

Ministry of Energy, Mines & Petroleum Resources

Mining & Minerals Division BC Geological Survey

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT [type of survey(s)] Spring 2007 Geochemial Survey on the JAG Property	TOTAL COST \$9948.13
AUTHOR(S) David A. Terry SIGNATURE(S)	
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S)	AR OF WORK2007
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S) 4149605 May 23, 2007 4:13 PM	
PROPERTY NAME	
CLAIM NAME(S) (on which work was done)	
COMMODITIES SOUGHTAu , Ag	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN	
MINING DIVISION Omineca NTS 93F/6	
LATITUDE53o19,49 LONGITUDE125o03,26	" (at centre of work)
OWNER(S) Piotr Lutynski 1) 2)	
MAILING ADDRESS 5285 Sherbrooke St.	
Vancouver, BC, V5W 3M3	
OPERATOR(S) [who paid for the work] 1) Astral Mining Corporation 2)	
MAILING ADDRESS Suite 709 - 837 West Hastings	
Vancouver, BC V6C 3N6	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude Middle Jurassic	e):
Hazelton Group, Nagico Formation	
Eocene to Oligocene	
Nechako Plateau Group - Ootsa Lake Formation; rhyolit	ce
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS0	

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Induced Polarization			
Airborne			
GEOCHEMICAL			
(number of samples analysed for)	41	534366, 534467, 534364	\$1289.48
Soil		334300, 334407, 334304	
Silt	52	534364, 534365, 534367	\$1665.41
Rock			
Other			
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/trail _			
Trench (metres)			
Underground dev. (metres)			
Other			\$1800.00
		TOTAL COST	\$9948.13

Spring 2007 Geochemical Survey

on the

JAG Property

Located in the Omineca Mining Division Nechako Plateau, British Columbia (Claims 534364, 534365, 534366, 534367) 53°19'49"N 125°3'26"W (NAD 83) NTS 93F/06

Assessment Report Prepared for:

Astral Mining Corporation (operator) Suite 709 837 West Hastings Street Vancouver, British Columbia Canada, V6C 3N6

Piotr Lutynski (owner) 5285 Sherbrooke Street Vancouver, British Columbia Canada, V5W 3M3

By David A. Terry, P. Geo. August 20, 2007

TABLE OF CONTENTS

Summary	.1
1.0 Introduction	
1.1 Location and Access	.2
1.2 Mineral Titles	.2
2.0 Geology	.4
2.1 Geological Setting	.4
2.2 Mineralization	.5
2.3 Exploration History	.5
3.0 Spring 2007 Geochemical Survey	.5
3.1 Exploration work	.5
3.2 Sample Collection, Preparation and Analysis	.6
3.3 Results	
3.4 Interpretation and Conclusion	.7
3.5 Cost Statements 2007	
4.0 Statement of Qualifications	
5.0 References	
LIST OF TABLES	
Talle 4. Olain Otal at IAO Barrat	_
Table 1: Claim Status, JAG Property	.2
Table 2: Cost Statement JAG Property Spring 2007 Geochemical Survey	. 8
LIST OF FIGURES	
Figure 1: JAG Property Location Map, British Columbia	2
Figure 2: JAG Property Claim Map	. บ ว
Figure 3: Au (ppm) in silt, JAG Property	
Figure 4: Au (ppm) in soil, JAG Property	
rigure 4. Au (ppin) in son, sae i roperty	· U
LIST OF APPENDICES	
APPENDIX 1: UTM Locations and Field Observations1	12
APPENDIX 2: Assay Certificates	
	_

Summary

The JAG Property is an early stage exploration project located in the Nechako Plateau, west central British Columbia in the Omineca Mining Division. It is accessible by forestry service roads from the town of Vanderhoof, 140km to the northeast. The Mineral Claims pertaining to this assessment report were obtained in 2006 and comprise 90 units (1737.932 hectares). The claims are owned by Piotr Lutynski and under option agreement with Astral Mining Corporation who operates the Property.

The Nechako Plateau lies within the Stikine Terrain. It was regionally uplifted, exposing horst of Jurassic and Cretaceous volcanics and intrusives surrounded by Tertiary and younger volcanics and volcaniclastics. Based on the regional geology, the JAG claims are underlain by Jurassic-aged volcanics. Extensional faulting and related structural activity and associated precious metal rich hydrothermal systems provide an attractive geological setting for an precious metal-bearing epithermal to high-level, subvolcanic porphyry environment. In 2006, Mr. Lutynski, the property owner collected 37 silt and moss mat samples, which revealed anomalous gold in creeks.

The spring 2007 geochemical survey was planned as a follow up on the gold anomalies found by Mr. Lutynski to better trace the source of the anomaly. The creeks were re-sampled at narrower intervals and a soil line north of the creeks was established and sampled. In total 52 silt samples and 41 soil samples were collected. The total cost of this program was \$9948.13.

The analytical work on the silt samples shows that gold ranges from below detection (<0.001 ppm) to 1.64 ppm. Analytical results from the single 2km soil line ranged from below detection (<0.01 ppm) 0.074 ppm gold. A program of follow-up silt sampling and soil sampling focusing on the northern creek, where the 1.64 ppm gold silt sample was collected, is recommended to follow up on this initial limited geochemical program.

1.0 Introduction

The JAG Property is an early-stage exploration project with limited previous exploration work. This assessment report details a 5-day soil and silt geochemical survey conducted on the property between May 16 and May 20, 2007.

1.1 Location and Access

The JAG Property is located in the Nechako Plateau in west central British Columbia in the Omineca Mining Division. It is geographically centered at 53°19'49"N and 125°3'26"W (NAD 83) on the NTS mapsheet 93F/06 (Figure 1).

Access to the property is by forestry service roads from the town of Vandelhoof, 140km to the northeast. Vanderhoof is the nearest town for food supply, gas and other necessities. Two logging camps and a ranch located within 40 km can provide lodging closer to the property. There is active logging in the area.

Most of the Nechako Plateau lies above the 1000 metre elevation. The terrain is relatively flat, often swampy with occasional mountain ridges creating high land developed as mountain ranges up to over 1500 metre. Vegetation consists of old growth forest. Most trees are less than 0.5m in diameter due to periodical forest fires and climatic conditions. The wildlife consists mainly of moose, deer, black bears, few grizzlies, and abundant grouse (Lutinsky, 2006).

1.2 Mineral Titles

The mineral claims pertaining to this assessment report were acquired in 2006 and comprise 90 units (1737.932 hectares, Figure 2). The claims are owned by Piotr Lutynski and are subject to an option agreement with Astral Mining Corporation who operates the exploration work carried out on the Property. Details on the JAG property claims are listed below.

Table 1: Claim Status, JAG Property

Tenure Number	Tenure Type	Claim Name	Area (hectares)	Good to date	Status
534364	Mineral	JAG-1	482.75	May 24, 2008	GOOD
534365	Mineral	JAG-2	482.919	May 24, 2008	GOOD
534366	Mineral	JAG-3	482.597	May 24, 2008	GOOD
534367	Mineral	JAG-4	289.666	May 24, 2008	GOOD

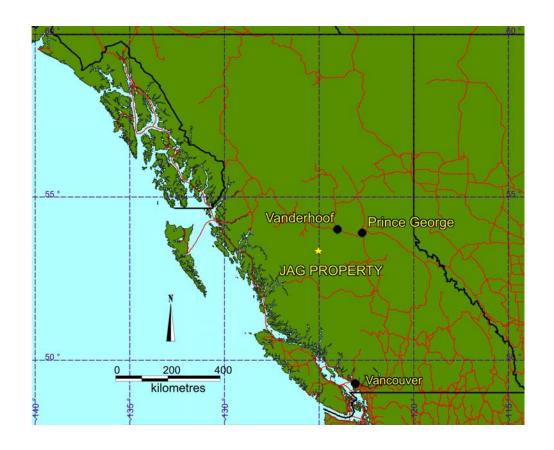


Figure 1: JAG Property Location Map, British Columbia

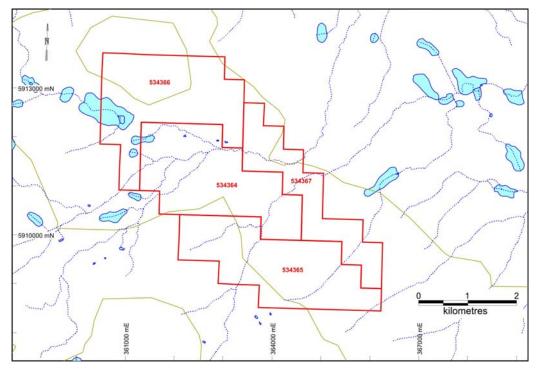


Figure 2: JAG Property Claim Map

2.0 Geology

The following two sections, entitled Geological Setting and Mineralization were written by Piotr Lutynski in an evaluation report dated June 2006. They provide a mineral potential assessment of the JAG property.

2.1 Geological Setting

The Nechako Plateau lies within the Stikine Terrain. It was regionally uplifted, exposing horst of Jurassic and Cretaceous volcanics and intrusives surrounded by Tertiary and younger volcanic and volcaniclastic rocks. There is similarity between the Nechako Plateau uplift (extensional block faulting, nested caulderas) to the Basin and Range structural province in Nevada and to the Babine area to the northwest of the Nechako Plateau (separated from the Nechako Plateau by the Skeena Arch). Extensional faulting and related structural activity plus associated precious metal rich hydrothermal systems provide an attractive geological setting for a precious metal rich epithermal to high-level subvolcanic porphyry deposit.

The oldest rocks in the Nechako area belong to the Jurassic Hazelton Formation (informally named the Negliko Formation). The Hazelton Formation is represented by mafic to felsic volcanic rocks (stratigraphically lowest), and intermediate volcanics intercalated with sediments (fossils, marine environment). Locally the Hazelton Formation rocks are intruded and altered by Middle Jurassic augite porphyry and Late Cretaceous intrusions comprising quartz monzonite, biotite-quartz diorite, quartz porphyry.

The Eocene Ootsa Lake Group lies uncomfortably on the Hazelton Formation. Ootsa Lake Group consists of basal conglomerate (stratigraphically lowest) overlain by tuff (welded and unwelded), lacustrine tuffaceous siltstone and sandstone capped by rhyolitic flows. In the Nechako Basin, Eocene Ootsa Lake group rocks are present in nested caulderas flanking the Nechako Arch, an uplifted horst of Triassic and Jurassic volcanics and lesser sediments.

Miocene and younger basalt lava flows (Chilkotin Group), younger than mineralizing events, occur mainly in low and flat areas in the Nechako Plateau.

Based on the region geology, the JAG claims are underlain by primarily by Jurassic volcanics. The property has not had the detailed mapping required to identify the age and type of the underlying lithologies.

2.2 Mineralization

The accreted Mesozoic Island Arc terrane and associated intrusive rocks of the Nechako Basin create a favorable environment for porphyry deposits similar to Endako (Mo), Gibralter (Cu-Mo) and Fish Lake (Cu-Au).

Porphyry Cu, Mo, Cu-Mo and Cu-Au deposits are associated with porphyry dykes and stocks of the Cretaceous Capoose batholith (Chu – 093F 001, Paw – 093F 052, Ned – 093F 039).

Epithermal precious metal deposits are hosted in the Eocene Ootsa Lake Group. The Trout (093F 044), Clisbako (093C 016), Oboy (093C 015), and Uduk Lake (093F 057) prospects have characteristics of volcanic hosted epithermal Au deposits.

Precious-base metal transitional vein and stockwork deposits of the Equity type are present at Capoose Lake (093F 040).

Based on the available* geochemistry, it could be expected that JAG claims host an epithermal style of mineralization.

2.3 Exploration History

The JAG property is an early stage exploration project with limited previous work. Previously, Mr. Lutynski, the property owner collected 37 silt and moss mat samples, which revealed anomalous gold in creeks east of Fawnie Range in the southern and central areas of the property. The area sampled is mostly soil/till covered and outcrop is sparse.

Regional aeromagnetic surveys and regional geology maps covering the JAG claim area are available from the British Columbia Ministry of Energy and Mines. (i.e. BCMEM OF 1993-14).

3.0 Spring 2007 Geochemical Survey

The spring 2007 geochemical survey was planned to follow up on the reported gold anomalies and to attempt to constrain the source of the anomaly. The target creeks were re-sampled at narrower intervals and a soil line north of the sampled creeks was established and sampled.

3.1 Exploration work

Astral Mining Corporation retained the services of Hendex Exploration Services to carry out the sampling program. Between May 16 and May 20, 2007, a two men crew collected 52 silt samples at approximately 100m intervals from creeks

-

^{*} Previous to 2007

in the central and south area of the property and 41 soil samples at 50m centres from a 2km soil line located immediately to the north of the northernmost of the creeks described above (Figure 3). High snow levels hindered sample collection, particularly in the higher portions of the creeks. Depending on exposure, snow was 0.6m deep at about 1325 m elevation. The creeks were not sampled at or above this elevation. All UTM silt locations were recorded in NAD 83 using a handheld GPS receiver. Six GPS readings were taken on the soil line. Field observations and UTM records are presented in Appendix 1.

3.2 Sample Collection, Preparation and Analysis

Silt samples were collected from active and inactive stream beds and put into labeled kraft sample bags. Soils collected were from the B Horizon and samples were also put into labeled kraft samples bags.

All silt and soil samples collected during this program were shipped to ALS Chemex, North Vancouver, BC for a 51-element package plus Au analysis. The samples were first dry sieved to –80 mesh (-180micron), the laboratory code for this procedure is PREP-41. The samples were subsequently treated with a 3:1 mixture of hydrochloric acid and nitric acid in preparation for the multi-element package analysis. This acid dissolution, the standard aqua regia digestion has the laboratory code GEO-AR01. The multi element package analysis was done by inductively coupled plasma mass spectroscopy (ICP-MS) and conventional atomic emission plasma spectroscopy (ICP-ES). The code for the 51-element package is ME-MS41. Gold was further analyzed by fire assay followed by inductively coupled plasma emission spectroscopy (ICP-AES). This method has a detection range of 0.001 to 10 ppm Au. The code for gold analysis is Au-ICP21.

3.3 Results

All assay certificates are included in Appendix 2. The analytical work on the silt samples shows that gold ranges from below detection (<0.001 ppm) to 1.64 ppm. The 95th percentile is 0.027 ppm gold. Greater than 90th percentile gold anomalies occur interspersed along the length of the sampled creeks with lower values (Figure 3). No consistently anomalous creeks were identified. Silver values range from 0.03 ppm to 0.62 ppm. Arsenic ranges from 2.9 ppm to 31.1 ppm. No correlation between higher gold values and these elements is evident in the data. Copper ranges from 11 to 34.1 ppm, lead ranges from 6 to 33 ppm and zinc ranges from 54 to 192 ppm. Interestingly the highest silver, copper, lead and zinc values come from a single sample in the central portion of the creeks sampled on the southern part of the property with only two samples from that creek (JAGSL001). Antimony and mercury values were low.

Analytical results from the single 2km soil line ranged from below detection (<0.001 ppm) 0.074 ppm gold. The 95th percentile is 0.049 ppm gold. Greater

than 90th percentile gold anomalies (i.e.>0.027 ppm gold), as with the silt samples, are mainly interspersed with lower gold values along the length of the line. Silver ranges from 0.04 to 0.61 ppm and no strong correlation is observed between anomalous gold and higher silver values. Arsenic ranges from 1.2 to 10.6 ppm and again no strong correlation is observed with gold. Antimonymercury and copper, lead and zinc values were all low.

3.4 Interpretation and Conclusions

This phase I silt and soil sampling program was hampered by the spring snow conditions which resulted in difficulty in physically getting around and collecting samples and may have also impaired sample quality due to high water levels in sampled creeks. Best efforts to collect representative and good quality samples were made despite the less than ideal conditions.

Sporadic moderate to low-order gold anomalies were identified along the sampled creeks as well as along the single sampled soil line. The high value of 1.64 ppm gold from a silt sample in the most northern creek demonstrates that gold is present in the drainage and additional silt sampling and analyzing of a variety of size fractions is warranted. In addition to this prospecting and geological mapping is recommended to locate and identify any outcrops in the area bordering or upstream of the creek. The northern creek sampled had, by far, the highest concentration of gold anomalies of the sampled creeks. The smaller creeks on the southern portion of the property are of low priority and future work should be focused on the northern creek. Some follow-up prospecting and sampling should be carried out around the silver-copper-lead-zinc silt anomaly (JAGSL001).

The soil line run to the north of, and roughly parallel to, the northern anomalous creek also displays intermittent low-order anomalies along its length. This could be a result of spotty gold in the soil or be representative of a number of gold anomaly sources perpendicular to the sample line. To determine the existence, orientation, and tenor of potential north-south oriented gold anomalies in this area, a larger multi-line grid is warranted. While carrying out the grid soil sampling work, all outcrops observed should be mapped and sampled if warranted.

3.5 Cost Statements 2007

The following table summarizes the cost of the current program.

Table 2: Cost Statement JAG Property Spring 2007 Geochemical Survey

	Expenses	Days	Rate	Total
Field Costs	1 man	5	365.00	1825.00
	1 man	5	330.00	1650.00
	Truck rental	5	100.00	500.00
	Camper	5	50.00	250.00
	Quad	5	60.00	300.00
	Fuel			229.62
	Supplies			50.88
	Lodging/Meals			387.74
Assays	52 silt			1665.41
	41 soil			1289.48
Report Preparation	D.A. Terry	3	600.00	1800.00
TOTAL				9948.13

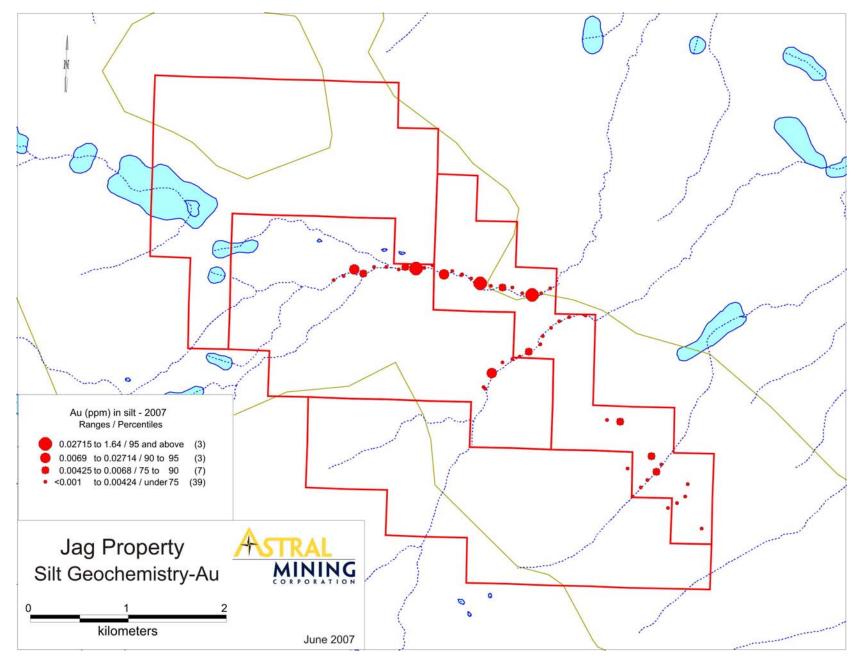


Figure 3: Au (ppm) in silt, JAG Property

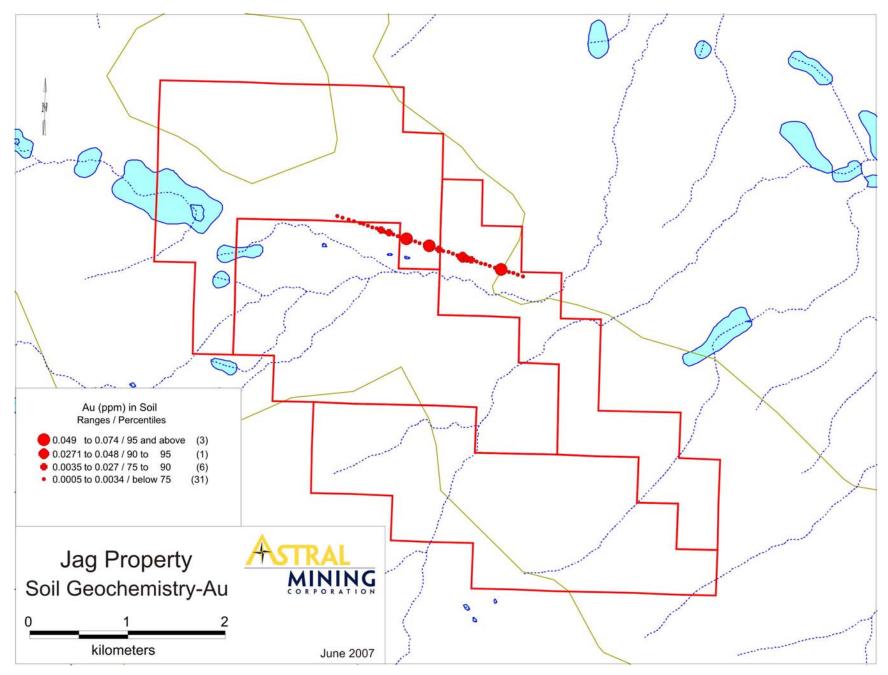
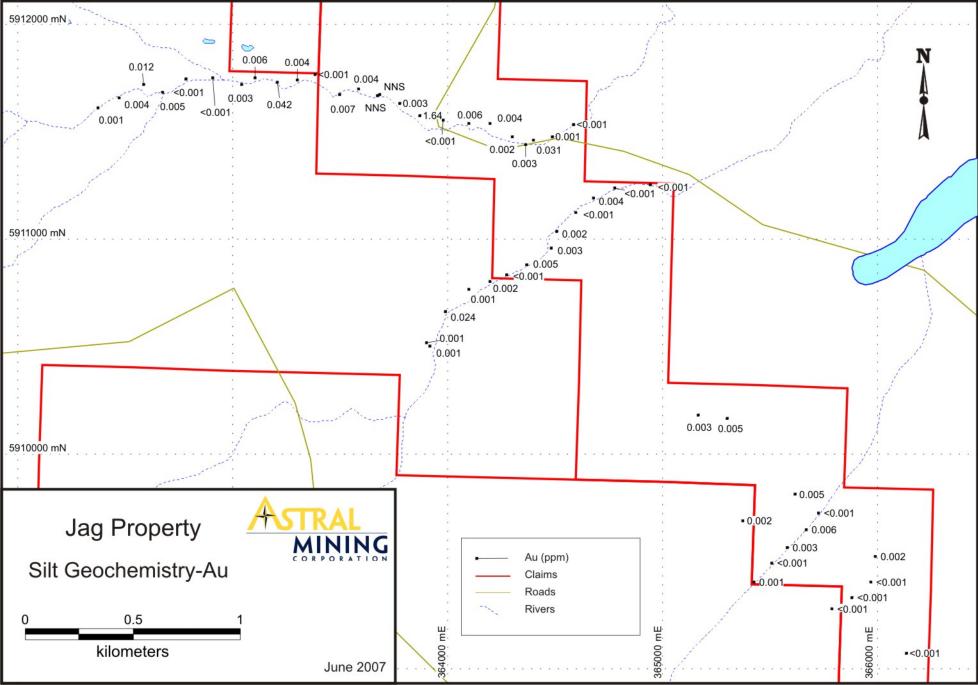
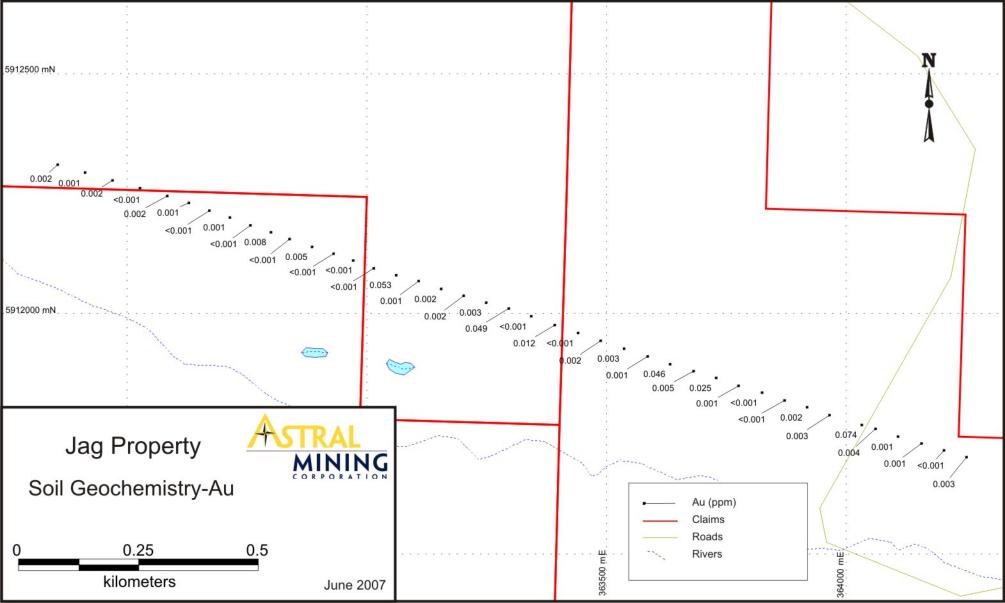




Figure 4: Au (ppm) in soil, JAG Property

4.0 Statement of Qualifications

David A. Terry, Ph.D., P.Geo 23680 108th Loop Maple Ridge, BC V2W 1B2 dterry@grossogroup.com

- 1. I am a graduate of the University of Western Ontario in London, Ontario, Canada with a B.Sc. in geology (1988) and a Ph.D. in geology (1997).
- 2. I am a registered Professional Geoscientist (P.Geo.) with the Association of Professional Engineers and Geoscientists of British Columbia.
- I have worked as a geologist for more that 18 years since graduation in Canada, the United States, Argentina, Chile, Peru and Mexico.
- 4. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- I am the author of this report. The collection of the samples reported on herein was carried out by staff of Hendex Exploration Services. I have received and interpreted the geochemical results.
- I am not independent of the issuer applying all tests in Section 1.5 of NI 43-101 in that I am an
 officer and director of Astral Mining Corporation and hold stock options and shares in the
 Company.

Dated this 20th day of August 2007

Signed and Sealed

David A. Terry Ph.D. P.Geo.

D.A. YER

5.0 References

Lutynski, Piotr (2006): JAG Property Memo, Nechako Plateau, B.C., pp. 1-6.

BCMEM OF 1993-14: Geology of the Natakuz Lake Map Area by L.J Diakow, K. Green, J. Whittles, and A. Perry, 93F/6, 1:50,000.

APPENDIX 1 UTM LOCATIONS & FIELD OBSERVATIONS

Silt Samples: UTM locations and field observations

JAG Silt	East	North	Remarks
JAGSL001	365165	5910180	Very limited Silt organic runoff creek in cut block
JAGSL002	365300	5910165	Very limited Silt organic runoff creek in cut block
JAGSL003	365620	5909810	Very limited Silt organic runoff creek in cut block
JAGSL004	365725	5909725	Fast rocky ,edge cut block
JAGSL005	365670	5909645	100m upstream of 004
JAGSL006	365580	5909565	135m upstream of 005
JAGSL007	365510	5909490	100m upstream of 006
JAGSL008	365425	5909400	130m upstream of 007
JAGSL009	365790	5909280	Very limited silt, rocky, organic poor sample material
JAGSL010	366135	5909070	limited silt
JAGSL011	365880	5909330	Very limited silt 110m downstream of 09
JAGSL012	365970	5909400	Very limited silt 125m downstream of 11
JAGSL013	365990	5909520	140m downstream of 12, accuracy 25m
JAGSL014	365375	5909685	300m upstream of 03 very limited silt poor sample material mixed with organic in cut block
JAGSL015	364945	5911250	creek 3m wide good silting creek
JAGSL016	364780	5911235	200m upstream of 15
JAGSL017	364680	5911190	100m upstream of 16
JAGSL018	364595	5911120	100m upstream of 17
JAGSL019	364510	5911035	125m upstream of 18
JAGSL020	364485	5910955	100m upstream of 19
JAGSL021	364370	5910880	100m upstream of 20
JAGSL022	364275	5910830	100m upstream of 21
JAGSL023	364200	5910800	100m upstream of 22 Accuracy 20m
JAGSL024	364100	5910765	100m upstream of 23 Accuracy 16m
JAGSL025	363990	5910660	100m upstream of 24
JAGSL026	363905	5910515	very ltd silt, taken from tributary to main west side 20m up from confluence too many organics above
JAGSL027	363920	5910500	taken from main 25m above the confluence with 26
JAGSL028	364365	5911440	taken from small tributary (20m up from confluence to main) as whole south side 65m downstream of 29
JAGSL029	364300	5911475	Main creek 4m wide
JAGSL030	364200	5911635	100m upstream of 29
JAGSL031	364100	5911635	100m upstream of 30
JAGSL032	364400	5911460	100m downstream of 29
JAGSL033	364490	5911475	100m downstream of 32, 28m accuracy
JAGSL034	364585	5911530	85m downstream of 33
JAGSL035	363980	5911550	120m upstream of 31
JAGSL036	363870	5911575	100m upstream of 35
JAGSL037	363780	5911628	100m upstream of 36
JAGSL038	363685	5911670	100m upstream of 37
JAGSL039	363585	5911700	100m upstream of 38
JAGSL040	363500	5911670	125m upstream of 39
JAGSL041	363385	5911765	120m upstream of 40
JAGSL042	363300	5911740	90m upstream of 41
JAGSL043	363210	5911730	100m upstream of 42
JAGSL044	363105	5911750	110m upstream of 43
JAGSL045	363040	5911720	70m upstream of 44 Approx 40m downsrteam of major confluence - creek to west larger of two
JAGSL046	362910	5911750	130m upstream of 45 on west fork 70m upstream of confluence
JAGSL047	362785	5911745	125m upstream of 46
JAGSL048	362675	5911680	Taken in main 20m upstream of confluence with creek from south

JAGSL049	363675	5911665	Taken from creek out of south 20m up from confluence
JAGSL050	362585	5911720	100m upstream of 48
JAGSL051	362475	5911655	100m upstream of 50
JAGSL052	362375	5911610	100m upstream of 51

Soil Samples: UTM locations and field observations

on oa	ilipies. U	i ivi ioca	tions and	neid ob	sei valions
Line	STN	Colour	Depth (cm)	East	North
1	0+00E	В	30	362355	5912310
1	0+50E	В	30		
1	1+00E	LB	30		
1	1+50E	LB	30		
1	2+00E	LB	30	362585	5912245
1	2+50E	LB	30		
1	3+00E	LB	30		
1	3+50E	LB	30		
1	4+00E	В	30		
1	4+50E	LB	30		
1	5+00E	LB	30		
1	5+50E	LB	30		
1	6+00E	В	30		
1	6+50E	LB	30	ROAD	
1	7+00E	LB	30	363015	5912095
1	7+50E	LB	30		
1	8+00E	LB	30		
1	8+50E	LB	30		
1	9+00E	LB	30		
1	9+50E	LB	30		
1	10+00E	В	30	363295	5912010
1	10+50E	В	30		
1	11+00E	LB	30		
1	11+50E	LB	30		
1	12+00E	В	30		
1	12+50E	LRB	30		
1	13+00E	LRB	30	363585	5911910
1	13+50E	LRB	30		
1	14+00E	LRB	30		
1	14+50E	LRB	30		
1	15+00E	LRB	30		
1	15+50E	LRB	30		
1	16+00E	LRB	30		
1	16+50E	LB	30		
1	17+00E	LB	30		
1	17+50E	LB	30	taken@	17+70e
1	18+00E	В	30		
1	18+50E	В	30		
1	19+00E	В	30		
1	19+50E	В	30		
1	20+00E	В	30	364250	5911700

Soils@106 degrees

APPENDIX 2 ASSAY CERTIFICATES

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET **VANCOUVER BC V6C 3N6**

Page: 1 Finalized Date: 9-JUN-2007

Account: ASMICO

CERTIFICATE VA07054770

Project: JAG

P.O. No.:

This report is for 41 Soil samples submitted to our lab in Vancouver, BC, Canada on 28-MAY-2007.

The following have access to data associated with this certificate:

DALE BRITTLIFFE

DAVID TERRY

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-22	Sample login - Rcd w/o BarCode							
SCR-41	Screen to -180um and save both							

ANALYTICAL PROCEDURES								
ALS CODE	DESCRIPTION							
ME-MS41 Au-ICP21	51 anal. aqua regia ICPMS Au 30g FA ICP-AES Finish	ICP-AES						

To: ASTRAL MINING CORPORATION **ATTN: DALE BRITTLIFFE** 709 - 837 WEST HASTINGS STREET **VANCOUVER BC V6C 3N6**

Signature:

Lawrence Ng, Laboratory Manager - Vancouver

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET VANCOUVER BC V6C 3N6 Page: 2 - A Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007 Account: ASMICO

Project: JAG

CERTIFICATE OF ANALYSIS VA07054770

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1
L-1 0+00E		0.60	0.002	0.60	1.67	7.0	<0.2	<10	140	0.46	0.19	0.19	0.19	13.45	7.1	15
L-1 0+50E		0.42	0.001	0.12	0.62	4.3	<0.2	<10	80	0.15	0.18	0.14	0.05	10.00	3.3	12
L-1 1+00E		0.52	0.002	0.47	1.33	9.5	<0.2	<10	90	0.37	0.30	0.14	0.10	11.35	5.1	13
L-1 1+50E		0.50	< 0.001	0.61	2.54	9.8	<0.2	<10	110	0.56	0.23	0.19	0.24	13.90	9.8	18
L-1 2+00E		0.52	0.002	0.10	1.45	5.1	<0.2	<10	80	0.37	0.32	0.10	0.08	11.75	4.9	11
L-1 2+50E		0.52	0.001	0.18	1.89	7.4	<0.2	<10	80	0.42	0.20	0.11	0.10	12.15	6.0	14
L-1 3+00E		0.56	< 0.001	0.26	1.72	6.7	<0.2	<10	90	0.31	0.18	0.13	0.12	11.40	7.2	17
L-1 3+50E		0.46	0.001	0.12	0.63	2.5	<0.2	<10	40	0.10	0.18	0.11	0.05	10.30	1.8	7
L-1 4+00E		0.50	< 0.001	0.10	1.15	3.2	<0.2	<10	80	0.27	0.12	0.19	0.08	13.30	5.1	10
L-1 4+50E		0.56	0.008	0.09	1.52	5.9	<0.2	<10	80	0.48	1.09	0.16	0.07	14.35	7.5	19
L-1 5+00E		0.60	<0.001	0.36	2.60	9.3	<0.2	<10	180	0.58	0.27	0.33	0.18	14.55	8.5	16
L-1 5+50E		0.52	0.005	0.12	1.06	5.2	<0.2	<10	70	0.17	0.22	0.19	0.06	12.80	4.6	10
L-1 6+00E		0.54	< 0.001	0.10	0.97	3.8	<0.2	<10	70	0.19	0.19	0.17	0.08	11.35	5.1	11
L-1 6+50E		0.42	< 0.001	0.08	0.85	1.7	<0.2	<10	110	0.16	0.17	0.29	0.06	15.35	3.2	10
L-1 7+00E		0.44	< 0.001	0.09	1.56	6.0	<0.2	<10	70	0.33	0.16	0.15	0.07	13.35	6.4	14
L-1 7+50E		0.50	0.053	0.13	1.35	5.0	<0.2	<10	50	0.26	0.39	0.15	0.06	13.35	4.6	13
L-1 8+00E		0.44	0.001	0.22	0.84	2.3	<0.2	<10	230	0.20	0.30	0.27	0.09	14.95	2.6	11
L-1 8+50E		0.42	0.002	0.11	1.00	5.5	<0.2	<10	130	0.29	0.14	0.24	0.06	16.25	5.0	9
L-1 9+00E		0.42	0.002	0.07	0.47	1.4	<0.2	<10	30	0.07	0.15	0.13	0.05	11.45	2.0	8
L-1 9+50E		0.58	0.003	0.44	2.35	10.6	<0.2	<10	110	0.50	0.49	0.25	0.12	12.40	9.0	19
L-1 10+00E		0.50	0.049	0.18	1.33	3.4	<0.2	<10	80	0.24	0.37	0.17	0.13	13.00	6.2	17
L-1 10+50E		0.46	< 0.001	0.15	0.70	1.4	<0.2	<10	60	0.10	0.24	0.15	0.14	10.65	2.6	9
L-1 11+00E		0.62	0.012	0.26	1.74	5.0	<0.2	<10	80	0.34	0.47	0.18	0.17	12.55	6.7	16
L-1 11+50E		0.48	< 0.001	0.18	1.44	5.4	<0.2	<10	80	0.35	0.19	0.18	0.07	13.90	5.5	12
L-1 12+00E		0.48	0.002	0.21	0.82	1.2	<0.2	<10	90	0.12	0.17	0.21	0.07	13.25	3.7	7
L-1 12+50E		0.48	0.003	0.31	2.54	10.4	<0.2	<10	80	0.55	0.45	0.15	0.08	14.45	7.8	19
L-1 13+00E		0.52	0.001	0.42	2.90	8.6	< 0.2	<10	90	0.58	0.34	0.22	0.16	13.20	9.0	15
L-1 13+50E		0.44	0.046	0.10	0.94	2.4	<0.2	<10	40	0.15	0.24	0.12	0.04	11.85	2.3	8
L-1 14+00E		0.58	0.005	0.08	0.68	1.3	<0.2	<10	40	0.10	0.57	0.15	0.02	12.80	2.3	6
L-1 14+50E		0.48	0.025	0.08	1.93	4.7	<0.2	<10	50	0.36	0.27	0.12	0.08	11.85	4.8	14
L-1 15+00E		0.42	0.001	0.13	1.59	4.1	<0.2	<10	70	0.34	0.22	0.16	0.07	12.05	5.0	13
L-1 15+50E		0.58	<0.001	0.10	1.29	3.8	<0.2	<10	50	0.24	0.20	0.12	0.04	9.52	4.1	11
L-1 16+00E		0.38	< 0.001	0.11	1.48	5.6	<0.2	<10	70	0.37	0.24	0.16	0.07	12.15	6.7	12
L-1 16+50E		0.38	0.002	0.12	0.94	4.0	<0.2	<10	50	0.18	0.22	0.13	0.06	11.50	3.1	11
L-1 17+00E		0.36	0.003	0.20	2.39	6.8	<0.2	<10	80	0.54	0.22	0.17	0.12	14.60	8.1	15
L-1 17+50E		0.56	0.074	0.08	1.68	7.3	<0.2	<10	60	0.47	0.24	0.15	0.09	12.25	6.2	14
L-1 18+00E		0.34	0.004	0.06	1.17	4.5	<0.2	<10	60	0.26	0.21	0.15	0.03	11.35	4.8	12
L-1 18+50E		0.50	0.001	0.04	1.21	2.1	< 0.2	<10	60	0.19	0.16	0.21	0.02	13.25	4.2	9
L-1 19+00E		0.54	0.001	0.05	0.72	1.3	<0.2	<10	40	0.13	0.17	0.13	0.03	11.70	2.1	5
L-1 19+50E		0.50	<0.001	0.08	1.08	2.5	<0.2	<10	80	0.21	0.21	0.23	0.03	16.30	3.4	8

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET **VANCOUVER BC V6C 3N6**

Page: 2 - B Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007

Account: ASMICO

Project: JAG

									CERTIFICATE OF ANALYSIS			VA070				
	Method . Analyte ! Units	ME-MS41 Cs	ME-MS41 Cu	ME-MS41 Fe %	ME-MS41 Ga	ME-MS41 Ge	ME-MS41 Hf	ME-MS41 Hg	ME-M\$41 In ppm	ME-MS41 K %	ME-MS41 La ppm	ME-MS41 Li ppm	ME-MS41 Mg %	ME-MS41 Mn ppm	ME-MS41 Mo ppm	ME-MS41 Na %
Sample Description	LOR	ppm 0.05	ррт 0.2	0.01	ррт 0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05	0.01
L-1 0+00E		1.76	11.9	2.88	5.15	0.05	0.04	0.04	0.031	0.05	7.0	14.7	0.34	285	0.74	0.01
L-1 0+50E		1.03	8.0	2.45	4.06	<0.05	0.03	0.02	0.016	0.04	5.7	6.1	0.16	124	0.69	<0.01
L-1 1+00E		1.95	9.6	3.06	6.25	0.05	0.05	0.04	0.030	0.05	6.2	19.5	0.27	207	1.15	0.01
L-1 1+50E		2.26	12.4	3.80	7.09	0.05	0.04	0.09	0.037	0.06	7.2	21.8	0.40	474	1.15	0.01
L-1 2+00E		1.01	8.1	2.55	4.86	<0.05	0.03	0.05	0.028	0.04	6.5	8.4	0.22	172	1.09	<0.01
L-1 2+50E		1.69	9.3	3.23	6.44	0.05	0.05	0.06	0.031	0.05	6.6	17.4	0.29	209	0.96	0.01
L-1 3+00E		1.48	9.6	3.32	6.76	0.05	0.03	0.03	0.029	0.05	6.2	21.9	0.39	214	0.83	0.01
L-1 3+50E		0.74	4.3	1.58	4.28	< 0.05	0.02	0.04	0.012	0.03	5.7	3.8	0.11	104	0.51	<0.01
L-1 4+00E		1.22	8.6	2.84	4.73	0.05	0.05	0.03	0.023	0.05	7.0	11.5	0.27	212	0.43	<0.01
L-1 4+50E		1.50	16.0	3.53	4.35	0.05	0.05	0.02	0.035	0.05	7.8	9.2	0.36	256	1.24	<0.01
L-1 5+00E		1.78	13.3	4.04	9.57	0.05	0.02	0.07	0.040	0.07	7.7	24.8	0.45	325	1.15	0.01
L-1 5+50E		0.98	8.6	1.99	3.92	< 0.05	0.05	0.02	0.022	0.03	6.6	8.8	0.30	263	0.80	0.01
L-1 6+00E		1.08	9.3	2.61	4.66	0.05	0.04	0.03	0.023	0.05	5.9	7.4	0.21	404	0.88	< 0.01
L-1 6+50E		1.00	5.1	1.81	3.21	< 0.05	0.03	0.02	0.014	0.06	8.0	9.8	0.19	241	0.47	0.01
L-1 7+00E		1.00	11.6	2.91	4.07	0.05	0.07	0.03	0.032	0.04	7.0	8.6	0.32	253	0.88	0.01
L-1 7+50E		1.32	8.4	3.12	5.76	0.05	0.03	0.03	0.024	0.04	6.5	10.7	0.24	267	1.09	0.01
L-1 8+00E		2.05	8.0	1.52	3.81	< 0.05	< 0.02	0.04	0.014	0.05	7.9	7.6	0.14	173	0.55	0.01
L-1 8+50E		1.51	9.3	2.06	3.36	0.05	0.04	0.04	0.019	0.04	8.2	8.6	0.28	461	0.62	0.01
L-1 9+00E		0.69	4.0	1.63	3.07	<0.05	0.05	0.02	0.009	0.04	5.8	2.3	0.09	145	0.54	0.01
L-1 9+50E		2.13	15.9	4.89	7.90	0.05	0.04	0.04	0.040	0.09	6.0	22.2	0.56	393	2.17	0.02
L-1 10+00E		1.40	9.1	3.55	6.84	0.06	0.04	0.05	0.026	0.06	6.3	13.1	0.31	406	1.06	0.01
L-1 10+50E		0.66	5.0	2.36	4.62	< 0.05	<0.02	0.04	0.019	0.05	5.3	3.6	0.18	226	0.72	0.01
L-1 11+00E		1.63	11.1	3.84	6.81	0.05	0.02	0.04	0.034	0.06	6.2	15.4	0.36	256	1.14	0.01
L-1 11+50E		1.06	9.0	2.76	4.75	0.05	0.05	0.03	0.025	0.04	6.9	9.5	0.26	196	0.91	0.01
L-1 12+00E		0.67	5.3	1.52	3.79	<0.05	0.02	0.03	0.015	0.04	6.7	6.8	0.22	284	0.43	<0.01
L-1 12+50E		1.94	15.7	5.01	10.80	0.07	0.03	0.07	0.048	0.06	6.8	21.9	0.46	285	2.39	0.01
L-1 13+00E		1.63	16.1	4.03	7.04	0.06	0.07	0.07	0.040	0.07	6.2	16.5	0.48	473	1.41	0.02
L-1 13+50E		0.74	4.9	1.94	5.49	<0.05	0.04	0.04	0.018	0.03	5.9	4.5	0.11	141	0.76	0.01
L-1 14+00E		0.85	4.4	1.24	4.36	<0.05	0.05	0.02	0.020	0.03	6.4	4.4	0.18	220	0.69	0.01
L-1 14+50E		0.97	7.2	3.25	5.89	0.05	0.05	0.04	0.029	0.04	5.7	9.8	0.18	276	0.95	0.01
L-1 15+00E		1.09	7.5	3.05	5.47	0.05	0.09	0.04	0.027	0.05	6.0	9.0	0.21	198	0.72	0.01
L-1 15+50E		0.82	6.0	2.70	3.52	<0.05	0.03	0.02	0.022	0.03	4.6	6.0	0.19	293	0.75	0.01
L-1 16+00E		0.95	9.4	2.97	4.47	0.05	0.06	0.02	0.029	0.04	5.9	8.8	0.25	263	0.96	0.01
L-1 16+50E		0.89	6.2	2.61	4.98	<0.05	0.02	0.05	0.018	0.04	5.8	4.9	0.15	174	0.86	0.01
L-1 17+00E		1.53	12.0	3.42	6.17	0.05	0.13	0.05	0.033	0.06	7.0	13.8	0.39	305	1.13	0.01
L-1 17+50E		0.95	10.4	3.49	4.85	0.06	0.07	0.04	0.031	0.04	5.9	12.4	0.31	296	1.32	0.01
L-1 18+00E		0.78	7.4	2.46	3.65	0.05	80.0	0.03	0.022	0.03	5.6	7.6	0.20	160	1.16	0.01
L-1 18+50E		1.00	7.9	1.75	3.68	<0.05	0.04	0.02	0.018	0.03	6.5	9.5	0.32	194	0.59	0.01
L-1 19+00E		0.89	3.8	1.00	3.99	< 0.05	0.03	0.02	0.012	0.03	5.7	5.8	0.16	130	0.56	0.01
L-1 19+50E		0.99	7.1	1.75	3.91	<0.05	0.05	0.04	0.019	0.04	7.8	5.6	0.24	317	0.58	0.01

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: **ASTRAL MINING CORPORATION** 709 - 837 WEST HASTINGS STREET **VANCOUVER BC V6C 3N6**

Page: 2 - C Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007

Account: ASMICO

Project: JAG

CERTIFICATE OF ANALYSIS \	VA07054770
---------------------------	------------

	Method	ME-MS41														
	Analyte	Nb	Ni	Р	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th
	Units	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm							
Sample Description	LOR	0.05	0.2	10	0.2	0.1	0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	0.01	0.2
L-1 0+00E		1.05	8.2	1630	8.5	8.7	<0.001	0.03	0.72	3.9	0.3	0.5	19.4	<0.01	0.06	1.6
L-1 0+50E		0.76	3.7	380	7.4	6.7	<0.001	0.02	0.75	2.3	0.2	0.6	13.0	<0.01	0.08	1.1
L-1 1+00E		1.13	5.8	1010	9.4	9.3	<0.001	0.01	0.63	3.2	0.3	0.5	12.9	<0.01	0.11	1.5
L-1 1+50E		1.18	8.1	2750	10.2	10.4	<0.001	0.03	0.71	4.9	0.5	0.6	15.4	0.01	0.09	1.5
L-1 2+00E		1.20	5.9	1020	9.0	6.2	<0.001	0.01	0.50	2.5	0.2	0.5	10.7	<0.01	80.0	1.5
L-1 2+50E		1.16	6.6	1640	8.7	10.3	<0.001	0.02	0.62	3.6	0.3	0.6	10.5	0.01	0.06	1.7
L-1 3+00E		1.02	7.5	950	8.4	10.1	<0.001	0.02	0.70	3.7	0.2	1.2	13.4	<0.01	0.07	1.3
L-1 3+50E		0.85	2.5	410	8.2	5.3	<0.001	0.01	0.37	2.0	0.2	0.7	9.0	<0.01	0.03	0.9
L-1 4+00E		0.92	4.5	830	6.7	9.8	<0.001	0.01	0.60	3.5	0.2	6.6	14.8	<0.01	0.02	1.2
L-1 4+50E		1.14	8.4	550	7.1	8.4	<0.001	0.01	0.56	3.3	0.3	0.5	15.2	<0.01	0.11	2.1
L-1 5+00E		1.59	8.4	2650	9.0	10.0	<0.001	0.02	0.58	4.6	0.5	8.0	28.5	0.01	0.09	1.1
L-1 5+50E		0.75	6.4	390	8.0	6.2	<0.001	0.01	0.34	2.8	0.4	0.6	14.5	0.01	0.04	1.3
L-1 6+00E		0.68	4.2	700	8.0	7.1	<0.001	0.01	0.37	2.7	0.5	0.6	12.1	0.01	0.04	1.2
L-1 6+50E		0.51	3.4	200	7.6	18.1	<0.001	0.01	0.45	1.9	0.2	0.4	25.1	<0.01	0.03	1.4
L-1 7+00E		0.76	7.3	870	6.6	6.3	<0.001	0.01	0.44	3.2	0.3	0.5	12.0	<0.01	0.05	1.7
L-1 7+50E		1.14	4.6	1030	8.3	10.3	<0.001	0.01	0.38	2.8	0.2	0.6	11.8	<0.01	0.10	1.8
L-1 8+00E		0.73	3.9	330	6.4	10.9	<0.001	0.02	0.37	2.0	0.2	0.5	18.3	<0.01	0.03	0.5
L-1 8+50E		1.04	5.0	230	7.7	8.7	<0.001	0.01	0.62	3.2	0.2	0.5	20.5	<0.01	0.02	1.4
L-1 9+00E		1.33	2.6	180	6.8	9.8	<0.001	0.01	0.33	1.7	<0.2	0.6	9.9	<0.01	0.02	1.2
L-1 9+50E		1.50	8.3	1690	9.7	13.2	<0.001	0.05	0.47	4.1	0.4	0.7	18.6	<0.01	0.29	1.9
L-1 10+00E		1.52	5.2	1220	8.3	11.9	<0.001	0.02	0.39	3.3	0.3	0.7	11.8	<0.01	0.12	1.9
L-1 10+50E		0.85	2.4	350	6.3	6.7	<0.001	0.02	0.31	2.2	0.2	0.6	11.0	<0.01	0.04	0.8
L-1 11+00E		1.59	5.9	1110	10.4	13.1	<0.001	0.03	0.35	3.4	0.3	0.6	14.2	<0.01	0.17	1.5
L-1 11+50E		1.35	5.4	680	7.0	9.4	<0.001	0.01	0.42	3.1	0.2	0.5	15.7	<0.01	0.06	1.6
L-1 12+00E		0.96	2.9	210	7.2	6.5	<0.001	<0.01	0.26	2.3	<0.2	0.4	17.4	<0.01	0.02	0.8
L-1 12+50E		1.62	7.8	1890	11.6	13.0	<0.001	0.02	0.50	4.8	0.5	8.0	12.4	<0.01	0.20	2.3
L-1 13+00E		1.78	8.4	2770	8.7	10.7	<0.001	0.03	0.46	4.6	0.4	0.5	15.5	0.01	0.14	2.4
L-1 13+50E		1.47	2.4	630	9.4	6.7	<0.001	0.01	0.26	2.0	0.2	0.6	9.8	<0.01	0.04	1.4
L-1 14+00E		1.38	2.5	230	8.7	8.0	<0.001	<0.01	0.19	2.1	<0.2	0.5	10.9	<0.01	0.07	1.9
L-1 14+50E		1.48	4.4	1700	7.8	6.9	<0.001	0.01	0.38	3.0	0.2	0.5	8.9	0.01	0.08	1.8
L-1 15+00E		1.23	4.5	2440	7.2	12.4	<0.001	0.01	0.36	3.0	0.2	0.5	15.8	<0.01	0.06	1.9
L-1 15+50E		0.80	3.4	1180	6.0	6.5	<0.001	0.01	0.34	2.2	0.2	0.3	7.7	<0.01	0.08	1.4
L-1 16+00E		1.37	6.5	960	6.1	9.0	<0.001	0.01	0.36	3.0	0.2	0.4	12.7	<0.01	0.09	1.7
L-1 16+50E		1.12	2.9	700	7.5	7.8	<0.001	0.01	0.39	2.4	<0.2	0.5	10.8	<0.01	0.04	2.8
L-1 17+00E		1.64	7.3	1480	7.4	9.6	<0.001	0.02	0.44	3.9	0.3	0.5	13.6	<0.01	0.07	2.1
L-1 17+50E		1.21	6.5	1230	7.9	7.7	<0.001	0.01	0.43	3.2	0.3	0.4	11.4	<0.01	0.10	3.4
L-1 18+00E		1.24	5.4	620	6.3	7.5	<0.001	<0.01	0.37	2.4	0.2	0.4	12.6	<0.01	0.07	1.5
L-1 18+50E		1.07	4.7	220	6.9	7.8	<0.001	<0.01	0.24	2.6	0.2	0.4	13.4	<0.01	0.02	1.5
L-1 19+00E		1.26	2.3	100	9.1	8.2	0.004	0.01	0.18	1.9	<0.2	0.5	10.6	<0.01	0.02	1.1
L-1 19+50E		1.16	3.4	310	8.6	11.5	<0.001	0.01	0.31	2.7	0.2	0.4	16.9	<0.01	0.03	1.4

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET VANCOUVER BC V6C 3N6 Page: 2 - D Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007 Account: ASMICO

Project: JAG

CERTIFICATE OF ANALYSIS VA07054770

Sample Description	Method Analyte Units LOR	ME-MS41 Ti % 0.005	ME-MS41 TI ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	
L-1 0+00E		0.055	0.06	0.43	59	0.20	4.03	103	1.3	
L-1 0+50E		0.062	0.05	0.36	59	0.15	2.73	28	1.0	
L-1 1+00E		0.052	0.06	0.37	68	0.24	3.12	73	1.8	
L-1 1+50E		0.060	0.08	0.51	78	0.24	4.95	114	1.2	
L-1 2+00E		0.064	0.07	0.39	53	1.28	2.43	44	1.4	
L-1 2+50E		0.059	0.07	0.44	68	0.26	3.20	62	1.8	
L-1 3+00E		0.055	0.07	0.43	80	0.19	3.11	68	1.2	
L-1 3+50E		0.072	0.05	0.29	43	0.17	2.06	20	0.7	
L-1 4+00E		0.079	0.05	0.42	63	0.14	3.76	50	1.7	
L-1 4+50E		0.098	0.07	0.52	82	0.55	4.01	38	1.9	
L-1 5+00E		0.086	0.08	0.52	89	0.26	5.22	101	8.0	
L-1 5+50E		0.084	0.04	0.34	46	0.27	3.40	40	1,1	
L-1 6+00E		0.078	0.06	0.30	59	0.24	2.84	40	8.0	
L-1 6+50E		0.035	0.06	0.83	44	0.15	2.14	36	0.6	
L-1 7+00E		0.083	0.05	0.40	61	0.20	3.67	44	1.8	
L-1 7+50E		0.088	0.06	0.42	74	0.90	2.90	46	1.3	
L-1 8+00E		0.049	0.07	0.39	37	0.54	3.49	46	<0.5	
L-1 8+50E		0.082	0.08	0.50	49	0.14	6.31	32	1.4	
L-1 9+00E		0.120	0.04	0.33	44	0.79	2.25	22	1.8	
L-1 9+50E		0.100	0.08	0.54	103	0.37	4.06	79	1.8	
L-1 10+00E		0.107	80.0	0.43	83	0.26	3.13	86	1.9	
L-1 10+50E		0.087	0.05	0.30	54	0.22	2.11	38	<0.5	
L-1 11+00E		0.098	0.07	0.43	84	0.40	3.25	103	0.9	
L-1 11+50E		0.092	0.05	0.43	61	0.21	3.63	57	2.1	
L-1 12+00E		0.089	0.04	0.32	41	0.22	3.61	31	0.7	
L-1 12+50E		0.105	0.11	0.70	116	0.38	4.24	69	1.6	
L-1 13+00E		0.100	0.09	0.51	83	0.52	4.02	117	3.2	
L-1 13+50E		0.095	0.06	0.31	51	0.18	2.51	35	1.6	
L-1 14+00E		0.112	0.07	0.41	34	0.20	2.66	31	1.9	
L-1 14+50E		0.081	0.07	0.40	73	0.23	2.80	82	2.3	
L-1 15+00E		0.078	0.07	0.38	67	0.20	3.02	61	3.2	
L-1 15+50E		0.071	0.05	0.31	60	0.21	2.47	45	1.2	
L-1 16+00E		0.082	0.05	0.41	64	0.31	3.56	52	2.4	
L-1 16+50E		0.099	0.06	0.50	65	0.15	2.47	37	1.0	
L-1 17+00E		0.106	0.08	0.51	73	0.23	3.93	90	5.3	
L-1 17+50E		0.086	0.04	0.59	78	0.28	3.93	63	2.9	
L-1 18+00E		0.090	0.04	0.35	58	0.22	2.59	34	2.9	
L-1 18+50E		0.105	0.06	0.41	44	0.13	3.64	32	1.8	
L-1 19+00E		0.102	0.05	0.32	33	0.15	2.54	26	1.1	
L-1 19+50E		0.092	0.07	0.42	43	0.12	3.61	28	1.9	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET VANCOUVER BC V6C 3N6

CERTIFICATE OF ANALYSIS VA07054770

Page: 3 - A Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007

Account: ASMICO

Project: JAG

	Method Analyte	WEI-21 Recvd Wt.	Au-ICP21 Au	ME-MS41 Ag	ME-MS41	ME-MS41 As	ME-MS41 Au	ME-MS41	ME-MS41 Ba	ME-MS41 Be	ME-MS41 Bi	ME-MS41 Ca	ME-MS41 Cd	ME-MS41 Ce	ME-MS41 Co	ME-MS41 Cr
Sample Description	Units LOR	kg 0.02	ppm 0.001	ppm 0.01	% 0.01	ppm 0.1	ppm 0.2	ppm 10	ppm 10	ppm 0.05	ppm 0.01	% 0.01	ppm 0.01	ppm 0.02	ррт 0.1	ppm 1
L-1 20+00E		0.44	0.003	0.05	0.05	1.5	<0.2	<10	50	0.16	0.10	0.10	0.03	15 10	2.1	7

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET VANCOUVER BC V6C 3N6 Page: 3 - B Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007

Account: ASMICO

Project: JAG

									(ERTIF	CATE C	LYSIS	VA070	54770		
Sample Description	Method Analyte Units LOR	ME-MS41 Cs ppm 0.05	ME-MS41 Cu ppm 0.2	ME-MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05	ME-MS41 Na % 0.01
	LOR	0.05	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	_			5		
L-1 20+00E		0.90	6.2	1.76	3.71	<0.05	0.04	0.01	0.016	0.03	7.3	7.4	0.26	190	0.50	0.01

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET VANCOUVER BC V6C 3N6

CERTIFICATE OF ANALYSIS VA07054770

Page: 3 - C Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007

Account: ASMICO

Project: JAG

Sample Description	Method Analyte Units LOR	ME-MS41 Nb ppm 0.05	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2
L-1 20+00E		1.20	3.2	150	8.5	8.3	<0.001	0.01	0.29	2.7	0.2	0.4	13.8	<0.01	0.02	1.3

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET VANCOUVER BC V6C 3N6 Page: 3 - D Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007

Account: ASMICO

Project: JAG

CERTIFICATE OF	ΔΝΔΙ ΥSIS	VA07054770
		* ~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

										CERTIFICATE OF ANALTSIS VAUTUS4110
Sample Description	Method Analyte Units LOR	ME-MS41 Ti % 0.005	ME-MS41 TI ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	
L-1 20+00E		0.105	0.05	0.40	43	0.12	3.57	29	1.7	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET **VANCOUVER BC V6C 3N6**

JUN 1 5 2007

Page: 1 Finalized Date: 9-JUN-2007

Account: ASMICO

CERTIFICATE VA07054049

Project: JAG

P.O. No.:

This report is for 52 Soil samples submitted to our lab in Vancouver, BC, Canada on 28-MAY-2007.

The following have access to data associated with this certificate:

DALE BRITTLIFFE DAVID TERRY

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR-41	Screen to -180um and save both	

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	
ME-MS41	51 anal. aqua regia ICPMS	
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

To: ASTRAL MINING CORPORATION ATTN: DALE BRITTLIFFE 709 - 837 WEST HASTINGS STREET VANCOUVER BC V6C 3N6

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Lawrence Ng, Laboratory Manager - Vancouver

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET VANCOUVER BC V6C 3N6

Page: 2 - A Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007

Account: ASMICO

Project: JAG

CE	RTIF	CATE	OF	ANALYSIS	VA07054049

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	Au-ICP21 Au Check ppm 0.001	ME-MS41 Ag ppm 0.01	ME-MS41 Ai % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1
JAG SL 01		0.64	0.003		0.62	3.36	7.8	<0.2	<10	250	1.00	0.21	0.81	0.85	39.50	13.2
JAG SL 02		0.88	0.005		0.16	1.83	6.0	<0.2	<10	110	0.41	0.22	0.30	0.18	19.00	7.1
JAG SL 03		0.84	0.005		0.25	2.28	10.9	<0.2	<10	250	0.69	0.24	0.76	0.59	34.30	13.9
JAG SL 04 JAG SL 05		0.88 0.86	<0.001 0.006		0.05 0.04	1.44 1.49	23.0 23.2	<0.2 <0.2	<10 <10	330 290	0.41 0.42	0.06 0.07	0.49 0.45	0.62 0.52	26.50 27.90	18.2 18.7
JAG SL 06		0.88	0.003		0.03	1.47	24.8	<0.2	<10	350	0.46	0.07	0.47	0.61	28.30	20.1
JAG SL 07		0.84	<0.001		0.06	1.58	31.1	<0.2	<10	340	0.43	0.07	0.59	0.66	30.10	21.6
JAG SL 08		0.80	0.001		0.05	1.45	25.7	<0.2	<10	270	0.39	0.08	0.48	0.51	26.50	18.4
JAG SL 09		0.48	<0.001		0.36	2.78	9.0	<0.2	<10	230	0.69	0.19	1.18	0.84	32.10	19.0
JAG SL 10		0.82	<0.001		0.31	3.35	18.1	<0.2	<10	630	0.76	0.11	1.22	2.68	64.50	20.9
JAG SL 11		0.68	< 0.001		0.51	2.85	6.4	<0.2	<10	210	0.59	0.17	1.13	0.45	22.30	9.8
JAG SL 12		0.66	< 0.001		0.37	2.58	8.4	<0.2	<10	260	0.67	0.12	1.12	1.34	36.40	15.0
JAG SL 13		0.68	0.002		0.39	3.25	13.8	<0.2	<10	360	0.93	0.19	1.18	2.45	53.80	24.6
JAG SL 14		0.80	0.002		0.32	2.79	15.6	<0.2	<10	340	0.78	0.16	0.86	0.86	32.60	17.8
JAG SL 15		0.82	<0.001		0.16	1.28	9.6	<0.2	<10	120	0.33	0.18	0.39	0.36	19.95	11.0
JAG SL 16		0.66	< 0.001		0.21	1.28	7.9	<0.2	<10	130	0.37	0.14	0.53	0.52	20.90	9.5
JAG SL 17		0.74	0.004		0.14	1.30	10.3	<0.2	<10	140	0.38	0.15	0.49	0.49	21.90	11.3
JAG SL 18		0.70	< 0.001		0.26	1.35	8.3	<0.2	<10	180	0.38	0.15	0.67	0.68	21.70	9.7
JAG SL 19		0.86	0.002		0.17	1.31	7.9	<0.2	<10	140	0.32	0.15	0.50	0.52	21.50	9.7
JAG SL 20		0.86	0.003		0.17	1.29	5.3	<0.2	<10	140	0.26	0.22	0.53	0.41	14.30	6.3
JAG SL 21		0.88	0.005		0.24	1.47	8.0	<0.2	<10	160	0.38	0.19	0.57	0.65	23.70	10.2
JAG SL 22		0.82	< 0.001		0.15	1.69	10.4	<0.2	<10	160	0.40	0.19	0.52	0.59	27.50	13.7
JAG SL 23		0.58	0.002		0.24	1.44	13.1	<0.2	<10	190	0.46	0.16	0.64	0.97	26.90	12.9
JAG SL 24		0.88	0.001		0.17	1.49	11.3	<0.2	<10	150	0.41	0.16	0.50	0.62	23.20	12.6
JAG SL 25		0.86	0.024		0.20	1.30	8.3	<0.2	<10	150	0.35	0.14	0.52	0.66	22.60	9.9
JAG SL 26		0.94	0.001		0.31	0.91	10.0	<0.2	<10	150	0.30	0.18	0.37	1.07	14.65	8.8
JAG SL 27		0.84	0.001		0.30	1.41	6.8	<0.2	<10	150	0.40	0.14	0.57	0.65	22.20	8.5
JAG SL 28		0.54	0.003		0.37	1.28	2.9	<0.2	<10	120	0.35	0.22	0.76	0.28	18.05	6.7
JAG SL 29		0.82	0.002		0.36	1.10	6.5	<0.2	<10	100	0.36	0.35	0.44	0.66	19.70	9.2
JAG SL 30		0.78	0.004		0.20	1.03	5.9	<0.2	<10	80	0.35	0.32	0.35	0.33	16.50	8.5
JAG SL 31		0.78	0.006		0.17	1.01	6.2	<0.2	<10	90	0.35	0.34	0.35	0.33	17.05	8.6
JAG SL 32		0.80	0.031		0.29	1.26	8.5	<0.2	<10	120	0.45	0.36	0.50	0.69	19.70	9.7
JAG SL 33		0.90	0.001		0.12	1.41	5.7	<0.2	<10	150	0.51	0.14	0.59	0.29	28.70	11.1
JAG SL 34		0.72	<0.001		0.13	1.15	5.8	<0.2	<10	120	0.46	0.16	0.47	0.33	23.40	10.6
JAG SL 35		0.80	< 0.001		0.21	0.99	6.7	<0.2	<10	70	0.35	0.32	0.36	0.35	18.05	9.3
JAG SL 36		0.76	1.640	0.002	0.15	0.88	6.1	<0.2	<10	70	0.33	0.41	0.31	0.27	15.80	8.6
JAG SL 37		0.70	0.003		0.21	1.01	6.4	< 0.2	<10	90	0.34	0.29	0.35	0.43	15.65	7.8
JAG SL 38		0.86	NSS		0.18	1.06	6.8	<0.2	<10	80	0.35	0.28	0.41	0.40	15.95	8.5
JAG SL 39		0.76	0.004		0.21	1.08	6.7	<0.2	<10	90	0.40	0.34	0.37	0.44	16.80	8.9
JAG SL 40		0.72	0.007		0.13	0.90	5.5	<0.2	<10	60	0.29	0.30	0.29	0.25	16.80	8.3

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET VANCOUVER BC V6C 3N6 Page: 2 - B Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007 Account: ASMICO

Project: JAG

CERTIFICATE OF ANALYSIS VA07054049

											<u> </u>	71 AIAA	_ 1010	¥7070.	0 10 10	
Sample Description	Method Analyte Units LOR	ME-MS41 Cr ppm 1	ME-MS41 Cs ppm 0.05	ME-MS41 Cu ppm 0.2	ME-MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05
JAG SL 01 JAG SL 02 JAG SL 03 JAG SL 04		17 16 19 15	2.37 1.49 1.38 0.82	34.1 18.6 24.5 11.0	3.98 3.13 4.05 6.30	7.74 5.09 5.89 4.14	0.08 0.06 0.08 0.10	0.04 0.04 0.06 0.05	0.08 0.03 0.05 0.01	0.048 0.027 0.035 0.016	0.10 0.05 0.09 0.07	15.4 9.7 14.2 10.4	16.1 9.5 12.1 8.7	0.55 0.45 0.58 0.55	2100 351 1880 6670	1.30 0.94 2.12 3.37
JAG SL 05		16	0.83	22.6	6.10	4.72	0.10	0.07	0.02	0.020	0.07	10.5	10.1	0.63	5900	3.29
JAG SL 06 JAG SL 07 JAG SL 08 JAG SL 09		16 17 16 22	0.81 0.91 0.81 1.96	12.1 11.9 13.8 28.3	6.53 7.41 6.08 3.86	4.67 4.69 4.59 7.80	0.10 0.12 0.10 0.08	0.08 0.04 0.07 0.04	0.01 0.02 0.01 0.05	0.019 0.017 0.020 0.036	0.07 0.06 0.07 0.11	10.8 12.0 10.6 14.0	9.6 9.2 8.9 12.2	0.62 0.56 0.60 0.63	6790 7230 5350 2460	3.58 4.31 3.21 1.94
JAG SL 10 JAG SL 11		19 22	1.24	19.6 25.1	6.06 3.34	5.91 6.89	0.10	0.06	0.08	0.027	0.09	17.1 13.0	10.6 12.4	0.48	19050 811	5.09 1.26
JAG SL 12 JAG SL 13 JAG SL 14 JAG SL 15		17 21 19 13	1.50 1.89 1.40 1.05	20.9 27.2 22.2 14.9	4.03 5.62 5.92 3.59	5.92 7.55 6.77 4.53	0.07 0.10 0.11 0.08	0.04 0.06 0.09 0.05	0.07 0.07 0.06 0.01	0.027 0.037 0.036 0.025	0.08 0.11 0.10 0.07	13.5 16.4 16.9 9.5	10.5 13.3 15.6 10.4	0.50 0.56 0.77 0.66	4980 8470 4190 1165	2.52 4.72 2.58 1.62
JAG SL 16 JAG SL 17 JAG SL 18		15 14 13	1.14 1.01 1.10	15.6 14.7 16.8	3.29 3.81 3.01	4.24 4.21 4.08	0.07 0.08 0.07	0.03 0.03 0.02	0.04 0.02 0.05	0.020 0.023 0.022	0.07 0.07 0.07	10.6 10.4 11.5	9.3 9.1 9.0	0.53 0.57 0.53	1175 1605 1865	1.48 1.91 2.28
JAG SL 19 JAG SL 20		13 14	1.04 0.81	15.7 11.2	3.22 3.08	4.18 2.73	0.07 0.05	0.03 <0.02	0.03 0.02	0.022 0.013	0.07	11.0 7.8	9.1 5.7	0.58 0.45	1240 1300	1.70 1.17
JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24		17 19 13 15 13	1.24 1.39 1.08 1.16	17.3 18.1 18.4 16.2	3.66 4.73 3.81 4.02 3.32	4.56 6.07 4.45 4.91 4.16	0.08 0.10 0.08 0.08 0.07	0.03 0.07 0.03 0.04	0.03 0.02 0.04 0.03	0.027 0.034 0.025 0.025	0.08 0.11 0.07 0.08	12.2 12.8 13.3 11.0	9.4 13.1 9.6 10.9	0.59 0.90 0.57 0.68	1540 1870 2470 1765	1.59 2.24 3.48 2.47
JAG SL 25 JAG SL 26 JAG SL 27 JAG SL 28 JAG SL 29		9 16 10 21	1.10 1.00 1.32 1.35 1.42	15.9 13.2 16.0 17.0 16.6	4.08 2.87 2.16 3.92	3.09 4.05 3.66 4.11	0.07 0.06 0.06 0.10	0.03 0.02 0.02 0.03 0.04	0.03 0.02 0.04 0.05 0.03	0.022 0.013 0.021 0.023 0.031	0.08 0.05 0.06 0.07 0.06	9.4 11.9 11.7 10.4	9.2 6.6 8.3 7.9 8.1	0.57 0.36 0.41 0.39 0.43	1915 3680 1205 1405 1055	1.99 5.01 1.47 1.36 1.43
JAG SL 30 JAG SL 31		18	1.27	13.9	3.48	3.86	0.09	0.04	0.02	0.028	0.05	8.6	8.6	0.47	692 732	1.40
JAG SL 32 JAG SL 33 JAG SL 34 JAG SL 35		14 20 19 30	1.58 1.75 1.50 1.30	17.4 22.7 18.7 14.9	3.15 3.48 3.39 5.29	4.07 4.82 4.39 4.43	0.10 0.11 0.10 0.13	0.04 0.04 0.18 0.09 0.04	0.02 0.04 0.02 0.02 0.02	0.032 0.032 0.032 0.028 0.030	0.07 0.09 0.07 0.06	10.5 14.1 11.9 9.6	9.0 9.1 8.4 8.3	0.44 0.47 0.56 0.49 0.45	1275 927 895 621	1.28 1.81 0.64 0.78 1.45
JAG SL 36 JAG SL 37 JAG SL 38 JAG SL 39		20 12 14 14	1.14 1.39 1.29 1.38	13.8 13.7 14.5 14.4	4.03 2.94 3.22 3.40	3.83 3.60 3.90 3.95	0.10 0.08 0.09 0.09	0.05 0.03 0.03 0.04	0.02 0.03 0.03 0.02	0.027 0.036 0.028 0.033	0.05 0.05 0.05 0.05 0.05	8.4 8.4 8.4 8.9	8.0 8.4 8.4 8.9	0.44 0.43 0.46 0.47	669 854 941 1115	1.53 1.47 1.69 1.75
JAG SL 40		21	1.17	11.6	4.34	3.86	0.11	0.04	0.01	0.026	0.04	8.9	7.6	0.45	646	1.49

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET **VANCOUVER BC V6C 3N6**

Page: 2 - C Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007

Account: ASMICO

Project: JAG

				18. 004 904 02		Scrieniex.co			CI: JAG							
										CERTIFI	CATE C	F ANA	LYSIS	VA070	54049	
Sample Description	Method Analyte Units LOR	ME-MS41 Na % 0.01	ME-MS41 Nb ppm 0.05	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01
JAG SL 01		0.02	1.35	14.3	1170	33.0	15.9	<0.001	0.04	0.60	5.3	1.0	0.5	71.8	0.01	0.07
JAG SL 02		0.02	1.47	9.6	790	18.2	8.6	<0.001	<0.01	0.46	3.9	0.3	0.6	23.5	<0.01	0.06
JAG SL 03		0.03	1.15	14.3	710	11.5	11.0	<0.001	0.03	0.41	6.3	0.8	0.4	55.8	0.01	0.07
JAG SL 04		0.03	0.82	11.5	750	6.4	6.8	<0.001	<0.01	0.38	4.1	0.5	0.4	40.1	0.01	0.04
JAG SL 05		0.03	0.85	13.3	800	8.0	7.2	<0.001	0.01	0.41	4.6	0.5	0.6	39.6	0.01	0.05
JAG SL 06		0.03	0.93	13.2	810	7.4	7.2	<0.001	0.01	0.42	4.5	0.5	0.4	41.0	0.01	0.04
JAG SL 07		0.03	0.96	12.7	920	7.0	7.9	< 0.001	0.02	0.40	4.5	0.7	0.6	51.6	0.01	0.04
JAG SL 08		0.03	0.90	12.8	830	9.5	6.9	< 0.001	0.03	0.43	4.5	0.5	0.9	40.2	0.01	0.05
JAG SL 09		0.03	1.12	16.1	1090	17.4	15.0	< 0.001	0.07	0.33	4.8	0.9	0.5	81.4	0.01	0.05
JAG SL 10		0.04	0.73	16.6	1200	7.6	10.1	< 0.001	0.06	0.28	5.1	1.1	0.3	92.8	0.01	0.06
JAG SL 11		0.03	1.16	15.1	1120	12.4	13.3	<0.001	0.06	0.33	4.3	0.8	0.5	74.4	<0.01	0.05
JAG SL 12		0.03	0.78	13.2	970	12.7	10.0	< 0.001	0.06	0.29	4.1	0.9	0.3	76.8	< 0.01	0.05
JAG SL 13		0.03	0.92	17.7	1050	16.1	13.6	< 0.001	0.05	0.29	5.7	1.0	0.4	94.1	0.01	0.07
JAG SL 14		0.03	0.94	14.1	950	10.7	12.4	<0.001	0.03	0.28	8.3	0.9	0.4	63.4	0.01	80.0
JAG SL 15		0.03	0.77	9.7	710	11.1	7.0	<0.001	0.01	0.47	4.3	0.5	0.7	25.4	<0.01	0.07
JAG SL 16		0.02	88.0	8.7	770	10.2	7.1	<0.001	0.03	0.50	4.0	1.0	0.5	33.8	<0.01	0.07
JAG SL 17		0.03	0.86	8.9	730	10.9	6.8	<0.001	0.03	0.46	4.0	0.7	0.6	30.7	< 0.01	0.07
JAG SL 18		0.02	0.79	9.1	890	10.4	7.2	<0.001	0.06	0.49	3.7	1.5	0.6	40.0	<0.01	0.06
JAG SL 19		0.02	0.82	8.7	760	10.1	6.7	<0.001	0.01	0.43	3.9	8.0	0.6	33.2	<0.01	0.07
JAG SL 20		0.02	0.52	5.8	810	8.1	4.9	<0.001	0.02	0.30	2.7	0.7	0.3	23.3	<0.01	0.09
JAG SL 21		0.03	0.89	9.8	890	11.8	7.6	<0.001	0.02	0.49	4.3	1.1	1.2	36.9	<0.01	0.06
JAG SL 22		0.05	1.12	12.0	950	11.5	9.8	<0.001	0.03	0.60	5.8	0.7	8.0	32.9	<0.01	0.08
JAG SL 23		0.03	0.78	9.7	900	12.4	7.2	<0.001	0.04	0.51	4.1	1.2	0.7	43.3	< 0.01	0.09
JAG SL 24		0.03	0.94	10.2	820	13.7	7.9	<0.001	0.01	0.50	4.5	8.0	8.0	30.9	<0.01	80.0
JAG SL 25		0.02	0.74	9.0	800	11.6	7.1	<0.001	0.03	0.50	4.0	0.9	0.5	33.7	<0.01	0.05
JAG SL 26		0.02	0.53	5.7	560	6.5	6.4	<0.001	0.03	0.43	3.0	1.1	0.3	22.4	<0.01	0.10
JAG SL 27		0.02	0.79	8.9	770	12.0	7.4	<0.001	0.05	0.43	3.7	1.2	0.3	35.4	<0.01	0.06
JAG SL 28		0.02	0.50	6.5	910	7.6	9.1	<0.001	0.08	0.33	3.3	1.6	0.3	44.7	<0.01	0.04
JAG SL 29 JAG SL 30		0.02 0.02	0.83 0.80	8.9 7.8	770 640	10.3 8.7	6.5 5.9	<0.001 <0.001	0.04 0.03	0.56 0.52	4.1 3.8	1.0 0.8	0.4 0.4	28.6 23.3	<0.01 <0.01	0.11 0.12
JAG SL 31 JAG SL 32		0.02	0.71 0.77	8.5	580	8.1	5.8	<0.001	0.02	0.41	3.9	0.8	0.3	24.9	<0.01	0.09
JAG SL 32 JAG SL 33		0.02		8.3	800	10.5	7.4	0.001	0.04	0.46	4.1	1.5	0.3	33.4	<0.01	0.12
JAG SL 33 JAG SL 34		0.03 0.02	0.50 0.78	16.0 13.2	860 700	8.0 7.5	7.3 6.7	<0.001	0.01	0.54	7.0	0.9	0.5	40.3	<0.01	0.03
JAG SL 34 JAG SL 35		0.02	0.78	8.7	700	7.5 11.2	6.0	<0.001 <0.001	0.02 0.03	0.51 0.70	5.6 3.8	0.6 0.8	0.4 0.4	32.9 23.9	<0.01 <0.01	0.05 0.10
JAG SL 36		0.02	0.72	7.5	600	8.2	5.3	<0.001	0.02	0.48	3.3	0.7	0.4			
JAG SL 37		0.02	0.72	6.6	630	8.9	6.4	<0.001	0.02	0.46	3.4	0.7	0.4	20.3 24.1	<0.01 <0.01	0.12 0.12
JAG SL 38		0.02	0.76	7.9	600	8.4	6.0	0.001	0.03	0.44	4.0	0.9	0.3	26.3	0.01	0.12
JAG SL 39	ı	0.02	0.78	7.4	650	9.3	6.6	<0.001	0.02	0.45	3.6	0.9	0.3	25.3 25.1	<0.01	0.14
JAG SL 40		0.02	0.65	7.4	570	8.2	5.3	<0.001	0.03	0.43	3.4	0.6	0.3	18.4	<0.01	0.12
		0.02	0.00	1	0,0	0.2	0.0	-0.001	0.02	0.07	3.4	0.5	0.4	10.4	\0.01	0.10

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET VANCOUVER BC V6C 3N6 Page: 2 - D Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007 Account: ASMICO

Project: JAG

CERTIFICATE OF ANALYSIS VA07054049

Sample Description JAG SL 01 JAG SL 02 JAG SL 03 JAG SL 04 JAG SL 05 JAG SL 06 JAG SL 07 JAG SL 08 JAG SL 09 JAG SL 10 JAG SL 11 JAG SL 12 JAG SL 13 JAG SL 14 JAG SL 15 JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 25	ME-MS41 Th ppm 0.2 0.6 1.7 1.1 1.7 2.0 2.1 1.5 2.0 0.4 0.7 0.4 0.4 0.7 1.5 2.0 1.1 1.3	ME-MS41 Ti % 0.005 0.048 0.106 0.084 0.091 0.096 0.100 0.090 0.096 0.074 0.054 0.065 0.053 0.061 0.067 0.088 0.080	ME-MS41 TI ppm 0.02 0.13 0.07 0.10 0.10 0.11 0.11 0.11 0.28 0.09 0.10 0.19 0.14	ME-MS41 U ppm 0.05 1.11 0.56 2.00 0.78 0.74 0.77 0.96 0.76 1.16 1.16 1.05 1.02 1.56 2.39	ME-MS41 V ppm 1 72 69 79 83 83 86 91 82 82 97 66 67	ME-MS41 W ppm 0.05 0.35 0.29 0.23 0.19 0.18 0.17 0.19 0.19 0.17	ME-MS41 Y ppm 0.05 19.00 6.28 17.55 9.64 9.90 10.05 12.30 10.00 16.10 22.60	ME-MS41 Zn ppm 2 192 86 69 77 78 79 81 77 82 102	ME-MS41 Zr ppm 0.5 0.7 1.5 1.4 1.6 2.3 3.1 1.5 2.4 1.0 1.1	
JAG SL 01 JAG SL 02 JAG SL 03 JAG SL 04 JAG SL 05 JAG SL 06 JAG SL 06 JAG SL 07 JAG SL 09 JAG SL 10 JAG SL 11 JAG SL 12 JAG SL 11 JAG SL 12 JAG SL 15 JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	0.6 1.7 1.1 1.7 2.0 2.1 1.5 2.0 0.4 0.7 0.4 0.7 1.5 2.0	0.048 0.106 0.084 0.091 0.096 0.100 0.090 0.074 0.054 0.065 0.053 0.061 0.067 0.088	0.13 0.07 0.10 0.10 0.10 0.11 0.11 0.11 0.28 0.09 0.10 0.19	1.11 0.56 2.00 0.78 0.74 0.77 0.96 0.76 1.16 1.16	72 69 79 83 83 86 91 82 82 97	0.35 0.29 0.23 0.19 0.18 0.17 0.19 0.19 0.17	19.00 6.28 17.55 9.64 9.90 10.05 12.30 10.00 16.10 22.60	192 86 69 77 78 79 81 77 82	0.7 1.5 1.4 1.6 2.3 3.1 1.5 2.4	
JAG SL 02 JAG SL 03 JAG SL 04 JAG SL 05 JAG SL 06 JAG SL 07 JAG SL 08 JAG SL 09 JAG SL 10 JAG SL 11 JAG SL 12 JAG SL 12 JAG SL 13 JAG SL 14 JAG SL 15 JAG SL 15 JAG SL 18 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	1.7 1.1 1.7 2.0 2.1 1.5 2.0 0.4 0.7 0.4 0.7 1.5 2.0	0.106 0.084 0.091 0.096 0.100 0.090 0.096 0.074 0.054 0.065 0.053 0.061 0.067 0.088	0.07 0.10 0.10 0.10 0.11 0.11 0.10 0.11 0.28 0.09 0.10 0.19 0.14	0.56 2.00 0.78 0.74 0.77 0.96 0.76 1.16 1.16 1.05 1.02	69 79 83 83 86 91 82 82 97 66	0.29 0.23 0.19 0.18 0.18 0.17 0.19 0.19 0.17	6.28 17.55 9.64 9.90 10.05 12.30 10.00 16.10 22.60	86 69 77 78 79 81 77 82	1.5 1.4 1.6 2.3 3.1 1.5 2.4 1.0	
JAG SL 02 JAG SL 03 JAG SL 04 JAG SL 05 JAG SL 06 JAG SL 07 JAG SL 08 JAG SL 09 JAG SL 10 JAG SL 11 JAG SL 12 JAG SL 12 JAG SL 13 JAG SL 14 JAG SL 15 JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	1.7 1.1 1.7 2.0 2.1 1.5 2.0 0.4 0.7 0.4 0.7 1.5 2.0	0.106 0.084 0.091 0.096 0.100 0.090 0.096 0.074 0.054 0.065 0.053 0.061 0.067 0.088	0.07 0.10 0.10 0.10 0.11 0.11 0.10 0.11 0.28 0.09 0.10 0.19 0.14	0.56 2.00 0.78 0.74 0.77 0.96 0.76 1.16 1.16 1.05 1.02	69 79 83 83 86 91 82 82 97 66	0.29 0.23 0.19 0.18 0.18 0.17 0.19 0.19 0.17	6.28 17.55 9.64 9.90 10.05 12.30 10.00 16.10 22.60	86 69 77 78 79 81 77 82	1.5 1.4 1.6 2.3 3.1 1.5 2.4 1.0	
JAG SL 03 JAG SL 04 JAG SL 05 JAG SL 06 JAG SL 07 JAG SL 08 JAG SL 09 JAG SL 10 JAG SL 11 JAG SL 12 JAG SL 12 JAG SL 14 JAG SL 15 JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	1.1 1.7 2.0 2.1 1.5 2.0 0.4 0.7 0.4 0.7 1.5 2.0	0.084 0.091 0.096 0.100 0.090 0.096 0.074 0.054 0.065 0.053 0.061 0.067 0.088	0.10 0.10 0.10 0.11 0.11 0.10 0.11 0.28 0.09 0.10 0.19 0.14	2.00 0.78 0.74 0.77 0.96 0.76 1.16 1.16 1.05 1.02	79 83 83 86 91 82 82 97 66	0.23 0.19 0.18 0.18 0.17 0.19 0.19 0.17	17.55 9.64 9.90 10.05 12.30 10.00 16.10 22.60	69 77 78 79 81 77 82	1.4 1.6 2.3 3.1 1.5 2.4 1.0	
JAG SL 04 JAG SL 05 JAG SL 06 JAG SL 07 JAG SL 08 JAG SL 09 JAG SL 10 JAG SL 11 JAG SL 12 JAG SL 13 JAG SL 14 JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	1.7 2.0 2.1 1.5 2.0 0.4 0.7 0.4 0.7 1.5 2.0	0.091 0.096 0.100 0.090 0.096 0.074 0.054 0.065 0.053 0.061 0.067 0.088	0.10 0.10 0.11 0.11 0.10 0.11 0.28 0.09 0.10 0.19 0.14	0.78 0.74 0.77 0.96 0.76 1.16 1.16 1.05 1.02	83 83 86 91 82 82 97 66 67	0.19 0.18 0.18 0.17 0.19 0.19 0.17	9.64 9.90 10.05 12.30 10.00 16.10 22.60	77 78 79 81 77 82	1.6 2.3 3.1 1.5 2.4 1.0	
JAG SL 05 JAG SL 06 JAG SL 07 JAG SL 08 JAG SL 09 JAG SL 10 JAG SL 11 JAG SL 12 JAG SL 13 JAG SL 14 JAG SL 15 JAG SL 16 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	2.0 2.1 1.5 2.0 0.4 0.7 0.4 0.7 1.5 2.0 1.1	0.096 0.100 0.090 0.096 0.074 0.054 0.065 0.053 0.061 0.067 0.088	0.10 0.11 0.11 0.10 0.11 0.28 0.09 0.10 0.19 0.14	0.74 0.77 0.96 0.76 1.16 1.16 1.05 1.02 1.56	83 86 91 82 82 97 66 67	0.18 0.18 0.17 0.19 0.19 0.17	9.90 10.05 12.30 10.00 16.10 22.60	78 79 81 77 82	2.3 3.1 1.5 2.4 1.0	
JAG SL 06 JAG SL 07 JAG SL 08 JAG SL 09 JAG SL 10 JAG SL 11 JAG SL 12 JAG SL 13 JAG SL 14 JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	2.1 1.5 2.0 0.4 0.7 0.4 0.4 0.7 1.5 2.0	0.100 0.090 0.096 0.074 0.054 0.065 0.053 0.061 0.067 0.088	0.11 0.11 0.10 0.11 0.28 0.09 0.10 0.19 0.14	0.77 0.96 0.76 1.16 1.16 1.05 1.02 1.56	86 91 82 82 97 66 67	0.18 0.17 0.19 0.19 0.17	10.05 12.30 10.00 16.10 22.60	79 81 77 82	3.1 1.5 2.4 1.0	
JAG SL 07 JAG SL 08 JAG SL 09 JAG SL 10 JAG SL 11 JAG SL 12 JAG SL 13 JAG SL 14 JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	1.5 2.0 0.4 0.7 0.4 0.4 0.7 1.5 2.0	0.090 0.096 0.074 0.054 0.065 0.053 0.061 0.067 0.088	0.11 0.10 0.11 0.28 0.09 0.10 0.19 0.14	0.96 0.76 1.16 1.16 1.05 1.02 1.56	91 82 82 97 66 67	0.17 0.19 0.19 0.17	12.30 10.00 16.10 22.60	81 77 82	1.5 2.4 1.0	
JAG SL 08 JAG SL 09 JAG SL 10 JAG SL 11 JAG SL 12 JAG SL 13 JAG SL 14 JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	2.0 0.4 0.7 0.4 0.4 0.7 1.5 2.0	0.096 0.074 0.054 0.065 0.053 0.061 0.067 0.088	0.10 0.11 0.28 0.09 0.10 0.19 0.14	0.76 1.16 1.16 1.05 1.02 1.56	82 82 97 66 67	0.19 0.19 0.17 0.19	10.00 16.10 22.60	77 82	2.4 1.0	
JAG SL 09 JAG SL 10 JAG SL 11 JAG SL 12 JAG SL 13 JAG SL 14 JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	0.4 0.7 0.4 0.4 0.7 1.5 2.0	0.074 0.054 0.065 0.053 0.061 0.067 0.088	0.11 0.28 0.09 0.10 0.19 0.14	1.16 1.16 1.05 1.02 1.56	82 97 66 67	0.19 0.17 0.19	16.10 22.60	82	1.0	
JAG SL 10 JAG SL 11 JAG SL 12 JAG SL 13 JAG SL 14 JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	0.7 0.4 0.4 0.7 1.5 2.0	0.054 0.065 0.053 0.061 0.067 0.088	0.28 0.09 0.10 0.19 0.14	1.16 1.05 1.02 1.56	97 66 67	0.17 0.19	22.60			
JAG SL 11 JAG SL 12 JAG SL 13 JAG SL 14 JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	0.4 0.4 0.7 1.5 2.0	0.065 0.053 0.061 0.067 0.088	0.09 0.10 0.19 0.14	1.05 1.02 1.56	66 67	0.19		102	1.1	
JAG SL 12 JAG SL 13 JAG SL 14 JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	0.4 0.7 1.5 2.0	0.053 0.061 0.067 0.088	0.10 0.19 0.14	1.02 1.56	67		45 45			
JAG SL 13 JAG SL 14 JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	0.7 1.5 2.0	0.061 0.067 0.088	0.19 0.14	1.56			15.45	85	1.0	
JAG SL 14 JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	1.5 2.0 1.1	0.067 0.088	0.14			0.14	15.55	76	0.7	
JAG SL 15 JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	2.0	0.088		2 20	96	0.16	20.30	96	1.0	
JAG SL 16 JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	1.1		0.08	2.39	83	0.15	22.40	91	1.7	
JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	1	0.080	0.00	0.70	69	0.18	8.00	71	1.8	
JAG SL 17 JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	1		0.08	1.08	68	0.26	10.15	69	0.9	
JAG SL 18 JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25		0.079	0.08	0.91	71	0.19	9.51	69	1.0	
JAG SL 19 JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	0.7	0.067	0.09	1.37	56	0.32	12.35	71	0.6	
JAG SL 20 JAG SL 21 JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	1.2	0.074	0.08	1.00	62	0.21	10.15	72	0.8	
JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	0.6	0.067	0.06	0.88	58	0.17	7.68	66	<0.5	
JAG SL 22 JAG SL 23 JAG SL 24 JAG SL 25	1.1	0.088	0.10	1.36	72	0.24	11.60	80	0.8	
JAG SL 23 JAG SL 24 JAG SL 25	2.3	0.117	0.11	1.04	93	0.28	12.10	96	2.1	
JAG SL 24 JAG SL 25	0.9	0.068	0.11	1.39	65	0.23	13.25	75	0.7	
JAG SL 25	1.5	0.090	0.09	1.01	74	0.23	10.55	83	1.1	
	1.2	0.070	0.10	1.27	61	0.21	11.15	69	0.7	
JAG SL 26	0.9	0.049	0.15	1.61	51	0.63	11.20	54	0.6	
JAG SL 20 JAG SL 27	0.5	0.049	0.13	1.55	57	0.20	12.05	69	0.6	
JAG SL 27 JAG SL 28	0.5	0.051	0.08	1.32	40	0.20	17.85	54	0.5	
JAG SL 20 JAG SL 29	1.4	0.031	0.08	1.15	89	0.13	10.05	74	0.9	
JAG SL 29	1.5	0.082	0.07	0.92	76	0.34	7.80	70	0.9	
JAG SL 31	1.4	0.068	0.07	0.89	55	0.22	7.99	66	1.0	
	1	0.068	0.07	1.31	55 59	0.22	10.70	84	0.7	
JAG SL 32	1.1 2.9			0.93	59 74	0.25	13.25	84 70	6.9	
JAG SL 33	2.9	0.132 0.100	0.08 0.07	0.93	74 74	0.10	10.95	70 66	2.8	
JAG SL 34 JAG SL 35	1.7	0.100	0.07	1.10	74 126	0.14	8.50	70	1.2	
JAG SL 36	1.6	0.073	0.05	0.87	95	0.30	6.96	62	1.2	
JAG SL 37	1.1	0.064	0.07	0.86	58	0.34	7.79	68	0.6	
JAG SL 38		0.070	0.07	1.14	62	0.27	7.85	64	8.0	
JAG SL 39	1.6	0.072	0.09	0.91	67	0.29	8.21	73	0.7	
JAG SL 40	1.6 1.4 1.8	0.087	0.05	0.75	101	0.55	6.82	63	1.1	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET VANCOUVER BC V6C 3N6

CERTIFICATE OF ANALYSIS VA07054049

Page: 3 - A
Total # Pages: 3 (A - D)
Finalized Date: 9-JUN-2007

Account: ASMICO

Project: JAG

										<u> </u>	OAIL C	71 / 111/1		17.07.0	0-10-10	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	Au-ICP21 Au Check ppm 0.001	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1
JAG SL 41		0.76	<0.001		0.21	1.05	6.8	<0.2	<10	90	0.38	0.30	0.38	0.43	16.85	8.5
JAG SL 42		0.84	0.004		0.28	1.23	7.6	<0.2	<10	120	0.41	0.35	0.46	0.62	18.15	9.1
JAG SL 43		0.74	0.042		0.17	1.00	6.6	<0.2	<10	70	0.34	0.37	0.31	0.38	16.50	9.6
JAG SL 44		0.78	0.006		0.38	1.23	9.5	<0.2	<10	130	0.44	0.66	0.47	0.65	18.00	8.7
JAG SL 45		0.82	0.003		0.27	1.11	7.1	<0.2	<10	110	0.37	0.32	0.37	0.51	15.85	7.9
JAG SL 46		0.76	<0.001		0.20	1.04	7.2	<0.2	<10	70	0.34	0.31	0.34	0.51	16.40	8.9
JAG SL 47		0.88	< 0.001		0.21	1.03	7.8	<0.2	<10	90	0.35	0.71	0.32	0.53	16.70	9.6
JAG SL 48		0.76	0.005		0.19	1.12	5.8	<0.2	<10	90	0.39	0.47	0.41	0.51	17.20	9.0
JAG SL 49		0.80	NSS		0.17	1.07	10.6	<0.2	<10	80	0.36	0.86	0.29	0.54	18.30	10.6
JAG SL 50		0.70	0.012		0.19	1.27	7.0	<0.2	<10	90	0.46	0.50	0.39	0.49	18.10	10.3
JAG SL 51		0.70	0.004		0.19	1.27	8.0	<0.2	<10	100	0.47	0.50	0.40	0.63	17.20	12.0
JAG SL 52		0.78	0.001		0.13	0.84	3.4	<0.2	<10	50	0.25	0.38	0.23	0.26	14.30	6.2

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET VANCOUVER BC V6C 3N6

CERTIFICATE OF ANALYSIS VA07054049

Page: 3 - B Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007

Account: ASMICO

Project: JAG

										EKIIFI	CAIE	T ANA	LISIS	VAU/U	34049	
Sample Description	Method Analyte Units LOR	ME-MS41 Cr ppm 1	ME-MS41 Cs ppm 0.05	ME-MS41 Cu ppm 0.2	ME-MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05
JAG SL 41		14	1.32	13.8	3.43	3.78	0.09	0.03	0.03	0.030	0.05	9.2	8.1	0.44	1030	1.58
JAG SL 42		15	1.57	15.5	3.63	4.02	0.09	0.03	0.04	0.034	0.06	9.8	9.0	0.46	1355	1.78
JAG SL 43	- 1	18	1.21	21.1	4.19	4.13	0.11	0.04	0.01	0.029	0.06	8.2	9.5	0.54	824	2.06
JAG SL 44		12	1.64	16.2	3.22	3.87	0.09	0.03	0.06	0.037	0.06	10.0	8.9	0.42	1390	1.80
JAG SL 45		13	1.50	14.6	3.27	3.66	0.09	0.03	0.03	0.028	0.05	8.7	8.5	0.42	1245	1.55
JAG SL 46		12	1.31	14.0	3.15	3.73	0.09	0.03	0.02	0.027	0.06	8.4	9.2	0.51	834	1.69
JAG SL 47		10	1.39	13.9	3.03	3.56	0.09	0.03	0.02	0.029	0.05	8.2	8.7	0.47	1120	2.13
JAG SL 48		13	1.61	15.5	3.08	3.82	0.08	0.03	0.02	0.028	0.05	9.2	9.2	0.47	1025	2.01
JAG SL 49		12	1.20	14.9	3.23	3.96	0.10	0.05	0.01	0.053	0.07	8.7	10.4	0.57	1065	2.13
JAG SL 50		14	1.67	17.5	3.22	4.44	0.09	0.03	0.02	0.034	0.07	9.1	11.1	0.57	975	2.55
JAG SL 51		12	1.71	17.5	3.41	4.27	0.10	0.03	0.02	0.033	0.06	8.7	10.9	0.54	1300	2.74
JAG SL 52	- 1	10	1.33	11.8	2.53	3.28	0.08	0.03	0.01	0.022	0.04	7.4	7.3	0.40	330	1 21

JAG SL 49

JAG SL 50

JAG SL 51

JAG SL 52

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

0.02

0.02

0.02

0.01

0.63

0.81

0.81

0.65

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

9.1

9.6

7.6

5.7

610

710

790

460

10.9

9.6

10.2

8.7

7.0

7.8

7.9

5.3

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET **VANCOUVER BC V6C 3N6**

CERTIFICATE OF ANALYSIS VA07054049

0.5

1.2

1.3

0.6

0.3

0.4

0.3

0.3

21.3

27.7

28.4

15.7

Page: 3 - C Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007

< 0.01

< 0.01

< 0.01

< 0.01

0.13

0.18

0.21

0.11

Account: ASMICO

Project: JAG

	Method Analyte Units	ME-MS41 Na %	ME-MS41 Nb	ME-MS41 Ni	ME-MS41	ME-MS41 Pb	ME-MS41 Rb	ME-MS41 Re	ME-MS41 S %	ME-MS41 Sb	ME-MS41 Sc	ME-MS41 Se	ME-MS41 Sn	ME-MS41 Sr	ME-MS41 Ta	ME-MS41 Te
Sample Description	LOR	0.01	ppm 0.05	ppm 0.2	ррт 10	ppm 0.2	ррт 0.1	ррт 0.001	0.01	ppm 0.05	ppm 0.1	ppm 0.2	ррт 0.2	ррт 0.2	ppm 0.01	ppm 0.01
JAG SL 41		0.02	0.70	6.9	620	8.7	6.1	<0.001	0.03	0.48	3.5	0.9	0.3	25.0	<0.01	0.12
JAG SL 42		0.02	0.73	7.3	780	9.9	7.2	< 0.001	0.05	0.49	3.8	1.2	0.3	30.3	< 0.01	0.13
JAG SL 43		0.02	0.67	8.6	610	9.6	6.2	< 0.001	0.02	0.54	3.7	0.6	0.4	20.3	<0.01	0.14
JAG SL 44		0.02	0.67	6.9	760	12.8	7.4	0.001	0.05	0.44	3.6	1.5	0.3	31.7	< 0.01	0.16
JAG SL 45		0.02	0.63	7.2	690	9.8	6.5	< 0.001	0.03	0.43	3.4	1.2	0.3	26.2	<0.01	0.13
JAG SL 46		0.02	0.75	7.6	640	9.3	6.5	<0.001	0.03	0.41	3.4	0.9	0.3	21.5	<0.01	0.14
JAG SL 47		0.02	0.76	7.2	600	9.7	6.6	0.001	0.03	0.42	3.3	0.9	0.3	22.6	<0.01	0.15
JAG SL 48		0.02	0.73	6.9	710	9.4	6.9	0.001	0.04	0.38	3.3	1.3	0.3	27.0	< 0.01	0.16

< 0.001

0.001

0.001

< 0.001

0.02

0.03

0.04

0.02

0.41

0.40

0.41

0.35

3.8

3.9

3.5

2.9

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ASTRAL MINING CORPORATION 709 - 837 WEST HASTINGS STREET VANCOUVER BC V6C 3N6 Page: 3 - D Total # Pages: 3 (A - D) Finalized Date: 9-JUN-2007

Account: ASMICO

Project: JAG

Method Analyte Units Description ME-MS41 ME-MS41
Analyte Units LOR
AG SL 42 1.0 0.068 0.10 1.00 67 0.68 10.10 80 0.6 11.3 1.3 1.3 1.4 1.4 1.5 1.5 1.0 1.5 1.5 1.5 1.6 1.5 1.6 1.5 1.6 1.6
GS L 46 1.5 0.064 0.07 0.76 59 0.29 6.99 75 0.8 GS L 47 1.4 0.064 0.10 0.81 53 1.04 6.97 75 0.7 GS L 48 1.2 0.069 0.09 1.18 58 0.37 7.82 80 0.6 GS L 49 2.2 0.075 0.10 0.69 57 0.24 7.59 79 1.6 GS L 50 1.3 0.072 0.10 0.98 57 0.36 8.01 87 0.6
JAG SL 51 1.4 0.065 0.11 1.06 54 0.51 8.05 90 0.7
JAG SL 52 1.3 0.064 0.06 0.67 53 0.27 5.60 58 0.6