$\begin{array}{c} \textbf{GEOCHEMICAL-PROSPECTING-GEOLOGICAL} \\ \textbf{REPORT} \end{array}$

on the

CLAIR CLAIM GROUP

Toodoggone River Area Omineca Mining Division British Columbia

NTS Map-Area 094E

Report By:

A. O. Birkeland P.Eng.

Date:

August 13, 2007

TABLE OF CONTENTS

	Page
SUMMARY	3
INTRODUCTION AND TERMS OF REFERENCE	3
PROPERTY DESCRIPTION AND LOCATION	3
CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE and PHYSIOGRAPHY	4
HISTORY	4
GEOLOGICAL SETTING	5
Regional Setting	5
Property Geology	6
PROGRAM RESULTS	6
CONCLUSIONS AND RECOMMENDATIONS	6
REFERENCES	6
CERTIFICATE OF AUTHOR	7

APPENDIX A

- Figure 1 Toodoggone Regional Claims Location Map
- Figure 2 Claim Location Map
- Figure 3 Local Geology
- Figure 4 Sample Location Map

APPENDIX B

- Table 1 Claim Tenure
- $Table\ 2-Statement\ of\ Expenditures$

APPENDIX C

Geochemical Analysis Certificates - Acme Analytical Laboratories Ltd

APPENDIX D

Mineral Claim Exploration and Development Work / Expiry Date Change – Online Event Documentation

SUMMARY

Arne O Birkeland, P.Eng., Owner Number 102420, is the recorded 100% interest holder in the Clair Claim Group ("the property"). The property, which is situated in the Toodoggone mining district in northern British Columbia, consists of sic mineral claims. They are located the north flank of the Toodoggone River valley along McClair Creek, some 300 kilometres north of Smithers. Access is by aircraft from Smithers to the Sturdee airstrip 35 kilometres southeast of property or by way of a secondary road linking the airstrip with Mackenzie, which is northwest of Prince George, and from there by helicopter.

A geochemical and prospecting program was carried out in areas of favorable geology on the property.

The total expenditure incurred to conduct the field work and generate an assessment report was \$2,551.32.

Elevated copper and zinc values were encountered in the limited stream sediment sampling that was conducted. The data indicates porphyry copper – gold exploration targets may be present and follow-up field work is warranted.

INTRODUCTION AND TERMS OF REFERENCE

This Geochemical – Prospecting - Geological Assessment Report has been prepared utilizing results from limited prospecting and sampling conducted as part of an early stage, reconnaissance style helicopter supported field program. The program conducted on the Clair claims was part of regional program conducted on portions of seven claim groups by Arnex Resources Ltd during a 17 day period during late August to mid September, 2006 as illustrated in Appendix A, Figure 1. The program was carried out by up to a five person crew. Field personnel consisted of the following persons; A. Birkeland; P Suratt; T. Pedwerbski; T. Gilchrist; D. Rafuse. Most work was conducted based out of helicopter supported centrally located fly camps. Some work was conducted by helicopter from the Arnex camp at the Porphyry Pearl property located in the Moosehorn Creek valley north of the Toodoggone River.

The purpose of the program was to prospect and sample areas of favorable geologic environments to evaluate the potential for porphyry copper-gold occurrences.

A total of approximately 2.2 man days of field time were spent on the Clair claims as per Table 2, Statement of Expenditures.

Total expenditures incurred to conduct the field work and to generate an assessment report were \$2,551.32 as stated in Table 2, Statement of Expenditures. The filed amount of work value was \$2,500 which was filed as Event Number 413495 as per Table 1, Claim Tenure and as per the Online Event documentation contained in Appendix D.

One data CD containing a digital copy of this assessment report is submitted to the Mineral Titles Branch as required to support the Statements of Mineral Claim Exploration and Development Work.

Units of measure in this report are metric unless otherwise noted.

PROPERTY DESCRIPTION AND LOCATION

The Toodoggone Regional Claims (Appendix A, Figure 1) encompass seven properties consisting of both legacy and cell claims that are situated in the Omineca and Liard Mining Divisions of northern British Columbia, approximately 300 kilometres north of Smithers. Five of the claim groups are situated north of the Toodoggone River (map center 57°20'N, 127°00'W), while the remaining two claim groups

are located to the southeast.

The Clair claim group is situated in the central area of the Toodoggone Regional Claims. The property is accessed by helicopter form Sturdee airstrip approximately 35 km southeast of the property.

The distribution of the Clair claims is illustrated by Figure 2 contained in Appendix A. The property description is contained in Appendix B, Table 1, Claim Tenure.

CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE and PHYSIOGRAPHY

The Toodoggone Regional Claims are situated in the north and east-central portion of Toodoggone District. The communities of Smithers and Prince George, both several hundred kilometres south of the property, offer the best range of supplies and services which can be trucked by way of a secondary road linking Kemess mine with Mackenzie. This road extends 35 kilometres further northwest to Sturdee airstrip which is capable of handling large aircraft, thus providing an alternate means of access into the general area.

The Toodoggone Regional Claims are situated immediately east of the boundary between the Spatsizi Plateau to the west and the Stikine Ranges of the southern Cassiar Mountains to the east. The immediate area features wide, drift-filled valleys separating the gently rolling upland surface of the Spatsizi Plateau to the west and steep-sided, maturely dissected mountains throughout the central and eastern property areas.

Scattered buck brush and locally dense alpine spruce, balsam and fir is present in valley areas up to elevations of 1600 metres above sea level above which is typical alpine terrain featuring short grasses and lichen. Bedrock is reasonably well exposed in the areas above tree line and along drainages. Abundant felsenmeer on some slopes is believed to be very close to bedrock.

Portions of the Toodoggone Regional Claims are in alpine terrain featuring locally rugged topography particularly on north and east facing slopes, with the remainder located within broad U-shaped glacial valleys. Elevations generally range from 1300 metres above sea level to more than 2000 metres at some of the highest points in the central and eastern claims.

The climate is typical of the northern regions of British Columbia with cold temperatures and abundant snow cover during the winter months which extend from mid-October through early May. Field work is best carried out between mid-June and late September when daytime temperatures average 10 to 15 degrees Celsius.

HISTORY

The Toodoggone Regional Claims are in the Toodoggone mining district. Earliest mining-related work in this area was directed to placer gold occurrences along McClair Creek, near its confluence with Toodoggone River, between 1925 and 1935. This operation, one of the first in Canada to be entirely air-supported, recovered only modest amounts of gold (3270 grams = 115 ounces).

Historical regional hard-rock exploration in the area is summarized as follows:

- Consolidated Mining and Smelting Company 1930s Prospecting.
- Canadian Superior Exploration, Cominco, Cordilleran Engineering and Kennco Explorations –
 1960s and 1970s regional exploration programs in the search for porphyry copper mineralization.
 Work by Kennco Explorations lead to the recognition of significant gold-silver mineralization at
 what were to become the Baker mine (Chappelle) and Lawyers (Cheni mine) deposits south of
 Toodoggone River. This company also discovered porphyry-style copper-gold mineralization at
 several sites north and south of Finlay River including the currently producing Kemess mine.
- Continued exploration between the early 1970s and the 1990s resulted in the discovery of a number of additional gold-silver deposits and occurrences throughout the area.

• Production from the Toodoggone district began with the Baker mine operation in 1981 and continues with the current South Kemess mine of Northgate Minerals Corporation.

The original Toodoggone Regional legacy claims were primarily staked to cover open anomalies identified by the multiparameter airborne geophysical survey released in march 2004 by the GSC and MEMPR. Acquisition of the claims and subsequent investigations are funded by a private syndicate. Additional cell claims were acquired as former legacy cells forfeited.

GEOLOGICAL SETTING

Regional Setting

The Toodoggone Regional Claims, situated in the northeastern part of the Intermontane tectonic belt of the Canadian Cordillera, is west of a fault contact between Quesnel terrane of the Omineca crystalline belt on the east and Stikine terrane on the west (Figure 3 and 4, Legend references OFGM2006-6 and BCGS1:250,000 Geology). Stikine terrane includes Devonian to Jurassic volcanic and sedimentary rocks which are intruded by coeval and younger plutonic rocks and are locally overlain by younger volcanic and sedimentary units.

Oldest rocks in the area are intensely deformed late Carboniferous to Permian Asitka Group volcanic and sedimentary rocks. These have their greatest distribution north of Stikine River where they consist of mafic to felsic volcanic rocks which are mainly converted to chlorite and sericite schists, phyllites derived from clastic sedimentary rocks and younger rhyolites, cherts and carbonate sediments. Remnants of Asitka Group carbonates and cherts are present in the vicinity of Baker Mine and north and south of Finlay River.

Volcanic rocks of the late Triassic, Takla (Stuhini) Group, which form mountainous terrain south of Chukachida and Finlay Rivers, are comprised mainly of augite phyric basalt, andesitic flows, tuffs and breccias and subordinate interflow clastic sedimentary rocks and some limestone. Smaller areas underlain by Takla Group rocks include remnants marginal to a granitic stocks in the southern part of the area and east of the Toodoggone Regional Claims. The volcanic rocks marginal to such plutons feature limonite-rich alteration zones.

Previous geological interpretations suggested that early Jurassic andesite and dacite flows and volcaniclastic rocks of the Hazelton Group underlie the eastern part of the area between Chuckchida and Finlay Rivers. Recent geological mapping by Diakow et al (2004,2005) indicates that the Hazelton Group in this part of Stikine terrane is entirely comprised entirely of Toodoggone Formation volcanic rocks featuring distinctive lithologies and contained in a northwest-trending, 90 by 20-25 km belt centred on Toodoggone River. These subaerial volcanic rocks unconformably overlie, or are in fault contact with older rocks and consist principally of high potassium, calcalkaline latites and dacites (Diakow et al,1993). Two eruptive cycles have been recognized and Jurassic plutons, numerous throughout the district, are comagmatic with the earlier volcanic cycle.

The Takla and Toodoggone volcanics have been intruded by Jurassic to Eocene granitic plutons which trend in a northwesterly direction in the Toodoggone belt. Numerous porphyry copper-gold occurrences are associated with the intrusions, as evidenced by the producing South Kemess mine.

Cretaceous clastic sedimentary rocks, part of the Sustut Group, unconformably overlie older rocks and form the western boundary of the area.

Regional northwesterly trending faults are the dominant structural feature of the area. Northeast striking normal cross faults are also evident. Intersections of the two conjugicate fault systems are important as the loci at which local intrusions occur.

Clair Claims - Local Geology

The geological setting of the Clair claims is illustrated by Figure 3, Local Geology contained in Appendix A.

The property is underlain in the south by upper Jurassic Toodoggone volcanics and by middle Jurassic Hazelton (Takla) volcanics. A large pluton is present southeast of the property. A major north trending fault system is thought to control the location of McClair Creek.

PROGRAM RESULTS

Sample locations and results from geochemical sampling on the property are plotted on Figure 4 contained in Appendix A. Analytical certificates are contained in Appendix D.

Four stream sediment (moss Mat samples where possible) were taken from McClair Creek. Best results were from sample 06-TG-03 which returned values of 367 ppm copper and 477 ppm zinc. Sample 06-TG-04 taken approximately 700 m to the south also returned elevated copper (211 ppm) and zinc (201) values

CONCLUSIONS

Very limited work was conducted on the property.

A favorable geologic environment consisting of volcanic rocks northwest of a contact with intrusive rocks is present. A major fault system is also present.

Although sampling was limited, elevated copper and zinc values were obtained in stream sediment samples taken from McClair Creek on the property.

Exploration targets are present. Follow-up reconnaissance style stream sediment and reconnaissance style soil and talus fine geochemical surveys and prospecting and rock sampling are warranted.

REFERENCES

- Birkeland, A.O. (2006): Geological Report, Image Analysis and GIS Compilation on the TSS Regional Claims
- Carter, N.C. (1972): Toodoggone River Area in Geology Exploration and Mining in British Columbia in 1971, BC Ministry of Energy Mines and Petroleum Resources, pages 63-70
- Diakow, L.J., A. Panteleyev and T.G. Schroeter (1993): Geology of the Early Jurassic Toodoggone Formation and Gold-Silver Deposits in the Toodoggone River Map area, Northern British Columbia; British Columbia Geological Survey Bulletin 86
- Diakow, L.J. and Shives, R.B.K. (2004): Geoscience Partnerships in the Toodoggone River and McConnell Creek Map Areas, North-Central British Columbia, *in* BC Ministry of Energy and Mines Geological Fieldwork, 2003, Paper 2004-1, p.27-32
- Diakow, L., Nixon, G., Lane, B. and Rhodes, R. (2005): Toodoggone Geoscience Partnership: Preliminary bedrock mapping Results from the Swannell Range: Finlay River Toodoggone River Area (94E2 and 7), North-Central British Columbia, *in* BC Ministry of Energy and Mines Geological Fieldwork, 2004, Paper 2005-1, p.93-108

Panteleyev, Andre (1991): Gold in the Canadian Cordillera – A Focus on Epithermal and Deeper Environments in Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, BCMEMPR Paper 1991-4, p.167-212

Shives, R.B.K., Carson, J.M., Ford, K.L., Holman, P.B., Diakow, L. (2004): Toodoggone MultiSensor Geophysical Survey, BC Ministry of Energy and Mines Open File 2004-8

Thorstad, L. (1980): Upper Paleozoic Volcanic and Volcaniclastic rocks in Northwest Toodoggone Map Area, British Columbia; Geological Survey of Canada Paper 80-1B, p. 207-211.

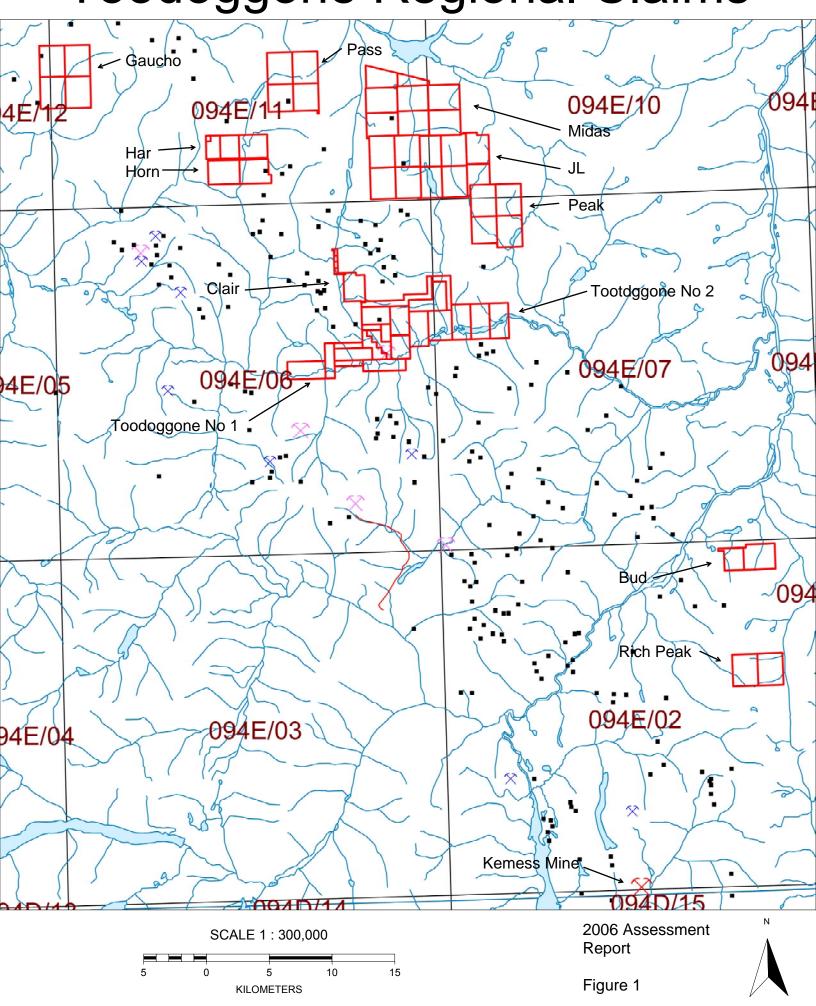
CERTIFICATE OF AUTHOR

Arne O. Birkeland, P.Eng.
Arnex Resources Ltd.
2069 Westview Drive
North Vancouver, BC, Canada, V7M 3B1

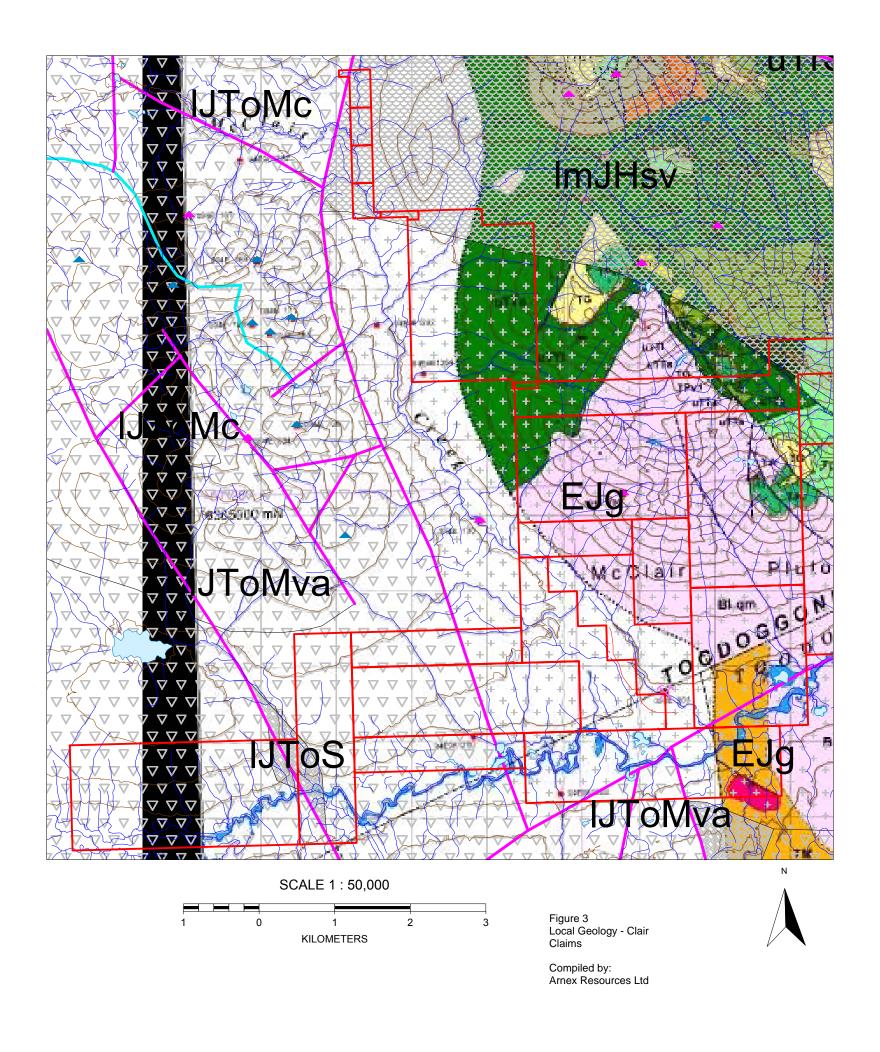
I, Arne O. Birkeland, P.Eng. do hereby certify that:

- I am currently employed as a Geological Engineer by: Arnex Resources Ltd.
 2069 Westview Drive, North Vancouver, British Columbia, Canada, V7M 3B1
- 2. I graduated with a Bachelor of Science Degree in Geological Engineering from the Colorado School of Mines in 1972. I am a 1969 graduate of BCIT obtaining a Diploma of Mining Technology.
- 3. I have been a practicing Professional Engineer registered with the Association of Professional Engineers and Geoscientists of British Columbia since 1975, Registration Number 9870. I am a member and chairman of the Liaison Committee of the British Columbia and Yukon Chamber of Mines (now AME BC).
- 4. I have worked as a geologist for a total of 35 years since my graduation from university. My primary employment since 1966 has been in the field of mineral exploration and development. My experience has encompassed a wide range of geological environments including extensive experience in classification of deposit types as well as considerable familiarization with geochemical and geophysical survey techniques and diamond drilling procedures. Since 1990, my primary involvement in exploration activities has been focused on the BC Cordillera, primarily exploring for Volcanogenic Massive Sulphide and Porphyry type targets.
- 5. I am responsible for the preparation of this Assessment Report titled Geochemical Prospecting Geological Report, Bud Claim Group, Toodoggone River Area, Omineca Mining Division, British Columbia. I have personally conducted and/or supervised the exploration fieldwork carried out by Arnex Resources Ltd on the subject property.
- 6. I am not aware of any material fact or material change with respect to the subject matter of this Assessment Report that is not reflected in the Assessment Report, or the omission to disclose which makes the Assessment Report misleading.

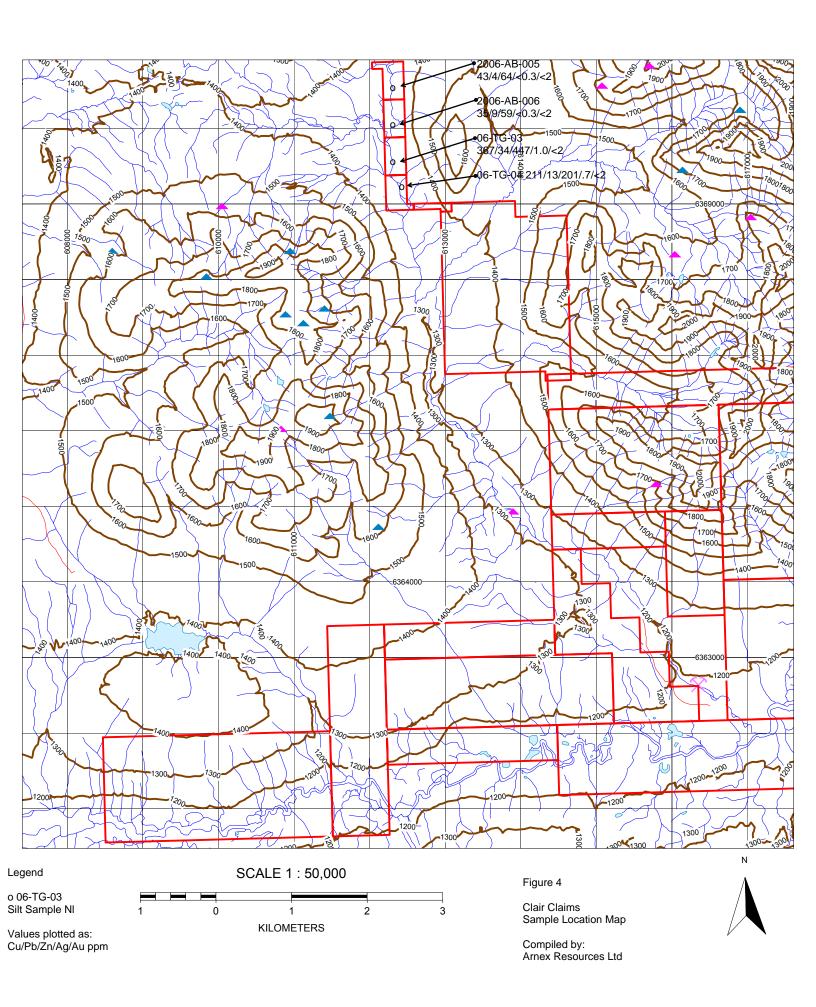
7. I have read National Instrument 43-101 and Form 43-101F1, and this Assessment Report has been prepared in substantially where possible in compliance with that instrument and form.


Dated at North Vancouver, British Columbia, this 13th day of August, 2007

"signed" Arne O Birkeland


Arne O. Birkeland, P. Eng.

President, Arnex Resources Ltd.


Toodoggone Regional Claims

Tooddoggone West - Geology - 1:50,000

Tooddoggone West - Topo Base Map - 1:50,000

Claim Location Map - Clair Claims

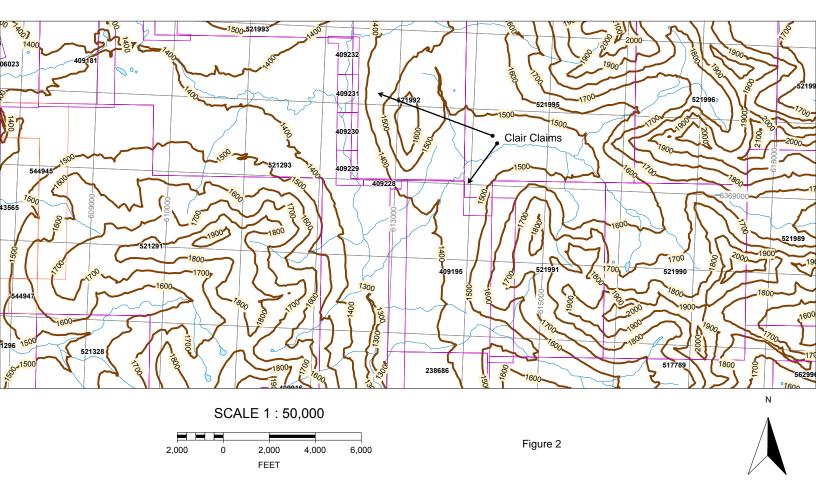


Table 1 Claim Tenure Clair Claim Group 2006 Assessment Work Filing Aug, 2007

Tenure Number	Claim Name	Mining Division	Owner	Map Number	Good To Date	Area	2007 Event	Filed Amount	SOE
409195	CLAIR 1	OMINECA	102420 (100%)	094E045	2008/MAR/26	500	4139495		
409228	CLAIR 2	OMINECA	102420 (100%)	094E045	2008/MAR/26	25	4139495		
409229	CLAIR 3	OMINECA	102420 (100%)	094E045	2008/MAR/26	25	4139495		
409230	CLAIR 4	OMINECA	102420 (100%)	094E045	2008/MAR/26	25	4139495		
409231	CLAIR 5	OMINECA	102420 (100%)	094E045	2008/MAR/26	25	4139495		
409232	CLAIR 6	OMINECA	102420 (100%)	094E045	2008/MAR/26	25	4139495		
Total						625		\$2,500.00	\$2,551.32

Table 2 Statement of Expenditures - 2006 Field Program Project: TSS

Claim Group: Clair

Prepared By: Arnex Resources Ltd

Description		Cost	/unit	Claim Days	Claire
					Paid Amount
Project Management	P.Eng., Planning, Supervision, Reports, Field Work	\$750.00	/day	1.5	
	Subtotal Management			1.5	\$746.15
Services	P. Suratt	\$450.00	/day	0.4	
	T. Pedwerbski	\$400.00	/day	0.5	
	T. Gilcrist	\$450.00	/day	0.6	
	D. Rafuse	\$400.00	/day	0.6	
	Subtotal Services			2.2	\$604.34
Destala	Field Ferriannest and Consultan				
Rentals	Field Equipment and Supplies				
	Fly Camp				
	Radios Satellite Phone				
	Trucks				
	Camper				
	Field Computers, Office Equipment				
	0.1111.00				011010
	Subtotal Rentals				\$142.13
F	Room and Board				
Expenses	Expiditing				
	Copying, Printing				
	Telephone				
	Accommocation				
	Groceries				
	Gas				
	Misc Expenses				
	Freight				
	Freight				
	Subtotal Expenses				\$296.45
	Subtotal Expenses				\$290.40
Helicopter	Interior, Canadian Helicopters				
Tielicoptei	Interior, Cariadian Trencopters				
Subtotal Helicopter					\$525.48
Subtotal Fleiicoptei					₩323.40
Analytical	Acme Labs				
Arialytical	Figure 2005				
	Subtotal Analytical				\$98.67
	Subtotal Analytical				φ30.07
Administration Fee	Expenses, Heli, Analytical @ 15%				\$138.09
, tarriin salation i cc	Expenses, tien, rinaryaoan & 1070				ψ100.03
Contingency					\$0.00
Contangonoy					ψ0.00
TOTAL			1	_	\$2,551.32
IVIAL		-			ψ±,331.32

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Raymond Chan

Arnex Resources Ltd. File # A607726 Page 1 2069 Westview Drive, North Vancouver BC V7M 3B1 Submitted by: Arne Birkeland

	7																													
SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	•		Co Mn			U maga						b Bi mppn		Ca %		La ppm		_	Ba ppm	Ti %	B ppm	Al %	Na %		W ppm	
G-1 128703 128704 128705 128706	1 52 4 4 7	<1 13 13 3	13 16 14 12 23	45 23 7 18 7	<.3 <.3 .5 <.3	3 1 2 1 3	4 521 11 164 42 121	1.81 3.85 2.45 5.86 3.06	-	<8 <8 <8 <8	<2 <2 <2 <2 <2	5 6 <2	59 2 1 32 4	<.5 <.5 <.5 .5	5 <	3 <3 3 4 3 <3 3 3	37 9 4 61	.49 .02 .01 .32	.070 .014 .003 .145	7 9 2	10 5 15 4	.57 .50	201 80 15 51	.12 <.01 <.01 .14 <.01	5 6 <3	1.11	.07 .02 <.01 .06 <.01	.48 .24 .02	<2 <2 <2 <2	
128707 128708 128709 128710 128711	1	42 11 <1 10000	14 6 4 138 140	6 31 46 58 37	.4 <.3 <.3 14.7 11.4	2	268 33 12 343 12 606 24 306 7 200	12.44 10.92 7.56	22 4 <2 58 183	<8	<2 2 <2 3 6	<2 <2 <2 <2 <2	3 2 9 2 3	<.5 .8 1.5 .8	} < 5 < 8 <	3 6	57 132 43	.01 .05 1.19 .09	.003 .010 .016 .052	3 3 2	13 6 6	.03 1.05 1.80 .78 .61	30 7 28	<.01 .02 .02 <.01 <.01				.01 .02 .02 .10	68 38 11	
128712 128713 128714 128715 128716	21 2 2 14 1	865 97 34 134 10	18 14 30 13 5	35 15 59 26 28	.8 .4 <.3 .9 <.3	<1 1 <1 2 5	3 202 4 198 1 223 10 310 5 357	4.33 4.74 4.76	11 15 8 11 2	<8 <8	<2 <2 <2 <2 <2	<2 <2 <2	2 20	<.5 <.5 <.5 <.5	<	3 3 3 <3 3 <3	41 101 63	.08 .03 .05 .62 1.37	.067 .087 .131 .085	9 10 4	11 3 2 7 14	.25 1.00 .51	44	<.01	3 4 3 3 <3	.87 .50 1.09 .85	.04 <.01 .06 .03	.07 .20 .14 .08	<2 <2	
128717 128718 RE 128718 128719 128720	<1 17 16 11 7	377 674 649 776 3031	6 12 13 14 15	9 31 31 20 40	<.3 .5 .6 .5	4	28 316 27 308 36 285	1.32 6.31 6.06 3.74 5.17	3 24 23 29 14	<8 <8 <8	<2 <2 <2 <2 <2	<2 2 2 4 <2	29 28	<.5 <.5 <.5 <.5	< ; <; ; <;	3 4 3 4	75 73 15	1.51 .41 .39 .23 .20	.221 .112 .108 .022 .044	4 5		.34 .81 .79 .48 .85	18 19	.17 .07 .06 .02 <.01	4	.99 1.05 1.02 .87 1.22	.04 .03 .03 .04	.02 .13 .12 .06	<2 <2	
128721 128722 128724 128725 128786	3> 12 12 5 4	·10000 360 307 51 39	11 7 11 22 12	24 41 30 47 11	2.0 .3 .3 .6 <.3	5 3 1 15 2	22 209 15 553 6 510 7 386 5 232	4.80 5.09 4.03 4.77 3.28	9 7 3 6 8	<8 <8 <8	<2 <2 <2 <2 <2	5	3 34 25 59 7	<.5 .5 <.5 .9 <.5	; <; ; <; ; <;	3 <3 3 <3 3 <3	73 70 196	.12 .59 1.15 .72 .18	.034 .259 .433 .249	14 20 4	13 5 3 30 12	.47 .96 .86 1.49 .41		<.01 .13 .14 .24 .11	7	.74 1.85 1.45 1.60 .80	.01 .02 .04 .06	.10 .11 .11 .08 .18	<2 <2	
128787 128788 128789 128790 128804	2> 23 1 <1 5	10000> 298 95 139 114	10000> 224 187 22 71	10000 226 298 56 31	>100 12.3 10.5 1.1 68.4	3 10 5 13 <1	20 618 14 336 17 961 14 879 8 20	5.76 5.08 4.94 4.36 5.29	5 8 12 2 43	<8 <8	<2 <2 <2	<2 <2 <2 <2 <2	56 106 31	>2000 7.4 5.8 .7	, < } < ! <	3 3 3 <3 3 <3	80 97 106	.22 .65 2.50 .65 .02	.052 .084 .098 .087	4 9 3	11	.62 1.28 1.44	113	.24	3 4 7 4 <3	1.10 1.39 .80 2.10 .16	.01 .08 .04 .08 <.01	.12 .12 .09 .05	<2 <2 <2	
128805 128806 128807 128808 128809	3 11 46 3 20	1693 152 8 666 2793	16 28 13 28 16	6 40 24 20 12	5.4 1.1 .4 3.3 6.4	1 4 <1 1	47 32 73 485 6 231 <1 144 56 127	1.56 11.66	19 10 2 4 39	<8 <8	<2 <2 <2 <2 <2	<2 4 8 <2 2	1 2 3 1 2	<.5 .5 <.5 .7	< < <	3 4 3 3 3 <3	31 13 33	.01 .01 .01 .01	.008 .022 .011 .014	7 3 3		.03 .80 .44 .15	103 8 24	.01 .01 .01 .04	3 3 <3 4 5	.15 1.60 .67 .42 .46	.01 .04 .09 .01	.09 .07 .02 .13	<2	
STANDARD DS7	20	96	74	443	.9	51	8 620	2.31	45	<8	<2	4	72	6.4		6 5	83	.92	.073	12	181	1.04	389	.12	37	1.00	.08	45	<2	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 12 2006 DATE REPORT MAILED:.....

Arnex Resources Ltd. FILE # A607726

Page 2

ACME ANALYTICAL																													ACME AN	NALYTICAL
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Βí	٧	Са	Р	La	Cr	Mg	Ва	Τí	В	Αl	Na	K	W
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ррп	%	ppm	%	%	%	ppm
G-1	<1	0	<3	45	<.3	4	4	536	1.83	3	<8	<2	4	46	<.5	<3	<3	34	.47	.071	6	Я	.59	206	.12	<3	.92	.05	.48	<2
128810	2	135	<3	18	.5	3	28	282	4.06	4	<8	<2	3	2	<.5	3	4	18	.12	.030	4	10	.37	18	.02	<3	.76	.03	.08	5
128811	<1	33	<3	21	.5	1	4	278	1.32	3	<8	<2	3	2	<.5	<3	<3	9	.08	.022	5	13	.40	17	.01	<3	.63	.04	.07	<2
128812	5	4729	<3	-6	6.0	1	31	489		4	<8	<2	2	9	.5	<3	5	5	1.86	.016	34	7	.04		<.01	<3		<.01	.23	4
128813		3366	<3	14	2.1	2	12	355	3.94	3	<8	<2	5	5	<.5	<3	<3	17	.46	.044	15	6	.28	35	.01	<3	.70	.02	.23	6
128814	18	865	8	36	10.5	3	14	327	20.64	18	<8	<2	2	114	<.5	<3	7	237	.48	.298	6	21	.01	26	.13	4	1.34	.01	.04	<2
128815	1	58	<3	16	. 4	12	8	181	2.27	13	<8	<2	2	33	<.5	<3	<3	86	.99	.303	5	23	.56	21	.19	<3	.80	.06	.13	<2
128816	<1	1489	<3	165	1.2	58	17	1998	11.89	2	<8	<2	<2	2	.8	<3	8	172	.16	.052	4	94	4.09	39	.05	<3	4.77	.02	.01	<2
128817	10	19	<3	7	<.3	1	29	90	4.83	11	<8	<2	<2	2	<.5	<3	6	27	.02	.015	4	7	.19	7	.03	<3	.30	.03	.04	6
128818	14	181	4	7	.6	2	6	75	1.25	4	9	<2	6	2	<.5	<3	5	6	.02	.006	2	9	.08	14	.02	<3	.29	.06	.02	<2
128819	36	94	<3	18	1.3	1	2	76	8.19	20	<8	<2	<2	39	<.5	<3	9	38	.43	.036	2	10	.02	2	. 16	<3	.42	<.01	<.01	<2
128820	4	366	11	11	2.0	<1	<1	49	16.27	401	<8	<2	<2	3	<.5	<3	44	59	.05	.058	4	6	.04	6	.09	3	.44	<.01	.03	2
128821	1	134	<3	43	.6	5	5	351	4.75	13	<8	<2	<2	153	<.5	6	<3	85	.55	.201	4	13	1.25	35	.26	3	1.44	.09	.10	<2
128821A	1	265	<3	50	.5	8	7	453	4.51	10	<8	<2	<2	95	<.5	<3	4	84	.59	.225	4	14	1.42	22	. 23	3	1.54	.06	.07	<2
PP06001	5	538	252	618	3.3	1	10	6068	4.64	70	8	<2	2	53	7.8	<3	5	32	6.78	.102	15	2	.69	88	<.01	<3	1.12	.01	.19	<2
PP06002	3	339	175	599	2.1	<1	9	4187	6.16	158	<8	<2	3	6	1.7	<3	4	46	.12	.085	18	1	1.40	97	<.01	<3	2.61	<.01	.21	<2
PP06003	30	85	604	168	8.6	<1	1	172	2.31	228	<8	<2	2	9	1.2	<3	14	4	.09	.159	5	1	.02	292	<.01	<3	.32	<.01	.28	<2
RE PP06003	28	78	570	155	7.9	<1	2	161	2.15	214	<8	<2	2	8	1.0	<3	14	4	.08	.150	4	1	.02	281	<.01	<3	.30	<.01	.26	<2
PP06004	4	1333	968	2026	4.0	1	5	3370	3.48	19	<8	<2	2	25	12.7	<3	4	23	2.83	.094	16	2	.85	35	<.01	<3	1.39	.01	.23	<2
PP06005	3	50	96	60	1.9	1	6	83	3.79	7	<8	<2	<2	60	.5	<3	7	7	. 24	. 138	7	1	.02	10	<.01	3	.36	<.01	.25	<2
STANDARD DS7	21	103	69	413	1.0	53	10	660	2.45	49	<8	<2	5	69	6.1	4	5	80	.96	.075	12	186	1.11	410	. 13	36	1.09	.08	.48	3

Sample type: ROCK R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

PHONE (604) 253-3158 FAX (604) 253-1716

(ISO 9001 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

Arnex Resources Ltd. PROJECT TSS File # A608110 2069 Westview Drive, North Vancouver BC V7M 3B1 Submitted by: Arne Birkeland

									1 2 2 2				<u> </u>		<u> </u>	<u> </u>			<u> </u>											
SAMPLE#	Mo ppm	Cu	Pb ppm	Zn ppm	Ag ppm	ni ppm	Co	Mn ppm	Fe %	As ppm	U	Au	Th ppm	Sr	Cd ppm	Sb	Bi ppm	V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	ррт
G-1 2006-AB-001 2006-AB-002 2006-AB-003 2006-AB-004	1 3 3 3	3 51 63 62 47	<3 <3 8 5	44 55 60 59 56	<.3 <.3 <.3 <.3 <.3	6 12 12 12 36	4 11 11 11 20	490 548 646 749 366	3.43 3.28	<2 <2 <2 <2 <2	<8 <8 <8 <8	<2 <2 <2 <2 <2	4 3 <2 2 4	57 70 81 80 30	<.5 .7 .6 .7	<3 <3 <3 <3 <3	7 <3 <3 <3 <3	36 102 94 88 47	.44 .59 .69 .60	.075 .089 .101 .093	7 7 9 9	65 23 21 20 38	.60 .68 .68 .67	200 89 124 123 42	.12 .05 .04 .04	<3 <3 <3 <3 <3	.96 1.22 1.37 1.36 1.20	.07 .01 .01 .01	.50 .06 .07 .07	2 2 <2 <2 <2 <2
2006-AB-005 2006-AB-006 06-DR-01 06-DR-02 06-DR-03	2 2 1 1	43 35 476 60 58	4 9 11 11 7	64 59 50 56 69	<.3 <.3 2.4 .3	9 10 9 7 7	10 9 7 5 6	843 1 688 7 2014 746 997	2.70 .97 1.15	<2 <2 14 24 13	8 <8 <8 <8	<2 <2 <2 <2 <2	<2 2 <2 <2 <2	90 74 53 59 50	.7 .6 2.5 1.8 1.8	<3 <3 3 <3 <3	3 <3 <3 <3 4	93 76 39 33 43	.70 .55 1.77 1.66 1.12	.087 .082 .226 .148 .125	9 7 59 6 13	17 17 19 16 14	.63 .64 .21 .33	89 71 247 42 111	.05 .05 .01 .03	<3 <3 <3 <3 <3	1.39 1.30 1.49 1.09 1.24	.01 .01 .02 .02	.06 .06 .30 .26	<2 <2 <2 2 2
PSMM 06001 PSMM 06002 PSMM 06003 PSMM 06004 RE PSMM 06004	1 1 <1 1 2	46 39 31 31 30	8 5 3 6 6	67 52 53 54 54	<.3 <.3 <.3 <.3	6 7 5 6 6	10 9 9 11 11	596 3 683 7 590 7 844 3 812 3	2.53 4.42 3.12	17 <2 <2 <2 <2	<8 <8 <8 <8	<2 <2 <2 <2 <2	2 <2 2 <2 <2	52 90 68 82 80	1.0 .6 <.5 .7 <.5	4 <3 <3 <3 <3	<3 <3 <3 4 <3	120 63 135 92 94	.95 1.33 .91 1.13 1.09	.097 .110 .093 .088 .086	10 12 9 10 10	11 9 12 10 9	.77 .69 .84 .98	128 227 139 217 210	.12 .06 .11 .09	<3 <3 <3 <3 <3	1.58 1.80 1.56 2.10 2.08	.03 .02 .03 .03	.14 .11 .08 .27	2 <2 <2 <2 2
PSMM 06005 PSMM 06006 PSMM 06007 06-TG-001 06-TG-002	1 1 <1 <1	26 22 24 103 69	7 10 13 11 16	43 73 70 35 39	<.3 <.3 <.6 .6	5 4 4 3 4	9 8 8 3 7	585 2 620 3 567 3 559 1089	3.81	<2 14 18 4 9	<8 <8 <8 <8	<2 <2 <2 <2 <2	<2 <2 <2 <2	78 49 46 70 144	<.5 1.0 .7 1.0 1.4	3 <3 <3 <3	<3 <3 <3 <3 <3	76 112 116 21 30	1.46 1.22 1.21 2.21 1.90	.088 .084 .084 .286 .181	9 11 11 7 15	10 8 9 13 14	.77 .73 .71 .23	235 166 154 47 165	.08 .13 .13 .01	<3 <3 <5 6	1.79 1.81 1.66 1.21 1.17	.03 .02 .02 .02	.15 .09 .10 .28 .18	<2 <2 <2 <2 <2
06 TP 001 06 TP 002 06 TP 003 06 TP 004 06 TP 005	1 1 1 1	68 49 178 63 145	11 13 6 11 16	71 68 51 90 64	.4 <.3 .9 .4	6 5 6 6	8 8 4 8 5	676 2 627 2 320 813 2 536	2.78 .87 2.01	16 10 10 17 43	<8 <8 35 <8 <8	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	56 51 113 57 86	.7 1.8 1.2 2.1	<3 <3 <3 <3 <3	6 <3 <3 <3 <3	74 86 35 68 49	1.28 1.13 2.23 1.72 3.24	.098 .082 .168 .136 .155	12 10 25 11 20	11 9 14 11 24	.65 .66 .36 .72 .34	158 162 215 405 781	.08 .10 .02 .06	<3 <3 9 5 10	1.60 1.62 1.33 1.98 1.36	.02 .02 .02 .02	.25 .10 .34 .28	<2 <2 <2 2 <2
06 TP 006 06 TP 007 STANDARD DS7	1 <1 19	22 31 99	11 8 64	57 50 375	<.3 .8 .8	3 4 49	9 4 9	898 3 554 587 2	1.17	3 9 49	<8 9 8	<2 <2 <2	2 <2 4	44 57 68	.5 .5 6.2	<3 <3 8	<3 <3 6	103 31 84	.95 1.13 .88	.076 .170 .071	10 32 11	7 10 168	.80 .30 .99	385 978 - 362	.12 <.01 .11	4 <3 36	1.68 1.36 .93	.02 .02 .08	.15 .54 .43	2 2 5

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: MOSS SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data | FA DATE RECEIVED: NOV 2 2006 DATE REPORT MAILED:....

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

44

Arnex Resources Ltd. PROJECT TSS File # A608111 2069 Westview Drive, North Vancouver BC V7M 381 Submitted by: Arne Birkeland

SAMPLE#		Cu ppm			Ag ppm		Со	Mn ppm		As ppm					Cd ppm			V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm
G-1	2	3	3	46	<.3	6	3	580	2.13	2	<8	<2	6	104	.5	<3	3	40	.71	.075	11	21	.61	269	.15	3	1.38	.18	.64	3
06-TG-03	10	367	34	447	1.0	23	25	2573	3.73	10	106	<2	7	94	4.9	<3	<3	51	1.78	. 135	27	13	1.01	225	.02	<3	3.71	.01	.22	2
06-TG-04	2	211	13	201	.7	41	19	923	3.06	20	<8	<2	2	68	3.2	3	3	71	1.34	. 152	11	47	1.27	209	.03	5	1.91	.01	.09	<2
STANDARD DS7	19	101	68	414	1.1	56	8	654	2.42	51	<8	<2	5	70	6.4	7	6	80	.96	.074	13	191	1.09	404	.13	37	1.04	.08	.48	4

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

- SAMPLE TYPE: SILT SS80 60C

11-22-06 A10:43 OUT

ŗ.								
Data	E	FA	DATE	RECEIVED:	NOV 2 2006	DATE	REPORT	MAILED:

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

MONE (004) 233-3130 FAX (004) 233-1

GEOCHEMICAL ANALYSIS CERTIFICATE

Arnex Resources Ltd. File # A608112 2069 Westview Drive, North Vancouver BC V7M 3B1 Submitted by: Arne Birkeland

SAMPLE#	Mo ppm	Cu	Pb	Zn ppm	Ag ppm	N i ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	ppm B	Al %	Na %	K %	W ppm
C128701 C128702 C128784 C128786 C128801	<1	1793 71 505 3276 18	<3> 13 6 <3 14	10000 39 116 15 74	2.6 1.4 .5 12.7 5.3	15 18 19 2 2	795 55 12 1 9	435 686 465 180 695	34.87 6.61 2.99 .48 4.03	57 87 <2 <2 178	<8 <8 <8 <8	<2 <2 <2 <2 <2	4 <2 2 <2 <2	16 24 66 272 41	109.0 <.5 <.5 .7 <.5	3 4 <3 <3 <3	<3 <3 <3 8 <3	13 14 119 5 35	.77 .52 1.44 .37	.032 .066 .265 .014 .145	6 5 11 1 6	8 5 39 10 6	.14 .99 .95 .10	20 24 69 481 34	.04 .11 .24 <.01	<3 <3 <3 <3 <3	.63 1.26 1.82 .25 1.55	.02 .08 .21 <.01	.02 .03 .95 .07	<2 <2 <2 <2 <2
C128802 C128803 STANDARD DS7	2 2 21	178 92 105	5 <3 69	84 45 428	.5 .4 .9	15 18 58	15 12 9	750 708 675	5.17 3.72 2.56	3 21 51	<8 <8 <8	<2 <2 <2	<2 <2 5	39 88 71	<.5 <.5 6.4	<3 <3 5	<3 <3 4	108 84 87	1.27 8.43 1.00	.139 .085 .079	3 2 13	26 23 198	1.05 .77 1.13	898 86 392	.20 .16 .13	<3 <3 36	2.22 2.62 1.06	.06 .02 .08	.08 .13 .48	<2 <2 4

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: ROCK R150

11-21-06 P03:52 OUT

FA ____ DATE RECEIVED: NOV 2 2006 DATE REPORT MAILED:.....

Mineral Titles Online 1.6.3 Page 1 of 2

Help (2) Contact Us ▶

B.C. HOME

Mineral Titles

Mineral Claim Exploration and Development Work/Expiry Date Change

- ✓ Select Input Method
- ☑ Select/Input Tenures
- ☑ Input Lots
- ☑ Data Input Form
- ☑ Review Form Data
- ☑ Process Payment
- Confirmation

Main Menu

Search for Mineral /

Placer / Coal Titles

View Mineral Tenures View Placer Tenures

View Coal Tenures

→ MTO Help Tips

Exit this e-service **D**

Mineral Titles Online

Mineral Claim Exploration and Development Work/Expiry Date Change

Confirmation

Recorder: BIRKELAND, ARNE OBERT (102420) Submitter: BIRKELAND, ARNE OBERT (102420)

Recorded: 2007/MAR/24 Effective: 2007/MAR/24

D/E Date: 2007/MAR/24

Your report is due in 90 days. Please attach a copy of this confirmation page to the front of your report.

Event Number: 4139495

Work Start Date: 2006/AUG/19 Work Stop Date: 2006/SEP/4

Total Value of Work: \$ 2500.00

Mine Permit No:

Work Type: Technical Work

Technical Items: Geochemical, Geological

Summary of the work value:

Tenure #	Claim Name/Property	Issue Date	Good To Date	То	# of Days For- ward	ın Ha	Work Value Due	Sub- mission Fee
409195	CLAIR 1	2004/mar/26	2007/mar/26	2008/mar/26	366	500.00	\$ 2000.00	\$ 200.55
409228	CLAIR 2	2004/mar/26	2007/mar/26	2008/mar/26	366	25.00	\$ 100.00	\$ 10.03
409229	CLAIR 3	2004/mar/26	2007/mar/26	2008/mar/26	366	25.00	\$ 100.00	\$ 10.03
409230	CLAIR 4	2004/mar/26	2007/mar/26	2008/mar/26	366	25.00	\$ 100.00	\$ 10.03
409231	CLAIR 5	2004/mar/26	2007/mar/26	2008/mar/26	366	25.00	\$ 100.00	\$ 10.03
409232	CLAIR 6	2004/mar/26	2007/mar/26	2008/mar/26	366	25.00	\$ 100.00	\$ 10.03

Mineral Titles Online 1.6.3 Page 2 of 2

Total required work value: \$ 2500.00

PAC name:

Debited PAC amount: 0.00 Credited PAC amount: 0.00

Total Submission Fees: \$ 250.68

Total Paid: \$ 250.68

The event was successfully saved.

Please use *Back* button to go back to event confirmation index.

Back

COPYRIGHT DISCLAIMER PRIVACY ACCESSIBILITY