If work is commenced on any of the Santos Claims, Santos is to be retained as operator, and if circumstances preclude Santos from being the operator, Doctors will retain Santos on a consulting basis; and

 If any claim is dropped by Doctors or any optionee, Santos will be notified within thirty (30) days, and Santos will be allowed first right of ownership of said claim or partial claim at no cost to Santos.

Aries Resource Corp and Seguro Projects Inc: Churchill Property Option Agreement

This option agreement (Agreement) includes the Cisco and Angel claims and is effectively dated February 24, 2005.

The Agreement is subject to approval of the TSX Venture Exchange. The Agreement gives Aries an option to control 100% of the claims, net of a 1% Net Smelter Return Royalty (NSR). The following table details Aries' payments under the Agreement.

Timing	Payment	Aries Work Requirement
To be issued within 10 business days of TSX Venture Exchange Agreement approval	500,000 shares	none
To be issued on the 1 st anniversary of the Agreement	1,000,000 shares	\$250,000 of NI 43-101 recommended work
To be issued on the 2 nd anniversary of the Agreement	2,500,000 shares	\$500,000 of NI 43-101 recommended work
To be issued on the 5 th anniversary of the Agreement	5,000,000 shares	\$500,000 and bankable feasibility study recommending production
Total	9,000,000 shares	CAN\$1,250,000

Table 2: Common Stock Transfers to Seguro

Share issuance requirements are subject of additional regulatory and shareholder approvals, as might be required from time to time, in the event that the share issuances will result in the creation of new insiders or control positions.

Seguro's 1% NSR can be purchased by Aries at any time for CAN\$1,000,000, less any prepaid NSR amounts. At any time, Aries may accelerate the Option Payments, shortening the time period for exercising the Agreement. If Aries fails to make any of the payments, Aries will not be entitled to a partial interest in the claims.

Aries may install, maintain, replace, and remove any machinery, equipment, tools, and facilities on the claims. Upon termination of the Agreement, Aries has a period of six (6) months in which to remove its equipment at its sole expense.

During the Agreement period, Aries shall at all times occupy, manage, and use the subject claims in full compliance with all environmental laws. Aries will be responsible for prompt performance of any reclamation, remediation, or pollution control required for its operations carried out during the Agreement term.

There is an area of interest (AOI) extending one (1) mile from the outer boundaries of the claims. The AOI applies to any additional properties acquired by Seguro, and Aries may acquire a 100% interest in the AOI properties without additional consideration. AOI properties will be included in the Agreement upon Aries reimbursing Seguro for reasonable acquisition costs.

Aries may terminate the Agreement at any time upon written notice to Seguro thirty (30) days prior to the termination date. Upon termination, Seguro is entitled to retain all payments made by Aries to such date. If Aries fails to duly pay or cure any obligation default within thirty (30) days after receipt of a default notice from Seguro, Seguro may terminate the Agreement.

Doctors Investment Group Ltd and Aries Resource Corp: Liard Property Option Agreement This option agreement (Agreement) effectively dated May 16, 2005, grants Aries an option to acquire up to an undivided 100% interest in the following twenty claims with the Tenure Numbers, 504049, 504054, 504060, 504064, 504085, 509540, 509544, 509549, 509553, 509563, 509567, 509576, 510811, 501321, 501446, 501462, 501482, 501497, 501523, and 501534.

The Agreement gives Aries a yearly option to control 100% of the claims, net of a 2% Net Smelter Return Royalty (NSR). The following table details Aries' payments under the Agreement.

Timing	Payment	Work Requirement
To be issued within 10 business days	2,000,000 shares	none
of TSX Venture Exchange Agreement approval	(100,000/claim)	
To be issued on the 1 st anniversary of the Agreement	2,000,000 shares	\$750,000 of NI 43-101 recommended work
To be issued on the 2 nd anniversary of the Agreement	2,500,000 shares	\$750,000 of NI 43-101 recommended work
To be issued on the 3 rd anniversary of the Agreement	5,000,000 shares	\$1,000,000 of NI 43-101 recommended work
To be issued on the 4 th anniversary of the Agreement	5,000,000 shares	\$1,000,000 of NI 43-101 recommended work
Total	16,500,000 shares	CAN\$3,500,000

Table 3: Common Stock Transfers to Doctors

Share issuance requirements are subject of additional regulatory and shareholder approvals, as might be required from time to time, in the event that the share issuances will result in the creation of new insiders or control positions.

Doctors' 2% NSR may be purchased by Aries at any time for CAN\$2,000,000, less any prepaid NSR amounts. At any time, Aries may accelerate the Option Payments shortening the time period for exercising the Agreement. If Aries fails to make any of the payments, Aries will not be entitled to a partial interest in the claims. If a bankable feasibility study is prepared in favor of the claims, either before or after exercising the Agreement, Aries will issue an additional 5,000,000 common shares to Doctors within five (5) working days of receipt of share issuance regulatory approval. Concurrently with each of the aforementioned Common Share issuances, Doctors will execute a Voting Trust document which will allow Aries' current management or their assigns to vote such Common Shares as they deem fit. The Voting Trust does not restrict Doctors from selling Common Shares to unrelated third parties from time to time as it sees fit.

Aries Resource Corp and Action Minerals Inc:

Neil Property Option Agreement

The non-arm's length option agreement (Agreement) between Aries and Action Minerals Inc, 1255 West Pender Street, Vancouver, B.C. (Action), effectively dated July 11, 2005 and amended August 10, 2005, includes the Okey (TN: 510008), Sox (TN: 501462), and the Talus (TN: 504054) claims. The Agreement grants Action an exclusive and irrevocable option to acquire an undivided 50% interest in the Okey, Sox, and Talus claims. The following table details Action's payments.

Table 4: Payments to Aries.

Timing	Payment	Action Work Requirements
To be issued within 10 business days of TSX Venture Exchange Agreement approval	500,000 common shares CAN\$50,000 cash payment	none
On or before 180 days of TSX Venture Exchange Agreement approval	CAN\$75,000 cash payment	none
To be issued before the 1 st anniversary of the Agreement	500,000 common shares	\$400,000 of NI 43-101 recommended work
To be issued on the 2 nd anniversary of the Agreement	500,000 common shares	\$1,100,000 of NI 43-101 recommended work
To be issued on the 3 rd anniversary of the Agreement	1,000,000 common shares	\$1,500,000 of NI 43-101 recommended work

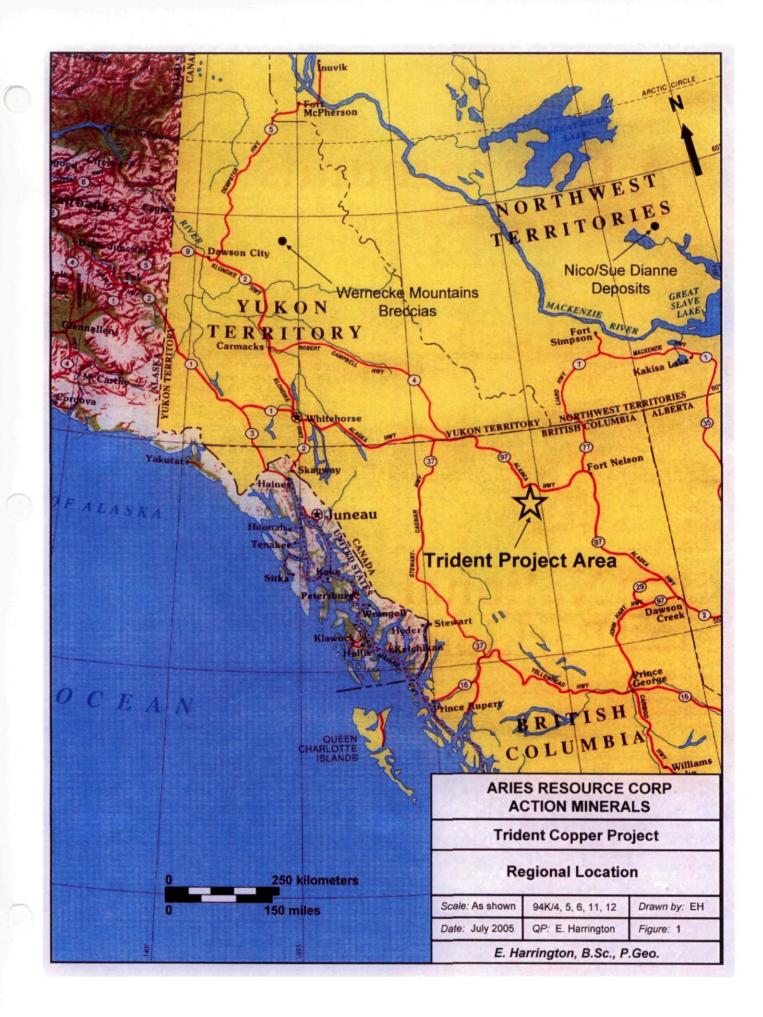
Timing	Payment	Action Work Requirements
Total	2,500,000 common shares CAN\$125,000	CAN\$3,000,000

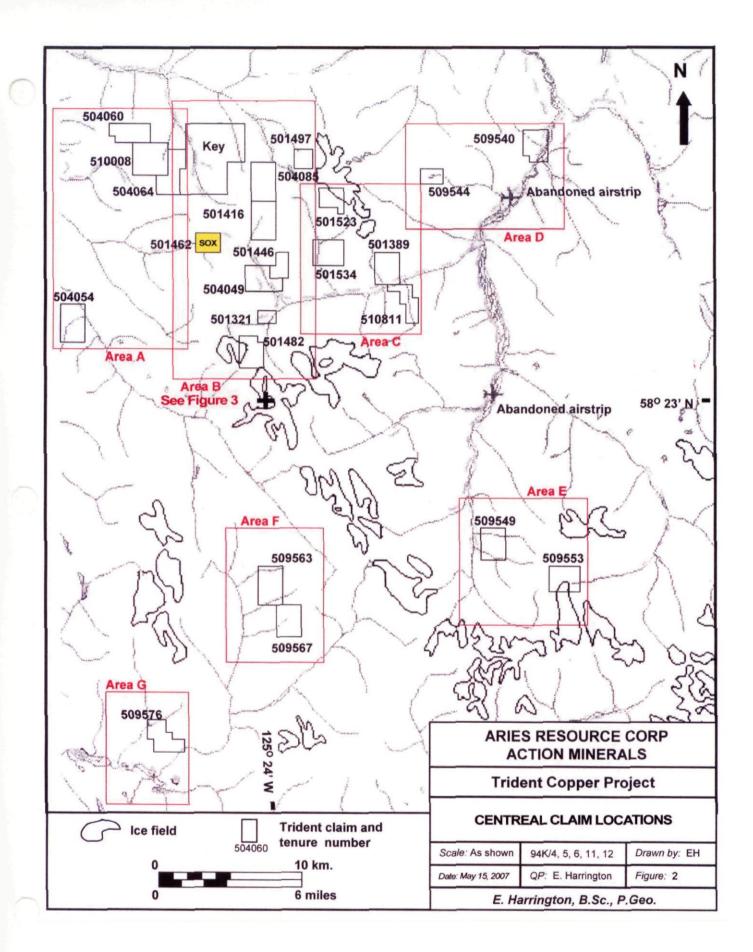
Exploration and development work by Action may be carried out on the subject claims as well as on acquired properties having borders within thirty (30) kilometers of the nearest portion of the subject claims.

Share issuance requirements are subject of additional regulatory and shareholder approvals, as might be required from time to time, in the event that the share issuances will result in the creation of new insiders or control positions.

At any time, Action may accelerate the Option Payments shortening the time period for exercising the Agreement.

3.0 ACCESSIBILITY, CLIMATE and PHISIOGRAPHY


Access to the Trident Copper Project area is by helicopter from Fort Nelson. Helicopter access can also be based from Toad River (Mile 422 Alaska Highway) or Muncho Lake (Mile 462 Alaska Highway), where hotel accommodations are available. Ground access to the northeastern portion of the Trident area is possible by twotrack dirt road extending thirty kilometers from a point approximately thirteen kilometers west of Summit Lake (Mile 401 Alaska Highway) to the Churchill mill site situated at the confluence of Delano Creek and the Racing River. The road is in good condition and well used, but entails fording MacDonald Creek, Wokkpash Creek, and Delano Creek/Racing River.


Access to the northwestern portion of the Trident Copper Project area is by road from Mile 442 on the Alaska Highway, where a dirt road leads south along the Toad River and Yedhe Creek for approximately 30 kilometers to the area of the Key property. The bridge located 1.5 kilometers south of the Alaska Highway, where the Toad River road crosses the Toad River, has a resurfaced width only allowing motorized quad bikes or smaller vehicles. The roads along the Toad River, Yedhe Creek, and the turnoff into the Key property are subject to periodic washouts.

The project area is on moderate to very steep mountainous glaciated terrain with elevations ranging from 1,100 and 2,680 meters. Except for creek and river valleys showing coniferous tree growth, most of the claims are above the tree-line where vegetation is restricted to shrubs and grasses, or is nonexistent. Climate is variable, with higher elevations receiving precipitation almost daily during the summer. Winters are cold, with snow that stays from September to May. The work season is mid- or late-June to mid-September.

4

Rocks in the Trident Copper Project area are predominantly Proterozoic Helikian-age Aida Formation marine sediments consisting of calcareous and dolomitic mudstone, siltstone, and minor sandstone. Upper and lower Aida Formation contacts are conformable. The overlying Gataga Formation consists of mudstone, siltstone, and sandstone, and the underlying Tuchodi Formation consists of quartzite, dolomite, siltstone, and red shale. There are a number of other marine sediments occurring within the project area ranging in age from Cambrian to Silurian. While known copper deposits in the project area are vein-type, trace element results from 2005 rock sampling suggest that iron-oxide copper gold (IOCG) mineralization, similar to the polymetallic Olympic Dam deposit in Australia and the Nico deposit in the Northwest Territories, may be present.

4.0 SOX PROPERTY HISTORY & PREVIOUS WORK

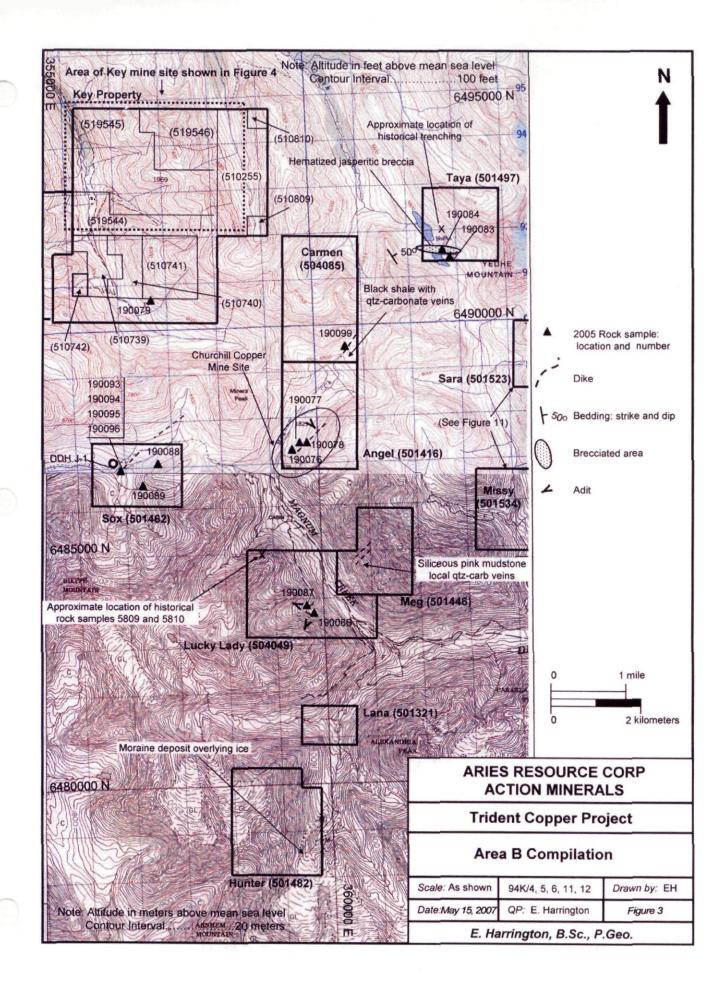
In 1969, Churchill carried out a work program on the John Claims (Holt et al, 1969) consisting of geologic mapping, rock sampling, trenching, diamond drilling, and a geophysical electromagnetic (EM) survey. Surveys identified epithermal, high-grade, vein-type copper mineralization in quartz-carbonate veins paralleling basic dikes. Veins crop out in Ringarooma Creek which is located within the northern boundary of the current Sox claim.

Three parallel veins, with widths ranging from 3 to 6 feet (0.91-1.82 meters), strike 030° with vertical dips. The only alteration noted was silicification extending a few feet outward from the veins into the wall rock.

Chalcopyrite occurs as patches, blebs, and disseminations, along with minor amounts of bornite. Pyrite is a common accessory mineral. Chip sampling returned:

- Vein 1 5.57% copper over 8.0 feet (2.4 meters);
- Vein 2 4.61% copper over 3.0 feet (0.91 meters); and
- Vein 3 2.10% copper over 6.0 feet (1.82 meters).

Similarities were recognized between the Sox, Magnum, and Eagle veins. Mineralization is considered to be epithermal, high-grade, vein-type.


Deposits consist of narrow, near vertical chalcopyrite-bearing quartz-carbonate veins generally striking 030^O. Quartz-carbonate veining is closely associated with basic dikes. Bulldozer trenching was employed to follow the veins along strike, but was unsuccessful due to permafrost.

One BQ hole, DDH J-1, was drilled by T. Connors Diamond Drilling to test vein strike and depth. The drill hole was collared approximately 270 feet (82.3 meters) westnorthwest of the vein showings in Ringarooma Creek, and had an azimuth of 120^o and a dip of 45^o. Although core recovery was reported as excellent, the hole was abandoned at 383 feet (116.7 meters) with an estimated vertical depth of 260 feet (79.2 meters) due to mechanical breakdowns and severe weather conditions. Basic dike material containing scattered quartz stringers was cut from 14.0-59.5 feet (4.3-18.1 meters). From 59.5-383.0 feet (18.1-116.7 meters), shale-hosted quartz-carbonate-healed fractures and quartz-carbonate stringers to 10 inches (0.25 meters) were intersected. No mineralization was encountered and the full target area was not tested.

Dr. S.H. Ward, P.Eng., supervised the Crone "shootback" EM survey carried out by Chapman, Wood, and Griswold Limited. Readings were taken at 100-foot intervals. Results did not show along-strike conductor continuity. It was believed that this lack of conductor continuity could be due to two interpretations: the copper mineralization could be localized within the vein; or copper mineralization was not electronically continuous along strike. A geophysical survey using induced polarization (IP) was recommended, but was not carried out.

In April 2006 Action and Aries retained McPhar Geosurveys Ltd. to perform ~2600 line kilometers (~1600miles) of helicopter supported magnetic surveys, to be flown at a line spacing of 100m over a large portion of the Trident Property, including the SOX Property. The goal of the surveys was to locate mafic dykes spatially associated with the mineralized quartz veins, such as the Magnum and Eagle veins and to identify prospective mineralized bodies, such as Olympic Dam-type IOCG (Iron-oxide/Copper/Gold/Silver/Cobalt) mafic intrusive bodies. In addition, some 820 line kilometers (~500 miles) of frequency electromagnetic surveys were to be flown over areas known to contain large veins with conductive massive sulphides to determine their geophysical signatures. For increased accuracy, surveys were conducted at low levels (~30m above ground). By fall, inclement weather and the rugged topography forced the replacement of McPhar with Aeroquest Ltd. which completed the expanded surveys. In total, ~1800 line kilometers of Mag/EM and ~2600 line kilometers of Mag were flown in 2006. The airborne magnetic surveys were successful in mapping the diabase dykes swarms as well as several large

buried magnetic intrusive bodies. Significant EM and Mag anomalies were noted at the Magnum Mine, at and above the Keys mine, at the Missy and Goat Matnick. The Mag was successful at delineating basic geological structure at the SOX.

5.0 Regional Geology and Structure

(taken from Chapman et al, 1971)

"Proterozoic argillites, quartzites, and limestones contain all the known copper deposits, possess generally low dips, are intruded by post-ore diabase dikes of Proterozoic age, and are overlain by unmineralized Palaeozoic formations of Cambrian and later ages. The Proterozoic strata occupy nearly the full width (40-50 miles) of the Rocky Mountains in the south part of the area. Northward they become separated into a north-trending eastern belt (mainly east of upper MacDonald Creek) and wider central and western belts which trend northwest and reach the Alaska Highway west of about Mile 436.

The presently known quartz-carbonate veins, many of which contain chalcopyrite, occur mainly in the western half of the Precambrian with a more or less similar distribution to the subsequent diabase dikes.

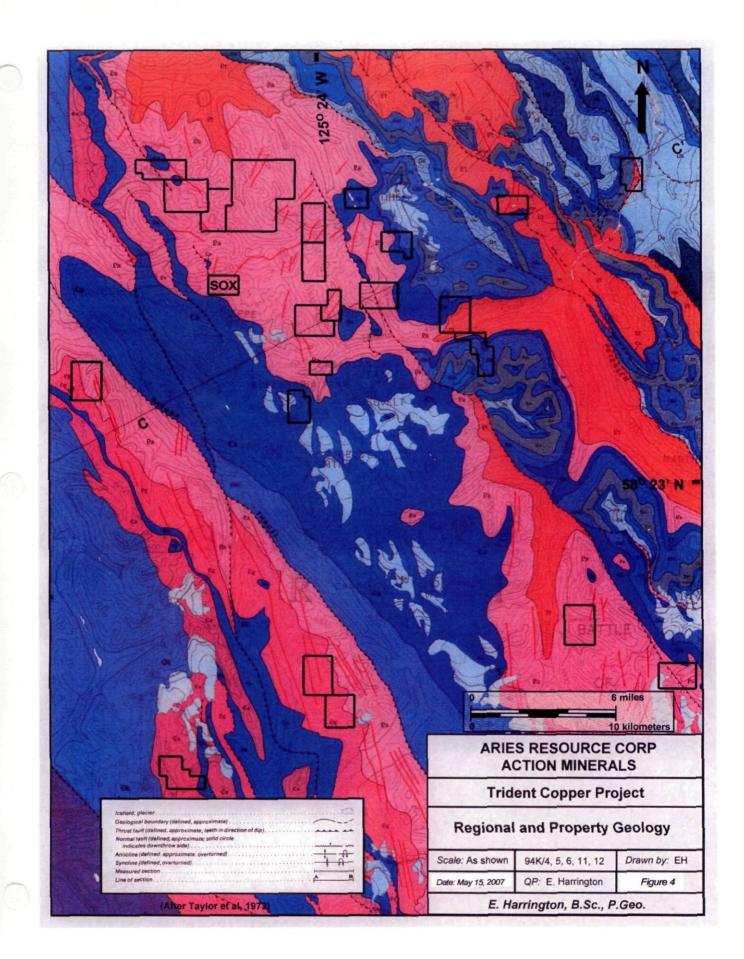
The dikes cut the veins and are themselves only weakly mineralized on fractures containing carbonates (principally calcite) and quartz. In places dikes are more strongly mineralized by barren pyrite.

Veins may be much less numerous than dikes, many of which are discernible at a distance on the hill slopes. Dikes and veins generally have more or less similar attitudes, which are relatively constant in certain zones, belts, or parts of the area. Dikes and veins probably occur in, and may be virtually restricted to, these so-called mineral belts.

The best recognized to date is a belt approximately 6 miles wide and 40 miles long that trends north 35 degrees west and contains, from north to south, the known copper deposits of the Davis-Keays (*Key*), Magnum (*Angel*), John (*Sox*), Lady (*Lucky Lady*), Churchill Creek, Ed (*Ed*), and Anne (*Annabelle*) properties (*brackets indicate properties currently optioned by Aries*).

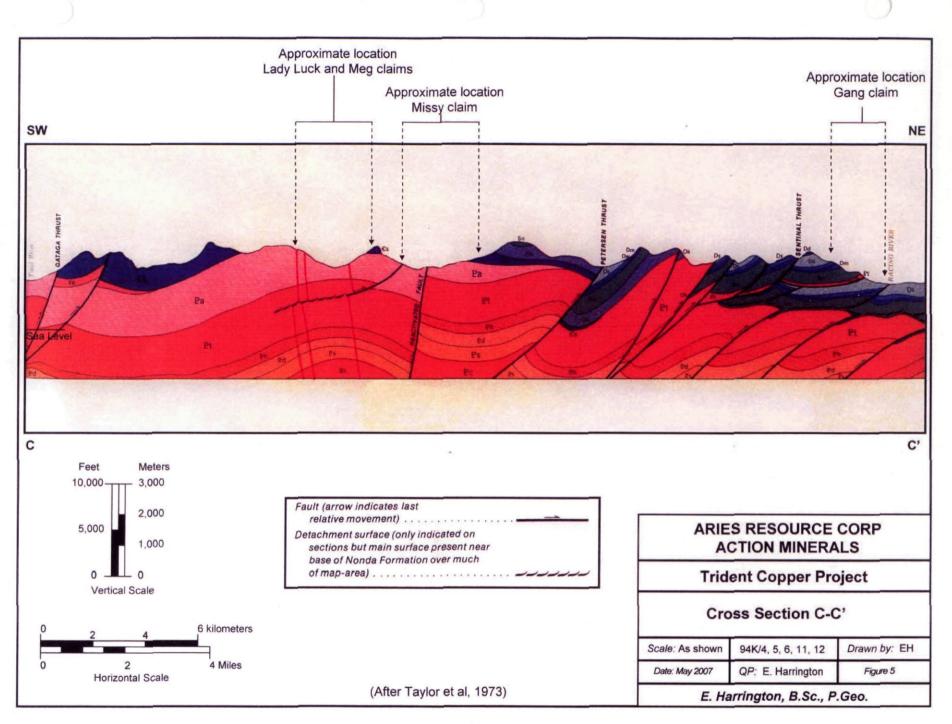
Most of the known mineralized veins of the region have strikingly similar mineral composition and structural characteristics.

This belt, which is further marked by a pattern of sporadically developed northwest-trending asymmetric folds with steep east limbs and by the occurrence within it of a huge local pile of Cambrian conglomerate that forms Mt. Roosevelt, contains dikes and veins that mostly strike east of north and possess steep westerly dips."


5.1 Regional Structure

Middle Proterozoic sediments of the Muskwa Assemblage (Wheeler et al, 1991) include the Tetsa, George, Henry Creek, Tuchodi, Aida, and Gataga formations described by Taylor et al, 1973.

The Muskwa Assemblage is cut by gabbroic dikes and is overlain unconformably by Cambrian (Atan Group) and Ordovician (Kechika Group) rocks. These Ordovician and older rocks, termed pseudo-basement by Taylor, were intensely and repeatedly deformed during pre-Laramide periods of tectonism, and also later during the Laramide Orogony, which occurred between 89 and 43 Ma. Laramide compression deformation created large asymmetrical northwest-trending folds, thrust faults, and anticlinal structures which form the Muskwa Anticlinorium.


Uplift in the Rocky Mountains resulted principally from generally northeast-southwest shortening and thrust faulting that penetrated basement rocks, bringing the basement and overriding younger strata to relatively high levels in the crust. The Laramide thrusts likely followed older zones of weakness.

A fracture zone of normal faults, later than Laramide deformation, extends southward from Muncho Lake into the Toad River valley. The normal faults have a vertical displacement of up to 2,000 feet (600 meters).

	Paleozoic				
	Carbonifer	Carboniferous and Devonian			
	Db	- Besa River Formation: dark pyritic siliceous shale			
	Devonian				
	Dd	- Dunedin Formation: dark grey limestone			
		Local Disconformity			
	Ds	- Stone Formation: light grey dolomite; dolomite breccia			
		Disconformity			
U	Dw	 Wokkpash Formation: sandstone, minor dolomite, shale 			
Phanerozoic	Dm	- Muncho-McConnell Formation: dolomite			
Ň		Disconformity			
ž	Silurian				
Š	Sn	- Nonda Formation: dark grey dolomite, basal sandstones; minor limestone			
ha		Angular unconformity			
d	Ordovician	n - Ketchica Group			
	Ok	- argillaceous limestone			
		Ok			
		g - graptolitic shale			
		Okt - turbidites			
		Okl - limestone, minor sandstone			
	Angular unconformity				
	Cambrian ·	- Atan Group			
	Ca	 limestone, dolomite; minor sandstone and shale 			
	Cs	- conglomerate, sandstone, shale; minor limestone			
		Disconformity			
	Hadrynian				
	Pv	- quartz-chlorite phylite, meta-sandstone, quartz-pebble conglomerate			
		Angular unconformity			
	Helikian				
U		- gabbroic dykes			
oic		- Gataga Formation: mudstone, siltstone; minor			
	Pg	sandstone			
Proteroz	Pa	 Aida Formation: mudstone, siltstone; minor chamositic and carbonaceous mudstone, dolomite, and limestone 			
۲ ۲	Pt	- Tuchodi Formation: quartzite, dolomite, siltstone; minor red shale			
	Ph	- Henry Creek Formation: calcareous mudstone, siltstone; minor sandstone			
	Pd	- George Formation: limestone, dolomite			
	Ps	- Tetsa Formation: dark grey mudstone, sandstone; minor quartzite			
		Disconformity			
	Pc	- Chisma Formation: dolomite, quartzite; minor siltstone			
1					

Table 5: Geology Legend

5.2 Property Geology

The Sox claim is located within buff weathered slatey argillites of the Aida_Formation. The argillites are well foliated and folded in places. A weakly - magnetic gabbroic dyke trending north easterly cuts the argillites. This dyke and veins dips steeply to the North West. The two mineralized veins were emplaced within and on the north eastern margin of the dyke. The veins are dipping toward the North West and strikes 030°. After the dyke intrusions and shear/faulting the veins were deposited by hydrothermal processes.

5.3 Surface Mineralization

The chalcopyrite mineralization on the Sox property consists of three approximately 1- 3 meter thick chalcopyrite rich veins with a inferred strike length of at least 600m. These epithermal veins largely parallels a basic dyke with an approximately 030 degree strike.

The mineralization consists mainly of chalcopyrite with minor pyrite, cobalt, bornite and gold within quartz- carbonate material that intruded parallel shear/fault zones within and adjacent to the dyke. The host rock contact (argillite) was silicified in close proximity to the mineralization. The Sox occurrence consists of two parallel veins about 20 meters apart, named the John (west side) and Janet veins (east side). The mineralization veins are positively exposed on the steep banks of the creek (over a 25m strike length).and is characterized by mainly malachite and lesser azurite staining. Otherwise the high grade copper veins are covered by about 5m of weathered slatey argillites and vegetation.

5.4 DEPOSIT TYPES

Olympic Dam-type iron oxide-copper-gold-uranium-rare earth elements deposits (IOCG) are characterized by iron-rich, low-titanium rocks formed in extensional tectonic environments. IOCG deposits are formed in shallow crustal environments as expressions of deeper-seated, volatile-rich igneous-hydrothermal systems, tapped by deep crustal structures. Deposits occur as magnetite+/-hematite breccias, veins, and tabular bodies hosted by continental volcanics, sediments, and intrusive rocks (Lefebure, 1995). The following observations are based on Hitzman et al, (1992):

- Age: Early to mid-Proterozoic host rocks (1.1 1.8 billion years (Ga)). However, examples are recognized into the Tertiary. Ages in the 1.8-1.4 Ga range suggest a relationship to global rifting which preceded the break-up of the mostly amalgamated Proterozoic super-continental land masses and subsequently led to continental drift.
- Tectonic Setting: located in cratonic or continental margin environments associated with extensional tectonics and major structural zones. Deposits can be elongated parallel to regional or local structural trends.
- Mineralogy: ores are generally dominated by iron oxides (magnetite or hematite). Magnetite is found at deeper levels than hematite. Calcium carbonate, barium, phosphorus, or fluorine minerals are common. The deposits contain anomalous rare earth elements (REE); and
- Alteration: alteration mineralogy depends on host rock lithology and depth of deposit formation. Generally, the alteration trend is from sodic alteration at deep levels, to potassic alteration at intermediate to shallow levels, to sericitic alteration and silicification at very shallow levels.

5.5 IOCG Comparison: Olympic Dam and Wernecke Mountains Breccias

The following table compares Canadian and Australian IOCG-type deposits.

	Olympic Dam - Australia	Wernecke Mountains - Yukon
Regional Setting	 hosted by brecciated granitoid igneous rocks 	 hosted by brecciated, weakly metamorphosed sedimentary rocks cut by gabbro-diorite dike breccias formed by dissolution and subsequent collapse of sedimentary rocks
Age	 host granitic rocks are 1.6 Ga old, mineralization is 1.4 Ga. 	 host sediments range from 1.8- 1.7 Ga brecciation is approximately 1.6 Ga
Morphology	 strong structural control breccias are steeply-dipping, dike- like, and strike north-northwest paralleling regional airphoto- lineaments generally display gradational contacts with host rocks 	 strong structural control, breccias occur as dike- or sill-like bodies formed along north-northwest-trending faults and/or anticlinal axes generally display gradational contacts with host rocks
Ore Textures	 highly variable, including massive iron oxide rocks, breccias with iron oxide matrix, layered iron ore. Wall rock can show original rock textures preserved within ore suggesting mineralization replacement of host rocks 	
Alteration	 sericitic-type with an alteration assemblage of hematite + sericite + barite + fluorite locally intense silicification mafic components show skarn mineralization consisting of chlorite and epidote+/-hematite 	 potassic/sericitic-type (higher levels) with and alteration assemblage of carbonate-chlorite- magnetite-hematite-sericite-barite- fluorite sodic-type alteration (at depth) with the assemblage albite- paragonite-sericite-carbonate- magnetite
Mineralization	 copper, uranium, gold, silver, and rare earth elements fluorine, barium, and phosphorus are enriched abundant iron oxides (magnetite and hematite) low titanium content usually between 0.5-2.0% copper mineralization is closely associated with hematite and is considered to be a late-stage event magnetite and pyrite occur together. As magnetite is considered to be magmatic in origin and to predate hematite formation, pyrite mineralization is considered to be an early-stage event gold mineralization is associated with late-stage silicification and is considered to postdate iron, uranium, and copper emplacement. Olympic Dam contains silver, cobalt, nickel, tellurium, and arsenic Wernecke Mountains breccias contains anomalous molybdenum and cobalt. 	

The Olympic Dam Breccia Complex is located in southern Australia approximately 520 km northwest of Adelaide, and has a reported mineral resource of 2,320 million tonnes (Mt) grading 1.3% copper, 0.4kg/t U₃O₈, 2.9 g/t silver and 0.5g/t gold (Yukon Geological Survey).

Wernecke Mountains breccias are located in the Yukon Territory approximately 700 kilometers north-northwest of the Trident Project area. Up to 90 breccias have been identified but no mineral resource size has been reported.

IOCG-type deposits occur as discordant veins and breccias cutting across local hostrock bedding, or as massive concordant bodies paralleling host-rock bedding. Deposits occur in relatively shallow crustal environments, generally between 4 and 6 kilometers, and are thought to be expressions of deeper-seated, volatile-rich igneous-hydrothermal systems, tapped by deep crustal structures. IOCG-type deposits are products of hydrothermal processes acting in the upper crust. Alteration patterns associated with IOCG deposits are zoned and extend beyond areas of massive to semi-massive iron mineralization. Alteration mineral suites occur as hostrock replacement and veining. Iron oxides occur as disseminations in wall-rocks, as well as in massive bodies and stockworks.

Deposit formation temperatures are relatively cool, suggesting near surface hydrothermal origins rather than deep-seated magmatic origins. Mineralization at Olympic Dam is theorized to have been active in the range of 110° to 400° centigrade (C). At Wernecke Mountains, temperatures ranged from 80° to 300° C.

The size of IOCG-type deposits suggests large quantities of mineralizing hydrothermal fluids that could be generated by the removal of water from magmatic solutions at depth, and by the deep circulation of ground water.

These two fluid sources likely became mixed. Deposits are located in tectonically active areas undergoing extensional fracturing and faulting. This spatial relationship between deposit location and crustal deformation suggests that physical deformation provided the plumbing system through which mineralizing fluids moved.

5.6 Nico and Sue-Dianne IOCG Deposits

Other Canadian examples of IOCG-type mineralization are the Nico and Sue-Dianne deposits situated 750 kilometers northeast of the Trident Copper Project, near the south end of the Proterozoic-age Bear Structural Province, Northwest Territories. The Nico deposit is located approximately 160 kilometers northwest of Yellowknife and contains 13.354 million tonnes grading 0.142% cobalt, 1.62 g/t gold, and 0.164% bismuth. The Sue-Dianne deposit is located 20 kilometers north of NICO and contains 10.6 million tonnes grading 0.95% copper (Hennessey et al, 2004).

Both deposits occur within a regional, northwest-striking, arcuate trend of volcanic and sedimentary rocks characterized by significant positive gravity and magnetic responses believed to represent a major basement discontinuity (Goad et al, 1999). The NICO anomalies are at the intersection of this regional trend with a major transverse fault. The Sue-Dianne deposit is a hematite-magnetite-iron-silicatecemented explosive breccia complex located at the intersection of two major faults at the north end of the basement discontinuity and is hosted in rhyodacite ignimbrite.

At both deposits, breccias, cemented with iron oxide, straddle the regional metasediment-volcanic unconformity, suggesting that mineralization formed in a near-surface environment at the same time as the onset of volcanism.

At Nico, mineralization is hosted in brecciated clastic sediments of the Snare Group, near their unconformity with overlying volcanic rocks of the Faber Group.

Mineralization consists of native gold and cobalt, bismuth and copper sulfides in a series of stacked 40⁰-dipping stratabound lenses. Small mineralized lenses occur in altered dikes. Multiple generations of magnetite and hematite are interpreted to reflect successive pulses of hydrothermal mineralization and dike emplacement.

At Sue-Dianne, mineralization is hosted in an elliptical-shaped explosive breccia complex. Breccias contain copper mineralization as finely disseminated chalcopyrite, minor bornite, and chalcocite intergrown with, or replacing, iron oxides. Other alteration minerals include epidote, chlorite, garnet (andradite), fluorite and quartz. Pitchblende locally occurs as veins marginal to the copper-rich zones but does not occur in significant concentrations (Goad et al, 1999). Pyrite content increases with depth.

The geochemical signature for an IOCG-type deposit includes anomalously high values for copper, uranium, gold, silver, cerium, lanthanum, cobalt, +/- phosphorus, +/- fluorine, and +/- barium in associated rocks.

The considerable potential size of Olympic Dam-type deposits, up to 2 billion tonnes, and the polymetallic ore assemblages make Olympic Dam-type deposits highly attractive targets for exploration.

While mineralization at Olympic Dam, Wernecke Mountains, Nico, and Sue-Dianne is not necessarily indicative of mineralization in the Trident Copper Project area, similarities indicate exploration potential.

39

6.0 MINERALIZATION

Within the Trident Copper Project area, copper mineralization generally occurs as chalcopyrite in quartz-carbonate veins closely associated with mafic dikes. There is some debate as to whether dike emplacement preceded or followed vein emplacement as available evidence could support either interpretation. Whichever came first, diking and veining are closely related in age and location.

Chalcopyrite occurs as dissemination, fracture fillings, and masses within quartzcarbonate veins, and rarely extends into the surrounding sediments. Pyrite is secondary to chalcopyrite; bornite, chalcocite, and covellite are sometimes minor vein constituents. Often copper sulfide oxidation creates crusts of green malachite and/or blue azurite.

Minor occurrences of erythrite (hydrated cobalt arsenide) have been reported in historical assessment reports at the Key property, and the Talus and Sox claims.

Gangue is principally quartz with lesser but variable amounts of carbonate in the form of calcite or siderite (iron carbonate).

7.0 EXPLORATION

Diamond drilling and VLF mapping was carried out in 2006 on the Sox Property between October and through December. Work was supervised by John Kowalchuk, PGeo, a "qualified person" representing Aries and Action, and George Coetzee BSc (Hons) in geology, acting under the direction of the qualified person.

7.1 Surface Geology

The Chalcopyrite veins parallel the dyke at a 030 degree strike. The mineralization consists of chalcopyrite with minor bornite and pyrite within quartz-carbonate veins that intruded the parallel shear zones within and on the margin of the dyke. These near vertical veins are only exposed on the steep banks of the creek. Otherwise the veins are mainly covered by thick overburden. Mapping, surface magnetic- and VLF electromagnetic- surveys were completed over a strike length of about 600 metres.

A VLF electromagnetic instrument was utilized to pinpoint the extended strike length and positions of veins under the soil cover. The VLF electromagnetic survey was carried out using an EM16 unit manufacture by Geonics Limited of Metropolitan Toronto, Ontario. This unit – a sensitive receiver with two orthogonal coils, one axis normally vertical and the other horizontal - makes use of the VLF transmitting stations operating for communication with submarines for its transmitted signal – the vertical antenna currents creates concentric horizontal magnetic fields – and measures the vertical components of the secondary fields created as above.

The signal from the vertical axis coil is first minimized by tilting the instrument – tilt angle calibrated in percentage- and the remaining signal in the coil is finally balanced out by the measured percentage of a signal from the other coil, after being shifted 90 degrees. Thus if the secondary fields are small compared to the primary horizontal field, the mechanical tilt angle is an accurate measure of the vertical real component,

and the compensation signal from the horizontal coil is one of the quadrature vertical signal. In all 4.5 kilometres of traverses were done using the above instruments at the station intervals of 5 metres (or 1m near veins) using mainly transmitters of Seattle- NLK 24.8 khz. and Hawaii – NPM 21.4 khz. The field instructions as to how to orientate the instrument during the survey were strictly followed.

The VLF survey lines (every 25m) extended outward from the veins by at least 50 m to 75m as to ensure no possible veining could be missed. The location where the VLF instrument emitted the highest pitch signal was marked with surveyor lint. A two man team was predominately used to double check these VLF vein readings.

The VLF signal strengths on both ends of the projected mineralization extensions indicated that the veins extend in both directions. The veins could be at least a 1000 to 2000 metres in length based on the geology and magnetic survey of the regional area. The diamond drilling indicates that the VLF strike positions by enlarge strongly correlate with vein positions intersected in the drill holes.

7.2 Surface sampling

In 2005 a chip surface sampling program was completed across the John and the Janet veins. The chip samples were taken as continuously as possible across the indicated sample length. Select samples consist of rock fragments chosen to best represent the desired geologic occurrence. The Assay results indicated ranged from 2.45 to 4.85 % Cu over one metre (Harrington, E. (2005). As Previous and 2005 surface sampling already indicated high Cu grades no surface sampling was done in 2006. The main purpose was to drill and assay the mineralized veins at depth as to ascertain the potential economic value of these veins, which turned out to be of lower Cu grade than expected.

7.3 Drill program

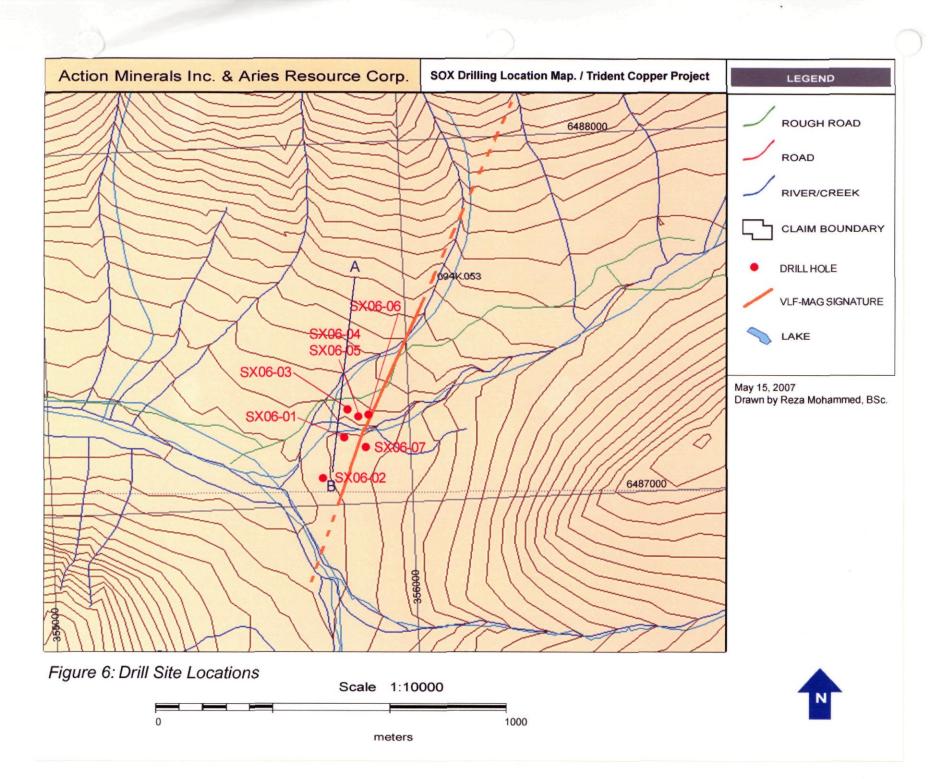
This helicopter-supported drill program was designed to test the down-dip extent of the Janet, John and Janet/Bullnose veins, which are visible on surface. Drilling at the Sox Prospect was performed between September 6 - December 19, 2006 and was contracted to Lloyd's Drilling Ltd. from Stewart, BC. Drilling was interrupted by an assessment by the Ministry of Energy & Mines that exploration activities and personnel were threatened by the risk of avalanche from slopes above the camp and drill sites. The Ministry required that a fully qualified avalanche technician be present in the camp in order to continue operations. The avalanche engineering company Chris Stetham & Associates was retained on a full time basis, throughout the month of December, to provide assessment and training for exploration personnel. Throughout the balance of the 2006 winter program, the risk of avalanche was never greater than low and there were no avalanche related incidents of any kind.

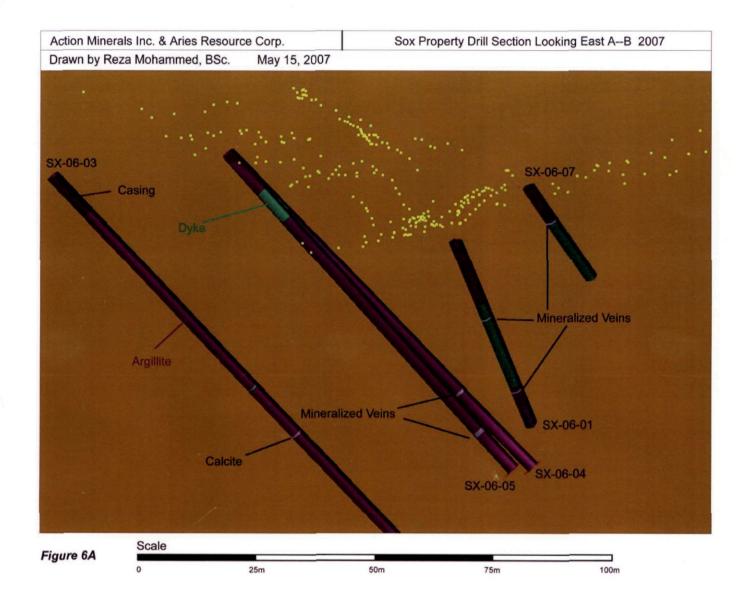
616.90 metres were drilled in 2006. The drill hole positions and azimuths were surveyed with a Rhino handheld GPS (5-20m accuracy) and compass or a Topcon total station GPS (<1m accuracy; when in working order). See table 7 for drill coordinates and azimuths. The drill holes were for the most part less than 80 metres deep, therefore the drill hole angles of the holes were obtained with the acid glass tube etching technique at the bottom of the hole. There were only minor to no drill hole deflections (from the original drill angles).

Diamond	drill	Northing	Easting	Elevation in m	Final depth in	Azimuth
hole					metres	in
						degrees
SX06-01		6487201	355814	1632	59.44	104
SX06-02		6487149	355761	1638	47.2	120
SX06-03		6487287	355820	1642	211.34	151
SX06-04		6487254	355844	1639	92.35	171.5
SX06-05		6487255	355845	1639	79.78	185
SX06-06		6487242	355843	1643	89.3	171.5
SX06-07		6487176	355828	1641	37.49	274

Table 7. Drill hole collar coordinates on the Sox property

Surface rock conditions are poor and some holes were cased for up to 60 metres. The core recovery was generally poor up to 20 metres in depth thereafter core recovery improved significantly. Seven diamond drill holes were drilled from five drill platforms (wood) on the southern and northern Delano creek slopes which host the Sox showing, as illustrated on Figure 6. Five of the seven Diamond drill holes (5 NQ and 2 AQ holes) intersected the veins at depth. The holes were all drilled in weathered argillite and lesser weathered dyke material. Drill hole Sx06-02 and Sx06-07 were abandoned. Diamond drill holes Sx06-01 and Sx06-02 were drilled with a light Hydrocore drill producing AQTK drill core. Diamond drill holes Sx06-03 to -07 was drilled with a Boyles 25A, diesel powered drill using BTW thin-wall drill rods. Water was pumped from the Delano creek for about 40 -170 metres to the drill sites.


Drill core was transported by helicopter from the Sox claim to Magnum camp where recovery was measured, geological and geotechnical logging was performed. Mineralized intervals from each hole were cut, with one-half bagged (with a certified standard pulp sample {Cu and Au} inserted for every ± 10 samples as a Lab check) and the other half of the cores were returned to the core boxes. The marked core boxes are stored at the Magnum camp about 250 metres south of the 5200' adit. Appendix C contains the ACME analytical results and appendix E the drill and the geotechnical logs. All this work was performed under the close supervision of a geologist.


The core samples were delivered in person to Acme Analytical Laboratories Ltd. of Vancouver, BC (an accredited analytical laboratory), and were analyzed by multielement ICP analysis techniques. The mineralization was analyzed for chalcopyrite and other elements with group 7TX, 4 Acid digestions with ICP-ES/ICP-MS analysis. Gold analysis was done with Group 6 - precious metals by fire assay and analysis by ICP-ES. Drilling results from five holes are shown in table 8:

Diamond	Core	Sample	From	То	Apparent	Cu	Au	Ag	True
Drill Hole	Туре	no	(m):	(m):	Width	(%)	(g/mt)	(g/mt)	width
		-			(m):				(m)
SX06-01	AQTK	465013	25.91	27.43	1.52	1.13	0.10	trace	1.25
SX06-01	AQTK	465018	47.35	49.11	1.76	0.82	0.04	trace	1.40
		465019							
SX06-04	NQ	465009	69.87	71.02	1.15	2.98	0.15	trace	0.65
		465010							
SX06-05	NQ	465023	71.87	72.92	1.05	1.72	0.05	trace	0.52
SX06-06	NQ	465058	72.63	73.20	0.57	6.51	Not	trace	unknown
							assayed		
SX06-	NQ	465057	12.83	13.70	0.87	7.06	Not	trace	unknown
07*							assayed		

Table 8: SOX Drilling 2006

SX06-07* was abandoned in progress and only partially sampled and assayed up to 13.70m.

7.4 Mineralization in drill holes

The mineralization consists mainly of chalcopyrite with minor bornite and pyrite within quartz- carbonate material that intruded parallel shear zones within and on the margin of the dyke. The chalcopyrite also occurs as patches and disseminations in close proximity to the prominent chalcopyrite veins. No sulfide oxidation (malachite and/or azurite) and or erythrite (hydrated cobalt arsenide) were observed in any of the drill holes. The core was friable in places due to the foliation, fracturing or minor faulting, this resulted in sporadic localized core losses in the ore zones.

7.5 Drill hole results

Hole SX06-01 was drilled at -43° in a East South East direction directly toward the two veins. The hole mirrored the geology or the northern bank of the creek. The hole intersected gray argillite, dyke the hosted the chalcopyrite and pyrite mineralization. The dyke consists of at least two intrusion pulses. The John (western vein) was intersected within the dyke near North Western contact. The Janet vein was intersected on the South Eastern contact with minor silicification. The total depth of the hole was 59.44 metres. Please see vein widths and grades in table 8.

Drill hole SX06-02 was drilled at -45° in an East South East direction. Only friable grey argillite (siltstone) was encountered. The hole was abandoned due to poor rock conditions in grey argillite. The veins or dyke was not intersected. The final depth was 47.2 metres.

Drill hole SX06-03 was drilled at -45° in a South East direction towards the John and Janet veins. The core comprised mainly of foliated argillite with thin dyke zones, hosting one well defined barren quartz carbonate vein at. No mineralization was intersected. The hole was completed at 211.84 metres.

Drill hole SX06-04 was drilled at -44.50° in a South East South direction, just west of

the John vein. The John vein was not intersected in the core because of total core loss (near surface) or faulting? The Janet vein was intersected at with significant mineralization (chalcopyrite) within a quartz carbonate vein from 69.87-70.52 metres. The hole was completed at 92.35 m in argillite. See table 8 for assaying results.

Drill hole SX06-05 was drilled -44.50° in a <u>South</u> East South direction (about 15 degrees more to the south). The collar is approximately a metre from drill hole SX06-04. The John vein was not intersected because of total core loss (near surface) or a possible fault. The Janet vein was intersected at about 72 metres. See table 8. The final depth of the hole was at 79.78 metres.

Drill hole SX06-06 was drilled (-46°) striking South East. The mineralized Janet vein was intersected at about 73 metres. The hole was completed at 89.3 metres. See table 8.

Drill hole SX06-07 was drilled (-50°) towards the North Wes. (From south side of the creek). The Janet vein was intersected at 13 metres. The hole was stopped at 37.49 metres in dyke material because for the December holidays. It was later decided to abandon the SX06-07 as to drill the at present more promising Missy project. See table 8.

7.6 Interpretation and conclusions

The Sox property lies close to the Churchill and Davis Keays mine with known reserves. The mineralization mirrors the Churchill and Davis Keays mine epithermal chalcopyrite veining in structural shear/fault zones paralleling close to mafic dykes; Genn David; 1991 (or within a dyke as in the Sox case). The mineralization occurs mainly as chalcopyrite veins in quartz carbonate vein material with chalcopyrite patches and disseminations in close proximity to the mineralized veins. These mineralized vein intersections assayed from 0 to 3% Cu (sub economic grade). The

John and Janet vein intersections (in the drill holes) were less than a meter in thick.

Mapping, surface magnetic- and VLF electromagnetic- surveys indicated a strike length of at least 600 metres. The VLF signal strengths on both ends of the projected mineralization extensions indicated that the veins extend in both directions. The veins could be at least 1000 to 2000 metres in length. There is a possibility that the vein width could increase towards the North East (and South West) as indicated by the dyke magnetic signature and VLF survey. The EM survey also indicated EM highs (conductors) near the Delano creek about a mile north east of the Sox drilling area.

7.7 Recommendations

The key of finding economic copper deposits is locating the extensional faulted/ sheared openings where higher grade and higher tonnage copper mineralization is located.

The following is recommended:

- Test a battery of geophysical methods that (maybe) will pinpoint the thin vein positions below the soil cover (\$20 000).
- Purchase a more detailed satellite image of the area in the summer (at 1 m resolution) for mapping and structure purposes. The veins and small structures are not visible on the aerial or satellite photos.
- Map the Southern and northern extensions as to locate the outcrops of the John and Janet veins, and gain a better understanding of the structural controls of the area.

- Sample the discovered mineralized vein outcrops.
- Map and sample the area around the EM highs.
- Utilizing the above mentioned info as to focus the exploratory drilling program (\$150 000) on most promising areas north and south of the creek.

The cost of the first phase will be approximately \$60 000 (Geophysics test and mapping). If the geophysics is successful then a detailed geophysics survey (at 100m apart line spacing) over the extended vein positions is recommended. The total cost will then increase to about \$120 000 for the first phase exploration program.

The drilling cost (second phase) will be approximately \$150 000.

8.0 SAMPLING METHOD and APPROACH

Rock sampling of the Trident Copper Project properties is limited to reconnaissance scale rock geochemical samples. In 2006 no surface sampling program was done on the Sox property.

8.1 SAMPLE PREPARATION, ANALYSIS and SECURITY

All core samples were split on site, with one half shipped to Acme Analytical Labs of Vancouver, BC, for processing and analysis. The Acme Analytical quality control system complies with requirements of international standards ISO 9001:2000 and ISO 17025:1999. Laboratory procedures employ comprehensive quality control (QC) programs to monitor sample preparation and analysis. QC protocols include the use of barren material to clean sample equipment between sample batches, and size monitoring of crushed material. Analytical accuracy and precision are monitored by the

analysis of reagent blanks, reference materials, and replicate samples. Acme Analytical utilizes bar coding and scanning technology providing complete chain of custody records for sample preparation and analytical process.

Each entire sample was passed through a primary crusher to yield a product where greater than 70% is less than 2 mm. A split is then taken using a stainless steel riffle splitter. The crushed sample split of 200 - 300 grams is ground using a ring mill pulverizer with a chrome steel ring set, with the specification for this procedure calling for greater than 85% of the ground material to pass through a 75 micron (Tyler 200 mesh) screen.

Gold was analyzed using the AU-ICP21 fire-assay technique on a 30 gm pulverized rock sample, with atomic absorption finish. For the remaining 47 elements, the ME-MS61 analytical procedure employing four acid "near total" digestion was used, followed by mass spectrographic finish. Samples returning copper values >10,000 ppm were re-analyzed by ore grade CU–AA62 process, where a prepared sample was subjected to four acid "near total" digestion, followed by atomic absorption.

52

9.0 STATEMENT of COSTS

	item	Number	Rate	Sub	TOTAL
Staff					
	Qualified Person	10days	\$500/day		5000.00
	Field Geologist	30days	\$600/day		18000.00
	Junior Geologist	60days	\$244.60/day(1)		4892.00
	Junior Geologist	60days	\$244.60/day (1)		4892.00
	Level II Med-Tech	30days	\$250/day		7500.00
	Geological Consulting	Contract			11600.00
Airfares			1		
	Round trip FT Nelson / Dallas	2			3872.80
6	Round trip FT Nelson / St Louis	2			2765.00
	Round trip FT Nelson / Van	4			4004.00
Drilling Contractor / Llyod's Drilling /		4			4004.00
Smithers BC					
	Crew Transportation			9122.8	
	Lodging			603.73	
	Meals			3098.67	
	Drilling Materials Consumed			16174.07	
	Supervisor		Contract Rate	50113.25	
	Drillers	162days	\$500/day	81000	
	Footage (including lost holes)	1248ft	\$44/ft	54928	
	Drillers Helpers		\$250/day	41472.24	
	Core Splitting			3900	
	Office and Phone			137.3	
	GST			7840.2	
	Carpentry/Pad Building			10500	278890.26
Helicopter					
	Qwest Helicopters	87hours	\$1150/hour		100050.00
	Longranger/includes fuel				
Fuel		202barrels	\$203.75/barrel		41528.00
Camp Related					
	Campie/Carpenter #1	30days	\$350/day		10500.00
	Campie/Carpenter #2	30days	\$350/day		10500.00
	Construction Supplies / lumber				2400.00
Catering Food Service					23000.00
	Including Cook and supplies.				
ACME Analytical					962.32
Report					4500.00
TOTAL					534856.38

(1) amount includes all employee contributions.

10.0 <u>REFERENCES</u>

Archer, Cathro, and Associates, (1981):

Northern BC Mineral Inventory, Davis-Keays Prospect, ID# 94K 12, 13, 14, 15, 16, 17, 55, 56.

Awmack, H.J., (1994):

1994 Exploration Program Tuchodi Proterozoic Basin, Liard Mining Division, Department of Mines and Petroleum Resources, Assessment Report 24,603.

Banninger, C., and Dujardin, R.A., (1971):

Geological Report on the Meindl Claims Nos. 9, 10, 11, and 12 (Record Numbers 39381 to 39384 Incl.), Canadian Superior Exploration Ltd *for* Windermere Exploration Ltd, Department of Mines and Petroleum Resources, Assessment Report 3216.

Carr, J.M. (1971):

Geological Report on Claim Group "B", Magnum Property, Delano Creek, Liard Mining District, *for* Churchill Copper Corporation Ltd, July 19-August 1, Department of Mines and Petroleum Resources, Assessment Report 3535.

Chapman, Wood, and Griswold, (1971):

Evaluation Report on the Property of Davis-Keays Mining Co. Ltd., Liard M.D., BC.

Fletcher, D.M., and Perkins, E.W., (1981):

Geology, Geochemistry and Geophysics of the Chodi 1-12 Claim Group, *for* Asarco Exploration Company of Canada Limited, Department of Mines and Petroleum Resources, Assessment Report 9,540.

Genn, D., (1991):

Project Evaluation and Status Report of the Racing River Copper Project, Including the Davis-Keays, Magnum Vein, Toad River, Neil Vein, Bronson-Windermere, and Toro-Churchill Properties, for International Lornex Inc.

Goad, R.E., Mumin, A.H., Duke, N.A., and Neale, K.L., (1999):

The Nico and Sue-Dianne Proterozoic, Iron-oxide-hosted, Polymetallic Deposits, Northwest Territories: Application of the Olympic Dam Model in Exploration.

Gorham, J.H. (1982):

Geological Mapping and Geochemical Traverses on Parts of the MO 1-14 and BE 1-15 Claims, Gataga River Area, for Coppex Syndicate, Department of Mines and Petroleum Resources, Assessment Report 10,960.

Halferdahl, L.B. (1981):

Geochemical Reconnaissance in the Tuchodi Area Northeastern British Columbia, Department of Mines and Petroleum Resources, Ass.Report 10,504.

Harrington, E. (2005):

Technical report on the Trident Copper Project for Aries Resources Corp. and Action Minerals Inc.

Hennessey, B.T., and Puritch, E., (2004):

An Updated Mineral Resource Estimate for the Nico Cobalt-Gold-Bismuth Deposit, Mazenod Lake District, Northwest Territories, Canada, *for* Fortune Minerals Limited.

Hitzman, M.W., Oreskes, N., and Einaudi, T., (1992):

Geological characteristics and tectonic setting of Proterozoic iron oxide (CU-U-Au-REE) deposits, *in* G.G. Gaál and K. Schulz (Editors), Precambrian Metallogeny Related to Plate Tectonics, Precambrian Research, 58: pp. 241-287.

Holt, E.S., and Stanley, H.W. (1969):

Report on Geologic Mapping, Diamond Drilling and Geophysical Survey on the John Claims, Liard Mining Division, BC, for Churchill Copper Corporation Ltd, Department of Mines and Petroleum Resources, Assessment Report 1892.

Lefebure, D.V. (1995):

Iron Oxide Breccias and Veins P-Cu-Au-Ag-U, in Selected British Columbia Mineral Deposit Profiles, Volume 1 - Metallics and Coal, Lefebure, D.V. and Ray, G.E., Editors, British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20, pages 33-36.

MacDonald Consultants, (1970):

Feasibility Report on the Davis-Keays Project for Davis Keays Mining Co. Ltd.

Preto, V.A., (1971):

Geology, Exploration, and Mining in British Columbia, 1971, p. 78-81

Selmers, C.B., (1966):

Geological Assessment Report on the Kid, Nanny, Gordon, Sam, Gert, Billy, Goat, Walter, Miller, Ram, Go, Nick, and Abe Groups, Tuchodi Lakes District, B.C., for Geo Cal Limited.

Storey, L.L., and Stokes, R.B., (1971):

A Geological Report on the HD Group of Mineral Claims, Liard Mining Division, *for* Blue Gulch Exploration Ltd, Department of Mines and Petroleum Resources, Assessment Report 2924.

Taylor, G.C., and Stott, D.F., (1973):

ų,

Tuchodi Lakes Map-Area, British Columbia, Geological Survey of Canada, Memoir 373.

Wheeler, J.O., and McFeely, P., (1991):

Tectonic Assemblage Map of the Canadian Cordillera and adjacent parts of the USA; Geological Survey of Canada, Map 1712A, scale 1:2,000,000.

Yukon Geological Survey (YGS), (2004):

Wernecke Breccia & Fe oxide-Cu-Au, Yukon Geological Survey, http://www.geology.gov.yk.ca/publications/miscellaneous/placemats wernecke breccia placemat 2004.pdf

GLOSSARY

Conversion Factors To Convert From То Multiply By Feet Meters 0.305 Feet 3.281 Meters Kilometers ("km") 1.609 Miles Miles 0.6214 **Kilometers** Acres Hectares ("ha") 0.405 2.471 **Hectares** Acres Grams Ounces (Troy) 0.03215 Grams/Tonnes Ounces (Troy)/Short Ton 0.02917 Pounds 2,205 Tonnes (metric) Tonnes (metric) Short Tons 1.1023

Mineral Elements

Au	Gold	Ce	Cerium	La	Lanthanum
Ag	Silver	Co	Cobalt	Ρ	Phosphorus
Cu	Copper	Ga	Gallium	Se	Selenium
Ba	Barium	Ge	Germanium	U	Uranium

Alteration: Any change in the mineralogical composition of a rock that is brought about by physical or chemical means.

Ankerite: A dolomite group mineral associated with iron ores.

- Anomaly: A geochemical or geophysical character which deviates from regularity.
- Anticlinorium: A regional scale configuration of many folded, stratified rocks in which rocks dip in two directions away from the crests. Reverse of synclinorium. The crest is called axis.
- Arcuate: Curved or bowed.
- Argillic: Pertaining to clay or clay minerals. Disseminated precious metal deposits may exhibit "argillic" alteration characterized by the formation of the clay minerals kaolinite and montmorillonite. Epithermal precious metal deposits may exhibit "advanced argillic" alteration characterized by the clays dickite, kaolinite and pyrophyllite.
- **Basic**: An igneous rock having relatively low silica content, such as gabbro and basalt. Basic rocks are relatively rich in iron, magnesium, and/or calcium.

Breccia: A rock composed of highly angular course fragments.

Clastic: Consisting of fragments moved from their place of origin.

- **Conglomerate**: Detrital sedimentary rock made up of more or less rounded fragments of such size that an appreciable percentage of volume of rock consists of particles of granule size or larger.
- **Cratonic**: Pertaining to the relatively immobile part of the earth, the generally large central portion of a continent.
- **Detrital Sedimentary Rock**: Rock formed from accumulation of minerals and rocks derived from erosion of previously existing rocks or from weathered products of these rocks.
- **Diabase**: Rock of basaltic composition, essentially labradorite and pyroxene, characterized by ophitic texture.
- **Dolomitic**: Having the characteristics of dolomite, where calcium-magnesium carbonate predominates, rather than calcium carbonate which comprises limestone.
- **Epigenetic**: A mineral deposit formed later than the enclosing rocks. In ore petrology, applied to mineral deposits of later origin than the enclosing rocks or to the formation of secondary minerals by alteration.
- Epithermal Deposit: Formed at shallow depths by low-temperature hydrothermal solutions.
- Felsic: Composed of light-colored minerals such as feldspar and quartz.

Ga: Billion years.

- Gangue: Assessory minerals associated with ore in a vein.
- **Hydrothermal**: An adjective applied to heated or hot aqueous-rich solutions, to the processes in which they are concerned, and to the rocks, ore deposits and alteration products produced by them.
- **Ignimbrite**: Volcanic glass shards that when cooling wrapped around rock crystals creating a "welded" texture.

Ma: Million years.

- **Metasomatism**: Process whereby rocks are altered when volatiles exchange ions with them and a new mineral may grow inside the body of an old mineral.
- **Moraine**: A mound, ridge, or other distinct accumulation of unsorted, unstratified glacial drift deposited, chiefly by direct action of glacier ice, in a variety of topographic landforms.

Normal Fault: A fault in which the hanging wall is lowered relative to the foot wall.

Ophitic: Rock texture in which lath-shaped plagioclase crystals are enclosed, wholly or in part, in later-formed mineral augite.

Orogeny: Mountain building, particularly by folding and thrusting.

Pluton: Igneous rock formed beneath the surface by consolidation from magma.

- **Potassic Alteration**: The generally high-temperature alteration process where potassium is introduced replacing calcium producing secondary orthoclase (potassium feldspar) and biotite.
- Pyroclastic: Volcanic materials explosively or aerially ejected from a volcanic vent.
- **Reverse/Thrust Fault**: A fault in which the hanging wall is raised relative to the foot wall.
- Sericitic Alteration: Forming sericite from the decomposition of feldspars.
- **Skarn**: Derived from limestone and dolomite by the addition of silica, iron, magnesium, and aluminum to form a suite of lime-bearing silicate minerals.
- **Sodic Alteration**: The alteration process where sodium is introduced replacing calcium, and sodium-rich minerals such as albite, scapolite, and hornblende predominate.
- Stockwork: A rock mass interpenetrated by small veins.
- Strike-slip Fault: A fault where displacement is in the strike direction of the fault.
- Subduction: Descent of one tectonic unit under another.
- Synclinorium: A regional scale configuration of many folded, stratified rocks in which rocks dip downward from opposite directions to come together in troughs. Reverse of Anticlinorium.
- **Talus**: Slope established by accumulation of rock fragments at the foot of a cliff or ridge. Rock fragments that form talus may be rock waste, slide rock, or pieces broken by frost action. Widely used to mean the rock debris itself.
- **Trachytic**: A textural term applied to the ground mass of volcanic rocks in which small crystals of feldspar are arranged in parallel or sub-parallel fashion corresponding to the flow of the lava.
- Transverse Fault: A fault with a strike which cuts across the general structure.

Bradford Minerals Explorations Ltd.

George Coetzee 8227 Strauss drive Vancouver, BC. V5S 4H2

Telephone: 604 6810004 Fax: 604 6810014 Email: Georgeaction@gmail.com

I, George Coetzee, BSc (Hons) in Geology, hereby certify that I am working for Bradford Minerals Explorations Ltd. (that was contracted By Aries Resources Corp and Action minerals Inc). 1255 west Pender St Vancouver, BC. Canada V6E 2V1

I graduated with a BSc (Hons) in Geology from University of Pretoria in South Africa in 1981.

I have worked as a geologist for a total of 24 years since my graduation from University.

I am responsible for the preparation of all the sections of the report titled assessment report on the Sox property under the supervision of John Kowalchuk P. Geol. I was on the property for 85% of the time while the mapping and the diamond drilling took place.

I had had no prior involvement with the property that is the subject of the assessment report.

C 1411 Signature of Qualified Person

(r

George Coetzee, BSc. (Hons) in Geology

APPENDIX A

Claim Information

-

Trident Copper Project Claim Information

Ten	ure Number	<u>Claim Name</u>	<u>Owner</u>	<u>Map</u> No.	<u>Good To</u> <u>Date</u>	GoodTo Code	Area
	501462	Sox	124708 .	094K	2010/dec/31	20101231	253.727
	545932	MINER1	146886 .	094K	2007/nov/26	20071126	404.841
	545933	MINER 2	146886 .	094K	2007/nov/26	20071126	404.553
	545934	MINER 3	146886 .	094K	2007/nov/26	20071126	404.171
	545935	MINER 4	146886 .	094K	2007/nov/26	20071126	420.458
	545936	MINER 6	146886 .	094K	2007/nov/26	20071126	420.574
	545937	MINER 7	146886 .	094K	2007/nov/26	20071126	302.943
	545968	MINER 8	146886	094K	2007/nov/27	20071127	118.103
	545969	MINER 9	146886 .	094K	2007/nov/27	20071127	16.874
	501389	Cisco	124708.	094K	2007/dec/31	20071231	423.072
	525771	GRIZZLY 73	146886 .	094K	2008/jan/18	20080118	423.674
	525772	GRIZZLY 74	146886 .	094K	2008/jan/18	20080118	423.669
	525773	GRIZZLY 75	146886 .	094K	2008/jan/18	20080118	423.902
	525774	GRIZZLY 76	146886 .	094K	2008/jan/18	20080118	423.891
	525780	GRIZZLY 77	146886 .	094K	2008/jan/18	20080118	407.139
	525783	GRIZZLY 78	146886 .	094K	2008/jan/18	20080118	407.325
	525784	GRIZZLY 79	146886 .	094K	2008/jan/18	20080118	424.507
	525785	GRIZZLY 80	146886 .	094K	2008/jan/18	20080118	288.663
	525787	GRIZZLY 81	146886 .	094K	2008/jan/18	20080118	406.332
	525788	GRIZZLY 82	146886 .	094K	2008/jan/18	20080118	406.441
	525789	GRIZZLY 83	146886 .	094K	2008/jan/18	20080118	406.5
	525791	GRIZZLY 84	1 46886 .	094K	2008/jan/18	20080118	406.644
	525792	GRIZZLY 85	146886.	094K	2008/jan/18	20080118	423.69
	525794	GRIZZLY 86	146886 .	094K	2008/jan/18	20080118	423.727
	525795	GRIZZLY 87	146886 .	094K	2008/jan/18	20080118	423.924
	525797	GRIZZLY 88	146886	094K	2008/jan/18	20080118	406.934
	525798	GRIZZLY 89	146886 .	094K	2008/jan/18	20080118	373.208
	525799	GRIZZLY 90	146886 .	094K	2008/jan/18	20080118	425.585
	525801	GRIZZLY 91	146886 .	094K	2008/jan/18	20080118	425.59
	525802	GRIZZLY 92	146886	094K	2008/jan/18	20080118	425.331
	525803	GRIZZLY 93	146886 .	094K	2008/jan/18	20080118	425.337
	525804	GRIZZLY 94	146886 .	094K	2008/jan/18	20080118	425.174
	525805	GRIZZLY 95	146886	094K	2008/jan/18	20080118	323.352
	525808	GRIZZLY 96	146886 .	094K	2008/jan/18	20080118	426.526
	525809	GRIZZLY 97	146886	094K	2008/jan/18	20080118	272.843
	525811	GRIZZLY 98	146886 .	094K	2008/jan/18	20080118	426.356
	525814	GRIZZLY 99	146886 .	094K	2008/jan/18	20080118	408.621
	525815	GRIZZLY 100	146886 .	094K	2008/jan/18	20080118	425.843
	525816	GRIZZLY 101	146886	094K	2008/jan/18	20080118	204.436
	525818	GRIZZLY 102	146886 .	094K	2008/jan/18	20080118	406.599
	525820	GRIZZLY 103	146886 .	094K	2008/jan/18	20080118	406.6
	525821	GRIZZLY 104	146886 .	094K	2008/jan/18	20080118	101.674
	525822	DIEPPE 54	146886 .	094K	2008/jan/18	20080118	404.755

525823	DIEPPE 55	146886 .	094K	2008/jan/18	20080118	404.562
508707	Toad 1	146886.	094K	2008/mar/10	20080310	422.37
508709	Toad 2	146886.	094K	2008/mar/10	20080310	406.753
508710	Toad 3	146886、	094K	2008/mar/10	20080310	424.742
529843	WOKK02	200740.	094K	2008/mar/10	20080310	422.178
529844	WOKK03	200740.	094K	2008/mar/10	20080310	422.174
529845	WOKK04	200740.	094K	2008/mar/10	20080310	422.294
529846	WOKK05	200740.	094K	2008/mar/10	20080310	405.553
529847	WOKK06	200740.	094K	2008/mar/10	20080310	405.551
529848	WOKK07	200740.	094K	2008/mar/10	20080310	405.768
529849	WOKK08	200740.	094K	2008/mar/10	20080310	405.757
529850	WOKK09	200740.	094K	2008/mar/10	20080310	405.644
529851	WOKK01	200740.	094K	2008/mar/10	20080310	405.555
509540	Gang	146887.	09 4K	2008/mar/23	20080323	405.288
509553	Annabelle	146887.	094K	2008/mar/23	20080323	408.329
509563	He	146887.	094K	2008/mar/23	20080323	425.386
509567	HD	146887 .	094K	2008/mar/23	20080323	425.613
509576	Goat Chodi	146887.	094K	2008/mar/23	20080323	426.513
531536	DM01	202640	094K	2008/apr/08	20080408	423.819
531537	DM02	202640 .	094K	2008/apr/08	20080408	423.817
531538	DM03	202640	094K	2008/apr/08	20080408	423.818
531539	DM04	202640	094K	2008/apr/08	20080408	424.074
531540	DM05	202640.	094K	2008/apr/08	20080408	424.069
531541	DM06	202640	094K	2008/apr/08	20080408	424.066
531542	DM07	202640	094K	2008/apr/08	20080408	407.325
531543	DM08	202640	094K	2008/apr/08	20080408	424.289
531544	DM09	202640 .	094K	2008/apr/08	20080408	424.153
531545	DM10	202640	094K	2008/apr/08	20080408	407.517
531547	DM11	202640.	094K	2008/apr/08	20080408	407.512
531548	DM12-01	202640 .	094K	2008/apr/08	20080408	407.508
531549	DM13-01	202640 .	094K	2008/apr/08	20080408	135.835
511212	GRIZZLY 30	146886 .	094K	2008/apr/20	20080420	425.845
511215	GRIZZLY 31	146886 .	094K	2008/apr/20	20080420	425.855
511217	GRIZZLY 32	146886 .	094K	2008/apr/20	20080420	425.858
511219	GRIŻZLY 33	146886 .	094K	2008/apr/20	20080420	425.856
511220	GRIZZLY 34	146886 .	094K	2008/apr/20	20080420	425.857
511222	GRIZZLY 35	146886 .	094K	2008/apr/20	20080420	425.861
511223	GRIZZLY 36	146886 .	094K	2008/apr/20	20080420	425.854
511225	GRIZZLY 37	146886 .	094K	2008/apr/20	20080420	426.115
511228	GRIZZLY 38	146886 .	094K	2008/apr/20	20080420	426.12
511232	GRIZZLY 39	146886 .	094K	2008/apr/20	20080420	426.121
511235	GRIZZLY 40	146886 .	094K	2008/apr/20	20080420	426.123
511236	GRIZZLY 41	146886	094K	2008/apr/20	20080420	426.127
511242	GRIZZLY 42	146886 .	094K	2008/apr/20	20080420	426.115
511245	GRIZZLY 43	146886 .	094K	2008/apr/20	20080420	426.105

----- .

-

511247	GRIZZLY 44	146886 .	094K	2008/apr/20	20080420	426.363
511248	GRIZZLY 45	146886 .	094K	2008/apr/20	20080420	426.366
511250	GRIZZLY 46	146886 .	094K	2008/apr/20	20080420	426.369
511252	GRIZZLY 47	146886 .	094K	2008/apr/20	20080420	426.373
511253	GRIZZLY 48	146886	094K	2008/apr/20	20080420	426.368
511254	GRIZZLY 49	146886 .	094K	2008/apr/20	20080420	426.356
511256	GRIZZLY 50	146886 .	094K	2008/apr/20	20080420	426.347
511258	GRIZZLY 51	146886 .	094K	2008/apr/20	20080420	426.607
511260	GRIZZLY 52	146886 .	094K	2008/apr/20	20080420	426.612
511262	GRIZZZLY 53	146886 .	094K	2008/apr/20	20080420	426.617
511263	GRIZZLY 54	146886	094K	2008/apr/20	20080420	426.62
511265	GRIZZLY 55	146886 .	094K	2008/apr/20	20080420	426.616
511267	GRIZZLY 56	146886 .	094K	2008/apr/20	20080420	426.836
511268	GRIZZLY 57	146886 .	094K	2008/apr/20	20080420	426.838
511269	GRIZZLY 58	146886	094K	2008/apr/20	20080420	426.843
511271	GRIZZLY 59	146886 .	094K	2008/apr/20	20080420	410.014
511272	GRIZZLY 60	146886 .	094K	2008/apr/20	20080420	410.011
511273	GRIZZLY 61	146886 .	094K	2008/apr/20	20080420	410.013
511274	GRIZZLY 62	146886 .	094K	2008/apr/20	20080420	410.224
511275	GRIZZLY 63	146886 .	094K	2008/apr/20	20080420	426.847
511276	GRIZZLY 64	146886 .	094K	2008/apr/20	20080420	410.015
511436	SOCRATES 20	146886 .	094K	2008/apr/22	20080422	404.382
511439	SOCRATES 21	146886 .	094K	2008/apr/22	20080422	403.538
511441	SOCRATES 22	146886 .	094K	2008/apr/22	20080422	403.533
511443	SOCRATES 23	146886 .	094K	2008/apr/22	20080422	336.273
511446	SOCRATES 24	146886 .	094K	2008/apr/22	20080422	420.362
511447	SOCRATES 25	146886 .	094K	2008/apr/22	20080422	420.359
511 4 48	SOCRATES 26	146886 .	094K	2008/apr/22	20080422	420.614
511449	SOCRATES 27	146886	094K	2008/apr/22	20080422	420.611
511451	SOCRATES 28	146886 .	094K	2008/apr/22	20080422	420.928
511452	SOCRATES 29	146886 .	094K	2008/apr/22	20080422	420.925
511453	SOCRATES 30	146886 .	094K	2008/apr/22	20080422	421.224
511454	SOCRATES 31	146886 .	094K	2008/apr/22	20080422	404.394
511455	SOCRATES 32	146886 .	094K	2008/apr/22	20080422	404.628
511456	SOCRATES 33	146886 .	094K	2008/apr/22	20080422	404.877
511457	SOCRATES 34	146886 .	094K	2008/apr/22	20080422	369.953
511458	SOCRATES 35	146886 .	094K	2008/apr/22	20080422	336.439
511459	SOCRATES 36	146886 .	094K	2008/apr/22	20080422	336.441
511460	SOCRATES 37	146886 .	094K	2008/apr/22	20080422	420.788
511461	SOCRATES 38	146886 .	094K	2008/apr/22	20080422	420.977
511463	SOCRATES 39	146886 .	094K	2008/apr/22	20080422	404.203
511465	SOCRATES 40	146886 .	094K	2008/apr/22	20080422	336.981
511466	SOCRATES 41	146886 .	094K	2008/apr/22	20080422	269.582
511472	DELANO 10	146886 .	094K	2008/apr/22	20080422	405.796
511473	DELANO 11	146886 .	094K	2008/apr/22	20080422	405.944

-

511475	DELANO 12	146886	094K	2008/apr/22	20080422	355.262
511476	DELANO 13	146886 .	094K	2008/apr/22	20080422	406.16
511478	DELANO 14	146886 .	094K	2008/apr/22	20080422	406.331
511480	DELANO 15	146886.	094K	2008/apr/22	20080422	406.328
511482	DELANO 16	146886 .	094K	2008/apr/22	20080422	423.485
511483	DELANO 17	146886	094K	2008/apr/22	20080422	423.482
511485	DELANO 18	146886 .	094K	2008/apr/22	20080422	406.803
511488	DELANO 19	146886 .	094K	2008/apr/22	20080422	422.464
511490	DELANO 20	146886 .	094K	2008/apr/22	20080422	405.401
511492	DIEPPE 45	146886 .	094K	2008/apr/22	20080422	404.78
511 494	DIEPPE 46	146886 .	094K	2008/apr/22	20080422	354.334
511496	DIEPPE 46	146886.	094K	2008/apr/22	20080422	405.054
511498	DIEPPE 47	146886 .	094K	2008/apr/22	20080422	405.202
511500	DIEPPE 48	146886 .	094K	2008/apr/22	20080422	405.413
511502	TOAD 4	146886 .	094K	2008/apr/22	20080422	422.32
511505	TOAD 5	146886 .	094K	2008/apr/22	20080422	405.183
511507	TOAD 6	146886 .	094K	2008/apr/22	20080422	405.262
511509	TOAD 7	146886 .	094K	2008/apr/22	20080422	371.767
511511	TOAD 8	146886 .	094K	2008/apr/22	20080422	406.367
511512	TOAD 9	146886 .	094K	2008/apr/22	20080422	423.46
511513	TOAD 10	146886 .	094K	2008/apr/22	20080422	423.492
511515	TOAD 11	146886 .	094K	2008/apr/22	20080422	406.756
511520	GATAGA 21	146886 .	094K	2008/apr/22	20080422	409.205
511522	GATAGA 22	146886 .	094K	2008/apr/22	20080422	408.91
511523	GATAGA 23	146886 .	094K	2008/apr/22	20080422	408.853
511525	GATAGA 24	146886	094K	2008/apr/22	20080422	408.725
511526	GATAGA 25	146886 .	094K	2008/apr/22	20080422	408.569
511528	GATAGA 26	146886 .	094K	2008/apr/22	20080422	408.421
511529	GATAGA 27	146886.	094K	2008/apr/22	20080422	408.233
511530	GATAGA 28	146886 .	094K	2008/apr/22	20080422	425.688
511531	GATAGA 29	146886.	094K	2008/apr/22	20080422	374.418
511532	GATAGA 30	146886.	094K	2008/apr/22	20080422	425.291
511533	GATAGA 31	146886 .	094K	2008/apr/22	20080422	425.124
511534	GATAGA 32	146886 .	094K	2008/apr/22	20080422	407.967
511536	GATAGA 33	146886 .	094K	2008/apr/22	20080422	427.501
511537	GATAGA 34	146886 .	094K	2008/apr/22	20080422	426.639
511538	GATAGA 35	146886 .	094K	2008/apr/22	20080422	427.084
511539	GATAGA 36	146886 .	094K	2008/apr/22	20080422	427.305
511595	SOCRATES 42	146886 .	094K	2008/apr/25	20080425	353.244
511596	SOCRATES 43	146886 .	094K	2008/apr/25	20080425	353.37
511597	SOCRATES 44	146886 .	094K	2008/apr/25	20080425	353.515
511599	SOCRATES 45	146886 .	094K	2008/apr/25	20080425	202.104
511600	DIEPPE 49	146886.	094K	2008/apr/25	20080425	404.487
511602	DIEPPE 50	146886 .	094K	2008/apr/25	20080425	404.489
511603	DIEPPE 51	146886 .	094K	2008/apr/25	20080425	404.491

511604	DIEPPE 52	146886 .	094K	2008/apr/25	20080425	404.662
511607	TOAD 12	146886 .	094K	2008/apr/25	20080425	405.79
511608	TOAD 13	146886 .	094K	2008/apr/25	20080425	405.715
511610	TOAD 14	146886 .	094K	2008/apr/25	20080425	405.885
511611	TOAD 15	146886.	094K	2008/apr/25	20080425	372.015
511613	TOAD 16	146886	094K	2008/apr/25	20080425	406.942
511614	DIEPPE 53	146886	094K	2008/apr/25	20080425	354.111
511615	GATAGA 37	146886	094K	2008/apr/25	20080425	407.894
511616	GATAGA 38	146886	094K	2008/apr/25	20080425	425.212
511618	GATAGA 39	146886 .	094K	2008/apr/25	20080425	407.749
511619	DELANO 21	146886 .	094K	2008/apr/25	20080425	405.932
511620	DELANO 22	146886 .	094K	2008/apr/25	20080425	202.878
515 46 4	SOCRATES 46	146886 .	094K	2008/jun/28	20080628	420.022
515466	SOCRATES 47	146886 .	094K	2008/jun/28	20080628	420.129
515467	SOCRATES 48	146886 .	094K	2008/jun/28	20080628	319.127
515468	SOCRATES 49	146886 .	094K	2008/jun/28	20080628	420.125
515470	SOCRATES 50	146886 .	094K	2008/jun/28	20080628	419.865
515471	SOCRATES 51	146886	094K	2008/jun/28	20080628	421.761
515472	SOCRATES 52	146886 .	094K	2008/jun/28	20080628	421.75
51 54 76	SOCRATES 53	146886 .	094K	2008/jun/28	20080628	421.51
515482	SOCRATES 54	146886 .	094K	2008/jun/28	20080628	421.954
515485	SOCRATES 55	146886 .	094K	2008/jun/28	20080628	421.954
515490	DELANO 23	146886 .	094K	2008/jun/28	20080628	422.197
51 5495	DELANO 24	146886	094K	2008/jun/28	20080628	422.181
515505	DELANO 25	146886 .	094K	2008/jun/28	20080628	405.439
515516	DELANO 26	146886 .	094K	2008/jun/28	20080628	405.535
520525	LYNDA1	146886 .	094K	2008/jun/28	20080628	427.38
520526	LYNDA2	146886 .	094K	2008/jun/28	20080628	427.374
520527	LYNDA3	146886 .	094K	2008/jun/28	20080628	427.619
520528	LYNDA4	146886 .	094K	2008/jun/28	20080628	427.37
520529	LYNDA5	146886 .	094K	2008/jun/28	20080628	427.616
515811	SOCRATES 56	146886 .	094K	2008/jul/01	20080701	319.277
515813	SOCRATES 57	146886 .	094K	2008/jul/01	20080701	302.597
515816	SOCRATES 58	146886	094K	2008/jul/01	20080701	403.095
515817	SOCRATES 59	146886 .	094K	2008/jul/01	20080701	403.34
515818	SOCRATES 60	146886 .	094K	2008/jul/01	20080701	403.333
515819	SOCRATES 61	146886 .	094K	2008/jul/01	20080701	419.939
515820	SOCRATES 62	146886 .	094K	2008/jul/01	20080701	420.678
515821	SOCRATES 63	146886	094K	2008/jul/01	20080701	420.988
515822	SOCRATES 64	146886 .	094K	2008/jul/01	20080701	420.979
515823	SOCRATES 65	146886 .	094K	2008/jul/01	20080701	303.142
515824	SOCRATES 66	146886 .	094K	2008/jul/01	20080701	421.259
515825	SOCRATES 67	146886 .	094K	2008/jul/01	20080701	421.248
515826	SOCRATES 68	146886 .	094K	2008/jul/01	20080701	421.499
517407	TOAD 17	146886 .	094K	2008/jul/12	20080712	118.277

517410	TOAD 18	146886 .	094K	2008/jul/12	20080712	118.206
517636	DELANO 27	146886 .	094K	2008/jul/13	20080713	422.181
517637	DELANO 28	146886 .	094K	2008/jul/13	20080713	405.26
517639	DELANO 28	146886 .	094K	2008/jul/13	20080713	405.183
517877	LR2	146886 .	094K	2008/jul/17	20080717	405.195
517878	LR3	146886 .	094K	2008/jul/17	20080717	270.133
517882	LR6	146886 .	094K	2008/jul/17	20080717	422.31
517885	LR7	1 46886 .	094K	2008/jul/17	20080717	354.947
517886	LR8	146886 .	094K	2008/jul/17	20080717	422.541
517888	LR9	146886 .	094K	2008/jul/17	20080717	422.547
517890	LR10	146886 .	094K	2008/jul/17	20080717	422.555
517891	LR11	146886	094K	2008/jul/17	20080717	422.556
517892	LR12	146886 .	094K	2008/jul/17	20080717	422.77
517893	LR5	146886 .	094K	2008/jul/17	20080717	337.844
517894	LR13	146886 .	094K	2008/jul/17	20080717	372.052
517895	LR14	146886	094K	2008/jul/17	20080717	405.861
517898	LR15	146886 .	094K	2008/jul/17	20080717	405.854
517899	LR16	146886 .	094K	2008/jul/17	20080717	405.848
517900	LR17	146886 .	094K	2008/jul/17	20080717	405.892
517924	LR41	146886 .	094K	2008/jul/17	20080717	404 .979
517925	LR42	146886	094K	2008/jul/17	20080717	404.98
517926	LR43	146886	094K	2008/jul/17	20080717	404.982
517927	LR44	146886	094K	2008/jul/17	20080717	404.982
517928	LR45	146886	094K	2008/jul/17	20080717	404.983
517929	LR46	146886	094K	2008/jul/17	20080717	404.984
517930	LR49	146886	094K	2008/jul/17	20080717	405.191
517931	LR47	146886	094K	2008/jul/17	20080717	404.988
517932	LR48	146886 .	094K	2008/jul/17	20080717	421.843
517901	LR18	200740.	094K	2008/jul/17	20080717	355.343
517902	LR19	200740.	094K	2008/jul/17	20080717	422.98
517903	LR20	200740 .	094K	2008/jul/17	20080717	422.98
517904	LR21	200740	094K	2008/jul/17	20080717	422.978
517905	LR22	200740.	094K	2008/jul/17	20080717	422.975
517906	LR23	200740	094K	2008/jul/17	20080717	422.973
517907	LR24	200740.	094K	2008/jul/17	20080717	406.126
517908	LR25	200740 .	094K	2008/jul/17	20080717	406.247
517910	LR27	200740 .	094K	2008/jul/17	20080717	406.276
517911	LR28	200740 .	094K	2008/jul/17	20080717	406.276
517912	LR29	200740	094K	2008/jul/17	20080717	406.277
517913	LR30	200740	094K	2008/jul/17	20080717	406.274
517915	LR32	200740.	094K	2008/jul/17	20080717	423.429
517916	LR33	200740.	094K	2008/jul/17	20080717	423.429
517917	LR34	200740	094K	2008/jul/17	20080717	423.429
517918	LR35	200740	094K	2008/jul/17	20080717	423.425
517919	LR36	200740 .	094K	2008/jul/17	20080717	423.678

517920	LR37	200740 .	094K	2008/jul/17	20080717	423.679
517921	LR38	200740 .	094K	2008/jul/17	20080717	423.678
517922	LR39	200740.	094K	2008/jul/17	20080717	423.674
517923	LR40	200740.	094K	2008/jul/17	20080717	406.945
537919	RR1	200740	094K	2008/jul/27	20080727	388.153
537920	RR2	200740 .	094K	2008/jul/27	20080727	236.402
537921	RR3	200740 .	094K	2008/jul/27	20080727	388.175
537922	RR4	200740 .	094K	2008/jul/27	20080727	421.937
537923	RR5	200740 .	094K	2008/jul/27	20080727	421.933
537925	RR6	200740	094K	2008/jul/27	20080727	421.932
537926	RR7	200740 .	094K	2008/jul/27	20080727	421.934
537927	RR8	200740 .	094K	2008/jul/27	20080727	421.738
537929	RR9	200740 .	094K	2008/jul/27	20080727	421.712
537931	RR10	200740	094K	2008/jul/27	20080727	421.721
537932	RR11	200740 .	094K	2008/jul/27	20080727	421.472
537933	RR12	200740 .	094K	2008/jul/27	20080727	421.705
537935	RR3	200740 .	094K	2008/jul/27	20080727	421.7
537936	RR14	200740	094K	2008/jul/27	20080727	421.932
537937	RR16	200740 .	094K	2008/jul/27	20080727	421.695
537940	RR18	200740	094K	2008/jul/27	20080727	421.695
537942	RR19	200740	094K	2008/jul/27	20080727	337.357
537944	RR20	200740	094K	2008/jul/27	20080727	404.026
537946	RR21	200740	094K	2008/jul/27	20080727	404.332
537949	RR22	200740	094K	2008/jul/27	20080727	320.306
537924	AB01	202640	094K	2008/jul/27	20080727	421.487
537928	AB02	202640 .	094K	2008/jul/27	20080727	421.463
537930	AB03	202640	094K	2008/jul/27	20080727	421.455
537934	AB04	202640	094K	2008/jul/27	20080727	303.8
537938	AB05	202640 .	094K	2008/jul/27	20080727	236.16
537941	AB06	202640 .	094K	2008/jul/27	20080727	403.725
537 943	GRIZZ 1	202640	094K	2008/jul/27	20080727	424.721
537945	GRIZZ 2	202640 .	094K	2008/jul/27	20080727	424.716
537 94 7	GRIZZ 3	202640	094K	2008/jul/27	20080727	424.713
537948	GRIZZ 4	202640	094K	2008/jul/27	20080727	424.71
537950	GRIZZ 5	202640	094K	2008/jul/27	20080727	424.727
537951	GRIZZ 6	202640	094K	2008/jul/27	20080727	424.947
537952	GRIZZ 7	202640 .	094K	2008/jul/27	20080727	424.931
537953	GRIZZ 8	202640 .	094K	2008/jul/27	20080727	424.935
537 954	GRIZZ 9	202640	094K	2008/jul/27	20080727	424.926
537955	GRIZZ 10	202640	094K	2008/jul/27	20080727	407.904
538026	PQ01	200740	094K	2008/jul/28	20080728	421.236
538029	PQ02	200740 .	094K	2008/jul/28	20080728	421.222
538036	PQ03	200740.	094K	2008/jul/28	20080728	420.355
538038	PQ04	200740 .	094K	2008/jul/28	20080728	420.354
538045	PQ05	200740 .	094K	2008/jul/28	20080728	386.932

538048	PQ06	200740 .	094K	2008/jul/28	20080728	403.804
538052	PQ07	200740 .	094K	2008/jul/28	20080728	202.02
538055	PQ08	200740 .	094K	2008/jul/28	20080728	420.353
538057	PQ09	200740	094K	2008/jul/28	20080728	403.802
538060	PQ10	200740 .	094K	2008/jul/28	20080728	403.329
538062	PQ11	200740 .	094K	2008/jul/28	20080728	403.325
538065	PQ12	200740 .	094K	2008/jul/28	20080728	403.323
538067	PQ13	200740.	094K	2008/jul/28	20080728	403.323
538070	PQ14	200740	094K	2008/jul/28	20080728	352.506
538073	PQ15	200740 .	094K	2008/jul/28	20080728	419.633
538077	PQ16	200740 .	094K	2008/jul/28	20080728	352.329
538079	PQ17	200740	094K	2008/jul/28	20080728	385.831
538082	PQ18	200740 .	094K	2008/jul/28	20080728	402.599
538084	PQ19	200740 .	094K	2008/jul/28	20080728	402.937
538085	PQ20	200740 .	094K	2008/jul/28	20080728	402.937
538087	PQ21	200740 .	094K	2008/jul/28	20080728	402.937
538089	PQ22	200740	094K	2008/jul/28	20080728	402.936
538091	PQ23	200740 .	094K	2008/jul/28	20080728	386.36
538092	PQ24	200740	094K	2008/jul/28	20080728	403.156
538096	PQ25	200740 .	094K	2008/jul/28	20080728	402.601
538025	RR23	202640	094K	2008/jul/28	20080728	421.45
538028	RR24	202640 .	094K	2008/jul/28	20080728	421.446
538031	RR25	202640 .	094K	2008/jul/28	20080728	421.441
538033	RR26	202640 .	094K	2008/jul/28	20080728	84.288
538037	RR27	202640	094K	2008/jul/28	20080728	421.213
538039	RR28	202640 .	094K	2008/jul/28	20080728	421.205
538042	RR29	202640 .	094K	2008/jul/28	20080728	421.201
538043	RR30	202640 .	094K	2008/jul/28	20080728	421.196
538046	RR31	202640 .	094K	2008/jul/28	20080728	303.237
538047	RR32	202640 .	094K	2008/jul/28	20080728	420.957
538050	RR33	202640 .	094K	2008/jul/28	20080728	420.95
538053	RR34	202640 .	094K	2008/jul/28	20080728	420.944
538054	RR35	202640 .	094K	2008/jul/28	20080728	420.941
538056	RR36	202640 .	094K	2008/jul/28	20080728	336.75
538058	RR37	202640 .	094K	2008/jul/28	20080728	403.802
538061	RR38	202640 .	094K	2008/jul/28	20080728	403.802
538063	RR39	202640 .	094K	2008/jul/28	20080728	403.803
538064	RR40	202640	094K	2008/jul/28	20080728	403.805
538066	RR41	202640 .	094K	2008/jul/28	20080728	269.267
538069	RR42	202640 .	094K	2008/jul/28	20080728	336.465
538071	RR43	202640 .	094K	2008/ju\/28	20080728	420.353
538072	RR44	202640 .	094K	2008/jul/28	20080728	420.354
538075	RR45	202640 .	094K	2008/jul/28	20080728	420.356
538076	RR46	202640 .	094K	2008/jul/28	20080728	420.358
538078	RR47	202640 .	094K	2008/jul/28	20080728	269.018

538080	RR48	202640 .	094K	2008/jul/28	20080728	403.325
538081	RR49	202640 .	094K	2008/jul/28	20080728	403.325
538083	RR 50	202640 .	094K	2008/jul/28	20080728	403.329
538086	RR51	202640	094K	2008/jul/28	20080728	419.911
538088	RR52	202640 .	094K	2008/jul/28	20080728	419.908
538090	RR53	202640 .	094K	2008/jul/28	20080728	419.907
538093	RR54	202640	094K	2008/jul/28	20080728	419.905
538095	RR55	202640 .	094K	2008/jul/28	20080728	419.902
538097	RR56	202640	094K	2008/jul/28	20080728	402.991
538098	RR57	202640 .	094K	2008/jul/28	20080728	402.89
538099	RR58	202640	094K	2008/jul/28	20080728	402.603
538100	RR59	202640 .	094K	2008/jul/28	20080728	402.604
518973	GRIZZLY 65	146886	094K	2008/aug/12	20080812	406.601
518974	GRIZZLY 66	146886 .	094K	2008/aug/12	20080812	406.412
518975	GRIZZLY 67	146886 .	094K	2008/aug/12	20080812	423.337
518976	GRIZZLY 68	146886 .	094K	2008/aug/12	20080812	406.604
518977	GRIZZLY 69	146886 .	094K	2008/aug/12	20080812	406.7
518978	GRIZZLY 70	146886	094K	2008/aug/12	20080812	406.983
518979	GRIZZLY 71	146886 .	094K	2008/aug/12	20080812	407.268
518980	GRIZZLY 72	146886 .	094K	2008/aug/12	20080812	424.502
519444	Y01	200103.	094K	2008/aug/28	20080828	337.272
519445	Y02	200103.	094K	2008/aug/28	20080828	303.66
519446	Y03	200103.	094K	2008/aug/28	20080828	404.991
519447	Y04	200103.	094K	2008/aug/28	20080828	202.528
519448	Y05	200103	094K	2008/aug/28	20080828	405.054
519449	Y06	200103 .	094K	2008/aug/28	20080828	303.903
519450	Y07	200103.	094K	2008/aug/28	20080828	405.42
519451	Y08	200103.	094K	2008/aug/28	20080828	422.192
519452	Y09	200103.	094K	2008/aug/28	20080828	253.436
519453	Y10	200103.	094K	2008/aug/28	20080828	202.751
519454	Y11	200103.	094K	2008/aug/28	20080828	405.715
519455	Y12	200103.	094K	2008/aug/28	20080828	202.962
519456	Y13	200103.	094K	2008/aug/28	20080828	304.289
51 94 57	Y14	200103.	094K	2008/aug/28	20080828	422.642
519458	Y15	200103.	094K	2008/aug/28	20080828	304.354
539991	ANVIL01	202640 .	094K	2008/aug/28	20080828	408.128
539993	ANVIL02	202640	094K	2008/aug/28	20080828	408.121
539994	ANVIL03	202640.	094K	2008/aug/28	20080828	204.058
539996	ANVIL04	202640 .	094K	2008/aug/28	20080828	408.094
539997	ANVIL05	202640 .	094K	2008/aug/28	20080828	408.284
539998	ANVIL06	202640 .	094K	2008/aug/28	20080828	408.282
539999	ANVIL07	202640	094K	2008/aug/28	20080828	408.281
540000	ANVIL08	202640 .	094K	2008/aug/28	20080828	408.423
540001	ANVIL09	202640 .	094K	2008/aug/28	20080828	136.141
540002	ANVIL10	202640	094K	2008/aug/28	20080828	306.251
				-		

-

508545	Grizzly 1	146886 .	094K	2008/sep/09	20080909	220.665
511143	GRIZZLY 6	146886 .	094K	2008/sep/09	20080909	407.61
511145	GRIZZLY 8	146886 .	094K	2008/sep/09	20080909	407.633
511146	GRIZZLY 9	146886 .	094K	2008/sep/09	20080909	424.838
511148	GRIZZLY 11	146886 .	094K	2008/sep/09	20080909	407.779
511150	GRIZZLY 12	146886 .	094K	2008/sep/09	20080909	407.873
520483	TOWER1	200103 .	094K	2008/sep/27	20080927	355.197
520485	TOWER2	200103 .	094K	2008/sep/27	20080927	423.104
520486	TOWER3	200103 .	094K	2008/sep/27	20080927	423.291
520487	TOWER4	200103 .	094K	2008/sep/27	20080927	406.523
520650	TOWER5	200103 .	094K	2008/sep/30	20080930	338.278
520651	TOWER6	200103 .	094K	2008/sep/30	20080930	338.437
520652	TOWER7	200103	094K	2008/sep/30	20080930	338.596
520653	TOWER8	200103 .	094K	2008/sep/30	20080930	338.755
520701	GS1	146887 .	094K	2008/oct/02	20081002	389.013
520702	GS2	146887 .	094K	2008/oct/02	20081002	338.414
520703	GS3	146887 .	094K	2008/oct/02	20081002	355.456
520704	GS4	146887 .	094K	2008/oct/02	20081002	355.58
520707	GS5	146887 .	094K	2008/oct/02	20081002	372.642
509549	Ed	146887 .	094K	2008/nov/23	20081123	425.068
501179		146886 .	094K	2009/jan/12	20090112	153.498
525256	GODOT01	200740 .	094K	2009/jan/13	20090113	101.87
525267	GODOT02	200740 .	094K	2009/jan/13	20090113	67.862
525433	TORO_SOUTH	200740 .	094K	2009/jan/14	20090114	407.638
525439	TORO_NORTH	200740 .	094K	2009/jan/14	20090114	203.591
504054	Talus	146887 .	094K	2009/jan/17	20090117	423.475
511144	GRIZZLY 7	146886 .	094K	2009/jan/20	20090120	339.543
511147	GRIZZLY 10	146886	094K	2009/jan/20	20090120	339.697
510811	MEDS 1	124708 .	094K	2009/jan/31	20090131	253.999
508444	Gataga 1	146886	094K	2009/mar/09	20090309	341.22
508445	Gataga 2	146886 .	094K	2009/mar/09	20090309	392.393
508447	Gataga 3	146886 .	094K	2009/mar/09	20090309	409.33
508449	Gataga 4	146886 .	094K	2009/mar/09	20090309	238.775
508450	Gataga 5	146886 .	094K	2009/mar/09	20090309	375.484
508451	Gataga 6	146886 .	094K	2009/mar/09	20090309	392.551
508452	Gataga 7	146886	094K	2009/mar/09	20090309	409.757
508454	Gataga 8	146886 .	094K	2009/mar/09	20090309	409.753
508455	Gataga 9	146886 .	0 9 4K	2009/mar/09	20090309	409.894
508456	Gataga 10	146886 .	094K	2009/mar/09	20090309	410.035
508457	Gataga 11	146886	094K	2009/mar/09	20090309	341.667
508459	Gataga 12	146886 .	094K	2009/mar/09	20090309	410.178
508460	Gataga 13	146886	094K	2009/mar/09	20090309	273.447
508462	Gataga 14	146886 .	094K	2009/mar/09	20090309	341.914
508464	Gataga 15	146886 .	094K	2009/mar/09	20090309	205.205
508467	Gataga 16	146886	094K	2009/mar/09	20090309	323.945

.

508469	Gataga 17	146886 .	094K	2009/mar/09	20090309	409.189
508470	Gataga 18	146886 .	094K	2009/mar/09	20090309	255.651
508471	Gataga 19	146886	094K	2009/mar/09	20090309	409.02
508479	Socrates 1	146886 .	094K	2009/mar/09	20090309	420.076
508482	Socrates 2	146886 .	094K	2009/mar/09	20090309	403.3
508483	Socrates 2	146886.	094K	2009/mar/09	20090309	353.034
508484	Socrates 4	146886	094K	2009/mar/09	20090309	403.374
508485	Socrates 5	146886 .	094K	2009/mar/09	20090309	336.284
508486	Socrates 6	146886	094K	2009/mar/09	20090309	403.539
508487	Socrates 7	146886 .	094K	2009/mar/09	20090309	420.576
508488	Socrates 8	146886	094K	2009/mar/09	20090309	420.577
508489	Socrates 9	146886	094K	2009/mar/09	20090309	420.573
508490	Socrates 10	146886 .	094K	2009/mar/09	20090309	420.569
508492	Socrates 11	146886	094K	2009/mar/09	20090309	336.57
508494	Socrates 12	146886	094K	2009/mar/09	20090309	420.856
508497	Socrates 13	146886 .	094K	2009/mar/09	20090309	420.861
508504	Socrates 14	146886 .	094K	2009/mar/09	20090309	420.861
508506	Socrates 15	146886 .	094K	2009/mar/09	20090309	420.86
508507	Socrates 16	146886 .	094K	2009/mar/09	20090309	404.242
508508	Socrates 17	146886 .	094K	2009/mar/09	20090309	336.876
508509	Socrates 18	146886 .	094K	2009/mar/09	20090309	404.371
508510	Socrates 19	146886 .	094K	2009/mar/09	20090309	404.518
508511	Delano 1	146886 .	094K	2009/mar/09	20090309	406.178
508512	Delano 2	146886 .	094K	2009/mar/09	20090309	338.339
508515	Delano 3	146886	094K	2009/mar/09	20090309	406.042
508521	Delano 4	146886 .	094K	2009/mar/09	20090309	406.165
508527	Delano 5	146886	094K	2009/mar/09	20090309	406.021
508535	Delano 6	146886 .	094K	2009/mar/09	20090309	405.873
508537	Delano 7	146886 .	094K	2009/mar/09	20090309	405.729
508540	Delano 8	146886	094K	2009/mar/09	20090309	405.654
508550	Grizzly 2	146886 .	094K	2009/mar/09	20090309	424.21
508554	Delano 3	146886	094K	2009/mar/09	20090309	423.961
508557	Grizzly 4	146886 .	094K	2009/mar/09	20090309	406.982
508560	Grizzly 5	146886	094K	2009/mar/09	20090309	423.724
508597	Dieppe 1	146886	094K	2009/mar/10	20090310	337.13 9
508598	Dieppe 2	146886 .	094K	2009/mar/10	20090310	337.143
508599	Dieppe 3	146886	094K	2009/mar/10	20090310	337.147
508600	Dieppe 4	146886 .	094K	2009/mar/10	20090310	421.65
508602	Dieepe 6	146886 .	094K	2009/mar/10	20090310	421.656
508603	Dieppe 7	146886 .	094K	2009/mar/10	20090310	421.66
508605	Dieppe 8	146886	094K	2009/mar/10	20090310	269.851
508606	Dieppe 9	146886 .	094K	2009/mar/10	20090310	405.02
508607	Dieppe 10	146886.	094K	2009/mar/10	20090310	405.021
508609	Dieppe 11	146886 .	094K	2009/mar/10	20090310	405.021
508617	Dieppe 12	146886	094K	2009/mar/10	20090310	421.892
			vi			

508621	Dieppe 13	146886 .	094K	2009/mar/10	20090310	404.948
508623	Dieppe 14	146886 .	094K	2009/mar/10	20090310	405.051
508627	Dieppe 15	146886 .	094K	2009/mar/10	20090310	405.052
508629	Dieppe 16	146886 .	094K	2009/mar/10	20090310	422.263
508633	Dieppe 17	146886.	094K	2009/mar/10	20090310	422.097
508634	Dieppe 17	1 46886 .	094K	2009/mar/10	20090310	422.561
508636	Dieppe 18	146886 .	094K	2009/mar/10	20090310	422.63
508639	Dieppe 18	146886 .	094K	2009/mar/10	20090310	422.629
508642	Dieppe 20	146886 .	094K	2009/mar/10	20090310	405.27
508644	Dieppe 21	146886 .	094K	2009/mar/10	20090310	388.452
508645	Dieppe 22	146886 .	094K	2009/mar/10	20090310	422.467
508647	Dieppe 23	146886 .	094K	2009/mar/10	20090310	405.56
508651	Dieppe 24	146886 .	094K	2009/mar/10	20090310	422.486
508656	Dieppe 25	146886 .	094K	2009/mar/10	20090310	338.186
508659	Dieppe 26	146886 .	094K	2009/mar/10	20090310	422.736
508666	Dieppe 27	146886 .	094K	2009/mar/10	20090310	422.665
508670	Dieppe 28	146886 .	094K	2009/mar/10	20090310	304.394
508671	Dieppe 29	146886 .	094K	2009/mar/10	20090310	355.231
508675	Dieppe 30	146886	094K	2009/mar/10	20090310	405.998
508685	Dieppe 31	146886	094K	2009/mar/10	20090310	372.18
508686	Dieppe 32	146886 .	094K	2009/mar/10	20090310	423.009
508687	Dieppe 33	146886 .	094K	2009/mar/10	20090310	406.271
508688	Dieppe 34	146886	094K	2009/mar/10	20090310	355.674
508689	Dieppe 35	146886	094K	2009/mar/10	20090310	338.66
508690	Dieppe 36	146886 .	094K	2009/mar/10	20090310	338.523
508691	Dieppe 36	146886 .	094K	2009/mar/10	20090310	406.415
508692	Dieppe 38	146886 .	094K	2009/mar/10	20090310	406.672
508693	Dieppe 39	146886 .	094K	2009/mar/10	20090310	305.023
508694	Dieppe 40	146886 .	094K	2009/mar/10	20090310	372.987
508696	Dieppe 41	146886 .	094K	2009/mar/10	20090310	372.206
508697	Dieppe 42	146886.	094K	2009/mar/10	20090310	406.241
508699	Dieppe 43	146886 .	094K	2009/mar/10	20090310	406.385
508704	Dieppe 44	146886 .	094K	2009/mar/10	20090310	406.124
508771	Delano 9	146886.	094K	2009/mar/11	20090311	405.508
509141	Gataga 20	146886 .	094K	2009/mar/17	20090317	410.227
509544	Goat	146887 .	094K	2009/mar/23	20090323	422.436
511151	GRIZZLY 13	146886 .	094K	2009/apr/20	20090420	424.864
511153	GRIZZLY 13	146886 .	094K	2009/apr/20	20090420	425.069
511155	GRIZZLY 14	146886 .	094K	2009/apr/20	20090420	425.065
511157	GRIZZLY 15	146886 .	094K	2009/apr/20	20090420	425.078
511159	GRIZZLY 16	146886 .	094K	2009/apr/20	20090420	425.074
511160	GRIZZLY 16	146886 .	094K	2009/apr/20	20090420	425.224
511162	GRIZZLY 17	146886 .	094K	2009/apr/20	20090420	425.323
511165	GRIZZLY 18	146886 .	094K	2009/apr/20	20090420	425.323
511188	GRIZZLY 19	146886 .	094K	2009/apr/20	20090420	425.324

1

	1189	GRIZZLY 20	146886 .	094K	2009/apr/20	20090420	425.319
	1191	GRIZZLY 21	146886 .	094K	2009/apr/20	20090420	425.282
	1192	GRIZZLY 22	146886 .	094K	2009/apr/20	20090420	425.573
51	1193	GRIZZLY 23	146886 .	094K	2009/apr/20	20090420	425.575
51	1195	GRIZZLY 24	146886 .	094K	2009/apr/20	20090420	425.579
51	1198	GRIZZLY 25	146886 .	094K	2009/apr/20	20090420	425.58
51	1200	GRIZZLY 26	146886 .	094K	2009/apr/20	20090420	357.475
51	1201	GRIZZLY 27	146886 .	094K	2009/apr/20	20090420	425.54
51	1203	GRIZZLY 28	146886 .	094K	2009/apr/20	20090420	425.576
51	1205	GRIZZLY 29	146886 .	094K	2009/apr/20	20090420	340.464
51	7875	LR1	146886 .	094K	2009/jul/17	20090717	405.186
51	7879	LR4	146886 .	094K	2009/jul/17	20090717	422.298
51	7876	TR1	200740 .	094K	2009/jul/17	20090717	406.942
51	7880	TR2	200740 .	094K	2009/jul/17	20090717	406.943
51	7881	TR3	200740 .	094K	2009/jul/17	20090717	406.945
51	7909	LR26	200740 .	094K	2009/jul/17	20090717	406.298
51	7914	LR31	200740 .	094K	2009/jul/17	20090717	372.664
510	0008		124708 .	094K	2009/jul/23	20090723	591.197
510	0739	KEY1	124708 .	094K	2009/jul/23	20090723	84.474
510	0740	KEY2	124708 .	094K	2009/jul/23	20090723	84.476
510	0741	KEY3	124708 .	094K	2009/jul/23	20090723	152.056
510	808	KEY X	124708 .	094K	2009/jul/23	20090723	16.897
510	0809	KEY Y	124708 .	094K	2009/jul/23	20090723	16.891
510	0810	NUCO 1	124708 .	094K	2009/jul/23	20090723	16.881
510	0255		124708 .	094K	2009/aug/30	20090830	270.179
519	9544	KEY	124708 .	094K	2009/aug/31	20090831	422.374
519	9545	KEY 1	124708 .	094K	2009/aug/31	20090831	422.15
519	9546	KEY 3	124708 .	094K	2009/aug/31	20090831	219.48
504	4085	Carmen	146887 .	094K	2009/sep/17	20090917	405.558
501	1321	Lana	124708 .	094K	2009/dec/31	20091231	101.627
50 ⁻	1446	Meg	124708 .	094K	2009/dec/31	20091231	236.91
501	1482	Hunter	124708 .	094K	2009/dec/31	20091231	406.726
501	1523	Sara	124708 .	094K	2009/dec/31	20091231	287.368
501	1534	Missy	124708 .	094K	2009/dec/31	20091231	406.025
501	1416	Angel	124708 .	094K	2010/jan/12	20100112	338.184
504	4049	Lucky Lady	146887 .	094K	2010/jan/17	20100117	406.228
504	4060	Peak	146887 .	094K	2010/jan/17	20100117	422.084
504	4064	Peak South	146887 .	094K	2010/jan/17 2010/may/1	20100117	422.362
504	4869		146886 .	094K	2	20100512	746.834
501	1462	Sox	124708 .	094K	2010/dec/31	20101231	253.727
501	1497	Тауа	124708 .	094K	2010/dec/31	20101231	202.698
501	1161		146886 .	094K	2011/jan/12	20110112	153.57
501	1201		146886 .	094K	2016/jan/12	20160112	153.709

APPENDIX B

MUSKWA-KECHIKA SMZ

.....

LINKS TO INFORMATION ON THE MUSKWA-KECHIKA SPECIAL MANAGEMENT ZONE

Government and separate advisory board

http://srmwww.gov.bc.ca/rmd/lrmp/mk

http://www.qp.gov.bc.ca/statreg/stat/M/98038_01.htm

http://www.em.gov.bc.ca/subwebs/oilandgas/ptp/MKMA.htm

http://www.qp.gov.bc.ca/statreg/reg/M/53_2002.htm

http://www.dir.gov.bc.ca/gtds.cgi?show=Branch&organizationCode=SRM&organization alUnitCode=MK

Canadian Parks and Wilderness Society

http://www.cpaws.org/northernrockies

The Muskwa-Kechika Management Area

http://www.wilderness.net/library/documents/IJWDec03 ShultisRutledge.pdf

APPENDIX C

Į,

ASSAYS

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)	852 E. HASTINGS ST. VAN ASSAY CERT		PHONE (604) 253-3158 FAX (604) 253-1716
	Action Mineral Fi	le # A609098	77
	1255 W. Pender St., Vancouver BC V SAMPLE#	Au** Sample gm/mt kg	
	G-1 465009 465010 465013 465018	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	RE 465018 RRE 465018 465019 465020 465021 (pulp) I.S.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	465022(pulp)I.S. 465023 465024 465025(pulp) 465026	.05 2.69 <.01 2.92 1.14 <.01 2.99	
	465027 465028 STANDARD SL20	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
- SAMPLE TYPE: D <u>Samples beginnin</u>	NUS METALS BY FIRE ASSAY FROM 1 A.T. RILL CORE R150 <u>19 'RE' are Reruns and 'RRE' are Reje</u> DEC 5 2006 DATE REPORT MAI	<u>ct Reruns.</u> DEC 152006	4
			Raymund Curch
All results are considered the confidential prop	porty of the client. Acme assumes the	liabilities for actual cest o	of the analysis only

•

1255 W. P 2n Ag M1 G0 Mn Fe As L ppm ppm	Ion Mineral Pender St., Vancouve I 7h Sr Co SD Bi S II 105 II 7h Sr Co SD Bi S II 7h Sr Co SD Bi S II 7h Sr Co SD Bi S II 102 II 103 II 103 II 104 II 105 II 108 II 108	ž š ppm žpm ž ppm 2.39 .09 24 7.9 7.9 7.9 2.9 4.20 .08 6 9.6 1.91 2.5 3.7 3.7.47 .02 7 7.1 3.05 9.9 3 8 .3.85 12 15 36.3 4.24 38 5 5.13 .01 ~5 13.2 2.73 27 5 5.13 .01 ~5 13.3 2.7 25 4 5.07 .01 .55 12.6 2.77 28 0 4.26 .02 .45 12.0 2.0 26 8 .9 .20 10 13.7 4.18 59.2 6 1.30 .04 7 201.3 .20 789 5 .33 .08 12 15.3 .20 3289 1 .34.47 01 15.	Al Ns X A T1 A1 Ns X X Z Ce Sn X X X Upon DDM	Y ND T2 BP SC L1 S RC Hf Y ND T2 BP SC L1 S RC Hf Y ND T2 BP SC L1 S RC Hf Y ND DP DPM DPM A DEC SDM 3 22.5 L6 -45 6 38.6 <.5 122.3 .7 9 -5.5 -5 -5 14.4 8.1 5.5 .5 4 1.9 -5 -5 -5 14.4 8.1 .5.5 .5 4 1.9 -5 -5 12 70.0 1.9 .2.0 1.0 2 2.2 -5 -5 45 2.1 1.6 .8 4 2.9 -5 -5 6 2.2 1.1 .6 .5 5 2.6 -5 -5 5
1255 W. F 2n Ag M1 66 Me fe As J ppm ppm	Pender St., Vancouve I 7b Sr Cd Sb B1 3 S 4 5 45 10 9 2.6 105 < 578.016.4 13 2.6 58 < 57 4.6 2.0 122 2.8 57 < 5 15.0 3.0 20 3 2.6 58 < 51 4.9 2.8 11 1 7.8 61 < 5 15.0 3.1 36 3 3.1 108 < 5 7.2 6 21 1 1.2 390 < 5 183.7 5.6 44 1 5.4 1408 6.7 20.8 19.6 92 2 2.4 5 < 5 7.4 4.2 3 7.5 5 4.4 1.2 6 1 2.2 308 < 6 15.0 18.3 126 2 3.2 6 5.7 6 1.4 1.2 6 1 2.2 308 < 5 1.9 5 44 2 2.4 5 < 5 1.9 5 44 2 5.7 61 < 5 9.3 1.8 5 5 0.0 69 < 5 1.9 5 44	er BC V6E 2V1 Submit v La P La Cr Mg Ba a 3 ppm ppm ppm x ppm 0 2.39 0.99 24 7 9 7.3 626 0 4.20 0.98 6 9.6 1.9 23 98 9 7 1.3 56 95 5 3.85 12 15 36.3 4.24 38 9 5 5.13 01 ~5 10.3 2.75 25 4 50.7 01 ~5 12.6 2.77 25 4 50.7 01 ~5 12.6 2.77 25 4 50.7 01 ~5 12.6 2.77 25 4 50.7 01 ~7 201.3 20 7 25 4 50 -6 13.0 4 7 201.3 20 9 -7	Al Ns X A T1 A1 Ns X X Z Ce Sn X X X Upon DDM	m non ppm ppm
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ž š ppm žpm ž ppm 2.39 .09 24 7.9 7.9 7.9 2.9 4.20 .08 6 9.6 1.91 2.5 3.7 3.7.47 .02 7 7.1 3.05 9.9 3 8 .3.85 12 15 36.3 4.24 38 5 5.13 .01 ~5 13.2 2.73 27 5 5.13 .01 ~5 13.3 2.7 25 4 5.07 .01 .55 12.6 2.77 28 0 4.26 .02 .45 12.0 2.0 26 8 .9 .20 10 13.7 4.18 59.2 6 1.30 .04 7 201.3 .20 789 5 .33 .08 12 15.3 .20 3289 1 .34.47 01 15.	1 2 4 2 ppm ppm ppm ppm ppm ppm 239 8.10 2 65 3 0 <.5 10.2 46 1.3 14. 044 38 03 19 <.5 2.1 12 26.9 6. 063 1.9 03 1.9 <.5 31.8 16 4.4 11. 431 2.50 02 12 <.5 19.1 32 1.5 5.5 10 9.0 10 049 1.25 02 39 <.5 23.4 10 7.3 9. 045 1.26 02 36 <.5 23.4 10 7.3 9. 046 1.25 02 36 <.5 23.4 10 7.3 9. 046 1.25 02 36 5 23.4 10 7.3 9. 046 1.25 02	m non ppm ppm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 2.39 .09 24 7 9 7.3 926 . 0 4.20 .08 6 9.61 19 23 . 9 9 9 9 1 3.05 9 9 3 9 1 1 1.9 9 9 3 8 1 1 5 3 3 2 1.3 1.9 9 9 1 3 1.9 9 9 1 3 1.9 1.9 1.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 3 86 12 15 36 3 4 24 38 0 5 13 2 2 38 2 2 7 5 5 13 01 45 10 3 2 7 2 5 5 10 2 7 2 5 2 7 2 4 5 0 1 45 10 3 2 7 2 4 5 0 1 4 6 2 7 2 3		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 13 2 2 7 5 5 13 01 <5	.055 1 28 03 .43 <.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 2.6 55 <.5	5 5 13 01 (5 10, 3, 2, 75 25 4 5 07 01 (5 12, 6, 2, 77 25 6 4 6 02 (5 20, 7, 2, 66 99 7 8 90 2 10 13, 7, 4, 18 50 6 130 04 7 201, 3 20 789 3 ,33 08 12 15, 3 ,20 1388 4 4,47 01 10 16, 3, 2, 46 71 4 5,72 03 18 17, 6, 40 114 014/28 11 27 50, 8, 2, 64 684 9 75 03 25 17, 7, 6, 27 77 1 6,48 .04 21 13, 9, 4, 22 102 12	049 1 29 02 39 <.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5.07 01 <5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5.07 01 <5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 4.26 02 <5	094 2 43 03 1.29 <.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1.2 390 <.5	6 1 30 .04 7 201.3 .20 769 . 3 .33 0.8 12 15.3 .20 1326 3 4.47 0.1 10 15.3 .20 1326 4 5.72 0.3 18 17.6 4.02 114 14 5.72 0.3 18 17.6 4.02 144 9 7.53 0.3 25 17.7 6.27 77 1 6.48 .04 21 13.9 4.22 102	075 5,79 1 35 3 9 8 3.5 12 1.6 4. 171 6 39 2 31 7.36 9 45.3 22 1.8 6. 066 1 89 0.2 1.11 4.5 37.1 00 11.3 11. 160 3.73 .02 2.02 4.5 79 4 36 4.7 18. 190 3.76 .60 81 3.9 44.4 29 3.6 16. 163 3.86 .02 1.55 5 55.0 47 3.3 20.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
93 81.3 7 2 11 159 2.89 11 2 1 16 1.3 64.0 777 997 2 71 103 1.2 11 <5	1 5.4 1408 6.7 10.8 19.6 9. 2 3.2 45 <.5	3 33 0.8 12 15.3 .20 1389 3 4.47 01 10 16.3 2.46 71 4 5.72 03 18 17.6 4.02 114 16 4.76 11 27 50.8 2.04 694 9 7.55 03 25 17.7 6.27 77 1 6.48 .04 21 13.9 4.22 102	$ 171 \ 8 \ 39 \ 2 \ 31 \ 7 \ 36 \ \ 9 \ \ 45 \ 3 \ \ 22 \ \ 1 \ 8 \ \ 6 \ . \\ 066 \ 1 \ \ 89 \ \ \ 02 \ \ 1 \ \ 1 \ \ < 5 \ \ 37 \ \ 1 \ \ 0 \ \ 11 \ \ 3 \ \ 1 \ \ \ \ \ 1 \ \ 1 \ \ 1 \ \ \ 1 \ \ \ \ 1 \$	0 8.1 .6 <5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3.2 45 <.5	3 4.47 01 10 16.3 2.46 71 4 5.72 03 18 17.6 402 114 10 14 12 50.8 2.04 694 9 7.53 03 25 17.7 6.27 77 1 6.48 .04 21 13.9 4.22 102	066 1 89 02 1 11 <5	8 2.7 <.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3.2 45 <.5	3 4.47 01 10 16.3 2.46 71 4 5.72 03 18 17.6 402 114 10 14 12 50.8 2.04 694 9 7.53 03 25 17.7 6.27 77 1 6.48 .04 21 13.9 4.22 102	066 1 89 02 1 11 <5	8 2.7 <.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 7.5 57 <.5	4 5.72 03 18 17.6 4.02 114 0 14.78 11 27 50.8 2.04 504 9 7.53 03 25 17.7 6.27 77 1 6.48 04 21 13.9 4.22 102	163 3.77 .02 2.02 < 5	1 5.8 .5 <5 8 29.1 <.5 70.4 2.2 7 3.5 <5 <5 10 15.3 8 28.1 1.1 3 6.5 .5 <5 12 60.7 <.5 49.8 2.3
14 <.5	5 8.0 89 4.5 1.9 5 4 2 5.7 61 4.5 9.3 1.8 5 0 5.1 100 4 5 8.2 4.3 3	9 7 53 03 25 17.7 6.27 77 . 1 6.48 04 21 13.9 4.22 102 .	163 3 88 92 1 55 < 5 85 0 47 3 3 20	3 6.5 .5 <5 12 60.7 <.5 49.8 2.3
7 < 5 16 0 71 1270 2.22 544 2.2 11 < 5 16 7 32 1848 3.28 73 2 0	.2 5.7 61 <.5 9.3 1.8 5 0 5.1 100 < 5 8.2 4.3 3	1 6.48 .04 21 13.9 4.22 102 .		
11 < 5 16 7 32 1848 3.28 73 2 0	0 5.1 100 < 5 8.2 4.3 3		191 9 14 19 1 4 2 9 4 4 4 4 4 4	
11 < 5 16 7 32 1848 3.28 73 2 0	0 5.1 100 < 5 8.2 4.3 3			
	4 3.8 426 61 8 56.1 5.0 7			
		are Reruns and 'RRE' a		
			*	
				101 513/CR
1	RECEIVED: DEC 5 20	RECEIVED: DEC 5 2006 DATE REPOR	RECEIVED: DEC 5 2006 DATE REPORT MAILED:D	RECEIVED: DEC 5 2006 DATE REPORT MAILED: DEC. 1.5. 2006

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES LED 852 E. HASTINGS ST. VANCOUVER BC VGA 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 Sale and (ISO 9001 Accredited Co.) New Address ASSAY CERTIFICATE Action Mineral File # A603520 1255 W. Pender St., Vandouver BC V6E 2V1 Submitted by: Eeorge Coetzee SAVALES Ca Po Di Ag Hi Ca Mi Fe As U TA Se Ca Sa Ba II Ca P La Cr Hg Sa Tí Al Ma K a Ze Ca Sa Y Ma Ta Be Sc Li S. Rb Hr No 338 6-2 <. .5 .8 22.2 58 <.5 5.4 5 6.76 2.42 <5 4.5 10.1 855 <.5 <.5 5.1 5.1.6 55 4.5 10.1 855 <.5 <.5 5.1 5.1 2.65 .83 30 4.2 .79 1022 .249 8.66 2.77 3.37 1.3 7.6 54 E.5 16.9 23.4 L.6 <5 5 139.4 .7 .9 70617.1 19.4 142 11.9 193.2 172 791 7 65 561 < 5 1.8 65 3.2 15.6 5.3 <10 4.18 .23 25 8.8 2.01 43 .602 1.92 .03 .53 <51 6.1 52 69.0 12.4 1.1 <5 <5 6 19.4 4.9 15.1 .6 466067 < 5 65113.9 62.7 179 6.1 237.2 554 628 7.55 800 .7 2.1 51 2.0 13.3 14.7 40 3.43 .23 10 18.2 1.76 59 .647 F.31 .02 .74 < 5 19.5 20 43.9 9.9 2.6 <.5 45.9 5.2 23.6 .3 ASSIAN 53.4000420 55-22 231.7 8820.2 1360.4 13235 52.0 3473.0 120 4291 0.70 27 2.2 3.8 390 51.1 53.6 5.0 60 2.95 .05 16 2228.5 4.37 445 .07 1.24 2.32 1.1 8.9 26 6.4 12.8 13.0 1.1 5 7 23.4 1.0 79.5 5 GROUP 7TX - 0.500 GM SAMPLE, 4 ACID (HF-HCLO4-HNO3-HCL) DIGESTION TO 100 ML, ANALYSIS BY ICP-ES/ICP-MS. - SANPLE TYPE: DRILL CORE R150 JAN 1 0 2007 DATE RECEIVED: OEC 22 2006 DATE REPORT MAILED: ... Raymond Chan All results are considered the confidential property of the cijent. Acre assumes the liabilities for actual cost of the analysis only a detail of the

3

APPENDIX D

. .-

·----

. ____

Racing River Claims

TWENTY-SEVEN CAPITAL CORP.- CLAIM LIST SEPTEMBER 6, 2006

.Claim Name	Grant Number D		gistered	Mining
Bronson and 1	Foro Properties (1)			
Muskwa Prope	erty			
3 3 4 5 6 7 8 9 10-11 12-13 14 15 16-17 18 19 20 21-22 23 24 25 26	508511-508512 0 508515 094K 508554 094K 508521 094K 508527 094K 508537 094K 508537 094K 508540 094K 508771 094K 511472-511473 0 511478 094K 511480 094K 511480 094K 511485 094K 511488 094K 511619-511620 0 515490 094K 515495 094K 515505 094K 515516 094K 517636-517637 0 517639 094K	94K 94K 94K		
Dieppe 16 17 17 18 18 20	508597-508600 09 508602-508603 09 508605-508607 09 508609 094K 508617 094K 508621 094K 508623 094K 508627 094K from Horst Klassen 508629 094K 508633 094K 508634 094K 508636 094K 508639 094K 508642 094K 508642 094K	94K 94K		
		· •		

30 31-36 36 38-40 41-42 43 44 45 46 46 46 47 48 49 50-52 53 54-55	508647 094K 508651 094K 508656 094K 508656 094K 508666 094K 508670-508671 094K 508675 094K 508685-508690 094K 508691 094K 508692-508694 094K 508692-508694 094K 508699 094K 508699 094K 511492 094K 511492 094K 511494 094K 511498 094K 511500 094K 511600 094K 511602-511604 094K 511614 094K
508447 094K 508449 094K 508450-508452 8-11 508454 12-13 508459 Gataga 14 15	-508457 094K -508460 094K 508462 094K 508464 094K
22-23	511522-511523 094K
24-25	511525-511526 094K
26-32	511528-511534 094K
33-36	511536-511539 094K
37-38	511615-511616 094K
39 511618	094K
Grizzly 1	508545 094K
2	508550 094K
4	508557 094K
5	508560 094K
6-11	511143-511148 094K
12-13	511150-511151 094K
13	511153 094K
14	511155 094K
15	511157 094K
16	511159 094K
16	511160 094K
17	511162 094K
18	511165 094K
19-20	511188-511189 094K
21-23	511191-511193 094K
24	511195 094K
25	511198 094K
26-27	511200-511201 094K

28 29 30	511203 094K 511205 094K 511212 094K
31	511215 094K
32	511217 094K
33 34	511219 094K 511220 094K
34 35-36	511220-094K
37	511225 094K
38	511228 094K
39	511232 094K
40-41	511235-511236 094K
42 43	511242 094K 511245 094K
	511245 094K 511247-511248 094K
46	511250 094K
	511252-511254 094K
50	511256 094K
51	511258 094K
52	511260 094K
53-54 55	511262-511263 094K 511265 094K
	511267-511269 094K
	511271-511276 094K
65-72	518973-518980 094K
73-76	525771-525774 094K
77	525780 094K
	525783-525785 094K
	525787-525789 094K 525791-525792 094K
	525794-525795 094K
	525797-525799 094K
91-95	525801-525805 094K
	525808-525809 094K
98	525811 094K
99-101 102	525814-525816 094K 525818 094K
102	
Socrates 1	508479 094K
2	508482 094K
2	508483 094K
4-10	508484-508490 094K
11 12	508492 094K
12	508494 094K 508497 094K
13	508504 094K
15-19	508506-508510 094K
20	511436 094K
21	511439 094K
22	511441 094K
23 24-27	511443 094K 511446-511449 094K
28-38	511451-511461 094K
39	511463 094K
40-41	511465-511466 094K
42-44	511595-511597 094K
crates 45	511599 094K
46	515464 094K

47-49 515466-515468 094K 50-52 515470-515472 094K 53 515476 094K 54 515482 094K 55 515485 094K 56 515811 094K 57 515813 094K 58-68 515816-15826 094K Toad 1 508707 094K 2-3 508709-508710 094K 4 511502 094K 5 511505 094K 6 511507 094K 7 511509 094K 511511-511513 094K 8-10 11 511515 094K 12-13 511607-511608 094K 14-15 511610-511611 094K 16 511613 094K 17 517407 094K 18 517410 094K Bronson and Toro Properties (1) Bronson 501161 094K 428 North 501179 094K Book 501201 094K 504869 094K Toro Muskwa Property Delano 1-2 508511-508512 094K 3 508515 094K 3 508554 094K 4 508521 094K 5 508527 094K 6 508535 094K 7 508537 094K 8 508540 094K 9 508771 094K 10-11 511472-511473 094K 12-13 511475-511476 094K 14 511478 094K 511480 094K 15 16-17 511482-511483 094K 18 511485 094K 19 511488 094K 20 511490 094K 21-22 511619-511620 094K 23 515490 094K 24 515495 094K 25 515505 094K 26 515516 094K 27-28 517636-517637 094K 28 517639 094K ppe 1-4 epre 508597-508600 094K 6-7 508602-508603 094K

8-10 508605-508607 094K

11	508609 094K
12	508617 094K
13	508621 094K
14	508623 094K
15	508627 094K

(1) optioned from Horst Klassen

••

			Registered	
Claim Name	Grant Number	District		
Dieppe 16	508629 094K			
17	508633 094K			
17	508634 094K			
18	508636 094K			
18	508639 094K			
20	508642 094K			
21-22		094K		
23	508647 094K			
24	508651 094K			
25	508656 094K			
26	508659 094K			
27	508666 094K	00.414		
28-29		094K		
30		00.414		
31-36		094K		
36	508691 094K	00.41/		
	508692-508694			
	508696-508697	094K		
43 44				
44 45				
45	511494 094K			
40	511494 094K			
		RP CLAIM L	IST SEPTEMBER 6, 2006	
Muskwa Proper	• • •			
Registe	red	Mining		
Claim Name		District		
47	511498 094K			
	511500 094K			
	511600 094K			
50-52		094K		
53	511614 094K			
54-55		00417		
54-55	525822-525823	-		
Gataga 1-2	525822-525823 508444-508445	-		
Gataga 1-2 508447 094K		-		
Gataga 1-2 508447 094K 508449 094K	508444-508445	-		
Gataga 1-2 508447 094K 508449 094K 508450-508452	508444-508445 094K	-		
Gataga 1-2 508447 094K 508449 094K 508450-508452 8-11 508454	508444-508445 094K -508457 094K	-		
Gataga 1-2 508447 094K 508449 094K 508450-508452 8-11 508454 12-13 508459	508444-508445 094K -508457 094K -508460 094K	-		
Gataga 1-2 508447 094K 508449 094K 508450-508452 8-11 508454 12-13 508459 Gataga 14	508444-508445 094K -508457 094K -508460 094K 508462 094K	-		
Gataga 1-2 508447 094K 508449 094K 508450-508452 8-11 508454 12-13 508459 Gataga 14 15	508444-508445 094K -508457 094K -508460 094K 508462 094K 508464 094K	094K		
Gataga 1-2 508447 094K 508449 094K 508450-508452 8-11 508454 12-13 508459 Gataga 14 15 16	508444-508445 094K -508457 094K -508460 094K 508462 094K 508464 094K 508467	094K 094K		
Gataga 1-2 508447 094K 508449 094K 508450-508452 8-11 508454 12-13 508459 Gataga 14 15 16 17-19	508444-508445 094K -508457 094K -508460 094K 508462 094K 508464 094K 508467 508469-508471	094K 094K		
Gataga 1-2 508447 094K 508449 094K 508450-508452 8-11 508454 12-13 508459 Gataga 14 15 16 17-19 20 509141	508444-508445 094K -508457 094K -508460 094K 508462 094K 508464 094K 508467 508469-508471 094K	094K 094K		
Gataga 1-2 508447 094K 508449 094K 508450-508452 8-11 508454 12-13 508459 Gataga 14 15 16 17-19 20 509141 21 511520	508444-508445 094K -508457 094K -508460 094K 508462 094K 508464 094K 508467 508469-508471 094K 094K	094K 094K 094K		
Gataga 1-2 508447 094K 508449 094K 508450-508452 8-11 508454 12-13 508459 Gataga 14 15 16 17-19 20 509141 21 511520 22-23	508444-508445 094K -508457 094K -508460 094K 508462 094K 508464 094K 508467 508469-508471 094K	094K 094K 094K 094K		

Mining

511528-511534 094K
511536-511539 094K
511615-511616 094K
094K
508545 094K
508550 094K
508557 094K
508560 094K
511143-511148 094K
511150-511151 094K
511153 094K
511155 094K
511157 094K
511159 094K
511160 094K
511162 094K

TWENTY-SEVEN CAPITAL CORP.- CLAIM LIST SEPTEMBER 6, 2006 Registered Mining Claim Name Grant Number District

Muskwa Property (cont'd)

18	511165 094K
19-20	511188-511189 094K
21-23	511191-511193 094K
24	511195 094K
25	511198 094K
26-27	511200-511201 094K
28	511203 094K
29	511205 094K
30	511212 094K
31	511215 094K
32	511217 094K
33	511219 094K
34	511220 094K
35-36	511222-511223 094K
37	511225 094K
38	511228 094K
39	511232 094K
40-41	511235-511236 094K
42	511242 094K
43	511245 094K
Grizzly 44-45	511247-511248 094K
46	511250 094K
47-49	511252-511254 094K
50	511256 094K
51	511258 094K
52	511260 094K
53-54	511262-511263 094K
55	511265 094K
56-58	511267-511269 094K
59-64	
65-72	
73-76	525771-525774 094K
77	525780 094K
78-80	525783-525785 094K

TWENTY-SEVEN CAPITAL CORP.- CLAIM LIST SEPTEMBER 6, 2006

TWENTY-SEV			SI SEPTEMBER 6, 2006
	Registere		Mining
him Name	Grant Number	District	
	4 (
Muskwa Prope		00.414	
	525791-525792		
	525794-525795		
	525797-525799		
	525801-525805		
	525808-525809) 094K	
	525811 094K		
9 9 -101	525814-525816	3 094K	
102	525818 094K		
103-104	525820-525821	l 094K	
Socrates 1	508479 094K		
	508482 094K		
2	508483 094K		
4-10	508484-508490) 094K	
11	508492 094K		
12	508494 094K		
	508497 094K		
	508504 094K		
	508506-508510) 094K	
20	511436 094K		
21			
22	511441 094K		
23	511443 094K		
24-27	511446-511449) 094K	
28-38	511451-511461	094K	
39	511463 094K		
40-41	511465-511466	6 094K	
42-44	511595-511597	' 094K	
Socrates 45	511599 094K		
46	515464 094K		
47-49	515466-515468	3 094K	
50-52	515470-515472	2 094K	
53	515476 094K		
54	515482 094K		
55	515485 094K		
56	515811 094K		
57	515813 094K		
58-68	515816-15826	094K	
IWENTY-SEV			T SEPTEMBER 6, 2006
	Registere		Mining
Claim Name	Grant Number	DISTRICT	

Muskwa Property (cont'd) Toad 1 508707 094K 2-3 508709-508710 094K 4 511502 094K 5 511505 094K 6 511507 094K 7 511509 094K 8-10 511511-511513 0

511511-511513 094K

11 511515 094K 12-13 511607-511608 094K 14-15 511610-511611 094K 16 511613 094K 17 517407 094K 18 517410 094K

i.

APPENDIX E

.

. _____

-

DRILL AND GEOTECHNICAL LOGS

 Drill Hole: SX06-u1
 Claim: Sox
 N: 6487201
 E: 355814

AZ: 104 DIP: -45 EL: 1632 DHS: 6 September 06 DHF: 9 September 06

Logged by: G.C., J.C., S.D. Teched by: G.C., J.C., S.D.

Notes: SX-06-01 was drilled to intercept both the John and Janet veins that are visible in the stream cut to the South.

Both the John and Janet veins are within the dyke. The upper contact of the John vein can not be seen due to core loss but its lower contact is at 27.43 meters. The hole encountered the following lithologies starting from the top of the hole. A mudstone (shale), a dyke(I-Dyke?), shale with intercalated carbonate beds, and shale.

The Janet vein exists from 47.36-49.07 meters but was broken up by dyke material.

Both veins are quartz carbonate veins (dominated by quartz) that contain significant chalcopyrite and pyrite (up to 20%). The veins are 1 meter + in size (as seen in outcrop). Mineralization outside these two veins exists as trace pyrite and chalcopyrite. This hole was drilled with core size AQTK inner dia. rods.

Final depth: 59.44 metres

G.C. = George Coetzee

J.C. = Jared Chipman

S.D. = Sean Derby

D.P. = David Peake

Drill Hole: SX06-01 From: 1.52 To: 18.29 m

Page 2

Notes: Black to grey shale with beds os silt/clay within. Unaltered with quartz carbonate veining. Trace amounts of pyrite exist in veins and in seds (primary).

Lithology: Shale

Structure: well developed bedding that ranges from 15 to app. 55 deg TCA. Mostly shale with beds of silt/clay .5-5cm in size.

Alteration: Black to grey in colour, no silicification, un altered.

Veining: Quartz carbonate veining, less than 1% of rock. Small stringers at random orientations most are high angle though at app. 80 deg TCA . along with larger blocky veins up to 5cm Larger veing gnerally contain more quartz. Veins follw bedding but also crosscut.

Mineralization: Mineralization is in trace amounts of pyrite, no chalcopyrite observered.

Drill Hole: SX06-01 from: 18.29 To: 46 m

Page3

Lithology: Dyke

Notes: Dark to light green in colour, fine to medium grained.

Appears to at least one secondary intrusion of material within dyke, alternates between fine and medium grained (these may be chill margins marking second intrusion within first). Veining is quartz carbonate, smaller mm scale stringers along with some 15 cm veins. Both the John and Janet veins are hosted in this unit. The veins show significant chalcopyrite and pyrite mineralization.

Mineralization outside John and Janet is restricted to a few veins and only appears in trace amounts.

Structure: Massive, fine to medium grained. Larger grains are plagioclase (speculed look). . Unit has numerous rubble zones and is fault contacted lower slate/carbonate unit. At least two episodes of intrusion defined by chill margins (alternating between fine and medium grained).

Alteration: Dark to light green in colour. Chlorite stringers abundant t/o section, mint green mineral within veins (may be chlorite?, not sure).

Veining: Several sets of quartz carbonate and exist as mm size stringers up to larger 15 cm veins (these larger veins are blocky and contain more quartz than the smaller veinlets which are predominantly carbonate).

Both the targeted John and Janet veins are hosted within this unit. The John vein has a lower contact at 27.43 meters (the upper contact cannot be determined due to core loss). The Janet vein exists from 47.36-49.07 meters but is broken up internally by dyke material. Both veins are 1 meter + in width (as seen in outcrop).

They contain the only significant mineralization in the hole, pyrite and chalcopyrite up to 20%. Mineralization is trace in the rest of the veins but still exists as pyrite and chalcopyrite. Some veins contain a mint green mineral Possibly chlorite?). Larger veins tend to be brecciated and all veins having no general orientation.

Mineralization: Mineralization is trace pyrite outside vein material, but exists as fine to medium grained pyrite and semi massive blebs of chalcopyrite.

Chalcopyrite is rare compared to pyrite outside the John and Janet veins.

Within the targeted veins semi massive chalcopyrite blebs exist up to 1cm, while pyrite exists but not exclusive to small mm size stringers.

Drill Hole: SX06-01 From: 46 To: 51.98

Page 4

Notes: Prominent bedding app. perpendicular to TCA. Carbonate beds stand out as they are much coarser grained compared to seds.

Lithology: Shale with intercalated clay/silt and carbonate beds.

Structure: Clear presence of bedding 80-90 deg. TCA. Rock is more competent here than in previous section however rubble sections still exist. Clay bands are narrow 1-2 mm in size with odd larger bed.

Alteration: Black to grey in colour, no alteration.

Veining: Quartz carbonate veining at random orientations. Veins and veinlets 1mm-15cm in size. Microfacturing seen and larger veins are blocky and brecciated.

Mineralization: Is trace pyrite and chalcopyrite t/o rock but increases to app. 1% in veins.

The Janet vein exists from 47.36-49.07 meters but is broken up internally by dyke material. Both veins are 1 meter + in width (as seen in outcrop). They contain the only significant mineralization in the hole, pyrite and chalcopyrite up to 20%. Mineralization is trace in the rest of the veins but still exists as pyrite and chalcopyrite. Some veins contain a mint green mineral Possibly chlorite?). Larger veins tend to be brecciated and all veins having no general orientation.

Drill Hole: SX06-01 From: 51.98 To: 59.44

Page 5

Notes: Black to grey in colour unaltered shale, .

Lithology: Shale with intercalated silt/clay beds.

Structure: Clear presence of bedding that is now parrallel to sub parallel TCA. Beds appear to be younging up hole.

Alteration: No alteration, seds.

Veining: Less than 1% of rock quartz carbonate veining Mainly small carbonate veins, two larger (2-3cm) veins than contain most of the quartz.

Mineralization: Trace pyrite t/o. No visable chalcopyrite.

EOH 59.44 m

SX06-01 Recovery and RQD

From:	То:	Run Length	REC	RQD	%REC	AVG. REC(%)
1.52		1.53	0	0	0.00	0
3.05	4.57	1.52	0	0	0.00	0
4.57	6.1	1.53	0.2	0	0.13	13
6.1	7.62	1.52	1.07	0.31	0.70	70
7.62	9.14	1.52	0.23	0	0.15	15
9.14				0.4	0.93	93
10.67				0	1.00	100
12.19				0.41	0.94	94
13.72				0.62	0.96	96
15.24				0	0.07	7
16.76				0	0.14	14
18.29			0.74	0.18	0.49	49
19.81	21.34			0.74	0.88	88
21.34				0.69	0.94	94
22.86			1.3	0.83	0.86	86
24.38				0.32	0.88	88
25.91	27.43			0.12	0.28	28
27.43				0	0.78	78
28.96				0	0.29	29
30.48				0.1	0.54	54
32				0	0.53	53
33.53			1.3	0.61	0.86	86
35.05	36.58			0.73	0.92	92
36.58	38.1		1.43	0.54	0.94	94
38.1	39.62		1.26	0.51	0.83	83
39.62	41.15		1.46	0.66	0.95	95
41.15			1.12	0	0.74	74
42.67			1.04	0	0.68	68
44.2	45.72		1.29	0.35	0.85	85
45.72				0.2	0.60	60
47.28			1.29	0.35	0.91	91
48.7			0.75	0.18	0.50	50
50.2	51.82		0.84	0	0.52	52
51.82			0.29	0	0.14	14
53.84			0.02	0	0.02	2
54.86				0	0.35	35
56.39	57.91		1.41	0.55	0.93	93
57.91	59.44	1.53	1.34	0.46	0.88	88

Note: RQD data may be affected drastically by core size (AQ). EOH 59.44 m

Hole ID: SX06-01

Sample#	From:	To:	Length	Description	CU%
465012	25.05	25.91	0.86		
465013	25.91	27.43	1.52	Chalco vein	
465014	27.43	28.52	1.09	Chalco vein	
465015	44.2	45.72	1.52		
465016	45.72	46.83	1.11		
465017	46.83	47.35	0.52		
465018	47.35	47.78	0.43	Chalco vein	
465019	47.78	49.11	1.33	Chalco vein	
465020	49.11	50.29	1.18		
465022	27.43	27.43	0	Standard #1	

Page 1

Drill Hole: SX06-02	Claim: Sox	N: 6487149	E: 355761	
AZ: 120	DIP: -45	EL: 1638	DHS: 14 September 06	DHF: 26 September 06
Logged by: J.C.	Teched by: S.D. & J	c		

Notes: SX06-02 was drilled to intercept the extensions of the John and Janet veins on the southern side of the Sox stream. The hole only encountered one lithology, shale. The hole was abandoned prematurely at 83.82 meters and did not encounter any mineralization.

Final depth: 47.2m

J.C. = Jared Chipman

From: 0 To: 13.72

Page 2

Notes: Overburden with so incompetent = total core loss.

From: 13.72 To: 47.2

Page 3

Notes: Entire hole is shale wih clay/silt beds, Foliation remains reletively constant t/o hole. Trace amounts of quartz cabonate veining (small veinlets). Trace pyrite that is localized as veinlets.

Lithology: Shale that alternates with clay/silt beds.

Structure: Bedding ranges from 35-50 deg. TCA. Moderate increase in bedding angle as you move down hole. Amount of finer grained seds can be quite significant and in sections may be 50% of rock.

Alteration: Unaltered, tiny hint of chlorite in some quartz carbonate veining.

Veining: Trace amounts of quartz carbonate veining, mostly tiny veinlets, rare.

Mineralization: Fine grained disseminated pyrite that exists in stringers often associated with very tiny veinlets. Medium to coarse euhedral grains also present in some areas. Some stringers appear to be replacing small beds and are up to 2cm in size. Trace overall.

EOH 47.2m

Page 1

Drill Hole: SX06-02	Claim: Sox	N: 6487149	E: 355761	
AZ: 120	DIP: -45	EL: 1629	DHS: 14 September 06	DHF: 26 September 06

Logged by: J.C. Teched by: S.D. & JC

Notes: SX06-02 was drilled to intercept the extensions of the John and Janet veins on the southern side of the Sox stream. The hole only encountered one lithology, shale. The hole was abandoned prematurely at 83.82 meters and did not encounter any mineralization.

Final depth: 47.2m

Drill hole SX06-02

Core recovery and RQD Measurements

From: (in Metres)	To:	Run Length	Core Recovery	RQD	%REC	AVG. REC(%)
0	1.52	1.52	0.04	0	0.03	2.6
1.52	3.05	1.53	0.06	0	0.04	3.9
3.05	4.57	1.52	0.05	0	0.03	3.3
4.57	6.1	1.53	0.19	0	0.12	12.4
6.1	7.62	1.52	0.01	0	0.01	0.7
7.62	9.14	1.52	0.03	0	0.02	2.0
9.14	10.67	1.53	0.07	0	0.05	4.6
10.67	12 .19	1.52	0.02	0	0.01	1.3
12.19	13.72	1.53	0.18	0	0.12	11.8
13.72	15.24	1.52	0.11	0	0.07	7.2
15.24	16.76	1.52	0.14	0	0.09	9.2
16.76	18.24	1.48	0.38	0	0.26	25.7
18.24	19.81	1.57	0.26	0	0.17	16.6
19.81	21.34	1.53	0.62	0	0.41	40.5
21.34	22.86	1.52	0.65	0	0.43	42.8
22.86	24.38	1.52	1.0	0.12	0.66	
24.38	25.91	1.53	0.38	0	0.25	24.8
25.91	27.43	1.52	0.31	0	0.20	20.4
27.43	28.96	1.53	0.63	0	0.41	41.2
28.96	30.48	1.52	0.35	0	0.23	
30.48	32	1.52	0.38	0	0.25	
32	33.53	1.53	0.66	0	0.43	
33.53	35.03	1.50	0.47	0	0.31	31.3
35.03	36.58	1.55	0.22	0	0.14	
36.58	38.1	1.52	0.46	0	0.30	
38.1	39.62	1.52	0.63	0	0.41	41.4
39.62	4 1.15	1.53	0.75	0.37	0.49	
41.15	42.67	1.52	0.89	0.17	0.59	
42.67	44.2	1.53	0.77	0	0.50	
44.2	47.2	3.00	1.65	0	0.55	55.0

Note: Recovery and RQD results were negatively affected by the small core size (AQ).

EOH

47.2 m

Drill Hole: Sx06-03	Claim: Sox	N: 6487287	E: 355820	Final depth: 211.84
AZ: 151	DIP: -45	EL: 1642	DHS: Oct. 4th, 2006	DHF: Oct. 18th, 2006

Logged by: JC Teched by: JC

Notes: Drilled further down the limb of the fold structure than Sx06-01 in attempt to intercept the John and Janet vein at a greater depth.

The hole was drilled to a depth of 211.84 meters.

The only lithologies encountered were shale and dyke material

The shale contained clear bedding structures and alternated with with silt/clay beds.

Veining was quartz carbonate with larger veins being more quartz dominated.

Most veins were void of visable mineralization with only a few that contained pyrite mineralization.

Fine grained disseminated and sparse euhedral pyrite was encoutered in seds but of trace amounts with exception to one section that contained app. .05% PY.

From: 10.67 To: 62.8

Notes: Black to grey in colour. Alternating bands of mud and clay (70-80% mud. Weak foliation starting at 20 deg. Sharp upper contact with coarser grey bed at very start of section (20 deg. TCA).

Lithology: Shale with intercalated silt\clay beds.

Structure: Foliation starts at app. 20 deg. TCA, increases to 30 deg at 24.38 meters, that ranges from 45-55 deg TCA through 59.44 meters. Rock is often fractured along foliation. Rubble zone from 13.72-15.54 meters. Fault with gouge and milled material at 21.64, brecciated and fractured for app. 1.5 meters on either side of fault. Clay/silt beds range from <1mm to 2-3 cm.

Alteration: Black to grey in colour. No alteration.

Veining: Is quartz carbonate, mainly narrow stringers <1mm-1.5cm. Most follow foliation but some narrow veins run parallel TCA cross cutting the foliation. Some larger 5-7cm veins (brecciated) around fault at 21.64 meters, several sets seen here, Blocky veining cut by wormy smaller veins. One larger QC vein at 49.07 meters 10 cm in length. Some of the larger QC veins have mint green mineral (?) within. Vein percentage is increases from less than 1% to 3% from 30.78-35.05.

Mineralization: Vein material void of mineralization, fine grain disseminated pyrite in seds (primary?), semi massive blebs, some mm size stringers. No chalco observed.

Fr: 62.8 To: 63.31

Notes: Medium grained intermediate to felsic dyke, no mag. Sharp upper contact, undulating lower contact at app. 45 deg TCA. Grey in colour. Contains app. 50% quartz carbonate veining. Both stringy and blocky veins, massive with no general orientation. Wormy chlorite mm size stringers within veining.

Lithology: Dyke

Structure: Massive, medium grained

Alteration: Grey in colour, unaltered with exception of wormy chlorite stringers generally less than 1mm.

Veining: Quartz carbonate veining. .5-15cm blocky veins. 50% of dyke.

Mineralization: No visible sulphides.

From: 63.31 To: 76.86

Notes: Shale with clay/silt beds. Bedding is well defined but sporadic, 45 - 70 deg TCA.

Trace quartz carbonate veining (mostly carbonate) that is stringy, wispy and patchy, however some larger blocky veins do exist. Rock is unaltered mostly back in colour with light grey finer beds. Mineralization is trace very fine grained pyrite blebs hosted in the shale. Vein material is void of mineralization excluding chlorite stringers.

Lithology: shale

Structure: Bedding at app 45 deg then steepens to 60 deg TCA at about 66.3 meters and remains fairly steep until end of section. Rock has several competent sections but also has several rubble zones. Zones are, at least some, related to faults. Fault with gouge at 70.35 meters (40 deg TCA).

Alteration: May be weak silicification for several meters around vein perimeters. Narrow wormy chlorite stringers (<1mm) within veins material, otherwise

Veining: Trace narrow sporadic quartz carbonate veining (mostly carbonate, and one 6cm vein at 68.61m) until 76 meters where vein percentage picks up Veining here is large up to 15 cm blocky veins, still have stringers. The larger the vein the more the quartz carbonate ratio increases, stringers are mostl Larger veins contain chlorite stingers (<1mm).

Mineralization: trace very fine grained blebby pyrite seen only in seds, no chalco observed.

From: 76.86 To: 77.39

Notes: Massive quartz carbonate 60/40% vein with angular shale inclusions. Narrow chlorite stringers within, no visible sulphides.

Lithology: QCV

Structure: Massive, blocky, angular shale inclusions.

Alteration: 60% silica.

Veining: 98% QCV

Mineralization: Trace, none visible.

From: 77.39 To: 107.39

Notes: Shale with silt/clay beds. Black in colour, finer seds are light grey. May be small dyke at 99.36 meters (may be coarser seds).

Lithology: Shale

Structure: Bedding is often undulating and represents a stromatilite structure at 104.3m. Beds range from 45-70 deg. TCA.. Section is broken by several fault or rubble zones that have an associated increase in veining. Faulted and milled/rubble zone from 96.09-99.28m that contains numerous faults with gouge. Rock has some dewatering structure still preserved, ie. flame structures?

Alteration: Some silicification around vein perimeters. Otherwise none.

Veining: From 77.39-87 meters, 15% veining, large blocky quartz carbonate veins up to 15cm, along with a sporadic network of carbonate dominated stringers. Trace amounts of veining, small veinlets with one 5cm vein from 87-95.65.

Vein % increases to 15 from 95.65-100.5, veining here is associated with faulting and rubble zone.

Mineralization: Trace pyrite as fine grained disseminated blebs, no visible chalco.

From: 107.39 To: 107.8

Notes: Section defined by shear fabric seen in sediments.

Lithology: Shale

Structure: Shale with finer beds. Beds are undulating parallel TCA, then are sharply cut by small shear or fault at app. 45 deg TCA. Repeating pattern.

Alteration: Black to grey, unaltered.

Veining: Small stringers, <1mm that follow foliation, two 1cm veins also exist.

Mineralization: Trace amounts of fine grained disseminated pyrite, rare. No chalco.

From: 107.8 To: 133.85

Notes: Shale with silt/clay beds. Shale is graphitic. Veining is quartz carbonate, mainly stringers with odd larger vein. Veins have a distinct orientation some follow bedding while others are slightly shallower than bedding. Mineralization is trace pyrite that occurs as fine disseminated and rare coarse grained euhedral crystals. Small one meter carbonate section, grey to dark grey in colour, at end of unit that contacts dyke.

Lithology: Shale

Structure: Bedding exists at app. 50 and 80 deg. TCA and often sharply truncates one another forming V-shaped patterns for the first meter of the section. Healed fault at 126.26 and 131.70 meters. Bedding is app. 75 deg TCA after the first meter and remains generally constant.

Alteration: Unaltered

Veining: Quartz carbonate veining that is trace and exists as narrow 1mm size veinlets. Two or three 1-2 cm veins with one 4cm vein.

Veins have distinct orientation that either follows bedding or is 10-15deg TCA shallower.

Vein % increases slightly to (still less than one %) near the end of the section, most likely associated with faulting and the intrusion forming the lower contact of the unit.

Mineralization: Mineralization is trace pyrite, no chalco. Pyrite is fine grained disseminated, occurs as small blebs and as stringers in shale. Some coarse grained euhedral pyrite grains 2-32mm in size within veins but rare.

From: 133.85 To: 149.24

Notes: Mafic to intermediate dyke (more mafic), increase in grain size towards middle of flow, grains are 1-2 mm here. Abundant black stringers within, possibly chlorite but some don't easily scratch (silicified?). Trace amounts of cloudy wispy calcite veining, no orientation. No visible mineralization. Dyke appears to be intruding a small carbonate layer that exists for 1 meter before and at least two meters after (intermittent).

Lithology: Gabbro?

Structure: Massive, several small vein infilled and milled faults at 135.05 and 135.35 meters.

Alteration: Abundant black stringy mineral, most likely chlorite that has been overprinted to increase hardness in places. Rock is dark green to green in colour.

Veining: Trace amounts of quartz carbonate and cloudy wispy calcite veins, no orientation. Some fault infilling veins.

Mineralization: No visible mineralization.

Drill Hole: Sx06-03 From: 149.24 To: 170.33

Notes: Shale with carbonate section for the first 2.5 meters. Strong presence at first then beds fade to patchy then disapear altogether.

Lithology: Shale

Structure: Abundant faulting (with gouge) and fracturing. Bedding between 30-45 deg TCA. Fracturing exists primarily along bedding planes creating discs app. 1cm in width. Fault contacted lower contact with dyke

Increased quartz carbonate veining in this section, 20-30% in places. Mineralization is trace pyrite, no chalco.

Alteration: Green chlorite stringers, chlorite?, within veins. Otherwise void.

Veining: Quartz carbonate veining. From 149.24-161.35 meters: 20-30%. From 161.35-170.33: 3-5%. Sporatic cloudy whispy carbonate veining along with 1mm size veinlets that both follow and crosscut bedding. Several large guartz carbonate veins, ex from 156.97-157.47 and from 160.79-161.31 meters. Larger veins have green mineral stringers within, chlorite?

Mineralization: Trace pyrite mineralization. Fine grained disseminated stringers with rare patches of coarse grained euhedral grains (up to 4mm in size). No chalco.

From: 170.33 To: 173.05

Notes: Fine to medium grained massive intermediate dyke. Unaltered, veining is app. 1%. No visible sulphides.

Lithology: Dyke

Structure: Massive, fine to medium grained, healed/milled fault at 172.48 meters.

Alteration: Light grey in colour.

Veining: Quartz carbonate veining, small 1-2mm stringers 50 deg TCA. Cloudy wispy veins, no orientation, and one larger blocky/wispy vein. Smaller veins appear to be mostly carbonate.

Mineralization: No visible sulphides.

Drill Hole: Sx06-03 From: 173.05 To: 177.46

Notes: Black shale with narrow 2-3mm equally spaced clay beds that range from 30 deg to 45 deg TCA. Narrow carbonate veins, no quartz. Trace pyrite, no chalco.

Lithology: Shale

Structure: Patchy bedding at 45 deg TCA, 2-3 mm fine grained light grey beds spaced 1.5-2cm apart. Bedding shallows to 30 deg TCA at 174 meters. Abundant micro-faulting. Alteration: Black in colour. Unaltered.

Veining: Carbonate veining exists as small 1-3 mm veinlets (offset by micro-faulting) and as wispy stringy carbonate veins. 2-3% overall.

Mineralization: Trace pyrite that exists as 1mm euhedral grains present in some faint 2-3mm veins.

From: 177.46 To: 178.53

Notes: Massive, fine to medium grained dyke. Grey in colour. Quartz carbonate veining, cloudy wispy veins along with veinlets, chlorite stringers, no visible sulphides.

Lithology: Dyke

Structure: Massive, fine to medium grained.

Alteration: Chlorite stringers.

Veining: Quartz carbonate veining, cloudy wispy veins along with wormy stringers, 2% overall.

Mineralization: No visible sulphides.

From: 178.53 To: 185.46

Notes: Black to grey in colour, bedding and subsequent fracturing at 40 deg TCA. Narrow quartz carbonate veins that also follow bedding planes, Pyrite mineralization, .05%, no chalco.

Lithology: Shale

Structure: Bedding at 40 deg TCA. Mostly shale with finer silt/clay beds. Fracturing along bedding planes.

Alteration: Black in colour with finer grey beds, unaltered.

Veining: Trace quartz carbonate veining that follows bedding planes at 40 deg. TCA, narrow veinlets, 1-4 mm in size.

Mineralization: .05% pyrite that exists as fine grained stringers, medium to coarse blebby stringers, and as patchy fine grained blebs.

From: 185.46 To: 196.31

Notes: Dark grey to grey in colour, Massive, mostly fine grained, abundant sporadic fracturing that has often rehealed. Cloudy wispy veining with a few larger quartz dominated veins up to 6cm. Trace pyrite.

Lithology: Dyke

Structure: Massive, mostly fine grained, abundant sporadic fracturing. Fault with gouge and angular rubble at 189.80 meters.

Alteration: Chlorite stringers, black in colour. First noted appearance of green patchy chlorite at 191.20.

Veining: Quartz carbonate veining, mostly cloudy wispy veins, a few larger competent veins, one 6cm quartz dominated vein at 191.15 meters. No general orientation.

Mineralization: Trace pyrite only one or two medium sized grains seen within veining. No chalco.

From: 196.31 To: 211.34

Notes: EOH. Shale with prominent bedding, beds much more abundant in this section, much more finer grained material and beds are closer together at app. 30 deg TCA. Trace amounts of veining (majority is narrow <1mm carbonate veins). Trace fine grained pyrite stringers.

Lithology: Shale

Structure: Bedding at 30 deg. TCA and spaced .5-1cm apart in sections. Narrow beds then thick beds, not sure if cyclic or not.

Alteration: Black to grey in colour, unaltered.

Veining: Trace amounts of quartz carbonate (mostly carbonate) that exists as narrow stringers that are generally 5 deg shallower TCA then bedding.

Mineralization: Trace pyrite that exists as fine grained stringers.

EOH 211.34 m

SX06-03 Recovery and RQD

From:	To: In m	Run Length	REC	RQD	AVG. REC(%)
10.67	12.5	1.83	1.65	1.2	90
12.5	15.54	3.04	2.98	1.68	98
15.54	18.59	3.05	2.96	2.86	97
18.59	21.64	3.05	3.05	2.08	100
21.64	24.69	3.05	3.05	1.82	100
24.69	27.74	3.05	2.64	2.11	87
27.74	30.78	3.04	3.04	2.9	100
30.78	32	1.22	1.22	1.22	100
32	35.05	3.05	3.05	2.84	100
35.05	38.1	3.05	3.05	3.05	100
38.1	41.14	3.04	2.95	2.8	97
41.14	44.2	3.06	3.05	3.05	100
44.2	47.24	3.04	2.7	2.55	89
47.24	50.29	3.05	3.05	3.05	100
50.29	53.34	3.05	3.05	3.05	100
53.34	56.39	3.05	3	2.97	98
56.39	59.44	3.05	3.05	3.05	100
59.44	62.48	3.04	3.05	3.04	100
62.48	65.53	3.05	3.05	3.05	100
65.53	68.58	3.05	3.05	3.05	
68.58	70.1	1.52	1.52	1.71	100
70.1	71.63	1.53	0.8	0.3	52
71.63	74.68	3.05	3.05	3.05	100
74.68	77.72	3.04	3.04	3.04	100
77.72	80.77	3.05	3.03	2.77	99
80.77	83.82	3.05	3.05	3.05	
83.82	86.87	3.05	3.05	3.05	100
86.87	89.92	3.05	3.05	3.05	100
89.92	92.96	3.04	3.04	3.04	100
92.96	96.01	3.05	3.05	3.05	100
96.01	99.06	3.05	3.05	0.72	100
99.06	102.11	3.05	3.05	2.49	100
102.11	105.16	3.05	3.05	2.7	100
105.16	108.2	3.04	3.05	2.7	100
108.2	111.25	3.05	3.01	2.68	99
111.25	114.3	3.05	3.05	2.85	100
114.3	117.35	3.05	2.86	2.79	94
117.35	120.4	3.05	3.05	2.64	100
120.4	123.44	3.04	3.05	3	100
123.44	126.5	3.06	3.06	2.98	100
126.5	129.5	3	3	2.91	100
129.5	132.59	3.09	3.04	2.45	98
132.59	135.63	3.04	2.95	2.19	97
135.63	138.68	3.05	3.05	3.05	100
138.68	141.73	3.05	3.05	2.4	100
141.73	144.78	3.05	3.04	3.04	100
144.78	147.83	3.05	3.05	3.02	100
147.83	150.88	3.05	3.05	2.84	100
150.88	153.92	3.04	3.03	2.88	100
153.92	156.97	3.05	3.02	2.89	
156.97	160.02	3.05	2.89	2.51	95
160.02	163.07	3.05	2.86	2.71	94
163.07	166.1	3.03	3.03	0.99	100
166.1	169.16	3.06	2.67	1.26	87

1

 $\overline{}$

(

SX06-03 Recovery and RQD

(

6

From:	To: In m	Run Length	REC	RQD	AVG. REC(%)
169.16	172.21	3.05	3.05	0.75	100
172.21	175.26	3.05	2.79	2.77	91
175.26	178.31	3.05	3.05	2.54	100
178.31	181.35	3.04	3.04	2.95	100
181.35	184.4	3.05	3.02	2.95	99
184.4	187.45	3.05	3.05	2.9	100
187.45	190.5	3.05	3.05	3.05	100
190.5	193.55	3.05	3.05	2.39	100
193.55	196.59	3.04	2.99	2.35	98
196.59	199.64	3.05	3.05	3.05	100
199.64	202.69	3.05	3.05	2.96	100
202.69	205.74	3.05	3	2.96	98
205.74	208.79	3.05	3.01	3.01	99
208.79	21 1.84	3.05	2.96	2.89	97

Drill Hole: SX06-04	Claim: Sox	N: 6487254	E: 355844	Final depth: 92.35 meters
AZ: 171.5	DIP: -44.50 deg.	EL: 1639 m	DHS: Oct 23rd, 2006	DHF: Nov. 1st Nov 2006

Logged by: JC Teched by: JC

Notes: SX06-04 was drilled to intercept the john and Janet vein. The drill collar was placed almost directly west of the interpreted location of the john vein.

;

The drill hole was drilled at -45 degrees and did not encounter the John vein perhaps due to core loss, namely the Janet vein.

The hole did encounter significant mineralization (chalco) within a quartz carbonate vein from 69.87-70.52 meters.

Most interesting is the fact that the only dyke material that was encountered was at the very top of the hole and extended for only a few meters,

There was no dyke material surrounding the Janet vein? like in SX06-01.

The main Lithology is shale and the drill hole was terminated at 92.35 meters after contacting the targeted Janet vein.

EOH 92.35 m

Drill Hole: SX06-04 From: 0 To: 9.42

/

Notes: Casing

ſ

From: 9.42 To: 10.84

Notes: Faulted and rubble zone mixed with overburden, bedding evident, unknown orientation due to rubble. Quartz carbonate veining within seds (20%). Trace amounts of pyrite within veins along margin (wall rock reaction). No chalco

Lithology: Shale

Structure: Faulted with rubble. Bedding evident, mud/silt/clay. Mixed with overburden.

Alteration: unaltered, black to grey in colour.

Veining: quartz carbonate veining, stringers and blocky veins. Lower contact of section is vein with sed clasts inclusions.

Mineralization: Trace pyrite, medium sized euhedral grains on vein margins.

Fr: 10.84 To: 17.04

Notes: Dark green to grey dyke, intermediate composition, plagioclase phenocrysts. Chlorite stringers. 5% quartz carbonate veining, stringers to larger blocky veins. Trace pyrite no visible chalco.

Lithology: Dyke

Structure: Massive, medium to fine grained, plag phenocrysts.

Alteration: Dark green to grey in colour, rare chlorite stringers, otherwise unaltered.

Veining: Quartz carbonate veining, .5%. Small 1mm stringers to blocky 13cm veins. Larger veins often have dyke inclusions and are broken up.

Mineralization: Trace pyrite, 1 euhedral grain seen on vein margin.

From: 70.52 To: 92.35

Notes: Brecciated vein material at beginning of section but disapates shortly after milled fault at 70.98 meters.

Lithology: shale

Structure: Bedding shallows and is sub-parrallel-25 deg TCA. Drill hole shallowing? Several prominent milled faults in section, section is fractured along bedding pla Shale with finer gray beds, black to gray in colour. Veining is quartz carbonate stringers and veinlets. Mineralization is trace pyrie, no visable chalco.

Alteration: Hits of chlorite in some of the larger veins. Optherwise none.

Veining: Veining is quartz carbonate app. 5% of rock. 95% of veining is small stringers and veinlets up to app. 1cm in size. One larger blocky vein (12cm) that contains angular sed clastsup tp 1cm in size.

Mineralization: Trace pyrite, no visable chalco.EOH92.35 m

SX06-04 Recovery and RQD

From:	To:	Run Length	REC	RQD	AVG. REC(%)
9.42	10.06	0.64	0.64	0.32	100
10.06	13.11	3.05	3.03	2.57	99
13.11	16.15	3.04	3.02	2.87	99
16.15	19.2	3.05	3.01	2.7	99
19.2	22.25	3.05	3.08	2.99	101
22.25	25.3	3.05	3.01	2.7	99
25.3	28.34	3.04	3.01	2.89	99
28.34	31.39	3.05	2.79	2.68	91
31.39	34.44	3.05	2.99	1.99	98
34.44	37.49	3.05	3.05	3.05	100
37.49	40.53	3.04	3.18	2.86	105
40.53	43.59	3.06	3.05	2.82	100
43.59	46.63	3.04	3.05	2.65	100
46.63	49.68	3.05	3.03	2.74	99
49.68	52.73	3.05	3.05	2.61	100
52.73	55.79	3.06	2.81	2.28	92
55.79	58.83	3.04	2.96	2.46	97
58.83	61.87	3.04	3.05	2.87	100
61.87	64.92	3.05	2.95	1.89	97
64.92	67.97	3.05	2.49	1.87	82
67.97	72.02	4.05	4.05	2.49	100
72.02	74.07	2.05	2.05	0.49	100
74.07	77.11	3.04	3.05	2.59	100
77.11	80.16	3.05	3.05	2.46	100
80.16	83.21	3.05	3	2.28	98
83.21	86.25	3.04	2.3	0.73	76
86.25	89.31	3.06	2.42	1.7	79
89.31	92.35	3.04	1.69	1.17	56

92.35 m

EOH

Sampling

Sample numbers	From:	To:	Length	Decription	Estimated
					Cu%
465001	13.4	15.4	2		
465002	15.4	17.04	1.64		
465003	17.04	19.04	2		
465004	24.9	26.9	2		
465005	26.9	28.9	2		
465006	37.95	39.95	2		
465007	49.68	51.68	2		
465008	69.1	69.87	0.77	Vein with sulphides	
465009	69.87	70.52	0.65	Vein with chalc	
465010	70.52	71.02	0.5	Vein with sulphides	
465011	71.02	71.99	0.97		
465021	70.52	70.52	0	Standard #2, .076% Mo	

Drill Hole: SX06-05	Claim: Sox	N: 6487255	E: 355845	Final depth: :79.78 m
AZ: 185	DIP:	EL: 1639 m	DHS: 15th November 2006	DHF: 29th November 2006
Logged by: David Peake Notes:	Teched by: David Peake			

From: 0 To: 6.64

Notes: Casing

1

From: 6.64 To: 10.62

Notes: Overburben, rubble, and bedding. Fracturing of bedding near dyke contact. <1% veining throughout.

Lithology: Shale

- Structure: Overburben and clay, silt bedding. Breccia apparent near veining.
- Alteration: Little, if any alteration
- Veining: Minor amounts of quartz/carbonate stringers near contact and within faulting <1%
- Mineralization: Trace mineralization within carbonate and sediments

From: 10.62 To: 17.71

Notes: E	Dark green dyke, with quartz carbonate veining	and chlorite stringers. Pyrite mineraliza	ation with minor traces of chalcopyrite in veining from	16.29-17.71 meters.
----------	--	---	---	---------------------

Lithology: Dyke

Structure: Massive, fine to medium grained plagioclase mineralization. Fracturing apparent near shale contact causing rubble.

Alteration: Dark to light green dyke material. Some chlorite stringers ~1%.

Veining: Quartz carbonate veining througout the dyke with <1mm stringers with a few larger, largest 6cm. Some of the larger veins have assimilated dyke material.

Mineralization: Fine grained plagioclase, minor sulfate phenocrysts within veining and stringers throughout. Chlorite stringers throughout dyke, <1-2%. Most veins/stringers with sulfates occur past 16.29m with higher concentrations of up to 15% pyrite and <1% chalcopyrite of euhedral and subeuhedral crystal within veining. Within whole rock, sulfates make up ~1%.

From: 17.71 To: 71.87

Notes:

Lithology: Shale

Structure: From 17.71 - 26.75 meters bedding dark grey to black with 40-45 degree TCA with 1-2 cm thick beds. 26.75-30.27 meters high siliceous, lower carbonate veining of micro fractures with bedding 60-65 degrees TCA. 30.27-40.54 contains black bedding with few veins (larger ones 1 cm), faulting at 38.33m with milling. 40.54-XXXXXX extensive micro-fracturing/faulting filled with siliceous carbonate veining, 43.14 m has a 7cm dyke material, the bedding varies from 60 degrees TCA nearer the 40. then shifts to 30 degrees TCA around 46 m depth, fault milling occurring at 54.34 m at 40 degrees TCA.

Alteration: Fracturing near dyke contact, veining tends to be high in silica ~90% and ~10% carbonate content.

Veining: Veining varies for TCA, veining 9 cm to 1 mm, ~2-3% of entire unit. 26.75-30.27 contains siliceous bedding with 1mm-5cm veins. 40.54 micro fracturing and siliceous carbonate micro fracturing occurring.

Mineralization:

)

From: 71.87 To: 72.92

Notes:

Lithology: Vein in shale

Structure: 30degrees TCA around 72 m depth

Alteration: Minor

Veining: Quartz carbonate vein in shale (disseminated from 72.92-73.20 Not sampled)

Mineralization: Well defined thin +_ 5 -8 cm wavey chalcopyrite vein The chalcopyrite as patches and disseminations near to the vein

From: 72.92	To:79.78

Notes:

Lithology:	Shale	bedding dark grey to black with 30-45 degree TCA with 1-2 cm thick beds.

Structure: 30degrees TCA

Alteration:	None
-------------	------

Veining: none

Mineralization:

EOH 79.78 m

SX06-05 Recovery and RQD

Ń

From:	To:(in m)	Run Length	REC	RQD	AVG. REC(%)
6.64	7.01	0.37	0.37	0.18	100
7.01	10.06	3.05	0.26	0.15	9
10.06	13.11	3.05	3.03	1.93	99
13.11	16.15	3.04	2.92	2.79	96
16.15	19.2	3.05	2.33	1.77	76
19.2	22.25	3.05	2.4	2.35	79
22.25	25.3	3.05	2.88	2.88	94
25.3	28.35	3.05	3.01	2.9	99
28.35	31.39	3.04	3.35	2.38	110
31.39	34.44	3.05	2.9	2.64	95
34.44	37.49	3.05	3.05	2.63	100
37.49	40.54	3.05	3.04	1.64	100
40.54	43.59	3.05	2.93	2.93	96
43.59	46.63	3.04	3.03	2.19	100
46.63	49.68	3.05	2.88	1.99	94
49.68	52.73	3.05	2.69	2.24	88

Info misplaced from 52.72 to EOH ; To be finalized when geologist visits project later in year Recovery and RQD was measured for the mineralized vein for the assay calculations by George Coetzee; No coreloss ocurred in ore zone

Sampling

i

Sample numbers	From:	To:	Length	Description	Estimated Cu%
465023	71.87	72.92	1.0	5 Chalco vein	1
465024	72.92	74.3	1.3	8 Chalco vein	
465025				Standard	

Drill Hole: SX06-06	Claim: Sox	N: 6487242	E: 355843	Final depth:
AZ: 171.5	DIP: -46 deg	EL: 1643	DHS: Dec 1, 2006	DHF: 12 December 2006
Logged by: JC	Teched by: JC			
Notes:				

1

From: 0 To: 9.52

.

Notes: Casing

From: 9.52 To: 10.44

Notes: Shale that is black to light grey in colour, after app 10 meters it is broken up and cleaved, no distinguishable beds, Fairly homogenous. Small Quartz Carbonate stringers

Lithology: Shale

Structure: Broken with cleavage plains visible after app10 meters, Previous to this bedding is very hard to distinguish and appears to be more massive muc Very little clay, etc. Homogenous.

Alteration: Rock is mostly black in colour.

Veining: 34 deg TCA. Small stringers, carbonate dominated. Some .5-1cm veins observed in rubble.

Mineralization: No visible sulphides observed.

Fr: 10.44 To: 18.91

Notes: Fine to medium grained mafic dyke green to grey in colour. Visible plag. Quartz carb veining with black chlorite stringers. Pyrite and possible chalcopyrite present, vast majority of mineralization is pyrite.

Lithology: Dyke, mafic in composition?

Structure: Massive, fine to medium grained, some vein breccia present. Upper contact on vein that in fills the shale and dyke margins, sharper lower contact at app. 50 deg TCA with shale.

Alteration: Dark green to grey in colour, black chlorite stringers present.

Veining: Quartz Carbonate veining that exists as stringers (1-2mm in size) and larger blocky quartz dominated veins 3-5 cm in size. Random orientations, some of the larger veins run sub-parallel TCA.

Mineralization: Pyrite and possible chalcopyrite, very little (trace) chalco if present, pyrite is up to 1% in places (up to 15% within quartz carb stringers) Pyrite is medium to coarse grained, some euhedral grains. Concentrated on wormy vein margins.

From: 18.91 To: 71.92

Notes: Shale with smaller clay/silt beds of mm size 20-60 deg TCA. Black to grey in colour. Some silicification with zones of increased veining. Mineralization is pyrite (trace), no chalco observed. Sections of increased veining related to increased porosity (grain size).

Lithology: Shale with smaller beds of silt/clay

Structure: Thin mm scale beds of clay/silt amongst more massive beds of mud. Bedding is 60 deg TCA until 21.8 where it shallows to 30 deg TCA (after possible fault). Bedding ranges fro 20-50 deg from here on. Some larger more homogenous mud beds up to a meter thick. There are also some areas of slightly coarser seds ex. from 26.88-29.47.

Alteration: Sections of increased veining are weak to moderately silicified.

Veining: From 18.91-26.88 veining is app. 1% and exists as stringers and veinlets with one or two larger blocky quartz/carbonate veins up to 3cm. Some wispy more carbonate veins also exist. From 26.88-29.47 veining increases dramatically most likely associated with slight increase in grain size (porosity) to app. 8% of the rock. Veinlets up to 1cm dominate section at random orientations. From 29.47-40.54 meters veining back down to app. 1% and similar to 18.91-26.88

Mineralization: Trace pyrite, no chalco observed. Pyrite exists as fine grained disseminated blebs.

From: 72.63 To: 73.20

Notes: Blocky quartz carbonate vein with 8-10% chalcopyrite mineralization.

Lithology: Quartz carbonate vein

Structure: Massive/blocky. Quartz dominated. Fault contacted with milled seds at 73.4

Alteration: Possible light green chlorite stringers (logged in dark)

Veining: 100% vein

Mineralization: 8-10% chalcopyrite mineralization, mineralization is patchy and network like (spider web).

From: 73.20 To: 89.30 (EOH)

Notes: Shale with smaller mm size beds of silt/clay trace chalco in faulted section app. 1 meter after vein. Trace pyrite t/o.

Lithology: shale

Structure: Milled fault at beginning of unit to 78.04 meters. Competent seds till end of hole. Bedding at 40 deg TCA. 95% muds rest is silt/clay. Silt/clay beds are narrow app. 1mm in size.

Alteration: Black to grey in colour.

Veining: Quartz carbonate veins and veinlets

Mineralization: Trace pyrite t/o. Small specs (trace) of chalcopyrite following vein for app. 1 meter within milled or fault material.

EOH 89.3 m

Recovery and RQD

· · · --

From: 0 - 9.52	To: Casing	Length	REC	RQD	%REC
9.52	10.06	0.54	0.54	0.23	100
10.06	13.1	3.04	2.79	1.64	92
13.1	16.15	3.05	3.13	2.71	103
16.15	19.2	3.05	2.69	1.99	88
19.2	22.25	3.05	3.05	2.54	100
22.25	25.3	3.05	3.00	2.91	98
25.3	28.35	3.05	2.87	2.36	94
28.35	31.39	3.04	3.05	2.13	100
31.39	34.44	3.05	3.05	2.75	100
34.44	37.49	3.05	2.51	1.01	82
37.49	40.54	3.05	2.68	1.88	88

To be completed (no heat, core frozen) No coreloss in mineralized vein GC

Sox06-06 Sampling

Sample numbers	From:	To:	Length	Decription	Estimated Cu%
465058	72.63	73.2	0.57	Chalco vein	5

Drill hole SX06-07	Claim: Sox	N: 6487167	E: 355828	Final depth: 37.49
AZ: 274	DIP: -50 deg	EL: 1641	DHS: Dec 17, 200	6 DHF: 18 December 2006
Not Logged by:GC	Teched by:			

Was only sampled. Camp closed down on the 19th of December; to be logged when return to project

General geology is as follows 0 to 14 m shale

0 to 14 m shale 14 to 37.49 Dyke, no mineralization 37.49 m EOH

Sampling

Sample numbers	From:	То:	Length	Description	Estimated Cu%
465057	12.83	13.70	0.87	Chalco vein	1