ASSESSMENT REPORT

Geochemical report on the

Copper King Property

Mineral Tenures 507749 and 507751

NTS 93 B/9 52° 33' North Latitude 122° 11' West Longitude Cariboo Mining Division British Columbia

Prepared for Copper Ridge Explorations Inc. 500 - 625 Howe Street Vancouver, BC Canada V6C 2T6

By

KGE Management Ltd.. 1740 Orchard Way West Vancouver, B.C. V7V 4E8

104 117

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

> Gerald G. Carlson, Ph.D., P.Eng. April 30, 2007

TABLE OF CONTENTS

EXECUTIVE SUMMARY	. 1
INTRODUCTION	.2
LOCATION AND ACCESS	. 2
CLAIM STATUS	. 3
TOPOGRAPHY AND VEGETATION	.4
HISTORY	.4
REGIONAL GEOLOGY	. 6
Gibraltar Mine Geology	. 6
Copper King Geology	. 9
Copper King Mineralization	10
2006 Exploration Program	10
Soil Sampling Results	11
CONCLUSIONS	14
RECOMMENDATIONS	15
ITEMIZED COST STATEMENT	16
STATEMENT OF QUALIFICATIONS	17

LIST OF TABLES

TABLE 1.	Copper King tenure data	3
----------	-------------------------	---

LIST OF FIGURES

Figure 1. Copper Ace Project and Copper King location map	3
Figure 2. Copper King claims map, showing the Minfile occurrences	4
Figure 3. Regional geology of the Gibraltar Mine area.	7
Figure 4. Copper King soil grid location.	11
Figure 5. Copper King - copper soil geochemistry bubble plot	12
Figure 6. Copper King - zinc soil geochemistry bubble plot.	12
Figure 7. Copper King - gold soil geochemistry bubble plot	13
Figure 8. Copper King - molybdenum soil geochemistry bubble plot	13

APPENDICES

APPENDIX I.	Copper King property-	Summary Soil results.

APPENDIX II. Soil analysis certificates.

EXECUTIVE SUMMARY

The Copper King property consists of two contiguous mineral tenures totaling 2399 ha located about 4 km northeast of the Gibraltar porphyry copper deposit. The tenures are owned 100% by Copper Ridge Explorations Inc.

Exploration work was completed between October 10 and 17, 2006 utilizing the services of a 5 man soil sampling crew from SabreX Contracting Ltd. The work included wide spaced, reconnaissance soil sampling with 50 to 100 m spaced samples on 500 m spaced lines on the Copper King, Copper King, Sheridan and McLeese claim groups, all in the vicinity of the Gibraltar Mine. Stations were located by GPS survey.

The western parts of the property are underlain by massive tonalite of the Late Triassic – Early Jurassic Granite Mountain Batholith. The eastern parts of the property are underlain by intermediate volcanic and volcaniclastic rocks of the Late Triassic – Early Jurassic Nicola – Takla Group. In the central part of the property there is a rectangular fault bounded panel of quartz diorite interpreted as a border phase of the Granite Mountain Batholith.

In 1998, an area of anomalous copper in soils was identified in the northeast corner of the property. Prospecting discovered a zone of epidote-chlorite altered lapilli tuff mineralized with pyrite and chalcopyrite disseminations and stringers. One rock sample yielded 13,967 ppm copper in this area (Payne, 1999). In addition a north-northwest trending 1400 m by 75 m zinc in soil anomaly was also identified. In 2005, Copper Ridge completed two lines of reconnaissance soil sampling and IP geophysical surveys. No significant anomalies were encountered.

The 2006 reconnaissance soil survey identified three anomalous trends. The most interesting anomaly defined is a gold-zinc soil anomaly, with some supporting anomalous copper values, in the east-central part of the property, including one gold soil that initially assayed 4.8 ppm (g/t) gold. Two widespread zinc-copper anomalies, of medium intensity and poorly constrained, occur in the northwestern and southwestern parts of the grid and may in part be related to the two Minfile occurrences on the property, Chris and Granite Mountain.

The Copper King mineral tenure represents a property of merit and further exploration work is warranted. Several soil anomalies require follow up work and much of the property remains under explored. In addition, the property is strategically located proximal to the Gibraltar Mine and contains known mineral occurrences.

INTRODUCTION

This report describes the exploration program and results of reconnaissance soil sampling carried out on the Copper King property. The program was completed on behalf of Copper Ridge Exploration Inc. between October 10 and 17, 2006 utilizing the services of a 5 man soil sampling crew from SabreX Contracting Ltd. The work included wide spaced, reconnaissance soil sampling on the Copper Ace South, Copper King, Sheridan and McLeese claim groups, all in the vicinity of the Gibraltar Mine. The objective of the work was to explore the discovery potential on these claim groups. Total expenditures on the Copper King claims to be applied for assessment amounted to \$16,073.

LOCATION AND ACCESS

The Copper King property is located in central British Columbia approximately 370 km north of Vancouver, British Columbia (Figure 1). Road access to the property from Williams Lake is excellent and gained by driving 45 km north on Highway 97 to McLeese Lake, then east on Beaver Creek road (Gibraltar Mine road) for 3.3 km, then 9.0 km east on the Beaver Lake road and north 10.7 km on forest access road 609 to the gridded area of the property. Numerous secondary roads and trails traverse the property making most areas of the property easily accessible.

Williams Lake (586 m elevation) has a local population of 12,000 while the region hosts some 36,000 residents. The city has evolved into a modern commercial centre and transportation hub. Train and bus service are available and a commercial airport situated 14 km north of the city is served by Central Mountain Air and Pacific Coastal Airlines which both provide several daily flights to Vancouver and other British Columbia destinations. Summer temperatures at the Williams Lake airport (940 m) average 15.5°C in July, winter temperatures average -8.7°C in Jan. The average yearly rainfall is 27 cm and snowfall is 1.95 m.

The natural resource industry is the main economic driver in the region, with four major lumber manufacturing companies, one major remanufacturing company, three valueadded manufacturing facilities, and numerous smaller producers located in Williams Lake. Mining also plays a significant role in the region's economy. Two major mines, Gibraltar (Taseko Mines Ltd.) and Mt. Polley (Imperial Metals Corporation) employ over 580 people when fully operational producing copper, molybdenum and gold.

Agriculture represents one of the earliest primary industries to evolve in the region since the Gold Rush days, and today is still an integral part of the local economy. The beef sector forms the backbone of the agriculture industry. Over 50% of agricultural enterprises are beef operations followed by specialty livestock and crops, mixed livestock operations, dairy, horticultural crops, poultry and swine operations. The majority of ranches are highly dependent on Crown range which provides about 40% of the annual forage requirements of the industry. These cattle ranches account for 20% of the provincial beef cattle population. The tourism industry's contribution to the local and regional economy is substantial. The accommodation, food and beverage industry is the third largest employer in the region.

COPPER KING PROJECT

Figure 1. Copper Ace Project and Copper King location map.

CLAIM STATUS

The Copper King property consists of two mineral tenures located about 5 km northeast of the Gibraltar porphyry copper deposit. The tenures are contiguous and comprise an irregular block about 5 km by 5 km (Figures 1 and 2), totaling 2399 ha, 100% owned by Copper Ridge Explorations Inc. The pertinent claims data for the property are summarized in the table below.

Table 1 - Copper King tenure data (Subject to acceptance of this report.).

Tenure Number	Name	Map Number	Good To Date	Status	Mining Division	Area
507749	COPPER KING	093B060	24-Mar-09	CONV 2005/FEB/23	CARIBOO	1100.686
507751	COPPER KING	093B060	24-Mar-09	CONV 2005/FEB/23	CARIBOO	1297.970

COPPER KING PROJECT

Figure 2. Copper King claims map, showing the Minfile occurrences.

TOPOGRAPHY AND VEGETATION

The Copper King property is located about 5 km to the northeast of the producing Gibraltar Mine and is bisected by an east-west trending valley that drains the tailings pond area. Elevations range from 945 m (3100 ft) in the valley floor to 1320 m (4330 ft) towards the north (Fraser Plateau), and 1130 m (3710 ft) towards the south on the northeast facing flank of Granite Mountain. The northern and western parts of the property have been recently clear cut and logging is active in the south central part of the property. Vegetation on the property consists of pine, fir, cedar and balsam. Outcrop exposure is abundant on the southeast facing slopes on the northern half of the property and on the hills to the southwest. Outcrops are rare in the lower wooded areas to the southeast.

HISTORY

Most historical exploration work in the area concentrated on the Gibraltar Mine property located about 4 km southwest of the Copper King property (Hendry and Wallis, 2005). The original discovery of copper mineralization was made in 1927. In 1957, Kimaclo Mines Ltd. drove an adit into the high grade shear zones of the Gibraltar West zone, thus beginning modern exploration on the property. In 1969, a combination of the interests of Gibraltar Mines, Canex and Duval announced plans to put the property into production. Preliminary development of the mine began in October 1970 and the concentrator was

COPPER RIDGE EXPLORATIONS INC.

COPPER KING PROJECT

fully operational by March, 1972. Initial Mining Reserves at a 0.25% Cu cut-off were reported to be 300 million tons at 0.37% Cu at a 2.15:1 strip ratio.

A cathode copper plant design with a capacity of 4,535 tonnes of copper (10 million lbs) annually of market-ready copper metal began operation in October 1986. The plant recovered copper through the leaching of three waste dumps containing low-grade material.

In October 1996, Westmin Resources Limited acquired 100% control of Gibraltar and in December 1997, Boliden acquired Westmin. In March 1998, Boliden announced that it would cease mining operation at Gibraltar Mine. The total production history, to the end of 1998, amounted to 845,800 tonnes (1,860 million lb.) of copper, 8,900 tonnes (19.7 million lb.) of molybdenum and 38,400 tonnes (84.7 million lb.) of cathode copper from 305 million tonnes (336 million short tons) milled.

Taseko Mines Limited acquired the mine from Boliden in July 1999. After a 4 month preproduction mining and mill/plant refurbishment period, operations were restarted with copper milling in October 2004.

In the area of the Copper King property, limited exploration work has been carried out intermittently since the 1960s. Gunn Mines Ltd. carried out magnetometer surveys, induced polarization surveys and 12 diamond drill holes totaling 1,068.6 m in the area of the claims between 1967 and 1971. In 1970, Primac Exploration Services Ltd. completed geological, magnetometer and soil geochemical surveys to the south of the Copper King property (Payne, 1998).

In 1998, 28.4 km of grid (North Grid) was established, 562 soil samples taken and 26.4 km of ground magnetometer and VLF-EM surveys were completed on the property (Payne, 1999). In addition, 17 km of grid (Mid Grid) was established, 333 soil samples taken and 26.4 km of ground magnetometer and VLF-EM surveys completed on the property (Payne, 1998). This work was carried out by Crest Geological Consultants Ltd. on behalf of United Gunn Resources Ltd. It identified an area of anomalous copper in soils located in the northeast corner of the property. Prospecting discovered a zone of epidote-chlorite altered lapilli tuff mineralized with pyrite and chalcopyrite disseminations and stringers. One rock sample yielded 13,967 ppm copper in this area (Payne, 1999). In addition a north-northwest trending 1400 m by 75 m zinc in soil anomaly was also identified.

In 2005, Copper Ridge completed two lines of reconnaissance soil sampling and IP geophysical surveys. A total of 63 soil samples and 2 rock samples were collected from the property. The limited soil sampling results indicate that several, weak isolated anomalies occur on the Copper King property. The most prospective area appears to coincide with a mapped unit of massive, fine-grained intermediate tuff traversing the southwestern part of the survey area. A total of 3.0 km of induced polarization and magnetometer surveys were completed by Scott Geophysics Ltd of Vancouver BC. Results from the induced polarization survey suggest that sulphides are not abundant in the underlying rocks.

REGIONAL GEOLOGY

The most recent regional geological synthesis of the area was completed by Ash et al., 1999 and 2000) and reference to this work is made here rather than repeatedly throughout the text. The Copper King property is underlain in part by the Granite Mountain Batholith. This is a Late Triassic (215 ± 0.8) , medium to very coarse-grained quartz diorite to tonalite intrusion that has been variably deformed, metamorphosed and hydrothermally altered. Primary compositional and textural changes are mappable within the batholith. These are indicated by a progressive increase northward across the batholith in quartz content (15-20% to 35-40%) and grain size (2-3 mm up to 1 cm), accompanied by a reduction in the mafic mineral content (35 to 10%). A late, volumetrically minor leucocratic dike phase with minimal mafic minerals (1-2%) intrudes the batholith in the Gibraltar mine area.

Primary contact relationships of the batholith with surrounding lithologies are poorly constrained. To the east and west it is most likely bordered by faults which juxtapose it with Late Paleozoic oceanic Cache Creek rocks. These rocks consist of disrupted chert argillite deposits that range from broken formation to melange with blocks or lenses of limestone and basalt.

The southern margin of the batholith is in part faulted against, and in part separated from, the Late Cretaceous Sheridan stock along a broad, low-angle, north-dipping shear zone. The Sheridan stock (108.1 ± 0.6 Ma) is a medium-grained, massive to locally strongly foliated, predominantly leucocratic quartz diorite. The shear zone is dominated by chlorite-rich schists with mylonitic fabrics that are locally well developed. A characteristic feature of this unit is veining from several cm up to 1 m in thickness, consisting of quartz, chlorite, carbonate or epidote, or some combination of these minerals. Protoliths are interpreted to include both melanocratic phases of the Granite Mountain Batholith and most likely basaltic volcanics from the Cache Creek terrane.

To the north, the pluton is juxtaposed against a variably deformed succession of epiclastic and volcaniclastic rocks. These have been interpreted as Quesnellia, arc-derived clastic rocks and correlated with the latest Early Jurassic Hall Formation (Wheeler and McFeely, 1991). The nature of the contact is unknown.

Gibraltar Mine Geology

The Gibraltar Cu-Mo deposit is hosted within the Granite Mountain Batholith. The geology of the Gibraltar mine is exposed in four open pits that include Gibraltar West, Gibraltar East, Pollyanna and Granite Lake (Figure 3). These all occur between 900 and 1200 m elevation on the west-facing slope of Granite Mountain and extend from 100 to 300 m below the surface, the deepest being Gibraltar East.

The four open pits lie in a zone of greenschist facies, hydrothermally altered, veined, deformed and recrystallized rock. Where undeformed, it is medium to coarse-grained, equigranular rock and displays a relatively uniform grain size and mineralogical composition throughout the mine area. All primary minerals excluding quartz are partially to completely replaced by alteration assemblages reflecting greenschist facies

Figure 3. Regional geology of the Gibraltar Mine area.

metamorphism which is characteristic of the batholith as a whole. It consists of 35-40% (relict) plagioclase, 25-30% quartz, 20-25% epidote and zoisite, 15-20% chlorite, 5-10% sericite and trace amounts of sphene, zircon, apatite, iron oxides, carbonate and sulphides. Weathered surfaces are light grey to buff white and commonly display a distinctive splash of disseminated pistachio-green epidote.

Deformation of the Gibraltar mine was localized along discrete high-strain zones in a relatively massive and unfoliated tonalite. No extensive or pervasive foliations were recognized in the mine. The intensity of folding of veins and planar fabrics generally varies as a function of scale. On the regional scale, folds are open warps. At the local scale, in particular in proximity to discrete high deformation zones, folds are tight to transposed. The majority of folds plunge shallowly to the southeast. The orientation of mineral stretching lineations on foliation and shear surfaces varies from shallowly to moderately plunging to the southeast.

A late, major northeast-trending, steeply northwest dipping, brittle fault cuts across the Gibraltar East pit. It is characterized by a distinctive purplish-red stain and it cross-cuts all map units and consists of hematite-rich incoherent clay gouge zones from 5 to 15 cm wide. Zones of hematite-rich alteration and minor hematite-stained fractures and faults marginal to the main gouge zones range from several dm to over 1 m wide. Fault surfaces have horizontal to obliquely-plunging slickensides, which suggest strike-slip to oblique-slip movement on the faults. Although no obvious offsets were observed there is a subtle change in character in the rocks on either side of the fault. In the hanging wall, strongly deformed and sericite altered rocks appear to be more prevalent than in the footwall.

On the basis of structural style, morphology and relative age relationships, three generations of veining are recognized at the Gibraltar Mine. The earliest are random stockwork to weakly planar quartz veins that are locally restrictive and largely unmineralized. The second generation includes two types of heterogeneously developed sub-parallel, sheeted veins and veinlets that pervade the mine area. The thicker sericiteenveloped, Fe-sulphide-rich, banded quartz veins contain concentrations of molybdenite. Cu-sulphide minerals are less conspicuous. Both of these generations of veins appear to be prekynematic and formed prior to development of any penetrative foliation fabrics within the batholith. The sericite enveloped, sheeted veins have accommodated significant amounts of later shearing but this is also largely non-penetrative and restricted to vein marginal shears. The third generation of veining is compositionally distinct from earlier vein types containing quartz, chlorite, carbonate, and abundant Cu-sulphide minerals. These are syn to late kynematic and associated with and developed along highstrain deformation zones. No molybdenite mineralization was noted in these veins. The general schistose character of high-grade copper ore at the Gibraltar mine resulted in its ease of crushing and milling or low work index.

The synkinematic high-strain, sub-vertical shear zone controls the overall geometry and setting of copper ore in the Gibraltar East pit. It is mimicked on the mine and regional scale. The shear zone which localizes high-grade ore in the northwestern portion of the Gibraltar East pit is also well defined at the western end of the Pollyanna pit. Towards the southeast, this northwesterly-trending shear zone bends to the east and is consistent with a comparable change in orientation of all planar (sheeted veins) and linear (fold hinges and mineral stretching lineations) structural elements at both the mine and regional scale. Two distinct sub-vertical parallel zones are attributed to ore control, a northerly zone related to ore at the Gibraltar East and Pollyanna pits and a southern zone controlling mineralization at the Gibraltar West and Granite Lake pits. A similarity oriented shear zone with associated schistose quartz diorite and tonalite along the southern margin of the

Granite Mountain Batholith is associated with Cu-mineralization at the Sawmill Zone. The overall trend of these zones is also consistent with the orientation of contacts between specific phases of the pluton.

Copper ore at the Gibraltar mine is structurally controlled. Ore grade mineralization is localized along high-strain shear zones that are associated with significant sericite enrichment. Two major parallel northwest to east-trending sub-vertical shear zones control the distribution of copper mineralization at the mine. Regionally, similar parallel zones appear to control occurrences of anomalous Cu mineralization.

In 1995, remaining proven and probable sulphide mineral reserves were estimated at 148.3 million tonnes (163.5 million short tons) grading 0.313% Cu and 0.010% Mo. Proven and probable oxide mineral reserves were estimated at 15 million tonnes (16.5 million short tons) grading 0.148% Cu. In addition, the Gibraltar Mine property hosts significant mineral resources. As of February 2004, Gibraltar reported a total Measured Resource of 402 million tonnes (443 million tonnes (215 million tons) grading 0.269% Cu and 0.008% Mo, and an Indicated Resource of 195 million tonnes (215 million tons) grading 0.269% Cu and 0.008% Mo (Hendry and Wallis, 2005).

Copper King Geology

The Copper King property is underlain by 3 major rock types (Figure 3). The western parts of the property are underlain by massive tonalite of the Late Triassic – Early Jurassic Granite Mountain Batholith. The rocks are equigranular, leucocratic and buff white in colour. They are locally very coarse grained and quartz porphyritic. Quartz ranges from 35-65% and up to 1 cm locally. Moderate to intense, northwest trending foliation fabrics are common and epidote-chlorite altered shear zones are developed locally.

The eastern parts of the property are underlain by intermediate volcanic and volcaniclastic rocks of the Late Triassic – Early Jurassic Nicola – Takla Group. The rocks are andesitic to dacitic in composition and consist of lapilli ash tuffs, ash tuffs and flow breccias. Interbeds of limestone and tuffaceous limey mudstone occur locally. Rare cherty beds are also present.

In the central part of the property there is a rectangular fault bounded panel of quartz diorite interpreted as a border phase of the Granite Mountain Batholith. The rocks are typically massive, undeformed and texturally variable ranging from fine to coarse-grained. Sub angular zenoliths of epidote-altered volcanics and fine-grained quartz-diorite occur locally.

Mapping and prospecting efforts in 2005 (Melling, 2006) were focused on the volcanic rocks underlying the northeast portion of the property. Much of this area has been recently clear cut and several areas of extensive outcrop occur. The volcanic rocks comprise units of massive quartz phyric lapilli tuff, massive intermediate ash tuff, and interbedded mafic flow breccias and intermediate tuff. In addition, minor cherty beds, limey tuffs and heterolithic epiclastic units occur locally. Where measured, the rocks strike to the north-northwest and dip moderately towards the northeast. Mapping by Ash et al., (1999a) suggests the rocks are folded and dip reversals common. There are several

northwest trending faults that cut the volcanic rocks. The strata are locally foliated in proximal to these structures. Epidote alteration is commonly observed on the property but rarely associated with sulphide concentrations.

Copper King Mineralization

Two Minfile occurrences are recorded on the Copper King claim group.

The Chris showing, located at 52° 33' 25" NLat. and 122° 12' 53" WLong., Minfile Number 093B 063, was discovered in 1998 by United Gunn Resources. It is located about 6.5 kilometres northeast of the Gibraltar mine (093B 012). Disseminated and fracture-controlled mineralization occurs in quartz diorite (chlorite-sericite schist) of the late Triassic-early Jurassic Granite Mountain Batholith. Assay values of up to 0.23 per cent copper occur in a 150 by 45 metre area (BC Geol. Surv. Minfile Report).

The Granite Mountain or Mad showing (52° 32' 00" NLat., 122° 13' 05" WLong., Minfile Number 093B 052) is located about 6 kilometres northeast of the Gibraltar mine (093B 012). The dominant rock types in the region are metabasalt, limestone and argillaceous metasediments of the Mississippian to Triassic Cache Creek Group. These are intruded by the dioritic to quartz dioritic Granite Mountain Pluton and the (?)Cretaceous Sheridan Creek Pluton. The Granite Mountain Pluton has been affected by regional metamorphism (greenschist facies) and deformation along with the enclosing Cache Creek Group. Mineralization consists of scattered pyrite, chalcopyrite, malachite and molybdenite within shear zones and northwest striking quartz veins in quartz diorite of the Granite Mountain Pluton (BC Geol. Surv. Minfile Report).

2006 Exploration Program

The limited 2005 exploration program defined some weak but isolated copper, zinc and gold anomalies in soils from the two widely spaced lines sampled. However, given previous reports of copper mineralization on the property, it was felt that a more comprehensive reconnaissance sampling program was needed.

The 2006 exploration program was completed between October 10 and 17, 2006 utilizing the services of a 5 man soil sampling crew from SabreX Contracting Ltd. The work included wide spaced, reconnaissance soil sampling as part of an overall program that included the Copper Ace South, Copper King, Sheridan and McLeese claim groups, all in the vicinity of the Gibraltar Mine. Of the total 1,088 samples collected, 554 were from the Copper King property, with samples collected every 50 m along 500 m spaced lines.

The work completed included soil sampling at 100 m stations on 500 m spaced lines using GPS for location. Due to the swampy nature of the terrain, a large number of sites could not be sampled. The location of the samples collected is shown on Figure 4.

Figure 4. Copper King soil grid location.

Soil Sampling Results

Bubble plots for copper, zinc, molybdenum and gold are shown below in Figures 5 to 8, while a list of samples, their UTM coordinates and key trace metal values in soil are shown in Appendix 1. Complete soil analysis certificates are presented in Appendix 2.

Copper values on the grid reach moderately anomalous values that are scattered throughout most of the grid, but with no discernable patterns. There is slight evidence of an east-west or southeast-northwest trend of anomalous values through the central part of the grid, somewhat parallel to and mainly on the north side of the drainage from the Gibraltar tailings pond. Most of the anomalous values are well out of the valley and are not expected to be caused by contamination from the tailings, except there may be a wind blown contamination factor (see molybdenum below). The higher of the anomalous values are in the 100 to 200 ppm Cu range, although a single isolated value, in the extreme southwestern portion of the grid, is 476 ppm Cu.

Figure 5. Copper King - copper soil geochemistry bubble plot.

Figure 6. Copper King - zinc soil geochemistry bubble plot.

COPPER KING PROJECT

Figure 7. Copper King - gold soil geochemistry bubble plot.

COPPER RIDGE EXPLORATIONS INC.

Zinc values are also only moderately anomalous, with three areas of suggested clustering. The strongest of these is in the eastern portion of the grid, with values in the 80 to 180 ppm range and one value of 209 ppm. Other clusters, not well defined, occur in the southwest and northwest portions of the grid, with anomalous values in the 80 to 180 ppm Zn range.

The gold values outline a single anomalous area that more or less corresponds with the eastern zinc anomaly. The anomaly is defined by three values in the 50 to 100 ppb range, a single value of 470 ppb and a strongly anomalous value of 4.8 ppm gold. This is not a well defined anomaly, as the anomalous values in this wide-spaced grid are somewhat isolated. More detailed sampling will be required to determine if this is a valid anomaly. Four other anomalous values, in the 50 to 100 ppb Au range, occur throughout the grid.

Weakly anomalous molybdenum values, from 1 to 10 ppm, occur along the western side of the grid. Given the lack of correlation with other elements and the proximity of these values next to the Gibraltar tailings pond, it is possible that this low grade anomaly could be the result of wind-blown contamination from the tailings area.

CONCLUSIONS

The Copper King property consists of two contiguous mineral tenures totaling 2399 ha located about 4 km northeast of the Gibraltar porphyry copper deposit. The tenures are owned 100% by Copper Ridge Explorations Inc.

The western parts of the property are underlain by massive tonalite of the Late Triassic – Early Jurassic Granite Mountain Batholith. The eastern parts of the property are underlain by intermediate volcanic and volcaniclastic rocks of the Late Triassic – Early Jurassic Nicola – Takla Group. In the central part of the property there is a rectangular fault bounded panel of quartz diorite interpreted as a border phase of the Granite Mountain Batholith.

In 1998, an area of anomalous copper in soils was identified in the northeast corner of the property. Prospecting discovered a zone of epidote-chlorite altered lapilli tuff mineralized with pyrite and chalcopyrite disseminations and stringers. One rock sample yielded 13,967 ppm copper in this area (Payne, 1999). In addition a north-northwest trending 1400 m by 75 m zinc in soil anomaly was also identified. In 2005, Copper Ridge completed two lines of reconnaissance soil sampling and IP geophysical surveys. No significant anomalies were encountered.

The 2006 exploration program was completed between October 10 and 17, 2006. The work included wide spaced, reconnaissance soil sampling. A total of 554 soils were collected from the Copper King property, with samples collected every 50 m along 500 m spaced lines.

The most interesting anomaly defined is a gold-zinc soil anomaly, with some supporting anomalous copper values, in the east-central part of the property, including one gold soil that initially assayed 4.8 ppm (g/t) gold. Two widespread zinc-copper anomalies, of medium intensity and poorly constrained, occur in the northwestern and southwestern

parts of the grid, may in part be related to the two Minfile occurrences on the property, Chris and Granite Mountain.

RECOMMENDATIONS

The Copper King claims represent a property of merit and further exploration work is warranted. There are three poorly defined soil anomalies which require follow up work and much of the property remains under explored. In addition, the property is strategically located proximal to the Gibraltar Mine. Outcrop exposure is excellent in many areas of the property and access is easily afforded.

Additional soil sampling is required to more carefully define the anomalous areas that have been outlined by the 2006 survey. This would entail sampling on 50 by 100 m centres in the vicinity of the highest soil values, and 25 by 100 m centres in the vicinity of the gold anomaly. At the same time reconnaissance mapping and rock sampling should be carried out over the detailed grids. If the soil anomalies are confirmed and more tightly constrained, additional exploration work should be considered, including detailed mapping and sampling, geophysical surveys and trenching, followed by drilling if warranted.

ITEMIZED COST STATEMENT

Gridding and soil sampling

Total		\$ 26,668
Analytical work	1,088 soils @ \$13.63	\$ 14,830
Truck, fuel, supplies		\$ 1,326
Room & Board	25 days	\$ 1,875
Samplers	25.5 days	\$ 7,012
Project management	2.5 days	\$ 1,625

Cost per sample \$ 24.50

Expenditures at Copper King -

554 samples @ \$24.50	\$ 13,573
Report and map preparation	<u>\$ 2,500</u>
Total	\$16,073

STATEMENT OF QUALIFICATIONS

I, Gerald G. Carlson, hereby certify that:

- 1. J am a consulting mineral exploration geologist and President of KGE Management Ltd. of 1740 Orchard Way, West Vancouver, B.C. V7V 4E8.
- 2. 1 am a graduate of the University of Toronto, with a degree in Geological Engineering (B.A.Sc., 1969). I attended graduate school at Michigan Technological University (M.Sc., 1974) and Dartmouth College (Ph.D., 1978). I have been involved in geological mapping, mineral exploration and the management of mineral exploration companies continuously since 1969, with the exception of time between 1972 and 1978 for graduate studies in economic geology.
- 3. I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia, Registration No. 12513 and of the Association of Professional Engineers of Yukon, Registration No. 0198.
- 4. I am the author of this report on the Copper King Project, Report on 2006 Soil Geochemical Program. The report is based on a literature review, on private company reports and on the 2006 field program.
- 5. I am a Director, President and CEO of Copper Ridge Explorations Inc.
- 6. I personally planned and assisted with the supervision of the exploration program conducted on the area discussed in this report.

Dated at Vancouver, B.C. this 30th day of April, 2007.

Gerald G. Carlson, Ph.D., P. Eng. KGE Management Ltd. 1740 Orchard Way West Vancouver, B.C. V7V 4E8 604-816-3012

COPPER RIDGE EXPLORATIONS INC.

REFERENCES

Ash, C.H. and Riveros, C.P. (2001): Geology of the Gibraltar copper-molybdenite deposit east-central British Columbia (93B/9). B.C. Ministry of Energy and Mines, Paper 2001-1, p. 119-131.

Ash, C.H., Panteleyev, A., MacLennan, K.L Payne, C.W. and Rydman, M.O. (1999a): Geology of the Gibraltar mine area (93B/8&9), *B.C. Ministry of Energy and, Mines,* Open File 1999-7,1:50 000 scale map.

Ash, C. H., Rydman, M.O., Payne, C.W., Panteleyev, A. (1999b); Geological setting of the Gibraltar mine south central British Columbia (93B/8, 9), *B.C. Ministry of Energy and Mines*, Exploration and Mining in British Columbia, pages A1-A15.

Bysouth, GD., Campbell, K.V., Barker, GE. and Gagnier, GK. (1995): Tonalitetrondhjemite fractionation of peraluminous magma and the formation of syntectonic porphyry copper mineralization, Gibraltar mine, central British Columbia; *in* Porphyry Deposits of the Northwestern Cordillera of North America, T.G Schroeter, Editor, *Canadian Institute of Mining and Metallurgy*, Special Volume 46, p. 201-213.

Drummond, A.D., Tennant, S.J. and Young, R. J. (1973): The interrelationship of regional metamorphism, hydrothermal alteration and mineralization at the Gibraltar mines copper deposit in BC; *Canadian Institute of Mining and Metallurgy*, Bulletin 66, No. 730, p. 48-55.

Drummond, A.D., Sutherland Brown, A., Young, RJ. and Tennant, S.J..(1976): Gibraltar - regional metamorphism, mineralization, hydrothermal alteration and structural development; *in* Porphyry Deposits of the Northwestern Cordillera of North America, A. Sutherland Brown, Editor, *The Canadian Institute of Mining and Metallurgy*, Special Volume 15, p. 195-205.

Eastwood, G.E.P. (1970): McLeese Lake, geology of the Granite Mountain Stock; in Geology, Exploration and Mining in British Columbia 1969, B.C. Ministry of Energy, Mines and Petroleum Resources, p. 162-172.

Hendry J.W. and Wallis C. S. (2005): Technical report on the Gibraltar Mine, British Columbia prepared for Taseko Mines Limited; unpublished 43-101 report by Roscoe Postle Associates Inc., 96 pages.

Melling, David R. (2006): Assessment Report - Geological and Geophysical report on the Copper King Property, Mineral Tenure 507748. Report prepared for Copper Ridge Explorations Inc., 14 pages.

Orchard, M. J. (2000): Report on conodonts and other microfossils, Quesnel (93B); *Geological Survey of Canada*, Internal Report No. MJO-2000-9, 2 pages.

Panteleyev, A. (1977): Granite Mountain project; In Geological Fieldwork, 1976, British Columbia Ministry of Mines and Petroleum Resources, p. 39-42.

Payne, C.W. (1999): Geophysical and soil geochemical report on the Copper King property CA 1, CA 2, CA3, CA4, CA5 and CA6 claims; British Columbia Assessment Report No. 25794.

Pezzot, E. T. (1988): Geophysical interpretation report on the CA 1, CA 2 claims, Copper King south grid, Project 178; unpublished report prepared for United Gunn Resources Ltd.

Raffel (1999): Structure, deformation and element mobility of the Gibraltar Mine, south central British Columbia; *unpublished B.Sc. Thesis*, University of British Columbia, 70 pages.

Scott, A. (2005): Logistical report – induced polarization and magnetometer surveys Copper King Claims, McLeese Lake area, BC; unpublished report by Scott Geophysics Ltd.

Simpson, R.Y. (1970): Geology of the Gibraltar -Pollyanna copper deposit; unpublished B.Sc. thesis, *The University of British Columbia*, 43 pages.

Sutherland Brown, A. (1957): Williams Lake, McLeese-Cuisson lakes area, British Columbia Minister of Mines, Annual Report 1957, p. 14-16.

Sutherland Brown, A. (1966): Geology of the Granite Mountain-Cuisson lakes area, in Minister of Mines Annual Report 1966, B.C. Ministry of Energy, Mines and Petroleum Resources, p. 121-125.

Sutherland Brown, A. (1974): Gibraltar Mine (93B-12,13), Geology, exploration and mining in British Columbia 1973, B.C. Department of Mines and Petroleum Resources, p. 299-318.

Wheeler, J.O. and McFeely, P (1991): Tectonic assemblage map of the Canadian cordillera and adjacent parts of the United States of America: *Geological Survey of Canada*, Map 1712A, scale 1:2,000,000.

APPENDIX I.

COPPER ACE PROPERTY – SAMPLE SITE UTM CCORDINATES AND SELECTED RESULTS.

.

APPENDIX II.

ACME ANALYTICAL SOIL ANALYSIS CERTIFICATES.

APPENDIX I.

.

.

COPPER ACE PROPERTY – SAMPLE SITE UTM CCORDINATES AND SELECTED RESULTS.

		1						
E	N	Mo	Cu	<u>Pb</u>	Zn	Ag	As	Au
552500	5821800	2.4	476.4	5.7	61	0.05	2.5	2.0
552500	5823750	1.2	28.3	5.0	94	0.05	4.1	1.5
552500	5823100	0.7	36.7	3.7	<u>52</u>	0.05	4.6	10.6
552500	5821150	0.5	7.8	4.1	57	0.10	1.8	0.1
552500	5820750	0.4	17.1	3.0	44	0.05	3.0	1.7
552500	5822050	0.4	8.6	4.1	32	0.05	0.8	0.8
552500	5821300	0.9	8.1	3.8	56	0.10	2.1	3.8
552500	5820800	0.5	11.2	3.2	62	0.05	1.3	0.9
552500	5823850	0.6	18.3	3.5	55	0.05	3.0	2.6
552500	5820250	0.5	24.8	3.5	38	0.05	2.1	2.8
552500	5824000	0.6	9.6	4.0	54	0.20	0.6	2.7
552500	5824050	0.8	55.5	4.8	61	0.05	6.2	2.3
552500	5821000	0.8	51.6	4.5	59	0.05	5.7	2.0
552500	5820900	0.4	16.2	3.3	42	0.05	2.4	0.6
552500	5820900	0.5	18.1	3.6	45	0.05	3.4	1.2
552500	5820150	1.4	10.0	4.4	46	0.05	1.8	0.5
552500	5820600	0.8	13.3	4.4	56	0.10	0.9	0.8
552500	5821050	0.7	11.2	4.3	84	0.05	0.6	0.0
552500	5821050	0.5	17.4	3.5	46	0.05	21	24.6
552500	5820950	0.6	14.1	5.3	78	0.20	18	0.1
552500	5821500	0.6	30.1	3.9	- 54	0.05	5.0	2.2
552500	5820700	4.0	15.2	4.0	72	0.05	32	12.5
552500	5821750	0.7	21.7	3.9	89	0.05	A 1	12.0
552500	5823800	0.8	15.5	3.8	68	0.05	2.5	5.1
552500	5821900	0.0	17.1	40	51	0.00	1.2	- 0.1
552500	5821450	12	19.4		120	0.20	2.6	2.4
552500	5821600	23	33.4	3.5	84	0.05	2.0	2.4
552500	5823650	17	19.4	4.5	40	0.05	2.9	4.9 7.8
552500	5823250	1.0	0.9	1.5	48	0.05		2.0
552500	5821200	0.9	12.2	5.0		0.20	1.0	
552500	5821350	0.0	14.3	5,4	92	0.20	1.9	
552500	5821250	2.0	19.2	4.0		0.05	1.4	0.7
552500	5822400		27.2	3.2	4/	0.05	3.8	1.5
552500	5023400	0.0	37.3	3.9	····· <u>/0</u> ,	0.10	2.9	1.8
552500	5820200	0.0	39.5	3.0	00	0.05	4.4	8.8
552500	5820300	2.3	33.3	4.8	95	0.05	2.6	3.5
552500	5623450	1.2	19.6	6.5		0.20	0.9	0.9
552500	5023500	- 0.6	39.6	4.1	52	0.05	5.1	1.6
552500	5621550	0.7		3.7	48	0.05	4.2	1.2
552500	5820450	1.5	5.9	3.3	28	0.05	1.1	0.1
552500	5820650	0.6	3.8	_5.9	31	0.05	0.1	<u>1.0</u>
552500	5823600	1.2	11.5	5.0	95	0.05	2.8	1.0
552500	5822100		38.5	3.9	<u>51</u>	0.05	4.7	1.0
552500	5822000	0.4	3.3	2.8	<u>22</u>	0.05	0.1	0.6
552500	5823300	4.6	22.5	3.9	33	0.05	4.3	2.9
552500	5821650	0.7	11.7	5.5	86	0.10	1.8	0.5
552500	5823350	0.8	18.9	4.0	63	0.05	4.4	1.0
552500	5823950	0.7	38.5	3.5	47	0.05	4.1	2.1
552500	5823150	0.5	24.3	3.5	37	0.05	1.9	0.7
552500	5823900	0.6	9.8	5.3	60	0.10	1.6	0.5
552500	5820200	0.4	24.2	3.3	38	0.05	2.1	0.7

٠

	· · · · · · · · · · · · · · · · · · ·								
	E	N	Mo	Cu	Pb	Zn	Ag	As	Au
	552500	5820350	0.9	15.5	3.7	59	0.05	1.4	0.1
	552500	5820850	1.3	11.4	4.3	131	0.10	1.9	0.8
	552500	5821100	0.6	16.1	5.3	<u>62</u>	0.10	0.8	1.8
	552500	5823700	0.4	17.9	2.9	39	0.05	2.9	2.8
	552500	5823550	0.8	18.7	3.8	53	0.20	1.6	1.7
1	552500	5820400	0.7	37.0	4.1	52	0.05	5.0	1.8
l	552500	5821450	1.1	20.2	4.5	77	0.05	2.2	1.0
	553000	5823500	2.1	10.6	4.2	45	0.05	4.1	2.4
	553000	5821100	0.9	56.5	5.1	66	0.05	6.3	2.2
	553000	5823200	2.1	22.3	3.7	55	0.05	5.2	2.8
	553000	5823700	0.8	57.6	4,9	65	0.05	6.2	3.3
	553000	5822700	0.9	58.0	5.2	67	0.05	6.4	2.5
	553000	5821000	1.0	16.7	4.6	146	0.10	5.0	0.7
l	553000	5823750	1.8	18.9	3.8	164	0.10	2.8	0.5
ľ	553000	5820900	0.8	58.9	5.1	68	0.05	6.3	2.9
ĺ	553000	5823900	0.9	27.3	3.4	169	0.20	3.9	8.7
ľ	553000	5822850	0.9	59.8	5.1	66	0.05	6.1	4.1
	553000	5820750	1.1	19.4	4.7	112	0.10	4.5	0.6
	553000	5820750	0.7	31.8	2.3	32	0.05	3.3	0.9
	553000	5823050	0.7	21.0	4.4	47	0.05	2.3	0.1
l	553000	5820450	0.8	58.3	5.1	66	0.05	6.3	7.9
	553000	5821700	0.8	39.1	4.6	150	0.05	2.3	0.1
ľ	553000	5823000	0.6	16.0	3.3	81	0.05	4.8	2.9
ľ	553000	5823950	1.1	23.4	4.2	113	0.10	4.7	0.1
ľ	553000	5821300	0.8	60.1	4.9	67	0.05	6.2	3.5
ļ	553000	5823150	2.0	14.0	4.8	95	0.10	3.1	1.4
ł	553000	5823650	0.8	59.8	5.1	67	0.05	6.3	1.8
ľ	553000	5821900	0.8	58.1	5.1	67	0.05	6.2	2.8
	553000	5821050	0.8	14.7	6.7	118	0.40	4.5	1.5
ľ	553000	5822050	1.3	22.0	5.1	86	0.10	5.2	1.6
l	553000	5822950	0.5	16.0	3.3	34	0.05	2.9	0.9
l	553000	5821850	1,1	16.8	4,7	128	0.10	4.4	0.1
ł	553000	5820500	0.6	12.2	3.6	45	0.05	3.4	2.3
	553000	5821500	0.8	8.4	2,4	75	0.20	0.6	0.1
Ì	553000	5821950	1.9	17.1	4.1	64	0.05	5.0	1.0
ľ	553000	5822100	0.6	41.8	5.0	59	0.05	13.2	2.9
ľ	553000	5820800	1.1	19.5	4.6	108	0.10	4.7	1.7
ľ	553000	5820550	0.5	47.8	4.6	56	0.20	3.0	0.9
ľ	553000	5823850	0.7	7.7	4.9	50	0.05	1.2	1.4
l	553000	5823550	0.9	58.9	5.2	68	0.05	6.5	2.7
l	553000	5823350	0.9	57.2	5.1	68	0.05	6.1	2.4
l	553000	5821550	0.8	54.8	4.9	63	0.05	6.4	1.9
	553000	5823400	0.6	31.4	3.4	38	0.05	4.0	3.9
	553000	5823300	0.8	56.4	4.8	64	0.05	6.0	23
	553000	5821250	0.8	59.5	53	66	0.05	61	1.8
ļ	553000	5821150	9.0	114 6	5.6	50	0.05	6.5	20
Į	553000	5821400	1.8	15.0	<u> </u>	70	0.10	37	<u>2.0</u> 0 1
	553000	5824100	0.0	23.0	4.1	46	0.05	6.7	1.0
ļ	553000	5820250	1.0	28.0	10	74	0.00	37	5 /
ŀ	553000	5820050	0.5	17.0	2.3	47	0.05	27	J.4 4 5
t		0020000	v.v	17.V	0.0	77	0.00	E ./	7.0

Copper King Grid Soil Results

E N Cu PD Zi Si Zi Si Zi Si Si <th>E</th> <th>N</th> <th>Ma</th> <th>0.1</th> <th>Dh</th> <th>70</th> <th>٨a</th> <th>Ác</th> <th>A.,</th>	E	N	Ma	0.1	Dh	70	٨a	Ác	A.,
553000 5623000 0.7 57.5 4.8 67 0.05 6.3 1 553000 5623000 5623000 0.8 62.2 5.4 8.6 7.2 0.05 6.5 3.1 553000 5623050 2.9 41.0 3.4 68 0.05 6.5 3.1 553000 5621350 0.5 58.1 4.0 48 0.05 5.0 2.4 1.7 553000 5822000 1.6 1.9.5 3.6 52 0.10 2.2 0.1 2.4 1.7 553000 5822050 1.5 1.5.5 2.4 3.1 44 0.05 4.1 2.3 553000 5822000 1.0 19.1 4.5 1.44 0.05 4.1 2.3 553000 5820200 0.8 59.2 5.3 68 0.05 6.2 2.8 553000 5820200 0.8 59.2 5.3 68 0.05 1.5 <td>553000</td> <td>5822250</td> <td>0.7</td> <td>30.6</td> <td>10</td> <td>134</td> <td><u></u></td> <td>31</td> <td>1.0</td>	553000	5822250	0.7	30.6	10	134	<u></u>	31	1.0
553000 5822460 0.8 62.2 5.4 7.2 0.05 6.5 3.1 553000 5822060 0.8 62.2 5.4 7.2 0.05 6.8 1.7 553000 5820400 0.8 61.8 1.0 3.4 68 0.05 3.3 108.8 553000 5820400 0.8 19.5 3.6 52 0.10 2.2 1.1 553000 5822000 1.0 19.1 4.5 124 0.10 4.5 0.5 553000 5822100 5.2 2.8 3.1 44 0.05 6.1 3.0 553000 5821800 0.7 56.0 4.9 64 0.05 6.1 3.0 553000 5821800 0.7 56.0 4.9 64 0.05 5.1 5.9 553000 5821750 0.9 16.7 4.0 86 0.10 3.6 5.9 553000 5821750 0.6 </td <td>553000</td> <td>5823200</td> <td>0.7</td> <td>57.5</td> <td><u>3.8</u></td> <td>67</td> <td>0.05</td> <td>63</td> <td>72</td>	553000	5823200	0.7	57.5	<u>3.8</u>	67	0.05	63	72
553000 5820600 0.8 0.2 5.3 0.05 6.8 1.7 553000 5820850 2.9 41.0 3.4 68 0.05 5.3 108.8 553000 5821350 0.5 58.1 4.0 48 0.05 5.0 2.5 553000 5822750 0.5 19.5 3.6 52 0.10 2.2 0.10 2.2 0.10 2.2 0.10 2.2 0.1 2.3 0.5 5.3 1.4 0.05 4.1 2.3 553000 5822650 0.5 22.8 3.1 44 0.05 4.1 2.3 553000 5822600 0.7 56.0 4.9 64 0.05 6.1 3.0 553000 5822600 0.8 19.2 5.3 68 0.05 3.3 0.9 553000 5822700 0.8 19.2 5.3 68 0.05 3.1 0.9 553000 5822750 0.6 <td>553000</td> <td>5823450</td> <td>0.8</td> <td>62.1</td> <td>53</td> <td>60</td> <td>0.00</td> <td>6.5</td> <td>2.2</td>	553000	5823450	0.8	62.1	53	60	0.00	6.5	2.2
553000 5820800 2.6 1.0 3.4 1.2 0.05 0.5 1.0 553000 5820400 0.6 19.8 3.1 52 0.05 2.3 10.8 553000 5822400 0.6 19.5 3.6 52 0.10 2.2 0.1 553000 5822760 0.5 19.1 4.5 124 0.10 4.5 0.5 553000 5822060 0.5 22.8 3.1 44 0.05 4.1 2.3 553000 5821800 0.7 56.0 4.9 64 0.05 6.1 3.0 553000 5821800 0.7 56.0 4.9 64 0.05 6.5 2.8 553000 5820200 0.8 59.2 5.3 68 0.05 6.1 3.0 553000 5820200 0.8 13.0 3.5 5.5 3.1 0.9 1.5 5.8 553000 582150 0.4	553000	5820600	0.0	62.1	5.0	72	0.05	6.0	17
55300 582130 1.5 1.10 3.4 0.00 0.05 5.3 10.05 553000 5820400 0.8 19.8 3.1 52 0.05 2.4 1.7 553000 5822000 1.0 19.1 4.5 124 0.10 4.5 0.25 553000 5822000 1.0 19.1 4.5 124 0.10 4.5 0.5 553000 5822000 0.5 22.8 3.1 44 0.05 6.1 3.0 553000 5823600 0.6 19.3 3.1 43 0.05 6.2 2.8 553000 5823600 0.8 19.2 5.3 6.8 0.05 3.1 0.9 553000 5821750 0.9 16.7 4.0 86 0.10 3.3 0.5 553000 5820250 0.6 58.8 5.3 69 0.05 1.5 0.8 553500 5820250 0.5 36.	553000	5820000	20	41.0		69	0.05	2.0	108.8
553000 5822400 0.6 19.8 3.1 52 0.05 2.4 1.7 553000 5822760 0.5 19.5 3.6 52 0.05 2.4 1.7 553000 5822060 1.0 19.1 4.5 124 0.10 4.5 0.5 553000 5822060 0.5 22.8 3.1 44 0.05 4.1 2.3 553000 5821600 0.7 58.0 4.9 64 0.05 6.1 3.0 553000 5822600 0.8 59.2 5.3 66 0.05 6.5 2.8 553000 5820700 0.8 13.0 3.5 50.5 0.6 19.3 3.1 43 0.05 1.5 0.9 553000 5820300 2.1 62.7 3.7 110 0.30 3.3 0.5 553000 5821150 0.4 15.1 3.6 68 1.5 0.6 1.5 0.6	553000	5921350	2.9	41.0 EQ 1	4.0	49	0.05	5.5	2.5
55300 552000 10.5 13.6 52 0.10 2.4 1.1 553000 582200 1.0 19.1 4.5 124 0.10 4.5 0.5 553000 5822000 0.5 22.8 3.1 44 0.05 4.1 2.3 553000 5823100 5.2 29.9 6.8 96 0.30 5.7 0.1 553000 5821800 0.7 56.0 4.9 64 0.05 6.1 3.0 553000 5820200 0.8 59.2 5.3 68 0.05 6.5 2.8 553000 5820700 0.6 13.0 3.5 53 0.05 3.1 0.9 553000 5821750 0.4 15.1 3.6 42 0.5 1.5 0.9 553500 5822800 0.5 58.8 5.3 69 0.05 13.9 3.4 553500 5821800 0.5 3.6.3 1.4	553000	502 1350	0.5		4.0		0.05		
55300 5822780 0.5 19.1 4.5 124 0.10 4.5 0.1 553000 5822000 1.0 19.1 4.5 124 0.10 4.5 0.5 553000 5823100 5.2 29.9 6.8 96 0.30 5.7 0.1 553000 5821800 0.7 56.0 4.9 64 0.05 6.1 3.0 553000 5821800 0.8 59.2 5.3 68 0.05 6.5 2.8 553000 582750 0.9 16.7 4.0 86 0.10 3.6 19.9 553000 5820300 2.1 62.7 3.7 110 0.30 3.3 0.5 553500 5822650 0.6 58.8 5.3 69 0.05 1.9 3.4 553500 5822650 0.5 36.3 4.2 45 0.05 6.7 3.0 553500 5821850 0.7 3.6 <td>553000</td> <td>5820400</td> <td>0.6</td> <td>19.0</td> <td></td> <td>52</td> <td>0.05</td> <td>. 2.4</td> <td>·· <u></u></td>	553000	5820400	0.6	19.0		52	0.05	. 2.4	·· <u></u>
55300 582000 10 13. 4.5. 124 0.10 4.5. 0.5 553000 5822100 5.2 22.8 3.1 44 0.05 4.1 2.3 553000 5822100 5.2 29.9 6.8 96 0.30 5.7 0.1 553000 5822000 0.8 69.2 5.3 68 0.05 6.1 3.0 553000 5820200 0.8 69.2 5.3 68 0.05 6.5 2.8 553000 5820700 0.8 13.0 3.5 53 0.06 13.1 0.9 553000 5820300 2.1 62.7 3.7 110 0.30 3.3 0.5 553000 5822850 0.6 58.8 5.3 68 1.4 0.05 6.7 3.0 553500 5822850 0.7 3.6 3.0 14 0.05 0.1 3.2 553500 5821800 0.7	553000	5622750	0.5	19.5	3,0	<u> </u>	0.10	2.2	
53300 5820630 0.5 22.8 3.1 44 0.05 4.1 2.3 553000 5823100 5.2 29.9 6.8 96 0.30 5.7 0.1 553000 5823600 0.6 19.3 3.1 43 0.05 4.2 1.5 553000 5820700 0.8 59.2 5.3 68 0.05 6.5 2.8 553000 5820700 0.8 13.0 3.5 53 0.06 3.1 0.9 553000 5820300 2.1 62.7 3.7 110 0.30 3.3 0.5 553000 582150 0.6 58.8 5.3 69 0.05 1.3.9 3.4 553500 5822850 0.5 36.3 4.2 4.5 0.05 6.7 3.0 553500 5821450 0.9 12.8 8.3 4.4 0.05 0.1 3.2 553500 5821450 0.7 3.6 <td>553000</td> <td>5822000</td> <td>1.0</td> <td>19.1</td> <td>4.5</td> <td>124</td> <td>0.10</td> <td>4.5</td> <td>0.5</td>	553000	5822000	1.0	19.1	4.5	124	0.10	4.5	0.5
5.5000 582 100 5.7 6.8 90 0.30 5.7 0.1 553000 582 1800 0.7 56.0 4.9 64 0.05 6.1 3.0 553000 5820200 0.8 59.2 5.3 68 0.05 6.5 2.8 553000 5820700 0.8 13.0 3.5 53 0.05 3.1 0.3 553000 5820300 2.1 62.7 3.7 110 0.30 3.3 0.5 553000 582150 0.6 58.8 5.3 69 0.05 1.5 0.9 553500 5822850 0.5 58.3 6.9 0.05 6.7 3.0 553500 582250 0.5 36.3 4.2 45 0.05 6.7 3.0 553500 5821450 0.9 12.8 8.3 44 0.05 0.1 3.2 553500 5821800 0.4 14.4 3.6 30	553000	5820650	0.5	22.8	3.1	44	0.05	4.1	2.3
55300 5821800 0.7 56.0 4.9 64 0.05 6.1 3.0 553000 5822000 0.8 59.2 5.3 68 0.05 4.2 1.5 553000 5820700 0.8 59.2 5.3 68 0.05 3.1 0.9 553000 5820700 0.8 13.0 3.5 53 0.05 3.1 0.9 553000 5820300 2.1 62.7 3.7 110 0.30 3.3 0.5 553500 5820850 0.6 58.8 5.3 69 0.05 1.5 0.9 553500 5820850 0.5 36.3 4.2 45 0.05 6.7 3.0 553500 5821850 0.9 12.8 8.3 44 0.05 0.9 0.1 553500 5821850 0.7 3.6 3.0 1.4 0.05 5.6 2.1 553500 5821800 0.6 27.9	553000	5823100	5.2	29.9	6.8	910	0.30	5.7	0.1
55300 5823600 0.6 19.3 3.1 43 0.05 4.2 1.3 553000 5820700 0.8 69.2 5.3 68 0.05 6.5 2.8 553000 5820700 0.8 13.0 3.5 5.3 0.05 3.1 0.9 553000 5820300 2.1 62.7 3.7 110 0.30 3.3 0.5 553000 5820250 0.4 15.1 3.6 42 0.05 1.5 0.9 553500 5820250 0.5 36.3 4.2 45 0.05 0.9 0.1 553500 5821450 0.9 12.8 8.3 44 0.05 0.9 0.1 553500 5821450 0.7 3.6 3.0 14 0.05 0.1 3.2 553500 5821450 0.7 3.6 3.0 1.4 0.05 5.6 2.1 553500 5821200 0.6 2.7	553000	5821800	0.7	56.0	4.9	64	0.05	6.1	3.0
53300 5820200 0.8 59.2 5.3 68 0.05 6.5 2.8 553000 5821750 0.9 16.7 4.0 86 0.10 3.6 19.9 553000 5820700 0.8 13.0 3.5 53 0.05 3.1 0.9 553000 5821150 0.4 15.1 3.6 42 0.05 1.5 0.8 553500 5820250 0.6 58.8 5.3 69 0.05 13.9 3.4 553500 5820250 0.5 36.3 4.2 45 0.05 6.7 3.0 553500 5821450 0.9 12.8 8.3 44 0.05 0.1 3.2 553500 5821450 0.7 3.6 3.0 14 0.05 4.4 1.3 553500 5821800 0.4 14.4 3.6 30 0.05 5.6 2.1 553500 5821800 0.6 27.9	553000	5823600	0.6	19.3	3.1	43	0.05	4.2	1.5
53300 5821750 0.9 16.7 4.0 86 0.10 3.6 19.9 553000 5820700 0.8 13.0 3.5 53 0.05 3.1 0.9 553000 5820300 2.1 62.7 3.7 110 0.30 3.3 0.5 553000 5821150 0.4 15.1 3.6 4.2 0.05 1.3.9 3.4 553500 5820250 1.1 51.5 6.6 811 0.05 4.2 1.2 553500 5820250 0.5 36.3 4.2 45 0.05 6.7 3.0 553500 582180 0.9 12.8 8.3 44 0.05 0.9 1.1 553500 582180 0.6 18.2 4.7 64 0.05 5.6 2.1 553500 582180 0.4 14.4 3.6 30 0.05 5.6 2.1 553500 5820400 0.6 2.9 <td>553000</td> <td>5820200</td> <td>0.8</td> <td>59.2</td> <td>5.3</td> <td>68</td> <td>0.05</td> <td>6.5</td> <td>2.8</td>	553000	5820200	0.8	59.2	5.3	68	0.05	6.5	2.8
533000 5820700 0.8 13.0 3.5 53' 0.05 3.1 0.9 553000 5820300 2.1 62.7 3.7 110 0.30 3.3 0.5 553000 582150 0.4 15.1 3.6 42 0.05 1.5 0.9 553500 5820250 1.1 5.5 6.6 81 0.05 4.2 1.2 553500 5821450 0.9 12.8 8.3 44 0.05 6.7 3.0 553500 5821800 0.6 18.2 4.7 64 0.05 4.4 1.3 553500 5821800 0.7 3.6 3.0 14 0.05 0.1 3.2 553500 5821800 0.4 14.4 3.6 30 0.05 5.6 2.1 553500 5821200 0.6 6.9 3.8 27 0.05 1.8 0.1 553500 582050 1.0 12.4	553000	5821750	0.9	16.7	4.0	86	0.10	3.6	19.9
553000 5820300 2.1 62.7 3.7 110 0.30 3.3 0.5 553000 582150 0.4 15.1 3.6 42 0.05 1.5 0.9 553500 5822850 0.6 58.8 5.3 69 0.05 1.9 3.4 553500 5820250 0.5 36.3 4.2 45 0.05 6.7 3.0 553500 5821450 0.9 12.8 8.3 44 0.05 0.9 0.1 553500 5821800 0.6 18.2 4.7 64 0.05 4.4 1.3 553500 5821800 0.4 14.4 3.6 30 0.05 2.9 1.8 553500 5821800 0.4 14.4 3.6 30 0.05 1.6 0.1 553500 5821200 0.6 6.9 3.8 27 0.05 1.8 0.1 553500 5821250 0.7 15.8	553000	5820700	0.8	13.0	3.5	53	0.05	3.1	0.9
553000 5821150 0.4 15.1 3.6 42 0.05 1.5 0.9 553500 5822850 0.6 58.8 5.3 69 0.05 13.9 3.4 553500 5820250 1.1 51.5 6.6 81 0.05 4.2 1.2 553500 5820450 0.5 36.3 4.2 45 0.05 6.7 3.0 553500 5821450 0.9 12.8 8.3 44 0.05 0.1 3.2 553500 5821450 0.7 3.6 3.0 1.4 0.05 0.1 3.2 553500 5821800 0.4 14.4 3.6 30 0.05 5.6 2.1 553500 5821800 0.6 27.9 4.5 45 0.05 7.6 2.0 553500 5821200 0.7 15.8 4.0 58 0.10 3.4 1.1 553500 5823500 5823500 5823	553000	5820300	2.1	62.7	3.7	110	0.30	3.3	0.5
SS3500 5822860 0.6 58.8 5.3 69 0.05 13.9 3.4 553500 5820250 1.1 51.5 6.6 811 0.05 4.2 1.2 553500 5822450 0.9 12.8 8.3 44 0.05 6.7 3.0 553500 5821450 0.9 12.8 8.3 44 0.05 6.7 3.0 553500 5821800 0.6 18.2 4.7 64 0.05 0.1 3.2 553500 5821750 0.6 15.8 4.2 38 0.05 2.9 1.8 553500 5821200 0.6 27.9 4.5 45 0.05 7.6 2.0 553500 5821250 0.7 15.8 4.0 58 0.10 3.4 1.1 553500 5822650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5822650 0.5 8.6	553000	5821150	0.4	15.1	3.6	42	0.05	1.5	0.9
553500 5820250 1.1 51.5 6.6 811 0.05 4.2 1.2 553500 5820250 0.5 36.3 4.2 45 0.05 6.7 3.0 553500 5821450 0.9 12.8 8.3 44 0.05 0.9 0.1 553500 5821300 0.6 18.2 4.7 64 0.05 4.4 1.3 553500 5821800 0.6 15.8 4.2 38 0.05 2.9 1.8 553500 5821800 0.4 14.4 3.6 30 0.05 7.6 2.0 553500 5821200 0.6 6.9 3.8 2.7 0.05 1.6 0.1 553500 5820350 0.9 8.2 3.0 38 0.05 1.8 1.2 553500 5823650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823650 0.5 14.0	553500	5822850	0.6	58.8	5.3	<u>69</u>	0.05	13.9	3.4
553500 5620250 0.5 36.3 4.2 45 0.05 6.7 3.0 553500 5621450 0.9 12.8 8.3 44 0.05 0.9 0.1 553500 5821300 0.6 18.2 4.7 64 0.05 4.4 1.3 553500 5821850 0.7 3.6 3.0 14 0.05 0.1 3.2 553500 5821800 0.4 14.4 3.6 30 0.05 5.6 2.1 553500 5821200 0.6 27.9 4.5 45 0.05 7.6 2.0 553500 5820350 0.9 8.2 3.0 38 0.05 1.8 1.1 553500 582350 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823650 0.5 8.6	553500	5820250	<u>1.1</u>	51.5	6.6	81	0.05	4.2	1.2
553500 5621450 0.9 12.8 8.3 44 0.05 0.9 0.1 553500 5821300 0.6 18.2 4.7 64 0.05 4.4 1.3 553500 5821850 0.7 3.6 3.0 14 0.05 0.1 3.2 553500 5821750 0.6 15.8 4.2 38 0.05 2.9 1.8 553500 5821200 0.6 27.9 4.5 45 0.05 7.6 2.0 553500 5820350 0.9 8.2 3.0 38 0.05 1.8 1.2 553500 5820350 0.9 8.2 3.0 38 0.05 1.8 1.2 553500 5823500 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823600 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823600 0.5 14.0	553500	5820250	0.5	36.3	4.2	45	0.05	6.7	3.0
553500 5821300 0.6 18.2 4.7 64 0.05 4.4 1.3 553500 5821850 0.7 3.6 3.0 14 0.05 0.1 3.2 553500 5821750 0.6 15.8 4.2 38 0.05 2.9 1.8 553500 5821800 0.4 14.4 3.6 30 0.05 5.6 2.1 553500 5821200 0.6 27.9 4.5 45 0.05 7.6 2.0 553500 5820350 0.9 8.2 3.0 38 0.05 1.8 1.2 553500 582050 1.0 12.4 4.8 102 0.05 3.9 1.2 553500 582360 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 582360 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823600 0.5 1.4.0	553500	5821450	0.9	12.8	8.3	44	0.05	0.9	Q.1
553500 5821850 0.7 3.6 3.0 14 0.05 0.1 3.2 553500 5821750 0.6 15.8 4.2 38 0.05 2.9 1.8 553500 5821800 0.4 14.4 3.6 30 0.05 5.6 2.1 553500 5821200 0.6 27.9 4.5 45 0.05 7.6 2.0 553500 5820350 0.9 8.2 3.0 38 0.05 1.8 1.2 553500 5820550 1.0 12.4 4.8 102 0.05 3.9 1.2 553500 5823650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5820650 0.7 14.5	553500	5821 <u>300</u>	0.6	18.2	4.7	64	0.05	4.4	1.3
553500 5821750 0.6 15.8 4.2 38 0.05 2.9 1.8 553500 5821800 0.4 14.4 3.6 30 0.05 5.6 2.1 553500 5821200 0.6 27.9 4.5 45 0.05 7.6 2.0 553500 5820350 0.9 8.2 3.0 38 0.05 1.8 1.2 553500 5820350 0.9 8.2 3.0 38 0.05 1.8 1.2 553500 5821250 0.7 15.8 4.0 58 0.10 3.4 1.1 553500 5823650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823650 0.5 14.0 3.5 37 0.05 4.1 0.8 553500 5820650 0.7 14.5	553500	5821850	0.7	3.6	3.0	14	0.05	0.1	3.2
553500 5821800 0.4 14.4 3.6 30 0.05 5.6 2.1 553500 5821200 0.6 27.9 4.5 45 0.05 7.6 2.0 553500 5820350 0.9 8.2 3.0 38 0.05 1.8 0.1 553500 5820350 0.9 8.2 3.0 38 0.05 1.8 1.2 553500 5821250 0.7 15.8 4.0 58 0.10 3.4 1.1 553500 5823650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823600 0.5 14.0 3.5 37 0.05 4.1 0.8 553500 5823600 0.6 11.5 4.0 41 0.05 2.9 4.2 553500 5824650 0.7 14.5 5.4 62 0.05 3.3 3.5 553500 5821650 0.6 22.7	553500	5821750	0.6	15.8	4.2	38	0.05	2.9	1.8
553500 5821200 0.6 27.9 4.5 45 0.05 7.6 2.0 553500 5824000 0.6 6.9 3.8 27 0.05 1.6 0.1 553500 5820350 0.9 8.2 3.0 38 0.05 1.8 1.2 553500 5821250 0.7 15.8 4.0 58 0.10 3.4 1.1 553500 5820550 1.0 12.4 4.8 102 0.05 3.9 1.2 553500 5823650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823600 0.5 14.0 3.5 37 0.05 4.1 0.8 553500 5822650 0.7 14.5 5.4 62 0.05 3.3 3.5 553500 5821650 0.6 22.7 2.9 53 0.05 4.0 3.1 553500 5822050 0.8 9.6	553500	5821800	0.4	14.4	3.6	30	0.05	5.6	2.1
553500 5824000 0.6 6.9 3.8 27 0.05 1.6 0.1 553500 5820350 0.9 8.2 3.0 38 0.05 1.8 1.2 553500 5821250 0.7 15.8 4.0 58 0.10 3.4 1.1 553500 5820550 1.0 12.4 4.8 102 0.05 3.9 1.2 553500 5823650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823600 0.5 14.0 3.5 37 0.05 4.1 0.8 553500 582900 0.6 11.5 4.0 41 0.05 2.9 4.2 553500 5821650 0.6 22.7 2.9 53 0.05 4.0 3.1 553500 5821650 0.6 22.7 2.9 53 0.05 4.2 3.3 553500 5822050 0.8 9.6	553500	5821200	0.6	27.9	4.5	45	0.05	7.6	2.0
553500 5820350 0.9 8.2 3.0 38 0.05 1.8 1.2 553500 5821250 0.7 15.8 4.0 58 0.10 3.4 1.1 553500 5820550 1.0 12.4 4.8 102 0.05 3.9 1.2 553500 5823650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823600 0.5 14.0 3.5 37 0.05 4.1 0.8 553500 582900 0.6 11.5 4.0 41 0.05 2.9 4.2 553500 582900 0.6 12.7 2.9 53 0.05 4.0 3.1 553500 5821650 0.6 22.7 2.9 53 0.05 4.2 3.3 553500 5822050 0.4 22.8 3.8 47 0.05 4.2 3.3 553500 5822050 0.2 15.3	553500	5824000	0.6	6.9	3.8	27	0.05	1.6	0.1
553500 5821250 0.7 15.8 4.0 58 0.10 3.4 1.1 553500 5820550 1.0 12.4 4.8 102 0.05 3.9 1.2 553500 5823650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823600 0.5 14.0 3.5 37 0.05 4.1 0.8 553500 5823600 0.6 11.5 4.0 41 0.05 2.9 4.2 553500 5820650 0.7 14.5 5.4 62 0.05 3.3 3.5 553500 5821650 0.6 22.7 2.9 53 0.05 4.0 3.1 553500 5821900 0.4 18.7 4.1 40 0.05 4.2 1.3 553500 5822050 0.8 9.6 4.5 36 0.05 3.0 2.7 553500 5822050 0.8 12.8	553500	5820350	0.9	8.2	3.0	38	0.05	1.8	1.2
553500 5820550 1.0 12.4 4.8 102 0.05 3.9 1.2 553500 5823650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823600 0.5 14.0 3.5 37 0.05 4.1 0.8 553500 5822900 0.6 11.5 4.0 41 0.05 2.9 4.2 553500 5820650 0.7 14.5 5.4 62 0.05 3.3 3.5 553500 5821650 0.6 22.7 2.9 53 0.05 4.0 3.1 553500 5821900 0.4 18.7 4.1 40 0.05 4.2 1.3 553500 5822050 0.8 9.6 4.5 36 0.05 3.0 2.3 553500 5822050 0.8 9.6 4.5 36 0.05 3.0 2.1 553500 5823100 0.4 209.3	553500	5821250	0.7	15.8	4.0	58	0.10	3.4	1.1
553500 5823650 0.5 8.6 4.2 36 0.10 2.2 0.1 553500 5823500 0.5 14.0 3.5 37 0.05 4.1 0.8 553500 5822900 0.6 11.5 4.0 41 0.05 2.9 4.2 553500 5820650 0.7 14.5 5.4 62 0.05 3.3 3.5 553500 5821650 0.6 22.7 2.9 53 0.05 4.0 3.1 553500 5821900 0.4 18.7 4.1 40 0.05 4.2 1.3 553500 5822050 0.8 9.6 4.5 36 0.05 3.0 2.3 553500 5822050 0.8 9.6 4.5 36 0.05 3.0 2.3 553500 5823100 0.4 209.3 8.0 55 0.10 2.6 1.5 553500 5823150 0.5 3.0	553500	5820550	1.0	12.4	4.8	102	0.05	3.9	1.2
553500 5823500 0.5 14.0 3.5 37 0.05 4.1 0.8 553500 5822900 0.6 11.5 4.0 41 0.05 2.9 4.2 553500 5820650 0.7 14.5 5.4 62 0.05 3.3 3.5 553500 5821650 0.6 22.7 2.9 53 0.05 4.0 3.1 553500 5821900 0.4 18.7 4.1 40 0.05 4.2 1.3 553500 5823200 0.4 22.8 3.8 47 0.05 4.2 3.3 553500 5822050 0.8 9.6 4.5 36 0.05 3.0 2.3 553500 5822050 0.2 15.3 4.9 49 0.05 3.0 0.7 553500 5820450 0.8 12.8 4.7 81 0.10 4.5 1.5 553500 5820450 0.5 3.0	553500	5823650	0.5	8.6	4.2	36	0.10	2.2	0.1
553500 5822900 0.6 11.5 4.0 41 0.05 2.9 4.2 553500 5820650 0.7 14.5 5.4 62 0.05 3.3 3.5 553500 5821650 0.6 22.7 2.9 53 0.05 4.0 3.1 553500 5821900 0.4 18.7 4.1 40 0.05 4.2 1.3 553500 5823200 0.4 22.8 3.8 47 0.05 4.2 3.3 553500 5822050 0.8 9.6 4.5 36 0.05 3.0 2.3 553500 5822050 0.2 15.3 4.9 49 0.05 3.0 2.3 553500 5822050 0.2 15.3 4.9 49 0.05 3.0 0.7 553500 5820450 0.8 12.8 4.7 81 0.10 4.5 1.5 553500 5820450 0.8 14.1	553500	5823500	0.5	14.0	3.5	37	0.05	4.1	0.8
553500 5820650 0.7 14.5 5.4 62 0.05 3.3 3.5 553500 5821650 0.6 22.7 2.9 53 0.05 4.0 3.1 553500 5821900 0.4 18.7 4.1 40 0.05 4.2 1.3 553500 5823200 0.4 22.8 3.8 47 0.05 4.2 3.3 553500 5822050 0.8 9.6 4.5 36 0.05 3.0 2.3 553500 5822750 0.2 15.3 4.9 49 0.05 3.0 0.7 553500 5823100 0.4 209.3 8.0 55 0.10 2.6 1.5 553500 5823150 0.5 3.0 3.1 14 0.05 0.1 3.1 553500 5820450 0.8 14.1 4.6 54 0.05 4.1 0.8 553500 5821700 0.6 49.8	553500	5822 <u>900</u>	0.6	11.5	4.0	41	0.05	2.9	4.2
553500 5821650 0.6 22.7 2.9 53 0.05 4.0 3.1 553500 5821900 0.4 18.7 4.1 40 0.05 4.2 1.3 553500 5823200 0.4 22.8 3.8 47 0.05 4.2 3.3 553500 5822050 0.8 9.6 4.5 36 0.05 3.0 2.3 553500 5822750 0.2 15.3 4.9 49 0.05 3.0 0.7 553500 5823100 0.4 209.3 8.0 55 0.10 2.6 1.5 553500 5820450 0.8 12.8 4.7 81 0.10 4.5 1.5 553500 5820450 0.5 3.0 3.1 14 0.05 0.1 3.1 553500 5820200 0.8 14.1 4.6 54 0.05 8.0 1.9 553500 5821950 0.6 53.1	553500	5820650	0.7	14.5	5.4	62	0.05	3.3	3.5
553500 5821900 0.4 18.7 4.1 40 0.05 4.2 1.3 553500 5823200 0.4 22.8 3.8 47 0.05 4.2 3.3 553500 5822050 0.8 9.6 4.5 36 0.05 3.0 2.3 553500 5822750 0.2 15.3 4.9 49 0.05 3.0 0.7 553500 5823100 0.4 209.3 8.0 55 0.10 2.6 1.5 553500 5820450 0.8 12.8 4.7 81 0.10 4.5 1.5 553500 5820450 0.8 12.8 4.7 81 0.10 4.5 1.5 553500 5820450 0.8 14.1 4.6 54 0.05 4.1 0.8 553500 5820700 0.5 16.4 3.5 40 0.05 3.7 0.7 553500 5821950 0.6 53.1	553500	5821650	0.6	22.7	2.9	53	0.05	4.0	3.1
553500 5823200 0.4 22.8 3.8 47 0.05 4.2 3.3 553500 5822050 0.8 9.6 4.5 36 0.05 3.0 2.3 553500 5822750 0.2 15.3 4.9 49 0.05 3.0 2.3 553500 5822750 0.2 15.3 4.9 49 0.05 3.0 0.7 553500 5823100 0.4 209.3 8.0 55 0.10 2.6 1.5 553500 5820450 0.8 12.8 4.7 81 0.10 4.5 1.5 553500 5820450 0.5 3.0 3.1 14 0.05 0.1 3.1 553500 5820200 0.8 14.1 4.6 54 0.05 4.1 0.8 553500 5821700 0.6 49.8 4.5 54 0.05 8.0 1.9 553500 5821950 0.6 53.1	553500	5821900	0.4	18.7	4.1	40	0.05	4.2	1.3
553500 5822050 0.8 9.6 4.5 36 0.05 3.0 2.3 553500 5822750 0.2 15.3 4.9 49 0.05 3.0 0.7 553500 5823100 0.4 209.3 8.0 55 0.10 2.6 1.5 553500 5820450 0.8 12.8 4.7 81 0.10 4.5 1.5 553500 5820450 0.5 3.0 3.1 14 0.05 0.1 3.1 553500 5820200 0.8 14.1 4.6 54 0.05 4.1 0.8 553500 5821700 0.6 49.8 4.5 54 0.05 8.0 1.9 553500 5821700 0.6 49.8 4.5 54 0.05 8.0 1.9 553500 5821950 0.6 53.1 4.9 58 0.05 8.1 3.0 553500 5823250 0.3 19.2	553500	5823200	0.4	22.8	3.8	47	0.05	4.2	3.3
553500 5822750 0.2 15.3 4.9 49 0.05 3.0 0.7 553500 5823100 0.4 209.3 8.0 55 0.10 2.6 1.5 553500 5820450 0.8 12.8 4.7 81 0.10 4.5 1.5 553500 5820450 0.5 3.0 3.1 14 0.05 0.1 3.1 553500 5820200 0.8 14.1 4.6 54 0.05 4.1 0.8 553500 5820700 0.6 49.8 4.5 54 0.05 8.0 1.9 553500 5821700 0.6 49.8 4.5 54 0.05 8.0 1.9 553500 5821700 0.6 53.1 4.9 58 0.05 8.1 3.0 553500 5823250 0.3 19.2 4.1 47 0.05 2.9 1.8 553500 5824000 0.6 9.4	553500	5822050	0.8	9.6	4.5	36	0.05	3.0	2.3
553500 5823100 0.4 209.3 8.0 55 0.10 2.6 1.5 553500 5820450 0.8 12.8 4.7 81 0.10 4.5 1.5 553500 5820450 0.5 3.0 3.1 14 0.05 0.1 3.1 553500 5820200 0.8 14.1 4.6 54 0.05 4.1 0.8 553500 5820200 0.8 14.1 4.6 54 0.05 4.1 0.8 553500 5821700 0.6 49.8 4.5 54 0.05 8.0 1.9 553500 5821950 0.6 53.1 4.9 58 0.05 8.1 3.0 553500 5823250 0.3 19.2 4.1 47 0.05 2.9 1.8 553500 5824000 0.6 9.4 5.5 33 0.05 8.4 2.9 553500 5821550 0.6 56.0	553500	5822750	0.2	15.3	4.9	49	0.05	3.0	0.7
553500 5820450 0.8 12.8 4.7 81 0.10 4.5 1.5 553500 5823150 0.5 3.0 3.1 14 0.05 0.1 3.1 553500 5820200 0.8 14.1 4.6 54 0.05 4.1 0.8 553500 5820200 0.8 14.1 4.6 54 0.05 4.1 0.8 553500 5821700 0.6 49.8 4.5 54 0.05 8.0 1.9 553500 5820700 0.5 16.4 3.5 40 0.05 3.7 0.7 553500 5821950 0.6 53.1 4.9 58 0.05 8.1 3.0 553500 5823250 0.3 19.2 4.1 47 0.05 2.9 1.8 553500 5824000 0.6 9.4 5.5 33 0.05 8.4 2.9 553500 5821550 0.6 56.0	553500	5823100	0.4	209.3	8.0	55	0.10	2.6	1.5
553500 5823150 0.5 3.0 3.1 14 0.05 0.1 3.1 553500 5820200 0.8 14.1 4.6 54 0.05 4.1 0.8 553500 5820200 0.8 14.1 4.6 54 0.05 4.1 0.8 553500 5821700 0.6 49.8 4.5 54 0.05 8.0 1.9 553500 5820700 0.5 16.4 3.5 40 0.05 3.7 0.7 553500 5821950 0.6 53.1 4.9 58 0.05 8.1 3.0 553500 5823250 0.3 19.2 4.1 47 0.05 2.9 1.8 553500 5824000 0.6 9.4 5.5 33 0.05 4.6 0.9 553500 5821550 0.6 56.0 4.5 58 0.05 8.4 2.9	553500	5820450	0.8	12.8	4.7	81	0.10	4.5	1.5
553500 5820200 0.8 14.1 4.6 54 0.05 4.1 0.8 553500 5821700 0.6 49.8 4.5 54 0.05 8.0 1.9 553500 5820700 0.5 16.4 3.5 40 0.05 3.7 0.7 553500 5821950 0.6 53.1 4.9 58 0.05 8.1 3.0 553500 5823250 0.3 19.2 4.1 47 0.05 2.9 1.8 553500 5824000 0.6 9.4 5.5 33 0.05 4.6 0.9 553500 5821550 0.6 56.0 4.5 58 0.05 8.4 2.9	553500	5823150	0.5	3.0	3.1	14	0.05	0.1	3.1
553500 5821700 0.6 49.8 4.5 54 0.05 8.0 1.9 553500 5820700 0.5 16.4 3.5 40 0.05 3.7 0.7 553500 5821950 0.6 53.1 4.9 58 0.05 8.1 3.0 553500 5823250 0.3 19.2 4.1 47 0.05 2.9 1.8 553500 5824000 0.6 9.4 5.5 33 0.05 4.6 0.9 553500 5821550 0.6 56.0 4.5 58 0.05 8.4 2.9	553500	5820200	0.8	14.1	4.6	54	0.05	4.1	0.8
553500 5820700 0.5 16.4 3.5 40 0.05 3.7 0.7 553500 5821950 0.6 53.1 4.9 58 0.05 8.1 3.0 553500 5823250 0.3 19.2 4.1 47 0.05 2.9 1.8 553500 5824000 0.6 9.4 5.5 33 0.05 4.6 0.9 553500 5821550 0.6 56.0 4.5 58 0.05 8.4 2.9	553500	5821700	0.6	49.8	4.5	54	0.05	8.0	1.9
553500 5821950 0.6 53.1 4.9 58 0.05 8.1 3.0 553500 5823250 0.3 19.2 4.1 47 0.05 2.9 1.8 553500 5824000 0.6 9.4 5.5 33 0.05 4.6 0.9 553500 5821550 0.6 56.0 4.5 58 0.05 8.4 2.9	553500	5820700	0.5	16.4	3.5	40	0.05	3.7	0.7
553500 5823250 0.3 19.2 4.1 47 0.05 2.9 1.8 553500 5824000 0.6 9.4 5.5 33 0.05 4.6 0.9 553500 5821550 0.6 56.0 4.5 58 0.05 8.4 2.9	553500	5821950	0.6	53.1	4.9	58	0.05	8.1	3.0
553500 5824000 0.6 9.4 5.5 33 0.05 4.6 0.9 553500 5821550 0.6 56.0 4.5 58 0.05 8.4 2.9	553500	5823250	0.3	19.2	4.1	47	0.05	2.9	1.8
553500 5821550 0.6 56.0 4.5 58 0.05 8.4 2.9	553500	5824000	0.6	9.4	5.5	33	0.05	4.6	0.9
	553500	5821550	0.6	56.0	4.5	58	0.05	8.4	2.9

Appendix 1

Copper King Grid Soil Results

E	N	Mo	Cu	РЪ	Zn	Aa	As	Au
553500	5823900	0.4	19.0	3.9	37	0.05	3.7	1.9
553500	5822950	0.9	37.9	5.0	51	0.10	4.2	1.0
553500	5823600	0.7	21.4	5.1	64	0.05	4.7	0.7
553500	5820300	0.3	9.5	2.8	23	0.05	2.4	0.8
553500	5821100	0.6	57.3	46	60	0.05	87	2.8
553500	5821600	0.3	16.8	34	30	0 10	32	27
553500	5822700	0.5	15.7	36	34	0.05	51	18
553500	5820500	0.4	11 1	33	40	0.05	29	0.6
553500	5821400	11	13.5	53	53	0.30	4 1	0.9
553500	5823000	0.5	3.6	35	31	0.05	0.9	16.0
553500	5823800	0,0	33.0	5.0	57	0.00	8.2	18
553500	5823550	0.7	27.2	63	85	0.00	29	10
553500	5823050	1.0	34 3	7.7	72	0.05	89	2.8
553500	5822100	0.8	13.7	39	42	0.05	2.0	0.1
553500	5821500	0.0	11.1	33	36	0.05	32	1 3
553500	5823700	0.7	13.1	30	50	0.05	32	0.1
553500	5822000		10.7	4.0	41	0.05	· · <u></u>	······································
553500	5823850	- 0.0	0.7	 	26	0.05	2.2	25
553500	5823750	····· <u>···</u>	427	50	- <u>20</u> 93	0.05	5.1	1.3
553500	5823950	0.8	<u>42.1</u> A1 Q	62	70	0.05	26	<u>1.5</u> 1.5
553500	5823400	1.3	18 1	5.5	50	0.00	<u>. 2.0</u> A 1	<u>1.5</u>
553500	5820600	0.5	13.4	 ∡∩	45	0.05	10	1.4
553500	5823300	0.0	20.7	3.2	50	0.00	4.5	0.8
553500	5823450	0.7	13.0	4 1	31	0.05	20	0.0
553500	5820000	0.7	19.0	6.6	72	0.05	43	1 2
554000	5820200	0.8	15.3	42	115	0.20	34	1.4
554000	5820250	0.0	5.5	4 4	28	0.10	0.4	0.1
554000	5820300	0.2	10.8	40	28	0.05	15	21
554000	5820650	0.3	11.4	37	32	0.05	22	15
554000	5820700	0.3	10.0	33	30	0.05	22	10.2
554000	5820750	0.6	20.6	38	58	0.05	38	49
554000	5820800	0.4	16.7	38	37	0.05	44	19
554000	5820850	0.5	35.5	47	54	0.05	8 1	24
554000	5820900	0.3	91	33	23	0.05	22	23
554000	5820900	0.8	17.9	5.4	71	0 40	26	10
554000	5820950	0.3	12.6	3.4	32	0.05	29	0.8
554000	5821000	0.3	13.1	3.5	36	0.05	2.2	0.6
554000	5821050	0.3	12.3	3.5	30	0.05	2.8	1.4
554000	5821100	0.7	41.8	5.3	60	0.05	9.5	2.4
554000	5821150	0.4	13.7	3.4	33	0.05	4.2	1.3
554000	5821200	0.7	10.4	5.4	56	0.05	3.2	1.0
554000	5821250	0.8	16.6	4.6	80	0.05	3.6	2.1
554000	5821300	0.9	21.1	5.4	96	0.30	6.6	1.1
554000	5821350	0.8	22.4	4.4	73	0.20	6.0	0.9
554000	5821400	0.6	8.6	4.4	36	0,10	1.8	1.0
554000	5821450	0.6	17.7	4.8	39	0.20	2.9	2.0
554000	5821500	0.4	17.5	4.7	39	0.05	2.3	1.7
554000	5821550	0.2	11.3	3.5	28	0.05	2.0	1.0
554000	5821600	0.4	17.8	3.7	43	0.10	2.5	1.6
554000	5821650	0.3	13.0	3.1	35	0.05	2.5	1.7

E N Mo Cu Pb Zn Ag As 554000 5821700 0.3 14.4 3.1 45 0.05 3.0 554000 5821750 0.4 22.0 3.4 45 0.05 4.2 554000 5821800 0.4 23.0 3.6 43 0.05 3.6 554000 5821850 0.4 13.0 4.4 31 0.05 4.0 554000 5821900 0.5 36.3 5.2 43 0.10 5.6	Au 1.1 1.4 1.9 1.2 1.3 1.2 0.6 2.3
554000 5821700 0.3 14.4 3.1 45 0.05 3.0 554000 5821750 0.4 22.0 3.4 45 0.05 4.2 554000 5821750 0.4 23.0 3.6 43 0.05 3.6 554000 5821850 0.4 13.0 4.4 31 0.05 4.0 554000 5821850 0.4 13.0 4.4 31 0.05 4.0 554000 5821900 0.5 36.3 5.2 43 0.10 5.6	1.1 1.4 1.9 1.2 1.3 1.2 0.6 2.3
554000 5821750 0.4 22.0 3.4 45 0.05 4.2 554000 5821800 0.4 23.0 3.6 43 0.05 3.6 554000 5821850 0.4 23.0 3.6 43 0.05 3.6 554000 5821850 0.4 13.0 4.4 31 0.05 4.0 554000 5821900 0.5 36.3 5.2 43 0.10 5.6	1.4 1.9 1.2 1.3 1.2 0.6 2.3
554000 5821800 0.4 23.0 3.6 43 0.05 3.6 554000 5821850 0.4 13.0 4.4 31 0.05 4.0 554000 5821800 0.5 36.3 5.2 43 0.10 5.6	1.9 1.2 1.3 1.2 0.6 2.3
554000 5821850 0.4 13.0 4.4 31 0.05 4.0 554000 5821900 0.5 36.3 5.2 43 0.10 5.6	1.2 1.3 1.2 0.6 2.3
554000 5821900 0.5 36.3 5.2 43 0.10 5.6	1.3 1.2 0.6 2.3
	1.2 0.6 2.3
554000 5821950 0.5 49.0 4.0 30 0.10 2.1	0.6 2.3
554000 5822100 0.4 11.7 3.0 41 0.05 3.4	2.3
554000 5822700 0.5 10.7 3.9 34 0.05 3.6	
554000 5822750 0.5 8.2 3.5 50 0.05 1.8	0.7
554000 5822800 1.2 40.5 6.9 68 0.05 7.5	1.4
554000 5822850 0.9 43.8 6.3 81 0.05 4.6	1.0
554000 5822900 0.7 19.6 5.4 76 0.05 3.5	2.0
554000 5822950 1.2 157.9 8.6 104 0.60 11.3	1.1
554000 5823000 0.4 13.6 3.3 32 0.05 3.2	1.5
554000 5823050 0.4 11.4 3.4 33 0.05 3.1	1.0
554000 5823100 0.3 14.6 3.9 31 0.05 3.7	2.4
554000 5823150 0.5 18.4 4.1 40 0.05 7.2	3.4
554000 5823200 0.4 14.6 3.9 39 0.05 3.8	2.1
554000 5823250 0.4 18.4 4.2 34 0.05 4.2	1.4
554000 5823300 0.3 6.3 3.4 25 0.05 1.9	0.8
554000 5823350 0.4 12.6 3.6 50 0.05 2.7	0.6
554000 5823400 0.3 15.8 3.1 45 0.05 1.5	1.1
554000 5823450 0.8 17.9 4.1 57 0.20 3.8	1.0
554000 5823500 0.4 8.4 3.8 33 0.05 1.7	1.0
554000 5823550 0.7 59.4 7.2 59 0.10 2.3	1.6
554000 5823600 0.9 11.4 5.3 95 0.10 1.1	1.5
554000 5823650 1.5 17.9 7.7 88 0.05 2.2	0.5
554000 5823700 0.7 52.1 5.2 26 0.05 3.4	1.1
554000 5823750 0.4 13.8 3.9 40 0.05 2.0	0.5
554000 5823800 0.7 8.5 3.7 48 0.05 2.1	2.2
554000 5823850 3.4 34.4 8.0 37 0.05 3.5	3.3
554000 5823900 5.7 92.6 8.0 38 0.05 6.7	0.1
554000 5823950 0.5 7.0 4.3 26 0.05 1.1	0.7
554500 5820200 0.3 14.7 4.4 40 0.05 1.7	1.8
554500 5820250 0.3 14.2 4.0 33 0.05 2.3	1.9
554500 5820300 0.4 12.6 4.0 33 0.05 2.4	1.8
554500 5820350 0.3 13.2 4.1 27 0.05 2.5	0.8
554500 5820400 0.2 10.8 3.8 26 0.05 2.4	7.1
554500 5820450 0.2 12.2 4.0 37 0.05 2.3	1.7
554500 5820500 0.3 11.1 3.9 33 0.05 2.2	1.6
554500 5820550 0.2 9.5 3.5 25 0.05 2.1	1.3
554500 5820600 0.3 11.6 4.2 44 0.05 2.1	0.5
554500 5820650 1.3 62.2 6.4 76 0.20 9.9	3.3
554500 5820680 0.2 9.9 3.8 25 0.05 2.5	1.0
554500 5820700 0.3 10.6 3.5 33 0.05 2.5	1.8
554500 5820750 0.8 23.7 5.0 79 0.10 6.2	1.6
554500 5820800 0.5 17.0 3.9 45 0.05 4.6	0.8
554500 5820850 0.5 46.2 3.6 46 0.05 2.5	1.3
554500 5820900 0.2 30.8 3.3 41 0.05 1.8	1.3
554500 5820950 0.5 17.7 4.2 61 0.10 1.1	0.1

Appendix 1

Copper King Grid Soil Results

	N	Ma	<u>Cu</u>	Db	70	Δa	Ac	- Au
554500	5921000		25.2	FU 5 1	122	0.20	14	0.1
554500	5821050	0.0	62.1	53	58	0.20	0.0	1.2
554500	5921000	0.4	22.1	2.5	20	0.10	2.5	2
554500	5021100	0.5	45.0	3.4	03	0.10	2.4	2.0
554500	5021150		15.0	4.0	437	0.05		0.1
554500	5821200	0.8	31.0	4.4	. 13/	0.20	3.9	0.0
554500	5821250	0.4	22.4	3.9	53	0.05	3.2	0.7
554500	5821300	0.4	18.6	3.6	46	0.05	3.7	5.8
554500	5821350	0.5	17.9	2.7	38	0.05	4.2	2.4
554500	5821400	0.6	19.8	3.5	83	0.10	4.7	0.1
554500	5821450	0.6	18.2	3.0	51	0.05	5.0	2.9
554500	5821500	0.5	20.1	3.3	44	0.05	4.3	0.1
554500	5821550	0.7	24.5	3.3	70	0.05	5.7	175.0
554500	5821600	0.6	7.6	4.0	30	0.05	2.2	0.8
554500	5821650	1.1	67.3	5.6	70	0.40	8.2	3.9
554500	5821700	1.0	112.0	7.3	78	0.30	7.1	2.6
554500	5821750	0.5	18.6	4.3	40	0.05	3.5	26.4
554500	5821800	0.4	15.9	2.7	28	0.05	3.4	. 1.1
554500	5821850	0.3	11.0	2.8	42	0.05	1.8	0.7
554500	5821900	0.4	11.7	4.1	40	0.05	2.3	14.1
554500	5821950	0.4	13.3	4.0	44	0.05	3.3	5.5
554500	5822000	0.6	17.4	4.0	34	0.05	4.5	0.1
554500	5822050	0.2	10.9	4.0	33	0.05	1.9	19.3
554500	5822100	0.2	12.1	4.0	25	0.05	3.1	2.6
554500	5822150	0.2	10.7	3.9	26	0.05	2.1	0.7
554500	5822200	0.4	15.0	3.9	39	0.10	3.9	0.1
554500	5822250	0.5	14.9	3.3	45	0.05	3.7	0.7
554500	5822300	0.3	4.5	3.8	17	0.05	1.1	6.7
554500	5822350	0.4	17.3	3.5	34	0.05	4.1	4.6
554500	5822400	0.3	13.5	3.6	36	0.05	2.1	7.8
554500	5822450	0.5	12.1	4.2	45	0.05	1.7	8.8
554500	5822500	0.4	13.1	3.5	43	0.05	2.4	27.7
554500	5822550	0.4	10.9	4.0	47	0.05	1.7	1.6
554500	5822600	0.6	12.6	3.5	29	0.05	3.7	0.1
554500	5822650	0.5	17.1	3.8	40	0.05	3.8	0.1
554500	5822700	0.5	5.6	3.9	42	0.05	1.5	104.6
554500	5822750	0.4	13.7	3.7	38	0.10	1.7	1.6
554500	5822800	0.3	13.1	3.6	26	0.05	2.6	1.7
554500	5822850	0.4	14.9	4.0	31	0.05	3.3	97.1
554500	5822900	0.4	11.8	3.7	34	0.05	1.3	1.7
554500	5822950	0.3	9.6	3.5	35	0.05	1.0	2.2
554500	5823000	0.3	11.1	3.4	33	0.05	1.6	0.9
554500	5823050	0.3	8.8	36	35	0.05	1.3	1.9
554500	5823100	0.3	A 7	32	30	0.05	1.3	20
554500	5823150	0.3	8.4	35	32	0.05	1.2	55
554500	5822200	0.3 A E	<u>0.4</u>	· <u>3.5</u>	50	0.00		1 1
554500	5023200	0.5	40.T	4.1	50		2.1	<u>1,1</u> 20
554500	5020200	0.4	-+++.0 	··· ·4.9	1. <u>00</u> 1. <u>0</u>	0.20	2.0	2.0
554500	502000	0.4	30.0	4.5	50	0.10	2.1	4.9
554500	2023320	0.4	30.4	4.7	50	0.10	2.0	2.2
554500	5823400	0.4	21.7	4.3	4/	0.10	2.7	1.4
554500	5823450	0.4	23.9	4.2	42	0.05	2.6	2.0

E	N	Mo	Cu	Pb	Zn,	Ag	As	Au
554500	5823500	0.4	30.1	4.1	45	0.10	2.3	2.1
554500	5823550	0.5	15.4	13.6	52	0.05	2.8	3.6
554500	5823600	0.5	16.4	3.4	53	0.05	2.7	0.7
554500	5823650	0.6	21.0	3.5	54	0.05	3.8	3.0
554500	5823700	0.5	13.4	3.5	55	0.05	2.5	0.1
554500	5823750	0.6	15.9	3.5	55	0.05	2.9	1.4
554500	5823800	0.6	15.7	3.6	60	0.05	3.3	0.9
554500	5823850	0.6	13.4	3.6	51	0.05	2.4	0.1
554500	5823900	0.5	6.7	3.4	44	0.05	1.3	1.4
554500	5823950	0.5	8.1	3.3	51	0.05	1.6	t.3
554500	5824000	0.3	14.0	3.8	34	0.05	2.7	5.9
555000	5820000	0.4	13.8	3.0	42	0.05	2.7	1.1
555000	5820050	0.7	63.7	5.7	67	0.30	8.2	0.7
555000	5820100	0.6	9.6	3.4	28	0.10	2.4	25.5
555000	5820150	0.5	22.0	5.6	72	0.20	3.5	7.1
555000	5820200	0.7	22.8	3.9	68	0.20	2.6	0.1
555000	5820250	0.9	10.6	3.6	36	0.05	3.5	0.1
555000	5820300	0.5	7.9	2.5	26	0.05	2.5	0.8
555000	5820350	3.5	71.7	4.2	103	0.20	12.2	1.7
555000	5820400	0.2	12.9	2.7	39	0.05	2.6	20.7
555000	5820450	0.6	17.7	3.5	42	0.20	4.8	0.8
555000	5820500	0.6	15.1	3.8	70	0.10	3.8	0.8
555000	5820550	0.6	8.2	4.7	51	0.10	3.5	0.1
555000	5820600	0.4	18.9	3.8	68	0.10	1.9	2.5
555000	5820650	0.5	24.0	2.9	78	0.05	3.0	1.7
555000	5820650	8.0	19.9	3.0	59	0.05	5.2	34.6
555000	5820700	0.9	30.7	4.9	60	0.20	5.9	0.1
555000	5820750	0.3	11.5	4.6	28	0.05	1.8	1.1
555000	5820800	0.3	11.3	4.7	24	0.05	2.2	9.1
555000	5820850	0.3	13.4	3.8	25	0.05	4.3	2.3
555000	5820900	0.2	7.4	4.3	22	0.05	1.7	1.5
555000	5820950	0.1	8.5	4.8	30	0.05	1.5	1.0
555000	5821000	0.2	7.8	5.4	24	0.05	1.9	1.8
555000	5821050	0.2	7.3	4.7	21	0.05	3.1	0.1
555000	5821100	0.2	9.7	4.7	25	0.05	3.2	1.9
555000	5821150	0.5	46.0	8.3	70	0.05	9.9	3.3
555000	5821200	0.2	8.3	4.4	22	0.05	2.8	1.8
555000	5821250	0.2	8.4	4.6	23	0.05	3.8	3.5
555000	5821300	0.2	11.7	4.4	29	0.05	2.6	2.0
555000	5821350	0.3	14.6	5.4	45	0.05	3.6	1.7
555000	5821400	0.5	12.9	4.0	39	0.05	3.5	1.2
555000	5821450	0.5	22.0	4.3	40	0.05	7.8	3.3
555000	5821500	0.4	5.5	4.2	28	0.05	1.0	0.1
555000	5821550	0.4	22.3	3.8	51	0.05	3.7	1.4
555000	5821600	0.5	22.6	4.3	64	0.10	4.3	1.5
555000	5821600	0.6	21.1	3.9	62	0.10	4.7	1.6
555000	5821650	0.5	6.2	4.1	37	0.05	2.0	1.0
555000	5821700	0.8	16.4	3.6	87	0.05	2.6	3.6
555000	5821750	0.6	17.0	4.1	69	0.05	3.9	6.3
555000	5821800	0.4	18.4	2.9	51	0.05	3.4	0.8

E	N	Mo	Cu	Pb	Zn	Ag	As	Au
555000	5821850	0.4	14.5	- 3.3	69	0.05	3.9	40.8
555000	5821900	0.4	18.4	3.1	34	0.05	4.0	1.5
555000	5821950	0.4	19.8	2.5	31	0.05	4.8	1.5
555000	5822000	0.5	24.9	2.8	44	0.05	5.2	1.3
555000	5822050	0.4	8.8	3.7	99	0.10	3.0	5.1
555000	5822100	0.5	7.5	4. <u>1</u>	- 56	0.05	1.7	1.0
555000	5822150	0.3	11.5	4.0	31	0.05	1.8	2.7
555000	5822200	0.3	9.7	3.5	32	0.05	1.4	2.5
555000	5822250	0.3	10.0	3.3	26	0.05	2.0	1.1
555000	5822300	0.3	11.6	3.6	29	0.05	2.1	2.0
555000	5822350	0.5	95.8	8.5	85	0.20	3.0	3.7
555000	5822400	0.4	13.5	3.6	73	0.10	1.5	6.0
555000	5822500	0.4	22.4	4.1	49	0.05	3.8	6.6
555000	5822550	0.4	13.0	3.4	75	0.05	1.4	0.9
555000	5822750	0.3	18.1	2.9	61	0.10	2.0	0.5
555000	5822800	0.4	15.0	4.1	108	0.20	1.5	1.7
555000	5822850	0.5	29.2	5.6	70	0.10	2.7	0.9
555000	5822900	0.3	9.9	4,1	24	0.05	1.8	0.8
555000	5822950	0.2	11.4	3.5	45	0.05	1.1	2.2
555000	5823000	0.2	14.0	3.5	42	0.05	1.4	0.5
555000	5823050	0.2	11.6	4.4	39	0.05	1.8	6.9
555000	5823100	0.3	12.5	4.0	41	0.05	1.7	1.0
555000	5823150	0.2	13.9	3.8	43	0.05	2.1	1.3
555000	5823200	0.3	11.9	3.6	43	0.05	1.7	0.9
555000	5823250	0.3	12.0	3.2	44	0.05	1.2	1.5
555000	5823300	0.2	9.5	3.1	34	0.05	1.1	1.8
555000	5823350	0.2	10.1	3.3	34	0.05	1.2	4.1
555000	5823400	0.3	12.4	3.2	48	0.05	1.4	2.5
555000	5823450	0.3	12.9	3.3	51	0.05	1.7	0.9
555000	5823500	0.2	12.3	3.1	53	0.05	1.3	1.3
555000	5823550	0.4	19.6	3.5	72	0.10	1.9	1.7
555000	5823600	0.3	18.7	3.3	64	0.10	2.2	2.5
555000	5823650	0.6	22.0	4.2	78	0.10	2.1	1.5
555000	5823700	0.5	16.6	4.2	85	0.10	2.1	1.7
555000	5823750	0.4	11.9	3.9	65	0.10	1.4	3.6
555000	5823800	0.4	22.7	4.2	4 7 [†]	0.05	3.6	1.5
555000	5823850	0.4	21.6	4.0	48,	0.05	2.8	0.8
555000	5823900	0.3	13.7	3.4	35	0.05	2.6	1.9
555000	5823950	0.3	13.5	3.6	45	0.05	2.3	55.0
555000	5824000	0.9	16.9	4.3	69	0.30	4.9	0.7
555500	5820000	0.3	10.1	4.3	31	0.05	1.2	0.5
555500	5820050	0.3	11 0	3.8	24	0.05	2.2	0.5
555500	5820100	0.3	10.6	40	35	0.10	1.6	1.2
555500	5820150	0.0	16.8	45	40	0.05	43	1.9
555500	5820200	0.0	20.4	34	46	0.05	46	2.6
555500	5820200	1 2	15.6	5.4	88	0.00	5.1	0.6
555500	5820200	 	14 1	A 1		0.20	70	2.0
555500	5920300	<u>2.2</u> 0.6	10.7		50	0.20	1.0	0.1
555500	5820300	0.0	<u>10.1</u> 8 0	4.5	27	0.00	<u></u>	12
555500	5820400	0.2	0.V 0.0	4.0	21	0.00	1.0	0.8
1 000000	0020400:	0.2	J 3.0			0.00	1 1.0	0.0

Copper King Grid Soil Results

	1	1 14	-					
555500	N 5000500	M0		PD	20	Ag	AS	Au
555500	5820500	0.6	8.8	3.9	43	0.05	2.6	1.5
555500	5820550	0.5	9.0	3.0	40	0.05	3.8	3.0
555500	5820600	0.6	14.3	3.6	34	0.05	1.8	2.0
555500	5820650	0.2	8.5	4.2	33	0.05	. 1.6	0.9
555500	5820700	0.5	32.6	5.5	71	0.20	2.4	0.6
555500	5820750	0.4	15.9	4.9	56	0.05	2.0	3.9
555500	5820800	0.3	14.2	4.2	40	0.05	2.4	0.7
555500	5820850	0,2	9.1	4.0	27	0.05	2.5	1.6
555500	5820900	0.4	17.8	4.6	58	0.10	2.4	2.8
555500	5820950	0.3	15.5	4.2	42	0.05	2.6	3.6
555500	5821000	0.2	9.8	3.6	32	0.05	2.0	3.5
555500	5821050	0.3	9.9	3.4	37	0.05	1.7	2.2
555500	5821100	0.3	11.7	3.8	33	0.05	2.2	1.9
555500	5821150	0.4	25.8	5.7	59	0.20	2.4	2.7
555500	5821200	0.9	38.8	6.5	98	0.30	3.4	1.5
555500	5821250	0.2	10.6	4.5	33	0.05	1.8	1.3
555500	5821300	0.4	20.2	5.4	63	0.10	2.5	1.5
555500	5821350	0.3	13.3	3.2	41	0.05	2.5	1.6
555500	5821400	0.3	9.5	4.0	35	0.05	1.4	3.1
555500	5821450	0.4	13.2	3.7	48	0.05	2.4	0.1
555500	5821500	1.3	41.4	5.4	87	0.30	9,4	1.0
555500	5821536	0.5	19.4	4.2	43	0.05	4.2	1.9
555500	5821550	0.5	14.6	4.3	30	0.05	4.2	1.4
555500	5821600	0.6	16.9	3.1	63	0.05	2.6	1.6
555500	5821650	0.3	11.8	3.4	25	0.05	2.3	17.3
555500	5821700	0.3	85	37	34	0.05	17	01
555500	5821750	0.6	14.4	5.2	51	0.10	4.0	01
555500	5821800	0.3	11.6	3.9	43	0.05	1.4	12
555500	5821850	0.3	10.1	4.4	. 34	0.05	1.3	12
555500	5821900	0.4	10.7	37	32	0.05	13	1 1
555500	5821950	0.1	9.0	3.6	33	0.05	11	0.1
555500	5822000	0.0	46.1	53	71	0.30	3.2	13
555500	5822050	0.0	8.0	37	30	0.05	12	34
555500	5822100	0.7	20.5	3.8	35	0.05	23	0.1
555500	5822150	0.2	20.5	4.0	74	0.00	13	0.1
555500	5822200	0.0	10.6	37	70	0.20	1.3	2.0
555500	5822200	0.3	9.5	J.1 26	24	0.05	1.4	2.0
555500	5922200	0.3	10.0	3.0	54	0.05	1.4	0.0
555500	5022300	0.4	10.8	3.0 3.5	32	0.05	4.2	2.4
555500	5822300	0.4	9.7	3.5	41	0.05	1.0	0.1
555500	5022400	2.0	0.00	9.5	140	0.40	0,2	· · <u>1.0</u>
555500	5622450			4,1		0.20	3.0	0.1
555500	5622500	- 0.3	127.9	1.6	19	0.10	. 0.1	<u>50.6</u>
505500	5822550	0.6	6.0	3.8	35	0.05	1.6	0.1
50000	5822600	0.4	12.3	3.8	36	0.05	0.9	1.0
300000	5822650	0.4	12.9	4.2	63	0.10	1.6	0.7
555500	5822700	0.4	12.4	4.3	47	0.20	1.6	<u>0,1</u>
555500	5822750	0.5	14.0	4.3	55	0.10	1.6	0.9
555500	5822800	0.4	20.7	3.8	48	0.05	2.8	0.1
555500	5822850	0.5	28.4	4.1	93	0.20	1.5	5.3
555500	5822900	0.6	13.9	4.5	43	0.05	3.0	1.3

Appendix 1

· · · · · · · · · · · · · · · · · · ·								
E	N	Mo	Cu	Pb	Zn	Ag	As	Au
555500	5822950	0.3	20.0	2.0	145	0.05	1.4	1.4
555500	5823000	0.6	72.5	5.2	69	0.30	4.3	1.0
555500	5823050	0.2	10.6	2.7	42	0.05	1.1	4.1
555500	5823100	0.5	9.5	4.2	37	0.05	1.4	2.2
555500	5823150	0.4	8.0	3.7	30	0.05	<u>1.5</u>	30.7
555500	5823200	0.5	8.9	3.7	37	0.05	2.0	1.6
555500	5823250	0.5	25.1	2.8	99	0.05	1.5	1.9
555500	5823300	0.4	14.5	3.3	<u>50</u>	0.05	3.3	0.6
555500	5823350	0.4	12.2	3.3	46	0.05	2.3	2.9
555500	5823400	0.5	25.3	3.2	38	0.05	2.0	6.3
555500	5823450	0.4	19.4	5.0	48	0.05	2.4	1.0
555500	5823500	0.3	10.3	3.1	23	0.05	1.3	0.7
555500	5823550	0.4	27.6	3.5	32	0.05	1.6	2.1
555500	5823600	0.9	28.5	6.7	70	0.05	4.7	1.7
555500	5823650	0.3	7.3	3.9	37	0.05	1.2	0.1
555500	5823700	0.6	64.9	6.4	60	0.30	4.5	1.6
555500	5823750	0.3	11.4	4.3	37	0.05	1.8	6.1
555500	5823800	0.4	16.7	3.9	35	0.05	3.7	1.3
555500	5823850	0.3	21.3	4.5	42	0.05	3.9	0.6
555500	5823900	0.6	32.0	6.2	65	0.05	3.6	1.0
555500	5823950	0.6	21.6	5.1	59	0.05	3.9	1.2
555500	5824000	0.4	17.9	4.1	34	0.10	2.6	2.5
555500	5824000	1.0	33.1	3.6	61	0.05	4.3	1.3
556000	5820000	0.9	12.2	5.1	93	0.30	5.4	0.1
556000	5820050	0.8	89.3	7.4	80	0.50	9.2	2.6
556000	5820100	0.6	21.0	4.7	62	0.05	4.4	1.3
556000	5820150	0.7	10.9	5.1	46	0.10	4.4	7.0
556000	5820200	0.7	13.4	4.3	59	0.05	3.3	1.9
556000	5820250	0.6	14.6	3.9	54	0.05	3.4	1.8
556000	5820256	0.7	7.0	4.4	35	0.05	2.5	0.1
556000	5820300	0.5	14.0	3.5	74	0.05	2.6	3.7
556000	5820350	0.5	9,9	4.9	32	0.05	3.0	4.3
556000	5820400	0.7	5.8	5.8	47	0,10	3.9	1.6
556000	5820450	0.5	15.9	4.3	53	0.05	4.5	1,4
556000	5820500	0.2	7.5	3.9	40	0.05	1.1	3.9
556000	5820550	0.5	19.0	5.8	61	0.20	3.1	3.1
556000	5820600	0.4	14.8	4.1	49	0.10	1.7	5.9
556000	5820650	0.3	16.4	4.0	38	0.05	3.8	2.1
556000	5820700	0.7	23.4	5.4	74	0.20	3.9	2.2
556000	5820750	0.2	7.7	3.8	28	0.05	1.3	0.1
556000	5820800	0.3	<u>8</u> 7	3.9	30	0.05	1.1	57.5
556000	5820850	0.3	10.3	3.5	30	0.05	17	1.8
556000	5820000	0.2	87	42	27	0.05	11	1.5
556000	5820050	<u></u> 	14.1	4.2	70	D 10	36	0.1
556000	5821000	0.0 N 1	11 /	5.0	aa .	0.05	27	<u>4</u> 2
556000	5821050	<u></u>	15.2	3.2	40	0.05		<u></u> 25
556000	5821000	0.4	13.5	3.3	40	0.00	3.2	1.0
556000	5021100 6934460	0.0	10.0	4.0	50	0.20	3.4	0.4
556000	5021130	0.7	12.0	4.3	59	0.10	. J.4 E 9	2.1
556000	5021200		30.0	4.0	44	0.05	0.6	2.0
330000	5821250	0.4	12.4	3.8	48	0.05	2.0	U.7

а 2	N	Mo	Cu	Ph	Zn	40	Δe	Δu
556000	5821300	03	14.8	46	32	0.05	34	1.0
556000	5821350	0.3	0.7	30	31	0.05	17	28
556000	5821400		11 2	4 1	46	0.05	15	0.5
556000	5021460	1.2	<u> </u>	<u>7.1</u> 6.1		. 0.00	10.0	0.0
556000	5921400		22.0	2.6	45	0.00	2.5	0.1
556000	5824550			2.0	40	0.05	3.0	0.0
556000	5821550	0.4	11.0	4.0	40	0.05	1.5	0.7
556000	5821550	0.3	8.9	3.5	36	0.05	1.1	0.9
556000	5821600	0.2	9.6	3.2	29	0.05	1.4	29.2
556000	5821650	0.6	20.0	5.6	63	0.05	2.5	4.1
556000	5821700	0.4	11.6	4.1	37	0.05	1.7	1.0
556000	5821750	0.8	47.7	5.6	74	0.20	4.8	3.5
556000	5821800	0.3	16.2	3.1	39	0.05	1.4	0.6
556000	5821850	0.4	9.8	4.2	39	0.05	2.2	0.8
556000	5821900	0.5	11.1	4.9	103	0.20	2.2	0.6
556000	5821950	0.6	8.8	5.3	122	0.10	1.5	0.1
556000	5822000	0.3	10.4	4.1	39	0.05	1.5	0.6
556000	5822050	0.4	12.3	3.9	38	0.05	2.7	1.4
556000	5822100	0.5	9.2	4.5	41	0.05	2.3	0.7
556000	5822150	0.5	28.6	4.8	209	0.30	3.5	0.7
556000	5822200	0.5	8.2	3.8	65	0.10	1.5	2.0
556000	5822250	0.4	5.7	3.3	34	0.05	1.4	1.0
556000	5822350	0.6	24.0	4.7	53	0.05	5.1	3.7
556000	5822400	0.4	19.4	3.3	131	0.10	2.7	1.9
556000	5822450	0.4	3.9	3.4	68	0.05	1.1	1.5
556000	5822500	0.4	7.9	4.0	76	0.30	0.7	4809.8
556000	5822550	0.5	8.0	3.9	104	0.10	1.6	0.9
556000	5822600	0.4	18.4	4.9	46	0.05	3.4	1.9
556000	5822650	0.6	14.1	3.7	113	0.05	2.3	5.1
556000	5822700	0.4	14.1	4.1	71	0.05	2.4	0.1
556000	5822750	0.3	10.3	4.0	47	0.05	1.0	1.0
556000	5822800	0.5	19.4	5.2	149	0.20	3.3	1.0
556000	5822850	0.5	12.4	4.6	98	0.05	1.5	13
556000	5822900	0.6	10.8	44	69	0.05	17	0.1
556000	5822050	0.0	10.8	1 9	73	0.00	1.5	470.0
556000	5823000	0.5	11.6	4.5	62	0.00	1.4	30
556000	5823050	0.0	47.7	30	<u> </u>	0.03	1.4 2.4	1.0
556000	5922400	0.0	70.4	J.9 7 6	00 00	0.10	12.4	1.0
556000	5023100	0.7	10.1	1.0	70	0.00	12.0	1.0
556000	5023100	0.0	9.0	0.0 2.F	70	0.00	1.0	<u></u>
556000	5823200	0.4	9.0	3.5	54	0.05	1.5	0.0
550000	5823250		13.8	3.9	41	0.05	1.2	0.8
	5823300	0.6	52.7	5.7	96	0.20	3.0	0.9
550000	5823350	0.5	16.0	4.4	59	0.05	2.1	0.8
000000	5823400	0.3	14.5	3.6	33	0.05	1.5	1.0
556000	5823450	0.3	9.3	3.9	50	0.05	1.9	5.7
556000	5823500	0.3	11.9	3.6	41	0.05	1.4	1.5
556000	5823550	0.4	15.2	3.5	51	0.05	1.6	0.1
556000	5823600	0.4	31.1	3.8	44	0.05	2.6	1.1
556000	5823650	0.6	15.9	4.6	47	0.05	2.4	3.9
556000	5823700	0.4	16.5	4.1	63	0.20	2.5	0.8
556000	5823750	0.3	14.5	4.1	38	0.05	1.8	0.1

Copper King Grid Soil Results

Γ	E	Ň	Мо	Cu	Pb	Zn	Ag	As	Au
	556000	5823800	0.9	31.7	5.2	77	0.05	3.4	3.5
-	556000	5823850	0.9	64.4	6.7	69	0.05	5.4	3.9
	556000	5823900	0.7	10.5	4.2	25	0.05	1.9	0.8
	556000	5823950	1.3	63.7	1.6	21	0.20	0.8	1.8

APPENDIX II.

ACME ANALYTICAL SOIL ANALYSIS CERTIFICATES.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Copper Ridge Exploration Inc. PROJECT COPPER KING File # A608295 Page 1 500 - 625 Howe St., Vancouver BC V6C 216 Submitted by: Greg Dawson

SAMPLE#	Мо Сс ррт ррт	і РБ пррпр	žn Ag ργπ.ρpm p	Ni Co pm ppm	Mn Fe ppm 5	e As Kippin	U Au ppm ppt	ւ Th Երթող	Sr Ci ppm pp	d Sb nappna	Bi ppm p	V C pm	a P 3 2	La Cr ppm ppm	Mg Ba %ippom	Ti t	B ppm	A) N %	а К 2. 2. рр	W Hoj S nappnipp	c Ti m ppm	S Ga S % ppm pp	e Sample n gan
G-1 CK E52500 N4100 CK E52500 N4050 CK E52500 N4000 CK E52500 N3950	.6 1.8 .8 51.6 .8 55.9 .5 24.3 .4 24.2	3 2.4 5 4.5 5 4.8 3 3.5 2 3.3	41 < 1 6 59 < 1 30 61 < 1 33 37 < 1 12 38 < 1 12	.1 4.1 .8 10.9 .4 11.7 .3 5.3 .4 5.1	458 1.62 458 2.40 450 2.49 169 1.33 161 1.39	2 <.5) 5.7 5 6.2 7 1.9 5 2.1	1.5 <.5 .3 2.0 .3 2.1 .3 .7 .3 .7	5 3.1) 1.9 3 1.9 7 1.2 7 1.2	46 <. 31 . 30 . 16 17 .	i <.1 2 .6 2 6 1 .3 1 .3	.1 .1 .1 .1	34 .3 53 .4 54 .4 37 .2 37 .2	9 .071 7 .066 4 .061 4 .023 5 .025	5 62 8 38 8 39 6 20 6 20	53 178 56 103 56 107 32 60 34 57	. 107 . 090 . 091 . 070 . 074	<1 . 1 1. <1 1. <1 . <1 .	76 .03 30 01 28 00 97 .00 89 .00	6 .44 0 .06 9 .06 5 .05 < 5 .04	2<.01 1. 1.03 3. 1.02 3. 1.01 1. 1.01 1.	8 .3<.1 8 .1<.1 8 .1<.7 7 .1<.7 8 <.1<.7	05 4 <. 05 4 <. 05 4 <. 05 3 <. 05 3 <.	5 15 5 15 5 15 5 15 5 15 5 15
CK E52500 N3900 CK E52500 N3850 CK E52500 N3800 CK E52500 N3750 CK E52500 N3700	.5 24.8 .9 17.1 .7 36.7 .8 18.7 1.0 9.8	3 3.5 4 0 7 3.7 7 3.8 3 3.6	38 <.1 12 51 .2 13 52 <.1 21 53 .2 15 46 .2 6	.5 5.5 .8 5.6 .0 8.5 .5 6.1 .8 3.6	167 1.4 277 1.20 371 1.90 216 1.4 244 .90	3 2.1 5 1.2 9 4.6 3 1.6 2 .7	.3 2.8 .3 <.9 .4 10.6 .3 1.7 .2 2.2	3 1.2 5 .7 5 1.4 7 .8 2 .5	17 . 20 . 23 . 20 . 19 .	1 .3 2 .2 1 .5 2 .2 2 .1	.1 .1 .1 .1	38 .2 30 .3 46 .4 33 .3 25 .3	4 .024 4 .026 2 .047 4 .024 1 .028	6 21 5 19 8 28 5 20 5 14	. 35 62 . 21 91 . 45 88 . 26 95 . 15 75	.074 .062 .079 .066 .059	<1 1. <1 . <1 1. <1 . <1 .	00 .00 80 .00 01 .00 85 .00 56 .00	6 .04 . 6 .04 <. 7 .06 . 7 .04 <. 6 .05 <.	1 .01 1 1 .03 1. 1 .03 2. 1 .02 1. 1 .03 1.	8 <.]< 4 <.l<. 9 <.l<. 5 <.l<. 1 <.l<.	05 3 <. 05 3 < 05 3 <. 05 3 <. 05 3 <. 05 3 <	5 15 5 15 5 15 5 15 5 15 5 15
CK E52500 N3650 CK E52500 N3660 CK E52500 N3550 CK E52500 N3550 CK E52500 N3500 CK E52500 N3450	.7 38.9 .7 37.0 .7 34.5 .6 39.0 .6 35.9	5 3.9 4.1 5 3.7 5 4.1 5 3.6	51 <.1 22 52 <.1 22 48 <.1 21 52 <.1 25 50 <.1 22	.9 9.2 .4 9.5 .4 9.3 .1 9.8 .5 9.4	405 1.93 406 2.03 308 2.03 427 2.19 408 1.92	3 4.7 3 5.0 4.2 5.1 2 4.4	.6 1.0 .5 1.8 .5 1.2 .5 1.6 .5 8.8) 1.5 3 1.5 2 1.5 5 1.6 3 1.5	25 24 . 20 . 26 . 24 .	2 .6 1 .6 1 .5 1 .6 1 .5	.1 .1 .1 .1	48 .4 48 .3 50 .3 51 .4 48 .4	2 .044 9 .044 6 .036 3 .048 0 .038	9 31 8 31 8 30 9 33 9 30	.46 99 46 95 46 87 .47 99 .46 95	.090 .087 .091 .098 .098	<1 1. <1 1. <1 1. <1 1. <1 1.	09 .00 01 .00 12 .00 11 .09 08 .00	8 .06 . 8 .06 . 7 .05 . 8 .07 . 9 .06 .	1 .03 3. 1 .03 2. 1 .02 2. 1 .04 3. 1 .03 2.	2 .1<. 9 <.1<. 8 .1<. 5 .1<. 9 <.1<.	05 4 <, 05 3 <, 05 3 <, 05 4 <, 05 3 ,	5 15 5 15 5 15 5 15 5 15 5 15
CK E52500 N3400 CK E52500 N3350 CK E52500 N3300 CK E52500 N3250 CK E52500 N3200	.7 38.5 .7 11.7 .8 12.3 .6 14.1 .6 9.8	5 3.5 7 5.5 1 5.4 1 5.3 9 5.3	47 < 1 22 86 1 8 92 2 8 78 2 7 60 1 6	.1 8.9 .9 6.7 .0 5.8 .9 7.5 .4 5.9	343 1.89 719 1.41 784 1.30 1758 1.39 871 1.23	9 4.1 1.8 5 1.9 5 1.8 1.6	.5 2.1 .2 .9 .2 1.6 .2 <.9 .2 .9	L 1.4 5 .9 5 .7 5 .4 5 .5	22 . 15 . 16 . 19 . 15 .	1 .5 3 .1 3 .2 4 .1 3 .1	.1 .1 .1 .1	47 .3 35 .2 31 .2 30 .3 30 .3	8 .032 5 .100 9 .122 0 .110 4 .080	9 31 5 19 5 17 5 17 5 16	43 95 .17 93 16 105 .14 166 19 91	. 093 . 053 . 048 . 039 . 047	<1 1. <1 <1 . <1 . <1 . <1	08 .00 82 .00 82 .00 81 .00 66 .00	8 .05 . 6 .04 . 6 .05 . 7 .04 . 6 .04 <.	1 .03 2 1 .03 1. 1 .04 1. 1 .04 1. 1 .03 1.	8 <.1<. 3 .1<. 3 < 1<. 2 < 1<. 2 < 1<.	05 3 <. 05 4 <. 05 4 < 05 4 < 05 4 <.	5 15 5 15 5 15 5 15 5 15 5 15
CK E52500 N3150 CK E52500 N3100 CK 52500 2100 CK 52500 2050 CK 52500 2050 CK 52500 2000	.5 7.6 .4 3.3 .9 8.1 4.6 22.5 2.3 33.3	4.1 3 2.8 1 3.8 5 3.9 3 4.8	57 .1 7 22 < 1 2 56 .1 8 33 < 1 11 95 < 1 10	.9 3.4 .7 1.5 .7 5.3 .1 4 8 .1 5.4	235 1.25 225 .55 142 1.51 154 1.34 228 1.74	i 1.8 <.5 2.1 4.3 2.6	.2 <.9 .1 .6 .2 3.8 .5 2.9 .2 3.9	5 1.0 5 .5 8 .8 9 1.0 5 .8	13 . 11 . 13 . 15 < 13 .	2 .3 1 .1 2 .3 1 .3 1 .4	.1 .1 .1 .1	33 .2 21 .1 35 .1 35 .2 46 .1	1 .059 8 .015 9 .090 4 .015 8 .016	5 16 5 9 5 16 5 18 5 18	. 19 55 08 27 21 57 . 38 75 . 31 74	.060 .049 .048 .059 .051	<1 <1 <1 <1 <1	68 .00 34 .00 93 .00 95 .00 05 .00	5 03 < 5 02 < 6 04 4 03 4 03	1 .03 1. 1 .02 1. 1 .02 1. 1 .01 1. 1 .01 1.	2 < 1< 8 < 1< 2 < 1< 5 < 1< 3 < 1<	05 4 < 05 2 < 05 4 < 05 3 < 05 4 <	5 15 5 15 5 15 5 15 5 15 5 15
CK 52500 1950 CK 52500 1900 CK 52500 1850 RE CK 52500 1850 CK 52500 1800	1.2 19.4 1.4 10.0 1.2 28.3 1.1 28.8 .B 15.5	1 5.7 <u>1</u>) 4.4 3 5.0 3 4.7 5 3.8	20 < .1 16 46 < .1 7 94 < .1 18 94 < .1 18 68 < .1 14	.8 10.8 .2 4.1 .6 8.3 .8 8.3 .1 6.0	349 1.94 155 1.33 210 2.39 209 2.30 186 1.63	2.6 1.8 4.1 4.2 2.5	.2 2.4 .1 .9 .3 1.9 .3 1.6 .2 5.1	1.0 5 .8 5 1.5 5 1.4 1 .9	14 12 < 11 11 12	1 .3 1 .3 1 .4 1 .4 1 .3	.1 .1 .1 .1	42 .2 39 .1 49 .1 47 .1 32 .1	0 .046 8 .012 6 .091 6 .092 5 .054	5 26 4 14 5 24 5 24 5 17	.29 101 .22 63 .32 89 .31 90 .32 75	.053 .053 .068 .066 .049	<1 1. <1 2. <1 2. <1 2. 1 1.	80 .00 84 .00 07 .00 00 .00 32 .00	6 05 4 03 < 5 04 4 4 04 4 03 4	1 03 1. 1 .01 1. 1 .04 2. 1 .04 1. 1 .04 1.	6 .1< 0 < 1< 0 .1< 8 .1< 3 < 1<	05 5 <.	5 15 5 15 5 15 5 15 5 15
CK 52500 1750 CK 52500 1700 CK 52500 1650 CK 52500 1600 CK 52500 1550	2.4 476.4 .8 18.9 1.7 19.4 1.5 5.9 4.0 15.2	1 5.7 9 4.0 1 4.5 9 3.3 2 4.0	61 < 1 14 63 < 1 14 49 < 1 16 28 < 1 4 72 < 1 10	.5 12.7 .9 6.5 .8 7.5 .8 2.3 .0 4.7	990 1.43 214 1.86 377 1.79 95 .93 157 1.79	3 2.5 5 4.4 9 2.8 3 1.1 5 3.2	.5 2.0 .2 1.0 .2 2.8 .1 <.9 .2 12.9) .5) 1.3 3 1.0 5 .7 5 1.0	19 15 13 <. 10 14	1 .2 1 .5 1 .4 1 .2 1 .4	.1 .1 .1 .1	38 .3 37 .2 45 .1 30 .1 40 .2	2 .023 2 .133 8 .028 4 .017 1 .042	7 23 5 21 5 20 4 12 6 18	.34 172 .35 103 .28 109 .13 36 .29 65	.040 .043 .065 .057 .059	<1 1. <1 1. <1 1. <1 1. <1 . 3 1.	39 .00 59 .00 63 .00 54 .00 15 .00	7 .04 . 5 .03 . 5 .03 <. 4 .02 <. 5 .03 .	1 .02 2. 1 .02 1. 1 .02 1. 1 .02 1. 1 .01 1. 1 .02 1.	0 1< 9 < 1< 5 .1< 0 < 1< 4 .1<	05 4 <. 05 5 <. 05 5 <. 05 3 <. 05 4 <.	5 15 5 15 5 15 5 15 5 15 5 15
STANDARD DS7	20.6 111 4	69.2.3	92 .9 57	.1 9 6	622 2.40	47.7	4 8 72.9	9 4.5	76 6.	3 5.7	4.5	86.9	4.079	14 245	1.05 384	.126	38-1.	03 .07	5.45.4.	0.212.	5 4.2	<u>20 6 3</u>	3 15
GROUP 1DX - 15 ((>) CONCENTRATIO - SAMPLE TYPE: 1	GM SAMPLE ON EXCEEDS SOIL SS80	LEACHER UPPER 60C	D WITH 9 LIMITS. <u>Sample</u>	D ML 2- SOME s begin	2-Z HCL- MINERALS ning <u>'R</u> E	HNO3-H MAY B <u>'are</u>	20 AT S E PARTI Reruns	95 DEC IALLY <u>and</u>	G. C F ATTAC 'RRE'	OR ON KED. are R	E HOL REFI eject	UR, D RACTO <u>t Rer</u>	ILUTED RY AND Tuns.	TO 300 GRAPHI	ML, AN, TIC SAMI	ALYSEI PLES () BY I CAN LI	CP-MS MIT A	J Solub		ARD 1	<u>010</u> /	
Data <u>i</u> FA _		DATE	RECEI	VED:	OCT 23	2006	DATE	REI	PORT	MAI	LED	:	••••	•••••	••••	· !					Ra	ymond C	han 157
All results are o	considered	the co	onfident	ial pro	perty of	the c	lient.	Acme	assum	es the	e lia	abili	ties f	or actua	al cost	of th	ie ana	lysis	only.		\sim		

	Copper Ridge	Exploration Inc.	. PROJECT	COPPER KING	FILE # A608295	Page 2	ACHE AMALYTICAL
SAMPLE# Mo ppm	Cu Po Zn Ag Ni pom ppm ppm ppm ppm	Co Mn Fe As U Au Th ppm ppm % ppm ppm ppb ppm	n Sr Col Sb Bi n.ppm.ppm.pom.ppm.p	V Са Р La Сг ррп % % ррп ррлп	Mg Ba Ti B Al Na K W \$ppm \$ppm \$\$\$ppm	Hg Sc T) 5 Ga Se 3 рларотрот 8 ронарна	sample gm
G-1 .5 CK 52500 1500 2.3 CK 52500 1450 3.0 CK 52500 1350 .5 CK 52500 1300 6	2.2 2.2 43 5.5 33.4 3.5 84 23.9 19.9 3.2 47 110.5 11.2 3.2 62 1 7.9 37.3 3.9 70 1 25.2	4.2 472 1.56 <.5	3 43 <.1	31 .38 .080 5 57 . 44 .27 .043 5 29 . 41 .22 .019 5 21 . 29 .21 .023 5 16 . 40 .60 .033 11 37 .	60 184 .104 1 .84 .058 .44 .2 34 105 .063 1 1.33 .006 .04 .1 26 84 .072 1 .64 .006 .04 .1 27 52 .051 2 .69 .008 .04 .1 44 136 .055 1 1.64 .009 .06 .1	01 2.1 .3<.05	15 15 15 15 15
CK 52500 1250 .5 CK 52500 1200 .4 CK 52500 1150 .4 CK 52500 1150 .4 CK 52500 1100 .5 CK 52500 1050 .4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.3 159 1.21 1.4 .2 .7 1.0 4.8 244 1.36 3.0 .3 1.7 1.0 4.4 190 1.28 2.9 .2 2.8 .8 7.0 290 1.34 2.1 .2 24.5 .9 4.1 180 1.31 2.4 .2 .6 1.0	13 .2 .2 .1 15 .1 .4 .1 14 .1 .4 .1 14 .1 .3 .1 16 .1 .3 .1	29 20 024 6 20 . 33 24 032 6 22 . 32 23 .032 6 19 . 34 .22 .030 6 21 . 33 .25 .028 6 19 .	32 53 .057 1 .90 .006 .04 .1 38 54 .065 1 .92 .007 .03 .1 35 49 .054 <1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	15 15 15 15 15
CK 52500 1000 .6 CK 52500 950 .5 CK 52500 900 .6 CK 52500 850 .6 CK 52500 800 .4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.3 302 1.75 5.0 .2 2.2 1.5 5.1 222 1.47 3.4 .2 1.2 1.1 4.3 126 .95 .8 .3 1.8 .7 6.2 226 1.77 3.0 .2 2.6 1.4 2.2 87 .78 .8 .1 .8 .7	5 18 .1 .6 .1 4 15 .1 .4 .1 7 15 .1 .1 .1 4 20 .2 .4 .1 7 10 .1 .2 .1	41 .28 .051 7 .29 . 36 .24 .032 .6 .22 . 29 .27 .026 .5 .21 . 43 .35 .053 .7 .26 .2 23 .17 .019 .4 .12 .	46 65 .073 1 1.16 .007 .05 .1 35 51 .068 1 .98 .008 .03 <.1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	15 15 15 15 15
CK 52500 750 .7 RE CK 52500 750 .7 CK 52500 700 1.2 CK 52500 650 .7 CK 52500 600 .6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.7 420 i.93 4.1 .2 .9 1.0 7.4 395 1.84 4.0 .2 1.3 1.0 7.3 403 2.09 2.8 .2 1.0 1.3 5.0 299 i.38 .6 .2 .6 1.0 .8 49 .39 <5	15 .2 .4 .1 15 .1 .5 .1 3 12 .1 .3 .1 0 12 .1 .3 .1 0 12 .1 .2 .1 1 .1 .1 .1 .1	42 .23 .072 5 25 39 .23 .071 5 23 46 .18 .094 6 23 34 .18 .045 5 14 16 .11 .009 6 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 15 15 15 15
CK 52500 450 1.1 CK 52500 400 1.3 CK 52500 350 1.2 CK 52500 300 6 CK 52500 250 9	20.2 4 5 77 <.1 12.3 11.4 4.3 131 .1 8.0 19.6 6.5 89 .2 9.5 9.6 4 0 54 .2 4.9 15.5 3.7 59 <.1 6.8	4.5 199 2.20 2.2 .2 1.0 .9 3.9 158 1.77 1.9 .2 .8 1.0 4.5 180 1.54 .9 .2 .9 1.2 2.3 107 1.16 .6 .2 2.7 .5 3.3 196 1.09 1.4 .2 <.5	9 13 .1 .3 .1 9 10 .2 .3 .1 2 13 .1 .2 .1 5 12 .4 .2 .1 9 16 .1 .2 .1	48 .20 .095 .4 .29 44 .13 .060 .5 .19 . 45 .18 .026 .7 .20 . 36 .19 .048 .5 .16 . 30 .22 .011 .6 .14 .	38 65 .045 1 1.41 .005 .05 .1 18 50 .062 1 1.15 .006 .03 .1 25 75 .066 <1	02 1.7 <.1<.05	15 15 15 15 15
CK 52500 200 8 CK E53000 N4000 8 CK E53000 N3950 9 CK E53000 N3990 9 CK E53000 N3850 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.5 146 1.29 .9 .2 .8 1.1 12.0 496 2.80 6.2 .4 3.5 2.2 12.6 529 2.77 6.1 .4 4.1 2.2 12.2 557 2.85 6.5 .4 2.7 2.3 13.5 573 2.92 6.5 .4 3.1 2.3	i 16 .1 .2 .1 2 28 .1 .7 .1 2 31 .1 .8 .1 3 30 .2 .8 .1 3 30 .2 .8 .1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 53 .074 1 .88 .007 .02 .1 65 136 .094 2 1.61 .012 .06 .1 66 131 .094 2 1.59 .015 .06 .1 68 133 .100 1 1.73 .015 .07 .1 67 137 .096 1 1.57 .012 .07 .1	01 1.5 <.1<.05	15 15 15 15 15
CK E53000 N3800 .8 CK E53000 N3750 .9 CK E53000 N3700 .8 CK E53000 N3650 .8 CK E53000 N3650 .9	58.9 5.1 68 <.1	11.9 530 2.79 6.3 .4 2.9 2.3 12.6 569 2.75 6.4 .4 2.5 2.2 12.0 523 2.77 6.2 .4 2.8 2.3 12.7 549 2.89 6.5 .4 2.8 2.3 12.7 549 2.89 6.5 .4 2.8 2.3 12.4 553 2.73 6.1 .4 2.4 2.1	3 28 .1 .7 .1 2 29 .2 .7 .1 3 29 .1 .7 .1 3 30 .1 .7 .1 1 30 .2 .8 .1	57 .47 .076 9 47 . 57 .49 .071 9 50 . 57 .48 .072 9 48 . 50 .49 .074 9 50 . 56 .52 .072 9 43 .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04 4.5 .1<.05	15 15 15 15 15
STANDARD DS7 21.3	111.6 69.3 415 .9 58.9	10.3 650 2.50 50.1 4.9 71.8 4.5	5 71 6.6 5.9 4.5	89.99.080 13.276.1.	07 386 .126 41 1.02 .100 .47 3.9 .	20 2.6 4.3 .18 6 3.8	15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

	Copper Ridg	e Exploration	Inc. PROJECT	COPPER KING	FILE # A608295	Page 3
SAMPLE# P	to Cu Pb Zn Ag M от рояк рока рака фрик ор	li Co Mn Fe As Մ xn ppn-ppn % ppn-ppn	Au Th Sr Col So B poblopom pomlopom pomlopo	i V Ca. P La Cr n.ppm \$ ≵ppm.ppm	Mg Ba ⊺j B A1 Na K ≵ppan ≵ppm ≵ ≵ ≵	N Hg Sc Tì S Ga Se Sample pom pom pom pom 2 pom pom gm
G-1 CK £53000 N3550 CK E53000 N3500 CK £53000 N3450 CK £53000 N3400	6 1.9 2.4 44 <.1 5. 9 56.5 5.1 66 <.1 36. 8 62.2 5.4 72 <.1 39. 9 56.4 4.8 64 <.1 35. 9 54.8 4.9 63 <.1 35.	8 4.1 475 1.60 <.5	.6 3.0 41 <.1	1 33 .39 .079 6 59 1 57 .46 .075 9 46 1 63 .51 .075 10 51 1 53 .44 .072 8 45 1 55 .45 .074 8 44	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CK E53000 N3350 CK E53000 N3300 CK E53000 N3250 CK E53000 N3200 CK E53000 N3150		B 12.4 519 2.72 6.1 .4 6 12.4 526 2.73 6.3 .4 2 12.2 515 2.68 6.2 .4 1 13.0 540 2.72 6.3 .3 7 11.9 501 2.62 6.1 .4	1.6 2.1 27 .1 .7 2.2 2.1 28 .1 .8 3.3 2.1 28 .1 .7 1.8 2.1 28 .1 .7 3.0 2.1 28 .2 .7	1 57 .48 .071 9 47 1 56 .49 .074 9 47 1 58 .47 .071 9 45 1 57 .48 .074 9 46 1 56 .47 .073 8 44	.63 124 .086 1 1.52 .014 .06 .65 128 .093 1 1.60 .013 .06 .63 122 .090 1 1.49 .014 .06 .67 123 .090 2 1.49 .016 .06 .65 122 .388 1 1.52 .015 .06	.1 .04 4.5 .1<.05
CK E53000 N3100 CK E53000 N3050 1 CK E53000 N3050 1 CK E53000 N2950 1 CK E53000 N2950 1	8 58.3 5.1 66 66 1 36.1 1 23.4 4.2 113 .1 29.2 1 16.8 4.7 128 .1 23.3 1 19.4 4.7 112 .1 26.0 0 19.1 4.5 124 .1 26.0	7 13.0 532 2.75 6.3 .4 5 12.6 286 2.54 4.7 .3 5 10.5 353 2.48 4.4 .2 7 11.8 317 2.63 4.5 .3 5 11.2 327 2.54 4.5 .3	7.9 2.2 28 .1 .8 . <.5	1 59 .49 .073 8 46 1 58 .27 .110 5 37 1 58 .24 .131 5 33 1 62 .27 .117 5 40 1 57 .27 .123 5 36	.66 126 .089 1 1.47 .012 .06 .39 177 .071 2 1.78 .008 .05 .32 131 .066 <1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CK E53000 N2750 1 CK E53000 N2700 1 CK 53000 2100 CK 53000 2050 RE CK 53000 2050	0 16.7 4.6 146 .1 29. 1 19.5 4.6 108 .1 25. 5 16.0 3.3 34 <.1	2 13.1 429 2.78 5.0 .2 3 11.4 259 2.71 4.7 .3 8 4.9 143 1.40 2.9 .2 7 6.5 218 1.75 4.1 .3 1 6.7 223 1.79 4.0 .3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 61 .25 .179 5 37 1 60 .23 .129 5 36 1 39 .25 .040 6 23 1 44 .27 .042 7 30 1 46 .28 .041 7 32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CK 53000 2000 CK 53000 1950 CK 53000 1900 CK 53000 1850 CK 53000 1800	6 41.8 5.0 59 < 1	5 9.7 397 2.74 13.2 .4 1 6.2 416 2.67 4.5 .3 8 4.4 184 I.55 3.4 .2 9 6.3 186 1.80 4.2 .3 6 4.7 176 1.46 3.1 .2	2.9 2.5 27 .1 1.1 . 1.5 1.3 43 .4 .2 . 2.3 .9 12 .1 .4 . 1.5 1.3 16 .1 .5 . .9 .9 14 .2 .4 .	1 60 .42 .066 9 48 1 51 .56 .437 5 32 1 39 .20 .047 5 21 1 .44 .29 .043 6 27 1 .38 .26 .033 5 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CK 53000 1750 CK 53000 1700 CK 53000 1550 <u>1</u> CK 53000 1500 <u>2</u> CK 53000 1450		3 5.9 177 1.82 4.8 .2 8 6.0 193 1.48 4.0 .5 5 6.4 614 2.15 5.0 .2 9 5.6 342 1.62 4.1 .2 6 7.4 296 1.96 6.7 .3	2.9 1.1 14 .4 .6 . 3.9 1.2 14 .1 .5 . 1.0 1.1 10 .3 .5 . 2.4 1.1 10 .1 .6 . 1.0 1.3 12 .1 .8 .	40 .26 .121 6 25 1 39 .25 .020 7 23 1 48 .16 .117 5 25 1 41 .17 .053 5 19 1 44 .20 .042 6 24	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CK 53000 1400 CK 53000 1350 2 CK 53000 1300 9 CK 53000 1250 1 CK 53000 1150 2	9 19.8 3.1 52 <.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 34 .31 .014 7 24 1 48 .19 .111 5 29 1 64 .11 .272 4 41 1 44 .20 .098 4 28 1 55 .16 .070 4 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
STANDARD DS7 21	7 111.3 69.9 411 .9 58.	8 9.9 649 2.53 49.2 5.0	68.1 4.5 71 6.5 6.0 4.	5 87 .98 .080 14 275	1.07 392 .128 49 1.07 .110 .47	3.8 .20 2.5 4.3 20 6 3.8 15.0

Sample type: SOIL SS80 GOC. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

ĨĨ

4	CME ANALYTECAL																						_							-					ICAL_
_	SAMPLE#	Мо рәт	Cu ppn	Pt ppr	Zn I ppm	Ag ppm	Ni ppm	Co ppm	Ма ррп	Fe 1	As ppm p	U pm	Au ppb (Th ppm p	Sr xpmr p	Col S com pp	ib Bi nappa	i V n ppm	Ca X	P እ	La ppm j	Cr ppm	Mg ≵p	Ba pm	Ti 8 2.ppm	Al \$	Na X	K į	W Dipim (Hg)pm p	Sc T pm pp	ן או \$	Ga Se ppm ppm	Sample gin	
	G-1 CK 53000 1100 CK 53000 1050 CK 53000 1000 CK 53000 950	.6 1.3 1.8 .7 .9	2.2 22.0 18.9 30.6 27.3	2.8 5.1 3.8 3.8 3.4	47 86 164 134 169	< <u>1</u> 1 .1 .3 .2	6.4 20.7 10.1 29.0 20.8	4.5 9.7 7.0 8.7 7.8	511 340 469 251 204	1.77 3.08 1.65 2.30 2.07	<.5 1 5.2 2.8 3.1 3.9	.8 .3 .2 .2 .3	.7 1.6 .5 1.9 8.7	3.6 1.9 .5 1.1 1.4	46 < 11 14 13 11	.1 <. .2 . .7 . .3 .	1 .1 5 .1 5 .1 3 .1 5 .1	33 55 31 45 40	. 44 . 17 . 24 . 21 . 19	.086 .281 .117 .081 .118	6 5 5 5 5 5	68 37 21 33 31	. 62 1 . 32 . 28 1 . 47 1 . 34 1	95 .11 81 .09 02 .04 15 .04 06 .09	13 1 52 1 40 1 47 1 59 <1	.94 2.39 .89 1.78 1.64	.071 .006 .006 .007 .006	. 48 . 04 . 04 . 04 . 03	.2< .1 .1 .1 .1	01 2 05 2 02 1 02 2 03 2	.4 .3 .4 <. .1 .3 <.	4<.05 <u>1</u> <.05 1<.05 1<.05 1<.05 1<.05	5 < 5 6 < 5 4 < 5 6 < 5 4 < 5	15.0 15.0 15.0 15.0 15.0	
	CK 53000 900 CK 53000 850 CK 53000 800 CK 53000 750 CK 53000 700	.5 .5 .7 2.1 5.2	58.1 47.8 31.8 62.7 29.9	4.0 4.6 2.3 3.7 6.8	48 56 32 110 96	< 1 2 < 1 3	25.1 18.1 14.1 22.9 16.1	7.7 7.7 5.4 8.3 7.2	351 396 256 379 234	2.11 1.68 1.40 2.08 3.68	5.0 3.0 3.3 3.3 5.7	.4 .5 .3 .6 .4	2.5 9 .9 .5 < 5	1.9 1.5 1.3 1.5 1.3	25 22 15 24 30	.1 .2 .1 .3	6 .1 4 .1 4 <.1 5 .1 4 .1	44 37 33 45 80	. 43 . 38 . 31 . 35 . 40	.061 .041 .059 .022 .275	8 8 5 11 4	41 34 24 34 38	.42 .39 1 .31 .40 1 .37	93 .01 05 .01 51 .01 09 .04 93 .01	77 1 67 <1 57 1 62 1 82 1	1.11 1.11 .64 1.17 2.02	.010 .009 .006 .010 .017	.05 .04 .03 .04 .05	.1 .1 .1 .2	04 4 02 3 02 1 02 2 03 2	2 < 2 < 8 < 9	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	4 < 5 4 < 5 2 < 5 4 < 5 9 < 5	15.0 15.0 15.0 7.5 15.0	
	CK 53000 650 CK 53000 600 CK 53000 550 CK 53000 500 CK 53000 450	2.9 .7 .8 .8	41.0 7.7 8.4 39.1 19.5	3.4 4.9 2.4 4.6 3.6	68 50 75 150 52	<.1 <.1 .2 <.1 .1	18.8 5.2 5.8 33.0 16.1	8.8 2.7 5.3 10.8 6.7	263 136 190 1414 429	2,07 1,60 2,08 2,21 1,64	3.3 1.2 .6 2.3 2.2	.31 .2 .3 .2	08.8 1.4 <.5 <.5 <.5	.9 .9 .7 1.2 1.1	28 8 16 30 18	.2 . .1 . .1 . .4 .	4 .1 2 .1 2 <.1 3 .1 3 .1	46 37 37 43 40	. 39 . 11 . 25 . 47 . 27	.036 .176 .131 .124 .041	5 4 3 5 6	32 19 8 33 26	.39 .14 .39 .46 1 .39	83 .09 41 .04 78 .11 98 .00 81 .00	51 1 47 1 19 1 61 2 67 <1	1.25 1.21 1.34 1.83 1.07	.008 .005 .005 .008 .008	.04 .03 .04 .09 .03	.1 .1 .1 <.1	01 1 03 1 03 1 03 2 01 1	.8 <. .1 .6 < .6 .8 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	4 < 5 6 < 5 6 < 5 5 < 5 4 < 5	15.0 15.0 15.0 7.5 15.0	
	CK 53000 400 CK 53000 350 CK 53000 300 CK 53000 250 CK 53000 200	.7 .4 .5 .9 1 0	21.0 15.1 17.0 16.7 28.0	4,4 3,6 3,3 4,0 3,9	47 42 47 86 74	<.1 <.1 <.1 .1	13.8 8.4 10.6 7.6 10.7	5.2 4.4 4.3 4.4 6.0	171 278 191 272 221	1.66 1.14 1.51 2.26 2.18	2.3 1.5 2.7 3.6 3.7	2222	<.5 .9 4.5 19.9 5.4	.9 .6 1.0 1.1 8	14 11 13 12 11	.1 . .1 . .4 . .3 .	3 .1 2 .1 3 .1 2 .1 4 .1	44 29 36 47 51	. 21 . 19 . 23 . 18 . 22	.025 .026 .037 .243 .155	6 6 4 4	24 17 20 24 32	.33 .27 .34 .23 .26	66 .00 50 .09 38 .00 85 .04 47 .09	61 <1 50 1 63 <1 42 1 54 <1	1.07 .78 .97 1.18 .85	.007 .006 .006 .006 .005	.03 .03 .03 .03 .03	.1 .1 .1 .1	01 1 01 1 01 1 03 1 01 1	.6 < .6 < .6 < .6 < .4 <	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	4 < 5 3 < 5 4 < 5 5 < 5 4 < 5	15.0 15.0 15.0 15.0 15.0	
	CK 53500 4000 CK 53500 3950 CK 53500 3900 CK 53500 3850 CK 53500 3800	1.3 .9 1.1 .8 .8	18.1 37.9 42.7 27.2 41.9	5.5 5.0 5.9 6.3 6.2	50 51 83 85 79	.1 <.1 <.1 <.1	15.2 29.8 26.0 19.3 25.0	7.4 9.9 11.0 10.6 13.4	716 203 616 1071 447	1.99 2.34 2.63 2.07 2.23	4.1 4.2 5.1 2.9 2.6	.2 .3 .2 .3	.8 1.0 1.3 1.0 1.5	.7 1.4 1.2 1.3 1.4	15 12 17 15 15	1 . .1 . .2 . .1 .	5 .1 5 .1 6 .1 3 .1 3 .1	50 57 57 50 50 57	31 .19 .34 .28 .24	.069 .060 .121 .063 .074	5 5 6 6	27 36 36 26 33	. 33 . 38 . 50 . 36 1 . 32 1	78 .00 84 00 93 .07 12 .09 01 .09	64 2 85 2 76 2 92 2 98 2	1.19 1.83 2.08 1.63 1.89	.008 .006 .006 .007 .007	.05 .04 .06 .06 .05	.1 .1 .1 .1	04 1 04 2 06 2 03 1 03 1	.6 .0 .2 .8 .9	1<.05 1< 05 1<.05 1<.05 1<.05 1<.05	5 <.5 5 <.5 6 <.5 6 <.5 6 <.5	15.0 15.0 15.0 15.0 15.0	
	CK 53500 3750 CK 53500 3700 CK 53500 3650 JK 53500 3600 CK 53500 3550	.5 .3 1.2 .6	10.7 14.0 9.5 34.3 11.5	4.0 3.5 2.8 7.7 4.0	41 37 23 72 41	< < : : : : : : : : : : : : : : : : : :	16.4 16.9 7.6 31.5 15.2	5.9 69 4.0 10.8 7.1	153 144 173 310 203	1.68 1.75 1.14 3.36 1.66	2.2 4.1 2.4 8.9 2.9	.2 .2 .5 .2	1.0 1 .8 1 .8 2.8 2 4.2 1	1.1 1.2 .8 2.1 1.2	15 14 12 14 12	.1 . .1 . .1 . .1 .	3 .1 4 .1 5 .1 8 1 4 .1	45 42 37 77 46	. 25 . 26 . 27 . 20 . 22	.035 .100 .023 .151 .032	5 5 7 6	27 28 20 48 26	.26 .28 .18 .45 19 .25	64 .04 56 .05 42 .07 05 .09 70 .07	80 1 58 1 70 2 91 2 78 2	1.06 .99 .54 2.75 1.19	.006 .006 .006 .008 .008	.04 .03 .04 .07 .03	-1 <.: .1 .1	02 1 02 1 01 1 04 3 02 1	.7 <. .7 <. .4 <. .1	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	4 <,5 3 <,5 2 <,5 8 <,5 4 <,5	15.0 15.0 15.0 15.0 15.0	
	CK 53500 3500 CK 53500 3450 RE CK 53500 3450 CK 53500 3400 CK 53500 3300	.7 .5 .4 .6	19.1 13.4 13.6 13.0 9.4	6.6 4.0 4.2 4.1 5.5	72 45 47 31 33	<.1 <.1 <.1 <.1 <.1	22.7 14.6 14.5 11.6 10.5	8.4 7.5 8.1 4.8 4.8	921 325 328 161 196	2.28 1.50 1.52 1.40 1.65	4.3 1.9 1.0 2.9 4.6	.3 .3 .2 .2	1.2 1.4 44.9 <.5 .9	1.4 1.4 1.2 .9	11 15 17 16 11	.1 . .1 . .1 . .1 .	5 .1 3 .1 3 .1 4 .1 6 .1	60 43 45 41 51	.19 .25 .27 .28 .19	.089 .020 .020 .029 .037	6 8 7 6	36 24 26 23 24	.31 .33 .34 .28 .21	90 .0) 78 .0) 79 .0) 52 .0) 69 .00	73 2 71 <1 82 1 73 1 61 1	2.08 1.01 1.07 .81 1.13	. 307 . 306 . 309 . 008 . 006	.05 .03 .03 .04 .03	.1 . < 1 . .1 . .1 .	03 2 01 1 01 1 01 1 02 1	.1 .7 .9 .6 < .6 <	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	6 < 5 3 < 5 4 < 5 3 < 5 4 < 5	15.0 15.0 15.0 15.0 15.0	
	STANDARD DS7	21.6	113.5	72.5	397	. 9	58.5	10.1	662	2.52	49.8 5	.0	72.8	4.7	72 6	.7 6.	04.6	91	. 96	.080	14 2	289 1	1.05 3	95 . 13	33 50	1.02	.109	47	4.0.	20 2	.64.	3.18	5 3.7	15.0	

Sample type: SOIL SS80 600. Samples beginning [RE] are Reruns and [RRE] are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🌔 FA

ACHE ANALYTICAL		ACHE ANALYTHIAL
SAMPLE#	Mo Cu Ph Zn Ag Ni Co Mn Fe As II Au Th Sn Cd Sh Bi V Ca P La Cn Mg Ba Ti B Al Na K	W Ho Sc Il 5 Ga Se Sample
	00 1 2 m 00 m 00 m 00 m 00 m 00 m 00 m 0	מה התפיבים של 10 מיווים אוויים איין אוויים אוויים אוויים איין אוויים אוויים אוויים איין אוויים אוויים אוויים א
		Free Free Street
G-1	.7 2.5 3.1 49 <.1 6.5 4.6 571 1.88 <.5 2.0 1.0 3.8 57 <.1 <.1 .1 37 .48 .091 7 70 .67 214 .114 1 1.02 .104 .53	2<.01 3.0 .4<.05 6 <.5 15 0
CK 53500 3250	.8 9.6 4.5 36 < 1 16.9 6.1 171 1.67 3.0 .2 2.3 1.2 12 .1 .5 .1 36 .21 .039 6 21 .25 74 .056 1 1.33 .006 .04 .	1 .03 1.5 .1<.05 5 <.5 15.0
CK 53500 3200	18 14.1 4.6 54 < 1 17.6 7.2 170 1.80 4.1 .2 .8 1.5 11 .1 .7 .1 41 .18 .048 6 26 .29 82 .058 1 1.52 .006 .04	1 .03 1.9 .1<.05 5 < 5 15 0
CK 53500 3150	.8 12.8 4.7 81 .1 18.5 7.7 213 2.14 4.5 .3 1.5 1.2 18 .2 .6 1 45 .27 .059 6 28 .28 83 .059 <1 1.39 .007 .04	1 .02 1.9 < 1<.05 5 < 5 15 0
CK 53500 3100	.8 13.7 3.9 42 < 1 15.8 6.3 184 1.80 2.0 .2 < 5 1.2 18 .1 .3 .1 47 .27 .025 6 25 .37 57 .081 <1 .96 .008 .03 <	1 .01 1.7 < 1<.05 4 < 5 15 0
CK S3590 3050	.7 33.9 5.9 57 <.1 26.2 8.1 346 2.47 8.2 .4 1.8 2.0 16 .1 .7 .1 56 .25 .065 8 40 .51 131 .059 1 2.35 .008 .08	1 .04 3.2 .1<.05 7 <.5 15.0
CK 53500 3000	.7 21.4 5.1 64 <.1 29.6 9.5 413 2.05 4.7 .3 .7 1.6 12 .1 .7 .1 47 .19 .037 7 31 .37 135 .063 <1 1.78 .007 .06 .	1 .02 2.1 .1<.05 5 <.5 15.0
CK 53500 2950	.7 14.5 5.4 62 <.1 16.8 6.6 348 2.00 3.3 .3 3.5 1.2 13 I .5 .1 44 .20 .102 6 25 .26 110 .053 1 1.42 .008 .04 .	1 03 2.0 .1<.05 6 <.5 15.0
CK 53500 2900	1 51.5 6.6 81 <.1 36.7 11.9 333 2.87 4.2 .3 1.2 2.1 11 .1 .7 .2 63 .14 .065 7 38 .37 142 .076 1 2.92 .007 .06	1 .05 2.8 .1<.05 8 <.5 15.0
RE CK 53500 2900	.1 51.9 7.0 79 <.1 38.6 12.5 350 2.95 4.6 .3 1.5 2.1 12 .1 .8 .1 66 .15 .069 7 40 .39 155 .081 1 3.21 .007 .06 .	1 .05 3.0 .2<.05 8 <.5 15.0
CK 53500 2850	.9 12.8 3.3 44 <.1 4.6 5.3 83/ 1.28 .9 .1 <.5 4 14 .1 .1 .1 .26 .19 .026 3 8 .32 8/ .046 <1 94 .006 .05 <.	1.051.0 <.1<.05 5 <.5 15.0
CK 53500 2800	.4 209.3 8.0 55 .1 31.3 / 5 283 2.13 2.6 .9 1.5 2.7 15 < 1 .4 .1 54 .54 .019 11 43 .39 136 .063 2 2.29 .011 .04 <	1 .02 4.2 .1<.05 / <.5 15.0
CK 53500 2750		1.01.1.8 < 1<.05 3 < .5 15.0
CK 53500 2700		1.012.0<.1<.053<.515.0
CK 53500 2100	2 15/2 4/3 4/3 15/2 5/2 2/2 1/3 3/0 10 1/1/2 12 12 12 13 3/2 0/23 0 2/ 1/30 81 0/05 1 1/80 0/04 1</td <td>1.012.2 < 1 < 05 3 < 5 5</td>	1.012.2 < 1 < 05 3 < 5 5
CK 53500 2050	2 9 7 4 4 26 < 1 10 5 3 8 147 1 17 2 8 7 2 5 1 6 23 1 3 1 33 39 045 8 22 33 50 087 1 74 009 04	1 01 2 1 < 1< 05 3 < 5 15 0
CK 53500 2000		1 0229 < 1 < 05 3 < 5 150
Ck 53500 2000		1 02 3 0 1 05 4 < 5 15 0
CK 53500 1900		1 03 1 6 < 1 < 05 3 < 5 15 0
CX 53500 1850	5 27 9 4 5 45 < 1 20 9 8 1 365 2 04 7 6 3 2 0 1 9 24 1 9 1 50 38 055 8 35 48 83 082 1 1 26 010 08	1 0333 1 < 05 4 < 5 150
0.0 35340 1634		1 60 878 11168 - 418 15 0
CK 53500 1800	. 4 14.4 3.6 30 < 1 12.7 4.7 223 1.49 5.6 .3 2.1 1.4 19 .1 .5 .1 43 .34 .046 7 23 .35 52 .078 1 .88 .010 .04 .	1 .01 2.0 < .1<.05 3 < .5 15.0
CK 53500 1750	5 16.4 3.5 40 < 1 4.1 5.9 227 1.53 3.7 3 .7 1.3 17 .1 .4 .1 42 .30 .040 6 23 .38 62 .069 1 .96 .008 .04 .	1 .02 2.2 < 1<.05 4 < 5 15.0
CK 53500 1700	.4 18.7 4.1 40 <.1 14.5 6.1 203 1.65 4.2 .3 1.3 1.7 20 .1 .5 .1 47 .33 .038 8 27 .39 77 .079 <1 1.11 .010 .04 .	1 .01 2.5 .1<.05 4 <.5 15.0
CK 53500 1650	15 15.7 3.6 34 <.1 15.4 6.2 203 1.63 5.1 .3 1.8 1.5 20 .1 6 .1 43 .32 .038 7 25 .36 60 .079 1 .97 .008 .04 <.	1 .02 2.2 <.1<.05 3 <.5 15.0
CK 53500 1600	.4 19.0 3.9 37 <.1 15.6 5.7 184 1.61 3.7 .3 1.9 1.6 18 .1 .5 .1 42 .31 .048 8 26 .38 76 .068 1 1.25 .007 .05 .	1 .02 2.5 .1<.05 4 <.5 15.0
CK 53500 1550	.7 13.1 3.9 51 <.1 15.9 6.9 232 1.78 3.3 .2 <.5 1.4 11 .1 .5 .1 42 .20 .067 6 23 .26 78 .064 1 1.35 .006 .04 .	1 .02 2.1 .1<.05 5 <.5 15.0
CK 53500 1500	.6 18.2 4.7 64 <.1 17.7 7.6 271 1.93 4.4 .3 1.3 1.6 14 .1 .6 .1 47 .29 .081 7 27 .37 88 .057 1 1.57 .007 .04 .	1 .03 2.2 .1<.05 5 <.5 15.0
CK 53500 1450	.5 3.6 3.5 31 < 1 3.6 2.2 204 .81 .9 .2 16.0 .9 11 .1 .2 .1 26 .18 .015 5 11 .11 32 .077 1 .45 .005 .03 .	1 .01 1.0 < .1 < .05 3 < .5 15.0
CK 53500 1400	.7 3.6 3.0 14 <.1 1.7 .9 53 .65 <.5 .1 3.2 .5 11 <.1 .2 .1 22 .13 .010 5 8 .03 28 .036 <1 .38 .006 .03 <.	1 .01 .5 < .1<.05 4 < .5 15.0
CK 53500 1300	.0 12.4 4.8 102 <.1 11.2 4.8 157 1.97 3.9 .2 4.2 1.4 12 .2 .5 .1 47 .19 .076 6 24 .25 50 .055 1 1.30 .009 .03 .	1.021.7.1<.05 5<.5 15.0
CK 53500 1250	6 6 9 3 8 27 < 1 4 9 2 3 246 1 05 1 6 3 < 5 7 8 1 2 1 33 12 038 5 12 00 37 040 1 42 036 04	1 01 8 0 10 05 4 05 35 0
CK 53500 1250		1 9656 1<96 6<5 150
CK 53500 1200	2 16 8 3 4 30 1 13 7 5 0 24 1 3 2 8 2 7 1 7 24 1 3 1 3 4 1 6 1 8 24 3 6 6 3 7 3 8 1 10 0 0	1 02 2 7 < 3< 05 3 < 5 15 0
CK 53500 1150 CK 53500 1100	9 8 2 3 0 38 4 1 1 5 1 20 4 3 8 8 8 3 1 2 1 0 1 8 1 1 3 6 20 0 2 5 2 1 2 7 0 66 4 1 8 0 10 0 1	1< 01 1 4 < 1< 05 3 < 5 15 0
CX E53500 N900	5 53 1 4 9 58 < 1 05 4 9 8 59 2 46 8 1 4 3 0 2 2 25 1 8 1 4 9 4 1 059 9 3 39 61 112 669 1 1 49 013 09	1 04 4.5 1<.05 5<.5 7.5
3.1 <u>2000</u> 00		
STANDARD DS7	.0 107.0 68.3 396 .9 56.8 9.6 637 2.49 48.4 4.8 75.7 4.5 74 6.3 5.8 4.4 85 .98 .079 14 259 1.05 381 124 39 1.02 .113 .47 3.	9 20 2.7 4.3 18 6 3.8 15.0

Sample type: SOIL SS80 600. Samples beginning 'RE' are Renurs and 'RRE' are Reject Renurs.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

	Copper Ridge	e Exploration Inc	. PROJECT COPPER KING	FILE # A608295 Pa	
SAMPLE#	мо Cu Pb Zn Ag N ррт ррт ррт ррт ррт рр	i Co Mn Fe As U Au n ppm ppm \$ ppm ppm ppb p	Th Sr Cd So Bi V Ca P La Cr орипорипорипорипорипо \$ 1 роппорип	Mg Ba Tì B Al Na K W Hg Zppm % ppm % % % xppm ppm	Sc T1 S Ga Se Sample ppm ppm % ppm ppm ga
G-1 CK E53500 N700 CK E53500 N650 CK E53500 N600 CK E53500 N550	.6 1.9 2.7 46 <.1	3 4.3 516 1.68 <.5	3.6 $50 < 1 < 1$ $.1$ 35 $.41$ $.078$ 7 66 1.1 11 $.2$ 5 $.1$ 39 $.21$ $.071$ 4 26 1.1 11 $.2$ 5 $.1$ 44 $.23$ $.096$ 4 27 $.8$ 9 $.1$ $.2$ $.1$ 42 $.12$ $.146$ 4 20 1.0 9 $.5$ $.1$ 70 $.14$ $.156$ 4 32	.68 191 .110 2 .94 .059 .46 .1<01	1.7 .4<.05
CK E53500 N500 CK E53500 N450 CK E53500 N350 CK E53500 N300 CK E53500 N250	.5 3.0 3.1 14 <.1	9 1.4 56 68 <.5	.7 11 .1 .2 .1 28 .13 .011 4 11 .9 12 .2 .4 .1 46 .21 .127 4 27 2.0 26 .1 .9 .1 51 .41 .059 9 39 1.8 25 .1 .6 .1 43 .40 .054 8 29 2.2 26 .1 .8 .1 47 .41 .055 9 35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8 <.1<05
CK E53500 N200 CK 54000 4000 CK 54000 3950 CK 54000 3900 CK 54000 3850	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 9.4 527 2.29 8.4 .4 2.9 2 2 4.0 287 1.02 1.1 .2 .7 3 26.3 450 3.41 6.7 2.8 <.5	2.0 26 .1 .9 .1 51 .40 .062 9 38 .9 13 .2 .2 .1 33 .26 .034 5 15 1.6 31 <1	.56 102 .078 2 1.44 .912 .08 1 .04 .17 45 .062 <1	4 3 .1<.05
CK 54000 3500 CK 54000 3750 CK 54000 3700 CK 54000 3650 CK 54000 3600	.4 13.8 3.9 40 < .1	4 8.2 309 1.40 2.0 .2 .5 1 7 5.8 185 1.40 3.4 .5 1.1 1 0 9.0 814 2.68 2.2 .2 .5 1 1 7.2 543 1.79 1.1 .2 1.5 5 7.3 226 1.97 2.3 .6 1.6 1	1.3 13 .1 .2 .1 41 .22 .027 7 24 1.6 19 .1 .3 .1 48 .32 .028 8 25 1.2 12 .1 .3 .2 74 .19 .098 6 39 .6 14 .1 .1 46 .22 .062 5 22 1.3 20 .1 .2 .2 61 .30 .030 9 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.7 .1 05 3 5 15.0 2.2 .1 .05 3 .5 15.0 2.1 .1 .05 8 .5 15.0 1.4 .1 .05 7 .5 15.0 3.1 .1 .05 6 .5 15.0
CK 54000 3550 CK 54000 3500 CK 54000 3450 CK 54000 3400 CK 54000 3350	.4 8.4 3.8 33 <.1	4 5.3 210 1.33 1.7 .2 1.0 4 6.5 162 2.36 3.8 .3 1.0 1 4 5.1 217 1.31 1.5 .3 1.1 1 2 5.4 228 1.43 2.7 .3 .6 1 3 4.0 169 1.14 1.9 .2 .8	.9 18 .1 .2 .1 41 .29 .039 6 19 .1 21 .4 .5 .1 57 .34 .126 6 32 1.3 20 .1 .3 .1 39 .33 .018 8 25 1.0 21 .3 .4 .1 41 .39 .072 7 24 .9 15 .1 .2 .1 39 .26 .014 5 20	.26 67 .065 1 .81 .008 .03 .1 .01 .30 95 .073 1 1.19 .007 .06 .1 .04 .32 60 .086 <1 .83 .008 .04 <.1 .01 .27 57 .071 2 .93 .008 .05 .1 .03 .19 .99 .072 <1 .69 .007 .03 <.1 .03	1.6 .1 .05 .3 .5 .15.0 2.4 .1 .05 .5 .5 .15.0 2.2 .1<
CK 54000 3300 CK 54000 3250 CK 54000 3200 CK 54000 3150 CK 54000 3100	.4 18.4 4.2 34 .1 15.1 .4 14.6 3.9 39 .1 14.9 .5 18.4 4.1 40 .1 16.0 .3 14.6 3.9 31 .1 14.0 .4 11.4 3.4 33 .1 12.4	0 7.0 261 1.64 4.2 .3 1.4 1 9 6.1 183 1.66 3.8 .3 2.1 1 0 7.3 216 1.83 7.2 .3 3.4 1 6 5.4 240 1.43 3.7 .3 2.4 1 2 5.2 170 1.42 3.1 .3 1.0 1	1.6 20 <.1	.35 62 .087 2 .97 .009 .05 .1 .01 .31 51 .092 <1	2.3 .1<.05
CK 54000 3050 CK 54000 3000 CK 54000 2950 CK 54000 2900 RE CK 54000 2900	.4 13.6 3.3 32 <.1 17.1 1.2 157.9 8.6 104 .6 86.4 .7 19.6 5.4 76 <.1 16.4 .9 43.8 6.3 81 <.1 25.4 1.0 46.3 6.7 89 <.1 25.4	0 5.2 134 1.40 3.2 .3 1.5 1 8 24.9 1529 4.92 11.3 2.4 1.1 1 8 7.3 396 1.99 3.5 .3 2.0 4 8.3 1012 2.49 4.6 .3 1.0 1 9 8.6 1014 2.56 4.7 .3 <.5	1.3 17 .1 .3 .1 45 .28 .033 6 25 1.5 60 .7 .8 .2 97 .71 .069 37 100 1 .8 13 .2 .4 .1 49 .23 .066 6 29 1.4 12 .1 .4 .1 57 .21 .110 6 33 1.5 12 .2 .5 .1 58 .20 .099 6 34	.34 .57 .081 <1	1.8 <.1<.05
STANDARD DS7	20.8 113.5 68.9 397 .9 57.4	4 9.6 623 2.47 48.6 4.8 67.6 4	4.5 76 6.5 5.9 4.5 86 .94 .078 15 260 1.	00 384 .127 38 .99 .108 .45 3.8 .20	2.5 4.2 20 5 3.8 15.0

Sample type: SOIL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

A A
ACHE ANALYTECA

ACPE ANALYTECAL																						_										CHE CHALY ICAL
SAMPLE#	Мо	Cu	Pb	Zn Ac	ı Ni	Co	Mn	Fe	As U	A	ı Tł	i Sr	Cd	Sb	Bi	V	Ca	Р	La	Cr	Mo Ba	Ti	R	Al	Na	ĸ	W	He Sr	<u>د ت</u>	۲,	Ga So S	Sample
	pom	DOM	00m	000 000	1 000	DOM.	DOM	7	non non	pol		1 0077	חסס	DOM	DDm	DOM	2	2	 DOM D) CIT	2 000		ກດຕ	2	1	21	റെറെ	້າຍັບດີ		20	oa de . Nortoom	Jointpire Am
				FF FF	• •	F.C.			FF FF	1.6			FF	FF -	F F					· •• ·			PP					AN PP	poi	~~~~	and the second s	
G-1	.7	2.1	33	45 < 1	6.5	4.6	506 1	.74	<.51.9	< 1	5 3.5	5 57	<.1	<.1	.1	36	.44	.085	6	71	.62 210	109	11	03	134	52	2<	01 3 6	A 4<	05	5 < 6	15.0
CK 54000 2850	1.2	40.5	6 9	68 < 1	33.9	10.2	253 2	96	754	1	4 2 2	15	1	a	1	69	23	083	ž	49	50 122	077	12	ต์	010	06	1	85 2 f	, .⊣- 1 1⁄	05	0 - 6	15.0
CK 54000 2800	5	8.2	3.5	50 < 1	13 3	7 0	181 1	46	18 2		1 1 0	14	1	3	ĩ	38	24	643	5	22	23 62	062	21	ň	007	.00	1	50 0.0 62 1 7	, .1~ 5 1/	0.00	2 - 6	15.0
CK 54000 2750		10.7	3.9	24 < 1	12 4	5 3	219 1	58	36 2	2	 	15	1	5	î	44	24	017	ň	22	25 /0	074	21.	75	607	0.0	1	01 3 3	2 .1~ 7 - 1.	.03	3 5.5	15.0
CK 54000 2700	4	11 7	จัก	41 < 1	13.6	53	212 1	48	34 2		5 1 0	16	1		1	47	25	021	7	26	28 51	076	1.	e2 -	014	.ψ.Ο Π.4	1	JI 1.7	~ 1~	UD - OF	35.5	15.0
CIC 54000 2700	. =	11.7	0.0			0.0	57 6 1	.40	J.T L			10	. 4	ú			. 2.0	.061		20	.20 51		1.	Qζ	01-	.04	· 4 .	л 1.0) <.1<	.05	3 <.5	15 0
CK 54900 2100	4	49 N	4 0	30 1	21.7	63	A14 1	20	21 6	1 :	2 1 0	26	1	2	1	33	Δń	021	8	รก	24 107	044	1	00	010	0.2	1	04 2 4		ar	2.5	15.0
CK 54000 1950		26.3	5.2	42 1	22.7	5.6	16/ 1	. C0	56 6	1	1 1	27		6	1	19	. 45	071	õ	43	AA 106	050		59	010	.03	.1	J4 3.2	2 .1S	.05	3 < 5	15.0
PE CY 54000 1050		27 7	5.6	43 .1	20.7	5.0	151 1	70	577	1	, 1.0 , 1.0	26		.0	1	10	. 43	.071	0	43	A2 100	0009	2 L.	24 74	007	00	. 1 !	15 3.4	+ .1<	. 05	5 < 5	15.0
CK 54000 1000		12.0	1.0	21 - 1	120	5.5	267 1	20	10 1	1.4	- 1.2 7 1 4	. 20			- 4	12		073	0	40 17	27 26	.034	<u>1</u> .	40	.007	.00	1 . I	J4 3.4	+ .1<	. 45	5 <.5	15.0
CK 54900 1900		13.0	3 4	12 - 10	10.7	5.5	207 1	. 35	4.0 .4 3.6 E	1.1	1 1 2) 20) 77	. 4	.~•	. 1	30	.40	.030	2	27	- 00 VC	.000	1.	52	.010	.05	. <u>1</u> . '	JI 2.2	<u> </u>	.05	3 <.5	15.0
CK 54000 1850	. 4	ζΟ. U	3.0	40 5.1	10.5	0.4	291 1	. 32	3.0 .5	1.1	9 1.0	20	. 4	. •	- 1	29	. 37	.043	0	29	.30 79	. 000	1 J.	ųμ	. 098	.04 <	÷. 1.,÷	JZ 2.4	+ .1<	.05	3 < 5	15.0
CK 54000 1800	A	22.0	3.4	45 e 1	10.1	6.0	254 1	78	1.7 A	1.	1 1 1	22	1	5	1	42	25	070	A	20	36 73	061	2.1	16	007	м.	- 1	. .		nr.	1 - 5	14.0
CK 54000 1000		14.4	31	25 < 1	14 1	A A	164 1	36	30 3	1	1 1 1	17	1	5	1	36	20	032	7	26	24 61	1001	<1. <1	13	007	.04 5	•. L . I	JS 2.4 Al a	• .⊥≤ • • •	.05	4 < 5	15.0
CY 54000 1700	1	13.0	2 1	25 < 1	12.6	1 0	147 1	20	26 2	1	1 1 2	11	1		1	31	25	0.02	é	20	21 47	.000	1	92 70	007	02	. 1. 1 -	JI 2.1 02 1 0	1 2.12	00	35.7	15.0
CK 54000 1700		17 0	3.1	11 1	15.0	=.0 ⊆ A	249 1	20	2.2.2	1.1	; <u>.</u>	17		 A	1	10	. 2 J	. 423	õ	21	24 47	.003	<u>.</u>	10	.007	.03 5	•. 1 . 1	J <u>Z</u> <u>1</u> (3 < 1<	05	3 <. 5	15.0
CK 54000 1600	. 4	11.3	3.5		10.7	2.7	120 1	. 39 DA	2.J .J	1.0	,	, 17 17	. 2		1	70	. 27	0.000	2	10	20 40	.000	, <u>1</u> 1.	U7 74	.009	.04	ا، الا، د د	JZ 2	3.15	.05	4 < 5	15.0
CK 5-000 1000	. 4	11.5	J.J	201		3.5	133 1	.00	2.0 .2	1.0		. 17	. 1			20	.20	,023	0	10	.30 40	. 000	¥.	/*	.007	.04 -	·.1 .	91 1.t) <. 1<	.05	3<3	15.0
CK 54000 1550	4	17.5	47	39 < 1	16-1	49	120-1	24	23 3	1.3		17	< 1	3	1	32	25	025	б	25	37 66	072	11	14	612	05	1	02.2.	1 1/	05	A ~ E	15.0
CK 54000 1500	6	17.7	4.8	39	12 5	5 4	365 1	46	29 2	21	່າເ	14	1	5	1	37	26	049	ň	23	25 68	057	1 1	77	007	04	1	ກ2 ເ. ກ2 ເ	7 e 1e	05	3 < 5	15.5
CK 54000 1450		8.6	4 4	36 1	63	2.9	194 1	17	18 2	1.1	119	11	2	· 7	1	34	20	145	š	16	13 62	060	1.	53	300	04	1	07 I.7	- 1. - 1.	00	リーン	15.5
CK 54000 1400	.ŭ	22.4	4 4	73 2	28 7	87	390.2	45	6.0.3	1.1	, <u>1</u> .0	14	3	6	1	51	21	124	š	32	36 124	054	1 1	75	0000	.0~	1	12 1 1	1 12	00	6 2 6	10.0
CK 54000 1350	. G	21 1	S Z	06 2	35 1	11.8	167 3	09	6.6 3	1	17	27		. 6	1	57	28	145	ň	42	33 130	068	22	61	0000	06	1 .1	12 5 1	- 1- - 1-	00	7 2 6	7.0
00 04000 1000		L1.1	5			11.0	107 0		0.0 .0	1			. 6	. u	. 1	57	. 20	. 140	•		.55 130	. 000	٤ ٢.	01	.000	. 00	.1	JO 2.0	-1. ;	.05	/ ~ 5	12.0
CK 54000 1300	. 8	16.6	4.6	80 <.1	20.0	8.5	325 2	. 08	3.6 .2	2.1	1.2	13	.3	.5	.1	44	.26	. 088	5	27	.30 79	055	11	47	007	.05	.1	02) (- 1<	05	5 < 5	15.0
CK 54000 1250	.7	10.4	5.4	56 < 1	13.2	5.6	364 1	.76	3.2 .2	1.4	1.0	11	.1	. 4	.1	44	.19	081	5	21	.23 84	054	11	19	008	04	1	121	- 1<	05	5 < 5	15.0
CK 54000 1200	. 4	13.7	3.4	33 < 1	14.1	5.1	189 1	42	4.2 .2	1	3 1 4	17	. 1	.6	.1	39	.29	037	7	24	32 57	070	1	84	008	03	1	01 1 f	1 < 1 <	05	9 < 6	15.0
CK 54000 1150	.7	41.8	5.3	60 < 1	33 5	11 4	329 2	87	9.5 5	2	126	29	1	1.0	1	62	36	066	ġ.	54	69 121	089	21	84	014	00	1	na a 1	7 I<	05	6 < 5	15.0
CK 54000 1100	3	12.3	3.5	30 < 1	12.0	4.6	248 1	14	2 A 3	14	112	16	1	5	ĩ	30	27	0.32	7	20	30 57	061	1	81	008	0á	1	ກີ 1 ຄ	- 1 - 	05	3 2 6	15.0
	10	12.0	V . D						2 .0 .0					. •			/						• •	01		. 0-		24 I.G	,	.00	J ~.J	10.0
CK 54000 1050	.3	13.1	3.5	36 < 1	13.1	5.0	178 1	. 25	Z.Z .2		5 1.3	16	.1	. 4	.1	34	.27	.023	7	21	.32 63	.065	1.	91	007	.03	1	81 I F	3 1<	05	3 < 5	15.0
CK 54000 1000	. 3	12.6	3.4	32 <.1	12.2	4 4	187 1	.20	2.9 .3	. (9 1.3	16	.1	. 4	.1	32	.27	.027	7	21	.32 61	053	<1	83	007	.04 <	: 1	31	3 < 1<	05	3 < 5	15.0
CK 54000 950	.3	9.1	3.3	23 < 1	9.6	3.0	115	92	2.2 .2	2.3	31.1	13	< 1	3	1	25	.25	031	5	17	.29 .38	054	ĩ	68	008	0.3	1	31 1 2	1 < 1 <	05	3 < 5	15.0
CK 54000 900	5	35.5	47	54 < 1	22.7	78	317 2	28	81 3	20	2 2	24	1	10	1	46	34	062	7	37	50 100	068	ิ่า	44	009	10	1	32.3 (4 1c	05	5 < 6	15.0
CK 54000 350	.4	16.7	3.8	37 < 1	15.5	5.8	191 1	47	4.4 .3	1.9	1.7	16	.1	. 6	.1	38	.25	.049	7	26	36 73	072	11	n9	010	03		31 2 1	2 < 1 <	05	A < 5	15.0
													_	-	_														,			15.0
CK 54000 800	.6	20.6	3.8	58 <.1	24.7	8.0	229-1	. 92	3.8 .3	4.9	1.7	19	2	.4	.1	44	. 30	. 072	8	32	.44 83	.056	11.	41 .	013	. 05	.1 .1	JZ 2.7	/ .1<	05	4 < 5	15.0
CK 54000 750	. 3	10.0	3.3	30 <.1	11.6	3.7	130 1	.12	2.2 .2	10.2	21.4	13	.1	.4	.1	29	. 25	.040	7	19	. 31 42	.061	1.	79	006	.03	.1	21 I €	>۱.> ز	.05	3 < 5	15.0
CK 54000 700	. 3	11.4	3.7	32 <.1	12.3	4.1	156 1	.12	2.2 .3	1.5	5 1.4	13	.1	. 3	.1	28	.23	. 035	7	21	.33 51	.058	<1 .	85	008	.04	.1 2	31 1.7	1 .1<	05	3 < 5	15.0
CK 54000 650	.2	10.8	40	28 <.1	11.4	3.2	109	. 91	1.5 .3	2.1	1.4	13	<.1	.3	.1	23	.24	. 036	6	18	.30 42	.061	<1	78	006	.03	.1	1115	5 < Ì<	.05	3 < 5	15.0
CK 54000 300	.7	55	4.4	28 .1	3.9	2.4	81Z	. 88	.6.1	< 1	5.5	10	1	. 2	.1	26	. 15	. 024	3	12	.07 75	.044	<1	54	007	.03	.1	JI .7	i < 1<	.05	4 < 5	15.0
																										·		-			-	
STANDARD DS7	20.8	108.5	67 <u>a</u>	401 .9	56.6	9.7	638 2	48 4	9.8 4.8	74.9	4.4	78	6.5	6.0	4.5	86 1	i.00	. 079	13 2	67 1	.09 389	.124	41 1.	04	104	. 47 . 2	3. <u>9</u> _3	20 2.6	<u>4.3</u>	. 19	537	15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data [FA _

4 4
ACHE ANALYTICAL

ACME AMALYTICAL									·																								ACHE ANAL 1	i ICAL
SAMPI F#	No	Сu	Ph	7n /		i Cr	Mn	Fe	As	U	Αu	Th	Sr	Cd	Sb	81	V	Са	Р	La	Ĉг	Ma	Ba	Ti	8 A	u –	Na	Kk	На	Sc	11 5	Ga Se	Sample	_
	000	DOT	0.Cm	ວດກ່ວງ	0 00	7000	1 OPM	1	006.0	-	pob	0011	xon c)000 (ວວກ ວ	on p		ĩ	2 1	DOR D	ວວຄ	11	2011	2	DOM:	X	5	\$ 007		0000 0	ណា វិ	0000000	angora	
- · ·		PP	PP:						PP P		PPS						_											- PP1	PP	PP. P		- pp pp	3	
G-1	6	21	28	47 <	1 6	8 4 2	476	1 72	< 5.1	7	9	3.3	50 <	< 1 <	4 1	1	33	44	079	6	64	61 2	205	104	110	14	087	55 2	< 01	27	4< 09	5 < 5	15.0	
CK 54000 250		15.3	4.2	115	2 18	2 92	392	2 78	34	3	14	1.3	12	3	4	1	61	21	137	4	42	34 1	105	047	<118	19	008	04 2	03	1.0	1< 04	6 < 5	75	
CK 54000 200	.0	17.0	5.4	71	1 15	0 5 F	220	2.07	2.6	· ~	1 0	1 2	17		2	ī	A6 .	23	164	Ġ.	27	21 1	114	857	113	2g	ດດວ	N2 1	04	- 0 -	12 00	6 - 5	15 0	
CK 54000 200	 	81	2.2	51 2	1 0	7 5.0 7 5.0	275	1 66	1.6	2	1 3	- <u>a</u>	17	1		1	43	25	0.10	š	10	32	. FO	064	e) 1 1 1	0	nne	04 1	01	1.0 -	1.4 05	, 0J	16.0	
CK 204000 N4000	. J G	6.7	21	- 11	1 7	4 J.U 6 A F	769	1 42	13	1	1.0	. 5	12	2	.2	1	20.	22	037	Å	17	25	56	058	1 1	à .	000	.04 .1 D4 ~ 1	02	1.0 ~	12.05) 45.0 : 47.0	15.0	
CK E34300 N3330	. J	0.7	5.4	44 4		J 4 0	100	1.40	1.5		1.4	.0	12	- 4	. 2		30 .	22	.03/	-4	17	. 20	50.	000	1.0	. 00	000	.041	04	1.0 5	.15 05) 4 ~ .3	19.0	
CH E54500 N2006	6	12.4	26	6 1 c	1 14	7 7 7	2465	2 02	7 A	2	< 5	a	16	1	2	1	48	28	049	5	25	AA	74	062	114	2A	nna	05 1	02	2.1	1~ 00		16.0	
CK ES4500 N3500	.0	10.4	3.0	60 2	1 19	7 9 1	7/10	2 44	2 2	. 2	J	. ў	17	· 1		í	57	20	049	5	20	63	85	074	1 1 7	, 0, 19	000	NG 1		2.1 2.6 -	12 DE	, 4~.J	15.0	
CK 204000 N0000 CK 204000 N0000	0. A	15.0	3.0	CC ~	t 19.	2 9 1	243. 200	2.44	20	. 2	1 1	1 6	17	1	. . .	1	57.	21	052	6	20	5.5	79	068	<pre>- 1 1.7</pre>	5. .n	007	00 .1	.02	2.0 ~ ^ /	12 00) 37.3 1 E - E	15.0	
CK 234300 M3800	.0	13.9	2.5	- 55 ×.	1 10.1	2 0.2	200	2.20	2.7	. 4	1.4	1.0 1 n	17	1		1.	5-1. CA	20	0.02	5	20	46	70 .	000	1 1 2	27	007	05 1	01	2.4 77.7	1 00	, ,,,,	12.0	
CK E34300 N3790	.5	21 0	0.0	- 52 ~. E4 /	1 22 4	י. הסר	1 37 L - 1 37 1	2.04	2.2	2	2.0	1.0	21	- 1		1	ЭФ. СС	36	043	6	20	.40	00	005	11.0	57 - 24	007 660	.ປສ .1 ທິຣິ 1	02	ረ.ረ ጉ ጎ ፅ	10 05) ()) ()) ()	12.0	
CK E54300 N3700	.0	21.0	0.0	24 <	1 22.1	5 0.5	1 211	6.40	3.0		3.0	4 - 1	21			. 1	33 .	90	.usb	U	33	. 00	09 .	072	1 1.7	•	000	.05 .1	. UZ	¢.9	. 15 05	1 0 5.0	10.0	
CE4500 NOGED	ć	16.4	ъл	62 -	: 16	2 0 /	406	2 02	27	2	7	۵	to	1	n	ı	40	22	045	6	77	46	75	072	113	20	000	ΔΕ 1	02	24	1 - 05		15.0	
CK E54500 N3650		10.4	3.9 13 E	- 00 ×.	1 10.	30.4 070	1400	2.02	2.1	· ~	26	1 0	16	. 1		.1	45.	20	040	E	27	.40	73.	NCE	2 1 1.5	ים סופי היים	000	. 100 .1	.02	2.4 7 7 2	1.00		15.0	
CK 154500 N3600	.5	20 1	13.0	- 22 ~. 	1 12	J 7.5 A 10 C	0 0 0 0 0 0	1 02	2.0	٠ <u>د</u>	3.0	1.0	22	.1		. .	47. 47	44	022	10	27	,4/ AC 1	74 . 114	003	21.4	4 <u>2</u> .	007	.07 - 1		2.3 5	.15.05) 4 5.3	15.0	
CK 204000 N0000	.4	30.1	4.1	40 .	1 20.1	+ 10.9 A 11 C	1 033	1.02	2.3	.0	2.1	1.3	72	.J 2		- k 1	47 . E1	44	010	10	30 74	.40	00	002	1 1.4	+/ . 51	010	. 07 5.1	02	4.0	.1<.05) 4<.)	/.5	
CK 554500 N3500	,4	23.9	4.2	47 ~.	1 24.	4 11.0 6 11 7	0 301	1.00	2.0	. 3 2	2.0	1.7	24	.4		. 1	51 . 20	42	020	9	20	.43	90. 107	074	11.3		011	.07 .1	.02	3.1	.1<.05) 4<5	15.0	
LK 154500 M3450	.4	21.1	4.0	47	1 20.1	5 11.4	059	1.04	2.1	.0	1.4	1.0	24	. 2	.3 .	. 1	эυ.	44	. UZD	10	28	. 4/ .	107 .	0/0	24.3		012	.07 .1	03	4.4	.1<.05	0 4 < 5	15.0	
CV 654500 N3400	d	36 /	17	55	1 31	י דר כ	719	2.03	2.6	g	22	16	27	2	7	1	53	51	027	12	44	52	134	071	117	11	611	08 < 1	03	5 1	1< 00		7 E	
CK C54500 K0400	4	16 6	1 6	50 .	1 201	= 12.0	601	1 07	2 7	6	10	1 7	24	. 2	3	1.	50.	AA	0.25	10	12	50 1	124	073	1 1 1		010	00 - 1	.03	J 1 A A	12 00	2 J N J N J N J N J N J N J N J N J N J	7.3	
CK E04000 N0000		32 3	4.0	50 . EQ	2 25.	ב. ב ביבו ד	. 053 777	2.20	2.1	.0	2.0	1.7	25	5		. 1	62 .	40	025	11	40	60 1	164 .	073 840	211	12 .	010	10 - 1	.00	4.4 5 0	1~.05	, <u> </u>	7.5	
		44.0	4.7	20.0	1 10 1	7 40.1 7 4 T	176	2.27	2.0	· ',	2.0	1.7	12	· č		· L ·	22.	40. 24	020	7	21	102 1	100.	0.00	~1 1.0	50 . 20	010	.00 .1	. U.S	Э. <u>८</u> 1. г. –	.15.00) 25.2	1.5	
CK E54500 N3350	.3	40.0	3.3	50 -	1 24	J 4,1 4 11 1	042	1.14	1.4	. 4	3.2	1.2	10	.1	. 2 `.	. 1	33 . An	<u>с</u> ч.	021	12	46	.20	49.	0071	N1 / / / / / / / / / / / / / / / / / / /	э. ж		.00 .1	.01	1.5 5	14.00) JS.3	12.0	
CK E54500 N3250	. J	4U.L	4 /	50 .	1 34.4	+ 11.1	. 643	2.13	2.71	. U	1.1	1.2	20	. 4		. 1	49 .	54	. 033	13	40	. 30 .	151 .	053	<1 1.¢	. כי	010	.09 .1	.04	5.0	14 05) 5<.5	.5	
CK E54500 N3200	3	8 d	3.5	32 <	1 11 3	3 4 5	137	1 18	12	2	5.5	13	14	1	2	1	35	25	022	7	22	25	51	079	<1 5	12	006	ñ a 1	ni	17 <	1< 05	3 < 5	15 B	
CK E54500 N3150	.3	P 7	3.2	30 <	1 10	2 4 0	127	1 12	1.3	2	29	12	14 <	ĩ	2	ĩ	35	24	021	7	21	24	51	078	1 7	6	007	03 1	- ñi	$\frac{1}{1}, \frac{1}{2} < \frac{1}{2}$	1< 05	, 3-5 , 7-5	15.0	
CK E54500 N3100		A 8	3.6	35 <	1 12	2 4 4	129	1 21	1 3	2	1.9	1 3	14	<u></u>	2 <	ĩ	37	24	020	7	23	26	53	181	1 5	i ai	007	0.00×1	. 01	164	1 4 05	325	15.0	
CK E54500 N3050	3	11 1	3.4	33 <	1 13	4 5 1	184	1 23	1.6	2	ĝ	12	17	ĩ	3	ĩ	37	27	024	9	24	28	65	072	1 0	\tilde{p}	007	ΠΔ 1	01	2.0 -	1< 05	2 - 5	15.0	
CK 654500 N3000		à P	35	35 <	1 12	7 4 1	101	1 11	1 0	3	22	13	15	1	2	ĩ	34	25	014	Ř	23	26	54	078	1 5	6	007	04 < 1	01	10 <	1 - 05	2 - 5	15.0	
		2.0	0.0	ub			101		1.0				**	•			•••			v	20		<u>.</u>	0/0	1 .				. • 1	1.2 -	.1~.03	, J., J	15.0	
CK E54500 N2950	. 4	11 8	3.7	34 <	1 14.0	0 5.7	264	1.21	1.3	.3	1.7	1.2	17	.1	.2	.1 :	35 .	25	. 023	8	24	. 28	69 .	065	1.9	95 J	007	.04 .1	.01	2.0	.1<.05	3<.5	15.0	
CK E54500 N2900	4	14 9	4.0	31 <	1 14	4 5.E	200	1.55	3.3	.3	97.1	1.6	18	.1	.4	1 -	45 .	33	.040	2	29	.36	54	084	11.1	2	008	.05 .1	01	2.3 <	1<.05	3 < 5	15.0	
CK E54500 N2850	3	13.1	3.6	26 <	1 13.9	9 5 5	176	1 35	2.6	. 3	1.7	1.5	19	1	4	1	40	31	034	7	27	32	55	082	11.0	11	007	05 < 1	01	22	1< 05	3 < 5	15.0	
E5450C N2800	4	13.7	3.7	38	1 13.4	4 5.5	160	1.52	5.7	3	1.6	1.0	20	.1	3	ī .	44	33	022	7	26	32	73	071	111	Ĉ I	007	05	02	24	1< 05	4 < 5	15.0	
2 E54500 N2750	5	5.6	3.9	42 <	1 7	4 3 9	124	1 19	1.5	21	04 6	g	14	2	3	1.	38	26	034	Б	21	16	60	071	1 6	ัต่	007	04 1	61	1.5. e	1< 05	3 < 5	16.0	
SA 60-600 A2/30	, 0	2.0	Q . P								• • • •		-			-	••••			-			•••				•••					, v	10.0	
CK E54500 N2700	.5	17.1	3.8	40 <	1 17.1	0 5.€	5 178	1.64	3.8	.3	< 5	1.2	20	.1	. 4	.1 -	46.	35	.039	8	32	.34	67	075	11.2	0.	011	.06 1	.02	2.4 <	.1<.05	4 < 5	15.0	
CK E54500 N2650	.6	12.6	3.5	29 <	1 13	2 5.8	155	1.63	3.7	.3	<.5	1.4	17	.1	.6	.1 -	49	30	. 021	7	28	. 29	45	087	<1 8	ie ji	006	.04 1	01	1.7 <	1< .05	3 < 5	15.0	
CK E54500 N2600	4	10.9	4.0	47 <	1 13	5 4.9	167	1.34	1.7	.3	1.6	1.3	17	.1	.3	.1 -	42	27	.015	8	25	.29	59 .	084	11.0		007	04 < 1	0)	2.0	1< .05	4 < 5	15.0	
CK E54500 N2550	4	13.1	3.5	43 <	1 15.	0 5.0	148	1.57	2.4	. 3	27.7	1.3	18	.1	.4	.1 .	48	30	.032	8	28	.32	56	086	110	15	007	04 1	01	2.1 <	1< 05	3 < 5	15.0	
CK E54500 N2500	5	12.1	4.2	45 <	1 13.	4 6.9	188	1.63	1.7	.2	8.8	1.1	18	.1	.2	.1 4	48	31	031	7	27	34	67	070	111	9	007	04 1	01	23	1< 05	4 < 5	15.0	
	~					- / -				-				. –									5. 1							- •			10.0	
STANDARD DS7	20.6	109.9	67.3	399	9 57.1	8 9.9	640	2.49	46.8.4	.9	83.9	4.5	70 6	5.D S	.6 4	.2	87 .	96	.077	14 2	281 1	.07 3	378 .	124	37 1.1	4	099	.51 3.8	.20	2.5.4	.2 .18	53.6	15.0	
							_								<u>~</u>																			

Sample type: SOIL SS80_60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

 						<u> </u>			-							_					_															1 Piver 10	
SAMPLE#	Mo EDM	Cy RDM	Pb הכני	Zn apm	Ag CDM	רא הולים	Co DDM	Min Dom	Fe	As PCC	U noo	Au ppb	ገክ ወርጫ ነ	Sr opm (Cd com c	Sio Siom e	Bi Dm t	V mcc	Ca %	P X i	La DOM 1	Cr DDM	Mg 2	Ba noo	Ti گ	B	A] ?	Na	K	W DDm n	Hg	Sc `	F3 001	5 (ភិល	Ga Se S om nom	aunbje	
 														·	<u> </u>		, ,			'																	
6-1	.7	2.3	2.8	<i>∆</i> #	<.1	6.4	4.3	4 91 (1.71	<.5	1.8	.8	3.5	57 ·	<.1 <	:]	.1	35	.46	079	6	72	. 59	202	. 117	3	. 91	. 083	. 52	.]<	.01 2	. 5	.4<	05	5 < .5	15	
CK E54500 N2450	.3	13.5	3.6	36	<.1	14.4	5.B	178 1	1.36	2.1	.3	7.8	1.1	16	.1	3	.1	38	. 26	022	6	24	. 34	68	. 060	i	. 98	.008	. 04	. 1	.02 2	.0 <	.1<.	05	3 < 5	15	
CK E54500 N2400	. 4	17.3	3.5	34	<.1	16.6	7.4	170 1	1.88	4.1	.2	4.6	1.1	17	. 1	.4	.1	45	.28	050	4	22	. 38	57	.060	ì	. 97	006	.04	.1	.02 1	.7 <	.1<.	05	3 < 5	15	
CK E54500 N2350	.3	4.5	3.B	17	< 1	4.2	2.2	105	. 80	1.1	. 2	6.7	. 8	13	.1	.2	1	27	. 23	015	4	13	.13	30	.070	1	.40	005	.03	<]	01 1	1 <	1¢	05	3 < 5	15	
CK E54500 N230C	. 5	14.9	3.3	45	<.1	15.5	5.4	167 1	1.59	3.7	. 3	.7	1.3	18	.1	.5	. 1	43	. 30	041	7	27	. 32	56	076	1	91	.007	04	.1	01 2	0 <	1<	05	3 < 5	îš	
																														••		. •		v 5	v		
CK E54500 N2250	.4	15.0	3.9	39	.1	14.3	7.8	255 1	1.54	3.9	. 3	<.5	.9	18	.1	.4	.1	41	. 28	035	6	26	28	76	. 052	1	. 92	.009	.04	1	.03 2	.0	.1<.	05	3 < 5	15	
RE CK E54500 N2200	. 3	10.5	4.0	25	< 1	10.7	3.9	147]	1.00	2.2	. 3	1.2	1.0	14	.1	. 3	.1	29	. 23	021	5	20	. 31	49	. 063	1	73	.006	03	1	01 1	.6 <	.1<.	05	2 < 5	15	
CK E54500 N2200	.2	10.7	3.9	26	< 1	11.2	4.1	153 1	1.03	2.1	.3	.7	1.2	16	.1	.4	.1	31	.26	022	6	21	. 31	51	073	1	. 80	008	.03	. 1	01 1	8 <	1<	05	3 < 5	15	
CK E54500 N2150	.2	12.1	4.0	25	<.1	11.3	3.7]4]]	1.09	3.1	.3	2.6	1.3	16	.1	.5	. 1	33	.29	026	7	21	. 31	48	076	1	.81	007	04	1	01 1	8 <	1<	05	3 < 5	15	
CK E54500 N2100	.2	10.9	4.0	33	< 1	10.1	3.6	134 1	1.03	1.9	.3	19.3	1.3	16	.1	.4	.1	29	.27	021	6	20	30	46	073	ī	.76	007	03	1	02 1	7 <	1<	05	3 < 5	15	
																		•			-					~									0.0	••	
CK 554500 N2050	.6	17.4	4.0	34	<.I	16.5	5.6	110 1	1.97	4,5	.2	<.5	1.2	14	.1	. 5	.1	49	.22	144	5	30	.26	69	. 059	11	.19	.007	03	.1	.01 2	2 <	1<	95	4 <.5	15	
CK £54500 N2000	. 4	13.3	4.0	ĄΔ	<.1	14.8	6.5	280 1	1.31	3.3	.3	5.5	1.0	13	. 1	.4	. 1	37	. 22	025	6	25	. 32	61	. 057	1	91	.006	. 04	.1	.02 1	. 8	1<.	05	3 < 5	15	
CK E54500 N1950	. 4	11.7	4.1	40	<.1	14.0	7.6	407)	1.17	2.3	. 4	14.1	1.4	16	.2	.4	. 1	34	.26	.023	7	23	.32	58	.074	1	. 87	.007	.04	.1	02 2	.0	.1<	05	3 < 5	15	
CK E54500 N1900	3	11 0	2 B	42	< 1	10.2	4 1	134 1	1 18	18	2	7	10	13	2	4	1	35	26	026	5	21	26	41	068	<1	69	006	03	< 1	01 1	4 <	1<	05	3 < 5	15	
CK E54500 N1850	4	15.0	2.7	28	< 1	16.1	4 2	132	1 19	34	2	11	11	14	1	4 <	: 1	33	27	051	š	22	31	46	062	Ť	83	006	กร	1	01 1	7	1<	ns.	3 < 5	15	
CK 204000 M1000		10.2	÷.,	40	. 1	* . . 1	C			• •		~		÷.				~~	/	001	5		. 01	-0		-		υψψ		• •	1			0.2	00	15	
 STANDARD DS7	20.6	108.5	6 8 .7	397	.9	56.2	9.6	625 2	2.47	49.8	4.8	68.8	4.5	74 6	6. <u>5</u> 6	.2_4	1.6	87	.95	082	12 2	253 1	1.04	385	. 120	41]	00	100	. 47	3.9	. 20 2	44	.3.	18	5 3.6	15	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

ΔΔ

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Copper Ridge Exploration Inc. PROJECT COPPER KING File # A608296 Page 1 500 - 625 Nowe St., Vancouver BC V6C 216 Submitted by: Greg Dawson

	COPPET REAGE SAPIDIACION LINE, FROUDEL COFFER RING FILE # A608296 Page 1 500 - 625 Nowe St., Vancouver BC V6C 276 Submitted by: Greg Dawson Image: Comparison of the submitted by: Greg Dawson
SAMPLE#	Mo Cu Po Zn Ag Ni Co Mn Fe As Li Au Th Sn Cd Sb 8i V Ca P La Cn Mg Ba Ti B Al Na k № Hg Sc Ti S Ga Se ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
G-1 CK 54500 1800 CK 54500 1750 CK 54500 1790 CK 54500 165G	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CK 54500 1600 CK 54500 1550 CK 54500 1500 CK 54500 1450 CK 54500 1400	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CK 54500 1350 CK 54500 1300 CK 54500 1250 CK 54500 1200 RE CK 54500 1200	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
CK 54500 1150 CK 54500 1100 CK 54500 1050 CK 54500 1000 CK 54500 950	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
CK 54500 900 CK 54500 850 CK 54500 800 CK 54500 750 CK 54500 700	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
CK 54500 680 CK 54500 650 CK 54500 600 CK 54500 550 CK 54500 500	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CK 54500 450 CK 54500 400 CK 54500 350 CK 54500 300 CK 54500 250	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
STANDARD DS7	21.1 107.7 69.7 399 .9 55.8 9.6 653 2.46 49.4 5.0 67.7 5.2 91 6.5 6.1 4.6 88 1.01 080 17 253 1.06 389 .128 41 1.21 .098 .49 3.7 .20 2.7 4.3 19 5 3.6
GROUP 1DX - 15.0 ((>) CONCENTRATION - SAMPLE TYPE: SO	GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 NL, ANALYSED BY ICP-NS. EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITO IL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
Data FA	DATE RECEIVED: OCT 23 2006 DATE REPORT MAILED:

ACHE ANALYTICAL															_)4	CHE ARALYTICA	Ą
SAMPLE#	Mo	<u>í</u> u	Ph	Zn 4	la Ni	 fn	 Man	Fe	As	11	Au Ti	ı Sr	b.)	Sb	Bi	٧	Ca	₽	La C	r M	o Ba	Ti	B A1	Na	κı	J Ho	Sc	י וז	63	م.	
	200	DDM	DOM		יייים אינייייים המכים האכ	i Domi	DDM	 	DDm () D M	ppb ppr	порп	1 000	ppm (ppm (DEM	ĩ	% p	opm por	 M	ໂວວທີ	2	ppm 3	1	۲ DOG	יייי הממח		່. ກາ ໃ	Doman	DOT	
· · · · · · · · · · · · · · · · · · ·										<u> </u>						··		. <u> </u>													
G-1	.6	2.2	2.8	44 <	1 6.0	3.8	494	1.67	<.5	L.7	1.7 3.3	3 54	<.1	<.1	. 1	34	. 44 .	076	6 5	9.5	6 184	104	1.89	.067	.49 .1	<.01	2.3	4< 05	4 •	<.5	
CK 54500 200	.3	14.0	3.8	34 <	1 13.3	4.3	164	1.19	2.7	.3	5.9 1.2	2 18	1.1	. 4	. 1	32	. 29 .	035	7 1	9.3	5 55	. 063	2.99	.006	.04 .1	02	1.9	.1<.05	3.	< 5	
CK E55000 N4000	. 3	13.5	3.6	45 <	1 12.8	5.5	209	1.57	2.3	.3 !	55.0 1.2	2 20).1	.3	.1	44	.31 .	.033	6 2	0.3	7 62	. 081	1 i.D2	.007	.05 .1	.01	2.1	.1<.05	; 4 ·	<.5	
CK E55000 N3950	. 3	13.7	3.4	35 <	1 11.9	4.9	219	1.48	2.6	.2	1.9 1.2	2 20) .1	.3 •	<.1	42	. 34 .	040	6 1	9.3	7 58	.076	2 .85	.007	.05 <.]	L.01	2.1 <	.1<.05	3.	<.5	
CK E55000 N3900	. 4	21.6	4.0	48 <	1 16.2	7.3	304	1.78	2.8	.3	.8 1.3	2 22	2.1	.4	.1	46	.34 .	050	7 2	5.4	3 90	.068	2 1.21	.010	. 07 – . 1	1.02	2.5	1<.05	4 .	<.5	
~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-		47.4	1 16 2		221	1 04	- e	2			1			40	22	05.3	د م ا	<i>c</i> ,		000	2 1 10	663			. .			-	
CK E55000 N3850	_4 _	22.7	4.2	4/ <.	.1 16.2	7.8	331	1.04	3.0	.3	2.51.	3 41 3 10		.4	.1	40	.32. 	002	0 ZI 6 11	ບ .4 ຂ່າ	3 82	000	61.18	.007	.07 .1	L .02	2.5	. 1<.05	4	<.5	
CK E55000 R3800	.4	11.9	3.9	05.	1 11.1	10.3	204	2.10	1.4	.2	1716	D 10	1.0	.0	. 1	50	.20.	0.04	5 1	0.0 A 0	2 103	.001	1 1.19	.007	.05 5.1		2.3	.1<.05	. 4.	<.5	
CK E55000 N3/50	.5	15.6	4.2	20.	1 15.7	10.5	370	2.19	2.1	.0	1 5 1 4	1 20			. 1	09 GA	. ລະ. ລາ	040	5 2 C	н .Э ю с	2 110	.089	11.49	.008	.08 .1	1.02	3.U	.14.05		<.5	
CK E55000 N3700	.0	22.0	4.2	70 . GA	1 10.2	10.0	770	1 04	2.1	. 3	2.3 1.1	1 27	+ . L) 2	1	J4 70	, JJ . 12	043	7 7	0.0. N.N	5 116	.074	2 1.00	.009	.10 <.1	1.03	3.1	.15.05		<.5 - 5	
CK E55000 N3650	. J	10.7	3.3	64	.1 10.2	1.1	300	1.00	2.2	. 3	2.5 1.		. 4	. J	. 1	47	.43 .	050	1 2	4 .4	5 94	.065	2 1.00	.010	.07 .1	L .U2	3.1	.15.05	, 4.	s.5	
CK E55000 N3600	.4	19.6	3.5	72	1 17.4	11.8	457	2.17	1.9	.3	1.7 1.3	1 22	2.2	. 3	.1	53	. 31 .	035	6 2	8.6	1 105	.074	1 1.56	.008	.09 <.1	1 02	3.0	.1<.05	5 5	<.5	
CK E55000 N3550	.2	12.3	3.1	53 <.	I 12.0	5.9	208	1.49	1.3	.2	1.3 1.	1 23	3 .1	. 4	<.1	44	.33 .	019	5 1	8.4	5 77	098	1.98	.007	.07 <.1	1.01	2.2	.1<.05	; 3.	<.5	
CK E55000 N3500	.3	12.9	3.3	51 <	1 12.7	6.0	209	1.62	1.7	. 3	.91.	22	1.1	. 4	.1	47	. 36 .	023	52	1.4	9 6B	.104	1 1.05	.007	.07 .1	1.01	2.3	.1<.05	5 4 .	<.5	
CK E55000 N3450	.3	12.4	3.2	48 <	1 12.0	5.3	206	1.46	1.4	.2	2.5 1.0	21	1	.3 -	<.1	45	.36.	023	5 1	9.4	1 67	. 097	2 .97	.007	.07 < 1	1.02	2.2	.1<.05	; 3.	<.5	
CK E55000 N3400	.2	10.1	3.3	34 <	1 11.3	4.6	214	1.15	1.2	2	4.1.1.3	2 17	1.1	.2	<.1	32	. 29 .	019	61	7.3	4 49	. 080	1 .77	.006	.04 < .]	1.01	1.B <	.1<.05	5 3.	<.5	
CK E55000 N3350	.2	9.5	3.1	34 <	1 10.9	4.6	208	1.10	1.1	. 3	1.81.	2 19	3.1	.2	.1	32	. 31 .	020	6 l	6.3	3 48	.079	1 76	.006	.04 <.1	1.01	2.0 <	. 1< . 05	5 3	<.5	
CK E55000 N3300	.3	12.0	3.2	44 <	1 13.3	5.9	271	1.28	1.2	.3	1.5 1.3	2 20	1.1	.2	.1	37	.30 .	02:	7 2	. O	7 61	.079	1.93	.007	.05 <.1	1 01	2.1	1<.05	5 3 .	< 5	
CK E55000 N32S0	.3	11.9	3.6	43 <	1 14.0	6.4	231	1.38	1.7	.3	.91.	2 21	1	.2	.1	41	.35.	024	62	1.4	1 61	.088	2.94	.008	.05 <.1	1.01	2.2	.1<.05	53.	<.5	
CK £55000 N3200	. 2	13.9	3.8	43 <	1 15.2	6.6	256	1.51	2.1	.3	1.3 1.	3 22	1.	.2	.1	44	.35 .	026	62	3.4	4 62	.091	2 1.04	.007	.05 .1	1.02	2.3 <	.1<.05	5 3 .	<.5	
CK £55000 N3150	.3	12.5	4.0	41 <	1 13.8	6.7	323	1.29	1.7	.3	1.0 1.3	3 19	.1	.2	.1	37	.32	028	6 2	.2.4	0 59	.081	1.89	.007	.05 .1	1 .01	2.0 <	.1<.05	5 3 -	<.5	
CK EEE000 N2100	2	11 6	4.4	20 -	1 12 0	5.2	273	: 31	1.8	2	601	5 20	1 1	2	1	28	35	032	6 2	11 A	a 59	002	2 00	007	05 1	1 02	202	1 - 14		~ 5	
CK E55000 N3100	. 2	14.0	2 5	12 -	1 15.0	59	253	1.31	1.0		51	2 22	, .r. . 1	. 2	1	36	- 38 - 38	025	7 2	2 7	10 JO	090	1 95	007	05 1	1 01	2.0 ~	1< 05		~.a 2 5	
	. 4	14.0	2.5	42 -	1 15.0	5.6	208	1 39	1 1	.3	221	2 21	1	.0	1	37	36	022	6 2	2 3	- 70 - 70	085	2 00	000	05 1	1 01	2.9	12 05		~.5	
CK 555000 450000	. 2	0.0	3.5 A 1	24 2	1 10.0	1 3.0	100	1.05	1.8	3	81	4 19	, . <u>.</u>	.2	î	35	.32	027	71	9 2	9 55	079	1 75	005	04 1	1 01	17	1< 04	; - ; -	~.5	
CK EEE000 M2930		20.2	6.6	24 -	1 21 6	14 6	796	2 71	27	5	91	2 25	2	3	ĩ	53	78	042	άÂ	1	7 169	051	1 1 65	000	08 < 1	1 03	34	1< 04		2.5	
CK E35000 N2900		29.2	5.0	70 .	.1 31.0	14 0	190	6.01	6.7						••				0 7	· · ·	, 100	.001	1 1.03	.000	.00 4.1	L .00	0.7		, ,		
RE CK E55000 N2900	. 5	28.7	5.3	68	1 29.1	14.9	772	2.23	2.7	.5	61.	1 25	5.3	.3	. 1	51	. 37 .	041	73	9.4	7 166	.051	1 1.59	.009	.08 <.3	1.02	3.2	.1<.05	5 6	<.5	
CK E55000 N2850	. 4	15.0	4.1	108	2 18.7	12.8	1107	1.85	15	.2	1.7) 29	9 .2	. 2	.1	47	.40 .	078	52	3.3	3 127	.065	1 1.40	.010	.06	1.01	26	.1<.05	5 5	<.5	
CK E55000 N2800	.3	18.1	2.9	61 .	1 16.9	7.6	289	1.90	2.0	.3	.51.) 25	i.1	.3	. 1	48	. 39 .	.047	62	5.4	4 89	. 083	1 1.30	.007	.06 <.)	1.01	29	.1<.05	5 5	<.5	
CK E55000 N2750	.4	13.0	3.4	75 <	1 14.3	8.7	660	1.62	1.4	. 2	.91.) 24	.2	.2	. 1	45	.37.	.043	52	1.3	499	. 081	1 1.10	007	.05 <.3	1 .02	2.3	.1<.05	5 4	<.5	
CK E55000 N2550	. 4	22.4	4.1	49 <	1 21.2	7.1	244	2.03	3.8	. 3	6.61.	5 24	1, 1	.3	.1	49	. 40 .	069	62	8.5	8 69	. 088	1 1,27	.008	.06 <.1	1 .01	2.6	. 1< . 05	5 4	<.5	
						- -	7.10	1 74		~	<i>c</i> 0			-	,	40	26	0.41	• •		n ne	0.71	1 1 00	0.07				1 - 07	. ,		
CK E55000 N2500	.4	13.5	3.6	73 .	1 14.1	9.7	/49	1.61	1.5	.2	b.U .!	3 22	<u> </u>	.2	1.	43	. JD .	.041	5 2	0.3	0 95	.0/1	1 1.08	.00/	.04 .1	10.1	<u> <u></u></u>	.1<.05	, 4.	< 5 	
CK 55000 2400	.5	95.8	8.5	85	.2.72.3	12.0	148	4.11	3.0	.9	3.72.	24	- L	.4	.4	6/	. 20 .	800	12 /	7.5	9 344	0,14	1592	.013	.11 <.!	1.0/	8.2	.25.05	5 TĐ.	<.5	
CK 55000 2350	.3	11.6	3.6	29 <	.1 9.9	4.4	169	1.16	2.1	.2	2.01	1) .l	- 2	. 1	35 22	.26.	.029	4 1	.o2	8 51	.05/	1 .82	.005	03 < 1	1.01	10<	.1<.03	2 3	<.5 . r	
CK 55000 2300	.3	10.0	3.3	26 <	.1 11.7	3.4	118	1.05	2.0	.2	1.1.1.1	2 14	1	د.	.1	32	. 23 .	.023	6 1	7 .2	5 51	.064	1.73	.005	.02 1	1. UL	1.5 <	.1<.05	s 3	<.5	
CK 55000 2250	.3	9.7	3.5	32 <	.1 11.9	3.8	127	1.06	1.4	.3	2.5 1.	16	. 1	. 3	. 1	33	. 24	.018	6 I	.0.2	5 56	.059	1.77	.005	.03 <.;	ւ մե	1.6 <	.1<.0	> 3	5.5	
STANDARD DS7	20.7	103 5	68 D	390	9 54 0	94	631	2.38	47.7	4.9	50.94	5 89	5 6.3	5.9	4.6	85	. 97	.081	13 22	6 1.0	5 381	126	40 1.08	.095	.47 3.9	9.20	2.6.4	2 .21	5	3.5	
	20.7		30.0	~/~			~~*																								

Sample type: SOLL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data (FA

44
ACHE ANALY (UAL

ATHE MALY TOAL								_																									_	ACHE MI	ALTICAL	
SAMPLE#	No ppm	Cu ppm	Pb pprp	Ζл ррπ	Ag ppm	Ni ppm	Со рряя	Мл ррт	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb pprø	Bi ppm	۷ مربع	Cə %	P 2	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	9 ppm	AÌ 1	Na L	K X	W ppm	Чg ррл	Sc ppm	۲٦ ppm	S X	Ga ppm	Se opm
S-1 CK 55000 2200 CK 55000 2150 CK 55000 2100 CK 55000 2050	. 6 3 . 5 . 4 . 5	2.4 11.5 7.5 8.6 24.9	2.8 4.0 4.1 3.7 2.8	46 31 56 99 44	<.1 <.1 <.1 .1 <.1	6.5 12.7 10.2 20.6 35.0	4.3 4.2 4.9 7.1 10.1	501 147 210 180 285	1.73 1.14 1.55 1.68 1.88	<.5 1.8 1.7 3.0 5.2	1.6 .3 .2 .2 .2	1.5 2.7 1.0 5.1 1.3	3.5 1.4 1.0 1.1 1.1	53 14 11 21 12	<.1 .2 .3 .2	<.1 .3 .2 .3	.1 .1 .1 .1	35 35 43 39 44	.44 .23 .18 .27 .22	.083 .021 .069 .192 .097	6 5 4 3 4	57 20 19 21 26	.61 .32 .18 .22 .35	203 62 59 107 67	. 109 069 . 056 . 048 . 045	1 1 1 1 2	. 95 . 91 . 97 I. 46 I. 18	.076 .006 .005 .005 .005	.53 .03 .03 .04 .03	.2 - .1 .1 .1	<.01 .02 .02 .02 .02	2.6 1.9 1.3 1.5 1.5	.4 .1 .1 .1 <.1	<.05 <.05 <.05 <.05 <.05	4 3 4 3	<.5 <.5 <.5 <.5
CK 55000 2000 CK 55000 1950 CK 55000 1900 CK 55000 1850 CK 55000 1800	.4 .4 .4	19.8 18.4 14.5 18.4 17.0	2.5 3.1 3.3 2.9 4.1	31 34 69 51 69	<.1 <.1 <.1 <.1	21.6 19.3 24.5 20.4 23.0	5.3 7.5 8.7 7.1 9.0	215 210 139 155 175	1.55 1.67 2.00 1.64 2.04	4.8 4.0 3.9 3.4 3.9	.3 2 2 3 3	1.5 1.5 40.8 .8 6.3	1.4 1.2 1.4 1.5 2.0	15 14 13 12 15	.1 .1 .3 .1 .2	.6 .5 .5 .4	.1 .1 .1 .1	42 48 47 40 48	.27 .26 .25 .21 .22	.047 .041 .137 .098 .093	5 5 4 6	24 28 28 25 31	.33 .35 .25 .24 .33	53 54 59 58 91	. 059 . 063 . 050 . 049 . 069	1 1 1 2	.70 .84 1.28 .98 1.60	.005 .005 .005 .005 .005	.03 .03 .03 .03 .04	.1 .1 .1 .1	. 02 . 01 . 02 . 02 . 02	1.7 1.7 1.9 2.0 2.4	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	2 3 3 4	v v v v v v
CK 55000 1750 CK 55000 1700 CK 55000 1650 CK E55000 N1600 CK 55000 1600	.8 .5 .4 .6	16.4 6.2 22.6 22.3 21.1	3.6 4.1 4.3 3.8 3.9	87 37 64 51 62	<.1 <.1 <.1 <.1	12.8 6.4 28.6 19.1 26.8	7.3 4.4 9.9 7.1 9.2	170 402 187 278 210	1.91 1.41 2.18 1.92 2.02	2.6 2.0 4.3 3.7 4.7	.2 .1 .3 .3	3.6 1.0 1.5 1.4 1.6	1.2 .9 2.1 1.4 1.6	21 9 13 21 14	.4 .1 .2 .1 .2	.3 3 4 4 .7	.1 .1 .1 .1	48 40 49 47 47	.36 .17 .22 .38 .23	.027 .079 .089 .065 .098	4 6 6	23 17 31 26 32	.33 .14 .42 .54 .34	98 35 108 65 110	.071 .055 .070 .080 .069	1 1 1 1 1	.96 .72 1.76 1.16 1.68	.008 .005 .005 .006 .009	.05 .03 .04 .06 .04	.1 .1 .1 .1	. 01 . 01 . 03 . 02 . 02	2.0 1.2 2.6 2.5 2.3	<.1 .1 .1 <.1	< .05 < .05 < .05 < .05 < .05	4 4 4 4	<.5 <.5 <.5 <.5 <.5
CK 55000 1550 CK 55000 1500 CX 55000 1450 CK 55000 1400 CK 55000 1350	4 .5 .3 2	5.5 22 0 12.9 14.6 11.7	4.2 4.3 4.0 5.4 4.4	28 40 39 45 29	<.1 <.1 <.1 <.1 <.1	5.3 21.4 12.8 15.4 11.5	3.2 6.7 4.1 5.9 3.5	294 244 151 208 122	.93 1.74 1.24 1.25 1.01	1.0 7.8 3.5 3.6 2.6	2323	<.5 3.3 1.2 1.7 2.0	1.1 2.0 1.3 1.5 1.5	12 18 13 15 16	.1 .1 .1 .1	.2 1.0 .5 .5	.1 .1 .1 .1	30 46 34 35 29	.19 .31 .25 .25 .29	036 068 044 025 033	5 9 6 7 7	14 28 20 23 19	.10 .36 .29 .34 .29	58 63 48 69 49	. 055 . 080 . 059 . 069 . 074	1 1 1 1 1	.69 1.13 87 1.00 .80	.006 .007 .005 .005 .006	02 .06 .04 .05 .04	<.1 .1 .1 .1	. 01 . 02 . 01 . 01 . 01	1.3 2.4 1.7 1.9 1.6	.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	3 3 3 3 3	<.5 <.5 <.5 <.5
CK 55000 1300 CK 55000 1250 CK 55000 1200 CK 55000 1150 CK 55000 1150 CK 55000 1100	. 2 . 2 . 5 . 2 . 2	8.4 8.3 46.0 9.7 7.3	4.6 4.4 8.3 4.7 4.7	23 22 70 25 21	<.1 <.1 <.1 <.1 <.1	8.8 9.4 37.0 10.3 7.9	3.2 3.1 11.0 3.1 2.6	141 130 460 142 99	.95 .91 2.90 1.03 .83	3.8 2.8 9.9 3.2 3.1	.3 .4 .3 .2	3.5 1.8 3.3 1.9 <.5	1.6 1.4 2.5 1.6 1.4	17 16 31 16 13	.1 .1 <.1 <.1 <.1	.4 .4 1.1 .4 .4	.1 .1 .1 .1	32 30 61 30 26	. 30 . 29 . 46 . 28 . 24	036 032 064 034 016	8 7 9 8 6	17 16 52 17 16	. 26 . 25 . 66 . 28 . 24	43 49 174 53 43	.079 .079 .085 .076 .076	1 1 1 1 1	. 67 . 64 1. 69 . 69 . 60	.006 .005 .011 .008 .006	.04 .03 .12 .04 .03	.1 .1 .1 <.]	. 01 . 01 . 06 . 02 . 01	1.6 1.5 5.8 1.6 1.3	< 1 <.1 .1 <.1	< 05 < 05 < 05 < 05 < 05 < 05	2 2 5 2 2	<.5 <.5 <.5 <.5
CK 55000 1050 RE CK 55000 1000 CK 55000 1000 CK 1 950 CK 55000 900	.2 .2 .1 .2 .3	7.8 8.9 8.5 7.4 13.4	5.4 4.8 4.8 4.3 3.8	24 31 30 22 25	<.1 <.1 <.1 <.1 <.1	8.2 9.8 9.6 7.3 12.4	2.6 3.3 3.1 2.5 7.3	104 133 126 106 356	. 83 . 93 . 86 . 75 1. 25	1.9 1.7 1.5 1.7 4.3	.3 .3 .2 .3	1.8 .5 1.0 1.5 2.3	1.4 1.7 1.7 1.2 1.7	14 17 14 13 18	<.1 .1 .1 .1	.3 .3 .3 .5	.1 .1 .1 .1	26 28 27 25 37	.24 .27 .24 .23 .33	.018 .009 .008 .013 .049	7 7 7 6 7	16 17 16 15 22	. 23 . 24 . 23 . 23 . 31	52 53 53 41 51	.071 .083 .076 .075 .075	1 <1 <1 <1 _1	. 64 . 60 . 56 . 57 . 74	.005 .007 .007 .005 .005	.03 .03 .03 .03 .03	.1 .1 < 1 .1	.02 .01 .01 .01 .03	1.5 1.6 1.5 1.2 1 9	<.1 <.1 <.1 <.1 <.1	< .05 < .05 < .05 < .05 < .05	22222	<.5 <.5 <.5 <.5
CK 55000 850 CK 55000 800 CK 55000 750 CK 55000 700 CK 555000 N650	.3 .9 .5 .4	11.3 11.5 30.7 24.0 18.9	4.7 4.6 4.9 2.9 3.8	24 28 60 78 68	<.1 <.1 <.1 <.1	9,4 10.5 35.0 24.9 15.7	4.0 4.3 15.3 8.6 11.9	204 165 526 288 620	.95 .96 2.39 2.15 1.88	2.2 1.8 5.9 3.0 1.9	33433	9.1 1.1 <.5 1.7 2.5	1.3 1.5 1.0 .8 .8	15 14 22 19 19	.1 .3 .2	.3 .5 .4 .3	.1 .1 .1 .1	30 29 47 48 48	.25 .23 .30 .28 .28	.018 .012 .065 .064 .036	7 6 7 3 5	17 18 29 31 24	.27 .27 .37 .50 .55	55 60 192 102 104	. 066 . 066 . 043 . 044 . 066	<1 <1 <1 1 1	. 68 72 1.94 1.12 1.36	.006 .006 .007 .005 .007	.03 .03 .06 .04 .08	.1 <.1 .1 <.1	.01 .01 .04 .01 .03	1.6 1.5 2.5 1.7 2.6	.1 .1 <.1 .1	< .05 < .05 < .05 < .05 < .05 < .05	2 2 5 4 4	< 5 5 5 5 5 5 5
STANDARD OS7	20.4	107 5	67.9	387	.9	55.6	9.6	622	2.41	48.6	4.7	71.0	4.3	73	6.5	5.9	4.5	84	.93	.081	13	226	1,04	376	. 119	38 (1.00	.083	. 47	3.8	. 19	2.4	4.1	. 22	5	3.3

Sample type: SOIL SS80_60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

AA

																																		ACHE AU	MALYTICAL	
Sample#	Мо ррт	Cu ppm	Fb pm	Zn ppm	Ag ppm	Ni ppm	Со ррп	Ма ррт	Fe រូ	As pom	U ppm	Au ppb	Th ppm	Ω PPm	Cd ppm	Sb ppm	Bi ppm	ρρπ V	Ca ¥	p t	La ppm	Cr ppm	Mg 2	Ва ррт	Ti 23	B pom	A] 2	Na \$	K R	W ppm	Fg ppm	Sc ppm	T1 ppm	S 2	Ga ppm	Se ppr
)-1 IK 55000 650 IK 55000 600 IK 55000 550 IK 55000 500	.6 .8 .6 .6	2.1 19.9 8.2 15.1 17.7	2.8 3.0 4.7 3.8 3.5	43 59 51 70 42	<.1 <.1 .1 .2	6.6 24.2 8.3 14.2 13.7	4.2 9.5 3.3 7.5 5.0	488 290 109 180 247	1.67 1.95 1.65 1.73 1.90	<.5 5.2 3.5 3.8 4.8	1.7 .2 .2 .2	1.5 34.6 <.5 .8 .8	3.3 1.0 .8 .9 1.1	52 10 20 17 21	<.1 .2 .2 .3	<.1 .6 .3 .4 .5	.1 .1 .1 .1	35 46 43 41 45	. 43 .18 .27 .27 .38	.076 .088 .125 .105 .115	6 4 5 4	62 26 19 23 25	59 31 18 26 22	199 106 80 101 70	. 110 . 050 . 054 . 055 . 048	1 1 1 2 1	.91 1.38 .79 .88 .95	.077 .005 .005 .008 .006	. 49 . 02 . 05 . 04 . 03	.2 .1 .1 .1	<.01 .02 .02 .02 .01	2.9 1.8 1.2 1.6 1.5	.4 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	5 3 5 3 3	
X 55000 450 X 55000 400 X 55000 350 X 55000 300 X 55000 250	.2 3.5 .9 .7	12.9 71.7 7.9 10.6 22.8	2.7 4.2 2.5 3.6 3.9	39 103 26 36 68	<.1 .2 <.1 <.1	14.4 34.1 8.8 7.9 14.5	5.2 18.0 3.9 3.3 8.5	202 3399 153 112 1112	1.17 4.13 1.17 1.61 1.62	2.6 12.2 2.5 3.5 2.6	.3 1.0 .3 .2 .3	20.7 1.7 .8 <.5 <.5	1.2 .9 1.1 .7 .5	17 48 17 15 26	.2 .5 <.1 .1	.4 .5 .4 .5	<.1 .1 <.1 .1 .1	33 56 30 53 41	.28 .73 .34 .21 .46	.031 .082 .048 .016 .043	6 9 5 3 7	21 41 19 20 22	28 .61 .30 .19 .29	62 221 44 48 99	.063 .035 .059 .075 .059	1 2 1 1 1	.64 1.26 .56 .66 .77	.008 .009 .006 .005 .008	.03 .05 .02 .02 .05	.1 .1 .1 .1	.01 .05 .01 .01 .03	1.7 3.3 1.6 1.1 1.9	<.1 <.1 <.1 <.1	<.05 .07 <.05 <.05 <.05	2 4 2 4 3	< < < < < < < < < < < < < < < < < < <
X 55000 200 X 55000 150 X 55000 100 X 55000 50 X 55000 0000	5 6 7 4	22.0 9.6 63.7 13.8 16.9	5.6 3.4 5.7 3.0 4.3	72 28 67 42 69	.2 .1 .3 < .1 .3	19.6 6.4 38.1 11.1 13.6	7.6 3.1 13.5 5.4 5.8	344 96 557 149 152	1.77 1.37 2.74 1.54 2.26	3.5 2.4 8.2 2.7 4.9	.4 .2 .5 .2 .2	7.1 25.5 .7 1.1 .7	.9 .9 1.5 1.0 1.2	22 13 22 13 17	.1 .2 .1 .2	.4 .8 .5 .5	.1 .1 .1 .1	45 46 69 43 58	. 33 . 17 . 34 . 23 . 31	.033 .015 .040 .017 .087	6 4 11 5 5	30 17 44 23 27	. 42 . 15 . 48 . 20 . 26	97 39 149 62 80	.069 .079 .060 .061 .062	1 <1 1 1 1	1.33 .57 1.96 .50 1.42	.010 .007 .009 .005 .006	.06 .02 .06 .02 .02	-1 <.1 .1 .1	.04 .02 .03 .01 .03	2.7 1.0 3.6 1.3 1.8	.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 2 3 6	<
X 55500 4000 X 55500 3950 X 55500 3900 X 55500 3850 X 55500 3850 R CK 55500 3850	.6 .3 .4 .4	21.6 32.0 21.3 16.7 17.2	5.1 6.2 4.5 3.9 4.0	59 65 42 35 35	<.1 <.1 <.1 <.1	17.7 33.5 20.3 14.0 14.6	8.3 12.9 6.9 5.6 5.7	212 286 274 207 203	2.29 2.86 1.59 1.57 1.55	3.9 3.6 3.9 3.7 3.7		1.2 1.0 .6 1.3 1.6	1.3 1.7 .9 1.2 1.2	15 16 18 25 24	.1 .2 .1 .1	.4 .3 .4 .4	.1 .1 <.1 <.1	60 68 39 44 44	. 27 . 23 . 30 . 49 . 48	.097 .073 .056 .049 .050	7 7 7 7 7	30 41 29 25 25	.39 .50 .43 .39 .39	77 99 77 57 58	.081 .109 .041 .082 .081	1 1 1 2	1.62 1.90 .96 .88 .91	. 006 . 008 . 005 . 009 . 008	.05 .06 .05 .05 .05	.1 .1 .1 .1	04 02 03 02 02	2.7 2.7 2.1 2.3 2.3	.1 .1 < 1 <.1	<.05 < 05 <.05 <.05 < 05 < 05	6 6 3 3	
:K 55500 3800)K 55500 3750)K 55500 3700)K 55500 3650)K 55500 3600	.3 .6 .3 .9 .4	11.4 64.9 7.3 28.5 27.6	4.3 6.4 3.9 6.7 3.5	37 60 37 70 32	<.1 <.1 <.1	14.2 56.1 13.1 32.6 13.0	5.5 16.2 4.8 11.2 6.1	153 842 124 472 200	1.38 3.18 1.31 2.63 1.44	1.8 4.5 1.2 4.7 1.6	.3 1.3 .2 .3 .3	6.1 1.6 <.5 1.7 2.1	1.3 2.0 1.1 1.7 1.3	18 37 16 16 17	.1 .2 .1 .2	.2 .6 .2 .3	.1 .1 .1 .1	39 65 39 66 44	.29 .77 .27 .27 .32	.030 .037 .021 .095 .013	8 19 6 5 7	23 63 21 42 21	. 32 . 69 . 22 . 43 . 31	59 209 52 94 70	.086 .065 .083 .079 .086	1 	.80 2.59 .70 2.41 .94	007 013 010 005 005	.04 .10 .03 .06 .03	.1 <.1 .1 .1	. 01 . 06 . 01 . 04 . 02	1.9 7.9 1.6 3.0 1.9	< 1 < 1 < 1 < 1	<.05 <.05 <.05 <.05 <.05 <.05	37363	
:K 55500 3550 :K 55500 3500 :K 55100 3450 :K 1 3400 :K 55500 3350	.3 .4 .5 .4	10.3 19.4 25.3 12.2 14.5	3.1 5.0 3.2 3.3 3.3	23 48 38 46 50	<.1 <.1 <.1 <.1 <.1	8.5 16.3 15.6 12.5 26.2	3.4 5.5 6.8 5.3 8.4	102 193 444 271 172	1.17 1.74 1.51 1.48 2.15	1.3 2.4 2.3 2.3 3.3	.2 .3 .3	.7 1.0 6.3 2.9 .6	1.2 1.3 1.1 1.5 1.4	16 16 18 17 18	.1 .1 .1 .2	.2 .3 .3 .4	<.1 .1 .1 .1	37 50 43 44 51	. 31 . 24 . 32 . 31 . 34	.011 .037 .024 .050 .107	6 6 7 5	18 26 26 23 30	.20 .38 .27 .29 .33	39 52 78 51 101	.085 .071 .066 .085 .073	1 1 1 2	. 56 1.25 .94 .84 1.17	. 006 . 005 . 007 . 005 . 005	.03 .04 .04 .04 .06	.1 .1 .1 .1	<.01 02 02 02 02 02	1.5 2.0 2.6 1.9 2.1	<.1 .1 <.1 1	<.05 <.05 <.05 <.05 <.05	3 5 3 4	
ж 55500 3300 ж 55500 3250 ж 55500 3200 ж 55500 3150 ж 55500 3100	.5 .4 .2	25.1 8.9 8.0 9.5 10.6	2.8 3.7 3.7 4.2 2.7	99 37 30 37 42	<.1 <.1 <.1 <.1 <.1	19.5 10.8 7.9 8.1 12.4	8.5 5.6 3.6 4.9 4.3	400 215 113 317 189	2.24 1.41 1.24 1.13 1.13	1.5 2.0 1.5 1.4 1.1	.3 .2 .2 .2 .3	1.9 1.6 30.7 2.2 4.1	1.2 1.2 1.2 .9 1 1	21 17 15 17 17	.] .1 .1 .1 .1	.4 .3 .2 .2 .2	.1 .1 .1 <.1	56 40 36 35 32	. 35 . 30 . 26 . 31 . 30	.030 .042 .058 .033 .019	8 6 6 6	26 20 17 16 19	.49 .23 .18 .19 .28	168 67 50 46 53	.113 .081 .070 .072 .082	1 2 1 1	1.37 .66 .66 .74 .76	.009 .005 .005 .006 .006	.08 .05 .03 .04 .04	.1 .1 < 1 < 1	. 02 02 01 . 02 . 01	3.5 1.6 1.6 1.7 1.8	.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	*****	
TANDARD 057	20.8	138.0	66.9	398	.8	56.4	9.5	635	2.44	48.9,	4.9	67.0	4.5	75	6.3	5.9	4.5	85	. 96	.080	14	246 1	.05	379	.124	38	1.02	. 087	.45	3.8	. 19	2.6	4.2	.19	5	3.5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🤇 FA

ACHE ANALYTICAL																														ACHE ARALY	(ICAL
SAMPLE#	Mo	Û	Pb	Zn A	D N	i Co	Мл	Fe	As	IJ	Aυ	Th :	Sr C	t Sb	Bi	٧	Ca	P	1a (Cr	Ma B	a Ti	B	A1	Na	K Y	d Ho	Sc. II	5	Ga Se	
	ppm	DOM	DDM	אמ האממ		9000	DDT	2	DOM D	- 1000	pab p	ON DI	- 011 00	 ຄຸຽຽຫ	noq	DDm	2	2	ODM DL	 D(11	\$ DD	n \$	DDM	ĩ		\$ 00	n DOM .		ž		
··· ·		P		F.F	··		P.E.	-	P P P	4							-	_	FIE FI						· _ ·	· •		PP" PP"			
G · 1	.5	2.0	2.5	41 <.	1 5.	8 4.2	454	1.58	<.51	6	<.5.3	.1	45 <	1 < 1	.1	33	. 37	.070	5 9	54	.55 19	2 . 099	1	. 85	.064	45	1< 01	2.0 3	< 05	4 < 5	
CK 55500 3050	.6	72.5	5.2	69	3 41.	1 11 2	1143	2.42	4.3	.5	1.01	0	35 1.	5 .5	1	54	.82	034	11 :	33	47 15	9 .056	ž	1.37	009	07	03	40 14	< 05	5 5	
CK 55500 3000	3	20.0	2.0	145 <	3	8 11 3	731	2.45	14	1	14	2	17	5 1	< 1	38	37	082	1	4	B2 13	8 063	ī	1 16	005	28 <	03	21 1	< 05	3 < 5	
RE CK 55500 3000	3	20.7	2.0	139 <	1 3	R 11 6	720	2 47	14	ĩ	7	2	17	5 1	1	38	37	081	ī	5	82 13	5 063	î	1 14	006	28 <	1 93	28 1	< 05	1 < 5	
CK 55500 2950		13.9	4.5	43 <	14	5 6 0	171	1 93	3.0	2	131	3	11	7 4	1	4R	21	058	6 3	23	34 5	5 065	1	95	006	04	1 01	10 < 1	- 05	1 < 5	
CK 55560 2560	.0	10.0	4.0			0.0	1/1	1.00	0.0		1.0 1					-0			· · ·				-		.000			1.9 - 1	UJ	4	
EX 55500 2900	Ę	28.7	4 1	93	2 14	6 10 4	750	2.07	15	2	53	8	15	, ,	1	45	29	056	5 3	20	57 10	7 066	1	1 16	006	07	0.4	22 1.	r 05	A < 5	
CK 55500 2950	. U 1	20.4	2.0	49 - 1	14	6 6 0	290	1.64	2.8		2.51		15	2 3	1	43	20	043	6	21	.37 IO .40 C	7 876	i	1.10	007	.07 .	1 02	2.2 .1	- 86	4 - J	
CK 55500 2000	. 47	14.0	3.0	40 ~	1 17	9 U.U	770	1 42	1.6	.2	~	. J .	17 .	2.5	. 1	40	21	0.040	2 2	10	- 10 0	, 1010 Dira 4	1	. 50	006	05 -	1.02	10 - 1	UD - 06	3 < 5	
CK 55500 2500		12.4	4.0	47 4	2 10	A A 2	142	1.90	1.0	.2	. 5 1	. U .	1/	3.2 7.0		26	20	0.009		16	20 5	/ .040 / 040	1	. 70	.000	.03 ~	1 00	1.0 \.1	VJ - AE	3 - 5	
CK 55500 2750	به . اد	12.4	4.0	67 .	2 10.4	4 4.2 6 2 1	242	1.40	1.0	. 2	<.3 I 7	0	19 .	1.Z		30	. 23	. 022	2.	10 . 20	.29 D	4 .000	÷.	. / 9	.007	.03 5	1.02	1.7 5.15	5.05	3 < 5	
CK 55500 2700	. 4	12.9	4.2	0 3	• 14.	9 0.1	543	1.40	1.0	.4		.9	15 .	2.3	. 1	20	. 23	. 020	0,	4Z -	.32 1	1 .050	1	. 90	.007	.05 <	L .UZ	1.0 .1.	<.05	3 < 5	
CK EEE00 2550	,	10.0	10	25	. 10		107	1 10		-		7	15		,	74	75	616	<i>.</i>	• 7	ar r	7 640	,	70	000	00 -					
CK 55500 2020	.4	12.3	3.0	35 5.	i 10.	0 5.3	197	1.10		.2	1.0	4	15 .	2.2		34	.23	.010	С.	17 .	.25 5	/ .049	1	.19	.006	.03 <.	1.01	1.7 <.1	<.U5	3<5	
CK 55500 2600	.0	0.0	3.8	35 <	1 D.	0 0.0	255	1.47	1.0	.1	< 5	· (10 .	2.3	. 1	41	. 23	.004	4.	10	.17 4	4 .001	1	.00	.005	.04	1.92	1.3 .1	<.U5	4 < 5	
CK 55500 2550	ئ .	127.9	1.0	. 79	1 5.	8 22.0	006	3.19	5.5	.1.5	0.6	.4.	11 ·	1.1	1.	11	. 32	.036	4	15 .	.5/ 9	9 .013	<1	1.44	.008	.04 <	1.02	5.1 <.1	<.05	/ <.5	
CK 55500 2500	0.1	24.6	4./	157 .1	2 24.	2 13.6	304	3.15	3.0	.3	<.51	.5	12 .	5.5	. 1	59	. 22	.230		52	.41 11	5 .051	Ĭ	2.24	.005	.06	1 03	2.8 .1	<.05	7 < 5	
CK 55500 2450	2.0	85.0	9.5	140	4 103.	1 31.8	10915	4.35	6.Z I		1.8 2	.3	53 I.	5 .8	. 2	78	.74	.095	22	/6	.83 45	0.062	2	3.0/	.615	.19 .	1 . 11	10.1 .3	<.05	10 .6	
04 FFF88 3488		~ -								~		-			-	~~			<u>,</u>					7.0		• •					
CK 55500 2400	. 4	9.7	3.5	41 <		4.5	115	1.39	1.5	.4	<.51	. 3	10 .	<u> 3</u>	- 1	39	.18	.051	6 4	21	.19 4	9.066	1	.72	.005	.03	10. I	1.6 <.1	<.05	3 < 5	
CK 55500 2350	. 4	10.9	3.6	52 <.	1 12.	5 5.1	240	1.69	2.2	.2	2.4 1	.2	18 .	2.3	- 1	44	.31	.065	5	20	.31 6	3.058	1	1.00	.005	.04 .	L .01	1.9 < 1	< 05	4 < 5	
CK 55500 2300	. 3	8.5	3.6	34 <	i 8.	2 3.8	122	1.26	1.4	.2	5.31	.1 1	14 .:	2.2	.1	37	.31	.029	5.	14 .	.25 4	4 .072	1	. 78	.005	.03 <.	1.01	1.7 <.1	<.05	4 < 5	
CK 55500 2250	. 3	10.6	37	70 <	1 10.	0 8.6	405	1.52	1.4	.2	2.81	.1 1	V	3.2	-1	41	. 32	057	6.	18 .	. 29 12	5.067	1	. 88	.006	.04 .	L .01	1.9 <.1	<.05	4 <.5	
CK 55500 2200	.5	9.5	a 0	74	211.	2 8.7	377	1.75	1.3	.2	.51	.0	19 .	4.2	.1	42	. 32	.070	5 3	19	.29 14	5.067	1	. 84	.006	.06 .	1.01	1.9 <.1	<.05	4 < 5	
												-																			
CK 55500 2150	.2	20.5	3.8	35 <	1 16.	2 5.0	1/4	1.41	2.3	.3	<.51	.3 !	15 .	1.3	.1	39	.27	.033		24	.31 6	1 .072	1	.83	.007	.04	.01	2.0 < 1	< 05	3 <.5	
CK 55500 2100	. 4	8.0	3.7	30 <.	1 7.	8 2.9	133	1.12	1.2	.2	3.4 1	.0	13 .	1.2	-	36	. 22	.031	5.	16	.15 6	/ .075	1	. 54	.005	.04 <	1.01	1.3 < 1	<.05	3 < 5	
CK 55500 2050	.6	46.1	5.3	71 .	3 44.	3 10.1	431	2.75	3.2	.6	1.31	.7 3	27 .:	2.4	.1	57	. 35	.061	12 5	54	.58 17	7.054	1	2.51	.009	.10 .	1.03	4.9 .1	<.05	7 < 5	
CK 55500 2000	. 3	9.0	3.6	33 <	1 11.	4 3.7	136	1.00	1.1	.3	<.51	.3 1	14 .:	1.2	.1	30	. 25	.025	6 3	18	.26 4	8.072	Ī	.71	. 006	.03	1.01	1.6 <.1·	<.05	3 < 5	
CK 5550C 1950	.4	10.7	3.7	32 <.	1 13.	2 5.4	202	1.09	1.3	.2	1.1 1	.2 :	13 .:	1.2	.1	28	. 24	.034	62	20	.28 5	4 .057	1	. 81	.006	.03 <.	L .01	1.0 .1	< 05	3 <.5	
CK \$5500 1900	. 3	10.1	4.4	34 < .	1 13.	1 4.1	119	1.07	1.3	.3	1.21	.3 1	13 .:	1.3	.1	28	.24	. 034	6 2	19 .	.29 4	8.063	<1	. 84	.006	.03 .	1.01	1.6 <.1	<.05	3 <.5	
CK \$5500 1850	.3	11.6	3.9	43 <.	1 14.	3 5.0	176	1.16	1.4	.2	1.21	.1 1	14 .	1.2	.1	29	.25	. 028	62	22	.30 6	3.059	1	. 91	.006	.04	1.01	1.8 <.14	<.05	3 < .5	
CK 55500 1800	. 6	14.4	5.2	51 .	1 16.	2 4.8	149	1.94	4.0	.2	<.51	. 6 I	16 .:	2.4	.1	50	.26	. 123	72	27	.26 8	7 .076	1	1 15	.007	.05 .	1.02	2.3 .1	< 05	5 < .5	
CK 55500 1750	. 3	8.5	3.7	34 <	1 10.	3 3.2	102	1.08	1.7	.2	<.51	.2	14 .:	3.3	.1	33	26	.032	6]	18	.20 3	5.077	1	. 59	.006	.03 .1	1.01	1.4 < 1	<.05	3 <.5	
CK 55500 1700	. 3	11.8	3.4	25 <	1 13.	7 4.0	110	1.04	2.3	.21	7.31	.0 i	13 <.:	l.2	.1	30	. 24	.041	4 :	19 .	.28 4	7 .056	1	.73	.005	.03	1.01	1.4 < 1	<.05	2 <.5	
CK 55500 1650	. 6	16.9	3.1	63 <.	1 22.	1 6.7	446	1.81	2.6	.3	1.5 1	.4	15 .	1.4	.1	46	. 24	.037	7	31	. 37 8	7.058	1	1.25	. 006	.05 .1	1 01	2.5 .14	<.05	4 < 5	
CK 55500 1600	. 5	14.6	4.3	30 <	1 15.	5 6.1	239	1.58	4.2	.3	1.4.1	.7 .	16 .	.4	.1	46	. 26	.049	7 3	32	.33 5	2.075	1	.94	.008	. 04	.01	1.8 < 1	<. 05	3 < 5	
CK 55500 1550	. 5	19.4	4.2	43 <	1 19.	8 8.7	245	1.82	4.2	.3	1.91	.6 3	21	L .5	.1	49	. 37	.059	8 (30	.35 7	1.077	1	. 86	.009	.05 .:	. 02	2.5 .14	<.05	3 <.5	
CK 55500 1536N	1.3	41.4	5.4	87 .3	3 37.	5 15.9	2194	2.94	9.4	.6	1.0	.8	42 .	75	.1	58	.74	.073	9 (38 .	.49 19	5.028	1	i.49	.008	.08	1.05	3.6 .1	<.05	4.7	
CK 55500 1500	4	13.2	3.7	48 <	1 14.	4 4.8	155	1.41	2.4	.2	<.51	.2	12	1.3	.1	39	.23	036	5 2	22	.31 5	5.063	1	. 93	.006	.03 .	1.01	1.8 .1	<.05	3 < 5	
STANDARD D57	20.8	108.9	68.8	396 .	9 56.	2 9.7	623	2.39	46.5 4	1.8 8	7.5 4	.4	71 6.3	2 5.8	4.5	85	.93	.076	13 23	30 1.	.03 37	3.120	38	. 99	.087	.45 3.1	.21	244.2	.18	5 3.6	
••• • <u></u> ····																															

Sample type: SOIL SS80 60C. Samples beginning [RE] are Reruns and [RRE] are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 📘 FA

ACKE MHALYFICAL																																		ACHE AN	ALY 1CAL	<u>د</u>
5AMPLE#	Мо ррп	Си рот	Pb ppm	Zn ppr	Ag ppm	Ni ppm	Со рртя	Ил ррл	Fe ۲	As ppm	Մ թթո	Au p p b	Tከ ppm	Sr ppm	Cd ppm	Şb ррт	Bi ppm	۷ ppm	Ca ኢ	P 2	La ppm	Cr ppm	Mg X	Ва ррл	Ti Z	8 ספר	Ai %	Na 2	к 2	W ppm	Hg ppm	5с ррт	T1 pgm	S M	Ga ppm	Se ppra
G-1 CK 55500 1450 CK 55500 1400 CK 55500 1350 CK 55500 1300	.7 .3 .4 .2	2.1 9.5 13.3 20.2 10.6	2.8 4.0 3.2 5.4 4.5	45 35 41 63 33	<.1 <.1 <.1 .1 <.1	5.7 11.3 14.1 24.3 12.6	4.2 3.7 4.3 7.1 3.5	473 122 125 234 119	1.64 1.00 1.28 1.76 1.01	<.5 1.4 2.5 2.5 1.8	1.7 .2 .4 .3	1.5 3.1 1.6 1.5 1.3	3.4 1.3 1.0 1.2 1.5	48 10 10 16 13	<.1 .1 .1 <.1	<.1 .2 .3 .5 .3	. 1 . 1 . 1 . 1	32 29 34 41 29	.41 .19 .22 .27 .23	.071 .022 .035 .035 .035 .021	6 4 7 6	54 17 21 35 19	.56 .25 .30 .43 .27	191 43 44 97 50	.102 .057 .052 .058 .058	1 1 1 1 1	.87 72 .88 1.54 .79	.066 .006 .005 .007 .005	. 46 . 03 . 03 . 08 . 04	.3 .1 .1 .1 <.1	<.01 .01 .01 .03 .01	1.9 1.3 1.6 2.9 1.6	.3 .1 <.1 .1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	4 2 3 5 3	< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5
CK 55500 1250 CK 55500 1200 CK 55500 1150 CK 55500 1150 CK 55500 1100 RE CK 55500 1100	.9 .4 .3 .3	38.8 25.8 11.7 9.9 9.4	6.5 5.7 3.8 3.4 3.3	98 59 33 37 35	.3 .2 <.1 <.1 <.1	42,4 27.1 13.3 11.3 11.0	23.1 6.0 4.1 3.6 3.5	1338 187 144 132 127	2.94 1.73 1.16 .93 .88	3.4 2.4 2.2 1.7 1.4	.6 .5 .3 .2 .2	1.5 2.7 1.9 2.2 1.2	1.8 1.2 1.3 1.0 .9	27 16 15 10 10	.2 .1 .1 .1	.7 .5 .4 .3	.2 .1 .1 .1	57 35 34 22 21	.40 .25 .28 .19 .19	.071 .035 .042 .019 .010	11 7 7 4 4	57 37 24 16 15	.50 .41 .30 .26 .25	203 105 50 44 42	034 049 064 046 046	1 1 <1 <1	2.34 1.55 .81 .65 .64	.008 .005 .006 .005 .005	.12 .07 .04 .03 .03	<.1 .1 <.1 <.1	.03 .04 .01 .01 .01	4.9 3.1 1.8 1.3 1.3	.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	8 5 3 2 2	 v v
CK 55500 1050 CK 55500 1000 CK 55500 950 CK 55500 900 CK 55500 850	23423	9.8 15.5 17.8 9.1 14.2	3.5 4.2 4.5 4.0 4.2	32 42 58 27 40	<.1 <.1 <.1 <.1 <.1	11.0 16.2 21.5 10.8 14.6	4.2 7.6 6.7 3.4 5.2	182 343 290 130 211	.97 1.33 1.43 .99 1.21	2.0 2.6 2.4 2.5 2.4	.2 .3 .4 .2 .3	3.5 3.6 2.8 1.6 .7	1.3 1.3 1.0 1.3 1.2	15 14 16 14 14	.2 .1 .2 .1	. 3 . 4 . 5 . 4	.1 .1 .1 .1	29 34 34 29 32	.27 .26 .28 .25 .25	.025 .030 .027 .030 .022	7 7 7 7 7	17 25 30 17 22	26 34 39 28 30	55 73 93 41 64	. 064 . 060 . 050 . 072 . 059	1 1 1 1	.67 .92 1.21 .68 .90	006 .006 .006 .005 .005	03 .05 .06 .04 .04	<.1 .1 .1 .1	.01 .01 .02 01 01	1.6 2.2 2.4 1.6 1.9	<.1 .1 < 1 .1	<.05 <.05 <.05 <.05 <.05	2 3 4 2 3	< 5 <.5 <.5 <.5 < 5
CK 55500 600 CK 55500 750 CK 55500 700 CK 55500 650 CK 55500 600	.4 .5 .2 .6	15.9 32.6 8.5 14.3 9.0	4.9 5.5 4.2 3.6 3.0	56 71 33 34 40	<.1 .2 <.1 <.1 <.1	17.8 29.8 11.1 16.6 10.4	7.8 6.9 3.4 4.0 5.7	446 232 134 451 287	1.36 1.97 .90 1.05 1.23	2.0 2.4 1.6 1.8 3.8	.3 .5 .3 .3	3.9 .6 .9 2.0 3.0	1.2 1.4 1.3 1.6 1.3	15 20 14 14 16	.1 .2 .1 .1	.4 .3 .4 .3	.1 .1 .1 <.1	34 40 27 27 32	.26 .32 .26 .25 .29	.021 .036 .021 .019 .030	7 9 6 7 6	25 36 18 23 18	. 34 . 44 . 27 . 29 . 28	90 129 48 71 58	.052 .047 .071 .069 .065	1 1 1 1	1.16 1.80 .68 .87 .61	.005 .009 .006 .005 .006	. 05 . 08 . 03 . 04 . 03	.1 <.1 <.1 <.1	. 01 . 02 . 01 . 01 . 01	2,3 3.5 1.5 2.1 1.5	.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	4 6 2 3 2	<.5 <.5 <.5 <.5 <.5
CK 55500 550 CK 55500 500 CK 55500 450 CK 55500 400 CK 55500 359	.6 .2 .6 2.2	8,8 9,8 8,0 10,7 14,1	3.9 3.7 4.0 2.9 4.1	43 27 27 50 59	<.1 <.1 <.1 <.1	11.9 11.7 9 1 14.8 18.3	6.4 3.7 2.6 5.1 10.6	247 122 82 192 1064	1.22 .97 .77 1.60 2.14	2.6 1.6 .8 3.2 7.9	.3 .3 .2 .2 .2	1.5 .8 1.2 < 5 2.7	1.2 1.3 1.0 1.1 .9	18 13 11 13 12	.1 .1 <.1 .2 .3	.3 .2 .3 .4	.1 .1 <.1 <.1	35 30 21 35 40	. 32 . 27 . 22 . 25 . 19	.020 .031 .017 .047 .063	7 7 5 5 5	20 17 15 22 23	. 26 . 28 . 20 . 26 . 19	71 46 51 64 118	.061 .065 .054 .056 .037	<1 <1 <1 <1 <1	.76 .71 .65 .86 1.03	.006 .005 .005 .005 .005	.03 .03 .03 .03 .03	.1 .1 .1 .1	.01 .01 .02 .01 .01	1.8 1.5 1.4 1.6 1.5	.1 <.1 <.1 .1	<.05 <.05 <.05 <.05 <.05 <.05	32234 4	<.5 <.5 <.5 <.5
CK 55500 300 CK 55500 256N CK 55500 250 CK 55500 250 CK 55500 150	1.3 1.0 .8 .3	15.6 33.1 20.4 16.8 10.6	5.4 3.6 3.4 4.5 4.0	86 61 46 40 35	<.1 <.1 <.1	15.7 19.6 18.0 15.7 12.0	8.3 9.7 8.6 5.1 4,2	450 823 299 149 166	2.85 2.02 1.82 2.00 1.15	5.1 4.3 4.6 4.3 1.6	.2 .4 .2 .2	.6 1.3 2.6 1.9 1.2	1.2 .9 .9 1.3 .9	13 23 20 16 14	.3 .2 .1 .1	.5 .3 .8 .6 .3	.1 <,1 .1 .1 .1	60 38 45 57 31	. 22 . 44 . 34 . 30 . 27	.227 .054 .017 .036 .021	5 5 5 6	31 23 26 26 18	. 32 . 43 . 33 . 35 . 30	108 81 68 59 66	.043 .042 .052 .076 .047	<1 1 <1 1 <1	1.59 .85 .92 1.04 .93	. 006 . 005 . 006 . 006 . 005	.05 .03 .04 .03 .03	.1 .1 .1 .1	.03 .03 .01 .01 .01	2.2 2.2 1.9 1.9 1.5	.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 3 3 4 3	<.5 <.5 <.5 <.5
CK 55500 100 CK 55500 050 CK 55500 0000 CK 56000 4000 CK 56000 3950	.3 .4 1.3 .7	11.0 10.1 17.9 63.7 10.5	3.8 4.3 4.1 1.6 4.2	24 31 34 21 25	< 1 < 1 .1 .2 < .1	10.0 10.2 15.0 19.4 8.6	3.8 5.2 4.6 2.0 3.9	154 153 197 35 101	.97 1.10 1.22 .82 1.81	2.2 1.2 2.6 .8 1.9	.3 .2 .3 .2	.5 2.5 1.8 .8	1.4 1.0 1.3 .2	12 13 18 55 13	.1 .1 .6 .1	.3 .2 .4 .5 .3	.1 .1 <.1 .1	27 33 31 40 55	.24 .24 .29 2.73 .20	.018 .014 .032 .075 .017	6 5 8 4 4	18 17 24 11 19	. 25 . 28 . 32 . 10 . 20	54 55 78 139 78	.041 .051 .049 .010 .052	<1 1 1 4 <1	.71 82 1.01 .46 .87	.005 .005 .006 .011 .005	.03 .02 .04 .02 .02	.1 <.1 <.1 <.1	.02 .01 .02 .14 .03	1.6 1.5 2.2 1.0 1.4	< 1 <.1 <.1 <.1	<.05 < 05 <.05 .32 <.05	2 3 3 1 4	<.5 <.5 <.5 1.0 <.5
STANDARD OS7	20.6	106.6	68.1	403	.9	56.8	9.7	615	2.37	41.6	4.7	68.6	4,4	70	6.1	5.8	4.4	84	. 93	.075	13	231	1.02	372	. 119	38	. 99	.083	. 45	3.7	. 20	2.5	4,2	.20	5	3.4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🧴 FA

.

TT

SAMPLE# No Cu Po Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb 8i V Ca P La Cr Mg 8a Ti B Al Na K W Hg Sc Tl S Ga Se ppm pom ppm ppm ppm ppm ppm ppm ppm ppm	
G-1 .5 2.2 2.4 40 <1	
CK 56000 3700 6 15.9 4.6 47 1201 9.3 407 1.95 2.4 2 3.9 8 14 1 .3 1 46 19 .050 4 25 .37 122 .038 1 1.25 .005 .04 <.1	
CK 56000 3500 .3 9.3 3.9 50 < 1	
CK 56000 3250 .4 9.6 3.5 54 <.1	
CK 56000 3000 .3 10.8 4.9 73 < 1	
CK 56000 2750 .4 14 1 71 .1 12 7 8.3 550 2.02 2.4 .2 <.5	
CK 56000 2500 .4 3.9 3.4 $68 < 1$ 5.5 4.9 640 1.34 1.1 1	
5TANDARD 057 19.8 105.1 67.4 384 .9 56.0 9.3 609 2.39 48.7 4.6 64.6 4.2 69 6.3 5.8 4.4 83 .90 .081 11 217 1.02 371 .102 38 .95 .090 .46 3.6 .19 2.4 4.1 .21 4 3.7	. <u> </u>

Sample type: SOIL SS80 600. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🕴 FA

Data FA

ALM: AMALYTICAL																		_																VOIE M	ALVISON	
SAMPLE#	Мс ррл	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	fe \$	Аs ppm	U Maga	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca T	P X	La ppm	Сr ppm	Mg t	Ba ppm	Ti %	B ppm	A1 1	Na t	K ž	W ppm	Hg ppm	Sc ppar	 Т1 ррл	S t	Ga ppm	Se ppm
3-1 CK 56000 2200 RE CK 56000 2200 CK 56000 2150 CK 56000 2100	.6 .5 .5 .5 .4	2.1 28.6 28.2 9.2 12.3	2.9 4.8 4.8 4.5 3.9	45 209 215 41 38	<.1 .3 .2 <.1 <.1	6.2 17.2 16.9 11.9 15.0	4.4 5.3 5.4 4.2 5.1	502 1308 1304 185 165	1.73 1.52 1.51 1.34 1.46	<.5 3.5 3.6 2.3 2.7	1.8 .2 .2 .3	.7 .7 .5 .7 1.4	3.4 .6 .6 1.2 1.3	51 7 7 12 15	<.1 1.1 1.2 .3 .2	<.1 .2 .3 .4	.1 .1 .1 .1	34 42 42 36 39	.41 .27 .27 .22 .26	085 042 043 036 059	- 5335 7	56 16 16 18 22	. 60 . 32 . 32 . 23 . 29	190 87 92 56 59	.106 .027 .029 .051 .063	1 1 1 1 1	.90 1.21 1.27 .66 .72	.063 .004 .004 .005 .005	. 48 . 04 . 04 . 04 . 04	.2 <.1 .1 <.1	<.01 .02 .02 .01 .01	2.2 1.5 1.5 1.3 1.5	,4 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	4 3 3 3 3	<.5 < 5 <.5 <.5 <.5
CK 56000 2050 CK 56000 2000 CK 56000 1950 CK 56000 1900 CK 56000 1850	.3 .6 .5 .4 .3	10.4 8.8 11.1 9.8 16.2	4.1 5.3 4.9 4.2 3.1	39 122 103 39 39	<.1 2 <.1 <.1	11.4 8.2 9.2 13.6 15.5	5.1 8,3 6,8 4,7 5,2	227 293 199 154 184	1.20 1.75 2.37 1.55 1.35	1.5 1.5 2.2 2.2 1.4	.2 .2 .2 .2	.6 <.5 .6 .8 .6	.9 .8 1.2 1.1 .8	14 14 18 12 19	.2 1.5 .4 .1	.2 .3 .2 .2	.1 .1 .1 .1	35 42 52 40 36	.26 .24 .32 .18 .31	.022 .128 .187 .101 .016	6 4 5 5	17 20 22 23 19	. 26 . 20 . 26 . 20 . 40	55 103 106 85 72	062 058 055 063 063	1 1 < <u>7</u> 1	.72 .78 1.22 .83 .99	.009 .005 .006 .005 .007	.03 .05 .04 .02 03	.1 .1 .1 .1	.01 .01 .02 .01 .01	1.5 1.4 1.8 1.5 1.9	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	3 4 6 4 3	< 5 < 5 < 5 < 5 < 5
CK 5L J 1800 CK 56000 1750 CK 56000 1700 CK 56000 1650 CK 56000 1600	.0 .4 .6 .4	47.7 11.6 20.0 9.6 11.0	5.6 4.1 5.6 3.2 4.0	74 37 63 29 40	.2 <.1 <.1 <.1	45.6 14.1 26.1 12.0 14.8	13.9 5.6 14.6 4.2 5.6	364 324 738 169 228	3.04 1.23 2.11 1.04 1.20	4.8 1.7 2.5 1.4 1.5	5 2 3 3	3.5 1.0 4.1 29.2 .7	1.5 1.0 1.5 1.2 1.3	27 17 21 15 17	.1 .2 .2 .1 .2	.4 .2 .3 .2 .3	1 1 1 1	63 35 50 31 35	. 34 . 26 . 28 . 27 . 26	. 065 . 042 . 053 . 033 . 025	7 7 7 7 7	52 21 36 19 22	.70 .28 .46 .27 .29	155 61 112 52 64	.058 .061 .060 .070 .071	1 <1 1 1 1	3.12 .86 1.68 .70 .83	.009 .006 .008 .006 .006	. 10 04 05 03 . 04	.1 <.1 .1 <.1	.03 .01 .03 .02 .01	4.5 1.7 2.9 1.7 1.8	.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	7 3 5 2 3	<.5 <.5 <.5 <.5
CK 56000 51550 CK 56000 1550 CK 56000 1500 CK 56000 1450 CK 56000 1400	.8 .3 1.3 .3 .3	33.0 8.9 53.7 11.2 9.7	2.6 3.5 6.1 4.1 3.9	45 36 82 46 31	<.1 < 1 .3 <.1 <.1	17.6 11.8 48.2 13.5 12.6	7.6 3.7 15.6 4.5 3.5	629 114 1581 149 123	1.73 1.02 3.62 1.17 1.07	3.6 1.1 10.9 1.5 1.7	.5 .2 1.2 .2 .3	.8 .9 <.5 .5 2.8	1.0 1.1 1.3 1.2 1.4	25 13 46 15 15	.2 .2 .7 .1 .1	.3 .2 .7 .3 .2	<.1 .1 .1 .1	40 31 71 35 32	. 48 . 22 . 76 . 25 . 26	.054 .021 .071 .027 028	6 6 12 6 7	26 18 54 21 18	. 34 . 25 . 66 . 29 . 28	73 51 237 55 47	.051 .064 .046 .069 .074	2 1 1 1 1	.84 .69 2.62 .83 .76	.006 .005 .010 .006 .006	.04 .03 .10 .03 .03	< 1 .1 .1 .1	.02 .01 .05 .01 .02	2.4 1.5 6.8 1.7 1.7	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	2 3 6 3 3	<.5 <.5 <.5 <.5
CK 56000 1350 CK 56000 1300 CK 56000 1250 CK 56000 1200 CK 56000 1150	.3 .4 .6 7 .5	14.8 12.4 30.0 12.9 13.5	4.6 3.8 4.6 4.3 4.8	32 48 44 59 97	<.1 <.1 <.1 .1	17,4 16,7 27,1 22,2 25,0	4.5 5.7 8.5 7.5 6.6	163 210 173 133 146	1.40 1.31 2.20 1.84 2.15	3.4 2.0 5.8 3.2 3.4	.3 .3 .3 .3 .3 .3	1.0 .7 2.6 <.5 1.2	1.7 1.3 2.4 1.4 1.6	18 13 26 13 23	<.1 .1 .2 .4	.3 .9 .4	.1 .1 .1 .1	42 38 56 44 46	. 29 . 21 . 28 . 21 . 31	.047 .034 .031 .138 .234	8 6 9 5 7	26 24 36 25 32	. 33 . 30 . 42 . 22 . 25	54 56 99 84 126	,080 ,063 ,083 ,050 ,059	1 1 1 1	.95 .92 1.03 1.39 1.40	.007 .005 .006 .005 .007	.05 .03 .05 .03 .05	.1 .1 .1 .1	.02 .01 .02 .03 .02	2.1 1.7 4.2 1.9 2.5	<.1 <.1 .1 .1	<.05 <.05 <.05 <.05 <.05	3 3 4 4	<.5 <.5 <.5 <.5 <.5
CK 56000 1100 CK 56000 1050 CK 56000 1000 CK F 950 CK 50.00 900	4 .6 .2 .3	15.3 11.4 14.1 8.7 10.3	3.3 5.2 4.8 4.2 3.5	40 66 70 27 39	< 1 < 1 < 1 < 1 < 1	17.8 14.4 25.4 10.8 13.0	6.1 4.9 6.5 2.8 3.8	201 118 187 103 137	1.59 2.28 1.98 .85 1.11	3.2 3.7 3.6 1.1 1.7	.3 .2 .3 .3	2 5 4.3 <.5 1.5 1.8	1.4 1.3 1.4 1.4 1.2	15 27 19 13 15	.2 .2 .3 .1 .2	.5 .3 .4 .2 .3	.1 .1 .1 .1	42 48 48 26 34	.27 .30 .27 .22 .24	.052 .412 .135 .018 .028	7 4 6 7 7	25 27 31 17 19	. 28 . 21 . 27 . 24 . 24	59 109 104 46 53	.069 .050 .058 .057 .066	1 1 1 1	.73 1.34 1.34 .70 .74	, 006 , 005 , 007 , 005 , 007	.04 .03 .04 .03 .03	<.1 .1 .1 .1	.01 .03 .02 .01 .01	1.8 1.8 2.0 1.4 1.7	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	3 5 4 3 3	<.5 <.5 <.5 <.5
CK 56000 850 CK 56000 800 CK 56000 750 CK 56000 700 CK 56000 650	.3 .7 .3 .4	8.7 7.7 23.4 16.4 14.8	3.9 3.8 5.4 4.0 4.1	30 28 74 38 49	<.1 <.1 .2 <.1 1	11 1 10.5 30.2 17.4 18.5	3.8 3.3 13.2 4.9 8.1	152 123 574 176 422	.92 .86 2.13 1.38 1.36	1.1 1.3 3.9 3.8 1.7	.3 .5 .3 .3	57.5 <.5 2.2 2.1 5.9	1.2 1.3 1.7 1.4 .8	14 15 26 17 16	.1 .1 .1 .1	. 2 . 2 . 5 . 5 . 4	.1 .1 .1 .1	28 28 49 38 34	. 25 . 27 . 40 . 28 . 26	.021 .017 .051 .047 .027	7 6 8 7 6	18 19 43 27 27	26 24 40 35 34	50 45 107 62 78	.065 .072 .056 .064 .050	1 2 1 1	. 66 . 61 2. 01 . 93 1. 16	006 .006 .010 .006 .006	03 .03 .06 .05 .05	.1 <.1 <.1 .1 < 1	. 01 . 01 . 03 . 02 . 02	1.6 1.5 3.4 2.1 2.1	<.1 <1 .1 .1	<.05 <.05 <.05 <.05 <.05	3 2 6 3 4	<.5 <.5 <.5 <.5
STANDARD DS7	21.0	105.6	66.9	376	.9	56-3	9.5	610	2.37	48.4	4.6	81.7	44	75	6.4	5.8	4.4	84	. 93	.080	13	223	1.03	373	. 120	39	1.00	. 087	. 46	3.9	19	2.5	4.1	.18	5	3.5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

A A	
ACME ANALYTICAL	

																												_								
SAMPLE#	Mo	Cu	₽b	Zn	Ag	Nî	Co	Mn	Fe	As	U	Au	Th	Sr	Ċd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	В	A)	Na	K	N	Нg	Sc	TI	S	Ga	Se
	ppm	þþæ	ppm	ррт	ppm	ppm	pom	ppm	Y	ррт	ppm	рро	ppm	ptxn	ppm	ppm	ррп	ррп	74	ž	ppm	ррп	I,	ppm	*	ppm	76	Ť	- 4	pon	bbu	ppin	ppm	- 4	ppm	ррп
																														-					_	
G-1	.6	2.2	2.8	44	<.1	5.7	4,2	480	1.67	<.5	1.8	2.0	3.6	- 51	<.1	< 1	.1	35	44	.080	6	61	. 58	195	. 114	1	. 93	.069	. 49	. 1	<.01	2.3	.3 •	< 05	4	<.5
CK 56000 600	.5	19.0	5.8	61	. 2	25.5	6.5	207	1.80	3.1	. 4	3.1	13	17	. 2	. 4	.1	44	. 26	.034	6	37	. 47	93	. 066	1	1.51	.007	.07	.1	.03	29	1 -	< 05	5	<.5
CK 56000 550	.2	7.5	3.9	40	<.1	10.9	3.2	111	. 90	1.1	.2	3.9	1.2	12	.2	.2	.1	28	.23	.020	6	17	.25	45	.070	1	. 69	.007	.03	< 1	01	1 4	Ī	< 05	3	< 5
FX 56900 500	5	15.9	43	53	< 1	18.1	5 7	164	1 75	4.5	3	14	16	20	2	5	1	47	30	070	ž	28	34	73	069	- 2 -	1 06	037	04	1	02	23	- Î -	< 05	4	< 4
FK 56000 450	.0	5.8	5.9	47	1	7 5	6.6	610	1 78	20		1.6	ġ	14	2	2	1	51	21	114	Á	19	11	100	056	1		007	07	1	02	1 3	1.	- 05	- -	- E
LK 30000 430		5.0	5.0	47	. 1	, ,	0.0	013	1.70	3.5	. 6	1.0		14	. 2			51		.117	-	15	. 11	100	. 633	1	. 07	.037	. 05	.1	02	1.5	.1 .	S.UD	2	N. 3
× 56000 400	E	0.0	4.0	27	- 1	11 5	ΕA	370	1 75	2 0	2	4.2	1 2	17	1	2	1	27	77	0.26	6	20	22	67	060		04	007	0 1	a 1	A 1	1 7	,	- 05	4	
CK 50000 400	. 9	7.7	4.7	32	7.1	11.0	5.4	3/0	1.40	0.U	. 2	4.3	1.5	17	. 1			37	. 61	.035	0	20	.23	02	.000	1	. 94	.097	.03	~.1	01	1.7	- 4 1	s u 5	3	5.5
X 56000 350	.5	I≝.C	3.5	74	<.1	18.5	0.1	300	1.72	2.0	. 2	3.7	1.5	12	. 3	. 4	1.	42	. 20	.064	e	27	.21	102	.062	1.	1.00	.007	.04	- 1	. 01	2.2	<.1 •	< 85	3	<.5
CK 56000 300	.6	14.6	3.9	54	<.1	17 6	6.5	223	1.80	3.4	. 2	1.0	1.5	18	. 2	. 4	. 1	42	. 26	.136	6	28	.32	105	.050	1	. 95	.006	. 64	. l	01	2.0	<.1 ·	<.05	- 3	<.5
CK 56000 250	.7	13.4	4.3	59	<.1	14.4	7.7	743	1.59	3.3	. 2	1.9	. 6	17	. 4	4	.1	40	. 27	.070	6	24	.23	133	.041	1	.76	.005	.04	.1	01	1.6	<1	< 05	3	< 5
CK 56000 200	.7	10.9	5.1	46	.1	13.9	6.3	228	1.77	4.4	.2	7.0	1.4	15	.4	. 6	.1	38	.22	.186	6	27	23	126	050	1	85	005	05	3	02	1.8	<1.	< 85	4	< 5
	-			-			- • •		•				- · ·					+-			_					•						- · -				. 5
RE CK Johnon 200	б	11 4	52	47	< 1	14 7	6.2	221	1 78	44	2	17	14	16	4	5	1	39	22	183	6	27	27	123	054	2	86	006	05	1	02	19	< 1 4	c 05	4	< 5
FX 56000 150	Ä	21 0	4 7	62	< 1	29.0	0.4	295	2 15	4 4		1 3	1 0	21	4	6	1	46	34	103	7	22	45	01	072	1	1 15	000	0.0	1	02	2.6	<u>+</u>	- 05	~	2.5
	.0	00.0	7.4	04	-	CO.0	15.7	505	2.13		2.2	7.0	1.9	21					.04	. 100	25	60	. 40	261	050		1.15	.000	.00	• •	.02	2.0	. 1 .	- 05		N . 3
LK 50000 100	. 8	89.3	7.4	- DC	. 5	00.0	10.4	525	J.51	9.6	2.2	2.0	1.8	21	1.1	1.2	.1	/5	.90	.082	20	05	.6/	201	.056	4	2.65	.013	.09	.1	. 08	¥.3	. 1 *	<.05		1.3
PK 56000 050	. 9	12.2	5.1	- 93	. 3	20.5	7.4	174	2,83	5.4	. 3	<.5	1.7	29	. 3	.4	. 1	60	. 40	. 320	5	37	. 33	102	.048	Ζ.	2.02	.008	.05	. 1	. 04	2.3	1	<.05	6	<.5
EK 56000 0000	. 7	7.0	4,4	35	<.1	7.5	4.4	190	1.39	2.5	. 2	<.5	8	13	. 2	3	. I	44	.23	.071	4	19	.17	65	.052	1	.74	.006	.03	. 1	.01	1.3	<.1 ·	<.05	4	<.5
1																																				
STANDARD DS7	20.6	108.5	68.7	397	.9	56.2	9.6	625	2.47	49.0	4.8	68.8	4.5	74	6.5	6.2	4.6	87	. 95	.082	12	228	1.04	385	.120	41	1.00	. 094	.47	3.9	. 20	2.4	4.3	. 20	5	3 .6

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.