

J-Pacific Gold Inc

Suite 1440 – 1166 Alberni Street Vancouver, B.C. V6E 3Z3

Assessment Report on the

2006 PHASE I DIAMOND DRILLING PROGRAM BLACKDOME PROPERTY

Clinton Mining Division,

Claims:

British Columbia

Blackdome claim group and leases

Location:

67 Km WNW of Clinton, B.C. Lat. 51° 19.2' N; Long. 122° 30'W UTM Zone10 535,400E; 5,685,700N NAD 83 NTS 092O/7&8

Prepared by:

John C. Harrop, PGeo

October 5, 2007

Table of Contants

SUMMARY	3
INTRODUCTION	4
LOCATION AND ACCESS	4
HISTORY	
PROPERTY	
Mineral Tenures of Blackdome Project.	7
<u>GEOLOGY</u>	
ECONOMIC GEOLOGY	13
MINING AND MILLING.	14
PHASE 1 DIAMOND DRILLING PROGRAM	14
CONCLUSIONS AND RECOMMENDATIONS	19
<u>REFERENCES</u>	20
<u>APPENDIX A – STATEMENT OF EXPENDITURES.</u>	21
APPENDIX B – ECO-TECH ASSAY CERTIFICATES.	
APPENDIX C -DESCRIPTIVE DRILL LOGS.	
APPENDIX D – ATTRIBUTE DRILL LOGS	24
APPENDIX E – MASTER ASSAY SHEETS	25
APPENDIX F – CERTIFICATE OF QUALIFICATIONS	26
Figures	_
Figure 1: Map showing the location of the Blackdome Project, British Columbia Figure 2: Claim map showing the location of the Blackdome Project, British ColuFigure 3: Claim map showing the Crown Granted Claims of the Blackdome Project.	mbia8
British Columbia	
Figure 4: Claim map showing the Mining Leases of the Blackdome Project, Britis Columbia	
Figure 5: Late Cretaceous to Eocene magmatism, tectonics and associated deposit British Columbia and Alaska (from Nelson and Colpron 2007)	
Figure 6: Diagram from Taylor (2007) showing the position of various mineral de in the epithermal model. Low-sulphidation system include A, B, C, a Blackdome is modelled in the setting of C in the diagram	nd E.
Index of Tables	
Table 1: Mineral Tenures held by No. 75 Corporate Ventures	

SUMMARY

The Blackdome Gold Mine is situated in the Chilcotin region of southwestern British Columbia approximately 67 kilometres west northwest of Clinton, B.C. The Blackdome property consists of 40 mineral claims, 11 Crown granted claims and two mining leases and covers an area of approximately 16,695 hectares.

Mining activity dates back over 60 years when placer gold was discovered on Fairless Creek. Soon after, gold and silver bearing quartz veins were discovered on the slopes of Blackdome Mountain. Silver Standard and Empire Valley Gold Mines conducted exploratory work including small-scale underground work in the 1950s. The property lay idle until 1977 when it was acquired by Barrier Reef Resources Ltd. Extensive exploration and development work took place primarily by Blackdome Mines until 1986 when a 200 tonne per day mine was commissioned. The mine operated until 1991 after having produced 7,000,000 grams of gold (225,000 oz) and 17,000,000 grams (547,000 oz) of silver. The mine was briefly reopened from late 1998 to mid 1999 and produced 203,631 grams of gold and 538,000 grams of silver (Gruenwald, 2002).

Gold and silver mineralization occurs in structurally controlled fault and vein systems within Eocene age volcanic rocks. These deposits are classed as epithermal and are believed to have resulted from the upward migration of hydrothermal fluids emanating from a buried intrusive rock source. The main mineralized system, known as the No.1 and 2 veins, has been traced for nearly four kilometres. Less than half of this system has been developed. Significant portions of the No.1 and 2 veins and numerous other undeveloped veins offer additional exploration and development potential. Current "drill inferred" resources stand at 124,120 tonnes averaging 12.8gm/t (0.37 oz/t) gold and 33.7 gm/t (0.98 oz/t) silver (SRK Consulting, 2001).

During October to December 2006, Full Force Drilling and Coast Mountain Geological Ltd conducted the first phase of a drilling programme designed to test targets identified by SRK (2001) and Rennie (2005).

INTRODUCTION

LOCATION AND ACCESS

The Blackdome Mine is situated at an elevation of approximately 1925 metres in the Camelsfoot Range of the Fraser Plateau approximately 67 kilometres west northwest of Clinton, B.C. The mine is located at 51° 19.2' north latitude, 122° 30' west longitude on NTS Maps 92O/7 and 8 (Figure 1). UTM Coordinates are Grid Zone 10U 56857000N; 535400E (NAD 83)

Blackdome is accessible by the Meadow Lake road that heads west from Highway 97 approximately 16 kilometres north of Clinton, B.C. Travel is westerly for 80 km through Canoe Creek to the Gang Ranch Bridge over the Fraser River. Alternatively, the Gang Ranch Bridge may be accessed from from Williams Lake by taking the road south from the Bella Coola highway that goes through Springhouse, Alkali Lake and Dog Creek. William Lake airport is the closest with regularly scheduled flights. Heavy equipment (particularly log trailers) accessing the Blackdome cannot negotiate the turn onto that Gang Ranch Bridge and must cross the Fraser River on the Bella Coola highway before turning south and travelling through Gang Ranch to the start of the Empire Valley road. Travel is then southerly along the Empire Valley road for 18 km to the Blackdome mine road at Brown Lake. The camp and mine site is situated 32 km along this road on a ridge south of the summit of Blackdome Mountain.

HISTORY

Placer gold was discovered nearly 60 years ago in Fairless Creek. This creek flows westerly to Churn Creek from Blackdome Mountain. Prospecting soon after led to the discovery of gold bearing quartz veins on the southwest slopes of Blackdome Mountain.

In the 1950s, surface work and two adits were completed by Empire Valley Gold Mines and Silver Standard Mines Ltd. The property lay dormant until 1977 when Barrier Reef Resources staked the area and completed programs of soil and rock sampling, trenching, drilling and underground development.

In 1978, Blackdome Mining Corporation was formed to continue development. During the next seven years Blackdome and Heath Steele Mines Ltd carried out extensive exploration and underground development work totaling \$8,000,000. By 1984, ore reserves of all categories were 222,500 tonnes grading 22.6 gm/t gold (0.61 oz/t) and 106 gm/t silver (3.6 oz/t). The 200-ton per day Blackdome mine commenced production in 1986 with an expenditure of \$10,000,000. When mining ceased in 1991 a total of 338,000 tonnes of ore had been milled at an average grade of 21.9 gm/ton (0.64 oz/ton) gold yielding 7,000,000 grams (225,000 oz) of gold and 17,000,000 grams (547,000 oz) of silver.

Figure 1: Map showing the location of the Blackdome Project, British Columbia.

Claimstaker Resources reactivated the mine in November 1998. At the closure in May, 1999 a total of 203,631 grams (6,547 oz) gold and 538,000 grams (17,300 oz) silver were produced from 21,286 tonnes of ore. The inferred mineral resources are estimated at 124,120 tonnes averaging 12.8 gm/t (0.37 oz/t) gold and 33.7 gm/t (0.98 oz/t) silver (SRK Consulting, 2001). Approximately 90% of Blackdome's production came from the No.1 and 2 vein systems. Mining occurred over slightly more than a one kilometre strike length. Extensions of this major vein system and several other veins on the property remain largely undeveloped.

PROPERTY

The Blackdome property consists of 22 mineral claims, 10 Crown granted claims and two mining leases (figure 2) and covers an area of 9,329.6 hectares. The Blackdome property is held 100% by No. 75 Corporate ventures (FMC 133817), which is 100% owned by J-Pacific Gold Inc (FMC 104975). All claims and leases are recorded in the Clinton Mining Division. An additional 18 mineral claims in the southern portion of the property, covering an area of 7,365.61 hectares are owned 100% by J-Pacific Gold Inc.

Mineral Tenures of Blackdome Project

Tenure Number	Tenure Type	Owner	Good To Date	Area
209456	Mining lease	133817 (100%)	2008/mar/12	443.5
209457	Mining lease	133817 (100%)	2007/dec/08	544.8
509143	Mineral	133817 (100%)	2013/mar/17	20.19
509145	Mineral	133817 (100%)	2013/dec/27	484.51
509146	Mineral	133817 (100%)	2013/mar/17	20.19
509426	Mineral	133817 (100%)	2013/dec/27	565.42
509427	Mineral	133817 (100%)	2013/dec/27	605.42
509428	Mineral	133817 (100%)	2013/dec/27	605.47
509429	Mineral	133817 (100%)	2013/dec/27	726.95
509530	Mineral	133817 (100%)	2013/dec/27	606.64
509535	Mineral	133817 (100%)	2013/dec/27	363.60
509537	Mineral	133817 (100%)	2013/dec/27	606.22
509554	Mineral	133817 (100%)	2013/dec/27	485.12
509555	Mineral	133817 (100%)	2013/dec/27	282.83
509560	Mineral	133817 (100%)	2013/dec/27	323.24
509610	Mineral	133817 (100%)	2013/dec/27	181.88
509612	Mineral	133817 (100%)	2013/dec/27	404.32
509618	Mineral	133817 (100%)	2013/dec/27	161.57
509621	Mineral	133817 (100%)	2013/dec/27	242.28
511687	Mineral	133817 (100%)	2013/apr/26	60.58
525389	Mineral	133817 (100%)	2013/jan/13	322.95
525390	Mineral	133817 (100%)	2013/jan/13	403.67
539008	Mineral	133817 (100%)	2013/aug/09	504.88
539009	Mineral	133817 (100%)	2013/aug/09	363.34
DL7871	Crown Grant	133817 (100%)	2008/jun/30	
DL7872	Crown Grant	133817 (100%)	2008/jun/30	
DL7873	Crown Grant	133817 (100%)	2008/jun/30	
DL7874	Crown Grant	133817 (100%)	2008/jun/30	
DL7875	Crown Grant	133817 (100%)	2008/jun/30	
DL7876	Crown Grant	133817 (100%)	2008/jun/30	
DL7877	Crown Grant	133817 (100%)	2008/jun/30	
DL7878	Crown Grant	133817 (100%)	2008/jun/30	
DL7879	Crown Grant	133817 (100%)	2008/jun/30	
DL7880	Crown Grant	133817 (100%)	2008/jun/30	

Table 1: Mineral Tenures held by No. 75 Corporate Ventures

Tenure Number	Tenure Ty	pe Owner	Good To Date	Area
535569	Mineral	104975 (100%)	2009/jun/13	505.73
535738	Mineral	104975 (100%)	2009/jun/14	242.56
535742	Mineral	104975 (100%)	2009/jun/15	505.73
535769	Mineral	104975 (100%)	2009/jun/16	242.58
535924	Mineral	104975 (100%)	2009/jun/19	485.53
535925	Mineral	104975 (100%)	2009/jun/19	485.88
535991	Mineral	104975 (100%)	2009/jun/20	323.62
535992	Mineral	104975 (100%)	2009/jun/20	505.73
535993	Mineral	104975 (100%)	2009/jun/20	485.71
535994	Mineral	104975 (100%)	2009/jun/20	485.71
535995	Mineral	104975 (100%)	2009/jun/20	485.71
535996	Mineral	104975 (100%)	2009/jun/20	485.89
539006	Mineral	104975 (100%)	2010/aug/09	405.35
539011	Mineral	104975 (100%)	2009/aug/09	242.12
541801	Mineral	104975 (100%)	2009/sep/21	303.05
541986	Mineral	104975 (100%)	2009/sep/26	405.07
541987	Mineral	104975 (100%)	2009/sep/26	465.84
541988	Mineral	104975 (100%)	2009/sep/26	303.81

Table 2: Mineral Tenures held by J-Pacific Gold Linc.

Figure 2: Claim map showing the location of the Blackdome Project, British Columbia.

Figure 3: Claim map showing the Crown Granted Claims of the Blackdome Project, British Columbia.

Figure 4: Claim map showing the Mining Leases of the Blackdome Project, British Columbia

GEOLOGY

The Blackdome property is situated in a region underlain by rocks of Triassic to Tertiary age. Sedimentary and igneous rocks of the Triassic Pavilion Group occurring along the Fraser River represent the oldest rocks in the region. A large, Triassic age, ultramafic complex (Shulaps Complex) was emplaced along the Yalakom fault; a regional scale structure located some 30 kilometres south of the property. Sediments and volcanics of the Cretaceous Jackass Mountain Group and Spences Bridge/Kingsvale Formations overlie the Triassic assemblages. Some of these rocks occur several kilometres south of Blackdome.

Overlying the Cretaceous rocks are volcanics and minor sediments of Eocene age. These rocks underlie much of Blackdome and are correlated with the Kamloops Group seen in the Ashcroft and Nicola regions. Geochemical studies (Vivian, 1988) have shown these rocks to be derived from a "calc-alkaline" magma in a volcanic arc type tectonic setting. Eocene age granitic intrusions at Poison Mountain some 22 kilometres southwest of Blackdome are host to gold bearing porphyry copper-molybdenum deposit. It is speculated that this or related intrusions could reflect the source magmas of the volcanic rocks seen at Blackdome. There is some documented evidence of young granitic rocks several kilometres south of the mine near Lone Cabin Creek. The youngest rocks present are Oligocene to Miocene basalts of the Chilcotin Group. These are exposed on the uppermost slopes of Blackdome Mountain and Red Mountain to the south.

The stratigraphy of volcanic rocks on the property is well known and divided into five units. Within these units individual members are also identified. Some areas are underlain by thick homogeneous units, while other areas (such as on the north side of Blackdome peak) have diverse members that provide substantial geological record of the volcanics. The following stratigraphic description is taken almost verbatim from Rennie (2004). Units are described from oldest to youngest.

Fairless Volcanics – Exposed northwest of the mine, along Fairless Creek. The unit comprises grey to grey-green fine-grained (aphanitic) andesite flows, medium to dark grey basalt flows, rhyolite ash with minor tuffaceous sandstone and siltstone, rhyolite crystal-lithic tuff and lapilli tuff.

Lower Andesite – Largely consists of rhyolitic and basalt members with andesite flows. Lowermost component is the Watson Member, comprising dacite to rhyodacite tuff, lapilli tuff, and flows. Overlying the Watson Member is the 1870 Member, which consists of interlayered medium grey amygdaloidal to dark grey aphanitic basalt flows, medium grey sparsely porphyritic andesite flows, white massive and flow-banded rhyolite, and white to grey-green lapilli tuff with rhyolite and andesitic clasts.

Rhyolite – From top to bottom: buff to grey-green rhyodacite to dacite flows with minor lapilli tuff, white to grey-green lapilli tuff with rhyolite and andesite clasts, white to grey-green flow-layered and locally spherulitic rhyolite, lapilli tuff comprising rhyolite and dacite clasts, and undifferentiated lapilli tuffs and flows. There is a wide range of breccia textures, clast size, and relative proportion of lapilli in the volcanic sequence. The rhyolite flows are observed underground to be auto-brecciated in places. Individual components of the volcanic stratigraphy are sometimes complexly interlayered, indicative of a chaotic depositional environment typical of a rhyolitic volcanic centre (or centres).

Fossilized graphitic remains of vegetation have also been reported in some localities within the tuffaceous members.

Figure 5: Property Geology

Upper Andesite – Comprises three members: the lowermost Lexington Member, which is a package of medium grey-green dacite flows; the Noranda Member, which consists of flow-layered dacite flows overlying a basal green and maroon dacitic tephra; and the uppermost Redbird Member, which is a basal lapilli tuff and volcanic breccia overlain by porphyritic dacite flows with hornblende granodiorite inclusions.

Basalt - Near the top of Blackdome Mtn., at the uppermost contact of the Upper Andesite, is a rusty weathered erosional disconformity marking a 25 million year hiatus in volcanic activity. Above this contact lies the Miocene basalt, which consists of medium to dark grey aphanitic basalt, with red oxidized and grey unoxidized basaltic tephra. The Eocene erosion surface is strongly weathered to a reddish colour. At the contact between the basalt and Upper Andesite, it is possible to pry chunks of basalt off of the regolith and find pebbles and cobbles embedded in the basaltic lava. The Miocene flows are post-ore and obscure traces of the veins. However, fracturing associated with the faults that host the veins have been observed to progress upwards into the basalt (Read, 1989, and Lee and Michaud, 2004), which indicates that movement along these faults contained into the Miocene. Some veins, notably the Redbird Vein, are hosted in structures that contain feeder dykes presumably for the basalt. Since only a few of the structures host feeders it would seem likely that only these were still active during the Miocene.

In the interior of British Columbia widespread, but sparse prospects and deposits may be

Figure 6: Late-Cretaceous to Eocene magmatism, volcanism and associated deposits/prospects in the cordillera of BC, Yukon and Alaksa.

found that formed in similar Eocene or slightly earlier environments. If the range is expanded to include late Cretaceous to Eocene then a series magmatic and volcanic belts running through cordillera in British Columbia, Yukon and Alaska can be seen which host epithermal and mesothermal vein systems in addition to intrusion associated gold occurrences.

A number of regional scale geologic structures are present. Major structures include the Fraser Fault, a north-northwest striking, right lateral, strike-slip fault. The Yalakom Fault and Hungry Valley Fault are subsidiary structures to the Fraser Fault and are also primarily dextral, but with some dip-slip movement. The latter fault occurs 5 km south of Blackdome and has displaced Lower Cretaceous sediments northward onto Upper Cretaceous and Tertiary rocks. The Yalakom Fault is thought to have controlled emplacement of the Shuswap Ultramafic complex. North to northeast trending extensional structures that were generated by the regional northwest trending faults are the host for gold mineralization at Blackdome.

ECONOMIC GEOLOGY

Blackdome is classified as a low-sulphidation, epithermal, Au-Ag type deposit. Gold and silver mineralization occurs in quartz veins and siliceous breccias which are believed formed from the upward movement of hot hydrothermal fluids in mid Eocene to early Oligocene time. Precious metal minerals include native gold, electrum, silver and several silver sulphides and sulphosalts. Accessory minerals include pyrite, chalcopyrite, galena and sphalerite. These minerals occur as fine to medium-grained disseminations and fracture fillings that generally represent ≤1% of the vein material. Visible gold is not unusual and gold values have significant nugget affects as evidenced by the >0.5 mm grains found in gravity concentrates during mining.

Figure 7: Diagram from Taylor (2007) showing the position of various mineral deposits in the epithermal model. Low-sulphidation system include A, B, C, and E. Blackdome is modelled in the setting of C in the diagram.

Veins are structurally controlled and occupy faults and extensional structures. Vein/fault systems generally strike north-northeast and dip 40-70° NW. The No. 1 and 2 veins are the major mineralized structures and have been traced for almost four kilometres. The vein/faults range from 0.5 to 3.0 metres wide and are comprised of variable amounts of clay gouge, solid quartz and gouge-vein mixtures. Work by Lee and Michaud (2001) identified two sets of structurally distinct veins at Blackdome. One set, includes the Redbird, Giant, and No 17 Veins and are secondary structures of the Faser fault system with strike slip movement. Most of these have received little development work. The other set, which includes the No. 1 and No 2 Veins may have more dip-slip movement and are subordinate to the previous set. This set of veins has received the most attention and has produced the most ore. The ore zones are elongate, moderate to steeply plunging "bonanza shoots" associated with quartz rich sections of the fault zones. Very little gold and silver has been found in vein wall rock. Ore shoots are 30 to 50 metres long, 60 to 100 metres high and 0.5 to 3 metres wide. The majority of known stopes are located between the 1870 and 1920 metre elevations. Such depositional control characteristics are not uncommon in epithermal deposits. However, the range of levels can vary along strike and within other mineralized zones.

MINING AND MILLING

Mining utilized cut and fill methods with the fill being comprised of waste rock until 1988. After this time, mill tailings mixed with cement were pumped into worked-out sections by the use of a backfill plant. Mining took place at 50 metre levels. Two of the major access points are the 1870 and 1920 metre levels. Trackless haulage equipment was used throughout the mine, with ore being hauled from the portals to the mill by dump trunks.

Blackdome ore has a relatively simple metallurgy with over 60% free gold. Milling consisted of a gravity circuit for the free gold and a flotation circuit to recover precious metal bearing sulphides. Gravity concentrates were refined into doré bars and the flotation concentrate was shipped to Japan for smelting. Gold recovery was reportedly over 90% during the life of the mine.

The mineralogically simple and benign nature of the ore resulted in tailings that posed little environmental impact. Tailings were discharged into a pond ~80 metres below the mill and were impounded by a rock and clay fill dam. Tailings water was monitored for heavy metal content and suspended solids and then passed through a settling pond.

PHASE I DIAMOND DRILLING PROGRAM

The 2006 drilling programme was designed to focus on the projected northern strike extension of the previously producing No 1 and No 2 veins to where the basalt cap covering the peak of Blackdome masks their surface expression. This northern extension has only been partially drill tested and the 2006 programme stepped out from 25 to 125 metres from previous work. A total 10 holes (2014.9 metres) were drilled. Three holes (B06-01, 03 and 07) were abandoned due to bad ground with a second attempt being

made at the same dip and azimuth immediately adjacent. Only one of the three second attempts failed to complete all targets.

Hole #	UTM E	UTM N	Elev	Length	Az	Dip
B06-01	535,566	5,686,491	2118	70.7	132	55
B06-01A	535,566	5,686,491	2117	174.7	132	50
B06-02	535,535	5,686,331	2090	282.3	125	55
B06-03	535,601	5,686,653	2133	84.7	125	45
B06-03A	535,601	5,686,651	2133	325.7	125	45
B06-04	535,702	5,686,482	2145	172.5	115	50
B06-05	535,617	5,686,420	2112	247.8	100	68
B06-06	535,594	5,686,790	2106	252.1	100	50
B06-07	535,213	5,685,927	2040	102.7	122	61
B06-7A	535,212	5,685,927	2040	301.7	122	61

Further northern extension, below the basalt cap on Blackdome peak, was deferred to a later phase where the relationship between the No 1 and 2 veins and the No 17 vein can be tested. The surface trace of the No 17 vein is known on the northeast side of the basalt cap. The projections of the three veins intersects below the basalt cover and as with other structural intersections, is a prospective target.

Drilling during the 2006 season began quite late in the season. Difficulties in drilling due to poor ground conditions and weather resulted in significantly lower productivity than had been predicted. The second target of the programme was the depth intersection of the No 1 and No 2 veins. Due to the difference in dip between the two veins and their anastomosing shape, a keel shaped zone of intersection was predicted. Unfortunately, only one hole was attempted on this target before weather forced the suspension of the programme until the spring. This hole, B06-07A was lost shortly before it reached target depth. Casing was left in the hole to enable re-entry and completion during the 2007 season.

Core Handling and Analysis

Core was brought from the drill to the mill site where a logging and sampling facility had been constructed in the existing buildings and winterized to the extent possible. Core was initially cleaned and inspected for misplaced or reversed core, block positions and block labelling. Block labels were then converted to metric. Core was not photographed until sample intervals had been marked. Two types of drill logs were recorded into laptop computers: 1) A descriptive log which described lithological, alteration and mineralization features was made using a word processor, 2) An attribute log which records quantitative and categorical data by sample interval or where no samples were taken by block interval was recorded into a spreadsheet. Intervals were also broken at lithological boundaries. Selected core photography was embedded in the descriptive log. The attribute log is designed facilitate data loading into GIS, database or statistical software. Both sets of drill logs are provide in appendices.

Samples were sawed in half and half the sample was returned to the core box. The other half of the sample was placed in a plastic sample bag with one part of the three part sample tag. The bag was then sealed and delivered to the analytical laboratory by Coast Mountain Geological or J-Pacific personnel. Every tenth sample was taken from one of

Figure 8: Drill Traces on Airphoto Base

three certified standards purchased by Coast Mountain Geological. Standards were

provided in the form of pulps.

A total of 185 samples were delivered to Eco-tech Laboratories of Kamloops, British Columbia who provided analytical services during the project. Of these samples, 16 were standards and two were field-split replicates. Fire assay for Au (using 30g samples) and 28 element ICP-AE was performed on all samles.

Drilling Results

Drilling of the No 1 Vein in the vicinity of the 1960 North mine area, where a mineral resource has previously been defined, intersected the No 1 Vein with two holes (B06-02) and B06-05). These intersections were spaced approximately 150m apart along strike at the 1870m level – 90m down dip of of the mineral resource. Hole B06-02 returned 5.3 g/t Au and 1.8 g/t Ag over 0.60m. Hole B06-05 returned 28.9 g/t Au and 516.0 g/t Ag over 0.30m. Two other holes intersected the No 1 Vein approximately 150m along strike to the north of the mineral resource. Both of these returned only anomalous gold and silver values. When step-out drilling is being interpreted, it should be noted that historically, ore shoots at Blackdome are typically 30 to 60m wide (along strike) and 50 to 100m up and down dip.

Two holes drilled to intersect the northern strike extension of the No 2 Vein structure intersected typical quartz veining at 25m and 175m along strike, north of historical drilling. Hole B06-03A (25m along strike) returned 14.2 g/t Au and 67.1 g/t Ag over 1.90m. B06-06 (175m along strike) returned anomalous assays.

The following table summa	• 41		C (1 A O O C 1 '11'	
The following table cumma	rizac tha mara	cioniticant recui	to at the 2006 drilling	α
THE TOHOWING LADIC SUITING	HZCS HIC HIGH	Significant icsui	is of the 2000 diffilling	ዾ.
				<u> </u>

Dwill Hala	San	nple Inter	res)	Assay Results					
Drill Hole	Vein	From	To	Width	Au (g/t)	Ag (g/t)			
B06-01A	No 2 Vein	48.95	49.80	0.85	2.2	14.7			
B06-02	No 1 Vein	237.90	238.50	0.60	5.3	1.8			
B06-03A	No 2 Vein	42.40	43.85	1.90	14.2	67.1			
B06-05	No 1 Vein	239.90	240.20	0.30	28.9	516.0			
* inte	ervals renorted	ahove are	core lengt	hs: true widt	hs will be sho	rter			

intervals reported above are core lengths; true widths will be shorter.

CONCLUSIONS AND RECOMMENDATIONS

While the intersected extension of the No 1 and No 2 Veins is similar in mineralization content to the previously mined ore at Blackdome Gold Mine, its presence does not necessarily indicate that additional mineral resources will be delineated.

Only one of the targets identified in previous work has been drill tested. Two additional targets were identified for the next phase of drilling. These are 1) the depth intersection of No 1 and No 2 Veins, and 2) under the basalt cap where No 17 should join or intersect No 1 and No 2 Veins. None of the results in the first phase discourage moving ahead with the program planned for the second phase. Further recommendations would be premature, other than to note important logistical lessons learned during phase one. Winter drilling at Blackdome was found to be both difficult and costly. Until such time as a permanent, all weather camp can be established at Blackdome, winter drilling should be avoided.

Reviewing gold values in drill core has raised questions about what threshold(s) to use when deciding how significant intersections are in targeting and identifying proximity to ore zones. During mine life thresholds between 1 and 2 g/t Au were often contoured as the outer threshold surrounding areas of interest. These levels may be too high and the thresholds may vary between veins sets. In particular, work by Lee and Michaud (2001) suggests the veins associated with No 1 and No 2, and those associated with the Giant, Redbird and No 17 Veins may have distinct characteristics including different gold thresholds. As more data becomes available from phase 2 a review of gold thresholds by vein set is warranted.

Compilation continues to be an important area for off-season work. While there has been substantial progress in this area during work by Lee and Michaud (2001) and later by Rennie (2004), the majority of the data compiled has been from the mine. Exploration data collected before and during the mine life that is not already part of the compilation needs to be reviewed and added.

REFERENCES

- Gruenwald, W., 2002, Mine Tailings Sampling Program on the Blackdome Property, Clinton Mining Division, British Columbia, report for J-Pacific Gold Inc.
- Lee, C., and Michaud, M., 2001, Geological Modeling, and Preliminary Review of the Resource Estimate for the Blackdome Gold-Silver Property, British Columbia, report by SRK (Canada) Inc. to J-Pacific Gold Inc (available on SEDAR), 88 pp.
- Nelson, J., and Colpron, M., 2007, Tectonics and metallogeny of the British Columbia, Yukon and Alaska Cordillera, 1.8 Ga to the present, *in* Goodfellow, W.D., ed., Mineral Deposits of Canada: A synthesis of Major Deposit-Types, Districts, Metallogeny, the Evolution of Geological Provinces and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, pp. 755-791
- Rennie, D., 2004, Technical Report on the Blackdome Mine Property, report by Roscoe Postle & Associates for J-Pacific Gold Inc. (available on SEDAR), 68 pp.
- Taylor, B.E., 2007, Epithermal gold deposits, *in* Goodfellow, W.D., ed., Mineral Deposits of Canada: A synthesis of Major Deposit-Types, Districts, Metallogeny, the Evolution of Geological Provinces and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, pp.13-139.
- Vivian, G.J., 1988, The Geology of the Blackdome Epithermal Deposit, B.C.; unpublished M.Sc. thesis, University of Alberta, 184 pp,

APPENDIX A - STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURE Blackdome Gold Mine, 2006 Prepared by J-Pacific Gold Inc. Management

Consulting Fees / Labour

Coast Mountain Geological		
R Parish, P. Geo (\$700 per day)	\$39,200.00	
56 days (Oct 25 06 - Feb 25 07)		
J Harrop P. Geo (\$700 per day)	\$5,425.00	
7.75 days (Oct 25 06 - Feb 25 07)		
A Pollmer P. Geo (\$700 per day)	\$9,450.00	
13.5 days (Oct 26 06 - Dec 10 06)		
W Fitzgerald, Tech (\$425 per day)	\$1,275.00	
3 days (Oct 26 06 - Nov 26 06)		
Expenditures		
Administration	\$741.79	
Truck rental	\$5,525.00	
Communications	\$1,265.89	
Saw and other equipment rental	\$1,512.50	
Other (meals, travel, camp supplies, etc)		\$68,949.60
Disability Cold Wine (Oct 25 0) Feb 29 07)		
Blackdome Gold Mine (Oct 25 06 - Feb 28 07) Mike Michaud, P Geo (\$10,000 per month)		
Allocation 67% salary (Oct 06 - Dec 06)	\$20,510.50	
Allocation 25% salary (Oct 06 - Dec 06) Allocation 25% salary (Jan 07 - Feb 07)	\$20,510.30	
Larry Camille (539 hrs @ \$15.68 per hr Oct 06 -	\$2,005.14	
Dec 06)	\$11,932.49	
Labour / First Aid	\$11,732.47	
Eric Archie (380 hrs @ \$19.90 per hr Oct 06 -		
Dec 06)	\$8,148.21	
Labour / Cat Operator	ψ0,140.21	
Dwayne Sergent (208 hrs @ \$15.00 per hr Oct		
06 - Dec 06)	\$3,303.92	
Labour	\$5,5°5.5 2	
Floyd Haller (63 hrs @ \$15.75 per hr Oct 06 -		
Dec 06)	\$3,560.76	
Labour / Cat Operator	4-,	
Clara Camille (643.25 hrs @ \$15.00 per hr Oct		
06 - Dec 06)	\$9,829.03	
Cook / Cleaning	. ,	
Rose Wilson (155 hrs @ \$15.00 per hr Oct 06 -		
Dec 06)	\$2,454.06	
,	•	

Cook / Cleaning Dave Hodson (588 hrs @ \$20.00 per hr Oct 06 - Dec 06) Labour / Mgr Larry Emile (10 hrs @ \$15.00 per hr Oct 06 - Dec 06) Labour	\$12,021.93 \$152.81	\$74,596.85
Drilling		
Full Force Drilling (2,014 metres) Mob crew Debmob crew Mob drill Debmob drill	\$347,250.50 \$3,000.00 \$3,000.00 \$3,750.00 \$3,863.70	\$360,864.20
Analytical Costs		
EcoTech 185 36 element ICP 185 fire assays for gold		\$6,591.60
Road clearing, sanding and maintenance		
Access roads - GNS Contracting	\$3,332.61	
Illidge Contracting and Blasting	\$9,473.50	
Canoe Creek Warren Koster	\$2,406.90 \$5,720.00	\$20,933.01
	,	,
Camp (food and misc camp items)	#0.511.60	
Provisions RV rental	\$8,511.68	
Ry Tentai Radios	\$6,418.37 \$3,407.42	
Repeater upgrade and batteries		\$25,880.11
	. ,	. ,
Propane and Diesel	ф1 2 25 7 05	
Del's Propane	\$12,357.05	¢(0 (01 40
Finning	\$48,244.44	\$60,601.49
Other		
CAT rental	\$31,000.00	
Build 2 core shacks (10,000 metres storage)	\$24,380.00	
Communications	\$842.56	
Vehicle gas, mileage and oil	\$3,299.92	
Field supplies Other	\$561.34	\$60,383.42
Ouici	\$499.00	φυυ,363.42

\$678,800.28

APPENDIX B – ECO-TECH ASSAY CERTIFICATES

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

B.C. Cektified Assayer

10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2006-2285

J-Pacific Gold Inc. 1440-1166 Alberni St. Vancouver, BC V6E 3Z3 16-Jan-07

No. of samples received: 20

Sample Type: Core Project: Blackdome Shipment #: 5-1

Samples submitted by: R. Parish

ET #, Tag # (g/t) (oz/t) (g/t) (oz/t) 1									
1 3601				Au	Au	Ag	Ag		
2 3602	ET#.	Tag #		(g/t)	(oz/t)	(g/t)	(oz/t)		
3 3603	1	3601		0.03	0.001	0.2	0.01	The state of the s	
3 3603	2	3602		0.68	0.020	4.7	0.14		
4 3604 0.29 0.008 0.2 0.01 5 3605 0.13 0.004 0.3 0.01 6 3606 0.35 0.010 0.4 0.01 7 3607 0.19 0.006 0.9 0.03 8 3608 0.12 0.003 0.5 0.02 9 3609 0.15 0.004 0.7 0.02 10 3610 31.1 0.907 1.8 0.05 11 3611 0.76 0.022 3.1 0.09 12 3612 0.29 0.008 2.1 0.06 13 3613 0.06 0.002 0.6 0.02 14 3614 0.10 0.003 0.8 0.02 15 3615 0.08 0.002 1.6 0.05 16 3616 0.31 0.009 0.5 0.02 17 3617 0.18 0.005 18 3618 0.28 0.008 9.7 0.28 19 3619 28.9 0.843 516 >30 20 3620 2.53 0.074 0.9 0.03 QC DATA: Repeat: Repeat: 1 3601 <0.03 <0.001 0.1 0.00 1.4 0.04 1.7 3617 0.81 0.024 1.7 3617 3617 3617 1.9 3619 29.9		3603		0.12	0.003	0.5	0.02		
6 3606		3604		0.29	0.008	0.2	0.01	e.	
7 3607 0.19 0.006 0.9 0.03 8 3608 0.12 0.003 0.5 0.02 9 3609 0.15 0.004 0.7 0.02 10 3610 31.1 0.907 1.8 0.05 11 3611 0.76 0.022 3.1 0.09 12 3612 0.29 0.008 2.1 0.06 13 3613 0.06 0.002 0.6 0.02 14 3614 0.10 0.003 0.8 0.02 15 3615 0.08 0.002 1.6 0.05 16 3616 0.31 0.009 0.5 0.02 17 3617 0.18 0.005 37.1 >30 18 3618 0.28 0.008 9.7 0.28 19 3619 28.9 0.843 516 >30 20 3620 2.53 0.074 0.9 0.03 OC DATA: Repeat: 1 3601 <0.03 <0.001 0.1 0.00 10 3610 1.4 0.04 11 3611 0.81 0.024 17 3617 3617 3617 3617	5	3605		0.13	0.004	0.3	0.01		
8 3608	.6	3606		0.35	0.010	0.4	0.01		
9 3609	7	3607		0.19	0.006	0.9	0.03	•	
9 3609	8	3608		0.12	0.003	0.5	0.02		
10 3610 31.1 0.907 1.8 0.05 11 3611 0.76 0.022 3.1 0.09 12 3612 0.29 0.008 2.1 0.06 13 3613 0.06 0.002 0.6 0.02 14 3614 0.10 0.003 0.8 0.02 15 3615 0.08 0.002 1.6 0.05 16 3616 0.31 0.009 0.5 0.02 17 3617 0.18 0.005 37.1 >30 18 3618 0.28 0.008 9.7 0.28 19 3619 28.9 0.843 516 >30 20 3620 2.53 0.074 0.9 0.03 CC DATA: Repeat: 1 3601 < 0.03 <0.001 0.1 0.00 10 3610 1.4 0.04 11 3611 0.81 0.024 17 3617 3617 3617 19 3619 29.9		3609	* .	0.15	0.004	0.7	0.02	•	
12 3612		3610	:	31.1	0.907	1.8	0.05		
13 3613	11	3611		0.76	0.022	√3.1	0.09		
14 3614	12	3612		0.29	0.008	2.1	0.06		
15 3615	13	3613		0.06	0.002	0.6	0.02	and the second	
16 3616	14	3614	·	0.10	0.003	0.8	0.02		
17 3617	15	3615		0.08	0.002	1.6	0.05		
18 3618	16	3616		0.31	0.009	0.5	0.02		
19 3619 28.9 0.843 516 >30 20 3620 2.53 0.074 0.9 0.03 QC DATA: Repeat: 1 3601 < 0.03 < 0.001 0.1 0.00 1.4 0.04 11 3611 0.81 0.024 17 3617 29.9 1 3619 29.9 1 3619 29.9	17	3617		0.18	0.005	37.1	>30		
20 3620 2.53 0.074 0.9 0.03 QC DATA: Repeat: 1 3601 <0.03 <0.001 0.1 0.00 10 3610	18	3618		0.28	0.008	9.7	0.28		
QC DATA: Repeat: 1 3601 <0.03 <0.001	19	3619		28.9	0.843	516	>30		
Repeat: 1 3601	20	3620		2.53	0.074	0.9	0.03	•	
1 3601 <0.03 <0.001 0.1 0.00 10 3610 1.4 0.04 11 3611 0.81 0.024 17 3617 36.4 1.06 19 3619 29.9	QC DAT	<u> </u>	·						
10 3610 11 3611 17 3617 19 3619 29.9 1.4 0.04 36.4 1.06 ECO TECH LABORATORY I	Repeat							•	
11 3611 0.81 0.024 17 3617 36.4 1.06 19 3619 29.9 ECO TECH LABORATORY I	1			<0.03	<0.001		· ·		
17 3617 36.4 1.06 19 36.4 1.06 ECØ TECH LABORATORY L		•	•			1.4	0.04 /		
19 3619 29.9 ECOTECH LABORATORY L				0.81	0.024		<i>f</i>	JUX I	
	17	3617				36.4	1.06 /		
× 1 × 1 × 1 × 1	. 19	3619	•	29.9					LTD.
Jutta Jealouse/						•	ðut	ta Jealouse	٠.

٠.	I-	Pac	eific	Gold	Inc.	Δ	K6-	2285

J-Pacific Gold Inc. AK6-2285					16-Jan-07
ET #. Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	
Resplit:	0.00	0.004		0.00	
1 3601	<0.03	<0.001	0.1	0.00	
Standard:	•				
Till 3			1.5	0.04	
OxJ47	2.36	0.069			

JJ/kc XLS/06

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Oertified Assayer

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2006- 2080

10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 J-Pacific Gold 1440-1166 Alberni St. Vancouver BC V6E 3Z3

No. of samples received: 12 Sample Type: Core Project: Black Dome Shipment #: 3A-1

Submitted by: R. Parish

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	Al %	As	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Mo I	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	w	Υ	Zn
1	3539	2.1	1.07	190	25	<5	0.31	<1	13	52	26	3.08	<10	0.51	409	9	0.01	12	680	12	<5	<20	10	<0.01	<10	47	<10	9	64
2	3540	0.7	0.20	<5	25	<5	0.16	<1	3	3	7	2.91	<10	0.02	23	3	0.14	3	500	122	<5	<20	2	<0.01	<10	1	<10	<1	33
3	3541	1.2	1.17	15	40	<5	0.56	<1	17	85	30	2.91	<10	0.76	498	<1 <	:0.01	14	690	16	<5	<20	18	0.13	<10	52	<10	12	63
4	3542	1.9	1.10	220	35	<5	0.29	<1	16	64	30	3.33	<10	0.59	555	8	0.01	14	730	14	<5	<20	9	<0.01	<10	50	<10	10	69
5	3543	1.8	1.05	215	30	<5	0.28	<1	14	58	32	3.18	<10	0.56	418	7	0.01	13	710	14	<5	<20	8	<0.01	<10	46	<10	9	66
6	3544	2.1	1.35	95	40	<5	0.34	<1	19	55	36	3.90	<10	0.72	715	3	0.02	17	890	16	<5	<20		<0.01	<10	61	<10	11	74
. 7	3545		0.49	115	45	<5	0.19	<1	10	133	63	1.92	<10	0.18	368		<0.01	10	500	26	<5	<20		<0.01	<10	30	<10	6	45
8	3546	>30	0.79	160	40	<5	0.23	<1	12	88	46	2.65	<10	0.38	381		<0.01	12	590	24	<5	<20		<0.01	<10	42	<10	5	58
9	3547	2.9	1.29	30	35	<5	0.34	<1	17	51	35	3.55	<10	0.79	523		0.02	15	830	16	<5	<20		<0.01	<10	51	<10	11	70
10	3548	9.5	1.15	80	115	5	0.56	<1	18	62	14	3.40	<10	0.72	546		0.01	14	780	20	<5	<20	17	0.15	<10	76	<10	12	73
11	3549	10.2	1.05	50	30	<5	0.54	<1	18	81	10	2.91	<10	0.61	443		0.01	14	640	36	<5	<20	13	0.16	<10	60	<10	12	67
12	3550	0.7	0.17	<5	25	<5	80.0	<1	2	3	7	2.93	<10	<0.01	28	3	0.08	1	190	114	<5	<20	1	<0.01	<10	1	<10	<1	21
QC DAT																													
1	3539	1.4	1.09	195	30	<5	0.31	<1	13	53	26	3.11	<10	0.52	413	9	0.01	12	700	14	<5	<20	10	<0.01	<10	48	<10	9	64
Resplit.																					_		4.0	0.04	4.0	45	4.0		
1	3539	1.5	1.09	190	30	<5	0.31	<1	13	64	25	3.10	<10	0.50	416	9	0.01	12	690	14	<5	<20	10	<0.01	<10	48	<10	8	63
<i>Standar</i> Pb116	rd:	22.2	0.20	10	95	<5	0.86	12	3	3 ·	1771	0.82	<10	0.06	241	28	0.01	3	90	6682	20	<20	131	<0.01	<10	7	10	<1 4	1478

JJ/dc df/2183 XLS/06 ECØ TECH LABORATORY LTD.

utta Jealouse

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

12-Dec-06

CERTIFICATE OF ASSAY AK 2006-2080

Revised

J-Pacific Gold 1440-1166 Alberni St. Vancouver BC

No. of samples received: 12

Sample Type: Core Project: Black Dome Shipment #: 3A-1

Submitted by: R. Parish

		Au	Au	Ag	Ag		•
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)		
1	3539	0.42	0.012	1.6	0.05		
2	3540	1.36	0.040	0.9	0.03		
· 3	3541	0.16	0.005	1.3	0.04		
4	3542	0.76	0.022		i.t.; 0,06\$(€)	:	
5	3543	0.66	0.019	2.2	0.06	•	
6	3544	0.16	0.005	2.3	0.07		:
7	3545	17.6	0.513	58.2	1.70		
8	3546	11.5	0.335	74.3	2.17	•	
9	3547	0.05	0.001	2.9	0.09		
10	3548	0.99	0.029	25.7	0.75		
11	3549	1.00	0.029	10.7	0.31		
12	3550	2.64	0.077	0.9	0.03		•
		•	4.4				
QC DAT	Γ A :		. • • .				
Repeat	<u></u>	•				*	
· 1	3539	0.41	0.012	1.6	0.05		100
4	3542	0.71	0.021	•		•	
7	3545			71.8	2.09		
					·		
Resplit							
i	3539	0.39	0.011	1.8	0.05		
Standa	rd:	•					
SJ10	The State of	2.63	0.077				
PB106				58.4	1.70		
CU120				33.3	0.97		
PB116				22.8	-0.67 /		
		- V.			Sah	1	•
٠				(ARX		
				E	COPECHILAE	BORATORY LT	D.
JJ/sa	1	and the state of the	. *		uta Jealouse	/	
XLS/06					C. Certified\As	ssayer	
				f/ ·		-/	

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2006-2081

J-Pacific Gold 1440-1166 Alberni St. Vancouver BC V6E 3Z3

No. of samples received: 23

Sample Type: Core Project: Black Dome Shipment #: 2-2 Submitted by: R. Parish 12-Dec-06

Metallic Assays

			Au	Au	Ag	Ag					•
ET#.	Tag #		(g/t)	(oz/t)	(g/t)	(oz/t)			· -		
1	3516		0.47	0.014	13.4	0.39/	e ji deye				
2	3517		0.03	0.001	0.2	0.01					•
. 3	3518		0.68	0.020	2.0	0.06					
4	3519		0.06	0.002	0.4	0.01					
5	3520	*	2.53	0.074	8.0	0.02					
6	3521	1	0.06	0.002	0.4	0.01	•				
7	3522		0.15	0.004	0.5	0.02					
8	3523	•	0.38	0.011	0.9	0.03					
9	3524	•	0.07	0.002	0.5	0.02					
10	3525		0.05	0.001	0.6	0.02					
11	3526		< 0.03	<0.001	0.5	0.02					
12	3527		<0.03	< 0.001	0.5	0.02					
13	3528		5.34	0.156	1.8	0.05					
14	3529		0.62	0.018	0.8	0.02					
15 -	3530	*	30.9	0.901	1.8	0.05					
16	3531		1.66	0.048	0.7	0.02					
17	3532		0.19	0.006	0.7	0.02					
18	3533		0.11	0.003	0.5	0.02	2.00				
19	3534		0.66	0.019	0.4	0.01					
20	3535		0.03	0.001	8.0	0.02					
21	3536		0.93	0.027	2.0	0.06					
22	3537		0.34	0.010	0.7	0.02		,			
23	3538		0.07	0.002	1.2	0.04				-	

* = 30g FA

COTECH LABORATORY LTD

B.C. Certified Assay

		Metallic Ass	ays					
ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)			
	`					1		-
QC DAT	Ä:			N/ v			•	
Repeat:						N _c	·	
and the second s	3516			13.3	0.39		•	
8	3523	0.32	0.009				•	
10	3525	•		0.5	0.02		e produce de la companya de la compa	
Resplit:		•					\	
. 1	3516	0.45	0.013	11.0	0.32			
				- '				
Standar	d:				'			
SN26		8.48	0.247					
SN26		8.54	0.249					
Pb106				58.5	1.71			
	•			•			. *	

JJ/sa XLS/06

* = 30g FA

ECO FECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD.

10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2006- 2081

J-Pacific Gold Inc. 1440-1166 Alberni St. Vancouver, BC V6E 3Z3

No. of samples received: 23
Sample Type: Core
Project: Black Dome
Shipment #: 2-2
Submitted by: R. Parish

Values in ppm unless otherwise reported

Et #.	Tag :	#	Ag	Al %	As	Ва	Bi	Ca %	Çd -	Со	Cr	Çu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	· U	٧	W	Y	Zn
1	3516		12.5	1.28	85	55	<5	0.50	<1	19	48	57	3.96	<10	0.71	640	2	<0.01	18	1110	40	<5	<20	10	0.06	<10	61	<10	13	88
2	3517		<0.2	1.29	10	40	<5	1.75	<1	20	51	29	3.60	<10	0.80	616	3	0.01	20	990	25	<5	<20	33	<0.01	<10	46	<10	12	59
3	3518		2.2	1.67	210	75	5	0.52	<1	25	49	45	5.59	<10	0.86	774	8	0.01	19	1200	44	<5	<20	20	<0.01	<10	70	<10	9	83
4	3519		0.3	0.96	. 15	25	<5	0.40	<1	6	61	9	2.43	20	0.38	541	2	0.02	3	550	22	<5	<20	15	< 0.01	<10	11	<10	2	59
5	3520		0.7	0.14	<5	30	10	0.10	<1	3	4	9	3.41	<10	<0.01	32	5	0.05	5	270	133	<5	<20	3	<0.01	<10	<1	<10	<1	20
																														•
6	3521		0.3	1.12	15	30	<5	0.53	<1	6	61	11	2.54	10	0.43	511	3	0.02	7	620	27	<5	<20	17	< 0.01	<10	11	<10	4	64
7	3522		0.5	0.78	35	30	<5	0.37	<1	9	28	10	2.47	20	0.24	955	2	0.02	6	780	18	<5	<20	11	< 0.01	<10	8	<10	11	60
8	3523		8.0	0.83	65	25	<5	0.27	<1	9	33	16	2.67	10	0.30	482	6	<0.01	3	800	18	<5	<20	6	<0.01	<10	13	<10	5	72
9	3524		0.3	0.55	110	25	<5	0.23	<1	6	38	28	2.29	10	0.10	140	8	0.01	7	650	12	<5	<20	5	< 0.01	<10	6	<10	10	48
10	3525		0.4	0.67	65	35	<5	0.23	<1	6	45	26	2.99	20	0.07	183	8	0.02	7	680	18	<5	<20	8	< 0.01	<10	5	<10	11	72
11	3526		0.4	0.62	90	25	<5	0.24	<1	6	26	35	3.05	20	0.14	409	4	0.02	6	720	17	<5	<20	6	<0.01		11		15	71
12	3527		0.4	0.62	275	25	<5	0.28	<1	8	28	23	2.63	10	80.0	187	7	0.01	8	840	18	<5	<20	8	<0.01		14	<10	15	72
13	3528		2.5	0.48	95	40	<5	0.23	<1	14	89	44	2.43	<10	0.07	634	8	<0.01	9	630	18	<5	<20	9	<0.01	<10	13		8	54
. 14	3529		0.6	1.01	35	25	<5	0.40	<1	18	35	25	3.45	<10	0.36	300	4	0.02	13	1210	22	<5	<20	12	<0.01	<10	40	<10	14	80
15	3530		1.4	0.19	<5	30	5	0.21	<1	4	<1	7	4.09	<10	0.04	116	4	0.09	6	630	158 ⁻	<5	<20	8	<0.01	<10	<1	<10	<1	25
16	3531		0.7	0.68	- 20	30	<5	0.63	<1	8	60	15	2.15	<10	0.23	262	1	0.03	5	710	22	<5	<20	. 17	0.03	<10		<10	11	55
17	3532		0.5	0.71	35	25	<5	0.55	<1	9	47	11	2.48	<10	0.25	302	<1	0.03	4	790	20	<5	<20	12	0.05	<10	9	<10	11	61
18	3533		0.4	0.68	35	35	<5	0.30	<1	7	52	13	3.25	20	0.16	442	7		6	820	18	<5	<20	5	<0.01	<10		<10.	14	78
19	3534		0.3	1.75	<5	40	<5	1.83	<1	22	44	29	4.65	<10	1.21	847	4	0.03	18	1260	30	<5	<20	28	<0.01	<10	73	<10	12	78
20	3535		0.6	0.49	30	25	5	0.28	<1	5	34	14	3.47	20	0.04	227	8	0.02	4.	550	17	<5	<20	10	<0.01	<10	2	<10	14	73
																	_					_				4.0	_		_	
21	3536		1.9	0.42	75	40	<5	0.25	<1	6	59	24			0.07	1294	8		6	540	22	<5	<20	14	< 0.01		8	<10	8	63
22	3537		0.6	0.75	30	35	<5	0.36	<1	8	39	12	3.98	20	0.16	785	6	0.01	8	780	17	<5	<20	15	< 0.01	<10	14	-	12	86
23	3538		1.0	0.91	15	35	5	0.59	<1	4	20	8	3.84	20	0.17	634	5	0.02	2	730	22	<5	<20	26	<0.01	<10	<1	<10	16	98
																					,									
QC DAT	Γ <u>Α:</u>		•																											
																										•				
Repeat							_						4.00	4.5	0 7 4	0=0	_	0.04	4.0	4400	00	_		4.4	0.07	-10	C4	-10	4.5	
1	3516		13.0	1.35	80	55	<5	0.52	<1	19	49	57	4.00		0.74	653	2	<0.01	18	1120	. 38	<5 .c	<20	11	0.07	<10	64	<10	15	98
10	3525		0.4	0.68	65	30	<5	0.23	<1	6	44	25	2.95	20	0.07	178	7	0.01	7	660	20	<5	<20	6	<0.01	<10	Э	<10	10	84
	•								•																					

ICP CERTIFICATE OF ANALYSIS AK 2006- 2081

J-Pacific Gold Inc.

Et #.	Tag#	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
Resplit:	3516	11.6	1.24	85	55	<5	0.50	<1	20	47	54	3.86	<10	0.68	651	1	<0.01	18	1090	42	<5	<20	10	0.07	<10	61	<10	15	- -96 -
Standard Pb116	d:	21.6	0.22	10	95	<5	0.88	13	2	3	1909	0.85	<10	0.06	251	29	0.01	2	70	6828	25	<20	145	<0.01	<10	8	20	<1 4	,388

JJ/kc/dc df/2126 XLS/06

ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2006-2183

J-Pacific Gold Inc. 1440-1166 Alberni St. Vancouver, BC V6E 3Z3 9-Jan-07

No. of samples received: 50

Sample Type: Core Project: Black Dome Shipment #: 3A - 2

Samples submitted by: R. Parish

	· -	and the second s						
	4	Au	Au	Ag	Ag			
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)		· · · · · · · · · · · · · · · · · · ·	
1	3551	0.69	0.020	0.3	0.009			,
2	3552	2.80	0.082	0.9	0.026		•	
3	3553	0.22	0.006	0.6	0.017	e.		
4	3554	0.55	0.016	10.3	0.300			
5	3555	1.65	0.048	1.7	0.050			
6	3556	0.23	0.007	0.6	0.017			
7	3557	0.05	0.001	0.6	0.017			
8	3558	0.03	0.001	0.4	0.012	-		
9	3559	0.12	0.003	1.1	0.032	*		
10	3560	30.8	0.898	1.5	0.044	,		
11	3561	0.37	0.011	1.4	0.041			
12	3562	0.10	0.003	0.6	0.017			
13	3563	0.10	0.003	0.4	0.012			
14	3564	0.06	0.002	0.3	0.009			
:15	3565	0.82	0.024	0.4	0.012	•		
16	3566	0.69	0.020	gws 1.2	0.035			
17	3567	0.26	0.008	1.7	0.050			
18	3568	0.42	0.012	0.5	0.015			
19	3569	0.08	0.002	0.3	0.009		1.	
20	3570	1.33	0.039	8.0	0.023			
21	3571	0.42	0.012	0.6	0.017			
22	3572	0.09	0.003	0.5	0.015	•		
23	3573	0.23	0.007	0.6	0.017		<i>*</i>	
24	3574	0.18	0.005	0.3	0.009			
25	3575	0.07	0.002	0.2	0.006			
		•						

ECO TECH LABORATIONY LTD.

B.C. Certified Assaye

Eco Tech LABORATORY LTD

JJ/ed/sa

XLS/06

Page 2

ECOZECH LABORATORY LTD.

Jutta Jealouse

BIC. Contified Assaye

ECO TECH LABORATORY LTD. 10041 Dallas Drive

10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2006- 2183

J-Pacific Gold Inc. 1440-1166 Alberni St. Vancouver, BC V6E 3Z3

No. of samples received: 50
Sample Type: Core
Project: Black Dome
Shipment #: 3A - 2

Samples submitted by: R. Parish

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na %	Ni	Р	Pb	Sb	Sn		Ti %	U	V	W	Υ	Zn
1	3551	0.3 1.56	10	30	<5	0.75	<1.	22	55	33	3.20	<10	1.10	523	<1 0.02	15	840	10	<5	<20	28	0.18	<10	73	<10	14	64
2	3552	0.9 1.43	85	35	<5	0.45	<1	17	56	28	3.51	<10	0.96	576	1 0.01	14	910	10	<5	<20		<0.01	<10		<10	8	64
3	3553	0.6 1.35	165	20	<5	0.38	<1	22	37	30	4.29	<10	0.62	529	23 0.02	16	890	6	<5	<20			<10		<10	9	73
4	3554	10.3 1.55	105	35	<5	0.62	<1	26	46	38	4.12	<10	0.85	1221	4 0.02	16	840	10	<5	<20	18	0.05		73	<10	10	67
5	3555	1.7 1.44	90	50	<5	0.56	<1	23	61	28	3.71	<10	0.96	699	<1 0.02	16	820	12	<5	<20	16	0.11	<10	84	<10	12	60
6	3556	0.6 0.62	220	25	<5	0.31	<1	16	48	20	3.19	<10	0.19	373	8 <0.01		790	10	-	<20		<0.01			<10	1	56
7	3557	0.6 0.67	210	30	<5	0.30	<1	25	51	29	4.72	10	0.22	606	5 <0.01		710	6	<5	<20		<0.01	<10		<10	3	77
8	3558	0.4 0.60	205	20	<5	0.39	<1	19	35	13	2.25	<10	0.20	118	2 < 0.01	_	980	8	<5	<20	_	<0.01	-		<10	3	56
9	3559	1.1 0.62	1150	25	<5	0.29	<1	19	63	36	3.17	<10	0.19	397	3 <0.01	9	820	6	10	<20	-	<0.01			<10	2	55
10	3560	1.5 0.21	<5	25	<5	0.18	<1	3	<1	6	3.35	<10	0.05	99	3 0.14	4	470	132	<5	<20	7	<0.01	<10	2	<10	<1	23
11	3561	1.4 0.50	645	20	<5	0.27	<1	20	60	49	3.82	<10	0.08	61	6 < 0.01		710	6	<5	<20	_	<0.01			<10	<1	65
12	3562	0.6 0.63	140	30	<5	0.27	<1	18	44	31	4.19	10	0.14	155	3 0.02	_	660	6	. <5	<20	_	<0.01			<10	2	84
13	3563	0.4 0.89	15	30	<5	0.29	<1	7	38	15	2.37	20	0.32	493	2 0.02		520	10	<5	<20		<0.01			<10	3	67
14	3564	0.3 0.53	30	20	<5	0.27	<1	5	45	8	1.60	10	0.12	100	<1 0.02	3	600	8	<5	<20		<0.01			<10	7	47
15	3565	0.4 0.84	5	30	<5	0.76	<1	6	30	9	2.50	20	0.36	526	2 0.03	<1	620	8	<5	<20	16	<0.01	<10	11	<10	9	70
16	3566	1.2 1.05	160	75	5	0.35	<1	13	35			<10	0.39	746	3 < 0.01		880	12	<5	<20		<0.01		-	<10	9	74
17	3567	1.7 0.81	90	70	-5	0.26	<1	10	43	19	2.55	<10	0.42	565	2 0.01	_	660	12	<5	<20		<0.01			<10	8	57
18	3568	0.5 1.18	15	35	<5	0.33	<1	14	40	27	3.42	<10	0.73	542	2 0.01		770	14	<5	<20		<0.01			<10	7	66
19	3569	0.3 0.70	150	35	<5	0.28	<1	10	59			<10	0.28	440	2 0.01		700	6	<5	<20		<0.01			<10	7	60
20	3570	0.8 0.21	<5	30	5	0.16	<1	3	3	7	2.91	<10	0.02	24	3 0.15	2	490	120	<5	<20	3	<0.01	<10	1	<10	<1	20
21	3571	0.6 0.82	120	30	<5	0.29	<1	12	55	20	2.66	10	0.26	488	2 0.02	-	690	8	<5	<20		<0.01	<10		<10	6	58
22	3572	0.5 0.68	125	25	<5	0.27	<1	12	43	20	2.33	<10	0.21	440	2 0.02		720	10	<5	<20		<0.01	<10		<10	6	56
23	3573	0.6 0.72	100	25	<5	0.22	<1	14	49	16	3.01	<10	0.24	383	3 0.02		620	8	5	<20		<0.01	<10	20	<10	5	64
24	3574	0.3 0.35	105	25	<5	0.18	<1	5	49	16	1.22	<10	0.10	168	1 <0.01	4	470	6	<5	<20		<0.01		17	<10	5	32
25	3575	0.2 0.66	80	15	<5	0.40	<1	6	13	12	2.02	10	0.19	168	1 <0.01	6	880	10	<5	<20	11	<0.01	<10	18	<10	9	56
26	3576	0.3 1.18	120	45	5	0.51	<1	12	24	21	3.09	20	0.44	449	3 <0.01	14	890	14	<5	<20		<0.01		30	<10	13	94
27	3577	0.3 0.71	15	25	<5	0.25	<1	2	34	6	1.87	20	0.09	153	2 0.03		640	12	<5	<20		<0.01		1	<10	11	73
28	3578	0.2 1.14	65	30	<5	0.41	<1	20	33	29	3.06	<10	0.47	444	4 < 0.01	14	870	12	<5	<20		<0.01		-	<10	8	63
. 29	3579	2.1 1.16	15	30	<5	0.46	<1	17	58	30	3.19	<10	0.70		2 0.02	20	770	10	<5	<20	19	0.02			<10	10	62
30	3580	0.8 0.19	<5	20	<5	0.08	<1	2	3	7	2.70	<10	<0R0#g	e 126	3 0.10	2	190	106	<5	<20	2	<0.01	<10	1	<10	<1	23

Et #.	Tag #	Ag Al% As	Ва	Bi Ca%	Cd	Со	Cr	Cu I	Fe %_	La _.	Mg %	Mn	Mo Na%	Ni	P	Pb	Sb	Sn		Ti %	U	٧	w	Υ	Zn
31	3581	0.9 0.93 30	20	<5 0.42	<1	16	53	22	2.91	10	0.47	379	2 < 0.01	10	800	12	<5	<20		<0.01	<10	38	<10	15	58
32	3582	2.9 0.55 215	60	<5 0.23	<1	14	77	29	2.78	<10	0.16	417	6 <0.01	9	680	12	<5	<20		<0.01	<10		<10	11	57
33	3583	0.7 1.00 35	25	<5 0.35	<1	16	46		3.05	<10	0.47	456	2 <0.01	9	890	10	<5	<20		<0.01			<10	13	58
34	3584	8.2 0.39 55	25	<5 0.14	<1	8	106	37	1.44	<10	0.14	245	<1 <0.01	6		18	5	<20		<0.01			<10	6	62
35	3585	4.3 0.57 55	25	<5 0.23	<1	19	47	19	2.05	<10	0.16	241	2 < 0.01	10	720	8	<5	<20	6 -	<0.01	<10	30	<10	12	59
				-								-													
36	3586	5.5 1.05 60	30	<5 0.33	<1	16	44		3.47		0.51	551	3 <0.01	11		14	<5	<20		<0.01			<10	13	67
37	3587	8.4 0.56 150	25	<5 0.17	<1	15	101		2.35	<10	0.23	444	3 <0.01	11	520	22	<5	<20		<0.01	<10	34	<10	6	54
38	3588	0.5 0.97 20	35	<5 0.33	<1	16	47			<10	0.52	344	3 0.01		810	12	<5	<20		<0.01			<10	9	58
39	3589	7.7 0.67 55	20	<5 0.21	<1	11	84			<10	0.27	289	4 < 0.01	9	690	20	<5	<20		<0.01	<10		<10	9	50
40	3590	1.6 0.20 <5	20	5 0.17	· <1	3	<1	- 5	3.30	<10	0.04	97	3 0.13	5	480	130	<5	<20	4 -	<0.01	<10	2	<10	<1	24
ļ				5 0.00	_	-00	4-1	O.E.	0.67	.10	0.65	705	3 0.01	17	810	14	10	<20	12	<0.01	<10	50	<10	7	72
41	3591	0.2 1.19 455		<5 0.32	<1	22	41 51		3.67 3.24	<10 <10	0.05	478	3 0.02	14	760	12	<5	<20		<0.01	<10		<10	9	64
42	3592	0.5 1.20 60		<5 0.24 <5 0.25	<1 <1	16 16	46		3.18	<10	0.73	493	2 0.02	12		12	<5	<20		<0.01	<10	50	<10	9	65
43	3593	0.4 1.18 50 0.2 1.23 30		<5 0.25 <5 0.27	<1	18	51	30		<10	0.73	446	2 0.02	15		14	<5	<20		<0.01	<10		<10	9	66
44	3594	0.2 1.23 30 0.4 0.48 1525		<5 0.27	<1	16	53	-		<10	0.17		2 < 0.01		770	8	30	<20		<0.01			<10	9	60
45	3595	0.4 0.46 1525	05	<0 0.21	~1	10	JO	55	2.70	~10	0.17		2 (0.01	• • •	,,,	· .	-	~			•		1.0	•	
46	3596	0.5 0.98 180	340	5 0.37	<1	14	27	30	7.47	<10	0.46	6561	8 < 0.01	14	680	10	<5	<20	47 -	<0.01	<10	78	<10	5	98
47	3597	0.3 0.42 60		<5 0.17	<1	13	16	36	2.38	20	0.09	4046	3 < 0.01	31	240	16	<5	<20	22 -	<0.01	<10	24	<10	12	84
48	3598	0.2 1.38 65		<5 0.52	<1	18	29	26	3.49	<10	0.74	366	3 0.01	9	1280	12	<5	<20	24 -	<0.01	<10	49	<10	10	64
49	3599	0.1 0.12 45		< 5 0.05	<1	3	207	7	2.17	<10	0.02	52	2 < 0.01	4	90	6	10	<20	3 -	<0.01	<10	13	<10	<1	22
50	3600	0.4 0.23 <5	25	5 0.16	<1	2	3	7	2.85	<10	0.02	24	3 0.16	2	490	116	<5	<20	2 ·	<0.01	<10	1	<10	<1	19
QC DAT																			•						
Repeat		00450 40		5 A 74		04	E 4	20	0.45	-10	1.00	510	-1 0.00	- 11	990	10	<5	-20	26	0.17	-10	70	<10	13	65
1	3551	0.8 1.50 10		5 0.74	<1	21	54	32	3.15	<10	1.06	512	<1 0.02	14 10		12 8	<5 <5	<20 <20		<0.01	<10	18	<10	<1	74
10	3560	1.0 0.44 630		<5 0.27	<1 -4	20	58		3.76	<10 <10	0.07	60 437	6 <0.01 2 0.01	7	690	10	<5	<20		<0.01	<10	38	<10	7	62
19	3569	<0.2 0.69 150		<5 0.28	<1	10 16	58 45		2.63 3.47		0.27 0.50		3 < 0.01		900	14	<5	<20		<0.01			<10	13	69
36	3586	4.4 1.03 60	30	<5 0.33	<1	10	45	23	3.47	<10	0.50	554	3 <0.01	10	300	17	~5	~20	,	\0.01	~10	J	~10	.0	00
-	•										,														
Resplit	:																					_			
1	3551	1.2 1.51 10	30	5 0.76	<1	22	65	29	3.24	<10	1.04	494	<1 0.02	15		14	<5	<20	27	0.17	<10	70	<10	15	67
36	3586	3.6 1.07 60	30	<5 0.34	<1	16	43	24	3.47	<10	0.52	5 45	3 <0.01	9	900	12	<5	<20	7	<0.01	<10	55	<10	12	68
													•												
Standa	rd:																								
Pb106		>30 0.51 270	75	<5 1.66	32	4	43 6	272	1.63	<10	0.16	544	29 0.02	. 7	280	5374	55	<20	142	<0.01	<10	13	10	: <1 8	8313
Pb106		>30 0.51 270		<5 1.68	32	4			1.63				28 0.02		280				145			13	10	<1.8	8396
. 5.00		- 55 0.0, Ere				•																			

JJ/dc df/2183 CO TECH LABORATORY LTD.

Page 2

GEOCHEMISTRY ANALYTICAL CHEMISTRY **ENVIRONMENTAL TESTING**

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (260) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2006-2080

J-Pacific Gold 1440-1166 Alberni St. Vancouver BC

12-Dec-06

No. of samples received: 12

Sample Type: Core Project: Black Dome Shipment #: 3A-1 Submitted by: R. Parish

ET #.	Tag	#	A ú (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	
1	3539		0.42	0.012		(7	
2	3540		1.36	0.040			
2	3541		0.16	0,005			
4	3542	·	0.76	0.022	41.00	Sarry Assistan	* .
	3543		0.66	0.019		1 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5 _.	3544		0.16	0.005			
7	3545		17.6	0.513	62.8	1.83	
8	3546	•	11.5	0.335	73.1	2.13	
9	3547		0.05	0.001			•
10	3548		0.99	0.029	•		
11	3549		1.00	0.029	i		
12	3550		2.64	0.077			
QC DAT	۲Δ٠					,	
Repeat	_	• •					
nepeat.	3539	,	0.41	0.012			
4	3542		0.71	0.021			
. 7	3545		0.7	0.021	59.3	1.73	
, , , , , , , , , , , , , , , , , , ,	0040		•		00.0	1.70	
Resplit	٠, .				•		
1	3539		0.39	0.011			
		4					
Standa	ra:	•	0.60	0.077			
-SJ10			2.63	0.077	58.4	1 70	
PB106	1				50.4	1.70	
					•		

JJ/sa XLS/06 ECØ TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2006

J-Pacific Gold 1440-1166 Alberni St. Vancouver BC V6E 3Z3 20-Feb-07

				e <i>tallic Assa</i> Au	Au	
Job#	ET #.	Tag #			z/t)	
2080	6	3544	0.	18 0.0	005	
2080	. 7	3545	17	7.3 0.5	504	
2080	8	3546			659	
2080	10	3548			032	
2080	11	3549			083	
2183	2	3552	3.	29 0.0	096	
2183	24	3574	0.	35 0.0	010	
2183	32	3582	1.	30 0.0	038	
2183	34	3584	0.	39 0.0	011	
2183	37	3587			092	
2285	. 5	3605	0.	23 0.0	007	
2285	17	3617	0.	40 0.0	012	
2285	19	3619	2	1.7 0.0	633	
2286	2	3622	0.	83 0.0	024	
2286	9	3629	0.	42 0.0	012	
2286	11	3631	0.	35 0.	010	
2287	2	3635	0.	10 0.	003	
2287	4	3637	0.	57 0.	017	
2288	8	3649	1.	.33 0.	039	•
2288	10	3651	0	64 0.	019	
2289	11	3663			047	
2289	12	3664	1	.15 0.	034	•
2289	13	3665	0	.31 . 0.	009	
QC DAT	Ά:			•		
Standar	d:					
SJ10			2	.66 0.	078	
SJ10			2	.63 0.	077	
	•					ECO TECH LABORATORY LTD.

JJ/kk XLS/06 Jutta Jealouse B.C. Certified Ass

	,		Screen Assa			
E.T. No.		3,	PT Values (g	g/t)		
		+140 mesh	- 140 mesh	total		
2080-6	3544	0.32	0.18	0.18		
2080-7	3545	46.30	15.00	17.27	44	
2080-8	3546	134.67	16.65	22.60		
2080-10	3548	1.62	1.08	1.11		
2080-11	3549	27.97	1.47	2.84		
2183-2	3552	5.10	3.17	3.29	.*	
2183-24	3574		0.20	0.35		
2183-32	3582	1.92	1.19			
2183-34	3584	0.67	0.38			
2183-37	3587	7.90	2.87	3.15		
2285-5	3605	1.52	0.15	0.23		
2285-17	3617	1.53	0.32	0.40		
2285-19	3619		15.90	21.72		
	······································					
2286-2	3622	1.37	0.80	0.83		
2286-9	3629	0.51	0.42	0.42		
2286-11	3631	0.66	0.34	0.35		•
2287-2	3635	0.13	0.10	0.10		
2287-4	3637	0.60	0.57	0.57		
2288-8	3649	3.25	1.21	1.33		
2288-10	3651	0.73				
2289-11	3663	2.66	1.55	1.60		
2289-12	3664					
2289-13	3665					

AU SCREEN ASSAYS

Job No.		Pageof		Task	Analyst	Date
Rack No.		Sample Wt	-	Fire Assay	<u> </u>	1
Teack 110		bumple it ii		AA		
Lab NO	Test	Screen	Screen	Dilutions	PT	PT
	Tube No.	Fraction	Weights	•	A.A. Values	Final Value(g/t)
2287-2	1	+140	18.91			0.08
	2	- 140	408.66			0.1
	. 3	- 140	Articles of the second second			0.09
2287-4	4	+140	30.15			0.6
	- 5	- 140	407.72			0.53
	6	- 140	Line Code Code Server To the Cod			0.60
2285-5	7	+140	28.63			1.45
	8	- 140	437.63			0.17
	9	- 140		i A		0.12
2286-2	10	+140	26.22			1.2
	11	- 140	412.22			0.81
	12	- 140			*	0.79
2285-17	13	+140	25.5			1.3
	14	- 140	376.05			0.37
	15	- 140				0.27
2285-19	16	+140	22.48			65.4
	17	- 140	253.16			16.7
	18	- 140				15.1
2286-11	19	+140	20.46			0.45
	20	- 140	449.46			0.39
	21	- 140	German .			0.29
2288-8	22	+140	27.22			2.95
	23	- 140	413.52			1.27
	24	- 140				1.14
2286-9	25	+140	28.47			0.48
	26	- 140	427.73			0.3
	27	- 140				0.53
2289-11	28	+140	20.49			1.82
2200 11	29	- 140	397.89		· · · · · · · · · · · · · · · · · · ·	1.57
	30	- 140				1.52
2289-12	31	+140	23.59			5.77
2207-12	32	- 140	431.69			0.84
	33	- 140	Edward March			0.79
2288-10	34	+140	23.54	<u> </u>		0.57
2288-10	35	- 140	502.67			0.37
	36	- 140	302.67			0.57
2000 5			Paragraphic and the same of			
2080-7	37	+140	23.78			36.7
	38	- 140	303.76			14.9
	39	- 140				15.1

Metallic AU Screen Assay

E.T. No.			PT Values (g/t)	
] .		+140 mesh	- 140 mesh	total
2287-2	3635	0.13	0.10	0.10
2287-4	3637	0.60	0.57	0.57
2285-5	3605	1.52	0.15	0.23
2286-2	3622	1.37	0.80	0.83
2285-17	3617	1.53	0.32	0.40
2285-19	3619	87.28	15.90	21.72
2286-11	3631	0.66	0.34	0.35
2288-8	3649	3.25	1.21	1.33
2286-9	3629	0.51	0.42	0.42
2289-11	3663	2.66	1.55	1.60
2289-12	3664	7.34	0.82	1.15
2288-10	3651	0.73	0.64	0.64
2080-7	3545	46.30	15.00	17.27

AU SCREEN ASSAYS

					· · · · · · · · · · · · · · · · · · ·	
Job No.		Pageof	_	Task	Analyst	Date
Rack No		Sample Wt		Fire Assay		
•		_		AA		
Lab N0.	Test	Screen	Screen	Dilutions	PT	Pf
	Tube No.	Fraction	Weights		A.A. Values	Final Value(g/t)
2080-8	1 1	+140	23.39			105
	2	- 140	440.7			16.4
	3	- 140				16.9
2183-37	1 4	+140	20.57			5.42
	5	- 140	344.07			2.6
	6	- 140	ymine pytosa.			3.14
2289-13	7	+140	19.22			2.81
	8	- 140	529.82			0.18
	9	- 140				0.14
2080-10	10	+140	24.4			1.32
	11	- 140	380.53			1.08
	12	- 140		***		1.08
2080-11	13	+140	22.63			21.1
2000 11	14	- 140	413.93			1.67
	15.	- 140		-		1.27
2080-6	16	+140	21.26			0.23
2000 0	17	- 140	328.12			0.19
· · · · · · · · · · · · · · · · · · ·	18	- 140	ender demonstration and			0.16
2183-34	19	+140	20.18			0.45
2103 3 1	20	- 140	360.51			0.43
	21	- 140		4		0.32
2183-32	22	+140	25.68			1.64
2105-52	23	- 140	145.76			1.16
. :	24	- 140	Alterial Decusion			1.22
2183-24	25	+140	22.64			1.69
2165-24	26	- 140	277.19			0.16
<u> </u>	27	- 140	2,7117			0.23
2102.3			21.63	<u> </u>		3.68
2183-2	28	+140			·	3.44
<u>.</u>	29	- 140	321.18			2.89
<u> </u>	30	- 140				2.07
	31	+140		<u> </u>		
	32	- 140	<u> </u>			
	33	- 140				
	34	+140				
	35	- 140				
	36	- 140			<u> </u>	
	37	+140				
	38	s - 140				
	39	- 140	no e importante de la composición del composición de la composición de la composición de la composición de la composición del composición de la composición del composició	11.		

Metallic AU Screen Assay

E.T. No.			PT Values (g/t)	
		+140 mesh	- 140 mesh	total
2080-8	3546	134.67	16.65	22.60
2183-37	3587	7.90	2.87	3.15
2289-13	3665	4.39	0.16	0.31
2080-10	3548	1.62	1.08	1.11
2080-11	3549	27.97	1.47	2.84
2080-6	3544	0.32	0.18	0.18
2183-34	3584	0.67	0.38	0.39
2183-32	3582	1.92	1.19	1.30
2183-24	3574	2.24	0.20	0.35
2183-2	3552	5.10	3.17	3.29
0		#DIV/0!	0.00	#DIV/0!
0		#DIV/0!	0.00	#DIV/0!
0		#DIV/0!	0.00	#DIV/0!

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY **ENVIRONMENTAL TESTING**

23-Jan-07

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-6700 Fax (260) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2006-2288

J-Pacific Gold Inc. 1440-1166 Alberni St. Vancouver, BC V6E 3Z3

No. of samples received: 11

Sample Type: Core Project: Blackdome Shipment #: 3-1 Samples submitted by: R. Parish

		Au	Au	. Ag	Ag		
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)		····
1	3642	0.75	0.022	1.2	0.04		
2	3643	0.44	0.013	1.7	0.05		
3	3644	0.69	0.020	1.5	0.04		
4	3645	0.37	0.011	0.8	0.02		
5	3646	0.46	0.013	2.2	0.06		
6	3647	0.44	0.013	1.6	0.05		
7	3648	0.61	0.018	2.8	0.08		•
8.	3649	1.20	0.035	3.6	0.11		
9.	3650	2.60	0.076	0.8	0.02		
10	3651	0.68	0.020	2.9	0.09		
11	3652	0.31	0.009	2.1	0.06		
QC DAT	<u>'</u> A:						
	•••						
Repeat:						•	
1	3642	0.75	0.022	, 1.2	0.04		
8	3649	1.13					
Decelit.							
Resplit:	3642	0.69	0.020	1.1	0.03		
	3042	0.09	0.020	1.1	0.00		
Standar	d:						
Till 3			-	1.4	0.04		
OxJ47		2.37	0.069		-	ē.	
				·		•	

COTECH/LABORATORY LTD.

Jutta Jealouse

JJ/kc

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2006-2289

J-Pacific Gold Inc. 1440-1166 Alberni St. Vancouver, BC V6E 3Z3 16-Jan-07

No. of samples received: 18

Sample Type: Core Project: Blackdome Shipment #: 7A-1

Samples submitted by: R. Parish

			Au	Au	Ag	Ag		•
ET #,	Tag #		(g/t)	(oz/t)	(g/t)	(oz/t)		
1	3653	,	0.22	0.006	8.0	0.02		
2	3654	•	0.11	0.003	1.3	0.04		
3	3655		0.46	0.013	0.5	0.02		•
4	3656		0.08	0.002	1.4	0.04		
5	3657		0.04	0.001	0.4	0.01		
6	3658		0.03	0.001	0.1	0.00		
7	3659		0.10	0.003	0.1	0.00		
8	3660		1.31	0.038	8.0	0.02		
9	3661		0.04	0.001	0.2	0.01		
10	3662	•	0.21	0.006	0.9	0.03		
11	3663	•	1.34	0.039	14.2	0.41		
12	3664		0.73	0.021	4.2	0.12		
13	3665		0.25	0.007	2.2	0.06		
14	3666		0.04	0.001	0.9	0.03		•
15	3667		0.06	0.002	8.0	0.02		
16	3668		0.07	0.002	0.8	0.02		•
17	3669	,	0.03	0.001	0.5	0.02	•	
18	3670		30.7	0.895	1.5	0.04		•
QC DAT	<u>[</u> A:				- -			
Repeat:	1 2			· ·			•	
1	3653	• .	0.23	0.007	0.8	0.02		
10	3662				0.9	0.03		
11	3663		1.32	0.038			•	
12	3664		0.65	0.019			,	0

ECØ TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

I Daoifia	Caldina	AK6-2289
	ATCHER ITES.	MINDAZZON

J-Pacific Gold Inc. AK6-2289					16-Jan-07
ET#. Tag#	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	
Resplit: 1 3653	0.20	0.006	0.9	0.03	
Standard: Till 3 OxJ47	2.37	0.069	1.5	0.04	

ECO TECH LABORATORY LTD.
Jutta Jealouse
B.C. Certified Assayer

JJ/kc XLS/06

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

16-Jan-07

10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2006-2287

J-Pacific Gold Inc. 1440-1166 Alberni St.

Vancouver, BC

V6E 3Z3

No. of samples received: 8

Sample Type: Core Project: Blackdome Shipment #: 1-1

Samples submitted by: R. Parish

Au Ag Ag. Au ET #. Tag # (g/t) (oz/t)(g/t)(oz/t)0.007 1,2 0.04 3634 0.25 5.5 2 3635 0.14 0.004 0.16 3 0.34 0.010 3.0 0.09 3636 0.79 0.023 2.4 0.07 4 3637 0.19 0.006 1.4 0.04 5 3638 6 3639 0.17 0.005 1.2 0.04 7 30.7 0.895 1.6 0.05 3640 3641 0.013 2.1 0.06 0.45 8 QC DATA: Repeat: 0.28 0.04 3634 0.008 1.4 0.63 0.018 3637 Resplit: 0.19 0.006 1.4 0.04 3634 1 Standard: Till-3 1.5 0.04

2.37

0.069

JJ/kc XLS/06

OXJ47

ECO TECH LABORATORY LTD.
Jutta Jealouse

B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

16-Jan-07

10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4657
E-mail: info@ecotechlab.com
www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2006-2286

J-Pacific Gold Inc.

1440-1166 Alberni St.

Vancouver, BC

V6E 3Z3

No. of samples received: 13

Sample Type: Core Project: Blackdome Shipment #: 6-1

Samples submitted by: R. Parish

			Aŭ	Au	Ag	Ag			
ET #.	Tag #		(g/t)	(oz/t)	(g/t)	(oz/t)			
	3621	· · · · · · · · · · · · · · · · · · ·	0.09	0,003	0.4	0.01			
2	3622		0.86	0.025	2.9	0.09			
3	3623		0.46	0.013	4.4	0.13			
4	3624		0.43	0.013	1.4	0.04			
5	3625		0.39	0.011	1.1	0.03			
6	3626		0.17	0.005	0.7	0.02			
7	3627		0.04	0.001	1.0	0.03			
8	3628		<0.03	< 0.001	0.6	0.02	٠.		
9	3629		0.33	0.010	0.6	0.02		3	
10	3630		1.34	0.039	8.0	0.02			
11	3631	•	0.34	0.010	0.4	0.01		**	,
12	3632		<0.03	< 0.001	0.3	0.01			
13	3633		0.25	0.007	0.6	0.02			
QC DA	<u>r</u> A:								
		$\mathcal{L}_{i} = \mathcal{L}_{i} \times \mathcal{L}_{i} = \mathcal{L}_{i}$			٠				
Repeat			1.1						
1	3621	· · · · · · · · · · · · · · · · · · ·	0.13	0.004	0.4	0.01			
2	3622		0.78	0.023					
10	3630	•	1.22	0.036					
Resplit	:								4
· 1	3621		0.10	0.003	0.4	0.01			
Standa	rd:			•					
Till 3	 -				1,5	0.04			
OXJ47	, ·		2.35	0.069			•		

JJ/kc XLS/06 ECO/TECH LABORATORY LTD.

Julia Jealouse

B.C. Certified Assayer

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2006- 1990

J-Pacific Gold Inc. 1440-1166 Alberni St. Vancouver, BC

V6E 3Z3

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

10041 Dallas Drive

KAMLOOPS, B.C.

No. of samples received: 6 Sample Type: Rock Project: Black Dome Submitted by: R. Parish

Values in ppm unless otherwise reported

Et #.	Tag#	Ag Al%	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	<u>Р</u>	Pb	Sb	Sn	Sr 11%	U	<u>v</u>		<u> </u>	<u>Zn</u>
1	BlackDome # 1	<0.2 0.25	10	45	<5	<0.01	<1	1	102	4	0.68	<10	<0.01	30	2	0.03	5	60	10	<5	<20	3 <0.01	<10	2	<10	3,	3
2	BlackDome # 2	<0.2 0.15	<5	10	<5	0.16	<1	3	163	16	0.85	<10	0.09	59	<1	0.06	6	150	74	<5	<20	2 0.08	<10		<10	38	16
3	BlackDome # 3	<0.2 0.16	<5	20	<5	0.14	<1	3	149	16	0.84	<10	0.07	53	1	0.07	4	140	100	<5	<20	3 0.07		10		38	25
4	BlackDome # 4	1.4 0.24	15	30	<5	0.02	<1	2	246	13	0.61	<10	<0.01	43	11	0.01	8	90	10	<5	<20	6 <0.01		2	<10	2	8
5	BlackDome # 5	<0.2 0.30	<5	<5	<5	0.05	<1	1	116	5	0.32	<10	0.03	30	2	0.15	3	20	36	<5	<20	6 <0.01	<10	<1	<10	7	31
6	BlackDome # 6	<0.2 0.33	<5	15	<5	0.25	<1	6	143	45	1.20	<10	0.19	96	<1	0.12	8	200	34	<5	<20	8 0.07	<10	15	<10	40	13
QC DAT	<u>ΓA:</u>																										
<i>Resplit</i> 1	: BlackDome # 1	<0.2 0.33	-10	45	<5	0.01	<1	2	100	5	0.77	<10	<0.01	37	4	0.03	5	80	11	<5	<20	5 <0.01	<10	3	<10	3	4
Standa Pb106	rd:	>30 0.59	270	75	<5	1.62	33	3	43 6	3237	1.65	<10	0.17	559	39	0.02	7	270	5308	60	<20	137 <0.01	<10	13	<10	<1 8	389

ECØ/TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

JJ/kc/bp df/1988 XLS/06

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dalias Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2006-1990

J-Pacific Gold 1440-1166 Alberni St. Vancouver BC V6E 3Z3 27-Nov-06

No. of samples received: 6 Sample Type: Rock Project: Black Dome Submitted by: R. Parish

Metallic Assay

ET #.	Tag #	Au (g/t)	Au (oz/t)
1	BlackDome # 1	< 0.03	<0.001
2	BlackDome # 2	<0.03	<0.001
3	BlackDome # 3	< 0.03	<0.001
4	BlackDome # 4	0.06	0.002
5	BlackDome # 5	< 0.03	< 0.001
6	BlackDome # 6	< 0.03	< 0.001
QC DAT	_A :		
Resplit:	BlackDome # 1	<0.03	<0.001
Standar OXJ47		2.39	0.070

ECO/YECH LABORATORY LTD

Jutta Jealouse

B.C. Certified Assayer

JJ/bp XLS/06

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (260) 573-6700 Fax (260) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2006-1989

J-Pacific Gold 1440-1166 Alberni St. Vancouver BC V6E 3Z3

No. of samples received: 12

Sample Type: Core
Project: Black Dome
Submitted by: R Parish

27-Nov-06

Metallic	Assay
----------	-------

		Au	Au	·
ET #.	Tag #	(g/t)	(oz/t)	
1	3501	0.09	0.002	
2	3502	0.07	0.002	3. 基本的企业的企业基础。
3	3503	0.45	0.013	
4	3504	0.27	0.008	
5	3505	0.24	0.007	
6	3506	0.78	0.023	
7	3507	2.23	0.065	•
8	3508	0.18	0.005	
9	3509	0.69	0.020	
10	3510 N/S			
11	3511	0.28	0.008	
.12	3512	0.37	0.011	
QC DAT	-A: =			
:				
Resplit:				
1	3501	0.09	0.003	
Standar	d:			
OXJ47		2.39	0.070	

JJ/bp XLS/06 ECO TECH LABORATORY LTD.

B.C. Certified Assaye

Page 1

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2006-1989

J-Pacific Gold Inc. 1440-1166 Alberni St. Vancouver, BC V6E 3Z3

V2C 6T4

Phone: 250-573-5700 Fax: 250-573-4557

10041 Dallas Drive

KAMLOOPS, B.C.

No. of samples received: 12 Sample Type: Core Project: Black Dome Submitted By: R. Parish

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	Al %	As	Ва	Ві	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Şr	Ti %	U	٧	W	Υ	Zn
1	3501	0.8	0.78	110	90	<5	0.34	<1	17	68	38	3.35	10	0.16	383	7 <0.01	17	820	10	<5	<20	8	<0.01	<10	29	<10	10	55 -
2	3502	0.8	1.31	45	65	5	1.15	<1	17	46	35	3.13	20	0.52	665	4 < 0.01	16	890	14	<5	<20	19	<0.01	<10	26	<10	16	53
3	3503	4.7	0.92	115	100	<5	0.31	<1	12	71	37	2.59	<10	0.52	435	2 0.01	13	600	10	<5	<20	6	0.02	<10	47	<10	7	41
4	3504	0.6	1.28	35	35	<5	0.38	<1	16	48	28	3.06	<10	0.69	547	2 0.02	14	770	10	<5	<20	11	0.02	<10	53	<10	10	54
5	3505	1.5	1.24	70	60	5	0.34	<1	16	55	27	3.19	<10	0.72	472	4 0.01	14	740	14	<5	<20	7	<0.01	<10	62	<10	11	52
6	3506	1.7	1.23	60	55	<5	0.29	<1	15	52	38	3.25	10	0.71	511	3 0.01	14	730	10	<5	<20	7	< 0.01	<10	59	<10	9	54
7	3507	14.7	0.43	65	40	<5	0.20	<1	8	90	61	1.43	<10	0.20	185	4 < 0.01	7	580	30	<5	<20	7	<0.01	<10	20	<10	5	31
8	3508	6.7	1.12	75	50	<5	0.38	<1	17	41	52	3.32	<10	0.45	436	4 < 0.01	16	790	16	<5	<20	9	<0.01	<10	53	<10	8	62
9	3509	15.3		70	30	<5	0.23	<1	9	104	137	2.31	<10	0.38	308	4 0.01	10	490	10	<5	<20	4	<0.01	<10	34	<10	4	37
10	3510 N/S																											
11	3511	3.9	1.54	110	50	5	0.35	<1	17	48	28	3.67	10	0.86	679	4 0.02	15	850	14	<5	<20	6	<0.01	<10	66	<10	11	62
12	3512	0.9	1.21	105	30	<5	0.29	<1	16	39	22	3.13	<10	0.70	419	5 0.01	14	720	14	<5	<20	8	<0.01	<10	58	<10	7	51
QC DAT																										-		
1	3501	8.0	0.76	105	80	<5	0.35	<1	17	71	37	3.35	10	0.16	379	7 <0.01	17	830	10	<5	<20	4	<0.01	<10	29	<10	8	55
Resplit 1	: 3501	0.8	0.70	115	80	<5	0.34	<1	16	49	37	3.33	10	0.16	343	7 <0.01	16	840	10	< 5	<20	7	<0.01	<10	28	<10	9	55
Standa Pb106	rd:	>30	0.59	270	75	<5	1.62	33	4	43	6237	1.65	<10	0.20	559	33 0.02	7	280	5308	60	<20	137	<0.01	<10	13	<10	<1 8	3389

ECÓ TECH/LABORATORY LTD.

JJ/kc/bp df/1989 XLS/06

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E-mail: info@ecotechlab.com
www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2006-1988

J-Pacific Gold 1440-1166 Alberni St. Vancouver BC V6E 3Z3 27-Nov-06

No. of samples received:3 Sample Type:Rock **Project: Blackdome**

Samples Submitted by: R. Parish

Metallic Assav

		11	iolailio rissaj	•			*		-, No. 1.,
ET #.	Tag #	e e	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)			
1	3513		0.10	0,003	3.7	0.11			
2	3514		0.19	0.006	3.7	0.11			
3	3515		0.24	0.007	1.1	0.03			
			•				•		
•									
	, .								
QC DAT	Γ Α :	÷						•	
Resplit:	•					•			
nespiit. 1	3513		0.33	0.010	4.1	0.12			•
	0010		0.00	0.0.0		V			
Standa	rd:			*					
OXJ47			2.32	0.068					
OXH37			1.29	0.038					
Pb106				•	58.5	1.71			

JJ/bp XLS/06 ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

APPENDIX C -DESCRIPTIVE DRILL LOGS

Dip -55

Blackdome Project 2006

Drill Hole Name: B06-01

Area: No 1 and No 2 Vein North

Drill Log

UTM Easting	535566	Drill Contractor	Full Force Drilling	Pad Number	P06-3
UTM Northing	5686491	Mine Grid E	4652	Start Date	28 Oct, 2006
Elevation (m)	2118	Mine Grid N	13520	Finish Date	31 Oct,2006
UTM Zone	10 U	Logged By	R. Parish	Reclaim Date	
Datum	Nad 83 Canada	Core Type/Size	NQ2	Log Date	12 Dec, 2006
Length (m)	70.7	Target	Test the #2 vein above the 2050 le	evel. Test the #1	vein below the 1960
.Azimuth	130		level.		

Stopped for: Lost hole in working at 70.7m 12 feet of open space.

Result

Note: Since hole B06-01A is a twin of this hole, just the interval around the #2 Vein intercept was logged and sampled.

B06-01 Blackdome

Fine to medium grained, porphyritic andesite. Weak to moderate propylitic alteration consisting of chlorite+/-calcite+/- epidote replacement of groundmass and phenocrysts. The # 2 Vein in this hole appears to be manifest as zones of brecciation with white quartz veins forming the matrix, rather than as a discrete, through going quartz vein. White, vuggy quartz veins are scattered throughout the interval. Highest concentrations are noted below.

46.7 White cockscomb quartz vein running down edge of core. 3 cm thick . Sample 3634.

48.2 48.3 10 cm wide breccia vein consisting of silicified andesite clasts in a matrix of white cockscomb quartz veins. Upper and lower contacts at 45 to CA. Several smaller qtz veins in the footwall and hanging walls. Sample 3635.

52.5 Main portion of the #2 vein? Crackle breccia with white quartz vein matrix. Veins have open spaces where angle wing calcite was leached from the quartz, and later dusted with drusy quartz. Footwall portion is a 15 cm white cockscomb quartz vein with trace oxidized pyrite and limonitic surface stain. Lower contact of this vein is 35 to CA. Sample 3637

56.5 57.1 Brecciated andesite with white vuggy quartz veins as matrix. Samples 3639 and 3641 38.5 38.8 Gray-green clay seam at 10 to CA.

B06-01 Blackdome

Blackdome Project 2006

Drill Hole: B06-1A

Area: #1 Vein North

Drill Log

Easting	535566	Drill Contractor	Full Force Diamond Drilling	Pad Number P06-3
Northing	5686491	Mine Grid W	4655	Start Date 31 Oct, 06
Elevation (m)	2118	Mine Grid N	13510	Finish Date 4 Nov, 06
UTM Zone	10	Logged By	R. Parish	Reclaim Date
Datum	NAD 83 Canada	Core Type/Size	NQ2	Log Date 7 Nov, 06

Length 174.65m

.Azimuth 132

Dip -50

Target Test the #2 vein above the 2050 level. Test the #1 vein below the 1960 level

Stopped for:

Abandoned hole in broken andesite rubble with clay, seams after wearing out two bits and a shell trying to drill the last 6m of the hole. Hole would not advance.

Result | Intersected #2 vein zone from 49.15 to 52.2m.

DRAFT 1 of 6

0	3.05	ovbd	Casing
			No core recovered.
3.05	174.65	and	Andesite Flows

Tan to greenish-grey to grey, volcanic flows of intermediate composition. Flows tend to be massive and generally without flow features. They contain occasional rounded xenoliths of porphyritic andesite and local, clast supported breccias which may be intra-flow breccias.. The flows have a medium to coarse-grained, porphyritic texture. Phenocrysts consist of up to 30% tabular to lath-shaped plagioclase. These are subhedral to euhedral and up to 5mm long. The plagioclase is often altered to calcite, sericite and possible chlorite. Hornblende occurs as subhedral to euhedral, tabular to prismatic phenocrysts to 1 mm. They occur as isolated crystals and as clots with plagioclase up 1 cm across. The hornblende is usually altered to a fairly soft, massive mineral, possibly chlorite. Hornblende is usually less than 5% of the rock. Groundmass is fine-grained to aphanitic. Most of the core is propylitized to some degree, ranging from weak to very strong. Bleaching occurs as envelopes adjacent to structures, and to zones of quartz veining. Argillization occurs as a broad halo, along with bleaching, adjacent to structures and quartz veining. Silicification of wall rocks is generally confined to areas immediately adjacent to quartz veins, or rarely, as passive flooding of groundmass.

3.05 26.50

Intermittent strong oxidation where feldspar phenocrysts are altered to clay and possible sericite, hornblende completely altered to chlorite? Bleaching of groundmass. Strong feox on some fractures, presumably after pyrite. Moderate black MnO2 on fractures. Less oxidized portions are

B06-02 Blackdome

green from propylitization.

			green from pr	opyritization.
9.9	16.2	16.93	Mostly crackl	areas of bluish grey, cryptocrystalline silica forming matrix in brecciated andesite. e breccia. Andesite clasts are oxidized and somewhat argillized. 2 cm fault at 25 to CA. Gouge consisting of orange tan clay and rock fragments.
23.6	26.4	Bx	matrix. Possi	biation consisting of rounded to sub angular andesite clasts in porphyritic andesite ble autobreccia representing flow surface. Moderately oxidized and locally bleached. ially hardened by grey silica around 25m. Fracture set at 5 to CA, strong feox and Mn02 on surfaces
26.5	48.05		<i>J</i> 1	ropylitized to locally oxidized andesite. Soft to moderately hard. Feldspars mostly cite and sericite? or clay. Hornblende altered to greenish black chlorite. Common rite veinlets.
		32.4		5mm wide fracture or fault with orange-tan clay gouge 35 to CA
		41.43	5	2 cm wide silicified and qtz veined shear at 30 to CA. Brecciated with white qtz vein clasts and silicified andesite clasts. Shear zone is silicified and the walls are progressively silicified for 10 cm approaching the shear. Trace pyrite.
		44.8	1 49.15	Beginning of veining associated with #2 vein structure. Propylitization gradually decreases and oxidation increases approaching main structure at 49.15m Interval consists of numerous subparallel, white, toothy qtz veins and veinlets at 25 to 40 to CA. Intervening andesite is often strongly silica flooded. Minor local brecciation with quartz veining as the matrix.

49.15 49.80

Zone of intense shearing and brecciation. Seems to be oriented at appx. 40 to CA. Matrix supported breccia with angular andesite clasts in matrix of grey, fine grained qtz, greenish -tan chalcedonic qtz, and white cockscomb qtz, which appears to be later. Some of the matrix appears to be silicified milled rock flour. White adularia? occurs as breccia clasts inter grown with colour quartz scattered through matrix. Trace grey-black sulfide- possible silver mineral. 1% oxidized

B06-02 Blackdome

51.0 52.2

disseminated pyrite. Minor white clay, Illite?, and yellow jarosite? in vugs and on fractures. Matrix supported breccia with white cockscomb quartz veins forming matrix. Orange-red clay in medial cavities. Appears to be single phase breccia without multiple episodes of hydro fracturing.

From	To	Width	ID	Au g/t	Ag g/t	Au/Ag
44.81	45.25	0.44	3503	0.45	4.7	0.10
45.25	46.35	1.10	3504	0.27	0.6	0.46
46.35	47.95	1.60	3505	0.24	1.5	0.16
47.95	48.95	1.00	3506	0.78	1.7	0.46
48.95	49.80	0.85	3507	2.23	14.7	0.15
49.80	51.05	1.25	3508	0.18	6.7	0.03
51.05	52.25	1.20	3509	0.69	15.3	0.04
52.25	53.25	1.00	3511	0.28	3.9	0.07

56.67 57.40

Weakly brecciated, with minor bluish grey silica matrix and numerous white toothy quartz veins to 5mm at 20 to 40 to CA. Strong yellow-tan clay associated with white qtz veins. Moderate silica flooding adjacent to qtz veins.

58.6 59

Several clay and rock fragment filled faults at 25 to 35 to CA.

60.0 104.50

Porphyritic andesite flows as above, however propylitization is more persistent. Green to greenish grey groundmass, locally strong replacement of feldspar by calcite and possible sericite or clay. Hornblende often altered to chlorite. Epidote and chlorite abundant as alteration of groundmass and as matrix of autobreccias. Blood red mineral locally common in groundmass and in veins, often with chlorite and calcite. Looks like cinnabar, but is probably hematite.

69.85 70.05Soft, strongly argillized shear zone at 45 to CA

81.38		4 cm grey clay seam/ fault gouge. Indeterminate orientation.
83.8	85.0	Breccia. Clasts are 10s of cm wide and are separated by matrix of grey-green, silicified rock flour or chalcedonic quartz vein.? and minor white calcite. Not much clast rotation. Appears to be a large scale crackle breccia.
87.0	88.2	Numerous calcite +/-chlorite filled tension veins at 15 and 40 to CA.
96.25	96.35	Chloritized shear at 40 to CA.
102.7	108.5	Several greyish-green chalcedonic qtz veins or silicified shears. Often contain spots and blebs of blood red hematite within the veins and as envelopes around veins.

108.8

Clay lined fault at 35 to CA

104.50 159.80

Monotonous package of andesite flows? as described above. Like previous intervals, these rocks are quite massive, and except for a very weak alignment of phenocrysts, show no flow textures. Discernible flow margins are very rare. They may be part of a hypabyssal intrusive instead of extrusive flows. Xenoliths of porphyritic andesite and finer-grained mafic phases are more common in this interval, and occur every 1 to 2 meters.

111.3	111.6	Bleached zone with greenish chalcedonic veins or silicified breccia matrix with red hematite blebs.
115.8	125.0	Marked increase in red hematite veinlets, and hematite as envelopes adj to veinlets.
	126.10	5mm fault with clay and milled rock fragments, 40 to CA.

B06-02 Blackdome

136.25	139.50	Zone of strong passive silica flooding of groundmass, and less so of phenocrysts.
142.0	142.7	Zone of bleaching centred on tan clay-lined fault at 142.30. 50 degrees to CA.
148.65	148.95	Bleached zone centred on 1 cm wide breccia at 50 to CA with calcite, chlorite, epidote and red hematite matrix.
150.3	150.8	Bleached zone as above., but centred on hairline fracture, no breccia.

159.8 174.65

Fairly abrupt increase in propylitization of andesite beginning at 159.8m. Rock is green, fairly soft, and feldspar phenocrysts are largely altered to calcite and clay. Mafic minerals are altered to chlorite and epidote. Groundmass is altered somewhat to chlorite and epidote. Fragmental texture is more common, and these rocks may represent a series of thinner flows with autobrecciated tops and bottoms. Breccia matrix is largely replaced by epidote, chlorite, and calcite. Numerous, greenish clay seams occur throughout the interval. Below 170m the rock is quite broken and clay seams are much more common. The hole was abandoned after spending two shifts, and wearing out two bits and a shell trying to get through the last 6 m of this interval.

166.25	167.0	Several green clay seams up to 5 cm wide at 75 to 90 to CA.
169.6	170.0	Several joints at 30 to CA
170.3	170.5	20 cm wide green clay seam
171.0	172.1	Rubbly core with breaks at all angles to CA, abundant clay.
173.0	174.65	Broken core with abundant clay seams. Fractures tend to be from 5 to 20 to CA
	forming wed	lge shaped pieces

174.65 EOH

B06-02 Blackdome

Blackdome Project 2006

Drill Hole Name: B06-02

Area: No 1 & No 2 Veins North

Drill Log

Easting	Drill Contractor Full Force Drilling	Pad Number P06-01
535535		
Northing 5686331	Logged By R. Parish	Start Date Nov 4, 06
Elevation (m) 2090	Mine Grid W 4732	Finish Date Nov 7, 06
UTM Zone 10 U	Mine Grid N 13380	Reclaim Date
Datum Nad 83 Canada	Core Type/Size NQ2	Log Date Nov 9, 06

Length 282.25m

Azimuth 125

Dip -55

Target Intersect #1 vein below 1960 level. Determine geometry of splay off of the #1 vein below the north end of the 1960 level workings.

Stopped for: Reached target depth

Result

Selected sample results are included. See attribute table or assay sheets for complete results.

0	2.1 m	Casing
		No Core.

2.0 160.33 And Andesite Flows

Green to greenish-grey to purple grey flows of intermediate composition, Medium-grained, porphyritic texture. Typical rock consists of 30% tabular to lath shaped plagioclase phenocrysts up to 3mm and 5% anhedral to euhedral hornblende prisms to 4 mm. Hornblende occurs as single crystals and as clots with plagioclase. The groundmass is fine grained. The flows are quite homogeneous, and usually are without flow textures. Individual flows are hard to discern, but where they can be identified they are often separated by breccia zones consisting of rounded to sub-angular andesite clasts in finer grained andesite lava, or sediments. Propylitization is common throughout the hole, though it appears to be localized around structures which may have acted as fluid conduits. In propylitized rocks, groundmass is light to dark green, and often calcareous, feldspars are altered to calcite+/- clay, hornblende is altered to chlorite +/- epidote, and calcite+/-chlorite+/-epidote occurs in veins and breccia matrix. Bleaching, argillization, and silicification occur closer to mineralizing structures.

2.0 10.25 Andesite flows have a decided purplish hue due to weak hematite? in the groundmass, often rimming feldspar phenocrysts.

7.5 8.0 Zone of strong oxidation and argillization emanating from several 1 mm sized fractures.

10.25 32.31 Core is moderately to strongly propylitized, except where bleached and oxidized adjacent to quartz

B06-02 Blackdome

veins. Numerous chlorite and calcite veins and fracture surfaces throughout interval.

16.7	19.30	Numerous white quartz+/-calcite veins up to 5mm, spaced every 30 cm. Most veins are roughly 45 to CA.
19.5	20.20	Swarm of toothy white qtz veins and breccia matrix in oxidized, bleached, and locally silicified andesite. Breccia and veins are oriented at roughly 45 to CA.
20.7		1 cm wide fault at 30 to CA. Clay and rock fragment gouge.
24.2	29.26	Core is quite broken with chlorite and feox lined fractures. Main fracture set at 55 to CA, others at 25 and 5 to CA.
29.3	38.4	Numerous white quartz veins to 5mm spaced 10 to 30 cm apart. Veins at all angles, but dominant set at 40 to 50 to CA. Wall rocks somewhat oxidized, and rarely silicified adjacent to veins. This interval includes sample 3514, which contains several larger white toothy quartz veins, and a small orange red clay gouge zone.

39.5 57.0

Light greenish propylitized andesite flows, without the veining and oxidation of the previous interval. Core is fairly soft, broken and rubbly to 44.5m. Interval contains increased, small, clast supported breccia zone consisting of sub angular to rounded andesite clasts in fine grained lava? matrix. Could indicate numerous small flows.

62.8 160.35

50.9 Zone of broken, rubbly core, locally strong chloritization and argillization. Fractures at all angles to CA but 50 to 60 to CA most common.

Grey to green grey andesite flows, generally less propylitized and chloritized than previous interval. Locally, contains up to 2% red hematite replacement of mafic phenocrysts and veinlets. Includes chloritized intervals as noted below. These probably represent alteration along fractures and fault zones.

75.5		Several chlorite lined joints of faults at 5, 20, and 40 to CA.
78.2	81.0	Fault zone. Strongly chloritized and argillized rubble zone. Evidence of shearing on some surfaces.
83.4	83.5	Fault. Unhealed clast supported breccia, strongly chloritized and argillized, upper contact at 40 to CA.
90.0	92.4	Chloritized, argillized, and somewhat bleached zone. Increased fracturing and veins or small faults lined with chlorite, calcite, and clay. Faults oriented from 40 to 5 to CA. Strongly chloritized and argillized rubble zones at 91.3 and 92.0m.
96.0	98.75	Numerous faults or veins to 3mm lined with chlorite, calcite and clay. Most common orientation at 40 to CA.
101.7	102.8	Chloritized and bleached fault zone with chlorite, calcite, and clay lined fractures at 70 to CA.
108.7	113.2	Numerous chlorite, calcite and clay veins at 15 to 25 to CA.
111.0	111.1	Several blood red, hematite + Qtz veins, 5mm wide, at 5 to 10 to CA.
113.5	114.4	Chloritized broken zone with numerous chlorite, calcite, and clay veins and fractures. at all angles to CA. Ends in 3 cm grey clay seam at 50 to CA.
116.85	116.95	Green clay and rock fragment filled fault at 60 to CA.
128.3	134.3	Zone of strongly fractured and chloritized andesite with abundant faulting and chlorite, calcite and clay veins. Dominant fault and vein orientations are 35 to 45 to CA and 5 to 20 to CA.
132.2		Fault with 6mm wide gouge consisting of chlorite, calcite, clay, and rock fragments. Fault at 35 to CA, slickensides at 50 to CA
140.7	143.8	Strong fracture/vein set at 5 to 10 to CA. Filled with calcite, epidote, and clay weins. Vein material is quite soft, and the core readily cleaves along these veins.
146.9	149.7	Broken, rubbly core with all surfaces coated with soft, powdery calcite-chlorite.
153.3	154.0	Chloritized, but still competent core with numerous calcite, chlorite and epidote veins at 50 and 5 to CA.

B06-02 Blackdome 4 of 9

Clast to locally matrix supported breccia with angular andesite clasts in fine grained lava or silty matrix. Breccia has been brecciated and re cemented with white, open space quartz vein. Clasts and matrix are silicified.

160.33 162.4 vcbx Volcaniclastic Breccia

Heterolithic, clast-supported breccia consisting of angular clasts of andesite, siltstone, possible flow banded rhyolite or dacite, and rare pieces of breccia, in a silt to sand matrix. Clasts are green, red and black and matrix is grey to green. Breccia is poorly sorted and clasts range from sand sized grains to 5 cm cobbles. Abrupt lower contact with andesite flow at 60 to CA. Matrix is silica and red hematite flooded at 160.37 to 160.4m.

162.4 190.81 And Andesite Flows

Grey to maroon, medium grained andesite flows as above. Somewhat finer-grained than previous flows. Andesite and siltstone xenoliths are common. Weak propylitic alteration. Flows are often purplemaroon from hematite staining or replacement of groundmass. Core is often quite hard in these areas, possibly from passive introduction of silica. These could also be unaltered, fresh andesite, however hematite looks introduced.

174.4

1 cm qtz+calcite+epidote vein at 45 to CA. Wall rock is bleached for 10 cm either side of vein and silicified adjacent to vein.

B06-02 Blackdome

174.5 174.57

Volcaniclastic breccia as described above, but with clasts to 15 cm, and matrix and clasts are largely hematized

175.5 189.0 Core is dark maroon-purple from Hematite. Increases veins and veinlets of dark red hematite

+silica.

190.81 191.0 20 cm silicified breccia with breccia clasts and veins of white quartz. Oxidized, and with trace

black silver sulfide?

191.0 207.7 bx Breccia

Green to purple-maroon, monolithic, clast supported breccia consisting of angular clasts of vesicular volcanic rock, which has a rhyolite or dacite appearance. Breccia is poorly sorted with clasts ranging from sand to large cobble size. Clasts often have ragged, embayed margins and often show flow banding and stretched vesicles. These could be pumice clasts. Matrix can be either vesicular lava or fine grained sediment. Matrix and clasts are propylitized, and often contain very fine-grained euhedral, disseminated pyrite. Vesicles are filled with calcite, epidote, and occasionally red hematite. Matrix locally replaced by dark grey silica. Thin, banded dacite flows scattered throughout interval. This unit could be an explosive or lapilli tuff breccia.

190.8 193.0

Very fine grained, grey, felsic? flow within the breccia described above. At first appears to be a laminated siltstone or mudstone, but has sparse, bedded amygdules, and grades into vesicular flow at 193m. Internal flow banding at 45 to CA.

203.0 208.0 Increase in silicification of breccia matrix. Clasts typically not silicified. Silica up to 25% of rock.

Green to reddish-brown to dark grey felsic flows. Appear to be dacite. Aphanitic to porphyritic texture, with prominent flow banding defined by layering or alignment of stretched vesicles. Phenocrysts consist of up to 15 % subhedral to euhedral feldspar to 3mm, and up to 2% euhedral quartz phenocrysts to 2mm. Very little hornblende or other mafics are seen. Intercalated clast-supported, lapilli tuff? breccias may represent explosive eruptive events, or possibly autobrecciated flow margins. The dark grey to red brown flows tend to be very hard, possibly silicified, and may have red hematite+silica veining and patches. Feldspar phenocrysts and vesicles within these flows are altered to green chlorite Other flows are weakly to moderately propylitized. The lapilli tuff breccias are usually green to red brown and show devitrification textures. Vesicles are filled with clay and possibly chlorite.

211.8	215.0	Prominent fracture/veinlet set at 0 to 5 to CA. Fractures lined with green chlorite, calcite, manganese, and feox.
214.4	220.8	Strong silicification of dacite flows. Appears to be passive flooding without brecciation. Local white to grey quartz veinlets and small veins.
218.8	219.25	Numerous grey quartz veins to 5 mm, and one quartz vein matrix breccia vein with trace fine-grained black silver? sulfide mineral Veins and breccia vein at 25 to 35 to CA.

From	To	Width	ID	Au g/t	Ag g/t	Au/Ag
218.75	219.55	0.80	3531	1.66	0.7	2.37
219.55	220.85	1.30	3532	0.19	0.7	0.27
220.85	221.40	0.55	3522	0.15	0.5	0.30
221.40	222.50	1.10	3523	0.38	0.9	0.42

221.4 222.0 Breccia. Crushed clast supported breccia, partially silicified, clasts consist of silicified dacite and lesser quartz vein. Strong limonite, and argillization, 30 % of interval is silicified. Trace black

B06-02 Blackdome 7 of 9

			226.8 227.75	needle like silver? sulfide mineral. Dacite below the breccia is strongly fractured and limonitic to 223.73. Sheared, clay altered, matrix supported breccia. Small, milled clasts of dacite and quartz vein in orange-tan to white clay matrix. Clasts appear milled. Main shears at 45 to CA.
230.4	231.7	bx	hematized? n	st -supported breccia consisting of green propylitized dacite clasts in red-purple natrix. Clasts are somewhat rounded and moderately well sorted. Upper contact is is acture or fault at 30 to CA. Lower contact is gradational with green, propylitized
231.7	257.0	dac	aphanitic gro except for the	t blue-green dacite flows, with a few interbedded breccias. Flows are porphyritic with undmass, to aphanitic with faint flow layering and stretched vesicles. The breccias, e one noted below, tend to be less than 50 cm and consist of dacite similar in texture to ng flows. These are probably auto breccias representing flow margins.
235.4	237.85	bx	purple grey h grey and silic	ar to above, but clasts smaller, from 3 mm to 1 cm, and are more rounded. Matrix of ematite. Below 235.9 the matrix is black and silica flooded, and the clasts are light effied. Upper contact with the dacite is sharp and planar at 15 to CA. The lower contact fault at 15 degrees.

237.85 238.45

Clast supported breccia. Breccia with milled and crushed clasts of quartz vein, silicified dacite, and breccia in sheared matrix of clay and limonite. Trace black silver sulfide mineral in quartz clasts.

From	To	Width	ID	Au g/t	Ag g/t	Au/Ag
237.85	238.45	0.6	3528	5.34	1.8	2.97
238.45	239.45	1	3529	0.62	0.8	0.78

242.8 243.0

20 cm wide fault zone with limonite and clay gouge, trace quartz veining. Fault surfaces at 50 to CA with dip slip slickensides.

245.05

1 cm wide gray quartz vein. Cockscomb texture, with calcite and adularia? in medial cavity. Trace black sulfide mineral, possible silver mineral. Weak bleaching of walls. Vein at 20 to CA.

258.0

257.5 282.25 bx Breccia

Poorly sorted, chaotic, clast supported breccia. Clasts are green to red-brown to ochre and range from sand sized grains to 1 m boulders. Most clasts are angular to embayed pieces of vesicular dacite that show stretched vesicles and devitrification textures. Other clasts are porphyritic-aphanitic dacite with feldspar and minor quartz phenocrysts. These often have prominent flow banding. Clasts and matrix are generally propylitized or oxidized. Vesicles are filled with chlorite + clay? Several, one to two metre thick banded dacite flows occur throughout the interval, however these are probably large breccia clasts since layering orientations are at all angles to core axis and upper and lower contacts with the breccia is sharp and show no invasion of the breccia.

256.6 258.0 Hanging wall to breccia sampled in 3536. Weakly argillized breccia with local, patchy silicification of matrix.

Silicified, quartz veined breccia that was oriented at 40 to CA. Breccia was subsequently faulted and sheared and is now a rubble zone with strong limonitic, earthy matrix.

From	To	Width	ID	Au g/t	Ag g/t	Au/Ag
258.00	258.75	0.75	3536	0.93	2.0	0.47
258.75	260.20	1.45	3537	0.34	0.7	0.48

264.0 264.2 Tan clay seams to 3 cm filling fractures at 80 to 90 to CA. Strong oxidation and argillization and trace qtz veinlets.

Numerous shears at 45 to CA with strong yellow to tan feox and white clay gouge. Tr qtz veining.

282.25 EOH End of Hole

B06-02 Blackdome

Blackdome Project 2006

Drill Hole Name: B06-03

Area: No 1 & No 2 Veins North

Drill Log

UTM Easting 535601	Drill Contracto	r Full Force Drilling	Pad Number	P06-5
UTM Northing 5686653	Mine Grid I	E 4578	Start Date	10 Nov, 2006
Elevation (m) 2133	Mine Grid N	N 13675	Finish Date	13 Nov, 2006
UTM Zone 10 U	Logged By	y R. Parish	Reclaim Date	
Datum Nad 83	Canada Core Type/Size	e NQ2	Log Date	11 Dec, 2006

Length (m) 84.7

Azimuth 125

Dip -45

Target The north extension of the # 1 and #2 veins under the Blackdome basalt cap.

Stopped for: Lost hole when caving rock apparently trapped bit.

Result Intersected # 2 Vein

Note: Since hole B06-03A is a twin of this hole, only the interval around the #2 Vein intercept was logged and sampled.

32.4 48.3 and Andesite

Green to brown porphyritic andesite. Weakly to moderately propylitized except where oxidized adjacent to quartz veining. Weak to moderate quartz veining peripheral to a stronger core of veining from 40.75 to 41.95m. This interval is thought to be the # 2 Vein structure.

48.3 Propylitized andesite. Footwall to #2 vein is oxidized and has minor quartz veining from 41.95 to 42.8m. Sample 3642

41.95

From	To	Width	ID	Au g/t	Ag g/t	Au/Ag
35.25	35.65	0.40	3642	0.75	1.2	0.63
35.65	36.40	0.75	3643	0.44	1.7	0.26
36.40	37.20	0.80	3644	0.69	1.5	0.46
37.20	37.90	0.70	3645	0.37	0.8	0.46
37.90	39.00	1.10	3646	0.46	2.2	0.21
39.00	39.90	0.90	3647	0.44	1.6	0.28
39.90	40.75	0.85	3648	0.61	2.8	0.22
40.75	41.35	0.60	3649	1.20	3.6	0.33
41.35	41.95	0.60	3651	0.68	2.9	0.23
41.95	42.80	0.85	3652	0.31	2.1	0.15

Blackdome Project 2006

Drill Hole Name: B06-3A

Area: No 1 & No 2 Veins North

Drill Log

Easting 535601	Drill Contractor	Full Force Drilling	Pad Number	P06-5A
Northing 5686651	Logged By	R. Parish, A. Pollmer	Start Date	Nov 13, 2006
Elevation (m) 2134	Mine Grid W	4577	Finish Date	Nov 23, 2006
UTM Zone 10 U	Mine Grid N	13673	Reclaim Date	
Datum Nad 83 Canada	Core Type/Size	NQ2, reduced toBQ at 264.9m	Log Date	Nov 30, 2006

Length (m) 325.71

Azimuth 125

Dip 45

Target The north extension of the # 1 and #2 veins under the Blackdome basalt cap.

Stopped for: Reached target.

Result

0 1.8 m ovbd Casing
No core.

1.8 263.2 and Andesite Porphyry

Grey to greenish grey, porphyritic rock of intermediate composition. Phenocrysts consist of feldspar, hornblende, and possibly pyroxene. Feldspar phenocrysts are subhedral to euhedral, up to 4 mm, equant to lath shaped and comprise up to 40% of rock. Most of the feldspar appears to be plagioclase. Hornblende phenocrysts occur as anhedral to euhredral crystals to 3 mm and comprise up to 5% of the rock. They occur as single crystals or as clots with feldspar. Groundmass is typically fine grained, though can be aphanitic. Core is often propylitized, consisting of weak to locally strong pervasive greenish alteration of groundmass to chlorite+/-calcite+/- epidote. Feldspar phenocrysts are altered to chlorite +/- clay +/- calcite. Hornblende crystals are altered to chlorite? Propylitization is often overprinted by bleaching, and rarely silica flooding adjacent to fractures, faults, and quartz veins. This unit appears to be either an intrusive body, or just a few massive flows, without flow banding or alignment of phenocrysts. Rock for several metres approaching the lower contact with the volcanic breccia is finer grained, appears to be chilled, and is somewhat silicified. The lower contact with the volcanic breccia is sharp.

11.5	12.0	Zone of light bleaching and silica flooding adjacent to clay seams up to 5 mm at 60 to CA. Several small qtz veinlets.	thick. Dominant set	
15.3	15.7	4 mm grey qtz veinlet at 75 to CA, Bleached clay lined 3 mm fault at 10 to CA cuts qtz vein.		
17.37	23.5	Rock is somewhat bleached and locally silicified. Silicification is passive, wit veinlets.	h very few qtz	
25.9	26.2	Rubble zone, possible fault. No sign of shearing, but all pieces are limonitic and chloritic clay. Hanging wall fracture at 60 to C.	coated with A.	

38.7 42.4

Andesite has a mottled orange-tan and grey appearance. The grey patches are unoxidized, often silica flooded and contain up to 2% fresh brassy euhedral pyrite cubes to 1 mm. The oxidized portions are often silicified and contain limonitic casts after pyrite. Locally abundant, irregular white quartz veinlets are found throughout interval, but are more common in oxidized core. Veinlets are abundant enough to form matrix of crackle breccias. This interval forms the hanging wall to the #2 yein.

42.4 43.85

Main portion of the #2 vein. Consists of two areas of quartz veining separated by 40 cm of weakly veined andesite. The upper vein is at 30 to CA and consists of multiple silica pulses. The earlier phase is fine grained, greyish white quartz containing silicified andesite clasts . 8 small gold grains and trace amounts of black silver sulfide? mineral, and trace bornite was seen in this vein type. White, coarse grained cockscomb quartz veins seem to cut the greyish quartz. No gold was noted in this vein type. The lower vein has a sharp upper contact at 50 to CA, though it appears to be more breccia matrix than a discrete vein. This vein also contains a few gold grains in greyish white fine-grained quartz.

43.85 45.7

Foot wall to #2 vein. Sparse quartz veins to 5 mm at 20 to 45 to CA. White, cockscomb veins.

From	To	Width	ID	Au g/t	Ag g/t	Au/Ag
38.71	40.05	1.34	3539	0.42	1.6	0.26
40.05	41.40	1.35	3541,3542	0.46	1.7	0.27
41.40	42.40	1.00	3543	0.66	2.2	0.30
42.40	43.00	0.60	3544	0.16	2.3	0.07
43.00	43.85	0.85	3545	17.60	58.2	0.30
43.85	44.90	1.05	3546	11.50	74.3	0.15

51.0	53.6	Andesite is oxidized and somewhat silicified. Numerous quartz veins to 3 mm at 35 to 45 to CA.
60	65.7	Marked increase in propylitic? alteration. Ground mass is green, and feldspar phenocrysts are largely replaced by epidote. There is almost no calcite as alteration product. Chlorite is limited to alteration of hornblende and on fractures.
69.0	87.5	Andesite is markedly harder, and appears to have been leached and then silica flooded. Silicification appears to be passive, without brecciation. In some intervals, rock textures are some what muted by the silica flooding. Fine, micro quartz veinlets, and small veins are fairly common.
75.20	76.0	Sample # 3547. red brown andesite with abundant micro-quartz veinlets and veins. Andesite is densely silica flooded. Appearers to have been leached prior to silica flooding.
81.3	82.6	Strong epidote replacement of feldspar phenocrysts and groundmass. Particularly strong adjacent to vugs lined with colorless to grey toothy quartz veins.
89.0	89.8	Strong fracture zone. Broken andesite with clay and chlorite lined fractures. Dominant fracture orientations at 20 and 45 to CA. Sticky orange-tan and white clay gouge at 89.8m.

90.2 92.2

Small quartz veined structure consisting of silicified and oxidized andesite cut by grey quartz veins to 5 mm., mostly at 40 to CA. These veins are cut by white cockscomb quartz veins. A 10 cm wide white quartz vein at 91.9m has sharp contacts at 40 to CA. Samples 3548 and 3549.

From	To	Width	ID	Au g/t	Ag g/t	Au/Ag
90.3	91.4	1.1	3548	0.99	25.7	0.04
91.4	92	0.6	3549	1	10.7	0.09

92.60 102.9

Green andesite with mod to strong epidote replacement of feldspars, and locally of the groundmass. Chlorite alteration of hornblende. Chlorite on fractures. No calcite in groundmass or as alteration of phenocrysts. Propylitic alteration or possible metasomatic alteration.

99.85 100.95

Sample 3551. Several red hematite + silica vein groups, 10 cm and 20 cm wide at 45 to CA. Cut by later qtz and qtz calcite veins.

		94.7		1 cm wide, chloritic fault gouge at 25 to CA. No slickensides.
		109.2	112.0	Small mm size qtz veins at 45 to CA, several coarse grained calcite veins at same orientation. Andesite is fresh, unaltered in this interval.
		113.8	117.5	Propylitized and argillized andesite with minor brecciation, possible flow margin. Clay gouge at 114.25 to 114.35m.
		117.5	136.5	Very weak to weak propylitization, local weak argillization. Minor red hematite as veins and rare replacement of matrix.
		123.0	123.2	Zone of white vuggy qtz veins at 45 to 90 to CA. Contains white clay in medial cavity. Minor silica flooding as envelopes.
		136.5	144.8	Low to moderate propylitic alteration and moderate argillic alteration. Weak oxidation on fractures and pervasive in groundmass. 136.3, 3 cm clay seam at 90 to CA.
!40.0	144.8		Strong increase	in calcite + clay fracture filling at 15 to 25 and at 70 to 90 to CA.
		142.0	142.12	12 cm wide bleached envelope with clay and limonite filling at 60 to CA.
		142.55	142.65	10 cm clay seam.
		144.8	145.4	Sample 3552. Moderate propylitic alteration . grey low angle qtz veins to 5 mm, cut by 3 cm white vuggy qtz vein.
		145.4	147.0	Moderate propylitization and argillization at footwall of vein sampled in 3552. Highly fractured with numerous calcite veins and limonite stain.
		153.0	153.8	Small limonite filled fractures @ a high angle to core. 10cm clay seam @153.6; hosted within a moderate propylitization
		153.8	164.2	Low to moderate propylitic alteration and low argillic alteration. Several small calcite filled fractures.
		158.1	160.63	Fractured core and numerous small fractures ranging from 20 to 45 degrees to axis; some limonite filled; some clay filled; some minor qtz-calc filled.
		167.9	168.9	Sample 3553. Moderate limonite filled fractures; more pervasive banded limonite alteration. Low silica; moderate clay associated clay alteration.
		172.2	182.7	Decrease in alteration to low propylitic alteration and low argillic. Core fairly massive with minimal fractures and minor quartz and calcite filled veinlets.
182.7	185.0		Broken core, lea	ding to possible small fault zone. Increased alteration to moderate argillic and clay.
183.50	183.58		1	Banded alteration ranging from Fe stained moderate argillite-clay to lenses of high eminated pyrite, minor grey quartz veins (2).
		188.3	193.3	Increased propylitization and argillization, numerous calcite veins at low angle 70 to 80 degrees, ranging 2mm to 1cm.
		191.5	191.7	Two quartz veins, vuggy 70 to core axis; 3cm and 1 cm.

193.3	203.05	Decreased alteration to weak propylitization, massive core.
203.05	204.9	Low to moderate argillic and clay alteration.
204.9	209.8	Low to moderate propylitic alteration; quartz-calcite veins 206.75; 207; 207.06; 208.at 45 to 70 degrees to core axis.
210.0	210.7	Increased argillic and clay alteration; small silicified zone @ 210.1 followed by clay gouge @ 210.55.

210.7 216.4 Low to moderate propylitic and argillic alteration; 216.4 216.8 Sample 3555. 2cm wide quartz (grey) vein within

Sample 3555. 2cm wide quartz (grey) vein within a limonite stained envelop 50 degree to core axis.

From	To	Width	ID	Au g/t	Ag g/t	Au/Ag
216.4	216.8	0.4	3555	1.65	1.7	0.97

220.25	220.45	Small 10 cm silicified zone within 20cm wide limonite stained envelope originating from the disseminated pyrite present.
220.45	224.8	Low to moderate propylitic alteration;
224.8	225.35	Silicified zone within 26cm wide limonite stained envelope; minor pyrite.
225.3	230.7	Low to moderate propylitic alteration; minor epidote on fractures.
227.7	229.8	Quartz-calcite veins 1cm to mm at 30 to 70 to CA.
230.7	238.4	Low to moderate propylitic alteration; occasional xenolith with mafic phenocrysts & sericite alteration.
230.7	238.4	Broken and more densely fractured core.

234.8	235.1	5cm clay gouge zone; limonite stained; 1cm qtz vein; both @ 70 degree to core.
238.4	250.8	Propylitic alteration fluctuating from low to moderate; minor epidote along fractures; minor limonite staining generally associated with one or more quartz veins.
241.9	242.1	3small quartz veins @45 degree to core; within argillic/limonite envelope.
242.8	245.0	Broken and more highly fractured core.
249.2	251.6	Broken and more highly fractured core.
261.2	263.2	Contact with volcanic breccia. Phenocrysts are finer grained and groundmass is aphanitic. Appears to be a chilled margin. Core is somewhat silicified. Abrupt transition to breccia at appx. 90 to CA.

263.20 287.4 bx Volcanic Breccia

Volcanic breccia consisting of poorly sorted, angular to rounded clasts in a fine-grained matrix. Several different clast types ranging from fine-grained volcanic rock to flow banded dacite? to vesicular pumice fragments. Pumice clasts often have ragged, embayed margins and stretched vesicles. Clasts range from 2mm to 10 cm. Matrix is fine grained, grey to green to brown and could be fine-grained lava or sediment. Alteration consists of pervasive weak to moderate propylitization which appears to have been largely overprinted by variably moderate to very strong argillization. Clasts are always more argillized than the matrix, and are often completely altered to clay. Much of the breccia is grey, leached appearing with upwards of 6% disseminated, euhedral, brassy pyrite in the matrix and clasts. Silicification is very rare, and limited to selvages around quartz veins. The upper contact is abrupt and close to right angles to the core, whereas the lower contact appears gradational with no distinguishable contact with the underlying dacite.

263.0 264.86

Dark brown lava matrix with light brown sub angular to rounded fragments. Pervasive limonite stain and moderate argillic alteration. Some clasts have a moderately high clay replacement and are eroded, creating a vuggy texture.

264.55	264.84	Dark brown mud gouge zone, which has a homogeneous silt/clay consistency.
265.5	285.2	Moderate to strong argillic alteration of the volcanic breccia. Rock is grey to rarely greenish grey. Clasts are often completely altered to clay or rarely clay and chlorite. Matrix is less altered, but still quite soft. Matrix and clasts contain up to 6 % disseminated euhedral pyrite. grey clay gouge is common. Fractures are lined with clay, with lesser chlorite and rarely limonite. It appears that the argillic alteration is an overprint on the propylitic alteration.
266.2	268.3	Several white cockscomb qtz veins with strong limonite filling medial cavities and as selvages. Veins to 2 cm, and at 10 to 25 to CA. Samples 3556 and 3557.
269.5	270.15	Maroon brown clay gouge, possible fault.
284.3	285.0	White cockscomb quartz veins forming breccia matrix. Veins up to 1 cm wide. Strong limonite on fractures. Sample 3561.
286.0	287.5	Matrix of volcanic breccia is silicified. Clasts are argillized and oxidized. Sample 3563.

287.4 313.5 dac Dacite? Porphyry Flows

Grey to greenish to tan porphyritic flows and inter flow breccias. Phenocrysts of euhedral to subhedral feldspar which comprises up to 30 % of the rock. These phenocrysts tend to be more equant than in the andesite porphyry and appear to be mostly potassium feldspar rather than plagioclase. Very little to no hornblende is seen. Rounded to stretched vesicles are locally abundant, and, along with the alignment of feldspar phenocrysts, often give a distinct flow texture. Breccias of rounded to sub angular dacite clasts in lava? matrix are common and may represent flow margins. Alteration consists of weak propylitization to weak to moderate argillization and bleaching. These rocks appear to be more felsic than the andesite.

292.5 Several white cockscomb quartz veinlets and veins with calcite filling medial cavities where rock

		is unoxidized. Often with strong limonite selvages. Veins typically at 30 to 50 to CA.
300.8	301.7	Numerous white cockscomb quartz veinlets to 5 mm at 30 to 50 to CA. Interval is oxidized and contains locally strong limonite selvages and fracture coatings. Sample 3566.
301.7	308.8	Weakly propylitized dacite flows with sporadic white to grey qtz veins. White veins tend to be cockscomb texture, and often have strong limonite selvages. Very little bleaching or alteration of walls.
309.2	309.97	Blood red hematite + silica veins and breccia matrix. Appears to be earlier than white and grey qtz veins. Sample 3571.
311.0	311.5	Two qtz breccia veins to 5 cm with qray qtz bx matrix. Veins at 30 and 40 to CA. Samples 3572 and 3573.
312.6	313.5	Main Quartz vein. Breccia zone consisting of tan oxidized dacite clasts in grey and white qtz vein matrix. Multiple episodes of brecciation from quartz healed breccia clasts. Abundant cockscomb quartz vein and vein clasts. Core is quite broken. Recovery is approximately 50% for the interval. Sample 3574.

313.5 321.0 vbx Volcanic Breccia

Poorly sorted, clast supported heterolithic breccia. Angular dacite clasts from sand size to 10 cm. Clasts are fine grained flow banded dacite, vesicular dacite, and dacite porphyry. In other places, clasts are dominantly flow banded dacite with seemingly little rotation. Matrix is a fine grained silt or possibly lava. Contains some flow banded dacite flows.

313.5 316.1 Intensely argillized and strongly oxidized footwall to quartz vein. A few grey quartz vein fragments. Samples 3575 and 3576.

321.0 325.71 dac Flow Banded Dacite?

Grey, fine-grained felsic volcanic. Strong flow layering defined by red-brown bands at 30 to 40 to CA. Sparse euhedral feldspar? phenocrysts scattered throughout. Contains minor breccia interbeds consisting of flow banded dacite clasts. Gradational contact with overlying volcanic breccia.

325.71 EOH End of Hole

Blackdome Project 2006

Drill Hole Name: B06-04

Area: No 1& No 2 Veins North

Drill Log

UTM Easting 535702	Drill Contractor	Full Force Drilling	Pad Number	P06-4
UTM Northing 5686482	Mine Grid W	4762	Start Date	Nov 24, 06
Elevation (m) 2145	Mine Grid N	13598	Finish Date	Nov 26, 06
UTM Zone 10 U	Logged By	R. Parish, A. Pollmer	Reclaim Date	
Datum Nad 83 Canada	Core Type/Size	NQ2	Log Date	Dec 4, 06

Length (m) 172.5

Azimuth 115

Dip -50

Target work

Target Test the east and west splays of the #1 vein north of the 1960 level workings.

Stopped for: Hole may have unintentionally been stopped in the east splay of the #1 vein.

Result

0	3.2 m		Casing
			No Core.
3.2	157.7	And	Andesite Flows

Medium to fine grained, porphyritic texture with euhedral hornblende and plagioclase phenocrysts set within a fine-grained groundmass. Apart from alteration variations, the andesite flows are quite homogeneous. The propylitized intervals range from green to greenish-grey colour and tend to enhance the porphyritic texture. The flow structures are rare and individual flows are difficult to identify. Breccia zones displaying sub-angular andesite clasts set in finer grained andesite lava are rare. These occur across either short <30cm intervals or >1.0m. Propylitization is the most common alteration throughout the hole. In order of abundance argillic, limonite staining, bleaching and silicification are the secondary forms of alteration most common to the core. Quartz veins and limonite stained fractures occur randomly throughout the Andesite flow, with the exception of the brecciated zones.

3.2 9.20 Andesite porphyry, slightly propylitized, minor flow banding with aligned feldspar phenocrysts.

6.0 7.31 Oxidized mud seam and weathered core.

7.31 8.94 Low propylitic alteration

9.20 20.8 Buff brown and olive green andesite porphyry, more intensely fractured with prevailing argillic an

Buff brown and olive green andesite porphyry, more intensely fractured with prevailing argillic and clay alteration. Feldspar phenos largely clay altered and fracture have a limonite with minor

		17.4	•	oating. Some sections moderately bleached. Low angle fractures of 45 to 80 degrees e as fracture filling. The higher angle fracture > 45 degrees have lesser amounts of Fe. 25 cm silicified breccia with sharp, limonitic fault contact at 10 to CA. 10 cm white vuggy qtz vein, 80 to CA, at 18.4 m. Strong limonite associated with breccia. Sample 3578.
		18.4	22.50	Numerous limonite filled fractures, mainly <= 45 degrees to core axis.
22.8	53.5		Within this a chlorite asser	istent and uniform low to moderate propylitic alteration resulting in a competent core. Iteration type limonite appears much less prevalent, whereas a quartz-calcite and mblage is hosted in veins ranging from mm to 1.5 cm. From 43.7m onward the core is estilicified and many fractures have a clay residue.
		31.5	32.3	Larger quartz-calc veins approximately 1.5cm wide occur at 31.5 @ 50 deg; 32.1 @ 82 deg; and 32.3 @ 65 deg.
			40.6 53	.5 Fracture density increases and limonite staining increases marginally.
		53.6	54.5	Strong increase in argillic alteration and bleaching seeming to emanate from numerous fracture and clay gouges at 40 to CA.
		55.8	57.0	Core is strongly fractured with numerous gouge zones and limonite lined fractures. Dominant fault set at 20 to CA with limonitic clay gouge. Several high angle "veins" consisting of silica +red hematite flooded, vein like structures with sharp walls. Surrounding andesite is bleached and argillized.
		56.8	63.3	Sporadic white cockscomb qtz veins to 1 cm. Veins typically from 50 to 70 to CA. Very little alteration of walls. 3 cm banded grey and white qtz vein at 63.3m. Str limonite selvage and bleached, somewhat argillized walls.
63.6	83.5		phenocrysts. phenocrysts to phenocrysts., occasionally	m interval of weakly to moderately propylitized andesite. Weak flow alignment of Lacking breccias, possibly massive flow or intrusive body. Weak alteration of to calcite and chlorite. Weak red hematite replacement of groundmass and some and rarely as discrete veinlets. Fractured surfaces lined with chlorite, calcite, clay and limonite. More broken zones are usually more bleached and argillized. Quartz gely absent from this interval, but where it occurs veins contain abundant intergrown
		69.4	69.6	Fault zone consisting of brecciated andesite with numerous chloritic and limonitic gouge seams at 20 and 80 to CA.
		73.0	75.6	Core is quite broken with chlorite+clay+/- limonite fracture coatings. 2 cm thick sheared white clay seam at 60 to CA @ 73.0. Crushed, friable brecciated andesite, strongly chloritic, @75.5m.
		79.9		7 cm white cockscomb qtz vein at 35 to CA. No alteration of wall rock.
		81.0	84.0	Broken core with thin limonite and manganese fracture coatings.

		84.13	84.4	Broken zone containing white qtz pieces and red-orange clay gouge seams and fracture coating. Wall rocks are bleached and argillized. Vein was probably 1 to 2 cm thick.
83.5	93.8		1	pylitization and weak to locally moderate oxidation of andesite flows, possibly th increase in quartz veining approaching main qtz vein at 99.2m.
		85.7	86.1	Numerous fractures at 50 to CA lined with red-orange hematitic clay gouge.
		88.1	88.9	Several parallel fractures or faults at 35 to CA lined with red-orange hematitic clay and rubble gouge. Below these are numerous white cockscomb quartz veins ,at 35 to 45 to CA, scattered over the interval. These veins are up to 2 cm thick and sometimes contain andesite clasts. Sample 3579.
		91.4	92.5	Sporadic white and grey vuggy quartz veinlets at 70 to CA Weak wall rock bleaching and oxidation. Sample 3581

92.5 93.25 Numerous white and grey quartz veins up to 1cm at appx. 50 to CA. Strong red-orange clay gouge associated with some veins. Moderate wall rock bleaching and oxidation. Sample 3582.

From	To	Width	ID	Au g/t	Ag g/t
92.80	93.25	0.45	3582	1.66	2.9

96.6 98.9 Sporadic white to grey vuggy qtz veins to 5mm. Most at 45 to CA. Very little wall alteration. Possible hanging wall veins associated with vein at 99.3. Sample 3583

99.6 45 cm wide, complex quartz breccia vein consisting of multiple pulses of brecciation, quartz veining and silicification. Both grey and white cockscomb veins are brecciated and silica healed. Trace white adularia? in grey qtz matrix. upper and lower contacts at 50 top CA. Possible #1

98.9

				Vein. Sample 3584.
		99.6	100.75	Footwall to main vein. Numerous small qtz veins , mostly at 50 to CA and a 10 cm silicified breccia, at 70 to CA. Sample 3585
		100.75	107.0	Footwall to main vein. Numerous scattered quartz veins, mostly less than 5 mm and at appx 50 to CA. Core is variably oxidized and occasionally argillized for several 10's of cm adjacent to qtz veins.
		107.0	108.0	Hydrothermal breccia. Angular, oxidized andesite clasts in a matrix of white vuggy quartz. Grades with depth into a matrix of grey cryptocrystalline quartz. Smaller clasts are silicified, while larger clasts are argillized. Sample 3587.
108.0	119.0	t		t moderate propylitization. Oxidation tends to be weak and is pervasive without to fractures and quartz veins. Several greenish clay and chlorite gouge filled
119.0	144.4	i f	s oxidized. Pro From fractures a	ation style. Andesite is grey, locally pyritic and appears to be fresh except where it opylitization is much less in this interval. Oxidation occurs as fronts emanating and veins at the expense of disseminated pyrite. These oxidation selvages are in 4 cm, but can extend up to 1 metre with increased fracture or vein density.
		127.55	127.6	8mm vuggy white qtz vein at 55 to CA. Hanging wall is sheared and brecciated andesite with qtz vein fragments and fresh disseminated pyrite. Entire breccia zone is silicified. No limonite selvage associated with silicified zone.
		128.5	128.7	1 cm grey vuggy qtz vein at 55 to CA. Hanging wall is silicified and brecciated for 1 cm above the qtz vein. Breccia and qtz vein have str limonite selvages.
		130.3	132.9	Numerous limonitic fractures with or without quartz veinlets. Most at 45 to 55 to CA.
		140.2	142.1	Several white vuggy qtz veins to 1 cm and several limonitic shears. All at 45 to 50 to CA.
		142.45	142.95	Zone of quartz veinlets and two 6 cm quartz veins all at 50 to CA. Wider veins are white to grey cockscomb veins with a few breccia clasts of silicified andesite. Trace fresh pyrite and oxidized pyrite cubes in walls with pervasive limonite selvages. Footwall is a partially silicified volcanic breccia that extends to 143.5m. Sample 3589.
143.0	155.0			ately propylitized andesite. Local pervasive silica flooding adjacent to quartz veins. lly rubble below 150.0m
		146.7	148.55	Abundant white and grey, vuggy quartz veins and veinlets at all angles to CA, though the most common orientation is 45 to CA. Andesite is strongly oxidized to 147.4m. Below that, rock is propylitized and has strong silica flooding adjacent to fine quartz veinlets. Samples 3591 and 3592.
		149.4	149.9	Strongly oxidized andesite with a 5 cm, silicified, qtz veined shear at 55 to CA. Footwall to shear

B06-04 Blackdome 5 of 7

		is crackle brecciated andesite with limonite vein matrix and irregular, grey chalcedonic qtz veins. Sample 3595
149.9	150.1	Fault. Upper contact at 50 to CA, lower contact at 35 with slicks at 20 to CA. Orange tan gouge consisting of limonite, clay and rounded rock fragments. Included in sample 3595.
149.9	155.2	Crushed zone, possible fault. Rock is broken to rubble with numerous chloritic zones. Most pieces have limonite surface coating. No slickensides seen.

157.7 172.52 vbx Volcanic Breccia

Poorly sorted, heterolithic breccia. Irregular shaped clasts of vesicular volcanic- possibly dacite, and fine grained porphyritic andesite? Clasts range from sand size grains to 8 cm cobbles. Matrix is green to maroon, fine grained, and is often laminated and somewhat contorted. Matrix could be fine grained sediment, in which case, this could be a volcaniclastic breccia. The upper part of this unit is strongly argillized and faulted. Numerous tectonic breccias overprint the primary breccia textures. Below 162m the interval is weakly to moderately propylitic, with local chloritic shears.

155.5	159.7	Large fault zone. Strongly argillized core with many zones of crushed and milled fragments bounded by clay gouge with slickensides. Dominant shear orientation at 20 to 30 to CA. Horses of less sheared and argillized volcanic breccia.
156.9	157.6	Brown to dark brown-black friable rock that has been strongly sheared and brecciated. Trace qtz veinlets. Sample 3596.
157.6	158.4	Sheared, brecciated fault zone. Strongly argillized with limonitic seams. Sample 3597.
163.0	171.8	Gradational transition to propylitic alteration. Weak to moderate chloritization of clasts and groundmass. Very weak calcite replacement, mostly of vesicles in dacite clasts. Trace

B06-04 Blackdome 6 of 7

172.52	ЕОН	End of	Hole	
		172.47	172.52	Possible eastern splay of # 1 Vein. White cockscomb quartz vein with limonitic fractures and trace pyrite. 8 mm wide silicified, limonitic breccia at upper fault contact. Sample 3599.
		178.1	1/2.4/	Fault . Strongly sheared and brecciated zone increasing in intensity toward contact with quartz vein. Argillized and chloritic gouge with milled clasts of volcanics and minor white quartz vein. Contact with quartz vein at 80 to CA. Slicks at 80 to CA. Sample 3598.
		165.4	166.3 172.47	Chloritized fault zone. Broken, chloritic rubble and several chloritic shears at 10 to 20 to CA.
				disseminated pyrite.

B06-04 Blackdome 7 of 7

Blackdome Project 2006

Drill Hole Name: B06-05

Area: No 1 & No 2 Veins North

Drill Log

UTM Easting	535617	Drill Contractor	Full Force Drilling	Pad Number	P06-2
UTM Northing	5686420	Mine Grid E	4745	Start Date	2 Dec, 2006
Elevation (m)	2112	Mine Grid N	13495	Finish Date	6 Dec, 2006
UTM Zone	10 U	Logged By	R. Parish	Reclaim Date	
Datum	Nad 83 Canada	Core Type/Size	NQ2	Log Date	8 Dec, 2006
Length (m)	247.8	Target	Test the # 1 Vein below the 1960	level workings.	

Length (m) 247.8

.Azimuth 100

Dip -68

Target Test the # 1 Vein below the 1960 level workings.

Stopped for: Reached target.

Result

0	4.0 m		Casing		
			No core.		
4.0	154.5	and	Andesite		

Grey to greenish grey, porphyritic rock of intermediate composition. Phenocrysts consist of feldspar, hornblende, and possibly pyroxene. Feldspar phenocrysts are subhedral to euhedral, up to 4 mm, equant to lath shaped and comprise up to 40% of rock. Most of the feldspar appears to be plagioclase. Hornblende phenocrysts occur as anhedral to euhredral crystals to 3 mm and comprise up to 5% of the rock. They occur as single crystals or as clots with feldspar. Groundmass is typically fine grained, though can be aphanitic. Core is often propylitized, consisting of weak to moderate pervasive greenish alteration of groundmass to chlorite+/-calcite+/- epidote. Feldspar phenocrysts are altered to chlorite +/-clay +/- calcite. Hornblende crystals are altered to chlorite? Propylitization is often overprinted by bleaching, and rarely silica flooding adjacent to fractures, faults, and quartz veins. This unit appears to be massive, without flow banding or alignment of phenocrysts. Xenoliths of coarser or finer grained andesite are common throughout the unit. Intra flow breccia are quite common in this unit to a depth of 44.5m. They consist of angular andesite clasts in a green to grey green, fine grained siltstone? or lava matrix. The matrix is occasionally laminated, and often is at least partially silicified.

4.4	4.8	Green grey clay. Possible fault gouge.
7.9	8.2	Fault at 20 to CA. Limonitic clay gouge 3mm thick. Surrounding andesite is strongly argillized, chloritized and brecciated.
6.0	9.8	grey silicified breccia matrix. Andesite clasts are weakly argillized and propylitized. Sample 3601
9.7	10.6	Limonite, clay and chlorite lined fractures at 10 to 20 to CA. Possible fault zone.

			The state of the s	
13.4	21.8			r-flow breccia. Large angular andesite clasts in fine grained green siltstone? matrix. silicified and contain red brown oxidized pyrite cubes. Appx 10% matrix. Fault gouge. Brown clay. Argillized and chloritic footwall.
38.0	43.1			r-flow breccia. Increase in green fine grained matrix. Clasts are quite large and are ed margins or any alignment of phenocrysts.
		44.3	722	Weak to only locally moderate propylitic alteration. Sparse scattered calcite veinlets. Lack of brecciation and fine grained breccia matrix. Minor scattered xenoliths of coarser and finer grained andesite.
		46.6	47.2	Several calcite, chlorite and limonite lined joints at 10 to CA. Increased pervasive bleaching and propylitic alteration peripheral to joints.
		57.7		5 mm clay lined fracture at 20 to CA.
		70.0	74.0	Several calcite and chlorite lined fractures at 20 to CA.
		72.4	98.1	Monotonous porphyritic andesite as above, but with moderate propylitization and increase in bleaching and clay seams.
		87.48	88.0	Several joints at 20 to CA. Surrounding rock is chloritized and broken.

92.0 Numerous chlorite and calcite lined fractures at mostly 20 and 45 to CA. 88.7 90.5 90.65 grey clay seam. Upper and lower contacts at 90 to CA. 93.0 99.2 Increase in calcite veins to 5mm. These appear to be mostly tension veins and minor breccia matrix. 96.8 96.95 Fault gouge consisting of grey clay and milled andesite and calcite vein clasts. Upper and lower contacts at 30 to CA. Area of increased propylitization centered on greenish clay and chlorite seam at 102.0m. Minor 101.0 102.3 reddish hematite replacing phenocrysts and groundmass. 108.6 Numerous chlorite, clay and calcite veins and lined fractures. Most at 55 to 70 to CA. 110.3 Surrounding core is propylitized and somewhat argillized. 10 cm fault filled with clay, calcite, chlorite and milled andesite clast gouge. Upper and lower 112.4 112.5

B06-05 Blackdome 3 of 10

		contacts at 50 to CA.
114.4	114.5	Chloritic shear with calcite + chlorite veins. 25 to CA.
124.0	126.7	Increased propylitic alteration of andesite. Trace disseminated, very fine-grained pyrite, and increased epidote replacement of groundmass and phenocrysts.
124.2	124.25	White, coarse-grained calcite vein with epidote selvages and inclusions. Minor red hematite + silica veins and blebs.
136.5	143.5	Increased propylitic alteration. Stronger alteration of phenocrysts and groundmass to chlorite, epidote and calcite. Common calcite veins and veinlets. Increased red hematite in groundmass and as micro veinlets. Trace disseminated fine grained pyrite.
143.5	151.0	Weakly propylitized andesite.
149.5	149.8	2 cm calcite + quartz vein . Footwall is brecciated and silicified for 5 cm. Several calcite + quartz veins to 5 mm in hanging wall to large vein. Veins and fracturing at 35 to CA. Sample 3602

154.5 161.1 vcbx Volcaniclastic Breccia

Matrix supported, heterolithic breccia. Large, angular andesite clasts and smaller, angular to rounded clasts of andesite, aphanitic volcanic, breccia and possible siltstone. Matrix is poorly sorted, and consists of silt to large sand sized grains with no apparent bedding or lamination. Several small andesite flows within the breccia. Upper contact is sharp at 50 to CA. Faint sense of bedding in breccia at 45 to CA.

B06-05 Blackdome 4 of 10

160.1 186.4 and Andesite

Typical porphyritic andesite as described above. Propylitic alteration varies from very weak to

moderately strong. Strongest propylitic alteration characterized by epidote replacement of phenocrysts and groundmass, and by increased calcite veins and veinlets. Andesite becomes gradually finer-grained and less propylitized approaching lower contact.

169.0	177.0	Moderate propylitic alteration. Scattered calcite veins, most at 45 to CA. Trace disseminated pyrite and minor red hematite replacement of phenocrysts and as spider web veinlets in groundmass.
178.7	180.3	4 mm calcite + chlorite vein at 178.7m. 20 to CA. Footwall is chloritized and broken to 180.3m.
180.7	186.4	Andesite is finer grained and less propylitized. Below 183.4 the rock is harder, possibly from pervasive silica flooding, and primary textures are somewhat muted. Abundant calcite+ qtz veinlets at 25 to 40 to CA. Contact with underlying volcaniclastic breccia is indistinct, possibly obscured by silica flooding.

186.4 193.7 vcbx Volcaniclastic Breccia

Heterolithic, clast to matrix supported breccia. Upper part finer grained, lower part coarser grained as described below.

Much of interval is a coarse, poorly sorted volcaniclastic sandstone with grains up to 3 mm and

186.4 189.2

scattered clasts of mixed volcanic rock. Bands of heterolithic conglomerate or breccia with mixed volcanic clasts to 3 cm. Faint bedding at 50 to CA. Unit is weakly propylitized.

186.4 187.1 Several grey, vuggy quartz+calcite veins at 40 to 50 to CA, up to 5mm thick, and numerous grey, fine spider web quartz veinlets. Sample 3603.

Coarse, heterolithic, poorly sorted, breccia. Angular clasts of dacite, vesicular dacite? to 5 cm, and smaller sandstone? clasts. Sand to silt matrix, and interbeds of volcaniclastic sandstone.

		,
189.2	189.7	30 cm zone of hydrothermal breccia with white, vuggy quartz vein matrix and cross cutting quartz veins. Silicified clasts of dacite. Footwall to breccia is silicified. Sample 3604.
189.7	190.3	Zone of densely silicified breccia. Much of the matrix has a white to grey, sugary texture. Abundant fine, grey quartz veinlets and some vuggy quartz veins. Sample 3605
191.3	192.6	Variably silicified and oxidized breccia. Silicification as patchy flooding of the matrix and scattered grey vuggy quartz veins and veinlets.
192.6	193.7	Stronger oxidation and patchy silicification of breccia. 6cm limonitic tectonic breccia at 20 to CA with milled, silicified volcanic and quartz vein clasts. Sample 3608.

193.7 218.0 bas Basalt

189.2

193.7

Aphanitic, weakly porphyritic, black to grey to greenish grey volcanic rock. Possible dike. Sparse, to locally abundant euhedral feldspar phenocrysts, usually replaced by calcite and chlorite. Less altered rock contains sparse feldspar, hornblende and and possible olivine phenocrysts. Locally abundant stretched vesicles? near top of unit which may represent flow margins. These are filled with calcite and chlorite. Flow banding is very rare. Weak to moderate propylitic alteration, often associated with broken and sheared zones. Upper contact with breccia appears to be sharp at 30 to CA.

196.0		1cm vuggy grey quartz vein at 30 to CA, with 1 cm wide, brecciated and silicified hanging wall.
199.3		4 cm clay+chlorite gouge. Orientation uncertain. Strongly bleached and argillized walls.
201.6	203.5	Broken core. Chloritized breccias and shears, generally at 5 to 20 to CA.

B06-05 Blackdome 6 of 10

203.6		2 cm grey vuggy quartz breccia vein at 30 to CA. Clasts and walls are strongly replaced by epidote and chlorite. Trace disseminated pyrite.
204.0	217.2	Basalt is mostly black to dark grey-green. Numerous scattered calcite and chlorite veinlets. Local areas of weak propylitic alteration. Interval is very weakly porphyritic and free of vesicles.
217.2	218.0	Basalt becomes brecciated and vesicular approaching the lower contact . Increase in propylitic alteration and calcite veining.

218.0 225.0 vcbx Volcanic Breccia

Monolithic, clast supported breccia consisting of flow banded and vesicular dacite clasts in a matrix of coarse sand to silt. Breccia is poorly sorted with angular to sub angular clasts ranging from 10 cm to sand size. Entire interval is propylitized and has trace disseminated pyrite sparse calcite veinlets. Inter bedded dacite flows common near base of unit as the breccia grades into massive dacite flows.

218.2		1 cm vuggy grey qtz vein that blows out to 3 cm wide with 2 cm open medial cavity ,and inclusions of silicified dacite. Vein at 45 to CA.
221.55	223.0	Zone of broken core. All surfaces with strong clay and chlorite coating. Possible fault.

225.0 234.2 dac Dacite Flows

Grey to green, porphyritic volcanic with distinct flow banding defined by alternating light - dark layers and by slight alignment of phenocrysts and rounded, vesicle-like blebs. Phenocrysts are mostly feldspar that has been altered to epidote? and chlorite? Flow banding is quite consistent a 50 to CA. Upper contact is gradational with dacite breccia. Lower contact with breccia is sharp at 45 to CA.

Chaotic zone of brecciation that appears to be a fault zone that was later overprinted by hydrothermal brecciation, silicification and quartz veining. Clasts consist of angular to sub rounded, multi-coloured dacite, and possibly basalt and siltstone. Many of the clasts have a milled appearance. The clasts are set in a fine grained matrix. This breccia was subjected to strong hydrofracturing and was healed by quartz veining, as well as silica flooding. Quartz veins consist of grey veinlets that form crackle breccia matrix and later white cockscomb quartz. A later, unhealed fault breccia cuts the main zone of quartz veining, and consists of clasts of quartz veined and silicified breccia and quartz vein in a limonitic clay gouge.

234.7	235.7	Brecciated and silicified breccia with abundant grey and white quartz veins and quartz vein crackle breccia matrix. Rock had up to 2 % disseminated pyrite that is now largely oxidized. Samples 3611 and 3612.
236.8	237.4	Brecciated and silicified breccia. Abundant grey quartz veinlets forming breccia matrix. 10 % vuggy grey and white quartz veins with strong limonite. Sample 3614.
237.4	238.2	Unhealed fault/shear zone consisting of clasts of silicified breccia, , quartz vein, and silicified volcanic in a limonite and clay gouge. Sample 3615

239.9 240.2 White and grey vuggy quartz veins cutting silicified and leached breccia. Trace disseminated

8 of 10

pyrite and possible black silver mineral in quartz vein. Veins at 45 to CA. Sample 3619

From	To	Width	ID	Au g/t	Ag g/t
234.2	234.7	0.5	3609	0.15	0.7
234.7	235.2	0.5	3611	0.76	3.1
235.2	235.7	0.5	3612	0.29	2.1
235.7	236.8	1.1	3613	0.06	0.6
236.8	237.4	0.6	3614	0.1	0.8
237.4	238.2	0.8	3615	0.08	1.6
238.2	239.2	1	3616	0.31	0.5
239.2	239.9	0.7	3617	0.18	37.1
239.9	240.2	0.3	3619	28.9	516
240.2	240.9	0.7	3618	0.28	9.7

240.9 247.8 dac Dacite

Maroon to grey green, weakly porphyritic flows. Prominent flow banding at 60 to 70 to CA. Brecciation common near the top of the interval.

240.9 243.8

Brecciation decreases through this interval. Mostly clast supported, monolithic breccias with dacite clasts in a fine grained sediment, or possible lava matrix. Locally contains fine-grained disseminated pyrite, and may be partially silicified.

247.8 EOH End of Hole

B06-05 Blackdome 10 of 10

Blackdome Project 2006

Drill Hole Name: B06-06

Target Area: Under Basalt Cap

Drill Log

UTM Easting 535594	Drill Contractor Full Force Drilling	Pad Number Redbird Lite
UTM Northing 5686790	Mine Grid E 4482	Start Date 6 Dec, 06
Elevation (m) 2106	Mine Grid N 13772	Finish Date 9 Dec, 06
UTM Zone 10 U	Logged By R. Parish	Reclaim Date
Datum Nad 83 Canada	Core Type/Size NQ2	Log Date 12 Dec, 06

Length (m) 252.1 .Azimuth 100	Intersect #2 Vein and possibly the #1 Vein under basalt cap north of the intercept in hole B06-03A
Dip -50	

Stopped for: Reached target

Result

0	6.4		Casing	
			No core.	
6.4	61.2	and	Andesite	

grey to greenish grey, to maroon porphyritic rock of intermediate composition. Phenocrysts consist of feldspar, hornblende, and possibly pyroxene. Feldspar phenocrysts are subhedral to euhedral, up to 3mm, equant to lath shaped and comprise up to 30% of rock. Most of the feldspar appears to be plagioclase. Hornblende phenocrysts occur as anhedral to euhredral crystals to 2 mm and comprise up to 5% of the rock. They occur as single crystals or, more commonly, as clots with feldspar. Groundmass is typically fine grained, though can be aphanitic. Core is often propylitized, consisting of weak to moderate pervasive greenish alteration of groundmass to chlorite+/-calcite+/- epidote. Feldspar phenocrysts are altered to chlorite +/- clay +/- calcite. Hornblende crystals are altered to chlorite? Propylitization is often overprinted by bleaching, and rarely silica flooding adjacent to fractures, faults, and quartz veins. This unit appears to be massive, without flow banding or alignment of phenocrysts. Xenoliths of coarser or finer grained andesite are common throughout the unit. Intra flow breccia are rare in this unit. They consist of angular andesite clasts in a green to grey green, fine grained matrix.

10.0	11.3 FZ	Core is broken and argillized. Abundant fractures filled with brown and grey clay at mostly at 10 to 30 to CA.
15.2		White, 3mm qtz vein at 45 to CA.
15.4	15.45	Orange-tan clay gouge with white qtz fragments . 40 to CA.
19.0	20.5	Zone of white quartz veins at 20 to 40 to CA. Often with white clay selvages. Andesite walls partially silicified and oxidized. Sample 3621
22.8	23.9	Partially silicified and weakly pyritic andesite. Numerous white quartz veins centered on breccia zone at 23.1m. Breccia is 20 cm wide at 40 to CA. with matrix formed by white vuggy quartz veins. Samples 3622 and 3623. # 2 Vein structure?

23.9 53.0

Andesite is maroon to purple coloured. it appears to be fairly fresh and unaltered except in areas where propylitized, as noted below.

26.2 29.9 Green, moderately propylitized and weakly argillized and from broken brecciated zones with increases chlorite and of	1 5
38.0 44.0 Green, propylitized andesite. Alteration is gradational about	ove and below with the fresh andesite.
39.5 40.2 Brecciated, argillized and chloritized fault zone at 10 to C.	A.
Weak to moderate propylitic alteration.	

61.2 85.2 dac Dacite? Flows and Breccias

85.2

67.1

Flow banded, aphanitic extrusive rock. Very rare phenocrysts of feldspar. Unaltered rock is maroon to grey, but much of the rock is green from strong pervasive propylitization. Volcanic breccias are common, particularly at the top and bottom of the unit. These consist of dacite clasts and vesicular basalt or dacite clasts in a swirly, contorted fine grained matrix. The breccias can be either clast or matrix supported. Much of the unit, and especially the breccias, are green from strong propylitization and argillization. Most of the flow and breccia textures are obscured by this alteration. It is possible that this unit is a basalt with associated agglomerates, but the flow banding and purple colour of the less altered flows point to dacite. The contact with the lower basalt agglomerate at 85.2m appears to be gradational, but is largely obscured by strong alteration.

61.2 Chaotic, heterolithic breccia consisting of angular to sub rounded dacite, andesite and vesicular dacite or basalt clasts in a sand or silt size matrix. Upper part of breccia contains only sub rounded andesite clasts in fine grained red hematized matrix. Lower down, the clasts are mixed and include interbedded flow banded dacite flows. Most of the unit is either strongly propylitized or hematized.

Flow banded dacite with minor interbedded breccias as above. Upper part of unit is weakly propylitized, which enhances the flow banding. From 75.3 to 81.0m the flows are maroon to purple and are mostly unaltered. Abundant calcite veinlets at all angles to CA. Below 81.0m the flows are strongly propylitized and argillized.

Poorly sorted, clast to matrix supported breccia. Angular to sub-rounded clasts of vesicular basalt?, and basalt, dacite and possible andesite. Matrix appears to be fine grained sediment. Most of the interval is either brick red or green from intense hematization and propylitization. The entire interval is moderately to very strongly argillized. Clasts are often more argillized than the matrix. Vesicles in the basalt or dacite are filled with calcite, or rarely dusted with fine euhedral quartz needles. The core is usually quite soft, and can often be cut by a knife. Breccia textures are strongly obscured by the intense alteration.

85.2	89.5	Core is green from intense propylitic alteration and is strongly argillized.
88.5		1 cm green clay seam at 20 to CA.
89.5	104.0	Brick red, strongly hematized and argillized. Some of the clasts are green, propylitized basalt. Many of the basalt clasts have vesicles filled with calcite. Trace amounts of fine, disseminated pyrite in the matrix and clasts.
98.0	99.0	Red clay seam to 5mm wide filling irregular fracture at 5 to CA
104.1		2cm wide white quartz vein and silicified breccia at 30 to CA. Strong argillization adjacent to vein.
104.1	129.65	Mixed hematitic and propylitic breccia. Core is quite soft from intense clay alteration. Locally up to 2 % oxidized disseminated pyrite cubes to 1 mm.
121.2	121.7	Strongly oxidized and leached rock. 2% oxidized disseminated pyrite.
128.1	128.3	Silica flooded vesicular clast and matrix Subsequent intense argillization leaving core friable with silicified areas. Fine euhedral quartz needles filling vesicles.
129.65	131.5	Oxidized and leached volcanic breccia. 1% disseminated pyrite. Minor patchy silica flooding. Some vesicular clasts with empty vesicles dusted with euhedral quartz needles. Samples 3624 and 3625.
141.0	142.6	Oxidized and leached breccia as above. Disseminated, oxidized pyrite cubes to 3 mm. Minor silica flooding of vesicles. Sample 3626

143.3 147.0

One of the few places in the interval where primary breccia textures are not obscured by argillization and propylitization. This unit appears similar to the volcanic breccia found under the andesite in previous holes. Interval consists of chaotic, clast supported, poorly sorted breccia with porphyritic dacite, and lesser vesicular dacite or basalt clasts. These clasts are in a red, fine-grained sediment or lava matrix. Within this breccia are beds of finer grained, more heterolithic, better

sorted breccias that may be of volcaniclastic origin. Clasts are various multi-coloured volcanics, and possible siltstone.

147.0 154.7

Increase in propylitic, argillic and hematite alteration which again obscures primary textures. Seems to be the same unit as above.

158.0 170.0

170.0 172.9

Monolithic breccia consisting of porphyritic dacite clasts in a swirly, flow-banded porphyritic dacite matrix. Small intervals of flow banded, non brecciated dacite occur interbedded with the breccias. Argillization and propylitic alteration much decreased in this interval and breccia textures are more apparent. Sparse calcite and quartz veinlets throughout the interval.

Clast supported, well sorted breccia consisting of platey dacite clasts with finer-grained, possibly chilled margins. The clasts have rounded margins, and are aligned at 55 to CA. Matrix is a dark green, propylitized sediment or lava. The clasts appear imbricated as if they were deposited in flowing water.

172.9 185.9

Heterolithic, clast supported, poorly sorted breccia. Angular to rounded clasts of dacite, and site, and fine-grained siltstone up to 10 cm. Matrix appears to be a fine-grained sediment, but locally may be fine grained lava. Clasts and matrix are not aligned or flow banded, except near the lower contact with the andesite where there is faint, contorted layering of the matrix and vague alignment of clasts at 60 to CA.

175.5	175.9	Strongly argillized zone. Possible shearing at 80 to CA.
184.9	185.8	Partially silicified primary breccia at contact with andesite. Somewhat contorted, strongly
		oxidized matrix. Unoxidized portions of breccia with 1% very fine grained disseminated pyrite.
		Several white vuggy quartz veinlets at 60 to 80 to CA. Sample 3627.

185.9	255.1	and	And	esite	
			grey to green, fine grained porphyritic rock. Up to 40 % euhedral to subhedral feldspar phenocrysts to 3 mm. Most feldspar appears to be plagioclase. Up to 5 % lath shaped hornblende phenocrysts to 4 mm which occur singly, or in sub cm sized clots with plagioclase crystals. Blood red hematite occurs as veinlets and replacement of the matrix, and rarely, replacing or rimming phenocrysts. Rounded andesite xenoliths up to 5 cm are common throughout the interval. Propylitic alteration is common throughout the interval, and is usually associated with areas of increased fracture density and shearing or brecciation. Upper contact with the breccia unit is gradational over 40 cm with andesite clasts in the breccia.		
			189.3	189.9	Several chlorite+calcite veins or lined faults at 20 to 30 to CA. Surrounding core is propylitized for a meter on either side.
			196.9	204.6	Moderate propylitic alteration with numerous joints and chlorite+calcite veins or lined fractures at 15 and 45 to CA. Increased calcite veinlets and tension veins.
			196.9	172.3	Chlorite calcite lined fractures at 20 and 45 to CA
			198.5	198.9	Zone of fracturing and chlorite+calcite veins at 40 and 10 to CA.
			202.7	202.8	Crushed, argillized fault zone at 45 to CA.
			204.6	230.5	grey, fresh andesite, with weak propylitic alteration and bleaching confined to rare, scattered calcite + chlorite veins. Otherwise unaltered.
			230.5	238.7	Weak to moderate propylitic alteration, possibly associated with quartz veining at 239m. Scattered calcite veinlets at 60 to 80 to CA.
			238.7	239.7	Possible #2 vein. Breccia vein zone consisting of andesite clasts in matrix of white cockscomb quartz veins. Breccia clasts are generally silicified and quartz veined. Core of zone is broken rubble quartz breccia, but recovery was good. Minor red-tan clay gouge in center of breccia. Some of the vein is a mocha colored, chalcedonic silica with silicified andesite clasts. Upper and lower contacts are defined by white vuggy quartz veins at 35 and 40 to CA. Samples 3629 and 3631.
			239.7	255.15	Moderate propylitic alteration to end of hole.
246.2	247.6			siltstone. classilicification of indistinct, but	oreccia consisting of rounded to sub angular clasts of dacite, andesite and possible sts are green, grey and brick red. Matrix is coarse sand of same material. Patchy of matrix and trace oxidized disseminated pyrite. Upper and lower contacts are appear to be gradational with andesite.
			246.6	246.8	Zone of veining consisting of breccia clasts in matrix of white vuggy quartz veins. Breccia veins

B06-06 Blackdome 7 of 7

		and surrounding veinlets at 35 to 50 to CA. Sample 3633.	
250.5	250.7	Green clay+chlorite gouge with crushed rock fragments. Upper and lower fault 50 to CA.	surfaces at
260.0		1.5 cm white quartz vein at 50 to CA.	
254.1	255.12	Finer grained andesite with limonite on fractures.	

End of Hole

B06-06 Blackdome 8 of 7

Blackdome Project 2006

Drill Hole Name: B06-07A

Area: Intersection of No 1 and No2

veins at depth

Drill Log

UTM Easting 535212	Drill Contractor Full Force Drilling	Pad Number P06-19
UTM Northing 5685927	Mine Grid W 4738	Start Date 11 Dec, 2006
Elevation (m) 2040	Mine Grid N 12859	Finish Date 18 Dec, 2006
UTM Zone 10 U	Logged By R. Parish	Reclaim Date
Datum Nad 83 Canada	Core Type/Size NQ2	Log Date 19 Dec, 2006

Length (m) 301.7

Azimuth 120

Dip -61

Target Intersection of the #1 and #2 veins below the level of the mine workings.

Stopped for: Drill bit broke off in a fault. Unable to continue.

Result

0	3.05m		Casing	
			No core.	
3.05	97.8	and	Andesite	

Grey to greenish grey, porphyritic rock of intermediate composition. Phenocrysts consist of feldspar, hornblende, and possibly pyroxene. Feldspar phenocrysts are subhedral to euhedral, up to 4 mm, equant to lath shaped and comprise up to 40% of rock. Most of the feldspar appears to be plagioclase. Hornblende phenocrysts occur as anhedral to euhredral crystals to 3 mm and comprise up to 10% of the rock. They occur as single crystals or as clots with feldspar. Groundmass is typically fine grained, though can be aphanitic. Weak to fairly prominent flow banding as defined by darker bands in the groundmass and weak alignment of phenocrysts. Core is often propylitized, consisting of weak to moderate pervasive greenish alteration of groundmass to chlorite+/-calcite+/- epidote. Feldspar phenocrysts are altered to chlorite +/- clay +/- calcite. Hornblende crystals are altered to chlorite? Xenoliths of coarser or finer grained andesite are fairly common throughout the unit.

7.5	8.7	Several fractures at 25 to CA. 3 mm grey clay gouge.
9.7	9.9	Several clay lined fractures at 45 to CA with increased propylitic alteration of surrounding andesite.
15.2	16.1	fractured and locally brecciated core with strong chloritic clay gouge.
17.0	26.65	Increased propylitic alteration. Minor calcite veinlets and gash vein fillings in matrix. Trace

27.05 Strongly oxidized and argillized, flow banded andesite. Strong vuggy, lead patchy silicification. In places looks like a quartz vein, but is probably what Up to 2% oxidized disseminated pyrite cubes. Flow banding at 70 to CA. 27.05 Pyritic grey andesite that has mostly been oxidized to tan -orange adjacent quartz veins and veinlets. Most veins at 50 to CA. Sample 3654 27.55 34.95 Propylitized andesite. Weak flow banding, usually at 50 to CA. A few we quartz veins.	Subtle to weak flow I slight alignment of
quartz veins and veinlets. Most veins at 50 to CA. Sample 3654 27.55 34.95 Propylitized andesite. Weak flow banding, usually at 50 to CA. A few v	hite silicified andesite.
	nt to numerous white
	white or grey vuggy
32.0 33.5 Core is strongly fractured into wedge shaped pieces. Fractures oriented a	at 10 to CA.
34.95 35.7 Propylitized andesite with several white to grey vuggy quartz veins to 8m CA. Sample 33655.	nm. Veins at 50 to 60 to
Propylitized andesite. Weak flow banding, mostly at 50 to CA. Scattered quartz veins.	ed white to grey vuggy
Dark flow bands in groundmass much more prominent. Phenocrysts are smalled Groundmass is finer grained to aphanitic. Flow bands at 50 to CA. Taking on banded dacite in previous holes, but hornblende still present as single phenocry feldspar phenocrysts. Flows are dark grey to black except where bleached or p to quartz veins and clay seams. Rock is very hard, and often appears to be silic scattered quartz+/-calcite+/-epidote veinlets typically less than 3 mm. Most ve	appearance of flow ysts and as clots with propylitized adjacent icified. numerous
50.7 Several faults at 45 to CA with 5 mm tan clay gouge.	
Prominent red-brown flow banding at 45 to CA.	
64.2 Strong joint/vein set at 0 to 5 to CA. Joints lined with quartz/calcite/chlor	rite.
67.8 1 cm vuggy grey quartz vein with strong epidote replaced walls. Vein at	70 to CA.
Zone of strong epidote? alteration with numerous grey quartz veins. Mos oxidation after disseminated pyrite. Some clast supported brecciation. Sa	
Dark grey to greenish grey andesite porphyry. Aphanitic groundmass. Feldsparexceed 2 mm. Massive, without flow banding or alignment of phenocrysts exc Scattered quartz +/-calcite veinlets. Weak propylitic alteration and bleaching squartz veins. Lower contact with rhyolite breccia is sharp, but fairly irregular at 2 cm calcite vein in white clay gouge. Vein at 45 to CA. Strong bleaching 91.6 92.1 2 cm white quartz and calcite vein and 1 cm quartz vein at 30 and 20 to 91.6 selvages inclusions in veins. Sample 3657	cept where noted. surrounding some at 45 to CA. ng adjacent to vein.

B06-07A Blackdome

93.7	96.0	Faint flow banding.
97.4	97.8	Andesite at contact is finer grained, possibly chilled. Contains 1% very fine grained disseminated
		pyrite where rock is unoxidized. Several 3 mm grey quartz veins.

97.8 144.4 rhy Rhyolite Flows or Ignimbrites

Chaotic assemblage of rhyolite flows, breccias and possible ignimbrites. Rock is grey where fresh, but is usually tan from oxidation of disseminated pyrite, or light green from weak propylitization. Zones of strong argillic alteration occur. Phenocrysts consist of rounded to sub- rounded feldspar to 4 mm, which make up upwards of 20 % of the rock, and rounded quartz eyes to 3mm which comprise up to 5 % of the rock. The flows have a fragmental appearance consisting of angular to sub angular, well sorted clasts of darker coloured rhyolite to 1 cm, in a lighter coloured rhyolite matrix. In places this appears to be a clastic texture, but in others it seems to be a devitrification texture, since relict flow banding is occasionally seen to cross several clasts with out rotation. Where the primary rock was a breccia, adjacent clasts are the same colour and texture, surrounded by a lighter coloured, possibly devitrified matrix. Orbicular texture is common from 98 to 102.7m, consisting of spherical, concentrically banded silica growths. Flow banding is also common throughout the interval, but bands are usually affected by the devitrification texture. True clastic breccias occur, but are rare.

98.0	101.0	Dense silicification, strongest near contact with andesite, patchy below 100.0m. Abundant spherical orbicules to 3 cm.
103.6	104.2	Rhyolite flow with numerous grey quartz veinlets and one 3 cm vuggy quartz vein with strong manganese? stain. Veins mostly from 45 to 80 to CA. Sample 3658.
106.7	107.6	Numerous white to grey quartz veinlets at all angles to CA. Sample 3659
111.6	111.7	1 cm quartz vein at 45 to CA surrounded by brown clay gouge and bleached rhyolite walls.
112.0	112.3	1mm limonitic fracture, with dense silicification extending outwards for 2 cm. Sharp and abrupt

B06-07A Blackdome

		outer edge to silicification. Fracture at 10 to CA.
112.5	113.2	Strong sheared, breccia zone with main fractures at 10 to 20 to CA. Very strong tan clay gouge and clay coatings on clasts.
115.1	115.8	Strongly argillized fracture/fault zone. Most fractures at 20 to CA.
122.3	126.8	Fault zone. Strong argillization associated with abundant shear surfaces at low angles to CA. Slickensides on fault surfaces at 70 to 80 to CA.

144.4 159.6 vcbx Volcaniclastic Breccia and Lapilli Tuff

Chaotic package of breccia, volcanic sandstone and lapilli tuff. Breccias can be fairly well sorted, clast supported and consist of mostly rhyolite clasts in a sand matrix. There are occasional clasts of other lithologies, including sediments. Other breccias are heterolithic, poorly sorted, matrix supported with a coarse sand matrix. Volcanic, possibly tuffaceous sandstones are common throughout the unit interbedded with the breccias. These tend to form normally graded beds of lithic sandstone up to 20 cm thick, with scattered, large volcanic or sedimentary clasts. These could be lapilli tuff beds. Bedding within the sandstone and tuff layers is typically 45 to CA. The unit is grey and contains sparse disseminated pyrite. The breccia matrix and some of the sandstone has a greenish tint from possible weak propylitic alteration. Upper contact is sharp and planar with overlying rhyolite flows at 45 to CA. Lower contact is sharp with flow banded rhyolite flows at 35 to CA.

154.1 154.3 20 cm thick clay gouge at 45 to CA. Parallel to layering in rhyolite. Tan gouge w/ ground rock fragments. White quartz vein to 1 cm. Fault gouge, or alteration related to quartz vein.

B06-07A Blackdome

159.6 224.2 dac Dacite? Flows

Flow banded dacite flows (possible rhyolite?) and breccias. Tan to greenish tan flow banded dacite with feldspar phenocrysts and sparse quartz eye. Darker flows bands often have a pseudo-clastic texture from devitrification. Thin breccias occur throughout the interval and consist of dacite clasts in a fine-grained, possible lava matrix. Flow banding is variable throughout the unit from low angle to perpendicular to CA. Most common orientation is 65 to CA.

162.8	163.2	Shearing and faulting, mostly at low angles to CA. Tan clay and rock fragment gouge.
165.4	166.1	8 mm grey quartz vein running down length of core. Numerous small quartz veinlets at all orientations. Patches of grey, unoxidized, pyritic dacite. Sample 3662.
166.1	166.73	Vein structure. Upper contact at 40 to CA. Lower contact obscured in rubble. Vein is at least 25 cm wide, but most of interval is broken core, and recovery is only 50%. Structure consists of brecciated, limonitic rhyolite with white quartz matrix and cross cutting white and grey quartz veins. Breccia clasts of dacite, quartz vein and breccia. Complete silica flooding. Disseminated oxidized pyrite. Sample 3663
166.73	167.6	Upper 40 cm of the interval is rubble of dacite with some quartz veining and silicification as in the previous sample. Rest of the sample is dacite with minor crackle breccia zones and quartz vein matrix and several white quartz veins to 1 cm. Sample 3664

B06-07A Blackdome 6 of 9

224.2	232.2	vcbx	Volcaniclastic Breccia
-------	-------	------	------------------------

208.8

223.12

210.7

223.8

B06-07A Blackdome 7 of 9

to CA.

Several sub cm white quartz veins.

Core is very broken. Strong chlorite +/-epidote alteration associated with faulting and quartz veining. Many surfaces are sheared and have clay + chlorite fracture coatings. Quartz veins at 35

Broken, limonite stained fractures. Numerous white vuggy quartz veins at 40 to CA.

Heterolithic, poorly sorted breccia. Angular clasts of many rock types from small gravel to 30 cm blocks. Matrix is coarse sand to fine gravel sized grains. Larger clasts are suspended in this matrix and thus appear to be matrix supported. Clasts and matrix comprised of multi-coloured dacite, andesite, siltstone, vesicular basalt? and devitrified volcanic glass. The breccia is massive, without indication of bedding. Some clasts, and to a lesser extent, the matrix have fine grained disseminated pyrite. Upper contact with the Dacite is sharp at 70 to CA. Breccia becomes gradually finer approaching lower contact.

227.1 227.3 Abundant fractures at low angles to CA.

232.2	239.2	dac	Dacite		
			1 2		flows. Greenish except where tan from oxidation of disseminated pyrite. Up to 10% sts. No flow banding. Gradational upper and lower contacts with breccia units.
			233.9	234.4	Zone of quartz veining. Veins from 40 to 55 to CA. Main vein is 20 cm wide breccia vein with silicified dacite and quartz vein clasts in a matrix of grey quartz veins and later white cockscomb quartz vein. Trace disseminated pyrite. Upper and lower contacts are sharp at 45 to CA. Sample 3665
			234.9	235.7	White and grey quartz veined dacite. Main orientation at 40 to CA. 2cm wide open space fill white quartz vein with euhedral toothy quartz filled cavity. 40 to CA. 5cm wide breccia with white cockscomb quartz vein matrix at 40 to CA. Trace disseminated pyrite. Numerous smaller white quartz veins in interval. Sample 3667
			235.7	236.1	Core is strongly broken along fractures at 5 to 10 to CA.
239.2	234.8	vcbx	Volcar	niclastic Br	·eccia
					rly sorted breccia with some small dacite flows. Could be volcanic breccia, but many es point to sedimentary origin. Gradational upper and lower contacts.
			240.5	240.9	Primary breccia that seems to have been hydrothermally brecciated and silica healed. White quartz and silica flooded matrix. Several white quartz veins at 45 to CA with clasts of primary breccia. Trace disseminated pyrite. Sample 3668.
			241.9	242.6	Fault zone. Strongly argillized and sheared dacite and primary breccia. Dominant shear direction at 45 to CA.
234.8	259.3	dac	Dacite	:	

B06-07A Blackdome

Grey to greenish porphyritic dacite? Feldspar phenocrysts are smaller than in other dacites. Weak propylitic alteration. Unit includes several flow breccias consisting of dacite clasts in lava or possibly

259.3	ЕОН	End of Hole	
		295.0 301.76 FZ	Fault zone. Core is hard, abrasive broken rubble to 298.4m. Below 298.4m core is strongly argillized, brecciated and sheared. Much of interval is tectonic breccia with milled, crushed rock fragments in sheared clay matrix.
		290.6 298.3	Dacite is light grey and has a somewhat bleached appearance and a slightly sintery feel. Up to 2% disseminated and veinlet pyrite. Pyrite is coarse grained, euhedral and brassy. Reddish hematite occurs as thin coating on many fractures. Dacite has patchy silicification with locally abundant grey micro quartz veinlets.
		290.0 292.0	Broken, fractured core. Weak clay on fractures, no obvious shearing. Red hematite on fractures.
		277.8 280.7	Numerous limonite lined fractures at 0 to 10 to CA. Coarse brassy pyrite cubes deposited along these fractures. Several white clay lined joints at 45 to CA. Interval is slightly bleached.
265.3	301.76		n grey flow banded dacite. Sparse, fine-grained feldspar phenocrysts. Fine grained l pyrite. Flow banding varies from 45 to 75 to CA.
259.6	263.5	Fine, dacite- banded daci in hematized possibly from with bands a	clast conglomerate which grades into pyritic interbedded sediments or possibly flow te. This unit grades into coarse breccia consisting of angular, flow banded dacite clasts I lava or sediment matrix. Flow banding has a distinctive green and white striped look, in partial devitrification. This breccia grades into flow banded, green and white dacite at 20 to CA. This transitions into more typical, finely flow banded, porphyritic grey banding gradually shallows to 45 to CA.
254.0	257.5	Flow breccia	a. Angular dacite clasts in purple hematized matrix. Mostly clast supported.
		243.7 248.2	Matrix is often hematized. Distinct flow banding in dacite below 265.0m. Zone of broken core. Breaks at all angles to CA, but 20 to 35 to CA most common.
		sediment matrix	Matrix is often hematized. Distinct flow handing in dacite helow 265 0m

B06-07A Blackdome 9 of 9

APPENDIX D – ATTRIBUTE DRILL LOGS

Blackdome Project 2006

Lithology

overburden volcaniclastic sediments ovb andesite flows breccia and bx rhyolite flows volcaniclastic breccia rhy vcbx lapilli tuff Ιt qtz quartz vein basalt bas

Mineralization

Diss py disseminated pyrite
Au/electrum Gold or electrum
Ag min Silver sulfides, sulfosalts

Assemblage **Alteration** Scale **Texture** Notes L1 replacement chlorite+/-calcite+/-epidote local propylitic E2 sericite+clay bleaching, usually adjacent to qtz +/envelope replacement adularia veins E3 envelope to local silica+adularia+sericite silicification, flooding, usually peripheral replacement to quartz veining clay+/- sericite argillization L4 local replacement L5 oxidation local feox L6 vein and replacement hematite +/- silica veins, replacement of phenocrysts, local reaction rims around phenos. replacement of ground mass

Alteration intensity:

0 none1 subtle2 weak3 moderate4 strong5 intense

DDH: B06-Legend

Blackdome Project 2006

CODING DESCRIPTION (Continued)

Quartz veining

% qtz vn % Quartz veining and quartz veining as Breccia matrix % adularia % Adularia in quartz veins and breccia

Breccia Intensity:

- Crackle breccia, interconnecting network of fine veinlets, no rotation. 1
- 2 Clasts>>veins/matrix, no rotation, single phase (no breccia clasts, single vein type) Includes autobrecciation.
- Clasts>veins/matrix, may have more than one vein type, no veins >2mm, no 3 rotation, easy to moderate to reconstruct.
- Clasts>veins/matrix, some veins >2mm, may have some rotation (locally clast supported), may be multiphase, moderate to difficult to reconstruct.
- 5 Clasts <= veins/matrix, multiphase, multi vein style, may have rotation at least locally, many veins >2mm, hard to impossible to reconstruct.

DDH: B06-Legend

							Mineralization Alteration								Alteration % Quartz V				
From (m)	To (m)	Width	Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	% Py	Au/electrum	Ag min.	L1	E2	E3	L4	L5	L6	% qtz	% adularia
44.60	46.70	2.10						And				2	0	0	0	4		+-	
												2	0	0	0			u	
46.70	47.20	0.50	3634	0.25	1.2	0.21	White vuggy quartz vein, silicified walls	And				3	0	2	0	0		20	
47.20	48.16	0.96	3					And				2	0	3	0	0		1	
48.16	48.56	0.40	3635	0.14	5.5	0.03	10 cm wide quartz bx vn w/ white vuggy qtz vein matrix	And				2	1	4	0	1		25	
48.56	51.50	2.94	1					And				3	0	3	0	1		2	
51.50	52.50	1.00	3636	0.34	3.0	0.11	Part. silic'd andesite w/ numerous wht qtz vns to 8mm	And				3	0	2	0	1		3	
52.50	53.10	0.60	3637	0.79	2.4	0.33	Crackle Bx w/ white vuggy qtz vein matrix, limo on fracts	And				1	1	3	0	3		20	
53.10	55.40	2.30)					And				3	0	1	0	1		1	
55.40	56.10	0.70	3638	0.19	1.4	0.14	Qtz veined partially silic'd andesite, limonitic clay on fracts	And				3	0	2	1	2		5	
56.10	56.80	0.70	3639	0.17	1.2	0.14	same, w/ 5 cm crackle bx w/ white vuggy qtz vein matrix	And				2	0	2	0	3		10	
56.80	57.30	0.50	3641	0.45	2.1	0.21	Qtz veined , partially silicified andesite, limonite on fracts	And				1	0	3	1	3		7	
57.30	60.60	3.30)					And				3	0	1	1	1		tr	

					Mineralization							Alteration						%	Quartz Vein
From (m)	To (m)	Width	Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	% ру	Au/electrum	Ag min.	L1	E2	E3	L4	L5	L6	% qtz	% adularia
0.00 3.50	3.50 4.88	3.50 1.38					no core	And	0	0	0	2	3	0	3	4			
4.88	4.00 5.18	0.30						And And	0	0	0	3	3	0	3	4			
5.18	8.23	3.05						And	0	Ö	Ö	2	2	0	3	4		0.5	
8.23	10.10	1.87						And	0	0	0	3	2	0	3	3			
10.10	11.50	1.40		0.09	0.8	0.11	Minor Bx w/ blueish fg. qtz matrix, tr Ag min, mostly crackle Bx	And	0	0	tr	2	2	0	2	3		3.0	tr
11.50	14.46	2.96						And	0	0	0	2	2	0	2	4		0.5	
14.46	16.20	1.74		0.07	0.8	0.09	As 3501, but more crackle Bx veinlets	And	0	0	tr	3	2	0	2	3		6.0	
16.20	19.81	3.61						And	0	0	0	3	2	0	2	4		1.0	
19.81	22.86	3.05					0	And	0	0	0	3	2	0	2	4		0.5	
22.86 25.91	25.91 28.96	3.05 3.05					6cm qtz vein at 24.95m,+ partial silicification of breccia matrix.	And And	0	0 0	0	2	3 2	2	2	3		2.0	
28.96	32.00	3.04						And	0	0	0	3	1	0	1	2			
32.00	32.61	0.61						And	0	0	0	4	1	0	1	1			
32.61	35.66	3.05						And	0	0	0	4	1	0	1	3			
35.66	38.71	3.05						And	0	0	0	3	1	0	1	2			
38.71	41.78	3.07						And	0	0	0	3	0	0	0	1			
41.78	44.81	3.03						And	0	0	0	4	0	2	0	2		1.0	
44.81	45.25	0.44		0.45	4.7	0.10	white , toothy qtz vns, 1%ox py, silicified walls	And	1	0	0	3	0	4	0	1		15.0	
45.25	46.35	1.10		0.27	0.6	0.46	Propylitized, several 4mm toothy white qtz vnz, minor sil'n	And	tr	0	0	2	0	2	0	1		2.0	
46.35	47.95	1.60		0.24	1.5	0.16	Same, but increases veins and silicn of andesite adj to vns	And	tr	0	0	3	1	3 4	0	1		5.0	
47.95	48.95	1.00		0.78 2.23	1.7	0.46 0.15	Same, but increases veins and silicn, tr jarosite and white clay	And	tr 1	0	0	2	1 2	5	1 2	2		10.0 60.0	2.0
48.95 49.80	49.80 51.05	0.85 1.25		0.18	14.7 6.7	0.15	Qtz bx vn, bx'd clasts, total silic'n of and. clasts, toothy wht qt, Oxidized andesite, minor bx'n w/ silic'd clasts and matrix, qtz vn	Bx And	tr	0	tr O	0	0	3	1	3		2.0	3.0
51.05	52.25	1.20		0.18	15.3	0.03	Brreccia, w/ white cockcomb qtz vns forming matrix,	Bx	u tr	0	0	1	0	2	0	3		50.0	
52.25	53.25	1.00		0.03	3.9	0.07	Propylitized andesite, minor white qtz veins	And	0	0	0	2	0	1	0	1		5.0	
53.25	54.10	0.85		0.20	0.0	0.01	ropylitzed andesite, filliof write qiz vellis	And	0	Ö	Ö	3	0	1	0	1		2.0	
54.10	56.65	2.55						And	0	0	0	3	0	0	0	2		tr	
56.67	57.40	0.73	3512	0.37	0.9	0.41	White toothy qtz veins w/ yellow-tan clay, silic'd walls, wk Bxn	And	tr	0	0	3	0	2	0	1		10.0	
57.40	60.05	2.65						And	0	0	0	3	0	0	0	1		tr	
60.05	63.09	3.04						And	0	0	0	2	0	1	0	0			
63.09	66.14	3.05						And	0	0	0	3	0	0	0	0			
66.14	69.19	3.05						And	0	0	0	4	0	1	0 2	0			
69.19 72.24	72.24 75.29	3.05 3.05						And And	0	0	0	2	0	1	0	0			
75.29	78.34	3.05						And	0	0	0	3	0	0	0	0			
78.34	81.38	3.04						And	0	0	0	2	0	0	0	0			
81.38	84.43	3.05						And	0	0	0	3	0	0	0	0			
84.43	87.48	3.05					Dark greenish gray, silicified crackle breccia matrix	And	0	0	0	4	0	2	0	0			
87.48	90.53	3.05						And	0	0	0	3	0	1	0	0			
90.53	93.58	3.05						And	0	0	0	3	0	0	0	0			
93.58	96.62	3.04						And	0	0	0	3	0	1	0	0			
96.62 99.67	99.67 102.72	3.05 3.05						And And	0	0	0	3 4	0	0 1	0	0	1 2		
102.72	105.77	3.05						And	0	0	0	4	0	1	0	0	2		
105.77	108.82	3.05						And	0	0	0	3	0	0	0	0	2		
108.82	111.86	3.04					Greenish chalcedonic veins or silicified rock silt layers	And	0	0	0	4	2	2	0	0	1		
111.86	114.91	3.05					·	And	0	0	0	3	0	0	0	0	1		
114.91	117.98	3.07					Pervasive red mineral in matrix and veinlets, hematite? cinnabar?	And	0	0	0	2	0	0	0	0	3		
117.98	121.01	3.03						And	0	0	0	2	0	0	0	0	3		
121.01	124.06	3.05						And	0	0	0 0	2	0	0	0	0	3		
124.06 127.10	127.10 130.15	3.04 3.05						And And	0	0	0	3	0	0	0	0	1		
130.15	130.15	3.05						And	0	0	0	2	0	0	0	0	1		
133.20	136.25	3.05						And	0	0	0	3	1	1	0	0	1		
136.25	139.30	3.05					Complete passive silica flooding of matrix	And	Ö	Ö	0	2	Ö	4	0	Ö	1		
139.30	142.34	3.04					•	And	0	0	0	3	0	2	0	0	1		
142.34	145.39	3.05						And	0	0	0	3	1	0	0	0	0		
145.39	148.44	3.05						And	0	0	0	2	0	1	0	0	1		
148.44	151.49	3.05						And	0	0	0	3 2	2	2	0	0	1		
151.49 154.54	154.54 157.58	3.05 3.04						And And	0	0	0	2	1	1 0	0	0	1		
157.58	160.63	3.04						And	0	0	0	3	1	0	0	0	0		
160.63	163.68	3.05						And	0	ő	0	4	1	0	1	0	0		
163.68	166.73	3.05						And	0	0	0	4	1	0	1	0	0		
166.73	169.78	3.05						And	0	0	0	5	1	0	0	0	0		
169.78	171.30	1.52						And	0	0	0	5	1	0	2	0	0		

									Mineralization					Alter	% Quartz Veir				
From (m)	To (m)	Width	Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	% py	Au/electrum	Ag min.	L1	E2	E3	L4	L5	L6	% qtz	% adularia
0.00	3.50	3.5	0				no core												
171.30	172.09	0.7	9					And	0	0	0	4	1	0	1	0	1		
172.09	172.84	0.7	5					And	0	0	0	4	0	0	2	0	1		
172.84	174.04	1.2	0					And	0	0	0	4	0	0	2	0	1		
174.04	174.65	0.6	1					And	0	0	0	4	0	0	2	0	1		
EOH																			

									Mineralization					Altera	tion			% Qu	artz Vein
From (m)	To (m)		Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	Diss Py	Au/electrum	Ag min.	L1	L2	L3	L4	L5	L6	% qtz	% adularia
0.00	2.10	2.10													_		_		
2.10	4.87	2.77						And And		0 0	0	2	0 1	0	2	0 3	2		
4.87 7.93	7.93 10.97	3.06 3.04						And		0	0	2	1	0	2	3	1		
10.97	14.02	3.05						And		0	0	3	0	0	0	1	Ó	tr	
14.02	19.50	5.48						And		0	Ö	4	Ö	0	0	1	1	1	
19.50	20.20	0.70	3513	0.10	3.7	0.03	White toothy qtz forming bx matrix and veins, tan clay on fracts.	And	tr	0	0	1	2	1	0	3	0	30	tr
20.20	23.17	2.97					3	And		0	0	4	0	0	0	1	1	tr	
23.17	26.52	3.35					3 cm white qtz vein	And		0	0	4	0	1	0	1	1	1	
26.52	29.26	2.74						And		0	0	4	0	0	0	1	0		
29.26	31.45	2.19						And		0	0	4	0	0	0	1	0		
31.45	32.80	1.35	3515	0.24	1.1	0.22	White qtz veins as crackle breccia matrix	And		0	0	3	1	1	0	2	0	2	
32.80	34.10	1.30	0544	0.40	0.7	0.05	Mile to the other of Country by an extension of the formation of the state of the s	And		0	0	3	1	1	0	2	0	tr	0.0
34.10	35.50	1.40	3514	0.19	3.7	0.05	White toothy qtz forming bx matrix and veins, tan clay on fracts.	And		0	0	3	2	2	0	2	0	4 4	2.0
35.50 36.80	36.80 38.41	1.30 1.61	3516	0.47	13.4	0.03	5 cm silic'd bx, and white qtz veins, orange tan clay gouge	And And		0	0	3	2	1	0	2	0	tr	tr
38.41	39.50	1.09						And		0	0	4	1	0	0	1	0	u	
39.50	41.45	1.95						And		0	0	3	0	0	0	0	0		
41.45	44.50	3.05						And		Ō	0	4	1	0	0	Ō	1		
44.50	47.55	3.05						And		0	0	4	0	0	0	0	2		
47.55	50.60	3.05						And		0	0	4	1	0	0	0	2		
50.60	53.65	3.05						And		0	0	4	1	0	1	1	1		
53.65	56.70	3.05						And		0	0	4	1	0	0	0	0		
56.70	59.74	3.04						And		0	0	4	0	0	1	1	0		
59.74	62.79	3.05						And		0	0	4	0	0	0	1	0	tr	
62.79 65.84	65.84 68.89	3.05 3.05						And And		0	0	4	0 2	0	0	2 2	1	tr	
68.89	71.93	3.05						And		0	0	3	0	0	0	1	1		
71.93	74.98	3.05						And		0	0	2	0	0	0	1	1		
74.98	78.03	3.05						And		0	0	2	0	0	0	1	1		
78.03	81.08	3.05						And		0	0	4	0	0	3	0	0		
81.08	84.13	3.05						And		0	0	4	0	0	2	1	1		
84.13	87.14	3.01						And		0	0	2	0	0	0	0	1		
87.14	90.22	3.08						And		0	0	2	0	0	1	0	2		
90.22	92.36	2.14						And		0	0	3	0	0	2	0	0		
92.36	95.56 98.76	3.20 3.20						And		0 0	0	2	0	0	0	0	0		
95.56 98.76	101.93	3.20						And And		0	0	3	0	0	0	0	1		
101.93	105.10	3.17						And		0	0	2	1	0	1	0	0		
105.10	108.14	3.04						And		0	0	3	1	0	1	Ö	0		
108.14	111.20	3.06						And		0	0	2	1	0	1	0	1		
111.20	114.30	3.10						And		0	0	3	1	0	1	0	1		
114.30	117.35	3.05						And		0	0	3	0	0	1	0	1		
117.35	120.40	3.05						And		0	0	1	0	0	0	0	1		
120.40	123.42	3.02						And		0	0	1	0	0	0	0	1		
123.42 126.56	126.56 128.32	3.14 1.76						And And		0	0	2	1	0	0	0	1		
128.32	120.32	0.92						And		0	0	3	1	0	2	0	0		
129.24	131.37	2.13						And		0	0	3	1	0	2	0	0		
131.37	132.89	1.52						And		Ō	0	3	1	0	2	Ō	0		
132.89	135.94	3.05						And		0	0	3	1	0	2	0	0		
135.94	139.00	3.06						And		0	0	2	1	0	0	0	1		
139.00	142.04	3.04						And		0	0	3	0	0	1	0	1		
142.04	145.09	3.05						And		0	0	3	1	0	1	0	1		
145.09	148.14	3.05						And		0	0	2	1	0	2	0	1		
148.14 151.18	151.18 156.30	3.04 5.12						And And		0	0	2	1 1	0	1	0	1	tr	
156.30	150.30	1.10	3517	0.03	0.2	0.13	20 cm silicified bx w/ white qtz and andesite clasts, and qtz vns	Bx		0	0	2	0	0	3	0	0	20	
157.40	160.33	2.93	3017	0.00	0.2	0.10	25 S. S. S. S. S. W. Willio que and andoone oldoto, and que vilo	And		0	0	3	0	0	0	0	1	tr	
160.33	163.68	3.35						Bx		0	0	1	0	1	0	0	1	-	
163.68	166.42	2.74						And		0	0	2	0	2	0	0	1		
166.42	169.47	3.05						And		0	0	2	0	1	0	0	2		
169.47	172.52	3.05						And		0	0	1	0	3	0	0	3		
172.52	175.57	3.05						Bx		0	0	1	0	4	0	0	3		
175.57	178.62	3.05						And And		0	0	1 1	0	4	0	0	4		
178.62	181.66	3.04						And		U	U	- 1	0	3	0	0	3		

Post											Mineralization	n			Alter	ation			% Qu	artz Vein
11 12 13 14 15 15 15 15 15 15 15	From (m)	To (m)	Width	Sample No.	Au a/t	Ag g/t	Au/Aa	Description	Lith	Diss Pv			L1	L2			L5	L6		
181 68					3	- 5 5 -				,									/• -	,,
184.71 187.76 3.65 3.6									And		0	0	1	0	2	0	0	3		
1916 1917 1918											0	0	0	0	2	0	0	4		
1916 1917 1918											0	0	2	0	1	0	0	3		
198 198 20 3.00 3.00 3.00 1.00 0.00 3.00 1.00 0.00 2 1.00					0.68	2.0	0.34	15cm silicified breccia w/ white qtz vein clasts, oxidized, tr diss py		tr	0	0	3	0	4	0	1	3	5	
1989 203 20 3 10 2 2 3 2 3 2 3 2 3 2 3 3			5.70								0	0	3	0	0	0	0	0		
1998 0	196.90	199.90	3.00						Bx	tr	0	0	3	0	1	0	0	2		
204.10 205.40 1.30 3519 0.06 0.4 0.15 Patchy sikicification of bx matrix and smaller clasts, tr diss f.g. py. Bix tr 0 0 3 0 1 0 0 0 0 0 0 0 0										1	0	0	4	0	2	0	0	1		
205.00 207.50 1.45 3521 0.08 0.4 0.14 Patchy silicification of bx matrix and smaller clasts, trides f.g., py. Bx tr 0 0 3 0 1 0 0 0 0 0 0 0 0	203.00	204.10	1.10						Bx	tr	0	0	3	0	1	0	0	1		
206.04 207.50	204.10	205.40	1.30	3519	0.06	0.4	0.15	Patchy silicification of bx matrix and smaller clasts, tr diss f.g. py.	Bx	tr	0	0	3	0	3	0	0	1		
207.50 209.10 1.6	205.40		0.65					,	Bx	tr	0	0	3	0	1	0	0	0		
207.50 209.10 1.6					0.06	0.4	0.14	Patchy silicification of bx matrix and smaller clasts, tr diss f.g. py.		tr	0	0	3	0	2	0	0	0		
211-14 215-19 3.05 1.06 3.05 1.06 0.7 2.37 1.07 1.06 1.07	207.50	209.10	1.60					,	Bx		0	0	3	0	1	0	0	1	tr	
218.75 3.56 218.75 3.56 218.75 3.56 218.75 3.56 218.75 3.56 218.75 3.56 218.75 3.56 218.75 3.56 218.75 219.55 20.85 3.52 0.15 0.7 0.27 237 Ltgray rdz vns, 3 cm bx vein wil gray qtz vn matrix, tr py, 10 cm 2 cm	209.10	212.14	3.04						Dac		0	0	3	0	1	0	0	1	tr	
218.75 3.56 219.55 3.56 219.55 3.56 219.55 3.52 0.15 0.7 0.7 0.27 2.37 Lt gray qtz vns, 3 cm bx vein wil gray qtz vn matrix, trpy, Dac 0 0 1 0 4 0 0 1 0 4 2.21 0 0 2.21 0 0.5 0.3 2.21 0 0.5 0.3 0.20 0.5 0.3 0.20 0.5 0.3 0.20 0.5 0.3 0.20 0.5 0.3 0.20 0.5 0.3 0.20 0.20 0.3 0.2 0.3 0.2 0.5 0.3 0.20 0.20 0.22 0.3 0.2 0.3 0.2 0.3 0.2 0.5 0.3 0.20 0.20 0.20 0.20 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.20 0.20 0.20 0.20 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3	212.14	215.19	3.05					Mod silica flooding, rare It gray gtz veins	Dac		0	0	2	0	4	0	0	2	1	
219.55			3.56					3, 11 13 1, 1, 1			0	0	1	0	4	0	0	1	tr	
221.55 220.85 1,30 3532 0.19 0.7 0.27 Silioffed datele, trigt vein, oxidized fairths Dac 0 0 1 0 4 0 1 0 triggraphy 1 2 2 2 2 2 2 2 2 2					1.66	0.7	2.37	Lt gray gtz yns, 3 cm bx yein w/ gray gtz yn matrix, tr py,		tr	0	0	2	0	3	2	1	0	4	
221,40										-	0	Ô	1	0	4		1	0	tr	
221.40 222.50								· · ·			-	n	3	-	1	1	2	n		
225.50											· ·	-			•			-	20	
225.50					0.50	0.5	0.42	45 off brecolated qtz vein, imoritie clay matrix, sheared			•	•	•	•				•	20	
225.50 226.80 1.30 35.24 0.07 0.5 0.14 gray qtz veins, mod limonite on fracts Dac 0 0 0 0 1 2 1 1 0 2 2 2 2 2 2 2 2 2											-	-		-	-		-	-		
227.75 0.95 35.25 0.05 0.6 0.6 0.8 Str argilized voided bx, silic'd voic and qtz vn clasts, clay matrix Ex					0.07	0.5	0.14	gray gtz voine, mod limonito on fracts			-			1				-	2	
22775 230,00 2.25											-	-	-	1	4			-		
230.00 233.05 235.60 2.55 2.25 2					0.05	0.0	0.06	Str arginizur oxid d bx, silic d voic and qtz vir clasts, clay matrix		4-	-	-	-	_	1		-	-	5	
233.05												-		•	•	-		-		
235.60										u	-	-		-				-		
236.95					~0 03	0.5		Strangly alliaified manalithologie by facy on fracts ofter purito?			-			-						
237.85								0, 1,			-		•	-				-		
238.45							0.07	. 0, 0			-	-							40	
239.45											-		-	-						
242.80					0.62	0.8	0.78	Dacite, w/ sparse gray qtz vn, mod limonite on fractures			-			-				-	2	
244.00											-	-	_	•				-		
248.54											-	-	1	-				-	•	
248.54					0.66	0.4	1.66	Wk silic'n of dacite, one 2 cm qtz+calcite+adularia+ag min? vn			-		1	-		-		-	1	tr
251.77 254.82 3.05										tr				-						
254.82 256.95 2.13											-	-		-						
256.95										-	-	-	-	•	-	-		-		
258.00											-	-	1	•		-		-		
258.75										tr	-	-	1	•				•		
260.20 263.25 3.05	258.00	258.75	0.75	3536	0.93	2.0	0.47	Crumbly bx, silic'd bx and qtz vn clasts, str limonitic gouge	Bx		0	0	0	2	2	3	5	0	25	
263.25	258.75	260.20	1.45	3537	0.34	0.7	0.48	Argillized, oxidized bx, Minor patchy silic'n of matrix	Bx		0	0	1	0	2	1	4	0		
264.60 267.00 2.40 Dac 0 0 2 0 2 1 3 0 267.00 270.06 3.06 Bx tr 0 0 2 0 2 1 3 0 270.06 273.10 3.04 Bx tr 0 0 2 0 1 0 3 1 273.10 276.15 3.05 Bx 0 0 2 0 0 3 0 276.15 279.20 3.05 Bx 0 0 2 0 1 0 2 0 tr 279.20 282.25 3.05 Bx tr 0 0 2 0 1 0 2 0 tr	260.20	263.25	3.05						Dac		0	0	2	0	1	0	2	0		
267.00 270.06 3.06 270.06 273.10 3.04 273.10 276.15 3.05 276.15 279.20 3.05 279.20 282.25 3.05 Bx tr 0 0 2 0 0 3 0 Bx 0 0 3 0 0 2 0 0 3 0 279.20 282.25 3.05 Bx tr 0 0 2 0 1 0 2 0 tr	263.25	264.60	1.35	3538	0.07	1.2	0.06	Oxid, argillized primary bx, minor silicn of matrix, clay seams	Bx		0	0	1	0	2	2	3	0		
270.06 273.10 3.04 273.10 276.15 3.05 276.15 279.20 3.05 279.20 282.25 3.05 300 300 300 279.20 282.25 3.05 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300<	264.60	267.00	2.40						Dac		0	0		0	_	1	3	0		
273.10 276.15 3.05 Bx 0 0 2 0 0 3 0 276.15 279.20 3.05 Bx 0 0 3 0 0 2 0 279.20 282.25 3.05 Bx tr 0 0 2 0 1 0 2 0 tr									Bx	tr	-	0		0	2	1	-	0		
276.15 279.20 3.05 Bx 0 0 3 0 0 0 2 0 279.20 282.25 3.05 Bx tr 0 0 2 0 1 0 2 0 tr	270.06	273.10	3.04						Bx	tr	0	0	2	0	1	0	3	1		
279.20 282.25 3.05 Bx tr 0 0 2 0 1 0 2 0 tr	273.10	276.15	3.05						Bx		0	0	2	0	0	0	3	0		
	276.15	279.20	3.05						Bx		0	0	3	0	0	0	2	0		
EOH	279.20	282.25	3.05						Bx	tr	0	0	2	0	1	0	2	0	tr	
	EOH																			

										Mineralization	n			Alter	ation		% Q	uartz Vein
From	To (m)	Width	Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	% Py	Au/electrum	Ag min.	L1	E2	E3	L4	L5	L6 % qtz	% adularia
32.40	35.25	2.85						And				2	0	0	0	2	tr	
35.25	35.65	0.40	3642	0.75	1.2	0.63	Ox andesite w/ qtz bx veins to 2cm, and. clasts in qtz vn matrix	And				0	0	1	0	4	15	
35.65	36.40	0.75	3643	0.44	1.7	0.26	Ox andesite with scattered vuggy qtz veinlets.	And				0	0	1	0	4	3	
36.40	37.20	0.80	3644	0.69	1.5	0.46	Same	And				1	0	1	0	3	6	
37.20	37.90	0.70	3645	0.37	0.8	0.46	Same	And				1	0	1	0	4	4	
37.90	39.00	1.10	3646	0.46	2.2	0.21	Same, w/ one 3cm white qtz vein at 25 to CA, tr. diss py	And	tr			1	0	1	0	4	10	
39.00	39.90	0.90	3647	0.44	1.6	0.28	Same, w/o large qtz vein,	And	tr			1	0	2	0	3	4	
39.90	40.75	0.85	3648	0.61	2.8	0.22	Same	And				1	0	1	0	4	5	
40.75	41.35	0.60	3649	1.20	3.6	0.33	Str. argillized rubble, abdnt white qtz vein + silic'd andesite clasts	And				0	2	2	4	4	20	
41.35	41.95	0.60	3651	0.68	2.9	0.23	Ox. andesite bx clasts in wht vuggy qtz vein matrix, matrix spptd	Bx				0	1	2	0	4	30	
41.95	42.80	0.85	3652	0.31	2.1	0.15	Ox and un ox andesite w/ minor wht gtz vnlts as crackle bx matrix	And				0	1	2	0	3	6	
42.80	44.81	2.01					Variably oxidized and propylitized andesite, sparse white qtz veins	And				2	0	0	0	2	1	
44.81	48.30	3.49					Propylitized andesite, trace quartz veinlets.	And				3	0	0	0	1	tr	

	•	<u> </u>				•			Mineralization				Alter	ation			% Qı	artz Vein
From (m)	To (m)	Width Sample N	ο Αυ <i>α</i> /έ	A = = #	Au/Ag	Description	Lith	9/ Diec my	Au/alaatuum	Aa min	L1	L2	L3	L4	L5	L6	0/ cst=	% adularia
From (m) 0.00	1.80	1.80	o. Au g/t	Ag g/t	Au/Ag	no core	0vbd	% DISS py	Au/electrum	Ag min.	LI	LZ	L3	L4	LS	LO	% q ız	% addiana
1.80	5.18	3.38					And		0	0	2	0	0	0	1	0		
5.18 8.23	8.23 11.28	3.05 3.05					And And		0	0	3 3	0	0	0 1	0 1	0		
11.28	14.33	3.05					And				3	0	2	1	1	0		
14.33	17.37	3.04				part of interval is silica flooded	And				3	0	3	1	0	0	tr	
17.37	20.42	3.05					And				2	1	3	0	1	0		
20.42 23.47	23.47 26.52	3.05 3.05					And And				3 3	0	2 1	0 1	1 2	0		
26.52	28.65	2.13					And				3	0	0	0	1	0	tr	
28.65	32.61	3.96					And				2	0	0	0	0	1		
32.61 35.66	35.66 38.71	3.05 3.05					And And				2 2	0	0	0	2	1 0		
38.71	40.05	1.34 3539	0.42	1.6	0.26	Ox'd/silic'd And, qtz vnlt stkwrk, tr diss py,	And	tr			1	0	4	0	4	0	2	
40.05	41.40	1.35 3541,354			0.27	Same a/a w/ faint crackle breccia w/ gray qtz vnlt matrix.	And	1			0	0	4	0	3	0	2	
41.40	42.40	1.00 3543	0.66	2.2	0.30	Same a/a, less oxidation,and silica flooding and qtz vnlts. No bx	And	2			1	0	3	0	3	0	1	
42.40	43.00	0.60 3544	0.16		0.07	35 cm qtz bx vn, And. clasts, later wht toothy qtz,tr Au, ag min	qtz	tr	tr	tr	0	0	2	0	4	0	65	1
43.00	43.85	0.85 3545	17.6		0.30	25 cm qtz bx vn, later white toothy qtz, tr Au	And	tr	tr	tr	0	0	2	0	3	0	25	
43.85 44.90	44.90 47.85	1.05 3546 2.95	11.5	74.3	0.15	White to gray quartz veins to 5 mm,	And And	tr			2	0	1 0	0	2	0	4 tr	
47.85	50.90	3.05					And				3	0	0	0	2	0	tr	
50.90	53.95	3.05					And				2	0	2	0	2	0	1	
53.95	57.00	3.05					And				3	0	1	0	1	0	tr	
57.00 60.05	60.05 63.09	3.05 3.04					And And				3 4	0	0	0	0	0	tr tr	
63.09	66.14	3.05					And				4	0	0	0	1	0	u	
66.14	69.19	3.05					And				3	0	2	0	1	0	tr	
69.19	72.24	3.05					And				3	0	2	0	2	1	1	
72.24 75.20	75.20 76.00	2.96 0.80 3547	0.05	2.9	0.02	Qtz veined andesite, silica flooded, 5 cm silicified bx,	And And				4 2	0	1 4	0	1 2	0	4	
75.20 76.00	78.34	2.34	0.05	2.9	0.02	Qiz veined andesite, silica nooded, 5 cm silicined bx,	And				2	0	4	0	1	0	tr	
78.34	81.38	3.04					And				4	0	4	0	1	1	2	
81.38	84.43	3.05					And				4	0	3	0	1	0	2	
84.43 87.48	87.48 90.30	3.05 2.82					And				2	0	4 3	0	3 2	0	1	
90.30	90.30	1.10 3548	0.99	25.7	0.04	several white to gray gtz vns cutting oxidized/silicified andesite	And And				3 1	0	3	0	3	0	tr 5	
91.40	92.00	0.60 3549	1.00		0.09	Same as above, with 10 cm white cockscomb qtz vein	And				0	0	3	0	4	0	25	
92.00	99.85	7.85					And				3	0	2	0	0	1	tr	
99.85	100.95	1.10 3551	0.69	0.3	2.30	Red hem + silica veins cut by white qtz vns to 3 mm	And				4	1	0	0	0	2	2	
100.95 102.72	102.72 105.77	1.77 3.05					And And				4 3	1 1	0	0	0	0	tr tr	
105.77	108.82	3.05					And				2	Ö	0	0	0	0	tr	
108.82	111.86	3.04					And				1	0	0	1	0	1	1	
111.86	114.91	3.05					And				3	1	0	2	0	1	tr	
114.91 117.96	117.96 121.00	3.05 3.04					And And				3	1 0	0	1 1	0	0		
121.00	124.06	3.06				20cm silicified zone adj to several qtz +/- hematite veins	And				2	0	1	0	0	0	1	
124.06	127.10	3.04					And				2	0	0	0	0	0		
127.10	130.15	3.05					And				2	1	0	0	0	2	tr	
130.15 133.20	133.20 136.25	3.05 3.05					And And				0	0	0	0	0	1 1		
136.25	139.30	3.05					And				3	2	0	1	1	1	tr	
139.30	142.34	3.04					And				2	1	0	2	1	0	-	
142.34	144.80	2.46				20 cm gray clay gouge	And				1	1	0	2	1	0		
144.80 146.00	146.00 148.44	1.20 3552 2.44	0.69	0.3	2.30	5 cm zone gray vuggy qtz+hem vein cut by 2 cm white qtz vn.	And And				3 2	2	1 0	2	2	0	25	
146.00	151.50	2.44 3.06					And And				2	3 1	0	0	1	2		
151.50	154.54	3.04					And				1	1	0	2	2	1		
154.54	157.58	3.04					And				1	0	0	1	0	0		
157.58	160.63	3.05					And				2	0 1	0	2	2			
160.63 163.68	163.68 166.73	3.05 3.05					And And				2	1	0	2	1 2			
166.73	167.90	1.17 3553	0.22	0.6	0.37	3 cm clay seam @ 167.4	And				1	1	0	2	2			
167.90	168.90	1.00				Limonite stained and fracture filling	And				1	1	0	2	1			
168.90	169.78	0.88					And				1	1	0	1	1			

										Mineralization				Alter	ation			% Q ı	artz Vein
From (m)	To (m)		Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	% Diss py	Au/electrum	Ag min.	L1	L2	L3	L4	L5	L6	% qtz	% adularia
0.00 167.90	1.80 172.82	1.80 4.92					no core	0vbd And				1	1	0	1	2			
172.82	175.87	3.05					Calcite veins	And				2	0	0	1	1			
175.87	178.92	3.05					Calcite veins	And				2	0	0	1	2			
178.92 181.97	181.97 184.90	3.05 2.93					0.9m broken gare; miner elevi	And And				2	1	1 1	0	1			
181.97	185.02	0.12	3554	0.55	10.3	0.05	0.8m broken core; minor clay; 1cm qtz vein 35 deg; Fe envelope	And				1	1	1	2	1		tr	
185.02	188.06	3.04	0004	0.00	10.0	0.00	Terri que verir 33 deg, i e envelope	And				2	0	1	2	0		· ·	
188.06	190.81	2.75						And				1	1	0	2	0			
190.81	193.86	3.05					numerous Calcite veins	And				1	2	0	2	1			
193.86 197.08	197.08 200.24	3.22 3.16						And And				2	1	1 0	1	0			
200.24	203.29	3.10						And				2	0	0	1	0			
203.29	206.34	3.05						And				1	0	0	2	1			
206.34	209.39	3.05						And				2	0	1	1	1			
209.39 212.44	212.44 215.48	3.05 3.05						And				1 2	0	2	2	0 1		tr	
212.44	216.48	0.92						And And				1	1	0	1	0			
216.40	216.80	0.40	3555	1.65	1.7	0.97	2 cm qtz vein @40 degree to core; limonite stain envelope	And				1	1	2	1	2		2	
216.80	218.53	1.73						And				2	0	0	1	1		tr	
218.53	221.58	3.05					0.70 cm silicified zone @ 220.35; diss pyrite	And	1			2	1	2	1	2		tr	
221.58	224.63	3.05						And				2	0	1	1	0		tr	
224.63 227.67	227.67 230.72	3.05 3.05					8 qtz-calc veins 1cm to mm @ 30 to 70 deg to core	And And				1 2	1 0	1 1	2 1	1		tr 1	
230.72	233.77	3.05					o diz-calc veins form to min @ 30 to 70 deg to core	And				2	0	0	2	1		tr	
233.77	236.82	3.05					3cm gouge zone + 1cm qtz vein @ 234.94	And				2	0	0	1	1		2	
236.82	239.87	3.05						And				2	0	1	1	0		tr	
239.87	242.91	3.05						And				2	1	1	1	1		tr	
242.91 244.44	244.44	1.52					Prokon coro	And				1	1	0	2	1		tr tr	
244.44	245.05 249.01	0.61 3.96					Broken core	And And				2	0	1	1	0		tr	
249.01	250.84	1.83					Broken core	And				1	0	Ö	2	1		tr	
250.84	253.58	2.74					2 cm vuggy qtz vein @ 251.35; 45 degree to core	And				2	0	0	1	0		1	
253.58	257.67	4.08						And				2	0	0	1	1			
257.67	260.77	3.11					2 small qtz veins @ 45 degree to core; clay on fractures	And				2	0	1	1	2		tr	
260.77 263.82	263.82 264.25	3.05 0.43					clay on fractures; 263m start breccia	And Vbx				0	0	2	0	0			
264.25	264.25	0.43					26cm brown clay seam	Vbx				0	0	0	3	3			
264.86	266.08	1.22					20011 blown day scall	Vbx				2	2	0	2	1			
266.08	267.30	1.22	3556	0.23	0.6	0.38	3cm open qtz vn w/ str limonite in medial cavity, str argillic altn	Vbx	2			1	2	0	2	1		3	
267.30	268.80	1.50	3557	0.05	0.6	0.08	1cm qtz vein as above at 5 to CA, str limonite, str argillic altn.	Vbx	2			1	2	0	3	3		2	
268.80	270.80	2.00						Vbx	1			1	2	0	3	1			
270.80	271.60	0.80	3558	0.03	0.4	0.08	Propylitic, str leached, argililzed, abdnt fg diss py	Vbx	4 1			2 1	3	0	3	1			
271.60 273.27	273.27 276.26	1.67 2.99						Vbx Vbx	2			2	2	0	3	1		tr	
276.26	279.30	3.04						Vbx	4			2	3	0	4	1		u	
279.30	281.30	2.00						Vbx	5			1	2	0	4	1		tr	
281.30	282.80	1.50						Vbx	5			2	3	0	0	2		tr	
282.80	284.00	1.20	3559	0.12	1.1	0.11	4 cm silicified breccia and 1 cm white cockscomb qtz vn	Vbx	4			1	2	2	2	1		1	
284.00	285.00	1.00	3561	0.37	1.4	0.26	Wht cockscomb qtz vns forming bx matrix, str limonite fracts	Vbx	2			1	3	2	0	2		6	
285.00 286.00	286.00 287.41	1.00 1.41	3562 3563	0.10 0.10	0.6 0.4	0.17 0.25	Argillized footwall, local silica flooding, local str limonite Volcanic breccia w/ silicified matrix, argillized-oxidized clasts,	Vbx Vbx	3 1			1	3 2	2	0 2	2		tr tr	
287.41	290.60	3.19	3303	0.10	0.4	0.23	voicanic breccia w/ sincineu matrix, arginizeu-oxidizeu ciasis,	Dac	0			1	0	2	2	3		tr	
290.60	292.70	2.10						Dac	0			1	0	2	2	3		· ·	
292.70	293.30	0.60	3564	0.06	0.3	0.20	Several white qtz vns to 6 mm, str limonite as selvages	Dac	0			1	2	0	2	2		2	
293.30	295.10	1.80						Dac	0			2	1	0	2	2		1	
295.10	296.25	1.15	3565	0.82	0.4	2.05	Several qtz vns to 1 cm, str limonite and oxid ass w/ one vein	Dac	0			2	1	1	2	2		4	
296.25	300.80	4.55	3566	0.60	4.0	0.50	Soveral white at a voice to 5mm at 40 to CA at lime askings	Dac	1 2			2	1 0	2	2	1 2		tr 5	
300.80 301.70	301.70 304.75	0.90 3.05	3000	0.69	1.2	0.58	Several white qtz veins to 5mm at 40 to CA, str lim. selvages Includes 3 cm qtz bx vein.	Dac Dac	1			2	0	1	1 0	2		5 1	
304.75	306.20	1.45	3567	0.26	1.7	0.15	wht cockscomb qtz vns as bx matrix and earlier gray qtz vnlts	Dac	1			2	1	3	1	2		5	
306.20	307.50	1.30	3568	0.42	0.5	0.84	Wht qtz vnlts to 5 mm, str limonite on fracts	Dac	tr			2	1	2	0	2		3	
307.50	308.60	1.10					white qtz veinlets as above	Dac				2	1	2	1	1		2	
308.60	309.20	0.60	3569	0.08	0.3	0.27	White qtz vnlts and gray crackle bx vnlts, mod fract limo	Dac				1	2	2	0	3		3	

										Mineralization				Alter	ation			% Qu	artz Vein
From (m)	To (m)	Width	Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	% Diss py	Au/electrum	Ag min.	L1	L2	L3	L4	L5	L6	% qtz	% adularia
0.00	1.80	1.80)				no core	0vbd											
309.20	310.30	1.10	3571	0.42	0.6	0.70	Gray qtz vnlts and blood red hem veins and bx matrix	Dac				2	1	2	1	3	2	4	
310.30	311.40	1.10	3572	0.09	0.5	0.18	6 cm wide bx w/ gray qtz vn matrix, minor gray qtz crackle bx	Dac				1	1	1	0	3		5	
311.40	312.60	1.20	3573	0.23	0.6	0.38	Gray pyritic dacite w/ gray qtz vnlts, minor str limonite seams	Dac	2			1	0	0	1	1		2	
312.60	313.50	0.90	3574	0.18	0.3	0.60	Wht and gray qtz bx vein, str limo fracts, 50% recovery	qtz				0	2	2	2	4		40	
313.50	315.00	1.50	3575	0.07	0.2	0.35	tan, str argillized volc bx, minor gray qtz frags, str limonitic	Vbx				0	3	0	5	4		tr	
315.00	316.10	1.10	3576	0.11	0.3	0.37	Same as above, with 10 cm white cockscomb qtz vein	Vbx				0	3	0	5	4		tr	
316.10	317.20	1.10	3577	< 0.03	0.3		tan volcanic bx, silicified matrix, mod argillization of clasts	Vbx				0	2	2	2	3			
317.20	319.11	1.91	I					Vbx	tr			2	0	1	0	2			
319.11	322.16	3.05	5					Vbx				1	0	1	0	2			
322.16	325.71	3.55	5					Dac				1	0	2	0	1			
EOH																			

	•					•			Mineralizatio	n			Alter	ation			% Q u	artz Vein
From (m)	To (m)	Width Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	% ру	Au/electrum	Ag min.	L1	L2	L3	L4	L5	L6	% qtz	% adularia
0.00	4.27	4.27				Broken weathered core	And				2	0	0	0	2			
4.27	7.31	3.05				Broken weathered core	And				1	0	0	3	5			
7.31	8.84	1.52					And				2	0	0	1	1			
8.84 10.97	10.97 14.02	2.13 3.05					And And				2 1	0	0	3	3 2			
14.02	15.54	1.52					And				1	0	0	3	3			
15.54	17.07	1.52					And				1	0	0	3	2		tr	
17.07	17.20	0.13					And				1	0	2	2	2		tr	
17.20	18.40	1.20 3578	0.05	0.2	0.25	25 cm silic'd bx and 19 cm white qtz vein w/ bx clasts, str limo	And				1	0	2	2	2		10	
18.40	21.82	3.42				Fractured core	And				0	0	0	3	2		tr	
21.82	22.49	0.67					And				1	1	Ō	2	1		-	
22.49	25.54	3.05					And				2	1	1	1	1			
25.54	28.65	3.11					And				2	2	2	0	0			
28.65	31.70	3.05					And				2	2	3	0	0			
31.70	32.31	0.61				1 cm Qtz vein @ 32.1 80deg to core	And				2	2	3	0	0		1	
32.31	35.36	3.05					And				2	2	3	0	0			
35.36	38.40	3.05					And				2	0	1	0	0			
38.40	40.23	1.83					And				2	0	1	0	0			
40.23	41.45	1.22				Fractured core	And				2	0	1	0	0			
41.45	42.37	0.91				Fortund	And				2	0	1	0	0			
42.37	43.74	1.37				Fractured core	And				2	1 0	1 2	0	1			
43.74 46.94	46.94 49.98	3.20 3.05					And And				2	1	1	0	0			
49.98	51.51	1.53					And				2	0	0	1	1	1		
51.51	53.65	2.14					And				2	0	0	2	1	1	tr	
53.65	56.69	3.04					And				2	0	0	2	2	1	u	
56.69	59.74	3.05				Several qtz veins to 1cm, limonite on fractures	And				2	0	1	3	2	2	2	
59.74	62.79	3.05				less qtz veining, limo on fracts	And				2	0	0	2	1	2	1	
62.79	64.98	2.19				3 cm Qtz vein.	And				2	0	0	1	1	1	tr	
64.98	68.12	3.14					And				2	0	0	1	1	1		
68.12	71.17	3.05					And				2	0	0	1	1	1		
71.17	74.28	3.11					And				3	1	0	1	1	1		
74.28	77.33	3.05					And				3	1	0	2	1	1	tr	
77.33	80.47	3.14				7 cm white cockscomb qtz vein at 40 to CA	And				2	0	0	0	1		2	
80.47	83.52	3.05				Broken core w/ limonite fract surfaces	And				2	0	0	0	1	1	tr	
83.52	84.13	0.61					And				3	1	0	1	2		tr	
84.13	88.10	3.97				2 cm qtz vein in 30 cm broken zone w/str limo gouge	And				2	1	0	2	2		1	
88.10	88.90	0.80 3579	0.21	2.1	0.10	Wht cockscomb qtz vnz to 1cm, str hematitic gouge seams	And				3	1	0	1	2		8	
88.90	91.40	2.50	0.00	0.0	0.00	Number of the Control	And				3	1	0	1	2		tr	
91.40	92.80	1.40 3581 0.45 3582	0.26	0.9 2.9	0.29	Numerous gray to white qtz vns to 6mm, most at 75 to CA	And				2		1	0	3	2	2 5	
92.80 93.25	93.25 97.90	0.45 3582 4.65	1.66	2.9	0.57	Numerous gray and wht qtz veins at 50 to CA w/ str hem. gouge	And And				0 2	2	0	1	1	1	tr	
97.90	98.90	1.00 3583	0.25	0.7	0.36	Several narrow gtz vns, minor limo on fracts.	And				2	1	0	1	1	1	tr	
98.90	99.60	0.70 3584	0.72	8.2	0.09	40 cm qtz bx vn, multiple bxn, 25 cm of qtz veined hanging wall.	And				1	2	3	1	3	1	60	
99.60	100.75	1.15 3585	0.72	4.3	0.07	Oxidized footwall w/ 10 cm silic'd bx, several qtz vns.	And				2	1	2	1	3	2	3	
100.75	102.85	2.10	0.01		0.07	Chalesa rooman in to on one a bi, coronal que mo.	And				2	1	0	0	2	0	1	
102.85	104.10	1.25 3586	0.62	5.5	0.11	Numerous qtz veins at 60 to CA, one 3 cm gray vuggy qtz vn	And				2	1	1	0	3	1	3	
104.10	107.00	2.90				3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	And				3	0	0	0	2	1	tr	
107.00	108.10	1.10 3587	1.25	8.4	0.15	Bx w/ white vuggy qtz vn matrix, and 3 and 5 cm qtz veins	Bx	1			0	2	2	0	3	1	15	
108.10	113.30	5.20					And				3	1	0	2	1	1	tr	
113.30	113.70	0.40 3588	0.49	0.5	0.98	A 5 and a 9 cm vuggy white qtz vns w/ str limonite medial cavity	And				2	1	2	2	3		30	
113.70	117.65	3.95					And				3	1	0	1	1		tr	
117.65	120.70	3.05					And	1			2	0	1	1	2	,	tr	
120.70	123.75	3.05					And	1 1			1 1	0	0	3	4 3	1	tr tr	
123.75 126.80	126.80 129.85	3.05 3.05				Pyritic fresh andesite w/ oxid adj to fracts, two 2 cm qtz veins	And And	2			2	0	0 1	2	2	- 1	tr 1	
129.85	132.89	3.05				Same, w/ increased oxidation emanating from fracts	And	1			1	0	1	0	3		tr	
132.89	135.94	3.05				oune, w moreased oxidation emailating nominacts	And	1			1	0	0	0	2		tr	
135.94	138.99	3.05					And	1			1	0	1	0	2		tr	
138.99	142.45	3.46					And	tr			1	0	1	0	2		1	
142.45	142.95	0.50 3589	0.72	7.7	0.09	6cm wht-gray vuggy qtz vn, silicified breccia, 7cm qtz + limo vein	Bx	tr			0	1	3	2	3		20	
142.95	145.10	2.15				Patchy silicn of bx	And	1			0	1	2	0	3		tr	
145.10	146.70	1.60					And				0	0	1	0	1		tr	
146.70	147.40	0.70 3591	0.24	0.2		wht and gray vuggy qtz veins to 1 cm in oxidized and., str limo	And	tr			0	1	1	0	3		5	
147.40	148.55	1.15 3592,3593	0.12	0.5	0.24	propylitized andesite, abdnt anastomosing qtz vnlts, silicified	And				2	0	4	0	1		5	

										Mineralization	1			Alter	ation			% Qu	artz Vein
From (m)	To (m)	Width	Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	% ру	Au/electrum	Ag min.	L1	L2	L3	L4	L5	L6	% qtz	% adularia
0.00	4.27	4.27					Broken weathered core	And				2	0	0	0	2			
148.55	149.40	0.85	3594	0.04	0.2	0.20	Silicified, propylitized andesite as above without qtz veining	And				2	0	3	0	1		tr	
149.40	150.10	0.70	3595	0.14	0.4	0.35	Str oxid, part. silicified sheared, bx'd andesite w/ limo.+ qtz vnlts	And	tr			0	2	3	0	4		3	
150.10	153.32	3.22						And	tr			3	1	0	2	2		tr	
153.32	154.23	0.91						And				3	1	0	2	2		tr	
154.23	156.90	2.67					Strong bleaching and argillization, limonite fractures	And				1	3	0	3	4			
156.90	157.60	0.70	3596	0.21	0.5	0.42	Tectonic breccia, str brn clay and rock gouge,	Bx				0	2	0	4	4			
157.60	158.40	0.80	3597	0.09	0.3	0.30	Str argillized volcanic bx w/ tr qtz veining, str oxid and bleaching	Vbx				0	3	0	4	4		tr	
158.40	160.33	1.93						Vbx				0	2	0	4	4			
160.33	163.38	3.05						Vbx				0	1	0	2	3			
163.38	166.42	3.04						Vbx				2	0	0	2	2			
166.42	169.47	3.05						Vbx				3	0	0	2	1			
169.47	171.80	2.33						Vbx	tr			3	0	0	0	1			
171.80	172.47	0.67	3598	0.47	0.2	2.35	Tectonic breccia, chloritized, clay gouge w/ volc + rare vein clasts	Bx				2	2	1	4	1		tr	
172.47	172.52	0.05	3599	0.21	0.1	2.10	Silicified qtz bx vein and cockscomb qtz vein, tr ox py, 5cm piece	qtz	tr			0	2	4	0	4		100	
EOH																			

										Mineralizatio	n			Altera	ition			% Qua	artz Vein
From (m)	To (m)		Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	% Py	Au/electrum	Ag min.	L1	L2	L3	L4	L5	L6	% qtz	% adularia
0.00 4.00	4.00 5.18	4.00 1.18					No Core	And				1	0	3	3	1		2	
5.18	8.23	3.05	3601	0.03	0.2	0.15	2 cm qtz vein, 30 cm gray clay seam, and part. silicified andesite Wkly propylitized andesite w/ gray chalcedonic qtzvns + bx matrix	And				2	2	2	2	1		2	
8.23	9.20	0.97	0001	0.00	0.2	0.10	Trial propyritized undesite w gray orial occornic querits . By matrix	And				2	1	3	2	1			
9.20	11.28	2.08					Green silicifed breccia matrix	And				3	1	2	2	1			
11.28	14.33	3.05					Green silicifed breccia matrix	And				2	0	2	1	1			
14.33	17.37	3.04					Green silicifed breccia matrix	And				2	0	2	1	1			
17.37	20.42	3.05						And				3	0	1	1	0			
20.42	23.47	3.05						And				2	0	0	1	0	1		
23.47 26.52	26.52 29.57	3.05 3.05						And And				2	0	1	1 0	1	1		
29.57	32.61	3.04					2 cm tan clay fault gouge.	And				2	0	1	2	0			
32.61	35.66	3.05					2 om tan day laak goage.	And				2	0	1	0	0			
35.66	38.71	3.05						And				2	0	1	0	0			
38.71	41.76	3.05						And				2	0	1	0	0	1		
41.76	44.81	3.05						And				2	0	1	0	0			
44.81	47.85	3.04						And				2	0	2	1	1	4		
47.85 50.90	50.90 53.95	3.05 3.05						And And				1	0	0	0	0	1		
53.95	57.00	3.05						And				2	0	0	0	0			
57.00	60.05	3.05						And				2	0	0	0	0			
60.05	63.09	3.04						And				2	0	0	0	0	1`		
63.09	66.14	3.05						And				2	0	0	0	0	1`		
66.14	69.19	3.05						And				2	1	0	0	0			
69.19	72.24	3.05						And				1	0 1	0	0	0	43		
72.24 75.29	75.29 78.34	3.05 3.05						And And				2	1	0	0	0	1` 1`		
78.34	81.38	3.04						And				2	0	0	0	0	1`		
81.38	84.43	3.05						And				3	1	0	0	0			
84.43	87.48	3.05						And				3	2	0	0	0			
87.48	90.22	2.74					white clay and chlorite lined fractures	And				3	1	0	1	1			
90.22	92.05	1.83					10 cm gray clay seam	And				3	1	0	2	0			
92.05 93.58	93.58 96.62	1.53 3.04						And And				3 2	1 0	0	1 0	0			
96.62	98.15	1.53					10 cm gray clay seam	And				3	2	0	3	1			
98.15	99.67	1.52					3 cm green clay seam.	And				2	1	0	2	0	1`		
99.67	102.72	3.05					3,	And				2	0	0	1	0			
102.72	105.77	3.05						And				2	0	0	0	0			
105.77	108.82	3.05						And				3	0	0	1	0			
108.82	110.95	2.13						And				3	0 1	0	1 2	0			
110.95 111.85	111.85 114.91	0.90 3.06					15cm clay gouge	And And				3	1	0	2	0			
114.91	117.96	3.05					13011 day goage	And				2	Ö	0	1	0			
117.96	121.01	3.05						And				2	0	0	1	0			
121.01	124.06	3.05						And				3	1	0	1	0			
124.06	127.10	3.04						And				3	2	0	2	0			
127.10	130.15	3.05 3.05						And And				3	2	0	1 0	0	1` 1`		
130.15 133.20	133.20 136.25	3.05					red hematite veins and alteration of groundmass	And And				1	0	0	0	0	2		
136.25	139.30	3.05					red Heritatile Veins and alteration of groundinass	And				3	2	0	0	0	1		
139.30	142.34	3.04						And				2	2	0	0	0		tr	
142.34	145.39	3.05						And				2	1	0	0	0	1`		
145.39	149.50	4.11					weak pervasive hematite in groundmass	And				1	0	0	0	0	2		
149.50 149.80	149.80	0.30 1.69	3602	0.68	4.7	0.14	2 cm calcite + qtz vein. Footwall silicified and brecciated for 5 cm.	And				1	1 0	3 0	0	2	0 1`	3	
151.49	151.49 154.54	3.05						And And				1	0	0	0	2	2		
154.54	157.58	3.04						bx				1	0	0	1	2	1		
157.58	160.63	3.05						bx				1	0	0	1	2	2		
160.63	163.68	3.05						And				2	0	0	0	1	1`		
163.68	166.73	3.05						And				2	0	0	0	0	1`		
166.73	169.78	3.05						And				2 4	0	0	0	0	1`		
169.78 172.82	172.82 175.87	3.04 3.05						And And				4 3	2 1	0	0	0	1` 1`		
175.87	178.92	3.05						And				2	0	0	0	0	'		
178.92	180.44	1.52						And				2	0	1	2	0		tr	
180.44	183.49	3.05						And				0	0	2	0	0		tr	

										Mineralizatio	n			Alter	ation			% Qu	artz Vein
From (m)	To (m)	Width	Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	% Py	Au/electrum	Ag min.	L1	L2	L3	L4	L5	L6	% qtz	% adularia
0.00	4.00	4.00					No Core												
183.49	186.40	2.91						And				0	0	2	0	1	1`	1	
186.40	187.10	0.70		0.12	0.5	0.24	Propylitized breccia w/ 3 vuggy qtz veins to 8 mm and many vnlts	vcbx				3	1	1	1	0	1`	3	
187.10	189.20	2.10					Same as above, less qtz veining, red hematite + silica vnlts	vcbx				3	2	0	1	1	2	1	
189.20	189.70	0.50		0.29	0.2	1.45	25 cm w/ abdnt vuggy qtz + limonite vns, rest vcbx w/ patchy silic'n	vcbx				1	2	2	0	1		10	
189.70	190.30	0.60		0.13	0.3	0.43	Silicified volcaniclastic breccia w/ abdnt gray qtz veinlets	vcbx				0	3	4	0	1		20	
190.30	191.30	1.00		0.35	0.4	0.88	Same, w/ less silic'n and qtz veinlets and veins	vcbx				0	2	3	0	2		3	
191.30	192.60	1.30		0.19	0.9	0.21	Argillized volcaniclastic bx, minor patchy silicn, mod oxidation	vcbx				0	2	1	3	3		tr	
192.60	193.70	1.10		0.12	0.5	0.24	a/a w/ incr. silicn. and qtz vns. 6 cm tectonic bx, str limo, qtz clasts	vcbx				0	2	2	2	4		3	
193.70	197.21	3.51						bas				2	0	0	1	1		tr	
197.21	200.26	3.05					Chlorite+ clay seams	bas				1	0	0	2	0		tr	
200.26	203.30	3.04						bas				2	0	0	2	0			
203.30	206.35	3.05					Chlorite+clay seams, one 1cm qtz vein	bas				2	0	0	2	0		tr	
206.35	209.40	3.05						bas				1	0	0	0	0			
209.40	212.45	3.05						bas				1	0	0	0	0			
212.45	215.50	3.05						bas				1	0	0	0	0	1`		
215.50	218.54	3.04						bas				2	1	0	0	1	1`		
218.54	221.59	3.05						bx				2	2	0	2	1	1`		
221.59	224.64	3.05						bx				2	2	0	3	1			
224.64	227.69	3.05						dac				2	1	1	1	0			
227.69	230.74	3.05						dac				2	0	1	0	0			
230.74	234.20	3.46						dac				1	0	1	0	1	1`		
234.20	234.70	0.50		0.15	0.7	0.21		dac				0	0	0	0	1		tr	
234.70	235.20	0.50		0.76	3.1	0.25	Silicified hydrothermal breccia, abdnt gray qtz crackle vnlts, limo fract	bx	tr			0	1	4	0	4		10	tr
235.20	235.70	0.50		0.29	2.1	0.14	Same as above, most qtz vns as crackle breccia matrix,	bx				0	1	4	0	3		10	
235.70	236.80	1.10		0.06	0.6	0.10	Primary breccia, patchy silicification and minor gray qtz veinlets	bx				1	0	2	0	2		1	
236.80	237.40	0.60		0.10	8.0	0.13	Dense silicification and crackle bx'n w/ gray qtz vnlt matrix, str limo	bx	tr			0	0	4	0	3		30	
237.40	238.20	0.80	3615	0.08	1.6	0.05	Milled hydrothermal bx clasts, qtz vn, dacite clasts in limo gouge	bx				0	0	2	4	5		5	
238.20	239.20	1.00	3616	0.31	0.5	0.62	Patchy silicification of primary breccia, str limo seams	bx				0	0	2	2	4		2	
239.20	239.90	0.70	3617	0.18	37.1	0.00	Patchy silicification, white and gray vuggy qtz veins w/ str limo	bx				0	0	3	2	3		5	
239.90	240.20	0.30	3619	28.90	516.0	0.06	White and gray qtz bx vein, tr diss py, tr Ag min?	qtz	tr		tr	0	0	5	1	4		50	
240.20	240.90	0.70	3618	0.28	9.7	0.03	Patchy silicification of primary breccia, minor qtz veining	bx	tr			0	0	3	2	3		2	
240.90	242.93	2.03					Silicia flooding and very fine grained disseminated pyrite	dac	1			0	0	3	0	1		tr	
242.93	245.98	3.05						dac	1			0	0	1	0	1			
245.98	247.81	1.83						dac				0	0	0	0	1			
EOH																			

										Mineralizatio	n			Alter	ation			% Qua	ırtz Vein
From (m)	To (m)		Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	% Py	Au/electrum	Ag min.	L1	L2	L3	L4	L5	L6	% qtz	% adularia
0.00	6.40	6.40					No Core								_				
6.40	8.23	1.83						And				2	0 1	0	2	0 1			
8.23 11.28	11.28 14.33	3.05 3.05						And And				3	1	0	3 2	1			
14.33	17.37	3.04						And				2	1	0	2	2		tr	
17.37	19.90	2.53						And				2	1	0	1	2		1	
19.90	20.50	0.60	3621	0.09	0.4	0.23	Several white, vuggy quartz veins to 3mm at 10 to CA	And				2	1	0	1	1		2	
20.50	22.80	2.30						And				3	1	1	1	1			
22.80	23.30	0.50	3622	0.86	2.9	0.3	20 cm bx vein w/ white vuggy veins as matrix, silic'd and. w/ py	And	1			1	2	3	0	2		10	
23.30	23.90	0.60	3623	0.46	4.4	0.1	Several quartz veins in footwall to above bx. Oxidized andesite	And	tr			0	2	3	0	3		2	
23.90	26.52	2.62						And				1	0	0	0	1			
26.52	29.57	3.05					1 cm white qtz vein with tan clay gouge	And				4	0	0	2	1		tr	
29.57	32.61	3.04						And				0	0	0	1	1			
32.61 35.66	35.66 38.71	3.05 3.05						And And				0 1	0	0	1 0	1 0			
38.71	41.76	3.05					Argillized, brecciated fault zone	And				3	0	0	2	1			
41.76	44.81	3.05					rugilized, pressiated iduit zone	And				2	0	0	1	1			
44.81	47.85	3.04						And				1	0	0	0	0			
47.85	50.90	3.05						And				1	0	0	0	0			
50.90	53.95	3.05						And				2	0	0	0	0			
53.95	57.00	3.05						And				2	0	0	0	1		tr	
57.00	60.04	3.04						And				3	0	0	0	0			
60.04	63.01	2.97						dac				2	0	0	0	1			
63.01 66.14	66.14 69.19	3.13 3.05						dac				3 2	0	0	0	1 2			
69.19	72.24	3.05						dac dac	tr			1	0	0	0	1		tr	
72.24	75.29	3.05						dac	u			1	0	1	0	1		u	
75.29	78.34	3.05						dac				0	0	0	0	1			
78.34	81.08	2.74						dac				0	0	0	0	1			
81.08	84.43	3.35						vbx				3	0	0	3	1			
84.43	87.48	3.05						vbx				4	0	0	3	0			
87.48	90.53	3.05						vbx				3	0	0	3	0			
90.53	93.58	3.05						vbx				1	0	0	4	0			
93.58	96.62	3.04						vbx	tr			1	0	0	4	0			
96.62 99.67	99.67 102.72	3.05 3.05						vbx vbx	tr tr			1	0	0	3	0			
102.72	105.77	3.05					1 cm white quartz vein, str argillized walls,	vbx	u			1	0	0	4	1		tr	
105.77	108.82	3.05					Tom write quartz verif, on arginized walls,	vbx				1	0	0	4	i		u	
108.82	111.86	3.04						vbx				2	0	0	4	1			
111.86	114.91	3.05						vbx				2	0	0	4	1			
114.91	117.99	3.08						vbx				3	0	0	4	1			
117.99	121.01	3.02						vbx				2	0	0	4	1			
121.01	124.06	3.05						vbx				2	0	0	3	3			
124.06 127.10	127.10 129.65	3.04 2.55						vbx vbx				3	0	0	4	1			
127.10	130.35	0.70	3624	0.43	1.4	0.31	Str ox of diss pyrite, weak silica flooding, leached appearance	vbx	tr			1	2	1	2	3			
130.35	131.15	0.80	3625	0.39	1.1	0.35	Str ox of diss pyrite, weak silica flooding, leached appearance	vbx	tr			1	2	2	2	3			
131.15	133.20	2.05					эн э	vbx	tr			2	0	1	3	2			
133.20	136.25	3.05					Patchy silica flooding, leached appearance	vbx				3	0	1	3	1			
136.25	139.30	3.05						vbx				2	0	0	2	1			
139.30	141.80	2.50						vbx				2	0	0	2	3			
141.80	142.60	0.80	3626	0.17	0.7	0.24	Oxidized and leached,wk silica flooding, euhedral qtz in vesicles	vbx				0	2	1	1	4			
142.60 145.39	145.39 148.44	2.79 3.05						vbx				1	1 0	2	1 2	3			
148.44	151.50	3.06						vbx vbx				1	0	1	2	2			
151.50	154.54	3.04						vbx				2	0	0	2	1			
154.54	157.58	3.04						vbx				1	0	0	2	1			
157.58	160.63	3.05						vbx				1	0	0	2	0			
160.63	163.68	3.05						vbx				2	0	0	2	0		tr	
163.68	166.73	3.05						vbx				1	0	1	0	0		tr	
166.73	169.78	3.05						vbx				1	0	1	0	1		tr	
169.78 172.82	172.82	3.04						vbx				3	0	0	1	0			
172.82	175.87 178.92	3.05 3.05					Silicified clasts in breccia	vbx vbx				3	0	0 2	3 2	1 1			
178.92	181.97	3.05					Cinomica Clasts III Diecota	vbx				2	0	2	1	2			
181.97	184.90	2.93						vbx				2	0	2	1	2			
													-						

										Mineralization	1			Alte	ration			% Qu	artz Vein
From (m)	To (m)	Width	Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	% Py	Au/electrum	Ag min.	L1	L2	L3	L4	L5	L6	% qtz	% adularia
0.00	6.40	6.40					No Core												
184.90	185.80	0.90		0.04	1.0	0.04	Partially silicified primary breccia, tr diss py, tr wht qtz vnlts	Bx				1	0	3	0	2		tr	
185.80	188.06	2.26						And				3	0	0	2	0			
188.06	191.11	3.05						And				3	0	0	2	1			
191.11	194.16	3.05						And				1	0	0	0	0	2	tr	
194.16	197.21	3.05						And				1	0	0	0	0	2		
197.21	200.26	3.05						And				3	1	0	1	0	1		
200.26	203.30	3.04						And				3	1	0	2	1	2		
203.30	206.35	3.05						And				2	0	0	1	0	1		
206.35	209.40	3.05						And				1	0	0	0	0	1	tr	
209.40	212.45	3.05						And				0	0	0	0	0	2	tr	
212.45	215.50	3.05						And				0	0	0	0	0	2		
215.50	218.54	3.04						And				1	0	0	0	0	2	tr	
218.54	221.59	3.05						And				1	•	0	0	0	2		
221.59	224.64	3.05						And				0	0	0	0	0	2		
224.64	227.69	3.05						And				1	-	0	0	0	1		
227.69 230.74	230.74 233.78	3.05 3.04						And And				2	0	0	0	0	1	4	
	233.78	4.32						And				2	0	0	0	0	1	tr tr	
233.78	238.10	4.32						And				2	U	U	'	'	1	u	
238.10	238.70	0.60	3628	< 0.03	0.6		Hanging wall to # 2vein, sparse qtz veinlets, minor silica flooding	And	tr			1	0	2	0	1	0	1	
238.70	239.20	0.50	3629	0.33	0.6	0.55	#2 Vein? Bx w/ matrix of cockscomb wht qtz vns, orange clay	qtz				2	1	3	1	2		30	
239.20	239.70	0.50	3631	0.34	0.4	0.85	Same, w/ increased silica flooding,chalcedonic matrix	And				2	0	4	1	2		30	tr
239.70	240.20	0.50	3632	< 0.03	0.3		Footwall to #2 vein, A few quartz veins to 1 cm	And				2	0	1	0	1		2	
240.20	242.93	2.73						And				2	0	0	1	0		tr	
242.93	246.50	3.57						And				2	0	1	0	0		tr	
246.50	246.90	0.40	3633	0.25	0.6	0.42	Primary, silicified bx w/ 10 cm wide qtz bx vein w/ wht vuqqy qtz	And				2	0	3	0	1	1	10	
246.90	249.03	2.13		0.20	0.0	J. 12	a., , aa. ba a	And				2	0	2	1	1	1	.0	
249.03	252.07	3.04						And				2	0	0	2	1	1	tr	
252.07	255.12	3.05						And				2	0	1	2	1	•	tr	
EOH	2002	0.00						,				-	•	•	-				
2311																			

Ouripic L	Jeser iptioi	ıı Log					Diackaoine i Toject 2000											DD11. D00-01A
From (m)	To (m)	Width	Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	% Py	Mineralization Au/electrum	Ag min.	L1	L2	Alter L3	ation L4	L5	L6	% Quartz Vein % qtz % adularia
0.00	3.05	3.05					Casing, no core											
3.05	5.18	2.13						And				0	0	0	3	0		
5.18	8.23	3.05						And				0	0	0	1	0		
8.23	11.28	3.05						And				1	1	0	1	1		4
11.28	14.33	3.05						And				2	0	0	1	0	1	tr
14.33 17.37	17.37 20.42	3.04						And				3	0	0	1	1	1	
20.42	23.47	3.05 3.05						And				2	0	0	1	2	1	
23.47	26.65	3.18						And And				3	0	0	1	2	1	tr
26.65	27.05	0.40		0.22	0.8		Str leached, silicified andesite, possible qtz vein, 3% ox py cubes	And	3			0	3	2	3	5	'	20
27.05	27.55	0.40		0.22					1			0	1	2	1	3		2
27.05	29.57	2.02		0.11	1.3		Qtz veined ox and un oxidized andesite, disseminated pyrite Same, w/ less qtz veining, more fresh disseminated pyrite	And And	2			1	0	2	0	3		tr
29.57	32.61	3.04					Same, wriess quz veining, more nesn disseminated pyrite	And	2			2	0	1	0	J 1		u tr
32.61	34.95	2.34						And				3	0	0	1	1		u tr
34.95	35.70	0.75		0.46	0.5		White vuggy quartz veins in propylitized andesite	And				3	0	0	0	1		5
35.70	38.71	3.01		0.40	0.5		Same, fewer quartz veins	And				3	0	0	0	0		tr
38.71	41.76	3.05					Same, lewer quantz veins	And				2	0	0	1	1		tr
41.76	44.81	3.05						And				2	0	0	0	1		tr
44.81	47.85	3.04						And				3	0	0	0	1		tr
47.85	50.90	3.05						And				2	0	1	0	0		tr
50.90	53.95	3.05						And				1	1	1	0	1		tr
53.95	57.00	3.05						And				1	1	2	1	Ö		tr
57.00	60.05	3.05						And				1	0	3	1	0		tr
60.05	63.10	3.05						And				1	Ō	3	0	1		tr
63.10	66.14	3.04						And				1	0	2	0	0		tr
66.14	68.60	2.46					White and gray vuggy quartz veins, str propylitized selvages	And	tr			2	0	2	0	1		1
68.60	69.10	0.50		0.08	1.4		Propylitized and oxidized andesite, white quartz veins	And				2	0	1	0	2		2
69.10	72.24	3.14					Partial fresh, pyritic, silicified andesite, rest propylitized	And	1			3	0	2	0	1		tr
72.24	75.29	3.05					, , ,	And				1	0	2	0	0	1	tr
75.29	78.34	3.05						And				1	0	2	0	0	1	tr
78.34	81.38	3.04						And				1	0	1	1	0	1	tr
81.38	84.43	3.05						And				1	0	1	0	0	1	tr
84.43	87.48	3.05	5					And				0	0	1	0	0	2	tr
87.48	91.60	4.12	2					And				1	0	2	1	0	2	1
91.60	92.10	0.50	3657	0.04	0.4		2 cm white qtz+calcite+epidote vn, also smaller vein of same	And	tr			2	1	1	1	0	1	8
92.10	93.58	1.48	3					And				1	0	2	0	0	1	tr
93.58	96.62	3.04	1					And				1	0	2	0	0	1	tr
96.62	99.67	3.05						Rhy				2	0	2	0	2		tr
99.67	103.60	3.93						Rhy				2	0	4	0	2		tr
103.60	104.20	0.60		0.03	0.1		2cm vuggy qty vn w/ str black mn? coating, other smaller qtz vns	Rhy				1	0	3	0	3		5
104.20	106.50	2.30						Rhy				2	0	1	0	2		tr
106.50	107.60	1.10		0.10	0.1		abundant white and gray qtz veinlets, silicification, wk prop.	Rhy				2	0	2	0	2		2
107.60	111.86	4.26						Rhy	tr			1	0	2	1	1		tr
111.86	114.91	3.05					Pervasive argillization.	Rhy				1	2	1	3	2		tr
114.91	117.96	3.05						Rhy				2	0	1	1	2		tr
117.96	121.01	3.05						Rhy				1	1	0	2	2		4
121.01	124.06	3.05						Rhy				0	1	0	3	3		tr
124.06	127.10	3.04						Rhy				0	1	0	3	3		
127.10 130.15	130.15 133.20	3.05 3.05						Rhy				0	1	0	2	4		tr
133.20	134.42	1.22						Rhy				0		1	1	4		u 1
133.20	134.42	1.22						Rhy	+-			0	0	2	2	3		tr
136.25	139.30	3.05						Rhy Rhy	tr 1			0	0	2	0	2		u
139.30	142.20	2.90						Rhy	2			0	0	2	0	1		
142.20	142.20	0.50		0.04	0.2		4% disseminated pyrite cubes, fine grained, black alteration rim	Rhy	4			0	0	2	0	0		
142.70	145.39	2.69		0.04	0.2		470 Globoniniated pyrite cubes, inte grained, black alteration fill	Rhy	1			0	0	1	0	2		
145.39	148.44	3.05						Vcbx	tr			1	0	1	0	0		
148.44	151.50	3.06						Vcbx	tr			2	0	1	0	1		tr
151.50	154.54	3.04					1cm clay gouge adj to 1 cm white qtz vein, str oxidation	Vcbx	u			1	0	1	1	2		tr
154.54	157.58	3.04					is a say googs adj to 1 on write que vent, on oxidation	Vcbx				2	0	0	0	1		-
157.58	160.63	3.05						dac				2	0	0	0	2		
160.63	163.07	2.44						dac				1	0	1	1	3		tr
163.07	165.40	2.33					Gray quartz veinlets	dac				'n	0	2	1	4		1
165.40	166.10	0.70		0.21	0.9		7 mm gray quartz vein, pyritic rhyolite, random quartz vnlts to 1 mm	dac	1			0	0	2	Ó	3		5
166.10	166.73	0.63		1.34	14.2		Silicified, limonitic breccia, wht bx'd qtz veins, diss ox py, silic'd flt?	dac	2			0	0	4	0	4		25
166.73	167.60	0.87		0.73	4.2		Bx'd dacite, gray qtz vnlts, patches of unox pyritic dac, wht qtz vns	dac	1			0	0	2	0	3		3
100.73	107.00	0.07	0004	0.73	7.2		and addition gray que visito, patorios or union pyritio dato, writ que viis	uac	'			U	U	_	5	5		· ·

									Mineralization			Alteration				% Qua		ırtz Vein	
From (m)	To (m)	Width	Sample No.	Au g/t	Ag g/t	Au/Ag	Description	Lith	% Py	Au/electrum	Ag min.	L1	L2	L3	L4	L5	L6	% qtz	% adularia
0.00	3.05	3.05	•	-		-	Casing, no core		-		-							•	
167.60	168.30	0.70						dac				0	0	3	1	4		5	
168.30	172.82	4.52						dac				1	0	2	1	2		tr	
172.82	175.87	3.05						dac				2	0	0	1	1			
175.87	178.92	3.05						dac	tr			2	0	0	1	2			
178.92	181.97	3.05						dac	tr			1	0	1	1	2			
181.97	185.02	3.05						dac				1	0	1	0	0			
185.02	188.01	2.99						dac				1	0	0	1	0		tr	
188.01	191.11	3.10						dac				0	0	0	0	1			
191.11	194.16	3.05						dac				0	0	0	1	2		tr	
194.16	197.21	3.05						dac				0	0	0	1	2		tr	
197.21	200.25	3.04						dac				0	0	0	2	2		tr	
200.25	203.31	3.06					Disseminated pyrite where rock is unoxidized	dac	1			1	0	1	0	1		1	
203.31	206.35	3.04						dac	tr			1	0	2	0	3		tr	
206.35	209.40	3.05					Abundant fine-grained disseminated pyrite where rock is unoxidized	dac	2			1	0	2	1	1		tr	
209.40	212.45	3.05					1,	dac				2	0	1	1	1		tr	
212.45	215.50	3.05						dac	tr			2	0	0	0	0		tr	
215.50	218.54	3.04						dac				1	0	1	0	2		tr	
218.54	221.29	2.75						dac				2	0	0	0	1		tr	
221.29	223.12	1.83						dac				2	0	0	0	1		tr	
223.12	224.03	0.91						dac				2	0	0	0	2		1	
224.03	227.08	3.05						bx	tr			1	0	2	0	1			
227.08	230.13	3.05						bx	tr			1	0	2	Ō	2			
0.00	233.90	233.90						dac	•			2	0	1	0	1		tr	
233.90	234.40	0.50		0.25	2.2		Qtz breccia vein, cockscomb qtz matrix, diss ox py, silic'd clasts	dac	tr			0	2	3	1	4		50	
234.40	234.90	0.50		0.04	0.9		Partially silicified dacite, minor quartz veining	dac	u			2	0	2	0	2		1	
234.90	235.70	0.80		0.06	0.8		3 cm vuggy qtz vein, 5 cm qtz bx vn w/ cockscomb qtz matrix	dac				2	0	2	0	3		20	
235.70	236.22	0.50		0.00	0.6		5 cm vaggy qiz vein, 5 cm qiz bx vii w/ cockscomb qiz matrix	dac	tr			2	0	1	0	2		tr	
236.22	240.50	4.28						dac	u			2	0	1	0	1		tr	
240.50	240.30	0.70		0.07	0.0		Drivers have and according allies besseled by and white at-		4-			0	0	•	0	1		20	
				0.07	0.8		Primary bx, w/ secondary silica healed bx and white qtz vns	bx	tr			-	-	4	-				
241.20	241.90	0.70		0.03	0.5		20 cm str oxidized shear surrounding 2 cm gray quartz vein	bx				2	0	0	2 4	2		3	
241.90	242.60	0.70					Strongly argillized shear	bx				0	•	•		•		4	
242.60	245.98	3.38						dac				1	0	0	0	1 0		tr	
245.98	249.03	3.05						dac				2	0	0	0	0		tr	
249.03	252.07	3.04						dac				2 1	-	-	-	-		tr	
252.07 255.10	255.10 258.17	3.03						dac				2	0	0	0	0			
258.17	261.22	3.07						dac				2	-	4	0	0			
261.22	261.22	3.05 3.05						bx	1			2	0	1	0	0			
								bx				4	0	1	0	1		tr	
264.27 267.31	267.31 270.36	3.04 3.05						dac dac				1	0	0	0	0		tr	
270.36	270.36	3.05						dac				1	0	0	0	0		tr	
273.41	276.46	3.05							tr			1	0	0	0	0		tr	
276.46	279.50	3.04					Fracture limonite	dac	tr			1	0	0	0	1		tr	
279.50	282.55	3.04					Fracture innomite	dac	tr			1	0	0	0	1		tr	
282.55	285.60	3.05						dac	1			1	0	0	0	1		tr	
282.55 285.60	285.60	3.05						dac dac	1			1	1	0	0	1		tr	
288.65	288.65	3.05							1			1	1	1	1	1		tr	
							Cilinified desite 20 cm clay gauge	dac				1						u 1	
291.70 294.75	294.75 296.88	3.05 2.13					Silicified dacite, 20 cm clay gouge	dac	1 1			2	2	3 2	2 1	1 0		•	
							Disconsisted and additionals	dac				4						tr	
296.88	298.10	1.22					Disseminated and veinlet pyrite	dac	2			1	2	0	1	0		tr	
298.10	300.84	2.74					Fault zone, strong brecciation and argillization	bx	1			1	0	0	3	0			
300.84	301.76	0.92					Fault zone, strong brecciation and argillization	bx	1			1	0	0	4	0			
EOH																			

APPENDIX E – CERTIFICATE OF QUALIFICATIONS

- I, John Harrop, residing at 1 2978 Walton Ave, Coquitlam, British Columbia do hereby certify that:
- 1. I am a Geologist with J-Pacific Gold Inc. with an office at Suite 802, 1166 Alberni Street, Vancouver,

British Columbia, Canada and Coast Mountain Geological Ltd with and office at Suite 620, 650 West Georgia Street, Vancouver, British Columbia.

- 2. I graduated of the University of British Columbia with a BSc. in Geological Sciences in 1983, and have practised my profession continuously since then;
- 3. I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of the province of British Columbia.
- 4. I am not aware of any material fact or material change with respect to the subject matter of the technical report, which is not reflected in the technical report, the omission to disclose which makes the technical report misleading.
- 5. I, as the qualified person, am not independent of the issuer as defined in Section 1.5 of National Instrument 43-101. I am an employee of J-Pacific Gold Inc. and Coast Mountain Geological Ltd
- 6. I have had any prior involvement with the property that is subject to the technical report.
- 8. I visited the Blackdome Project at numerous times between 2004 and 2007.
- 9. I was the author of the report.

John Harrop, PGeo Vancouver, British Columbia 8 October, 2007