REPORT ON THE 2006 EXPLORATION PROGRAM

THE SHASTA AND BAKER MINERAL CLAIMS

TOODOGGONE AREA OMINECA MINING DISTRICT BRITISH COLUMBIA

NTS 94E/6E LATITUDE 57° 17' N LONGITUDE 127° 06' W

FOR SABLE RESOURCES LTD.

BY E.W. CRAFT, P.ENG.

JUNE 25, 2007

TABLE OF CONTENTS

Page

SUMMARY	1
INTRODUCTION	1
LOCATION, ACCESS AND PHYSIOGRAPHY	2
CLAIMS	3
HISTORY	4
GEOLOGY	6
2006 DRILLING RESULTS	10
CONCLUSIONS AND RECOMMENDATIONS	14
COST STATEMENT	15
STATEMENT OF QUALIFICATIONS	16
REFERENCES	17

TABLE 1	-Mineral Claims	3
TABLE 2	-Shasta Drill Hole Collar Information	10
TABLE 3	-Black Gossan Drill Hole Collar Information	12
TABLE 4	-Ridge zone Drill Hole Collar Information	12
FIGURE 1	-British Columbia Location Map	
FIGURE 2	-Toodoggone Claim Map	
FIGURE 3	-Upper Ridge Zone Plan Map	
FIGURE 4	-Shasta Plan Map & Sections	
APPENDIX 1	-Geological logs	
APPENDIX 2	-Assay results from the Creek zone	
APPENDIX 3	-Assay results from the Upper Ridge zone	

SUMMARY

This report describes 2006 exploration work completed by Sable Resources Ltd. on the Baker and Shasta mineral claims, located in the Toodoggone district, B.C. The work consisted of 25 NQ diameter diamond drill holes totaling 2187.1 m. The drilling was located in the Upper Ridge at the Baker Mine, the Creek zone at the Shasta mine, and at the Black Gossan Cu-Au Porphyry target. At the Upper ridge, the program tested geophysical anomalies identified by a 2004 IP survey. No ore grade mineralization was intercepted, but anomalous metal values were present in all three holes, grading as high as 1.77 g/t Au, and 7.3 g/t Ag. The drilling encountered Takla volcanics, in intrusive contact with feldspar porphyry. The alteration and structures encountered are consistent with the mineralizing settings found on the property, and future drilling in this area is warranted. The work at Shasta consisted of definition drilling at the Creek zone, and was successful at intercepting the zone in all holes. The Black Gossan drilling was abandoned early, as the drill was unsuitable for the ground conditions and depths required for the program.

INTRODUCTION

The Shasta and Baker claims are located in the mountains of north-central British Columbia, and consist of 2 mining leases and 53 surrounding contiguous mineral claims. They are owned and operated by Sable Resources Ltd. of Vancouver. Infrastructure consists of the Baker mill, camp, assay lab, and maintenance facility. Most supplies are trucked by road access via the Omineca resource road from Mackenzie.

A two part diamond drilling program was carried out on the claims that targeted the Shasta Mine, the Black Gossan, and the Upper Ridge Zone.

At Shasta, a program of infill and definition drilling was undertaken to fill in some remaining gaps in the well defined Creek Zone. The Creek zone has been drilled by Sable Resources and Homestake/Esso Minerals since 1983. During 2004 and 2005, a small open pit extracted 15,000 tonnes of ore from the zone. The 2006 holes were meant to increase the level of detail prior to underground planning and development for a small test section of the zone. The drilling was performed by Britton Brothers of Smithers BC. The Black Gossan is a Cu-Au Porphyry target. To date, only shallow drilling has penetrated the target with encouraging results. A deep hole was planned but was abandoned well below target depth. The drilling was performed by Britton Brothers of Smithers BC.

On the Ridge zone, drilling was meant to test geophysical anomalies identified from a 2004 IP survey (Espinosa, 2004). The survey was conducted after high grade float was found in the area in 2004 (Kraft 2004). The drilling consisted of 3 diamond drill holes (DD06-23, DD06-24, and DD06-25) totaling 497.9 m of NQ core. The work was performed by Radius Drilling of Prince George.

LOCATION, ACCESS AND PHYSIOGRAPHY

The Baker and Shasta properties are located in the Mackenzie Basin in the Toodoggone area of north central British Columbia (Fig 1) and is 43 km. north of the Kemess South copper-gold porphyry mine, formerly owned and operated by Royal Oak Mines. The property is located some 275 km north of Smithers with road access from Mackenzie and Fort St. James. Air access via fixed wing aircraft is available to the Sturdee Airstrip, 11 km. from the Baker property and the adjacent Baker Mill, or alternatively, at the Kemess mine.

The Toodoggone area topography is moderately rugged with elevations ranging from 1,400 meters above sea level on the valley floors to nearly 2,000 meters. Locally dense alpine spruce and fir extend from the valley floors to about 1,600 meters elevation above which is typical open alpine country featuring grasses and small shrubs. The valley floors are mainly open alpine and tundra, locally covered by buck brush and willows. Bedrock exposures are confined to drainages, steeper slopes and ridge crests.

The mean annual precipitation ranges from 50 to 75 cm, most of this occurring as rainfall during the summer months. Average temperatures vary from -20 C in winter to +12C in summer. Snow can be persistent at higher elevations until late June.

CLAIMS

There are 53 contiguous mineral claims and 2 mining leases that make up the Baker and Shasta properties located in the Omineca mining division. Mineral Tenure is held under Multinational Mining Inc, a wholly owned subsidiary of Sable Resources Ltd. The mining claims are as follows in table 1.

Tenure			Area
#	Name	Good Until	(ha)
245273	CHAPPELLE NO.186	2011/nov/30	25.0
245274	CHAPPELLE NO.188	2011/nov/30	25.0
350639	MOSLEY 1	2011/nov/30	450.0
505423		2011/nov/30	70.0
505424		2011/nov/30	70.0
505425		2011/nov/30	70.0
505426		2011/nov/30	70.0
505427		2011/nov/30	577.5
505428		2011/nov/30	70.0
505429		2011/nov/30	612.3
505430		2011/nov/30	560.0
505431		2011/nov/30	437.7
505432		2011/nov/30	175.1
505434		2011/nov/30	105.0
505435		2011/nov/30	280.2
505436		2011/nov/30	245.1
505438		2011/nov/30	35.0
505439		2011/nov/30	52.5
505460		2011/nov/30	69.9
505471		2011/nov/30	87.4
505472		2011/nov/30	17.5
505473		2011/nov/30	69.9
505474		2011/nov/30	69.9
505475		2011/nov/30	17.5
505476		2011/nov/30	35.0
505478		2011/nov/30	69.9
505480		2011/nov/30	52.5
505482		2011/nov/30	70.0
505485		2011/nov/30	52.5
505487		2011/nov/30	35.0
505490		2011/nov/30	17.5
505492		2011/nov/30	17.5
505633		2011/nov/30	70.0
505634		2011/nov/30	17.5
505635		2011/nov/30	35.0
505636		2011/nov/30	70.0
505637		2011/nov/30	52.5

Table 1 – Mineral claims held by Sable Resources

505638		2011/nov/30	17.5
505639		2011/nov/30	52.5
505640		2011/nov/30	70.0
505641		2011/nov/30	35.0
505642		2011/nov/30	35.0
505643		2011/nov/30	35.0
505644		2011/nov/30	70.0
505645		2011/nov/30	17.5
505646		2011/nov/30	35.0
505647		2011/nov/30	35.0
505649		2011/nov/30	52.5
505651		2011/nov/30	35.0
505652		2011/nov/30	35.0
505653		2011/nov/30	17.5
527360	MUTT 1	2011/nov/30	17.5
535688	TIGERNOTCH	2011/nov/30	104.9
243454	Shasta Mining Lease	2008/jun/13	100.0
243451	Baker Mining Lease	2008/sep/10	157.8

HISTORY

Area History

The Toodoggone River area was initially investigated for placer gold in the 1920's. Considerable work was carried out near the junction of McClair Creek and Toodoggone River in 1934. The lode potential of the area was also investigated in the 1930's. Intermittent exploration work continued in the region until the 1960's when it was investigated by a number of companies for porphyry copper potential.

PROPERTY HISTORY

Baker

Gold-silver mineralization in quartz veins was recognized at the Baker property by Kennco Exploration (Western) Ltd. in 1969. The property was acquired by DuPont of Canada Exploration Ltd. in 1974 and placed in production in 1981 (Baker Mine). DuPont produced 95,000 tons at 100 tons per day from the gold-silver-copper Vein "A" deposit on this property from 1981-83. The production graded an equivalent value of 0.9 oz. of gold per ton.

The Chappelle property was acquired by Multinational Resources Inc. from DuPont in 1985 and over the next 3 years extensive exploration by Multinational was carried out on the Vein "B" deposit which outlined an accessible 20,000 tons of ore grading 0.5 oz. gold, 5 oz. silver and 1% copper per ton. In 1991, Sable arranged with Multinational to mine and mill the Vein "B" deposit and processed 17,250 tons of ore intermittently to 1997. The operation was initially by underground methods of mining and reverted to surface and open pit methods due to the very unstable ground conditions. The gold-silver-copper concentrate last produced in 1997 averaged 15 oz gold, 101 oz silver and 7% copper per dry ton (1996 - 24 oz gold, 240 oz. silver and 15% copper per dry ton). Although much of the exploration between 1985 and 1988 on the Chappelle property focused on the immediate area of the Vein "B" deposit, several surveys were carried out on the peripheral mineral claims and in 1989 Multinational carried out an extensive exploration program consisting of 15 kilometers of VLF/Mag geophysics, trenching and the analysis of 653 soil and 316 rock samples. The 1989 program was successful at discovering seven new areas of gold mineralization, which warranted drill testing of the target areas. These targets areas were the "B Vein Offset, West Cirque Zone, Peter's Gulch Showing, Price Zone, Northwest Zone, Mt. Shasta Area, Clancey-North Black Gossan Zone (Delancey, 1989). In 1996, Sable acquired the Chappelle property by the acquisition of Multinational Mining Inc., a private company and now a wholly owned subsidiary of Sable.

Shasta

The Shasta property was staked in 1972 by International Shasta Resources Ltd. when interest in the area was sparked by the discovery and development of the Baker Mine by DuPont of Canada Exploration Ltd.. Geochemical, geophysical and geological surveys were carried out between 1973 and 1975. In 1983, Newmont Exploration Canada Ltd. optioned the property and during the next two years staked additional claims. Newmont's extensive exploration identified the Creek Zone and two other mineralized structures, the Rainier and Jock Zones. Esso Minerals Canada Ltd. Optioned the property in 1987 and carried out two seasons of extensive exploration with the main result of this work being the discovery of the JM and O Zones. Homestake Canada Ltd. took over Esso's interest in the Shasta property in 1989 and carried out extensive exploration programs over 1989 - 1990.

In addition to the exploration program operated by Homestake, International Shasta and Sable Resources Ltd. mined and processed 117,000 tons of ore from the Creek, JM and D Zones. The initial 1989 open-pit operations shifted to an underground operation in 1990 and production from the JM and D deposits averaged 50,000 tons each with ore grades of 0.25 oz gold and 17 oz. silver per ton. Mill production at Sable's Baker Mill was initially 100 tons per day and ultimately increased to 250 tons per day by 1991.

In 1994, Sable acquired 100% ownership of the Shasta mineral claims and mining lease. Two small drill programs were carried out by Sable in I994 and 1995 with no further ore grade zones delineated. Sable also conducted a diamond drill program in 2003 which led to the decision to mine 15,000 tons of ore from the Creek zone by open pit in 2004 and 2005. Additional drilling in 2004 and 2005 principally targeted and defined mineralization within the Creek zone.

GEOLOGY

Regional Setting

The Toodoggone River area lies within the Stikine Terrane on the eastern margin of the Intermontaine Belt, in the Cassiar-Omineca Mountains. This 2 - 20 kilometer wide, northwesterly belt extends 90 kilometers from Thutade Lake on the south to the Stikine River on the north.

The oldest rocks in the area are the Permian Asitka Group limestones which are in thrust contact with Upper Triassic Takla (Stuhini) Group volcanics. Takla Group rocks are dominantly alkaline to subalkaline, submarine, mafic flows and derived sediments. Unconformably overlying the Takla Group are Lower to Middle Jurassic Toodoggone Formation rocks. They form a sequence of volcanic and associated sedimentary rocks, and are further divided into a lower and upper cycle (Diakow et al 1993). The Jurassic Toodoggone volcanic rocks represent a distinct quartz-bearing facies of the Hazelton Group and comprise dominantly calcalkaline, intermediate to felsic subaerial volcanic rocks and associated sediments. The youngest rocks in the area are chertpebble conglomerates and sandstones of the Cretaceous to Tertiary Sustut Group, which unconformably overlies the Toodoggone volcanics. Lower Jurassic to Upper Triassic Omineca plutonic rocks, resting on granodiorite and quartz monzonite, intrude the Takla and Toodoggone volcanics.

Several precious metal epithermal vein deposits have been discovered in the Toodoggone area in the last two decades. These deposits are generally related to structures cutting Toodoggone volcanic rocks or older Takla rocks. The character of the deposits is generally related to the level of deposition within the hydrothermal system. Precious metal mineralization at the Baker Mine is hosted in quartz veins cutting basaltic volcanics of the Takla Group. The Cheni Mine mineralization is largely in silicified zones and amythestine breccias. The Shasta Mine is characterized by braided stock work zones of quartz, calcite and potassium feldspar with grey sulphides and electrum.

The structure of the Toodoggone area is dominated by steeply dipping normal faults of Lower Jurassic to Tertiary age, which have north to northwesterly trends, and are truncated by younger, northeast trending faults.

Baker Geology

The Baker property is underlain by an uplifted fault block of Takla Group volcanics in thrust contact with Asikta limestone both having been intruded by quartz monzonite of the Black Lake stock. The stock is exposed at the southern margin of the property, and has locally altered the limestone to an epidote-diopside skarn along their contact. The limestone also occurs towards the south of the property, and forms the prominent cliffs of Castle Mountain. Broken and iron-oxide stained augite phyric andesite to basalt flows of Takla Group are the dominant rock types on the property, and are the principal host of mineralization at Baker. To the north, upper cycle Toodoggone formation volcanics of Diakow (1990) are present in fault contact with Takla Group rocks. Numerous hornblende-feldspar porphyritic apophyses of the Black Lake stock intrude and brecciate the Takla host rocks. The similar composition to the overlying Toodoggone volcanics suggests that these are feeders for the overlying volcanism.

Prominent Propylitic alteration on the property has weathered a gossanous rust colour. An assemblage of quartz-sericite-chlorite-pyrite gives way to an argillic clay assemblage proximal to veins. Milky quartz veins are the principal host to economic mineralization, and commonly exhibit polyphase breccia, and vuggy textures. Gold-silver mineralization is associated with pyrite, sphalerite, galena and chalcopyrite, with precious metal mineralization in the form of electrum and acanthite.

Mineralization occurs within steeply dipping structures on the property, commonly with a northeast strike. The hypabyssal hornblende-feldspar porphyry has exploited these structures, and silicification with or without mineralization, occurs along these intrusive contacts.

Black Gossan

The Black Gossan occurs in a fault block of Takla Group andesite to basalt, adjacent to, and east of the Baker Property. To the northeast and southwest, the Takla rocks are in fault contact with Toodoggone formation volcanics. Strong propyltic alteration is pervasive, with argillic alteration assemblages on fault surfaces. Strong gossanous alteration forms a prominent supergene cap over the target.

To the north the Clancey showing is located, which consists of vuggy Zn-Pb quartz veinlets, in weakly propylitic Takla volcanics. This association of Zn-Pb veinlets distal to Cu-Au porphyry systems has been established at the nearby Kemess South Mine, and supports the interpretation of the Black Gossan being a porphyry system.

Shasta Geology

The Shasta property is predominantly underlain by Toodoggone Formation flows, pyroclastic, and associated epiclastic rocks. These Toodoggone rocks are informally divided into three series; a basal series, a pyroclastic series, and an epiclastic series. The property is centered around a quartz-biotite-feldspar phyric dacite dome. The dome is associated with the pyroclastic series rocks, which are differentiated from the dome by occasional lapilli and broken crystals. The oldest rocks exposed on the property are Takla Group augitefeldspar phyric basalt flows located at the southern margin of the property. These rocks are unconformably overlain by the basal series rocks, followed by the pyroclastic, and then epiclastic series rocks of the Toodoggone formation (Marsden and Moore, 1990).

The structure on the Shasta property is dominated by north and northwest striking oblique dextral normal faults. Post mineralization, compressive tectonic events have overprinted some earlier normal faulting, with reverse faulting fabrics. The entire package appears to be gently tilted towards the north, with bedding estimates dipping roughly north 20°. This has exposed rocks lower in the stratigraphic sequence towards the south of the deposit. The most notable structure on the property is the Shasta fault, which strikes roughly north-south, and dips between 50 and 60 degrees west. The Shasta fault is interpreted to be an extensional syn-minerlization fault, that has since undergone compressive, post-minerlization movement.

Most of the mineralization is hosted within quartz-carbonate stockwork and breccia structures located in non-to-weakly-welded tuffs of the pyroclastic series, proximal to the dome. Mineralization, and economic grade are generally higher in the breccia zones, as compared to the stockwork zones. Economic mineralization consists primarily of electrum and acanthite (pseudomorph after argentite), with rare native silver. It is associated with trace amounts of chalcopyrite, galena, and sphalerite, and minor amounts of pyrite. Wallrock alteration consists primarily of silica, K-feldspar, and chlorite proximal to the vein structures, and grades away from the veins into a propylitic assemblage. To the north of the property, in the area of the East zones, there is a change from silica-K-spar dominant alteration to silica-sericite alteration, with, or without epidote. The 2006 exploration program consisted of 25 diamond drill holes, totaling 2187.1 m of NQ core, located over three separate targets; the Creek zone at the Shasta Mine, the Black Gossan porphyry target, and the Ridge zone at the Baker Mine. Drilling at the Shasta mine and Black Gossan was completed by Britton Brothers of Smithers BC. Drilling on the Ridge zone at the Baker mine was performed by Radius Drilling of Prince George BC. Drill hole specification are listed in tables 2, 3 and 4. Drill logs are attached in appendix 2. Assay data are attached in appendices 2 & 3.

Creek zone

20 NQ sized diamond drill holes, totaling 1518.5 m, were completed at the Creek zone of the Shasta Mine. The purpose of the holes was to infill, and better define mineralization within a roughly 200 m strike length of the zone. Holes were collared west of the Shasta fault, trending along a roughly north-south line. Drill holes were oriented at a roughly 090 degree azimuth, and dipped between approximately 45 and 70 degrees. Drill hole orientations for the Creek zone are listed below in table 2.

Core was logged, split and fire assayed for gold and silver at the Baker camp facility roughly 11 km west of the deposit, where the core is now stored. Random check samples and duplicates were sent to ALS Chemex Labs in North Vancouver to verify onsite assays. The results of the ALS Chemex check assays and the onsite assays were consistent.

	Latitude	Departure	Elevation			
Hole No.	(Mine Grid)	(Mine Grid)	(metres)	Azimuth	Dip	Length (m)
DD06-01	7179.63	1021.38	1290	090	44	85.4
DD06-02	7190.66	1039.84	1292.62	090	47	76.2
DD06-03	7190.66	1039.84	1292.62	090	64	73.2
DD06-04	7201.86	1020.41	1286.03	085	46	79.3
DD06-05	7201.86	1020.41	1286.03	085	63	82.3
DD06-06	7219.9	1017.6	1282.09	087	44	76.2

TABLE 2 – 2006 Creek Zone Drill Orientations

DD06-07	7219.9	1017.6	1282.09	087	62	79.3
DD06-08	7195.86	1007.15	1282.46	088	62	79.3
DD06-09	7234.56	1015.26	1279.29	090	46	82.3
DD06-10	7234.56	1015.26	1279.29	090	62	82.3
DD06-11	7250.5	1012.22	1275.37	090	60	85.4
DD06-12	7143	1009.63	1295.8	095	46	73.2
DD06-13	7130	1006.53	1295	092	45	73.2
DD06-14	7149.61	1016.66	1294.72	088	63	85.4
DD06-15	7150.37	1017.13	1294.67	079	46	76.2
DD06-16	7110.48	1012.56	1301.08	089	49	85.4
DD06-17	7109.92	1059.6	1310.98	089	43	51.8
DD06-18	7109.92	1059.6	1310.98	089	72	61
DD06-21	7276.10	1006.90	1265.00	090	65	70.1
DD06-22	7289.60	1013.45	1265.00	090	55	61

The drilling confirmed the pinch-and-swell geometry of the mineralized zone along the structure. The highest grades appear to be restricted to the widest breccia zones – representing the 'swell' in the structure. All holes were collared in volcaniclastics or volcanic-derived-sediments of the Epiclastic Series (McPherson et al 1991), pierced the Shasta fault, and passed into well altered quartz-feldspar tuff of the Pyroclastic Series (McPherson et al 1991). The high grade breccia zones were usually surrounded by silicified ground with weak stockworking that carry multi-ounce silver values.

Of the 20 holes drilled at the Creek zone, 2 intersected what can be interpreted as wide, high grade cores of these pinch and swell breccia pods which host the bulk of the economic material at Shasta. Holes DD06-09, and DD06-21 encountered widths of 15.0 m and 13.3 m, with grades of 0.256 oz/t Au, 10.0 oz/t Ag, and 0.342 oz/t Au and 21.0 oz/t Ag respectively. More common intersections encountered consisted of 3 to 10 m of 0.1 oz/t Au and 4 oz/t Ag, which defines the lower grade body surrounding the high grade shoots.

Black Gossan

Two NQ sized diamond drill holes, totaling 170.7 m, were abandoned at the Black Gossan porphyry target due to poor ground conditions. The drilling was done by Britton Brothers of Smithers. The decision was made to delay drilling until a larger drill was available. Originally, one deep hole was planned, but poor ground conditions forced the hole to be abandoned well before target depth. A second hole was tried with a steeper dip, and different azimuth; however, poor ground conditions persisted, and the new orientation did not improve drilling.

The holes intersected propylitically altered Takla Group volcanics over their entire length. Pyrite accounted for 1-2%, and was the only sulphide phase noted. No assays were completed.

Drill Hole	NAD 83	NAD 83	Azimuth	Dip	Length
	Easting	Northing			
DD06-19	616 741	6 350 705	000	47	128.0 m
DD06-20	616 741	6 350 705	060	62	42.7 m

Table 3 – 2006 diamond drill holes competed at the Black Gossan

Ridge Zone

The Ridge Zone drilling consisted of 3 diamond drill holes, totaling 497.9 m of NQ core. The purpose of the drill holes was to intersect geophysical anomalies that exhibited high chargeability and low resistivity identified from the work carried out in the September of 2004 by S.J. Geophysics (Espinosa 2004).

The drilling was completed during July of 2006 by Radius Drilling of Prince George. Collar locations and orientations were sighted using compass and tape. Due to the short length of the holes, and their exploratory nature, no downhole surveys were done. Drill hole collar information is presented in Table 2, and shown in Figure 2.

Drill Hole	NAD83E	NAD83N	Azimuth	Dip	Length
DD06-23	613 894	6 351 364	060	72	155.5 m
DD06-24	613 968	6 351 464	040	62	204.3 m
DD06-25	613 838	6 351 361	058	70	138.1 m

Table 4 – 2006 diamond drill holes completed at the Ridge zone

Drill core was logged and is now stored at the core shack at the Baker camp facility. Samples were selected primarily to test zones of silicification, quartz mineralization, and zones of high intensity alteration. These zones were primarily along intrusive and fault contacts. A total of 34 samples, with intervals ranging in size from 0.3 to 1.4 m, were split and sent to ALS Chemex of North Vancouver, B.C. for whole rock ICP-MS analysis. Results of the geochemical analysis are presented in Appendix 3.

All three drill holes intersected lithologies that are consistent with previous work performed on the Baker mine site. All the holes penetrated Triassic Takla volcanic rocks and intrusive feldspar porphyry. The feldspar porphyry intercalates with the Takla volcanic in all drill holes, and both intrusive and fault contacts between the two units can be observed. The feldspar porphyry exhibited variable composition along intrusive contacts. In general the rock was more mesocratic, had more mafic phenocrysts, and fewer feldspar phenocrysts, likely caused by absorption of the volcanics along the intrusive contacts. Drill logs for the 2006 holes are presented in Appendix 1.

Alteration encountered during the drilling consisted primarily of chlorite, including extensive chloritic gouge, and abundant pyrite. Generally, pyrite was finer grained and disseminated throughout all the holes, but also occurred as large blebs and massive aggregates in chlorite selvages, especially in hole DD06-24. Veinlets of calcitelaumontite were very common throughout all holes, and are believed to related to post-mineralizing tectonics (Schroeter 1982). Quartz mineralization was noted in alteration fronts along intrusive contacts, and against chloritic fault gouge.

No ore grade mineralization was encountered; however, all holes had anomalous values of Au, Ag, Cu, Zn, As and Ba. The highest Au grade was 1.77 g/t, which occurred over a 0.5 m interval in hole DD06-23.

CONCLUSIONS AND RECOMMENDATIONS

Hole DD06-21 was drilled below the pit, and intercepted high-grade material at depths that had previously yielded sub-economic widths and grades. The idea of high grade, structurally controlled ore shoots within a larger low grade stockwork zone has been proposed by previous workers (Marsden and Moore 1990, McPherson et al 1991, etc.). The 200 m section of the Creek zone that the 2006 program concentrated on, has been well drilled since 1983, and should now be considered for underground development. In addition to development, the high grade zones should be tested for a plunging shoot geometry, and traced to depth by drilling.

The drilling attempted on the Black Gossan porphyry target was unsuccessful, and provided no new information. This remains a viable drill target, and a more appropriate drill should be selected for future exploration programs targeting the Black Gossan.

The Ridge zone drilling program was designed to test geophysical anomalies that suggested the presence of mineralized quartz veins. The program was successful at furthering our understanding of the alteration and structure of the Upper Ridge zone, and has shown that extensive faulting, complex intrusive contacts, and pervasive disseminated to massive pyrite alteration make the IP geophysics data a poor discriminator of mineralized bodies. The alteration and geochemistry suggest that the area between, and around holes DD06-23 and DD06-25 are prospective for quartz vein mineralization consistent with other mineralized bodies found on the Chappelle claims.

The alteration, structure, and potential, warrant further exploration on the Upper Ridge zone. It is recommended that a trenching program be conducted to better expose the trend of local vein structures before future drilling commences. Future drill holes should concentrate on shallowly dipping, short holes, pointing to the north-west on section in the region of, and to the northeast of, holes DD06-23 and DD06-25.

STATEMENT OF COST

Assays	2,835.26
Camp/supplies	33,832.05
Consulting & Management fees	44,299.80
Communications	4,668.99
Fuel	25,885.77
Field supplies	1,233.65
Expediting	10,725.02
Surface Drilling	263,270.98
Travel & Transportation	14,020.71
Wages	84,461.73

TOTAL EXPLORATION COSTS485,233.96

STATEMENT OF COSTS

Management and Consulting

Ed Craft, P.Eng	12 (00)
21 days @ 600/day	12,600
David Martin-Smith	20.000
o months @ 5,000/mo	30,000
william Howell, P.Geo $\frac{1}{2} \frac{dava}{dav}$	110.9
Oroquest Consulting Dave Gunning P Eng	449.0
2 days @ 600/day	1,200
Total Management and Consulting	44,299.80
Wages	
Mark Bacon	
195 hrs	5,421.00
Rosco Daniels	
600 hrs	14,529.37
Joel Gillham	
790 hrs	15,800.00
Eleanor Korobanik	
490 hrs	11,466.00
Mark LeTemplier	
769 hrs	18,907.20
Wayne McKenna	
761 hrs	18,308.16
Total Wages	84,461.73
Drilling	
Britton Brothers Drilling	
1518.5 m of NO core, pad and trail construction	213.568.00
Radius Drilling	-10,000,000
497.9 m of NO core	46,958.00
	- ,

Total Drill related expenses263,270.98

2,747.98

Miscellaneous drill related expenses (pad construction, etc.)

Camp Accommodation, Maintenance and Fuel

471 man days - food	11,521.78
Supplies	19,847.81
Communications	4,668.99
Camp Propane	942.01
Diesel, Gas and Oil	25,885.77
Road Maintenace 1 day – Lomak Contracting	1,520.45
Total Camp, Maintenance and Fuel	64,386.81
Expediting and Shipping	
Expediting from Prince George to Camp	6,645.94
Shipping to Prince George	4,079.08
Total Expediting and Shipping	10,725.02
Assays and Geochemistry	
Creek zone check samples	1,323.98
Upper ridge zone ICP analysis	1,511.28
Total External Assay Expenditures	2,835.26
Equipment Rental	
Leica Total Station (May through July)	1,233.65
Total Equipment Rental	1,233.65

Transportation & Travel

Airfare	5,623.46
Truck Rental/Insurance	8397.25
Total Transportation and Travel	14,020.71

Total Exploration Expenditures

485,233.96

Statement of Qualifications

I, Edward W. Craft of the city of Castlegar, in the province of British Columbia hereby certify as follows:

- 1) I am a Mining Engineer residing at 1070 Bridgeview Crescent, Castlegar, British Columbia V1N 4L1
- 2) I am a registered Professional Engineer of the Province of British Columbia.
- 3) I am a graduate of the University of British Columbia with a degree of B.A. Sc. (Mining) (1963).
- 4) I have practiced my profession as a Mining Engineer for more than 30 years
- 5) I have personally been on the property and directed the exploration program, started June 1st, 2007, and completed August 31st, 2007.

June 25/07

Date

Edward W. Craft, P. Eng

REFERENCES

Delancey, Peter R., (1989): 1989 Exploration Report on the Chappelle Property; a report for Multinational Resources Inc.

Diakow, L.J., Panteleyev, A. and Schroeter, T.G, (1993): Geology of the early Jurassic Toodoggone Formation and gold-silver deposits in the Toddoggone River Map Area, Northern British Columbia. B.C.E.M.P.R. Bulletin 86, 72 pp.

Espinosa, S., (2004): Geophysical Report. Induced Polarization Survey on the Upper Ridge Zone Project For Sable Resources Ltd.

Holbek, P.M., (1989): 1988 Exploration Report on the Shasta Claim Group; an in house report for Esso Minerals Canada Ltd.

Kraft, E.M., (2004): Report on the 2004 Exploration Program; a report for Sable Resources Ltd.

Marsden, H.M., Moore, J.M.,(1988):Geological Fieldwork, Paper 1989-1

Marsden, H.M., and Moore, J.M., (1990): Stratigraphic and Structural Setting of the Shasta Silver-Gold Deposit, North-Central, B.C.; B.C.E.M.P.R. Geological Fieldwork 1989, Paper 1990-1, pp. 305-3 14.

McPherson, M.D., Oiye, M., Holbek, P.M., (1991): 1990 Exloration report on the Shasta Claim Group; A report for International Shasta Resources Ltd. and Homestake Canada Ltd.

Panteleyev, A., (1982): Geology between Toodoggone and Sturdee Rivers, B.C.; B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1982, Paper 1983-1, pp. 143-148.

Schroeter, T.G., (1982): Toodoggone River, B.C.; B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1981, Paper 1982- 1, pp. 122- 1331

PROPERTY:_Shasta Creek_____

Hole No. 06-01	Sheet No	Total Depth: 85.4m
Section: 7180N	Latitude: 7179.63	Logged By: Joel Gillham
Date Begun: June 7, 2006	Departure: 1021.38	Dip: -44°
Date Finished: June 8, 2006	Elevation: 1290.00	Core Size: NQ
Date Logged: June 9, 2006	Bearing: 90°	

Depth	ı	Rec	Description	Sample	From	То	Sample		Ass	say	
From	То			No			Width	Au oz/t	Ag oz/t		
0	36.4	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	130151	37.2	41.2	4	0.024	1.3		
			Grey-green matrix with orange to	130152	41.2	42.6	1.4	0.009	0.361		
			marroon polymictic clasts (mostly the	130153	42.6	43.9	1.3	0.021	2.491		
			same QFLT and Takla? plag PPY	130154	43.9	45.2	1.3	0.024	1.697		
			volcanics). Crystal sizes are medium to	130155	45.2	46.7	1.5	0.117	6.265		
			coarse, and are commonly broken,	130156	46.7	48.1	1.4	0.065	6.940		
			anhedral fragments. Pumice fragments	130157	48.1	49.7	1.6	0.005	0.28		
			appear welded but may be 'collapsed	130158	49.7	50.9	1.2	0.012	0.864		
			fragments' in a non-welded rock.	130159	50.9	52.4	1.5	0.008	0.737		
			Chloritic alteration is pervasive, and f.g.	130160	52.4	54	1.6	0.012	1.029		
			disseminated PY is common, usually	130161	54	55.3	1.3	0.021	3.351		
			forming $<1\%$ of the rock. Carbonate	130162	60.1	61.5	1.4	0.021	1.055		
			stringer veins are common, and most	130163	71.6	73.1	1.5	0.017	2.363		
			commonly occur between 45 and 90	130164	78.6	80.1	1.5	trace	0.046		
			degrees to the C.A.	130165	80.1	81.3	1.2	0.009	0.321		
				130166	81.3	82.7	1.4	0.031	0.188		
36.4	37.2	Low	Shasta Fault								
			Chloritic gouge and silicified QFLT								
			fragments								
37.2	48.1	Good	Quartz-Carbonate Silicified QFLT								
			Breccia								
			Intensely silicified QFLT, brecciated in								

			Kspar-Qtz-Calcite stockwork veins. Fine grained disseminated sulphides (mostly PY and CPY), up to 5-10% occur in host rock, along with chlorite and epidote alteration. Minor chlorite, PY, CPY, and grey sulphides (Argentite + Sphalerite and galena?) occur in				
			stockwork veins.				
48.1	85.4	Good	Silicified QFLT	 			
			Same as above QFLT, but with				
			pervasive silicification, and		 		
			chloritization. Lapilli have been				
			extensively chloritized and epidotized.	 			
			make up between 1 5% of rock. Otz	 			
			Kspar-Carbonate veins are common				
			throughout, ranging in width from mm's				
			to 2cm's at low to 60° angles to C.A.				
			Accessory chlorite and Argentite occur				
			in veins, along with disseminated CPY				
			and PY. A 45cm breccia zone occurs at				
			~81m, with abundant Qtz-Kspar-				
			Chlorite-Calcite +/- Argentite. At ~61m,				
			fault gouge is present. Minor sericitic				
			alteration towards the bottom of the				
			hole overprints earlier alteration and				
			produces a green waxy/soapy teeling				
			mineral on the fault/fracture surfaces.				

Hole No.: 06-02	Sheet No:	Total Depth: 76.3m
Section: 7190N	Latitude: 7190.66	Logged By: Joel Gillham
Date Begun: June 8, 2006	Departure: 1039.64	Dip: 47°
Date Finished: June 8, 2006	Elevation: 1292.62	Core Size: NQ
Date Logged: June 9, 2006	Bearing: 90°	

Depth	n (m)	Rec	Description	Sample	From	То	Sample		As	say	
From	То			No			Width	Au oz/t	Ag oz/t		
0	26.5	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	130167	28.3	30.5	2.2	0.021	1.024		
			Same as QFLT from DD06-01, but	130168	30.5	31.7	1.2	0.052	2.807		
			carbonate stringers are less common.	130169	31.7	33.0	1.3	0.097	2.383		
26.5	30.5	Poor	Shasta Fault	130170	33	34.3	1.3	0.006	0.637		
			Same QFLT as above with chloritic	130171	34.3	35.8	1.5	0.009	0.647		
			gougle. Very broken rock, variable	130172	35.8	37.1	1.3	0.046	2.187		
			silicification and chloritization. Post ore	130173	37.1	38.6	1.5	0.007	0.389		
			carbonate veinlets are common.	130174	38.6	40	1.4	0.002	0.627		
30.5	76.3	Good	Silicified QFLT	130175	40	41.3	1.3	0.02	0.259		
			Same QFLT as above, has undergone	130176	41.3	42.7	1.4	0.015	0.595		
			intense silicification and chloritization,	130177	42.7	44.1	1.4	0.013	0.324		
			and is locally overprinted by hematitic	130178	44.1	45.6	1.5	0.02	Trace		
			alteration of the disseminated PY. Fine	130179	45.6	47.3	1.7	0.014	0.039		
			grained disseminated PY occurs	130180	47.3	50.9	3.6	0.036	0.329		
			throughout the groundmass, but is rare	130181	59.8	61.5	1.7	0.022	0.149		
			to absent in the hematitically altered	130182	68.4	72.1	3.7	0.009	0.202		
			sections, and accounts for between 1-	130183	72.9	75.8	2.9	0.012	0.384		
			5% of the rock volume. Qtz-Chl-Kspar-								
			Card veins/stockwork/breccia are								
			common, and nave widths commonly								
			<1 cm, but up to multiple cm s, and interpret the C A set low to high angles								
			intersect the C.A. at low to high angles.								

	Fine grained sulphides (CPY, PY, GAL,				
	SPH, and Argentite) are common in the				
	veins and account of up to ~5% of the				
	volume. Base metal sulphides occur				
	more commonly in the chlorite selvages				
	within the vein, while Argentite more				
	commonly appears as intergrowths				
	associated with Qtz. Thin stockworked				
	veins are most common up to ~47m,				
	past which, multiple cm, low angle				
	w.r.t. C.A., kspar-qtz-carbonate veins				
	become common. Brecciated zones				
	continue for several m's, and at ~60m,				
	the rock appears 'dead' w.r.t. ore				
	mineralization. After 60m, single veins				
	with chlorite and argentite(?) become				
	common, with spacing between veins at				
	~0.5-1m intervals. Stockworking in the				
	veins is rare, though breccia is				
	somewhat more common. Spacing				
	increases, and vein width decreases				
	towards the bottom of the hole.				

Hole No.: 06-03	Sheet No:	Total Depth: 73.2m
Section: 7190N	Latitude: 7190.66	Logged By: Joel Gillham
Date Begun: June 8, 2006	Departure: 1039.64	Dip: 64°
Date Finished: June 9, 2006	Elevation: 1292.62	Core Size: NQ
Date Logged: June 10, 2006	Bearing: 90°	

Depth	1	Rec	Description	Sample	From	То	Sample		As	say	
From	То			No			Width	Au oz/t	Ag oz/t		
0	31.3	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	130184	33.5	35.9	2.4	0.034	1.333		
			Same QFLT unit as DD06-01. Rock is	130185	35.9	37.3	1.4	0.101	4.312		
			very broken for 3-4 m above the fault	130186	37.3	38.2	0.9	0.014	1.222		
31.3	33.5	Poor	Shasta Fault	130187	40.6	41.7	1.1	0.005	0.332		
			Chloritic gouge separates broken,	130188	41.7	43.3	1.6	0.022	1.086		
			relatively unaltered/slight propylitically	130189	43.3	46.0	2.7	0.095	2.103		
			altered QFLT above, and	130190	49.2	51.9	2.7	0.046	1.938		
			silicified/stockworked QFLT below.	130191	57.5	59.4	1.9	0.032	1.128		
			Rock is very broken in fault zone.	130192	59.4	62.3	2.9	0.037	2.304		
33.5	73.2	Good	Silicified QFLT	130193	62.3	64.6	2.3	0.009	0.1		
			Same QFLT lithology as above. Early	130194	64.6	67	2.4	0.026	0.308		
			propylitic alteration chloritized the								
			groundmass and deposited f.g.								
			disseminated PY ~1-3%. This has been								
			overprinted by silicification, which is								
			most intense near the fault. A late								
			hematization occurs locally in patches,								
			and appears to have destroyed the PY.								
			Qtz-Kspar-Chl-Carbonate								
			veins/stockwork/breccia occur								
			throughout, and contain minor CPY,								
			SPH, GAL, and Argentite. Veins range								

	in width from mm's to ~4 cm, and range				
	from low angles to sub-90° angles to				
	C.A. Between ~40 and 50 m vein				
	breccia and stockworking intensity				
	appear highest.				

Hole No.: 06-04	Sheet No:	Total Depth: 79.3 m
Section: 7210N	Latitude: 7201.86	Logged By: Joel Gillham
Date Begun: June 9, 2006	Departure: 1020.41	Dip: 46°
Date Finished: June 10, 2006	Elevation: 1286.03	Core Size: NQ
Date Logged: June 10, 2006	Bearing: 85°	

Depth	n (m)	Rec	Description	Sample	From	То	Sample		Ass	say	
From	То			No			Width	Au oz/t	Ag oz/t		
0	38.8	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	130195	39.6	42.4	2.8	0.045	0.523		
			Same unit as DD-06-01 QFLT	130196	45	46.4	1.4	0.047	0.515		
38.8	39.0	Good	Shasta Fault	130197	46.4	47.8	1.4	0.043	0.401		
			~20cm of chloritc gouge marks the	130198	47.8	49.3	1.5	0.053	0.128		
			change from slight propylitically altered	130199	49.3	50.5	1.2	0.013	1.106		
			QFLT to silicified QFLT unit below.	130200	50.5	51.9	1.4	0.052	0.892		
			Rock on both sides of fault is very	130201	51.9	53.5	1.6	0.013	1.276		
			broken.	130202	53.5	54.9	1.4	0.018	0.275		
39.0	79.3	Good	Silicified QFLT	130203	54.9	56.3	1.4	0.066	0.655		
			Same lithology as above QFLT, but	130066	60.5	61	0.5	0.01	0.045		
			rock has been overprinted by intense	130204	71.7	74	2.3	0.017	1.008		
			silicification, and later by varying								
			degrees of hematization. Chlorite-								
			Kspar-Qtz-Calcite veins/stockwork and								
			breccia are present, and contain ~1%								
			CPY, trace Galena and Sphalerite, and								
			variable f.g. Argentite. Stockwork								
			veining is most common to ~51 m								
			depth, and accounts for up to 10% of								
			rock volume. Veining is common								
			throughout, ranging from mm's to 4cm								
			width. veins intersect C.A. from low to								

	sub 90°. Between \sim 71 and 73.5 m, low				
	angle cm thick vein/breccia occur with				
	visible argentite. Patches of breccia				
	also occur at ~60 m, and 56 m, but				
	otherwise, vein material accounts for				
	<5% of rock volume below 51 m.				

Hole No.: 06-05	Sheet No:	Total Depth: 82.3m
Section: 7210N	Latitude: 7201.86	Logged By: Joel Gillham
Date Begun: June 10, 2006	Departure: 1020.41	Dip: 63°
Date Finished: June 10, 2006	Elevation: 1290.00	Core Size: NQ
Date Logged: June 10, 2006	Bearing: 85°	

Depth	ı	Rec	Description	Sample	From	То	Sample		As	say	
From	То			No			Width	Au oz/t	Ag oz/t		
0	37.1	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	130205	37.3	38.9	1.6	0.058	1.261		
			Same QFLT lithology as DD06-01, with	130206	38.9	40.4	1.5	0.042	2.332		
			slight propylitic alteration and	130207	40.4	41.8	1.4	0.025	0.663		
			disseminated f.g. pyrite ~1%.	130208	50.2	51.8	1.6	0.148	3.965		
37.1	37.3	Okay	Shasta Fault	130209	51.8	53.2	1.4	0.052	3.533		
			~20 cm of chloritic gouge	130210	53.2	54.7	1.5	0.104	8.357		
37.3	62.2	Good	Silicified QFLT	130211	54.7	56.1	1.4	0.025	1.214		
			Same lithology as above QFLT, but has	130212	56.1	57.6	1.5	0.069	0.834		
			been silicified, and later, locally	130213	57.6	59.0	1.4	0.087	1.020		
			hematized in patches and along vein	130214	59.0	60.5	1.5	0.012	1.324		
			margins. Extensive veining/	130215	60.5	62.2	1.7	0.066	4.057		
			stockworking/ brecciation cut the rock	130216	62.2	65.5	3.3	0.145	6.285		
			with the dominant vein mineralogy	130217	65.5	68.9	3.4	0.034	1.924		
			being chlorite-kspar-qtz and	130218	68.9	71.7	2.8	0.026	1.312		
			calcite/carbonate. Minor to accessory	130219	71.7	74.5	2.8	0.025	0.500		
			quantities of CPY, Sphalerite, Galena	130220	74.5	75.9	1.4	0.067	2.014		
			and Argentite in mineralized veins.	130221	75.9	78.3	2.4	0.009	0.582		
			Brecciation and stockworking are most	130222	78.9	82.3	3.4	0.017	0.476		
			common in the top ~ 10 m and bottom								
			several m's of this interval								
62.2	68.9	Good	Silicified QFLT Breccia								
			Same as above unit, but intense								

			brecciation dominates with calcite-				
			quartz material with visible argentite				
68.9	82.3	Good	Silicified QFLT				
			Same as above Silicified QFLT unit				

Hole No.: 06-06	Sheet No:	Total Depth: 76.2 m
Section: 7220N	Latitude: 7219.90	Logged By: Joel Gillham
Date Begun: June 10, 2006	Departure: 1017.60	Dip: 44°
Date Finished: June 10, 2006	Elevation: 1282.09	Core Size: NQ
Date Logged: June 11, 2006	Bearing: 87°	

Depth	1	Rec	Description	Sample	From	То	Sample		Ass	say	
From	То			No			Width	Au oz/t	Ag oz/t		
0	36.7	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	130223	38.4	39.5	1.1	0.003	0.507		
			Same lithology and alteration as the	130224	39.5	41.1	1.6	0.113	7.505		
			hanging wall QFLT unit from DD06-01	130225	41.1	42.5	1.4	0.053	3.886		
36.7	38.3	Poor	Shasta Fault	130226	42.5	43.8	1.3	0.037	1.723		
			Chloritic gouge accounts for ~20% of	130227	48.1	49.4	1.3	0.011	0.024		
			unit, in same broken QFLT as above.	130228	49.4	50.8	1.4	0.009	0.264		
38.3	76.2	Good	Silicified QFLT	130229	62.8	64.9	2.1	0.008	0.187		
			Same lithology as the QFLT above, but	130230	66.5	67.9	1.4	0.003	0.421		
			rock has been silicified, overprinting	130231	67.9	69.3	1.4	0.018	1.747		
			earlier propylitic alteration which	130232	71.2	74.0	2.8	0.007	0.305		
			extensively chloritized the rock.								
			Veins/stockwork/breccia are common								
			throughout the rock and are dominated								
			by a calcite-quartz +/- selvages of								
			chlorite +/- intergrowths of Kspar.								
			CPY, Galena, Sphalerite and Argentite								
			are common accessory minerals in the								
			veins, comprising up to 5%, but more								
			commonly ~1%. Fine grained								
			disseminated PY is usually $<1\%$ of the								
			groundmass, and was likely deposited								
			during early propylitic alteration, and								

	has since been hematized locally in				
	patches. Veining is sparse between ~42				
	m and the end of the hole, with spacing				
	commonly 30-40 cm, and vein widths				
	running in the mm's. A zone of breccia				
	occurs at ~67 m and extends for ~1 m,				
	and in other small patches below the				
	fault.				

Hole No.: 06-07	Sheet No:	Total Depth: 79.3 m
Section: 7220N	Latitude: 7219.90	Logged By: Joel Gillham
Date Begun: June 10, 2006	Departure: 1017.60	Dip: 62°
Date Finished: June 11, 2006	Elevation: 1282.09	Core Size: NQ
Date Logged: June 11, 2006	Bearing: 87°	

Depth	l	Rec	Description	Sample	From	То	Sample		As	say	
From	То			No			Width	Au oz/t	Ag oz/t		
0	32.5	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	130233	32.5	35.0	2.5	0.002	0.019		
			Same unit as hanging wall QFLT in	130234	35.0	39.4	4.4	0.011	1.719		
			DD06-01	130235	39.4	40.8	1.4	0.028	1.603		
32.5	33.5	Poor	Shasta Fault	130236	40.8	42.3	1.5	0.124	3.768		
			Chlorite gouge accounts for up to $\sim 20\%$	130237	42.3	43.7	1.4	0.025	1.788		
			of volume over multiple surfaces, with	130238	43.7	45.2	1.5	0.012	0.913		
			the thickest at 32.5 m. Rock is weakly	130239	45.2	46.6	1.4	0.031	0.311		
			silicified over this interval	130240	46.6	47.9	1.3	0.004	0.767		
33.5	55.3	Good	Silicified Stockworked QFLT	130241	47.9	49.2	1.3	0.336	2.358		
			Same QFLT as above, but with intense	130242	49.2	50.6	1.4	0.500	4.026		
			silicic alteration, and minor hematitic	130243	50.6	52.0	1.4	0.014	1.790		
			alteration overprinting the earlier	130244	52.0	54.0	2	0.027	0.851		
			propylitic alteration. Kspar-Calcite-Qtz	130245	54.0	55.3	1.3	0.048	4.704		
			veins/stockworks and breccias cut the	130246	55.3	59.2	3.9	0.004	2.423		
			host rock at low to high angles w.r.t.	130247	59.2	60.9	1.7	0.026	1.699		
			C.A. accounting for up to 50% of rock	130248	60.9	62.3	1.4	0.027	1.538		
			volume over local 0.5 m sections, and	130249	62.3	63.7	1.4	0.081	5.956		
			up to 15% over entire section. Veins	130250	63.7	65.1	1.4	0.004	0.695		
			are mineralized with CPY, Galena,	130067	65.1	66.5	1.4	0.003	0.362		
			Sphalerite, and argentite and contain	130068	66.5	69.4	2.9	0.005	1.541		
			minor servages of chlorite.	130069	69.4	72.2	2.8	0.009	0.263		
55.3	59.2	Good	Kspar-Quartz-Calcite Vein	130070	72.2	75.0	2.8	0.002	0.067		

			Massive vein is composed of ~80%	130071	75.0	77.9	2.9	0.005	0.011	
			calcite, and contains minor amounts of							
			chlorite, and argentite +/- base metal							
			sulphides, and up to 4 mm PY crystals.							
59.2	79.3	Good	Silicified Stockworked QFLT							
			Same as silicified stockworked QFLT							
			above. Brecciation, stockworking and							
			veining all decrease away from above							
			vein.							

Hole No.: 06-08	Sheet No:	Total Depth: 79.3 m
Section: 7190N	Latitude: 7195.86	Logged By: Joel Gillham
Date Begun: June 11, 2006	Departure: 1007.15	Dip: 62°
Date Finished: June 11, 2006	Elevation: 1282.46	Core Size: NQ
Date Logged: June 12, 2006	Bearing: 88°	

Depth	1	Rec	Description	Sample	From	То	Sample		Ass	say	
From	То			No			Width	Au oz/t	Ag oz/t		
0	45.0	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	130072	45.7	48.0	2.3	0.246	7.947		
			Same QFLT unit as in the hanging wall	130073	48.0	49.5	1.5	0.076	3.405		
			of DD06-01, grades to lapilli poor,	130074	56.2	57.7	1.5	0.035	2.698		
			feldspar crystal rich sediments in lower	130075	57.7	59.4	1.7	0.044	1.150		
			sections of the interval.	130076	59.4	62.4	3.0	0.040	1.370		
45.0	45.2	Okay	Shasta Fault	130077	62.4	63.8	1.4	0.020	0.644		
			Chloritic gouge, and broken silicified	130078	63.8	65.2	1.4	0.032	0.519		
			QFLT clasts.	130079	65.2	66.5	1.3	0.021	1.065		
45.2	79.3	Good	Silicified Stockworked QFLT	130080	66.5	67.9	1.4	0.030	1.627		
			Fine to medium grained disseminated	130081	67.9	69.3	1.4	0.014	1.687		
			PY occurs throughout interval until ~74	130082	69.3	70.7	1.4	0.041	1.483		
			m, where it was likely the Fe source for	130083	70.7	73.2	2.5	0.003	0.672		
			strong hematite alteration. The entire	130084	73.2	74.5	1.3	0.086	2.442		
			unit has been intensely silicified and	130085	74.5	75.5	1	0.050	0.772		
			most of the original texture has been								
			obliterated. Quartz-Calcite is the								
			dominant mineralogy of the								
			veins/stockwork/breccia. Kspar, base								
			metal sulphides, and argentite form +/-								
			accessory mineral phases in the vein								
			material. Intensity of the veining								
			increases with depth, until the last								

several m's of the hole, where it quickly				
decreases. A breccia zone is present at				
56.4 m. At 62.5 m, the core intersects,				
at a low angle to C.A., a vuggy, calcite				
dominated vein/breccia system with				
intense silicification of the clasts.				
Below this zone, hematitic alteration is				
extensive, and veining intensity				
decreases. PY accounts for ~2% in				
weakly, and non-hematized zones, and				
often forms as blebs along healed				
fractures.				

Hole No.: 06-09	Sheet No:	Total Depth: 82.3 m
Section: 7240N	Latitude: 7234.56	Logged By: Joel Gillham
Date Begun: June 12, 2006	Departure: 1015.26	Dip: 46°
Date Finished: June 12, 2006	Elevation: 1279.29	Core Size: NQ
Date Logged: June 13, 2006	Bearing: 90°	

Depth	1	Rec	Description	Sample	From	То	Sample		As	say	
From	То			No			Width	Au oz/t	Ag oz/t		
0	36.6	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	130086	38.8	40.2	1.4	0.880	1.665		
			Same as hanging wall QFLT from	130087	40.2	42.4	2.2	0.131	9.839		
			DD06-01. Slight propylitic alteration	130088	42.4	43.8	1.4	0.037	1.421		
			produced disseminated PY (<1%),	130089	43.8	45.2	1.4	0.012	1.563		
			chloritization, and rarer epidote.	130090	45.2	46.6	1.4	0.029	1.211		
36.6	38.9	Poor	Shasta Fault	130091	46.6	47.1	0.5	0.427	22.091		
			Multiple zones of chloritic gouge and	130092	47.1	50.3	3.2	0.099	2.665		
			increasing silicification of QFLT clasts	130093	50.3	51.9	1.6	0.747	42.965		
			with depth along fault zone.	130094	51.9	53.8	1.9	0.259	16.757		
38.9	82.3	Good	Silicified Stockworked QFLT	130095	53.8	55.2	1.4	0.027	1.373		
			Early chloritzation/propylitization has	130096	55.2	56.6	1.4	0.058	3.292		
			been overprinted by intense	130097	56.6	58	1.4	0.047	2.306		
			silicification. Fine to medium grained	130098	61.0	63.8	2.8	0.050	1.677		
			pyrite is disseminated throughout, and								
			along healed fractures. Veining/								
			Stockwork/brecciation occur								
			throughout, but is most intense in the								
			upper portions of the unit, decresing								
			rapidly after \sim 58 m. At \sim 46 m, and								
			approx. 12 cm wide breccia vein with								
			silicitied wallrock clasts in a late calcite								
			vein filling occurs. Abundant f.g. grey								

	sulphide in the silicic clasts is likely				
	Argentite. Vein intersects C.A. @ 15-				
	20°. Hematite alteration is variable				
	throughout the unit, and is most intense				
	@ ~61 & 49 m.				

Hole No.: 06-10	Sheet No:	Total Depth: 75.0 m
Section: 7240N	Latitude: 7234.56	Logged By: Joel Gillham
Date Begun: June 12, 2006	Departure: 1015.26	Dip: 62°
Date Finished: June 12, 2006	Elevation: 1279.29	Core Size: NQ
Date Logged: June 13, 2006	Bearing: 90°	

Depth	n (m)	Rec	Description	Sample	From	То	Sample		Ass	say	
From	То			No			Width	Au oz/t	Ag oz/t		
0	37.0	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	130099	38.1	40.5	2.4	0.033	0.318		
			Same QFLT as in H.W. of DD06-01.	130100	44.9	46.3	1.4	0.088	1.459		
			Slight propylitic alteration, with	230151	46.3	47.7	1.4	0.076	1.856		
			disseminated PY <1%, extensive	230152	47.7	49.1	1.4	0.049	2.346		
			chloritzation, and rarer epidotization.	230153	49.1	51.1	2	0.142	1.589		
37.0	38.5	Poor	Shasta Fault	230154	51.1	52.3	1.2	0.156	0.768		
			Chloritic gouge over 3 surfaces totalling	230155	52.3	53.8	1.5	0.086	3.246		
			~10% of interval. Variable silicification	230156	53.8	55.3	1.5	0.509	3.218		
			of QFLT clasts.	230157	55.3	56.7	1.4	0.076	3.330		
38.5	75.0	Good	Silicified-Stockworked QFLT	230158	56.7	58.1	1.4	0.063	1.995		
			Same propylitic alteration as above, but	230159	58.1	59.6	1.5	0.162	8.956		
			overprinted by varying degrees of	230160	59.6	61.0	1.4	0.071	3.793		
			silicification, and later hematization.	230161	61.0	62.4	1.4	0.089	7.000		
			Veining/stockworking /brecciation are	230162	62.4	65.2	2.8	0.047	3.311		
			common throughout unit with dominant	230163	65.2	68.1	2.9	0.022	0.893		
			mineralogy Kspar-Calcite-Quartz +/-	230164	68.1	70.9	2.8	0.066	3.486		
			selvages of chlorite, +/- base metal	230165	70.9	73.6	2.7	0.092	3.481		
			sulfides & Argentite. At ~46.5 m, there	230166	73.6	75	1.4	0.009	0.106		
			is an approx. ~5 m section which has								
			undergone intense silicitication and								
			brecciation, such that the original								
			texture has been obscured. Below this,								

	for ~15 m, intense stockworking and				
	brecciation continue, but to a lesser				
	degree, such that vein material accounts				
	for up to ~30% of material. Vuggy				
	silicic breccia occurs from ~56.5 to 58				
	m. Towards bottom of hole, vein				
	intensity decreases.				

Hole No.: 06-11	Sheet No:	Total Depth: 85.4 m
Section: 7250N	Latitude: 7250.50	Logged By: Joel Gillham
Date Begun: June 13, 2006	Departure: 1012.22	Dip: 60°
Date Finished: June 13, 2006	Elevation: 1275.37	Core Size: NQ
Date Logged: June 13, 2006	Bearing: 90°	

Depth	n (m)	Rec	Description	Sample	From	То	Sample		Ass	say	
From	То			No			Width	Au oz/t	Ag oz/t		
0	38.3	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	230167	41.8	44.2	2.4	0.052	1.147		
			Same lithology & unit as hanging wall	230168	44.2	45.6	1.4	0.059	3.300		
			QFLT of DD06-01. Low intensity	230169	45.6	47.0	1.4	0.061	1.139		
			propylitic alteration, f.g. disseminated	230170	47.0	48.4	1.4	0.085	2.535		
			PY <1%, extensive chloritization, and	230171	48.4	51.2	2.8	0.054	0.824		
			lesser Epidotization.	230172	51.2	52.6	1.4	0.041	2.165		
38.3	41.4	Poor	Shasta Fault	230173	55.4	58.3	2.9	0.007	0.197		
			Variable silicification and multiple	230174	58.3	61.2	2.9	0.027	0.250		
			surfaces with chloritic gouge (up to	230175	61.2	62.6	1.4	0.012	0.228		
			~15% of interval).	230176	62.6	64.0	1.4	0.014	0.419		
41.4	85.4	Good	Silicified-Stockworked QFLT	230177	64.0	65.4	1.4	0.010	0.446		
			Same lithology as QFLT above.	230178	65.4	68.2	2.8	0.007	0.328		
			Extensive silicification of variable	230179	82.3	83.5	1.2	0.022	0.834		
			intensity, overprinted by hematitic								
			alteration of disseminated pyrite.								
			Quarz-Calcite veins/breccias/stockwork								
			are common throughout, the the highest								
			intensity occurring from ~54 to 67 m.								
			Vein breccia intensity and extent are								
			relatively low in this hole compared to								
			other holes drilled at Shasta during the								
			² 06 program. Accessory Kspar &								

	chlorite are common in vein				
	assemblages, as well as base metal				
	sulphides & argentite.				

Hole No.: 06-12	Sheet No:	Total Depth: 73.2 m
Section: 7130N	Latitude: 7130.00	Logged By: Joel Gillham
Date Begun: June 13, 2006	Departure: 1009.63	Dip: 46°
Date Finished: June 13, 2006	Elevation: 1295.80	Core Size: NQ
Date Logged: June 14, 2006	Bearing: 95°	

Depth	n (m)	Rec	Description	Sample	From	То	Sample		Ass	say	
From	То			No			Width	Au oz/t	Ag oz/t		
0	50.6	Good	Quartz-Feldspar Lailli Tuff (QFLT)	230180	51.4	52.8	1.4	0.000	0.041		
			Same lithology as H.W. QFLT in	230181	52.8	54.3	1.5	0.010	0.242		
			DD06-01, with pervasive, low intensity	230182	54.3	57.3	3	0.030	0.119		
			propylitic alteration, and volcanic	230183	57.3	59.4	2.1	0.022	0.381		
			derived mud and sand interbeds.	230184	59.4	61.1	1.7	0.149	7.987		
50.6	51.4	Poor	Shasta Fault	230185	61.1	63.0	1.9	0.062	2.432		
			Chloritic gouge with QFLT clasts.	230186	63.0	65.8	2.8	0.037	1.561		
51.4	73.2	Good	Silicified Stockworked QFLT	230187	71.2	72	0.8	0.004	0.016		
			Same QFLT as above, but intensely								
			silicified and in some places, later								
			hematized. Disseminated pyrite								
			accounts for <1% of groundmass, and is								
			also present along fractures. Qtz-								
			Calcite veins/stockwork, and more								
			rarely breccia cut through entire								
			interval. Accessory Kspar and chlorite								
			+/- base metal sulphides and argentite								
			are common Qtz-Calcite margins, or								
			intergrown with qtz. A predominant								
			breccia zone exists from $59.4 - 61.0 \text{ m}$,								
			containing very silicitied clasts and								
			vugs.								

Hole No.: 06-13	Sheet No:	Total Depth: 73.2 m
	. .	
Section: 7140N	Latitude: 7143.00	Logged By: Joel Gillham
Date Begun: June 14, 2006	Departure: 1006.53	Dip: 45°
Date Finished: June 14, 2006	Elevation: 1295.00	Core Size: NQ
Date Logged: June 16, 2006	Bearing: 92°	

Depth (m)		Rec	Description	Sample	From	То	Sample	Assay			
From	То			No			Width	Au oz/t	Ag oz/t		
0	51.4	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	230188	51.6	53.0	1.4	0.047	1.615		
			Same QFLT as in H.W. of DD06-01 &	230189	53.0	54.4	1.4	0.014	0.636		
			interbeds of QFLT derived sediments.	230190	54.4	55.8	1.4	0.009	0.372		
51.4	51.6	Good	Shasta Fault	230191	55.8	57.3	1.5	0.062	4.711		
			~20 cm of chloritic gouge.	230192	57.3	58.8	1.5	0.050	1.501		
51.6	73.2	Good	Silicified QFLT	230193	58.8	60.4	1.6	0.088	3.790		
			Below the fault, the same QFLT is	230194	60.4	61.8	1.4	0.117	8.842		
			present and has been moderately to	230195	61.8	63.2	1.4	0.113	9.260		
			intensely silicified, with overprints an	230196	63.2	64.6	1.4	0.215	7.790		
			earlier propylitic alteration suite of	230197	64.6	66.0	1.4	0.054	0.594		
			chlorite & disseminated pyrite. Qtz-	230198	66.0	68.0	2.0	0.031	0.900		
			Calcite veins/breccia/stockwork +/-								
			Kspar, chlorite, base metal sulphides								
			and Argentite, are present over the								
			interval. A late, mild hematitic								
			alteration affects the unit from ~ 62 m to								
			the end of the hole. Zones of breccia								
			exist just below the fault, and from 5/								
			to 62 m. High angle veins, w.r.t. C.A.								
			are dominant between 65 and ~68 m.								

Hole No.: 06-14	Sheet No:	Total Depth: 85.4 m
Section: 7150N	Latitude: 7149.61	Logged By: Joel Gillham
Date Begun: June 14, 2006	Departure: 1016.66	Dip: 63°
Date Finished: June 15, 2006	Elevation: 1294.72	Core Size: NQ
Date Logged: June 16, 2006	Bearing: 88°	

Depth	Depth (m)		Description	Sample	From	То	Sample	Assay			
From	То			No			Width	Au oz/t	Ag oz/t		
0	50.0	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	230199	51.4	53.5	2.1	0.017	0.874		
			Same lithology/unit as HW QFLT from	230200	66.0	68.9	2.9	0.022	1.068		
			DD06-01	230201	68.9	70.3	1.4	0.064	2.839		
50.0	51.4	Poor	Shasta Fault	230202	70.3	72.7	2.4	0.179	5.754		
			Broken, mud rich QFLT fragments and	230203	72.7	74.6	1.9	0.057	5.637		
			chloritic gouge.	230204	74.6	76.0	1.4	0.118	11.188		
51.4	72.8	Good	Silicified QFLT	230205	76.0	77.5	1.5	0.111	9.902		
			Same QFLT lithology as above. Early	230206	77.5	79.1	1.6	0.145	10.366		
			propylitic alteration -> chlorite +	230207	79.1	80.6	1.5	0.055	2.561		
			pyrite, overprinted by intense silicic	230208	80.6	82.1	1.5	0.096	2.555		
			alteration, and cut by Qtz-Calcite	230209	82.1	83.5	1.4	0.040	1.606		
			veins/stockwork, with accessory +/-								
			chlorite, kspar, base metal sulphides and								
			argentite. Towards bottom of interval,								
			silicification has replaced enough								
			material such that the original QFLT								
			texture is obscured.								
72.8	79.0	Good	Silicified QFLT Breccia								
			Clasts of above silicified QFLT w/								
			hematitic alteration, in Qtz-calcite vein								
			material similar to above (Kspar, chlor,								
			base metal sulphides and ARG).								

79.0	85.4	Good	Silicified Stockworked QFLT				
			Same QFLT as above, with fine				
			stockwork veins (mm's), and up to 4 cm				
			wide Kspar-Qtz-Calcite with minor				
			Argentite veins.				

Hole No.: 06-15	Sheet No:	Total Depth: 76.2 m
Section: 7150N	Latitude: 7150.37	Logged By: Joel Gillham
Date Begun: June 14, 2006	Departure: 1017.13	Dip: 46°
Date Finished: June 14, 2006	Elevation: 1294.67	Core Size: NQ
Date Logged: June 16, 2006	Bearing: 79°	

Depth		Rec	Description	Sample	From	То	Sample		Assay			
From	То			No			Width	Au oz/t	Ag oz/t			
0	45.6	Good	Quatz-Feldspar Lapilli Tuff (QFLT)	230210	45.8	47.3	1.5	0.032	0.704			
			Same lithology as HW QFLT in DD06-	230211	56.5	57.1	0.6	0.008	0.450			
			01 & interbeds of QFLT derived	230212	57.4	58.6	1.2	0.056	2.087			
			sediments (mudstones, sandstones &	230213	63.4	64.3	0.9	0.018	0.640			
			conglomerates). Same prop.alteration	230214	69.1	71.1	2.0	0.027	0.849			
45.6	45.8	Okay	Shasta Fault									
			~20 cm of chloritic gouge.									
45.8	76.2	Good	Silicified QFLT									
			Same lithology as above. Early									
			propylitic alteration overprinted by									
			moderate silicification. Most of the									
			original texture is well preserved. Thin									
			(mm's thick) stockwork veins are rare,									
			and the only breccia zone is ~1 m long									
			directly below the fault. Veins are									
			uncommon and small compared to other									
			holes observed during the '06 Shasta									
			drill program. The highest intensity of									
			veins occurs around ~58 m. Same Qtz-	<u> </u>								
			Calcite +/- kspar, chl and sulphides as	<u> </u>								
			other holes. Low intensity hematitc									
			alteration is common throughout.									

Hole No.: 06-16	Sheet No:	Total Depth: 85.4 m
Section: 7110N	Latitude: 7110.48	Logged By: Joel Gillham
Date Begun: June 14, 2006	Departure: 1012.56	Dip: 49°
Date Finished: June 15, 2006	Elevation: 1301.08	Core Size: NQ
Date Logged: June 17, 2006	Bearing: 89°	

Depth	Depth		Description	Sample	From	То	Sample				
From	То			No			Width	Au oz/t	Ag oz/t		
0	51.1	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	230215	51.2	52.5	1.3	0.013	0.006		
			Same lithology/unit as HW QFLT from	230216	54.2	55.4	1.2	0.009	0.135		
			DD06-01, with interbeds of QFLT	230217	62.3	63.7	1.4	0.391	13.010		
			derived mudstones and sandstones.	230218	70.5	72.1	1.6	0.064	4.771		
51.1	51.2	Okay	Shasta Fault	230219	75.2	76.2	1.0	0.061	4.380		
			~10 cm of chloritic gouge	230220	79.4	81.6	2.2	0.014	0.480		
51.2	85.4	Good	Same QFLT as above, but extensively								
			silicified, and veined/stockworked with								
			minor breccia. Qtz-calcite +/- kspar,								
			chlorite, sulphides and argentite form								
			the dominant vein mineralogy. Overall,								
			very little breccia is present, and is								
			contained to uncommon cm wide veins.								
			Sericite is present from 79 m on.								
			Between ~62 and 64 m, there is a strong								
			silicic replacement with minor vuggy								
			and brecciated texture.								

Hole No.: 06-17	Sheet No:	Total Depth: 51.8 m
Section: 7110N	Latitude: 7109.92	Logged By: Joel Gillham
Date Begun: June 15, 2006	Departure: 1059.60	Dip: 43°
Date Finished: June 16, 2006	Elevation: 1310.98	Core Size: NQ
Date Logged: June 17, 2006	Bearing: 89°	

Depth (m)		Rec	Description	Sample	From	То	Sample		Assay				
From	То			No			Width	Au oz/t	Ag oz/t				
0	14.6	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	230221	14.9	17.0	2.1	0.245	10.098				
			Same lithology/unit as DD06-01, w/	230222	17.0	19.6	2.6	0.047	1.308				
			propylitic alteration and QFLT derived	230223	19.6	21.0	1.4	0.025	0.555				
			sedimentary interbeds.	230224	21.0	22.9	1.9	0.021	0.731				
14.6	14.9	Poor	Shasta Fault	230225	35.6	36.6	1.0	0.036	1.543				
			Chloritic gouge & clasts of weakly	230226	43.7	44.0	0.3	0.007	0.688				
			silicified QFLT.										
14.9	51.8	Good	Silicified QFLT										
			Same QFLT as above with moderate										
			silicification. Vein/stockwork/breccia is										
			common for ~10 m below fault, then										
			intensity decreases rapidly, with only										
			the occasional multiple cm vein. Vein										
			material is dominantly Qtz-Calcite +/-										
			minor kspar, chlorite and sulphides.										
			Very little argentite is observed except										
			for the breccia zone below the fault.										
			After ~30 m, hematitic alteration is										
			present. At ~44 m a ~10cm wide										
			Argentite bearing vein is present.										

Hole No.: 06-18	Sheet No:	Total Depth: 61.0 m
Section: 7110N	Latitude: 7109.92	Logged By: Joel Gillham
Date Begun: June 16, 2006	Departure: 1059.60	Dip: 72°
Date Finished: June 17, 2006	Elevation: 1310.98	Core Size: NQ
Date Logged: June 17, 2006	Bearing: 89°	

Depth (m)		Rec	Description	Sample	From	То	Sample	Assay			
From	То			No			Width	Au oz/t	Ag oz/t		
0	19.2	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	230227	19.6	21.3	1.7	0.056	2.292		
			Same lithology/unit as hanging wall	230228	21.3	22.7	1.4	0.179	3.787		
			QFLT from DD06-01 & QFLT derived	230229	22.7	24.5	1.8	0.013	0.411		
			sedimentary interbeds. Slight propylitic	230230	24.5	26.2	1.7	0.064	3.554		
			alteration.	230231	26.2	28.5	2.3	0.139	6.735		
19.2	19.6	Poor	Shasta Fault	230232	28.5	30.1	1.6	0.031	1.636		
			Chloritic gouge and QFLT clasts.	230233	33.6	35.9	2.3	0.055	2.058		
19.6	61.0	Good	Silicified QFLT	230234	40.5	41.7	1.2	0.032	1.373		
			Same QFLT lithology as above, but	230235	59.5	60.2	0.7	0.100	0.778		
			with silicic alteration. Breccia and								
			stockwork textures are well developed								
			below the fault, as is silicic replacement								
			that obscures the original texture.								
			Stockworking, brecciation and veining								
			all decrease in intensity with depth, and								
			give way to a vein dominant texture. At								
			~43 m, single veins become dominant.								
			Vein/stockwork material is composed of								
			Qtz-Calcite +/- Kspar, chlorite and								
			sulphides (incl. argentite). Between ~26								
			and 28.5 m, intense silica replacement								
			& vuggy textures are present.								
PROPERTY: Black Gossan

Hole No.: DD06-19	Sheet No:	Total Depth: 128 m
Section:	Latitude: 6350800 N (NAD83)	Logged By: J Gillham
Date Begun: Jun 17, 2006	Departure: 617060 E (NAD83)	Dip: 47°
Date Finished: Jun 19, 2006	Elevation: 1555 m	Core Size: NQ
Date Logged: Jun 24, 2006	Bearing: 0°	

Depth	1	Rec	Description	Sample	From	То	Sample	As	say	
From	То			No			Width			
0	128	Good	Augite Phyric Andesite/Basalt							
			Core consists of propylitcally altered							
			andesite/basalt flows, and autoclastic							
			breccias. Phenocrysts consist of							
			euhedral augite crystals 1-2 mm in							
			diameter, altered mostly to chlorite.							
			Propylitic alteration has altered most of							
			the rock to chlorite, with rare epidote on							
			fractures, giving the rock a dark green							
			appearance. Pyrite is a common							
			alteration mineral, occurring both on							
			fracture surfaces, and partially replacing							
			augite phenocrysts. Late calcite, and							
			calcite- + laumontite stringers cut the							
			core at various angles.							
			Note: This hole had to be abandoned							
			well before the target depth due to poor							
			ground conditions, and inappropriate	<u> </u>	1					
			urili selection. Nothing of interest was	<u> </u>	1					
			mercepied, and as a result, no assays	<u> </u>	1					
			were done for this note.	<u> </u>	1					

PROPERTY: Black Gossan

Hole No.: DD06-20	Sheet No:	Total Depth: 42.7 m
Section:	Latitude: 6350800N (NAD83)	Logged By: J Gillham
Date Begun: Jun 19, 2006	Departure: 617060 E (NAD83)	Dip: 62°
Date Finished: Jun 20, 2006	Elevation: 1555 m	Core Size: NQ
Date Logged: Jun 24, 2006	Bearing: 60°	

Depth	l	Rec	Description	Sample	From	То	Sample	As	say	
From	То			No			Width			
0	42.7	Good	Augite Phyric Andesite/Basalt							
			Core consists of propylitcally altered							
			andesite/basalt flows, and autoclastic							
			breccias. Phenocrysts consist of							
			euhedral augite crystals 1-2 mm in							
			diameter, altered mostly to chlorite.							
			Propylitic alteration has altered most of							
			the rock to chlorite, with rare epidote on							
-			fractures, giving the rock a dark green							
			appearance. Pyrite is a common							
			alteration mineral, occurring both on							
			fracture surfaces, and partially replacing							
			augite phenocrysts. Late calcite, and							
			calcite- + laumontite stringers cut the							
			core at various angles.							
-										
			Note: This hole had to be abandoned							
			well before the target depth due to poor							
			ground conditions, and inappropriate							
			drill selection. Nothing of interest was							
			intercepted, and as a result, no assays							
			were done for this hole.							

PROPERTY: Shasta

Hole No.: 06-21	Sheet No:	Total Depth: 70.1 m
Section: 7275N	Latitude: 7275 N	Logged By: Joel Gillham
Date Begun: June 20, 2006	Departure: 1010 E	Dip: 65°
Date Finished: June 20, 2006	Elevation:	Core Size: NQ
Date Logged: June 22, 2006	Bearing: 90°	

Depth	1	Rec	Description	Sample	From	То	Sample		As	say	
From	То			No			Width	Au oz/t	Ag oz/t		
0	38.0	Good	Quartz-Feldspar Lapilli Tuff (QFLT)	230236	38.5	40.5	2.0	0.041	1.400		
			Same HW QFLT as in DD06-01.	230237	42.4	42.6	0.2	0.406	2.504		
			Feldspar rich, Lapilli poor above fault.	230238	42.6	43.4	0.8	0.039	1.026		
38.0	38.5	Poor	Shasta Fault	230239	43.4	44.8	1.4	0.041	2.683		
			Chloritic gouge and weakly silicified	230240	44.8	46.3	1.5	0.027	2.092		
			QFLT	230241	46.3	47.7	1.4	0.088	6.991		
38.5	42.3	Good	Silicified QFLT	230242	47.7	49.1	1.4	0.081	4.218		
			Same QFLT as above, silicified and	230243	49.1	50.5	1.4	0.125	8.412		
			hematized. Rare disseminated pyrite in	230244	50.5	53.8	3.3	0.135	8.166		
			less hematized zones. Qtz-calcite	230245	53.8	54.9	1.1	1.433	100.544		
			stringer veins +/- some epidote and	230246	54.9	56.3	1.4	0.423	22.768		
			sulphides. Vein intensity is low, and	230247	56.3	57.7	1.4	0.415	21.077		
			width's are mm's thick.	230248	57.7	59.6	1.9	0.502	27.890		
42.3	42.4	Poor	Fault	153411	64.4	65.0	0.6	0.012	0.091		
			Broken fragments w/ chloritic gouge	230249	67.7	68.4	0.7	0.070	1.303		
42.4	42.6	Good	Argentite-Quartz Vein								
			20 cm intersection of intergrown grey								
			sulphide in quartz with rare silicic clast.								
			Disseminated pyrite and chalcopyrite								
			account for $<5\%$. Contact is $\sim50^{\circ}$ to								
			C.A.								
42.6	43.6	Good	Silicified QFLT Breccia & Qtz								

			Intense silica replacement has obscured				
			interval. Small vugs & white to grey				
			(intergrown sulphides?) quartz account				
10 6	50.5	<u> </u>	10r > 50% of interval.	 			
43.6	59.5	Good	Silicified Stockworked QFLT			 	
			Same QFL1 as above, but shirted and				
			stockworking and minor broccio. Voin				
			material is calcite-atz and accounts for				
			$\sim 20\%$ of interval and greater than				
			~50% of local 0.5 m sections. Argentite				
			is abundant in vein material, along with				
			fine grained sulphides and kspar.				
59.5	70.1	Good	Silicified QFLT				
			Same as above, but stockworking is less				
			developed. The contact between these				
			two units is gradational and arbitrary.				
			The appearance of a dark red-purple				
			mineral (Cinnabar?) begins at ~62 m,				
			and is associated with chlorite & quartz				
			in vein material. At ~65 m, a well				
			~0.5 m				
			······································				

PROPERTY: Shasta

Hole No.: 06-22	Sheet No:	Total Depth: 61.0 m
Section: 7290N	Latitude: 7290 N	Logged By: Joel Gillham
Date Begun: June 20, 2006	Departure: 1012 E	Dip: 55°
Date Finished: June 21, 2006	Elevation:	Core Size: NQ
Date Logged: June 22, 2006	Bearing: 90°	

Depth	n (m)	Rec	Description	Sample	From	То	Sample		Ass	say	
From	То			No			Width	Au oz/t	Ag oz/t		
0	29.1	Good	Quartz-Feldspar Lapilli Tuff	230250	29.3	31.4	2.1	0.087	0.476		
			Same H.W. unit as in DD06-01. Lapilli	153401	31.4	31.6	0.2	0.185	15.417		
			are heterolithic and display more	153402	31.6	34.3	2.7	0.019	0.047		
			diversity in composition than earlier	153403	34.3	37.2	2.9	0.032	1.360		
			holes.	153404	37.2	39.0	1.8	0.008	0.370		
29.1	29.3	Okay	Shasta Fault	153405	39.0	41.2	2.2	0.009	0.004		
			~20 cm of chloritic gouge and weakly	153406	41.2	43.3	2.1	0.000	0.037		
			silicified QFLT clasts.	153407	43.3	44.6	1.3	0.028	1.394		
29.3	61.0	Good	Silicified QFLT	153408	44.6	46.0	1.4	0.014	0.533		
			Same QFLT as above, but silicified and	153409	46.0	47.4	1.4	0.019	0.769		
			hematized. Veining is common, but	153410	47.4	50.3	2.9	0.043	1.935		
			stockworking is minimal. Vein width &								
			intensity decreases with depth along								
			with argentite concentration in the vein								
			material. Vein mineralogy consists of								
			calcite-Qtz +/- Argentite, Kspar &								
			sulphides. A ~20 cm Qtz-Argentite?-								
			Chlorite? Zone (possibly analogous to								
			to Qtz-Argentite vein below 2 nd fault in								
			DD06-21) occurs at ~31.3 m.								

PROPERTY: Baker – Upper Ridge HOLE No.: DD06-23

Hole No.: 06-23	Sheet No:	Total Depth: 155.5 m
Section:	Latitude: 1150N	Logged By: Joel Gillham
Date Begun:	Departure: 1075 E	Dip: 72°
Date Finished:	Elevation:	Core Size: NQ
Date Logged: July 14, 2006	Bearing: 60°	

Depth	l	Rec	Description	Sample	From	То	Sample	As	say	
From	То			No			Width			
0	2.7		Casing	12251	7.6	8.2	0.6			
2.7	7.2	2.0	Augite Phyric Andesite (APA)	12252	11.5	12.6	1.1			
			Green Takla volcanic. Rock is very	12253	20.4	21.1	0.7			
			broken with extensive Fe-ox weathering	12254	22.4	23.2	0.8			
			on fracture surfaces. Phenocrysts are	12255	29.3	29.9	0.6			
			small ~mm, and not very abundant. The	12256	38.4	38.7	0.3			
			groundmass has undergone weak and	12257	57.3	57.6	0.3			
			pervasive chloritization. Pyrite is	12258	58.0	58.5	0.5			
			present as blebs, and along less	12259	60.0	60.5	0.5			
			weathered fracture surfaces.	12260	69.1	69.8	0.7			
7.2	7.6	0.3	Crowded Feldspar Porphyry (CFP)	12261	97.7	98.2	0.5			
			Hypabyssal intrusive with euhedral to	12262	135.4	136.0	0.6			
			subhedral Feldspar phenocrysts up to 5	12263	146.5	147.4	0.9			
			mm in size, and accounting for up to	12264	87.7	88.4	0.7			
			~35% of the modal volume. Dominant	12265	65.8	66.5	0.7			
			composition is plagioclase, but	12266	51.0	51.6	0.6			
			hematitic alteration has variably	12267	151.6	152.3	0.7			
			discoloured many crystals.							
			Groundmass is leuco-to-mesocratic and							
			commonly has undergone localized							
			hematitic, and or silicic and potassic							
			alteration. Contact with above unit is							

			unknown due to broken nature of the				
			rock. Contact with lower unit is				
			irregular and gradational over ~ 1-2 cm.				
7.6	8.2	.57	Mottled Calcite-Qtz altered APA				
			Rare augite phenocrysts identifies				
			parent lithology as above augite phyric				
			andesite (APA). Calcite has pervasively				
			perlaced much of the groundmass, and				
			Qtz-calcite wispy veins are common				
			throughout. The qtz has a greyish				
			appearance, suggesting f.g. sulphides, or				
			possibly chlorite. Pyrite is very				
			common, and is most abundant along				
			vein margins, accounting for up to				
			$\sim 10\%$ of the unit. Lower contact is as				
			above contact – irregular and				
			gradational.				
8.2	8.8	.6	Crowded Feldspar Porphyry (CFP)				
8.2	8.8	.6	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay-				
8.2	8.8	.6	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay- calcite +/- pyrite filled fractures.	 			
8.2	8.8	.6	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay- calcite +/- pyrite filled fractures. Augite Phyric Andesite (APA)				
8.2	8.8	.6	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay- calcite +/- pyrite filled fractures. Augite Phyric Andesite (APA) Same APA lithology as above. Pyrite				
8.2	8.8	.6	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay- calcite +/- pyrite filled fractures. Augite Phyric Andesite (APA) Same APA lithology as above. Pyrite filled fractures, variably altering to Fe-				
8.2	8.8 10.4	.6	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay- calcite +/- pyrite filled fractures. Augite Phyric Andesite (APA) Same APA lithology as above. Pyrite filled fractures, variably altering to Fe- oxides. Late calcite stringers. Lower				
8.2	8.8	.6	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay- calcite +/- pyrite filled fractures. Augite Phyric Andesite (APA) Same APA lithology as above. Pyrite filled fractures, variably altering to Fe- oxides. Late calcite stringers. Lower contact is missing in broken core.				
8.2 8.8 10.4	8.8 10.4 11.5	.6 1.3 1.0	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay- calcite +/- pyrite filled fractures. Augite Phyric Andesite (APA) Same APA lithology as above. Pyrite filled fractures, variably altering to Fe- oxides. Late calcite stringers. Lower contact is missing in broken core. Crowded Feldspar Porphyry (CFP)				
8.2 8.8 10.4	8.8 10.4 11.5	.6 1.3 1.0	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay- calcite +/- pyrite filled fractures. Augite Phyric Andesite (APA) Same APA lithology as above. Pyrite filled fractures, variably altering to Fe- oxides. Late calcite stringers. Lower contact is missing in broken core. Crowded Feldspar Porphyry (CFP) Same CFP as aboe, silicic alteration is				
8.2 8.8 10.4	8.8 10.4 11.5	.6 1.3 1.0	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay- calcite +/- pyrite filled fractures. Augite Phyric Andesite (APA) Same APA lithology as above. Pyrite filled fractures, variably altering to Fe- oxides. Late calcite stringers. Lower contact is missing in broken core. Crowded Feldspar Porphyry (CFP) Same CFP as aboe, silicic alteration is common, as is pyrite-clay(or zeolite?)-				
8.2 8.8 10.4	8.8 10.4 11.5	.6 1.3 1.0	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay- calcite +/- pyrite filled fractures. Augite Phyric Andesite (APA) Same APA lithology as above. Pyrite filled fractures, variably altering to Fe- oxides. Late calcite stringers. Lower contact is missing in broken core. Crowded Feldspar Porphyry (CFP) Same CFP as aboe, silicic alteration is common, as is pyrite-clay(or zeolite?)- calcite filled fractures.				
8.2 8.8 10.4 11.5	8.8 10.4 11.5 11.5	.6 1.3 1.0 1.0	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay- calcite +/- pyrite filled fractures. Augite Phyric Andesite (APA) Same APA lithology as above. Pyrite filled fractures, variably altering to Fe- oxides. Late calcite stringers. Lower contact is missing in broken core. Crowded Feldspar Porphyry (CFP) Same CFP as aboe, silicic alteration is common, as is pyrite-clay(or zeolite?)- calcite filled fractures. Mottled Calcite-Quartz altered APA				
8.2 8.8 10.4 11.5	8.8 10.4 11.5 11.5	.6 1.3 1.0 1.0 .95	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay- calcite +/- pyrite filled fractures. Augite Phyric Andesite (APA) Same APA lithology as above. Pyrite filled fractures, variably altering to Fe- oxides. Late calcite stringers. Lower contact is missing in broken core. Crowded Feldspar Porphyry (CFP) Same CFP as aboe, silicic alteration is common, as is pyrite-clay(or zeolite?)- calcite filled fractures. Mottled Calcite-Quartz altered APA Same as above unit, but quartz is much				
8.2 8.8 10.4 11.5	8.8 10.4 11.5 12.5	.6 1.3 1.0 .95	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay- calcite +/- pyrite filled fractures. Augite Phyric Andesite (APA) Same APA lithology as above. Pyrite filled fractures, variably altering to Fe- oxides. Late calcite stringers. Lower contact is missing in broken core. Crowded Feldspar Porphyry (CFP) Same CFP as aboe, silicic alteration is common, as is pyrite-clay(or zeolite?)- calcite filled fractures. Mottled Calcite-Quartz altered APA Same as above unit, but quartz is much less abundant.				
8.2 8.8 10.4 11.5 12.5	8.8 10.4 11.5 11.5 12.5 16.1	.6 1.3 1.0 .95 3.3	Crowded Feldspar Porphyry (CFP) Same as above CFP, but with clay- calcite +/- pyrite filled fractures. Augite Phyric Andesite (APA) Same APA lithology as above. Pyrite filled fractures, variably altering to Fe- oxides. Late calcite stringers. Lower contact is missing in broken core. Crowded Feldspar Porphyry (CFP) Same CFP as aboe, silicic alteration is common, as is pyrite-clay(or zeolite?)- calcite filled fractures. Mottled Calcite-Quartz altered APA Same as above unit, but quartz is much less abundant. Crowded Feldspar Porphyry (CFP)				

			Hematization is very common, and				
			upper contact is qtz rich – possibly				
			mineralized. Lower contact is sharp at				
			~55° to C.A.				
16.1	17.7	1.4	Augite Phyric Andesite (APA)				
			Same APA lithology as above,				
			somewhat larger augite phenocrysts.				
			Rare calcite-pyrite stringers. Broken to				
			gradational lower contact, suggesting				
			partial absorption of APA into lower				
			CFP.				
17.7	18.6	0.8	Crowded Feldspar Porphyry (CFP)				
			Same CFP lithology as above. Earlier				
			hematitic alteration is cut by chlorite-				
			sericite-pyrite assemblage which is				
			more intense in the lower part of this				
			section. Lower contact is irregular and				
			chlorite-pyrite rich.				
18.6	20.9	2.1	Augite Phyric Andesite (APA)				
			Same APA lithology as above. Thin				
			CFP fingers intrude this interval in				
			multiple places and are associated with				
			sericite-pyrite alteration halos. Lower				
			contact is gradational, suggestive of				
			absorption into the lower CFP.				
20.9	26.5	5.4	Crowded Feldspar Porphyry (CFP)				
			Same CFP as above. Sericitic alteration				
			is common. Between 22.4-22.9,				
			alteration is most intense and has				
			"bleached" the rock. This is also an				
			area of intense pyrite, and minor calcite				
			deposition along fractures. Very rare,				
			grey sulphide may be present, and				
			appear to replace pyrite. At ~26 m, a				

			clast of APA is present.				
26.5	27.4	0.8	Augite Phyric Andesite (APA)				
			Same as above APA . Rare calcite-				
			laumonite(Pink zeolite) stringers.				
			Lower contact is gradational over ~50				
			cm and accounted for in the next				
			interval.				
27.4	29.8	2.4	Crowded Feldspar Porphyry (CFP)				
			Same CFP as above. Gradational upper				
			contact for ~ 0.5 m. Hem-Silica+/-				
			Kspar alteration most common. At				
			~29.6 m, chlorite rich fault gouge with				
			abundant pyrite is present. Lower				
			contact is a quartz rich zone- possibly				
			mineralized.				
29.8	30.3	0.5	Augite Phyric Andesite (APA)				
			Same APA as above. Likely a block				
			within the CFP				
30.3	34.4	4.0	Crowded Feldspar Porphyry (CFP)				
			Same CFP as above. Overall interval				
			has a darker colour and rare augite				
			crystals in relatively feldspar poor				
			patches. Pyrite is abundant in the areas,				
			and they probably represent zones of				
			APA absorption. Lower contact is				
			missing but does not appear gradational.				
34.4	35.2	0.8	Augite Phyric Andesite (APA)				
			Same as above. Cut by stringers of				
			calcite-laumonite. A feldspar depleted				
			finger of CFP intrudes in the middle of				
			the interval.				
35.2	38.2	2.9	Crowded Feldspar Porphyry (CFP)				
			Same as above. Early silica hematite				

			+/- kspar alteration overprinted by				
			patchy sericitic alteration assemblages				
			of sericite-pyrite. Lower contact is				
			gradational.				
38.2	39.2	1.0	Augite Phyric Andesite (APA)				
			Same APA as above. A Qtz rich zone is				
			associated with a finger of CFP at ~38.7				
			m. Lower contact is somewhat sharp, at				
			~35° to C.A. Calcite-laumonite				
			stringers are common.				
39.2	56.9	17	Crowded Feldspar Porphyry (CFP)				
			Same as above. Sericite alteration is				
			pervasive and overprints earlier silicic,				
			hematitic +/- potassic alteration. At ~44				
			m, rock is more mesocratic and contains				
			rare augite crystals suggesting an area				
			of APA absorption.				
56.9	57.9	1.0	Augite Phyric Andesite (APA)				
			Same as above APA. Gradational upper				
			and lower contact. Calcite-laumonite				
			stringers are common. A grey-possibly				
			mineralized, quatz bleb occurs at				
			~57.5m				
57.9	58.7	0.8	Crowded Feldspar Porphyry (CFP)				
			Same as above CFP. Early alteration				
			overprinted by sericitic alteration.				
			Lower contact is irregular and well				
			silicified.				
58.7	60.5		Augite Phyric Andesite (APA)				
			Same as above APA. Calcite-laumonite				
			stringers are common, and same (Cal-				
			Lam) mineralogy is present in ~10 cm				
			breccia zone at ~59.3 m. Thin, mm's				
			wide wispy veins of qtz-calcite-grey				

			sulphide? Runs at very low angle to				
			C.A. from ~60 m to end of interval.				
			Lower contact has abundant grey Qtz.				
60.5	67.1	6.5	Crowded Feldspar Porphyry (CFP)				
			Same as above CFP. Early qtz kspar +/-				
			hematite?, is cut by sericitic alteration				
			of sericite + pyrite. Multiple cm's clasts				
			of aphyric rock are common in local				
			sections, along with patches containing				
			augite phenocrysts(xenocrysts?). At				
			~65.5 m, a 10 cm sericite-clay gouge at				
			~55° to C.A. occurs. The lower contact				
			is gradational with the APA and				
			contains Qtz blebs.				
67.1	69.5	2.4	Augite Phyric Andesite (APA)				
-			Same APA as above. Calcite-laumonite				
			stringers. Lower contact is gradational				
			& qtz rich.				
69.5	77.5		Augite Feldspar Porphyry (AFP)				
			Augite phenocrysts account for ~5-10%				
			of the modal volume, while feldspar				
			~25%. Both crystals are multiple mm's.				
			Augite phenos also have reaction rims –				
			(possible disequilibrium reaction w/				
			melt?). Overall, the groundmass is				
			more mesocratic than the CFP. Sericite				
			alteration is rare to absent, with silicic				
			alteration dominant. Calcite-laumonite				
			stringers are common. Both upper and				
			lower contacts are gradation. It is likely				
			that this unit is a CFP that has absorbed				
	1		significant APA.				
77.5	79.3		Augite Phyric Andesite (APA)				
			Same APA as above, but relatively				

			augite poor. Lower contact is unclear as				
			core turns to rubble.				
79.3	79.5	0.1	Crowded Feldspar Porphyry (CFP)				
			Same CFP as above. Driller's block				
			indicates a 'cave'. Rock is ground and				
			rubbly.				
79.5	81.2		Augite Phyric Andesite (APA)				
			Same APA as above. Large augite				
			phenos. Lower contact is irregular, w/				
			abundant blebs of pyrite on both sides				
			of contact.				
81.2	81.6	0.4	Crowded Feldspar Porphyry (CFP)				
			Same as above. Silicic + kspar				
			alteration on both contacts. Feldspar				
			depleted.				
81.6	83.1		Augite Phyric Andesite (APA)				
			Same as above APA. Pyrite abundant				
			along healed fractures. Lower contact				
			is irregular and gradational.				
83.1	84.9		CFP-APA Contact Zone				
			Irregular, low angle w.r.t. C.A., pyrite				
			rich contact between CFP +/- augite,				
			and APA.				
84.9	93.3		Augite-Hornblende-Feldspar				
			Porphry (AHFP)				
			Similar to above AFP, but augite is				
			largely eroded, and small hornblende				
			needles have grown, along with some				
			reaction rim(Ca metasomatic?) on the				
			feldspars. The groundmass is more				
			mesocratic, and has increased in volume				
			relative to phenocrysts content. Calcite-				
			laumonite stringers are vey common,				
			and hematite staining of the plag is				

			abundant. Contact between lower unit				
			is unknown, but appears abrupt.				
93.3	94.7	Good	Augite Phyric Andesite (APA)				
			Same as above APA. Towards bottom				
			of interval, a mottled calcite-pyrite				
			texture with fingers of AFP occurs.				
94.7	95.3	Good	Augite Feldspar Porphyry (AFP)				
			Same as above AFP. Irregular, calcite				
			rich lower contact.				
95.3	96.9	Good	Augite Phyric Andesite (APA)				
			Same as above APA. Mottled with				
			calcite-pyrite plus minor epidote.				
			Calcite-laumonite stringers and				
			irregular contacts.				
96.9	99.1	Good	Augite Feldspar Porphyry (AFP)				
			Same as above AFP. At ~97.7 m, a				
			brecciated zone extends for ~20 cm,				
			with qtz-calcite-chlorite forming the				
			vein assemblage. Calcite-laumonite				
			stringers are common. Lower contact is				
			gradational and mottled.				
99.1	100.3	Good	Augite Phyric Andesite (APA)				
			Mottled epidote rich upper and lower				
			contact. Calcite-laumonite stringers and				
			blebs of pyrite.				
100.3	100.5		Augite Feldspar Porphyry (AFP)				
			Same as above AFP				
100.5	105.7		Augite Phyric Andesite (APA)				
			Same as above APA(99.1-100.3).				
			Calcite-laumonite stringers and mottled				
			local patches that are epidote-pyrite				
			rich. Towards bottom of interval,				
			fingers of AFP intrude and brecciate				
			host.				

105.7	106.3	Augite Feldspar Porphyry (AFP)				
		Same AFP as above. Epidote alteration				
		associated with fractures. Calcite-				
		laumonite veins & stringers with pyretic				
		margins. Cm wide cal-laumonite veins				
		@ ~30° to C.A. irregular contact with				
		lower unit.				
106.3	111.1	Augite Phyric Andesite (APA)				
		Same APA as above. Calcite-laumonite				
		stringers. Local patches of calcite-				
		epidote-pyrite with a mottled				
		appearance are common around				
		fractures and present on both contacts.				
111.1	113.2	Augite Feldspar Porphyry (AFP)				
		Same AFP as above. Patches of				
		hematite alteration. Some feldspars are				
		undergoing alteration to epidote on				
		margins. Clasts of APA are present,				
		and a vein of banded green quartz &				
		jasper, with calcite on margins is				
		present at ~111.5 m.				
113.2	116.9	Augite Phyric Andesite (APA)				
		Same APA as above. Calcite-laumonite				
		stringers and patches of epidote-calcite.				
		Towards bottom of interval, irregular				
		fingering of AFP intrude, and produce				
		silicic alteration & blebs of quartz.				
		Irregular lower contact				
116.9	117.7	Augite Feldspar Porphyry (AFP)				
		Same AFP as above. Variable hematite				
		alteration. Both upper and lower				
		contacts are irregular and silicified.				
117.7	122.1	Augite Phyric Andesite (APA)				
		Same lithology as above APA. Locally				

			has a calcite-pyrite-epditoe mottled				
			common $@ \sim 1185 \text{ m AFP intrudes in}$				
			fingers, and Qtz blebs are associated at				
			the margins. Lower margin is irregular				
			and augite poor.				
122.1	122.4		Augite Feldspar Porphyry (AFP)				
			Same AFP as above.				
122.4	123.6		Augite Phyric Andesite (APA)				
			Same APA as above. Mottled epidote				
			& pyrite. Irregular top and bottom				
			contacts.				
123.6	130.9	7.0	Augite-Hornblende Feldspar				
			Porphyry (AHFP)				
			Same AHFP as above. Locally augite				
			can be more abundant than Hornblende.				
			This interval is very broken. A				
			block/clast of APA is present at ~ 127				
			m, and sincification/quartz blebs are				
			Lower contact is gradational irregular				
			and contains quartz				
120.0	1						
130.9	155.5	poor	Augite Phyric Andesite (APA)				
			Same APA as above. Rock remains				
			very broken to \sim 148 III, after which it is still blocky. At \sim 124 5 m a \sim 5 cm gutz				
			sum blocky. At ~134.3 III, a ~3 clil quiz intersection is present $\Delta t \sim 147.5$ m				
			enidote and pyrite account for up to				
			$\sim 10\%$. At 151 m a 10 cm intersection				
			of AFP occurs.				
			epidote and pyrite account for up to ~10%. At 151 m a 10 cm intersection of AFP occurs.				

PROPERTY: Baker – Upper Ridge HOLE No.: DD06-24

Hole No.: 06-24	Sheet No:	Total Depth:
Section:	Latitude: 1175N	Logged By: Joel Gillham
Date Begun:	Departure: 1175 E	Dip: 62°
Date Finished:	Elevation:	Core Size: NQ
Date Logged:	Bearing: 40°	

Depth	n (m)	Rec	Description	Sample	From	То	Sample	As	say	
From	То			No			Width			
0	4.0		Casing							
4.0	33.5	Poor	Augite Phyric Andesite (APA)							
			Rock is blocky to rubbly. 0-18 m							
			intense Fe-ox weathering -decreases							
			with depth. Augite phenocrysts are							
			euhedral and up to ~ 5 mm. Below ~ 18							
			m, pyrite is common as disseminated							
			blebs, and along fractures. Much of the							
			unit is stockworked by calcite stringers.							
			Rare plag phenocrysts are present in							
			sections, and often replaced by pyrite.							
			Patchy, mild epidote alteration is found							
			throughout, and often is associated with							
			pyrite (replacement of Ca-feldspar by							
			pyrite as source of Ca for epidote?).							
			Much of the groundmasss has been							
			chloritized, giving the rock a dark green							
			appearance.							
33.5	38.1	Poor	Feldspar Porphyry (FP)							
			Intrusive feldspar porphyry – related to							
			'crowded feldspar porphyry', 'augite-							
			feldspar porphyry' and 'augite-							

			hornblende feldspar porphyry' of holes				
			phenocrysts are euledral and blocky up				
			to $\sim 5 \text{ mm}$ Rare hornblende phenocrysts				
			are present, and some feldspars have				
			been replaced by quartz. Unit is very				
			broken, and variably silicified. At				
			~36.3, ~20 cm of chloritic gouge marks				
			a fault which has brought a ~10cm				
			block of APA in the FW after which FP				
			continues. The lower contact is against				
			more chloritic gouge.				
38.1	39.3	Okay	Mottled APA-Calcite				
20.1	07.0	Onuj	Upt to $\sim 60\%$ calcite, mottled in host				
			APA. Vuggy texture and chloritic				
-			gouge.				
39.3	40.6	Poor	Feldspar Porphyry (FP)				
			Same as above FP. Broken and gouge				
			rich				
40.6	41.5	95%	Mottled Chlorite-Calcite				
			Same as above 'Mottled APA-Calcite'.				
			Cm's clasts of green volcanic APA ina				
			groundmass of mottled chlorite gouge				
			and calcite with vuggy texture.				
41.5	63.4	Poor	Augite Phyric Andesite (APA)				
			Same APA lithology as above. Rock is				
			very broken to \sim 54.5 m, where \sim 30 cm				
			of chloritic gouge is intercepted, below				
			which the rock takes on a blocky				
			characteristic. Propylitic alteration				
			affects the entire interval, and below the				
			gouge/fault, pyrite can be seen replacing				
			matic minerals (cpx and hbl?). The				
			lower contact is a fault with chloritic		 		

			gouge. Quartz is present above the fault					
62 1	67.2	Okov	Vonalith hooving Foldgrow Downhywy					
03.4	07.5	Окау	Renomin bearing reluspar rorphyry		-			
			cock is blokell. Feldspar polphyly (as					
			above FF) initiasive bearing clasis of					
			aphyric volcanics. Extensive faumonite					
			gives the fock a overall plic colour.					
	-		calcite-zeonie(white)-laumonite-					
			chiorite groundmass with accessory (up					
			to $\sim 2\%$) pyrite. Lower contact is ~ 10					
			cm of chlorite gouge.					
67.3	69.7	Okay	Augite Phyric Andesite (APA)					
			Same APA as above. Dark green,					
			chloritized groundmass. Many mafic					
			phenos replaced by pyrite. Lower					
			contact is ~10cm of chloritic gouge.					
69.7	73.2	Okay	Brecciated APA Mottled Chlorite-					
			Calcite					
			Blocks of APA in chlorite, and calcite					
			cemented chlorite gouge. Pyrite &					
			epidote are accessories. Structures are					
			at a low angle to C.A.					
73.2	97.6	Okay	Augite Phyric Andesite (APA)					
			Same APA as above. Mafic phenos					
			largely replaced by pyrite (up to $\sim 5\%$).					
			Abundant calcite, & calcite-laumonite					
			stringers cut core at all angles. A ~30					
			cm zone of chlorite-calcite cemented					
			breccia at ~82.5 m, below which					
	1		epidote becomes abundant in the					
			groundmass. Lower contact is broken,					
			but does not appear sharp. Quartz					
			blebs/irregular veins occur with calcite					
			at ~20-30° to C.A. at ~77.5, 78.0, 91.4,					

			and 97.3 m.	
97.6	97.9	Poor	Feldspar Porphyry (FP)	
			~30 cm of very broken feldspar	
			porphyry bearing clasts of APA.	
97.9	104.3	Okay	Augite Phyric Andesite (APA)	
			Same as APA from 73.2-97.6 (below	
			~83 m). Quartz at ~100.2 m	
104.3	115.3	Poor	Chloritic Fault Zone	
			Chlorite, and calcite cemented chlorite	
			account for ~40-50% of this interval.	
			The resit is composed of blocks of APA	
			(most), and feldspar porphyry-APA	
			breccia(minor). Structures consist of	
			gouge and calcite cemented gouge,	
			sometimes with roughly planar	
			orientations at 0-20° to C.A., though	
			more commonly they take on an	
			irregular, or mottled appearance.	
			Laumonite is a common accessory to	
			calcite. Blebs of pyrite are commonly	
			~1mm, and rarely up to ~2 cm	
			accounting for up to ~2%. Epidote is	
			rare, but somewhat more common	
			around irregular quartz blebs at ~110 m.	
			Lower contact is gradational, and	
			somewhat arbitrary.	

PROPERTY: Baker – Upper Ridge HOLE No.: DD06-25

Hole No.: 06-25	Sheet No:	Total Depth: 138.1 m
Section:	Latitude: 1175N	Logged By: Joel Gillham
Date Begun:	Departure: 1025 E	Dip: 70°
Date Finished:	Elevation:	Core Size: NQ
Date Logged: July 15, 2006	Bearing: 58°	

Deptl	n (m)	Rec	Description	Sample	From	То	Sample	As	say	
From	То	Rec Description		No			Width			
0	5.8	Casing		12268	51.7	52.7	1			
5.5	51.8	~80	Augite Feldspar Porphyry (AFP)	12269	55.5	56.1	0.6			
			Dominated by feldspar phenocrysts up	12270	60.2	61.6	1.4			
			to ~1 cm, accounting for up to ~30% modal volume locally. Unit is heterogeneous, containing many xenoliths of <i>augite phyric andesite</i>		94.5	95.3	0.8			
					104.4	105	0.6			
					125.8	126.5	0.7			
			(APA), which increase in abundance							
			to ~50% of rock towards bottom of							
			interval. Absorption of these							
			xenoliths can be seen in places,							
			producing a more mesocratic							
			groundmass, poor in feldspar and							
			enriched in augite. This provides							
			evidence for a xenocryst origin of the							
			augite crystals. Blebs of pyrite, often							
			fracture filling, are distributed							
			throughout the interval, and most							
			common in closed proximity to							
		contacts between xenoliths and host.Pyrite content never accounts for morethan ~2% over local 0.5 m intervals.								

			Xenoliths range in size from ~0.5 m blocks, to <1 cm rounded to angular pebbles. Early hematitic and silicic				
			alteration has been cut by calcite-				
			laumonite stringers which increase in				
			frequency w/ depth. Patches of				
			sercitic alteration are present over				
			short ~20 cm, broken intervals @ ~8,				
-			13, 23, 32, and 37 m, and is common				
			on many fracture surfaces. Qtz blebs				
			are commonly associated with the				
			contact between 'fresh' xenolith				
			blocks and the intrusion.				
51.8	54.5	Good	Augite Phyric Andesite (APA)				
			Augite phenocrysts up to ~1 cm in				
			green groundmass. This is the same				
			unit as the APA in DD06-23. This				
			section is cut by common calcite-				
			laumonite veins/stringers, sometimes				
			producing a mottled texture. Pyrite is				
			a common accessory on fractures and				
			vein margins. Grey Qtz is intergrown				
			with calcite-laumonite & chlorite at				
			~52.3 m. Patches of epidote alteration				
			are common, and associated W/				
			laumonite veins. The lower contact is				
			snarp and abrupt.				
54.5	55.5	Good	Augite Feldspar Porphyry (AFP)				
			Same AFP as above. Lots of				
			laumonite stringers. Lower contact				
			exhibits a gradational decrease in				
			feldspar crystals and is sharp.				
55.5	59.1	Good	Augite Phyric Andesite (APA)				
			Same APA as above. The upper ~60				
			cm of this unit is mottled with epidote				

			and grey quartz. The AFP fingers into				
			the interval in multiple places with				
			width's < 10 cm, and at 57.5 m				
			produces a thin, calcite filled breccia				
			zone in the host. Lower contact is				
			irregular.				
59.1	59.6	Good	Augite Feldspar Porphyry (AFP)				
			Same unit as above AFP. ~50 cm				
			finger of AFP, calcite-breccia lower				
			contact with sharp laumonite vein				
			against lower APA.				
59.6	62.8	Good	Augite Phyric Andesite (APA)				
			Same as above APA . At ~60.5 m,				
			chlorite-epidote rich gouge is present,				
			with relict calcite-laumonite stringers,				
			which are still preserved as close-				
			spaced parallel sets in the lower				
			contact. At the upper gouge contact,				
			grey Qtz is present. The lower contact				
			is missing between two pieces of core.				
62.8	84.0	Good	Augite Feldspar Porphyry (AFP)				
			Same as above AFP . Xenoliths are				
			present, but uncommon campared to				
			the first interval. Rare hornblende				
			phenocrysts are present in the middle				
			of the interval (as in the augite-				
			hornblende-teldspar porphyry of				
			DD06-23). Calcite-laumonite				
			stringers are common throughout, and				
			late sericite is present on many				
94.0	07.0	01	Tractures.				
84.0	87.0	Окау	Augite Phyric Andesite (APA)				
			broken Leumonite coloite stringers				
			loto? Sorioite on voing/fractures				
			rate? Sericite on veins/fractures.				

			Lower contact is chlorite-sericite				
			gouge and closely-spaced parallel				
			laumonite stringers				
87.0	04.5	Okov	Augita Faldanar Darnhurry (AFD)				
87.0	94.3	Окау	Some as shows AED but vensith				
			Same as above AFF, but xenonun				
	1065	01	poor. Lower contact is irregular.	 			
94.5	126.5	Okay	Augite Phyric Andesite (APA)				
			Same unit as above APA. Upper				
			contact has grey quartz blebs/patches				
			for ~60 cm. Between ~102 and 104				
			m, 2 calcite-laumonite filled breccia				
			zones, ~40 cm in length exist. Below				
			~105 m, vuggy calcite veins become				
			common, and mm's thick pyrite blebs				
			along healed fractures are present. At				
			~125 m, a thick, 25 cm coarse vuggy				
			calcite vein is present. Patches of				
			epidote alteration are common.				
126.5	127.0	Okay	Augite-Feldsnar Pornhyry (AFP)				
120.0	127.0	ORdy	Same AFP as above Unit fingers into				
			APA Silicification but no visible				
			Al A. Sincification, but no visible				
107.0	1217	D					
127.0	131./	Poor	Augite Phyric Andesite (APA)	 			
			Same as above APA. Patchy epidote				
			& calcite alteration. Laumonite				
			stringers are common. Accessory				
			pyrite on fractures and associated with				
			epidote. Lower contact is mottled				
			calcite-laumonite-pyrite.				
131.7	132.0	Poor	Augite Feldspar Porphyry (AFP)				
			Same as above AFP. Very broken.				
132.0	138.1	Poor	Augite Phyric Andesite (APA)				
			Same as 127.0-131.7. Very broken				

Fire Assays	for 2006 exp	loration at	Shasta - c	ompleted at	Baker Cam	р	
Sample No	Date	Hole	From	То	Interval(m)	Au oz/t	Ag oz/t
130151	June 14/06	DD06-01	37.2	41.2	4.0	0.024	1.3
130152	June 14/06	DD06-01	41.2	42.6	1.4	0.009	0.361
130153	June 14/06	DD06-01	42.6	43.9	1.3	0.021	2.491
130154	June 14/06	DD06-01	43.9	45.2	1.3	0.024	1.697
130155	June 14/06	DD06-01	45.2	46.7	1.5	0.117	6.265
130156	June 14/06	DD06-01	46.7	48.1	1.4	0.065	6.940
130157	June 14/06	DD06-01	48.1	49.7	1.6	0.005	0.28
130158	June 14/06	DD06-01	49.7	50.9	1.2	0.012	0.864
130159	June 14/06	DD06-01	50.9	52.4	1.5	0.008	0.737
130160	June 14/06	DD06-01	52.4	54.0	1.6	0.012	1.029
130161	June 14/06	DD06-01	54.0	55.3	1.3	0.021	3.351
130162	June 14/06	DD06-01	60.1	61.5	1.4	0.021	1.055
130163	June 14/06	DD06-01	71.6	73.1	1.5	0.017	2,363
130164	June 14/06	DD06-01	78.6	80.1	1.5	0	0.046
130165	June 14/06	DD06-01	80.1	81.3	12	0 009	0.321
130166	June 14/06	DD06-01	81.3	82.7	14	0.031	0 188
130167	June 14/06	DD06-02	28.3	30.5	22	0.001	1 024
130168	June 14/06	DD06-02	30.5	31.7	12	0.052	2 807
130169	June 16/06	DD06-02	31.7	33.0	13	0.002	2 383
130170	lune 16/06	DD06-02	33.0	34.3	1.0	0.007	0.637
130170	lune 16/06	DD00 02	34.3	35.8	1.5	0.000	0.647
130172	June 16/06	DD00 02	35.8	37.1	1.3	0.000	2 187
130172	June 16/06		37.1	38.6	1.5	0.040	0 380
130173	June 16/06		38.6	40.0	1.5	0.007	0.309
130174	June 16/06		40 0	40.0	1.4	0.002	0.027
130175	June 16/06		40.0	41.5	1.3	0.02	0.239
120177			41.5	42.7	1.4	0.013	0.393
120179	June 16/06		42.1	44.1	1.4	0.013	0.324
120170	June 16/06		44.1	45.0	1.5	0.02	0 020
120190	June 16/06		43.0	47.3 50.0	1.7	0.014	0.009
120100	June 16/06		47.3 50.9	50.9 61 5	3.0	0.030	0.329
120101	June 16/06		69.0 69.1	72.1	2.7	0.022	0.149
120102	June 16/06		72.0	72.1	2.0	0.009	0.202
120103			12.9 22 F	75.0	2.9	0.012	1 222
130104	June 16/06		33.0 25.0	30.9	2.4	0.034	1.000
120100	June 16/06		30.9 27.2	37.3	1.4	0.101	4.012
130100	June 16/06		37.3	30.2	0.9	0.014	0.222
130107	June 16/06		40.0	41.7	1.1	0.005	1.006
130100	June 16/06		41.7	43.3	1.0	0.022	1.000
130109	June 16/06		43.3	40.0	2.7	0.095	2.103
130190	June 16/06		49.Z	51.9	2.7	0.040	1.930
130191	June 16/06	DD06-03	57.5	59.4	1.9	0.032	1.128
130192	June 16/06	DD06-03	59.4	62.3	2.9	0.037	2.304
130193	June 16/06		62.3	64.6 67.0	2.3	0.009	0.1
130194	June 16/06	DD06-03	64.6	67.0	2.4	0.026	0.308
130195	June 16/06		39.6	42.4	2.8	0.045	0.523
130196	June 16/06		45.0	46.4	1.4	0.047	0.515
130197	June 16/06		46.4	47.8	1.4	0.043	0.401
130198	June 16/06	DD06-04	47.8	49.3	1.5	0.053	0.128
130199	June 16/06	DD06-04	49.3	50.5	1.2	0.013	1.106

130200	June 16/06	DD06-04	50.5	51.9	1.4	0.052	0.892
130201	June 16/06	DD06-04	51.9	53.5	1.6	0.013	1.276
130202	June 16/06	DD06-04	53.5	54.9	1.4	0.018	0.275
130203	June 16/06	DD06-04	54.9	56.3	1.4	0.066	0.655
130066	June 18/06	DD06-04	60.5	61.0	0.5	0.01	0.045
130204	June 16/06	DD06-04	71.7	74.0	2.3	0.017	1.008
130205	June 17/06	DD06-05	37.3	38.9	1.6	0.058	1.261
130206	June 17/06	DD06-05	38.9	40.4	1.5	0.042	2.332
130207	June 17/06	DD06-05	40.4	41.8	1.4	0.025	0.663
130208	June 17/06	DD06-05	50.2	51.8	1.6	0.148	3.965
130209	June 17/06	DD06-05	51.8	53.2	1.4	0.052	3.533
130210	June 17/06	DD06-05	53.2	54.7	1.5	0.104	8.357
130211	June 17/06	DD06-05	54.7	56.1	1.4	0.025	1.214
130212	June 17/06	DD06-05	56 1	57.6	1.5	0.069	0.834
130213	June 17/06	DD06-05	57.6	59.0	14	0.087	1 020
130214	June 17/06	DD06-05	59.0	60.5	1.5	0.012	1.324
130215	June 17/06	DD06-05	60.5	62.2	1.0	0.066	4 057
130216	June 17/06	DD06-05	62.2	65.5	33	0.000	6 285
130217	June 17/06	DD06-05	65.5	68.9	3.4	0.140	1 924
130217	lune 17/06	DD06-05	68.9	71 7	2.8	0.004	1 312
130210	June 17/06	DD06-05	71 7	74 5	2.0	0.020	0.500
130210	June 17/06	DD06-05	74.5	75.0	2.0 1 /	0.020	2 01/
130220	June 17/06	DD06-05	75.0	78.3	24	0.007	0.582
130221	June 17/06	DD06-05	78.0	82.3	2.4	0.003	0.302
130222	June 18/06	DD06-05	38 /	30.5	1 1	0.017	0.470
130223	June 18/06		30.4	39.5 41 1	1.1	0.003	7 505
130224	June 18/06		11 1	41.1	1.0	0.113	3 886
130225	June 18/06	DD00-00	41.1	42.5	1.4	0.033	1 723
130220	June 18/06		42.0 /18 1	40.0	1.3	0.037	0.024
130227	June 18/06		40.1	49.4 50.8	1.5	0.011	0.024
130220	June 18/06		62.8	64.9	2.4	0.009	0.204
120223	June 18/06		66 5	67.0	2.1 1 /	0.000	0.107
130230	June 18/06		67.0	60.3	1.4	0.003	1 7/7
130231	June 18/06		71.9	74.0	2.4	0.018	0.305
130232	June 18/06	DD00-00	32.5	74.0 35.0	2.0	0.007	0.303
120233	June 18/06		32.5	20.4	2.5	0.002	1 710
130234	June 18/06	DD00-07	30.4	40.8	4.4	0.011	1.603
130235	June 18/06	DD00-07	10 g	40.0	1.4	0.020	3 768
120227	June 18/06		40.0	42.5	1.5	0.124	1 700
120227	June 18/06		42.3	43.7	1.4	0.025	0.012
130230	June 18/06	DD00-07	45.7	45.2	1.5	0.012	0.913
130239	June 18/06	DD00-07	45.2	40.0	1.4	0.031	0.311
120240	June 18/06		40.0	47.9	1.0	0.004	2 259
120241	June 18/06		47.9	49.2 50.6	1.0	0.550	2.000
130242	June 18/06	DD00-07	49.2 50.6	52.0	1.4	0.000	4.020
130243	June 18/06	DD00-07	52.0	54.0	2.0	0.014	0.851
120244			54.0	55.2	2.U 1 2	0.021	1 701
130240			55.2	50.0	1.3 2.0	0.040	4.104 2102
130240			50.0	09.Z	3.9 17	0.004	2.423 1 600
120247			09.Z	60.9	1.7	0.020	1.099
120240			60.9	02.3 62 7	1.4	0.027	1.000 E 0EC
130249	JUNE 10/00	0000-07	02.3	03.7	1.4	0.001	0.900

130250	June 18/06	DD06-07	63.7	65.1	1.4	0.004	0.695
130067	June 18/06	DD06-07	65.1	66.5	1.4	0.003	0.362
130068	June 18/06	DD06-07	66.5	69.4	2.9	0.005	1.541
130069	June 18/06	DD06-07	69.4	72.2	2.8	0.009	0.263
130070	June 18/06	DD06-07	72.2	75.0	2.8	0.002	0.067
130071	June 18/06	DD06-07	75.0	77.9	2.9	0.005	0.011
130072	June 18/06	DD06-08	45.7	48.0	2.3	0.246	7.947
130073	June 18/06	DD06-08	48.0	49.5	1.5	0.076	3.405
130074	June 19/06	DD06-08	56.2	57.7	1.5	0.035	2.698
130075	June 19/06	DD06-08	57.7	59.4	1.7	0.044	1.150
130076	June 19/06	DD06-08	59.4	62.4	3.0	0.040	1 370
130077	June 19/06	DD06-08	62.4	63.8	1.4	0.020	0.644
130078	June 19/06	DD06-08	63.8	65.2	1.4	0.032	0.519
130079	June 19/06	DD06-08	65.2	66.5	1.3	0.021	1.065
130080	June 19/06	DD06-08	66.5	67.9	14	0.030	1 627
130081	June 19/06	DD06-08	67.9	69.3	14	0.014	1.627
130082	June 19/06	DD06-08	69.3	70.7	14	0.041	1 483
130083	June 19/06	DD06-08	70.7	73.2	2.5	0.003	0.672
130084	June 19/06	DD06-08	73.2	74.5	13	0.086	2 442
130085	June 19/06	DD06-08	74.5	75.5	1.0	0.050	0 772
130086	June 19/06	DD00-00	38.8	40.2	1.0	0.000	1 665
130087	lune 19/06	DD06-09	40.2	40.2	22	0.000	0 830
130088	lune 19/06	DD06-09	40.2	43.8	2.2 1 <i>1</i>	0.131	1 421
130080	lune 19/06	DD06-09	43.8	45.2	1.4	0.007	1.563
130000	June 19/06	DD06-09	45.0	46.6	1.4	0.012	1 211
130000	lune 19/06	DD06-09	46.6	40.0	0.5	0.023	22 001
1300001	lune 24/06	DD06-09	47.1	50.3	3.2	0.427	2 665
130002	lune 24/06	DD06-09	50.3	51 9	1.6	0.000	42 965
1300000	June 24/06	DD06-09	51.0	53.8	1.0	0.747	16 757
130005	lune 24/06	DD06-09	53.8	55.2	1.5	0.200	1 373
1300000	lune 24/06	DD06-09	55.2	56.6	1.4	0.027	3 292
1300000	June 24/06	DD06-09	56.6	58.0	1.4	0.000	2 306
130037	June 24/06	DD00-09	61.0	63.8	2.8	0.047	2.500
1300000	lune 24/06	DD06-10	38.1	40.5	2.0	0.000	0.318
130100	June 24/06	DD06-10	11 Q	46.3	2. 4 1 <i>4</i>	0.000	1 459
230151	lune 24/06	DD06-10	46.3	40.0	1.4	0.000	1.400
230157	June 24/06	DD06-10	47.7	40.1	1.4	0.070	2 346
230152	June 24/06	DD00-10	49.1	51 1	2.0	0.043	1 589
230154	June 24/06	DD06-10	51 1	52.3	1.0	0.142	0.768
230154	June 24/06	DD06-10	52.3	53.8	1.2	0.130	3.246
230155	June 24/06	DD06-10	53.8	55.3	1.5	0.000	3 218
230157	June 24/06	DD06-10	55.3	56.7	1.0	0.005	3 330
230158	June 24/06	DD06-10	56.7	58 1	1.4	0.070	1 005
230150	June 24/06	DD06-10	58.1	59.6	1.4	0.000	8 956
230155	June 24/06	DD06-10	50.1	61.0	1.0	0.102	3 703
230161	June 24/06	DD06-10	61.0	62.4	1.4	0.071	7 000
230162	lune 21/06		62 /	65.2	2.9	0.003	3 211
230162	June 21/06	DD06-10	65.2	68 1	2.0	0.047	0.011
230164	June 24/06	DD06-10	68 1	70 9	2.5	0.022	3 486
230165	lune 21/06		70.0	73.6	2.0	0.000	3 / 21
230166	June 24/06	DD06-10	73.6	75.0	1 4	0.002	0 106
		2200 10				0.000	0.100

230167	June 24/06	DD06-11	41.8	44.2	2.4	0.052	1.147
230168	June 24/06	DD06-11	44.2	45.6	1.4	0.059	3.300
230169	June 24/06	DD06-11	45.6	47.0	1.4	0.061	1.139
230170	June 24/06	DD06-11	47.0	48.4	1.4	0.085	2.535
230171	June 24/06	DD06-11	48.4	51.2	2.8	0.054	0.824
230172	June 24/06	DD06-11	51.2	52.6	1.4	0.041	2.165
230173	June 24/06	DD06-11	55.4	58.3	2.9	0.007	0 197
230174	June 24/06	DD06-11	58.3	61.2	2.9	0.027	0.250
230175	June 24/06	DD06-11	61.2	62.6	14	0.012	0.228
230176	June 24/06	DD06-11	62.6	64.0	1 4	0.014	0.419
230177	June 24/06	DD06-11	64.0	65.4	1 4	0.010	0 446
230178	June 24/06	DD06-11	65.4	68.2	2.8	0.010	0.440
230170	lune 24/06	DD06-11	82.3	83.5	1.0	0.007	0.020
230180	June 24/06	DD06-12	51 /	52.8	1.2	0.022	0.004
230100	June 24/06	DD06-12	52.8	54.3	1.4	0.000	0.041
230101	June 24/06	DD06-12	54.3	57.2	1.5	0.010	0.242
230102	June 24/00	DD00-12	57.2	57.5	0.0 0.1	0.030	0.119
230103	June 24/06	DD06-12	57.5	59.4	Z.I	0.022	0.301
230104	June 24/06	DD06-12	59.4	01.1	1.7	0.149	1.901
230185	June 24/06	DD06-12	61.1	63.0	1.9	0.062	2.432
230186	June 24/06	DD06-12	63.0	65.8	2.8	0.037	1.561
230187	June 24/06	DD06-12	71.2	72.0	0.8	0.004	0.016
230188	June 24/06	DD06-13	51.6	53.0	1.4	0.047	1.615
230189	June 24/06	DD06-13	53.0	54.4	1.4	0.014	0.636
230190	June 24/06	DD06-13	54.4	55.8	1.4	0.009	0.372
230191	June 24/06	DD06-13	55.8	57.3	1.5	0.062	4.711
230192	June 24/06	DD06-13	57.3	58.8	1.5	0.050	1.501
230193	June 24/06	DD06-13	58.8	60.4	1.6	0.088	3.790
230194	June 24/06	DD06-13	60.4	61.8	1.4	0.117	8.842
230195	June 24/06	DD06-13	61.8	63.2	1.4	0.113	9.260
230196	June 24/06	DD06-13	63.2	64.6	1.4	0.215	7.790
230197	June 24/06	DD06-13	64.6	66.0	1.4	0.054	0.594
230198	June 24/06	DD06-13	66.0	68.0	2.0	0.031	0.900
230199	June 24/06	DD06-14	51.4	53.5	2.1	0.017	0.874
230200	June 24/06	DD06-14	66.0	68.9	2.9	0.022	1.068
230201	June 24/06	DD06-14	68.9	70.3	1.4	0.064	2.839
230202	June 24/06	DD06-14	70.3	72.7	2.4	0.179	5.754
230203	June 24/06	DD06-14	72.7	74.6	1.9	0.057	5.637
230204	June 24/06	DD06-14	74.6	76.0	1.4	0.118	11.188
230205	June 26/06	DD06-14	76.0	77.5	1.5	0.111	9.902
230206	June 26/06	DD06-14	77.5	79.1	1.6	0.145	10.366
230207	June 26/06	DD06-14	79.1	80.6	1.5	0.055	2.561
230208	June 26/06	DD06-14	80.6	82.1	1.5	0.096	2.555
230209	June 26/06	DD06-14	82.1	83.5	1.4	0.040	1.606
230210	June 26/06	DD06-15	45.8	47.3	1.5	0.032	0.704
230211	June 26/06	DD06-15	56.5	57.1	0.6	0.008	0.450
230212	June 26/06	DD06-15	57.4	58.6	1.2	0.056	2.087
230213	June 26/06	DD06-15	63.4	64.3	0.9	0.018	0.640
230214	June 26/06	DD06-15	69.1	71.1	2.0	0.027	0.849
230215	June 26/06	DD06-16	51.2	52.5	1.3	0.013	0.006
230216	June 26/06	DD06-16	54.2	55.4	1.2	0.009	0.135
230217	June 26/06	DD06-16	62.3	63.7	1.4	0.391	13.010

230218	June 26/06	DD06-16	70.5	72.1	1.6	0.064	4.771
230219	June 26/06	DD06-16	75.2	76.2	1.0	0.061	4.380
230220	June 26/06	DD06-16	79.4	81.6	2.2	0.014	0.480
230221	June 26/06	DD06-17	14.9	17.0	2.1	0.245	10.098
230222	June 26/06	DD06-17	17.0	19.6	2.6	0.047	1.308
230223	June 26/06	DD06-17	19.6	21.0	1.4	0.025	0.555
230224	June 26/06	DD06-17	21.0	22.9	1.9	0.021	0.731
230225	June 26/06	DD06-17	35.6	36.6	1.0	0.036	1.543
230226	June 27/06	DD06-17	43.7	44.0	0.3	0.007	0.688
230227	June 27/06	DD06-18	19.6	21.3	1.7	0.056	2.292
230228	June 27/06	DD06-18	21.3	22.7	1.4	0.179	3.787
230229	June 27/06	DD06-18	22.7	24.5	1.8	0.013	0.411
230230	June 27/06	DD06-18	24.5	26.2	1.7	0.064	3.554
230231	June 27/06	DD06-18	26.2	28.5	2.3	0.139	6.735
230232	June 27/06	DD06-18	28.5	30.1	1.6	0.031	1.636
230233	June 27/06	DD06-18	33.6	35.9	2.3	0.055	2.058
230234	June 27/06	DD06-18	40.5	41.7	1.2	0.032	1.373
230235	June 27/06	DD06-18	59.5	60.2	0.7	0.100	0.778
230236	June 27/06	DD06-21	38.5	40.5	2.0	0.041	1.400
230237	June 27/06	DD06-21	42.4	42.6	0.2	0.406	2.504
230238	June 27/06	DD06-21	42.6	43.4	0.8	0.039	1.026
230239	June 27/06	DD06-21	43.4	44.8	1.4	0.041	2.683
230240	June 27/06	DD06-21	44.8	46.3	1.5	0.027	2.092
230241	June 27/06	DD06-21	46.3	47.7	1.4	0.088	6.991
230242	June 27/06	DD06-21	47.7	49.1	1.4	0.081	4.218
230243	June 27/06	DD06-21	49.1	50.5	1.4	0.125	8.412
230244	June 27/06	DD06-21	50.5	53.8	3.3	0.135	8.166
230245	June 27/06	DD06-21	53.8	54.9	1.1	1.433	100.544
230246	June 27/06	DD06-21	54.9	56.3	1.4	0.423	22.768
230247	June 27/06	DD06-21	56.3	57.7	1.4	0.415	21.077
230248	June 27/06	DD06-21	57.7	59.6	1.9	0.502	27.890
153411	June 27/06	DD06-21	64.4	65.0	0.6	0.012	0.091
230249	June 27/06	DD06-21	67.7	68.4	0.7	0.070	1.303
230250	June 27/06	DD06-22	29.3	31.4	2.1	0.087	0.476
153401	June 27/06	DD06-22	31.4	31.6	0.2	0.185	15.417
153402	June 27/06	DD06-22	31.6	34.3	2.7	0.019	0.047
153403	June 27/06	DD06-22	34.3	37.2	2.9	0.032	1.360
153404	June 27/06	DD06-22	37.2	39.0	1.8	0.008	0.370
153405	June 27/06	DD06-22	39.0	41.2	2.2	0.009	0.004
153406	June 27/06	DD06-22	41.2	43.3	2.1	0.000	0.037
153407	June 27/06	DD06-22	43.3	44.6	1.3	0.028	1.394
153408	June 27/06	DD06-22	44.6	46.0	1.4	0.014	0.533
153409	June 27/06	DD06-22	46.0	47.4	1.4	0.019	0.769
153410	June 27/06	DD06-22	47.4	50.3	2.9	0.043	1.935

VA06070846 CLIENT : "SA # of SAMPLE DATE RECE PROJECT : " CERTIFICAT PO NUMBER	- Finalized BRES - Sa S : 36 IVED : 200 Ridge" E COMME t : ""	able Resourc 6-07-25 DA NTS : "	Des Ltd." TE FINALIZ	ZED : 2006-	08-25			2044 ME	0044 MG		2044 ME									10044		0.0044 M		10044 MG	10044 ME									
CAMPLE D.	LI-ZI A	-AA23 WE	-10F 41 ML	An An		De De	D-	D:	Cr41 ML	-101 41 ML-1	C-	Cr 41 WL-	Cr41 ML	10F41 ML	-101-41 ML-10		5F 41 ML		OF WILL	-101 41 10	E-IOF41 ME-I	Nor of 1 Mile	L-ICF 41 IVIL			C .	-10F41 ML-10	- 41 ML-1	CF4T ML-	T:	TI TI	11	41 WE-IGF 41 WE	7-
SAMPLE RE	SCVU VVI. AI	J Ag	AI	AS	P	Ба	De	ы	Ca	Cu	00	CI	Cu	Fe	Ga	пg	R.	La	ivig	M	11 100	INC	I INI	۳	PD	3	30	30	31			U	v vv	211
DESCRIPIKG	PF	m ppn	n %	ppn	n ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	1 %	ppm	ppm	%	ppm	%	P	om ppm	%	ppn	n ppr	n ppm	%	ppm	ppm	ppm	1 %	ppm	ppm	ppm ppn	ppm
D12251	1.44	0.086	1.3	3.28	49 <10		20	0.6 <2		2.14	1.4	31	747	150	6.19	10 <1		0.09	10	5.68	1615	3	0.04	152	540	34	3.68 <2		31	16	0.07 <10	<10	194 <10	421
D12252	2.8	0.076	1.6	3.46	159 <10		40	0.6 <2		2.49	8.8	39	429	34	8.79	10 <1		0.17 <10		5.77	1410	5	0.02	115	550	107	9.05	3	22	19	0.07 <10	<10	150 <10	1135
D12253	1.84	0.069	2.6	3.4	200 < 10		70	0.8 <2		2.25	4	33	336	51	7.67	10 <1		0.28 <10		5.15	1235	3	0.04	107	910	62	7.8 <2		21	29	0.06 <10	<10	163 <10	562
D12254	1.74	0.059	1	1.41	84 <10		50 < 0.5	<2		0.98	1.2	11	7	41	4.12 <10	<1		0.4	20	0.97	427	3	0.03	11	550	49	4.14 <2		3	20	0.01 <10	<10	36 <10	164
D12255	1.12	0.053	1	1.99	161 <10		50	0.5 <2		2.36	1.6	18	55	22	5.49	10 <1		0.37 <10		2.14	607	2	0.05	29	630	60	5.9	2	6	30	0.01 <10	<10	54 <10	218
D12256	0.88	0.109	4.6	3.17	104 < 10		30	0.6 <2		7.03	42.2	32	541	486	6.74	10 <1		0.12	10	4.22	2400	3	0.03	117	810	83	3.78 <2		25	59	0.02 <10	<10	185 <10	4080
D12257	0.74	0.029	0.4	3.66	8 < 10		110	1<2		7.24	5.8	32	718	40	6.73	10 <1		0.06	10	6.09	3100 <1		0.03	134	790	11	0.11 < 2		31	74	0.14 < 10	<10	191 <10	1115
D12258	1.22	0.061	1.3	1.63	101 < 10		70 < 0.5	<2		5.48	3.2	12	26	78	4.52	10 < 1		0.18 < 10		1.7	1680	6	0.08	13	600	47	4.88	2	8	42	0.01 < 10	<10	79 <10	426
D12259	13	0.097	12	2.86	8 < 10		400	0.6<2		82	73	34	596	196	4.84	10 < 1		0.05 < 10		4.3	2340	7	0.04	114	630	11	0.89 <2		23	93	0.07 < 10	<10	147 <10	898
D12260	1.4	0.079	1.4	2.78	6<10		50 < 0 5	<2		3.23	17.8	25	335	266	5.94	10 < 1		0.12 < 10		4 13	1560	2	0.07	81	650	23	2 71	3	17	38	0.12 < 10	<10	147 <10	2070
D12261	1 24	1 77	7.1	2.24	10 -10		20 -0.5	~		11.6	1.1	26	219	626	5.67	10 -1		0.07	10	2.52	2210	2	0.04	110	640	12	1.66	2	20	60	0.02 -10	-10	122 -10	264
D40060	4.50	0.272	67	2.01	0 .10		40 -0.E	~		0.60	0.5	00	200	070	10.6	40 .4		0.05 .10	10	2.00	4400	2	0.04	420	590	24	7.05 .0	~	20	27	0.02 -10	-10	407 -40	200
D12202	1.50	0.372	0.7	3.00	9<10		10 < 0.5	<2		2.02	0.5	90	209	9/3	10.6	10 < 1		0.05<10		3.09	1400	3	0.03	130	360	31	1.03 <2		6	37	0.2<10	<10	137 < 10	290
D12263	1.0	0.104	2.4	2.54	5<10		20 < 0.5	~~~~		2.00		29	102	255	4.75	10 < 1		0.12 < 10		1.20	010		0.36	60	800		1.00 <2		6		0.23 < 10	<10	120 < 10	152
D12264	1.44	0.018	0.5	1.47	4 <10		110	0.6 <2		1.68	1.1	8	10	42	4.08	10 <1		0.22	10	0.85	932	2	0.16	5	1100	14	0.28 <2		5	84	0.21 <10	<10	126 <10	132
D12265	1.52	0.284	3	1.62 <2	<10		100 < 0.5	<2		1.3	14	ь	4	562	2.87 <10	<1		0.28	10	1.27	1120 <1		0.08	2	580	32	1.44 <2		ь	27	0.02 <10	<10	74 <10	1300
D12266	1.38	0.044	1.1	1.86	58 < 10		60 < 0.5	-	2	0.48	4.7	11	8	21	3.62 <10		1	0.35	10	1.67	273	4	0.06	4	750	37	3.9 <2		1	37 < 0.0	J1 <10	<10	28 <10	359
D12267	1.6	0.074	1.7	1.24 <2	<10		20 < 0.5	<2		1.44	0.9	34	185	107	6.02 <10	<1		0.1 <10		1.15	597	1	0.22	58	870	10	1.41 <2		7	68	0.18 <10	<10	170 <10	89
D12268	2.22	0.069	1.8	3.06	11 <10		230 < 0.5	<2		4.14	6.6	29	582	60	5.19	10 <1		0.28 <10		4.22	1480	5	0.11	114	490	12	0.43 <2		12	427	0.25 <10	<10	137 <10	849
D12269	1.54	0.139	3.6	2.32	9 <10		40 < 0.5	<2		3.93	11	30	367	162	4.59	10 <1		0.08 <10		3.54	1400	3	0.05	83	450	14	0.78 <2		15	64	0.18 <10	<10	123 <10	988
D12270	2.82	0.149	7.3	3.46	12 <10		130	0.5 <2		8.43	22.5	36	326	214	5.98	10 <1		0.17 <10		2.15	1880	4	0.1	88	640	43	1.93 <2		19	591	0.12 <10	<10	170 <10	1930
D12271	2.24	0.112	3.3	3.5	8 <10		50	0.6 <2		3.79	2.6	30	182	291	6.87	10 <1		0.3 <10		4.09	1580	3	0.03	55	950	18	4.52 <2		24	32	0.23 <10	<10	197 <10	358
D12272	1.26	0.233	4.4	3.47	113 <10		10 < 0.5	<2		9.68	0.7	19	128	158	4.86	10 <1		0.11 <10		2.12	1280	9	0.02	37	460	14	3.62	5	17	102	0.18 < 10	<10	135 <10	199
D12273	1.42	0.053	1.9	2.72	8 < 10		50 < 0.5	<2		2.08 < 0.5		26	245	112	6.01	10 < 1		0.22 <10		3.23	1265	7	0.08	60	800	11	1.6 <2		18	34	0.34 <10	<10	203 <10	181
D12274	1.26	0.014	0.3	2 71	12 < 10		20 < 0 5	0		1.99	0.9	30	123	28	5.69	10 < 1		0.14 < 10		2.18	314	3	0.05	46	690	10	5.76	3	13	51	0.2 < 10	<10	131 < 10	137
D12275	1.96	0 149	0.3	2.81	60 < 10		10	0.5	2	2 97 < 0 5		37	195	56	9.77	10 < 1		0.09 < 10		3.1	404	5	0.05	67	740	9 >10	10 <2		19	44	0.23 < 10	<10	155 <10	33
D12276	24	0.015	0.3	1.96	16<10		10 < 0.5	2		2.28	0.6	34	207	65	6.82	10 - 1		0.05 < 10		2.73	406	1	0.09	76	780	17	7 31	2	16	31	0.17 < 10	<10	154 -10	48
D12277	2.2	0.015	0.0	1 74	26 < 10		20 < 0.5	~	2	1 94 < 0 5	0.0	32	145	149	7.5	10 <1		0.08 < 10		2.12	373	à	0.07	63	600	14	7.95	3	14	28	0.17 < 10	<10	122 -10	28
D12279	1.4	0.017	0.2	2.17	22 -10		20 <0.5		2	2 -0.6		26	140	16	6.26	10 <1		0.08 < 10		2.7	202	1	0.07	62	840		6.94 -2	0	14	26	0.26 -10	<10	162 -10	20
D12270	0.74	0.000	0.2	2.17	23 < 10	10	10	0.9	2	6.26	12	50	61	61	6.77	20 <1		0.00 < 10		1 47	366		0.07	00	210	26	6.76	2	6	30	0.16 < 10	<10	172 -10	23
D12273	0.74	0.003	0.5	4.75	20 .10	10	10	0.0	2	7.45 .0.5	1.5	20	400	01	6.04	20 1		0.00 .10		2.40	050	60	0.05	50	710	20	E 07 -0	4		447	0.10 10	-10	204 -40	51
D12200	0.62	0.061	2.1	4.75	407 -10		10	0.6	2	1.15<0.5		32	100	25	7.00	10 < 1		0.06 < 10		3.19	000	27	0.05	50	710	21	5.07 <2	2	24	22	0.21<10	<10	201<10	04
D12201	1.2	0.110	1.0	2.11	107 < 10		10	0.5 <2		4.59 < 0.5		33	222	30	1.33	10 < 1		0.05<10		3.11	969	31	0.00	69	740	30	0.0	3	20	32	0.29 < 10	<10	223 <10	61
D12282	1.44	0.042	0.2	1.91	33 <10		10 < 0.5	<2		5.12 < 0.5		10	155	6	4.45	10 <1		0.04 <10		2.81	510	3	0.09	57	850	3	3.1 <2		18	34	0.26<10	<10	152 <10	20
D12283	2.36	0.055	0.2	2.86	16 < 10		90 < 0.5	<2		1.62<0.5		30	149	80	5.02	10 <1		0.1 <10		2.63	560	3	0.02	56	470		3.92 <2		15	54	0.07 <10	<10	121 < 10	39
D12284	0.52	0.034 < 0.1	2	3.13	9 <10		120	0.5 <2		2.27 < 0.5		19	46	12	4.11	10 <1		0.14	10	1.97	414	4	0.08	16	730	6	3.65 <2		11	90	0.06 < 10	<10	113 <10	28
D12285	0.8	0.049	0.2	1.88	13 <10		30 < 0.5	<2		7.47 <0.5		5	48	15	2.09 <10	<1		0.14 <10		0.84	374	1	0.03	16	470	3	1.9 <2		6	66	0.04 <10	<10	57 <10	10