	Province of British Columbia	Ministry of Employment and Investment Geological Survey BRANCH	ASSESSMENT REPORT
DIPADO	^	rvey(s)]	TOTAL COST
and the second s	British Columbia Employment: and Investment's a	() FRITISH)	
		NUMBER(S)/DATE(S)	300
	T-	IURE NO'S 503798 4 505E	349
MINERAL INV MINING DIVIS	TENTORY MINFILE NUMBER(S), IF KNOSION_ <u>FORT</u> STEELE	OWNNTS <u>82_G/S</u>	fu/* (at centre of work)
		2)	
1-2 Kim	BERLEY B.C.		
		PORATION LTD. 2)	
101- VANO	675 West Hastings COUVER B.C.	<i>St</i>	
PROPERTY C the Prop Clashic Pre camb focul + 7 focul + 7 focul + 7	SEOLOGY KEYWORDS (lithology, age sesty is under lain be Sediments of the file rian Helilian aged Hurusts the Aldribge Fi suie and bisseminated	Precambrien Helikian a bridge and Keitchener Form gabbro sells and dykes. The in over the Kitchener F.M. T	Mayie Fault a major regional Mayie Fault a major regional

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (Incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping		· · · · · · · · · · · · · · · · · · ·	
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic	-		
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			J. Market
Soil		69° 24	
Silt			
Rock			
Other			
DRILLING (total metres; number of holes, size)		and the second second	4
Core 562.1 m in 6 Holes		TENURE NO, 503798 4 505849	108,058.25
Non-core			
RELATED TECHNICAL		prost and reading the second	
Sampling/assaying	1000 State State	and the second	
Petrographic			
Mineralographic			
Metallurgic		2	
PROSPECTING (scale, area)		S. C. Caracia and	
PREPARATORY/PHYSICAL		1. S. C. M. S.	
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)		and the second second second	S Strange
Legal surveys (scale, area)		Chine Provide Contract State	2 (A)
Road, local access (kilometres)/trail		the second s	
Trench (metres)			- marin
Underground dev. (metres)	a second a second s	Contraction and the second second second	a series and
Other			1
		TOTAL COS	108,058.2

ASSESSMENT REPORT

DIAMOND DRILL HOLES M06-1 TO M06-6

MONROE PROPERTY

Fort Steele Mining District Monroe Lake Area NTS 82G/SW Latitude: 49° 21' 6" N Longitude: 115° 54' 9" W

OWNER

Peter Klewchuk 1 – 200 Norton Avenue Kimberley, British Columbia V1A 1X9

OPERATOR

St. Eugene Mining Corp. Ltd. 701 – 675 West Hastings Street Vancouver, British Columbia V6B 1N2

Work performed from October 8, 2006 to October 22, 2006

Reported by David L. Pighin, P. Geo.

May 2007

TABLE OF CONTENTS

			Page
1.00	INTR	RODUCTION	1
	1.10	Location and Access	1
	1.20	Physiography	1
	1.30	Property	1
	1.40	Historical Work and Results	1
	1.50	Current Objective	4
2.00	GEO	LOGY	4
	2.10	Regional Geology	4
	2.20	Property Geology	5
3.00	DIAN	IOND DRILLING	5
	3.10 3.20	Diamond Drilling Results Drill Hole Results	6 7
4.00	STAT	TEMENT OF EXPENDITURES	7
5.00	CON	CLUSIONS AND RECOMMENDATIONS	7
6.00	AUT	HOR'S QUALIFICATIONS	8

LIST OF ILLUSTRATIONS

FIGURE 1: FIGURE 2:	Property Location Map Monroe Property Claim Map	
TABLE 1:	Drill Hole Statistics	5
APPENDIX I: APPENDIX II:	Drill Hole Records M06-1 to M06-6 Assays – M06-1 to M06-6	Attached Attached

ASSESSMENT REPORT ON SIX DIAMOND DRILL HOLES

MONROE PROPERTY

Fort Steele Mining Division

David L. Pighin, P. Geo.

May 2007

1.00 INTRODUCTION

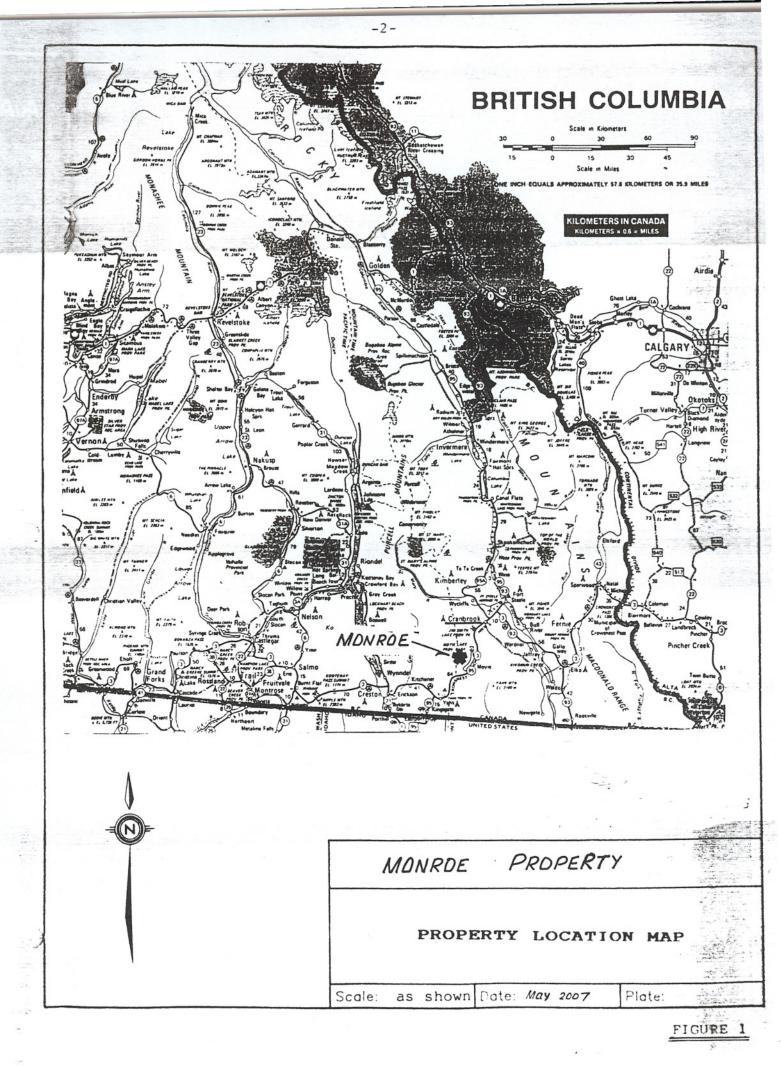
1.10 Location and Access

The Monroe property is located approximately 18 km southwest of Cranbrook, British Columbia. The claim block is generally centered around 49° 21' 6" N and 115° 54' 9" W, located on NTS sheet 82G/SW. (Figures 1 and 2).

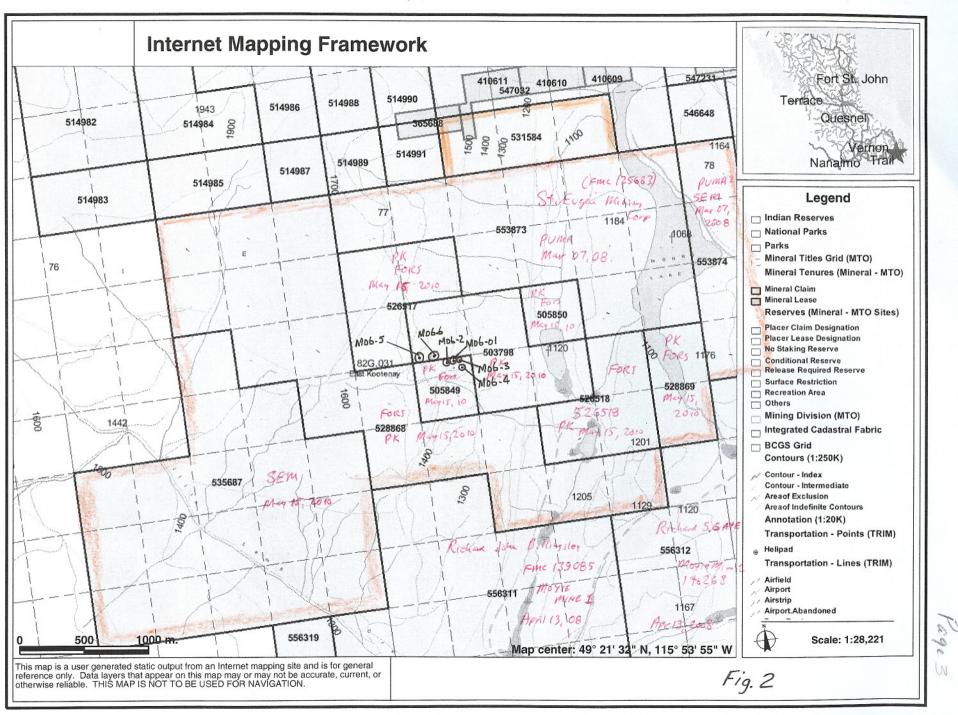
Access to the property is via Highway 3/95 for 20 km south of Cranbrook, British Columbia, then turn west on the Monroe lake and Lamb creek logging roads.

1.20 Physiography

The Monroe property is situated just northwest of Moyie Lake, within the Moyie Range part of the Purcell mountain system. Topography varies from gentle valley bottoms and rounded ridges to steep rock-outcropped mountain slopes. Elevations range from 1077 m at Monroe lake to 1830 m at the north edge of the property. Some of the nearby mountains reach elevations of 2100 m.


Forest cover on the Monroe claims was completely destroyed by the large Lamb creek fire in 2003. In 2004 all of the burned trees were clearcut and removed from the property. Vegetation on the property at present consists of mainly fireweed and various grasses.

1.30 Property (Figure 2).


The Monroe property consists of 11 claims. Tenure Nos: 503798, 505849, 505850, 526517, 526518, 528868, 528869, 531584, 535687, 553873, and 553874; a total of 67 cells.

1.40 Historical Work and Results

The Monroe property area was first staked by Cominco Ltd. in 1966 to cover a new discovery of base metal mineralization. Cominco explored the property between 1966 and 1978. Cominco's work consisted of soil geochemistry, geophysics, and minor diamond drilling. Cominco abandoned the claim in the late 1970s.

MONROE LAKE

1.40 Historical Work and Results – continued

A local prospector re-staked the ground in 1987. In 1988, the property was optioned to Placer Dome who conducted geological and geochemical work for one season.

In the fall of 1992, the property was optioned to Chapleau Resources Ltd. and Barkhor Resources Inc, and then later the same year a joint venture deal was made between Chapleau, Barkhor, and Ramrod Gold Corp. The joint venture between 1992 and 1996 drilled 32 holes totaling 13,708 meters.

In the fall of 1996, the joint venture optioned the property to Citation Resources Inc. From November 1996 to November 1997, Citation drilled 17 holes totaling 13,717 meters.

Chapleau and Barkhor's initial work discovered a relatively large Sullivan-type vent structure. The structure consisted of a steeply-dipping, discordant, strongly tourmalinized and albititized Aldridge Fragmental body which is flooded by late calcite and sulphides. The sulphides, mainly galena, sphalerite, arsenopyrite, and pyrrhotite, occur as heavy disseminations, massive sulphide veins, and flat lying massive sulphide lenses. All subsequent drilling by the Ramrod joint venture and later by Citation was designed to test the Sullivan Horizon for a massive sedex sulphide deposit. However, the work did not find anything of economic interest.

1.50 Current Objective

To test the sulphide-rich Sullivan-type vent structure for economic vein-type mineralization.

2.00 GEOLOGY

2.10 Regional Geology

The Fors property is underlain by the Kitchener and Aldridge Formations which are members of the Precambrian Purcell Supergroup.

The Middle Proterozoic Purcell Supergroup is a thick succession of fine-grained clastic and carbonate sedimentary rocks exposed in the core of the Purcell Anticlinorium in southeast British Columbia. These rocks are believed by some workers to have been deposited in an epicratonic re-entrant of a sea that extended along the western edge of the North American Precambrian Craton.

The oldest known member of the Purcell Supergroup is the Aldridge Formation, a thick sequence of fine-grained siliciclastic rocks deposited largely by turbidity currents. The Aldridge Formation is gradationally overlain by shallower-water deltaic clastics of the Creston Formation; no rocks of the Creston Formation are

2.10 Regional Geology – continued

exposed on the Fors property. Conformably overlying Creston rocks is the Kitchener Formation consisting of fine siltstone, silty carbonate and carbonates.

The Purcell Anticlinorium is transected by a number of steep transverse and longitudinal faults.

A number of gabbro and diorite composition sills and dykes of Precambrian age are present within the Aldridge Formation. The Moyie Fault is a major transverse fault which crosses the extreme southeast corner of the Fors property. Locally Kitchener Formation rocks on the south side of the Moyie Fault are juxtaposed with Lower Aldridge Formation rocks on the north side of the fault, implying a vertical component of movement of about 5000 meters.

The Aldridge Formation is host to the world class lead-zinc-silver Sullivan Orebody at Kimberly, British Columbia, approximately 40 km north of the Fors property. Consequently, the Aldridge Formation is prime exploration ground for the discovery of a similar deposit.

2.20 Property Geology

The Fors property is underlain primarily by rocks of the Aldridge Formation with Kitchener Formation exposed on the south side of the Moyie Fault in the southeast corner of the property. Aldridge rocks north of the Moyie Fault dip gently north, northeast, and east. Adjacent to the Moyie Fault, Aldridge rocks strike northeast and dip steeply southeast, while Kitchener Formation rocks on the south side of the fault strike northeast but dip moderately northwest.

3.00 DIAMOND DRILLING (Figure 2)

In 2006 on the Monroe Property, St. Eugene Mining Corp. completed six diamond drill holes totalling 562.1 meters. The following table lists basic drill hole statistics.

HOLE	COLLAR COORDS	HOLE			CLAIM
NO.	UTM	AZIMUTH	DIP	LENGTH	TENURE #
M06-1	580802E-5468045N	-	-90°	102.4 m	505849
M06-2	580786E-5468041N	-	-90°	105.5 m	505849
M06-3	580825E-5468034N	-	-90°	93.3 m	505849
M06-4	580804E-5467993N	326°	-45°	111.9 m	505849
M06-5	580300E-5467860N	-	-90°	38.0 m	503798
M06-6	580433E-5467925N	209°	-45°	211.0 m	503798

TABLE 1: Drill Hole Statistics

page 6

3.10 Diamond Drilling Results

Drill Hole M06-1 is located near the center of a base metal-rich, hydrothermally altered, discordant Aldridge Fragmental structure. From 3.0 m to 16.6 m the hole cored thick-bedded to massive siltstone, which is strongly distorted in part by soft sediment deformation. These rocks are strongly biotitized with abundant wisps and patches of late sericite. Crystals of calcite after selenite are abundantly scattered throughout this interval. Pyrrhotite is weakly-to-locally abundantly disseminated throughout this unit. Galena, sphalerite, pyrrhotite, and pyrite also occur as widely scattered thin veinlets.

The hole encountered a bedding parallel lens of massive sulphide from 16.6 m to 16.9 m. The massive sulphide consists of coarsely-crystalline galena, sphalerite, and fine crystalline pyrrhotite.

Hole M06-1 cored mineralized crystalline limestone with thin siltstone interbeds from 16.9 m to 19.2 m. Sphalerite, galena, and pyrrhotite occur as thin distorted layers, lenses, and heavy disseminations in the limestone unit. From the base of the limestone to 37.3 m the hole cuts massive siltstone. The siltstone is generally sericitic with *scattered* patches of late coarsely-crystalline biotite, and locally small pink garnets are abundant. Calcite after selenite crystals is abundant throughout the interval. Sphalerite, galena, and pyrrhotite veinlets are widely scattered throughout this unit.

The hole encountered a massive sulphide lens from 37.3 m to 37.8 m. The massive sulphide lens consists of banded sphalerite and pyrrhotite.

The core from 38.7 m to 60.0 m consists of mainly calc-silicate and lesser biotitic-actinolitic limestone. The calc-silicate consists mainly of aphanitic quartz, actinolite, albite, biotite, and calcite. Throughout this unit sphalerite, galena, arsenopyrite, and pyrrhotite form thin veinlets, lenses, and disseminations.

Albititized quartzite occurs in the hole from 60.0 m to the end of the hole at 102.4 m. The albitized quartzite is overprinted by late biotite, calcite, actinolite, and pink garnets. Arsenopyrite and galena are widely disseminated throughout the interval.

Drill Hole M06-2 is located 15 m southwest of Hole M06-1. From 3.0 m to 81.0 m the hole cored lithologies, alteration, and mineralization similar to that described for hole M06-1. However, from 81.0 m to 105.5 m the hole cored mainly fragmental rocks. Mineralization is similar to that described for Hole M06-1 but without the massive sulphide lenses.

Drill Hole M06-3 is located 26 m southeast of Hole M06-1. The core in this hole is similar to that described for Hole M06-1, except that the mineralization in this hole is much weaker than in Hole M06-1.

3.10 Diamond Drilling Results – continued

Drill Hole M06-4 is located 52 m south of hole M06-1. This hole also cored lithologies, alteration, and mineralization similar to that described for Hole M06-1. However, the mineralization is much weaker.

Drill Hole M06-5 is located 500 m southwest of Hole M06-1. This hole was abandoned at 38 m in overburden.

Drill Hole M06-6 is located 390 m southwest of Hole M06-1. The hole from 5.8 m to 105.6 m cored typical Middle Aldridge sediments, mainly medium- to thick-bedded siltstone with some interbedded sequences of thin-bedded argillite and silty argillite. From 105.6 m to the end of the hole at 211.0 m the core consisted of lithologies and alteration similar to holes M06-1 to M06-4. Some galena and sphalerite was noted in association with carbonate alteration.

3.20 Drill Hole Results

See attached Appendix I:	Drill logs, Sample intervals, and Sample Nos.
See attached Appendix II:	Assays.

4.00 STATEMENT OF EXPENDITURES

Diamond Drilling	\$ 76,705.91
Mobilization-Demobilization (Drill rig)	
Standby Time (Drill rig and labour)	6,783.20
Geologist, logging core and report writing	3,300.00
Core logging facilities	400.00
Core rack	1,700.00
Sampler, B. Collinson	500.00
Drafting	300.00
12% overhead	<u>\$ 11,074.10</u>

TOTAL EXPENDITURES\$ 108,058.25

5.00 CONCLUSIONS AND RECOMMENDATIONS

Diamond Drill Holes M06-1 to M06-4 located Pb-Zn-Ag mineralization of economic significance in association with intense hydrothermal alteration in a large discordant Aldridge Fragmental body. Hole M06-6 has extended the hydrothermally-altered Fragmental structure for 390 meters southwest of the initial discovery site.

Further drilling is recommended to continue testing the mineralized Fragmental along strike to the southwest.

4.00 STATEMENT OF EXPENDITURES

Diamond Drilling (Connors Drilling Ltd.)	
Direct Drilling Costs	\$76,705.91
Mobilization-Demobilization (Drill Rig)	7,295.04
Standby Time (Drill Rig and Labour)	6,783.20
Total diamond drilling and related costs (662.1 meters; \$137.12/meter)	\$90,784.15
Geologist D.L. Pighin, P. Geo., : drill supervision, hole layout, core logging,	
Report writing; Oct. 4 to Oct. 28, 2006; 16 days @ \$350/day	\$5,600.00
3 half-days @ \$150/day	450.00
Geologist 4X4 truck 7 days @ \$65/day	455.00
Core logging facility; rental of Vine facility by St Eugene Mining Corp, period of	
October 4 to 28, 2006; 19 days @ \$50/day	950.00
EK Expediting (Brian Collinson); materials and construction of core rack	\$1,750.00
Sampling core, hauling core, tagging core boxes; 3 days @ \$200/day	600.00
1 day @ \$118/day	118.00
Hauling core samples to bus depot	25.00
Drafting; drill hole cross sections, plan; R.T Trenaman	300.00
Sub-total	\$101,032.15
12% administration, Vancouver office, St Eugene Mining Corp Ltd	12,123.86
TOTAL EXPENDITURE	\$113,156.00

6.00 AUTHOR'S QUALIFICATIONS

As author of this report I, David L. Pighin, certify that:

- I am a self-employed consulting geologist whose office is at Hidden Valley Road, Cranbrook, B.C. Mailing address: 301 – 8th Street, Cranbrook, B.C. V1C 1P2.
- (2) I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- (3) I have been actively involved in mining and exploration geology, primarily in the Province of British Columbia, for the past 40 years.
- (4) I was employed by Cominco Ltd. as a prospector, exploration technician, and geologist for 24 years, and later by numerous junior exploration companies.

Dated at Cranbrook, British Columbia, this _____day of _____, 2007.

PROPERTY:												
DRILL HOLE RECORDPROPERTY:MONROELOCATION:West of Monroe LakeCOMMENCED:Oct. 6, 2006COORDS: Long.COORDS: UTM (ECOORDS: UTM (E580802COORDS: Grid (E)4 (temp)			COMPLETED: Lat. (N) 5468045 (N)	HORI. COMP: 0 VERT. COMP: 102.4 CORR. DIP: -90 TRUE BEARING: 0° % RECOVERY: LOGGED DATE: Oct. 2006			HOLE #: M06-1 LENGTH: 102.4 m DRILL CONTRACTOR: Connors Drillin CORE SIZE: NQ					
ELEVATION:	· · · · ·	oproximately		COLLAR: Dip:	(EL) -90° Azi: °	LOGGED BY: 1			CASING: CORE STO	3.0 m	Vine pro	operty
OBJECTIVE:	Danstha	Dim	A	Tourse					Add:4: 1			
From To meters	Depth: LITHOLOGY	Dip:	Azi:	Туре:					Additional Surveys:	Depth	Dip	Azi
3.0 - 16.6	Siltstone.							_				
	COLOUR:											
	Brownish grey mottled light greenish grey.											
				re strongly deforme are probably disto	ed by soft sediment slum rted turbidite beds.	ping. Siltstone bed	s generally	very find	e-grained a	and show	some ev	idence
	TECTONIC S	TRUCTURE:										
	Rare galena-pyrrhotite veinlets in this unit cut core axis at 5° and 15°.											
		sediments are st			iltstones are strongly bio abundantly scattered thro			s of late s	sericitizatio	on are sca	ittered	
	MINERALIZA	ATION & ASSO	CIATED A	LTERATIONS, H	IOST STRUCTURE:	SAMPLE #	From	То	Length			
				minated throughout lena, pyrite, and py	t this unit. 2 mm to 5 vrrhotite.							

From To	RECORD LITHOLOGY:					BE #: 2 (LE #: M		
meters					HOL		JO-1	
16.6 - 16.9	Massive sulphide unit consists of 100% sulphides, mainly sphalerite. Upper and lower co	ntacts are sharp and	d cut core	axis at 65	5°.			
	COLOUR:							
	Reddish brown, spotted metallic brown and silvery grey.							
	PRIMARY STRUCTURE:							
	TECTONIC STRUCTURE:							
	GENERAL ALTERATION:							
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length			T
	The massive sulphide consists of approximately 50% coarsely-crystalline, reddish brown sphalerite, 30% finely-crystalline pyrrhotite, and 20% coarsely-crystalline galena.							
		1	1		1	1	1	1

DRILL HOLE F	RECORD				PAGE #:	3 of 9	
From To	LITHOLOGY:				HOLE #:	M06-1	
meters 16.9 - 19.2	Mineralized crystalline limestone with thin siltstone bed from 16.9 to 18.25 m.						
	COLOUR:						
	White crystalline limestone with lenses and layers of metallic reddish brown and brown.						
	PRIMARY STRUCTURE:						
	Medium crystalline with wispy distorted layers of pyrrhotite and sphalerite, rare galena.						
	TECTONIC STRUCTURE:						
	GENERAL ALTERATION:						
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length		
	Limestone unit host 20% sulphides by volume. Sulphides occur as thin, distorted lamina, disseminations, and thin wispy lenses. Sulphides consist mainly of sphalerite and pyrrhotite with rare galena.						

DRILL HOLE R	ECORD				PAGE	;#: 4	4 of 9				
From To meters	LITHOLOGY:				HOLE	2 #: 1	M06-1				
19.2 - 37.3	Argillaceous siltstone.										
	COLOUR:										
	Generally grey.										
	PRIMARY STRUCTURE:										
	Massive; bedding planes are rare. At 21.0 m bedding to core axis = 82° .										
	TECTONIC STRUCTURE:										
	Sulphide hosting fractures cut core at 40°, 59°, 35°, and 15°.										
	GENERAL ALTERATION:										
	Finely sericitic throughout with scattered patches of late coarsely-crystalline black biotite Some sections contain abundant calcite after selenite crystalline.	. Some sections co	ontain abu	ndant sub	ohedral light p	ink to	o white garr	iets.			
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length						
	Sulphides, mainly sphalerite and pyrrhotite, occur in veinlets as described above, ranging from 2 mm to 20 mm in thickness. These are widely scattered throughout this interval.										
	At 35.7 to 36.34 m - quartz vein cuts C/A at 53°, hosts pyrrhotite, sphalerite and coarsely-crystalline galena; vein consists of 20% sulphides.										

DRILL HOLE F	RECORD				PAG	E#: 5 o	of 9	
From To	LITHOLOGY:				HOL	E #: M0	6-1	
meters 37.3 - 37.8	Massive sulphides; mainly banded sphalerite and pyrrhotite with some disseminated galer	na; 90% sulphide v	vith some l	oiotite an	d rare siltsto	ne layers.		
	COLOUR:							
	Banded metallic brown and reddish brown							
	PRIMARY STRUCTURE:							
	Finely-crystalline pyrrhotite with wispy parallel layers of coarsely-crystalline sphalerite.							
	TECTONIC STRUCTURE:							
	GENERAL ALTERATION:							
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length			
	The massive sulphide consists of 70% pyrrhotite and 30% sphalerite? with some disseminated galena.							

DRILL HOLE R	ECORD				PAGE #	: 6of 9						
From To	LITHOLOGY:				HOLE #	: M06-1						
meters 37.8 - 54.2	Biotitic-actinolitic limestone and lesser bands of calc-silicates.											
	COLOUR:											
	Light grey to white, mottled dark brown by biotite and mottled green by actinolite.											
	PRIMARY STRUCTURE:											
	TEXTURE: Crystalline limestone, strongly mineralized by coarsely-crystalline brown b Calc-silicate unit consists of aphanitic quartz, actinolite, biotite, and calcium carbonate. Poss bedding at $50.5 \text{ m} = 54^{\circ}$.	iotite, and locally	oy finely-c	rystalline	e bands of massi	ve brown bi	otite.					
	TECTONIC STRUCTURE:											
	GENERAL ALTERATION:											
	See above.											
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length							
	At 37.8 - 38.6 m – coarsely-crystalline biotite with abundant disseminated sphalerite and lesser galena in limestone matrix.											
	At $42.0 - 42.3 \text{ m} - 2$ small bands of massive sulphide, mainly sphalerite and galena cut C/A at 65° . One band is 5 cm thick and the other is 10 cm thick.											
	At $45.0 - 45.8 \text{ m}$ – very coarsely-crystalline sphalerite, galena, and calcite vein cut C/A at 15° . At $47.4 - 47.9$ – very coarsely-crystalline sphalerite, galena, and calcite vein cut C/A at 15° .											

DRILL HOLE R	ECORD				PAGE #:	7 of 9	
From To	LITHOLOGY:				HOLE #:	M06-1	
meters 54.2 - 56.2	Siltstone.						
51.2 50.2							
	COLOUR:						
	Grey.						
	PRIMARY STRUCTURE:						
	Thick-bedded; no visible bedding, fine-grained sediments.						
	TECTONIC STRUCTURE:						
	Nil.						
	GENERAL ALTERATION:						
	Patchy silicification and biotitization form very irregular veins and blebs. Biotite patches	etc., are associated	l with calc	ium-carb	onate alterations		
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length		
	Arsenopyrite and rare pyrrhotite occur in calcite-biotite patches and veinlets.						

DRILL HOLE R	ECORD				PAGE #:	8 of 9	
From To	LITHOLOGY:				HOLE #:	M06-1	
<u>meters</u> 56.2 - 60.0	Calc-silicate; consists mainly of biotite, actinolite, calcite, albite, and remnant patches of At 56.2 to 56.5 m – massive sulphide band cuts core at 53°.	silicified siltstone.					
	COLOUR:						
	Light green mottled light grey and brown.						
	PRIMARY STRUCTURE: Destroyed by alteration.						
	TEXTURE: Calc-silicate unit consists mainly of coarsely-crystalline brown biotite and a	actinolite in a carbo	onate and s	siliceous	to albititic matrix	ζ.	
	TECTONIC STRUCTURE:						
	GENERAL ALTERATION:						
	See above.						
		SAMPLE #	From	То	Langth		
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	FIOIII	10	Length		
	At 56.2 to 56.5 m - massive sulphide band, 95% pyrrhotite with some tiny blebs of						
	calcite scattered throughout. At 58.4 m – thin 2 mm thick sphalerite vein cuts core at 35° . At 58.7 m – massive sphalerite vein cuts core 53° and is 3 cm thick.						
	At 56.2 to 60.0 m – sphalerite, arsenopyrite, pyrrhotite, and rare galena is weakly to						
	strongly disseminated throughout.						

DRILL HOLE F	RECORD				PAGE	#:	9 of 9	
From To	LITHOLOGY:				HOLE	#:	M06-1	
meters 60.0 - 102.4	Mainly albititized quartzite.							
	COLOUR:							
	COLOUR:							
	Generally whitish; whitish grey, pinkish white, mottled grey, and commonly speckled bla	ck.						
	PRIMARY STRUCTURE:							
	Totally destroyed by weathering.							
	TECTONIC STRUCTURE:							
END	At 75.0 m - white barren quartzite vein cuts core at 15°.							
	GENERAL ALTERATION:							
OF	The albititized sediments are overprinted by blebs, irregular patches and veins consisting light pink to orange subhedral garnets.	of brown biotite in	a calcite 1	natrix, ra	re actinolite, a	nd w	videly scattered	d
HOLE	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length			
HULE	Arsenopyrite crystallines are widely scattered throughout this interval. Galena							
	crystallines are also very widely scattered throughout the interval.							

HOLE NO. M06-1

Page

From – To metres	% Core Loss	COMMENTS	Sample No.	Width	Au	Ag	As	Pb	Zn	Cu
					ppm	ppm	ppm	ppm	ppm	ppm
15.6 - 17.0		Massive sulphide, pyrrhotite, galena and sphalerite.	304351							
17.0 - 18.3		Disseminated sphalerite and pyrrhotite in limestone.	304352							
18.3 - 19.3		Disseminated sphalerite and pyrrhotite in limestone.	304353							
35.7 - 36.34		Quartz vein hosts pyrrhotite, sphalerite and coarsely crystalline galena	304354							
36.34 - 37.3		Disseminated pyrrhotite and sphalerite and veinlets of pyrrhotite-sphalerite	304355							
		host argillaceous siltstone.								
37.3 - 37.8		Massive sulphide mainly pyrrhotite, sphalerite and lesser galena	304356							
37.8 - 38.8		Disseminated sphalerite and pyrrhotite in coarsely crystalline biotitic limestone.	304357							
38.8 - 39.8		Disseminated sphalerite and pyrrhotite in coarsely crystalline biotitic limestone.	304358							
39.8 - 40.8		Weakly disseminated sphalerite and pyrrhotite in biotitic-actinolitic limestone.	304359							
40.8 - 41.8		Weakly disseminated sphalerite and pyrrhotite in biotitic-actinolitic limestone.	304360							
41.8 - 42.3		Disseminated sphalerite and pyrrhotite plus 2 (5-cm & 10 cm-thick) bands of	00.40.61							
		massive sphalerite and galena in limestone unit.	304361							
42.3 - 43.3		Disseminated sphalerite and pyrrhotite in altered limestone.	304362							
43.3 - 44.3		Disseminated sphalerite and pyrrhotite in altered limestone.	304363							
44.3 - 45.0		Disseminated sphalerite and pyrrhotite in altered limestone.	304364							
45.0 - 45.6 45.6 - 46.6		Scattered coarsely crystalline galena and sphalerite veins in limestone unit.	304365							
45.6 - 46.6		Scattered coarsely crystalline galena and sphalerite veins in limestone unit. Scattered coarsely crystalline galena and sphalerite veins in limestone unit.	304366 304367							
40.0 - 47.4 47.4 - 50.0		Scattered coarsely crystalline galena and sphalerite veins in limestone unit.	304367							
47.4 - 30.0		Scattered coarsery crystamme galena and sphalente vents in innestone unit.	304308							
56.2 - 56.5		Massive sulphide band, mainly pyrrhotite.	304369							
56.5 - 57.0		Disseminated arsenopyrite, sphalerite, pyrrhotite and rare galena disseminated in								
		limey biotitic, actinolitic seds.	304370							
57.0 - 58.0		Disseminated arsenopyrite, sphalerite, pyrrhotite and rare galena disseminated in	304371							
		limey biotitic, actinolitic seds.								
58.0 - 58.5		Disseminated, some scattered massive sphalerite veins 3-cm thick.	304372							

	ECODD			51. EC	JGENE MINING CORI	•									
DRILL HOLE R PROPERTY: LOCATION: COMMENCED: COORDS: Long COORDS: UTM COORDS: Grid (MONF West of Oct. 8, (E) 580786	f Monroe 2006		COMPLETED: Lat. (N) 5468041 (N)	Oct. 9, 2006 (EL) 1389 pending (EL)	HORI. COMP: VERT. COMP: CORR. DIP: TRUE BEARING % RECOVERY: LOGGED DATE		CORE SIZE: NQ				Drilling			
ELEVATION:	1389 m	1		COLLAR: Dip:	Azi: ^o	LOGGED BY: 1			CORE STO			perty			
OBJECTIVE:	1507 11	1		COLLI IR. Dip.	1121.	LOGGLD D1.	D.L. I Igilli								
SURVEYS:	Depth:	Dip:	Azi:	Type:				A	dditional						
From To	LITHOLOGY:			1 - 2 F - 2					urveys:	Depth	Dip	Azi			
meters									5	1	1				
3.0 - 25.7	Siltstone, "Boun	na" type turbidite	es, with "E"	and "D" argillite.											
	COLOUR:														
	Shades of light grey with black spotting (pyrrhotite blebs), 10 to 17 m rusty brown due to weathering of sulphides.														
	PRIMARY STI	RUCTURE													
		NUCIURE:													
	Medium to thick Bedding to core		hin-bedded.	Bedding planes are	e distinct and commonly	waxy. Some good	flame structu	ured be	d tops.						
	TECTONIC ST	TRUCTURE:													
	10.0 to 17.0 m –	brecciated and c	rackle brecc	ciated; breccia cuts c	core at 10° on HW and 1	5° on FW.									
	GENERAL AL	TERATION:													
		e silicified and se breccia to limon			tite typical of Middle A	ldridge regional alte	eration. At 10	0.0 to 1	7.0 m sup	ergene al	teration	of			
	MINERALIZA	SAMPLE #	From	То	Length										
	Limonite-filled t sphalerite-hostin			.0 m. At 25.0 m thin 5°.	1 2-cm thick										
										+	+				
<u> </u>															

DRILL HOLE F	meters Homogenized argillite and silty argillite. 25.7 - 29.3 Homogenized argillite and silty argillite. COLOUR: Light grey.					GE #: 2 of 8	3	
	LITHOLOGY:				HO	LE #: M06	-2	
25.7 - 29.3	Homogenized argillite and silty argillite.							
	COLOUR:							
	Light grey.							
	PRIMARY STRUCTURE:							
	Massive; no bedding planes.							
	TECTONIC STRUCTURE:							
	GENERAL ALTERATION:							
	Generally finely-sericitic with some scattered, fine, black biotite, with some local patches	s of intense coarsel	y-crystallii	ne sericit	e.			
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length			
	Pyrrhotite occurs as finely-disseminated specks and blebs. Some rare disseminated							
	sphalerite. This type of mineralization occurs throughout this unit. At $25.7 \text{ m} - 10$ -cm thick quartz-pyrite vein cuts core at 25.7 m .							

DRILL HOLE R	ECORD				PAGI	E #: 3 of 8	
From To meters 29.3 - 51.4	LITHOLOGY: Quartzite.				HOLI	E #: M06-2	
	COLOUR:						
	Light grey with some white blebs.						
	PRIMARY STRUCTURE:						
	Massive, no bedding, unit ranges from fine to coarse-grained.						
	TECTONIC STRUCTURE:						
	Nil.						
	GENERAL ALTERATION:						
	Unit is generally intensely silicified and sericitized throughout. Crystals of calcite after s	elenite are generall	y scattered	l through	out this unit.		
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length		
	Pyrrhotite is in general, very weakly disseminated throughout this unit. Sphalerite occurs only as very rare tiny specks. At 47.5 m quartz-pyrrhotite vein cuts core at 67°, 7 cm thick.						
	At 48.0 m 1-cm thick massive pyrrhotite vein C/A at 52°.						
	•						

						BE #: 4 o						
From To meters	LITHOLOGY:				HOL	LE #: MO	06-2					
51.4 - 64.2	Actinolitic, tremolitic, biotitic limestone.											
	COLOUR:											
	Light grey and green mottled brown.											
	PRIMARY STRUCTURE:											
	TEXTURE: Medium crystalline limestone, totally altered in part to coarsely-crystalline and heavy disseminated coarsely-crystalline brown biotite.	actinolite and trem	iolite; over	printed b	oy massive b	ands son	ne 50-cm	thick,				
	TECTONIC STRUCTURE:											
	Nil.											
	GENERAL ALTERATION:											
	Intensely altered limestone as described above, 51.4 to 52.1 m abundant tourmaline need	les.										
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length							
					<u> </u>							
	At 51.4 to 52.1 m – relatively abundantly disseminated sphalerite and minor galena occur in strongly actinolitic limestone.											
	At 54.7m 2-cm thick sphalerite-calcite vein cut C/A at 76°.											
	At 53.5 m, some small lenses of massive talc. From 52.1 to 64.2 m sphalerite and pyrrhotite occurs only as rare tiny specks.											
	<u> </u>	I	<u> </u>		<u> </u>	I						

DRILL HOLE R	ECORD				PAG	E #: 5 of 8	
From To	LITHOLOGY:				HOL	E #: M06-2	
meters 64.2 - 81.0	Albititized siltstone.						
04.2 - 81.0	Aldituzed sinstone.						
	COLOUR:						
	White to pinkish white mottled by brown and black biotitization.						
	PRIMARY STRUCTURE:						
	Massive; no bedding or other primary structures present.						
	TECTONIC STRUCTURE:						
	Nil.						
	GENERAL ALTERATION:						
	The sediments are intensely albititized and overprinted by late lenses, thin irregular wispy	veins and irregula	ar blebs of	brown bi	otite and car	rbonate.	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length		
	Arsenopyrite is commonly associated with irregular veins, lenses and patches of brown						
	biotite and carbonate. Rare galena and sphalerite occur also with the biotite-carbonate						
	alteration.						
	:						•

DRILL HOLE R	RECORD				PAGE	#: 6 of 8	
From To	LITHOLOGY:				HOLE	2#: M06-2	
meters 81.0 - 84.1	Albititized and tourmalinized fragmental.						
	COLOUR:						
	Dark brown tourmalinization with white and green albititization and actinolitization.						
	PRIMARY STRUCTURE:						
	Massive; clasts are small and subangular, show no preferred orientation and are generally	matrix supported.					
	TECTONIC STRUCTURE:						
	GENERAL ALTERATION:						
	In general, the fragmental matrix and clasts are strongly tourmalinized. The lower 1/3 of occurs in the matrix.	the fragmental uni	t is albititiz	zed and a	actinolitized.	Some fine b	ack biotite
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length		
	Weakly disseminated pyrrhotite, sphalerite, and arsenopyrite generally occur in the matrix of the tourmalinized fragmental.						
L					1		

DRILL HOLE R	ECORD				PAGE	#: 7 of 8	
From To	LITHOLOGY:				HOLE	#: M06-2	
meters							
84.1 - 101.0	Silicified and tourmalinized siltstone.						
	COLOUR:						
	Light brown, brown and black.						
	PRIMARY STRUCTURE:						
	Massive; no bedding.						
	TECTONIC STRUCTURE:						
	GENERAL ALTERATION:						
		. 1 1 1 1 1 1		1			
	At 84.1 to 95.0 m – intensely silicified, and from 95.0 to 101.0 m – generally tourmaliniz	ed to black and bro	own tourma	llinite.			
		I	_				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length		
	Sphalerite and pyrrhotite occurs in the silicified siltstone as very rare, fine						+
	disseminations.						
	At 85.5 m – 1-cm thick quartz vein hosts minor pyrite and galena cuts core at 15°.						
	At 88.0 m $-$ 5-cm thick quartz hosts abundant pyrrhotite and rare sphalerite and galena; cuts core at 58°.						
	From 95.5 to 96.2 m – quartz vein host minor galena and muscovite – cut C/A at 62° .						+
	Trom yore to yor.2 in quarter for nost minor gardia and masco the cut C/T at 02.						+
		I			1		

DRILL HOLE R	LE RECORD PAGE #: 8 of 8					8		
From To	LITHOLOGY:				HOL	E #: M00	6-2	
meters								
101.0 - 105.5	Tourmalinized fragmental.							
	COLOUR:							
	Black.							
	PRIMARY STRUCTURE:							
	Massive; fragmental consisting of small 2 mm and 10 mm-sized subrounded to rounded c	clasts. The clasts sh	now no pre	eferred or	ientation and	l are gene	rally ma	trix
	supported; matrix consists of tourmalinized coarse-grained quartz sand.							
	TECTONIC STRUCTURE:							
END								
	GENERAL ALTERATION:							
OF								
O F	Matrix and clasts are all altered to black aphanitic tourmalinite.							
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length			
HOLE								
	Arsenopyrite is locally abundant in the fragmental matrix.							
					↓ ↓			
					$\left \right $			

HOLE NO. M06-2

Page

From – To metres	% Core Loss	COMMENTS	Sample No.	Width	Au	Ag	As	Pb	Zn	Cu
					ppm	ppm	ppm	ppm	ppm	ppm
50.0 - 51.0 51.0 - 51.4 51.4 - 52.1 52.1 - 53.1 63.0 - 64.0 64.0 - 64.4 64.4 - 65.4 65.4 - 66.4		Weakly disseminated pyrrhotite with rare galena and sphalerite in quartzite Weak to strongly disseminated sphalerite and pyrrhotite in quartzite. Weak to strongly disseminated sphalerite and galena in massive actinolite. Weak to very weakly disseminated sphalerite in massive actinolite. Weak to very weakly disseminated sphalerite and galena in massive biotite alteration. Abundant disseminated pyrrhotite and sphalerite in albitized siltstone and Actinolitic limey siltstone. Widely scattered patches of disseminated sphalerite and galena albitized- biotitic siltstone. Widely scattered patches of disseminated sphalerite and galena albitized- biotitic siltstone.	304301 304302 304393 304303 304304 304305 304306 304307	Assayed	previously					

		ST. EUGENE MINING COR	Р.						
DRILL HOLE R PROPERTY: LOCATION: COMMENCED COORDS: Long COORDS: UTM COORDS: Grid ELEVATION:	MONROE West of Monroe Lake Cot. 9, 2006 g. I (E) 580825	COMPLETED: Oct. 10, 2006 Lat. (N) 5468034 (EL) 1360 pending (N) (EL) COLLAR: Dip: -90° Azi:	93.3 m -90 : : Oct. 2006 D.L. Pighin	5 (n TOR: onnors D m Vine pro	-			
SURVEYS: From To	Depth: Dip: Azi:	Туре:				Additional Surveys:	Depth	Dip	Azi
meters						Jui ve ys.	Depui	Dip	MZ1
0.60 - 32.0	Homogenized unit. Mixed quartzite, siltston	e, and argillite.							
									+
	COLOUR:				I				
	Grey with scattered brown blebs and wispy l	enses.							
	PRIMARY STRUCTURE:								
	Massive; no bedding, generally medium-grai	ined throughout.							
	TECTONIC STRUCTURE:								
	Thin calcite-quartz 1 cm cut core axis at 70° between 24.2 and 25.2 m.								
	GENERAL ALTERATION:								
	Weakly to strongly silicified throughout, late	e blebs, irregular veinlets of biotite and mino	or calcite.						
	MINERALIZATION & ASSOCIATED A	LTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length			
	Pyrrhotite occurs throughout this unit as bleb pyrrhotite bands. Specks of sphalerite occur occur with the biotite-calcite alteration.	s, veinlets, and rare 1-cm thick massive with pyrrhotite. Sulphides commonly							
							1		+
						1			

DRILL HOLE R	ECORD		E #: 2 of 3				
From To	LITHOLOGY:				HOL	E #: M06-3	
meters 32.8 - 65.7	Actinolitic, biotitic, tremolitic limestone with scattered clasts or remnant patches of siltsto	one.					
	COLOUR:						
	Generally light green to light grey and white, mottled and banded brown by massive biotic	te.					
	PRIMARY STRUCTURE: Destroyed by alteration.						
	TEXTURE: Rock consists generally of coarsely-crystalline actinolite and tremolite and biotite forms thick bands (10 cm to 30 cm thick) within the tremolitic-calcareous unit. TECTONIC STRUCTURE:	biotite in a calcare	eous matrix	. Locall	y coarsely-cry	vstalline massi	.ve brown
	GENERAL ALTERATION: Remnant patches of siltstone suggest that this limy unit may in fact be a highly altered silt actinolite-tremolite phase. However, both alteration phases are associated with sulphides			ite alterat	tion appears t	o be later than	ı the
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Pyrrhotite, sphalerite, galena, and minor arsenopyrite are generally weakly to strongly disseminated throughout this interval.	SAMPLE #	From	То	Length		
	Best mineralized zones are as follows: 34.6 to 35.0 m – 40% to 60% pyrrhotite, lesser sphalerite and galena. Est. grade 2% Pb-Zn zone cuts core at 45°; at 40.6 m 5-cm thick calcite-sphalerite vein						
	Est. grade 2% Pb-Zn zone cuts core at 45°; at 40.6 m 5-cm thick calcite-sphalerite vein Cuts core at 70°; at 55.0 m 1-cm thick quartz-pyrrhotite sphalerite vein cuts core at 10°;						

DRILL HOLE F	ECORD				PAGE #	: 3 of 3				
From To	LITHOLOGY:				HOLE #	: M06-3				
<u>meters</u> 65.7 - 93.3	Limestone, consisting of mainly limestone with scattered small patches of remnant quartz	ite.								
	COLOUR:									
	Generally light grey to white.									
	PRIMARY STRUCTURE:									
	Massive, medium crystalline limestone with scattered small irregular shaped patches. Rep	mnant quartzite m	aking the r	ock look	conglomeratic.					
	TECTONIC STRUCTURE:									
END										
	GENERAL ALTERATION:									
OF	Remnant patches of quartzite appear to suggest the original quartzite has, for the most par abundant throughout this interval. They range in size from 2 mm to 5 mm in size.	t, been replaced by	y calcium c	carbonate	e. Late subhedra	al pink garne	ets are			
HOLE	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Pyrrhotite, arsenopyrite, lesser sphalerite, and galena, very weakly disseminated	SAMPLE #	From	То	Length					
	throughout this interval, with some thin local patches and bands of heavy disseminated 18° sulphides. At 66.0 to 66.5 m – quartz veins with minor sphalerite cut C/A at 10° to									
	15°. At 76.0 to 80.5 m thin quartz veins hosting minor sphalerite 1-cm to 2-cm thick are widely scattered throughout. These veins cut C/A at 10° and 15°. At 82.3 m two 1-									
	cm thick bands of massive arsenopyrite cut C/A at 77°. At 90.0 to 90.5 m a band of heavy disseminated sulphides cuts core at 30°, (20%-50% sulphide) the sulphide									
	consists of mainly pyrrhotite, sphalerite, and rare galena.									

HOLE NO. M06-3

Page

From – To metres	% Core Loss	COMMENTS	Sample No.	Width	Au	Ag	As	Pb	Zn	Cu
metres	1055		110.		ppm	ppm	ppm	ppm	ppm	ppm
32.5 - 33.5		Actinolitic limey sediments; weak dissem. pyrrhotite & sphalerite, rare galena	304308		P_P	F F	FF	FF	F	FF
33.5 - 34.5		Actinolitic limy sediments; weak disseminated pyrrhotite & sphalerite, rare galena	304309							
34.5 - 35.0		Host: calcareous siltstone, 40% disseminated. pyrrhotite with minor disseminated	304310							
		sphalerite and galena.								
35.0 - 36.0		Limey sed's – weakly disseminated sphalerite and galena.	304311							
36.0 - 37.0		Limey sed's – weakly disseminated sphalerite and galena.	304312							
37.0 - 37.8		Limey sed's – weakly disseminated sphalerite and galena.	304313							
37.8 - 38.3		Actinolitic, limey sed's, 2 cm thick vein of massive galena and sphalerite								
		associated with weak disseminated sphalerite.	304314							
38.3 - 39.0		Actinolitic limey sed's host some patches of good dissem. galena & sphalerite.	304315							
39.0 - 40.0		Actinolitic, biotitic, limey sed's host patches of good dissem. galena & sphalerite.	304316							
40.0 - 40.6		Actinolotic, limey sed's hosts some thin veinlets of massive galena and some								
		disseminated patches of sphalerite.	304317							
40.6 - 41.6		Actinolitic, biotitic, limey seds host weak -locally strongly-dissem. sphal.&galena.	304318							
41.6 - 42.6		Actinolitic, biotitic, limey seds host weak -locally strongly-dissem. sphal.&galena.	304319							
42.6 - 43.6		Actinolitic, biotitic, limey seds host weak -locally strongly-dissem. sphal.&galena.	304320							
43.6 - 44.6		Actinolitic, biotitic, limey seds host weak -locally strongly-dissem. sphal.&galena.	304321							
44.6 - 45.6		Actinolitic, biotitic, limey seds host weak -locally strongly-dissem. sphal.&galena.	304322							
45.6 - 46.6		Actinolitic, biotitic, limey seds host weak -locally strongly-dissem. sphal.&galena.	304323							
46.6 - 47.6		Actinolitic, biotitic, limey seds host weak -locally strongly-dissem. sphal.&galena.	304324							
47.6 - 48.6		Actinolitic, biotitic, limey seds host weak -locally strongly-dissem. sphal.&galena.	304325							
48.6 - 49.6		Actinolitic, biotitic, limey seds host weak -locally strongly-dissem. sphal.&galena.	304326							
49.6 - 50.6		Nearly massive brown biotite, rare Pb-Zn.	304327							
58.7 - 59.7		Limey sed's actinolitic hosts weakly disseminated galena and sphalerite.	304328							
59.7 - 60.7		Limey sed's actinolitic hosts weakly disseminated galena and sphalerite with								
		10 cm band of massive pyrrhotite, sphalerite.	304329							
60.7 - 61.7		Actinolitic, locally biotitic, limey sed's, hosts weakly disseminated sphalerite and								
		galena, pyrrhotite, Arseno.	304330							
61.7 - 62.7		Actinolitic, locally biotitic, limey sed's, hosts weakly disseminated sphalerite and								
		galena, pyrrhotite, Arseno.	304331							
62.7 - 63.7		Actinolitic, locally biotitic, limey sed's, hosts weakly disseminated sphalerite and								
		galena, pyrrhotite, Arseno.	304332							
63.7 - 64.7		Actinolitic, locally biotitic, limey sed's, hosts weakly disseminated sphalerite and								
		galena, pyrrhotite, Arseno.	304333							
64.7 - 65.7		Actinolitic, locally biotitic, limey sed's, hosts weakly disseminated sphalerite and								
		galena, pyrrhotite, Arseno.	304334							

		ST. EUGENE MINING CC	ORP						
PROPERTY: LOCATION: COMMENCED: COORDS: Long COORDS: UTM COORDS: Grid (ELEVATION: OBJECTIVE:	(E) 580804 (E)	COMPLETED: Oct. 9, 2006 Lat. (N) 5467993N (EL) 1365 (pending) (N) (EL) COLLAR: Dip: -45° Azi: 326°	HORI. COMP: VERT. COMP: CORR. DIP: TRUE BEARING % RECOVERY: LOGGED DATE LOGGED BY:	: Oct. 200	1 1 06 (0 n (0	HOLE #: LENGTH DRILL CC CORE SIZ CASING: CORE STO	: 111.9 m ONTRAC C E: NQ 1.5 m	TOR: onnors D 1	0
SURVEYS: From To	Depth: Dip: Azi:	Туре:				Additional Surveys:	Depth	Dip	Azi
meters 1.5 45.6	Homogenized unit mixed siltstone and silty a	argillite.			-				
	COLOUR:								1
	Grey with scattered patches of metallic brow	n.							
	PRIMARY STRUCTURE: Massive. Bedding is very rare. Rock has in unit.	places a soft sedimentary slump texture gen	erally fine-grained,	, but becom	es coars	er grained	toward tl	ne base o	f the
	TECTONIC STRUCTURE:								
	At 22.0 m limonite-filled veins cut core at 5	^b ; at 32.6 thin limonite-filled breccia zone cut	ts C/A at 8°.						
	GENERAL ALTERATION:								
	Argillite fraction is altered to fine sericite, w	ith coarse crystalline black biotite rimming p	yrrhotite bleb and	lenses.					
	MINERALIZATION & ASSOCIATED A	LTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length			
	Pyrrhotite is abundant throughout unit as wis blebs and patches ranging in size from 2 mm of rock by volume.								

DRILL H	HOLE R	ECORD				PAG	E#: 2	of 5						
From	То	LITHOLOGY:				HOL	.E #: N	M06-4						
45.6	<u>ers</u> 61.2	Biotitic, actinolitic, and tremalitic limestone.												
		COLOUR:												
		White with brown banding and speckled, and green with brown speckling, and locally lig	ght green.											
		TEXTURE:												
		Crystalline limestone with bands, patches, and disseminated coarsely-crystalline brown	biotite associated w	vith coarse	ly-crystal	line tremolit	e.							
		TECTONIC STRUCTURE:												
		At 45.6 m, calcite (barren) veins cut core 30°.												
		GENERAL ALTERATION:												
		Alteration of limestone is intense. Bands and patches of biotite and tremolite locally full actinolite totally replaces thick sections of the limestone unit.	y replaced the lime	stone bed,	and local	lly coarsely-	crystalli	ne green						
		MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length								
		At 45.6 to 47.6 m actinolitic, tremalitic, and biotitic crystalline limestone hosts weakly to strongly disseminated sphalerite.												
		to strongly disseminated sphalerite. At 47.6 to 50.6 m – mainly white crystalline limestone with weakly disseminated galena and sphalerite.												
		At 50.4 – massive sphalerite vein 2 cm thick cuts core at 42°.												

DRILL HOLE R	RECORD				PAG	E #: 3 of	5	
From To	LITHOLOGY:				HOL	E #: M0	6-4	
meters 61.2 66.7	Albititized siltstone.							
	COLOUR:							
	White to whitish grey, speckled and mottled by dark to reddish brown biotite.							
	PRIMARY STRUCTURE:							
	Massive, all primary structure destroyed by alteration.							
	TECTONIC STRUCTURE:							
	Nil.							
	GENERAL ALTERATION:							
	Siltstone is intensely albititized. Late carbonatization and coarsely-crystalline biotite for interval.	m irregular veinlet	s, patches a	and disse	mination thr	roughout t	the albitit	ized
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length			
	At 65.7 to 66.7 m – abundant irregular veinlets and dissemination of arsenopyrite occurs in association with late carbonate and biotite alteration.							

DRILL HOLE R	ECORD				PAG	E #: 4 of	5	
From To	LITHOLOGY:				HOL	E#: M()6-4	
meters		1 1						
66.7 69.2	Biotitic limestone. Massive fine and coarsely-crystalline biotite forms up to 50% of rock	by volume.						
	COLOUR:							
	Dark brown with remnant patches of light grey limestone.							
	PRIMARY STRUCTURE:							
	Massive – medium to coarsely-crystalline.							
	TECTONIC STRUCTURE:							
	GENERAL ALTERATION:							
	Coarsely to finely-crystalline biotite and scattered tremolite locally, totally replace the lim	nestone unit.						
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length			
	Pyrrhotite as disseminations and veinlets is abundantly scattered throughout this unit.							
	Some patches of finely-disseminated sphalerite.							
	At 67.0 m – massive sphalerite vein cuts core at 16°; ranges from 2 cm to 4 cm thick.							
			1		1 1			

DRILL HOLE R	ECORD				PAG	E #: 5 of 5	
From To meters	LITHOLOGY:				HOL	E#: M06-	4
69.2 - 111.9	Albititized siltstone.						
	COLOUR:						
	Mottled white, light grey and dark brown, and speckled brown.						
	PRIMARY STRUCTURE:						
	Destroyed by alteration.						
END	NOTE: Arsenopyrite in general as weak to strong disseminations occur, scattered throughout these	se albititized sedin	nents.				
OF	GENERAL ALTERATION: Intensely albititized siltstone cut by patches, veinlets, and disseminations of late calcite as Near 105.8 m – large light pink subhedral garnets occur.	ssociated with coar	sely-crysta	lline bro	wn biotite.		
HOLE	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length		
	10 cm of heavy disseminated to massive pyrrhotite with minor sphalerite at 69.6 m. This zone roughly cuts core at 44°.						
	At 69.2 to 75.8 m – Biotite-calcite alteration zones host relatively abundant pyrrhotite and arsenopyrite with weakly disseminated sphalerite. This zone might average 500 ppm Zn.						
	At 79.5 m, a 10 cm quartz vein cuts core at 62°. Hosts host pyrrhotite, lesser sphalerite, and galena.						
	At 98.6 – 108.8 m – massive pyrrhotite vein with sedimentary clasts cuts core at 15°. Weak sphalerite mineralization is disseminated mainly in sedimentary clasts and in a narrow band on both HW and FW of sulphide vein.						
	At 96.3 to 96.5 m – massive sulphide vein cuts at 54°. The massive sulphide consists of pyrrhotite, galena, and sphalerite. In general, sphalerite and rare galena is weakly disseminated in albititized sediments from 94.3 to 103.7 m.						

HOLE NO. M06-4

Page 1 of 1

From – To metres	% Core Loss	COMMENTS	Sample No.	Width	Au	Ag	As	Pb	Zn	uge 1 of 1 Cu
					ppm	ppm	ppm	ppm	ppm	ppm
45.6 - 46.5		Weak to strongly disseminated sphalerite & pyrrhotite hosted in actinolite	304373							
176 196		biotitic limestone.	204274							
47.6 - 48.6 48.6 - 49.6		Weak disseminated sphalerite & galena hosted by white crystalline limestone. Weak disseminated sphalerite & galena hosted by white crystalline limestone.	304374 304375							
48.6 - 49.6 49.6 - 50.6		Weak disseminated sphalerite & galena hosted by white crystalline limestone.	304375 304376							
50.6 - 51.6		Weak disseminated sphalerite & galena hosted by white crystalline limestone.	304370							
50.0 - 51.0		weak disseminated sphalerite & galena hosted by white crystannie innestone.	504577							
65.7 - 66.7		Weak disseminated sphalerite & galena & arsenopyrite in albitized sediments.	304378							
66.7 - 67.4		Pyrrhotite and lesser sphalerite occur as thin veinlets and disseminated in	304379							
		strongly biotitized limestone.								
67.4 - 68.4		Pyrrhotite and lesser sphalerite occur as thin veinlets and disseminated in	304380							
		strongly biotitized limestone.								
68.4 - 69.2		Pyrrhotite and lesser sphalerite occur as thin veinlets and disseminated in	304381							
		strongly biotitized limestone.								
69.2 - 70.4		10-cm of near massive pyrrhotite associated with weakly disseminated	304382							
		sphalerite and rare galena host albitized siltstone.								
70.4 - 71.4		Weakly disseminated sphalerite associated with profile-calcite alteration in	304383							
071 010		albitized siltstone.	201205							
95.1 - 96.3		Weakly disseminated sphalerite associated with biotitic-calcite alteration zones	304385							
06.2 06.6		in albitized sediments.	204296							
96.3 - 96.6 96.6 - 97.6		Massive sulphide vein consists of pyrrhotite, sphalerite, and galena. Weakly dissem. sphalerite in biotite-calcite alteration zone in albitized seds.	304386 304387							
96.6 - 97.6 97.6 - 98.6		Weakly dissem, sphalerite in biotite-calcite alteration zone in albitized seds. Weakly dissem, sphalerite in biotite-calcite alteration zone in albitized seds.	304387							
97.0 - 98.0 98.6 - 99.6		Weakly dissem, sphalerite in biotite-calcite alteration zone in albitized seds. Weakly dissem, sphalerite in biotite-calcite alteration zone in albitized seds.	304388							
99.6 - 100.8		Weakly dissem, sphalerite in biotite-calcite alteration zone in albitized seds.	304389							
100.8-101.8		Weakly dissem, sphalerite in biotite-calcite alteration zone in albitized seds.	304391							
101.8-102.7		Weakly dissem, sphalerite in biotite-calcite alteration zone in albitized seds.	304392							
101.0 102.7		Weakly disserie spharente in elotic earene aneration zone in alotazed seas.	501572							

DRILL HOLE R	ECORD										
PROPERTY:	MON				HORI. COMP:		I	HOLE #: 1	M06-5		
LOCATION:	West	of Monroe Lake			VERT. COMP:		I	LENGTH:			
COMMENCED:			COMPLETED:		CORR. DIP:						
COORDS: Long			Lat.		TRUE BEARING	i:	Ι	ORILL CO	NTRACT	FOR:	
COORDS: UTM			(N)	(EL)	% RECOVERY:			CORE SIZ			
COORDS: Grid ((N)	(EL)	LOGGED DATE	•		CASING:	2.		
ELEVATION:			COLLAR: Dip:	Azi:	LOGGED BY:	•		CORE STC	RAGE.		
OBJECTIVE:			COLLAR. DIP.	ΔL1.	LOUGED D1.			JOKE STC	KAUL.		
SURVEYS:	Denth	Dim	Azi: Type:					Additional			
	Depth: LITHOLOGY:	Dip:	Azi: Type:						Denth	Dia	A:
	LITHOLOGY:						2	Surveys:	Depth	Dip	Azi
meters											
		NOTE	: HOLE # M06	-5 WAS ABAN	DONED						
			IN OVERBUI	RDEN							
	COLOUR:										
	N=										
	11-										
	PRIMARY STR	NICTURE .									
		COUTORE:									
	TECTONIC ST	RUCTURE:									
	GENERAL AL	TERATION:									
	MINERALIZA'	TION & ASSOCIA	TED ALTERATIONS, H	OST STRUCTURE:	SAMPLE #	From	То	Length			

	ECODD			51.	LUGENE	MINING COL	NI .							
DRILL HOLE R								1.40.0						
PROPERTY:	MONROE						HORI. COMP:	149.2 n		HOLE #:	M0			
LOCATION:	West of Mon				0.00	0007	VERT. COMP:	149.2 r		LENGTH		.0 meter	'S	
COMMENCED:		1		COMPLETED	: Oct. 22	, 2006	CORR. DIP:	-45		DRILL CO			N.111	
COORDS: Long				Lat.			TRUE BEARIN					Connors I	Drilling	
COORDS: UTM COORDS: Grid				(N) 5467925N (N)	(EL) (EL)		% RECOVERY LOGGED DAT			CORE SIZ CASING:	E: NQ 5.8 r	~		
ELEVATION:	(E) 1460			COLLAR: Dip	· · ·	Azi: 209°	LOGGED BY:					Vine Property		
ELEVATION.	1400			AZI. 209	LUGGED B1.	D.L. Figh		CORESI	JKAUE.	ville Flo	operty			
SURVEYS:	Depth:	Dip:	Azi:	Type:						Additional				
From To	LITHOLOGY:		ALI.	Type.						Surveys:	Depth	Dip	Azi	
meters									,	Surveys.	Deptii	Dip	ALI	
5.8 14.0	Argillite interbe	dded argillaceo	us siltstone.											
5.0 11.0	8													
	COLOUR:												•	
	Grey band dark	grey.												
	PRIMARY STI	RUCTURE:												
					1 1.									
	Medium to thin	-bedded. Beddi	ing is flat and	sharp, fine-grair	hed sedime	nts.								
	TECTONIC ST	RUCTURE:												
		incerent.												
	Bedding to C/A	@ 9.0 m = 55°												
	8													
	GENERAL AL	TERATION:												
	Regional, consis	ting of fine biot	titization and	weak sericitizati	on with loo	cal zones of sili	cification.							
					HOGT G	DUCTUDE.		D	T	T				
	MINERALIZA	TION & ASSU	JCIATED A	LIERATIONS	, HUST 5	IRUCTURE:	SAMPLE #	From	То	Length				
	Pyrrhotite is very	y weakly discon	ninated throu	about this interv	a1					+	+	+		
		y weakiy uissell		gnout this milelva	uı.					+		+		
													_	
										+		+		
												-		
										+		+		
										+		+		

DRILL HOLE R	RECORD				PAC	GE #: 2 of	f 8	
From To	LITHOLOGY:				HO	LE#: M0	6-6	
meters 14.0 32.0	Quartzite interbedded siltstone and minor argillite. At 22.1 to 23.5 m thin to very thin-be	edded, parallel lam	inated argi	llite.				
	COLOUR:							
	PRIMARY STRUCTURE: Mainly medium to thick-bedded. Bedding is generally distinct and commonly wavy. So Quartzite and siltstone beds are medium to fine-grained, generally graded, fining upward Bedding to core @ 25.0 m = 51°. TECTONIC STRUCTURE:	me good flame stru s.	ctures. So	ome soft s	sediment de	formation	1.	
	At 18.0 m a 5-cm thick quartz-biotite veins cut C/A at 25 °							
	GENERAL ALTERATION: Generally regional as previous described, but with scattered subhedral pink garnets wide	ly scattered through	out.					
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length			
	Very weakly disseminated pyrrhotite throughout.							

DRILL H	HOLE R	ECORD				PAC	E #: 3 of	f 8						
From	То	LITHOGRAPHY:				HOI	LE #: M0	6-6						
<u>mete</u> 32.0	<u>rs</u> 92.5	Mainly quartzite and siltstone beds with widely scattered thin sequences (10 cm to 30 cm) of argillite.											
		COLOUR:												
		Shades of grey with some light greenish grey bands.												
		PRIMARY STRUCTURE: Mainly medium to thick-bedded, with some scattered sequences of thin to very thin-bedd These sediments are medium to fine-grained, with some beds distinctly graded fining upv siltstone-quartzite beds. Argillite thin-bedded sequences show sharp, flat bedding and so	wards. Rip-up clast	s and min	or soft se	diment defo								
		TECTONIC STRUCTURE:												
		Bedding to core at 43.0 m = 56°; at 60.0 m = 52°; $68.5 = 48°$; $92.5 = 53°$.												
		GENERAL ALTERATION:												
		Regional as previously described, but with widely scattered late light green chloritic silic garnets and locally weak sericitization.	ified patches. Thes	e late silic	ified ban	ds are assoc	iated with	h subhedi	ral pink					
		MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length								
		Some weakly disseminated pyrrhotite.												

DRILL HOLE R	ECORD				PAG	E #: 4 of	f 8				
From To	LITHOLOGY:				HOI	LE#: M06	6-6				
meters 92.5 105.6	Homogenized argillite and siltstone unit.										
	COLOUR:										
	Light grey.										
	PRIMARY STRUCTURE:										
	Massive, no bedding, grades back and forth between argillite and siltstone.										
	TECTONIC STRUCTURE:										
	At 100.0 m a 10 cm thick gauge-filled shear zone $C/A = 90^{\circ}$; 102.6 to 103.4 m Fault zone	e? cut core at ?									
	GENERAL ALTERATION:										
	Generally fining sericitic with late coarsely crystalline biotite disseminated throughout th	e unit.									
			T								
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length						
	Pyrrhotite is relatively abundant throughout this unit. Pyrrhotite occurs as blebs and										
	small lenses of massive pyrrhotite. Pyrrhotite content ranges between 1% and locally up to 10%.										

DRILL HOLE R	ECORD				PAG	E #: 5 O	F 8	
From To	LITHOLOGY:				HOL	LE#: M06	5-6	
meters 105.6 109.5	Actinolitic, tremalitic, biotitic, chloritic limestone.							
	COLOUR:							
	Light grey, mottled green and brown							
	TEXTURE:							
	Medium crystalline limestone with irregular bands and patches of brown biotite overpain blackish green chlorite occurs in massive bands and patches throughout this unit.	ted by late actinolit	e and trem	nolite. F	inely crystal	line dark	green an	d
	TECTONIC STRUCTURE:							
	GENERAL ALTERATION:							
	See above.							
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length			
	Very rare, widely scattered specks of sphalerite and pyrrhotite.							

DRILL HOLE R	ECORD				PAG	E#: 60	f 8	
From To	LITHOLOGY:				HOL	E#: M00	6-6	
meters 109.5 122.0	Homogenized unit consisting of mixed lenses of siltstone and argillite.							
	COLOUR:							
	Brownish grey mottled reddish brown							
	PRIMARY STRUCTURE:							
	Massive, slump structured, generally fine-grained sediments consisting of argillite mixed sections look as if they were fragmental units, but the fragmented texture may be the resu	in with siltstone. It of biotitization.	Dewaterin	g structur	es are scatte	ered throu	ghout. S	Some
	TECTONIC STRUCTURE:							
	GENERAL ALTERATION:							
	Generally sericitic and strongly overprinted by brown biotite. Brown biotite appears to b	e replacing dewate	ring-type s	structures	, and possib	ly clasts.		
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length			
	Rare disseminated pyrrhotite.							

DRILL HOLE R	RECORD				PAGI	E #: 7 of 8								
From To	LITHOLOGY:				HOL	E#: M06-6								
meters 122.0 139.5	Fragmental, composed mainly of a quartzite matrix with quartzite clasts, 123.0 to 126.5 n	n bedded siltstone.												
	COLOUR:													
	Generally light brownish grey, mottled white and light grey.													
	PRIMARY STRUCTURE: Massive clasts are generally rounded to sharp and angular. Range in size between 2 mm supported, and show no preferred orientation 126.5 to 127.0 m. The fragment is clast-sup bedding to core = 58° .													
	TECTONIC STRUCTURE:													
	At 127.0 m barren quartz vein 5 cm thick cuts core at 38°.													
	GENERAL ALTERATION:													
	Fragmental unit is intensely silicified and some of the clasts are completely altered to wh	ite sericite. The ma	atrix gener	ally bioti	itic (weakly)	and weakly	sericitic.							
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length									
	Very rare specks of pyrrhotite.													
					+ +									

DRILL HOLE R	ECORD				PAGE	#: 8of 8	
From To	LITHOLOGY:				HOLI	E #: M06-6	
meters 139.5 211.0	Quartzite mixed with siltstone, homogenized unit.						
	COLOUR:						
	Light grey with white mottling, overprinted by brown to black speckling and banding.						
	PRIMARY STRUCTURE:						
	Massive 'NO' bedding. Mainly medium to fine-grained quartzite that can locally grade in	nto siltstone.					
	TECTONIC STRUCTURE:At $155.0 - 155.5$ m fault zone cuts core at 33° . Consists of finely-brecciated quartzite with Bedding at 207.0 m = 62° ; at 175.0 m a shear zone 5 cm thick cuts core at 30° .	th some fault gauge	2.				
	GENERAL ALTERATION:						
END OF	Intensely silicified and overprinted by spotty albititization. The albititization and silicific actinolite. From 109.8 to 203.4 albititization and biotitization becomes very intense. Here the coars			-	-	-	ıd
HOLE	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length		
	Very rare specks of pyrrhotite at 158.0 m. A 30 cm thick barren bull quartzite cut core at 35°.						
	At 206.5 m hairline fractures host sphalerite cut C/A at 10° and 32°.						

ALS Chemex **EXCELLENCE IN ANALYTICAL CHEMISTRY**

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: ST. EUGENE MINING CORP 701 - 675 WEST HASTINGS AVE. VANCOUVER BC V6B 1N2

Page: 1 Finalized Date: 8-NOV-2006 Account: STEUGE

CERTIFICATE VA06106003

Project: Monroe

P.O. No .:

This report is for 42 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 18-OCT-2006.

The following have access to data associated with this certificate: ROLAND TRENAMAN

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
CRU-QC	Crushing QC Test	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	

	ANALYTICAL PROCEDURES									
ALS CODE	DESCRIPTION	INSTRUMENT								
Pb-AA46	Ore grade Pb - aqua regia/AA	AAS								
Zn-AA46	Ore grade Zn - aqua regia/AA	AAS								
ME-ICP41	34 Element Aqua Regia ICP-AES	ICP-AES								
Ag-AA46	Ore grade Ag - aqua regia/AA	AAS								

Signature:

Munvoe Lake MOG-O' MOG-O' CORES APPENDIX II ASSAYS

To: ST. EUGENE MINING CORP ATTN: ROLAND TRENAMAN 701 - 675 WEST HASTINGS AVE. VANCOUVER BC V6B 1N2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Reall Dog

Keith Rogers, Executive Manager Vancouver Laboratory

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ST. EUGENE MINING CORP 701 - 675 WEST HASTINGS AVE. VANCOUVER BC V6B 1N2

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 8-NOV-2006 Account: STEUGE

Project: Monroe

CERTIFICATE OF ANALYSIS VA06106003

Method Analyte Units Sample Description LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
M304351	1.38	>100	0.55	40	<10	10	<0.5	32	0.16	679	38	<1	839	28.7	<10
M304352	3.12	20.0	0.78	725	<10	20	<0.5	3	15.2	103.0	12	6	463	11.90	<10
M304353	1.92	31.6	0.48	623	<10	10 -	<0.5	<2	22.5	184.5	12	1	471	11.30	<10
M304354	1.42	35.0	0.16	6	<10	10	<0.5	26	0.62	24.5	23	4	554	16.3	<10
304855	2.48	17.9	2.53	427	<10	100	1.3	14	0.99	25.1	6	29	57	4.60	10
Mad 356	1.84	91.6	0.71	>10000	<10	60	<0.5	76	0.24	781	90	1	731	30.2	<10
M304357	2.02	47.3	5.26	23	<10	60	0.6	36	2.77	571	13	24	154	9.80	20
M304358	3.42	3.7	4.84	69	<10	380	0.5	2	12.85	24.4	5	22	62	5.73	20
M304359	2.58	3.3	5.08	103	<10	420	0.5	3	13.8	17.8	7	22	47	5.37	30
M304360	1.52	3.8	1.28	3	<10	60	<0.5	4	7.72	6.4	2	5	27	1.81	<10
M304361	1.42	>100	2.42	62	<10	150	<0.5	191	5.11	452	22	16	291	10.30	10
M304362 MOB-1	2.66	3.9	1.91	<2	<10	80	0.7	6	4.72	38.3	16	17	192	8.44	10
M304363	2.18	43.9	1.84	21	<10	100	<0.5	92	15.2	35.5	4	11	38	3.32	10
M304364	1.80	6.4	0.64	<2	<10	40	<0.5	14	8.69	8.4	2	2	15	1.40	<10
M304365	1.70	81.7	0.74	<2	<10	60	<0.5	181	9.45	775	12	<1	41	3.34	<10
M304366	2.26	1.5	0.46	3	<10	40	<0.5	3	7.81	5.3	<1	1	3	0.68	<10
M304367	1.96	1.1	1.58	4	<10	140	<0.5	2	16.1	4.9	1	2	3	1.54	10
M304368	1.56	98.1	0.92	<2	<10	70	<0.5	209	13.3	742	12	<1	57	3.68	<10
M304369	0.94	11.9	0.48	3190	<10	20	<0.5	57	0.78	67.1	30	<1	813	>50	<10
M304370	2.34	29.1	3.44	>10000	<10	190	1.0	140	3.68	7 31.4	33	27	185	8.82	10
M304371	2.50	20.8	3.04	>10000	<10	150	0.7	93	7.03	57.4	39	16	343	12.50	10
M304372	1.02	49.5	1.45	4680	<10	100	0.5	234	6.65	345	20	5	179	5.81	10
M304373	2.28	11.3	1.48	62	<10	80	<0.5	17	9.25	126.0	8	5	33	2.27	<10
M304374	2.46	<0.2	0.30	241	<10	10	<0.5	2	20.3	0.7	2	<1	4	1.26	<10
M2SA375	2.38	<0.2	0.07	13	<10	20	<0.5	<2	20.6	<0.5	1	<1	1	0.94	<10
30476 76	2.24	5.5	0.54	12	<10	40	<0.5	21	14.4	8.6	2	<1	6	0.98	<10
M304377	2.24	67.4	0.92	9	<10	50	<0.5	254	5.89	97.5	6	2	45	2.70	<10
M304378 M06-4	2.76	17.5	2.72	>10000	<10	190	0.9	93	1.50	1.9	15	27	3	3.58	10
M304379	1.72	14.6	4.62	>10000	<10	70	0.9	64	5.65	322	39	20	177	9.40	20
M304380	2.76	5.6	5.63	414	<10	140	<0.5	27	11.30	12.8	5	16	301	12.50	30
M304381	1.54	3.1	6.64	1610	<10	170	2.0	14	4.33	35.3	6	36	124	6.44	20
M304382	2.36	5.0	5.27	2170	<10	200	1.1	33	3.30	52.9	9	40	196	10.50	10
M304383	2.72	4.6	2.97	>10000	<10	120	0.9	149	1.64	13.8	21	29	23	3.32	10
M304384	2.14	11.7	2.82	467	<10	120	<0.5	23	16.9	131.0	10	5	40	3.21	10
M304385	2.74	9.7	4.18	>10000	<10	140	0.9	49	4.56	2.6	69	29	94	8.52	10
M304386	0.76	77.5	1.12	141	<10	20	<0.5	312	0.73	48.0	25	4	1090	36.0	<10
M304387	2.12	1.3	1.49	6220	<10	50	<0.5	6	0.75	<0.5	4	22	5	1.36	<10
M304388	2.26	2.5	2.24	>10000	<10	80	0.5	11	1.21	1.4	53	22	58	4.21	10
M304389	2.94	13.3	0.50	4490	<10	30	<0.5	52	0.18	8.4	45	8	1305	32.0	<10
M304300	3.38	4.9	0.37	7640	<10	40	<0.5	22	0.17	22.6	60	<1	727	35.7	<10

Sample Description

M304351 -

ME-ICP41

Hg

ppm

1

2

Method

Analyte

Units

LOR

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ST. EUGENE MINING CORP 701 - 675 WEST HASTINGS AVE. VANCOUVER BC V6B 1N2

CERTIFICATE OF ANALYSIS

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 8-NOV-2006 Account: STEUGE

Ti

%

0.01

0.01

VA06106003

Project: Monroe

ME-ICP41 к La Mg Mn Mo Na Ni P Pb S Sb Sc Sr % % % % ppm ppm ppm ppm ppm ppm ppm ppm ppm 0.01 10 0.01 5 1 0.01 10 2 0.01 2 1 1 1 20 50 0.14 0.19 1680 <1 0.02 91 >10000 6.53 198 <1 7 0.23 <10 0.54 7050 <1 0.02 31 730 >10000 6.78 43 1 183

304351	2	0.14	20	0.19	1680	<1	0.02	91	50	>10000	6.53	198	<1	'	0.01
304352	<1	0.23	<10	0.54	7050	<1	0.02	31	730	>10000	6.78	43	1	183	0.04
304353	1	0.26	<10	0.55	9010	<1	0.01	30	330	>10000	7.3	66	1	222	0.02
304354	<1	0.03	<10	0.06	295	<1	0.01	58	40	>10000	4.90	54	<1	10	0.0
355	<1	0.83	20	1.46	871	<1	0.11	10	180	>10000	2.26	33	4	59	0.1
	- Line and the second s		20												
356	2	0.57	<10	0.71	1740	<1	0.01	95	50	>10000	5.36	260	<1	7	0.0
304357	1	4.14	<10	5.18	4140	<1	0.04	12	270	>10000	7.35	73	7	26	0.1
1304358	1	4.14	<10	7.42	9240	<1	0.03	6	260	2940	1.47	7	4	211	0.1
1304359	<1	4.38	10	6.00	7520	<1	0.03	9	170	2570	1.26	7	3	187	0.1
1304360	<1	0.58	<10	1.38	3220	1	0.02	1	100	3200	0.67	6	<1	101	0.0
304361	<1	1.34	<10	2.53	3340	<1	0.02	26	210	>10000	5.60	183	3	56	0.1
204202	<1	0.59	10	1.62	1760	<1	0.02	26	560	3140		8	2	71	0.1
304362 MCG-	<1	0.70	<10	7.96	8680	<1	0.02	2	200	>10000	4.69	26	2	410	0.0
304364		0.57	<10	2.17	4500	2	0.01	<1	70	4990	0.48	16	<1	195	0.0
304365		0.62	<10	1.36	4750	4	0.01	<1	20	>10000	4.74	82	<1	228	<0.0
advisit and a state of the second	me the second second						to inter in prove			and the second sec	and the second se		General Contractions		
304366	<1	0.39	<10	1.51	3650	<1	0.01	<1	30	1100	0.13	10	<1	195	<0.0
304367	1	1.44	<10	7.33	7710	<1	0.02	<1	100	713	<0.01	9	1	665	0.0
1304368	1	0.59	<10	1.71	6260	<1	0.02	5	20	>10000	6.79	75	<1	389	<0.0
1304369	<1	0.07	<10	0.14	497	<1	0.04	89	30	2340	4.83	12	<1	17	0.0
1304370	1. 1994 1999	0.84	10	1.72	1510	<1	0.20	19	330	6140	3.72	41	4	98	0.1
1304371	<1	1.29	10	1.84	2640	<1	0.12	22	250	4440	5.03	42	3	90	0.1
1304372	<1	0.38	10	0.71	2360	<1	0.07	6	330	>10000	4.15	36	1	66	0.0
1304373	1	0.81	10	2.15	3530	3	0.02	5	140	8430	1.86	10	1	167	0.0
1304374	<1	0.06	<10	11.70	7450	<1	0.01	<1	20	121	< 0.01	4	<1	1190	<0.0
1204375	<1	0.02	<10	11.55	7460	<1	0.02	<1	10	233	< 0.01	2	<1	2320	<0.0
76	<1	0.46	<10	2.82	5890	<1	0.01	<1	40	2550	0.29	12	<1	526	0.0
	and the second se	0.46	<10	1.72	2880	<1	0.01	7	40	>10000					
1304377	<1										2.08	22	<1	105	0.0
1304378	1	0.79	10	1.01	685	<1	0.24	16	320	3870	1.47	109	5	89	0.0
1304379	1	2.30	10	3.14	2940	<1	0.17	17	290	2700	4.83	36	6	94	0.1
1304380	1	4.71	10	5.88	5520	<1	0.03	15	240	1060	4.35	4	4	79	0.1
1304381	1	1.67	10	2.42	1570	<1	0.41	11	490	665	2.50	7	6	236	0.1
1304381 >MO6-4	1	1.19	10	1.69	1250	<1	0.33	24	380	736	4.44	7	7	142	0.1
1304383	<1	0.51	10	0.59	392	<1	0.27	16	270	637	1.63	80	4	76	0.0
1304384	1001	1.36	<10	8.23	7910	2	0.02	3	50	7910	1.7	19	2	838	0.0
/304385	1	1.33	20	2.00	1860	<1	0.18	92	700	2480	3.64	148	5	86	0.1
1304386	1	0.22	<10	0.30	405	<1	0.06	121	90	>10000	5.20	29	1	30	0.0
	<1	0.22	<10	0.30	399	<1	0.08	2	280	421	0.33		1		
1304387	The second State State of the					1.1						21	-	30	0.0
1304388	<1	0.38	<10	0.52	394	<1	0.22	18	460	835	2.04	43	3	55	0.0
M304389	1	0.16	<10	0.26	293	<1.44	0.02	117	360	4190	8.14	22	11111111111111111111111111111111111111	9	0.0
4.104390		0.14	<10	0.05	211	<1	0.03	128	330	1400	6.79	52	副(A) 1	9	0.0

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: ST. EUGENE MINING CORP 701 - 675 WEST HASTINGS AVE. VANCOUVER BC V6B 1N2

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 8-NOV-2006 Account: STEUGE

Project: Monroe

								С	ERTIFICATE C	F ANALYS	IS VA06106003	
Method Analyte Units Sample Description LOR	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-AA46 Ag ppm 1	Pb-AA46 Pb % 0.01	Zn-AA46 Zn % 0.01				
M304351 M304352	<10 <10	<10 <10	6 11	<10 10	>10000 >10000	123	9.28 1.42	19.30 2.98		100		
M304353	<10	<10	7	<10	>10000		2.23	3.58				
M304354 /	<10	<10	1	<10	3570		2.81					
155	<10	<10	21	<10	3900		1.60					
N# 1:356 /	<10	<10	9	<10	>10000		9.27	13.25				
M304357	<10	<10	51	10	>10000		4.06	9.55				
M304358	<10	<10	40	<10	3970							
M304359	<10	<10	34	<10	2870							
M304360	<10	<10	9	<10	1010							
M304361	<10	<10	26	10	>10000	141	13.50	7.11	Sec. 2 Sec. 1	·		
M304362 M304363 MdG-1	<10	<10	21	<10	5270							
· · · · · · · · · · · · · · · · · · ·	<10	<10	32	<10	4340		2.79					
M304364	<10	10	12	<10	1180		Sh. Chan					
M304365	<10	<10	4	10	>10000		6.58	11.30	hi shiya sa			
M304366	<10	<10	6	110	786							
M304367	<10	<10	22	<10	838							
M304368	<10	<10	5	<10	>10000		6.26	9.49				
M304369 M304370	<10 <10	<10 <10	14 38	<10 <10	>10000			1.02				
					4230							
M304371	<10	<10	30	<10	7690				e 1 18 .			
M304372	<10	<10	13	<10	>10000		0.98	4.38				
M304373 M304374	<10	10	10	<10	>10000			1.44				
M204375	<10 <10	<10 <10	9 7	<10 <10	158 104							
the second se												
M304377	<10	<10	6	<10	1210		1					
	<10	<10	10	50	>10000		2.57	1.21				
M304378 M304379	<10	<10	18 46	<10	330							
M304379 M304380	<10 <10	<10 <10	40	10 <10	>10000 2780			5.58				
and the second											P	
M304381	<10	<10	46	<10	5320							
M304382 MOG-4	<10	<10	56	<10	7770							
M304383 M304384	<10 <10	<10 10	22 20	<10 <10	2030			1.00				
M304385	<10	<10	43	<10	>10000 545		N. A.	1.88				
and a state of the second						(4.4 (5.4)						
M304386	<10	<10	13	<10	5840		2,25			and the second		
M304387 M304388	<10 <10	<10	21 23	<10	87		観い観白いた					
M304389	<10	<10 <10	13	<10 <10	209 1310		No.					
M304390	<10	<10	7	<10	3250			Sale II				
				10	0200					中國自己的目的		
						1774	all the second second			ne state		
	Call States						6 Contraction		A MARCEN LAND			
						41	制成科学人们的				and the second se	
AND A CONTRACT	D. C. L. C.						William Contractor					

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: ST. EUGENE MINING CORP 701 - 675 WEST HASTINGS AVE. VANCOUVER BC V6B 1N2

CERTIFICATE OF ANALYSIS

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 8-NOV-2006 Account: STEUGE

VA06106003

Project: Monroe

ME-ICP41 WEI-21 ME-ICP41 Method Recvd Wt. Co ' Cr Cu Fe Ga Analyte Ag AI As в Ba Be Bi Ca Cd Units % kg % % ppm **Sample Description** LOR 0.02 0.2 0.01 10 10 0.5 0.5 0.01 10 2 2 0.01 1 1 1 M304392 5 M06-4 M304391 2.42 83 3.91 <10 12.6 0.40 5420 <10 40 < 0.5 49 0.18 15.8 15 8 2.36 0.3 0.26 2200 30 2 0.6 36 1.56 <10 <10 <0.5 0.20 5 6 Eri - 83 D

(...

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ST. EUGENE MINING CORP 701 - 675 WEST HASTINGS AVE. VANCOUVER BC V6B 1N2

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 8-NOV-2006 Account: STEUGE

Project: Monroe

CERTIFICATE OF ANALYSIS VA06106003 ME-ICP41 Method Hg к La Mg Mn Mo Na Ni P Pb S Sb Sc Sr Ti Analyte % % % Units ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm % Sample Description LOR 1 0.01 10 0.01 5 1 0.01 1 10 2 0.01 2 1 1 0.01 <10 0.07 <1 0.20 99 <1 0.02 14 220 4080 2.03 27 1 7 0.04 M304391 2 M06-4 M304392 1 0.12 20 0.03 45 0.01 10 440 122 0.85 6 <1 6 1 0.03 C

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ST. EUGENE MINING CORP 701 - 675 WEST HASTINGS AVE. VANCOUVER BC V6B 1N2

Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 8-NOV-2006 Account: STEUGE

Project: Monroe

CERTIFICATE OF ANALYSIS VA06106003 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 Ag-AA46 Pb-AA46 Zn-AA46 Method TI U v Pb Zn W Zn Analyte Ag Units % ppm ppm ppm ppm % ppm ppm **Sample Description** LOR 10 10 1 10 2 1 0.01 0.01 M304391 3 Mob-4 <10 <10 6 <10 2020 <10 <10 3 <10 91 m 1 3

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ST. EUGENE MINING CORP 701 - 675 WEST HASTINGS AVE. VANCOUVER BC V6B 1N2 MOG - O3 Finalized Date: 13-DEC-2006 Account: STEUGE

Project: Monroe

						CERTIFICATE OF ANALYSIS	VA06120127
Method Analyte Units Sample Description LOR	WEI-21 Recvd Wt. kg 0.02	Ag-AA46 Ag ppm 1	Pb-AA46 Pb % 0.01	Zn-AA46 Zn % 0.01			
M304301	2.46	<1	0.02	0.04			
M304302)	1.36	3	0.28	0.87			
M304303 M06-2	2.54	2	0.19	0.11		the second s	
M304304	2.74 0.98	7 21	0.31 0.87	0.30 0.23			
306	2.96	9	0.52	0.15			
M304307	3.06	15	0.74	0.20			
M304308 M304309	3.22	<1	0.02	0.03			
M304310	2.38 2.28	4	0.31 0.51	0.10 0.69			
M304311	2.50	2	0.21	0.42	A State of the second sec		
M304312	3.08	1	0.10	0.02			
M304313	1.98	6	0.42	0.08	① 推進回該 2017年1月		
M304314 M304315	1.48 2.76	135 1	7.73 0.07	0.07 0.04			
M304316	2.84	10	0.63	0.39			
M304317	2.06	36	1.91	1.14			
M304318 M06-3 M304319	3.06	4	0.27	0.23			
M304320	2.62 3.16	1	0.03 0.06	0.02 0.04			
M304321	3.36	27	0.85	0.59			
M304322	2.92	8	0.26	0.41			
M304323 M304324	3.06	3	0.11	1.06			
M304325	2.80 2.88	17 17	0.51 0.49	0.97 0.69			
26	3.50	5	0.14	0.07	Printer su	1	
M304327	2.40	7	0.21	0.18			
M304328	3.24	14	0.29	0.04			
M304329 M304330	3.14 2.74	10 13	0.19 0.25	1.55 0.53			
M304331	2.88	5	0.20	1.19			
M304332	2.16	4	0.08	0.68			
M304333	3.02	2	0.04	0.09			
M304334	3.16	<1	0.01	0.02			
	a starter						
instants and in the set							
	N a V II						
T MEET A WER							
COLUMN N STATE							
	A. S. A. M.				All and the second second	N. C. CARLES TO DE LA MARKET AND BELL	and the second se