Assessment Report for the Geochemical Soil Sampling, Prospecting and Geological mapping of the

Limonite Creek Property

Ominica Mining Division NTS Map Area 93L/12 Latitude 54°33'30"N, Longitude 127°48'17"W British Columbia Mineral Tenures 535233 and 535231

prepared for **TELKWA GOLD CORP.** 2328 Sumac Rd. NW, Calgary, Alberta T2O 3T9

By Terri Millinoff, B.Sc., P. Geol. **TAIGA CONSULTANTS LTD.,** #4, 1922 – 9th Avenue SE Calgary, Alberta T2G 0V2

October, 2006

Telkwa Gold Corp. Limonite Creek Property

Table of Contents

1.	Summary	1
2.	Introduction	2
3.	Location, Accessibility, Local Infrastructure, Property Description	2
	3.1 Claims Status	4
4.	Exploration History	6
5.	Geology	9
	5.1 Regional Geology	9
	5.2 Property Geology	10
	5.3 2006 Geological Mapping	12
6.	Mineralization	13
7.	Soil Sampling 2006 Program	15
	7.1 Results	15
8.	Interpretation of Results	22
9.	Conclusion and Recommendations	23
10.	Certificate	25
11.	References	26
Table	e 1 - Land Status	10
	24 - Percent Ranked Soil Geochemical Results 2006.	
List o	of Figures	
Figure	e 1 - Location Map Limonite Creek Property	3
	e 2.1 - Limonite Creek Property Claim Map	
Figure	e 2.2 - Limonite Creek Property Claim Map and Topography	5
Figure	e 3 - Regional Geology - Limonite Creek	10
Rock	endix 1 Sample Locations and Descriptions	
	sample locations and descriptions	
	rop notes	
Map 1	••	
Map 2		
Map 3		
Map 4	•	
Map 5		
Map 6	<u>.</u>	
Map 7	•	
Map 8	8 Co Soil Samples Percent Ranked	

Map 9	As Soil Samples Percent Ranked
Map 10	Pb Soil Samples Percent Ranked
Map 11	Zn Soil Samples Percent Ranked
Map 12	Sb Soil Samples Percent Ranked
Map 13	Fe Soil Samples Percent Ranked

Appendix 2

Analytical Procedures Analytical Results Certificates

Appendix 3

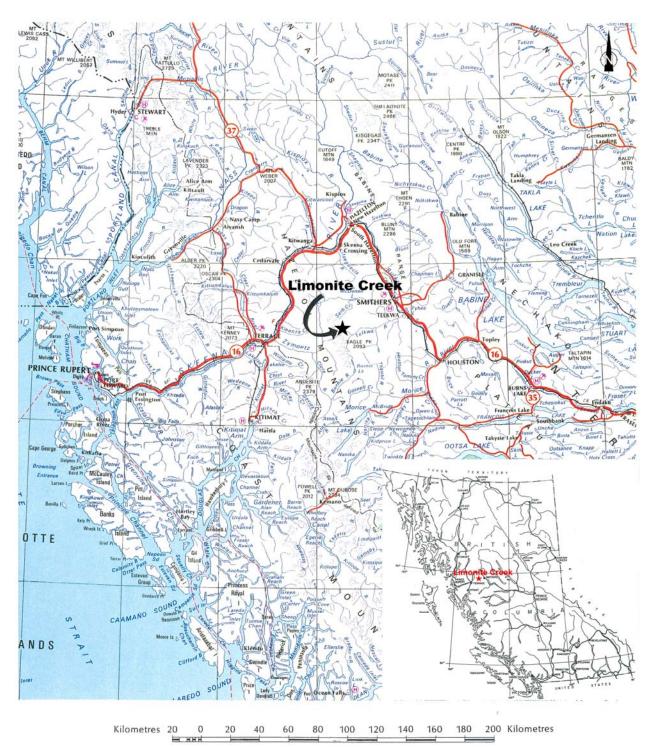
2006 Exploration Statement of Costs Proposed Program and Budget

1. Summary

At the request of Telkwa Gold Corp., Taiga Consultants Ltd. was contracted to collect contour soil samples, conduct geological mapping and prospect mineral tenures 535231 and 535233. This exploration program was intended to evaluate the area north of Many Bear Creek primarily for porphyry copper and gold mineralization. Mineral tenures 535231 and 535233 encompass the Limonite Creek prospect, which has been explored for copper/gold/silver mineralization and is characterized by exotic limonite deposits. The intention of this program was to further investigate the anomalous copper, gold and silver soil values found during a 1997 soil geochemical prospecting program, and to attempt to locate a source for these previously detected anomalies. Limited geological mapping was completed along with the sampling. The results of the soil sampling, prospecting and geological mapping program are presented in this report. This work was completed between June 22 and July 8, 2006. The total exploration expenditures were \$61,564.00.

1

2. Introduction


During the period June 22 to July 8, 2006, 194 soil samples and 40 rock samples were collected from mineral tenures 535233 and 535231, primarily above treeline and above some previously determined copper-in-soil anomalies found within mineral tenure 535231. Limited geological mapping was completed in conjunction with the sampling. Taiga Consultants was contracted to collect these samples and complete the geological mapping. Exploration was directed towards the evaluation of the mineral tenures for porphyry copper/gold mineralization. The samples were sent to Loring Laboratories of Calgary for 30 element ICP analysis. In addition, gold was analyzed by atomic absorption techniques. T. Millinoff and N. Willment of Taiga Consultants collected the samples.

3. Location, Accessibility, Local Infrastructure, Property Description

The Limonite Creek prospect is located in the Hazelton Mountains, within the Howson Range, adjacent to the Telkwa Pass. This area is midway the communities of Smithers and Terrace, British Columbia (Figure 1) and is in the westernmost part of Telkwa Pass about 50 km southwesterly from Smithers. The claims are found along a mountain ridge apparently 2 km north of Limonite Creek, a small, fast-flowing tributary of the Zymoetz (Copper) River. Elevations at the prospect area range from 1275 to 1400 m.

Access is by road from the town of Telkwa is possible along the Telkwa River logging road or the Copper River logging road. Current logging operations along the Copper River and its tributaries have brought good logging roads within 7 km of the property. Remaining access to the claims is via helicopter from staging areas which are located along the logging roads. Alternatively, helicopters are available directly from the towns of Telkwa and Smithers. The current program was helicopter supported out of the town of Smithers.

A 500 KV power transmission line, which is owned by B.C. Hydro and Power Authority, traverses Telkwa Pass as does a 10 inch, high pressure underground natural gas pipeline, which is owned by Pacific Northern Gas Ltd. These utilities are zoned as mineral reserve 327730. The northern limit of this mineral reserve cuts through the southern half of mineral tenure 535231 as shown on Figure 2.1.

Figure 1 - Location Map Limonite Creek Property

3.1 Claims Status

The two mineral tenures that comprise the property are described in Table 1. These cell claims are located on NTS map sheet 93L/12 at latitude 54° 33'30"N and longitude 127°48'17"W as shown in Figures 2.1 and 2.2.

Table 1 - Land Status

Tenure No.	Area (ha)	Good To Date
535231	656.467	2007/Dec.14
535233	393.709	2010/Jul.19

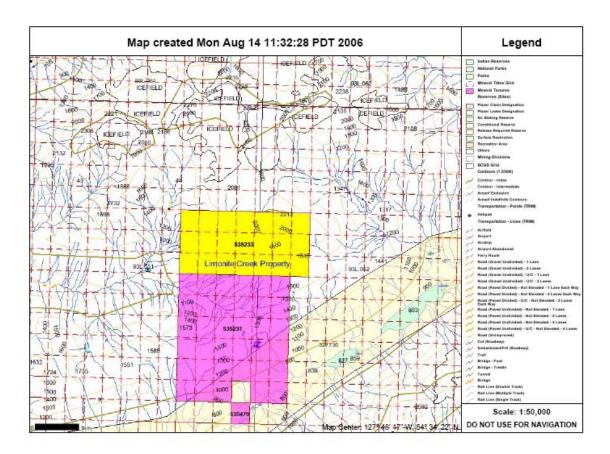


Figure 2.1 - Limonite Creek Property Claim Map

All of the claims are 100% owned by Telkwa Gold Corp but subject to a 1.5% Gross Overriding Royalty (GOR) to the original staking group.

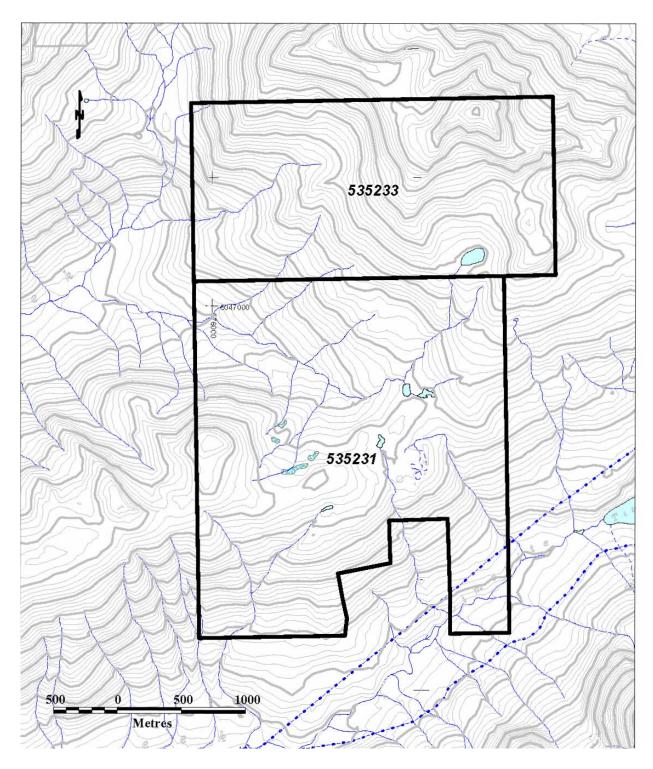


Figure 2.2 - Limonite Creek Property Claim Map and Topography

4. Exploration History

Two relevant minfile records for the Limonite Creek prospect are minfile numbers 093L 075 and 093L 323, for a developed prospect and a showing. The developed prospect consists of bog iron ore with a calculated tonnage of 3,175,200 t of 44% Iron, based on 27 drill holes in 1957(British Columbia, Minister of Mines Annual Report 1957, p.12). This iron ore deposit is located within crown grants south of the current mineral tenures 535233 and 535231.

The showing consists of the copper mineralization found along the ridge (Ridge Zone) above Limonite Creek within British Columbia assessment reports 20370, 21739 and 23016. This showing is located within mineral tenure 535231.

In 1992, Cyprus Canada Inc. geologically mapped and sampled the Ridge Zone. They also completed an EM survey and a drill program of 394.5 meters, consisting of three diamond drill holes. This work also included petrographic studies. Their exploration target was a high sulphidation or acid-sulphate type Cu/Au/Ag deposit. The 1992 program resulted in the discovery of an intense, pyritic, aluminous alteration zone; the Many Bear Zone. This zone was drilled to test a linear EM anomaly. Drill results were hampered by overall poor recovery, and samples recovered were mostly low in copper. Soil Sampling conducted during this 1992 program found anomalous copper (200-2456ppm). This anomalous copper in soils area was located on the north side of the grid, in the vicinity of limonite. A later, 1997 geochemical grid (Telkwa Gold Corp, W.Thompson, Oct.22/97) delineated anomalous copper in soils just across the stream, northwest of the 1992 copper enriched soil anomalies. The geological mapping program in 1992 identified alteration minerals on the surface consisting of almost total host rock replacement to sericite, quartz, andalucite, pyrite and lazulite with lesser amounts of specular hematite, corundum, rutile, and trace chalcopyrite.

In 1994, work done by Limonite Creek Limited Partnership consisted of further geological mapping, an induced polarization survey, and the completion of nine diamond drill holes. This work included 3 km of new grid lines cut and chained and 9 km of grid lines that were cut in 1992 were cleaned and re-chained. The grid area and a broad perimeter surrounding the grid were geologically mapped during the field season of 1994.

An IP survey was conducted during July 1994 as a second phase of geophysical work, as a follow up to transient electromagnetic (TEM) surveys which were conducted by Cyprus Canada Inc. in 1992.

The I.P. survey delineated a large chargeability high which correlates well with mapped zones of advanced argillic alteration and several smaller I.P. anomalies which correlate with TEM conductors and with possible breccia zones. Some of the I.P. anomalies and two limonitic quartz breccias were subsequently tested by diamond drilling.

Nine diamond drill holes were completed in 1994 for a total length of 1163.0 meters (3814.6 ft.). Drilling was done by J.T. Thomas Drilling Ltd. of Smithers, B.C. using a Longyear 38 diamond drill with NQ equipment.

Throughout most of the drilling, core recovery was less than 40 percent. The unusually difficult ground conditions also had an adverse impact on the drill equipment. A total of 69 drill rods (690 feet) were lost in the holes and could not be recovered and 26 more were "belled" and ruined. Several core barrels and diamond bits were lost as were 470 feet of casing and several diamond casing shoes. An inordinate amount of drill mud (772 bags) and chemical additives (287 bags) were required in trying to stabilize the holes. Three holes were abandoned because the drill rods stuck and were ultimately lost in the holes (DDH 94-5, 7 and 9) and three other holes were terminated prematurely in order to prevent the loss of the drill rods (DDH 94-3, 6 and 8).

It is concluded therefore that the level of weathering along the ridge between Limonite Creek and Many Bear Creek extends to a depth of about 90 meters below the present surface. Pyrite which occurred in quartz veins above that level was oxidized and leached, producing sulphuric acid solutions and released iron into solution. It should be noted here, that the IP survey, which was thought to have been effective to a depth of about 75 meters, probably did not respond below the level of oxidation and would not have detected sulphide minerals at deeper levels. Very fine grained disseminated pyrite however, is ubiquitous throughout the hydrothermally altered rocks, is fresh and bright, even at the surface, where it is encapsulated on silica or substrate minerals.

In the 1994 drilling program, no ore-grade intersections were encountered, even though hydrothermal alteration of the host rocks is similar to that associated with large, mesothermal precious metal deposits throughout the world.

During the period of August 21, 1996 to September 15, 1996, three diamond drill holes were drilled for a total of 862.9 meters (2830.3 feet). Each of the holes was planned for 1500 feet (457m) depth or to penetrate through the advanced argillic alteration zone or through a high sulphidation zone of mineralization (if one was encountered) and into adjacent wall rock. Drill hole 96-1 was completed successfully and core recovery was 100 percent through a zone of argillic alteration with pyrite, but drill holes 96-2 and 96-3 terminated prior to planned depth, due to bad ground conditions. Three widely spaced drill holes all inclined at minus 60 degrees with bearings near grid-north encountered wide intersections of fine-grained to extremely fine-grained pyrite in amounts to 25 percent. Rocks displaying prominent advanced argillic alteration were encountered in DDH 96-2, downward from elevation 1247 meters and continued to the bottom of the hole at elevation 1106 meters. Covellite (CuS) occurrences are noted in thin sections at elevations 1151 meters Covellite, colusite (Cu,Fe,Mo,Sn)₄(S,As,Te)₃₋₄ and sphalerite (ZnS) occur in minor to trace amounts through the intervals to the bottom of the hole. It is noted that an extensive deposit of vuggy silica occurred in DDH 96-2 between elevations 1164 to 1119 meters. Calculated width of the zone is 26 meters. Diamond drill holes 96-1 and 96-3 encountered strong and pervasive argillic alteration with pyrite contents to 20 percent throughout broad sections. However, no ore grade intersections were found in the 1996 drilling.

Exploration activities conducted during 1997 included a helicopter-borne geophysical survey over the Bear claim group. Telkwa Gold Corporation contracted out to Frontier Geophysics the acquisition of magnetic, electromagnetic and VLF data to assist in the interpretation of structures and alteration zones and to expand on ground geophysics carried out in previous years.

As a follow-up to the geophysical survey which was completed in March, 1997, the Corporation undertook a modest field program consisting of geochemical soil sampling on the Bear claim group during August to examine an area of anomalous geophysical response. Results of the geochemical survey were plotted and revealed anomalous copper, zinc and silver, parallel to the major structures. As well as an area measuring 200 meters by more than 600 meters of anomalous arsenic with coincident antimony and elevated gold.

In 1997 a report entitled "The Style and Origin of Alteration of the Limonite Creek Property, Central British Columbia "by C.L.Deyell, J.F.H.Thompson, L.A.Groat, J.K.Mortensen, R.M.Friedman and W.D.Thompson was published in Geological Fieldwork,1997, British Columbia Ministry of Employment and Investment. This report summarized research over two field seasons on the property that included sampling of drill core, mineralogical classification of alteration, limited geochemistry and age dating of intrusions that occur in the area of alteration. A subsequent paper entitled, "Age and origin of advanced argillic alteration zones and related exotic limonite deposits in the Limonite Creek area, central British Columbia", by C.L. Deyell, J.F.H. Thompson, R.M. Friedman and L.A. Groat was published in the Canadian Journal of Earth Sciences, Vol.37 in 2000.

5. Geology

5.1 Regional Geology

The Limonite Creek property is located in the Stikina tectonic terrane. According to McMillan et al. (1995):

The Stikina terrane consists of Devonian to Jurassic, arc-related volcanic and sedimentary strata and coeval plutonic suites that are co-magmatic with the volcanic rocks. Stikina includes the Devonian to Permian Stikine Assemblage, the Triassic Stuhini and Lewes River groups, the Early to Middle Jurassic Hazelton Group, the Early to Middle Jurassic Laberge, Inklin and Takwahoni Groups of the Whitehorse Trough and several post-accretionary volcanic and sedimentary sequences. Stuhini volcanism is largely of Late Triassic age. The Stuhini Group is overlain (unconformably?) by the Hazelton Group, a mixed package of volcanic rocks that range from basalt to rhyolite and include subaerial and submarine facies. Both the Triassic and Jurassic arc events are associated with the formation of important porphyry deposits.

Deyell et.al. (2000) describes the regional geology as follows:

Regionally, volcanic rocks in Howson and Telkwa ranges have been assigned to the Telkwa Formation which forms the basal part of the Hazelton Group of Early to Middle Jurassic age. It consists of a varied assemblage of submarine and subaerial calc-alkaline volcanic rocks which have been subdivided into five facies (Tipper & Richards, 1976). The Howson subaerial facies has been mapped in the Howson range and much of the Telkwa range. It consists of a well-bedded, slightly deformed, pyroclastic, flow and sedimentary rocks, dominantly of andesitic to dacitic composition. Although extensively altered, the volcanic rocks exposed in the Telkwa Pass appear to be lithologically similar to the unaltered rocks exposed farther north and east and consequently have been assigned an Early to Middle Jurassic age. Poorly defined protoliths and lack of clear stratigraphic relationships hinder definitive correlations.

Volcanic rocks of the Telkwa Formation are intruded locally by calc-alkaline stocks and batholiths of Early Jurassic age. These Topley intrusions (Woodsworth et.al.1991) are thought to be cogenetic with the Telkwa Formation and have K-Ar ages ranging from 173 to 205 Ma (Tipper and Richards, 1976). The batholith consists of mainly tonalite and granodiorite and has a K-Ar age of 202 +/-6 Ma. This Lower Jurassic suite extends westward into the Coast Mountains where it is intruded by Cretaceous and lower Tertiary intrusions of the Coast Plutonic Complex (Gareau et.al.1997).

Younger intrusions in this region include the Late Cretaceous Buckley and Eocene Nanika intrusive suites of the western Skeena Arch, as well as the Eocene Babine igneous suite in the Babine Lake area to the east (Carter, 1976). Coeval Upper Cretaceous volcanic rocks of the Brian Boru Formation are locally preserved in the western Skeena Arch, and Eocene volcanics of the Ootsa Lake Fm. are widespread across the west-central British Columbia region. Both the Late Cretaceous and Eocene intrusive suites are associated with mineral deposits in this region.

Within the vicinity of Limonite Creek there are several occurrences of mineralized quartz veins in granodiorite to monzonite intrusives. These veins are characterized by silver, lead and zinc mineralization with lesser amounts of copper and gold. These occurrences are summarized in Table 2 as follows:

Table 2 - Regional Mineral Occurrences

Claim Name	BC Assessment Report Number	Mineralization
Allie	02413	Cu, Mo in silt samples
Zap	02129,02687	Quartz veins in granodiorite with py, cpy, galena & sphalerite : 68.6g Ag,tr.Cu,34%Pb, 3%Zn
Pass	20520,19088	Quartz-py-galena veins in monzonite with Au,Ag,Pb and Zn

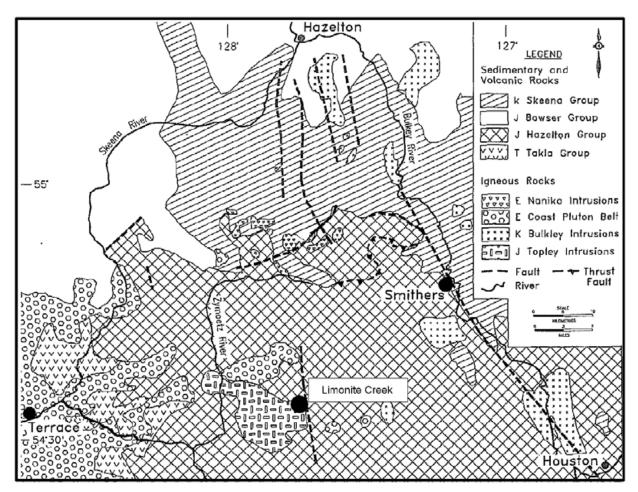


Figure 3 - Regional Geology - Limonite Creek

Modified after Hanson and Klassen, 1995

5.2 Property Geology

The prospect area as defined by the 1992-1994 grid area is underlain by a variety of green and lesser maroon rhyodacite, dacite and andesitic tuffs and flows. Age dating of intrusions (C.L. Deyell, et.al.2000) at Limonite Creek specifically indicates that the volcanic rocks in this locality

are Late Triassic or older, thus predating the Hazelton Group volcanics (Telkwa Fm.) and placing these volcanics in the Triassic Stuhini Group.

Volcanic rocks on the property are intruded by Late Triassic, coarse to medium grained, diorite to granodiorite, directly east of the main alteration zone at the Limonite Creek property. Deyell et.al. (2000) reports a U-Pb age estimate of 212.0 +/- 0.6 Ma

age date for the intrusive. This date provides a maximum age for the alteration observed on the Limonite Creek property.

A very weakly altered, Biotite Feldspar Porphyry (Unit 7, Map 1), forms the largest intrusion cut by the alteration zone. This porphyry gave a U-Pb age of 52.2 +/-0.1 Ma (Deyell et.al.1998).

Toward the west of the 1992-94 grid area, the volcanics are bounded by slightly porphyritic, granodiorite containing phenocrysts of plagioclase and grains of quartz and biotite in a very fine grained groundmass dominated by quartz and K-feldspar. According to Deyell (et.al. 2000), neither this intrusion nor the adjacent volcanic rocks are altered.

Several other kinds of intrusive rocks occur and these are mostly in the eastern half of the map area. These may be divided into three groups of intrusives; hypabyssal intrusive rocks, hypabyssal volcanic rocks and various mafic to felsic dikes.

Alteration in the Limonite Creek property may be older than 145 Ma and magmatic suites in the region with alteration systems likely related to Limonite Creek are of late Triassic to Middle Jurassic age (210-175Ma). According to Deyell et.al. (2000), alteration at Limonite Creek is significantly older than the Tertiary Equity Silver Deposit. The host rocks for alteration at Limonite Creek are Late Triassic or older and regional stratigraphy needs to be reassessed (Deyell et.al.2000).

According to Tompson (1997), the aluminous alteration at Limonite Creek occurs adjacent to and north of the zone of argillic and advanced argillic alteration. Aluminous alteration is characterized by the presence of minor to significant amounts of corundum, and alusite and at Limonite Creek, lazulite and reflects a higher temperature environment of alteration than exists in argillic and advanced argillic alteration. Aluminous alteration is considered to have developed deeper in the hydrothermal system than argillic alteration or advanced argillic alteration and may be associated with a porphyry copper environment, similar to the El Salvador deposit in Chile.

Tompson (1997) goes on to state that the aluminous alteration zone at Limonite Creek is separated from the advanced argillic and argillic zones by a probable fault. This fault is believed to have telescoped the argillic and advanced argillic zone downward against the deeper aluminous altered rocks.

Because aluminous alteration is known to occur above some porphyry copper deposits, exploration measures were taken to evaluate the potential of a porphyry copper target north of the zone of aluminous alteration, centered on the slopes to the north of Many Bear Creek. This is the exploration which took place during the 2006 field season and is the subject of this report.

5.3 2006 Geological Mapping

Mapping during the 2006 field season (Map 1) determined that the area north of the previous work (1992-94 grid and mapping), is underlain primarily by quartz diorite. The quartz diorite has been intruded by several younger intermediate composition (andesite to dacite) dykes. These dykes are characteristically aphanitic in texture and contain finely disseminated pyrite. In addition to these dykes, one andesite porphyry dyke (unit 6, Map 1) was observed and a dyke(?) of Biotite-Feldspar Porphyry (unit 7, Map 1) was found along the boundary of mineral tenures 535233 and 535231.

Some of the intermediate volcanics, (andesite to dacite) observed, in mineral tenure 535233, were associated with springs. These springs were emanating from quartz-diorite outcrop above and the rusty weathering, friable, volcanic scree below. These springs fed into bog areas, rich in iron derived from the rusty weathering volcanic scree. The springs are marking localized intrusive/volcanic contacts.

The volcanics of the area are ferruginous in nature and some contain more than 10% very finely disseminated pyrite. Ferruginous volcanics were observed regionally, from this property and to the east-northeast of the property along the flight path to Smithers. This is the only observable source of iron for the limonites, on the property, which are still forming.

The quartz-diorite mapped during the 2006 field season matches the description of the diorite to the east as mapped by Deyell et.al. (2000). The intrusive mapped to the east by earlier authors appears to continue to the north and underlies most of mineral tenure 535233.

A topographic break trends across mineral tenure 535233 in an ENE direction. The mineralization found at TL-11 is hosted by a rusty weathering shear trending 055° that can be extrapolated towards or parallel to this topographic break. This indicates that mineralization is associated with regional faulting. Previous authors have noted this trend in the orientation of the alteration in the volcanics, at lower elevation on the property.

Current and previous mapping were compiled in conjunction the results of a magnetic survey flown in 1997(Maps 1 & 2, back pocket of this report). The magnetic contrast is interpreted as a contact or a combination of a fault and contact, trending from the northwestern area of the claim to the south in mineral tenure 535231 (Map 2). This contrast in magnetic signature occurs along the contact between the intrusive present to the north and east, and the volcanics. The volcanics may be viewed as a roof pendant between the two intrusives. If this linear magnetic line of contrast is projected to surface through the volcanic cover, then it can be seen that the exotic limonite deposits in the north half of mineral tenure 535231 follow this line.

Anomalous copper-in-soil geochemical contours from the 1997 grid trend in an ENE direction. There is a corresponding zone of anomalous copper in soils, located across the deeply incised stream valley, located within the old 1992-94 grid. The deeply incised stream valley forms the surface expression of the NW-SE trending aeromagnetic indicated fault-contact mentioned above.

5.3.1 Alteration

Alteration found within the quartz-diorite is primarily propylitic with abundant epidote-quartz veins and chlorite. Quartz-Diorite associated with faults or quartz veining, had more epidote, is very rusty weathering and contains up to 10% finely disseminated pyrite.

Some quartz float found at high elevation contains pyrophyllite (TL-10 and TL-12). The mineral pyrophyllite is associated with advanced argillic alteration, found deeper in a hydrothermal system or closer to the source of the hydrothermal activity. Sample TL-10 also contained malachite and was located immediately below a mineralized shear (TL-11) with malachite in quartz-diorite outcrop.

6. Mineralization

A total of 40 rock samples were collected from mineral tenures 535231 and 535233 during the 2006 field season. Rock samples were sent to Loring Laboratories in Calgary, Alberta for 30 element ICP analysis. Gold determination was subsequently completed using atomic absorption techniques. Rock sample descriptions and outcrop descriptions are provided in Appendix 1. Analytical procedures and results, Certificates are provided in Appendix 2. Results from this work are plotted on Map 1 and 3(back pocket of this report).

The most frequent form of mineralization observed on the slopes north of Many Bear Creek is specular hematite. Specular hematite is commonly associated with fractures and quartz veins in the quartz diorite. Quartz vein material is commonly massive white quartz or comb-quartz, with rare, trace amounts of pyrite, chalcopyrite, malachite +/- arsenopyrite.

Of the 40 rock samples collected, six returned anomalous analytical results for copper mineralization, one for silver, one for molybdenum and five results >100 ppb for gold. These results are listed in Table 3.

Table 3 - 2006 Prospecting Samples with Cu, Au, Ag and Mo

Sample Number	Easting Nad 83	Northing	Sample type	Cu ppm	Ag ppm	Mo ppm	Au ppb
TL-1	578101	6047263	Quartz float	2910		17	
TL-6	577854	6047553	o/c volc.				100
TL-7	576859	6047831	Quartz float	2340			
TL-10	577371	6047396	Quartz float	4950	5.2		
TL-11	577386	6047399	Diorite o/c fault	12,300			
TL-22	576794	6048140	Quartz float	5770			190
TL-24	576808	6048173	Volc. float	2320		7	
TL-18	576815	6048215	Diorite float				150
TL-21	576833	6048153	Qtz float py				1400
TL-34	577094	6046474	o/c rusty bleached volc.				195

TL-1 was sampled adjacent to the cirque lake in the eastern part of mineral tenure 535233. This sample of angular float consisted of pyritic, limonitic, argillically altered quartz-diorite.

TL-6 had 100 ppb Au and was taken from a site with a spring that had fine limonitic, volcanic, finely layered and broken fragments subcropping beneath a slope of coarse quartz-diorite scree. The volcanic appeared to have a remnant tuffaceous texture. Soil sample #116 was taken at this site as well, but only returned 5 ppb Au.

TL-7 consisted of angular quartz float with traces of pyrite, chalcopyrite and malachite staining. This sample was taken from a scree slope in the west central part of mineral tenure 535233 and returned analytical results of 2340 ppm Cu and 35ppm Co.

TL-10 was derived from angular quartz float, a few meters below TL-11. This float contained malachite, chalcopyrite, pyrite and pyrophyllite. Analytical results for this sample were 5.2 ppm Ag and 4950 ppm Cu. It did not have iron staining or specular hematite as the vein associated with the outcrop sample TL-11.

Copper mineralization detected in outcrop sample TL-11 returned an analytical result of 12,300 ppm Cu. Malachite was observed within the sheared quartz diorite and sampled (TL-11). A quartz vein adjacent to the mineralized fracture did not contain visible mineralization other than red iron staining and specular hematite. Although the sample site did not appear to be exceptionally well mineralized, the location of this mineralization provides useful exploration data. The mineralized fracture trends 055/90 and is cross cut by another fracture trending 170/84W. Just to the east of this sample site and north of the cirque lake in mineral tenure 535231, is a prominent topographic break in the slope that trends ENE, and trends toward the outcrop of sample TL-11. Several quartz veins mineralized with specular hematite were observed along this break.

This 055° trend is parallel or sub parallel to the ENE trend of the alteration zones previously mapped in the 1992-94 grid to the south in mineral tenure 535231. This data in conjunction with the trend of the alteration zones mapped to the south indicates a regional structural pattern that appears to be associated with mineralization at Limonite Creek.

TL-18 returned an analytical result of 150 ppb Au. This sample was taken from a large boulder of angular quartz-diorite with a quartz-epidote vein with rusty weathering and up to 5% disseminated pyrite.

TL-21 was a sample of quartz float that contained minor disseminated pyrite and euhedral magnetite.

TL-22 was a sample of angular quartz float with malachite and had an assay of 5770 ppm Cu and 190 ppb Au. This sample was taken in the western half of mineral tenure 535233 at 1540m in elevation.

Sample TL-24 was taken from angular float of propylitically (epidote-rich) altered andesite returned assays of 2320 ppm Cu, 7ppm Mo and 136ppm Co. This sample was fractured and contained numerous fine quartz veins. TL-1 was taken from angular quartz float, likely derived from an inaccessible quartz vein outcropping above the sample site. This sample returned assays of 2910 ppm Cu, 17ppm Mo, 62ppm Co and 7ppm As. The source vein above trends ENE and dips 30NW.

TL-34 was a sample of outcrop material that was a very bleached and altered intermediate volcanic with rusty weathering. This outcrop was weathering into fine scree, sloping into an adjacent stream. This sample ran 195 ppb Au.

Predominantly, these samples were taken at elevations above the previous 1997 geochemical soil survey (Tompson, 1997). Only one rock sample returned significant analytical results for molybdenum (TL-1, 17 ppm Mo), and one for silver (TL-10, 5.2 ppm Ag).

7. Soil Sampling 2006 Program

A total of 194 soil samples were collected from mineral tenures 535231 and 535233 during a program of contour soil sampling during the 2006 field season. These samples were collected from areas predominately above slope from the 1997 geochemical work. The intention of this program was to evaluate the area for porphyry copper mineralization by expanding upon the copper-in-soil anomalies found during a 1997 soil geochemical prospecting program, and locate a source for these anomalies. Results from this sampling are plotted on Maps 3 to 13(back pocket of this report). Table 4 provides a list of soil sample results, percent ranked with previous work done on the property.

All samples were sent to Loring Laboratories in Calgary, Alberta for 30 element ICP analysis. In addition, the samples were analyzed by atomic absorption for gold. Soil sample and rock sample descriptions and outcrop descriptions are provided in Appendix 1. Analytical procedures and results, Certificates are provided in Appendix 2.

7.1 Results

The objective of this soil sampling program was to expand upon the 1997 exploration results of anomalous copper and gold in soils, and to examine the area north of Many Bear Creek for copper porphyry style mineralization. Samples were collected to the north and east of the previously determined, 1997 copper-in-soil anomalies. All 2006 samples were plotted along with previous soil geochemical results on a percentile basis in order to normalize the data.

Table 4 shows analytical results with significant values highlighted. Maps 3 to 13 in the back pocket of this report show the 2006 results.

In comparison to 1997 results, fewer significant silver values were returned in the analytical results (Map 7).One of the interesting results was from a location near sample TL-11 where malachite mineralization was found in outcrop.

Table 4 - Percent Ranked Soil Geochemical Results 2006

Sampl	P-rank	P-rank	P-rank	P-rank	P-rank	P-rank	P-rank	P-rank
е	As	Со	Cu	Fe	Pb	Sb	Zn	Au
1	0.22	0.52	0.92	0.61	0.01	0.01	0.40	0.93
2	0.18	0.95	0.96	0.96	0.01	0.68 0.98		0.98
3	0.79	0.60	0.90	0.54	0.02	0.46	0.38	0.01
4	0.76	0.87	0.94	0.82	0.02	0.25	0.55	0.02
5	0.81	0.90	0.95	0.88	0.03	0.58	0.79	0.02
6	0.26	0.90	0.96	0.74	0.03	0.60	0.94	0.03
7	0.34	0.63	0.92	0.58	0.04	0.51	0.77	0.96
8	0.34	0.57	0.87	0.52	0.04	0.29	0.67	0.97
9	0.13	0.39	0.81	0.38	0.05	0.38	0.32	0.03
10	0.39	0.25	0.90	0.27	0.05	0.01	0.27	0.04
11	0.26	0.92	0.97	0.89	0.06	0.02	0.96	0.04
12	0.71	0.47	0.78	0.48	0.06	0.57	0.60	0.05
13	0.87	0.71	0.63	0.70	0.07	0.69	0.75	0.05
14	0.77	0.52	0.69	0.45	0.07	0.41	0.50	0.06
15	0.48	0.66	0.65	0.65	0.08	0.48	0.78	0.06
16	0.80	0.24	0.49	0.26	0.08	0.34	0.35	0.90
17	0.96	0.44	0.60	0.41	0.09	0.16	0.42	0.59
18	0.59	0.64	0.68	0.53	0.09	0.02	0.78	0.07
19	0.70	0.34	0.66	0.32	0.10	0.55	0.61	0.59
20	0.65	0.76	0.69	0.69	0.10	0.44	0.81	0.07
21	0.88	0.32	0.41	0.27	0.11	0.44	0.58	0.08
22	0.93	0.74	0.82	0.53	0.12	0.42	0.71	0.08
23	0.78	0.30	0.67	0.22	0.12	0.38	0.30	0.09
24	0.53	0.33	0.74	0.25	0.13	0.21	0.40	0.09
25	0.68	0.32	0.76	0.29	0.13	0.39	0.41	0.10
27	0.46	0.35	0.47	0.38	0.14	0.03	0.46	0.10
28	0.54	0.38	0.37	0.49	0.14	0.57	0.47	0.69
29	0.36	0.59	0.73	0.59	0.15	0.34	0.54	0.11
30	0.31	0.50	0.14	0.79	0.15	0.52	0.65	0.60
31	0.51	0.85	0.83	0.84	0.16	0.59	0.73	0.60
32	0.23	0.83	0.65	0.71	0.16	0.17	0.66	0.61
33	0.30	0.20	0.46	0.18	0.17	0.26	0.45	0.61
34	0.24	0.33	0.41	0.42	0.17	0.14	0.33	0.93
35	0.40	0.30	0.54	0.47	0.18	0.22	0.48	0.11
36	0.31	0.17	0.60	0.35	0.18	0.03	0.35	0.86
37	0.97	0.03	0.97	0.05	0.19	0.30	0.97	0.12
38	0.07	0.09	0.08	0.07	0.19	0.04	0.20	0.94
39	0.25	0.15	0.75	0.20	0.20	0.17	0.57	0.12
40	0.63	0.64	0.94	0.66	0.20	0.04	0.99	0.78
41	0.41	0.49	0.57	0.43	0.21	0.05	0.80	0.83
42	0.35	0.68	0.82	0.65	0.21	0.22	0.33	0.13
43	0.24	0.07	0.19	0.06	0.22	0.47	0.20	0.13
44	0.12	0.13	0.42	0.14	0.23	0.05	0.39	0.14
45	0.65	0.22	0.29	0.24	0.23	0.06	0.69	0.15
46	0.60	0.44	0.68	0.39	0.24	0.61	0.88	0.15
47	0.66	0.47	0.56	0.47	0.24	0.23	0.81	0.69

Sampl e	P-rank As	P-rank Co	P-rank Cu	P-rank Fe	P-rank Pb	P-rank Sb	P-rank Zn	P-rank Au
48	0.42	0.29	0.24	0.30	0.25	0.35	0.68	0.87
49	0.81	0.49	0.78	0.44	0.25	0.35	0.59	0.62
50	0.55	0.46	0.80	0.46	0.26	0.06	0.56	0.84
51	0.45	0.61	0.84	0.56	0.26	0.48	0.70	0.70
52	0.37	0.77	0.77	0.75	0.27	0.07	0.82	0.70
53	0.41	0.38	0.70	0.46	0.27	0.42	0.53	0.71
54	0.28	0.41	0.61	0.37	0.28	0.52	0.51	0.72
55	0.83	0.26	0.76	0.28	0.28	0.30	0.98	0.79
56	0.42	0.60	0.46	0.60	0.29	0.07	0.77	0.90
57	0.54	0.58	0.50	0.49	0.29	0.31	0.84	0.62
58	0.44	0.18	0.87	0.17	0.30	0.18	0.26	0.72
59	0.63	0.26	0.55	0.22	0.30	0.19	0.44	0.94
60	0.18	0.11	0.42	0.08	0.31	0.08	0.30	0.91
61	0.49	0.48	0.62	0.36	0.31	0.15	0.66	0.91
62	0.72	0.27	0.45	0.24	0.32	0.39	0.38	0.79
63	0.39	0.18	0.30	0.21	0.32	0.08	0.22	0.73
64	0.58	0.21	0.62	0.63	0.33	0.26	0.65	0.80
65	0.91	0.70	0.81	0.91	0.34	0.27	0.85	0.16
66	0.38	0.72	0.59	0.90	0.34	0.23	0.70	0.98
67	0.49	0.93	0.20	0.93	0.35	0.63	0.86	0.73
68	0.89	0.56	0.32	0.51	0.35	0.24	0.28	0.16
69	0.51	0.34	0.31	0.31	0.36	0.09	0.31	0.63
70	0.36	0.36	0.34	0.34	0.36	0.31	0.37	0.17
71	0.32	0.22	0.34	0.21	0.37	0.27	0.31	0.63
72	0.72	0.46	0.31	0.43	0.37	0.09	0.36	0.01
73	0.56	0.40	0.26	0.32	0.38	0.45	0.42	0.17
74	0.58	0.74	0.79	0.64	0.38	0.10	0.51	0.80
75	0.67	0.36	0.28	0.35	0.39	0.47	0.63	0.18
76	0.84	0.51	0.33	0.40	0.39	0.43	0.67	0.18
77	0.85	0.65	0.36	0.67	0.40	0.49	0.58	0.19
78	0.92	0.66	0.91	0.51	0.40	0.49	0.86	0.74
79	0.82	0.73	0.64	0.68	0.41	0.32	0.53	0.84
80	0.60	0.81	0.43	0.76	0.41	0.10	0.54	0.19
81	0.69	0.77	0.39	0.57	0.42	0.15	0.36	0.20
82	0.48	0.84	0.49	0.86	0.42	0.19	0.48	0.20
83	0.78	0.89	0.79	0.86	0.43	0.64	0.73	0.21
84	0.62	0.69	0.44	0.55	0.43	0.50	0.63	0.21
85	0.46	0.85	0.88	0.77	0.44	0.53	0.61	0.22
86	0.70	0.82	0.50	0.80	0.45	0.53	0.74	0.22
87	0.92	0.86	0.56	0.96	0.45	0.45	0.74	0.23
88	0.86	0.78	0.25	0.87	0.46	0.20	0.49	0.81
89	0.75	0.72	0.89	0.67	0.46	0.51	0.52	0.23
90	0.73	0.80	0.73	0.69	0.47	0.11	0.43	0.85
91	0.28	0.88	0.58	0.84	0.47	0.32	0.56	0.74
92	0.55	0.75	0.35	0.76	0.48	0.95	0.64	0.81
93	0.89	0.81	0.80	0.73	0.48	0.77	0.80	0.82
94	0.50	0.54	0.85	0.41	0.49	0.70	0.68	0.87

Sampl e	P-rank As	P-rank Co	P-rank Cu	P-rank Fe	P-rank Pb	P-rank Sb	P-rank Zn	P-rank Au
95	0.27	0.62	0.38	0.60	0.49	0.76	0.83	0.88
96	0.32	0.63	0.66	0.58	0.50	0.84	0.85	0.75
97	0.64	0.67	0.58	0.57	0.50 0.85		0.89	0.82
98	0.52	0.76	0.84	0.77	0.51	0.88	0.91	0.92
99	0.77	0.58	0.55	0.48	0.51	0.88	0.88	0.85
100	0.38	0.78	0.21	0.72	0.52	0.83	0.71	0.75
101	0.50	0.45	0.63	0.39	0.52	0.75	0.83	0.64
102	0.67	0.41	0.39	0.52	0.53	0.66	0.72	0.64
103	0.14	0.48	0.45	0.78	0.53	0.72	0.55	0.65
104	0.16	0.17	0.23	0.33	0.54	0.71	0.24	0.65
105	0.43	0.50	0.70	0.61	0.54	0.87	0.94	0.66
106	0.59	0.67	0.98	0.72	0.55	0.81	0.99	0.24
107	0.21	0.24	0.33	0.26	0.55	0.78	0.72	0.24
108	0.95	0.37	0.36	0.30	1.00	0.79	0.95	0.25
109	0.56	0.06	0.22	0.04	0.56	0.71	0.15	0.95
111	0.66	0.25	0.51	0.20	0.57	0.95	0.76	0.25
112	0.61	0.06	0.40	0.09	0.57	0.69	0.24	0.99
112	0.93	0.10	0.51	0.13	0.58	0.70	0.43	0.66
113	0.44	0.23	0.20	0.34	0.58	0.76	0.27	0.67
114	0.80	0.11	0.32	0.12	0.59	0.92	0.92	0.26
115	0.94	0.91	0.23	0.79	0.59	0.96	0.95	0.26
116	0.40	0.89	0.48	0.82	0.60	0.85	0.18	0.67
117	0.19	0.14	0.18	0.17	0.60	0.79	0.57	0.27
118	0.47	0.16	0.35	0.10	0.61	0.77	0.26	0.27
119	0.15	0.42	0.11	0.54	0.61	0.80	0.41	0.28
120	0.30	0.23	0.17	0.23	0.62	0.93	0.16	0.28
121	0.21	0.08	0.06	0.06	0.62	0.82	0.19	0.89
122 123	0.09 0.98	0.19 0.19	0.09	0.23 0.18	0.63 0.63	0.92 0.86	0.23 0.44	0.29
123	0.98	0.19	0.21	0.16	0.64	0.80	0.44	0.30
125	0.17	0.43	0.20	0.55	0.64	0.93	0.19	0.30
126	0.17	0.31	0.27	0.33	0.65	0.72	0.32	0.76
127	0.98	0.28	0.44	0.19	0.65	0.94	0.93	0.76
128	0.75	0.83	0.16	0.62	0.66	0.82	0.13	0.77
129	0.06	0.70	0.15	0.85	0.66	0.91	0.97	0.31
130	0.23	0.94	0.95	0.94	0.67	0.78	0.96	0.68
131	0.33	0.84	0.85	0.78	0.68	0.83	0.47	0.32
132	0.85	0.37	0.27	0.28	0.68	0.84	0.89	0.32
133	0.83	0.61	0.72	0.64	0.69	0.68	0.64	0.77
134	0.79	0.69	0.38	0.73	0.69	0.73	0.60	0.33
135	0.68	0.45	0.48	0.70	0.70	0.74	0.76	0.33
136	0.97	0.79	0.72	0.85	0.70	0.86	0.92	0.34
137	0.87	0.87	0.52	0.88	0.71	0.89	0.79	0.34
138	0.90	0.79	0.67	0.81	0.71	0.94	0.62	0.97
139	0.96	0.59	0.53	0.40	0.72	0.89	0.82	0.83
140	0.82	0.62	0.52	0.56	0.72	0.91	0.87	0.68
141	0.76	0.73	0.77	0.50	0.73	0.80	0.91	0.35

142 0.68 0.80 0.83 0.73 0.90 0.84 0.35 143 0.91 0.82 0.53 0.92 0.74 0.86 0.93 0.36 144 0.94 0.93 0.25 0.95 0.74 0.96 0.99 0.36 145 0.99 0.54 0.28 0.63 0.75 0.90 0.49 0.37 146 0.99 0.53 0.40 0.44 0.99 0.74 0.05 0.75 0.73 0.18 0.99 148 0.45 0.07 0.75 0.03 0.76 0.20 0.34 0.38 150 0.01 0.02 0.09 0.02 0.77 0.11 0.28 0.39 151 0.08 0.96 0.91 0.91 0.77 0.11 0.28 0.39 152 0.16 0.05 0.13 0.09 0.78 0.28 0.14 0.40 153 0.33	Sampl e	P-rank As	P-rank Co	P-rank Cu	P-rank Fe	P-rank Pb	P-rank Sb	P-rank Zn	P-rank Au
144	142	0.69	0.80	0.83	0.83	0.73	0.90	0.84	0.35
145	143	0.91	0.82	0.53	0.92	0.74 0.81		0.93	0.36
146	144	0.94	0.93	0.25	0.95	0.74	0.96	0.59	0.36
147 0.07 0.03 0.10 0.05 0.75 0.73 0.18 0.99 148 0.45 0.07 0.75 0.03 0.76 0.20 0.34 0.38 149 0.90 0.31 0.64 0.66 0.77 0.11 0.28 0.39 151 0.08 0.96 0.91 0.91 0.77 0.18 0.10 0.39 152 0.16 0.05 0.13 0.99 0.78 0.22 0.14 0.40 152 0.16 0.05 0.13 0.99 0.78 0.22 0.14 0.40 153 0.33 0.20 0.10 0.33 0.79 0.21 0.32 0.92 154 0.74 0.95 0.86 0.90 0.79 0.58 0.46 0.78 155 0.88 0.94 0.89 0.80 0.12 0.17 0.41 156 0.62 0.91 0.74 0.15	145	0.99	0.54	0.28	0.63	0.75	0.90	0.49	0.37
148	146	0.99	0.53	0.40	0.44	0.99	0.74	0.05	0.37
149	147	0.07	0.03	0.10	0.05	0.75	0.73	0.18	0.99
150									
151	149	0.90	0.31	0.64	0.66	0.76	0.59	0.05	0.38
152 0.16 0.05 0.13 0.09 0.78 0.28 0.14 0.40 153 0.33 0.20 0.10 0.33 0.79 0.21 0.32 0.92 154 0.74 0.95 0.86 0.90 0.79 0.58 0.46 0.78 155 0.88 0.94 0.93 0.94 0.80 0.66 0.34 0.40 156 0.62 0.91 0.74 0.89 0.80 0.12 0.17 0.41 157 0.47 0.55 0.47 0.15 0.81 0.46 0.15 0.41 158 0.09 0.10 0.07 0.13 0.81 0.46 0.15 0.41 159 0.64 0.05 0.30 0.02 0.82 0.29 0.04 0.43 160 0.57 0.92 0.59 0.15 0.82 0.29 0.04 0.43 161 0.05 0.01 0.71							_		
153 0.33 0.20 0.10 0.33 0.79 0.21 0.32 0.92 154 0.74 0.95 0.86 0.90 0.79 0.58 0.46 0.78 155 0.88 0.94 0.93 0.94 0.80 0.62 0.34 0.40 156 0.62 0.91 0.74 0.89 0.80 0.12 0.17 0.41 157 0.47 0.55 0.47 0.15 0.81 0.46 0.15 0.41 158 0.09 0.10 0.07 0.13 0.81 0.46 0.15 0.41 159 0.64 0.05 0.30 0.02 0.82 0.29 0.04 0.43 160 0.57 0.92 0.59 0.15 0.82 0.29 0.04 0.43 161 0.05 0.01 0.71 0.01 0.83 0.16 0.25 0.44 162 0.25 0.53 0.61									
154									
155									
156									
157									
158									
159									
160 0.57 0.92 0.59 0.15 0.82 0.29 0.04 0.43 161 0.05 0.01 0.71 0.01 0.83 0.16 0.25 0.44 162 0.25 0.53 0.61 0.11 0.83 0.36 0.90 0.44 163 0.17 0.16 0.19 0.11 0.84 0.43 0.06 0.45 164 0.15 0.02 0.15 0.03 0.84 0.56 0.14 0.45 165 0.22 0.08 0.12 0.08 0.85 0.65 0.12 0.46 166 0.52 0.42 0.11 0.71 0.85 0.24 0.04 0.46 167 0.06 0.01 0.54 0.01 0.86 0.13 0.69 0.47 168 0.73 0.56 0.18 0.59 0.86 0.40 0.11 0.47 169 0.37 0.39 0.04									
161 0.05 0.01 0.71 0.01 0.83 0.16 0.25 0.44 162 0.25 0.53 0.61 0.11 0.83 0.36 0.90 0.44 163 0.17 0.16 0.19 0.11 0.84 0.43 0.06 0.45 164 0.15 0.02 0.15 0.03 0.84 0.56 0.14 0.45 165 0.22 0.08 0.12 0.08 0.85 0.65 0.12 0.46 166 0.52 0.42 0.11 0.71 0.85 0.65 0.12 0.46 167 0.06 0.01 0.54 0.01 0.86 0.13 0.69 0.47 168 0.73 0.56 0.18 0.59 0.86 0.40 0.11 0.47 169 0.37 0.39 0.04 0.68 0.87 0.54 0.06 0.88 170 0.27 0.04 0.07									
162 0.25 0.53 0.61 0.11 0.83 0.36 0.90 0.44 163 0.17 0.16 0.19 0.11 0.84 0.43 0.06 0.45 164 0.15 0.02 0.15 0.03 0.84 0.56 0.14 0.45 165 0.22 0.08 0.12 0.08 0.85 0.65 0.12 0.46 166 0.52 0.42 0.11 0.71 0.85 0.24 0.04 0.46 167 0.06 0.01 0.54 0.01 0.86 0.13 0.69 0.47 168 0.73 0.56 0.18 0.59 0.86 0.40 0.11 0.47 169 0.37 0.39 0.04 0.68 0.87 0.54 0.06 0.88 170 0.27 0.04 0.07 0.07 0.87 0.61 0.07 0.48 171 0.11 0.35 0.02									
163 0.17 0.16 0.19 0.11 0.84 0.43 0.06 0.45 164 0.15 0.02 0.15 0.03 0.84 0.56 0.14 0.45 165 0.22 0.08 0.12 0.08 0.85 0.65 0.12 0.46 166 0.52 0.42 0.11 0.71 0.85 0.24 0.04 0.46 167 0.06 0.01 0.54 0.01 0.86 0.13 0.69 0.47 168 0.73 0.56 0.18 0.59 0.86 0.40 0.11 0.47 169 0.37 0.39 0.04 0.68 0.87 0.54 0.06 0.88 170 0.27 0.04 0.07 0.07 0.87 0.61 0.07 0.48 171 0.11 0.35 0.02 0.74 0.88 0.13 0.09 0.48 172 0.10 0.12 0.05									
164 0.15 0.02 0.15 0.03 0.84 0.56 0.14 0.45 165 0.22 0.08 0.12 0.08 0.85 0.65 0.12 0.46 166 0.52 0.42 0.11 0.71 0.85 0.24 0.04 0.46 167 0.06 0.01 0.54 0.01 0.86 0.13 0.69 0.47 168 0.73 0.56 0.18 0.59 0.86 0.40 0.11 0.47 169 0.37 0.39 0.04 0.68 0.87 0.54 0.06 0.88 170 0.27 0.04 0.07 0.07 0.87 0.61 0.07 0.48 171 0.11 0.35 0.02 0.74 0.88 0.13 0.09 0.48 172 0.10 0.12 0.05 0.29 0.88 0.36 0.90 0.49 173 0.84 0.13 0.03									
165 0.22 0.08 0.12 0.08 0.85 0.65 0.12 0.46 166 0.52 0.42 0.11 0.71 0.85 0.24 0.04 0.46 167 0.06 0.01 0.54 0.01 0.86 0.13 0.69 0.47 168 0.73 0.56 0.18 0.59 0.86 0.40 0.11 0.47 169 0.37 0.39 0.04 0.68 0.87 0.54 0.06 0.88 170 0.27 0.04 0.07 0.07 0.87 0.61 0.07 0.48 171 0.11 0.35 0.02 0.74 0.88 0.13 0.09 0.48 172 0.10 0.12 0.05 0.29 0.88 0.36 0.90 0.49 173 0.84 0.13 0.03 0.19 0.89 0.64 0.29 0.49 T-1 0.53 0.15 0.37									
166 0.52 0.42 0.11 0.71 0.85 0.24 0.04 0.46 167 0.06 0.01 0.54 0.01 0.86 0.13 0.69 0.47 168 0.73 0.56 0.18 0.59 0.86 0.40 0.11 0.47 169 0.37 0.39 0.04 0.68 0.87 0.54 0.06 0.88 170 0.27 0.04 0.07 0.07 0.87 0.61 0.07 0.48 171 0.11 0.35 0.02 0.74 0.88 0.13 0.09 0.48 172 0.10 0.12 0.05 0.29 0.88 0.36 0.90 0.49 173 0.84 0.13 0.03 0.19 0.89 0.64 0.29 0.49 T-1 0.53 0.15 0.37 0.04 0.90 0.55 0.02 0.50 T-2 0.11 0.51 0.04									
167 0.06 0.01 0.54 0.01 0.86 0.13 0.69 0.47 168 0.73 0.56 0.18 0.59 0.86 0.40 0.11 0.47 169 0.37 0.39 0.04 0.68 0.87 0.54 0.06 0.88 170 0.27 0.04 0.07 0.07 0.87 0.61 0.07 0.48 171 0.11 0.35 0.02 0.74 0.88 0.13 0.09 0.48 172 0.10 0.12 0.05 0.29 0.88 0.36 0.90 0.49 173 0.84 0.13 0.03 0.19 0.89 0.64 0.29 0.49 T-1 0.53 0.15 0.37 0.04 0.90 0.55 0.02 0.50 T-2 0.11 0.51 0.04 0.80 0.90 0.54 0.03 0.50 T-3 0.20 0.68 0.03									
168 0.73 0.56 0.18 0.59 0.86 0.40 0.11 0.47 169 0.37 0.39 0.04 0.68 0.87 0.54 0.06 0.88 170 0.27 0.04 0.07 0.07 0.87 0.61 0.07 0.48 171 0.11 0.35 0.02 0.74 0.88 0.13 0.09 0.48 172 0.10 0.12 0.05 0.29 0.88 0.36 0.90 0.49 173 0.84 0.13 0.03 0.19 0.89 0.64 0.29 0.49 T-1 0.53 0.15 0.37 0.04 0.90 0.55 0.02 0.50 T-2 0.11 0.51 0.04 0.80 0.90 0.54 0.03 0.50 T-3 0.20 0.68 0.03 0.83 0.91 0.40 0.09 0.51 T-5 0.13 0.28 0.16									
169 0.37 0.39 0.04 0.68 0.87 0.54 0.06 0.88 170 0.27 0.04 0.07 0.07 0.87 0.61 0.07 0.48 171 0.11 0.35 0.02 0.74 0.88 0.13 0.09 0.48 172 0.10 0.12 0.05 0.29 0.88 0.36 0.90 0.49 173 0.84 0.13 0.03 0.19 0.89 0.64 0.29 0.49 T-1 0.53 0.15 0.37 0.04 0.90 0.55 0.02 0.50 T-2 0.11 0.51 0.04 0.80 0.90 0.54 0.03 0.50 T-3 0.20 0.68 0.03 0.83 0.91 0.40 0.09 0.51 T-5 0.13 0.28 0.16 0.16 0.91 0.63 0.01 0.95 T-6 0.61 0.40 0.06									
170 0.27 0.04 0.07 0.07 0.87 0.61 0.07 0.48 171 0.11 0.35 0.02 0.74 0.88 0.13 0.09 0.48 172 0.10 0.12 0.05 0.29 0.88 0.36 0.90 0.49 173 0.84 0.13 0.03 0.19 0.89 0.64 0.29 0.49 T-1 0.53 0.15 0.37 0.04 0.90 0.55 0.02 0.50 T-2 0.11 0.51 0.04 0.80 0.90 0.54 0.03 0.50 T-3 0.20 0.68 0.03 0.83 0.91 0.40 0.09 0.51 T-5 0.13 0.28 0.16 0.16 0.91 0.63 0.01 0.95 T-6 0.61 0.40 0.06 0.42 0.92 0.41 0.01 0.51 T-8 0.19 0.96 0.93									
171 0.11 0.35 0.02 0.74 0.88 0.13 0.09 0.48 172 0.10 0.12 0.05 0.29 0.88 0.36 0.90 0.49 173 0.84 0.13 0.03 0.19 0.89 0.64 0.29 0.49 T-1 0.53 0.15 0.37 0.04 0.90 0.55 0.02 0.50 T-2 0.11 0.51 0.04 0.80 0.90 0.54 0.03 0.50 T-3 0.20 0.68 0.03 0.83 0.91 0.40 0.09 0.51 T-5 0.13 0.28 0.16 0.16 0.91 0.63 0.01 0.95 T-6 0.61 0.40 0.06 0.42 0.92 0.41 0.01 0.51 T-8 0.19 0.96 0.93 0.97 0.92 0.98 0.03 0.96 T-9 0.04 0.99 0.89									
172 0.10 0.12 0.05 0.29 0.88 0.36 0.90 0.49 173 0.84 0.13 0.03 0.19 0.89 0.64 0.29 0.49 T-1 0.53 0.15 0.37 0.04 0.90 0.55 0.02 0.50 T-2 0.11 0.51 0.04 0.80 0.90 0.54 0.03 0.50 T-3 0.20 0.68 0.03 0.83 0.91 0.40 0.09 0.51 T-5 0.13 0.28 0.16 0.16 0.91 0.63 0.01 0.95 T-6 0.61 0.40 0.06 0.42 0.92 0.41 0.01 0.51 T-8 0.19 0.96 0.93 0.97 0.92 0.98 0.03 0.96 T-9 0.04 0.99 0.89 0.99 0.93 0.99 0.10 0.52 T-10 0.01 0.99 0.01									
173 0.84 0.13 0.03 0.19 0.89 0.64 0.29 0.49 T-1 0.53 0.15 0.37 0.04 0.90 0.55 0.02 0.50 T-2 0.11 0.51 0.04 0.80 0.90 0.54 0.03 0.50 T-3 0.20 0.68 0.03 0.83 0.91 0.40 0.09 0.51 T-5 0.13 0.28 0.16 0.16 0.91 0.63 0.01 0.95 T-6 0.61 0.40 0.06 0.42 0.92 0.41 0.01 0.51 T-8 0.19 0.96 0.93 0.97 0.92 0.98 0.03 0.96 T-9 0.04 0.99 0.89 0.99 0.93 0.99 0.10 0.52 T-10 0.01 0.99 0.01 1.00 0.93 0.60 0.17 0.52 T-11 0.02 0.12 0.01									
T-1 0.53 0.15 0.37 0.04 0.90 0.55 0.02 0.50 T-2 0.11 0.51 0.04 0.80 0.90 0.54 0.03 0.50 T-3 0.20 0.68 0.03 0.83 0.91 0.40 0.09 0.51 T-5 0.13 0.28 0.16 0.16 0.91 0.63 0.01 0.95 T-6 0.61 0.40 0.06 0.42 0.92 0.41 0.01 0.51 T-8 0.19 0.96 0.93 0.97 0.92 0.98 0.03 0.96 T-9 0.04 0.99 0.89 0.99 0.93 0.99 0.10 0.52 T-10 0.01 0.99 0.01 1.00 0.93 0.60 0.17 0.52 T-11 0.02 0.12 0.01 0.31 0.94 0.97 0.16 0.53 T-12 0.02 0.97 0.98									
T-2 0.11 0.51 0.04 0.80 0.90 0.54 0.03 0.50 T-3 0.20 0.68 0.03 0.83 0.91 0.40 0.09 0.51 T-5 0.13 0.28 0.16 0.16 0.91 0.63 0.01 0.95 T-6 0.61 0.40 0.06 0.42 0.92 0.41 0.01 0.51 T-8 0.19 0.96 0.93 0.97 0.92 0.98 0.03 0.96 T-9 0.04 0.99 0.89 0.99 0.93 0.99 0.10 0.52 T-10 0.01 0.99 0.01 1.00 0.93 0.60 0.17 0.52 T-11 0.02 0.12 0.01 0.31 0.94 0.97 0.16 0.53 T-12 0.02 0.97 0.98 0.97 0.94 0.98 0.21 0.53 T-13 0.03 0.98 0.99									
T-3 0.20 0.68 0.03 0.83 0.91 0.40 0.09 0.51 T-5 0.13 0.28 0.16 0.16 0.91 0.63 0.01 0.95 T-6 0.61 0.40 0.06 0.42 0.92 0.41 0.01 0.51 T-8 0.19 0.96 0.93 0.97 0.92 0.98 0.03 0.96 T-9 0.04 0.99 0.89 0.99 0.93 0.99 0.10 0.52 T-10 0.01 0.99 0.01 1.00 0.93 0.60 0.17 0.52 T-11 0.02 0.12 0.01 0.31 0.94 0.97 0.16 0.53 T-12 0.02 0.97 0.98 0.97 0.94 0.98 0.21 0.53 T-13 0.03 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.54 T-14 0.03 0.98									
T-5 0.13 0.28 0.16 0.16 0.91 0.63 0.01 0.95 T-6 0.61 0.40 0.06 0.42 0.92 0.41 0.01 0.51 T-8 0.19 0.96 0.93 0.97 0.92 0.98 0.03 0.96 T-9 0.04 0.99 0.89 0.99 0.93 0.99 0.10 0.52 T-10 0.01 0.99 0.01 1.00 0.93 0.60 0.17 0.52 T-11 0.02 0.12 0.01 0.31 0.94 0.97 0.16 0.53 T-12 0.02 0.97 0.98 0.97 0.94 0.98 0.21 0.53 T-13 0.03 0.98 0.99 0.98 0.99 0.99 0.08 0.54 T-14 0.03 0.98 0.99 0.99 0.95 0.97 0.29 0.54 T-15 0.04 0.97 0.88 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
T-6 0.61 0.40 0.06 0.42 0.92 0.41 0.01 0.51 T-8 0.19 0.96 0.93 0.97 0.92 0.98 0.03 0.96 T-9 0.04 0.99 0.89 0.99 0.93 0.99 0.10 0.52 T-10 0.01 0.99 0.01 1.00 0.93 0.60 0.17 0.52 T-11 0.02 0.12 0.01 0.31 0.94 0.97 0.16 0.53 T-12 0.02 0.97 0.98 0.97 0.94 0.98 0.21 0.53 T-13 0.03 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.08 0.54 T-14 0.03 0.98 0.99 0.99 0.95 0.97 0.29 0.54 T-15 0.04 0.97 0.88 0.98 0.95 0.67 0.07 0.55 T-16 0.08 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
T-8 0.19 0.96 0.93 0.97 0.92 0.98 0.03 0.96 T-9 0.04 0.99 0.89 0.99 0.93 0.99 0.10 0.52 T-10 0.01 0.99 0.01 1.00 0.93 0.60 0.17 0.52 T-11 0.02 0.12 0.01 0.31 0.94 0.97 0.16 0.53 T-12 0.02 0.97 0.98 0.97 0.94 0.98 0.21 0.53 T-13 0.03 0.98 0.99 0.98 0.99 0.99 0.99 0.09 0.08 0.54 T-14 0.03 0.98 0.99 0.99 0.95 0.97 0.29 0.54 T-15 0.04 0.97 0.88 0.98 0.95 0.67 0.07 0.55 T-16 0.08 0.65 0.17 0.92 0.96 0.62 0.08 0.55									
T-9 0.04 0.99 0.89 0.99 0.93 0.99 0.10 0.52 T-10 0.01 0.99 0.01 1.00 0.93 0.60 0.17 0.52 T-11 0.02 0.12 0.01 0.31 0.94 0.97 0.16 0.53 T-12 0.02 0.97 0.98 0.97 0.94 0.98 0.21 0.53 T-13 0.03 0.98 0.99 0.98 0.99 0.99 0.09 0.09 0.05 T-14 0.03 0.98 0.99 0.99 0.95 0.97 0.29 0.54 T-15 0.04 0.97 0.88 0.98 0.95 0.67 0.07 0.55 T-16 0.08 0.65 0.17 0.92 0.96 0.62 0.08 0.55									
T-10 0.01 0.99 0.01 1.00 0.93 0.60 0.17 0.52 T-11 0.02 0.12 0.01 0.31 0.94 0.97 0.16 0.53 T-12 0.02 0.97 0.98 0.97 0.94 0.98 0.21 0.53 T-13 0.03 0.98 0.99 0.98 0.99 0.99 0.99 0.09 0.08 0.54 T-14 0.03 0.98 0.99 0.99 0.95 0.97 0.29 0.54 T-15 0.04 0.97 0.88 0.98 0.95 0.67 0.07 0.55 T-16 0.08 0.65 0.17 0.92 0.96 0.62 0.08 0.55									
T-11 0.02 0.12 0.01 0.31 0.94 0.97 0.16 0.53 T-12 0.02 0.97 0.98 0.97 0.94 0.98 0.21 0.53 T-13 0.03 0.98 0.99 0.98 0.99 0.99 0.99 0.09 0.54 T-14 0.03 0.98 0.99 0.99 0.95 0.97 0.29 0.54 T-15 0.04 0.97 0.88 0.98 0.95 0.67 0.07 0.55 T-16 0.08 0.65 0.17 0.92 0.96 0.62 0.08 0.55									
T-12 0.02 0.97 0.98 0.97 0.94 0.98 0.21 0.53 T-13 0.03 0.98 0.99 0.98 0.99 0.99 0.09 0.08 0.54 T-14 0.03 0.98 0.99 0.99 0.95 0.97 0.29 0.54 T-15 0.04 0.97 0.88 0.98 0.95 0.67 0.07 0.55 T-16 0.08 0.65 0.17 0.92 0.96 0.62 0.08 0.55									
T-13 0.03 0.98 0.99 0.98 0.99 0.99 0.08 0.54 T-14 0.03 0.98 0.99 0.99 0.95 0.97 0.29 0.54 T-15 0.04 0.97 0.88 0.98 0.95 0.67 0.07 0.55 T-16 0.08 0.65 0.17 0.92 0.96 0.62 0.08 0.55									
T-14 0.03 0.98 0.99 0.99 0.95 0.97 0.29 0.54 T-15 0.04 0.97 0.88 0.98 0.95 0.67 0.07 0.55 T-16 0.08 0.65 0.17 0.92 0.96 0.62 0.08 0.55									
T-15 0.04 0.97 0.88 0.98 0.95 0.67 0.07 0.55 T-16 0.08 0.65 0.17 0.92 0.96 0.62 0.08 0.55									
T-16 0.08 0.65 0.17 0.92 0.96 0.62 0.08 0.55									
	T-17	0.08	0.05	0.17	0.92	0.96	0.65	0.08	0.56

Sampl e	P-rank As	P-rank Co	P-rank Cu	P-rank Fe	P-rank Pb	P-rank Sb	P-rank Zn	P-rank Au
T-18	0.12	0.88	0.08	0.95	0.97	0.37	0.11	0.56
T-19	0.20	0.27	0.12	0.45	0.97	0.56	0.22	0.57
T-20	0.29	0.55	0.24	0.81	0.98	0.33	0.45	0.89
T-21	0.10	0.09	0.05	0.10	0.98	0.33	0.02	0.58
T-22	0.05	0.04	0.02	0.14	0.01	0.44	0.14	0.58

Arsenic values that fell in the 0.7 to 0.9 range were found along the ENE trending topographic break that is also associated with copper mineralization at TL-10 & 11(Map 9).

Antimony (Map12) was detected with values to 20 ppm. The 2006 values across the slopes north of Many Bear Creek range up to the 0.95th to 0.98th percentile. As with arsenic values, there appears to be a correlation of values associated with the ENE trending structure as with TL-10 and TL-11. Many significant values for this element were found in the vicinity of the old 1997 grid, near the limonite deposits, suggesting adsorption onto iron. The contoured trend of the 1997 grid anomalies for copper and antimony formed a pattern parallel to the ENE alteration zones mapped previously to the south and the ENE structure associated with malachite mineralization, observed this season to the north. Thus there are likely two phenomena occurring: a structural control and source for mineralization of the 1997 grid and the probable results from the adsorption of various elements onto iron and manganese in this area. Antimony is a chalcophile element, highly mobile in fresh water.

Lead (Map 10) returned few results of interest. Two significant values occur down slope from a known quartz vein or quartz float. Lead is another chalcophile element, associated with silver in precious metal deposits or with Fe, Zn, Cu and Sb in other sulphide deposits. It has low mobility but tends to be adsorbed by Mn or Fe-oxides. Significant Pb occurrences in the map area are located in the old 1997 geochemical grid area associated with the exotic limonites.

Zinc (Map 11) percentiles found to be in the 0.96 to 1.0 range is found in four samples upslope from the old 1997 geochemical grid. These samples are clustered in the south central portion of mineral tenure 535233.

Molybdenum was found to be enriched in three samples located near the old 1997 grid. Two of these are associated with manganese which is a strong scavenger element. Sample number 151 had 299 ppm Mo, however it also had more than 20,000 ppm Mn.

The third sample, T-9, is associated with iron in soils and antimony.

Molybdenum was not contoured on the old 1997 grid, but work done previous to this did contain molybdenum geochemical results. The old results show enrichment of molybdenum associated with the intrusives mapped to the east of the volcanics. There were no significant analytical results for molybdenum in soils north of Many Bear Creek other than the three samples in the old grid area (Map 6).

Significant Copper (Map 4) in soils was found in several locations, widely dispersed, across mineral tenure 535233, and above slope of the previous 1997 grid. As with antimony, there appears to be a higher frequency of anomalous values for copper-in-soils found in the old 1997 geochemical grid than the 2006 samples. Copper has intermediate mobility and is controlled by adsorption onto Fe and Mn oxides. It will precipitate by hydrolysis at a pH >5.0 and it is likely that the anomalies from the 1997 grid were formed due to this process. Water samples tested by Cyprus Canada in 1992 from areas draining the limonite deposits ranged in pH 3.8 to 5.5. Samples 151 to T-15 (Table 2) were taken down slope near the 1997 grid and in the vicinity of the exotic limonite deposits. Both iron and manganese in soils were significantly enriched in these samples.

The 1997 geochemical grid contours (Tompson, 1997) show the copper contours paralleling the ENE structure trend present on the property. This orientation in conjunction with the distribution of 2006 soil geochemical results, geological mapping and previous mapping suggests a structural control and source for the copper mineralization in the area and the adsorption of various elements onto iron and manganese in the vicinity of the limonite deposits.

Anomalous gold in soil was found to be enriched in 4 samples. These samples, numbers 2, 65, 111 and 147 are shown on Maps 3 and 5. Soil sample #2 (165 ppb Au) was taken down slope from an exposed quartz vein in quartz-diorite, in a frost boil, located within the eastern slope of a cirque in mineral tenure 535233. Some quartz float samples taken within this area returned lower results for gold. Soil Sample #65 with 100 ppb Au was taken from a frost boil further to the west at an elevation of 1530m. Sample #111 with 215 ppb Au was taken from a B-horizon soil taken from old vegetation covered scree slope. The scree was predominately quartz-diorite but there was a lesser amount of rusty weathering, intermediate volcanic float. Float samples taken in this area did not return significant results for gold. Sample #147 had 250 ppb Au and was taken in the vicinity of the old 1997 grid. The sample consisted of a brown clay soil, from a heavily wooded area at 1195m in elevation.

8. Interpretation of Results

The 2006 program geochemical results were combined with all previous soil sample results and plotted as percentiles in order to normalize the data. The results for the soil geochemical survey indicate that there is not sufficient enrichment in aerial extent of copper-in-soils to define the presence of a copper porphyry system north of Many Bear Creek. This was reflected by a lack observed evidence in outcrop of porphyry style multiple fracture and veining indicative of a stockwork. There is evidence however that mineralization is fault controlled. Anomalous values of copper and weak zinc, antimony, cobalt and arsenic in soils appear to be related to an ENE trending fault in mineral tenure 535233.

At lower elevation, high copper or molybdenum analytical results from soils were found associated with either very high iron or manganese in soils. Both iron and manganese, will geochemically scavenge copper and molybdenum, however manganese is a more effective scavenger of the two.

There were small amounts of visible copper mineralization in the form of malachite and trace amounts of chalcopyrite located in quartz vein float and a shear in outcrop, in mineral tenure 535233. One grab sample (TL-11, Map1) from a malachite coated shear in rusty weathering quartz diorite returned an assay of 1.23% Cu. This shear trended 055°/90° (Map 1) and is parallel or related to a topographic break that extends ENE across mineral tenure 535233. A structural control for mineralization was indicated by previous authors at Limonite Creek in the area to the south as alteration in the volcanics was observed to be ENE trending, parallel to regional foliation. The alteration was dated at forming prior to regional foliation.

Quartz float with malachite collected in this program contained pyrophyllite. An outcrop source for this float was not found this season. The presence of pyrophyllite indicates advanced argillic alteration.

Specular hematite was by far the most predominant metallic mineral found in both shears and quartz veins. Specular hematite is also associated with advanced argillic alteration.

In summary, there was not a widespread pattern for anomalous quantities of copper and or gold in soils, to indicate the presence of copper porphyry mineralization north of Many Bear Creek. There is evidence of structural control for the mineralization that was found. The presence of advanced argillic alteration in float samples taken at high elevation in this area indicates strong mesothermal alteration. Faulting would provide likely conduits for the mineralization and alteration.

9. Conclusion and Recommendations

The results for the soil geochemical survey indicate that there is not sufficient enrichment in aerial extent of copper-in-soils to define the presence of a copper porphyry system north of Many Bear Creek. However, there was copper mineralization found above treeline during this program, associated with a topographically prominent ENE trending fault (Map 1). This ENE pattern is repeated in the alteration zones, within the volcanics at lower elevation, shown by 1992-94 mapping. This indicates a fault control for mineralization.

On mineral tenure 535233, the copper mineralization exposed at surface is primarily malachite. This is indicative of oxidation which has been noted in previous reports in areas to the south, to extend to more than 90m in depth. In the western part of this mineral tenure, a sample of angular quartz float, TL-21 was found to have 1400 ppb Au. In addition, there is advanced, high temperature argillic alteration as indicated by quartz-pyrophyllite float. Advanced argillic alteration with quartz and pyrophyllite would be associated with a mesothermal vein system. Further evaluation of the faulting on this property would be helpful in finding such a vein system.

Because of this, an air photo structural interpretation is recommended. This should include areas proximal to the claims as there is open ground on all sides but the south. Once the data gleaned from this has been reviewed, another prospecting program should be undertaken, across the

property, utilizing the structural interpretation, with the aim of trenching and chip sampling mineral occurrences.

A Phase One budget estimate should include an air photo interpretation, geological mapping, trenching and sample analysis, personnel, and transportation.

A budget sufficient to complete this program is presented in Appendix 3 of this report.

10. Certificate

I am the author of the report entitled "Geochemical Soil Sampling, Prospecting and Geological Mapping of the Limonite Creek Property" submitted for assessment in October 2006. I hereby make the following declarations:

My name is Terri B. Millinoff and I am a Consulting Geologist with Taiga Consultants Ltd. My office address is #4, 1922- 9th Avenue SE. Calgary, Alberta T2G 0V2. Taiga Consultants Ltd. has a Permit to Practice from the Alberta Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) since 1978.

I am a project geologist with Taiga Consultants Ltd. I am a graduate of the University of Windsor, Windsor, Ontario with a B.Sc. in Geology in 1981. I am a member in good standing of APEGGA. In have 14 years of field experience in mineral exploration.

The Geochemical, Prospecting and Geological Mapping Report presented is based on my personal involvement in the field program and a review of all available geological and technical data on the claims.

Dated at Calgary, Alberta, this 12th day of October 2006

Terri B. Millinoff, B.Sc., P.Geol.

11. References

- British Columbia Department of Mines. 1914. British Columbia Department of Mines Annual Report 1913. British Columbia Department of Mines, Victoria, B.C., pp. 111–112.
- British Columbia Department of Mines. 1958. British Columbia Department of Mines Annual Report 1957. British Columbia Department of Mines, Victoria, B.C., p. 12.
- British Columbia Ministry of Energy, Mines and Petroleum Resources, Assessment report numbers 2413, 20370,21739 and 23016
- Carter, N.C. 1976. Regional setting of porphyry deposits in west-central British Columbia. In Porphyry deposits of the Canadian Cordillera. Edited by A. Sutherland Brown. Canadian Institute of Mining, Metallurgy and Petroleum, Special Vol. 15, pp. 227-238.
- Carter, N.C., Dirom, G.E., and Ogryzlo, P.L. 1995. Porphyry copper-gold deposits, Babine Lake area, west-central British Columbia; *in* Porphyry deposits of the northwestern Cordillera of North America. Edited by T.G. Schroeter. Canadian Institute of Mining and Metallurgy, Special Vol. 46, pp. 247-255.
- Fleming, D.B., 1992, Limonite Creek Property, Geological, Geochemical, Geophysical and Diamond Drilling Report, West Central British Columbia, NTS 93L/12: private report for Cyprus Canada Inc
- Deyell, C.L., et.al., 2000. The Age and Origin of advanced argillic alteration zones and related exotic Limonite Deposits in the Limonite Creek Area, central British Columbia. Canadian Journal of Earth Sciences, Vol. 37, pp. 1093-1107
- Friedman, R.M., and Tompson, W.D. 1998. The style and origin of alteration on the Limonite Creek property, central British Columbia (93 L/12). In Geological fieldwork 1997. British Columbia Ministry of Employment and Investment, pp. 33.1–33.7.
- Gustafson, L.B., and Hunt, J.P. 1975. The porphyry copper deposit at El Salvador, Chile. Economic Geology, 70: 875–912.
- Hanson, D.J. and Klassen, R.W. 1995, The Louise Lake copper-molybdenum-gold-arsenic high level porphyry system, west-central British Columbia, in Porphyry Deposits of the Northwestern Cordillera of North America, ed. T.G. Schroeter, CIM Special Volume 46, pp 416-421
- Thompson, J.F.H., and Lewis, P.D. 1992. Advanced argillic alteration at Treaty Glacier, northwestern British Columbia (104 B/9). In Geological fieldwork 1991. British Columbia Ministry of Energy, Mines & Petroleum Resources, Paper 1992-1, pp. 543–548.
- Tipper, H.W., and Richards, T.A. 1976. Jurassic stratigraphy and history of north-central British Columbia. Geological Survey of Canada, Bulletin 270.
- Tompson, W.D. 1997. Exploration of the high sulfidation epithermal prospects Limonite Creek area. Internal report for Telkwa Gold Corporation, Smithers, B.C.
- Tompson, W.D., and Cuttle, J.F. 1994. Exploration of the acid sulfate epithermal prospects: Limonite Creek area. Internal report for Limonite Creek Limited Partnership, Smithers, BC

Appendix 1

Rock Sample Locations and Descriptions Soil sample locations and descriptions Outcrop Notes

Map 1	Geology
Map 2	1997 Magnetic and EM Survey
Map 3	2006 Soil Sample and Prospecting Sample Locations
Map 4	Cu Soil Samples Percent Ranked
Map 5	Au Soil Samples Percent Ranked
Map 6	Mo Soil Samples Percent Ranked
Map 7	Ag Soil Samples Percent Ranked
Map 8	Co Soil Samples Percent Ranked
Map 9	As Soil Samples Percent Ranked
Map 10	Pb Soil Samples Percent Ranked
Map 11	Zn Soil Samples Percent Ranked
Map 12	Sb Soil Samples Percent Ranked
Map 13	Fe Soil Samples Percent Ranked

Limonite Creek - Prospecting Rock Sample Locations

Sample	UTM	NAD27	acc	elev	Rock Sample Descriptions		location			D-83
Number	Easting	Northing	(m)	(m)	Rock Sample Descriptions		comments	Sample	Easting	Northing
TL-1	578208	6047069	7	1610	pyritic,limonitic diorite,argillically altered	float		TL-1	578094	6047267
TL-2	578228	6047100	6	1596	qtz&mafic volc?float - qtz w.tr.arseno?	float		TL-2	578114	6047298
TL-3	578262	6047114	8	1608	qtz float	float		TL-3	578148	6047312
TL-4	578349	6047089		1615	qtz float from o/c above at 578349E,6047089N,1660m?large 1m thick qv 045/30NW			TL-4		
TL-5	578203	6047485	9		qtz float,py,tr.malachite,	float		TL-5	578089	6047683
TL-6	577961	6047359	7	1648	limonitic tuff, from spring-stream out of hill at this point	float	subcrop	TL-6	577847	6047557
TL-7	576966	6047637	12		qtz float w.py,cpy and malachite weak stain	float	·	TL-7	576852	6047835
TL-8	577336	6047045	6		qtz float,spec.hem.&earthy grey iron stain			TL-8	577222	6047243
L					rusty weath, siliceous intermed-mafic(dyke?), underlies exposure of diorite,	float				
TL-9	577763	6047211	9	1615	rusty weath intermed-mafic dyke 117/60N, cuts through diorite with fault 070/90, also qv 100/90	float		TL-9	577649	6047409
					fault has spec hem				l.	
TL-10	577478	6047202	9	1580	ang.qtz float w.malachite,py,cpy?,pyrophyllite?(v.soft,white,acicular)	float		TL-10	577364	6047400
TL-11	577493	6047205	9	1583	uphill from above sample is an outcrop of diorite(or qtz-diorite) that has rusty	outcrop)	TL-11	577379	6047403
					weathering and a 10cm wide rusty weathering quartz vein . The vein is not in	'				
					place & is vuggy and barren. The rusty seam or fracture with malachite					
					trends 055/90. Another rusty weathering part of diorite trends 170/84W					
					diorite is magnetic and is epidote-rich					
TL-12	577327	6047319	9	1562	pyrophyllite & qtz float-angular, tr.silvery rounded mineral grain	float		TL-12	577213	6047517
TL-13	576913	6048061	8		qtz float w.py	float		TL-13	576799	6048259
TL-14	576913	6048061	8		intermed volc.tuff?5%diss.py	float		TL-14	576799	6048259
TL-15	576913	6048032	9		angular,limonitic,intermed.volc.	float		TL-15	576799	6048230
TL-16	576911	6047996	11		boulder in stream,dior.,rusty 1 side, py,epidote,qtz	float		TL-16	576797	6048194
TL-17	576922	6048021	10		rusty, aphanitic,volc, hem.	float		TL-17	576808	6048219
TL-18	576922	6048021	10	1564	dior.rusty weath, up to 5%diss py	float		TL-18	576808	6048219
TL-19	576857	6047900	7		angular qtz float,pv,tr.cpy?	float		TL-19	576743	6048098
TL-20	576940	6047959	10		rounded cobble iron,elanterite, dark grey to black intermed.volc???	float		TL-20	576826	6048157
TL-21	576940	6047959	10		qtz float, py	float		TL-21	576826	6048157
TL-22	576901	6047946	11		qtz float w.malachite	float		TL-22	576787	6048144
TL-23	576905	6047973	10	1553	rhyo-dac.tuff float angular,10% vfg.diss py	float		TL-23	576791	6048171
TL-24	576915	6047979	9		epidote-py alt.volc?	float	in stream	TL-24	576801	6048177
TL-25	576852	6048016	6		qtz float w.py	float	iii sticaiii	TL-25	576738	6048214
TL-26	577703	6047159	7		spec hem in qv, flat lying 180, in epidote rich qtz-diorite, another 10cm qv unsampled trends 065/70N	o/c		TL-26	577589	6047357
TL-27	577398	6046998	8		qtz float w.magnetite, magnetite has a drk.blue colour.	float		TL-27		6047192
TL-28	577684	6047147	6		qv , tabular xtalline., blue, metallic lustre min, weakly magnetic	float		TL-28	577570	6047345
TL-29	577724	6047186	0		rusty qtz dio	o/c		TL-29	577610	6047384
TL-30	577724	6047186			rusty qtz dio	o/c		TL-30	577610	6047384
TL-31	576888	6047474	7		qtz-py angular float	float		TL-31	576774	6047672
TL-31	577116	6046247	7		rusty weath, weakly magnetic, finely xtalline intermed volc, also weathers light	o/c		TL-32	577002	6046445
TL-32	377110	0040247	- 1	1171	buff-grey colour	0/0		1L-32	311002	0040443
TL-33	577171	6046253	10	1204	fg.intermed volc,massive,approx.1%diss py,tr.cpy and qtz-epidote seams	o/c		TL-33	577057	6046451
TL-34	577201	6046280	7		rusty weatho/c w.scree to river, "fresh" rk has bleached appearance, rusty weath.rind, intermed volc??	0/0		1L-33	311031	0040431
1 L-34	377201	0040200	,	1200	rusty weathort w.scree to liver, mesh in hias bleached appearance, rusty weath, intermed voice:			TL-34	577087	6046478
TL-35	577623	6046235	8	1201	rusty weathering, dark grey fresh surface, finely crystalline to aphanitic intermed.volc with up to 5% diss py,			TL-35	577509	6046433
11-33	377023	0040233	0	1204	epidote on frac surfaces, weakly magnetic			1L-33	377309	0040433
					jointing?018/80E		 			-
					, ,	-	trooc			
TI 26	E76000	6046644	10	1010	could be diorite above it(cliff)just 5m to the W in incised stream valley	-	trees	TL-36	576766	6046842
TL-36	576880	6046644	13		intermed volc.subcrop&scree,weakly magnetic,rusty weathering	floor	trees			
TL-37	576927	6046605	8		scree & dry stream bed, m.xtalline qtz-diorite,magnetic w.vfg.arsenopy?	float	trees	TL-37	576813	6046803
TL-38	576903	6046587	15		intermed volc, scree	float	trees	TL-38	576789	6046785
TL-39	576903	6046587	15		andesite porp, angular float, magnetic	float	trees	TL-39	576789	6046785
TL-40	576901	6046552	24	1190	Bt-feldporp, magnetic, tr vfg.py?		trees	TL-40	5/6/8/	6046750

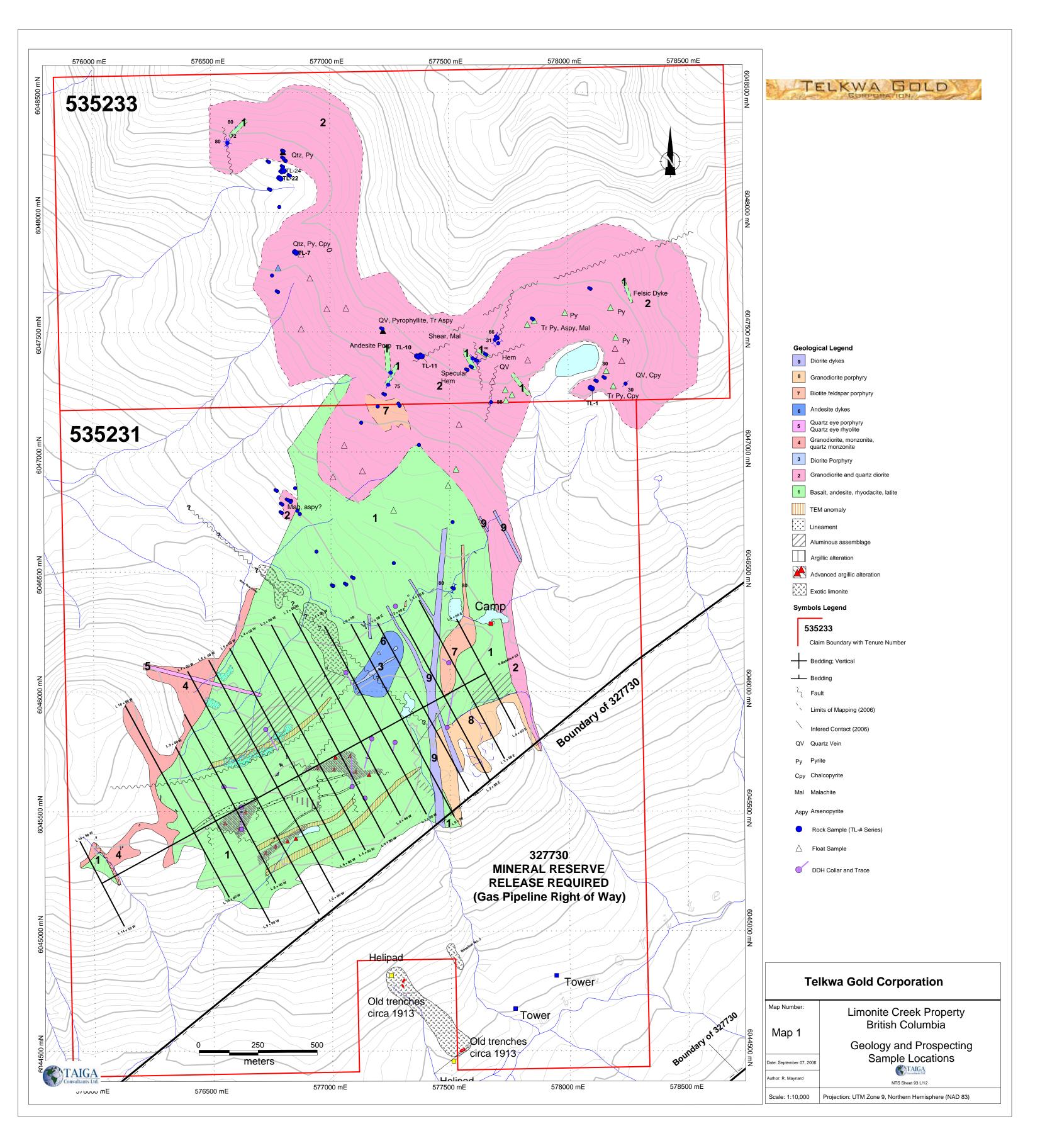
Sample	UTM COC	RDINATES	Accur-	Eleva-	Sample Description	NAD-83		
Number	Easting	Northing	acy(m)	tion(m)		Sample	Easting	Northing
1	578340	6047085			frost boil in scree, soil is very fine and silty	1	578233	6047279
2	578301	6047106	7	1623	frost boil in scree	2	578193.9	6047300
3	578304	6047152	7	1603	frost boil in scree	3	578196.9	6047346
4	578296	6047116	9	1603	frost boil in scree	4	578188.9	6047310
5	578304	6047190	8	1610	frost boil in scree	5	578196.9	6047384
					scree is mostly diorite with epidote, some minor rhyodacite with fine diss.py	6	578168.9	6047457
6	578276	6047263	7	1615	frost boil in scree	7	578158.9	6047491
					o/c above(50m)has rusty weathering felsic dyke	8	578143.9	6047522
7	578266	6047297	9	1627	frost boil in scree	9	578182.9	6047567
					scree & o/c m.g.diorite with epidote	10	578147.9	6047636
8	578251	6047328	10	1637	frost boil in scree	11	578088.9	6047687
					scree & o/c m.g.diorite with epidote	12	578042.9	
					also angular scree of pyritic massive rhyodacite	13	577996.9	6047617
9	578290	6047373	10	1673	frost boil in scree	14	577974.9	6047609
					scree & o/c m.g.diorite with epidote	15	577899.9	6047578
					some angular qtz float with comb qtz	16	577853.9	6047553
10	578255	6047442	9	1681	frost boil in scree	17	577845.2	604921.6
11	578196	6047493	7	1692	frost boil in scree	18	577842.9	
12	578150	6047453	7	1676	frost boil in scree	19	577827.9	
13	578104	6047423	7	1647	frost boil in scree	20	577800.9	6047420
14	578082	6047415	7	1638	frost boil in scree	21	577794.9	
					angular float rhyodacite with up to 20%py 0578078E,6047411N 1641m	22	577783.9	6047312
15	578007	6047384	8	1646	frost boil in scree	23	577742.9	6047293
					scree mostly diorite with epidote	24	577750.9	6047287
16	577961	6047359	7	1648	brown soil over old scree slope with some vegetation	25	577856.9	
					spring & stream next to this with limonitic rock chips that are 100 % limonite	27	576911.9	6047775
					but appear to have been a tuff? Rock sample TL 6	28	576922.9	
17	577952	6047315	9		frost boil in scree	29	576816.9	
18	577950	6047290	9	1606	frost boil in scree	30	576803.9	
19	577935	6047245	10	1620	frost boil in scree	31	576816.9	
20	577908	6047226	9	1625	scree slope with a large volume of red-brown silty soil	32	576817.9	
21	577902	6047186	9		scree slope with a large volume of red-brown silty soil	33	576860.9	6047678
22	577891	6047118	8		frost boil in scree	34	576896.9	6047655
23	577850	6047099	8	1599	frost boil in scree	35	576924.9	
					geological contact: v.f.g.dacite with epidote veins / diorite, 140/90	36	576940.9	6047592
					(dacite on the left side if facing north)	37	576935.9	6047538
24	577858	6047093	7	1606	frost boil in scree	38	576928.9	6047494
25	577964	6047135	8	1602	frost boil in scree	39	576936.9	6047471

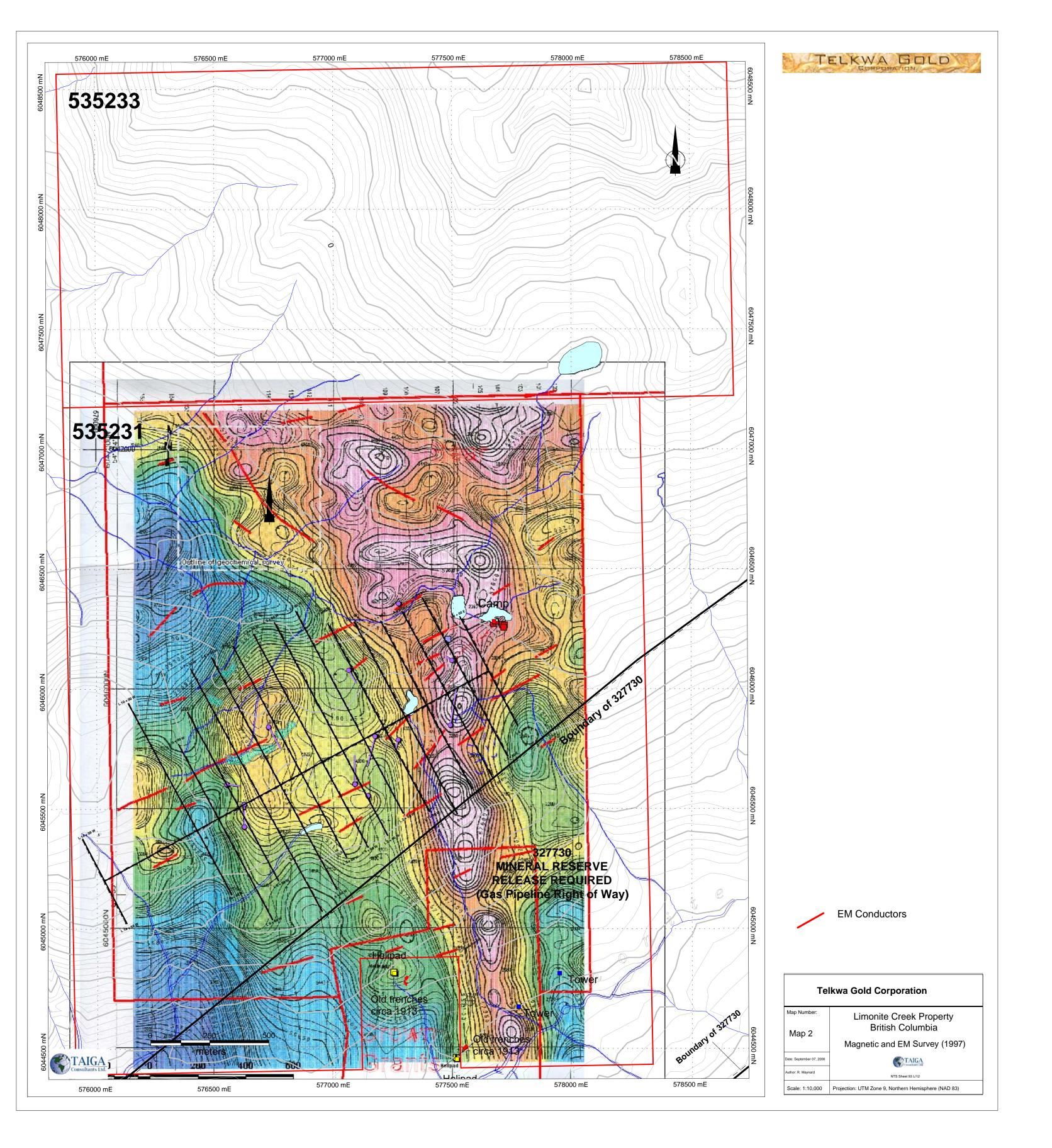
Sample			Accur-	Eleva-	Sample Description	NAD-83		
Number	Easting	Northing	acy(m)	tion(m)		Sample	Easting	Northing
26	no sample)				40	576989.9	6047402
27	577019	6047581	7	1520	frost boil in scree	41	577068.9	6047385
28	577030	6047564	7	1519	frost boil in scree	42	577123.9	6047385
					krumholtz vegetation-trees	43	577201.9	6047431
29	576924	6047569	11	1496	frost boil in scree	44	577193.9	6047374
30	576911	6047560	6	1484	scree is a mix of purple andesite(?) and diorite but o/c above appears to be	45	577221.9	6047309
					only diorite	46	577237.9	6047283
31	576924	6047534	6		scree slope with a large volume of red-brown silty soil	47	577226.9	6047262
32	576925	6047509	6	1461	stream sed sample	48	577258.9	6047205
33	576968	6047484	9	1472	frost boil in scree	49	577724.9	6047402
34	577004	6047461	7	1485	old scree slope, silty brown soil	50	577702.9	6047406
35	577032	6047413	9		frost boil in scree	51	577673.9	6047393
36	577048	6047398	9	1481	krumholtz vegetation-trees	52	577652.9	6047396
37	577043	6047344	10	1486	krumholtz vegetation-trees	53	577613.9	6047399
38	577036	6047300	12	1451	krumholtz vegetation-trees	54	577557.9	6047391
39	577044	6047277	11	1445	krumholtz vegetation-trees	55	577532.9	6047376
40	577097	6047208	9	1434	frost boil in diorite scree	56	577521.9	6047370
41	577176	6047191	8	1461	frost boil in diorite scree	57	577392.9	6047353
42	577231	6047191	8	1470	frost boil in diorite scree	58	577394.9	6047396
43	577309	6047237	6	1520	frost boil in diorite scree	59	577377.9	6047410
	577298	6047181	10	1501	scree is rhyodacite, vfg to aphanitic, grey fresh surf., weathers grey & platy	60	577331.9	6047432
44	577301	6047180	15	1495	scree is rhyodacite, vfg to aphanitic, grey fresh surf., weathers grey & platy	61	577215.9	6047516
					also diorite scree	62	577165.9	6047533
45	577329	6047115	10	1466	scree is diorite,and purple porphyritic andesite?	63	577122.9	6047541
46	577345	6047089	10	1464	frost boil in scree	64	577077.9	6047546
47	577334	6047068	6	1456	tan-beige soil from marmot hole	65	577037.9	6047540
48	577366	6047011	6	1454	frost boil in diorite scree	66	576662.9	6048336
49	577832	6047208	8	1651	frost boil in diorite scree	67	576681.9	6048328
50	577810	6047212	7	1657	frost boil in diorite scree	68	576689.9	6048294
51	577781	6047199	6	1651	frost boil in diorite scree	69	576735.9	6048271
52	577760	6047202	6		fb in scree below TL-9	70	576750.9	6048270
53	577721	6047205	7	1641	large volume fb in scree-mud slide	71	576762.9	6048261
54	577665	6047197	7		frost boil in diorite scree	72	576774.9	6048250
55	577640	6047182	7	1629	old scree,veg,B soil	73	576742.9	6048231
56	577629	6047176	7		fb in scree,	74	576801.9	6048212
57	577500	6047159	9	1587	fb in scree	75	576818.9	6048187
58	577502	6047202	7		fb in scree	76	576830.9	6048177
59	577485	6047216	8	1581	fb in scree	77	576844.9	6048156

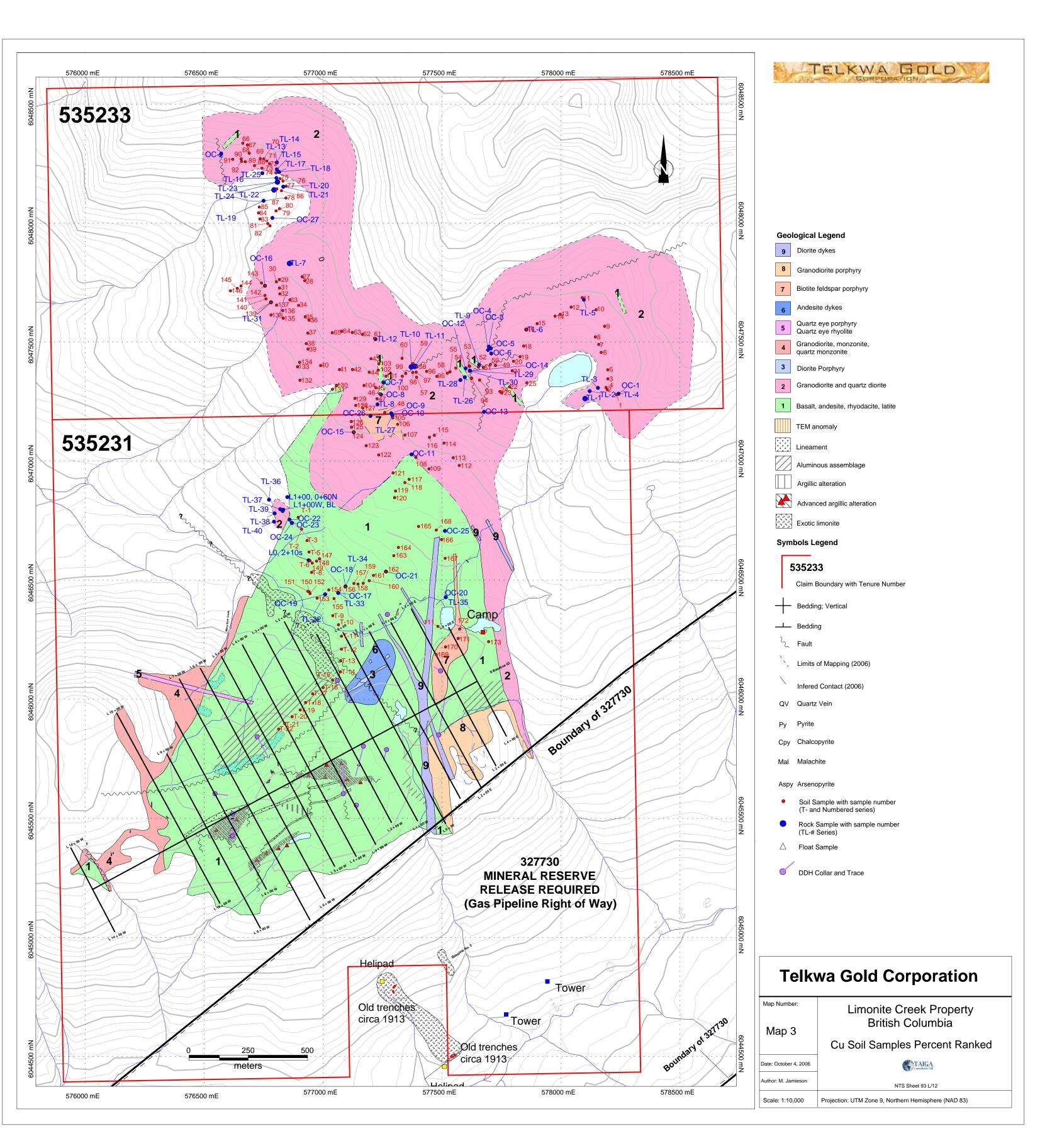
Sample	le UTM COORDINATES		Accur-	Eleva-	Sample Description	NAD-83		
Number	Easting		acy(m)			Sample	Easting	Northing
60	577439	6047238	7	1571	fb in scree	78	576843.9	6048106
61	577323	6047322	7		fb in scree	79	576816.9	6048061
62	577273	6047339	9	1568	fb in scree	80	576801.9	6048052
63	577230	6047347	6		fb in scree	81	576767.9	6047998
64	577185	6047352	6	1547	fb in scree	82	576776.9	
65	577145	6047346	6	1530	fb in scree	83	576734.9	6048018
66	576770	6048142	6	1600	frost boil in diorite scree	84	576728.9	6048043
					epidote veining common	85	576731.9	6048068
67	576789	6048134	7	1597	fb in scree	86	576824.9	6048136
68	576797	6048100	6	1580	large volume fb in scree-mud slide	87	576805.9	6048144
69	576843	6048077	7	1550	fb in scree	88	576711.9	6048242
70	576858	6048076	8		fb in scree	89	576672.9	6048258
71	576870	6048067	7	1561	scree 90% diorite w.epidote,10%maroon porp.andesite	90	576655.9	6048270
72	576882	6048056	7	1556	bog below sample & stream	91	576619.9	6048268
73	576850	6048037	8	1568	fb in scree, below stream	92	576657.9	6048260
74	576909	6048018	9	1562	fb in scree	93	577657.9	6047341
75	576926	6047993	11	1570	brn soil, fb in scree	94	577622.9	6047348
76	576938	6047983	10	1560	scree has 20-30% purple porp.andesite+green andesite w.epidote and	95	577477.9	6047356
					70% diorite, sample is large volume mud/scree flow	96	577434.9	6047377
77	576952	6047962	10	1551	as above	97	577390.9	6047374
78	576951	6047912	8	1550	as above	98	577376.9	6047373
79	576924	6047867	8	1545	as above	99	577346.9	6047369
80	576909	6047858	7	1539	as above	100	577332.9	6047357
81	576875	6047804	7	1545	fb in scree	101	577263.9	6047357
82	576884	6047795	6	1552	old scree , veg.cover	102	577231.9	6047382
83	576842	6047824	8	1537	fb in scree	103	577234.9	6047409
84	576836	6047849	7	1525	fb in scree	104	577171.9	6047318
85	576839	6047874	7	1521	fb in scree	105	577292.9	6047182
86	576932	6047942	13	1547	fb in scree	106	577312.9	6047155
87	576913	6047950	13	1549	fb in scree	107	577343.9	6047110
88	576819	6048048	7	1567	fb in scree	108	577389.9	6047016
89	576780	6048064	7	1565	fb in scree	109	577444.9	6046968
90	576763	6048076	7		fb in scree	111	577482.9	6046306
91	576727	6048074	8		fb in scree	112	577571.9	6046982
92	576765	6048066	8	1560	fb in scree	113	577546.9	6047014
93	577765	6047147	6	1625	fb	114	577507.9	6047076
94	577730	6047154	7	1623	fb	115	577466.9	6047109
95	577585	6047162	8	1601	fb	116	577446.9	6047101

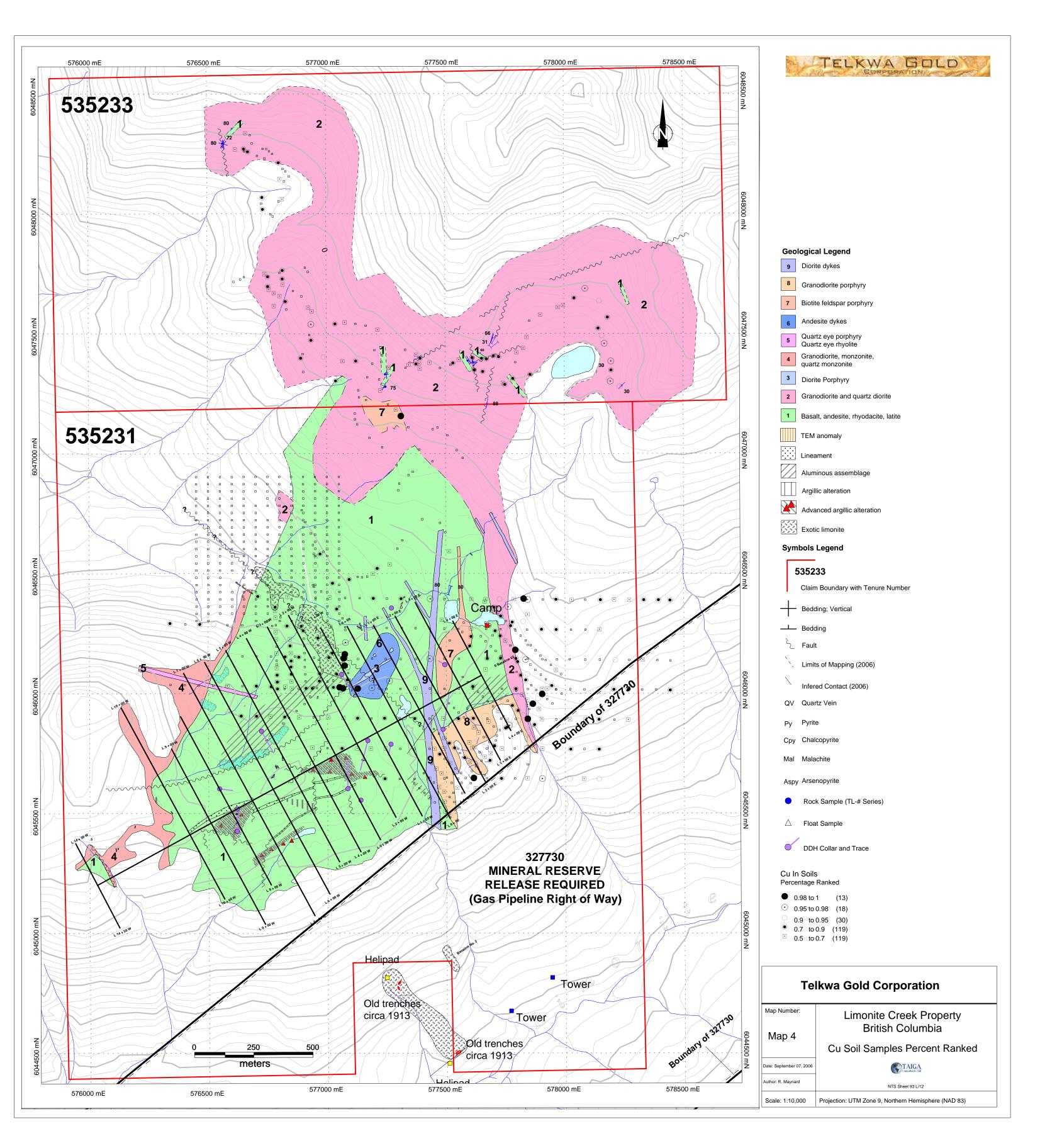
Sample	UTM COO	RDINATES	Accur-	Eleva-	Sample Description		NAD-83	
Number	Easting	Northing	acy(m)	tion(m)		Sample	Easting	Northing
96	577542	6047183	8	1557	fb	117	577361.9	6046924
97	577498	6047180	7	1566	fb/mudflow mixed scree	118	577343.9	6046910
98	577484	6047179	8	1566	fb next to diorite(or qtz-diorite)	119	577304.9	6046875
99	577454	6047175	7	1551	malachite-qtz float near sample	120	577300.9	6046847
100	577440	6047163	7	1544	mudflow mixed scree	121	577294.9	6046951
101	577371	6047163	7	1518	mudflow mixed scree	122	577233.9	6047026
102	577339	6047188	8	1514	diorite or qtz-diorite with barren flat lying 2cm qv just w of fb sample	123	577180.9	6047065
103	577342	6047215	7	1530		124	577128.9	6047122
104	577279	6047124	9		b-soil, veg.over old scree, krumholtz	125	577119.9	6047143
105	577400	6046988	8	1424	fb	126	577118.9	6047167
106	577420	6046961	9	1408	fb	127	577166.9	6047223
107	577451	6046916	8	1396	b-soil	128	577136.9	6047234
108	577497	6046822	13	1375	b-soil, slightly boggy area,near stream	129	577133.9	6047264
109	577552	6046774	10	1366	b soil, veg.cover, low elev.	130	577055.9	6047317
110	577590	6046112		1309	b soil, veg.cover, low elev.	131	577038.9	6047302
111	577679	6046788	6	1386	b soil, veg.cover, low elev.	132	576902.9	6047340
112	577672	6046801	6	1391	b soil, veg.cover, low elev.	133	576892.9	6047397
113	577654	6046820	7	1396	b soil, veg.cover, low elev.	134	576900.9	6047415
114	577615	6046882	10	1396	b soil, veg.cover, low elev.	135	576832.9	6047601
115	577574	6046915	7	1418	b soil, veg.cover, low elev.	136	576829.9	6047633
116	577554	6046907	7	1432	b soil, veg.cover, low elev.	137	576804.9	6047656
117	577469	6046730	7	1368	b soil, veg.cover, low elev.	138	576780.9	6047614
118	577451	6046716	8		FB, ridge of rounded cobbles	139	576780.9	6047668
119	577412	6046681	7		FB, ridge of rounded cobbles	140	576759.9	6047682
120	577408	6046653	6	1351	FB, ridge of rounded cobbles	141	576755.9	6047696
121	577402	6046757	7	1364	b-soil, nearby stream	142	576755.9	6047737
122	577341	6046832	6		b soil	143	576740.9	6047749
123	577288	6046871	6	1381	o/c and FB , o/c is diorite, magnetic	144	576654.9	6047736
124	577236	6046928	6	1397	FB & mudflow w.scree, qtz-diorite subcrop	145	576639.9	6047726
125	577227	6046949	6		diorite has rusty weath, subcrop,055?	146	576610.9	6047716
126	577226	6046973	6		claim 535231	147	576984.9	6046590
127	577274	6047029	7	1406	claim 535233	148	576971.9	6046580
128	577244	6047040	7	1435	scree	149	576954.9	6046572
129	577241	6047070	9	1427	b soil old scree	150	576940.9	6046452
130	577163	6047123	6	1427	FB near o/c of rusty weath intermed volc	151	576935.9	6046453
131	577146	6047108	7	1408	FB near o/c of rusty weath intermed volc	152	576944.9	6046444
132	577010	6047146	6	1392	FB near o/c of rusty weath intermed volc	153	576974.9	6046425
133	577000	6047203	6	1404	FB near o/c of rusty weath intermed volc	154	577023.9	6046459

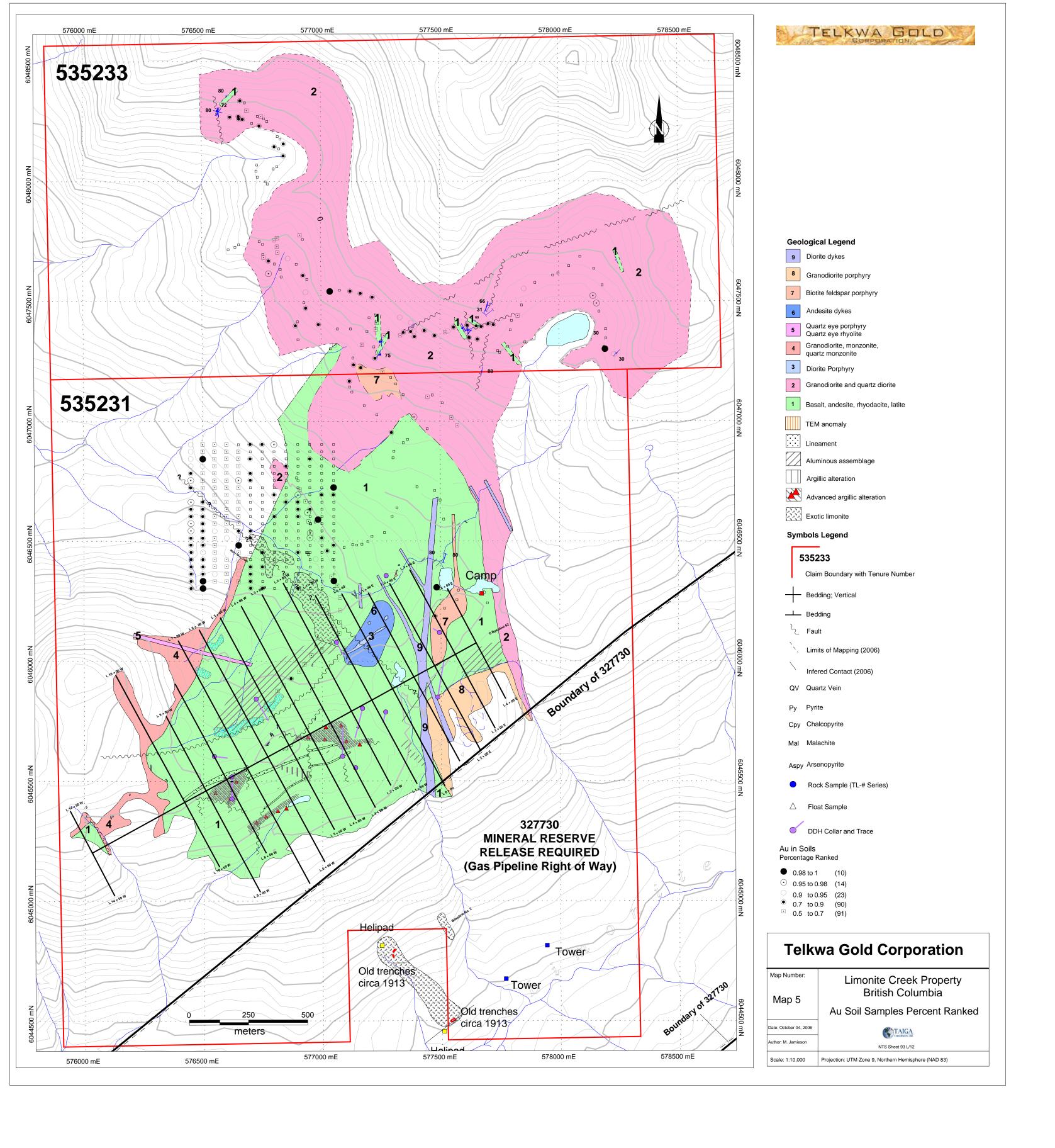
Telkwa Gold Corporation, Limonite Creek Soil Samples 2006


Sample			Accur-	Eleva-	Sample Description	NAD-83					
Number	Easting	Northing	acy(m)	tion(m)		Sample	Easting	Northing			
134	577008	6047221	5	1410	pink-brown soil,FB,scree	155	577045.9	6046423			
135	576940	6047407	9	1429	E side incised stream channel	156	577093.9	6046474			
136	576937	6047439	6	1436	centre, incised stream channel	157	577129.9	6046486			
137	576912	6047462	5	1443	W side, incised stream channel	158	577146.9	6046484			
138	576888	6047420	6	1429	FB scree	159	577168.9	6046487			
139	576888	6047474	7	1457	fb & scree	160	577193.9	6046498			
140	576867	6047488	7	1465	powdery fine soil	161	577211.9	6046520			
141	576863	6047502	8	1476	powdery fine soil	162	577263.9	6046536			
142	576863	6047543	8	1490	powdery fine soil near o/c of Qtz.Diorite with 2 E-W trending mafic dykes	163	577296.9	6046603			
143	576848	6047555	8	1498	fb	164	577316.9	6046638			
144	576762	6047542	6	1486	fb	165	577400.9	6046726			
145	576747	6047532	6	1478	fb	166	577497.9	6046671			
146	576718	6047522	6	1473	fb	167	577512.9	6046592			
147	577092	6046396	7	1214	b brown slope to river	168	577475.9	6046711			
148	577079	6046386	8		b brown slope to river	169	577475.9	6046187			
149	577062	6046378	11	1195	b-soil, tree uprooted	170	577514.9	6046220			
					· •	171	577567.9	6046255			
150	577048	6046258	8	1177	next to line 0+00 & small stream, drk br.soil, some organics	172	577573.9				
151	577043	6046259	7		br.b horizon	173	577695.9	6046242			
152	577052	6046250	7	1165	next to stream						
153	577082	6046231	13		tan-brown b soil						
154	577131	6046265	8	1191	tan-brown b soil						
155	577153	6046229	7	1193	fine scree, mostly diorite but finely crystalline						
					about 5 % rusty weath scree- intermed volc?						
156	577201	6046280	7		near o/c of TL-34						
157	577237	6046292	14	1222							
158	577254	6046290	9		b-soil						
159	577276	6046293	8		slightly boggy						
160	577301	6046304	7	1233	b						
161	577319	6046326	9								
162	577371	6046342	8								
163	577404	6046409	6		andesite chips under soil- fine soil						
164	577424	6046444	7	1284							
165	577508	6046532	7		b soil						
166	577605	6046477	6		fb-old scree						
167	577620	6046398	9	1311	near old stream channel, edge						

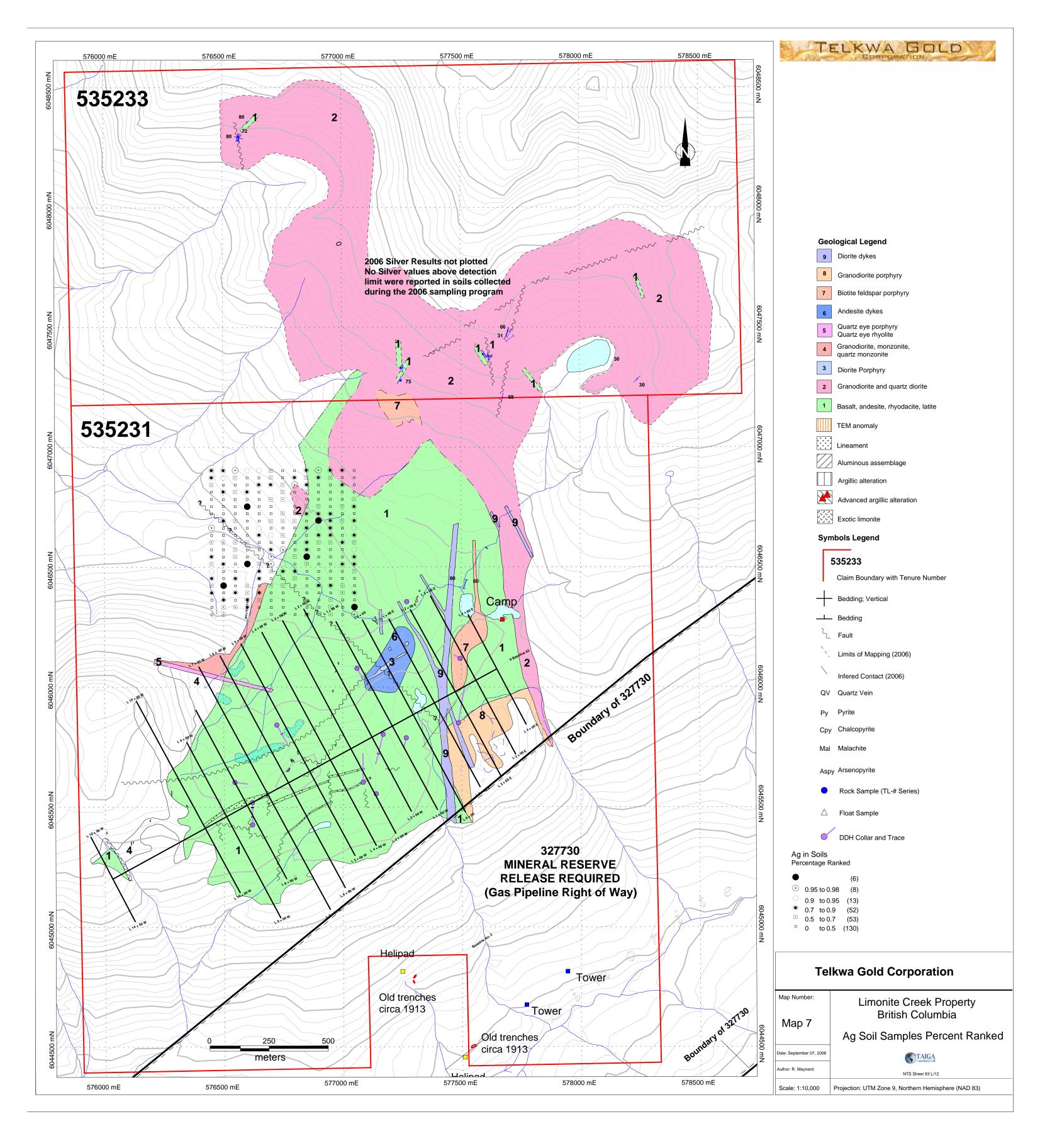

Telkwa Gold Corporation, Limonite Creek Soil Samples 2006

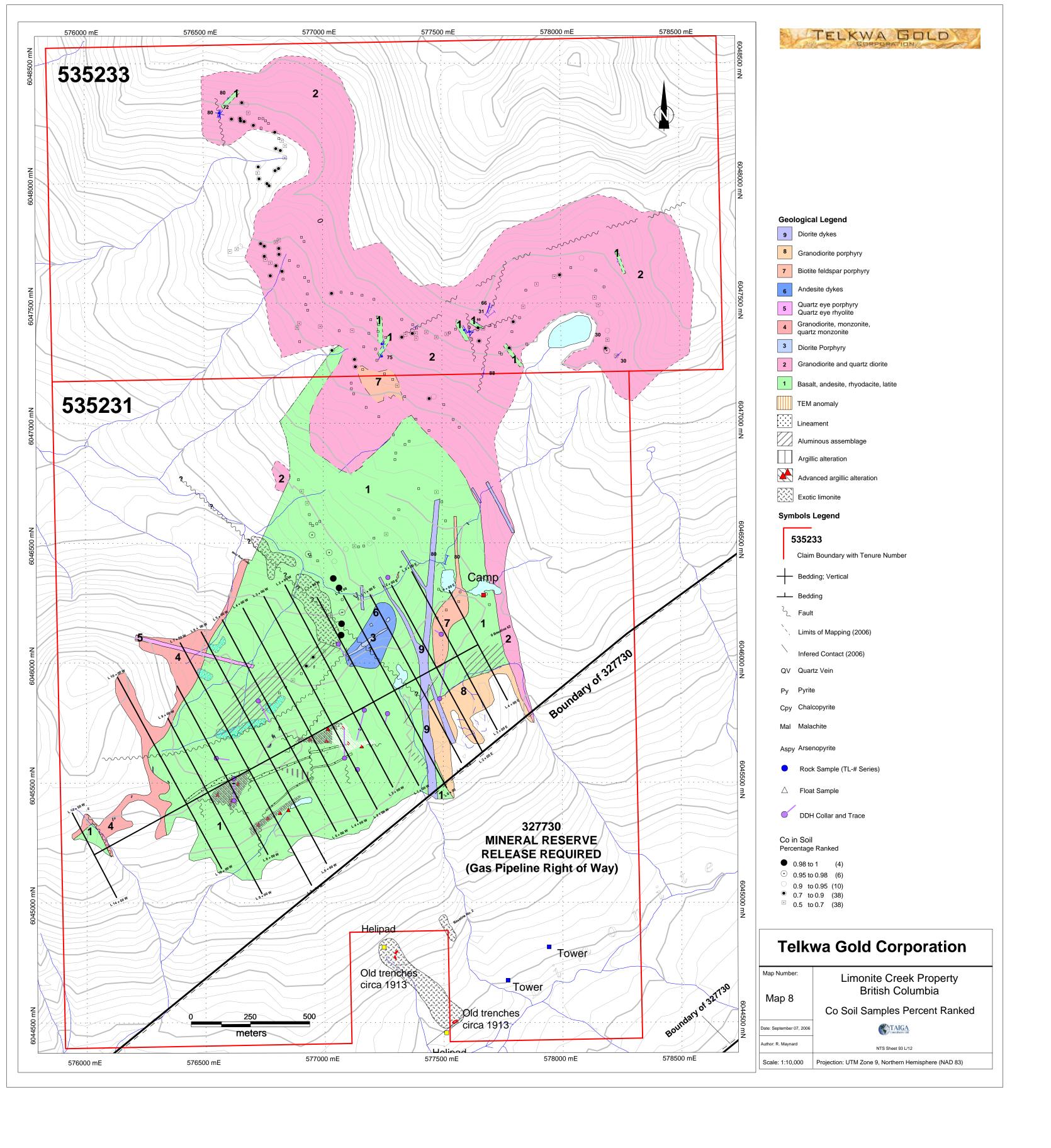

Sample	UTM COO	RDINATES	Accur-	Eleva-	Sample Description		NAD-83	3	
Number	Easting	Northing	acy(m)	tion(m)		Sample	Easting	Northing	
168	577583	6046517	6	1293	b				
169	577583	6045993	6	1309	b				
170	577622	6046026	6	1309	b				
171	577675	6046061	9	1312	b				
172	577681	6046101	9	1312	b				
173	577803	6046048	8	1287			Easting	Northing	
T1	577002	6046570	14	1219	b, dark	T-1	576895.2	604847.6	
T2					b, dark	T-2	576903	6046719	
T3					b, dark	T-3	576926	6046671	
T4					b, dark	T-4			
T5	577052	6046388	9		b, dark	T-5	577053	6046388	
T6	577059	6046339	11		b, dark	T-6	576952	6046533	
T7	NS BOG				b, dark	T-7	NS bog		
T8					b, dark	T-8	576945	6046537	
T9	577148	6046157	11		b, dark	T-9	577041	6046351	
T10	577172	6046119	13		b, dark	T-10	577065	6046313	
T11					b, dark	T-11	577070	6046268	
T12					b, dark	T-12	577070	6046214	
T13					b, dark	T-13	577067	6046166	
T14	577180	6045921			b, dark	T-13-R	577067	6046166	
T15					b, dark	T-14	577073	6046115	
T16					b, dark	T-15	577033	6046084	
T17	577063	6045829			b, dark	T-16	576994	6046053	
T18					b, dark	T-17	576956	6046023	
T19					b, dark	T-18	576920	6045990	
T20	576977	6045733			b, dark	T-19	576897	6045959	
T21					b, dark	T-20	576870	6045927	
T22	576920	6045681			b, dark	T-21	576832	6045903	
						T-22	576813	6045875	

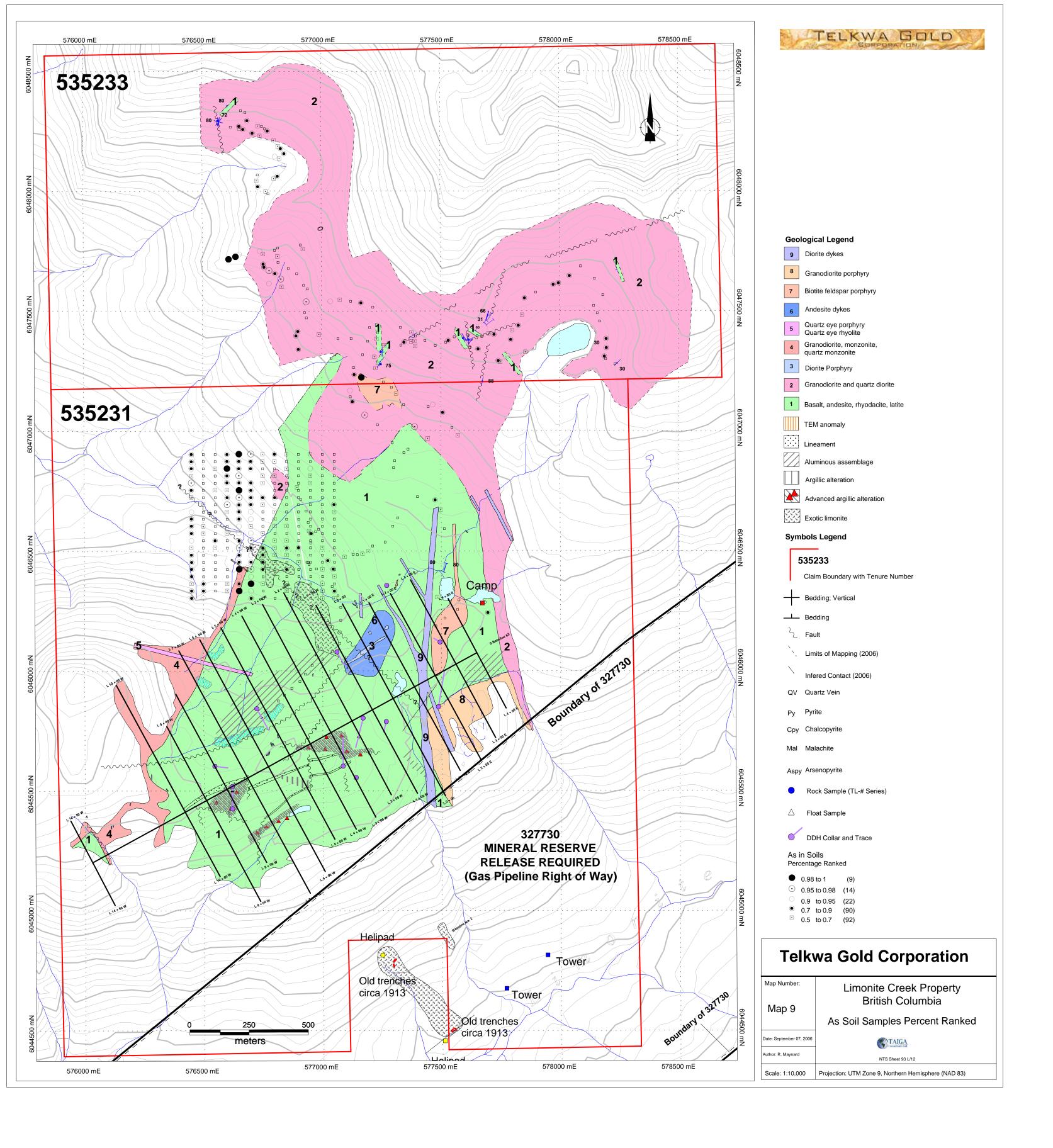

Limonite Creek - Outcrop Notes

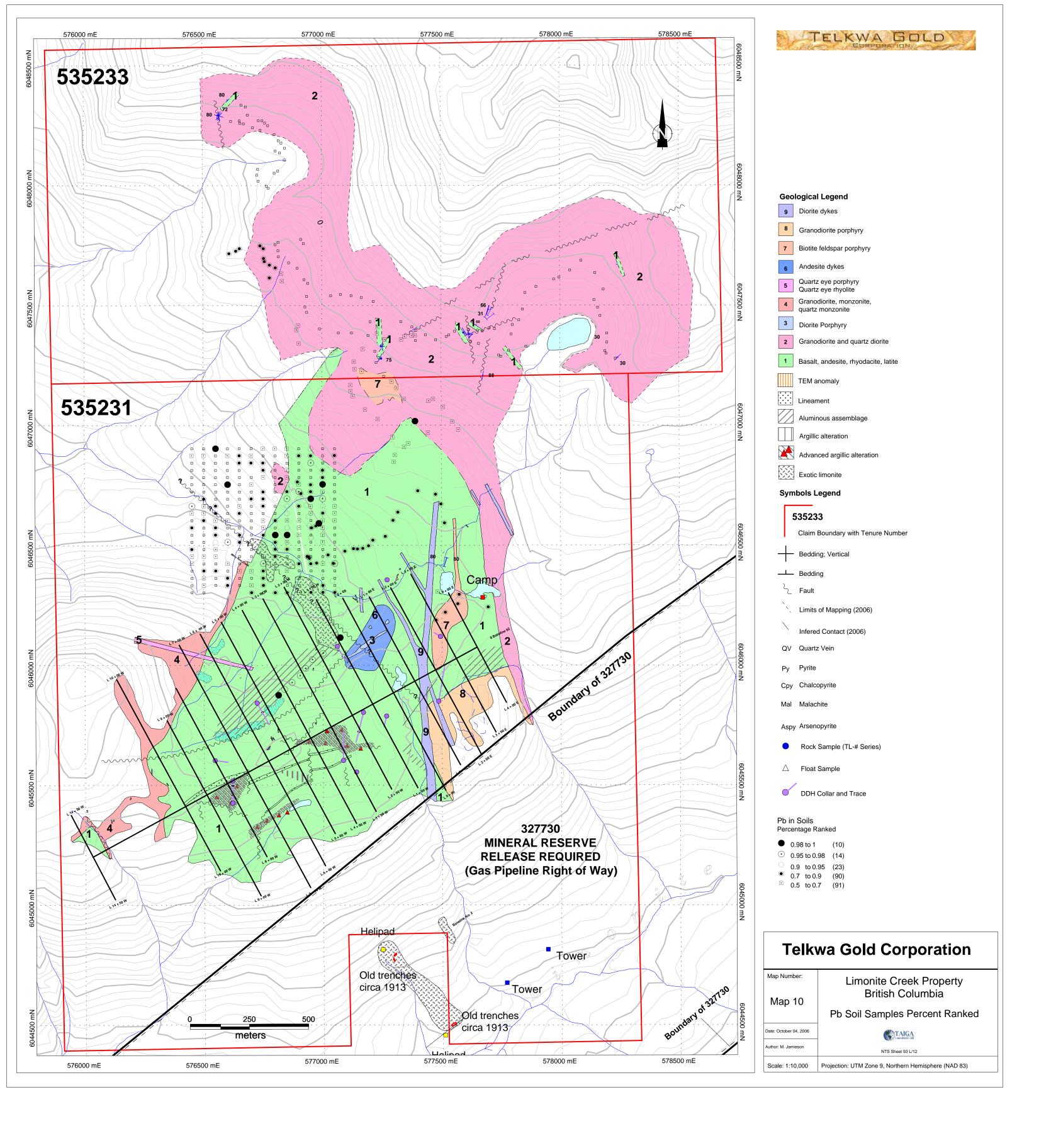

Sample UTM NAD27 acc		elev	Outeren Netes				NAD-83			
Number	Easting	Northing	(m)	(m)	Outcrop Notes		location comments	Sample	Easting	Northing
OC-1	578349	6047089	, ,	1660	approx 1m thick qv, 045?30NW		outcrop, quartz vein	OC-1	578241.9	6047283
					strike & dip observed from distance below o/c so only approximate					
OC-2	576678	6048096	7	1578	med.xtalline diorite w.mafic to intermed.aphanitic dykes		qtz-diorite	OC-2	576570.9	6048290
					dyke 039/80NW					
					creek fault 171/72E					
					contact with porphyritic andesite 105					
					creek fault cuts thru both andesite and diorite & fault is rusty weathering					
					diorite is weakly magnetic					
OC-3	577804	6047287		1688	017/66 NW		fault in Qtz-Diorite	OC-3	577696.9	6047481
OC-4	577800	6047273					jointing in Qtz-Diorite	OC-4	577692.9	6047467
OC-5	577812	6047280		1678	032/31 NW		as above	OC-5	577704.9	6047474
OC-6	577814	6047259		1665	052/35 NW		as above	OC-6	577706.9	6047453
OC-7	577361	6047136	7	1503	180/90 approx.1m wide		dyke-Anesite-porphyry	OC-7	577253.9	6047330
OC-8	577350	6047086	8	1459	very finely crystalline intermed.volc., some weathering has the appearance of xtal tuff		Intermed.volc.	OC-8	577242.9	6047280
					028/75E		dyke?			
OC-9	577393	6047007	8	1433	1-2mm size crystals of bt and white feldspar in grey aphanitic matrix		biotite-feldspar-porp	OC-9	577285.9	6047201
OC-10	577306	6046996	7	1440	1-2mm size crystals of bt and white feldspar in grey aphanitic matrix		biotite-feldspar-porp	OC-10	577198.9	6047190
OC-11	577479	6046835	9	1373	Qtz-Diorite		Quartz-Diorite	OC-11	577371.9	6047029
OC-12	577706	6047196	7	1619	10m wide intermed to mafic dyke,aphanitic,siliceous,rusty weath and has quartz		mafic dyke	OC-12	577598.9	6047390
					veins up to 2cm in width, dyke has specular hematite along fractures in outcrop		,			
					and in angular scree below outcrop. Dyke trends 148(dip?)					
OC-13	577783	6047013		1659	rusty,siliceous, platy weathering Qtz-Diorite with quartz veins 009-010/88W		Qtz-Diorite	OC-13	577675.9	6047207
OC-14	577724	6047186			6 to 7 m wide rusty weathering gtz-diorite and possibly some intermed.volc?		Qtz-Diorite	OC-14	577616.9	6047380
					o/c is rusty qtz dio but there is angular, very weathered ,scree of intermed vol					
					and qv striking 070/90. Rusty diorite foliation 090/90 and fault thru diorite has					
					epidote-qtz slickensides trending 170 & flat lying.					
OC-15	577236	6046928	6	1397			Qtz-Diorite	OC-15	577128.9	6047122
OC-16					2 mafic dykes cut thru on valley edge-cliff		Qtz-Diorite	OC-16	576755.9	
OC-17					fg.intermed volc,massive,approx.1%diss py,tr.cpy and qtz-epidote seams	o/c	Dac-Andesite Intermed volc.	OC-17	577063.9	
	011111	00.0200		.20.	igintornoa rolojinasonojapproxir rolaso pri interprata que opiasto coamo	0,0	forms waterfall=resistant unit		0110000	00.0
OC-18	577201	6046280	7	1206	rusty weath.o/c w.scree to river, fresh rk has bleached appearance w.rusty weath.rind		Dacite-Andesite?	OC-18	577093.9	6046474
OC-19			7		rusty weath, weakly magnetic, finely xtalline intermed volc, also weathers light	o/c	in stream	OC-19	577008.9	
00.0	011110	00.02	-		buff-grey colour	0,0	Dacite-Andesite?	00.0	0000.0	00.0
OC-20	577623	6046235	8	1284	rusty weathering, dark grey fresh surface, finely crystalling to aphanitic		Dacite-Andesite?	OC-20	577515.9	6046429
0020	011020	00.0200	Ĭ	1201	intermed volc. With up to 5% diss py,		Daone / macene :	0020	01101010	00.10.20
	Strike & Strike & Canada Canada		epidote on frac surfaces, weakly magnetic							
		jointing?018/80E								
					could be diorite above it(cliff)just 5m to the W in incised stream valley					
OC-21	577371	6046342	8	1255			Dacite-Andesite?	OC-21	577263.9	6046536
OC-22					angular float intermed volc, rounded cobbles of diorite		Dacite-Andesite?	OC-22	576858.9	
OC-23					scree, angular, rusty weath		Intermed volc	OC-23	576868.9	
OC-24							diorite scree	OC-24	576868.9	
OC-25							intermed volc	OC-25	577511.9	
OC-26						float		OC-26	577198.9	
OC-27			7			float		OC-27	576786.9	
30 LI	0,0004	30 11020		1001	russy risum. I yinto tun, myo uuo. 1070 Ying.ulos.py	noat		30 21	31 31 30.3	30 10022
		 				-		1	1	
Topograph	nv & Grid n	otes to tie	in 97 soil s	ample grid	<u> </u>	+		1		1
			57 3011 3	ampie grie						—
			dinate not c	ufficiently	I	-		+		—
						+		+	576840 0	6046849
L1+00, 0+0						+		+	576832.9	
Bog on ste						+			576829.9	
L0, 2+10s									576938.9	
LU, Z+1US	377040	76976 6046547 13 1197 scree,angular,rusty weath & in stream bed 77619 6046513 9 1332 outcrop 77306 6046996 7 1423 qtz float w.pyrophyllite 76894 6047828 7 1537 rusty weath. Pyritic tuff, rhyo-dac?10% v.f.g.diss.py 4 Grid notes to tie in 97 soil sample grid Indicate the sain 97 report Indicate the sain 97 report 10 many GPS coordinate not sufficiently accurate 76957 6046655 7 1226 76940 6046602 8 1218 76937 6046597 26 1213					1	l	370936.9	0040004

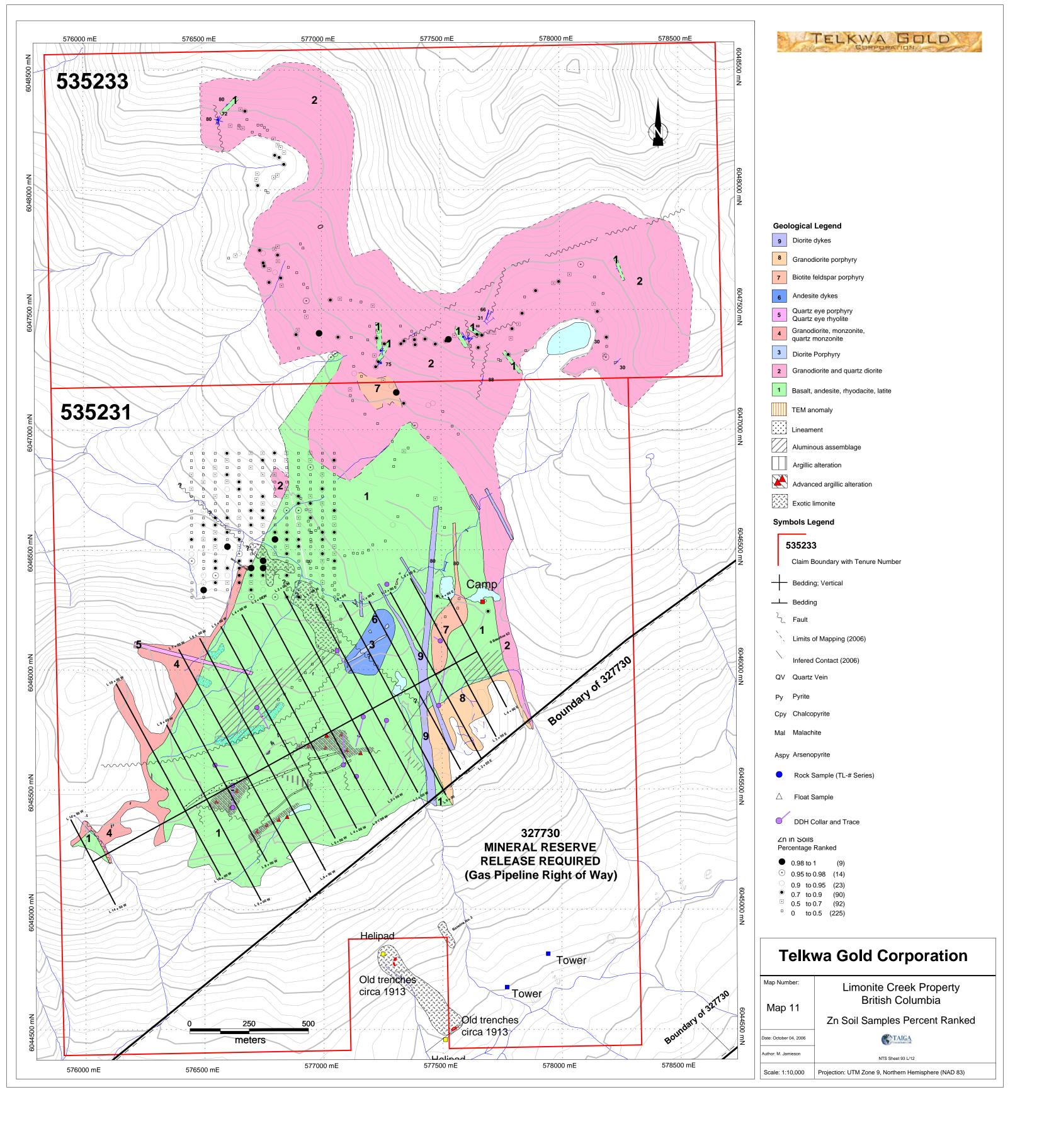


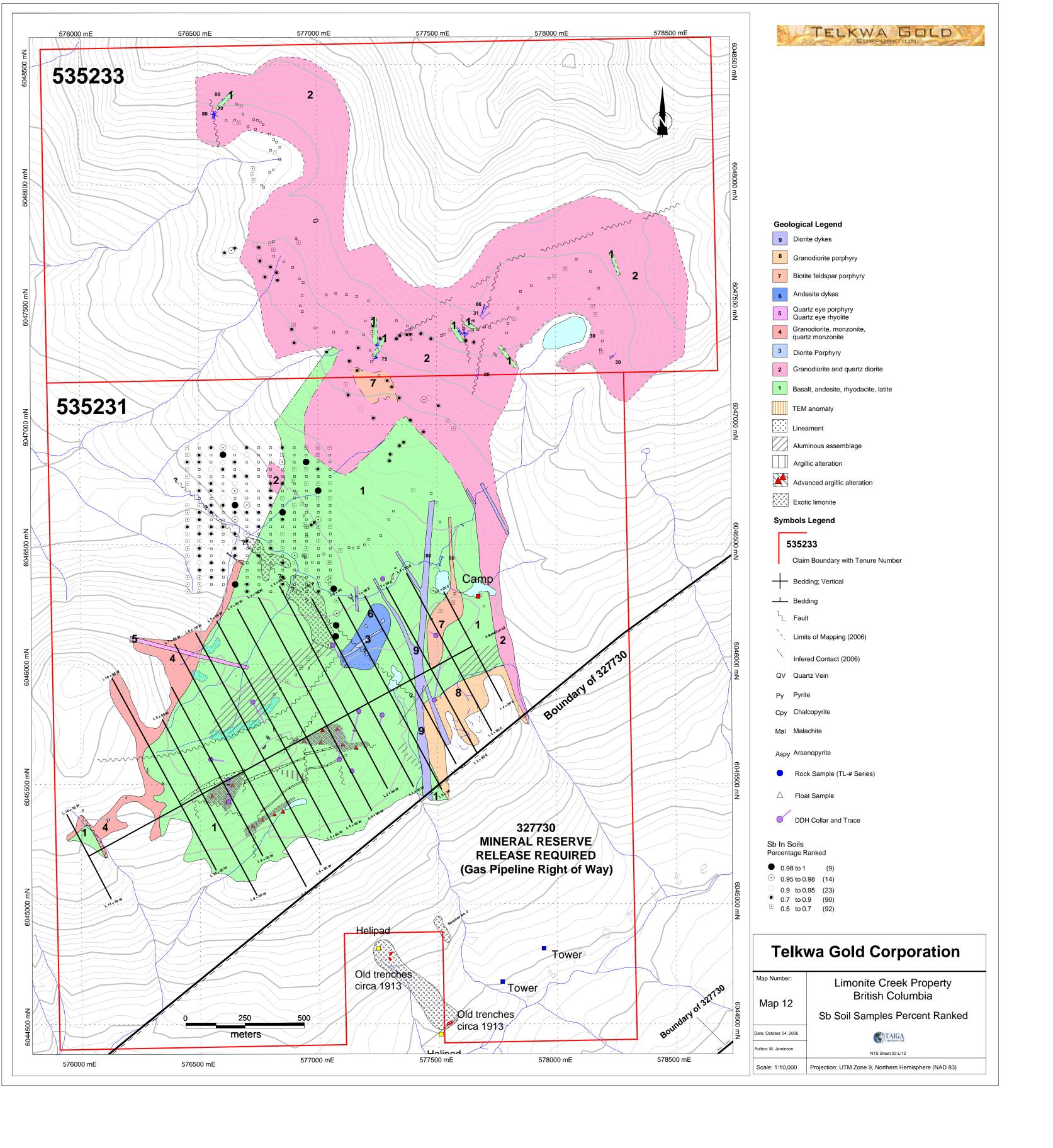


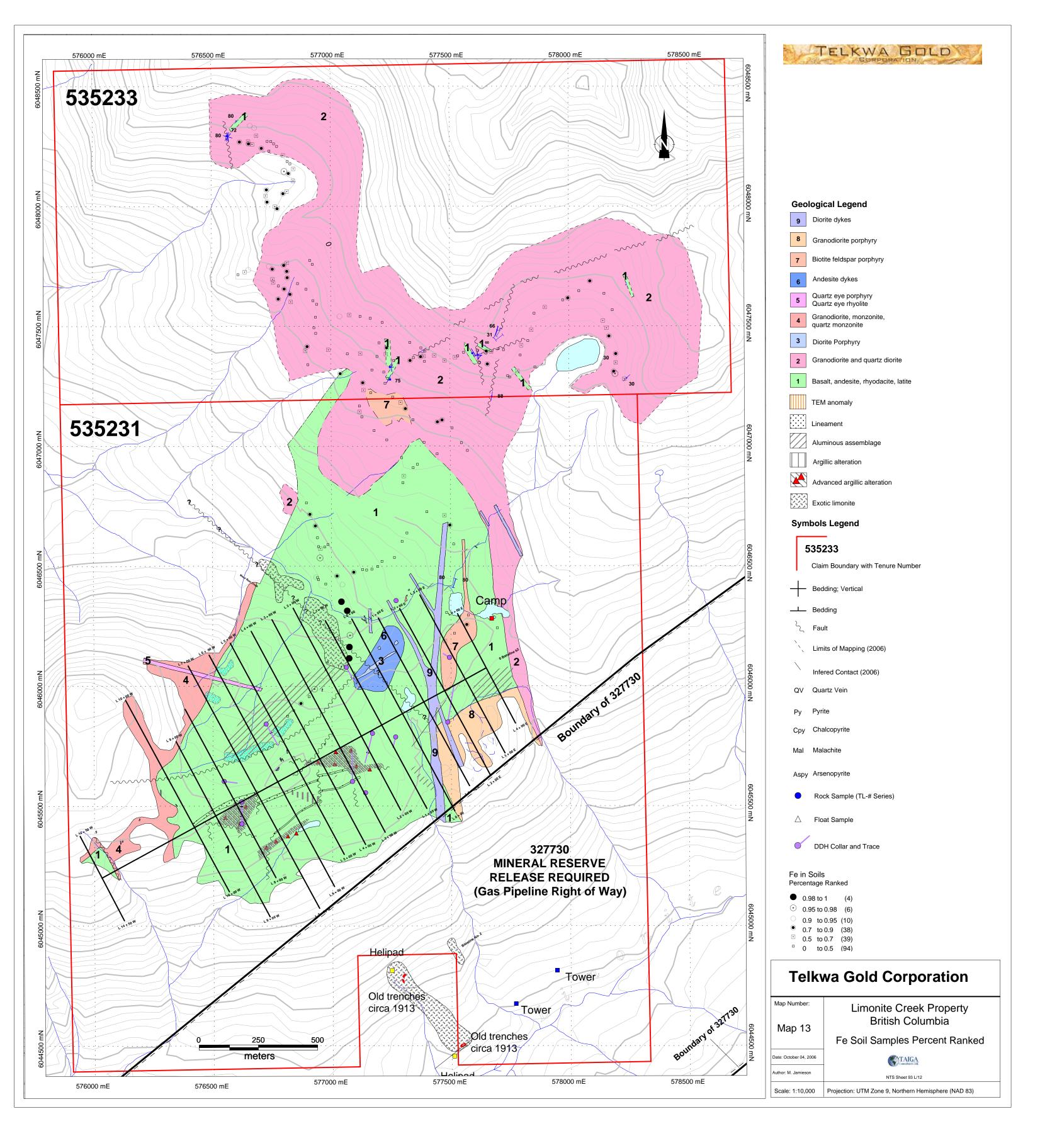












Appendix 2

Analytical Procedures

Analytical Results

Certificates

LORING LABORATORIES LTD.

E-mailL loringll@cadvision.com

Tel: (403) 274-2777 Fax: (403) 275-0541

Preparation Procedures for Geochemical Samples

1 - Soil and Silts:

- a) The soil sample bags are placed in dryer to dry at 105°C.
- b) Each sample is passed through an 80 mesh nylon sieve. The +80 mesh material is discarded.
- c) The -80 mesh sample is placed into a coin envelope and delivered to the laboratory for analysis.

2 - Lake Sediments:

- a) The sediment sample bags are placed into the dryer at 105°C until dry.
- b) The dried material is transferred to a ring and puck pulverizer and ground to -200 mesh.
- c) The -200 mesh pulp is then rolled for mixing, placed into a coin envelope, and taken to the laboratory for analysis.

3 - Rocks and Cores:

- a) The samples are dried in aluminum disposable plans at 105°C.
- b) They are then crushed to 1/8" in jaw crusher.
- c) The 1/8" material is mixed and split to sample pulp size.
- d) The sample is then pulverized to 100 mesh, using a ring and puck pulverizer.
- e) The -100 mesh material is rolled on rolling mat and transferred to sample bag. The sample is then sent to the laboratory for analysis.

Au, Gold (Fire Assay/AA)

- 1. Weight 10 gm sample into a fire assay crucible with the appropriate amount of fluxes, flour, and mix.
- 2. Add silver inquart.
- 3. Place crucible in assay furnace and fuse for 40 minutes.
- 4. Pour samples, remove slag and then cupel buttons.
- 5. Place beads in test tubes and dissolve with aqua regia.
- After dissolution is complete, bulk to appropriate volume and run against similarly prepared gold standards on AA.

BASE METALS and ARSENIC

- 1. Weigh 0.5 gm sample into a 22x177 mm test tube. Along with checks, blanks, and certified reference materials interspersed amongst the samples.
- 2. Add 2 ml 1:1 HNO₃, 3 ml conc HCl to each test tube.
- 3. Place test tubes in aluminum racks which have been on the hot plate at high heat beforehand to heat the sand.
- 4. Digest the samples for 1 hour on a two-switch plate.
- 5. Remove tubes and place in wire racks and allow to cool.
- 6. Dilute to the 10 ml mark with distilled water and then mix well on the vortex mixer.
- 7. Analyze on the ICP.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

File No : 48771

Date : September 26, 2006

Samples: Rock

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta T2G 0V2

Attn: Terri Millinoff

Certificate of Assay

"Project: 2602"

Sample	Gold	
No.	ppb	
TL - 1	55	
TL - 2	<5	
TL - 3	25	
TL - 4	nss	
TL - 5	<5	
TL - 6	100	
TL - 7	10	
TL - 8	<5	
TL - 9	<5	
TL - 10	15	
TL - 11	<5	
TL - 12	20	
TL - 13	50	
TL - 14	30	
TL - 15	25	
TL - 16	40	14
TL - 17	5	
TL - 18	150	
TL - 1R	57	
TL - 10R	20	
TL - 19	70	
TL - 20	25	
TL - 21	1400	
TL - 22	190	
TL - 23	35	
TL - 24	85	
TL - 25	80	
TL - 26	5	
TL - 27	nss	
TL - 28	10	
TL - 29	10	
TL - 30	<5	
TL - 31	10	
TL - 32	<5	
TL - 33	<5	
TL - 34	195	
TL - 35	<5	
TL - 36	5	
TL - 17R	<5	
TL - 26R	10	
TL - 33R	5	

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

File No : 48771

Date : September 26, 2006

Samples: Rock

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta T2G 0V2

Attn: Terri Millinoff

Certificate of Assay

"Project: 2602"	
Sample	

Sample	Gold	
No.	ppb	
TL - 37	20	
TL - 38	<5	
TL - 39	<5	
TL - 40	<5	
#1	50	
#2	165	
#3	<5	
#4	<5	
#5 #6	<5	
#6	<5	
#7	70	
#8	75	
#9	<5	
#10	<5	
#11	<5	
#12	<5	
#13	<5	
#14	<5	
#15	<5	
#16	35	
#17	5	
#18	<5	
#19	5	
#20	<5	
#9R	<5	
#19R	<5	
#21	<5	
#22	<5	
#23	<5	
#24	<5	
#25	<5	
#26	<5	
#27	10	
#28	<5	
#29	5	
#30	5	
#31	5	
#32	5	
#33	5 50	
#34	<5	
#35	25	

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

//Assayer

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Page 2 of 7

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

File No : 48771

Date : September 26, 2006

Samples: Rock

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta

T2G 0V2
Attn: Terri Millinoff

Certificate of Assay

	Certificate of Assay	
"Project: 2602"		
Sample	Gold	
No.	ppb	-
#36	<5	
#37	50	
#38	<5	
#39	15	
#40	20	
#25R	<5	
#34R	<5	
#41	<5	
#42	<5	
#43	<5	
#44	<5	
#45	<5	
#46	10	
#47	25	
#48	5	
#49	20	18
#50	10	
#51	10	
#52	10	
#53	10	
#54	15	
#55	35	
#56	5	
#57	10	
#58	50	
#59	40	
#60	35	
#41R	10	
#50R	5	
#61	15	
#62	10	
#63	15	
#64	<5	
#65	100	
#66	10	
#67	10 <5	
#68	5	
#69	5	
#70	<5	
#70 #71	5	
#/1 #72	2 <5	

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

File No : 48771

Date : September 26, 2006

Samples: Rock

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta T2G 0V2

Attn: Terri Millinoff

	Certificate of Assay	
"Project: 2602"		
Sample	Gold	
No.	ppb	
#73	15	
#74	<5	
#75	<5	
#76	<5	
#77	10	
#78	20	
#79	<5	
#80	<5	
#57R	8	
#66R	10	
#73R	10	
#81	<5	
#82	<5	
#83	<5	
#84	<5	
#85	<5	
#86	<5	
#87	15	
#88	<5	
#89		
#90	20	
#90 #91	10	
#92	15	
	15	
#93	25	
#94	25	
#95	10	
#96	15	
#97	45	
#98	20	
#99	10	
#100	5	
#101	5 5 5	
#102	5	
#103		
#104	5	
#105	<5	
#106	<5	
#107	<5	
#108	50	
#109	<5	
#110	nss	14

I HEREBY CERTIFY that the above results are those assays

made by me upon the herein described samples:

Rejects and pulps are retained for one month unless specific arrangements are made in advance

Page 4 of 7

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

File No : 48771

Date : September 26, 2006

Samples: Rock

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta

T2G 0V2 Attn: Terri Millinoff

"Project: 2602"

#130R

#137R

#141

#142

#143

Certificate of Assay

Sample	Gold	
No.	ppb	
#111	215	
#112	5	
#113	5	
#114	<5	
#115	<5	
#116	5	
#114 #115 #116 #117	<5	
#118	<5 <5	

#119 <5 #120 <5 #83R 5 #89R 20 #100R 5 #105R 5 #114R <5 #121 30 #122 <5 #123 <5 #124 <5 #125 <5 #126 10 #127 10 #128 10 #129 <5 #130 5 #131 <5 #132 <5 #133 10 #134 <5 #135 <5 #136 <5 #137 <5 #138 80 #139 15 #140 5 #122R <5

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

me upon the herein described samples:

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

15

<5

<5

<5

<5

Page 5 of 7

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

File No : 48771

Date : September 26, 2006

Samples: Rock

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta

T2G 0V2 Attn: Terri Millinoff

	Certificate of Assay	
"Project: 2602" Sample	Gold	
No.	ppb	
#144		
	<5	
#145	<5	
#146	<5	
#147	250	
#148	<5	
#149	<5	
#150	<5	
#151	<5	
#152	<5	
#153	40	
#154	10	
#155	<5	
#156	<5	
#157	<5	
#158	<5	
#159	<5	2
#160	<5	
#161	<5	
#162	<5	
#163	<5	
#164	<5	
#165	<5	
#166	<5	
#167	<5	
#168	<5	
#169	25	
#170	<5	
#171	<5	
#172	<5	
#173	<5	
#155R	<5	
#166R	<5	
#173R	<5	
T - 1	<5	
T - 2	<5	
T-3	<5	
T - 4	nss	
T - 5	50	
	<5	
T - 6		
T - 7 T - 8	nss 50	
1-0	00	

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

Assayer Rejects and pulps are retained for one month unless specific arrangements are made in advance.

Page 6 of 7

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

File No : 48771

Date : September 26, 2006

Samples: Rock

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta

T2G 0V2 Attn: Terri Millinoff

Certificate of Assay

"Project: 2602"

Sample	Gold	
No.	ppb	
T - 9	<5	
T - 10	<5	
T - 11	<5	
T - 12	<5	
T - 13	<5	
T - 14	<5	
T - 15		
T - 16	<5	
1 - 10	<5	
T - 17	<5	
T - 18	<5	
T - 19	<5	
T - 20	25	120
T - 21	<5	1.00
T - 22	<5	8
T - 6R		
T - 13R	<5 <5	
1 - 13K		
1		
Note:	"R" Indicates duplicate sample analyzed.	
	nss = non-sufficient sample for analysis	
1	A CONTROL OF THE CONT	
1		
1		
1		
1		
1		

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

Jungfiedler Hissayer

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta T2G 0V2

FILE: 48771

DATE: July 20, 2006

Attn: Terri Millinoff

30 ELEMENT ICP ANALYSIS

"Project: 2602"

Sample	Ag	AI	As	Αu	В	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	K	La Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	V	w	Zn
No.	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm %	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	mqq	ppm	ppm	ppm
"Soil Sa	mples																• • • • • • • • • • • • • • • • • • • •				•								-
# 1	<0.5	3.15	3	<1	26	90	<1	0.31	1	52	28	177	2.74	0.26	12 1.21	998	2	0.03	10	0.14	<1	<1	31	<1	0.12	<1	119	<1	51
# 2	<0.5	3.12	3	<1	30	139	<1	0.33	2	80	20	280	4.29	0.34	16 1.67	2325	5	0.04	23	0.13	<1	4	26	<1	0.09	<1	119	<1	88
# 3	<0.5	3.45	5	<1	25	77	<1	0.51	1	54	29	156	2.68	0.21	14 1.25	739	2	0.04	15	0.09	<1	2	38	<1	0.14	<1	105	<1	51
# 4	<0.5	3.66	5	<1	27	97	<1	0.55	1	60	28	208	2.99	0.21	17 1.46	1126	1	0.04	18	0.07	<1	2	36	<1	0.16	<1	114	<1	54
# 5	<0.5	4.00	5	<1	26	105	<1	0.60	1	62	33	263	3.10	0.24	15 1.47	1197	2	0.04	17	0.11	<1	3	39	<1	0.14	<1	112	<1	60
# 6	<0.5	2.84	3	<1	29	79	<1	0.56	1	62	25	284	2.90	0.20	18 1.86	1513	2	0.04	17	0.11	<1	3	48	<1	0.11	<1	110	<1	76
#7	<0.5	3.94	4	<1	24	68	<1	0.35	1	54	27	171	2.71	0.20	12 1.25	764	2	0.03	13	0.10	<1	2	31	<1	0.14	<1	105	<1	59
# 8	<0.5	2.77	4	<1	25	52	<1	0.41	1	53	27	143	2.66	0.18	11 1.26	691	2	0.03	13	0.09	<1	2	33	<1	0.13	<1	111	<1	57
# 9	<0.5	3.07	3	<1	22	54	<1	0.28	1	50	18	131	2.49	0.20	11 1.20	573	2	0.03	10	0.13	<1	2	25	<1	0.13	<1	108	<1	49
# 10	<0.5	2.99	4	<1	23	55	<1	0.38	1	48	24	159	2.38	0.15	14 1.01	818	1	0.03	13	0.11	<1	<1	27	<1	0.13	<1	95	<1	46
# 11		3.52	3	<1	22	158	<1	0.54	1	64	25	349	3.12	0.25	17 2.02	1054	2	0.03	18	0.09	<1	<1	55	<1	0.13	<1	124	<1	86
# 12	<0.5	3.57	5	<1	27	66	<1	0.40	1	52	27	124	2.62	0.22	12 1.17	654	2	0.04	15	0.12	<1	3	31	<1	0.14	<1	102	<1	55
# 13	<0.5	3.53	6	<1	29	74	<1	0.60	1	55	29	96	2.86	0.22	15 1.27	1161	2	0.06	20	0.10	<1	4	39	<1	0.14	<1	107	<1	59
# 14	<0.5	3.15	5	<1	29	89	<1	0.49	1	52	25	105	2.58	0.19	14 1.18	1032	1	0.03	15	0.07	<1	2	35	<1	0.14	<1	95	<1	53
# 15	<0.5	3.40	4	<1	27	97	<1	0.58	1	54	28	98	2.76	0.23	16 1.13	904	2	0.04	17	0.09	<1	2	40	<1	0.13	<1	99	<1	60
# 16			5	<1	25	80	<1	0.43	1	48	24	84	2.37	0.21	12 1.06	707	2	0.03	13	0.07	<1	2	32	<1	0.13	<1	88	<1	50
# 17	1		7	<1	28	81	<1	0.63	1	51	26	92	2.55	0.20	15 1.06	1018	2	0.04	15	80.0	<1	1	40	<1	0.13	<1	102	<1	51
# 18		3.36	4	<1	25	124	<1	0.63	1	54	26	104	2.67		17 1.27	796	2	0.04	16	0.11	<1	<1	42	<1	0.12	<1	103	<1	60
# 19		3.45	5	<1	25	62	<1	0.38	1	50	27	99	2.43		13 1.10	538	2	0.03	14	0.14	<1	2	27	<1	0.13	<1	101	<1	56
# 20	<0.5		5	<1	29	138		0.52	1	56	30	105	2.82		15 1.30	1004	1	0.04	17	0.08	<1	2	40	<1	0.14	<1	102	<1	60
# 21	<0.5		6	<1	28	83	-	0.70	1	49	25	79	2.37		17 1.22	797	1	0.05	18	0.07	<1	2	49	<1	0.12	<1	89	<1	55
# 22	<0.5		6	<1	26	126		0.44	1	56	29	134	2.67		15 1.24	1030		0.03		0.10	<1	2	31	<1	0.14	<1	97	<1	58
# 23			5	<1	25	91	-	0.51	1	49	26	101	2.32		16 1.11	828		0.03		0.06	<1	2	34	<1	0.12	<1	94	<1	48
# 24			4	<1	24	80	-	0.48	1	49	25	113	2.36		15 1.12	842		0.03	15	0.09	<1	1	30	<1	0.12	<1	92	<1	51
# 25	<0.5		5	<1	23	70		0.45	1	49	25	120	2.40		15 1.10	891		0.03		0.08	<1	2	_28_	<1	0.13	<1	94	<1	51
#27	<0.5		4	<1	22	101		0.41	1	50	25	84	2.49		14 1.11	1008		0.03		0.12	<1	<1	40	<1	0.11	<1	94	<1	53
#28			4	<1	24	87		0.31	1	50	36	74	2.62		12 1.24	673		0.04	16	0.14	<1	3	31	<1	0.15	<1	103	<1	53
#29	<0.5		4	<1	24	90		0.33	1	53	27	111	2.73		14 1.37	681		0.03		0.12	<1	2	31	<1	0.14	<1	109	<1	54
#30	<0.5		4	<1	24	71		0.23	1	52	37	34	2.94		8 0.92	699	_	0.04		0.14	<1	2	22	<1	0.16	<1	104	<1	57
#1-R	<0.5		3	<1	27	81	-	0.28	1	51	25	174	2.62		9 1.19	981		0.03		0.14	<1	<1	26	<1	0.12	<1	109	<1	48
#20-R	<0.5	3.39	5	<1	28	134	<1	0.50	1	55	34	109	2.83	0.26	16 1.27	1029	1	0.04	22	0.08	<1	2	38	<1	0.14	<1	102	<1	59

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta T2G 0V2 FILE: 48771

DATE: July 20, 2006

Attn: Terri Millinoff

30 ELEMENT ICP ANALYSIS

"Project	t: 26	02"
----------	-------	-----

Sample	Ag	ΑI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La Mg	Mn	Mo	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	٧	w	Zn
No.	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm %	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	mqq	ppm	ppm	ppm
#31	<0.5	3.72	4	<1	26	117	<1	0.47	1	59	25	134	3.05	0.23	14 1.44	1151	1	0.04	12	0.12	<1	3	35	<1	0.14	<1	118	<1	58
#32	<0.5	2.73	3	<1	28	74	<1	0.55	1	59	26	98	2.88	0.17	15 1.50	941	1	0.04	17	0.10	<1	1	40	<1	0.13	<1	115	<1	57
#33	<0.5	2.51	3	<1	24	132	<1	0.33	1	46	28	82	2.25	0.20	14 1.17	741	1	0.03	16	0.12	<1	2	36	<1	0.12	<1	89	<1	52
#34	<0.5	3.01	3	<1	31	118	<1	0.31	1	49	38	79	2.56	0.19	15 1.15	716	2	0.04	18	0.16	<1	1	34	<1	0.16	<1	91	<1	50
#35	<0.5	3.91	4	<1	25	65	<1	0.31	1	48	29	89	2.61	0.17	11 1.04	677	2	0.03	12	0.12	<1	1	26	<1	0.14	<1	91	<1	53
#36	<0.5	3.59	4	<1	30	63	<1	0.26	1	45	25	93	2.48	0.15	11 0.93	609	2	0.03	8	0.15	<1	<1	22	<1	0.14	<1	98	<1	50
#37	<0.5	3.22	7	<1	28	112	<1	1.52	1	36	44	436	1.85	0.21	30 0.89	927	' 4	0.03	11	0.39	<1	2	65	<1	0.08	34	101	<1	87
#38	<0.5	1.63	2	<1	15	90	<1	0.22	1	40	15	23	1.99	0.21	8 0.53	2783	3	0.03	2	0.16	<1	<1	24	<1	0.13	<1	95	<1	41
#39	<0.5	3.12	3	<1	15	58	<1	0.18	1	44	25	115	2.27	0.17	9 0.86	836	4	0.03	7	0.15	<1	1	16	<1	0.14	<1	91	<1	55
#40	<0.5	3.52	5	<1	15	80	<1	0.32	1	54	23	205	2.77	0.28	14 1.61	864	. 4	0.03	15	0.15	<1	<1	32	2	0.13	<1	121	<1	122
#41	<0.5	3.39	4	<1	18	104	<1	0.34	1	52	28	91	2.56	0.24	12 1.23	752	2	0.04	14	0.13	<1	<1	34	<1	0.15	<1	103	<1	60
#42	<0.5	3.48	4	<1	17	68	<1	0.28	1	55	29	133	2.76	0.21	13 1.20	749	2	0.03	16	0.13	<1	1	27	<1	0.14	<1	114	<1	50
#43	<0.5	2.21	3	<1	17	68	<1	0.16	1	38	21	47	1.92	0.20	8 0.63	353	3	0.03	8	0.13	<1	2	19	<1	0.12	<1	72	<1	41
#44		3.42	3	<1	17	69	<1	0.17	1	43	25	80	2.16	0.23	10 0.96	518	2	0.03	9	0.17	<1	<1	24	<1	0.13	<1	82	<1	51
#45	<0.5	3.02	5	<1	18	90	<1	0.41	1	47	24	64	2.35	0.22	13 1.10	575	1	0.04	13	0.12	<1	<1	33	<1	0.13	<1	101	<1	57
#46	<0.5		4	<1	20	93	-	0.44	1	51	29	104	2.52	0.23	17 1.26	644	1	0.04	17	0.12	<1	3	37	<1	0.13	<1	99	<1	63
#47	<0.5		5	<1	16	67	<1	0.37	1	52	28	90	2.61	0.23	12 1.29	943	2	0.04	14	0.23	<1	1	29	<1	0.11	<1	95	<1	60
#48		3.21	4	<1	18	123		0.37	1	48	31	59	2.40		14 1.17	634	3	0.04	13	0.16	<1	2	35	<1	0.13	<1	92	<1	57
#49		3.20	5	<1	27	84	<1	0.47	1	52	22	124	2.58	0.22	15 1.26	1018	1	0.04	13	0.09	<1	2	31	<1	0.13	<1	98	<1	55
#50	<0.5		4	<1	21	76		0.42	1	51	26	129	2.60		14 1.12	923	1	0.04	12	0.09	<1	<1	29	<1	0.13	<1	100	<1	54
#51	<0.5		4	<1	29	87		0.38	1	54	28	137	2.69		13 1.32	1029	2	0.04		0.12	<1	2	28	<1	0.13	<1	102	<1	57
	<0.5		4	<1	25	89	<1	0.38	1	57	27	123	2.90	0.23	12 1.29	1115	3	0.04	17	0.10	<1	<1	28	<1	0.12	<1	116	<1	60
#53			4	<1	25	81	<1	0.29	1	50	21	107	2.60	0.21	10 1.18	1011	2	0.04	11	0.12	<1	2	23	<1	0.13	<1	112	<1	54
#54	<0.5		3	<1	26	126	-	0.37	1	51	22	94	2.49		10 1.17	862	_	0.04	10	0.10	<1	2	43	<1	0.13	<1	102	<1	53
#55	<0.5		6	<1	19	143		0.35	1	48	18	115	2.38		13 1.08			0.04		0.15	<1	2	41	<1	0.14	<1	88	<1	98
#56			4	<1	30	161		0.54	1	53	25	83	2.73		17 1.13	808	-	0.04		0.16	<1	<1	41	<1	0.14	<1	94	<1	59
#57		2.93	4	<1	29	94		0.33	1	53	26	86	2.63		11 1.13	874		0.04		0.13	<1	2	30	<1	0.15	<1	90	<1	61
#58		3.68	4	<1	24	66	-	0.38	1	45	26	144	2.23		13 0.89	814		0.04		0.11	<1	1	25	<1	0.13	<1	82	<1	46
#59		2.98	5	<1	26	66		0.42	1	48	26	90	2.32		12 1.12	857		0.04		0.08	<1	1	26	<1	0.13	<1	87	<1	52
#60			3	<1	24	63		0.26	1	41	16	80	2.01		11 0.89	557		0.03	11		<1	<1	25	<1	0.12	<1	80	<1	48
38-R	<0.5		2	<1	17	81		0.20	1	38	13	26	1.90		10 0.50	2553		0.03	3	0.15	<1	<1	20	4	0.13	<1	87	<1	40
57-R	<0.5	2.75	5	<1	27	90	<1	0.31	1	51	22	80	2.52	0.21	11 1.06	886	2	0.03	13	0.13	<1	<1	29	<1	0.14	<1	82	<1	59

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta T2G 0V2 FILE: 48771

DATE: July 20, 2006

Attn: Terri Millinoff

30 ELEMENT ICP ANALYSIS

"Project: 2602"

Sample	_	Al	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	V	W	Zn
No.	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm %	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
#61	<0.5	3.38		<1	27	106		0.32	1	52	25	96	2.49	0.23	12 1.22	1130	2	0.04	15	0.11	<1	1	27	<1	0.12	<1	97	<1	57
#62	< 0.5	3.24	5	<1	19	88	<1	0.42	1	48	23	82	2.33	0.19	13 1.08	783	1	0.04	14	0.10	<1	2	29	<1	0.13	<1	94	<1	51
#63	<0.5	3.78	4	<1	25	65	<1	0.30	1	45	27	65	2.32	0.17	11 0.89	507	2	0.03	10	0.11	<1	<1	22	<1	0.13	<1	84	<1	44
#64	< 0.5	3.51	4	<1	18	58	<1	0.40	1	47	30	96	2.74	0.21	15 1.05	794	1	0.04	10	0.09	<1	2	28	<1	0.15	<1	107	<1	57
#65	<0.5	4.09	6	<1	22	69	<1	0.48	1	55	37	132	3.13	0.27	15 1.33	1403	2	0.05	15	0.11	<1	2	33	<1	0.16	<1	104	<1	62
#66	<0.5	3.83	4	<1	17	90	<1	0.37	1	55	40	92	3.12	0.25	15 1.31	1221	3	0.05	19	0.15	<1	1	28	<1	0.19	<1	107	<1	57
#67	<0.5	2.98	4	<1	22	255	<1	0.59	1	66	50	50	3.27	0.23	32 2.24	759	2	0.06	36	0.25	<1	3	50	<1	0.28	<1	138	<1	62
#68	< 0.5	3.46	6	<1	19	99	<1	0.45	1	53	46	68	2.64	0.22	16 1.42	763	3	0.04	29	0.09	<1	1	30	<1	0.13	<1	105	<1	47
#69	<0.5	3.04	4	<1	20	65	<1	0.49	1	50	24	67	2.42	0.19	13 1.14	844	1	0.04	13	0.09	<1	<1	31	<1	0.13	<1	105	<1	49
#70	<0.5	2.98	4	<1	22	64	<1	0.42	1	50	24	69	2.47	0.18	13 1.10	841	1	0.04	14	0.09	<1	2	26	<1	0.12	<1	98	<1	51
#71	<0.5	3.15	4	<1	19	77	<1	0.40	1	47	23	71	2.30	0.18	13 0.99	697	2	0.03	11	0.11	<1	2	27	<1	0.12	<1	97	<1	48
#72	<0.5	3.41	5	<1	19	84	<1	0.47	1	51	24	66	2.57	0.20	14 1.13	793	1	0.04	11	0.11	<1	<1	33	<1	0.14	<1	110	<1	50
#73	<0.5	3.07	4	<1	19	63	<1	0.45	1	51	25	61	2.45	0.19	13 1.13	827	2	0.04	15	0.10	<1	2	26	<1	0.13	<1	97	<1	52
#74	<0.5	3.69	4	<1	23	136	<1	0.56	1	56	28	125	2.75	0.24	16 1.35	1147	1	0.04	15	0.09	<1	<1	33	<1	0.13	<1	111	<1	53
#75	<0.5	3.12	5	<1	29	85	<1	0.51	1	50	28	63	2.47	0.19	16 1.01	891	1	0.04	16	0.11	<1	2	34	<1	0.13	<1	91	<1	56
#76	<0.5	3.17	6	<1	29	88	<1	0.52	1	52	22	69	2.53	0.20	15 1.00	886	2	0.04	15	0.11	<1	2	34	<1	0.12	<1	89	<1	57
#77	<0.5	3.69	6	<1	27	91	<1	0.57	1	54	29	73	2.78	0.21	15 1.15	1002	1	0.05	18	0.12	<1	2	37	<1	0.14	<1	110	<1	55
#78	< 0.5	3.84	6	<1	27	120	<1	0.49	1	54	29	168	2.65	0.26	15 1.29	832	2	0.04	15	0.16	<1	2	48	<1	0.13	<1	110	<1	62
#79	<0.5	3.61	5	<1	26	122	<1	0.57	1	55	28	97	2.80	0.23	15 1.22	1075	2	0.04	15	0.10	<1	2	36	<1	0.13	<1	112	<1	54
#80	<0.5	3.40	4	<1	27	91	<1	0.61	1	58	26	80	2.90	0.22	13 1.32	1113	1	0.05	19	0.09	<1	<1	38	<1	0.13	<1	112	<1	54
#81	<0.5	3.45	5	<1	25	90	<1	0.39	-1	56	24	78	2.70	0.19	13 1.32	876	2	0.04	16	0.17	<1	1	30	<1	0.15	<1	114	<1	50
#82	<0.5	3,43	4	<1	27	78	<1	0.48	1	59	25	85	3.07	0.21	12 1.31	956	2	0.04	13	0.17	<1	1	34	<1	0.14	<1	127	<1	53
#83	<0.5	4.15	5	<1	32	168	<1	0.50	1	61	26	128	3.07	0.26	17 1.32	1223	1	0.04	17	0.09	<1	3	34	<1	0.15	<1	115	<1	59
#84	<0.5	3.34	5	<1	24	97	<1	0.51	1	55	22	81		0.22	15 1.13	1011	1	0.04		0.09	<1	2	32	<1	0.13	<1	99	<1	56
#85	<0.5	3.08	4	<1	29	252	<1	0.63	1	59	32	152		0.18	21 1.64	804	2	0.04	24	0.18	<1	2	58	<1	0.19	<1	115	<1	56
#86	<0.5	3.20	5	<1	32	111	<1	0.62	1	58	30	86	2.96	0.20	18 1.17	975	1	0.04	19	0.12	<1	2	39	<1	0.14	<1	109	<1	59
#87	<0.5	4.48	6	<1	30	92		0.61	1	59	37	90	T. A. W. T.	0.27	18 1.26	1350	2	0.06	17	0.15	<1	2	41	<1	0.17	<1	124	<1	59
#88	<0.5		6	<1	27	68		0.74	1	57	25	60	3.08		18 1.12	1007		0.05		0.10	<1	1	41	<1	0.14	<1	121	<1	53
#89	<0.5	4.26	5	<1	26	89	<1	0.41	1	55	25	155	2.80	0.23	13 1.13	869	2	0.04	15	0.14	<1	2	33	<1	0.15	<1	106	<1	53
#90	<0.5	3.56	5	<1	27	88	<1	0.43	1	58	27	111	2.85	0.20	14 1.26	809	2	0.04	15	0.14	<1	<1	32	<1	0.14	<1	107	<1	52
#75-R	<0.5	3.59	6	<1	28	94	<1	0.55	1	53	31	67	2.51	0.19	17 1.07	891	2	0.04	22	0.12	<1	5	34	1	0.13	<1	88	<1	59

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta T2G 0V2

DATE: July 20, 2006

FILE: 48771

Attn: Terri Millinoff

30 ELEMENT ICP ANALYSIS

"Project: 2602"

Sample	Ag	Al	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	v	w	Zn
No.	ppm	%	ppm	ppm	ppm	ppm	ppm	%	mqq	mqq	mag	maa	%	%	ppm %				maa	%	ppm					nnm	ppm		
#91	<0.5	3.27	3	<1	26	65		0.46	1	61	32	92	3.05		14 1.45			0.03		0.17		2	35	<1	0.14	<1	111	<1	54
#92	<0.5	4.53	4	<1	26	85	<1	0.39	1	56	37	71	2.91	0.22	13 1.15	923	2	0.04	20	0.12	<1	7	29	<1	0.15	<1	99	<1	56
#93	<0.5	3.77	6	<1	29	81	<1	0.54	1	58	32	128	2.90	0.22	17 1.36	1065	2	0.05	-	0.08	<1	5	36	<1	0.14	<1	109	<1	60
#94	<0.5	3.31	4	<1	27	68	<1	0.55	1	53	30	141	2.54	0.18	16 1.26			0.04		0.07	<1	4	36	<1	0.13	<1	91	<1	57
#95	<0.5	3.36	3	<1	24	211	<1	0.36	1	54	17	75	2.73	0.18	14 1.04	949	2	0.03	13	0.28	<1	5	42	<1	0.16	<1	84	<1	61
#96	<0.5	3.59	4	<1	26	103	<1	0.31	1	54	29	100	2.70	0.18	12 1.18	856	2	0.03		0.13	<1	6	32	2	0.16	<1	93	<1	62
#97	<0.5	3.76	5	<1	27	80	<1	0.45	1	54	31	91	2.70	0.19	13 1.13	872	2	0.04	18	0.11	<1	6	32	<1	0.15	<1	89	<1	63
#98	<0.5	4.26	4	<1	25	99	<1	0.54	1	56	29	137		0.19	15 1.13	1115	2	0.07	20	0.11	<1	6	37	2	0.15	<1	102	<1	67
#99	<0.5	3.62	5	<1	28	121	<1	0.43	1	53	35	90	2.62	0.18	16 1.20	684	1	0.04	21	0.14	<1	6	38	<1	0.15	<1	90	<1	63
#100	<0.5	4.31	4	<1	29	80	<1	0.28	1	57	35	53	2.89	0.18	13 1.02	1042	2	0.03	17	0.12	<1	6	25	<1	0.16	<1	92	<1	58
#101	<0.5	2.99	4	<1	29	102	<1	0.50	1	51	33	96	2.52	0.17	16 1.27	594		0.04	26	0.11	<1	5	37	<1	0.16	<1	82	<1	61
#102	<0.5	3.73	5	<1	31	81	<1	0.49	1	51	35	77	2.66	0.17	15 1.08	788	1	0.04	19	0.10	<1	4	32	4	0.15	<1	87	<1	58
#103	<0.5	3.39	3	<1	28	78	<1	0.32	1	52	40	81	2.93	0.20	15 1.05	662	1	0.03	16	0.14	<1	5	28	5	0.17	<1	93	<1	54
#104	<0.5	3.21	3	<1	30	67	<1	0.18	1	45	37	58	2.46	0.22	12 0.99	591	7	0.04	22	0.16	<1	5	19	<1	0.17	<1	79	<1	45
#105	<0.5	3.55	4	<1	31	127	<1	0.29	1	52	38	105	2.73	0.25	13 1.34	1635	3	0.03	19	0.20	<1	6	36	3	0.17	<1	95	<1	75
#106	<0.5	4.42	4	<1	33	126	<1	0.54	2	55	42	741	2.88	0.26	18 1.39	1051	2	0.04	26	0.19	<1	6	42	<1	0.15	<1	96	<1	145
#107	<0.5	2.56	3	<1	24	61	<1	0.24	1	47	32	68	2.36	0.15	12 0.89	700	4	0.03	13	0.23	<1	5	20	<1	0.14	<1	74	<1	58
#108	<0.5	2.88	6	<1	23	129	<1	0.47	1	50	43	72	2.42	0.18	17 1.28	606	9	0.03	30	0.20	27	5	46	<1	0.17	<1	132	<1	77
#109	<0.5	2.57	4	<1	20	59	<1	0.24	1	37	27	55	1.84	0.11	11 0.56	344	3	0.03	12	0.22	<1	4	22	<1	0.11	<1	62	<1	36
#111	<0.5	2.92	5	<1	23	65	<1	0.32	1	48	34	87	2.30	0.16	14 0.88	763	8	0.03	16	0.13	<1	7	25	<1	0.13	<1	73	<1	59
#112	<0.5	3.75	4	<1	20	49	<1	0.27	1	37	32	78	2.05	0.13	11 0.92	515	3	0.02	16	0.16	<1	4	19	5	0.12	<1	56	<1	45
#113	<0.5	2.64	4	<1	21	47	<1	0.14	1	47	34	47	2.46	0.15	7 0.79	627	6	0.02	11	0.17	<1	4	15	4	0.17	<1	80	<1	52
#114	<0.5	3.48	5	<1	19	55	<1	0.31	1	42	28	68	2.15	0.13	12 0.80	484	3	0.03	12	0.16	<1	5	34	<1	0.13	<1	80	<1	46
#115	<0.5	4.10	6	<1	26	363	<1	0.55	2	63	80	57	2.94	0.23	24 2.33	819	4	0.05	85	0.24	<1	7	63	2	0.24	<1	99	<1	68
#116	<0.5	3.30	4	<1	26	232	<1	0.52	1	62	53	84	2.99	0.19	24 1.96	728	4	0.04	45	0.25	<1	8	43	<1	0.23	<1	116	<1	77
#117	<0.5	3.17	3	<1	21	46	<1	0.36	1	44	33	44	2.22	0.11	13 0.84	402	2	0.02	13	0.14	<1	6	49	<1	0.13	<1	75	<1	40
#118	<0.5	2.61	4	<1	22	65	<1	0.41	1	44	27	71	2.09	0.14	13 0.99	525	<1	0.03	20	0.11	<1	5	30	5	0.12	<1	67	<1	54
#119	<0.5	3.41	3	<1	21	47	<1	0.22	1	51	36	28	2.68	0.12	9 0.88	378	1	0.02	12	0.11	<1	5	19	<1	0.15	<1	86	<1	45
#120	<0.5	3.04	3	<1	21	42	<1	0.31	1	47	28	43	2.33	0.10	11 0.92	469	1	0.02	15	0.09	<1	5	24	<1	0.13	<1	68	<1	51
																										-			
	<0.5		6	<1	27	65		0.52	1	50	26	128	2.49		14 1.23	857		0.03		0.07	<1	7	35	<1	0.12	<1	88	<1	57
#112-R	<0.5	3.76	6	<1	23	55	<1	0.30	1	41	33	87	2.16	0.14	10 0.93	524	3	0.03	15	0.19	<1	5	21	4	0.13	<1	76	<1	49

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE: 48771

DATE: July 20, 2006

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta T2G 0V2

Attn: Terri Millinoff

30 ELEMENT ICP ANALYSIS

"Project: 2602"	"Pro	iect:	260	02
-----------------	------	-------	-----	----

Project		•																											
Sample	Ag	ΑI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Κ	La Mg	Mn	Mo	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	٧	W	Zn
No.	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm %	ppm	ppm	%	ppm	%	ppm p	pm	ppm	ppm	%	ppm	ppm	ppm	ppm
#121	<0.5	2.29	3	<1	19	49	<1	0.22	1	39	32	19	1.98	0.13	9 0.62	307	4	0.02	11	0.11	<1	7	20	<1	0.14	<1	72	<1	38
#122	<0.5	2.35	2	<1	19	42	<1	0.19	1	45	32	23	2.33	0.14	10 0.84	388	2	0.02	11	0.16	<1	6	16	<1	0.13	<1	79	<1	41
#123	<0.5	4.40	7	<1	20	51	<1	0.36	1	45	35	54	2.24	0.11	14 0.86	663	2	0.03	15	0.13	<1	7	23	<1	0.13	<1	76	<1	45
#124	<0.5	3.89	5	<1	22	77	<1	0.27	1	51	32	61	2.48	0.18	10 1.06	631	1	0.02	17	0.12	<1	6	21	<1	0.15	<1	87	<1	52
#125	<0.5	3.64	3	<1	21	47	<1	0.15	1	49	34	56	2.68	0.12	7 0.80	341	2	0.02	9	0.12	<1	7	14	<1	0.18	<1	107	<1	41
#126	<0.5	4.00	6	<1	24	64	<1	0.51	1	47	31	61	2.21	0.14	14 0.92	578	1	0.03	20	0.08	<1	4	32	<1	0.13	<1	73	<1	54
#127	<0.5	3.08	7	<1	26	71	<1	0.53	1	48	28	80	2.26	0.16	14 1.08	730	<1	0.03	19	0.07	<1	5	36	2	0.12	<1	80	<1	51
#128	<0.5	3.39	5	<1	28	51	<1	0.56	1	59	40	41	2.74	0.16	15 1.39	908	<1	0.04	30	0.08	<1	7	36	<1	0.13	<1	96	<1	73
#129	<0.5	3.27	2	<1	25	43	<1	0.16	1	55	32	39	3.06	0.10	9 0.77	361	<1	0.02	12	0.14	<1	6	16	3	0.16	<1	92	<1	35
#130	<0.5	3.25	3	<1	21	76	<1	0.19	1	68	35	211	3.28	0.35	12 1.42	1004	4	0.02	24	0.14	<1	7	15	<1	0.08	<1	90	<1	86
#131	<0.5	3.38	4	<1	24	70	<1	0.28	1	59	37	142	2.93	0.32	13 1.61	795	3	0.02		0.14	<1	5	21	<1	0.11	<1	99	<1	82
#132	<0.5	3.77	6	<1	25	58	<1	0.60	1	50	38	62	2.38	0.16	18 1.01	685	3	0.05	26	0.10	<1	6	37	1	0.13	<1	80	<1	53
#133	<0.5	3.41	6	<1	27	69	<1	0.40	1	54	36	108	2.75	0.21	14 1.24	780	2	0.04	23	0.13	<1	6	28	2	0.14	<1	96	<1	65
#134	<0.5	4.28	5	<1	31	107	<1	0.42	1	55	40	75	2.89	0.21	13 1.19	923	2	0.03	22	0.05	<1	4	34	7	0.16	<1	90	<1	56
#135	<0.5	3.80	5	<1	25	86	<1	0.35	1	51	37	84	2.85	0.19	12 0.97	1888	1	0.03	16	0.17	<1	5	27	<1	0.16	<1	89	<1	56
#136	<0.5	4.24	7	<1	32	89	<1	0.63	1	57	31	110	3.07	0.23	19 1.36	1133	1	0.05	23	0.12	<1	5	38	2	0.15	<1	99	<1	59
#137	<0.5	4.05	6	<1	25	77	<1	0.35	1	59	35	88	3.09	0.19	15 1.37	849	4	0.03		0.13	<1	6	28	<1	0.15	<1	105	<1	71
#138	<0.5	4.28	6	<1	28	91	<1	0.52	1	57	36	103	2.97	0.21	14 1.30	1385	1	0.04	23	0.16	<1	6	34	3	0.14	<1	93	<1	60
#139	<0.5	3.98	7	<1	27	82	<1	0.62	1	53	25	88	2.54	0.19	19 1.17	1031	1	0.03	19	0.10	<1	7	33	<1	0.12	<1	81	<1	56
#140	<0.5	3.68	6	<1	22	91	<1	0.41	1	54	29	88	2.69	0.19	15 1.21	777	1	0.04	19	0.10	<1	6	34	4	0.14	<1	86	<1	61
#141	<0.5	3.75	5	<1	28	101	<1	0.41	1	55	33	122	2.63	0.20	18 1.20	854	2	0.03	21	0.10	<1	7	29	<1	0.13	<1	83	<1	63
#142	<0.5	4.27	5	<1	26	89	<1	0.39	2	57	36	135	3.02	0.24	14 1.29	1060	1	0.05	23	0.12	<1	5	29	2	0.15	<1	96	<1	68
#143	<0.5	4.65	6	<1	35	87	<1	0.33	2	58	37	89	3.23	0.27	12 1.27	980	2	0.05		0.15	<1	7	27	<1	0.16	<1	103	<1	61
#144	<0.5	4.17	6	<1	36	68	<1	0.35	1	64	41	59	3.37		14 1.34	1127	2	0.05	23	0.14	<1	5	23	<1	0.18	<1	113	<1	72
#145	<0.5	4.86	8	<1	33	69	<1	0.74	1	53	33	64	2.74	0.21	16 1.15	966	2	0.06		0.10	<1	7	44	2	0.14	<1	87	<1	55
#146	<0.5	4.41	8	<1	33	91	<1	0.59	1	52	31	78	2.58	0.19	16 1.19	800		0.05		0.08	<1	6	38	<1	0.14	<1	92	<1	53
#147	<0.5	1.77	2	<1	31	64	<1	0.33	1	34	17	26	1.90	0.17	14 0.18	213	3	0.03		0.12	4	5	81	<1	0.10	<1	69	<1	23
#148	<0.5	3.70	4	<1	28	59	<1	0.33	1	38	29	114	1.70	0.15	13 0.44	2408		0.04		0.40	<1	5	21	<1	0.10	<1	47	<1	40
# 149	<0.5	3.37	6	<1	46	67	<1	0.38	1	49	30	96	2.77	0.17	11 1.16	587		0.06		0.08	<1	1	37	<1	0.13		104	<1	50
# 150	<0.5	1.35	<1	<1	46	47	<1	0.21	1	28	13	24		0.11	7 0.27	178		0.04		0.11	<1	3	21	<1	0.08	<1	57	<1	19
#131-R		3.36	3	<1	23	74		0.28	2	60	44	162	3.13		13 1.67	807		0.03	26		<1	5	21	<1	0.12	<1	92	<1	84
#149-R	<0.5	3.28	4	<1	35	63	<1	0.38	1	47	28	91	2.43		13 1.07	573		0.04	12		<1	3	34	<1	0.12		103	<1	49
																						-	• .		J				

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE: 48771

DATE: July 20, 2006

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta T2G 0V2

Attn: Terri Millinoff

30 ELEMENT ICP ANALYSIS

IIIDan !		ner	101
"Pro	ect:	261	12

Sample	1.00	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sr	Th	Ti	U	٧	W	Zn
No.	ppm		-		opm	ppm			ppm		_	ppm	%	%	ppm	-		ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
# 151	15037535757	3.20	2	<1	51	86		0.27	3	104	20	169	3.21	0.10	23	0.20	>20000	299	0.03	<1	0.34	<1	<1	25	<1	0.05	<1	76	<1	47
# 152	1250000	2.33	3	<1	43	70		0.34	1	37	22	31		0.13	10	0.59	545	6	0.06	5	0.08	<1	1	42	<1	0.14	<1	96	<1	30
# 153	<0.5		4	<1	44	43		0.11	1	46	14	27		0.13	6	0.90	676	10	0.05	3	0.08	<1	2	22	<1	0.09	<1	124	<1	35
# 154	12320 1237C	2.41	5	<1	41	66	<1	0.37	1	81	21	142	3.12	0.10	12	1.13	1529	10	0.05	8	0.12	<1	1	36	<1	0.07	<1	135	<1	49
# 155		2.55	6	<1	47	121		0.53	1	77	29	181	3.33	0.16	15	1.24	1025	3	0.06	20	0.11	<1	3	42	<1	0.11	<1	101	<1	52
# 156	<0.5	2.82	5	<1	40	65	<1	0.39	1	63	17	112	3.11	0.12	10	1.16	777	3	0.06	11	0.09	<1	4	35	<1	0.11	<1	103	<1	50
# 157	<0.5	1.86	4	<1	38	50	<1	0.31	1	53	17	84	2.17	0.12	14	0.90	789	23	0.04	5	0.14	<1	<1	22	<1	0.09	<1	126	<1	39
# 158	< 0.5	1.87	2	<1	40	47	<1	0.14	1	41	14	19	2.15	0.14	5	0.84	439	4	0.03	4	0.10	<1	2	18	<1	0.11	<1	106	<1	36
# 159	<0.5	1.72	5	<1	36	63	<1	0.32	1	37	19	65	1.50	0.11	9	0.90	469	10	0.03	6	0.10	<1	1	22	<1	0.09	<1	98	<1	43
# 160	<0.5	1.75	4	<1	39	69	<1	0.49	1	64	21	92	2.18	0.11	14	0.90	1698	13	0.03	6	0.11	<1	2	29	<1	0.09	<1	124	<1	45
# 161	<0.5	1.74	1	<1	37	40	<1	0.16	<1	20	7	107	0.73	0.06	9	0.13	346	7	0.03	<1	0.16	<1	2	12	<1	0.03	<1	25	<1	16
# 162	<0.5	2.05	3	<1	41	50	<1	0.42	1	52	19	95	2.11	0.11	12	1.10	2430	12	0.03	12	0.17	<1	1	31	<1	0.09	<1	83	<1	45
# 163	<0.5	1.83	3	<1	35	39	<1	0.31	1	45	13	47	2.12	0.10	11	1.07	923	11	0.03	5	0.11	<1	2	24	<1	0.06	<1	90	<1	66
# 164	<0.5	1.85	3	<1	42	47	<1	0.10	1	34	34	36	1.83	0.14	4	0.50	323	4	0.02	11	0.12	<1	2	13	2	0.10	<1	73	<1	24
# 165	<0.5	2.14	3	<1	40	55	<1	0.21	1	39	19	30	1.99	0.17	7	0.67	476	6	0.03	3	0.14	<1	3	16	3	0.11	<1	97	<1	35
# 166	<0.5	4.04	4	<1	43	45	<1	0.19	1	51	25	27	2.87	0.11	5	0.64	370	2	0.03		0.11	<1	3	14	<1	0.16	<1	119	<1	33
# 167	< 0.5	2.65	2	<1	42	32	<1	0.22	1	14	6	89	0.64	0.08	14	0.17	130		0.03	1	0.22	<1	1	16	<1	0.03	<1	25	<1	14
# 168	<0.5	4.20	5	<1	42	101	<1	0.35	1	53	26	43	2.72	0.15	10	1.18	631	3	0.06	12	0.13	<1	<1	66	<1	0.12	<1	101	<1	57
# 169	<0.5	2.26	4	<1	39	48	<1	0.15	1	50	19	16	2.81	0.13	5	0.59	386	1	0.03	<1	0.14	<1	2	17	<1	0.13	<1	112	<1	30
# 170	<0.5	3.05	3	<1	33	57	<1	0.14	1	36	26	19	1.99	0.11	5	0.42	280	1	0.03	2	0.13	<1	2	18	<1	0.11	<1	85	<1	23
# 171	< 0.5	2.10	2	<1	36	39	<1	0.12	1	50	23	10	2.90	0.10		0.55	283	1	0.03	<1	0.09	<1	3	25	<1	0.15	<1	109	<1	26
# 172	<0.5	2.74	2	<1	34	51	<1	0.11	1	43	21	18	2.40	0.12	5	0.46	287	2	0.04	4	0.11	<1	<1	25	<1	0.11	<1	99	<1	28
# 173	<0.5	1.88	6	<1	39	49	<1	0.18	1	43	25	15	2.26	0.16	6	0.66	379	20	0.03	5	0.13	<1	2	17	<1	0.13	<1	130	<1	66
T-1	< 0.5	3.30	4	<1	39	68	<1	0.26	1	44	22	74	1.84	0.12	11	0.81	780	7	0.03		0.16	<1	3	19	<1	0.10	<1	70	<1	47
T-2	<0.5	2.11	2	<1	36	47	<1	0.15	1	52	19	17	2.96	0.11		0.59	309		0.03		0.10	<1	3	17	<1	0.18	<1	111	<1	27
T-3	< 0.5	2.20	3	<1	38	38	<1	0.17	1	55	19	15	3.03			0.88	384		0.02		0.07	<1	2	20	<1	0.17	<1	105	<1	35
T-5	<0.5	2.54	3	<1	36	59	<1	0.26	1	48	18	41	2.20	0.13		0.50	2676	0.00	0.03		0.20	<1	2	20	<1	0.14	<1	91	<1	32
T-6	< 0.5	2.30	5	<1	38	51	<1	0.26	1	50	28	18	2.56			1.00	567		0.04		0.07	<1	3	24	<1	0.14	<1	105	<1	44
T-8	-	3.46	3	<1	43	78		0.43	2	81	28	181	4.33			0.78	9009		0.03	_	0.19	<1	2	34	<1	0.10	<1	94	<1	52
T-9	100000	1.14	<1	<1	48	5		0.27	1	259	<1		27.74	70000		0.03	211		0.02		0.14	<1	14	13	<1	0.09	<1	56	<1	<1
T-10	257900000	1.19	<1	<1	57	2		0.01		272	<1		30.06			0.01	38	4.0	0.01		0.10	<1	20	<1	<1	0.03	<1	13	<1	5
#168-R	<0.5		4	<1	34	97		0.34	1	52	23		2.60			1.14	598		0.05		0.10	<1	3	65	<1	0.01	<1	97	<1	55

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta T2G 0V2

FILE: 48771

DATE: July 20, 2006

Attn: Terri Millinoff

30 ELEMENT ICP ANALYSIS

"Project: 2602"

"Project	_	_						_																						
Sample	_	Al	As	Au	В	Ba	Bi	Ca		Со	Cr	Cu	Fe	K		Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	٧	W	Zn
	ppm					ppm			ppm				%		ppm			ppm		ppm		ppm			• •				ppm	
T-11			<1	<1	38	38		0.10	1	43	12	6	2.42			0.16	171		0.02		0.05	<1	3	22	<1	0.12	<1	88	<1	14
T-12	<0.5		<1	<1	39	30		0.19		104	2	621		0.06		0.10	142	-	0.02		0.29	<1	8	10	<1	0.04	<1	33	<1	27
T-13	<0.5		<1	<1	56	5		0.04	_	239	<1		25.93			0.03	16		0.02		0.13	<1	14	<1	<1	0.02	<1	24	<1	<1
T-14	<0.5		<1	<1	53	2		0.02		259	<1	_	29.50			0.01	26		0.02		0.16	1	_18	<1	<1	0.01	<1	131	<1	<1.
T-15	<0.5		<1	<1	44	43	26	0.16	4	175	<1	147	16.25	0.15	9 (0.11	142		0.04	<1	0.20	<1	12	29	<1	80.0	<1	134	<1	9
T-16	<0.5		2	<1	43	75	-	0.45	1	54	20	42		0.14	12		409		0.05	_	0.15	<1	4	53	<1	0.17	<1	118	<1	29
T-17	<0.5	3.17	4	<1	43	62	<1	0.50	1	56	23	31	3.25	0.22	12	88.0	506	2	0.04	4	0.10	<1	3	63	<1	0.20	<1	126	<1	38
T-18	<0.5	2.85	2	<1	38	63	<1	0.41	1	60	21	19		0.23	12	0.87	502	1	0.05	6	0.09	<1	3	52	1	0.21	<1	137	<1	38
T-19	<0.5	3.34	3	<1	41	68	<1	0.49	1	48	17	30	2.58	0.24	16	0.92	559	2	0.06	5	0.11	<1	2	74	<1	0.19	<1	106	<1	42
T-20	<0.5	3.73	3	<1	38	119	<1	0.48	1	53	19	59	2.98	0.32	15 (0.98	596	2	0.10	9	0.08	<1	3	86	<1	0.16	<1	115	<1	47
T-21	<0.5	2.99	2	<1	38	110	<1	0.46	1	40	18	17	2.07	0.36	15 (0.40	775	2	0.06	2	0.13	<1	2	80	<1	0.16	<1	96	<1	26
T-22	<0.5	2.82	2	<1	35	92	<1	0.62	1	36	20	11	2.16	0.28	15 (0.55	383	1	0.07	4	0.08	<1	2	97	<1	0.16	<1	119	<1	26
T-13-R	<0.5	0.63	<1	<1	48	5	39	0.03	6	235	<1	1320	25.86	<0.01	9 (0.03	11	1	0.02	<1	0.13	<1	15	<1	<1	0.02	<1	18	<1	<1
																														$\neg \neg$
"Rock S	ample	es"																												
TL-1	<0.5	1.88	7	<1	40	25	<1	0.62	1	62	50	2910	3.43	0.27	10	1.78	936	17	0.02	18	0.09	28	3	57	<1	0.18	<1	87	<1	73
TL-2	<0.5	0.07	2	<1	39	1876	<1	0.01	<1	14	233	17	0.79	<0.01	<1 (0.06	331	<1	0.01	2 ·	<0.01	32	4	20	<1	<0.01	<1	20	<1	21
TL-3	<0.5	0.08	<1	<1	36	209	<1	0.01	<1	12	189	25	0.46	0.04	<1 (0.02	69	4	0.01	4 -	<0.01	3	3	3	<1	< 0.01	<1	11	<1	4
TL-5	1.1	0.09	<1	<1	42	952	<1	0.10	<1	11	173	594	0.52	0.01	1 (0.06	191	1	0.01	4 -	<0.01	7	4	18	<1	< 0.01	<1	11	<1	6
TL-6	<0.5	0.61	<1	<1	34	168	<1	1.91	2	65	30	43	2.83	0.37	22 (0.10	1316	1	0.02	2	0.11	<1	3	19	<1	<0.01	<1	47	<1	44
TL-7	1.4	1.08	3	<1	49	111	<1	0.66	1	35	107	2340	1.68	0.31	12 (0.53	480	<1	0.02	2	0.14	<1	2	31	<1	0.03	<1	39	<1	41
TL-8	<0.5	0.16	<1	<1	43	397	<1	0.08	1	21	178	35	0.93	0.12	2 (0.02	472	2	0.01	3	0.02	1	4	10	<1	< 0.01	<1	14	<1	29
TL-9	<0.5	0.35	2	<1	44	185	<1	1.90	<1	30	49	50	1.47	0.21	27 (0.52	639	<1	0.03	3	0.05	<1	2	55	<1	<0.01	<1	35	<1	25
TL-10	5.2	0.25	1	<1	38	1205	<1	0.12	1	14	130	4950	0.61	0.06	3 (0.15	197	3	0.01	4	0.01	18	1	24	<1	<0.01	<1	9	<1	15
TL-11	0.9	1.30	3	<1	44	382	<1	0.24	1	42	46	12300	2.04	0.18	14 (0.97	524	<1	0.02	5	0.05	7	<1	19	<1	< 0.01	<1	40	<1	92
TL-12	0.6	0.11	<1	<1	37	2892	<1	0.01	<1	6	156	153	0.32	0.03	<1 (0.05	104	<1	0.01	3 -	<0.01	35	2	181	<1	<0.01	<1	14	<1	7
TL-13	<0.5	0.10	<1	<1	43	578	<1	0.01	<1	11	154	115	0.57	0.02	<1 (0.05	73	1	0.01	2	0.01	1	3	9	<1	<0.01	<1	8	<1	9
TL-14	<0.5	0.59	5	<1	36	75	1	0.14	1	31	96	181	1.86	0.19	6 (0.02	75	10	0.02	<1	0.06	<1	3	5	<1	<0.01	<1	28	<1	3
TL-15	<0.5	0.62	<1	<1	43	67	5	0.56	1	75	71	117	4.88	<0.01	10 (0,18	159	15	0.01	<1	0.02	<1	5	118	<1	0.11	<1	54	<1	6
TL-16	<0.5	1.30	4	<1	41	58	<1	0.81	1	94	76	1400	3.23		13 (0.94	306	26	0.01	5	0.08	2	2	98	<1	0.25	<1	63	<1	24
TL-17	<0.5	2.33	5	<1	39	50	<1	0.41	1	70	36	55	3.93	0.29	8 2	2.55	789	_	0.05	10	0.08	<1	3	8	<1	0.22	<1	195	<1	78
TL-18	<0.5		2	<1	36	46	<1	0.65	1	75	34	251	2.21	0.08	16 (279		0.05		0.07	<1	2	54	<1	0.11	<1	59	<1	26
		J 1					<u> </u>										•		7		J. 41			+ 1		4 ,.,,				

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE: 48771

DATE: July 20, 2006

TO: TAIGA CONSULTANTS LTD. #4, 1922 - 9th Avenue S.E. Calgary, Alberta T2G 0V2

Attn: Terri Millinoff

30 ELEMENT ICP ANALYSIS

"Pro	ect	. 2	60	2"
LIO	COL		UU	-

Sample	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sr	Th	Ti	U	٧	W	Zn
No.	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
"Rock Sa	ample	es"		107				1111111111111		10000			ran deserv	mone		Market Co.				Testes I	92100 500 0									
TL-19	< 0.5	0.03	5	<1	37	29	<1	0.01	<1	12	171	19	0.60	0.00	<1	0.02	47	<1	0.01	2 .	< 0.01	11	3	2	<1	< 0.01	<1	7	<1	2
TL-20	< 0.5	6.97	5	<1	33	179	<1	2.57	1	40	68	75	2.16	0.41	21	0.58	281	3	0.68	7	0.02	<1	4	396	<1	0.07	<1	117	<1	39
TL-21	< 0.5	0.30	<1	<1	2	10	<1	0.15	<1	3	3	5	0.15	0.02	1	0.03	27	<1	0.03	<1 -	< 0.01	<1	<1	24	<1	< 0.01	<1	8	<1	3
TL-22	13.1	0.32	<1	<1	37	422	<1	0.02	1	26	181	5770	1.33	0.05	<1	0.17	97	5	0.01	3 -	< 0.01	3	4	42	<1	< 0.01	<1	16	<1	11
TL-23	< 0.5	0.99	<1	<1	35	116	<1	0.84	1	77	77	501	2.59	0.09	13	0.33	322	2	0.02	4	0.08	<1	2	80	<1	0.11	<1	80	<1	19
TL-24	< 0.5	0.82	<1	<1	39	42	1	0.96	1	136	84	2320	2.69	<0.01	9	0.15	185		0.01		0.03	<1	2	189	<1	0.08	<1	52	<1	11
TL-25	<0.5	0.04	<1	<1	41	26	<1	0.03	<1	13	173	40	0.59			0.02	160		0.01		<0.01	9	3	6	<1	< 0.01	<1	7	<1	3
TL-26	<0.5	0.94	<1	<1	32	85	0.00	0.10	2	39	110	43		0.23	1000	0.46	820		0.01		0.04	<1	3	7	4	0.02	<1	28	<1	139
TL-28	<0.5	0.29	1	<1	33	27	<1	0.02	<1	16	197	9	0.79	0.06	1	0.19	234		0.01	2 197.9	0.01	<1	3	1	<1	0.01	<1	16	<1	36
TL-29	< 0.5	0.36	1	<1	35	85	<1	2.07	1	36	58	10	1.76	0.22	30	0.47	888	4 153	0.03		0.05	<1	1	57	<1	< 0.01	<1	27	<1	42
TL-30	< 0.5	0.39	<1	<1	32	141	<1	0.24	<1	8	60	8	0.38	0.16	11	0.09	174		0.08		0.03	<1	<1	9		< 0.01	<1	11	2	10
TL-31	1.1	0.55	1	<1	36	28	8	0.10	1	29	161	16	1.51	0.05	2	0.41	242		0.02		0.01	1	4	8		< 0.01	<1	20	<1	22
TL-32	<0.5	3.66	3	<1	35	66	<1	0.60	1	60	28	5	2.92	0.15	11	3.35	878		0.04		0.09	<1	2	63	<1	< 0.01	<1	86	<1	67
TL-33	< 0.5	3.11	3	<1	27	35	<1	1.30	1	69	67	101	2.99	0.10	15	3.02	1243	<1	0.02	21	0.05	<1	2	37	<1	0.09	<1	127	<1	68
TL-34	<0.5			<1	32	36	<1	0.10	1	56	23	42	3.02	0.10	4	1.47	383	2	0.10	5	0.07	<1	2	16	<1	< 0.01	<1	73	<1	37
TL-35	<0.5	3.69	4	<1	35	9	<1	0.63	2	68	42	40	3.21	< 0.01	9	3.49	888		0.03		0.08	<1	3	59	<1	0.15	<1	139	<1	105
TL-36	<0.5	2.32	3	<1	35	37		0.34	2	49	43	60			11	1.78	657	3.77	0.03		0.09	<1	3	6	<1	0.00	<1	84	<1	71
TL-37	<0.5	1.39	5	<1	35	27	<1	0.66	1	40	55	225	1.88	0.11	13	1.20	503	<1	0.06	8	0.07	<1	2	44	<1	0.12	<1	89	<1	37
TL-38	<0.5	2.40	3	<1	33	27	<1	0.92	1	54	98	122	2.29	0.12	11	2.44	728	<1	0.05	39	0.07	<1	3	27	<1	0.11	<1	106	<1	53
TL-39	<0.5	1.99	3	<1	37	158	<1	0.46	1	51	46	98	2.61	0.62	10	1.69	780	4	0.08	11	0.06	<1	2	40	<1	0.15	<1	147	<1	96
TL-40	<0.5	1.19	4	<1	39	302	<1	0.40	1	35	49	15	1.76	0.33	14	1.00	352	<1	0.12	<1	0.10	<1	2	53	<1	0.14	<1	87	<1	43
TL-1-R	<0.5	1.80	6	<1	38	25	<1	0.60	1	61	47	2650	3.22	0.25	10	1.72	870	16	0.02	17	0.09	26	2	56	<1	0.17	<1	84	<1	69

0.500 Gram sample is digested with Aqua Regia at 95 C for one hour and bulked to 10 ml with distilled water. Partial dissolution for Al, B, Ba, Ca, Cr, Fe, K, La, Mg, Mn, Na, P, Sr, Ti, and W.

Certified by

Page 8 of 8

Appendix 3

Statement of Costs, 2006 Exploration Program

Proposed Budget / Proposed Exploration

Statement of Costs 2006 Program

Support Personnel J.W.Davis M.Jamieson R.Maynard	Days 2 2.9 3.5	1,250.00 1,800.00 2,200.00
T.Millinoff	4	2,740.00
Field Personnel T.Millinoff N.Willment	15 15	8,250.00 6,000.00
Travel time (within British Columbia) T.Millinoff N.Willment	2.5 2.5	1,375.00 1,000.00
Disp.Supplies Reproductions Truck Rentals		351.50 76.90 5,313.59
Helicopter Support		12,996.64
Assays, ICP		5,809.60
Field Expenses Accommodations	(food & supplies)	1,760.09 2,085.00
Client Property Inspection		3,385.70
Post Field Repo	ort Preparation Days	
M.Jamieson T.Millinoff	2.5	2,600.00 1,370.00
Reproductions		1,200.00
	TOTAL	61,564.02

Phase 1 Budget Proposed Air Photo Interpretation and Follow up Prospecting Program

Air photo Interpretation	
Air photos	500
Interpretation and report	6,500
Subtotal	6,500
Mapping/Prospecting/Geochemical	
pre-field	2,000
mobilization and demobilization	2,500
accommodation and food	8,000
project geologist, 24 days @650/day	15,600
4 geology students/prospectors@400/day	38,400
30 element ICP/Gold Assays(1000)	13,500
disposable supplies	500
Report writing/mapinfo. database	10,443
helicopter support	18,000
telecommunications	450
Total	122,893