Geological and Geochemical Report CHU Molybdenum Property British Columbia, Canada

Omineca Mining Division Latitude 53° 21' N Longitude 124° 37' W NTS Map Sheet 93F/7E

Prepared for:

TTM Resources Inc. 700 West Pender St., Suite 520 Vancouver, BC, Canada V6C 1G8

Prepared by:

Allnorth Consulting Limited 2011 PG Pulpmill Road Prince George, BC, Canada V2L 4V1

Sept 24, 2007

Chu Assessment Report 09/24/07

Executive Summary

TTM Resources Inc. of Vancouver, BC, completed a winter drill program in early 2007 on the Chu molybdenum prospect located approximately 80 kilometers south southwest of the town of Vanderhoof, central British Columbia. The property consists of seven contiguous mineral claims located in good proximity to rail, highway, natural gas and hydroelectric power. The Kluskus forest service (FSR) road is an all-weather gravel road that provides direct access to the property from Highway 16 West.

The Chu property is underlain by an Eocene granite to granodiorite pluton in contact with hornfels Lower to Middle Jurassic volcanic and sedimentary rocks of the Hazelton Group. The Hazelton group is a mixed assemblage of epiclastic and volcaniclastic rocks, volcanic rocks and minor felsic intrusives.

Molybdenum mineralization consists of molybdenite (MoS2) in a complex stockwork of anastomosing quartz veins, stringer and veinlets that are best developed in a well foliated, hornfels siltstone unit that dips steeply to the northeast. The hornfels unit is believed to have undergone varying degree of biotitization following structural preparation (brittle fracture). Molybdenite occurs as selvages along quartz and quartz-pyrite-bearing fractures, as smears or disseminations along dry or slickensided fractures, and as disseminations mainly in the finer-grained sediments. In general the more intensely silicified the stockwork the better the molybdenum values.

The hornfels siltstone in locally interbanded with sandstone bands and is overlain by andesite that is variably textured from flow banded to fragmental. The hornfels siltstone is underlain by generally fresh, coarse to pegmatitic granodiorite pluton.

Mineralization is accompanied by strong penetrative thermal metamorphism of the sediments to biotite-grade alteration. Alteration patterns characteristic of a typical porphyry deposit were not encountered in drill core; suggesting the deposit type is more suitably characterized as a quartz stockwork and not a Low Fe porphyry deposit, as identified in BC Minfile.

The mineralized zone appears to be an inclined tabular mass that strikes northwest-southeast and dips steeply northeast. The current approximate size is 1200 meters in length with an apparent width of between 100 and 300 meters and apparent depth of at least 500 meters. The zone is open or untested on both strike extents, down the dip and in its width.

There is a well documented history of mineral exploration on the property dating back to its discovery in 1969. A total of 5000 m of drilling was completed on the property prior to TTM Resources optioning the claims from the owner. The most intensive work was conducted during the early 1980's by Asarco.

Chu Assessment Report 09/24/07

The 2006 winter drill program completed thirteen (13) inclined NQ diamond drill holes totaling 6129 meters within the known bounds of the previously outlined mineralized zone; with several holes testing the limits along strike of the known zone. The intent of the 2006 program was to confirm depth, grade and approximate zone geometry from previous known drill data. A secondary goal was to improve the geological knowledge of the zone deposit; its geometry and the intimate relationship between stockwork, vein, and penetrative sediment foliation/fabric.

The 2006 drilling successfully demonstrated the presence of a significant and well-mineralized zone of high grade molybdenite mineralization hosted in a complex but persistent quartz stockwork. Long vertical intersections of molybdenum mineralization have been intersected that confirm the persistence of molybdenum values and widths. The amount and distribution of drilling is insufficient at this time to confirm the geometry and orientation of the mineralized zone, except in a general sense. At this time the zone remains partially defined and is open to extension in the northwest and south directions, and to depth.

All 2006 holes intersected molybdenum mineralized intervals. Some of the new results include DDH 06-01 which returned 0.108% molybdenum and 0.071% copper over 73.15m from a depth of 520.60m to 593.75m. DDH 06-10 returned 54.86m of 0.081% of molybdenum and 0.048% copper from 480.67m to 535.53m. DDH 06-11 intersected 51.82m of 0.091% molybdenum and 0.110% copper from 239.57m – 291.39m. DDH 06-12 intersected 97.54m of 0.110% molybdenum and 0.060% copper from 391.97m to 489.51m.

A two-phase exploration program is recommended for 2007. An initial phase would include an extensive line-cutting program to establish a modern GPS control grid followed by 75 line kilometers of 3-D IP ground geophysics. The intent of the IP program is to identify the IP geophysical signature of the known zone and seek similar signatures beyond the main zone which may parallel the main zone. Ground IP may also better identify the cross structures believed to be faulting the stockwork at or near the NW extend of the known strike limit.

Upon completion of the IP program it is recommended that a follow-up diamond drill program be completed to continue the step-out drilling that the 2006 program commenced; and follow-up on any prospective areas as defined by geophysical interpretation. The proposed budget for combined Phase One and Phase Two is estimated at \$1.245 million dollars (Canadian).

TABLE OF CONTENTS

Exec	utive Su	mmary	. 2
1.0	Introd	uction	. 1
1.1	Loc	ation and Access	. 1
1.2	2 Phy	siography and Climate	. 2
1.3	3 Prop	perty Status & Ownership	. 4
2.0		ration History	
2.1		erican Smelting and Refining Company	
2.2	2 Asa	rco Exploration Company of Canada Ltd	. 5
2.3	3 Asa	rco Inc. & Armco Mineral Exploration Ltd	. 6
2.4	4 Orv	ana Minerals Corporation	. 7
2.5	5 Jam	es McLeod/Chris Delorme	. 7
2.6	6 Om	ega Exploration Services Inc	. 7
2.7		nomic and General Assessment	
2.8		osit Types	
3.0		gy	
3.1		ional Geology	
3.2	-	perty Geology	
	3.2.1	Surficial Geology	
	3.2.2	Bedrock Geology	
	3.2.3	Structure	
	3.2.4	Alteration	
	3.2.5	Mineralization	
	3.2.6	Geological Model	
4.0		Exploration Program	
4.1		ling & Core Handling Procedures	
4.2		ults	
	4.2.1	QC/QA	
	4.2.2	Geochemistry	
		ructure	
	4.2.4	Drill Results	
	4.2.5	Interpretation	
5.0		usions	
6.0		nmendations	
7.0	-	sed 2007 Exploration Budget	
8.0	Referen	ices	36

Chu Assessment Report 09/24/07

LIST OF FIGURES

Chu Property Location
Chu Property Claims
Chu Property Drill Hole Location Map
Regional Geology
Generalized Property Geology
Historic Soil Geochemistry: Molybdenum in Soil
Historic Soil Geochemistry: Tungsten in Soil
Historic Ground Geophysics: Magnetometer
Generalized Mineralized Zone
Generalized Geological Model
Histogram: Frequency of Structure Angles
Average & Median Values of Mo%
2007 Proposed Drill Program
Long Section Showing Existing Drill Holes and 2007 Proposed Holes

LIST OF TABLES

Table 1	Property Mineral Claim Dispositions
Table 2	Drill Hole Collar Coordinates
Table 3	Significant Drill Intercepts
Table 4	IP & Line Cutting Budget
Table 5	2007 Phase One Drill Budget

LIST OF APPENDICES

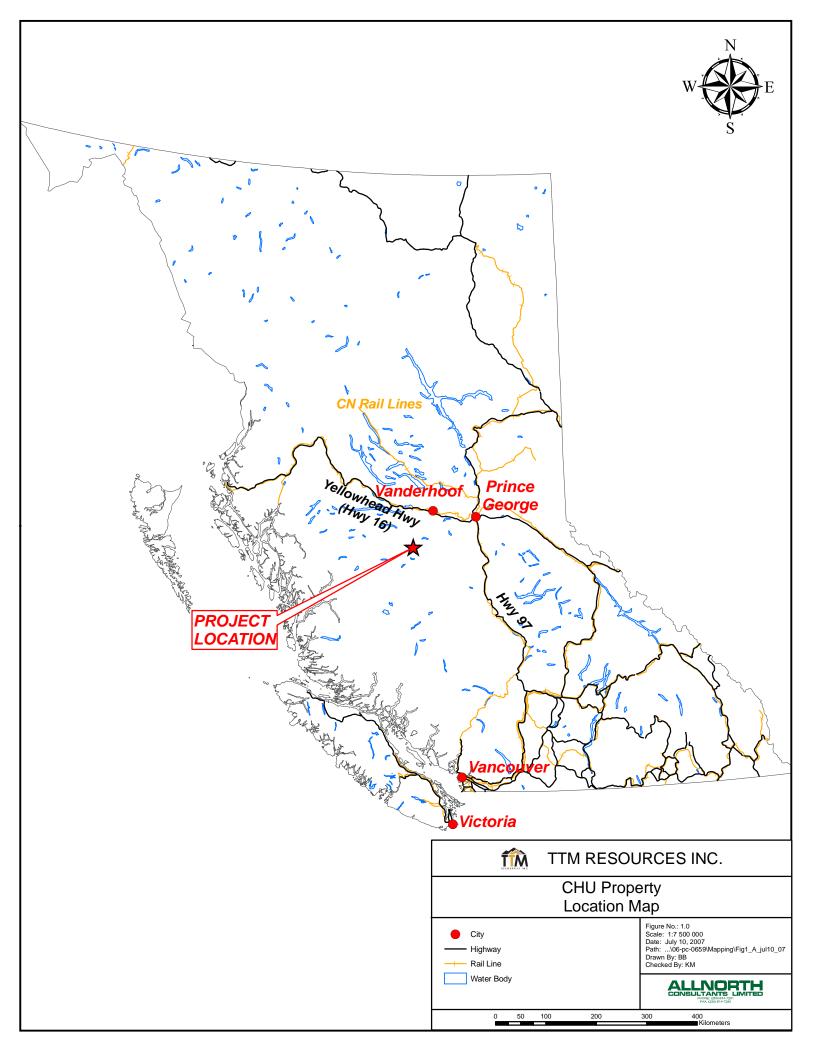
Appendix I	Statement of Expenditures
Appendix II	Statement of Qualifications
Appendix III	Summary of Field Personnel
Appendix IV	Drill Logs
Appendix V	Core Sample Assay Results
Appendix VI	Cross Sections
Appendix VII	Lab Analytical Procedures
Appendix VIII	QA/QC Results

1.0 Introduction

The Chu deposit is a copper-molybdenum deposit situated in the Nechako Plateau region of central British Columbia, approximately 80 kilometers south southwest of Vanderhoof British Columbia. The property consists of seven contiguous mineral claims owned by TTM Resources that have been maintained in good standing. Access is provided by the all-weather Kluskus Forest Service Road and the property is in close proximity to a paved highway, rail service, hydroelectric power and natural gas.

The 2006 drill exploration program was completed in early 2007 and a total of 6129 meters of NQ core was recovered from 13 inclined drill holes. The program was completed exclusively on the main mineralized zone and funded by TTM Resources, a junior exploration company based in Vancouver, British Colombia. Total exploration expenditures in 2006-2007 amounted to Canadian \$1.4 million dollars.

The drilling was completed by Falcon Drilling of Prince George. Excellent drill core recovery was achieved throughout the program. Planning and field initiation of the overall program, including geological logging, sampling and interpretation, was managed by Allnorth Consultants of Prince George BC, working on behalf of TTM Resources. Bob Sibthorpe, TTM Vice-president of Exploration, was onsite on several occasions and oversaw all aspects of the program.


Pitka Logging of Vanderhoof provided onsite support for drill pad and drill trail reclamation and rehabilitation. A number of providers in Vanderhoof and Smithers provided services and supplies and support throughout the duration of the program.

Downhole survey control was maintained with the use of a FLEX-IT easyshot downhole survey instrument. The planned hole locations were established in the field with a handheld GPS (Garmin 12XL). The drill locations were later surveyed using a LEICA RTK GNSS base station and rover combination providing high accuracy to less than 1.0 meter.

This report was supplemented by published assessment reports and available studies that document bedrock mapping and geological fieldwork conducted by the Geological Survey Branch of the provincial British Columbia Ministry of Energy, Mines & Petroleum Resources.

1.1 Location and Access

The Chu property is located approximately 80 kilometers south southwest of the town of Vanderhoof, British Columbia, Canada (Figure 1.0). The property is located on NTS mapsheet 93F/7E, at approximately 53° 21' North latitude and 124° 37' West longitude. The property is situated in the Nechako Plateau region of the central interior of British Columbia. The nearest significant watercourse is Chutanli Lake, located about 7.5

kilometers west of the property. The nearest significant transportation and service center is Prince George, located approximately 170 kilometers north east.

Access to the property is provided by the Kluskus Forest Service (FSR) road which starts at the Plateau log mill west of Vanderhoof and travels east and south to the property boundary. The Kluskus Forest Service road is an all-weather, 6 meter wide gravel road that connects the property to Highway 16. Alternative access can be gained by traveling 26.5 kilometers south of Vanderhoof on the Kenney Dam road, which junctions with the Kluskus FSR at approximately 19 kilometer. A small branch road at 106.3 kilometer on the Kluskus FSR provides direct access onto the main zone where drilling was conducted.

The Endako molybdenum mine, owned and operated by Thompson Creek Mining, is located approximately 75 road kilometers west of Vanderhoof. The Endako mine provides relatively easy access to a molybdenum concentrator and a technical molybdenum oxide roaster complex.

There is no mining related infrastructure on the property. The remains of the 1981 Armco exploration tent camp and core storage are still evident at the site of historical hole B-2. Many of the previous drill holes are overgrown by new growth timber and underbrush. Prior to the start of the 2006 drill campaign an 8.0 kilometer access trail was re-opened. In addition, several tributary trails for access to drill pads were either re-opened or newly constructed.

Lodging and accommodation for the crew was provided offsite at the Kluskus Canfor logging camp. Core logging, splitting and sampling was conducted at a temporary day camp located on the property, near the junction of the main access trail with the Kluskus FSR. A temporary core shack and splitting shack were erected and left onsite for future programs. The drill core was racked in specially fitted and locked overseas shipping containers that were left beside the core shack. The core was brought to the core shack twice daily by the drill contractor and offloaded under the supervision of an Allnorth or TTM company representative.

After completion of the 2006-2007 drill program, drill pads and trails were contoured with an excavator and machine and hand seeded with appropriate mid-elevation, mid-latitude forestry seed mix. Additional reclamation activities included seasonal deactivation of the main access trail and installation of water bars on steep, uninterrupted pitches. General site clean-up included removal of fuel drums and hydraulic pails. All site activities were conducted in accordance with the Health, Safety and Reclamation Code for Mines in British Columbia, and in good conformance with mine and forestry permit conditions.

1.2 Physiography and Climate

The Chu property is located within the Intermontane physiographic belt and is characteristic of the interior topography and climate of the Nechako Plateau. The

Nechako Plateau is a subdued range of hills and valleys situated between the Coastal Mountains on the west side and the Rocky Mountains on the east side.

The topography of the property varies from relatively low-rolling in the southeast to upland in the north. Densely wooded slopes range in elevation from 1160 metres ASL in the southeast to 1430 metres ASL in the north. The property is underlain by well-draining soils but in local areas there are a few swampy lakes and poorly developed first and second order creek drainages.

There appear to be at least three first order creeks on the property. One stream flows in a southwest direction toward Chedakuz Creek, which eventually empties to Knewstubb Lake. Two drainages flow in a north-northeast direction toward Taiuk Creek, which itself flows to the Euchiniko River and eventually to the Blackwater River. One of the northern streams is headwatered by a small pond or wetland called Portnoy Lake, which serves as a suitable source for drill water. Further work is required to determine if these streams are ephemeral or permanent watercourses, and whether they are fish-bearing. Kokanee are known to run in Knewstubb Lake, and the Euchiniko River system.

The area has experienced glaciation and significant post-glacial erosion. Continental glaciation occurred approximately 12,000 years ago during the Wisconsin glaciation. Glacial deposition has left behind a thin veneer of unconsolidated glacio-fluvial material which mantles bedrock; leaving only 5% of bedrock exposed in the area.

White spruce is the theoretical climax species but due to an extensive fire history lodgepole pine is the dominant tree species. Other species include lesser spruce, balsam and scattered patches of aspen and birch. A history of frequent wildfire has left a natural mosaic of forest ages. At present much of the area is either clear-cut from earlier logging operations or is comprised of dead pine. The pine has been intensely impacted by the Mountain Pine beetle infestation, resulting in large swaths of standing dead pine.

The area supports several species of wildlife, including wolf, black bear and ungulates. Moose are common in the upland forest due to an ideal mix of food sources and proximal hiding areas. Deer are also noted throughout the area, concentrated in the winter months on steep south-facing slopes where they find a shallower snow pack and the earliest spring forage.

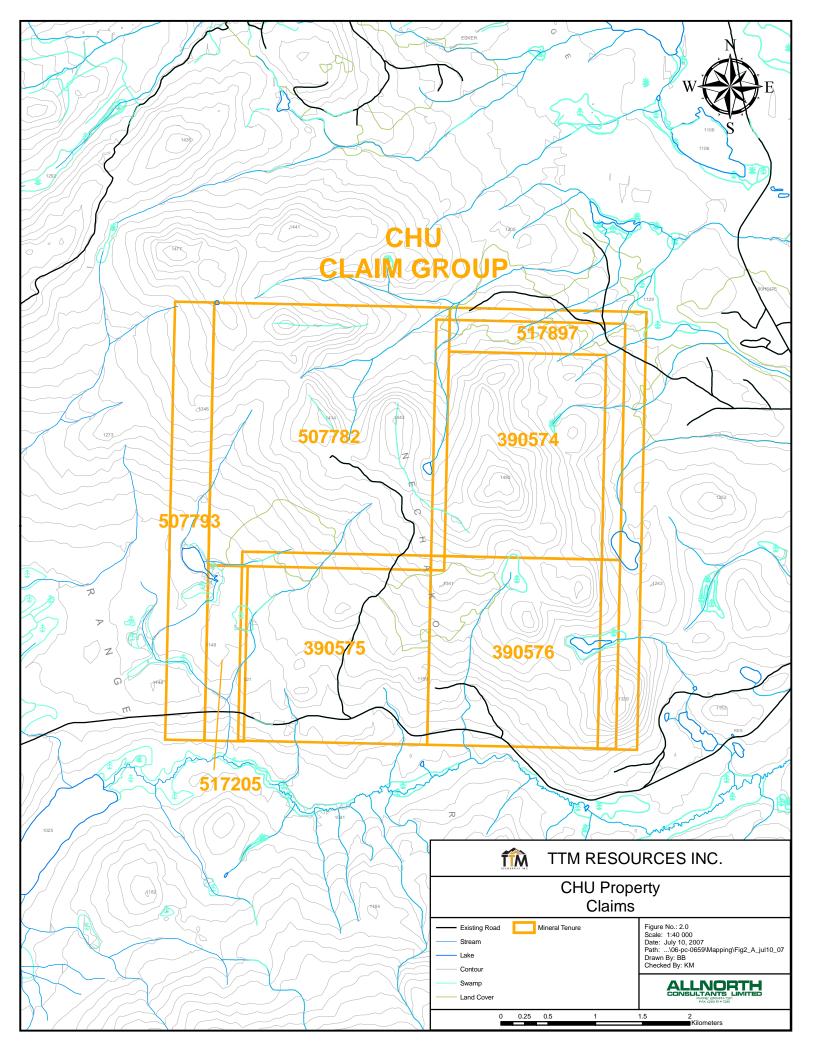
The climate of the property is strongly influenced by its location in the Coast Mountain rainshadow and is characterized by cold, dry winters and cool, dry, short summers. The average maximum and minimum temperatures recorded at Vanderhoof are 8.9° C and -3.9° C, respectively, with an average annual temperature of 2.5° C. Precipitation is mainly in the form of snow with average annual accumulation of between 1.0 and 2.0 meters. The average annual snowfall for Vanderhoof is 196.9 cm whereas the annual number of frost free days is 54 days.

1.3 Property Status & Ownership

The Chu property is comprised of seven contiguous mineral claims totaling 2747 hectares of subsurface rights in the Omineca mining region (Figure 2.0). The individual claims and their respective anniversary dates are shown below.

Table 1: Mineral Claim Dispositions

Tenure Number	Tenure Type	Claim Name	Owner	Map Number	Good To Date	Status	Area
507782	Mineral		206246 (100%)	093F	2007/oct/15	GOOD	694.623
507793	Mineral		206246 (100%)	093F	2008/feb/24	GOOD	192.988
533568	Mineral		206246 (100%)	093F	2008/may/04	GOOD	482.317
537381	Mineral	CHUFR	206246 (100%)	093F	2008/jul/18	GOOD	77.219
390574	Mineral	CHU	206246 (100%)	093F038	2007/oct/15	GOOD	500.0
390575	Mineral	CHU-I	206246 (100%)	093F038	2007/oct/15	GOOD	400.0
390576	Mineral	CHU-2	206246 (100%)	093F038	2007/oct/15	GOOD	400.0


The claims were formerly owned by several partners who sold outright by purchase agreement to TTM Resources Inc. The agreement is subject to terms and conditions of a purchase agreement dated 7th day of September, 2006. A Bill of Absolute Sale has been recorded with the Mineral Tenure branch of the BC Ministry of Energy, Mines & Petroleum Resources.

There are no other agreements, liens, judgments, debentures, royalties, or back-in rights known to the author. There are no known surface tenure rights over the mineral dispositions. There is a forest tenure owned by Canfor and L & M Lumber that overlaps the property but is not expected to preclude timber removal or inhibit future mineral development.

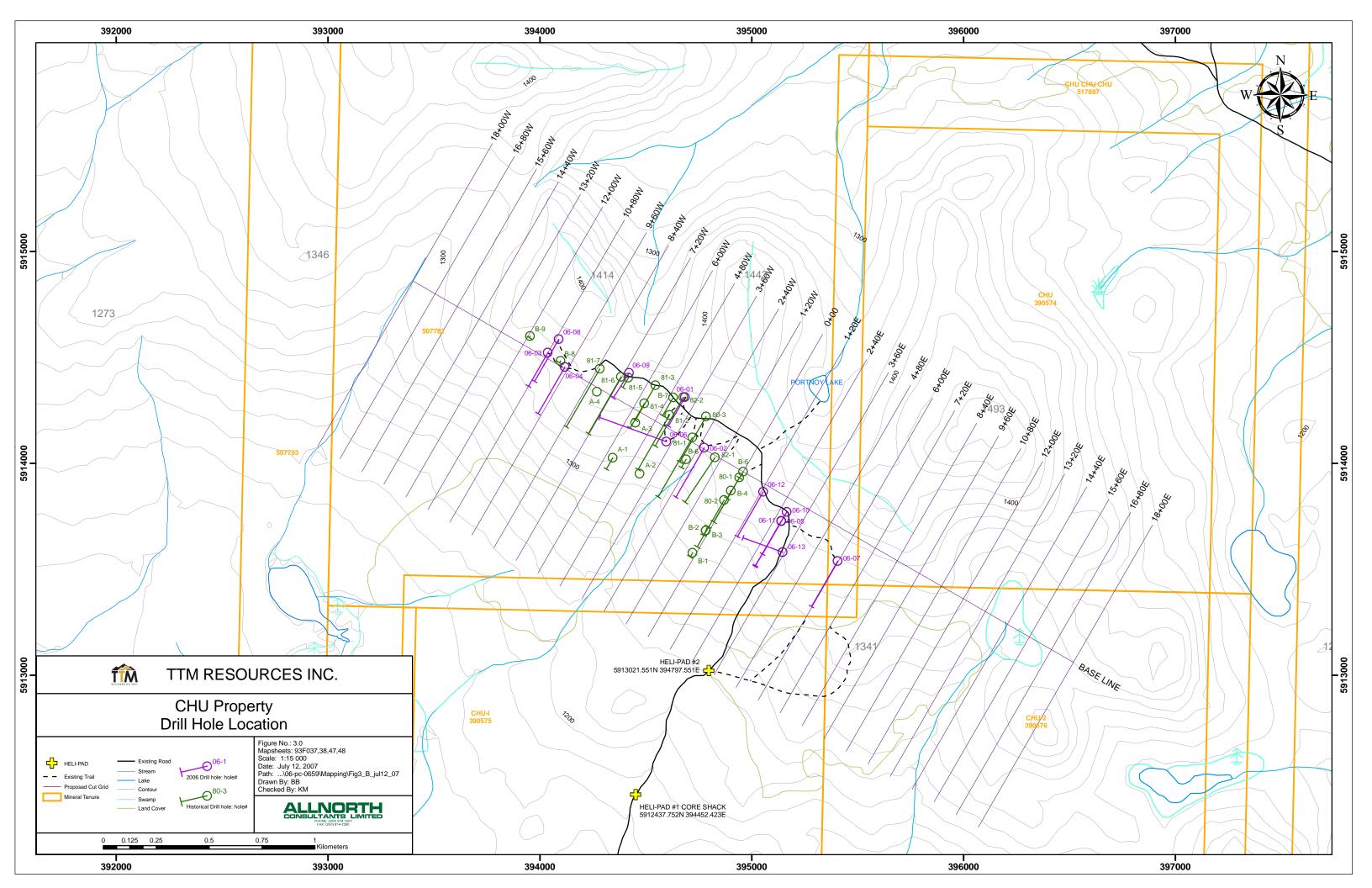
2.0 Exploration History

The Chu mineral prospect was discovered in 1969 as a result of regional geochemical surveys conducted simultaneously by Rio Tinto Canadian Exploration (Rio Tinto) and American Smelting and Refining Company (Asarco). Lake sediment samples were found to be anomalous in molybdenum and the source traced upslope to shallow buried, mineralized bedrock. Claim staking by both companies identified a broad package of prospective ground. Additional detailed ground geochemical and geophysical surveys enhanced the definition of the mineralized zone and provided impetus for several early drill programs.

From 1969 to 1970 the property was owned by Rio Tinto who conducted silt surveys and completed 14 shallow diamond drill holes (A1-4 and B1-10) for a cumulative total of 685 meters. In the mid-70's the Kluskus road was built which provided easier and more cost effective access. Asarco took over the property and in 1979 they joined Armco Mineral Exploration Ltd. in a joint venture of exploration. Together they completed several

diamond drilling programs from 1980 to 1982 which comprised 12 diamond drill holes totaling 4994 meters (80-1 to 80-3, 81-1 to 81-7 and 82-1 and 82-2). The drilling in combination with more extensive line cutting, geochemical soil surveys and ground geophysics helped to outline a large area of hornfels siltstone fractured and welded by molybdenum mineralization hosted in a quartz stockwork of veins. Drilling had been conducted on grid lines spaced a 140m apart (Figure 3.0).

The property remained idle from 1982 to 1992 and Asarco soon after allowed the claims to lapse. Orvana Minerals Corp (Orvana). re-staked the claims over the main showing and completed a modest geochemical program in 1994. In 2001 Chris Delorme completed a magnetometer ground survey on a limited portion of the property; and followed in 2003 with modest rock sampling, prospecting and Self-potential ground geophysics. Several small programs were conducted by Omega Exploration Services in 2004-2005.


2.1 American Smelting and Refining Company

From 1969 to 1970 the property was co-owned by the Asarco and Rio Tinto Canadian Exploration Company Ltd. During this period line cutting, geological mapping, geochemical soil sampling, and an IP and ground magnetic survey were carried out. Reconnaissance and detailed soil sampling revealed anomalous copper (Cu) and molybdenum (Mo) and tungsten values present in soil underlain by an extensive but thin veneer of glacial till. The anomalous values were believed to be indicative of a northwest striking, altered sedimentary volcanic assemblage in contact with a relatively fresh granodiorite plug. Historical soil geochemical and magnetometer maps have been reproduced in Figures' 6, 7 and 8 to illustrate the size of the zone and correlation with molybdenum soil geochemistry.

A ground magnetic survey was conducted at the same grid scale, and along with limited mapping identified co-incident target anomalies for follow-up drilling. A possible fault structure was inferred that corresponded with the lithological contact. In addition, magnetic lows seemed to be associated with highest soil anomaly values. Follow-up drilling of fourteen widely spaced and shallow drill holes in 1970 intersected significant molybdenum mineralization. The molybdenite was found to be mainly confined to a quartz stockwork zone hosted in variably hornfels siltstones.

2.2 Asarco Exploration Company of Canada Ltd.

In 1977, Asarco carried out grid furbishing, geochemical soil surveys and geological mapping to extend the known areas of Cu and Mo anomalies and test for Mo and Cu anomalies to the east and north. In total, approximately 29 line kilometers of grid was established.

In total, 194 "B" horizon soil samples, 5 stream silt samples as well as 3 rock chip samples were taken. The soil and silt samples were analyzed for Cu and Mo whereas the rock chip samples were analyzed for Mo, Cu, Pb, Zn, Ag, and Au. They determined that a concentration of 5 ppm Mo and 40 ppm Cu were considered to be anomalous.

It was concluded that anomalous Mo and Cu concentrations were mainly underlain by favorable sedimentary and volcanic rocks of the Hazelton Group which they determined strike in the northwesterly direction and dip very steeply northeast. The hornfels siltstone was thought to be the primary host for the anomalous Mo and Cu values and that a significant amount of Mo is found within a stockwork of quartz veins.

This company also carried out a modest drill program in 1980 to further evaluate the potential of the property. Three drill holes (80-1, 80-2 and 80-3) were completed; each was collared at an inclination of -45°, at a bearing of 210° and was drilled to a depth of 334m. Flattening of the holes occurred below a depth of approximately 200m.

2.3 Asarco Inc. & Armco Mineral Exploration Ltd.

In a joint venture in 1981 between Asarco Inc. and Armco Mineral Exploration Ltd. a drill program was initiated to potentially extend the known area of molybdenum mineralization by drilling to deeper depths and to help determine vectors that control the grade and distribution of the Mo mineralization. Seven NQ sized drill holes were completed (81-1 to 81-7). All holes were collared between inclinations of -50° to -52° and most were collared at a bearing of 210°, with the exception of several holes drilled at a bearing of 270°. The deepest drill hole reached a depth of 300m.

The program substantiated the exploration model of a steeply dipping mineralized quartz stockwork zone hosted in a biotite hornfels siltstone unit that is sandwiched between the overlying pyroclastic andesite and the underlying granodiorite pluton. Further, it identified a close association of stockwork mineralization with granodiorite dykes. The mineralized zone was extended to 850m in length, and the geologic contact between the siltstone and overlying andesite was traced a further 300m west. A previously undiscovered fault zone was postulated from drill intersection, possibly related to emplacement of granodiorite dykes. The program demonstrated that faulting and disruption of the NW section of the zone by granodiorite dykes was much more extensive than previously assumed.

A drilling program in 1982 was confined to the eastern portion of the zone and completed two NQ-sized drill holes with a total length of 798m (82-1 and 82-2). DDH 81-1 was collared at an inclination of -47° and at a bearing of 214° to test an infill gap of approximately 280 meters between previous drill holes. DDH 82-2 was collared at an inclination of -52° at a bearing of 210° below DDH 81-2, to test the down-dip extension of the mineralization at depth.

The results continued to demonstrate the validity of the exploration model; however no further work was completed by the partnership and the claims were allowed to lapse. With the exception of the core rack and one tent frame, the remainder of the Armco exploration camp was removed and the site reclaimed to the standard of the day.

2.4 Orvana Minerals Corporation

Arnex Resources Ltd. staked mineral claims on the property in 1994 after the original claims lapsed. Orvana Minerals Corporation completed a limited program of exploration in 1994. The program consisted of stream sediment and rock chip sampling to determine if Mo anomalies occur both upslope and down slope of the surface expression of the main mineralized zone.

The stream samples were collected from tributaries of the northeastern drainage area and also down slope on the southwestern hill slope. The preferred sample media was moss mats but stream sediments and dry run-off channel sediments were also collected. A limited number of rock chip samples were collected from till clasts.

Geochemical analysis determined that several anomalous areas of Mo values were discovered in the northeastern drainage area. The highest values (up to 215 ppm) of Mo came from the samples collected from the drainage area down slope from the known mineralized zone. The rock chip samples returned only low Mo concentrations.

More work was recommended to determine if anomalous values could potentially represent additional mineralized bodies away from the main zone.

2.5 James McLeod/Chris Delorme

A limited program of exploration was completed in 2001 on the Chua Chua mineral claim by James McLeod on behalf of owner, Chris Delorme. A cut grid of 12.9 line kilometers was established east of the historic cut grid by extending the baseline southeast at azimuth 210°. A closed loop magnetometer survey was completed. The contoured data suggested a lithologic fabric trending N190°-N210° but failed to identify the interpreted trend of the contact between the andesite and hornfels siltstone.

The magnetometer survey coverage was extended further southeast in 2002 when another grid with a total length of 34.1 line kilometers was constructed. The survey data had well defined contours that seemed to mimic the N190°-N210° fabric trend of the underlying intrusive rocks.

2.6 Omega Exploration Services Inc.

A fieldwork program was completed in 2004 by Omega Exploration Service which at that time owned the claims covering the Chu property. The program consisted of drilling one vertical drill hole with a hand-held diamond drill to a depth of 20.1m and running SP over three lines totaling 3600 meters in length. The SP lines were run perpendicular to the N120° trending baseline. The drill core recovery was poor due to poor penetration and surface weathering of the hornfels unit.

The SP survey data suggested the continued presence of the contact between the hornfels siltstone unit and the andesite unit. The results from the shallow drill hole indicated anomalous near-surface molybdenum.

The company completed another limited program in 2005 which consisted of prospecting, line cutting, geological mapping, soil and rock sampling and SP and magnetometer surveys. The results suggested the Mo mineralization may be more widely distributed than known from past drilling.

2.7 Economic and General Assessment

There is no independent mineral resource estimate conducted for the Chu property. There is at present no resource classification available that would be considered to meet the definition of National Instrument 43-101 or that could be considered compliant with CIM Standards on Mineral Resources and Reserves - Definition and Guidelines (CIM, 2000).

2.8 Deposit Types

The Chu molybdenum mineralized stockwork may best be represented as a Low F (fluorine) porphyry molybdenum deposit although it appears to be transitional in nature. The Chu mineralized body probably formed as a result of migration of saline-rich magmatic fluids, with dissolved Mo and other metals, through thermally metamorphosed sedimentary rock. The hornfels siltstone had previously been structurally prepared for vein emplacement by the explosive fluid pressure release during the intrusion of small granodiorite plugs or dykes. Incursion of meteoric water during the waning stages of the magmatic system probably resulted in near-surface and erratically distributed alteration of the host rocks.

Molybdenite is the principal ore mineral; chalcopyrite and to a lesser extent pyrrhotite are generally subordinate. Like a porphyry deposit the Chu zone consists of molybdenite-bearing quartz veinlets and fractures. Unlike a porphyry deposit, the Chu is hosted in the biotite hornfels siltstone country rock rather than the intermediate to felsic intrusive rock typical of the porphyry system. And the alteration mineralogy is dominated by biotitization as a result of thermal metamorphism rather than the more typical zoned hydrothermal alteration patterns found around porphyry deposits.

Low F Porphyry Mo deposits that are associated with felsic intrusive rocks have been an important source of world molybdenum production. The typical low F Mo porphyry

deposit is 100 Mt at 0.1 to 0.2 % Mo. Some British Columbia examples include Endako, Lucky Ship, Boss Mountain and Storie Moly.

3.0 Geology

The Nechako Plateau is underlain by rocks that comprise part of the Stikine Terrane (Stikinia) which is believed to represent an allochthonous oceanic arc within the Intermontane Belt. Stratigraphic and intrusive rocks in the Stikine Terrane range in age from Palaeozoic to Pleistocene and are comprised of volcanic and sedimentary strata of Lower Devonian to Middle Jurassic age and supracrustal sequences of Middle Jurassic to Early Tertiary age, which are intruded by several suites of intrusive rocks. The Stikine Terrane can be broadly divided into three separate packages: basement rocks, latest Upper Cretaceous-Eocene rocks associated with mineralization, and cover rocks.

The basement rocks comprise Upper Triassic to lower Upper Cretaceous rocks grouped into two major stratigraphic assemblages; are volcanics of the Upper Triassic to Middle Jurassic age Takla Group which is unconformably overlain by Sinemurian to Bajocian calc-alkaline pyroclastics of the Hazelton Group. The arc volcanic assemblages are overlain by Middle Jurassic to Early Tertiary supracrustal sequences, which are believed to have recorded the effects of the amalgamation and collision of the Stikine terrane. There are two supracrustal sequences, the Middle Jurassic to Lower Cretaceous Bowser Lake Group and the Lower and Upper Cretaceous Skeena Group. Bowser Lake Group deltaic sediments were deposited mainly in the Bower Basin to the north but are represented in the area by the basal Ashman Formation which is comprised of chert pebble conglomerate, sandstone and siltstone units. The Skeena Group rocks formed a clastic blanket across Stikinia that was derived from the Cache Creek, Quesnel and Omineca terranes to the east.

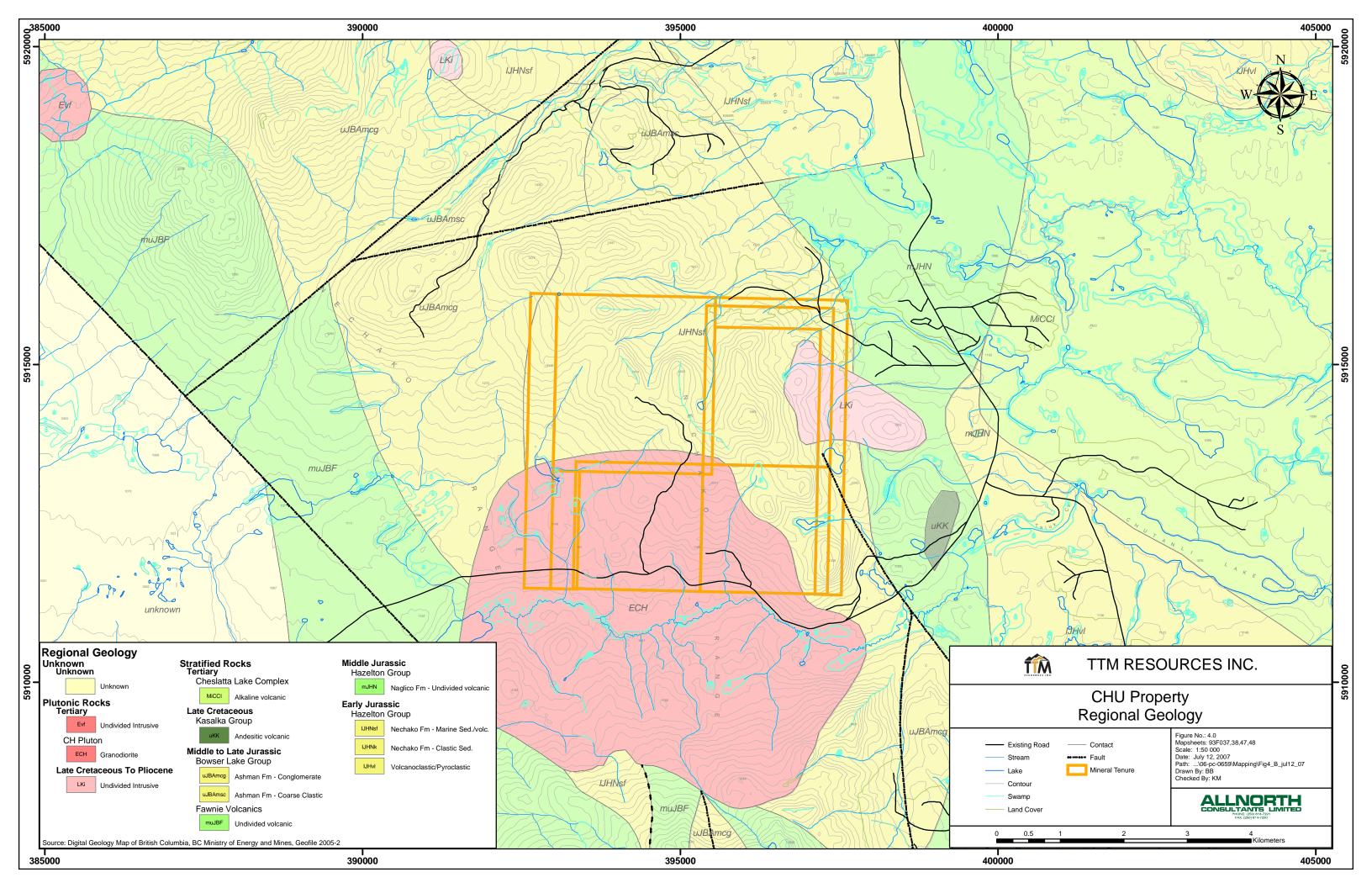
The basement rocks have been affected by westerly verging compressive tectonics along the east margin of the Stikine Terrane, associated with the amalgamation of Stikinia, Quesnellia and the Cache Creek Terranes to the North American Craton, and affect rocks as young as Upper Jurassic. Easterly verging compressive tectonics along the west margin of the Stikine Terrane is associated with the amalgamation of Wrangellia with Stikinia and affects rocks as young as Late Cretaceous.

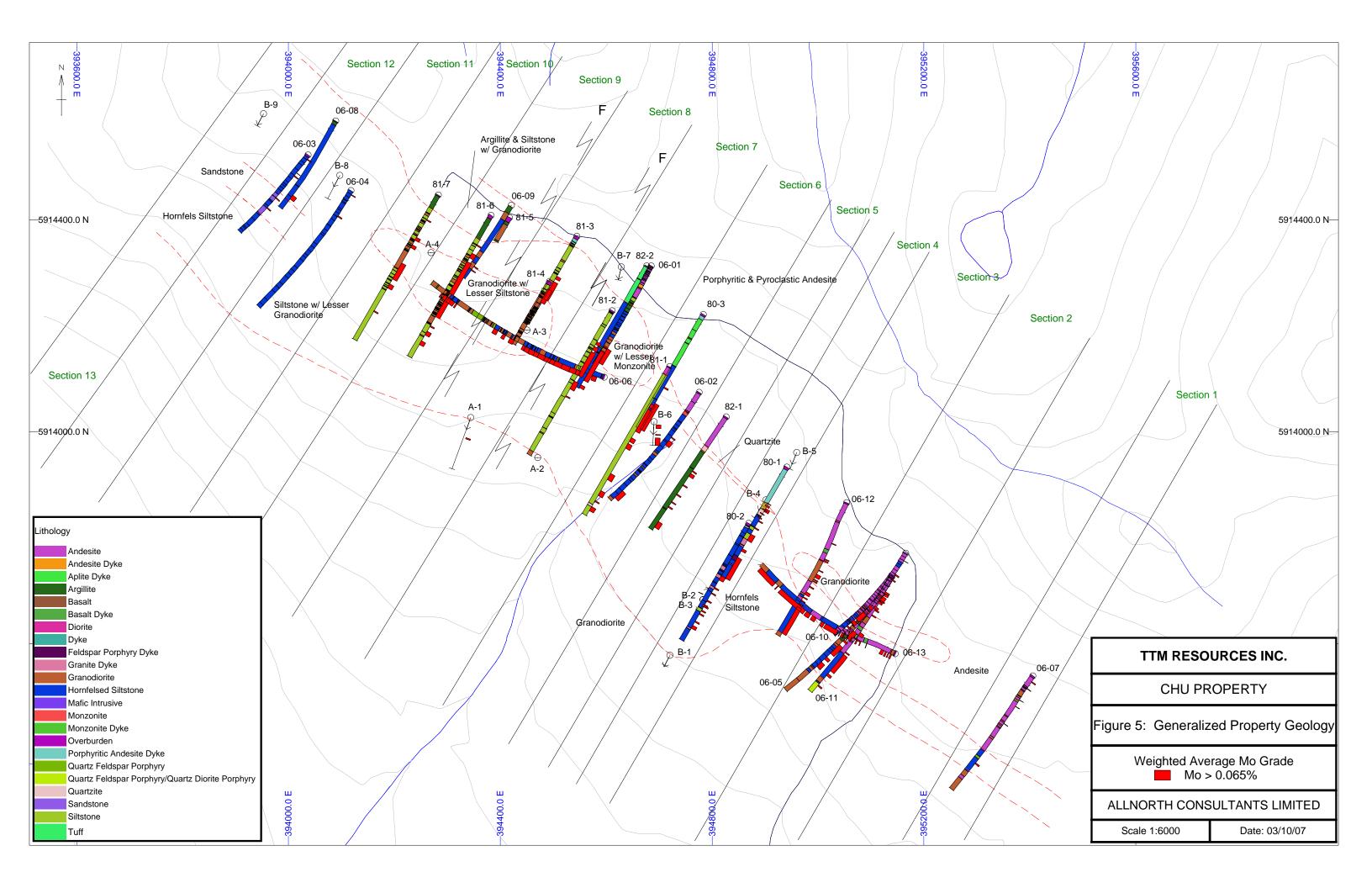
Intrusive suites of various ages and compositions were emplaced into the basement strata and include the Upper Jurassic-Lower Cretaceous Francois Lake intrusions to the northeast and mid-Cretaceous granitic to dioritic plutons of the Coast Crystalline Complex referred to as the Nechako intrusions.

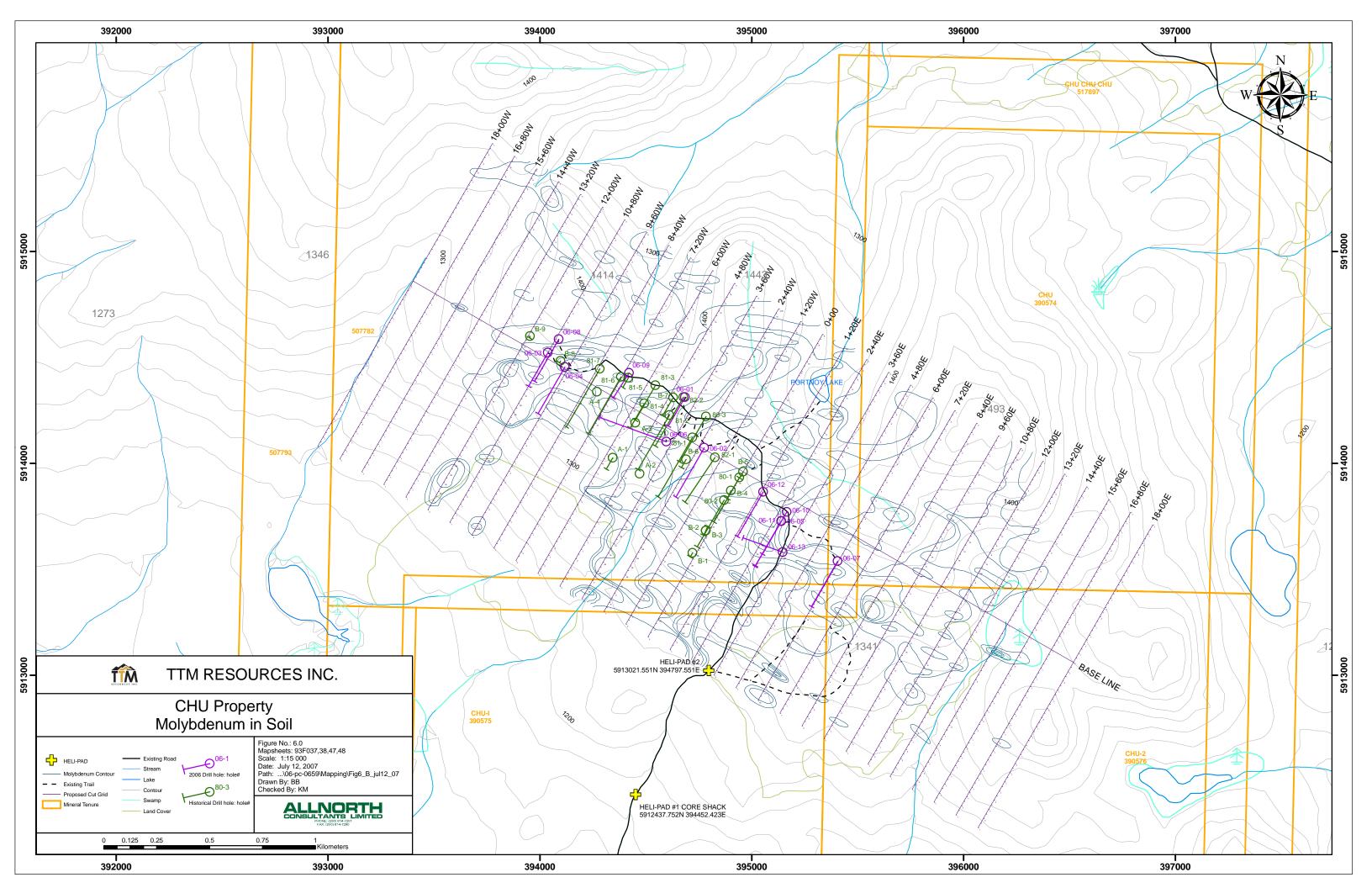
The Upper Cretaceous to Eocene package of rock is associated with three regionally important stratigraphic assemblages, the late Upper Cretaceous Kasalka Group, the Eocene Ootsa Lake Group and the Eocene to Oligocene Endako Group. These assemblages represent a generalized cycle of early andesitic volcanism followed by later basic volcanism, with strata mainly deposited in calderas and caldera complexes. The

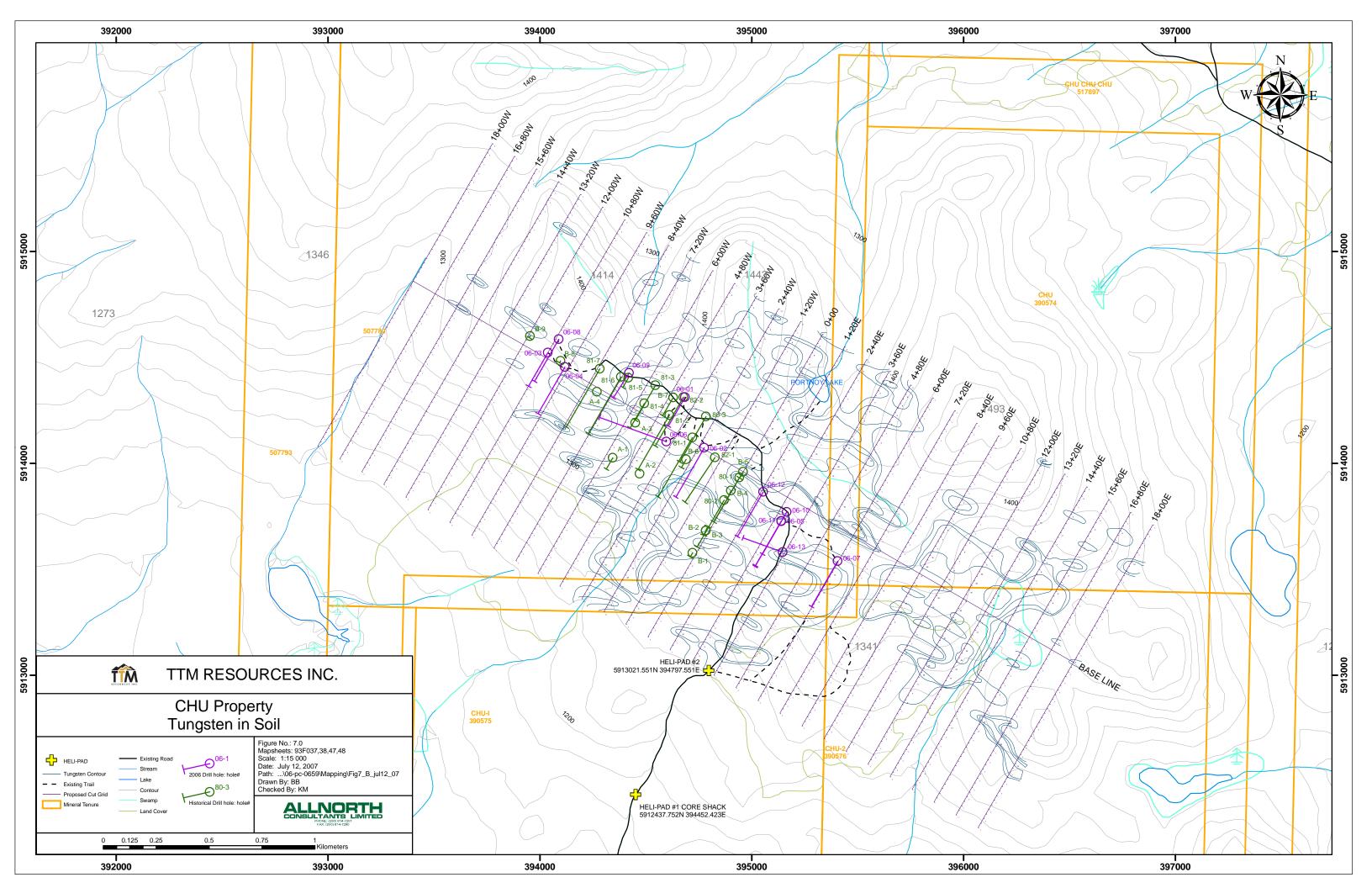
volcanic assemblages are associated with extensional faulting. The Kasalka Group volcanics are mainly feldspathic andesitic volcanics and are associated with or intruded by granodioritic stocks and plugs of the Late Cretaceous Bulkley Suite, and the Tertiary Babine and Quanchus Suites.

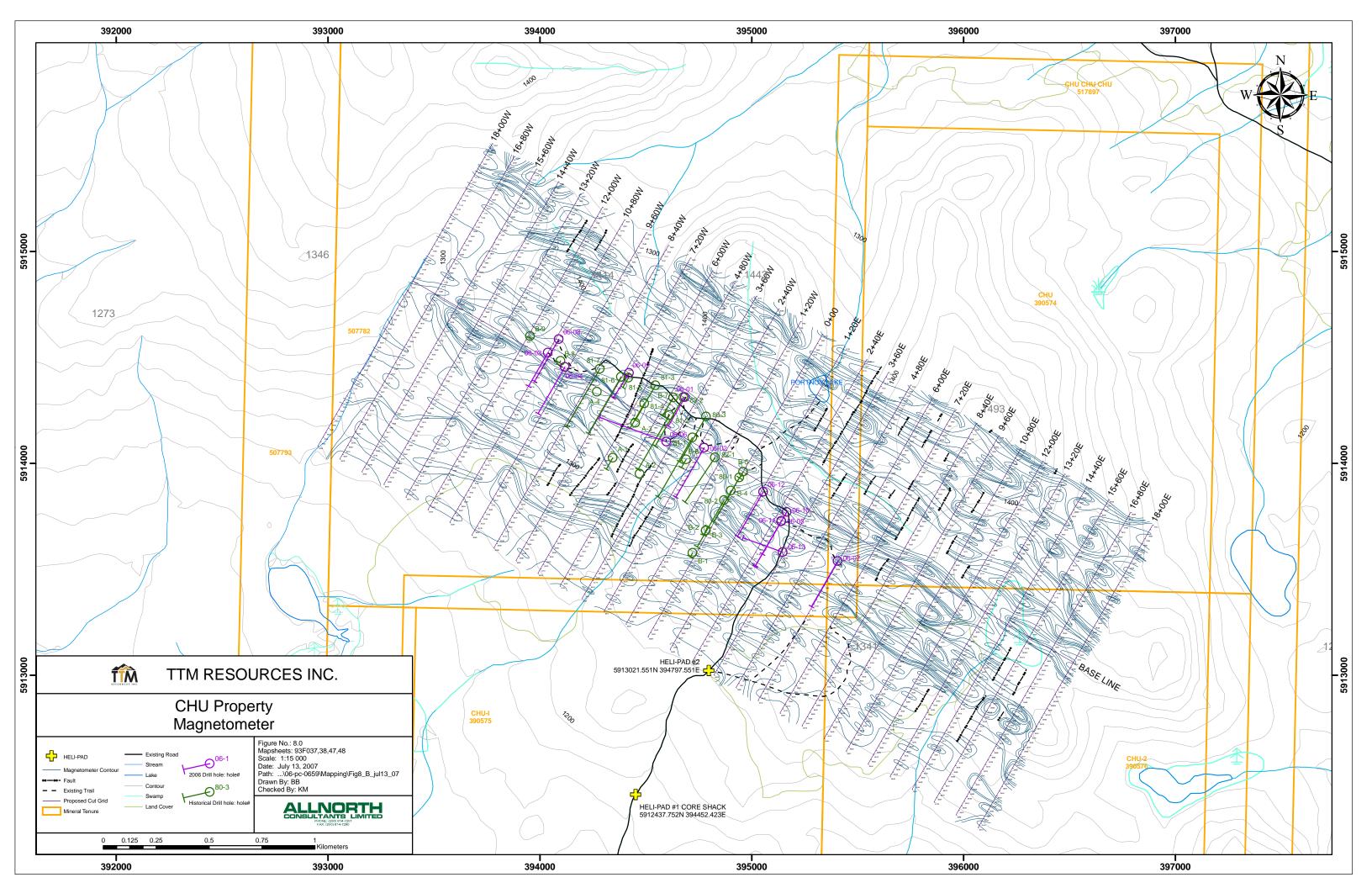
The Ootsa Lake Group is comprised of felsic volcanics that occur in structurally controlled basins and in large caldera complexes. The Endako Group is a wide ranging assemblage of mainly basaltic rocks that appears to overlie the Ootsa Lake Group.


The youngest volcanic flows are olivine basalt flows of the Chilcotin Group. Chilcotin Group rocks are wide ranging and represent gently undulating plateau basalt flows that range in age from Neogene to Quaternary.


The surficial geology of the area is dominated by Pleistocene glacial deposits molded into a multitude of features that resulted from the last major advance of the Frasier glaciation. Glacial transport varies in the area from N60° to N90°. Glacial deposits consist mostly of lodgement till with some areas with a thin veneer of ablation till. Esker systems are common as is fluvio-glacial material.


3.1 Regional Geology


The stratified rocks in the region are mainly dominated by Lower to Middle Jurassic volcanic and sedimentary rocks of the Hazelton Group which are a mixed assemblage of epiclastic and volcaniclastic sedimentary rocks, volcanic rocks and felsic intrusives that represent remnants of ancient volcanic island arcs (Figure 4.0). The oldest rocks are early Jurassic Hazelton Group and are represented by two facies; an undivided volcanoclastic and pyroclastic unit, and a unit comprised of clastic and marine sediments of the Nechako Formation. The Naglico Formation of the Hazelton Group is a younger and undivided Middle Jurassic volcanic sequence that probably overlies the lower Hazelton Group units. These rocks have been intruded by stocks of the Upper Cretaceous to Eocene Quanchus Intrusions which range in composition from granite to diorite.


Middle to Late Jurassic time is represented by Bowser Lake Group undivided volcanic units of the Fawnie formation (informal), and coarse clastics and conglomerates of the Ashman Formation. Late Cretaceous Kasalka Group andesite is present but not widespread. The Upper Cretaceous to Tertiary Ootsa Lake Group overlies and in part cross-cuts the Hazelton Group rocks. The Ootsa Lake group consists largely of felsic volcanic rocks intercalated with lesser amounts of intermediate volcanic and sedimentary rocks. The Ootsa Lake Group rocks appear to occur in isolated patches due to partial cover by younger overlying andesite flows and olivine plateau basalts, and are possibly coeval with the Quanchus Intrusions and may be their extrusive equivalents. Overlying all of the sequences are andesitic to basaltic flows of the Oligocene and Miocene Endako Group. The youngest rocks in the region are extensive flows of Miocene and Pliocene olivine basalt represented by the Cheslatta Lake alkaline volcanic rocks of the Tertiary Chilcotin Group.

Plutonic rocks are represented by Late Cretaceous to Pliocene aged, undivided and unassigned, intrusive rocks. The aerially restricted but metallogenically more important Tertiary plutons are represented in the area by the Eocene Ch Pluton, and lesser undivided intrusives, possibly of the Quanchus Suite. The Ch stock is a small biotite-hornblende granodiorite stock that occurs in several localities on and near the Chu property and intrudes the Hazelton Group strata.

Northeasterly trending normal faults occur throughout the region, and form prominent lineaments.

3.2 Property Geology

The main lithological units recognized on the Chu property have been identified mainly from drill core logging. There is little outcrop exposure and only generalized geological mapping available from early workers (Figure 5.0). The main stratigraphic units are striking northwesterly and steeply dipping to the northeast and represent Hazelton Group andesite, tuff and pyroclastic andesite overlying intercalated units of hornfels siltstone, sandstone, quartzite and lesser argillite. The hornfels unit is sandwiched between the andesite and the underlying and intrusive CH granodiorite pluton. Granodiorite dykes are common and appear to intrude all stratigraphic units, and are spatially, if not temporally, associated with the CH pluton.

Biotite-bearing granitic dykes have been identified that are thought to be mid-Cretaceous Nechako Suite. Endako group basalt dykes are rare; as are monzonite dykes, andesite dykes, quartz feldspar porphyry and quartz diorite porphyry assemblages.

Fault structures have been interpolated in the NW of the mineralized zone to explain apparent offset or disruption of the zone between holes on the same section, or between drill fences. The faults are interpreted as northeasterly trending normal faults, similar to the regional pattern. The main alteration types found on the property are sericite, quartz, chlorite, argillite and calcite. The age of the mineralization is not known but there is some suggestion from overlapping and cross-cutting relationships that there may be multiple mineralization phases.

3.2.1 Surficial Geology

Most of the property is covered by unconsolidated glaciofluvial sediment or overburden that can measure up to 7 meters thick in some areas. There is only generally a thin layer of soil development at higher altitudes and only minor thicknesses of overburden on the steep slopes. Lower in the valley toward the southern property boundary there are exposures in road cuts and creeks that have been mapped as fluvial, glaciofluvial and lacustrine deposits of variable thickness.

3.2.2 Bedrock Geology

The bedrock geology of the property is dominated by a volcanic assemblage of andesitic composition overlying hornfels siltstone which is itself intruded at its lower contact by granodiorite. The mineralized stockwork is mainly hosted in a hornfels siltstone and to a lesser extent, sandstone and argillite. The intrusive rocks include basalt dyke, andesite dyke, granodiorite, monzonite, quartz feldspar porphyry and quartz diorite porphyry.

3.2.1.1 Volcanic Rocks

Andesite

The andesite unit is highly variable in color and texture and interpreted to have a pyroclastic origin. It ranges in grain size from aphanitic to porphyritic and is typically dominated by plagioclase. Biotite, quartz, magnetite and sphene are common accessory minerals. The unit was commonly found to be mineralized with disseminated and blotchy pyrite and lesser pyrrhotite. In color the unit is mottled, maroon red (hematite alteration) with blotches of green (chlorite alteration). The scoriae fragments are of various sizes, from crystal to lapilli size. Cavities were noted that are infilled with calcite, chlorite, quartz and some epidote. The unit was generally relatively soft and was easily scratched with a knife. Some units had a flow banded appearance while others sections had a brecciated ('crackle breccia") appearance that was most likely caused by micro faulting. A large proportion of the unit was mottled by quartz and calcite veins and veinlets.

3.2.1.2 Sediments

The sedimentary rocks include hornfels siltstone, sandstone, quartzite and argillite. The hornfels siltstone is the most prominent lithology and is usually intercalated with or cross-cut by granodiorite bands and dykes, and by lesser andesite dyke.

Generally the hornfels siltstone is dark-brown to black with a somewhat velvety luster owing to the abundance of black biotite. The unit is generally fine to very fine grained and weakly foliated with variable biotite hornfels and commonly stockworked with Mobearing narrow quartz veins. The degree of biotitization intensity seems to depend on presence and density of fractures. The unit can also be variably chloritized. The hornfels siltstone is very well indurated and has been rendered massive, hard, and splintery when split or cored. The hornfels is locally fissile but presence of bedding is difficult to determine and is assumed to be parallel to the penetrative foliation.

The sandstone is infrequently observed and described as light to dark brown, medium grained and slightly to highly altered. The argillite when found was generally described as dark colored, almost black, fine grained and mottled by quartz and calcite stringers.

3.2.1.3 Intrusives

There were several compositions of intrusive rocks noted in drill core, ranging from fine grained, dense, dark mafic basalt dyke to light colored, porphyritic granodiorite dyke.

Granodiorite dykes are generally porphyritic with coarse feldspar phenocrysts and a dense, light green feldspathic matrix. Generally the granodiorite was described as highly variable with wide ranging grain size and percentage of phenocrysts. The unit was generally found to be medium grey in colour, speckled black and white with a dense, light green feldspathic groundmass and subheudral plagioclase phenocrysts. The unit ranged from being more biotite rich to more quartz rich, but all occurrences had a proportion of biotite, plagioclase and quartz. Locally the unit was weakly foliated with chilled margins.

The basalt dyke has only been noted from several holes and is dark brown to black, fine grained and mainly fresh with sharp contacts but also described locally as a weakly weathered unit.

An andesite dyke has been logged that occurs as a dark green, weakly foliated and highly chloritized unit that may be equivalent to the granodiorite porphyry. Minor occurrences of monzonite, quartz feldspar porphyry and quartz diorite porphyry are noted.

The andesite dyke and the monzonite dyke only occurred in a couple of holes whereas the other types of intrusives have occurred in multiple holes. The quartz feldspar porphyry was described as dark green, strongly siliceous, fine grained, and containing feldspar and quartz. The quartz diorite porphyry only occurred in one hole and was associated with a granodiorite.

3.2.3 Structure

The stratigraphic units on the property strike NW-SE with a pronounced steep dip to the northeast. Local faulting has disrupted the sequence in at least two sections in the west and central portion of the zone. Normal block faulting is assumed and several holes were drilled along the trend of the structure to investigate the apparent disruption. The holes returned significant molybdenum mineralization and also considerable faulting and broken zones, suggesting that normal block faulting with an apparent NNE trend may have offset the zone and may help explains why shallow drilling on those same sections failed to intersect the zone.

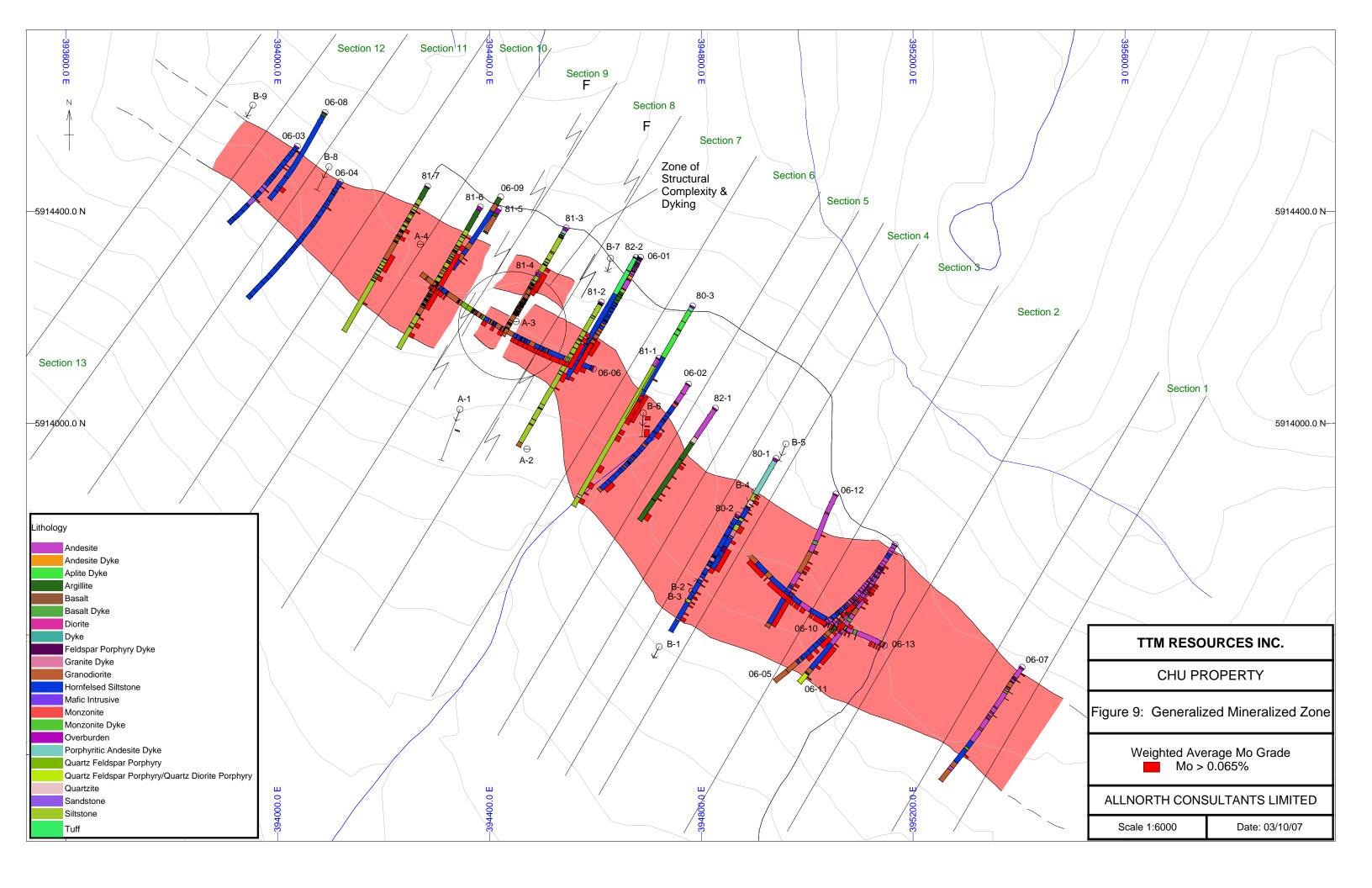
Minor faulting was seen in core as well as micro faulting which was observed as displacement of individual veins. Other structures noted include local brecciated core, bedding and foliation and flow banding. The bedding and foliation were generally found in the sediments but there was note made of local foliation occurring in the granodiorite.

3.2.4 Alteration

The Chu mineralized zone does not exhibit the characteristic alteration pattern of a typical porphyry deposit. Instead, it is characterized by an initial thermal metamorphic event that caused the porous sedimentary rocks to alter to biotite-grade hornfels. Metasomatic alteration derived from magmatic fluids from the nearby intrusive stock may have modified and overprinted the initial thermal aureole and resulted in the localized deposition of metallic minerals. The result of alteration processes at Chu is the development of a unique assemblage of secondary alteration minerals, including biotite, quartz, and sulphide minerals. Sulphide minerals include pyrite, pyrrhotite, molybdenite and chalcopyrite.

The alteration is relatively more pervasive in the hornfels siltstone likely due to the penetrative foliation fabric and the intensity of fracturing that resulted from pluton emplacement and circulation of metamorphic and metasomatic fluids. Localized normal faulting subsequent to the intrusion may have played a role in secondary alteration.

The most widespread alteration is the quartz (silica) and calcite veins. These can be found in all holes and in all types of rock. They can occur as stringers, veins and veinlets. The calcite veins are typically randomly orientated and may post-date the silica veins. The quartz veins can form in a variety of shapes and sizes, but some general observations have been made below.


Localized clay (argillic) alteration has been noted within and adjacent to faults; and strong but patchy chlorite, sericite, calcite, and to a lesser extent, epidote, have been noted as secondary alteration minerals.

3.2.5 Mineralization

The bulk of the quartz vein or stockwork hosted mineralization seems to occur within the sedimentary rocks, especially the hornfels siltstones. This may be due to the brittle and foliated nature of the rock, which is preferentially more amenable to hydraulic flow of fluids carrying mineral constituents. The molybdenum mineralization primarily occurs with quartz as fracture fillings and is less commonly observed as fine disseminations within the country rock. The disseminations tend to be proximal to a quartz vein or stockwork and decreases to traces within centimeters of the quartz host (Figure 9.0).

FP Veins

There appears to be three main types of quartz veins; and all carry molybdenum mineralization to varying degrees. There are simple veins that tend to occur in clusters in the hornfels siltstone, are generally parallel to bedding or foliation, and measure in the millimeter to centimeter scale. These veins can be barren or more often are mineralized with coincident fine grained pyrite and molybdenite and minor chalcopyrite. The frequency of these types of veins is highly variable but where there is a close and dense

pattern the molybdenum grade increases. For ease of identification these veins are called foliation parallel or FP veins. These vein types may have formed by crack-seal means and probably formed relatively quite quickly by precipitation of quartz and sulphide bearing fluid in incipient fractures. This type of vein structure may mark the first pulse of hydrothermal fluid and the first generation of molybdenum mineralization.

AP Veins

There are long sub-vertical quartz veins that tend to be up to several meters in length. They can exhibit a crude colloform habit which appears as sequential selvages of quartz which radiate out from the vein nuclei to the vein wall and appear to fill up the available open space. Coarse molybdenum and pyrite and lesser pyrrhotite is often preferentially found at the outer selvage or vein wall. There is some evidence of fluid boiling present as vugs and cavities. These veins are not common but produce very visible coarse molybdenum and can give rise to significant molybdenum grade over several meters.

The quartz can be dull and massive, fractured or sometimes quite druzy. Accessory minerals comprise calcite, chlorite, sericite and minor epidote. For ease of presentation these veins are axis parallel or AP veins. These veins appear to cross-cut all other vein sets, likely post date the initial mineralizing event, and may represent an epithermal event subsequent to the pluton emplacement. The AP veins may be crack-seal veins that grew later in size and thickness by reopening of the vein fracture and progressive deposition of quartz and/or sulphides.

Stockwork Veins

There are also stringers, veins and veinlets of quartz found in a complexly anastomosing and branching stockwork with pyrite, chlorite, trace epidote and variable molybdenite content. The individual quartz veins are sometimes massive and distinct but more often comprised of individual wispy veinlets at the millimetric scale. The "crackle breccia" texture is commonly observed in the hornfels siltstone and probably formed by hydraulic fracturing and subsequent infilling with vein material. This type of breccia vein system is quite extensive in the hornfels unit and is volumetrically the most important host for molybdenum mineralization. The overall form of the breccia vein system or stockwork is a tabular dipping sheet whose depth extent is unknown but whose upward migration may have been halted by the overlying andesite which could have acted as a cap rock. Similarly pre-mineral dykes may have controlled the lateral extent of migration, or at least limited the development.

3.2.6 Geological Model

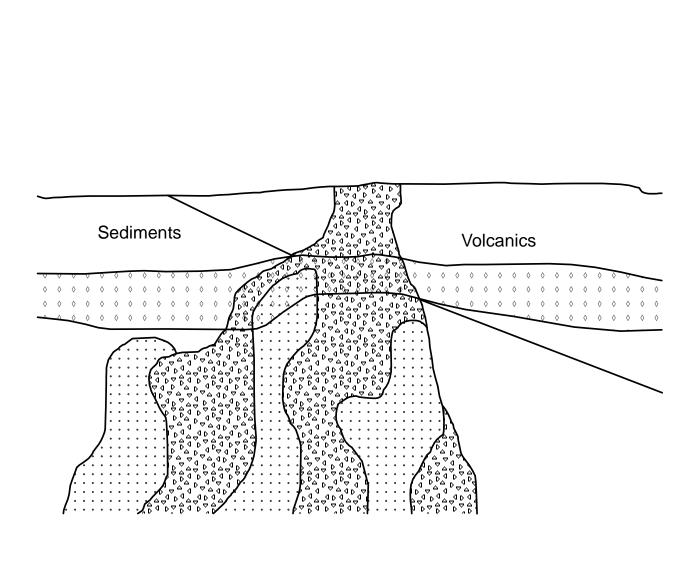
The Chu prospect shares some common characteristics of low fluorine-type molybdenum porphyry deposits but there are also some unique differences, as described above. Like Low F type deposit, the mineralization at Chu is predominantly structure controlled and the molybdenum is preferentially found in stockworks of quartz veins and fractures and

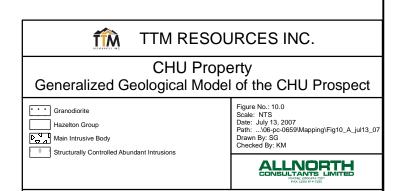
in vein sets. There also appears to be multiple mineralization phases. The gangue minerals that are associated with the Chu are also commonly found at Low F type deposits, including quartz, pyrite, biotite, sericite, clays, and calcite. In fact the Chu may be a transitional model to a true molybdenum porphyry, sharing some characteristics but lacking other, especially disseminated mineralization, porphyritic host and zoned potassic-phyllic-prophylitic-argillic alteration.

At a preliminary geological model level there would appear to be at least three distinct phases of molybdenum mineralization, related to the style and timing of the emplacement of quartz. Various workers have suggested the feeder system to the Chu stockwork may be associated with a yet unidentified and possibly mineralized buried intrusive and not the shallow granodiorite intrusive stock known from drill core. The CH pluton has been described as barren of molybdenum mineralization, suggesting it is post-mineral. The initial pulse of hydrothermal fluid probably occurred contemporaneously with the emplacement of a neighbor pluton or an earlier deep seated intrusive. The migrating hydrothermal fluids would have found a suitable precipitation environment in the pervasively foliated hornfels, giving rise to the FP veins (Figure 10.0).

A subsequent and much more pervasive pulse of hydrothermal fluid emplacement may have caused the brittle hornfels siltstone to fracture allowing invasion of the crackle breccia vein system. This event was probably caused by intrusion of the deep seated and earlier intrusive. A later "epithermal" fluid migration of unknown source probably gave rise to the AP veins. Epithermal style veins are known from several deposits in the vicinity of the Chu, including the Trout prospect and the Tsacha prospect.

Other sulphide minerals noted at the Chu including pyrite, chalcopyrite, and pyrrhotite. Tungsten values have been reported from previous soil geochemistry programs but no tungsten mineralization was observed in the 2006 drill campaign. Iron oxide minerals of note include magnetite and hematite.


A generalized schematic of the preliminary geological model is shown in figure xx.


4.0 2006 Exploration Program

The 2006 winter drill program completed thirteen (13) drill holes totaling 6,129 metres of NQ core. The overall goal of the program was to better define the geometry of the mineralized zone and confirm the historic molybdenum values sampled from earlier drilling, and to search for mineralization at deeper depths.

The objectives of the program are identified as follows:

- Test the continuity of the known mineralized zones from widely spaced holes
- Test for the strike continuity NW and SE of the mineralized zone

• Test parallel to strike to probe for apparent fault offsets that would explain the seemingly rapid lithological changes in several sections within the known bounds of the mineralized zone

• Test below the depth extent of the historic holes

The following table identifies the holes drilled in 2006-2007. Two holes were abandoned before their intended depth due to difficult ground conditions and risk of collapse.

Table 2: 2006-2007 Drill Holes

HOLE	East	North	Elevation	Depth(m)	Azimuth	Dip
06-01	394685.086	5914312.593	1371.358	609.60	210	-75
06-02	394775.941	5914073.637	1340.332	468.48	210	-55
06-03	394037.010	5914522.179	1353.105	364.85	210	-60
06-04	394118.132	5914454.768	1352.272	395.33	210	-50
06-05	395140.224	5913726.045	1347.041	486.76	210	-60
06-06*	394596.699	5914102.463	1335.510	584.30	290	-55
06-07	395406.023	5913538.732	1354.894	431.90	210	-55
06-08	394089.439	5914586.082	1368.486	300.53	210	-55
06-09	394421.213	5914427.072	1365.922	331.01	212.5	-65
06-10	395165.685	5913770.307	1354.044	669.65	210	-75
06-11	395139.518	5913728.069	1346.901	361.48	210	-45
06-12	395054.355	5913865.562	1364.843	501.70	210	-60
06-13*	395146.347	5913580.452	1336.000	626.06	300	-60

^{*} drilled parallel to strike of mineralized zone

4.1 Drilling & Core Handling Procedures

Falcon Drilling of Prince George conducted the drilling on a 24-hour, 2 shift rotation from mid December to the beginning of April. An NQ-sized (63.5 mm in diameter) drill rod was used to drill the core and the inclinations varied for each hole. See the table above for the exact azimuth and dip values.

The location of each drill collars was initially found by handheld GPS (Garmin XL) survey method. A downhole survey was conducted by the drill crew using a Reflex EZ-Shot hole survey instrument. After the completion of the drill program the drill collars were re-surveyed using a precision LEICA RTK GNSS base station and rover. All holes locations were found accurate to less than 0.07m relative to the base station, with the exception of hole 06-03 with an accuracy of 1.02m and 06-07 with an accuracy of 1.188m. This discrepancy was most likely due to the height of the trees in the area.

The core was delivered to the core shack by the drillers at the end of each shift (twice a day). A company representative was at the core shack at all times to take delivery of the

core, and ensure that run markers were inserted correctly. Aluminum tags were attached to each core box with the Hole ID, the box number, and interval length noted. After logging the core was stored temporarily and then later shifted to core racks fitted inside overseas shipping (seacan) containers.

The core was logged in detail and pertinent geological and basic geotechnical data was collected and inputted into a computer logging program. Geological logging included conventional descriptions of lithology, structure, alteration and mineralization. The geotechnical logging included measuring core recovery, dominant discontinuities, RQD, estimating rock strength and weathering.

The entire length of ore for each hole was split in half and one half was sampled in 3.05 m intervals and sent off-site by a licensed carrier to Eco –Tech Labs of Kamloops, BC for detailed 31 element ICP analysis. The other half was left in the core box for future reference. The sample interval was typically the length between drill run markers (3.05m) or corresponded to lithological contacts. A total of 2,465 samples were sent for analyses with Mo and Cu assays run on any sample that exceeded 500 ppm. Results were reported as percent copper (%Cu) and percent molybdenum (%Mo). Earlier Chu programs reported % molybdenite (% MoS2).

The core was split using a hydraulic splitter with every effort made to maintain the proper core orientation and an even split. Care was also taken to reduce the amount of cross-contamination between each sample by reducing the amount of fugitive dust and carefully cleaning the work station upon the completion of a given sample.

A Quality Control and Quality Assurance program (QC/QA) was established and included inserting blanks, duplicates and CANMET Standards into the sample stream. At least one control sample type was inserted into the sample stream every 20 samples, with the type repeated every 4th round. The blank samples were a lime aggregate sourced from a local nursery. They were known to not contain any significant values of copper, silver, gold or molybdenum. Approximately 100g of this lime aggregate was put into a poly bag and given the appropriate sample number in the sample sequence. The CANMET Standard sample (MoS-1) was also inserted into the sample set and had a known value of molybdenum (0.065% +/- 0.008%). The duplicate control measure was taken from a re-split of the designated split interval, resulting in two quarters, one for analysis and one for quality control.

The samples were sent for analysis to Eco-tech Laboratory Inc, of Kamloops, British Colombia.. After arrival at the lab the samples were crushed and a 5g sample of the crushed material digested with 3mL of a 3:1:2 (HCL:HN₀₃:H₂0) for 90 minutes in a 95°C water bath. This sample was then put into a Jarrell Ash ICP unit for the multi element ICP analysis. The elements that are tested for are Ag, Al, As, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sn, Sr, Ti, U, V, Y, Zn.

As an extra quality control measure, the duplicate sample rejects from Eco-Tech were sent to ALS Chemex where they were first pulverized to a grain size less than $75\mu m$.

The samples were then split using a riffle splitter and a 35 element Aqua Regina ICP-AES analysis was done. The elements that this lab tests for are Ag, Al, As, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sn, Sr, Th, Ti, Tl, U, V, W, Zn.

4.2 Results

The Chu program was designed to further explore the property for areas of high Mo mineralization, to determine control of the mineralization, and to fill in the informational gaps from previous work. Thirteen HQ-sized drill holes (CHU0601 to CHU0613) were drilled for a total length of 6,129m at various inclinations. A couple of holes had to be abandoned either due to excessive downhole deviation or because of difficult ground conditions.

4.2.1 QC/QA

A statistical analysis of the control standard was completed between the known values of the MoS-1 standard and the values returned from Eco-tech. The graphs in Appendix VIII illustrate the difference in the sample values between the known value of the MoS-1 standard and the values of the standard samples that were measured by Eco-tech. The value of the standard is 0.065% Mo and the allowed variation is +/- 0.008% or +/- 2 standard deviations of this value. The values returned from Eco-tech were within the acceptable levels of reproducibility. The mean of the values tended to be lower than the known standard value, but overall the results from the Eco-tech were deemed satisfactory.

Another statistical analysis was completed to compare the analytical results from each lab for the duplicate control. The allowable deviation of the data was determined to be two standard deviations above and below the mean of the data. All but three duplicates were found to be within acceptable limits for both copper and molybdenum values. In general terms both labs tended to be more closely repeatable for Cu over Mo.

4.2.2 Geochemistry

As a general rule, the percentage of copper is uniformly less than 0.1% and tends to remain at the same average value, regardless of molybdenum content. In some instances strong molybdenum was encountered with only trace or no chalcopyrite present. The copper mineralization did not have apparent preferred location and was found distributed infrequently and unevenly throughout each type of lithology and each hole.

The bulk of the Mo mineralization occurs within the hornfels siltstones but was also noted within the overlying andesite unit and also within the granodiorite sequences (sill?) that penetrate the hornfels siltstone. The strength of Mo mineralization in general appears to improve at depth but there are variations to the rule, especially where the

hornfels is limited in depth by barren granodiorite at deeper depths. No geochemical pattern for other elements could be discerned and nor were any pathfinder elements identified.

4.2.3 Structure

The angle to drill core axis was examined statistically to determine if there was a relative preferred vein orientation. The most common vein angle to core axis (TCA) is 40° , followed next by 50° TCA and then 60° TCA. The attached figure shows a histogram illustrating these vein sets and their cluster points (Figure 11.0). Veins at an angle between 40° to 60° TCA tend to carry lower Mo grade compared to the more uncommon angles

Although proportionately there are many veins at 40° TCA, the average grade of Mo in those veins is 0.043%. Conversely there are relatively few veins at 0° TCA but the average Mo grade in these veins is 0.090%. This type of vein is typically long, thick and mineralized with coarse "crack and seal" molybdenum at the vein selvage. Figure 12.0 shows a histogram illustrating this concept. There appears to be a strong correlation between the percentage of Mo by sample interval and the total number of recorded veins in a given hole. As the total number of veins increase, the total percentage of Mo increases as well, and the more complex the stockwork density the better the molybdenum content.

4.2.4 Drill Results

Below is a table of significant mineralized intervals and a brief summary description of each hole. The summary descriptions below are mainly taken from log summaries written by the individual geologist who was responsible for core logging each hole. The complete geological drill logs and sample analysis and assay certificates are provided in Appendix IV and V, respectively.

Hole ID	From (m)	To (m)	Cu% (weighted average)	Mo%* (weighted average)	Interval Length (m)
CH-06-01	413.92	465.73	0.029	0.043	51.8
CH-06-01	520.63	593.75	0.071	0.108	73.15
CH-06-02	178.92	233.78	0.034	0.066	54.9
including	194.16	212.45	0.045	0.088	18.3
	419.71	453.24	0.076	0.074	33.5
including	434.95	450.19	0.111	0.084	15.2
CH-06-03	80.2	81	0.082	0.468	0.8

Frequency of Structure Angles-All Holes

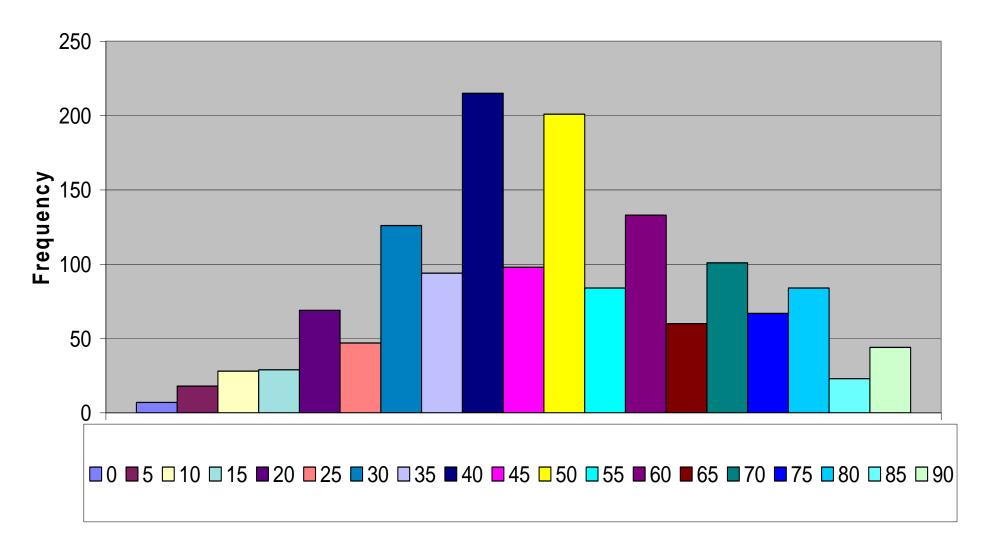


Figure 11

Average and Median Values of Mo% for Each Angle

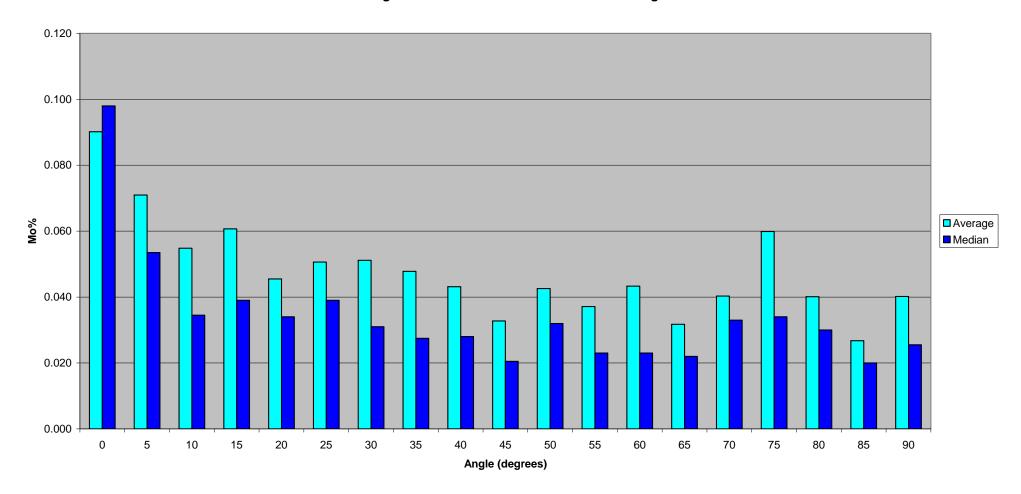


Figure 12

	242.93	245.97	0.050	0.379	3.04
CH-06-04	9.14	11.28	0.028	0.058	2.14
	81.38	84.43	0.027	0.061	3.05
CH-06-05	60.05	66.14	0.043	0.073	6.09
	78.33	93.57	0.045	0.063	15.24
	99.67	105.77	0.048	0.057	6.10
	121.01	130.15	0.050	0.049	9.14
	227.69	258.17	0.059	0.110	30.48
including	245.97	258.17	0.075	0.183	12.20
	267.31	273.41	0.121	0.088	6.10
	288.65	325.22	0.027	0.126	36.57
including	288.65	309.98	0.031	0.152	21.33
	340.46	349.61	0.026	0.055	9.15
	361.80	380.09	0.021	0.143	18.29
CH-06-06	23.47	38.71	0.046	0.093	15.24
	78.33	277.29	0.047	0.132	198.96
	307.27	320.90	0.049	0.088	13.63
	335.83	345.28	0.037	0.087	9.45
	361.80	375.28	0.040	0.102	13.48
	505.05	524.76	0.060	0.101	19.71
	529.44	538.58	0.063	0.079	9.14
CH-06-07	17.37	20.42	0.050	0.102	3.05
	44.81	45.77	0.050	0.141	0.96
	152.23	154.88	0.050	0.096	2.65
	330.04	334	0.020	0.084	3.96
CH-06-08	254.81	267	0.042	0.109	12.2
CH-06-09	276.45	279.50	0.020	0.087	3.05
	291.69	294.74	0.030	0.096	3.05
CH-06-10	157.58	166.73	0.081	0.078	9.15
	200.25	206.35	0.057	0.104	6.10
	334.36	343.51	0.044	0.144	9.15
	425.81	441.05	0.117	0.092	15.24
	480.67	535.53	0.048	0.081	54.86
	547.42	556.87	0.021	0.096	9.15
	590.40	596.49	0.013	0.078	6.09
CH-06-11	50.60	56.69	0.040	0.070	6.09

	169.47	178.61	0.080	0.088	9.14
	239.57	291.39	0.110	0.091	51.82
	300.53	306.63	0.020	0.075	6.10
CH-06-12	270.05	282.24	0.030	0.087	12.19
	337.11	346.25	0.050	0.075	9.14
	391.97	489.51	0.060	0.110	97.54
CH-06-13	242.62	297.48	0.070	0.118	54.86
	391.97	513.89	0.040	0.110	121.92
	544.37	617.52	0.030	0.109	73.15

^{*}Assays are for the element Mo, not Molybdenite MoS2. All values in this report are % Mo unless otherwise stated.

CH-06-01:

This hole was collared to test below historic hole #82-2; which intersected 100.5m of 0.158% Mo from 301.8m. CH-06-01 intersected dark green-black, mottled purple, pyroclastic andesite (from porphyritic to fine grained) with moderate feldspar, and abundant calcite-quartz-chlorite stringers and veins. Patchy biotitization is evidenced by specks of weathered biotite. The core is mainly hard and well indurated with widely distributed silica alteration as irregular quartz veins. Trace to weak magnetite (<2%) was noted in a few discrete zones but rarely >5%. Pyrite and pyrrhotite (0.5-2.0%) are mostly fine grained disseminations; rarely >5% and only when in quartz-calcite veins and/or silica zones. Chalcopyrite is locally found in trace amounts.

The sedimentary contact was intersected at 239.1m; and below the hole encountered black, very fine grained argillite mottled by albite - quartz veins and stringers. Minor faults and shear zones (0.2-2.0m thickness) are present within the argillite unit.

Below 286.5m interbedded argillite and siltstone was intersected with silica alteration as zones of irregular but pervasive strong matrix silicification with or without quartz veining. Weak pyrite and pyrrhotite was observed in veins. The zone is dominated by abundant albite-quartz-chlorite veins and stringers. Below 307.2m the hole encountered black argillite with interbedded subparallel hornfels siltstone (40%) and some granodiorite dykes up to 2.0m in width. From 326.18m to 420.85m hornfels siltstone was encountered with quartz-pyrite +/- molybdenite and a few granodiorite dykes from one to three meters in thickness. From 420.85m to 572.4m the hole was dominated by a massive granodiorite sill with ~30% hornfels siltstone and greenish monzonite porphyry, and strong magnetite present below 528.0m. The core was mottled by a complex stockwork of pyrite-pyrrhotite veins, abundant molybdenite stringers and trace disseminations. An interval of hornfels siltstone appeared again from 584.6m to the end of the hole with porphyritic monzonite, traces of epidote, abundant pyrite blotches and thin pyrite stringers, calcite veins, chlorite alteration, and quartz-pyrite veins +/- molybdenite stringers. The hole was stopped at 609.6m.

The high grade zones drilled in CH-06-01 represent the down dip confirmation of mineralization encountered in 81-2 (0.126% Mo over 24.4 m) and 82-2 (0.13% Mo over 36.6 m) and indicate this mineralization extends an additional 300 meters to depth.

CH-06-02:

Ch-06-02 was collared to test for continuity of the zone between holes' 81-1 and 82-1, a distance of 150m apart. Hole 81-1 intersected multiple narrow mineralized zones with one large zone returning 0.108% Mo over 73.2m from 143.2m. 82-1 intersected multiple narrow intervals, including 0.109% Mo over 18.3 m at 344.4m.

CH-06-02 collared in green-mottled purple andesite porphyry with feldspar phenocrysts and abundant quartz-pyrite veins in a stockwork. Molybdenite was present below 10.7m in moderately dense quartz veinlets, accompanied by weak to moderate chlorite alteration and very weak calcite alteration. Fine and coarse grained disseminated pyrite was observed with a few zones of abundant stringer pyrite up to ~4%. Below 50.0m andesite is irregular and complexly intermingled with monzonite porphyry; with moderate alteration as pyrite-calcite-chlorite +/- biotite.

Brown hornfels siltstone was present below 92.5m with banded zones; similar to weak gneissic fabric. A broken fault zone was cut from 146.67 to 150.24m. Below 150.24m structure was dominated by quartz-pyrite stockwork +/- Molybdenite (~0.5 %) with moderate chlorite, weak calcite and epidote alteration.

Strong molybdenite mineralization was encountered in quartz veins and veinlets from 160.0m to 280.0m. Quartz veins are thick and tend to have better mineralization as splatters and microstringers (except fault zone 199.6-203.7m and dyke 253.5-263.7m). Another fault zone was encountered with quartz veinlets and weak MoS2 mineralization from 289.76 to 295.25m.

From 303.89 to 458.8 variably altered and quartz veined siltstone with intercalated granodiorite dykes and a minor fault zone was intersected. Veins were typically narrow quartz-pyrite +/- MoS2. A granodiorite unit was cut from 458.8 to the end of hole at 468.48m.

The mineralized intervals encountered in this hole demonstrate the on-strike continuity of the zone.

CH-06-03

Drill Holes CHU 06-03 and CHU 06-04 were collared to test for a northwest extension of the mineralized zone. Both holes encountered narrow high grade Mo values. It has been postulated that these holes were collared too far south and may have drilled only the footwall of the zone. Hole CHU 06-08 was an attempt to test this hypothesis by stepping north and trying again to reach the zone.

DDH Ch-06-03 was collared 250m NW of historic hole 81-7. The core in DDH 06-03 is dominantly present as a hornfels, fine grained siltstone with moderate biotitization, weak calcite, weak magnetite and strong but irregular silicification. There were a few fault zones and breccia zones encountered, and several types of veins are present.

Quartz-calcite-chlorite-sulfide +/-biotite +/- albite veins were generally oriented parallel to the foliation direction. A similar type of vein was noted with albite-calcite-chlorite-quartz-pyrrhotite-pyrite-biotite +/-epidote and was usually found to be strongly contorted or fused. This type of vein usually didn't contain any visible MoS2 mineralization. Quartz-sulfide +/- MoS2 +/-chlorite veins and stringers were identified as a unique set and generally carried MoS2 at the selvage of the vein wall in narrow ~1-2cm ribbons. Random narrow (1-5mm) wide molybdenite veinlets +/-albite or quartz were also noted.

Molybdenite was present as tiny stringers and small blotches or blebs in thick quartz veins (usually >4cm). Molybdenite was also present in 1-4mm wide quartz-sulfide stringers. Quartz-sulfide veins with distinctive bluish hue were believed to comprise fine grained molybdenite but in an amount and size too difficult to identify. Below 200.0m significant mineralization (>0.3% visible MoS2) was common within narrow 5-20mm quartz-pyrrhotite-molybdenite simple and complex stockworks.

Three narrow intervals exceeding 0.1% Mo were intersected, demonstrating the persistence of the veining to the northwest and the potential for relatively high molybdenum grades on the property.

CH-06-04

CH-06-04 stepped 110 m back to the southeast from collar CH-06-03 to seek continuity of the stockwork zone and infill drill to the northwest of historical hole 81-7. DH 06-04 penetrated several intervals of molybdenite mineralization. The hole intersected hornfels siltstone intercalated with a fine to medium grained sandstone with patchy biotite and chlorite alteration, and pervasive strong to very strong silicification. Pyrrhotite was present in amounts from 2-4%, as well as ~1% pyrite. Several narrow fault zones, granodiorite dykes and breccia zones were intersected but were not considered significant.

From 9.14m up to 179.0m visible MoS2 mineralization was encountered in quartz-pyrite-pyrrhotite veins, decreasing in vein abundance and MoS2 content from 179.0 to 230.0m and again from 230.0m to 261.0m. Magnetite was present in veins with quartz-chlorite-pyrrhotite and +/-albite. Below 261.0m the density of quartz-sulfide-molybdenite veins and stringers increased. There seems also to be a gradual transition to strongly silicified and medium grained sandstone.

Narrow breccia zones were randomly encountered, with cellular texture & large rounded and milled grains of quartz. Within the breccia zones were often contorted & irregular,

narrow dendritic quartz veins, quartz-molybdenite stringers and fine grained disseminated pyrite, along with strong silicification and very weak chlorite alteration.

Molybdenum mineralization in this hole is believed to have a preferential structural control in the form of a conjugate fracture pattern that concentrates the veining and gives rise to higher molybdenum grades. CH-06-04 returned two narrow intervals of greater than 0.050% Mo and was anomalous over a downhole interval of 203 m.

CH-06-05

CH-06-05 was drilled to a depth of 486.76 m and targeted the known strike-extent of the zone by stepping out 275 m SE from historical hole 80-1. CH-06-05 intersected andesite and minor granodiorite and basalt dykes down to a depth of 253 m before encountering a sequence of argillite overtop of hornfels siltstone, with intermittent granodiorite dykes. The hole started in andesite with minor siltstone and encountered quartz-pyrite-molybdenite veins and stringers with 3-5% pyrite, weak pyrrhotite, and weak to moderate chlorite and biotite alteration. Local moderate to strong silicification and weak magnetite and calcite alteration were noted but generally in random disorganized patterns. Visible MoS2 mineralization was encountered from 55.0m to 144.0m. Minor monzonite zones were also encountered in this interval.

From 144.0 to 228.0m only very weak MoS2 mineralization was encountered. From 228.0 to 407.0m MoS2 content improved with a few significant zones where coarse clotty MoS2 was noted in veins. Below 207.0m to the EOH granodiorite with very weak MoS2 and some fine grained disseminated pyrite was intersected with typically barren quartz veins.

The majority of the hole has a massive, non foliated structure but there are sections that exhibit narrow zones of faulting, gneissic banding and bedding. Throughout the hole are various types and sizes of veins that range from individual veins parallel to core axis to complex branching and anastomosing micro-stockworks that range in size from mm to occasionally 5cm or more.

Ch-06-05 returned significant molybdenum mineralization over 137.16 m in nine intervals from a downhole depth of 60.05 m to 380.09 m. Included in this section are three key intervals of note: a hanging wall zone of 30.5 m of 0.110% Mo, a middle zone of 36.6m of 0.126% Mo and a footwall zone of 18.3 m of 0.143% Mo. This hole represents an important indicator of strike extension of the mineralized zone to the southeast.

CH-06-06

CH-06-06 was drilled parallel to the strike of the mineralized zone to investigate an area where the mineralized zone may be offset by normal faulting or by dyke. An apparent fault offset is suspected between drill holes 81-6 to the NW and 81-2 and 82-2 to the SE. The above average grades encountered in this hole may be the result of the influence of

SW-NE trending mineralized faults but the values and widths returned cannot be considered representative of holes drilled normal to the zone trend.

CH-06-06 collared into hornfels siltstone and encountered short to lengthy intervals of intercalated hornfels siltstone and granodiorite, with no one interval greater than 33 meters in drill length. Quartz Feldspar Porphyry dykes were also observed throughout the drill hole but carried no mineralization of note.

A strongly faulted sequence of granodiorite and hornfels siltstone was cut between 160.00 - 173.95m. This fault has strongly impacted the lithology. The upper and lower fault contacts measured 90° TCA; with evidence of drag folding. Mineralization above and below this fault and within the fault itself is moderate with molybdenite observed regularly within veins, within healed and open fractures and within the groundmass of the reworked brecciated rock.

Below the fault the hole encountered barren fresh granodiorite before passing downhole to weak to moderately well mineralized hornfels siltstone. A second large fault structure was encountered between 400.36 - 403.02m. This fault, unlike the upper structure, was healed with a brecciated but competent groundmass with granodiorite clasts of varying sizes and shapes. The faults suggest block faulting between drill sections can offset lithology but also be well mineralized and a source of secondary enhancement.

Veining throughout this drill hole included foliation parallel quartz veins; large cm scale orthogonal TCA quartz veins; boudined veins both parallel to foliation and cross cutting foliation; and mm scale micro veinlets of quartz anastomosing throughout the core in a stockwork fashion of hairline fractures and seams. Each style of vein seemed to cross cut the other at some point throughout the hole.

Molybdenite in this drill hole was observed mainly within the hornfels siltstones but was also observed within veins within the more siliceous granodiorite. Molybdenite was observed as selvages to many of the noted cm scale veins, as infill to the hairline quartz veinlets, as infill within the microfractures and as disseminated flecks within the sugary textured quartz veins and more siliceous intercepts.

CH-06-06 returned a spectacular interval of 198.96 m of 0.132% Mo between 78.33 – 277.29 m. Included are three intervals of grades greater than 0.150% molybdenum over individual downhole intervals greater than 14 m. The predominant molybdenum – bearing vein orientation encountered downhole was sub-parallel to core axis which explains the relatively high molybdenum grades encountered in this hole.

CH-06-07

Drill Hole CHU 06-07 was collared an additional 325 meters to the southeast of hole CH-06-06 and was drilled to extend the known strike length of the mineralized zone. The hole encountered mottled, maroon andesite with blotchy chlorite alteration passing downhole to mixed units of andesite and granodiorite and quartz feldspar porphyry dykes.

Molybdenite was observed occasionally on margins of veining except locally where molybdenite mineralization increased in discrete zones that measured between 1 and 15 m wide. A strained, pale grey-pink siliceous andesite from 201.31-236.15m had molybdenite commonly rimming narrow veinlets; less often as disseminations. The andesite unit from 243.22-287.12m exhibited abundant pyrite, pyrrhotite and lesser molybdenite.

Below 287.12m hornfels siltstone tended to dominate and had a laminated look with alternating dark brown and pink brown foliation fabric. Molybdenite was observed mostly within the foliation fractures and the mm scale veining. Quartz feldspar porphyry dykes, granodiorite dykes and a narrow interval of andesite were noted to the end-of-hole at 431.90m.

CH-06-08

CH-06-08 was collared approximately 105 meters behind drill hole CH-06-03 and designed to provide an additional intersection on the same fence to further examine the NW extent of the mineralized zone. CH-06-03 was assumed to have been collared too far to the SW, thus, possibly missing the zone and testing the barren footwall beneath the sub-vertical stockwork.

CH-06-08 collared into black argillite between 3.05 - 13.75m and then stayed in dark brown hornfels siltstone until the end of the hole at 300.53m. The hole was shutdown earlier than expected due to excessive shallowing of the hole and a strong likelihood of repeating the same sequence intersected in drill hole CH-06-03.

The upper sequence of argillite exhibited flame structures and graded amygdules within the bedded rocks. The flame structures were observed in three different locations and each one indicated that topping direction was downhole. The mm scale, subrounded, white amygdules within the argillite were bedded (?) controlled and graded downhole in size within the individual beds. This repetition continued throughout the interval and suggested that topping direction was downhole and that at least in this area the andesite sequence is overturned.

The hornfels siltstone was fairly uniform throughout with biotite and silica alteration and localized patchy chlorite alteration. Structures in the hole were the typical weak to moderate strain foliation observed within the hornfels siltstones and narrow faulted sequences. A fault encountered between 260.28 - 270.69m had sharp upper and lower contacts and through its entirety was strongly chlorite altered to clay (argllic). Molybdenite was observed in fracture within this fault, although veining was weak.

Mineralization in the drill hole was dominated by pyrrhotite, both disseminated and as semi massive blebs within veining. Some chalcopyrite was observed within the veins; but pyrite was rare throughout the drill hole. Molybdenite tended to be weak in the rest of the hole and was directly associated with vein density where encountered.

CH-06-09

This hole was drilled 35m NE of hole 81-5 to test for continuity of the zone. The hole collared into a fine grained, weakly bedded black argillite. The core was moderately fractured throughout with a narrow fault intersected at 23.40m. The core became extremely broken and fractured within abundant carbonate material. A larger fault structure was encountered from 71.0-151.7m with fragile hornfels siltstone intercalated with argillite. Thick intervals of granodiorite were intersected from 216.0-243.0m and 243.-286.6m.

The mineralization in this hole was generally weak although noted to be gradually increasing with depth; with a spike of molybdenite near the end of the hole. Pyrite mineralization also increased down hole. The veins encountered were less extensive than the previous hole; with typically only narrow veins and stringers present.

Alteration was generally weak with strong local calcite alteration and common biotite alteration in the hornfels siltstone. Below 285.6m a fault zone was encountered and the hole was stopped in sand and gouge and judged to be unfit ground conditions to continue drilling.

CH-06-10

CH-06-10 was collared approximately 30 meters northeast of 06-05 and was designed to test the down-dip extension of the mineralized zone encountered in hole 06-05. The hole collared into andesite porphyry between 5.18 - 71.20m and encountered a narrow interval of hornfels siltstone before passing into massive andesite with lesser granodiorite and basalt down to a depth of 511.20m. Hornfels siltstone was then intersected but broken up by units of basalt dyke and granodiorite.

The hole in general tends to have a massive structure with few joints, is well indurated and appears fresh. There is evidence of faulting between 496.50m to 511.20m. Fractures as well as veins are seen throughout the core. Molybdenite mineralization is strongest in intervals where density of veins and fractures increases.

Alteration varies from patchy weak to locally intense silica and chlorite alteration with the strongest alteration observed near the top of the hole and all types of alteration seem to decrease down hole.

CH-06-11

This hole was drilled to test the up-dip interval of the mineralized zone on the same section as holes 06-05 and 06-10. As expected the lithology of this hole is very similar to the previous hole, with a large interval of andesite to a depth of 144.40m. The hole below 144.40m intersected mainly andesite broken up by units of granodiorite and basalt dyke. This interchanging of rock types ends at the contact with hornfels siltstone which continues to the end of the hole, apart from a granodiorite that occurs from 317.32m to

330.50m. The hole was stopped in a unit variably logged as quartz diorite porphyry or quartz feldspar porphyry which was not intersected in the previous hole.

The molybdenite mineralization appeared to be fairly consistent throughout the hole with a couple of peak areas where concentration of thin stringers, veinlets and veins increased. Pyrite and pyrrhotite mineralization was also noted throughout the hole.

Veins are described that range from highly contorted and boudined to planar. The contorted veins tended to be clustered together suggesting some kind of local ductile event. Alteration was similar to the previous hole with the exception of some zones of strong silica and chlorite alteration tending down hole.

CH-06-12

This hole was drilled to test for strike continuity between holes 80-1 and 06-11. The hole collared into and stayed in dark brown to reddish colored andesite to a depth of 222.73m. Several basalt and granodiorite dykes were noted. Below the andesite the hole encountered a long interval of granodiorite until 301.10m below which another andesite unit appeared until 345.17m. A quartz feldspar dyke was observed until a depth of 350.60, before passing down hole to hornfels siltstones. The hornfels siltstone is nearly continuous to the end of the hole but is interrupted by one unit of andesite located between 358.40m to 374.88m and one unit of granodiorite that the hole bottomed in (488.70m to EOH 501.70m).

Most of the molybdenite mineralization occurs in fairly discrete mineralized intervals and occurs as veins or veinlets or less commonly as disseminations. When present the MoS2 tends to occur on the selvages of the vein wall. Veins can range in size from a few mm thick up to approximately 5cm in width. The veins can be single independent veins or clustered together in a dendritic or anastomosing assemblage. Pyrite mineralization also occurs throughout most of the hole, alternating between strongly mineralized intervals and weaker patches.

Alteration throughout the hole is dominated by biotite and calcite alteration and seems to be consistent throughout rather than patchy or decreasing with depth as has been seen in other holes.

CH-06-13

This hole was drilled along the strike of the mineralized zone to again test for presence of an assumed fault to explain apparent lithological differences encountered in holes 06-06 and 06-10. The collar was located 750 meters southeast of Ch-06-06 and was drilled across the sections defined by holes 06-05, 06-10, 06-11 and 06-12. The hole encountered at surface a gray granodiorite with a transitional zone to monzonite. The unit is characterized by a network of narrow quartz +/-MoS2 veins and stringers. The hole progressed down hole into a large unit of andesite that has been intruded by two basalt dykes. This andesite continued until a depth of 182.16m before passing to a granodiorite

until a depth of 200.80m. The hole then encountered a large, intercalated unit of andesite and hornfels siltstone. Each individual unit is generally in the order of 20m. Gradually the andesite intervals disappear and are replaced with granodiorite between the siltstone intervals. This pattern continues until the end of the hole.

In general, molybdenite is present throughout the hole but in discrete intervals and it tends to be more visible in intricate and dense patterns of fractures and veins. Pyrrhotite mineralization is common. The core is mainly competent but there are several narrow intervals of broken rubble indicative of localized faulting. Strong penetrative foliation structures are seen in the hornfels siltstone.

The alteration intensity and type is varied throughout the hole. The strongest alteration pattern observed is silica and biotite but these are limited to the upper portion of the hole.

4.2.5 Interpretation

The 2006 winter drill program has added a substantial amount of new information with which to characterize the Chu mineralized zone. Numerous high grade intercepts and long mineralized intervals have demonstrated the persistence of the zone and its potential grade and bulk tonnage. A total of 11230 meters of drilling has now defined a steeply dipping, inclined tabular mass that strikes northwest-southeast and dips steeply northeast. The current approximate size is 1200 meters in length with an apparent width of between 100 and 300 meters and apparent depth of at least 500 meters. The zone is open or untested on both strike extents, down the dip and in its width.

The molybdenum mineralization at Chu is in the form of a quartz vein stockwork with some similarity to Low F porphyry deposits. At least three distinct vein types have been noted in the drill core and more work is required to examine in detail the preferred vein orientation and density to achieve the highest grades possible. Although mainly hosted in the hornfels granodiorite, the 206 program demonstrated that the stockwork mineralization cuts across all rock types with the exception of post-mineralization dikes and sills. If the granodiorite pluton located to the south of the mineralized zone is barren than the source of the molybdenum may be a deeper, buried intrusive.

Two holes, 06-06 and 06-13 were drilled along the strike of the zone to assist with interpretation in an area where fault offset may disrupt the linearity of the zone. Both holes had significantly high grade intervals of molybdenum mineralization which do not represent the grade or width of the zone.

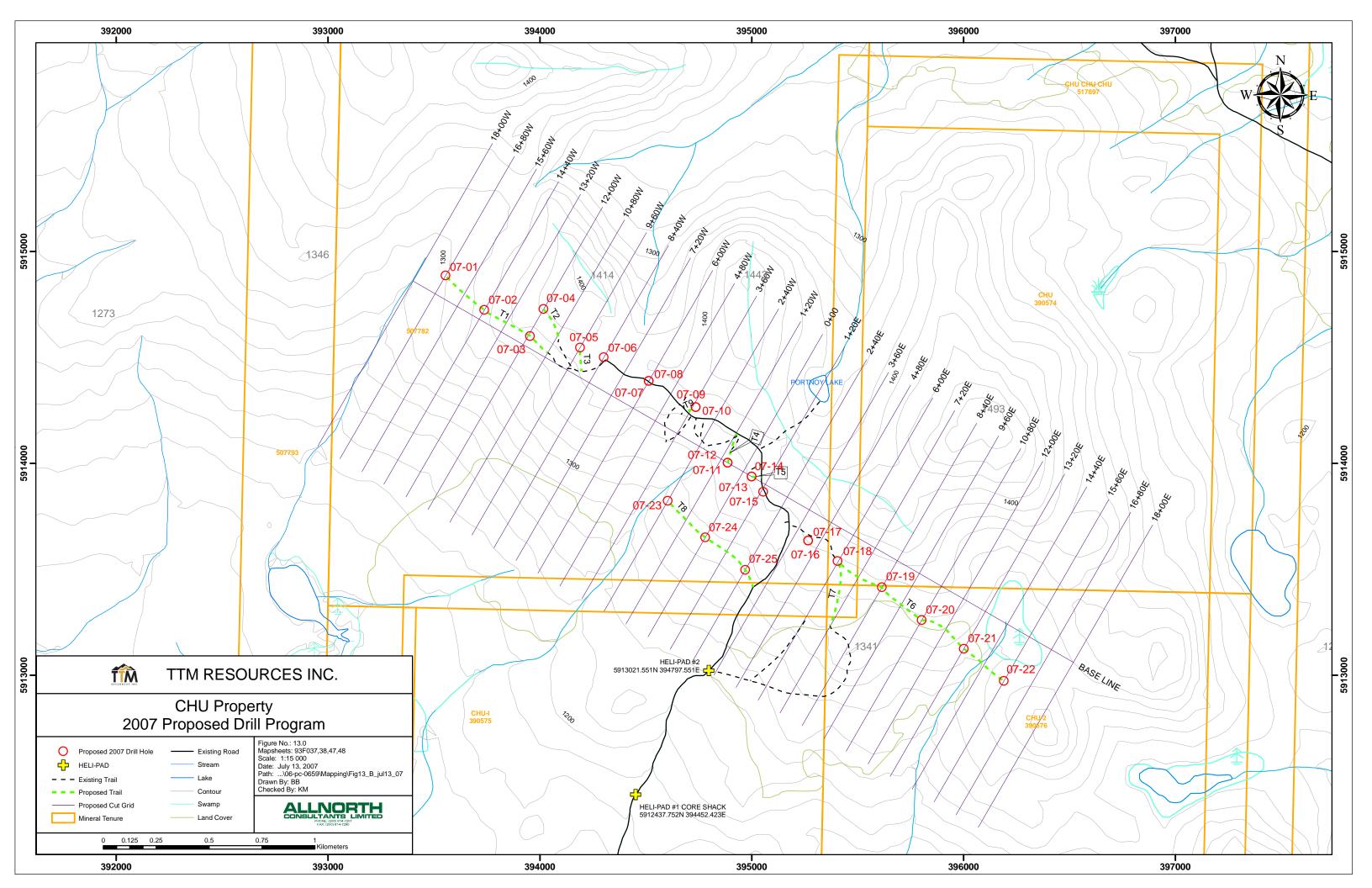
5.0 Conclusions

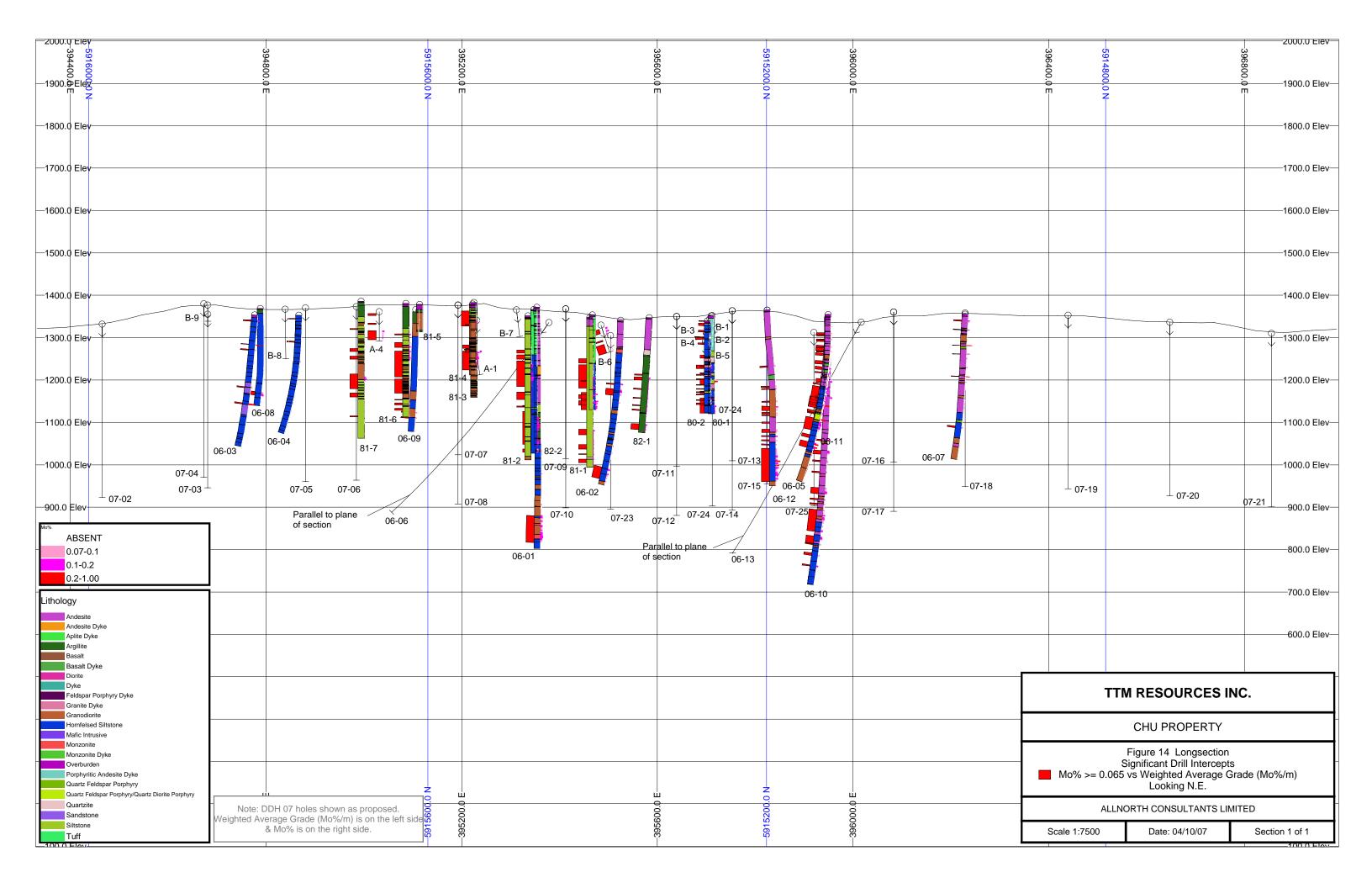
The winter 2006 drill exploration program completed thirteen diamond holes totaling 6,129m of core. The program was successful in intersecting significant intersections of molybdenum in most of the holes. The results have extended the known strike extent,

depth and width of the previously outlined mineralized zone. The holes returned grades of molybdenum that meet or exceed the values intersected in historic drilling.

This program also helped determine if there was a preferred orientation of the vein network or if there was a specific mineralization event that contained or constrained the better molybdenum grades. It also confirmed the mineralized zone is mainly hosted in the brittle hornfels siltstone. Knowledge of the relationship between the type and amount of alteration and the amount and grade of the molybdenum was also expanded.

Molybdenite has been identified in a number of vein sets of varying orientation. The most conspicuous type is cm scale quartz veins with molybdenum at the selvage. Molybdenite is also noted as mm scale veins parallel to foliation and mm scale microfractures orthogonal to foliation. More work is required to understand the complex vein genesis and the relationship of molybdenum grade to orientation. Molybdenum grade appears to be intimately associated with density of veining and spatial occurrence of the three main vein types.


6.0 Recommendations


Based on the success of the 2006 work program, additional exploration is warranted to further expand the knowledge of the geometry and continuity of the mineralized zone. It is recommended that an additional 3500 meters of NQ diamond drilling be conducted within the boundaries of the known zone to infill sections where historic holes are widely spaced apart, or where deep intersections are required to complete a fence. Holes are also recommended to the NW and SE to seek the strike extent of the mineralized zone (Figure 13.0 and 14.0).

Several hole are required to probe beneath previously drill sections; to both confirm the continuity of the known zone throughout its strike length and identify higher grade intervals. Care must be exercised to prevent the holes from excessive flattening which would risk the hole duplicating a section previously drilled. Care must also be taken in the NW where structural faulting presents difficult ground conditions for core recovery. This area in particular is at this time poorly understood and would require additional drilling to determine if the zone extends further NW, is offset or is cut-off entirely.

Detailed oriented core analysis should be undertaken to further determine the preferred vein orientation that corresponds to the most favorable and higher grade molybdenum. Petrographic investigations should be undertaken to identify structural controls and determine the relative importance of the different vein types. An attempt to age date the molybdenum mineralization should be initiated to better understand the metallogenic relationship of the mineralization to the CH pluton and mineralized granodiorite; which may be derived from a different source.

A program of 3D Induced Polarization/Resistivity surveying should be conducted to guide drilling within the known Chu zone and to identify other targets.

Upon completion of a sufficient quantity of drilling a mineral resource calculation should be completed and a Technical Instrument 43-101 compliant resource estimate made. Mineral processing and metallurgical studies could commence with drill core composites; and a preliminary feasibility study should be undertaken to determine if the calculated resource can support a viable mining operation.

It is recommended that TTM Resources continue the exploration of this property until the property's full potential has been revealed.

Respectively Submitted,

Allnorth Consultants Limited

Ken MacDonald, P.Geo

7.0 Proposed 2007 Exploration Budget

Line Cutting and IP Ground Geophysics

Proposed Budget	Person-days	Units U	Unit Cost	Cost	Sub-Total
Pre-Field					
Personnel					
Project Supervisor	1	\$	1,000.00	\$ 1,000.00	
Project Geophysicist	3	\$	750.00	\$ 2,250.00	
Administration	1	\$	500.00	\$ 500.00	\$ 3,750.00
Field Program					
Personnel					
Project Supervisor	5	\$	1,000.00	\$ 5,000.00	
Project Geophysicist	50	\$	850.00	\$ 42,500.00	
Geophysical Operator	50	\$	650.00	\$ 32,500.00	
Field Assistants	200	\$	350.00	\$ 70,000.00	\$150,000.00
Camp Support					
Mob/Demob	24	\$	250.00	\$ 6,000.00	
Food & Accommodation	305	\$	140.00	\$ 42,700.00	\$ 48,700.00
Line Cutting					
Lead Saw	50	\$	400.00	\$ 20,000.00	
2nd Saw	50	\$	350.00	\$ 17,500.00	
Helper #1	50	\$	175.00	\$ 8,750.00	
Helper#2	50	\$	175.00	\$ 8,750.00	
Truck	50	\$	115.00	\$ 5,750.00	
Power Saws	50	\$	215.00	\$ 10,750.00	
Management/Overhead	50	\$	350.00	\$ 17,500.00	\$ 89,000.00
Camp Support					
Mob/Demob	16	\$	250.00	\$ 4,000.00	
Food & Accommodations	200	\$	140.00	\$ 28,000.00	\$ 32,000.00
Post-Field					
Personnel					
Project Supervisor	5	\$	1,000.00	\$ 5,000.00	
Project Geophysicist	25	\$	750.00	\$ 18,750.00	
Drafting	15	\$	500.00	\$ 7,500.00	
Office	1	\$	500.00	\$ 500.00	\$ 31,750.00
Sub-Total					\$355,200.00
Management					\$ 35,520.00
Contingency (10%)					\$ 39,072.00
Total Proposed Budget					\$429,792.00

2007 Phase One Drill Program

Proposed Budget	Person-days	Units	Unit Cost	Cost	Sub-Total	Sub-Total	Total
Pre-Field Personnel							
Project Supervisor	2		\$ 750.00	\$ 1,500.00			
Project Geologist	6		\$ 600.00	\$ 3,600.00			
Geologist	4		\$ 500.00	\$ 2,000.00			
Administration	2		\$ 300.00	\$ 600.00		\$ 7,700.00	
Field Program							
Personnel							
Project Supervisor	6		\$ 750.00	\$ 4,500.00			
Project Geologist	55		\$ 600.00	\$ 33,000.00			
Geologist	45		\$ 500.00	\$ 22,500.00			
Field Assistant	45		\$ 300.00	\$ 13,500.00	\$ 73,500.00		
Camp Support							
Core Shack Overhead		3	\$1,600.00	\$ 4,800.00			
Food & Accommodation	500		\$ 85.00	\$ 42,500.00	\$ 47,300.00		
Equipment Rental							
Splitter Plus Blades	45		\$ 25.00	\$ 1,125.00			
Satellite Internet	45		\$ 75.00	\$ 3,375.00			
Radios	45		\$ 60.00	\$ 2,700.00			
Downhole Survey	45		\$ 150.00	\$ 6,750.00			
Generator	45		\$ 50.00	\$ 2,250.00			
ATV	45		\$ 150.00	\$ 6,750.00			
Laptops	45		\$ 70.00	\$ 3,150.00	\$ 26,100.00		
Costs							
Expediting	45		\$ 25.00	\$ 1,125.00			
Travel		3	\$1,000.00	\$ 3,000.00			
Fuel	45	1000	,	\$ 45,000.00			
QA/QC		3	\$1,500.00	\$ 4,500.00			
Sample Supplies	45		\$ 50.00	\$ 2,250.00	\$ 55,875.00		
Geochemistry			,	, , ,	,,		
Rock Samples		1150	\$ 30.00	\$ 34,426.23	\$ 34,426.23		
Drilling				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+,		
HQ Drilling		3500	\$ 125.16	\$438,060.00			
Reclamation	5	2200	\$1,200.00	\$ 6,000.00	\$444,060.00		
Transportation	3		φ1,200.00	Ψ 0,000.00	Ψ111,000.00		
Truck	45		\$ 85.00	\$ 3,825.00			
Road Preparation	10		\$1,000.00	\$ 10,000.00			
Sample Shipment	10	45000	\$ 0.13	\$ 5,850.00	\$ 19,675.00	\$ 700,936.23	
Post-Field							
Personnel							
Project Supervision	6		\$ 750.00	\$ 4,500.00			
Project Geologist	25		\$ 600.00	\$ 15,000.00			
Geologist	15		\$ 500.00	\$ 7,500.00			
Drafting	10		\$ 500.00	\$ 5,000.00			
Office	2		\$ 500.00	\$ 1,000.00		\$ 33,000.00	
	_		÷ 230.00	- 1,500.00		- 22,000.00	

10/13/2007 Chu Assessment Report

\$ 741,636.23 **Sub-Total** \$700,936.23 10% Contingency Total Proposed Budget \$ 815,799.85 Total Exploration Budget Line Cutting & IP \$429,792.00 Drilling Total \$815,799.85

\$1,245,591.85

8.0 References

Allnorth Consultants Limited: 2006-2007 CHU Drill Logs & Summaries; various authors (Nick Vassenine & Richard Beck & Sarah Gyatt); 708p

Birkeland, A.O, 1995. Geochemical Assessment Report of the Chu Property, Orvana Minerals Corp., 31p

Canadian Securities Administrators, 2005; National Instrument 43-101 Standards of Disclosure for Mineral Projects, 19p

Carter, N.C., 1981; Porphyry Copper and Molybdenum Deposits, West – Central British Columbia, British Columbia Ministry of Energy, Mines and Petroleum Resources, Bulletin 64, 150p

CIM, 2000. CIM STANDARDS ON MINERAL RESOURCES AND RESERVES: Definitions and Guidelines. Prepared by the CIM Standing Committee on Reserve Definitions. 18p.

McLeod, James W., 2002. Report on the Chua Chua Molybdenum Property, Chris Delorme, 13p

McLeod, James W., 2003. Report on the Chu Molybdenum Property, Chris Delorme, 14p

McLeod, James W., 2006. Report on the Chu Molybdenum Property, Omega Exploration Services Inc., 26p

Olsen, D.H., 1970. Report on Geochemical Survey, Magnetometer Survey and IP Survey, American Smelting and Refining Company, 16p

Olsen, D.H., 1978. Report on Geochemical and Geological Survey, Asarco Exploration Company of Canada Ltd., 25p.

Ostensoe, E., 1980. Report on Diamond Drilling Program, Asarco Inc., 25p

Ostensoe, E. 1983. Report on Work Program, Chu Prospect, Asarco Inc., 22p

Ostensoe, E., 1981. Report on Diamond Drilling Program, Asarco Inc and Armco Mineral Exploration Ltd., 39p

Sinclair, W.D.. (1995): Porphyry Mo (Low-F-type), in Selected British Columbia Mineral Deposit Profiles, Volume 1 - Metallics and Coal, Lefebure, D.V. and Ray, G.E., Editors, British Columbia Ministry of Employment and Investment, Open File 1995-20, pages 93-96.

CHU Molybdenum Property 2006-2007 Winter Drill program

APPENDICES

APPENDIX I

Statement of Expenditures

Statement of Expenditures Chu 2006/2007 Drill Program

<u>Category</u>	Unit/Item	# of Days 6.50	\$	Rate/Day 1,030.00	Dates Nov. 15 - Nov. 30		Cost
Pre-Field	Review, Permitting, Drill & Day Camp Procurement	6.50	Φ	1,030.00	2006	\$	6,695.00
	Project Geologist	1.75	\$	750.00	Nov. 15 - Nov. 30 2006	\$	1,312.50
	Monnor	4.50	\$	580.00	Nov. 15 - Nov. 30 2006	\$	2 640 00
	Mapper	116.00	\$	750.00	Dec. 15/06 - April	Ф	2,610.00
Field Personnel	Project Geologist	116.00	Φ.	E00.00	9/07	\$	87,000.00
	Geologist	116.00	\$	500.00	Dec. 15/06 - April 9/07	\$	58,000.00
	Field Assistant	121.00	\$	300.00	Dec. 15/06 - April 9/07	\$	36,300.00
	Tachnalagiet (Drafting)	6.50	\$	580.00	Jan. 15 - May 21	Φ.	2 770 00
	Technologist (Drafting)	11.00	\$	530.00	2007 Nov. 16/06 - May	\$	3,770.00
	Mapper	2.00	\$	980.00	5/07 April 10 - 11 2007	\$	5,830.00
	RTK Surveyor	16.00	\$	400.00	Feb 1 - Feb 16 2007	\$	1,960.00
	Hand Faller	5.50	\$	4,840.00	Dec. 11 - Dec. 16	\$	6,400.00
Support	Day Camp Construction (core and splitting shack)	5.50	φ	4,040.00	2006	\$	26,620.00
	Food and Assemmedation (Conford against Comp.)	582.50	\$	110.00	Nov. 15 - Nov. 30	¢.	64.075.00
	Food and Accommodation (Canfor Logging Camp)	8.00	\$	1,220.00	2006 Dec. 14/06 - April	\$	64,075.00
	Geology Crew Mob/demob				10/07	\$	9,760.00
Post-field	Project Geologist	5.25	\$	750.00	April 16 - July 10 2007	\$	3,937.50
	•	23.75	\$	500.00	April 16 - July 10		•
Report Preparation	Geologist	7.00	\$	580.00	2007 April 16 - May 21	\$	11,875.00
	Technologist (Drafting)		Ψ	000.00	2007	\$	4,060.00
	Mapper	6.25	\$	580.00	April 16 - July 10 2007	\$	3,625.00
	Mappel	3.50	\$	420.00	May 14 - July 10	Φ	3,023.00
	Administration	4.00	¢.	2 245 00	2007 Dec 11 Dec 14	\$	1,470.00
Mobilization	Falcon Drilling	4.00	\$	3,245.00	Dec. 11 - Dec. 14 2006	\$	12,980.00
	•	2.00	\$	2,275.00	Dec. 22/06 - Jan.	•	4.550.00
Remobilization (XMAS)	Falcon Crew	2.00	\$	3,142.00	3/07 April 10 - April 14	\$	4,550.00
<u>Demobilization</u>	Falcon Drilling				2007	\$	6,284.00
Drilling	Falcon Drilling	116.00	\$	6,794.00	Dec. 15/06 - April 9/07	\$	788,104.00
	•	4.00	\$	2,162.00	April 16 - April 30	·	
Reclamation	Excavator/Operator (Pitka Logging)	120.00	\$	467.00	2007 Dec. 15/06 - April	\$	8,648.00
<u>Miscellaneous</u>	Fuel & Propane (Co-op Vanderhoof)	120.00	Ψ	407.00	13/07	\$	56,040.00
	Truck Rental (Bowmac)	120.00	\$	54.00	Dec. 15/06 - April 13/07	\$	6,480.00
	Snow Plowing (Pitka Logging)	1.40	\$	1,000.00	December 14 2006	э \$	1,400.00
	Show Flowing (Filka Logging)	120.00	\$	23.00	Dec. 15/06 - April	Φ	1,400.00
Equipment/Shop Rental	Satellite Internet	0.50	Φ	04.00	13/07	\$	2,760.00
	Radios	2.50	\$	61.60	Dec. 15/06 - April 13/07	\$	154.00
		120.00	\$	34.25	Dec. 15/06 - April		
	Generator Rental (CJL Enterprises) Hydraulic Splitters (2) ADR Heavy Duty Truck	120.00	\$	20.00	13/07 Dec. 15/06 - April	\$	4,110.00
	Parts)				13/07	\$	2,400.00
	Computers	120.00	\$	25.00	Dec. 15/06 - April	\$	3,000.00

				13/07		
Equipment & Supplies	ATV Rental	3.50	\$ 150.00	April 10 - April 14 2007	\$	525.00
	Splitting, Sampling & Logging Supplies	120.00	\$ 86.00	Dec. 15/06 - April 13/07	\$	10,320.00
Instrument Rental	Downhole Survey	116.00	\$ 83.00	Dec. 15/06 - April 9/07	\$	9,628.00
Laboratory Analysis	Standards QA/QC	116.00	\$ 4.50	Dec. 15/06 - April 9/07	\$	522.00
Laboratory Ariarysis		116.00	\$ 667.00	Dec. 15/06 - April		
	Core Samples	116.00	\$ 96.70	9/07 Dec. 15/06 - April	\$	77,372.00
Sample Shipment	Bandstra Trucking	26.75	\$ 1,030.00	9/07 Dec. 15/06 - July	\$	11,217.20
Project Management	Field & Post Field			10/07	\$	27,552.50
	<u>Total</u>				\$ 1	,369,346.70

APPENDIX II

Statement of Qualifications

Statement of Qualifications Chu 2006/2007 Drill Program

- I, Ken MacDonald, P. Geo., residing in Prince George, British Columbia, do hereby certify that:
- 1. I am currently employed as a consulting geologist by:

Allnorth Consultants Limited 2011 PG Pulpmill Road Prince George, British Columbia, Canada V2L 4V1

- 2. I am a graduate of the University of Alberta (1987) with a Bachelor of Science degree with Specialization in Geology.
- 3. I am a member in good standing of the Professional Engineers and Geoscientists of British Columbia.
- 4. I have practiced my profession continuously since graduation and have worked as a geologist for more than 19 years
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI-101") and certify that by reason of my education, affiliation with a professional organization (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of authoring an assessment report.
- 6. I am the principal author of the assessment report entitled "Geological and Geochemical Report on the CHU Molybdenum Property", dated September 24, 2007
- 7. I visited the CHU property several times during the drill program and personally inspected drill core and oversaw sample preparation and quality control measures
- 8. I do not own or expect to receive any interest (direct, indirect or contingent) in the property described herein nor in the securities of TTM Resources Inc., in respect of services rendered in the preparation of this report.

Dated at Prince	George, Britis	sh Columbia	a this 24th	day of	September,	2007.

"ken macdonald"	
Ken MacDonald, P.Geo	

APPENDIX III SUMMARY OF FIELD PERSONNEL

Summary of Field Personnel

Name	Position	Man Hours
Nick Vassenine	Project Geologist	1050
Richard Beck	Geologist	110
Lorie Farrell	Geologist	100
Mustafa Gok	Geotechnician	890
Lillia Vassenine	Geotechnician	170
Lynn Yurkas	Core Splitter	480
Ken Brown	Core Splitter	600
Rob Goodine	Core Splitter	40
Perry Royston	Core Splitter	40
Ken MacDonald	Project Supervisor	90

APPENDIX IV

DRILL LOGS

CHU Project - TTM Resources Inc. DRILL HOLE LOG

Signature:	
	Initials:

CH0601

From: 0.00 To: 2.45 Litho: OB

Casing/Overburden

STRUCTURES										ALI	TERA	TIO	V									
From	To	Struct	CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	From	To	Vn%
0.00	2.45 Broi	FLT ken con	e	W	0.00	2.45	-			V۱	Ν -	-	-	-	-	-	VW	-		0.00	2.45	0.1

VEINS								I		M	INEF	RALI	ZAT	TON		
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		From	To	PY%	Style	Min	Min%	Min2	M29
.00	2.45	0.1							0.00	2.45	0.1	FG				
									we	ak PY						

From: 2.45 To: 8.32 Litho: AND

Dark andesite, biotite with grey-green coarse grained feldspar phenocrysts, purple colored zones present. Weak DI PY (1%). Network of CA VNs with epidote strs. Rubble from 2.45-3.14; @ 4.18m is 18mm Qz-PY VN, 80 tca; ~15% PY on joints.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	3			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

			M	INE	RALI	ZAI	ION		
n	CA	From	To	PY%	Style	Min	Min%	Min2	M2%

2.45 3.14 FR W fragments, <10 cm

2.45 8.32 - - - W - W - - W M M M M *Mottled purple*

2.45 8.32 5 2 3 2
irregular micro-stockwork, CA & Qz-

2.45 8.32 1 DISS PY 1 weak DI PY & PY on joints (up to 15%)

3.14 8.31 MAS M S 2% fragments 8.31 8.32 FR W

Thursday, May 10, 2007

Page 1 of 42

From: 2.45

To: 8.32

AND

(Continued from previous page)

STRUCTURES To Struct CA Strain

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER From

VEINS Vn% QZ% | Feld% | CC% | V/m | CA From To

MINERALIZATION To PY% Style Min Min% Min2 M2%

From: 8.32

To: 10.24

Litho:

Litho:

AND

Dark andeside dyke, weak biotite. @9.3 is 7mm CA VN, 8 tca

STRUCTURES												
From	To	Struct	CA	Strain								
8.32	10.24	MAS S		S								
dyke												

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER - - - W - - - W W W biotite altn

			VEINS	3			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
8.32	10.24	0.3	0.5		2	1	8
	9.3-9.51	is 7mi	m CA VI	l, 8 tca			

		M	INEI	RALI	ZAT	ION		
١	From	То	PY%	Style	Min	Min%	Min2	M2%
	8.32	10.24	4 0.1	DIS	S			

From: 10.24

To: 13.54

Litho:

AND

Andesite mottled by green chloritic strs, feldspar phenocrysts, CA & Qz strs & VNs, DY PY (~5%). @10.68-13.03 zone with abundant distorted CA VNs & strs. @13.03-13.1 two parallel 13mm & 17mm Qz-CA-pyrrhotite VNs, 75 tca. @13.36-13.54 three 7-11mm Qz-CA-PY VNs, 50-70 tca.

	STRU	CTUR	ES							AL	TERA	TIO	N						
From	To	Struct	CA	Strain	From	То	INT	ARC	G CH.	L SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
10.24	13.54	BDG		S	10.24	13.54	-	-	М	W -		-	W	W			М		
5	sharp upper contact																		

	VEINS										
From	To	Vn%	QZ%	Feld% CC% V/m CA							
10.24	13.54	3	2	2 5 70							

zone with abundant CA-Qz VNs &

			M	INE	RALI	ZAT	TON		
Ī	-	From	To	PY%	Style	Min	Min%	Min2	M2%
		10.24	13.5	4 5	DIS	S P	Y 5		

From: 13.54

To: 20.78

Litho:

AND

Dark andesite with biotite & fine grained tuff, reddish porphyry andesite with diffuse monzonite zones & moderate epidote alteration. Feldspar phenocrysts, network of Qz & CA strs, weak MG. PY~1%. @14.21 is 22mm Ca-Qz-Epid VN, 65 tca. @14.36 is 13mm Qz-PY-MG VN, 65 tca. @15.12m trace of native copper on fracture. @20.73m is 20mm Qz-PY VN, 70 tca.

	STRU	CTUR	ES		
From	To	Struct	CA	Strain	F
13.54	20.78	MAS		S	13.

1% of joints

					ALI	LEKA		LV						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
13.54	20.78	-		- V	<i>l</i> -	-	-	W	W	М	М	W		

AITEDATION

			VEINS	3			
	1						
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
	-1						
13.54	20.78	4	2	2		1	65
		- (0 -	04 - 4				
	network	or Qz-	CA Strs				

		MINERALIZATION														
CA	From	To	PY%	Style	Min	Min%	Min2	M2%								
65	13.54	20.78	3 1	FG	Р	Y 1										
	we	ak PY														

From: 13.54 To: 20.78 Litho: AND

Dark andesite with biotite & fine grained tuff, reddish porphyry andesite with diffuse monzonite zones & moderate epidote alteration. Feldspar phenocrysts, network of Qz & CA strs, weak MG. PY~1%. @14.21 is 22mm Ca-Qz-Epid VN, 65 tca. @14.36 is 13mm Qz-PY-MG VN, 65 tca. @15.12m trace of native copper on fracture. @20.73m is 20mm Qz-PY VN, 70 tca.

	STRUCTURES										
From	To	Struct	CA	Strain							

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

<i>MINERALIZATION</i>												
From	To	PY%	Style	Min	Min%	Min2	M2%					

From: 20.78 To: 22.21 Litho: AND

Andesite with feldspar phenocrysts & oxidized zones, CA-Chl alteration, DI PY~1%. @21.36-21.65m is 30cm brecciated AB-CA-Chl VN, 15 tca. @21.82-21.91m is 22mm ptygmatic CA-PY-MG VN, 30 tca with dendritic CA strs radiating from main VN. @22.13-22.21m is 7mm Qz-PY-Chl VN, 40 tca.

SINUCIUNES										
From	To	Struct	CA	Strain						
20.78	22.21	MAS S		М						
	1-2	2 joints								

CTDIICTUDES

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 20.78
 22.21
 M
 W
 M
 M
 W

 Chlorite alteration
 M
 M
 W

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
20.78	22.21	2	1	2		2	30					
	AB, CA,	PY, M	IG & Chl	orite pres	sent in	,						

VNs & strs

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%

 20.78
 22.21
 1
 FG
 PY
 1

 DI PY present

From: 22.21 To: 25.88 Litho: AND

Greenish feldspar phenocrysts, porphyry, weak chlorite; PY ~3% on fractures, reticulated network of Qz-CA VNs & strs. @23.37-23.51m ptygmatic Qz zone with DI PY & 17mm solid Qz-Chl-PY VN, 45 tca. @ 23.87m is 18mm Qz-CU-PY VN, 60 tca. @ 24.62-25.22 zone with abundant 5-7mm Qz & CA VNs & strs. @25.84m is 7mm Qz VN, 70 tca

	STRUCTURES									AL'	TERA	TIO	N					
From	To	Struct	CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR SER
22.21	25.88	MAS		S	22.21	25.88	-	-	W V	٧ -	-	-	-	М	W	М	W	
	1%	S joints			Chlo	rite alter	ation											

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
22.21	25.88	2	1	2		1	60
	reticulate	ed net	work Qz-	CA VNs	& strs	;	

	MINERALIZATION												
From	То	PY%	Style	Min	Min%	Min2	M2%						
22.21	25.88	3 1	DIS	S P	Y 0.5	5 PC	0.5						
	ne graii tive co			@23.	87 visi	ble tin	У						

MINERAL IZATION

From: 25.88 To: 39.25 Litho: AND

Dark andesite porphyry, network of CA & Qz VN & strs. From 26.1 to 27.6m core oxidized on fractures. Fine grained DI PY & PY specks (~2%) with weak MG ~1-2%. Below 27.6 biotite & MG ~4-5%. @35.29m is 26mm complex stockwork of CA-PY VNs, 85 tca. @39.22m is 12mm Qz VN, 75 tca.

	STRUCTURES	\mathbf{S}						AL	TERA	TIO	N						
From	To Struct CA	A Strain	From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
25.88	39.25 MAS	М	25.88	39.25	-	-	- V	/ -	-	-	-	-		М	W		
	S 1-2% of joints		biotit	e altn													

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
25.88	39.25	3	1	1	1	1	80				
Narrow <7mm Qz-CA VNs & strs mottled the core											

I	MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%					
	25.88	39.25	5 2	DIS	S P	Y 2							
	MG ~4-5% in this interval												

From: 39.25 To: 40.56 Litho: AND

Black andesite with orthoclase feldspars, biotite, CA-Chl VNs & strs mottled the core. Localized MG ~2%, fine grained DI PY ~1-2%

Sidok dilacoko wili ortiloolase lelaspi	are, blottle, 677 of a vive a site metted the sore. Lessanzed in 6 3276, fine grained 211 1	- 70			
STRUCTURES	ALTERATION	VEINS	MINERALIZATION		
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%		
39.25 40.56 MAS S	39.25 40.56 W W M W	39.25 40.56 2 2 2 80 CA VNs abundant	39.25 40.56 2 FG PY 2 Fine grained DI PY 1-2%		
1% of joints		CAT VIVO abandant	Tille grained Diff 1 1-276		

From: 40.56 To: 47.06 Litho: AND

Andesite with Chl altn, structure controlled CA & QZ strs +/- PY; small hornfelsed siltstone remnants (?) as zones, DI PY & PY strs, ~2-4% MG along the core. @42.34-42.44m contorted 20mm CA VN, 85 tca. @44.26m contorted 5mm Qz-PY-CA VN. @45.66-45.98m is 20m dispersed CA VN, no orient. @45.98m is 9mm Qz-PY-CA VN, 60 tca. @46.35-46.48m breccia zone. @46.48-47.06m silica zone with DI PY (3-5%) & three 10-18mm AB-CA-Qz VNs.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION		
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%		
40.56 47.06 MAS S	40.56 47.06 W M M W	40.56 47.06 3 2 2 2 1 60	40.56 47.06 2 DISS PY 2 MG 2-4%		
46.36-46.48 breccia					

From: 47.06 To: 47.58

dyke

Litho:

ADY

Andesite dyke with fine grained DI PY ~1-2%

	STRUCTURES					ALTERATION														
From	To	Struct	CA	Strain	1	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
47.06	47.58	MAS S		S	47	7.06 dyke	47.58	-		- V	/ W	/ -	-	М	-	W				

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
47.06	47.58 Dyke	0.1									

MINERALIZATION													
From	To	PY%	Style	Min	Min%	Min2	M2%						
47.06	47.58	3 2	DIS	S P	Y 2								

From: 47.58

To: 54.49

Litho:

AND

Reddish andesite, dominated by narrow 5-6mm CA & Qz VNs with chloritization. @48.91m is 13mm Qz-PO VN, 45 tca. @50.05m is solid 69mm Qz-PO VN, 70 tca. Below 51.21m weak MG. @54.28-54.49m dispersed CA-Chl-CA VN, no orient.

	STRUCTURES											
From	To	Struct	CA	Strain								
47.58	54.49	MAS		S								

1% joints

	ALTERATION													
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
	•	•												

47.58 54.49 - - M W - M - M -W Chloritization prominent on CA VNs

VEINS										
From To Vn% QZ% Feld% CC% V/m CA										

MINERALIZATION From To PY% Style Min Min% Min2 M2%

From: 54.49

To: 57.00

Litho:

AND

Black andesite. Abundant CA VNs with choritization, minor chalcocite (?) alteration. @56.92m is 9mm Qz-PY VN, 55 tca

STRUCTURES											
From	To	Struct	CA	Strain							
54.49	57.00	MAS S		S							

1% of joints

	ALTERATION													
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
54.49	57.00	-	- N	1 V	/ -	М	-	М	-		W	VW		

VEINS QZ% Feld% CC% V/m CA Vn% ToFrom

54.49 57.00 2 2 55 prominant CA VNs & strs

From: 57.00 To: 64.05 **AND** Litho:

Andesite with moderate feldspar phenocrysts. @57.0-59.6m abundant AB-CA-Chl+/-sphalerite or chalcocite (?) VNs & clasts. DI PY ~2%, weak MG. @62.87m is

	STRU	CTUR	ES			ALTERATION													
From	To	Struct	CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR S	SER

VEINS From ToVn% QZ% Feld% CC% V/m CA

MINERALIZATION From To PY% Style Min Min% Min2 M2%

57.00 59.60 3 2 2 40 zone with abundant AB-CA/Chlcarbonate VNs

57.00 64.05 MAS 1% of joints 57.00 64.05 - - M W - M - M - M W AB, Chl & carbonate altn

57.00 64.05 2 FG PY 2 weak MG

From: 64.05

To: 68.25

Litho:

AND

Andesite porphyry with coarse grained orthoclase feldspars, chalcocite/sphalerite (?) specks, weak pyrrhotite (~1%), narrow CA VNs, Qz in small amount. @67.03-67.53m dispersed CA-Chl VN, 40 tca.

	STRUCTURES									AL'	TERA	TIO	N					
From	To	Struct	CA	Strain	From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR SER
64.05	68.25	MAS		S	64.05	68.25	-	- \	N V	٧ -	-	-	М	-		М	W	
	S				Ca	bonate sp	ecks	prese	nt									
	strong core																	

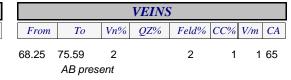
	VEINS										
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA				
64.05	68.25	1	0.5	2	1	0.5	40				
	dominate	ed by	CA VNs								

MINERALIZATION From To PY% Style Min Min% Min2 M2% 64.05 68.25 0.5 FG PY 0.5 PO 0.5 Weak PY

From: 68.25

To: 75.59

Litho:


AND

Andesite with biotite. Narrow CA VNs & fine grained DI PY (<1%), weak MG. Below 74.35m dominated by AB VNs & strs, +/-PY. @74.16-74.28m two parallel AB-PY VNs 11 &14mm, 65 tca. @75.35m is 82mm AB-Chl VN, 65 tca.

	STRU	CTUR	ES		Г
From				Strain	
68.25	75.59	MAS S		М	(

1% joints

	ALTERATION													
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
68.25	75.59	-	- N	ЛV	/ -	-	-	М	-	М		W		
weak	MG													

	M.	INEF	RALI	ZAI	ION					
From	То	PY%	Style	Min	Min%	Min2	M2%			
68.25	75.59	9 0.5	FG	P.	Y 0.5	5				
fine grained DI PY <1%										

From: 68.25 To: 75.59 Litho: AND

Andesite with biotite. Narrow CA VNs & fine grained DI PY (<1%), weak MG. Below 74.35m dominated by AB VNs & strs, +/-PY. @74.16-74.28m two parallel AB-PY VNs 11 &14mm, 65 tca. @75.35m is 82mm AB-Chl VN, 65 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

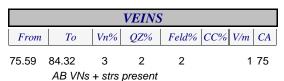
	ALTERATION													
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%				

From: 75.59

To: 84.32


Litho:

AND

Andesite with 2x3mm feldspar phenocrysts, CA & Qz VNs & strs. @81.88m is 22mm Qz-CA-Chl VNs, 75 tca

STRUCTURES									
From	To	Struct	CA	Strain					
75.59	84.32	MAS		S					

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER 75.59 84.32 - - M W - W - - - W M VW Albite present (1-2%)

MINERALIZATION From To PY% Style Min Min% Min2 M2% 75.59 84.32 0.1 FG PY 0.1 Very weak PY

From: 84.32

To: 92.88

Litho:

AND

Andesite with feldspar phenocrysts, weak PY (0.5%), dominated Qz & CA VNs (CA~3%, Qz ~5%), silica alteration. @ 90.6-90.72m silica. @90.96-91,3 silica. @92.34-92.61m is 8mm 10 tca CA VN with 3x4mm crystals. @93.61m is 14m Qz-PY VN, 65 tca. @93.81m is 12mm Qz VN, 70 tca. @94.85-94.96m silica zone @92.72-92.88m silica with small amount PY.

	STRU	CTUR	ES		
From	To	Struct	CA	Strain	Fro
84.32	92.88	MAS		S	84.32

strong/solid core

					AL	TERA	TIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

32 92.88 - - M M - - - - W M VW silica altn

			VEINS	5			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA
84.32	92.88	4	5	2	3	2	70
	CA Qz s	tockwo	ork				

MINERALIZATION From To PY% Style Min Min% Min2 M2% 84.32 92.88 0.5 VLT PY 0.5

Initials:

From: 92.88 To: 101.18 Litho: AND

Dark black andesite, biotite, widely distributed CA & Qz VN & strs, plagioclase feldspars & silica, thin (1-4mm) PY & pyrrhotite strs. @ 97.18m is 33mm Qz VN, 65 tca. @97.56-97.7m two Qz-CA VNs, 80 tca. @98.78m solid 18mm Qz-PY VN, 45 tca. @99.32-99.49m silica with ptygmatic 7mm pyrrhotite VN, 65 tca. @100.71m is 18mm CA-Qz VN, 45 tca. @100.77-100.94m silica zone with 2-3% DI PY.@100.94m is 24mm CA-Qz VN, 90 tca. @101.08m is 21mm Qz VN, 45 tca. @101.15m is 26mm Qz VN, 50 tca.

	STRU	CTUR	RES							AL'	TERA	TIO	N						
From	To	Struct	CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
92.88	101.18	MAS		s	92.88	101.18	-		- 8	} -	. М	-	М	-	М		VW		
	very	S hard ro	ock		ver	y hard coi	e												

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
92.88	101.18	5	3	2		2	60
	abundar	it Qz 8	CA Vns	& strs			

J		M	INEI	KALI	ZAI	ION		
	From	То	PY%	Style	Min	Min%	Min2	M2%
	92.88	101.1	8 0.5	VL1	ГР	Y 0.5	5	
	Su	ılphide	s 0.5%	6				

From: 101.18 To: 102.42 Litho: AND

Dark grey & reddish andeside to basalt, CA & Qz VNs, weak PY, widely distributed silica altn. @101.38-101.77m breccia zone with two parallel 10mm & 16mm Qz-CA VNs, 35 tca. @101.77m is 53mm Qz-CA VN, 45 tca. @102.23-102.42m silica zone with 1%PY.

	STRU	CTUR	ES								AL	TER.	ATIO.	N						
From	То	Struct	CA	Strain	Ī	From	To	INT	ARG	СН	L SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
101.18	102.42	2 MAS		VS	1	01.18	102.42	-	-	-	s ·	- M	-	-	-	W	М	W		
@1	101 38-	S 101.77	hraci	oio		Silica	a altn													
@ <i>i</i>		pasalt)	DIEC	Jia																

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
101.18	102.42 Qz-CA V	_	2	1		2	35

I		M	INEF	RALI	ZA1	TON		
	From	То	PY%	Style	Min	Min%	Min2	M2%
	101.18	102.4	2 0.5	DIS	S P	Y 0.5	;	
	ve	rv haro	rock	with w	veak	DI PY		

From: 102.42 To: 106.70 Litho: AND

Black & reddish black andesite mottled by CA strs, silica zone 30-40mm present, tuff zones, PY <1% . @104.3m is dendritic or anastomosing 34mm Qz-CA VN, 40 tca.

STRUCTURES							ALT	TERA	TIO	N						
From To Struct CA Strain		From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
102.42 106.70 MAS S	10	2.42	106.70	-		S	-	W	-	-	-	М	М	VW		
S 1% joints		Silic	a zones p	oresei	nt											

		VEINS	<u> </u>			
То	Vn%	QZ%	Feld%	CC%	V/m	CA
106.70	3	2	2	1	1	
CA VNs	& strs	in differe	ent orien	t.		
	106.70	106.70 3	To Vn% QZ% 106.70 3 2	106.70 3 2 2	To Vn% QZ% Feld% CC%	To Vn% QZ% Feld% CC% V/m 106.70 3 2 2 1 1

Initials:

From: 106.70 To: 112.65 Litho: AND

biotite alteration

Dark black porphyrytic andesite to basalt mottled by 10% CA VNs & strs in different orientation. Very weak sulphide (<1%). @106.7m is 8mm Qz-PO VN, 60 tca. @117.73-117.94m silica with 8mm PY-MG VN, 55 tca. @112.35-112.65m silica alteration with thin PY VN on edges.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 106.70
 112.65
 S
 S
 M
 W

ALTERATION

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 106.70
 112.65
 7
 2
 5
 3

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%

 106.70
 112.65
 1
 DISS
 PY
 1

 <1%</td>
 PY

1% joints, silicification & basalt

106.70 112.65 MAS

From: 112.65 To: 129.90 Litho: AND

Porphyrytic andesite to granite with AB & Qz VNs & strs, white AB phenocrysts; Qz ~3-4%, CA~2-3%, PY ~3-4% in this interval. @115.03m is 75mm AB VN, 50 tca. @115.46-115.65m silica altn with PY (~2%). @115.65m anastomosing 16mm PY VN, 90 tca. @117.46m is 22mm Qz-PY VN, 60 tca. @119.44m is 14mm Qz-PO VN, 75 tca. @121.4-1121.6m silica altn with PY (2-3%). @121.5m solid 34mm Qz VN, 65 tca. @123.18m solid 60mm Qz-MG-PY VN, 60 tca. Below 123.33m silica alteration with PY (~5%). @123.82m is 15mm Qz-CA VN, 40 tca. @123.93m ptygmatic 12mm PY-Qz VN, 40 tca. @125.11-125.4m silica zone with ~7-10% DI PY & 20mm Qz-PY VN, 50 tca. @126.3m is 24mm Qz-PY VN, 70 tca. @126.5m is 20mm Qz-PY VN, 85 tca. @126.82m solid 89mm Qz VN, 70 tca with ~3% PY. @127.78-128.03m silica zone with 17mm Qz VN, 75 tca & PY specks (3-4%). Below 128.03m reddish porphyry andesite with silica alteration & 1-2mm PY strs (3-5% PY). @129.05m is 11mm Qz VN, 80 tca. @129.24m is 24mm dispersed Qz-PY VN, 35 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL'	TERA	TIO	N						
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION

From To PY% Style Min Min% Min2 M2%

112.65 129.30 3 1 2 2 1 AB & Qz-PY VNs present

112.65 129.65 MAS VS S very hard core

112.65 129.90 - - - S - - - M - M M silica & albite present

112.65 129.90 4 VLT PY 4

Initials:

From: 129.90 To: 131.15 Litho: MZON

monzonite, weak MG alteration

Monzonite porphyry with thin PY strs, silica & feldspar, MG altered. @131.02m is solid 38mm Qz-PY VN, 90 tca. Below 132.13m monzonite with CA altn., PY~2%

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

1% of joints

S

129.90 131.15 MAS

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 129.90
 131.15
 M
 W
 M
 W

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 129.90
 131.15
 2
 4
 5
 2
 70

VEINS

3 sets: 1st order thin qtz @ 30 tca; 2nd orthognal @35 tca; thin PY strs @ 55 tca

From: 131.15 To: 143.45 Litho: AND

Reddish fine grained andesite with feldspar porphyry, domiated by CA strs with moderate chlorite; a few MG zones (up to 3-5% MG) & Qz VNs. @131.86m is 17mm Qz VN, 45 tca. @133.25m is 9mm PY-CA VN, 85 tca. @133.36-133.64m is zone with dispersed CP-PY-Qz VN, 40 tca & PY strs; ~8% CP; 2-3% PY in this interval. @ 134.92m is 13mm Qz-PY-MG VN, 80 tca. @136.31m is 16mm Qz-PY-MG VN, 60 tca. @136.78m is 21mm ptygmatic PY-CA-MG VN, 55 tca. @ 136.97m is 17mm PY-CA VN, 65 tca & MG zone around. @138.48m solid 22mm Qz-PO VN, 40 tca. @139.7m is 21mm Qz-CA-PY VN, 60 tca with MG zone (MG~5%). @140.4-140.55m epidote alteration. 140.5-141.31m zone with stockwork 3-6mm Qz VNs in different orientation. @ 140.33m is 17mm Qz-PO VN, 50 tca. @142.65m is 15mm Qz-PY VN, 50 tca & ~5% MG. @142.62-143.35m breccia zone.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL'	TERA	TIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
131.15	131.97	4	2	2	3	2	40

	M	INE	RALI	ZAI	ION		
From	То	PY%	Style	Min	Min%	Min2	M2%

131.15 133.50 MAS S S 132.1-132.41 breccia 131.15 133.50 3 DISS PY 3

131.15 135.00 - - M M - - - W - W W

From: 131.15 To: 143.45 Litho: AND (Continued from previous page)

From To Struct CA Strain

					AL'	TERA	TIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	3			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%				

133.50 133.82 FLW 45 S

133.50 143.40 2 VLT PY 1 PO 0.5

133.50 143.45 5 3 4 1 70

135.00 143.40 - - - M - - - W - M VW

143.40 143.45 - - - - - - -

From: 143.45 To: 166.10 Litho: AND

Andesite porphyry, strong biotitization, weak chlorite; from weak to moderate CA; network of Qz & CA VNs & narrow (1-3mm) PY VNs. @ 143.6m solid 30mm Qz VN, 60 tca. @ 143.36m is 8mm Qz VN, 60 tca. @144.8m is 17mm Qz VN, 80 tca. @146.05m is 16mm Qz-PY VN, 70 tca. @ 147.4m is 10mm Qz-PY VN, 45 tca. @149.53m is 14mm Qz-PY VN, 55 tca. @145.5m is 13mm Qz-PO VN, 80 tca. @149.6m is 44mm Qz-sphalerite-PO-CP VN, 65 tca. @152.56-156.7m three 13-14mm Qz VNs, 60-70 tca. Below 156.7m andesite with biotite & feldspar phenocrysts, PY & PO ~1-2%. @154.43m is 38mm Qz-CA VN, 80 tca. @154.68m is 24mm CA-Qz NV, 60 tca.

l		STRU	CTUR	ES	
	From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA				

I	MINERALIZATION										
	From	To	PY%	Style	Min	Min%	Min2	M2%			

From: 143.45 To: 166.10 **AND** Litho:

strong biotitization

Andesite porphyry, strong biotitization, weak chlorite; from weak to moderate CA; network of Qz & CA VNs & narrow (1-3mm) PY VNs. @ 143.6m solid 30mm Qz VN, 60 tca. @ 143.36m is 8mm Qz VN, 60 tca. @144.8m is 17mm Qz VN, 80 tca. @146.05m is 16mm Qz-PY VN, 70 tca. @ 147.4m is 10mm Qz-PY VN, 45 tca. @149.53m is 14mm Qz-PY VN, 55 tca. @145.5m is 13mm Qz-PO VN, 80 tca. @149.6m is 44mm Qz-sphalerite-PO-CP VN, 65 tca. @152.56-156.7m three 13-14mm Qz VNs, 60-70 tca. Below 156.7m andesite with biotite & feldspar phenocrysts, PY & PO ~1-2%. @154.43m is 38mm Qz-CA VN, 80 tca. @154.68m is 24mm CA-Qz NV, 60 tca.

	STRUCTURES										
From	To	Struct	CA	Strain							

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
143.45	156.05	_	- V	v v	/ -		_	W	_	s	М	VW		

	VEINS											
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA					
143.45	156.05	4	3	10	2	2	60					

Į	MINERALIZATION											
	From	To	PY%	Style	Min	Min%	Min2	M2%				

very strong rock with 1-2

143.45 156.05 MAS

%of joints

143.45 156.50 2 DISS PO 1 PY 1

156.05 166.10 MAS

strong rock with 1-2% of joints

156.05 166.10 - - M M - - - W - S M VW biotitization

156.05 166.10 3 3 7

3 1 60

156.50 166.10 0.5 DISS PY 0.5

From: 166.10

To: 168.10

Litho:

ADY

Andesite with biotite & feldspar phenocrysts, silica, moderate CA, weak <1% PY.

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	3			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

I		M	INEI	RALI	ZAI	TON		
	From	To	PY%	Style	Min	Min%	Min2	M2%

166.10 168.10 MAS

VS 166.10 168.10 - - W M - - - W - S M

166.10 168.10 0.5 DISS PY 0.5 very weak PY

strong rock with silica

From: 166.10

To: 168.10

Litho:

ADY

Andesite with biotite & feldspar phenocrysts, silica, moderate CA, weak <1% PY.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL'	TERA	TIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

		M	INEI	RALI	ZA1	TON		
l	From	To	PY%	Style	Min	Min%	Min2	M2%

From: 168.10

To: 175.57

Litho:

ADY

Andesite, weak PY strs, green feldspar phenocrysts, CA & silica alteration

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 168.10
 175.57
 M
 W
 M
 S
 M
 VW

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 168.10
 175.57
 2
 1
 1
 3
 1.45

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%

168.10 175.57 MAS S

bi

1/5.5/ - - M W - W - M - S M

175.57 2 1 CA network. PY strs 168.10 175.57 1 VLT PY 1

biotite

.

~2% of joints

From: 175.57 To: 234.37 Litho: AND

S

Andesite with breccia zones & silica alteration, network of CA strs, moderate chlorite alteration, lapilli tuffs; very weak MG, dominated by biotite . @ 175.82-176.0m silica alteration; Below 176.28m breccia zone =25cm; @ 176.68m silica zone ~32cm. @177.88m is 23mm PO-PY VN, 60 tca. @178.7-178.94m is AB breccia. Below 178.94m core is strong with silica alteration, CA strs. @183.6m is 5mm CA VN, 30 tca. From 185.67m to 186.56m strong biotitization with fine grained PY (~1%). Below 186.56m hybrid zone with intensive volcanic/ intrusive mixture, CA strs, breccia zones, silica alteration, biotite, feldspar phenocrysts, Qz VNs & tiny PO. @190.1m is 26mm Qz VN, 40 tca. @190.44-190.7m silica zone. @191.71m is 20mm dendritic or anastomosing CA VN, 30 tca. @191.8-191.24m silica zone with 30mm Qz VN, 85 tca. @194.6m is 11mm Qz VN, 70 tca. @ 195.14-195.33m silica zone with 13mm, 80 tca. @196.87m is 12mm CA VN, 40 tca. @199.2m is 8mm CA-PY-MG VN, 30 tca. Below 199.45m andesite with 2-3% of DI PY. @199.56m is 6mm Qz-MG VN, 55 tca. @204.57m is 27mm AB VN, 75 tca. From 204.7m to 211.55m andesite with very strong biotite alteration, moderate chlorite, weak CA; PY ~1% in this interval. @211.55-213.25m fault zone with rubble & gouge (>60% are pieces <10cm). @213.55-219.7m dark andesite with biotite altn, feldspar phenocrysts, narrow Qz VNs. @ 219.7-234.7m reddish andesite with silica & chlorite; a few Qz VNs & abundant Qz strs. @224.0-224.15m are two 13 & 17mm Qz VNs, 50tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	1			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	M	INEI	RALI	ZAT	TON		
From	To	PY%	Style	Min	Min%	Min2	M2%

175.57 176.30 MAS S 1-2% joints From: 175.57 To: 234.37 Litho: AND

Andesite with breccia zones & silica alteration, network of CA strs, moderate chlorite alteration, lapilli tuffs; very weak MG, dominated by biotite . @ 175.82-176.0m silica alteration; Below 176.28m breccia zone =25cm; @ 176.68m silica zone ~32cm. @177.88m is 23mm PO-PY VN, 60 tca. @178.7-178.94m is AB breccia. Below 178.94m core is strong with silica alteration, CA strs. @183.6m is 5mm CA VN, 30 tca. From 185.67m to 186.56m strong biotitization with fine grained PY (~1%). Below 186.56m hybrid zone with intensive volcanic/ intrusive mixture, CA strs, breccia zones, silica alteration, biotite, feldspar phenocrysts, Qz VNs & tiny PO. @190.1m is 26mm Qz VN, 40 tca. @190.44-190.7m silica zone. @191.71m is 20mm dendritic or anastomosing CA VN, 30 tca. @191.8-191.24m silica zone with 30mm Qz VN, 85 tca. @194.6m is 11mm Qz VN, 70 tca. @ 195.14-195.33m silica zone with 13mm, 80 tca. @196.87m is 12mm CA VN, 40 tca. @199.29m is 8mm CA-PY-MG VN, 30 tca. Below 199.45m andesite with 2-3% of DI PY. @199.56m is 6mm Qz-MG VN, 55 tca. @204.57m is 27mm AB VN, 75 tca. From 204.7m to 211.55m andesite with very strong biotite alteration, moderate chlorite, weak CA; PY ~1% in this interval. @211.55-213.25m fault zone with rubble & gouge (>60% are pieces <10cm). @213.55-219.7m dark andesite with biotite altn, feldspar phenocrysts, narrow Qz VNs. @ 219.7-234.7m reddish andesite with silica & chlorite; a few Qz VNs & abundant Qz strs. @224.0-224.15m are two 13 & 17mm Qz VNs, 50tca.

STRUCTURES										
From	To	Struct	CA	Strain						

ALTERATION											
From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER											SER

			VEINS	5					M	INER	RALI	ZAT	ION		
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA	 From	To	PY%	Style	Min	Min%	Min2	M29

175.57 178.70 - - W S - M - M - M W W

175.57 178.70 1 1 1 1 1 70 @177.88 is 23mm PO-PY VN, 60 tca

175.57 182.27 2 VLT PO 0.1 PY 1

176.30 176.53 BX S solid

176.53 178.63 MAS S S 1-2% joints

178.63 178.86 BX M *AB-CA breccia*

Initials:	
-----------	--

From: 175.57 To: 234.37 Litho: AND (Continued from previous page)

From To Struct CA Strain

					AL'	TERA	TIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%

178.70 182.27 - - M S - M - M - W W

178.70 182.27 1 2 2 2 1 60 a few 3-4 mm CA NVs

178.86 185.67 CON S

182.27 186.56 2 CG PY 2 PO 1

182.27 199.00 3 2 2 3 1 80

Qz VNs prezent in silica zones

182.27 199.60 - - M S - M - M - S W W silica alteration

CH0601 Initials: ___

From: 175.57 To: 234.37 Litho: AND (Continued from previous page)

STRUCTURES	ALTERATION	VEINS	MINERALIZATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%

186.56 211.55 CON rock is hard in this interval

186.56 211.55 1 DISS PY 1 PO 0.5 weak sulfide

199.00 211.55 1 1 3 0.5 60 CA VNs present

199.60 211.55 - - M S - M - M - VS W W very strong AB alteration

From: 175.57 To: 234.37 Litho: AND (Continued from previous page)

	STRU	CTUR	ES							AL'	TERA	TIO	N						
From	To	Struct	CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	3				I		M	INEF	RALI	ZAI	TON	
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA	_	From	То	PY%	Style	Min	Min%	Min2

211.55 234.37 - - W M - M - M - W W VW .5% PY

211.55 234.37 1 2 Qz strs dominated 1 0.5 50 211.55 234.37 0.2 DISS

From: 234.37 To: 239.11 Litho: AND

Andesite with strong chloritization & biotitization; 3-5% PY & PO in this interval; weak CA strs.

	STRU	CTUR	ES							AL	TERA	TIO	N						
From	To	Struct	CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5					M	INER	RALI	ZAT	ION		
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	From	To	PY%	Style	Min	Min%	Min2	M2%

CH0601

Initials:

From: 234.37 To: 239.11 Litho: AND

Andesite with strong chloritization & biotitization; 3-5% PY & PO in this interval; weak CA strs.

	STRU	CTUR	ES							AL	TERA	TIO	N						
From	То	Struct	CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
234.37	239.11	MAS		S	234.37	239.11	-	- 8	5 M	1 -	М	-	М	-			М		
	S silicification & Chl																		

strong rock

239.11 250.60 FOL

			VEINS	5			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA
234.37	239.11	1	2		1	0.5	

I		M	INEI	RALI	ZA I	TON		
	From	To	PY%	Style	Min	Min%	Min2	M2%
	234.37	239.1	1 5	DIS	S P	Y 4	PC)

From: 239.11 To: 259.04 Litho: SLST

Contact at 239.1m. Below 239.1m black argillite with Qz-AB strs & micro strs (~50 strs/m, same orientation), 25-40 tca; weak CA strs. (Strs >2mm thickness contain PY). AB-Qz-PY VNs present as 1-2 per m. @244.9-245.6m andesite dyke. @250.6-252.4m fault zone (fragments & gouge).

VW

STRUCTURES						AL	TERA	TIO	N						
From To Struct CA Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

M 239.11 250.60 - M VW M - - - M -

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

l		M	INEI	RALI	ZAT	TON		
	From	To	PY%	Style	Min	Min%	Min2	M2%

239.11 252.40 3 2 0.5 2 35

239.11 259.04 0.3 VLT PY 0.3

Initials:	
-----------	--

From: 239.11 To: 259.04 Litho: SLST (Continued from previous page)

	STRU	CTUR	ES							AL'	TERA	TIO	N						
From	To	Struct	CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	3					M	INEI	RALI	ZAI	ION		
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	From	To	PY%	Style	Min	Min%	Min2	M2%

250.60 252.40 FLT VW 250.60 252.40 - M VW M - - - M - VW

From: 259.04 To: 271.56 Litho: ARG

Interbedded argillite & silstone with a few faults & shear zones; abundant Qz-AB strs & VNs. @252.4-252.66m broken core. @ 259.4-259.7m broken core. @260.7-261.65m broken core (fragments & gouge). @264.0-264.2m shear zone. @264.85m is 16mm AB-PY VN, 25 tca. @265.1m gouge 20mm thickness, 30 tca. @266.57m flat 35mm AB VN with small PY. @267.77m is 12mm AB VN, 15 tca. Below 267.9m core mottled by Qz-AB strs, ~25 tca on the same orientation, chalcopyrite present.

	STRU	CTUR	ES							AL	TERA	TIO	N							
From	To	Struct	CA	Strain	From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	
259.04	271.56	BDG	25	М	259.04	271.56	-	s v	w -	· N	1 -	-	_	-						

			VEINS	3]]		M.	INE	RALI	ZAT	TON		
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		From	To	PY%	Style	Min	Min%	Min2	M2%
259.04	271.56	3	1			1	25		259.04	271.5	6 0.1	DIS	S P	Y 0.1	i	

shear zones & faults

argillite

Initials:

(Continued from previous page) From: 259.04 To: 271.56 **ARG** Litho:

	STRU	CTUR	ES			
From	To	Struct	CA	Strain	From	To

					AL'	TERA	TIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	M	INE	RALI	ZAI	ION		
From	To	PY%	Style	Min	Min%	Min2	M2%

From: 271.56 To: 275.63 **ADY** Litho:

Grey andesite dyke with 1% fine grained DI PY

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

l		M	INEI	RALI	ZAT	TON		
	From	To	PY%	Style	Min	Min%	Min2	M2%

271.56 275.63 MAS solid

VS 271.56 275.63 - - - - - - fine grained DI PY ~1%

271.56 275.63 0.1

271.56 275.63 1 DISS PY 1 weak PY

From: 275.63 To: 286.50 Litho: **ARG**

Black argillite mottled by AB-Qz strs & VNs (15-90 tca) +PY, CPY & PO. @ 277.07m is 10mm Qz-AB-PY VN, 50 tca. @ 282.92-283.2m silica, Qz, PY & Chl. @283.6m is 20mm AB-PY-chlorite VN, 25 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION													
From To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

W

VEINS QZ% Feld% CC% V/m CA To Vn% From 275.63 286.50 3 2 1 50

ı		M	INEI	KALI	ZAI	ION		
	From	To	PY%	Style	Min	Min%	Min2	M2%
	275.63	286.5	0 3	۷L٦	ГР	Y 2	CF	•
	PY	, Cpy	& pyrr	hotite	pres	ent in \	/Ns	

275.63 286.50 FLW 45 M 275.63 286.50 - S - VW M

PY & CPY present mostly in VNs

Initials:		
-----------	--	--

From: 275.63 To: 286.50 Litho: ARG (Continued from previous page)

STRUCTURES	ALTERATION	VEINS	MINERALIZATION			
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%			

From: 286.50 To: 307.20 Litho: ARG

Black argillite with siltstone & abundant Qz-AB-chlorite strs & VNs, ~40-80 tca, PY strs. @298.93-299.5m shear zone with 20% gouge. @287.35m Qz lense 13cm along the core. @285.95m is 5mm PY VN, 35 tca. @289.5m is 10mm Qz-PO-chlorite VN, 55 tca. @293.2m dendritic Qz-PY-chlorite, no orient. 298.3-299.47m soft argillite with abundant CA strs. @300.4-301.15m dispersed 27mm Qz-PY-chlorite VN, 20 tca. @301.4-302.2m core mottled by Qz-chlorite-PY strs, 15-30 tca (~3% PY).

STRUCTURES	ALTERATIO	N	VEINS	MINERALIZATION			
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY	POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%			
286.50 307.20 BDG 40 M	286.50 307.20 - S VW M VW M -	VW - W	286.50 307.20 2 2 2 1 45	286.50 307.20 2 VLT PY 2			
core is solid	1-2% PY in VNs		thin & dispersed VNs with PY				

CH0601 Initials: _____

From: 286.50 To: 307.20 Litho: ARG (Continued from previous page)

STRUCTURES	ALTERATION	VEINS	MINERALIZATION		
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%		

From: 307.20 To: 324.07 Litho: ARG

Black argillite (60%) with subparallel hornfelsed siltstone (40%) remnants/zones (?), mottled by Qz & AB VNs & strs ~20-35 tca (same orient); very weak CA; DI PY<0.5% . @312.6m dispersed 20mm Qz-PY (0.5%) VN, 30 tca. Below 317.2m present 4-5mm Qz VNs, 20-40 tca.

	STRU	CTUR	ES								AL	TERA	TIO	N						
From	To	Struct	CA	Strain		From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
307.20	324.07	BDG	45	М	3	07.20	324.07	-	M V	w w	/ N	1 M	-	VW	-			VW		
2%	of ioints	core i	s str	ona		Qz a	lteration	hlehs	thin	VNs 8	strs									

			VEINS						M	INE	RALI	ZAT	TON		
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	From	To	PY%	Style	Min	Min%	Min2	M2%
307.20	324.07	2	2		0.2	1	30	307.20	324.0	7 0.3	FG	P.	Y 0.3	3	
	tiny Qz & 4-5mm Qz VNs mottled the core (same direction)														

Initials:

From: 324.07

324.07 326.18 MAS

To: 326.18

Litho:

GDIO

Granodiorite dyke with DI PY up to 20% in this interval, weak biotite alteration.

	STRUCTURES										
From	To	Struct	CA	Strain							

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER 324.07 326.18 - - - W - - - - W

VEINS Vn% QZ% Feld% CC% V/m CA FromTo5

MINERALIZATION From To PY% Style Min Min% Min2 M2%

S

granodiorite dyke

biotite ~2%

324.07 326.18

0.1

324.07 326.18 20 MS PY 20 dyke with PY

From: 326.18 To: 339.60 **HSLT** Litho:

Hornfelsed siltstone mottled by Qz strs & contorted Qz-PY-PO VNs. @327.5-327.78m knot Qz-PY VNs & strs in different orient. @328.0m is 7mm Qz-AB-PY VN, 80 tca. @328.47-328.8m is GDIO dyke with ~10% PY. @329.03m is 11mm Qz-PY VN, 90 tca. @ 329.08-329.26m knot of Qz-PY strs. @329.45-329.52m contorted 7mm Qz-PY VN. 15 tca. @330.13m is 12mm Qz-PY VN. 80 tca. @331.27-331.32m is 15mm offset Qz-PY VN. 90 tca. From 334.64 to 335.02m zone subparallel ptygmatic Qz-AB-PY VNs, 30 tca. @336.0m is 16mm Qz-pyrrhotite VN, 90 tca. @336.46m is 13mm Qz-PY VN, 70 tca. @336.94m crosscut of two Qz-PY VNs 14mm & 5mm, 20 & 50 tca. @337.34m is 11mm Qz-PY VN, 90 tca. @337.76m is 12mm Qz-PY VN, 50 tca. 338.85 contorted 14mm Qz-PY VN, 90 tca. @339.1m is 7mm AB VN, 45 tca.

STRUCTURES

To Struct CA Strain

	ALTERATION													
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA				

3 70

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%				

326.18 339.00 FLW siltstone mottled by Qz strs (~30 tca) & contorted Qz VNs (65-90 tca)

326.18 339.60 - - VW M - - - VW -

326.18 339.60 5 7 core with dominated 10-15mm Qz-PY VNs, 50-90 tca

326.18 339.60 3 VLT PY 3 PO 1 PY clusters & DI PY

From: 326.18 To: 339.60 Litho:

HSLT

(Continued from previous page)

| STRUCTURES | From | To | Struct | CA | Strain

		ALTERATION												
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%				

From: 339.60

To: 340.60

Litho:

GDIO

Granodiorite dyke with 10% DI PY & biotite

	STRUCTURES										
From	To	Struct	CA	Strain							

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 VEINS

 From
 To
 Vn%
 OZ%
 Feld%
 CC%
 V/m
 CA

MINERALIZATION

From To PY% Style Min Min% Min2 M2%

339.60 340.00 MAS S

granodiorite dyke

| From | To | Vn% | QZ% | Feld% | CC% | V/m | CA | | From

339.60 340.00 10 MS PY 10 DI PY

339.60 340.60 - - - W - - - - - W N

339.60 340.60 0.1 5 no VNs

From: 340.60

.60 *To:* 354.40

Litho:

HSLT

Hornfelsed siltstone mottled by Qz strs & contorted Qz-PY/PO VNs, biotite alteration. @ 341.02m is 20mm AB-PY VN, 85 tca. @341.34m is 18mm Qz-PY-MO VN, 35 tca. @341.48m is 37mm AB-PY VN, 40 tca. @343.17m is 8mm Qz VN. 75 tca. @344.39m is 6mm Qz-PY VN, 10 tca. @345.38m two 10mm & 11mm, 85 & 90 tca. @345.8m is 22mm Qz-PY VN, 70 tca. @348.48m is 6mm Qz-PY VN, 30 tca. @349.44-349.55m granodiorite. @353.18m contorted 11mm Qz VN, 60 tca.

	STRUCTURES											
From	To	Struct	CA	Strain								

340.60 354.40 FLW 30 S 1-2% joints
 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

340.60 354.40 - - VW W - - - VW - M biotite altn.

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
340.60	354.40	4	5			3	80

340.60 354.40 4 5

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%

340.60 354.40 1 VLT PY 1 MO 0.3 PY present in Qz VNs CH0601 Initials: _____

From: 340.60 To: 354.40 Litho: HSLT (Continued from previous page)

STRUCTURES	ALTERATION	VEINS	MINERALIZATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%

From: 354.40 To: 357.30 Litho: DYKE

Granodiorite dyke with 15-20% DI PY & biotite is also present.

| STRUCTURES | STR

granodiorite dyke with 15-20% DI PY & biotite 2-3% CH0601

From: 357.30 To: 374.56 Litho: HSLT

Hornfelsed siltstone mottled by Qz strs & contorted Qz-PY VNs, narrow AB VNs. Chl altn, weak biotite. @358.5m is 10mm Qz-Chl-PO VN, 70 tca. @358.85m is 5mm Qz-PY VN, 50 tca. @359.11m is 9mm dispersed Qz-PY VN, 20 tca. @360.46m is 16mm Chl-PY VN, 35 tca. @361.72m is 18mm AB VN, 30 tca. @362.3m is 57mm Qz-PY VN, 40 tca. @362.64m contorted 14mm Qz-PY VN, 90 tca. @363.23m is 9mm Qz-AB-PY VN, 50 tca. @363.54-364.24m significant QZ-AB-PY-Chl VNs stockwork 30-40 tca, (up to 10% PY in this interval). @364.1m is 5mm AB VN, 30 tca. @364.95-365.87m zone with a few dispersed subparallel Qz-Chl-PY VNs, 30 tca (10% Qz & 3% PY in this interval). Below 366.14m core has 4-5mm Qz VN per meter in different orient. @370.33m is 28mm Qz-PY VN, 65 tca. @371.95m is 35mm dispersed Qz-PY VN, 40 tca. @373.95-374.5 contorted 14mm Qz-PY-BIO VN, no orient.

	STRU	CTUR	RES							ALI	TERA	TIO	N						
From	To	Struct	CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

				VEINS	3			
Ī	From	То	Vn%	QZ%	Feld%	CC%	V/m	CA

I		M	INE	RALI	ZAT	ION		
	From	То	PY%	Style	Min	Min%	Min2	M2%

Initials:

357.30 374.30 2 VLT PY 2 PY specks on Qz VNs

357.30 374.56 FLW 1-2% joints

S 357.30 374.56 - - W W VW W - - - W W Biotite & Chl altn.

357.30 374.56 5 4 4-5 Qz-P-Chl VN/m 1 4 50

From: 374.56 To: 375.90 Litho: ADY

Grey andesite dyke with 1% fine grained DI PY.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%
374.56 375.90 FLW S	374.56 375.90 VW	374.56 375.90 0.1 0.1	374.56 375.90 0.2 FG PY 0.2
dyke		no VNs	very fine grained PY

From: 375.90 To: 392.21 Litho: HSLT

Hornfelsed siltstone mottled by Qz strs & Qz-MO-sulphide VNs, biotite. @376.1m is Qz-PY-MO VN, 35 tca. @376.57m is 12mm Qz-PY-MG VN, 55 tca. @377.08m is 11mm Chl-Qz VN, 45 tca. @378.37m is 15mm Chl-Qz VN, 30 tca. @378.6m is 11mm Qz-Chl-PY VN, 40 tca. @380.02-380.27m three 15-17mm Qz-PY-MO VNs, 30-60 tca. @380.46m is 13mm Qz-PY-MG VN, 45 tca with subparallel PY strs. @381.0-381.78m three parallel 16-19mm Qz-Chl-PY VNs, 30 tca. @382.86m is 17mm Chl-Qz VN, 30 tca. @383.06-385.45m a few 8-13mm Qz-PY VN, 20-30 tca. @385.45m is significant 22mm Qz-MO-PY VN, 30 tca. Below 385.65m core mottled by Qz-PY strs. @386.1m is 6mm MO VN, 55 tca. @388.43m is 22mm Qz-MO-PY VN, 80 tca. @389.18-389.6m significant Qz-PY zone (10-15% PY). @390.42-390.55m granodiorite. @390.75-391.26m Qz-AB-PY-Chl hybrid zone.

	STRU	CTUR	ES								AL'	TERA	TIO	N					
From	To	Struct	CA	Strain	Fre	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR							SER						
375.90	392.21	FLW	50	S	375.9							М							
	2-39	% joints	3		F	Y	& Chl altn												

			VEIND	<u>'</u>			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
375.90	392.21	4	4		0.1	4	45
	Qz-PY-N in this in		,	6 PY, 1%	6 МО		

VEINS

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%				
375.90	392.2	1 4	۷L٦	ΓР	Y 4	МС) 1				
~3-4% PY, 1-1.5% MO, 1-2% MG below 383.0m											

From: 392.21 To: 400.90 Litho: HSLT

Hornfelsed siltstone mottled by Qz strs & contorted Qz-Chl-sulphide VNs, moderate biotite alteration, weak MG, PY strs (~2-3% PY). @392.5m dispersed 66mm Qz-Chl-PY-MG VN, 50 tca. @393.04-393.25m knot of Qz-Chl-PY VNv (7-10% PY). @393.76m is dispersed 32mm Qz-Chl-PY-MO-MG VN, 45 tca. @394.04m is 14mm Qz-Chl-PY-MO-MG VN, 70 tca. @395.15m is 20mm Qz-PY-MG VN, 75 tca. @395.56m is 14mm Qz-PY-MG VN, 85 tca. @395.63m is 42mm Qz-PY-MG VN, 45 tca. @395.95m solid 42mm Qz-PY-Cpy-MG VN, 40 tca. @396.43-396.78m zone with dominated AB-QZ-PY-Chl strs, 40 tca. @397.07-397.28m dispersed Chp-Qz-PY VN, 30 tca (~7% PY). @398.9m is 12mm Qz-Chl-PY-MG VN, 45 tca. @399.76m solid 26mm Qz-PY-Chl VN, 45 tca. @399.9m solid 24mm Qz-MO-PY VN, 70 tca. @400.02m is 30mm Qz-PY-MO-Cpy VN, 80 tca. @400.64m is 13mm Qz-CA-Cpy VN, 80 tca.

	STRU	CTUR	ES								AL	TER.A	ATIO.	N						
From	To	Struct	CA	Strain		From	То	INT	ARC	G CH.	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
392.21	400.90	FLW	50	S	39	92.21	400.90	-	W	W	N N	и м	-	VW	-	М		М		
	2-39	% joints	3			biotit	e altn													

			VEINS	1			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
392.21	400.90	4	4	1	0.2	3	50
	core mo	ttled by	y thin Vn	s			

	MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%					
392.21	400.9	0 3	۷L٦	ΓР	Y 3	МС) 1					
~1% MO in this interval												

From: 400.90 To: 408.00 Litho: HSLT

fault, AB-CA present

Hornfelsed siltstone mottled by Qz strs & contorted Qz-Chl-sulphide VNs, biotite, PY strs (~2% PY). Fault zone with rubble & gouge (20%), traces of Qz-CA-AB-PY VNs. @ 401.41m is 23mm dispersed Qz-PY VN, 40 tca. @401.63-401.78m dispersed 67mm Qz-AB-Chl-PY VN, 40 tca. @402.5m is 6mm PO VN, 40 tca with bunch of parallel PY strs. @402.91m is 20mm AB-PY-BO VN, 30 tca. @405.52m is 22mm Qz-PY VN, 90 tca. @406.75m is 40mm Qz-MO-Chl-PY VN, 50 tca. @407.0m dispersed 23mm Qz-PY-MO VN 70 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain
400.90	401.57	FLT		VW

fault zone with gouge ~20%, PY 1-2%

	ALTERATION													
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
00.90	401.57	-	- V	٧	-		-	VW	-			W		

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 400.90
 401.57
 1
 1
 1
 1
 1

 fault, trace of Qz-CA-PY VN, no orient

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%

 400.90
 401.57
 2
 FG
 PY
 2

 fault zone with DI PY

Initials:	
-----------	--

From: 400.90 To: 408.00 Litho: HSLT (Continued from previous page)

From To Struct CA Strain

					ALI	TERA	TIO	N						
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		Fre	

Į	MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%					

401.57 408.00 FLW Subparallel Qz strs 45 tca.

From: 408.00 To: 420.85 Litho: HSLT

Hornfelsed siltstone mottled by Qz strs & contorted Qz-Chl-PY/PO VNs, thin PY strs. @408.0m solid 23mm Qz-PY VN, 35 tca. @408.57-408.78m zone with dispersed vein Qz-PY +breccia, 40 tca. @409.38-409.8m significant Qz-PY MO VN 33mm, 20 tca. @409.83-410.1m Chl-PY zone (10% RY). @411.22m is 6cm granodiorite with 5% PY. @ 411.7m is 10mm Qz-PY VN, 80 tca. @412.28 is 18mm CA VN 70 tca. @412.7 is 18mm Qz-PY-MO VN, 20 tca. @412.84 is 15m QZ-PY-MO VN, 40 tca. @ 413.92 is 25mm Qz-PY VN 45 tca. @414.2m distorted Qz-Chl-PY-MO VN, 40 tca. @416.2m dispersed PY-PO-BO-Qz-MO VN, 70 tca. @416-26-416.67m significant zone with 72mm Qz-PY VN & dispersed 76mm Chl-PY VN, 55 tca. @416.96m is 13mm Qz-PY-MO VN, 80 tca. @417.7m is 21mm Qz-AB-PY-BO VN, 40 tca. Below 417.8m significant Qz-PY-MO zone (2-3% MO).@417.8-417.96m two contorted 14mm Qz-PY-MO VNs, 45 tca. @419.25m solid 30mm Qz-PY-MO VN, 40 tca. @419.8m solid 25mm Qz-PY-MO VN, 40 tca.

	STRU	STRUCTURES					ALTERATION												
From	To	Struct	CA	Strain	From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
408.00		FLW	50	М		420.85	-	- '	w v	٧ -	· M	-	-		VW		М		

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
408.00	420.85	3	4		0.1	3	50				
	zone witi (~1-3%N		inated Q	z-PY-MC) VNz						

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%				
408.00		-				5 MC) 1				
significant QZ-PY-MO zone											

Initials:	
-----------	--

(Continued from previous page) From: 408.00 To: 420.85 **HSLT** Litho:

STRUCTURES ALTERATION To Struct CA Strain INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER From To

VEINS Vn% QZ% Feld% CC% V/m CA From To

MINERALIZATION To PY% Style Min Min% Min2 M2% From

From: 420.85 To: 425.05 **GDIO** Litho:

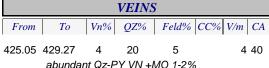
White-grey granodiorite, biotite mica, AB orthoclase, 2-3% PY, breccia. Below 423.0 a few thin Qz-PY-MO VNs. @424.12m is 32mm Qz-AB-VN,70 tca. @424.2-424.6m dominated Qz-PY-MO zone.

STRUC	TURES							AL	TERA	TIO	N					
From To Si	truct CA	Strain	From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR SER
420.85 425.05 N	MAS	S	420.85	425.05	-		- M	- ا	М	-	-	-	W	М	W	
granodiorite i	S with brec	cia	dyk	e												

			VEINS	1			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
420.85	425.05 Qz-PY-N	1 10 VN	20 present	10		1	

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%					
420.85	425.0	5 3	DIS	S P	Y 3	МС	0.5					
2-4	2-4% PY, 0.5-1% MO											

From: 425.05 To: 429.27 Litho: **GDIO**


Hornfelsed siltstone mottled by Qz-PY/PO VNs (~2% PY), breccia zones, Chl altn. @426.03 is 10mm Qz-PY-MO VN, 40 tca. @426.16m is 10mm Qz-PY-MO VN, 30 tca. @426.72m is 17mm Qz-PY-MO VN, 55 tca. @ Below 426.81m significant Qz-PY zone with Qz-PY-MO VNz (1% MO in this interval).

ALTERATION

	STRUCTURES												
From	To	Struct	CA	Strain									

zones

To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER 425.05 429.27 - - W M - M - - - M M M

MINERALIZATION To PY% Style Min Min% Min2 M2% 425.05 429.27 3 VLT PY 3 MO 1.5 high volcanic activity & same breccia

425.05 429.27 FLW 40 S significant zone with high volcanic activity & same breccia

Chl & AB altn

abundant Qz-PY VN +MO 1-2%

Initials:

From: 425.05 To: 429.27 Litho: **GDIO** (Continued from previous page)

STRUCTURES

From To Struct CA Strain

					ALI	TERA	TIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	M	INEF	RALI	ZAT	<i>TON</i>		
From	To	PY%	Style	Min	Min%	Min2	M2%

From: 429.27

To: 430.77

GDIO Litho:

Breccia zones with white-grey granidiorite, biotite mica, AB orthoclase, Qz, 2-3% PY. @429.27m is 14mm Qz-PY VN, 65 tca. @429.42 solid 32mm Qz-PY-MO VN, 55 tca. @429.76m solid 41mm Qz-PY VN, 50 tca.

	STRUCTURES										AL'	TERA	TIO	N						
From	To	Struct	CA	Strain		From	To	INT	ARG	CHI	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
429.27	430.77	вх		S	4	29.27	430.77	-	- V	w I	Л -	. М	-	-	-	W	М	М		
	breccia zone						k Chl altn	, AB	prese	ent										

			VEINS	5								
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA					
429.27	430.77	5	20	10		2	55					
solid Qz-PY VNs												

	M	INEI	RALI	ZAI	TON		
From	To	PY%	Style	Min	Min%	Min2	M2%
429.27	430.7	7 3	DIS	S P	Y 3	МС	0.
We	eak MC)					

From: 430.77

To: 442.50

Litho:

HSLT

Hornfelsed siltstone mottled by Qz-PY VNs +/- MO, PY & Qz strs, PY on fracture (~2% PY). @431.03m is 14mm Qz-PY-Cpy-MO VN, 40 tca. @431.46m is 7mm Qz-PY-Epidote VN, 65 tca. @431.64-431.8m solid Qz-PY-MO zone, 40 tca. @432.43m solid 41mm Qz-PY-MO VN, 70 tca. @433.5m solid 30mm Qz-PY-MO VN, 60 tca. @433.87m significant 160mm Qz-PY-MO VN, 40 tca. @434.5m is 8mm Qz-PY VN, 20 tca. @435.3m is 10mm Qz-PY MO VN, 40 tca. @436.15m is 12mm Qz-PY NV, 70 tca. @436.2-436.58m tuff with 9m CA VN, 40 tca, small shear zone. @437.73m 10mm shear sone. @43.57-438.0m zone with contorted 12mm Qz-PY VN, no orien. @438.85m solid 20mm QZ-PY-MO VN, 80 tca. @440.0m is 12mm Qz-PY-MO VN, 60 tca with subparallel strs. @441.08-441.5m contorted 23mm Qz-PY-MO VN. 10 tca. @441.9m is 11mm Qz-PY-MO VN. 75 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

430.77 442.50 FLW 45 M 3% joints, two small shear

zones as result of CA altn

					AL'	TERA	TIO	N						
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
00.77	440.50					A/ BA		\ /\ ^ /		14/	147			

430.77 442.50 - - W M VW M - VW VW W M very weak epidote altn

VEINS From To Vn% QZ% Feld% CC% V/m CA 430.77 442.50 3 40

dominated QZ-PY +/- MO VNs

MINERALIZATION From To PY% Style Min Min% Min2 M2% 430.77 442.50 2 VLT PY 2 GN 0.3 weak MO

From: 430.77 To: 442.50 Litho: HSLT (Continued from previous page)

	STRU	CTUR	ES							AL	TERA	TIO	N							
From	To	Struct	CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	From

	VEINS									M	INEI	RALI	ZAT	TON	
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA		From	To	PY%	Style	Min	Min%	M

From: 442.50 To: 455.00 Litho: GDIO

White-grey granodiorite, biotite mica, white feldspar, AB orthoclase, PY strs (2-3% PY), siltstone zones, significant Qz-PY VNs. @443.27m is 23mm QZ -PY VN, 50 tca. @443.55-444.26m zone with 10mm Qz VN along the core. @445.4m solid 80mm Qz-PY VN, 40 tca. @445.55m is 24mm Qz-MO VN 40 tca. Below 445.6m a few 1mm MO strs. @446.7-447.03m zone with contorted 24mm Qz VN, 50 tca. @447.66-449.1m siltstone with Qz-PY VN & strs. @449.1-449.4m dyke. @4494-450.35m siltstone with 16mm Qz-PY-MO VN, 65 tca & abundant 1-5mm Qz-PY strs.@450.35-455.0m granodyorite with significant Qz-PY VNs +/- MO. (@450.76m is 14cm Qz-PY zone. @450.8m is 34mm Qz-PY-AB VN, 65 tca. @451.74-452.2m is Qz-PY-MO-Epidote zone. @453.49-453.66m is 20mm Qz VN, 35 tca. @453.66m is 30mm Qz-PY VN, 80 tca. @454.21m is 22mm Qz-PY VN, 60 tca. @454.34m two parallel 12mm Qz-PY-MO VNs, 55 tca. @454.69m solid 44mm Qz VN, 55 tca with subparallel Qz-PY VNs. @454.9m is 22mm Qz-PY VN, 60 tca.

STRUCTURES							AL	TERA	TIO	N						
From To Struct CA Str	in	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
442.50 455.00 MAS		442.50	455.00	-	-	М	-	М	-	VW	VW			М		
S aranodiorite-90% &		sini	idicant Qz	-Py z	ones											

			VEINS	S						M	INEI	RALI	ZAT	TON		
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA	Ī -	From	To	PY%	Style	Min	Min%	Min2	Ì
2.50	455.00	20	20	7		3	50		442.50	455.0	0 3	۷L٦	- P	Y 3	МС)
	dominated Qz-PY zone & VNs +/- MO								Qz	-PY V	N & zc	nes v	/ith +	/- MO		

siltstone 10% in this interaval

CH0601 Initials: _____

From: 455.00 To: 470.30 Litho: HSLT

Hornfelsed siltstone mottled by Qz-PY VNs +/- MO, Qz & PY strs, ~2-3% PY, (>20% Qz in this interval), breccia, weak CA, MG & epidote. @455.48m is 21mm Qz-PY-Chl VN, 35 tca. @455.85m is 36mm Qz-PY VN, 90 tca. @456.2-45.48m granodiorite with 5-10m Qz-PY VNs. @457.48m is 16mm Qz-PY VN, 50 tca. @458.31m is 23mm Qz-PY VN, 75 tca. @459.35m is 23cm Qz-PY-MO zone with abundant Qz strs +/- PY & MO. @460.16-460.39m granodiorite dyke. @460.47m is 24mm Qz-CA-PY VN, 35 tca. @460.82-461.65m granodiorite. @460.95-461.16m is 24mm Qz-PY-BO-Epi VN, 15 tca. @461.67m is 36mm Qz-PY VN, 40 tca. @462.0m is 24mm Qz-MO-PY VN, 35 tca. @462.5-462.82m three 11-20mm Qz-PY-MO VNs, 30-75 tca. @463.94m is 48mm ganodiorite. @464.22m is 26mm Qz-PY VN, 35 tca. @464.5m is 13mm Qz-PY-MO VN, 35 tca. @465.12m two 20mm parallel Qz-PY-CA VN, 50 tca. @465.94m is 16mm Qz-PY VN, 30 tca. @466.38m is 18mm Qz-PY VN, 35 tca. @466.85m is 24mm Qz-PY-BO VN, 60 tca. @466.96m is 33mm Qz-PY-BO VN, 90 tca. @467.11-467.79m four 11-19mm Qz-PO VNs, ~50 tca with weak MO. @467.9m is 46mm Qz VN, 55 tca. @468.0-468.37m three 13-34mm Qz-PY-MO VNs, 45 tca, weak epidote. @468.82m is 30mm Qz-PY-MO VN, 40 tca. @469.05-470.3m zone with eight 11-18mm Qz-PY VNs in different orient.

	STRU	CTUR	ES							AL'	TERA	TIO	N						
From	To	Struct	CA	Strain	From	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SI								SER					
					455.00	469.40	-	- V	w N	1 -	М	-	VW	VW	М	W	М		

weak Chl altn

	VEINS From To Vn% QZ% Feld% CC% V/m CA											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		From			
455.00	469.40	15	20	5	1	6	70		455.00) 4		
	abundant Qz VNs + PY & +/- MO											

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%				
455.00	469.4	0 3	DIS	S P	Y 3	МС) 1.5				
Pv	~3-4%										

455.00 470.30 FLW S a few 5-20cm granodiorite dykes, 3-5 % joints From: 470.30 To: 483.78 Litho: GDIO

White-grey granodiorite porphyry, biotite mica, white felfspar, AB, dominated Qz VNs, PY strs (3-4% PY), significant Qz-PY VNs, very thin MO strs, weak MG. @470.7m is 30mm Qz-PY VN, 50 tca. @471.0-472.1m zone with weak epidote altn & ten Qz-PY VNs 8-15mm, ~40 tca. @472.05m is 57mm Qz-PY VN, 80 tca. @472.45m is 32mm Qz-PY-MO VN, 60 tca. @472.7-472.83m Qz-PY zone. @473.05 is 30mm Qz-PY VN, 50 tca. @474.19m is 56mm Qz VN, 40 tca. @474.42m is 34mm Qz-PY VN, 65 tca. @475.27m is 35mm Qz VN, 80 tca. @475.81m is 18mm Qz VN, 75 tca. @476.2-477.1m seven 16-22mm Qz-PY (+/-MO) VNs. @477.95m is 14mm Qz-PY VN, 45 tca. @478.57m is 18mm Qz-PY VN, 55 tca. @478.68m is 20mm Qz-CA-PY VN, 80 tca. @479.93m is 20mm Qz VN, 60 tca. @479.16m is 13mm Qz-MO VN, 50 tca. @479.71m is 36mm Qz-MO VN, 50 tca. @480.32m is 25mm Qz-MO VN, 50 tca. @481.0m is 70mm Qz-PY-PO VN, 75 tca. @481.57m is 12mm Qz-MO VN, 45 tca. @481.91m is 25mm Qz-P VN, 50 tca. @482.5-482.73m bunch of subparallel 13-17mm Qz-PY VNs. 45 tca. @483.0m is 19mm Qz-PY VN, 80 tca.

	STRU	CTUR	ES		l							AL	TERA	TIO	N						
From	To	Struct	CA	Strain		From	To	INT	AF	RG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
470.30	483.78	MAS		S	4	70.30	483.78	-	-	VV	V N	1 -	М	-	VW	VW	М	М	М		
		S				biot	ite alterati	ion													
	2-3% joints																				

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
470.30	483.78	15	20	20	1	5	50					
	abundar	nt Qz-F	PY VNs									

	MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%					
470.30	483.7	8 3	DIS	S P	Y 3	PC) 1					
M	•	ent in	Qz V	Ns &	very th	in MC)					

From: 483.78 To: 499.20 Litho: GDIO

White-grey granodiorite porphyry, dominated Qz-VNs, biotite mica, felfspar, AB orthoclase, PY strs (~4% PY), MO ~0.2-0.3%, Chl altn. @484.3-484.57m zone with 50% Qz-PY, 90 tca. @486.9m is 24mm Qz-PY VN, 90 tca. @488.5m is 26mm Qz-PY VN, 85 tca. @487.66m is 21mm Qz-PY VN, 50 tca. @488.32m solid 70mm Qz-PY VN, 40 tca. @488.63m solid 80mm Qz-PY VN, 65 tca. @490.3m solid 34mm Qz-PY VN, 55 tca. @491.0-492.0m dominated Qz +PY zone. @491.75m is 15cm Qz-PY VN, 60 tca. Below 492.0m core with abundant Qz VNs 5-12mm, different orient. @492.8m is 32mm Qz-PY VN, 60 tca. @493.44m is 46mm Qz-PY VN, 75 tca. @494.24-494.42m broken core, weak CA. @494.9-495.05m Qz-PY zone. @495.55-496.0 zone with four Qz-PY-MO VNs, 55 tca & weak CA. @496.5-497.62m zone with eleven 20-27mm Qz-PY VNs, 60-70 tca & MO traces.

ALTERATION

STRUCTURES										
From	To	Struct	CA	Strain						

 From
 To
 Struct
 CA
 Strain
 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 483.78
 499.20
 VW
 M
 VW
 VW
 M
 M
 M

 S
 Weak CA & Chl altn
 Weak C

			VEINS	3							
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
483.78	499.20	15	25	20	1	5	70				
Qz VNs & zones dominated											

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%				
483.78	499.2	0 4	DIS	S P	Y 4	МС	0.0				
М	O trace										

From: 483.78 To: 499.20 Litho: GDIO

White-grey granodiorite porphyry, dominated Qz-VNs, biotite mica, felfspar, AB orthoclase, PY strs (~4% PY), MO ~0.2-0.3%, Chl altn. @484.3-484.57m zone with 50% Qz-PY, 90 tca. @486.9m is 24mm Qz-PY VN, 90 tca. @488.5m is 26mm Qz-PY VN, 85 tca. @487.66m is 21mm Qz-PY VN, 50 tca. @488.32m solid 70mm Qz-PY VN, 40 tca. @488.63m solid 80mm Qz-PY VN, 65 tca. @490.3m solid 34mm Qz-PY VN, 55 tca. @491.0-492.0m dominated Qz +PY zone. @491.75m is 15cm Qz-PY VN, 60 tca. Below 492.0m core with abundant Qz VNs 5-12mm, different orient. @492.8m is 32mm Qz-PY VN, 60 tca. @493.44m is 46mm Qz-PY VN, 75 tca. @494.24-494.42m broken core, weak CA. @494.9-495.05m Qz-PY zone. @495.55-496.0 zone with four Qz-PY-MO VNs, 55 tca & weak CA. @496.5-497.62m zone with eleven 20-27mm Qz-PY VNs, 60-70 tca & MO traces.

STRUCTURES										AL'	TERA	TIO	N						
From	To	Struct	CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

				VEINS	3				
ER	From	То	Vn%	QZ%	Feld%	CC%	V/m	CA	l

I	MINERALIZATION											
	Min2	M2%										

From: 499.20 To: 500.55 Litho: HSLT

Hornfelsed siltstone mottled by 10-16mm Qz-PY VNs +/- MOstrs, (up to 4-5% PY), epidote altn. & ~25% Qz in this interval. @500.07m is 30mm Qz VN, 45 tca.

STRUCTURES	ALTERATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER
499.20 500.55 FLW S 3% joints	499.20 500.55 VW M - M - VW VW VW W M epidote altn.

			VEINS	3			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
499.20	500.55	25	25	5		13	70

abundant Qz VNs & PY strs

From: 500.55 To: 524.50 Litho: GDIO

Grey granodiorite porphyry & monzonite with feldspar phenocrysts & MG, abundant Qz VNs stockwork, biotite, feldspar, AB orthoclase, weak ChI & epidote, PY strs (~4% PY), MO ~0.1-0.3%. @500.82m solid 55mm Qz-PY VN, 60 tca. @500.92m is 60mm Qz-PY-Epidote VN, 45 tca. @501.42m is 16mm Qz-PY-Epidote VN, 50 tca. @503.33-503.46m is 16mm offset VN, 60 tca. @503.74m is 17mm Qz-PY VN 60 tca. Below 505.0m (in every 20-25 cm) is 8-15mm Qz-PY VN +/-MO, 60-80 tca (5 VN/m). @507.2 -508.03m hybrid zone with coarse grained PY (~10%), Qz (15-20%), epidote & ChI. @508.63m is 18mm QZ-PY VN, 60 tca. Below 509.62m a few 8-14mm Qz-PY-MO VNs, 55-60 tca. @510.37m is 20mm Qz-PY-BO VN, 20 tca. @510.88m is 70mm Qz-CA-PY VN, 30 tca with Qz & epidote altn. @511.45m is 34mm Qz-PY-Epidote VN, 60 tca. @511. 64m is 25mm Qz-PY-Epidote VN, 15 tca. @512.4m is 21mm Qz VN, 50 tca. Below 512.45m monzonite porphry Qz-PY VN (+/- MO), 65 tca & ChI +Epidote. @513.93m is 30mm Qz VN, 30 tca. @515.25m is 36mm Qz-CA-sphalerite VN, 50 tca. @516.62m is 20mm CA VN, 30 tca. @516.72m is 15mm Qz-PY-BO VN, 25 tca. Below 517.0m green monzonite pophyry with MG (2-4%) & ~5-7% DI PY & PY strs, Qz-PY VNs & MO. @519.38m is 26mm Qz-PY-MO VN, 40 tca. @520.17m is 33mm Qz-PY VN, 90 tca. @520.76mis 47mm Qz-PY VN, 40 tca. @522.7m is 60mm Qz-MO VN, 50 tca.

STRUCTURES	ALTERATION									
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER									
500.55 524.50 MAS S	500.55 524.50 VW M - M - VW VW M M M M Chl & MG altn									
2-3% joints										

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
500.55	524.50	6	20	12	1	5						
dominated Qz-PY VNs & +/- MO traces												

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%					
500.55	500.55 524.50 5 MG PY 5 MO											
MO present as a weak strs, MG 2%												

Initials:

From: 524.50 To: 528.90 Litho: HSLT

Hornfelsed siltstone mottled by Qz-PY VNs & PY strs, (~5-6% PY), weak Chl altn. @525.84m is 16mm Qz-PY-MO-Epidote VN, 40 tca. @525.94-526.44m is 16mm QZ-PY-Epidote VN along the core. @525.92-526.75m stockwork Qz-PY VNs +/-MO. @527.06m is 20mm Qz-PY-MO VN, 35 tca. @528.54m is 18mm Qz-CA-PY-MO-Epidote VN, 30 tca. @528.62m is 14mm Qz-PY-MO VN, 75 tca

	STRUCTURES					ALTERATION														
From	To	Struct	CA	Strain		From	To	INT	ARG	CHI	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
524.50	528.90	FLW		S	52	24.50	528.90	-	- \	/W I	И -	- М	-	VW	VW			М		
	2-3% joints					Bioti	te & epid	ote al	ltn											

			VEINS	5							
From	То	Vn%	QZ%	Feld%	CC%	V/m CA					
524.50	528.90	15	15		1	4 40					
	Core mottled by Qz-PY VNs										

		M	INEI	RALI	ZAT	TON						
ſ	From	To	PY%	Style	Min	Min%	Min2	M2%				
	524.50	528.9	0 5	۷L٦	F P	Y 5	МС	0.′				
	abundant PY strs											

From: 528.90 To: 543.70 Litho: MZON

Grey granodiorite porphyry with dark grey-greenish monzonite, feldspar phenocrysts, Qz-PY VNs +/-MO, BO, weak MG, AB & epidote. @530.18m is 24mm Qz-PY VN, 75 tca. @530.52m is 16mm Qz-PY VN, 55 tca. @531.0m is 18mm Qz-PY-MO VN, 90 tca. @532.0m is 15mm Qz-PY-MO VN, 25 tca. @532.75m is 16mm Qz-PY-MO VN, 60 tca. @533.38-533.74m is Qz-PY-MO zone. @534.6m is 28mm Qz-PY MO VN, 70 tca. @535.08m is 12mm Qz-PY-MO VN, 80 tca. @535.03m is 24mm Qz-PY VN, 90 tca. @535.2m is dispersed Qz-PY-BO-MO VN, 45 tca. @535.53m is 15mm Qz-PY-MO VN, 45 tca. @535.84-541.14 significant zone with dominated Qz-PY VN +/- MO & BO, (5-6 VNs/m). @541.14m solid 20cm Qz-PY-MO VN, 40 tca. @541.66m is 20mm Qz-PY-MO, 65 tca. @541.86m is 17mm Qz-PY-MO VN, 85 tca. @542.10 -542.23m breccia with Qz, PY & MO.

	STRUCTURES											AL'	TERA	TIO	V						
F	rom	То	Struct	CA	Strain		From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
52	8.90	543.70	MAS		s	52	28.90	543.70	-	-	- N	Л -	. М	VW	VW	VW	М	М	М		
	S						wea	k MG & e	pidote	e altn											
	3% joints								•												

	VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m CA							
528.90	543.70	10	20	15	0.1	5 40							
stockwork Qz-PY VNs +/- MO strs													

	<i>MINERALIZATION</i>													
From	From To PY% Style Min Min% Min2 M2%													
528.90	543.7	0 5	MG	F P	Y 4	PC) 1							
MO present as 0.1-0.2%														

Initials:	
-----------	--

From: 528.90 To: 543.70 Litho: MZON (Continued from previous page)

STRUCTURES	ALTERATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

VEINS					IJ		M	INEI	RALI	ZAT	TON					
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		From	To	PY%	Style	Min	Min%	Min2	M2%

From: 543.70 To: 548.40 Litho: MZON

Siltstone & monzonite zones. Also fracture controlled Qz VN + PY +/- MO. @545.22m is 20cm Qz-CA VN. @544.5-544.96m siltstone zone with two VNs: 32mm Qz-PY VN, 85 tca & 14mm Qz-AB-PY VN, 80 tca. @545.27m two (25 & 21mm) Qz-PY-MO VNs, 90 & 40 tca. @546.0m is 17mm Qz-MO VN, 80 tca. @546.32m is 20mm Qz-MO VN, 85 tca. @546.38-546.54m lens of Qz VN with trace of MO. @546.68m is 12cmQz-CA-PY-PO VN, 60 tca. From 546.92 to 548.4m siltstone with dominated stockwork 7-15mm Qz-PY-MO VNs, 70 -85 tca. @548.18m is 47mm Qz-PY-MO VN, 55 tca.

STRUCTURES	ALTERATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER
543.70 548.40 MAS S	543.70 548.40 W M - M - VW VW W W M
S	Chl altn

			VEINS	5				I		
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		From	7
543.70	548.40	6	20	15	0.1	6	65		543.70	5
	abundar	nt Qz-P	Y-PO V	N + MO	trace				tra	ce.

	MINERALIZATION													
From	To	PY%	Style	Min	Min%	Min2	M2%							
543.70	548.4	0 4	MG	i P	Y 3	PC) 1							
tra	ces of	MO												

2-3% joints, structure controlled by Qz VNs +PY, +MO

From: 548.40 To: 572.41 Litho: MZON

Granodiorite & monzonite zones, Qz-PY VN & PY BB weak MO strs & traces. @550.0m is 50mm Qz-PY-MO VN, 50 tca. @550.57m is 23mm Qz-PY-MO VN 80 tca. @550.21m is 47mm Qz-PY-MO VN, 50 tca. Below 500.7m stockwork Qz-PY VNs +MO traces. @552.28 is 30mm Qz-PY-MO VN, 50 tca. @553.6 is 17mm Qz-PY-MO VN, 25 tca. @553.8m is 40mm Qz-PY-MO VN, 70 tca. @555.40m is 45mm Qz-PY -MO VN, 50 tca. @555.9m is 40mm Qz-PY-MO VN, 40 tca. @557.93m is 35mm Qz-PY VN, 80 tca. @557.83m is 36mm Qz-PY-MO VN, 50 tca. @558.47m is 11cm solid Qz-PY-MO VN, 50 tca. @560.64m is 20mm Qz-PY-MO VN, 45 tca. @560.0m is 32mm Qz-PY-MO VN, 70 tca. @561.0m is 17mm Qz-PY-MO VN, 30 tca. @563.3m is 20mm Qz-PY-MO VN, 30 tca. @564.34m is 16mm Qz-PY-MO VN, 30 tca. @564.64m is 18mm contorted Qz-AB-MO VN, 30 tca. @555.9m is 23mm Qz-PY-BO VN, 55 tca. @566.66m is 16mm Qz-PY-MO VN, 30 tca. @567.8m is 20mm Qz-PY MO VN, 50 tca. @568.18m is Qz-PY-BO-MO VN, 40 tca. @568.36-568.51m two 20 & 24mm Qz VNs, 45 & 70 tca. @568.76m is 24mm Qz-CA-PY-MO VN, 70 tca. @568.86m is 21mm Qz-PY-MO VN, 80 tca. @569.67m is 30mm Qz-PY-Chl VN, 80 tca. @570.03m is 22mm Qz-PY-MO VN, 75 tca. @571.36m is 33mm Qz-PY VN, 40 tca.

STRUCTURES	ALTERATION								
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER								

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

I		M	INEI	RALI	ZAT	ION		
	From	To	PY%	Style	Min	Min%	Min2	M2%

From: 548.40 To: 572.41 Litho: MZON

Granodiorite & monzonite zones, Qz-PY VN & PY BB weak MO strs & traces. @550.0m is 50mm Qz-PY-MO VN, 50 tca. @550.57m is 23mm Qz-PY-MO VN 80 tca. @550.21m is 47mm Qz-PY-MO VN, 50 tca. Below 500.7m stockwork Qz-PY VNs +MO traces. @552.28 is 30mm Qz-PY-MO VN, 50 tca. @553.6 is 17mm Qz-PY-MO VN, 25 tca. @553.8m is 40mm Qz-PY-MO VN, 70 tca. @555.40m is 45mm Qz-PY -MO VN, 50 tca. @555.9m is 40mm Qz-PY-MO VN, 40 tca. @557.93m is 35mm Qz-PY VN, 80 tca. @557.83m is 36mm Qz-PY-MO VN, 50 tca. @558.47m is 11cm solid Qz-PY-MO VN, 50 tca. @560.64m is 20mm Qz-PY-MO VN, 45 tca. @560.0m is 32mm Qz-PY-MO VN, 70 tca. @561.0m is 17mm Qz-PY-MO VN, 30 tca. @563.3m is 20mm Qz-PY-MO VN, 30 tca. @564.34m is 16mm Qz-PY-MO VN, 30 tca. @564.64m is 18mm contorted Qz-AB-MO VN, 30 tca. @5555.9m is 23mm Qz-PY-BO VN, 55 tca. @566.6m is 16mm Qz-PY-MO VN, 30 tca. @568.81m is 20mm Qz-PY-MO VN, 50 tca. @568.51m two 20 & 24mm Qz VNs, 45 & 70 tca. @568.76m is 24mm Qz-CA-PY-MO VN, 70 tca. @568.86m is 21mm Qz-PY-MO VN, 80 tca. @569.67m is 30mm Qz-PY-Chl VN, 80 tca. @570.03m is 22mm Qz-PY-MO VN, 75 tca. @571.36m is 33mm Qz-PY VN, 40 tca.

·																
STRUCTURES							AL	TERA	TIO.	N						
From To Struct CA	Strain	From	То	INT	AR	G CH	L SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
548.40 572.41 MAS	S	548.40	572.41	-	-	VW	W	- M	VW	VW	VW	М	М	М		
S		ver	y weak C	4 & e	oidot	e										
3% ioints		•														

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
548.40	572.41	4	15	15	1	3	50				
	~2-4 Qz	VN/m,	MO strs	present							

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%					
548.40	572.4	1 4	۷L٦	ΓS	T 4	МО	0.15					
	PY, P` traces	Y strs	& blei	bs pre	esent, i	MO str	s					

From: 572.41 To: 584.61 Litho: MZON

Moderately greenish monzonite porphyry with up to 5-7% PY, weak epidote; also fracture controlled Qz VNs, MO 0.1-0.2%, granodiorite zones. @572.41m is 10mm CA-MO VN, 20 tca. @572.71 is 14mm distorted Qz-PY-MO VN, 40 tca. @573.56m is 17mm PY-Qz-MO VN, 70 tca. @575.5m is 20mm Qz-PY-MO VN, 30 tca. @576.08m to 576.2m is 5mm MO VN, 75 tca & 20mm Qz VN, 35 tca. @576.73m is 13mm Qz-MO VN, 70 tca. @578.12m is 32mm Qz-PY-MO VN, 60 tca. @579.27m is 44mm CA VN, 40 tca with epidote altro on edges. @579.57-580.0m Qz-AB-PY-MO zone. @580.44m is 34mm Qz-MO VN, 25 tca. @580.75-581.1m is stockwork Qz VNs with MO traces. @581.34m is 36mm Qz-PY-MO VN, 40 tca. @582.42m is 12mm Qz-PY VN 65 tca. @582.82m dispersed 30mm Qz-PY-MO VN, 30 tca. @583.24m is 13mm Qz-MO VN, 70 tca. @584.21m is 20mm Qz-PY-MO VN, 55 tca.

		STRU	CTUR	ES			
F	rom	To	Struct	CA	Strain	From	To

					AL'	TERA	TIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

		M	INEI	RALI	ZA1	TON		
A	From	To	PY%	Style	Min	Min%	Min2	M2%

572.41 584.61 MAS S 2-3% joints S 572.41 584.61 - - VW W - M - VW VW M M M Weak epidote CA altn

572.41 584.61 15 15 15 0.5 3 Qz VN, MO strs 572.41 584.61 4 DISS PY 4 PO 2 4-5%PY & 0.1-0.2% MO

From: 584.61 To: 593.13 Litho: HSLT

Hornfelsed siltstone & moderate greenish monzonite with PY & pyrrhotite, Qz VN, MO strs, CA VNs, breccia zones, weak MG. @585.14m is 9mm Qz-PY-BO VN, 75 tca. @586.17m is 14mm Qz-PY-MO VN, 30 tca. @586.47m is 22mm Qz-PY-MO VN, 55 tca. @586.66m is 15cm Qz-PY-PO-MO zone. @588.2m is 20mm Qz-PY MO VN, 90 tca. @588.96-540.0m stockwork Qz-PY-BO-MO VNs. @590.40-590.85m breccia with broken core. @590.85-591.4m breccia with two 30mm Qz-AB VN, 35 tca. @592.2m is 40mm CA VN 40 tca. @592.6m is 18mm CA VN, 50 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TERA	TIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5				П	
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA		Fron

	M	INEI	RALI	ZAI	TON		
From	To	PY%	Style	Min	Min%	Min2	M2%

584.61 593.13 FLW breccia 590.4-591.4

584.61 593.13 - - W W - M - VW VW M M M *CA altn*

584.61 593.13 4 15 10 Qz-PY-MO VNs & CA VNs 2 4 50 584.61 593.13 4 DISS PY 3 PO 2 MO weak strs

Initials:

From: 584.61 To: 593.13 Litho: HSLT

Hornfelsed siltstone & moderate greenish monzonite with PY & pyrrhotite, Qz VN, MO strs, CA VNs, breccia zones, weak MG. @585.14m is 9mm Qz-PY-BO VN, 75 tca. @586.17m is 14mm Qz-PY-MO VN, 30 tca. @586.47m is 22mm Qz-PY-MO VN, 55 tca. @586.66m is 15cm Qz-PY-PO-MO zone. @588.2m is 20mm Qz-PY MO VN, 90 tca. @588.96-540.0m stockwork Qz-PY-BO-MO VNs. @590.40-590.85m breccia with broken core. @590.85-591.4m breccia with two 30mm Qz-AB VN. 35 tca. @592.2m is 40mm CA VN 40 tca. @592.6m is 18mm CA VN. 50 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5				I	
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA		Fre

	M	INEI	RALI	ZAT	ION		
From	To	PY%	Style	Min	Min%	Min2	M2%

From: 593.13 To: 609.60 Litho: HSLT

Hornfelsed siltstone mottled by Qz-PY VNs & PY strs, (up to 5 % PY), weak Chl & CA. @594.65m is 9mm Qz-PY-MO VN, 45 tca. @597.0-590.3m is 12mm CA VN along the core. @599.3-599.71m is 13mm Qz-PO VN with anastomosing veinlets. @600.44m is 44mm Qz-PY-Chl VN, 50 tca. @600.66m dispersed 52mm Qz-PO VN, 45 tca. @602.89m is14mm Qz-PY-BO VN, 45 tca. @603.35m is 40mm, 25 tca. @605.46 is Qz-PY-MO-Chl VN, 60 tca. @605.44m is 20mm Qz-PY VN, 65 tca. @606.58m is 21mm Qz-PY-MO VN, 60 tca. @606.77m is 30mm Qz-PY-MO VN, 30 tca. @607.88m contorted 14mm Qz-PY VN, 10 tca. @609.6m (2000 ft) E.O.H.

STRUCTURES									AL'	TERA	TIO	N						
From T	Struct	CA	Strain	Fron	n To	INT	ARG	CHI	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
593.13 609	.60 FLW 3-4% joint		S		609.60 A <i>altn</i>	-	- \	w v	Ν -	М	-	VW	VW	W		M		

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m CA					
593.13	609.60	6	10		1	2 50					
1-3 VN/m											

	M	IINE	RALI	ZAT	TON					
From	To	PY%	Style	Min	Min%	Min2	M2%			
593.1	3 609.	60 4	٧L	ΓР	Y 3	PC) 1			
0.1-0.15% MO										

CH0601 Initials: _____

From: 593.13 To: 609.60 Litho: HSLT (Continued from previous page)

STRUCTURES	ALTERATION	VEINS	MINERALIZATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%

CHU Project - TTM Resources Inc.

Signature:	
_	Initials:

CH0607

 From
 To
 Litho

 0.00
 6.10
 OB

OVB

	STRUCTURES										
From	To	Struct	CA	Strain							

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M.											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

0.00 6.10

Andesite

Mottled looking, hematite red (maroon) in color with blotches of chloritic green alteration. Easily scratched with a knife. Cut by abundant quartz and quartz calcite veining. Pyrite is moderately abundant in veinlet form and less commonly disseminated. Moly is not common but becomes more abundant at 18.70m and 32.80-37.95m. Moly is generally present along the margins of larger veinlets or associated with AB veining. Minor magnetite.

STRUCTURES								
From	To	Struct	CA	Strain				

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

6.10 13.22 FOL 45 W

6.10 32.80 2 VLT MO 0.01

pyrite is present in veinlets and disseminated. Moly is rare with the occasional bit associated with veining. More moly is concentrated in veining around 18.70m

6.10 32.90 5 90 0 10 12 50

cm-mm scale quartz and q-cc veinlets with associated py. Moly is more abundant in creamy looking AB veining located at 18.70m; appears to be bleeding into the veining (possibly frm a fracture) *From* 6.10

To 40.13

Litho AND

Andesite

Mottled looking, hematite red (maroon) in color with blotches of chloritic green alteration. Easily scratched with a knife. Cut by abundant quartz and quartz calcite veining. Pyrite is moderately abundant in veinlet form and less commonly disseminated. Moly is not common but becomes more abundant at 18.70m and 32.80-37.95m. Moly is generally present along the margins of larger veinlets or associated with AB veining. Minor magnetite.

6.10 40.13 - - M - - - - VW VW patchy chlorite with occasional clots of epidote. Vv patchy cc alt

conc around cc veining

STRUCTURES								
From	To	Struct	CA	Strain				

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

13.22 13.38 FLT 20 S two thin faults with abundant gouge at 20 and 25 dtca

13.38 24.16 FOL 50 M

24.40 26.26 FOL 35 M with small ruble zones

26.26 26.52 FLT S rubble with gouge coatings

26.52 40.12 FOL 45 M

32.80 37.95 2 VLT MO 0.1

Mo is commonly present in and on the margins of quartz and q-cc veining

Initia	s:	

From 6.10

To 40.13

Litho AND

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

				VEIN	S			
Fre	эт	To	Vn%	QZ%	Feld%	CC%	V/m	CA
32.9	90	38.30	15	60	25	15	25	50

MINERALIZATION									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

37.95 40.13 1 VLT MO 0.05

Py veinlets and disseminated; Mo is associated with vein margins

38.30 40.13 5 70 5 20 15 50

narrow veinlets with ocasional moly present along margins

40.12 40.13 CON 50 *lc*

From 40.13

*T*o 41.13

Litho GDIO

Granodiorite

Medium grey in color, speckled black and white with a medium grained groundmass and occasional subheudral plagioclase pheno's. Weakly foliated with chilled margins. Core is cut by narrow quartz and q-cc veinlets/filled fractures that contain chlorite; pyrite and small amounts of moly are concentrated in these. Minor magnetite.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

40.13 41.12 FOL 50 VW vw-massive

40.13 41.13 - - W - - - - VW -

40.13 41.13 5 75 0 25 15 60 narrow veinlets and filled fractures

40.13 41.13 0.5 VLT MO 0.01

41.12 41.13 CON 60 *lc sharp*

From 41.13

*T*o 44.84

Litho AND

\ndocito

Dark greenish brown in color; mottled looking in appearance. Medium grained. Cut by abundant veinlets with pale green ab-sil alt halos. Veining sometimes contains py veinlets; minor magnetite and moly.

	STRU	CTUR	RES	
From	To	Struct	CA	Strain

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION

From To PY% Style Min Min% Min2 M2% Min3 M3%

41.13 44.83 FOL 55 W

50-60dtca; stronger and banded uphole becoming weaker and more eratic downhole

41.13 44.84 - - W - - M - VW VW

Patchy chlorite alteration with occasional epidote clots. Halos of ABsil surround veining. Cc is vein related. 41.13 44.84 20 80 10 10 20 45

narrow veining ranging from larger
pink crystalline veins to irregular
veinlets with associated
mineralization and creamy pale green
alteration halos (albite or silica)

41.13 44.84 1 VLT MO 0.01

pyrite in veinlets and disseminated.

Minor moly is present in veining

44.83 44.84 CON 60

lc; fairly sharp with a vein along part of the contact.

From 44.84

*T*o 45.77

ТО

Litho GDIO

Granodiorite

Medium grey in color. Similar to previous granodiorite but there is less chlorite and more magnetite in fractures/veinlets. A large moly bearing vein is present from 45-45.24m.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION														
Ī	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
44.84	45.24	60	90	0	10	1	30				
				margins a 15.24m ar)					

cc filled fractures

From 44.84

То

Litho GDIO

45.77 C

Granodiorite

Medium grey in color. Similar to previous granodiorite but there is less chlorite and more magnetite in fractures/veinlets. A large moly bearing vein is present from 45-45.24m.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

44.84 45.76 MAS

44.84 45.77 - - VW - - - - VW VW

45.24 45.77 5 90 0 10 4 50

discontinuous narrow quartz veining

with minor q-cc veinlets

45.24 45.77 0.5 VLT MO 0.01 mineralization along fractures

45.76 45.77 CON 50 *lc; undulating*

From 45.77

To 46.40

*Litho*AND

Andesite

Similar looking to previous andesites but mildly brecciated in appearance (caused by brittle micro faults causing offset). Minor Moly associated with pyrite.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

ĺ				VEINS	S			
Ī	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

apparent bx caused by micro fractures at 65dtca with offset

45.77 46.39 BX 65 S

45.77 46.40 - - VW - - W - VW VW

45.77 46.40 5 80 0 20 *vein fragments*

45.77 46.40 0.5 MG MO 0.2 pyrite is present in fragmented veinlets; moly commonly occurs near py.

46.39 46.40 CON 30 *lc; sharp*

From 45.77

To 46.40 Litho AND

(Continued from previous page)

STRUCTURES ToStruct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1	MINERALIZATION										
	From	To	Min2	M2%	Min3	M3%					

From 46.40

To 48.76

Litho **GDIO**

Granodiorite

Similar looking to previous granodiorites.

STRUCTURES To Struct CA Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS To Vn% QZ% Feld% CC% V/m CA From

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

46.40 48.75 MAS

46.40 48.76 - - VW - - - - W -

46.40 48.76 50 15 20 narrow q-cc filled fractures

46.40 48.76 0.01 FG

48.75 48.76 CON 60 lc; sharp

From 48.76

To 56.10

Litho AND

Similar to 6.10-40.13m; maroon in color and chloritic green patches as well as epidote clots. Cut by narrow veining with alteration halos and pyrite mineralization. Mo is rare but concentrated after 55.70m. Rare magnetite and PO.

STRUCTURES To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

		S					
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%						

48.76 54.70 FOL 40 W

48.76 55.70 3 VLT MO 0.001 py diss and veinlets

48.76 56.10 - - W - - W W patchy alteration

48.76 56.10 15 60 20 20 10 60

From 48.76

To 56.10

Litho AND

Andesite

Similar to 6.10-40.13m; maroon in color and chloritic green patches as well as epidote clots. Cut by narrow veining with alteration halos and pyrite mineralization. Mo is rare but concentrated after 55.70m. Rare magnetite and PO.

STRUCTURES										
From	To	Struct	CA	Strain						

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

<i>MINERALIZATION</i>													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

55.70 56.10 5 VLT MO 0.1 PO 0.01 MO conc along the margin of a q-cc vein

54.70 55.15 FR 60 S rubble

55.15 56.09 FOL 45 W

56.09 56.10 CON 40 *lc;* sharp

From 56.10

To 56.92

Litho GDIO

Granodiorite

Similar looking to previous granodiorite intervals.

	STRUCTURES											
From	To	Struct	CA	Strain								

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

VEINS											
	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M39		

56.10 56.91 MAS

56.10 56.92 - - VW - - - - W VW

56.10 56.92 2 60 0 40 20 60 narrow veinlets/filled fractures

56.10 56.92 1 DISS MO 0.05 py diss and along fractures; minor MO diss along fractures

56.91 56.92 CON 20 *lc; sharp*

From 56.92

To 59.37

Litho AND

Andesite

Similar to previous andesite but with increased mineralization.

STRUCTURES											
From	To	Struct	CA	Strain							

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

MINERALIZATION
From To PY% Style Min Min% Min2 M2% Min3 M3%

56.92 59.36 FOL 50 W

56.92 59.37 - - W - - W VW patchy

56.92 59.37 10 60 15 25 12 60 moly commonly at vein margins

56.92 59.37 5 VLT MO 0.1 moly along vein margins; py veinlets and diss

59.36 59.37 CON 40 lc; sharp with semi-massive py along contact.

To 78.50

Litho GDIO

Granodiorite

Similar to previous granodiorites with 15% plagioclase pheno's; but with rare veining and mineralization no foliation and only patchy cc alteration. Weakly magnetic. Contacts have finer grained groundmass and upper contact is bleached in appearance with increased py.

STRUCTURES									
From	To	Struct	CA	Strain					

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS From To Vn% QZ% Feld% CC% V/m CA										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION
From To PY% Style Min Min% Min2 M2% Min3 M3%

59.37 60.70 1 DISS

59.37 77.00 MAS

59.37 78.50 - - - - - - - VW - weak patchy cc alt

59.37 78.50 0.5 50 0 50 5 15

q-cc filled fractures; concentration
increases towards lc

60.70 78.50 0.01 DISS

Initials:	

To 78.50

Litho GDIO

(Continued from previous page)

	STRUCTURES										
From	To	Struct	CA	Strain							

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

1	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M39											
1	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

77.00 78.49 FR

core is more fractured with zones of minor rubble

78.49 78.50 CON 10 lc; sharp; chilled margins

78.50

AND

Andesite

Similar to previous andesites but coarser grained in appearance. Quartz vein from 80.10-80.30m with moly mineralization in septa.

STRUCTURES										
From	To	Struct	CA	Strain						

	ALTERATION														
1	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From To Vn% QZ% Feld% CC% V/m CA											
70 50	90.10	0	5 0	10	40	15	5 0				

78.50 80.29 FOL 30 W w-no fol; cut by veining and healed fractures

78.50 80.30 - - - - VW - VW VW

80.10 80.30 80 90 0 10 1 50

large q vein with moly in septa and margins

80.10 80.30 5 VLT MO 0.1 min associated with septa in vein

78.50 80.10 5 VLT MO 0.01

80.29 80.30 CON *lc; irregular*

From 80.30

To 85,30

Litho GDIO

Granodiorite

Medium grey. Finer grained groundmass than previous intervals of granodiorite. 15% plagioclase pheno's are still present. Weakly magnetic with diss mt.

STRUCTURES										
From	To	Struct	CA	Strain						

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From To Vn% QZ% Feld% CC% V/m C.										

Ì	MINERALIZATION											
1	From	То	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

80.30 85.29 FR 25 M abundant open joints

80.30 85.30 - - VW - - - - W -

80.30 85.30 1 50 0 50 15 40 narrow healed joints at 40 and 25dtca 80.30 85.30 0.1 DISS

85.29 85.30 CON 40 *lc; irregular*

From 85.30

To 93.05

Litho

AND

Andesite

Same as previous andesite.

STRUCTURES										
From	To	Struct	CA	Strain						

	ALTERATION														
ſ	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

85.30 90.25 8 VLT MO 0.01 py veinlets and diss; minor moly in veinlets

85.30 93.04 FOL 55 VW

vw-no fol x-cut by abundant

veining giving a slight

brecciated appearance

85.30 93.05 - - W - W - - W W weak to moderate patchy alteration

85.30 93.05 20 70 20 10 25 65

narrow veinlets with alteration halos;
larger quartz vein with MO min at
90.28-90.46m

Initials:	
-----------	--

From 85.30

To 93.05

Litho AND

(Continued from previous page)

	STRUCTURES										
From	To	Struct	CA	Strain							

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

					IZAT				
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

90.25 90.53 8 CG MO 0.1 Mo present on margins and in septa of larger q vein

90.53 93.05 5 VLT MO 0.01

93.04 93.05 CON 20 *lc*

From 93.05

To 100.01

Litho QFP

Quartz Feldspar Porpyry/Granodiorite

Mixed unit of granodiorite with variable groundmasses and larger plagioclase phenos alternating with quartz feldspar porphyry's with a fine grained groundmass.

Units average 1-1.5 m in length and contacts are sharp.

93.05-95.58m Granodiorite or QFP with a dark grey; fine grained groundmass

95.58-96.23 Raft of andesite; low angle irregular contacts

96.23-96.83m Granodiorite; equigranular; medium grained and medium grey

96.83-97.51m Granodiorite with a dark grey; fine to medium grained groundmass and abundant plag phenos

97.51-99m Granodiorite or QFP with a dark grey fine groundmass

99-100.01m Granodiorite equigranular; medium grained and medium grey

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIC	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

I				VEINS	S			
Ī	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

Ì			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

93.05 95.57 MAS

93.05 95.58 - - - - - - - -

93.05 95.58 0

93.05 95.58 0.1 FG

95.57 95.58 CON 10 contact with andesite raft; undulating

95.58 96.22 FOL

From 93.05

To 100.01

Litho QFP

(Continued from previous page)

	STRUCTURES								
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
95.58	96.23	-	-	W	-	-	-	-	-	W				
ar														

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			
95.58	96.23	10	90	5	5	3				

Ī	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M39									
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

95.58 96.23 3 MG MO 0.5 moly is disseminated in an epidote rich vein

96.22 96.23 CON 70 Ic with andesite raft

96.23 96.82 MAS

96.23 100.01 - - - - - - - VW -

w cc alt picking up downhole

96.23 100.01 2 20 0 80
irregular cc filled fractures increasing downhole

96.23 97.51 2 MG

96.82 96.83 CON 30

96.83 97.50 MAS

97.50 97.51 CON 40

97.51 98.99 MAS

98.99 99.00 CON 15

99.00 100.00 MAS

100.00 100.01 CON 45

97.51 99.00 0.1 FG

99.00 100.01 1 DISS

From 100.01

To 154.89

*Litho*AND

Andesite

Same as previous intervals.

Zones of increased alteration-mineralization and veining are located at:

111.86-115.47m; 132.22-140.46m; 143.80-154.89m

A small dark grey granodiorite dyke is located at 108.97-109.33m with contacts at 50dtca.

STRUCTURES								
From	To	Struct	CA	Strain				

ALTERATION														
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

MINERALIZATION
From To PY% Style Min Min% Min2 M2% Min3 M3%

100.01 111.86 FOL 40 M

100.01 111.86 - - W - - W

100.01 111.86 10 85 13 2 15 50 commonly narrow q veinlets with moly margins

100.01 115.61 5 VLT MO 0.1 Mo 0.05-0.1%; generally occuring on vein margins

111.86 114.75 BX 40 S

Healed breccia; minor rubble with gouge at 5dtca

111.86 115.47 - - W - - - S - W W increased alt halos with associated increased veining

111.86 115.61 20 70 15 15 25 30 core is x-cut by variable veining

114.75 134.06 FOL 45 M 40-50dca

115.47 132.22 - - W - - W - VW W patchy stronger areas

Initials:	

From 100.01

To 154.89

Litho AND

(Continued from previous page)

STRUCTURES										
From	To	Struct	CA	Strain						

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

 MINERALIZATION

 From
 To
 PY% | Style | Min | Min% | Min2 | M2% | Min3 | M3%

115.61 124.10 2 VLT MO 0.05 patchy and irregular

115.61 134.00 10 80 10 5 12 40 variable veining; commonly sugary in appearance

> 124.10 132.22 5 VLT MO 0.1 Mo 0.05-0.1%; vein margins

132.22 140.46 - - W - - S - M W *brecciated in appearance*

132.22 141.25 8 VLT MO 0.1 Mo 0.05-0.1%; disseminated and in vein margins

134.00 140.46 20 70 15 15 25 40 core is x-cut by variable veining; commonly sugary in appearance

134.06 141.57 BX 45 S variably brecciated

140.46 141.26 5 70 0 30 3 40

Initials:

From 100.01

To 154.89 Litho AND

(Continued from previous page)

STRUCTURES										
From	To	Struct	CA	Strain						

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS Vn% QZ% Feld% CC% V/m CA From To

MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3% From

140.46 143.80 - - VW - - - -

Gradational contacts; strong cc in center of interval

141.25 141.36 5 MG MO 0.1 PO

py; po; mo mineralization as well as 8% grey botryoidal nonmagnetic metallic hard mineral; polishes to silver colored. Located in a vuggy prismatic cc vein.

141.26 141.36 80 10 0 90 1 60

> vuggy with prismatic crystals and py; po; mo mineralization as well as a grey botryoidal nonmagnetic metallic hard mineral.

141.36 143.00 30 70 8 50

141.36 143.80 1 VLT MO 0.05

141.57 142.08 FLT 50 VS milled looking with abundant gouge surrounding rounded

fragments

142.08 154.88 FOL 40 S strong fol around 40-45dtca with variable zones of apparent bx

Initia	ls:	

From 100.01

To 154.89

Litho AND

(Continued from previous page)

STRUCTURES										
From	To	Struct	CA	Strain						

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS													
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA							
143.00	152.23	10	70	10	20	12	30							

MINERALIZATIONFromToPY%StyleMinMin%Min2M2%Min3M3%

143.00 152.23 10 70 10 20 x-cut by variable veining with variable moly min.

143.80 150.41 5 VLT MO 0.1 Mo 0.05-0.1 present along vein margins

143.80 154.89 - - W - - M - W W alternates between strong and moderate alteration

150.41 154.89 7 VLT MO 0.1 Mo 0.1-0.2 in vein margins

152.23 154.89 20 70 20 10 15 x-cut by variable veining now with larger pink quartz moly bearing veining

154.88 154.89 CON 55 *lc; sharp*

From 154.89

To

Litho

.89 158.26 GDIO

Granodiorite/Granite

Pale greyish pink. Anhedral plagioclase phenos are surrounded by a pale pink fg groundmass. Weaky to non-magnetic. Weak foliation and disseminated py.

 STRUCTURES

 From
 To
 Struct
 CA
 Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN	S	_		
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA

<i>MINERALIZATION</i>													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

154.89 158.25 FOL 45 VW 40-50dtca

From 154.89

To 158.26

Litho GDIO

Granodiorite/Granite

Pale greyish pink. Anhedral plagioclase phenos are surrounded by a pale pink fg groundmass. Weaky to non-magnetic. Weak foliation and disseminated py.

STRUCTURES											
From	To	Struct	CA	Strain							

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

154.89 158.26 - - VW - - - - W -

154.89 158.26 1

20 0

80 3 20

154.89 158.26 0.5 DISS

158.25 158.26 CON 55 *lc*

From 158,26

To 174.40

Litho AND

Andesite

Same as previous.

STRUCTURES											
From	To	Struct	CA	Strain							

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

158.26 160.53 - - W - - M - W W

158.26 161.33 FOL 45 W weak fol and a slight bx texture

> 158.26 170.04 5 80 5 15 7 40 also abundant py +- Mo filled veinlets

> > 158.26 174.40 5 VLT MO 0.1

pyrite from 5-7% in veinlets and disseminated; MO ranges from .05-.2% over short distances. Commonly along vein margins but also diss in veining From To
158.26 174.40

Litho

AND

(Continued from previous page)

STRUCTURES
From To Struct CA Strain

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

160.53 172.64 - - VW - - - W - W W patchy alteration; weak sil alt between 163-164m

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

MINERALIZATION
From To PY% Style Min Min% Min2 M2% Min3 M3%

161.33 161.86 FLT 10 S partially healed faut; minor gouge

161.86 174.39 FOL 40 M w-m fol from 35-40dtca

170.04 174.40 8 80 5 10 5 50

includes 8cm wide quartz vein around 174m and there are also abundant py +- Mo filled veinlets

172.64 174.40 - - M - - M - W M pale green

174.39 174.40 CON 50 *lc; sharp*

From 174.40

To 178.61

*Litho*GDIO

Granodiorite

Medium grey in color. Medium grained groundmass with subheudral plag pheno's. Weakly magnetic and weakly foliated with faulting located from 176.07-178.61m.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From 174.40

To 178.61

Litho **GDIO**

Granodiorite

Medium grey in color. Medium grained groundmass with subheudral plag pheno's. Weakly magnetic and weakly foliated with faulting located from 176.07-178.61m.

174.40 176.07 - - - - - - - -

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						

MINERALIZATION													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

174.40 176.70 FOL 50 VW

174.40 178.61 0.5 20 80 3 174.40 178.61 0.1 FG

176.07 178.61 - - VW - - - - M -

176.70 178.60 FLT S rubble zone; likely low angle.

178.60 178.61 CON 60 lc

From 178.61

To 188.09

Litho AND

Andesite Same as previous.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	MINERALIZATION														
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%										

178.61 180.60 5 VLT MO 0.05

178.61 181.40 - - M - - VW - VW W greenish

From 178.61

To 188.09

Litho AND

Andesite Same as previous.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

178.61 183.10 FOL 40 W w-m fol

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

178.61 183.10 10 60 0 40 10 40 small random cc veinlets common at the top of interval

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

181.40 188.09 - - W - - VW - VW W

181.40 188.09 3 VLT MO 0.1

180.60 181.40 7 VLT MO 0.4 Mo in vein margins and septa

183.10 185.40 FLT 10 S narrow low angle flt with gouge; undulating // tca

185.40 188.08 FOL 50 VW

188.08 188.09 CON 50

Ic; broken core at contact

183.10 186.11 25 70 0 30

dominantly fragmented veining caught up in faulted area

186.11 188.09 10 80 10 10 14 60 white veining with chl and py +- mo min *From* 188.09

*T*o

Litho GDIO

Granodiorite

Similar to previous but with more abundant plag phenos.

Large coarse grained q-carb veins are present at 189.67-190.08m with contacts at 60dtca and veining at 191.68-191.82 with contacts at 40 and 50dtca.

STRUCTURES							
From	To	Struct	CA	Strain			

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS							
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
188.09	189.67	0.5	20	0	60	3	10

MINERALIZATION
From To PY% Style Min Min% Min2 M2% Min3 M3%

188.09 192.16 FOL 50 VW

188.09 192.17 - - - - - - VW -

188.09 192.17 0.5 FG

189.67 190.80 <i>coarse</i>	98 grained	30 g-carb	0	70	1 60	
190.80 191.68	0.5	20	0	80	3 20	
191.68 191.82 40 and	100 50dtca	30	0	70	1 45	
191.82 192.17	5	30	0	70	1 50	

192.16 192.17 CON 40

lc:

From 192.17

To 198.06

Andesite

Similar to previous but becoming lighter in color and more silaceous looking. Abundant moly in small regular quartz veinlets Small zone of unaltered-unmineralized grandiorite is located from 192.82-193.07m.

STRUCTURES								
From	To	Struct	CA	Strain				

ALTERATION														
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

<i>MINERALIZATION</i>										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

192.17 192.81 FOL 50 VW

From 192.17

To 198.06 Litho AND

Andesite

Similar to previous but becoming lighter in color and more silaceous looking. Abundant moly in small regular quartz veinlets Small zone of unaltered-unmineralized grandiorite is located from 192.82-193.07m.

STRUCTURES								
From	To	Struct	CA	Strain				

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

Paler in color than before; gdio unaltered

192.17 198.06 - - VW W - - - VW -

VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	
192.17	198.06	10	95	0	5	12	40	

narrow (<1cm wide) white q veinlets with abundant moly at margins, not located in gdio

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

192.17 198.06 5 DISS MO 0.5 py diss and veinlets; moly is located on the margins of most veinlets; not in gdio

192.81 192.82 CON 60 uc with gdio

192.82 193.06 MAS S

193.06 193.07 CON 60 Ic of gdio

193.07 198.05 FOL 40 VW 35-40dta

198.05 198.06 CON 80 Ic; with a vein containing moly

From 198.06

To 201.31 Litho **GDIO**

Granodiorite

Multiple pulses; some are similar to the previous granodiorite the other (198.94-199.73m) is more similar to the pale pink granodiorite/granite from 154.89-158.26m. A 15cm raft of andesite is locate until 199.88m. The main granodiorite has chilled margins.

STRUCTURES							
From	To	Struct	CA	Strain			

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

1	MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

198.06 198.93 MAS

From 198.06

To 201.31

Litho GDIO

Granodiorite

Multiple pulses; some are similar to the previous granodiorite the other (198.94-199.73m) is more similar to the pale pink granodiorite/granite from 154.89-158.26m. A 15cm raft of andesite is locate until 199.88m. The main granodiorite has chilled margins.

	STRUCTURES										
From	To	Struct	CA	Strain							

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS													
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						
198.06	199.60	1	20	0	80	5	30						

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

198.06 201.31 - - VW - - - - W - andesitic raft is more altered

198.06 201.31 0.5 DISS MO 0.01 conc in andesite raft

198.93 198.94 CON 50 chilled margins on upper more mafic intrusive

198.94 199.73 MAS S

paler granodiorite/granite

199.73 199.74 CON 10 irregular

199.74 199.87 FOL fol on andesite raft

199.87 199.88 CON 70

199.88 201.30 MAS

199.60 200.10 20 80 0 20 4 50 vein in andesite contains moly

200.10 201.31 1 50 0 50

201.30 201.31 CON 40 - chilled margin

From 201.31

To 236.15

Litho AND

Andesite

Similar to previous intervals. This unit alternates between the darker mottled red (maroon) and greenish andesite with a pale grey-pink more siliceous looking bleached andesite with spots of reddish-brown mica. Moly mineralization is abundant through the unit; commonly in narrow veinlets rimmed with moly; in the bleached areas with stronger foliation moly is sometimes disseminated and py is less abundant. The paler bleached intervals with stronger strain are located between 220.33-232.65m.

	STRUCTURES										
From	To	Struct	CA	Strain							

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

		VEINS											
From To Vn% QZ% Feld% CC% V/m CA													

MINERALIZATION
From To PY% Style Min Min% Min2 M2% Min3 M3%

201.31 202.00 FOL 35 VW

201.31 205.90 8 90 0 10 12 40 narrow white-creamy quartz veining with moly

201.31 206.10 - - VW W - - - VW - medium to pale in color

201.31 208.40 7 DISS MO 0.2

5-10% py; py diss and in veinlets; moly in veinet margins; upto 0.5 moly near uc next to gdio.

202.00 202.95 FLT S abundant rubble; possiby low angle

202.95 216.77 FOL 50 W 40-60dtca foliation

205.90 209.20 10 50 0 50 12 50 white q-cc and q veining

206.10 209.20 - - M - - - - W -

darker and softer; chl and cc gradually becoming less strong after 207.21m

Initials:	

From 201.31

To 236.15

Litho AND

(Continued from previous page)

STRUCTURES										
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

1	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M.											
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

208.40 209.97 10 DISS MO 0.1 abundant diss py; moly is less noticable

white and semi-translucent q and qcc veining Most q veining contains mol at the margins

0

5 15 50

209.20 215.49 5 95

209.20 216.72 - - - VW - - - - - W

possible lilac sericite whisps

209.97 220.33 15 DISS MO 0.5 10-20 diss py; also in veinlets; moly is located at vein margins

215.49 226.87 10 95 0 5 15 50 white and semi-translucent q and q-

cc veining Most q veining contains mol at the margins

216.72 220.33 - - - W - - - - - W becoming paler

216.77 218.00 BX 20 S

Brecciated in appearance with small spaced zones of faulting with minor gouge and rubble. At 20-70dtca.

\sim	10	60	_
			1
\mathbf{c}	ıv	UU	

Initials:	
-----------	--

From 201.31

To 236.15 Litho AND

(Continued from previous page)

STRUCTURES									
From	To	Struct	CA	Strain					

STRUCTURES											
From	To	Struct	CA	Strain							

218.00 236.14 FOL 50 M weak to moderate foliation from 40-65dtca over short distances but most commonly at 50dtca; foliation is moderate in bleached strongly altered areas and weak to moderate in darker less altered areas

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

ſ	VEINS								
Ī	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	

1	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M												
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

220.33 232.65 4 DISS MO 0.1 1-5% py; 0.1-0.2 Mo is commonly disseminated through host rock as well as in veining; it may be more abundant

220.33 225.50 - - - M - - - - W medium to pale grey in color with reddish brown mica spots

> than this and just not as obvious since it is diss.

225.50 226.50 - - - S - - - - W strongy bleached to pale pink color spotted with reddish brown mica blebs; core is still lightly scratchable 226.50 230.52 - - -M - - - - W

medium grey in color

226.87 236.15 12 90 0 10 15 50

> 10-15% veining; same as previous but now with occasional larger sugary white veining

Initials:	

From 201.31

To 236.15

Litho AND

(Continued from previous page)

STRUCTURES							
From	To	Struct	CA	Strain			

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	MINERALIZAT								
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

230.52 232.65 - - - S - - - - W

strongly bleached to a pale pink color and spotted with reddish brown mica blebs

232.65 236.15 - - - W - - - -

medium to dark grey in color; becoming darker downhole

232.65 236.15 7 DISS MO 0.2

7-10% diss py; sometimes in veinlet form. Mo is concentrated in veining and along vein margins.

236.14 236.15 CON 50 *lc; sharp*

From 236.15

To 243.22

Litho GDIO

Tombstone granodiorite with sharp upper and lower contacts. Both contacts exhibit a >30cm fine grained, dark grey, weakly foliated chill margin. The main body of the granodiorite is a grey coloured, fine grained groundmass rock with 1-15% plagioclase feldspar phenocrysts t/o and 5% mm sized biotite t/o. The core is weakly mineralized with pyrite and pyrrhotite. A large 52cm off-white qtz vein is observed between 239.80 - 240.3m. Veining t/o the granodiorite is rare overall. The granodiorite is unaltered fresh looking rock.

STRUCTURES							
From	To	Struct	CA	Strain			

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

236.15 236.16 CON 50 sharp upper contact

236.15 239.80 0.01 50 0 50 2 35 very rarely observed mm scale qtz carb veinlets 236.15 239.80 0.01 DISS PO 0.1

very weak disseminated FG pyrite with

MG clots of disseminated pyrrhotite

236.15 243.22 - - - - - - - -

unaltered tombstone granodiorite

Initials:	
-----------	--

From 236.15

To

243.22

Litho GDIO

Tombstone granodiorite with sharp upper and lower contacts. Both contacts exhibit a >30cm fine grained, dark grey, weakly foliated chill margin. The main body of the granodiorite is a grey coloured, fine grained groundmass rock with 1-15% plagioclase feldspar phenocrysts t/o and 5% mm sized biotite t/o. The core is weakly mineralized with pyrite and pyrrhotite. A large 52cm off-white qtz vein is observed between 239.80 - 240.3m. Veining t/o the granodiorite is rare overall. The granodiorite is unaltered fresh looking rock.

STRUCTURES							
From	To	Struct	CA	Strain			

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

				VEINS	5			
Ì	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	<i>IZAT</i>	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

236.16 243.21 FOL 60 VW very weak foliation strain observed within the GD

> 239.80 240.32 100 100 0 0 1 70 a large 52cm offwhite qtz vein

239.80 240.32 0.1 DISS MO 0.01

very weak disseminated pyrite within vein; extremely rare moly observed as specks within the vein

240.32 243.22 0.01 50 0 50 2 35 very rarely observed mm scale qtz carb veinlets 240.32 243.22 0.01 DISS PO 0.1

very weak disseminated FG pyrite with

MG clots of disseminated pyrrhotite

243.21 243.22 CON 50 sharp lower contact From To 243.22 287.12

Litho AND

This lengthy interval of andesite has been mildly confusing in that it is believed to be Andesite, however, there are characterisitcs that suggest sediment. The core visually looks like the andesite encountered at the top of the hole, with the mottled, maroon and green texture, but at the same time the core here exhibits a moderate strain foliation that seems to meld the core into a dark brown, fine grained hard and competent rock, suggestive of a sediment. Here it will be referred to as an adesite as the observation of what appears to porphyritic textures, outweighs the sediment theory.

The rock undergoes varying strengths of strain throughout from weak to weak - moderate to moderate and often these differences in strain collerate to differences in alteration of that particular zone. Two areas of moderate brecciation are observed btwn 255.02 - 255.37m and 256.17 - 256.65m. The lower contact is a gradational, yet sharp contact and is an arbitrary contact based upon texture of the underlain interval of core. As stated in the early part of the notes this interval is believed to be andesite, however, it may very well be a sediment.

The core overall is a dark brown colour, fine grained to medium grained in localized zones; the medium grained zones appear to exhibit more of a porphyritic texture (possible andesite poprhyry?) with noted mm blebs of aligned pinkish red phenocrysts. As much the core exhibits a dark brown colour, it also has a mottled green maroon patchy coloured texture to it (this patchy green maroon coloured texture is observed best in the weaker strained portions of the core). Alteration throughout the unit is on average biotite/chlorite/weak epidote/weak pyrite/ and varying strengths of silica. Veining is dominantly parallel qtz veining t/o with minor veinlets of qtz anastomosing over the core surface in varying orientations. The veining has three preferred vein set zones; one zone of larger cm scale veining alternating, another zone of the parallel foliation veining and the third is a zone of stockwork veining (associated with increase in chlorite alteration). The larger cm scale veining and the stockwork veining are often providing more of a brecciation to that core interval.

Mineralization is quite good in this interval. Moly is observed in nearly every vein throughout the entire interval length. Moly is observed in just about every micro fracture and in rare instances, moly is observed disseminated throughout the core; i.e. 243.22 - 247.35m and 250.24 - 250.66m. Pyrite is common throughout and dominantly disseminated FG pyrite with pyrrhotite very common and associated with magnetite (disseminated and crystals within veining). Chalcopyrite, though observed within the qtz veining, is very rare.

STRUCTURES							
	From	To	Struct	CA	Strain		

					AL	TER	ATIC	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

243.22 243.23 CON 50 sharp upper contact

243.22 243.62 - - - W - M - - - M

weakly siliceous, and most likely propylitic alteration as the reddish hue is hematitic, there is very weak chlorite alteration along fracturing and qtz carb veining is observed

243.22 247.35 1.5 DISS PO 0.1 MO 0.4

this more siliceous and pinkish coloured altered zone exhibits aligned disseminated pyrite flecks t/o; 1-2% with minor disseminated PO; Moly observed here is within micro fractures, mm scale veining and disseminated within siliceous core

To From 243.22

Litho 287.12 AND

This lengthy interval of andesite has been mildly confusing in that it is believed to be Andesite, however, there are characterisites that suggest sediment. The core visually looks like the andesite encountered at the top of the hole, with the mottled, maroon and green texture, but at the same time the core here exhibits a moderate strain foliation that seems to meld the core into a dark brown, fine grained hard and competent rock, suggestive of a sediment. Here it will be referred to as an adesite as the observation of what appears to porphyritic textures, outweighs the sediment theory.

The rock undergoes varying strengths of strain throughout from weak to weak - moderate to moderate and often these differences in strain collerate to differences in alteration of that particular zone. Two areas of moderate brecciation are observed btwn 255.02 - 255.37m and 256.17 - 256.65m. The lower contact is a gradational, yet sharp contact and is an arbitrary contact based upon texture of the underlain interval of core. As stated in the early part of the notes this interval is believed to be andesite, however, it may very well be a sediment.

The core overall is a dark brown colour, fine grained to medium grained in localized zones; the medium grained zones appear to exhibit more of a porphyritic texture (possible andesite poprhyry?) with noted mm blebs of aligned pinkish red phenocrysts. As much the core exhibits a dark brown colour, it also has a mottled green maroon patchy coloured texture to it (this patchy green maroon coloured texture is observed best in the weaker strained portions of the core). Alteration throughout the unit is on average biotite/chlorite/weak epidote/weak pyrite/ and varying strengths of silica. Veining is dominantly parallel qtz veining t/o with minor veinlets of qtz anastomosing over the core surface in varying orientations. The veining has three preferred vein set zones; one zone of larger cm scale veining alternating, another zone of the parallel foliation veining and the third is a zone of stockwork veining (associated with increase in chlorite alteration). The larger cm scale veining and the stockwork veining are often providing more of a brecciation to that core interval.

Mineralization is quite good in this interval. Moly is observed in nearly every vein throughout the entire interval length. Moly is observed in just about every micro fracture and in rare instances, moly is observed disseminated throughout the core; i.e. 243.22 - 247.35m and 250.24 - 250.66m. Pyrite is common throughout and dominantly disseminated FG pyrite with pyrrhotite very common and associated with magnetite (disseminated and crystals within veining). Chalcopyrite, though observed within the qtz veining, is very rare.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

2 6.50 243.22 255.02 2

> parallel foliation qtz veining is dominant here; mostly mm scale veins with rare larger cm scale qtz veins

MINERALIZATION													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

243.23 247.26 FOL 50 W weak strain foliation t/o

243.62 247.26 - - - M - W - - -

moderate to strong silica alteration t/o with weak propylitic alteration

Initials:	
-----------	--

From 243,22

To 287.12

Litho AND

(Continued from previous page)

STRUCTURES										
From	To	Struct	CA	Strain						

247.26 255.02 FOL 50 M weak to moderate strain foliation t/o

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

247.26 255.02 - - - W - M - - - M

weakly siliceous and moderate propylitic alteration with biotite and very weak chlorite

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

	MINERALIZATION												
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

247.35 250.24 2 DISS PO 1 MO 0.2

2% disseminated pyrite aligned along foliation with up to 1% disseminated pyrrhotite t/o' Moly here is not within the body of the rock, instead the moly observed is within microfractures, mm scale veinlets and along selvages of larger veins; chalcopyrite is trace

250.24 250.66 1.5 DISS PO 0.1 MO 0.4

this more siliceous and pinkish coloured altered zone exhibits aligned disseminated pyrite flecks t/o; 1-2% with minor disseminated PO; Moly observed here is within micro fractures, mm scale veining and disseminated within siliceous core

250.66 255.02 2 DISS PO 1 MO 0.2

2% disseminated pyrite aligned along foliation with up to 1% disseminated pyrrhotite t/o' Moly here is not within the body of the rock, instead the moly observed is within microfractures, mm scale veinlets and along selvages of larger veins; chalcopyrite is trace

Initials:

From 243.22

To 287.12 Litho AND

(Continued from previous page

STRUCTURES	ALTERATION	
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO F	TLP PYR SER
255.02 255.37 BX M a mod to strongly brecciated, veined, mineralized and altered interval	255.02 255.37 M M W moderately chlorite altered with minor epidote; silica altered t/o as well with pyrite	M
255.37 256.17 FOL 45 VW very weak strain foliation t/o	255.37 256.17 W - M M weakly siliceous and moderate propylitic alteration with biotite and very weak chlorite	
256.17 256.65 BX M mo to strongly brecciated, veined, mineralized and altered interval	256.17 256.65 M M W moderately chlorite altered with minor epidote; silica altered t/o as well with pyrite	M

			VEINS	5				MINERALIZATION
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA	From To PY% Style Min Min% Min2 M2% Min3 M
255.02	anastor	nosing	mm sca	0 minant her le veins ng the cord		4	60	255.02 255.37 4 MS PO 1 MO 0.01 3-4% massive blebs of FG pyrite t/o brecciated core zone; pyrite within veins and within rock; Pyrrhotite is stronger here and observed more regularly within the veining only (also associated with minor magnetite); chalcopyrite is trace within the veining; moly here is very weakly observed within and along veining
255.37	rare cm			0 s 30 t.c.a. t e veinlets		2	30	255.37 256.17 3 MS PO 1 MO 0.2 2-3% massive blebs of FG pyrite with minor disseminated pyrite; pyrrhotite remains strong with magnetite and moly increases within microfractures and mm scale veining
256.17	cm scal	nosing	mm sca	0 minant her le veins ng the core		4	65	256.17 256.65 4 MS PO 1 MO 0.01 3-4% massive blebs of FG pyrite t/o brecciated core zone; pyrite within veins and within rock; Pyrrhotite is stronger here and observed more regularly within the veining only (also associated with minor magnetite); chalcopyrite is trace within the veining; moly here is very weakly observed within and along veining

256.65 258.60 - - - W - M - - - M

From

243.22

*T*o 287.12

Litho AND

(Continued from previous page)

	STRUCTURES									
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

Ī	MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

Initials:

256.65 270.06 2.5 DISS PO 1.2 MO 0.1

2-3% disseminated FG pyrite with massive blebs of pyrite common t/o the core and the veining; pyrrhotite has increased in this area to 1.5-2% t/o and remains associated with magnetite; magnetite assumed in body of core and observed as massive blebs in veining. Moly here is weaker than previous intervals and observed within veining, fractures and along selvages; chalcopyrite observed in veinin gthough trace t/o

256.65 273.00 FOL 40 M weak to moderate strain foliation

256.65 276.45 5 98 0 2 4 70

dominant vein set here are the larger cm scale qtz vein with minor carbonate (dolomite?); smaller mm scale veinlets are observed t/o

258.60 262.90 - - W W - M - - W W

mottled looking andesite with chlorite/biotite/silica alteration

262.90 276.45 - - W M - M - - VW M

moderately siliceous mottled andesite sequence with dark brown colour (BIO), weak chlorite/epidote

From	
243.22	

То
287.12

Litho
AND

(Continued from previous page)

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

MINERALIZATION										
Ī	From	То	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

Initials:

270.06 287.12 2.5 DISS PO 1.5 MO 0.3

2-3% disseminated pyrite with semi massive pyrite in blebs t/o; PO remains moderate t/o disseminated; moly picks up again to about 0.3% -0.4% throughout veining; CP is trace in veining

273.00 285.25 FOL 50 M moderate strain foliation t/o with minor brecciation

276.45 287.12 - - M M - W - - W M

the lower end sequence is moderately to strongly siliceous (possible albite) with a strained foliation masking the mottled green/maroon andesite into a laminated pattern of lighter colours; biotite/chlorite/epidote and silica alteration t/o

276.45 287.12 2 100 0 0 4 50

dominant vein set here is a 7mm scale parallel foliation qtz vein; minor hairline veinlets in this sequence

285.25 287.11 FOL 30 M

moderate strain foliation with some mild brecciation near lower contact

287.11 287.12 CON 30 gradational lower contact (see notes)

Initials:	

From 287.12 30

To 309.49

Litho HSLT

This interval of hornfelsed metasiltstone is visually different than the uphole described andesite. Difficulty in naming the previous interval of andesite was overcome when logging this sequence, as this interval is most definitely metaseds. The core is fine grained, dark brown, moderately foliated with sharp lower contact and relatively distinct upper contact. The core no longer has the mottled appearance, instead has a laminated look with alternating dark brown and pink brown foliation fabric alteration lamina of sediment. The alteration throughout the interval is hornfelsed biotite and silica with rare chlorite. Veining in this sequence of core is weak with mm scale qtz/carb veins parallel foliation, rare cm scale qtz veins orthogonal t.c.a.; common ptygmatic qtz veining and rare anastomosing hairline qtz veinlets with varying orientations across core. Mineralization is PY+PO+MO throughout with pyrrhotite the dominant sulphide. Pyrite and pyrrhotite are both present as veinlets t/o. Moly observed is mostly within the foliation fractures and the mm scale veining.

	STRUCTURES								
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1	MINERALIZATI						ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

287.12 287.13 CON 30 sharp but gradational upper contact

287.12 309.49 - - VW M - - - W - N
hornfelsed biotite and silica and carbonate altered metaseds

dominantly vein here are the foliation parallel qtz vein and qtz/carb vein; t/o the interval we observe many ptygmatic folded veins with an axis

287.12 309.49 2

parallel to regional foliation or at least this foliation giving fabric to the rock; minor veinlets with varying orientations are less common as well as larger cm scale veining.

98

9 40

287.12 309.49 1 VLT PO 1.5 MO 0.2

pyrite is observed throughout and commonly as veinlets along foliation and to a lesser degree, as flecks within veining; pyrrhotite is more abundant than pyrite and commonly as veinlets along foliation as well as semi massive blebs within veining; moly in the sediments is present as selvages to veins (but not all) and more commonly as infill to fractures

287.13 299.18 FOL 40 M moderate strain foliation t/o metaseds

299.18 299.44 MAS S massive 26cm granodiorite

299.44 306.49 FOL 45 M moderate strain foliation t/o metaseds

	Initials:	
--	-----------	--

From 287.12

To 309.49

Litho **HSLT**

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1	MINERALIZATION									
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

306.49 307.11 FLT

strongly corridor of messed metaseds; looks faulted and is very gougey and soft

307.11 309.48 FOL 40 M moderately strained metaseds

309.48 309.49 CON 30 sharp lower contact

From

To Litho QFP 309.49 316.84

A lengthy, massive, weakly to moderately foliated QFP dyke. The core is chlorite and carbonate altered, fine grained, yellow green coloured dyke with sharp upper and lower contacts. No veining observed. Mineralization is weak disseminated Pyrite.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N .						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1			M	INE	RAL	IZAT	ION			
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

309.49 309.50 CON 30 sharp upper contact

309.49 316.84 - - M - - - - W -

weak pervasive calcite alteration; and suspected chlorite and

sericite from the colouring and the fact that the core is weakly rotten

309.49 316.84 0 0 0 309.49 316.84 0.1 DISS weakly disseminated pyrite t/o

309.50 316.83 FOL 45 massive fine grained light

yellow greenish QFP dyke

Initials:	

From 309.49

To 316.84

Litho QFP

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIC	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

316.83 316.84 CON 30 sharp lower contact

From 316.84 3

To 364.64

Litho HSLT

Hornfelsed siltstone

Brownish grey in color with a hint of red. Laminated/banded in appearance. Core is cut by abundant mm scale boudined veinlets that run parallel to foliation; ptygmatic veinlets are present throughout the core. Small creamy looking halos of silica/ab are sometimes present around veining. Abundant py; po and mo are present at the beginning of the interval becoming less common down interval.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

316.84 319.75 1 VLT PO 1 MO 0.5 moly on vein margins

316.84 323.20 FOL 45 W 40-50dtca; becoming stronger downhole

Friday, May 11, 2007

316.84 364.64 - - VW W - - - VW - W

medium brown-grey in color with hints of red and creamy looking silab alteration halos around some veining. 316.84 364.64 8 90 0 10 30

veining ranges from the most abundant mm scale foliation parallel quartz and q-cc veinlets which are commonly boudined; larger coarser grained irregular looking quartz cc veins that are upto 15cm wide and mm-cm scale pale grey ptygmatic veinlets. All of these veins sometimes have an association with moly.

319.75 323.97 0.5 VLT PO 0.5 MO 0.1

From 316.84

To 364.64

Litho **HSLT**

(Continued from previous page)

STRUCTURES							
From	To	Struct	CA	Strain			

323.20 323.34 FLT 20 S healed fault

323.34 324.85 FOL 50 M 40-50dtca; moderate to strong

324.85 329.60 FOL 40 W

329.60 330.04 FLT 50 S healed flt until 330m followed by rubble

330.04 351.90 FOL 45 W 40-50dtca; fol w-m

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

1	MINERALIZATION										
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

323.97 331.00 3 VLT PO 1.5 MO 0.5 py+po massed together in veinlets; mo in veining

331.00 336.50 1 VLT PO 0.5 MO 0.2 same as above but less

336.50 364.64 1 VLT PO 0.1 MO 0.1 short intervals of more concentrated mineralization; Mo is commonly diss in sugary looking veins which make it harder to see

From 316.84

To 364.64

Litho HSLT

(Continued from previous page)

	STRUCTURES											
From	To	Struct	CA	Strain								

351.90 353.22 FOL 30 M 25-35dtca; m-w.

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

1	MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

353.22 364.63 FOL 45 W 40-50dtca; w-vw

364.63 364.64 CON 40 *lc; sharp*

To 382.33

364.64

GDIO

Granodiorite

Equigranular with a speckled color of white and black with minor pink. Massive and unaltered. Small zones of more mafic rich material (rafts?) are located at 371.77-371.87m and 380.21-380.25m. Variable fg pink/grey/white crystalline veins are concentrated in the later part of the interval and contain moly.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
364.64	377.63	0.5	98	0	2	1	20				

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
364.64	377.6	3 0.1	FG						

364.64 382.32 MAS

364.64 382.33 - - - - - - VW -

Initials:	

From 364.64

To 382.33 Litho **GDIO**

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

		VEINS From To Vn% QZ% Feld% CC% V/m CA												
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA							
377.63	382.33	5	80	18	2	4	50							

fg pale white/pink/grey veining with associated moly min. Commonly irregular in shape, larger vein from 378.40-378.64m

MINERALIZATION PY% Style Min Min% Min2 M2% Min3 M3%

377.63 382.33 0.5 FG MO 0.1 moly associated with veining

382.32 382.33 CON 30 lc; irreguar

From 382.33

To 392.10 Litho AND

Andesite

Mottled maroon and green in appearance with patchy pale creamy white/pink ab-sil altered regions. Areas of granodiorite/granular pink/grey/white veining that was present in the above unit are also present from 286.85-287.25m and 388.35-388.67m. Splotches of py and po are concentrated at the upper portion of the region but present through out and moly is located in veining through the interval.

STRUCTURES									
From	To	Struct	CA	Strain					

ALTERATION To | INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

382.33 386.85 FOL 50 40-60dtca

> 382.33 392.10 - - W - - VW - W motted looking alteration

382.33 392.10 20 85 12 2 10 irregular grey and creamy looking veining

382.33 392.10 3 MG PO 1.5 MO 0.2 scattered through interval; po concentrated uphole. Mo generally conc at vein margins.

386.85 386.86 CON 30 uc with gdio/veining

386.86 387.25 MAS

From 382.33

To 392.10

Litho AND

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

387.25 387.26 CON 20 *lc with gdio/veining*

387.26 388.35 FOL 40 W foliation fairly washed out by alt

388.35 388.36 CON 60 uc with gdio/veining

388.36 388.65 MAS S

388.65 388.66 CON 70 *Ic with gdio veining*

388.66 392.09 FOL 20 W vw-m fol from 40-10dtca

392.09 392.10 CON 35 *lc*

From 392.10

To 431.90

Litho GDIO

Granodiorite

Equigranular with a speckled color of white and black with minor pink. Massive and unaltered. Occasional ep-chl filled fracture. EOH @ 431.10m

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

				VEINS	5			
1	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M39									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

392.10 392.28 3 MG in vein

From 392.10

To 431.90

Litho GDIO

Granodiorite

Equigranular with a speckled color of white and black with minor pink. Massive and unaltered. Occasional ep-chl filled fracture. EOH @ 431.10m

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 392.10
 396.50
 0.5
 90
 8
 2
 1 30

 one vein at contact

MINERALIZATION
From To PY% Style Min Min% Min2 M2% Min3 M3%

392.10 396.78 MAS

392.10 431.90 - - VW - - - - W W ep alt in some fractures

392.28 431.90 0.01 FG py in fratures

396.50 398.70 5 80 12 2 3
irregular granular pink/grey/white
veining similar to previous gdio
interval

396.78 396.86 FLT S *rubble*

396.86 431.90 MAS

398.70 431.90 0.1 50 0 50 filled fractures

CH0607

Initials:

From 392.10

To 431.90

Litho GDIO

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

				VEINS	5			
ĺ	From	То	Vn%	QZ%	Feld%	CC%	V/m	CA

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

CHU Project - TTM Resources Inc. SAMPLE REPORT

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45091	5.8	8.23	HSLT	CORE	0.045	0.041
45092	8.23	10	HSLT	CORE	0.065	0.027
45093	10	10.5	GDIO	CORE	0.031	0.021
45094	10.5	14.33	HSLT	CORE	0.021	0.027
45095	14.33	14.33	HSLT	BLANK	0.001	0
45096	14.33	17.37	HSLT	CORE	0.022	0.041
45097	17.37	20.42	HSLT	CORE	0.017	0.036
45098	20.42	23.47	HSLT	CORE	0.026	0.035
45099	23.47	26.52	HSLT	CORE	0.024	0.075
45100	23.47	26.52	HSLT	DUPLICATE	0.03	0.026
45101	26.52	28.62	HSLT	CORE	0.032	0.125
45102	28.62	29.57	HSLT	CORE	0.062	0.216
45103	29.57	32.61	HSLT	CORE	0.051	0.086
45104	32.61	35.66	HSLT	CORE	0.093	0.055
45105	35.66	38.71	HSLT	CORE	0.023	0.098
45106	38.71	41.76	HSLT	CORE	0.03	0.075
45107	41.76	44.81	HSLT	CORE	0.033	0.065
45108	44.81	46	HSLT	CORE	0.052	0.063
45109	46	47.85	HSLT	CORE	0.04	0.057
45110	47.85	47.85	HSLT	MoS-1	0.012	0.065
45111	47.85	50.9	HSLT	CORE	0.033	0.034
45112	50.9	53.95	HSLT	CORE	0.022	0.025
45113	53.95	57	HSLT	CORE	0.022	0.023
45114	57	60.05	HSLT	CORE	0.037	0.039
45115	60.05	60.05	HSLT	BLANK	0.002	0
45116	60.05	63.09	HSLT	CORE	0.024	0.026
45117	63.09	66.14	HSLT	CORE	0.043	0.035
45118	66.14	69.19	HSLT	CORE	0.047	0.083
45119	69.19	72.24	HSLT	CORE	0.035	0.053
45120	69.19	72.24	HSLT	DUPLICATE	0.06	0.092
45121	72.24	75.29	HSLT	CORE	0.024	0.072
45122	75.29	78.33	HSLT	CORE	0.024	0.054
45123	78.33	79.66	GDIO	CORE	0.043	0.105
45124	79.66	82.13	GDIO	CORE	0.042	0.118
45125	82.13	84.64	GDIO	CORE	0.028	0.059
45126	84.64	87.48	HSLT	CORE	0.038	0.106
45127	87.48	89.44	HSLT	CORE	0.025	0.042
45128	89.44	90.53	GDIO	CORE	0.034	0.084
45129	90.53	93.57	GDIO	CORE	0.072	0.177
45130	93.57	93.57	GDIO	MoS-1	n/s	n/s
45131	93.57	95	GDIO	CORE	0.041	0.119
45132	95	96.62	GDIO	CORE	0.028	0.976
45133	96.62	99.67	GDIO	CORE	0.05	0.212
45134	99.67	102.47	GDIO	CORE	0.049	0.101
45135	102.47	102.47	HSLT	BLANK	0.001	0
45136	102.47	105.77	HSLT	CORE	0.039	0.074
45137	105.77	108.81	HSLT	CORE	0.045	0.082
45138	108.81	111.86	HSLT	CORE	0.025	0.105
45139	111.86	114.91	HSLT	CORE	0.048	0.065
45140	111.86	114.91	HSLT	DUPLICATE	0.07	0.084

	_				. (2.1)	(2.)
SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45141	114.91	117.96	HSLT	CORE	0.036	0.149
45142	117.96	121.01	HSLT	CORE	0.046	0.163
45143	121.01	124.05	HSLT	CORE	0.031	0.065
45144	124.05	127.1	HSLT	CORE	0.061	0.076
45145	127.1	130.15	HSLT	CORE	0.018	0.061
45146	130.15	133.2	HSLT	CORE	0.045	0.219
45147	133.2	136.25	HSLT	CORE	0.034	0.056
45148	136.25	139.29	HSLT	CORE	0.022	0.065
45149	139.29	142.34	HSLT	CORE	0.021	0.096
45150	142.34	142.34	HSLT	MoS-1	0.013	0.065
45151	142.34	145.39	HSLT	CORE	0.029	0.115
45152	145.39	148.44	HSLT	CORE	0.018	0.089
45153	148.44	151.49	HSLT	CORE	0.022	0.067
45154	151.49	154.53	HSLT	CORE	0.026	0.085
45155	154.53	156.9	HSLT	CORE	0.051	0.385
45156	156.9	156.9	HSLT	BLANK	0.001	0
45157	156.9	160	GDIO	CORE	0.056	0.209
45158	160	162.59	GDIO	CORE	0.172	0.562
45159	162.59	164.87	GDIO	CORE	0.114	0.361
45160	164.87	166.73	HSLT	CORE	0.086	0.342
45161	164.87	166.73	HSLT	DUPLICATE	0.12	0.291
45162	166.73	169.77	HSLT	CORE	0.062	0.222
45163	169.77	172.82	HSLT	CORE	0.048	0.191
45164	172.82	173.86	HSLT	CORE	0.051	0.226
45165	173.86	175.87	HSLT	CORE	0.028	0.128
45166	175.87	177.15	HSLT	CORE	0.025	0.053
45167	177.15	178	GDIO	CORE	0.023	0.031
45168	178	179.19	HSLT	CORE	0.039	0.274
45169	179.19	181.97	HSLT	CORE	0.039	0.15
45170	181.97	181.97	HSLT	MoS-1	0.013	0.067
45171	181.97	183.73	HSLT	CORE	0.026	0.161
45172	183.73	186.8	HSLT	CORE	0.047	0.118
45173	186.8	187.23	GDIO	CORE	0.051	0.036
45174	187.23	188.06	HSLT	CORE	0.065	0.06
45175	188.06	191.11	HSLT	CORE	0.04	0.051
45176	191.11	191.11	HSLT	BLANK	0	0
45177	191.11	194.16	HSLT	CORE	0.049	0.132
45178	194.16	197.21	HSLT	CORE	0.031	0.106
45179	197.21	200.25	HSLT	CORE	0.047	0.144
45180	197.21	200.25	HSLT	DUPLICATE	0.07	0.094
45181	200.25	203.3	HSLT	CORE	0.046	0.109
45182	203.3	204.47	HSLT	CORE	0.079	0.106
45183	204.47	206.35	GDIO	CORE	0.065	0.102
45184	206.35	209.4	GDIO	CORE	0.048	0.129
45185	209.4	212.45	GDIO	CORE	0.042	0.043
45186	212.45	215.49	GDIO	CORE	0.059	0.085
45187	215.49	218.54	GDIO	CORE	0.077	0.017
45188	218.54	221.59	GDIO	CORE	0.073	0.154
45189	221.59	222.72	GDIO	CORE	0.092	0.105
45190	222.72	222.72	HSLT	MoS-1	0.012	0.065
45191	222.72	224.64	HSLT	CORE	0.049	0.152
45192	224.64	227.69	HSLT	CORE	0.05	0.15
	1			ANTOLIMITED		-

SAMPLE ID							
45194 229.92 231.54 HSLT CORE 0.049 0.065 45195 231.96 231.96 HSLT CORE 0.049 0.065 45196 231.96 231.96 HSLT BLANK 0.001 0.001 45197 231.96 232.36 GDIO CORE 0.111 0.017 45198 232.36 232.36 HSLT CORE 0.051 0.075 45199 233.78 236.83 HSLT CORE 0.049 0.06 45200 233.78 236.83 HSLT CORE 0.049 0.06 45201 236.83 238.24 HSLT CORE 0.04 0.086 45202 233.24 240.26 GDIO CORE 0.036 0.015 45203 240.26 242.93 HSLT CORE 0.042 0.056 45204 242.93 245.97 HSLT CORE 0.042 0.056 45205 245.97 247.76 HSLT CORE 0.033 0.084 45206 247.76 249.88 GDIO/HSLT CORE 0.033 0.084 45208 250.79 252.07 HSLT CORE 0.033 0.084 45209 252.07 254.14 HSLT CORE 0.034 0.069 45209 252.07 254.14 HSLT CORE 0.034 0.069 45210 254.14 254.56 GDIO CORE 0.028 0.014 45211 254.14 254.56 GDIO CORE 0.037 0.095 45212 254.56 255.12 HSLT CORE 0.041 0.065 45213 255.17 261.21 HSLT CORE 0.041 0.065 45214 258.17 261.21 HSLT CORE 0.041 0.065 45215 261.21 264.26 HSLT CORE 0.047 0.046 45216 264.26 265.55 HSLT CORE 0.047 0.046 45217 264.26 265.55 HSLT CORE 0.047 0.046 45218 265.57 266.77 GDIO CORE 0.067 0.071 45219 266.77 268.55 HSLT CORE 0.047 0.046 45219 266.77 268.55 HSLT CORE 0.043 0.097 45220 267.70 268.55 HSLT CORE 0.043 0.097 45221 268.55 266.77 GDIO CORE 0.066 0.058 45222 271.11 271.74 HSLT CORE 0.066 0.058 45223 271.74 273 HSLT CORE 0.066 0.058 45224 273 274.32 HSLT CORE 0.066 0.058 45223 271.74 273 HSLT CORE 0.066 0.058 45224 273 274.32 FSLT CORE 0.066 0.056 45233 288.65 291.69 GDIO CORE 0.066 0.058 45234 279.55 277.99	SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45196 231.54 231.96 HSLT BLANK 0.001 0.001 45196 231.96 232.36 GDIO CORE 0.111 0.001 45198 232.36 233.78 HSLT CORE 0.051 0.075 45199 233.78 236.83 HSLT CORE 0.049 0.06 45200 233.78 236.83 HSLT CORE 0.049 0.06 45201 236.83 238.24 HSLT CORE 0.04 0.086 45202 238.24 240.26 GDIO CORE 0.036 0.015 45203 240.26 242.93 HSLT CORE 0.038 0.08 45204 242.93 245.97 HSLT CORE 0.038 0.08 45205 245.97 247.76 HSLT CORE 0.038 0.08 45206 247.76 249.88 GDIO/HSLT CORE 0.030 0.04 45207 249.88 250.79 GDIO CORE 0.038 0.08 45208 250.79 252.07 HSLT CORE 0.038 0.08 45209 252.07 254.14 HSLT CORE 0.030 0.04 45200 254.14 254.14 HSLT CORE 0.030 0.04 45200 255.41 254.14 HSLT CORE 0.030 0.04 45201 254.14 254.14 HSLT CORE 0.037 0.095 45210 254.14 254.15 HSLT CORE 0.037 0.095 45211 254.14 254.56 GDIO CORE 0.067 0.071 45212 254.56 255.12 HSLT CORE 0.041 0.065 45213 255.12 258.17 HSLT CORE 0.047 0.064 45214 258.17 261.21 HSLT CORE 0.047 0.046 45215 261.21 264.26 HSLT CORE 0.047 0.046 45216 264.26 264.26 HSLT CORE 0.047 0.046 45217 266.26 265.55 HSLT CORE 0.047 0.046 45218 265.55 266.77 GDIO CORE 0.065 0.069 45219 266.77 268.55 HSLT CORE 0.064 0.035 45221 268.55 271.11 HSLT CORE 0.066 0.068 45222 271.11 271.74 HSLT CORE 0.066 0.068 45223 271.74 273 HSLT CORE 0.066 0.068 45224 273 274.32 HSLT CORE 0.066 0.068 45223 275.55 277.95 HSLT CORE 0.066 0.068 45223 275.55 277.95 HSLT CORE 0.066 0.068 45233 288.65 291.69 GDIO CORE 0.066 0.066 45233 288.65 291.69 GDIO CORE 0.066 0.066 45233 288.65 291.69	45193	227.69	229.92	HSLT	CORE	0.041	0.24
45196 231.96 231.96 HSLT BLANK 0.001 0.001 45197 231.96 232.36 GDIO CORE 0.111 0.017 45198 232.36 233.78 HSLT CORE 0.049 0.06 45200 233.78 236.83 HSLT CORE 0.049 0.06 45201 236.83 238.24 HSLT CORE 0.04 0.086 45202 238.24 240.26 GDIO CORE 0.036 0.015 45203 240.26 242.93 HSLT CORE 0.040 0.086 45204 242.93 245.97 HSLT CORE 0.042 0.056 45205 245.97 247.76 HSLT CORE 0.033 0.04 45206 247.76 249.88 GDIO/HSLT CORE 0.033 0.04 45207 249.88 250.79 GDIO CORE 0.033 0.04 45208 250.79 252.07 HSLT CORE 0.032 0.014 45209 252.07 254.14 HSLT CORE 0.037 0.069 45210 254.14 254.14 HSLT CORE 0.037 0.095 45211 254.14 254.56 GDIO CORE 0.067 0.071 45212 254.56 255.12 HSLT CORE 0.041 0.065 45213 255.12 258.17 HSLT CORE 0.041 0.065 45214 254.26 41.14 41.15 CORE 0.041 0.065 45215 261.21 264.26 HSLT CORE 0.047 0.046 45216 264.26 264.26 HSLT CORE 0.047 0.046 45217 264.26 265.55 HSLT CORE 0.047 0.046 45218 265.55 266.77 GDIO CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.064 0.035 45210 266.77 268.55 HSLT CORE 0.064 0.035 45212 256.55 266.77 GDIO CORE 0.064 0.035 45213 265.52 266.77 GDIO CORE 0.064 0.035 45214 257.72 258.55 HSLT CORE 0.064 0.036 45215 261.21 264.26 HSLT CORE 0.064 0.036 45216 266.75 268.55 HSLT CORE 0.066 0.069 45223 271.74 273 HSLT CORE 0.060 0.158 45224 268.55 271.11 HSLT CORE 0.066 0.069 45225 274.32 275.95 HSLT CORE 0.066 0.069 45226 275.95 277.29 HSLT CORE 0.066 0.068 45230 286.55 286.55 GDIO CORE 0.066 0.066 45233 286.65 291.69 GDIO CORE 0.066 0.066 45234 291.69	45194	229.92	231.54	HSLT	CORE	0.051	0.408
45197 231.96 232.36 GDIO CORE 0.111 0.017 45198 232.36 233.78 HSLT CORE 0.051 0.075 45199 233.78 236.83 HSLT CORE 0.049 0.06 45200 233.78 236.83 HSLT DUPLICATE 0.03 0.043 45201 236.83 238.24 HSLT CORE 0.04 0.086 45202 238.24 240.26 GDIO CORE 0.036 0.015 45203 240.26 242.93 HSLT CORE 0.042 0.056 45205 245.97 247.76 HSLT CORE 0.033 0.084 45206 247.76 249.88 GDIOHISLT CORE 0.033 0.084 45206 247.76 249.88 GDIOHISLT CORE 0.033 0.044 45208 250.79 252.07 HSLT CORE 0.033 0.044 45209 252.07 254.14 HSLT CORE 0.033 0.044 45209 252.07 254.14 HSLT CORE 0.037 0.069 45210 254.14 254.14 HSLT CORE 0.037 0.065 45211 254.14 254.14 HSLT CORE 0.037 0.065 45212 254.56 255.12 HSLT CORE 0.041 0.065 45213 255.12 256.17 HSLT CORE 0.041 0.065 45214 258.17 261.21 HSLT CORE 0.041 0.065 45215 256.12 256.17 HSLT CORE 0.041 0.065 45216 264.26 264.26 HSLT CORE 0.047 0.046 45217 264.26 265.55 HSLT CORE 0.047 0.046 45218 265.55 266.77 GDIO CORE 0.067 0.079 45218 265.55 266.77 GDIO CORE 0.065 0.069 45219 266.77 268.55 HSLT CORE 0.043 0.097 45210 267.72 268.55 HSLT CORE 0.065 0.069 45210 267.72 268.55 HSLT CORE 0.064 0.035 45221 264.26 265.55 HSLT CORE 0.066 0.056 45221 264.26 265.55 HSLT CORE 0.064 0.035 45221 265.55 271.11 HSLT CORE 0.066 0.056 45222 271.11 271.74 HSLT CORE 0.066 0.056 45223 271.74 273 HSLT CORE 0.066 0.056 45224 273 274.32 HSLT CORE 0.066 0.056 45225 274.32 275.95 HSLT CORE 0.066 0.056 45226 275.55 277.29 279.5 GDIO CORE 0.066 0.066 45233 288.65 291.69 GDIO CORE 0.066 0.061	45195	231.54	231.96	HSLT	CORE	0.049	0.065
45198 232.36 233.78 HSLT CORE 0.051 0.075 45199 233.78 236.83 HSLT CORE 0.049 0.06 45200 233.78 236.83 HSLT CORE 0.040 0.081 45201 236.83 238.24 HSLT CORE 0.04 0.086 45202 238.24 240.26 GDIO CORE 0.036 0.015 45203 240.26 242.93 HSLT CORE 0.038 0.08 45204 242.93 245.97 HSLT CORE 0.033 0.084 45206 247.76 249.88 GDIO/HSLT CORE 0.033 0.084 45206 247.76 249.88 GDIO/HSLT CORE 0.033 0.084 45207 249.88 250.79 GDIO CORE 0.028 0.014 45208 250.79 252.07 HSLT CORE 0.037 0.095 45209 252.07 254.14 HSLT CORE 0.037 0.095 45210 254.14 254.14 HSLT CORE 0.037 0.095 45211 254.14 254.15 GDIO CORE 0.0667 0.071 45212 254.56 255.12 HSLT CORE 0.041 0.065 45213 255.12 258.17 HSLT CORE 0.041 0.065 45214 258.17 261.21 HSLT CORE 0.047 0.046 45215 261.21 264.26 HSLT CORE 0.047 0.046 45216 264.26 264.26 HSLT CORE 0.047 0.046 45217 264.26 265.55 HSLT CORE 0.037 0.079 45218 265.55 266.77 GDIO CORE 0.065 0.069 45219 266.77 268.55 HSLT CORE 0.037 0.079 45220 266.77 268.55 HSLT CORE 0.066 0.069 45221 228.55 271.11 HSLT CORE 0.043 0.079 45222 271.11 271.74 HSLT CORE 0.066 0.056 45223 276.75 277.29 HSLT CORE 0.066 0.058 45224 273 274.32 HSLT CORE 0.066 0.058 45225 274.32 275.95 HSLT CORE 0.066 0.058 45226 275.95 277.29 HSLT CORE 0.066 0.068 45227 277.29 279.5 GDIO CORE 0.066 0.061 45227 277.29 279.5 GDIO CORE 0.066 0.061 45228 279.5 277.29 HSLT CORE 0.066 0.061 45229 280.7 282.55 GDIO CORE 0.066 0.061 45230 288.55 285.6 GDIO CORE 0.066 0.061 45233 288.55 285.6 GDIO CORE 0.066 0.061 45233 288.55	45196	231.96	231.96	HSLT	BLANK	0.001	0.001
45199	45197	231.96	232.36	GDIO	CORE	0.111	0.017
45200	45198	232.36	233.78	HSLT	CORE	0.051	0.075
45201 236.83 238.24 HSLT CORE 0.04 0.086 45202 238.24 240.26 GDIO CORE 0.036 0.015 45203 240.26 242.93 HSLT CORE 0.038 0.08 45204 242.93 245.97 HSLT CORE 0.042 0.056 45205 245.97 247.76 HSLT CORE 0.033 0.084 45206 247.76 249.88 GDIO/HSLT CORE 0.03 0.04 45207 249.88 250.79 GDIO CORE 0.028 0.014 45207 249.88 250.79 EDIO CORE 0.037 0.095 45209 252.07 254.14 HSLT CORE 0.037 0.095 45210 254.14 254.14 HSLT CORE 0.037 0.095 45210 254.14 254.14 HSLT CORE 0.067 0.071 45211 254.15 GDIO CORE 0.067 0.071 45213 255.12 258.17 HSLT CORE 0.041 0.065 45213 255.12 258.17 HSLT CORE 0.043 0.097 45214 258.17 261.21 HSLT CORE 0.047 0.046 45215 261.21 264.26 HSLT CORE 0.037 0.079 45216 264.26 264.26 HSLT CORE 0.047 0.046 45217 264.26 265.55 HSLT CORE 0.065 0.069 45218 265.55 266.77 GDIO CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.044 0.035 45219 266.77 268.55 HSLT CORE 0.044 0.035 45212 268.55 271.11 HSLT CORE 0.044 0.035 45222 271.11 271.74 HSLT CORE 0.048 0.074 45223 271.74 273 HSLT CORE 0.046 0.158 45223 271.74 273 HSLT CORE 0.066 0.158 45223 271.74 273 HSLT CORE 0.060 0.158 45224 273 274.32 HSLT CORE 0.060 0.158 45224 275.95 277.29 HSLT CORE 0.060 0.158 45224 275.95 277.29 HSLT CORE 0.066 0.158 45227 277.29 279.5 GDIO CORE 0.066 0.056 0.056 45230 285.5 285.55 GDIO CORE 0.066 0.056 45230 285.5 285.55 GDIO CORE 0.066 0.066 45230 285.55 285.55 GDIO CORE 0.0	45199	233.78	236.83	HSLT	CORE	0.049	0.06
45202 238.24 240.26 GDIO CORE 0.036 0.015 45203 240.26 242.93 HSLT CORE 0.038 0.08 45204 242.93 245.97 HSLT CORE 0.042 0.056 45205 245.97 247.76 HSLT CORE 0.03 0.04 45206 247.76 249.88 GDIO/HSLT CORE 0.03 0.04 45207 249.88 250.79 GDIO CORE 0.028 0.014 45208 250.07 254.14 HSLT CORE 0.037 0.095 45209 252.07 254.14 HSLT CORE 0.037 0.095 45211 254.14 254.16 HSLT CORE 0.067 0.071 45212 254.56 255.12 HSLT CORE 0.067 0.071 45212 254.26 255.12 HSLT CORE 0.041 0.065 45213 256.12	45200	233.78	236.83	HSLT	DUPLICATE	0.03	0.043
45203 240.26 242.93 HSLT CORE 0.038 0.08 45204 242.93 245.97 HSLT CORE 0.042 0.056 45205 245.97 247.76 HSLT CORE 0.033 0.084 45206 247.76 249.88 GDIO/HSLT CORE 0.03 0.04 45207 249.88 250.79 GDIO CORE 0.028 0.014 45208 250.79 252.07 HSLT CORE 0.034 0.069 45209 252.07 254.14 HSLT CORE 0.037 0.095 45210 254.14 254.14 HSLT MoS-1 0.012 0.063 45211 254.14 254.56 GDIO CORE 0.047 0.061 45212 254.56 255.12 HSLT CORE 0.041 0.065 45213 255.12 258.17 HSLT CORE 0.041 0.065 45214 258.17 261.21 HSLT CORE 0.047 0.046 45215 261.21 264.26 HSLT CORE 0.047 0.046 45216 264.26 264.26 HSLT CORE 0.037 0.079 45218 265.55 266.77 GDIO CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.043 0.055 45220 266.77 268.55 HSLT CORE 0.044 0.035 45221 268.55 271.11 HSLT CORE 0.044 0.035 45222 271.11 271.74 HSLT CORE 0.043 0.079 45223 271.74 273 HSLT CORE 0.043 0.079 45224 273 274.32 HSLT CORE 0.043 0.079 45225 274.32 275.95 HSLT CORE 0.043 0.079 45226 275.95 277.29 HSLT CORE 0.066 0.138 45229 280.7 282.55 GDIO CORE 0.066 0.061 45227 277.29 279.5 GDIO CORE 0.066 0.061 45233 282.55 282.55 GDIO CORE 0.066 0.056 45234 291.50 282.55 GDIO CORE 0.066 0.056 45233 288.65 291.69 GDIO CORE 0.066 0.061 45234 291.69 293.05 GDIO CORE 0.062 0.033 45235 293.05 294.74 GDIO CORE 0.062 0.034 45234 291.69 293.05 GDIO CORE 0.062 0.034 45234 291.69 293.05 GDIO CORE 0.068 0.056 45235 293.05 294.74 GDIO CORE 0.068 0.056 45236 294.74 297.79 GDIO CORE 0.068 0.056 45238 297.79 300.84 GDIO CORE 0.068 0.056 45242 307.27 30	45201	236.83	238.24	HSLT	CORE	0.04	0.086
45204 242.93 245.97 HSLT CORE 0.042 0.056 45205 245.97 247.76 HSLT CORE 0.033 0.084 45206 247.76 249.88 GDIO/HSLT CORE 0.028 0.014 45207 249.88 250.79 GDIO CORE 0.028 0.014 45208 250.79 252.07 HSLT CORE 0.037 0.069 45210 252.14 254.14 HSLT CORE 0.037 0.095 45211 254.14 254.14 HSLT CORE 0.067 0.071 45211 254.14 254.56 GDIO CORE 0.067 0.071 45212 254.56 255.12 HSLT CORE 0.041 0.065 45213 255.12 258.17 HSLT CORE 0.047 0.046 45214 258.17 261.21 HSLT CORE 0.037 0.079 45216 264.26	45202	238.24	240.26	GDIO	CORE	0.036	0.015
45205 245.97 247.76 HSLT CORE 0.033 0.084 45206 247.76 249.88 GDIO/HSLT CORE 0.03 0.04 45207 249.88 250.79 GDIO CORE 0.028 0.014 45208 250.79 252.07 HSLT CORE 0.037 0.095 45210 254.14 254.14 HSLT CORE 0.037 0.095 45211 254.14 254.56 GDIO CORE 0.067 0.071 45212 254.55 255.12 HSLT CORE 0.041 0.065 45213 255.12 258.17 HSLT CORE 0.041 0.065 45214 254.26 HSLT CORE 0.047 0.046 45215 261.21 264.26 HSLT CORE 0.047 0.046 45215 261.21 264.26 HSLT CORE 0.037 0.079 45216 264.26 264.26 HSLT CORE 0.037 0.079 45216 264.26 265.55 HSLT CORE 0.065 0.069 45218 265.55 266.77 GDIO CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.038 0.258 45220 266.77 268.55 HSLT CORE 0.038 0.258 45221 268.55 271.11 HSLT CORE 0.043 0.079 45222 271.11 271.74 HSLT CORE 0.066 0.158 45223 271.74 273 HSLT CORE 0.066 0.158 45224 273 274.32 HSLT CORE 0.066 0.138 45224 273 274.32 HSLT CORE 0.066 0.064 45224 273 274.32 HSLT CORE 0.066 0.064 45224 273 274.32 HSLT CORE 0.066 0.068 0.056 45229 280.7 282.55 GDIO CORE 0.066 0.056 0.062 45229 280.7 282.55 GDIO CORE 0.066 0.056 45230 282.55 285.6 GDIO CORE 0.066 0.056 45231 282.55 285.6 GDIO CORE 0.066 0.056 45233 288.65 291.69 GDIO CORE 0.066 0.061 45233 288.65 291.69 GDIO CORE 0.066 0.061 45234 291.69 293.05 GDIO CORE 0.066 0.061 45235 293.05 GDIO CORE 0.066 0.061 45235 293.05 GDIO CORE 0.066 0.061 45234 291.69 293.05 GDIO CORE 0.066 0.061 45234 291.69 293.05 GDIO CORE 0.066 0.061 45234 291.69 293.05 GDIO CORE 0.068 0.056 0.056 45240 300.84 303.89 GDIO CORE 0.068 0.056 0.056 45243 309.98 311.22 HSLT CORE	45203	240.26	242.93	HSLT	CORE	0.038	0.08
45206 247.76 249.88 GDIO/HSLT CORE 0.03 0.04 45207 249.88 250.79 GDIO CORE 0.028 0.014 45208 250.79 252.07 HSLT CORE 0.034 0.069 45209 252.07 254.14 HSLT CORE 0.037 0.063 45210 254.14 254.14 HSLT MoS-1 0.012 0.063 45211 254.14 254.56 GDIO CORE 0.067 0.071 45212 254.56 255.12 HSLT CORE 0.043 0.097 45213 255.12 258.17 HSLT CORE 0.043 0.097 45214 258.17 261.21 HSLT CORE 0.047 0.046 45214 258.17 261.21 HSLT CORE 0.047 0.046 45217 264.26 265.55 HSLT CORE 0.065 0.069 45218 265.55	45204	242.93	245.97	HSLT	CORE	0.042	0.056
45207 249.88 250.79 GDIO CORE 0.028 0.014 45208 250.79 252.07 HSLT CORE 0.034 0.069 45209 252.07 254.14 HSLT CORE 0.037 0.095 45210 254.14 254.14 HSLT MoS-1 0.012 0.063 45211 254.14 254.56 GDIO CORE 0.067 0.071 45212 254.56 255.12 HSLT CORE 0.041 0.065 45213 255.12 258.17 HSLT CORE 0.043 0.097 45214 258.17 261.21 HSLT CORE 0.047 0.046 45215 261.21 264.26 HSLT CORE 0.037 0.079 45216 264.26 264.26 HSLT CORE 0.037 0.079 45217 264.26 265.55 HSLT CORE 0.065 0.066 45218 265.55 266.77 GDIO CORE 0.066 0.066 45219 266.77 268.55 HSLT CORE 0.038 0.258 45220 266.77 268.55 HSLT CORE 0.043 0.079 45221 268.55 271.11 HSLT CORE 0.043 0.079 45222 271.11 271.74 HSLT CORE 0.060 0.158 45223 271.74 273 HSLT CORE 0.060 0.138 45224 273 274.32 HSLT CORE 0.066 0.082 45225 274.32 275.95 HSLT CORE 0.066 0.082 45226 275.95 277.29 HSLT CORE 0.068 0.153 45227 277.5 280.7 GDIO CORE 0.066 0.062 45231 282.55 282.55 GDIO CORE 0.066 0.056 45232 285.6 288.65 GDIO CORE 0.066 0.056 45233 288.65 291.69 GDIO CORE 0.066 0.056 45234 291.69 293.05 GDIO CORE 0.066 0.061 45237 294.74 294.74 GDIO GORE 0.061 0.013 45238 297.79 300.84 GDIO CORE 0.031 0.017 45238 297.79 300.84 GDIO CORE 0.068 0.051 45239 300.84 303.89 GDIO CORE 0.068 0.056 45240 300.84 303.89 GDIO CORE 0.068 0.051 45241 303.89 307.27 GDIO CORE 0.068 0.056 45242 307.27 309.88 HSLT/GDIO CORE 0.052 0.053 45243 309.98 311.22 HSLT CORE 0.059 0.129 45243 309.98 311.22 HSLT CORE 0.059 0.129 45243 309.98 311.22 HSLT CORE 0.059 0.129 45243 309.98	45205	245.97	247.76	HSLT	CORE	0.033	0.084
45208 250.79 252.07 HSLT CORE 0.034 0.069 45209 252.07 254.14 HSLT CORE 0.037 0.095 45210 254.14 254.56 GDIO CORE 0.067 0.071 45211 254.14 254.56 GDIO CORE 0.041 0.063 45212 254.56 255.12 HSLT CORE 0.041 0.065 45213 255.12 258.17 HSLT CORE 0.047 0.046 45213 255.12 261.21 HSLT CORE 0.047 0.046 45215 261.21 264.26 HSLT CORE 0.037 0.079 45216 264.26 264.26 HSLT CORE 0.065 0.069 45217 264.26 265.55 HSLT CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.064 0.035 45219 268.55	45206	247.76	249.88	GDIO/HSLT	CORE	0.03	0.04
45209 252.07 254.14 HSLT CORE 0.037 0.095 45210 254.14 254.14 HSLT MoS-1 0.012 0.063 45211 254.14 254.56 GDIO CORE 0.067 0.071 45212 254.56 255.12 HSLT CORE 0.043 0.097 45213 255.12 258.17 HSLT CORE 0.047 0.046 45214 258.17 261.21 HSLT CORE 0.047 0.046 45215 261.21 264.26 HSLT CORE 0.037 0.079 45216 264.26 264.26 HSLT CORE 0.065 0.069 45218 265.55 266.77 GB.55 HSLT CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.064 0.035 45220 266.77 268.55 HSLT CORE 0.043 0.079 45221	45207	249.88	250.79	GDIO	CORE	0.028	0.014
45209 252.07 254.14 HSLT CORE 0.037 0.095 45210 254.14 254.14 HSLT MoS-1 0.012 0.063 45211 254.14 254.56 GDIO CORE 0.067 0.071 45212 254.56 255.12 HSLT CORE 0.043 0.097 45213 255.12 258.17 HSLT CORE 0.047 0.046 45213 255.12 261.21 HSLT CORE 0.047 0.046 45215 261.21 264.26 HSLT CORE 0.037 0.079 45216 264.26 264.26 HSLT CORE 0.065 0.069 45218 265.55 266.77 GBIO CORE 0.064 0.033 45219 266.77 268.55 HSLT CORE 0.064 0.035 45221 268.55 271.11 HSLT CORE 0.043 0.079 45222 271.14	45208	250.79	252.07	HSLT	CORE	0.034	0.069
45210 254.14 254.14 HSLT MoS-1 0.012 0.063 45211 254.14 254.56 GDIO CORE 0.067 0.071 45212 254.56 255.12 HSLT CORE 0.041 0.065 45213 255.12 258.17 HSLT CORE 0.047 0.046 45214 258.17 261.21 HSLT CORE 0.047 0.046 45215 261.21 264.26 HSLT CORE 0.037 0.079 45216 264.26 264.26 HSLT CORE 0.065 0.069 45218 265.55 266.77 GDIO CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.043 0.079 45221 268.55							
45211 254.14 254.56 GDIO CORE 0.067 0.071 45212 254.56 255.12 HSLT CORE 0.041 0.065 45213 255.12 258.17 HSLT CORE 0.047 0.046 45214 258.17 261.21 HSLT CORE 0.037 0.079 45216 264.26 264.26 HSLT CORE 0.037 0.079 45216 264.26 264.26 HSLT CORE 0.065 0.069 45217 264.26 265.55 HSLT CORE 0.064 0.035 45218 265.55 266.77 GDIO CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.064 0.035 45221 268.55 271.11 HSLT CORE 0.043 0.079 45222 271.11 271.74 HSLT CORE 0.043 0.079 45222 271.11						0.012	
45212 254.56 255.12 HSLT CORE 0.041 0.065 45213 255.12 258.17 HSLT CORE 0.043 0.097 45214 258.17 261.21 HSLT CORE 0.047 0.046 45215 261.21 264.26 HSLT CORE 0.037 0.079 45216 264.26 264.26 HSLT BLANK 0.001 0 45217 264.26 265.55 HSLT CORE 0.065 0.069 45218 265.55 266.77 GDIO CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.064 0.035 45221 268.55 271.11 HSLT CORE 0.043 0.079 45222 271.11 271.74 HSLT CORE 0.06 0.138 45223 271.74							
45213 255.12 258.17 HSLT CORE 0.043 0.097 45214 258.17 261.21 HSLT CORE 0.047 0.046 45215 261.21 264.26 HSLT CORE 0.037 0.079 45216 264.26 264.26 HSLT BLANK 0.001 0 45217 264.26 265.55 HSLT CORE 0.065 0.069 45218 265.55 266.77 GDIO CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.038 0.258 45221 266.55 271.11 HSLT CORE 0.043 0.079 45220 266.77 268.55 HSLT CORE 0.043 0.079 45221 268.55 271.11 HSLT CORE 0.043 0.079 45221 268.55 271.74 HSLT CORE 0.06 0.138 45222 271.74						-	
45214 258.17 261.21 HSLT CORE 0.047 0.046 45215 261.21 264.26 HSLT CORE 0.037 0.079 45216 264.26 264.26 HSLT BLANK 0.001 0 45217 264.26 265.55 HSLT CORE 0.065 0.069 45218 265.55 266.77 GDIO CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.064 0.035 45220 266.77 268.55 HSLT CORE 0.06 0.158 45221 268.55 271.11 HSLT CORE 0.043 0.079 45222 271.11 271.74 HSLT CORE 0.06 0.138 45223 271.74 273 HSLT CORE 0.06 0.138 45224 273 274.32 HSLT CORE 0.06 0.138 45225 274.32 275.95 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>						-	
45215 261.21 264.26 HSLT CORE 0.037 0.079 45216 264.26 264.26 HSLT BLANK 0.001 0 45217 264.26 265.55 HSLT CORE 0.065 0.069 45218 265.55 266.77 GDIO CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.064 0.035 45220 266.77 268.55 HSLT DUPLICATE 0.06 0.158 45221 268.55 271.11 HSLT CORE 0.043 0.079 45222 271.11 271.74 HSLT CORE 0.06 0.138 45223 271.74 273 HSLT CORE 0.06 0.138 45224 273 274.32 HSLT CORE 0.056 0.082 45225 274.32 275.95 HSLT CORE 0.068 0.153 45226 275.95 277						-	
45216 264.26 264.26 HSLT BLANK 0.001 0 45217 264.26 265.55 HSLT CORE 0.065 0.069 45218 265.55 266.77 GDIO CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.038 0.258 45220 266.77 268.55 HSLT DUPLICATE 0.06 0.158 45221 268.55 271.11 HSLT CORE 0.043 0.079 45222 271.11 271.74 HSLT CORE 0.06 0.138 45223 271.74 273 HSLT CORE 0.06 0.138 45224 273 274.32 HSLT CORE 0.056 0.082 45225 274.32 275.95 HSLT CORE 0.068 0.153 45226 275.95 277.29 HSLT CORE 0.068 0.153 45227 277.29 279						-	
45217 264.26 265.55 HSLT CORE 0.065 0.069 45218 265.55 266.77 GDIO CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.038 0.258 45220 266.77 268.55 HSLT DUPLICATE 0.06 0.158 45221 268.55 271.11 HSLT CORE 0.043 0.079 45222 271.11 271.74 HSLT CORE 0.06 0.138 45223 271.74 273 HSLT CORE 0.06 0.138 45224 273 274.32 HSLT CORE 0.074 0.264 45224 273 274.32 HSLT CORE 0.056 0.082 45225 274.32 275.95 HSLT CORE 0.068 0.153 45226 275.95 277.29 HSLT CORE 0.004 0.027 45228 279.5 280.						-	
45218 265.55 266.77 GDIO CORE 0.064 0.035 45219 266.77 268.55 HSLT CORE 0.038 0.258 45220 266.77 268.55 HSLT DUPLICATE 0.06 0.158 45221 268.55 271.11 HSLT CORE 0.06 0.138 45222 271.11 271.74 HSLT CORE 0.06 0.138 45223 271.74 273 HSLT CORE 0.074 0.264 45224 273 274.32 HSLT CORE 0.056 0.082 45225 274.32 275.95 HSLT CORE 0.068 0.153 45226 275.95 277.29 HSLT CORE 0.068 0.153 45227 277.29 279.5 GDIO CORE 0.047 0.027 45228 279.5 280.7 GDIO CORE 0.047 0.02 45230 282.55 282.						-	
45219 266.77 268.55 HSLT CORE 0.038 0.258 45220 266.77 268.55 HSLT DUPLICATE 0.06 0.158 45221 268.55 271.11 HSLT CORE 0.043 0.079 45222 271.11 271.74 HSLT CORE 0.06 0.138 45223 271.74 273 HSLT CORE 0.074 0.264 45224 273 274.32 HSLT CORE 0.056 0.082 45225 274.32 275.95 HSLT CORE 0.068 0.153 45226 275.95 277.29 HSLT CORE 0.068 0.153 45227 277.29 279.5 GDIO CORE 0.074 0.027 45228 279.5 280.7 GDIO CORE 0.047 0.02 45229 280.7 282.55 GDIO CORE 0.066 0.056 45231 282.55 282.						-	
45220 266.77 268.55 HSLT DUPLICATE 0.06 0.158 45221 268.55 271.11 HSLT CORE 0.043 0.079 45222 271.11 271.74 HSLT CORE 0.06 0.138 45223 271.74 273 HSLT CORE 0.056 0.082 45224 273 274.32 HSLT CORE 0.056 0.082 45225 274.32 275.95 HSLT CORE 0.068 0.153 45226 275.95 277.29 HSLT CORE 0.068 0.153 45226 275.95 277.29 HSLT CORE 0.074 0.027 45228 279.5 GDIO CORE 0.047 0.027 45228 279.5 280.7 GDIO CORE 0.047 0.02 45229 280.7 282.55 GDIO CORE 0.066 0.056 45231 282.55 282.55 GDIO						-	
45221 268.55 271.11 HSLT CORE 0.043 0.079 45222 271.11 271.74 HSLT CORE 0.06 0.138 45223 271.74 273 HSLT CORE 0.074 0.264 45224 273 274.32 HSLT CORE 0.056 0.082 45225 274.32 275.95 HSLT CORE 0.068 0.153 45226 275.95 277.29 HSLT CORE 0.109 0.166 45227 277.29 279.5 GDIO CORE 0.074 0.027 45228 279.5 280.7 GDIO CORE 0.047 0.02 45229 280.7 282.55 GDIO CORE 0.066 0.056 45230 282.55 282.55 GDIO CORE 0.052 0.053 45231 282.55 285.6 GDIO CORE 0.066 0.061 45232 285.6 288.65 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>						-	
45222 271.11 271.74 HSLT CORE 0.06 0.138 45223 271.74 273 HSLT CORE 0.074 0.264 45224 273 274.32 HSLT CORE 0.056 0.082 45225 274.32 275.95 HSLT CORE 0.068 0.153 45226 275.95 277.29 HSLT CORE 0.109 0.166 45227 277.29 279.5 GDIO CORE 0.074 0.027 45228 279.5 280.7 GDIO CORE 0.047 0.02 45229 280.7 282.55 GDIO CORE 0.066 0.056 45230 282.55 282.55 GDIO CORE 0.052 0.053 45231 282.55 285.6 GDIO CORE 0.066 0.061 45232 285.6 288.65 GDIO CORE 0.062 0.034 45233 288.65 291.69 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>						-	
45223 271.74 273 HSLT CORE 0.074 0.264 45224 273 274.32 HSLT CORE 0.056 0.082 45225 274.32 275.95 HSLT CORE 0.068 0.153 45226 275.95 277.29 HSLT CORE 0.109 0.166 45227 277.29 279.5 GDIO CORE 0.074 0.027 45228 279.5 280.7 GDIO CORE 0.047 0.02 45229 280.7 282.55 GDIO CORE 0.066 0.056 45230 282.55 282.55 GDIO CORE 0.066 0.056 45231 282.55 285.6 GDIO CORE 0.052 0.053 45232 285.6 288.65 GDIO CORE 0.066 0.061 45233 288.65 291.69 GDIO CORE 0.062 0.038 45234 291.69 293.05 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>						-	
45224 273 274.32 HSLT CORE 0.056 0.082 45225 274.32 275.95 HSLT CORE 0.068 0.153 45226 275.95 277.29 HSLT CORE 0.109 0.166 45227 277.29 279.5 GDIO CORE 0.047 0.027 45228 279.5 280.7 GDIO CORE 0.047 0.02 45229 280.7 282.55 GDIO CORE 0.066 0.056 45230 282.55 282.55 GDIO CORE 0.066 0.053 45231 282.55 285.6 GDIO CORE 0.052 0.053 45232 285.6 288.65 GDIO CORE 0.066 0.061 45233 288.65 291.69 GDIO CORE 0.062 0.034 45234 291.69 293.05 GDIO CORE 0.062 0.038 45235 293.05 294.74							
45225 274.32 275.95 HSLT CORE 0.068 0.153 45226 275.95 277.29 HSLT CORE 0.109 0.166 45227 277.29 279.5 GDIO CORE 0.074 0.027 45228 279.5 280.7 GDIO CORE 0.047 0.02 45229 280.7 282.55 GDIO CORE 0.066 0.056 45230 282.55 282.55 GDIO MoS-1 0.013 0.063 45231 282.55 285.6 GDIO CORE 0.052 0.053 45232 285.6 288.65 GDIO CORE 0.066 0.061 45233 288.65 291.69 GDIO CORE 0.062 0.034 45234 291.69 293.05 GDIO CORE 0.062 0.038 45235 293.05 294.74 GDIO CORE 0.062 0.038 45235 294.74 29							
45226 275.95 277.29 HSLT CORE 0.109 0.166 45227 277.29 279.5 GDIO CORE 0.074 0.027 45228 279.5 280.7 GDIO CORE 0.047 0.02 45229 280.7 282.55 GDIO CORE 0.066 0.056 45230 282.55 282.55 GDIO MoS-1 0.013 0.063 45231 282.55 285.6 GDIO CORE 0.052 0.053 45232 285.6 288.65 GDIO CORE 0.066 0.061 45233 288.65 291.69 GDIO CORE 0.062 0.034 45234 291.69 293.05 GDIO CORE 0.062 0.038 45235 293.05 294.74 GDIO CORE 0.062 0.038 45235 293.05 294.74 GDIO BLANK 0.001 0 45237 294.74 297.7						-	
45227 277.29 279.5 GDIO CORE 0.074 0.027 45228 279.5 280.7 GDIO CORE 0.047 0.02 45229 280.7 282.55 GDIO CORE 0.066 0.056 45230 282.55 282.55 GDIO MoS-1 0.013 0.063 45231 282.55 285.6 GDIO CORE 0.052 0.053 45232 285.6 288.65 GDIO CORE 0.066 0.061 45233 288.65 291.69 GDIO CORE 0.062 0.034 45234 291.69 293.05 GDIO CORE 0.062 0.038 45235 293.05 294.74 GDIO CORE 0.062 0.038 45235 293.05 294.74 GDIO CORE 0.031 0.017 45236 294.74 294.74 GDIO CORE 0.03 0.029 45238 297.79 300							
45228 279.5 280.7 GDIO CORE 0.047 0.02 45229 280.7 282.55 GDIO CORE 0.066 0.056 45230 282.55 282.55 GDIO MoS-1 0.013 0.063 45231 282.55 285.6 GDIO CORE 0.052 0.053 45232 285.6 288.65 GDIO CORE 0.066 0.061 45233 288.65 291.69 GDIO CORE 0.012 0.034 45234 291.69 293.05 GDIO CORE 0.062 0.038 45234 291.69 293.05 GDIO CORE 0.062 0.038 45235 293.05 294.74 GDIO CORE 0.031 0.017 45236 294.74 294.74 GDIO BLANIK 0.001 0 45237 294.74 297.79 GDIO CORE 0.048 0.017 45238 297.79 300							
45229 280.7 282.55 GDIO CORE 0.066 0.056 45230 282.55 282.55 GDIO MoS-1 0.013 0.063 45231 282.55 285.6 GDIO CORE 0.052 0.053 45232 285.6 288.65 GDIO CORE 0.066 0.061 45233 288.65 291.69 GDIO CORE 0.112 0.034 45234 291.69 293.05 GDIO CORE 0.062 0.038 45234 291.69 293.05 GDIO CORE 0.062 0.038 45234 291.69 293.05 GDIO CORE 0.062 0.038 45235 293.05 291.09 CORE 0.031 0.017 45236 294.74 294.74 GDIO BLANK 0.001 0 45237 294.74 297.79 GDIO CORE 0.048 0.017 45238 297.79 300.84 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></td<>						-	
45230 282.55 282.55 GDIO MoS-1 0.013 0.063 45231 282.55 285.6 GDIO CORE 0.052 0.053 45232 285.6 288.65 GDIO CORE 0.066 0.061 45233 288.65 291.69 GDIO CORE 0.112 0.034 45234 291.69 293.05 GDIO CORE 0.062 0.038 45235 293.05 294.74 GDIO CORE 0.031 0.017 45236 294.74 294.74 GDIO BLANK 0.001 0 45237 294.74 297.79 GDIO CORE 0.03 0.029 45238 297.79 300.84 GDIO CORE 0.048 0.017 45239 300.84 303.89 GDIO CORE 0.068 0.056 45240 300.84 303.89 GDIO DUPLICATE 0.06 0.038 45241 303.89 <							
45231 282.55 285.6 GDIO CORE 0.052 0.053 45232 285.6 288.65 GDIO CORE 0.066 0.061 45233 288.65 291.69 GDIO CORE 0.112 0.034 45234 291.69 293.05 GDIO CORE 0.062 0.038 45235 293.05 294.74 GDIO CORE 0.031 0.017 45236 294.74 294.74 GDIO BLANK 0.001 0 45237 294.74 297.79 GDIO CORE 0.03 0.029 45238 297.79 300.84 GDIO CORE 0.048 0.017 45239 300.84 303.89 GDIO CORE 0.068 0.056 45240 300.84 303.89 GDIO DUPLICATE 0.06 0.038 45241 303.89 307.27 GDIO CORE 0.025 0.034 45242 307.27 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>						-	
45232 285.6 288.65 GDIO CORE 0.066 0.061 45233 288.65 291.69 GDIO CORE 0.112 0.034 45234 291.69 293.05 GDIO CORE 0.062 0.038 45235 293.05 294.74 GDIO CORE 0.031 0.017 45236 294.74 294.74 GDIO BLANK 0.001 0 45237 294.74 297.79 GDIO CORE 0.03 0.029 45238 297.79 300.84 GDIO CORE 0.048 0.017 45239 300.84 303.89 GDIO CORE 0.068 0.056 45240 300.84 303.89 GDIO DUPLICATE 0.06 0.038 45241 303.89 307.27 GDIO CORE 0.025 0.034 45242 307.27 309.98 HSLT/GDIO CORE 0.044 0.155 45243 309.98						-	
45233 288.65 291.69 GDIO CORE 0.112 0.034 45234 291.69 293.05 GDIO CORE 0.062 0.038 45235 293.05 294.74 GDIO CORE 0.031 0.017 45236 294.74 294.74 GDIO BLANK 0.001 0 45237 294.74 297.79 GDIO CORE 0.03 0.029 45238 297.79 300.84 GDIO CORE 0.048 0.017 45239 300.84 303.89 GDIO CORE 0.068 0.056 45240 300.84 303.89 GDIO DUPLICATE 0.06 0.038 45241 303.89 307.27 GDIO CORE 0.025 0.034 45242 307.27 309.98 HSLT/GDIO CORE 0.044 0.155 45243 309.98 311.22 HSLT CORE 0.044 0.155						-	
45234 291.69 293.05 GDIO CORE 0.062 0.038 45235 293.05 294.74 GDIO CORE 0.031 0.017 45236 294.74 294.74 GDIO BLANK 0.001 0 45237 294.74 297.79 GDIO CORE 0.03 0.029 45238 297.79 300.84 GDIO CORE 0.048 0.017 45239 300.84 303.89 GDIO CORE 0.068 0.056 45240 300.84 303.89 GDIO DUPLICATE 0.06 0.038 45241 303.89 307.27 GDIO CORE 0.025 0.034 45242 307.27 309.98 HSLT/GDIO CORE 0.059 0.129 45243 309.98 311.22 HSLT CORE 0.044 0.155						-	
45235 293.05 294.74 GDIO CORE 0.031 0.017 45236 294.74 294.74 GDIO BLANK 0.001 0 45237 294.74 297.79 GDIO CORE 0.03 0.029 45238 297.79 300.84 GDIO CORE 0.048 0.017 45239 300.84 303.89 GDIO CORE 0.068 0.056 45240 300.84 303.89 GDIO DUPLICATE 0.06 0.038 45241 303.89 307.27 GDIO CORE 0.025 0.034 45242 307.27 309.98 HSLT/GDIO CORE 0.059 0.129 45243 309.98 311.22 HSLT CORE 0.044 0.155						-	
45236 294.74 294.74 GDIO BLANK 0.001 0 45237 294.74 297.79 GDIO CORE 0.03 0.029 45238 297.79 300.84 GDIO CORE 0.048 0.017 45239 300.84 303.89 GDIO CORE 0.068 0.056 45240 300.84 303.89 GDIO DUPLICATE 0.06 0.038 45241 303.89 307.27 GDIO CORE 0.025 0.034 45242 307.27 309.98 HSLT/GDIO CORE 0.059 0.129 45243 309.98 311.22 HSLT CORE 0.044 0.155						-	
45237 294.74 297.79 GDIO CORE 0.03 0.029 45238 297.79 300.84 GDIO CORE 0.048 0.017 45239 300.84 303.89 GDIO CORE 0.068 0.056 45240 300.84 303.89 GDIO DUPLICATE 0.06 0.038 45241 303.89 307.27 GDIO CORE 0.025 0.034 45242 307.27 309.98 HSLT/GDIO CORE 0.059 0.129 45243 309.98 311.22 HSLT CORE 0.044 0.155						-	
45238 297.79 300.84 GDIO CORE 0.048 0.017 45239 300.84 303.89 GDIO CORE 0.068 0.056 45240 300.84 303.89 GDIO DUPLICATE 0.06 0.038 45241 303.89 307.27 GDIO CORE 0.025 0.034 45242 307.27 309.98 HSLT/GDIO CORE 0.059 0.129 45243 309.98 311.22 HSLT CORE 0.044 0.155						-	
45239 300.84 303.89 GDIO CORE 0.068 0.056 45240 300.84 303.89 GDIO DUPLICATE 0.06 0.038 45241 303.89 307.27 GDIO CORE 0.025 0.034 45242 307.27 309.98 HSLT/GDIO CORE 0.059 0.129 45243 309.98 311.22 HSLT CORE 0.044 0.155						-	
45240 300.84 303.89 GDIO DUPLICATE 0.06 0.038 45241 303.89 307.27 GDIO CORE 0.025 0.034 45242 307.27 309.98 HSLT/GDIO CORE 0.059 0.129 45243 309.98 311.22 HSLT CORE 0.044 0.155						-	
45241 303.89 307.27 GDIO CORE 0.025 0.034 45242 307.27 309.98 HSLT/GDIO CORE 0.059 0.129 45243 309.98 311.22 HSLT CORE 0.044 0.155	45239	300.84	303.89	GDIO		0.068	0.056
45242 307.27 309.98 HSLT/GDIO CORE 0.059 0.129 45243 309.98 311.22 HSLT CORE 0.044 0.155	45240	300.84	303.89	GDIO	DUPLICATE	0.06	0.038
45243 309.98 311.22 HSLT CORE 0.044 0.155	45241	303.89	307.27	GDIO	CORE	0.025	0.034
	45242	307.27	309.98	HSLT/GDIO	CORE	0.059	0.129
45244 311.22 313.03 GDIO CORE 0.017 0.048	45243	309.98	311.22	HSLT	CORE	0.044	0.155
	45244	311.22	313.03	GDIO	CORE	0.017	0.048

04454545	_			7.05	2 (21)	(0.1)
SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45245	313.03	316.08	GDIO	CORE	0.033	0.01
45246	316.08	318	HSLT	CORE	0.05	0.125
45247	318	319.13	HSLT	CORE	0.083	0.149
45248	319.13	320.9	HSLT	CORE	0.073	0.076
45249	320.9	322.17	GDIO	CORE	0.033	0.004
45250	322.17	322.17	GDIO	MoS-1	0.013	0.064
45251	322.17	325.22	GDIO	CORE	0.03	0.001
45252	325.22	328.27	GDIO	CORE	0.034	0.001
45253	328.27	331.32	GDIO	CORE	0.031	0.002
45254	331.32	334.37	GDIO	CORE	0.025	0.001
45255	334.37	335.83	GDIO	CORE	0.03	0.005
45256	335.83	335.83	GDIO	BLANK	0.002	0
45257	335.83	337.41	HSLT	CORE	0.047	0.235
45258	337.41	339.25	HSLT	CORE	0.038	0.06
45259	339.25	340.6	GDIO	CORE	0.028	0.006
45260	339.25	340.6	GDIO	DUPLICATE	0.04	0.011
45261	340.6	341.49	HSLT	CORE	0.042	0.112
45262	341.49	342.87	HSLT	CORE	0.046	0.06
45263	342.87	345.28	HSLT	CORE	0.029	0.062
45264	345.28	346.56	GDIO	CORE	0.025	0.011
45265	346.56	348.73	HSLT	CORE	0.036	0.08
45266	348.73	351.24	GDIO	CORE	0.022	0.006
45267	351.24	353.76	GDIO	CORE	0.02	0.001
45268	353.76	354.64	GDIO	CORE	0.029	0.097
45269	354.64	357.62	HSLT	CORE	0.04	0.046
45270	357.62	357.62	HSLT	MoS-1	0.011	0.063
45271	357.62	358.75	GDIO	CORE	0.013	0.011
45272	358.75	361.8	GDIO	CORE	0.01	0.006
45273	361.8	364.85	HSLT	CORE	0.03	0.109
45274	364.85	367.89	HSLT	CORE	0.041	0.105
45275	367.89	370.94	HSLT	CORE	0.048	0.114
45276	370.94	370.94	HSLT	BLANK	0.001	0
45277	370.94	373.99	HSLT	CORE	0.042	0.097
45278	373.99	375.28	HSLT	CORE	0.038	0.064
45279	375.28	377.04	QFP	CORE	0.03	0.013
45280	375.28	377.04	QFP	DUPLICATE	0.07	0.055
45281	377.04	380.09	QFP	CORE	0.071	0.018
45282	380.09	381.69	QFP	CORE	0.025	0.004
45283	381.69	383.13	GDIO	CORE	0.031	0.01
45284	383.13	386.18	GDIO	CORE	0.037	0.005
45285	386.18	387.25	GDIO	CORE	0.022	0.001
45286	387.25	389.23	HSLT	CORE	0.035	0.094
45287	389.23	392.28	GDIO	CORE	0.044	0.035
45288	392.28	395.33	GDIO	CORE	0.061	0.031
45289	395.33	398.38	GDIO	CORE	0.058	0.03
45290	398.38	398.38	GDIO	MoS-1	0.030	0.064
45291	398.38	399.55	GDIO	CORE	0.075	0.014
45292	399.55	400.39	HSLT	CORE	0.073	0.05
45293	400.39	402.96	GDIO	CORE	0.022	0.013
45294	400.39	402.90	GDIO	CORE	0.002	0.008
45294	402.96	404.47	GDIO	CORE	0.057	0.008
				BLANK	-	
45296	407.52	407.52	GDIO	BLAINK	0	0

SAMPLE ID	From	ТО	LITH	TYPE	Cu (%)	Mo(%)
45007	(m)	(m)	0010	0005	0.050	
45297	407.52	409.44	GDIO	CORE	0.059	0.055
45298	409.44	412.4	HSLT	CORE	0.044	0.056
45299	412.4	413.07	HSLT	CORE	0.036	0.01
45300	412.4	413.07	HSLT/GDIO	DUPLICATE	0.04	0.015
45301	413.07	414.32	HSLT	CORE	0.069	0.085
45302	414.32	416.28	GDIO	CORE	0.044	0.068
45303	416.28	419.71	QFP	CORE	0.004	0.002
45304	419.71	422.76	QFP	CORE	0.002	0.001
45305	422.76	425.81	QFP	CORE	0.001	0
45306	425.81	428.85	QFP	CORE	0.001	0
45307	428.85	431.9	QFP	CORE	0.001	0
45308	431.9	434.95	QFP	CORE	0.001	0.001
45309	434.95	438	QFP	CORE	0.001	0
45310	438	438	QFP	MoS-1	0.011	0.063
45311	438	441.05	QFP	CORE	0.001	0
45312	441.05	444.09	QFP	CORE	0.001	0.001
45313	444.09	447.14	QFP	CORE	0.001	0.001
45314	447.14	450.19	QFP	CORE	0.002	0
45315	450.19	450.93	QFP	CORE	0.001	0.001
45316	450.93	450.93	QFP	BLANK	0.001	0
45317	450.93	453.24	GDIO	CORE	0.023	0.049
45318	453.24	456.29	GDIO	CORE	0.014	0.004
45319	456.29	457.8	GDIO	CORE	0.021	0.015
45320	456.29	457.8	GDIO	DUPLICATE	0.01	0
45321	457.8	459.67	GDIO	CORE	0.031	0.028
45322	459.67	460.59	HSLT	CORE	0.113	0.05
45323	460.59	461.5	GDIO	CORE	0.012	0.004
45324	461.5	462.38	HSLT	CORE	0.061	0.08
45325	462.38	465.43	HSLT/GDIO	CORE	0.031	0.036
45326	465.43	468.48	GDIO	CORE	0.026	0.006
45327	468.48	471.53	GDIO	CORE	0.038	0.003
45328	471.53	474.57	GDIO	CORE	0.039	0.007
45329	474.57	477.62	GDIO	CORE	0.032	0.009
45330	477.62	477.62	GDIO	MoS-1	0.012	0.064
45331	477.62	480.67	GDIO	CORE	0.032	0.004
45332	480.67	483.72	GDIO	CORE	0.032	0.000
45332	483.72	486.77	GDIO	CORE	0.021	0.001
45333	486.77	489.81	GDIO	CORE	0.014	0.001
45335	489.81	492.86	GDIO	CORE	0.025	0.009
45336	492.86	492.86	GDIO	BLANK	0.001	0.037
			GDIO	CORE	-	
45337	492.86	495.91 497.56		CORE	0.04	0.023
45338	495.91		GDIO		0.035	0.032
45339	497.56	500.45	HSLT	CORE	0.051	0.127
45340	497.56	500.45	GDIO	DUPLICATE	0.04	0.007
45341	500.45	502.01	GDIO	CORE	0.037	0.033
45342	502.01	505.05	HSLT	CORE	0.033	0.057
45343	505.05	508.1	HSLT	CORE	0.056	0.114
45344	508.1	511.15	HSLT	CORE	0.054	0.12
45345	511.15	514.6	HSLT	CORE	0.073	0.106
45346	514.6	516.22	GDIO	CORE	0.071	0.026
45347	516.22	517.25	HSLT	CORE	0.049	0.117
45348	517.25	520.29	HSLT	CORE	0.048	0.073

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45349	520.29	521.93	HSLT	CORE	0.05	0.064
45350	521.93	521.93	HSLT	MoS-1	0.011	0.061
45351	521.93	524.76	HSLT	CORE	0.073	0.149
45352	524.76	526.39	GDIO	CORE	0.113	0.022
45353	526.39	529.44	GDIO	CORE	0.093	0.028
45354	529.44	530.51	GDIO	CORE	0.097	0.099
45355	530.51	533.04	HSLT	CORE	0.063	0.107
45356	533.04	533.04	GDIO	BLANK	0.001	0
45357	533.04	535.1	GDIO	CORE	0.061	0.013
45358	535.1	537.1	HSLT	CORE	0.052	0.107
45359	537.1	538.58	GDIO	CORE	0.054	0.069
45360	537.1	538.58	GDIO	DUPLICATE	0.06	0.105
45361	538.58	541.63	GDIO	CORE	0.075	0.057
45362	541.63	543.1	GDIO	CORE	0.043	0.022
45363	543.1	544.68	GDIO	CORE	0.067	0.045
45364	544.68	547.73	GDIO	CORE	0.086	0.126
45365	547.73	550.77	GDIO	CORE	0.067	0.068
45366	550.77	553.82	GDIO	CORE	0.062	0.025
45367	553.82	556.87	GDIO	CORE	0.087	0.034
45368	556.87	559.92	GDIO	CORE	0.094	0.088
45369	559.92	562.97	GDIO	CORE	0.106	0.027
45370	562.97	562.97	GDIO	MoS-1	0.011	0.065
45371	562.97	565.4	GDIO	CORE	0.099	0.023
45372	565.4	568.07	QFP	CORE	0.004	0
45373	568.07	569.06	GDIO	CORE	0.058	0.018
45374	569.06	572.11	GDIO	CORE	0.108	0.019
45375	572.11	575.16	GDIO	CORE	0.087	0.04
45376	575.16	575.16	GDIO	BLANK	0.001	0
45377	575.16	578.21	GDIO	CORE	0.089	0.065
45378	578.21	581.25	GDIO	CORE	0.071	0.015
45379	581.25	584.3	GDIO	CORE	0.066	0.028
45380	581.25	584.3	GDIO	DUPLICATE	0.08	0.095

CHU Project - TTM Resources Inc.

Signature:	
	Initials:

CH0606

From To 5.80

5.80

Litho OB

length of casing is 20 feet; casing burned into bedrock 30cm.

STRUCTURES								
From	To	Struct	CA	Strain				

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

From

5.80

0.00

To 10.00

0

Litho HSLT

A dark brown, fine grained, weakly to moderately foliated hornfelsed metasiltstone. The core exhibits a weak to moderate fracturing with broken core throughout interval length. The core also exhibits alteration along fracture surfaces; yellowish to orange ochre coloured weathering. There appears to be at least 3 types of vein sets throughout; with no relationship to genesis of vein sets, the veins observed are; vein1 is a foliation parallel, often boudined white qtz vein with weak % of sulphides; vein2 is a mm scale sulphide rich crosscutting foliation and parallel foliation darker coloured qtz veinlet and vein3 is a white to grey white bull qtz vein commonly orthogonal t.c.a., containing weak to moderate sulphides and often with moly observed as selvages to the vein. On whole, the core is weakly magnetic with rare, but observed magnetite, in bull veining and possibly mm scale veining.

As a quick observation in this first interval of core in CHU-06-06, it appears that the veining is as follows:

Bull veins cut foliation parallel veins

Bull veins cut mm scale veins that are observed both parallel and orthogonal to foliation Parallel foliation veining cuts the boudined veining.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG (CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

				VEINS	S			
Ī	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

5.80 9.99 FOL 30 foliation ranges from 20 - 40 t.c.a.

5.80 10.00 W - - W - - - - - - - hornfelsed meta siltstone with assumed biotite alteration

5.80 10.00 5 100 0 0 3

bull veins with mo selvages
orthogonal t.c.a.; parallel foliation (30
t.c.a.) veins with wk mo and mm
scale veining with lots of mo parallel
and orthogonal to foliation

5.80 10.00 1 MS MO 0.5 CP 0.01 pyrite appears along all fracture

surfaces as smears or ascicular masses and is also observed as euhedral masses within bull veining; as massive pyrite in foliation parallel veining and mm scale veining; Moly appears as selvages to bull veins and rarely as specks within bull veins and Moly also constitutes most of the fill within the mm scale veining (these veins are the

From To 5.80 10.00

Litho HSLT

A dark brown, fine grained, weakly to moderately foliated hornfelsed metasiltstone. The core exhibits a weak to moderate fracturing with broken core throughout interval length. The core also exhibits alteration along fracture surfaces; yellowish to orange ochre coloured weathering. There appears to be at least 3 types of vein sets throughout; with no relationship to genesis of vein sets, the veins observed are; vein1 is a foliation parallel, often boudined white qtz vein with weak % of sulphides; vein2 is a mm scale sulphide rich crosscutting foliation and parallel foliation darker coloured qtz veinlet and vein3 is a white to grey white bull qtz vein commonly orthogonal t.c.a., containing weak to moderate sulphides and often with moly observed as selvages to the vein. On whole, the core is weakly magnetic with rare, but observed magnetite, in bull veining and possibly mm scale veining.

As a quick observation in this first interval of core in CHU-06-06, it appears that the veining is as follows:

Bull veins cut foliation parallel veins

Bull veins cut mm scale veins that are observed both parallel and orthogonal to foliation

Parallel foliation veining cuts the boudined veining.

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

ĺ	MINERALIZATION									
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

richest of the 3 vein sets); Chalcopyrite is only observed in the bull veins and in trace amounts only

9.99 10.00 CON 25 sharp lower contact

From 10.00

To 10.50

Litho GDIO

A short interval of granodiorite with sharp upper and lower contacts. The diorite is moderately siliceous throughout and inundated with very fine micro fractures; it is difficult to see, but perhaps moly along these fractures as they're dark in colour. The diorite is biotite rich, but also contains phlogopite. The phlogopite is brownish in colour, pearly like and has perfect hexagonal crystals. Trapped within this granodiorite dyke is a subrounded cm scale xenolith of metasiltstone. This metasiltstone has a mm scale well defined chill margin and moly around its entire outer rim. So, here we observe the granodiorite stopping the metasiltstone and moly along the siltstones selvage, whereby we have observed moly only along quartz vein selvages. If the moly is on the outside of the stopped xenolith, does this mean that the Moly is derived from the diorite?

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

				VEINS	S			
Ī	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

10.00 10.01 CON 25 sharp upper contact

0 10.50 - - - M - - - - W

Homogenous, biotite rich granodiorite, moderately siliceous

10.00 10.50 0 0 0 0

10.00 10.50 1 DISS MO 0.01

disseminated pyrite t/o with trace only as a selvage to siltstone xenolith

From 10.00

To 10.50

Litho GDIO

> Litho HSLT

(Continued from previous page)

STRUCTURES
From To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

10.01 10.49 MAS S massive granodiorite dyke

10.49 10.50 CON 45 sharp lower contact

From	To
10.50	78.73

Same as upper interval from 5.80 - 10.00m. This interval, though much longer is identical to the top of the hole; dark brown, weakly to moderately foliated, FG, hornfelsed metasiltstone with moderate silica alteration, assumed biotite alteration, episodic lighter brown zones and greenish brown zones (alteration or contact margins from pulses of veining?), and a stronger presence of veining.

Though similar, this interval exhibits an observed sporadic brecciation throughout. The siltstone in these breccia zones contains subrounded to rounded clasts set in a fine grained dark brown to dark green fine grained matrix (weakly magnetic) with mm scale chill or alteration rims along clasts. Pyrite in these ranges from 1% to occasionally 3% massive clots. The zone of brecciation is best recognized between 28.70 - 46.00m; coincident with this zone of brecciation is an increase in veining throughout (all three and possibly 4 vein sets are observed here). Foliation throughout the described interval ranges from 15 - 35 degrees t.c.a. The lower contact is sharp with the underlain granodiorite.

Alteration throughout appears to be that of a hornfelsed contact metamorphic alteration with an assumed biotite alteration lending support to the darker brown colour. Silica is apparent throughout (weak to moderate). Though episodic, a greener, possibly chlorite alteration is observed within the core.

Mineralization throughout this interval is pyrite, rare chalcopyrite, magnetite with very rare pyrrhotite and molybdenite. The pyrite is observed in lesser amounts as FG disseminated, however, much of the observed pyrite is along fracture surfaces as massive ascicular blebs and as massive to ocasionally euhedral clots within the noted veining. The mentioned boudined veining is where it is observed that the pyrite appears to be replacing the boudined quartz, sometimes partially and sometimes completely. Chaclopyrite is rare and observed only within the cm scale qtz veins that cut core orthogonal t.c.a. Moly is observed along the selvages of the cm scale veins, constitutes much of the volume of the mm scale veinlets and is present along selvages and as specks within the boudined vein set. Moly is guestimated upwards of 0.5% on average over length of interval with rare zones whereby the moly may be greater than 0.5%, possibly 0.75 - 1%.

Veining is plentiful throughout the interval, on average 3-5% of the total core with localized zones of upwards to 15%; i.e. 28.70m - 46.00m. Of the vein sets observed, the cm scale orthogonal t.c.a veins and the mm scale veins appear to contain most of the moly percentages, yet at the same time the boudined veins host moly as well, but more sporadically then the aforementioned vein sets, some veins will have moly and some will not.

STRUCTURES							
From To Struct CA S							

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

10.50 28.70 0.5 MS MO 0.2 CP 0.01

MINERALIZATION

To PY% Style Min Min% Min2 M2% Min3 M3%

10.50 28.70 FOL 20 foliation ranges between 15-35 t.c.a; this interval is also blocky throughout 10.50 28.70 3 100 0 0 24 20 mostly mm scale veining parallel foliation; also less frequent, cm scale orthogonal veins

mostly massive blebs of pyrite with rare disseminated; moly is observed but in lesser degrees than its downhole counterpart of this interval and From 10.50 78

*T*o 78.73

Litho HSLT

Same as upper interval from 5.80 - 10.00m. This interval, though much longer is identical to the top of the hole; dark brown, weakly to moderately foliated, FG, hornfelsed metasiltstone with moderate silica alteration, assumed biotite alteration, episodic lighter brown zones and greenish brown zones (alteration or contact margins from pulses of veining?), and a stronger presence of veining.

Though similar, this interval exhibits an observed sporadic brecciation throughout. The siltstone in these breccia zones contains subrounded to rounded clasts set in a fine grained dark brown to dark green fine grained matrix (weakly magnetic) with mm scale chill or alteration rims along clasts. Pyrite in these ranges from 1% to occasionally 3% massive clots. The zone of brecciation is best recognized between 28.70 - 46.00m; coincident with this zone of brecciation is an increase in veining throughout (all three and possibly 4 vein sets are observed here). Foliation throughout the described interval ranges from 15 - 35 degrees t.c.a. The lower contact is sharp with the underlain granodiorite.

Alteration throughout appears to be that of a hornfelsed contact metamorphic alteration with an assumed biotite alteration lending support to the darker brown colour. Silica is apparent throughout (weak to moderate). Though episodic, a greener, possibly chlorite alteration is observed within the core.

Mineralization throughout this interval is pyrite, rare chalcopyrite, magnetite with very rare pyrrhotite and molybdenite. The pyrite is observed in lesser amounts as FG disseminated, however, much of the observed pyrite is along fracture surfaces as massive ascicular blebs and as massive to ocasionally euhedral clots within the noted veining. The mentioned boudined veining is where it is observed that the pyrite appears to be replacing the boudined quartz, sometimes partially and sometimes completely. Chaclopyrite is rare and observed only within the cm scale qtz veins that cut core orthogonal t.c.a. Moly is observed along the selvages of the cm scale veins, constitutes much of the volume of the mm scale veinlets and is present along selvages and as specks within the boudined vein set. Moly is questimated upwards of 0.5% on average over length of interval with rare zones whereby the moly may be greater than 0.5%, possibly 0.75 - 1%.

Veining is plentiful throughout the interval, on average 3-5% of the total core with localized zones of upwards to 15%; i.e. 28.70m - 46.00m. Of the vein sets observed, the cm scale orthogonal t.c.a veins and the mm scale veins appear to contain most of the moly percentages, yet at the same time the boudined veins host moly as well, but more sporadically then the aforementioned vein sets, some veins will have moly and some will not.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	<u>VEINS</u>							
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

chalcopyrite is rare and observed within cm scale qtz veins

10.50 78.73 - - VW W - - - - - M VW weak to moderate silica: assumed biotite and vw to wk chlorite and

pyrite alteration

28.70 46.00 BX 20 W this interval hosts

numerous small (10-20cm) breccias throughout that

increase in veining; chalcopyrite

From 10.50

*T*o 78.73

Litho HSLT

(Continued from previous page)

STRUCTURES							
From	To	Struct	CA	Strain			

core length

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

remains rare and only observed within cm scale qtz veins

46.00 59.00

3 100

0

0 20 20

mostly mm scale veining parallel foliation; also less frequent, cm scale orthogonal veins

46.00 78.72 FOL 20

foliation ranges between 15-35 t.c.a; this interval is also blocky throughout

46.00 78.73 0.5 MS MO 0.3 CP 0.01

pyrite tapers off again to about 0.5% massive with moly present but lesser than the previous interval due to vein density; chalcopyrite continues to be observed in the veins in rare amounts

59.00 72.00

8 100

1

0 9 65

mostly cm scale veins ranging from subparallel to 65 t.c.a

Initials:	
-----------	--

From 10.50 73

*T*o 78.73

Litho HSLT

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIC	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

72.00 78.73 3 100

mostly mm scale veining parallel foliation; also less frequent, cm scale orthogonal veins

0 10 20

78.72 78.73 CON 5 very shallow and sharp t.c.a. lower contact

From 78.73

*T*o 84.63

Litho GDIO

This short interval of Granodiorite is a competent, hard rock with mm scale plagioclase lathes and the occasional, but rare, cm scale lathes. Biotite, phlogopite and muscovite are all observed t/o. Structurally the unit is massive t/o with minor microfaulting and rare offsetting of veins. Alteration is predominantly silica with rare chlorite and disseminated pyrite. Veining observed in this portion of diorite is weak, however, the dominant vein set is that of a pinkish to grey pinkish, cm scale, cross cutting core, quartz vein. This vein is only observed within this diorite, and not within the surrounding intercepts of metasiltstones; perhaps its characterisitics are different in the metaseds, but here it is unique. Accompanying this vein set is a mm scale anastomosing vein set that, though in lesser amounts, weaves over and though the core. Both of these described vein sets contain moly; the former has moly as selvages with occasional moly specks internal to the vein, while the latter is basically a moly filled mm scale crack that alo contains quartz. Microfaulting is observed throughout and is similar in appearance to the mm scale vein set, however, the faulting contains no moly mineralization.

One observed cm scale vein, containing moly, at 84.30m is offset (sinistrally) by a mm scale microfault. The offset vein and the length of line offsetting this vein both contain moly, yet the fault does not, instead contains pyrite. So, is the moly vein first, the fault second and the pyrite third?

Mineralization with this interval is predominately moly, though weakly represented t/o - 0.2% moly in whole core length? Pyrite is present along fractures and as disseminated flecks within the core and within the veining, while pyrrhotite and magnetite are both rarely observed.

					AL	TER	ATIC	N .						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

ĺ			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

78.73 78.74 CON 5 sharp upper contact

From 78.73

*T*o 84.63

Litho GDIO

This short interval of Granodiorite is a competent, hard rock with mm scale plagioclase lathes and the occasional, but rare, cm scale lathes. Biotite, phlogopite and muscovite are all observed t/o. Structurally the unit is massive t/o with minor microfaulting and rare offsetting of veins. Alteration is predominantly silica with rare chlorite and disseminated pyrite. Veining observed in this portion of diorite is weak, however, the dominant vein set is that of a pinkish to grey pinkish, cm scale, cross cutting core, quartz vein. This vein is only observed within this diorite, and not within the surrounding intercepts of metasiltstones; perhaps its characterisitics are different in the metaseds, but here it is unique. Accompanying this vein set is a mm scale anastomosing vein set that, though in lesser amounts, weaves over and though the core. Both of these described vein sets contain moly; the former has moly as selvages with occasional moly specks internal to the vein, while the latter is basically a moly filled mm scale crack that alo contains quartz. Microfaulting is observed throughout and is similar in appearance to the mm scale vein set, however, the faulting contains no moly mineralization.

One observed cm scale vein, containing moly, at 84.30m is offset (sinistrally) by a mm scale microfault. The offset vein and the length of line offsetting this vein both contain moly, yet the fault does not, instead contains pyrite. So, is the moly vein first, the fault second and the pyrite third?

Mineralization with this interval is predominately moly, though weakly represented t/o - 0.2% moly in whole core length? Pyrite is present along fractures and as disseminated flecks within the core and within the veining, while pyrrhotite and magnetite are both rarely observed.

	STRUCTURES										
From	To	Struct	CA	Strain							

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	
78.73	84.63	_	- \	/W	М	_	_	W	_	_					

VEINS													
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						
78.73	84.63	0.5	100	0	0	2	75						

orthogonal t.c.a. cm scale greyish pinkish white quartz veins containing moly; a smaller, less frequent, mm scale qtz vein is also observed t/o

	MINERALIZATION													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					

78.73 84.63 0.1 DISS MO 0.2 PO 0.01 moly is the most prevalent, but still weak in percentage t/o; trace PO and CP and 0.1%-0.2% pyrite disseminated

78.74 84.62 MAS S massive hard competent

84.62 84.63 CON 20 sharp lower contact

granodiorite

Initials:	
-----------	--

From 84.63

То

Litho

63 89.44

9.44 HSLT

This interval is not too unlike the previous intervals of hornfelsed metasiltstone. The core is dark brown in colour, FG throughout with a weak to moderate foliation fabric. The core is competent, shatters much like glass when hit with a hammer and has a 'ting" sound when hit with a hammer. The contacts, both upper and lower, have larger cm scale greyish pink to pinkish qtz veins within 5cm of the actual contacts. It is this vein that is commonly observed within the granodiorite, that is bounding the contacts. The entire interval has a weak crackle texture t/o. Alteration is biotite, silica hornfelsed metasiltstone. Mineralization observed is pyrite, moly, pyrrhotite and chalcopyrite. Moly is observed within the veining only; along selvages of cm scale veins and as fill within the mm scale veining. Pyrite is disseminated and as larger massie blebs within the vein sets. Pyrhotite and chalcopyrite are both observed within the veining, however, very rare occurrences.

STRUCTURES											
From	To	Struct	CA	Strain							

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

	VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						

Ī	MINERALIZATION													
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

84.63 84.64 CON 20 sharp upper contact

84.63 89.44 - - - M - - - - N

hornfelsed biotite and silica altered metasiltstone

84.63 89.44 5 100 0 0 24 20

the dominant vein set are the mm scale veins parallel foliation with larger cm scale qtz veins (~9 per meter) parallel and orthogonal t.c.a. 84.63 89.44 0.5 MS MO 0.2 PO 0.01

pryite observed is alongfracture surfaces as fine grained massive blebs and sometimes smears, however, the most dominant pyrite is within the vein sets where it is observed as FG blebs and euhedral cubes; PO is extremely rare, while CP is rare - both observed within mm scale veining.

84.64 89.43 FOL 20 M weak to mod strained foliation fabric ranging from 20 -30 t.c.a.

89.43 89.44 CON 35 sharp lower contact From

To

Litho **GDIO**

89.44

102.48

This interval is quite a spectacular interval in comparison to other granodiorite intercepts. This intrusive is different on many levels. The core is very hard, very competent, with a greyish green hue to its colouring (chlorite alteration) The texture of the granodiorite, though similar to the previous intervals, is slightly more coarser grained, with more recognizable plagioclase lathes. The GD is altered with chlorite and silica throughout its length and has sharp upper and lower contacts with the surrounding metaseds. A 10cm xenolith of metasiltstone is observed between 90.26m - 90.36m.

Large cm scale (3-4cm) pinkish qtz veins run throughout the interval length at shallow angles, 10-15 degrees and are moderately rich with moly along their selvages and as mm flecks throughout their core. Veinlets of moly rich qtz veins anastomose over the core and these veinlets are also rich with moly, often smearing beyond their veinlets and into the GD 1-2 cm (this could be a function of the cut of the vein too).

Mineralization is py+mo+po+cp. Pyrite is disseminated t/o core and commonly present as massive FG blebs t/o veins. PO is observed only within larger cm scale plagioclase lathes as a replacement mineral. CP is trace and present within veining only. Moly is the dominant mineralization within this interval as it is observed in greater amounts t/o all veining, both cm and mm scale and as flecks of moly within body of diorite. Moly percentage here is likely 1-1.5% total.

	STRUCTURES											
From	To	Struct	CA	Strain								

	ALTERATION														
Ī	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS													
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA							

1		MINERALIZATION													
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					

89.44 89.45 CON 35 sharp upper contact

> 89.44 95.00 10 3

cm scale pinkish qtz veins with moly selvages and mm scale gtz veins with calcite selvages or rims with moly as well

89.44 102.48 - - M M - - - VW -

silica/chlorite altered granodiorite with calcite veinets t/o

89.44 102.48 1 MS MO 1.5 PO 0.1

Pyrite here is within the veining as massive blebs and smears, it is present along fractures as smears and it is also present as dissminated flecks throughout core; moly is in abundance within this short interval of GD; it is present along all mm scale veins, bleding out in to cm scale smears into the GD and along selvages of the larger cm scale qtz veins; where there's moly in the mm scale veinlets, there is also calcite; first time observed. PO is present in large cm lathes of plagioclase and appears to be a replacement mineral; Chalcopyrite is rare within the cm scale veining shallow t.c.a

Initials:	

From 89.44

89.45 102.47 MAS S

*T*o 102.48

Litho GDIO

(Continued from previous page)

STRUCTURES
From To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
Ī	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

1	MINERALIZATION											
1	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

massive hard competent silica/chlorite altered granodiorite

95.00 102.48 10 98 0 2 10
an increase in veining here with
larger cm scale qtz veins and more of
the mm scale moly veinlets t/o; calcite
along selvages of qtz veining within
microfaults and one large orthogonal
t.c.a. 6mm calcite vein at 99.83m

102.47 102.48 CON 35 sharp lower contact *From* 102.48

To 156.90

Litho HSLT

A lengthy interval of dark brown, FG hornfelsed biotite and silica altered metasiltstone. The interval has sharp upper and lower contacts with the surrounding granodiorites with large cm scale pinkish qtz veins defining their contacts. A small 25cm bleached white breccia is observed at 115.00 - 115.25m and a subparallel vein filled and gouge filled fault is observed at 150.50 - 151.25m.

Alteration, much like previous intervals, is an assumed biotite alteration giving rise to the dark brown colouring with a weak to moderate presence of silica t/o. Magnetite is weak and disseminated within the body of the rock.

Veining here is dominantly the larger cm scale white to grey white bull veins that commonly x-cut core axis at angles of 55-85 t.c.a, but with occasional veining running subparallel. Parallel foliation veining and boudined veining are both observed throughout this interval, but in much fewer occurrences than previous intervals. Mm scale calcite veinlets are rare but observed x-cutting core axis.

Mineralization within this interval is pyrite+moly+trace pyrrhotite and rare chalcopyrite.

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

102.48 115.00 FOL 15 W weakly foliated metaseds ranging from 10-20 t.c.a.

102.48 154.53 5 99 0 1 6 65

the dominant vein set here are the larger cm scale white bull veins that commonly cross cut the core and foliation. These veins, though dominant, are not as abundant as previous intervals; Boudined veining and folation parallel qtz veins are observed as well but in lesser amounts t/o; a mm scale calcite veining orthogonal t.c.a. is observed as well

102.48 154.53 1 MS MO 0.1 PO 0.01

py+mo in veining; pyrite as massive FG blebs and smears and moly as selvages along cm scale veins and as smears along fracturing and infill within mm scale veining; PO is rare t/o

102.48 156.90 - - - M - - - - N

hornfelsed biotite altered and silica altered metasiltstone

115.00 115.25 BX 55 S

a bleached eggshell white, siliceous breccia with a strong 55 t.c.a foliation; clasts of breccia are angular **CH0606**

From

102.48

To 156.90

Litho **HSLT**

(Continued from previous page)

STRUCTURES								
From	To	Struct	CA	Strain				

115.25 150.50 FOL 10 VW very weakfoliation from subparallel to 10 t.c.a.

150.50 151.25 FLT 10 S

a gouge filled, veined and bleached greenish white fault subparallel t.c.a.

151.25 156.89 FOL 10 VW very weak strain foliation t/o

156.89 156.90 CON 10 sharp lower contact with underlain GD

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER From

VEINS Vn% QZ% Feld% CC% V/m CA From To

MINERALIZATION PY% Style Min Min% Min2 M2% Min3 M3% From To

Initials:

154.53 156.90 10 100

gtz veining here increases nearing the lower contact and these larger cm scale qtz veins are shallow t.c.a compared to the upper portion of the nterval

0

15

154.53 156.90 1 MS MO 0.5 PO 0.01

py+mo in veining; pyrite same as above interval with a noticeable increase in moly percentage within the veining; closer to the faulted contact the more the moly increases

From 156.90

To 160.00

Litho GDIO

This short interval of granodiorite lies above a fault and has been separated from the underlain faulted granodiorite for descriptive purposes only. The granodiorite is a hard competent, medim grained rock with noticeable plagioclase lathes and a greenish colouration. The upper and lower contact are sharp, the lower contact being the beginning of the underlain faulted granodiorite. Alteration appears to be that of silica and chlorite. Veining is oderate t/o with the larger cm scale veining being the dominant vein set. This vein set here runs subparallel t.c.a. and hosts moly along its selvages and as flecks within its core as well as smears along fracturing. A mm scale vein set, though fewer in occurrence x-cuts the larger vein set orthogonal t.c.a. These smaller veinlets and and offsetting microfractures also host moly. Mineralization observed is that of pyrite and moly. Pyrite appears within the veining as smears of massive fine grained suphide and weakly disseminated t/o core surface. Moly is observed as selvages to veining, flecks within veining and fill in fracturing.

STRUCTURES								
From	To	Struct	CA	Strain				

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

Ì			M	INE	RAL	IZAT	ION			
Ì	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

156.90 156.91 CON 10 sharp upper contact

156.90 160.00 - - W M - - - VW -

weak chlorite and calcite alteration with weak to moderate silica

156.90 160.00 5 99 0 1 2 5

large cm scale qtz veins are the dominant vein in the diorite; these veins are running subparallel t.c.a. with a cut width of 2-3cm; these veins are host to moly mineralization along their selvages and they are also cut by orthogonal mm scale veining and microfractures, both of which host moly as well. A small mm scale calcite veinlet is observed t/o in rare occurrences

156.90 160.00 0.5 MS MO 0.1

pyrite and moly are both weakly represented in this short interval, however, moly continues to be observed along vein selvages and as smears in fractures

156.91 159.99 MAS

massive competent hard granodiorite with moderate alteration

159.99 160.00 CON 90 sharp lower contact with underlain faulted granodiorite; perpendicular t.c.a.

From 160.00

То

Litho GDIO

.00 164.63

A strongly faulted sequence of granodiorite. The core is dark in colour, beginning as a dark green grey between 160.00 - 162.50m and then becoming a white green more competent massive unit. The upper portion of the fault btwn 160.00 - 162.50m is extremely fissile and core recovery of this interval was outstanding. The core resembles 2 inch thick poker chips t/o the described zone. Between 162.50 - 165.63m the core is more competent, moderately altered compared to it's uphole counterpart, yet you can still push your finger into the core with little effort. The fault continues beyond 164.63m and into the underlain extremely altered and buggered up sediment (hornfelsed metasiltstone). Alteration in this faulted granodiorite appears to chlorite/altered clay minerals (muscovite and biotite has been altered as has the plagioclase feldspar) and illite with pervasive carbonate alteration t/o.

Veining in the fault is weak, with the dominant vein set being mm scale veinlets. Orientation of these veinlets varies t/o.

Mineralization t/o is just pyrite and moly; pyrite is weakly represented, but as euhedral crystals within the veining and very rarely disseminated, while the moly is in all veinlets and fractures.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	MINERALIZATION														
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%						

160.00 162.85 - - M - - - M -

though the core here is mush, there is a moderate green colour t/o and when acid is applied, the entire core fizzes

160.00 164.63 FLT

the upper portion of the fault has contact 90 degrees t.c.a while the lower portion has a contact of 15 degrees t.c.a 160.00 164.63 1 100 0 0 75

though not an abundance of veins per se, mm scale veinlets and fractures host the moly; the dominant vein would be a mm scale veinlet 50 -75 t.c.a.; another mm scale vein set is observed and this one varies considerably in its orientation as it weaves t/o the core surface 160.00 164.63 0.5 EUH MO 0.2

pyrite is weak t/o, but again is assoicated with veining, however, within this fault interval there are a lot of euhedral pyrite crystals vs the common massive pyrite observed in other intervals; moly stands out quite remarkably (no handlens needed) and it occurs within the vein sets, along fractures and as flecks within the body of the granodiorite (have not seen this in other intervals)

162.85 164.63 - - W - - - - W -

weaker chlorite and calcite alteration in this portion of the fault; the core here is competent, but remains fissile

From 164.63 1

To 173.95

Litho HSLT

The fault continues from the above interval of granodiorite and through into this interval of metasiltstone for a total length of fault at 13.95m (160.00 - 173.95m). The upper contact of the faulted granodiorite and the faulted metaseds exhibits small scale folding with an apparent right lateral drag at the actual contact. Surprisingly, the contact in this fault is intact and because of the varying competency between the two lithologies, the metasiltstone took has taken the brunt of the faulting. The core here is a whitish, green, clay rich, mushy and strongly brecciated with recognizable clasts subrounded. The clasts here are supported by a matrix of anastomosing veinlets and mm scale veins inundating the core surface. The alteration here is clay, weak chlorite and pervasive carbonate. Veining is abundant in the zone btwn 165.63 - 173.00m and orientation vary drastically as this fault appears to be blown apart by fluid, thus resulting in the veining percentage and the brecciated texture. Mineraliation is of strong disseminated pyrite and abundant moly throughout the veins and the body of the fault.

	STRUCTURES										
From	To	Struct	CA	Strain							

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

164.63 173.00 - - - VW - - - M - W

the core here is very altered and pretty much claylike with a moderate carbonate alteration; biotite alteration and hornfels are observed in localized zones where the core has not been blasted by the faulting

			VEIN S	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

164.63 173.00 15 80 0 20

mostly qtz veining with 2 recognizable sets; boudined veining with varying orientations and mm scale orthogonal t.c.a. veining; carbonate veins and qtz/carb veins make up approx 20% of the vn% and appear to dominantly subparallel t.c.a.

164.63 173.00 2 DISS MO 0.5

pyrite is abundant in this faulted portion and dominantly disseminated t/o, but present within veining and along fracturing, 1.5-2%; moly is also abundant within this fault and is infilling most mm scale veinlets, fractures and because of the messed up nature of the fault itself, moly appears throughout the core in varying forms and locations

164.63 173.95 FLT S
faulted meta siltstone;
strongly altered, buggered
up and fissile

173.00 173.95 - - - - - - VW - M

moderate biotite alteration, very weak carbonate alteration in this more recognizable portion of metasiltstone

173.00 173.95 1 95 0

mm scale veinlets are the dominant here with rare cm scale veining; carbonate veining stil observed 173.00 173.95 0.1 DISS MO 0.1

pyrite and moly both decrease significantly in this end portion of more competent metasiltstone. Pyrite is now only observed within the veining as is the moly

From 173.95

То

Litho HSLT

.95 177.14

Ashort interval of hornfelsed metasiltstone that is part of the previous interval that was faulted. This MS is fine grained, dark brown in colour, weakly veined with mm scale veining, altered with silica and biotite and host to massive pyrite in the qtz veining and moly along the veining selvages and fractures. Upper and lower contacts are sharp.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

ĺ				VEINS	5			
Ī	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		MINERALIZATION													
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					

173.95 173.96 CON 45

this described contact is a contact btwn the faulted metasiltston and the nonfaulted metasiltstone

173.95 177.14 - - - M - - - - M

biotite and silica altered hornfelsed sediments

173.95 177.14 3 95 0 5

there are 3 qtz vein sets and 1 carbonate vein set; the dominant vein set appears to be the cm scale white qtz vein the x-cuts the core in varyin orientations, while a second dominant qtz vein set cross cuts the core orthogonal t.c.a. and is mm in scale; the 3rd set of qtz veining is a mm scale parallel foliation vein; the carbonate veining is a consistent 65 t.c.a. x-cutting mm scale vein

173.95 177.14 0.2 MS MO 0.1

pyrite is massive FG blebs within veining; moly is observed along selvages of veining and along fractures

173.96 177.13 FOL 35 W weakly to very weakly foliated rock ranging from 25-40 t.c.a.

177.13 177.14 CON 35 sharp lower contact with underlain GD

Thursday, May 10, 2007

From 177.14

To 178.00

Litho GDIO

A short interval of medium grained, competent, hard, homogenous granodiorite with weak to no alteration, sharp upper and lower contacts, and weak mineralization t/o

STRUCTURES
From To Struct CA Strain

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

2 65

MINERALIZATION
From To PY% Style Min Min% Min2 M2% Min3 M3%

177.14 177.15 CON 35 sharp upper contact

177.14 178.00 - - VW M - - - - - - - - massive very weakly altered granodiorite

177.14 178.00 0.5 100 0 0

very weak representation of veining
in this short interval of GD; typical
vein here is 6-9 mm in size

177.14 178.00 0.1 MS MO 0.1 oth pyrite and moly are observed only with the veining and along the selvages, but in rare amounts

177.99 178.00 CON 40 sharp lower contact

From

То

Litho

178.00 186.79 HSLT

A dark brown, fg, metasiltstone with a zone of moderate brecciation and alteration btwn 179.19 - 183.72m. Upper and lower contacts are sharp. The metasiltstone is identical to previous intervals of MS, however, the zone of brecciation appears to be the result of intense veining and perhaps its proximity to the overlying fault. The breccia is competent, but carbonate altered and weakly chlorite altered; its stiffness due to hornfelsed biotite alteration is lost in this zone. The clasts supporting this crackle breccia textured zone have subrounded edges and chill margins to them (cherty like almost, but without the strong silica) developed as a result of them flooding of veins. The veining here is intense, 15-20% of the core surface and dominantly qtz veining with two episodes of carbonate veining, subparallel and x-cutting. Moly is more abundant in this zone as one would expect with the numerous veins inundating the core. Pyrite throughout the interval is weak to moderate and commonly observed within and along the veining.

STRUCTURES
From To Struct CA Strain

ALTERATION

From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

178.00 178.01 CON 40 sharp upper contact

178.00 179.19 - - - M - - - - N
hornfelsed biotite and silica altered metaseds

178.00 179.19 5 100 0 0 8 45

a mix of two vein sets, both qtz, one
45 t.c.a. mm scale and the other a cm
scale 25 t.c.a.

178.00 179.19 0.1 MS MO 0.1 trace amounts of pyrite and moly in this upper zone

Initia	s:	

From 178.00

То 186.79

Litho **HSLT**

(Continued from previous page)

STRUCTURES								
From	To	Struct	CA	Strain				

178.01 179.19 FOL 20 W weakly foliated MS

179.19 183.72 BX M a zone moderate brecciation, intense veining and alteration

ALTERATION INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER From

VEINS Vn% Feld% CC% V/m CA From ToQZ%

MINERALIZATION PY% Style Min Min% Min2 M2% Min3 M3% From To

179.19 183.72 - - W W - - -

a zone of strongly carbonate altered brecciated metaseds with weak chlorite and silica alteration t/o

179.19 183.72 15 95 5 5 65 a mass of different veining t/o this described interval; qtz veining 65 t.c.a. cutting the boudined qtz veining that is subparallel t.c.a. and numerous mm scale veinlets anastomosing over the core surface, some cuting everything and some being cut by the cm scale veining; vein genesis here is difficult to ascertain; carbonate veining is moderate t/o and has two preferred orientations, subparallel core axis and 75 t.c.a.

pyrite and moly increase significantly here in the brecciated zone, pyrite

179.19 183.72 1.5 MS MO 0.5

present in and along veining as massive blebs, while moly is present in almost every vein and along fractures

183.72 186.12 FOL 35 VW very weak 35 t.c.a foliation

> 183.72 186.79 - - hornfelsed biotite and silica altered metaseds

183.72 186.79 10 99 mostly mm scale veining anastomosing over the core in varying orientations with occasional cm scale veining x-cutting and/or following foliation; carbonate veining is minimal, but observed

183.72 186.79 0.1 MS MO 0.1 trace amounts of pyrite and moly in this lower zone

186.12 186.78 FOL 25 M moderate to strongly foliated metaseds

Initials:	

From 178.00

To 186.79

Litho **HSLT**

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

1	MINERALIZATION												
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

186.78 186.79 CON 40 sharp lower contact

> From 186.79

To

Litho

187.23 **GDIO**

Same as interval 177.14 - 178.00m

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	SIKU	CIUK	ES			
From	To	Struct	CA	Strain	From	- 1

186.79 186.80 CON 40 sharp upper contact

	ALTERATION													
om	To	INT	ARG	CHL	SIL.	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	<u>ALTERATION</u>													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S		
From	To	Vn%	QZ%	Feld%	CC%	V_{λ}

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3										
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

186.79 187.23 - - W M - - - VW silica altered granodiorite with weak chlorite alteration

186.79 187.23 0.1 100 0 7 65 mm scale qtz veinlets steep t.c.a. very rare carbonate veins as wel

186.79 187.23 0.5 DISS MO 0.1

pyrite is disseminated t/o core with very weak moly in only a few of the mm scale veinlets

187.22 187.23 CON 60 sharp lower contact

> From 187.23

To

204.46

Litho **HSLT**

Another interval of dark brown, very fine grained, siliceous, biotite altered hornfelsed metasiltstone. The siltstone has sharp upper and lower contacts with the surrounding granodiorites. The core is inundated with mm scale veinlets and fractures of qtz fill and moly fill, leaving a net texture or crackle texture to the core surface. Veining is 5-10% t/o the interval with the dominant veining being that of mm scale qtz veinlets, 2nd would be the boudined veining parallel and x-cutting foliation with a 3rd vein set being cm scale x-cutting foliation as well as observed subparallel core axis. Mineralization in the interval is py+mo+po. Pyrite is observed within veining and along selvages of veining; moly is observed t/o all mm scale veinlets and within microfractures t/o core as well as along selvages of boudined and cm scale veins. Pyrrhotite is observed for the first time in greater abundance and was observed as mm MG massive blebs within the boudined veining only.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N .						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	MINERALIZATION													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					

187.23 187.24 CON 60 sharp upper contact

Initials:

From

То

Litho HSLT

187.23 204.46

Another interval of dark brown, very fine grained, siliceous, biotite altered hornfelsed metasiltstone. The siltstone has sharp upper and lower contacts with the surrounding granodiorites. The core is inundated with mm scale veinlets and fractures of qtz fill and moly fill, leaving a net texture or crackle texture to the core surface. Veining is 5-10% t/o the interval with the dominant veining being that of mm scale qtz veinlets, 2nd would be the boudined veining parallel and x-cutting foliation with a 3rd vein set being cm scale x-cutting foliation as well as observed subparallel core axis. Mineralization in the interval is py+mo+po. Pyrite is observed within veining and along selvages of veining; moly is observed t/o all mm scale veinlets and within microfractures t/o core as well as along selvages of boudined and cm scale veins. Pyrrhotite is observed for the first time in greater abundance and was observed as mm MG massive blebs within the boudined veining only.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

187.23 204.46 7 100

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

187.23 204.46 - - M - - - - M hornfelsed biotite, silica metaseds

the dominant vein set would be the foliation parallel qtz vein (4-5mm) with observed fewer larger cm scale qtz veins and boudined veins both parallel and x-cutting folation

0 15 20

187.23 204.46 0.5 MS MO 0.2 PO 0.2

pyrite, though weak t/o is cinfined to the veining as blebs of FG massive pyrite within veining and along selvages; moly is observed within all mm scale foliation veinlets and along selvages of both boudined and large cm scale veining; pyrrhotite is observed in greater amounts in this interval and is observed within the boudined veining

187.24 204.45 FOL 20 VW very weak foliation ranging btwn 15-25 t.c.a.

204.45 204.46 CON 20 sharp lower contact

	Ir	nitia	ls:	
--	----	-------	-----	--

From 204.46

To 222.72

Litho GDIO

This diorite is a whitish grey coloured, medium grained, plagioclase and biotite rich, competent hard intrusive with sharp upper and lower contacts. The core is predominantly altered with silica and qtz flooding with minor chlorite alteration observed within the fine grained ground mass. Veining is of two dominantly sets, a mc scale qtz vein and a mm scale fracture filled veinlet, both carrying moly. Mineralization is of disseminated pyrite throughout the interval length, sphalerite observed only btwn 204.46 - 209.00m, and moly mostly observed within microfractures and the mm scale veinlets and to a lesser degree as selvages along the cm scale veins and as flecks disseminated throughout the diorite.

From To Struct CA Str									
From	To	Struct	CA	Strain					

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

204.46 204.47 CON 20 sharp upper contact

204.46 209.00 3 100 0 0

qtz veining orthogonal t.c.a. btwn 50-75 t.c.a. the veining here ranges from 8mm - 15mm; sphalerite is observed within the veining in this interval as well as moly in microfractures and mm scale veinlets 60

204.46 209.00 0.1 DISS MO 0.1 SP 0.2

pyrite is weak and disseminated t/o as well as within veining; moly is in microfractures and veinlets t/o but in small occurrences and sphalerite is observed in cm scale masses clumping in larger cm scale veins

204.46 222.72 - - VW M - - - -

moderately to silica altered granodiorite with very weak chlorite alteration

204.47 222.71 MAS

massive siliceous granodiorite

209.00 222.72 3 99 0 1 45

dominant vein here is the cm scale qtz vein; moly often along selvages and within vein; mm scale veinlets are also present t/o, but in fewer frequency; carbonate veins are rare but observed cutting core 70 t.c.a. 209.00 222.72 0.1 DISS MO 0.3

sphalerite disapears here in this interval and pyrite remains disseminated t/o and within veining, however, moly appears to increase in occurrence havinf a stronger presence within the veining as well as disseminated throughout the core itself

Initials:	

From 204.46

*T*o 222,72

Litho GDIO

(Continued from previous page)

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	<u>VEINS</u>										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

1	MINERALIZATION											
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

222.71 222.72 CON 75 sharp lower contact

From 222.72

То

Litho HSLT

231.96

Another interval of dark brown, FG, hornfelsed metasiltstone with sharp upper and lower contacts. This interval has a moderate to high density of cm scale veining cutting core in varying orientations. 99% of these veins are hosting moly along their selvages and as flecks within the qtz septa. A set of mm scale veining is also observed at 45 t.c.a; these veins, too, are hosting moly t/o. One observed portion of the interval exhibits moly as 2-3mm rounded flecks disseminated 1 cm either side of a microfracture/mm scale qtz vein. This is the first time this has been observed, but the moly is in the metasiltstone and not with the vein. This was observed between 227.69-227.81m. Moly is the dominant mineralization throughout the interval with pyrite in 0.2-0.5% t/o and mostly along and within veining. Moly is observed in almost all cm scale veins along selvages and as flecks within septa and moly is also observed within the mm scale veinlets as well.

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

222.72 222.73 CON 75 sharp upper contact

222.72 231.96 - - - M - - - - N
hornfelsed biotite silica metaseds

222.72 231.96 15 100 0 0 6 35

large cm scale veins dominate the interval with a seconday veining of mm scale veining x-cutting the foliation fabric in varying orientations

222.72 231.96 0.5 MS MO 0.5

pyrite is 0.5% with localized zones of greater percent and mostly observed within the veining; very little disseminated; Moly increases in this interval to that of almost 0.5% and commonly observed as 2-3mm selvages to larger vein set; microfractures and mm scale veins have moly infil as well

222.73 231.95 FOL 20 W weak foliation fabric t/o ranging 20-30 t.c.a.

From To 222.72 231.96

Litho **HSLT**

(Continued from previous page)

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

1	MINERALIZATION											
	From To PY% Style Min Min% Min2 M2% Min											

231.95 231.96 CON 40 sharp lower contact

From

To

Litho

231.96 232.35 **GDIO**

A very short interval of granodiorite. Weakly chlorite altered, devoid of moly mineralization, weak qtz veining with mm scale pyrite veinlets and sharp upper and lower contacts.

STRUCTURES To Struct CA Strain

ALTERATION To | INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER

VEINS To Vn% QZ% Feld% CC% V/m CA From

MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3%

231.96 231.97 CON 40 sharp upper contact

> 231.96 232.35 - - W M - - - weakly chlorite altered granodiorite with moderate silica

231.96 232.35 2 100 0 0 3 45 7-8mm size qtz veins 45 t.c.a. t/o

short interval

231.96 232.35 0.5 VLT

232.34 232.35 CON 30 sharp lower contact

> From 238.26 232.35

To

Litho **HSLT**

Same as interval 222.72 - 231.96m. This interval though contains pyrrhotite within the veining.

STRUCTURES To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

ĺ	MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

232.35 232.36 CON 30 sharp upper contact **From** 232.35

To 238,26

Litho HSLT

Same as interval 222.72 - 231.96m. This interval though contains pyrrhotite within the veining.

	STRUCTURES									
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
222.25	229.26				NA						Ν.			

hornfelsed biotite and silica metasiltstone

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
232.35	238.26	7	100	0	0	6					

core axis orientation varies, but the dominant veining here is cm scale veining with minor mm scale veins also observed

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M39			

232.35 238.26 0.2 VLT MO 0.3 PO 0.2

veinlets of pyrite and blebs of FG massive pyrite within veins; moly is moderate t/o veining and preferentially within the cm scale veins and along selvages; mivrfractures have moly infill as well; pyrhotite is observed in this interval within the larger veining as massive blebs (3-5mm)

232.36 238.25 FOL 10 W subparallel to 15- degrees t.c.a. weak foliation

238.25 238.26 CON 30 sharp lower conact

From 238.26

*T*o 240.25

*Litho*GDIO

Same as interval 231.6 - 232.35m. This granodiorite, however, is mineralized with moly. The moly is present within mm scale hairline fractures. These fractures are offset and cut by the 45 t.c.a. cm scale qtz veins. The cm scale veins do not contain moly, so does this reflect what we see in the metaseds and are the cm scale veins in the seds and the diorite the same vein set? If so then the moly is 1st and the cm scale vein is later. Sharp upper and lower contacts.

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

				VEIN S	S			
Ī	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

238.26 238.27 CON 30 sharp upper contact

238.26 240.25 - - W M - - - - - - - weakly chlorite altered granodiorite with moderate silica

238.26 240.25 2 100 0 0 5 45

pinkish white 45 t.c.a. qtz veins

238.26 240.25 0.1 DISS MO 0.1 disseminated pyrite with moly observed as infill within microfractures

Initial	s:	

From 238,26

*T*o 240.25

Litho GDIO

(Continued from previous page)

	STRUCTURES									
From	To	Struct	CA	Strain						

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

	MINERALIZATION											
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

240.24 240.25 CON 10 sharp lower contact

From 240.25

То

Litho

247.80 HSLT

The hornfelsed metasiltstone exhibits a decrease in veining t/o which also decreases the moly percentage observed. The rock is identical to the previous intervals in all aspects. The core is weakly mineralized, moly is along and within veining. Pyrrhotite remains present within veining but in trace amounts and pyrite is as veinlets t/o.

STRUCTURES									
From	To	Struct	CA	Strain					

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

240.25 240.26 CON 10 sharp upper contact

240.25 247.80 - - - M - - - - - M

hornfelsed metasiltstone with biotite and silica alteration

240.25 247.80 1 100 0 0 3 60

cm scale and mm scale veining share the dominance with the mm scale parallel foliation and the cm scale 60 t.c.a. 240.25 247.80 0.1 VLT MO 0.1 PO 0.01

trace PO in veining with veinlets of pyrite and blebs of FG massive pyrite and a decrease in moly in this interval which coincides with the density of veining

240.26 247.79 FOL 20 W weakly foliated rock ranging from 15 - 35 t.c.a.

247.79 247.80 CON 10 sharp lower contact

From 247.80

To 248.46 Litho **GDIO**

Same as interval 238.26 - 240.25m.

STRUCTURES								
From	To	Struct	CA	Strain				

247.80 247.81 CON 10 sharp upper contact

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS Vn% QZ% Feld% CC% V/m CA From

MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3%

247.80 248.46 - - W M - - - -

weak chlorite alteration of groundmass and moderate to strong silica alteration pervasive t/o

247.80 248.46 1 1 45 45 t.c.a. mm scale qtz veining with mm fracture infill (carbonate) veinlets

247.80 248.46 1 MG MO 0.01 1% disseminated MG pyrite t/o with very rare flecks of moly disseminated t/o

248.45 248.46 CON 30 sharp lower contact

From

To

Litho

248.46 249.87 **HSLT**

A short interval of hornfelsed metasiltstone with sharp upper and lower contacts and two shorter intersects of diorite intrusive btwn 248.60 - 248.70m and 249.30 -249.38m. The unit is weakly veined t/o with the dominant vein being the mm scale foliation parallel set. A few observed cm scale veins x-cut core axis. Calcite veinlets cut core orthogonal t.c.a. and are the latest set of veining. Alteration remains as biotite and silica. Mineralization is very weak t/o with pyrite as veinlets and along fracture surfaces as smears of ascicluar massive clots and moly is weakly observed and only within the mm scale veinlets.

STRUCTURES To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3%

248.46 248.47 CON 30 sharp upper contact

hornfelsed metasiltstone with biotite and silica alteration and very weak chlorite alteration around veining

248.46 249.87 0.5 99 6 20 dominant veining is mm scale qtz veinlets parallel foliation with rare calcite veinlets observed cutting core

orthogonal t.c.a.

pyrite and moly are both very weak t/o; pyrite as veinlets and as smears along fractures and moly in mm scale gtz veinlets only

248.46 249.87 0.1 VLT MO 0.1

248.47 248.60 FOL 20 VW very weak foliation fabric of 20 t.c.a.

From 248.46

*T*o 249.87

Litho HSLT

(Continued from previous page)

STRUCTURES
From To Struct CA Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

248.60 248.70 MAS S

granodiorite dykelet

248.70 249.30 FOL 20 VW very weak foliation fabric of 20 t.c.a.

249.30 249.38 MAS S granodiorite dykelet

249.38 249.86 FOL 20 VW very weak foliation fabric of

sharp lower contact

20 t.c.a. 249.86 249.87 CON 45

From 249.87

To 250.78

Litho GDIO

Another short interval of Granodiorite. Here the dyke is another portion of a bigger group of dyking that appears to be present between 231.96 - 267.00m approximately. This particular intersection of dyke is much more coarser grained than previous intercepts. The GD has well defined, 4-5mm, plagioclase crystals and abundant biotite set in a fine grained greenish grey groundmass. Included within this groundamass are cm scale subrounded clasts of metasiltstone. The core exhibits sharp upper and lower contacts as well. Veining is minimal t/o with very rare pinkish white cm scale qtz veins 45 t.c.a. Mineralization observed t/o is dominantly pyrite, though pyrite is weak t/o and disseminated. Moly is not observed.

STRUCTURES								
From	To	Struct	CA	Strain				

ALTERATION

From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

	<u>VEINS</u>								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

249.87 249.88 CON 45 sharp upper contact

249.87 250.78 - - VW M - - - -

very weak chlorite alteration and moderate silica alteration

249.87 250.78 0.01 100 0 0 1 45

very rare veining t/o; pinkish white cm
scale qtz veins

249.87 250.78 0.1 DISS disseminated pyrite

Initials:	
-----------	--

From 249.87

To 250.78 Litho **GDIO**

(Continued from previous page)

STRUCTURES							
From	To	Struct	CA	Strain			

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

	MINERALIZATION											
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

250.77 250.78 CON 45 sharp lower contact

> From 250.78

To 254.14 Litho

HSLT

Hornfelsed, FG, dark brown, biotite and silica altered metasiltstone, with weak veining and weak mineralization. Contacts are sharp. This particular interval exhibits an interesting vein/moly relationship not yet seen in this drillhole. The moly here, while weakly present runs along the selvages of the veining, but closer examination indicates that the moly here is actually within the metaseds with a separation of 2-3mm away from the edge of the vein, so it is my opinion that this indicates the moly was in place before the veining and possibly as a microfracture infill, in which the vein utilized this fracture later on.

STRUCTURES									
From	To	Struct	CA	Strain					

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

	VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

scale and mm scale veining

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

250.78 250.79 CON 45 sharp upper contact

250.78 254.14 -

hornfelsed biotite and silica altered metaseds

250.78 254.14 1 100 varying orientations throughout of cm

thin veinlets of fg pyrite and moly along selvages of veining

250.78 254.14 0.5 VLT MO 0.2

254.13 254.14 CON 30 sharp lower contact

From 254.14

To 254.56

Litho **GDIO**

Same as interval 247.80 - 248.46m.

STRUCTURES From To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS								
Ī	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	

	<i>MINERALIZATION</i>										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

254.14 254.15 CON 30 sharp upper contact

From 254.14

To 254.56

Litho GDIO

Same as interval 247.80 - 248.46m.

STRUCTURES									
From	To	Struct	CA	Strain					

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
	•	•									_			

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		
254.14	254.56	5	100	0	0	4	45		
cm scale moly mineralized qtz veining									

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

254.14 254.56 2 DISS MO 0.1

2-3% MG to FG disseminated pyrite with pyrite veinlets as well; moly is weak but present in micro veining and along selvages of cm scale veins

254.55 254.56 CON 20 sharp lower contact

From

То

Litho

254.56

265.53

HSLT

Dark brown hornfelsed metasiltstone; fine grained, siliceous, biotite altered with a network of anastomosing mm scale veinlets and micro fractures. Boudined veining is common throughout as well and tends to run subparallel to 20 to core axis. Moly mineralization is apparent within the boudined and the parallel foliation veining. A small 17cm fault is observed btwn 260.42 - 260.59m. Not all of the veining present carries moly, just some of the mm scale parallel foliation and the boudined veins. Pyrrhotite is observed within the boudined veining throughout.

STRUCTURES									
From	To	Struct	CA	Strain					

254.56 260.42 FOL 20 W very weak to weak foliation strain t/o

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

254.56 260.42 - - - M - - - - - M

hornfelsed biotite and silica altered metaseds

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

254.56 265.53 5 98 0 2 25

the dominant vein set is the anastomosing mm scale stringer veinlets throughout he core surface, however, the foliation parallel boudined veining appears to favourably host the moly mineralization; carbonate veining is minor t/o and is observed cutting the core 60 t.c.a.

254.56 265.53 1 VLT MO 0.3 PO 0.2

pyrite is bserved dominantly as veinlets within qtz veining; pyrrhotite is also observed frequently ad often within the boudined veining; moly observed is within the boudined veining and within the microfractures t/o

From 254.56

To 265,53

Litho HSLT

(Continued from previous page)

	STRU			
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

1	MINERALIZATION														
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					

260.42 260.59 FLT 55

this a small 17cm faulted and strongly altered chunk of metaseds with carbonate veining bounding its contacts; this piece is assumed to have been faulted into place as it has a completely different alteration, the contacts are very sharp and somewhat gougey and the internal fabric of this piece exhibits strong micro brecciation

260.42 260.59 - - M M - - - - - - - chlorite and silica altered faulted wedge of metaseds

260.59 265.52 FOL 20 very weak to weak foliation strain t/o

260.59 265.53 - - - M - - - - M

hornfelsed biotite and silica altered metaseds

265.52 265.53 CON 30 sharp lower contact

From 265.53

To 266.82

Litho GDIO

This granodiorite has a moderate chlorite alteration as well as silica alteration. Pyrite mineralization t/o as disseminated flecks and moly observed within the plagioclase feldspar rich portions of the interval. It appears that there may be feldspar veining and it is within this veining that we observe mm size flecks of moly embedded within.

	STRUCTURES												
From	To	Struct	CA	Strain									

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

1	MINERALIZATION													
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

From 265.53

To 266.82

Litho GDIO

This granodiorite has a moderate chlorite alteration as well as silica alteration. Pyrite mineralization t/o as disseminated flecks and moly observed within the plagioclase feldspar rich portions of the interval. It appears that there may be feldspar veining and it is within this veining that we observe mm size flecks of moly embedded within.

From To Struct CA Strain

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

MINERALIZATION
From To PY% Style Min Min% Min2 M2% Min3 M3%

265.53 265.54 CON 30 sharp upper contact

265.53 266.82 1 90 10 0

it appears as though there is feldspar
veining within this interval; this has
been observed before but here it
appears more real (if I can describe it
this way). See notes. Weak qtz
veining throughout but still the
dominant veining

disseminated pyrite t/o with moly as flecks within the granodiorite and within micro fractures

265.53 266.82 3 DISS MO 0.2

266.81 266.82 CON 10 sharp lower contact

From 266.82

*T*o 277.16

Litho HSLT

A strongly veined and strongly mineralized sequence of hornfelsed metasediment. The upper and lower contacts are sharp and shallow t.c.a. There is another faulted wedge of strongly chlorite altered and strongly micro fractured metasediment observed btwn 271.11 - 271.74m with bounding carbonate veined contacts. The core is very well mineralized t/o and much of this mineralization is coincident with vein density and abundant fracturing. Moly is observed along most selvages of the qtz veins, within the fractures and as infill to mm scale veins. Pyrrhotite becomes rich within the core near the bottom of the interval and overall veining constitutes about 10-15% of the core.

STRUCTURES
From To Struct CA Strain

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

266.82 266.83 CON 10 sharp upper contact

266.82 271.11 - - - M - - - - M

hornfelsed biotite and silica altered metaseds

266.82 271.11 10 100 0 0 4 25

dominant vein set here are the cm
scale large qtz veins; minor mm scale
veining anastomosing t/o core as well

266.82 271.11 0.5 VLT MO 0.4 minor amounts of pyrite present as

minor amounts of pyrite present as veinlets t/o veining and smears along fracture surfaces; moly is observed

From 266.82

To

Litho **HSLT**

277.16

A strongly veined and strongly mineralized sequence of hornfelsed metasediment. The upper and lower contacts are sharp and shallow t.c.a. There is another faulted wedge of strongly chlorite altered and strongly micro fractured metasediment observed btwn 271.11 - 271.74m with bounding carbonate veined contacts. The core is very well mineralized t/o and much of this mineralization is coincident with vein density and abundant fracturing. Moly is observed along most selvages of the qtz veins, within the fractures and as infill to mm scale veins. Pyrrhotite becomes rich within the core near the bottom of the interval and overall veining constitutes about 10-15% of the core.

STRUCTURES											
From	To	Struct	CA	Strain							

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

<u>VEINS</u>										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M39			

within fracturing and as selvages to cm scale veins

266.83 271.11 FOL 10 VW very weak foliation strain

271.11 271.74 FLT 50

a 63cm falted wedge of strongly altered and fractured metaseds with contacts of gouge material 271.11 271.74 - - M M - - - VW -

chlorite altered wedge of faulted metaseds

broken up by fracturing white qtz veining t/o, numerous mm scale hairline gtz veinlets all cut by mm scale hairline calcite veinlets

95

5

271.11 271.74 10

271.74 275.95 15 100 0 6 25 dominant vein set here are the cm scale large qtz veins; minor mm scale veining anastomosing t/o core as well

271.11 271.74 2 DISS MO 0.1

2-3% disseminated pyrite with minor moly both disseminated within core and within large qtz veining

271.74 275.95 1.5 SM MO 0.4 PO 0.01

pyrite observed as disseminated and as semi-massive t/o veining with fewer veinlets of FG pyrite; moly is moderately abundant within fractures, along selvages of cm scale veins and infilling mm scale qtz veins; pyrrhotite is observed but rare

271.74 277.15 FOL 5 W weak subparallel foliation fabric

271.74 277.16 - - -

hornfelsed biotite and silica altered metaseds

Initials:	
-----------	--

From 266.82

To 277.16

Litho HSLT

(Continued from previous page)

	STRUCTURES										
From	From To Struct CA Strain										

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

MINERALIZATION
From To PY% Style Min Min% Min2 M2% Min3 M3%

275.95 277.16 30 100 0

large 2-4cm qtz veins running shallow to core axis with an internal busted up fabric due to abundant micro fractures t/o 2 25

275.95 277.16 7 MS MO 0.5 PO 3

a strongly mineralized section of the interval nearing the lower contact; veining here is abundant, pyrite is abundant as massive blebs t/o and disseminated, moly increases significantly and observed within and along veining and pyrrhotite is quickly abundant and as massive blebs mixed with the pyrite within the veining; pyrhotite is also disseminated

277.15 277.16 CON 5

very shallow and sharp lower contact

From 277.16

*T*o 307.27

Litho GDIO

Finally an interval longer then a core box. This granodiorite is quite different then the others intersected in this hole in that it has a coarser grained texture, has a chlorite altered groundmass, exhibits 'pulses" of even coarser grained sequences, it is denser than most of the granodiorites, it is moderately to strongerly mineralized with pyrite, sphalerite, pyrrhotite, molybdenite, trace chalcopyrite and possible magnetite. The core is moderately veined with cm scale qtz veins, and many of the veins have a drusy texture and are vuggy. The core also appears to have zonations to it wherby areas are more mineralized with moly and pyrite, others are stronger in sphalerite and pyrite and only portions of the core are magnetic due to strength in pyrrhotite presence. The core remains, hard, competent, stiff rock with sharp contacts, but overall has a different appearance. A short interval of hornfelsed metasiltstone is observed btwn 295.90 - 296.15m; also, beyond this point we observe rare cm sized clasts of metaseds within the granodiorite.

STRUCTURES											
From	To	Struct	CA	Strain							

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

	MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

277.16 280.75 1 DISS MO 0.1 SP 0.1

1% disseminated pyrite with veinlets observed as well; moly is weakly observed t/o; minor rare sphalerite and pyrrhotite is fine grained within the groundmass of the core

From

To

Litho **GDIO**

277.16 307.27

Finally an interval longer then a core box. This granodiorite is quite different then the others intersected in this hole in that it has a coarser grained texture, has a chlorite altered groundmass, exhibits 'pulses" of even coarser grained sequences, it is denser than most of the granodiorites, it is moderately to strongerly mineralized with pyrite, sphalerite, pyrrhotite, molybdenite, trace chalcopyrite and possible magnetite. The core is moderately veined with cm scale gtz veins, and many of the veins have a drusy texture and are vuggy. The core also appears to have zonations to it wherby areas are more mineralized with moly and pyrite, others are stronger in sphalerite and pyrite and only portions of the core are magnetic due to strength in pyrrhotite presence. The core remains, hard, competent, stiff rock with sharp contacts, but overall has a different appearance. A short interval of hornfelsed metasiltstone is observed btwn 295.90 - 296.15m; also, beyond this point we observe rare cm sized clasts of metaseds within the granodiorite.

	STRUCTURES										
From	To	Struct	CA	Strain							

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

dominantly cm scale larger qtz veins cutting core orthogonal t.c.a.

277.16 293.00 7 100

					IZAT				
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

277.16 295.90 MAS massive granodiorite

277.16 307.27 - - M M - - - -

moderate to moderate strong chlorite alteration of granodiorite groundmass; silica alteration is also present as moderate

280.75 293.00 3 DISS MO 0.6 SP 0.3

pyrite and pyrrhotite are both disseminated throughout core as well as observed within mm scale veinlets associated with moly; sphalerite is observed and more so than above interval

From 277.16

To 307.27

*Litho*7 GDIO

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

99

293.00 307.27 2

dominantly cm scale larger qtz veins, but fewer than previous described interval; veins here are vuggy; calcite veining present 65 t.c.a. (3-4mm)

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

293.00 307.27 1.5 DISS MO 0.1 SP 1.5

spahlerite occurrence increases here to larger clots of the mineral within the qtz veining; pyrite remains disseminated with a slight decrease in presence while pyrrhotite appears to be zonal and on average weakly to moderately present t/o core

295.90 296.15 MAS

massive clast of weakly foliated hornfelsed metaseds

296.15 307.26 MAS S massive granodiorite

307.26 307.27 CON 5 sharp lower contact

From 307.27

To 308.67

Litho HSLT

A short interval of strongly magnetic (pyrrhotite) hornfelsed biotite and silica altered, dark brown, fine grained, metasiltstone. The interval has sharp upper and lower contacts. Veining is moderate throughout with the cm scale veins being the dominant, though it is the mm scale veinlets and fractures that host the most of the moly observed. Pyrite and pyrrhotitie are observed t/o the core in 1-2% abundance and occur together within the cm scale veining as smears and disseminated t/o to a lesser degree.

STRUCTURES									
From	To	Struct	CA	Strain					

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

<u>VEINS</u>							
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

From To 307.27 308.67

Litho **HSLT**

A short interval of strongly magnetic (pyrrhotite) hornfelsed biotite and silica altered, dark brown, fine grained, metasiltstone. The interval has sharp upper and lower contacts. Veining is moderate throughout with the cm scale veins being the dominant, though it is the mm scale veinlets and fractures that host the most of the moly observed. Pyrite and pyrrhoitite are observed t/o the core in 1-2% abundance and occur together within the cm scale veining as smears and disseminated t/o to a lesser degree.

STRUCTURES								
From	To	Struct	CA	Strain				

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

307.27 307.28 CON 5 sharp upper contact

> 307.27 308.67 - - hornfelsed metasiltstone w/ biotite and silica alteration

307.27 308.67 2 100 dominant cm scale qtz veins running shallow t.c.a. with occasional vein orthogonal t.c.a.; minor folation parallel stringer veinlets

307.27 308.67 1 MS PO 1 MO 0.3

pyrite and pyrrhotite are observed mixed together as massive smears t/o cm scale veins and weakly disseminated t/o core; moly is observed within many of the mm scale veinlets and fractures that weave throughout the core surface as well as along the selvages of the cm scale veins

307.28 308.66 FOL 10 VW very weak foliation strain t/o

308.66 308.67 CON 10 sharp irregularly shaped lower contact

From 308.67

To 309.48

Litho **GDIO**

This short interval of granodiorite is a deep forest green colour (chlorite alteration?), strongly siliceous, and weakly mineralized t/o. Pyrrhotite, pyrite and moly are observed. Moly is very weak t/o.

STRUCTURES Struct CA Strain

					AL	TER	ATIC	N.						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

<i>MINERALIZATION</i>											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

308.67 308.68 CON 10 sharp upper contact

From 308.67

To 309.48

Litho GDIO

This short interval of granodiorite is a deep forest green colour (chlorite alteration?), strongly siliceous, and weakly mineralized t/o. Pyrrhotite, pyrite and moly are observed. Moly is very weak t/o.

STRUCTURES
From To Struct CA Strain

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

strong silica alteration t/o with moderate to strong chlorite alteration of feldspar groundmass

S

308.67 309.48 - - M

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 308.67
 309.48
 6
 100
 0
 0
 55

larger cm scale sugary textured qtz veining with minor mm scale veinlets orthogonal t.c.a.
 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

disseeminated pyrite t/o with pyrrhotite in veining as massive blebs; moly is negligible t/o, with rare moly observed along selvages of veining

308.67 309.48 1 DISS PO 1 MO 0.05

309.47 309.48 CON 5 sharp lower contact

From

То

Litho

309.48 311.22 HSLT

Hornfelsed metaseds with moderate alteration, weaker veining than previous intervals, disseminated pyrite and pyrrhotite t/o and weak moly observed.

From To Struct CA Strain

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

MINERALIZATION
From To PY% Style Min Min% Min2 M2% Min3 M3%

309.48 309.49 CON 5 sharp upper contact

309.48 311.22 - - - M - - - - - - - - hornfelsed biotite and silica altered metaseds

309.48 311.22 1 100 0 0 varying orientations of veinlets t/o

309.48 311.22 1 DISS PO 1 MO 0.1

disseminated pyrite and pyrrhotite t/o

with minor moly in microfractures and

mm scale veinlets

309.49 311.21 FOL 5 very weak shallow t.c.a.

311.21 311.22 CON 5 sharp lower contact

CH0606

From	To
144.00	040

Litho **GDIO**

316.60 311.22

This interval of granodiorite is a whitish grey green, strongly siliceous rock, competent and hard with very weak veining, and very weak mineralization t/o. Pyrite is disseminated, but weakly so, pyrrhotite is observed but very weak t/o as well. Moly is observed, but very rarely as specks in the core. Sharp upper and lower contacts shallow t.c.a. two short intervals of metasiltstone are observed btwn 314.61 - 314.77m and 315.55 - 315.88m.

STRUCTURES											
From	To	Struct	CA	Strain							

ALTERATION To | INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

Initials:

311.22 311.23 CON 5 sharp upper contact

> 311.22 314.61 - - W S - - - strongly siliceous and weakly chlorite altered granodiorite

> > 311.22 316.60 1 100 very weak veining throughout

311.22 316.60 0.5 DISS PO 0.5 MO 0.01 disseminated pyrite and pyrrhotite with very rarely observed moly flecks

311.23 314.61 MAS

massive granodiorite

314.61 314.77 MAS

foliated metasiltstone clast

314.77 315.55 MAS

massive granodiorite

315.55 315.88 MAS

foliated metasiltstone clast

315.88 316.59 MAS

massive granodiorite

314.61 314.77 - - - M - - - - M hornfelsed metaseds with biotite and silica alteration

314.77 315.55 - - W S - - - strongly siliceous and weakly chlorite altered granodiorite

315.55 315.88 - - - M - - - - M

hornfelsed metaseds with biotite and silica alteration

315.88 316.60 - - W S - - - -

strongly siliceous and weakly chlorite altered granodiorite

Initials:	

From 311.22

To 316.60

Litho GDIO

(Continued from previous page)

	STRUCTURES									
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

316.59 316.60 CON 40 sharp irregularly shaped lower contact

From

То

Litho

316.60 320.94 HSLT

Hornfelsed metaseds with moderate biotite and silica alteration. Sharp upper and lower, shallow t.c.a. contacts. Moly mineralization is very weak from 316.60-318.00m before picking up considerably between 318.00 - 320.94m as observed within mm scale veinlets.

STRUCTURES								
From	To	Struct	CA	Strain				

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN S	S			
Fro	m To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

316.60 316.61 CON 40 sharp upper contact

316.60 318.00 2 VLT PO 0.5 MO 0.1

veinlets of fg pyrite and smears along fracture surfaces with minor disseminated pyrrhotite; moly here is rarely observed

316.60 320.94 - - - M - - - -

hornfelsed biotite and silica altered metaseds

316.60 320.94 8 100

most of the dominant cm scale qtz veins are shallow t.c.a. with network of mm scale veining t/o 10

316.61 320.93 FOL 15 weak foliation strain

318.00 320.94 2 VLT PO 1 MO 0.5

veinlets of fg pyrite, increased disseminated pyrrhotite and moly is strong within the mm scale veining weaving over the core

			^		~
L	Н	u	ิ	U	O

Initials:	

From 316.60

To 320.94

Litho HSLT

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

1	MINERALIZATION											
i	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

320.93 320.94 CON 10 sharp lower contact shallow t.c.a.

From

То

Litho

320.94 335.87

GDIO

This granodiorite is a whitish grey to greyish green coarse grained, competent, hard, siliceous, very weakly mineralized intrusive. Sharp contacts. The core appears to have cumulative zones of coarser grained portions intercalated with medium grained portions. Moly is not observed within this dioritic intrusive.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1		MINERALIZATION													
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					

320.94 320.95 CON 10 sharp upper contact

320.94 335.87 - - VW S - - - - - - - - - very weak chlorite alteration and a moderate to strong silicification

320.94 335.87 1 100 0 0 2 55

weak veining t/o interval: veins are

weak veining t/o interval; veins are cm scale qtz veins with minor qtz veinlets 320.94 335.87 1 DISS CP 0.1

0.5-1% FG disseminated pyrite t/o with minor chalcopyrite disseminated t/o

320.95 335.86 MAS S

massive siliceous granodiorite

335.86 335.87 CON 40 sharp lower contact

From 335.87

То

Litho HSLT

335.87

339.35

Hornfelsed metasiltstone with biotite and silica alteration, network of stockwork veinlets throughout and minor cm scale qtz veins subparallel core axis. Mineralization weak to weaky moderate t/o.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

335.87 335.88 CON 40 sharp upper contact

335.87 339.35 - - - M - - - - M

hornfelsed biotite and silica altered metaseds

335.87 339.35 2 100 0 0

mm scale veins are the dominant vein set here with varying orientations; larger cm scale veins are present with subparallel core axis angles

335.87 337.41 1 VLT MO 0.5 veinlets of pyrite within qtz veining and

within fractures; moly here is moderate within mm scale veins

335.88 339.34 FOL 15 weak foliation fabric

337.41 339.35 1 VLT MO 0.1

veinlets of pyrite within qtz veining and within fractures; moly here has decreased in presence to rarely observed within fractures and mm scale veins

339.34 339.35 CON 5 sharp lower contact

From 339.35

To 340.61

Litho GDIO

Another intercept of siliceous granodiorite with no moly mineralization.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

339.35 339.36 CON 5 sharp upper contact

339.35 340.61 - - W S - - - - weak chlorite and moderate silica alteration

339.35 340.61 1 100 0 0 3 55 cm scale veining orthogonal t.c.a.

339.35 340.61 2 DISS PO 1 disseminated pyrite and pyrrhotite

340.60 340.61 CON 45 sharp lower contact

From

То

Litho

340.61 345.28 HSLT

Hornfelsed metasiltstone with two larger clasts of granodiorite btween 341.54 - 341.78m and 342.60 - 342.90m. Moly mineralization here is weak.

From To Struct CA Strain

From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR S.						AL	TER	ATIO	N						
Trom 10 INT ARG CHE SIL THI TRI TOT CC ET BIO TEL TIR SI	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

 MINERALIZATION

 From
 To
 PY% | Style | Min | Min% | Min2 | M2% | Min3 | M3% |

340.61 340.62 CON 45 sharp upper contact

340.61 345.28 - - - S - - - - M

strong silica alateration and moderate biotite honrfels

340.61 345.28 3 100 0 0 12 45 numerous x-cutting 45 t.c.a. varying directions qtz veins creating a

stockworking t/o the core

veilets of pyrite and smears along fractures with moly being observed as weak in mm scale veins

340.61 345.28 1 VLT MO 0.1

340.62 345.27 FOL 15 weak foliation strain

345.27 345.28 CON 45 sharp lower contact

From 345.28

To 346.36

Litho GDIO

Short interval of silica altered whitish grey competent, medum grained, granodiorite with no moly mineralization.

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	

MINERALIZATIONFromToPY%StyleMinMin%Min2M2%Min3M3%

345.28 345.29 CON 45 sharp upper contact

345.28 346.36 - - VW M - - - - - - - weakly altered granodiorite

345.28 346.36 1 100 0 0 weak qtz veining; barren

345.28 346.36 1 DISS no moly; disseminated pyrite

346.35 346.36 CON 50 sharp lower contact

From 346.36

*T*o 348.72

Litho HSLT

Dark brown hornfelsed metasiltstone with localized zones of greenish brown colour where the metaseds appear milled about and the pyrite content here jumps in percentage. Moly is recognized within the mm scale veins and fractures and in lesser fashion along the selvages of the cm scale veining.

STRUCTURES
From To Struct CA Strain

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

MINERALIZATION
From To PY% Style Min Min% Min2 M2% Min3 M3%

346.36 346.37 CON 50 sharp upper contact

346.36 348.72 - - - M - - - - - M

hornfelsed metaseds; bio and sil alteration

346.36 348.72 10 100 0

cm scale larger veins are dominant here, but they have a varying orientation across the core

2-3% disseminated pyrite and pyrite along fractures and within veining; pyrrhotite is weak throughout while moly appears to be contained in the mm scale veinlets with some moly observed

along selvages of larger veins

346.36 348.72 3 DISS MO 0.3 PO 0.1

346.37 348.71 FOL 20 weak foliation

348.71 348.72 CON 40 sharp lower contact

CH0606

346.36

From	To

То	
348.72	

Litho HSLT

(Continued from previous page)

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	

1	MINERALIZATION											
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

Initials:

From 348.72

To 354.63

Litho GDIO

A longer interval of whitish grey competent homogenous granodiorite with little alteration; minor silica. Pyrite is disseminated throughout, moly is weakly observed. Veining is very weak and 4-5mm at best for size, except for a larger bull vein btwn 355.15 - 355.30m.

STRUCTURES									
From	To	Struct	CA	Strain					

 ALTERATION

 From
 To
 INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER

				VEINS	5			
ĺ	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION

From To PY% Style Min Min% Min2 M2% Min3 M3%

348.72 348.73 CON 40 sharp upper contact

348.72 354.63 - - - W - - - - - - - weakly silica altered granodiorite

348.72 354.63 1 100 0 0 weak veining throughout; 4-5mm at best on average; see notes

348.72 354.63 1 DISS MO 0.01 diss py with very weak moly in veins only

348.73 351.33 MAS S

granodiorite

351.33 351.59 MAS

weakly foliated metased xenolith

351.59 354.62 MAS

granodiorite

354.62 354.63 CON 50 sharp lower contact

From 354.63 To

357.10 **HSLT**

Litho

A short interval of hornfelsed metasediments. The core is hard, siliceous, weakly veined and weakly mineralized throughout.

STRUCTURES										
From	To	Struct	CA	Strain						

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER From

VEINS Vn% QZ% Feld% CC% V/m CA From To

MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3% From

354.63 354.64 CON 50 sharp upper contact

> 354.63 357.10 - - - M - - - - M hornfelsed biotite, silica altered metaseds

354.63 357.10 2 100 0 weak veining t/o with m mscale veins

354.63 357.10 0.5 VLT MO 0.1

weak pyrite in veinlets in qtz veining and moly is weak and observed within fractures and mm scale veins

354.64 357.09 FOL 20 W weak foliation strain

357.09 357.10 CON 45 sharp lower contact

357.10

To From

Litho

361.86 **GDIO**

This granodiorite is quite different from any other in the drillhole in that this intrusive is exhibits argillic alteration? The core is very white, lots of plagioclase feldspar that appear to be weathered and the fracturing appears rotted and gougey. No significant mineralization in this diorite. But this diorite appears altered differently than any of the others intersected, suggesting that we have numerous episodes of intrusive diorites in this area.

STRUCTURES To Struct CA Strain

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

VEINS QZ% Feld% CC% V/m CA From ToVn%

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

357.10 357.11 CON 45 sharp upper contact

> 357.10 361.86 - W - W - - - weak argillic alteration; clayey infill and gouge along all fractures

357.10 361.86 1 100 varying orientations of mm scale qtz veins t/o

357.10 361.86 1 DISS disseminated pyrite only observed here

361.85 361.86 CON 30 sharp lower contact

Initials:	

From 357.10

To 361.86

Litho GDIO

(Continued from previous page)

STRUCTURES									
From	To	Struct	CA	Strain					

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

<u>VEINS</u>										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From

То

Litho

361.86 375.35 HSLT

Hornfelsed biotite and silica altered, moderately stockwork veined metasiltstone. Mineralization is weak t/o, but moly is observed, just in weak amounts.

STRUCTURES									
From	To	Struct	CA	Strain					

ı						AL	TER	<i>ATIO</i>	N						
Ī	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION
From To PY% Style Min Min% Min2 M2% Min3 M3%

361.86 361.87 CON 30 sharp upper contact

361.86 375.35 - - - M - - - - - M

hornfelsed biotite and silica altered metaseds

361.86 375.35 3 100 0 0

a stockworking of mm scale veins are
the dominant vein set here with minor
cm scale microfractured qtz veins

observed throughout

361.86 375.35 1 VLT MO 0.1

pyrite is observed mainly as veilets t/o

the core and also as smears along fractures and within qtz veining; moly is weak t/o the core and present within fractures and mm scale veins

361.87 375.34 FOL 20 VW very weak strain foliation t/o

375.34 375.35 CON 15 sharp lower contact

From To 375.35

Litho QFP

381.67

This interval is a dark green, strongly siliceous, fine grained porphyritic quartz feldspar porphyry dyke with sharp upper and lower contacts. The core has a "milled" appearance, whereby the rock is medium grained and sugary looking with mm scale qtz eyes and feldspars all mixed up in a strongly chloritic altered groundmass. Perhaps the abundance of disseminated pyrite enhances the "different" textured look of the core. Unfortunately I believe I have seen this in the drillhole already, but mistakenly called it a granodiorite; though the interval earlier was small in comparison. Mineralization to is dominantly pyrite disseminations with pyrrhotite, possible chalcopyrite and NO moly observed. Epidote is observed in clotty localized zones generally associated with increased veining. Pervasive carbonate alteration throughout the core interval.

STRUCTURES										
From	To	Struct	CA	Strain						

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS Vn% QZ% Feld% CC% V/m CA ToFrom

MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3%

375.35 375.36 CON 15

375.35 381.67 - - S S - M - M VW

propylitic alteration with strong silica, chlorite and weak epidote alteration.

375.35 381.67 5 95 anastomosing stockwork qtz veining throughout, milled and broken veining t/o; with a 5% carbonate presence with calcite veinlets cutting core 55

t.c.a.

4-5% MG and FG disseminated pyrite wit hpyrite veinlets as well' pyrrhotite is mixed in the pyrite within the veining; moly not observed

375.35 381.67 5 DISS PO 1

375.36 381.66 MAS

massive, siliceous, hard, milled looking, dark green QFP dvke

381.66 381.67 CON 30 sharp lower contact

> From 381.67

To 387.25 Litho **GDIO**

The upper and lower contacts are sharp. The upper contact with the overlain QFP is very sharp and exhibits the definte change in lithologies. The core is massive, light green white grey coloured, medium grained and weakly veined and mineralized.

STRUCTURES To Struct CA Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZAT <u>I</u> ON										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

381.67 381.68 CON 30 sharp upper contact

From 381.67

To 387.25 Litho **GDIO**

The upper and lower contacts are sharp. The upper contact with the overlain QFP is very sharp and exhibits the definte change in lithologies. The core is massive, light green white grey coloured, medium grained and weakly veined and mineralized.

weakly altered granodiorite

STRUCTURES								
From	To	Struct	CA	Strain				

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
381.67	387.25	-	-	W	S	-	-	-	-	-				

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			
381.67	387.25	1	100	0	0	4	55			
			m pinkis nt this in	h white q terval	tz					

1	MINERALIZATION										
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

disseminated MG pyrite with trace moly along selvages of few mm scale qtz veins

381.67 387.25 1 DISS MO 0.01

387.24 387.25 CON 40 sharp lower contact

> From 387.25

To 389.15 Litho

HSLT

Dark brown, FG, weakly foliated, biotite and silica altered metasiltstone with weak pyrite mineralization and weak moly mineralization. Moly observed along vein selvages and within mm scale fractures and veining as well as disseminated within metaseds along the selvage edges.

	STRUCTURES									
From	To	Struct	CA	Strain						

ALTERATION												
From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER											SER	

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

<i>MINERALIZATION</i>										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

387.25 387.26 CON 40 sharp upper contact

> 387.25 389.15 - - hornfelsed biotite and silica altered metasiltstone

387.25 389.15 10 100 4 15 cm scale larger qtz veins dominate this interval with veining at the upper contact

veinlets of FG pyrite fill the microfractures t/o and smears along fractures with rare disseminated pyrite; moly is observed infewer frequency than previous intervals, but it is along selvages of cm scale veining and infilling microveining; also noted is that the mly is disseminated within the metaseds along the selvages edges (not abutted the vein, but instead within the metaseds)

387.25 389.15 1 VLT MO 0.2

Initials:	
minaro.	

From 387.25

To 389.15

Litho HSLT

(Continued from previous page)

	STRUCTURES								
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

	<i>MINERALIZATION</i>												
i	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

387.26 389.14 FOL 5 VW very weak strain foliation

389.14 389.15 CON 5 shallow t.c.a. sharp lower contact

From 389.15

To

Litho

389.15 399.55 GDIO

This granodiorite is a greenish coloured to white green coloured strongly siliceous rock with very little veining and weak moly mineralization overall. Pyrite is present as disseminated MG flecks while, pyrrhotite is observed rarely within few veins. Moly is observed within fractures and along selvages of cm scale qtz veins. The rock goes in and out of fine grained and medium grained cumulative phases throughout the entire interval length, while the pyrite appears stronger within the fine grained portions and the moly appears stronger within the medium grained (classic diorite) portions.

	STRUCTURES										
From	To	Struct	CA	Strain							

	ALTERATION													
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

389.15 389.16 CON 5 sharp upper contact

389.15 399.55 - - W S - - - - - - - weak chlorite alteration and moderately strong silica t/o

389.15 399.55 2 99 0 1 7 50

on average 1cm size scale veining of qtz 50-55 t.c.a; mm scale veinlets of calcite also obsered t/o, but uncomon

1-% disseminated pyrite t/o with trace, but present, pyrrhotite and weak moly mineralization within few mm scale fractures and occasionally along selvages of larger qtz veins.

389.15 399.55 2 DISS MO 0.1 PO 0.01

399.54 399.55 CON 45 sharp lower contact

From 399.55 400.36

To

Litho **HSLT**

A very short interval of crackled hornfelsed metasiltstone with a lot of stockwork veining throughout. The unit appears very "cracked" possibly due to the underlain fault. Pyrite is weak t/o and moly was not observed in the any of the veining.

	STRUCTURES											
From	To	Struct	CA	Strain								

ALTERATION To | INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER From

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

399.55 399.56 CON 45 sharp upper contact

moderate biotite and silica altered hornfelsed metaseds

399.55 400.36 15 an abundance of stockwork veining t/o lower contact is a fault and may have affected this unit

399.55 400.36 1 VLT weak pyrite as veinlets and no moly observed

399.56 400.35 FOL

foliation here varies as this hornfelsed unit is somewhat brecciated and exhibits a moderate strain along the contacts. See notes.

400.35 400.36 CON 25 sharp lower contact

From 400.36

To 403.02

Litho **GDIO**

Fault:

This interval is entirely a fault and made up of busted reworked granodiorite. The contacts are sharp and appear healed. The whole fault is a rehealed and guite competent with a brecciated texture of angular to subangular clasts set in a fine grained dark matrix of qtz and feldspar and biotite and mafic minerals (non magnetic). The core exhibits a strong reworked fabric whereby the interval appears to be re-opened at least 3 times. The core is strongly mineralized with pyrite and rare pyrrhotite, but moly is observed in only 2 instances within the fault and minor at that.

	STRU	CTUR	EES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

	MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

400.36 400.37 CON 25 sharp upper contact

From 400.36

To 403.02

Litho GDIO

Fault:

This interval is entirely a fault and made up of busted reworked granodiorite. The contacts are sharp and appear healed. The whole fault is a rehealed and quite competent with a brecciated texture of angular to subangular clasts set in a fine grained dark matrix of qtz and feldspar and biotite and mafic minerals (non magnetic). The core exhibits a strong reworked fabric whereby the interval appears to be re-opened at least 3 times. The core is strongly mineralized with pyrite and rare pyrrhotite, but moly is observed in only 2 instances within the fault and minor at that.

	STRUCTURES											
From	To	Struct	CA	Strain								

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
400.36	403.02	_	W	_	W	_	_	_	W	_			М	

	VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						
400.36	403.02	25	98	0	2								

busted up and broken and reorientated qtz vein pieces t/o interval of fault with calcite veining after the fact cutting core orthogonal t.c.a.

Ì	MINERALIZATION											
Ì	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

400.36 403.02 7 DISS MO 0.01 PO 0.1 5-10% disseminated pyrite t/o with very weak moly in flecks within core

400.37 403.01 FLT reworked healed fault

403.01 403.02 CON 35 sharp lower contact

*T*o 409.42

Litho GDIO

Silica altered and weakly chlorite altered granodiorite with sharp upper and lower contacts, weak moly mineralization, abundant disseminated pyrite and moderate veining t/o.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION												
From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER											SER	

	<u>VEINS</u>										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

	<i>MINERALIZATION</i>											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

403.02 403.03 CON 35 sharp upper contact

403.02 409.42 - - W M - - - -

mod to strong silica t/o with weak to moderate chorite alteration

403.02 409.42 5 100 0 0

most of the veining is cm scale veins running subparallel t.c.a

403.02 409.42 5 DISS MO 0.1

abundant disseminated pyrite with moly along selvages of cm scale veining

Initials:	

From 403.02

To 409.42

Litho GDIO

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

massive granodiorite

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

1	MINERALIZATION									
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

409.41 409.42 CON 45 sharp lower contact

403.03 409.41 MAS

From

То

Litho

409.42

412.41

HSLT

A hornfelsed biotite and silica altered metasiltstone with sharp contacts, strong stockworking of qtz veining and 3-4% pyrite; no moly observed.

STRUCTURES
From To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

409.42 409.43 CON 45 sharp upper contact

409.42 412.41 - - - M - - - - - M

hornfelsed biotite and silica altered metaseds

409.42 412.41 10 100 0

a strong network of stockwork veining t/o with mostly mm scale veins and fewer cm scale veins 409.42 412.41 3 VLT 3-4% veinlets t/o with FG dissemiated

pyrite locally; no moly observed.

409.43 410.15 BX S
zone of moderate alteration
and brecciation

410.15 412.40 FOL 25 VW weak foliation strain

412.40 412.41 CON 50 sharp lower contact

From 412.41

To 413.06

Litho GDIO

Short interval of greenish grey chlorite and silica altered granodiorite.

STRUCTURES								
From	To	Struct	CA	Strain				

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

412.41 412.42 CON 50 sharp upper contact

412.41 413.06 - - M M - - - - -

moderate chlorite and silica alteration

412.41 413.06 0.5 60 0 40

even distribution of mm scale hairline
qtz and calcite veining t/o

412.41 413.06 0.5 DISS weak mineralization t/o with 0.5% disseminated pyrite

413.05 413.06 CON 30 sharp lower contact

From 413.06

To 414.23

Litho HSLT

The upper portion of this interval btwn 413.06 - 413.61m is another faulted zone of brecciated and milled hornfels metaseds inundated with busted up veining and disseminated pyrite. Moly is observed in the lower portion of the hornfels unit away from the fault.

STRUCTURES								
From	To	Struct	CA	Strain				

ALTERATION											
From To INT ARG CHL SIL PHY PRY POT CC EP								BIO	FLP	PYR	SER

VEINS									
From To Vn% QZ% Feld% CC% V/m CA									

98

mostly mm scale stockwork qtz veining with calcite veining minor t/o. A larger 10 cm qtz vein is observed at

2

413.06 414.23 1

the lower contact

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

413.06 413.07 CON 30 sharp upper contact

413.06 413.61 - - M - - - - M -

faulted zone exhibits chlorite and carbonate pervasive throughout

413.06 413.61 3 DISS 3-4% disseminated pyrite

413.07 413.61 FLT

moderate messed up brecciated and milled looking fault at the upper From To 413.06 414.23

Litho HSLT

(Continued from previous page)

STRUCTURES								
From	To	Struct	CA	Strain				

portion of the granodiorite and metaseds contact

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

MINERALIZATION

From To PY% Style Min Min% Min2 M2% Min3 M3%

413.61 414.22 FOL 15 VW very weak strain foliation

413.61 414.23 - - - M - - - VW - M hornfelsed biotite and silica altered metaseds with minor pervasive calcite

413.61 414.23 3 VLT MO 0.1

3-4% veinlets of pyrite and
disseminated pyrite; moly is weakly
observed but within the veining

414.22 414.23 CON 30 sharp lower contact

From

То

Litho

414.23 416.28 GDIO

A short interval of greenish white silica altered granodiorite with decent veining t/o and moly mineralization within.

STRUCTURES								
From	To	Struct	CA	Strain				

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

414.23 414.24 CON 30 sharp upper contact

414.23 416.28 - - W M - - - VW - silica and chlorite altered GD

414.23 416.28 5 100 0 0 6 65

large cm scale qtz veins are dominant
with minor mm scale veinlets

414.23 416.28 2 DISS MO 0.3

FG disseminated pyrite and weak to moderate moly within the qtz veining

416.27 416.28 CON 90 sharp lower contact

Initials:	
-----------	--

From 416.28

*T*o 451.00

core appears to be chlorite and calcite altered.

Litho QFP

A large greenish yellow, fine to medium grained, quartz feldspar porphyry dyke with sharp upper and lower contacts. The rock begins fine grained and grades into medium grade and then back into fine grained again, but this time with 1% mm sized biotite crystals and then coarse grained and finally ends as a fine grained weakly foliated dyke at the lower contact. Mineralization is weak disseminations of pyrite and veining is very weak and dominantly mm hairline calcite veinlets. The

STRUCTURES							
From	To	Struct	CA	Strain			

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

416.28 416.29 CON 90 sharp upper contact

416.28 451.00 - - M W - - - M -

moderate chlorite alteration t/o with pervasive calcite alteration and weak silica

416.28 451.00 0.1 0 0 100 4 50 very rare hairline mm scale calcite veins 416.28 451.00 1 DISS disseminated FG to MG pyrite

massive QFP dyke

416.29 450.99 MAS

450.99 451.00 CON 15 sharp lower contact

From 451.00

To 459.67

Litho **GDIO**

Another interval of moderately strong chlorite and silica altered granodiorite with weak pyrite mineralization and weaker moly mineralization. Between 47.80 -459.67m the core appears to be faulted.

STRUCTURES							
From	To	Struct	CA	Strain			

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

moderate chlorite alteration leaves the core the green colour; while it

remains strongly silicified with a weak pervasive calcite alteration t/o

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

451.00 451.01 CON 15 sharp upper contact

451.00 457.80 - - M S - - - W -

451.00 457.80 2 dominantly mm scale qtz veins with later calcite veining

451.00 457.80 1 DISS MO 0.01 weak disseminated pyrite and even weaker presence of moly

451.01 457.80 MAS massive granodiorite

457.80 459.33 - M W W - - - M -

fault is gougey with clayey materials, and competent bits still have silica and weak chlorite alteration; moderate carbnate alteration t/o 457.80 459.33 1 2 weak veining of qtz and calcite

457.80 459.66 FLT faulted granodiorite

> 459.33 459.67 - - M S - - - siliceous and chloritic end contact of fault

459.33 459.67 10 100 abundant qtz veining at end contact zone

457.80 459.67 3 FG FG massive blebs of pyrite. No moly observed.

459.66 459.67 CON 30 sharp lower contact **From** 459.67

To 460.55

Litho HSLT

Strongly siliceous hornfelsed metasiltstone with a strong stockwork veining t/o. Contacts are sharp. Mineralization is primarily pyrite with minor weak moly in cm scale veins.

STRUCTURES							
From	To	Struct	CA	Strain			

 ALTERATION

 From
 To
 INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 MINERALIZATION

 From
 To
 PY% | Style | Min | Min% | Min2 | M2% | Min3 | M3% |

459.67 459.68 CON 30 sharp upper contact

459.67 460.55 - - - S - - - - N

strong silica alteration and moderate biotite alteration t/o the hornfelsed metaseds

459.67 460.55 20 100 0 (s strong stockworking of qtz veining t/o; cm and mm scale veining

5-7% FG disseminated pyrite thoughout (brought in with silica?); diss pyrrhotite is observed as core is magnetic; moly is observed within the cm scale veining only

459.67 460.55 5 DISS MO 0.2 PO

459.68 460.54 MAS

massive metaseds

460.54 460.55 CON 25 sharp lower contact

From

То

Litho GDIO

460.55 461.47

A short strongly siliceous interval of chlorite altered and silica altered granodiorite. Weak disseminated pyrite with no moly observed.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

460.55 460.56 CON 25 sharp upper contact

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	<i>MINERALIZATION</i>										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

460.55 461.47 - - M S - - - - - - strong silica alteration

460.55 461.47 2 100 0 0

a moderate network of stockwork mm
scale qtz veining

460.55 461.47 1 DISS diss py t/o

461.46 461.47 CON 15 sharp lower contact

From To 460.55 461.47

Litho GDIO

(Continued from previous page)

STRUCTURES									
From To Struct CA Strain									

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

From 461.47

To 464.13

Litho HSLT

A short interval of messed up looking metasiltstone. A lot of veining as a stockwork t/o, giving a crackle texture. A moderately chlorite altered fault breccia between 463.15 - 464.13m. Mineralization is weak thoughout.

STRUCTURES								
From	To	Struct	CA	Strain				

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION
From To PY% Style Min Min% Min2 M2% Min3 M3%

461.47 461.48 CON 15 sharp upper contact

 $461.47 \quad 463.15 \quad - \quad - \quad - \quad \quad \mathsf{S} \quad \quad - \quad \quad - \quad \quad - \quad \quad \mathsf{M}$

hornfelsed biotite and silica altered metaseds

461.47 464.13 15 100 0 0

a stockworking of cm scale and mm
scale qtz veining in varying
orientations

461.47 464.13 1 VLT MO 0.01

weak pyrite disseminated and as
veinlets t/o with very weak moly
observed in veining

461.48 463.15 MAS

massive metaseds with slight breccia texture

463.15 464.12 BX 20

breccia and/or fault here; altered, veined, broken up and moderately foliated

463.15 464.13 - - M W - - - - -

chlorite altered fault breccia

From 461.47

To 464.13

Litho HSLT

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

			M	INE	RAL	IZAT	ION			
1	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

464.12 464.13 CON 20 sharp lower contact

From

То

Litho GDIO

464.13 497.56

A large intersection of weakly chlorite and moderately silica altered, competent, medium to coarse grained granodiorite with sharp upper and lower contacts. The diorite exhibits rare metasiltstone inclusions or xenoliths (1-2cm size) and is weakly veined throughout its length; qtz veining dominantly. Mineralization is weak with disseminated pyrite and rarely observed moly along selvages of cm scale veins.

	STRU	STRUCTURES								
From	To	Struct	CA	Strain						

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

464.13 464.14 CON 20 sharp upper contact

464.13 497.56 - - - M - - - - - moderately siliceous fresh granodiorite

464.13 497.56 2 100 0 0 6

an even distribution of mm scale qtz
veins and larger cm scale qtz veins

mineralization is weak t/o with 1-1.5% disseminated pyrite and occasional local zones of veilets of pyrite; moly is observed very rarely and within some of the larger cm scale qtz veins

464.13 497.56 1 DISS MO 0.01 CP 0.01

464.14 497.55 MAS

massive granodiorite

CH0606

•	Γ	U	O	U	•

Litho

From 464.13

To 497.56

GDIO

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA			

	MINERALIZATION											
i	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

Initials:

497.55 497.56 CON 45 sharp lower contact

From

То

Litho HSLT

497.56 500.40

A very siliceous dark brown hornfelsed metasiltstone with a strong stockwork veining t/o. The contacts are sharp, the core is biotite and silica altered, veining is dominantly mm scale anastomosing qtz veinlets with fewer 45 t.c.a. cm scale qtz veins. All styles of qtz veining observed contains moly and pyrite. Pyrites present within the veins and within fractures as veinlets. Moly mineralization here is moderate.

STRUCTURES									
From	To	Struct	CA	Strain					

<i>ALTERATION</i>														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	

Ì	MINERALIZATION										
1	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

497.56 497.57 CON 45 sharp upper contact

497.56 500.40 - - - S - - - - N
biotite and silica altered metaseds

497.56 500.40 10 100 0 0

anastomosing stockwork qtz veining
with x-cutting core axis cm scale qtz
veins

497.56 500.40 1 VLT MO 0.5

pyrite in veinlets and moly as selvages to cm scale veins and as infill to mm scale veins

497.57 500.39 MAS

massive metaseds with no discernable foliation

500.39 500.40 CON 5 sharp lwoer contact shallow t.c.a.

From 500.40

To 501.90 Litho **GDIO**

A short interval of greenish grey fine grained siliceous, chlorite altered granodiorite. The core is competent, hard, weakly mineralized and weakly veined t/o. Veining does exhibit minor moly along selvages with moly also observed disseminated within core around fractures.

STRUCTURES From To Struct CA Strain

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

VEINS QZ% Feld% CC% V/m CA From ToVn%

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

500.40 500.41 CON 5 sharp upper contact

500.40 501.90 - - M

chlorite and silica altered diorite

500.40 501.90 0.5 100 45 minimal veining (4-7mm) t/o 45 t.c.a.

500.40 501.90 1 DISS MO 0.05 CP 0.5 weak moly along vein selvages and within fractures; disseminated pyrite;

disseminated CP

501.89 501.90 CON 25 sharp lower contact

> From 501.90

To 514.57

Litho **HSLT**

A lengthy interval of strongly siliceous, dark brown, fine grained metasiltstone with an abundance of stockwork qtz veining. Both mm scale and cm scale qtz veins present throughout the core. Moly here is moderate as dictated by the number of veins present. This zone is likely the mineralized body at vertical depth beneath historical drillhole 81-6. Moly in fractures, along selvages and as infill within mm scale qtz veins. Pyrite present as veinlets and to a lesser extent, disseminated.

STRUCTURES Struct CA Strain ToFrom

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER From

VEINS Feld% CC% V/m CA Vn% QZ% FromTo

MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3%

501.90 501.91 CON 25 sharp upper contact

> 501.90 514.57 - - -S - - biotite and silica altered hornfelsed metaseds

501.90 514.57 15 100 anastomosing mm scale veins and cm scale veins 45 t.c.a. t/o core length

veinlets, massive, fine grained and disseminated pyrite t/o; moly is abundant here compared to other intervals as it is commonly observed within and along veins.

501.90 514.57 2 VLT MO 0.7

501.91 514.56 MAS

no discernable foliation

From 501.90

To 514.57

Litho **HSLT**

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

514.56 514.57 CON 10 sharp lower contact

> From 514.57

To 516.22 Litho **GDIO**

same as interval 500.40 - 501.90m

STRUCTURES To Struct CA Strain

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

VEINS Vn% QZ% Feld% CC% V/m CA From To

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

514.57 514.58 CON 10 sharp upper contact

> 514.57 516.22 - - M chlorite and silica altered granodiorite

514.57 516.22 1 weakly veined t/o with cm scale qtz veins

514.57 516.22 1 DISS MO 0.1 CP 0.5 1-2% MG disseminated pyrite with weak moly along veining; disseminated CP

516.21 516.22 CON 90 sharp lower contact

> From 516.22

To 524.76 Litho **HSLT**

Hornfelsed metasiltstone with strong silica alteration and moderate veining. Larger (1-3cm) qtz veins are observed about 6 per metre and at a consistent 45 t.c.a. with minor showings of mm scale qtz veining anastomosing over core. Mineralization observed is pyrite, sphalerite and moly. Pyrite is observed as disseminated, veinlets and semi-massive t/o core with sphalerite observed only within the cm scale veins. Moly observed is along the selvages of the veins and within the microfractures and mm scale veins. Granodiorite enoliths observed within at 519.14 - 520.14m and 521.45 - 521.86m.

STRUCTURES From To Struct CA Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

				VEINS	5			
ĺ	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

516.22 516.23 CON 90 sharp upper contact

_				
\sim 11	\mathbf{a}	^	$\hat{}$	^
				_
CH	w	w	L J	T)

From 516.22

To 524.76

Litho **HSLT**

Hornfelsed metasiltstone with strong silica alteration and moderate veining. Larger (1-3cm) qtz veins are observed about 6 per metre and at a consistent 45 t.c.a. with minor showings of mm scale qtz veining anastomosing over core. Mineralization observed is pyrite, sphalerite and moly. Pyrite is observed as disseminated, veinlets and semi-massive t/o core with sphalerite observed only within the cm scale veins. Moly observed is along the selvages of the veins and within the microfractures and mm scale veins. Granodiorite enoliths observed within at 519.14 - 520.14m and 521.45 - 521.86m.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS From To Vn% QZ% Feld% CC% V/m CA

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

Initials:

516.22 519.86 - - -S -

silica and biotite altered hornfelsed metaseds

516.22 524.76 2 100 0 5 45

> dominant atz vein here are the large (1-3cm) cm scale vein with minor mm scale veining anastomosing over core surface

516.22 524.76 2 SM MO 0.4 SP 0.3

1-2% semi massive, fine grained, disseminated pyrite, and veinlets of semi massive pyrite; moly is still observed in moderate amounts along the vein selvages and within microfractures. Sphalerite is observed here in fair amounts as larger cm clots t/o cm scale veins

516.23 519.86 MAS

massive non foliated metaseds

519.86 520.14 MAS

masive chlorite altered granodiorite

520.14 521.45 MAS

massive non foliated metaseds

519.86 520.14 - - M S chlorite and silica altered granodiorite

520.14 521.45 - - - S - - -

silica and biotite altered hornfelsed metaseds

521.45 521.86 MAS

massive chlorite altered granodiorite

521.45 521.86 - - M S -

chlorite and silica altered granodiorite

From 516.22 524.76

To

Litho **HSLT**

(Continued from previous page)

	STRU	CTUR	RES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA			

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

521.86 524.75 MAS massive non foliated metaseds

521.86 524.76 - - - S - - - - M

silica and biotite altered hornfelsed metaseds

524.75 524.76 CON 5 sharp lower contact shallow t.c.a.

From 524.76

To 530.51

Litho **GDIO**

same as interval 500.40 - 501.90m. A very competent, strongly siliceous, moderate to strongly chlorite altered granodiorite with a very fine grained groundmass. This diorite has moderate pyrite and chalcopyrite disseminated t/o with weakly observed moly associated with much of the veining. Veining throughout is moderate; up to 10% qtz veining. The core appears to have a brittle deformation crackle texture, whereby the rock was inundated with force and snapped open with qtz infilling the fractures. The core is very hard, competent and stiff.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	<u>VEINS</u>											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

524.76 524.77 CON 5 sharp upper contact

524.76 530.51 - - S

moderately strong chlorite alteration and strong silica alteration

524.76 530.51 10 100 stockworking of gtz veins from mm scale to cm scale t/o

mostly disseminated pyrite and chalcopyrite with sphalerite localized to cm scale veins and moly observed along selvages of veining though in weaker amounts.

524.76 530.51 3 DISS CP 1

Initials:	
II IIIIais.	

From 524.76

To 530.51

Litho GDIO

(Continued from previous page)

STRUCTURES
From To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

1		MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

524.77 526.50 MAS S

massive granodiorite

526.50 527.00 BX 35 M moderately strained breccia zone of granodiorite

527.00 530.50 MAS

massive granodiorite

530.50 530.51 CON 25 sharp lwoer contact

From 530.51

To 533.04

Litho HSLT

A shorter interval of siliceous dark brown hornfelsed metasiltstone with anastomosing qtz veining and sharp upper and lower contacts. Moly observed is weak to moderate t/o and present along selvages and within fractures and mm scale veinlets.

STRUCTURES
From To Struct CA Strain

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

530.51 530.52 CON 25 sharp upper contact

530.51 533.04 - - - S - - - - M
biotite and silica altered metaseds

530.51 533.04 2 100 0 0 mostly mm scale qtz veining (3-6mm) at varying orientation t/o core

veinlets and disseminated pyrite t/o interval length with moly observed along selvages and within mm scale veins as well as fractures

530.51 533.04 1 VLT MO 0.2

530.52 533.03 MAS S non foliated massive metaseds

Initials:	

From 530.51

To 533.04

Litho HSLT

(Continued from previous page)

	STRUCTURES									
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

Ì	MINERALIZATION												
i	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

533.03 533.04 CON 25 sharp lower contact

From

То

*Litho*GDIO

533.04

535.08

same as interval 500.40 - 501.90m. A very competent, strongly siliceous, moderate to strongly chlorite altered granodiorite with a very fine grained groundmass. This diorite has moderate pyrite and chalcopyrite disseminated t/o with weakly observed moly associated with much of the veining. Veining throughout is moderate; up to 10% qtz veining. The core appears to have a brittle deformation crackle texture, whereby the rock was inundated with force and snapped open with qtz infilling the fractures. The core is very hard, competent and stiff.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

<i>MINERALIZATION</i>											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

533.04 533.05 CON 25 sharp upper contact

533.04 535.08 - - S S - - - - - - strong chlorite and silica alteration t/o

533.04 535.08 0.5 99 0 1

weakly veined interval with mm scale
qtz veins and later hairline veinlets of

calcite

mostly disseminated pyrite with lesser disseminated chalcopyrite in fine grained groundmass; moly along selvages of veins and in fractures but rarely; sphalerite clots within very rare larger cm scale qtz veins

533.04 535.08 2 DISS CP 0.5 MO 0.01

533.05 535.07 MAS

massive chlorite and silica altered granodiorite

535.07 535.08 CON 45 sharp lower contact

Initials:

From 535.08

To 537.10

Litho **HSLT**

Same as interval 530.51 - 533.04m

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

535.08 535.09 CON 45 sharp upper contact

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3%

535.08 537.10 - - W S - - - - M

biotite and silica altered metaseds with weak chlorite alteration near lower contact

535.08 537.10 5 98 mostly larger cm scale qtz veins runing subparallel t.c.a.; these veins have a sugary texture and are 99% qtz 1% carbonate veins; later calcite

veinlets cut the core axis

semi massive to veinlets of fg massive pyrite t/o interval; sphalerite is observed within larger cm scale veins, while moly is observed in weak amounts along selvages of veins

535.08 537.10 1 SM MO 0.2 SP 0.1

535.09 537.09 MAS

massive non foliated hornfelsed metaseds

537.09 537.10 CON 45 sharp lower contact

From 537.10

To 565.42 Litho **GDIO**

same as interval 500.40 - 501.90m. A very competent, strongly siliceous, moderate to strongly chlorite altered granodiorite with a very fine grained groundmass. This diorite has moderate pyrite and chalcopyrite disseminated t/o with weakly observed moly associated with much of the veining. Veining throughout is moderate; up to 10% qtz veining. The core appears to have a brittle deformation crackle texture, whereby the rock was inundated with force and snapped open with qtz infilling the fractures. The core is very hard, competent and stiff.

This interval of granodiorite, though identical to previous intervals, exhibit more medium grained, classic looking granodiorite internal to the interval. The medium grained granodiorite observed continues to exhibit a strong chlorite and silica alteration, however, the groundmass percentage is much less than the overall interval and plagioclase lathes are more abundant, thus giving the core a white green colour rather than a forest green colour like the main body of the interval. Contacts between these two visually different diorites is gradational at all observed intervals, so it is presumed that there is a cumulative layering effect or perhaps different pulses as often observed, there are veins separting the two bodies of diorite.

	STRU	CTUR	EES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA				

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

Initials:

From 537.10

To 565.42

Litho GDIO

same as interval 500.40 - 501.90m. A very competent, strongly siliceous, moderate to strongly chlorite altered granodiorite with a very fine grained groundmass. This diorite has moderate pyrite and chalcopyrite disseminated t/o with weakly observed moly associated with much of the veining. Veining throughout is moderate; up to 10% qtz veining. The core appears to have a brittle deformation crackle texture, whereby the rock was inundated with force and snapped open with qtz infilling the fractures. The core is very hard, competent and stiff.

This interval of granodiorite, though identical to previous intervals, exhibit more medium grained, classic looking granodiorite internal to the interval. The medium grained granodiorite observed continues to exhibit a strong chlorite and silica alteration, however, the groundmass percentage is much less than the overall interval and plagioclase lathes are more abundant, thus giving the core a white green colour rather than a forest green colour like the main body of the interval. Contacts between these two visually different diorites is gradational at all observed intervals, so it is presumed that there is a cumulative layering effect or perhaps different pulses as often observed, there are veins separting the two bodies of diorite.

STRUCTURES										
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

Ì	MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

537.10 537.11 CON 45 sharp upper contact

537.10 565.42 - - S S - - - - -

strong chlorite and silica altered granodiorite

537.10 565.42 10 100 0 0 55

on average core axis angle of dominant qtz vein is 55 degrees; many of the bull veins are 3-5 cm in size and contain moderate to sometimes strong septa of pyrite and or moly; mm scale veining and smaller cm scale veining are also observed t/o running in varying orientations over the core surface 537.10 565.42 3 DISS CP 1 MO 0.5

2-3% FG disseminated pyrite t/o with disseminated chalcopyrite and pyrrhotite t/o as well; moly here is weak to moderate and observed disseminated, mostly as mm veinlets along selvages of the cm scale veins

537.11 565.41 MAS S

> massive chlorite and silica altered FG granodiorite

CH0606

Initials:	

From 537.10

To 565.42

Litho GDIO

(Continued from previous page)

STRUCTURES										
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS							
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	MINERALIZATION									
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

565.41 565.42 CON 30 sharp lower contact

From

То

Litho QFP

565.42 568.07

A short interval of dark grey, very fine grained groundmass quartz feldspar porphyry with equigranular felsdspar pheocrysts. The core is competent, weakly siliceous, weakly mineralized and devoid of observed moly.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION

From To PY% Style Min Min% Min2 M2% Min3 M3%

0

565.42 565.43 CON 30 sharp upper contact

565.42 568.07 - - - W - - - weakly siliceous, but otherwise unaltered

565.42 568.07 0.1 98 0 2 very weak qtz veining and rare calcite veining 565.42 568.07 0.5 DISS 0

weak disseminated pyrite

565.43 568.06 MAS S massive quartz feldspar porphyry

568.06 568.07 CON 35 sharp lower contact

Initials:

From 568.07

To 584.30

Litho GDIO

same as interval 500.40 - 501.90m. A very competent, strongly siliceous, moderate to strongly chlorite altered granodiorite with a very fine grained groundmass. This diorite has moderate pyrite and chalcopyrite disseminated t/o with weakly observed moly associated with much of the veining. Veining throughout is moderate; up to 10% qtz veining. The core appears to have a brittle deformation crackle texture, whereby the rock was inundated with force and snapped open with qtz infilling the fractures. The core is very hard, competent and stiff.

This interval of granodiorite, though identical to previous intervals, exhibit more medium grained, classic looking granodiorite internal to the interval. The medium grained granodiorite observed continues to exhibit a strong chlorite and silica alteration, however, the groundmass percentage is much less than the overall interval and plagioclase lathes are more abundant, thus giving the core a white green colour rather than a forest green colour like the main body of the interval. Contacts between these two visually different diorites is gradational at all observed intervals, so it is presumed that there is a cumulative layering effect or perhaps different pulses as often observed, there are veins separting the two bodies of diorite.

STRUCTURES						
From	To	Struct	CA	Strain		

From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

	VEINS						
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

throughout with varying orientations

1	MINERALIZATION									
i	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

568.07 568.08 CON 35 sharp upper contact

568.07 584.30 - - S S - - - - - - strongly chlorite and silica altered

568.07 584.30 7 100 0 0

dominantly larger cm scale veining xcutting core axis with moderate septa
of moly and pyrite; anastomosing mm
scale veining is also abundant

2-3% FG disseminated pyrite t/o with disseminated chalcopyrite and pyrrhotite t/o as well; moly here is weak to moderate and observed disseminated, mostly as mm veinlets along selvages of the cm scale veins

568.07 584.30 3 DISS CP 1 MO 0.3

568.08 584.30 MAS S

massive chlorite and silica altered granodiorite

CHU Project - TTM Resources Inc. SAMPLE REPORT

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
44903	5.1	8.23	AND	CORE	0.082	0.006
44904	8.23	11.28	AND	CORE	0.056	0.027
44905	8.23	11.28	AND	BLANK	0.002	0
44906	11.28	14.33	AND	CORE	0.059	0.019
44907	14.33	17.37	AND	CORE	0.056	0.012
44908	17.37	20.42	AND	CORE	0.055	0.013
44909	20.42	23.47	AND	CORE	0.053	0.012
44910	20.42	23.47	AND	BLANK	0.001	0
44911	23.47	26.52	AND	CORE	0.067	0.015
44912	26.52	29.57	AND	CORE	0.102	0.015
44913	29.57	32.61	AND	CORE	0.084	0.009
44914	32.61	35.66	AND	MoS-1	0.075	0.062
44915	35.66	38.71	AND	CORE	0.051	0.006
44916	38.71	41.76	AND	CORE	0.061	0.02
44917	41.76	44.81	AND	CORE	0.058	0.038
44918	44.81	47.85	AND	CORE	0.049	0.024
44919	47.85	50.9	AND	CORE	0.023	0.022
44920	47.85	50.9	AND	DUPLICATE	0.03	0.024
44921	50.9	53.95	AND	CORE	0.023	0.019
44922	53.95	57	AND	CORE	0.034	0.033
44923	57	60.05	AND	CORE	0.057	0.027
44924	60.05	63.09	AND	CORE	0.035	0.086
44925	60.05	63.09	AND	BLANK	0	0
44926	63.09	66.14	AND	CORE	0.052	0.061
44927	66.14	69.19	AND	CORE	0.072	0.011
44928	69.19	72.24	AND	CORE	0.097	0.028
44929	72.24	75.29	AND	CORE	0.086	0.046
44930	72.24	75.29	AND	MoS-1	0.011	0.066
44931	75.29	78.33	AND	CORE	0.062	0.023
44932	78.33	81.38	AND	CORE	0.068	0.094
44933	81.38	84.43	AND	CORE	0.054	0.026
44934	84.43	87.48	AND	CORE	0.033	0.07
44935	87.48	90.53	AND	CORE	0.026	0.055
44936	90.53	93.57	AND	CORE	0.044	0.072
44937	93.57	96.62	AND	CORE	0.044	0.03
44938	96.62	99.67	AND	CORE	0.046	0.038
44939	99.67	102.72	AND	CORE	0.049	0.062
44940	99.67	102.72	AND	DUPLICATE	0.06	80.0
44941	102.72	105.77	AND	CORE	0.048	0.051
44942	105.77	108.81	AND	CORE	0.027	0.046
44943	108.81	111.86	AND	CORE	0.023	0.027
44944	111.86	114.91	AND	CORE	0.066	0.045
44945	111.86	114.91	AND	BLANK	0	0
44946	114.91	117.96	AND	CORE	0.042	0.02
44947	117.96	121.01	AND	CORE	0.053	0.02
44948	121.01	124.05	AND	CORE	0.053	0.065
44949	124.05	127.1	AND	CORE	0.045	0.021
44950	124.05	127.1	AND	MoS-1	0.011	0.062
44951	127.1	130.15	AND	CORE	0.053	0.059
44952	130.15	133.2	AND	CORE	0.044	0.034

SAMPLE REPORT

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
44953	133.2	136.25	AND	CORE	0.044	0.025
44954	136.25	139.29	AND	CORE	0.043	0.039
44955	139.29	142.34	AND	CORE	0.037	0.045
44956	142.34	145.39	AND	CORE	0.065	0.014
44957	145.39	148.44	AND	CORE	0.057	0.053
44958	148.44	151.49	AND	CORE	0.045	0.036
44959	151.49	154.53	AND	CORE	0.032	0.041
44960	151.49	154.53	AND	DUPLICATE	0.04	0.056
44961	154.53	157.58	AND	CORE	0.042	0.019
44962	157.58	160.63	AND	CORE	0.041	0.018
44963	160.63	163.68	AND	CORE	0.036	0.016
44964	163.68	166.73	AND	CORE	0.047	0.066
44965	163.68	166.73	AND	BLANK	0	0
44966	166.73	169.77	AND/GDIO	CORE	0.025	0.054
44967	169.77	172.82	GDIO	CORE	0.019	0.022
44968	172.82	175.87	GDIO	CORE	0.016	0.019
44969	175.87	178.92	GDIO	CORE	0.028	0.031
44970	175.87	178.92	GDIO	MoS-1	0.011	0.064
44971	178.92	181.97	GDIO/BAS	CORE	0.017	0.038
44972	181.97	185.01	BAS	CORE	0.005	0
44973	185.01	188.06	BAS	CORE	0.004	0
44974	188.06	191.11	BAS	CORE	0.005	0
44975	191.11	194.16	BAS/GDIO	CORE	0.009	0.03
44976	194.16	197.21	GDIO/BAS	CORE	0.025	0.035
44977	197.21	200.25	BAS	CORE	0.01	0.002
44978	200.25	203.3	BAS/AND	CORE	0.008	0.002
44979	203.3	206.35	AND	CORE	0.033	0.041
44980	203.3	206.35	AND	DUPLICATE	0.04	0.057
44981	206.35	209.4	AND	CORE	0.013	0.02
44982	209.4	212.45	AND	CORE	0.006	0.019
44983	212.45	215.49	AND	CORE	0.008	0.062
44984	215.49	218.54	AND/GDIO	CORE	0.008	0.015
44985	215.49	218.54	GDIO	BLANK	0	0
44986	218.54	221.59	GDIO	CORE	0.003	0
44987	221.59	224.64	GDIO	CORE	0.003	0
44988	224.64	227.69	GDIO	CORE	0.006	0.008
44989	227.69	230.73	GDIO/AND	CORE	0.043	0.096
44990	227.69	230.73	GDIO/AND	MoS-1	0.011	0.067
44991	230.73	233.78	AND	CORE	0.032	0.028
44992	233.78	236.83	AND	CORE	0.052	0.073
44993	236.83	239.88	AND	CORE	0.04	0.058
44994	239.88	242.93	AND	CORE	0.06	0.062
44995	242.93	245.97	AND	CORE	0.061	0.055
44996	245.97	249.02	AND	CORE	0.096	0.431
44997	249.02	252.07	AND	CORE	0.076	0.133
44998	252.07	255.12	AND/ARG	CORE	0.082	0.086
44999	255.12	258.17	ARG	CORE	0.045	0.081
45000	255.12	258.17	ARG	DUPLICATE	0.08	0.052
45001	258.17	261.21	ARG	CORE	0.068	0.042
45002	261.21	264.26	ARG	CORE	0.073	0.019
45003	264.26	267.31	ARG	CORE	0.064	0.035
45004	267.31	270.36	ARG	CORE	0.125	0.072

SAMPLE REPORT

SAMPLE ID	From	ТО	LITH	TYPE	Cu (%)	Mo(%)
45005	(m)	(m)	ADC	DI ANIZ		
45005	267.31	270.36	ARG	BLANK	0	0
45006	270.36	273.41	ARG	CORE	0.116	0.104
45007	273.41	276.45	ARG/GDIO	CORE	0.05	0.04
45008	276.45	279.5	GDIO	CORE	0.053	0.033
45009	279.5	282.55	GDIO	CORE	0.016	0.026
45010	279.5	282.55	GDIO	MoS-1	0.012	0.064
45011	282.55	285.6	GDIO	CORE	0.017	0.02
45012	285.6	288.65	GDIO	CORE	0.038	0.051
45013	288.65	291.69	GDIO	CORE	0.037	0.373
45014	291.69	294.74	GDIO	CORE	0.034	0.065
45015	294.74	297.79	GDIO	CORE	0.028	0.076
45016	297.79	300.84	GDIO/HSLT	CORE	0.044	0.108
45017	300.84	303.89	HSLT	CORE	0.037	0.13
45018	303.89	306.93	HSLT	CORE	0.02	0.143
45019	306.93	309.98	HSLT	CORE	0.016	0.171
45020	306.93	309.98	HSLT	DUPLICATE	0.02	0.174
45021	309.98	313.03	HSLT	CORE	0.04	0.078
45022	313.03	316.08	HSLT	CORE	0.015	0.112
45023	316.08	319.13	HSLT	CORE	0.016	0.125
45024	319.13	322.17	HSLT	CORE	0.015	0.033
45025	319.13	322.17	HSLT	BLANK	0.001	0
45026	322.17	325.22	HSLT	CORE	0.029	0.098
45027	325.22	328.27	HSLT	CORE	0.018	0.033
45028	328.27	331.32	HSLT	CORE	0.027	0.048
45029	331.32	334.37	HSLT	CORE	0.026	0.052
45030	331.32	334.37	HSLT	MoS-1	0.012	0.064
45031	334.37	337.41	HSLT	CORE	0.016	0.037
45032	337.41	340.46	HSLT	CORE	0.025	0.042
45033	340.46	343.51	HSLT	CORE	0.025	0.068
45034	343.51	346.56	HSLT	CORE	0.027	0.024
45035	346.56	349.61	HSLT	CORE	0.026	0.075
45036	349.61	352.65	HSLT	CORE	0.037	0.031
45037	352.65	355.7	HSLT	CORE	0.031	0.057
45038	355.7	358.75	HSLT	CORE	0.036	0.03
45038	358.75	361.8	HSLT	CORE	0.030	0.056
45039	358.75	361.8	HSLT	DUPLICATE	0.018	0.005
45040	361.8	364.85	HSLT	CORE	0.026	0.003
45041	364.85	367.89	HSLT	CORE	0.020	0.114
45042	367.89	370.94	HSLT	CORE	0.019	
45043	370.94	373.99	HSLT	CORE	0.017	0.058
			HSLT	BLANK	0.02	
45045	370.94	373.99				0.001
45046	373.99	377.04	HSLT	CORE	0.022	0.221
45047	377.04	380.09	HSLT	CORE	0.024	0.105
45048	380.09	383.13	HSLT	CORE	0.035	0.048
45049	383.13	386.18	HSLT	CORE	0.035	0.034
45050	383.13	386.18	HSLT	MoS-1	0.014	0.064
45051	386.18	389.23	HSLT	CORE	0.044	0.037
45052	389.23	392.28	HSLT	CORE	0.019	0.066
45053	392.28	395.33	GDIO	CORE	0.016	0.006
45054	395.33	398.37	GDIO	CORE	0.024	0.003
45055	395.33	398.37	GDIO	BLANK	0.002	0
45056	398.37	401.42	GDIO/HSLT	CORE	0.032	0.069

SAMPLE REPORT

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45057	401.42	404.47	HSLT	CORE	0.022	0.02
45058	404.47	407.52	HSLT	CORE	0.038	0.059
45059	407.52	410.57	GDIO	CORE	0.02	0.011
45060	407.52	410.57	GDIO	DUPLICATE	0.02	0.088
45061	410.57	413.61	GDIO	CORE	0.025	0.003
45062	413.61	416.66	GDIO	CORE	0.02	0.002
45063	416.66	419.71	GDIO	CORE	0.022	0.002
45064	419.71	422.76	GDIO	CORE	0.019	0.014
45065	419.71	422.76	GDIO	BLANK	0.001	0
45066	422.76	425.81	GDIO	CORE	0.024	0.041
45067	425.81	428.85	GDIO	CORE	0.029	0.011
45068	428.85	431.9	GDIO	CORE	0.013	0.01
45069	431.9	434.95	GDIO	CORE	0.02	0.016
45070	431.9	434.95	GDIO	MoS-1	0.012	0.064
45071	434.95	438	GDIO	CORE	0.023	0.017
45072	438	441.05	GDIO	CORE	0.017	0.013
45073	441.05	444.09	GDIO	CORE	0.006	0
45074	444.09	447.14	GDIO	CORE	0.004	0
45075	447.14	450.19	GDIO	CORE	0.004	0
45076	450.19	453.24	GDIO	CORE	0.004	0.001
45077	453.24	456.29	GDIO	CORE	0.013	0
45078	456.29	459.33	GDIO	CORE	0.009	0
45079	459.33	462.38	GDIO	CORE	0.009	0
45080	459.33	462.38	GDIO	DUPLICATE	0.02	0.008
45081	462.38	465.43	GDIO	CORE	0.004	0
45082	465.43	468.48	GDIO	CORE	0.005	0
45083	468.48	471.53	GDIO	CORE	0.006	0
45084	471.53	474.57	GDIO	CORE	0.015	0.022
45085	474.57	474.57	GDIO	BLANK	0.001	0
45086	474.57	477.62	GDIO	CORE	0.053	0.013
45087	477.62	480.67	GDIO	CORE	0.029	0.007
45088	480.67	483.72	GDIO	CORE	0.012	0
45089	483.72	486.76	GDIO	CORE	0.008	0
45090	483.72	486.76	GDIO	MoS-1	0.013	0.065

CHU Project - TTM Resources Inc.

Signature:	
	Initials:

CH0605

VW

Overburden/casing

STRUCTURES									
From	To	Struct	CA	Strain					

5.10 FLT

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

From 5.10

To 17.37

Litho AND

A greenish andesite that contains dark hornblend feldspar phenocrysts, with a network of PY (+/-MG) strs & PY blotches (3-4% PY), surface weathering on joints, BIO, ChI & EPI altn, narrow <8mm Qz-PY-MO VNs & MO specks, MO occurs below 10.0m. Very weak CA. @10.22m is 20mm Qz-PY-MO VN, 50 tca. @10.85m oxidized 10mm Qz-PY-MO VN, 10 tca. @16.02m is 10mm Qz-PY VN, 30 tca. @12.44-13.34m 5mm PY-BIO VN, along the core axis, EPI blotches around. @13.13m pink Qz-PY-BIO-MO VN, 25 tca. @14.5m is 12mm pink Qz-PY-MO VN, 35 tca cut off by two magnetic 3mm PY-BIO strs, 40 & 25 tca. @16.0m pink 10mm Qz-PY-BIO-MO VN, 40 tca.

STRUCTURES								
From	To	Struct	CA	Strain				

5.10 17.37 MAS W

surface weathering on joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

5.10 17.37 - - M M - W - VW M M M M BIO, Chi & EPi altn

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

5.10 17.37 1 4 15 0.5 50 abundant magnetic PY-BIO & Qz-PY strs

1	MINERALIZATION										
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

5.10 17.37 4 VLT MO 0.03 abundant PY strs

From 17.37

To

Litho 37.47 AND

Greenish andesite that ranges in texture from fine to medium grained, dark hornblend feldspar phenocrysts with moderate EPI altn. @22.02m pink 10mm Qz-PY-MO VN, 20 tca. @22.66m dispersed 30mm CA-Qz-MO VN, 40 tca. From 23.47-23.56m shear zone (sand & gouge). @24.06m pink 10mm Qz-BIO VN, 70 tca. @24.26m is 22mm QZ-PY-MO, 60 tca, From 26.52m to 27.4m pinky 10mm Qz-PY-BIO-MO +/-MG VN, 5 tca offset by 8mm Qz-PY-MO VN, 40 tca, @28.28m contorted 24mm Qz-PY-MO VN, 50 tca. From 28.56m to 28.60m stockwork 8-10mm Qz-PY-EPI-MO VNs, 50-60 tca. @29.57m is 8mm PY-BIO-Qz-MO VN, 50 tca with DI Cpy around. @30.96m solid 22mm Qz-PY-MO VN, 80 tca. From 33.32-33.74m is 4mm Qz-PY-MO VN, 5 tca with Qz-PY-MO strs, EPI & MG blotches around. @34.36m is 16mm Qz-PY-Cpy-MO VN, 75 tca. @34.59m solid 22mm Qz-PY-Chl-MO VN, 65 tca. @34.94m is 8mm Qz-PY-MO VN, 60 tca. @35.88m is 10cm Qz granodiorite porphyry dyke, 40 tca with 10mm Qz-PY-PO-MO VN, the contact is 40 tca.

STRUCTURES									
From	To	Struct	CA	Strain					

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

VEINS Vn% QZ% Feld% CC% V/m CA From

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

37.47 MAS 50 M 3-4% joints

17.37 37.47 - - W VW M W M BIO & EPI altn

17.37 37.47 1 15 10 0.1 1 65 Qz-PY-MO VNs & Qz-PY-BIO +/-MG

17.37 37.47 4 VLT MO 0.01 moderate BIO & EPI

From 37.47

To Litho 39.10 AND

Fault zone with >50% broken core, PY, BIO & CA on fracture. @38.32m branched out 20mm Qz-PY-Cpy VN, 80 tca. @38.5m is 20mm PY-Qz-BIO VN, 30 tca. @39.52m is 18mm Qz-PY VN, no orient, @39.72m dispersed 60 mm CA VN, 50 tca, @39.86m selvage 10mm Qz -MO VN, 75 tca,

STRUCTURES Struct CA Strain To37.47 39.10 FLT

>65% are pieces <10cm

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER 37.47 39.10 - - VW VW - W - VW M VW VW W CA altn

VEINS Vn% QZ% Feld% CC% V/m CA ToFrom 37.47 39.10 3 1 50 Qz-MO VN present

MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3% 37.47 39.10 2 DISS

From 39.10

To 55.90

Litho AND

LithoAND

From dark grey to reddish andesite, fine grained, PY strs, moderate biotization & chloratization, weak EPI altn. @44.81m is 16mm Qz-PY-MG-BIO VN 60 tca. @45.16m narrow 8mm Qz-PY-MO VN, 30 tca crosscut by contorted 5mm QZ-PY-MO VN, 20 tca. Below 45.88m stockwork of narrow <8mm Qz-PY-MO VNs, diff. orient. @46.66-46.88m broken core, surface weathering on fracture. @46.2m anastomosing 30mm Qz-PY-MO-MG VN, 30 tca. @46.46m is 8mm Qz-PY-BIO VN, 25 tca cut off by PY-BIO strs, 50 tca. @49.7-50.0m pink Qz-PY-MO VN, 5 tca. Below 50.0m network Qz-PY-MO strs. @53.48m is 7mm Qz-PY-MO VN, 20 tca. @55.4-26-45.46m reticulated <8mm Qz-PY-MO VNs in diff. orient. @55.4-55.8m guartz feldspar porphyry, 55 tca. @55.8m is 30mm Qz-PY-MO VN, 55 tca.

	STRUCTURES											
From	To	Struct	CA	Strain								
39.10	55.90	MAS S	60	М								
	3%	joints										

١						AL	TER	ATIO	N						
Ī	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SEF
	39.10	55.90	-	-	W	W	-	W	-	VW	М	М	М	W	
	mo	od BIO 8	& Chl	altn											

VEINS										
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA			
39.10	55.90	1	5	10		2				
narrow <8mm Qz-PY-MO VNs										

•	MINERALIZATION													
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
	39.10	55.90	3	VLT	MC	0.05	i							
	minor MG present													

From	То
55.90	67.02

Blackish-green andesite, greenish to reddish monzonite zones with MG, feldspar phenocrysts, plagioclase & BIO phenocrysts, MO present in dendritic <8mm Qz-PY VNs & strs, coarse grained PY ~3-4%, weak Cpy & MG. @59.66m selvage 12mm Qz-PY-MO VN, 50 tca with two subparallel Qz-PY-MO VN, 6-8mm. @59.8m solid 44mm Qz-PY-MO VN, 50 tca. From 62.78m to 63.26m contorted 10mm Qz-PY-MO VN along the core axis. @64.0m is 8mm Qz-PY-MO VN, 10 tca. @63.56-63.74m broken core, fragments. @66.46m is 16mm Qz-PY-MO VN, 80 tca.

STRUCTURES													
From	To	Struct	CA	Strain									
55.90	67.02	MAS		М									

andesite, greenish to reddish monzonite zones @63.56-63.74 broken core, fragments

	ALTERATION													
	ALIEN IIION													
From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR S.										SER				
55.90	-	-	W	W	-	W	-	VW	М	М	М	М		
BI	O altn													

VEINS													
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA						
55.90 67.02 2 6 6 2													
MO present in dendritic Qz-PY strs													

<i>MINERALIZATION</i>												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
55.90 67.02 3 VLT MO 0.1												
MO dominantly present in narrow Qz-PY												
VNs/strs												

From 67.02

To 78.90

Litho
O AND

Litho

AND

Blackish-greenish-purplish andesite with MG, feldspar phenocrysts anhedral plagioclase & BIO, MO present in dendritic Qz-PY VNs & strs, core mottled by strs & BB of coarse grained PY ~3-4%, weak Cpy, transitional brown sandstone zones. @67.04m contorted narrow PY-BIO-Qz-MO VN, 60 tca. @69.2m is 12mm Qz-PY-MO VN, 60 tca. @69.68-69.82m granodiorite, plagioclase, feldspar, biotite, weak MG. @71.25m is 16mm Qz-PY-MO VN, 40 tca. @72.22m solid Qz-PY-BIO+sphalerite VN, 45 tca. @72.72m is 10mm Qz-PY-BIO VN, 30 tca. From 73.0m to 74.0m network Qz-PY-MO VNs 5-10mm with 20-80 tca. @74.5m solid 80mm Qz-PY-MO VN, 50 tca with 8mm Qz-PY-MO VN radiating from this VN with 0 tca. @75.38m selvage 20mm Qz-PY-MO VN, 30 tca. @75.9m is 12mm Qz-PY-MO VN, 50 tca. @76.44m is 10mm Qz-PY-MO VN, 45 tca. From 76.92m to 78.9m significant Qz-PY-ChI-EPI-MG-CA VN, 0 tca.

mod EPI, weak CA altn

STRUCTURES												
From	To	Struct	CA	Strain								
67.02	78.90	FLW	55	М								

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
67.02	78.90	-	-	W	W	-	W	-	VW	М	М	W	М	

VEINS													
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						
67.02	78.90	3	6	8		2	10						
76.92-78.9 significant Qz-PY-Chl-EPI- MG VN 0 tca													

1	MINERALIZATION													
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
	67.02	78.90) 4	VLT	MC	0.2								
	PY ~3-4%, MO 0.2%													

From To 78.90 90.53

Grey-greenish-purplish andesite with MG, feldspar phenocrysts plagioclase & BIO, transitional zones of brown sandstone, MO present in Qz-PY VNs & strs, coarse grained strs & BB PY ~3-4%, weak Cpy & EPI @80.7m pink 16mm Qz-pY-MO VN, 55 tca. @80.84m branched out 28mm pink Qz-PY-MO VN, 35 tca. @81.13-81.85m flow bended zone, 55 tca (Qz-PY-Chl-MO). @83.04m is 18mm Qz-BIO-PY-MO VN, 55 tca with subparallel Qz-PY-MO strs. @84.24m is 24mm brecciated AB-BIO VN, 35 tca. @84.8m is 16mm Qz-PY-BIO-MO V 40 tca. @86.2m pink 16m Qz-PY-MO VN, 50 tca. Below 87.74m network Qz-PY-MO strs. @89.6m is 14mm Qz-PY-MO VN, 50 tca. @89.8m selvaged 10mm Qz-PY-MO VN, 40 tca.

	STRU	CTUR	ES								
From	To	Struct	CA	Strain							
78.90	90.53	FLW	40	М							
3-5% joints											

	ALTERATION														
Ī	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
-	78.90	90.53	-	=	М	W	-	W	-	VW	W	М		М	

	<u>VEINS</u>											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
78.90	90.53	3	10	6		3	50					
	Qz-PY- present	-	ls & strs	, micro M	O strs							

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
78.90	90.53	3 4	VLT	МС	0.4								
god	od MO	zone											

Initials:

From

To

Litho

90.53 102.72 AND

Grey-greenish-purplish fine grained andesite with transitional zones to monzonite, MG ~1%, mod BIO & weak EPI altn, network of Qz-PY-MO strs, ~0.3-0.6% MO present in Qz-PY VNs & strs, coarse & fine grained PY strs & BB, minor Cpy. @90.8m is 20mm Qz-PY-MO VN, 60 tca. @91.91m solid 28mm selvaged Qz-PY-MO VN, 40 tca. @93.68m solid 22mm Qz-PY-MO-Chl VN, 55 tca. @97.39m are two 12mm parallel Qz-PY-MO-BIO VNs, 30 tca. @98.88m solid 40mm Qz-PO-PY-MO-BIO VN, 50 tca.

STRUCTURES To Struct CA Strain

90.53 102.72 FLW 50 M 2% joints

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

90.53 102.72 - - W VW W M M S EPI altn

VEINS To Vn% QZ% Feld% CC% V/m CA From

90.53 102.72 10 2 45

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

90.53 102.72 4 VLT MO 0.4 ~0.4% MO

From 102.72

To 124.86 Litho

AND

Grey-greenish-purplish fine grained andesite with feldspar phenocrysts, flow bended zones, transitional zone to brown siltstone, MG ~1%, mod BIO & weak EPI altn, network Qz-PY-MO strs, ~0.3% MO present in Qz-PY VNs & strs, coarse & fine grained PY strs & BB, minor Cpy. Below 102.8m stockwork narrow Qz-PY-MO VNs. @103.26m is 9mm Qz-PY-MO VN, 30 tca. @103.63m is 12mm Qz-PY-MO VN, 40 tca. @104.24m is 10mm Qz-AB-PY-MO VN, 45 tca. 2104.74-105.03m granodiorite dyke with PY strs, contact 30 tca. Below 105.35m silica altn. @105.53m is 10mm AB-PY-BIO-EPY VN, 40 tca. @106.62m pink 10mm Qz-PY-MO VN, 40 tca. @108.68m contorted 14mm Qz-PY-MO VN, 40 tca. @109.92m pink Qz-PY-MO VN, 40 tca. Below 110.4m flow bended zone with EPI altn, 35 tca. @111.25-111.84m a few subparallel 5-11mm Qz-PY-MO VNs, 35 tca. @113.48m contorted 14mm Qz-PY MO VN, 60 tca. @114.18m dispersed 22mm Qz-PY-MO VN. 60 tca. @115.25-115.5m broken core, fragments. From 115.76m to 116.3m flow bended zone with Chl-EPI altr. Below 116.6m brown siltstone mottled by Qz-PY-MO strs with Chl altn. @116.52m is 22mm Qz-PY-BIO-MO VN, 70 tca. Below 117.4m network Qz-PY-BIO +/-MO VNs, diff. orient. From 118.6m to 119.3m stockwork Qz-PY-MO (narrow <10mm) VNs. @120.9m solid 26mm Qz-PY-MO VN, 35 tca. Below 121.3m network Qz-PY-MO VNs.

STRUCTURES To Struct CA Strain

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

VEINS Vn% OZ% Feld% CC% V/m CA From To

2 50

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

102.72 116.60 FLW 40 M

102.72 119.30 - - W S M - VW W M M Mod BIO & weak EPI altn

102.72 119.30 2 Qz-PY-MO VNs & strs 102.72 119.30 4 VLT PO 0.5 MO 0.2 MO present in Qz-PY-MO strs. MG ~1%

From 102.72

To 124.86 Litho AND

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS ToVn%QZ%Feld% CC% V/m CA From

MINERALIZATION PY% Style Min Min% Min2 M2% Min3 M3%

119.30 124.86 -Mod Chl altn

3

119.30 124.86

2 50 1

119.30 124.86 2 VLT MO 0.2

From To 124.86

144.10

Litho **AND**

Grey-greenish-purplish fine grained andesite with transitional zones to monzonite, moderate & strong silicification, MG <1%, mod BIO, network Qz-PY-MO strs, ~0.1% MO present in Qz-PY VNs & strs. coarse & fine grained PY in VNs & BB. CA altn. @125.06m is 12mm Qz-PY-BIO-MO VN. 75 tca. @126.86m pink 38mm Qz-CA-PY-MO VN, 30 tca. @127.7-128.5m greenstone with PY-BIO strs. Below 128.9m core mottled PY & Qz-PY-MO strs, weak EPI altn. @134.34-134.52m granodiorite, 40 tca. @137.0m is 14mm pink Qz-PY-MO VN, 40 tca. @135.55m contorted 10mm Qz-CA-PY-MO VN, 10 tca. Below 135.6m transitional zone to monzonite. @138.38m is 20mm Qz-PY-CA-BIO-MO VN, 15 tca. @139.49m selvaged 12mm Qz-PY-MO VN, 75 tca. @132.48m pink 26m Qz-PY-MO VN, 40 tca. @143.21m lense 20cm pink Qz-PY-MO VN. @144.26m solid 36mm Qz-PY-MO VN. 30 tca. @144.88m pink 38mm Qz-BIO-PY-MO VN. 25 tca. @145.4m contorted 12mm Qz-PY VN with MO on selvages, 20 tca. @145.62-146.08m stockwork narrow <8mm Qz-PY-MO VNs.

S

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

S 124.86 144.10 MAS 2 joints

ALTERATION FromTo INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER 124.86 144.10 - - M S - S W W VW M M M CA. BIO & CHL altn

VEINS From ToVn% QZ% Feld% CC% V/m CA 124.86 144.10 2 2 60 4 narrow Qz-PY-MO VNs & strs

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

124.86 144.10 4 VLT MO 0.1

From To
144.10 159.15

Litho AND

Grey-greenish fine grained andesite with transitional zones to monzonite, moderate & strong silicification, feldspar phenocrysts, MG <1%, mod BIO, network Qz-PY-MO strs, <0.1% MO present in Qz-PY VNs & strs, coarse & fine grained PY in VNs & blotches. @151.95-152.04m granodiorite dyke with coarse euhedral crystals, feldspars, BIO. @152.32m is 14mm Qz-PY-MO VN, 40 tca. @153.48m is 12mm Qz-PY-MO VN, 50 tca. @154.34m solid 18mm Qz-PY-BIO VN, 80 tca. @155.46m is 12mm Qz-PY-MO VN, 80 tca. @155.83m is 10mm Qz-PY-MO VN, 45 tca. @155.92m solid 30mm Qz-PY-Chl-MO VN, 60 tca. @156.60m is 16mm Qz-PY-MO VN, 35 tca. @156.66m solid 36mm Qz-Chl-PY-MO VN, 55 tca. @157.73-158.3m stockwork Qz-PY-MO-BIO MO VNs, <10mm thickness.

	STRUCTURES												
From	To	Struct	CA	Strain									

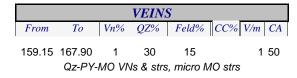
144.10 159.15 MAS S S 2% joints

						AI	TER	ATIO	N						
Fron	1 1	Го	INT	ARG	CHL		PHY			СС	EP	ВІО	FLP	PYR	SER
144.1	0 15	9.15	_	-	W	М	-	W	W	W	VW	М	М	М	
	Chl &	ВΙΟ	altn												

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
144.10	159.15	3	10		0.5	1	70				

					IZAT				
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
144.10	159.1	5 4	VLT	MC	0.05	;			
we	ak MO								

From 159.15


To 167.90


Litho AND

Grey-greenish fine grained andesite, moderate & strong silicification, feldspar phenocrysts, MG <1%, mod BIO, network Qz-PY-MO strs, <0.1% MO present in Qz-PY VNs & strs, coarse & fine grained PY in VNs & blotches. @151.95-152.04m granodiorite dyke hypidiomorphic texture with coarse euhedral crystals, feldspars, BIO. @152.32m is 14mm Qz-PY-MO VN, 40 tca. @153.48m is 12mm Qz-PY-MO VN, 50 tca. @154.34m solid 18mm Qz-PY-BIO VN, 80 tca. @155.46m is 12mm Qz-PY-MO VN, 80 tca. @155.83m is 10mm Qz-PY-MO VN, 45 tca. @155.92m solid 30mm Qz-PY-Chl-MO VN, 60 tca. @156.0m is 16mm Qz-PY-MO VN, 35 tca. @156.66m solid 36mm Qz-Chl-PY-MO VN, 55 tca. @157.73-158.3m stockwork Qz-PY-MO-BIO MO VNs, <10mm.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain
159.15	167.90	MAS S		M

						TER								
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP F	PYR	SEF
159.15 <i>El</i>	167.90 PI & pota			W	М	-	М	W	W	VW	М	l	М	

From 167.90

To 169.00

Litho GDIO

Granodiorite with well formed crystals, BIO, plagioclase feldspar phenocrysts. Contact 60 tca. @168.88m anastomosing 8mm Qz-PY-MO VN, 40 tca. From 169.0m to 170.0m monzonite flow banded zone with ChI altn, CON=30 tca. @169.48m is 12mm pink Qz-PY VN, 30 tca. @170.0-170.5m grayish black basalt dyke, CON =50 tca. @170.5-170.92m monzonite with weak MG & Qz-PY-MO strs, CON=30 tca. @170.5m is 26mm Qz-PY-BIO-MO VN, 40 tca cut off at the contact by basalt dyke.

STRUCTURESFromToStructCAStrain

167.90 169.00 MAS S

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
167.90	169.00	-	_	_	s	_	-	_	W	_	М	S	W	

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 167.90
 169.00
 1
 40
 35
 1
 40

 anastomosing 8mm Qz-PY-MO VN, 40 tca @ the contact
 40 tca @ the contact
 40 tca @ the contact
 40 tca @ the contact

| MINERALIZATION | From | To | PY% | Style | Min | Min% | Min2 | M2% | Min3 | M3% |

From 169.00

*T*o 181.00

Litho GDIO

Granodiorite with well formed crystals, BIO & plagioclase feldspar phenocrysts, MO specks in Qz-PY VNs. @170.38m two parallel pink Qz-PY-MO-EPI VNs, 20 tca. @172.3m is 18mm Qz-PY-MO VN, 60 tca. @172.5m is 20mm Qz-PY VN, 70 tca. From 174.34-176.14m fault zone, fragments with 70% pieces <10 cm, PY, BIO & traces of MO on fracture. @175.94m is 12mm Qz-PY VN with MO trace, 40 tca. @175.28-175.74m anastomosing 14mm Qz-PY-MO VN, no orient. @176.8m pink 14mm Qz-PY-MO VN, 45 tca. From 177.44m to 177.96m pink 16mm Qz-PY-MO VN, 5 tca. @179.23m solid 34mm Qz-PY-MO VN, 80 tca. @180.34m is 11mm Qz-PY VN, 70 tca.

STRUCTURES
From To Struct CA Strain

169.00 181.00 MAS M S partially broken core

					AL	TER	ATIC	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SEI
169.00	181.00	-	-	-	S	-	-	VW	W	-	М	М	W	
C	4 altn													

			VEINS	S	
From	To	Vn%	QZ%	Feld%	CC% V/m CA
169.00	181.00	1	35	20	1 40

| MINERALIZATION | From | To | PY% | Style | Min | Min% | Min2 | M2% | Min3 | M3% | 169.00 181.00 | 1 | DISS | MO | 0.01 | | weak | MO |

From 181.00

To 193.00

Litho BAS

Basalt & granodiorite with well formed crystals, BIO, plagioclase feldspar phenocrists. Below 189.66m broken core on CA strs, CA-Chl on fracture, CON @191.62m=70 tca. From 191.62-192.0m andesite with narrow Qz-PY-MO VNs. Contact @193.0 = 80 tca.

 STRUCTURES

 From
 To
 Struct
 CA
 Strain

181.00 193.00 MAS S S core is broken below

	ALTERATION													
					1111	LLIU	1110	11						
From	To	INT	ADC	CIII	CII	DUV	DDV	$D \cap T$	CC	ED	DIO	CI D	DVD	CED
rrom	10	11V 1	ANG	CHL	SIL	FIII	ΓKI	FOI	CC	EF	DIO	$\Gamma L\Gamma$	FIN	SEK
					_									
181.00	193.00	-	-	VW	S	-	-	-	W	-	VW	W	VW	
					•				• • •			• • •		
Δ.	I PY													

			VEINS	S			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA
181.00	193.00	0.1	5	10		0.1	
	tiny CA	strs					

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

 181.00
 193.00
 0.1
 DISS

 basalt present

Initials:

To From 193.00 181.00

Litho **BAS**

Basalt & granodiorite with well formed crystals, BIO, plagioclase feldspar phenocrists. Below 189.66m broken core on CA strs, CA-Chl on fracture, CON @191.62m=70 tca. From 191.62-192.0m andesite with narrow Qz-PY-MO VNs. Contact @193.0 = 80 tca.

STRUCTURES From To Struct CA Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS Vn% QZ% Feld% CC% V/m CA From To

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

190.8m

From 193.00 197.70

To

M

Litho **GDIO**

Granodiorite with well formed crystals, BIO, plagioclase feldspar phenocrysts. From 193.84m to 196.78m fine grained purplish andesite with Qz-PY-MO VNs, 30% broken core, CA & Chl on fracture. @194.16m is 14mm Qz-PY-MO VN, 30 tca. @194.9m lense Qz-PY-MO VN, 70mm in diam. @195.8m is 7mm Qz-MO VN, 55 tca. @195.22-195.5m granodiorite dyke, CON=60 tca. @195.62m is 16mm Qz-PY-MO VN, 40 tca. @196.8-197.7m pink granodiorite, contact @197.7 =60 tca.

STRUCTURES To Struct CA Strain

193.00 197.70 MAS

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER 193.00 197.70 - - W M - - VW W - M

VEINS Feld% CC% V/m CA ToVn% QZ%From193.00 197.70 2 1 60 5 Qz-PY-MO strs

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 193.00 197.70 1 DISS MO 0.01

To Litho From 201.94 BAS 197.70

Grey granodiorite with well formed crystals, BIO, plagioclase feldspar phenocrysts. From 193.84m to 196.78m fine grained purplish andesite with Qz-PY-MO VNs, 30% broken core, CA & Chl on fracture. @194.16m is 14mm Qz-PY-MO VN, 30 tca. @194.9m lense Qz-PY-MO VN, 70mm in diam. @195.8m is 7mm Qz-MO VN, 55 tca. @195.22-195.5m granodiorite dyke, CON=60 tca. @195.62m is 16mm Qz-PY-MO VN, 40 tca. @196.8-197.7m pink granodiorite, @197.7m CON is 60 tca.

STRUCTURES From To Struct CA Strain

					ΔΙ	TER	A TIC	N						
	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

197.70 201.91 0.2 DISS MO ~0.01%

From

To

Litho BAS

197.70 201.94

Grey granodiorite with well formed crystals, BIO, plagioclase feldspar phenocrysts. From 193.84m to 196.78m fine grained purplish andesite with Qz-PY-MO VNs, 30% broken core, CA & ChI on fracture. @194.16m is 14mm Qz-PY-MO VN, 30 tca. @194.9m lense Qz-PY-MO VN, 70mm in diam. @195.8m is 7mm Qz-MO VN, 55 tca. @195.22-195.5m granodiorite dyke, CON=60 tca. @195.62m is 16mm Qz-PY-MO VN, 40 tca. @196.8-197.7m pink granodiorite, @197.7m CON is 60 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

197.70 201.94 MAS S

contact 40 tca.

		ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER		
197.70	201.94	_	_	_	М	_	-	_	W	_	W		VW			

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
197.70	201.94	0.01	10	6			

1			M	INE	RAL	IZAT	ION			
ĺ	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From To 201.94 217

*T*o 217.60

Litho AND

Grey to pinkish fine grained andesite, from moderate to strong silicification, feldspar phenocrysts, weak MG, mod BIO, structure controlled by Qz-PY-MO VNs/strs with ~0.2% MO, tiny PY strs, ~20% broken core with CA on fracture. @205.7m pink 20mm Qz-PY-MO VN, 50 tca. @205.82m is 8mm Qz-PY-MO VN, 55 tca. Below 213.6m strong silica altn with contorted narrow Qz VNs. @217.6m is CON=10 tca to basalt.

From To Struct CA Strain

201.94 217.60 MAS M

20-30% broken core

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
201.94	217.60	-	-	VW	М	-	М	W	М	-	М		М	
si	lica altn													

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			
201.94	217.60	4	10	10	1	2	50			
	narrow	Qz-PY	-MO VN	ls/strs						

From To Litho 217.60 228.04 BDY

Grayish black fine grained basalt dyke with phenocrysts set into the matrix, CA altn & fault zone, granodiorite @218.12-218.22m fragments. From 220.14-221.5m broken core (fragments & gouge) with CA altn. Below 222.4m CA strs. @222.94-223.38m broken core with CA-Chl altn. From 225.25m to 228.04m fault zone with CA VNs & strs, weak Chl altn, fragments & gouge.

From To Struct CA Strain

217.60 228.04 MAS M

Fault zone below 225.25m

	ALTERATION											
From	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER											
217.60	217.60 228.04 W M M - M VW											
m	minor DI PY, strong CA altn below 225.25m											

VEINS From To Vn% QZ% Feld% CC% V/m CA								
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA	
217.60	228.04	0.1						

CA VNs present

From To 217.60 228.04

Litho BDY

Grayish black fine grained basalt dyke with phenocrysts set into the matrix, CA altn & fault zone, granodiorite @218.12-218.22m fragments. From 220.14-221.5m broken core (fragments & gouge) with CA altn. Below 222.4m CA strs. @222.94-223.38m broken core with CA-Chl altn. From 225.25m to 228.04m fault zone with CA VNs & strs, weak Chl altn, fragments & gouge.

	STRUCTURES									
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

Ì	MINERALIZATION										
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

From T 228.04 232

To 232.62

Litho AND

Drab grey fine grained aphanitic andesite, from moderate to strong silicification, feldspar phenocrysts, weak MG, mod BIO, granodiorite zones, system pinkish Qz-PY-MO VNs/stockwork with ~0.2% MO, tiny PY strs, partially broken core with CA on fracture. @228.28-228.48m significant Qz-P-MG-MO VN, 30 tca. From 229.9-230.22m contorted Qz-PY-MO VN, 5 tca. From 229.30-229.66m contorted 20mm Qz-PY-MO VN, 20 tca. @230.04m contorted 22mm Qz-PY-EPI-MO VN, 40 tca. From 230.36m to 230.9m fault zone, fragment & gouge. @231.1m is 1mm Qz-PY-MO VN, 35 tca. @231.32-232.42m significant 26mm Qz-PY-MG-MO VN along the core with two 10 &12mm Qz-PY-MO VNs radiating from the main VN. @232.48m solid 50 mm Qz-Py-MO VN, 30 tca. @232.62m contact to granodiorite is 40 tca.

STRUCTURES
From To Struct CA Strain

228.04 232.62 MAS W

partially broken core

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 228.04
 232.62
 W
 W
 S
 VW
 M
 W

 CA altn

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 228.04
 232.62
 8
 15
 15
 3
 3

 significant Qz-PY-MO VNs

From 232.62

To 241.36

Litho AND

Dark grey andesite with feldspar phenocrysts, MG blotches, mod BIO, pinkish granodiorite zones, Qz-PY-MO VNs/strs with ~0.1% MO, PY BB & tiny PY strs, partially broken core with CA-Chl on fracture. From 323.62m to 235.1m pinkish granodiorite with PY & MO spects. @232.82m pink 6mm Qz-PY-MO VN, 30 tca. @233.84m pink 10mm Qz VN, 45 tca. @233.8-234.1m pink 12mm Qz-MG-PY-MO VN, 15 tca. @234.16m is 10mm Qz-PY-MO-EPI VN, 40 tca. @234.18m is 15mm Qz-PY-MO VN, 35 tca. @235.0m is 20mm Qz-PY-MG-MO-EPI VN, 60 tca. From 235.35m to 235.58m pink 30mm Qz-Ca-MG-PY-MO VN, 30 tca with 10mm Qz-PY-MO VN branched out from the main VN, 15 tca. @235.91m is 12mm Qz-PY-MO-MG VN, 80 tca. @236.2m pink 30mm Qz-CA-PY-MG VN, 60 tca with with tiny Qz-MO strs around. @236.7m pink 10m Qz-PY-MG-EPI-MO VN, 50 tca. @236.92m pink 16mm Q-PY-EPI-MG-MO VN, 25 tca with another 16mm Qz-PY-MG-MO-EPI VN, 75 tca. @236.47m pink 14mm Qz-PY-MG-MO-EPI VN, 40 tca with a few narrow VNs radiating from the main VN. @237.25m pink 24mm Qz-PY-MO VN 20 tca. From 237.61m to 231.15m granodiorite with 20% broken core (CA on fracture), MO specks, DI PY. @239.67m solid 30m Qz-PY-MO VN, 45 tca. @239.91m pink 24mm Qz-PY-MO VN, 60 tca. @240.5m narrow 4cm shear zone. @240.94-241.36m network 5-10mm Qz-PY-MO VNs with MG strs & EPI BB.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

232.62 241.36 FR W

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
232.62	241.36	-	-	W	W	-	М	-	s	VW	М	W		
C	4 & wear	k EPI	altn											

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		
232.62	241.36	6	8	10	4	2			
	pink Qz	-PY-M	O +/-MG	6, +/- EPI	VNs				

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
232.62	2/1 3/	6 2	פפות	: MC) 01						

weak MG present

From 241.36

To 253.00

Litho AND

Dark grey andesite, feldspar phenocrysts, MG blotches, mod BIO, Qz-PY-MO VNs/strs with ~0.1% MO, CA strs, PY blotches strs, partially broken core with CA-Chl on fracture. From 241.54m to 242m flow bended zone with network of MG strs. @241.62m pink 20mm Qz-PY-MO VN, 50 tca with MG strs on halo. @241.73m contorted 14mm Qz-PY-MO VN, 90 tca. @241.88m is 10mm Qz-PY-MO VN, 50 tca. @242.4m is 30mm Qz-PY-MO-MG VN, 30 tca. @242.56m are two subparallel 12 & 8mm Qz-PY-MO VNs, 30 tca cut off by CA-PY-MO str, 10 tca with MG & PY on halo. @242.6m contorted 16mm Qz-PY-EPI-MO VN, 60 tca. @244.5m contorted Qz-PY-Cpy-MO VN, 60 tca with MO on selvage. From 246.76m to 244.34m 4mm CA VN along the core. @244.76m dispersed 12mm Qz-PY-MO-EPI VN, 60 tca. @245.18m contorted 32mm Qz-PY-MO VN, 80 tca with 20cm lense (20mm thickness). @245.7-246.22m dispersed Qz-PY-MG-MO zone. @246.42m significant 30m Qz-P-MG-MO, 30 tca. @246.55-246.8m granodiorite dyke. Below 246.8m stockwork contorted & narrow Qz VNs & strs +/-MO. @247.38m part of 16mm Qz-PY-MO VN, 0 tca cut of by tiny CA-Chl str, 25 tca. @247.7m pink 26mm Qz-PY-MG-MO VN, 25 tca with subparallel narrow Qz-PY-MO veinlets. @248.18m is 12mm 12mm Qz-PY-EPI-MO VN, 90 tca. @250.68m is 12mm Qz-PY-EPI-MO VN, 40 tca. @250.8m contorted 14mm Qz-PY-MO VN, 30 tca. @251.48m is 14mm Qz-PY-MO VN, 60 tca. @251.52m is 14mm Qz-PY-MO VN, 20 tca. @252.3-252.8m significant Q2-PY-MO zone.

STRUCTURES									
From	To	Struct	CA	Strain					

241.36 253.00 MAS

S W S

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
241.36	253.00	-	-	W	W	-	М	-	М	VW	М		М	

	VEINS										
1	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			
2	41.36	253.00	5	8	6	3	3				

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% M3%									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	
241.36	253.0	0 4	DISS	MC	0.1					

From 241.36

To 253.00 Litho AND

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 253.00

To 263.20

Litho **ARG**

Fault zone (>50% broken core) & brittle fracture, fragments & gouge, CA on fracture, minor dark to black argillite, mod BIO, Qz-PY-MO VNs/strs with ~0.1% MO, CA strs, D PY specks & strs. @223.12m is 40mm Qz-PY-MO VN, 15 tca. @258.08m solid 60mm Qz-PY-MO VN, 80 tca. @258.28m solid 36mm Qz-PY-MO VN, 40 tca with subparallel narrow <6mm Qz-PY-MO VNs. @258.5-258.74m zone with contorted 50mm Qz-Py-EPI-MO VN, 30 tca & anastomosing 8mm Qz-PY-MO VN below. From 259.1-263.2m fault zone with pieced <10 cm, CA on fracture (fragment gouge).

	STRUCTURES											
From	To	Struct	CA	Strain								
253.00 263.20 BDG W												

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
252.00	262.20			۱۸/	۱۸/				N 4	\/\/	N 4	۱۸/	N 4	

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
253.00	263.20	3	6			1						

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
252.00	262.2	0 4	חופפ	. MC	0.1				

253.00 263.20 4 DISS MO 0.1 MG present

From 263.20

To 274.84

Litho **ARG**

Black argillite zone mottled by Qz & CA narrow VNs & strs. @263.2m is 12mm Qz-PY-MO VN, 85 tca. @263.52m is 16mm Qz-PY-MG-MO VN, 25 tca. @264.2m is 10mm Qz-MG VN, 55 tca. @265.28m solid 32mm Qz-PY-MO VN, 50 tca with subparallel 10mm Qz-PY-MO VN. @267.18m is 14mm Qz-PY-MO VN, 40 tca. @267.63m is 14mm Qz-PY-MO VN, 60 tca. @267.8m is 8mm Qz-PY-MO VN 60 tca with Qz-PY-MO strs bellow. @268.54m is 10mm Qz-PY-MO VN, 40 tca. @268.86m is 10mm Qz-PY-MO VN, 60 tca. From 268.9m to 269.68m . From 269.68-273.68m black argillite, broken core, Qz VNs, CA alteration. @270.4m is 14mm Qz-PY-MO VN, 40 tca with subparallel strs. @270.56m is 12mm Qz-PY-MO VN, 30 tca. @271.3m solid 30mm Qz-PY-MO VN, 35 tca. @271.74m solid 30mm Qz-PY-MO VN, 55 tca. @272.16m solid 26mm Qz-PY-MO VN, 30 tca. @272.82m is 14mm Qz-PY-MO VN, 80 tca with branched out 12mm Qz-PY-MO VN, 0 tca. @273.43m contorted 12mm Qz-PY-EPI-MO VN, 40 tca. From 273.66m to 274.84m greenish granodiorite with strong silica altn, CON=60 tca with DI PY & BIO.

STRUCTURES											
From	To	Struct	CA	Strain							
263.20	274.84	BDG		W							

					AL	ILK	AIIU	11						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
263.20	274.84	-	-	М	W	W	М	-	М	VW	М	W	W	

ALTEDATION

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
263.20	274.84	4	10	10	2	2	60

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
263.20	274.8	4 2	DISS	MC	0.1				

From 263.20

To 274.84 Litho **ARG**

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1		MINERALIZATION													
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					

From 274.84

To 291.94

Litho **GDIO**

Light grey andesite, feldspar phenocrysts, interfingered siltstone, narrow CA VN/strs, fine grained DI PY. Brittle core, controlled BY Qz & CA VNs/strs. @281.76m is 12mm Qz VN, 70 tca. @284.18m is 14mm Qz-PY, 90 tca. @285.48m solid 30mm Qz-PY-MO VN, 25 tca. @286.17m are two 10mm Qz-PY-MO VNs, 40 tca with abund Qz & CA strs. @287.24m pink 12mm Qz-PY-MO VN, 60 tca with abund Qz & CA narrow VN/strs. Below 287.5m partially broken core with moderate narrow Qz-PY-MO VNs, CA on fracture. @288.18-288.34m are three parallel Qz-PY-MO VNs, @288.62m is 12mm Qz-PY-MO VN, 50 tca with 10mm Qz-PY-MO VN, 80 tca branched out from the main VN. @288.74m pink 16mm Qz-PY-CA-EPI VN, 75 tca. @288.86m solid 38mm Qz-PY-MO VN, 50 tca with EPI on halo. @289.04m narrow 8mm Qz-pY-MO VN, 60 tca with Qz-PY-MO strs around, @289.16-289.44m broken core (pieces <5cm), @289.44-289.8m contorted but significant 40mm Qz-PY-MO VN, 10 tca with a few narrow Qz-PY-MO VNs radiating from the main VN (1% MO in ths interval). From 289.8m to 290.86m interbedded siltstone (CON=45 tca) with Qz-PY-MO VNs & abundant strs. CA on fracture. @290.2m is 16mm Qz-PY-MO VN. 60 tca. @390.34-390.44m carbonate zone, CON=50 tca. @290.72m is 14mm Qz-PY-MO VN, 75 tca. @290.82m solid 28mm, 45 tca. From 290.86m to 291.94m granodiorite dyke mottled Qz & CA strs with two thick Qz VNs. @291.22m significant 84mm Qz-PY-MO VN. 35 tca with EPI on halo. (>1% MO). @291.8m is 24mm Qz-PY-MO VN. 30 tca.

	STRU	CTUR	ES	
From	То	Struct	CA	Strain
274.84	291.94	MAS		М

partially broken core

					AL	TER	ATIO)N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SEF
274.84	291.94	-	-	W	VW	W	М	VW	М	VW	М	М	М	
m	od CA &	wea	k EPI	altn										

			VEIN S	-			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA
274.84	291.94	6	35	20	3	3	
	ahunda	nt Oz-l	ON-VC	& CA strs			

From To Litho 291.94 299.00 **GDIO**

Fault zone with greenish granodiorite with interbedded siltstone, strong CA altn. Core is dominantly soft (fragments & gouge), Qz-CA-CAR +PY BB & strs. Qz-PY-MO VNs & traces of VNs, (0.2% MO in this iterval). @292.7m contorted 44mm Qz-PY-MO VN, 50 tca. @292.88m significant 60mm Qz-CAR-PY-MO VN, 30 tca. @293.5m flow bended zone (40cm, 50 tca) with very contorted Qz-CAR-CA-MO-EPI VN, 40 tca. @293.74-293.96m are three 10-22mm Qz-CAR-PY-MO VNs, 80 tca. @293.96-294.16m shear zone, gouge, @294.16m significant 92mm Qz-PY-MO-EPI VN, 50 tca (~2% MO in this VN), @294.4m brecciated 40mm Qz-CAR-CA-PY-MO VN, 20 tca. From 275.14-275.64m brecciated Qz-CA-CAR-PY-MO zone, CON =50 tca. From 295.8-296.9m broken core, fragments, CA on fracture, Qz-MO VNs. @296.1m is 24mm Qz-PY-MO VN, 65 tca. @296.7-297.07m contorted Qz-CAR-PY-MO-Chl VN, 10 tca (>1% MO in this VN). From 297.0m to 297.8m siltstone with strong Chl & CA altn & stockwork contorted 8-20mm Qz-CAR-PY-MO VNs, 60-80 tca. Below 297.8m brittle & broken core. @298.0m is 14mm Qz-PY-CAR-MO VN, 75 tca. @298,94m dispersed 20mm Qz-PY-MO VN, 50 tca.

STRUCTURES											
From	To	Struct	CA	Strain							

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

	MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From 291.94

То

299.00

GDIO

Litho

Fault zone with greenish granodiorite with interbedded siltstone, strong CA altn. Core is dominantly soft (fragments & gouge), Qz-CA-CAR +PY BB & strs. Qz-PY-MO VNs & traces of VNs, (0.2% MO in this iterval). @292.7m contorted 44mm Qz-PY-MO VN, 50 tca. @292.88m significant 60mm Qz-CAR-PY-MO VN, 30 tca. @293.5m flow bended zone (40cm, 50 tca) with very contorted Qz-CAR-CA-MO-EPI VN, 40 tca. @293.74-293.96m are three 10-22mm Qz-CAR-PY-MO VNs, 80 tca. @293.96-294.16m shear zone, gouge. @294.16m significant 92mm Qz-PY-MO-EPI VN, 50 tca (~2% MO in this VN). @294.4m brecciated 40mm Qz-CAR-CAPY-MO VN, 20 tca. From 275.14-275.64m brecciated Qz-CA-CAR-PY-MO zone, CON =50 tca. From 295.8-296.9m broken core, fragments, CA on fracture, Qz-MO VNs. @296.1m is 24mm Qz-PY-MO VN, 65 tca. @296.7-297.07m contorted Qz-CAR-PY-MO-ChI VN, 10 tca (>1% MO in this VN). From 297.0m to 297.8m siltstone with strong ChI & CA altn & stockwork contorted 8-20mm Qz-CAR-PY-MO VNs, 60-80 tca. Below 297.8m brittle & broken core. @298.0m is 14mm Qz-PY-CAR-MO VN, 75 tca. @298.94m dispersed 20mm Qz-PY-MO VN, 50 tca.

	STRUCTURES									
From	To	Struct	CA	Strain						

291.94 299.00 FLT W

	•													
ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
291.94	299.00	-	-	М	VW	М	М	-	М	VW	М	W	М	
C	AR & CA	altn												

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
291.94	299.00	6	10	8	3	3	80					
	abunda	nt Qz-l	PY-CAR	-MO VNs	/strs &							
	CA strs											

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
						•		•	•		

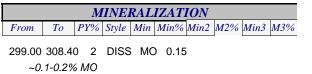
291.94 299.00 3 MG MO 0.4 good mineralization

From

То

Litho HSLT

299.00 308.40


Brown hornfelsed siltstone, system of Qz-PY-MO+/- CAR VNs/strs (to 3-4% PY) & CA strs (>1-2% CA), MO (~0.2%). @299.24-299.54m three contorted 12-20mm Qz-PY-MO VN, 75 tca. @300.0m significant 14cm Qz-PY-MO-Chl VN, 50 tca. @300.62m significant 22cm Qz-PY-MO VN, 55 tca. @301.0m solid 42mm Qz-PY-MO VN, 80 tca. @301.12m is 14mm Qz-PY-MO VN, 65 tca with subparallel 10mm Qz-PY-MO VN. @301.28m contorted 40mm Qz-CAR-PY-MO VNs, 5 tca. @301.46-301.86m broken core, Qz & CA on fracture. @302.06m is 30mm Qz-PY-MO VN, 50 tca with abundant narrow Qz-PY-MO VNs/strs. @303.28-303.86m stockwork subparallel Qz-CAR-PY-MO VNs, 50 tca. @304.06-304.52m dispersed Qz-PY-Chl-MO VN, 50 tca. @ 302.76-307.0m fault zone with 65% broken core; Qz, PY & CA on fracture. @305.21m brecciated 40mm Qz-CAR-MO VN, 40 tca. @305.54m dispersed 16mm Qz-PY-MO VN,40 tca. @305.92m two parallel 10 & 18mm Qz-PY-MO VNs, 50 tca. @307.36m anastomosing 18mm Qz-PY-MO VN, 18mm Qz-PY-MO VN, 60 tca. @308.02m 12mm Qz-CA VN, 30 tca.

I	STRUCTURES									
	From	To	Struct	CA	Strain					

299.00 308.40 FLT ~50% broken core

						·		'						
ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
299.00	308.40	-	-	W	VW	-	М	-	S	VW	W			VW
st	rong CA	altn												

VEINS											
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA				
299.00	308.40	4	8		2	3	50				
	abunda	nt Qz-l	PY-MO	VNs/strs							

From

То

Litho HSLT

308.40 315.40

Brown hornfelsed siltstone, structure controlled by abundant Qz-PY-MO VNs/strs & CA strs, MO (0.2%). @309.4m contorted 20mm Qz-PY-MO VN, 60 tca with Qz-PY-MO blotches around. @309.64m is 14mm Qz-PY-MO VN, 40 tca with abundant narrow contorted Qz-PY-MO VNs/strs & blotches. @309.98m contorted 32mm Qz-PY-MO VN with narrow VNs radiating from the main VN. @309.2m contorted 30mm Qz-PY-MO VN, 20 tca. @309.54m contorted 22mm Qz-CAR-PY-MO VN, 75 tca. @311.34m contorted 24mm Qz-PY-MO VN, 40 tca with MO on selvage. @311.44m lense 10cm of Qz-CAR-PY-MO VN with abundant Qz strs & tiny PY strs in bedding direction 80 tca. @312.6m solid Qz-PY-MO VN, 65 tca. @312.8-313.02m significant Qz-PY-MO VN, 65 tca with interfingered siltstone. @313.02-313.52m breccia zone with tiny MO strs. @313.58m contorted 14mm Qz-PY-MO VN, 70 tca.

STRUCTURES									
From	To	Struct	CA	Strain					

308.40 315.40 BDG 50 W 6% joints

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

308.40 315.40 - - - VW W M - S VW strong CA altn

			VEINS	S			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA
308.40	315.40	6	8		2	3	

Qz-PY-MO VNs & strs

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

 308.40
 315.40
 4
 VLT
 MO
 0.2

tiny PY strs

From

То

Litho

315.40 325.00

HSLT

Brown hornfelsed siltstone, strong Qz-CA-PY as BB & VNs, intense network PY strs (to 3-4% PY & to 3-5% CA), Qz rims moderate overprint by CA on fracture, Qz-PY-MO VNs/strs, MO (>0.2%). @314.0m solid 24mm Qz-Py-MO VN, 70 tca with Qz-PY-MO VNs around. @314.16m solid 15cm Qz-PY-MO VN, 55 tca with subparallel 12mm Qz-PY-MO VN. @314.56m 8mm Qz-PY-MO VN, 55 tca with MG strs in bedding direction. @314.82-314.96m significant Qz-Chl-CAR-PY-MO VN, 60 tca with interfingered siltstone. From 315.3-316.4m fault zone, fragments, CA on fracture. @315.34m is 18cm Qz-PY-MO VN, 60 tca with interfingered siltstone. @315.74m is 34mm Qz-PY-MO VN, 35 tca. @315.94m is 48mm Qz-PY-MO VN, 10 tca. @316.78-317.24m are six subparallel 10 & 16mm Qz-PY-MO VN, 65-70 tca. @317.4m solid 13cm Qz-Chl-CA-MO VN, 60 tca. @317.58m solid 36mm Qz-PY-MO VN, 40 tca. @317.98m branched out 24mm Qz-PY-MO VN, 60 tca. @319.18m solid 32mm Qz-PY-EPI-MO VN, 50 tca. @319.18m solid 32mm Qz-PY-EPI-MO VN, 50 tca. @320.66m solid 16cm Qz-AB-PY-MO VN, 55 tca. Below 321.0m abundant (>10 VNs/m) narrow (<8mm) Qz-PY-MO VN, 45-75 tca. @322.16m pink 20mm Qz-PY-MO VN, 60 tca. @322.6m anastomosing 22mm Qz-PY-EPI-MO VN, 70 tca. @323.0-323.2m are three solid 20-24mm Qz-PY-MO VN, 65 tca. Below 323.66m abundant narrow Qz-PY-MO VN, 8 strs. 60 tca. @324.44m solid 26mm Qz-PY-MO VN, 70 tca.

mod CA & weak EPI altn

STRUCTURES
From To Struct CA Strain

315.40 325.00 BDG 50 W ~4-7 joints per meter

 ALTERATION

 From
 To
 INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER

 315.40
 325.00
 - W | VW | - M | - S | VW

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 315.40
 325.00
 7
 10
 2
 4 40

 baundant narrow Qz-PY-MO VNs

From To

Litho HSLT

325.00 340.32

Brown hornfelsed siltstone, system of Qz-PY-MO VNs/stockwork with significant MO trays & CA strs, (MO 0.2%), porphyritic andesite zone, strong BIO with dominated Qz overprint, reticulated network tiny PY strs. @325.1m anastomosing 12mm Qz-PY-MO VN, 45 tca, (MO on selvage of VN). @325.34-325.48m granodiorite (CON=60 tca) with 18mm pink Qz-PY-MO VN, 50 tca. @326.88m solid 30mm Qz-CA-PY-MO VN, 50 tca with subparallel Qz-PY-MO strs. @327.5m branched 22mm Qz-PY-MO VN, 80 tca. @327.78m is 20mm Qz-PY-MO VN, 50 tca. @328.32-328.76m contorted 44mm Qz-PY-MO VN, 40 tca. @329.04m solid 20mm Qz-PY-AB MO, 50 tca. @329.16m is 18mm Qz-PY-AB-MO VN, 65 tca with abundant <6mm Qz-PY-MO VNs below. @330.46m is 30mm Qz-PY-MO-MG VN, 45 tca. @330.64m shear zone 4cm thickness, 45 tca. @330.9m is 34mm Qz-PY-MO VN, 75 tca. From 331.32-333.3m granodiorite with BIO, plagioclase & orthoclase (CON=50 tca). @333.22m Qz-AB VN,60 tca with MO strs on halo.@333.3m is 30mm Qz-PY-MO-MG VN, 60 tca. @334.0-334.32m Qz-CAR zone with PY BB & MO strs, 40 tca. Below 334.4m system of Qz-PY +/-MO VNs/stockwork, weak CA, AB, ChI altn. @337.24m solid pink Qz-AB-CA-MO VN, 55 tca. @338.22m anastomosing 8mm Qz-PY-MO VN, 75 tca. @339.06m solid 60mm Qz-PY-MO VN, 65 tca with two subparallel 10mm Qz-PY-MO VN.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

325.00 340.32 BDG M

~3 joints per meter

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
325.00	340.32	-	-	W	VW	-	М	-	W	VW	М		М	
C	hl altn													

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
325.00	340.32	6	9		1	3	60				
abundant Qz-AB & PY strs											

	MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
325 00	340 3	2 3	MG	MC) 02							

From 340.32

To 359.70

Litho HSLT

Brown hornfelsed siltstone & sandstone, system of Qz-PY-MO VNs with strs, (MO <0.1%), strong BIO with dominated Qz-AB strs, network tiny PY strs in bedding direction. @340.6m two parallel 12mm Qz-PY-MO VN, 50 tca. @341.26m two parallel 10-12mm Qz-PY-AB-MO VN, 70 tca. @341.5m shear zone 3cm, 60 tca. @341.82m solid 26mm Qz-PY-MO VN, 80 tca. Below 341.9 Qz-AB-PY-MO strs, random VNs on bedding direction, 60 tca & network tiny PY strs. @346.96m pink 14mm Qz-PY-MO VN, 70 tca. @347.38m is 32mm Qz-PY-AB-MO VN, 65 tca. @348.94m boudinaged/sausaged 16mm Qz-AB-PY-MO VN, 30 tca. @348.12m dispersed 50mm Qz-PY-MO VN, 70 tca. @349.54-350.12m stockwork parallel 18-30mm Qz-PY-MG-MO VNs, 60 tca. @352.76m pink 12mm Qz-PY-MO VN, 70 tca. Below 352.8m contorted & sausage shaped Qz-PY-MO VNs & strs. @353.64m is 30mm Qz-PY-MG-MO VN, 90 tca. @353.7-354.0m zone contorted Qz-PY-MO-EPI VNs, 40-60 tca. @354.08m rim Qz-PY-EPI-MO VN, 35 tca. @354.54m is 14mm Qz-PY-MO VN, 40 tca. @354.86-355.24m zone with contorted 24mm Qz-PY-MO-EPI-VN, 20 tca with 6-8mm VNs radiating from the main VN. @355.38m brecciated 84mm AB-Qz-PY-MG-MO VN, 40 tca. @355.66m contorted 14mm Qz-PY-MO VN, 60 tca. @355.9m are 14mm Qz-PY-MO VN, 35 & 70 tca. @357.0m contorted 20mm Qz-PY-MO-EPI VN, no orient with abundant Qz-PY-MO-EPI strs below. @358.66m is Qz-PY-MG-MO VNs. 45 tca. @359.0m branched 16mm Qz-PY-AB-MO-MG VN. 50 tca.

STRUCTURES
From To Struct CA Strain

340.32 359.70 BDG M

| From | To | INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER | SER | SEP | Altin

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 340.32
 359.70
 5
 8
 1
 2

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

 340.32
 359.70
 3
 VLT
 MO
 0.1

CH06	05
-------------	----

Initials:	
-----------	--

From 340.32

To 359.70

Litho HSLT

(Continued from previous page)

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

1	MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From 359.70

*T*o 374.40

Litho HSLT

Brown hornfelsed siltstone & sandstone, system of Qz-PY-MO VNs with strs (MO <0.1%), strong BIO, dominated Qz-AB strs, network tiny PY strs in bedding direction. @350.92m sausaged 18mm Qz-PY-MO-MG VN, 50 tca. @360.24m solid 52mm pink Qz-PY-MO selvaged VN, 40 tca. @360.4m solid 26mm pink Qz-PY-CA-MO VN, 20 tca with tiny MO strs on halo. @360.6m is 20mm pink Qz-PY-MO VN, 70 tca. @361.0m solid 60mm Qz-PY-A-MO VN, 60 tca with subparallel 10mm branched Qz-PY-MO VN. Below 361.4m sandstone with narrow contorted VNs & strs of fine grained PY. @362.98m brecciated 12mm Qz-CAR VN, 75 tca. @365.94m solid 70mm Qz-PY-PO-MG-EPI VN, 50 tca with 12mm Qz-PY-MO VN, 10 tca radiating from the main VN. @364.74m is 10mm Qz-PY-MO VN, 45 tca. @365.58-366.34m greeenstone with contorted 26mm Qz-PY-MO VN, 15 tca & AB altn. @367.92m contorted 54mm Qz-PY-PO-Chl-MO VN, 40 tca. @367.32m is 34mm Qz-PY-MO VN, 50 tca. @367.36-367.7m light grey granodiorite dyke, coarse granular texture, 55 tca. @368.64m boudinaged Qz-PY-Cpy-MO VN, 30 tca. @368.88m pink 20mm Qz-CA-PY-MO-EPI VN, 80 tca. @369.4m is 12mm Qz-PY VN, 50 tca with Qz-PY-MO strs around. @371.26m anastomosing 10mm Qz-PY-MO VN, 70 tca. @371.32m is 18mm Qz-PY-Chl-MO VN, 75 tca. @371.34m is 16m Qz-PY-EPI-MO VN, 70 tca. @371.46m contorted 16mm Qz-PY-MO-EPI VN, 40 tca. @371.88m is 24mm Qz-PY-Chl-MO VN, 35 tca with narrow 6mm branched out VNs. @372.2m is 34mm Qz-PY-CAR-MO VN, 65 tca with Chl altn.@372.56m is 36 mm Qz-PY-EPI-MO VN, 50 tca with interfingered siltstone. @372.74m contorted 30mm Qz-AB-PY-Chl-MG-MO VN, 75 tca. @373.05-

46mm Qz-PY-MO VN, 50 tca with branched out 20mm Qz-PY-MO VN, 40 tca. @374,24m solid 64mm Qz-PY-MO-Chl-MG VN, 80 tca.

mod Ca & weak EPI altn

373.6m significant contorted 7mm Qz-PY-MO VN, 5 tca with many Qz-PY-MO strs on bedding direction, 65 tca (~2-3% MO in this interval). @373.56m solid

STRUCTURES
From To Struct CA Strain

359.70 374.40 BDG M 3-4% joints
 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 359.70
 374.40
 W
 VW
 M
 W
 VW
 M
 W
 M

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 359.70
 374.40
 6
 10
 1
 3 60

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

 359.70
 374.40
 3
 VLT
 MO
 0.4

From To 374.40 387.00

Litho HSLT

Brown hornfelsed siltstone, fine grained, CA & Chl altn, partially broken core, Qz-PY-MO VNs with strs, (MO <0.1%), strong BIO with dominated Qz-AB strs, tiny PY strs in bedding direction. @374.42-374.8m broken core, CA & Chl on fracture. @375m sausages Qz-Py-CA-MO VHN, 75 tca. @375.5m is 20m Q-PY-MO VN 60 tca. @375.85m is 44mm Q-PY-MO VN, 75 tca. @376m are two parallel 20 & 24mm Qz-PY-MO VNs, 60 tca. @376.26m is 36mm Qz-PY-MO-Chl VN, 40 tca. @371.4m two contorted 14mm Qz-PY-MO VNs, 70 tca cut off by 6mm Qz-Py-MO VN, 10 tca. @376.74m knot of narrow Qz-PY-AB-MO VNs, no orient. @377.26m contorted 26mm Qz-CA-PY-EPI-MO VN, 45 tca. @377.8m is 12mm Qz-PY-MO VN, 35 tca. @378.1m solid 22mm Qz-PY-Chl-MO VN, 50 tca. @378.32m is 16mm Qz-PY-MO VN, 55 tca. @378.6m solid 30mm Qz-PY-MO VN, 75 tca with narrow Qz-PY-MO VNs around. @379.16m solid 10cm Qz-PY-MO VN, 30 tca (MO on selvage). @379.76-379.72m gouge. @380.0m is 32mm Qz-PY-MO VN, 60 tca. @380.36m solid 26mm Qz-PY-MO VN, 70 tca. @380.82m solid 38mm Qz-PY-MO VN, 70 tca. @381.18m is 14mm Qz-PY-MO VN, 60 tca. @382.0-382.22m reticulated network narrow Qz-PY-MO VNs/strs. @383.1m solid 34mm Qz-PY-MO VN, 70 tca. @383.48-383.7m stockwork parallel 14-20mm Qz-PY-MO-MG VNs, 50-60 tca. @384.56m is 16mm Qz-PY-MO VN, 70 tca. From 384.7m to 385.28m broken core, fragments, CA, Chl & PY on fracture. Below 385.28m fine grained dark brown siltstone with network of tiny Qz-Qz-PY-MO strs. @386.48m is solid 30mm solid Qz- Chl-PY VNs. 60 tca.

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION														
•	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
	374.40 <i>C</i> /	378.00 A & <i>Chl</i>	-	-	W	VW	-	М	-	W	VW	M			

			VEINS	5						M	INE	RAL	IZATI	ION			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

1 1

374.40 387.00 BDG 50 M partially broken core

374.40 387.00 2 6

374.40 387.00 2 VLT MO 0.1

 From
 To
 Litho

 387.00
 392.00
 HSLT

Brown hornfelsed siltstone, CA altn, Qz-PY-MO VNs with strs, (MO <0.1%), moderate BIO, network tiny PY strs in bedding direction, contact to granodiorite =30 tca. @387.60m is 10mm Qz-Py-MO VN, 70 tca with Qz-PY-MO strs around. @388.7m is 16mm Qz-PY-MO VN, 70 tca with network tiny Qz-PY-MO strs around. @388.94m two parallel 14 & 24mm Qz-PY-MO-MG-EPI VNs, 50 tca. @389.74m sausage shaped 12mm, Qz- MO- PY- VNs, 50 tca. From 390.18m to 390.38m reticulated network narrow Qz- PY- MO & Qz-CA-CAR VNs. @390.54m solid 30mm,Qz-MG-MO-AB VN, 50 tca.

STRUCTURES

From To Struct CA Strain

387.00 392.00 BDG 60 M

partially broken core

					AL	TER	ATIO	N				
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP PYR SER
387.00	392.00	-	-	VW	W	-	М	-	М	VW	М	М

			VEINS	•			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
387.00	392.00	3	6		2	2	

			M	INE	RAL	IZAT	ION			
1	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
	387.00	392.0	0 2	VLT	MC	0.2				
	~.2	2% MO								

Initials:

From 392.00

To 399.80

Litho GDIO

Light grey granodiorite with well formed crystals, BIO, plagioclase feldspar phenocrysts, MO specks, from moderate to strong CA altn. @393-45-394.29m fragments, brittle core, strong CA altn. @395.33-396.56m fragments, brittle core, strong CA altn. @398.24m dispersed 16mm Qz-MO VN, 45 tca. @399.24m pinkish 20mm Qz-AB-PY-MO VN, 40 tca, contact to siltstone=50 tca.

From To Struct CA Strain

392.00 399.80 MAS W

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
392.00	399.80	-	-	-	W	-	-	-	М		s	М	W	
fro	om mod i	to str	ong C	A altn										

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
392.00	399.80	0.3	40	30	4	0.2	45
	two Qz	VNs					

					IZAT				
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
392.00	399.8	0 2	DISS	в мс	0.01				
me	edium g	grained	l DI P	l					

From

То

Litho

399.80

407.06

HSLT

Brown hornfelsed siltstone, strong CA altn, ~20% broken core, Qz-PY-MO VNs with strs, (MO <0.1%), moderate BIO, network tiny PY strs in bedding direction, contact to granodiorite =20 tca. @398.9-399.24m CA VN, 24mm, 10 tca with 7x7mm crystals. @399.24m solid 38mm Qz-PY-EPI-MO VN, 25 tca with 8mm contorted VN radiating with 5 tca. @401.00mm pieces 30mm Qz-PY -MO VN, 70 tca. @401.42-403.52m broken core, fragments, CA on fracture. @405.28m is 20mm Qz-PY-ChI-CA VN, 20 tca. @405.3-405.7m is 10mm Qz-CA VN, 5 tca with tiny Qz-PY-MO VN on halo (~0.5%MO). @405.8m magnetic Qz-PY-PO-ChI-MO VN, 30 tca. @406.46m is 24mm Qz-PY-MO VN, 40 tca with tiny Qz-PY-MO VNs on bedding direction, contact to granodiorite=45 tca.

 STRUCTURES

 From
 To
 Struct
 CA
 Strain

 399.80
 407.06
 BDG
 M

fault zone present

					AL	TER	ATIO	N .						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
399.80	407.06	-	-	-	W	VW	М	-	М	VW	W		W	
sti	rona CA	altn												

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
399.80	407.06	4	6		2	2	

From

То

Litho

407.06 443.75 GDIO

Light grey to greenish chloritic variety granodiorite dyke, unaltered rock, coarse granular texture, random Qz-VNs, medium grained DI PY & MO specks & traces MO. @424.04m solid 12cm Qz-PY-EPI-MO VN, 70 tca. @426.56m pink 24mm Qz-PY-MO-CA VN, 45 tca. @427.52m solid 54 mm Qz-PY-EPI-MO VN, 65 tca. @429.84m solid 20mm Qz-PY-MO VN, 45 tca. @428.64m solid 60mm Qz-PY-MO VN, 60 tca. @428.8m two parallel solid 20mm & 55mm Qz-PY-MO VNs, 60 tca. @429.94m solid 40mm Qz-PY-MO VN, 35 tca. @437.3-437.57m Qz zone (with MO ~0.2%) & PY specks. @439.14m is 30mm Qz VN, 60 tca. @440.62m solid 93mm Qz-AB VN, 85 tca with BIO alth below. @443.4-444.0m solid Qz wth lightly greenish Chl zone, 45 tca.

		STRU	CTUR	ES	
I	rom	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

From 7

To 443.75

Litho GDIO

Light grey to greenish chloritic variety granodiorite dyke, unaltered rock, coarse granular texture, random Qz-VNs, medium grained DI PY & MO specks & traces MO. @424.04m solid 12cm Qz-PY-EPI-MO VN, 70 tca. @426.56m pink 24mm Qz-PY-MO-CA VN, 45 tca. @427.52m solid 54 mm Qz-PY-EPI-MO VN, 65 tca. @429.84m solid 20mm Qz-PY-MO VN, 45 tca. @428.64m solid 60mm Qz-PY-MO VN, 60 tca. @428.8m two parallel solid 20mm & 55mm Qz-PY-MO VNs, 60 tca. @429.94m solid 40mm Qz-PY-MO VN, 35 tca. @437.3-437.57m Qz zone (with MO ~0.2%) & PY specks. @439.14m is 30mm Qz VN, 60 tca. @440.62m solid 93mm Qz-AB VN, 85 tca with BIO alth below. @443.4-444.0m solid Qz wth lightly greenish Chl zone. 45 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

407.06 443.75 MAS S S 2-3% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
407.06 <i>BI</i>	443.75 O altn	-	-	W	М	-	VW	-	VW	VW	M	S		

	VEINS											
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA					
407.06	443.75	2	30	20	1	0.5						
	random	Qz VN	√s									

1	MINERALIZATION											
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
	407.06	443.7	5 2	DISS	МС	0.01						
	vei	v weal	k MO									

From 443.75

To 486.76

Litho GDIO

Light grey to dark grey greenish chloritic variety granodiorite, hypidimorphic porphyritic coarse granular texture, strong BIO, AB, feldspar orthoclase, random Qz-VNs, minor hornblende granite zones, medium grained DI PY & MO specks & traces, weak Chl altn, MG VN & strs. @446.16m solid 66mm Qz-PY-Chl VN, 35 tca. @449.46m are two 6 & 20mm Qz-PY VNs, 55 & 90 tca. @451.66m solid 10cm Qz-PY VN, 60 tca. @451.96-452.44m Qz VN with MO specks & CA altn. @459.33m is solid 12cm pink Qz VN, 70 tca. From 460.44m to 461.1m pinkish granite, 55 tca contact. @471.53m are two parallel 18mm Qz VNs, 45 tca. From 474.2m to 482m light granodiorite with less biotization. @475.48m branched out 24mm MG VN, 35 tca. @480.74-481.18m pink Qz zone. From 482.8m to 485.2m

is Qz-MG VN, 0 tca. @486.76m E.O.H.

 STRUCTURES

 From
 To
 Struct
 CA
 Strain

 443.75
 486.76
 MAS
 S

 S
 S
 S

 2-3% joints
 S

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
443.75	486.76	-	-	W	M	-	VW	-	VW	VW	М	М	VW	

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			
443.75	486.76	0.5	30	30	1	0.5				
	random	Qz VN	I s							

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
443.75	486.7	6 1	DISS	в мс	0.01						
1/0/	n, wool	110									

CH0605

Initials:	
-----------	--

From 443.75

To 486.76

Litho GDIO

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

1		MINERALIZATION									
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

CHU Project - TTM Resources Inc.

Sample Report

				<u> </u>	: IXepoit	
SAMPLE NUMBER			TO LITHOLOGY		Cu%	Mo%
	CH0604	9.14		CORE	0.028	0.05
44755	CH0604	11.28	14.33 HSLT	CORE	0.021	0.02
44756	CH0604	14.33	17.37 HSLT	CORE	0.021	0.0
	CH0604	17.37	20.42 HSLT	CORE	0.033	0.02
	CH0604	20.42	23.47 HSLT	CORE	0.027	0.01
	CH0604	23.47	26.52 HSLT	CORE	0.024	0.0
	CH0604	23.47	26.52 HSLT	DUPLICATE	0.034	0.0
44761	CH0604	26.52	29.57 HSLT	CORE	0.034	0.00
44762	CH0604	29.57	32.61 HSLT/GDIO	CORE	0.021	0.02
44763	CH0604	32.61	35.66 HSLT	CORE	0.031	0.0
	CH0604	35.66		CORE	0.027	0.03
	CH0604	35.66		BLANK	0.001	0.00
	CH0604					
		38.71	41.76 HSLT/MFIN		0.021	0.0
	CH0604	41.76		CORE	0.017	0.0
	CH0604	44.81	47.85 HSLT	CORE	0.017	0.0
44769	CH0604	47.85	50.90 HSLT	CORE	0.010	0.0
44770	CH0604	47.85	50.90 HSLT	MoS-1	0.011	0.0
	CH0604	50.90		CORE	0.023	0.0
	CH0604	53.95		CORE	0.018	0.0
	CH0604	57.00		CORE	0.025	0.0
44774	CH0604	60.05	63.09 HSLT	CORE	0.028	0.0
44775	CH0604	63.09	66.14 HSLT	CORE	0.023	0.0
	CH0604	66.14	69.19 HSLT	CORE	0.016	0.0
	CH0604	69.19	72.24 HSLT	CORE	0.027	0.0
	CH0604	72.24		CORE	0.015	0.0
	CH0604	75.29		CORE	0.038	0.0
44780	CH0604	75.29	78.33 HSLT	DUPLICATE	0.065	0.0
	CH0604	78.33		CORE	0.023	0.0
	CH0604	81.38	84.43 HSLT	CORE	0.027	0.0
	CH0604	84.43		CORE	0.010	0.0
44784	CH0604	87.48	90.53 HSLT	CORE	0.042	0.0
	CH0604	87.48		BLANK	0.000	0.0
	CH0604	90.53		CORE	0.072	0.0
	CH0604	93.57	96.62 HSLT	CORE		
					0.038	0.0
			99.67 HSLT	CORE	0.020	0.0
44789	CH0604	99.67	102.72 HSLT	CORE	0.032	0.0
44790	CH0604	99.67	102.72 HSLT	MoS-1	0.011	0.0
	CH0604		105.77 HSLT	CORE	0.041	0.0
	CH0604		108.81 HSLT	CORE	0.051	0.0
	CH0604		111.86 HSLT	CORE	0.010	0.0
44794	CH0604	111.86	114.91 HSLT	CORE	0.031	0.0
44795	CH0604	114.91	117.96 HSLT	CORE	0.026	0.0
	CH0604		121.01 HSLT	CORE	0.032	0.0
	CH0604		124.05 HSLT	CORE	0.035	0.0
	CH0604		127.10 HSLT	CORE	0.050	0.0
44799	CH0604	127.10	130.15 HSLT	CORE	0.019	0.0
44800	CH0604	127.10	130.15 HSLT	DUPLICATE	0.033	0.0
44801	CH0604	130.15	133.20 HSLT	CORE	0.020	0.0
	CH0604		136.25 HSLT	CORE	0.030	0.0
	CH0604		139.29 HSLT	CORE		
					0.019	0.0
	CH0604		142.34 HSLT	CORE	0.011	0.0
44805	CH0604	139.29	142.34 HSLT	BLANK	0.000	0.0
44806	CH0604	142.34	145.39 HSLT	CORE	0.019	0.0
	CH0604		148.44 HSLT	CORE	0.033	0.0
	CH0604					
			151.49 HSLT	CORE	0.050	0.0
	CH0604		154.53 HSLT	CORE	0.033	0.0
44810	CH0604	151.49	154.53 HSLT	BLANK	0.001	0.0
44811	CH0604	154.53	157.58 HSLT	CORE	0.016	0.0
	CH0604		160.63 HSLT	CORE	0.016	0.0
	CH0604		163.68 HSLT	CORE	0.012	0.0
	CH0604		166.73 HSLT	CORE	0.021	0.0
	CH0604		169.77 HSLT	CORE	0.014	0.0
44816	CH0604		172.82 HSLT	CORE	0.011	0.0
44817	CH0604	172.82	175.87 HSLT	CORE	0.013	0.0
	CH0604		178.92 HSLT	CORE	0.023	0.0
	CH0604		181.97 HSLT	CORE	0.024	0.0
	CH0604		181.97 HSLT	DUPLICATE	0.028	0.0
	IC:H0604	181.97	185.01 HSLT	CORE	0.020	0.0
44821				CODE	0.020	0.0
44822	CH0604	185.01	188.06 HSLT	CORE		
44822		185.01	188.06 HSLT 191.11 HSLT	CORE	0.027	
44822 44823	CH0604 CH0604	185.01 188.06	191.11 HSLT	CORE	0.027	0.0
44822 44823 44824	CH0604 CH0604 CH0604	185.01 188.06 191.11	191.11 HSLT 194.16 HSLT	CORE CORE	0.027 0.014	0.0
44822 44823 44824 44825	CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11	191.11 HSLT 194.16 HSLT 194.16 HSLT	CORE CORE BLANK	0.027 0.014 0.001	0.0 0.0 0.0
44822 44823 44824 44825 44826	CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT	CORE CORE BLANK CORE	0.027 0.014 0.001 0.031	0.0 0.0 0.0 0.0
44822 44823 44824 44825 44826 44827	CH0604 CH0604 CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16 197.21	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT 200.25 HSLT	CORE CORE BLANK CORE CORE	0.027 0.014 0.001 0.031 0.027	0.0 0.0 0.0 0.0
44822 44823 44824 44825 44826 44827	CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16 197.21	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT	CORE CORE BLANK CORE	0.027 0.014 0.001 0.031	0.0 0.0 0.0 0.0 0.0
44822 44823 44824 44825 44826 44827 44828	CH0604 CH0604 CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16 197.21 200.25	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT 200.25 HSLT 203.30 HSLT	CORE CORE BLANK CORE CORE CORE	0.027 0.014 0.001 0.031 0.027 0.021	0.0 0.0 0.0 0.0 0.0
44822 44823 44824 44825 44826 44827 44828 44829	CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16 197.21 200.25 203.30	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT 200.25 HSLT 203.30 HSLT 206.35 HSLT	CORE CORE BLANK CORE CORE CORE CORE	0.027 0.014 0.001 0.031 0.027 0.021 0.022	0.0 0.0 0.0 0.0 0.0 0.0
44822 44823 44824 44825 44826 44827 44828 44829 44830	CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16 197.21 200.25 203.30 203.30	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT 200.25 HSLT 203.30 HSLT 206.35 HSLT 206.35 HSLT	CORE CORE BLANK CORE CORE CORE CORE MoS-1	0.027 0.014 0.001 0.031 0.027 0.021 0.022 0.012	0.0 0.0 0.0 0.0 0.0 0.0 0.0
44822 44823 44824 44825 44826 44827 44828 44829 44830 44831	CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16 197.21 200.25 203.30 203.30 206.35	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT 200.25 HSLT 203.30 HSLT 206.35 HSLT 206.35 HSLT 209.40 HSLT	CORE CORE BLANK CORE CORE CORE CORE CORE MoS-1 CORE	0.027 0.014 0.001 0.031 0.027 0.021 0.022 0.012 0.019	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44822 44823 44824 44825 44826 44827 44828 44829 44830 44831	CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16 197.21 200.25 203.30 203.30 206.35	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT 200.25 HSLT 203.30 HSLT 206.35 HSLT 206.35 HSLT	CORE CORE BLANK CORE CORE CORE CORE CORE CORE MoS-1 CORE CORE	0.027 0.014 0.001 0.031 0.027 0.021 0.022 0.012	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44831	CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16 197.21 200.25 203.30 203.30 206.35 209.40	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT 200.25 HSLT 203.30 HSLT 206.35 HSLT 206.35 HSLT 209.40 HSLT	CORE CORE BLANK CORE CORE CORE CORE CORE CORE MoS-1 CORE CORE	0.027 0.014 0.001 0.031 0.027 0.021 0.022 0.012 0.019 0.027	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44832 44833	CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16 197.21 200.25 203.30 203.30 206.35 209.40 212.45	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT 200.25 HSLT 203.30 HSLT 206.35 HSLT 206.35 HSLT 209.40 HSLT 212.45 HSLT 215.49 HSLT	CORE CORE BLANK CORE CORE CORE CORE CORE MoS-1 CORE CORE CORE CORE	0.027 0.014 0.001 0.031 0.027 0.021 0.022 0.012 0.019 0.027 0.020	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44832 44833 44833	CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16 197.21 200.25 203.30 203.30 206.35 209.40 212.45 215.49	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT 200.25 HSLT 203.30 HSLT 206.35 HSLT 206.35 HSLT 209.40 HSLT 212.45 HSLT 215.49 HSLT 218.54 HSLT	CORE CORE BLANK CORE CORE CORE CORE CORE MoS-1 CORE CORE CORE CORE CORE	0.027 0.014 0.001 0.031 0.027 0.021 0.022 0.012 0.019 0.027 0.020 0.013	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44833 44833 44834	CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16 197.21 200.25 203.30 203.30 206.35 209.40 212.45 215.49 218.54	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT 200.25 HSLT 203.30 HSLT 206.35 HSLT 206.35 HSLT 209.40 HSLT 212.45 HSLT 215.49 HSLT 218.54 HSLT 221.59 HSLT	CORE CORE BLANK CORE CORE CORE CORE CORE MoS-1 CORE CORE CORE CORE CORE CORE	0.027 0.014 0.001 0.031 0.027 0.021 0.022 0.012 0.019 0.027 0.020 0.013 0.028	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44833 44833 44834	CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16 197.21 200.25 203.30 203.30 206.35 209.40 212.45 215.49 218.54	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT 200.25 HSLT 203.30 HSLT 206.35 HSLT 206.35 HSLT 209.40 HSLT 212.45 HSLT 215.49 HSLT 218.54 HSLT	CORE CORE BLANK CORE CORE CORE CORE CORE MoS-1 CORE CORE CORE CORE CORE	0.027 0.014 0.001 0.031 0.027 0.021 0.022 0.012 0.019 0.027 0.020 0.013	0.0
44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44832 44833 44834 44834	CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16 197.21 200.25 203.30 203.30 206.35 209.40 212.45 215.49 218.54 221.59	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT 200.25 HSLT 203.30 HSLT 206.35 HSLT 206.35 HSLT 209.40 HSLT 212.45 HSLT 215.49 HSLT 218.54 HSLT 221.59 HSLT	CORE CORE BLANK CORE CORE CORE CORE CORE MoS-1 CORE CORE CORE CORE CORE CORE	0.027 0.014 0.001 0.031 0.027 0.021 0.022 0.012 0.019 0.027 0.020 0.013 0.028	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44822 44823 44824 44825 44826 44827 44828 44829 44831 44831 44832 44833 44834 44835 44836 44836	CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604 CH0604	185.01 188.06 191.11 191.11 194.16 197.21 200.25 203.30 206.35 209.40 212.45 215.49 218.54 221.59 224.64	191.11 HSLT 194.16 HSLT 194.16 HSLT 197.21 HSLT 200.25 HSLT 203.30 HSLT 206.35 HSLT 206.35 HSLT 209.40 HSLT 212.45 HSLT 215.49 HSLT 218.54 HSLT 221.59 HSLT 224.64 HSLT	CORE CORE BLANK CORE CORE CORE CORE CORE MoS-1 CORE CORE CORE CORE CORE CORE	0.027 0.014 0.001 0.031 0.027 0.021 0.022 0.012 0.019 0.027 0.020 0.013 0.028 0.018	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1

CHU Project - TTM Resources Inc.

Sample Report

					Sample	Report	
SAMPLE NUMBER	HOLE ID	FROM	TO	LITHOLOGY	TYPE	Cu%	Mo%
	CH0604		233.78		DUPLICATE	0.034	0.002
44841	CH0604		236.83		CORE	0.037	0.003
44842	CH0604	236.83	239.88	HSLT	CORE	0.023	0.002
44843	CH0604	239.88	242.93	HSLT	CORE	0.024	0.001
44844	CH0604	242.93	245.97	HSLT	CORE	0.037	0.003
44845	CH0604	242.93	245.97	HSLT	BLANK	0.002	0.000
44846	CH0604	245.97	249.02	HSLT	CORE	0.027	0.003
44847	CH0604	249.02	252.07	HSLT	CORE	0.012	0.003
44848	CH0604	252.07	255.12	HSLT	CORE	0.009	0.002
44849	CH0604	255.12	258.17	HSLT	CORE	0.042	0.006
44850	CH0604	255.12	258.17	HSLT	MoS-1	0.014	0.065
	CH0604		261.21		CORE	0.010	0.004
	CH0604	261.21	264.26		CORE	0.025	0.003
	CH0604		267.31		CORE	0.070	0.003
	CH0604	267.31			CORE	0.108	0.002
	CH0604		273.41		CORE	0.027	0.002
	CH0604	273.41			CORE	0.034	0.001
	CH0604		279.50		CORE	0.017	0.003
	CH0604		282.55		CORE	0.027	0.017
	CH0604		285.60		CORE	0.080	0.013
	CH0604		285.60		DUPLICATE	0.064	0.012
	CH0604		288.65		CORE	0.117	0.003
	CH0604		291.69		CORE	0.033	0.003
	CH0604		294.74		CORE	0.021	0.011
	CH0604		297.79		CORE	0.034	0.012
	CH0604		297.79		BLANK	0.001	0.000
	CH0604		300.84		CORE	0.022	0.003
	CH0604		303.89		CORE	0.016	0.003
	CH0604		306.93		CORE	0.027	0.004
	CH0604		309.98		CORE	0.017	0.002
	CH0604		309.98		MoS-1	0.012	0.064
	CH0604		313.03		CORE	0.015	0.002
	CH0604 CH0604		316.08		CORE	0.016	0.002
			319.13 322.17		CORE CORE	0.024	0.005
	CH0604 CH0604		325.22		CORE	0.029 0.015	0.004 0.004
	CH0604		328.27		CORE	0.013	0.004
	CH0604	328.27			CORE	0.021	0.002
	CH0604		334.37		CORE	0.019	0.007
	CH0604		337.41		CORE	0.019	0.003
	CH0604		337.41		DUPLICATE	0.019	0.015
	CH0604		340.46		CORE	0.013	0.001
	CH0604		343.51		CORE	0.020	0.001
	CH0604		346.56		CORE	0.022	0.001
	CH0604		349.61		CORE	0.018	0.002
	CH0604		349.61		BLANK	0.001	0.000
	CH0604		352.65		CORE	0.017	0.001
	CH0604		355.70		CORE	0.037	0.001
	CH0604		358.75		CORE	0.015	0.000
	CH0604		361.80		CORE	0.013	0.001
44890	CH0604	358.75	361.80	HSLT	MoS-1	0.015	0.065
44891	CH0604	361.80	364.85	HSLT	CORE	0.018	0.001
44892	CH0604	364.85	367.89	HSLT	CORE	0.013	0.000
44893	CH0604	367.89	370.94	HSLT	CORE	0.023	0.001
44894	CH0604	370.94	373.99	HSLT	CORE	0.015	0.000
44895	CH0604		377.04		CORE	0.028	0.001
44896	CH0604		380.09		CORE	0.021	0.001
	CH0604		383.13		CORE	0.016	0.000
	CH0604		386.18		CORE	0.019	0.000
	CH0604		389.23		CORE	0.016	0.001
	CH0604		389.23		DUPLICATE	0.016	0.001
	CH0604		392.28		CORE	0.020	0.001
44902	CH0604	392.28	395.33	HSLT	CORE	0.015	0.000

CHU Project - TTM Resources Inc.

Signature:	
	Initials:

CH0604 From

0.00

To 9.14

Litho OB

Overburden/Casing

STRUCTURES To Struct CA Strain

0.00 9.14 BDG pebble, gravel, sand & clay

ALTERATION To | INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER

VEINS To Vn% QZ% Feld% CC% V/m CA From0.00 9.14

1 1 trace of Qz-MO VN

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

From To 9.14

19.62

Litho **HSLT**

Dark brown siltstone, with broken core (~3-5%), surface weathering on joints, stockwork Qz-PY-MO VNs, MO mineralization ~0.5-1% in this interval, minor Cpy present. @9.34-9.6m granodiorite, feldspar phenocrysts, coarse & fine grained DI PY. @9.94m is 32mm Qz-PY-MO VN, 30 tca. @10.2m is 14mm Qz-PY-MO VN, 60 tca. @10.5m is 12mm Qz-PO-Cpy-MO VN, 30 tca. @10.62m boudinaged Qz-PO VN, 60 tca. @10.76m is 30mm Qz-PY-BIO-MO VN, 45 tca. @11.16m is 14mm Qz-PY-BIO-MO VN, 50 tca. @11.36m is 10mm Qz-PY-MO VN, 45 tca with moderate subparallel Qz-PY-MO strs. @12.06m dispersed 34mm Qz-Chl-PY-MO VN, 35 tca. @13.3-13.56m broken core. @13.66m boudinaged 8mm Qz-PY-Cpy-MO VN, 45 tca. @13.66m is 20mm Qz-CA-BIO-PY VN, 70 tca. @14.54m boudinaged milky Qz-PY-MO VN, 40 tca. Below 14.66m stockwork narrow <6mm Qz-PY-MO VNs. Below 18.8m greenish sandstone. @19.4m significant 60mm Qz-PO-PY-MO VN, 55 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

19.62 BDG 45 W 5% broken core

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

9.14 19.62 - - VW W - M - VW - M BIO altn

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

3 50

9.14 19.62 4 Qz-PY-MO stockwork

	MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

9.14 19.62 1 VLT PO 1 MO 0.5 MO >0.5%

From 19.62

To 30.56

Litho **HSLT**

Brown to dark brown hornfelsed siltstone, locally strongly fractured, moderate BIO altn; abundant Qz-PO-MO strs. @19.86m contorted 16mm Qz-PO-MO-PY VN, 35 tca. @20.96m solid 16mm Qz-PO-MO VN. 40 tca with subparallel 10mm Qz-PO-MO VN. @21.65m dispersed 13mm Qz-PO-MO VN. 55 tca. @22.9-23.72m greenish sandstone with narrow <7mm Qz-PO-MO VNs in different orient. @23,72m solid 10cm Qz-PO-MO VN. 60 tca. Below 23.86m brown fine grained siltstone with very narrow Qz-PO-MO VNs/strs. @27.68m is 10mm Qz-PO-MO VN. 50 tca. From 27.72-29.9m greenish (medium gained +Qz) sanstone (like greensand). CA on fracture. PY strs & DI PY. @ 29.2m is 16mm Qz-PY-MO VN. 50 tca. From 29.34m to 30.05m broken core, surface weathering on fracture.

STRUCTURES From To Struct CA Strain

19.62 30.56 BDG 60 M from 29.34 to 30.05m broken core

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
19.62	30.56	-	-	М	W	-	М	-	VW	-	W		W	
PO	0 1-2%													

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
19.62	30.56	4	6		1	2	50
	Qz-PO-						

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
19.62	30.56	5 1	VLT	PC	1.5	МО	0.5						
abı	abundant Qz-PO-MO strs												

From 19.62

To 30.56

Litho **HSLT**

(Continued from previous page)

STRUCTURES From To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

	MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From 30.56

To 32.85 Litho **GDIO**

Coarse grained, light granodiorite dyke with PY strs (~2% PY), Cpy & MO specks, contact 45 tca.

STRUCTURES To Struct CA Strain S 30.56 32.85 MAS

1% joints

_															
						AL	TER	ATIO)N						
Ī	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SE
	30.56	32.85	-	-	-	М	-	-	-	VW	-	W		W	
	We	eak CA a	altn												

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
30.56	02.00	0.1	50		0.2	1	70
	silicifica	tion					

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
30.56	32.85	5 2	DISS	CF	0.2	МО	0.01						
MC	MO specks												

From 32.85

To 39.40

Litho **HSLT**

Brown hornfelsed siltstone with Qz veins stockwork +PY & MO, also MO strs are present. Abundant narrow & contorted strs mottled the core. @32.18m is 16mm Qz-PY-MO VN, 70 tca. @32.74m is 11mm Qz-PY-MO VN, 70 tca. @34.28m is 22mm Qz-Chl-PO VN, 70 tca. @35.25m is 10mm Qz-PY-MO VN, 55 tca. @35.71m is 15mm Qz-PY-MO VN, 75 tca. @35.88m is 14mm Qz-PY-PO-Chl-MO VN, 45 tca. From 36.88m to 37.21m Qz injected in bedding direction with crosscut 12mm Qz-MO VN, 50 tca. @38.12m is 14mm Qz-PY-MO VN, 55 tca. @37.88-39.05m breccia zone with DI PY & MO strs, 45 tca contact.

STRUCTURES To Struct CA Strain 32.85 39.40 BDG 45 S

> rock is hard, minor breccia zones

					AL	TER	ATIO	N .						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
32.85	39.40	-	-	W	S	-	М	-	VW	-	W		W	
ve	ry weak	CA a	ltn											

			VEINS	•			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA
32.85	39.40	5	8			4	65
	abunda	nt Qz	veinlets				

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
32.85	39.40	3	VLT	MC	0.7	СР	0.1					
~0.	5-1.0%	6 MO										

From 39.40

To 41.97 Litho MFIN

Breccia zone (cataclastic metamorphic rock), cellular texture with the large grains (rounded) Qz, contorted & irregularly mixed narrow veins, dendritic Qz VNs, Qz-MO strs & fine grained DI PY, strong silicification, very weak Chl altn.

STRUCTURES To Struct CA Strain 39.40 41.97 MAS 50 S S breccia

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
	41.97 lica altn	-	-	-	S	-	-	-	VW	-		М	W	

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
39.40	41.97	0.5	50			0.5	40
	dendrit	tic Qz V	Ns, Qz-I	MO strs			

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					
39.40	41.97	2	VLT	MC	0.6	РО	0.4							
~0.	4-0.8%	6 МО												

From 39.40

To 41.97

Litho MFIN

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From 41.97

To 60.05

Litho **HSLT**

Brown hornfelsed siltstone with stockwork Qz veins +PO/PY & MO. Also narrow Qz-PO-MO strs mottled the core, minor fault zones & granodiorite dykes are present. @44.3-44.8m broken core; CA & EPI on fracture. @45.17-45.47m granodiorite dyke with branched BIO-PY strs, contact 60 tca. Below 45.47m hornfelsed siltstone with BIO altn & narrow Qz-MO-PY VN & strs. @46.38m is 8cm granodiorite. @46.76m are two narrow 6mm Qz-MO VNs crosscut each other at 50 tca. @47.8m is 10mm Qz-BIO-PY-Cpy-MO VN, 45 tca. @49.14m selvage 8mm Qz-MO VN, 45 tca. @50.22m is 12mm Qz-PO-MO VN, 60 tca. @50.92m are two parallel 14 & 11mm Qz-BIO-PY-MO VNs, 75 tca. @52.2m is 12mm Qz-PY-MO VN 35 tca. @52.96m is 10mm Qz-BIO-MO-PY VN, 45 tca. Below 53.16m stockwork 6-10mm Qz-BIO-MO-PY VN, 40-65 tca, with five VN/m. @53.36m dispersed 36mm Qz-BIO-CA-PO-MO VN, 50 tca. @54.74m boudined 12mm Qz-BIO-CA-PO-MO VN, 50 tca. BIO-PO-Cpy VN, 35 tca. @55.8-56.2m granodiorite dyke with PO strs & specks. Below 56.2m abundant narrow <10mm Qz-PO-MO VNs & strs with weak ChI altn (>1% MO in this interval).

STRUCTURES											
From	To	Struct	CA	Strain							

41.97 60.05 BDG 45 S rock is hard

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
41.97	60.05	-	-	W	S	-	М	-	VW	VW	W	W	М	

VEINS												
From	To Vn%		QZ%	Feld%	CC%	V/m	CA					
41.97	60.05	3	5	5	1	3	50					
narrow <10mm Qz-PO-MO VN & strs.												

From 60.05

To 65.03

Litho **HSLT**

weak Chl altn

Brown hornfelsed siltstone with CA altn, minor dolomite, casual Qz-MO VNs & moderate Qz-PY-MO(+Chl) strs. @62.2m is 14mm Qz-PY-MO VN, 55 tca. @62.46m dolomite-CA-BIO-PY zone on bedding direction, 50 tca. @63.56m is 14mm Qz-PY-MO VN, 60 tca. @56.48m selvage Qz-PO-MO VN, 40 tca with 5mm Qz-PY-Cpy-MO VN, radiating from main VN.

STRUCTURES											
From	To	Struct	CA	Strain							

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
		•		•										

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

1 3 50

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

60.05 65.03 BDG 45 2% joints

60.05 65.03 - - W S - - - VW VW weak Chl altn

60.05 65.03 3 casual Qz-MO VNs 60.05 65.03 1 VLT PO 2 MO 0.4 good MO mineralization

From 65.03

To 75.38

Litho HSLT

Brown hornfelsed siltstone with stockwork narrow Qz veins +PY/PO & MO, also abundant Qz-MO strs. Moderate ChI altn. From 66.14 to 66.72m granodiorite dyke, ChI & BIO altn, PY strs, contacts 45 & 40 tca. @66.72m contorted 18mm Qz-ChI-CA-PO VN, 40 tca. Below 66.8m siltstone with BIO altn & moderate narrow <6mm Qz-PY-MO VNs & strs (-0.2% MO). @70.22m are two parallel (7 & 10mm) Qz-PY-MO VNs, 50 tca. @70.36m is 12mm Qz-PY-MO VN, 40 tca. @70.78m dispersed 32mm Qz-ChI-PO-PMO VN, 40 tca. @71.14m is 8mm Qz-PY-MO VN, 40 tca. @72.20m bouldinaged 11mm Qz-PY-MO VN, 40 tca. @72.22m is 12mm Qz-PY-MO VN, 40 tca with subparallel magnetic Qz-ChI-PO narrow zone. @73.5m contorted 14mm Qz-PY-MO VN, 40 tca with another 6mm Qz-PY-MO VN radiating from this VN. @74.46m is 10mm Qz-PO-MO VN, 40 tca with a few subparallel Qz-PO-MO VN <5mm.

From To Struct CA Strain

65.03 75.38 BDG 45 M 3-4% joints
 From
 To
 INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER

 65.03
 75.38
 W
 M
 M
 VW
 M
 W
 M

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 65.03
 75.38
 4
 6
 6
 0.5
 2 50

 narrow Qz-PY/PO-MO VNs & strs

From 75.38

*T*o 84.74

Litho HSLT

Brown hornfelsed siltstone with stockwork narrow Qz veins +PY/PO & MO, also abundant Qz-MO strs. Moderate ChI & CA altn. @75.44m is 20mm Qz-PY-Cpy VN, 40 tca with anastomosed narrow 4-6mm Qz-PY-MO strs. @76.0m is 20mm CA-ChI-VN, 40 tca. From 76.12m to 77.26m are two anastomosed 5-6mm Qz-PY-MO VNs along the core. Below 77.3 network of narrow (<5mm) Qz-PY-MO VNs & strs (0.3-0.5% MO). @83.68m solid 60mm Qz-BIO-PY-MO VN, 80 tca. @83.95m is 8mm Qz-PY-BIO VN, 30 tca. @84.09m partially CA-BIO-PY VN, 20 tca. From 84.6m to 85.78m fault zone (~65% are pieces <10cm), CA on fracture. @86.3m is 10mm Qz-PY-MO VN. 20 tca.

From To Struct CA Strain

75.38 84.74 BDG 50 M 3% joints
 **ALTERATION

 From
 To
 INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER

 75.38
 84.74
 - W M - M - W - M M M

 BIO, Chl & CA altr
 **CA altr

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 75.38
 84.74
 3
 6
 1
 3 50

 narrow Qz-PY-MO VNs +strs

From 84.74

To 85.74

Litho HSLT

Fault zone, fragments of CA on fracture, Qz-CA-PY-MO strs.

From To Struct CA Strain

84.74 85.74 BDG 50 W fault zone

| State | Stat

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 84.74
 85.74
 0.1
 1
 1
 0.2
 50

 Qz-CA-PY-MO strs

MINERALIZATION

| From | To | PY% | Style | Min | Min% | Min2 | M2% | Min3 | M3% |
| 84.74 | 85.74 | 0.3 | VLT | PY | 0.3 | MO | 0.1 |
| Qz-CA-PY-MO strs

From 85.74

To 98.67

HSLT

Litho

Brown hornfelsed siltstone (partially medium grained sandstone) with stockwork Qz veins +PY/PO, +MO & +/-MG, minor CA, also abundant Qz-MO strs, MO up to ~0.5-1.0%, ~1-2% MG. Moderate Chl & CA altn. @86.28m is Qz-PO-PY-MO VN, 30 tca. Below 86.4m abundant Qz-PY-MO strs (<5mm) & contorted Qz-Chl-PY-MO VNs (three-four VN/m). @88.3m are two parallel 12 & 10mm Qz-PY-MO +/-Chl VNs, 50 tca. @88.8m is 10mm Qz-AB-Chl VN with a few subparallel <6mm Qz-PY-MO strs. @89.0m is 20mm Qz-PY-MO VN, 60 tca. @89.32m milky Qz-PY-MO-MG VN, 40 tca. Below 89.74m reticulated stockwork/network Qz-PY-MO VNs & strs. @90.2m is 24mm Qz-PY-MO-MG VN, 40 tca. @91.86m is 17mm Qz-PY-MO-MG VN, 50 tca. @91.15-91.4m are two contorted 20 & 24mm Qz-Chl-PY-MO-MG VNs, 60 tca. @92.12m dispersed magnetic 40mm Qz-PY-PO-MO VN, 65 tca. @93.5m solid 14m Qz-PY-MO VN, 60 tca (5% MO in this VN). @92.86-93.12m are three 8-11mm Qz-PY-PO-Cpy-MO VNs, 35-50 tca. @93.23-93.47m dispersed Qz-Chl-MG-AB-MO veinlets (50 tca) cut off by 7mm Qz-PY-MO VN, 70 tca. Below 93.5m moderate (<5mm) Qz-PY-MO strs & contorted Qz-Chl-PY-PO-BIO +/-MG VNs. @94.78m is 12mm Qz-PO-MO VN, 40 tca.

 STRUCTURES

 From
 To
 Struct
 CA
 Strain

 85.74
 98.67
 BDG
 40
 M

 3% joints

`	- ,														
I	ALTERATION														
ļ			_										_		
	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
L	•														
	85.74	98.67	-	-	M	M	-	M	-	W	-	W		M	
	CA	A altn													

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
85.74	98.67	4	5		0.2	4	50				
	3-4 VN/	/m									

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
85.74	98.67	2	VLT	PC	2	МО	0.6						
M	O mine	ralizat											

From 98.67 11

*T*o

Litho HSLT

Brown homfelsed siltstone, minor greenish sandstone (medium grained, Qz present), significant stockwork Qz veins with PY/PO & MO +/-MG, minor CA, also abundant Qz-MO strs, MO ~0.5-1.0%, very weak MG. @98.68m solid 24mm Qz-PY-PO-MO VN, 40 tca with subparallel 16 mm Qz-PO-MO VN. Below 93.95m stockwork <10mm Qz-PO-PY-MO VNs. @101.57-101.83m broken core, CA, BIO & PY on fracture, trace of Qz-PY-MO VN. @103.26m dispersed 24mm Qz-BIO-CA-PY VN, 40 tca. @103.57m solid 22mm Qz-PO-MO VN, 50 tca. @104.68m is 14mm Qz-PY-MO VN, 45 tca. @105.11-105.55m are four subparallel 10 & 20mm Qz-PO-PY-Cpy-MO VN, 45 tca. @107.73m solid QzPO-Cpy-MO VN, 25 tca. @110.8m solid 10mm Qz-PO-Cpy-MO VN, 50 tca. From 11.6 to 112.12m significant zone with three 18-34mm Qz-PY-MO VNs, 40-45 tca. @112.35m is Qz-PY-BIO VN, 35 tca. @113.38-113.68m dolomite-AB zone has contact with very branched 26mm Qz-PY-BIO-MO VN, 50 tca. @114.88m thick dispersed 80mm Qz-BIO-MO VN, 40 tca. @115.02m anastomosing 10mm Qz-PY-MO VN, 40 tca.

ALTERATION

CC EP BIO FLP PYR SER

М

W - W

 STRUCTURES

 From
 To
 Struct
 CA
 Strain

 98.67
 117.46
 BDG
 50
 M

1	To	Struct	CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	
	117.46	BDG	50	М	98.67	117.46	-	-	W	М	-	М	-	
	3-4 join	ts per n	neter		BI	10 & wea	k CA	altn						

VEINS											
From	From To Vn% QZ% Feld% CC% V/m CA										
98.67 117.46 7 8 0.3 4 50											
3-4 VN/m +moderate Qz-PY-MO strs											

From 117.46

То

Litho

117.96 HSLT

Fault zone, fragments, CA on fracture, pebble, clay, sand & gouge, trace Qz-CA-PY-MO VN.

	STRUCTURES									
From	To	Struct	CA	Strain						

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

ı	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%										
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

From

То

Litho HSLT

117.46 117.96

Fault zone, fragments, CA on fracture, pebble, clay, sand & gouge, trace Qz-CA-PY-MO VN.

From To Struct CA Strain

117.46 117.96 FLT 50 VW pebble, clay, sand & gouge

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

fault zone

117.46 117.96 - - - - - -

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

5 0.2 45

117.46 117.96 0.3 3 trace of Qz-PY-MO VN
 MINERALIZATION

 From
 To
 PY% Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

117.46 117.96 0.1 VLT MO 0.01 trace of Qz-PY-MO VN

From 117.96

To 133.65

Litho HSLT

Brown hornfelsed siltstone (with signifacant silica altr zones), stockwork Qz-PY/PO & MO +/-Cpy, minor CA, also abundant Qz-MO strs, MO >0.5-%, moderate Chl & weak CA altr. @119.0m solid 42mm Qz-PY-BIO-MO VN, 50 tca. From 119.2m to 120.52m granodiorite dyke with BIO & PY, feldspar phenocrysts, contacts =55 tca. @119.76m solid 44mm Qz-PY-MO VN, 60 tca. Below 120.52m abundant PO strs & Qz-MO-PO/PY strs. @120.82m solid 62mm Qz-PY-PO-Cpy-MO VN, 50 tca. @121.5m is 18mm Qz-PO-MO VN, 40 tca. @123.36m anastomosed 14mm Qz-PO-PY-Cpy-MO VN, 50 tca. @123.36m is 10mm Qz-PY-MO

127.5m zone with abundant contorted Qz-PO-Chl VNs, ~4-5% PO in this interval. @127.58m are two parallel 11-12mm Qz-PO-MO VNs, 50 tca. @129.54m selvage 18mm Qz-MO VN, 30 tca. @131.76m is 9mm Qz-PO-MO VN, 70 tca.

STRUCTURES

ALTERATION

 From
 To
 Struct
 CA
 Strain

 117.96
 133.65
 BDG
 50
 M

3% joints

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

117.96 133.65 - - W M - M - M - M M

PO altn, granodiorite dyke present

VN, 65 tca was branched out with 8mm Qz-PY-MO VN, 30 tca. @123.6m dispersed Qz-PY-PO-BIO VN, 60 tca. @124.68m solid 30mm Qz-PY-PO-MO VN, 30 tca. @124.78 is Qz-PY-MO VN, 45 tca. @125.21m is 10mm Qz-PY-Cpy-MO VN, 45 tca. @126.26m dendritic 13mm Qz-PY-Cpy-MO VN, 25 tca. From 126.6m to

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

117.96 133.65 3 6 10 3 50 dominated Qz-PY-PO-MO strs
 MINERALIZATION

 From
 To
 PY% | Style | Min | Min% | Min2 | M2% | Min3 | M3% |

117.96 133.65 1 VLT PO 3 MO 1 up to 1% MO

 From
 To
 Litho

 133.65
 145.44
 HSLT

Brown hornfelsed siltstone, stockwork Qz-PY/PO & MO +/-Cpy, also abundant Qz-MO strs, moderate ChI & weak CA altn. (> 0.1-0.2% MO). @134.72m dispersed & brittle CA-Qz-PO-MO VN, 40 tca. @137.44-138.15m fault zone, fragments, pebble, clay, sand & gouge. CA on fracture, trace Qz-CA-PY-MO VN. @139.74m is 5mm PY-BIO-CA VN, 40 tca. @140.42m is Qz-PY-MO VN, 50 tca. @143.22m conglomerate 60mm dolomite-BIO-PY-Qz zone. From 143.42m to 143.9m are four 10-20mm Qz-PY-BIO-CA VNs, 40 tca. @144.58m solid Qz-PO-BIO VN, 80 tca.

STRUCTURES
From To Struct CA Strain

133.65 145.44 BDG 60 M 0.71m fault zone present

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 133.65
 145.44
 4
 6
 0.5
 2 40

 narrow Qz-PY-MO VNs +strs

MINERALIZATION

| From | To | PY% | Style | Min | Min% | Min2 | M2% | Min3 | M3% |
| 133.65 | 145.44 | 1 | VLT | PO | 2 | MO | 0.2 | |
| very weak Cpy |

ın	ıtı	2	ls:
ш	ıu	а	ıo.

From 133.65

*T*o

Litho HSLT

(Continued from previous page)

From To Struct CA Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

	MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From 145.44

*T*o 151.20

Litho HSLT

Brown hornfelsed siltstone, stockwork Qz-PY/PO & MO +/-Cpy, also abundant Qz-MO strs, up to ~0.5% MO, strong Chl & weak CA altr. From 147.48m to 148.16m stockwork 10-18 tca Qz-PY-PO-MO VN, 65-80 tca & network Qz-PY-MO strs with ~4-6% PO. @149.0m solid 46mm Qz-PY-MO VN, 80 tca. @149.52m solid 32mm Qz-PY-MO VN, 70 tca. @151.07m selvege 14mm Qz-PO-PY-MO VN, 75 tca. @151.14m selvage 16mm Qz-PO-PY-MO VN, 40 tca.

From To Struct CA Strain

145.44 151.20 BDG 50 M 3% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
145.44	151.20	-	-	S	М	-	М	-	W	-	W		W	
P	O & Chl	altn												

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		
145.44	151.20	4	7			2	60		

veinlets/stockwork

From 151.20 17

*T*o 179.98

Litho HSLT

Dark brown hornfelsed siltstone, stockwork Qz-PY/PO-MO, also abundant 1-5mm Qz-sulfide-MO strs, MO ~0.4-%, weak CA altn. @152.08m is 12mm Qz-PO-BIO-MO VN, 35 tca. @156.98m reticulated 24mm milky Qz-CA-PY-MO VN, 70 tca. @157.18m is 16mm Qz-PY-BI)-MO VN, 70 tca. @153.66m dispersed 16mm Qz-PY-MO VN, 50 tca. @163.2m is 15mm Qz-PY-MO VN, 60 tca. @164.34m is 18mm Qz-PY-PO-MO VN, 30 tca. @165.28m are two parallel 8mm Qz-PO-Cpy-MO VN, 20 tca. @165.46m solid 16mm Qz-PO-MO VN, 40 tca. @166.0m is 10mm Qz-PO-MO VN, 65 tca with subparallel narrow (<5mm) VNs/strs. @168.14m boudinaged 10mm Qz-PO-MO VN, 80 tca. @169.3m is 11mm Qz-PO-MO VN, 50 tca. @169.53m dendritic 10mm Qz-PO-MO VN, 35 tca.@169.96-170.8m knot of very narrow Qz-PO-MO strs. @171.4m boudinaged 10mm Qz-PO-MO VN, 50 tca. @172.67m is 12mm Qz-PO-MO VN, 55 tca. @173.14-173.32m broken core, fragments. @173.68m boudinaged 17mm Qz-PO-MO VN, 35 tca.

STRUCTURES										
From	To	Struct	CA	Strain						

151.20 179.98 BDG 45 ~3-4% joints

	ALTERATION From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SEI													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
151.20	179.98	-	- '	VW	М	-	М	-	W	-	W		W	
P	O altn													

			VEINS	•							
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
151.20	179.98	4	6		0.5	3	50				
Qz-PY-MO VNs +strs											

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
151.20	179.98	8 1	SM	PC	1.5	МО	0.4					
Ср	v ocura	ance										

From 179.98

*T*o 192.50

Litho HSLT

Dark brown hornfelsed siltstone, stockwork Qz-PY/PO-MO, also abundant Qz-sulfide-MO strs, MO ~0.3%, weak CA altn. @179.98-180.3m contorted 16mm Qz-PO-Cpy-MO VN along the core. @180.8m is 14mm Qz-PO-MO VN, 70 tca. @181.6-181.85m dispersed Qz-Chl-PY-Cpy-MO VN, 60 tca. @183.48-183.54m contorted Qz-Chl-PY-Cpy-MO VN, 80 tca. @185.64-185.7m Qz-dolomite zone, 70 tca. @186.44m boudinaged 10mm Qz-PY-MO VN, 40 tca. @186.7 boudinaged 15mm Qz-PO-MO VN, 30 tca. @189.24 boudinaged 16mm Qz-PO-MO VN, 40 tca. @189.50m branched 10mm Qz-AB-PO-MO VN,40 tca. From 190.0m to 192.0m are eight narrow (<8mm) Qz-PO-MO VNs in different orient.

STRUCTURES
From To Struct CA Strain

179.98 192.50 BDG 55 M 3-4% joints

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

179.98 192.50 - - VW M - M - W - VW W

weak CA altn

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
179.98	192.50	4	6		1	2	60

narrow VNs

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

 179.98
 192.50
 1
 VLT
 PO
 1
 MO
 0.2

0.2-0.3% MO

From

То

Litho

192.50

205.80

HSLT


Dark brown hornfelsed siltstone, stockwork Qz-PY/PO-MO, also abundant Qz-sulfide-MO strs, MO ~0.3%, narrow dolomite zones, moderate CA altn. @192.0m solid 34mm Qz-PO-MO VN, 60 tca. @192.75-192.86m dolomite-CA, 40 tca with MO strs. Below 193.15m Qz-sulfide-MO strs (~0.2-0.3% MO). @195.86-186.22m blended Qz-Chl-BlO-sulfide zone with weak MO strs. @196.96m are two parallel 16mm Qz-PO-MO VNs, 30 tca. @197.13-197.36m turbulent 36mm Qz-Chl-PY-MO VN, 30 tca. @197.41m dispersed Qz-PY-MO VN, 30 tca. Below 197.55m contorted narrow Qz-PY-MO VNs. @200.66-201.8m faut zone with breccia & moderate CA altn, contact =15 tca. @202.2m is 16mm Qz-MO-CA-PY VN, 45 tca. @202.38-202.8m CA altn, rock is soft. @204.1-204.7m faut zone with breccia & gouge, moderate CA altn.

STRUCTURES
From To Struct CA Strain

192.50 205.80 BDG 50 M fault zone, L=1.1m

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
192.50	205.80	-	-	М	М	-	W	-	W	-	VW		W	
m	moderate CA altn													

			VEINS	S							
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
192.50	205.80	5	7		2	3	50				
contorted veinlets											

From 205.80

To 218.60

Litho HSLT

Brown fine grained hornfelsed siltstone, minor miscovite/sericite, stockwork Qz-PY/PO-MO, also abundant Qz-sulfide-MO strs, MO ~0.3%, narrow dolomite zones, moderate CA & BIO altn, casual Cpy. From 205.9m to 206.78m system subparallel narrow Qz-Chl-PO+MG+/-MO VNs, 40 tca crosscut by 8mm Qz-PO-MO VNs, 50 tca. @207.63m is 18mm Qz-PO-MO VN, 35 tca. Below 208.1m network narrow Qz-PO-MO VNs. @209.74m dispersed Qz-PO-PY-MO VN, 50 tca. @211.3-211.42m Qz-Chl-PO-MG zone, 75 tca bedding. @212.88m are three subparallel Qz-CA-BO-PY VNs, 35-40 tca. @213.9-214.35m turbulent zone with Qz-Chl-PO-PY-MO veinlets (~1% MO). @214.64m is 28mm Qz-PO-Cpy-Chl VN, 30 tca. @125.54m two contorted 12mm Qz-PO-MO VNs, 30 tca. @216.84m is 20mm Qz-PY-MO VN, 55 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

						AL	TER	ATIO	N .						
i	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

			M	INE	RAL	IZAT	ION			
,	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 205.80

To 218.60

Litho **HSLT**

Brown fine grained hornfelsed siltstone, minor miscovite/sericite, stockwork Qz-PY/PO-MO, also abundant Qz-sulfide-MO strs. MO ~0.3%, narrow dolomite zones, moderate CA & BIO altn, casual Cpy. From 205.9m to 206.78m system subparallel narrow Qz-Chl-PO+MG+/-MO VNs, 40 tca crosscut by 8mm Qz-PO-MO VNs, 50 tca. @207.63m is 18mm Qz-PO-MO VN, 35 tca. Below 208.1m network narrow Qz-PO-MO VNs. @209.74m dispersed Qz-PO-PY-MO VN, 50 tca. @211.3-211.42m Qz-Chl-PO-MG zone, 75 tca bedding. @212.88m are three subparallel Qz-CA-BO-PY VNs, 35-40 tca. @213.9-214.35m turbulent zone with Qz-Chl-PO-PY-MO veinlets (~1% MO). @214.64m is 28mm Qz-PO-Cpy-Chl VN, 30 tca. @125.54m two contorted 12mm Qz-PO-MO VNs, 30 tca. @216.84m is 20mm Qz-PY-MO VN. 55 tca.

STRUCTURES To Struct CA Strain

205.80 218.60 BDG 60 S 1-2 joints per meter

ALTERATION To | INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER 205.80 218.60 - - W M - W -~2% PO, silica altn

VEINS Vn% From ToQZ%Feld% CC% V/m CA 205.80 218.60 4 0.5 2 55

narrow contorted magnetic Qz-PO-

MO Vns

MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3% 205.80 218.60 0.5 VLT PO 2 MO 0.1 casual Cpy

From

To

Litho

226.30 218.60

HSLT

Brown & dark brown fine grained hornfelsed siltstone, minor miscovite/serisite, stockwork Qz-PY/PO-MO VNs, also abundant Qz-sulfide-MO strs. MO ~0.3%, Qz-Chl-PO-MG VNs, moderate CA & BIO altn, casual Cpy. @219.04-219.38m blended Qz-PO-Chy-MO zone, 45 tca. @219.66-220.0m a few anastomosed 5-8mm Qz-PO-MO VNs. 60-80 tca. @222,28m is 30 mm AB-Qz-PY-PO VN, 80 tca cut off by 5mm Qz-PO-MO VN, 65 tca. @222,76m is 10mm Qz-PO-MO VN, 40 tca. @223.08m is 30mm Qz-Chl-PO magnetic VN, 40 tca. @224.54m dispersed 34mm Qz-PO-MO VN, 45 tca. @224.64m very contorted 8mm Qz-PO-PY-MO VN, no orient. @225.4m solid 22mm Qz-PY-MO VN. 35 tca.

STRUCTURES From To Struct CA Strain

218.60 226.30 BDG 60 S

2-3 joints per meter

ALTERATION To | INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER 218.60 226.30 - - M M - - M W - M

VEINS Vn% QZ%Feld% CC% V/m CA From To218.60 226.30 4 0.2 2 60 6 narrow Qz-PO-MO VNs & Qz-Chl-PO-MG VNs

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 218.60 226.30 0.5 VLT PO 1.5 MO 0.2 MG present in Qz-Chl-PO VNs

From 226.30

To 237.40

Litho **HSLT**

Chl & silica altn

Brown & dark brown fine grained hornfelsed siltstone, stockwork narrow Qz-PY/PO-MO VNs & strs (MO ~0.1%) & network narrow Qz-AB-Chl-PO-MG VNs +/- AB on halo; moderate silica, CA & BIO altn. @226.3m network AB-Chl-PO-MG strs cut off by two parallel 7mm Qz-PO-MO VNs, 40 tca. @229.86m solid 40mm Qz-PO-ChI-MG VN, 45 tca. @231.06-231.7m greenish medium grained sandstone, PO strs. @232.64m is 10mm Qz-PO-MO VN, 60 tca. @232.76-233.07m contorted 8mm Qz-PO-MO VN along the core. @236.56m branched out 50mm Qz-PO-Chl magnetic VN, 40 tca. @237.29m contorted Qz-PO-Chl-MG VN with AB on halo.

STRUCTURES To Struct CA Strain

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3% From 226,30

*T*o 237.40

Litho HSLT

Brown & dark brown fine grained hornfelsed siltstone, stockwork narrow Qz-PY/PO-MO VNs & strs (MO ~0.1%) & network narrow Qz-AB-Chl-PO-MG VNs +/- AB on halo; moderate silica, CA & BIO altn. @226.3m network AB-Chl-PO-MG strs cut off by two parallel 7mm Qz-PO-MO VNs, 40 tca. @229.86m solid 40mm Qz-PO-Chl-MG VN, 45 tca. @231.06-231.7m greenish medium grained sandstone, PO strs. @232.64m is 10mm Qz-PO-MO VN, 60 tca. @232.76-233.07m contorted 8mm Qz-PO-MO VN along the core. @236.56m branched out 50mm Qz-PO-Chl magnetic VN, 40 tca. @237.29m contorted Qz-PO-Chl-MG VN with AB on halo.

STRUCTURES
From To Struct CA Strain

226.30 237.40 BDG 50 S 1-2% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
	007.40													

226.30 237.40 - - M M - M - VW - M VW solica, BIO & Chl altn

VEINS													
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						
226.30	237.40	1	3			1	50						

narrow Qz-PO-MO VNs & magnetic Qz-Chl-PO VNs

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

226.30 237.40 1 VLT PO 1 MO 0.1 MG in Qz-PO-Chl VNs

From 237.40

To 261.00

Litho HSLT

Brown & dark brown fine grained hornfelsed siltstone, Qz-PO-MO strs (<6mm), moderate silica, Chl & local CA altn. @239.05m narrow 8mm shear zone with CA. @239.88m contorted 18mm Qz-PO-Chl-MG VN, 40 tca (AB on halo). @246.3-246.54m stockwork 18-20mm Qz-Chl-PO-MG VNs, 40-50 tca. @249.02m is 8cm shear zone (CA & gouge). From 254.0m to 254.93m medium grained sandstone with strong silicification, 70 tca. @254.93-255.12m is CA-dolomite zone. @255.42-256.18m brecciated zone with strong silicification. @256.16m is 40mm shear zone with CA & BIO, contact 80 tca. @256.56-256.70 mrock is brittle with moderate CA & BIO, contact 75 tca. Below 256.7m strong BIO altn.

STRUCTURES
From To Struct CA Strain

237.40 261.00 BDG 45 M ~3% joints

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 237.40
 261.00
 W
 M
 W
 W
 M
 W

 BIO & CA altn
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W
 W

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 237.40
 261.00
 1
 3
 1
 1
 50

random narrow Qz-PO-MO VNs

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

 237.40
 261.00
 0.5
 VLT
 PO
 1
 MO
 0.02

weak MO

From 261.00

To 272.41

Litho **HSLT**

Brown hornfelsed siltstone from fine to medium grained, structure controlled by contorted Qz-PO-MO VNs & strs in different orient, dispersed Qz-AB-PO-MG VNs, strong silicification, moderate ChI altn, magnetic ~1-2%. Below 262.55m more Qz & silica alteration with dispersed Qz-PO-AB-MG VNs mostly in bedding direction with crosscut 1-3mm Qz-PY-MO strs, PO blotches & specks, occures Cpy. @264.0m is 16mm Qz-PY-MO VN, 90 tca. @264.44m solid 22mm Qz-PO-Cpy-MO VN, 20 tca. @264.8m is 12mm Qz-PO-MO VN, 70 tca with subparallel 10mm Qz-PO-Chl-MG VN. @265.29m is 22mm Qz-PO-MO VN, 50 tca with a few subparallel narrow 5-10mm Qz-PO-MO VNs. @265.7m is 55mm Qz-PO-MO lense with PO HB around. @265.82m is 16mm Qz-PO-MO VN, 90 tca. @165.9m branched out Qz-PO-MG VN, 60 tca. Below 266.1m stockwork narrow Qz-PO +/-MO VNs & PO BB. @267.84m solid 70mm Qz-PO-Cpy-MO VN, 90 tca. @268.12m is 22mm Qz-PO-MO-Cpy VN, 30 tca. From 168.16m to 268.66m significant 24mm Qz-PO-Cpy-MO VN along the core. @268.84-269.1m contorted 20mm Qz-PO-MO VN. @270.24m branched out 20mm Qz-PO-MO VN, 50 tca. @270.32m is 16 mm Qz-PO-MO VN, 55 tca. @271.54m is Qz-PO-MG VN, 75 tca. @271.7m is 10mm Qz-PO-MO VN, 80 tca.

S

STRUCTURES										
From	To	Struct	CA	Strain						

ALTERATION												
From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER												

- M -

VEINS											
From To Vn% QZ% Feld% CC% V/m CA											

<i>MINERALIZATION</i>										
From To PY% Style Min Min% Min2 M2% Min3 M3%										

silica & Cpy altn

261.00 271.41 - - W

3-4% PO, 0.5%Cpy, 0.5%MG

261.00 272.41 BDG 55 S 1-2% joints

261.00 272.41 4 VN/m

4 55 15

261.00 272.41 0.5 VLT PO 3 MO 0.2 Cpy blebs, MG~1-2%

From

To

Litho

HSLT 272.41 283.70

Brown hornfelsed siltstone from fine to medium grained, structure controlled by narrow ~10mm (or less) Qz-PO-MO VNs/strs & Qz-Chl-PO-MG VNs in different orient, up to 4% PO, 1% MG & 1% Cpy, moderate Chl altn. @272.48m is 18mm Qz-PO-MO VN, 75 tca. @273.96m is 40mm Qz-PO-Cpy-MO VN, 80 tca with PO & Cpy BB around. @272.64-273.04m Qz-Chl-PO zone with ~15% PO. @254.0-254.5m Qz-Chl-PO magnetic zone with ~30% PO in this interval. @276.0m is 10mm Qz-PO-MO VN, 55 tca. @279.3m is 10mm Qz-PO-MO VN, 75 tca associate with 10mm breccia. @282.92m is 16mm Qz-PO-MO VN, 50 tca

STRUCTURES										
From	To	Struct	CA	Strain						

272.41 283.70 BDG 50 S 2-3% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
272 /1	283 70			M	9		М				\/\\/	M	۱۸/	

			V ESTIVE							
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			
272.41	283.70	3	6	5		3	55			
Qz-PO-MO VNs/strs & magnetic Qz-										
	Chl-PO	VNs ii	n differer	nt orien						

VEINS

	MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

272.41 283.70 0.5 VLT PO 3 MO 0.15 Qz-PO-MO VNs/strs & magnetic Qz-Chl-PO VNs

From

То

Litho HSLT

283.70 295.22

Brown hornfelsed siltstone from fine to medium grained, minor greenish sandstone, structure controlled by narrow ~10mm (or less) Qz-PO-MO VNs/strs & Qz-Chl-PO magnetic VNs in different orient, ~3% PO, ~1% MG & ~1% Cpy, moderate Chl altn. From 283.78-284.26m greenish medium grained sanstone. @283.8m is 16mm Qz-PO-MO VN, 50 tca. @284.24m is 30mm Qz-CA-MO-PY VN, 28 tca. @284.46m is Qz-PY-BIO-MO VN, 80 tca. @284.76m contact to sandstone =80 tca. From 284.76-287.9m medium grained sandstone with veinlets ~4% PO, weak 1-2% MG, 0.5% Cpy. @285.2m branched out 14mm Qz-PO-MO VN, 40 tca. @285.42m is 26mm Qz-PO-MO VN, 70 tca. @285.7m dispersed 36mm Qz-PO-MO VN, 45 tca with PO & Cpy BB around. @286.06m dispersed Qz-PO-MO VN, 40 tca with two 6mm parallel VNs radiating from the main VN. @286.48m is 40mm Qz-PO-MO VN, 80 tca. @287.95m significant 10cm Qz-PO-Chl-MO VN, 40 tca. Below 288.16m stockwork <10mm Qz-PO-MO VN, 50 tca. @289.26m solid 24mm Qz-PO-MO VN, 80 tca. @289.54m solid 26mm Qz-PO-MO VN, 50 tca. @289.7-289.94m turbulent Qz-PO-Cpy-MO zone, contact 35 tca. Below 290.5m stockwork narrow <10mm Qz-PO-MO VNs & Qz-Chl-PO-MG VNs (three VN/m). @294.5m solid milky Qz-Chl-PO-MO VN, 55 tca with CA on edge. @294.74m is 40mm milky Qz-Chl-PO VN, 60 tca with subparallel Qz-PO-MO Strs. @294.9m is 20mm Qz-PY-MO VN, 75 tca.

STRUCTURES										
From	To	Struct	CA	Strain						

283.70 295.22 BDG 60 S 3% joints

	ALTERATION												
From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR	SER												

283.70 295.22 - - W S - M - VW - W M W mod Chl & very weak CA altn

			VEINS	•			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
283.70	295.22	5	12	6	0.5	3	60

Qz-PO-MO VNs/strs & Qz-Chl-PO-MG VNs

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

283.70 295.22 0.2 VLT PO 4 CP 1 MG ~1-2%

From 295.22

To 316.46

Litho HSLT

Brown & dark brown hornfelsed silt stone (from fine to medium grained), minor greenish sandstone, moderate BIO, ChI & silica alteration, narrow Qz-PO-MO-MG VNs/strs & Qz-ChI-PO-MG VNs in different orient, ~3% PO, weak MG present. @297.73-297.88m is Qz-ChI-PO-Cpy magnetic zone. @299.26m magnetic 14mm AB-Qz-PO VN, 55 tca. @300.2m very contorted ChI-Qz-AB-PO-PY-Cpy VN, 55 tca. @300.84-301.02m solid magnetic Qz-ChI-PO-PY VN, 60 tca (~15% PY). @301.88-302.02m are two parallel 14mm Qz-ChI-CA VNs, 60 tca. @303.38m magnetic Qz-PO-ChI VN, 50 tca with Qz-MO on halo. @304.16m magnetic 16mm Qz-PO-CA VN, 35 tca. Below 304.8 narrow Qz-PO-MO 3-5mm strs. @307.8m magnetic 46mm Qz-PO-AB-ChI VN, 50 tca with Qz-PO-MO strs around. @311.16-311.8m Droken core, fragments, CA strs <5mm. Blow 311.88m Qz-PO-MO strs, weak MO. @315.34m is 10mm Qz-MO VN, 80 tca. From 315.87m to 316.46 greenish monzonite, feldspar, plagioclase, Qz, biotite, PY BB, weak MG, 65 tca contact.

	STRU	CTUR	RES	
From	To	Struct	CA	Strain

295.22 316.46 BDG 50 S hard rock

	ALTERATION From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
295.22 316.46 M S - M - VW - M W														
sil	silica & BIO altn													

			VEINS	<u>S</u>			
From	To	Vn%	QZ%	Feld%	CC%	V/m C	A
295.22	316.46	1	8	8	0.5	1 5	5
	Qz-PO-	MO st	rs				

From 316.46

To 328.79

Litho HSLT

Brown & dark brown hornfelsed siltstone (from fine to medium grained), minor sandstone, moderate BIO & silica alteration, Qz-PO-MOstrs in different orient, ~2% PO, 0.5% Cpy, magnetic Qz-PO-Chl NVs. @317.18m magnetic 36mm Qz-POMO VN, 75 tca. From 317.53-319.13m breccia zone (cataclastic metamorphic rock) cellular texture with the large grains (rounded) Qz, irregular/dendritic Qz VNs, Qz-MO strs & fine grained DI PY, strong silicification, . @317.87-318.14m soft Qz-CA-MO-PO VN 80 tca. @319.13-319.48m strong silicification with PO strs & Cpy BB. (~3% PO & 2% Cpy in this interval). @319.36m magnetic 40mm Qz-BIO-PO-Cpy VN, 70 tca. @322.14m magnetic 20mm Qz-PO-Chl VN, 60 tca. @322.24m is 10mm Qz-Chl-PO-MO VN, 40 tca. @323.6m solid 60mm Qz-Chl-PO-Cpy VN, 60 tca. @328.0-328.3m quartzite-Chl zone with narrow PO strs.

From To Struct CA Strain

316.46 328.79 BDG 80 S hard rock
 *** SER**

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 316.46
 328.79
 M
 S
 M
 VW
 VW
 M
 W

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 316.46
 328.79
 2
 6
 4
 0.3
 0.5
 70

 mod Qz-PO-MO strs

| MINERALIZATION | From | To | PY% | Style | Min | Min% | Min2 | M2% | Min3 | M3% | 316.46 328.79 | 1 | VLT | PO | 2 | CP | 1 | Qz-PO-MO strs

From 328.79

To 343.00

Litho HSLT BIO altn

Brown & dark brown hornfelsed siltstone, moderate BIO & silica alteration, Qz-PO-MOstrs, ~2% PO, magnetic Qz-PO-ChI NVs. @329.24m magnetic 24mm Qz-ChI-PO-Cpy VN, 30 tca. @329.61m dispersed 32mm Qz-PO-PY-MO VN, 50 tca. @331.32-331.62m broken core, CA altn. @331.66m solid 72mm Qz-PY-Cpy-MO VN, 60 tca with contorted & magnetic Qz-PO-ChI VN below. @332.6m is 12mm Qz-PY-MO VN, 80 tca. @334.96m dolomite zone 9cm, 70 tca with 3mm Qz-MO VN on edge. Below 335.8m moderate BIO alteration. @338.05-338.2m CA-ChI altn with PO blotches & Qz-MO strs. @339.77m solid 40mm Qz-PY-ChI-MO VN, 50 tca. Below 340.46m strong silica alteration. @341.64m is 16mm Qz-PO-PY-MO VN, 60 tca. @342.64m is 22mm Qz-PY-MO VN, 60 tca. @343.13m are two parallel Qz-PO-ChI-MO VN, 65 tca.

From To Struct CA Strain

328.79 343.00 BDG 50 S hard rock

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 328.79
 343.00
 3
 5
 4
 0.5
 1 55

 narrow Qz-PY-MO VN (<8cm)</td>

From 343.00

*T*o 369.70

Litho HSLT

Brown & dark brown hornfelsed siltstone, moderate BIO & silica alteration, minor argillite zones, Qz-PO-MO strs. @345.26m magnetic 14mm Qz-PO-Chl-MO VN, 50 tca. Below 345.4m parallel narrow (<8mm) Qz-PY-MO VNs, 55 tca. @348.9m contorted magnetic AB-Qz-PO-MO VN, 45 tca. @349.94m is 20mm Qz-CA-MO VN, 45 tca. @351.56m dispersed quartzite-Chl zone, 50 tca/bedding direction, cut off by 5mm PO VN, 90 tca. Below 353.75m network of Qz-PO & +/-MO. @354.34m significant 50mm magnetic Qz-PO-MO VN, 50 tca (>0.5%. MO in this VN). Below 354.7m Qz-PY-MO strs. @358.6m is 14mm Qz-PY-MO VN, 55 tca. @359.65m is 60mm CA-dolomite zone, 55 tca with PY & MO specks. @362.36m magnetic 32mm Qz-PO-PY-MO VN, 65 tca. @362.78m is 14mm Qz-PO-MO VN, 50 tca cut off by two 10mm Qz-PY-MO VNs, 70 tca. @363.4-363.75m blended Qz-PO-Chl & Qz-PO/PY-MO dispersed VNs, 50 tca/bedding directiom. @364.4m is 12mm Qz-PY-MO VN, 70 tca. @367.4m is 30mm CA-dolomite zone, 70 tca. @369.45m is 30mm Qz-PO-PY-Cpy-MG-MO VN, 70 tca.

	STRU	CTUR	RES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA

	<i>MINERALIZATION</i>												
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From 343.00

To 369.70

Litho HSLT

Brown & dark brown hornfelsed siltstone, moderate BIO & silica alteration, minor argillite zones, Qz-PO-MO strs. @345.26m magnetic 14mm Qz-PO-Chl-MO VN, 50 tca. Below 345.4m parallel narrow (<8mm) Qz-PY-MO VNs, 55 tca. @348.9m contorted magnetic AB-Qz-PO-MO VN, 45 tca. @349.94m is 20mm Qz-CA-MO VN, 45 tca. @351.56m dispersed quartzite-Chl zone, 50 tca/bedding direction, cut off by 5mm PO VN, 90 tca. Below 353.75m network of Qz-PO & +/-MO. @354.34m significant 50mm magnetic Qz-PO-MO VN, 50 tca (>0.5%. MO in this VN). Below 354.7m Qz-PY-MO strs. @358.6m is 14mm Qz-PY-MO VN, 55 tca. @369.65m is 60mm CA-dolomite zone, 55 tca with PY & MO specks. @362.36m magnetic 32mm Qz-PO-PY-MO VN, 65 tca. @362.78m is 14mm Qz-PO-MO VN, 50 tca cut off by two 10mm Qz-PY-MO VNs, 70 tca. @363.4-363.75m blended Qz-PO-Chl & Qz-PO/PY-MO dispersed VNs, 50 tca/bedding directiom. @364.4m is 12mm Qz-PY-MO VN, 70 tca. @367.4m is 30mm CA-dolomite zone, 70 tca. @369.45m is 30mm Qz-PO-PY-Gpy-MG-MO VN, 70 tca.

	STRU	CTUR	RES	
From	To	Struct	CA	Strain

343.00 369.70 BDG 50 S hard rock

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
343.00	369.70	-	W V	vw	S	-	W	-	VW	-	М		VW	
mod BIO & weak Chl altn														

			VEINS	•			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
343.00	369.70	2	4		0.5	0.5	50

narrow <1cm Qz-PY-MO VNs

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	
343.00	369.7	0 0.5	VLT	PC) 1	МО	0.05			
0.1	% MO									

From 369.70

To 385.84

Litho HSLT

Brown hornfelsed siltstone, mod Chl & strong silica alteration, Qz-PO-MO strs. @369.96-370.1m Chl altn with Qz-PY-MO strs. @371.0m is 15mm Qz-Chl zone with minor PY strs, 60 tca. Below 372.55m medium grained sanstone. @373.5m brecciated 24mm CA-dolomite zone, 65 tca. @374.32m is 70mm Qz-CA-dolomite zone with PY strs & MO, 70 tca. @375.08m is 40mm Qz-PY-Cpy-MO VN, 60 tca. @375.9m 78mm Qz-PO-PY-Cpy-MO VN, 40 tca (~15% sulfide). @376.34-377.57m breccia zone (cataclastic metamorphic rock) cellular texture with the large grains (rounded) Qz, contorted & irregularly mixed narrow veins, fine grained DI PY (~2-3%), strong silicification, very weak Chl altn. Below 378.84m narrow (<1cm) Qz-PY-MO strs, @380.8-381.44m greenish monzonite, feldspar phenocrysts, orthoclase & plagioclase, Qz. @332.62-332.82m magmetic Chl-PO zone. @384.26m is 40mm CA-dolomite zone, 80 tca. @384.44m solid 36mm Qz-PO-MO VN, 65 tca.

	STRU	CTUR	RES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	~			
From To Vn% QZ%	Feld%	CC%	V/m	CA

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	
369.70	385.00	0 1	VLT	РО) 2	СР	0.1			

Qz-PO-MO strs, weak MO

369.70 385.84 BDG 70 S hard rock 369.70 385.84 - - W S - - M VW - W M W W mod Chl & strong silica altn

369.70 385.84 1 6 4 0.5 1 60 narrow <10mm Qz-PY-MO VNs CH0604

Initials:

From 385.84

To 395.33

Litho HSLT

strong silica altn

Brown hornfelsed siltstone, minor sandstone, moderate Chl, strong silica alteration, Qz-PO-MO strs. @389.76m narrow 6mm Qz-PO-MO VN, 20 tca. From 390.0-392.36 m breccia zone, cellular texture with the large & medium grains (rounded) Qz, fine grained DI PY (~3%), strong silicification, very weak Chl altn, contact 60 tca. @392.36m is 8mm Qz-PO-MO VN, 60 tca. Below 393.44m Qz-PO-MO strs. @393.37-393.77m breccia zone, medium grains (rounded) Qz, contact 70 tca. @395.33m E.O.H.

STRUCTURES								
From	To	Struct	CA	Strain				

385.84 395.33 FLW 65 S hard rock

	ALTERATION From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
385 84	395 33	_	_	W	s	_	w	_	VW	_		W	vw	

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
385 84	395 33	1	6	6		1	

<5mm Qz-PO-MO VNs & strs

MINERALIZATION									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

385.84 395.33 1 VLT PO 2 MO 0.03 weak < 0.05% MO

CHU Project - TTM Resources Inc. SAMPLE REPORT

HOLE ID: CH0603

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
44613	6.85	11.28	HSLT	CORE	0.021	0.009
44614	11.28	14.33	HSLT	CORE	0.023	0.016
44615	14.33	17.37	HSLT	CORE	0.039	0.107
44616	17.37	20.42	HSLT	CORE	0.012	0.004
44617	20.42	23.47	HSLT	CORE	0.011	0.011
44618	23.47	26.52	HSLT	CORE	0.013	0.006
44619	26.52	29.57	HSLT	CORE	0.035	0.022
44620	26.52	29.57	HSLT	DUPLICATE	0.06	0.045
44621	29.57	32.61	HSLT	CORE	0.019	0.011
44622	32.61	35.66	HSLT	CORE	0.026	0.024
44623	35.66	38.71	HSLT	CORE	0.024	0.024
44624	38.71	41.76	HSLT	CORE	0.015	0.004
44625	38.71	41.76	HSLT	BLANK	0.001	0
44626	41.76	44.81	HSLT	CORE	0.023	0.009
44627	44.81	47.85	HSLT	CORE	0.02	0.026
44628	47.85	50.9	HSLT	CORE	0.033	0.003
44629	50.9	53.95	HSLT	CORE	0.012	0.002
44630	50.9	53.95	HSLT	MoS-1	0.009	0.061
44631	53.95	57	HSLT	CORE	0.013	0.003
44632	57	60.05	HSLT	CORE	0.016	0.006
44633	60.05	63.09	HSLT	CORE	0.01	0.009
44634	63.09	66.14	HSLT	CORE	0.015	0.007
44635	66.14	69.19	HSLT	CORE	0.014	0.003
44636	69.19	72.24	HSLT	CORE	0.01	0.007
44637	72.24	75.29	HSLT	CORE	0.011	0.008
44638	75.29	78.33	HSLT	CORE	0.017	0.003
44639	78.33	80.2	HSLT	CORE	0.028	0.001
44640	78.33	80.2	HSLT	DUPLICATE	0.02	0.006
44641	80.2	81	HSLT	CORE	0.082	0.468
44642	81	84.43	HSLT	CORE	0.014	0.006
44643	84.43	87.48	HSLT	CORE	0.02	0.008
44644	87.48	90.53	HSLT	CORE	0.026	0.015
44645	87.48	90.53	HSLT	BLANK	0	0
44646	90.53	93.57	HSLT	CORE	0.031	0.026
44647	93.57	96.62	HSLT	CORE	0.018	0.082
44648	96.62	99.67	HSLT	CORE	0.016	0.004
44649	99.67	102.72	HSLT	CORE	0.031	0.004
44650	99.67	102.72	HSLT	MoS-1	0.011	0.062
44651	102.72	105.77	HSLT	CORE	0.025	0.004
44652	105.77	108.81	HSLT	CORE	0.041	0.006
44653	108.81	111.86	HSLT	CORE	0.03	0.027
44654	111.86	114.91	HSLT	CORE	0.038	0.023
44655	114.91	117.96	HSLT	CORE	0.028	0.029
44656	117.96	121.31	HSLT	CORE	0.025	0.017
44657	121.31	122.55	HSLT	CORE	0.05	0.008
44658	122.55	127.1	HSLT	CORE	0.028	0.006
44659	127.1	130.15	HSLT	CORE	0.024	0.003
44660	127.1	130.15	HSLT	DUPLICATE	0.03	0.003
44661	127.1	130.15	HSLT	MoS-1	0.01	0.064
44662	127.1	130.15	HSLT	BLANK	0.01	0

SAMPLE REPORT

HOLE ID: CH0603

	_				2 (2.)	
SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
44663	130.15	133.2	HSLT	CORE	0.028	0.033
44664	133.2	136.25	HSLT	CORE	0.018	0.006
44665	133.2	136.25	HSLT	BLANK	0	0
44666	136.25	139.29	HSLT	CORE	0.037	0.004
44667	139.29	142.34	HSLT	CORE	0.021	0.018
44668	142.34	145.39	HSLT	CORE	0.026	0.013
44669	145.39	148.44	HSLT	CORE	0.018	0.004
44670	145.39	148.44	HSLT	MoS-1	0.012	0.061
44671	148.44	151.49	HSLT	CORE	0.024	0.006
44672	151.49	154.53	HSLT	CORE	0.03	0.009
44673	154.53	157.58	HSLT	CORE	0.01	0.003
44674	157.58	160.63	HSLT	CORE	0.02	0.025
44675	160.63	163.68	HSLT	CORE	0.01	0.01
44676	163.68	166.73	HSLT	CORE	0.01	0.016
44677	166.73	169.77	HSLT	CORE	0.01	0.005
44678	169.77	172.82	HSLT	CORE	0.03	0.007
44679	172.82	175.87	HSLT	CORE	0.01	0.008
44680	172.82	175.87	HSLT	DUPLICATE	0.02	0.012
44681	175.87	178.92	HSLT	CORE	0.01	0.004
44682	178.92	181.97	HSLT	CORE	0.02	0.008
44683	181.97	185.01	HSLT/SDST	CORE	0.01	0.009
44684	185.01	188.06	SDST	CORE	0.02	0.013
44685	185.01	188.06	SDST	BLANK	0	0
44686	188.06	191.11	SDST	CORE	0.03	0.007
44687	191.11	194.16	SDST	CORE	0.01	0.002
44688	194.16	197.21	SDST	CORE	0.01	0.001
44689	197.21	200.25	SDST	CORE	0.01	0.094
44690	197.21	200.25	SDST	MoS-1	0.01	0.064
44691	200.25	203.3	SDST	CORE	0.03	0.006
44692	203.3	206.35	SDST	CORE	0.01	0.007
44693	206.35	209.4	SDST	CORE	0.01	0.008
44694	209.4	212.45	SDST	CORE	0.01	0.006
44695	212.45	215.49	SDST	CORE	0.01	0.004
44696	215.49	218.54	HSLT	CORE	0.02	0.021
44697	218.54	221.59	HSLT	CORE	0.02	0.022
44698	221.59	224.64	HSLT	CORE	0.02	0.003
44699	224.64	227.69	HSLT	CORE	0.01	0.004
44700	224.64	227.69	HSLT	DUPLICATE	0.02	0.003
44701	227.69	230.73	HSLT	CORE	0.01	0.009
44702	230.73	233.78	HSLT	CORE	0.01	0.007
44703	233.78	236.83	HSLT	CORE	0.01	0.011
44704	236.83	239.88	HSLT	CORE	0.02	0.009
44705	236.83	239.88	HSLT	BLANK	0	0
44706	239.88	242.93	HSLT	CORE	0.02	0.018
44707	242.93	245.97	HSLT	CORE	0.05	0.379
44708	245.97	249.02	SDST	CORE	0.02	0.006
44709	249.02	252.07	SDST	CORE	0.01	0.001
44710	249.02	252.07	SDST	MoS-1	0.01	0.064
44711	252.07	255.12	SDST	CORE	0.04	0.001
44712	255.12	258.17	SDST	CORE	0.01	0.001
44713	258.17	261.21	SDST	CORE	0.01	0.001
44714	261.21	264.26	SDST	CORE	0.01	0.001
77/17	201.21			ANTSLIMITED	0.01	0.001

SAMPLE REPORT

HOLE ID: CH0603

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
44715	264.26	267.31	SDST	CORE	0.01	0.003
44716	267.31	270.36	SDST	CORE	0.02	0.032
44717	270.36	273.41	SDST	CORE	0.01	0.002
44718	273.41	276.45	SDST/HSLT	CORE	0.02	0.001
44719	276.45	279.5	HSLT	CORE	0.02	0.001
44720	276.45	279.5	HSLT	DUPLICATE	0.02	0.002
44721	279.5	282.55	HSLT	CORE	0.02	0.001
44722	282.55	285.6	HSLT	CORE	0.01	0
44723	285.6	288.65	HSLT	CORE	0.01	0
44724	288.65	291.69	HSLT	CORE	0.01	0
44725	288.65	291.69	HSLT	BLANK	0	0
44726	291.69	294.74	HSLT	CORE	0.02	0
44727	294.74	297.79	HSLT	CORE	0.01	0
44728	297.79	300.84	HSLT	CORE	0.01	0
44729	300.84	303.89	HSLT	CORE	0	0
44730	300.84	303.89	HSLT	MoS-1	0.01	0.064
44731	303.89	306.93	HSLT	CORE	0.01	0
44732	306.93	309.98	HSLT	CORE	0.01	0.001
44733	309.98	313.03	HSLT	CORE	0.01	0.001
44734	313.03	316.08	HSLT	CORE	0.01	0
44735	316.08	319.13	HSLT	CORE	0.01	0
44736	319.13	322.17	HSLT	CORE	0.01	0.002
44737	322.17	325.22	HSLT	CORE	0.01	0
44738	325.22	328.27	HSLT	CORE	0.01	0
44739	328.27	331.32	HSLT	CORE	0.01	0.002
44740	328.27	331.32	HSLT	DUPLICATE	0.03	0.002
44741	331.32	334.37	HSLT	CORE	0.03	0.001
44742	334.37	337.41	HSLT	CORE	0.02	0.01
44743	337.41	340.46	HSLT	CORE	0.02	0.003
44744	340.46	343.51	HSLT	CORE	0.02	0.003
44745	340.46	343.51	HSLT	BLANK	0.01	0.003
44746	343.51	346.56	HSLT	CORE	0.02	0.002
44747	346.56	349.61	HSLT	CORE	0.02	0.001
44748	349.61	352.65	HSLT	CORE	0.02	0
44749	352.65	355.7	HSLT	CORE	0.01	0
44750	352.65	355.7	HSLT	MoS-1	0.01	0.062
44751	355.7	358.75	HSLT	CORE	0.02	0
44752	358.75	361.8	HSLT	CORE	0.01	0.001
44753	361.8	364.85	HSLT	CORE	0.01	0.001

CHU Project - TTM Resources Inc.

Signature: Initials:

CH0603

Casing/Overburden

6.85

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From

0.00

HSLT 6.85 17.37

W

Fine grained siltstone with muscovite/sericite, strong biotization. Broken core (~40% fragments, pieces <10cm) with surface weathering on joints. @9.67m is 16mm Qz-PY-MO VN, 75 tca. @10.88m is 13mm Qz-PY-MO VN, no orinet. @13.6m is 16m Qz-PY-MO VN, 70 tca. @14.33-14.7m is 24mm AB-Qz-Chl VN, 55 tca veinlets radiating from this VN. @19.92m contorted 17mm AB-Chl VN, 30 tca. @15.21-16.02m is 12mm Qz-PY-BIO-MO VN, 15 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	<i>ATIO</i>	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

Ì			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

6.85 17.37 FR 75 W surface weathering on joints 6.85 17.37 - M VW - - W - S VW W M BIO altn

6.85 17.37 1 1 1 70 2 a few narrow VN containing MO

6.85 17.37 1 VLT PY 1 PO 0.3 first Qz-PY-MO VN @9.67m

CH0603

Initials:

From 17.37

To 32.61

Litho HSLT

Dark brown fine grained siltstone, siliceous, BIO present, narrow Qz-PY VNs (~1 VN/m), weak foliation parallel bedding, MO present in tiny Qz strs, network tiny Qz-PY-MO strs. @30.33m is 7mm Qz-PY MO VN, 40 tca with subparallel MO strs. @31.88m solid 16mm Qz-PY-MO VN, 30 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

17.37 32.10 - - VW M - - - W - W W *BIO altn*

17.37 32.61 BDG M

17.37 32.61 1 3 casual VNs, Qz-MO strs

0.3 35 17.37 32.61 1 FG MO

minor MO

 From
 To
 Litho

 32.61
 46.10
 HSLT

Hornfelsed siltstone (fine grained) Qz-PY-Chl strs & VNs, AB-Qz-Chl VNs (with very fine grained PY). Chl present almost in all VNs, siliceous, minor BIO, narrow Qz-PY VNs (~1 VN/m), weak MG & casual graphite. @33.13m is 34mm AB-CA-Qz-MO VN, 40 tca. @33.9m is Qz-PY-MO VN, 30 tca with two subparallel Chl-Qz-PY VN, 11mm & 12mm. @34.26m significant contorted Qz-PY-MO, 60 tca (0.4% MO in this VN). @34.34-35.42m stockwork AB-Qz-Chl-PY & Qz-PY +/-MO VNs, 30 tca. @36.53m is 12mm Qz-PY-MO VN, 70 tca. @36.62m is 15mm Qz-PY-BIO VN, 45 tca. @38.3-38.0m zone with boudinaged AB-Chl contorted veinlets. @40.28m is 14m Qz-PY VN, 20 tca. @41.71m is 13mm Qz-PY-MG-BIO-Cpy VN, 40 tca. @42.13m solid 136mm Qz-PY VN, 55 tca. @43.36m knot PY-Qz veinlets +/-MO. @44.81-45.16m knot Qz-PY-Chl veinlets +/- MO. @45.43m is 22mm Qz-PY-MO VN, 60 tca.

STRUCTURES										
From	To	Struct	CA	Strain						

	ALTERATION														
1	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

			M	INE	RAL	IZAT	ION			
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

32.61 46.10 BDG 40 M 2% joints 32.61 46.10 - - M M - M - VW - VW N
Ch & AB altn, weak MG

32.61 46.10 3 4 1 1 40

AB-Qz-Chl VNs with very fine grained

32.61 46.10 2 VLT PY 2 MO 0.1 MO present in Qz VNs & strs

 From
 To
 Litho

 46.10
 69.19
 HSLT

Hornfelsed siltstone (fine grained), AB & Chl-dolomite VNs, narrow milky Qz-VNs; weak mineralization, PO ~1-2%. @46.1-46.75m & 47.85-48.0m are two dolomite-Chl zones. @49.5m is 26mm dispersed Qz-PY-MO VN, 30 tca. @56.9m dolomite-Chl network. From 52.42-52.9m zone with abundant AB-Chl veinlets, 35 tca with very weak mineralisation. @52.11m is 12mm Qz-PO-MO VN, 40 tca. @55.3-55.6m stockwork of subparallel Qz-AB-PO VNs, 40 tca. @59.2m is 14mm milky Qz-PO-MO VN, 40 tca. @59.8m dispersed 33mm AB-Chl-PO-Qz VN, 40 tca. Below 260.6m muskovite/sericite. @64.28m is 22mm Qz-PO-MO VN, 55 tca. @65.55-66.05m is Qz-Chl-PO VN, 45 tca. @66.0m is 10mm Qz-PO-MO VN, 45 tca. Below 66.5m abundant Qz-PY-MO strs & narrow VNs. @68.63m is 14mm Qz-PO-MO VN, 40 tca. @69.32m is 12mm Qz-PY-MO VN, 40 tca with Qz-PY-MO strs around.

STRUCTURES										
From	To	Struct	CA	Strain						

	ALTERATION														
Fre	rom	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

CH0603

From 46.10

То

Litho HSLT

69.19 HS

Hornfelsed siltstone (fine grained), AB & Chl-dolomite VNs, narrow milky Qz-VNs; weak mineralization, PO ~1-2%. @46.1-46.75m & 47.85-48.0m are two dolomite-Chl zones. @49.5m is 26mm dispersed Qz-PY-MO VN, 30 tca. @56.9m dolomite-Chl network. From 52.42-52.9m zone with abundant AB-Chl veinlets, 35 tca with very weak mineralisation. @52.11m is 12mm Qz-PO-MO VN, 40 tca. @55.3-55.6m stockwork of subparallel Qz-AB-PO VNs, 40 tca. @59.2m is 14mm milky Qz-PO-MO VN, 40 tca. @59.8m dispersed 33mm AB-Chl-PO-Qz VN, 40 tca. Below 260.6m muskovite/sericite. @64.28m is 22mm Qz-PO-MO VN, 55 tca. @65.55-66.05m is Qz-Chl-PO VN, 45 tca. @66.0m is 10mm Qz-PO-MO VN, 45 tca. Below 66.5m abundant Qz-PY-MO strs & narrow VNs. @68.63m is 14mm Qz-PO-MO VN, 40 tca. @69.32m is 12mm Qz-PY-MO VN, 40 tca with Qz-PY-MO strs around.

STRUCTURES											
From	To	Struct	CA	Strain							
46.10	69.19	BDG		S							

~2 joints

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
46.10	69.19	-	VW	s	М	- 1	М -	VW	/ V\	N V	N		W	
moderate Chl altn														

	VEINS From To Vn% QZ% Feld% CC% V/m CA													
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA							
46.10	69.19		1	40										
Qz-PO-MO & AB-Chl VNs														

MINERALIZATION														
From	From To PY% Style Min Min% Min2 M2% Min3 M3%													
46.10	69.19	0.5	MG	PC	2	PY	0.5							
Qz	Qz strs & narrow VNs contain the MO													

From 69.19

To 93.57

Litho HSLT

Fine grained hornfelsed siltstone with primary sediments, significant Qz-PO-MO VNs, BIO altn, AB, quartzite, ChI & dolomite present, minor shist on joints. @72.89m is 15mm AB-Qz-PO-MO VN, 45 tca. @73.92m is 30mm Qz-PO-MO VN, 35 tca with narrow VNs radiating from the main VN. @ 74.65m narrow sanidine (?) VN, 10 tca. @75.45m boudined 24mm AB-Qz-PO-MO VN, 25 tca. @77.5m is 10cm dolomite zone, 75 tca. @78.73m milky Qz-PY-MO VN, 70 tca. @79.95-80.4m dolomite-ChI, foliation parallel to bedding. From 80.2m to 81.0m significant Qz-AB-PO-MO VN along the core (~1% MO). @81.5m dolomite-ChI foliation 11cm, 70 tca. @82.28m is 20mm Qz-ChI-PY-Cpy VN, 30 tca. Below 83.4m AB-PY-quartzite (no MO) with narrow Qz-PY-MO veinlets in different orient. @86.04m is Qz-AB-ChI-PY VN, 30 tca. @85.0-85.42m contorted AB-PY-ChI VNs was cut by narow Qz-PO +/- MO VNs. @87.7m is 17mm AB-Qz-PO VN, 50 tca. @90.26-91.4m significant 30mm Qz-PO-Cpy-MO VN, 20 tca. @91.8m is 35mm foliated AB-CL-Qz-PO VN, 30 tca. @92.26m is 30 mm CA-Qz-BO-PY-Cpy VN, 25 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

		ALTERATION													
Ī	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

			M	INE	RAL	IZAT	ION			
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

69.19 93.57 BDG 45 S 3% joints 69.19 93.57 - - VW M - M - VW VW VW W V BIO altn 69.19 93.57 4 1 0.5 1 45

AB, Quartzite-Chl-PO & Qz-PO-MO

VNs

69.19 93.57 0.3 DISS PO 2 PY 0.3 significant Qz-PO-MO VNs

From 69.19

To 93.57

Litho HSLT

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	<u>VEINS</u>											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From

То

Litho HSLT

93.57 109.32

Fine grained hornfelsed siltstone, MO (~0.2%) in narrow contorted Qz-AB-PO-MO-MG VNs & tiny strs, weak BIO altn, Cpy associated with PO, quartzite-ChI-PO-MG VNs ~10-20mm thickness, 25 tca. @97.1m contorted 20mm AB-Qz-PO-MO-MG VN, 55 tca. @98.45m solid 50mm Qz-PO VN, 60 tca with tiny Qz-PY-MO strs. @99.7m is 22mm Qz-PO-MO VN, 60 tca. @101.8m is 36mm CA-Qz-PY-MO-BIO VN, 30 tca. @105.76-105.97m reddish monzonite with feldspar phenocrysts, ~2% MG & 10mm Qz VN, 60 tca. @106.85-10.8m contorted veinlets ChI-PO-AB-Qz +AB on boudined edges & Qz-MO narrow VNs. @107.13 is 25mm Qz-PY-MO VN, 60 tca. @108.61m is 26m Qz-MO VN, 75 tca.

	STRU	CTUR	RES	
From	To	Struct	CA	Strain

					AL	TER	ATIC	N .						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

				VEINS	S			
Ī	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

						IZAT				
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

93.57 109.32 BDG 45 S 2-3% joints per meter 93.57 109.32 - - M W - M - VW - VW VW VW AB & Chl altn

93.57 109.32 2 3 1 1 45 narrow Qz VNs +/- MO, Qz-MO tiny strs 93.57 109.32 0.5 VLT PO 2 CP 0.5 very fine grained MO in tiny strs

From 109.32

To Litho **HSLT**

126.50

From dark brown to light brown, fine grained hornfelsed siltstone with two different types of veins in this area: a) milky Qz/AB with Chl-PO-BIO-Cpy +/-MO VNs & another type of vein: b) Qz-PO-MO VNs (~0.2% MO in this type of VNs). Moderate Cpy, dolomite zones ~3-6cm. Core containing 3-4% sulfide. @113.18m is 17mm Qz-PO-Cpv-MO, 35 tca, @114,53m is 30mm Qz-PO-MO VN, 50 tca, @115,33m two parallel 16mm Qz-PO-MO VNs, 50 tca, @116,31m is 16mm Qz-PO-MO VN, 20 tca. @116.93m is 16mm AB-PO-BIO, 30 tca. @117.05m is 14mm Qz-PO-MO VN, 50 tca; Chl on joints. @117.53-118.14m significant 20cm Qz-PO-MO-Cpy VN, 20 tca. Below 118.2m core mottled AB-Qz-PY-Chl-Cpy dendritic VNs & thin 2-5mm another VN crosscuts this zone. @119.05m are two 7-8mm Qz-PY-MO VNs, 60 & 75 tca. @119.25m is 20mm Qz-PY-MO VN, 40 tca. @120.27m is 20mm Qz-PY-Cpy-MO VN, 55 tca. @121.31-122.55m significant zone anastomosing Qz-PO-Cpy-Chl-MO VN, (~0.3 MO). @123.78m dispersed 30mm Qz-PY-Cpy-MO VN, 60 tca. @124.92m dispersed 40mm Qz-PY-Cpy-MO VN, 60 tca. tca. @124.58-125.0m broken core, clay on fracture. @124.95m dispersed 22mm Qz-PO-Chl VN, 40 tca with MO traces.

AB & Chl altn

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

109.32 126.50 BDG 40 M weak CA on fracture. PO & Cpy on fracture

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
109.32	126.50	-	-	М	W	- '	W -	· VW	/ V\	N N	/	VV	٧	

	VEINS													
From	From To Vn% QZ% Feld% CC% V/m C													
109.32	109.32 126.50 5 3													
contorted AB-ChI-PO-Cpy +/-MG VNs														

& Qz-PO-MO VNs

					IZAT				
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
109.32	126.5	0 0.5	MG	PC) 3	СР	2		
mo	derate	PO C	?nv						

To Litho From 138.88 **HSLT** 126.50

Brown to dark brown hornfelsed siltstone with Qz-AB-Chl-PY-PO-Chy VNs & also Qz-PO-MO VNs & strs. @139.46-139.71m Qz-AB-Chl-PY-PO-Chy VNs zone, hornfelsed bleached. @130.56m solid 50mm Qz-PO-MO VN, 50 tca. @131.31-131.67m significant boudined Qz-PO-Cpy-MO VN, 15 tca with narrow Qz-PO-MO VNs radiating from the main VN. @133.37m is 17mm Qz-PY-MO VN, 60 tca. @134.15m is 11mm Qz-CA-PY-MO VN, 40 tca. @136.93-137.15m fusion zone with Qz-PY-Cpy-Chl (up to 4% PY). @137.3-137.66 is Qz-BIO-PY strs, 15 tca. @138.1m is Qz-BIO-Chl-PY-Cpy, 90 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 126.50

To 138.88

Litho HSLT

Chl altn

Brown to dark brown hornfelsed siltstone with Qz-AB-Chl-PY-PO-Chy VNs & also Qz-PO-MO VNs & strs. @139.46-139.71m Qz-AB-Chl-PY-PO-Chy VNs zone, hornfelsed bleached. @130.56m solid 50mm Qz-PO-MO VN, 50 tca. @131.31-131.67m significant boudined Qz-PO-Cpy-MO VN, 15 tca with narrow Qz-PO-MO VNs radiating from the main VN. @133.37m is 17mm Qz-PY-MO VN, 60 tca. @134.15m is 11mm Qz-CA-PY-MO VN, 40 tca. @136.93-137.15m fusion zone with Qz-PY-Cpy-Chl (up to 4% PY). @137.3-137.66 is Qz-BIO-PY strs, 15 tca. @138.1m is Qz-BIO-Chl-PY-Cpy, 90 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

126.50 138.88 BDG 40 M

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	
126.50	138.88	-	VW	-	W	- 1	М -	VW	٧ /	ν -		W	,		

VEINS											
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA				
126.50	138.88	4	3		0.2	1	40				
significant Qz-PO-MO present											

Ī	MINERALIZATION											
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
	126.50	138.8	8 0.5	DISS	PC	3	СС	1				
	Qz	-PO sti	rs con	taining	у МО							

From 138.88

*T*o 145.80

Litho HSLT

Fault zone, fragments of Qz-PO-MO VN, Chl & CA altn, partly rock is soft. @140.1-140.98m significant boudined Qz-PO-MO VN along the core (~3-4% PO, 0.5% MO in this interval) with 16cm lense from VN.

STRUCTURES
From To Struct CA Strain

138.88 145.80 FLT W >60% are pieces <10cm

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
138.88	145.80	-	-	VW	W	- \	Ν -	VW	/ V\	N V	Ν	W	,	
CA	altn													

VEINS										
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA			
138.88	145.80	10	10		2	1				
	significa	ant Qz-	РО-МО	VN						

CH060

Initials:	
-----------	--

From 138.88

To 145.80

Litho HSLT

(Continued from previous page)

	STRUCTURES									
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

1	MINERALIZATION											
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

From 145.80

To 156.40

Litho HSLT

Brown to dark brown hornfelsed siltstone with narrow sandstone zone, 20% broken core, CA on fracture. @149.95 is 11mm Qz-BIO-PO VN, 40 tca. @150.95m is 20mm Qz-Chl-PY MO VN, 40 tca. From 151.49m to 152.57m (fusion) highly contorted & irregularly mixed narrow Qz-PY-MO VNs, silicification, minor Chl, BIO, CA, Cpy & AB. @152.57-156.4m broken core (35% are pieces <10cm, muscovite/sericite present, CA on fracture, Qz-PO +/- MO present. @154.05m is 16mm Qz-PY-Chl-CA VN, 15 tca. @154.86m is18mm Qz-CA-PO-PY VN, 15 tca with Qz-PO-MO strs. @156.15m is 18mm Qz-PO-MO VN, 60 tca.

STRUCTURES										
From	To	Struct	CA	Strain						

145.80 156.40 SHR 40 W 20% broken core

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SEF
145.80	156.40	-	-	W	W	- \	ν -	· VW	/ VV	v v	1	VV	v w	
BIO	, Chl & (CA alt	'n											

			VEINS	5			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA
145.80	156.40	4	6		1	3	
	narrow	Qz-PO	-MO VN	ls			

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
145.80	156.4	0.3	DISS	PC	3		0.2				
MC	0.5 (~0.5	%) in	Qz-P	O VN							

From To 156.40

167.43

HSLT

Litho

Fault zone, fragments of Qz-PO-MO VNs, Chl, AB & BIO altn, partly rock is soft, CA on fracture, AB & CA strs, gouge (partly washed out from core), very weak mineralization: just a few narrow Qz-PO-PY-MO VNs.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

156.40 167.43 FLT VW >60% broken core

	ALTERATION From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
156.40 167.43 VW - W VW - M - M VW														
CA & BIO altn														

			VEIN S	S					
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		
156.40	167.43	4	6		1	2	55		
casual narrow Qz-PO-MO VN									

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
156.40	167.4	3 0.2	DISS	PC) 1	МО	0.01				
vei	ry weal	kPY8	MO								

From To Litho **HSLT** 167.43 184.10

Brown to dark brown hornfelsed siltstone with a few narrow shear zones, muscovite/sericite present, moderate BIO & Chl altn; PO, PY & Cpy present; abundant Qz-PO-MO strs. @170.1m is 55mm brecciated shear zone, CA altn. @171.15-171.50m Qz-CA-PY-PO-BIO, 40 tca with Qz-PO-MO narrow VNs around this zone. @171.92m 0is 30mm Qz-PO-MO VN, 15 tca with 7mm subparallel Qz-PO-MO VN. @172.1m boudined 8mm Qz-MO VN, 50 tca wth bunch of subparallel strs. @174.5m is 2cm shear zone (~15 CA). @176.93m boudined 14mm Qz-PY-MO VN, 35 tca. @179.05m Qz-PO-MO VN, 30 tca. Below 179.22 some narrow CA-Chl-BIO-sulfide zones. @180.16m is 20mm Qz-PO-MO VN, 20 tca. @180.95-181.16m broken core. @182.32m boudined 18mm Qz-PO-MO VN, 16mm & tiny Qz-MO strs.

STRUCTURES From To Struct CA Strain 167.43 184.10 BDG М

a few 2-3 cm shear zones

ALTERATION From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER 167.43 184.10 - - W VW W W - M - M CA, BIO & Chl altn

VEINS From To Vn% QZ% Feld% CC% V/m CA 167.43 184.10 2 1 1 30 narrow Qz-PO-MO VNs ~0.5 VN/m

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 167.43 184.10 0.5 VLT PO 1 MO 0.05 Cpy occurrence

Initials:	
-----------	--

From 167.43

To 184.10

Litho HSLT

(Continued from previous page)

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%									
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 184.10

*T*o 197.55

Litho SDST

Brown & dark brown hornfelsed siltstone with moderate BIO altn, gradual transition to altered sandstone bands, weak ChI altn, muscovite/sericite present. Below 186.24m small 5-10mm Qz-PO-MO VNs. @188.3-188.45m shattered core. @188.78m is 22mm CA-BIO-PY VN, 30 tca (~15% coarse grained PY). @196.4m is 16mm Qz-PO-MO VN, 20 tca.

 STRUCTURES

 From
 To
 Struct
 CA
 Strain

184.10 197.55 BDG 40 M 7% joints
 ALTERATION

 From
 To
 INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER

 184.10
 197.55 - W | W | VW | W - W - M | W | M | moderate BIO altr

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 184.10
 197.55
 1
 2
 1
 0.5
 50

 moderate Qz-sulfide-MO strs &

casual Qz-sulfide VNs

184.10 197.55 0.5 VLT MO 1.5 MO 0.1 moderate Qz-sulfide -MO strs

MINERALIZATION

From To PY% Style Min Min% Min2 M2% Min3 M3%

C	ш	•	C	n	2
U	П	U	O	U	J

Initials:

From 184.10

To 197.55

Litho SDST

(Continued from previous page)

STRUCTURES
From To Struct CA Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 197.55

To 198.52

52

Fault zone, broken core (fragments <10cm), CA on fracture

Litho

SDST

STRUCTURES
From To Struct CA Strain

197.55 198.52 FLT VW broken core, all pieces <10cm

	ALTERATION														
Γ	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
L	rrom	10	1111	ANO	CIIL	SIL	1 111	INI	101	CC	LI	DIO	LLI	III	SE

197.55 198.52 - VW VW W VW - M W - M BIO altn

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
197.55	198.52	0.2	0.2		2		

AB & Qz strs

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

 407.55
 409.52
 0.2
 DISS

197.55 198.52 0.2 DISS fine grained DI PY

 From
 To
 Litho

 198.52
 215.20
 SDST

Brown to dark brown sandstone with moderate BIO altn with Qz-sulfide-MO VNs & Ca-Chl-Qz-BIO-sulfide VNs, some core is broken (fragments), abundant tiny Qz-MO-sulfide strs. Below 200.0m sandstone with narrow 5-20mm Qz-PO-MO stockwork & another type of vein: usually more contorted AB-CA-Chl-Qz-PO-PY-BIO +/-EPI, +/- MG VNs. @200.25m is 18mm Qz-PO-MO VN, 75 tca. @201.05m significant 4mm MO-CA VN, 15 tca. @202.9m is 10mm Qz-PO-MO VN, 55 tca. @203.06m quartzite-Chl 20mm to bedding direction , 40 tca with Qz-PO-MO strs on edges. @203.8-204.0m narrow contorted 5-7mm Qz-PO-MO VNs. @205.45m boudined 28mm Qz-PO-MO VN, 50 tca. @208.7m milky 12mm Qz-PO-MO VN, 20 tca. @213.43m is 13mm Qz-PO VN, 50 tca. @214.22m is 11mm Qz-PO-MO-EPI VN. 50 tca.

STRUCTURES
From To Struct CA Strain

198.52 215.20 BDG 50 M BIO altn

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
198.52	215.20	-	-	w v	٧W	- \	ν -	W	-	M	l	VV	v vw	!
mod	derate py	/rrhot	ite											

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
198.52	215.20	3	5		2	1	50
	narrow	Qz-PY	-MO strs	S			

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

 198.52
 215.20
 0.5
 DISS
 PO
 2
 MO
 0.1

 abundant tiny
 Qz-MO-sulfide strs

From 198.52

То

215.20

Litho SDST

Brown to dark brown sandstone with moderate BIO altn with Qz-sulfide-MO VNs & Ca-Chl-Qz-BIO-sulfide VNs, some core is broken (fragments), abundant tiny Qz-MO-sulfide strs. Below 200.0m sandstone with narrow 5-20mm Qz-PO-MO stockwork & another type of vein: usually more contorted AB-CA-Chl-Qz-PO-PY-BIO +/-EPI, +/- MG VNs. @200.25m is 18mm Qz-PO-MO VN, 75 tca. @201.05m significant 4mm MO-CA VN, 15 tca. @202.9m is 10mm Qz-PO-MO VN, 55 tca. @203.06m quartzite-Chl 20mm to bedding direction, 40 tca with Qz-PO-MO strs on edges. @203.8-204.0m narrow contorted 5-7mm Qz-PO-MO VNs. @205.45m boudined 28mm Qz-PO-MO VN, 50 tca. @208.7m milky 12mm Qz-PO-MO VN, 20 tca. @213.43m is 13mm Qz-PO VN, 50 tca. @214.22m is 11mm Qz-PO-MO-EPI VN, 50 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

Ī						AL	TER	ATIO	N .						
Ī	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

<i>MINERALIZATION</i>													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

From 215.20

*T*o 218.70

Litho HSLT

Fault zone: fragments; Chl, CA & BIO altn, partly rock is soft, gouge (partly washed out from core), ~50% broken core, CA on fracture, CA strs,very weak mineralization: just a few narrow Qz-PO-PY-MO VNs. @217.65-218.33m dolomite-CA zone, rock is soft.

STRUCTURESFromToStructCAStrain

215.20 218.70 FLT 50% broken core

					AL	TER	<i>ATIC</i>)N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
215.20	218.70	-	-	w '	vw	W		М	-	N	1	VV	٧	
CA.	BIO & C	Chl al	tn											

			VEIN:	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
215.20	218.70	0.5	1		2		
	AB & Q	z strs					

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	
215.20	218.7	0 0.2	DISS	PC	0.4	МО	0.01			
vei	ry weal	kPY8	МО							

CL	^	C	n	2
CH	U	O	U	J

From

215.20

To 218.70

Litho **HSLT**

(Continued from previous page)

STRUCTURES To Struct CA Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

Initials:

From

To

Litho

HSLT 218.70 237.28

Brown to dark brown siltstone, very fine grained with moderate BIO & Chl altn, narrow Qz-sulfide-MO VNs & contorted Chl-Qz-BIO-sulfide VNs and Qz-PO/PY-MO strs across the core. @ 221,26m solid 34mm Qz-PO-MO VN. 55 tca with Qz-PO-MO strs in the wallrock in different orient. @ 221,53m solid 44mm Qz-PO-MO VN, 65tca. @220.9-221.23m zone with contorted Qz-CA-AB-sulfade-Chl VNs, diff. orient. @222.14m is 12mm Qz-PO-MO VN, 40 tca. @222.55m is 22mm Chl-Qz-AB-PO VN, 40 tca. @224.06-224.33m zone with narrow subparallel Qz-PO-Chl-AB & Qz-PO-MO VNs, 50 tca. @224.73m is 24mm Qz-PO-MO VN, 35 tca. @228.24m narrow 2-3cm shear zone. @229.82m is 16mm Qz-PO-MO VN, 65 tca. 2230.52m is 18mm Qz-MO VN, 30 tca. @231.62m solid 54mm AB-Qz-PO-ChI VN, 60 tca. @233.24-233.78m contorted 15mm Qz-PY-MO VN, 5 tca. @234.84m is 7mm Qz-PO-MO VN, 20 tca. @235.2m is 45mm AB-PY-Qz-MO VN, 35 tca. @235.47m is 13m Qz-PY-MO VN, 20 tca. @236.08-236.26m contorted Qz-PY-Cpy-MO VN, 15 tca, minor offset by 16mm Qz-PO-MO VN, 80 tca. @236.6-237.28m significant 14mm Qz-PO-MO VN, 10 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

VNs

2 1 40

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

218.70 237.20 1 Qz-PO-MO VNs & Qz-AB-PO-ChI

218.70 237.28 BDG 35 M minor shear zones

VW VW 218.70 237.28 - - W W VW M - W - M moderate BIO & Chl altn

218.70 237.28 0.3 VLT PO 2 MO 0.2 EPI very casual

CH060

Initials:	

From 218.70

To 237.28

Litho HSLT

(Continued from previous page)

STRUCTURES								
From	To	Struct	CA	Strain				

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

From

То

Litho HSLT

237.28

245.90

Brown to dark brown siltstone, very fine grained with moderate BIO & Chl altn, narrow Qz-sulfide-MO VNs & contorted Chl-Qz-BIO-sulfide +/-MG VNs, significant Qz breccia zones with trace of MO (~0.3%) & PO strs, strong silicification, weak MG present in Qz-PY VNs. @237.1-238.12m sandstone (medium grained) with Chl altn & 9mm Qz-PY-MO VN, 60 tca & strs across the core. @238.12-239.88m cataclastic metamorphic rock & Qz breccia zones with trace of MO & contorted PO strs. @240.83m contorted 23mm Qz-PO-MO VN, 50 tca. @241.5m boudined 12mm Qz-PO-PY VN, 20 tca with MO strs radiating from this VN. Below 242.85m sandstone (medium grained) mottled by Qz-MO (~0.3% MO) & PY strs. @243.96-244.68m significant 120mm Qz-PO-PY-MO VN, 35 tca (~1%MO in this VN). @245.06m branched 18mm Qz-PO-MO VN, 30 tca.

STRUCTURES								
From	To	Struct	CA	Strain				

237.28 245.90 BDG 50 S breccia zones present

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			
237 28	245 00	6	12		0.5	3	30			

significant Qz-PY-MO VNs present

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

237.28 245.90 0.3 VLT PO 1.5 MO 0.5 significant MO zone *From* 245.90

То

Litho SDST

275.25

Brown siltstone with brown & greenish sandstone, narrow <6mm Qz-PY-MO VNs & strs, MG present in Qz-PY-MG VNs. @249.0-250.78m breccia zone (cataclastic metamorphic rock), bedding is apparent in the matrix, texture with large grains/rounded with PO strs, fine grained DI PY & traces of MO. @251.21m dispersed 20mm Qz-PY-MG-MO VN, 70 tca. @252.48m is 16mm Qz-PY-MO VN, 50 tca. @256.1m is 28mm Qz-AB-PO-MG-MO VN, 50 tca. @257.97m is 21mm. @261.98m is 22mm Qz-Chl-CA-MG-MO VN, 55tca. @268.6m is13mm Qz-PY-Cpy-MO VN, 55 tca. @269.24m dispersed 40mm AB-Qz-Chl-PO-MG VN, 75 tca. @269.36m solid 21mm Qz-PO-MO VN, 55 tca with 7-5mm Qz-PO-MO VNs below. @270.0m contorted 18mm Qz-PO-MO VN, 90 tca. @271.03m are two parallel 26mm & 10mm Qz-PO-Chl-MG-MO VNs, 40 tca. @272.82m solid 50mm Qz-PO-MO VN, 25 tca with Chl on selvage. @273.42m contorted 30mm Qz-Chl-PO-MG-MO VN, 45 tca. Contact to breccia zone @275.25m is 30 tca.

245.90 275.15 - - M W - M - W - W

moderate PO

STRUCTURES								
From	To	Struct	CA	Strain				

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VW

		S					
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

245.90 275.25 BDG 50 S significant breccia zone present at 249.0m

245.90 275.25 2 5 0.5 1 50 Two types of VNs are present: Qz-PO-MO & Qz-Chl-MO-MG VNs 245.90 275.25 0.3 VLT PO 2 MO 0.05 MG prezent *From* 245.90

To 275.25

Litho SDST

(Continued from previous page)

STRUCTURES									
From	To	Struct	CA	Strain					

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

1	MINERALIZATION												
	From	То	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From

То

Litho

275.25

280.88

HSLT

Breccia zone (cataclastic metamorphic rock) cellular texture with the large grains (rounded) associated with strong deformation conditions, distinctive veining, PO strs & fine grained DI PY, MO traces, strong silicification. @280.74m solid 90mm Qz-Chl-PO-MO VN, 35 tca. Contact @280.88m is 35 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

275.25 280.88 BX 45 VS rock is hard

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
275.25	280.88	_	_	-	s	- \	Λ -	_	_		V	/ VV	٧	

<u>VEINS</u>											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
275.25	280.88	1	50	5		1	35				
one solid Qz-PO-Chl-MO VN											

MO traces & strs

CH0603

Initials:

From 280.88

To 303.89

Litho HSLT

Chl altn

Brown siltstone with partly brown & greenish sandstone (medium grained), narrow <5mm Chl-PO/PY +/- MG strs, weak MG present in Qz-PY-MG strs, moderate Chl. Casual narrow Qz-PO-MO VNs. @292.6m is Qz-Chl-PO-MO VN, 20 tca. @294.24-294.46m dolomite-CA zone, 70 tca. @296.14m contorted 30mm Qz-Chl-PO-MO VN, 15 tca. @297.79-297.17m contorted 5mm Qz-PO-MO VN, no orient. @302.32m is 44mm AB-Qz-Chl-PY-MG VN, 30 tca.

STRUCTURES										
From	To	Struct	CA	Strain						

From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER						AL	TER	ATIO	N						
	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

280.88 303.89 BDG 45 S 2% joints 280.88 303.89 0.2 3 4 0.5 0.3 20 casual Qz-PO-MO VNs

280.88 303.89 0.2 VLT PO 1 MO 0.01 MG presnt in PO-Chl strs

CH0603

Initials:

From 303.89

To 328.80

Litho HSLT

Brown to dark brown siltstone, narrow <5mm Chl-PO/PY +/- MG strs, BIO altn. @306.84-311.25m breccia zone (cataclastic metamorphic rock) with coarse grained Qz associated with turbulent conditions. @311.25m contact (25 tca) to very fine grained dark brown siltstone. Narrow up to 5-7mm Qz-PY-MO VNs & Qz-Chl-MG VNs. Below 314.52m dark, very fine grained siltstone. @317.91m is 16mm Qz-PY-MO VN, 10 tca. From 318.9m to 320.64m broken core, CA on fracture. Below 314.52m dark siltstone, very fine grained with moderate Chl & weak CA altn, Qz-PY-MO strs & narrow Qz-Chl-PO VNs. @325.42m 22mm solid Qz-PY-MO VN 75 tca. @325.73m is 14mm Qz-PY-MO VN, 60 tca.

	STRU	CTUR	STRUCTURES										
From	To	Struct	CA	Strain									

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1 0.2

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

303.89 328.80 BDG 50 M 318.9 to 320.64 broken core, CA on fracture 303.89 328.80 - - M M - VW - W - M moderate BIO

303.89 328.80 1 3 just a few VNs in this interval 303.89 328.80 0.2 VLT PO 1 MO 0.01 very minor MO From To

328.80 340.40 HSLT

Litho

From dark to light brown siltstone (partly greenish sandstone), abundant irregular veining. Highly contorted & irregularly mixed Qz-PY-MO VNs, silicification, MG strs present, CA altn. Partly brittle core. Narrow MO strs. Breccia zone: from 340.4 to 343.5m cellular texture with large grains (rounded) Qz. @328.92m is 40mm Qz-PY-PO-MO-Chl VN, 25 tca. @329.2m is 24mm Qz-PY-CA-MO VN, 25 tca. @329.4m distorted 30mm Qz-PO-Chl-MO VN, 25 tca. Below 330.0m stockwork 7-14mm Qz-PO-PY-Chl-MO VNs, 60-80 tca. @331.63m is 14mm Qz-PY-MO VN, 25 tca. @332.04m distorted 30mm Qz-PY-MO VN, 55 tca. @332.64-333.09m significant Qz-PO-PY-MO VN. 80 tca. Below 333.9m core mottled by contorted milky Qz-MO VNz in different. orient. @336.06-336.26m broken core (fragments). @337.0-337.74m broken core (fragments). @338.28m is 30cm Qz-Chl-CA-MO VN, 40 tca. @330.7m contorted 18mm Qz-PY-Chl-MO VN, 75 tca. @330.72-330.84m distorted Qz-Chl-PO-MG-MO VN, no orient, MG strs present. @338.86-339.38m dispersed Qz-PY-MO VN, 15 tca with minor offset by two 4-5mm Qz-PY-PO strs 45 & 60 tca. @339.95-340.3m distorted 38mm Qz-PO-PY-MO VN, 15 tca.

STRUCTURES										
From	To	Struct	CA	Strain						

328.80 340.40 BDG 50 M 5-7% broken core

	<i>ALTERATION</i>													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
328.80	340.40	-	-	-	М	-	И -	W	_			VV	V VW	,
CA	altn													

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
328.80	340.40	15	20		2	4	35				
	abunda										

1						IZAT				
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
	328.80	340.4	0 0.5	DISS	PC) 2	МО	0.3		
	MC	3 strs p	resen	t						

 From
 To
 Litho

 340.40
 344.70
 HSLT

Breccia zone (cataclastic metamorphic rock) cellular texture with large grains (rounded) Qz, contorted & irregularly mixed narrow veins, distinctive veining associated with deformation conditions, dendritic Qz VNs, PO-MO strs & fine grained DI PY, MO traces, strong silicification. @341.30m is 14mm Qz-PO-MO VN, 90 tca. @343.0m solid 20m Qz-PO-MO VN, 20 tca.

STRUCTURES
From To Struct CA Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

ı				VEINS	5			
Ī	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	MINERALIZATION								
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

340.40 344.40 BX 55 S rock is hard

From 340.40

To 344.70

Litho HSLT

Breccia zone (cataclastic metamorphic rock) cellular texture with large grains (rounded) Qz, contorted & irregularly mixed narrow veins, distinctive veining associated with deformation conditions, dendritic Qz VNs, PO-MO strs & fine grained DI PY, MO traces, strong silicification. @341.30m is 14mm Qz-PO-MO VN, 90 tca. @343.0m solid 20m Qz-PO-MO VN, 20 tca.

	STRUCTURES											
From	To	Struct	CA	Strain								

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
340.40	340.40 344.70 W S - M - W - M W													
stro	strong silicification													

			VEINS	S			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA
340.40	344.70	3	50	15	0.1	3	45

	MINERALIZATION									
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
	340.40	344.7	0 0.5	DISS	PC) 1	МО	0.3		
	MG	0.5%								

From

То

Litho

344.70 354.50 HSLT

From light brown to dark brown, very fine grained siltstone (partly sandstone), silicification, Qz-PO-Chl-MO VNs/strs (~0.15% MO) and distorted Qz-PY-Chl-MG VNs. @346.66m is 16mm Qz-PO-Chl-MG VN, 40 tca. @347.3m is 18mm Qz-PO-Chl-MO VN, 25 tca. @348.22m contorted Qz-PO-MO VN, 75 tca. @349.46m is 12mm Qz-PO-MO VN, 60 tca. @349.5-349.73m contorted 24mm Qz-PO-Chl-MO VN, 20 tca.

	STRUCTURES												
From	To	Struct	CA	Strain									

344.70 354.50 BDG 50 S 3-4 joints/m

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
344.70 354.50 W S VW - W W - VW														
BIO altn														

	<u>VEINS</u>											
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA					
344.70	354.50	4	8			4	60					
3-4 narrow VN/m												

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% M3%											
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
	344.70 <i>M</i> C	354.50 354.50		VLT	PC) 2	МО	0.15				

From 344.70

To 354.50

Litho HSLT

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 354.50

To 364.85

Litho HSLT

Dark brown siltstone/partly sandstone, strong silicification, Qz-PO-MO strs & distorted Qz-PY-Chl-MG VNs. @362.24m is 56mm dolomite-PY, 65 tca with MO on halo. @363.56m contorted 20mm Qz-Chl-PO-MG VN, 20 tca. @364.85m E.O.H.

STRUCTURES							
From	To	Struct	CA	Strain			

354.50 364.85 BDG 50 S 1-2 joints/m

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
354.50	364.85	-	-	М	S	VW	- V	v w	-	M	l	VV	V	
Chl	altn													

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
354.50	364.85	2	6			2	30
	contorte	ed Qz-(Chl-PO-l	MG VNs			

			M	INE	RAL	IZATI	<u>ION</u>			
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
-	354.50	364.8	5 0.2	VLT	PC) 2	МО	0.02		
	MG VN		ent in c	ontor	ted Q	z-Chl-F	PO-M0	€		

CHU Project - TTM Resources Inc. SAMPLE REPORT

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
44434	4.68	8.23	AND	CORE	0.02	0.001
44435	8.23	11.28	AND	CORE	0.02	0.013
44436	11.28	14.33	AND	CORE	0.02	0.002
44437	14.33	17.37	AND	CORE	0.05	0.005
44438	17.37	20.42	AND	CORE	0.03	0.007
44439	20.42	23.47	AND	CORE	0.01	0.003
44440				DUPLICATE	0.01	0.005
44441	23.47	26.52	AND	CORE	0.02	0.007
44442	26.52	29.57	AND	CORE	0.03	0.005
44443	29.57	32.61	AND	CORE	0.03	0.007
44444	32.61	35.66	AND	CORE	0.03	0.004
44445				BLANK	0	0
44446	35.66	38.71	AND	CORE	0.04	0.002
44447	38.71	41.76	AND	CORE	0.02	0.001
44448	41.76	44.81	AND	CORE	0.04	0.002
44449	44.81	47.85	AND	CORE	0.04	0.002
44450				MoS-1	0.01	0.064
44451	47.85	50.9	AND	CORE	0.04	0.002
44452	50.9	53.95	AND	CORE	0.01	0.003
44453	53.95	57	AND	CORE	0.02	0.003
44454	57	60.05	AND	CORE	0.04	0.004
44455	60.05	63.09	AND	CORE	0.03	0.001
44456	63.09	66.14	AND	CORE	0.03	0.001
44457	66.14	69.19	AND	CORE	0.02	0.009
44458	69.19	72.24	AND	CORE	0.02	0.006
44459	72.24	75.29	AND/BDY	CORE	0.03	0.008
44460	72.2	10.20	7 11 10 7 5 5 1	DUPLICATE	0.04	0.028
44461	75.29	78.33	QFP/AND	CORE	0.02	0.002
44462	78.33	81.38	BDYMZON	CORE	0.03	0.012
44463	81.38	84.43	MZON	CORE	0.03	0.039
44464	84.43	87.48	MZON	CORE	0.03	0.008
44465	01.10	07.10	III.ZOIT	BLANK	0.00	0
44466	87.48	90.53	MZON	CORE	0.03	0.023
44467	90.53	93.57	MZON/HSLT	CORE	0.03	0.019
44468	93.57	96.62	HSLT	CORE	0.01	0.043
44469	96.62	99.67	HSLT	CORE	0.01	0.006
44470	30.02	33.01	HOLI	MoS-1	0.01	0.063
44471	99.67	102.72	HSLT	CORE	0.03	0.003
44472	102.72	105.77	HSLT	CORE	0.03	0.021
44473	102.72	108.81	HSLT	CORE	0.03	0.007
44474	103.77	111.86	HSLT	CORE	0.03	0.007
44475	111.86	114.91	HSLT	CORE	0.02	0.003
44476	114.91	117.96	HSLT	CORE	0.02	0.003
44477	117.96	121.01	HSLT/BDY	CORE	0.02	0.003
44477	121.01	124.05	HSLT	CORE	0.02	0.003
44479	124.05	124.05	HSLT	CORE	0.02	0.013
44479	124.00	141.1	IIOLI	DUPLICATE	0.02	0.031
44481	127.1	120 15	µ01 ⊤		-	
44482		130.15	HSLT	CORE	0.03	0.019
	130.15	133.2	HSLT		0.03	0.02
44483	133.2	136.25	HSLT	CORE	0.03	0.025

March Marc	SAMPLE ID	From	ТО	LITH	TYPE	Cu (%)	Mo(%)
44488		(m)	(m)				
44486		136.25	139.29	HSLT			
44487						-	
44488	44486	139.29	142.34	HSLT	CORE	0.02	0.014
44489	44487	142.34	145.39	HSLT	CORE	0.03	0.029
44490	44488	145.39	148.44	HSLT	CORE	0.02	0.024
44491	44489	148.44	151.49	HSLT	CORE	0.02	0.015
44492	44490				MoS-1	0.01	0.061
44493	44491	151.49	154.53	HSLT	CORE	0.02	0.013
44494	44492	154.53	157.58	HSLT	CORE	0.02	0.022
44495	44493	157.58	160.63	HSLT	CORE	0.03	0.055
44496	44494	160.63	163.68	HSLT	CORE	0.03	0.01
March Marc	44495	163.68	166.73	HSLT	CORE	0.03	0.011
March Marc	44496	166.73	169.77	HSLT	CORE	0.02	0.026
Mathematical Process Mathematical Process	44497	169.77	172.82	HSLT	CORE	0.03	0.015
Mathematical Properties Mathematical Pro	44498	172.82	175.87	HSLT	CORE	0.02	0.04
44501	44499	175.87	178.92	HSLT	CORE	0.02	0.049
44501	44500				DUPLICATE	0.03	0.042
Marie	44501	178.92	181.97	HSLT		0.04	0.142
44503 185.01 188.06 HSLT CORE 0.03 0.027 44504 188.06 191.11 HSLT CORE 0.03 0.022 44505 BLANK 0 0 0 0 0 44506 191.11 194.16 HSLT CORE 0.04 0.035 44507 194.16 197.21 HSLT CORE 0.04 0.098 44508 197.21 200.25 HSLT CORE 0.06 0.111 44509 200.25 203.3 SLST CORE 0.06 0.121 44510 WM6S-1 0.01 0.063 0.111 0.063 0.01 0.063 44511 203.3 206.35 HSLT CORE 0.02 0.039 44512 206.35 209.4 HSLT CORE 0.02 0.048 44513 209.4 212.45 HSLT CORE 0.02 0.048 44514 212.45 215.49<							
44504 188.06 191.11 HSLT CORE 0.03 0.022 44505 BLANK 0 0 0 44506 191.11 194.16 HSLT CORE 0.04 0.035 44507 194.16 197.21 HSLT CORE 0.06 0.111 44508 197.21 200.25 HSLT CORE 0.06 0.111 44509 200.25 203.3 SLST CORE 0.06 0.121 44510 MOS-1 0.01 0.06 0.121 0.04 0.099 44511 203.3 206.35 HSLT CORE 0.02 0.039 44512 206.35 209.4 HSLT CORE 0.05 0.067 44513 209.4 212.45 HSLT CORE 0.02 0.048 44514 212.45 215.49 HSLT CORE 0.02 0.048 44515 215.49 218.54 HSLT CORE 0.							
Harmonian							
44506 191.11 194.16 HSLT CORE 0.04 0.035 44507 194.16 197.21 HSLT CORE 0.06 0.111 44508 197.21 200.25 HSLT CORE 0.06 0.111 44509 200.25 203.3 SLST CORE 0.06 0.121 44510 MoS-1 0.01 0.063 44511 203.3 206.35 HSLT CORE 0.02 0.039 44512 206.35 209.4 HSLT CORE 0.05 0.067 44513 209.4 212.45 HSLT CORE 0.04 0.091 44514 212.45 HSLT CORE 0.02 0.048 44515 215.49 218.54 HSLT CORE 0.02 0.044 44516 218.54 221.59 HSLT CORE 0.02 0.034 44519 221.59 224.64 HSLT CORE 0.02 0.056		.00.00					
44507 194.16 197.21 HSLT CORE 0.04 0.098 44508 197.21 200.25 HSLT CORE 0.06 0.111 44509 200.25 203.3 SLST CORE 0.06 0.121 44510 MoS-1 0.01 0.063 44511 203.3 206.35 HSLT CORE 0.02 0.039 44512 206.35 209.4 HSLT CORE 0.05 0.067 44513 209.4 212.45 HSLT CORE 0.04 0.091 44514 212.45 215.49 HSLT CORE 0.02 0.048 44515 215.49 218.54 HSLT CORE 0.02 0.034 44516 218.54 221.59 HSLT CORE 0.02 0.045 44517 221.59 224.64 HSLT CORE 0.03 0.064 44518 224.64 227.69 HSLT CORE 0.02		191 11	194 16	HSI T			
44508 197.21 200.25 HSLT CORE 0.06 0.111 44509 200.25 203.3 SLST CORE 0.06 0.121 44510 MoS-1 0.01 0.063 44511 203.3 206.35 HSLT CORE 0.02 0.039 44512 206.35 209.4 HSLT CORE 0.05 0.067 44513 209.4 212.45 HSLT CORE 0.04 0.091 44514 212.45 215.49 HSLT CORE 0.02 0.048 44515 215.49 218.54 HSLT CORE 0.02 0.048 44516 218.54 221.59 HSLT CORE 0.02 0.045 44517 221.59 224.64 HSLT CORE 0.03 0.064 44518 224.64 227.69 HSLT CORE 0.03 0.043 44520 DUPLICATE 0.04 0.071 0.04 0.071							
44509 200.25 203.3 SLST CORE 0.06 0.121 44510 MoS-1 0.01 0.063 44511 203.3 206.35 HSLT CORE 0.02 0.039 44512 206.35 209.4 HSLT CORE 0.04 0.091 44513 209.4 212.45 HSLT CORE 0.02 0.048 44514 212.45 215.49 HSLT CORE 0.02 0.048 44515 215.49 218.54 HSLT CORE 0.02 0.034 44516 218.54 221.59 HSLT CORE 0.02 0.045 44517 221.59 224.64 HSLT CORE 0.03 0.064 44518 224.64 227.69 HSLT CORE 0.03 0.043 44519 227.69 230.73 HSLT CORE 0.02 0.056 44520 DUPLICATE 0.04 0.071 0.04 0.071							
44510 MoS-1 0.01 0.063 44511 203.3 206.35 HSLT CORE 0.02 0.039 44512 206.35 209.4 HSLT CORE 0.05 0.067 44513 209.4 212.45 HSLT CORE 0.04 0.091 44514 212.45 215.49 HSLT CORE 0.02 0.048 44515 215.49 218.54 HSLT CORE 0.02 0.034 44516 218.54 221.59 HSLT CORE 0.02 0.045 44517 221.59 224.64 HSLT CORE 0.03 0.064 44518 224.64 227.69 HSLT CORE 0.03 0.043 44519 227.69 230.73 HSLT CORE 0.02 0.056 44520 DUPLICATE 0.04 0.04 0.071 44521 230.73 233.78 HSLT CORE 0.02 0.086							
44511 203.3 206.35 HSLT CORE 0.02 0.039 44512 206.35 209.4 HSLT CORE 0.04 0.067 44513 209.4 212.45 HSLT CORE 0.02 0.048 44514 212.45 215.49 HSLT CORE 0.02 0.048 44515 215.49 218.54 HSLT CORE 0.02 0.034 44516 218.54 221.59 HSLT CORE 0.02 0.045 44517 221.59 224.64 HSLT CORE 0.03 0.064 44518 224.64 227.69 HSLT CORE 0.03 0.043 44518 224.64 227.69 HSLT CORE 0.02 0.056 44519 227.69 230.73 HSLT CORE 0.02 0.056 44520 DUPLICATE 0.04 0.04 0.071 0.071 0.04 0.04 44521 233.78 <td></td> <td>200.20</td> <td>200.0</td> <td>OLO1</td> <td></td> <td></td> <td></td>		200.20	200.0	OLO1			
44512 206.35 209.4 HSLT CORE 0.05 0.067 44513 209.4 212.45 HSLT CORE 0.04 0.091 44514 212.45 215.49 HSLT CORE 0.02 0.048 44515 215.49 218.54 HSLT CORE 0.02 0.034 44516 218.54 221.59 HSLT CORE 0.02 0.045 44517 221.59 224.64 HSLT CORE 0.03 0.064 44518 224.64 227.69 HSLT CORE 0.03 0.043 44519 227.69 230.73 HSLT CORE 0.02 0.056 44520 DUPLICATE 0.04 0.04 0.071 0.04 0.04 0.071 44521 230.73 233.78 HSLT CORE 0.02 0.086 44522 233.78 236.83 HSLT CORE 0.02 0.03 44524 239.88 <td></td> <td>203.3</td> <td>206.35</td> <td>HSLT</td> <td></td> <td></td> <td></td>		203.3	206.35	HSLT			
44513 209.4 212.45 HSLT CORE 0.04 0.091 44514 212.45 215.49 HSLT CORE 0.02 0.048 44515 215.49 218.54 HSLT CORE 0.02 0.034 44516 218.54 221.59 HSLT CORE 0.02 0.045 44517 221.59 224.64 HSLT CORE 0.03 0.064 44518 224.64 227.69 HSLT CORE 0.03 0.043 44519 227.69 230.73 HSLT CORE 0.02 0.056 44520 DUPLICATE 0.04 0.04 0.071 0.04 0.04 0.071 44521 230.73 233.78 HSLT CORE 0.02 0.086 44522 233.78 236.83 HSLT CORE 0.04 0.04 44523 236.83 239.88 HSLT CORE 0.02 0.03 44524 239.88 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
44514 212.45 215.49 HSLT CORE 0.02 0.048 44515 215.49 218.54 HSLT CORE 0.02 0.034 44516 218.54 221.59 HSLT CORE 0.02 0.045 44517 221.59 224.64 HSLT CORE 0.03 0.064 44518 224.64 227.69 HSLT CORE 0.03 0.043 44519 227.69 230.73 HSLT CORE 0.02 0.056 44520 DUPLICATE 0.04 0.071 0.04 0.071 44521 230.73 233.78 HSLT CORE 0.02 0.086 44522 233.78 236.83 HSLT CORE 0.02 0.03 44523 236.83 239.88 HSLT CORE 0.02 0.03 44524 239.88 242.93 HSLT CORE 0.04 0.046 44525 BLANK 0 0							
44515 215.49 218.54 HSLT CORE 0.02 0.034 44516 218.54 221.59 HSLT CORE 0.02 0.045 44517 221.59 224.64 HSLT CORE 0.03 0.064 44518 224.64 227.69 HSLT CORE 0.02 0.056 44519 227.69 230.73 HSLT CORE 0.02 0.056 44520 DUPLICATE 0.04 0.071 0.071 0.04 0.071 44521 230.73 233.78 HSLT CORE 0.02 0.086 44522 233.78 236.83 HSLT CORE 0.02 0.03 44523 236.83 239.88 HSLT CORE 0.02 0.03 44524 239.88 242.93 HSLT CORE 0.04 0.046 44525 BLANK 0 0 0 0 0 0 0 0 0 0							
44516 218.54 221.59 HSLT CORE 0.02 0.045 44517 221.59 224.64 HSLT CORE 0.03 0.064 44518 224.64 227.69 HSLT CORE 0.02 0.043 44519 227.69 230.73 HSLT CORE 0.02 0.056 44520 DUPLICATE 0.04 0.071 0.04 0.071 44521 230.73 233.78 HSLT CORE 0.02 0.086 44522 233.78 236.83 HSLT CORE 0.04 0.04 44523 236.83 239.88 HSLT CORE 0.02 0.03 44524 239.88 242.93 HSLT CORE 0.04 0.046 44525 BLANK 0 0 0 0 0 44526 242.93 245.97 HSLT CORE 0.02 0.035 44528 249.02 252.07 HSLT CO						-	
44517 221.59 224.64 HSLT CORE 0.03 0.064 44518 224.64 227.69 HSLT CORE 0.03 0.043 44519 227.69 230.73 HSLT CORE 0.02 0.056 44520 DUPLICATE 0.04 0.071 44521 230.73 233.78 HSLT CORE 0.02 0.086 44522 233.78 236.83 HSLT CORE 0.04 0.04 44523 236.83 239.88 HSLT CORE 0.02 0.03 44524 239.88 242.93 HSLT CORE 0.04 0.046 44525 BLANK 0 0 0 0 0 44526 242.93 245.97 HSLT CORE 0.02 0.029 44527 245.97 249.02 HSLT CORE 0.02 0.035 44528 249.02 252.07 HSLT CORE 0.02 0.0						-	
44518 224.64 227.69 HSLT CORE 0.03 0.043 44519 227.69 230.73 HSLT CORE 0.02 0.056 44520 DUPLICATE 0.04 0.071 44521 230.73 233.78 HSLT CORE 0.02 0.086 44522 233.78 236.83 HSLT CORE 0.04 0.04 44523 236.83 239.88 HSLT CORE 0.02 0.03 44524 239.88 242.93 HSLT CORE 0.04 0.046 44525 BLANK 0 0 0 0 0 0 44526 242.93 245.97 HSLT CORE 0.02 0.035 44527 245.97 249.02 HSLT CORE 0.02 0.035 44528 249.02 252.07 HSLT CORE 0.02 0.01 44530 MOS-1 0.01 0.062 44531						-	
44519 227.69 230.73 HSLT CORE 0.02 0.056 44520 DUPLICATE 0.04 0.071 44521 230.73 233.78 HSLT CORE 0.02 0.086 44522 233.78 236.83 HSLT CORE 0.04 0.04 44523 236.83 239.88 HSLT CORE 0.02 0.03 44524 239.88 242.93 HSLT CORE 0.04 0.046 44525 BLANK 0 0 0 0 0 44526 242.93 245.97 HSLT CORE 0.02 0.029 44527 245.97 249.02 HSLT CORE 0.02 0.035 44528 249.02 252.07 HSLT CORE 0.02 0.01 44530 MoS-1 0.01 0.062 44531 255.12 258.17 GDIO CORE 0.02 0.01 44532 258.17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
44520 DUPLICATE 0.04 0.071 44521 230.73 233.78 HSLT CORE 0.02 0.086 44522 233.78 236.83 HSLT CORE 0.04 0.04 44523 236.83 239.88 HSLT CORE 0.02 0.03 44524 239.88 242.93 HSLT CORE 0.04 0.046 44525 BLANK 0 0 0 0 0 44526 242.93 245.97 HSLT CORE 0.02 0.029 44527 245.97 249.02 HSLT CORE 0.02 0.035 44528 249.02 252.07 HSLT CORE 0.03 0.013 44529 252.07 255.12 HSLT/GDIO CORE 0.02 0.01 44530 MoS-1 0.01 0.062 44531 255.12 258.17 GDIO CORE 0.02 0.01 44532 258.							
44521 230.73 233.78 HSLT CORE 0.02 0.086 44522 233.78 236.83 HSLT CORE 0.04 0.04 44523 236.83 239.88 HSLT CORE 0.02 0.03 44524 239.88 242.93 HSLT CORE 0.04 0.046 44525 BLANK 0 0 44526 242.93 245.97 HSLT CORE 0.02 0.029 44527 245.97 249.02 HSLT CORE 0.02 0.035 44528 249.02 252.07 HSLT CORE 0.03 0.013 44529 252.07 255.12 HSLT/GDIO CORE 0.02 0.01 44530 MoS-1 0.01 0.062 44531 255.12 258.17 GDIO CORE 0.02 0.01 44532 258.17 261.21 GDIO CORE 0.02 0.011 44533 261.21 264.26 GDIO/HSLT CORE 0.03 0.007 <		221.09	230./3	HOLI			
44522 233.78 236.83 HSLT CORE 0.04 0.04 44523 236.83 239.88 HSLT CORE 0.02 0.03 44524 239.88 242.93 HSLT CORE 0.04 0.046 44525 BLANK 0 0 44526 242.93 245.97 HSLT CORE 0.02 0.029 44527 245.97 249.02 HSLT CORE 0.02 0.035 44528 249.02 252.07 HSLT CORE 0.03 0.013 44529 252.07 255.12 HSLT/GDIO CORE 0.02 0.01 44530 MoS-1 0.01 0.062 44531 255.12 258.17 GDIO CORE 0.02 0.01 44532 258.17 261.21 GDIO CORE 0.02 0.011 44533 261.21 264.26 GDIO/HSLT CORE 0.03 0.007 44534 264.26 267.31 HSLT CORE 0.04 0.03 <td></td> <td>220.72</td> <td>222.70</td> <td>ЦСІТ</td> <td></td> <td></td> <td></td>		220.72	222.70	ЦСІТ			
44523 236.83 239.88 HSLT CORE 0.02 0.03 44524 239.88 242.93 HSLT CORE 0.04 0.046 44525 BLANK 0 0 44526 242.93 245.97 HSLT CORE 0.02 0.029 44527 245.97 249.02 HSLT CORE 0.02 0.035 44528 249.02 252.07 HSLT CORE 0.03 0.013 44529 252.07 255.12 HSLT/GDIO CORE 0.02 0.01 44530 MoS-1 0.01 0.062 44531 255.12 258.17 GDIO CORE 0.02 0.01 44532 258.17 261.21 GDIO CORE 0.02 0.011 44533 261.21 264.26 GDIO/HSLT CORE 0.03 0.007 44534 264.26 267.31 HSLT CORE 0.04 0.03							
44524 239.88 242.93 HSLT CORE 0.04 0.046 44525 BLANK 0 0 44526 242.93 245.97 HSLT CORE 0.02 0.029 44527 245.97 249.02 HSLT CORE 0.02 0.035 44528 249.02 252.07 HSLT CORE 0.03 0.013 44529 252.07 255.12 HSLT/GDIO CORE 0.02 0.01 44530 MoS-1 0.01 0.062 44531 255.12 258.17 GDIO CORE 0.02 0.01 44532 258.17 261.21 GDIO CORE 0.02 0.011 44533 261.21 264.26 GDIO/HSLT CORE 0.03 0.007 44534 264.26 267.31 HSLT CORE 0.04 0.03							
44525 BLANK 0 0 44526 242.93 245.97 HSLT CORE 0.02 0.029 44527 245.97 249.02 HSLT CORE 0.02 0.035 44528 249.02 252.07 HSLT CORE 0.03 0.013 44529 252.07 255.12 HSLT/GDIO CORE 0.02 0.01 44530 MoS-1 0.01 0.062 44531 255.12 258.17 GDIO CORE 0.02 0.01 44532 258.17 261.21 GDIO CORE 0.02 0.011 44533 261.21 264.26 GDIO/HSLT CORE 0.03 0.007 44534 264.26 267.31 HSLT CORE 0.04 0.03							
44526 242.93 245.97 HSLT CORE 0.02 0.029 44527 245.97 249.02 HSLT CORE 0.02 0.035 44528 249.02 252.07 HSLT CORE 0.03 0.013 44529 252.07 255.12 HSLT/GDIO CORE 0.02 0.01 44530 MoS-1 0.01 0.062 44531 255.12 258.17 GDIO CORE 0.02 0.01 44532 258.17 261.21 GDIO CORE 0.02 0.011 44533 261.21 264.26 GDIO/HSLT CORE 0.03 0.007 44534 264.26 267.31 HSLT CORE 0.04 0.03		239.88	242.93	HSLI			
44527 245.97 249.02 HSLT CORE 0.02 0.035 44528 249.02 252.07 HSLT CORE 0.03 0.013 44529 252.07 255.12 HSLT/GDIO CORE 0.02 0.01 44530 MoS-1 0.01 0.062 44531 255.12 258.17 GDIO CORE 0.02 0.01 44532 258.17 261.21 GDIO CORE 0.02 0.011 44533 261.21 264.26 GDIO/HSLT CORE 0.03 0.007 44534 264.26 267.31 HSLT CORE 0.04 0.03							
44528 249.02 252.07 HSLT CORE 0.03 0.013 44529 252.07 255.12 HSLT/GDIO CORE 0.02 0.01 44530 MoS-1 0.01 0.062 44531 255.12 258.17 GDIO CORE 0.02 0.01 44532 258.17 261.21 GDIO CORE 0.02 0.011 44533 261.21 264.26 GDIO/HSLT CORE 0.03 0.007 44534 264.26 267.31 HSLT CORE 0.04 0.03							
44529 252.07 255.12 HSLT/GDIO CORE 0.02 0.01 44530 MoS-1 0.01 0.062 44531 255.12 258.17 GDIO CORE 0.02 0.01 44532 258.17 261.21 GDIO CORE 0.02 0.011 44533 261.21 264.26 GDIO/HSLT CORE 0.03 0.007 44534 264.26 267.31 HSLT CORE 0.04 0.03							
44530 MoS-1 0.01 0.062 44531 255.12 258.17 GDIO CORE 0.02 0.01 44532 258.17 261.21 GDIO CORE 0.02 0.011 44533 261.21 264.26 GDIO/HSLT CORE 0.03 0.007 44534 264.26 267.31 HSLT CORE 0.04 0.03							
44531 255.12 258.17 GDIO CORE 0.02 0.01 44532 258.17 261.21 GDIO CORE 0.02 0.011 44533 261.21 264.26 GDIO/HSLT CORE 0.03 0.007 44534 264.26 267.31 HSLT CORE 0.04 0.03		252.07	255.12	HSLT/GDIO			
44532 258.17 261.21 GDIO CORE 0.02 0.011 44533 261.21 264.26 GDIO/HSLT CORE 0.03 0.007 44534 264.26 267.31 HSLT CORE 0.04 0.03	44530				MoS-1	0.01	0.062
44533 261.21 264.26 GDIO/HSLT CORE 0.03 0.007 44534 264.26 267.31 HSLT CORE 0.04 0.03	44531	255.12	258.17		CORE	0.02	0.01
44534 264.26 267.31 HSLT CORE 0.04 0.03	44532	258.17	261.21	GDIO	CORE	0.02	0.011
	44533	261.21	264.26	GDIO/HSLT	CORE	0.03	0.007
44535 267.31 270.36 HSLT CORE 0.1 0.013	44534	264.26	267.31	HSLT	CORE	0.04	0.03
	44535	267.31	270.36	HSLT	CORE	0.1	0.013

SAMPLE ID From TO LITH TYPE (m) (m) (m) SAMPLE ID FROM TO LITH TYPE CORE	Cu (%)	Mo(%)
44536 270.36 273.41 HSLT CODE		
TT000 210.00 210.41 110L1 CURE	0.05	0.014
44537 273.41 276.45 HSLT CORE	0.02	0.019
44538 276.45 279.5 HSLT CORE	0.02	0.021
44539 279.5 282.55 HSLT CORE	0.02	0.007
44540 DUPLICATE	0.03	0.025
44541 282.55 285.6 HSLT CORE	0.02	0.016
44542 285.6 288.65 HSLT CORE	0.01	0.009
44543 288.65 291.69 HSLT CORE	0.04	0.017
44544 291.69 294.74 HSLT CORE	0.02	0.044
44545 BLANK	0	0
44546 294.74 297.79 HSLT CORE	0.03	0.025
44547 297.79 300.84 HSLT CORE	0.02	0.03
44548 300.84 303.89 HSLT CORE	0.03	0.036
44549 303.89 306.93 HSLT CORE	0.04	0.016
44550 MoS-1	0.01	0.063
44551 306.93 309.98 HSLT CORE	0.07	0.025
44552 309.98 313.03 HSLT CORE	0.07	0.034
44553 313.03 316.08 HSLT CORE	0.03	0.03
44554 316.08 319.13 HSLT/GDIO CORE	0.03	0.005
44555 319.13 322.17 GDIO CORE	0.01	0
44556 322.17 325.22 HSLT CORE	0.04	0.009
44557 325.22 328.27 HSLT CORE	0.04	0.034
44558 328.27 331.32 HSLT CORE	0.04	0.027
44559 331.32 334.37 GDIO CORE	0.03	0.01
44560 DUPLICATE	0.03	0.008
44561 334.37 337.41 GDIO/HSLT CORE	0.03	0.004
44562 337.41 340.46 GDIO CORE	0.02	0.004
	0.02	0.009
44564 343.51 346.56 HSLT CORE	0.04	0.028
44565 BLANK 44566 346.56 349.61 HSLT CORE	0	0 026
	0.03	0.026
44567 349.61 352.65 HSLT/GDIO CORE	0.02	0.006
44568 352.65 355.7 GDIO CORE	0.01	0.003
44569 355.7 358.75 GDIO/HSLT CORE	0.03	0.014
44570 MoS-1	0.01	0.064
44571 358.75 361.8 HSLT CORE	0.03	0.025
44572 361.8 364.85 HSLT CORE	0.03	0.017
44573 364.85 367.89 HSLT CORE	0.02	0.02
44574 367.89 370.94 HSLT CORE	0.04	0.031
44575 370.94 373.99 HSLT CORE	0.1	0.05
44576 373.99 377.04 HSLT CORE	0.11	0.08
44577 377.04 380.09 HSLT CORE	0.09	0.028
44578 380.09 383.13 HSLT CORE	0.02	0.048
44579 383.13 386.18 HSLT CORE	0.06	0.047
44580 DUPLICATE	0.05	0.044
44581 386.18 389.23 HSLT CORE	0.04	0.032
44582 389.23 392.28 HSLT CORE	0.02	0.037
44583 392.28 395.33 HSLT CORE	0.03	0.021
44584 395.33 398.37 HSLT CORE	0.05	0.04
44585 BLANK	0	0
	0.02	0.039
44586 398.37 401.42 HSLT CORE	0.03	0.009

011151515	l -			T. (D.E.	0 (0()	(0.1)
SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
44588	404.47	407.52	HSLT	CORE	0.05	0.044
44589	407.52	410.57	HSLT	CORE	0.03	0.029
44590				MoS-1	0.01	0.062
44591	410.57	413.61	HSLT	CORE	0.04	0.02
44592	413.61	416.66	HSLT	CORE	0.04	0.053
44593	416.66	419.71	HSLT	CORE	0.03	0.033
44594	419.71	422.76	HSLT	CORE	0.04	0.097
44595	422.76	425.81	HSLT	CORE	0.07	0.13
44596	425.81	428.85	HSLT	CORE	0.06	0.02
44597	428.85	431.9	HSLT	CORE	0.04	0.052
44598	431.9	434.95	HSLT	CORE	0.02	0.037
44599	434.95	438	HSLT	CORE	0.04	0.111
44600				DUPLICATE	0.03	0.161
44601	438	441.05	HSLT	CORE	0.16	0.078
44602	441.05	444.09	HSLT	CORE	0.11	0.077
44603	444.09	447.14	HSLT	CORE	0.13	0.058
44604	447.14	450.19	HSLT	CORE	0.13	0.098
44605				BLANK	0	0
44606	450.19	453.24	HSLT	CORE	0.06	0.056
44607	453.24	456.29	HSLT	CORE	0.04	0.021
44608	456.29	459.33	HSLT/GDIO	CORE	0.02	0.08
44609	459.33	462.38	GDIO	CORE	0.04	0.011
44610				MoS-1	0.01	0.07
44611	462.38	465.43	GDIO	CORE	0.04	0.011
44612	465.43	468.48	GDIO	CORE	0.03	0.032

CHU Project - TTM Resources Inc. DRILL HOLE LOG

Signature:	
•	

Initials:

CH0602

To: 3.05 Litho: OB

From: 0.00
Casing/Overburden

	STRU	CTUR	ES			ALTERATION												
From	To	Struct	CA	Strain	From	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR S.								SER				
0.00	3.05			W	0.00	3.05	-			-	-	-	-	-				
	Casing/Overburden				Cas	ing/Overl	burde	n										

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
0.00 3.05 0.01												
Casing/Overburden												

		MINERALIZATION												
4	From	То	PY%	Style	Min	Min%	Min2	M29						
	0.00	3.05	0	-										
	Ca	sing/0	verbu	rden										

From: 4.68 To: 38.72 Litho: AND

Andesite porphyry, core is broken ~5-7%, surface weathering on joints, occasional Qz VNs, feldspar phenocrysts, fine grained DI PY, trace Cpy, silica or/and albite, MO mineralization at 10.7m. @8.23m is 24mm Qz VN, 60 tca. @8.9 is 23mm Qz VN, 65 tca. @10.5 is 26mm Qz VN, 80 tca. @10.67m is 7mm Qz-PY-MO VN, 25 tca. @12.35-13.25m broken core (rubble & fragments). @15.53m is 10mm Qz-PY VN, 75 tca. @19.06m is AB-PY-Bio VN, 75 tca. @23.57m is 6mm coarse grained PY VN, 65 tca. @23.91m is 10mm Qz-Chl VN, 65 tca. Below 27.35m small/tiny MO strs. @28.0-28.31m silica zone. @32.2 is 17mm Qz-PY-MO VN, 80 tca. @32.61- 33.0m broken core, Chl & PY on fracture. @35.25 is 35mm CA VN, 55 tca. @38.2m solid 25mm Qz VN, 55 tca.

STRUCTURES										
From	To	Struct	CA	Strain						

8 38.72 FLW from 4.68 to 14.4 is 5-7% broken core, 5-7%

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						
	I.		l .	l .	L.								

1 70

4.68

38.72

Occasional Qz VNs

From | To | PY% | Style | Min | Min% | Min2 | M2% |

4.68 | 38.72 | 1 | MG | PY | 1 | MO | 0.1 |

MO occurrence

MINERALIZATION

From: 38.72 To: 74.35 Litho: AND

Andesite porphyry, feldspar phenocrysts, siliceous, moderate Chl altn, narrow Qz & AB VNs & strs, casual weak MO (strs & traces). @40.44m is 8mm Qz-PY-BIO VN, 70 tca. @44.42m is 12mm Qz-PY-BIO VN 50 tca. @46.08m solid 41mm Qz-PY-BIO VN, 90 tca. @46.36m is 22mm PY-Qz-BIO VN, 70 tca. @46.78m dispersed 16mm PY-BIO-Qz VN, 75 tca. @48.4-48.8m abundant PY strs (2-4% PY). @52.0m dispersed 15mm PY-Qz-BIO VN, 70 tca. @57.3-57.8m zone with abundant PY strs (3-5% PY). @62.55m is 8mm PY-BIO VN, 55 tca. @71.23m is 7mm PY-BIO VN, 20 tca. @73.35m is 9mm Qz-PY-MO VN, 25 tca.

STRUCTURES										
From	To	Struct	CA	Strain						

	ALTERATION													
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						

I	MINERALIZATION													
	From	To	PY%	Style	Min	Min%	Min2	M2%						

From: 38.72 To: 74.35 Litho: AND

Andesite porphyry, feldspar phenocrysts, siliceous, moderate Chl altn, narrow Qz & AB VNs & strs, casual weak MO (strs & traces). @40.44m is 8mm Qz-PY-BIO VN, 70 tca. @44.42m is 12mm Qz-PY-BIO VN 50 tca. @46.08m solid 41mm Qz-PY-BIO VN, 90 tca. @46.36m is 22mm PY-Qz-BIO VN, 70 tca. @46.78m dispersed 16mm PY-BIO-Qz VN, 75 tca. @48.4-48.8m abundant PY strs (2-4% PY). @52.0m dispersed 15mm PY-Qz-BIO VN, 70 tca. @57.3-57.8m zone with abundant PY strs (3-5% PY). @62.55m is 8mm PY-BIO VN, 55 tca. @71.23m is 7mm PY-BIO VN, 20 tca. @73.35m is 9mm Qz-PY-MO VN, 25 tca.

	STRUCTURES										
From	To	Struct	CA	Strain							
38.72	74.35	FLW		S							

~3 joints per meter

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
38 72	74 35	6	10	15		1	60

 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA
 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%

 74.35
 6
 10
 15
 4 60
 38.72
 74.35
 1
 VLT
 PY
 1
 MO 0.05

 narrow (<10mm)</td>
 Qz VNs & minor PY
 MO <0.1%</td>

From: 74.35

To: 75.05

VS

Litho:

BDY

Olivine porphyritic basalt dyke

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

74.35 75.05 MAS S basalt dyke

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	
7405	75.05														

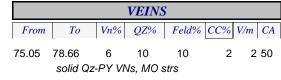
.35 75.05 - - - M - - - - - VW VV phenocrysts of pyroxene

VEINS													
From To Vn% QZ% Feld% C	C% V/m	CA											

74.35 75.05 0.1 5 porphyritic basalt dyke

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%


MINERALIZATION

74.35 75.05 0.1 DISS basalt dyke

From: 75.05 To: 78.66 Litho: QFP/AND

Andesite porphyry, feldspar phenocrysts, siliceous, Qz-PY VNs & MO strs, weak Chl altn. @76.04m is 28 mm Qz-PY VN, 55 tca with MO on edges. @77.0m is 25mm Qz-PY-MO VN, 30 tca. @77.96m is 44mm Qz-PY VN, 90 tca.

	STRU	CTUR	RES							F	4L7	TERA	TIO	N						
From	То	Struct	CA	Strain	From	То	INT	AR	$G \mid C$	THL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	Si
75.05	78.66	MAS	55	М	75.05	78.66	-	-	W	М	-	М	-	VW	-	W	М	М		
		S			Chl a	altn														
	3%	6 ioints																		

PY% Style Min Min% Min2 M2%

From: 78.66 To: 80.90 **BDY** Litho:

Olivine porphyritic basalt dyke

1 1 7		
STRUCTURES	ALTERATION	VEINS MINERALIZATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA From To PY% Style Min Min% Min
78.66 80.90 MAS VS	78.66 80.90 M VW - VW VW basalt dyke	78.66 80.90 0.1 5 78.66 80.90 0.1 FG PY 0.2 basalt dyke basalt dyke
basalt dyke	buoun dyno	Subult dyfto

From: 80.90 To: 92.50 **MZON** Litho:

Drab green monzonite porphyry with DI PY ~1%, Cpy occurrance, MO traces, AB altn. @87.82-88.33m AB-CA-PY zone. Monzonite zone gradational to siltstone bedding. Contact diffuse and irregular.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%
80.90 92.50 FLW 50 S	80.90 92.50 M - M - VW - VW M W	80.90 92.50 2 15 15 1 1 50	80.90 92.50 1 MG PY 1 CC 0.2
4% joints	below 90.5m moderate AB altn	narrow AB & Qz VNs	Cpy & MO present

From: 92.50 To: 119.13 **HSLT** Litho:

Hornfelsed siltstone, Qz-PY veinlets, MO (0.2%), weak BIO & Chl altn, very weak CA & MG. Below 93.5m dominated by AB with MO traces. @95.57m is 12mm Qz-PY VN, 50 tca. @96.24 is 17mm Qz-PY-MO VN, 50 tca. @97.22-97.58m dispersed Qz-PY-BIO VN, 35 tca. @101.38m is 20m Qz-MO VN, 40 tca. @101.66 is 24mm Qz-PY-MO VN, 40 tca. @101.91m is 18mm Qz-PY-MO VN, 50 tca. @101.2m is 11mm Qz-PY-MO VN, 75 tca. Below 103.07-103.36m three 13-17mm Qz-PY-MO VNs, 45-50 tca. @104.57-105.0m significant Qz-PY-MO VN, 40 tca. @105.28m is 85mm Qz-PY-MO VN, 50 tca. @105.76-106.08m dispersed Qz-PY-MO VN, 40 tca. @107.38m is 14mm Qz-PY-MO VN, 45 tca. @110.27m is 10mm Qz-MO VN, 50 tca. @110.4m is 17mm Qz-PY-MO VN, 80 tca. @112.37m is 44mm Qz-PY-MO VN, 45 tca.@113.46m is 15mm Qz-MO VN, 70 tca. @113.59m is 13mm Qz-AB-PY-MO VN, 65 tca. @118.02m is 12mm Qz-PY-MO VN, 40 tca. @118.66m is 20mm Qz-PY-Chl VN, 45 tca.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION					
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%					
92.50 119.13 BDG 50 S	92.50 119.13 M M - M - VW - W M	92.50 119.13 15 15 1 3 50	92.50 119.13 1 VLT PY 1 PY 0.2					
2-3% joints	mod Chl altn, weak BO altn	significant >80mm VNs are present	MO mineralization ~0.1-0.3%					

From: 119.13 To: 120.67 Litho: BDY

Basalt dyke

STRUCTURES	ALTERATION	VEINS	MINERALIZATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%
119.13 120.67 MAS VS	119.13 120.67 VW M VW - VW	119.13 120.67 0.1 5	119.13 120.67 0.2 FG PY 0.2
S	dyke	no VNs	basalt dyke
dyke	•		•

From: 120.67 To: 134.70 Litho: HSLT

Hornfelsed siltstone, structure controlled by Qz-PY+/- Chl (~4% PY), MO (0.5%) present in Qz-PY VNs/strs. @123.32m contorted 30mm Qz-PY VN, 80 tca. @124.45m two 15mm Qz-PY-MO VN, 80 tca. @125.0m is 16m Qz-PY-MO VN, 80 tca. @126.66m is 22mm Qz-PY-MO VN, 40 tca & network of thin Qz-PY-MO VNs. @128.03m is 27mm Qz-PY VN, 60 tca. Below 128.28m core mottled Qz-PY strs/VNs (~0.5% MO). @129.7m solid 57mm Qz-PY-MO VN, 70 tca. @131.12m solid 22mm Qz-PY-MO VN, 80 tca. @131.63m contorted 23mm Qz-PY-MO VN, 90 tca. @132.8m is 21mm Qz-PY-Cpy-BO VN, 70 tca. @133.67m is 26mm Qz-PY-MO VN, 70 tca. @134.5m is 26mm Qz-PY-MO VN, 85 tca.

	STRU	CTUR	ES							AL'	TERA	TIO	N						
From	To	Struct	CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
120.67	134.70	BDG	50	S	120.67	134.70	-	- V	V N	1 -	М	-	VW	-	W		М		
	~2% joints				BIC) altn													

			VEINS	7			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
120.67	134.70	5	15		1	4	50
	Qz-PY-N	10 +C	hl or BIO)			

MINERALIZATION														
From	To	PY%	Style	Min	Min%	Min2	M2%							
120.67	134.7	0 4	۷L٦	ГР	Y 4	МС	0.5							
~0.	5% M	O in th	nis inte	erval										

From: 134.70 To: 146.76 Litho: HSLT

Hornfelsed siltstone with foliation parallel bedding. @135.04m is 14mm Qz-PY-MO VN, 75 tca. From 135.25 to137.28m highly contorted and irregularly mixed lithologies + small breccia zones, AB-Chl altn. @139.54m is 15mm Qz-PY-MO VN, 80 tca. @140.45m is 34mm Qz-PY-MO VN, 65 tca. @140.84m is 30mm Qz-PY-MO VN, 75 tca. @143.21m is 17m Qz-PY-MO VN, 65 tca. @143.77-144.0m breccia & silica. @145.6-145.44m three contorted 14-16mm Qz-PY-MO VNs, 30-80 tca. @146.13-146.31m Qz-PY-Cpy-MO zone.

	STRU	CTUR	ES									ALI	TERA	TIO	N						
From	То	Struct	CA	Strain	F	rom	То	INT	AF	$RG \mid C$	HL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
134.70		BDG 6 joints		S		-	146.76 Chl altn	-	-	VW	M	l -	М	-	VW	-	W		M		

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
134.70	146.76	10	10		1	5	50				

	MINEKALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%				
) 146.7 by pres	•	VLT	ГР	Y 3	PC) 1				

MINEPALIZATION

From: 146.76 To: 150.24 Litho: HSLT

fault zone

Fault zone with ChI, Qz, PY & CA on fracture. @148.82m is 18mm Qz-PY-MO VN, 75 tca.

Chl-CA altn

	STRU	CTUR	ES			ALT					LTERATION								
From	То	Struct	CA	Strain	From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
146.76	150.24	FLT		W	146.76	150.24	-	- 1	ΛN	1 -	W	-	М	-			W		

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		
146.76	150.24	2	2		2	1	80		
traces of Oz & DLPY MO trace									

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%			
146.76	5 150.2	4 1	MG	i P	Y 1					
fault zone with PY & trace of MO on fracture										

From: 150.24 To: 157.58 Litho: HSLT

Hornfelsed siltstone (brittle rock), abundant Qz-PY strs + VNs (~2% PY); CA & Chl on joints. @150.76m is 18mm Qz-PY-MO VN, 70 tca. @150m is 20mm Qz-PY-MO VN, 45 tca. @151.33m is 21mm Qz-PY-MO VN, 65 tca. @154.17m is 24mm Qz-PY-VN, 75 tca. @154.30m is 34mm Qz-PY-MO VN, 45 tca. @155.43-156.05m breccia. dolomite & CA occurrence.

100.00m broodia, adiomito a on occa	nence.		
STRUCTURES	ALTERATION	VEINS	MINERALIZATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%
150.24 157.00 BDG W ~10 joints			
	150.24 157.58 M M - M - M - W	150.24 157.58 6 7 1 5	150.24 157.58 2 DISS PY 2 MO 0.2
	CA-Chl on fracture	4-6 VN/m	PY & MO present

From: 157.58 To: 177.00 Litho: HSLT

Hornfelsed siltstone, structure also controlled by Qz-PY-MO VNs (~2% PY), MO ~0.5%, Chl & BIO altn.@157.16m is 40mm Qz-PY-BIO-MO VN, 45 tca. @163.25m is 28mm PY-Qz VN, 90 tca. @164.64m is 24mm dispersed PY VN, 50 tca. @166.41m knot of Qz-PY-MO veinlets in different orient. @168.27m is 20mm Qz-PY-MO VN, 90 tca. @168.9m contorted 22mm Qz-PY-MO VN, 55 tca. @169.32m is 10mm shear zone (CA-dolomite). @170.91m is 22mm Qz-PY-MO VN, 60 tca. @171.2 m is 16mm Qz-PY-MO VN, 70 tca. @171.34m is 13mm Qz-PY-MO VN, 70 tca. @172.25m is 10mm Qz-AB-PY-MO VN, 70 tca. @174.07m contorted 25mm Qz-PY-MO VN, no orient.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION		
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%		
157.58 177.00 FLW 45 S structure also controlled by Qz-PY-MO VNs	157.58 177.00 W M M M - W W CA-Chl & BIO altn	157.58 177.00 3 5 1 3 50 structure also controlled by Qz-PY- MO VNs	157.58 177.00 2 VLT PY 2 MO 0.5 ~0.5% MO in this interval		

Initials:

From: 177.00 To: 199.60 Litho: HSLT

Hornfelsed siltstone (highly contorted and irregularly mixed zone. Abundant Qz-Py strs & thick Qz-PY VNs (~3% PY), Chl & BIO altn. @177.78m is 12mm QZ-PY-MO VN, 20 tca. @178.0m solid Qz-PY-MO VN, 60 tca. @179.61m is 20mm Qz-PY MO VN, 60 tca. @180.85m solid 13cm Qz-PY-CA-MO VN, 40 tca. @181.4m is 23mm Qz-PY-MO VN, 55 tca. @181.61m is 24mm Qz-BIO-PY-MO, 40 tca. @183.03m is 24mm Qz-PY-MO VN, 80 tca. @183.35m is 27mm Qz-PY VN, 30 tca. @183.52m is 21mm Qz-PY-MO VN, 70 tca. @183.75m contorted 18mm Qz-PY-MO VN, 15 tca. From 184.34m to 184.85m is 20mm Qz-PY-MO VN, 10 tca. @185.33m is 15mm Qz-PY-MO VN, 35 tca. Below 185.7m moderate epidote altn. @185.96-186.53m four 8-11m Qz-PY-MO VN, 50-70 tca. @186.11m solid 52 mm Qz-PY-BIO VN, 70 tca. @188.06-188.32m AB-CA-MO-PY VN, 35 tca. @188.71m contorted 40mm Qz-CA-BIO-PY-MO VN, 40 tca. @190.7m is 13mm Qz-PY-Chl-MO VN, 80 tca. @191.52m is 18mm Qz-PY-MO VN, 60 tca & EPI altn. @192.07m solid 44mm Qz-PY-MO VN, 20 tca with a few subparallel Qz-PY-MO VNs <10mm. From 192.6m to 192.93m lense of Qz-PY-PO-MO VN. @194.0m is 27mmm Qz-PY-Chl VN, 80 tca. @194.95m is 20mm Qz-PY VN, 45 tca with narrow Qz-MO VNs around. @195.26m solid 80mm Qz-PY-MO VN, 75 tca. @196.49m is 13mm Qz-PY-Mo VN, 60 tca. @197.0m is 18mm Qz-PY VN, 70 tca. @197.35m is 20mm Qz-PY-MO VN, 55 tca. @197.86m solid 18mm Qz-PY VN, 70 tca. @198.1m is 15mm Qz-PY VN, 75 tca. @198.47m is 17mm Qz-AB-PY VN, 65 tca; altered thin Qz-MO VNs below. @199.2m solid 52mm Qz-PY VN, 40 tca.

STRUCTURES									
From	To	Struct	CA	Strain					

177.00 199.60 BDG 50 S 3% joints

					ALI	TERA	TIO	V						
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
				•										

177.00 199.60 - - M M - Below 185.7 moderate epidote altn

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			
177.00	199.60	15	6		0.5	3				

177.00 199.60 15 6 0.5 3 2-3 Qz-PY-MO VN/m

MINERALIZATION									
From To PY% Style Min Min% Min2 M2%									

177.00 199.60 2 VLT PY 2 MO 0.5 MO up to ~0.5%

From: 199.60 To: 203.76 Litho: HSLT

Fault zone, ~60% of rock are pieces < 10cm (fragments & gouge), Chl & CA on fracture. @203.89m is 62mm Qz-PY-manganese VN, 55 tca.

I	STRUCTURES								
	From	To	Struct	CA	Strai				

199.60 203.76 FLT fault zone, ~60% are pieces <10cm

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

199.60 203.76 - - - M - W - W - W VW *CA-ChI altn*

			VEINS	3			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
199 60	203 76	0.5	5		1	1	55

99.60 203.76 0.5 5 traces of Qz VNs
 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%

 199.60
 203.76
 0.5
 VLT
 PY
 0.5

0.5-1.0% PY

From: 203.76 To: 225.00 Litho: HSLT

Hornfelsed siltstone, structure controlled Qz-PY+/- ChI (~4% PY), MO (0.5%), thick 10-50cm Qz-PY VNs present, EPI alteration. @204.73m is 15mm Qz-PY-MO VNs, 50 tca. @205.96 is 20mm Qz-PY-MO VN, 50 tca. @206.09m solid 16cm Qz-PY-MO VN, 70 tca. @206.7-207.32m significant Qz-CA-BIO-MO VN, 90 tca. @207.7m dendritic 55mm Qz-PY-MO VN, 60 tca. From 209.62m to 210.25m significant Qz-PY-MO-BIO zone. @211.63m solid 30mm Qz-AB-PY-MO-PO VN, 45 tca. @211.35m is 85mm Qz-PY-MO VN, 70 tca. @213.6m is 53mm Qz-PY-MO VN, 85 tca. From 212.8m to 213.14m three 10-23mm Qz-PY-MO VNs, 50-70 tca. @215.48m is 18mm Qz-PY-MO VN, 60 tca. @215.13m is 45mm Qz-PY-BIO-MO VN, 60 tca. @216.4m dispersed 38mm Qz-PY-MO VN, 40 tca. @216.5-216.6m breccia zone (dolomite & clay). From 216.9-219.13m Qz-PY-MO VNs stockwork with thick 10-17mm VNs (~5-6 VN/m). @219.17m solid 13cm Qz-PY-MO VN, 50 tca. @220.88m two subparallel 20 & 28mm Qz-PY-MO VNs, 50 tca. Below 221.8 stockwork 10-16mm Qz-PY-MO VNs, 35-60 tca. @223.68m solid 10cm Qz-PY-MO VN. 70 tca. @223.85m is 32m Qz-PY-MO VN. 60 tca.From 224.16m to 225.0m two breccia zones with CA VNs.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%
203.76 225.00 BDG 60 M	203.76 225.00 M W - M - W W M	203.76 225.00 8 20 1 4 50	203.76 225.00 3 VLT PY 3 MO 0.5
4% joints, breccia zones	moderate Chl & weak epidote altn	two significant 0.6m VNs present	MO present in Qz VNs <1%

From: 225.00 To: 245.97 Litho: HSLT

Hornfelsed siltstone, zones with Chl altn, thick Qz-PY-MO VNs present, BIO altn, @225.54-228.1m four 14-24mm Qz-PY-MO VNs, 60-70 tca. @228.82m is 20mm Qz-PY-MO VN, 50 tca @229.0-230.0m five 16-20mm Qz-PY MO VNs, 50- 60 tca. @230.0-231.0m six 10-30mm Qz-PY-MO VNs, 30-90 tca. @231.26m contorted 15mm Qz-PY-MO VN, 40 tca. @231.88m is 14mm Qz-PY-MO VN, 50 tca. @232.13m is 66mm Qz-PY-EPI VN, 80 tca. @232.49m is 21mm QZ-PY-MO VN, 70 tca. @234.03m is 24mm Qz-PY-PO-MO VN, 30 tca. @234.24-234.5m zone with thin Qz-PY-MO strs, 40 tca. @234.56m is 20mm, 60 tca. @235.09m is 47mm Qz-AB-PY-MO VN, 70 tca. @235.64m is 18mm Qz-PY-MO VN, 40 tca. @236.14m is 77mm Qz-PY-Chl-MO VN. 90 tca. @236.73m is 34mm Qz-PY-MO VN, 30 tca. @238.11m is 60mm Qz-PY-MO VN, 70 tca. @238.45m is 35mm CA-PY-PO-EPI VN, 35 tca. @239.04m is 15mm Qz-PY-MO-EPI VN, 90 tca. @240.1m1 is 11mm Qz-PY-AB VN, 50 tca. @240.74m is 46mm Qz-PY-MO VN, 50 tca. @241.2 mis 30mm Qz-PY-MO-Cpy VN, 40 tca. @241.4m is 14mm Qz-PY-MO VN, 80 tca. @242.33 is 22mm Qz-PY-BIO VN, 40 tca & 10mm CA VN, 15 tca. @242.86m solid 120mm Qz-PY-BIO VN, 65 tca. @243.65m contorted 20mm Qz-PY-MO VN, 50 tca. @244.34m dispersed 38mm Qz-PY-MO VN, 50 tca. @244.62m another contorted Qz-PY-MO, 50 tca. @245.85m is 56mm Qz-PY-MO VN, 65 tca.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%
225.00 245.97 BDG 50 S	225.00 245.97 M W M - W W M	225.00 245.97 15 15 1 4 50	225.00 245.97 3 - PY 23 MO 0.5
2-3 % joints	epidote altn	thick Qz Vns present	Cpy pesent in small amount

Initials:

To: 253.55 From: 245.97 Litho: **HSLT**

Hornfelsed siltstone, fine grained, siliceous, thick Qz-PY-MO VNs, weak epidote altn & CA VN. @246.03m dispersed 30mm Qz-PO-MO VN, 30 tca. @246.53m is 52mm Qz-PY-MO VN, 50 tca. @246.8m is 14mm Qz-PY-MO VN, 60 tca. @247.21-247.47m network 10-20mm Qz-PY-MO VNs in different orientation. @247.88-248.7m stockwork Qz-PY-MO VN 8-18mm, 50-75 tca. @249.6-249.73m shear zone. @249.83m is 44mm Qz-PY-MO VN, 45 tca. @250.18m is 20mm Qz-PY-MO VN, 30 tca. @250.57-251.08m significant Qz-PY-PO-MO-BIO VN, 30 tca. MO strs crosscut the VN, @251.55m is 20mm Qz-PY-MO VN, 40 tca. @251.8m solid 40mm Qz-PY-MO VN, 70 tca. @252.2m is 12mm Qz-PY-MO VN, 55 tca. @252.55-252.7m knot 12mm Qz-PY-MO VNs. @253.4m is 13mm Qz-PY-MO VN, 50 tca.

STRUCTURES									
From	To	Struct	CA	Strain					

ALTERATION INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

MINERALIZATION To PY% Style Min Min% Min2 M2% From

245.97 253.55 BDG 40 M Chl present on fracture

245.97 253.55 - - W W - M - W VW W very weak epidote altn.

245.97 253.55 15 20 1 3 50 significan 0.5m VN present at 250.57m

Vn%

To

From

VEINS

OZ%

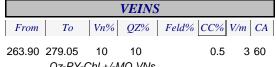
Feld% CC% V/m CA

245.97 253.55 3 VLT ST 2.5 PO significant Qz-PY-MO VN, tiny MO strs crosscut the VN, ~1% MO in this VN

From: 253.55 To: 263.90 Litho: **GDIO**

White granodiorite porphyry, mica, matrix is AB-plagioclase feldspa, BIO alteration, fine grained DI PY, BB & strs, no molybdenite

STRUCTURES	ALTERATION	
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR S.	ER
253.55 263.90 MAS VS	253.55 263.90 M - M - VW VW W M W	
S	BO & AB altn	
dyke		


			VEINS	3			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
253.55	263.90	2	20	20		1	40
	narrow (Qz VNs	6				

	M	INEI	RALI	ZAI	TON		
From	То	PY%	Style	Min	Min%	Min2	M2%
253.55	263.9	0 0.5	DIS	S P	Y 0.5	5	
fin	e grain	ed DI	PΥ				

From: 263.90 To: 279.05 **HSLT** Litho:

Hornfelsed siltstone fine grained with thick Qz-PY-MO VNs, weak Chl altn. Below 263.9m fusion zone with abundant Qz-PY strs & VNs, 0.5% MO. @265.47m is 60mm Qz-PY-Chl VN, 25 tca. @265.92m is 11mm Qz-PY-Chl VN, 75 tca offset by another 10mm Qz-PY VN, 75 tca. @267.71-269.14m hybrid/fusion andesidt zone & 28cm tuff, Chl-BO altn, subparallel Qz strs, 70-60 tca. @269.4-269.62m knot of Qz-PY-MO VNs. @270.36m dispersed 34mm Qz-PY-MO VN, 35 tca. @270.86m is 11mm Qz-PY-BIO-MO VN, 10 tca. @271.5m is 30mm Qz-PY-BIO VN, 80 tca. @272.45-272.75m four 13-24mm Qz-PY-MO VNs, 40-75 tca. @ 272.8m solid 66mm Qz-PY-MO VN, 55 tca. From 273.44-275.4m stockwork Qz-PY-Chl VNs +/- MO, different orient. @275.4m is 71mm Qz-PY-MO VN, 70 tca with anastomosing veinlets radiating from the main VN. @275.71m is 26mm Qz-PY-MO VN, 80 tca. @276.86m is 24mm Qz-MO VN, 65 tca. From 277.0 to 277.43m stockwork of five Qz-PY-Chl VNs (10-19mm), 50-60 tca. @277.59m is 26mm Qz-PY-Chl VN, 60 tca. @278.28m is 46mm Qz-PY-PO-MO VN 45 tca.

STRUCTURES	ALTERATION
From To Struct CA Strain	$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $
263.90 279.05 BDG 65 M	263.90 279.05 W M - M - VW - W W

	M	INEI	RALI	ZAI	TON		
From	To	PY%	Style	Min	Min%	Min2	M2%
263.90	279.0	5 2	٧L٦	ΓР	Y 2	PC	0.5
~0	.5 MO	in this	inter	val			

Initials:

From: 263.90

To: 279.05

Litho: HSLT (Continued from previous page)

STRUCTURES

From To Struct CA Strain

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER From

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION To PY% Style Min Min% Min2 M2%

From: 279.05

To: 289.60

Litho:

HSLT

Fine grained hornfelsed siltstone, foliation parallel bedding, Qz-PY+/- MO VNs, weak BO & Chl. @279.6m is 30mm QZ-PY VN, 50 tca. @275.6-281.1m stockwork 10-13mm Qz-PY+/-MO VNs, 60-80 tca. @282.64m is 23mm Qz-PY-CA-BIO VN, 15 tca. @282.85m is 14 mm Qz-PY-MO VN, 65 tca. @286.44m is 14mm Qz-PY-MO VN. 70 tca. @286.9m is Qz-PY-MO VN. 18mm Qz-PY-MO VN. 40 tca. @287.86m is 14mm Qz-PY-MO VN. 50 tca.

ALTERATION

STRUCTURES From To Struct CA Strain

HSLT

To | INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER 279.05 289.60 - - VW - - W - VW - VW

VEINS QZ% Feld% CC% V/m CA From ToVn%279.05 289.60 2 60 5

one VN/m

MINERALIZATION From To PY% Style Min Min% Min2 M2%

279.05 289.60 1 VLT PY 0.5 MO 0.1 MO 0.1-0.2%

3-5% joints

279.05 289.60 BDG

weak Chl & BO altn

From: 289.60 To: 306.50 Litho:

Fault zone with (~60 % are pieces <10cm & 2% gouge), Chl, CA & PY clusters on fracture, weak BO altn. @290.1-290.26m shear zone. @291.12m is 18mm Qz-PY-Chl VN. 25 tca. @291.37m is 24mm Qz-PY-BO VN. 60 tca. @291.52m is 76mm Qz-PY-Chl-MO VN. 45 tca. @291.69m is 5cm shear zone. @292.0-290.15m two 15mm Qz-PY-MO VNs, 60-65 tca. @292.23m contorted 32mm Qz-PY-Chl-MO VN, 70 tca. @294.62m contorted 18mm Qz-PY VN, 50 tca. @296.4-297.0m zone with a few contorted narrow Qz-CA-PY-MO VN, 60 tca. @300.0 is 32mm Qz-PY-MO VN, 65 tca. @301.72m is 16mm Qz-PY-BO-MO VN, 90 tca. @302.72m is 30mm Qz-PY-Chl VN. 90 tca. @304,32m is 24mm Qz-PY-Chl VN. 80 tca. @304,7-304,83m fragments & CA altn.

STRUCTURES

To Struct CA Strain 289.60 306.50 FLT

> fault, 60% are pieces <10 cm

ALTERATION

INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER 289.60 306.50 - - W - - W - W

VEINS ToVn% QZ% Feld% CC% V/m CA From289.60 306.50 5 2 3 45

Qz-PY VNs +/-MO

MINERALIZATION From To PY% Style Min Min% Min2 M2% 289.60 306.50 1 VLT PY 1 MO 0.2 MO presen in Qz VNs in small amount

From: 306.50

To: 307.50

Litho:

HSLT

Fault zone with one 22mm Qz-PY-Cpy-MO VN, 50 tca at 307.2m; PY clusters & CA on fracture.

CA-Chl altn

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TERA	TIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	3			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

I		M	INE	RALI	ZAT	TON		
	From	То	PY%	Style	Min	Min%	Min2	M2%

From: 306.50 To: 307.50 Litho: HSLT

Fault zone with one 22mm Qz-PY-Cpy-MO VN, 50 tca at 307.2m; PY clusters & CA on fracture.

weak AB

 STRUCTURES

 From
 To
 Struct
 CA
 Strain

 306.50
 307.50
 FLT
 W

fragments, PY on fracture

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 306.50
 307.50
 W
 W

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 306.50
 307.50
 3
 4
 0.5
 50

 one
 Qz-PY-Cpy-MO VN
 50
 0.5
 0.5
 0.5

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%

 306.50
 307.50
 1
 VLT
 PY
 1
 CC
 0.2

 fault with a trace of Qz-PY-Cpy-MO VN

From: 307.50 To:

To: 317.40

Litho:

HSLT

Hornfelsed siltstone with CA-Chl, Qz-PY +/- MO VNs, (~2% PY), moderate BIO & weak epidote altn. @307.5m anastomosing 7mm Chl-PY VN. @309.16m is 24mm Qz-PY-MO VN, 75 tca. @314.05-314.72m fault zone (fragments & gouge). @317.12m is 15mm Qz-PY-MO VN, 30 tca. Contact to granodiorite @317.4m is 15 tca.

From To Struct CA Strain

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

MINERALIZATION

From To PY% Style Min Min% Min2 M2%

307.50 317.14 - - M - - M - M VW VW W
Chl & BIO altn

307.50 317.40 BDG 50 W below 314.05m fault zone ~68cm

307.50 317.40 2 Qz-PY-MO VNs 2 1 40

307.50 317.40 2 VLT PY 2 MO 0.3 MO present

From: 317.40 To: 322.40 Litho: GDIO

VS

Dark porphyritic granodiorite, coarse feldspar phenocrysts, AB blotches, fine grained DI PY. Contact to siltstone @322.4m is 40 tca. @323.58m is 22mm Qz-PY-MO VN. 40 tca with a few narrow subparallel Qz-PY-PO VNs

 STRUCTURES

 From
 To
 Struct
 CA
 Strain

strong massive zone

317.40 322.40 MAS

From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

317.40 322.40 - - - M - W - - - VW M W *BIO altn*

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 317.40
 322.40
 0.1
 20
 20

 no VNs
 20
 20
 20

| MINERALIZATION | From | To | PY% | Style | Min | Min% | Min2 | M2% | | 317.40 322.40 | 1 | DISS | PY | 1 | 0.5-1.0% | DI PY |

To: 333.66 **HSLT** From: 322.40 Litho:

Brown fine grained hornfelsed siltstone with moderate Chl altn, casual Qz VNs (one vein per meter), 1-2% PY, weak CA & epidote; MO in minor amount. Also thin 3-4mm Qz-PY-MO strs present in this interval. @324.35m is 10mm Qz-PY-MO VN, 60 tca. @325.0m two contorted 6mm Qz-PY-MO VNs, 40 & 80 tca. @326.62m contorted 11mm Qz-PY-MO VN, 50 tca with subparallel 2mm MO strs & epidote altn around. @328.37m is 26mm Qz-PY-MO VN, 40 tca. @328.6m is 30mm Qz-PY-MO-EPI VN. 40 tca. @329,2-329.4m contorted Qz-PY-MO VN. 50 tca with subparallel Qz-MO strs & EPI altn. @330.1m is 20mm Qz-PY-MO VN. 75 tca. @330.33m is 24mm Qz-PY-MO-Chl VN, 40 tca with subparallel 14mm Qz-PY-MO VN. From 330.85m to 331.56m pinkish porphyritic microdiorite with BIO. From 333.06m to 333.64m stockwork 7-11mm Qz-PY-MO VNs, 25-50 tca. CON=40 tca.

STRUCTURES									
From	To	Struct	CA	Strain					
322.40	333.66	BDG		М					

3-4% of joints

ALTERATION INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER 322.40 333.66 - - VW W - M - VW W W M W EPI altn

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
322.40	333.66	3	5		1	1	50					
	one vein	per m	eter									

MINERALIZATION From To PY% Style Min Min% Min2 M2% 322.40 333.66 2 VLT PY 2 MO 0.1 minor MO

From: 333.66 To: 335.88 **GDIO** Litho:

Porphyritic granodiorite, feldspar phenocrysts & DI PY. CONTACT to siltstone @335.88m =40 tca

STRUCTURES							AL	TERA	TIO	N						
From To Struct CA Stre	'n	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
333.66 335.88 MAS VS S granodiorite dyke		333.66 BIO a		-		- N	1 -	· W	-	VW	W	W	М	W		

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
333.66	335.88	0.1	20	20							
	granodio	rite dy	⁄ke								

	M	INEI	RALI	ZAT	ION		
From	To	PY%	Style	Min	Min%	Min2	M2%
333.66	335.8	8 1	MG	i P	Y 1		
DI	PY						

From: 335.88 To: 337.30 Litho: **HSLT**

Brown hornfelsed siltstone with moderate Chl altn. @335.0m is 16mm Qz-PY-MO VN, 40 tca. @337.94m solid 54mm Qz-Py-BIO VN, 45 tca. CN=70 tca.

													-,						,-	,
	STRU	CTUR	ES								AL	TER.	ATIO	N						
From	To	Struct	CA	Strain	Fı	om	То	INT	ARC	G CHI	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
335.88	337.30	BDG		М	335.8	8	337.30	-	-	W	M ·	- W	-	VW	-			W		
					(Chl	altn													

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
335.88	337.30	4	6		1	1	50					
	Qz-PY-N	10 VN	s, one V	N/m								

From: 337.30 To: 339.04 Litho: **GDIO**

Porphyritic granodiorite, feldspar phenocrysts, dark hornblende, DI PY & AB. CONTACT to siltstone @337.3m is 70 tca. Also @337.3m present 48mm Qz-PY VN, 70 tca.

	STRUCTURES										
From	To	Struct	CA	Strain							

	ALTERATION														
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

			VEINS	3			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA

I	MINERALIZATION													
	From	То	PY%	Style	Min	Min%	Min2	M2%						

From: 337.30 To: 339.04 Litho: GDIO

Porphyritic granodiorite, feldspar phenocrysts, dark hornblende, DI PY & AB. CONTACT to siltstone @337.3m is 70 tca. Also @337.3m present 48mm Qz-PY VN, 70 tca.

	STRU	CTUR	ES								AL'	TERA	TIO	N						
From	To	Struct	CA	Strain		From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR S	SER
337.30	339.04	MAS		VS	3	37.30	339.04	-		- 8	; -	М	-	-	-	VW	М	VW		
		S				wea	k BIO altr	1												
	liorite d																			

<i>MINERALIZATION</i>
From To PY% Style Min Min% Min2 M2%
337.30 339.04 0.5 FG PY 0.5 DI PY in minor amount

From: 339.04 To: 350.10 Litho: HSLT

Hornfelsed siltstone with Qz-PY+/-MO VNs. @339.54m is 12mm Qz-PY VN, 85 tca. @340.11-340.53m is 14mm Qz-PY-BIO-MO-ChI VN along the core. @341.95-342.14m stockwork Qz-PY VNs +/- MO, 40-60 tca. @342.34m contorted 15mm Qz-AB-MO VN, 60 tca. @343.41m is 20mm Qz-PY-ChI-BIO VN, 50 tca. @346.7-347.0m stockwork dispersed AB-Qz-PY-BIO VNs, 50 tca. @347.55m contorted 25mm Qz-AB-PY-EPI VN, no orient. @349.35m is 20mm Qz-PY-MO VN, 50 tca with subparallel strs Qz-PY-MO strs. From 349.6 to 350.1m five subparallel dispersed Qz-PY-MO VNs, 35 tca

STRUCTURES					AL	TERA	TIO	N					
From To Struct CA Strain	From To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO FLF	PYR	SER
339.04 350.10 BDG S 1-2% joints	339.04 350.10 weak EPI alt		- \	N N	1 -	M	-	VW	VW	W	W		

			VEINS	3									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						
339.04	350.10	3	6		1	3							
narrow Qz-PY +/-MO veins													

	M	INEI	RALI	ZAT	TON									
From	To	PY%	Style	Min	Min%	Min2	M2%							
339.04	350.1	0 2	۷L٦	ΓР	Y 2	МС	0.1							
М	MO present in minor amount													

From: 350.10 To: 357.08 Litho: GDIO

Porphyritic granodiorte, feldspar phenocrysts, dark mica & hornblende, DI PY, AB blotches, casual Qz VNs, weak MG. @350.34m is 16mm Qz-PY VN, 40 tca. @350.52m is 15mm Qz-PY-Chl VN, 50 tca. 353.75m is 23mm Qz-PY VN, 55 tca. Contact to siltstone at 357.08m is 70 tca.

	STRU	CTUR	RES								AL'	TER.A	TIO	N						
From	То	Struct	CA	Strain	Fre	m	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
350.10	357.08	MAS		VS	350.1	0	357.08	-	-	- N	1 -	W	-	VW		W	М	W		
	S granodiorite dyke					10,	ALB & I	MG al	tn											

VEINS													
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						
350.10	357.08	1	20	25									
Qz-PY VNs													

From: 357.08 To: 370.90 Litho: HSLT

Brown hornfelsed siltstone with some highly mixed and iregular zones (mixed andesite?) with foliation parallel bedding. Moderate Chl altn, Qz VNs (one vein per meter), pyrrhotite & PY BB, 2% PY, weak CA & epidote, MO in minor amount. @357.93m is 60mm Qz-PY-MO VN, 55 tca. @359.72m is 80mm Qz-PY-Chl VN, 90 tca with anastomosing veinlets & MO traces. @361.17m contorted 25mm Qz-PY-MO-EPI VN, 50 tca. @361.66-361.82m network of 4-7mm Qz-PY-MO VNs in different orient. @362.8-363.2m network of 5-10mm Qz-AB-PY-MO VNs. @364.23m contorted 30mm Qz-PY VN, 45 tca. @365.97m dispersed 13mm Qz-PY-MO VN, 30 tca with two subparallel 4mm & 7mm Qz-PY-MO VNs. @366.53m is 24mm Qz-PY VN, 30 tca. From 367.6m to 367.36m monzonite porphyry, fine grained DI PY, potassic feldspar, BIO, contact to monzonite =50 tca. @368.05m narrow 7mm Qz-PY-MO VN, 40 tca. @368.57-367.05m is 16mm Qz-AB-PY-EPI-MO-BIO VN, 20 tca.

STRUCTURES							AL'	TERA	TIO	N						
From To Struct CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
357.08 370.90 BDG 1-2% joints	S		370.90 ak epidote		_ '	W N	Л -	- M	-	VW	VW			W		

				VEINS	5] [M	INEI	RALI	ZAI	TION		
?	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		From		To	PY%	Style	Min	Min%	Min2	M2%
	357.08	370.90	4	5			1	50		357.0	8(370.9	0 2	۷L٦	ΓР	Y 2	MC	0.
	Qz-PY-MO Vns +/-epidote									٨	10	prese	ent in	Qz VI	vs & s	strs		

From: 370.90 To: 380.00 Litho: HSLT

Brown hornfelsed siltstone, ChI altn, Qz-PY-MO VNs, pyrrhotite & PY BB, 2-3% PY, weak CA & epidote. From 370.9m to 371.86m significant narrow Qz-PY-Cpy-MO-ChI VN along the core axis (up to ~1% MO). @373.21m is 11mm Qz-PY-MO VN, 40 tca. @374.32m is 16mm Qz-PY-MO VN, 30 tca. @374.96m is 14mm Qz-PY-MO, 85 tca. @375.92-377.1m significant zone contorted Qz-PY-MO VNs in different orient, (up to ~1% MO in this interval). @378.95m is 17mm Qz-PY MO VN, 50 tca. @379.52m is 28mm Qz-PY-MO-ChI VN, 75 tca.

	STRU	CTUR	ES									4	ALT	TERA	TIO	N						
From	То	Struct	CA	Strain	Ī	From	То	-	INT	AR	$G \mid C$	ΉL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
370.90	380.00 19	BDG % joint		М	3		380.00 k Chl al		-	-	VW	М	-	М	-	VW	VW	W		W		

			VEINS	3			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
370.90	380.00 <i>Qz-PY-N</i>	6 10 VN	6 's		1	1	70

	M	INEI	RALI	ZA1	TON		
From	To	PY%	Style	Min	Min%	Min2	M2%
370.90	380.0	0 3	۷L٦	ΓР	Y 3	PC	0.5
tv	vo sign	ificant	MO z	ones	up to	1% M)

From: 380.00 To: 400.00 Litho: HSLT

Brown hornfelsed siltstone well foliated, Chl altn, Qz-PY-MO VNs, MO present in thin Qz strs (>0.5% MO in this interval) & 2% PY; CA & epidote present. @383.73m is 22mm Qz-PY-Chl-MO VN, 35 tca. @385.07m is 23mm Qz-PY-MO VN, 90 tca. Below 385.22m stockwork of Qz-PY-Chl-MO VNs (10-13mm), 70-80 tca. @385.65m is 40mm Qz-PY-MO-EPI, 30 tca. @386.52m is 24mm Qz-PY-MO VN, 50 tca. @387.85m solid 20m Qz-PY-MO VN, 20 tca. @389.0m dispersed 4mm Qz-PY-MO VN, 30 tca. @390.04m solid 48 mm Qz-PY-PO-MO VN, 35 tca. @391.45m is 24mm Qz-PY-AB-EPI VN, 45 tca. @391.73m is 33mm Qz-PY-AB-MO VN, 40 tca. @393.48m solid 84mm Qz-PY-MO VN, 40 tca. @394.66-394.84m dispersed Qz-PY-MO, 60 tca. @397.12-397.55m fault zone (fragmets). @397.6 is 21mm Qz-PY-MO VN, 45 tca. @398.5m Qz-PY-MO VN, 60 tca. @399.42 is 26mm Qz-PY-MO VN, 55 tca.

	STRU	CTUR	ES			
From	To	Struct	CA	Strain	From	

					AL'	TERA	TIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA

I		M	INEI	RALI	ZAI	ION		
	From	To	PY%	Style	Min	Min%	Min2	M2%

Initials:

From: 380.00 To: 400.00 Litho: HSLT

Brown hornfelsed siltstone well foliated, Chl altn, Qz-PY-MO VNs, MO present in thin Qz strs (>0.5% MO in this interval) & 2% PY; CA & epidote present. @383.73m is 22mm Qz-PY-Chl-MO VN, 35 tca. @385.07m is 23mm Qz-PY-MO VN, 90 tca. Below 385.22m stockwork of Qz-PY-Chl-MO VNs (10-13mm), 70-80 tca. @385.65m is 40mm Qz-PY-MO-EPI, 30 tca. @386.52m is 24mm Qz-PY-MO VN, 50 tca. @387.85m solid 20m Qz-PY-MO VN, 20 tca. @389.0m dispersed 4mm Qz-PY-MO VN, 30 tca. @390.04m solid 48 mm Qz-PY-PO-MO VN, 35 tca. @391.45m is 24mm Qz-PY-AB-EPI VN, 45 tca. @391.73m is 33mm Qz-PY-AB-MO VN, 40 tca. @393.48m solid 84mm Qz-PY-MO VN, 40 tca. @394.66-394.84m dispersed Qz-PY-MO, 60 tca. @397.12-397.55m fault zone (fragmets). @397.6 is 21mm Qz-PY-MO VN, 45 tca. @398.5m Qz-PY-MO VN, 60 tca. @399.42 is 26mm Qz-PY-MO VN, 55 tca.

	STRU	CTUR	ES							AL'	TERA	TIO	N						
From	To	Struct	CA Str	ain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
380.00	400.00	BDG	Ş	3	380.00	400.00	-	- \	v n	Λ -	. М	-	VW	VW	VW		М		

			VEINS	5					M	INE	RALI	ZAT	TION		
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	From	To	PY%	Style	Min	Min%	Min2	M2%
380.00	400.00	1	5			1	40	380.00	400.0	0 2	۷L٦	ΓР	Y 3	PC	0.5
	thin Qz s	strs wit	th MO ty		0.3	3-0.5%	МО								

From: 400.00 To: 422.00 Litho: HSLT

Chl & EPI altn

thin 1-3mm strs contain MO

Hornfelsed siltstone with fault zones and brittle core, moderate CA altn, weak Chl, Qz-PY-MO VNs, (1-2% PY). Network of thin Qz strs contains MO. @430.30-400.8m fault zone (fragments). @401.68-403.77m fault (fragments & gouge). @403.75m is 55mm Qz-PY-MO VN, 45 tca. @404.5m is 36mm Qz-AB-PY-PO-MO-Cpy VN, 40 tca. @404.05m is 58mm Qz-PY-MO VN, 50 tca. @407.34m is 26mm Qz-PY-MO VN, 35 tca. @408.36m is 40mm Qz-PY-MO-EPI VN, 25 tca with subparallel strs. @410.61m is 24mm Qz-PY-MO VN, 40 tca. @410.75m is 15mm Qz-PY-MO VN, 40 tca. @411.04m is 14mm Chl-PY-Qz-BIO VN, 25 tca. @418.0m is 12mm Qz-PY-MO VN, 20 tca. @420.48m is 24mm Qz-Py-MO VN with subparallel 12mm Qz-PY-MO VN, 35 tca. @421.0m is 32mm Qz-PY-MO VN, 90 tca. @421.35m is 20 mm Qz-PY-MO VN, 40 tca. @421.45-422.0m granodiorite porphyry with DY PY, Qz-MO strs.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%
400.00 422.00 BDG M	400.00 422.00 W - M VW VW VW W W W	400.00 422.00 5 7 2 2	400.00 422.00 2 VLT PY 2 MO 0.3
fault zones present	BIO altn	strs contain MO	0.2-0.5% MO

From: 422.00 To: 438.00 Litho: HSLT

Hornfelsed siltstone, Qz-PY-MO veinlets, abundant Qz-MO strs, weak BIO, CA, Chl & potassic altn, MO ~0.5%. @422.18m is 18mm Qz-PY-MO VN, 80 tca. @422.27m contorted 16mm Qz-PY-MO VN, 40 tca with veinlets radiating from the main vein. @422.95-424.44m are seven 10-15mm Qz-PY-MO VNs in different orient. @424.84m is 30mm Qz-PY-MO VN, 65 tca. @425.57m contorted 12mm Qz-PY-MO VN, no orient. @425.91-426.1m three subparallel 10-22mm Qz-PY-MO VNs, 80 tca. @426.78m is 34mm Qz-PY-MO-Chl VN, 30 tca. @427.73m is 30mm Qz-PY-MO VN, 85 tca. @427.85-428.7m fusion zone with Qz-PY-MO-EPI (0.5% MO in this interval). @429.73-430.1m fusion zone with Qz-PY-MO-EPI, (0.3- 0.5% MO in this intarval). @430.12m is 30mm Qz-PY-MO VN, 30 tca. @430.64-431.0m contorted 22mm Qz-PY-MO VN along the core. @431.18m is 15mm Qz-PY MO VN, 30 tca with subparallel 10m Qz-BIO-PY-MO VN. @433.37m is 22mm Qz-PY-MO VN, 45 tca with a few subparallel 7-10mm Qz-PY-MO VNs. @434.72m is 16mm Qz-PY-MO VN, 30 tca. @435.32-435.7m contorted 12mm Qz-PY-MO, 90 tca. @437.12-437.43m layered zone with 20mm Qz-PY-MO VN, 50 tca. @437.5-438.0m monzonite porphyry with weak potassic alth

	STRU	CTUR	ES							AL'	TERA	TIO	N						
From	To	Struct	CA	Strain	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
422.00	438.00	BDG	35	S	422.00	438.00	-	- \	v v	٧ -	М	W	VW	-	W	W	М		
	22.00 438.00 BDG 35 S ~2% JOINTS					ak potassi	c altn												

			VEINS	S] [M.	INEI	RALI	ZAI	TON		
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		From	To	PY%	Style	Min	Min%	Min2	M2%
422.00	438.00	4	10	2	1	3	35		422.00	438.0	0 2	۷L٦	- Р.	Y 2	PC	0.5
	abundar	nt Qz-N			abı	ındanı	Qz st	rs cor	ntain	МО						

From: 438.00 To: 458.80 Litho: HSLT

Hornfelsed siltstone, fine grained, siliceous, Qz-PY-MO veinlets & network abundant Qz-MO strs (MO ~0.5%), weak BIO, CA, EPI, & ChI altn. @438.3 m solid 24mm Qz-PY-MO VN, 30 tca. @438.62 is 24mm Qz-PY-MO VN, 75 tca with subparallel strs. @440.0-44.12 silica with PY BB. @442.33 is 14mm Qz-PY-MO VN, 65 tca. @443.5-444.66 stockwork Qz-PY-MO VNs (10-13mm) with abundant strs in different orient. @445.0 is 20mm Qz-PY-MO VN, 40 tca. @445.12 is 20mm Qz-PY-MO VN, 35 tca. @445.36 is 15mm Qz-PY-PO-BIO-MO VN, 50 tca. @447.02 is 24mm Qz-PY-MO VN, 35 tca. @447.37-447.53 silica with PY blotches. @449.44 contorted 16mm Qz-PY-CA-MO VN along the core. @450.93 is 30mm Qz-PY-MO VN, 30 tca. @451.70 is 14mm Qz-PY-MO VN, 60 tca. @451.15-452.6 reddish monzonite porphyry with MO strs. @354.44 contact siltstone to granodiorite =45 tca. @455.44-455.1 granodiorite dyke. @455.9m 14mm Qz-CA-PY-MO VN, 35 tca. @456.71 is 17mm Qz-PY-MO VN, 50 tca. @457.55 solid 65mm Qz-PY-MO VN, 45 tca. Below 457.75 stockwork 12-18mm Qz-PY-MO VNs, 45-85 tca. @458.8 contact to siltstone =45 tca.

STRUCTURES	ALTERATION	VEINS	MINERALIZATION
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER	From To Vn% QZ% Feld% CC% V/m CA	From To PY% Style Min Min% Min2 M2%
	438.00 458.80 W M - M VW VW VW W M	438.00 458.80 7 15 5 1 4 35	438.00 458.80 2 VLT PY 2 PO 0.5
2% joints	weak EPI altn	network Qz-PY-MO strs	network Qz strs contain MO

CH0602 Initials:

From: 458.80 To: 468.48 Litho: GDIO

rock is hard

Porphyritic granodiorite, feldspar phenocrysts, AB blotches, fine grained DI PY & BB, very weak EPI, Qz-PY strs, MO <0.1%. @460.3m is 24mm Qz-PY VN, 25 tca. @462.18m is 14m Qz-PY VN, 25 tca. @463.0m is 35mm Qz-PY-EPI VN, 45 tca. @465.72-645.5m silstone with Qz-PY-EPI-CA-ChI & MO str. @468.14m is 12mm Qz-BIO VN, 50 tca. @468.48m E.O.H.

STRUCTURES	ALTERATION			
From To Struct CA Strain	From To INT ARG CHL SIL PHY PRY POT CC EP BIO	FLP PYR SER		
458.80 468.48 MAS VS	458.80 468.48 VW M - W VW VW W M M EPI altn	W		

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		
458.80	468.48	2	20	20	1	0.5	60		
Qz-PY VNs present									

MINERALIZATION									
From To PY% Style Min Min% Min2 M2%									
458	458.80 468.48 0.5 DISS PY 0.5 MO 0.01								
	very weak MO								

CHU Project - TTM Resources Inc. SAMPLE REPORT

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
44201	2.45	5.49	AND	CORE	0.004	0.000
44202	5.49	8.53	AND	CORE	0.005	0.000
44203	8.53	11.58	AND	CORE	0.004	0.000
44204	11.58	14.63	AND	CORE	0.008	0.000
44205	11.58	14.63		BLANK	0.000	0.000
44206	14.63	17.06	AND	CORE	0.002	0.000
44207	17.06	20.73	AND	CORE	0.004	0.000
44208	20.73	23.78	AND	CORE	0.010	0.000
44209	23.78	26.83	AND	CORE	0.006	0.000
44210	23.78	26.83		MoS-1	0.011	0.065
44211	26.83	29.87	AND	CORE	0.009	0.000
44212	29.87	32.92	AND	CORE	0.007	0.000
44213	32.92	35.97	AND	CORE	0.010	0.000
44214	35.97	39.01	AND	CORE	0.006	0.000
44215	39.01	42.06	QFP/AND	CORE	0.009	0.000
44216	42.06	45.11	QFP/AND	CORE	0.003	0.000
44217	45.11	48.16	QFP/AND	CORE	0.007	0.000
44218	48.16	51.21	AND	CORE	0.019	0.000
44219	51.21	54.25	AND	CORE	0.004	0.000
44220	51.21	54.25		DUPLICATE	0.006	0.000
44221	54.25	57.3	AND	CORE	0.011	0.000
44222	57.3	60.35	AND	CORE	0.012	0.000
44223	60.35	63.4	AND	CORE	0.009	0.000
44224	63.4	66.45	QFP/AND	CORE	0.007	0.000
44225	63.4	66.45		BLANK	0.000	0.000
44226	66.45	69.49	QFP/AND	CORE	0.004	0.000
44227	69.49	72.15	QFP/AND	CORE	0.004	0.000
44228	72.15	75.59	QFP/AND	CORE	0.005	0.000
44229	75.59	78.64	QFP/AND	CORE	0.009	0.000
44230	75.59	78.64		MoS-1	0.012	0.065
44231	78.64	81.69	QFP/AND	CORE	0.004	0.000
44232	81.69	84.73	QFP/AND	CORE	0.007	0.000
44233	84.73	87.78	AND	CORE	0.009	0.000
44234	87.78	90.83	AND	CORE	0.009	0.000
44235	90.83	93.88	AND	CORE	0.008	0.000
44236	93.88	96.93	AND	CORE	0.007	0.000
44237	96.93	99.97	AND	CORE	0.017	0.000
44238	99.97	103.02	AND	CORE	0.009	0.000
44239	103.02	106.07	AND	CORE	0.007	0.000
44240	103.02	106.07		DUPLICATE	0.009	0.000

SAMPLE ID	From	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
44241	(m) 106.07	(m) 109.12	AND	CORE	0.007	0.000
44242	109.12	112.17	AND	CORE	0.010	0.000
44243	112.17	115.21	AND	CORE	0.008	0.000
44244	115.21	118.26	AND	CORE	0.007	0.000
44245	115.21	118.26		BLANK	0.001	0.000
44246	118.26	121.31	AND	CORE	0.006	0.000
44247	121.31	124.36	AND	CORE	0.008	0.000
44248	124.36	127.41	AND	CORE	0.010	0.000
44249	127.41	130.35	AND	CORE	0.043	0.000
44250	127.41	130.35		MoS-1	0.013	0.061
44251	130.35	133.5	QFP/AND	CORE	0.017	0.000
44252	133.5	136.55	QFP/AND	CORE	0.015	0.000
44253	136.55	139.6	QFP/AND	CORE	0.022	0.000
44254	139.6	142.65	QFP/AND	CORE	0.009	0.000
44255	142.65	145.69	QDP/QFP	CORE	0.004	0.000
44256	145.69	148.74	QDP/QFP	CORE	0.008	0.000
44257	148.74	151.79	QDP/QFP	CORE	0.005	0.000
44258	151.79	154.84	QDP/QFP	CORE	0.011	0.000
44259	154.84	157.89	QDP/QFP	CORE	0.020	0.000
44260	154.84	157.89		DUPLICATE	0.027	0.000
44261	157.89	160.93	QDP/QFP	CORE	0.013	0.000
44262	160.93	163.98	QDP/QFP	CORE	0.007	0.000
44263	163.98	167.03	QDP/QFP	CORE	0.009	0.000
44264	167.03	170.08	ADY	CORE	0.011	0.000
44265	170.08	173.13		BLANK	0.000	0.000
44266	170.08	173.13	QFP/AND	CORE	0.006	0.000
44267	173.13	176.17	QFP/AND	CORE	0.009	0.000
44268	176.17	179.22	QFP/AND	CORE	0.032	0.000
44269	179.22	182.27	QFP/AND	CORE	0.007	0.000
44270	179.22	182.27		MoS-1	0.011	0.063
44271	182.27	185.32	QFP/AND	CORE	0.008	0.000
44272	185.32	188.37	QFP/AND	CORE	0.012	0.000
44273	188.37	191.42	QFP/AND	CORE	0.011	0.000
44274	191.42	194.46	QFP/AND	CORE	0.007	0.000
44275	194.46	197.51	QFP/AND	CORE	0.011	0.000
44276	197.51	200.56	QFP/AND	CORE	0.007	0.000
44277	200.56	203.61	QFP/AND	CORE	0.010	0.000
44278	203.61	206.65	QFP/AND	CORE	0.006	0.000
44279	206.65	209.7	QFP/AND	CORE	0.010	0.000
44280	206.65	209.7		DUPLICATE	0.032	0.000
44281	209.7	212.75	QFP/AND	CORE	0.017	0.001

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
44282	212.75	215.8	QFP/AND	CORE	0.010	0.000
44283	215.8	218.85	QFP/AND	CORE	0.012	0.000
44284	218.85	221.9	QFP/AND	CORE	0.005	0.000
44285	218.85	221.9		BLANK	0.000	0.000
44286	221.9	224.94	QFP/AND	CORE	0.006	0.000
44287	224.94	227.99	QFP/AND	CORE	0.003	0.000
44288	227.99	231.04	QFP/AND	CORE	0.004	0.000
44289	231.04	234.09	QFP/AND	CORE	0.006	0.000
44290	231.04	234.09		MoS-1	0.011	0.061
44291	234.09	237.13	AND	CORE	0.014	0.000
44292	237.13	240.18	AND	CORE	0.017	0.000
44293	240.18	243.23	SLST	CORE	0.006	0.001
44294	243.23	246.28	SLST	CORE	0.006	0.000
44295	246.28	249.33	SLST	CORE	0.005	0.000
44296	249.33	252.37	SLST	CORE	0.006	0.000
44297	252.37	255.42	SLST	CORE	0.006	0.001
44298	255.42	258.47	SLST	CORE	0.006	0.001
44299	258.47	261.52	ARG	CORE	0.006	0.001
44300	258.47	261.52		DUPLICATE	0.011	0.000
44301	261.52	264.56	ARG	CORE	0.007	0.001
44302	264.56	267.61	ARG	CORE	0.014	0.001
44303	267.61	270.66	ARG	CORE	0.007	0.003
44304	270.66	273.71	DYKE	CORE	0.007	0.000
44305	273.71	276.76		BLANK	0.000	0.000
44306	273.71	276.76	ARG	CORE	0.005	0.000
44307	276.76	279.81	ARG	CORE	0.006	0.001
44308	279.81	282.85	ARG	CORE	0.010	0.002
44309	282.85	285.9	ARG	CORE	0.012	0.002
44310	285.9	285.9		MoS-1	0.011	0.061
44311	285.9	288.95	ARG	CORE	0.015	0.003
44312	288.95	292	ARG	CORE	0.009	0.003
44313	292	295.05	ARG	CORE	0.016	0.003
44314	295.05	298.09	ARG	CORE	0.011	0.004
44315	298.09	301.14	ARG	CORE	0.013	0.002
44316	301.14	304.19	ARG	CORE	0.011	0.003
44317	304.19	307.24	ARG	CORE	0.007	0.002
44318	307.24	310.29	ARG	CORE	0.010	0.003
44319	310.29	313.33	ARG	CORE	0.010	0.004
44320	310.29	313.33		DUPLICATE	0.018	0.008
44321	313.33	316.38	ARG	CORE	0.009	0.002
44322	316.38	319.43	ARG	CORE	0.011	0.003

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
44323	319.43	322.48	ARG	CORE	0.012	0.007
44324	322.48	325.53	ARG	CORE	0.021	0.007
44325	325.53	328.57	GDIO	CORE	0.020	0.006
44326	328.57	331.62	HLST	CORE	0.038	0.013
44327	331.62	334.67	HLST	CORE	0.013	0.011
44328	334.67	337.72	HLST	CORE	0.014	0.017
44329	337.72	340.76	HLST	CORE	0.024	0.025
44330	340.76	343.81		MoS-1	0.011	0.062
44331	340.76	343.81	HLST	CORE	0.014	0.023
44332	343.81	346.86	HLST	CORE	0.016	0.034
44333	346.86	349.91	HLST	CORE	0.009	0.009
44334	349.91	352.96	HLST	CORE	0.010	0.013
44335	352.96	356	HLST/DYKE	CORE	0.026	0.017
44336	356	359.05	HLST	CORE	0.017	0.016
44337	359.05	362.1	HLST	CORE	0.013	0.014
44338	362.1	365.15	HLST	CORE	0.024	0.014
44339	365.15	368.2	HLST	CORE	0.017	0.010
44340	365.15	368.2		DUPLICATE	0.026	0.015
44341	368.2	371.25	HLST	CORE	0.017	0.041
44342	371.25	374.29	HLST	CORE	0.021	0.026
44343	374.29	377.34	ADY/HLST	CORE	0.012	0.016
44344	377.34	380.39	HLST	CORE	0.021	0.021
44345	380.39	383.44		BLANK	0.000	0.000
44346	380.39	383.44	HLST	CORE	0.026	0.024
44347	383.44	386.49	HLST	CORE	0.000	0.000
44348	386.49	389.54	HLST	CORE	0.029	0.022
44349	389.54	392.58	HLST	CORE	0.022	0.024
44350	389.54	392.58		MoS-1	0.011	0.065
44351	392.58	395.63	HLST	CORE	0.019	0.019
44352	395.63	398.68	HLST	CORE	0.024	0.029
44353	398.68	401.73	HLST	CORE	0.032	0.062
44354	401.73	404.77	HLST	CORE	0.023	0.037
44355	404.77	407.82	HLST	CORE	0.014	0.013
44356	407.82	410.87	HLST	CORE	0.020	0.037
44357	410.87	413.92	HLST	CORE	0.017	0.043
44358	413.92	416.97	HLST	CORE	0.032	0.068
44359	416.97	420.01	HLST	CORE	0.048	0.059
44360	416.97	420.01		DUPLICATE	0.074	0.044
44361	420.01	423.06	DYKE	CORE	0.026	0.046
44362	423.06	426.11	DYKE/GDIO	CORE	0.029	0.065
44363	426.11	429.16	GDIO	CORE	0.033	0.051

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
44364	429.16	432.21	GDIO/HLST	CORE	0.038	0.035
44365	429.16	432.21		BLANK	0.001	0.000
44366	432.21	435.25	HLST	CORE	0.025	0.042
44367	435.25	438.3	HLST	CORE	0.018	0.024
44368	438.3	441.34	HLST	CORE	0.018	0.032
44369	441.35	444.4	HLST/GDIO	CORE	0.025	0.034
44370	441.35	444.4		MoS-1	0.011	0.061
44371	444.4	447.45	GDIO	CORE	0.024	0.022
44372	447.45	450.49	GDIO	CORE	0.026	0.063
44373	450.49	453.54	GDIO	CORE	0.047	0.021
44374	453.54	456.59	GDIO	CORE	0.036	0.024
44375	456.59	459.64	HSLT	CORE	0.018	0.051
44376	459.64	462.69	HSLT	CORE	0.022	0.044
44377	462.69	465.73	HSLT	CORE	0.027	0.054
44378	465.73	468.78	HSLT	CORE	0.026	0.024
44379	468.78	471.83	HSLT	CORE	0.029	0.026
44380	468.78	471.83		DUPLICATE	0.051	0.023
44381	471.83	474.88	GDIO	CORE	0.028	0.029
44382	474.88	477.93	GDIO	CORE	0.016	0.031
44383	477.93	480.97	GDIO	CORE	0.013	0.017
44384	480.97	484.02	GDIO	CORE	0.019	0.011
44385	480.97	484.02		BLANK	0.000	0.000
44386	484.02	487.07	GDIO	CORE	0.019	0.014
44387	487.07	490.12	GDIO	CORE	0.027	0.013
44388	490.12	493.16	GDIO	CORE	0.030	0.063
44389	493.16	496.21	GDIO	CORE	0.053	0.068
44390	493.16	496.21		MoS-1	0.010	0.063
44391	496.21	499.26	GDIO	CORE	0.031	0.032
44392	499.26	502.31	HSLT/GDIO	CORE	0.061	0.063
44393	502.31	505.36	GDIO	CORE	0.014	0.006
44394	505.36	508.41	GDIO	CORE	0.050	0.029
44395	508.41	511.45	GDIO	CORE	0.029	0.036
44396	511.45	514.5	GDIO	CORE	0.028	0.027
44397	514.5	517.55	GDIO	CORE	0.038	0.026
44398	517.55	520.6	GDIO	CORE	0.037	0.042
44399	520.6	523.65	GDIO	CORE	0.058	0.065
44400	520.6	523.65		DUPLICATE	0.068	0.136
44401	523.65	526.69	HSLT	CORE	0.048	0.100
44402	526.69	529.74	HSLT/MZON	CORE	0.047	0.129
44403	529.74	532.79	MZON	CORE	0.075	0.039
44404	532.79	535.84	MZON	CORE	0.082	0.077

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
44405	532.79	535.84		BLANK	0.001	0.000
44406	535.84	538.89	MZON	CORE	0.053	0.136
44407	538.89	541.93	MZON	CORE	0.091	0.081
44408	541.93	544.98	MZON	CORE	0.082	0.077
44409	544.98	548.03	MZON	CORE	0.040	0.071
44410	544.98	548.03		MoS-1	0.011	0.061
44411	548.03	551.08	MZON	CORE	0.066	0.128
44412	551.08	554.13	MZON	CORE	0.056	0.113
44413	554.13	557.17	MZON	CORE	0.070	0.098
44414	557.17	560.22	MZON	CORE	0.052	0.072
44415	560.22	563.27	MZON	CORE	0.064	0.105
44416	563.27	566.32	MZON	CORE	0.068	0.064
44417	566.32	569.37	MZON	CORE	0.068	0.138
44418	569.37	572.41	MZON	CORE	0.110	0.128
44419	572.41	575.46	MZON	CORE	0.186	0.118
44420	572.41	575.46		DUPLICATE	0.257	0.156
44421	575.46	578.51	MZON	CORE	0.105	0.177
44422	578.51	581.56	MZON	CORE	0.080	0.164
44423	581.56	584.61	MZON	CORE	0.064	0.123
44424	584.61	587.65	HSLT	CORE	0.061	0.109
44425	584.61	587.65		BLANK	0.001	0.000
44426	587.65	590.7	HSLT	CORE	0.043	0.088
44427	590.7	593.75	HSLT	CORE	0.046	0.078
44428	593.75	596.8	HSLT	CORE	0.045	0.055
44429	596.8	599.85	HSLT	CORE	0.027	0.042
44430	596.8	599.85		MoS-1	0.011	0.062
44431	599.85	602.89	HSLT	CORE	0.026	0.058
44432	602.89	605.94	HSLT	CORE	0.028	0.050
44433	605.94	609.6	HSLT	CORE	0.027	0.039

CHU Project - TTM Resources Inc. SAMPLE REPORT

SAMPLE ID	From	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45381	(m) 6.1	(m) 8.23	AND	CORE	0.030	0.02
45382	8.23	11.28	AND	CORE	0.020	0.012
45383	11.28	14.33	AND	CORE	0.010	0.013
45384	14.33	17.37	AND	CORE	0.020	0.015
45385	17.37	20.42	AND	CORE	0.050	0.102
45386	20.42	23.47	AND	CORE	0.030	0.007
45387	23.47	26.52	AND	CORE	0.030	0.002
45388	26.52	29.57	AND	CORE	0.030	0.008
45389	29.57	32.61	AND	CORE	0.040	0.033
45390	32.61	32.61	AND	MoS-1	0.010	0.064
45391	32.61	35.66	AND	CORE	0.020	0.043
45392	35.66	38.71	AND	CORE	0.020	0.04
45393	38.71	40.14	AND	CORE	0.020	0.055
45394	40.14	41.14	GDIO	CORE	0.020	0.006
45395	41.14	41.76	AND	CORE	0.060	0.014
45396	41.76	41.76	AND	BLANK	0.000	0
45397	41.76	44.81	AND	CORE	0.050	0.015
45398	44.81	45.77	GDIO	CORE	0.050	0.141
45399	45.77	46.4	AND	CORE	0.030	0.014
45400	46.4	46.4	GDIO	DUPLICATE	0.110	0.024
45401	46.4	48.79	GDIO	CORE	0.020	0.001
45402	48.79	50.9	AND	CORE	0.020	0.006
45403	50.9	53.95	AND	CORE	0.020	0.014
45404	53.95	56.1	AND	CORE	0.020	0.018
45405	56.1	56.1	AND	BLANK	0.000	0
45406	56.1	56.92	GDIO	CORE	0.030	0.008
45407	56.92	59.42	GDIO	CORE	0.030	0.032
45408	59.42	61	GDIO	CORE	0.000	0.001
45409	61	63.09	GDIO	CORE	0.010	0
45410	63.09	63.09	GDIO	MoS-1	0.010	0.065
45411	63.09	66.14	GDIO	CORE	0.000	0
45412	66.14	69.19	GDIO	CORE	0.000	0
45413	69.19	72.24	GDIO	CORE	0.000	0
45414	72.24	75.29	GDIO	CORE	0.000	0
45415	75.29	78.5	GDIO	CORE	0.000	0.001
45416	78.5	80.3	AND	CORE	0.030	0.042
45417	80.3	82.96	GDIO	CORE	0.000	0
45418	82.96	85.3	GDIO	CORE	0.000	0
45419	85.3	87.48	AND	CORE	0.050	0.017
45420	85.3	87.48	AND	DUPLICATE	0.040	0.016
45421	87.48	90.11	AND	CORE	0.050	0.031
45422	90.11	90.53	AND	CORE	0.050	0.355
45423	90.53	93.05	AND	CORE	0.030	0.015
45424	93.05	95.58	QFP	CORE	0.000	0.001
45425	95.58	95.58	QFP	BLANK	0.000	0
45426	95.58	96.23	QFP	CORE	0.040	0.004
45427	96.23	99	QFP	CORE	0.010	0
45428	99	100.01	QFP	CORE	0.020	0.003
45429	100.01	102.72	AND	CORE	0.050	0.033
45430	102.72	102.72	AND	MoS-1	0.010	0.063

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45431	102.72	105.77	AND	CORE	0.040	0.019
45432	105.77	108.81	AND	CORE	0.050	0.049
45433	108.81	111.86	AND	CORE	0.030	0.013
45434	111.86	114.91	AND	CORE	0.040	0.013
45435	114.91	115.61	AND	CORE	0.030	0.183
45436	115.61	117.96	AND	CORE	0.020	0.003
45437	117.96	118.66	AND	CORE	0.020	0.011
45438	118.66	121	AND	CORE	0.020	0.019
45439	121	124.05	AND	CORE	0.030	0.014
45440	121	124.05	AND	DUPLICATE	0.040	0.024
45441	124.05	127.1	AND	CORE	0.050	0.043
45442	127.1	130.15	AND	CORE	0.020	0.07
45443	130.15	132.22	AND	CORE	0.020	0.017
45444	132.22	134.06	AND	CORE	0.040	0.023
45445	134.06	134.06	AND	BLANK	0.000	0
45446	134.06	136.25	AND	CORE	0.060	0.059
45447	136.25	139.29	AND	CORE	0.080	0.023
45448	139.29	141	AND	CORE	0.060	0.037
45449	141	141.38	AND	CORE	0.040	0.031
45450	141.38	141.38	AND	MoS-1	0.010	0.061
45451	141.38	143.79	AND	CORE	0.050	0.021
45452	143.79	145.39	AND	CORE	0.040	0.018
45453	145.39	148.44	AND	CORE	0.040	0.019
45454	148.44	150.41	AND	CORE	0.060	0.016
45455	150.41	152.23	AND	CORE	0.040	0.039
45456	152.23	154.88	AND	CORE	0.050	0.096
45457	154.88	157	GDIO	CORE	0.010	0.002
45458	157	158.26	GDIO	CORE	0.010	0.001
45459	158.26	160.52	AND	CORE	0.070	0.049
45460	158.26	160.52	AND	DUPLICATE	0.090	0.045
45461	160.52	161.86	AND	CORE	0.060	0.052
45462	161.86	163	AND	CORE	0.050	0.043
45463	163	164	AND	CORE	0.040	0.018
45464	164	166.73	AND	CORE	0.060	0.048
45465	166.73	166.73	AND	BLANK	0.000	0
45466	166.73	169.77	AND	CORE	0.050	0.022
45467	169.77	172.58	AND	CORE	0.040	0.031
45468	172.58	174.4	AND	CORE	0.060	0.024
45469	174.4	176	GDIO	CORE	0.000	0
45470	176	176	GDIO	MoS-1	0.010	0.062
45471	176	178.61	GDIO	CORE	0.000	0.001
45472	178.61	180.6	AND	CORE	0.050	0.022
45473	180.6	181.4	AND	CORE	0.060	0.262
45474	181.4	183.09	AND	CORE	0.020	0.03
45475	183.09	186.11	AND	CORE	0.020	0.049
45476	186.11	188.06	AND	CORE	0.020	0.013
45477	188.06	191.11	GDIO	CORE	0.000	0
45478	191.11	192.17	GDIO	CORE	0.000	0.001
45479	192.17	193.1	AND	CORE	0.010	0.019
45480	192.17	193.1	AND	DUPLICATE	0.020	0.026
45481	193.1	196.1	AND	CORE	0.010	0.043
45482	196.1	198.06	AND	CORE	0.010	0.081
				ANTOLIMITED		

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45483	198.06	200.06	GDIO	CORE	0.010	0.006
45484	200.06	201.31	GDIO	CORE	0.000	0
45485	201.31	201.31	GDIO	BLANK	0.000	0
45486	201.31	204.31	AND	CORE	0.010	0.023
45487	204.31	206.1	AND	CORE	0.020	0.025
45488	206.1	209.1	AND	CORE	0.030	0.053
45489	209.1	212	AND	CORE	0.010	0.029
45490	212	212	AND	MoS-1	0.010	0.064
45491	212	215	AND	CORE	0.010	0.057
45492	215	218	AND	CORE	0.010	0.034
45493	218	220.33	AND	CORE	0.000	0.033
45494	220.33	223.33	AND	CORE	0.000	0.007
45495	223.33	225.4	AND	CORE	0.000	0.004
45496	225.4	227.52	AND	CORE	0.000	0.015
45497	227.52	230.52	AND	CORE	0.010	0.022
45498	230.52	232.65	AND	CORE	0.000	0.006
45499	232.65	234.17	AND	CORE	0.020	0.000
45500	232.65	234.17	AND	DUPLICATE	0.020	0.029
			AND			0.004
45501	234.17	236.15		CORE	0.050	
45502		239.09	GDIO	CORE	0.000	0
45503	239.09	239.8	GDIO	CORE	0.000	0
45504	239.8	240.32	GDIO	CORE	0.010	0
45505	240.32	240.32	GDIO	BLANK	0.000	0
45506	240.32	243.26	GDIO	CORE	0.000	0
45507	243.26	245.97	AND	CORE	0.010	0.017
45508	245.97	247.34	AND	CORE	0.010	0.016
45509	247.34	250.24	AND	CORE	0.090	0.019
45510	250.24	250.24	AND	MoS-1	0.010	0.064
45511	250.24	250.65	AND	CORE	0.010	0.044
45512	250.65	252.07	AND	CORE	0.060	0.037
45513	252.07	254.98	AND	CORE	0.050	0.054
45514	254.98	255.37	AND	CORE	0.100	0.054
45515	255.37	256.17	AND	CORE	0.050	0.022
45516	256.17	256.65	AND	CORE	0.110	0.019
45517	256.65	258.17	AND	CORE	0.060	0.008
45518	258.17	261.21	AND	CORE	0.070	0.021
45519	261.21	264.26	AND	CORE	0.110	0.022
45520	261.21	264.26	AND	DUPLICATE	0.100	0.022
45521	264.26	267.31	AND	CORE	0.090	0.017
45522	267.31	270.06	AND	CORE	0.090	0.01
45523	270.06	271.53	AND	CORE	0.060	0.029
45524	271.53	273.41	AND	CORE	0.060	0.07
45525	273.41	273.41	AND	BLANK	0.000	0
45526	273.41	276.45	AND	CORE	0.090	0.03
45527	276.45	279.5	AND	CORE	0.050	0.022
45528	279.5	282.55	AND	CORE	0.040	0.041
45529	282.55	285.6	AND	CORE	0.060	0.009
45530	285.6	285.6	AND	MoS-1	0.010	0.009
45530	285.6	287.13	AND	CORE	0.070	0.003
			HSLT	CORE		
45532 45533	287.13	288.65			0.050	0.022
4:00:33	288.65	291.69	HSLT	CORE	0.030	0.013

	_					
SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45535	294.74	297.79	HSLT	CORE	0.020	0.021
45536	297.79	300.84	HSLT	CORE	0.020	0.027
45537	300.84	303.89	HSLT	CORE	0.020	0.014
45538	303.89	306.93	HSLT	CORE	0.030	0.051
45539	306.93	309.49	HSLT	CORE	0.030	0.047
45540	306.93	309.49	HSLT	DUPLICATE	0.000	0.001
45541	309.49	309.98	QFP	CORE	0.000	0.001
45542	309.98	313.03	QFP	CORE	0.000	0.001
45543	313.03	316.08	QFP	CORE	0.000	0
45544	316.08	316.84	QFP	CORE	0.000	0.001
45545	316.84	316.84	QFP	BLANK	0.000	0
45546	316.84	319.75	HSLT	CORE	0.020	0.036
45547	319.75	322.17	HSLT	CORE	0.020	0.017
45548	322.17	323.97	HSLT	CORE	0.040	0.017
45549	323.97	327	HSLT	CORE	0.040	0.03
45550	327	327	HSLT	MoS-1	0.010	0.061
45551	327	330.04	HSLT	CORE	0.040	0.017
45552	330.04	331	HSLT	CORE	0.020	0.098
45553	331	334	HSLT	CORE	0.020	0.08
45554	334	336.5	HSLT	CORE	0.030	0.007
45555	336.5	339	HSLT	CORE	0.020	0.011
45556	339	340.46	HSLT	CORE	0.020	0.009
45557	340.46	343.51	HSLT	CORE	0.020	0.013
45558	343.51	346.56	HSLT	CORE	0.020	0.024
45559	346.56	349.61	HSLT	CORE	0.030	0.012
45560	346.56	349.61	HSLT	DUPLICATE	0.030	0.037
45561	349.61	352.65	HSLT	CORE	0.020	0.009
45562	352.65	355.7	HSLT	CORE	0.020	0.021
45563	355.7	358.75	HSLT	CORE	0.010	0.02
45564	358.75	361.8	HSLT	CORE	0.020	0.016
45565	361.8	361.8	HSLT	BLANK	0.000	0
45566	361.8	364.66	HSLT	CORE	0.020	0.026
45567	364.66	367	GDIO	CORE	0.000	0
45568	367	370	GDIO	CORE	0.000	0
45569	370	373	GDIO	CORE	0.000	0
45570	373	373	GDIO	MoS-1	0.010	0.064
45571	373	376	GDIO	CORE	0.000	0
45572	376	377.63	GDIO	CORE	0.000	0
45573	377.63	378.72	GDIO	CORE	0.000	0
45574	378.72	380.09	GDIO	CORE	0.010	0
45575	380.09	382.22	GDIO	CORE	0.000	0
45576	382.22	385.15	AND	CORE	0.040	0.017
45577	385.15	386.78	AND	CORE	0.030	0.014
45578	386.78	387.38	AND	CORE	0.010	0.079
45579	387.38	388.3	AND	CORE	0.010	0.051
45580	387.38	388.3	AND	DUPLICATE	0.020	0.027
45581	388.3	389.23	AND	CORE	0.020	0.01
45582	389.23	392.02	AND	CORE	0.030	0.009
45583	392.02	392.51	GDIO	CORE	0.030	0.002
45584	392.51	395.33	GDIO	CORE	0.000	0
45585	396.5	396.5	GDIO	BLANK	0.000	0
45586	396.5	398.7	GDIO	CORE	0.000	0
L	1		 	ANTOLIMITED		

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45587	398.7	401.42	GDIO	CORE	0.000	0
45588	401.42	404.47	GDIO	CORE	0.000	0
45589	404.47	407.52	GDIO	CORE	0.000	0
45590	407.52	407.52	GDIO	MoS-1	0.010	0.064
45591	407.52	410.57	GDIO	CORE	0.000	0
45592	410.57	413.61	GDIO	CORE	0.000	0
45593	413.61	416.66	GDIO	CORE	0.000	0
45594	416.66	419.71	GDIO	CORE	0.000	0
45595	419.71	422.76	GDIO	CORE	0.000	0
45596	422.76	425.81	GDIO	CORE	0.000	0
45597	425.81	428.85	GDIO	CORE	0.000	0
45598	428.85	431.9	GDIO	CORE	0.000	0
45599	395.33	396.5	GDIO	CORE	0.000	0
45600	395.33	396.5	GDIO	DUPLICATE	0.000	0

CHU Project - TTM Resources Inc.

Signature:	
	Initials:

CH0609

Length of casing

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	<u>VEINS</u>									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

0.00 6.10

To

Litho

OB

6.10 36.82 ARG

The drillhole collared into a fine grained, weakly bedded black argillite. The core is moderate fractured throughout with a fault intersected at 23.40m. The core becomes extremely broken and fractured within this fault btwn 23.40 - 28.00m. The core pieces that are intact are cemented together with carbonate material. The argillite continues to exhibit fracturing through to its lower contact with limonite staining from 23.40 - 36.82m. Veining is this interval is very weak with mm scale boudined Qz veins observed parallel bedding and mm veinlets of calcite veins throughout. Mineralization is also very weak with minor veinlets of pyrite and weak moly observed as selvages to the boudined Qz veins.

	STRU	CTUR	RES	
From	To	Struct	CA	Strain

					AL	TER	ATIC)N						
From	To	INT	ARG (CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	<u>VEINS</u>								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

23.40 BDG 35

weak bedding observed throughout; though no topping direction identified; moderately broken up core

6.10 36.82 - - - W - - - W - S

black argillite with minor silica alteration and weak carbonate alteration

6.10 36.82 1 70 very weak veining t/o; dominant qtz vein is the bedding parallel boudined

vein with mm scale calcite veinlets anastomosing t/o core

6.10 36.82 0.5 VLT MO 0.05

very weak presence of pyrite within fractures and as airline veinlets parallel bedding; Moly observed within selvages of minor boudined qtz veining

From 6.10

23.40 28.00 FLT

*T*o 36.82

Litho ARG

M

(Continued from previous page)

From To Struct CA Strain

a lengthy fault zone of competent argillite pieces, strongly broken up and rubbly with rusty coating throughout; upper and lower contacts hard to distinguish
 ALTERATION

 From
 To
 INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

MINERALIZATION

From To PY% Style Min Min% Min2 M2% Min3 M3%

28.00 36.81 FR M

competent argillite with an abundance of hairline fractures and broken core bits; heavy rust staining throughout

36.81 36.82 CON 30 sharp lower contact

From

То

Litho

36.82 71.05 GDIO

A lengthy interval of fine grained, competent, moderately to strongly chlorite and sericite altered granodiorite dyke with sharp upper and lower contacts.

STRUCTURES
From To Struct CA Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

ĺ	VEINS									
	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

	MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From

*T*o 71.05

Litho

36.82

GDIO

A lengthy interval of fine grained, competent, moderately to strongly chlorite and sericite altered granodiorite dyke with sharp upper and lower contacts.

	STRUCTURES										
From	To	Struct	CA	Strain							

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	
36.82	71.05	_	_	М	_	_	-	М	W	_				M	

the dyke is moderately to strongly altered with chlorite and sericite

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
36.82	71.05	0	0	0	0	0						

	MINERALIZATION														
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%						

36.82 71.05 0.5 DISS weakly disseminated pyrite t/o

t/o its length

36.83 71.04 MAS S

> massive moderately to strongly altered granodiorite dyke with what appears to be foliation, but may very well be alteration staining providing this fabric

71.04 71.05 CON 10 sharp lower contact shallow t.c.a.

From 71.05

*T*o 112.00

Litho HSLT

Fault zone with fragile hornfelsed silstone & transitional zones to argillite, weak Qz VNs, fine grined DI PY, moderate gouge.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

		ALTERATION													
	ALIEKATION														
Ī	From	To	INT	ARG	CHI.	SII.	PHY	PRY	POT	CC	FP	RIO	FI.P	PYR	SER
	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	F	LP	LP PYR

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

MINERALIZATION													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

CH0609

From

То

Litho

71.05

112.00

HSLT

Fault zone with fragile hornfelsed silstone & transitional zones to argillite, weak Qz VNs, fine grined DI PY, moderate gouge.

STRUCTURES										
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

MINERALIZATION														
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					

Initials:

71.05 71.06 CON 10 sharp upper contact

71.05 85.00 - - VW M - - - - M

hornfelsed biotite and silica altered metasiltstone with very weak chlorite alteration patchy t/o

71.05 89.50 0.5 VLT MO 0.01

very weak pyrite in veinlets parallel foliation with rare moly observed as selvages to rare veining

71.05 112.00 0.5 98 0

veining in this interval is poor; very weak veininng in the hornfelsed portion of the interval with rare veining broken up within the faulted portions of the interval

71.06 90.00 FOL 30 W
weak to locally oderate
strain foliation

85.00 99.80 - M M - - - - M - VW

moderately to strongly chlorite altered fault zone with pervasive calcite alteration throughout

CH0609

Fr	om
71	.05

*T*o 112.00

Litho
HSLT

(Continued from previous page)

STRUCTURES							
From	To	Struct	CA	Strain			

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

		5					
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1	MINERALIZATION										
	From	То	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

Initials:

89.50 112.00 1.5 DISS MO 0.01

pyrite increases and becomes observed as FG disseminated pyrite t/o; moly is observed rarely in assocation with broken up veins pieces

90.00 94.80 BX S

moderate to strongly
brecciated core above the
fault; strong alteration as
well

94.80 99.70 FLT VS

very strongly faulted, gouge
filled rubble zone fault; poor
core recovery throughout

99.70 102.72 BX 40 S strongly brecciated rocks with moderate foliation t/o

99.80 105.77 - - W W - - - W - M

hornfelsed pieces of broken core with weak to moderate chlorite alteration patchy t/o

102.72 112.00 FLT VS

very strongly altered and
faulted brecciated rocks

CL	^	C	^	A
CH	U	O	U	y

Initials:	

From 71.05

To 112.00

Litho HSLT

(Continued from previous page)

VW

STRUCTURES							
From	To	Struct	CA	Strain			

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

moderately to strongly chlorite altered fault zone with pervasive

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

MINERALIZATION									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 112.00

To 151.70

Litho HSLT

Fault zone with fragile hornfield siltstone, argillite & metasediments. Broken core (>60%) with CA & Chl schist on fracture. Veining is poor in this interval. Partially the core washed out. Gouge filled rubble zone fault; poor core recovery. Weak Qz-PY-MO VNs & PY BB. From 123.5m to 124.05m dispersed Qz-PY-MO VN 14mm, 10 tca. @130.34m brecciated 11mm Qz-MO VN, 5 tca. From 137.7m to 138.9m partially brecciaed core (dolomite, argillite & siltstone), hornfelsed pieces of broken core with weak to moderate chlorite alteration.

105.77 112.00 - M M

calcite alteration throughout

From To Struct CA Strain

112.00 151.70 FLT 50 VW faulted brecciated rocks with 5% of gouge From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

112.00 151.70 - M M - - - - M - M

moderately to strongly chlorite altered fault

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 112.00
 151.70
 2
 15
 2
 0.3
 10

 veining in this interval is poor

Initials:

From 151.70

To 176.00

Litho HSLT

From dark reddish to black hornfelsed siltstone with biotite and weak silica altn & very weak CA altn; broken core (~15%) with chlorite schist on fracture. Qz-MO-PY veining in this interval is poor. AB strs are present. From 154.73 to 155.32m contorted 26mm Qz-PY VN, 10 tca. @167.9m dispersed 50mm BIO-PY-Chl VN, 40 tca. @168.9-169.13m gouge filled rubble zone fault.

STRUCTURES								
From	To	Struct	CA	Strain				

151.70 176.00 BDG 50 W faulted, gouge filled rubble zone

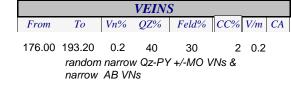
					AL	TER	ATIC)N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
151.70	176.00	-	М	W	М	-	-	-	М	-	М		W	
cii	lica altn													

			VEINS	S								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
151.70	176.00	0.2	5		2	0.1	40					
random Qz-PY VNs												

			M	INE	RAL	<i>IZAT</i>	ION			
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
	151.70	176.0	0 0.5	VLT	,					
	PY	BB &	strs							

From 176.00

To 193.20


Litho HSLT

Hornfeld siltstone with broken core (~15-20%). Minor dolomite zones, moderate BIO & Chl altn, random narrow AB & Qz-PY +/-MO VNs, CA throughout the core.

STRUCTURES
From To Struct CA Strain

176.00 193.20 BDG weak bedding observed throughout

					ΔI	TER	A TIC	N						
From	To	INT	ADC	СШ					CC	ED	DIO	EI D	DVD	CEL
From	10	1111	ANG	CHL	SIL	FIII	FKI	FUI	CC	LF	ыо	I LI	FIK	SEF
176.00	193.20	-	-	М	W	-	-	-	М	-	М	М	М	
BI	O altn													

From To
193,20 216,50

Litho HSLT

Fragile hornfelsed siltstone with dolomite; narrow contorted Qz-MO VNs (0.1% MO) & CA strs, broken core (~30%), BIO & PY BB on fracture. At 196.26m distorted 12mm Qz-PY-MO VN, 50 tca. Below 197.0m narrow contorted Qz-PY-MO VNs (two VNs per meter) with weak bedding are observed. From 201.5m to 206.8m broken core (fragments) with partially recciated core. From 206.8m to 211.27m brown hornfelsed siltstone mottled by narrow Qz-PY-MO strs in bedding direction. At 206.85m presence of 20mm Qz-PY-MO VN, 50 tca that crossed cut by another 10m Qz-PY-MO VN, 40 tca. At 211.27m location of 43cm granodiorite zone. From 211.70m to 216.5m dark-brown siltstone with weak ChI altn & Qz-PY-MO VNs & CA strs, 40% of broken core; BIO & PY blotches on fracture. At 212.45m presence of 14m Qz-ChI-PY-MO, 80 tca crossed cut by another 10mm Qz-PY-MO VN 35 tca. Qz-PY-MO VN (16mm, 40 tca) is located at the depth 214.42m with subparallel 10mm Qz-PY-MO VN. At 215.4m solid 16mm Qz-PY-MO VN, 35 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

193.20 216.50 BDG 50 W fragile core

						AL	TER	ATIO)N						
,	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SEF
	193.20		-	-	W	VW	-	VW	-	М	-	М	VW	М	
	BI	'O altn													

			VEIN S	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
193.20	216.50	2	6	5	3	2	40
	narrow	contor	ed Qz-F	PY-MO VI	٧s		

					IZAT				
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
193.20	216.5	0 1	FG	MC	0.1				
~0	.1% M	2							

From 216.50

*T*o 230.72

Litho GDIO

From light grey to greenish granodiorite with moderatly faulted sequence, coarse granular texture, random Qz-MO VNs, medium grained DI PY, narrow Qz-MO VNs & traces of MO throughout the core with very week EPI altn. From 218.7m to 220.56m broken core with CA & DI PY on fracture. @220.0m solid 24mm Qz-PY-MO VN, 25 tca. @222.22m solid 14mm Qz-PY-MO VN, 20 tca crossed cut by another 24mm Qz-PY-MO VN, 50 tca. @224.3m pink Qz-PY-MO VN, 35 tca. @225.56m is 22mm Qz-PY-MO VN, 25 tca. @226.76m solid 22mm Qz-PY-MO VN, 60 tca.

From To Struct CA Strain

216.50 230.72 MAS M

massive moderately to week altered granodiorite dyke

					AL	TER	ATIO)N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
216.50	230.72	-	-	-	W	-	W	-	М	VW	М	S	М	
We	week EPI altn													

			VEIN S	S			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA
216.50	230.72	6	50	30	2	2	
	narrow	Qz-MC	VN (2-	3 VN/m)			

					IZAT.								
From	From To PY% Style Min Min% Min2 M2% Min3 M3%												
216.50	230.7	2 2	DISS	в мс	0.1								
MC) prese	ent in r	arrow	ر Qz ۱	/Ns st	rs							

approx 0.1%

From 230.72

To 243.28 Litho **GDIO**

From light grey to greenish granodiorite dyke, moderatly faulted sequence, coarse granular texture, network of moderate pink Qz-MO VNs & strs, medium grained DI PY, narrow Qz-MO VNs & traces of MO throughout the core. From 232.67m to 232.84m broken core, fractures. From 234.1m to 234.5m gouge. @236,2m pink 22mm Qz-PY-MO VNs. 25 tca. @238,3m solid 30mm pink Qz-MO VN. 75 tca. Beolow 283,35m tiny MO strs are present thoughout the core. @243.78m distorted 16mm Qz-PY-MO VN, 85 tca.

STRUCTURES Struct CA Strain 230.72 243.28 MAS M

4-6 joints per meter

					AL	TER	ATIC)N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
230.72	243.28	-	-	VW	W	-	-	-	М	VW	М	s	W	
m	oderate	BIO.	CA &	weak	Chl a	altn								

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
230.72	243.28	1	45	30	2	1	
	very na	rrow Q	z VNs ir	n different	orient	<u> </u>	

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% M3%												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
230.72	243.2	8 1	DISS	S MC	0.1								
tin	v MO s	trs pre	sent										

From To 243.28

250.52

Litho HSLT

Fine grained from dark-reddish to black hornfelsed siltstone with interbedded narrow granodiorite zones; biotite and weak silica altered with CA strs. Pink Qz veining & abundant Qz strs presence in this interval. @244.0-244.7m coarse-grained granodiorite with breccia & pink Qz VNs (upper & lower contacts =10 tca). @245.94m knot of pink (1cm) Qz-PY-MO VNs & strs. @246.12m knot of pink (12-14mm) Qz-PY-MO VNs & strs, 75 tca. @246.52-247.17m coarse-grained granidiorite with white feldspar (mottled by CA-Chl strs) with 6cm lense of pink Qz VN; upper & lower contacts =50 tca. @247.88m knot contorted 12mm pink Qz-PY-MO VNs & strs (no orient). @248.07-248.35m granidiorite with white feldspar; cont =35 tca. @248.64m pink 18mm Qz-PY-MO VN, 35 tca. @250.2m breccia (8cm thickness) with 12mm pink Qz-PY-MO VN, 35 tca.

STRUCTURES To Struct CA Strain

243.28 250.52 BDG 50 M partially broken core

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER 243.28 250.52 - VW M W - W -M VW M W M mod BIO & weak Chl altn

VEINS Vn% QZ% Feld% CC% V/m CA FromTo20 243.28 250.52 3 25 2 2 35 stockwork narrow pink qz veins 7 network of strs

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 243.28 250.52 2 VLT MO 0.15 up to 0.15% MO

From 250.52

To 260.60

Litho HSLT

Fine grained from dark-reddish to black hornfelsed siltstone with interbedded narrow granodiorite zones; strong biotite with CA strs, weak silica & very weak EPI altered; CA & Chl on joints, pink Qz veining with network of abundant Qz strs in this interval, random narrow (<16cm) granodiorite zones. @250.78m pink 12mm Qz-PY-MO VN, 30 tca. @254.84m sausage shaped 18mm Qz-PY-MO VN, 40 tca with banch of subparallel strs. @252.97m is 11mm Qz-PY-MO VN, 70 tca. @254.46m granodiorite zone (14cm) with contact =55 tca. @255.42m is 16cm granodiorite (cont =75 tca) with pink 21mm Qz-PY-MO VN, 35 tca. @256.16m pink 14mm Qz-PY-MO VN, 40 tca. @257.57m granodiorite zone (14cm thickness) with contact @35 tca. @258.74m pink 21mm Qz-PY-MO VN, 85 tca offset by Qz-PY-MO strs, 45 tca. @259.05m granodiorite (9cm) with contact =45 tca.

	STRU	CTUR	RES	
From	To	Struct	CA	Strain

250.52 260.60 BDG 45 M 5% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
250.52	260.60	-	VW	W	W	-	-	-	М	VW	М	W	М	
m	mod BIO, CA & Chl altn													

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
250.52	260.60	5	10	6	2	2	50					
	abunda	nt Oz-l	PY-MO	strs								

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
250.52	260.6	0 2	VLT	МС	0.1							
~0.	.1% M	0										

From 260.60

To 267.10

Litho HSLT

Fine grained black hornfelsed siltstone motlled by narrow pink Qz-PY+/-MO VNs & strs, strong BIO & CA altn, weak Chl altn. From 260.5-262.18m broken core (as a result of strong CA altn). @262.3m is 13mm Qz-PY-MO VN, 80 tca. @ 262.7m pink 18mm Qz-PY-MO VN, 25 tca. @264.0m pink 16mm Qz-PY-MO VN, 60 tca. @266.66m knot narrow Qz-PY-MO VNs, no orient. From 266.66m to 267.31m broken core.

STRUCTURES
From To Struct CA Strain

260.60 267.10 BDG N
fragile hornfelsed siltstone
with fault zone

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
260.60	267.10	-	VW	W	W	-	-	-	М	VW	М	VW	М	
ve	ry weak	EPI a	altn											

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
260.60	267.10	2	6	2	3	2	50
	core mo	otlled b	y Qz-P\	/ +/-MO n	arrow		
	VNs & s	strs					

From 267.10

To 283.24

Litho GDIO

Light grey to greenish granodiorite with minor siltstone zones & partially faulted sequence, coarse granular texture, fine grained DI PY, narrow contorted pink Qz +/-MO VNs & traces of MO throughout the core; significant CA & moderate ChI altn. @269.57m pink 28mm Qz-PY VN, 50 tca. From 271.0m to 271.42m siltstone with network narrow Qz-PY-MO VNs/strs. @272.23-272.82m brown siltstone with Qz-PY-MO VNs/strs, sharp contacts =60 & 70 tca. @273.0-173.51m broken core, CA on fracture. @281.98m pink 24mm Qz-PY-MO VN, 30 tca. @282.2-282.2m two parallel 16mm Qz-PY-MO-Cpy VNs, 45 tca. From 283.27m to 285.6m blackish siltstone mottlled by nerrow Qz-PY-MO VNs/strs with CA on fracture, upper contact =35 tca.

	STRU	CTUR	RES	
From	To	Struct	CA	Strain

267.10 283.24 MAS M S 6-7% joints

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
267.10 Bi	283.24 IO altn	-	VW	М	-	-	W	=	М	-	M	M	М	

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
267.10	283.24	3	45	35	2	2	
	narrow strs	contor	ted Qz-F	PY-MO VI	Vs &		

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
267.10 MC	283.2 D up to		VLT	МС	0.1								

From 283,24

To 291.00

Litho GDIO

Fragile granodiorite with pink Qz-PY-MO VNs. From 285.6m fault zone (~65% boken core) & significant CA alteration, Qz-MO VNs observed on fracture. @285.82m contorted 22mm Qz-PY-MO VN, 65 tca. @288.0m pink Qz-PY-MO VN, 40 tca. From 288.65m to 290.06m honfelsed siltstone with stockwork Qz-MO VNs & abundant strs. @289.58m knot narrow contorted Qz-PY-MO VN in diff. orient.

 STRUCTURES

 From
 To
 Struct
 CA
 Strain

 283.24
 291.00
 MAS
 W

fault zone, >65% broken core

					AL	TER	ATIO	N .						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
283.24	291.00	-	VW	М	W	-	-	-	М	-	М	М	М	
st	rona CA	altn												

			VEIN S	S					
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		
283.24	291.00	4	25	20	4	2			
2-3 VN/m									

					IZAT				
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
283.24 291.00 2 DISS MO 0.1									
MC) prese	ent in C	Qz VN	s & th	nrouah	out the	Э		

core

From To 291.00 304.00

Litho HSLT

Fine grained from dark-redish to almost black hornfelsed siltstone motlled by pink Qz-PY +/-MO narrow VNs & strs; strong BIO & CA altn, moderate ChI altn. @292.38- 292.76m greenish granodiorite with reticulated network Qz+/-MO VNs (upper cont. =50 tca). @292.98-293.32m distorted pink 30mm Qz-PY-MO-CA-EPI VN, 40 tca with 14mm Qz-MO VN (35 tca) radiating from the main VN. @293.64m pink 11mm Qz-CA VN, 50 tca. @295.56m trace of distorted 20mm Qz-CA-MO VN. @295.1-296.61m granodiorite with narrow pink Qz-MO VNs & DI PY (contacts =50 tca). @297.19m is 19mm Qz-PY-MO VN, 55 tca. @297.89m boudinaged/sausage-shaped 16mm Qz-PY-MO VN, 80 tca. @298.68m pink 20mm Qz-CA-PY-MO VN, 75 tca. @299.75m knot contorted Qz-PY-MO VNs, no orient. @399.42m dispersed 30mm Qz-PY-MO VN, 40 tca. @399.85m is 17m Qz-PY-MO VN, 50 tca. From 300.33m to 301.29m granodiorte with CA & ChI altn. @301.5m is 12mm Qz-PY-MO VN, 45 tca with abundant Qz-MO strs around. Below 302.28m reticulated network narrow Qz-PY-MO VN in diff. orient. @303.25-304.0m contorted 22mm Qz-PY-MO VN, 10 tca.

STRUCTURES								
From	To	Struct	CA	Strain				

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

MINERALIZATION

From To PY% Style Min Min% Min2 M2% Min3 M3%

291.00 303.89 BDG 50 W fragile core/fault zone with strong CA altn

291.00 304.00 - VW M W - - - M VW M W M very weak EP altn.

291.00 304.00 4 20 10 8 3 50 network contorted Qz-MO VNs & strs 291.00 304.00 3 DISS MO 0.15 ~0.15% MO

From 304.00

To 310.50

Litho HSLT

strong CA altn

Fragile fine grained blackish hornfelsed siltstone motlled by narrow pink Qz-PY-MO VNs & strs; strong BIO & CA altn, moderate ChI altn. @304.55-305.22m granodiorite with minor narrow Qz-PY-MO VNs (upper cont =60 tca, lower cont =15 tca). @305.3-305.64m trace of contorted 20mm Qz-PY-MO VN, no orient. @306.13m is 18mm Qz-PY-MO VN, 40 tca. Below 307.53m broken core (fragments) with traces of Qz-PY-MO VNs.

STRUCTURES
From To Struct CA Strain

 ALTERATION

 From
 To
 INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER

 304.00
 304.00
 - VW - W - - - S | VW

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

304.00 310.50 BDG W fault zone with fragile core

304.00 310.50 2 6 4 contorted Qz-PY-MO VNs & strs

304.00 310.50 2 MG MO 0.1 ~0.1% MO present **CH0609**

Initials:

From 310.50

To 331.01

Litho HSLT

Fault zone; very fragile & soft rock with >30% gouge, very strong CA altn, traces of Qz VNs & very weak MO. Drill hole was stopped @331.01m.

STRUCTURES								
From	To	Struct	CA	Strain				

310.50	331.01	FLT	VW
	y strongly y soft co		

sand

	• •								•					
	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
310.50	331.01	-	VW	М	-	-	-	-	S	-	W		VW	
st	strong CA altn													

			VEIN S	_					
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		
310.50	331.01	0.3	1		6	0.2			
traces of Qz VNs									

1			M	INE	RAL	IZAT	ION			
	From	То	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

310.50 331.01 0.2 DISS MO 0.01 traces of Qz VNs with some MO

CHU Project - TTM Resources Inc. SAMPLE REPORT

SAMPLE ID	From	TO	LITH	TYPE	Cu (%)	Mo(%)
45601	(m) 3.05	(m) 4.88	ARG	CORE	0.01	0
45602	4.88	7.92	ARG	CORE	0.01	0
45603	7.92	10.97	ARG	CORE	0.01	0
45604	10.97	14.02	ARG	CORE	0.01	0
45605	14.02	14.02	HSLT	BLANK	0	0
45606	14.02	17.07	HSLT	CORE	0.01	0
45607	17.07	20.12	HSLT	CORE	0.02	0.057
45608	20.12	23.16	HSLT	CORE	0.03	0.013
45609	23.16	26.21	HSLT	CORE	0.02	0.001
45610	26.21	26.21	HSLT	MoS-1	0.01	0.065
45611	26.21	29.26	HSLT	CORE	0.02	0.002
45612	29.26	32.31	HSLT	CORE	0.02	0.001
45613	32.31	35.36	HSLT	CORE	0.01	0.006
45614	35.36	38.4	HSLT	CORE	0.02	0.011
45615	38.4	41.45	HSLT	CORE	0.02	0.001
45616	41.45	44.5	HSLT	CORE	0.03	0.003
45617	44.5	47.34	HSLT	CORE	0.01	0.001
45618	47.34	48.65	HSLT	CORE	0.1	0.001
45619	48.65	50.6	HSLT	CORE	0.01	0.001
45620	48.65	50.6	HSLT	DUPLICATE	0.01	0.002
45621	50.6	53.64	HSLT	CORE	0.03	0.001
45622	53.64	56.69	HSLT	CORE	0.02	0.011
45623	56.69	59.74	HSLT	CORE	0.03	0.026
45624	59.74	62.79	HSLT	CORE	0.03	0.039
45625	62.79	62.79	HSLT	BLANK	0	0
45626	62.79	65.84	HSLT	CORE	0.01	0.008
45627	65.84	68.88	HSLT	CORE	0.02	0.02
45628	68.88	71.93	HSLT	CORE	0.01	0.004
45629	71.93	74.98	HSLT	CORE	0.02	0.01
45630	74.98	74.98	HSLT	MoS-1	0.01	0.064
45631	74.98	78.03	HSLT	CORE	0.04	0.005
45632	78.03	81.08	HSLT	CORE	0.03	0.005
45633	81.08	84.12	HSLT	CORE	0.01	0.002
45634	84.12	87.17	HSLT	CORE	0.02	0.002
45635	87.17	90.22	HSLT	CORE	0.01	0.004
45636	90.22	93.27	HSLT	CORE	0.02	0.016
45637	93.27	96.32	HSLT	CORE	0.02	0.012
45638	96.32	99.36	HSLT	CORE	0.02	0.007
45639	99.36	102.41	HSLT	CORE	0.02	0.006
45640	99.36	102.41	HSLT	DUPLICATE	0.02	0.001
45641	102.41	105.46	HSLT	CORE	0.02	0.002
45642	105.46	108.51	HSLT	CORE	0.03	0.023
45643	108.51	111.56	HSLT	CORE	0.03	0.009
45644	111.56	114.6	HSLT	CORE	0.03	0.009
45645	114.6	114.6	HSLT	BLANK	0	0
45646	114.6	117.65	HSLT	CORE	0.04	0.046
45647	117.65	120.7	HSLT	CORE	0.02	0.015
45648	120.7	123.75	HSLT	CORE	0.02	0.012
45649	123.75	126.8	HSLT	CORE	0.04	0.015
45650	126.8	126.8	HSLT	MoS-1	0.01	0.064

SAMPLE REPORT

	_					
SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45651	126.8	129.84	HSLT	CORE	0.03	0.009
45652	129.84	132.84	HSLT	CORE	0.03	0.006
45653	132.84	135.94	HSLT	CORE	0.03	0.015
45654	135.94	138.99	HSLT	CORE	0.01	0.054
45655	138.99	142.04	HSLT	CORE	0.05	0.005
45656	142.04	145.08	HSLT	CORE	0.04	0.02
45657	145.08	148.13	HSLT	CORE	0.03	0.009
45658	148.13	151.18	HSLT	CORE	0.03	0.023
45659	151.18	154.23	HSLT	CORE	0.04	0.036
45660	151.18	154.23	HSLT	DUPLICATE	0.05	0.032
45661	154.23	157.28	HSLT	CORE	0.02	0.014
45662	157.28	160.32	HSLT	CORE	0.04	0.023
45663	160.32	163.37	HSLT	CORE	0.03	0.031
45664	163.37	166.42	HSLT	CORE	0.05	0.008
45665	166.42	166.42	HSLT	BLANK	0	0
45666	166.42	169.47	HSLT	CORE	0.03	0.012
45667	169.47	172.52	HSLT	CORE	0.02	0.019
45668	172.52	175.56	HSLT	CORE	0.02	0.018
45669	175.56	178.61	HSLT	CORE	0.04	0.01
45670	178.61	178.61	HSLT	MoS-1	0.01	0.063
45671	178.61	181.66	HSLT	CORE	0.02	0.018
45672	181.66	184.71	HSLT	CORE	0.04	0.052
45673	184.71	187.76	HSLT	CORE	0.03	0.051
45674	187.76	190.8	HSLT	CORE	0.07	0.018
45675	190.8	193.85	HSLT	CORE	0.03	0.006
45676	193.85	196.9	HSLT	CORE	0.02	0.043
45677	196.9	199.95	HSLT	CORE	0.02	0.01
45678	199.95	203	HSLT	CORE	0.02	0.025
45679	203	206.04	HSLT	CORE	0.01	0.007
45680	203	206.04	HSLT	DUPLICATE	0.03	0.006
45681	206.04	209.09	HSLT	CORE	0.03	0.009
45682	209.09	212.14	HSLT	CORE	0.02	0.022
45683	212.14	215.19	HSLT	CORE	0.02	0.014
45684	215.19	218.24	HSLT	CORE	0.03	0.063
45685	218.24	218.24	HSLT	BLANK	0	0
45686	218.24	221.28	HSLT	CORE	0.02	0.02
45687	221.28	224.33	HSLT	CORE	0	0
45688	224.33	226.5	HSLT	CORE	0.02	0.016
45689	226.5	227.63	DYKE	CORE	0.02	0.006
45690	227.63	227.63	HSLT	MoS-1	0.00	0.064
45691	227.63	229.9	HSLT	CORE	0.01	0.016
45692	229.9	233.12	HSLT	CORE	0.02	0.012
45693	233.12	235.12	HSLT	CORE	0.02	0.012
45694	235.12	237.67	HSLT	CORE	0.01	0.046
45695	237.67	239.57	HSLT	CORE	0.03	0.040
45696	239.57	242.62	HSLT	CORE	0.02	0.004
45697	242.62	245.67	HSLT	CORE	0.02	0.005
45698	242.62	248.72	HSLT	CORE	0.01	0.003
			HSLT	CORE		
45699 45700	248.72	251.76	HSLT	DUPLICATE	0.03	0.004
45700 45701	248.72	251.76			0.03	0.006
45701 45702	251.76	254.81	HSLT	CORE	0.03	0.008
45702	254.81	257.46	HSLT	CORE	0.03	0.085

SAMPLE REPORT

45704	257.46 260.27	260.27	HSLT			
	260.27	000.04		CORE	0.02	0.096
45705		260.91	HSLT	CORE	0.03	0.018
43703	260.91	260.91	HSLT	BLANK	0	0
45706	260.91	263.96	HSLT	CORE	0.05	0.121
45707	263.96	267	HSLT	CORE	0.06	0.147
45708	267	270.05	HSLT	CORE	0.03	0.05
45709	270.05	273.1	HSLT	CORE	0.06	0.024
45710	273.1	273.1	HSLT	MoS-1	0.01	0.063
45711	273.1	273.7	HSLT	CORE	0.02	0.034
45712	273.7	276.15	HSLT	CORE	0.02	0.009
45713	276.15	279.2	HSLT	CORE	0.01	0.011
45714	279.2	282.24	HSLT	CORE	0.01	0.004
45715	282.24	285.29	HSLT	CORE	0.02	0.018
45716	285.29	288.34	HSLT	CORE	0.01	0.005
45717	288.34	291.39	HSLT	CORE	0.03	0.056
45718	291.39	294.44	HSLT	CORE	0.03	0.012
45719	294.44	297.48	HSLT	CORE	0.03	0.046
45720	294.44	297.48	HSLT	DUPLICATE	0.06	0.055
45721	297.48	300.53	HSLT	CORE	0.03	0.003

CHU Project - TTM Resources Inc.

Signature:	
	Initials:

CH0608

From To 0.00 3.05

Litho OB

length of casing

3.05

STRUCTURES									
From	To	Struct	CA	Strain					

					AL	TER	ATIO	N .						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1			M	INE	RAL	IZAT	ION			
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From

0.00

*T*o

Litho

3.05 13.75 ARG

This upper part of the drillhole is a black, very fine grained, weakly bedded argillite. Flame structures are observed in three different areas, suggesting topping direction is downhole. Amygdules, or at least subrounded white inclusions, within the argillite have a distinct size distribution to them, wherebey, in all instances these subrounded inclusions (they do not fizz) get bigger within the bedding as you go down hole. Each instance they are observed, as they are repetitive, they exhibit the same downhole size increase. So, this suggests to me that topping direction is indeed downhole and these are perhaps overturned sediments. The lower contact of this unit is completely arbitrary and solely based on colour change from black to dark brown with the underlain metasiltstones. The core is moderately busted up, limonite along fractures, weakly mineralized with pyrite and pyrrhotite and NO moly observed. Veining here is rare and seen as mm scale veinlets of gtz. Alteration appears to be that of the hornfelsed metasiltstones with silica and biotite.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

3.05 13.75 BDG 30 bedding here varies in core

axis angle form 10- 40 t.c.a.

3.05 13.75 - - M - - - - M mostly moderate silica alteration

3.05 13.75 0.1 100 0 0 5 45 subparallel to 45 t.c.a. mm scale qtz veins; rare throughout 3.05 13.60 0.01 DISS 0

pyrite is ibserved in veining only and as disseminations t/o.

13.60 13.75 0.01 DISS PO 10

rare diss pyrite but 10-155 rounded FG
blebs of pyrrhotite with boytrodial habit

Initials:

From To
13.75 226.53

Litho
3 HSLT

This a very lengthy interval of hornfelsed metasediments. The upper transition from argillite to siltstone is gradational and pretty much based on colour, a weak contact of grain size and the disappearnce of the mm scale subrounded amygdules present in the argillite package. The entire interval has undergone hornfelsing and ranges from very hard core to moderate in local instances. The core is a dark brown colour, fine grained, weak to moderate strain foliation throughout with episodic faulting concentrated between 184.67 - 218.78m. Biotite, silica and chlorite are the main alteration assemblages observed throughout, with the chloritic alteration occurring patchy over the core and in localized horizons often associated with increased strain or brecciation.

Veining in this interval is patchy as well with zones of increased veining and many zones of minimal veining. The dominant vein throughout the interval length is the foliation parallel qtz vein, second would be the larger cm scale veins subparallel core axis and orthogonal t.c.a.; numerous micro veinlets are observed t/o anastomosing over core surface.

Sulphide mineralization in the described interval is moderate to strong throughout with the exception of Moly which appears to directly associated with the vein density (which begs the question, "does the moly really come first and then the veining?", because if the moly is only strongest where there are abundant veins, then the moly has arrived either with the veins or after). Pyrrhotite is the most abundant sulphide in the interval, appearing as FG disseminations, often greatly associated with chloritic alteration and vein density, and as FG massive blebs or smears within the actual veins. Chalcopyrite is only observed in the veining. Pyrite is weak throughout the interval with observed local zones of increased pyrite.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
13.75	22.00	0.1	100	0	0	6	35

very weak veining at best; micro qtz

veinlets

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

13.75 23.46 FOL 30 VW very weak foliation and/or bedding

13.75 75.80 - - W M - - - - M

hornfelsed metasiltsone with silica and biotite alteration and patchy chlorite alteration t/o

13.75 148.00 0.01 DISS PO 2 CP 0.1

pyrite in this interval is weak and observed disseminated in core and rarely

22.00 78.20 0.5 100 0 0 6 40

weak veining t/o, but beginning to show signs of increasing; qtz micro veinlets and few 2-5mm qtz veins.

Initials:	

From 13.75

To 226.53

Litho HSLT

(Continued from previous page)

STRUCTURES								
From	To	Struct	CA	Strain				

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	

1	MINERALIZATION											
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

23.46 23.79 FLT S strongly altered and gougey fault breccia

23.79 70.24 FOL 40 VW very weak foliation and/or bedding

70.24 70.53 FLT S strongly altered and gougey fault breccia

70.53 78.20 FOL 40 W weak foliation t/o

75.80 85.22 - - W S - - - - M

hornfelsed metasiltstone with strong silica alteration, weak to moderate biotite and patchy chlorite alteration **CH0608**

13.75

_	
From	To

Litho
HSLT

(Continued from previous page)

STRUCTURES								
From	To	Struct	CA	Strain				

226.53

78.20 80.00 FOL 40 M moderate strain foliation t/o

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

0 20 40

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

Initials:

numerous very small mm scale qtz veinlets parallel foliation; these are the main discontinuity t/o, though they are micro veinlets and abundant but do not comprise much of the core %; sporadic t/o this interval are larger (4-6cm) bull veins cross cutting core orthogonal; these veins have weak septa t/o; boudined veining and calcite veining make up the remainder of the observed veins t/o

78.20 164.35 1 100

80.00 80.18 FLT 40 S fault breccia

80.18 109.06 FOL 40 M moderate strain foliation t/o

85.22 108.25 - - - M - - - - - M hornfelsed metasiltstone with silica and biotite alteration

108.25 120.20 - - M M - - - - M

moderate silica/biotite/chlorite alteration t/o; chlorite is observed as greenish patchy lamina t/o foliated core

ز	Н	U	6	J	5	

Initials:

From 13.75

To 226.53

Litho **HSLT**

(Continued from previous page)

STRUCTURES								
From	To	Struct	CA	Strain				

109.06 109.42 FLT 45 S

fault breccia with gouge

- 109.42 115.02 FOL 45 M moderate strain foliation t/o
- 115.02 115.13 FLT 45 S fault breccia with gouge
- 115.13 116.52 FOL 40 M moderate strain foliation t/o
- 116.52 116.88 FLT 35 S messed up rehealed and reworked fault breccia
- 116.88 117.69 FOL 35 M moderate strain foliation t/o
- 117.69 118.03 FLT 30 S messed up rehealed and reworked fault breccia
- 118.03 135.10 FOL 40 M weak to moderate strain foliation btwn 30 - 45 t.c.a.

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS							
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	MINERALIZATION										
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

120.20 158.55 - - W M - - - - M

mod silica and biotite hornfelsed alteration with weak patchy chlorite alteration t/o

Initials:	
-----------	--

From 13.75

То

Litho

226.53

HSLT

(Continued from previous page)

STRUCTURES							
From	To	Struct	CA	Strain			

 From
 To
 Struct
 CA
 Stract

 135.10
 135.30
 FLT
 45
 S

strongly strained messed up foliated fault breccia

135.30 158.55 FOL 40 M weak to moderate strain foliation btwn 35 - 50 t.c.a.

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS							
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1	MINERALIZATION										
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

148.00 158.55 0.1 VLT PO 2 CP 0.1

pyrite here is observed as veinlets along foliation as well as minor desseminations; pyrrhotite remains very strong t/o core; both disseminated within the more chloritic portions and as massive blebs within the veining; chalcopyrite is observed in the veining only; Moly within this interval picks up a little and is recognized in almost every vein, boudined, cm scale veins and micro veinlets

158.55 163.51 FLT S

large gouge filled fault with
lots of broken core,
brecciated pieces of core,

clay and reworked sediment

158.55 163.51 - M W - - - M - M

moderate pervasive carbonate and biotite alteration t/o with weak chlorite alteration within an argillic assemblage

158.55 163.51 0.1 DISS PO 0.5 CP 0.01

within the fault the pyrite is observed as disseminations t/o with pyrrhotite decreasing in presence (due to lack of core pieces) and CP observed in trace amounts in noted veining; moly is observed in veining, but in lesser amounts than previous interval (possibly all lower %ages of mineralization is due to lack of core in fault area)

CH0608

From
13.75

To 226.53

Litho	
HSLT	

(Continued from previous page)

STRUCTURES							
From	To	Struct	CA	Strain			

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

	MINERALIZATION									
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

Initials:

163.51 184.67 FOL 40 M weak to moderate strain foliation

> 163.51 226.53 - - VW M - - - M

very weak (patchy) chlorite alteration with moderate silica and biotite

164.35 185.00 3 100 0 12 40

veining here increases considerably; noted that that moly here increases as well; the dominant vein set would be the parallel foliation mm scale vein (3-10mm) with a secondary vein set running subparallel to 30 t.c.a.; micro veinlet stringers are also noted throughout

163.51 185.00 1 DISS PO 2.5 CP 0.2

pyrite, pyrrhotite, chalcopyrite and moly all increase within this interval; pyrite becomes disseminated t/o while pyrrhotite is both disseminated and as massive blebs within veining; chalcopyrite is oberved in veining only; Moly is present along 985 of the veins in this interval, along their selvages, as flecks within and as infill to many of the microfractures

Initials:	

From 13.75

To 226.53

Litho HSLT

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS							
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	

1	MINERALIZATION									
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

184.67 185.21 FLT 70 S fault breccia with gouge

185.00 196.40 0.5 100 0 0

weak veining here with the dominant vein, again, the parallel foliation qtz vein

pyrrhotite is the only sulphide to increase in this zone, as it is believed the more chlorite alteration, the more the disseminated PO; patchy alteration is stronger here in this zone; fewer veins equals fewer occurrences of moly and chalcopyrite; pyrite decreases

185.00 196.40 0.5 DISS PO 3 CP 0.1

185.21 207.38 FOL 50 M weak to moderate strain foliation from 35-50 t.c.a.

196.40 201.42 3 100 0 0

40-45 t.c.a. foliation parallel veining,
75 t.c.a. x-cutting veining; large cm
scale bull veins orthogonal t.c.a. and
qtz vein flooding wherby the core it
has intruded has a milled, brecciated
appearance

foliation; micro veinlets

196.40 201.42 0.5 DISS PO 2 CP 0.1

201.42 205.77 0.1 100 0 0 6 40 201.42 205.77 0.2 DISS PO 1 CP 0.1 very weak veining here parallel

4 40

6 45

CH0608

From 13.75

To 226.53

Litho HSLT

(Continued from previous page)

STRUCTURES
From To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	

205.77 218.79 4 100 0 0

no preferred orientation here as the veining is the qtz flooded brecciating veining that seems to inundate the core; this interval is also host to much of the faulted sequences.

1	MINERALIZATION									
I	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
Į	- 1 - 1 - 1		/ -	21,711				/		,

Initials:

205.77 218.79 1 DISS PO 3 CP 0.3

- 207.38 207.55 FLT 60 S fault gouge breccia
- 207.55 209.39 FOL 60 M moderate strain foliation
- 209.39 209.63 FLT 55 M fault breccia
- 209.63 213.50 FOL 50 M moderate strain foliation and weak brecciation
- 213.50 213.79 FLT 50 M fault breccia
- 213.79 214.35 FOL 60 M moderate strain foliation and weak brecciation
- 214.35 214.95 FLT M moderte to strong fault breccia with gouge material
- 214.95 217.50 FOL 55 M moderate strain foliation with weak brecciation

Initials:	
-----------	--

To From 13.75 226.53

217.50 218.78 FLT

Litho **HSLT**

M

(Continued from previous page)

STRUCTURES Struct CA Strain To

fault breccia with rehealed appearance; not as gougey

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER From

VEINS Vn% QZ% Feld% CC% V/m CA From To

MINERALIZATION To PY% Style Min Min% Min2 M2% Min3 M3%

218.78 226.52 FOL 45 W weak strain foliation

> 218.79 226.53 0.5 100 0 8 40 mm scale foliation parallel veining is dominant

218.79 226.53 0.1 DISS PO 1 CP 0.1

226.52 226.53 CON 45 sharp lower contact

> From 226.53

To 227.45

Litho DYKE

This is a short interval of most likely quartz monzonite dyke material with sharp upper and lower contacts. Within the dyke and extending into the underlain metaseds is a fault between 227.25 - 227.64m. The core is devoid of veining and mineralization throughout is a strong presence of FG disseminated pyrite and pyrrhotite.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

226.53 226.54 CON 45 sharp upper contact

226.53 227.45 - - - M - - - -

226.53 227.45 0 0 226.53 227.45 5 DISS PO 2 strong presence of disseminated FG pyrite with FG pyrrhotite t/o

226.54 227.44 MAS

massive granite dyke or quartz monzonite dyke

Initials:	

From 226.53 23

To 227.45

Litho DYKE

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

Ì			M	INE	RAL	IZAT	ION			
1	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

227.44 227.45 CON 30 sharp lower contact

From 227.45

To 260.27

Litho HSLT

Same as interval 13.75 - 226.53m. This interval though identical to previous interval of metaseds, exhibits an increase in mineralization and veining approaching the underlain fault zone. Veining increases to 2% t/o btwn 254.00 - 260.27m with a noticeable increase in moly %ages as well. Dominant veining appears to the foliation parallel veining with minor qtz stringers anastomosing t/o core. Moly appears along selvages and within micro fractures and veinlets in this interval. Lower contact is sharp and alteration change is abrupt. Pyrrhotite is the dominant sulpide t/o; appearing as disseminations in whole core as well as blebs within veins.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

Ì	MINERALIZATION												
i	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

227.45 227.46 CON 30 sharp upper contact

227.45 230.00 - - VW M - - - - M

hornfelsed biotite and silica altered metaseds with weak patchy chlorite alteration

227.45 254.00 0.5 100 0 0 4 40

very weak representation of veining in this interval and across the faulting. Dominant vein set is the qtz vein parallel foliation

227.45 254.81 0.5 DISS PO 1.5 MO 0.1

weaker mineralization t/o in this interval with moly observed in nearly every vein that is present, however, vein % is weak

227.46 230.00 FOL 40 W weak to moderate strain foliation

	Initials:
-	Initials:

From 227.45

To 260.27 Litho

HSLT

(Continued from previous page)

	STRUCTURES											
From	To	Struct	CA	Strain								

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

1	MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

230.00 230.37 FLT S strongly brecciated fault gouge breccia

230.37 231.14 BX W weak brecciated hornfelsed metaseds btwn faults

231.14 233.12 FLT strongly brecciated, yet competent, fault zone

233.12 260.26 FOL 40 W weak to moderate strain foliation

230.00 230.37 - M S - - - M strong chlorite alteration t/o (argillic?) with moderate pervasive carbonate alteration

230.37 231.14 - - W W - - - W - M zone btwn faults exhibits chlorite/silica/biotite and calcite alteration

231.14 233.12 - M S - - - M strong chlorite alteration t/o (argillic?) with moderate pervasive carbonate alteration

233.12 260.27 - - VW M - - - - M

lenghty interval of hornfelsed biotite and silica altered metaseds with very weak patchy chlorite alteration

> 254.00 260.27 2 100 0 4 40

> > veining increases slightly approaching the underlain fault zone, but still noted as weak; dominant vein again is the foliation parallel qz vein wit hrare orthogonal t.c.a. veins

From 227.45

To 260.27

Litho HSLT

(Continued from previous page)

STRUCTURES										
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

1	MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

254.81 260.27 1 DISS PO 2 MO 0.3

mineralization increases approaching the underlain faulted sequence with a noticeable increase in moly within veining and along fracture surfaces

260.26 260.27 CON 40 sharp lower contact

From 260.27

To 273.70

Litho HSLT

FAULT:

A light, fine grained, chalky white green coloured, strongly chlorite altered metasiltstone. The upper and lower contacts are both very sharp and abrupt in alteration change (dark brown hornfelsed metaseds and then green chlorite altered metaseds). The core is heavily weathered and fractured and return was almost 100% from the drill (ie no core loss). The dominant fracture angle appears to about 50 t.c.a. with numerous other fractures and jointing varying in orientation t/o. The core is blasted with chlorite alteration and the end result is a chalky, white green rock. Mineralzation is dominantly moly in every nook and craney, and is observed as thick selvages along the veining.

	STRU	CTUR	RES	
From	To	Struct	CA	Strain

					ALTERATION												
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER			

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

260.27 260.28 CON 40 sharp upper contact

260.27 273.70 - S S - - - - -

strongly argillic assemblage of strongly chlorite altered faulted metaseds; biotite is not recognized, the core does not fizz and it appears to mostly chlorite alteration, though micas may have been altered and are not recognized

260.27 273.70 0.5 100 0 0 3 30

very weak veining throughout interval with dominant vein runing 30 to subparallel core axis 260.27 273.70 0.1 DISS MO 0.8

very weak disseminated pyrite that appears to be locked into the veining only; moly here picks up considerably and is observed in nearly every crack and fracture in the core (and there's lots of cracks and fractures in the fault) and also appears in the veining and as thick selvages to the veins. This fault should run well in the assay world.

From To 260.27 273.70

Litho

HSLT

FAULT:

A light, fine grained, chalky white green coloured, strongly chlorite altered metasiltstone. The upper and lower contacts are both very sharp and abrupt in alteration change (dark brown hornfelsed metaseds and then green chlorite altered metaseds). The core is heavily weathered and fractured and return was almost 100% from the drill (ie no core loss). The dominant fracture angle appears to about 50 t.c.a. with numerous other fractures and jointing varying in orientation t/o. The core is blasted with chlorite alteration and the end result is a chalky, white green rock. Mineralzation is dominantly moly in every nook and craney, and is observed as thick selvages along the veining.

	STRUCTURES												
From	To	Struct	CA	Strain									

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1	MINERALIZATION													
	From	То	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

260.28 273.69 FLT strongly altered and messed up chlorite rich fault zone

273.69 273.70 CON 75 sharp lower contact

From 273.70

To 300.53

Litho **HSLT**

This interval of metasiltstone underlying the faulted zone doesn't have the veining or mineralization as the sequence above the fault. Veining here is very weak with only rare 45 t.c.a. qtz veins observed. Moly mineralization in turn is also weak. The core begins as a dark brown fine grained, hornfelsed metasiltstone, but becomes a slightly coarser grained sandstone btwn 295.83 - 300.53m. Alteration throughout is silica and biotite, but weakening in the sandstone portion.

	STRUCTURES												
From	To	Struct	CA	Strain									

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA

	MINERALIZATION													
٠	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

273.70 273.71 CON 75 sharp upper contact

273.70 295.83 - - W M - - - - M

hornfelsed metaseds with silica and biotite alteration; weak patchy chlorite alteration t/o

Initials:

From 273.70

To 300.53

Litho **HSLT**

This interval of metasiltstone underlying the faulted zone doesn't have the veining or mineralization as the sequence above the fault. Veining here is very weak with only rare 45 t.c.a. qtz veins observed. Moly mineralization in turn is also weak. The core begins as a dark brown fine grained, hornfelsed metasiltstone, but becomes a slightly coarser grained sandstone btwn 295.83 - 300.53m. Alteration throughout is silica and biotite, but weakening in the sandstone portion.

	STRUCTURES											
From	To	Struct	CA	Strain								

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
273.70	300.53	0.5	100	0	0	2	45

very weak qtz veining 45 t.c.a. t/o

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 273.70 300.53 0.5 VLT PO 1 MO 0.05

very weak mineralization t/o

273.71 295.57 FOL 40 W weak to moderate strain foliation 40 -50 t.c.a.

295.57 295.83 FLT 30 S strongly faulted corridor of brecciated metaseds

295.83 300.53 FOL 45 VW very weak strain foliation

295.83 300.53 - - -W - - - M

weak silica alteration and mostly biotite alteration in interval; weak patchy chlorite alteration t/o

CHU Project - TTM Resources Inc. SAMPLE REPORT

SAMPLE ID	From	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45722	(m) 6.1	(m) 8.23	ARG	CORE	0.01	0
45723	8.23	11.28	ARG	CORE	0.01	0.005
45724	11.28	14.33	ARG	CORE	0.01	0.002
45725	14.33	14.33	ARG	BLANK	0	0
45726	14.33	17.37	ARG	CORE	0.01	0.01
45727	17.37	20.42	ARG	CORE	0.01	0.001
45728	20.42	23.47	ARG	CORE	0.01	0.002
45729	23.47	26.52	ARG	CORE	0.01	0.006
45730	26.52	26.52	ARG	MoS-1	0.01	0.064
45731	26.52	29.57	ARG	CORE	0.01	0
45732	29.57	32.61	ARG	CORE	0.02	0.011
45733	32.61	35.66	ARG	CORE	0.02	0.007
45734	35.66	36.82	ARG	CORE	0.02	0.003
45735	36.82	38.71	GDIO	CORE	0	0
45736	38.71	41.76	GDIO	CORE	0	0
45737	41.76	44.81	GDIO	CORE	0	0
45738	44.81	47.85	GDIO	CORE	0	0
45739	47.85	50.9	GDIO	CORE	0	0
45740	47.85	50.9	GDIO	DUPLICATE	0	0.001
45741	50.9	53.95	GDIO	CORE	0	0
45742	53.95	57	GDIO	CORE	0	0
45743	57	60.05	GDIO	CORE	0	0
45744	60.05	63.09	GDIO	CORE	0	0
45745	63.09	63.09	GDIO	BLANK	0	0
45746	63.09	66.14	GDIO	CORE	0	0
45747	66.14	69.19	GDIO	CORE	0	0
45748	69.19	71.05	GDIO	CORE	0	0
45749	71.05	72.24	HSLT	CORE	0.01	0.001
45750	72.24	72.24	HSLT	MoS-1	0.01	0.064
45751	72.24	75.29	HSLT	CORE	0.01	0.009
45752	75.29	78.33	HSLT	CORE	0.02	0.007
45753	78.33	81.38	HSLT	CORE	0.01	0.014
45754	81.38	84.43	HSLT	CORE	0.01	0.011
45755	84.43	87.48	HSLT	CORE	0.01	0.014
45756	87.48	90.53	HSLT	CORE	0.01	0.013
45757	90.53	93.57	HSLT	CORE	0.02	0.02
45758	93.57	96.62	HSLT	CORE	0.01	0.017
45759	96.62	99.67	HSLT	CORE	0.03	0.021
45760	96.62	99.67	HSLT	DUPLICATE	0.04	0.02
45761	99.67	102.72	HSLT	CORE	0.01	0.004
45762	102.72	105.77	HSLT	CORE	0.01	0.009
45763	105.77	108.81	HSLT	CORE	0.01	0.007
45764	108.81	111.86	HSLT	CORE	0.04	0.017
45765	108.81	111.86	HSLT	BLANK	0	0
45766	111.86	114.91	HSLT	CORE	0.02	0.019
45767	114.91	117.96	HSLT	CORE	0.02	0.007
45768	117.96	121.01	HSLT	CORE	0.03	0.013
45769	121.01	124.05	HSLT	CORE	0.04	0.007
45770	124.05	127.1	HSLT	MoS-1	0.01	0.062
45771	124.05	127.1	HSLT	CORE	0.06	0.013

SAMPLE REPORT

CAMPLE ID	F	T0	LITH	TVDF	0(0/)	NA- (O/)
SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45772	127.1	130.15	HSLT	CORE	0.04	0.026
45773	130.15	133.2	HSLT	CORE	0.02	0.008
45774	133.2	136.25	HSLT	CORE	0.01	0.01
45775	136.25	139.29	HSLT	CORE	0.02	0.006
45776	139.29	142.34	HSLT	CORE	0.01	0.011
45777	142.34	145.39	HSLT	CORE	0.01	0.015
45778	145.39	148.44	HSLT	CORE	0.01	0.005
45779	148.44	151.49	HSLT	CORE	0.01	0.007
45780	151.49	154.53	HSLT	DUPLICATE	0.02	0.006
45781	151.49	154.53	HSLT	CORE	0.01	0.008
45782	154.53	157.58	HSLT	CORE	0.02	0.008
45783	157.58	160.63	HSLT	CORE	0.01	0.004
45784	160.63	163.68	HSLT	CORE	0.02	0.004
45785	163.68	166.73	HSLT	BLANK	0	0
45786	163.68	166.73	HSLT	CORE	0.01	0.015
45787	166.73	169.77	HSLT	CORE	0.03	0.01
45788	169.77	172.82	HSLT	CORE	0.02	0.006
45789	172.82	175.87	HSLT	CORE	0.04	0.01
45790	175.87	178.92	HSLT	MoS-1	0.01	0.064
45791	175.87	178.92	HSLT	CORE	0.04	0.012
45792	178.92	181.97	HSLT	CORE	0.05	0.013
45793	181.97	185.01	HSLT	CORE	0.04	0.011
45794	185.01	188.06	HSLT	CORE	0.01	0.009
45795	188.06	191.11	HSLT	CORE	0.02	0.016
45796	191.11	194.16	HSLT	CORE	0.01	0.005
45797	194.16	197.21	HSLT	CORE	0.02	0.016
45798	197.21	200.25	HSLT	CORE	0.03	0.032
45799	200.25	203.3	HSLT	CORE	0.04	0.022
45800	203.3	206.35	HSLT	DUPLICATE	0.06	0.025
45801	203.3	206.35	HSLT	CORE	0.06	0.024
45802	206.35	209.4	HSLT	CORE	0.03	0.019
45803	209.4	212.45	HSLT	CORE	0.03	0.017
45804	212.45	215.49	HSLT	CORE	0.04	0.022
45805	212.45	215.49	HSLT	BLANK	0	0
45806	215.49	218.54	HSLT/GDIO	CORE	0.03	0.034
45807	218.54	221.59	GDIO	CORE	0.02	0.064
45808	221.59	224.64	GDIO	CORE	0.02	0.045
45809	224.64	227.69	GDIO	CORE	0.03	0.018
45810	224.64	227.69	GDIO	MoS-1	0.01	0.061
45811	227.69	230.73	GDIO	CORE	0.03	0.033
45812	230.73	233.78	GDIO	CORE	0.04	0.054
45813	233.78	236.83	GDIO	CORE	0.03	0.039
45814	236.83	239.88	GDIO	CORE	0.02	0.018
45815	239.88	242.93	GDIO	CORE	0.02	0.014
45816	242.93	245.97	HSLT	CORE	0.01	0.021
45817	245.97	249.02	HSLT	CORE	0.01	0.021
45818	249.02	252.07	HSLT	CORE	0.01	0.02
45819	252.07	255.12	HSLT	CORE	0.03	0.039
45820	252.07	255.12	HSLT	DUPLICATE	0.03	0.053
45821	255.12	258.17	HSLT	CORE	0.03	0.042
45822	258.17	261.21	HSLT	CORE	0.02	0.038
45823	261.21	264.26	HSLT	CORE	0.02	0.042
				ANTOLIMITED		

SAMPLE REPORT

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45824	264.26	267.31	HSLT	CORE	0.03	0.053
45825	264.26	267.31	HSLT	BLANK	0	0
45826	267.31	270.36	GDIO	CORE	0.03	0.017
45827	270.36	273.41	GDIO	CORE	0.02	0.038
45828	273.41	276.45	GDIO	CORE	0.01	0.018
45829	276.45	279.5	GDIO	CORE	0.02	0.087
45830	276.45	279.5	GDIO	MoS-1	0.01	0.064
45831	279.5	282.55	GDIO	CORE	0.02	0.01
45832	282.55	285.6	GDIO	CORE	0.02	0.036
45833	285.6	288.65	GDIO	CORE	0.02	0.008
45834	288.65	291.69	GDIO	CORE	0.02	0.028
45835	291.69	294.74	HSLT	CORE	0.03	0.096
45836	294.74	297.79	HSLT	CORE	0.02	0.03
45837	297.79	300.84	HSLT	CORE	0.03	0.031
45838	300.84	303.89	HSLT	CORE	0.05	0.019
45839	303.89	306.93	HSLT	CORE	0.03	0.029
45840	303.89	306.93	HSLT	DUPLICATE	0.03	0.042
45841	306.93	309.98	HSLT	CORE	0.07	0.024
45842	309.98	313.03	HSLT	CORE	0.08	0.036
45843	313.03	316.08	HSLT	CORE	0.02	0.023
45844	316.08	319.13	HSLT	CORE	0.02	0.044
45845	316.08	319.13	HSLT	BLANK	0	0
45846	319.13	322.17	HSLT	CORE	0.02	0.025
45847	322.17	325.22	HSLT	CORE	0.03	0.034
45848	325.22	328.27	HSLT	CORE	0.02	0.027
45849	328.27	331.01	HSLT	CORE	0.06	0.003
45850	328.27	331.01	HSLT	MoS-1	0.01	0.064

CHU Project - TTM Resources Inc.

Signature:	
	Initials:

CH0613

From 0.00

To 5.49

Litho OB

Casing/overburden

5.49

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

0.00

From 5.49

*T*o 17.02

Litho GDIO

From the beginning of this hole there is a presence of gray granodiorite with surface weathering on joints, transitional zone of monzonite, feldspar phenocrysts

into the matrix, potassic altr. with network of narrow Qz +/-MO VNs & strs. Veining sometimes contains PY veinlets. Minor magnetite. .

From 5.49 to 8.38m gray andesite zone, core is broken moderately (~65% pieces are < 10cm), CA & surface weathering on fractures. Lower contact with monzonite is @30 tca.

From 9.82 to 10.32m dispersed 28mm Qz-PY-MO-PY-PO-BIO-EPI VN, 10 tca observed.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

49 17.02 BX

broken core throughout
interval length

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

5.49 17.02 - - - W - - VW W - M M W *CA aln*

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

5.49 17.02 0.1 30 15 2 0.1

Qz strs throughout the core

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

5.49 17.02 1 DISS traces of MO From

To

Litho MZON

17.02 20.73

Monzonite, red greenish brown in color, medium grained; mottled looking in appearance, blotches of chloritic green & strong silica altn. Not easily scratched with a knife. Cut by abundant Qz and Qz +/- CA veining. Veining sometimes contains PY veinlets. Pyrite is moderately abundant in tiny veinlets form and less commonly disseminated. MO is common & generally is present along the margins of Qz veinlets. Minor magnetite.

@13.68m: 56mm Qz-CA-PY-MO VN, 40 tca.

@19.52m: 20mm Qz-PY-MO-BIO VN, 20 tca.

STRUCTURES										
From	To	Struct	CA	Strain						
17.02	20.73	MAS S		M						
~2% joints										

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
	20.73 tassic a		-	-	S	-	W	M	W	VW	M	W		

VEINS											
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA				
17.02	20.73	1	45	30	1	1					
	narrow VN/m	QzpY-ı	MO vein	s, approx	1-2						

1	MINERALIZATION												
1	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
	17.02	20.73	3 2	VLT	МС	0.0	5	•					
	~0.	.5% M	2										

From	То	Litho
20.73	38.40	AND

Dark red-greenish-brown in color andesite, fine & medium grained; mottled looking in appearance, blotches of chloritic green & silica altr. Easily scratched with a knife. Cut by abundant Qz and Qz +/- CA veining & AB-Chl-sulfide -EPI dispersed/contorted VNs. Pyrite is moderately abundant in veinlets form and less commonly disseminated, MO is common, becomes more abundant from 28.2m & generally is present along the margins of larger veinlets. Minor magnetite. Veining sometimes contains PY veinlets.

From 20.92 to 21.64m a narrow 6mm Qz-PY-MO VN, 5 tca is observed.

@21.76m: presence of a selvaged 28mm Qz-PY-MO VN, 45 tca.

From 28.22 to 28.66m a narrow ptygmatic 8mm Qz-PY-CA-MO-BIO VN, 5 tca with a few narrow 5-7mm branches radiating from the main VN observed.

@29.58m: location of a solid 22mm Qz-PY-MO VN, 30 tca with Qz-PY-MO strs around.

@30.30m: distorted 20mm Qz-PY-PPO-EPI-MO VNs, 25 tca observed.

@32.24m: presence of a solid 24mm Qz-PY-CA-MO VN,15 tca.

@34.44m:a thick dispersed 16cm Qz-pY-PO-Chl-MO VN, 40 tca ia observed.

From 34.76 to 35.40m presence of a contorted 30mm Qz-PY-PO-MO VN, 5 tca with a few 8-10mm Qz-PY-MO VNs branched out observed.

From 35.90 to 37.46m location of a dispersed & branched out Qz-CA-PY-PO-MO-EPI VN, 0 tca.

	STRUCTURES											
From	To	Struct	CA	Strain								
20.73	38.40	MAS S		S								
2-3% jonts												

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
20.73	20.73 38.40 M M - M VW W M M W W													
BI	BIO, EPI, CA altn													

VEINS										
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA			
20.73	38.40	6	15		1	2	10			
a few contorted contorted Qz-PY-MO VNs with 0-10 tca										

MINERALIZATION										
From To PY% Style Min Min% Min2 M2% Min3 M3%										
20.73	20.73 38.40 2 VLT MO 0.1									
~0.05-0.1% MO in this interval										

Initials:

From To 20.73

38.40 AND

Dark red-greenish-brown in color andesite, fine & medium grained; mottled looking in appearance, blotches of chloritic green & silica altn. Easily scratched with a knife. Cut by abundant Qz and Qz +/- CA veining & AB-Chl-sulfide -EPI dispersed/contorted VNs. Pyrite is moderately abundant in veinlets form and less commonly disseminated, MO is common, becomes more abundant from 28.2m & generally is present along the margins of larger veinlets. Minor magnetite. Veining sometimes contains PY veinlets.

From 20.92 to 21.64m a narrow 6mm Qz-PY-MO VN, 5 tca is observed.

Litho

@21.76m: presence of a selvaged 28mm Qz-PY-MO VN, 45 tca.

From 28,22 to 28,66m a narrow ptyamatic 8mm Qz-PY-CA-MO-BIO VN, 5 tca with a few narrow 5-7mm branches radiating from the main VN observed.

@29.58m: location of a solid 22mm Qz-PY-MO VN, 30 tca with Qz-PY-MO strs around.

@30.30m: distorted 20mm Qz-PY-PPO-EPI-MO VNs, 25 tca observed.

@32.24m: presence of a solid 24mm Qz-PY-CA-MO VN,15 tca.

@34.44m:a thick dispersed 16cm Qz-pY-PO-Chl-MO VN, 40 tca ia observed.

From 34.76 to 35.40m presence of a contorted 30mm Qz-PY-PO-MO VN, 5 tca with a few 8-10mm Qz-PY-MO VNs branched out observed.

From 35.90 to 37.46m location of a dispersed & branched out Qz-CA-PY-PO-MO-EPI VN, 0 tca.

	STRUCTURES										
From	To	Struct	CA	Strain							

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

	MINERALIZATION													
From	From To PY% Style Min Min% Min2 M2% Min3 M3%													

From 38.40 To

60.00

Litho AND

Dark & brown in color, fine grained andesite, looking mottled in appearance, blotches of chloritic green & EPI altn. Easily scratched with a knife. Cut by abundant Qz-PY-MO +/- CA veining & AB-Chl-sulfide -EPI-MG dispersed/contorted VNs. Pyrite is moderately abundant in veinlets form and less commonly disseminated.

MO is common & generally present along the margins of Qz veinlets. Minor magnetite.

From 43.26 to 43.56m distorted 26mm Qz-PY-MO-BIO-MG VN, 15 tca is present.

From 46.36 to 47.85m location of 16mm Qz-PY-PO-MG VN along the core, 5 tca.

From 49.06 to 49.75m broken core is present, BIO & MO on fractures. @52.34m: pink 24mm Qz-PY-MO VN, 20mm is observed.

From 53.96 to 54.20m reticulated network of 20mm Qz-PY-MO-EPI VN. 20-70 tca located.

From 54.90 to 56.26m boudinaged 16mm Qz-PY-MO-PO-BIO-MG-EPI VN, 0 tca is present.

@58.04m:location of a brecciated 28mm Qz-PY-PO-MO VN, 30 tca.

@59.83m: presence of a solid 60mm Qz-PY-MO-PO VN, 35 tca

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

1			M	INE	RAL	IZAT	ION			
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 38.40

To

60.00

Litho AND

Dark & brown in color, fine grained andesite, looking mottled in appearance, blotches of chloritic green & EPI altn. Easily scratched with a knife. Cut by abundant Qz-PY-MO +/- CA veining & AB-ChI-sulfide -EPI-MG dispersed/contorted VNs. Pyrite is moderately abundant in veinlets form and less commonly disseminated.

MO is common & generally present along the margins of Qz veinlets. Minor magnetite.

From 43.26 to 43.56m distorted 26mm Qz-PY-MO-BIO-MG VN, 15 tca is present.

From 46.36 to 47.85m location of 16mm Qz-PY-PO-MG VN along the core, 5 tca.

From 49.06 to 49.75m broken core is present, BIO & MO on fractures.

@52.34m: pink 24mm Qz-PY-MO VN, 20mm is observed.

From 53.96 to 54.20m reticulated network of 20mm Qz-PY-MO-EPI VN, 20-70 tca located.

From 54.90 to 56.26m boudinaged 16mm Qz-PY-MO-PO-BIO-MG-EPI VN, 0 tca is present.

@58.04m:location of a brecciated 28mm Qz-PY-PO-MO VN, 30 tca.

@59.83m: presence of a solid 60mm Qz-PY-MO-PO VN, 35 tca

STRUCTURES												
From	To	Struct	CA	Strain								
38.40	60.00	MAS S		S								
2% joints												

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	
38.40 <i>BI</i>	60.00 O, EPI 8			VW	S	-	М	W	W	М	М	М	M		

VEINS													
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA						
38.40	60.00	57	10	10	1	1							
pink Qz-sulfide-MO narrow VNs & strs													

Ī	MINERALIZATION														
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					
	38.40	60.00	2	VLT	MC	0.1	P	O 2.	00						
	~0.	1-0.15	% MO	in thi	s inte	rval									

From	То	Litho
60.00	82.00	AND

Very dark brown in color fine grained andesite; blotches, VNs & strs of chloritic green & EPI altn, strong silica altn. Core cut by abundant Qz-PY-MO veining & AB-Chl-sulfide -EPI-MG dispersed VNs. Pyrite is moderately abundant in veinlets form and less commonly disseminated. MO is common & generally is present along the margins of Qz veinlets. Minor magnetite.

@62.28m: presence of a solid 30mm Qz-PY-PO-MO VN, 90 tca.

@64.30m: 18mm Qz-PY-PO-MO VN,60 tca with two subparallel 8mm Qz-PO-PY-MO VNs observed.

@73.10m: solid 80mm Qz-PY-PO-MO VN, 50 tca is present.

@79.80m: location of a boudinaged 16mm Qz-PY-MO-PO VN, 10 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	5						
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1	MINERALIZATION											
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

To

Litho AND

60.00 82.00

Very dark brown in color fine grained andesite; blotches, VNs & strs of chloritic green & EPI altn, strong silica altn. Core cut by abundant Qz-PY-MO veining & AB-Chl-sulfide -EPI-MG dispersed VNs. Pyrite is moderately abundant in veinlets form and less commonly disseminated. MO is common & generally is present along the margins of Qz veinlets. Minor magnetite.

- @62.28m: presence of a solid 30mm Qz-PY-PO-MO VN, 90 tca.
- @64.30m: 18mm Qz-PY-PO-MO VN,60 tca with two subparallel 8mm Qz-PO-PY-MO VNs observed.
- @73.10m: solid 80mm Qz-PY-PO-MO VN, 50 tca is present.
- @79.80m: location of a boudinaged 16mm Qz-PY-MO-PO VN, 10 tca.

	STRU	From To Struct CA Strain											
From	To	Struct	CA	Strain									
60.00	82.00	MAS S		S									
~1-2% joints													

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
60.00	82.00	-	-	М	S	-	W	-	W	М	S	М	М	
su	60.00 82.00 M S - W - W M S M M sulfide & BIO altn													

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
60.00				6 z-PY-MO		0.5	70					
	& abund VNs/str		storted /	AB-PY-M	G-PO							

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
60.00	82.00	3	SM	PC	2	M	O 0.	04				
mo	60.00 82.00 3 SM PO 2 MO 0.04 mo accures in occasional Qz VNs/strs											

From	То	Litho
82.00	100.90	AND

Fault zone (~60% broken core), fragments of dark brown in color fine grained andesite, narrow granodiorite zone, 5-10% of gouge; CA & Chl on fractures. Pyrite is moderately abundant in veinlets form and less commonly disseminated.

From 85.00 to 86.00m fragments of granodiorite are present with CA on fractures.

From 100.00 to 100.26m presence of 20mm Qz-PY-MO-EPI-PO VN, 5 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain
82.00	100.90	FLT		W
-	-60% pie	eces <	10cm)

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
82.00	100.90	-	-	М	W	-	М	VW	W	М	М		М	
strong CA altn														

VEINS From To Vn% QZ% Feld% CC% V/m CA											
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA				
82.00	100.90	2	10	10		0.5					
	occasio	nal Qz	-PY-MO	VNs							

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
82.00	100.9	0 2	VLT	MC	0.0	1							
we	ak MO	miner	alizati	on									

Initials:

From 82.00

To 100.90

Litho AND

Fault zone (~60% broken core), fragments of dark brown in color fine grained andesite, narrow granodiorite zone, 5-10% of gouge; CA & Chl on fractures. Pyrite is moderately abundant in veinlets form and less commonly disseminated.

From 85.00 to 86.00m fragments of granodiorite are present with CA on fractures.

From 100.00 to 100.26m presence of 20mm Qz-PY-MO-EPI-PO VN, 5 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

				VEINS	5			
ĺ	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From

To

Litho

100.90 119.40 AND

Dark brown in color, fine grained andesite, blotches of chloritic green & EPI altn. Cut by Qz-PY-MO & AB-ChI-sulfide -EPI-MG dispersed VNs. Pyrite is moderately abundant in veinlets form and less commonly disseminated. MO is common, generally presents along of Qz veinlets. Minor magnetite. Contact with basalt dyke at 119.40m, 25 tca.

@103.10m: knot of narrow <8mm Qz- ABMO-sulfide VNs.

S

From 103.46 to 103.40m boudinaged 16mm Qz-PY-MO-EPI-MG VN, 5 tca is located along the core.

@103.80m: solid 50mm Qz-PY-MO-EPI-PO VN, 50 tca with 14mm Qz-PY-MO VN, 0 tca that is radiating from the main VN.

From 104.00 to 104.16m presence of rubble.

From 108.80 to 108.96m two subparallel 16 & 20mm Qz-PY-MO VNs, 70-80 tca are observed.

From 109.26 to 109.80m boudinaged 26mm Qz-PY-MO VN, 5 tca is located.

From 114.94 to 115.60m a significant 36mm Qz-PY-MO-PO-MG-BIO, 15 tca (~1% MO in this interval) is present.

From 117.40 to 177.70m minor granodiorite dyke porphyry observed with upper contact at 20 tca, lower contact at 35 tca.

@118.34m: there is a selvaged 20mm Qz-PY-MO, 15 tca offset by 10mm Qz-PY VN, 75 tca with subparallel 10mm AB-Chl VN, 20 tca.

From 119.00 to 119.40m a significant 50mm Qz-PY-MO, 20 tca on the contact with a basaltt dyke.

From To Struct CA Strain

100.90 119.40 MAS S

1-2% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
100.90	119.40	-	-	М	М	-	М	VW	W	М	М	М	М	
El	PI & ChI	altn												

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
100.90	119.40	2	15	10		2	40
	~1-3 Vr	n/m					

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
100.90	119.4	0 3	MG	МС	0.1	5							
~0.	15-0.2	% MO	in thi	s inta	rval								

To

Litho AND

100.90 119.40

Dark brown in color, fine grained andesite, blotches of chloritic green & EPI altn. Cut by Qz-PY-MO & AB-ChI-sulfide -EPI-MG dispersed VNs. Pyrite is moderately abundant in veinlets form and less commonly disseminated. MO is common, generally presents along of Qz veinlets. Minor magnetite. Contact with basalt dvke at 119.40m. 25 tca.

@103.10m: knot of narrow <8mm Qz- ABMO-sulfide VNs.

From 103.46 to 103.40m boudinaged 16mm Qz-PY-MO-EPI-MG VN, 5 tca is located along the core.

@103.80m: solid 50mm Qz-PY-MO-EPI-PO VN, 50 tca with 14mm Qz-PY-MO VN, 0 tca that is radiating from the main VN.

From 104.00 to 104.16m presence of rubble.

From 108.80 to 108.96m two subparallel 16 & 20mm Qz-PY-MO VNs, 70-80 tca are observed.

From 109.26 to 109.80m boudinaged 26mm Qz-PY-MO VN, 5 tca is located.

From 114.94 to 115.60m a significant 36mm Qz-PY-MO-PO-MG-BIO, 15 tca (~1% MO in this interval) is present.

From 117.40 to 177.70m minor granodiorite dyke porphyry observed with upper contact at 20 tca, lower contact at 35 tca.

@118.34m: there is a selvaged 20mm Qz-PY-MO, 15 to offset by 10mm Qz-PY VN, 75 to with subparallel 10mm AB-Chl VN, 20 to a.

From 119.00 to 119.40m a significant 50mm Qz-PY-MO, 20 tca on the contact with a basaltt dyke.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

		VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 134.28 119.40

To

Litho **BDY**

Dark gray basalt, plagioclase & pyroxene fine grained with silica, quartz & fine grained DI PY, tiny CA strs. Upper & lower contacts at 20 tca.

STRUCTURES										
From	To	Struct	CA	Strain						

119.40 134.28 MAS S

1-2% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
											_			

119.40 134.28 - - - M - - - VW M CA altn

<u>VEINS</u>										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

119.40 134.28 0.01 10 CA strs present

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

119.40 134.28 0.1 no mineralization

From 134.28

To

Litho AND

145.74

Dark brown in color fine grained andesite with transitional zone to monzonite & pottasic alteration; blotches, VNs & strs of chloritic green & weak EPI altn, narrow carbonate zones, strong silica altn. Narrow fault zones. Qz-PY-MO veining & AB-Chl-sulfide -EPI-MG dispersed VNs. Pyrite is commonly disseminated. Generally MO is common in Qz veinlets. Minor magnetite.

From 134.28 to 135.78m location of a fault zone (fragments & douge).

@135.30m: carbonate zone with AB strs, upper contact at 50 tca, lower contact at 80 tca.

@138.99m: narrow 60mm quartz-granodiorite zone, 85 tca is observed.

@140.50m; presence of a solid 11cm Qz-PY-PO-MO-EPI VN, 40 tca.

@142.28m: a thick 10cm Qz-PY-MO-MG VN, 30 tca observed.

From 142.80 to 143.90m stockwork of a five 0.8-14mm Qz-PY-MO VN, 15-40 tca with Qz-PY-MO strs along the core is observed in this iterval.

From 143.90 to 145.74m there is a location of a fault zone (60% are pieces <10cm) with CA on fractures and ~7% is gouge

STRUCTURES To Struct CA Strain From

134.28 145.74 MAS

143.9 to 145.74m fault zone, 60% are pieces <10cm with CA on fracture, ~7% gouge

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
134.28	134.28 145.74 W S - M - W M M M													
C	CA altn below 143.9m													

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			
134.28	145.74	8	20	10	1	2	40			
	~2 VN/I	n								

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
134.28	145.7	_	VLT	МС	0.1							

From 145.74 To

162.15

Litho **AND**

Dark brown in colour fine grained andesite with transitional zone with monzonite & potasic alteration & strong silica altn, narrow granodiorite zones. Qz-PY-MO strs. Tiny PY strs are commonly disseminated. MO presents generally in narrow mm scale Qz veinlets & strs. Magnetite in very weak.

@150.68m: presence of a narrow 7cm granodiorite zone, 80 tca.

@150.92m: 24mm Qz-PY-MO VN, 75 tca is observed.

From 151.16 to 151.54m granodiorite, contact with andesite @15 tca is observed.

@154.24m: solid 24mm Qz-PY-MO VN, 75 tca is present.

S

From 158.08 to 162.15m location of granodiorite with narrow Qz VNs & CA strs observed. Upper contact is at 80 tca, lower contact with basalt is at 30 tca.

From 158.64 to 158.80m presence of two subparallel 16 & 22mm Qz VNs, 60 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

145.74 158.08 MAS

1-2 joints per meter

145.74

From To

162.15

Litho AND

Dark brown in colour fine grained andesite with transitional zone with monzonite & potasic alteration & strong silica altn, narrow granodiorite zones. Qz-PY-MO strs. Tiny PY strs are commonly disseminated. MO presents generally in narrow mm scale Qz veinlets & strs. Magnetite in very weak.

@150.68m: presence of a narrow 7cm granodiorite zone, 80 tca.

@150.92m: 24mm Qz-PY-MO VN, 75 tca is observed.

From 151.16 to 151.54m granodiorite, contact with andesite @15 tca is observed.

@154.24m: solid 24mm Qz-PY-MO VN, 75 tca is present.

From 158.08 to 162.15m location of granodiorite with narrow Qz VNs & CA strs observed. Upper contact is at 80 tca, lower contact with basalt is at 30 tca.

From 158.64 to 158.80m presence of two subparallel 16 & 22mm Qz VNs, 60 tca.

silica altn

I		STRU	CTUR	ES	
	From	To	Struct	CA	Strain

ALTERATION													
From To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

145.74 162.15 - - W S - W W M M M M

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			
145.74	162.15 Qz +/-N	•		15	1	1	60			

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

145.74 162.15 1 VLT MO 0.04 MO present in Qz strs

158.08 162.15 MAS M 3-4 joints per meter

From 162.15

172.88

To

Litho **BDY**

Dark gray basalt dyke, plagioclase & pyroxene fine grained with silica, quartz & fine grained DI PY, tiny CA strs. Upper contact is at 50 tca & lower contact is at 80

I		STRU	CTUR	ES	
	From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

Ī				VEINS	S			
	From	То	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

S 162.15 172.80 MAS 2% joints

Initials:

From 162.15

To 172.88 Litho **BDY**

Dark gray basalt dyke, plagioclase & pyroxene fine grained with silica, quartz & fine grained DI PY, tiny CA strs. Upper contact is at 50 tca & lower contact is at 80

	STRU	CTUR	STRUCTURES									
From	To	Struct	CA	Strain								

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
162 15	172 88	_	_	_	М	_	_	_	۱۸/	_	M			

			VEINS	S			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA
162.15	172.88 <i>CA str</i> s		10				

1	MINERALIZATION										
1	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

162.15 172.88 0.1 DISS very fune grained DI PY

From

To

Litho

172.88

182.16

AND

Dark brown in color fine grained andesite with transitional zone to monzonite with weak potassic alteration & strong silica altn, narrow granodiorite zones. Qz-PY-MO VNs & strs. Tiny PY strs are commonly disseminated. MO presents generally in Qz veinlets & strs. Magnetite in very weak.

@173.05m: branched out 30mm Qz-PY-MO VN, 65 tca is present.

@173.33m: a significant 16cm Qz-PY-MO-MG VN, 65 tca observed.

From 173.63 to 175.50m stockwork of 10-20mm Qz-PY-MO VNs, 60-80 tca.

@175.95m: presence of a thick 96mm Qz-PY-MO VN, 65 tca.

S

@177.07m:a solid 16cm quartz-granodiorite zone, 60 tca with subparallel 24mm Qz-PY-MO VNs.

PO altn

CA altn

From 181.55 to 182.16m a significant 30mm Qz-Po-PY-MG-MO VN, 5 tca (presence of MO is up to 1% in this VN)

172.88 182.16 - - W

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
		•			•									

M - M W VW W M M M

	VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m CA							
172.88	182.16	8	20	10	1	2 60							
	~2-3 VI	V/m											

	MINERALIZATION												
,	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
	172.88	182.1	6 2	VLT	PC) 2	M	O 0.	10				
	>0.	1 MO	in this	interv	al								

CH0613

Initials:	

From 172.88

To 182.16

Litho AND

(Continued from previous page)

STRUCTURES										
From	To	Struct	CA	Strain						

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From 182.16

To 200.80

Litho GDIO

Granodiorite with vague upper contact & sharp lower contact at~80 tca. The main body of the granodiorite is grey coloured, fine grained groundmass rock with ~25% plagioclase feldspar phenocrysts. The core is mineralized by a narrow Qz-PY-PO-MO VNs with pyrite and pyrrhotite strs & BB. A large 2.8m offwhite Qz zone is observed between 183.52 - 186.32m.

@188.93m: presence of 20mm Qz VN with MO streaks, 60 tca.

From 190.00 to 190.48m a broken core observed with CA on fractures.

From 191.00 to 191.50m quartz-granodiorite zone with up to 50% Qz is present with MO contents ~0.2%.

@193.85m: location of a selvaged 16mm Qz-Py-MO VN, 35 tca.

From 195.91 to 196.40m presence of a quartz-granodiorite zone, approximatly 50% Qz and 0.2% MO.

@196.60m: selvaged 24mm Qz-Py-MO VN, 45 tca is present.

From 199.11-199.50m contorted 30mm Qz-PY-MO VN, 60 tca with selvaged 12mm Qz-Py-MO VN, 10 tca radiating from the main VN observed.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

182.16 200.80 MAS M

partially broken core with CA on fracture

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
182.16	200.80	-	-	-	М	-	W	-	W	-	М	М	М	
C	CA altn													

VEINS												
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA					
182.16	200.80	5	30	15	2	2	45					
	thick Q	z VNs	are pres	sent								

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
182.16 200.80 2 DISS MO 0.1												
un	up to 0.1% MO											

CH0613

From

То

Litho AND

200.80

220.00

Dark brown in color, fine grained andesite, blotches of chloritic green & EPI altn. Core cut by Qz-PY-MO VNs. Pyrite is moderately abundant in veinlets form and less commonly disseminated. MO is common, generally presents along of Qz veinlets. Minor magnetite.

From 104.54 to 154.94m presence of a contorted & branched out 22mm Qz-PY-MO VN, 5 tca observed.

@107.20m: 18mm Qz-Py-MO VN,50 tca offset by Qz-PY-MO str, 0 tca.

From 208.00 to 211.44m stockwork of 18-30mm Qz-PY-MO VNs, 25-60 tca

@211.64m: solid 50mm Qz-PY-BIO-MO VN, 70 tca with 8mm branched out Qz-PY-MO VN, 45 tca observed.

From 211.70 to 212.00m location of a granodiorite dyke with upper contact to Qz-PY-MO VN at 70 tca & sharp lower contact at 30 tca.

From 312.70 to 214.32m a few boudinaged Qz-PY-MO VNs, 15-30 tca with EPI altn around are present.

From 216.62 to 217.00m a significant 44mm Qz-PY-PO-EPI-MO-CA VN, 25 tca located.

From 217.36 to 217.96m a significant 36mm Qz-PY-BIO-MO VN, 5 tca with EPI alt on halos is present.

From 219.17 to 220.00m a broken core with strong CA altn & fragments of 30mm Qz-PY-MO VN, 5 tca observed.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

200.80 220.00 MAS M

219.17 to 220.0 broken core with strong CA altn

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
200.80	220.00	-	-	М	S	-	М	W	М	М	М	М	М	
C	4. BIO &	EPI.	altn											

			VEIN S	S						
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			
200.80	220.00	6	20	10		3	40			
3-4 VN/m in this interval										

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
200.80	220.0	0 3	VLT	MC	0.1	5					
>0	.1% mi	neraliz	zation								

Initials:

220.00

To 239.00

Litho AND

Dark brown in color, fine grained andesite (~35% broken core with CA on fracture), blotches of chloritic green & EPI altn, flow banded zones. Core cut by CA & Qz-PY-MO VNs. Pyrite is moderately abundant in veinlets form and less commonly disseminated. MO is common, generally presents along Qz veinlets. Minor magnetite is ~1-2%.

From 221.28 to 222.12m: presence of a distorted 26mm Qz-PY-MO VN, 5 tca.

From 222.48 to 222.82m a significant 50mm Qz-PY-MO VN, 20 tca with MO specks & EPI altn on halos observed.

From 223.75 to 224.32m the location of a reticulated network of Qz-PY-MO VNs observed.

From 224.76 to 225.42m a dispersed 14mm Qz-PY-MO VN, 0 tca is present.

From 225.42 to 225.70m presence of fragments with CA on fractures.

@227.40m: a solid 66mm Qz-PY-MO VN, 40 tca with lower contact with 8mm CA VN at 40 tca.

From 228.54 to 229.21m a fragile granodiorite zone with CA strs & vague contacts observed.

From 230.42 to 230.84m location of a granodiorite zone with vague contacts & 11cm in thickness Qz VN, 80 tca.

@232.14m: a pink 20mm Qz-PY-PO-EPI VN, 20 tca is present.

@232.58m: a breccated 44mm Qz-Py-AB-PO-EPI VN, 60 tca located.

@434.48m: presence of a solid 50mm Qz-PY-MO VN, 65 tca.

From 234.86 to 238.58m the cote is mottled by contorted narrow Qz-PY-MO VNs, 10-75 tca.

@238.58m: location of a solid 32mm Qz-PY-Chl VN, 30 tca observed.

STRUCTURES										
From To Struct CA Strain										
220.00	239.00	MAS		М						

~35% broken core

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
220.00	239.00	-	-	М	М	-	М	VW	М	М	М	W	W	VW
C	A altn													

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
220.00	239.00	6	10	6	2	3	30				
	~3 VN/I	n									

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
220.00	239.0	0 3	VLT	MC	0.1						
~2	% MG										

 From
 To
 Litho

 239.00
 247.10
 AND

Dark brown in color, fine grained andesite (~65% of the core is broken with CA on fractures), carbonate, blotches of chloritic green & EPI altr. The core is cut by CA & Qz-PY-MO VNs. Pyrite is moderately abundant in veinlets form and less commonly disseminated. MO is present generally.

@243.65m: a contorted 16mm Qz-Py-MO VN, 5tca is present.

@246.64m: location of a dispersed/streaked 50mm Qz-PY-MO VN, 5 tca observed.

	STRUCTURES									
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
Fı	rom	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

	MINERALIZATION												
Fro	m	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From 239.00

To 247.10 Litho AND

Dark brown in color, fine grained andesite (~65% of the core is broken with CA on fractures), carbonate, blotches of chloritic green & EPI altn. The core is cut by

CA & Qz-PY-MO VNs. Pyrite is moderately abundant in veinlets form and less commonly disseminated. MO is present generally. @243.65m: a contorted 16mm Qz-Pv-MO VN. 5tca is present.

@246.64m: location of a dispersed/streaked 50mm Qz-PY-MO VN, 5 tca observed.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain
239.00	247.10	FLT		W

>60% fragments <10cm

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
239.00	247.10	-	-	W	М	-	М	-	М	VW	W		М	
strong CA altn														

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
239.00	247.10	6	8			3	
	~3-4 VI	V/m					

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
239.00	247.1	0 2	SM	МС	0.1				_			
0.1	-0 15%	MO	n this	inton	ıal							

From	То
247 10	252 40

Litho AND

Dark brown in color, fine grained andesite. Structure controlled by abundant contorted Qz-PY +/-MO VNs & strs (below 261.0m ~65% of the core is broken with CA on fractures & gouge), a subparallel vein filled and gouge filled of fault is observed at 261.0 - 262.36m. Blotches of chloritic green & EPI altn, flow banded zones. The core is cut by CA & Qz-PY-MO VNs. Vague transitional zone to siltstone. Pyrite is moderately abundant in veinlets form and less commonly disseminated. MO is common, generally presents along of Qz veinlets. Minor magnetite is ~1-2%.

From 247.40 to 248.82m the core is mottled by distorted 8-28mm Qz-PY-MO-PO veinlets, 20-60 tca with >0.5% MO presence in this interval.

From 249.53 to 251.00m the core is mottled by contorted VNs, 10-80 tca with >0.5% MO presence in this interval.

strong CA altn

From 251.37 to 251.83m a granodiorite zone with vague contacts.

@251.83m: a significant dispersed Qz-PY-MO-PO VN. 60 tca observed.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain
From	То	Struct	CA	Strair

247.10 252.40 MAS М

~30-40% broken core with CA on fracture

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
247 10	252.40	_			М				М	\/\/	,			

	VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						
247.10	252.40	15	26		2	6	10						
	abunda	nt Oz-l	PY-MO	VNs/strs									

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
247.10	47.10 252.40 2 VLT MO 0.5												
Mo	More than 0.5% MO in this interval												

From To 247.10 252.40

Litho AND

Dark brown in color, fine grained andesite. Structure controlled by abundant contorted Qz-PY +/-MO VNs & strs (below 261.0m ~65% of the core is broken with CA on fractures & gouge), a subparallel vein filled and gouge filled of fault is observed at 261.0 - 262.36m. Blotches of chloritic green & EPI altn, flow banded zones. The core is cut by CA & Qz-PY-MO VNs.Vague transitional zone to siltstone. Pyrite is moderately abundant in veinlets form and less commonly disseminated. MO is common, generally presents along of Qz veinlets. Minor magnetite is ~1-2%.

From 247.40 to 248.82m the core is mottled by distorted 8-28mm Qz-PY-MO-PO veinlets, 20-60 tca with >0.5% MO presence in this interval.

From 249.53 to 251.00m the core is mottled by contorted VNs, 10-80 tca with >0.5% MO presence in this interval.

From 251.37 to 251.83m a granodiorite zone with vague contacts.

@251.83m: a significant dispersed Qz-PY-MO-PO VN. 60 tca observed.

	STRUCTURES									
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA			

	MINERALIZATION										
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

From

То

Litho

252.40

274.00

HSLT

Fragile hornfelsed siltstone; structure also controlled by distorted Qz-MO VNs (0.1% MO) & CA strs, broken core (~30%), BIO & PY BB on fractures. Fine grained from dark-redish to black hornfelsed siltstone with biotite and weak silica altered with CA strs. Presence of an abundant pink Qz veining Qz strs observed in this interval. Through the length of the interval: dark brown, hornfelsed biotite and silica altered. The interval has vague upper contact with surrounding granodiorites narrow zones with large cm scale pinkish Qz veins defining their contacts. Alteration, much like in previous intervals, is an assumed biotite alteration giving rise to the dark brown colouring with from weak to moderate presence of silica. Magnetite is weak and disseminated within the body of the rock. Veining is dominantly present as larger cm scale white veins that are commonly on bedding direction with some occasional veining running subparallelly. Parallel foliation veining and boudined veining are observed throughout of this interval.

Below 252.40 m location of a zone with abundant contorted & dispersed Qz-PY-MO VNs/strs mostly 30-40 tca (>0.5% MO) observed.

@257.65m: minor 6cm granodiorite porphyry dyke, 40 tca.

From 259.50 to 261.12m a sinificant 60mm contorted Qz-PY-MO-PO-MG VN, 0 tca (up to 1% MO in this interva) is present.

From 261.12 to 262.46m broken core is located with CA on fractures.

From 262.46 to 274.04m core is mottled by abundant contorted & distorted Qz-PY-MO VNs, 0-20 tca (~1% MO in this interval).

STRUCTURES									
From	To	Struct	CA	Strain					
252.40	274.00	BDG	15	М					

3-4% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
252.40	274.00	-	-	W	М	-	М	-	М	VW	М		М	
C	A altn													

			VEINS	S						
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			
252.40	274.00	15	20		2	6	15			
Parallel foliation veining										

CH0613

From	
252.40	

То
274.00

Litho	
HSLT	

(Continued from previous page)

STRUCTURES								
From	To	Struct	CA	Strain				

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

1	MINERALIZATION										
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

Initials:

From 274.00

*T*o 294.44

Litho HSLT

Fragile hornfelsed siltstone dominatly mottled by contorted Qz-MO VNs (>0.2-0.3% MO) & CA strs, broken core (~30%), BIO & PY BB on fractures, silica altered & CA strs. An abundant pink Qz veining & strs observed in this interval are dominantly the larger cm scale white veins that commonly located in bedding direction, with abundant dispersed running subparall foliation veining and boudined veining. Both are observed throughout the interval.

@274.04m: a solid 40mm Qz-PY-MO VN. 35 tca is present.

From 274.04 to 275.19m a granodiorite zone with 35 tca upper & lower contacts is located.

From 277.70 to 278.66m: presence of 18mm Qz-PY-MO VN, 5 tca.

From 279.20 to 280.00m three subparallel 28-30mm Qz-PY-MO VNs, 15 tca are observed.

From 281.44 to 285.28m stockwork of 10-30m Qz-PY-MO VNs, 30-50 tca are present.

From 285.28 to 286.18m a granodiorite zone with sharp upper contact & lower contact at 30 tca observed.

silica altn

From 287.50 to 288.40m a granodiorite zone with the upper contact at 20 tca & the lower contact at 30 tca located.

@288.64m: 18cm granodiorite zone with the upper contact at 60 tca & the lower contact at 20 tca observed.

Below 288.84m the core is mottled by abundant veining running subparall bedding.

@291.90m: a solid 56mm z-PY-MO VN, 40 tca is present.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

274.00 294.44 BDG 30 M 2-3 % joints
 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 274.00
 294.44
 VW
 M
 M
 M
 VW
 M
 M

			VEINS	S '			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
274.00	294.44	6	8		1	4	20
	abunda		ing runn	ning subp	arall		

					IZAT				
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
274.00	294.4	4 2	VLT	МС	0.4	ļ			
>0.	4% M) in th	is inte	rval					

То

Litho HSLT

294.44 325.35

Fine grained from dark-reddish to black hornfelsed siltstone with biotite and weak silica alteration, dominantly mottled by contorted Qz-MO VNs (0.2-0.3% MO). Veining is dominantly the larger cm scale pink & white veins that are commonly in bedding direction, with abundant running subparallel foliation veining and boudined veining which are observed throughout the interval.

From 319.90 to 325.35m location of a quartz-granodiorite zone with BIO specks. The upper contact with siltstone is at 55 tca and the lower contact is at 60 tca. From 294.80 to 297.48m presence of a siltstone with minor granodiorite dyke (sharp upper & lower cotacts) & stockwork of contorted 10-24mm Qz-PY-MO VNs mostly at 30 tca.

From 297.48 to 301.58m location of a dark granodiorite porphyry plagioclase with occasional pink Qz VNs. Upper & lower contacts are at 30 tca.

@305.30m: contorted 30mm Qz-PY-Chl-MO VN, 90 tca.

From 301.58 to 309.75m siltstone is mottled by contorted Qz-PY-MO VNs/strs, storong silica altn.

From 305.75 to 306.78m presence of a broken core with CA & Chl on fractures.

@310.78m: a distorted 26mm Qz-PY-MO VN, 30 tca present.

From 313.78 to 314.16m knot of contorted 20-46m Qz-PY-MO VNs, 35-90 tca observed.

@310.82m: a dispersed 36mm Qz-PY-MO VN, 30 tca located.

@319.22m: presence of a solid 40mm Qz-PY-MO VN, 35 tca.

From 319.60 to 321.12m location of a broken core with strong CA altn.

STRUCTURES							
From	To	Struct	CA	Strain			

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1 3 30

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

294.44 325.35 BDG 30 M

319.6 to 321.12 broken core, strong CA altn. @319.9m contact with quartz granodiorite, 55 tca. 294.44 325.35 - - - M - M - M VW M M

CA altn

294.44 325.35 4 30 319.9 to 325.35m guartz/quartzgranodiorite zone 294.44 325.35 2 VLT MO 0.2 ~0.2% MO **CH0613**

From

To

Litho AND

325.35

356.20

Drab gray to greenish fine grained aphanitic andesite with transitional zones to monzonite & feldspar phenocrysts, anhedral plagioclase; MO presents in dendritic Qz VNs/strs, strong silicification, weak MG, mod BIO, system of pink Qz-PY-MO VNs with ~0.2% MO, PY BB & tiny PY strs, PO & EPI altn, weak Cpy presence.

@325.63m; solid 80mm Qz-PY-MO-EPI VN. 45 tca.

@326.12m: solid 60mm Qz-PY-PO-MO-EPI VN, 15 tca.

From 333.03 to 333.77m location of a significant distorted 20cm Qz-PY-PO-MO VN, 35 tca observed.

From 334.64 to 338.12m stockwork of 10-60mm Qz-P-MO VNs, 40-80 tca (approx two VN/m) is present.

@338.46m: presence of a contorted 86mm Qz-PY-MO-PO VN, 55 tca.

From 342.00 to 356.20m the core is mottled by contorted cms scale Qz-PY-MO-PO VNs in diff. orient. (>0.3% MO).

STRUCTURES									
From	To	Struct	CA	Strain					

M 325.35 356.20 MAS S ~2-3% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
325.35	356.20	-	-	М	М	-	М	М	М	W	М	М	М	
sil	lica altn													

VEINS										
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA			
325.35	356.20	8	40	15		3	30			
	abund d	cm sca	le Qz-P`	Y-MO VN						

					IZAT				
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
325.35	356.2	0 3	VLT	PC	2	М	O 0.	.30	

Initials:

patially more than 0.3% MO in this interval

CH0613

Initials: _____

From 356,20

To 371.10

Litho AND

Drab gray to greenish fine grained aphanitic andesite with transitional zones with monzonite & feldspar phencrysts, anhedral plagioclase; MO presents in thick cm scale Qz VNs; strong silicification, weak MG, mod BIO; system of pink Qz-PY-MO VNs with >0.2% MO, PY BB & tiny PY strs, PO & EPI altri.

@350.94m: a significant 20cm in thickness Qz-PY-MO-PO-EPI VN, 40 tca observed.

From 353.30 to 355.60m presence of a stockwork of 10-50mm Qz-PY-MO-PO VNs, 40-70 tca with EPI altn around.

From 356.16 to 357.19m a significant 50mm Qz-PY-MO-PO-ChI-EPI VN, 0 tca with a few narrow VNs radiating from the main VN located.

From 357.4 to 358.44m a significant distorted 48mm Qz-PY-MO-PO VN, 5 tca is observed.

From 360.70 to 361.10 m a few subparallel distorted 14-40mm Qz-PY-MO VNs, 30-50 tca are observed.

From 362.30 to 362.54m a thick Qz-PY-MO-PO VN with vague bedding contacts is present.

From 363.54 to 363.32m Qz-carbonate zone with MO strs, 50 tca located.

From 364.60 to 364.84m a thick distorted 50mm Qz-PO-PY-MO VN, 5 tca is present.

From 365.00 to 366.24m a distorted Qz-PLO-PY-MO-MG VN, 0 tca observed.

From 367.50 to 368.26m a granodiorite zone with Qz-PY-MO Vns with contacts at 50 tca.

Below 370.00 m distorted cm scale Qz-PY-MO VNs, 20-25 tca observed.

STRUCTURES									
From	To	Struct	CA	Strain					

356.20 371.10 MAS M S ~3% joints

					AL	TER	<i>ATIO</i>	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
356.20	371.10	-	-	W	S	-	М	W	М	W	М	М	М	
sil	ica altn													

	VEINS									
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA			
356.20	371.10	6	40	20		3	20			
cote mottled by Qz-PY-PO-MO VNs										

MINERALIZATION											
From To PY% Style Min Min% Min2 M2% Min3 M3%											
20% M	1in 3 M3%										
2/0 IV	1113 1113/0										
	•										
0.20	J										
	2% M										

371.10

To

Litho

394.06

HSLT

Fragile hornfelsed siltstone dominatly mottled by contorted Qz-MO VNs (>0.2-0.3% MO) & CA strs, 30% of the core is broken with CA & BIO on fractures, silica altered & CA strs. Abundant pink Qz veining & strs in this interval are dominantly the cm scale veins that commonly located in bedding direction with abundant dispersed running subparallel foliation veining and boudinaged veining and both are observed throughout the interval.

From 386.40 to 389.92m granodiorite porphyry medium grained groundmass and occasional subheudral plagioclase phenocrysts; occasional narrow Qz VNs, 50 tca with upper and lower contacts at 40 tca...

From 371.10 to 372.50m stockwork of contorted 10-22mm Qz-PY-PO-MO VNs, 20-60 tca.

@372.78m; contorted 50mm Qz-AB-PO-MO VN. 75 tca is present.

From 373.00 to 379.27m location of a fragile siltstone zone with contorted Qz-PY-PO-MO veinlets & Qz-PY strs running in subparallel foliation at 10-20 tca. (~35% of the core is broken).

From 379.30 to 380.00m granodiorite porpyry with CA strs observed.

From 379.80 to 381.54m presence of a broken core with Ca & BIO on fractures, 55% of core pieces are <10cm.

From 384.00 to 386.42m a stockwork of 10-30mm subparallel Qz-PY-MO VN, 40 tca is present.

From 389.92 to 390.22m two 20-38mm Qz-PY-MO VNs, 30 & 50 tca are located.

Below 393.00m presence of fragile core that is partially broken with CA on fractures.

@393.34m brecciated 80mm Qz-AB-CA VN, 50 tca is present.

From 393.57 to 394.06m location of a dispersed 60mm Qz-AB-PO-BIO-MO VN, 10 tca observed.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	-			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

371.10 394.04 2 VLT PO 2 MO 0.20 0.2% MO in this inteval

371.10 394.06 BDG 20 M 86.4 to 389.92m granodiorite dyke

371.10 394.06 - - VW M VW W W VW silica, BIO, AB & CA altn

371.10 394.06 6 15 3 3 20 core looks mottled by Qz VNs

То

Litho HSLT

394.06

415.15

Fragile dark brown hornfelsed siltstone dominatly mottled by contorted narrow Qz-MO VNs (>0.1% MO) & abundant CA strs, up to 65% of the core is broken and assosiate with fault and CA, BIO & MO on fractures. Granodiorite dyke from 402.60 to 415.15m with upper contact at 30 tca & vague lower contact.

From 397.74 to 397.96m location of two contorted 26mm & 42mm Qz-PY-MO VNs, 30 tca observed.

From 398.24 to 398.96m presence of three 24-32mm Qz-PY-MO VNs, 30 tca.

Below 401.58m there is a zone with contorted 12-24m Qz-PY-PO-MO VN, 20-60 tca.

From 408.22 to 408.60m presence of a significant 32cm Qz-PO-MO VN, 35 tca observed.

From 402.60 to 415.15m a granodiorite dyke zone, medium grained groundmass and occasional subheudral plagioclase phenocrysts with CA altn are present.

From 411.22 to 411.27m a narrow Qz-PY-MO veinlets with quartz zone observed.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

394.06 402.60 FLT W fragile siltstone; from 402.6 to 415.15m granodiorite dyke with CA altn, narrow Qz-PY-MO VNs

394.06 415.15 - - VW W - M - M VW M M M BIO & CA altn

394.06 415.15 5 10 5 2 3 20 core looks mottled by Qz-PY-MO VNs

394.06 415.15 3 VLT MO 0.3 ~0.2-0.3% MO in this interval

402.60 415.15 MAS S granodiorite zone W

To

Litho **HSLT**

415.15 440.60

Fine grained dark-reddish hornfelsed siltstone with biotite and weak silica altered, dominatly mottled by contorted Qz-MO VNs (~0.1% MO). Veining is dominantly present as the larger cm scale pink & white veins that commonly are in bedding direction but with running subparallel foliation veining and boudined. Thick & contorted veining are observed throughout this interval.

From 419.72 to 427.56m presence of a granodiorite dyke porphyry zone, medium grained groundmass and occasional subheudral plagioclase phenocrysts with interbedded narrow siltstone zones, Qz-MO veinlets, uppper contact at 40 tca, lower contact at 70 tca.

@417.10m: location of a brecciated Qz-PY-MO-AB-BIO-MG VN, 20 tca observed.

@423.75m; a narrow 3mm MO VN, 40 tca is present.

@428.84m: a solid 48mm Qz-PY-MO VN, 50 tca located.

From 429.25 to 429.53m a significant Qz-PO-MO VN, 75 tca observed.

From 430.36 to 430.72m a zone with 10cm in thickness Qz-PY-MO-PO-AB VN, 50 tca present.

From 432.20 to 432.60m there is a presence of a distorted 40mm Qz-PY-MO-PO-EPI VN, 20 tca.

From 434.00 to 434.76m a few contorted cm scale Qz-PY-MO VNs, 20-50 tca observed.

From 434.88 to 436.16m a boudinaged 22mm Qz-PY-MO VN, 0 tca located.

@436.64m: a solid 12cm Qz-PY-MO-PO VN, 30 tca is present.

@439.30m: a pink 30mm Qz-PY-MO VN, 35 tca observed.

STRUCTURES										
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

415.15 419.72 BDG M ~2% joints

> 415.15 440.60 - - - W -M - W VW M VW M mod BIO & very weak EPI altn

415.15 440.60 8 10 1 4 abund contorted Qz-PY-MO VNs

415.15 440.60 3 VLT MO 0.1 ~0.1% MO in this interval

419.72 427.56 MAS M granodiorite dyke

427.56 440.60 BDG М ~2% joints

From 415.15

To 440.60

Litho HSLT

(Continued from previous page)

From To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

1	MINERALIZATION													
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

From 440.60

To 458.00

Litho HSLT

Fine grained dark raddish harnfalsed siltetone mattled by contact

Fine grained dark-reddish hornfelsed siltstone mottled by contorted Qz-MO VNs (~0.1% MO). Veining is pink & white that is commonly in bedding direction with running subparall foliation. Thick & contorted veining are observed throughout this interval.

From 440.74 to 441.20m presence of a broken core with CA on fractures.

From 441.30 to 442.14m a contorted 22mm Qz-PY-MO-PO VN, 0 tca observed.

From 442.20 to 442.66m location of a broken core (mostly fragments) with CA on fractures.

@442.80m; a contorted Qz-AB-PO Vn. 15 tca is present.

@443.30m: a dictorted 44mm carbonate Qz-PY-MO VN, 30 tca located.

From 443.75 to 443.95m a small pieces of broken core are present.

From 444.60 to 448.00m location of a garnodiorite dyke medium grained groundmass and occasional subheudral plagioclase phenocrysts with interbedded

siltstone from 446.84 to 447.35m. Upper & lower contacts are at 35 tca.

From 448.94 to 449.40m there is a presence of a distorted 12mm Qz-Py-MO VN, 0 tca.

@450.66m: rim of Qz-PY-MO-PO VN, 35 tca is observed.

@450.92m: a selvaged 32mm Qz-PY-MO VN, 35 tca is present.

From 455.00 to 455.62m presence of a zone with two deformed 20-24mm VNs, 20 tca observed.

From 457.31 to 457.60m location of a significant Qz-PY-MO VN, 35 tca.

		STRU	CTUR	ES	
F	rom	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

	<i>MINERALIZATION</i>											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

440.60 444.60 BDG 20 W ~6% joints

440.60 451.30 5 10 4 2 4 20 abundant narrow Qz-PY-MO VNs

440.60 451.40 - - VW VW - M - W VW W W M

Ca altn

440.60 458.00 3 VLT MO 0.1 PO 1.00 >0.1% MO in this interval

То

Litho HSLT

440.60 458.

458.00

Fine grained dark-reddish hornfelsed siltstone mottled by contorted Qz-MO VNs (~0.1% MO). Veining is pink & white that is commonly in bedding direction with running subparall foliation. Thick & contorted veining are observed throughout this interval.

From 440.74 to 441.20m presence of a broken core with CA on fractures.

From 441.30 to 442.14m a contorted 22mm Qz-PY-MO-PO VN, 0 tca observed.

From 442.20 to 442.66m location of a broken core (mostly fragments) with CA on fractures.

@442.80m: a contorted Qz-AB-PO Vn, 15 tca is present.

@443.30m: a dictorted 44mm carbonate Qz-PY-MO VN, 30 tca located.

From 443.75 to 443.95m a small pieces of broken core are present.

From 444.60 to 448.00m location of a garnodiorite dyke medium grained groundmass and occasional subheudral plagioclase phenocrysts with interbedded

siltstone from 446.84 to 447.35m. Upper & lower contacts are at 35 tca.

From 448.94 to 449.40m there is a presence of a distorted 12mm Qz-Py-MO VN, 0 tca.

@450.66m: rim of Qz-PY-MO-PO VN, 35 tca is observed.

S

@450.92m: a selvaged 32mm Qz-PY-MO VN, 35 tca is present.

From 455.00 to 455.62m presence of a zone with two deformed 20-24mm VNs, 20 tca observed.

From 457.31 to 457.60m location of a significant Qz-PY-MO VN, 35 tca.

	STRUCTURES											
From	To	Struct	CA	Strain								

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

444.60 448.00 MAS

garnodiorite dyke

448.00 458.00 BDG

~5% jonts

CH0613

From

То

Litho HSLT

458.00

481.36

Fine grained dark-reddish hornfelsed siltstone mottled by contorted Qz-MO VNs (>0.1% MO). Veining is pink & white that is commonly in bedding direction with running subparallel foliation; thick & ptygmatic veining observed throughout this interval.

@458.40m: presence of a hick 12cm Qz-PY-MO VN, 55 tca with bunch of subparallel strs.

From 459.00 to 460.00m reticulated network of 8-20mm Qz-Py-PO-MO VNs observed.

@460.28m: location of a selvaged 12mm Qz-PY-MO VN, 15mm is present.

From 462.16 to 463.44m anastomosing 20mm Qz-PY-PO-MO-EPI veinlets are located.

@464.70m: a knot of 20mm Qz-PY-MO veinlets observed.

From 466.40 to 467.30m presence of a broken core with siltstone & quarz fragments is observed.

From 470.48 to 470.96m a significant 60mm Qz-PY-MO VN, 5 tca is present.

@471.74m: there is a location of a selvaged 36mm Qz-Py-MO-Chl VN, 50 tca.

From 473.62 to 474.22m a distorted significant 66mm Qz-PY-MO-AB-PO-MG-CA-EPI VN, 5 tca observed.

From 474.80 to 481.36m an abundant veining is observed which is commonly located in bedding direction at 20-30 tca with running subparall foliation; thick contorted veining observed throughout this interval.

From 479.75 to 480.66m presence of a broken coke with CA & MO on fractures.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

458.00 481.36 BDG 20 M 5% joints

					AL	TER	ATIO)N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
458.00	481.36	-	-	-	М	-	М	-	W	VW	М	W	М	
C	A 8. P∩ ≤	altn												

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
458.00	481.36	8	15		1	4 :	20

VNs commonly on bedding direction with running subparall foliation

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
458.00	481.3	6 2	VLT	PC) 1	М	O 0.	10					

Initials:

>0.1% MO throghtout this interval

То

Litho HSLT

481.36 504.00

Fine grained dark-reddish hornfelsed siltstone with biotite and CA altered, dominantly mottled by contorted Qz-MO VNs (~0.1% MO). Presence of interlaced veins is observed which are commonly running at zero tca; boudinaged, cm scale/thickness & ptygmatic veining observed throughout this interval. The core is fragile with CA, CA, BIO & MO on fractures.

@482.72m: a thick distorted 11cm Qz-PY-MO VN, 90 tca observed.

From 486.94 to 488.00m presence of a boudinaged 20mm Qz-PY-MO VN, 0 tca with subparallel boudinaged strs. is observed.

From 490.70 to 491.10m a distorted 40mm Qz-PY-MO VN, 0 tca is present.

From 492.24 to 493.00m a boudinaged 20mm Qz-PY-MO VN, 0 tca with subparallel boudinaged strs located.

From 493.10 to 495.60m a fault zone with up to 60% of broken core observed.

From 496.94 to 497.10m a knot of ptygmatic 20mm Qz-PY-AB-MMO VNs, 0 tca is present.

@498.16m: a ptygmatic 28mm Qz-PY-MO VN, 15 tca with subparallel strs. is observed

From 499.40 to 499.74m presence of a ptygmatic 26mm Qz-PY-MO VN, 35 tca observed.

Below 499.74m there is a ocation of a network of narrow ptygmatic VNs/strs.

@502.20m: a branched out 22mm Qz-PY-MO-PO VN, 35 tca is present.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

I				VEIN S	S			
Ī	From	То	Vn%	QZ%	Feld%	CC%	V/m	CA

2 3 10

1			M	INE	RAL	IZAT	ION			
i	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

481.36 493.10 BDG 10 M ~5% joints

481.36 504.00 - - VW M - M - M VW M N

CA altn

481.36 504.00 5 8

abundant ptygmatic Qz strs

481.36 504.00 2 VLT MO 0.1 >0.1% MO

493.10 495.60 FLT W ~60% broken core, CA on fracture

То

Litho HSLT

504.00

522.20

Fragile fine grained dark-reddish hornfelsed siltstone with narrow granodiorite zones; biotite and CA altered, core is mottled by contorted Qz-MO VNs (~0.2%

MO). Presence of ptygmatic & contorted interlaced veining & strs observed throughout this interval.

From 505.00 to 505.74m granodiorite porphyry with Qz-AB lenses observed; upper & lower contacts are at 50 tca..

From 507.15 to 512.46m presence of a broken core with CA & MO on fractures.

From 512.80 to 513.46m location of a carbonate zone with narrow deformed Qz-PY-MO VNs.

From 513.46 to 516.50m granodiorite zone with contorted Qz-PY-MO VNs observed. Upper contact is at 40 tca, lower contact is at 10 tca.

From 518.26 to 519.05m interbedded granodiorite porphyry with Chl & silica altn. present

From 519.38 to 522.20m presence of a fault zone (~60% of the core is broken) with gouge and CA on fractures. Traces of Qz-PY-MO VNs on fragments.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

					IZAT				
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M39

504.00 505.00 2 VLT MO 0.2 ~0.2 % MO in this interval

504.00 505.00 BDG M *siltstone*

504.00 522.20 - - - M - M - M VS M M M *CA altn*

504.00 522.20 4 6 5 2 2 10 ptygmatic & contorted narrow Qz-PY-MO VNs

505.00 505.74 MAS M S granodiorite dyke

505.00 522.20 1 DISS traces of MO VNs in jonts

Initials:	
-----------	--

From 504.00

To 522,20

Litho HSLT

(Continued from previous page)

STRUCTURES
From To Struct CA Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

512.46 513.46 BDG M siltstone with carbonate

513.46 516.50 MAS M S granodiorite zone

516.50 518.26 BDG W fragile siltstone

518.26 519.05 MAS M

granodiorite dyke

519.05 522.20 FLT V broken core with gouge

From	То
522.20	545.20

The main body of granodiorite is grey in colour medium grained groundmass rock with ~30% plagioclase feldspar phenocrysts. The core is mineralized by narrow Qz-PY-PO-MO VNs with pyrite and pyrrhotite strs & BB. The granodiorite is fresh looking rock with partially CA altn; upper contact is at 40 tca & lower contact is at 15 tca.

From 531.50 to 532.76m presence of a broken core (fragments are with CA on fractures).

From 538.44 to 538.86m stockwork of 8-20mm Qz-PY-MO VNs, 40-50 tca observed.

*Litho*GDIO

@541.33m distorted 30mm Qz-PY-MO VN, 15 tca is present.

From 544.12 to 544.54m location of a narrow interbedded siltstone zone with brecciated contacts.

	STRUCTURES										
From	To	Struct	CA	Strain							
522.20	545.20	MAS S		M							
	2 %	6 joints									

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
522.20	545.20	-	-	_	М	-	М	VW	М	-	М	М	М	
53	31.5 to 5	32.76	im strc	ong C	A altr	7								

VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	
522.20	545.20	2	40	20	2	2	40	
Qz-PY-MO VNs presence								

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	
522.20	545.2	0 2	DISS	мс	0.0	5 P	O 1.	00		
we	weak MO mineralization									

Initials:

From To 522,20 545,20

Litho GDIO

The main body of granodiorite is grey in colour medium grained groundmass rock with ~30% plagioclase feldspar phenocrysts. The core is mineralized by narrow Qz-PY-PO-MO VNs with pyrite and pyrrhotite strs & BB. The granodiorite is fresh looking rock with partially CA altn; upper contact is at 40 tca & lower contact is at 15 tca.

From 531.50 to 532.76m presence of a broken core (fragments are with CA on fractures).

From 538.44 to 538.86m stockwork of 8-20mm Qz-PY-MO VNs, 40-50 tca observed.

@541.33m distorted 30mm Qz-PY-MO VN, 15 tca is present.

From 544.12 to 544.54m location of a narrow interbedded siltstone zone with brecciated contacts.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

				VEIN S	5			
,	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1	MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From To 545.20 565.63

Fine grained reddish-brown hornfelsed siltstone mottled by contorted Qz-MO VNs (>0.1% MO). Veining is pink & white located commonly along the core in bedding direction with running subparallel foliation. Ptygmatic & contorted veining observed throughout this interval. Narrow granodiorite dykes are present. From 545.20 to 550.96m presence of fragile siltstone zone. The core fragility is the result of CA altn with CA-MO-BIO on fractures.

@547.93m: a deformed 30mm Qz-PY-MO VN, 10 tca observed.

Litho

HSLT

From 549.26 to 550.10m a breccia zone with deformed Qz-MO VNs & PY, PO, MG & BIO blotches present.

@550.30m: a ptymatic 50 mm Qz-PY-MO VN, 35 tca is observed.

From 550.96 to 555.75m presence of a quartz-granodiorite zone with upper contact at 40 tca & lower contact at 15 tca & Qz veining along the core.

From 552.90 to 554.20m location of a significant 60mm Qz-PY-MOPO-AB VN, 0 tca.

From 555.75 to 557.10m siltstone with network ptygmatic narrow Qz-Py-MO VNs observed.

From 557.10 to 560.90m a granodiorite zone with contorted Qz veins, upper contact at 30 tca & lower contact at 10 tca located.

@558.36m: a pink 32mm Qz-PY-MO VN, 20 tca is present.

Below 561.00m hornfelsed siltstone with ptygmatic 8-12mm Qz-PY-MO VNs, 0 tca is observed.

From 555.75 to

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

1	MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

Initials:

From

To 565.63

Litho **HSLT**

545.20

Fine grained reddish-brown hornfelsed siltstone mottled by contorted Qz-MO VNs (>0.1% MO). Veining is pink & white located commonly along the core in bedding direction with running subparallel foliation. Ptygmatic & contorted veining observed throughout this interval. Narrow granodiorite dykes are present. From 545.20 to 550.96m presence of fragile siltstone zone. The core fragility is the result of CA altn with CA-MO-BIO on fractures. @547.93m: a deformed 30mm Qz-PY-MO VN, 10 tca observed.

From 549.26 to 550.10m a breccia zone with deformed Qz-MO VNs & PY, PO, MG & BIO blotches present.

@550.30m: a ptymatic 50 mm Qz-PY-MO VN, 35 tca is observed.

From 550.96 to 555.75m presence of a quartz-granodiorite zone with upper contact at 40 tca & lower contact at 15 tca & Qz veining along the core.

From 552.90 to 554.20m location of a significant 60mm Qz-PY-MOPO-AB VN, 0 tca.

From 555.75 to 557.10m siltstone with network ptygmatic narrow Qz-Py-MO VNs observed.

From 557.10 to 560.90m a granodiorite zone with contorted Qz veins, upper contact at 30 tca & lower contact at 10 tca located.

@558.36m: a pink 32mm Qz-PY-MO VN, 20 tca is present.

Below 561.00m hornfelsed siltstone with ptygmatic 8-12mm Qz-PY-MO VNs, 0 tca is observed.

From 555.75 to

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

545.20 550.96 BDG fragile hornfelsed siltstone

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

1	MINERALIZATION											
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

545.20 565.63 - - VW CA altn

545.20 565.63 5 20 2 3 0 siltstone mottled by contorted Qz-MO VNs, >0.1% MO

545.20 565.63 3 VLT MO 0.1 up to 0.1% MO throughout the core

550.96 555.75 MAS M granodiorite dyke with CA strs, 8% joints

555.75 557.10 BDG M hornfelsed siltstone

From 545,20

To 565.63

Litho HSLT

M

(Continued from previous page)

STRUCTURES
From To Struct CA Strain

granodiorite dyke with pink Qz Vns
 From
 TO
 INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

1	MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

557.10 560.90 MAS

560.90 565.63 BDG S hornfelsed siltstone

 From
 To

 565.63
 594.00

Litho HSLT

Fine grained reddish-brown hornfelsed siltstone looks mottled; contorted Qz-MO VNs (~0.1% MO are present. Veining in this interval is commonly located along the core (in bedding direction). Ptygmatic & contorted veining observed throughout the interval. Granodiorite dykes are present.

@565.74m: presence of a solid 30mm Qz-PY-MO VN, 10 tca.

From 568.24 to 568.46m a knot of contorted Qz-PY-MO VNs are present.

From 568.46 to 568.76m broken core and core fragments observed.

From 569.10 to 510.30m location of a ptygmatic 36mm Qz-PY-MO-AB-BIO VN, 0 tca observed.

@571.60m: a solid 70mm Qz-PY-MO-BIO-EPI VN, 55 tca present.

@572.00m: location of a contorted 30mm Qz-PY-MO VN, 10 tca observed.

From 572.56 to 572.88m presence of a Qz alteration zone and abundant Qz-PY-MO strs around.

From 573.38 to 573.66m a thick Qz-PY-MO VN, 85 tca is present.

From 573.66 to 585.85m granodiorite dyke porphyry with contorted Qz-PY-MO VNs.Upper contact at 85 tca, lower contact at 45 tca.

From 581.80 to 582.00m a solid Qz-PY-MO-BIO VN, 80 tca present.

From 582.82 to 582.98m a solid Qz-PY-BIO-MO VN, 75 tca observed.

From 585.80 to 590.00m presence of a siltstone zone with contorted Qz veinlets.

From 590.00 to 592.70m granodiorite with 33mm Qz-Py-MO VN, 65 tca.

From 592.70 to 594.00m siltstone with Qz-PY-MO strs observed.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

MINERALIZATION

From To PY% Style Min Min% Min2 M2% Min3 M3%

565.63 573.66 BDG S siltstone

565.63 594.00 - - - M - M VW M VW M M M BIO altn

565.63 594.00 8 35 15 1 2 0 abundant Qz-PY-MO VNs

565.63 594.00 2 DISS MO 0.1 abundant Qz-PY+/-MO Vns.

To

Litho HSLT

565.63 594.00

Fine grained reddish-brown hornfelsed siltstone looks mottled; contorted Qz-MO VNs (~0.1% MO are present. Veining in this interval is commonly located along the core (in bedding direction). Ptygmatic & contorted veining observed throughout the interval. Granodiorite dykes are present.

@565.74m: presence of a solid 30mm Qz-PY-MO VN, 10 tca.

From 568.24 to 568.46m a knot of contorted Qz-PY-MO VNs are present.

From 568.46 to 568.76m broken core and core fragments observed.

From 569.10 to 510.30m location of a ptygmatic 36mm Qz-PY-MO-AB-BIO VN, 0 tca observed.

@571.60m: a solid 70mm Qz-PY-MO-BIO-EPI VN, 55 tca present.

@572.00m: location of a contorted 30mm Qz-PY-MO VN, 10 tca observed.

From 572.56 to 572.88m presence of a Qz alteration zone and abundant Qz-PY-MO strs around.

From 573.38 to 573.66m a thick Qz-PY-MO VN, 85 tca is present.

From 573.66 to 585.85m granodiorite dyke porphyry with contorted Qz-PY-MO VNs.Upper contact at 85 tca, lower contact at 45 tca.

From 581.80 to 582.00m a solid Qz-PY-MO-BIO VN, 80 tca present.

From 582.82 to 582.98m a solid Qz-PY-BIO-MO VN, 75 tca observed.

From 585.80 to 590.00m presence of a siltstone zone with contorted Qz veinlets.

From 590.00 to 592.70m granodiorite with 33mm Qz-Py-MO VN, 65 tca.

From 592.70 to 594.00m siltstone with Qz-PY-MO strs observed.

S

S

I	STRUCTURES								
	From	To	Struct	CA	Strain				

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS				
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

573.66 585.85 MAS

granodiorite

585.85 594.00 BDG

siltstone with narrow granodiorite zone

CH0613

613					
		_	_		_

 From
 To
 Litho

 594.00
 626.06
 GDIO

The main body of the granodiorite is grey in colour medium grained groundmass rock with ~30% plagioclase feldspar phenocrysts. The core is mineralized by narrow Qz-PY-PO-MO VNs with pyrite and pyrrhotite strs & BB. The granodiorite is fresh looking rock with partially CA altn.

	STRU	CTUR	ES		
From	To	Struct	CA	Strain	
594.00	626.06	MAS S		М	5
	~2%	% joints	;		

1															
		<i>ALTERATION</i>													
,	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
	594.00				-	М	-	М	VW	М	VW	М		М	
	Ві	10, Chl 8	CA	altn											

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		
594.00	626.06	2	40	30	2	2	50		
contorted Qz-PY +/-MO VNs									

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
594.00	626.0	6 2	VLT	MC	0.5	;					
barren below 620.0m											

Initials: _

CHU Project - TTM Resources Inc. SAMPLE REPORT

SAMPLE ID	From	TO	LITH	TYPE	Cu (%)	Mo(%)
46243	(m) 4.84	(m) 7.92	AND	CORE	0.03	0.003
46244	7.92	10.97	AND	CORE	0.03	0.004
46245				BLANK	0.00	0.000
46246	10.97	14.02	AND	CORE	0.04	0.002
46247	14.02	17.07	AND	CORE	0.03	0.001
46248	17.07	20.12	AND	CORE	0.02	0.001
46249	20.12	23.16	AND	CORE	0.04	0.003
46250				MoS-1	0.01	0.064
46251	23.16	26.21	AND	CORE	0.04	0.002
46252	26.21	29.26	AND	CORE	0.05	0.013
46253	29.26	32.31	AND	CORE	0.01	0.005
46254	32.31	35.36	AND	CORE	0.02	0.001
46255	35.36	38.41	AND	CORE	0.03	0.002
46256	38.41	41.45	AND	CORE	0.02	0.002
46257	41.45	44.50	AND	CORE	0.02	0.001
46258	44.50	47.55	AND	CORE	0.02	0.000
46259	47.55	50.60	AND	CORE	0.05	0.002
46260				DUPLICATE	0.04	0.002
46261	50.60	53.64	AND	CORE	0.05	0.003
46262	53.64	56.69	AND	CORE	0.04	0.009
46263	56.69	59.74	AND	CORE	0.06	0.002
46264	59.74	62.79	AND	CORE	0.06	0.001
46265				BLANK	0.00	0.000
46266	62.79	65.84	AND	CORE	0.06	0.001
46267	65.84	68.88	AND	CORE	0.04	0.000
46268	68.88	71.93	AND	CORE	0.07	0.002
46269	71.93	74.98	AND/GDIO	CORE	0.03	0.001
46270				MoS-1	0.01	0.064
46271	74.98	78.03	GDIO	CORE	0.01	0.000
46272	78.03	81.08	GDIO/AND	CORE	0.03	0.003
46273	81.08	84.12	AND	CORE	0.05	0.002
46274	84.12	87.17	AND	CORE	0.05	0.005
46275	87.17	90.22	AND	CORE	0.00	0.000
46276	90.22	93.27	AND	CORE	0.05	0.002
46277	93.27	96.32	AND	CORE	0.04	0.041
46278	96.32	99.36	AND	CORE	0.04	0.012
46279	99.36	102.41	AND	CORE	0.02	0.020
46280				DUPLICATE	0.02	0.024
46281	102.41	105.46	AND	CORE	0.03	0.025
46282	105.46	108.51	AND	CORE	0.03	0.021
46283	108.51	111.56	AND	CORE	0.02	0.012
46284	111.56	114.60	AND	CORE	0.03	0.025
46285				BLANK	0.00	0.000
46286	114.60	117.65	AND	CORE	0.02	0.015
46287	117.65	120.70	AND	CORE	0.05	0.021
46288	120.70	123.75	AND	CORE	0.03	0.007
46289	123.75	126.80	AND	CORE	0.04	0.008
46290				MoS-1	0.01	0.062
46291	126.80	129.84	AND	CORE	0.04	0.008
46292	129.84	132.89	AND	CORE	0.05	0.027

SAMPLE REPORT

	_				2 (21)	(2.)
SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
46293	132.89	135.94	AND	CORE	0.03	0.013
46294	135.94	138.99	AND	CORE	0.02	0.015
46295	138.99	142.04	AND	CORE	0.02	0.014
46296	142.04	145.08	AND	CORE	0.02	0.008
46297	145.08	148.13	AND	CORE	0.03	0.025
46298	148.13	151.18	AND	CORE	0.04	0.056
46299	151.18	154.23	AND	CORE	0.02	0.049
46300				DUPLICATE	0.02	0.039
46301	154.23	157.28	AND	CORE	0.03	0.082
46302	157.28	160.32	AND	CORE	0.01	0.015
46303	160.32	163.37	AND	CORE	0.01	0.017
46304	163.37	166.42	AND	CORE	0.02	0.035
46305				BLANK	0.00	0.000
46306	166.42	169.47	AND	CORE	0.03	0.054
46307	169.47	172.52	AND	CORE	0.04	0.013
46308	172.52	175.56	AND	CORE	0.05	0.028
46309	175.56	178.61	AND	CORE	0.06	0.053
46310				MoS-1	0.01	0.063
46311	178.61	181.66	AND/BDY	CORE	0.02	0.017
46312	181.66	184.71	BDY	CORE	0.00	0.000
46313	184.71	187.76	BDY	CORE	0.00	0.000
46314	187.76	190.80	BDY	CORE	0.03	0.018
46315	190.80	193.85	BDY/AND	CORE	0.01	0.003
46316	193.85	196.90	AND	CORE	0.04	0.032
46317	196.90	199.95	AND	CORE	0.03	0.020
46318	199.95	203.00	AND	CORE	0.06	0.011
46319	203.00	206.04	AND	CORE	0.07	0.018
46320	200.00	200.0	7.11.12	DUPLICATE	0.09	0.017
46321	206.04	209.09	AND	CORE	0.07	0.024
46322	209.09	212.14	AND	CORE	0.08	0.051
46323	212.14	215.19	AND	CORE	0.08	0.069
46324	215.19	218.24	AND	CORE	0.11	0.055
46325	2.0		7.1.12	BLANK	0.00	0.000
46326	218.24	221.28	AND	CORE	0.03	0.079
46327	221.28	224.33	AND/BDY	CORE	0.01	0.015
46328	224.33	227.38	BDY/GDIO	CORE	0.01	0.000
46329	227.38	230.43	GDIO	CORE	0.00	0.000
46330		_55.46	32.0	MoS-1	0.00	0.066
46331	230.43	233.48	GDIO	CORE	0.01	0.007
46332	233.48	236.52	GDIO	CORE	0.01	0.010
46333	236.52	239.57	GDIO	CORE	0.02	0.053
46334	239.57	242.62	GDIO	CORE	0.03	0.020
46335	242.62	245.67	GDIO	CORE	0.03	0.020
46336	245.67	248.72	GDIO	CORE	0.02	0.013
46337	243.07	251.76	GDIO	CORE	0.02	0.037
46338	251.76	254.81	GDIO	CORE	0.02	0.063
46339	254.81	257.86	GDIO	CORE	0.02	0.003
46340	204.01	201.00	GDIO	DUPLICATE	0.02	0.064
46340	257 06	260.04	GDIO	CORE		
	257.86	260.91			0.05	0.039
46342	260.91	263.96	GDIO	CORE	0.04	0.061
46343	263.96	267.00	GDIO	CORE	0.02	0.035
46344	267.00	270.05	GDIO	CORE	0.02	0.022

SAMPLE REPORT

SAMPLE ID	From	ТО	LITH	TYPE	Cu (%)	Mo(%)
	(m)	(m)	LIIII			1010 (76)
46345				BLANK	0.00	0.000
46346	270.05	273.10	GDIO	CORE	0.02	0.121
46347	273.10	276.15	GDIO	CORE	0.03	0.085
46348	276.15	279.20	GDIO	CORE	0.03	0.057
46349	279.20	282.24	GDIO	CORE	0.03	0.086
46350				MoS-1	0.01	0.063
46351	282.24	285.29	GDIO	CORE	0.03	0.022
46352	285.29	288.34	GDIO	CORE	0.03	0.013
46353	288.34	291.39	GDIO	CORE	0.03	0.085
46354	291.39	294.44	GDIO	CORE	0.03	0.029
46355	294.44	297.48	GDIO	CORE	0.05	0.066
46356	297.48	300.53	GDIO	CORE	0.04	0.053
46357	300.53	303.58	GDIO/AND	CORE	0.07	0.037
46358	303.58	306.63	AND	CORE	0.06	0.019
46359	306.63	309.68	AND	CORE	0.02	0.021
46360				DUPLICATE	0.03	0.021
46361	309.68	312.72	AND	CORE	0.04	0.027
46362	312.72	315.77	AND	CORE	0.05	0.041
46363	315.77	318.82	AND	CORE	0.06	0.099
46364	318.82	321.87	AND	CORE	0.06	0.029
46365				BLANK	0.00	0.000
46366	321.87	324.92	AND	CORE	0.07	0.021
46367	324.92	327.96	AND	CORE	0.06	0.055
46368	327.96	331.01	AND	CORE	0.03	0.040
46369	331.01	334.06	AND	CORE	0.04	0.054
46370				MoS-1	0.01	0.064
46371	334.06	337.11	AND	CORE	0.09	0.057
46372	337.11	340.16	AND	CORE	0.06	0.089
46373	340.16	343.20	AND	CORE	0.04	0.071
46374	343.20	346.25	ND/QDP/QF	CORE	0.04	0.066
46375	346.25	349.30	QDP/QFP	CORE	0.02	0.023
46376	349.30	352.35	DP/QFP/HSL	CORE	0.05	0.055
46377	352.35	355.40	HSLT	CORE	0.03	0.035
46378	355.40	358.44	HSLT/AND	CORE	0.04	0.102
46379	358.44	361.49	AND	CORE	0.04	0.050
46380				DUPLICATE	0.05	0.114
46381	361.49	364.54	AND	CORE	0.06	0.029
46382	364.54	367.59	AND	CORE	0.05	0.029
46383	367.59	370.64	AND	CORE	0.05	0.084
46384	370.64	373.68	AND	CORE	0.05	0.053
46385				BLANK	0.00	0.000
46386	373.68	376.73	AND/HSLT	CORE	0.04	0.064
46387	376.73	379.78	HSLT	CORE	0.03	0.056
46388	379.78	382.83	HSLT	CORE	0.02	0.070
46389	382.83	385.88	HSLT	CORE	0.04	0.038
46390				MoS-1	0.01	0.065
46391	385.88	388.92	HSLT	CORE	0.03	0.041
46392	388.92	391.97	HSLT	CORE	0.02	0.056
46393	391.97	395.02	HSLT	CORE	0.02	0.076
46394	395.02	398.07	HSLT	CORE	0.03	0.075
46395	398.07	401.12	HSLT	CORE	0.03	0.079
46396	401.12	404.16	HSLT	CORE	0.03	0.079
40330	401.12			ANTSLIMITED	0.03	0.034

SAMPLE REPORT

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
46397	404.16	407.21	HSLT	CORE	0.02	0.095
46398	407.21	410.26	HSLT	CORE	0.04	0.080
46399	410.26	413.31	HSLT	CORE	0.02	0.087
46400				DUPLICATE	0.02	0.073
46401	413.31	416.36	HSLT	CORE	0.03	0.137
46402	416.36	419.40	HSLT	CORE	0.04	0.103
46403	419.40	422.45	HSLT	CORE	0.02	0.074
46404	422.45	425.50	HSLT	CORE	0.02	0.093
46405				BLANK	0.00	0.000
46406	425.50	428.55	HSLT	CORE	0.03	0.102
46407	428.55	431.60	HSLT	CORE	0.03	0.286
46408	431.60	434.64	HSLT	CORE	0.02	0.092
46409	434.64	437.69	HSLT	CORE	0.02	0.147
46410				MoS-1	0.01	0.063
46411	437.69	440.74	HSLT	CORE	0.00	0.005
46412	440.74	443.79	HSLT	CORE	0.02	0.210
46413	443.79	446.83	HSLT	CORE	0.02	0.093
46414	446.83	449.88	HSLT	CORE	0.03	0.183
46415	449.88	452.93	HSLT	CORE	0.03	0.111
46416	452.93	455.98	HSLT	CORE	0.02	0.082
46417	455.98	459.03	HSLT	CORE	0.03	0.077
46418	459.03	462.08	HSLT	CORE	0.01	0.097
46419	462.08	465.12	HSLT	CORE	0.03	0.134
46420				DUPLICATE	0.03	0.153
46421	465.12	468.17	HSLT	CORE	0.02	0.106
46422	468.17	471.22	HSLT	CORE	0.07	0.162
46423	471.22	474.27	HSLT	CORE	0.12	0.114
46424	474.27	477.32	HSLT	CORE	0.04	0.065
46425				BLANK	0.00	0.000
46426	477.32	480.36	HSLT	CORE	0.02	0.094
46427	480.36	483.41	HSLT	CORE	0.11	0.141
46428	483.41	486.46	HSLT	CORE	0.02	0.099
46429	486.46	489.51	HSLT/GDIO	CORE	0.03	0.079
46430				MoS-1	0.01	0.063
46431	489.51	492.56	GDIO	CORE	0.02	0.029
46432	492.56	495.60	GDIO	CORE	0.01	0.009
46433	495.60	498.65	GDIO	CORE	0.04	0.022
46434	498.65	501.70	GDIO	CORE	0.02	0.015

CHU Project - TTM Resources Inc.

Signature:	
	Initials:

CH0612

To From 4.84 0.00

casing/overburden

STRUCTURES										
From	To	Struct	CA	Strain						
0.00 4.84 MAS W										
overburden										

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
0.00	4 84	_	_	_	_	_	_	_	_	_				

			VEINS	5				
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	
0.00	4.84	0.00						

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
0.00	4 84	0.00	1 _						

From

To

Litho

Litho

ОВ

4.84 39.46 AND

Fine grained gray reddish andesite, mottled looking, hematite red (maroon) in color with blotches of chloritic green alteration. Cut by abundant quartz and quartzalbite veining. Pyrite is moderately abundant in veinlets form and less commonly disseminated. Narrow PY strs, silica, EPI & BIO altn, 1-2% MG. MO is generally present along the margins of veinlets or associated with AB veining.

@16.76m: thick 70mm Qz-PY-MO-MG VN, 50 tca is present.

@20.34m: brecciated magnetic 24mm QzPO-AB-PY VN, 25 tca.

@26.06m: brecciated 14mm Qz-PO-PY-BIO-MG VN, 20 tca.

@28.40m: location of mottled thick 8cm Qz-PO-MG-BIO VN, 55 tca.

Broken core, sand & gouge is observed from 29.26 to 30.05m.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain
4.84	39.46	MAS		М
		S		
	2-39	% ioints	3	

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
	•							•				•		

.84	39.46	-	-	S	М	-	W	W	W	М	М	М	W
MG	, AB, EPI	, BIO	, Ch	ıl altn									

			VEINS	<u>)</u>			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
4.84	39.46	1	2	15	1	1	
	AB veii	ning					

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
4.84	39.46	i 1	VLT	PC) 2	МО	0.01						
tra	ces of i	МО											

From 39.46

*T*o 74.32

Litho AND

Fine grained gray reddish andesite, mottled looking, hematite red (maroon) in color with blotches of chloritic green alteration, flow banded zones. Cut by abundant AB-ChlEPI-PO-MG & narrow Qz +/-MO veining. Pyrite is moderately abundant in veinlets form and less commonly disseminated. Narrow PY strs &BB, silica, EPI & BIO altn, ~2% MG.

From 64.72 to 64.08m flow banded Qz-PY-PO-MO-EPI zone is observed.

From 69.20 to 71.00m flow banded PY-PO-EPI zone cut off by narrow contorted Qz-MO VNs is present.

STRUCTURES										
From	To	Struct	CA	Strain						
39.46	74.32	MAS S		S						
~2% joints										

	ALTERATION													
From	То	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
39.46	74.32	-	-	-	S	-	М	VW	W	S	М	М	S	
str	rong sult	ide, E	EPI & (Chl al	tn, w	ak MG	;							

VEINS											
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA				
39.46	74.32	4	3	10	1	2					
	looking MG veil		d by suli	fide-Chl-E	PI-						

1	MINERALIZATION											
ĺ	From	То	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
	39.46	74.32	2 3	VLT	PC) 1	МО	0.01				
	~2	% MG _l	presei	nce								

From	
74.32	8

To 80.00

Litho GDIO

Granodiorite dyke, medium light grey in color, speckled black and white with a medium grained groundmass and occasional subheudral plagioclase phenocrysts which is weakly foliated with chilled margins. Core is cut by narrow CA veinlets. DI pyrite in small amounts. Upper contact =75, lower contact =70 tca.

STRUCTURES									
From	To	Struct	CA	Strain					
74.32	80.00	MAS S		М					
moa	leratly cu	ut off b	v CA	strs					

<u> </u>														
ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
74.32	80.00	-	-	-	s	-	-	VW	W	-	М	S	W	
CA	A altn													

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
74.32	80.00	0.3	40	20	1	0.2	60				
	random	Qz VN	ls & mo	derate CA	A strs						

	MINERALIZATION											
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
	74.32 noi	80.00 n mine		2.00								

From

*T*o 90.06

Litho AND

80.00 90.06 AND

Fine grained gray reddish andesite, hematite red (maroon) in color with blotches of chloritic green alteration, flow banded zones. Cut by abundant AB-ChlEPI-PO-MG & narrow Qz +/-MO veining. Pyrite is moderately abundant in veinlets form and less commonly disseminated. Narrow PY strs &BB, silica, EPI & BIO altn, ~2% MG. Minor granodiorite dykes, medium light grey in color, speckled black and white with a medium grained groundmass and occasional subheudral plagioclase phenocrysts.

From 80.26 to 80.48m granodiorite porphyry is observed with contact at 75 tca

From 82.98 to 83.84m granodiorite porphyry with contact at 70 tca.

From 85.70 to 90.20m presence of a broken core with Ca-Chl on fracture.

From 81.10 to 90.20m dark gray granodiorite dyke, medium light grey in color, speckled black and white with a medium grained groundmass observed.

STRUCTURES										
From	To	Struct	CA	Strain						
80.00	90.06	MAS S		M						
~2% jonts										

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
80.00	90.06	-	-	М	М	-	-	W	М	М	М	М	М	
We	weak MG altn													

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
80.00	90.06	1	30	20	1	1	60				
	abunda	nt AB-	ChIEPI-	PO veins							

<i>MINERALIZATION</i>														
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					
80.00	90.06	5 2	VLT	PC) 1	МО	0.02							
we	ak MG	prese	ent											

From 90.06

To 124.82

Litho AND

Fine grained gray reddish andesite porphyry, mottled looking, hematite, blotches of chloritic green alteration, flow banded zones cut by abundant AB-ChlEPI-PO-MG & narrow Qz -MO veining. Pyrite is moderately abundant in veinlets form and less commonly disseminated with narrow PY strs & BB; AB, silica, EPI & BIO altn, ~1% MG. Minor granodiorite dykes, medium light grey in color, speckled black and white with a medium grained groundmass and occasional subheudral plagioclase phenocrysts.

@100.28m: contorted 30mm Qz-PY-MO-EPI VN, 90 tca is present.

From 102.14 to 102.58m contorted Qz-PY-MO VNs & distorted 60mm AB-MG-EPI VN, 90 tca are observed.

@105.92m: selvaged 20mm qz-PY-MO VN, 40 tca.

From 112.44 to 119.74m approx. 25% of the core is broken, CA on fractures, moderate narrow Qz-PY-MO VNs.

@123.32m: presence of a pink 22mm Qz-PY-MO-MG VN, 45 tca.

STRUCTURES											
From	To	Struct	CA	Strain							
90.06	124.82	MAS S		М							
partially broken core											

	ALTERATION From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	
	124.82 PI, MG, (W	М	-	W	-	М	W	М	М	М		

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
90.06	124.82 <i>Qz-PY-</i>	1 MO str	10 s	10	1	1	80				

MINERALIZATION													
From To PY% Style Min Min% Min2 M2% Min3 M3%													
90.06	90.06 124.82 2 VLT MO 0.05												
We	Weak MO mineralization												

CH0612

Initials:

From 90.06

*T*o 124.82

Litho AND

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

			VEINS	5			
From	ı To	Vn%	QZ%	Feld%	CC%	V/m	CA

1		MINERALIZATION												
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

From 124.82

*T*o 148.02

Litho AND

Fine grained reddish andesite porphyry, speckled black and white with medium grained phenocrysts. CA alteration, moderate Qz -MO strs. Pyrite is moderately abundant in strs; silica, AB & BIO altn.

@130.06m: distorted 24mm Qz-PY-MO VN, 50 tca is present.

From 132.36 to 132.56m a broken core is observed with CA on fractures.

	STRUCTURES											
From	To	Struct	CA	Strain								

124.82 148.02 MAS S

strong rock with minor broken kore

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	
124.82 sil	148.02 ica & CA		-	W	S	-	М	W	W	VW	M	М	M		

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
124.82	148.02	2	15	15	1	1	50					
	random	Qz-P\	∕-MO VI	Vs								

MINERALIZATION												
From To PY% Style Min Min% Min2 M2% Min3 M3%												
124.82 148.02 2 VLT MO 0.05												
~0.05-0.08% MO												

From

To

Litho AND

148.02 165.07

Fine grained gray & reddish andesite porphyry, mottled looking, blotches of AB alteration, minor flow banded zones, AB-Chl-EPI-PO-MG & Qz -MO veining. Pyrite is moderate PY in veinlets; silica, EPI & BIO altn, weak ~1% MG.

From 152.00 to 156.26m broken core is present (~50%) with CA on fractures.

@ 148.02m: solid 70mm Qz-PY-MO VN, 80 tca with branchet out 20mm Qz-PY-MG-MO VN, 20 tca.

@149.90m: distorted 28mm Qz-MG-PY-PO-MO VN, 60 tca observed.

Below 151.06m presence of contorted narrow VNs & silica altn.

@153.34m: location of selvaged 16mm Qz-PY-MO VN, 50 tca with subparallel Qz-PY-MO strs.

From 155.90 to 156.30m carbonate zone with Qz VNs & CA altn. is present.

@161.76m: magnetic 18mm Qz-PY-BIO-EPI-MO VN, 40 tca.

@162.34m: magnetic 14mm Qz-PO-PY-MO VN, 45 tca.

@164.26m: boudinaged 24mm Qz-BIO-PY-MO VN, 20 tca

STRUCTURES										
From	To	Struct	CA	Strain						

148.02 165.07 MAS M

> From 152.0 to 156.26m broken core

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
148.02	165.07	-	-	W	s	-	W	VW	М	VW	М	М	М	
15	152.0 to 156.26m broken core with CA altn													

VEINS											
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA				
148.02	165.07	3	15	15	2	1	30				
random narrow Qz-PY-MO VNs											

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
148.02	165.0	7 2	VLT	PC) 1	МО	0.1		
ир	to 0.19	% MO							

From 165.07

To 180.54

Litho AND

Fine grained reddish andesite, mottled looking, with a medium grained groundmass and occasional subheudral plagioclase phenocrysts, with small blotches of chloritic green alteration, minor flow banded zones; AB-Chl-EPI-PO-MG & narrow Qz +/-MO veining. Pyrite is moderately in veinlets form and less commonly disseminated. Narrow PY strs & BB, silica, & BIO altn, ~1% MG.

@166.40m: magnetic 20mm Qz-PY-MO VN, 45 tca.

@166.80m: solid 60mm Qz-Chl-PY VN, 80 tca.

@169.10m: dispersed 38mm AB-Chl-EPI-MG VN, 70 tca cut off by 16mm Qz-PY-MO VN, 40 tca.

@171.48m: branched out 38mm Qz-PY-MO VN, 35 tca.

@174.66m: boudinaged 20mm Qz-PY-MO-Chl VN, 40 tca.

From 176.30 to 177.57m stockwork of 12-20mm Qz-PY-PO-MO +/-EPI VNs, 35-70 tca.

Below 179.75m presence of distorted Ab-Qz-PY-PO-MO veinlets in diff orient.

	STRUCTURES											
From	To	Struct	CA	Strain								
165.07	180.54	MAS		S								

2% joints

					AL	TER	ATIC)N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SEF
165.07	180.54 B, <i>MG</i> , C					=	М	VW	VW	VW	М	W	М	

VEINS												
From To Vn% QZ% Feld% CC% V/m CA												
165.07 180.54 3 15 15 1 1												
AB-PY-PO-MG-EPI veinlets												

1	MINERALIZATION												
1	From	To						M2%	Min3	M3%			
	1 10111	10	1 1/0	Bijie	171111	1111170	1111112	111270	111110	111570			
	165.07	180.5	4 2	VLT	PC) 1	МО	0.1					
	~0.	1% M0)										

From 165.07

*T*o 180.54

Litho AND

(Continued from previous page)

STRUCTURES
From To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

Ì	MINERALIZATION											
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

From 180.54

To 193.66

Litho BDY

Dark gray basalt, plagioclase & pyroxene fine grained with silica, quartz & fine grained DI PY, tiny CA strs. Upper contact is at 50 tca, lower contact is at 25 tca. From 188.14 to 191.35m presence of interbedded granodiorite with ChI & MG alth & Qz-MO VNs /strs.

@188.38m: dispersed 30mm Qz-PY-MO VNs, 40 tca are observed.

S

@189.04m: location of 32mm Qz-CA-PY-MO VN, 50 tca with 2x2mm CA crystals is observed.

STRUCTURES									
From	To	Struct	CA	Strain					

180.54 193.66 MAS S

basalt dyke with interbedded andesite

	ALTERATION													
From	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER													
1 10111	10	11 1 1	mo	CIIL	JIL	1 111	1 1(1	101		LI	DIO	1 Li	1 111	DLIT
180.54	193.66	-	-	М	S	-	W	-	VW	VW	М	W	М	
BIO altn														

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 180.54
 193.66
 1
 12
 10
 1
 1

 VNs present in interbedded zone of andesite

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

180.54 193.66 1 DISS MO 0.02 188.14 to 191.35m granodiorite with Chl & MG altn & Qz-MO VNs /strs, (0.1% MO)

From To Litho
193.66 209.09 AND

Fine grained reddish andesite, mottled looking by narrow Qz-PY-MO+/- PO VNs & magnetic AB-Chl-sulfide +EPI VNs; a medium grained groundmass and occasional subheudral plagioclase phenocrysts, with small blotches of chloritic green alteration, minor flow banded zones; PY is moderately in veinlets form and less commonly disseminated. Narrow PY strs & BB, silica, & BIO altn, ~1-2% MG, ~0.1% MO

From 194.34 to 195.15m presence of granodiorite with pladioclase, equigranular with a speckled color of white and black with minor pink, upper & lower contacts at 50 tca.

From 200.46 to 200.90m magnetic pink 12mm Qz-Py-MO-BIO VN, 10 tca is present.

From 204.50 to 205.58m stockwork of 12-24mm Qz-PY-MO VN, 25-75 tca observed.

@205.66m: contorted 52mm Qz-PY-MO-AB VN, 50 tca.

From 205.82 to 206.50m granodiorite, feldspar pladioclase, equigranular with a speckled color of white and black, pink 30mm Qz-PY-MO VN on contact, upper & lower contacts at 50 tca.

STRUCTURES								
From	To	Struct	CA	Strain				

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	\overline{BIO}	FLP	PYR	SER

VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	

j			M	INE	RAL	IZATI	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

CH0612

		T	0	
_	Ξ			0

Litho AND

193.66 209.09

Fine grained reddish andesite, mottled looking by narrow Qz-PY-MO+/- PO VNs & magnetic AB-Chl-sulfide +EPI VNs; a medium grained groundmass and occasional subheudral plagioclase phenocrysts, with small blotches of chloritic green alteration, minor flow banded zones; PY is moderately in veinlets form and less commonly disseminated. Narrow PY strs & BB, silica, & BIO altn, ~1-2% MG, ~0.1% MO

From 194.34 to 195.15m presence of granodiorite with pladioclase, equigranular with a speckled color of white and black with minor pink, upper & lower contacts at 50 tca.

From 200.46 to 200.90m magnetic pink 12mm Qz-Py-MO-BIO VN, 10 tca is present.

From 204.50 to 205.58m stockwork of 12-24mm Qz-PY-MO VN, 25-75 tca observed.

@205.66m: contorted 52mm Qz-PY-MO-AB VN, 50 tca.

M

From 205.82 to 206.50m granodiorite, feldspar pladioclase, equigranular with a speckled color of white and black, pink 30mm Qz-PY-MO VN on contact, upper & lower contacts at 50 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

193.66 209.09 MAS S

From 200.6 to 200.74m broken core with BIO & CA on fracture

	ALTERATION From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
193.66	209.09	-	-	М	М	-	М	VW	VW	М	М	М	М	W
CI	Chl, AB, BIO, EPI, potassic & silica altn													

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
193.66	209.09	2	15	15	1	1	50					
narrow Qz-PY-MO VNs & magnetic AB-Chl-sulfide VNs												

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
193.66	209.0	9 3	VLT	МС	0.1	РО	1		
ир	to 0.19	% МО							

Initials:

From

To

Litho AND

209.09

221.90

Fine grained reddish aphanitic andesite, mottled looking by narrow Qz-PY-MO VNs & magnetic AB-Chl-sulfide VNs; with chloritic green alteration, minor flow banded zones; PY is moderately in veinlets form and less commonly disseminated, narrow PY strs & BB, silica, & BIO altn, ~1-2% MG, ~0.2% MO. Lower contact with andesite is at 70 tca.

@209.14m: selvaged 22mm Qz-PY-MO VN, 45 tca.

@209.24m: brecciated 33mm Qz-PY-MO-AB-Chl VN, 20 tca.

@209.50m: contorted 34mm Qz-PY-MO-EPI VN, 30 tca.

@209.82m; significant ptygmatic 10cm Qz-PY-PO-MG-MO-EPI VN. 50 tca.

From 210.16 to 211.24m stockwork of 10-16mm Qz-PY-MO VN, 40-50 tca.

@214.12m: thick 76mm Qz-PY-PO-MO VN, 80 tca.

From 214.82 to 216.22m reticulated network of 10-20mm Qz-PY-MO VN with abundant sulfide BB along the core.

@216.48m: rim of 20mm Qz-PY-MO VN. 55 tca.

@217.22m: contorted 32mm Qz-AB-PY-MO VN, 35 tca. Contact with granodiorite @218.02 =50 tca is present.

From 218.02 to 221.96m granodiorite dyke with pink Qz-PY-MO VNs observed.

@220.20m: presence of pink 34mm Qz-PY-MO VN,70 tca.

M

From 221.27 to 221.77m location of a contorted 32mm Qz-PY-MO VN, 10 tca.

Litho

STRUCTURES									
From	To	Struct	CA	Strain					

 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

209.09 221.90 MAS S

218.02 to 221.96m granogiorite dyke with pink Qz-PY-MO VNs 209.09 221.90 - - M M - M VW W M M M M W W sulfide altn

209.09 221.90 3 40 20 1 2 50 Qz-PY-MO VNs/strs 209.09 221.90 3 VLT MO 0.2 PO 1 MG ~1-2%

From To

221.90 222.73 BDY

Dark gray with calcic plagioclase & pyroxene fine grained basalt with silica, quartz & fine grained DI PY, CA altn. Upper contact is at 50 tca, lower contact is at 70 tca. Below 230.66m presence of CA strs.

 STRUCTURES

 From
 To
 Struct
 CA
 Strain

 221.90
 222.73
 MAS
 S

S ~1% joints
 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 221.90
 222.73
 M
 W
 VS
 M
 M
 W

 CA altn

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 221.90
 222.73
 0.1
 15
 10
 1

 CA strs

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

 221.90
 222.73
 0.2
 DISS

 fine grained DI PY

CH0612

From 222.73

		T)	
_	_	_	_	_

Litho GDIO

262.80

Granodiorite, light-medium grey & greenish in color, speckled black and white with a medium grained groundmass and occasional subheudral plagioclase & orthoclase phenocrysts, biotite & hornblende. Core cut by narrow Qz veinlets/filled fractures that contain chlorite & BIO, very random sericite; pyrite and small amounts of moly are concentrated in these.

@232.86m: contorted 34mm Qz-PY-MO VN, 40 tca.

From 233.30 to 238.60m location of a zone with abundant distorted Qz+/-MO VNs & tiny MO strs

@239.12m: solid 50mm Qz-PY-MO VN, 70 tca.

@239.91m: dispersed 33mm Qz-PY-MO VN, 40 tca is present.

Below 240.20m broken core (~15) is observed with sericite coating on fractures.

@243.30m: selvaged 20mm Qz-PO-PY-MO VN, 25 tca cross cut by another 18mm Qz-PY VN, 60 tca.

From 244.60 to 245.72m presence of a broken core with CA on fractures observed.

From 246.24 to 249.50m ~10% of broken core with CA on fractures is present.

@250.00m: distorted 50mm Qz-PY-EPI-MO Vn, 70 tca.

From 252.20 to 254.94m significant up to 68mm Qz-PY-MO VN, 5 tca is observed.

From 256.16 to 256.66m a distorted 14mm Qz-PY-MO-EPI VN, 5 tca is located.

@256.92m: pink 22mm Qz-PY-MO VN, 10 tca.

@257.33m: pink 66mm Qz-PY-MO VN, 55 tca.

@257.50m: pink 20 Qz-PY-MO VN, 25 tca is present.

Below 258.00m greenish granodiorite with contorted narrow Qz-PY-MO veinlets observed.

@261.92m: location of a pink 32mm Qz-PY-MO VN, 45 tca.

	STRUCTURES									
From	To	Struct	CA	Strain						

222.73 262.80 MAS M

~3% joints

					AL	TER	<i>ATIC</i>	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
222.73	262.80	-	-	М	М	-	М	М	W	VS	М	М	М	М
se	ericite alt	n												

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
222.73	262.80	3	50	25	2	2	30
	contorte	ed Qz ı	einlents/	;			

	MINERALIZATION									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	
222.73	262.8	0 3	DISS	мс	0.1					
>0.	.1% M) pres	ence	in this	s interv	al				

Initials:

CH0612

From

To 301.10

Litho GDIO

262.80 3

Granodiorite, light-medium grey & greenish in color, speckled black and white with a medium grained groundmass and occasional subheudral plagioclase & orthoclase phenocrysts, biotite & hornblende. Core cut by narrow Qz veinlets/filled fractures that contain chlorite & BIO; DI pyrite in small amounts & MO (~0.1%) are concentrated.

From 262.80 to 274.64m presence of granodiorite with reticulated network of contorted Qz VNs +/-MO & DI MO specks (~3 VN/m).

Below 274.64m presence of granodiorite with strong CA anIteration, core is softer than regular core, around ~20% of the core is broken with CA on fractures.

From 288.86 to 289.50m presence of a contorted 10mm Qz-Py-MO VN, 10 tca.

@290.26m: dispersed 24mm Qz-PY-MO VN, 30 tca with thin streaks of MO is present.

@293.74m: solid 26mm Qz-PY-MO VN, 40 tca observed.

@294.08m: solid 20mm Qz-PY-MO VN, 80 tca.

Below 294.20m location of a zone with abundant deformed Qz-PY-MO VNs.

From 297.00 to 297.70m presence of significant 30mm Qz-PY-MO-PO-MG VN, 10 tca with abundant sulfide BB observed.

@298.33m: thick distorted 33mm Qz-P-YAB-EPI-MO VN, 60 tca is located.

@298.60m: location of a distorted 38mm Qz-PY-MO-PO VN, 50 tca.

From 299.30 to 299.90m the stockwork of contorted Qz-PY-MO VNs, 20-40 tca is observed.

	STRUCTURES							
From	To	Struct	CA	Strain				

262.80 301.10 MAS M

partially fragile core

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
262.80	301.10	-	-	М	VW	-	W	-	М	VW	М	М	W	VW

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
262.80	301.10	2	25	20	3	2	
	262.8 to VN/m	274.6	34m app	rox 3-4 Q	Z		

MINERALIZATION									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
262.80	301.10	0 1	DISS	з мс	0.1				

From 262.8 to 300.0m 0.1% MO

Initials:

From To 301.10 324.46

Fine grained reddish aphanitic andesite, mottled looking with minor quartz granodiorite & transitional to monzonite zones & potassic alteration, narrow Qz-PY-MO +/-EPI VNs & magnetic AB-Chl-sulfide VNs, chloritic green alteration; PY is moderately in veinlets form and strs commonly disseminated, narrow PY strs & BB, silica. & BIO altn. ~1-2% MG.

@306.20m: selvaged 16mm Qz-PY-MO VN, 40 tca.

From 306.70 to 311.30m greenish granodiorite with transitional zones to monzonite & potassic alteration observed.

@309.05m: presence of solid 30mm Qz-PY-MO VN, 35 tca with subparallel 24mm Qz-PY-EPI-MO VN.

@312.10m: contorted Qz-PY-CA-BIO-PO VN. 30 tca is observed.

From 313.10 to 314.30m location of a dark granodiorite with two subparallel 22mm Qz-PY-MO VNs, vague upper & lower contacts.

From 315.44 to 316.76m granodiorite with CA strs, upper contact at 50 tca, lower contact at 30 tca on tiny CA str.

BIO, EPI, MG & CA altn

From 317.23 to 317.62m granodiorite with vague contacts is present.

Litho

AND

@319.90m: brecciated 20mm Qz-CA-PY-AB VN, 20 tca observed.

@322..10m: branched 20mm Qz-PY-MO VN, 75 tca is present.

@322.38m: boudinaged 20mm Qz-BIO-PY-MO VN, 30 tca located.

STRUCTURES										
From	To	Struct	CA	Strain						
204 40	224.46	MAC	ΕO	N.4						

301.10 324.46 MAS 50 M S ~3% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
301.10	324.46	-	-	W	М	-	М	W	W	VW	М	М	М	

	VEINS									
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA			
301.10	324.46	3	20	20	1	2	40			
	random	CA ve	ins							

]						IZAT				
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
	301.10	324.4	6 3	VLT	CF	0.2	РО	1		

From To Litho
324.46 345.17 AND

Fine grained reddish aphanitic andesite, mottled looking with flow banded zone minor quartz granodiorite & transitional to monzonite zones & potassic alteration, narrow Qz-PY-MO +/-EPI VNs & magnetic AB-Chl-sulfide VNs, chloritic green alteration; PY is moderately in veinlets form and strs commonly disseminated, narrow PY strs & BB, silica, & BIO altn, ~1-2% MG.

From 324.92 to 330.10m location of a flow banded zone with silica altn & abundant (~3-5 VN/m) narrow Qz-PY-MO VNs/strs, at mostly 50 tca (~0.2% MO in this interval).

From 330.50 to 339.93m presence of andesite with transitional zone to monzonite, abundant narrow Qz-PY-MO VN/strs (~3 VNs/m) with strong silica alteration.

From 339.93 to 340.08m greenish Qz-PY zone with MO specks observed.

From 340.08 to 345.17m the core mottled by Qz-PY-MO VNs & strs (~3-4 VN/m).

@343.25m: thick 50mm Qz-PY-MO-MG VN, 50 tca is present.

From 344.18 to 344.40m stockwork of 10-16mm Qz-PY-MO VNs, 60-70 tca observed.

@347.17m: contact with granodiorite at 35 tca is present.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From

To

Litho AND

324.46 345.17

Fine grained reddish aphanitic andesite, mottled looking with flow banded zone minor quartz granodiorite & transitional to monzonite zones & potassic alteration, narrow Qz-PY-MO +/-EPI VNs & magnetic AB-Chl-sulfide VNs, chloritic green alteration; PY is moderately in veinlets form and strs commonly disseminated, narrow PY strs & BB, silica, & BIO altn. ~1-2% MG.

From 324.92 to 330.10m location of a flow banded zone with silica altn & abundant (~3-5 VN/m) narrow Qz-PY-MO VNs/strs, at mostly 50 tca (~0.2% MO in this interval).

From 330.50 to 339.93m presence of andesite with transitional zone to monzonite, abundant narrow Qz-PY-MO VN/strs (~3 VNs/m) with strong silica alteration. From 339.93 to 340.08m greenish Qz-PY zone with MO specks observed.

From 340.08 to 345.17m the core mottled by Qz-PY-MO VNs & strs (~3-4 VN/m).

@343.25m: thick 50mm Qz-PY-MO-MG VN, 50 tca is present.

From 344.18 to 344.40m stockwork of 10-16mm Qz-PY-MO VNs, 60-70 tca observed.

@347.17m: contact with granodiorite at 35 tca is present.

S

	STRUCTURES									
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

					IZAT				
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

324.46 345.00 3 VLT MO 0.2 core mottled by Qz-PY-MO VNs & strs

324.46 345.10 MAS one joint per meter

> 324.46 345.17 - - M M M VW VW M M W strong silica altn

324.46 345.17 6 25 3 45 abund Qz-PY-MO VNs & strs

From To 345.17

350.60

Litho **GDIO**

Granodiorite dyke, medium light grey in color, speckled black and white with a medium grained groundmass and occasional subheudral plagioclase phenocrysts. Narrow Qz veinlets. DI pyrite in small amounts.

Upper & lower contacts at 35 tca.

@346.94m: presence of a pink 20mm Qz-PY-MO VN, 35 tca.

	STRUCTURES									
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	MINERALIZATION											
From	n	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

Initials:

From 345.17

То

Litho GDIO

350.60

Granodiorite dyke, medium light grey in color, speckled black and white with a medium grained groundmass and occasional subheudral plagioclase phenocrysts. Narrow Qz veinlets. DI pyrite in small amounts.

Upper & lower contacts at 35 tca.

@346.94m: presence of a pink 20mm Qz-PY-MO VN, 35 tca.

	STRUCTURES												
From	To	Struct	CA	Strain									
345.17	350.60	MAS S		s									

~1% jonts

					AT	TER	ATIC	7.7						
					AL	ILL	AIIU	11						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
345.17	350.60	-	-	-	S	-	W	-	VW	-	М	М	W	
W	eak CA a	altn												

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
345.17	350.60	2	40	20	1	1	35
	distorte	d narro	w Qz V	Ns			

1			M	INE	RAL	IZAT	ION			
Į	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
	345.17	350.6	0 1	DISS	в мс	0.02	!			
	we	ak MO								

From

То

Litho

350.60

358.40

HSLT

This interval of hornfelsed siltstone zone. The core is fine grained, dark brown, moderately foliated with vague lower contact and relatively distinct upper contact at 35 tca. The core no longer has the mottled appearance. The alteration throughout the interval is hornfelsed biotite and silica with rare chlorite is present. Veining in this sequence of core with cm scale, location of Qz veins subparallel foliation; common ptygmatic VNs and anastomosing tiny Qz VNs with varying orientations across the core is observed. Pyrite and weak pyrrhotite are present as veinlets. Observed moly is mostly within the foliation of fractures and in mm scale veining. @350.90m: thick 70m Qz-PY-BIO-MO VN, 80 tca is present.

@352.00m: location of a thick 76mm Qz-PY-MO VN, 70 tca

From 353.20 to 355.35m presence of granodiorite dyke with upper & lower contacts at 35 tca.

@356.06m: ptygmatic 14mm Qz-PY-MO VN, 35 tca is located.

Below 358.00m zone of a broken core fragments with CA on fractures is present.

		STRU	CTUR	ES	
ĺ	From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	-			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

0			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

350.60 353.20 BDG 2-3% joints

350.60 358.40 - - W S - M - VW - M M weak CA altn

350.60 358.40 3 20 10 1 2 35 abund ptygmatic mm scale Qz-PY-MO VNs

350.60 358.40 2 VLT ~0.1% MO

353.20 355.35 MAS

granodiorite dyke with upper & lower contacts at 35 tca **CH0612**

Initials:

From To 350.60 358.4

 To
 Litho

 358.40
 HSLT

(Continued from previous page)

STRUCTURES
From To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

Ì	MINERALIZATION										
i	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

355.35 358.40 BDG

10% broken core

 From
 To
 Litho

 358.40
 374.88
 AND

Fine grained reddish aphanitic andesite, mottled looking & minor transitional to monzonite zones, potassic alteration, narrow Qz-PY-MO +/-EPI VNs; PY is moderately in veinlets form and strs commonly disseminated, narrow PY strs & BB; silica, & BIO altn, ~1% MG.

From 359.25 to 360.12m presence of a broken core (fragmens).

From 361.76 to 362.00m location of two 22mm & 26mm Qz-PY-MO VNs, 40 & 60 tca observed.

@362.80m: solid 32mm Qz-PY-MO VN, 40 tca is present.

From 363.53 to 364. 26m presence of ptymatic 22 mm Qz-PY-MO VN, 5 tca.

@365.20m: branched 28mm Qz-PY-MO VN, 70 tca.

From 370.64 to 373.15m stockwork of 10-46mm Qz-PY-MO VN, 40-75 tca observed.

From 373.47 to 373.60m location of Qz zone with MO specks & tiny strs.

STRUCTURES										
From	To	Struct	CA	Strain						
358.40	374.88	BDG	50	М						

~2-3% joints

			VEINS						
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA		
358.40	374.88	4	6		1	3	50		
core mottled by narrow contorted mm scale veinlets									

	MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
358.40	374.8	8 2	DISS	в мс	0.2							
ир	to 0.29	% MO										

From

To

Litho HSLT

374.88 393.88

Hornfelsed siltstone, fine grained, dark brown, moderately foliated with vague upper contact with narrow granodiorite zones. The core mottled by contorted white pink Qz veinlets, brown foliation fabric alteration laminae of sediment & carbonate zone. The alteration throughout the interval is hornfelsed biotite and silica with rare chlorite. Qz veins are a parallel foliation; common ptygmatic VNs and anastomosing tiny Qz VNs with varying orientations across the core. Mineralization is PY+PO+MO throughout. Pyrite and weak pyrrhotite are present as veinlets. Moly observed is mostly within the foliation fractures and the mm scale veining. Below 375.00m the core mottled by distorted Qz strs with Qz +/-MO VNs (~1-2 VN/m).

From 375.63 to 375.93m CA-carbonate altn is present.

@378.20m: location of a pink 30mm Qz-PY-MO VN, 25 tca.

@379.00m: deformed 33mm Qz-PY-MO VN, 30 tca observed.

@350.90m: presence of a thick 70m Qz-PY-BIO-MO VN, 80 tca.

From 380.52 to 383.53m location of porphyry granodiorite dyke with contorted narrow (<1cm) Qz +/-MO VNs, upper & lower contacts at 70 tca.

From 384.48 to 385.23m stockwork of 16-30mm Qz-PY-MO VNs, 45-75 tca.

From 387.73 to 386.00m presence of a distorted 26mm Qz-PYPO-MG-MO VN, 40 tca.

@386.74m: solid 40mm Qz-PY-MO VN, 50 tca is present.

From 387.00 to 388.16m stockwork of subparallel ptygmatic 8-22mm Qz-PY-MO VNs, 40-50 tca.

From 388.74 to 389.14m granodiorite dyke with 55 tca upper & lower contacts present.

From 390.60 to 393.88m location of Qz-carbonate zone with tiny P& MO strs in bedding observed.

STRUCTURES							
From	To	Struct	CA	Strain			

374.88 393.88 BDG 45 M granodiorite & carbonate zones

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
374.88	393.88	-	-	W	М	-	М	-	W	-	М	М	М	
39	90.6 to 39	93.88	3m Qz-	-carbo	nate	zone								

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
374.88	393.88	4	10	10	4	3	40
	abund p	otygma	tic narro	ow Qz VN	s		

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
374.88 >0.	393.88	_	VLT	MC	0.1	РО	1				

From

То

Litho

393.88

412.00 HSLT

Hornfelsed siltstone, fine grained, dark brown, moderately foliated, core mottled by contorted white pink Qz veinlets. The alteration throughout the interval is hornfelsed biotite and silica with rare CA. Qz veins have parallel foliation; common ptygmatic VNs and anastomosing tiny Qz VNs with varying orientations across the core. Pyrite and weak pyrrhotite are present as veinlets. Moly observed is mostly within the foliation of fractures and the mm scale veining.

From 394.16 to 401.12m the core mottled by Qz-PY-MO strs with stockwork of 10-28mm Qz-PY-MO VNs, 40-75 tca.

@401.52m: distorted 28mm Qz-PY-MO VN, 45 tca.

@401.76m: presence of a pink 30mm Qz-PY-MO VN, 80 tca.

From 402.16 to 406.32m location of the core mottled by ptygmatic Qz-PY-MO strs with stockwork of 10-24mm Qz-PY-MO VNs, 55-75 tca.

@406.54m: ptygmatic 50mm Qz-PY-MO VN, 75 tca is observed.

@407.12m: presence of a solid 34mm Qz-PYVN with MO streaks, 70 tca.

From 407.21 to 408.00m location of a fault zone with fragments & small pieces of core with CA_Chl on fractures.

@408.94m: solid 22mm Qz-PY-MO VN 55 tca is present.

From 409.30 to 412.00m presence of a core mottled by contorted Qz-PY-MO strs with stockwork 8-12mm Qz-PY-MO VNs, 45-70 tca.

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

<i>MINERALIZATION</i>											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

393.88 410.26 BDG 70 fault zone from 407.21 to 408.0m

393.88 412.00 - - - M - M - W - M VW W *CA altn*

393.88 412.00 5 10 2 3 50

anastomosing narrow Qz VNs with
varying orientations across the core

393.88 412.00 2 VLT MO 0.1

Pyrite and weak pyrrhotite are both present as veinlets

From 412.00

То

424.00

HSLT

Litho

Hornfelsed siltstone, fine grained, dark brown, moderately foliated, core mottled by contorted white pink Qz veinlets. The alteration throughout the interval is hornfelsed biotite and silica with rare CA. Qz & CA veins parallel foliation; foliation fabric alteration laminae of sediment & small carbonnate zones.

From 412.00 to 413.40m presence of siltstone. Qz-carbonate zone motiled by Qz strs.

From 413.32 to 413.64m two boudinaged 14 & 20mm Qz-PY-MO VNs, 55 tca are observed.

@414.76m: 22mm Qz-PY-MO VN, 35 tca with two subparallel boudinaged 12mm Qz-PY-MO VNs.

@416.46m: significant 50mm Qz-PY-MO-PO VN, 10 tca is present.

From 416.90 to 417.30m presence of soft rock with CA altn.

From417.35 to 417.83m contorted 55mm Qz-PY-MO-PO VN, 25 tca observed.

From 417.86 to 419.40m location of a dark granodiorite porphyry with narrow <1cm Qz VNs & CA strs, upper & lower contacts at 60 tca observed.

@419.80m: solid 36mm Qz-PY-MO VN, 80 tca is present.

Fom 421,00m to 421,33m carbonate zone with with 42mm QZ-PY-MO VN, 70 tca located.

	STRUCTURES										
From To Struct CA Strain											

412.00 424.00 BDG 45 M From 417.86 to 419.4 dark granodiorite porphyry

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
412.00	424.00	-	-	VW	W	-	W	-	М	-	W		W	
C	CA & AB altn													

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
412.00	424.00	3	15	10	3	1					
	Qz-PY-	MO VN	ls & sma	all carbon	nate						
	zones.										

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
412.00 424.00 2 VLT MO 0.1											
~0.1% MO in this interval											

From To Litho
424.00 433.24 HSLT

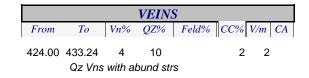
Fragile hornfelsed siltstone, fine grained, dark brown with minor argillite altn, moderately foliated, core mottled by narrow contorted Qz veinlets & strs. The alteration throughout the interval is hornfelsed biotite & CA. Qz & CA veins with parallel foliation.

From 424.24 to 424.40m knot of contorted up to 24mm Qz-AB VNs, 70 tca.

From 424.48 to 425.03m dark granodiorite zone cut off by 6mm CA VN, 5 tca. Upper & lower contacts at 60 tca.

From 426.00 to 427.80m location of a falt zone, soft core & fragments, CA on joints.

From 428.30 to 429.10m presence of the stockwork of ptygmatic 10-24mm Qz-PY-MO VNs, 50 tca.


From 429.10 to 430.30m a broken core with traces Qz VNs & CA on fractures is observed.

From 430.30 to 430.30m a broken core with traces QZ VNS & CA on fractures is observe From 430.30 to 432.54m stockwork of ptygmatic 10-40mm Qz-PY-MO VNs located.

From 432.54 to 433.24m presence of a broken core/fragments with Qz VNz.

STRUCTURES											
From To Struct CA Strain											
424.00 433.24 BDG 55 W											
partially broken core											

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
424.00	433.24	-	-	-	W	-	М	-	М	-	М	-	W	
ar	argillite & CA altn													

From To

Litho HSLT

433.24 447.00

Fragile hornfelsed siltstone, fine grained, dark brown with carbonate & minor argillite altn, moderately foliated, core mottled by contorted Qz veinlets/strs & thick Qz veins; narrow granodirite dykes present. The alteration throughout the interval is hornfelsed biotite & CA. Qz & CA veins have parallel foliation.

From 433.24 to 435.00m presence of a carbonate zone with Qz-Py-MO VNs.

@434.70m: thick 10cm Qz-PY-MO VN, 60 tca.

From 435.22 to 433.10m zone of granodiorite dyke with significant Qz zone, upper cont @ 90 tca, lower cont @ 45 tca is observed.

From 435.22 to 467.80m stockwork of 14-26mm Qz-PY +/-MO VN, 50-80 tca.

From 438.16 to 440.74m presence of a significant Qz zone PY, Chl, CA & BIO altn.

From 440.74 to 443.00m broken core/frafments with Qz-PY-MO VNs & CA on fractures.

From 443.10 to 444.78m siltstone mottled by Qz-PY-MO VNs & CA strs.

@443.96m: ptygmatic Qz-PY-MO VN, 80 tca is present.

From 444.86 to 447.00m location of Qz zone (broken core) with PY, BIO, MO specks & CA strs.

STRUCTURES										
From	To	Struct	CA	Strain						
433.24	447.00	BDG	55	М						

435.22 to 433.1m granodiorite dyke

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SEF
433.24 C	447.00 A <i>altn</i>	-	-	W	М	-	М	-	М	-	М	М	W	

	<u>VEINS</u>											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
433.24	447.00	10	40	15	2	3	55					
thick Qz VNs prezent												

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
.00.2	433.24 447.00 1 DISS MO 0.1 ~0.1% MO in this internal											

 From
 To
 Litho

 447.00
 462.00
 HSLT

Fragile hornfelsed siltstone, fine grained, dark brown with carbonate & minor argillite altn, moderately foliated, core mottled by contorted Qz veinlets/strs & thick Qz veins; narrow granodirite dykes present. The alteration throughout the interval is hornfelsed biotite & CA. Qz & CA veins have parallel foliation.

From 447.54 to 448.24m there are three solid subparallel 4-10cm Qz-PY-MO-carbonate VNs, 55 tca with abundant strs.

From 448.50 to 450.70m presence of fragile granodiorite, 30% of the core is broken with CA on fractures; Qz VNs +/- MO. Upper & lower contacts at 55 tca.

From 450.70 to 457.88m location of siltstone with 50% of broken core, CA on fractures.

@ 451.28m: contorted 54mm Qz-PY-MO VN, 20 tca is present.

From 451.71 to 452.00m two deformed 30 & 36mm Qz-PY-MO VNs, 75 tca are observed.

From 454.82 to 456.04m presence of granodiorite with narrow pink Qz-MO VNs, upper contact @60 tca, lower contact @45 tca.

@455.10m: pick 30mm Qz-AB-PY-MO VN, 65 tca is observed.

From 456.04 to 457.90m presence of siltstone mottled by narrow Qz-PY-AB-MO VNs/strs.

From 457.90 to 462.00m quartz-granodiorite with pink Qz +/- MO VNs & PY BB observed.

@459.81m: pink 80mm Qz-PY-MO VN, 80 tca is located.

@460.16m: solid 90mm Qz-PY-MO VN, 75 tca with branched 18mm Qz-PY-MO VN, 10 tca.

Below 460.48m presence of a broken core with CA on fractures; narrow 6.18mm Qz-PY-MO VNs (~3 VN/m).

	STRUCTURES									
From	m	To	Struct	CA	Strain					

	ALTERATION													
	ALIEKATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

From To

Litho HSLT

447.00 462.00 HSI

Fragile hornfelsed siltstone, fine grained, dark brown with carbonate & minor argillite altn, moderately foliated, core mottled by contorted Qz veinlets/strs & thick

Qz veins; narrow granodirite dykes present. The alteration throughout the interval is hornfelsed biotite & CA. Qz & CA veins have parallel foliation.

From 447.54 to 448.24m there are three solid subparallel 4-10cm Qz-PY-MO-carbonate VNs. 55 tca with abundant strs.

From 448.50 to 450.70m presence of fragile granodiorite, 30% of the core is broken with CA on fractures; Qz VNs +/- MO. Upper & lower contacts at 55 tca.

From 450.70 to 457.88m location of siltstone with 50% of broken core, CA on fractures.

@ 451.28m: contorted 54mm Qz-PY-MO VN, 20 tca is present.

From 451.71 to 452.00m two deformed 30 & 36mm Qz-PY-MO VNs. 75 tca are observed.

From 454.82 to 456.04m presence of granodiorite with narrow pink Qz-MO VNs, upper contact @60 tca, lower contact @45 tca.

@455.10m: pick 30mm Qz-AB-PY-MO VN, 65 tca is observed.

From 456.04 to 457.90m presence of siltstone mottled by narrow Qz-PY-AB-MO VNs/strs.

From 457.90 to 462.00m guartz-granodiorite with pink Qz +/- MO VNs & PY BB observed.

@459.81m: pink 80mm Qz-PY-MO VN, 80 tca is located.

@460.16m: solid 90mm Qz-PY-MO VN, 75 tca with branched 18mm Qz-PY-MO VN, 10 tca.

Below 460.48m presence of a broken core with CA on fractures; narrow 6.18mm Qz-PY-MO VNs (~3 VN/m).

STRUCTURES										
From	To	Struct	CA	Strain						

447.00 462.00 BDG 50 W ~45-50% broken core

						TER								
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
447.00	462.00	-	-	VW	М	-	М	-	М	-	М	М	М	
CA altn														

			VEINS	S					
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		
447.00	462.00	8	40	20	2	3	60		
~3 VNs per meter in this interval									

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
447.00 462.00 2 VLT MO 0.1												

From	То	Litho
462.00	471.00	HSLT

Fragile hornfelsed siltstone, fine grained, dark brown with carbonate & minor argillite altn, moderately foliated, core mottled by contorted Qz veinlets/strs & thick Qz veins; narrow granodirite dykes present. The alteration throughout the interval is hornfelsed biotite & CA. Qz veins with parallel foliation.

@462.32m: distorted 36mm Qz-PY-MO VN, 60 tca is present.

@462.94m: presence of a deformed 50mm Qz-PY-MO-PO VN, 90 tca.

From 463.30 to 463.58m distorted 50mm Qz-PY-MO VN. 30 tca is observed.

From 463.88 to 464.12m broken core with fragments of Qz-PY-MO VN, no orient, CA on fractures.

@464.64m: presence of a solid 60mm Qz-PY-MO VN, 75 tca cut off by CA strs.

From 464.90 to 466.00m stockwork of 12-24mm Qz-PY-MO VNs, 65 tca observed.

From 466.00 to 466.74m granodiorite with pink Qz veins; upper contact at 45 tca, lower contact at 80 tca.

@466.20m: solid Qz-PY-MO VN, 35 tca present.

@468.50m: selvaged 30mm Qz-PY-MO VN, 70 tca observed.

From 469.00 to 470,62m presence of stockwork of distorted 14-26mm Qz-PY-MO VNs, 75-85 tca.

@470.48m; thick 22cm Qz-PY-MO VN, 75 tca is present.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 462.00

To 471.00

HSLT

Fragile hornfelsed siltstone, fine grained, dark brown with carbonate & minor argillite altn, moderately foliated, core mottled by contorted Qz veinlets/strs & thick

Qz veins; narrow granodirite dykes present. The alteration throughout the interval is hornfelsed biotite & CA. Qz veins with parallel foliation.

@462.32m; distorted 36mm Qz-PY-MO VN, 60 tca is present.

@462.94m: presence of a deformed 50mm Qz-PY-MO-PO VN, 90 tca.

Litho

From 463.30 to 463.58m distorted 50mm Qz-PY-MO VN, 30 tca is observed.

From 463.88 to 464.12m broken core with fragments of Qz-PY-MO VN, no orient, CA on fractures.

@464.64m; presence of a solid 60mm Qz-PY-MO VN, 75 tca cut off by CA strs.

From 464.90 to 466.00m stockwork of 12-24mm Qz-PY-MO VNs, 65 tca observed.

From 466.00 to 466.74m granodiorite with pink Qz veins; upper contact at 45 tca, lower contact at 80 tca.

@466.20m: solid Qz-PY-MO VN, 35 tca present.

@468.50m: selvaged 30mm Qz-PY-MO VN, 70 tca observed.

From 469.00 to 470,62m presence of stockwork of distorted 14-26mm Qz-PY-MO VNs, 75-85 tca.

@470.48m: thick 22cm Qz-PY-MO VN, 75 tca is present.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

462.00 471.00 BDG 60 M ~15-20% broken core

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
462.00	471.00	-	-	-	W	-	М	-	М	-	W	VW	М	
C	A altn													

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
462.00	471.00	5	10	5	2	3	70
	~3 VN/I	n					

From To Litho 471.00 488.70 HSLT

Fragile hornfelsed siltstone, fine grained, dark brown, moderately foliated, core mottled by contorted Qz veinlets/strs & thick Qz veins; narrow granodirite dyke present. The alteration throughout the interval is hornfelsed biotite & CA.

From 471.13 to 471.82m the core is broken (fragments).

From 741.82 to 474.00m presence of a sinificant zone with abundant Qz-PY-MO VNs in diff. orient.

CA altn

From 474.00 to 475.00m presence of a broken core, all pieces <10cm.

From 475.00 to 476.20m greensh granodiorite with CA altn, ague conts. Is observed.

@476.20m distorted 60mm Qz-PY-MO VN. 70 tca with massive PY on boundary is present.

@476.50m: thick 14cm Qz-PY-MO VN, 50 tca is located.

@478.36m: presence of two parallel 30 &34mm Qz-PY-AB-MO VNs, 60 tca.

From 478.66 to 480.36m broken core is observed with 70% pieces <10cm.

From 481.00 to 483.60m presence of a siltstone with significant/thick Qz-PY-MO venlets & PY BB across the core observed.

Below 485.20m stockwork of Qz-PY-MO VNs.

@487.00m; solid 16m Qz-Pv-MO VN, 70 tca is present.

					. ,
		STRU	CTUR	FS	
		DINC	CIUN	L	
Fre	om	To	Struct	CA	Strain

471.00 488.70 BDG 60 M partially broken core with CA on fracture

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
471.00	488.70	_	_	_	W	-	М	_	М	_	W	W	М	

			VEIN	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
471.00	488.70	5	10		70	3	
	ahunda	nt 07-0	sulfide V	Me T/-MC)		

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
		•			•	•		,	•

471.00 488.70 2 MG MO 0.15

To From 471.00

488.70

HSLT

Litho

Fragile hornfelsed siltstone, fine grained, dark brown, moderately foliated, core mottled by contorted Qz veinlets/strs & thick Qz veins; narrow granodirite dyke present. The alteration throughout the interval is hornfelsed biotite & CA.

From 471.13 to 471.82m the core is broken (fragments).

From 741.82 to 474.00m presence of a sinificant zone with abundant Qz-PY-MO VNs in diff. orient.

From 474.00 to 475.00m presence of a broken core, all pieces <10cm.

From 475.00 to 476.20m greensh granodiorite with CA altn, ague conts. Is observed.

@476.20m distorted 60mm Qz-PY-MO VN, 70 tca with massive PY on boundary is present.

@476.50m: thick 14cm Qz-PY-MO VN, 50 tca is located.

@478.36m: presence of two parallel 30 &34mm Qz-PY-AB-MO VNs, 60 tca.

From 478.66 to 480.36m broken core is observed with 70% pieces < 10cm.

From 481.00 to 483.60m presence of a siltstone with significant/thick Qz-PY-MO venlets & PY BB across the core observed.

Below 485.20m stockwork of Qz-PY-MO VNs.

@487.00m: solid 16m Qz-Py-MO VN, 70 tca is present.

STRUCTURES									
From	To	Struct	CA	Strain					

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From

To

Litho **GDIO**

501.70 488.70

Fragile granodiorite, light grey in color, speckled black and white with a medium grained groundmass and occasional subheudral plagioclase & orthoclase phenocrysts, biotite & hornblende & strong CA alteration. Core cut by Qz veinlets/filled fractures that contains wery weak Chl & BIO. Below 491.70m there is a very strong CA altn, core is soft & fragile & partially gouge. @501.70m E.O.H.

STRUCTURES From To Struct CA Strain

488.70 501.70 MAS

core is soft with 30% gouge

	ALTERATION From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
188.70	501.70	-	-	-	VW	-	W	-	S	-	М	М	W	
ve	ry strong	g CA	altn											

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			
488.70 501.70 2 20 10 1										
	approx one Qz vein per meter									

	MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
488.70	488.70 501.70 1 DISS MO 0.01										
tra	ces of	MO									

CHU Project - TTM Resources Inc. SAMPLE REPORT

HOLE ID: CH0611

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
46107	8.53	10.97	AND	CORE	0.03	0.014
46108	10.97	14.03	AND	CORE	0.04	0.009
46109	14.03	17.07	AND	CORE	0.03	0.025
46110				MoS-1	0.01	0.066
46111	17.07	20.12	AND	CORE	0.04	0.008
46112	20.12	23.16	AND	CORE	0.04	0.012
46113	23.16	26.21	AND	CORE	0.03	0.012
46114	26.21	29.26	AND	CORE	0.03	0.032
46115	29.26	32.31	AND	CORE	0.04	0.017
46116	32.31	35.36	AND	CORE	0.02	0.013
46117	35.36	38.40	AND	CORE	0.04	0.048
46118	38.40	41.45	AND	CORE	0.02	0.053
46119	41.45	44.50	AND	CORE	0.02	0.034
46120				DUPLICATE	0.02	0.034
46121	44.50	47.55	AND	CORE	0.05	0.038
46122	47.55	50.60	AND	CORE	0.08	0.026
46123	50.60	53.64	AND	CORE	0.03	0.074
46124	53.64	56.69	AND	CORE	0.05	0.066
46125				BLANK	0.00	0.000
46126	56.69	59.74	AND	CORE	0.03	0.030
46127	59.74	62.79	AND	CORE	0.02	0.050
46128	62.79	65.84	AND	CORE	0.06	0.062
46129	65.84	88.88	AND	CORE	0.15	0.052
46130				MoS-1	0.01	0.065
46131	68.88	71.93	AND	CORE	0.10	0.031
46132	71.93	74.98	AND	CORE	0.05	0.066
46133	74.98	78.03	AND	CORE	0.04	0.044
46134	78.03	81.08	AND	CORE	0.05	0.019
46135	81.08	84.12	AND	CORE	0.04	0.020
46136	84.12	87.17	AND	CORE	0.04	0.031
46137	87.17	90.22	AND	CORE	0.06	0.046
46138	90.22	93.27	AND	CORE	0.05	0.041
46139	93.27	96.32	AND	CORE	0.08	0.020
46140				DUPLICATE	0.08	0.020
46141	96.32	99.36	AND	CORE	0.07	0.027
46142	99.36	102.41	AND	CORE	0.09	0.069
46143	102.41	105.46	AND	CORE	0.08	0.051
46144	105.46	108.51	AND	CORE	0.06	0.030
46145				BLANK	0.00	0.000
46146	108.51	111.56	AND	CORE	0.06	0.056
46147	111.56	114.60	AND	CORE	0.06	0.039
46148	114.60	117.65	AND	CORE	0.05	0.072
46149	117.65	120.70	AND	CORE	0.08	0.042
46150				MoS-1	0.01	0.064
46151	120.70	123.75	AND	CORE	0.07	0.046
46152	123.75	126.80	AND	CORE	0.03	0.022
46153	126.80	129.84	AND	CORE	0.03	0.015
46154	129.84	132.89	AND	CORE	0.02	0.019
46155	132.89	135.94	AND	CORE	0.03	0.015
46156	135.94	138.99	AND	CORE	0.02	0.008

SAMPLE REPORT

HOLE ID: CH0611

SAMPLE ID	From	ТО	LITH	TYPE	Cu (%)	Mo(%)
	(m)	(m)				
46157	138.99	142.04	AND	CORE	0.02	0.019
46158	142.04	145.08	AND/GDIO	CORE	0.02	0.009
46159	145.08	148.13	GDIO	CORE	0.04	0.041
46160				DUPLICATE	0.03	0.034
46161	148.13	151.18	GDIO	CORE	0.05	0.033
46162	151.18	154.23	GDIO	CORE	0.04	0.054
46163	154.23	157.28	GDIO/BDY	CORE	0.05	0.031
46164	157.28	160.32	BDY	CORE	0.01	0.001
46165				BLANK	0.00	0.000
46166	160.32	163.37	BDY	CORE	0.01	0.000
46167	163.37	166.42	BDY/AND	CORE	0.04	0.028
46168	166.42	169.47	AND	CORE	0.11	0.054
46169	169.47	172.52	AND	CORE	0.11	0.067
46170				MoS-1	0.01	0.064
46171	172.52	175.56	AND	CORE	0.09	0.110
46172	175.56	178.61	AND/BDY	CORE	0.05	0.089
46173	178.61	181.66	BDY	CORE	0.01	0.000
46174	181.66	184.71	BDY	CORE	0.01	0.001
46175	184.71	187.76	BDY	CORE	0.01	0.001
46176	187.76	190.80	BDY/AND	CORE	0.06	0.112
46177	190.80	193.85	AND	CORE	0.08	0.024
46178	193.85	196.90	AND	CORE	0.09	0.030
46179	196.90	199.95	AND	CORE	0.03	0.048
46180	190.90	199.90	AND	DUPLICATE	0.08	0.048
46181	199.95	203.00	GDIO/AND	CORE	0.04	0.021
46182	203.00	206.04	AND	CORE	0.04	0.030
46183		209.09	AND	CORE		0.021
46184	206.04	212.14	AND	CORE	0.08	
	209.09	212.14	AND		0.08	0.026
46185	040.44	045.40	AND	BLANK	0.00	0.000
46186	212.14	215.19	AND	CORE	0.11	0.054
46187	215.19	218.24	AND	CORE	0.09	0.033
46188	218.24	221.28	AND	CORE	0.07	0.015
46189	221.28	224.33	AND/HSLT	CORE	0.03	0.034
46190				MoS-1	0.01	0.064
46191	224.33	227.38	HSLT	CORE	0.01	0.057
46192	227.38	230.43	HSLT	CORE	0.04	0.021
46193	230.43	233.48	HSLT	CORE	0.10	0.065
46194	233.48	236.53	HSLT	CORE	0.04	0.047
46195	236.53	239.57	HSLT	CORE	0.04	0.045
46196	239.57	242.62	HSLT	CORE	0.04	0.132
46197	242.62	245.67	HSLT	CORE	0.04	0.140
46198	245.67	248.72	HSLT	CORE	0.06	0.108
46199	248.72	251.76	HSLT	CORE	0.01	0.049
46200				DUPLICATE	0.01	0.052
46201	251.76	254.81	HSLT	CORE	0.03	0.103
46202	254.81	257.86	HSLT	CORE	0.02	0.087
46203	257.86	260.91	HSLT	CORE	0.03	0.122
46204	260.91	263.96	HSLT	CORE	0.04	0.060
46205				BLANK	0.00	0.000
46206	263.96	267.00	HSLT	CORE	0.04	0.058
46207	267.00	270.05	HSLT	CORE	0.02	0.092
i .			HSLT	CORE		

SAMPLE REPORT

HOLE ID: CH0611

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
46209	273.10	276.15	HSLT	CORE	0.08	0.108
46210				MoS-1	0.01	0.065
46211	276.15	279.20	HSLT	CORE	0.03	0.039
46212	279.20	282.24	HSLT	CORE	0.06	0.123
46213	282.24	285.29	HSLT	CORE	0.16	0.044
46214	285.29	288.34	HSLT	CORE	0.02	0.077
46215	288.34	291.39	HSLT	CORE	0.02	0.116
46216	291.39	294.44	HSLT	CORE	0.01	0.060
46217	294.44	297.48	HSLT	CORE	0.06	0.039
46218	297.48	300.53	HSLT	CORE	0.03	0.049
46219	300.53	303.58	HSLT	CORE	0.02	0.086
46220				DUPLICATE	0.02	0.071
46221	303.58	306.63	HSLT	CORE	0.02	0.065
46222	306.63	309.68	HSLT	CORE	0.02	0.021
46223	309.68	312.72	HSLT	CORE	0.02	0.022
46224	312.72	315.77	HSLT	CORE	0.03	0.035
46225				BLANK	0.00	0.000
46226	315.77	318.82	HSLT/GDIO	CORE	0.02	0.026
46227	318.82	321.87	GDIO	CORE	0.01	0.011
46228	321.87	324.92	GDIO	CORE	0.02	0.005
46229	324.92	327.96	GDIO	CORE	0.01	0.002
46230				MoS-1	0.01	0.064
46231	327.96	331.01	GDIO/HSLT	CORE	0.03	0.008
46232	331.01	334.06	HSLT	CORE	0.01	0.012
46233	334.06	337.11	QDP/QFP	CORE	0.01	0.002
46234	337.11	340.16	QDP/QFP	CORE	0.01	0.090
46235	340.16	343.20	QDP/QFP	CORE	0.02	0.030
46236	343.20	346.25	QDP/QFP	CORE	0.02	0.006
46237	346.25	349.30	QDP/QFP	CORE	0.02	0.023
46238	349.30	352.35	QDP/QFP	CORE	0.01	0.009
46239	352.35	355.40	QDP/QFP	CORE	0.02	0.016
46240				DUPLICATE	0.02	0.013
46241	355.40	358.44	QDP/QFP	CORE	0.02	0.012
46242	358.44	361.49	QDP/QFP	CORE	0.01	0.001

CHU Project - TTM Resources Inc.

Signature:	
	Initials:

CH0611

 From
 To
 Litho

 0.00
 8.53
 OB

Casing/overburden

STRUCTURES								
From	To	Struct	CA	Strain				

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

MINERALIZATION									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

0.00 8.53

From	То	Litho
8.53	38.40	AND

From the beginning of this hole there is presence of greenish-brown hematitic andesite & dark hornblend feldspar phenocrysts, with network Qz-PY (+/-MG) strs & PY blotches, some flow bended zones, minor siltstone, Qz-PY-MO VNs & strs, 3-5% PY, weak PO, from weak to moderate Chl & BIO altn, moderate/strong silicification, weak MG & CA altn. Carbonate alteration is present weakly, surface weathering on joints, BIO, Chl & EPI altn, very weak CA. From 17.07 to 17.37m presence of two 18mm Qz-PY-MO VN, 45 & 60 tca.

@21.88m: contorted selvaged 18mm Qz-PY-MO VN, 20 tca.

@24.92m: deformed 14mm Qz-PY-MOVN, 30 tca.

@31.03m: rim of 14mm Qz-PY-EPI-MO VN, 30 tca.

@31.90m: brecciated 26mm Qz-PY-MG-Chl VN, 65 tca.

@32.84m: 14mm Qz-PY-MO, 35 tca with Chl altn.

From 34.04 to 34.34m presence of 22mm Qz zone with Chl-BIO altn & thin streaks of MO, 60 tca was observed.

@35.66m: 16mm Qz-PY-MO-AB-Chl VN, 40 tca

From 37.77 to 38.32m presence of narrow 5mm Qz-PY-MO VN splitted core.

STRUCTURES									
From	To	Struct	CA	Strain					

8.53 38.40 MAS M

partially surface weathering on joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

8.53 38.40 - - M M - M VW VW VW M M M silica & BIO altn

VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	

8.53 38.40 0.5 5 5 1 0.5 40 narrow Qz-PY-MO VNs
 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

8.53 38.40 2 VLT MO 0.01 traces of MO & tiny MO strs

From 38.40

To 53.64 Litho AND

Fine grained reddish & light green aphanitic andesite, phenocrysts in the matrix, BIO & hornblend feldspar crystals, silica & potassic altn, narrow Qz-PY-MO VNs & magnetic AB-Chl-sulfide VNs; a medium grained groundmass and occasional subheudral plagioclase, small blotches of chloritic green alteration, pyrite is moderately in veinlets form and less commonly disseminated, silica & BIO altn. ~1% MG.

@38.46m; thick contorted 38mm magnetic Qz-PY-Chl-MO VN, 40 tca.

@38.84m: thick10cm Qz-Chl-PY VN, 40 tca.

@39.22m: weakly magnetic 30mm Qz-PY-MO VN, 25 tca

Below 39.3m flow bended quartz-silica zone with potassic altn and tiny PY& MO strs.

From 45.8 to 46.00m presence of three deformed 10-16mm Qz-Py-MO VN, 50-65 tca observed.

@46.80m: thick & contorted 60mm Qz-PY-MO VN, 80 tca.

From 48.28 to 48.50m greenish Qz-BIO zone with 70 tca upper contact is present.

@48.50m: distorted 32mm Qz-MG-PY-PO VN 30 tca.

@48.90m: boudinaged 16mm Qz-PY-PO-MO-MG VN, 70 tca

From 52.70 to 53.53m broken core with surface weathering on joints observed

STRUCTURES								
From	To	Struct	CA	Strain				

53.64 MAS М

4-6% joints

38.40

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

38.40 53.64 - - W M M VW VW M M M potassic altn

VEINS From ToVn% QZ%Feld% CC% V/m CA

1 60

38.40 53.64 2 50 20 contorted Qz-PY +/- MG & +/- MO veins.

MINERALIZATION PY% Style Min Min% Min2 M2% Min3 M3% To

38.40 53.64 2 VLT MO 0.05 approx >0.05% MO

From 53.64

To 71.06

Litho AND

Reddish & light greenish quartz-andesite with transitional zone to monzonite, phenocrysts into the matrix, BIO & hornblend feldspar crystals.

From 53.64 to 67.00m monzonite zone with silica & potassic altn observed with lower contact at 80 tca.

@55.52m: 12mm Qz-PY-MO-MG-BIO VN. 50 tca.

@56.24m: narrow ~10mm Qz-Py-MO VN, 30-60 tca (2-3 VN/m)

From 59.15 to 60.00m distorted 50mm Qz-PY-MO VN along the core is present.

@60.16m: two subparallel 10-14mm Qz-PY-MO VNs35 tca.

From 61.3 to 62.00m stockwork of 10-20mm Qz-PY-MO +/- Chl NVs, 50-80 tca.

@63.38m: solid 36mm Qz-PY-MOBIO-Chl VN, 45 tca with tiny Qz-MO strs around.

@64.60m; presence of 28mm Qz-PY-MO VN, 50 tca.

@65.48m: solid 20mm Qz-PY-MO VN, 60 tca with narrow (<5mm) Qz-MO strs.

@68.54m: thick 50mm Qz-PY-MO VN, 25 tca

Below 61.10m presence of brown andesite with Qz-PY-MO strs & CA-EPI-Chl altn.

	STRUCTURES								
From	To	Struct	CA	Strain					

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1	MINERALIZATION									
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From To 53.64 71.06

Litho AND

Reddish & light greenish quartz-andesite with transitional zone to monzonite, phenocrysts into the matrix, BIO & hornblend feldspar crystals.

From 53.64 to 67.00m monzonite zone with silica & potassic altn observed with lower contact at 80 tca.

@55.52m: 12mm Qz-PY-MO-MG-BIO VN, 50 tca.

@56.24m: narrow ~10mm Qz-Py-MO VN, 30-60 tca (2-3 VN/m)

From 59.15 to 60.00m distorted 50mm Qz-PY-MO VN along the core is present.

@60.16m: two subparallel 10-14mm Qz-PY-MO VNs35 tca.

From 61.3 to 62.00m stockwork of 10-20mm Qz-PY-MO +/- Chl NVs, 50-80 tca.

@63.38m: solid 36mm Qz-PY-MOBIO-Chl VN, 45 tca with tiny Qz-MO strs around.

@64.60m: presence of 28mm Qz-PY-MO VN, 50 tca.

@65.48m: solid 20mm Qz-PY-MO VN, 60 tca with narrow (<5mm) Qz-MO strs.

@68.54m: thick 50mm Qz-PY-MO VN, 25 tca

Below 61.10m presence of brown andesite with Qz-PY-MO strs & CA-EPI-Chl altn.

STRUCTURES									
From	To	Struct	CA	Strain					
53 64	71.06	FIW		S					

53.64 71.06 FLW S 2% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
53.64	71.06	-	-	-	М	-	-	М	VW	VW	М		М	
pc	otassic a	ltn												

			VEINS	5			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA
53.64	71.06	2	40	20	1	55	
	Qz-Py-i	MO VN	ls strs				

	MINERALIZATION									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	
53.64	71.06	3	VLT	MC	0.15	;				
>0	15% N	10								

From 71.06 9

To 91.40

Litho AND

Dark reddish hematitic andesite porphyry with narrow monzonite zones & strong Chl altn & moderate epidote altn, PY BB, strs & narrow VNs (~4% PY), DI MG & narrow veinlets (~2-3% MG), Qz-PY-MO VNs & strs (~two VNs/m).

@72.06m: solid 36mm Qz-PY-MO VNs, 70 tca.

Below 72.38m stockwork of 6-28mm Qz-PY-MO VNs, 35.90 tca.

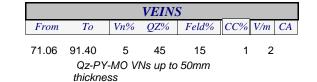
@75.92m: solid selvaged 36mm Qz-PY-MO VN, 50 tca observed.

@77.93m: solid selvaged 42mm Qz-PY-MO VN, 50 tca is present.

@78.28m: there is a solid 30mm Qz-PY-MO VN, 85 tca.

@83.23m: location of a pink 20mm Qz-PY-MO VN, 35 tca.

@84.16m: thick 50mm Qz-PY-MO-C VN, 80 tca with narrow (1cm) Qz-PY-MO VNs radiating from this VN.


From 90.22 to 91.12m presence of a broken core.

@93.58m: magnetic 44mm Qz-PY-MO-BIO VN, 40 tca

STRUCTURES										
From	To	Struct	CA	Strain						
71.06	91.40	MAS		NA						

partially broken core

					AL	TER	ATIO)N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SEF
71.06	91.40	-	-	S	М	-	-	М	W	VW	М	М	М	
M	G, EPI, (ChI &	potas	sic ali	tn									

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% M3%											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
71.06	91.40	3	VLT	MC	0.2							
~0.	2% M)										

From 71.06

To

91.40

Dark reddish hematitic andesite porphyry with narrow monzonite zones & strong Chl altn & moderate epidote altn, PY BB, strs & narrow VNs (~4% PY), DI MG & narrow veinlets (~2-3% MG), Qz-PY-MO VNs & strs (~two VNs/m).

Litho

AND

@72.06m: solid 36mm Qz-PY-MO VNs, 70 tca.

Below 72.38m stockwork of 6-28mm Qz-PY-MO VNs, 35.90 tca.

@75.92m: solid selvaged 36mm Qz-PY-MO VN, 50 tca observed.

@77.93m: solid selvaged 42mm Qz-PY-MO VN, 50 tca is present.

@78.28m: there is a solid 30mm Qz-PY-MO VN, 85 tca.

@83.23m: location of a pink 20mm Qz-PY-MO VN, 35 tca.

@84.16m: thick 50mm Qz-PY-MO-C VN, 80 tca with narrow (1cm) Qz-PY-MO VNs radiating from this VN.

From 90.22 to 91.12m presence of a broken core.

@93.58m: magnetic 44mm Qz-PY-MO-BIO VN, 40 tca

	STRU	STRUCTURES										
From	To	Struct	CA	Strain								

				ALTERATION											
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

	MINERALIZATION													
From	From To PY% Style Min Min% Min2 M2% Min3 M3%													

From

То

Litho

91.40

111.56 AND

Dark reddish andesite porphyry with narrow monzonite zones & moderate ChI & CA altn & moderate sulfide altn: PY BB, strs & narrow VNs (~3-4% PY), DI MG (~2-3% MG), Qz-PY-MO VNs & strs (~two VNs/m) & abundant defotned strs & blotches.

Below 94.8m stockwork of narrow (<14mm) Qz-PY-PO-MO VNs & abundant strs.

From 99.94 to 100.36m presence of a soft & broken core with strong CA & BIO altn.

From 106.6 to 106.72m location of a Qz-carbonate zone with CA strs and contacts at 50 tca

From 107.2 to 108.22m a broken core with Chl-CA on fracture & minor gouge is observed

STRUCTURES
From To Struct CA Strain

91.40 111.56 MAS

partially broken core

	ALTERATION From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
91.40	111.56	-	-	М	М	-	М	W	W	W	М	М	М	
Cl	nl, MG, E	EPI &	CA al	tn										

VEINS									
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA		
91.40	111.56	5	40	20	1	1			
	abund (Qz-sulf	ide MO	strs in dif	forien	t			

From To 111.56

124.82

AND

Litho

Dark reddish & greenish andesite porphyry with monzonite zones & potassic altn, moderate Chl & sulfide altn: PY BB, strs & narrow VNs (~3-4% PY), DI MG (~2% MG), flow bended zones with AB altn 7 Qz-PY-MO VNs & strs (~two VNs/m) & abundant deformed strs; minor granodiorite zones

@114.56-114.72m: small granodiorite zone with 35 tca contacts.

@116.0 to 116.16m: location of two 18 & 30mm Qz-PY-MO-BIO VNs, 75 & 90 tca.

From 116.48 to 116.48m presence of a contorted zone with 50mm Qz-PY-MO-EPI VN, 35 tca.

From 129.68 to 120.54m greenish quarts-granodiorite with vaque upper contact & lower contact at 60 tca

@123.54m: pink selvaged 16mm Qz-Py-MO VN, 50 tca with tiny Qz-MO & PY-EPI strs in the same direction is observed.

STRUCTURES											
From	To	Struct	CA	Strain							

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER

MINERALIZATION VEINS Vn% QZ% Feld% CC% V/m CA From To PY% Style Min Min% Min2 M2% Min3 M3% To

111.56 124.82 MAS М 111.56 124.82 - - M M -EP, BIO, MG, potassic & Chl altn

111.56 124.82 3 30 15 1 1 55 abund Qz-PY-MO strs & sulfide -MG EPI strs

From

111.56 124.82 3 VLT MO 0.2 ~1-2% MG

minor granodiorite zones

To

Litho

124.82 144.40

From

GDIO

White-gray quartz-granodiorite with a pink network of narrow Qz +/-MO VNs & strs, medium grained DI PY. Upper contact =50 tca, lower contact =10 tca.

@127.46m: solid pink 48mm Qz-PY VN, 60 tca.

@132.36m: location of a pink 20mm qz-PY-MO VN, 50 tca.

@13.52m: presence of a solid pink 56mm Qz-PY-PO-BIO-MO VN, 30 tca with branched 22mm Qz-PY-MO VN, 60 tca.

From 139.66 to 140.04m presence of a Qz-monzonite zone with tiny MO strs, 50 tca.

@142.54m: solid 42m Qz-PY VN, 40 tca is observed.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

124.82 144.40 MAS S ~1% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
								_						
124.82	144.40	-	-	-	М	-	-	VW	W	W	М	М	М	
We	eak pota	ssic a	altn											

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
124.82	144.40	4	30	30	1	1	
	abund r	narrow	(<1cm)	Qz VNs			

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
124.82 tiny	144.40 MO s	_			0.05	i					

From

To

Litho AND

144.40 156.12

Dark & reddish-greenish andesite porphyry with flow banded zones, sulfide altn (~3% PY), AB strs, DI MG (~2% MG), Qz-PY-MO VNs & strs (~two VN/m) & abundant deformed strs, CA strs; minor granodiorite zone.

From 144.66 to 144.80m presence of a quartz-granodirite zone with 60 tca contact is observed.

@146.12m: branched out 26mm Qz-PY-MO VN, 70 tca.

From 146.20 to 146.50m breccia zone is present.

From 150.12 to 150.56m granodiorite zone with solid 60mm Qz-Py-MO VN, 35 tca observed.

From 151.10 to 151.74m knot of contorted Qz-PY-MO VNs (up to 20mm in thickness) in diff orient with up to ~ 1%MO observed in this interval .

From 152.92 to 153.18m two branched 14 & 24mm Ca-Qz-MG VNs, 40 & 70 tca are present.

STRUCTURES											
From	To	Struct	CA	Strain							

144.40 156.12 MAS M

narrow flow bended zone

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
144.40	156 12			M	NA		۱۸/	\/\\/	۱۸/	۱۸/	NA	۱۸/	M	

MG altrn

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
144.40 156.12 3 20 10 2												
narrow Qz-PY-MO VNs/strs & AB strs												

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

MINERALIZATION

From To PY% Style Min Min% Min2 M2% Min3 M3%

144.40 156.12 3 VLT MO 0.1 MG ~1%

To From 156.12 165.22

Litho **BDY**

VS

Dark gray fine grained basalt with calcic plagioclase & pyroxene, silica, quartz & fine grained DI PY. Upper contact at 80 tca, lower contact at 70 tca.

STRUCTURES To Struct CA Strain

156.12 165.22 MAS

<1 joints per meter

										•				
	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
156.12	165.22	-	-	-	М	-	-	-	-	-	М	М		

Bio altn

VEINS Feld% CC% V/m CA FromToVn% QZ%156.12 165.22 0.1 10

156.12 165.22 0.3 DISS no VNs non mineralized zone

From To 165.22

178.12

Dark reddish & greenish andesite porphyry, moderate Chl & sulfide altn: PY BB, strs & narrow VNs (~3-4% PY), DI MG (~2% MG), flow bended zones with AB altn & Qz-PY-MO VNs & strs (~two VNs/m) & abundant deformed strs.

From 165.12 to 165.40m granodiorite location (upper contact at 70 tca, lower contact at 90 tca)

@165.40m: sausaged shape of 26mm Qz-PY-MO-Chl VN, 45 tca.

Litho

AND

@164.88m: presence of 23mm Qz-PY-MO VN, 50 tca.

@156.66m: selvaged 24mm Qz-PY-MO-AB VN, 75 tca is present.

From 166.68 to 170.60m network of narrow contorted Qz-PY-MO VNs in diff. orient.

@167.17m: solid 60mm Qz-PY-MO VN, 85 tca.

@172.84m: deformed AB-Qz-PY-MO VN, 70 tca with Qz-MO strs around

@172.14m: branched out 20mm Qz-PY-MO VN, 55 tca

From 172.40 to 172.72m there are location of three 24-70mm Qz-PY-MO VNs. 50-70 tca.

From 173.70 to 174.16m a broken core with CA on fracture observed

@174.40m: solid 40mm Qz-PY-MO-BIO VN, 55 tca is present

From 174.56 to 175.28m presence of stockwork of Qz-PY-MO VNs, 40-45 tca observed.

@175.5m: location of solid 56mm Qz-PY-MO VN, 80 tca with 16m branched out Qz-PY-MO VN, 40 tca .

@177.14m: solid 60mm Qz-PY-MO VN, 45 tca is present.

From 177.42 to 178.10m soft rock (fragments & gouge) with CA altn is present

	STRUCTURES											
From	To	Struct	CA	Strain								

165.22 178.12 MAS

partially broken core (fragments & gouge)

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SEF
165.22 178.12 VW W - M - W - M									М	W				
BIO altn & partilly strong CA altn														

VEINS												
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA					
165.22	178.12	4	6	6	2	3	50					
core mottled Qz-PY-MO VNs/strs, partially CA VNs/strs,												

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
165.22	178.1	2 4	VLT	МС	0.2				_			
			/Ns/st	r & sı	ulfide E	BB,						
(~0).2% M	10)										

From	То	Litho
178.12	188.92	BDY

Dark gray basalt with plagioclase & pyroxene fine grained with silica, quartz & fine grained DI PY, tiny CA strs. Small zones (~20-50cm) broken core with CA on

From 179.26 to 179.82m presence of a broken core (pieces <10cm) with CA on fractures.

From 186.44 to 187.00m a broken core with CA on the fracture observed. Upper contact at 70 tca, lower contact at 60 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain
178.12	188.92	MAS		М

up to 10% broken core

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
178.12	188.92	-	-	-	М	-	-	-	М	-	М	М	VW	
C	A altn													

	VEINS											
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA					
178.12	188.92 <i>CA strs</i>	٠	6	10	1							

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 178.12 188.92 0.2 DISS Fine grained DI PI

CH	06	1	4
СΠ	U)	

Initials:	
Initials:	

From To 178.12 188.92

Litho **BDY**

(Continued from previous page)

STRUCTURES To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From

To

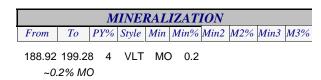
Litho **AND**

188.92 199.28

Dark reddish-greenish andesite porphyry with granodiorite dyke, moderate Chl & sulfide altn, PY-PO BB, strs & narrow VNs (~3-4% PY), DI MG (~1% MG), flow banded zones with AB altn & Qz-PY-MO VNs & strs (~2-3 VNs/m) & abundant destorted strs.

From 188.92 to 189.84m significant 50mm Qz-PY-MO VN along the core cut off by two thick 9cm & 16cm Qz-Py-MO VNs, 90 tca is observed.

From 190.62 to 190.78m two subparallel 20 & 24mm Qz-PY-MO VNs, 60 tca are present.


From 191.40 to 196.26m stockwork of 16-26mm Qz-Py-MO VNs, 15-80 tca & magnetic narrow contorted Qz-PY-EPI VNs are located.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

188.92 199.28 MAS ~6-8% joints

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
188.92	199.28	-	-	М	М	-	-	М	М	М	М	М	S	
C	4. MG &	FPI:	altn											

			VEINS	S			
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA
188.92	199.28	3	15	10	1	3	40
	abund (Qz strs					

From 199.28

To 202.36

Litho **GDIO**

Gray quartz granodiorite hypidiomorphic by development of tubular plagioclase & hornblend, medium grain size, Qz +/- streaks of MO.

@189.88m: presence of dispersed 26mm Qz-PY-PO-MO VN, 35 tca with BIO streaks.

@200.70m: solid 30mm Qz-PY-MO VN, 55 tca.

@201.26m: solid pink 80mm Qz-PY-MO VN, 55 tca.

@201.46m: solid pink 46mm Qz VN, 50 tca.

From 202.14 to 202.28m greenish Qz zone with PY specks, 70 tca is present.

	STRU			
From	To	Struct	CA	Strain
199.28	202.36	MAS S		М
	3-59	% joints	5	

					AL	TER	ATIO	N .						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
199.28	202.36	-	-	W	М	-	М	VW	М	М	М	М	W	
BI	O altn													

			VEIN S	-		
From	То	Vn%	QZ%	Feld%	CC%	V/m CA
199.28	202.36	6	40	20	1	2 55
	30-80m	m Qz \	/Ns			

	<i>MINERALIZATION</i>													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					
199.28	From To PY% Style Min Min% Min2 M2% Min3 M3% 199.28 202.36 0.2 DISS MO 0.1													
tra	ces of	MO												

CH061

r	-	

From 202.36 To

222.04

Dark &, reddish andesite porphyry with minor granodiorite dyke, moderate Chl & sulfide altn; PY-PO BB, strs & narrow VNs (~4% PY, 2% PO), DI MG (~1% MG), flow banded zones with AB altn & Qz-PY-MO VNs (~2-3 VNs/m) with abundant distorted strs.

@205.16m: thick 12cm Qz-PY-MO VN. 40 tca.

@210.48m: presence of a pink 24mm Qz-PY-MO VN, 60 tca.

From 210.62 to 210.94m granodiorite porphyry, plagioclase location.

From 211.32 to 211.66m presence of silica zone with deformed 16-22mm Qz VNs and PY & CA strs

@212.8m: selvaged 30mm Qz-PY-MO VN, 45 tca with PO & EPI on halo.

Litho

AND

@213.15m: distorted 30mm Qz-PY-MO VN, 40 tca with Chl altn observed.

@215.24m: presence of 30mm Qz-PO-MO VN, 70 tca.

@217.34m: location of contorted 30mm Qz-PY-PO MO VN, 75 tca.

From 220.20 to 222.04m granodiorite zone with ChI & CA altn. Presence of 20cm of broken core in that interval.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

202.36 222.04 MAS W

~5-7% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
202.36	222.04	-	-	-	М	-	-	-	М	М				
CA	A strs													

VEINS												
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA					
202.36	222.04	5	10	10	1.5	2	70					
	abund (Qz-PY	+/- MOs	trs & AB	PY-							
	PO strs											

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
202.36 222.04 3 SM PO 2 MO 0.15											
mostly MO present in abund Qz-P strs											

Initials:

From To

Litho

222.04 237.00 AND

Brown quartz andesite with flow bended zones & braccia, vague contact (approx at 230.0m) to transitional zone to honfelsed siltstone. Core is mottled dominantly

by tiny Qz strs. Sulfide blotches & strs. Contorted Qz-PY-MO VNs.

From 234.00 to 236.22m presence of a broken core with 70% pieces that are <10cm.

@222.64m: location of a branched out 32mm Qz-PY-MO VN, 40 tca.

From 223.54 to 223.80m location of a Qz zone with DY PY & AB-Chl altn.

@224.40m: there is a selvaged 14mm Qz-PY-MO VN, 15 tca with tiny streaks of MO around.

From 224.68 to 225.17m location of a breccia zone.

@225.70m: solid 40mm Qz-PY-MO VN, 55 tca with AB strs on boundary is present.

@227.38m: dendritic 24mm Qz-PY-MO VN, 20 tca observed.

@228.54m: location of a solid 60mm Qz-Py-MO VN, 50 tca.

@231.42m; solid 52mm Qz-PY-MO VN, 60 tca is present.

From 232.10 to 233.00m stockwork of 14-30mm Qz-PY-MO VNs, 55-80 tca is located.

From 233.82 to 234.06m a granodiorite zone is observed.

W

From 234.50 to 236.10m carbonate zone with 44mm gz-PY-MO VN, 90 tca is present.

@236.64m: presence of 26m Qz-PY-MO VN, 75 tca

STRUCTURES										
From	To	Struct	CA	Strain						

~20% broken core

222.04 237.00 BDG

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

222.04 237.00 - - W S - M M W M M M I silica altn

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
222.04	237.00	5	50	20	1	4	50				
core mottled by Qz strs											

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
222.04	237.0	0 3	VLT	PC) 1	МО	0.5					
partially >0.5% M0 present in tiny Qz strs												

 From
 To
 Litho

 237.00
 250.00
 HSLT

Dark brown hornfelsed siltstone with ChI & sulfide altn; PY-PO BB, strs & narrow VNs (~2% PY, 2% PO), DI MG (~1-2% MG), flow bended zones with AB strs & Qz-PY-MO VNs (~2-3 VNs/m) with abundant strs. From 238.82-239.66m fault zone soft rock with breccia, CA strs, trace of MO. From 242.66 to 247.57m fault zone with breccia, fragments with Qz-MO VNs & gouge; ChI-CA on fracture.

From 238.00 to 238.44m quartz granodiorite zone with branched out 20mm Qz-PY-MO VN, 60 tca is observed.

Below 239.74m core is mottled by Qz-PY +AB, + MO strs & occasional narrow (<1cm) Qz-PY-MO VNs.

@242.42m: solid 64mm Qz-PY-MO VN, 80 tca with PO blotches on boundary

From 243.50 to 244.00m location of two thick distorted 30 & 60mm Qz-PY-MO VNs, 80 tca

@244.6m: distorted 54mm Qz-PY-MO VN, 50 tca is present.

From 245.26 to 246.00m guartz granodiorite zone with 56mm Qz-PY-MO VN, 40 tca

Below 247.50m core is mottled by deformed Qz-Py +/-MO VNs

From 248.86 to 250.00m stockwork of 14-32mm Qz-PY-MO VNs, 50-70 tca is present.

	STRUCTURES											
ſ	From	To	Struct	CA	Strain							

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS							
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1	MINERALIZATION									
	From	То	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

To From 237.00

Litho 250.00 **HSLT**

Dark brown hornfelsed siltstone with Chl & sulfide altn; PY-PO BB, strs & narrow VNs (~2% PY, 2% PO), DI MG (~1-2% MG), flow bended zones with AB strs & Qz-PY-MO VNs (~2-3 VNs/m) with abundant strs. From 238.82-239.66m fault zone soft rock with breccia, CA strs, trace of MO. From 242.66 to 247.57m fault zone with breccia, fragments with Qz-MO VNs & gouge: Chl-CA on fracture.

From 238.00 to 238.44m quartz granodiorite zone with branched out 20mm Qz-PY-MO VN, 60 tca is observed.

Below 239.74m core is mottled by Qz-PY+AB, + MO strs & occasional narrow (<1cm) Qz-PY-MO VNs.

@242.42m: solid 64mm Qz-PY-MO VN, 80 tca with PO blotches on boundary

From 243.50 to 244.00m location of two thick distorted 30 & 60mm Qz-PY-MO VNs. 80 tca

@244.6m: distorted 54mm Qz-PY-MO VN, 50 tca is present.

From 245.26 to 246.00m guartz granodiorite zone with 56mm Qz-PY-MO VN, 40 tca

Below 247.50m core is mottled by deformed Qz-Py +/-MO VNs

From 248.86 to 250.00m stockwork of 14-32mm Qz-PY-MO VNs, 50-70 tca is present.

STRUCTURES									
From	To	Struct	CA	Strain					

237.00 250.00 BDG 75 W two fault zones

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
237.00	250.00	-	-	VW	М	-	W	VW	М	VW	М	М	М	
C	A altn													

			VEINS	S					
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		
237.00	250.00	3	5	15	1.5	2	70		
abund deformed Qz-PY-MO VNs									

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	
237.00	250.0	0 3	VLT	PC	2	МО	0.5			
pai	rtially >	0.5%	МО							

From

To

Litho

250.00 267.00 **HSLT**

Dark brown, fine grained hornfelsed silstone with minor granodiorite dyke, weak Chl & moderate sulfide altn; PY-PO BB, strs (~2% PY, 2% PO). DI MG (~1-2%

MG), abundant Qz-PY-MO VNs (~3-4 VN/m) & abundant strs.

From 250.38 to 251.66m location of granodiorite with narrow Qz VNs & vague contacts

Below 252.00m location of stockwork of subparallel narrow Qz-PY-MO VNs & strs. 70 tca.

@253.27m: knot of 10-20mm Qz-PY-MO VNs, 75 tca.

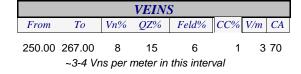
@254.44m: presence of thick 90mm Qz-MO VN, 80 tca.

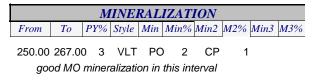
From 254.64 to 254.84m granodiorite zone with upper contact at 40tca and Qz-PY-MO VN, 70 tca is present

@254.92m: solid 13cm Qz-PY-MO VN. 75 tca.

@255.4m: presence of 8cm quartz-granodiorite porphyry with 75 tca contacts.

From 257.20 to 257.44m a broken core with CA on fracture is observed.


From 258.16 to 258.42m location of two thick & parallel 54mm & 58mm Qz-PY-MO VNs, 80 tca is observed.


STRUCTURES								
From	To	Struct	CA	Strain				

250.00 267.00 BDG 70 M

~4 joints per meter

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
250.00	267.00	-	VW	W	М	-	-	-	W	W	М	VW	М	
ch	chacopyrite & magnetite alteration													

CH0611

From
250.00

То	
267.00)

Litho	
HSLT	

(Continued from previous page)

STRUCTURES							
From	To	Struct	CA	Strain			

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

I	VEINS													
Ì	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						

<i>MINERALIZATION</i>														
From To PY% Style Min Min% Min2 M2% Min3 M3%														

Initials:

From 267.00

To 284.05

Litho **HSLT**

Dark brown, fine grained hornfelsed silstone with minor granodiorite dyke, weak Chl & moderate sulfide altn; PY-PO BB, strs (~3% PY, 2% PO), abundant Qz-PY-MO VNs (~3-4 VN/m) with abundant str.

From 267.20 to 269.40m stockwork of 14-34mm Qz-PY-MO VNs with AB specks, 70-85 tca.

From 270.60 to 272.24m location of a hybrid/breccia zone with Qz blotches, MO strs, EPI, Cpy, MG & AB alteration

From 276.14 to 276.60m granodiorite with 54mm selvaged Qz-PY-MO VN, 75 tca, vague upper contact and lower contact at 60 tca

From 277.03 to 279.20m quartz granodiorite porphyry present.

From 278.82 to 279.20m location of a dispersed 30mm Qz VN, 5 tca.

Below 279.2m location of siltstone with abundant deformed Qz-PY-MO VNs & partially broken core (CA on fracture) observed.

From 281.30 to 281.50m presence of two thick 50mm Qz-PY-MO VNs, 50 tca

From 283.10 to 283.40m presence of a broken core with CA on fracture

@283.70m: distorted 60m Qz-PY-MO VN, 40 tca is observed

STRUCTURES												
From To Struct CA Strain												

267.00 284.05 BDG 70 M ~5% broken core

					AL	TER	ATIC	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

267.00 284.05 -CA & BIO altn

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

267.00 284.05 4 70 abund Qz-PY-M VNs

	MINERALIZATION													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					

267.00 284.05 4 VLT MO 0.2 PO abundant Qz-PY-MO VNs & strs with good mineralization

From To 300.50

Litho **HSLT**

284.05

Dark brown, fine grained hornfelsed silstone with good mineralization; quartz granodiorite dyke, weak Chl & abundant sulfide strs (~3% PY, 2% PO), abundant Qz-PY-MO VNs (~3-4 VN/m).

@284.72m; thick contorted 14cm Qz-PY-MO VN, 40 tca is present

@285.10m: thick 50mm Qz-PY-MO VN, 45 tca is located.

From 285.95 to 286.66m stockwork of 28-34mm Qz-PY-MO VN, 60-80 tca.

From 286.92 to 293.54m stockwork of contorted 12-40mm Qz-PY-MO VNs with ~0.5% MO is observed.

From 293.58 to 294.80m greenish quatrz granodiorite with DI PY & MO traces is present.

From 294.80 to 295.73m presence of significant Qz-PY-MO zone with 50mm Qz-PY-EPI-PO-MO VN radiating from this zone.

STRUCTURES											
From	To	Struct	CA	Strain							

ALTERATION To | INT | ARG | CHL | SIL | PHY | PRY | POT | CC | EP | BIO | FLP | PYR | SER 284.05 300.50 - - W S - M W W W M M

VEINS Feld% CC% V/m CA Vn% QZ% FromTo284.05 300.50 20 10 1 3 70 4 abund Qz-PY-MO VNs

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 284.05 300.50 3 DISS MO 0.2 0.2-0.3% MO

284.05 300.50 BDG 60 S 2-4% joints per meter

From To Litho **HSLT** 300.50 317.32

Dark brown, fine grained hornfelsed silstone with good mineralization; quartz granodiorite dyke, weak Chl & abundant sulfide strs (~3% PY, 2% PO), abundant Qz-PY-MO VNs (~3-4 VN/m) presence of thick Qz-MO VNs.

From 300.54 to 306.00m stockworkof 20-40mmQz-PY-MO VN, 40-80 tca with 0.4% MO.

From 308.4- 308.83 thick & solid, selvaged Qz-PY-MO VN, 80 tca with thin MO streaks

From 309.56 to 309.84m thick & solid Qz-PY-MO AB VN, 65 tca observed.

@312.91m: magnetic 30mm Qz-Py-MO VN, 50 tca.

From 313.46 to 314.08m presence of a contorted up to 13cm Qz-PY-CA-MO VN, 50 tca.

From 315.15 to 316.66m stockwork of 12-30mm Qz-PY-MO VN, 35-60 tca is observed.

STRUCTURES											
From	To	Struct	CA	Strain							

300.50 317.32 BDG 50 S ~1% joints

	ALTERATION													
From	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SE													SER
300.50	317.32	-	-	W	S	-	М	W	W	-	W	М	М	
AB altn														

	VEINS													
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA							
300.50	317.32	8	10	10	1	3	55							
Thick Qz-PY-MO VNs														

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
300.50	317.3	0.3											
good MO mineralzation													

From To 317.32

330.50

Granodiorite, medium grey in color, speckled black and white with a medium grained groundmass and occasional subheudral plagioclase pheno's. Weakly foliated with chilled margins. Core is cut by narrow Qz & quartz-carbonate veinlets/filled fractures that contain Chl; pyrite and MO specks & traces of MO in small amounts. PY & PO BB & DI PY, minor magnetite. Lower contact =50 tca.

@317.12m: presence of a pink 22mm Qz-PY-MO-PO-MG VN, 15 tca.

Litho

GDIO

@320.64m: location of a pink 28mm Qz VN65 tca cut off by 6mm CA VN, 20 tca.

From 322.08 to 322.30m presence of a thick Qz-AB VN, 35 tca observed.

@324.50m: 30mm Qz-PO-PY-MO VN, 50 tca is present. @327.50m: pink 30mm Qz-PO-PY-MG VN 75 tca.

@327.70m: contorted (50mm in thickness) Qz VN, 10 tca is located. @330.30m: distorted thick 12cm Qz-Py-PO-MO-MG VN, 50 tca.

	STRUCTURES													
From	To	Struct	CA	Strain										
317.32	330.50	MAS		S										

~1% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SEI
317.32 we	330.50 eak MG	-	-	VW	S	-	VW	M	W	-	M	S	W	

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
317.32	330.50	1	40	20	1	1	50
	Qz Vns	perser	nce				

	MINERALIZATION													
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
•	317.32 we	330.5 ak MO	•	DISS	в мс	0.01		•						

From 330.50

To 334.06

Litho **HSLT**

Dark brown, fine grained hornfelsed silstone; quartz granodiorite dyke, weak EPI & ChI, sulfide strs (~1% PY, 1% PO), Qz-PY-MO strs. Upper contact at 50 tca, vague lower contact.

From 331.26 to 332.12m quartz granodiorite with upper contact at 20, lower contact at 70 tca.

From 332.80 to 333.00m presence of a narrow Qz-granodiorite, 40 tca

STRUCTURES												
From To Struct CA Strain												
330.50 334.06 BDG M												
~1% ioints												

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
330.50 Bi	334.06 'O altn	-	-	=	S	-	-	-	W	VW	W	W	W	

VEINS													
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						
330.50	334.06	2	6	10		1	60						
	random	Qz VN	I s										

MINERALIZATION													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
330.50	330.50 334.06 1 VLT MO 0.1												
M	O prese	ent in	Qz str	s									

From To 334.06 361.4

361.49 QDP/QFP

Qz granodiorite porphyry, greenish & from light to medium grey in color, speckled black and white with a medium grained groundmass and occasional subheudral plagioclase phenocrysts. Weakly foliated with chilled margins. Core is cut by narrow Qz & quartz-carbonate veinlets (filled fractures that contain Chl & BIO); DI PY and MO specks & traces in small amounts. PY & PO BB & DI PY, minor MG.

From 336.30 to 337.00m presence of Qz-Chl zone with with minor sulfide BB.

Litho

@347.78m: brecciated 38mm Qz-AB-PY-MG-PO VN,35 tca is present.

From 349.20 to 349.40m brecciated quartz chlorite zone with abundant PY specks around observed.

From 356.38-356.92m a quartz zone with Chl, BIO & MG present

S

From 358.68 to the E.O.H. dark granodiorite porphyry with wak Chl & medium grained groundmass observed.

STRUCTURES											
From	To	Struct	CA	Strain							

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

Initials:

334.06 361.49 MAS S ~2% joints 334.06 361.49 - - M S - VW M VW VW M M W $\it Chl~altn$

334.06 361.49 1 40 20 1 0.5 random Qz ns

334.06 361.49 1 DISS PO 0.5 MO 0.02 very weak MO

CHU Project - TTM Resources Inc. SAMPLE REPORT

SAMPLE ID	From	ТО	LITH	TYPE	Cu (%)	Mo(%)
45851	(m) 5.18	(m) 8.23	AND	CORE	0.03	0.011
45852	8.23	11.28	AND	CORE	0.08	0.032
45853	11.28	14.33	AND	CORE	0.08	0.007
45854	14.33	17.37	AND	CORE	0.04	0.003
45855	17.37	20.42	AND	CORE	0.05	0.002
45856	20.42	23.47	AND	CORE	0.05	0.004
45857	23.47	26.52	AND	CORE	0.06	0.009
45858	26.52	29.57	AND	CORE	0.05	0.005
45859	29.57	32.61	AND	CORE	0.05	0.009
45860				DUPLICATE	0.07	0.010
45861	35.66	38.71	AND	CORE	0.02	0.003
45862	38.71	41.76	AND	CORE	0.03	0.010
45863	41.76	44.81	AND	CORE	0.08	0.024
45864	44.81	47.85	AND	CORE	0.06	0.030
45865				BLANK	0.00	0.000
45866	47.85	50.90	AND	CORE	0.05	0.017
45867	50.90	52.40	AND	CORE	0.05	0.068
45868	52.40	53.95	AND	CORE	0.04	0.039
45869	53.95	57.00	AND	CORE	0.04	0.028
45870				MoS-1	0.01	0.065
45871	57.00	60.05	AND	CORE	0.05	0.027
45872	60.05	63.09	AND	CORE	0.06	0.034
45873	63.09	66.14	AND	CORE	0.11	0.012
45874	66.14	69.19	AND	CORE	0.11	0.051
45875	69.19	72.24	AND/HSLT	CORE	0.08	0.013
45876	72.24	75.29	HSLT	CORE	0.06	0.012
45877	75.29	78.33	HSLT	CORE	0.04	0.026
45878	78.33	81.38	HSLT	CORE	0.02	0.016
45879	81.38	84.43	HSLT	CORE	0.03	0.039
45880				DUPLICATE	0.04	0.045
45881	84.43	87.48	HSLT	CORE	0.02	0.014
45882	87.48	90.53	HSLT	CORE	0.03	0.017
45883	90.53	93.57	HSLT	CORE	0.02	0.020
45884	93.57	96.62	HSLT	CORE	0.04	0.027
45885				BLANK	0.00	0.000
45886	96.62	99.67	HSLT	CORE	0.05	0.034
45887	99.67	102.72	HSLT	CORE	0.02	0.014
45888	102.72	105.77	HSLT	CORE	0.04	0.034
45889	105.77	108.81	HSLT	CORE	0.03	0.012
45890				MoS-1	0.01	0.065
45891	108.81	111.86	HSLT/AND	CORE	0.02	0.012
45892	111.86	114.91	AND	CORE	0.03	0.026
45893	114.91	117.96	AND	CORE	0.04	0.012
45894	117.96	121.01	AND	CORE	0.05	0.016
45895	121.01	124.05	AND	CORE	0.03	0.004
45896	124.05	127.10	AND	CORE	0.04	0.019
45897	127.10	130.15	AND	CORE	0.04	0.018
45898	130.15	133.20	AND	CORE	0.07	0.029
45899	133.20	136.25	AND	CORE	0.02	0.018
45900				DUPLICATE	0.04	0.029

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45901	136.25	139.29	AND	CORE	0.01	0.019
45902	139.29	142.34	AND	CORE	0.02	0.037
45903	142.34	145.39	AND	CORE	0.02	0.034
45904	145.39	148.44	AND	CORE	0.01	0.021
45905				BLANK	0.00	0.000
45906	148.44	151.49	AND	CORE	0.02	0.017
45907	151.49	154.53	AND	CORE	0.03	0.021
45908	154.53	157.58	AND	CORE	0.05	0.023
45909	157.58	160.63	AND	CORE	0.04	0.099
45910				MoS-1	0.01	0.063
45911	160.63	163.68	AND	CORE	0.04	0.022
45912	163.68	166.73	AND	CORE	0.08	0.114
45913	166.73	169.77	AND	CORE	0.06	0.028
45914	169.77	172.82	AND	CORE	0.04	0.035
45915	172.82	175.87	AND	CORE	0.03	0.008
45916	175.87	178.92	AND	CORE	0.05	0.031
45917	178.92	181.97	AND	CORE	0.05	0.027
45918	181.97	185.01	AND	CORE	0.04	0.013
45919	185.01	188.06	AND	CORE	0.03	0.021
45920				DUPLICATE	0.04	0.027
45921	188.06	191.11	AND	CORE	0.05	0.047
45922	191.11	194.16	AND	CORE	0.08	0.028
45923	194.16	197.21	AND	CORE	0.04	0.042
45924	197.21	200.25	AND	CORE	0.04	0.023
45925	107.21	200.20	7.1112	BLANK	0.00	0.000
45926	200.25	203.30	AND	CORE	0.04	0.067
45927	203.30	206.35	AND	CORE	0.07	0.141
45928	206.35	209.40	AND	CORE	0.05	0.057
45929	209.40	212.45	AND	CORE	0.05	0.054
45930	200.40	212.40	AND	MoS-1	0.03	0.063
45931	212.45	215.49	AND	CORE	0.03	0.025
45932	215.49	218.54	AND	CORE	0.03	0.025
45933	218.54	221.59	AND	CORE	0.04	0.023
45934	221.59	224.64	AND	CORE	0.02	0.018
45935	224.64	227.69	AND	CORE	0.09	0.026
45936	227.69	230.73	AND	CORE	0.10	0.054
45937	230.73	233.78	AND	CORE	0.06	0.036
45938	233.78	236.83	AND	CORE	0.07	0.022
45939	236.83	239.88	AND	CORE	0.05	0.063
45940	000.00	040.00	AND	DUPLICATE	0.06	0.039
45941	239.88	242.93	AND	CORE	0.05	0.041
45942	242.93	245.97	AND	CORE	0.06	0.039
45943	245.97	249.02	AND	CORE	0.06	0.041
45944	249.02	252.07	AND	CORE	0.05	0.034
45945	0=7			BLANK	0.00	0.000
45946	252.07	255.12	AND	CORE	0.04	0.028
45947	255.12	258.17	AND	CORE	0.04	0.030
45948	258.17	261.21	AND	CORE	80.0	0.056
45949	261.21	264.26	AND	CORE	0.04	0.045
45950				MoS-1	0.01	0.064
45951	264.26	267.31	AND	CORE	0.04	0.016
45952	267.31	270.36	AND	CORE	0.03	0.038

	_					
SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
45953	270.36	273.41	AND	CORE	0.03	0.015
45954	273.41	276.45	AND	CORE	0.05	0.041
45955	276.45	279.50	AND	CORE	0.03	0.024
45956	279.50	282.55	AND	CORE	0.05	0.036
45957	282.55	285.60	AND	CORE	0.04	0.026
45958	285.60	288.65	AND	CORE	0.04	0.049
45959	288.65	291.69	AND	CORE	0.04	0.064
45960				DUPLICATE	0.06	0.056
45961	291.69	294.74	AND	CORE	0.03	0.050
45962	294.74	297.79	AND	CORE	0.03	0.027
45963	297.79	300.84	AND	CORE	0.02	0.025
45964	300.84	303.89	AND	CORE	0.03	0.035
45965				BLANK	0.00	0.000
45966	303.89	306.93	AND	CORE	0.03	0.043
45967	306.93	309.98	AND	CORE	0.04	0.143
45968	309.98	313.03	AND/GDIO	CORE	0.02	0.037
45969	313.03	316.08	GDIO	CORE	0.02	0.028
45970				MoS-1	0.01	0.064
45971	316.08	319.13	AND	CORE	0.03	0.029
45972	319.13	322.17	AND	CORE	0.04	0.064
45973	322.17	325.22	AND	CORE	0.02	0.041
45974	325.22	328.27	AND	CORE	0.02	0.023
45975	328.27	331.32	AND	CORE	0.02	0.026
45976	331.32	334.36	AND	CORE	0.06	0.062
45977	334.36	337.41	AND	CORE	0.00	0.118
45978	337.41	340.46	AND	CORE	0.04	0.110
45979	340.46	343.51	AND	CORE	0.04	0.130
45980	340.40	343.31	AND	DUPLICATE		0.075
	242.54	246.56	AND		0.05	
45981	343.51	346.56	AND	CORE	0.07	0.035
45982 45983	346.56 349.61	349.61 352.65	AND AND	CORE	0.06	0.054 0.032
45983					0.04	
	352.65	355.70	AND	CORE	0.07	0.038
45985	055.70	050.75	AND	BLANK	0.00	0.000
45986	355.70	358.75	AND	CORE	0.06	0.031
45987	358.75	361.80	AND	CORE	0.06	0.066
45988	361.80	364.85	AND	CORE	0.07	0.086
45989	364.85	367.89	AND	CORE	0.09	0.042
45990	00= ==	0=0 - :		MoS-1	0.01	0.064
45991	367.89	370.94	AND	CORE	0.07	0.053
45992	370.94	373.99	AND	CORE	0.10	0.023
45993	373.99	377.04	AND	CORE	0.09	0.058
45994	377.04	380.09	AND	CORE	0.08	0.022
45995	380.09	383.13	AND	CORE	0.06	0.020
45996	383.13	386.18	AND	CORE	0.05	0.040
45997	386.18	389.23	AND	CORE	0.04	0.067
45998	389.23	392.28	AND/DIOR	CORE	0.04	0.027
45999	392.28	395.33	DIOR	CORE	0.00	0.000
46000				DUPLICATE	0.00	0.000
46001	20E 22	398.37	DIOR/AND	CORE	0.03	0.022
	395.33					
46002	398.37	401.42	AND	CORE	0.07	0.028
46002 46003			AND AND	CORE CORE	0.07 0.10	0.028 0.046

	_					
SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
46005				BLANK	0.00	0.000
46006	407.52	410.57	AND	CORE	0.06	0.043
46007	410.57	413.61	AND	CORE	0.08	0.062
46008	413.61	416.66	AND	CORE	0.10	0.059
46009	416.66	419.71	AND	CORE	0.09	0.039
46010				MoS-1	0.01	0.065
46011	419.71	422.76	AND	CORE	0.09	0.029
46012	422.76	425.81	AND	CORE	0.10	0.030
46013	425.81	428.85	AND	CORE	0.12	0.099
46014	428.85	431.90	AND	CORE	0.20	0.023
46015	431.90	434.95	AND	CORE	0.09	0.084
46016	434.95	438.00	AND	CORE	0.10	0.133
46017	438.00	441.05	AND	CORE	0.08	0.119
46018	441.05	444.09	AND	CORE	0.11	0.054
46019	444.09	447.14	AND	CORE	0.12	0.041
46020				DUPLICATE	0.11	0.043
46021	447.14	450.19	AND/GDIO	CORE	0.05	0.039
46022	450.19	453.24	GDIO	CORE	0.05	0.013
46023	453.24	456.29	AND	CORE	0.07	0.075
46024	456.29	459.33	AND	CORE	0.04	0.031
46025				BLANK	0.00	0.000
46026	459.33	462.38	AND	CORE	0.04	0.051
46027	462.38	465.43	AND	CORE	0.03	0.055
46028	465.43	468.48	AND	CORE	0.07	0.066
46029	468.48	471.53	AND	CORE	0.05	0.045
46030				MoS-1	0.01	0.064
46031	471.53	474.57	AND	CORE	0.07	0.051
46032	474.57	477.62	AND/GDIO	CORE	0.08	0.034
46033	477.62	480.67	GDIO	CORE	0.05	0.047
46034	480.67	483.72	GDIO/AND	CORE	0.06	0.086
46035	483.72	486.77	AND	CORE	0.06	0.053
46036	486.77	489.81	AND	CORE	0.05	0.070
46037	489.81	492.86	AND	CORE	0.07	0.043
46038	492.86	495.91	AND	CORE	0.06	0.160
46039	495.91	498.96	AND/GDIO	CORE	0.02	0.025
46040				DUPLICATE	0.02	0.027
46041	498.96	502.01	GDIO	CORE	0.04	0.118
46042	502.01	505.05	GDIO/AND	CORE	0.03	0.134
46043	505.05	508.10	AND	CORE	0.06	0.085
46044	508.10	511.15	AND	CORE	0.04	0.079
46045				BLANK	0.00	0.000
46046	511.15	514.20	AND/HSLT	CORE	0.07	0.092
46047	514.20	517.25	HSLT	CORE	0.06	0.055
46048	517.25	520.29	HSLT	CORE	0.04	0.049
46049	520.29	523.34	HSLT	CORE	0.05	0.092
46050				MoS-1	0.01	0.064
46051	523.34	526.39	HSLT	CORE	0.04	0.061
46052	526.39	529.44	HSLT	CORE	0.02	0.059
46053	529.44	532.49	HSLT	CORE	0.05	0.090
46054	532.49	535.53	HSLT	CORE	0.03	0.103
46055	535.53	538.58	HSLT/AND	CORE	0.00	0.021
46056	538.58	541.63	AND	CORE	0.01	0.021
70000	555.50			ANTSLIMITED	0.01	0.001

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
46057	541.63	544.68	AND/HSLT	CORE	0.01	0.046
46058	544.68	547.72	HSLT	CORE	0.02	0.055
46059	547.72	550.77	HSLT	CORE	0.02	0.100
46060				DUPLICATE	0.02	0.078
46061	550.77	553.82	HSLT	CORE	0.02	0.121
46062	553.82	556.87	HSLT	CORE	0.02	0.067
46063	556.87	559.92	HSLT/AND	CORE	0.02	0.052
46064	559.92	562.97	AND	CORE	0.01	0.001
46065	000.02	002.07	7.112	BLANK	0.00	0.000
46066	562.97	566.01	AND/HSLT	CORE	0.01	0.005
46067	566.01	569.06	HSLT	CORE	0.04	0.085
46068	569.06	572.11	HSLT/GDIO	CORE	0.02	0.037
46069	572.11	575.16	GDIO/HSLT	CORE	0.02	0.017
46070	372.11	373.10	GDIO/HISE1	MoS-1	0.02	0.017
46070	575.16	578.21	HSLT	CORE	0.01	
		581.25	HSLT		-	0.057
46072	578.21		HSLT	CORE	0.02	0.048
46073	581.25	584.30	HSLT	CORE	0.02	0.031
46074	584.30	587.35		CORE	0.01	0.062
46075	587.35	590.40	HSLT	CORE	0.01	0.021
46076	590.40	593.45	HSLT	CORE	0.01	0.065
46077	593.45	596.49	HSLT	CORE	0.02	0.091
46078	596.49	599.54	HSLT	CORE	0.02	0.029
46079	599.54	602.59	HSLT	CORE	0.02	0.025
46080				DUPLICATE	0.02	0.023
46081	602.59	605.64	HSLT	CORE	0.01	0.038
46082	605.64	608.69	HSLT	CORE	0.01	0.033
46083	608.69	611.73	HSLT	CORE	0.02	0.050
46084	611.73	614.78	HSLT	CORE	0.02	0.020
46085				BLANK	0.00	0.000
46086	614.78	617.83	HSLT	CORE	0.02	0.022
46087	617.83	620.88	HSLT	CORE	0.03	0.063
46088	620.88	623.93	HSLT	CORE	0.02	0.102
46089	623.93	626.97	HSLT	CORE	0.02	0.037
46090				MoS-1	0.01	0.065
46091	626.97	630.02	HSLT	CORE	0.01	0.015
46092	630.02	633.07	HSLT	CORE	0.00	0.000
46093	633.07	636.12	HSLT/GDIO	CORE	0.01	0.022
46094	636.12	639.17	GDIO/HSLT	CORE	0.01	0.023
46095	639.17	642.21	HSLT	CORE	0.02	0.019
46096	642.21	645.26	HSLT	CORE	0.02	0.034
46097	645.26	648.31	HSLT	CORE	0.07	0.022
46098	648.31	651.36	HSLT	CORE	0.03	0.056
46099	651.36	654.41	HSLT	CORE	0.03	0.050
46100				DUPLICATE	0.06	0.044
46101	654.41	657.45	HSLT	CORE	0.02	0.034
46102	657.45	660.50	HSLT	CORE	0.03	0.046
46103	660.50	663.55	HSLT	CORE	0.03	0.025
46104	663.55	666.60	HSLT	CORE	0.02	0.032
46105				BLANK	0.00	0.000
46106	666.60	669.65	HSLT	CORE	0.01	0.010

CHU Project - TTM Resources Inc.

Signature:	
	Initials:

CH0610

 From
 To
 Litho

 0.00
 5.18
 OB

Case/overburden

	STRUCTURES								
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

0.00 5.18

From

 From
 To
 Litho

 5.18
 27.87
 AND

Greenish andesite porphyry with blotches of magnetite (MG ~2-3%); surface weathering on joints, network PY (+/-MG) strs & PY blotches (3-4% PY), moderate BIO, ChI & EPI altn & very weak CA altn, MO occures below 5.20m in narrow Qz VNs & strs.

@6.88m: 24mm Qz-PY-MO VN at 50 tca.

@9.85m: 12mm Qz-PY-MO VN is located at 50 tca.

@10.58m: 14mm Qz-PY-MO VN at 60 tca. @15.22m: 60mm Qz-PY-MO VN at 60 tca.

From 23.94 to 24.6m: narrow 8mm Qz-PY-MO-EPI VN along the core.

@24.6m: solid 32mm Qz-PY-EPI MO VN at45 tca.

@26.94m: 16mm Qz-PY-MO VN at 60 tca.

To Struct CA Strain

@27.47m: narrow 10mm Qz-PY-MO VN at 45 tca.

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

 VEINS

 From
 To
 Vn%
 QZ%
 Feld%
 CC%
 V/m
 CA

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

5.18 27.87 MAS M

STRUCTURES

partially surface weathering on joints

5.18 27.87 - - S W - W - - S M M strong Chl & mod EPI altn

5.18 27.87 3 20 10 random Qz-PY-MO VNs

5.18 27.87 3 VLT MO 0.01 BO 0.50 MO present in random Qz-PY VNs

From 5.18 27.87

Litho AND

(Continued from previous page)

STRUCTURES								
From	To	Struct	CA	Strain				

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

To From Litho AND 27.87 51.41

To

Greenish andesite porphyry, PY (+/-MG) strs, PY & EPI blotches (3-4% PY), strong ChI altn, moderate BIO, AB & EPI altn, very weak CA altn, MO present in the random Qz VNs & strs, ptygmatic/irregular distribution MG along the core (MG ~4%).

From 31.5 to 32.18m there is a narrow 7mm Qz-PY-BIO-MO-EPI VN, 10 tca.

@39.46m: narrow 12mm Qz-PY-EPI-MO VN, 60 tca.

@39.92m: solid 23mm Qz-PY-BIO-MO VN, 60 tca.

@41.12m there is 17mm Qz-PY-BIO-MG-MO VN. 20 tca.

@43.26m: presence of selvaged 12mm Qz-Py-MG-MO VN, 40 tca with 6mm Qz-Py-MO-MG VN that radiates from the main VN located at 15 tca.

From 47.73 to 46.2m boudinaged 18mm Qz-PY-MO-MG VN, 10 tca.

@49.54m: dispersed 14mm Qz-PY-MG-MO-EPY VN, 20 tca.

@51.1m: two parallel 10 & 12mm Qz-PY-MG VNs, 35 tca are present.

From 51.96 to 52.4m: significant Qz-CA-PY-MO VN, 15 tca with occasional carbonate in this interval.

@54.33-54.7m: well crystallized 15mm CA VN, 15 tca with 3x4mm crystals.

From 55.93 to 56.28m: 12mm CA-Qz-PY-MO VN, 10 tca cut off by 14mm Qz-AB-MO VN, 75 tca.

STRUCTURES										
From	To	Struct	CA	Strain						
27.87	51.41	MAS S		М						
5% joints										

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
	51.41 od <i>EPI</i> a		-	S	W	-	-	-	М	S	М	М	M	

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
27.87	51.41	4	30	20	3	1	
	narrow VN/m	Qz-PY	'-MO+/-Λ	∕IG VN, ~	1		

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	
27.87	27.87 51.41 4 VLT MO 0.05									
MO in Qz-PY +/-MG VNs										

From 51.41

*T*o 71.20

Litho AND

Greenish andesite porphyry with silica altn and interfingered hornfesed siltstone strongly altered by ChI with abundant PY & EPI blotches (>3-4% PO & PY).

Weak CA VNs with moderate BIO, AB & EPI altn. MO is present occasionally Qz VNs & strs, irregular distribution MG along the core (~3%).

@56.82m: location of deformed 22mm Qz-PY-MO VN, 50 tca with MG & EPI altn around.

@58.32m: presence of contorted 12mm Qz-PY-MG-MO VN, 40 tca.

@60.0m: 24mm Qz-PY-MG VN, 40 tca with thin streaks of MO.

@60.33m: solid 14mm Qz-PY-MO-MG VN, 55 tca.

Narrow 12mm CA-Qz-MO VN, 0 tca are cutting the core from 61.10 to 62.66m with PY blotches (~5% PY).

@65.8m: solid 22mm Qz-PY-PO-MO VN, 70 tca is present.

Below 68.10m: turbulent flowing zone with irregular distribution of Qz BB.

	STRUCTURES										
From	To	Struct	CA	Strain							
51.41	71.20	MAS S		М							
2-4% joints											

I	ALTERATION														
Ī	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
		71.20 nl, sulfide			-		-	М	VW	М	S	М	W	W	

VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	
51.41	71.20 <i>Qz-PY-</i>	1 <i>PO-M</i> 0		20	2	1	20	

Ī	MINERALIZATION									
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
	51.41	71.20	3	VLT	PC) 3	М	O 0.	01	
	MO preset in Qz VNs									

From 71.20

To 87.48

Litho HSLT

Siliceous brown hornfelsed siltstone with flow bended transitional zone, strong ChI altn, random tiny Qz-MO VNs & strs, (MO ~0.05%), moderate BIO & AB altn, contorted sulfide strs, felsic breccia zones, deformed Qz VNs, vague upper contact to anndesite.

@80.58m; location of deformed Qz-PY-MO VN, 50 tca cut off by another 12mm Qz-PM VN, 50 tca.

@82.58-82.90m: narrow 8mm CA VN, 5 tca with MO on halo.

@90.66m: pink 10mm CA-Qz-MO VN, 40 tca is observed

	STRUCTURES											
From	To	Struct	CA	Strain								
71.20	07 10	PDC		NA								

71.20 87.48 BDG M
hornfelsed siltstone with
transitional zone

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
71.20	87.48	_	-	S	М	_	W	_	М	s	М	W	М	

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
71.20	87.48	2	15		1	1					
tiny Qz-MO VNs & strs											

From 71.20

To 87.48

Litho **HSLT**

Siliceous brown hornfelsed siltstone with flow bended transitional zone, strong Chl altn, random tiny Qz-MO VNs & strs, (MO ~0.05%), moderate BIO & AB altn, contorted sulfide strs, felsic breccia zones, deformed Qz VNs, vague upper contact to anndesite.

- @80.58m: location of deformed Qz-PY-MO VN, 50 tca cut off by another 12mm Qz-PM VN, 50 tca.
- @82.58-82.90m: narrow 8mm CA VN, 5 tca with MO on halo.
- @90.66m: pink 10mm CA-Qz-MO VN, 40 tca is observed

STRUCTURES									
From To Struct CA Strain									

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
ĺ	From	CC%	V/m	CA						

MINERALIZATION										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	

From 87.48

To 109.00

Litho HSLT

Brown hornfelsed siltstone with moderate & strong silicification; deformed Qz VNs; PY, PO, EPI, BIO along the core, minor Cpy, MG & MO disseminated in tiny Qz VNs (<0.1% MO, ~3-4% PY).

@91.96m: solid 20mm Qz-PY-PO-MG-MO VN, 40 tca.

From 96.19 to 97.5m narrow 7mm Qz-PY-BIO-MO-EPI VN along the core is present.

@101.00m: dispersed 23mm Qz-PY-BIO-MO VN, 40 tca with subparallel 8mm selvaged Qz-PY-MO VN is observed.

@102.22m: location of solid Qz-PY-BIO-MG-MO VN, 40 tca.

STRUCTURES									
From To Struct CA Strai									

From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

87.48 109.00 BDG 45 S ~2-3 joints per meter

87.48 109.00 - - VW S M M VW M W M W strong silica altn

87.48 109.00 3 2 5 tiny Qz-Py-MO VNs

87.48 109.00 3 VLT PO MO 0.05 >0.05% MO in tiny Qz VN

From 87.48

To 109.00

Litho HSLT

(Continued from previous page)

STRUCTURES									
From	To	Struct	CA	Strain					

ALTERATION From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

<u>VEINS</u>											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From

То

Litho AND

109.00

135.38

Brown metasiltstone & blackish-green andesite with minor greenish to reddish quartz monzonite zones with weak MG, feldspar phenocrysts, plagioclase, moderate BIO; MO is present in dendritic Qz-PY VNs & strs, blotches & strs of medium grained PY (~3-4%), weak Cpy.

From 109.05 to 110.06m significant Qz-PY-MG-EPI-MO VN along the core .

From 110.42 to 111.54m fault zone with fragments, sand & gouge; strong CA altn.

From 112.43 to 113.82m fault zone with strong CA altn (fragments, sand & gouge).

@114.22m: narrow 8mm Qz-PY-MO-EPI VN, 5 tca is observed

@114.38-114.52m: very soft core.

From 114.8 to 116.34m four minor shear zones.

From 119.1 to 119.9m narrow 8mm Qz-CA VN along the core, rock is fragile.

From 120.0 to 121.77m broken core as a result of strong CA altn.

From 124.05 to 124.35m fault zone with fragments & gouge.

@126.56m: contorted 15mm Qz-PY-MG-PO-MO VN, 40 tca.

@126.04m: presence of boudinaged 14mm Qz-PY-MOMG VN, 35 tca.

From 127.45 to 128.78m fault zone with fragments, sand & gouge.

@128.32m: trace of 15mm Qz-PY-MO VN, 10 tca.

@131.0-131.34m: fragile Qz-CA-MO VN, 20 tca with PY-MG-EPI on boundary.

From 131.34 to132.16m tiny 5-8mm sulfide-MG-EPI vein along the core.

@ 134.16m: location of dendritic 23mm Qz-PY-EPI-MO VN, 45 tca.

From 134.46 to 135.27m fragile broken rock, CA VNs mottled the core.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

109.00 135.38 FLT

a few fault zones ~1m lenth with fragments & gouge in this interval

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
109.00	135.38	-	-	М	М	-	-	М	М	W	М	М	М	
Sti	strong Chl & CA altn													

			VEIN				
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA
109.00	135.38	4	10	10	3	1	10
	partially	r fragile	core as	s a result			

					IZAT				
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
109.00	135.3	8 3	VLT	PC) 2	В	O.	ОМО	0.0
MC) prese	ence ir	Qz						

CH0610

Initials:	

From 109.00

To 135.38

*Litho*AND

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From

То

Litho

135.38 159.60

AND

Dark, brown-greenish fine grained andesite with transitional zones to monzonite & potassic alteration, moderate silicification & biotization, feldspar phenocrysts, ~1-2% magnetite throughout the core, network of Qz-PY-MO strs, MO is present in Qz-PY VNs & strs (~0.1%), coarse & fine grained PY in strs & blotches. The core is hard and competent, with a greyish green colour (chlorite alteration).

@137.88-137.94m: Qz zone with CA-EPI & contorted Qz-MO strs.

@140.26m: knot of Qz-MO strs with PY BB.

Below 140.90m abundant tiny Qz-MO strs.

@132.50m:location of narrow 5mm Qz-PY-MO VN, 20 tca.

@143.86m: narrow 8mm Qz-AB-PY-MO VN, 20 tca is observed

@145.60-146.30m: carbonate zone with dispersed 10mm Qz-AB-MO VN, 15 tca at lower contact is present.

@147.34m: there is a solid 16mm Qz-P-MO VN, 70 tca with contorted Qz-PY-MO strs around.

Below 151.84m there is a presence of flow bended zone with strong ChI & moderate AB altn and narrow <6mm Qz-PY-MO VNs.

@155.00m: deformed 12mm Qz-PY-MO VN, 45 tca with strong sulfide, EPI & BIO altn.

@157.38m: location of pinkish 13mm Qz-pY-MO VN, 40 tca.

S

@158.52m: solid 27mm Qz-PY-MO-EPI VN, 40 tca with significant MO on selvage is observed.

From 159.00 to 159, 60m a few naroow 4-7mm contorted Qz-PY-MO VNs with 0.3% MO are present in this interval.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

135.38 159.60 MAS

3 joints per meter

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
135.38	159.60	-	-	S	S	-	-	-	М	W	М	М	М	
St	trong Ch	1 & m	od EP	l altn										

<u>VEINS</u>							
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
135.38	159.60	3	50	30			
	partially potassi			h weak			

	<i>MINERALIZATION</i>										
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
135.38	159.6	0 3	DISS	PC) 2	М	O 0.	30			
go	od mine	eralize	d zon	е							

Initials:

From 135,38

To 159.60

Litho AND

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

Ì			M	INE	RAL	IZAT	ION			
i	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 159.60

To 177.70

*Litho*AND

Dark grey & brown-greenish fine grained andesite, small transitional zones to monzonite & minor potassic alteration, moderate silicification & biotization, feldspar phenocrysts, ~1-2% magnetite throughout the core, Qz-PY-MO strs with MO >0.1%, strs & blotches of PY.The core is hard & competent with chlorite & silica alteration.

@163.46m: presence of solid 36mm Qz-MG-PY-MO -BIO-EPI VN, 60 tca.

@163.61m:location of two parallel 14mm Qz-PY-MO VN, 65 tca.

@164.85 165.8 significant 50mm Qz-PY-PO-MO-MG VN along the core is present.

Below 167.80m a network of narrow (<10mm) Qz-PY-PO-MO VNs are observed in diff. directions

@170.14m: solid 15mm Qz-PY-MO-PO VN, 15 tca.

S

@173.5m: 12mm AB-CA-QZ-PY VN, 35 tca.

STRUCTURES								
From	To	Struct	CA	Strain				

159.60 177.70 MAS S *4-5% joints*
 ALTERATION

 From
 To
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 159.60
 177.70
 M
 S
 M
 W
 M
 M
 S
 M
 M

 ChI, MG & EPI altn
 M

<u>VEINS</u>								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	
159.60	177.70	4	40	15	2	2	15	
significant Qz-sulfide-MO VNs								

present in this interval

From To Litho

177.70

199.46

AND

Grey & brown-greenish fine grained quartz-andesite, small transitional zones to monzonite with flow bended zones, minor potassic alteration, moderate biotization & epidotization, feldspar phenocrysts, ~1% magnetite throughout the core, random Qz-PY-MO VNs with MO <0.1% (strs & blotches of sulfide). The core is hard & competent with some silica alterations. @186.55m: selvaged 11mm Qz-PY-MO VN, 35 tca.

From 188.00 to 188.32m contorted 12mm Qz-PY-EPI-MO VN, 0 tca with knot of Qz-PY-MO strs & MG blebs.

In the interval 191.05-191.20m boudinaged 12mm Qz-PY-MO-MG VN, 30 tca with tiny MO strs around.

@192.00m there is a presence of deformed 14mm Qz-PY-PO-MG-BIO VN, 40 tca.

From 193.84 to 195.40m stockwork 10-16mm Qz-PY-MO-MG VNs, 40-60 tca is present.

@195.50m: location of 17mm Qz-PY-MO-BIO-EPI VN, 40 tca.

From 195.95 to 196.36m monzonite with potassic alteration is observed.

- @198.76m: pink selvaged Qz-PY-AB-MO VN, 40 tca
- @198.06m: location of significant 46mm Qz-PY-MO-MG VN, 35 tca.
- @199.28m: presence of pink 12mm Qz-PY-MO-MG VN, 25 tca cut off by 9mm Q-PY-MO VN, 80 tca.

STRUCTURES								
From	To	Struct	CA	Strain				

177.70 199.46 MAS S

solid core wit very weak CA altn

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
177.70	199.46	-	-	W	М	-	М	М	VW	W	М	М	М	
m	od BIO 8	k we	ak EP	l altn										

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
177.70	199.46	4	35	20	2	2	40
	Qz-sulfi	de-BIC	D-MO VI	Vs			

MINERALIZATION										
From To PY% Style Min Min% Min2 M2% Min3 M3%										
177.70	199.4	6 3	VLT	PC) 2	М	O 0.	15	•	
MG	MG (~1-2%) present throughout the									
COI	re`& in	Qz ۷۸	ls		-					

Initials:

From
199.46

To 224.50

Litho	
۷ND	

Dark brown greenish fine & medium grained quartz-andesite, small transitional zones to monzonite, strs & blotches of sulfide, feldspar phenocrysts, minor potassic alteration, moderate biotization & weak epidotization, weak (~1%) magnetite throughout the core, two Qz-PY-MO VNs/m with MO >0.2%. The core is hard & competent.

From 199.46 to 200.80m flow bended zone with tiny Qz-MO strs, mostly 40 tca.is observed.

@202.62m: presence of 20mm Qz-CA-BIO-MO VN, 25 tca with small EPI blebs around.

From 204.60 to 205.36m carbonate zone with CA & Qz strs & vague contacts is present.

@206.36m: there ia a significant 40mm Qz-PY-MO VN, 20 tca with narrow VNs/strs branched out & subparallel to10mm Qz-PY-MO VN.

@206.35-206.75m: presence of two subparallel 12mm Qz-PY-MO VNs, 20 tca with branched out narrow VNs.

From 206.80m to 224.50m location of dark brown andesite with DI sulfide & stockwork (<20mm) Qz-PY-MO VNs, weak CA & EPI altn.

Ру

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

199.46 224.50 MAS S

1-2 % joints

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
												•		

199.46 224.50 - W - M - - VW VW W M M M mod BIO; weak EPI & very weak Mgaltn

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
199.46	224.50	5	30	15	2	2	40
	4 0-	DV 140) ////-/	. 0	-I- O-		

two Qz-PY-MO VNs/m & network Qz-PY-MO strs

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

Initials:

199.46 224.50 3 VLT PO 2 MO 0.30 good MO moneralization in this interval

From 224.50

Litho AND

To 248.20

Dark grey redish & greenish, fine & medium grained andesite, feldspar phenocrysts, strs & blotches of sulfide, moderate biotization & weak epidotization, weak (~1%) magnetite throughout the core, Qz-PY-MO VNs with MO ~0.1% .The core is hard & competent.

From 225,00 to 227,00m there is a location of a zone with Qz-BIO-sulfide-MG-EPI blotches.

@227.80m: pink 18mm Qz-PY-MO-MG VN, 30 tca with PY BB around is observed.

@229.90m: presence of a significant 34mm branched out Qz-PY-MO VN, 35 tca.

From 230.32 to 231.67m and esite-monzonite zone with stockwork contorted Qz-PY-MO VNs & strs, 50-70 tca.

From 231.96 to 234.30m location of random narrow (<1cm) Qz-PY-MO VNs & PY BB & strs observed

@234.32m: deformed/branched out significant 18mm Qz-PY-MO VN, 30 tca.

From 234.40 to 242.08m presence of andesite with a narrow Qz-PY-MO VN & P strs.

@238.03m: sevaged 20mm Qz-PY-MO VN, 50 tca is present.

@238.12m: sulfide BB with 11mm PY-PO-Cpy-BIO-MO VN, 55 tca.

From 243.90 to 244.42m presence of boudinaged 13mm Qz-PY-CA-MO VN, 5 tca.

@247.20m: magnetic 18mm Qz-PY-PO-MO VN, 80 tca.

S

@247.86-248.20m: location of selvaged 30mm Qz-PY-MO-MG VN, 20 tca.is observed

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

224.50 248.20 MAS S 1-2 % joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
224.50	248.20	-	-	W	М	-	М	W	VW	W	М	М	М	
We	weak EPI altn													

VEINS											
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA				
224.50	248.20	4	20	101		2	40				
Oz-sulfide-MO VNs & sulfide strs/BB											

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
224.50 248.20 3 MG MO 0.15 PO 2.00												
good mineralization in Qz-MO VNs												

From	То	Litho
248.20	260.40	AND

Dark grey & redish, fine grained andesite with evident flow structures, tabular plagioclase feldspar, sulfide strs & blotches, biotization (from moderate to strong), weak epidotization, weak magnetite (~1%) throughout the core, narrow (<1cm) Qz-PY-MO VNs with MO >0.1%. The core is hard & competent.

STRUCTURES											
From To Struct CA Strain											

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

	<i>MINERALIZATION</i>											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

Initials:

From 248.20

To 260.40 Litho AND

Dark grey & redish, fine grained andesite with evident flow structures, tabular plagioclase feldspar, sulfide strs & blotches, biotization (from moderate to strong), weak epidotization, weak magnetite (~1%) throughout the core, narrow (<1cm) Qz-PY-MO VNs with MO >0.1%. The core is hard & competent.

STRUCTURES										
From	To	Struct	CA	Strain						

248.20 260.40 FR 1-2 joints per meter

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
248.20	260.40	-	-	-	М	-	М	VW	VW	W	S	W	М	

weak EPI & from moderate to strong BIO altn

VEINS												
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA					
248.20	260.40	2	20	15	1	1	50					
	narrow abunda		Qz-Py-N	10 VN &								

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
248.20	260.4	0 3	VLT	MC	0.1	5 P	O 1.	00				
~1-2% MG throughout the core												

From

To

Litho

260.40

281.93

AND

Dark grey, reddish & greenish, medium & fine grained andesite, partially quartz-andesite, feldspar phenocrysts, strs & blotches of sulfide, moderate biotization & weak epidotization, weak (~1%) magnetite throughout the core, Qz-PY-MO VNs with MO ~0.1%. Partially broken core, ~15-20% pieces are <10cm, Ca-Chl-BIO on fracture.

@260.40m: Qz-PY-MO VN 16mm, 75 tca.

@260.98m: presence of solid 20mm Qz-PY-MO, 40 tca.

@261.97m: location of boudinaged 14mm Qz-PY-MO-BIO VN. 30 tca.

@262.90m: contorted 24mm Qz-PY-MO-EPI VN, 15 tca.

@263.88m: deformed 25mm Qz-Py-PO-AB-MG VN, 30 tca with some potassic alteration around is observed.

@264.36m: narrow 10mm Qz-PY-MO VN, 30 tca cross cut by another 6mm QzpY-MO VN 30 tca.

From 267.00 to 268.66m location of a broken core with 70% pieces < 10cm is observed.

@268.10m: Qz-PY-MO VN, 11mm 65 tca.

@268.70m: presence of boudinaged 16mm Qz-Py-MO VN, 25 tca with abundant Qz-PY-MO strs.

From 268.16 to 272.00m location of the zone with contortad narrow Qz-pY-MO-EPI VNs & networl Qz-PY-MO strs.

@272.25-273.28m:there is a broken core with pieces <10cm and CA-Chl-BIO on fracture.

@273.84m: presence of selvaged 10mm Qz-PY-MO VN, 25 tca.

@275.27-275.80m:location of reticulated network Qz-PY-MO veinlets that <13mm in thickness.

@276.16m: distorted pink 14mm Qz-PY-MO VN, 10 tca.

Below 276.50m the location of reticulated network with narrow Qz-PY-MO VNs & strs with EPI & BIO altn is observed

STRUCTURES											
From To Struct CA Strain											

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

				VEINS	5			
Ī	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

	MINERALIZATION									
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From

То

Litho AND

260.40 281.93

Dark grey, reddish & greenish, medium & fine grained andesite, partially quartz-andesite, feldspar phenocrysts, strs & blotches of sulfide, moderate biotization & weak epidotization, weak (~1%) magnetite throughout the core, Qz-PY-MO VNs with MO ~0.1%. Partially broken core, ~15-20% pieces are <10cm, Ca-Chl-BIO on fracture.

@260.40m: Qz-PY-MO VN 16mm, 75 tca.

@260.98m: presence of solid 20mm Qz-PY-MO, 40 tca.

@261.97m: location of boudinaged 14mm Qz-PY-MO-BIO VN, 30 tca.

@262.90m: contorted 24mm Qz-PY-MO-EPI VN, 15 tca.

@263.88m: deformed 25mm Qz-Py-PO-AB-MG VN, 30 tca with some potassic alteration around is observed.

@264.36m: narrow 10mm Qz-PY-MO VN, 30 tca cross cut by another 6mm QzpY-MO VN 30 tca.

From 267.00 to 268.66m location of a broken core with 70% pieces < 10cm is observed.

@268.10m: Qz-PY-MO VN, 11mm 65 tca.

@268.70m: presence of boudinaged 16mm Qz-Py-MO VN, 25 tca with abundant Qz-PY-MO strs.

From 268.16 to 272.00m location of the zone with contortad narrow Qz-pY-MO-EPI VNs & networl Qz-PY-MO strs.

@272.25-273.28m:there is a broken core with pieces <10cm and CA-Chl-BIO on fracture.

@273.84m: presence of selvaged 10mm Qz-PY-MO VN, 25 tca.

@275.27-275.80m:location of reticulated network Qz-PY-MO veinlets that <13mm in thickness.

@276.16m: distorted pink 14mm Qz-PY-MO VN, 10 tca.

Below 276.50m the location of reticulated network with narrow Qz-PY-MO VNs & strs with EPI & BIO altn is observed

STRUCTURES									
From	To	Struct	CA	Strain					
		•							

260.40 281.93 MAS M

~15-20% broken core

	ALTERATION From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
260.40 m	281.93 oderate			• •					VW	W	M	M	M	

<u>VEINS</u>								
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA	
260.40	281.93	3	30	15	1	1	50	
1-2 narrow (<12mm) VNs per meter								

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
260.40	260.40 281.93 3 VLT PO 1 MO 0.10										
MC	MO mostly present in Qz-P-MO strs										

To From 281.93

290.92

Litho AND

Dark brown greenish medium grained quartz-andesite with granodiorite zones, strs & blotches of sulfide, feldspar phenocrysts, moderate biotization & weak epidotization. The core is hard & competent.

@283.64m: boudinaged 18mm Qz-PY-MO VN. 30 tca.is present.

@284.28m: zone of deformed 24mm Qz-PY-MO VN, 80 tca.

From 287.60 to 288.58m granodiorite dyke Qz-PY & traces of MO is present. Contacts =25 tca.

Below 288.58m flow bended zone is observed.

@291.00m: location of solid 16mm Qz-pY-MO-AB-MG VN, 50 tca.

@292.50m: pink solid 24m Qz-PY, 65 tca.

@292.80m: presence of solid 70mm Qz-PY-MO VN, 70 tca.

From 294.34 to 294.88m broken core & breccia with 70% pieces <10cm is observed.

@295.60m: boudinaged 14mm Qz-PY-MO-BIO VN,25 tca.

From 296.50 to 296.86m core is broken into small pieces.

S

From 297.60 to 298.30m granodiorite with contacts at 35 tca.

STRUCTURES								
From	To	Struct	CA	Strain				

281.93 290.92 MAS

partially broken core, granodiorite zones

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
281.93	290.92	-	-	W	М	-	М	W	VW	W	М	М	М	
bi	biotite altn													

VEINS										
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA			
281.93	290.92	3	35	20		1	40			
abundant Qz-PY-MO strs										

1	MINERALIZATION										
1	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%	
	281.93	290.9	2 4	VLT	МС	0.1	5				
	MC	G < 1%									

From	То	Litho
290.92	310.18	AND

Dark brown greenish fine & medium grained quartz-andesite with granodiorite zones, strs & blotches of sulfide, feldspar phenocrysts, moderate biotization & weak epidotization. The core is hard & competent.

@299.28m: pink 16mm selvaged Qz-PY-MO VN, 50 tca.

@299.52m: pink 13mm selvaged Qz-PY-MO VN, 20 tca cut off by 14mm Qz-PY-MO VN, 80 tca.

@300.66m: solid 15cm in thickness Qz-PY-MO VN, 85 tca.

From 300.90 to 308.30m stockwork of narrow Qz-PY-MO+/-AB VNs with ~0.2% MO.

@308.33m: significant 42mm selvaged Qz-PY-MO VN, 20 tca.

STRUCTURES								
From	To	Struct	CA	Strain				

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1		MINERALIZATION											
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From 290.92

To 310.18

Litho AND

Dark brown greenish fine & medium grained quartz-andesite with granodiorite zones, strs & blotches of sulfide, feldspar phenocrysts, moderate biotization & weak epidotization. The core is hard & competent.

@299.28m: pink 16mm selvaged Qz-PY-MO VN, 50 tca.

@299.52m: pink 13mm selvaged Qz-PY-MO VN, 20 tca cut off by 14mm Qz-PY-MO VN, 80 tca.

@300.66m: solid 15cm in thickness Qz-PY-MO VN, 85 tca.

From 300.90 to 308.30m stockwork of narrow Qz-PY-MO+/-AB VNs with ~0.2% MO.

@308.33m: significant 42mm selvaged Qz-PY-MO VN, 20 tca.

STRUCTURES										
From	To	Struct	CA	Strain						

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

290.92 310.00 MAS S

flow bended zone present

290.92 310.18 - - M M - M W VW W M M M

290.92 310.18 4 35 20 1 2 60 two VNs per meter plus Qz-PY-MO strs 290.92 310.18 3 VLT MO 0.2 good mineralized zone

 From
 To
 Litho

 310.18
 316.60
 GDIO

Grey-greenish granodiorite dyke, coarse grained texture, plagioclase. MO traces throughout the core. Upper contact = 20 tca, lower contact = 35 tca. @313.60-313.80m: small pieces of broken core are observed.

@317.34m: location of pink 14mm Qz-PY-MO VN, 15 tca.

 STRUCTURES

 From
 To
 Struct
 CA
 Strain

 310.18
 316.60
 MAS
 S

						TER								
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
310.18	316.60	-	-	W	М	-	-	VW	VW	-	М	М	М	
BI	O altn													

VEINS										
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA			
310.18	316.60	1	40	25	1	0.5	20			
random Qz VNs										

Initials:

From

To 316.60 Litho **GDIO**

310.18

Grey-greenish granodiorite dyke, coarse grained texture, plagioclase. MO traces throughout the core. Upper contact = 20 tca, lower contact = 35 tca. @313.60-313.80m: small pieces of broken core are observed.

@317.34m; location of pink 14mm Qz-PY-MO VN, 15 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA		

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 316.60 To

333.90

Litho AND

Dark brown greenish medium grained quartz-andesite with transitional zones to monzonite & granodiorite zones; strs & blotches of sulfide, feldspar phenocrysts, moderate biotization & weak epidotization. The core is hard & competent with contorted/deformed AB-Chl-sulfide-MG VNs & narrow Qz-PY-MO VNs are present in this interval.

@325.46m: solid 20mm selvaged Qz-PY-MO VN,40 tca.

S

From 322.68 to 324.20m stockwork of narrow Qz-PY-MO VNs.

From 324.68 to 325.45m granodiorite with Qz-PY-MO VNs is observed.

@325.46m: presence of solid 48mm selvaged Qz-PT-MO VN, 60 tca.

From 326.15 to 326.45m contorted Qz-PY-MO veinlets located in diff. orient.

From 327.17 to 329.90m granodiorite with three pink Qz-PY-MO VNs(20-28mm), 55-75 tca. Upper contact =40 tca, lower contact =35 tca.

@330.80m: location of dispersed 24mm Qz-PY-PO-MG-EPI-MO VN, 20 tca.

@331.32-332.20m: reticulated network of narrow Qz-PY-MG-MO VN, in diff. orient.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

316.60 333.90 MAS

2% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
316.60	333.90	_	_	W	М	_	_	М	VW	W	М	М	М	

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
316.60	333.90	3	25	10	1	2						

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
316.60	333.9	0 3	VLT	MC	0.1				

Initials:	
minuais.	-

From 316.60

To 333.90

Litho AND

(Continued from previous page)

STRUCTURES
From To Struct CA Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

			M	INE	RAL	IZAT	ION			
•	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 333.90

To 352.10

Litho AND

Dark reddish medium grained andesite with significant Qz-sulfide-MO VNs are present in this interval; strs & blotches of sulfide, moderate biotization & weak epidotization. The core is hard & competent with MG alteration.

@334.70m: significant (15cm in thickness) Qz-PY-MO VN, 50 tca.

Fom 335.35 to 337.40m stockwork of 15-24mm Qz-PY-MO +/-AB VNs, 20-80 tca.

@337.52m: significant 27mm Qz-PY-PO-MO-BIO VN, 30 tca.is present

From 338.30 to 340.50m stockwork of 14-20mm Qz-PY-PO-MO VNs, 10-45 tca with tiny Qz-MO strs is observed

@341.27-341.60m: presence of granodiorite with contacts =20 tca.

@341.80m: location of boudinaged 12mm Q-CAEPI-MO VN, 15 tca. 341.96m: solid 32mm Qz-PY-MO-MG VN, 30 tca.

@342.06m: there is a location of significant 26mm Qz-PY-PO-MO VN, 20 tca.

@344.42m: boudinaged 26mm Qz-PY-MO-EPY-MG VN, 10 tca.

@346.60m: strong CA altn; Qz-CA-PY-MO-PO VN, 30mm thick, 10 tca.

From 346.62 to 347.30m granodiorite with 10mm Qz-pY-MO VN, 10 tca (upper cont. =10 tca).

@347.40-347.80m presence of flow bended zone with Qz-MO strs & semi-massive PY-PO.

@348.88m: dispersed 26mm Qz-PY-EPI-MO VN, 40 tca with branched out narrow VNs.

@349.44m: solid 36mm Qz-Py-MO-EPI-MG VN, 60 tca.

From 349.50 to 351.08m the presence of the zone with reticulated network of narrow Qz-PY-MO VNs.

From 351.10 to 352.10m location of granodiorite dyke.

S

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

333.90 352.10 MAS S

> rock is frash & solid with narrow 1.0m granodiorite dyke

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
333.90	352.10	-	VS	W	М	-	-	VW	VW	W	М	М	М	
weak CA altn														

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
333.90	352.10	5	35	15	1	3	20					
significant Qz-PY-MO VNs & strs												

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
333.90	From To PY% Style Min Min% Min2 M2% Min3 M3% 333.90 352.10 4 SM PO 2 MO 0.30												
> 0	> 0.3 MO mineralization in this interval												

From

To 370.00 Litho AND

352.10

epidotization. The core is hard & competent with weak MG alteration. Reticulated network of narrow <10mm Qz-PY-MO VNs/strs. @353.00-353.30m knot contorted 14mm Qz-PY-MO-Cpy-PO VNs.

From 354.00 to 361.90m stockwork of 10-18mm Qz-PY-MG-MO+/-EPI VNs, 25-75 tca with distorted narrow Qz-AB-MG VNs.

From 361.95 to 363.05m (!) significant boudinaged 25mm Qz-CA-PY-PO-EPI-MO along the core.

From 363.46 to 364.42m significant dispersed Qz-PY-MO-EPI (0 tca) cut off by another veinlets in this interval.

@365.60m: boudinaged 22mm Qz-PY-MO VN, 10 tca.

@366.70m: solid 40mm Qz-PY-EPI-MO VN, 80 tca.

From 367.00 to 367.44m boudinaged Qz-PY-EPI-MO VN, 10 tca with 14mm Qz-PY-MO VN radiating from the main VN.

Below 367.40m network of narrow Qz-PY-MO VNs/strs with good MO mineralzation.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain
From	10	Siruci	CA	Strait

S 352.10 370.00 MAS

rock is frash & solid

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
352.10	370.00	-	-	М	М	-	-	W	VW	W	М	М	S	
We	weak EPI & MG altn													

Dark grey-redish medium grained andesite, significant Qz-sulfide-MO VNs are present in this interval; strs & blotches of sulfide, moderate biotization & weak

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
352.10	370.00	5	25	10	2	4	10
	3-4 Qz-	PY-MC) VNs/m)			

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
352.10	370.0	0 4	VLT	PC) 1	М	O 0.	30				
MC) mine	ralizati	on ~0	5%								

From

То

Litho AND

370.00 390.55

Dark grey-reddish medium grained andesite, with transitional zone to sanstone & significant Qz-sulfide-MO VNs present in this interval; strs & blotches of sulfide, moderate biotization & weak epidotization. The core is hard & competent with weak MG alteration.

@370.64-370.92m: contorted 24mm Qz-PY-MO-PO-EPI VN, 10 tca.

@371.00m: solid 25mm Qz-PY-MO VN, 60 tca.

From 371.55 to 371.85m granodiorite.

From 372.7 to 372.93m there are two parallel 18 & 22 mm Qz-PY-CA-MO VNs, 35 tca.

From 373.31 to 373.60m location of granodiorite with 17mm Qz-PY-MO VN, 25 tca is observed.

From 375.82 to 376.82m branched out 30mm Qz-sulfite -MO VN, 35tca with semi massive PO & PY blotches.

From 375.33 to 376.00m stockwork of 10-16mm Qz-PY-MO +/-AB VNs, 40-60 tca.

@376.60m: solid 34mm Qz-PY-MO VN, 40 tca.

@377.84-377.20m: distorted 16mm Qz-PY-MO VN. 15 tca.

From 378.06 to 378.38m there is a solid 80mm Qz-BIO-PY-PO-MO VN, 40 tca.

From 379.34 to 380.20m location of granodiorite zone with sulfide BB & Qz-MO with thin streaks (cont =35 tca).

@380.44m: solid 22mm Qz-PY-MO VN, 40 tca.

Below 380.50m abundent contorted & dispersed AB-Qz-Chl-MG-sulfide veinlets in diff. orient.

@383.00m: 40mm Qz-PY-MO-PO VN 85 tca.

From 383.44 to 384.70m stockwork of 8-18mm Qz-PY-MO VNs, 20-70 tca.

From 386.50 to 387.60m stockwork of 12-24mm Qz-PY-PO-MO VNs, 50-80 tca.

From 388.14 to 390.30m stockwork of 10-12mm Qz-PY-MO-PO-EPI VNs, 30-90 tca.

@390.36m: solid 73mm Qz-PY-MO-MG VN, 80 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

370.00 390.00 MAS S

1-2% joints; taransitional zone to sandstone

					AL	TER	ATIO)N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
370.00	390.00	-	-	W	W	-	М	VW	VW	W	М	М	S	
We	weak EPI altn													

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

		M	INE	RAL	IZAT	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

Initials:

370.00 390.55 4 VLT PO 2 MO 0.30 weak MG presence *From* 390.55

To 397.66

Litho DIOR

From grey to dark-grey granodiorite dyke with feldspar phenocrysts with interbedded basalt & andesite. (upper cont not observed, lower cont =50 tca). From 396..78 to 397.60m observed a rim of fine grained basalt.

From 397.22 to 397.64m andesite with 64mm Qz-CA-Chl-MO VN, 80 tca.

S

STRUCTURES										
From	To	Struct	CA	Strain						

390.55 397.66 MAS

rock is hard & solid

- 1															
		ALTERATION													
,	From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
	390.55	397.66	-	-	-	М	-	-	-	-	-	М	s	М	
	BI	O altn													

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
390.55	397.66	0.1	35	20		0.1	80				
casual tiny Qz Vns											

Ī	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%													
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
	390.55 397.66 1 DISS MO 0.01													

 100	•	•
Fron	n	

То

Litho AND

397.66

419.70

Dark grey-reddish medium grained andesite.

@400.06m: magnetic Qz-PY-MO-BIO-PO VN, 50 tca.

From 401.20 to 402.00m stockwork of 8-20mm CA VNs. 20-35 tca.

@402.20m:solid 20mm Qz-PY-MO VN, 35 tca.

Below 402.50m network of narrow Qz-PY-MO-EPI VNs/strs +/- MG that are <8mm.

@404.00m: solid 50mm Qz-PY-BIO-MO VN, 35 tca.

From 404.66 to 406.40m stockwork of subparallel 12-30mm Qz-PY-MO +/-AB VNs, 40-45 tca.

@406.82m: solid 56mm Qz-PY-MO VN, 45 tca.

@408.12m: distorted 30mm Qz-PY-PO-MO, 65 tca.

@409.38m: branched out magnetic 46mm Qz-AB-PY-Chl-MO VN, 60 tca.

@409.92m: pink 26mm Qz-PY-MO VN, 35 tca.

From 409.20 to 411.70m granodiorite, plageoclase, tiny Qz-MO VNs, DI PY.

@412.24m: significant 17cm (!) Qz-PY-MO VN, 55 tca.

From 412.52 to 412.96m stockwork of parallel 14-20mm Qz-PY-MO VNs 50 tca & solid 10cm Qz-AB-MO VN, 75 tca.

@413.04m: 20mm Qz-PY-MO-PO VN, 45 tca cut off by solid 54mm Qz-AB-MO VN, 80 tca.

From 413.70 to 415.00m presence of two types of veins; dispersed Qz-PY-Chl-MG veinlets in the same direction at 45-55 tca cut of by the next generation

stockwork of 10-22mm Qz-PY-MO +EPI VNs , 25-60 tca.

From 415.00 to 415.75 significant solid 75cm(!) Qz-PY-PO-MO-MG VN, 50 tca with subparallel narrow Qz-PY-MO VNs/strs.

@416.82m; solid 44mm Qz-PY-MO-MG-PO VN. 50 tca.

@417.14m: branched out 18mm Qz-PY-EPI-MO VN, 20 tca.

@417.57m: 10cm granodiorite zone, with contacts 20 & 30 tca.

@418.20m: pink 20mm Qz-PY-MO VN, 70 tca.

@418.60m: Qz-AB-PY-PO-MO-MG VN, 20mm 30 tca

S

@419.40m: granodiorite (9cm), cont =40 tca.

STRUCTURES											
From To Struct CA Stra											

397.66 419.70 MAS S 2% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
397 66	419 70	_	_	W	М	_	_	W	\//	W	М	М	М	

weak EPI & MG altn

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
397.66 419.70 4 25 10 1 3 50												
abundand Qz-PY-MO VNs/strs												

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
397.66	419.7	0 3	VLT	PC) 1	M	O 0.	15				
>0.	15% N	10										

Initials:

Litho From To

419.70

438.80

AND

Dark grey & reddish medium grained andesite with transitional zone to sandstone & significant Qz-sulfide-MO VNs present in this interval; strs & blotches of sulfide, moderate biotization & weak epidotization & minatization. The core is hard & competent.

@419.54m: solid 44mm Qz-PY-MO VN, 50 tca (EPI on halo) with another distorted 22mm Qz-PY-MO VN radiating from the main VN.

@419.97m: solid 46mm Qz-PY-MO VN, 60 tca.

From 420.26 to 420.70m Qz-PY-MO VN, 35 tca with CA altn & mica with narrow 14mm Qz-PY-MO VN radiating from the main VN, 15 tca.

@421.84m: pinkish 35mm Qz-PY-MO-MG VN, 50 tca.

@422.64m: solid 42mm Qz-PY-MO VN, 50 tca with branched out narrow veins that are <10mm.

From 423.17 to 424.06m significant zone with stockwork of subparallel thick 42-76mm Qz-PY-MO-EPI-PO VNs, 35-45 tca.

@424.24m: granodiorite 13cm, 50 tca.

@425.20m: Qz-PY-MO-MG VN, 24mm 45 tca.

From 426.03 to 426.44m there are two subparallel thick Qz-PY-MO-MG-PO VNs (50 & 55mm at 30 & 40 tca).

From 427.15 to 427.42m location of granodiorite.

Below 427.50m flow bended zone with Chl altn, abundant sufide strs & BB, two different generations contorted veinlets & QZ blotches.

@460.60m: thick 70mm Qz-PY-MO-PO-MG, 45 tca.

S

@431.28m: boudinaged 24mm Qz-PY-MO-MG-BIO-EPI VN,, 30 tca.

@432.10m: solid 11cm in thickness Qz-PY-MO-MG-BIO VN, 50 tca.

From 433.56 to 434.18m stockwork of subparallel 12-30mm Qz-PY-MO-PO +/- MG & EPI, 45-50 tca.

@ 435.70m: pink 16mm Qz-PY-MO VN, 35 tca.

@436.10m: presence of two parallel selvaged 14mm Qz-PY-MO VNs, 30 tca.

@436.50m: Qz-PY-MO VN, 26 mm, 35 tca.

@438.64m: selvaged 24mm Qz-PY-MO VN, 55 tca with 12mm Qz-PY-MO VN radiating from the main VN.

STRUCTURES											
From	To	Struct	CA	Strain							

419.70 438.80 MAS 2% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
419.70	438.80	-	-	W	М	-	-	VW	W	W	М	М	М	VW
C	A altn & i	mica												

VEINS													
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						
419.70	438.80	8	30	15	1	3	40						
thick Qz-MO-sulfide VNs													

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
419.70	438.8	0 4	DISS	PO	2	М	O 0.	40				
ver	very good mineralization in this interval											

Initials:

From

To

Litho AND

438.80

447.27

Dark grey & reddish medium grained andesite with significant Qz-sulfide-MO VNs is present in this interval; strs & blotches of sulfide, moderate biotization & weak epidotization & minerlization.

From 339.84 to 440.18m anastomosing 14-20mm Qz-PY-MO veinlets, 25-40 tca.

@440.80m: dipersed 60mm Qz-PY-MO VN, 75 tca with 12mm branch out Qz-PY-MO VN, 15 tca.

Fault zone from 441.05 to 444.16m with >65% of pieces <10cm, CA & Chl on fracture.

@442.00m: trace of 60mm Qz-Py-MO VN, no orient.

@442.85m: thick 13CM Qz-PY-CA-MO VN, 50 tca.

From 444.20 to 444.64m distorted 14mm Qz-PY-AB-MO VN, no orient.

Below 444.70m flow bended zone with strong sulfide altn.

@446.64m: solid 10cm Qz-PY-MO VN, 40 tca with tiny subparaallel Qz-PY-MO VNs.

	STRUCTURES											
From	To	Struct	CA	Strain								

438.80 447.27 FLT

Fault zone from 441.05 to 444.16m, broken core with >65% pieces <10cm.

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
438.80	447.27	-	-	W	М	-	-	VW	W	W	М	М	S	
AB-Chl alteration														

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
438.80	447.27	5	35	20	3	3	40
	3-4 Qz-	PY-MC) VNs pe	er meter			

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			
438.80	447.2	7 4	VLT	PC) 1	M	O 0.	20				
>0	.2% M) in th	is inte	rval								

From To 447.27

Litho 453.27 **GDIO**

Coarse grained with well formed crystalls granodiorite with gray Qz, white feldspar & hornblend. Random Qz +/-MO VNs. Upper & lower contacts =40 tca.

STRUCTURES From To Struct CA Strain 447.27 453.27 MAS

<1% jonts

S

					AL	TER	ATIO	N N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
447 27	453 27	_	_	_	М	_	_	VW	W	W	М	М	М	

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
447.27	453.27	2	35	30		1	60				
narrow QZ +/-MO VNs											

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% 447.27 453.27 3 DISS MO 0.03

From 447.27

To 453.27 Litho **GDIO**

(Continued from previous page)

STRUCTURES To Struct CA Strain

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

From

To

Litho

453.27 460.60 AND

Reddish medium grained andesite, flow bended zone with ~5% PY.

@453.86m: dispersed thick 60mm Qz-PY-MO VN, 35 tca.

@454.18m: thick 74mm Qz-PY-MO VN, 75 tca.

@454.70m: contorted 22mm Qz-PY-MO-EPI VN, 55 tca.

@455.50m: Qz-AB-PY-MO VN, 30 tca with 10mm branched out VN.

@456.12m: 26mm Qz-PY-MO VN, 90 tca.

From 456.3 to 457.63m stockwork of subparallel narrow (<14mm) Qz-PY-MO +/- EPI & MG VN, 25-35 tca is observed.

@457.15m: solid 34mm Qz-PY-MO VN, 35 tca with narrow 10mm VN branched out at 90 tca. From 458.05 to 458.65m stockwork of parallel 14-36mm Qz-PY-MO +/-CA & EPI VNs, 35 tca.

STRUCTURES To Struct CA Strain

453.27 460.60 MAS 35 S

1-2% joints

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
453.27	460.60	-	-	VW	S	-	-	VW	VW	W	М	М	М	
m	oderate :	silica	altn											

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
453.27	460.60	4	25	15	1	3	35
	Qz-PY-I	-	Is with n	etwork Q	z-PY-		

		-									
<i>MINERALIZATION</i>											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		
453.27	460.6	0 3	VLT	PC) 1	M	O 0.	20			
>0	.2% M) in th	is inte	rval							

Litho From To 460.60 464.82 **GDIO**

Coarse grained with well formed crystals granodiorite porphyry, white feldspar & hornblend. Random pink Qz (MO?) VNs. Upper & lower contacts =50 tca. @462.1-462.6 andesite with narrow (<10mm) Qz-PY-MO VNs.

STRUCTURES From To Struct CA Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN S	-		
From	То	Vn%	QZ%	Feld%	CC% V/n	i CA
460.60	464.60	1	40	25		1 60
	pink Qz	. VNs				

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

Initials:

From 460.60

To 464.82 Litho **GDIO**

Coarse grained with well formed crystals granodiorite porphyry, white feldspar & hornblend. Random pink Qz (MO?) VNs. Upper & lower contacts =50 tca. @462.1-462.6 andesite with narrow (<10mm) Qz-PY-MO VNs.

	STRUCTURES												
From	To	Struct	CA	Strain									

ALTERATION To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER From

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%

S 460.60 464.82 MAS rock is hard

M - - - VW W M M W BIO altn

460.60 464.82 0.5 DISS MO 0.01 traces of MO

From 464.82

To 475.34 Litho AND

Dark gray reddish medium grained andesite, flow bended zone with ~3-4% PY narrow Qz-PY-MO VNs & abundant strs, granodiorite dykes.

From 464.82 to 465.18m reticulated network of 8-14mm Qz-PY-MO VNs.

@465.74m: branched out 22mm Qz-Chl-PY-MO VN, 30 tca.

S

From 466.26 to 467.20m location of dark gray granodiorite with tiny Qz-PY-MO VNs & EPI altn. Upper & lower contacts =30 tca.

From 467.77 to 468.54m significant quartz-andesite zone with EPI-ChI-MG-potassic altn & MO traces.

From 468.76 to 469.16m granodiorite zone with 16mm CA VN, 25 tca.

Below 469.16m flow bended zone with narrow Qz-PY-MO VNs/strs, MG & Chl altn.

@470.20m: pink 16mm Qz-PY-MO VN, 30 tca.

From 470.52-470.82m presence of two narrow 12mm parallel Qz-PY-MO VNs, 30 tca.

From 471.05 to 476.56m stockwork of 10-22mm Qz-PY-MO VNs, 35-70 tca with moderate AB & CA altn, small/minor granodiorite zones

STRUCTURES To Struct CA Strain From

464.82 475.34 MAS S 2-3% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
464.82	475.34	-	-	W	М	-	М	W	VW	W	W	W	М	
M	G, EPI &	& CA	altn											

			VEINS	S							
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				
464.82	475.34	4	40	20	1	2	30				
narrow pink Qz-PY-MO VNs											

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
464.82	475.3	4 3	DISS	в мс	0.1		-						
~1	% MG	presei	nt										

Initials:

From 464.82

To 475.34 Litho AND

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

VEINS

1	MINERALIZATION													
	From	From To PY% Style Min Min% Min2 M2% Min3 M3%												

From 475.34

To 480.84

Litho **GDIO**

Coarse grained with well formed crystals granodiorite dyke with white feldspar & hornblend, narrow Qz-MO VN, PY BB, upper cont 40 tca & lower cont 50 tca. From 479.50 to 478.60m location of andesite with two subparallel 20 & 18mm Qz-EPI-PY-MO VNs, 35 tca. @480.14m: rim of deformed 18mm Qz-PY-MO VN, 40 tca.

	STRUCTURES											
From	To	Struct	CA	Strain								

475.34 480.84 MAS S 2% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
475 34	480 84	_	_	\/\//	М	_	\/\//	\/\//	\/\//	W	М	М	W	

rom	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	From	To	Vn%	QZ%	Feld%	CC%	V/m CA	4
5.34	480.84	-	-	VW	М	-	VW	VW	VW	W	М	М	W		475.34	480.84	2	40	20	1	1 35	5
W	eak MG	& EP	l altn													random	ly Qz-N	10 VNs				

	MINERALIZATION												
From	From To PY% Style Min Min% Min2 M2% Min3 M3%												
475.34	475.34 480.84 1 DISS MO 0.03												
We	weak MO & MG												

From 480.84

То

496.50

50 AND

Dark reddish medium grained andesite, flow bended zone with PY BB & strs (~3-4% PY), contorted Qz VNs & Qz zones with potassic & EPI altn, partially fragile rock with CA on fracture, narrow granodiorite zones, tiny MO strs & spects across the core, small MG blotches.

@482.54m; solid 70mm Qz-PY-MO VN. 90 tca with Chl on halo.

@483.10m: solid 10mm Qz-PY-MO VN, 90 tca.

From 483.86 to 484.20m stockwork of 14-22mm parallel Qz-PY-MO VN, 30 tca.

From 484.00 to 484.90m the core is splitted by 12mm CA VN, 15 tca.

@486.36m: significant 50mm Qz-PY-MO, 40 tca with tiny MO strs around.

Litho

From 486.76 to 491.10m there is a present of gray granodiorite with Qz-MO & CA VNs PY blotches.

@487.32m: 33mm Qz-CA-MG-MO-EPI VN, 25 tca with with parallel 10mm Qz-PY-MO VNs.

From 489.00 to 489.66m andesite (partially broken core) mottled by Qz strs.

@ 489.49m: pieces of thick (~8cm) Qz VN, no orient.

M

@489.75m: 30mm Qz-PY-MO, 30 tca with parallel 5cm breccia zone.

Below 490.00m stockwork of subparallel narrow Qz-Py-MO VNs, 25-35 tca.

@493.17m: solid 40mm Qz-PY-MO VN, 90 tca with branched out 30mm Qz-PY-MO VN, 20 tca.

STRUCTURES										
From	To	Struct	CA	Strain						

480.84 496.50 MAS S 5-6% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
480.84	496.50	-	-	М	М	-	М	VW	VW	W	М	М	М	
M	G altn													

			VEINS				
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
480.84	496.50	2	35	20	2	1	30
	pink Qz	-PY-M	O VN +/	-MG & El	기		

	MINERALIZATION												
From	From To PY% Style Min Min% Min2 M2% Min3 M3%												
480.84	480.84 496.50 2 DISS MO 0.03												
we	weak MG												

From	То	Litho
496.50	503.60	GDIO

Fragile coarse grained with granodiorite dyke with white feldspar & hornblend (fault zone with 50% broken core & strong CA altn), narrow Qz-MO VN, vague upper & lower conts.

From 498.96 to 500.06m monzonite with MO strs, CA & potassic alteration.

From 501.25 to 501.90m monzonite with potassic alteration & selvaged 20mm Qz-PY-MO, 10 tca.

From 501.94 to 503.06m stockwork of 10-16mm Qz-PY-MO VNs.

		STRU	CTUR	ES	
ĺ	From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1			M	INE	RAL	IZAT	ION			
	From	То	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From

To 503.60

*Litho*GDIO

496.50

Fragile coarse grained with granodiorite dyke with white feldspar & hornblend (fault zone with 50% broken core & strong CA altn), narrow Qz-MO VN, vague upper & lower conts.

From 498.96 to 500.06m monzonite with MO strs, CA & potassic alteration.

From 501.25 to 501.90m monzonite with potassic alteration & selvaged 20mm Qz-PY-MO, 10 tca.

From 501.94 to 503.06m stockwork of 10-16mm Qz-PY-MO VNs.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

			VEIN	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
496.50	503.00 Qz-PY-	2 MO VA	00	10	3	2	60

		M	INE	RAL	IZATI	ION			
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

496.50 503.60 FLT fragile rock, 50% broken core

496.50 503.60 - - - W - M W VW W M M W strong CA altn

496.50 503.60 1 DISS MO 0.01 MO & weak MG present

From 503.60

To 511.20

20

*Litho*AND

Dark reddish medium grained andesite transitional to mononite; flow bended zone with contorted Qz VNs & Qz zones with potassic & EPI altn, PY BB & strs (~3-4% PY), partially fragile rock with CA on fracture.

From 503.85 to 504.60m contorted 40mm Qz-PY-CA-MO VN along the core.

From 504.90 to 505.05m presence of a broen core, trace of thick Qz-CA VN, no orient.

Below 508.10m fragile core with strong CA altn & ~50% of the core is broken.

@509.10m: selvaged 20mm Qz-PY-MO VN, 20 tca.

@509.0m: broken core with fragments 20mm Qz-CA-MO VN, no orient. Contact to siltstone at 511.2m =40 tca.

STRUCTURES
From To Struct CA Strain

503.60 511.20 FLT W fragile rock with ~50 broken core

					AL	TER	ATIC	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
503.60	511.20	-	-	W	W	-	-	W	S	W	М	М	W	
503.60 511.20 W W W S W M M W strong CA altn & weak potassic altn														

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
503.60	511.20	7	45	20	5	3	30
	Qz-CA	VNs +/	'-MO				

1.520./
M3%
I

From 503.60

To 511.20

Litho AND

Dark reddish medium grained andesite transitional to mononite; flow bended zone with contorted Qz VNs & Qz zones with potassic & EPI altn, PY BB & strs (~3-4% PY), partially fragile rock with CA on fracture.

From 503.85 to 504.60m contorted 40mm Qz-PY-CA-MO VN along the core. From 504.90 to 505.05m presence of a broen core, trace of thick Qz-CA VN, no orient.

Below 508.10m fragile core with strong CA altn & ~50% of the core is broken.

@509.10m: selvaged 20mm Qz-PY-MO VN, 20 tca.

@509.0m: broken core with fragments 20mm Qz-CA-MO VN, no orient. Contact to siltstone at 511.2m =40 tca.

STRUCTURES									
From	To	Struct	CA	Strain					

					AL	TER	ATIO)N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

				VEINS	5			
,	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

1			M	INE	RAL	IZAT	ION			
	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From

*T*o 524.20

Litho

511.20 5

HSLT

Dark reddish fine grained siltstone with partially (~20%) broken core , narrow CA VNs & pinkish Qz VNs/strs, tiny PY strs mottled the core (~4% PY), weak EPI altn.

@511.20m: pink 22mm Qz-pY-MO VN, 40 tca.

@513.00m: dispersed 50mm Qz-Py-MO VN, 50 tca cut off by 13mm CA VN, 20 tca. From 514.00 to 514.15m shear zone with strong 20 mm CA. A514.8 Qz-CA VN, 25 tca. From 516.80 to 517.22m reticulated network with abundant narrow Qz-Py-MO VNs/strs.

From 517.22 to 517.35m small pieces of broken core observed.

@518.55m: solid 80mm Qz-PY-MO VN, 25 tca. @520.40m: solid 50mm Qz-PY-MG-MO VN, 55 tca. From 522.42 to 522.70m carbonate zone with MO strs. @522.72m: deformed 22m Qz-PY-AB-Chl VN, 60 tca.

From 522.80 to 523.46m presence of dark gray andesite, feldspar phenocrysts; contacts =45 tca.

mod CA altn & weak EPI altn

@523.88m: caked/hybrid 44mm Qz-PY-EPI-MO-MG VN, 45 tca.

STRUCTURES
From To Struct CA Strain

511.20 524.20 BDG W 8 joints per meter

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
511.20	524.20	_	_	VW	W	_	М	_	М	_	М		М	

			VEIN S	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
511.20	524.20	4	10	5	3	3	50
	abunda	nt strs					

	<u>MINERALIZATION</u>													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					
511.20	524.20	0 2	VLT	МС	0.1	5	-							
>0.	1% MO)												

From 511.20

To 524.20

Litho HSLT

Dark reddish fine grained siltstone with partially (~20%) broken core, narrow CA VNs & pinkish Qz VNs/strs, tiny PY strs mottled the core (~4% PY), weak EPI altn.

@511.20m: pink 22mm Qz-pY-MO VN. 40 tca.

@513.00m: dispersed 50mm Qz-Py-MO VN, 50 tca cut off by 13mm CA VN, 20 tca. From 514.00 to 514.15m shear zone with strong 20 mm CA. A514.8 Qz-CA VN, 25 tca. From 516.80 to 517.22m reticulated network with abundant narrow Qz-Py-MO VNs/strs.

From 517.22 to 517.35m small pieces of broken core observed.

@518.55m: solid 80mm Qz-PY-MO VN, 25 tca. @520.40m: solid 50mm Qz-PY-MG-MO VN, 55 tca.

From 522.42 to 522.70m carbonate zone with MO strs.

@522.72m: deformed 22m Qz-PY-AB-Chl VN, 60 tca.

From 522.80 to 523.46m presence of dark gray andesite, feldspar phenocrysts; contacts =45 tca.

@523.88m: caked/hybrid 44mm Qz-PY-EPI-MO-MG VN, 45 tca.

STRUCTURES										
From	To	Struct	CA	Strain						

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%			

From

То

Litho

524.20 535.86 HSLT

Dark gray-reddish fine grained siltstone with partially (~3%) broken core, CA strs & contorted Qz strs in bedding direction, PY strs, Qz VNs, silica altn, minor basalt dyke.

@524.30m: 22mm Qz-PY-MO VN. 40 tca with EPI on boundary.

@526.56m: solid 12cm white-pink Qz-MO-PY-MG VN, 90 tca is present.

@528.32m: solid selvaged 60mm Qz-PY-MO VN, 60 tca observed.

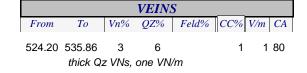
@529.00m: solid 24mm Qz-PY-MO VN, 65 tca with EPI on boundary.

@530.50m: pink 25mm Qz-PY-MO-AB VN, 40 tca with subparallel Qz-PY-MO strs in bedding direction.

@531.31m: solid 44mm Qz-PY-MO VN, 50 tca with subparallel 20mm Qz-PY-MO VN.

@531.92m: thick 90mm Qz-PY-MO-BIO VN, 20 tca.

From 533.50 to 534.08m basalt dyke.


From 534.50 to 535.22m broken core observed with strong CA altn.

@535.55m: dispersed 55mm Qz-PY-MO-EPI VN, 40 tca.

| STRUCTURES | From | To | Struct | CA | Strain

524.20 535.86 BDG 40 M

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
524.20	535.86	-	-	-	W	-	М	-	М	W	М		М	
CA altn														

From 524.20

To 535.86 Litho **HSLT**

Dark gray-reddish fine grained siltstone with partially (~3%) broken core , CA strs & contorted Qz strs in bedding direction, PY strs, Qz VNs, silica altn, minor

@524.30m: 22mm Qz-PY-MO VN, 40 tca with EPI on boundary.

@526.56m: solid 12cm white-pink Qz-MO-PY-MG VN, 90 tca is present.

@528.32m: solid selvaged 60mm Qz-PY-MO VN, 60 tca observed.

@529.00m: solid 24mm Qz-PY-MO VN, 65 tca with EPI on boundary.

@530.50m: pink 25mm Qz-PY-MO-AB VN, 40 tca with subparallel Qz-PY-MO strs in bedding direction.

@531.31m: solid 44mm Qz-PY-MO VN, 50 tca with subparallel 20mm Qz-PY-MO VN.

@531.92m: thick 90mm Qz-PY-MO-BIO VN, 20 tca.

From 533.50 to 534.08m basalt dyke.

From 534.50 to 535.22m broken core observed with strong CA altn.

@535.55m: dispersed 55mm Qz-PY-MO-EPI VN, 40 tca.

	STRUCTURES											
From	To	Struct	CA	Strain								

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

1			M	IZAT	ION					
Ī	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 535.86

To 543.10 Litho **BDY**

From 535.86 to 543.10m dark fine grained basalt dyke with alkali feldspar, partially CA-carbonate strs; upper cont =30 tca, lower cont =50 tca. From 538.50 to 540.65m broken core with CA on fracture.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

			VEINS	5			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA

<i>MINERALIZATION</i>											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

535.86 535.86 - - - W - - - M W partially CA & carbonate strs

S 535.86 543.10 MAS partially broken core with

CA on fracture

535.86 543.10 0.2 CA-carbonate atrs 535.86 543.10 0.1 DISS non mineralized zone

From 535.86

To 543.10

Litho BDY

(Continued from previous page)

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

	VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

MINERALIZATION													
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

From

То

Litho HSLT

543.10

559.20

Dark gray reddish fine grained siltstone with partially (~5-10%) fragile & broken core, CA VNs/str; thick contorted Qz VNs & strs, tiny PY strs mottled the core (~4% PY), weak EPI altn.

@543.65m: selvaged 34mm Qz-PY-MO VN, 65 tca.

@543.85m: contorted 36mm Qz-PY-MO-carbonate VN, 40 tca.

From 544.06 to 544.40m breccated zone with CA altn (soft rock).

@545..82m: contorted Qz-PY-Chl-MO VN, 80 tca with branching out narrow strs.

From 546.12 to 546.48m thick 14cm Qz-PY-MO-MG VN, 25 tca.

@547.80m: contorted 14mm Qz VN, 65 tca with distorted <8mm Qz-PY-MO VNs around.

@549.60m: there are two 20-22mm Qz-PY-MO VNs at 60-65 tca.

@551.12m: significant 10mm Qz-PY-MO VN, 50 tca with abund Qz-PY-MO strs around.

@552.68m: contorted 40mm Qz-PY-MO VN, 90 tca with Qz-PY-MO strs radiating from the main VN.

@553.43m: 70mm Qz-AB VN, 50 tca cut off by 10mm CA VN, 5 tca.

@553.87m: solid 30mm Qz-PY-MO VN, 90 tca.

@554.38m: significant 40mm Qz-PY-MO-EPI-MG VN, 50 tca with >0.5-1% MO.

From 555.20 to 555.64m presence of two subparallel 30-35mm Qz-PY-MO VNs. 40-50 tca.

@557.58m: solid 60mm Qz-PY-MO VN, 40 tca.

From 557.70 to 558.20m location of two subparallel 20mm Qz-PY-MO VN, 60 tca.

	STRU	CTUR	ES	
From	To	Struct	CA	Strain

543.10 559.20 BDG M
bedding structure with 5%

joints

					AL	TER	ATIO	N						
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
543.10	559.20	-	-	-	W	-	М	-	М	VW	М		М	
C	A altn													

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					
543.10	559.20	5	7		1	2	50					
	significa	ant Qz	-PY-MO	VN								

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3% M3%												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
543.10	559.2	0 3	VLT	MC	0.4	ļ							
sin	nifican	t Qz-P	Y-MO	VNs	presei	nce							

Initials:

From 559.20

To 565.33 Litho **BDY**

Dark fine grained basalt dyke with alkalic feldspar, upper cont =40 tca lower cont =80 tca.

STRUCTURES										
From	To	Struct	CA	Strain						

559.20 565.33 MAS ٧S 1% joints

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
559.20	565.33	-	-	-	М	-	-	-	VW	-	М	М		

	VEINS From To Vn% QZ% Feld% CC% V/m CA												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						
559.20 5	65.33	0.1	20	20									

no VNs or strs

MINERALIZATION											
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%		

559.20 565.33 0.1 DISS non mineralized zone

From 565.33

To

Litho

570.44 **HSLT**

Dark gray reddish fine grained siltstone with Qz VNs & strs, tiny PY strs mottled the core (~3% PY), weak EPI altn. @566.68m: selvaged 14mm Qz-PY-MO VN, 70 tca.

weak carbonate

From 567 .37 to 567.66m lense of Qz-PY-MO VN with >0.5% MO content.

@569.47m: dispersed 20mm Qz-PY-MO VN, 30 tca with ~1%MO.

STRUCTURES From To Struct CA Strain

565.33 570.44 BDG 45 S 2% joints

	ALTERATION From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
565.33	570.44	-	VW '	VW	M	-	-	М	VW	-	М		М	

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
565.33	570.44	4	10		1	2	50
	Qz-Py-l	MO VN	ls & strs				

	MINERALIZATION From To PY% Style Min Min% Min2 M2% Min3 M3%												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
565.33	570.4	4 3	VLT	МС	0.2	2							
ИO	to 0.59	% mo	n 07-1	nY-V	V.s								

Initials:

From 570.44

To 574.40

Litho GDIO

Fragile coarse grained granodiorite dyke with white feldspar & hornblend, fault zone with 30% broken core & strong CA altn, narrow Qz-MO VNs, vague upper & lower contacts

From To Struct CA Strain

570.44 574.40 MAS M

granodiorite dyke

ALTERATION														
	From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER													
From	To	INT	ARG	CHI	SII	PHY	PRY	POT	CC	FP	RIO	FIP	PVR	SFR
Trom	10	1111	ANO	CIIL	SIL	1 111	1 1(1	101	CC	LI	DIO	LLI	1 11	BLK
570.44	E74 40				N /				\/\//		1.4	Ν.4		
370.44	374.40	-	-	-	IVI	-	-	-	V V V	-	IVI	IVI		
_	A = 14.=													
(:	∆ altn													

VEINS								
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA	
570.44	574.40	1	40	20	1	0.5	70	
tiny pink Qz VNs								

MINERALIZATION									
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%
570 <i>44</i>	57 <i>1</i> /	0 1	DISS	. MC		1			

 From
 To
 Litho

 574.40
 584.30
 HSLT

Dark gray reddish fine grained siltstone with thick contorted Qz VNs & strs, tiny PY strs mottled the core (~3% PY), weak EPI altn. From 575.70 to 575.88m location of two boudinaged 16mm Qz-PY-MO VNs, 35 tca.

From 520.24 to 520.80m presence of distorted 18mm Qz-PY-MO-MG-EPI VN, 0 tca with strs radiating from the main VN.

@519.00m: distorted 66mm Qz-PY-MO-MG, 40 tca.

@580.40m: boudinaged 22mm Qz-CA-AB VN, 40 tca with branched out 10mm Qz-CA-AB VN, 50 tca.

@583.94m: pink 20mm Qz-PY-MO VN, 60 tca.

Below 584.30m reticulated network of narrow Qz-PY-MO VNs & strs.

From 585.80 to 586.14m two distorted Qz-PY-MO-EPI VN, 30 & 40 tca.

@590.40m: observed two distorted selvaged Qz-PY-MO VNs, 40 & 70 tca with tiny Qz-PY-MO strs around.

	STRUCTURES									
From To Struct CA Strain										
57.4.40	50400	550	40							

574.40 584.30 BDG 40 S 1% joints
 From
 TO
 INT
 ARG
 CHL
 SIL
 PHY
 PRY
 POT
 CC
 EP
 BIO
 FLP
 PYR
 SER

 574.40
 584.30
 S
 M
 VW
 VW
 M
 M

 silica altn

VEINS									
From	То	Vn%	QZ%	Feld%	CC%	V/m	CA		
574.40	584.30	3	10			1	60		
narrow Qz-PY-MO VNs									

 MINERALIZATION

 From
 To
 PY%
 Style
 Min
 Min%
 Min2
 M2%
 Min3
 M3%

 574.40
 584.30
 2
 VLT
 MO
 0.1

 random narrow Qz-PY-MO VNs

From 574.40

To 584.30

Litho HSLT

(Continued from previous page)

STRUCTURES								
From	To	Struct	CA	Strain				

ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

	VEINS									
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

1			M	INE	RAL	IZAT	ION			
1	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%

From 584.30

To 610.36

Litho HSLT

304100 010100 11021

Dark gray reddish fine grained siltstone with Qz VNs & abundant strs, tiny PY strs mottled the core (~3% PY), weak EPI altn. @593.57m: distorted 20 mm Qz-PY-MO VN, 50 tca with tiny MO strs on halo.

From 593.20 to 593.50m three dispersed 26-34mm Qz-PY-MO VNs, 60 tca are present.

From 598.50 to 598.70m there is a presence of 18mm Qz-PY-MO VN, 10 tca with strs branched out from the main VN.

@603.20m: boudinaged 22mm Qz-PY-MO VN, 45 tca.

@609.80m: distorted 20mm Qz-PY-MO VN, 40 tca is present.

STRUCTURES									
From	To	Struct	CA	Strain					

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

VEINS										
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA			

584.30 610.36 BDG 50 M ~1% joints

584.30 610.36 - - - : : weak MG altn

S - M - VW VW M

584.30 610.36 3 5 abundant tiny Qz-PY-MO strs 584.30 610.36 3 VLT MO 0.15 MO mostly presence in Qz-PY strs

CH0610

From

То

Litho HSLT

610.36

632.30

Dark gray-reddish fine grained hornfelsed siltstone with contorted Qz VNs & strs, tiny PY strs mottled the core (~4% PY), EPI altn. @612.24m: thick (48mm) Qz-PY-MO-MG VN, 50 tca.

From 612.66 to 612.92m location of thick (40mm) contorted Qz-PY-Chl-MO-MG VN, no orient.

From 619.64 to 620.30m stockwork of 20-36mm Qz-PY-MO-MG VNs, 40-80 tca with 10cm carbonate zone & >1% MO.

From 620.86 to 621.07m minor granodiorite zone with 50 tca contacts.

Below 621.4m stockwork of contorted 10-36mm Qz-PY-MO VNs in diff.orient.

STRUCTURES								
From	To	Struct	CA	Strain				

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER

610.36 623.30 - - - M - M - VW VW M M

minor carbonate zone

610.36 632.20 BDG 55 M bedding stracture with 3-4% joints

VEINS												
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA					

MINERALIZATION

From To PY% Style Min Min% Min2 M2% Min3 M3%

Initials:

610.36 632.20 3 6 2 50 contorted Qz-PY-MO VNs & abund strs

610.36 632.30 3 VLT MO 0.15 >0.15% MO in thisinterval

Initials:

From

*T*o 633.74

Litho GDIO

632.30 633.74

Partially fragile coarse grained granodiorite dyke with white feldspar & hornblend, zone with 50% broken core & strong CA altn, narrow Qz-MO VNs, upper & lower conts =40 tca. From 624.24 to 625.30m fault zone with CA on fracture.

From 625.30 to 629.22m presence of inrebedded siltstone with Qz-PY-MO strs is observed.

BIO & Chl altn

From 630.80 to 632.40m the presence of broken core with 60% pieces that are <10cm.

STRUCTURES											
From To Struct CA Strain											
632.30	633.74	MAS		М							

From 625.3 to 629.22 inrebedded siltstone with Qz-PY-MO strs.

	ALTERATION													
From To INT ARG CHL SIL PHY PRY POT CC EP BIO FLP PYR SER														
632.30	633.74	_	_	_	_	_	W	_	М	_	М	М	W	

VEINS													
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						
632.30	633.74	1	30	20	2	1							
	Qz-PY-	MO str	S										

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
632.30	633.7	4 1	DISS	мс	0.0	3							

625.3 to 629.22m inrebedded siltstone

with Qz-PY-MO str

 From
 To
 Litho

 633.74
 669.65
 HSLT

Dark gray & reddish fine grained siltstone with Qz VNs & abundant strs with >0.1% MO, tiny PY strs mottled the core (~3% PY), weak EPI altn.

From 637.53 to 639.00m granodiorite dyke with vague upper & lower contacts.

@ 642.86m: presence of 20mm Qz-AB-PY VN, 35 tca.

@643.05m: Distorted 20mm Qz-PY-MO VN, 35 tca with abundant contorted Qz-PY-MO strs.

@645.26m: pink 18mm Qz-PY-MO VN, 50 tca.

@646.74m: dispersed 55mm Qz-PY-MO VN, 65 tca.

@647.70m: solid 44mm Qz-PY-MO-MG VN, 50 tca is present.

@650.00m: solid 46mm Qz-PY-Chl Vn, 85 tca is observed.

@651.30m: dispersed 70mm Qz-PY-MO-Chl VN, 75 tca.

@652.10m: solid 15cm (!) Qz-Py-MO VN, 80 tca.

From 652.90 to 653.10m location of small pieces of broken core.

@656.20m: solid 30m Qz-PY-Chl Vn, 40 tca.

Below 657.86m contorted & boudinaged 10-20mm Qz-PY-MO VNs & strs, 40-50 tca.

@660.10m boudinaged 42mm Qz-PY-Chl-MO VN, 70 tca.

@ 669.95m: E.O.H.

STRUCTURES											
Strain	CA	Struct	To	From							
	CA	Struct	To	From							

633.74 669.65 BDG 50 M ~3 joints per meter

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER
633.74	669.65	-	-	-	М	-	М	-	W	-	М		М	
BI	O & wea	k Ch	l altn											

			VEINS	S			
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA
633.74	669.65	2	6		1	1	55
	one VN	l/m with	abunda	ant Qz-P	Y-MO		

,	MINERALIZATION													
,	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				
	633.74	669.6	5 2	VLT	МС	0.1								

From 633.74

To 669.65

Litho **HSLT**

Dark gray & reddish fine grained siltstone with Qz VNs & abundant strs with >0.1% MO, tiny PY strs mottled the core (~3% PY), weak EPI altn.

From 637.53 to 639.00m granodiorite dyke with vague upper & lower contacts.

@ 642.86m: presence of 20mm Qz-AB-PY VN, 35 tca.

@643.05m: Distorted 20mm Qz-PY-MO VN, 35 tca with abundant contorted Qz-PY-MO strs.

@645.26m: pink 18mm Qz-PY-MO VN, 50 tca.

@646.74m: dispersed 55mm Qz-PY-MO VN, 65 tca.

@647.70m: solid 44mm Qz-PY-MO-MG VN, 50 tca is present.

@650.00m: solid 46mm Qz-PY-Chl Vn, 85 tca is observed.

@651.30m: dispersed 70mm Qz-PY-MO-Chl VN, 75 tca.

@652.10m: solid 15cm (!) Qz-Py-MO VN, 80 tca.

From 652.90 to 653.10m location of small pieces of broken core.

@656.20m: solid 30m Qz-PY-Chl Vn, 40 tca.

Below 657.86m contorted & boudinaged 10-20mm Qz-PY-MO VNs & strs, 40-50 tca.

@660.10m boudinaged 42mm Qz-PY-Chl-MO VN, 70 tca.

@ 669.95m: E.O.H.

STRUCTURES											
From	To	Struct	CA	Strain							

	ALTERATION													
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	\overline{BIO}	FLP	PYR	SER

	VEINS													
•	From	To	Vn%	QZ%	Feld%	CC%	V/m	CA						

	MINERALIZATION												
From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%				

From

То

Litho **HSLT**

650.00

669.65

STRUCTURES From To Struct CA Strain

	ALTERATION														
From	To	INT	ARG	CHL	SIL	PHY	PRY	POT	CC	EP	BIO	FLP	PYR	SER	

VEINS											
From	To	Vn%	QZ%	Feld%	CC%	V/m	CA				

Ì	MINERALIZATION														
1	From	To	PY%	Style	Min	Min%	Min2	M2%	Min3	M3%					

CHU Project - TTM Resources Inc. SAMPLE REPORT

SAMPLE ID	From	TO	LITH	TYPE	Cu (%)	Mo(%)
46435	(m) 5.49	(m) 7.92	GDIO	CORE	0.06	0.013
46436	7.92	10.97	GDIO	CORE	0.03	0.030
46437	10.97	14.02	GDIO	CORE	0.02	0.084
46438	14.02	17.07	GDIO/MZON	CORE	0.06	0.075
46439	17.07	20.12	MZON	CORE	0.10	0.021
46440				DUPLICATE	0.08	0.027
46441	20.12	23.16	MZON/AND	CORE	0.08	0.054
46442	23.16	26.21	AND	CORE	0.09	0.090
46443	26.21	29.26	AND	CORE	0.09	0.028
46444	29.26	32.31	AND	CORE	0.05	0.033
46445				BLANK	0.00	0.000
46446	32.31	35.36	AND	CORE	0.06	0.086
46447	35.36	38.40	AND	CORE	0.10	0.151
46448	38.40	41.45	AND	CORE	0.08	0.019
46449	41.45	44.50	AND	CORE	0.12	0.040
46450				MoS-1	0.01	0.063
46451	44.50	47.55	AND	CORE	0.12	0.094
46452	47.55	50.60	AND	CORE	0.13	0.063
46453	50.60	53.64	AND	CORE	0.12	0.095
46454	53.64	56.69	AND	CORE	0.12	0.080
46455	56.69	59.74	AND	CORE	0.09	0.043
46456	59.74	62.79	AND	CORE	0.13	0.031
46457	62.79	65.84	AND	CORE	0.12	0.014
46458	65.84	68.88	AND	CORE	0.09	0.012
46459	68.88	71.93	AND	CORE	0.12	0.035
46460				DUPLICATE	0.10	0.053
46461	71.93	74.98	AND	CORE	0.08	0.018
46462	74.98	78.03	AND	CORE	0.10	0.018
46463	78.03	81.08	AND	CORE	0.13	0.030
46464	81.08	84.12	AND	CORE	0.12	0.023
46465				BLANK	0.00	0.000
46466	84.12	87.17	AND	CORE	0.12	0.056
46467	87.17	90.22	AND	CORE	0.17	0.023
46468	90.22	93.27	AND	CORE	0.14	0.059
46469	93.27	96.32	AND	CORE	0.11	0.030
46470				MoS-1	0.01	0.063
46471	96.32	99.36	AND	CORE	0.07	0.010
46472	99.36	102.41	AND	CORE	0.10	0.040
46473	102.41	105.46	AND	CORE	0.13	0.042
46474	105.46	108.51	AND	CORE	0.10	0.019
46475	108.51	111.56	AND	CORE	0.11	0.022
46476	111.56	114.60	AND	CORE	0.09	0.022
46477	114.60	117.65	AND	CORE	0.12	0.050
46478	117.65	119.40	AND	CORE	0.07	0.247
	119.40	134.30	BDY	CORE	0.01	0.002
	119.40	134.30	BDY	CORE	0.01	0.000
46480				DUPLICATE	0.07	0.025
46481	134.30	138.99	AND	CORE	0.06	0.024
46482	138.99	142.04	AND	CORE	0.06	0.054
46483	142.04	145.08	AND	CORE	0.08	0.066

SAMPLE ID	From	ТО	LITU	TVDE	Cu (9/)	Mo(9/)		
SAMPLE ID	From (m)	(m)	LITH	TYPE	Cu (%)	Mo(%)		
46484	145.08	148.13	AND	CORE	0.08	0.010		
46485				BLANK	0.00	0.000		
46486	148.13	151.18	AND	CORE	0.08	0.022		
46487	151.18	154.23	AND	CORE	0.04	0.024		
46488	154.23	157.28	AND	CORE	0.03	0.016		
46489	157.28	162.15	AND	CORE	0.03	0.088		
46490				MoS-1	0.01	0.063		
46491	162.15	172.88	BDY	CORE	0.01	0.000		
46492	172.88	175.56	AND	CORE	0.01	0.000		
46493			AND	CORE	0.06	0.008		
46494			AND	CORE	0.06	0.025		
46495			AND/GDIO	CORE	0.09	0.083		
46496	184.71	187.76	GDIO	CORE	0.05	0.064		
46497			GDIO	CORE	0.02	0.005		
46498			GDIO	CORE	0.03	0.033		
46499			GDIO	CORE	0.03	0.027		
	46500			DUPLICATE	0.04	0.039		
46501	196.90	199.95	GDIO	CORE	0.04	0.068		
46502	199.95	203.00	GDIO/AND	CORE	0.06	0.087		
46503	203.00	206.04	AND	CORE	0.12	0.057		
46504	206.04	209.09	AND	CORE	0.07	0.052		
46505	200.04	200.00	71110	BLANK	0.00	0.000		
46506	209.09	212.14	AND	CORE	0.10	0.058		
46507	212.14	215.19	AND	CORE	0.06	0.038		
46508	215.19	218.24	AND	CORE	0.08	0.045		
46509	218.24	221.28	AND	CORE	0.00	0.043		
46510	210.24	221.20	AND	MoS-1	0.09	0.064		
46510	221.28	224.33	AND	CORE	0.01	0.086		
46512	224.33	227.38	AND	CORE	0.09	0.035		
46513	227.38	230.43	AND AND	CORE	0.12	0.047		
46514	230.43					0.077		
46515		236.52	AND	CORE	0.12	0.046		
46516	236.52	239.57	AND	CORE	0.16	0.021		
46517	239.57	242.62	AND	CORE	0.12	0.048		
46518	242.62	245.67	AND	CORE	0.16	0.166		
46519	245.67	248.72	AND	CORE	0.11	0.125		
46520				DUPLICATE	0.13	0.108		
46521	248.72	251.76	AND	CORE	0.09	0.075		
46522	251.76	254.81	AND/HSLT	CORE	80.0	0.213		
46523	254.81	257.86	HSLT	CORE	0.08	0.084		
46524	257.86	260.91	HSLT	CORE	80.0	0.295		
46525				BLANK	0.00	0.000		
46526	260.91	263.96	HSLT	CORE	0.07	0.083		
46527	263.96	267.00	HSLT	CORE	0.04	0.048		
46528	267.00	270.05	HSLT	CORE	0.05	0.096		
46529	270.05	273.10	HSLT	CORE	0.04	0.071		
46530				MoS-1	0.01	0.064		
46531	273.10	276.15	HSLT	CORE	0.05	0.124		
46532	276.15	279.20	HSLT	CORE	0.04	0.062		
46533	279.20	282.24	HSLT	CORE	0.05	0.066		
46534	282.24	285.29	HSLT	CORE	0.04	0.056		
46535	285.29	288.34	HSLT	CORE	0.04	0.081		
Ľ				ANTOLIMITED				

CAMPLEID		T0		T) (DE	0 (0()	M (0/)
SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
46536	288.34	291.39	HSLT	CORE	0.05	0.121
46537	291.39	294.44	HSLT	CORE	0.06	0.201
46538	294.44	297.48	HSLT	CORE	0.07	0.156
46539	297.48	300.53	HSLT	CORE	0.05	0.035
46540				DUPLICATE	0.05	0.030
46541	300.53	303.58	HSLT	CORE	0.04	0.063
46542	303.58	306.63	HSLT	CORE	0.04	0.069
46543	306.63	309.68	HSLT	CORE	0.05	0.041
46544	309.68	312.72	HSLT	CORE	0.03	0.096
46545				BLANK	0.00	0.000
46546	312.72	315.77	HSLT	CORE	0.05	0.135
46547	315.77	318.82	HSLT	CORE	0.05	0.057
46548	318.82	321.87	HSLT	CORE	0.02	0.023
46549	321.87	324.92	HSLT	CORE	0.00	0.000
46550				MoS-1	0.01	0.064
46551	324.92	327.96	HSLT/AND	CORE	0.06	0.061
46552	327.96	331.01	AND	CORE	0.04	0.039
46553	331.01	334.06	AND	CORE	0.05	0.061
46554	334.06	337.11	AND	CORE	0.07	0.055
46555	337.11	340.16	AND	CORE	0.07	0.034
46556	340.16	343.20	AND	CORE	0.07	0.081
46557	343.20	346.25	AND	CORE	0.07	0.186
46558	346.25	349.30	AND	CORE	0.09	0.056
46559	349.30	352.35	AND	CORE	0.06	0.136
46560	349.50	332.33	AND	DUPLICATE	0.06	0.101
46561	352.35	355.40	AND	CORE	0.00	0.092
46562	355.40	358.44	AND	CORE	0.07	0.092
46563	358.44	361.49	AND	CORE	0.06	0.092
46564	361.49	364.54	AND	CORE	0.04	0.044
46565 46566	364.54	367.59	AND	BLANK CORE	0.00	0.000
				CORE	0.09	0.062
46567	367.59	370.64	AND/LICLT		0.05	0.116
46568	370.64	373.68	AND/HSLT	CORE	0.06	0.097
46569	373.68	376.73	HSLT	CORE	0.04	0.098
46570				MoS-1	0.01	0.065
46571	376.73	379.78	HSLT	CORE	0.04	0.111
46572	379.78	382.83	HSLT	CORE	0.05	0.118
46573	382.83	385.88	HSLT	CORE	0.03	0.110
46574	385.88	388.92	HSLT	CORE	0.04	0.040
46575	388.92	391.97	HSLT	CORE	0.02	0.055
46576	391.97	395.02	HSLT	CORE	0.02	0.102
46577	395.02	398.07	HSLT	CORE	0.03	0.075
46578	398.07	401.12	HSLT	CORE	0.05	0.060
46579	401.12	404.16	HSLT	CORE	0.03	0.124
46580				DUPLICATE	0.03	0.103
46581	404.16	407.21	HSLT	CORE	0.03	0.224
46582	407.21	410.26	HSLT	CORE	0.03	0.284
46583	410.26	413.31	HSLT	CORE	0.05	0.092
46584	413.31	416.36	HSLT	CORE	0.05	0.254
46585				BLANK	0.00	0.001
46586	416.36	419.40	HSLT	CORE	0.07	0.104
46587	419.40	422.45	HSLT	CORE	0.15	0.112
L		ALLNODE		ANTOLIMITED		

CAMPLEID	F	T0	LITH	TVDF	0 (0/)	NA- (O/)
SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
46588	422.45	425.50	HSLT	CORE	0.04	0.074
46589	425.50	428.55	HSLT	CORE	0.03	0.061
46590				MoS-1	0.01	0.065
46591	428.55	431.60	HSLT	CORE	0.16	0.256
46592	431.60	434.64	HSLT	CORE	0.03	0.154
46593	434.64	437.69	HSLT	CORE	0.03	0.198
46594	437.69	440.74	HSLT	CORE	0.04	0.032
46595	440.74	443.79	HSLT	CORE	0.06	0.165
46596	443.79	446.84	HSLT	CORE	0.04	0.086
46597	446.84	449.88	HSLT	CORE	0.02	0.029
46598	449.88	452.93	HSLT	CORE	0.03	0.107
46599	452.93	455.98	HSLT	CORE	0.04	0.140
46600				DUPLICATE	0.03	0.141
46601	455.98	459.03	HSLT	CORE	0.03	0.083
46602	459.03	462.08	HSLT	CORE	0.03	0.071
46603	462.08	465.12	HSLT	CORE	0.03	0.144
46604	465.12	468.17	HSLT	CORE	0.04	0.073
46605				BLANK	0.00	0.000
46606	468.17	471.22	HSLT	CORE	0.05	0.027
46607	471.22	474.27	HSLT	CORE	0.06	0.027
46608	474.27	477.32	HSLT	CORE	0.03	0.090
46609	477.32	480.36	HSLT	CORE	0.03	0.082
46610	111.02	100.00	11021	MoS-1	0.01	0.064
46611	480.36	483.41	HSLT	CORE	0.03	0.091
46612	483.41	486.46	HSLT	CORE	0.04	0.042
46613	486.46	489.51	HSLT	CORE	0.02	0.077
46614	489.51	492.56	HSLT	CORE	0.04	0.168
46615	492.56	495.60	HSLT	CORE	0.03	0.074
46616	495.60	498.65	HSLT	CORE	0.03	0.110
46617	498.65	501.70	HSLT	CORE	0.03	0.075
46618	501.70	504.75	HSLT	CORE	0.02	0.092
46619	504.75	507.80	HSLT	CORE	0.02	0.049
46620	304.73	307.00	TIOLI	DUPLICATE	0.03	0.049
46621	507.80	510.84	HSLT	CORE	0.03	0.188
46622	510.84	513.89	HSLT	CORE	0.03	
			HSLT	CORE		0.208
46623	513.89	516.94			0.02	0.052
46624 46625	516.94	519.99	HSLT	CORE	0.02	0.051
	510.00	522 O4	HSI T/ODIO	BLANK	0.00	0.000
46626	519.99	523.04	HSLT/GDIO	CORE	0.01	0.063
46627	523.04	526.08	GDIO	CORE	0.01	0.015
46628	526.08	529.13	GDIO	CORE	0.01	0.014
46629	529.13	532.18	GDIO	CORE	0.02	0.096
46630	F00.40	F0F 00	ODIO	MoS-1	0.01	0.064
46631	532.18	535.23	GDIO	CORE	0.02	0.036
46632	535.23	538.28	GDIO	CORE	0.02	0.030
46633	538.28	541.32	GDIO	CORE	0.02	0.038
46634	541.32	544.37	GDIO	CORE	0.02	0.037
46635	544.37	547.42	GDIO/HSLT	CORE	0.02	0.126
46636		FF0 47	HSLT	CORE	0.03	0.135
+	547.42	550.47				
46637	547.42 550.47	550.47	HSLT	CORE	0.07	0.101
46637 46638						

SAMPLE ID	From (m)	TO (m)	LITH	TYPE	Cu (%)	Mo(%)
46640				DUPLICATE	0.04	0.058
46641	559.61	562.66	HSLT	CORE	0.09	0.124
46642	562.66	565.71	HSLT	CORE	0.02	0.119
46643	565.71	568.76	HSLT	CORE	0.02	0.105
46644	568.76	571.80	HSLT	CORE	0.03	0.145
46645				BLANK	0.00	0.000
46646	571.80	574.85	HSLT	CORE	0.03	0.068
46647	574.85	577.90	HSLT	CORE	0.02	0.043
46648	577.90	580.95	HSLT	CORE	0.02	0.119
46649	580.95	584.00	HSLT	CORE	0.03	0.041
46650				MoS-1	0.01	0.063
46651	584.00	587.04	HSLT	CORE	0.03	0.147
46652	587.04	590.09	HSLT	CORE	0.02	0.313
46653	590.09	593.14	HSLT	CORE	0.03	0.081
46654	593.14	596.19	HSLT/GDIO	CORE	0.05	0.115
46655	596.19	599.24	GDIO	CORE	0.04	0.055
46656	599.24	602.28	GDIO	CORE	0.02	0.077
46657	602.28	605.33	GDIO	CORE	0.02	0.078
46658	605.33	608.38	GDIO	CORE	0.05	0.058
46659	608.38	611.43	GDIO	CORE	0.02	0.108
46660				DUPLICATE	0.03	0.131
46661	611.43	614.48	GDIO	CORE	0.02	0.077
46662	614.48	617.52	GDIO	CORE	0.01	0.167
46663	617.52	620.57	GDIO	CORE	0.01	0.051
46664	620.57	623.62	GDIO	CORE	0.02	0.025
46665	623.62	626.06	GDIO	CORE	0.01	0.037

APPENDIX V

Core Sample Assay Results

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 2006-2210

TTM Resources
P.O. Box 968 Pulpmill Road
Prince George, BC
V2L 4V1

Attention: Ken MacDonald

No. of samples received: 13 Sample Type: Core

Project: CIIV Shipment #: 1

Submitted by: K. MacDonald

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	44201	<0.2 1.08	5	180	<5	0.52	<1	15	22	39	3.18	<10	0.79	501	<1	0.05	2	740	14	<5	<20	14	0.18	<10	87	<10	10	65
2	44202	<0.2 1.42	5	175	10	1.11	<1	19	26	53	3.93	<10	1.10	616	<1	0.06	6	870	24	<5	<20	22	0.21	<10	110	<10	15	86
3	44203	<0.2 2.25	10	165	<5	2.72	<1	31	117	35	5.38	<10	2.06	554	<1	0.11	71	1810	26	<5	<20	121	0.16	<10	149	<10	5	109
4	44204	0.6 1.38	10	115	5	1.60	27	17	31	84	3.47	<10	1.00	700	<1	0.07	2	700	18	<5	<20	20	0.16	<10	87	<10	10 2	2016
5	44205	<0.2 0.03	10	15	<5	>10	<1	<1	2	2	0.08	<10	>10	68	<1	<0.01	<1	470	<2	40	<20	106	<0.01	<10	2	<10	2	9
6	44206	<0.2 1.06	5	110	<5	0.81	<1	12	30	23	2.74	<10	0.80	505	<1	0.05	1	770	16	<5	<20	15	0.14	<10	64	<10	11	92
7	44207	<0.2 0.98	10	95	<5	1.04	<1	13	38	44	3.10	<10	0.68	568	<1	0.05	1	700	16	<5	<20	14	0.13	<10	71	<10	13	69
8	44208	0.3 1.16	5	110	<5	1.56	<1	16	39	97	3.32	<10	0.68	641	<1	0.06	2	720	18	<5	<20	19	0.14	<10	84	<10	13	93
9	44209	0.2 1.13	<5	105	<5	1.47	<1	14	31	61	3.46	<10	0.64	674	<1	0.04	3	660	14	<5	<20	27	0.15	<10	80	<10	11	89
10	44210	<0.2 0.65	5	110	<5	1.37	<1	7	18	108	2.63	10	0.43	631	648	0.03	14	890	16	<5	<20	105	0.02	<10	29	<10	18	90
11	44211	<0.2 0.87	<5	85	<5	2.15	<1	16	34	86	3.48	<10	0.57	714	<1	0.05	3	730	12	<5	<20	17	0.15	<10	87	<10	13	75
12	44212	0.3 0.63	<5	85	<5	3.11	<1	14	29	66	3.26	<10	0.42	1113	<1	0.07	1	770	20	<5	<20	24	0.13	<10	83	<10	14	57
13	44213	0.3 0.57	<5	45	<5	3.56	<1	16	36	104	3.50	<10	0.24	1000	<1	0.06	4	720	8	<5	<20	20	0.11	<10	80	<10	10	53
QC DAT																												
1	44201	<0.2 1.11	10	185	<5	0.53	<1	15	24	38	3.22	<10	0.81	509	<1	0.06	2	770	14	<5	<20	14	0.18	<10	88	<10	11	66
Resplit																												
1	44201	<0.2 1.08	10	165	<5	0.55	<1	15	22	36	3.17	<10	0.77	495	<1	0.06	2	760	18	<5	<20	12	0.18	<10	85	<10	11	66
Standar	rd:				_												_											
Pb106		>30 0.50	265	100	<5	1.73	32	3	37 (5249	1.68	<10	0.25	555	29	< 0.01	6	280	5382	50	<20	139	< 0.01	<10	15	10	<1.8	3399

JJ/bp df/2210 XLS/06 ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

ICP CERTIFICATE OF ANALYSIS AK 2007-384

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 125

Sample Type: Core Project: CHU Shipment #: 44

Submitted by: All North Consultants

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al%	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Cu%	Fe %	La	Mg %	Mn	Mo Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	w	Υ	Zn
1	G46483	0.8 1.16	15	50	<5	0.83	2	23	81	815	0.08	4.96	<10	0.95	222	655 0.066	0.08	14	560	36	<5	<20	17	0.14	<10	141	<10	9	73
2	G46484	0.6 1.62	<5	55	<5	0.81	<1	29	96	793	80.0	5.96	<10	1.53	280	102 0.010	0.09	17	650	14	<5	<20	15	0.18	<10	219	<10	8	55
3	G46485	<0.2 0.04	<5	10	<5	>10	<1	<1	5	9	0.00	0.09	<10	>10	69	<1 0.000	0.01	<1	350	<2	30	<20	130	<0.01	<10	4	<10	<1	6
4	G46486	0.6 1.49	<5	80	<5	0.58	<1	26	70	781	80.0	5.60	<10	1.39	336	217 0.022	0.06	15	800	18	<5	<20	17	0.15	<10	201	<10	12	69
5	G46487	0.3 0.97	<5	65	<5	0.69	<1	16	48	367	0.04	3.80	<10	0.77	202	235 0.024	0.07	6	900	14	<5	<20	16	0.08	<10	102	<10	15	43
6	G46488	0.2 1.31	<5	75	<5	0.55	<1	21	60	323	0.03	4.58	<10	1.31	283	162 0.016	0.08	7	1020	18	<5	<20	15	0.16	<10	146	<10	19	54
7	G46489	0.4 0.59	5	70	<5	0.80	1	10	77	287	0.03	2.51	10	0.44	191	884 0.088	0.06	5	850	30	<5	<20	31	0.05	<10	42	<10	7	172
8	G46490	<0.2 0.66	5	110	<5	1.28	<1	7	18	122	0.01	2.35	20	0.46	598	630 0.063	0.04	14	790	16	<5	<20	123	0.02	<10	30	<10	18	72
9	G46491	<0.2 2.57	<5	240	<5	3.13	<1	29	135	84	0.01	5.29	<10	2.89	676	3 0.000	0.14	51	1840	16	<5	<20	132	0.14	<10	184	<10	3	66
10	G46491	<0.2 2.76	<5	255	<5	3.26	<1	30	121	77	0.01	5.51	<10	3.08	730	<1 0.000	0.15	51	1890	18	<5	<20	127	0.16	<10	195	<10	7	70
11	G46492	0.3 1.83	20	65	<5	0.65	1	26	108	592	0.06	5.16	<10	1.86	388	78 0.008	0.09	20	700	20	5	<20	22	0.23	<10	225	<10	17	83
12	G46493	0.2 1.72	<5	65	<5	0.66	<1	26	92	561	0.06	5.23	<10	1.78	398	247 0.025	0.11	20	740	18	<5	<20	28	0.24	<10	211	<10	13	77
13	G46494	0.4 1.73	<5	55	<5	1.35	<1	27	106	863	0.09	5.75	<10	1.76	437	825 0.083	0.08	17	620	16	<5	<20	36	0.18	<10	191	<10	13	92
14	G46495	0.2 0.66	<5	50	<5	0.73	<1	20	68	482	0.05	3.90	10	0.38	158	639 0.064	0.07	5	760	10	<5	<20	36	0.04	<10	30	<10	2	46
15	G46496	<0.2 0.37	<5	60	<5	0.98	<1	4	99	155	0.02	1.22	10	0.15	116	47 0.005	0.06	4	440	12	<5	<20	37	0.01	<10	10	<10	6	20
16	G46497	<0.2 0.79	10	55	<5	2.30	<1	6	69	304	0.03	2.27	20	0.47	227	325 0.033	0.04	4	870	12	<5	<20	62	0.01	<10	16	<10	9	26
17	G46498	0.2 0.72	<5	55	<5	1.63	<1	7	109	322	0.03	2.20	10	0.33	170	273 0.027	0.05	5	830	16	<5	<20	49	0.01	<10	16	<10	6	32
18	G46499	0.2 0.52	10	50	<5	0.73	<1	9	85	382	0.04	2.35	10	0.36	136	392 0.039	0.06	5	700	6	<5	<20	27	0.04	<10	25	<10	4	25
19	G46501	0.2 0.59	<5	65	<5	0.72	<1	10	106	432	0.04	2.94	10	0.44	167	681 0.068	0.06	5	860	10	<5	<20	45	0.05	<10	33	<10	6	26
20	G46502	0.2 1.14	<5	60	<5	0.69	<1	17	66	617	0.06	3.93	<10	1.15	267	873 0.087	0.10	4	960	14	<5	<20	42	0.18	<10	108	<10	16	53
21	G46503	0.5 1.61	<5	60	<5	0.71	<1	30	101	1234	0.12	6.86	<10	1.59	336	573 0.057	0.14	8	780	14	<5	<20	39	0.23	<10	180	<10	9	67
22	G46504	0.3 2.11	<5	60	<5	0.67	<1	24	61	703	0.07	5.65	<10	2.32	486	523 0.052	0.12	10	920	20	5	<20	26	0.27	<10	210	<10	13	93
23	G46505	0.3 0.04	<5	10	<5	>10	<1	<1	6	10	0.00	0.09	<10	>10	74	2 0.000	0.02	<1	350	<2	35	20	124	<0.01	<10	4	<10	2	11
24	G46506	0.6 1.19	<5	50	<5	0.56	1	25	71	959	0.10	5.45	<10	1.02	290	576 0.058	0.11	7	840	8	<5	<20	18	0.16	<10	91	<10	12	61
25	G46507	0.3 1.35	<5	55	<5	0.63	<1	19	58	632	0.06	4.42	<10	1.16	302	744 0.074	0.11	5	950	12	<5	<20	20	0.18	<10	101	<10	17	58
26	G46508	0.5 1.50	<5	60	<5	0.72	<1	23	83	805	80.0	4.93	<10	1.38	352	446 0.045	0.11	6	870	14	<5	<20	40	0.17	<10	127	<10	12	58
27	G46509	0.7 1.82	40	65	<5	2.82	<1	21	82	918	0.09	5.38	<10	1.48	411	1240 0.124	0.05	7	480	18	<5	<20	59	0.10	<10	141	<10	8	65
28	G46510	<0.2 0.66	<5	135	<5	1.36	<1	7	19	121	0.01	2.59	20	0.54	647	637 0.064	0.05	15	740	14	<5	<20	139	0.02	<10	36	<10	18	72
29	G46511	0.6 1.87	<5	55	<5	0.83	<1	32	116	1318	0.13	6.77	<10	1.92	387	858 0.086	0.11	10	590	16	<5	<20	117	0.20	<10	213	<10	5	79
30	G46512	0.4 1.83	10	70	<5	2.17	<1	20	65	925	0.09	5.27	<10	1.48	323	355 0.035	0.07	6	690	22	<5	<20	58	0.12	<10	155	<10	9	60

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2007-384

TTM Resources

Et #.	Tag #	Ag Al %	As	Ва	Bi Ca %	Cd	Co	Cr Cu Cu%	6 Fe %	La Mg %	Mn	Mo Mo%	Na %	Ni P	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
31	G46513	0.6 1.93	10	50	<5 1.52	<1	17	76 1153 0.12	2 6.06	<10 1.23	408	475 0.047	0.06	9 830	20	<5	<20	168	0.09	<10	104	<10	<1	56
32	G46514	0.7 1.37	15	55	<5 1.68	<1	19	71 1007 0.10 85 1167 0.12	4.82	<10 p.0.95	279	768 0.077	0.08	6 690	18	<5	<20	120	0.10	<10	96	<10	7	48
33	G46515	0.5 1.95	15	50	<5 1.40	1	24	85 1167 0.12	6.39	<10 1.28	278	459 0.046	0.07	9 680	16	<5	<20	58	0.11	<10	124	<10	3	57
34	G46516	0.8 2.22	<5	65	<5 1.19	<1	28	50 1639 0.10	8.45	<10 1.64	355	210 0.021	0.07	7 900	20	<5	<20	62	0.13	<10	166	<10	2	73

35	G46517	0.7 2.03	35	65	<5	1.93	<1	31	78	1208 0.1	12 7	7.37	<10	1.68	377	479	0.048	0.06	8	940	24	<5	<20	45	0.13	<10	188	<10	14	71
36	G46518	1.1 1.57	25	80	<5	2.46	<1	38	60	1626 0.1	16 8	3.41	<10	1.03	373	1656	0.166	0.05	8	760	20	<5	<20	47	0.07	<10	122	<10	6	76
37	G46519	0.6 0.53	10	50	<5	1.45	<1	20	97	1081 0.1	11 4	4.11	<10	0.34	184	1248	0.125	0.05	9	460	12	<5	<20	34	0.03	<10	48	<10	8	30
38	G46521	0.5 0.46	10	45	<5	1.33	<1	23	104	859 0.0	09 4	4.35	<10	0.31	179	750	0.075	0.06	12	480	10	<5	<20	32	0.03	<10	37	<10	4	27
39	G46522	0.5 1.19	20	65	<5	1.17	<1	19	134	840 0.0	08 4	4.84	<10	1.27	255	2128	0.213	0.06	56	390	16	<5	<20	21	0.11	<10	176	<10	8	35
40	G46523	0.4 1.42	15	80	<5	1.01	<1	21	165	790 0.0	08 5	5.01	<10	1.40	278	836	0.084	0.08	89	410	24	<5	<20	45	0.17	<10	208	<10	13	36
41	G46524	0.4 1.20	20	55	<5	0.81	<1	26	170	753 0.0	08 5	5.15	<10	1.15	240	2951	0.295	0.06	55	280	18	<5	<20	48	0.14	<10	144	<10	5	35
42	G46525	<0.2 0.05	5	10	<5	>10	<1	<1	5	10 0.0	00 C	0.09	<10	>10	70	2	0.000	<0.01	<1	370	<2	40	<20	130	< 0.01	<10	4	<10	2	7
43	G46526	0.3 1.71	25	70	<5	1.37	<1	20	157	651 0.0	07 4	4.05	<10	1.46	288	826	0.083	0.04	51	370	18	<5	<20	42	0.11	<10	169	<10	8	42
44	G46527	0.3 1.39	10	80	<5	1.11	<1	14	183	379 0.0	04 3	3.79	<10	1.35	271	481	0.048	0.06	53	430	16	<5	<20	108	0.13	<10	172	<10	8	47
45	G46528	0.3 1.53	15	70	<5	0.80	<1	21	174	540 0.0	05 4	4.41	<10	1.55	264	956	0.096	0.07	52	500	22	<5	<20	33	0.16	<10	198	<10	12	48
46	G46529	0.2 1.35	10	75	<5	0.62	<1	15	168	374 0.0	04 3	3.58	<10	1.29	247	711	0.071	0.07	53	490	22	<5	<20	19	0.17	<10	184	<10	10	42
47	G46530	<0.2 0.71	5	135	<5	1.24	<1	8	20	121 0.0	01 2	2.67	20	0.55	657	641	0.064	0.05	17	840	18	<5	<20	144	0.02	<10	35	<10	21	78
48	G46531	0.2 1.18	15	65	<5	0.63	<1	14	137	470 0.0	05 3	3.42	<10	1.10	243	1240	0.124	0.05	32	660	16	<5	<20	36	0.12	<10	130	<10	9	43
49	G46532	<0.2 1.33	10	75	<5	0.39	<1	14	128	377 0.0	04 3	3.41	<10	1.33	253	618	0.062	0.04	48	400	20	<5	<20	16	0.16	<10	191	<10	13	48
50	G46533	0.3 1.29	15	75	<5	0.55	<1	19	158	513 0.0	05 4	4.14	<10	1.23	237	661	0.066	0.06	51	420	20	<5	<20	15	0.14	<10	171	<10	11	42
51	G46534	0.2 1.37	20	75	<5	0.67	<1	16	158	402 0.0	04 3	3.63	<10	1.30	222	556	0.056	0.08	54	430	20	<5	<20	19	0.15	<10	197	<10	10	36
52	G46535	0.2 0.98	5	80	<5	0.99	<1	14	144	376 0.0	04 3	3.36	<10	0.91	233	806	0.081	0.06	31	700	16	<5	<20	30	0.10	<10	125	<10	13	37
53	G46536	0.3 1.26	10	75	<5	0.84	<1	16	157	459 0.0	05 3	3.69	<10	1.31	269	1209	0.121	0.07	42	520	18	<5	<20	28	0.13	<10	164	<10	11	47
54	G46537	0.3 1.22	15	75	<5	0.55	<1	17	169	649 0.0	06 4	4.18	<10	1.21	242	2015	0.201	0.07	46	300	18	<5	<20	19	0.12	<10	161	<10	8	43
55	G46538	0.3 1.02	10	80	<5	1.40	<1	23	152	697 0.0	07 4	4.40	<10	0.96	261	1565	0.156	0.08	44	660	20	<5	<20	44	0.10	<10	115	<10	13	41
56	G46539	0.3 0.76	<5	65	<5	1.01	<1	13	97	475 0.0	05 3	3.51	10	0.72	211	348	0.035	0.05	11	1350	14	<5	<20	40	0.06	<10	49	<10	12	34
57	G46541	0.3 0.98	5	75	<5	1.31	<1	13	128	419 0.0	04 3	3.51	<10	0.98	256	635	0.063	0.05	32	760	18	<5	<20	40	0.10	<10	105	<10	13	52
58	G46542	0.2 1.36	5	80	<5	1.12	<1	21	152	434 0.0	04 4	4.36	<10	1.35	250	695	0.069	0.06	48	350	18	<5	<20	27	0.15	<10	171	<10	10	52
59	G46543	0.2 1.63	10	95	<5	0.43	<1	18	183	472 0.0	05 4	4.11	<10	1.66	293	412	0.041	0.09	52	490	28	<5	<20	25	0.20	<10	231	<10	17	55
60	G46544	0.2 1.41	10	90	<5	1.04	<1	13	166	285 0.0	03 3	3.45	<10	1.37	281	959	0.096	0.08	45	540	20	<5	<20	26	0.17	<10	168	<10	15	45
61	G46545	<0.2 0.04	10	10	<5	>10	<1	<1	5	11 0.0	00 0	0.09	<10	>10	67	5	0.000	<0.01	<1	360	<2	40	<20	141	<0.01	<10	4	<10	3	9
62	G46546	0.3 1.38	10	75	<5	0.48	<1	16	167	521 0.0	05 3	3.84	<10	1.38	248	1349	0.135	0.07	49	430	22	<5	<20	20	0.16	<10	179	<10	11	51
63	G46547	0.2 1.45	10	80	<5	0.40	<1	17	152	495 0.0	05 3	3.91	<10	1.45	254	574	0.057	0.07	43	510	22	<5	<20	28	0.16	<10	181	<10	11	61
64	G46548	<0.2 0.77	15	50	<5	0.38	<1	6	120	220 0.0)2 1	1.77	<10	0.62	138	229	0.023	0.05	26	160	16	5	<20	15	0.06	<10	85	<10	6	32
65	G46549	<0.2 0.20	<5	10	<5	0.26	<1	<1	116	18 0.0	00 0	0.44	20	0.04	68	4	0.000	0.06	4	10	10	<5	<20	9	<0.01	<10	3	<10	2	17
66	G46550	<0.2 0.70	5	125	<5	1.33	<1	8	20	131 0.0	01 2	2.35	20	0.53	649	637	0.064	0.05	14	850	20	<5	<20	147	0.02	<10	34	<10	22	78
67	G46551	0.3 0.65	10	50	<5	0.62	<1	12	115	564 0.0	06 3	3.05	<10	0.49	168	607	0.061	0.06	7	450	12	<5	<20	19	0.05	<10	45	<10	10	35
68	G46552	0.4 0.73	5	50	<5	1.04	<1	10	95	428 0.0)4 2	2.91	<10	0.52	198	390	0.039	0.08	5	600	16	<5	<20	23	0.05	<10	50	<10	18	34
69	G46553	0.3 0.70	5	60	<5	0.82	<1	17	115	543 0.0	05 3	3.60	<10	0.51	220	610	0.061	0.08	7	560	14	<5	<20	23	0.06	<10	53	<10	14	40
70	G46554	0.4 0.55	5	40	<5	1.67	<1	13	98	718 0.0	07 3	3.42	<10	0.34	209	547	0.055	0.05	6	540	10	<5	<20	34	0.04	<10	37	<10	11	32

ICP CERTIFICATE OF ANALYSIS AK 2007- 384 **TTM Resources**

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
71	G46555	0.5 0.60	10	60	<5	1.79	<1	19	112	740 0.07	3.93	<10	0.31	186	340	0.034	0.07	6	560	22	<5	<20	61	0.03	<10	33	<10	15	37
72	G46556	0.4 0.54	10	60	<5	1.59	<1	18	108	717 0.07	3.60	<10	0.47	193	809	0.081	0.07	6	570	14	<5	<20	55	0.05	<10	46	<10	12	33
73	G46557	0.3 0.45	10	45	<5	2.40	<1	19	132	708 0.07	3.80	<10	0.41	221	1856	0.186	0.06	5	480	16	<5	<20	88	0.01	<10	26	<10	13	33
74	G46558	0.6 0.56	15	55	<5	1.39	<1	20	82	870 0.09	3.97	<10	0.41	194	558	0.056	0.04	9	490	16	<5	<20	46	0.02	<10	36	<10	9	35
75	G46559	0.3 0.68	10	75	<5	0.65	<1	17	77	596 0.06	3.33	<10	0.56	162	1358	0.136	0.06	4	510	14	<5	<20	18	0.07	<10	54	<10	6	32
76	G46561	0.4 0.64	5	75	<5	0.67	<1	16	129	693 0.07	3.55	<10	0.48	161	918	0.092	0.07	6	500	12	<5	<20	26	0.07	<10	48	<10	11	34
77	G46562	0.4 0.78	10	75	<5	0.73	<1	20	130	761 0.08	4.13	<10	0.54	185	917	0.092	0.09	7	500	14	<5	<20	27	0.06	<10	54	<10	14	37
78	G46563	0.3 0.56	5	60	<5	1.47	<1	14	110	585 0.06	3.11	<10	0.41	248	480	0.048	0.06	7	540	14	<5	<20	30	0.04	<10	42	<10	16	48
79	G46564	0.3 0.35	10	50	<5	1.69	1	11	80	438 0.04	2.44	<10	0.20	267	443	0.044	0.06	9	380	18	<5	<20	39	0.01	<10	18	<10	11	146
80	G46565	<0.2 0.04	10	20	<5	>10	<1	1	5	6 0.00	0.09	<10	>10	66	4	0.000	< 0.01	<1	370	<2	45	<20	136	< 0.01	<10	3	<10	5	5
81	G46566	0.5 0.59	10	45	<5	1.10	<1	23	121	856 0.09	4.94	<10	⊃გე <u>4</u> 02	157	615	0.062	0.04	14	340	14	<5	<20	33	0.02	<10	33	<10	5	24
82	G46567	0.3 0.78	30	70	<5	1.44				512 0.05								17	620	14	<5	<20	39	0.03	<10	41	<10	11	36

83	G46568	0.5 0.94	10	55	<5	1.21	<1	17	137	615 0.06	4.24	<10	0.76	237	971 0.097	0.06	24	510	16	<5	<20	37	0.06	<10	83	<10	13	56
84	G46569	0.2 1.38	10	90	<5	1.05	<1	19	126	351 0.04	3.94	<10	1.31	275	977 0.098	0.06	49	580	20	<5	<20	45	0.16	<10	169	<10	12	49
85	G46570	0.2 0.72	5	125	<5	1.43	<1	8	21	137 0.01	2.39	20	0.52	654	646 0.065	0.05	17	850	20	<5	<20	142	0.02	<10	35	<10	21	80
86	G46571	0.3 1.24	15	80	<5	1.09	<1	19	127	442 0.04	4.12	<10	1.25	243	1113 0.111	0.05	57	620	20	<5	<20	37	0.11	<10	166	<10	13	46
87	G46572	0.3 1.15	15	55	<5	1.12	<1	19	150	472 0.05	4.62	<10	1.10	212	1177 0.118	0.08	71	520	18	<5	<20	25	0.10	<10	150	<10	9	34
88	G46573	0.2 1.33	15	85	<5	0.89	<1	14	195	261 0.03	3.48	<10	1.16	212	1098 0.110	0.08	39	640	20	<5	<20	35	0.16	<10	139	<10	16	31
89	G46574	0.2 1.52	<5	95	<5	1.14	<1	19	84	369 0.04	4.50	<10	1.31	331	400 0.040	0.06	15	2050	20	<5	<20	69	0.16	<10	106	<10	12	50
90	G46575	<0.2 1.43	10	105	<5	0.77	<1	15	174	207 0.02	3.46	<10	1.30	255	548 0.055	0.09	38	970	22	<5	<20	34	0.21	<10	141	<10	9	41
91	G46576	<0.2 1.34	10	85	<5	1.23	<1	13	180	237 0.02	3.22	<10	1.27	238	1024 0.102	0.07	41	500	20	<5	<20	34	0.14	<10	135	<10	12	39
92	G46577	0.2 1.50	10	80	<5	0.89	<1	15	221	281 0.03	3.56	<10	1.40	244	747 0.075	0.07	45	470	18	<5	<20	35	0.16	<10	166	<10	10	39
93	G46578	0.2 1.53	20	80	<5	0.73	<1	17	170	452 0.05	4.27	<10	1.55	278	595 0.060	0.07	47	470	18	<5	<20	45	0.17	<10	176	<10	11	40
94	G46579	0.2 1.54	10	100	<5	0.90	<1	15	233	310 0.03	3.65	<10	1.33	254	1244 0.124	0.08	44	500	24	<5	<20	38	0.18	<10	154	<10	16	37
95	G46581	<0.2 1.40	20	80	<5	1.90	<1	12	120	281 0.03	3.03	<10	0.83	241	2245 0.224	0.04	33	530	24	<5	<20	58	0.08	<10	84	<10	9	37
96	G46582	0.2 0.83	45	55	<5	1.50	<1	12	115	348 0.03	2.75	<10	0.41	148	2835 0.284	0.02	23	510	18	<5	<20	47	<0.01	<10	21	<10	4	51
97	G46583	0.3 0.66	25	55	<5	1.39	<1	10	132	544 0.05	2.48	20	0.26	130	918 0.092	0.04	19	640	14	<5	<20	42	<0.01	<10	21	<10	8	32
98	G46584	0.2 1.23	20	70	<5	1.27	<1	13	104	460 0.05	3.16	20	0.87	207	2544 0.254	0.04	19	700	20	<5	<20	71	0.06	<10	68	<10	9	33
99	G46585	<0.2 0.05	10	25	<5	>10	<1	1	6	7 0.00	0.09	<10	>10	70	8 0.001	0.01	<1	390	<2	45	<20	135	<0.01	<10	5	<10	5	6
100	G46586	0.4 1.37	10	80	<5	0.85	<1	15	137	709 0.07	3.93	<10	1.34	292	1041 0.104	0.06	43	430	22	<5	<20	29	0.13	<10	153	<10	10	57
101	G46587	1.0 0.71	10	75	<5	0.59	<1	15	134	1459 0.15	2.74	<10	0.56	158	1125 0.112	0.06	17	730	12	<5	<20	60	0.06	<10	47	<10	7	30
102	G46588	0.2 0.85	10	70	<5	0.99	<1	10	112	375 0.04	2.83	10	0.68	204	736 0.074	0.06	13	910	14	<5	<20	90	0.06	<10	56	<10	8	29
103	G46589	0.2 0.77	5	80	<5	0.58	<1	11	148	342 0.03	3.10	<10	0.64	166	611 0.061	0.07	22	690	14	<5	<20	33	0.06	<10	71	<10	6	24
104	G46590	0.2 0.86	5	130	<5	1.34	<1	8	21	132 0.01	2.31	20	0.55	615	645 0.065	0.05	18	860	20	<5	<20	150	0.02	<10	36	<10	21	79
105	G46591	0.9 1.21	20	70	<5	0.42	<1	18	157	1600 0.16	4.48	<10	1.27	249	2565 0.256	0.06	39	280	16	<5	<20	29	0.10	<10	146	<10	3	50
106	G46592	0.2 1.29	15	80	<5	0.43	<1	16	189	347 0.03	3.54	<10	1.24	255	1540 0.154	0.06	49	420	24	5	<20	70	0.15	<10	166	<10	6	47
107	G46593	<0.2 1.34	15	90	<5	0.63	<1	13	203	291 0.03	3.17	<10	1.21	236	1985 0.198	0.06	39	320	22	<5	<20	141	0.13	<10	176	<10	8	38
108	G46594	0.3 1.38	15	90	<5	0.52	<1	17	162	420 0.04	3.77	<10	1.36	260	322 0.032	0.06	53	390	22	<5	<20	37	0.15	<10	179	<10	10	39
109	G46595	0.3 1.38	45	70	<5	1.32	<1	12	209	620 0.06	3.03	<10	0.94	225	1650 0.165	0.03	34	290	24	<5	<20	53	0.07	<10	101	<10	6	40
110	G46596	0.2 1.16	35	70	<5	1.42	<1	13	116	370 0.04	3.45	<10	0.83	210	857 0.086	0.04	33	570	20	<5	<20	52	0.07	<10	100	<10	6	36
110	G46596	0.2 1.16	35	70	<5	1.42	<1	13	116	370 0.04	3.45	<10	0.83	210	857 0.086	0.04	33	570	20	<5	<20	52	0.07	<10	100	<10	6	3

ICP CERTIFICATE OF ANALYSIS AK 2007-384

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
111	G46597	<0.2 1.50	5	85	<5	0.55	<1	14	155	234 0.02	3.47	<10	1.30	228	286	0.029	0.06	48	540	22	<5	<20	57	0.15	<10	179	<10	8	42
112	G46598	<0.2 1.75	5	115	<5	0.60	<1	18	146	310 0.03	3.96	<10	1.57	305	1070	0.107	0.07	53	770	26	<5	<20	107	0.20	<10	179	<10	15	65
113	G46599	0.2 1.33	10	90	<5	0.45	<1	16	195	350 0.04	3.57	<10	1.22	291	1402	0.140	0.07	56	430	24	<5	<20	67	0.16	<10	167	<10	12	50
114	G46601	0.4 1.48	10	85	<5	0.50	<1	17	178	339 0.03	3.81	<10	1.28	455	828	0.083	0.09	51	430	26	<5	<20	106	0.14	<10	150	<10	10	91
115	G46602	<0.2 1.41	<5	95	<5	0.32	<1	16	195	280 0.03	3.48	<10	1.32	243	715	0.071	0.10	56	360	24	<5	<20	99	0.18	<10	181	<10	11	55
116	G46603	<0.2 1.42	5	110	<5	0.39	<1	16	169	286 0.03	3.48	<10	1.30	233	1443	0.144	0.09	64	390	22	<5	<20	112	0.17	<10	183	<10	11	49
117	G46604	0.2 1.41	10	80	<5	0.92	<1	15	186	392 0.04	3.82	<10	1.34	319	726	0.073	0.06	59	520	20	<5	<20	114	0.14	<10	185	<10	12	57
118	G46605	<0.2 0.03	10	15	<5	>10	<1	1	4	5 0.00	0.09	<10	>10	72	4	0.000	< 0.01	<1	380	<2	40	<20	137	< 0.01	<10	4	<10	2	5
119	G46606	0.3 1.43	10	90	<5	1.04	<1	24	209	516 0.05	4.38	<10	1.52	325	269	0.027	0.07	46	430	24	<5	<20	96	0.14	<10	151	<10	14	63
120	G46607	0.4 1.18	10	75	<5	0.93	<1	22	166	577 0.06	4.83	<10	1.21	341	268	0.027	0.05	59	390	18	<5	<20	64	0.13	<10	145	<10	8	56
121	G46608	0.2 1.55	10	110	<5	0.67	<1	14	155	279 0.03	3.32	<10	1.42	328	901	0.090	0.08	42	450	24	<5	<20	150	0.19	<10	182	<10	16	58
122	G46609	<0.2 1.34	15	105	<5	0.78	<1	13	288	253 0.03	3.04	<10	1.13	281	823	0.082	0.09	43	420	24	<5	<20	95	0.15	<10	151	<10	16	42
123	G46610	0.2 0.74	10	130	<5	1.34	<1	8	21	134 0.01	2.71	20	0.52	666	638	0.064	0.05	17	870	22	<5	<20	143	0.02	<10	35	<10	22	75
124	G46611	0.2 1.17	45	70	<5	2.42	<1	14	99	326 0.03	3.44	<10	0.76	243	914	0.091	0.02	40	400	24	<5	<20	83	0.04	<10	69	<10	12	41
125	G46612	0.2 1.79	30	90	<5	1.39	<1	15	128	391 0.04	3.86	<10	1.27	327	418	0.042	0.03	43	550	28	<5	<20	100	0.11	<10	151	<10	12	57

QC DATA: Repeat:

1	G46483	0.8 1.26	15	60	<5	0.82	1	23	77 9	906 5.04	<10	1.06	229	680	0.08	11	550	32	<5	<20	18	0.14	<10	149	<10	10	68
10	G46491	<0.2 2.73	<5	255	<5	3.25	1	29	119	77 5.51	<10	3.08	725	<1	0.14	51	1880	18	<5	<20	124	0.15	<10	195	<10	6	70
19	G46501	0.2 0.57	5	60	<5	0.72	<1	9	103 4	425 2.95	10	Pata 43	163	620	0.06	5	860	8	<5	<20	41	0.05	<10	32	<10	5	26
36	G46518	1.1 1.52	30	95	<5	2.56	<1	41	65 16	605 8.75	<10	1.03	395	1563	0.06	6	730	30	<5	<20	47	0.08	<10	131	<10	7	75

45	G46528	0.2 1.60	15	80	<5	0.82	1	22	180	563	4.50	<10	1.60	270	988	0.08	54	510	20	5	<20	33	0.16	<10	204	<10	12	47
54	G46537	0.3 1.20	15	75	<5	0.55	<1	17	170	627	4.19	<10	1.17	245	2008	0.07	48	320	18	<5	<20	17	0.12	<10	158	<10	6	44
71	G46555	0.5 0.60	10	55	<5	1.79	<1	18	114	718	3.89	<10	0.31	180	347	0.07	8	560	18	<5	<20	56	0.03	<10	33	<10	13	34
80	G46565	<0.2 0.04	5	10	<5	>10	<1	<1	5	5	0.09	<10	>10	67	4	< 0.01	<1	360	<2	40	<20	132	<0.01	<10	4	<10	3	5
89	G46574	0.2 1.55	5	90	<5	1.13	<1	19	87	374	4.51	10	1.31	325	406	0.06	15	2090	22	<5	<20	70	0.16	<10	107	<10	12	51
106	G46592	0.2 1.35	15	90	<5	0.43	<1	16	196	358	3.56	<10	1.27	252	1577	0.07	48	410	24	<5	<20	75	0.17	<10	169	<10	8	46
115	G46602	<0.2 1.43	5	105	<5	0.33	<1	16	200	278	3.49	<10	1.31	245	715	0.11	58	380	24	<5	<20	101	0.18	<10	181	<10	13	55
Resplit:																												
1	G46483	0.8 1.26	15	45	<5	0.91	2	25	81	864	5.05	<10	1.02	237	682	0.08	14	570	36	<5	<20	19	0.14	<10	148	<10	12	76
36	G46518	1.2 1.68	35	95	<5	2.59	<1	41	68	1703	8.66	<10	1.15	405	1478	0.06	8	800	32	<5	<20	51	0.09	<10	137	<10	7	76
71	G46555	0.5 0.56	10	60	<5	1.74	<1	17	99	713	3.64	<10	0.29	173	403	0.06	6	550	18	<5	<20	56	0.03	<10	30	<10	13	30
106	G46592	<0.2 1.33	15	95	<5	0.44	<1	16	175	339	3.56	<10	1.28	253	1674	0.07	44	420	24	<5	<20	68	0.17	<10	169	<10	8	46
Standar	d:																											
PB113		11.2 0.28	50	60	<5	1.70	41	2	4	2375	1.06	<10	0.12	1537	64	0.02	3	50 5	5378	20	<20	91	0.01	<10	9	50	<1 6	923
PB113		11.8 0.29	50	60	<5	1.76	40	3	4	2355	1.16	<10	0.13	1672	71	0.02	2	70 5	5642	15	<20	86	0.01	<10	9	60	<1 6	959
PB113		11.0 0.32	50	70	<5	1.75	40	3	4	2376	1.15	<10	0.13	1668	70	0.02	4	60 5	5962	20	<20	95	0.01	<10	10	60	<1 6	973
PB113		11.0 0.28	65	65	<5	1.77	44	5	5	2357	1.09	<10	0.12	1576	68	0.02	4	60 5	5876	20	<20	85	<0.01	<10	9	60	<1 6	870

JJ/kk df/0384 XLS/07

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2007-0384

TTM Resources 3-May-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 125

Sample Type: Core
Project: CHU
Shipment #: 44

Submitted by: All North Consultants

		Мо	
ET #.	Tag #	(%)	
1	G46483	0.063	
7	G46489	0.085	
8	G46490	0.064	
13	G46494	0.079	
14	G46495	0.061	
19	G46501	0.064	
20	G46502	0.083	
21	G46503	0.055	
24	G46506	0.054	
25	G46507	0.071	
27	G46509	0.119	
28	G46510	0.064	
29	G46511	0.083	
32	G46514	0.074	
36	G46518	0.159	
37	G46519	0.118	
38	G46521	0.077	
39	G46522	0.205	
40	G46523	0.078	
41	G46524	0.286	
43	G46526	0.081	
45	G46528	0.092	

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

		Мо
ET #.	Tag #	(%)
46	G46529	0.069
47	G46530	0.066
48	G46531	0.125
49	G46532	0.063
50	G46533	0.063
51	G46534	0.055
52	G46535	0.080
53	G46536	0.118
54	G46537	0.197
55	G46538	0.160
57	G46541	0.062
58	G46542	0.068
60	G46544	0.092
62	G46546	0.135
63	G46547	0.058
66	G46550	0.065
67	G46551	0.061
69	G46553	0.060
70	G46554	0.054
72	G46556	0.083
73	G46557	0.192
74	G46558	0.058
75	G46559	0.140
76	G46561	0.091
77	G46562	0.092
81	G46566	0.063
82	G46567	0.120
83	G46568	0.099
84	G46569	0.098
85	G46570	0.066
86	G46571	0.115
87	G46572	0.112
88	G46573	0.111
90	G46575	0.053
91	G46576	0.107
92 93	G46577 G46578	0.074
93 94	G46578 G46579	0.061 0.131
94 95	G46579 G46581	0.228
95 96	G46582	0.228
96 97	G46583	0.278
97 98	G46584	0.260
100	G46586	0.260
100	940000	U. 100

Jutta Jealouse B.C. Certified Assayer

TTM Resources AK7-0384

3-May-07

		Мо
ET #.	Tag #	(%)
101	G46587	0.114
102	G46588	0.078
103	G46589	0.064
104	G46590	0.066
105	G46591	0.249
106	G46592	0.161
107	G46593	0.208
109	G46595	0.172
110	G46596	0.091
112	G46598	0.112
113	G46599	0.150
114	G46601	0.085
115	G46602	0.074
116	G46603	0.147
117	G46604	0.075
121	G46608	0.096
122	G46609	0.084
123	G46610	0.067
124	G46611	0.093
QC DAT	ΓΛ.	
	=	
Repeat:		0.062
1 24	G46483 G46506	0.062
24 38	G46521	0.052
50 51	G46521 G46534	0.079
60	G46544	0.036
74	G46544 G46558	0.057
74 87	G46572	0.037
97	G46583	0.095
107	G46593	0.093
107	G46593 G46611	0.093
124	G40011	0.093
Standa	d:	
MP2		0.282
MP2		0.283
MP2		0.282
MP2		0.278
MP2		0.281

JJ/kk XLS/07 ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2007-0363

TTM Resources 1-May-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 34

Sample Type: Core Project: CHU
Shipment #: 42

Submitted by: All North Consultants

		Мо	
ET #.	Tag #	(%)	
1	G46399	0.088	
2	G46401	0.143	
3	G46402	0.108	
4	G46403	0.075	
5	G46404	0.097	
7	G46406	0.105	
8	G46407	0.284	
9	G46408	0.091	
10	G46409	0.151	
11	G46410	0.064	
13	G46412	0.215	
14	G46413	0.090	
15	G46414	0.181	
16	G46415	0.112	
17	G46416	0.079	
18	G46417	0.072	
19	G46418	0.094	
20	G46419	0.132	
21	G46421	0.102	
22	G46422	0.158	
23	G46423	0.099	
24	G46424	0.061	
26	G46426	0.091	
27	G46427	0.142	
28	G46428	0.104 ECO TECH LABORATORY LTD.	

Jutta Jealouse

B.C. Certified Assayer

TTM Resources AK7-0363

1-May-07

		Мо	
ET #.	Tag #	(%)	
29	G46429	0.081	
30	G46430	0.065	
QC DA	<u>Γ</u> A:		
Repeat	<u> </u>		
1	G46399	0.086	
10	G46409	0.149	
20	G46419	0.135	
Standa	rd:		
MP2		0.279	
MP2		0.283	
MP2		0.283	

JJ/sa XLS/07 ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

ICP CERTIFICATE OF ANALYSIS AK 2007- 363

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 34 Sample Type: Core

Project: CHU Shipment #: 42

Submitted by: All North Consultants

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G46399	0.2 1.12	20	60	<5	1.36	<1	12	98	193 0.02	2.94	<10	1.09	201	871	0.087	0.03	46	360	14	<5	<20	37	0.08	<10	109	<10	9	36
2	G46401	0.2 1.30	10	50	<5	2.23	<1	13	113	311 0.03	3.20	<10	1.10	220	1373	0.137	0.03	40	610	16	5	<20	80	0.08	<10	95	<10	13	32
3	G46402	0.2 1.21	5	35	<5	2.78	1	16	70	380 0.04	3.53	10	0.79	257	1032	0.103	0.03	18 1	1150	22	<5	<20	105	0.03	<10	35	<10	10	51
4	G46403	<0.2 1.46	15	70	<5	1.55	<1	12	93	171 0.02	2.82	<10	1.21	197	738	0.074	0.02	46	350	20	<5	<20	64	0.09	<10	117	<10	13	37
5	G46404	0.2 1.59	15	65	<5	1.70	<1	11	127	210 0.02	2.72	<10	1.14	234	930	0.093	0.02	38	600	20	5	<20	77	0.09	<10	100	<10	13	37
6	G46405	<0.2 0.05	5	15	<5	>10	<1	<1	4	6 0.00	0.08	<10	>10	67	<1	0.000	<0.01	1	330	<2	35	<20	117	<0.01	<10	4	<10	2	6
7	G46406	0.2 1.54	140	70	<5	3.38	<1	12	113	270 0.03	3.06	<10	1.25	276	1018	0.102	0.02	48	370	14	<5	<20	75	0.06	<10	97	<10	11	36
8	G46407	0.2 1.40	15	75	<5	0.74	<1	15	163	303 0.03	3.12	<10	1.23	210	2856	0.286	0.04	51	320	16	<5	<20	73	0.12	<10	138	<10	13	35
9	G46408	<0.2 0.84	15	65	<5	1.51	<1	10	110	177 0.02	2.34	<10	0.71	208	919	0.092	0.04	39	280	12	<5	<20	51	0.06	<10	79	<10	10	43
10	G46409	0.2 0.44	5	60	<5	1.35	<1	9	96	195 0.02	2.22	20	0.27	149	1471	0.147	0.05	14	600	10	<5	<20	49	0.02	<10	24	<10	6	27
11	G46410	<0.2 0.68	<5	120	<5	1.24	<1	7	18	116 0.01	2.33	20	0.46	596	632	0.063	0.04	17	720	16	<5	<20	114	0.02	<10	30	<10	18	77
12	G46411	<0.2 0.25	<5	25	<5	0.45	<1	2	73	30 0.00	0.55	<10	0.09	52	53	0.005	0.04	4	130	6	<5	<20	24	<0.01	<10	5	<10	3	13
13	G46412	0.2 0.74	10	50	<5	1.65	<1	11	95	229 0.02	2.51	10	0.51	173	2102	0.210	0.04	19	500	14	<5	<20	54	0.03	<10	42	<10	5	26
14	G46413	0.2 0.65	10	40	<5	1.37	<1	5	93	156 0.02	1.49	<10	0.42	188	926	0.093	0.04	16	290	12	<5	<20	60	0.03	<10	36	<10	3	26
15	G46414	0.2 0.73	10	65	<5	1.55	<1	9	106	253 0.03	2.24	<10	0.50	194	1834	0.183	0.05	23	500	14	<5	<20	60	0.04	<10	55	<10	9	29
16	G46415	0.2 0.85	5	65	<5	1.54	<1	11	109	289 0.03	2.59	<10	0.68	175	1114	0.111	0.04	34	440	10	<5	<20	52	0.06	<10	77	<10	9	26
17	G46416	0.2 1.43	<5	70	<5	0.99	<1	12	130	239 0.02	2.74	<10	1.23	201	822	0.082	0.04	41	550	16	<5	<20	88	0.11	<10	118	<10	13	33
18	G46417	0.3 1.14	5	70	<5	1.03	<1	14	120	329 0.03	2.85	<10	1.01	192	767	0.077	0.05	36	510	14	<5	<20	55	0.10	<10	110	<10	12	32
19	G46418	<0.2 0.39	10	45	<5	1.67	<1	14	91	57 0.01	3.21	<10	0.15	98	972	0.097	0.05	23	670	10	<5	<20	64	<0.01	<10	8	<10	3	17
20	G46419	0.3 0.79	5	50	<5	1.27	<1	10	186	299 0.03	2.71	<10	0.61	150	1337	0.134	0.04	28	330	10	<5	<20	60	0.05	<10	63	<10	6	33
21	G46421	0.2 1.09	10	75	<5	1.65	<1	11	110	248 0.02	2.92	<10	0.87	194	1056	0.106	0.05	32	540	14	<5	<20	54	0.08	<10	97	<10	11	38
22	G46422	0.4 0.78	20	60	<5	1.95	<1	14	139	670 0.07	3.27	<10	0.51	181	1617	0.162	0.05	38	380	18	<5	<20	54	0.03	<10	54	<10	6	50
23	G46423	0.8 0.54	20	45	<5	1.36	<1	17	131	1171 0.12	3.02	<10	0.44	146	1145	0.114	0.04	34	290	8	<5	<20	32	0.02	<10	45	<10	3	35
24	G46424	0.4 0.83	15	70	<5	1.43	<1	16	78	404 0.04	3.91	<10	0.65	176	646	0.065	0.04	26	540	14	<5	<20	59	0.06	<10	66	<10	9	35
25	G46425	<0.2 0.03	<5	20	<5	>10	<1	1	4	5 0.00	0.10	<10	>10	64	<1	0.000	< 0.01	<1	350	<2	30	<20	106	<0.01	<10	3	<10	2	5

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2007-363

TTM Resources

Et #.	Tag #	Ag Al %	As	Ва	Bi (Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	G46426	0.2 1.27 1.3 0.77	20	70	<5	2.93	<1	10	90	160 0.02	2.69	<10	<u> </u>	207	942	0.094	0.03	33	390	16	<5	<20	91	0.06	<10	64	<10	7	44
27	G46427	1.3 0.77	45	55	<5	1.29	<1	22	122	1050 0.11	4.36	<10	0.66	192	1409	0.141	0.03	47	300	12	<5	<20	37	0.05	<10	62	10	5	43
28	G46428	0.3 1.29	15	65	<5	1.42	<1	11	129	210 0.02	2.84	<10	1.05	205	989	0.099	0.04	39	360	20	<5	<20	105	0.08	<10	128	<10	11	43

29	G46429	0.4 1.24	15	60	<5	0.98	<1	10	103	275	0.03	2.83	<10	0.99	218	788 0.0	79 O	0.04	26	610	20	<5	<20	99	0.07	<10	111	<10	12	38
30	G46430	<0.2 0.72	<5	120	<5	1.30	<1	7	18	122	0.01	2.45	20	0.49	604	630 0.0	33 0	0.04	16	770	14	<5	<20	118	0.02	<10	32	<10	17	79
31	G46431	0.2 0.83	5	60	<5	0.73	<1	4	103	225	0.02	1.57	<10	0.42	112	293 0.0	29 0	0.05	6	540	12	<5	<20	105	0.01	<10	19	<10	5	16
32	G46432	<0.2 1.05	10	85	<5	1.11	<1	4	64	119	0.01	1.31	<10	0.46	103	92 0.0	9 0	0.05	7	450	14	<5	<20	216	0.02	<10	21	<10	7	17
33	G46433	0.2 1.61	15	55	<5	2.34	<1	10	69	364	0.04	2.88	<10	0.82	168	221 0.0	22 0	0.05	23	640	14	10	<20	237	0.03	<10	59	<10	4	27
34	G46434	0.2 0.89	10	50	<5	1.78	<1	4	60	204	0.02	1.90	10	0.43	110	151 0.0	15 0	0.04	3	750	14	<5	<20	135	<0.01	<10	19	<10	5	22
QC DAT																														
Repeat:	•																													
1	G46399	0.2 1.19	20	60	<5	1.38	<1	12	104	198		2.97	<10	1.13	205	899	0	0.04	49	370	18	<5	<20	42	0.08	<10	112	<10	10	35
10	G46409	0.2 0.49	10	60	<5	1.39	<1	10	101	204		2.30	20	0.28	155	1494	0	0.05	14	620	10	<5	<20	54	0.02	<10	25	<10	7	27
19	G46418	<0.2 0.40	15	40	<5	1.69	<1	14	94	56		3.24	<10	0.14	98	978	0	0.04	22	680	10	<5	<20	60	<0.01	<10	8	<10	3	17
Resplit:																														
1	G46399	0.2 1.24	25	70	<5	1.37	<1	13	102	203		3.10	<10	1.17	203	880	0	0.04	50	390	16	<5	<20	36	0.08	<10	114	<10	10	36
	_																													
Standar	rd:		_		_			_	_								_		_								_			
Pb116		11.4 0.22	5	130	<5	0.84	12	2	3	2173		0.80	<10	0.07	238	24	C	0.02	2	190 6	954	15	<20	178	<0.01	<10	8	<10	<1 4	159

Jutta Jealouse

B.C. Certified Assayer

JJ/bp df/363 XLS/07

CERTIFICATE OF ASSAY AK 2007-362

TTM Resources 2-May-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 46

Sample Type: Core **Project: CHU Shipment #: 43**

Submitted by: All North Consultants

		Мо	
ET #.	Tag #	(%)	
3	G46437	0.086	
4	G46438	0.079	
6	G46441	0.056	
7	G46442	0.093	
11	G46446	0.086	
12	G46447	0.151	
15	G46450	0.065	
16	G46451	0.097	
17	G46452	0.066	
18	G46453	0.096	
19	G46454	0.084	
30	G46466	0.055	
32	G46468	0.061	
34	G46470	0.066	
41	G46477	0.050	
42	G46478	0.253	
46	G46482	0.055	
QC DAT	Г А :		
Repeat:	= :		
3	G46437	0.084	
18	G46453	0.098	
Standar	rd:		
MP2		0.282	
MP2		0.285	
MP2		0.280	
			ECO TECH LABORATORY LTD.
JJ/sa			Jutta Jealouse
XLS/07			B.C. Certified Assayer
			•

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 **ICP CERTIFICATE OF ANALYSIS AK 2007-362**

TTM Resources

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 46

Sample Type: Core
Project: CHU
Shipment #: 43

Submitted by: All North Consultants

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	6 Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G46435	0.7 0.70	<5	40	<5	0.29	<1	10	85	643 0.06	2.55	10	0.44	152	132	0.013	0.07	5	840	<2	<5	<20	26	0.08	<10	42	<10	12	32
2	G46436	0.3 0.58	<5	50	<5	0.28	<1	8	68	330 0.03	3 2.14	<10	0.29	130	295	0.030	0.05	4	640	2	<5	<20	21	0.08	<10	47	<10	18	24
3	G46437	0.2 0.51	<5	45	<5	0.44	<1	11	68	223 0.02	2.19	<10	0.28	144	842	0.084	0.05	3	470	<2	<5	<20	25	0.08	<10	55	<10	18	22
4	G46438	0.4 0.78	<5	45	<5	0.48	<1	20	75	569 0.06	4.28	<10	0.61	276	753	0.075	0.08	8	740	<2	<5	<20	20	0.17	<10	121	<10	23	38
5	G46439	0.6 0.78	<5	50	<5	0.38	1	24	62	983 0.10	6.06	<10	0.65	254	212	0.021	0.09	8	610	<2	<5	<20	11	0.15	<10	158	<10	18	47
6	G46441	0.5 0.71	<5	45	<5	0.68	<1	27	76	790 0.08	5.05	<10	0.44	258	542	0.054	0.06	7	610	2	<5	<20	11	0.14	<10	117	<10	18	38
7	G46442	0.6 0.80	<5	45	<5	0.72	<1	31	72	856 0.09	5.40	<10	0.64	258	895	0.090	0.06	8	580	6	<5	<20	10	0.16	<10	131	<10	14	49
8	G46443	1.0 1.26	<5	50	<5	0.52	1	19	75	945 0.09	5.12	<10	1.15	381	278	0.028	0.11	6	590	<2	<5	<20	24	0.17	<10	130	<10	15	65
9	G46444	0.5 1.35	<5	60	<5	0.64	1	20	74	544 0.05	4.55	<10	1.44	483	326	0.033	0.10	7	650	<2	<5	<20	42	0.22	<10	120	<10	21	75
10	G46445	<0.2 0.05	10	15	<5	>10	<1	1	4	9 0.00	0.09	<10	>10	72	<1	0.000	<0.01	<1	320	<2	40	<20	117	<0.01	<10	4	<10	2	7
11	G46446	0.3 1.45	<5	55	<5	1.06	1	20	82	590 0.06	5.03	<10	1.58	513	858	0.086	0.08	9	550	6	<5	<20	30	0.19	<10	132	<10	18	83
12	G46447	1.4 1.00	5	45	<5	2.42	4	24	64	1014 0.10	6.75	<10	0.99	609	1508	0.151	0.07	8	460	114	<5	<20	65	0.07	<10	91	<10	3	320
13	G46448	0.4 1.79	<5	50	<5	0.96	<1	27	58	760 0.08	5.53	<10	1.65	601	185	0.019	0.09	8	670	<2	<5	<20	18	0.25	<10	183	<10	26	91
14	G46449	0.5 1.72	<5	65	<5	0.75	<1	30	108	1234 0.12	7.40	<10	1.74	505	402	0.040	0.13	7	560	<2	<5	<20	27	0.26	<10	185	<10	16	87
15	G46450	0.2 0.72	<5	125	<5	1.29	<1	7	18	135 0.0	2.64	20	0.55	624	631	0.063	0.05	15	740	14	<5	<20	131	0.02	<10	37	<10	17	68
16	G46451	0.5 1.83	<5	65	<5	0.59	1	27	76	1191 0.12	6.81	<10	1.89	484	939	0.094	0.13	9	600	<2	<5	<20	26	0.26	<10	210	<10	15	83
17	G46452	0.6 1.25	<5	70	<5	0.88	1	33	66	1319 0.13	3 7.67	<10	1.12	395	630	0.063	0.09	6	490	2	<5	<20	86	0.22	<10	170	<10	14	59
18	G46453	0.5 1.50	<5	65	<5	0.80	<1	33	67	1163 0.12	7.08	<10	1.53	447	950	0.095	0.10	8	570	<2	<5	<20	25	0.27	<10	199	<10	15	70
19	G46454	0.2 1.35	<5	65	<5	0.62	1	33	75	1179 0.12	7.07	<10	1.51	429	795	0.080	0.08	8	510	6	<5	<20	15	0.27	<10	194	<10	18	85
20	G46455	0.5 1.21	<5	55	<5	0.56	<1	28	68	854 0.09	6.49	<10	1.37	396	432	0.043	0.08	8	600	2	<5	<20	12	0.26	<10	175	<10	19	91
21	G46456	0.8 1.51	<5	55	<5	0.86	7	29	85	1313 0.13	7.38	<10	1.45	494	305	0.031	0.07	11	470	<2	<5	<20	16	0.24	<10	191	<10	16	264
22	G46457	0.7 1.58	<5	70	<5	0.69	2	32	70	1194 0.12	7.95	<10	1.68	435	141	0.014	0.09	9	520	<2	<5	<20	19	0.25	<10	204	<10	16	85
23	G46458	0.5 1.36	<5	55	<5	0.68	1	27	48	940 0.09	6.56	<10	1.32	423	125	0.012	0.12	9	610	<2	<5	<20	20	0.25	<10	195	<10	18	78
24	G46459	0.6 1.26	<5	60	<5	0.74	1	31	56	1159 0.12	7.27	<10	1.12	416	346	0.035	0.11	11	570	<2	<5	<20	23	0.24	<10	190	<10	13	75
25	G46461	0.4 1.30	<5	65	<5	0.65	1	26	48	806 0.08	6.33	<10	1.29	485	184	0.018	0.09	9	580	2	<5	<20	51	0.25	<10	196	<10	18	87
26	G46462	0.6 1.12	<5	60	<5	0.58	2	26	60	1001 0.10	6.61	<10	1.14	376	176	0.018	0.09	13	570	2	<5	<20	19	0.23	<10	162	<10	16	68
27	G46463	0.7 1.35	<5	55	<5	0.56	1	24	56	1347 0.13	7.04	<10	1.38	406	300	0.030	0.09	8	500	<2	<5	<20	14	0.22	<10	179	<10	12	68
28	G46464	0.8 1.59	<5	50	<5	1.28	1	27	57	1159 0.12	6.31	<10	1.52	436	228	0.023	0.08	8	600	<2	<5	<20	23	0.21	<10	186	<10	18	58
29	G46465	<0.2 0.05	10	10	<5	>10	<1	<1	4	7 0.00	0.10	<10	>10	73	<1	0.000	0.01	<1	480	<2	35	<20	129	<0.01	<10	5	<10	2	6
30	G46466	1.1 1.34	<5	45	<5	1.45	1	26	62	1162 0.12	6.07	10	1.12	406	563	0.056	0.05	10	600	<2	<5	<20	31	0.13	<10	115	<10	9	49

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2007- 362

TTM Resources

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La Mg %	Mn	Mo Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
31	G46467	1.6 1.68	10	50	<5	1.52	1	25	66	1663 0.17	6.78	<pq<sub>ae1,27</pq<sub>	464	229 0.023	0.06	8	450	<2	<5	<20	45	0.18	<10	163	<10	11	53
32	G46468	1.5 1.85	35	55	<5	1.71	<1	31	43	1437 0.14	7.99	<10 1.31	406	591 0.059	0.03	10	480	<2	<5	<20	35	0.09	<10	161	<10	5	62

33	G46469	1.0 2.11	<5	55	<5	1.72	2	26	55 1	081 0).11	6.73	<10	1.85	394	300	0.030	0.05	9	610	<2	<5	<20	23	0.16	<10	215	<10	12	65
34	G46470	<0.2 0.69	<5	130	<5	1.33	<1	7	18	126 0	.01	2.71	20	0.53	638	630	0.063	0.04	15	730	16	<5	<20	126	0.02	<10	32	<10	17	68
35	G46471	0.8 0.74	<5	30	<5	0.30	<1	11	78	692 0	.07	2.57	10	0.45	150	98	0.010	0.07	5	870	2	<5	<20	27	0.07	<10	43	<10	13	32
36	G46472	0.6 1.77	10	50	<5	1.74	<1	28	100	994 0	.10	6.25	<10	1.59	391	398	0.040	0.07	15	660	<2	<5	<20	30	0.18	<10	212	<10	12	71
37	G46473	0.9 2.03	<5	60	<5	1.03	<1	33	89 1	261 0).13	7.40	<10	2.17	452	416	0.042	0.08	18	620	<2	<5	<20	18	0.25	<10	241	<10	15	87
38	G46474	0.9 1.92	<5	55	<5	1.17	<1	26	104 1	000 0	.10	6.00	<10	1.88	442	188	0.019	0.10	15	790	4	<5	<20	28	0.24	<10	209	<10	25	86
39	G46475	0.8 1.29	<5	55	<5	0.63	<1	30	105 1	061 0).11	6.35	<10	1.22	263	219	0.022	0.09	12	710	<2	<5	<20	32	0.25	<10	174	<10	21	48
40	G46476	0.8 1.44	<5	45	<5	1.04	1	24	51	946 0	.09	5.54	<10	1.30	381	218	0.022	0.10	8	700	<2	<5	<20	27	0.23	<10	202	<10	18	52
41	G46477	0.9 1.66	<5	60	<5	1.02	1	33	110 1	236 0	.12	7.56	<10	1.49	568	499	0.050	0.11	10	540	4	<5	<20	57	0.24	<10	166	<10	16	83
42	G46478	0.4 1.98	<5	55	<5	1.64	<1	25	105	658 0	.07	5.41	<10	2.29	560	2472	0.247	0.09	8	590	10	<5	<20	73	0.32	<10	219	<10	22	116
43	G46479 *1 of 2	<0.2 3.23	10	140	<5	3.68	1	37	208	77 0	.01	5.84	<10	2.81	631	15	0.002	0.26	93 ′	1710	2	5	<20	203	0.14	<10	185	<10	6	57
44	G46479 *2 of 2	<0.2 3.02	10	165	<5	3.53	<1	35	215	87 0	.01	5.45	<10	2.53	581	1	0.000	0.26	97 ′	1570	10	<5	<20	207	0.14	<10	171	<10	9	52
45	G46481	0.3 1.58	5	40	<5	1.54	<1	26	71	646 0	.06	5.13	<10	1.26	314	242	0.024	0.06	16	940	<2	<5	<20	55	0.12	<10	146	<10	19	72
46	G46482	0.5 1.11	<5	45	<5	0.51	<1	19	56	584 0	.06	4.49	<10	0.96	263	538	0.054	0.06	7 ′	1070	4	<5	<20	14	0.12	<10	115	<10	24	49
QC DAT	<u> </u>																													
QC DAT																														
		0.7 0.76	<5	35	<5	0.29	<1	11	83	712		2.56	10	0.47	153	136		0.07	6	810	<2	<5	<20	28	0.08	<10	44	<10	12	31
	:	0.7 0.76 <0.2 0.05	<5 10	35 15	<5 <5	0.29 >10	<1 <1	11 <1	83 5	712 11		2.56 0.10	10 <10	0.47 >10	153 72	136 3		0.07 <0.01	-	810 310	<2 <2	<5 45	<20 <20	_	0.08 <0.01	<10 <10	44 4	<10 <10	12 1	31 7
Repeat:	G46435		_				_			11									-			-	-	_		_		-	12 1 13	31 7 73
Repeat: 1 10	G46435 G46445	<0.2 0.05	10	15	<5	>10	_	<1	5 69 1	11		0.10	<10	>10	72	3		<0.01	<1	310	<2	45	<20	106	<0.01	<10	4	<10	1	7
1 10 19 36	G46435 G46445 G46454 G46472	<0.2 0.05 0.3 1.50	10 <5	15 65	<5 <5	>10 0.52	<1 1	<1 32	5 69 1	11 299		0.10 7.27	<10 <10	>10 1.64	72 413	3 796		<0.01 0.10	<1 8	310 480	<2 4	45 <5	<20 <20	106 16	<0.01 0.27	<10 <10	4 199	<10 <10	1 13	7 73
1 10 19	G46435 G46445 G46454 G46472	<0.2 0.05 0.3 1.50	10 <5	15 65	<5 <5	>10 0.52	<1 1	<1 32 30	5 69 1 108	11 299		0.10 7.27	<10 <10	>10 1.64	72 413	3 796		<0.01 0.10	<1 8	310 480	<2 4	45 <5	<20 <20	106 16	<0.01 0.27	<10 <10	4 199	<10 <10	1 13	7 73
1 10 19 36	G46435 G46445 G46454 G46472	<0.2 0.05 0.3 1.50 0.5 1.60	10 <5 10	15 65 45	<5 <5 <5	>10 0.52 1.86	<1 1	<1 32	5 69 1 108	11 299 951 689		0.10 7.27 6.57	<10 <10 <10	>10 1.64 1.45	72 413 407	3 796 408		<0.01 0.10 0.06	<1 8	310 480 720	<2 4 2	45 <5 <5	<20 <20 <20	106 16 25	<0.01 0.27 0.19	<10 <10 <10	4 199 207	<10 <10 <10	1 13 16	7 73 85
Repeat: 1 10 19 36 Resplit: 1	G46435 G46445 G46454 G46472 G46435 G46472	<0.2 0.05 0.3 1.50 0.5 1.60 0.5 0.81	10 <5 10	15 65 45	<5 <5 <5	>10 0.52 1.86	<1 1 <1	<1 32 30	5 69 1 108	11 299 951 689		0.10 7.27 6.57	<10 <10 <10	>10 1.64 1.45 0.59	72 413 407 179	3 796 408	,	<0.01 0.10 0.06	<1 8 14	310 480 720 790	<2 4 2 <2	45 <5 <5 <5	<20 <20 <20 <20	106 16 25	<0.01 0.27 0.19	<10 <10 <10	4 199 207 45	<10 <10 <10	1 13 16	7 73 85

0.82 <10 0.08 230

22

0.02

2 190 6964

10.9 0.28

<5

< 5 0.92

3

2 2165

ECO TECH LABORATORY LTD.

0.01 <10

10 <10

1 4238

Jutta Jealouse B.C. Certified Assayer

15 <20 188

JJ/kk df/362

Pb116

XLS/07

^{*} Two samples labelled with the same tag #

CERTIFICATE OF ASSAY AK 2007-361

TTM Resources 2-May-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 74

Sample Type: Core Project: CHU
Shipment #: 41

Submitted by: All North Consultants

		Мо
ET #.	Tag #	(%)
1	G46322	0.053
2	G46323	0.069
3	G46324	0.055
5	G46326	0.077
9	G46330	0.064
12	G46333	0.050
15	G46336	0.055
17	G46338	0.059
18	G46339	0.098
20	G46342	0.059
24	G46346	0.124
25	G46347	0.085
26	G46348	0.056
27	G46349	0.089
28	G46350	0.064
31	G46353	0.078
33	G46355	0.066
34	G46356	0.053
40	G46363	0.102
44	G46367	0.057
46	G46369	0.054
47	G46370	0.063
48	G46371	0.058
49	G46372	0.090
50	G46373	0.071

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

TTM Resources AK7-361

1 1 141 176	530ulces AN		2-11/ay-01
		Mo	
ET #.	Tag #	(%)	
51	G46374	0.066	
53	G46376	0.052	
55	G46378	0.101	
56	G46379	0.050	
59	G46383	0.082	
60	G46384	0.052	
62	G46386	0.063	
63	G46387	0.053	
64	G46388	0.071	
66	G46390	0.064	
68	G46392	0.053	
69	G46393	0.074	
70	G46394	0.075	
71	G46395	0.078	
72	G46396	0.111	
73	G46397	0.110	
74	G46398	0.087	
QC DAT	_		
Repeat:			
1	G46322	0.053	
20	G46342	0.059	
25	G46347	0.081	
44	G46367	0.056	
56	G46379	0.048	
68	G46392	0.054	
70	G46394	0.073	
	_		
Standar	d:		
MP2		0.282	
MP2		0.285	
MP2		0.280	
MP2		0.279	
MP2		0.286	
MP2		0.283	

JJ/sa XLS/07 **ECO TECH LABORATORY LTD.**

Jutta Jealouse B.C. Certified Assayer

ICP CERTIFICATE OF ANALYSIS AK 2007- 361

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

120011

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

TTM Resources

520-700W Pender Street Vancouver, BC

V6C 1G8

Attention: Ken MacDonald

No. of samples received: 74

Sample Type: Core Project: CHU Shipment #: 41

Submitted by: All North Consultants

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu	% Fe %	La	Mg %	Mn	Mo Mo%	Na %	Ni P	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G46322	0.7 1.03	<5	50	<5	0.64	<1	19	59	773 0.0	3 4.55	<10	0.97	315	508 0.051	0.08	6 650	6	<5	<20	72	0.17	<10	105	<10	17	85
2	G46323	0.5 1.41	<5	45	<5	1.00	<1	23	56	788 0.0	5.40	<10	1.48	456	686 0.069	0.08	5 600	4	<5	<20	77	0.19	<10	118	<10	13	74
3	G46324	0.6 1.18	<5	45	<5	1.47	1	30	76	1090 0.1	6.68	<10	1.21	338	554 0.055	0.07	7 620	<2	<5	<20	68	0.15	<10	92	<10	10	62
4	G46325	<0.2 0.02	10	20	<5	>10	<1	2	5	4 0.0	0.10	<10	>10	79	<1 0.000	<0.01	<1 490	<2	30	<20	103	<0.01	<10	2	<10	2	7
5	G46326	0.2 0.47	<5	50	<5	0.70	<1	10	83	276 0.0	3 2.39	10	0.38	177	793 0.079	0.05	5 870	8	<5	<20	48	0.09	<10	32	<10	8	28
6	G46327	<0.2 2.19	10	100	30	3.09	<1	31	160	121 0.0	1 4.96	<10	1.89	496	146 0.015	0.18	65 1430	6	<5	<20	259	0.13	<10	143	<10	7	43
7	G46328	<0.2 2.52	<5	175	<5	3.27	1	35	173	53 0.0	5.72	<10	2.23	485	<1 0.000	0.22	66 1850	4	<5	<20	216	0.15	<10	174	<10	5	49
8	G46329	<0.2 2.63	5	190	5	3.28	<1	34	174	44 0.0	5.81	<10	2.40	566	<1 0.000	0.22	75 1780	10	<5	<20	178	0.13	<10	174	<10	6	52
9	G46330	0.2 0.72	<5	125	<5	1.36	<1	8	19	130 0.0	1 2.69	20	0.45	634	655 0.066	0.04	15 740	12	<5	<20	124	0.02	<10	33	<10	18	75
10	G46331	<0.2 2.20	5	110	<5	3.59	<1	29	188	59 0.0	1 4.68	<10	2.18	576	71 0.007	0.15	87 1320	8	<5	<20	150	0.06	<10	130	<10	5	43
11	G46332	0.2 0.40	<5	35	<5	1.97	<1	8	95	160 0.0	2.51	10	0.16	207	98 0.010	0.05	5 830	4	<5	<20	90	<0.01	<10	16	<10	5	29
12	G46333	0.2 0.45	<5	45	<5	0.96	<1	9	81	261 0.0	3 2.31	10	0.32	189	532 0.053	0.04	5 710	4	<5	<20	39	0.05	<10	24	<10	5	26
13	G46334	0.2 0.42	<5	35	<5	3.31	<1	9	74	270 0.0	3.16	<10	0.17	302	196 0.020	0.05	5 760	10	<5	<20	76	<0.01	<10	9	<10	1	28
14	G46335	0.2 0.53	<5	50	<5	1.31	<1	9	77	242 0.0	2 2.32	20	0.25	206	127 0.013	0.03	6 940	4	<5	<20	45	0.02	<10	18	<10	5	31
15	G46336	0.3 0.50	<5	45	<5	1.43	<1	8	109	246 0.0	2 2.28	20	0.23	212	572 0.057	0.03	6 820	4	<5	<20	47	0.02	<10	18	<10	5	34
16	G46337	0.2 0.48	<5	40	<5	0.83	<1	9	81	247 0.0	2 2.23	20	0.31	181	345 0.035	0.04	5 770	<2	<5	<20	39	0.05	<10	23	<10	5	23
17	G46338	<0.2 0.38	<5	55	<5	0.65	<1	8	120	211 0.0	2.06	10	0.24	194	631 0.063	0.05	6 570	2	<5	<20	30	0.05	<10	20	<10	4	17
18	G46339	0.2 0.42	<5	40	<5	0.83	<1	9	100	221 0.0	2 2.12	<10	0.31	234	962 0.096	0.04	5 790	4	<5	<20	35	0.07	<10	22	<10	5	25
19	G46341	0.5 0.55	<5	40	<5	1.08	<1	18	84	454 0.0	5 3.82	10	0.44	256	391 0.039	0.05	6 710	4	<5	<20	43	0.08	<10	35	<10	5	37
20	G46342	0.4 0.47	<5	30	<5	0.94	<1	13	67	409 0.0	4 3.58	10	0.36	250	610 0.061	0.04	6 790	4	<5	<20	38	0.06	<10	31	<10	4	30
21	G46343	0.2 0.40	<5	40	<5	0.80	<1	10	116	218 0.0	2.20	10	0.28	260	347 0.035	0.04	5 830	6	<5	<20	36	0.07	<10	24	<10	7	27
22	G46344	0.2 0.39	<5	45	<5	0.78	<1	10	70	241 0.0	2 2.23	<10	0.32	206	222 0.022	0.04	4 840	6	<5	<20	32	0.07	<10	24	<10	7	29
23	G46345	<0.2 0.03	10	15	<5	>10	<1	<1	5	4 0.0	0.09	<10	>10	74	<1 0.000	<0.01	<1 420	<2	35	<20	115	<0.01	<10	3	<10	<1	6
24	G46346	0.3 0.39	<5	45	<5	1.03	<1	10	77	246 0.0		<10	0.25	227	1206 0.121	0.03	4 740	4	<5	<20	36	0.05	<10	20	<10	3	24
25	G46347	0.3 0.86	10	35	<5	1.38	<1	11	77	284 0.0	3.28	10	0.42	198	848 0.085	0.02	5 910	8	<5	<20	42	<0.01	<10	9	<10	<1	31
26	G46348	0.2 0.95	10	50	<5	2.96	<1	11	80	295 0.0	3.00	20	0.33	330	568 0.057	0.03	5 1160	12	<5	<20	93	<0.01	<10	13	<10	6	40
27	G46349	0.2 0.70	<5	45	<5	2.99	<1	10	43	308 0.0	3 2.99	10	0.23	336	860 0.086	0.03	6 1110	10	<5	<20	71	<0.01	<10	8	<10	5	39
28	G46350	0.2 0.71	<5	130	<5	1.38	<1	8	19	126 0.0	1 2.75	20	0.44	652	632 0.063	0.03	17 780	12	<5	<20	120	0.02	<10	33	<10	18	81
29	G46351	0.2 0.66	<5	45	<5	2.57	<1	10	40	271 0.0	3 2.79	10	0.26	268	222 0.022	0.02	3 1050	12	<5	<20	91	<0.01	<10	7	<10	6	33
30	G46352	0.2 0.58	<5	40	<5	3.47	<1	10	58	274 0.0	3.11	<10	0.20	377	132 0.013	0.03	5 1110	10	<5	<20	129	<0.01	<10	9	<10	6	43

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2007-361

TTM Resources

Et #.	Tag #	Ag Al %	As	Ва	Ві С	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La Mg %	Mn	Мо	Mo%	Na %	Ni F	Pb	Sb	Sn	Sr	Ti %	U	٧	w	Υ	Zn
31	G46353	0.2 0.40 0.3 0.46	10	30	<5 2	2.95	<1	12	71	262 0.03	3.23	10 p.0.23	403	851	0.085	0.03	4 950	8 (<5	<20	107	0.02	<10	14	<10	5	31
32	G46354	0.3 0.46	<5	25	<5	1.42	<1	11	116	304 0.03	3.04	10 0.35	229	286	0.029	0.04	6 830	6	<5	<20	61	0.05	<10	28	<10	7	42
33	G46355	0.4 0.71	10	35	<5 3	3.08	2	15	62	450 0.05	4.28	10 0.49	401	662	0.066	0.03	7 1010) 12	<5	<20	106	0.02	<10	35	<10	10	250

34	G46356	0.4 0.47	20	35	<5	3.11	<1	17	125	374 0	0.04	4.20	<10	0.22	399	533	0.053	0.02	8	830	8	<5	<20	53	0.02	<10	16	<10	2	85
35	G46357	0.4 0.88	<5	35	<5	1.08	<1	29	46	724 0	0.07	6.16	<10	0.86	289	368	0.037	0.04	8	750	8	<5	<20	59	0.19	<10	106	<10	14	64
36	G46358	0.4 0.71	<5	40	<5	0.58	<1	26	76	613 0	0.06	5.89	<10	0.68	220	185	0.019	0.05	7	720	10	<5	<20	21	0.18	<10	81	<10	14	57
37	G46359	0.3 0.39	<5	35	<5	1.03	<1	13	94	245 0	0.02	2.71	<10	0.30	263	214	0.021	0.04	7	960	6	<5	<20	54	0.08	<10	30	<10	9	29
38	G46361	0.3 0.56	<5	35	<5	1.25	<1	17	57	372 0	0.04	3.91	<10	0.51	248	268	0.027	0.05	5	930	6	<5	<20	59	0.11	<10	47	<10	10	43
39	G46362	0.4 0.75	<5	35	<5	0.84	<1	22	71	456 0	0.05	4.70	<10	0.73	277	409	0.041	0.06	6	850	10	<5	<20	35	0.17	<10	76	<10	11	60
40	G46363	0.4 0.61	5	40	<5	2.42	1	28	58	558 0	0.06	4.80	<10	0.54	302	994	0.099	0.05	7	980	4	<5	<20	37	0.13	<10	58	<10	6	42
41	G46364	0.4 1.01	15	50	<5	1.91	<1	24	79	642 0	0.06	5.79	<10	1.07	404	295	0.029	0.06	7	620	14	<5	<20	25	0.23	<10	128	<10	19	74
42	G46365	<0.2 0.03	5	15	<5	>10	<1	<1	5	8 0	0.00	0.10	<10	>10	76	1	0.000	<0.01	<1	410	<2	35	<20	101	< 0.01	<10	3	<10	3	7
43	G46366	0.4 0.98	<5	40	<5	1.63	<1	29	81	675 0	0.07	6.06	<10	1.05	377	209	0.021	0.06	7	630	14	<5	<20	27	0.22	<10	120	<10	19	79
44	G46367	0.4 0.66	<5	30	<5	1.54	1	18	81	578 0	0.06	4.96	<10	0.56	322	549	0.055	0.03	8	410	10	<5	<20	21	0.09	<10	64	<10	11	66
45	G46368	0.4 0.59	5	40	<5	0.77	<1	11	80	280 0	0.03	2.83	<10	0.47	225	399	0.040	0.04	5	510	10	<5	<20	16	0.08	<10	53	<10	13	48
46	G46369	0.5 0.68	<5	35	<5	1.42	<1	14	78	374 0	0.04	3.59	<10	0.53	316	536	0.054	0.04	7	510	10	<5	<20	24	0.08	<10	55	<10	9	46
47	G46370	0.2 0.67	<5	120	<5	1.44	1	8	19	114 0	0.01	2.68	10	0.41	672	641	0.064	0.03	18	810	12	<5	<20	105	0.02	<10	33	<10	16	94
48	G46371	1.0 0.86	<5	30	<5	1.07	<1	24	110	902 0	0.09	5.09	<10	0.33	347	565	0.057	0.06	9	470	8	<5	<20	30	0.05	<10	40	<10	8	45
49	G46372	0.7 0.46	10	35	<5	0.93	<1	17	102	563 0	0.06	3.84	<10	0.28	249	886	0.089	0.03	8	510	8	<5	<20	20	0.04	<10	39	<10	10	54
50	G46373	0.4 0.40	<5	35	<5	1.26	<1	13	73	445 0	0.04	3.47	<10	0.24	216	711	0.071	0.03	7	560	8	<5	<20	21	0.03	<10	35	<10	10	40
51	G46374	0.3 0.42	<5	30	<5	1.00	<1	12	77	356 0	0.04	3.01	<10	0.26	172	656	0.066	0.03	6	720	10	<5	<20	23	0.04	<10	30	<10	9	35
52	G46375	0.2 0.52	<5	40	<5	0.73	<1	9	78	194 0	0.02	2.68	<10	0.38	176	225	0.023	0.04	6	980	10	<5	<20	30	0.07	<10	34	<10	8	34
53	G46376	0.4 0.89	<5	35	<5	1.09	<1	17	196	519 0	0.05	4.33	<10	0.86	252	554	0.055	0.06	64	560	8	<5	<20	29	0.13	<10	157	<10	15	51
54	G46377	0.3 0.72	10	40	<5	0.77	<1	14	97	311 0	0.03	3.47	<10	0.66	183	352	0.035	0.05	38	790	10	<5	<20	21	0.11	<10	118	<10	14	34
55	G46378	0.4 1.12	25	45	<5	0.94	<1	19	180	445 0	0.04	4.73	<10	1.13	228	1022	0.102	0.05	101	360	12	<5	<20	20	0.15	<10	240	<10	16	39
56	G46379	0.4 0.60	25	35	<5	1.88	<1	17	118	416 0	0.04	4.08	<10	0.35	215	498	0.050	0.03	45	660	14	<5	<20	27	0.02	<10	53	<10	8	46
57	G46381	0.6 0.78	<5	30	<5	1.26	<1	20	128	589 0	0.06	4.70	<10	0.74	264	291	0.029	0.05	11	690	8	<5	<20	21	0.09	<10	83	<10	14	54
58	G46382	0.4 0.56	5	40	<5	1.18	<1	16	79	485 0	0.05	4.15	<10	0.47	190	289	0.029	0.04	11	640	8	<5	<20	20	0.07	<10	59	<10	14	42
59	G46383	0.4 0.50	5	25	<5	0.78	<1	20	97	453 0		3.78	<10	0.36	154	840	0.084	0.04	11	470	6	<5	<20	13	0.04	<10	41	<10	10	33
60	G46384	0.4 0.39	<5	30	<5	1.71	<1	19	100	504 0	0.05	3.91	<10	0.36	211	535	0.053	0.04	11	490	10	<5	<20	42	0.03	<10	35	<10	12	41
61	G46385	<0.2 0.04	15	10	<5	>10	<1	<1	4	7 0	0.00	0.10	<10	>10	68	1	0.000	<0.01	1	380	<2	40	<20	112	<0.01	<10	4	<10	2	6
62	G46386	0.2 0.65	<5	30	<5	2.21	<1	14	114	392 0	0.04	4.04	<10	0.65	334	639	0.064	0.05	42	510	14	<5	<20	34	0.06	<10	90	<10	9	68
63	G46387	0.2 1.11	<5	55	<5	0.68	<1	14	158	265 0	0.03	3.62	<10	1.19	254	560	0.056	0.05	43	490	10	<5	<20	13	0.18	<10	176	<10	17	45
64	G46388	0.2 0.67	<5	35	<5	0.67	<1	19	105	237 0	0.02	3.97	<10	0.67	183	700	0.070	0.04	22	820	10	<5	<20	17	0.09	<10	87	<10	11	36
65	G46389	0.3 0.82	5	40	<5	1.33	<1	17	124	384 0	0.04	4.36	<10	0.85	230	384	0.038	0.04	40	730	14	<5	<20	34	0.09	<10	123	<10	12	48
66	G46390	0.2 0.68	<5	135	<5	1.49	<1	8	20	115 0	0.01	2.57	10	0.42	690	648	0.065	0.03	20	870	16	<5	<20	108	0.02	<10	34	<10	17	80
67	G46391	0.3 0.96	5	40	<5	1.05	<1	14	166	306 0	0.03	3.80	<10	0.97	256	412	0.041	0.05	45	530	12	<5	<20	24	0.10	<10	140	<10	11	52
68	G46392	0.2 0.76	5	30	<5	1.08	<1	16	115	236 0	0.02	4.13	<10	0.78	193	561	0.056	0.03	35	780	10	<5	<20	32	0.07	<10	95	<10	11	41
69	G46393	0.2 0.74	30	35	<5	2.19	<1	15	131	295 0	0.03	3.98	<10	0.66	234	757	0.076	0.03	60	370	16	<5	<20	63	0.01	<10	58	<10	6	49
70	G46394	0.3 0.94	15	40	<5	0.86	<1	16	154	309 0	0.03	3.90	<10	0.92	214	749	0.075	0.04	59	550	12	<5	<20	21	0.11	<10	148	<10	13	45

ICP CERTIFICATE OF ANALYSIS AK 2007- 361

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
71	G46395	0.3 1.04	10	45	<5	0.68	<1	15	149	349 0.03	3.80	<10	1.06	242	785	0.079	0.04	40	370	18	<5	<20	16	0.13	<10	154	<10	13	65
72	G46396	0.2 1.13	5	40	<5	0.60	<1	15	180	303 0.03	4.00	<10	1.11	248	944	0.094	0.05	44	420	16	<5	<20	17	0.16	<10	151	<10	13	57
73	G46397	0.2 0.93	15	45	<5	0.95	<1	12	173	210 0.02	3.34	<10	0.88	239	954	0.095	0.03	43	460	16	<5	<20	18	0.11	<10	128	<10	12	49
71	C46209	0.4.0.00	20	20	.E	1 10	-1	11	110	202 0 04	4 22	-10	0.06	045	705	0.000	0.02	E E	E00	20	-5	-20	25	0.06	-10	02	.40	7	70

TTM Resources

QC DATA:

Repeat:

1	G46322	0.6 0.97	<5	40	<5	0.67	2	18	60	717	4.66	<10	0 0	0.92	322	520	0.	.07	7 650	4	<5	<20	63	0.17	<10	104	<10	15	91
10	G46331	<0.2 2.19	<5	105	<5	3.61	<1	30	190	56	4.75	<10	0 Pá	a482	578	77	0.	.15	90 1340	10	<5	<20	150	0.06	<10	131	<10	5	44
19	G46341	0.5 0.52	<5	35	<5	1.10	<1	18	87	432	3.88	<10	0 0	0.40	267	397	0.	.05	6 730	6	<5	<20	39	0.07	<10	34	<10	5	39

36	G46358	0.4 0.74	<5	35	<5	0.63	<1	28	86	624	6.11	<10	0.70	232	201	0.05	8	750	10	<5	<20	23	0.20	<10	85	<10	17	58
45	G46368	0.4 0.65	5	40	<5	0.79	<1	11	88	320	2.91	<10	0.55	239	432	0.05	5	490	8	<5	<20	21	0.08	<10	58	<10	15	41
54	G46377	0.3 0.69	5	35	<5	0.81	<1	14	100	302	3.52	<10	0.64	184	393	0.05	40	820	10	<5	<20	19	0.12	<10	119	<10	15	36
71	G46395	0.3 1.07	10	45	<5	0.69	<1	15	154	353	3.87	<10	1.08	243	834	0.04	42	360	14	<5	<20	17	0.13	<10	156	<10	13	63
Resplit:	•																											
1	G46322	0.6 0.93	<5	40	<5	0.67	<1	18	67	691	4.72	<10	0.90	335	498	0.07	5	700	8	<5	<20	57	0.17	<10	104	<10	15	90
36	G46358	0.4 0.76	<5	35	<5	0.64	<1	30	69	619	6.06	<10	0.74	241	206	0.05	7	810	12	<5	<20	27	0.21	<10	90	<10	18	63
71	G46395	0.2 1.05	5	40	<5	0.65	<1	16	152	334	3.92	<10	1.06	237	826	0.04	41	370	14	<5	<20	15	0.14	<10	155	<10	13	57
Standar	rd:																											
PB116		11.0 0.22	5	140	<5	0.90	14	3	3	2158	0.87	<10	0.06	247	27	0.01	3	180	7108	20	<20	178	< 0.01	<10	8	<10	<1 4	305
PB116		11.3 0.22	5	135	<5	0.90	12	3	3	2100	0.91	<10	0.06	239	28	0.02	3	170	7010	20	<20	176	< 0.01	<10	8	<10	<1 4	195
PB116		11.6 0.25	5	135	<5	0.91	11	3	2	2051	0.84	<10	0.06	246	30	0.01	2	170	7084	20	<20	169	<0.01	<10	8	<10	<1 4	165

Jutta Jealouse B.C. Certified Assayer

JJ/kk df/362 XLS/06

CERTIFICATE OF ASSAY AK 2007-356

TTM Resources 2-May-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 50

Sample Type: Core Project: CHU
Shipment #: 45

Submitted by: All North Consultants

		Мо	
ET #.	Tag #	(%)	
1	G46613	0.080	
2	G46614	0.174	
3	G46615	0.075	
4	G46616	0.105	
5	G46617	0.076	
6	G46618	0.094	
8	G46621	0.192	
9	G46622	0.209	
10	G46623	0.053	
11	G46624	0.051	
13	G46626	0.062	
16	G46629	0.097	
17	G46630	0.064	
22	G46635	0.125	
23	G46636	0.134	
24	G46637	0.097	
25	G46638	0.131	
26	G46639	0.072	
27	G46641	0.124	
28	G46642	0.111	
29	G46643	0.097	
30	G46644	0.138	
32	G46646	0.064	
34	G46648	0.118	

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

TTM Resources AK7-356

2-May-07

		Мо	, ,
ET #.	Tag #	(%)	
36	G46650	0.063	
37	G46651	0.151	
38	G46652	0.326	
39	G46653	0.081	
40	G46654	0.116	
41	G46655	0.053	
42	G46656	0.081	
43	G46657	0.074	
44	G46658	0.062	
45	G46659	0.114	
46	G46661	0.080	
47	G46662	0.172	
48	G46663	0.049	
QC DAT	<u>Γ</u> Α:		
Repeat	_		
1	G46613	0.077	
10	G46623	0.052	
26	G46639	0.073	
40	G46654	0.116	
Standa	rd:		
MP2		0.279	
MP2		0.285	
MP2		0.280	

JJ/sa XLS/07 **ECO TECH LABORATORY LTD.**

Jutta Jealouse

B.C. Certified Assayer

ICP CERTIFICATE OF ANALYSIS AK 2007- 356

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

TTM Resources

Vancouver, BC

V6C 1G8

Phone: 250-573-5700 Fax : 250-573-4557 Attention: Ken MacDonald

520-700W Pender Street

No. of samples received: 50 Sample Type: Core

Project: CHU Shipment #: 45

Submitted by: All North Consultants

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G46613	<0.2 1.15	<5	80	<5	1.26	<1	15	112	217 0.02	2 3.15	<10	0.96	359	774	0.077	0.03	36	320	6	<5	<20	52	0.12	<10	124	<10	12	56
2	G46614	0.2 1.35	5	45	<5	1.12	<1	15	166	365 0.04	3.87	<10	1.06	298	1679	0.168	0.03	49	380	<2	<5	<20	49	0.13	<10	138	<10	9	51
3	G46615	0.3 1.19	25	60	<5	2.27	<1	13	89	302 0.03	3.20	<10	0.80	323	743	0.074	0.02	44	270	4	<5	<20	75	0.06	<10	92	<10	9	40
4	G46616	0.2 1.01	<5	70	<5	1.57	1	15	174	271 0.03	3.38	<10	1.02	256	1097	0.110	0.05	47	290	4	<5	<20	47	0.12	<10	143	<10	12	48
5	G46617	0.2 1.17	<5	85	<5	1.64	<1	14	165	242 0.02	2 3.24	<10	1.08	289	746	0.075	0.04	41	410	8	<5	<20	53	0.12	<10	124	<10	15	53
6	G46618	<0.2 1.18	<5	80	<5	0.83	<1	13	174	235 0.02	2 3.20	<10	1.12	274	922	0.092	0.04	44	440	4	<5	<20	34	0.15	<10	170	<10	13	51
7	G46619	0.2 1.08	5	80	<5	1.60	<1	13	112	310 0.03	3.04	<10	0.84	250	494	0.049	0.03	35	520	6	<5	<20	64	0.08	<10	99	<10	11	52
8	G46621	0.2 1.13	10	70	<5	2.52	<1	14	133	274 0.03	3.31	<10	0.84	283	1877	0.188	0.04	45	410	8	5	<20	62	0.07	<10	107	<10	5	44
9	G46622	<0.2 1.12	10	75	<5	2.83	<1	11	120	261 0.03	3 2.79	<10	0.88	341	2079	0.208	0.05	35	440	4	<5	<20	76	0.07	<10	103	<10	8	55
10	G46623	<0.2 0.99	5	70	<5	2.41	<1	9	102	200 0.02	2.49	10	0.63	227	521	0.052	0.03	22	710	6	<5	<20	76	0.04	<10	61	<10	12	38
11	G46624	0.2 0.96	<5	75	<5	1.90	<1	12	109	213 0.02	3.00	<10	0.78	233	507	0.051	0.04	34	710	6	5	<20	50	0.08	<10	104	<10	13	49
12	G46625	<0.2 0.04	10	15	<5	>10	1	<1	4	7 0.00	0.09	<10	>10	74	3	0.000	<0.01	<1	410	<2	40	<20	117	<0.01	<10	4	<10	2	6
13	G46626	<0.2 1.10	<5	80	<5	2.63	<1	14	92	142 0.0°	3.03	<10	0.93	349	629	0.063	0.03	33	720	4	<5	<20	57	0.10	<10	106	<10	11	48
14	G46627	<0.2 0.69	<5	85	<5	1.99	<1	9	46	123 0.0°	2.41	10	0.56	325	152	0.015	0.05	7	1230	4	<5	<20	57	0.06	<10	42	<10	11	33
15	G46628	<0.2 0.64	<5	80	<5	0.79	<1	7	113	147 0.0	2.07	10	0.42	198	143	0.014	0.05	6	920	6	<5	<20	47	0.06	<10	33	<10	11	34
16	G46629	0.2 0.58	<5	60	<5	1.00	<1	8	80	172 0.02	2.38	10	0.34	155	963	0.096	0.03	8	760	6	<5	<20	44	0.02	<10	24	<10	8	26
17	G46630	0.2 0.66	<5	125	<5	1.40	<1	7	19	113 0.0	2.68	20	0.44	646	638	0.064	0.04	16	770	14	<5	<20	103	0.02	<10	32	<10	18	92
18	G46631	<0.2 0.91	<5	60	<5	1.21	<1	10	73	178 0.02	3.12	10	0.50	177	357	0.036	0.03	11	930	4	<5	<20	62	0.04	<10	34	<10	11	34
19	G46632	0.2 0.71	<5	65	<5	0.95	<1	8	70	199 0.02	2.40	10	0.42	183	302	0.030	0.04	8	910	2	<5	<20	52	0.04	<10	31	<10	9	30
20	G46633	0.2 0.81	<5	75	<5	1.33	<1	16	80	186 0.02	2.97	10	0.45	190	380	0.038	0.03	6	930	4	<5	<20	56	0.04	<10	32	<10	9	33
21	G46634	0.3 0.61	<5	70	20	0.95	<1	10	94	201 0.02	3.09	10	0.45	213	370	0.037	0.04	10	920	6	<5	<20	41	0.06	<10	42	<10	8	39
22	G46635	0.3 1.11	10	80	<5	2.67	1	11	118	190 0.02	3.20	<10	0.64	298	1258	0.126	0.02	31	750	12	5	<20	65	0.04	<10	63	<10	11	55
23	G46636	0.2 1.38	10	70	<5	2.78	<1	16	137	278 0.03	4.60	<10	0.87	265	1350	0.135	0.03	46	500	12	<5	<20	67	0.07	<10	107	<10	11	58
24	G46637	0.5 0.56	<5	55	<5	0.73	<1	14	218	708 0.07	4.10	<10	0.32	162	1005	0.101	0.04	15	350	4	<5	<20	31	0.04	<10	39	<10	<1	39
25	G46638	0.2 0.71	<5	70	<5	0.67	<1	12	160	203 0.02	2.99	<10	0.54	207	1342	0.134	0.03	24	480	10	<5	<20	42	0.09	<10	74	<10	10	46

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2007-356

Et #.	Tag #	Ag Al %	As	Ва	Bi Ca%	Cd	Со	Cr	Cu Cu%	Fe %	La Mg %	Mn	Мо	Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	G46639	0.3 0.69 0.6 0.88	<5	75	<5 1.08	<1	13	123	242 0.02	3.28	<10 p.0.51 ₁	230	756	0.076	0.04	18	670	10	<5	<20	59	0.09	<10	66	<10	10	49
27	G46641	0.6 0.88	<5	60	< 5 0.64	<1	18	137	873 0.09	5.19	<10 0.75	264	1241	0.124	0.05	33	420	10	<5	<20	79	0.13	<10	105	<10	9	69
28	G46642	<0.2 0.95	<5	90	<5 0.47	<1	16	165	211 0.02	3.70	<10 0.89	308	1193	0.119	0.06	44	370	14	<5	<20	45	0.18	<10	155	<10	17	87

29	G46643	0.2 1.05	<5	90	<5	0.67	<1	17	136	214	0.02	3.76	<10	1.00	291	1050	0.105	0.05	50	400	10	<5	<20	82	0.18	<10	175	<10	14	76
30	G46644	0.2 0.89	<5	80	<5	0.40	<1	16	162	271	0.03	3.60	<10	0.89	280	1449	0.145	0.05	44	410	8	<5	<20	38	0.14	<10	152	<10	14	80
31	G46645	<0.2 0.04	10	20	<5	>10	<1	<1	4	3	0.00	0.10	<10	>10	81	<1	0.000	<0.01	<1	450	<2	35	<20	98	<0.01	<10	3	<10	1	6
32	G46646	0.3 0.48	<5	75	<5	0.42	<1	11	130	338	0.03	2.83	<10	0.40	192	683	0.068	0.04	18	470	8	<5	<20	35	0.06	<10	52	<10	7	48
33	G46647	0.2 0.41	<5	75	<5	0.69	<1	11	111	238	0.02		<10	0.24	154	434	0.043	0.03	9	680	10	<5	<20	23	0.05	<10	25	<10	8	40
34	G46648	0.2 0.38	<5	70	<5	0.67	<1	10	83	200	0.02	2.52	<10	0.18	126	1191	0.119	0.03	6	530	8	<5	<20	30	0.05	<10	19	<10	5	35
35	G46649	0.2 0.33	<5	75	<5	0.60	<1	10	165	271	0.03	2.94	<10	0.18	133	414	0.041	0.04	10	570	8	<5	<20	27	0.05	<10	19	<10	6	35
36	G46650	0.2 0.65	<5	90	<5	1.20	<1	7	19	102	0.01	2.75	10	0.47	674	627	0.063	0.03	17	780	14	<5	<20	107	0.02	<10	31	<10	17	101
37	G46651	0.3 0.60	<5	70	<5	0.63	<1	12	133	285	0.03	3.50	<10	0.48	216	1468	0.147	0.06	22	610	10	<5	<20	36	0.10	<10	71	<10	11	56
38	G46652	0.2 0.72	10	90	<5	0.30	<1	15	98	189	0.02	3.26	<10	0.72	268	3126	0.313	0.04	41	430	14	<5	<20	33	0.13	<10	167	<10	11	84
39	G46653	0.3 0.53	<5	80	<5	0.57	<1	14	97	284	0.03	3.08	<10	0.54	268	812	0.081	0.04	9	650	8	<5	<20	40	0.07	<10	60	<10	7	64
40	G46654	0.5 0.63	<5	55	<5	0.73	<1	16	115	541	0.05	4.65	<10	0.48	297	1154	0.115	0.05	23	570	6	<5	<20	48	0.10	<10	63	<10	6	64
41	G46655	0.3 0.50	<5	60	<5	0.66	<1	13	79	360	0.04	3.49	<10	0.30	188	550	0.055	0.03	5	590	6	<5	<20	60	0.06	<10	34	<10	5	61
42	G46656	<0.2 0.54	<5	75	<5	0.77	<1	10	91			2.61	<10	0.33	196	772	0.077	0.04	5	780	6	<5	<20	53	0.07	<10	32	<10	8	44
43	G46657	<0.2 0.43	<5	70	<5	0.63	<1	8	85			2.32	<10	0.25			0.078	0.04	5	690	8	<5	<20	34	0.05	<10	25	<10	7	33
44	G46658	0.4 0.47	<5	50	<5	0.73	<1	17	101	527	0.05	4.59	<10	0.22	183	584	0.058	0.04	5	620	4	<5	<20	50	0.05	<10	29	<10	3	41
45	G46659	0.2 0.37	<5	90	<5	0.49	<1	10	75	159	0.02	2.41	<10	0.24	163	1075	0.108	0.03	4	680	8	<5	<20	37	0.06	<10	26	<10	6	43
46	G46661	0.3 0.48	<5	65	<5	0.83	<1	13	106	163	0.02	3.18	<10	0.28	163	769	0.077	0.03	6	810	10	<5	<20	38	0.07	<10	28	<10	6	39
47	G46662	0.3 0.36	5	50	<5	0.64	<1	12	101	144	0.01	3.48	<10	0.19	126	1673	0.167	0.02	3	540	10	<5	<20	27	0.04	<10	18	<10	<1	30
48	G46663	<0.2 0.46	<5	80	<5	0.71	<1	9	123	130	0.01	2.57	<10	0.27	177	511	0.051	0.04	6	790	6	<5	<20	29	0.07	<10	30	<10	7	50
49	G46664	0.2 0.43	<5	70	<5	0.68	<1	9	95	187	0.02	2.83	<10	0.25	162	245	0.025	0.03	4	690	4	<5	<20	26	0.06	<10	29	<10	6	41
50	G46665	<0.2 0.47	<5	65	<5	0.73	<1	8	100	94	0.01	2.50	<10	0.30	147	370	0.037	0.03	7	760	8	<5	<20	51	0.05	<10	26	<10	7	31
QC DAT	A :																													
Repeat	•																													
1	G46613	0.2 1.26	5	85	<5	1.28	1	16	114	232		3.21	<10	1.01	371	828		0.03	37	340	4	<5	<20	67	0.13	<10	134	<10	13	52
10	G46623	<0.2 0.95	<5	65	<5	2.47	<1	9	104	189		2.53	10	0.61	231	530		0.03	25	690	4	5	<20	70	0.04	<10	61	<10	10	39
19	G46632	0.2 0.62	<5	60	<5	1.01	<1	8	74	181		2.54	<10	0.37	191	307		0.03	6	940	4	<5	<20	43	0.04	<10	30	<10	10	35
37	G46651	0.2 0.61	<5	80	<5	0.64	<1	13	137	297		3.62	<10	0.50	223	1527		0.05	25	600	12	<5	<20	37	0.10	<10	74	<10	12	57
Resplit	:																													
1	G46613	0.2 1.11	5	75	<5	1.22	<1	16	124	208		3.33	<10	0.83	384	804		0.02	41	350	8	<5	<20	60	0.14	<10	126	<10	15	62
37	G46651	0.2 0.63	<5	85	<5	0.60	<1		122			3.42		0.55				0.05	23	620	10	<5	<20	41	0.11		79	<10	10	56
Standaı	rd:																													
Pb116		10.8 0.25	<5	140	<5	0.84	11	3	4	2099		0.85	<10	0.07	240	25		0.02	3	180	7036	25	<20	187	<0.01	<10	7	10	<1 4	4194
_ ~		. 5.5 5.20				0.0.		•				5.55	- 10	0.01				J.J_	-	. 50	. 555	_~			-5.01	- 1 0	•			

0.86 <10 0.06 249

0.02

3 170 7008

ECO TECH LABORATORY LTD.

20 <20 170 <0.01 <10

10

Jutta Jealouse

B.C. Certified Assayer

Pb116

JJ/sa

df/356 XLS/07 11.7 0.28

5 145

< 5 0.84

11

3 2116

ICP CERTIFICATE OF ANALYSIS AK 2007- 355

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 38 Sample Type: Core

Project: CHU Shipment #: 46

Submitted by: All North Consultants

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

_								_														_	_						
Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni	P F	b	Sb	Sn	Sr	Ti %	U	<u> </u>	W	Υ	Zn
1	G45920	0.3 0.60	<5	60	<5	0.67	<1	11	100	351 0.04	3.14	<10	0.43	191	271	0.027	0.08	5 4	20	12	<5	<20	21	0.07	<10	32	<10	9	25
2	G45940	0.6 1.02	<5	90	<5	0.48	1	16	62	558 0.06	4.18	<10	0.81	304	387	0.039	0.12	5 10	10	16	<5	<20	19	0.11	<10	78	<10	18	81
3	G45960	0.6 1.27	10	90	<5	0.59	<1	19	64	559 0.06	4.23	<10	1.13	436	555	0.056	0.13	5 8	80 2	20	<5	<20	24	0.12	<10	80	<10	14	62
4	G45980	0.3 1.28	<5	105	<5	0.44	<1	19	75	517 0.05	4.24	<10	1.06	297	651	0.065	0.13	7 8	90	20	<5	<20	37	0.14	<10	96	10	19	64
5	G46000	<0.2 0.93	<5	175	<5	0.87	<1	12	63	21 0.00	2.67	<10	0.80	361	<1	0.000	0.09	8 14	40	14	<5	<20	42	0.16	<10	76	<10	6	43
6	G46020	0.8 1.04	<5	65	<5	0.91	<1	24	18	1119 0.11	6.15	<10	0.89	297	427	0.043	0.04	9 5	40	10	<5	<20	51	0.08	10	107	<10	<1	47
7	G46040	0.2 1.48	10	70	<5	2.05	<1	11	30	197 0.02	2.87	20	1.07	324	266	0.027	0.03	8 15	60	16	<5	<20	80	0.05	20	57	<10	12	47
8	G46060	0.2 1.31	5	75	<5	0.56	<1	13	131	208 0.02	3.00	<10	1.41	237	780	0.078	0.06	49 4	10	14	<5	<20	20	0.14	<10	182	<10	12	49
9	G46080	<0.2 1.34	<5	90	<5	0.36	1	14	136	194 0.02	3.20	<10	1.29	167	233	0.023	0.09	44 5	20	18	10	<20	28	0.14	<10	187	<10	15	31
10	G46100	3.8 1.30	10	70	<5	0.78	9	15	123	626 0.06	3.36	<10	1.13	250	439	0.044	0.05	42 3	20 2	18	<5	<20	19	0.11	<10	148	20	7 ′	1094
11	G46120	0.4 0.60	5	45	<5	0.67	<1	13	50	248 0.02	3.00	<10	0.43	138	339	0.034	0.05	4 8	80	10	<5	<20	11	0.03	10	43	<10	10	26
12	G46140	1.0 0.99	25	80	<5	0.64	<1	21	66	777 0.08	5.34	<10	0.84	260	199	0.020	0.06	5 9	10	12	<5	<20	13	0.10	10	69	60	10	51
13	G46160	0.3 0.92	10	60	<5	1.54	<1	16	59	341 0.03	3.63	<10	0.72	258	338	0.034	0.06	5 9	080	14	<5	<20	21	0.07	<10	65	20	17	46
14	G46180	1.0 1.17	<5	70	<5	1.42	<1	17	68	767 0.08	4.63	<10	0.99	467	208	0.021	0.07	6 10	70	16	<5	<20	32	0.08	<10	75	10	14	58
15	G46200	<0.2 1.14	5	95	<5	0.98	<1	14	140	130 0.01	2.82	10	1.22	187	517	0.052	0.07	28 8	30	18	<5	<20	52	0.11	<10	122	<10	20	26
16	G46220	0.2 1.01	<5	75	<5	0.38	<1	9	158	156 0.02	2.38	<10	1.07	176	706	0.071	0.06	36 3	310	12	<5	<20	33	0.09	<10	151	<10	8	28
17	G46240	0.3 0.43	<5	65	<5	0.57	<1	7	81	174 0.02	2.10	<10	0.27	104	131	0.013	0.07	4 6	50	8	<5	<20	30	0.02	<10	16	<10	6	14
18	G46260	0.4 0.65	<5	65	<5	0.98	<1	23	48	381 0.04	4.54	<10	0.42	288	17	0.002	0.09	7 8	20	8	<5	<20	26	0.11	<10	55	40	6	36
19	G46280	0.2 1.02	<5	65	<5	0.35	<1	9	65	193 0.02	2.55	<10	0.99	266	239	0.024	0.08	7 4	70	14	10	<20	22	0.10	30	75	<10	11	45
20	G46300	0.3 1.22	10	65	<5	1.29	<1	16	76	226 0.02	3.97	<10	1.06	262	388	0.039	0.09	8 7	'30	12	<5	<20	57	0.09	10	103	<10	12	35
21	G46320	0.7 0.79	<5	60	<5	0.67	<1	26	67	857 0.09	5.09	<10	0.46	207	170	0.017	0.11	7 6	90	8	<5	<20	44	0.12	10	65	20	7	42
22	G46340	0.4 0.61	5	115	25	0.83	<1	10	157	231 0.02	2.09	10	0.33	232	643	0.064	0.11	6 8	310	10	<5	<20	60	0.08	<10	23	<10	8	19
23	G46360	0.4 0.48	<5	95	<5	0.77	<1	10	79	250 0.03	2.09	<10	0.36	187	211	0.021	0.07	5 9	000	10	<5	<20	64	0.07	<10	28	10	8	20
24	G46380	0.4 0.68	20	50	<5	1.17	<1	14	84	517 0.05	3.33	<10	0.41	172	1136	0.114	0.04	32 5	80	12	<5	<20	26	0.01	<10	40	<10	7	30
25	G46400	0.2 1.23	25	70	<5	1.36	<1	13	93	234 0.02	3.08	<10	1.23	213	730	0.073	0.03	51 4	30	18	<5	<20	42	0.09	<10	129	<10	12	40

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2007-355

Et #.	Tag #	Ag Al %	As	Ва	Bi Ca	% Cd	Со	Cr	Cu Cu%	Fe %	La Mg %	Mn	Mo Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	G46420	0.3 0.84 0.6 0.82	10	65	<5 1.3	36 <1	11	99	336 0.03	2.82	<10 p.0.71,	193	1525 0.153	0.03	30	410	12	<5	<20	62	0.07	<10	76	<10	7	34
27	G46440	0.6 0.82	<5	80	<5 0.3	36 1	20	59	789 0.08	4.96	<10 0.63	252	266 0.027	0.11	10	720	10	<5	<20	15	0.11	40	143	<10	11	45
28	G46460	0.6 1.30	<5	80	<5 0.6	64 <1	29	39	1024 0.10	6.78	<10 1.15	389	527 0.053	0.14	9	660	10	<5	<20	28	0.17	10	170	<10	2	65

29	G46480	0.4 1.51	10	90	<5	1.48	<1	23	38	682 0.07	4.82	<10	1.26	290	249 0.025	0.05	15	990	20	<5	<20	55	0.09	<10	136	<10	20	60
30	G46500	0.2 0.53	5	55	<5	0.71	<1	7	69	355 0.04	2.34	10	0.40	141	391 0.039	0.05	6	870	8	<5	<20	27	0.04	<10	28	<10	7	24
31	G46520	0.7 0.56	10	55	<5	1.37	<1	24	99	1274 0.13	5.17	<10	0.35	191	1083 0.108	0.05	10	390	6	<5	<20	29	0.03	20	47	<10	5	20
32	G46540	0.4 0.75	<5	65	<5	0.88	<1	10	78	497 0.05	3.17	10	0.71	198	296 0.030	0.05	10	1270	6	<5	<20	45	0.06	<10	47	<10	10	25
33	G46560	0.5 0.64	<5	60	<5	0.61	<1	15	90	571 0.06	3.06	<10	0.51	154	1012 0.101	0.06	7	490	10	<5	<20	21	0.07	20	50	<10	11	24
34	G46580	0.2 1.39	10	80	<5	0.89	<1	15	141	304 0.03	3.45	<10	1.26	229	1030 0.103	0.06	42	450	16	<5	<20	41	0.15	<10	147	<10	16	32
35	G46600	0.2 1.25	5	85	<5	0.40	1	13	148	312 0.03	3.40	<10	1.22	262	1408 0.141	0.07	54	370	12	<5	<20	65	0.13	10	164	<10	13	39
36	G46620	<0.2 1.15	5	80	<5	1.60	<1	12	141	271 0.03	2.83	<10	0.92	241	636 0.064	0.04	33	480	14	<5	<20	89	0.08	<10	92	<10	13	40
37	G46640	0.2 0.79	<5	75	<5	0.77	<1	9	104	402 0.04	2.81	<10	0.54	201	581 0.058	0.06	11	780	10	<5	<20	92	0.08	10	52	<10	9	28
38	G46660	0.2 0.58	<5	85	<5	0.44	<1	12	123	267 0.03	2.44	<10	0.35	169	1312 0.131	0.07	6	600	6	<5	<20	84	0.06	<10	29	<10	3	23
QC DAT <i>Repeat:</i> 1 10 19		0.3 0.64 3.7 1.27 0.2 1.12	<5 15 <5	60 70 70	<5 <5 <5	0.68 0.79 0.37	<1 7 <1	11 15 10	102 130 71	369 617 213	3.19 3.36 2.72	<10 <10 <10	0.45 1.09 1.09	200 237 289	262 434 254	0.09 0.05 0.08	6 39 6	430 340 490	10 216 12	<5 <5 <5	<20 <20 <20	19 19 25	0.07 0.13 0.10	<10 10 20	33 146 81	<10 20 <10	8 8 1 13	25 135 44
36	G46620	0.2 1.12	5	80	<5	1.58	<1	11	138	260	2.78	<10	0.89	236	628	0.04	33	480	14	<5	<20	85	0.10	<10	89	<10	14	39
Resplit: 1 36		0.4 0.60 0.2 1.02	<5 5	60 80	<5 <5	0.75 1.52	<1 <1	11 10	90	365 271	3.18 2.86	<10 <10	0.43 0.89	195 238	258 623	0.08	4 29		10 10	<5 <5	<20 <20	19 79	0.07	<10 <10	34 91	<10 <10 <10	7	26 36
Standar Pb116	rd:	11.4 0.26	5	130	<5	0.91	12	3	2	2122	0.82	<10	0.07	243	27	0.02	3	180 (6910	20	<20	173	<0.01	<10	8	<10	1 4	182

Jutta Jealouse B.C. Certified Assayer

JJ/sa df/363 XLS/07

Мо

2-May-07

TTM Resources

520-700W Pender Street Vancouver, BC

V6C 1G8

Attention: Ken MacDonald

No. of samples received: 38

Sample Type: Core **Project: CHU Shipment #: 46**

Submitted by: All North Consultants

		IVIO	
ET #.	Tag #	(%)	
3	G45960	0.059	
4	G45980	0.067	
8	G46060	0.083	
15	G46200	0.053	
16	G46220	0.071	
22	G46340	0.062	
24	G46380	0.112	
25	G46400	0.071	
26	G46420	0.157	
28	G46460	0.057	
31	G46520	0.101	
33	G46560	0.098	
34	G46580	0.099	
35	G46600	0.133	
36	G46620	0.061	
37	G46640	0.056	
38	G46660	0.130	
QC DAT	Γ A :		
Repeat:			
3	G45960	0.060	
28	G46460	0.056	
Standar	d:		
MP2		0.283	
MP2		0.282	
MP2		0.279	
JJ/dc			ECO TECH LABORATORY LTD.
XLS/07			Jutta Jealouse
			B.C. Certified Assayer
			•

TTM Resources

27-Apr-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 97

Sample Type: Core **Project: CHU Shipment #: 39**

Submitted by: All North Consultants

			Mo
_	ET #.	Tag #	(%)
-	2	G46142	0.065
	3	G46143	0.049
	6	G46146	0.053
	8	G46148	0.069
	10	G46150	0.063
	21	G46162	0.051
	27	G46168	0.054
	28	G46169	0.065
	29	G46170	0.063
	30	G46171	0.100
	31	G46172	0.086
	35	G46176	0.100
	44	G46186	0.051
	48	G46190	0.063
	49	G46191	0.059
	51	G46193	0.067
	52	G46194	0.050

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

XLS/07

I I IVI IX	65001C65 AN7-313		21-Api-01
		Мо	
ET #.	Tag #	(%)	
54	G46196	0.140	
55	G46197	0.149	
56	G46198	0.101	
57	G46199	0.050	
58	G46201	0.102	
59	G46202	0.089	
60	G46203	0.130	
61	G46204	0.063	
63	G46206	0.058	
64	G46207	0.095	
65	G46208	0.085	
66	G46209	0.112	
67	G46210	0.064	
69	G46212	0.124	
71	G46214	0.076	
72	G46215	0.117	
73	G46216	0.060	
76	G46219	0.087	
77	G46221	0.068	
86	G46230	0.063	
90	G46234	0.092	
QC DAT	ΓΑ:		
Repeat:			
2	G46142	0.064	
30	G46171	0.104	
51	G46193	0.068	
64	G46207	0.096	
04	G-10207	0.000	
Standar	rd:		
MP2		0.279	
MP2		0.280	
MP2		0.282	
MP2		0.279	
MP2		0.282	
MP2		0.282	
			ECO TECH LABORATORY LTD.
			Jutta Jealouse
JJ/bp			B.C. Certified Assayer

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Et #.

Phone: 250-573-5700 Fax: 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2007-315

TTM Resources

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 97 Sample Type: Core Project: CHU

Shipment #: 39

TTM Resources

55

98

94

Submitted by: All North Consultants

Values in ppm unless otherwise reported

Ag Al % As Ba

Tag #

1	G46141	0.8 0.77	15	40	<5	1.51	<1	18	83	674	0.07	4.13	<10	0.56	235	271 0.027	0.08	4 940	10	<5	<20	25	0.06	<10	72	<10	18	39
2	G46142	1.1 0.39	30	40	<5	1.72	2	26	59	902	0.09	7.09	<10	0.39	417	688 0.069	0.05	7 630	30	<5	<20	36	0.01	<10	25	<10	<1	82
3	G46143	0.6 0.51	<5	40	<5	1.83	2	21	65	781	0.08	6.14	<10	0.45	398	514 0.051	0.07	7 740	10	<5	<20	47	0.04	<10	33	<10	6	48
4	G46144	1.0 0.73	<5	40	<5	1.21	<1	15	46	604	0.06	3.82	<10	0.61	293	300 0.030	0.05	4 920	12	<5	<20	26	0.08	<10	51	<10	26	64
5	G46145	<0.2 0.02	<5	10	<5	>10	<1	<1	5	10	0.00	0.08	<10	8.70	54	<1 0.000	<0.01	<1 290	<2	15	<20	100	0.03	<10	3	<10	1	7
6	G46146	0.5 0.77	<5	40	<5	0.70	<1	16	69	563	0.06	4.13	<10	0.67	252	555 0.056	0.09	3 900	8	<5	<20	17	0.12	<10	66	<10	14	52
7	G46147	0.5 0.76	<5	40	<5	1.10	1	18	60	622	0.06	4.36	<10	0.72	296	386 0.039	0.09	5 940	12	<5	<20	27	0.12	<10	69	<10	16	68
8	G46148	0.4 0.62	<5	40	<5	0.89	<1	16	81	465	0.05	3.88	<10	0.54	275	716 0.072	0.08	4 910	12	<5	<20	25	0.12	<10	58	<10	15	46
9	G46149	0.5 0.81	<5	45	<5	0.55	1	16	67	777	0.08	4.29	<10	0.80	274	415 0.042	0.11	5 950	10	<5	<20	22	0.12	<10	68	<10	13	61
10	G46150	0.2 0.65	<5	130	<5	1.31	<1	7	18	123	0.01	2.42	20	0.43	598	637 0.064	0.05	13 730	12	<5	<20	138	0.04	<10	30	<10	17	70
11	G46151	0.5 0.82	<5	55	<5	0.60	2	22	62	715	0.07	4.83	<10	0.76	273	460 0.046	0.10	9 860	10	15	<20	21	0.12	<10	72	<10	15	55
12	G46152	0.3 0.60	<5	45	<5	0.64	<1	11	70	296	0.03	2.47	<10	0.54	202	217 0.022	0.09	5 1030	10	<5	<20	29	0.10	<10	48	<10	14	37
13	G46153	0.2 0.44	<5	40	<5	0.58	<1	8	60	268	0.03	2.14	10	0.37	143	153 0.015	0.07	3 940	4	<5	<20	51	0.08	<10	33	<10	7	28
14	G46154	0.2 0.43	<5	45	<5	0.54	<1	7	80	230	0.02	1.95	10	0.35	139	190 0.019	0.07	4 930	6	<5	<20	37	0.07	<10	32	<10	9	23
15	G46155	0.3 0.41	<5	50	<5	0.64	<1	8	63	329	0.03	2.04	<10	0.31	143	150 0.015	0.06	4 860	10	<5	<20	48	0.07	<10	30	<10	9	26
16	G46156	0.2 0.45	<5	40	<5	0.67	<1	8	79	229	0.02	2.10	10	0.36	144	82 0.008	0.07	4 930	8	<5	<20	43	0.07	<10	33	<10	8	31
17	G46157	0.2 0.43	<5	35	<5	0.87	<1	9	56	235	0.02	2.24	10	0.36	184	190 0.019	0.05	4 1020	8	<5	<20	37	0.06	<10	32	<10	9	29
18	G46158	0.2 0.50	<5	40	<5	0.87	<1	9	81	200	0.02	2.34	<10	0.38	158	85 0.009	0.06	5 940	8	<5	<20	27	0.05	<10	38	<10	10	30
19	G46159	0.4 0.74	5	35	<5	2.01	1	18	70	356	0.04	3.79	<10	0.55	271	414 0.041	0.07	6 930	16	<5	<20	26	0.07	<10	57	<10	17	54
20	G46161	0.4 0.82	<5	40	<5	0.66	<1	18	71	505	0.05	4.00	<10	0.81	276	326 0.033	0.08	6 800	10	<5	<20	17	0.12	<10	78	<10	13	58
21	G46162	0.3 0.82	10	40	<5	1.82	<1	17	47	427	0.04	3.72	<10	0.70	323	542 0.054	0.08	2 1060	16	<5	<20	27	0.08	<10	64	<10	19	62
22	G46163	0.3 1.73	5	45	<5	3.04	2	27	89	460	0.05	4.98	<10	1.48	469	314 0.031	0.20	43 1070	14	15	<20	98	0.07	<10	112	<10	10	55
23	G46164	<0.2 2.63	10	205	<5	3.30	1	33	148	69	0.01	5.28	<10	2.35	561	8 0.001	0.34	70 1720	14	30	<20	239	0.09	<10	172	<10	5	46
24	G46165	<0.2 0.05	5	15	<5	>10	<1	<1	5	6	0.00	0.10	<10	>10	75	<1 0.000	0.01	<1 380	<2	5	<20	137	0.03	<10	4	<10	2	6
25	G46166	< 0.2 2.55	<5	170	<5	3.26	<1	34	190	57	0.01	5.07	<10	2.15	507	<1 0.000	0.37	76 1650	20	5	<20	232	0.12	<10	158	<10	6	45

Bi Ca% Cd Co Cr Cu Cu% Fe% La Mg% Mn Mo Mo% Na% Ni P Pb Sb Sn Sr Ti% U V W

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2007-315

Bi Ca % Y Zn Et #. Tag # Ag Al % Ва Cd Co Cu Cu% Fe % La Mg % Mn Mo Mo% Na % Ni Pb Sb Sr Ti % As 1.90 26 G46167 <20 0.3 2.21 60 <5 2.39 134 366 0.04 5.02 278 0.028 60 1110 5 148 0.13 <10 <5 <1 27 G46168 <5 50 <5 1.10 3 38 74 1118 0.11 7.06 536 0.054 18 590 10 <20 91 6 1.2 1.43 <10 1.45 451 0.08 10 0.15 <10 164 <10 28 G46169 1.4 1.52 10 50 < 5 1.31 2 25 61 1100 0.11 5.20 <10 1.59 507 672 0.067 0.13 14 880 24 15 <20 32 0.14 <10 166 <10 15

	G46170	0.2 0.61	<5	130	<5	1.34	<1	7	19	122	0.01	2.49	10	0.40	605 64	2 0.064	0.05	14 770	18	<5	<20	126	0.03	<10	29	<10	17	82
30	G46171	1.2 0.90	15	40	<5	1.08	<1	20	60	862	0.09	3.95	<10	0.88	284 109	7 0.110	0.06	6 950	18	<5	<20	26	0.09	<10	80	<10	11	62
31	G46172	0.7 1.38	20	40	<5	2.06	<1	17	61	489	0.05	4.07	<10	1.14	381 88	6 0.089	0.05	11 1340	20	<5	<20	44	0.08	<10	92	<10	11	66
32	G46173	<0.2 1.95	<5	170	5	3.70	<1	29	104	54	0.01	5.36	<10	2.15	753	4 0.000	0.11	50 2090	26	<5	<20	125	0.11	<10	156	<10	7	100
33	G46174	<0.2 2.31	5	285	<5	3.32	2	31	126	52	0.01	5.48	<10	2.52		9 0.001	0.16	63 2070	24	30	<20	208	0.10			<10	7	82
34	G46175	<0.2 2.12	<5	155	5	3.48	1	32	111	68		5.43		2.42		8 0.001	0.14	61 2080	28	10	<20	116		<10		<10	6	86
35	G46176	0.4 1.60	20	50	<5	1.91	2	57	117	586	0.06	7.28		1.73	495 112			32 1110	22	10	<20	113		<10		<10	2	97
36	G46177	0.7 1.66	<5	55	<5	1.19	<1	29	51	835	0.08	5.82		1.91		1 0.024	0.09	8 950	22	5	<20	46		<10		<10	14	98
37	G46178	0.8 1.45	<5	40 50	<5	1.18	1	24	61 86	856	0.09	5.50		1.58		2 0.030	0.11	8 1070	18 20	5	<20	28	0.18			<10	15	101
38 39	G46179 G46181	0.8 1.07 0.4 0.39	10 <5	50 35	<5 <5	1.73 1.11	2 <1	19 9	103	797 366	0.08	4.91 2.64	10	0.88		9 0.048 4 0.030	0.08	8 1110 3 870	10	5 <5	<20 <20	40 37	0.07 0.04		71 20	<10 <10	15 7	70 28
40	G46182	0.5 1.07	<5	40	<5	1.49	<1	23	64	495	0.04	4.70		1.07		7 0.030	0.08	5 850	16	<5	<20	28	0.04		96	<10	13	66
41	G46183	0.7 1.25	10	50	<5	1.49	<1	23	46	848	0.08	5.71	<10	1.30		8 0.049	0.07	6 780	22	<5	<20	27				<10	8	77
42	G46184	0.6 0.94	<5	35	<5	1.80	1	23	60	779	0.08	5.03	<10	0.83		5 0.026		9 800	18	10	<20	33	0.08	<10	88	<10	8	66
43	G46185	<0.2 0.04	5	10	<5	>10	<1	<1	22	24	0.00	0.11		>10		1 0.000		<1 530	<2	20	<20	129	0.02		4	<10	<1	13
44	G46186	1.0 1.29	20	35	<5	1.48	1	29	52 °	1142	0.11	6.49	<10	1.05	406 54	2 0.054	0.05	10 640	16	<5	<20	26	0.13	<10	124	<10	10	80
45	G46187	0.7 1.37	<5	40	<5	1.64	1	26	53	887	0.09	6.18	<10	1.47	521 33	3 0.033	0.06	9 670	16	<5	<20	29	0.16	<10	136	<10	9	114
46	G46188	0.5 1.18	<5	35	<5	1.51	2	19	56	731	0.07	5.14	<10	1.11	350 14	9 0.015	0.07	10 920	14	10	<20	39	0.10	<10	113	<10	11	75
47	G46189	0.2 0.56	10	35	<5	1.76	<1	10	77	270	0.03	2.59	<10	0.35		5 0.034	0.05	4 630	12	<5	<20	38	0.02	_	24	<10	11	36
48	G46190	0.2 0.70	<5	135	<5	1.40	<1	.7	19	145	0.01	2.61	20	0.47		3 0.064	0.06	16 810	14	<5	<20	156	0.02		32		18	77
49	G46191	0.2 0.39	<5	40	<5	1.69	<1	13		113	0.01	3.80			214 57			6 460	12	<5	<20		<0.01		9	<10	6	37
50	G46192	0.3 0.49	<5	40	<5	1.60	<1	9	79	384	0.04	2.81	<10			5 0.021	0.05	1 530	12	<5	<20	36	0.02		23	<10	12	38
51 52	G46193 G46194	0.7 1.06 0.3 0.95	20 15	35 40	<5 <5	1.69 2.63	2 <1	21 12	60 78	958 383	0.10 0.04	4.91 3.27	<10	0.77 0.62		1 0.065 7 0.047	0.05 0.03	15 640 19 940	8 16	5 <5	<20 <20	42 52	0.04	<10 <10	76 58	<10 <10	14 12	53 47
53	G46195	0.3 0.68	565	35	<5	2.72	<1	12	135	439	0.04	3.46		0.62		4 0.047		35 690	16 10	<5	<20	43	0.02		75	<10	11	39
54	G46196	0.4 0.85	30	35	<5	1.85	1	18		375	0.04	4.83		0.83	291 132			75 730	20	<5	<20	45			125	<10	11	68
55	G46197	0.4 0.56	40	30	<5	1.93	<1	18	93	424	0.04	3.95		0.58	257 140			48 670	20	<5	<20	39	0.02		48	<10	7	61
56	G46198	1.5 0.90	40	40	<5	1.52	<1	16	122	631	0.06	3.70		1.02	193 107			43 470	22	<5	<20	43	0.06		88	<10	12	43
57	G46199	0.2 0.95	10	50	<5	1.10	<1	14	108	147	0.01	2.88	<10	1.06	184 49	0.049	0.06	29 1000	22	<5	<20	48	0.10	<10	114	<10	19	39
58	G46201	0.2 0.99	15	40	<5	0.60	<1	21	159	259	0.03	3.99	<10	1.13	169 102	6 0.103	0.08	74 500	16	<5	<20	26	0.11	<10	197	<10	14	36
59	G46202	0.2 1.00	15	35	<5	0.93	1	32	143	181	0.02	5.85	<10	1.10	167 86	8 0.087	0.05	77 320	12	5	<20	26	0.10	<10	165	<10	6	35
60	G46203	0.3 1.05	15	50	<5	0.48	<1	16	168	347	0.03	3.26		1.07	189 122			52 380	16	<5	<20	28		<10		<10	13	43
61	G46204	0.3 0.93	10	35	<5	0.48	<1	15	149	356	0.04	3.29		0.99		1 0.060		54 470	16	5	<20	33				<10	12	47
62	G46205	<0.2 0.02	10	35	<5	>10	<1	1	7	15	0.00	0.08		>10		1 0.000		<1 370	2	20	<20	120	0.01		3	<10	5	11
63 64	G46206	0.5 0.91	10	45	<5	0.34	<1 1	15	140	402		3.15		0.98		7 0.058		60 470	18	<5	<20	47 25		<10		<10	12	54
64 65	G46207 G46208	0.2 0.86 0.8 0.95	15 75	30 40	<5 <5	0.87 1.38	-1 <1	20 103	129 123	209		3.75 6.75		0.97 0.92		0.092 2 0.087	0.04 0.02	66 450 96 350	18 16	<5 <5	<20 <20	25 34	0.06 0.05	<10 <10	150 107	<10 <10	12 <1	44 46
																							_					
ECO TE	ECH LABORA	FORY LTD.					ı	СР С	ERTIF	ICAT	E OF A	ANALY	'SIS A	AK 200	7- 315							TT M I	Resou	ırces				
ECO TE	ECH LABORA Tag #	ΓORY LTD. Ag Al %	As	Ва	Bi	Ca %									7- 315 Mn M	o Mo%	Na %	Ni P	Pb	Sb			Resou Ti %		V	w	Y	Zn
			As 20	Ba 45	Bi <5	Ca %			Cr	Cu	Cu%		La	Mg %	Mn M			Ni P 82 610	Pb 24	Sb				U			Y	Zn 63
Et #.	Tag #	Ag Al %					Cd	Со	Cr	Cu 814	Cu%	Fe %	La	Mg % 1.11	Mn M	9 0.108	0.06			10	Sn <20	Sr	Ti %	U <10		<10		
Et #.	Tag # G46209 G46210 G46211	Ag Al % 0.8 1.06 0.2 0.56 0.4 0.51	20 <5 10	45 130 30	<5 <5 <5	0.80 1.36 0.60	Cd	27 8 14	130 19 98	Cu 814 114 301	Cu% 0.08 0.01 0.03	Fe % 4.69 2.52 2.49	La <10 10 <10	Mg % 1.11 0.37 0.43	Mn M 231 107 604 64 130 39	9 0.108 7 0.065 0 0.039	0.06 0.04 0.06	82 610 16 840 26 720	24 22 14	10 <5 <5	Sn <20 <20 <20	Sr 47 114 28	Ti % 0.09 0.02 0.03	<10 <10 <10	209 28 53	<10 <10 <10	16	63 94 39
Et #. 66 67	Tag # G46209 G46210 G46211 G46212	Ag Al % 0.8 1.06 0.2 0.56 0.4 0.51 0.6 0.90	20 <5 10 20	45 130 30 45	<5 <5 <5 <5	0.80 1.36 0.60 0.70	2 <1	27 8 14 19	130 19 98 137	Cu 814 114 301 578	0.08 0.01 0.03 0.06	Fe % 4.69 2.52 2.49 3.89	<10 10 <10 <10	1.11 0.37 0.43 0.89	Mn M 231 107 604 64 130 39 193 123	9 0.108 7 0.065 0 0.039 4 0.123	0.06 0.04 0.06 0.06	82 610 16 840 26 720 64 390	24 22 14 28	10 <5 <5 5	<20 <20 <20 <20 <20	Sr 47 114 28 27	Ti % 0.09 0.02 0.03 0.07	<10 <10 <10 <10	209 28 53 156	<10 <10 <10 <10	16 17	63 94 39 52
Et #. 66 67 68 69 70	Tag # G46209 G46210 G46211 G46212 G46213	Ag Al % 0.8 1.06 0.2 0.56 0.4 0.51 0.6 0.90 1.4 0.70	20 <5 10 20 15	45 130 30 45 35	<5 <5 <5 <5 <5	0.80 1.36 0.60 0.70 0.78	2 <1 <1 <1 <1	27 8 14 19 43	130 19 98 137 128	814 114 301 578 1616	0.08 0.01 0.03 0.06 0.16	Fe % 4.69 2.52 2.49 3.89 3.08	<10 10 <10 <10 <10	Mg % 1.11 0.37 0.43 0.89 0.72	Mn M 231 107 604 64 130 39 193 123 134 43	9 0.108 7 0.065 0 0.039 4 0.123 9 0.044	0.06 0.04 0.06 0.06 0.03	82 610 16 840 26 720 64 390 43 370	24 22 14 28 20	10 <5 <5 5 <5	<pre>\$n <20 <20 <20 <20 <20 <20 <20 </pre>	97 114 28 27 24	Ti % 0.09 0.02 0.03 0.07 0.07	<10 <10 <10 <10 <10	209 28 53 156 95	<10 <10 <10 <10 <10	16 17 6 15 8	63 94 39 52 50
Et #. 66 67 68 69 70 71	Tag # G46209 G46210 G46211 G46212 G46213 G46214	Ag Al % 0.8 1.06 0.2 0.56 0.4 0.51 0.6 0.90 1.4 0.70 0.3 0.84	20 <5 10 20 15 15	45 130 30 45 35 35	<5 <5 <5 <5 <5 <5	0.80 1.36 0.60 0.70 0.78 0.86	2 <1 <1 <1 <1 <1	27 8 14 19 43 28	130 19 98 137 128 139	Cu 814 114 301 578 1616 197	0.08 0.01 0.03 0.06 0.16 0.02	Fe % 4.69 2.52 2.49 3.89 3.08 3.27	<10 10 <10 <10 <10 <10	Mg % 1.11 0.37 0.43 0.89 0.72 1.07	Mn M 231 107 604 64 130 39 193 123 134 43 150 77	9 0.108 7 0.065 0 0.039 4 0.123 9 0.044 4 0.077	0.06 0.04 0.06 0.06 0.03 0.05	82 610 16 840 26 720 64 390 43 370 47 440	24 22 14 28 20 28	10 <5 <5 5 <5 <5	\$n <20 <20 <20 <20 <20 <20 <20 <20 <20 <20	\$r 47 114 28 27 24 24	Ti % 0.09 0.02 0.03 0.07 0.07 0.08	<10 <10 <10 <10 <10 <10	209 28 53 156 95 129	<10 <10 <10 <10 <10 <10	16 17 6 15 8 10	63 94 39 52 50 44
Et #. 66 67 68 69 70 71 72	Tag # G46209 G46210 G46211 G46212 G46213 G46214 G46215	Ag Al % 0.8 1.06 0.2 0.56 0.4 0.51 0.6 0.90 1.4 0.70 0.3 0.84 0.2 0.70	20 <5 10 20 15 15	45 130 30 45 35 35 25	<5 <5 <5 <5 <5 <5	0.80 1.36 0.60 0.70 0.78 0.86 0.98	2 <1 <1 <1 <1 <1 <1	27 8 14 19 43 28 43	130 19 98 137 128 139 119	814 114 301 578 1616 197 240	0.08 0.01 0.03 0.06 0.16 0.02 0.02	Fe % 4.69 2.52 2.49 3.89 3.08 3.27 3.81	<10 10 <10 <10 <10 <10 <10	1.11 0.37 0.43 0.89 0.72 1.07 0.73	Mn M 231 107 604 64 130 39 193 123 134 43 150 77 150 115	9 0.108 7 0.065 0 0.039 4 0.123 9 0.044 4 0.077 9 0.116	0.06 0.04 0.06 0.06 0.03 0.05	82 610 16 840 26 720 64 390 43 370 47 440 53 380	24 22 14 28 20 28 16	10 <5 <5 <5 <5 <5 <5	<pre>\$n <20 <20 <20 <20 <20 <20 <20 <20 <20 <20</pre>	47 114 28 27 24 24	Ti % 0.09 0.02 0.03 0.07 0.07 0.08 0.05	<10 <10 <10 <10 <10 <10 <10	209 28 53 156 95 129 101	<10 <10 <10 <10 <10 <10 <10	16 17 6 15 8 10 6	63 94 39 52 50 44 47
Et #. 66 67 68 69 70 71 72 73	Tag # G46209 G46210 G46211 G46212 G46213 G46214 G46215 G46216	Ag Al % 0.8 1.06 0.2 0.56 0.4 0.51 0.6 0.90 1.4 0.70 0.3 0.84 0.2 0.70 0.2 0.55	20 <5 10 20 15 15 10	45 130 30 45 35 35 25 35	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5	0.80 1.36 0.60 0.70 0.78 0.86 0.98	2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	27 8 14 19 43 28 43 24	130 19 98 137 128 139 119 115	814 114 301 578 1616 197 240 114	0.08 0.01 0.03 0.06 0.16 0.02 0.02 0.01	4.69 2.52 2.49 3.89 3.08 3.27 3.81 3.01	<10 10 <10 <10 <10 <10 <10 <10	1.11 0.37 0.43 0.89 0.72 1.07 0.73 0.55	Mn M 231 107 604 64 130 39 193 123 134 43 150 77 150 115 148 59	9 0.108 7 0.065 0 0.039 4 0.123 9 0.044 4 0.077 9 0.116 6 0.060	0.06 0.04 0.06 0.06 0.03 0.05 0.05	82 610 16 840 26 720 64 390 43 370 47 440 53 380 33 430	24 22 14 28 20 28 16 18	10 <5 <5 <5 <5 <5 <5 <5 <5	<pre>\$n <20 <20 <20 <20 <20 <20 <20 <20 <20 <20</pre>	47 114 28 27 24 24 17 22	7i % 0.09 0.02 0.03 0.07 0.07 0.08 0.05 0.03	<10 <10 <10 <10 <10 <10 <10 <10	209 28 53 156 95 129 101 61	<10 <10 <10 <10 <10 <10 <10 <10	16 17 6 15 8 10 6	63 94 39 52 50 44 47 50
Et #. 66 67 68 69 70 71 72 73 74	Tag # G46209 G46210 G46211 G46212 G46213 G46214 G46215 G46216 G46217	Ag Al % 0.8 1.06 0.2 0.56 0.4 0.51 0.6 0.90 1.4 0.70 0.3 0.84 0.2 0.70 0.2 0.55 0.8 0.63	20 <5 10 20 15 15 10 10	45 130 30 45 35 35 25 35 40	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	0.80 1.36 0.60 0.70 0.78 0.86 0.98 0.83 0.45	2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	27 8 14 19 43 28 43 24 10	130 19 98 137 128 139 119 115 142	814 114 301 578 1616 197 240 114 552	0.08 0.01 0.03 0.06 0.16 0.02 0.02 0.01 0.06	4.69 2.52 2.49 3.89 3.08 3.27 3.81 3.01 3.34	<pre><10 10 <10 <1</pre>	1.11 0.37 0.43 0.89 0.72 1.07 0.73 0.55 0.58	Mn M 231 107 604 64 130 39 193 123 134 43 150 77 150 115 148 59 200 39	9 0.108 7 0.065 0 0.039 4 0.123 9 0.044 4 0.077 9 0.116 6 0.060 1 0.039	0.06 0.04 0.06 0.03 0.05 0.05 0.04 0.05	82 610 16 840 26 720 64 390 43 370 47 440 53 380 33 430 33 290	24 22 14 28 20 28 16 18	10 <5 <5 5 <5 <5 <5 <5 <5	<pre>\$n <20 <20 <20 <20 <20 <20 <20 <20 <20 <20</pre>	\$r 47 114 28 27 24 24 17 22 12	Ti % 0.09 0.02 0.03 0.07 0.07 0.08 0.05 0.03 0.05	<10 <10 <10 <10 <10 <10 <10 <10 <10	209 28 53 156 95 129 101 61 87	<10 <10 <10 <10 <10 <10 <10 <10	16 17 6 15 8 10 6 6	63 94 39 52 50 44 47 50 46
Et #. 66 67 68 69 70 71 72 73	Tag # G46209 G46210 G46211 G46212 G46213 G46214 G46215 G46216	Ag Al % 0.8 1.06 0.2 0.56 0.4 0.51 0.6 0.90 1.4 0.70 0.3 0.84 0.2 0.70 0.2 0.55	20 <5 10 20 15 15 10	45 130 30 45 35 35 25 35	<5 <5 <5 <5 <5 <5 <5 <5 <5 <5	0.80 1.36 0.60 0.70 0.78 0.86 0.98	2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	27 8 14 19 43 28 43 24 10	130 19 98 137 128 139 119 115 142 138	Cu 814 114 301 578 1616 197 240 114 552 273	0.08 0.01 0.03 0.06 0.16 0.02 0.01 0.06 0.03	Fe % 4.69 2.52 2.49 3.89 3.08 3.27 3.81 3.01 3.34 3.16	<pre><10 10 <10 <1</pre>	1.11 0.37 0.43 0.89 0.72 1.07 0.73 0.55 0.58 21.00	Mn M 231 107 604 64 130 39 193 123 134 43 150 77 150 115 148 59	9 0.108 7 0.065 0 0.039 4 0.123 9 0.044 4 0.077 9 0.116 6 0.060 1 0.039 0 0.049	0.06 0.04 0.06 0.03 0.05 0.05 0.04 0.05 0.06	82 610 16 840 26 720 64 390 43 370 47 440 53 380 33 430	24 22 14 28 20 28 16 18	10 <5 <5 <5 <5 <5 <5 10	<pre>\$n <20 <20 <20 <20 <20 <20 <20 <20 <20 <20</pre>	Sr 47 114 28 27 24 24 17 22 12 18	7i % 0.09 0.02 0.03 0.07 0.07 0.08 0.05 0.03	<pre>U <10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	209 28 53 156 95 129 101 61 87 158	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	16 17 6 15 8 10 6	63 94 39 52 50 44 47 50

77	G46221	0.2	1.00	<5	55	<5	0.49	<1	13	165	158	0.02	3.08	<10	1.04	177	654 0.065	0.06	50	440	22	5	<20	27	0.12	<10	164	<10	11	41
78	G46222	0.3	0.77	5	45	<5	0.43	<1	11	132	231	0.02	2.86	<10	0.81	217	213 0.021	0.08	44	360	18	<5	<20	22	0.09	<10	127	<10	9	45
79	G46223	0.3	0.99	<5	35	<5	0.63	<1	13	143	238	0.02	3.36	<10	1.06	249	221 0.022	0.08	56	450	14	<5	<20	23	0.12	<10	149	<10	9	52
80	G46224	0.4	0.93	<5	40	<5	0.29	<1	14	143	260	0.03	3.24	<10	0.97	221	348 0.035	0.08	46	330	12	5	<20	23	0.11	<10	151	<10	9	48
81	G46225	<0.2	0.03	5	20	<5	>10	<1	<1	7	10	0.00	0.09	<10	>10	77	<1 0.000	<0.01	<1	410	<2	25	<20	141	0.02	<10	3	<10	3	9
82	G46226	0.2	0.66	<5	45	<5	0.41	<1	10	104	232	0.02	2.81	<10	0.72	174	255 0.026	0.07	34	650	12	5	<20	39	0.07	<10	100	<10	9	35
83	G46227	0.2	0.35	<5	35	<5	0.50	<1	5	81	124	0.01	1.87	<10	0.28	112	113 0.011	0.05	4	820	10	<5	<20	31	0.02	<10	18	<10	6	21
84	G46228	0.2	0.36	<5	35	<5	0.53	<1	7	69	238	0.02	2.41	<10	0.29	107	49 0.005	0.06	5	810	10	<5	<20	33	0.02	<10	21	<10	5	33
85	G46229	<0.2	0.30	<5	45	<5	0.51	<1	5	79	149	0.01	1.67	<10	0.23	85	24 0.002	0.06	5	770	12	<5	<20	24	0.02	<10	19	<10	6	31
86	G46230	0.2	0.62	<5	130	<5	1.39	<1	8	19	127	0.01	2.58	10	0.41	637	644 0.064	0.05	17	850	18	<5	<20	131	0.02	<10	30	<10	17	86
87	G46231	0.2	0.50	<5	40	<5	0.30	<1	9	107	266	0.03	3.03	<10	0.45	129	80 0.008	0.09	18	560	12	<5	<20	17	0.06	<10	49	<10	5	31
88	G46232	<0.2	0.82	<5	70	<5	0.41	<1	11	127	147	0.01	2.38	<10	0.81	234	117 0.012	0.07	39	380	16	<5	<20	20	0.13	<10	112	<10	13	51
89	G46233	<0.2	0.22	<5	25	<5	0.54	<1	2	79	73	0.01	1.10	<10	0.09	72	20 0.002	0.05	3	340	6	<5	<20	12	< 0.01	<10	7	<10	2	15
90	G46234	0.2	0.32	<5	40	10	0.33	<1	5	72	118	0.01	2.09	<10	0.26	106	903 0.090	0.07	3	790	10	<5	<20	22	0.02	<10	17	<10	5	28
91	G46235	0.2	0.34	<5	45	<5	0.28	<1	6	65	199	0.02	2.39	<10	0.28	97	298 0.030	0.07	5	730	12	<5	<20	25	0.02	<10	20	<10	6	28
92	G46236	0.3	0.31	<5	50	<5	0.29	<1	6	68	172	0.02	2.47	<10	0.26	88	57 0.006	0.07	5	750	10	<5	<20	24	0.02	<10	18	<10	5	27
93	G46237	0.2	0.35	<5	35	<5	0.43	<1	7	63	210	0.02	2.64	<10	0.27	83	226 0.023	0.06	6	810	10	<5	<20	23	0.01	<10	17	<10	4	25
94	G46238	0.2	0.28	<5	35	<5	0.83	<1	4	68	145	0.01	1.81	<10	0.11	79	88 0.009	0.06	3	760	8	<5	<20	30	< 0.01	<10	8	<10	5	23
95	G46239	0.2	0.36	<5	50	<5	0.60	<1	8	72	191	0.02	2.17	<10	0.25	100	162 0.016	0.07	5	680	8	<5	<20	32	0.01	<10	17	<10	5	22
96	G46241	0.2	0.30	<5	40	<5	0.55	<1	6	77	235	0.02	2.14	<10	0.20	66	123 0.012	0.06	5	590	8	<5	<20	28	0.02	<10	15	<10	5	18
97	G46242	< 0.2	0.73	<5	100	<5	0.83	<1	13	55	71	0.01	2.37	<10	0.70	306	9 0.001	0.07	9	1350	14	10	<20	41	0.11	<10	59	<10	10	42
OO DAT	- A -																													

QC DATA:

nepeat.																												
1	G46141	0.8 0.77	15	40	<5	1.50	<1	18	80	586	4.14	<10	0.57	235	272	0.08	7	970	12	<5	<20	25	0.06	<10	72	<10	18	40
19	G46159	0.4 0.77	5	40	<5	2.03	<1	18	70	379	3.86	<10	0.57	276	427	0.07	4	950	18	<5	<20	29	0.08	<10	58	<10	16	54
36	G46177	0.7 1.64	5	50	<5	1.20	<1	29	52	820	5.86	<10	1.88	440	243	0.09	8	990	26	<5	<20	43	0.22	<10	198	<10	12	103
45	G46187	0.6 1.37	5	50	<5	1.67	3	28	50	890	6.29	<10	1.47	526	339	0.06	10	720	18	5	<20	31	0.13	<10	137	<10	11	124

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2007-315

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	w	Υ	Zn
54	G46196	0.4 0.75	20	30	<5	1.73	1	17	124	327	4.56	<10	0.74	271	1348	0.05	72	680	18	<5	<20	35	0.07	<10	114	<10	9	68
71	G46214	0.2 1.05	15	35	<5	0.92	<1	29	153	208	3.50	<10	1.07	165	765	0.07	51	430	20	<5	<20	28	0.11	<10	149	<10	11	41
80	G46224	0.4 0.92	<5	40	<5	0.29	1	14	140	254	3.28	<10	0.98	221	357	0.08	48	340	16	10	<20	23	0.12	<10	151	<10	9	49
89	G46233	<0.2 0.22	<5	30	<5	0.54	<1	3	80	70	1.12	<10	0.08	72	18	0.05	1	340	10	<5	<20	16	0.02	<10	6	<10	4	16
Resplit:	•																											
1	G46141	0.7 0.81	15	40	<5	1.75	1	20	74	619	4.59	<10	0.63	264	398	0.07	9	980	10	5	<20	26	0.06	<10	75	<10	16	41
36	G46177	0.7 1.41	10	45	<5	1.18	1	27	48	817	5.70	<10	1.64	421	237	0.07	10	1030	24	5	<20	34	0.18	<10	181	<10	12	112
71	G46214	0.3 1.07	20	35	<5	0.92	1	31	138	225	3.61	<10	1.10	167	777	0.06	52	440	28	5	<20	28	0.08	<10	151	<10	10	39

Standard:																							
Pb116	11.0 0.26	5	145	<5	0.94	11	2	2 2119	0.87	<10	0.06	261	27	0.02	2	190 7088	20	<20	181 < 0.01	<10	8	<10	<1 4208
Pb116	11.2 0.26	5	135	<5	0.93	11	2	2 2095	0.87	<10	0.07	247	26	0.02	2	170 7064	20	<20	180 < 0.01	<10	7	<10	<1 4205
Pb116	11.6 0.20	5	150	<5	0.97	11	2	2 2199	0.90	<10	0.06	265	28	0.02	2	180 7054	20	<20	173 < 0.01	<10	8	<10	1 4185

Jutta Jealouse B.C. Certified Assayer

JJ/bp df/315 XLS/07

O ILCII LABORATORI LID

10041 Dallas Drive **KAMLOOPS**, **B.C.**

V2C 6T4

050 570 57

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2007- 297

TTM Resources

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 75 Sample Type: Core

Project: CHU Shipment #: 40

Submitted by: All North Consultants

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
1	G46243	0.3 1.22	<5	100	<5	1.53	<1	23	89	286	4.20	<10	0.94	651	29	0.17	6	840	12	<5	<20	29	0.24	<10	109	<10	22	63
2	G46244	0.4 0.93	<5	105	<5	1.17	<1	23	89	325	4.22	<10	0.58	413	40	0.19	6	870	6	<5	<20	46	0.25	<10	86	<10	24	48
3	G46245	<0.2 0.05	<5	15	<5	>10	<1	<1	5	7	0.10	<10	>10	74	<1	0.01	<1	320	<2	30	<20	142	<0.01	<10	3	<10	1	5
4	G46246	0.5 1.14	<5	80	<5	1.55	3	21	98	372	4.34	<10	0.37	351	15	0.25	5	850	12	<5	<20	51	0.20	<10	74	<10	25	168
5	G46247	0.4 0.86	<5	60	<5	1.10	<1	22	64	328	4.07	<10	0.43	335	11	0.17	4	850	8	<5	<20	25	0.19	<10	75	<10	20	41
6	G46248	0.3 1.32	<5	80	<5	1.21	<1	21	73	246	4.12	<10	0.73	487	6	0.25	6	890	14	<5	<20	43	0.24	<10	104	<10	26	56
7	G46249	0.4 0.90	<5	65	<5	1.08	<1	21	98	360	4.61	<10	0.41	417	26	0.16	4	810	6	<5	<20	30	0.20	<10	80	<10	20	41
8	G46250	0.2 0.71	<5	125	<5	1.27	<1	7	19	129	2.46	20	0.51	605	636	0.05	13	790	14	<5	<20	145	0.02	<10	34	<10	19	70
9	G46251	0.5 1.10	<5	65	<5	1.90	<1	20	100	386	4.55	<10	0.37	447	22	0.17	7	760	10	<5	<20	59	0.17	<10	75	<10	18	36
10	G46252	0.6 1.59	15	95	<5	2.03	<1	22	207	463	5.26	<10	1.13	534	125	0.18	8	710	18	<5	<20	56	0.20	<10	118	<10	20	43
11	G46253	0.2 2.26	30	90	<5	3.72	<1	18	60	143	3.73	<10	1.19	644	52	0.15	3	1020	24	<5	<20	64	0.18	<10	120	<10	31	56
12	G46254	0.3 1.43	<5	90	<5	1.56	<1	22	153	223	4.31	<10	0.89	555	13	0.21	5	980	16	<5	<20	55	0.23	<10	100	<10	25	53
13	G46255	0.4 1.40	10	95	<5	1.76	<1	24	137	274	5.04	<10	1.17	581	21	0.22	4	930	14	<5	<20	43	0.26	<10	111	<10	29	52
14	G46256	0.3 1.20	<5	75	<5	1.37	<1	22	82	223	4.07	<10	0.90	451	24	0.16	4	1010	12	<5	<20	29	0.22	<10	85	<10	26	49
15	G46257	0.3 1.38	<5	100	<5	1.51	<1	22	96	190	4.15	<10	0.95	595	10	0.21	4	990	18	<5	<20	41	0.23	<10	94	<10	25	62
16	G46258	0.2 1.38	<5	100	<5	1.34	<1	22	191	175	4.00	<10	0.87	585	3	0.27	6	960	16	<5	<20	43	0.25	<10	96	<10	29	62
17	G46259	0.4 0.69	<5	70	<5	1.19	<1	23	47	469	4.84	<10	0.47	329	21	0.10	5	720	10	<5	<20	28	0.16	<10	65	<10	13	43
18	G46261	0.6 0.97	<5	55	<5	1.50	<1	23	66	522	4.73	<10	0.50	309	30	0.16	5	770	12	<5	<20	40	0.16	<10	76	<10	15	44
19	G46262	0.8 1.97	25	80	<5	2.47	<1	26	65	432	4.68	<10	0.97	534	90	0.29	6	840	26	<5	<20	102	0.19	<10	137	<10	20	62
20	G46263	0.9 1.35	15	60	<5	2.55	<1	27	113	592	5.09	<10	0.54	519	17	0.20	7	780	14	<5	<20	54	0.16	<10	96	<10	12	69
21	G46264	0.6 1.54	5	70	<5	1.85	<1	27	111	574	4.79	<10	0.59	357	12	0.24	5	800	26	<5	<20	52	0.19	<10	83	<10	19	56
22	G46265	<0.2 0.05	5	15	<5	>10	<1	<1	5	7	0.10	<10	>10	68	<1	0.01	<1	310	<2	30	<20	137	<0.01	<10	3	<10	3	6
23	G46266	0.5 1.35	<5	70	<5	1.59	<1	28	85	592	4.90	<10	0.50	530	10	0.18	8	660	24	<5	<20	104	0.15	<10	73	<10	10	54
24	G46267	0.3 1.12	<5	100	<5	0.91	<1	32	74	365	4.40	<10	0.75	469	<1	0.17	6	660	24	<5	<20	29	0.19	<10	93	<10	15	63
25	G46268	0.6 1.41	<5	85	<5	1.24	<1	26	135	665	6.16	<10	0.86	450	16	0.20	7	730	24	<5	<20	80	0.21	<10	118	<10	10	81
26	G46269	0.4 1.26	<5	90	<5	0.92	<1	24	83	319	5.14	<10	1.13	598	9	0.14	7	950	24	<5	<20	38	0.26	<10	134	<10	14	100
27	G46270	0.2 0.74	5	130	<5	1.33	<1	7	20	121	2.55	20	0.46	607	640	0.04	15	740	12	<5	<20	124	0.02	<10	33	<10	18	85
28	G46271	0.2 0.63	<5	70	5	1.11	<1	8	105	55	1.90	10	0.44	219	<1	0.08	5	920	10	<5	<20	39	0.10	<10	31	<10	4	29
29	G46272	0.5 1.26	<5	105	<5	1.04	<1	23	88	324	4.69	<10	1.04	552	26	0.16	8	960	20	<5	<20	70	0.24	<10	117	<10	16	79
30	G46273	0.5 1.21	<5	105	<5	1.00	<1	22	102	549	5.26	<10	1.09	495	21	0.15	10	1090	22	<5	<20	56	0.24	<10	132	<10	16	94

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
31	G46274	0.5 1.77	5	125	<5	1.92	<1	30	48	500	5.97	<10	1.36	593	47	0.12	5	920	32	<5	<20	76	0.27	<10	169	<10	19	92
32	G46275	<0.2 1.06	<5	180	<5	1.35	<1	11	80	44	2.49	10	0.86	279	<1	0.09	11	1140	14	<5	<20	63	0.15	<10	66	<10	7	36
33	G46276	0.6 1.98	15	100	<5	1.41	<1	30	39	528	5.96	<10	1.43	471	18	0.16	6	940	28	<5	<20	72	0.23	<10	167	<10	14	68
34	G46277	0.4 1.09	5	70	<5	1.21	<1	19	141	403	4.06	<10	0.74	329	414	0.11	6	550	16	<5	<20	67	0.15	<10	77	<10	15	45
35	G46278	0.3 1.40	5	95	<5	0.48	<1	16	87	365		<10	1.36		123		3		20	<5	<20	19	0.17		81	<10	10	71
			-														_								-			
36	G46279	0.2 1.25	<5	95	<5	0.47	<1	14	145	231	3.43	<10	1.11	302	199	0.12	4	470	24	<5	<20	40	0.15	<10	81	<10	13	59
37	G46281	0.3 1.17	5	95	<5	0.76	<1				3.24			309	250	0.12	4		22	<5	<20	36	0.15			<10	18	59
38	G46282	0.3 0.87	10	70		1.19	<1		114		2.82		0.63			0.09	3		18	<5	<20	18	0.07		54	<10	14	46
39	G46283	<0.2 0.86	5	80	<5	0.58	<1				2.48	-				0.12	5	460	16	<5	<20	15	0.07			<10	15	36
40	G46284	0.4 0.80	15	60	<5	1.03	<1				2.87					0.08	4		14	<5	<20	14	0.03		-	<10	8	42
	0.020.	0.1 0.00		00	10	1.00	•			02.	2.01	110	0.00	.00		0.00	•	000		10	1_0	• •	0.00	110		110	Ū	
41	G46285	<0.2 0.05	5	10	<5	>10	<1	<1	7	4	0.08	<10	>10	80	<1	<0.01	<1	330	<2	35	<20	133	<0.01	<10	3	<10	2	5
42	G46286	0.3 0.83	20	60	<5	1.46	<1	8	101	205	2.43	<10	0.57	234	150		4	400	14	<5	<20	20		<10	36	<10	9	94
43	G46287	0.7 1.62	25	85	<5	1.08	<1	20	72	456	4.33		1.44	279	205	0.10	3		22	<5	<20	24		<10		-	13	53
44	G46288	0.7 1.71	<5	90	<5	0.51	<1		174		4.53		1.82		71	0.17	8		30	<5	<20	30		<10				105
45	G46289	0.4 1.49	<5		<5	0.42	<1				4.76		1.50			0.17	7		28	<5		32		<10			22	70
-10	010200	0.4 1.40	٠.		-0	0.42	`'		.0.	100	1.70	110	1.00	007	00	0.17	•	000	20	-0	120	02	0.20	110	1 10	110		70
46	G46290	0.3 0.78	5	130	<5	1.30	<1	7	20	123	2.52	20	0.46	600	624	0.04	16	770	12	<5	<20	126	0.02	<10	33	<10	16	84
47	G46291	0.3 1.16	<5	70	<5	0.42	<1	19	208		4.37	<10		195	82		7		18	<5	<20	12	0.17			<10	15	41
48	G46292	0.3 0.85	<5	55	<5	0.32	<1		108		4.49	<10		100	275	0.09	6	480	12	<5	<20	13		<10		<10	3	22
49	G46293	0.3 0.79	<5	80	<5	0.33	<1		125	253	4.01		0.54		133	0.12	7		16	<5	<20	16	0.08	<10	86	<10	11	27
50	G46294	0.2 1.81	15	90	<5	0.64	<1	_				<10	1.76		146		7		28	<5	<20	60		<10		<10	18	57
00	010201	0.2 1.01	.0	00	-0	0.01	`'			100	1.10	110	1.70	011	1.10	0.10	•	0.10	20	-0	120	00	0.2-1	110	1-10	110	10	01
51	G46295	0.3 1.44	10	80	<5	0.84	<1	22	153	180	4.57	<10	1.26	304	143	0.15	8	590	22	<5	<20	32	0.15	<10	129	<10	14	49
52	G46296	0.2 1.73	<5	100	<5	0.53	<1				4.40		1.41		75		6	720	24	<5	<20	28		<10			11	43
53	G46297	0.3 1.25	<5	75	<5	0.73	2		165		4.67		0.70	206	253	0.18	9	720	18	<5	<20	35		<10			13	89
54	G46298	0.5 1.10	10	70	<5	0.65	<1		119		4.80			155	556	0.13	5	690	20	<5	<20	26		<10		<10	9	42
55	G46299	0.4 1.21	10	75	<5	1.44	<1	_				<10	0.92				6		20	<5	<20	67	0.10			<10	13	40
	0.0200	0		. •	•		٠.	. •			0	1.0	0.02			• • • • • • • • • • • • • • • • • • • •	Ū					٠.	0	1.0			. •	
56	G46301	0.5 1.74	15	105	<5	1.29	<1	18	100	314	4.03	<10	1.46	473	821	0.09	3	670	30	<5	<20	75	0.14	<10	110	<10	16	89
57	G46302	0.3 1.87	10		<5	0.57	<1	_	158	148		<10	1.66	527			6		46	<5	<20	81		<10		<10	24	82
58	G46303	2.1 2.10	<5		35	0.76	<1	-	120	138	3.75		1.79	767	169	0.18	4	_	48	<5	<20	88		<10		_		104
59	G46304	0.2 2.24	10		<5	1.24	<1		145			<10	2.04			0.16	7		38	<5	<20	85		<10				120
60	G46305	<0.2 0.05	5	10	<5	>10	<1	<1	7		0.10		>10	76		< 0.01	<1		<2		<20		< 0.01			<10	<1	6
			-							-																		•
61	G46306	0.4 2.10	10	115	<5	0.99	<1	19	127	341	4.65	<10	2.22	484	544	0.13	4	970	40	<5	<20	75	0.26	<10	100	<10	22	110
62	G46307	0.3 1.73	5	90	<5	0.62	<1	21	150	364	4.63		1.61	478	127	0.16		1090	38	<5	<20	39	0.29	<10	112	<10	29	91
63	G46308	0.4 1.22	<5	95	<5	0.60	<1	21	84	531		<10	1.00	371	283	0.14		1070	30	<5	<20	27	0.27			<10	27	75
64	G46309	0.5 1.77	5	85	<5	1.42	<1	28	144		5.50	<10	1.56	351	534	0.12	4		38	<5	<20	135		<10		<10	19	87
65	G46310	0.2 0.72	10	135	<5	1.29	<1	7			2.50	10	0.43					750	16	_		116	0.02	_	_	<10	18	80
	0.00.0	0.2 0 2			•	0	٠.	•					00		-00	0.0 .			. •				0.02	1.0	٠.		. •	
66	G46311	0.3 1.75	5	110	<5	2.23	<1	22	82	230	4.53	<10	1.61	508	172	0.09	18	1170	40	<5	<20	190	0.19	<10	128	<10	13	90
67	G46312	<0.2 1.43		185		2.49	<1	22	87				1.51			0.13		1380	30				0.10				<1	93
68	G46313	<0.2 1.61	_	195		2.73	<1		118				1.80			0.15		1630	30		<20	92	0.12				<1	87
69	G46314	0.2 1.35	<5			1.42	<1						1.20					920	34		<20	81	0.19		98		12	71
70	G46315	0.2 1.77		150		2.54							1.74			0.14		1580	42		<20		0.21				7	
	J.00.0	J			.5		•••		٠.						٠.	J			-			. 3	J				•	. •

ICP CERTIFICATE OF ANALYSIS AK 2007- 297

Et #.	Tag #	Ag Al %	As	Ва	Bi Ca%	Cd	Co	Cr	Cu	Fe %	La	Mg %	PMne	2 Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
71	G46316	0.4 0.98	5	90	<5 0.77	<1	21	53	411	4.29	<10	0.90	317	323	0.11	6	870	28	<5	<20	43	0.20	<10	88	<10	13	78

72	G46317	0.3	1.07	<5	95	<5	0.63	<1	25	50	336	4.30	<10	0.93	428	196	0.11	5	790	32	<5	<20	31	0.25	<10	102	<10	18	94
73	G46318	0.4	0.91	<5	60	<5	0.88	<1	25	62	614	4.64	<10	0.70	270	105	0.11	7	780	14	<5	<20	38	0.22	<10	88	<10	14	57
74	G46319	0.6	0.83	<5	75	<5	0.76	<1	24	73	719	4.77	<10	0.50	247	178	0.12	5	730	20	<5	<20	40	0.19	<10	80	<10	15	68
75	G46321	8.0	1.28	<5	95	<5	0.76	1	26	72	679	5.13	<10	1.05	395	242	0.15	5	820	34	<5	<20	173	0.22	<10	104	<10	17	132
QC DAT																													
Repeat:	•																												
1	G46243	0.3	1.34	<5	105	<5	1.53	<1	24	90	288	4.29	<10	1.02	663	31	0.18	7	870	12	<5	<20	32	0.23	<10	112	<10	25	60
10	G46252	0.7	1.51	20	100	<5	2.07	<1	23	207	436	5.36	<10	1.06	532	126	0.17	7	770	22	<5	<20	55	0.19	<10	114	<10	22	48
19	G46262	0.8	1.92	30	75	<5	2.47	<1	25	64	421	4.72	<10	0.95	532	95	0.27	6	840	26	<5	<20	94	0.18	<10	134	<10	14	64
36	G46279	0.2	1.23	<5	90	<5	0.48	<1	14	142	236	3.57	<10	1.14	312	200	0.11	4	490	22	<5	<20	40	0.15	<10	85	<10	14	60
45	G46289	0.4	1.52	<5	105	<5	0.41	<1	20	127	415	4.71	<10	1.54	309	76	0.17	6	570	24	<5	<20	31	0.20	<10	145	<10	20	68
54	G46298	0.5	1.00	10	75	<5	0.65	<1	20	114	411	4.79	<10	0.67	154	523	0.11	7	730	26	<5	<20	28	0.08	<10	101	<10	11	45
Resplit:	•																												
1	G46243	0.4	1.16	<5	105	<5	1.52	<1	25	52	295	4.46	<10	0.88	630	29	0.13	7	920	22	<5	<20	27	0.20	<10	100	<10	21	71
36	G46279	0.2	1.14	<5	85	<5	0.46	<1	13	139	236	3.31	<10	1.07	283	218	0.10	4	460	26	<5	<20	38	0.13	<10	72	<10	11	59
71	G46316	0.4	0.97	<5	95	<5	0.77	<1	21	54	414	4.31	<10	0.90	313	318	0.10	5	850	24	<5	<20	42	0.22	<10	88	<10	15	71
Standar	d:																												
Pb116		11.1	0.25	<5	130	<5	0.92	11	3	3	2265	0.90	<10	0.08	260	26	0.02	3	180	7058	25	<20	173	<0.01	<10	9	<10	<1 4	4253
Pb116		11.3	0.22	<5	135	<5	0.90	13	3	4	2155	0.86	<10	0.07	247	26	0.02	3	180	7036	20	<20	162	<0.01	<10	7	<10	2 4	4261
Pb116		11.5	0.24	<5	125	<5	0.90	13	3	4	2022	0.88	<10	0.07	247	27	0.02	3	170	7080	20	<20	164	<0.01	<10	8	<10	<1 4	4214

Jutta Jealouse

B.C. Certified Assayer

JJ/bp/sa df/297 XLS/07

TTM Resources 24-Apr-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 75

Sample Type: Core **Project: CHU Shipment #: 40**

Submitted by: All North Consultants

		Мо
ET #.	Tag #	(%)
8	G46250	0.062
27	G46270	0.061
46	G46290	0.061
54	G46298	0.055
55	G46299	0.046
56	G46301	0.079
61	G46306	0.055
64	G46309	0.052
65	G46310	0.063
QC DAT	<u>Γ</u> Α:	
Standa	rd:	
MP2		0.281
MP2		0.283
MP2		0.280

JJ/kk XLS/07 ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

TTM Resources 12-Apr-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 49

Sample Type: Core

Submitted by: All North Consultants

		Мо
ET #.	Tag #	(%)
4	G46058	0.053
5	G46059	0.097
6	G46061	0.112
7	G46062	0.065
8	G46063	0.051
12	G46067	0.082
15	G46070	0.062
16	G46071	0.054
19	G46074	0.059
21	G46076	0.063
22	G46077	0.089
27	G46083	0.051
31	G46087	0.061
32	G46088	0.103
34	G46090	0.062
42	G46098	0.051
43	G46099	0.050

QC DATA:

Standard:

MP2 0.280

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

JJ/kc XLS/07

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Мс	Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G46055	<0.2 2.14	15	165	<5	3.30	1	34	163	84 0.01	5.43	<10	2.12	582	209	9 0.021	0.14	108 ′	1970	50	15	<20	175	0.07	<10	146	<10	3	72
2	G46056	<0.2 2.45	95	140	<5	7.00	<1	38	176	65 0.01	5.81	<10	2.55	912	7	7 0.001	0.05	134 1	1890	44	20	<20	148	0.02	<10	135	<10	4	79
3	G46057	<0.2 1.62	20	70	<5	2.39	<1	23	168	101 0.01	4.20	<10	1.50	426	458	3 0.046	0.09	88 1	1120	44	10	<20	73	0.10	<10	130	<10	1	68
4	G46058	<0.2 1.19	15	60	<5	0.78	<1	16	149	163 0.02	3.43	<10	1.07	250	545	5 0.055	0.04	63	510	34	5	<20	20	0.14	<10	154	<10	7	68
5	G46059	<0.2 1.06	15	60	<5	0.76	<1	15	157	179 0.02	3.47	<10	1.07	247	1003	3 0.100	0.04	60	550	30	<5	<20	17	0.14	<10	165	<10	6	82
6	G46061	0.2 1.15	15	50	<5	1.06	<1	15	145	237 0.02	3.71	<10	1.05	274	1208	3 0.121	0.04	61	580	36	<5	<20	32	0.13	<10	155	<10	6	92
7	G46062	<0.2 1.06	10	55	<5	0.80	<1	17	149	225 0.02	3.61	<10	1.02	218	67′	1 0.067	0.04	64	500	32	<5	<20	76	0.13	<10	155	<10	5	68
8	G46063	0.2 1.26	10	75	<5	1.07	<1	20	151	238 0.02	4.16	<10	1.19	311	524	4 0.052	0.08	57	950	36	<5	<20	91	0.15	<10	166	<10	6	90
9	G46064	<0.2 2.09	10	240	10	3.11	1	37	135	55 0.01	5.81	<10	2.17	578	5	5 0.001	0.14	72 2	2710	50	25	<20	146	0.14	<10	163	<10	<1	104
10	G46065	<0.2 0.04	10	15	<5	>10	<1	<1	5	4 0.00	0.10	<10	>10	63	<	0.000	<0.01	<1	510	<2	40	<20	103	< 0.01	<10	3	<10	<1	8
11	G46066	<0.2 1.76	15	135	<5	2.86	<1	32	129	89 0.01	5.09	<10	1.75	553	46	0.005	0.10	86 2	2070	56	5	<20	88	0.14	<10	158	<10	3	98
12	G46067	0.6 0.93	15	60	<5	0.54	3	17	136	418 0.04	4.00	<10	0.92	512	845	5 0.085	0.06	63	660	52	<5	<20	18	0.13	<10	153	<10	4	937
13	G46068	0.3 0.75	10	45	<5	1.13	<1	11	103	233 0.02	2.96	<10	0.64	813	375	5 0.037	0.05	31	880	26	<5	<20	23	0.09	<10	86	<10	3	243
14	G46069	0.2 0.63	10	50	<5	0.95	<1	10	95	180 0.02	2.74	<10	0.49	313	173	3 0.017	0.06	22	990	24	<5	<20	25	0.07	<10	66	<10	4	121
15	G46070	0.2 0.64	10	130	<5	1.48	<1	8	21	109 0.01	2.82	<10	0.40	661	624	4 0.062	0.03	19 1	1070	30	<5	<20	111	0.03	<10	29	<10	17	121
16	G46071	0.3 1.07	10	60	<5	0.61	<1	23	156	260 0.03	4.26	<10	1.02	288	567	7 0.057	0.06	67	640	36	<5	<20	19	0.18	<10	170	<10	7	150
17	G46072	<0.2 1.13	10	70	<5	0.32	<1	16	167	174 0.02	3.90	<10	1.04	202	479	9 0.048	0.06	64	640	36	<5	<20	8	0.18	<10	162	<10	4	60
18	G46073	<0.2 1.07	5	65	<5	0.39	<1	18	161	204 0.02	3.79	<10	0.96	177	313	3 0.031	0.06	60	660	32	<5	<20	22	0.15	<10	167	<10	3	60
19	G46074	<0.2 1.08	10	65	<5	0.29	<1	12	132	140 0.01	3.07	<10	0.93	184	617	7 0.062	0.06	46	400	34	15	<20	21	0.12	<10	137	<10	1	56
20	G46075	<0.2 1.15	5	70	<5	0.23	<1	16	132	132 0.01	3.70	<10	1.01	196	212	2 0.021	0.05	45	510	36	<5	<20	8	0.16	<10	165	<10	<1	51
21	G46076	<0.2 1.28	10	70	<5	0.51	<1	14	133	78 0.01	3.54	<10	1.05	224	649	9 0.065	0.05	46	600	40	<5	<20	25	0.17	<10	163	<10	2	58
22	G46077	<0.2 1.08	10	50	<5	0.65	<1	17	125	191 0.02	4.15	<10	0.96	191	907	7 0.091	0.04	47	680	32	<5	<20	15	0.14	<10	135	<10	<1	55
23	G46078	<0.2 1.06	10	65	<5	0.37	<1	17	136	171 0.02	3.92	<10	0.97	188	293	3 0.029	0.06	60	740	38	<5	<20	26	0.15	<10	170	<10	6	60
24	G46079	<0.2 1.16	5	55	<5	0.45	<1	16	148	174 0.02	3.94	<10	1.06	178	253	3 0.025	0.06	54	730	40	<5	<20	29	0.17	<10	177	<10	4	59
25	G46081	<0.2 1.12	10	65	<5	0.27	<1	14	148	106 0.01	3.31	<10	0.97	178	381	1 0.038	0.06	52	610	40	<5	<20	39	0.17	<10	165	<10	2	56
26	G46082	<0.2 1.28	10	70	<5	0.28	<1	14	140	121 0.01	3.60	<10	1.23	213	333	3 0.033	0.05	49	630	44	<5	<20	7	0.19	<10	280	<10	4	69
27	G46083	<0.2 1.11	5	50	<5	0.27	<1	16	132	205 0.02	4.01	<10	1.02	201	505	5 0.050	0.05	49	710	30	10	<20	6	0.17	10	154	<10	2	61
28	G46084	<0.2 1.13	10	80	<5	0.27	<1	16	155	154 0.02	3.72	<10	1.04	228	204	4 0.020	0.05	59	610	34	<5	<20	13	0.19	<10	169	<10	3	65
29	G46085	<0.2 0.03	10	10	<5	>10	<1	<1	3	2 0.00	0.09	<10	>10	73	<	0.000	<0.01	<1	500	<2	50	<20	116	<0.01	<10	3	<10	<1	7
30	G46086	<0.2 1.12	5	65	<5	0.36	1	15	153	175 0.02	3.82	<10	1.09	211	216	0.022	0.05	64	690	32	20	<20	27	0.16	<10	173	<10	5	64
ECO TE	CH LABORA	TORY LTD.						ICP C	ERTII	FICATE OF	ANAL	YSIS	AK 20	07- 24	48								ттм	Resou	ırces				
Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Мс	Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
31	G46087	<0.2 1.13	15	50	<5	0.69	<1	17	131	262 0.03	4.28	<10	1.15	255	634	4 0.063	0.05	66	560	34	5	<20	17	0.14	<10	158	<10	5	76
32	G46088	0.2 0.79	15	55	<5	0.92	3	15	146	215 0.02	3.56	<10	0.75	303	1017	7 0.102	0.05	47	740	32	<5	<20	27	0.10	<10	107	<10	4 ′	1283

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Cu%	Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
31	G46087	<0.2 1.13	15	50	<5	0.69	<1	17	131	262	0.03	4.28	<10	1.15	255	634	0.063	0.05	66	560	34	5	<20	17	0.14	<10	158	<10	5	76
32	G46088	0.2 0.79	15	55	<5	0.92	3	15	146	215	0.02	3.56	<10	0.75	303	1017	0.102	0.05	47	740	32	<5	<20	27	0.10	<10	107	<10	4	1283
33	G46089	0.2 0.78	15	45	<5	1.70	1	13	100	162	0.02	3.17	<10	0.57	303	366	0.037	0.05	34	940	32	<5	<20	22	0.06	<10	77	<10	5	341
34	G46090	0.2 0.67	10	135	<5	1.53	<1	8	21	116	0.01	2.91	<10	0.42	684	649	0.065	0.03	20	1120	30	<5	<20	120	0.03	<10	31	<10	17	124
35	G46091	<0.2 1.25	10	70	<5	0.62	<1	14	130	93	0.01	3.48	<10	1.04	251	155	0.015	0.04	41	830	36	<5	<20	50	0.16	<10	148	<10	1	62
36	G46092	<0.2 0.88	5	180	<5	1.22	1	11	15	10	0.00	2.51	<10	0.64	318	<1	0.000	0.03	11	1710	24	5	<20	142	0.09	<10	60	<10	<1	57
37	G46093	<0.2 1.22	10	65	<5	0.45	<1	19	138	144	0.01	3.98	<10	1.10	223	224	0.022	0.05	62	810	36	5	<20	78	0.18	<10	181	<10	2	60
38	G46094	<0.2 1.07	20	80	<5	1.19	<1	15	95	97	0.01	3.21	<10	1.01	261	229	0.023	0.06	37	1300	36	10	<20	38	0.16	<10	114	<10	5	94
39	G46095	0.2 1.32	20	60	<5	0.47	<1	19	161	231	0.02	4.07	<10	1.25	229	192	0.019	0.05	74	600	36	5	<20	33	0.18	<10	185	<10	4	69
40	G46096	0.2 1.35	5	70	<5	0.37	1	21	155	233	0.02	4.35	<10	1.19	283	342	0.034	0.05	77	650	40	20	<20	28	0.19	<10	175	<10	5	86
41	G46097	0.8 1.14	5	60	<5	0.34	<1	18	173	677	0.07	4.05	<10	1.10	237	218	0.022	0.05	64	720	32	<5	<20	21	0.15	<10	160	<10	7	83
42	G46098	0.2 1.13	15	50	<5	0.58	<1	17	166	286	0.03	4.01	<10	1.02	202	558	0.056	0.05	53	550	34	<5	<20	15	0.10	<10	146	<10	3	66
43	G46099	0.7 1.19	25	50	<5	0.60	3	23	148	314	0.03	4.23	<10	1.00	245	495	0.050	0.04	54	520	84	<5	<20	14	0.13	<10	145	<10	2	790
44	G46101	0.2 1.43	10	60	<5	0.67	<1	18	145	219	0.02	4.06	<10	1.16	257	343	0.034	0.06	65	570	42	<5	<20	22	0.17	<10	168	<10	2	75
45	G46102	0.2 1.27	15	55	<5	0.96	<1	20	165	266	0.03	4.68	<10	0.97	235	456	0.046	0.08	75	700	40	<5	<20	19	0.15	<10	149	<10	6	86
46	G46103	0.2 1.34	5	40	<5	0.52	<1	19	150	279	0.03	4.76	<10	1.17	250	252	0.025	0.08	58	790	38	<5	<20	20	0.18	<10	182	<10	3	84
47	G46104	0.2 1.29	10	55	<5	0.75	<1	16	152	208	0.02	4.01	<10	1.09	234	320	0.032	0.06	57	730	40	<5	<20	35	0.17	<10	196	<10	4	76
48	G46105	<0.2 0.05	15	10	<5	>10	<1	<1	4	3	0.00	0.10	<10	>10	70	<1	0.000	<0.01	<1	750	<2	45	<20	116	< 0.01	<10	3	<10	<1	8
49	G46106	<0.2 1.46	10	65	<5	1.22	<1	16	156	149	0.01	3.52	<10	1.12	205	102	0.010	0.05	71	570	42	5	<20	34	0.16	<10	205	<10	<1	75
														Page 1																

Page 1

TTM Resources 11-Apr-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 32

Sample Type: Core **Project: CHU Shipment #: 38**

Submitted by: All North Consultants

		Мо
ET #.	Tag #	(%)
4	G46110	0.064
11	G46117	0.051
12	G46118	0.056
16	G46123	0.076
17	G46124	0.063
21	G46128	0.059
22	G46129	0.051
23	G46130	0.063
25	G46132	0.063
QC DA	<u>Γ</u> A:	
Standa	rd:	

0.280

0.279

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

JJ/sa XLS/07

MP2

MP2

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Mo Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G46107	0.3 0.80	<5	50	<5	0.57	<1	20	53	307 0.03	3.74	<10	0.56	247	137 0.014	0.09	16	700	10	<5	<20	40	0.13	<10	80	<10	11	41
2	G46108	0.5 0.64	<5	45	<5	0.81	1	14	11	381 0.04	4.32	<10	0.45	315	90 0.009	0.03	7	650	12	<5	<20	11	0.08	<10	65	<10	6	52
3	G46109	0.4 0.67	<5	45	<5	0.40	<1	14	52	281 0.03	3.52	<10	0.41	270	251 0.025	0.05	5	450	8	<5	<20	28	0.09	<10	49	<10	13	66
4	G46110	0.2 0.67	<5	130	<5	1.32	<1	7	18	114 0.01	2.64	10	0.42	616	657 0.066	0.04	15	780	14	<5	<20	110	0.03	<10	31	<10	18	82
5	G46111	0.3 0.76	<5	45	<5	0.49	<1	20	14	411 0.04	5.50	<10	0.69	210	78 0.008	0.03	10	810	6	<5	<20	5	0.10	<10	125	<10	6	46
6	G46112	0.4 0.91	<5	45	<5	0.34	<1	26	49	434 0.04	5.32	<10	0.82	233	115 0.012	0.06	9	760	4	<5	<20	7	0.11	<10	133	<10	10	47
7	G46113	0.3 1.02	<5	55	<5	0.68	1	21	48	307 0.03	4.93	<10	0.81	206	124 0.012	0.07	10	890	12	<5	<20	15	0.11	<10	136	<10	14	42
8	G46114	0.5 0.79	15	50	<5	1.64	2	22	61	270 0.03	5.05	<10	0.54	252	318 0.032	0.03	12	850	30	<5	<20	20	0.04	<10	99	<10	9	144
9	G46115	0.5 1.11	<5	45	<5	1.00	1	23	48	436 0.04	5.42	<10	0.89	271	173 0.017	0.08	12	960	8	<5	<20	16	0.13	<10	149	<10	16	60
10	G46116	0.4 0.56	<5	45	<5	0.94	<1	22	58	246 0.02	5.30	<10	0.45	132	131 0.013	0.03	8	530	8	<5	<20	20	0.04	<10	85	<10	1	47
11	G46117	0.4 1.13	<5	40	<5	1.28	1	24	53	387 0.04	5.44	<10	0.93	292	481 0.048	0.08	10	760	14	<5	<20	20	0.11	<10	141	<10	11	61
12	G46118	0.3 0.45	<5	40	<5	0.44	<1	11	61	183 0.02	3.01	<10	0.27	105	533 0.053	0.03	7	440	6	<5	<20	5	0.02	<10	42	<10	5	24
13	G46119	0.4 0.48	<5	35	<5	0.71	<1	15	23	244 0.02	3.22	<10	0.33	134	338 0.034	0.03	4	900	10	<5	<20	7	0.03	<10	40	<10	9	34
14	G46121	0.7 1.05	<5	45	<5	0.62	<1	20	57	505 0.05	5.09	<10	0.81	293	382 0.038	0.07	7 1	1020	10	<5	<20	8	0.10	<10	101	<10	14	58
15	G46122	0.8 1.36	<5	50	<5	0.78	2	29	79	754 0.08	7.10	<10	1.39	355	264 0.026	0.07	16	770	12	<5	<20	11	0.15	<10	188	<10	14	89
16	G46123	0.4 0.67	<5	40	<5	0.51	1	18	57	281 0.03	4.13	<10	0.48	164	739 0.074	0.05	7	840	10	<5	<20	6	0.05	<10	64	<10	12	37
17	G46124	0.5 0.64	<5	40	<5	0.32	3	18	52	463 0.05	4.35	<10	0.34	163	661 0.066	0.05	5	940	8	<5	<20	6	0.04	<10	46	<10	10	189
18	G46125	<0.2 0.04	5	20	<5	>10	<1	<1	4	4 0.00	0.10	<10	>10	72	1 0.000	<0.01	<1	420	<2	40	<20	112	<0.01	<10	4	<10	1	5
19	G46126	0.5 0.76	<5	45	<5	0.50	<1	17	77	312 0.03	4.08	<10	0.52	194	297 0.030	0.07	8	880	12	<5	<20	10	0.07	<10	70	<10	14	49
20	G46127	0.4 0.46	<5	45	<5	0.75	<1	14	65	245 0.02	3.70	<10	0.18	102	498 0.050	0.03	4	930	12	<5	<20	10	0.02	<10	24	<10	11	24
21	G46128	1.2 0.51	10	45	<5	0.94	<1	15	67	589 0.06	3.78	<10	0.29	154	615 0.062	0.04	4	990	10	<5	<20	10	0.04	<10	45	<10	14	40
22	G46129	3.1 0.88	10	45	<5	0.74	2	21	45	1486 0.15	6.67	<10	0.70	225	518 0.052	0.04	11	830	10	<5	<20	9	0.08	<10	115	<10	12	90
23	G46130	0.2 0.60	<5	120	<5	1.35	<1	7	19	104 0.01	2.71	10	0.37	618	654 0.065	0.03	16	820	18	<5	<20	92	0.03	<10	30	<10	16	96
24	G46131	1.5 1.07	<5	50	<5	0.70	<1	24	49	1032 0.10	7.34	<10	1.12	307	310 0.031	0.06	8 1	1040	16	<5	<20	10	0.16	<10	133	<10	14	91
25	G46132	0.5 0.72	5	50	<5	0.93	<1	23	54	494 0.05	5.30	<10	0.61	291	664 0.066	0.06	5 1	100	16	<5	<20	12	0.15	<10	64	<10	17	126

ICP CERTIFICATE OF ANALYSIS AK 2007- 247

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Mo Mo%	Na %	Ni P	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	G46133	0.5 0.68	<5	50	<5	1.00	<1	22	77	396 0.04	4.97	<10	0.54	310	438 0.044	0.05	5 1120	14	<5	<20	10	0.14	<10	62	<10	16	105
27	G46134	0.6 0.71	<5	45	<5	0.84	<1	24	52	525 0.05	6.25	<10	0.47	313	190 0.019	0.05	7 1130	14	<5	<20	10	0.14	<10	73	<10	16	102
28	G46135	0.4 0.59	<5	50	<5	0.88	<1	20	59	368 0.04	5.18	<10	0.41	347	201 0.020	0.05	7 1130	12	<5	<20	11	0.13	<10	66	<10	12	81
29	G46136	0.4 0.61	<5	55	<5	1.14	1	16	37	425 0.04	4.64	<10	0.43	472	314 0.031	0.05	8 1130	12	<5	<20	38	0.12	<10	66	<10	14	79
30	G46137	0.8 0.58	<5	50	<5	1.14	<1	19	56	601 0.06	5.30	<10	0.42	522	461 0.046	0.06	6 1170	16	<5	<20	26	0.13	<10	54	<10	15	78
31	G46138	0.8 0.65	<5	45	<5	0.78	<1	17	55	505 0.05	4.55	<10	0.46	260	414 0.041	0.05	4 1080	10	<5	<20	10	0.13	<10	58	<10	13	75
32	G46139	1.3 0.73	35	55	<5	0.69	<1	24	74	788 0.08	6.99	<10	0.56	282	199 0.020	0.03	9 1010	18	<5	<20	8	0.11	<10	62	<10	10	86

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni P	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ
1	G45998	<0.2 1.50	<5	70	<5	0.74	<1	21	39	359 0.04	4.51	<10	1.49	466	265	0.027	0.09	14 1280	18	10	<20	17	0.22	<10	166	<10	5
2	G45999	<0.2 1.03	<5	185	10	0.92	<1	12	43	23 0.00	2.81	<10	0.90	379	<1	0.000	0.09	8 1530	16	<5	<20	49	0.17	<10	84	<10	6
3	G46001	<0.2 1.35	<5	70	<5	0.83	<1	18	86	315 0.03	3.90	<10	1.28	387	223	0.022	0.12	10 1210	18	<5	<20	85	0.19	<10	118	<10	9
4	G46002	0.2 1.89	<5	65	<5	0.62	<1	25	77	703 0.07	5.25	<10	1.93	437	276	0.028	0.13	8 790	20	5	<20	97	0.22	<10	200	<10	8
5	G46003	0.3 1.58	<5	65	<5	1.41	<1	28	93	1001 0.10	6.00	<10	1.52	311	459	0.046	0.10	12 590	22	<5	<20	86	0.16	<10	157	<10	8
6	G46004	0.2 1.58	<5	70	<5	0.49	<1	26	69	775 0.08	5.68	<10	1.56	332	240	0.024	0.12	12 650	22	<5	<20	61	0.17	<10	172	<10	6
7	G46005	<0.2 0.05	<5	5	<5	>10	<1	<1	4	4 0.00	0.10	<10	>10	66	<1	0.000	< 0.01	<1 400	<2	40	<20	127	<0.01	<10	3	<10	<1
8	G46006	0.2 1.37	<5	60	<5	0.62	1	19	88	646 0.06	4.52	<10	1.29	312	429	0.043	0.13	10 720	20	<5	<20	117	0.15	<10	143	<10	6
9	G46007	0.3 1.12	<5	65	<5	0.46	<1	19	111	765 0.08	4.73	<10	1.11	266	621	0.062	0.12	10 610	18	<5	<20	50	0.14	<10	133	<10	7
10	G46008	0.4 1.43	<5	75	<5	0.47	<1	32	105	1035 0.10	6.28	<10	1.56	326	586	0.059	0.10	11 450	22	<5	<20	42	0.19	<10	166	<10	5
11	G46009	0.4 1.91	<5	65	<5	0.48	2	34	101	856 0.09	6.15	<10	2.14	598	389	0.039	0.10	17 660	28	20	<20	66	0.22	<10	205	<10	11
12	G46010	<0.2 0.76	<5	110	<5	1.33	<1	6	18	135 0.01	2.50	20	0.53	641	651	0.065	0.05	14 770	14	<5	<20	133	0.03	<10	33	<10	15
13	G46011	0.4 1.56	<5	65	<5	0.52	2	34	104	911 0.09	6.45	<10	1.54	390	294	0.029	0.11	10 600	22	10	<20	31	0.20	<10	164	<10	9
14	G46012	0.4 1.68	<5	60	<5	0.54	1	25	45	971 0.10	6.22	<10	1.75	421	299	0.030	0.10	6 910	18	<5	<20	54	0.21	<10	172	<10	7
15	G46013	0.7 1.78	<5	65	<5	0.54	<1	31	71	1183 0.12	6.62	<10	1.77	625	994	0.099	0.13	6 790	20	<5	<20	51	0.20	<10	167	<10	9
16	G46014	1.1 1.41	<5	75	<5	0.72	2	36	66	1971 0.20	8.95	<10	1.21	381	225	0.023	0.14	8 510	18	<5	<20	32	0.13	<10	130	<10	<1
17	G46015	0.3 1.25	<5	70	<5	0.48	<1	26	85	907 0.09	5.35	<10	1.15	303	843	0.084	0.12	8 670	16	<5	<20	38	0.15	<10	128	<10	12
18	G46016	0.4 1.49	<5	70	<5	0.61	1	26	49	989 0.10	5.85	<10	1.46	349	1334	0.133	0.11	7 820	24	<5	<20	31	0.18	<10	148	<10	11
19	G46017	0.3 1.11	10	65	<5	1.18	<1	30	64	807 0.08	5.41	<10	1.12	298	1194	0.119	0.09	8 700	22	<5	<20	44	0.15	<10	111	<10	10
20	G46018	0.7 0.98	10	50	<5	2.35	<1	26	66	1105 0.11	5.76	<10	0.80	283	543	0.054	0.05	8 570	14	<5	<20	43	0.06	<10	73	<10	4
21	G46019	0.7 1.39	10	40	<5	0.86	2	38	85	1216 0.12	7.29	<10	1.10	360	413	0.041	0.09	9 560	16	<5	<20	81	0.10	<10	121	<10	<1
22	G46021	0.2 0.71	<5	75	<5	0.68	<1	14	61	492 0.05	3.21	10	0.53	201	391	0.039	0.07	6 1050	18	<5	<20	165	0.06	<10	43	<10	11
23	G46022	0.4 0.74	<5	50	<5	0.77	<1	12	66	520 0.05	2.98	10	0.70	265	132	0.013	80.0	5 1290	14	<5	<20	101	0.09	<10	47	<10	6
24	G46023	0.3 1.33	<5	55	<5	0.71	1	22	60	695 0.07	4.27	<10	1.02	255	751	0.075	0.11	9 700	22	<5	<20	276	0.11	<10	114	<10	15
25	G46024	<0.2 0.94	<5	50	<5	0.52	<1	13	94	392 0.04	2.91	<10	0.78	197	310	0.031	0.09	5 600	16	<5	<20	131	0.09	<10	80	<10	18
26	G46025	<0.2 0.04	5	15	<5	>10	<1	<1	2	2 0.00	0.07	<10	>10	64	<1	0.000	<0.01	<1 380	<2	35	<20	136	<0.01	<10	2	<10	2
27	G46026	<0.2 0.81	<5	45	<5	0.64	<1	17	80	447 0.04	3.41	<10	0.64	193	514	0.051	0.09	5 820	12	<5	<20	73	0.10	<10	59	<10	11
28	G46027	<0.2 0.76	<5	70	<5	0.69	<1	10	62	283 0.03	2.38	<10	0.60	180	547	0.055	0.06	5 900	16	<5	<20	62	0.08	<10	50	<10	16
29	G46028	0.2 0.92	<5	40	<5	0.59	<1	18	109	668 0.07	3.86	<10	0.75	215	658	0.066	0.07	11 620	14	<5	<20	64	0.08	<10	64	<10	9
30	G46029	<0.2 0.93	<5	60	<5	0.73	<1	17	64	510 0.05	3.48	<10	0.64	228	454	0.045	0.06	4 530	16	<5	<20	59	0.08	<10	53	<10	12
ECO TE	CH LABORA	TORY LTD.					ı	ICP C	ERTI	FICATE OF	ANAL	.YSIS	AK 20	07- 24	11							ттм	Resou	ırces			
E+ #	Tag #	Aa Al %	۸۵	Ra	D;	Ca 0/	C4	Co	C٠	Cu Cu%	Eo 9/	١٥	Ma %	Ma	Ma	Ma0/	No 9/	Ni D	Dh	Sh	Sn	Qr.	Ti 0/		V	w	v

Et #.	Tag #	Ag Al %	As	Ва	Bi (Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni P	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ
31	G46030	<0.2 0.76	<5	140	<5	1.35	<1	7	19	136 0.01	2.52	20	0.53	648	644	0.064	0.05	16 790	20	<5	<20	149	0.02	<10	32	<10	21
32	G46031	0.3 0.74	<5	55	<5	1.28	<1	14	83	710 0.07	3.77	<10	0.64	228	506	0.051	0.06	4 650	16	<5	<20	63	0.06	<10	51	<10	13
33	G46032	0.5 1.04	<5	50	<5	0.80	2	16	64	847 0.08	4.54	<10	0.83	244	343	0.034	0.07	10 1060	16	15	<20	98	0.06	<10	78	<10	12
34	G46033	0.2 0.69	<5	45	<5	0.61	<1	13	54	522 0.05	3.48	<10	0.55	187	470	0.047	0.06	5 910	12	<5	<20	52	0.05	<10	44	<10	8
35	G46034	0.3 0.88	<5	45	<5	0.63	<1	13	101	580 0.06	3.38	<10	0.58	227	862	0.086	0.06	7 490	12	<5	<20	89	0.05	<10	47	<10	10
36	G46035	0.5 1.03	<5	45	<5	0.86	<1	15	74	593 0.06	3.61	<10	0.61	234	531	0.053	0.05	7 500	18	<5	<20	47	0.04	<10	49	<10	10
37	G46036	0.4 0.88	<5	45	<5	1.44	<1	15	96	505 0.05	4.08	<10	0.66	238	699	0.070	0.05	21 980	18	<5	<20	57	0.07	<10	51	<10	11
38	G46037	0.5 0.70	<5	45	<5	1.09	<1	26	55	705 0.07	4.24	<10	0.49	183	428	0.043	0.05	8 640	12	<5	<20	54	0.03	<10	41	<10	8
39	G46038	0.4 0.86	20	35	<5	2.29	<1	16	80	598 0.06	3.61	<10	0.49	204	1598	0.160	0.02	8 710	16	<5	<20	60	<0.01	<10	19	<10	7
40	G46039	0.2 1.72	15	60	<5	2.46	<1	12	46	242 0.02	3.10	20	1.14	368	249	0.025	0.04	7 1590	30	10	<20	100	0.04	<10	62	<10	15
41	G46041	0.3 1.40	10	40	<5	1.33	<1	13	64	441 0.04	3.69	<10	0.79	326	1179	0.118	0.07	8 1100	24	<5	<20	140	0.06	<10	56	<10	8
42	G46042	<0.2 0.64	<5	45	<5	1.67	<1	10	79	340 0.03	2.65	<10	0.39	155	1342	0.134	0.04	6 630	14	<5	<20	61	0.02	<10	30	<10	8
43	G46043	0.3 0.71	<5	40	<5	1.00	1	17	128	572 0.06	3.84	<10	0.39	139	850	0.085	0.05	12 460	10	10	<20	51	0.02	<10	45	<10	7
44	G46044	<0.2 0.87	<5	45	<5	1.58	<1	10	99	388 0.04	2.58	<10	0.56	173	792	0.079	0.04	10 590	12	<5	<20	63	0.03	<10	44	<10	11
45	G46045	<0.2 0.03	<5	20	<5	>10	<1	<1	5	5 0.00	0.08	<10	>10	66	1	0.000	<0.01	<1 320	<2	40	<20	146	<0.01	<10	2	<10	2
46	G46046	0.2 1.35	<5	50	<5	1.70	<1	19	77	685 0.07	4.33	<10	1.16	258	921	0.092	0.03	41 590	22	10	<20	70	0.07	<10	139	<10	14
47	G46047	0.3 1.56	5	60	<5	0.72	<1	20	157	568 0.06	4.54	<10	1.49	277	554	0.055	0.08	75 550	24	<5	<20	65	0.16	<10	238	<10	14
48	G46048	0.4 1.22	10	65	<5	0.77	<1	15	143	421 0.04	3.24	<10	1.13	232	493	0.049	0.07	87 440	22	<5	<20	58	0.13	<10	247	<10	15
49	G46049	0.6 1.41	10	55	<5	1.00	5	17	151	529 0.05	4.16	R:áo9e	11.41	406	923	0.092	0.07	74 690	102	<5	<20	40	0.14	<10	194	<10	11
50	G46050	<0.2 0.76	<5	135	<5	1.36	<1	7	19	134 0.0	2.52	20	0.52	647	635	0.064	0.05	15 780	22	<5	<20	144	0.02	<10	32	<10	19

51	G46051	0.2 1.57	<5	65	<5	0.49	<1	18	141	448 0.04	4.14	<10	1.68	313	611	0.061	0.06	91	430	66	<5	<20	39	0.18	<10	248	<10	12
52	G46052	<0.2 1.60	<5	70	<5	0.42	<1	16	144	238 0.02	3.32	<10	1.47	249	592	0.059	0.08	84	400	28	10	<20	222	0.19	<10	228	<10	11
53	G46053	0.7 1.33	5	60	<5	0.41	<1	15	147	470 0.05	3.69	<10	1.28	294	905	0.090	0.07	51	350	22	10	<20	103	0.13	<10	174	<10	11
54	G46054	0.2 2.17	20	60	<5	1.61	<1	19	136	250 0.03	4.56	<10	2.06	345 ′	1031	0.103	0.10	66	700	30	15	<20	72	0.13	<10	201	<10	12

TTM Resources

5-Apr-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 54

Sample Type: Core **Project: CHU Shipment #: 36**

Submitted by: All North Consultants

		Мо
ET #.	Tag #	(%)
9	G46007	0.059
10	G46008	0.058
12	G46010	0.064
15	G46013	0.100
17	G46015	0.083
18	G46016	0.135
19	G46017	0.121
20	G46018	0.053
24	G46023	0.072
27	G46026	0.050
28	G46027	0.055
29	G46028	0.063
31	G46030	0.064
32	G46031	0.050
35	G46034	0.083
36	G46035	0.055
37	G46036	0.071
39	G46038	0.157
41	G46041	0.118
42	G46042	0.141
43	G46043	0.083
44	G46044	0.073
46	G46046	0.090

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

TTM Resources AK7-0241

5-7	٩n	r-C	7
\mathbf{J}	$\neg \nu$,,

		Mo
ET #.	Tag #	(%)
47	G46047	0.055
49	G46049	0.093
50	G46050	0.064
51	G46051	0.059
52	G46052	0.059
53	G46053	0.095
54	G46054	0.099

QC DATA:

24	G46023	0.074
37	G46036	0.073
52	G46052	0.061

Standard:

MP2	0.280
MP2	0.283
MP2	0.282

JJ/dc XLS/07 ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	44700	<0.2 2.93	25	210	<5	1.19	<1	17	192	184 0.02	3.37	<10	1.27	361	31	0.003	0.34	78	640	12	15	<20	110	0.18	<10	175	<10	16	52
2	44720	0.2 0.45	5	60	<5	0.62	<1	8	126	231 0.02	2.34	<10	0.21	129	19	0.002	0.05	25	180	2	<5	<20	22	0.05	<10	42	<10	7	30
3	44740	<0.2 1.61	5	80	<5	0.98	<1	10	162	306 0.03	3.10	<10	0.76	166	18	0.002	0.16	36	460	6	<5	<20	121	0.07	<10	89	<10	5	37
4	44760	0.3 2.25	5	70	<5	1.33	<1	15	161	339 0.03	3.41	<10	0.91	271	99	0.010	0.26	51	820	12	<5	<20	78	0.13	<10	128	<10	11	43
5	44780	0.4 2.44	5	50	<5	1.93	<1	19	160	653 0.07	4.28	<10	1.28	232		0.023	0.28	69	920	6	5	<20	163	0.15	<10	142	<10	11	45
6	44800	0.4 1.55	<5	150	<5	0.54	<1	16	150	333 0.03	3.18	<10	1.15	251	212	0.021	0.12	46	820	6	<5	<20	49	0.19	<10	146	<10	15	54
7	44920	0.2 0.66	<5	45	<5	0.24	<1	21	56	296 0.03	4.25	<10	0.46	100	235	0.024	0.06	9	650	2	<5	<20	7	0.04	<10	79	<10	3	29
8	44940	0.4 1.11	5	145	<5	0.73	<1	17	40	594 0.06	4.85	<10	0.78	260	804	0.080	0.16	5	950	6	<5	<20	16	0.14	<10	92	<10	13	50
9	44960	0.5 0.68	<5	75	<5	0.44	<1	17	60	443 0.04	3.93	<10	0.45	163	557	0.056	0.10	4	780	4	<5	<20	19	0.09	<10	57	<10	10	52
10	44980	0.3 0.72	<5	45	<5	0.64	<1	16	46	440 0.04	3.52	<10	0.52	143	569	0.057	0.09	5	970	4	<5	<20	33	0.09	<10	80	<10	23	27
11	44820	<0.2 2.09	15	95	<5	0.75	<1	18	163	275 0.03	4.01	<10	1.17	242	144	0.014	0.17	61	460	2	10	<20	60	0.18	<10	154	<10	15	37
12	44840	<0.2 2.18	<5	115	<5	0.89	<1	20	183	338 0.03	4.12	<10	1.05	264	15	0.002	0.29	53	420	6	<5	<20	70	0.18	<10	120	<10	16	43
13	44860	0.6 1.47	10	75	<5	1.87	<1	19	131	639 0.06	4.71	<10	1.16	326	124	0.012	0.09	43	540	4	<5	<20	50	0.11	<10	127	<10	12	54
14	44880	<0.2 2.45	15	165	<5	1.55	<1	17	164	194 0.02	3.35	<10	1.26	354	145	0.015	0.24	71	530	6	5	<20	87	0.14	<10	135	<10	13	61
15	44900	<0.2 2.05	5	210	<5	0.98	<1	17				<10	0.89	255		0.001	0.31	56	510	4	10	<20	77	0.15			<10	17	50
16	44600	0.2 1.42	10	70	<5	0.51	<1	16	153	349 0.03	3.55	<10	1.26	258	1612	0.161	0.10	58	620	6	<5	<20	41	0.20	<10	173	<10	17	57
17	44620	0.3 1.62	<5	65	<5	0.61	<1	19	167	635 0.06	4.42	<10	0.98	184	451	0.045	0.17	60	350	2	<5	<20	43	0.13	<10	123	<10	9	28
18	44640	0.3 1.83	<5	145	<5	0.87	1	16	_	245 0.02	-	<10	1.38			0.006		59	570	4	10	<20	31	0.14	-		<10	12	31
19	44660	0.2 2.69	5		<5	1.09	<1	22				<10	1.48	278				94	610	10	10	<20	115	0.18		_	<10	16	47
20	44661	0.2 0.70	<5	125	<5	1.32	<1	6	19	129 0.01		20	0.47	623				15	740	10	<5	<20	155	0.02	<10	32	<10	17	68
21	44662	<0.2 0.05	5	15	<5	>10	<1	<1	4	81 0.01		<10	>10	68		0.000		<1	460	<2	35	<20	160	0.01	<10	3	<10	1	6
22	44680	<0.2 2.36	50	170	30	1.06	5	23	179	207 0.02	3.49	<10	1.56	256		0.012	-	92	760	52	115	<20	68	0.03	<10	164	<10	37	40
23	44480	0.8 2.42	25	165	<5	1.09	6	17	179	211 0.02			1.58			0.013		92	500	4		<20	71	0.05	<10	168	<10	11	31
24	44500	0.3 1.23	<5	90	<5	0.32	2	15	188	294 0.03	3.62	<10	0.94	224	415	0.042	0.12	38	420	<2	<5	<20	19	0.15	<10	143	<10	18	79
25	44520	0.3 1.56	<5	75	<5	0.67	<1	14	160	415 0.04	3.72	<10	1.22	258	710	0.071	0.12	56	530	4	<5	<20	53	0.17	<10	173	<10	18	47

ICP CERTIFICATE OF ANALYSIS AK 2007-0233

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu (Cu%	Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni	<u> </u>	Pb	Sb	Sn	Sr	Ti %	U	<u> </u>	W	Y	Zn
26	44540	<0.2 1.41	<5	140	<5	0.41	<1	15	161	261	0.03	3.39	<10	1.26	258	247	0.025	0.11	57	460	8	5	<20	23	0.19	<10	199	<10	19	49
27	44560	<0.2 1.26	<5	70	<5	0.71	<1	14	145	291	0.03	3.57	<10	1.12	218	83	0.008	0.12	54	730	6	<5	<20	47	0.17	<10	151	<10	17	43
28	44580	0.5 1.08	<5	95	<5	0.45	<1	18	161	469	0.05	3.42	<10	0.78	244	440	0.044	0.15	39	410	6	<5	<20	28	0.15	<10	114	<10	14	48
29	44220	<0.2 2.13	5	340	<5	0.62	<1	16	39	61	0.01	3.87	<10	1.49	584	<1	0.000	0.16	7	580	10	15	<20	22	0.22	<10	120	<10	19	83
30	44240	0.3 1.86	5	95	<5	4.68	2	12	52	90	0.01	2.73	<10	0.45	1341	<1	0.000	0.22	4	710	8	5	<20	87	0.15	<10	81	<10	19	91
31	44260	0.7 1.08	<5	55	<5	1.74	<1	10	44	268	0.03	2.82	<10	0.37	515	<1	0.000	0.11	5	590	<2	<5	<20	23	0.15	<10	87	<10	17	44
32	44280	0.5 1.17	<5	95	<5	0.99	1	14	61	316	0.03	3.02	<10	0.39	535	<1	0.000	0.14	5	580	<2	<5	<20	33	0.15	<10	59	<10	16	61
33	44300	<0.2 2.38	10	225	<5	0.44	1	15	125	106	0.01	3.37	<10	1.33	381	4	0.000	0.13		500	<2	15	<20	42	0.23	<10	198	<10	18	63
34	44320	<0.2 2.49	10	205	<5	0.64	<1	16	151	175	0.02	3.69	<10	1.34	332	77	0.008	0.26	48	520	4	<5	<20	52	0.23	<10	192	<10	20	60
35	44340	0.2 1.97	<5	140	<5	0.66	<1	14	159	256	0.03	3.42	<10	1.18	285	154	0.015	0.16	48	500	<2	<5	<20	50	0.20	<10	185	<10	17	56
36	44360	0.8 1.36	<5	120	<5	0.79	<1	16	163			3.04	_	1.08			0.044	-	55	450	4	10	<20	78			133	<10	19	46
37	44380	0.6 0.85	<5	65	<5	1.12	1	16	173	511	0.05	3.04	<10	0.66	342		0.023	0.10	25	790	<2	<5	<20	88	0.11	<10	71	<10	9	79
38	45100	0.2 1.76	<5	100	<5	0.42	<1		178			3.57		1.41	237				58	490	<2	15	<20	29	0.22	<10		<10	22	35
39	45120	0.6 0.98	<5	105	<5	0.49	2	14	159			2.84	_	0.83		-	0.092	0.08	34	450	<2	<5	<20	28	0.12	<10	120	<10	12	69
40	45140	0.8 1.41	<5	150	<5	0.46	<1	22	217					1.11	283		0.084	0.14	57	400	2	<5	<20	36	0	<10		<10	16	48
41	45161	0.8 1.93	60	50	<5	3.48	2	35		1176					_		0.291	0.02	-	470	8	10	<20	891		<10	_	<10	<1	90
42	45180	0.7 1.57	<5	150	<5	0.75	1	24	166			4.32	_				0.094		55	480	<2	5	<20	53	0.18	<10		<10	19	67
43	45000	0.4 2.13	5	70	<5	1.78	2	22	57			5.29					0.052			980	<2	25	<20	44	0.17	_	184	<10	18	42
44	45020	0.5 1.46	15	65	<5	1.72	<1	13				2.93					0.174			390	20	5	<20	65	0.07	<10		<10	7	92
45	45040	<0.2 1.02	<5	265	<5	0.59	<1	_	111			2.07		0.62			0.005			730	4	10	<20	77	0.11	<10	43	<10	11	37
46	45060	0.2 1.19	5	85	<5	0.24	<1	12		-		3.06	_	1.13	-		0.088	0.11		300	4	<5	<20	23	0.13	-	167	<10	10	28
47	45080	0.2 0.55	<5	70	<5	1.08	<1	4	98	203				Pa0g a 01			0.008			740	4	<5	<20	139	0.03	<10	23	<10	6	21
48	45320	<0.2 0.82	<5	215	<5	0.79	<1	8	104	58	0.01	1.98	<10	0.64	234	2	0.000	0.10	10	940	2	5	<20	66	0.14	<10	58	<10	9	24

49	45340	0.6 0.79	10	40	<5	1.45	<1	11	102	379	0.04	3.09	20	0.46	303	72	0.007	0.07	7 1	110	<2	<5	<20	97	0.04	<10	32	<10	3	51
50	45360	0.9 1.00	20	90	<5	1.76	<1	18	178	565	0.06	4.02	<10	1.14	560	1051	0.105	0.11	29 8	800	4	<5	<20	157	0.09	<10	96	<10	7	62
51	45380	1.2 0.77	<5	265	<5	0.75	<1	21	130	824	80.0	3.81	10	0.36	270	946	0.095	0.16	11 8	830	4	<5	<20	95	0.07	<10	34	<10	2	59
52	45400	2.0 0.99	<5	305	<5	1.14	1	23	138	1132	0.11	4.60	10	0.51	382	243	0.024	0.18	10 1	100	2	<5	<20	131	0.08	<10	61	<10	4	62
53	45200	0.3 1.56	5	105	<5	2.53	<1	20	76	283	0.03	4.50	<10	1.56	479	429	0.043	0.08	9	720	8	<5	<20	96	0.11	<10	136	<10	17	43
54	45220	1.1 0.82	15	70	<5	1.19	<1	15	160	645	0.06	3.21	<10	0.78	304	1581	0.158	0.06	45	530	4	<5	<20	52	0.09	<10	101	<10	10	42
55	45240	0.8 0.76	<5	325	<5	0.88	<1	25	104	634	0.06	3.43	<10	0.31	267	380	0.038	0.16	12	750	4	<5	<20	102	0.07	<10	26	<10	3	48
56	45260	0.5 0.56	<5	100	<5	1.01	<1	16	103	389	0.04	2.74	<10	0.39	214	112	0.011	0.08	13 8	890	4	<5	<20	58	0.09	<10	36	<10	7	32
57	45280	1.4 1.05	5	100	<5	1.70	1	34	70	687	0.07	4.83	<10	0.90	369	548	0.055	0.07	28 9	990	6	10	<20	53	0.08	<10	65	<10	2	47
58	45300	0.7 0.43	35	35	<5	1.57	5	13	91	438	0.04	3.31	10	0.49	381	148	0.015	0.06	13 10	060	4	<5	<20	109	0.01	<10	20	<10	2	506
59	44400	0.8 0.66	10	70	<5	2.00	<1	24	89	678	0.07	3.60	10	0.42	489	1364	0.136	0.06	8 10	020	22	<5	<20	92	0.03	<10	37	<10	2	109
60	44420	4.9 0.69	15	85	<5	0.87	3	56	104	2573	0.26	7.63	<10	0.39	229	1563	0.156	0.06	10 8	800	8	<5	<20	45	0.04	<10	38	<10	<1	101
61	44440	0.2 0.98	<5	95	<5	0.26	<1	11	64	147	0.01	2.81	<10	0.48	271	51	0.005	0.13	6 4	460	4	5	<20	13	0.13	<10	84	<10	11	63
62	44460	0.3 1.19	10	75	<5	1.40	2	16	103	367	0.04	4.00	<10	0.90	354	282	0.028	0.09	17 8	810	8	5	<20	50	0.09	<10	85	<10	13	90
63	45440	0.2 1.14	<5	135	<5	0.57	<1	12	72	367	0.04	3.48	<10	0.66	368	235	0.024	0.27	4 (630	4	5	<20	39	0.13	<10	69	<10	14	40
64	45460	0.8 0.49	<5	40	<5	1.27	2	23	63	851	0.09	4.97	<10	0.30	247	451	0.045	0.07	11	780	8	5	<20	172	0.08	<10	47	<10	4	37
65	45480	0.3 1.04	5	65	<5	0.43	<1	18	67	218	0.02	3.54	<10	0.96	356	257	0.026	0.08	4	730	8	<5	<20	56	0.15	<10	86	<10	18	46

ICP CERTIFICATE OF ANALYSIS AK 2007-0233

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
66	45500	0.2 1.00	<5	45	<5	0.53	<1	15	91	260 0.03	3.73	<10	0.89	145	343	0.034	0.05	5	420	8	<5	<20	16	0.06	<10	80	<10	4	34
67	45520	1.0 1.17	10	110	<5	1.38	<1	25	79	993 0.10	7.42	<10	0.92	323	224	0.022	0.18	9	670	8	<5	<20	35	0.14	<10	121	<10	6	56
68	45540	<0.2 0.67	10	40	<5	2.75	<1	3	47	26 0.00	1.28	20	0.28	268	8	0.001	0.06	3	330	18	<5	<20	88	<0.01	<10	8	<10	11	22
69	45560	0.2 1.36	<5	105	<5	0.27	1	13	144	332 0.03	3.62	<10	1.16	214	370	0.037	0.13	51	360	8	15	<20	22	0.13	<10	175	<10	7	41
70	45580	0.3 0.80	<5	30	<5	0.78	<1	4	85	242 0.02	1.33	<10	0.01	80	271	0.027	0.13	5	210	2	<5	<20	83	0.04	<10	11	<10	6	11
71	45600	<0.2 0.90	<5	495	<5	0.77	<1	11	88	7 0.00	2.65	<10	0.82	246	<1	0.000	0.12	17	1570	6	5	<20	51	0.19	<10	87	<10	8	36
72	45620	<0.2 1.87	70	240	<5	0.50	<1	15	148	132 0.01	3.40	<10	1.28	223	23	0.002	0.09	66	600	10	10	<20	25	0.21	<10	193	<10	15	42
73	45640	0.2 2.32	5	150	<5	0.90	<1	17	138	186 0.02	3.77	<10	1.36	296	11	0.001	0.16	60	490	8	15	<20	60	0.17	<10	145	<10	8	38
74	45660	0.5 1.22	<5	60	<5	0.55	<1	17	159	544 0.05	4.21	<10	0.82	170	324	0.032	0.11	67	430	4	10	<20	75	0.11	<10	110	<10	8	30
75	45680	0.2 2.64	5	190	<5	0.98	<1	17	179	275 0.03	3.76	<10	1.32	258	55	0.006	0.23	60	550	8	5	<20	81	0.18	<10	174	<10	11	44
76	45700	0.2 2.95	<5	80	<5	1.14	<1	22	218	297 0.03	4.10	<10	1.53	290	60	0.006	0.33	97	630	2	10	<20	139	0.19	<10	181	<10	13	50
77	45720	0.9 1.95	40	55	<5	1.11	1	21	239	615 0.06	4.81	<10	1.21	297	550	0.055	0.12	82	530	4	10	<20	86	0.12	<10	140	<10	10	55
78	45740	<0.2 0.57	<5	60	<5	1.52	<1	2	73	15 0.00	0.92	20	0.16	231	6	0.001	0.04	3	280	14	<5	<20	35	<0.01	<10	11	<10	10	25
79	45760	1.3 1.58	50	60	<5	2.44	2	10	66	360 0.04	3.08	<10	1.00	529	198	0.020	0.03	41	700	172	5	<20	119	0.02	<10	59	<10	7	248
80	45780	0.3 1.91	20	155	<5	1.40	<1	16	144	160 0.02	3.70	<10	1.19	350	56	0.006	0.08	61	540	8	<5	<20	109	0.09	<10	135	<10	10	59
81	45800	1.1 1.63	35	80	<5	3.42	1	17	153	603 0.06	3.75	<10	1.33	450	252	0.025	0.04	64	480	4	10	<20	88	0.04	<10	132	<10	9	68
82	45820	0.3 1.35	10	80	<5	1.12	1	19	152	345 0.03	3.67	<10	1.16	288	528	0.053	0.06	53	520	6	10	<20	53	0.14	<10	162	<10	16	55
83	45840	0.4 1.23	10	60	<5	1.28	<1	14	166	348 0.03	3.27	10	1.02	276	417	0.042	0.05	38	680	4	10	<20	61	0.06	<10	112	<10	11	43
84	45860	0.5 0.83	<5	45	<5	1.26	<1	25	55	693 0.07	5.54	<10	0.34	332	95	0.010	0.13	7	1030	6	<5	<20	44	0.14	<10	64	<10	13	44
85	45880	0.4 0.90	<5	45	<5	0.73	<1	9	101	412 0.04	3.42	<10	0.62	303	447	0.045	0.09	5	420	2	<5	<20	98	0.08	<10	45	<10	10	52
86	45900	0.5 1.55	5	55	<5	1.37	<1	23	47	429 0.04	4.51	<10	1.08	648	294	0.029	0.08	7	710	10	<5	<20	97	0.15	<10	100	<10	12	62

Мо

TTM Resources

5-Apr-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 86

Sample Type: Core Project: Chu Shipment #: 34

XLS/07

Submitted by: All North Consultants

ET #.	Tag #	(%)	
8	44940	0.083	
9	44960	0.058	
10	44980	0.055	
16	44600	0.159	
20	44661	0.065	
25	44520	0.069	
39	45120	0.092	
40	45140	0.084	
41	45161	0.287	
42	45180	0.093	
43	45000	0.050	
44	45020	0.175	
46	45060	0.090	
50	45360	0.102	
51	45380	0.098	
54	45220	0.158	
57	45280	0.052	
59	44400	0.133	
60	44420	0.160	
77	45720	0.053	
82	45820 Dup	0.050	
QC DAT	ΓΔ-		
Repeat:	_		
8	44940	0.084	
60	44420	0.163	
Standar	rd:		
MP2		0.278	
MP2		0.281	
MP2		0.277	
1.1/-1-			F00 TF011 (505 (T
JJ/dc			ECO TECH LABORATO

ECO TECH LABORATORY LTD.
Jutta Jealouse

B.C. Certified Assayer

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Cu%	Fe %	La	Mg %	Mn	Mo Mo% Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W
1	45904	0.3	0.76	<5	50	<5	1.87	<1	9	66	129	0.01	2.92	<10	0.55	431	213 0.021 0.07	2	370	4	<5	<20	19	0.06	<10	37	<10
2	45905	<0.2	0.03	10	15	<5	>10	<1	<1	5	3	0.00	0.07	<10	>10	72	<1 0.000 <0.01	<1	430	<2	40	<20	135	<0.01	<10	3	<10
3	45906	0.2	0.88	<5	50	<5	0.62	<1	12	79	222	0.02	3.23	<10	0.70	490	168 0.017 0.10	4	440	4	<5	<20	13	0.12	<10	-	<10
4	45907	0.3	1.12	<5	55	<5	0.91	<1	17	70	302	0.03	3.67	<10	0.80	341	212 0.021 0.11	4	580	10	<5	<20	21	0.14	<10	90	<10
5	45908	0.5	1.04	<5	75	<5	0.80	<1	21	58	540	0.05	5.57	<10	0.81	405	225 0.023 0.12		580	6	<5	<20	15		<10	100	<10
6	45909	0.5	1.10	<5	75	<5	1.01	<1	22	47	363	0.04	5.01	<10	0.81	572	989 0.099 0.12		620	6	<5	<20	24	-	<10	97	<10
7	45910	<0.2	0.72	<5	120	<5	1.30	<1	7	18	120	0.01	2.54	20	0.46	614	634 0.063 0.04	_	730	12	<5	<20	119		<10	32	<10
8	45911	0.5	0.99	<5	50	<5	0.80	<1	19	50	436	0.04	4.41	<10	0.85	348	222 0.022 0.09		620	<2	<5	<20	17	-	<10	95	<10
9	45912	1.2	1.21	10	55	<5	1.81	<1	17	100	830	0.08	5.69	<10	1.01	272	1140 0.114 0.09	_	400	6	<5	<20	19		<10	107	<10
10	45913	0.5	1.33	<5 .5	55 65	<5 .F	1.48	<1 .1	20	60	600	0.06	5.30	<10	1.26	490	276 0.028 0.08	_	580	2	<5	<20	17		<10	124	<10
11	45914 45915	0.4	1.49 1.52	<5 <5	65 85	<5 <5	0.85	<1 -1	25 22	80 59	416 331	0.04	5.28	<10	1.41	537 619	346 0.035 0.12 75 0.008 0.10		640 670	6 12	<5	<20	23 20		<10 <10	147	<10 <10
12 13	45915 45916	0.4 0.5	0.59	<5	65 45	<5	0.94 1.09	<1 <1	15	79	506	0.03 0.05	5.41 4.84	<10 <10	1.46 0.43	279	75 0.008 0.10 309 0.031 0.08	-	480	4	<5 <5	<20 <20	27		<10	155 52	<10
13	45917	0.5	0.39	<5	45 45	<5	0.74	<1	19	81	460	0.05	4.45	<10	0.43	229	270 0.027 0.08	_	360	4	<5	<20	11	-	<10	27	<10
15	45918	0.4	0.43	<5	40	<5	1.01	<1	13	94	384	0.03	3.78	<10	0.22	223	134 0.013 0.08	_	400	4	<5	<20	12		<10		<10
16	45919	0.4	0.61	<5	50	<5	0.81	<1	11	111	300	0.04	3.18	<10	0.43	212	208 0.021 0.09	_	430	6	<5	<20	17		<10		<10
17	45921	0.4	0.53	<5	40	<5	1.13	<1	16	81	507	0.05	4.76	<10	0.35	208	465 0.047 0.08	_	440	6	<5	<20	27		<10	40	<10
18	45922	0.7	0.77	<5	45	<5	1.20	<1	26	67	836	0.08	6.62	<10	0.64	289	276 0.028 0.07		640	8	<5	<20	36	0.11	<10	66	<10
19	45923	0.4	1.18	<5	55	<5	0.84	<1	22	77	431	0.04	4.97	<10	0.98	287	415 0.042 0.10	•	800	10	<5	<20	21	-	<10	117	<10
20	45924	0.3	0.77	<5	65	<5	0.49	<1	17	66	448	0.04	4.57	<10	0.42	162	233 0.023 0.09	-	980	8	<5	<20	13		<10		<10
21	45925	<0.2	0.07	5	25	<5	>10	<1	<1	4	5	0.00	0.10	<10	>10	80	<1 0.000 <0.01	_	400	<2	35	<20			<10	3	<10
22	45926	0.4	1.16	<5	80	<5	0.68	1	20	44	441	0.04	5.12	<10	0.94	324	673 0.067 0.11	5	1180	8	<5	<20	13	0.14	<10	86	<10
23	45927	0.7	0.72	20	40	<5	2.76	17	16	56	709	0.07	4.64	<10	0.41	451	1408 0.141 0.06		1130	20	<5	<20	17		<10	44	<10
24	45928	0.7	0.97	15	50	<5	1.96	<1	15	61	452	0.05	4.39	<10	0.78	292	573 0.057 0.07	2	1090	10	<5	<20	38	0.08	<10	69	<10
25	45929	0.6	1.08	<5	80	<5	0.53	1	23	61	513	0.05	4.97	<10	0.82	344	536 0.054 0.17	2	1000	4	<5	<20	18	0.15	<10	84	<10
26	45930	< 0.2	0.66	<5	125	<5	1.38	<1	7	19	105	0.01	2.66	10	0.42	636	634 0.063 0.04	15	790	14	<5	<20	100	0.02	<10	31	<10
27	45931	0.3	0.96	<5	85	<5	0.49	<1	16	60	295	0.03	4.01	<10	0.74	256	250 0.025 0.14	. 2	1090	12	<5	<20	19	0.14	<10	85	<10
28	45932	0.4	1.00	<5	85	<5	0.47	1	19	77	444	0.04	5.06	<10	0.61	270	254 0.025 0.17	4	920	10	<5	<20	20	0.13	<10	79	<10
29	45933	0.2	1.38	<5	105	<5	0.53	<1	17	50	236	0.02	4.10	<10	1.10	545	180 0.018 0.19	4	1180	10	<5	<20	22	0.23	<10	102	<10
30	45934	0.4	1.30	<5	85	<5	0.64	<1	19	73	410	0.04	4.59	<10	0.95	389	218 0.022 0.21	4	1090	6	<5	<20	20	0.19	<10	87	<10
ECO TE	CH LABORA	TORY L	TD.					ı	CP CI	ERTIF	CATE	OF AN	ALYSIS	AK 2	2007-02	:17							ттм	Resou	rces		
_		_			ъ.	ъ.	0 - 0/				_						Ma. Ma.O/ Na.O/		_	ъ.	٥.	0	•	T : 0/		.,	14/
Et #.	Tag # 45935	Ag	Al %	As	Ba 65		Ca %	Cd	Co 29	Cr 56	Cu 946	Cu%	Fe %		Mg %	Mn	Mo Mo% Na %		<u>P</u>	Pb 6	Sb	Sn	17	Ti %	-10	V	<u>W</u>
31 32	45936	1.1 1.4	0.96 0.82	<5 <5	65	<5 <5	0.50 0.53	<1 <1	29	72	9 4 6 951	0.09 0.10	7.40 5.84	<10 <10	0.48 0.41	255 249	261 0.026 0.11 541 0.054 0.09	4	990 900	10	<5 <5	<20 <20	15	0.10 0.07	<10 <10	64 62	<10 <10
33	45937	0.8	0.82	<5	60	<5	0.85	1	20	61	641	0.10	4.98	<10	0.41	226	358 0.036 0.11	3	1050	10	<5	<20	20	0.07	<10	54	<10
34	45938	0.9	0.94	<5	130	<5	0.86	2	18	68	706	0.00	5.11	<10	0.53	313	220 0.022 0.13	_	940	8	<5	<20	20	-	<10	-	<10
35	45939	0.6	1.15	<5	145	<5	0.57	1	19	62	506	0.07	4.84	<10	0.69	309	625 0.063 0.17		1120	14	<5	<20	21		<10		<10
36	45941	0.5	0.80	<5	60	<5	0.48	<1	20	57	518	0.05	4.73	_	0.50	198	405 0.041 0.09		1220	10	<5	<20	10		<10		<10
37	45942		1.06		115	<5	0.58	<1	21	68	587	0.06	5.69		0.58	192	385 0.039 0.18		970	6	<5	<20		0.14			<10
38	45943	0.4	1.01	<5	210	<5	0.52	<1	17	74	554	0.06	5.02		0.46	167	407 0.041 0.16		990	6	<5		18				<10
39	45944	0.4	1.09		225	<5	0.51	<1	15	67	470	0.05	4.49		0.62	217	341 0.034 0.14		1080	10	<5		20				<10
40	45945	<0.2	0.06	10	15	<5	>10	<1	<1	4	4	0.00	0.11		>10	73	<1 0.000 <0.01		510	<2				< 0.01			<10
41	45946	0.4	1.15		150	<5	0.63	<1	17	73	437	0.04	4.30		0.75	246	276 0.028 0.16		1120	12	<5	<20	21	0.17			<10
42	45947	0.3	0.98		105	<5	0.62	<1	17	57	442	0.04	4.35		0.68	202	304 0.030 0.12	2	990	10	<5	<20	16	0.15	<10	80	<10
43	45948	0.7	0.81	20	50	<5	1.35	1	26	93	785	0.08	6.42	<10	0.46	220	559 0.056 0.07		770	16	<5		18	0.06		57	<10
44	45949	0.5	0.94	20	60	<5	1.25	<1	17	71	435	0.04	4.25		0.76	229	446 0.045 0.10	2	1050	10	<5	<20	15	0.13	<10		<10
45	45950	< 0.2	0.66	<5	130	<5	1.39	<1	7	19	107	0.01	2.68	10	0.43	640	644 0.064 0.04	16	800	14	<5	<20	103	0.02	<10	31	<10
46	45951	0.5	1.06	10	70	<5	1.28	<1	21	60	419	0.04	4.65	<10	0.98	246	157 0.016 0.10	1	1090	12	<5	<20	16	0.14	<10	85	<10
47	45952	0.4	0.94	<5	55	<5	1.39	<1	14	37	309	0.03	3.69	<10	0.92	239	378 0.038 0.07	2	1230	14	<5	<20	15	0.11	<10	80	<10
48	45953	0.5	0.98	10	45	<5	1.37	<1	14	60	314	0.03	4.23	<10	0.90	278	153 0.015 0.07	4	1050	14	<5	<20	16	0.09	<10	80	<10
49	45954	0.6	0.51	5	45	<5	1.84	<1	14	56	454	0.05		<10		238	407 0.041 0.06	3	1050	12	<5	<20	21	0.02	<10	37	<10
50	45955	0.4	0.98	<5	95	<5	0.79	<1	19	61	341	0.03	4.05 _P	age01	0.89	255	237 0.024 0.10			20	<5		18	0.15			<10
51	45956	0.5	0.63	5	55	<5	1.13	<1	18	43	478	0.05	4.36	<10	0.43	184	364 0.036 0.07		1100	14	<5	<20	14	0.09	<10	61	<10
52	45957	0.4	0.52	<5	60	<5	1.80	<1	23	58	393	0.04	4.54	<10	0.36	252	255 0.026 0.08	3	1010	18	<5	<20	31	0.06	<10	40	<10

53	45958	0.5	0.94	5	115	<5	0.73	<1	18	82	368	0.04	3.99	<10	0.56	248	487 0.049	0.14	5	1040	12	<5	<20	27	0.13	<10	64	10
54	45959	0.5	1.11	<5	80	<5	0.70	<1	20	69	431	0.04	4.64	<10	0.91	421	638 0.064	0.11	3	1020	14	<5	<20	19	0.13	<10	79	<10
55	45961	0.5	0.91	15	65	<5	0.98	<1	16	52	349	0.03	3.70	<10	0.83	260	497 0.050	0.06	2	1140	16	<5	<20	13	0.13	<10	73	<10
56	45962	0.4	0.66	5	55	<5	1.47	<1	12	61	291	0.03	3.47	<10	0.54	262	272 0.027	0.06	3	1110	12	<5	<20	17	0.09	<10	54	<10
57	45963	0.2	0.58	<5	60	<5	0.69	<1	10	76	233	0.02	2.90	<10	0.44	255	248 0.025	0.06	3	990	12	<5	<20	14	0.11	<10	47	<10
58	45964	0.2	0.81	<5	75	<5	0.66	<1	14	55	282	0.03	3.52	<10	0.64	259	345 0.035	0.08	1	1070	12	<5	<20	12	0.16	<10	72	<10
59	45965	< 0.2	0.03	10	20	<5	>10	<1	<1	5	2	0.00	0.08	<10	>10	80	<1 0.000	<0.01	<1	410	<2	35	<20	100	<0.01	<10	2	<10
60	45966	0.2	1.07	<5	85	<5	0.61	<1	16	39	339	0.03	4.23	<10	0.91	348	428 0.043	0.09	2	1150	16	<5	<20	13	0.18	<10	86	<10
61	45967	0.3	0.98	5	130	<5	0.62	<1	18	63	406	0.04	4.35	<10	0.65	290	1430 0.143	0.11	2	1050	14	<5	<20	21	0.12	<10	75	<10
62	45968	0.2	0.68	<5	115	<5	0.88	<1	11	90	246	0.02	3.04	<10	0.43	216	374 0.037	0.10	3	1170	10	<5	<20	43	0.11	<10	37	<10
63	45969	0.3	0.46	<5	80	<5	0.77	<1	11	86	199	0.02	2.67	<10	0.35	186	280 0.028	0.07	4	1170	10	<5	<20	29	0.10	<10	33	<10
64	45970	< 0.2	0.59	<5	115	<5	1.44	1	8	19	95	0.01	2.78	10	0.38	649	640 0.064	0.03	19	860	18	<5	<20	107	0.02	<10	30	<10
65	45971	0.4	0.75	<5	110	<5	0.70	<1	17	78	339	0.03	3.84	<10	0.53	230	292 0.029	0.10	3	1050	10	<5	<20	23	0.13	<10	52	<10
66	45972	0.4	0.93	<5	110	<5	0.62	<1	20	71	394	0.04	4.52	<10	0.68	258	637 0.064	0.11	4	1040	14	<5	<20	22	0.15	<10	62	<10
67	45973	0.2	0.88	<5	125	<5	0.60	<1	13	53	228	0.02	3.17	<10	0.68	257	408 0.041	0.11	<1	1070	16	<5	<20	27	0.16	<10	61	<10
68	45974	0.2	0.69	<5	150	<5	0.77	<1	15	81	243	0.02	3.17	<10	0.40	215	231 0.023	0.12	3	1080	12	<5	<20	42	0.11	<10	42	<10
69	45975	0.2	0.83	<5	155	<5	0.77	<1	12	91	278	0.03	3.19	<10	0.55	257	256 0.026	0.13	3	1140	16	<5	<20	44	0.14	<10	51	<10
70	45976	0.7	1.11	<5	165	<5	0.68	<1	25	61	578	0.06	5.81	<10	0.78	359	624 0.062	0.13	3	1140	18	<5	<20	27	0.17	<10	92	<10
71	45977	0.5	0.93	<5	160	<5	0.60	<1	18	102	426	0.04	4.24	<10	0.47	215	1178 0.118	0.13	5	1070	16	<5	<20	24	0.12	<10	73	<10
72	45978	0.3	0.88	5	85	<5	0.49	<1	19	75	400	0.04	4.46	<10	0.60	233	1498 0.150	0.10	3	920	16	<5	<20	19	0.11	<10	69	<10
73	45979	0.4	1.12	<5	120	<5	0.53	<1	21	69	484	0.05	5.13	<10	0.81	309	753 0.075	0.12	6	990	16	<5	<20	28	0.17	<10	93	<10
74	45981	0.5	1.29	<5	110	<5	0.73	<1	31	104	653	0.07	6.46	<10	1.05	326	349 0.035	0.14	10	900	24	<5	<20	37	0.21	<10	139	<10
75	45982	0.6	1.05	<5	125	<5	0.78	<1	26	87	552	0.06	5.92	<10	0.95	313	542 0.054	0.12	10	920	18	<5	<20	36	0.19	<10	128	<10

ICP CERTIFICATE OF ANALYSIS AK 2007-0217

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Cu%	Fe %	La	Mg %	Mn	Mo Mo% Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W
76	45983	0.5	1.14	<5	120	<5	0.72	<1	24	95	425	0.04	5.14	<10	0.99	396	323 0.032 0.14	9	1090	22	<5	<20	33	0.23	<10	147	<10
77	45984	0.6	1.41	<5	105	<5	0.80	<1	31	117	723	0.07	6.81	<10	1.24	457	381 0.038 0.15	11	820	18	<5	<20	32	0.26	<10	181	<10
78	45985	< 0.2	0.04	10	15	<5	>10	<1	<1	4	2	0.00	0.09	<10	>10	67	<1 0.000 < 0.01	<1	410	<2	35	<20	99	<0.01	<10	2	<10
79	45986	0.5	1.21	<5	105	<5	0.74	<1	27	87	636	0.06	6.35	<10	1.09	336	311 0.031 0.13	12	800	14	<5	<20	25	0.24	<10	171	<10
80	45987	0.3	1.40	<5	130	<5	0.85	<1	26	97	558	0.06	5.71	<10	1.16	375	656 0.066 0.17	10	800	18	<5	<20	72	0.22	<10	161	<10
81	45988	0.4	1.40	<5	130	<5	0.81	<1	32	100	709	0.07	6.95	<10	1.17	345	855 0.086 0.16	13	700	12	<5	<20	73	0.20	<10	155	<10
82	45989	0.6	1.21	<5	115	<5	0.54	<1	32	83	894	0.09	6.79	<10	1.02	303	416 0.042 0.14	10	710	12	<5	<20	35	0.22	<10	156	<10
83	45990	< 0.2	0.64	<5	135	<5	1.44	<1	7	19	101	0.01	2.79	10	0.40	655	635 0.064 0.04	16	850	18	<5	<20	97	0.02	<10	31	<10
84	45991	0.5	1.64	<5	120	<5	0.55	<1	40	81	706	0.07	7.22	<10	1.64	527	526 0.053 0.14	11	840	18	<5	<20	44	0.30	<10	230	<10
85	45992	1.0	1.17	<5	150	<5	0.59	1	31	88	1003	0.10	6.81	<10	0.84	304	232 0.023 0.14	12	800	12	<5	<20	42	0.17	<10	170	<10
86	45993	0.9	1.64	<5	100	<5	0.51	1	29	86	880	0.09	6.84	<10	1.78	571	578 0.058 0.14	10	730	14	<5	<20	49	0.24	<10	210	<10
87	45994	8.0	1.41	<5	145	<5	0.60	5	26	109	783	0.08	6.28	<10	1.40	413	224 0.022 0.13	10	800	20	<5	<20	48	0.22	<10	170	10
88	45995	0.4	1.69	<5	235	<5	0.65	<1	27	78	576	0.06	6.29	<10	1.76	500	198 0.020 0.12	10	930	22	<5	<20	30	0.31	<10	226	<10
89	45996	0.3	1.31	<5	115	<5	0.59	<1	26	73	492	0.05	5.49	<10	1.29	351	396 0.040 0.12	9	820	16	<5	<20	20	0.25	<10	192	<10
90	45997	0.3	1.19	<5	90	<5	0.39	<1	25	61	431	0.04	5.20	<10	0.97	352	666 0.067 0.09	9	770	18	<5	<20	16	0.21	<10	198	<10

12 12 7 7 17 8 5 9 13 13 8 7 8 10 5 5 12 14 15 12 17 16 17 21 18 26 18	47 48 70 62 77 51 37 60 82 101 42 31 40 36 43 66 66 63 33 1885 63 146 82 77 77 75
Y 12 12 15 17 19 18 15 15 20 <1 20 16 9 21 17 22 23 20 16 25 18	Zrr 51 45 35 251 112 58 54 44 64 63 45 51 63 45 64 48 77 44

Y

Zn 45

70

Y Zn 168 14 120 8 17 104 17 171

TTM Resources 10-Apr-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 90

Sample Type: Core Project: CHU
Shipment #: 35

Submitted by: All North Consultants

		Мо	
ET #.	Tag #	(%)	
6	45909	0.099	_
7	45910	0.063	
9	45912	0.111	
22	45926	0.071	
23	45927	0.132	
24	45928	0.054	
25	45929	0.056	
26	45930	0.064	
32	45936	0.057	
35	45939	0.062	
43	45948	0.053	
45	45950	0.063	
54	45959	0.062	
61	45967	0.134	
64	45970	0.063	
66	45972	0.061	
70	45976	0.063	
71	45977	0.113	
72	45978	0.145	
73	45979	0.077	
75	45982	0.058	

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

		Мо	
ET #.	Tag #	(%)	
80	45987	0.062	
81	45988	0.089	
83	45990	0.061	
84	45991	0.055	
86	45993	0.059	
90	45997	0.069	
QC DAT	<u>Γ</u> Α:		
Repeat:	- :		
6	45909	0.103	
32	45936	0.056	
66	45972	0.063	
Standaı	rd:		
MP2		0.277	
MP2		0.282	
MP2		0.280	

JJ/kk XLS/07 ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Мо	Mo% Na %	Ni P	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn	
1	45851	0.5 1.00	<5	55	<5	1.01	<1	20	25	334 0.03	4.90	<10	0.47	342	108	0.011 0.10	5 1070	24	<5	<20	37	0.15	<10	77	<10	9	62	
2	45852	0.8 0.73	<5	45	<5	1.76	1	29	31	826 0.08	8.44	<10	0.16	444	319	0.032 0.07	9 980	16	<5	<20	68	0.11	<10	70	<10	<1	57	
3	45853	0.9 0.63	<5	40	<5	1.19	1	28	38	770 0.08	8.09	<10	0.25	292	70	0.007 0.10	8 850	12	<5	<20	18	0.12	<10	49	<10	<1	67	
4	45854	0.7 0.63	<5	45	<5	0.91	1	27	27	447 0.04	5.42	<10	0.40	320	31	0.003 0.08	6 1100	16	<5	<20	12	0.12	<10	49	<10	6	83	
5	45855	0.6 0.67	<5	55	<5	0.88	<1	26	26	504 0.05	6.10	<10	0.36	263	24	0.002 0.11	5 1160	14	<5	<20	15	0.13	<10	55	<10	5	50	
6	45856	0.5 0.48	<5	50	<5	0.98	1	27	34	523 0.05	5.74	<10	0.18	231	38	0.004 0.09	6 1220	14	<5	<20	15	0.12	<10	40	<10	6	44	
7	45857	0.6 0.65	<5	45	<5	1.12	<1	24	41	561 0.06	5.97	<10	0.44	345	93	0.009 0.09	7 1160	14	<5	<20	15	0.13	<10	56	<10	4	69	
8	45858	0.8 0.67	10	25	<5	1.62	<1	28	22	541 0.05	5.51	<10	0.23	310	50	0.005 0.07	6 1220	16	<5	<20	20	0.10	<10	52	<10	4	49	
9	45859	0.4 0.63	<5	40	<5	1.19	<1	26	34	478 0.05	5.94	<10	0.25	306	85	0.009 0.08	6 1160	16	<5	<20	20	0.13	<10	53	<10	5	53	
10	45861	0.2 0.75	<5	80	<5	0.83	<1	18	25	235 0.02	3.85	<10	0.62	406	33	0.003 0.08	3 1190	18	<5	<20	7	0.15	<10	60	<10	8	68	
11	45862	0.2 0.75	<5	50	<5	0.78	1	24	42	333 0.03	4.68	<10	0.62	332	100	0.010 0.10	8 1220	16	<5	<20	7	0.13	<10	62	<10	8	64	
12	45863	0.6 0.59	<5	40	<5	1.14	1	27	28	764 0.08	6.89	<10	0.26	331	235	0.024 0.08	7 1000	12	<5	<20	25	0.10	<10	46	<10	<1	55	
13	45864	0.5 0.72	<5	45	<5	1.04	<1	24	41	592 0.06	5.81	<10	0.46	298	298	0.030 0.09	6 920	16	<5	<20	27	0.11	<10	65	<10	2	65	
14	45865	<0.2 0.03	5	5	<5	>10	<1	<1	4	10 0.00	0.09	<10	>10	73	<1	0.000 < 0.01	<1 460	<2	35	<20	106	0.01	<10	4	<10	<1	10	
15	45866	0.4 0.92	10	50	<5	0.97	<1	23	37	488 0.05	5.08	<10	0.85	360	172	0.017 0.08	5 1000	14	<5	<20	14	0.16	<10	84	<10	5	59	
16	45867	0.6 1.15	20	80	<5	1.61	<1	24	40	506 0.05	5.73	<10	1.05	468	683	0.068 0.07	5 990	36	<5	<20	35	0.14	<10	103	<10	7	77	
17	45868	0.5 1.14	20	60	<5	3.45	<1	22	34	446 0.04	5.72	<10	0.84	680	391	0.039 0.07	6 880	28	<5	<20	54	0.09	<10	95	<10	4	79	
18	45869	0.4 1.35	25	80	<5	3.75	<1	25	31	417 0.04	5.75	<10	0.89	660	277	0.028 0.08	7 900	26	<5	<20	49	0.15	<10	130	<10	2	73	
19	45870	0.2 0.75	5	140	<5	1.43	<1	7	19	115 0.01	2.77	20	0.45	644	649	0.065 0.04	15 910	20	<5	<20	117	0.03	<10	33	<10	17	85	
20	45871	0.5 1.16	<5	70	<5	1.77	<1	24	33	467 0.05	5.44	<10	0.98	478	271	0.027 0.09	5 980	26	<5	<20	27	0.14	<10	114	<10	3	69	
21	45872	0.7 1.41	30	110	<5	5.88	<1	24	26	636 0.06	6.60	<10	1.12	1114	338	0.034 0.06	4 790	26	<5	<20	24	0.11	<10	125	<10	2	75	
22	45873	1.5 1.35	<5	50	<5	1.06	2	28	36	1065 0.11	7.95	<10	0.74	480	122	0.012 0.13	8 990	26	<5	<20	15	0.10	<10	112	<10	<1	103	
23	45874	1.5 1.58	<5	60	<5	1.73	1	41	26	1134 0.11	>10	<10	0.91	687	509	0.051 0.11	7 1020	24	<5	<20	19	0.11	<10	119	<10	<1	81	
24	45875	0.9 1.92	<5	40	<5	1.87	2	25	32	788 0.08	6.33	<10	0.57	296	133	0.013 0.24	8 960	30	<5	<20	32	0.12	<10	81	<10	<1	55	
25	45876	0.7 1.86	<5	60	50	1.11	1	19	40	561 0.06	5.14	<10	1.00	444	121	0.012 0.19	6 890	32	<5	<20	24	0.17	<10	153	<10	4	72	
ECO TE	CH LABORA	TORY LTD.					ı	CP CI	=RTII	FICATE OF	ANAL	YSIS	AK 20	U7-02	14			TTM Resources										

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Cu%	Fe %	La	Mg %	Mn	Мо	Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	45877	0.5 1.34	5	70	<5	1.29	<1	16	35	361	0.04	3.87	<10	0.56	369	258	0.026	0.13	5	620	26	<5	<20	91	0.10	<10	79	<10	6	47
27	45878	0.3 0.69	<5	50	<5	0.90	<1	9	55	223	0.02	2.97	<10	0.46	303	164	0.016	0.06	2	490	16	<5	<20	34	0.07	<10	38	<10	9	39
28	45879	0.3 0.76	<5	35	<5	1.04	<1	10	44	259	0.03	3.16	<10	0.51	286	390	0.039	0.06	3	550	18	<5	<20	65	0.08	<10	41	<10	8	53
29	45881	0.3 0.63	5	25	<5	0.94	<1	8	53	216	0.02	2.81	<10	0.38	260	144	0.014	0.06	2	520	14	<5	<20	35	0.07	<10	33	<10	9	39
30	45882	0.3 0.48	<5	35	<5	0.73	<1	11	40	299	0.03	3.70	<10	0.23	248	167	0.017	0.05	2	440	12	<5	<20	10	0.07	<10	25	<10	6	34
31	45883	0.2 0.63	<5	35	<5	0.44	<1	11	59	169	0.02	2.89	<10	0.46	263	201	0.020	0.06	3	480	16	<5	<20	12	0.08	<10	38	<10	6	39
32	45884	0.4 0.77	5	20	<5	1.47	<1	9	50	403	0.04	4.29	<10	0.46	354	270	0.027	0.05	2	450	12	<5	<20	15	0.06	<10	39	<10	3	49
33	45885	<0.2 0.03	10	5	<5	>10	<1	<1	5	8	0.00	0.08	<10	>10	79	<1	0.000	<0.01	<1	430	<2	50	<20	120	< 0.01	<10	4	<10	<1	10
34	45886	0.5 0.59	<5	40	<5	0.59	1	10	46	468	0.05	4.11	<10	0.42	303	339	0.034	0.07	3	460	18	<5	<20	13	0.09	<10	36	<10	5	58
35	45887	0.3 0.81	<5	45	<5	0.50	1	9	50	161	0.02	2.66	<10	0.57	394	136	0.014	0.09	3	540	30	<5	<20	17	0.10	<10	47	<10	10	137
36	45888	0.4 0.92	<5	50	<5	0.64	<1	20	51	355	0.04	4.81	<10	0.80	406	338	0.034	0.09	6	690	20	<5	<20	9	0.14	<10	97	<10	3	83
37	45889	0.3 0.85	5	35	<5	1.30	<1	15	44	261	0.03	3.66	<10	0.76	339	124	0.012	0.06	5	650	18	<5	<20	9	0.10	<10	77	<10	6	57
38	45890	0.2 0.77	10	140	<5	1.48	<1	8	19	120	0.01	2.86	20	0.46	664	654	0.065	0.05	16	850	20	<5	<20	126	0.02	<10	34	<10	18	86
39	45891	0.2 1.00	10	35	<5	1.51	<1	8	39	195	0.02	2.69	<10	0.54	291	119	0.012	0.03	3	540	22	<5	<20	19	0.05	<10	34	<10	7	51
40	45892	0.4 1.52	10	50	<5	2.24	<1	17	49	269	0.03	3.98	<10	0.84	457	263	0.026	0.05	5	690	24	<5	<20	22	0.11	<10	75	<10	3	68
41	45893	0.4 1.69	10	60	<5	3.09	<1	23	36	418	0.04	5.34	<10	0.94	530	117	0.012	0.06	8	790	26	<5	<20	60	0.14	<10	94	<10	2	73
42	45894	0.4 1.37	20	50	<5	2.57	1	23	28	548	0.05	5.86	<10	0.69	417	158	0.016	0.07	7	800	22	<5	<20	57	0.12	<10	78	<10	1	104
43	45895	0.3 1.44	10	75	<5	2.21	2	20	33	292	0.03	4.48	<10	0.98	581	36	0.004	0.06	10	840	22	5	<20	30	0.16	<10	108	<10	4	124
44	45896	1.3 1.64	10	60	<5	1.74	1	37	47	440	0.04	6.68	<10	1.04	703	194	0.019	0.09	8	810	26	<5	<20	34	0.18	<10	134	<10	4	94
45	45897	0.4 1.53	10	65	<5	1.72	<1	24	24	372	0.04	4.93	<10	0.88	529	180	0.018	0.06	6	880	32	<5	<20	52	0.13	<10	87	<10	3	73
46	45898	0.6 1.87	5	65	<5	2.71	<1	27	26	659	0.07	7.61	<10	1.24	599	288	0.029	0.06	8	770	36	<5	<20	87	0.13	<10	129	<10	<1	90
47	45899	0.3 1.38	10	70	<5	1.31	<1	20	41	246	0.02	4.18	<10	Page51	647	176	0.018	0.06	5	820	32	<5	<20	45	0.15	<10	91	<10	5	77
48	45901	0.2 1.01	10	55	<5	0.95	<1	9	40	122	0.01	2.81	<10	0.65	495	191	0.019	0.06	3	550	20	<5	<20	34	0.09	<10	53	<10	5	60

TTM Resources 10-Apr-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 50

Sample Type: Core **Project: CHU Shipment #: 34**

Submitted by: All North Consultants

		Mo	
ET #.	Tag #	(%)	
16	45867	0.066	
19	45870	0.064	
23	45874	0.050	
38	45890	0.064	
38	45890	0.064	

 QC DATA:

 Repeat:
 16
 45867
 0.067

 Standard:

 MP2
 0.281

JJ/kk XLS/07 ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Cu%	Fe %	La	Mg %	Mn	Mo Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W
1	G45759	1.1	1.31	70	55	<5	2.16	2	10	59	263	0.03	2.79	<10	0.87	453	209 0.021	0.02	35	600	98	5	<20	70	<0.01	<10	54	<10
2	G45761	0.2	1.42	45	135	<5	1.73	<1	12	72	84	0.01	2.83	<10	1.01	364	44 0.004	0.02	47	440	24	<5	<20	101	< 0.01	<10	64	<10
3	G45762	0.3	1.35	55	75	<5	0.91	<1	14	77	129	0.01	3.20	<10	0.92	249	89 0.009	0.02	54	450	24	<5	<20	37	0.01	<10	68	<10
4	G45763	0.5	1.27	105	75	<5	1.72	<1	15	72	111	0.01	2.80	<10	0.92	364	73 0.007	0.02	39	430	44	<5	<20	88	< 0.01	<10	54	<10
5	G45764	1.2	1.30	110	50	<5	2.14	<1	17	70	374	0.04	4.23	<10	0.89	520	171 0.017	0.02	54	620	54	10	<20	59	< 0.01	<10	58	<10
6	G45765	< 0.2	0.03	5	20	<5	>10	<1	1	6	10	0.00	0.08	<10	>10	68	<1 0.000	<0.01	<1	320	<2	25	<20	107	< 0.01	<10	4	<10
7	G45766	0.9	1.25	80	50	<5	2.18	1	15	78	238	0.02	3.64	<10	0.99	451	191 0.019	0.02	59	1430	30	5	<20	56	0.02	<10	67	<10
8	G45767	0.4	1.33	40	80	<5	1.38	1	12	91	182	0.02	3.29	<10	1.05	347	71 0.007	0.03	51	440	24	5	<20	42	0.03	<10	90	<10
9	G45768	0.4	1.23	265	65	<5	1.24	<1	18	113	255	0.03	3.37	<10	0.92	275	129 0.013	0.04	51	400	18	<5	<20	31	0.02	<10	94	<10
10	G45769	0.5	1.10	40	55	<5	1.20	2	17	117	359	0.04	3.96	<10	0.90	276	68 0.007	0.04	43	440	18	10	<20	37	0.02	<10	87	<10
11	G45770	0.2	0.72	<5	130	<5	1.30	<1	7	18	127	0.01	2.48	20	0.49	614	620 0.062	0.04	12	700	16	<5	<20	128	0.02	<10	32	<10
12	G45771	0.7	1.41	35	60	<5	1.02	2	21	120	576	0.06	4.92	<10	1.21	243	128 0.013	0.04	48	470	22	10	<20	41	0.02	<10	97	<10
13	G45772	0.6	1.20	65	50	<5	0.75	1	12	76	374	0.04	3.55	<10	0.96	175	256 0.026	0.03	26	930	18	<5	<20	33	0.02	<10	76	<10
14	G45773	0.4	1.54	70	75	<5	0.89	2	13	111	205	0.02	3.17	<10	1.24	272	82 0.008	0.03	55	480	22	10	<20	32	0.04	<10	142	<10
15	G45774	0.2	1.51	35	100	<5	0.90	2	12	113	145	0.01	3.03	<10	1.17	286	102 0.010	0.03	55	460	24	<5	<20	37	0.05	<10	131	<10
16	G45775	0.3	1.59	30	85	<5	1.58	1	14	110	159	0.02	3.25	<10	1.25	562	64 0.006	0.02	53	470	28	5	<20	54	0.03	<10	112	<10
17	G45776	0.2	1.31	35	85	<5	1.15	<1	13	107	148	0.01	2.96	<10	1.04	316	114 0.011	0.03	53	430	24	<5	<20	34	0.03	<10	120	<10
18	G45777	0.4	1.40	90	45	<5	1.55	<1	12	87	138	0.01	3.19	<10	1.04	324	153 0.015	0.03	48	410	20	5	<20	33	0.01	<10	94	<10
19	G45778	8.0	1.07	145	45	<5	2.30	<1	12	42	128	0.01	3.06	<10	0.63	320	51 0.005	0.03	42	440	20	<5	<20	63	< 0.01	<10	38	<10
20	G45779	0.7	1.35	100	70	<5	2.46	<1	14	77	143	0.01	3.42	<10	0.95	375	70 0.007	0.02	50	440	24	<5	<20	95	0.03	<10	63	<10
21	G45781	0.3	1.64	25	155	<5	1.59	<1	15	105	127	0.01	3.43	<10	1.10	355	76 0.008	0.05	54	460	26	<5	<20	97	0.09	<10	118	<10
22	G45782	0.2	1.62	20	95	<5	1.13	2	17	105	159	0.02	3.93	<10	1.23	327	80 0.008	0.06	49	420	26	20	<20	58	0.08	<10	113	<10
23	G45783	0.2	1.57	10	240	<5	0.66	<1	14	122	104	0.01	3.29	<10	1.02	261	39 0.004	0.06	48	480	26	<5	<20	35	0.11	<10	141	<10
24	G45784	0.4	1.49	15	130	<5	1.44	5	16	107	187	0.02	3.70	<10	0.98	378	41 0.004	0.06	54	540	26	10	<20	60	0.04	<10	111	<10
25	G45785	< 0.2	0.04	<5	20	<5	>10	<1	<1	4	8	0.00	0.07	<10	>10	69	<1 0.000	< 0.01	<1	340	<2	25	<20	113	0.02	<10	4	<10
26	G45786	0.3	1.41	25	145	<5	1.11	2	14	105	108	0.01	3.05	<10	1.04	328	153 0.015	0.04	44	390	24	<5	<20	46	0.04	<10	105	<10
27	G45787	0.6	1.35	25	70	<5	2.17	2	15	110	281	0.03	3.83	<10	1.06	335	101 0.010	0.03	44	530	18	5	<20	66	0.02	<10	90	<10
28	G45788	0.3	1.22	15	80	<5	1.21	2	14	119	188	0.02	3.19	<10	0.99	240	59 0.006	0.04	47	490	20	<5	<20	46	0.03	<10	104	<10
29	G45789	0.6	0.95	15	65	<5	1.39	5	16	116	402	0.04	4.04	<10	0.75	311	99 0.010	0.04	41	360	10	5	<20	64	0.03	<10	82	<10
30	G45790	0.2	0.72	<5	140	<5	1.32	<1	7	19	128	0.01	2.52	20	0.51	626	638 0.064	0.04	13	690	18	<5	<20	130	0.02	<10	32	<10
ECO TE	CH LABORA	TORY	LTD.				ICP CERTIFICATE OF ANALYSIS AK 2007-0200																	ттм	Resou	rces		
Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Cu%	Fe %	La	Mg %	Mn	Mo Mo%	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W
31	G45791	0.7	1.02	175	80	<5	2.03	<1	13	69	367	0.04	3.21	<10	0.73	286	118 0.012	0.04	24	890	24	<5	<20	127	<0.01	<10	52	<10
32	G45792	1.0	1.05	20	55	<5	1.84	2	16	76	507	0.05	4.27	<10	0.79	302	125 0.013	0.03	35	740	20	<5	<20	81	< 0.01	<10	54	<10
33	G45793	0.7	1.18	40	45	<5	2.38	2	14	87	439	0.04	3.70	<10	0.90	387	111 0.011	0.03	33	680	22	20	<20	101	< 0.01	<10	58	<10

Et#.	lag#	Ag	AI %	As	ва	Ві	Ca %	Cd	Co	Cr	Cu Cu%	Fe %	La	Mg %	Mn	Mo Mo%	Na %	Nı	Р_	Pb	Sb	Sn	Sr	11%	U	<u> </u>	<u>w</u>
31	G45791	0.7	1.02	175	80	<5	2.03	<1	13	69	367 0.04	3.21	<10	0.73	286	118 0.012	0.04	24	890	24	<5	<20	127	<0.01	<10	52	<10
32	G45792	1.0	1.05	20	55	<5	1.84	2	16	76	507 0.05	4.27	<10	0.79	302	125 0.013	0.03	35	740	20	<5	<20	81	<0.01	<10	54	<10
33	G45793	0.7	1.18	40	45	<5	2.38	2	14	87	439 0.04	3.70	<10	0.90	387	111 0.011	0.03	33	680	22	20	<20	101	<0.01	<10	58	<10
34	G45794	<0.2	0.85	15	45	<5	2.94	<1	12	55	54 0.01	2.88	<10	0.73	350	87 0.009	0.03	24	1170	16	<5	<20	123	<0.01	<10	42	<10
35	G45795	0.3	1.28	10	70	<5	1.98	1	11	95	181 0.02	2.86	<10	1.03	244	157 0.016	0.02	47	440	18	5	<20	66	<0.01	<10	80	<10
36	G45796	0.2	1.27	15	45	<5	2.41	1	12	75	118 0.01	3.17	<10	1.00	283	49 0.005	0.03	26	970	16	<5	<20	79	0.01	<10	63	<10
37	G45797	0.3	1.65	35	85	<5	2.04	1	14	128	233 0.02	3.49	<10	1.31	338	160 0.016	0.03	62	610	24	10	<20	62	0.02	<10	117	<10
38	G45798	0.5	1.57	25	55	<5	2.31	1	14	124	340 0.03	3.77	<10	1.32	317	320 0.032	0.03	61	500	24	5	<20	66	0.02	<10	121	<10
39	G45799	0.8	1.46	25	60	<5	2.39	<1	19	111	377 0.04	3.33	<10	1.22	349	223 0.022	0.02	57	460	20	5	<20	62	0.03	<10	124	<10
40	G45801	1.7	1.57	30	80	<5	2.44	2	19	122	588 0.06	3.48	<10	1.23	552	236 0.024	0.03	56	530	30	10	<20	77	0.06	<10	117	<10
41	G45802	0.7	1.27	15	80	<5	0.80	<1	16	125	264 0.03	2.93	<10	1.03	266	190 0.019	0.04	47	500	22	<5	<20	33	0.10	<10	133	<10
42	G45803	0.9	1.41	20	95	<5	1.24	1	15	131	324 0.03	3.08	<10	1.11	334	171 0.017	0.05	52	560	26	10	<20	56	0.09	<10	136	<10
43	G45804	0.8	1.54	10	80	<5	1.49	2	21	132	390 0.04	3.83	<10	1.15	314	220 0.022	0.06	58	580	28	25	<20	58	0.05	<10	140	<10
44	G45805	<0.2	0.03	<5	20	<5	>10	<1	<1	3	10 0.00	0.07	<10	>10	70	<1 0.000	< 0.01	<1	350	<2	25	<20	121	<0.01	<10	4	<10
45	G45806	1.1	0.88	10	80	<5	1.74	<1	11	87	337 0.03	2.30	<10	0.72	356	339 0.034	0.04	17	880	18	5	<20	65	0.06	<10	67	<10
46	G45807	0.5	0.66	15	55	<5	1.52	<1	13	65	183 0.02	2.45	10	0.48	270	638 0.064	0.04	7	920	18	<5	<20	86	0.05	<10	36	<10
47	G45808	0.6	0.74	5	75	<5	1.53	<1	9	59	237 0.02	2.13	10	0.55	254	447 0.045	0.04	4	990	12	<5	<20	101	0.07	<10	39	<10
48	G45809	0.6	0.76	10	85	<5	1.17	1	11	105	313 0.03	2.32	10	0.56	245	179 0.018	0.07	6	1080	12	<5	<20	61	0.07	<10	43	<10
49	G45810	0.2	0.71	<5	130	<5	1.34	<1	7	19	130 0.01	2.17	Pa@e	10.52	638	607 0.061	0.04	15	710	18	<5	<20	113	0.03	<10	33	<10
50	G45811	0.5	0.62	10	65	<5	1.37	<1	11	84	289 0.03	2.16	<10	0.47	221	331 0.033	0.04	6	980	14	<5	<20	62	0.05	<10	34	<10

51	G45812	0.6	0.67	10	60	<5	1.79	<1	12	116	357	0.04	2.46	10	0.47	286	537 0.054	0.05	5	930	14	<5	<20	86	0.04	<10	28	<10
52	G45813	1.0	0.64	5	70	<5	2.43	<1	11	90	255	0.03	2.29	10	0.51	367	387 0.039	0.04	8	980	14	<5	<20	80	0.06	<10	36	<10
53	G45814	0.5	0.67	<5	70	<5	1.69	<1	8	88	223	0.02	1.81	10	0.55	299	178 0.018	0.05	6	1050	12	<5	<20	53	0.06	<10	38	<10
54	G45815	0.4	0.68	5	70	<5	1.91	1	10	63	183	0.02	2.01	10	0.52	347	135 0.014	0.04	4	1100	14	<5	<20	63	0.07	<10	35	<10
55	G45816	0.2	1.27	<5	90	5	1.92	1	14	125	78	0.01	3.01	<10	1.03	548	213 0.021	0.04	35	620	24	<5	<20	59	0.09	<10	126	<10
56	G45817	0.2	1.18	10	80	<5	1.73	3	16	125	97	0.01	3.28	<10	0.88	506	207 0.021	0.04	34	670	22	<5	<20	52	0.10	<10	104	<10
57	G45818	0.2	1.48	10	110	<5	1.21	<1	17	162	127	0.01	3.41	<10	1.12	365	198 0.020	0.04	52	460	28	<5	<20	36	0.15	<10	138	<10
58	G45819	0.3	1.31	5	80	<5	0.92	1	17	149	256	0.03	3.53	<10	1.14	257	392 0.039	0.05	52	490	18	<5	<20	26	0.16	<10	157	<10
59	G45821	0.4	1.33	15	80	<5	1.15	<1	21	163	267	0.03	3.55	<10	1.16	305	416 0.042	0.06	54	630	18	<5	<20	44	0.17	<10	157	<10
60	G45822	0.3	1.35	5	90	<5	1.33	<1	17	152	229	0.02	3.24	<10	1.17	298	380 0.038	0.04	52	550	20	<5	<20	48	0.13	<10	156	<10
61	G45823	0.3	1.42	10	70	<5	1.37	1	17	162	211	0.02	3.39	<10	1.17	331	421 0.042	0.04	49	490	22	<5	<20	50	0.12	<10	142	<10
62	G45824	0.3	1.37	10	70	<5	1.36	2	15	145	267	0.03	3.21	<10	1.16	327	525 0.053	0.03	48	430	16	15	<20	45	0.10	<10	134	<10
63	G45825	< 0.2	0.04	10	15	<5	>10	1	<1	6	4	0.00	0.08	<10	>10	65	<1 0.000	< 0.01	<1	360	<2	45	<20	116	0.01	<10	4	<10
64	G45826	0.4	0.82	10	75	<5	1.71	1	11	78	279	0.03	2.32	10	0.65	295	173 0.017	0.03	15	990	20	10	<20	70	0.04	<10	45	<10
65	G45827	0.3	0.88	5	65	<5	1.78	<1	12	96	198	0.02	2.57	<10	0.76	316	379 0.038	0.04	19	910	18	<5	<20	62	0.07	<10	71	<10
66	G45828	0.2	0.82	5	70	<5	1.40	<1	10	103	91	0.01	2.41	<10	0.59	257	184 0.018	0.04	12	930	20	<5	<20	64	0.06	<10	46	<10
67	G45829	< 0.2	0.89	<5	65	<5	1.33	<1	8	80	160	0.02	2.36	10	0.60	253	868 0.087	0.04	7	1010	12	<5	<20	56	0.05	<10	42	<10
68	G45830	0.2	0.70	5	125	<5	1.36	1	7	19	125	0.01	2.59	20	0.50	642	642 0.064	0.04	17	760	20	<5	<20	133	0.03	<10	33	<10
69	G45831	0.3	0.69	10	70	<5	1.95	<1	9	79	208	0.02	2.00	<10	0.50	326	101 0.010	0.03	3	1040	12	<5	<20	69	0.07	<10	34	<10
70	G45832	0.2	1.34	5	85	<5	1.38	1	16	149	200	0.02	3.17	<10	1.13	346	359 0.036	0.04	43	620	20	<5	<20	58	0.09	<10	116	<10

Υ	Zn
9	211
9	65
6	64
10	66
8	107
3	8
9	81
6	80
6	77
10	69
19	71
10	76
6	64
7	141
10 13	153
9	87 60
6	79
7	61
8	62
9	64
7	66
8	57
9	300
<1	8
6	138
5	67
8	113
6	166
19	71
Υ	Zn

Υ	Zn
12	52
7	68
6	65
7	47
8	51
6	48
15	68
10	72
10	62
14	182
10	63
14	72
13	108
<1	8
10	56
7	51
4	47
8	40
21	71
6	37

11 76

TTM Resources 29-Mar-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 70

Sample Type: Core **Project: CHU Shipment #: 31**

Submitted by: All North Consultants

	Мо
Tag #	(%)
G45770	0.064
G45790	0.064
G45807	0.064
G45810	0.064
G45812	0.053
G45824	0.054
G45830	0.061
<u>Γ</u> Α:	
	0.062
G45770	0.002
rd:	0.280 0.284
	G45770 G45790 G45807 G45810 G45812 G45824 G45830

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

JJ/kk XLS/07

ICP CERTIFICATE OF ANALYSIS AK 2007-0199

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

TTM Resources 520-700W Pender Street

Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 17 Sample Type: Core

Project: CHU Shipment #: 32

Submitted by: All North Consultants

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G45833	<0.2 1.03	5	110	<5	2.13	<1	8	70	201	2.28	10	0.63	322	77	0.03	8	990	14	<5	<20	102	0.07	<10	41	<10	5	38
2	G45834	0.2 1.22	10	110	<5	1.16	<1	15	127	239	2.86	<10	1.07	289	282	0.04	37	550	18	<5	<20	50	0.09	<10	116	<10	13	51
3	G45835	0.3 1.29	10	100	<5	1.60	<1	18	112	264	3.29	<10	1.07	343	958	0.03	44	450	18	<5	<20	54	0.09	<10	105	<10	12	51
4	G45836	<0.2 1.18	10	115	<5	1.18	<1	15	120	221	2.86	<10	1.00	278	302	0.03	38	590	18	<5	<20	49	0.10	<10	105	<10	13	45
5	G45837	0.2 1.35	10	105	<5	1.15	<1	14	136	311	3.07	<10	1.22	311	309	0.03	49	440	18	10	<20	49	0.08	<10	129	<10	14	52
6	G45838	0.3 0.99	10	105	<5	1.00	<1	15	135	457	3.16	<10	0.87	251	192	0.04	40	540	20	<5	<20	52	0.05	<10	104	<10	14	47
7	G45839	0.3 0.98	10	75	15	1.03	<1	16	111	345	2.97	<10	0.84	221	288	0.03	37	510	16	<5	<20	38	0.03	<10	93	<10	10	45
8	G45841	0.6 0.77	10	60	<5	1.32	<1	13	129	661	3.12	<10	0.65	228	239	0.03	29	430	16	<5	<20	39	0.03	<10	72	<10	8	41
9	G45842	0.7 1.25	20	60	<5	1.69	1	19	115	760	3.70	<10	0.96	285	356	0.02	45	350	20	10	<20	68	0.03	<10	83	<10	8	51
10	G45843	0.4 1.25	10	60	<5	1.86	<1	14	89	166	3.20	20	0.78	281	226	0.02	21	710	24	<5	<20	91	0.03	<10	59	<10	7	40
11	G45844	2.0 1.31	10	80	<5	1.37	<1	14	142	193	3.27	<10	0.89	256	443	0.02	33	440	22	5	<20	78	0.02	<10	94	<10	7	41
12	G45845	<0.2 0.05	<5	15	<5	>10	<1	<1	6	10	0.08	<10	>10	78	<1	<0.01	<1	380	<2	25	<20	117	<0.01	<10	5	<10	<1	8
13	G45846	0.2 1.15	10	50	<5	2.93	<1	11	75	238	2.71	20	0.83	441	252	0.02	20	680	14	<5	<20	95	0.02	<10	53	<10	11	46
14	G45847	0.2 1.57	15	65	<5	2.37	<1	18	125	333	4.07	<10	1.08	391	339	0.02	33	550	20	5	<20	108	0.03	<10	103	<10	9	55
15	G45848	1.0 1.11	5	80	<5	1.63	<1	11	114	242	3.36	<10	0.82	305	274	0.03	21	530	16	<5	<20	68	0.02	<10	66	<10	6	41
16	G45849	0.7 1.23	25	90	<5	2.25	<1	14	70	606	3.48	20	0.66	358	33	0.03	12	850	16	5	<20	102	0.02	<10	35	<10	2	33
17	G45850	<0.2 0.76	<5	130	<5	1.29	<1	7	19	120	2.46	20	0.48	608	640	0.04	14	710	20	<5	<20	126	0.02	<10	31	<10	20	75
QC DAT																												
Repeat:	G45833	<0.2 1.01	10	115	<5	2.14	<1	9	70	209	2.26	10	0.63	324	78	0.03	8	1030	16	<5	<20	110	0.02	<10	41	<10	6	37
Resplit:	G45833	<0.2 0.94	5	115	<5	2.07	1	10	59	205	2.32	10	0.62	316	83	0.03	10	1020	18	5	<20	106	0.01	<10	41	<10	7	37
Standar Pb106	rd:	>30 0.53	275	105	<5	1.87	33	3	40	6275	1.43	<10	0.22	548	32	0.02	6	270 5	5320	50	<20	164	<0.01	<10	14	10	<1 8	3361

JJ/sa df/199 XLS/07 **ECO TECH LABORATORY LTD.**

Jutta Jealouse B.C. Certified Assayer

TTM Resources 27-Mar-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 17

Sample Type: Core **Project: CHU Shipment #: 32**

Submitted by: All North Consultants

	Мо	
Tag #	(%)	
G45835	0.096	
G45850	0.064	
	G45835	Tag # (%) G45835 0.096

QC DATA:

Repeat:

3 G45835 0.094

Standard:

MP2 0.284 MP2 0.283

JJ/sa XLS/07 ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 **ICP CERTIFICATE OF ANALYSIS AK 2007-0191**

TTM Resources

520-700W Pender Street Vancouver, BC

V6C 1G8

Attention: Ken MacDonald

No. of samples received: 36

Sample Type: Core
Project: CHU
Shipment #: 30

Submitted by: All North Consultants

Values in ppn	n unless oth	erwise reported
---------------	--------------	-----------------

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G45722	<0.2 1.94	5	215	5	0.50	<1	15	133	91	3.27	<10	1.10	252	3	0.11	45	540	36	<5	<20	27	0.18	<10	149	<10	10	64
2	G45723	<0.2 1.82	<5	170	<5	0.53	<1	14	119	73	2.86	<10	1.08	245	49	0.09	45	500	32	<5	<20	33	0.17	<10	160	<10	10	54
3	G45724	<0.2 2.31	<5	190	5	0.74	<1	17	134	93	3.29	<10	1.11	297	24	0.18	44	530	46	<5	<20	55	0.18	<10	158	<10	17	72
4	G45725	<0.2 0.04	<5	20	<5	>10	<1	<1	4	2	0.08	<10	>10	63	<1	<0.01	<1	340	<2	25	<20	106	< 0.01	<10	3	<10	1	5
5	G45726	<0.2 1.98	5	135	<5	0.96	<1	16	128	113	3.22	<10	0.98	252	95	0.18	43	460	40	<5	<20	51	0.18	<10	158	<10	14	106
l																												
6	G45727	<0.2 2.07	<5	135	5	1.14	<1	15	136				1.16	310	8	0.10	44	470	36	<5	<20	77	0.19	<10	159	<10	14	65
7	G45728	<0.2 2.10	<5	155	5	1.28	<1	18	165	80	3.24	<10	1.21	363	17	0.11	45	510	34	<5	<20	49	0.20	<10	160	<10	17	62
8	G45729	<0.2 1.71	<5	95	<5	1.20	<1	14	211	144	2.70	<10	0.90	232	56	0.06	42	560	30	<5	<20	38		<10	124	<10	16	48
9	G45730	<0.2 0.74	<5	130	<5	1.25	<1	7	18	114	2.39	20	0.46	584	636	0.04	14	790	14	<5	<20	121	0.02	<10	31	<10	19	76
10	G45731	<0.2 2.40	20	665	<5	0.56	<1	12	138	128	3.28	<10	1.17	542	<1	0.08	47	560	42	<5	<20	57	0.14	<10	157	<10	19	85
l																												
11	G45732	0.2 2.21	-	120	-	0.47	1	17					1.20				-		36	-	<20	37		<10			14	59
12	G45733	0.3 2.25	-	135	<5	0.87	<1	19		150		<10	1.28	410	72	0.06	_	580	42	_	<20	38		<10		-	15	92
13	G45734	0.2 2.01	20	120	<5	1.23	<1	16	88	169	3.56	<10	1.05	414	31	0.08		560	32	5	<20	31		<10	112	<10	11	67
14	G45735	<0.2 0.55	<5	85	<5	0.97	<1	3	35	6	1.06	20	0.13	234	<1	0.03	2	260	16	<5	<20	26	<0.01	<10	10	<10	9	19
15	G45736	<0.2 0.53	<5	95	<5	0.53	<1	3	45	6	0.90	10	0.16	230	<1	0.02	1	260	22	<5	<20	26	<0.01	<10	8	<10	12	19
			_		_			_		_							_			_								
16	G45737	<0.2 0.55	<5	155	<5	0.91	<1	2	42	_	0.89	10	0.13		<1	0.02		250	20	-	<20		<0.01	-	11		12	20
17	G45738	<0.2 0.40	<5	70	<5	1.42	<1	3	36	6	0.80	20	0.07		<1	0.03	1	250	16	_	<20		<0.01			<10	11	20
18	G45739	<0.2 0.52	<5	50	<5	1.34	<1	3	45	8		20	0.15	214	<1	0.03	<1	260	20	<5	<20		<0.01	-		<10	11	26
19	G45741	<0.2 0.53	<5	145	<5	1.06	<1	2	38		0.79	20		164	1	0.02	1	280	20		<20		<0.01			<10	10	24
20	G45742	<0.2 0.46	<5	60	<5	1.06	<1	3	37	7	0.84	20	0.13	176	<1	0.02	3	260	18	<5	<20	46	<0.01	<10	11	<10	10	23
21	G45743	<0.2 0.50	<5	95	<5	0.66	<1	3	39	7	0.86	20	0.15	349	1	0.02	4	270	20	<5	<20	22	<0.01	-10	10	<10	11	26
22	G45743 G45744	<0.2 0.50	10	95 75	<5	0.00	<1	4	69	6	0.86	20	0.13		2			270	26	-	<20	-	<0.01	-		<10	10	30
23	G45745	<0.2 0.00	<5	20	<5	>10		-			0.07	<10	>10	70		<0.03		420	<2	-			<0.01			<10	2	4
_	G45745 G45746			65	_		<1	<1	4												<20							
24		<0.2 0.71	<5		<5	0.29	<1	3	78	7		20	0.17	268	<1	0.03	4		26	_		_	< 0.01		_	<10	11	29
25	G45747	<0.2 0.78	<5	75	<5	0.31	<1	3	82	5	1.05	10	0.22	238	3	0.02	3	260	26	<5	<20	25	<0.01	<10	9	<10	9	25
26	G45748	<0.2 0.59	<5	60	<5	1.35	<1	3	30	5	0.93	20	0.19	238	4	0.03	2	280	20	<5	<20	52	<0.01	<10	10	<10	10	15
27	G45749	0.2 1.69	25	520	<5	0.54	<1	10		111	2.71	<10	0.98	627	12	0.05		400	32	-	<20	48	0.05	-		<10	11	51
28	G45750	<0.2 0.72	<5	135	<5	1.26	<1	7	-	111	2.40	20		584	635	0.04		760	12	_	<20	_	0.02		30	<10	18	77
29	G45751	<0.2 1.79	15	90	<5	1.03	<1	16	114		3.35	<10	1.19		89	0.05		480	30	<5	<20	32		<10			10	68
30	G45752	0.2 1.73	135	85	<5	1.01	<1	24			3.50		1.18		68	0.08	45	450	36	<5	<20	38		<10				109
50	O 10/02	0.2 1.90	100	00	~0	1.01	` '	4	100	101	5.50	\10	1.10	555	00	0.00	70	- 1 00	50	-5	~20	50	0.14	\10	171	110	12	100

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
31	G45753	<0.2 1.80	10	115	<5	0.71	<1	16	114	108	3.38	<10	1.14	338	138	0.06	53	550	30	<5	<20	36	0.15	<10	145	<10	10	82
32	G45754	0.2 1.75	20	85	<5	1.31	<1	18	122	145	3.75	<10	1.28	383	109	0.06	60	1240	32	<5	<20	37	0.12	<10	134	<10	14	74
33	G45755	<0.2 1.51	15	175	<5	1.29	<1	12	94	73	2.82	<10	1.09	394	135	0.04	39	440	26	<5	<20	39	0.04	<10	99	<10	10	63
34	G45756	0.2 1.48	15	140	<5	1.10	2	13	98	117	2.97	<10	1.11	406	132	0.04	40	410	30	5	<20	38	0.05	<10	93	<10	12	201
35	G45757	0.5 1.47	20	70	<5	1.47	<1	13	98	179	3.54	<10	1.06	430	202	0.03	41	540	34	<5	<20	42	< 0.01	<10	76	<10	7	64
36	G45758	0.7 1.60	50	55	<5	2.20	<1	11	86	137	3.27	<10	1.11	575	172	0.02	50	510	40	<5	<20	72	0.01	<10	74	<10	9	92
QC DAT Repeat: 1 10		<0.2 2.07 <0.2 2.33	5 20	225 700	10 <5	0.52 0.56	<1 <1	15 11	138 150	94 123	3.36 3.24	<10 <10	1.16 1.13	261 534	5 <1	0.12 0.08	48 49	570 570	26 34	<5 <5	<20 <20	30 53	0.18 0.14	<10 <10	155 153	<10 <10	12 18	52 74
Resplit:	G45722	<0.2 2.04	10	210	10	0.54	<1	15	139	90	3.32	<10	1.13	266	4	0.12	46	590	36	5	<20	29	0.17	<10	155	<10	11	61
Standar PB106	rd:	>30 0.51	270	75	<5	1.73	44	4	41	6390	1.39	<10	0.25	553	32	0.02	7	280	5270	60	<20	137	<0.01	<10	14	<10	<1 8	3326

JJ/sa df/191 XLS/06

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

O ILCII LABORATORT LID.

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2007-0174

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 59 Sample Type: Core

Project: CHU
Shipment #: 24

Submitted by: All North Consultants

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G45659	0.4 1.19	<5	115	<5	0.51	<1	14	143	404	3.18	<10	0.93	162	356	0.07	57	430	18	<5	<20	66	0.12	<10	130	<10	10	32
2	G45661	<0.2 2.44	5	95	<5	1.34	<1	15	168	226	3.44	<10	1.34	245	139	0.24	75	590	26	<5	<20	119	0.14	<10	183	<10	9	44
3	G45662	0.4 2.04	100	145	<5	4.69	<1	14	103	383	3.53	<10	1.00	349	232	0.18	52	460	22	<5	<20	113	0.05	<10	96	<10	12	42
4	G45663	0.4 1.84	40	165	<5	1.38	<1	15	158	293	3.51	<10	1.17	240	311	0.03	54	400	20	<5	<20	27	0.07	<10	115	<10	6	36
5	G45664	0.4 1.46	15	120	<5	1.08	<1	17	165	516	3.93	<10	1.04	201	84	0.11	56	380	14	<5	<20	47	0.07	<10	104	<10	6	33
	0		_		_														_						_			_
6	G45665	<0.2 0.05	5	20	<5	>10	<1	<1	4		0.08	_	>10	69		<0.01	<1	360	<2	35	<20		<0.01	_		<10	<1	6
7	G45666	0.2 1.46	<5	130	<5	0.98	<1	14	175	268	2.78	<10	1.17	189	118	0.08	43	420	14	<5	<20	29	0.10	<10	132	<10	10	35
8	G45667	<0.2 1.20	<5	145	<5	0.29	<1	14	-	197	2.64	<10	0.95	167	191	0.06	52	320	20	<5	<20	25	0.10	<10	_	<10	10	38
9	G45668	<0.2 1.47	<5	145	<5	0.42	<1	14	167	199	2.71	<10	1.02	167	179	0.10	59	390	20	<5	<20	34	0.13	<10	121	<10	9	37
10	G45669	0.3 1.18	<5	105	<5	0.89	<1	16	254	403	3.48	<10	0.68	182	97	0.16	59	570	14	<5	<20	40	0.10	<10	91	<10	9	33
11	G45670	<0.2 0.70	<5	125	<5	1.25	<1	6	18	113	2.28	20	0.49	599	628	0.04	14	720	12	<5	<20	113	0.02	<10	31	<10	16	75
12	G45671	<0.2 0.99	<5	130	<5	0.30	<1	11	164	202	2.26	<10	0.85	144	181	0.06	36	240	10	<5	<20	14	0.10	<10	91	<10	6	34
13	G45672	0.3 1.06	10	145	<5	0.85	<1	20	250	428	3.62	<10	0.91	246	519	0.08	62	530	14	<5	<20	47	0.11	<10	110	<10	14	47
14	G45673	0.3 1.17	20	140	<5	1.26	1	12	197	319	2.56	<10	0.95	221	507	0.07	46	380	18	<5	<20	55	0.08	<10	88	<10		105
15	G45674	0.4 1.61	<5	150	<5	0.70	<1	24	125	719	4.86	_	1.50	283	180	0.13	39	700	16	<5	<20	27	0.22	<10		<10	14	68
16	G45675	<0.2 2.93	<5	130	<5	1.20	<1	21	136	315	4.05	<10	1.44	263	58	0.34	72	570	26	<5	<20	68	0.20	<10	171	<10	16	61
17	G45676	<0.2 2.15	5	280	<5	0.59	<1	17	199	161	3.18	<10	1.40	260	435	0.18	65	500	24	<5	<20	31	0.21	<10	178	<10	18	57
18	G45677	<0.2 1.53	<5	200	<5	0.56	<1	15	176	210	2.77	<10	1.04	205	101	0.15	60	500	22	<5	<20	30	0.16	<10	127	<10	17	37
19	G45678	<0.2 1.79	<5	195	<5	0.61	<1	14	180	214	2.90	<10	1.03	210	254	0.18	50	570	16	<5	<20	31	0.18	<10	138	<10	12	40
20	G45679	<0.2 2.23	10	325	<5	0.64	<1	14	146	97	2.97	<10	1.30	220	65	0.14	50	520	24	<5	<20	35	0.19	<10	165	<10	12	42
21	G45681	0.2 1.07	35	100	<5	0.72	<1	11		271	2.64	<10	0.84	187	92	0.07	33	300	10	<5	<20	30	0.07	<10	89	<10	8	41
22	G45682	0.2 1.03	10	130	<5	0.51	<1	11	146	190	2.29	<10	0.79	180	222	0.07	37	310	12	<5	<20	20	0.11	<10	105	<10	11	32
23	G45683	0.2 1.06	10	130	<5	0.92	<1	9	200	231	2.35	<10	0.79	183	137	0.06	34	270	8	<5	<20	47	0.03	<10	80	<10	8	38
24	G45684	0.5 0.87	<5	200	<5	1.14	<1	8	170		2.06	_	0.64	157	633	0.06	29	280	10	<5	<20	62	0.05	<10	76	<10	9	33
25	G45685	<0.2 0.04	5	20	<5	>10	<1	<1	4	3	0.07	<10	>10	66	1	<0.01	<1	310	<2	40	<20	120	<0.01	<10	2	<10	<1	4

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	G45686	0.2	1.29	15	170	<5	0.68	<1	14	139	210	2.84	<10	0.93	204	202	0.10	43	380	14	<5	<20	33	0.11	<10	118	<10	12	44
27	G45687	< 0.2	0.97	<5	245	<5	0.73	<1	5	104	4	1.72	<10	0.72	507	<1	0.08	5	700	14	<5	<20	52	0.11	<10	39	<10	12	40
28	G45688	< 0.2	1.38	<5	175	<5	0.43	<1	14	175	162	2.78	<10	1.04	212	156	0.09	48	420	16	<5	<20	36	0.15	<10	129	<10	13	37
29	G45689	0.5	1.22	<5	85	<5	0.76	<1	16	100	586	4.11	<10	1.13	201	56	0.05	21	1160	12	<5	<20	36	0.10	<10	105	<10	6	45
30	G45690	<0.2	0.72	<5	125	<5	1.28	<1	6	18	120	2.34	20	0.50	618	637	0.04	15	730	14	<5	<20	127	0.02	<10	32	<10	17	75
31	G45691	0.2	2.12	<5	225	<5	0.80	<1	15	219	203	3.11	<10	1.27	243	156	0.19	63	510	14	<5	<20	96	0.17	<10	157	<10	14	43
32	G45692	<0.2		55	170	<5	2.02	<1						1.02			0.02		470	10	<5	<20	42	< 0.01		83	<10	8	40
33	G45693	<0.2			350	<5	1.00	<1						1.45		70	0.16	73	580	16	<5	<20	98		<10		<10	15	45
34	G45694		1.57			<5	1.13	<1		179		3.86		1.17		457	0.10		560	10	<5		59		<10		<10	12	49
35	G45695	<0.2			230	<5	0.97	<1			192	3.00		1.41		41	0.29		630	18		<20	84	0.18	<10			18	43
36	G45696	<0.2	2.23	5	185	<5	0.83	<1	18	134	154	2.97	<10	1.17	213	111	0.18	83	600	26	<5	<20	58	0.17	<10	152	<10	12	43
37	G45697	< 0.2		5	445	<5	0.94	<1	16	124	84	3.18	<10	1.57	256	54	0.17	75	560	32	<5	<20	124	0.19	<10	172	<10	13	61
38	G45698	<0.2		10	135	<5	0.55	<1	15	212	194	2.75	<10	1.02	210	292	0.10	50	440	14	<5	<20	60	0.14	<10	118	<10	11	43
39	G45699	<0.2	2.88	<5	155	<5	1.10	<1	20	203	288	3.73	<10	1.54		42	0.33	84	580	20	<5	<20	148	0.18	<10	169	<10	13	52
40	G45701	<0.2		5	90	<5	1.74	<1	24	210				1.86		81	0.43	102	660	28	<5	<20	231		<10			18	56
41	G45702	0.2	2.70	15	110	<5	1.26	<1	20	172	330	3.56	<10	1.81	294	855	0.24	96	600	16	<5	<20	136	0.15	<10	153	<10	13	51
42	G45703	< 0.2	3.13	10	140	<5	1.24	<1	21	194	220	4.05	<10	2.43	376	956	0.27	93	580	24	<5	<20	103	0.17	<10	173	<10	19	78
43	G45704	0.2	2.19	25	320	<5	2.46	<1	18	143	278	3.91	20	0.82	175	182	0.05	97	740	20	<5	<20	294	< 0.01	<10	108	<10	14	66
44	G45705	< 0.2	0.05	5	20	5	>10	<1	<1	4	4	0.08	<10	>10	66	1	<0.01	<1	320	<2	35	<20	121	< 0.01	<10	2	<10	1	5
45	G45706	<0.2	1.88	105	325	<5	6.84	<1	24	102		5.45	20	2.93	421	1212	0.05	109	840	18	10			<0.01		129	<10	21	78
46	G45707	<0.2	1.53	40	360	<5	6.79	<1	25	77	634	6.23	20	3.00	477	1469	0.05	91	650	12	<5	<20	873	<0.01	<10	152	<10	13	68
47	G45708	<0.2	0.71	30	230	<5	5.20	<1	16	86	257	4.02	10	2.05	284	498	0.05	85	620	8	<5	<20	683	< 0.01	<10	97	<10	14	39
48	G45709	<0.2		80	155	<5	9.33	<1	20	74	574		10	2.52			0.03		680	14	10			< 0.01		76	<10	26	48
49	G45710	<0.2	0.70	<5	125	<5	1.28	<1	6	18	115	2.30	20	0.49	607		0.04	15	730	16	<5	<20	124	0.02	<10	31	<10	17	77
50	G45711	<0.2		40	135	<5	9.58	<1	15			3.81		3.02			0.04		700	16	10			<0.01		102	<10	28	45
51	G45712	<0.2	1.47	<5	155	<5	0.99	<1	16	208	215	3.16	<10	1.29	201	92	0.05	63	380	18	<5	<20	82	0.13	<10	148	<10	8	43
52	G45713	< 0.2	1.82	<5	240	<5	0.65	<1	15	125	89	2.88	<10	1.28	175	105	0.05	58	440	26	<5	<20	28	0.17	<10	161	<10	7	45
53	G45714	<0.2	1.76	<5	325	<5	0.79	<1	11	101	73	2.56	<10		181	41	0.03	48	300	20	5	<20	24	0.14	<10	110	<10	5	38
54	G45715	< 0.2	2.40	10	105	<5	1.30	<1	21	150	214	3.88	<10	1.42		179	0.15	95	680	30	<5	<20	70	0.15	<10	172	<10	12	46
55	G45716	<0.2	2.03	15	245	<5	0.83	<1	16	142				1.45		45	0.08	70	570	26	<5		35		<10			13	44
56	G45717	0.3	1.73	120	110	<5	1.82	<1	16	116	320	3.90	<10	1.38	285	564	0.04	66	460	20	<5	<20	86	0.07	<10	129	<10	7	65
57	G45718	0.4	1.01	20	105	<5	0.91	<1	12	147	271	2.72	<10	0.72	188	123	0.05	53	380	16	<5	<20	64	0.05	<10	88	<10	6	45
58	G45719	0.5	1.62	30	125	<5	0.88	<1	15	198	313	3.29	<10	1.21	281	463	0.08	64	470	20	<5	<20	73	0.11	<10	136	<10	9	56
59	G45721	0.3	2.34	15	170	<5	0.83	<1	19	178	320	3.73	<10	1.58	310	28	0.19	88	600	30	<5	<20	54	0.18	<10	174	<10	13	67
QC DAT																													
1	G45659	0.4	1.23	<5	120	<5	0.53	<1	14	146	407	3.19	<10	0.95	164	351	0.08	56	430	18	<5	<20	70	0.12	<10	133	<10	12	31
10	G45669		1.25		110	<5	0.92	<1						0.71			0.17		580	14		<20	44			93	<10	10	33
19	G45678	<0.2			205		0.65	<1						1.04					570	18		<20	40		<10			14	40
36	G45696	<0.2			175			<1						1.22					610	24		<20	59					11	42
45	G45706		1.85				6.75	<1				5.38					0.05			20				<0.01				20	80

Resplit: 1 36	G45659 G45696	 1.46 2.36	<5 10	130 195	<5 <5	0.54 0.92	<1 <1	15 18	143 148	416 159	3.23 3.09	<10 <10	1.04 1.18	174 221	364 119	0.09 0.24	56 87	420 610	14 28	<5 <5	<20 <20	80 65	0.13 0.18	<10 <10	143 156	<10 <10	12 14	30 44
Standar Pb106 Pb106	d:	 0.55 0.56	_	75 85	<5 <5	1.69 1.63	36 38	4 3	_	6245 6389	1.65 1.60	<10 <10	0.25 0.19	558 547	31 33	0.02 0.02	7 7		5252 5282	55 60				<10 <10	14 15	10 10	<1 8 <1 8	

Ni

Р

Pb Sb Sn

Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na %

ECO TECH LABORATORY LTD.

Sr Ti %

٧

Jutta Jealouse B.C. Certified Assayer

JJ/sa df/161b XLS/06

Et #.

Tag #

Ag Al % As Ba

TTM Resources 16-Mar-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 59

Sample Type: Core **Project: CHU Shipment #: 24**

Submitted by: All North Consultants

		Мо
ET #.	Tag #	(%)
11	G45670	0.063
13	G45672	0.053
14	G45673	0.051
24	G45684	0.060
30	G45690	0.064
41	G45702	0.081
42	G45703	0.092
45	G45706	0.117
46	G45707	0.134
49	G45710	0.065
56	G45717	0.057
QC DAT	<u>[</u> A:	
Repeat:		
13	G45672	0.054
41	G45702	0.081
Standaı	rd:	
MP2		0.282
MP2		0.282
MP2		0.278
MP2		0.285

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

JJ/kk XLS/07

ICP CERTIFICATE OF ANALYSIS AK 2007-167

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 TTM Resources 520-700W Pender Street Vancouver, BC

Attention: Ken MacDonald

No. of samples received: 56 Sample Type: Core

Project: CHU
Shipment #: 23

V6C 1G8

Submitted by: All North Consultants

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G45601	<0.2 2.41	<5	290	5	0.20	<1	16	125	61	3.48	<10	1.29	260	<1	0.06	56	490	24	<5	<20	24	0.24	<10	153	<10	11	93
2	G45602	<0.2 2.03	5	195	<5	0.37	<1	16	119	80	3.52	<10	1.23	252	<1	0.07	51	510	24	<5	<20	24	0.21	<10	145	<10	7	73
3	G45603	<0.2 2.08	<5	420	5	0.28	<1	16	133	60	3.28	<10	1.25	288	<1	0.07	51	510	26	<5	<20	18	0.24	<10	155	<10	12	72
4	G45604	<0.2 2.02	5	240	<5	0.41	<1	15	127	105	3.33	<10	1.22	262	<1	0.09	51	510	28	<5	<20	35	0.20	<10	148	<10	11	59
5	G45605	<0.2 0.04	<5	40	<5	>10	<1	<1	4	3	0.08	<10	>10	66	<1	< 0.01	<1	380	<2	35	<20	111	<0.01	<10	2	<10	2	4
6	G45606	<0.2 2.11	5	175	<5	0.77	<1	15	133	99	3.16	<10	1.13	236	2	0.14	47	490	32	<5	<20	41	0.16	<10	138	<10	9	45
7	G45607	0.2 1.61	75	60	<5	0.60	<1	17	122	207	3.76	<10	1.01	255	567	0.06	42	500	14	<5	<20	14	0.14	<10	88	<10	<1	48
8	G45608	0.2 1.78	<5	80	<5	0.30	<1	20	152	274	4.39	<10	1.14	240	129	0.08	44	410	16	<5	<20	18	0.17	<10	108	<10	3	48
9	G45609	0.2 1.69	285	140	<5	1.42	<1	19	118	173	3.30	<10	1.03	373	12	0.08	34	360	16	<5	<20	51	0.09	<10	76	<10	6	48
10	G45610	<0.2 0.76	<5	135	<5	1.29	<1	6	19	118	2.36	20	0.51	622	645	0.04	14	740	16	<5	<20	129	0.02	<10	32	<10	18	78
11	G45611	<0.2 1.57	10	115	<5	0.60	<1	14	152	207	3.81	<10	1.11	234	23	0.07	36	410	16	<5	<20	20	0.12	<10	96	<10	2	44
12	G45612	<0.2 1.42	20	185	<5	0.45	<1	14	131	150	3.11	<10	1.00	196	13	0.05	38	460	18	<5	<20	23	0.12	<10	78	<10	7	37
13	G45613	<0.2 2.02	10	245	<5	0.46	<1	15	164	91	3.16	<10	1.30	255	57	0.09	56	490	26	<5	<20	24	0.20	<10	179	<10	10	45
14	G45614	<0.2 2.17	60	145	<5	1.26	<1	16	127	164	3.90	<10	1.35	267	106	0.10	63	580	22	<5	<20	30	0.18	<10	163	<10	6	44
15	G45615	<0.2 3.10	<5	195	<5	0.93	<1	17	155	154	3.90	<10	1.55	272	14	0.30	63	660	22	<5	<20	60	0.21	<10	196	<10	8	51
16	G45616	<0.2 2.09	65	155	<5	0.81	3	14	133	265	3.45	<10	1.34	254	34	0.13	46	520	18	<5	<20	44	0.16	<10	160	<10	10	233
17	G45617	<0.2 2.59	<5	250	<5	0.56	<1	16	154	126	3.53	<10	1.52	240	8	0.19	61	590	22	<5	<20	40	0.23	<10	213	<10	13	48
18	G45618	0.2 1.87	40	100	<5	1.10	<1	16	122	963	4.91	<10	1.00	198	10	0.27	47	490	14	<5	<20	69	0.11	<10	128	<10	5	39
19	G45619	<0.2 2.00	290	265	<5	0.80	<1	14	163	111	3.10	<10	1.40	219	6	0.10	55	560	16	<5	<20	41	0.19	<10	174	<10	11	39
20	G45621	<0.2 2.21	<5	200	<5	0.54	<1	17	156	268	3.76	<10	1.52	247	8	0.18	62	560	24	<5	<20	48	0.21	<10	206	<10	17	48
21	G45622	<0.2 2.12	<5	155	<5	0.51	<1	17	184	237	3.63	<10	1.44	277	109	0.19	64	580	22	<5	<20	35	0.21	<10	200	<10	16	53
22	G45623	0.2 1.66	10	85	<5	0.78	<1	21	156	327	4.16	<10	1.19	219	263	0.11	64	530	18	<5	<20	31	0.16	<10	172	<10	10	96
23	G45624	<0.2 1.58	5	150	<5	0.63	<1	14	151	280	3.16	<10	1.12	172	391	0.07	54	460	16	<5	<20	34	0.14	<10	163	<10	7	43
24	G45625	<0.2 0.05	<5	30	<5	>10	<1	<1	5	3	0.08	<10	>10	77	1	< 0.01	<1	350	<2	40	<20	128	<0.01	<10	3	<10	<1	4
25	G45626	<0.2 2.26	10	330	<5	0.59	<1	15	153	143	3.23	<10	1.42	212	78	0.13	51	440	22	<5	<20	41	0.21	<10	194	<10	10	59

Et #.	Tag #	Ag A	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	G45627	<0.2	2.06	5	170	<5	0.38	<1	17	150	204	3.65	<10	1.38	194	197	0.09	48	440	22	<5	<20	22	0.20	<10	162	<10	8	43
27	G45628	< 0.2	1.76	15	255	<5	0.84	<1	15	133	114	2.97	<10	1.20	216	39	0.07	48	380	16	<5	<20	37	0.14	<10	132	<10	8	36
28	G45629	< 0.2	1.92	5	210	<5	0.55	<1	16	157	209	3.50	<10	1.22	219	95	0.12	46	550	24	<5	<20	33	0.16	<10	156	<10	11	38
29	G45630	<0.2	0.76	<5	135	<5	1.31	<1	6	19	119	2.41	20	0.50	638	640	0.04	15	760	18	<5	<20	130	0.02	<10	32	<10	18	79
30	G45631	< 0.2	1.38	<5	155	<5	0.89	<1	15	145	369	3.69	<10	0.94	196	45	0.09	45	530	16	<5	<20	26	0.11	<10	115	<10	6	35
31	G45632	< 0.2		70	190	<5	0.45	<1	15	151	253	3.36		1.09	182	54	0.08	47	630	20	<5	<20	17	0.16	<10	131	<10	5	32
32	G45633	< 0.2	1.98	<5	400	<5	0.53	<1	13	120	121	3.08	<10	1.22	339	22	0.07	45	410	20	<5	<20	24	0.19	<10	140	<10	8	42
33	G45634	<0.2	2.33	5	285	<5	0.47	<1	16	124	157	3.67	<10	1.47	261	18	0.10	47	670	18	<5	<20	21	0.21	<10	160	<10	6	43
34	G45635	<0.2		<5	340	<5	0.50	<1	15	118	139	3.51		1.42	261	36	0.14	45	510	18	<5	<20	35	0.22		177	<10	6	47
35	G45636	<0.2	2.47	10	320	<5	0.47	<1	16	144	165	3.58	<10	1.42	334	156	0.16	52	450	20	<5	<20	34	0.23	<10	171	<10	9	48
	_																												
36	G45637	<0.2		_	200	<5	0.72	<1		156		3.56		1.57	355	118	0.27	79	540	24	<5	<20	62	0.22		196	<10	12	54
37	G45638	<0.2		<5	205	<5	0.71	<1		138	200	3.78		1.50	311	69	0.20	63	610	22	<5	<20	64	0.22		170	<10	8	41
38	G45639	<0.2			145	<5	0.94	<1	20		202			1.65	300	55	0.24	56	640	28	<5	<20	69	0.20			<10	8	39
39	G45641	<0.2		60	155	<5	0.41	<1		124		3.70		1.27		21	0.06	51	460	16	<5	<20	30	0.13			<10	4	27
40	G45642	0.2	2.29	10	130	<5	0.67	<1	17	172	301	3.97	<10	1.33	199	234	0.20	51	490	20	<5	<20	65	0.16	<10	164	<10	5	34
41	G45643	<0.2	1 76	130	110	<5	0.98	<1	16	159	328	4.09	<10	1.23	240	86	0.13	57	570	12	<5	<20	41	0.11	-10	127	-10	5	47
42	G45644	<0.2		<5	125	<5	1.81	<1	18	188		3.43		1.08	235	88	0.13	58	670	24	<5	<20		0.11		128	<10	14	40
42	G45645	<0.2		<5	30	<5	>10	<1	<1	5	290 4			>10	68		<0.44	<1	450	<2	40		-	< 0.13			<10	14	40
44	G45646	0.2			120	<5	1.48	<1	16	202		3.52		1.35	441	461	0.23	63	640	18	- -5	<20		0.11			_	11	47
45	G45647	<0.2			145	<5	1.89	<1	-			3.19		1.21	241	146	0.26	60	730	22	<5	<20		0.11		123	<10	10	45
40	040047	\0.2	2.00	0	170	\0	1.00	` '	10	101	202	5.15	\10	1.21	271	140	0.20	00	700		\0	\20	100	0.12	\10	120	\10	10	40
46	G45648	<0.2	2.42	<5	150	<5	0.91	<1	17	171	182	3.56	<10	1.41	235	115	0.23	64	590	22	<5	<20	87	0.18	<10	182	<10	10	47
47	G45649	<0.2	2.31	<5	130	<5	0.80	<1	29	157	417	4.54	<10	1.45	209	152	0.18	62	590	24	<5	<20	49	0.17	<10	173	<10	9	39
48	G45650	< 0.2		5	145	<5	1.32	<1	6	19	128	2.44	20	0.54	642	644	0.05	15	810	16	<5	<20	135	0.02	<10	34	<10	18	78
49	G45651	< 0.2	2.47	10	180	<5	0.97	<1	18	181	281	3.64	<10	1.71	272	94	0.22	60	640	22	<5	<20	103	0.17	<10	188	<10	14	55
50	G45652	< 0.2	2.81	<5	155	<5	1.29	<1	17	183		3.66		1.35	296	56	0.32	57	840	30	<5	<20		0.17	<10	172	<10	15	60
51	G45653	<0.2	2.56	10	170	<5	1.24	<1	15	158	299	3.35	<10	1.37	217	153	0.27	56	620	26	<5	<20	110	0.15	<10	164	<10	11	45
52	G45654	<0.2		10	205	<5	1.74	<1	16	162	137			1.37	211	535	0.10	51	510	22	<5	<20	50	0.18		167	<10	6	33
53	G45655	0.2	2.67	5	90	<5	1.24	<1	22	168	502			1.64	225	47	0.27	61	530	22	<5	<20	189	0.13	<10	169	<10	10	43
54	G45656	<0.2	2.13	<5	120	<5	0.82	<1	21	204	449	4.23	<10	1.38	259	202	0.22	63	580	18	<5	<20	133	0.16	<10	161	<10	9	61
55	G45657	<0.2	2.47	5	180	<5	1.73	<1	16	151	271	3.47	<10	1.25	280	85	0.26	52	590	24	<5	<20	125	0.14	<10	136	<10	11	47
56	G45658	<0.2	1.27	<5	125	<5	0.45	<1	17	138	341	3.94	<10	0.85	220	230	0.07	37	490	20	<5	<20	26	0.12	<10	92	<10	8	56
00 047	۲۸.																												
QC DAT																													
Repeat		-0.2	2 20	-5	205	_E	0.21	-1	16	120	64	2 56	-10	1 40	267	_1	0.07	56	400	24	-5	-20	22	0.2F	-10	161	-10	10	00
1	G45601 G45619	<0.2 2 <0.2 2		<5 290	305 285	<5 <5	0.21	<1 -1	16	129		3.56 3.12		1.40	267	<1 1	0.07 0.11	56 56	490 560	24 16	<5 <5	<20 <20	22 40	0.25 0.19		161	<10	10 11	90 40
19 36	G45637			290 10	285 180	<5	0.80 0.79	<1 -1	14	165				1.41 1.61		4 102		79	580	16 28	<5	<20 <20	40 68	0.19		176 199	<10	11 17	40 54
30	G43037	<0.2	∠.94	10	100	<0	0.79	<1	19	102	234	3.61	<10	1.01	362	102	0.31	19	200	20	<5	<20	00	0.23	<10	199	<10	17	54

<0.2 2.46 10 150 <5 1.94 <1 16 186 239 3.22 <10 1.25 246 148 0.28 60 750 22 <5 <20 113 0.13 <10 126 <10 12 45

G45647

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
Resplit: 1 36	G45601 G45637		2.58 2.74	<5 10	320 160	<5 <5	0.23 0.80	<1 <1	16 20	129 164		3.78 3.80		1.56 1.44	-	<1 123	0.08 0.29	58 82	530 590	22 28	_	<20 <20	20 65	0.26 0.22	_	_	<10 <10	10 15	90 59
Standar PB106 PB106		>30	0.52		80 75	<5 <5	1.60 1.61	33 36	4 3	40 (6221 6297	1.65 1.64	<10		565	31 31	0.02	7 7	280 5 280 5	5248	60	<20	137	<0.01 <0.01		13		<1 <1	8387

JJ/sa

df/161b XLS/06 ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

TTM Resources 17-Mar-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 56

Sample Type: Core Project: CHU
Shipment #: 23

Submitted by: All North Consultants

		Мо	
ET #.	Tag #	(%)	
7	G45607	0.056	
10	G45610	0.062	
29	G45630	0.064	
48	G45650	0.064	
52	G45654	0.051	
QC DAT	ГА :		
Repeat	= :		
7	G45607	0.057	
29	G45630	0.063	
48	G45650	0.065	
Standa	rd:		
MP2		0.280	
MP2		0.282	
MP2		0.280	
JJ/dc XLS/07			ECO TECH LABORATORY LTD. Jutta Jealouse
			B.C. Certified Assayer

LOO ILCII LABORATORI LID

10041 Dallas Drive **KAMLOOPS**, **B.C.**

VAC STA

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2007-0166

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 46 Sample Type: Core

Project: CHU Shipment #: 22

Submitted by: All North Consultants

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G45552	<0.2 1.53	<5	105	<5	0.33	<1	20	149	237	4.14	<10	1.52	214	975	0.08	92	370	28	<5	<20	14	0.22	<10	281	<10	15	41
2	G45553	<0.2 1.55	<5	115	<5	0.37	<1	20	176	232	4.14	<10	1.49	216	796	0.10	95	410	30	<5	<20	16	0.22	<10	277	<10	15	42
3	G45554	<0.2 1.44	<5	95	<5	0.28	<1	20	159	310	4.15	<10	1.35	187	69	0.07	67	340	28	<5	<20	10	0.17	<10	208	<10	6	44
4	G45555	<0.2 1.60	<5	115	<5	0.36	<1	21	161	211	4.07	<10	1.38	206	114	0.07	61	390	32	<5	<20	21	0.19	<10	196	<10	11	39
5	G45556	<0.2 1.55	<5	115	<5	0.34	<1	17	157	184	4.14	<10	1.33	234	88	0.09	56	380	28	<5	<20	19	0.19	<10	207	<10	8	47
6	G45557	<0.2 1.50	<5	90	<5	0.33	<1	17	148	220	3.71	-10	1.28	253	132	0.09	53	390	30	<5	<20	22	0.16	-10	200	<10	11	43
7	G45558	<0.2 1.50	<5	95	<5	0.33	<1	16	151	225	3.74	<10	1.23	179	242	0.08	48	340	24	<5	<20	10	0.16	<10		<10	7	35
8	G45559	<0.2 1.32	5	90	<5	0.33	<1	17	134	286	3.87	<10	1.33	202	123	0.08	46	390	24	<5	<20	12	0.15	<10		<10	9	39
9	G45561	<0.2 1.45	<5	90	<5	0.24	<1	14	130		3.22	<10	1.19	182	88	0.05	46	280	26	<5	<20	23	0.13	-		<10	9	38
10	G45562	0.2 1.54	<5	125	<5	0.24	<1	17	135		-	<10	1.31	258	205	0.03	52	360	30	<5	<20	37		<10			10	40
10	040002	0.2 1.54	\ J	123	\ J	0.51	\ 1	17	100	200	5.05	<10	1.51	250	203	0.00	52	300	30	\ 3	\2 0	31	0.10	<10	204	<10	10	40
11	G45563	<0.2 1.35	<5	100	<5	0.22	<1	15	144	146	3.30	<10	1.26	191	199	0.08	48	370	24	<5	<20	7	0.18	<10	197	<10	10	38
12	G45564	<0.2 1.28	<5	110	<5	0.26	<1	16	141	225	3.64	<10	1.28	214	158	0.10	46	390	24	<5	<20	17	0.17	<10	188	<10	11	45
13	G45565	<0.2 0.03	5	20	<5	>10	<1	<1	4	6	0.08	<10	>10	71	<1	<0.01	<1	340	<2	40	<20	113	<0.01	<10	4	<10	2	8
14	G45566	0.2 1.32	<5	120	<5	0.37	<1	21	130	209	4.13	<10	1.42	225	256	0.11	55	360	22	<5	<20	13	0.21	<10	212	<10	14	49
15	G45567	<0.2 0.86	<5	275	5	0.64	<1	13	80	15	2.23	<10	0.68	262	<1	0.11	12	1080	18	<5	<20	44	0.17	<10	70	<10	11	41
40	0.45500	0.0.000	_	055	40	0.00		40	00	45	0.44	40	0.07	000		0.40		4000	40	_	00	40	0.47	40	07	40	•	44
16	G45568	<0.2 0.90	<5	255	10	0.62	<1	13	68		2.11			260	<1	0.12		1030	16	<5	<20	46	0.17	_	67	<10	8	41
17	G45569	<0.2 0.84	<5	270	<5	0.59	<1	12	76	12	2.11	<10	0.66	245	<1	0.11		1000	16	<5	<20	46	0.17	<10	65	<10	9	38
18	G45570	<0.2 0.69	<5	120	<5	1.35	<1	8	19	119	2.42	20	0.48	632	639	0.04	14	750	18	<5	<20	130	0.02	_	32	<10	17	74
19	G45571	<0.2 0.77	<5	290	15	0.57	<1	13	66	9	2.08	<10	0.63	238	<1	0.09	11	990	20	<5	<20	40		<10	64	<10	10	40
20	G45572	<0.2 0.84	<5	305	5	0.49	<1	12	81	12	1.96	<10	0.62	238	<1	0.11	10	810	18	<5	<20	41	0.18	<10	59	<10	8	42
21	G45573	<0.2 0.71	<5	245	<5	0.26	<1	12	81	49	1.65	<10	0.47	180	<1	0.09	10	370	14	<5	<20	22	0.14	<10	44	<10	3	36
22	G45574	<0.2 1.00	<5	380	<5	0.51	<1	18	87	60	2.39	<10	0.77	271	<1	0.11	13	790	22	<5	<20	47	0.21	<10	68	<10	10	43
23	G45575	<0.2 0.81	<5	315	5	0.53	<1	11	81	17	1.86	<10	0.59	229	<1	0.10	10	780	18	<5	<20	44	0.16	<10	59	<10	9	35
24	G45576	0.4 1.04	<5	65	<5	0.99	<1	19	66	437	3.49	<10	0.31	180	173	0.16	21	590	20	<5	<20	98	0.11	<10	53	<10	15	45
25	G45577	0.3 0.99	<5	50	<5	0.95	30	5	69			<10	0.18	190	140		8	220	18	<5	<20	69	-	<10	20	<10		1622
	2 1007 1	0.0 0.00				5.55	-	3				0	00	.00		00	9			-5		00	0.01	1.5	_5	1.0		

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	G45578	<0.2 0.46	<5	60	<5	0.42	<1	5	89	111	0.88	<10	0.06	84	793	0.10	6	280	14	<5	<20	46	0.03	<10	8	<10	7	23
27	G45579	<0.2 1.14	<5	25	<5	1.21	<1	4	68	144	1.15	<10	< 0.01	128	511	0.12	5	220	24	<5	<20	119	0.02	<10	15	<10	9	15
28	G45581	0.3 1.04	<5	30	<5	1.12	<1	9	63	204	1.66	<10	0.05	164	98	0.17	5	300	22	<5	<20	139	0.04	<10	17	<10	8	25
29	G45582	0.2 0.72	<5	45	<5	0.80	<1	7	62	281	2.19	<10	0.23	118	91	0.15	7	230	12	<5	<20	63	0.05	<10	29	<10	7	22
30	G45583	<0.2 1.16	5	195	<5	0.58	<1	19	97	321	2.68	10	0.73	261	20	0.14	15	830	22	<5	<20	94	0.20	<10	64	<10	10	45
31	G45584	<0.2 1.01	<5		15		<1	17	71		2.74	10	0.90	313	<1	0.09		1500	20	<5	<20	51	0.23		90	<10	11	49
32	G45585	<0.2 0.05	5	30	<5	>10	<1	1	4	4	0.09	<10	>10	68		<0.01	<1	360	<2	40	<20	_	<0.01		3	<10	2	7
33	G45586	<0.2 0.80		280	5	0.87	<1	14	71	12	2.33	<10	0.74	249	<1	0.07		1250	20	<5	<20	45	0.18		69	<10	9	40
34	G45587	<0.2 0.89		325	<5	0.77	<1	15	68	13	2.57	10	0.81	262	<1	0.09		1380	16	<5	<20	32	0.20		82	<10	7	43
35	G45588	<0.2 0.90	<5	345	10	0.71	<1	16	64	14	2.60	10	0.83	270	<1	0.08	14	1350	20	<5	<20	33	0.20	<10	84	<10	11	44
20	G45589	.0.0.4.05	.5	245	20	4.04	.4	47	C 4	40	2.00	40	4.04	227	.4	0.00	17	1740	20		.00	F0	0.00	.40	05	.10	40	40
36		<0.2 1.05			20 <5		<1	17	64	13	2.98	10	1.01	327	<1	0.08		780	28 16	<5 	<20	58	0.23	<10	95 34	<10	12	49 70
37	G45590	<0.2 0.70	5		_	1.38	<1 .1	8	19	114	2.58	20	0.47	611	635	0.04	13		_	<5 	<20	115		_	_	<10	18	79
38	G45591	<0.2 0.84			10		<1	15	58	10	2.62	10	0.79	234	<1	0.08		1430	24	<5 	<20	37	0.20		-	-	12	37
39	G45592	<0.2 0.83		290	5	0.74	<1	14	66	11	2.56	10	0.75	221	<1	0.09		1390	22	<5	<20	29	0.19	<10	81	<10	10	36
40	G45593	<0.2 0.83	<5	370	10	0.71	<1	14	78	13	2.46	10	0.72	227	<1	0.10	13	1250	22	<5	<20	37	0.19	<10	77	<10	12	37
41	G45594	<0.2 0.86	<5	325	15	0.82	<1	18	58	12	2.58	10	0.78	225	<1	0.09	13	1390	24	<5	<20	38	0.21	<10	81	<10	12	36
42	G45595	<0.2 0.90	<5	410	<5	0.74	<1	15	69	34	2.71	<10	0.82	241	<1	0.09	14	1370	18	<5	<20	29	0.20	<10	86	<10	7	41
43	G45596	<0.2 0.90	5	290	10		<1	27	66	15	2.56	<10	0.84	245	<1	0.09	14	1440	22	<5	<20	35	0.21	<10	81	<10	9	38
44	G45597	<0.2 1.05	<5	430	10	1.10	<1	14	70	12	2.81	<10	1.05	300	<1	0.08	15	1520	26	<5	<20	43	0.22	<10	96	<10	13	37
45	G45598	<0.2 1.09	5	365	10	1.51	<1	11	59	9	2.56	10	1.08	341	<1	0.07	15	1540	24	<5	<20	48	0.20	<10	93	<10	11	40
46	G45599	<0.2 0.90	5	350	10	0.97	<1	15	69	13	2.67	10	0.79	252	<1	0.10	14	1530	26	<5	<20	50	0.21	<10	85	<10	14	41
QC DAT	٠.٠																											
Repeat																												
1	G45552	<0.2 1.54	5	100	<5	0.33	<1	20	149	240	4.12	<10	1.53	214	995	0.08	94	370	28	<5	<20	14	0.21	<10	281	<10	17	40
10	G45562	0.2 1.48		120	5	0.31	<1	18	132	191	3.81		1.27	255	198	0.07	52	370	32	<5	<20	40	0.18	<10	199	<10	11	40
19	G45571	<0.2 0.76		285	10		<1	12	65	9	2.06	<10	0.62		<1	0.09	11	980	18	<5	<20	37		<10	64	<10	8	39
36	G45589	<0.2 1.11	<5	330	10		<1	16	63	14	3.05	10	1.07		<1	0.07		1780	24	<5	<20	56	0.21		96	<10	10	49
Resplit																												
1	G45552	<0.2 1.59	<5	110	<5	0.35	<1	20	151	238	4.19	<10	1.56	220	998	0.08	96	400	34	<5	<20	16	0.22		288	<10	17	45
36	G45589	<0.2 1.06	<5	325	15	1.17	<1	16	70	14	3.00	10	1.00	324	<1	0.09	16	1740	26	5	<20	50	0.22	<10	94	<10	13	42
Standaı	rd·																											
Pb106	u.	>30 0.55	280	110	-5	1.79	43	3	27	6273	1 15	-10	0.23	500	32	0.02	7	280	5230	55	-20	145	<0.01	-10	1/	<10	2 9	3418
1 0100		/30 0.33	200	110	\ J	1.13	73	3	51	0213	1.43	< 10	0.23	550	52	0.02	,	200	0200	55	~20	173	\0.01	~10	17	~ 10	_ (7710

41 6290 1.38 <10 0.24 572 30 0.03

ECO TECH LABORATORY LTD.

1 8362

Jutta Jealouse B.C. Certified Assayer

6 270 5224 60 <20 135 <0.01 <10 14 <10

JJ/sa df/158a XLS/07

Pb106

>30 0.56 275 105 <5 1.62 44

TTM Resources 13-Mar-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 46

G45552

1

Standard:

Sample Type: Core Project: CHU Shipment #: 22

Submitted by: All North Consultants

		Мо	
ET #.	Tag #	(%)	
1	G45552	0.099	
2	G45553	0.081	
18	G45570	0.064	
26	G45578	0.081	
27	G45579	0.052	
37	G45590	0.064	
QC DAT	<u>Γ</u> Α:		
Repeat:			
1	G45552	0.102	
Resplit	<i>:</i>		

0.103

MP2 0.280 MP2 0.279

JJ/sa XLS/07 ECO TECH LABORATORY LTD.

Jutta Jealouse

O IECH LABORATORT LID.

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2007-163

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 67 Sample Type: Core

Project: CHU Shipment #: 21

Submitted by: All North Consultants

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	w	Υ	Zn
1	G45482	0.2	0.90	15	70	<5	0.82	<1	13	86	139	3.18	<10	0.76	264	807	0.06	2	590	24	<5	<20	14	0.07	<10	78	<10	14	37
2	G45483	< 0.2	1.08	<5	110	<5	1.38	<1	16	63	122	3.17	20	0.88	382	60	0.06	7	1300	22	<5	<20	50	0.14	<10	65	<10	10	35
3	G45484	< 0.2	1.46	5	220	15	1.17	<1	17	72	40	3.12	10	1.13	577	4	0.07	11	1580	32	<5	<20	55	0.22	<10	87	<10	16	45
4	G45485	< 0.2	0.04	5	15	<5	>10	<1	<1	2	2	0.09	<10	>10	72	<1	<0.01	<1	470	<2	45	<20	119	< 0.01	<10	3	<10	<1	4
5	G45486	<0.2	0.98	10	80	<5	1.07	<1	14	88	120	3.40	<10	0.75	301	231	0.05	4	600	22	<5	<20	20	0.05	<10	71	<10	10	32
6	G45487	< 0.2	1.04	<5	65	<5	0.92	<1	14	91	175	3.71	<10	0.76	267	246	0.04	3	480	20	<5	<20	12	0.05	<10	65	<10	5	26
7	G45488	< 0.2	0.96	5	75	<5	3.36	<1	18	68	286	4.40	<10	0.70	535	533	0.05	4	620	22	<5	<20	56	0.04	<10	75	<10	15	67
8	G45489	< 0.2	0.75	15	75	<5	0.57	<1	17	99	80	3.63	<10	0.46	143	291	0.04	4	440	22	<5	<20	25	0.02	<10	50	<10	6	22
9	G45490	< 0.2	0.67	<5	130	<5	1.31	<1	8	19	116	2.59	20	0.47	618	638	0.04	14	810	26	<5	<20	123	0.02	<10	31	<10	18	78
10	G45491	<0.2	0.90	10	80	<5	1.16	<1	16	66	125	3.58	<10	0.79	394	573	0.07	3	530	22	<5	<20	21	0.06	<10	75	<10	11	37
11	G45492	< 0.2	1.14	25	40	<5	1.70	<1	16	87	126	3.16	<10	0.67	201	342	0.06	4	580	22	<5	<20	27	0.04	<10	64	<10	8	24
12	G45493	< 0.2	0.80	20	40	<5	0.76	<1	8	76	46	1.89	<10	0.55	117	331	0.04	2	250	18	<5	<20	14	0.02	<10	46	<10	1	17
13	G45494	< 0.2	0.71	5	80	<5	0.31	<1	4	109	22	1.06	<10	0.38	89	74	0.04	3	50	18	<5	<20	17	< 0.01	<10	10	<10	4	33
14	G45495	< 0.2	0.53	<5	80	<5	0.11	<1	5	79	19	1.43	<10	0.29	47	44	0.04	2	30	14	<5	<20	13	< 0.01	<10	8	<10	<1	12
15	G45496	<0.2	0.58	10	55	<5	0.26	<1	6	124	20	1.51	<10	0.34	66	151	0.04	3	120	16	<5	<20	12	0.01	<10	17	<10	4	10
16	G45497	< 0.2	0.76	10	60	<5	0.41	<1	10	77	116	2.68	<10	0.55	110	221	0.07	4	180	18	<5	<20	11	0.03	<10	40	<10	3	21
17	G45498	< 0.2	0.47	5	35	<5	0.09	<1	4	143	26	0.86	<10	0.16	34	58	0.02	3	60	14	<5	<20	14	<0.01	<10	7	<10	3	7
18	G45499	< 0.2	1.31	5	65	<5	0.68	<1	17	63	165	3.74	<10	1.20	179	287	0.05	4	550	28	<5	<20	14	0.10	<10	104	<10	8	37
19	G45501	0.3	1.66	<5	110	<5	0.41	<1	25	83	475	5.89	<10	1.73	364	64	0.13	3	740	30	<5	<20	25	0.19	<10	157	<10	17	87
20	G45502	<0.2	1.14	<5	205	10	0.96	<1	21	59	48	3.39	<10	0.90	457	<1	0.09	9	1510	28	<5	<20	48	0.21	<10	84	<10	13	66
21	G45503	< 0.2	1.07	<5	215	15	0.95	<1	15	84	21	2.91	<10	0.81	456	<1	0.09	6	1380	24	<5	<20	47	0.21	<10	75	<10	14	62
22	G45504	< 0.2	0.30	<5	35	<5	0.40	<1	8	87	76	1.31	<10	0.10	71	1	0.07	5	190	12	<5	<20	16	0.02	<10	10	<10	4	14
23	G45505	< 0.2	0.05	10	15	<5	>10	<1	<1	3	2	0.08	<10	>10	69	<1	<0.01	<1	420	<2	40	<20	112	<0.01	<10	3	<10	<1	6
24	G45506	< 0.2	1.13	<5	255	10	1.12	<1	17	57	17	3.08	<10	0.93	470	<1	0.09	8	1540	22	<5	<20	60	0.22	<10	84	<10	12	66
25	G45507	<0.2	0.86	<5	85	<5	0.61	<1	9	65	148	2.19	<10	0.77	169	173	0.08	2	320	22	<5	<20	52	0.07	<10	60	<10	10	80

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	G45508	<0.2	0.82	<5	60	<5	0.24	<1	7	79	147	1.67	<10	0.68	119	156	0.08	2	120	16	<5	<20	10	0.06	<10	50	<10	4	18
27	G45509	0.4	2.18	<5	125	<5	0.94	<1	28	48	855	7.23	<10	2.22	369	186	0.10	6	890	36	<5	<20	26	0.25	<10	204	<10	20	68
28	G45510	< 0.2	0.71	<5	125	<5	1.35	<1	109	20	130	2.46	20	0.51	613	638	0.04	16	810	16	<5	<20	118	0.03	<10	31	<10	18	78
29	G45511	< 0.2	0.67	5	55	<5	0.18	<1	7	113	72	1.39	<10	0.46	76	436	0.06	2	120	18	<5	<20	13	0.02	<10	27	<10	4	11
30	G45512	0.2		<5	125	<5	0.65	<1	36		588	6.89		1.73	302		0.11	5	790	30	<5	<20	30	0.23			<10	14	62
	0.00.12	0.2		10	120	10	0.00	``	00	00	000	0.00	110	1.70	002	000	0	Ū		00	10	120	00	0.20	110	100	110	• •	02
31	G45513	0.2	1.49	<5	120	<5	0.54	<1	34	68	454	5.89	<10	1.44	311	538	0.13	6	800	28	<5	<20	26	0.22	<10	179	<10	13	59
32	G45514	0.5	1.07	<5	120	<5	1.09	<1	33	64	1041	7.75		0.61	219	537	0.18	5	770	28	<5	<20	73	0.15	<10	92	<10	13	53
33	G45515		0.98		115	<5	0.92	<1	25		535	5.49		0.67	270		0.15	4	840	38	<5	<20	43		<10		<10	21	64
34	G45516		0.64	<5	45	<5	1.14	<1	44		1050	8.94		0.20	167		0.15	8	760	12	<5	<20	36	0.12			<10	<1	51
35	G45517	0.4		<5	90		0.78	<1	26		625	7.08		1.19	365	_	0.10	6	800	26	<5	<20	13			158		4	81
00	0-10017	0.4	1.20	\ 0	50	\0	0.70	` '	20	00	020	7.00	~10	1.15	505	04	0.10	U	000	20	\ 0	\2 0	10	0.20	\10	100	\10	7	01
36	G45518	0.6	1.21	<5	75	<5	0.98	<1	33	56	725	6.97	<10	0.86	328	208	0.16	7	820	28	<5	<20	50	0.17	<10	123	<10	6	65
37	G45519	1.1		10	100	<5	2.57	<1	65		1092	9.43		1.02	451		0.10	6	690	22	<5	<20	34			135		<1	69
38	G45521		1.34	<5	95	<5	0.67	<1	24		857	6.29		1.28	339		0.14	5	820	32	<5	<20	18			175		9	81
39	G45522		1.42	<5	130	<5	0.69	<1	24		900	6.13		1.34	370		0.14	6	830	34	<5	<20	21			174		12	85
40	G45523		1.47	<5	90	<5	1.04	<1	28		641	6.31		1.31	317		0.14	6		36	<5		35			166		11	70
40	G45525	0.4	1.47	<0	90	<5	1.04	< 1	20	03	041	0.51	<10	1.31	317	201	0.11	O	830	30	<0	<20	33	0.19	<10	100	<10	11	70
41	G45524	0.4	1 21	<5	70	<5	0.84	<1	26	79	620	5.78	<10	1.07	257	698	0.10	6	630	24	<5	<20	16	0 17	<10	136	<10	4	57
42	G45525	<0.2		5	15	<5	>10	<1	<1	4	4	0.08		>10	70		<0.10	<1	360	<2	40	<20	105	<0.01			<10	<1	6
	G45526		1.39				0.83		25		891	6.69		1.31	317		0.14	7	630	26	<5	<20	22	0.17		143		5	67
43				<5 .5	100	<5 		<1 .1		71								-						-	-	_	_	_	
44	G45527		0.89	<5	105	<5	0.75	<1	15	67	461	4.37		0.50	282		0.13	4	630	24	<5	<20	26	0.10	-		<10	14	42
45	G45528	0.4	0.83	<5	80	<5	0.63	<1	14	75	405	3.79	<10	0.50	262	409	0.13	3	630	20	<5	<20	22	0.08	<10	56	<10	17	42
46	G45529	0.5	1 00	<5	75	-5	1.17	<1	24	65	588	5.32	-10	0.58	315	97	0.16	10	660	24	<5	<20	42	0.12	-10	76	<10	14	60
47	G45530	<0.2		5	125	<5	1.33	<1	8		117	2.64	20	0.47	616		0.10	15	830	18	<5	<20	126	0.12			<10	18	81
				_		<5			_							-												_	-
48	G45531	0.4		<5	80	_	1.12	<1	24	96	705	6.10		0.66	239		0.14	32	700	32	<5	<20	50			144		18	56
49	G45532	0.2		<5	95	<5	0.63	<1		140		5.07		1.10	235		0.10	48	510	32	<5	<20	24			184		18	51
50	G45533	<0.2	1.40	<5	100	<5	0.54	<1	25	153	303	4.50	<10	1.30	241	128	0.11	63	490	34	<5	<20	24	0.23	<10	232	<10	19	48
51	G45534	0.2	1 49	<5	95	<5	0.59	<1	19	171	368	4.76	-10	1.54	263	118	0.10	94	640	30	<5	<20	16	0.18	- 10	263	~ 10	19	56
52	G45535	<0.2		5	95	<5	0.40	<1		159	199	3.78		1.41	205		0.09	54	420	34	<5	<20	16			205		10	38
53	G45536	<0.2		10	80	<5	0.77	<1			226	3.63		1.28	201		0.03	50	440	30	<5	<20	28			178		12	37
	G45537	0.2		15	75	<5	0.66		21		212	3.81		1.24	198		0.07	76		30	<5	<20	39			241			
54 55								<1 -1											410 540				39 74					11	38 44
55	G45538	<0.2	1.29	15	85	<5	1.46	<1	17	145	200	4.20	<10	1.31	240	513	0.07	89	540	32	<5	<20	74	0.09	<10	230	<10	18	41
56	G45539	0.2	1.22	20	65	<5	0.92	<1	17	192	299	4.27	<10	1.16	205	465	0.06	103	450	28	<5	<20	27	0.10	<10	240	<10	13	39
57	G45541	<0.2		5	35	<5	2.72	<1	4	34	19	1.52	30	0.34	273		0.05	4	350	28	<5	<20	57	<0.01			<10	13	27
58	G45542	<0.2		10	60	<5	1.61	<1		119	6	1.33	30	0.26	235		0.07	4	310	28	<5	<20	33	<0.01			<10	13	24
59	G45543	<0.2		5	40		1.47	<1	4	73	10	1.26	30	0.26	232		0.06	3	320	24	<5	<20	30	<0.01			<10	11	25
60	G45544	<0.2		_	_	_	2.05							0.28			0.00	3						<0.01				14	_
00	G45544	<0.2	0.01	10	65	<0	2.05	< 1	5	03	10	1.34	30	0.26	250	0	0.07	3	340	34	<0	<20	45	<0.01	<10	13	<10	14	21
61	G45545	<0.2	0.04	10	20	<5	>10	<1	<1	4	3	0.08	<10	>10	74	~ 1	<0.01	<1	400	<2	40	<20	112	<0.01	<10	3	<10	<1	5
62	G45546	<0.2		55	85		0.88	<1		146				1.34	197		0.05	60	340	32	<5	<20	24			189		11	33
63	G45547	<0.2		<5				<1						1.51	213		0.05	62	420	34	<5	<20	46			208		12	37
	G45548	0.3		5			0.73			151		4.42			204		0.03	80		34	<5	<20	49			272			
64 65	G45546 G45549							<1 -1		128				1.49					520 520							260		18 10	38 43
65 66		<0.2			85 120		0.44										0.09	76 15	520	30		<20	24						43 01
66 67	G45550	<0.2			130		1.38	<1		20				0.50	621		0.04	15	860	18	<5	<20	126			36		19	
67	G45551	0.3	1.38	<5	100	<5	0.55	<1	20	109	386	4.87	<10	1.35	230	1/5	0.09	77	570	30	<5	<20	18	0.19	<10	25/	<10	ıø	45
1																													
1																													

ECO TECH LABORATORY LTD. ICP CERTIFICATE OF ANALYSIS

ICP CERTIFICATE OF ANALYSIS AK 2007-163 TTM Resources

Page 2
Et #. Tag # Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P Pb Sb Sn Sr Ti % U V W Y

QC DATA: Repeat:

repeat	•																												
1	G45482	< 0.2	0.89	15	70	<5	0.81	<1	13	84	139	3.15	<10	0.76	263	799	0.05	2	570	22	<5	<20	14	0.07	<10	77	<10	13	36
10	G45491	< 0.2	0.92	5	75	<5	1.16	<1	16	66	128	3.59	<10	0.81	396	579	0.07	4	530	20	<5	<20	19	0.06	10	77	<10	9	36
19	G45501	0.2	1.72	<5	105	<5	0.41	<1	26	83	483	6.05	<10	1.78	369	70	0.13	4	730	30	<5	<20	27	0.19	<10	161	<10	18	86
36	G45518	0.7	1.29	<5	80	<5	1.02	<1	31	58	768	6.68	<10	0.94	332	175	0.17	5	810	28	<5	<20	58	0.18	<10	130	<10	10	64
45	G45528	0.4	0.85	<5	90	<5	0.63	<1	14	75	403	3.79	<10	0.50	264	395	0.14	3	650	22	<5	<20	23	0.09	<10	57	<10	20	42
54	G45537	<0.2	1.32	15	85	<5	0.68	<1	22	170	218	3.85	<10	1.28	202	141	0.08	76	410	32	<5	<20	40	0.13	20	247	<10	13	39
Resplit	:																												
1	G45482	< 0.2	0.92	15	70	<5	0.75	<1	13	79	133	3.14	<10	0.75	272	796	0.06	3	600	22	<5	<20	11	0.08	<10	76	<10	12	37
36	G45518	0.6	1.34	<5	80	<5	1.08	<1	38	62	779	6.78	<10	0.91	330	207	0.20	6	820	28	<5	<20	55	0.20	10	132	<10	9	62
Standa	rd:																												
PB106		>30	0.52	270	75	<5	1.67	39	4	41	6278	1.63	<10	0.26	556	30	0.02	7	280	5206	55	<20	141	< 0.01	<10	15	<10	<1 8	367
PB106		>30	0.51	270	75	<5	1.68	38	4	42	6257	1.56	<10	0.22	553	32	0.02	7	280	5268	55	<20	139	< 0.01	<10	14	<10	<1.8	374

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

JJ/sa df/158am XLS/06

TTM Resources 13-Mar-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 67

Sample Type: Core **Project: CHU Shipment #: 21**

Submitted by: All North Consultants

		Мо
ET #.	Tag #	(%)
1	G45482	0.079
7	G45488	0.051
9	G45490	0.063
10	G45491	0.054
28	G45510	0.063
31	G45513	0.056
32	G45514	0.052
41	G45524	0.073
47	G45530	0.064
55	G45538	0.049
66	G45550	0.063
QC DA		
Repeat		
1	G45482	0.077
10	G45491	0.054
04		
Standa	ra:	0.000
MP2		0.280
MP2		0.279

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

JJ/sa XLS/07

ICP CERTIFICATE OF ANALYSIS AK 2007-0148

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

TTM Resources
520-700W Pender Street

Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 43

Sample Type: Core Project: CHU Shipment #: 20

Submitted by: All North Consultants

Et #.	Tag #	Ag Al	% As	з В	a	Bi (Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	w	Υ	Zn
1	G45436	<0.2 0.8	38 <5	5 8) .	<5	0.40	<1	12	42	209	3.24	<10	0.67	316	26	0.14	2	650	12	<5	<20	14	0.13	<10	71	<10	10	41
2	G45437	< 0.2 0.9	90 <5	5 9) .	<5	0.35	<1	13	44	240	3.33	<10	0.66	295	107	0.13	2	620	12	<5	<20	15	0.13	<10	74	<10	13	43
3	G45438	<0.2 0.8	33 <5	5 8	5 .	<5	0.46	<1	11	35	205	2.78	<10	0.66	273	193	0.12	2	650	12	<5	<20	18	0.12	<10	66	<10	12	40
4	G45439	< 0.2 0.9	93 <5	5 9	5 .	<5	0.45	<1	16	47	288	3.58	<10	0.68	360	139	0.15	1	570	12	<5	<20	21	0.13	<10	69	<10	12	48
5	G45441	0.2 0.7	'0 <5	5 7	5 •	<5	0.58	<1	14	35	461	4.05	<10	0.42	261	428	0.12	2	520	10	<5	<20	39	0.10	<10	49	<10	8	35
6	G45442	<0.2 1.0)4 <5	5 12	5 .	<5	0.43	<1	12	43	222	3.22	<10	0.86	451	698	0.13	2	610	16	<5	<20	19	0.16	<10	84	<10	18	66
7	G45443	<0.2 0.9	99 <5	5 11	0 .	<5	0.40	<1	12	46	209	3.12	<10	0.81	385	167	0.14	3	650	20	<5	<20	16	0.14	<10	82	<10	17	62
8	G45444	0.3 0.5	53 <5	5 7	5 •	<5	0.87	<1	20	33	422	3.74	<10	0.36	197	228	0.11	4	770	8	<5	<20	34	0.09	<10	45	<10	5	40
9	G45445	<0.2 0.0)3 <5	5 1	5 •	<5	>10	<1	<1	2	6	0.08	<10	>10	71	<1	<0.01	<1	340	<2	35	<20	111	<0.01	<10	2	<10	<1	6
10	G45446	0.5 0.5	56 <5	5 6	5 •	<5	1.19	<1	17	39	590	4.38	<10	0.49	219	587	0.11	4	720	10	<5	<20	52	0.09	<10	55	<10	6	39
11	G45447	0.6 0.5	57 <5	5 6	ο .	<5	1.32	1	43	41	754	5.67	<10	0.45	225	227	0.08	8	690	10	<5	<20	55	0.08	<10	53	<10	1	40
12	G45448	0.4 0.7	′4 <5	5 4	5 •	<5	0.81	<1	20	39	582	4.40	<10	0.56	216	372	0.09	5	820	12	<5	<20	28	0.08	<10	57	<10	5	41
13	G45449	0.4 0.7	77 1695	5 5) .	<5	2.12	2	16	29	436	4.15	<10	0.30	247	306	0.01	5	700	16	15	<20	24	<0.01	<10	32	<10	3	64
14	G45450	<0.2 0.6	66 5	12	5 •	<5	1.29	<1	7	18	109	2.43	20	0.44	585	606	0.04	14	730	18	<5	<20	109	0.02	<10	29	<10	18	74
15	G45451	0.2 0.8	37 50) 5	5 •	<5	3.25	<1	19	30	465	3.87	<10	0.43	371	207	0.03	6	950	12	<5	<20	28	0.02	<10	54	<10	5	47
16	G45452	0.2 1.4	14 <5	5 5	5 .	<5	1.23	<1	18	31	381	3.73	<10	0.73	277	183	0.13	3	850	26	<5	<20	23	0.09	<10	101	<10	7	55
17	G45453	0.2 0.7	⁷ 2 <5	5 5	5 •	<5	0.85	<1	14	35	427	3.46	<10	0.50	216	187	0.08	4	870	14	<5	<20	18	0.11	<10	68	<10	6	47
18	G45454	0.5 0.6	62 15	5 6) .	<5	0.88	<1	21	37	566	5.12	<10	0.34	193	160	0.06	7	810	12	<5	<20	29	0.09	<10	64	<10	<1	37
19	G45455	0.4 0.8	31 5	6	5 •	<5	1.01	<1	15	52	439	3.62	<10	0.43	208	387	0.09	4	780	18	<5	<20	52	0.10	<10	73	<10	5	48
20	G45456	0.4 0.7	75 5	5 5	5 •	<5	0.96	<1	17	51	472	4.04	<10	0.40	193	960	0.07	4	710	16	<5	<20	88	0.08	<10	62	<10	2	43
21	G45457	<0.2 0.4			-	-	0.69	<1	7	65	105	1.94	<10	0.34	153	17	0.06	4	830	12	<5	<20	31	0.05	<10	24	<10	2	32
22	G45458	<0.2 0.3	39 <5	5 4	5 •	<5	0.78	<1	6	61	119	1.77	<10	0.34	176	7	0.05	4	800	10	<5	<20	19	0.05	<10	24	<10	1	31
23	G45459	0.6 0.3	37 <5	5 4) .	<5	1.12	<1	24	49	697	5.27	<10	0.22	207	495	0.07	6	750	8	<5	<20	87	0.07	<10	33	<10	<1	38
24	G45461	0.5 0.7	'8 10) 4:	5 •	<5	2.43	<1	16	36	604	4.54	<10	0.51	386	516	0.04	5	770	14	<5	<20	39	0.06	<10	76	<10	3	49
25	G45462	0.4 0.5	3 10) 6	5 •	<5	1.14	<1	17	50	540	4.31	<10	0.24	233	429	0.07	5	870	14	<5	<20	54	0.09	<10	65	<10	6	41
26	G45463	0.3 0.8			-	-	0.84	<1	29	46	446	4.00	_	0.45	207	182		8		16	<5	<20	23	0.10	<10	87	<10	7	56
27	G45464	0.4 0.6			-	<5	1.09	<1	26	43	637	5.00	_	0.44	237	477		6	800	12	<5	<20	20		<10	59	<10	3	49
28	G45465	<0.2 0.0)3 5	5 1	5 •	<5	>10	<1	<1	4	9	0.08	<10	>10	68		<0.01	<1	350	<2	30	<20		<0.01	<10	3	<10	2	8
29	G45466	0.4 0.7			-	<5	0.71	<1	20	39	500	4.48	-	0.55	295	219	0.09	5	790	14	<5	<20	15	0.13	<10	87	<10	7	64
30	G45467	0.2 0.6	62 5	5 5	5 •	<5	0.66	<1	21	42	377	3.54	<10	0.49	220	312	0.06	5	750	12	<5	<20	16	0.10	<10	61	<10	6	55

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	w	Υ	Zn
31	G45468	0.4 0.46	<5	50	<5	1.00	<1	19	31	578	3.96	<10	0.25	196	237	0.05	4	780	10	<5	<20	19	0.08	<10	45	<10	4	47
32	G45469	<0.2 0.52	<5	140	<5	0.73	<1	7	57	36	1.60	<10	0.43	188	<1	0.04	7	670	12	<5	<20	20	0.07	<10	34	<10	4	34
33	G45470	<0.2 0.65	<5	115	<5	1.24	<1	6	17	109	2.29	10	0.40	578	618	0.04	14	790	16	<5	<20	105	0.02	<10	27	<10	17	74
34	G45471	<0.2 0.59	5	40	<5	1.55	<1	5	52	17	1.44	10	0.33	158	8	0.03	7	680	14	<5	<20	29	< 0.01	<10	22	<10	3	38
35	G45472	0.4 0.96	10	65	<5	2.87	<1	20	30	513	4.68	<10	0.86	442	219	0.05	5	790	16	<5	<20	34	0.08	<10	92	<10	7	54
36	G45473	0.3 0.67	15	55	<5	0.89	<1	44	57	567	5.91	<10	0.49	228	2621	0.05	5	570	14	<5	<20	40	0.08	<10	45	<10	<1	45
37	G45474	<0.2 1.00	25	75	<5	0.59	<1	14	62	165	3.18	<10	0.86	498	298	0.05	2	580	20	<5	<20	25	0.15	<10	79	<10	11	73
38	G45475	<0.2 0.84	10	60	<5	1.81	<1	10	56	178	3.41	<10	0.81	293	491	0.03	1	510	18	<5	<20	32	0.08	<10	73	<10	8	38
39	G45476	<0.2 0.87	<5	70	<5	0.79	<1	12	61	154	2.69	<10	0.79	359	133	0.05	2	570	20	<5	<20	22	0.13	<10	80	<10	13	64
40	G45477	<0.2 0.81	<5	190	5	0.90	<1	10	59	22	2.27	<10	0.70	326	5	0.05	7	1110	18	<5	<20	33	0.13	<10	60	<10	6	46
41	G45478	<0.2 0.94	<5	245	<5	0.85	<1	11	63	29	2.38	<10	0.74	358	10	0.06	6	1080	18	<5	<20	78	0.16	<10	63	<10	6	48
42	G45479	<0.2 1.05	5	90	<5	0.49	<1	15	50	129	3.02	<10	1.01	382	186	0.07	4	840	22	<5	<20	38	0.17	<10	88	<10	18	57
43	G45481	<0.2 0.81	<5	55	<5	0.24	<1	12	55	106	3.19	<10	0.77	177	428	0.06	4	410	16	<5	<20	19	0.07	<10	68	<10	6	36
QC DAT	ΓΑ.																											
Repeat																												
1	G45436	<0.2 0.81	<5	80	<5	0.42	<1	12	41	199	3.13	<10	0.64	303	25	0.13	3	660	14	<5	<20	12	0.13	<10	67	<10	11	41
10	G45446	0.5 0.52	<5	55	<5	1.18	<1	17	38	584	4.33	<10	0.45		569	0.10	-	740	12	<5	<20	48	0.09	<10	53	<10	5	42
19	G45455	0.4 0.85	10	55	<5	1.04	<1	16	54	457	3.71	<10	0.45		395	0.10	5		18	<5	<20	51	0.10	<10	76	10	6	49
Resplit	:																											
1	G45436	<0.2 0.75	<5	75	<5	0.38	<1	12	44	197	3.13	<10	0.59	311	30	0.11	3	670	16	<5	<20	10	0.14	<10	68	<10	11	42
36	G45473	0.3 0.70	15	55	<5	0.94	<1	36	68	542	5.78	<10	0.48	232	2639	0.05	6	600	16	<5	<20	45	0.09	<10	48	<10	4	50
Standar	rd:																											
PB106		>30 0.52	270	75	<5	1.67	39	4	41	6278	1.63	<10	0.26	556	30	0.02	7	280	5206	55	<20	141	<0.01	<10	15	10	<1 8	3367
PB106		>30 0.51	270	75	<5	1.68	38	4	42	6257	1.56	<10	0.22		32	0.02	7	280	5268	55	<20	139	<0.01	<10	14	10	<1 8	3374

Jutta Jealouse B.C. Certified Assayer

JJ/kk df/148 XLS/06

TTM Resources 7-Mar-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 43

Sample Type: Core Project: CHU
Shipment #: 20

Submitted by: All North Consultants

		Мо	
ET #.	Tag #	(%)	
6	G45442	0.071	
10	G45446	0.060	
14	G45450	0.063	
20	G45456	0.099	
23	G45459	0.048	
24	G45461	0.050	
27	G45464	0.048	
33	G45470	0.064	
36	G45473	0.252	
QC DAT	<u>Γ</u> Α:		
Repeat:			
6	G45442	0.074	
Standar	rd:		
MP2		0.269	
MP2		0.289	
MP2		0.286	
HV1		0.049	
JJ/dc		ECO TECH LABORATORY LTD.	
XLS/06		Jutta Jealouse	
ALO, 00		B.C. Certified Assayer	
		B.O. Ooranoa / todayor	

LOO ILOII LABORATORI LID

10041 Dallas Drive **KAMLOOPS**, **B.C.**

V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 2007-0147

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 54 Sample Type: Core

Project: CHU Shipment #: 19

Submitted by: All North Consultants

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al%	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	w	Υ	Zn
1	G45381	<0.2 1.96	<5	115	<5	0.78	<1	33	64	265	5.92	<10	1.80	835	195	0.10	13	890	24	<5	<20	81	0.26	<10	176	<10	10	107
2	G45382	<0.2 1.57	<5	195	<5	0.69	<1	27	53	233	4.05	<10	1.44	609	117	0.11	9	900	26	<5	<20	47	0.23	<10	181	<10	15	85
3	G45383	<0.2 1.67	<5	185	<5	0.57	<1	26	84	146	3.75	<10	1.67	557	125	0.09	15	820	26	<5	<20	51	0.25	<10	160	<10	11	88
4	G45384	<0.2 1.54	<5	130	<5	0.65	<1	21	42	217	3.86	<10	1.50	476	147	0.07	7	930	24	<5	<20	68	0.22	<10	185	<10	12	76
5	G45385	<0.2 1.61	<5	100	<5	1.54	<1	22	52	469	5.04	<10	1.20	486	1020	0.06	7	900	20	<5	<20	57	0.16	<10	202	<10	6	65
6	G45386	0.2 1.96	<5	120	<5	0.95	<1	28	54	253	4.80	<10	1.49	567	71	0.13	16	830	24	<5	<20	26	0.22	<10	183	<10	9	79
7	G45387	<0.2 2.38	<5	140	<5	2.17	<1	28	65	279	5.61	<10	2.18	677	19	0.10	20	800	20	<5	<20	62	0.23	<10	75	<10	3	83
8	G45388	<0.2 2.43	<5	145	<5	2.20	<1	27	56	319	5.46	<10	2.46	749	78	0.09	18	850	24	<5	<20	109	0.23	<10	163	<10	7	96
9	G45389	<0.2 1.49	<5	125	<5	0.89	<1	29	58	380	5.15	<10	1.28	448	328	0.12	15	810	20	<5	<20	43	0.18	<10	138	<10	10	61
10	G45390	<0.2 0.73	<5	130	<5	1.31	<1	7	18	124	2.62	20	0.50	617	642	0.04	15	860	16	<5	<20	124	0.02	<10	32	<10	17	71
11	G45391	<0.2 1.25	<5	105	<5	1.09	<1	17	44	164	2.75	<10	0.96	319	429	0.11	6	840	18	<5	<20	61	0.14	<10	100	<10	13	40
12	G45392	<0.2 1.18	<5	115	<5	1.10	<1	18	51	217	3.48	<10	1.00	341	403	0.07	6	790	16	<5	<20	58	0.16	<10	111	<10	9	42
13	G45393	<0.2 1.01	<5	115	<5	1.02	<1	13	37	174	2.87	<10	0.84	302	550	0.08	2	1200	18	<5	<20	47	0.15	<10	73	<10	16	36
14	G45394	<0.2 0.57	<5	125	<5	1.01	<1	8	73	209	2.13	10	0.37	193	55	0.10	4	1510	12	<5	<20	79	0.09	<10	32	<10	6	26
15	G45395	0.3 1.11	<5	255	<5	1.15	<1	26	58	560	5.22	<10	0.67	351	137	0.18	11	880	16	<5	<20	76	0.15	<10	90	<10	8	38
16	G45396	<0.2 0.06	<5	25	<5	>10	<1	<1	4	5	0.10	<10	>10	71	<1	<0.01	<1	440	<2	35	<20	115	<0.01	<10	3	<10	2	5
17	G45397	0.3 0.97	<5	215	<5	1.13	<1	35	76	470	4.48	<10	0.72	338	151	0.12	11	780	14	<5	<20	76	0.14	<10	79	<10	8	36
18	G45398	0.3 0.58	15	120	<5	1.15	<1	70	80	507	5.49	<10	0.34	182	1411	0.10	7	800	12	<5	<20	50	0.06	<10	30	<10	<1	23
19	G45399	<0.2 1.22	<5	135	<5	1.94	<1	18	74	263	3.85	<10	1.25	380	140	0.08	7	880	18	<5	<20	59	0.10	<10	103	<10	14	38
20	G45401	<0.2 0.77	<5	85	<5	1.61	2	7	72	153	2.12	10	0.65	265	7	0.06	9	980	10	<5	<20	50	0.02	<10	41	<10	4	31
21	G45402	<0.2 1.57	<5	165	<5	0.77	<1	20	48	245	3.96	<10	1.61	566	61	0.09	7	920	24	<5	<20	31	0.23	<10	153	<10	14	77
22	G45403	<0.2 1.15	<5	125	<5	0.86	<1	22	48	208	3.76	<10	1.10	477	144	0.10	8	870	18	<5	<20	39	0.19	<10	126	<10	12	68
23	G45404	<0.2 1.81	5	100	<5	1.34	<1	18	53	197	4.00	<10	1.69	549	176	0.12	9	880	24	<5	<20	70	0.19	<10	148	<10	15	74
24	G45405	<0.2 0.05	<5	15	<5	>10	<1	<1	3	2	0.08	<10	>10	69	<1	<0.01	<1	480	<2	35	<20	124	<0.01	<10	3	<10	<1	5
25	G45406	<0.2 0.96	<5	240	<5	1.04	<1	20	71	256	3.02	10	0.64	205	79	0.19	5	1420	16	<5	<20	97	0.11	<10	47	<10	8	35

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	G45407	<0.2 1.56	<5	145	<5	1.34	<1	19	42	279	4.41	<10	1.61	654	320	0.09	7	980	22	<5	<20	27	0.21	<10	136	<10	14	83
27	G45408	<0.2 0.63	<5	90	<5	1.24	<1	5	74	38	1.59	10	0.49	185	7	0.08	7	800	12	<5	<20	55	0.02	<10	28	<10	4	34
28	G45409	<0.2 0.78	<5	375	<5	0.71	<1	7	97	52	1.73	10	0.58	209	<1	0.10	9	860	12	<5	<20	54	0.11	<10	42	<10	6	37
29	G45410	<0.2 0.75	<5	130	<5	1.32	<1	7	19	123	2.60	20	0.49	617	653	0.04	13	870	18	<5	<20	130	0.02	<10	31	<10	20	71
30	G45411	<0.2 0.78	<5	350	5	0.54	<1	8	68	40	1.75	<10	0.59	205	2	0.12	9	950	14	<5	<20	42	0.14	<10	45	<10	6	41
24	0.45.440	0.0.000	_	220	40	0.54		0	00	20	4 70	40	0.57	400		0.40	0	000	40	_	00	40	0.40	40	4.4	40	•	20
31	G45412	<0.2 0.80	<5	330	10		<1	8	80	-	1.72		0.57		<1	0.13	9	930	12	<5	<20	42	0.13	-	44	<10	6	39
32	G45413	<0.2 0.74	<5	270	<5	0.70	<1	7	76	34	1.70	<10	0.57	194	<1	0.11	9	860	12	<5	<20	50	0.10	<10	41	<10	5	38
33	G45414	<0.2 0.79	<5	350	5	0.55	<1	8	74	26	1.68	<10	0.53	197	<1	0.15	8	890	16	<5	<20	52	0.12			<10	9	38
34	G45415	<0.2 0.75	<5	245		0.63	<1	7	79		1.61	10	0.47	-	8	0.14	6	740	16	<5	<20	56		<10		<10	5	38
35	G45416	<0.2 0.91	<5	100	<5	2.28	<1	16	94	310	3.38	<10	0.63	325	423	0.10	5	680	18	<5	<20	123	0.09	<10	58	<10	9	41
36	G45417	<0.2 0.71	<5	195	10	0.72	<1	6	71	9	1.59	10	0.45	179	1	0.14	7	720	14	<5	<20	47	0.08	<10	37	<10	4	37
37	G45418	<0.2 0.73	<5	190	10	1.04	<1	6	121	10	1.59	10	0.44	190	<1	0.12	7	730	14	<5	<20	76	0.07	<10	35	<10	6	34
38	G45419	<0.2 1.29	<5	145	<5	1.33	<1	29	60	498	5.14	<10	0.76	333	169	0.24	5	890	20	<5	<20	92	0.14	<10	78	<10	7	51
39	G45420	<0.2 1.16	<5	150	<5	1.24	<1	24	51	361	3.99	<10	0.74	347	162	0.22	4	890	24	<5	<20	64	0.14	<10	80	<10	14	50
40	G45421	<0.2 1.23	<5	160	<5	1.17	<1	23	50	466	4.69	<10	0.76	358	308	0.25	5	940	22	<5	<20	59	0.14	<10	75	<10	9	58
41	G45422	0.2 1.00	10	155	<5	1.04	<1	16	81	450	3.75	<10	0.65	243	35/12	0.18	1	650	20	<5	<20	61	0.11	-10	50	<10	8	34
42	G45423	<0.2 1.00	<5	210	<5	1.05	<1	17	59	286	4.11	<10	1.05	469		0.16		880	24	<5	<20	41	0.11	<10	99	<10	12	68
42	G45423 G45424	<0.2 1.42	<5	210	10	0.86	<1	9	53	32	2.38	10	0.56	215	149 5	0.24		1810	16	<5	<20	91		<10	61	<10	7	31
43	G45424 G45425	<0.2 0.87	<5	35	<5	>10	<1	<1	3	-	0.08	<10	>10	72	_	<0.20	_	430	<2	35	<20	-	-	<10		<10	, <1	4
44 45	G45425 G45426	<0.2 0.05	<5	35 150	<5	>10 1.07	<1	19	53	447		<10	0.74		44	0.28		1210	<2 18	აა <5	<20	95		<10	_	<10	9	4 41
45	G45420	<0.2 1.30	<0	150	<0	1.07	< 1	19	55	447	4.04	<10	0.74	344	44	0.20	3	1210	10	<0	<20	95	0.15	<10	01	<10	9	41
46	G45427	<0.2 1.06	<5	250	<5	0.80	<1	10	52	61	2.30	10	0.69	257	<1	0.23	8	1640	16	<5	<20	99	0.14	<10	61	<10	8	40
47	G45428	<0.2 1.22	<5	230	<5	1.09	<1	17	77	184	2.77	20	0.83	318	29	0.27	7	1770	20	<5	<20	125	0.15	<10	65	<10	10	54
48	G45429	<0.2 1.49	<5	190	<5	1.00	<1	23	45	527	5.16	<10	1.07	433	332	0.26	6	1000	24	<5	<20	57	0.17	<10	105	<10	9	72
49	G45430	<0.2 0.72	<5	130	<5	1.31	<1	7	19	121	2.61	20	0.48	610	625	0.04	15	890	18	<5	<20	124	0.02	<10	32	<10	19	72
50	G45431	<0.2 1.84	<5	220	<5	0.69	<1	22	58	378	4.97	<10	1.50	509	192	0.24	5	960	28	<5	<20	40	0.22	<10	161	<10	12	78
51	G45432	0.2 1.42	<5	140	<5	0.72	<1	17	54	484	4.88	<10	0.99	381	494	0.23	5	740	16	<5	<20	34	0.16	<10	101	<10	6	51
52	G45433	<0.2 1.42	<5	190	<5	0.72	<1	15		270	3.53	<10	0.88	370	130	0.23		1230	20	<5	<20	65	0.10		76	<10	13	53
53	G45434	<0.2 1.32	<5	100	<5	1.27	<1	13	72	362	3.08	<10	0.50	267	133	0.29			16	<5	<20	43	0.17	<10	49	<10	13	28
54	G45435	<0.2 0.97	_	170	<5	0.62	<1	13	92	307		<10	0.73	-		0.17		730	24	<5	<20	4 3		<10	_	<10	13	37
		-																										
QC DAT	Γ Δ·																											
Repeat																												
1	G45381	<0.2 1.91	<5	120	<5	0.75	<1	33	63	262	5.85	<10	1.77	831	194	0.10	14	890	26	<5	<20	81	0.24	<10	173	<10	9	107
10	G45390	<0.2 0.71	<5	130	<5	1.33	<1	7	19	123	2.63	20	0.48	620	647	0.04	13	860	16	<5	<20	126	0.02	<10	31	<10	19	72
19	G45399	<0.2 1.26		130	<5	1.97	<1	19	75	271	3.93	<10	1.30	388	139	0.07	8	900	18	<5	<20	61	0.10	<10	106	<10	16	38
36	G45417	<0.2 0.68	<5	185	10	0.74	<1	6	72	9	1.60	10	0.49	180	2	0.11	6	750	14	<5	<20	45	0.09	<10	37	<10	5	37
4	G45426	<0.2 1.41	<5	160	<5	1.14	<1	19	57	453	4.13	<10	0.77	351	47	0.32	_	1230	22	<5	<20	101	0.15	<10	86		11	42

Tag#

Et #.

ICP CERTIFICATE OF ANALYSIS AK 2007-0147

TTM Resources

Page 2
Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P Pb Sb Sn Sr Ti % U V W Y Zn

Resplit:																													
1	G45381	<0.2 1.9	95	<5	125	<5	0.77	<1	32	60	258	5.79	<10	1.81	845	182	0.11	14	910	28	<5	<20	79	0.27	<10	180	<10	12	110
36	G45417	<0.2 0.7	74	<5	190	5	0.72	<1	6	77	11	1.64	10	0.46	185	4	0.15	6	750	14	<5	<20	50	0.09	<10	37	<10	4	36
Standar Pb106 Pb106	d:	>30 0.5 >30 0.5			75 75	<5 <5	1.69 1.67	39 37	4 4		6392 6277		-	0.23 0.21	555 546	32 30	0.01 0.02	7 6	290 5 280 5			_		<0.01 <0.01	_	_	<10 <10	-	8343 8372

JJ/bp df/

XLS/06

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

Page 3

TTM Resources 12-Mar-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 54

Sample Type: Core Project: CHU
Shipment #: 19

		Мо	
ET #.	Tag #	(%)	
5	G45385	0.100	_
10	G45390	0.063	
13	G45393	0.053	
18	G45398	0.140	
29	G45410	0.063	
41	G45422	0.360	
49	G45430	0.064	
51	G45432	0.051	
54	G45435	0.182	
QC DAT	Γ A : =		
D			
Repeat:		0.004	
10	G45390	0.064	
Standar	rd:		
MP2		0.279	

ECO TECH LABORATORY LTD.

JJ/kc XLS/06 Jutta Jealouse B.C. Certified Assayer

OO ILOH LABORATORI ET

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2007-146

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 40 Sample Type: Core

Project: CHU Shipment #: 18

Submitted by: All North Consultants

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G45338	0.6 0.48	15	90	<5	1.61	<1	12	72	350	3.14	10	0.49	360	317	0.06	10	980	12	<5	<20	108	0.04	<10	32	<10	<1	63
2	G45339	0.8 0.73	30	100	<5	1.31	<1	13	99	507	3.71	<10	0.88	386	1270	0.05	31	570	12	<5	<20	104	0.08	<10	79	<10	<1	66
3	G45341	0.5 1.10	5	330	<5	0.98	<1	13	65	371	3.08	<10	0.60	312	326	0.20	12	1200	18	<5	<20	322	0.10	<10	50	<10	<1	83
4	G45342	0.5 0.96	15	145	<5	1.11	<1	14	113	331	3.61	<10	0.88	369	569	0.08	25	580	16	<5	<20	81	0.10	<10	95	<10	4	101
5	G45343	1.2 1.19	10	270	<5	0.97	<1	14	119	559	3.80	<10	0.95	318	1139	0.12	25	300	22	<5	<20	62	0.14	<10	110	<10	5	76
6	G45344	1.5 0.94	20	195	<5	2.38	<1	10	117	540	2.66	<10	0.77	537	1198	0.06	24	330	22	<5	<20	76	0.07	<10	142	<10	6	72
7	G45345	1.5 1.18	20	295	<5	0.64	<1	18	133	733	4.08	<10	0.83	290	1060	0.14	32	350	22	<5	<20	89	0.12	<10	114	<10	4	85
8	G45346	1.4 1.35	<5	415	<5	1.13	1	16	85	705	4.09	10	0.61	390	263	0.27	13	1440	24	<5	<20	177	0.11	<10	48	<10	<1	164
9	G45347	0.6 1.21	5	360	<5	0.62	<1	14	135	487	3.32	<10	0.76	263	1166	0.20	26	990	18	<5	<20	98	0.12	<10	86	<10	5	91
10	G45348	0.6 1.11	<5	320	<5	1.06	<1	13	120	476	3.43	<10	0.75	456	725	0.13	24	500	16	<5	<20	224	0.11	<10	81	<10	3	80
11	G45349	0.7 1.23	10	350	<5	0.78	<1	15	136	503	3.84	<10	0.87	343	644	0.16	29	510	20	<5	<20	128	0.14	<10	104	<10	6	105
12	G45350	<0.2 0.72	<5	130	<5	1.27	<1	6	19	113	2.49	20	0.48	595	614	0.04	15	830	16	<5	<20	125	0.02	<10	28	<10	17	75
13	G45351	1.1 0.95	10	340	<5	0.76	<1	23	153	726	4.34	<10	0.59	385	1486	0.11	22	310	16	<5	<20	63	0.09	<10	66	<10	1	107
14	G45352	1.8 0.85	15	170	<5	0.95	4	18	101	1131	4.92	<10	0.61	495	223	0.07	20	810	12	<5	<20	71	0.05	<10	69	<10	<1	307
15	G45353	1.9 0.69	55	100	<5	2.52	3	18	86	932	4.76	10	0.92	678	285	0.05	24	1530	16	<5	<20	166	0.03	<10	50	<10	<1	399
16	G45354	2.1 0.69	35	100	<5	1.48	<1	21	69	970	4.34	10	0.50	331	994	0.05	25	1000	12	<5	<20	82	0.03	<10	38	<10	<1	100
17	G45355	1.3 1.11	50	165	<5	1.59	<1	17	117	631	3.99	<10	0.93	426	1066	0.07	35	440	14	<5	<20	72	0.08	<10	84	<10	1	93
18	G45356	<0.2 0.03	<5	5	<5	>10	<1	<1	4	10	0.08	<10	>10	68	<1	<0.01	<1	380	<2	35	<20	112	<0.01	<10	2	<10	<1	9
19	G45357	1.2 0.70	25	135	<5	1.75	<1	17	75	605	3.57	10	0.53	499	130	0.07	13	1230	12	<5	<20	82	0.05	<10	41	<10	<1	122
20	G45358	0.6 1.13	15	360	<5	1.01	<1	15	140	522	3.80	<10	0.84	360	1072	0.11	34	350	14	<5	<20	68	0.11	<10	85	<10	2	87
21	G45359	0.8 0.56	<5	225	<5	0.66	<1	10	119	543	2.92	<10	0.24	247	693	0.08	10	480	6	<5	<20	53	0.03	<10	22	<10	<1	46
22	G45361	1.1 1.02	<5	310	<5	0.66	<1	19	74	752	3.85	10	0.44	254	572	0.17	8	1090	12	<5	<20	98	0.07	<10	31	<10	<1	62
23	G45362	0.8 0.69	5	135	<5	1.22	1	9	64	430	2.78	<10	0.51	381	218	0.05	4	1290	12	<5	<20	102	0.08	<10	36	<10	2	138
24	G45363	1.1 0.79	160	105	<5	4.42	2	13	76	673	3.43	<10	0.57	556	448	0.02	6	960	10	<5	<20	117	0.04	<10	32	<10	<1	99
25	G45364	1.4 0.75	185	120	<5	1.04	<1	26	107	862	4.41	<10	0.41	246	1263	0.05	6	830	16	<5	<20	75	0.03	<10	34	<10	<1	75

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	G45365	1.3 0.75	255	205	-	1.12	7	22	94	672	3.80	<10	0.39	327	678	0.09		930	16	<5	<20	96	0.03	<10		<10	<1	463
27	G45366	1.3 0.77	585	175	<5	1.47	2	15	67	615	3.67	10	0.49	421	255	0.12	6 1	1390	12	<5	<20	86	0.08	<10	46	<10	<1	126
28	G45367	2.2 0.83	800	180	<5	0.94	3	19	80	865	4.20	<10	0.50	417	337	0.07	6 1	1010	14	<5	<20	68	0.04	<10	42	<10	<1	157
29	G45368	1.4 0.72	10	210	<5	0.50	<1	18	90	939	4.60	<10	0.38	297	883	0.08	6	840	10	<5	<20	51	0.04	<10	46	<10	<1	64
30	G45369	2.0 0.93	25	260	<5	1.24	<1	24	79 <i>′</i>	1064	5.17	10	0.48	477	267	0.11	6 1	1020	12	<5	<20	86	0.05	<10	67	<10	<1	88
31	G45370	<0.2 0.69	<5	125	<5	1.30	<1	6	-	114	2.56	20	0.49	620	645	0.04		840	16	<5	<20	124	0.02		29	<10	17	74
32	G45371	1.6 0.91	240	215	<5	0.89	2	16	89	986	4.56	10	0.46	347	226	0.08		950	10	<5	<20	62	0.04	<10	54	<10	<1	116
33	G45372	<0.2 1.04	<5	295	<5	1.87	<1	7	63	43	2.54	<10	0.96	364	4	0.06	-	1760	12	<5	<20	93	0.10	<10		<10	2	62
34	G45373	0.8 0.90	<5	290	<5	0.40	<1	18		577	4.24	<10	0.43	210	177	0.10		970	14	<5	<20	63	0.06	<10		<10	<1	60
35	G45374	2.0 0.76	85	115	<5	1.47	<1	17	70 ′	1075	4.96	10	0.47	465	188	0.04	7 1	1010	10	<5	<20	58	0.04	<10	49	<10	<1	100
36	G45375	1.9 0.76	165	235	<5	0.64	<1	15	99	874	4.57	<10	0.39	275	397	0.09	6	850	14	<5	<20	64	0.04	<10	35	<10	<1	93
37	G45376	<0.2 0.04	5	20	<5	>10	<1	<1	2	9	0.09	<10	>10	74	<1	<0.01	<1	450	<2	35	<20	116	<0.01	<10	2	<10	<1	7
38	G45377	2.7 0.59	40	160	<5	0.80	5	22	92	888	4.77	<10	0.32	339	649	0.07	6	950	16	<5	<20	42	0.05	<10	33	<10	<1	376
39	G45378	2.6 0.71	365	145	<5	1.17	1	20	84	710	4.58	<10	0.47	407	146	0.06	8	960	14	<5	<20	66	0.03	<10	57	<10	<1	100
40	G45379	1.4 0.70	10	190	<5	0.98	<1	17	85	663	4.60	<10	0.40	375	277	0.09	7 1	1040	14	<5	<20	66	0.06	<10	38	<10	<1	77
QC DA	Γ Α:																											
Repeat	:																											
1	G45338	0.6 0.47	10	90	<5	1.63	<1	12	75	363	3.19	10	0.50	363	325	0.05	9	970	14	<5	<20	115	0.04	<10	33	<10	2	64
10	G45348	0.6 1.12	5	300	<5	1.09	<1	14	125	491	3.53	<10	0.82	467	736	0.13	24	500	18	<5	<20	232	0.11	<10	83	<10	4	82
19	G45357	1.2 0.74	30	140	<5	1.85	1	17	76	617	3.68	10	0.56	508	139	0.07	14 1	250	14	<5	<20	88	0.06	<10	43	<10	<1	129
36	G45375	1.8 0.71	170	240	<5	0.62	<1	14	93	857	4.38	<10	0.36	265	398	0.08	7	860	12	<5	<20	66	0.04	<10	34	<10	<1	93
Resplit	•																											
1	G45338	0.6 0.51	15	95	<5	1.66	<1	10	76	359	3.17	10	0.52	368	315	0.06	10	990	10	<5	<20	118	0.04	<10	34	<10	<1	60
36	G45375	2.0 0.73	175	230		0.64	1	16	98	868	4.57	<10	0.39	259	388	0.08		840	10	<5	<20	61	0.03		31	<10	<1	91
Stands	rd:																											
Standa	ru.	. 20 0 55	270	90	.E	1 60	20	4	42.4	2264	1.60	-10	0.00	EEC	20	0.02	7	270	E202	60	-20	111	-0.04	-10	12	10	-4	0226
PB106 PB106		>30 0.55 >30 0.55	270 275	80 75	<5 <5	1.69 1.67	38 41	4 3		6361 6256	1.69 1.67	<10 <10	0.26 0.25	550 557	32 30	0.02 0.03			5282 5230	60 60	<20 <20		<0.01 <0.01		13 14	10 10		8336 8397

Jutta Jealouse B.C. Certified Assayer

JJ/bp df/146 XLS/06

Мо

13-Mar-07

TTM Resources

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 40

Sample Type: Core
Project: CHU
Shipment #: 18

Submitted by: All North Consultants

ET#. Tag# (%) 2 G45339 0.131 4 G46342 0.056 5 G45343 0.117 6 G45344 0.124 7 G45345 0.118 9 G45347 0.121 10 G45348 0.076 11 G45349 0.064 12 G45350 0.064 13 G45351 0.156 16 G45354 0.101 17 G45355 0.113 20 G45358 0.115 21 G45359 0.074 22 G45361 0.058 25 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: Q G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD. JUlkk ECO TECH LABORATORY LTD.			IVIO		
4 G45342 0.056 5 G45343 0.117 6 G45344 0.124 7 G45345 0.118 9 G45347 0.121 10 G45348 0.076 11 G45349 0.064 12 G45350 0.064 13 G45351 0.156 16 G45354 0.101 17 G45355 0.113 20 G45358 0.115 21 G45359 0.074 22 G45361 0.058 25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 DC TECH LABORATORY LTD.	ET #.	Tag #	(%)		
5 G45343 0.117 6 G45344 0.124 7 G45345 0.118 9 G45347 0.121 10 G45348 0.076 11 G45349 0.064 12 G45350 0.064 13 G45351 0.156 16 G45354 0.101 17 G45355 0.113 20 G45358 0.115 21 G45359 0.074 22 G45361 0.058 25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	2	G45339	0.131		
6 G45344 0.124 7 G45345 0.118 9 G45347 0.121 10 G45348 0.076 11 G45349 0.064 12 G45350 0.064 13 G45351 0.156 16 G45354 0.101 17 G45355 0.113 20 G45358 0.115 21 G45359 0.074 22 G45361 0.058 25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: 2 G45349 0.136 11 G45349 0.064 Standard: MP2 0.283 MP2 0.283 ECO TECH LABORATORY LTD.	4	G45342	0.056		
7 G45345 0.118 9 G45347 0.121 10 G45348 0.076 11 G45349 0.064 12 G45350 0.064 13 G45351 0.156 16 G45354 0.101 17 G45355 0.113 20 G45358 0.115 21 G45359 0.074 22 G45361 0.058 25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: Repeat: QC DATA: Repeat: MP2 0.283 ECO TECH LABORATORY LTD.	5	G45343	0.117		
9 G45347 0.121 10 G45348 0.076 11 G45349 0.064 12 G45350 0.064 13 G45351 0.156 16 G45354 0.101 17 G45355 0.113 20 G45358 0.115 21 G45369 0.074 22 G45361 0.058 25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 QC DATA: Repeat: QC DATA: Repeat: MP2 0.283 D.121 D.121 D.064 BCO TECH LABORATORY LTD.	6	G45344	0.124		
10 G45348 0.076 11 G45349 0.064 12 G45350 0.064 13 G45351 0.156 16 G45354 0.101 17 G45355 0.113 20 G45358 0.115 21 G45369 0.074 22 G45361 0.058 25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.283 MP2 0.283 ECO TECH LABORATORY LTD.	7	G45345	0.118		
11 G45349 0.064 12 G45350 0.064 13 G45351 0.156 16 G45354 0.101 17 G45355 0.113 20 G45358 0.115 21 G45359 0.074 22 G45361 0.058 25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.283 ECO TECH LABORATORY LTD.	9	G45347	0.121		
12 G45350 0.064 13 G45351 0.156 16 G45354 0.101 17 G45355 0.113 20 G45358 0.115 21 G45359 0.074 22 G45361 0.058 25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.283 ECO TECH LABORATORY LTD.	10	G45348	0.076		
13 G45351 0.156 16 G45354 0.101 17 G45355 0.113 20 G45358 0.115 21 G45359 0.074 22 G45361 0.058 25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.283 ECO TECH LABORATORY LTD.	11	G45349	0.064		
16 G45354 0.101 17 G45355 0.113 20 G45358 0.115 21 G45359 0.074 22 G45361 0.058 25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	12	G45350	0.064		
17 G45355 0.113 20 G45358 0.115 21 G45359 0.074 22 G45361 0.058 25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 CC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.283 ECO TECH LABORATORY LTD.	13	G45351	0.156		
20 G45358 0.115 21 G45359 0.074 22 G45361 0.058 25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 CC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	16	G45354	0.101		
21 G45359 0.074 22 G45361 0.058 25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	17	G45355	0.113		
22 G45361 0.058 25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	20	G45358	0.115		
25 G45364 0.131 26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	21	G45359	0.074		
26 G45365 0.073 29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	22	G45361	0.058		
29 G45368 0.099 31 G45370 0.064 38 G45377 0.067 CC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	25	G45364	0.131		
31 G45370 0.064 38 G45377 0.067 QC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	26	G45365	0.073		
38 G45377 0.067 QC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	29	G45368	0.099		
QC DATA: Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	31	G45370	0.064		
Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	38	G45377	0.067		
Repeat: 2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.					
2 G45339 0.136 11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	QC DATA:				
11 G45349 0.064 Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	Repeat:	_ :			
Standard: MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.			0.136		
MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.	11	G45349	0.064		
MP2 0.279 MP2 0.283 ECO TECH LABORATORY LTD.					
MP2 0.283 ECO TECH LABORATORY LTD.	Standar	rd:			
ECO TECH LABORATORY LTD.	MP2		0.279		
	MP2		0.283		
JJ/kk Jutta Jealouse				ECO TECH LABORATORY LTD.	
	JJ/kk			Jutta Jealouse	

TTM Resources 1-Mar-07

520-700W Pender Street Vancouver, BC

Vancouver, BC

Attention: Ken MacDonald

No. of samples received: 72 Sample Type: Core **Project: CHU**

Shipment #: 17
Submitted by: All North Consultants

Submitte	eu by. All is	ii Consultants
		Мо
ET #.	Tag #	(%)
1	G45263	0.060
3	G45265	0.082
6	G45268	0.094
8	G45270	0.061
11	G45273	0.103
12	G45274	0.099
13	G45275	0.104
15	G45277	0.094
16	G45278	0.062
23	G45286	0.090
27	G45290	0.061
29	G45292	0.049
34	G45297	0.053
35	G45298	0.053
37	G45301	0.083
38	G45302	0.068
46	G45310	0.062
57	G45322	0.050
59	G45324	0.077
65	G45330	0.061
QC DAT	ГА:	

QC DATA:

MP2

Repeat	t:	
1	G45263	0.059
16	G45278	0.062
Resplit	t:	
1	G45263	0.058
Standa	ırd:	

MP2 0.280

JJ/kk ECO TECH LABORATORY LTD.
XLS/06 Jutta Jealouse

0.279

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 2007-0131

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 72

Sample Type: Core **Project: CHU Shipment #: 17**

Submitted by: All North Consultants

Phone: 250-573-5700 Fax : 250-573-4557

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G45263	0.6 0.96	10	105	<5	0.82	3	16	138	292	3.17	<10	0.95	298	620	0.07	46	530	12	10	<20	26	0.09	<10	138	<10	8	146
2	G45264	0.6 0.49	10	90	<5	1.71	<1	9	90	254	1.67	10	0.40	257	112	0.07	7	1140	8	<5	<20	45	0.05	<10	29	<10	4	38
3	G45265	0.9 0.67	15	80	<5	1.92	1	18	146	364	3.37	<10	0.56	313	800	0.05	41	470	12	5	<20	32	0.06	<10	73	<10	8	58
4	G45266	0.4 0.48	5	90	<5	1.45	<1	13	80	224	2.16	<10	0.36	278	64	0.06	7	910	8	<5	<20	40	0.06	<10	25	<10	2	49
5	G45267	0.6 0.52	<5	85	<5	1.26	<1	12	114	199	2.07	<10	0.41	244	12	0.05	9	850	10	<5	<20	42	0.08	<10	35	<10	4	46
6	G45268	0.5 0.65	10	125	<5	1.03	<1				2.11	_	0.53	-		0.06	_	490	8	_	<20	47	0.08	-	67		3	38
7	G45269	0.7 0.69	<5	65	<5	1.38	1	27	185		4.01	<10	0.65	287	456	0.05	40		8	5	<20	25		<10	88	<10	4	56
8	G45270	0.2 0.68	<5	115	<5	1.28	<1	7		114	2.42	20	0.45	585	633	0.04	_	720	14	<5	<20	_	0.04	-	30	<10	15	71
9	G45271	0.3 0.67	<5	105	<5	0.90	<1	11	83	127	2.21	<10	0.44	211	110	0.05	5	970	10	<5	<20	41	0.10	<10	-	<10	3	46
10	G45272	0.4 0.59	<5	80	<5	0.97	<1	10	99	103	2.21	<10	0.43	207	59	0.06	5	1030	8	<5	<20	38	0.10	<10	32	<10	3	40
44	G45273	0.4.0.00		405		0.50	4	40	450	204	2.45	.40	0.05	200	1000	0.00	47	200	0	_	.00	24	0.40	.40	400	.40	7	47
11 12	G45273 G45274	0.4 0.96	<5 <5	125 115	<5 <5	0.52 0.50	1	18 22	153 183		3.15 3.66	<10	0.85 0.78	209		0.09	47	390 410	8	5 <5	<20 <20	21 22	0.12 0.12			<10 <10	, 6	47 45
	G45274 G45275	0.6 0.94	<5	_	_		<1 .1	25				_		_				_	8		_	39	-	_			6	
13		0.8 0.87		100	10	0.89	<1 .1		150	_	3.97	<10	0.70		1141	0.07	48		10	<5	<20		0.08	-	107		_	49
14	G45276	<0.2 0.03	<5	10	<5	>10	<1	<1	4	8	0.07	<10	>10	67		<0.01	<1	350	<2	15		112	0.04		3	<10	<1	6
15	G45277	0.7 0.99	<5	70	<5	1.48	1	23	145	424	3.78	<10	0.93	302	909	0.05	49	370	12	<5	<20	35	0.12	<10	120	<10	7	61
16	G45278	0.9 0.90	<5	95	<5	1.56	<1	20	154	384	3.32	<10	0.81	328	644	0.06	41	330	10	<5	<20	30	0.11	<10	109	<10	8	49
17	G45279	0.9 1.08	<5	90	<5	1.55	<1	26	88	303	3.79	<10	1.02	374	130	0.10	21	1400	12	<5	<20	51	0.11	<10	72	<10	3	46
18	G45281	1.9 0.83	20	60	<5	2.56	2	27	67	709	5.36	<10	0.66	535	176	0.05	26	1180	10	10	<20	56	0.08	<10	58	<10	1	83
19	G45282	0.7 1.12	<5	100	<5	1.26	<1	16	76	246	3.41	<10	0.89	412	39	0.09	14	1550	14	<5	<20	48	0.13	<10	81	<10	5	87
20	G45283	0.7 0.71	5	85	<5	1.90	<1	16	95	312	2.97	<10	0.54	442	96	80.0	13	1060	12	<5	<20	62	0.08	<10	45	<10	5	90
21	G45284	1.0 0.62	30	100	<5	1.57	1	15			2.95	<10	0.45	477	48	0.09	_	1190	12	_	<20	62	0.06	<10	34	<10	5	127
22	G45285	0.6 0.45	30	65	<5	1.83	<1	9	95		2.20	10	0.27	389	14	0.06	9		8	<5	<20	52	0.03	<10	20	<10	3	50
23	G45286	0.9 0.75	30	75	<5	2.01	<1	19	162		3.54	<10	0.60	415	939	0.05	35		12	<5	<20	34	0.08	<10	83	<10	7	99
24	G45287	1.2 0.59	45	50	<5	2.24	<1	19	88	442	3.61	10	0.82	354	354	0.06	_	1640	6	<5	<20	59	0.06	<10	43	<10	<1	107
25	G45288	1.6 0.63	35	60	<5	2.08	2	23	118	609	3.87	<10	0.59	509	307	0.06	16	1050	10	<5	<20	65	0.04	<10	40	<10	3	163
26	G45289	1.6 0.66	25	60	<5	2.46	7	18	93	580	3.42	<10	0.57	704	301	0.04	19	950	8	<5	<20	65	0.03	<10	45	<10	4	482
27	G45290	0.2 0.68	<5	125	<5	1.31	<1	7			2.50	10	0.44	596	638	0.04	14		16		<20	114	0.05	<10	29	<10	16	78
28	G45291	1.6 0.88	20	60	<5	2.56	1	25	_	752		<10	0.59	541	143	0.03	25		12	<5	<20	52	0.06	<10	_	<10	<1	90
29	G45292	0.6 0.97	55	55	<5	1.64	<1	14	-	223	3.05	<10	0.92	380	495	0.05	39		12	<5	<20	31		<10	104		8	76
30	G45293	1.2 0.53	145	30	<5	2.37	1	23				<10	0.30			0.04		1010	10	<5	<20	-	<0.01		_	<10	<1	104
00	O 10200	1.2 0.00	1-10	00	-0	2.07		20	00	020	7.00	110	0.00	102	10-7	J.U⊣r		.0.0	10	-0	120	-10	-0.01	110		110	` '	

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni P	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
31	G45294	1.1 0.42	80	35	<5	2.48	<1	12	68	342	3.05	<10	0.24	616	79	0.06	9 1290	16	<5	<20	36	<0.01	<10	15	<10	1	68
32	G45295	1.3 0.37	70	40	<5	1.56	<1	15	103	566	3.29	<10	0.17	374	354	0.04	10 910	12	<5	<20	33	<0.01	<10	14	<10	<1	74
33	G45296	<0.2 0.02	<5	<5	<5	>10	<1	<1	2	3	0.07	<10	>10	66	1	<0.01	<1 340	<2	35	<20	95	<0.01	<10	4	<10	<1	4
34	G45297	1.9 0.32	65	45	<5	1.86	2	32	85	591	3.63	<10	0.41	436	546	0.03	15 980	12	<5	<20	81	<0.01	<10	13	<10	<1	292
35	G45298	1.0 0.54	45	50	<5	1.85	<1	18	141	439	3.61	<10	0.73	418	558	0.04	42 790	8	<5	<20	118	0.04	<10	54	<10	5	92
36	G45299	0.6 0.39	30	40	<5	1.66	9	13	115	359	3.25	<10	0.48	391	99	0.06	17 1190	8	<5	<20	81	<0.01	<10	19	<10	1 '	1221
37	G45301	1.1 0.46	65	45	<5	1.51	4	20	103		3.93	<10	0.47	310	849	0.03	46 480	10	<5	<20	55	<0.01	<10	36	<10	2	570
38	G45302	1.0 0.28	75	35	<5	2.15	1	22	129	441	3.88	<10	0.44		680	0.03	32 700	4	<5	<20	73	<0.01	<10		<10	<1	98
39	G45303	0.3 0.60	15	290	<5	1.44	<1	2	77		1.14	20	0.20		23	0.03	5 310	22	<5	<20		<0.01		7	<10	6	27
40	G45304	<0.2 0.59	<5	400	<5	1.52	<1	<1	69	16	0.96	20	0.19	233	6	0.03	3 300	18	<5	<20	81	<0.01	<10	6	<10	6	23
41	G45305	<0.2 0.70	<5	345		1.33	<1		117		1.02	20	0.18			0.04	4 300	22	<5			<0.01			<10	8	24
42	G45306	<0.2 0.57	<5	85		1.42	<1	2	55	9	0.95	20	0.18			0.03	3 290	18	<5			<0.01			<10	7	25
43	G45307	<0.2 0.57	<5	45		1.77	<1	3	73		0.97	20	0.16		4	0.03	4 300	20	5	<20		<0.01			<10	7	28
44	G45308	<0.2 0.77	<5	75		1.22	<1	3	56	10		20	0.29		10	0.02	2 310	26	<5			<0.01			<10	7	31
45	G45309	<0.2 0.58	<5	230	<5	1.56	<1	2	76	10	0.98	20	0.18	254	<1	0.03	2 300	20	<5	<20	80	<0.01	<10	6	<10	6	26
46	G45310	0.2 0.65	<5	120		1.32	1	7	18		2.50	10	0.43			0.04	17 820	18		<20		0.02			<10	16	80
47	G45311	<0.2 0.52	<5	45	<5	1.52	<1	2	65		0.93	20	0.15		4	0.03	2 300	16		<20		<0.01			<10	5	23
48	G45312	<0.2 0.60	<5	70	<5	1.46	<1	3	76	6	1.00	20	0.17		9	0.04	3 300	20		<20		<0.01			<10	7	22
49	G45313	<0.2 0.66	<5	90	<5	1.18	<1	2	70	10	0.97	20	0.20			0.02	4 300	24		<20		<0.01			<10	5	25
50	G45314	0.3 0.76	<5	275	<5	1.44	<1	2	52	23	0.99	20	0.25	264	3	0.02	3 300	26	<5	<20	104	<0.01	<10	7	<10	5	29
51	G45315	<0.2 0.80	5	130	<5	1.31	<1	2	40	6	1.01	20	0.26	309	6	0.02	<1 320	20	<5	<20		<0.01		6	<10	4	19
52	G45316	<0.2 0.04	<5	15	<5	>10	<1	<1	3	5			>10	62		<0.01	<1 350	<2	30	_	_	<0.01	_	3	<10	<1	5
53	G45317	0.5 0.78	20	65	<5	1.35	1	13	91	232	3.06	20	0.44		486	0.04	9 1010	16	5	<20	59	0.01		23	<10	3	73
54	G45318	0.3 0.64	10	70	<5	1.69	<1	9	68	144	2.37	20	0.37			0.05	4 1150	12	<5	<20	81	0.03			<10	4	62
55	G45319	0.3 0.61	5	55	<5	1.57	<1	12	70	208	2.74	10	0.38	302	146	0.04	5 1200	10	<5	<20	73	0.02	<10	26	<10	2	58
56	G45321	0.9 0.52	35	45	<5	3.07	3	12			3.66		0.25		276	0.06	16 980	10	<5	<20		<0.01			<10		294
57	G45322	1.7 0.65	30	80		2.70	2	39	108				0.70		495	0.05	35 680	10	5	<20					<10	4	109
58	G45323	0.2 0.43	25	45	<5	3.44	<1	12			3.75	10	0.21		44	0.06	8 1050	8	<5	<20		<0.01		19	<10	<1	55
59	G45324	0.9 0.56	45	45	<5	3.40	<1	28			5.91		1.08		801	0.05	34 2200	8		<20		<0.01			<10	2	81
60	G45325	0.5 0.45	55	40	<5	3.23	1	26	138	312	6.04	<10	0.77	629	357	0.04	25 900	8	<5	<20	174	0.02	<10	66	<10	<1	92
61	G45326	0.6 0.43	10	60	<5	1.72	<1	12	99	262		10	0.39		56	0.06	7 1120	8	<5	<20	85		<10		<10	3	67
62	G45327	0.9 0.54	10	50	<5	2.82	6	16	110	379	3.78	10	0.44		33	0.06	11 1130	10	<5		140	0.05			<10		519
63	G45328	0.7 0.54	<5	60		1.72	2	16	87	386	3.09		0.43			0.06	8 1230	10		<20	67	0.07			<10		157
64	G45329	0.5 0.49	<5	70		1.73	1						0.34			0.06	12 1010	10		<20	87	0.04	-		<10	2	67
65	G45330	0.2 0.73	5	130	<5	1.41	<1	7	19	122	2.70	20	0.47	638	637	0.04	16 900	20	<5	<20	127	0.03	<10	32	<10	17	88
66	G45331	0.8 0.62	<5	60	_	1.38	2						0.49			0.05	11 1140	14		<20	70				<10	_	181
67	G45332	0.5 0.57	10	75		1.43	1						0.39			0.07	8 1100	10		<20	66	0.07			<10	<1	87
68	G45333	0.3 0.62	5			1.50							0.45			0.09	9 1260	18		<20		0.08			<10	3	
	G45334	0.4 0.63	5		-	1.49							0.54			0.07	14 1170			<20		0.08			<10	3	
70	G45335	0.6 0.69	10	125	<5	1.37	<1	17	143	304	2.99	<10	0.53	355	367	0.10	19 1010	16	<5	<20	67	0.07	<10	61	<10	5	66
71	G45336	<0.2 0.04	<5													<0.01				<20		0.01			<10		7
72	G45337	0.5 0.57	10	110	<5	1.42	<1	20	92	402	3.50	<10	0.47	352	230	0.09	13 1040	10	<5	<20	97	0.07	<10	41	<10	<1	73
							_	 -								- 4						D					
ECO TE	CH LABORA	ATORY LTD.					ı	CP C	EKTII	-ICAT	E OF	ANAL	YSIS A	AK 20		31					IIM	Resou	rces				

Page 2
Et #. Tag # Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P Pb Sb Sn Sr Ti % U V W Y Zn

QC DATA: Repeat:

1	G45263	0.7 1.02	10	120	<5	0.83	2	16	140	306	3.17	<10	0.99	302	607	0.08	44 530	12	10	<20	28	0.10	<10	142	<10	11	142
10	G45272	0.4 0.62	<5	85	<5	0.99	<1	10	103	106	2.24	<10	0.44	212	61	0.06	6 1060	8	<5	<20	40	0.10	<10	33	<10	3	40
19	G45282	0.7 1.10	<5	110	<5	1.29	1	16	78	236	3.46	<10	0.87	417	40	0.09	13 1590	16	<5	<20	47	0.13	<10	81	<10	5	92
36	G45299	0.5 0.40	30	50	<5	1.67	9	13	120	354	3.24	<10	0.48	392	98	0.06	19 1210	10	<5	<20	85	< 0.01	<10	19	<10	3 1	1244
45	G45309	<0.2 0.61	<5	235	<5	1.58	<1	2	78	11	1.00	20	0.19	259	1	0.03	3 300	18	<5	<20	84	< 0.01	<10	7	<10	7	25
54	G45318	0.4 0.67	10	75	<5	1.72	<1	10	72	146	2.43	20	0.37	394	44	0.05	4 1230	14	<5	<20	82	0.03	<10	25	<10	4	67
Resplit:	:																										
1	G45263	0.6 1.00	15	120	<5	0.86	3	18	147	300	3.37	<10	1.03	306	605	0.09	50 550	14	15	<20	28	0.11	<10	151	<10	11	133
36	G45299	0.5 0.41	30	45	<5	1.67	8	13	111	351	3.28	10	0.49	374	101	0.07	19 1190	8	<5	<20	84	0.01	<10	20	<10	3 1	1206
72	G45337	0.6 0.56	10	115	<5	1.39	<1	20	90	398	3.46	<10	0.45	350	227	0.09	11 1020	16	<5	<20	104	0.07	<10	40	<10	5	72
Standar	rd:																										
Pb106		>30 0.58	265	75	<5	1.62	33	3	37	6245	1.51	<10	0.29	595	32	0.03	8 280	5232	60	<20	138	< 0.01	<10	16	<10	1.8	3366
Pb106		>30 0.57	265	80	<5	1.66	32	3	33	6287	1.67	<10	0.27	569	32	0.03	8 290	5396	55	<20	135	<0.01	<10	16	<10	1 8	3370

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

JJ/kk df/131 XLS/07

O IECH LABORATORT LID.

10041 Dallas Drive

KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 **ICP CERTIFICATE OF ANALYSIS AK 2007-0121**

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 83

Sample Type: Core Project: CHU Shipment #: 15

Submitted by: Allnorth Consultants

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G45126	0.4 1.32	<5	230	<5	0.39	<1	15	161	380	4.34	<10	0.97	224	1064	0.18	50	480	10	<5	<20	24	0.17	<10	163	<10	14	47
2	G45127	0.2 1.37	<5	230	<5	0.26	<1	15	132	252	4.00	<10	1.06	221	422	0.16	49	440	8	<5	<20	17	0.19	<10	173	<10	16	41
3	G45128	0.2 0.77	<5	145	<5	0.54	<1	9	82	343	2.60	<10	0.49	162	836	0.09	8	690	4	<5	<20	28	0.06	<10	55	<10	5	23
4	G45129	0.6 0.75	<5	135	<5	0.90	<1	7	72	715	2.83	<10	0.38	198	1770	0.09	7	720	4	<5	<20	44	0.05	<10	43	10	2	29
5	G45130	No Sample																										
6	G45131	0.5 0.70	5	170	<5	0.37	<1	9	112	405	2.74	<10	0.28	128	1192	0.09	8	580	4	<5	<20	30	0.05	<10	34	<10	3	23
7	G45132	0.3 0.74	35	130	<5	0.99	<1	9	59	278	1.89	<10	0.41	235	9760	0.09	5	750	12	<5	<20	47	0.06	<10	53	20	<1	21
8	G45133	0.6 0.71	5	145	<5	0.48	<1	9	116	500	2.74	<10	0.33	146	2124	0.10	8	630	6	<5	<20	33	0.06	<10	34	<10	3	20
9	G45134	0.5 0.70	<5	130	<5	0.58	<1	9	97	490	3.09	<10	0.33	124	1009	0.08	8	650	4	<5	<20	31	0.05	<10	37	<10	3	26
10	G45135	<0.2 0.04	<5	10	<5	>10	<1	<1	5	13	0.11	<10	>10	69	4	<0.01	<1	360	<2	35	<20	128	<0.01	<10	4	<10	<1	4
11	G45136	0.4 1.45	<5	165	<5	0.73	<1	18	151	386	4.51	<10	1.25	244	739	0.12	49	490	10	<5	<20	27	0.19	<10	160	<10	21	46
12	G45137	0.6 1.30	<5	160	<5	0.42	<1	19	141	449	4.89	<10	1.05	230	817	0.12	50	500	8	<5	<20	25	0.17	<10	142	<10	16	42
13	G45138	0.4 1.46	<5	215	<5	0.35	<1	16	151	251	4.04	<10	1.15	222	1046	0.13	48	480	8	<5	<20	24	0.20	<10	173	<10	19	44
14	G45139	0.7 1.42	<5	215	<5	0.41	<1	15	163	475	4.70	<10	1.07	246	652	0.13	53	420	8	<5	<20	26	0.16	<10	166	<10	18	52
15	G45141	0.5 1.37	<5	190	<5	0.46	<1	23	168	362	4.65	<10	0.93	244	1487	0.12	52	390	6	<5	<20	28	0.16	<10	144	<10	14	43
16	G45142	0.7 1.42	<5	110	<5	0.43	<1	24	159	457	5.30	<10	1.10	250	1630	0.08	53	410	8	<5	<20	27	0.18	<10	158	<10	15	48
17	G45143	0.3 1.40	<5	190	<5	0.46	<1	17	170	310	4.45	<10	1.04	221	653	0.11	49	430	8	<5	<20	21	0.20	<10	154	<10	19	42
18	G45144	1.4 1.44	<5	155	<5	0.36	<1	20	144	609	4.66	<10	1.09	228	763	0.10	56	460	8	<5	<20	23	0.19	<10	175	<10	19	63
19	G45145	0.2 1.32	<5	145	<5	1.01	<1	15	152	176	3.70	<10	1.13	236	613	0.06	51	440	6	<5	<20	21	0.18	<10	161	<10	16	41
20	G45146	0.3 1.27	5	110	<5	0.70	<1	18	152	454	4.69	<10	1.11	232	2193	0.06	45	450	6	<5	<20	24	0.13	<10	168	<10	13	48
21	G45147	0.6 1.32	10	130	<5	0.81	<1	22	149	341	4.24	<10	1.02	246	564	0.06	51	470	8	<5	<20	42	0.15	<10	134	<10	19	46
22	G45148	0.2 1.39	<5	145	<5	0.54	<1	20	145	220	4.44	<10	1.09	265	648	0.07	53	560	6	<5	<20	24	0.18	<10	179	<10	19	43
23	G45149	0.2 1.48	<5	165	<5	0.62	<1	17	147	209	4.32	<10	1.18	284	961	80.0	51	530	10	<5	<20	27	0.20	<10	178	<10	22	49
24	G45150	<0.2 0.83	<5	140	<5	1.35	<1	7	20	126	3.12	20	0.49	639	648	0.04	14	740	14	<5	<20	123	0.03	<10	35	<10	19	76
25	G45151	0.3 1.49	<5	155	<5	0.45	<1	22	139	289	4.64	<10	1.16	238	1152	0.09	55	470	8	<5	<20	28	0.20	<10	181	<10	17	44

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	G45152	0.2 1.54	<5	265	<5	0.54	<1	15	148	183	3.73	<10	1.15	219	891	0.10	47	420	10	<5	<20	36	0.21	<10	183	<10	19	39
27	G45153	0.3 1.39	<5	140	<5	4.62	<1	16	115	217	3.50	<10	1.15	575	667	0.04	44	400	6	<5	<20	123	0.15	<10	155	<10	28	37
28	G45154	0.2 1.42	<5	120	<5	0.58	<1	18	142	261	4.25	<10	1.18	224	845	0.06	50	430	6	<5	<20	42	0.16	<10	164	<10	18	42
29	G45155	0.6 1.03	10	70	<5	0.78	<1	18	125	511	4.27	<10	0.84	209	3852	0.03	35	260	6	<5	<20	62	0.08	<10	107	<10	9	37
30	G45156	<0.2 0.05	<5	30	<5	>10	<1	<1	4	10	0.12	<10	>10	61	1	<0.01	<1	430	<2	35	<20	123	<0.01	<10	4	<10	2	4
31	G45157	0.8 0.57	<5	60	<5		<1	17	115	558	3.84	<10	0.51	127	2087	0.03	15	450	4	<5	<20	67	<0.01	<10	15	20	<1	21
32	G45158	1.6 1.66	60	65	<5	6.86	<1	39	7	1721	6.22	<10	1.29	960	5618	0.01	31	890	20	<5	<20	430	<0.01	<10	42	<10	7	56
33	G45159	1.0 1.04	60	45	<5	3.63	<1	41	_			-	1.40	-			27	1820	16	<5	<20	426	<0.01	<10	39	<10	15	80
34	G45160	0.7 1.80	60	45	<5	4.98	<1	40					1.83				55	640	20	<5	<20	627	<0.01	<10	70	<10	6	109
35	G45162	0.5 1.36	25	70	<5	6.54	<1	26	44	617	7.26	<10	2.01	619	2222	<0.01	51	1260	12	<5	<20	706	<0.01	<10	89	<10	17	123
36	G45163	0.5 1.16	30	65	- 5	3.87	<1	19	77	480	5 41	~ 10	1.30	365	1913	0.01	52	640	14	- 5	-20	423	<0.01	~ 10	75	<10	6	77
37	G45164	0.4 1.25	50	75	<5	2.38	<1	21	61		5.59		1.03				68	650	14		<20		<0.01			<10	5	73
38	G45165	0.3 1.05	<5	105	<5	1.03	<1	19	145		3.63		0.94				54	440	8	<5	<20	44	0.14				18	38
39	G45166	0.2 1.08	<5	100		0.99	<1	14			3.62		0.94					420	6	<5	<20	51	0.11				20	40
40	G45167	0.4 0.77	_	110		1.11	<1	10			3.04	20	0.50					1130	6	<5	<20	64	0.09			<10	11	41
	3 .	01.1					•		٠.	_0.	0.0.		0.00	_0.	000	0.00	ŭ		Ū			٠.	0.00					• •
41	G45168	0.4 1.17	10	85	<5	1.16	<1	17	148	386	4.31	<10	1.12	319	2744	0.04	43	630	8	<5	<20	76	0.10	<10	139	<10	20	67
42	G45169	0.4 1.13	15	75	<5	1.89	<1	15	109	394	4.67	<10	0.90	369	1504	0.01	43	770	6	10	<20	181	0.03	<10	132	<10	12	95
43	G45170	<0.2 0.81	<5	140	<5	1.35	<1	7	18	127	3.09	20	0.48	627	672	0.04	14	760	12	<5	<20	123	0.02	<10	33	<10	19	76
44	G45171	0.3 1.16	10	65	<5	1.79	<1	14	132	259	4.80	<10	0.95	295	1614	0.01	46	430	6	<5	<20	257	0.02	<10	65	<10	10	52
45	G45172	0.5 1.23	<5	130	<5	0.65	<1	23	148	467	4.71	<10	1.11	251	1175	0.08	52	530	6	<5	<20	39	0.16	<10	148	<10	17	53
46	G45173	0.5 0.76	<5	85	-	1.04	<1	15	94	506	3.79	<10	0.58	_	356	0.08	16	1150	6	<5	<20	59	0.09	<10	46	20	10	37
47	G45174	0.6 1.46	<5	235	<5	0.46	<1	28	190	648	6.04	<10	1.08	260	598	0.15	55	310	10	<5	<20	38	0.15	<10	133	<10	13	73
48	G45175	0.4 1.32	<5	180	<5	0.62	<1	20	185	399	4.63	<10	1.09	248	510	0.14	46	330	8	<5	<20	36	0.15	<10	128	<10	14	64
49	G45176	0.2 0.04	<5	30	10	>10	<1	<1	4		0.07		>10	67		<0.01		370	<2	35	<20		<0.01	<10	3	<10	2	4
50	G45177	0.6 1.27	5	170	<5	0.75	<1	21	224	494	4.85	<10	1.02	245	1322	0.12	55	410	10	<5	<20	33	0.14	<10	139	30	16	68
51	G45178	0.4 1.30	10	125	<5	1.51	<1	19	206	306	4.43	<10	0.99	332	1060	0.09	52	380	6	<5	<20	36	0.17	<10	142	<10	18	50
52	G45179	0.7 1.41		170	<5	0.65	<1						1.11				54	370	10	<5	<20	27	0.20				16	63
53	G45181	0.6 1.36	_	185	<5	0.58	<1		199				1.01				55	350	12	<5	<20	30	0.17				16	64
54	G45182	0.9 1.40	<5	190	<5	0.34	1						1.24				45	350	6	<5	<20	29	0.15			<10		130
55	G45183	0.9 1.10	_	260	<5	0.73	<1				4.80							880	6	_	<20	68	0.11			<10	6	60
56	G45184	1.1 0.96	10	235	<5	3.09	<1	14	68	478	3.14	<10	0.53	788	1289	0.11	11	1210	10	<5	<20	87	0.09	<10	77	30	8	50
57	G45185	0.9 1.09	10	305	<5	1.35	<1	18	130	415	3.33	10	0.44	321	433	0.23	7	1160	10	<5	<20	99	0.10	<10	41	20	7	41
58	G45186	1.2 0.88	<5	300	<5	2.02	<1	16	65	593	3.36	<10	0.41	633	846	0.14	8	1060	4	<5	<20	89	0.08	<10	38	10	5	37
59	G45187	1.5 1.05	<5	305	<5	1.96	<1	18	124	772	3.58	10	0.44	453	170	0.18	9	1060	6	<5	<20	99	0.09	<10	44	40	10	36
60	G45188	1.1 1.02	5	300	<5	1.08	4	36	107	729	5.21	<10	0.45	260	1537	0.14	11	900	8	<5	<20	77	0.08	<10	46	60	4	217
61	G45189	2.6 1.04		315		1.00	5						0.47					1150	6		<20		0.08				4	275
62	G45190	<0.2 0.77		130		1.34	<1						0.45					780	14				0.02			<10	18	81
63	G45191	1.0 1.07	20	100		0.95	<1						0.91					490	6		<20		0.11				13	65
64	G45192	0.9 0.82		70		1.46	<1						0.74					350	20		<20		0.06				5	131
65	G45193	0.4 1.03	10	120	<5	0.75	<1	16	135	412	4.30	<10	0.93	270	2400	0.07	46	430	8	<5	<20	33	0.12	<10	130	10	12	55

Tag#

Et #.

ICP CERTIFICATE OF ANALYSIS AK 2007-0121

TTM Resources

Page 2
Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P Pb Sb Sn Sr Ti % U V W Y Zn

79 G45208 0.4 1.29 <5 220 <5 0.60 <1 19 147 342 4.18 <10 0.99 222 693 0.16 47 480 6 <5 <20 35 0.18 <10 152	<10 16 38 40 9 34 <10 16 65 <10 15 75 <10 14 47 <10 19 58 <10 10 40
69 G45197	50 4 50 <10 18 65 <10 18 76 <10 16 35 40 9 32 <10 16 65 <10 15 75 <10 14 47 <10 19 55 <10 10 40
70 G45198 0.8 1.32 <5 200 <5 0.44 <1 18 155 511 4.77 <10 1.13 287 750 0.13 50 490 12 <5 <20 30 0.16 <10 163 71 G45199 0.6 1.35 <5 140 <5 0.51 <1 21 202 486 5.13 <10 1.19 321 603 0.10 53 600 6 <5 <20 26 0.16 <10 159 72 G45201 0.5 1.27 <5 230 <5 0.46 <1 16 166 395 4.13 <10 0.90 208 855 0.17 45 400 8 <5 <20 34 0.17 <10 130 73 G45202 0.6 0.84 <5 215 <5 1.05 <1 14 93 361 3.12 <10 0.43 291 148 0.14 11 970 8 <5 <20 67 0.09 <10 40 74 G45203 0.6 1.19 <5 175 <5 0.73 <1 20 157 376 4.37 <10 0.97 331 804 0.10 43 470 10 <5 <20 34 0.16 <10 142 75 G45204 0.6 1.15 5 120 <5 0.72 <1 21 154 416 4.59 <10 1.00 311 555 0.08 42 400 8 <5 <20 28 0.16 <10 147 76 G45205 0.3 1.13 <5 135 <5 0.65 <1 23 208 331 4.47 <10 0.93 231 835 0.11 46 520 4 <5 <20 24 0.16 <10 131 77 G45206 0.3 1.17 10 115 <5 1.00 <1 16 160 298 4.35 <10 0.97 300 404 0.12 42 540 6 <5 <20 46 0.16 <10 141 78 G45207 0.4 0.86 <5 175 <5 1.20 <1 13 108 277 3.14 10 0.51 248 143 0.17 7 1270 6 <5 <20 81 0.13 <10 42 79 G45208 0.4 1.29 <5 220 <5 0.60 <1 19 147 342 4.18 <10 0.99 222 693 0.16 47 480 6 <5 <20 35 0.18 <10 152	<10 18 65 <10 18 76 <10 16 35 40 9 34 <10 16 65 <10 15 75 <10 14 47 <10 19 55 <10 10 40
71 G45199	<10 18 76 <10 16 39 40 9 34 <10 16 67 <10 15 75 <10 14 47 <10 19 58 <10 10 40
72 G45201 0.5 1.27 <5 230 <5 0.46 <1 16 166 395 4.13 <10 0.90 208 855 0.17 45 400 8 <5 <20 34 0.17 <10 130 73 G45202 0.6 0.84 <5 215 <5 1.05 <1 14 93 361 3.12 <10 0.43 291 148 0.14 11 970 8 <5 <20 67 0.09 <10 40 74 G45203 0.6 1.19 <5 175 <5 0.73 <1 20 157 376 4.37 <10 0.97 331 804 0.10 43 470 10 <5 <20 34 0.16 <10 142 75 G45204 0.6 1.15 5 120 <5 0.72 <1 21 154 416 4.59 <10 1.00 311 555 0.08 42 400 8 <5 <20 28 0.16 <10 147 77 G45206 0.3 1.13 <5 135 <5 0.65 <1 23 208 331 4.47 <10 0.93 231 835 0.11 46 520 4 <5 <20 24 0.16 <10 141 78 G45207 0.4 0.86 <5 175 <5 1.20 <1 13 108 277 3.14 10 0.51 248 143 0.17 7 1270 6 <5 <20 81 0.13 <10 42 79 G45208 0.4 1.29 <5 220 <5 0.60 <1 19 147 342 4.18 <10 0.99 222 693 0.16 47 480 6 <5 <20 35 0.18 <10 152	<10 16 38 40 9 34 <10 16 65 <10 15 75 <10 14 47 <10 19 58 <10 10 40
73 G45202	40 9 34 <10 16 65 <10 15 75 <10 14 45 <10 19 55 <10 10 40
74 G45203	<10 16 67 <10 15 75 <10 14 47 <10 19 55 <10 10 40
75 G45204 0.6 1.15 5 120 <5 0.72 <1 21 154 416 4.59 <10 1.00 311 555 0.08 42 400 8 <5 <20 28 0.16 <10 147 76 G45205 0.3 1.13 <5 135 <5 0.65 <1 23 208 331 4.47 <10 0.93 231 835 0.11 46 520 4 <5 <20 24 0.16 <10 131 77 G45206 0.3 1.17 10 115 <5 1.00 <1 16 160 298 4.35 <10 0.97 300 404 0.12 42 540 6 <5 <20 46 0.16 <10 141 78 G45207 0.4 0.86 <5 175 <5 1.20 <1 13 108 277 3.14 10 0.51 248 143 0.17 7 1270 6 <5 <20 81 0.13 <10 42 79 G45208 0.4 1.29 <5 220 <5 0.60 <1 19 147 342 4.18 <10 0.99 222 693 0.16 47 480 6 <5 <20 35 0.18 <10 152	<10 15 75 <10 14 47 <10 19 55 <10 10 40
76 G45205	<10 14 47 <10 19 55 <10 10 40
77 G45206 0.3 1.17 10 115 <5 1.00 <1 16 160 298 4.35 <10 0.97 300 404 0.12 42 540 6 <5 <20 46 0.16 <10 141 78 G45207 0.4 0.86 <5 175 <5 1.20 <1 13 108 277 3.14 10 0.51 248 143 0.17 7 1270 6 <5 <20 81 0.13 <10 42 79 G45208 0.4 1.29 <5 220 <5 0.60 <1 19 147 342 4.18 <10 0.99 222 693 0.16 47 480 6 <5 <20 35 0.18 <10 152	<10 19 55 <10 10 40
78 G45207 0.4 0.86 <5 175 <5 1.20 <1 13 108 277 3.14 10 0.51 248 143 0.17 7 1270 6 <5 <20 81 0.13 <10 42 79 G45208 0.4 1.29 <5 220 <5 0.60 <1 19 147 342 4.18 <10 0.99 222 693 0.16 47 480 6 <5 <20 35 0.18 <10 152	<10 10 40
79 G45208 0.4 1.29 <5 220 <5 0.60 <1 19 147 342 4.18 <10 0.99 222 693 0.16 47 480 6 <5 <20 35 0.18 <10 152	
	<10 16 4 ⁻
	- · ·
80 G45209 0.4 1.16 <5 165 <5 0.51 <1 27 172 367 4.59 <10 0.93 244 946 0.10 49 450 10 <5 <20 27 0.17 <10 159	<10 17 5
81 G45210 <0.2 0.74 <5 125 <5 1.32 <1 7 18 117 3.01 10 0.45 644 627 0.04 15 770 14 <5 <20 113 0.02 <10 31	<10 18 78
82 G45211 0.7 0.79 <5 120 <5 1.01 1 39 100 669 5.58 <10 0.51 249 710 0.06 34 860 6 <5 <20 44 0.07 <10 59	10 6 45
83 G45212 0.4 0.88 115 60 <5 2.10 <1 18 164 412 4.82 <10 0.82 375 645 >10 45 680 4 <5 <20 146 0.04 <10 70	<10 10 69
QC DATA:	
Repeat:	
1 G45126 0.4 1.41 <5 215 <5 0.41 <1 15 165 396 4.31 <10 1.04 228 1125 0.18 50 460 7 <5 <20 21 0.19 <10 170	<10 15 45
10 G45135 <0.2 0.04 <5 15 <5 >10 <1 <1 4 12 0.12 <10 >10 68 4 <0.01 <1 350 <2 35 <20 117 <0.01 <10 5	<10 <1 5
19 G45145 0.6 1.37 <5 150 <5 0.90 <1 16 159 181 3.78 <10 1.02 246 628 0.07 53 450 8 <5 <20 25 0.19 <10 164	<10 20 43
36 G45163 0.5 1.18 25 65 <5 3.89 <1 19 79 505 5.45 <10 1.38 369 1970 0.02 51 690 10 <5 <20 442 <0.01 <10 78	<10 6 73
45 G45172 0.5 1.19 <5 120 <5 0.63 <1 23 146 428 4.67 <10 1.03 244 1127 0.07 53 550 10 <5 <20 37 0.15 <10 142	<10 17 55
54 G45182 1.3 1.40 <5 185 <5 0.36 1 26 178 793 6.20 <10 1.24 388 1014 0.12 47 370 8 <5 <20 30 0.15 <10 140	<10 12 133
71 G45199 0.6 1.31 <5 150 <5 0.51 <1 21 200 467 5.04 <10 1.15 314 589 0.10 52 610 12 <5 <20 30 0.16 <10 155	<10 20 75
Resplit:	
1 G45126 0.4 1.43 <5 220 <5 0.46 <1 17 157 381 4.43 <10 1.08 240 1093 0.17 54 480 6 <5 <20 23 0.20 <10 178	<10 15 50
36 G45163 0.4 1.10 20 70 <5 3.91 <1 18 70 486 5.40 <10 1.34 384 1927 0.01 48 710 12 <5 <20 435 <0.01 <10 73	<10 7 84
71 G45199 0.6 1.22 <5 135 <5 0.54 <1 22 180 456 4.91 <10 1.05 302 566 0.10 53 570 8 <5 <20 29 0.16 <10 154	<10 20 69
Standard:	
Pb116 >30 0.58 270 75 <5 1.68 33 4 40 6237 1.62 <10 0.06 542 31 0.01 43 280 5396 55 <20 140 <0.01 <10 13	10 <1 8386
Pb116 >30 0.58 270 75 <5 1.69 34 4 40 6298 1.64 <10 0.06 548 32 0.01 40 270 5378 55 <20 140 <0.01 <10 13	10 <1 030

43 6260 1.77 <10 0.07 538

JJ/dc df/0121 XLS/06

Pb116

>30 0.58 270

<5 1.66

37

ECO TECH LABORATORY LTD.
Jutta Jealouse

B.C. Certified Assayer

36 0.02 37 280 5292 55 <20 141 <0.01 <10

TTM Resources

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 83

Sample Type: Core Project: CHU
Shipment #: 15

Submitted by: Allnorth Consultants

		Мо	
ET #.	Tag #	(%)	
1	G45126	0.108	
2	G45127	0.043	
3	G45128	0.082	
4	G45129	0.168	
6	G45131	0.121	
7	G45132	0.991	
8	G45133	0.214	
9	G45134	0.100	
11	G45136	0.073	
12	G45137	0.082	
13	G45138	0.108	
14	G45139	0.065	
15	G45141	0.152	
16	G45142	0.165	
17	G45143	0.065	
18	G45144	0.072	
19	G45145	0.060	
20	G45146	0.219	
21	G45147	0.052	
22	G45148	0.063	
23	G45149	0.096	
24	G45150	0.062	
25	G45151	0.116	

ECO TECH LABORATORY LTD.

28-Feb-07

Jutta Jealouse B.C. Certified Assayer

TTM Resources AK7-0121

28-Feb-07	•
-----------	---

ET #.	Tag #	(%)	
26	G45152	0.086	
27	G45153	0.065	
28	G45154	0.083	
29	G45155	0.389	
31	G45157	0.197	
32	G45158	0.577	
33	G45159	0.360	
34	G45160	0.336	
35	G45162	0.221	
36	G45163	0.186	
37	G45164	0.218	
38	G45165	0.124	
39	G45166	0.054	
41	G45168	0.275	
42	G45169	0.146	
43	G45170	0.063	
44	G45171	0.151	
45	G45172	0.111	
47	G45174	0.057	
50	G45177	0.128	
51	G45178	0.101	
52	G45179	0.140	
53	G45181	0.105	
54	G45182	0.114	
55 50	G45183	0.100	
56	G45184	0.128	
58 60	G45186	0.086	
60 61	G45188	0.158	
61 62	G45189 G45190	0.107 0.064	
63	G45190 G45191	0.158	
64	G45191 G45192	0.158	
65	G45192 G45193	0.132	
66	G45193 G45194	0.243	
67	G45194 G45195	0.066	
70	G45198	0.077	
71	G45199	0.060	
72	G45201	0.087	
74	G45203	0.080	
75	G45204	0.056	
. •	J .U_U !	3.333	

Мо

76	G45205	0.083
79	G45208	0.069
80	G45209	0.097
81	G45210	0.064
82	G45211	0.074
83	G45212	0.064

Jutta Jealouse B.C. Certified Assayer 28-Feb-07

TTM Resources AK7-0121

Mo ET #. Tag # (%)

QC DATA:

R۵	peat:
1/6	Deat.

1	G45126	0.111
19	G45145	0.060

Resplit:

1	G45126	0.105
36	G45163	0.179
71	G45199	0.054

Standard:

MP2	0.274
MP2	0.282
MP2	0.281
MP2	0.284
MP2	0.277

JJ/dc XLS/06 ECO TECH LABORATORY LTD.

Jutta Jealouse

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax: 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2007-117

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 47 Sample Type: Core

Project: CHU Shipment #: 16

Submitted by: All North Consultants

Et #.	Tag #	Ag Al%	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G45213	0.3 1.02	40	100	<5	1.08	<1	21	153	431	3.92	<10	1.02	255	969	0.05	53	590	10	<5	<20	61	0.14	<10	133	<10	17	54
2	G45214	0.4 1.09	10	115	<5	0.87	<1	23	173	469	3.91	<10	1.03	258	456	0.04	51	490	8	<5	<20	38	0.14	<10	146	<10	16	106
3	G45215	1.5 0.97	10	95	<5	0.88	<1	17	149	373	3.22	<10	0.90	225	786	0.05	46	540	8	<5	<20	40	0.12	<10	117	<10	14	47
4	G45216	<0.2 0.04	<5	10	<5	>10	<1	<1	5	12	0.08	<10	>10	65	4	< 0.01	<1	480	<2	40	<20	135	< 0.01	<10	3	<10	<1	7
5	G45217	1.2 1.07	15	115	<5	1.96	<1	21	155	652	4.15	<10	1.09	938	688	0.05	51	620	10	<5	<20	62	0.11	<10	143	<10	17	55
6	G45218	1.7 0.41	75	70	<5	3.19	<1	20	70	644	3.51	10	0.48	1158	352	0.03	24	1290	8	<5	<20	119	0.01	<10	26	<10	7	72
7	G45219	1.3 0.89	25	105	<5	0.96	<1	17	140	378	3.45	<10	0.83	293		0.04		500	10	<5	<20	32	0.12	<10	118	<10	11	50
8	G45221	1.1 0.90	20	85	<5	0.91	<1	19	132	434	3.87	<10	0.90		790	0.03	49	580	8	<5	<20	36	0.10	10	120	<10	12	69
9	G45222	1.1 0.36	160	45	<5	5.66	1	20	87	596	3.93	<10	0.26	715	1382	0.01	37	220	50	<5	<20	104	< 0.01	<10	18	<10	<1	241
10	G45223	1.2 1.20	10	120	<5	0.80	1	33	138	738	5.15	<10	1.15	343	2637	0.05	46	570	8	<5	<20	28	0.12	<10	129	<10	8	113
	o		_		_														_	_							_	
11	G45224	0.9 0.80	<5	130	<5	0.80	<1	26	146	561		_				0.05	40	350	6	<5	<20	27	0.10	<10	98	<10	8	46
12	G45225	1.2 1.00	10		<5	1.02	<1	20		679	3.37	<10	0.90	298		0.07	37	520	8	<5	<20	29	0.12	<10	130	<10	14	49
13	G45226	2.3 0.72	<5	165	<5	0.60	2	39	_	1088		_	0.55	309		0.04	45	460	<2	<5	<20	20	0.07	10	77	20	<1	95
14	G45227	1.0 0.79	<5	230	<5	1.13	<1	26		742		<10	0.41	308	273	0.10	_	970	4	<5	<20	63	0.08	<10	40	<10	3	48
15	G45228	0.6 0.73	<5	225	<5	0.90	<1	16	76	473	2.74	10	0.40	251	202	0.14	9	1230	6	<5	<20	73	0.08	<10	31	<10	6	45
16	G45229	1.0 0.90	<5	270	<5	0.92	<1	23	79	662	3.56	10	0.45	281	562	0.14	10	1310	6	<5	<20	80	0.09	<10	46	<10	5	55
17	G45230	0.2 0.80	<5	140	<5	1.36	<1	7	19	133	2.69	20	0.51	647	625	0.04	16	940	12	<5	<20	137	0.02	<10	33	<10	19	77
18	G45231	1.6 0.75	<5	235	<5	0.80	<1	19	84	523	3.12	10	0.39	252	526	0.12	7	1160	6	<5	<20	74	0.09	<10	34	<10	5	46
19	G45232	1.1 0.79	<5	260	<5	0.88	<1	27	87	656	4.12	<10	0.40	296	612	0.10	9	1060	6	<5	<20	68	0.09	<10	42	<10	3	64
20	G45233	1.5 0.68	<5	180	<5	0.78	<1	30	94	1124	4.37	<10	0.30	291	337	0.07	10	870	4	<5	<20	52	0.06	<10	33	<10	<1	56
0.4	0.4500.4	00075	_	040	_	0.70		00	77	004	0.04	40	0.04	00.4	070	0.00	•	4440	•	_	00	00	0.07	40	0.4	40		45
21	G45234	0.8 0.75	<5	210	<5	0.79	<1	20	77	621	3.21	10	0.34	234	379	0.09	_	1140	6	<5	<20	60	0.07	<10	34	<10	3	45
22	G45235	0.3 0.59	<5	200	<5	1.22	<1	11	74	312	2.08	10	0.28	339	171	0.08		1400	6	<5	<20	59	0.08	<10	31	<10	(36
23	G45236	<0.2 0.04	5	15	<5	>10	<1	<1	4	14	0.07	<10	>10	71		<0.01		550	<2	35	<20		< 0.01	<10	2	<10	<1	8
24	G45237	0.5 0.57	<5	160	<5	1.55	<1	13	80	297	2.58	<10	0.35	434	294	0.07		1020	4	<5	<20	46	0.08	<10	37	<10	5	42
25	G45238	0.7 0.65	<5	175	<5	1.66	<1	20	78	482	3.27	<10	0.37	486	170	0.08	7	1160	4	<5	<20	60	0.08	<10	32	<10	4	64

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	G45239	0.9 0.70	<5	225	<5	0.80	<1	31	80	677	4.02	<10	0.33	238	560	0.10	9	960	6	<5	<20	68	0.08	<10	28	<10	2	65
27	G45241	0.3 0.59	<5	160	<5	2.12	<1	12	84	250	2.53	<10	0.25	630	338	0.04	10	1080	4	<5	<20	38	0.06	<10	37	<10	5	53
28	G45242	0.6 0.90	<5	255	<5	0.56	<1	31	121	591	4.04	<10	0.68	243	1294	0.09	32	690	10	<5	<20	42	0.12	<10	97	<10	13	51
29	G45243	0.4 0.79	5	190	<5	1.17	<1	19	123	440	3.16	<10	0.69	444	1545	0.07	37	560	12	<5	<20	29	0.12	<10	119	<10	15	65
30	G45244	<0.2 0.55	<5	190	<5	1.33	<1	8	85	165	1.63	<10	0.37	408	478	0.06	13	1220	8	<5	<20	42	0.08	<10	49	20	10	38
31	G45245	0.4 0.71	<5	215	<5	0.64	<1	17	67	328	2.70	<10	0.39	201	98	0.11	15	1120	8	<5	<20	52	0.10	<10	40	<10	7	37
32	G45246	0.5 0.90	<5	255	<5	0.57	<1	29	116		4.14		0.64		1247	0.10		630	10	<5	<20	41	0.13	<10	79	<10	9	65
33	G45247	0.9 1.06	<5	225	<5	0.39	<1	39	139	827	5.74		0.87		1487	0.10		510	10	<5	<20	27	0.16	30	111	<10	8	94
34	G45248	0.9 1.00	<5	235	<5	0.53	<1	30	140	-	4.74	-	0.78		760	0.00		600	8	<5	<20	36		<10		<10	9	86
35	G45249	0.7 1.02			<5	0.33	<1	11			2.01		0.73		35	0.03		1230	4	<5	<20	54	0.13		25	20	4	33
00	0 102 10	0.0 0.02	10		10	0.7 1	٠.		00	002	2.01	110	0.00	.00	00	0.11	•	.200	·	10	120	0.	0.01	110			•	00
36	G45250	0.3 0.77	<5	135	<5	1.35	<1	7	18	130	2.64	20	0.50	638	637	0.04	15	960	14	<5	<20	134	0.02	<10	32	<10	19	73
37	G45251	0.5 0.70	<5	225	<5	0.75	<1	11	65	301	2.14	10	0.37	212	7	0.14	5	1250	6	<5	<20	72	0.09	<10	27	<10	7	41
38	G45252	0.6 0.62	<5	210	<5	0.98	<1	10	63	341	1.95	<10	0.33	230	5	0.11	9	1180	6	<5	<20	58	0.07	<10	27	<10	4	36
39	G45253	0.4 0.69	<5	195	<5	0.87	<1	10	71	312	1.93	10	0.44	220	19	0.11	9	1370	6	<5	<20	64	0.08	<10	33	<10	6	35
40	G45254	0.3 0.64	<5	225	<5	0.85	<1	8	61	248	1.67	10	0.36	224	9	0.12	4	1250	10	<5	<20	62	0.08	<10	26	20	6	36
41	G45255	0.5 0.59	<5	180	<5	1.62	<1	9	68	301	1.82	10	0.40	270	53	0.10	0	1330	6	<5	<20	64	0.08	10	29	<10	7	31
41	G45256	<0.2 0.04	<5	20	<5	>102		_		20	0.08	<10	>10	67		<0.10		480	_	35	<20	-	< 0.00	<10	_	<10	-	-
	G45256 G45257		<5 5			_	<1 -1	<1	6	20 474			1.30					480 790	<2 10					_	_	_	<1 20	10 70
43		0.9 1.32	-	230	<5 .F	0.77	<1 .1	22	129		3.90	<10			2347	0.12			8	<5 .5	<20	53	-	<10	161	<10	20	
44	G45258	0.5 0.98	<5	155	<5	0.75	<1	23	134	382	3.83	<10	0.89	242		0.07		510	·	<5	<20	23	0.17		129	<10	16	46
45	G45259	0.4 0.59	<5	145	<5	1.16 0.66	<1	13 23	77	279	2.63 3.77	10	0.40		63 1115	0.08		1390	4	<5	<20	51 32	0.10 0.17	<10	34	<10	6	34 52
46	G45261	0.5 1.05	< 5	175	<5 .5		<1 .1	_	144	421	-	-	0.93			0.09		530	6	<5 .F	<20	-	-	-	-	<10	14	
47	G45262	0.7 0.97	5	145	<5	1.04	<1	23	122	457	3.88	<10	0.96	306	604	0.08	35	930	6	<5	<20	45	0.13	<10	103	30	10	53
OC DAT																												
QC DAT																												
Repeat:		0.2.1.04	40	05	-E	1.07	-1	10	111	121	2 00	-10	1 01	252	057	0.05	52	500	0	-5	-20	50	0.12	-10	120	-10	12	52
1	G45213	0.3 1.01	40	95 105	<5	1.07	<1 1	19			3.88		1.01		957	0.05		590 570	8	<5	<20	58	0.13			<10	13	53
10	G45223	1.3 1.15	10	105	<5	0.78	. I	33	131	_	5.10	_	1.12			0.05		570	10	<5	<20	25 65	0.11		_	<10		113
19	G45232	1.2 0.77	<5	245	<5	0.86	<1	27	85	664	4.14		0.40		620	0.10		1080	4	<5	<20	65		<10		<10	2	63
36	G45250	0.3 0.80	<5	135	<5	1.35	<1	7	18	128	2.66	20	0.50	637	640	0.04	15	960	12	<5	<20	133	0.02	<10	33	<10	19	74
Resplit:	;																											
1	G45213	0.3 0.89	40	95	<5	1.41	<1	21	141	384	3.70	<10	0.90	272	967	0.04	47	570	8	<5	<20	62	0.11	<10	109	<10	12	54
37	G45251	0.4 0.73	<5	230	<5	0.77	<1	12	62	368	2.19	10	0.39	212	7	0.14	5	1270	4	<5	<20	77	0.09	<10	28	10	6	38
Standar	rd:																											
PB106	 -	>30 0.52	270	85	<5	1.63	36	4	45 (6216	1.58	<10	0.18	547	32	0.03	7	280	5342	60	<20	141	<0.01	<10	13	10	1 8	3344

3 39 6205 1.65 <10 0.17 565 33 0.02

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

8 270 5265 55 <20 140 <0.01 <10 14 <10

1 8450

JJ/dc df/115 XLS/06

PB106

>30 0.51 275 80 <5 1.60 40

TTM Resources

27-Feb-07

520-700W Pender Street

Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 47

Sample Type: Core Project: CHU
Shipment #: 16

Submitted by: All North Consultants

		Мо	
ET #.	Tag #	(%)	
1	G45213	0.096	
3	G45215	0.079	
5	G45217	0.068	
7	G45219	0.260	
8	G45221	0.077	
9	G45222	0.137	
10	G45223	0.268	
11	G45224	0.078	
12	G45225	0.150	
13	G45226	0.167	
16	G45229	0.058	
17	G45230	0.062	
18	G45231	0.051	
19	G45232	0.062	
26	G45239	0.058	
28	G45242	0.143	
29	G45243	0.155	
32	G45246	0.135	
33	G45247	0.168	
34	G45248	0.078	
36	G45250	0.063	
43	G45257	0.235	
44	G45258	0.059	
46	G45261	0.111	
47	G45262	0.059	
QC DAT	ГА:		
Repeat			
1	G45213	0.098	
7	G45219	0.277	
Resplit	•		
1 1	G45213	0.096	
į	070210	0.090	FCO TECH LABORATORY LTD.

ECO TECH LABORATORY LTD.

Jutta Jealouse

TTM Resources AK7-0117

27-Feb-07

Tag #	Mo (%)	
	0.270	
	0.285	
	0.282	
	0.281	
	0.281	
	Tag #	Tag # (%) 0.279 0.285 0.282 0.281

ECO TECH LABORATORY LTD.

JJ/kk XLS/06 Jutta Jealouse

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2007-109

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 84

Sample Type: Core Project: CHU Shipment #: 14

Submitted by: All North Consultants

Et #.	Tag #	Ag Al	% A	s E	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	45037	0.5 1.1	10 <	5 6	80	<5	0.30	<1	14	146	305	4.57	<10	1.03	183	571	0.10	55	410	20	<5	<20	54	0.14	<10	153	<10	10	63
2	45038	0.4 1.0)5 <	5 9	90	<5	0.36	<1	14	119	359	3.78	<10	1.05	177	299	0.11	37	700	130	<5	<20	30	0.13	<10	141	<10	19	111
3	45039	<0.2 1.0)3 <	5 8	85	<5	0.18	<1	11	104	180	3.12	<10	1.04	137	559	0.11	35	320	14	<5	<20	17	0.13	<10	160	<10	9	36
4	45041	0.2 1.2	22 10) (65	<5	0.51	<1	15	126	255	4.01	<10	1.12	147	1139	0.06	45	340	6	<5	<20	21	0.12	<10	152	<10	8	31
5	45042	0.2 0.8	30 10) .	70	<5	1.69	<1	11	92	185	2.89	<10	0.74	190	2698	0.06	32	340	12	<5	<20	39	0.09	<10	93	<10	10	32
6	45043	<0.2 1.1	12 <	5 6	80	<5	0.33	<1	13	143	172	3.28	<10	1.09	173	575	0.07	40	430	8	<5	<20	19	0.16	<10	159	<10	15	36
7	45044	<0.2 1.2	25	5 .	75	<5	0.78	<1	13	123	196	3.19	<10	1.18	277	922	0.05	46	490	8	<5	<20	22	0.17	<10	142	<10	16	54
8	45045	<0.2 0.0)4 <	5	15	<5	>10	<1	<1	4	13	0.08	<10	>10	62	8	< 0.01	<1	410	<2	35	<20	125	< 0.01	<10	3	<10	1	8
9	45046	0.2 1.4	16 4	5	75	<5	1.64	<1	12	90	219	3.18	<10	1.20	242	2214	0.04	44	380	8	<5	<20	67	0.12	<10	127	<10	11	47
10	45047	0.2 1.4	14 60)	75	<5	1.08	<1	10	135	235	3.24	<10	1.09	207	1054	0.04	35	320	8	<5	<20	57	0.11	<10	136	<10	9	43
11	45048	0.3 1.2	22 <	5 (60	<5	0.50	1	14	115	345	4.21	<10	1.20	231	483	0.08	49	450	2	<5	<20	49	0.13	<10	170	<10	10	52
12	45049	0.2 1.3	37	5 .	75	<5	0.79	<1	15	143	353	4.15	<10	1.30	251	344	0.06	57	440	6	<5	<20	53	0.15	<10	173	<10	13	54
13	45050	<0.2 0.8	31 <	5 14	40	<5	1.35	<1	7	19	136	2.78	20	0.51	643	635	0.06	15	850	8	<5	<20	137	0.02	<10	34	<10	18	71
14	45051	0.5 1.3	36 <	5 8	85	<5	0.66	<1	14	117	435	3.86	<10	1.35	285	369	0.07	56	430	4	<5	<20	34	0.15	<10	176	<10	14	51
15	45052	0.2 1.3	39 10) !	90	<5	0.44	<1	12	140	188	3.37	<10	1.29	201	659	0.07	46	380	4	<5	<20	190	0.16	<10	179	<10	11	40
16	45053	0.2 1.0)7 1:	5 6	80	<5	1.20	<1	5	39	161	1.81	<10	0.45	114	57	0.05	2	760	10	<5	<20	180	0.03	<10	27	<10	6	29
17	45054	0.2 1.1	10 10) (85	<5	0.97	<1	6	65	236	2.15	<10	0.53	147	32	0.07	2	810	10	<5	<20	138	0.06	<10	39	<10	10	41
18	45055	<0.2 0.0	06 <	5	5	<5	>10	<1	<1	5	15	0.09	<10	>10	74	<1	<0.01	<1	480	<2	40	<20	154	<0.01	<10	3	<10	<1	9
19	45056	0.2 1.3	33 3	5	75	<5	1.93	<1	8	86	324	2.71	<10	0.80	202	685	0.07	21	660	4	<5	<20	130	0.05	<10	83	<10	9	36
20	45057	<0.2 2.0	26	5 8	80	<5	4.44	<1	14	84	217	3.69	<10	1.07	197	198	0.06	40	290	10	<5	<20	104	0.07	<10	129	<10	5	35
21	45058	0.2 1.4	13 20) .	75	<5	2.43	<1	15	112	383	3.61	<10	1.09	233	591	0.07	33	790	6	<5	<20	99	0.12	<10	119	<10	13	49
22	45059	0.2 0.5	-		70	<5	1.08	<1	5	69	202	1.83	10	0.33	131	110			920	6	<5	_	95	-	<10	27	<10	7	34
23	45061	0.2 0.6			65	<5	0.88	<1	4	56	251	1.68	10	0.32	125	32	0.07		780	2	<5	<20	163	0.02	<10	23	<10	5	31
24	45062	<0.2 0.6	67 <	5 8	80	<5	0.86	<1	4	76	202	1.70	10	0.31	111	19	0.08	2	660	6	<5	<20	195	0.02	<10	24	<10	5	22
25	45063	0.2 0.6			20	<5	0.45	<1	3	57	223		10		111	17			800	4		<20	73	0.03			<10	6	25

Et #.	Tag #	Ag Al %	As	Ва	Bi (Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	45064	<0.2 0.50	<5	70	<5	0.57	<1	6	83	193	2.21	<10	0.31	85	142	0.09	2	740	6	<5	<20	58	0.01	<10	18	<10	4	19
27	45065	<0.2 0.03	5	15	<5	>10	<1	<1	3	11	0.08	<10	>10	66	<1	<0.01	<1	470	<2	40	<20	130	<0.01	<10	3	<10	2	7
28	45066	0.2 0.41	<5	50	<5	0.83	<1	5	83	239	2.41	10	0.26	82	411	0.07	2	640	2	<5	<20	49	0.01	<10	17	<10	2	16
29	45067	0.2 0.51	<5	70	<5	0.41	<1	6	90	291	2.22	<10	0.32	85	113	0.11	2	660	2	<5	<20	53	0.02	<10	19	<10	4	16
30	45068	<0.2 0.45	<5	70	<5	0.56	<1	4	46	127	1.88	<10	0.31	95	99	0.10	2	810	4	<5	<20	53	0.02	<10	20	<10	6	15
31	45069	<0.2 0.44	<5	80	<5	0.39	<1	3	60	100	1 26	-10	0.23	74	150	0.11	2	570	6	-5	-20	108	0.02	-10	17	<10	5	18
32	45009	<0.2 0.44		135		1.34	<1	7			2.75	20				0.11		870	12		<20		0.02			<10	18	76
33	45070	<0.2 0.73		110		0.39	<1	5			1.95		0.30			0.00		700	6		<20	42	0.02			<10	6	25
34	45072	<0.2 0.34	<5	75		1.01	<1	7	54		2.09					0.19		1030	6		<20		0.02			<10	7	23
35	45072	<0.2 0.82		120		1.66	<1	8	49				0.55			0.00		1010	8		<20	94	0.03			<10	7	29
33	43073	<0.2 0.02	ζ3	120	<3	1.00	<u> </u>	0	43	01	1.09	<10	0.55	200	<u> </u>	0.07	3	1010	0	<3	\ 20	34	0.00	<10	44	<10	,	29
36	45074	<0.2 0.79	<5	125	<5	1.32	<1	10	60	44	2.49	<10	0.62	313	<1	0.07	6	1300	9	<5	<20	56	0.12	<10	56	<10	10	44
37	45075	<0.2 0.89	<5	160	<5	1.46	<1	10	49	41	2.44	<10	0.74	308	<1	0.06	6	1300	8	<5	<20	49	0.12	<10	61	<10	8	40
38	45076	<0.2 0.68	<5	100	<5	1.46	<1	8	52	36	2.08	<10	0.54	236	5	0.06	5	1110	8	<5	<20	46	0.09	<10	44	<10	7	32
39	45077	<0.2 0.84	<5	110	<5	1.35	<1	10	58	126	2.36	<10	0.74	271	<1	0.06	7	1330	8	<5	<20	53	0.11	<10	55	<10	8	36
40	45078	<0.2 0.69	<5	100	<5	0.87	<1	9	55	91	1.89	<10	0.58	208	<1	0.05	8	1030	8	<5	<20	40	0.12	<10	44	<10	8	36
41	45079	<0.2 0.64	-5	150	<5	0.59	<1	8	73	80	1 01	-10	0.52	196	<1	0.08	6	940	6	-5	<20	35	0.14	-10	4 0	<10	8	34
42	45081	<0.2 0.62	_	140		0.55	<1	7	52				0.51			0.08		930	6		<20	40	0.12			<10	7	30
43	45082	<0.2 0.64		140		0.65	<1	9	68		2.00		0.52			0.00		1100	8	_	<20	42	0.12			<10	9	29
44	45083	<0.2 0.69		125		0.77	<1	9	46				0.55			0.12		1300	8		<20	79	0.12			<10	8	28
45	45084	<0.2 0.00		105	<5		<1	10				-	0.57	-				1180	6				0.11			<10	8	29
.0	10001	10.2 0.1 1	10		10		``		0.	0		110	0.01	100		0.01	Ŭ	1100	Ū	10	120		0	110	00	110	Ū	20
46	45085	<0.2 0.04	<5	<5	<5	>10	<1	<1	2	9	0.08	<10	>10	72	<1	< 0.01	<1	390	<2	40	<20	131	<0.01	<10	3	<10	<1	7
47	45086	0.4 0.45	<5	60	<5	0.87	<1	7	63	531	2.62	<10	0.34	96	125	0.09	4	760	4	<5	<20	63	0.04	<10	34	<10	2	23
48	45087	0.2 0.47	<5	70	<5	0.72	<1	5	76	288	1.48	10	0.31	90	66	0.10	2	710	6	<5	<20	87	0.05	<10	22	<10	6	21
49	45088	<0.2 0.86	<5	145	<5	1.10	<1	11	53	115	2.67	<10	0.67	227	1	0.09	9	1130	6	<5	<20	180	0.14	<10	60	<10	7	34
50	45089	<0.2 1.33	<5	205	<5	1.61	<1	13	74	79	3.04	<10	1.09	307	4	0.12	15	1500	6	<5	<20	268	0.19	<10	85	<10	11	40
51	45090	<0.2 0.75	<5	125	~ 5	1.34	<1	7	18	127	2.74	20	0.48	636	653	0.06	14	860	12	- 5	<20	131	0.02	~ 10	32	~ 10	18	75
52	45091	0.3 1.05	<5	75		0.19	<1				3.95							400	6		<20	8	0.14				13	49
53	45092	0.7 1.37	65	50	-	0.56	<1						1.22					1020	10	_	<20	10	0.11				12	74
54	45093	0.3 0.86	10	55		0.93	<1	15					0.70					1390	6		<20	21	0.07			<10	9	47
55	45094	0.2 1.40	_	125		0.42	<1	-					1.27					640	8		<20	11					19	44
56	45095	<0.2 0.05	5	5	<5	>10	<1	<1	4	14	0.08	<10	>10	63	<1	<0.01	<1	420	<2	35	<20	133	<0.01			<10	<1	8
57	45096	<0.2 1.47	<5	135	<5	0.59	<1						1.35		406	0.06	51	590	8	<5	<20	22	0.20	<10	200	<10	19	52
58	45097	<0.2 1.40	<5	135		0.37	<1				3.56		1.24			0.07	48	560	8	<5	<20	9	0.21				16	45
59	45098	0.2 1.13	<5	100	<5	0.35	<1	16	122	259	3.55	<10	1.06	177	352	0.06	51	480	8		<20	9	0.17	<10	166	<10	15	43
60	45099	<0.2 1.38	<5	80	<5	0.39	<1	22	147	238	4.11	<10	1.17	221	745	0.08	52	540	8	<5	<20	11	0.20	<10	177	<10	17	50
61	45101	0.2 1.22	<5	80	<5	0.24	<1	20	122	318	4.11	<10	1.06	233	1248	0.07	50	480	10	<5	<20	14	0.19	<10	164	<10	15	55
62	45102	0.6 1.05	5	70	<5		<1									0.06		390	8		<20		0.13	_	-	-	11	38
63	45103	0.4 1.36	5		<5		<1									0.07		560	8		<20		0.14				14	49
64	45104	2.4 1.41	10	70		0.64	<1						1.12					500	8		<20		0.17				15	59
65	45105	0.3 1.16	10													0.06		490	10		<20		0.18					54
	.3.00	0.00					•••	• •			3.01				· · ·	0.00			. •	.0	5	• •						٠.

Tag#

Et #.

ICP CERTIFICATE OF ANALYSIS AK 2007-109

TTM Resources

Page 2
Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P Pb Sb Sn Sr Ti % U V W Y Zn

66	45106	0.2 1.12	2 <5	105	<5	0.32	<1	16	145	298	3.61	<10	1.02	167	752	0.08	44	560	8	<5	<20	11	0.16	<10	173	<10	14	40
67	45107	0.2 1.14	<5	90	<5	0.45	<1	20	139	329	3.86		1.05	184	648	0.08	51	530	6	<5	<20	13	0.17	<10	161	<10	15	44
68	45108	0.3 1.34	<5	80	<5	0.51	<1	22	152	519	5.15	<10	1.22	204	625	0.08	69	570	4	<5	<20	25	0.17	<10	181	<10	14	49
69	45109	0.2 1.31					<1	18	149	399	4.23	<10	1.21	222		0.13	62	840	8	<5	<20	28		<10	194		16	61
70	45110	<0.2 0.73		130	<5	1.34	<1	7		124	2.75	10	0.47			0.06	14	860	12	<5	<20	127	0.02	<10	32	<10	18	75
71	45111	0.3 0.99) <5	85	_		1	21	153	328	3.72	<10	0.89	-		0.08	71	-	10	<5	<20	15	-	<10	167	<10	15	78
72	45112	<0.2 1.26	S <5	105	< 5	0.35	<1	18	148	219	3.98	<10	1.12	238	247	0.09	68	710	14	<5	<20	16	0.20	<10	194	<10	15	62
73	45113	<0.2 1.07	′ <5	80	<5	0.86	<1	16	123	222	3.43	<10	0.95	182	231	0.05	59	570	6	<5	<20	18	0.14	<10	153	<10	15	46
74	45114	<0.2 1.23	3 <5	65	<5	0.65	<1	19	153	373	4.76	<10	1.07	253	385	0.06	64	580	10	<5	<20	14	0.17	<10	167	10	15	60
75	45115	<0.2 0.06	5 5	10	<5	>10	<1	<1	5	20	0.13	<10	>10	85	2	<0.01	<1	440	<2	40	<20	127	<0.01	<10	4	<10	<1	11
76	45116	<0.2 1.14	· <5	85	<5	0.63	<1	16	141	240	3.73	<10	1.12	198	257	0.07	54	580	12	<5	<20	12	0.19	<10	171	<10	18	51
77	45117	0.3 0.81			_	-	<1	23	147	434	4.67	<10	0.78			0.08	54	840	8	<5	<20	14		<10		<10	11	49
78	45118	0.5 0.84			_		1	18	130	469	4.33	<10				0.08	55	720	8	<5	<20	13	0.13	<10	126	<10	11	97
79	45119	0.4 0.88	3 <5	95	_	-	<1	13	130	348	2.85	<10				0.08	37		4	<5	<20	14		<10		<10	12	35
80	45121	0.3 0.99	<5	100	<5	0.48	<1	12	121	236	2.81	<10	0.92	184	724	0.06	43	480	8	<5	<20	9	0.16	<10	153	<10	15	37
81	45122	0.2 1.03	3 <5	135	<5	0.34	<1	15	143	243	3.31	<10	0.97	194	538	0.09	47	560	10	<5	<20	14	0.18	<10	155	<10	15	47
82	45123	0.3 0.78			_		<1		119	429	3.68	<10	0.69	-	1047	0.09	36	600	6	<5	<20	16	0.11	<10	106	<10	8	44
83	45124	0.3 0.49) <5	70	<5	0.52	<1	15	90	421	2.60	<10	0.31	119	1176	0.07	9	750	6	<5	<20	21	0.05	<10	33	<10	2	27
84	45125	0.2 0.51	<5	100	<5	0.53	<1	7	60	283	1.94	<10	0.37	140	585	0.07	8	860	4	<5	<20	23	0.05	<10	42	10	4	26
QC DA	Г А :																											
Repeat																												
1	45037	0.5 1.04	· <5	70	<5	0.31	<1	14	142	292	4.56	<10	1.02	183	571	0.09	56	450	24	<5	<20	49	0.13	<10	151	<10	10	66
10	45047	0.2 1.50					<1	10	133	250		<10	1.19		1078	0.05	36	320	6	<5	<20	64		<10	140	<10	9	40
19	45056	0.2 1.22			_		<1	8	84	306	2.71	<10	0.78		680	0.06		660	6	<5	<20	117	0.05	<10	81	<10	9	38
36	45074	<0.2 0.77			_		<1	10	56	41	2.46	<10	0.62		<1	0.07		1280	8	<5	<20	52	0.11	_	55	<10	7	42
45	45084	<0.2 0.74			_		<1	10	62	161	2.25	<10		202		0.08		1170	6	<5	<20	146	0.11	-	52	<10	8	28
54	45093	0.3 0.88			_		<1	15	49	324	3.01	<10	0.72			0.06		1360	6	<5	<20	23	0.07	_	54	<10	9	46
71	45111	0.3 1.04					1	21	159		3.81		0.97			0.09		730	8	<5	<20	16	0.15		178	-	13	74
Resplit	:																											
1	45037	0.3 0.99	<5	70	<5	0.31	<1	14	135	281	4.48	<10	0.95	172	580	0.09	56	430	22	<5	<20	52	0.13	<10	145	<10	9	58
36	45074	<0.2 0.83	3 <5	115	<5	1.27	<1	10	63	48	2.53	<10	0.67	315	1	0.09	6	1280	8	<5	<20	55	0.13	<10	58	<10	8	40
71	45111	0.3 1.02	2 <5	90	<5	0.50	<1	18	161	329	3.70		0.93	259	364	0.10	71	700	8	<5	<20	14	0.15	<10	171	<10	14	65
Standa	rd:																											
PB106		>30 0.52					36	4			1.58	<10	0.18		32	0.03	7		5342				<0.01		13	10		3344
PB106		>30 0.51	275	80	<5	1.60	40	3	39	6205	1.65	<10	0.17	565	33	0.02	8	270	5265	55	<20	140	<0.01	<10	14	<10	1 8	3450

43 6194 1.45 <10 0.17 560

ECO TECH LABORATORY LTD.

55 <20 145 <0.01 <10

1 8384

Jutta Jealouse B.C. Certified Assayer

JJ/dc df/109 XLS/06

PB106

30 0.02

7 270 5282

TTM Resources 27-Feb-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 84

Sample Type: Core
Project: CHU
Shipment #: 14

Submitted by: All North Consultants

		Мо
ET #.	Tag #	(%)
1	45037	0.058
2	45038	0.031
3	45039	0.056
4	45041	0.115
5	45042	0.272
6	45043	0.058
7	45044	0.092
9	45046	0.222
10	45047	0.103
13	45050	0.063
14	45051	0.037
15	45052	0.065
19	45056	0.068
21	45058	0.058
32	45070	0.063
51	45090	0.064
60	45099	0.073
61	45101	0.126
62	45102	0.216
63	45103	0.084
64	45104	0.054
65	45105	0.097
66	45106	0.074

ECO TECH LABORATORY LTD.

Jutta Jealouse

		Мо
ET #.	Tag #	(%)
67	45107	0.064
68	45108	0.064
69	45109	0.058
70	45110	0.064
78	45118	0.084
79	45119	0.052
80	45121	0.072
81	45122	0.054
82	45123	0.107
83	45124	0.118
84	45125	0.057
00 047	F A .	
QC DAT	<u> </u>	
Repeat:		
1	45037	0.058
10	45047	0.107
32	45070	0.064
69	45109	0.057
03	40100	0.007
Resplit:	:	
1	45037	0.083
Standa	rd:	
MP2		0.280
MP2		0.281

JJ/kk XLS/06 ECO TECH LABORATORY LTD.

Jutta Jealouse

ICP CERTIFICATE OF ANALYSIS AK 2007-0098

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 34

Sample Type: Core Project: CHU
Shipment #: 13

Submitted by: All North Consultants

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G45002	0.4	1.89	<5	85	<5	1.40	<1	21	40	730	5.74	<10	1.82	309	190	0.08	7	730	8	<5	<20	40	0.17	<10	183	<10	13	58
2	G45003	0.4	1.62	<5	90	<5	1.51	<1	24	76	638	5.59	<10	1.61	294	347	0.08	7	790	8	<5	<20	29	0.15	<10	150	<10	15	44
3	G45004	0.9	1.14	10	55	<5	1.80	<1	19	50	1253	6.17	<10	0.90	285	721	0.06	7	570	10	<5	<20	53	0.06	<10	80	<10	9	55
4	G45005	<0.2	0.04	5	10	<5	>10	<1	<1	5	3	0.09	<10	>10	66	<3	< 0.01	<1	410	<2	35	<20	115	< 0.01	<10	4	<10	<1	7
5	G45006	0.7	1.49	5	80	<5	1.49	<1	25	59	1164	7.15	<10	1.60	359	1042	0.10	10	560	10	<5	<20	30	0.11	<10	151	<10	12	77
6	G45007	0.4	0.63	<5	65	<5	1.37	<1	12	79	504	3.74	<10	0.57	235	402	0.06	6	690	10	<5	<20	30	0.05	<10	53	<10	9	47
7	G45007	0.4	0.87	<5	75	<5	1.68	<1	13	60	529	4.50	<10	0.79	319	327	0.00	10	770	10	<5	<20	27	0.03	<10	77	<10	11	79
8	G45009	<0.2	0.53	<5	60	<5	2.01	<1	8	77	159	2.44	10	0.79	273	257	0.07		1190	8	<5	<20	46	0.03	<10	27	<10	7	47
9	G45010	<0.2	0.65	<5	120	<5	1.32	<1	7	17	117	2.60	10	0.43	616	641	0.07	14	750	12	<5	<20	105	0.04	<10	29	<10	18	80
10	G45010	<0.2	0.43	<5	65	<5	1.93	<1	7	68	165	2.20	<10	0.43	207	196	0.06	6	950	6	<5	<20	57	0.02		17	<10	7	33
10	040011	\0.2	0.40	\ 0	00	\ 0	1.00	` '	,	00	100	2.20	~10	0.20	201	130	0.00	U	330	O	\ 0	\2 0	01	0.00	\10	.,	\10	,	00
11	G45012	0.3	0.78	10	50	<5	1.59	<1	12	71	384	3.05	<10	0.54	218	513	0.05	8	700	6	<5	<20	34	0.02	<10	36	<10	11	38
12	G45013	0.3	1.06	15	70	<5	1.95	<1	14	87	365	3.55	<10	0.85	264	3734	0.05	31	460	10	<5	<20	37	0.07	<10	90	<10	11	52
13	G45014	0.2	0.66	150	50	<5	2.90	<1	11	89	340	3.03	<10	0.39	227	649	0.03	36	580	10	<5	<20	32	0.02	<10	51	<10	11	42
14	G45015	0.3	0.79	1275	35	<5	2.14	<1	9	62	278	2.44	<10	0.43	183	763	0.01	39	340	12	10	<20	34	<0.01	<10	24	<10	5	46
15	G45016	0.5	1.21	25	55	<5	2.01	<1	17	95	442	3.17	<10	0.97	240	1076	0.03	39	630	10	<5	<20	55	0.05	<10	72	<10	9	53
16	G45017	0.4	1.06	10	70	<5	1.27	<1	12	147	371	3.33	<10	1.09	329	1298	0.05	44	400	14	<5	<20	33	0.09	<10	144	<10	12	102
17	G45017 G45018	0.4	1.08	10	55	<5	1.88	<1	11	112	200	2.77	<10	0.90	388	1427	0.03	41	290	18	<5	<20	38	0.03	<10	131	<10		102
18	G45019	<0.2	1.23	15	55	<5	1.47	<1	13	141	156	2.97	<10	1.08	350	1709	0.04	42	360	26	<5	<20	36	0.06	<10	129	<10	-	103
19	G45021	0.3	1.04	<5	75	<5	1.04	<1	18	134	404	3.26	<10	1.03	223	783	0.04	41	320	8	<5	<20	35	0.00	<10	141	<10	11	45
20	G45021	<0.2	0.82	5	55	<5	1.10	<1	13	143	147	2.79	<10	0.77	184	1122	0.04	36	280	12	<5	<20	30	0.05	<10	92	<10	7	41
20	0 10022	\0.2	0.02	Ü	00	10	1.10	`'	10	1 10		2.70	110	0.77	101	1122	0.04	00	200		10	\20	00	0.00	110	02	110	•	
21	G45023	<0.2	1.12	10	75	<5	0.69	<1	12	130	162	3.00	<10	1.03	183	1252	0.05	45	330	12	<5	<20	23	0.12	<10	152	<10	13	40
22	G45024	< 0.2	1.10	5	85	<5	0.41	<1	12	178	146	2.95	<10	1.11	192	328	0.08	56	300	10	<5	<20	18	0.14	<10	179	<10	14	40
23	G45025	< 0.2	0.03	5	10	<5	>10	<1	<1	4	9	0.08	<10	>10	70	<1	<0.01	<1	360	<2	35	<20	115	<0.01	<10	2	<10	1	7
24	G45026	< 0.2	1.30	<5	80	<5	1.08	<1	14	151	286	3.57	<10	1.39	252	982	0.07	69	390	6	<5	<20	45	0.15	<10	180	<10	12	53
25	G45027	< 0.2	1.44	<5	110	<5	0.46	<1	16	157	179	3.52	<10	1.36	240	332	0.08	56	410	8	<5	<20	48	0.19	<10	183	<10	18	47

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
26	G45028	0.2	1.20	<5	100	<5	0.95	<1	16	124	274	3.35	<10	1.19	337	479	0.07	44	390	6	<5	<20	45	0.16	<10	151	<10	15	49
27	G45029	0.2	0.67	5	65	<5	1.27	<1	7	92	259	2.39	<10	0.58	240	516	0.08	16	730	8	<5	<20	57	0.05	<10	52	<10	7	34
28	G45030	<0.2	0.70	<5	125	<5	1.35	<1	7	18	119	2.68	10	0.46	631	635	0.06	16	730	12	<5	<20	114	0.02	<10	31	<10	18	77
29	G45031	<0.2	1.30	5	120	<5	0.70	<1	15	131	160	3.33	<10	1.23	288	374	0.08	52	400	10	<5	<20	28	0.18	<10	162	<10	17	123
30	G45032	0.2	1.33	<5	110	<5	0.44	<1	16	149	253	3.72	<10	1.29	250	417	0.08	51	510	8	<5	<20	38	0.20	<10	179	<10	19	52
31	G45033	0.2	1.39	<5	110	<5	0.52	<1	17	137	250	3.78	<10	1.38	256	675	0.08	55	430	8	<5	<20	33	0.19	<10	167	<10	19	50
32	G45034	<0.2	1.45	<5	120	<5	0.31	<1	16	158	268	3.93	<10	1.46	279	235	0.09	55	490	6	<5	<20	18	0.23	<10	175	<10	22	54
33	G45035	0.2	1.18	<5	110	<5	0.28	1	17	135	257	3.48	<10	1.18	241	748	0.10	53	430	10	5	<20	24	0.16	<10	164	<10	17	53
34	G45036	0.3	1.14	<5	90	<5	0.25	<1	16	159	372	4.37	<10	1.10	181	309	0.11	46	340	8	<5	<20	19	0.13	<10	161	<10	9	48
QC DAT																													
1	G45002	0.4	1.87	5	85	<5	1.40	<1	22	39	226	5.73	<10	1.76	309	192	0.07	6	740	10	<5	<20	40	0.17	<10	178	<10	13	60
10	G45011	<0.2	0.46	<5	70	<5	1.98	<1	8	70	169	2.24	10	0.31	213	206	0.07	6	950	6	<5	<20	60	0.03	<10	18	<10	9	33
19	G45021	0.4	0.99	5	75	<5	1.02	<1	18	134	397	3.24	<10	0.98	220	774	0.06	43	340	10	<5	<20	33	0.08	<10	137	<10	11	46
28	G45030	0.2	0.68	<5	120	<5	1.33	<1	7	18	114	2.65	10	0.45	621	618	0.05	16	720	12	<5	<20	111	0.02	<10	31	<10	17	76
Resplit																													
1	G45002	0.4	1.93	<5	95	<5	1.37	<1	20	38	742	6.06	<10	1.87	317	252	0.08	6	690	10	<5	<20	33	0.18	<10	189	<10	12	56
Standar PB106	rd:	>30	0.53	275	75	<5	1.62	33	4	43	6292	1.69	<10	0.17	564	31	0.02	7	270	5272	55	<20	144	<0.01	<10	13	10	1 8	359

JJ/kc df/98 XLS/06 ECO TECH LABORATORY LTD.

Jutta Jealouse

TTM Resources 19-Feb-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 34

Sample Type: Core **Project: CHU Shipment #: 13**

Submitted by: All North Consultants

		Мо	
ET #.	Tag #	(%)	
3	G45004	0.074	
5	G45006	0.107	
9	G45010	0.062	
11	G45012	0.052	
12	G45013	0.391	
13	G45014	0.064	
14	G45015	0.089	
15	G45016	0.114	
16	G45017	0.139	
17	G45018	0.150	
18	G45019	0.180	
19	G45021	0.077	
20	G45022	0.117	
21	G45023	0.135	
24	G45026	0.100	
26	G45028	0.048	
27	G45029	0.051	
28	G45030	0.065	
31	G45033	0.066	
33	G45035	0.077	

ECO TECH LABORATORY LTD.

Jutta Jealouse

1 1 141 1	Coodices Air 0000		13 1 65 67
		Mo	
ET #.	Tag #	(%)	
00.04	T 4		
QC DA	IA: =		
Repeat	::		
3	G45004	0.076	
17	G45018	0.152	
24	G45026	0.100	
Standa	ırd:		
MP2		0.283	

0.279

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

JJ/dc/kc XLS/06

MP2

ICP CERTIFICATE OF ANALYSIS AK 2007-0083

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 83 Sample Type: Core

Project: CHU
Shipment #: 12

Submitted by: All North Consultants.

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	44918	0.5 1.06	20	40	<5	1.25	2	25	49	492	5.11	<10	0.87	196	241	0.07	5	800	<2	<5	<20	20	0.11	<10	94	<10	8	31
2	44919	0.2 0.60	10	30	<5	0.29	1	17	42	229	4.24	<10	0.47	95	223	0.05	5	690	<2	<5	<20	7	0.04	<10	65	<10	6	18
3	44921	0.2 0.68	5	35	<5	0.21	2	19	60	228	4.83	<10	0.57	118	192	0.08	4	620	<2	<5	<20	7	0.05	<10	92	<10	6	36
4	44922	0.3 0.64	10	45	<5	0.52	2	18	41	342	4.29	<10	0.51	134	325	0.09	6	710	<2	<5	<20	12	0.06	<10	90	<10	10	32
5	44923	0.6 0.62	15	40	<5	1.01	2	11	38	574	5.00	<10	0.38	227	267	0.06	3	940	4	<5	<20	12	0.03	<10	40	<10	14	39
6	44924	0.6 0.81	10	40	<5	0.65	2	11	36	347	4.01	<10	0.65	233	857	0.06	4	970	<2	<5	<20	11	0.06	<10	79	<10	11	53
7	44925	<0.2 0.03	<5	25	<5	>10	<1	<1	3	2	0.06	<10	8.52	41	1	0.01	1	230	<2	<5	<20	74	<0.01	<10	<1	<10	1	2
8	44926	0.5 0.83	15	35	<5	1.06	2	18	41	515	5.28	<10	0.61	203	609	0.06	7	860	<2	<5	<20	25	0.06	<10	89	<10	11	62
9	44927	0.4 0.98	10	60	<5	1.05	2	33	38	724	5.96	<10	0.73	193	115	0.09	4	910	<2	<5	<20	33	0.08	<10	132	<10	12	43
10	44928	0.9 0.91	10	110	<5	1.04	2	21	72	970	6.68	<10	0.55	209	283	0.13	8	770	<2	5	<20	38	0.09	<10	103	<10	10	44
11	44929	0.7 1.12	10	50	<5	0.55	18	19	42	861	6.17	<10	0.91	279	457	0.10	6	750	<2	<5	<20	18	0.10	<10	125	<10	10	942
12	44930	<0.2 0.68	10	115	<5	1.28	<1	4	16	110	2.40	20	0.45	599	658	0.05	18	720	6	<5	<20	123	0.02	<10	25	<10	15	68
13	44931	0.3 1.47	15	55	<5	0.66	2	25	63	622	6.25	<10	1.46	374	231	0.12	8	700	<2	<5	<20	37	0.16	<10	146	<10	8	89
14	44932	0.4 1.30	15	75	<5	0.77	2	18	44	675	6.06	<10	1.16	251	941	0.14	6	810	<2	5	<20	30	0.15	<10	113	<10	10	44
15	44933	0.3 1.24	15	130	<5	0.51	2	16	55	539	5.17	<10	0.99	212	259	0.18	4	860	<2	<5	<20	23	0.14	<10	101	<10	12	48
16	44934	0.3 0.74	5	65	<5	0.38	1	17	42	326	3.81	<10	0.44	134	703	0.11	1	910	<2	<5	<20	11	0.06	<10	47	<10	11	23
17	44935	0.2 0.82	10	90	<5	0.43	1	9	53	255	3.51	<10	0.41	116	548	0.18	1	860	<2	<5	<20	14	0.06	<10	37	<10	11	22
18	44936	0.2 0.77	10	80	<5	0.46	1	11	37	440	4.26	<10	0.41	117	716	0.13	<1	920	<2	<5	<20	17	0.06	<10	50	<10	13	24
19	44937	0.2 0.83	10	80	<5	0.40	1	20	49	442	4.16	<10	0.54	156	296	0.11	1	1020	<2	<5	<20	12	0.08	<10	59	<10	15	27
20	44938	0.2 0.89	10	95	<5	0.45	1	12	28	462	3.96	<10	0.55	172	382	0.14	1	1050	<2	<5	<20	15	0.09	<10	62	<10	15	31
21	44939	0.2 1.14	10	125	<5	0.61	2	16	60	486	5.15	<10	0.78	274	624	0.16	2	1010	<2	<5	<20	23	0.15	<10	80	<10	12	49
22	44941	0.3 0.83	10	95	<5	0.69	2	14	33	475	4.84	<10	0.58	199	512	0.16	3	950	<2	<5	<20	21	0.14	<10	82	<10	8	116
23	44942	0.2 0.62	5	85	<5	0.58	2	11	53	271	3.56	<10	0.28	119	457	0.14	2	870	<2	<5	<20	18	0.08	<10	39	<10	11	103
24	44943	<0.2 0.70	10	80	<5	0.55	1	10	39	231	3.58	<10	0.44	140	269	0.13	2	920	<2	<5	<20	13	0.09	<10	48	<10	13	64
25	44944	0.6 1.47	35	35	<5	2.78	2	11	32	661	5.88	<10	1.13	381	455	0.05	1	920	<2	<5	<20	25	0.04	<10	66	<10	17	51

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
26	44945	<0.2 0.03	<5	25	<5	>10	<1	<1	3	2	0.06	<10	>10	57	<1	0.01	2	290	4	<5	<20	85	<0.01	<10	<1	<10	2	2
27	44946	0.3 0.99	15	40	<5	1.20	2	14	37	417	4.69	<10	0.91	354	199	0.07	<1	990	<2	<5	<20	12	0.12	<10	62	<10	10	103
28	44947	0.6 1.04	15	50	5	0.98	2	16	28	529	4.85	<10	1.05	294	201	0.09	<1	1020	16	<5	<20	19	0.10	<10	71	<10	13	83
29	44948	0.6 0.93	15	45	<5	1.24	2	11	29	525	4.20	<10	0.87	307	653	0.08	<1	1060	<2	<5	<20	16	0.12	<10	66	<10	12	63
30	44949	0.7 0.89	10	85	<5	0.69	2	18	36	453	4.79	<10	0.58	296	213	0.18	1	990	4	<5	<20	20	0.11	<10	58	<10	12	91
31	44950	<0.2 0.66	10	115	<5	1.41	<1	4	16	107	2.39	20				0.05	17	720	4	<5	<20	122	0.02	<10	25	<10	15	69
32	44951	0.6 0.88	10	65	<5	0.69	2	17	34	528	4.87	<10	0.59	264	590	0.17	<1	970	<2	<5	<20	17	0.13	<10	71	<10	9	60
33	44952	0.4 0.90	10	85	<5	0.73	2	16	41	443	4.37	<10	0.68	273	337	0.15	<1	980	<2	<5	<20	19	0.12	<10	54	<10	10	44
34	44953	0.3 1.15	15	105	<5	0.64	2	16	37	443	4.50	<10	0.83	270	253	0.20	<1	1020	<2	<5	<20	26	0.14	<10	61	<10	11	41
35	44954	0.4 0.86	10	80	<5	0.56	1	12	47	425	4.02	<10	0.60	212	394	0.16	1	940	<2	<5	<20	19	0.11	<10	53	<10	12	34
36	44955	0.4 0.61	10	55		0.59		11					0.43				2	890	8		<20	17	0.08			<10	11	32
37	44956	0.5 0.80	10	60	<5	0.33	1	15			4.60					0.10	<1	790	<2	<5	<20	15	0.10			<10	8	35
38	44957	0.7 0.93	10	80	55	0.34	1	7			3.54					0.11	3	860	<2	<5	<20	19	0.11			<10	11	40
39	44958	0.4 0.82	10	70		0.42	1	12			4.05					0.10	2	880	<2		<20	18	0.11			<10	8	40
40	44959	0.3 0.63	5	65	<5	0.44	1	10	68	317	3.69	<10	0.45	173	409	0.10	2	820	<2	<5	<20	19	0.09	<10	42	<10	8	25
44	44004	0.5.0.72	40	EE	·E	0.55	4	40	200	440	2 44	.40	0.00	200	101	0.00	.4	040	.0	·E	-00	40	0.40	-10	47	.40	4.4	70
41	44961	0.5 0.73	10	55 55	<5 .F	0.55	1	12			3.44					0.09	<1 .1	940	<2	<5 .E	<20	13	0.10			<10	11	72 40
42	44962	0.4 0.94	10	55 50		1.06	1	13		-	3.96	_				0.06	<1	940	<2		<20	18	0.13			<10	10	49
43	44963	0.3 0.71	10	50	<5 .5	0.55	1	10			3.49					0.07 0.07	1	890	<2	<5 .E	<20	19		_		<10	11	38
44 45	44964	0.5 0.58	10	45 25	<5	0.87	1	12			3.79 0.06			249			2	790	2		<20	13	0.08			<10	9 2	42 4
45	44965	<0.2 0.03	<5	25	<5	>10	<1	<1	2	2	0.06	<10	>10	48	,	0.01	2	320	<2	<5	<20	94	<0.01	<10	< 1	<10	2	4
46	44966	0.3 0.58	5	45	<5	0.66	<1	8	58	247	2.55	<10	0.58	274	541	0.06	3	930	<2	<5	<20	21	0.11	<10	35	<10	7	42
47	44967	<0.2 0.86	10	60	<5	0.96	<1	10	75	189	2.66	<10	0.85	275	224	0.08	15	920	<2	<5	<20	33	0.12	<10	45	<10	5	33
48	44968	<0.2 0.40	5	50	<5	1.02	<1	4	48	158	1.94	10	0.29	176	188	0.05	4	810	2	<5	<20	28	0.05	<10	16	<10	5	26
49	44969	0.2 0.48	15	55	<5	0.63	<1	7	80	281	2.49	10				0.07	5	800	<2	<5	<20	32	0.06		23	<10	5	23
50	44970	0.2 0.66	10	105	<5	1.41	<1	4	16	112	2.41	20	0.45	671	637	0.05	18	730	6	<5	<20	124	0.02	<10	22	<10	15	71
51	44971	0.2 0.85	15	50	<5	1.34	<1	10	74	166	2.65	<10	0.76	297	375	0.10	18	940	<2	<5	<20	57	0.07	<10	40	<10	4	28
52	44972	<0.2 2.38	25	135	<5	2.91	2	27	172	47	4.63	<10	2.26	521	2	0.22	69	1580	<2	<5	<20	147	0.11	<10	121	<10	5	48
53	44973	<0.2 2.53	25	145	<5	2.93	1	29	180	41	4.80	<10	2.27	452		0.27	73	1620	<2	<5	<20	153	0.12	<10	123	<10	5	43
54	44974	<0.2 2.51	25	140	<5	3.30	2	26	127	48	4.96	<10	2.46	580	2	0.19	61	1520	<2	<5	<20	208	0.10	<10	129	<10	6	48
55	44975	<0.2 0.68	10	45	<5	1.40	<1	9	65	89	2.57	<10	0.65	260	301	0.07	10	1010	2	<5	<20	45	0.06	<10	38	<10	8	31
					_			_											_	_								
56	44976	0.3 0.63	15	40			<1	8	44				0.50			0.06	4		2		<20	54	0.07	-		<10	12	30
57	44977	<0.2 2.12	25	75	<5	2.44	1		144		3.82		1.58		21			1320	<2		<20		0.09			<10	5	33
58	44978	<0.2 2.28	25	75	<5	2.32	1	23	149		4.02		1.83			0.26		1280	<2	<5	<20	_		<10			6	34
59	44979	0.2 0.65	10	35	<5	0.86	1	12	41		3.45					0.08		1010	<2	<5	<20	31	0.08			<10	17	25
60	44981	<0.2 0.76	10	50	<5	1.07	<1	8	50	129	2.94	<10	0.65	206	196	0.06	4	1370	4	<5	<20	49	0.09	<10	51	<10	12	33
61	44982	<0.2 0.92	15	50	<5	1.46	1	13	63	50	3.28	-10	n 95	300	10/	0.07	16	1390	2	-5	<20	49	0.08	-10	50	<10	9	38
62	44983	<0.2 0.52	10	40	<5		1	7	54		3.16		0.48				5		4		<20		0.08			<10	7	30
63	44984	<0.2 0.33	15	60		1.22	<1	11	63		2.97					0.07		1130	4		<20		0.08			<10	5	39
64	44985	<0.2 0.80	<5	25	<5	>10	<1	<1	1		0.06			55		0.08	2	250	<2		<20		<0.10			<10	2	2
65	44986	<0.2 0.02		230		3.03	2		83				2.61			0.02		1840	<2				0.11				7	49
0.5	7-1300	~U.Z Z.ZS	23	230	\ J	5.05	_	20	03	52	7.50	\10	2.01	754		0.11	72	1040	~~	\3	~20	14	0.11	~10	100	\10	'	70

Tag #

Et #.

ICP CERTIFICATE OF ANALYSIS AK 2007-0083

TTM Resources

Page 2
Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P Pb Sb Sn Sr Ti % U V W Y Zn

66	44987	<0.2	2.37	25	280	<5	3.39	2	26	92	27	4.97	<10	2.70	689	<1	0.08	47	1780	<2	<5	<20	113	0.10	<10	129	<10	8	51
67	44988	< 0.2	2.20	25	135	<5	5.06	1	22	65	61	4.48	10	2.21	616	77	0.04	40	1570	<2	<5	<20	75	0.03	<10	101	<10	9	48
68	44989	0.2	0.74	15	45	<5	3.03	<1	8	46	427	2.74	20	0.42	224	959	0.04	9	940	<2	<5	<20	53	0.03	<10	24	<10	10	25
69	44990	0.2	0.66	10	110	<5	1.38	<1	4	17	108	2.41	20	0.45	614	674	0.05	17	730	6	<5	<20	124	0.02	<10	22	<10	15	68
70	44991	0.2	0.54	10	40	<5	0.96	<1	8	34	315	2.98	<10	0.47	157	276	0.04	3	830	<2	<5	<20	30	0.06	<10	27	<10	5	23
71	44992	0.5	0.78	10	40	<5	0.92	1	13	50	520	3.78	<10	0.73	219	734	0.06	2	880	8	<5	<20	49	0.11	<10	51	<10	8	35
72	44993	0.2	0.90	15	50	<5	1.89	<1	7	52	401	3.03	10	0.79	249	584	0.06	4	930	<2	<5	<20	49	0.09	<10	44	<10	9	30
73	44994		0.76	25	35	<5	1.33	1	24	31	601	4.65	<10	0.69	201	618	0.05	2	870	<2	<5	<20	32	0.06	<10	44	<10	8	25
74	44995	0.5	1.56	25	45	<5	1.06	1	13	27	614	4.28	<10	1.33	265	547	0.06	<1	1060	<2	<5	<20	25	0.14	<10	89	<10	9	35
75	44996	0.9	1.43	40	40	<5	1.18	2	5	33	960	6.34	<10	1.37	324	4314	0.07	<1	710	<2	<5	<20	109	0.14	<10	94	<10	6	40
76	44997		1.38	20	40	<5	0.96	2	14	44	755	5.22	<10	1.41		1334	0.09	<1	740	<2	<5	<20	94	0.18	<10	110	<10	8	41
77	44998		1.21	20	45	<5	1.61	2	25	34	821	5.31	<10	1.19	232		0.06	1	710	<2	<5	<20	27	0.10	<10	90	<10	8	32
78	44999		1.50	20	55	<5	1.76	1	13	32	446	4.57	<10	1.45	298	814	0.07	2	930	<2	<5	<20	31	0.14	<10	120	<10	11	38
79	45001	0.4	1.47	20	40	<5	2.12	2	15	27	679	4.84	<10	1.38	261	424	0.06	3	830	<2	<5	<20	40	0.10	<10	115	<10	11	38
QC DAT	<u>ΓΑ:</u>																												
Repeat	:																												
1	44918	0.5	1.06	20	45	<5	1.18	2	25	49	501	5.11	<10	0.87	192	239	0.06	5	800	<2	<5	<20	19	0.11	<10	98	<10	8	31
10	44928	0.8	0.90	10	105	<5	1.02	2	20	74	954	6.29	<10	0.55	213	285	0.13	7	790	<2	<5	<20	38	0.10	<10	108	<10	10	45
19	44937	0.2	0.81	10	75	<5	0.40	1	21	50	438	4.15	<10	0.54	157	284	0.11	1	1030	<2	<5	<20	12	0.08	<10	59	<10	15	28
36	44955	0.4	0.59	5	50	<5	0.66	1	11	46	374	3.45	<10	0.43	150	455	0.09	2	860	<2	<5	<20	15	0.08	<10	47	<10	11	27
46	44966	0.3	0.59	5	50	<5	0.63	<1	8	59	247	2.60	<10	0.57	252	547	0.07	3	930	<2	<5	<20	22	0.12	<10	35	<10	7	42
54	44974	< 0.2	2.53	25	140	<5	3.07	2	27	131	48	4.99	<10	2.49	543	4	0.20	63	1570	<2	<5	<20	213	0.10	<10	130	<10	6	50
71	44992	0.4	0.78	10	40	<5	0.88	1	12	52	510	3.72	<10	0.72	219	729	0.06	2	870	<2	<5	<20	50	0.12	<10	52	<10	9	30
Resplit	:																												
1	44918	0.5	1.03	20	45	<5	1.17	2	21	42	478	4.92	<10	0.86	189	241	0.06	5	820	<2	<5	<20	19	0.11	<10	97	<10	8	30
36	44955	0.4	0.58	5	50	<5	0.65	1	10	50	374	3.42	<10	0.42	154	478	0.09	2	960	<2	<5	<20	16	0.09	<10	42	<10	12	27
71	44992	0.4	0.68	10	35	<5	0.89	1	12	41	562	3.80	<10	0.69	198	720	0.05	1	820	<2	<5	<20	46	0.09	<10	50	<10	7	28
Standa	rd:																												
Pb106		>30	0.51	270	80	<5	1.60	32	4	41	6258	1.63	<10	0.17	556	33	0.02	4	270	5256	60	<20	133	<0.01	<10	13	<10	1 8	8446
Pb106			0.50	270	80	<5	1.61	32	3	40	6325	1.63	<10	0.16	553	32	0.02	3		5274	60			<0.01	<10	13	<10	1 8	8373

42 6335 1.63 <10 0.16 549

ECO TECH LABORATORY LTD.

60 <20 141 <0.01 <10 14 <10

1 8400

Jutta Jealouse B.C. Certified Assayer

JJ/dc df/n83 XLS/06

Pb106

>30 0.50 270 75

32

<5 1.63

34 0.02

4 270 5260

TTM Resources 21-Feb-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 83

Sample Type: Core Project: CHU
Shipment #: 12

Submitted by: All North Consultants.

		Мо	
ET #.	Tag #	(%)	
6	44924	0.088	
8	44926	0.061	
12	44930	0.063	
14	44932	0.100	
16	44934	0.070	
17	44935	0.053	
18	44936	0.069	
21	44939	0.063	
22	44941	0.053	
29	44948	0.066	
31	44950	0.064	
32	44951	0.060	
38	44957	0.054	
44	44964	0.067	
46	44966	0.054	
50	44970	0.065	
62	44983	0.059	
68	44989	0.091	
69	44990	0.066	
71	44992	0.073	
72	44993	0.058	
73	44994	0.061	
74	44995	0.055	
75	44996	0.433	
76	44997	0.128	
77	44998	0.088	
78	44999	0.082	ECO TECH LABORATORY LTD.
79	45001	0.040	Jutta Jealouse
			B.C. Certified Assayer

TTM Resources AK7-0083

21-Feb-07

"	- "	Mo	
ET #.	Tag #	(%)	_
QC DA	<u>Γ</u> A:		
Repeat			
6	44924	0.084	
29	44948	0.067	
69	44990	0.065	
Standa	rd:		
MP2		0.282	

ECO TECH LABORATORY LTD.

JJ/kc Jutta Jealouse

XLS/06 B.C. Certified Assayer

ICP CERTIFICATE OF ANALYSIS AK 2007-0072

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 53

Sample Type: Core
Project: CHU
Shipment #: 11

Submitted by: All North Cons.

Phone: 250-573-5700 Fax : 250-573-4557

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	w	Υ	Zn
1	G44863	0.2	1.36	15	90	<5	0.72	<1	12	213	211	2.56	<10	0.96	184	114	0.09	41	290	2	<5	<20	30	0.13	<10	100	<10	11	39
2	G44864	0.3	2.52	<5	65	<5	1.31	<1	19	227	339	3.81	<10	0.98	216	116	0.37	73	480	2	<5	<20	70	0.15	<10	110	<10	11	51
3	G44865	< 0.2	0.15	10	15	<5	>10	<1	<1	10	13	0.15	<10	>10	91	<1	< 0.01	<1	350	<2	40	<20	156	< 0.01	<10	5	<10	<1	6
4	G44866	0.3	4.78	<5	125	<5	2.01	<1	19	162	224	3.78	<10	1.86	316	28	0.54	84	490	<2	<5	<20	135	0.24	<10	222	<10	20	67
5	G44867	0.2	3.28	<5	155	<5	1.24	<1	19	151	163	3.54	<10	1.64	313	33	0.33	74	500	4	<5	<20	69	0.24	<10	195	<10	23	56
6	G44868	0.6	2.65	.E	75	<5	0.89	-1	20	160	272	4.46	-10	1 17	200	11	0.24	74	450	6	.E	-20	E 2	0.22	-10	184	-10	11	E 1
6		0.6	2.65	<5	_	_		<1	20	160		4.46			309	41	0.24	74	450	6	<5	_	53	0.23		-	-	14	54
/	G44869	0.2	2.16	<5	100	<5	1.06	<1	13	197	171	2.80	<10	0.97	238	17	0.21	55	510	6	-	<20	59	0.17		126		18	42
8	G44870	0.2	0.84	_	140	<5	1.33	<1	7	19	124	2.54	20	0.50	636	635	0.05	15	700	12	-	<20	125	0.02	-		<10	19	76
9	G44871	<0.2	2.69		130	<5	1.18	<1	18	176	146	3.39	<10	1.34	296	15	0.19	58	640	8		<20	52	0.25		179		24	57
10	G44872	<0.2	2.62	<5	110	<5	0.95	<1	18	148	163	3.43	<10	1.39	307	21	0.22	53	760	2	<5	<20	73	0.23	<10	187	<10	16	53
11	G44873	0.2	1.12	<5	75	<5	0.77	<1	13	155	240	2.90	<10	0.83	215	47	0.06	34	560	2	<5	<20	23	0.11	<10	95	<10	9	41
12	G44874	0.2	2.32	<5	60	<5	0.97	2	18	162	285	3.77	<10	1.07	301	41	0.25	47	380	6	<5	<20	59	0.17	<10	139	<10	13	124
13	G44875	< 0.2	2.34	<5	120	<5	0.84	<1	17	182	150	3.34	<10	1.23	289	42	0.21	51	430	6	<5	<20	44	0.21	<10	154	<10	16	53
14	G44876	0.2	2.17	<5	85	<5	0.87	<1	17	179	212			1.24	289	21	0.19	51	440	6	<5	<20	38	0.21		158	<10	16	54
15	G44877	<0.2	2.44	<5	105	<5	0.99	<1	16	181	219	3.35		1.17	269	94	0.31	65	450	<2	<5	<20	62	0.19		154		17	56
16	G44878	<0.2	2.88	5	115	<5	1.63	<1	15	179	188	2.88	<10	1.05	277	74	0.31	69	520	<2	<5	<20	125	0.15	<10	122	<10	17	52
17	G44879	<0.2	3.51	<5	115	<5	1.48	<1	19	182	188	3.62	<10	1.55	379	26	0.34	75	540	<2	<5	<20	110	0.19	<10	166	<10	14	69
18	G44881	< 0.2	2.79	5	125	<5	0.82	<1	20	141	131	3.70	<10	1.67	321	13	0.15	84	460	6	<5	<20	49	0.23	<10	200	<10	15	66
19	G44882	< 0.2	3.08	5	75	<5	1.23	<1	21	200	196	3.69	<10	1.52	304	8	0.34	84	510	<2	<5	<20	86	0.22	<10	171	<10	18	75
20	G44883	< 0.2	3.96	<5	100	<5	1.56	<1	21	172	224	3.51	<10	1.79	332	6	0.54	103	610	<2	<5	<20	120	0.22	<10	164	<10	22	81
	_																												
21	G44884	<0.2	4.39	<5	110	<5	1.58	<1	22	167	179			1.92	373	19		101	590	<2	<5	<20	123	0.24		190	_	24	74
22	G44885	<0.2	0.06	5	15	<5	>10	<1	<1	7	12	0.09	<10	>10	88	<1	<0.01	<1	360	<2		_			<10	4	<10	<1	6
23	G44886	<0.2	2.89	<5	80	<5	1.35	<1	20	193	173	3.72	<10	1.55	307	9	0.28	81	530	<2	<5	<20	68	0.21	<10	168	<10	19	84
24	G44887	0.4	1.82	<5	50	<5	0.48	<1	30	134	374	5.71	<10	1.59	333	8	0.09	51	510	<2	<5	<20	19	0.23	<10	148	80	9	98
25	G44888	<0.2	2.44	<5	90	<5	0.52	<1	20	171	147	3.56	<10	1.59	342	3	0.13	73	440	<2	<5	<20	23	0.25	<10	196	<10	15	66
26	G44889	<0.2	2.31	<5	105	<5	0.78	<1	17	170	127	3.20	<10	1.48	338	7	0.10	68	470	<2	<5	<20	30	0.22	<10	186	<10	15	60
27	G44890	<0.2	0.98	<5	150	<5	1.37	<1	7	19	146	2.61	20	0.58	669	646	0.06	14	690	6	<5	<20	154	0.02		38	<10	19	69
28	G44891	<0.2	1.55	<5	80	<5	0.54	<1	12	155	179	2.74	<10	1.03	228	14	0.10	49	400	<2	<5	<20	27	0.02	_		<10	10	47
29	G44892	<0.2	2.05	<5	100	<5	0.34	<1	16	169	132	3.26	<10	1.45	322	4	0.10	66	670	2	<5	<20	18	0.13	<10		<10	16	70
-		-		_		_	-	_	_				_	_	-	-					_	_			_		_	-	
30	G44893	<0.2	2.64	15	70	<5	1.14	<1	19	173	231	3.80	<10	1.34	395	8	0.23	88	440	<2	<5	<20	69	0.20	<10	163	<10	17	72

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
31	G44894	<0.2	2.32	40	115	<5	1.29	<1	17	166	152	3.27	<10	1.32	398	6	0.12	72	380	<2	<5	<20	67	0.15	<10	150	<10	13	67
32	G44895	<0.2	2.04	5	75	<5	1.33	4	16	154	275	3.63	<10	1.12	299	7	0.21	63	460	<2	<5	<20	50	0.15	<10	147	30	17	211
33	G44896	<0.2	1.28	<5	85	<5	0.66	<1	17	260	207		<10	0.83	239	6	0.12	47	360	4	<5	<20	30	0.14		104	20	18	67
34	G44897	<0.2	1.18	<5	100	<5	0.81	2	12	159	161	2.43	<10	0.66	189	4	0.12	43	360	2	<5	<20	35	0.12	<10	91	<10	16	151
35	G44898	0.2	1.34	<5	110	<5	0.44	<1	16	245	189	2.96	<10	0.94	259	4	0.13	50	380	4	<5	<20	20	0.18	<10	128	<10	18	62
36	G44899	<0.2	2.49	<5	105	<5	0.93	<1	19	195	156	3.21	<10	0.99	266	9	0.30	57	470	2	<5	<20	62	0.17	<10	147	10	17	63
37	G44901	< 0.2	1.45	<5	95	<5	1.23	2	10	112	195	2.24	<10	0.46	146	7	0.20	33	310	<2	<5	<20	70	0.10	<10	77	<10	11	120
38	G44902	< 0.2	1.74	<5	120	<5	0.90	<1	11	133	153	2.24	<10	0.74	242	<1	0.22	42	380	2	<5	<20	68	0.14	<10	111	<10	16	51
39	G44903	0.5	1.23	<5	55	<5	0.77	<1	22	38	823	4.81	<10	0.83	474	60	0.12	6	580	<2	<5	<20	43	0.20	<10	123	<10	17	68
40	G44904	0.3	1.33	<5	50	<5	0.77	<1	19	29	564	4.54	<10	0.71	420	271	0.16	6	580	<2	<5	<20	63	0.18	<10	120	<10	14	61
41	G44905	<0.2	0.05	5	25	<5	>10	<1	<1	5	19	0.09	<10	>10	69	<1	<0.01	<1	400	<2	40	<20	151	<0.01	<10	3	<10	5	9
42	G44906	0.2	0.97	<5	50	<5	0.78	<1	24	34	586	4.97	<10	0.70	324	185	0.10	5	600	4	<5	<20	49	0.17	<10	110	<10	12	67
43	G44907	0.3	0.98	<5	45	<5	0.81	<1	24	29	561	4.98	<10	0.60	319	120	0.13	5	590	<2	<5	<20	42	0.16	<10	84	<10	9	44
44	G44908	0.3	1.24	<5	50	<5	0.84	2	21	42	546	4.55	<10	0.95	433	128	0.11	6	640	<2	<5	<20	48	0.19	<10	137	<10	15	68
45	G44909	0.3	0.80	<5	40	<5	1.23	<1	19	46	530	4.22	<10	0.40	311	123	0.09	6	660	2	<5	<20	49	0.14	<10	90	<10	15	39
46	G44910	<0.2	0.06	10	15	<5	>10	<1	<1	4	13	0.10	<10	>10	78	<1	<0.01	<1	500	<2	30	<20	156	<0.01	<10	3	<10	<1	7
47	G44911	0.7	1.12	15	50	<5	2.34	<1	15	41	666	4.71	<10	0.77	509	149	0.07	6	820	6	<5	<20	37	0.09	<10	117	<10	14	58
48	G44912	0.7	1.38	<5	55	<5	0.68	<1	23	48	1017	6.54	<10	1.03	338	149	0.11	7	750	<2	<5	<20	15	0.20	<10	151	<10	12	57
49	G44913	0.6	0.91	<5	45	<5	0.99	<1	18	32	840	5.61	<10	0.51	254	91	0.10	6	810	<2	<5	<20	57	0.16	<10	96	<10	12	43
50	G44914	0.4	1.45	<5	55	<5	0.80	<1	17	54	745	5.51	<10	0.95	301	617	0.11	6	820	6	<5	<20	25	0.17	<10	152	<10	13	48
51	G44915	0.3	1.34	<5	50	<5	0.80	<1	21	54	512	5.84	<10	1.10	227	56	0.07	9	710	<2	<5	<20	24	0.12	<10	170	<10	7	43
52	G44916	0.6	1.39	10	50	<5	1.17	<1	22	37	605	5.04	<10	1.05	273	202	0.05	8	820	18	<5	<20	14	0.09	<10	155	<10	11	70
53	G44917	0.4	1.27	<5	45	<5	0.74	<1	24	65	575	5.39	<10	0.96	231	381	0.11	8	810	4	<5	<20	32	0.16	<10	156	<10	17	45
QC DAT	<u> A:</u>																												
Repeat:																													
1	G44863	0.2	1.40	15	85	<5	0.73	<1	12	215	214	2.60	<10	0.98	187	116	0.09	43	290	<2	<5	<20	28	0.13	<10	102	<10	11	39
10	G44872	< 0.2	2.64	<5	100	<5	0.98	<1	18	147	161	3.49	<10	1.39	311	19	0.22	53	770	2	<5	<20	73	0.24	<10	189	<10	16	54
19	G44882	< 0.2	3.18	10	80	<5	1.26	<1	22	204	205	3.68	<10	1.63	310	11	0.40	84	520	<2	<5	<20	94	0.22	<10	178	<10	23	71
36	G44899	0.2	2.45	<5	105	<5	0.95	<1	19	200	179	3.31	<10	1.10	277	8	0.34	59	460	<2	<5	<20	71	0.19	<10	157	<10	18	59
Resplit:	·																												
1	G44863	< 0.2	1.45	20	85	<5	0.75	<1	13	202	250	2.88	<10	1.02	187	115	0.09	43	270	<2	<5	<20	27	0.13	<10	103	<10	10	35
36	G44899	<0.2	2.51		105	<5	1.11	<1	19	182	159	3.34		1.02	265	6	0.33	57	480	<2		<20	79	0.18			<10	17	59
Standar	rd:																												
Pb106		>30	0.50	275	75	<5	1.63	34	3	43	6233	1.60	<10	0.18	576	35	0.02	7	280	5266	60	<20	134	<0.01	<10	13	10	<1	3355

JJ/sa/kc df/71 XLS/06

Pb106

>30 0.52 270

<5 1.66

ECO TECH LABORATORY LTD.

60 <20 145 <0.01 <10

13 10 <1 8382

Jutta Jealouse B.C. Certified Assayer

43 6298 1.62 <10 0.19 585

35 0.02

8 290 5286

TTM Resources 19-Feb-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 53

Sample Type: Core **Project: CHU Shipment #: 11**

Submitted by: All North Cons.

		Мо	
ET #.	Tag #	(%)	
8	G44870	0.063	
27	G44890	0.063	
50	G44914	0.059	
53	G44917	0.036	
QC DAT	<u>[</u> A:		
Repeat:			
50	G44914	0.06	
Standaı	rd:		

0.281

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

JJ/kc XLS/06

MP2

ICP CERTIFICATE OF ANALYSIS AK 2007-0071

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 54 Sample Type: Core

Project: CHU Shipment #: 10

Submitted by: All North Cons.

Phone: 250-573-5700 Fax : 250-573-4557

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G44806	0.2	1.35	15	95	<5	0.65	<1	16	133	191	3.19	<10	1.00	236	656	0.06	44	450	6	<5	<20	17	0.15	<10	116	<10	10	54
2	G44807	0.2	1.16	10	95	<5	0.34	<1	17	189	325	3.52	<10	0.91	190	181	0.07	39	440	6	<5	<20	15	0.16	<10	115	<10	12	41
3	G44808	0.3	1.21	<5	70	<5	0.39	<1	23	178	500	4.53	<10	0.91	188	242	0.07	47	420	6	<5	<20	37	0.16	<10	119	<10	10	59
4	G44809	0.2	1.40	<5	105	<5	0.37	<1	16	159	325	3.16	<10	1.11	180	131	0.06	43	420	8	<5	<20	30	0.18	<10	141	<10	12	49
5	G44810	<0.2	0.05	5	10	<5	>10	<1	<1	5	7	0.09	<10	>10	71	<1	<0.01	<1	430	<2	30	<20	129	<0.01	<10	3	<10	1	6
	0.4404.4		4.00		4	_	0.00		4-		4	0.04	4.0	4.40	000	400	0.40		400		_			0.40	4.0	4.40	4.0	4.0	00
6	G44811	<0.2			175	<5	0.68	<1		151				1.19	206	198	0.10	44	480	8	_	_	54		<10	_		13	38
7	G44812	<0.2	1.49	_	165	<5	0.55	<1		140	161		<10	1.14	198	74	0.05	45	500	8	-	<20	14	0.17		142		13	38
8	G44813	<0.2	1.57	_	215	<5	0.54	<1	-	130	115	2.82	-	1.13	200	59	0.07	44	490	8	_		24	0.18	-	146		13	36
9	G44814	<0.2	1.42	<5	185	<5	0.23	<1		152	205	2.73		1.09	183	108	0.05	43	350	6	<5	<20	9	0.20		155		11	38
10	G44815	<0.2	2.15	<5	230	<5	0.74	<1	16	151	137	2.93	<10	1.22	221	99	0.13	49	480	4	<5	<20	51	0.22	<10	156	<10	16	49
11	G44816	<0.2	1.61	- 5	240	<5	0.37	<1	15	148	108	2 81	~ 10	1.16	190	202	0.05	43	420	6	~ 5	<20	13	0.21	- 10	159	-10	13	33
12	G44817	<0.2	1.46		195	<5	0.44	<1		134	128	2.94		1.10	199	273	0.05	42	410	8		<20	12	0.18		133		13	36
13	G44818	<0.2	2.16	_	145	<5	0.94	<1	17	-	232	3.51		1.01	270	47	0.21	40	440	4	_	_	60	0.17	-	110		12	42
14	G44819	<0.2	1.86	_	155	<5	0.57	<1		162	240	3.31		1.19	244	273	0.14	52	460	4	_	_	31	0.17		162		17	45
15	G44821	<0.2	1.91	<5	140	<5	0.61	<1		163			<10	1.22	253	90	0.12	56	460	6	<5		60	0.19		150		14	42
13	044021	<0.∠	1.51	\ 3	140	\0	0.01	_ 1	17	100	133	5.54	<10	1.22	200	30	0.12	50	400	U	\ 3	\2 0	00	0.13	<10	150	<10	17	72
16	G44822	<0.2	2.25	10	125	<5	1.01	<1	17	166	195	3.45	<10	1.24	260	121	0.16	52	410	4	<5	<20	64	0.17	<10	144	<10	14	50
17	G44823	< 0.2	1.68	<5	115	<5	0.45	<1	19	144	270	3.99	<10	1.23	212	102	0.09	62	400	4	<5	<20	24	0.22	<10	173	<10	14	39
18	G44824	< 0.2	1.90	5	195	<5	0.75	<1	15	101	144	3.13	<10	1.30	231	45	0.08	60	500	4	<5	<20	25	0.19	<10	172	<10	15	43
19	G44825	< 0.2	0.06	5	15	<5	>10	<1	<1	7	8	0.10	<10	>10	71	<1	< 0.01	<1	460	<2	40	<20	136	< 0.01	<10	4	<10	2	6
20	G44826	0.2	2.18	55	90	<5	1.29	<1	21	148	311	4.12	<10	1.19	229	120	0.24	69	540	12	<5	<20	78	0.14	<10	139	<10	14	51
0.4	0.44007		0.05	4.5	400	_	4 40		4.0	4.40	074		4.0		070	470				4.0	_			0.40	4.0	400	4.0		=0
21	G44827	<0.2	2.65	_	120	<5	1.40	<1		146	271		<10	1.55	272	170	0.28	83	580	10	<5		114	0.18	_		<10	17	56
22	G44828	<0.2	-	200	_	<5	1.98	<1		132			<10	1.34	312	46	0.23	86	640	10	<5	<20	97	0.11		165		14	67
23	G44829	0.2	2.29	_	130	<5	1.21	<1	16	139	218	3.74	<10	1.59	325	77	0.17	72	600	8	<5	<20	50	0.17	-		<10	19	60
24	G44830	<0.2	0.78	<5	125	<5	1.30	<1	7		121	2.44	20	0.49	620	639	0.04	14	700	10	<5		121	0.02			<10	17	73
25	G44831	<0.2	1.78	<5	155	<5	0.50	<1	17	132	189	3.53	<10	1.34	263	76	0.08	58	500	8	<5	<20	22	0.21	<10	163	<10	16	49
26	G44832	<0.2	2.22	<5	120	<5	0.83	2	16	138	274	3.52	<10	1.31	256	127	0.20	71	530	2	<5	<20	76	0.19	<10	200	<10	14	127
27	G44833	<0.2	2.16	5	_	<5	0.74	<1	16	165	201	3.54	<10	1.43	297	78	0.10	50	480	2	_		46	0.21	-	198		13	60
28	G44834	<0.2	2.16	<5	190	<5	0.65	<1	18	136	134	3.41	<10	1.39	321	43	0.09	59	500	6	_	<20	48	0.24		192		11	57
29	G44835	<0.2		<5	145	<5	0.71	<1	19	172	279	3.63	<10	1.26	251	46	0.03	57	490	6	<5		48	0.22		175		14	49
30	G44836	<0.2	_	_	_	<5	0.71	<1	_	157	_	3.53	_	1.26	249	49	0.16	56	440	8	<5	_	36	0.22	_	168	_	15	47
30	O44030	₹0.2	2.20	ζ3	103	ζ.)	0.01	<u> </u>	13	137	101	5.55	<10	1.20	Z 4 3	43	0.10	50	440	O	<3	\ 20	50	0.22	<10	100	\10	13	41

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
31	G44837	<0.2	1.89	<5	265	<5	0.32	<1	14	182	88	2.97	<10	1.25	213	57	0.08	43	380	2	<5	<20	13	0.22	<10	135	<10	9	46
32	G44838	< 0.2	2.05	<5	130	<5	0.80	<1	18	172	251	3.76	<10	1.04	202	18	0.15	41	430	2	<5	<20	44	0.18	<10	123	<10	13	54
33	G44839	0.2	2.54	<5	150	<5	1.05	<1	21	209	441	4.10	<10	1.14	278	7	0.31	55	470	6	<5	<20	67	0.20	<10	124	<10	18	55
34	G44841	< 0.2	2.62	<5	120	<5	1.29	<1	18	157	365	4.03	<10	1.02	257	32	0.37	72	620	6	<5	<20	73	0.18	<10	136	<10	16	61
35	G44842	<0.2	2.63	<5	185	<5	1.23	<1	17	176	233	3.45	<10	1.34	305	21	0.28	77	620	6	<5	<20	65	0.20	<10	173	<10	19	63
36	G44843	0.3	2.95	<5	140	<5	1.42	<1	20	161	236	3.84	<10	1.48	327	9	0.33	62	670	6	<5	<20	82	0.19	<10	156	<10	15	59
37	G44844	<0.2	4.43	10	125	<5	2.06	<1	22	273	373	4.24	<10	1.26	404	34	0.60	79	550	<2	<5	<20	131	0.17	-	125	<10	15	77
38	G44845		0.06	10	10	<5	>10	<1	<1	5	15	0.09	<10	>10	80	<1	<0.01	<1	380	<2	40	<20	172	<0.01	<10	4	<10	<1	7
39	G44846		4.09	<5	155	<5	1.50	<1	19	178	270	3.74	<10	1.75	329	30	0.51	94	490	<2	<5	<20	96	0.21	<10	194	<10	17	54
40	G44847		2.11	<5	270	<5	0.46	<1	16	165	116	2.81	<10	1.44	279	26	0.12	58	460	<2	<5	<20	24	0.18		158	<10	14	43
40	044047	\0.2	2.11	\ 0	210	~0	0.40		10	100	110	2.01	\10	1.44	215	20	0.12	50	400	\ <u>L</u>	\0	\20	24	0.10	\10	100	\10	14	70
41	G44848		1.63		245	<5	0.37	<1	13	196	91	2.52	<10	1.13	223	16	0.08	41	350	4	<5	<20	16	0.15		115	<10	12	46
42	G44849	0.5	3.22	25	185	<5	1.51	<1	14	172	422	3.12	<10	1.54	277	56	0.35	84	400	<2	<5	<20	70	0.14	<10	154	<10	15	57
43	G44850	<0.2	0.85	<5	135	<5	1.34	<1	7	18	135	2.50	20	0.54	646	646	0.05	15	700	10	<5	<20	139	0.02	<10	34	<10	21	72
44	G44851	<0.2	2.04	100	225	<5	0.76	<1	15	183	98	2.55	<10	1.21	294	37	0.16	61	370	2	<5	<20	40	0.16	<10	126	<10	12	51
45	G44852	<0.2	2.04	10	135	<5	0.74	<1	16	162	245	3.31	<10	1.21	294	25	0.18	56	420	<2	<5	<20	42	0.16	<10	146	<10	11	45
46	G44853	0.3	2.47	<5	85	<5	0.93	<1	27	93	702	5.87	<10	1.97	360	32	0.25	34	880	<2	<5	<20	53	0.27	<10	267	<10	18	72
47	G44854	0.7	2.32	<5	85	<5	0.87	<1	25	97	1078	5.62	<10	1.76	360	19	0.21	43	680	<2	<5	<20	40	0.25	<10	237	<10	13	69
48	G44855		0.99	<5	90	<5	0.65	<1	11	169	270	2.52	<10	0.65	142	22	0.11	43	380	4	<5	<20	22	0.10	<10	83	<10	10	26
49	G44856		1.06	<5	75	<5	0.89	<1	10	143	344	2.48	<10	0.55	144	13	0.15	39	350	<2	<5	<20	32	0.08	<10	64	<10	8	25
50	G44857	<0.2	2.17	5	130	<5	1.20	<1	15	302	174	2.65	<10	1.04	221	27	0.27	64	540	6	<5	<20	54	0.14	<10	119	<10	14	42
51	G44858	<0.2	1.47	90	100	<5	1.51	<1	13	245	267	3.08	<10	0.84	226	171	0.16	56	450	4	<5	<20	54	0.09	<10	90	<10	12	47
52	G44859	0.6	1.62	10	90	<5	1.48	1	22	131	795	5.70	<10	1.37	322	128	0.10	36	510	<2	<5	<20	36	0.15	<10	159	<10	10	66
53	G44861	0.9	2.63	<5	110	<5	1.48	1	25		1166	6.09	<10	2.15	399	30	0.10	35	690	<2	<5	<20	70	0.25	<10	252	<10	15	109
54	G44862		1.83	<5	130	<5	0.99	2	13	264		2.76		1.00	237	31	0.21	48	430	<2	<5	<20	53	0.12	_	127		14	73
QC DAT	<u>ΓΑ:</u>																												
Repeat	:																												
1	G44806	0.2	1.47	10	95	<5	0.65	<1	16	135	206	3.23	<10	1.08	239	666	0.07	43	430	8	<5	<20	18	0.16	<10	122	<10	9	50
10	G44815	< 0.2	2.16	<5	225	<5	0.75	<1	15	153	136	2.96	<10	1.22	223	90	0.13	51	480	4	<5	<20	50	0.22	<10	158	<10	15	50
19	G44825	< 0.2	0.06	5	15	<5	>10	<1	<1	7	9	0.09	<10	>10	71	<1	< 0.01	<1	450	<2	40	<20	140	< 0.01	<10	4	<10	<1	6
36	G44843	< 0.2	2.82	<5	125	<5	1.42	<1	19	161	219	3.81	<10	1.43	323	11	0.31	62	660	2	<5	<20	74	0.19	<10	151	<10	14	60
45	G44852	0.2	2.32	5	130	<5	0.74	<1	16	162	291	3.34	<10	1.35	300	25	0.21	56	400	<2	<5	<20	50	0.17	<10	156	<10	10	41
54	G44862	0.2	1.72	<5	110	<5	0.99	1	13	262	310	2.76	<10	0.95	235	30	0.19	48	440	<2	<5	<20	47	0.12	<10	123	<10	12	78
Resplit																													
Nespiit.	G44806	0.2	1.69	15	105	<5	0.70	<1	18	143	239	3.57	<10	1.22	254	587	0.08	48	430	4	<5	<20	20	0.17	<10	135	<10	9	44
36	G44843	<0.2	2.82	<5	125	<5	1.30	<1	18	162	224	3.82		1.37	307	13	0.33	65	650	<2	<5	<20	73			149	<10	14	58
C4a1	d.																												
Standa	ra:	. 00	0.40	070	7-	_	4.00	0.4		40	0000	4.00	40	0.40	·	0.4	0.00	-	070 .	-000	00	00	400	0.04	40	40	40		
Pb106		>30	0.49	270	75	<5	1.62	34	4		6308	1.68	<10	0.19	571	34	0.02	7	270 5		60	<20		< 0.01		13	10		388
Pb106		>30	0.46	270	80	<5	1.67	33	4	43	6331	1.63	<10	0.18	557	30	0.02	7	280 5	5384	60	<20	143	<0.01	<10	13	10	<1 8	3427

JJ/sa/kc df/71 XLS/06

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

TTM Resources 19-Feb-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 54

Sample Type: Core Project: CHU
Shipment #: 10

Submitted by: All North Cons.

		Мо
ET #.	Tag #	(%)
1	G44806	0.068
24	G44830	0.063
43	G44850	0.064
QC DAT	- <u>A</u> :	
Resplit:	G44806	0.058
Standar MP2	d:	0.281

ECO TECH LABORATORY LTD.

JJ/kc Jutta Jealouse

XLS/06 B.C. Certified Assayer

LOIT LABORATORT LID.

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2007-0061

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 49 Sample Type: Core

Project: CHU
Shipment #: 9

Submitted by: All North Cons.

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G44754	0.2	1.52	<5	75	<5	0.53	<1	19	149	277	3.62	<10	0.98	186	582	0.15	61	500	14	<5	<20	32	0.14	<10	125	<10	13	47
2	G44755	0.2	1.24	<5	105	<5	0.26	<1	17	139	207	3.25	<10	1.02	142	278	0.04	50	430	14	<5	<20	8	0.17	<10	170	<10	16	37
3	G44756	0.2	1.71	<5	130	<5	0.50	<1	16	144	212	3.43	<10	1.16	183	139	0.11	52	450	14	10	<20	25	0.17	<10	165	<10	15	50
4	G44757	0.7	2.03	<5	100	<5	1.13	<1	18	133	327	3.87	<10	0.93	202	215	0.26	60	620	14	<5	<20	77	0.11	<10	115	<10	11	56
5	G44758	0.2	1.90	<5	115	<5	0.68	<1	17	138	266	3.63	<10	1.10	188	153	0.17	54	440	16	<5	<20	39	0.16	<10	144	<10	15	53
6	G44759	0.2	2.19	<5	115	<5	1.18	<1	16	136	240	3.34	<10	0.98	275	187	0.24	53	700	16	<5	<20	58	0.13	<10	136	<10	13	53
7	G44761	0.3	1.12	<5	95	<5	1.43	<1	13	109	339	3.41	<10	0.67	215	74	0.07	34	460	8	<5	<20	67	0.08	<10	73	<10	7	37
8	G44762	0.2	0.85	<5	125	<5	0.70	<1	11	85	212	2.50	<10	0.71	174	214	0.05	19	700	8	<5	<20	21	0.09	<10	75	<10	11	34
9	G44763	0.2	1.06	<5	80	<5	0.58	<1	12	135	307	2.99	<10	0.83	147	141	0.08	30	320	10	<5	<20	20	0.07	<10	84	<10	8	31
10	G44764	0.5	0.72	<5	65	<5	0.46	<1	12	167	274	2.72	<10	0.55	134	391	0.05	30	350	10	<5	<20	15	0.07	<10	75	<10	10	36
11	G44765	<0.2	0.03	10	<5	<5	>10	<1	<1	4	8	0.09	<10	>10	76	2	< 0.01	2	430	<2	40	<20	114	< 0.01	<10	4	<10	<1	7
12	G44766	0.2	0.42	<5	50	<5	0.52	<1	7	129	206	1.97	<10	0.34	91	119	0.03	20	190	6	<5	<20	13	0.04	<10	41	<10	6	26
13	G44767	< 0.2	1.84	<5	165	<5	0.50	<1	17	124	168	3.42	<10	1.18	200	98	0.09	58	420	12	<5	<20	57	0.17	<10	167	<10	13	50
14	G44768	0.2	1.75	<5	165	<5	0.41	<1	18	97	173	3.44	<10	1.23	268	83	0.08	53	640	14	5	<20	31	0.20	<10	154	<10	17	70
15	G44769	< 0.2	2.03	<5	240	<5	0.45	<1	18	117	96	3.66	<10	1.37	348	112	0.05	57	450	14	5	<20	39	0.21	<10	170	<10	19	63
16	G44770	< 0.2	0.67	<5	130	<5	1.27	<1	7	17	114	2.44	20	0.44	609	625	0.04	14	710	12	<5	<20	115	0.02	<10	30	<10	17	77
17	G44771	< 0.2	1.79	<5	105	<5	0.73	<1	21	142	233	3.65	<10	1.03	234	134	0.15	61	430	12	<5	<20	51	0.15	<10	140	<10	14	42
18	G44772	< 0.2	2.01	5	130	<5	0.82	<1	16	140	183	3.10	<10	1.09	171	155	0.19	55	610	14	<5	<20	58	0.16	<10	158	<10	16	38
19	G44773	0.2	3.21	10	145	<5	1.51	<1	23	158	254	4.31	10	1.31	257	313	0.39	84	610	28	<5	<20	121	0.16	<10	184	<10	19	62
20	G44774	0.2	2.20	<5	155	<5	1.38	<1	17	140	279	3.32	10	0.94	263	155	0.30	78	630	16	<5	<20	91	0.13	<10	142	<10	16	63
21	G44775	0.2	2.58	10	125	<5	1.80	<1	14	141	228	2.88	10	0.80	222	75	0.39	64	690	20	<5	<20	107	0.10	<10	107	<10	15	45
22	G44776	< 0.2	1.88	<5	215	<5	0.79	<1	15	117	155	3.38	<10	1.26	237	313	0.13	56	600	16	10	<20	31	0.18	<10	168	<10	20	46
23	G44777	0.2	2.18	<5	105	<5	0.80	<1	21	126	266	4.79	10	1.22	233	133	0.20	77	520	14	<5	<20	51	0.19	<10	170	<10	17	50
24	G44778	< 0.2	2.61	<5	215	<5	1.06	<1	17	138	151	3.54	<10	1.25	266	119	0.27	69	570	18	5	<20	73	0.18	<10	173	<10	19	52
25	G44779	0.2	2.31	<5	160	<5	4.40	<1	16	105	376	3.74	10	1.22	301	156	0.23	59	650	14	<5	<20	351	0.13	<10	134	<10	18	46
26	G44781	<0.2	2.00	<5	130	<5	0.76	<1	18	144	226	3.67	<10	1.21	237	240	0.14	70	530	18	5	<20	53	0.17	<10	155	<10	18	45
27	G44782	< 0.2	1.86	<5	105	<5	0.72	<1	18	132	269	3.76	<10	1.15	245	606	0.13	70	480	16	<5	<20	85	0.18	<10	168	<10	17	51
28	G44783	< 0.2	2.47	<5	265	<5	0.94	<1	16	152	97	3.28	<10	1.29	271	113	0.19	76	570	24	<5	<20	96	0.19	<10	162	<10	21	58
29	G44784	0.4	1.73	<5	120	<5	0.67	<1	21	121	419	4.83	<10	1.38	254	363	0.13	57	940	16	5	<20	77	0.16	<10	145	<10	16	58
30	G44785	<0.2	0.07	10	5	<5	>10	<1	<1	5	2	0.11	<10	>10	71	<1	< 0.01	<1	360	<2	35	<20	104	< 0.01	<10	4	<10	<1	4

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
31	G44786	0.7	1.36	<5	110	<5	0.69	<1	23	53	723	5.54	10	1.43	290	153	0.08	20	1440	10	<5	<20	17	0.17	<10	142	<10	18	60
32	G44787	0.3	0.99	<5	90	<5	0.48	<1	21	165	383	4.43	<10	0.80	169	220	0.06	73	340	10	<5	<20	53	0.11	<10	98	<10	10	39
33	G44788	0.2	1.06	<5	115	<5	0.45	<1	14	197	199	2.89	<10	0.91	190	407	0.06	67	410	12	5	<20	30	0.12	<10	107	<10	15	44
34	G44789	0.3	1.02	5	100	<5	0.89	<1	16	180	322	3.08	<10	0.83	182	197	0.06	71	420	10	<5	<20	46	0.09	<10	108	<10	12	40
35	G44790	0.2	0.66	<5	115	<5	1.26	<1	7	17	105	2.42	20	0.40	598	620	0.03	14	720	16	<5	<20	101	0.02	<10	29	<10	16	85
36	G44791	0.4	1.08	<5	95	<5	0.43	<1	17	183	414		<10	0.77	185	83	0.08	76	320	12	<5	<20	20	0.12	<10	96	<10	11	47
37	G44792	0.6	0.92	<5	85	<5	0.50	<1	17	170	509		<10	0.55	163	85	0.09	54	400	8	<5	<20	28	0.10	<10	66	<10	8	38
38	G44793	0.2	1.27	<5	190	<5	0.37	<1	15	140	103	2.82	<10	0.91	227	335	0.05	44	380	18	<5	<20	22	0.18	<10		<10	16	74
39	G44794	0.4	1.36	<5	95	<5	0.53	<1	16	148	309	3.59	<10	0.95	248	166	0.08	43	450	14	<5	<20	25	0.14	<10	100	<10	13	57
40	G44795	0.3	1.45	5	110	<5	0.55	<1	17	162	259	3.47	<10	0.94	219	295	0.07	46	320	14	<5	<20	21	0.14	<10	105	<10	10	45
41	G44796	0.5	0.97	5	75	<5	1.06	<1	13	107	315	3.14	<10	0.77	224	447	0.04	27	760	12	<5	<20	27	0.08	<10	82	<10	9	40
42	G44797	0.4	1.21	<5	115	<5	0.56	<1	19	167	348	3.68	<10	0.78	298	155	0.08	38	650	14	<5	<20	24	0.15	<10	103	<10	18	55
43	G44798	0.5	1.45	<5	105	<5	0.63	<1	22	123	496	4.35	<10	1.11	260	202	0.08	47	1240	14	5	<20	20	0.15	<10	121	<10	11	64
44	G44799	0.4	1.33	<5	150	<5	0.43	<1	19	127	186	3.51	<10	0.96	240	167	0.07	47	490	12	<5	<20	20	0.18	<10	138	<10	16	58
45	G44801	0.2	1.21	<5	165	<5	0.38	<1	16	142	196	3.17	<10	0.87	225	217	0.08	42	410	10	<5	<20	20	0.17	<10	127	<10	15	61
46	G44802	0.3	1.43	<5	120	<5	0.54	<1	19	134	298	3.94	<10	1.25	255	152	0.06	49	1070	14	5	<20	28	0.18	<10	146	<10	17	68
47	G44803	0.2	1.24	<5	150	<5	0.44	<1	15	171	186	2.99	<10	0.94	249	277	0.05	43	420	12	<5	<20	48	0.16	<10	125	<10	16	52
48	G44804	<0.2	1.32	<5	140	<5	0.22	<1	15	144	107	2.85	<10	0.95	182	202	0.04	42	430	14	5	<20	10	0.18	<10	141	<10	14	38
49	G44805	<0.2	0.04	10	10	<5	>10	<1	<1	2	2	0.08	<10	>10	70	<1	<0.01	<1	370	<2	40	<20	108	<0.01	<10	3	<10	1	5
QC DAT	· <u>A:</u>																												
Repeat:																													
1	G44754	0.2	1.53	<5	80	<5	0.50	<1	19	154	290	3.68	10	1.02	190	595	0.14	61	520	12	<5	<20	31	0.13	<10	128	<10	13	46
10	G44764	0.3	0.75	<5	60	<5	0.46	<1	12	166	289	2.75	<10	0.58	136	390	0.05	32	340	8	<5	<20	13	0.07	<10	77	<10	8	35
19	G44773	0.2	3.16	5	105	<5	1.49	<1	23	166	253	4.41	<10	1.32	261	323	0.38	86	610	24	10	<20	114	0.17	<10	187	<10	17	64
36	G44791	0.4	1.09	<5	95	<5	0.43	<1	17	184	408	3.59	<10	0.76	185	82	0.08	73	320	12	<5	<20	22	0.12	<10	96	<10	12	47
Resplit:																													
1	G44754	0.2	1.39	<5	70	<5	0.55	<1	27	145	315	3.79	<10	0.92	194	342	0.13	57	630	16	<5	<20	29	0.12	<10	117	<10	12	53
36	G44791	0.6	1.09	<5	85	<5	0.49	<1	19	202	479	4.22	<10	0.79	192	83	0.09	76	310	10	<5	<20	25	0.11	<10	95	<10	10	52
Standar	d:																												
PB106		>30	0.48	270	80	<5	1.65	31	3	43	6218	1.63	<10	0.16	542	32	<0.01	7	280	5366	60	<20	139	<0.01	<10	13	<10	<1 8	374

43 6240 1.64 <10 0.16 549

32

< 5 1.67

JJ/kc df/61 XLS/06

PB106

>30 0.48 270

ECO TECH LABORATORY LTD.
Jutta Jealouse

60 <20 140 <0.01 <10 13 <10

B.C. Certified Assayer

31

0.01

270 5330

TTM Resources 8-Feb-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 49

Sample Type: Core **Project: CHU Shipment #: 9**

Submitted by: All North Cons.

		Мо	
ET #.	Tag #	(%)	_
1	G44754	0.059	-
16	G44770	0.064	
27	G44782	0.061	
35	G44790	0.063	
QC DAT	=	0.059	
Standar	rd:		
MP2		0.277	
MP2		0.276	

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

JJ/dc XLS/06

ICP CERTIFICATE OF ANALYSIS AK 2007-59

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

TTM Resources 520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 78

Sample Type: Core Project: CHU Shipment #: 8

Submitted by: All North Cons.

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	IJ	٧	W	Υ	Zn
1	44672	0.5	0.80	40	95	145	0.79	<1	11	197	297	3.29	<10	0.75	198	85	0.03	53	430	6	<5	<20	17	0.05 <1	0 1	01	30	7	87
2	44673	<0.2	1.23	20	215	<5	0.42	<1	13	167	128	2.76	<10	0.94	172	34	0.05	66	330	6	<5	<20	69	0.12 <1	0 1	59 <	<10	8	35
3	44674	<0.2	1.53	20	175	<5	0.81	<1	18	176	166	3.37	<10	1.05	234	247	0.03	65	390	12	<5	<20	31	0.13 <1	0 1	51 -	<10	10	47
4	44675	0.2	1.21	25	230	<5	0.52	<1	12	111	102	2.90	<10	0.95	181	102	0.02	64	440	14	<5	<20	16	0.07 <1	0 1	31 •	<10	5	54
5	44676	<0.2	1.39	30	320	<5	0.49	<1	13	126	90	3.06	<10	1.04	169	158	0.04	63	470	10	<5	<20	28	0.13 <1	0 1	63 -	<10	9	41
6	44677	<0.2	1.59	25	245	-5	0.86	<1	11	124	110	2 10	-10	1.07	170	54	0.06	55	390	10	-5	<20	129	0.13 <1	Λ 1	50 .	-10	9	36
7	44678	0.2	1.89	25	150	<5	0.79	<1	15	71	292	4.00			225	75	0.00	42	250	8		<20	37	0.13 <1		90		4	66
ν Ω	44679	<0.2	1.98	25	240	<5	1.22	<1	15	129	132	3.32	-		242	80	0.07	71	540	14	-	<20	53	0.12 <1	-	38		11	42
9	44681	<0.2	1.93	10	305	<5	0.61	<1	18		119	3.62	-		260	37	0.17	76	570	14	5	<20	36	0.12 <1	-		-	14	43
10	44682	<0.2	1.56	20	130	<5	0.01	<1	_	145	193			1.05		80	0.13	66	520	10	_		98	0.20 <1				12	43
10	44002	<0.2	1.50	20	130	<5	0.97	< I	15	143	193	3.41	<10	1.05	232	80	0.12	00	320	10	<0	<20	90	0.13 <1	0 1	43 4	<10	12	43
11	44683	<0.2	1.47	35	175	<5	1.04	<1	13	134	127	2.92	<10	0.89	225	88	0.12	58	590	10	<5	<20	53	0.14 <1	0 1	43 <	<10	13	34
12	44684	< 0.2	1.47	<5	155	<5	0.60	<1	17	127	193	3.75	<10	1.04	257	130	0.08	64	540	10	5	<20	42	0.14 <1	0 1	46 <	<10	11	51
13	44685	< 0.2	0.03	10	15	<5	>10	<1	<1	5	6	0.07	<10	>10	61	<1	< 0.01	<1	380	<2	30	<20	96	<0.01 <1	0	2 <	<10	<1	7
14	44686	0.2	1.66	<5	70	<5	0.87	<1	24	112	318	5.52	<10	1.09	244	65	0.07	75	620	10	<5	<20	65	0.16 <1	0 1	41 <	<10	8	57
15	44687	<0.2	2.20	10	315	<5	1.16	<1	16	172	107	3.27	<10	0.81	392	23	0.21	74	590	18	<5	<20	69	0.15 <1	0 1	22 <	<10	12	71
16	44688	<0.2	1.65	15	340	<5	0.65	<1	15	136	64	3.29	<10	0.96	291	6	0.12	76	500	14	<5	<20	38	0.18 <1	0 1	57 <	<10	13	58
17	44689	<0.2	1.79	30	170	<5	1.12	<1	17	164	84	3.78	<10	1.10	313	938	0.14	81	460	12	<5	<20	33	0.14 <1	0 1	44 <	<10	9	58
18	44690	0.2	0.63	<5	130	<5	1.35	<1	7	18	114	2.58	10	0.41	622	640	0.05	14	730	14	<5	<20	108	0.03 <1	0	30 <	<10	17	84
19	44691	0.2	2.05	<5	90	<5	1.23	<1	20	163	284	4.33	<10	0.83	312	60	0.32	84	830	14	<5	<20	67	0.13 <1	0 1	20 <	<10	13	74
20	44692	<0.2	1.77	5	315	<5	0.60	<1	17	194	120	3.57	<10	0.99	307	74	0.17	90	630	10	<5	<20	30	0.20 <1	0 1	67	<10	16	75
21	44693	0.2	1.65	5	225	-5	0.70	<1	15	151	128	3.44	-10	1.00	298	83	0.13	77	540	12	-5	<20	28	0.17 <1	Λ 1	61 .	-10	16	117
22	44694	<0.2	2.12	15	260	<5	1.02	<1		146	92	3.73		1.00	345	56	0.19	69	630	18	_	<20	59	0.17 <1	-	-	-	16	90
23	44695	<0.2	1.54	55	245	<5	0.70	<1	14	124	89	3.30	_	1.04	269	41	0.13	68	550	12	_	<20	24	0.17 <1	-		-	13	53
24	44696	0.2	1.68	75	200	<5	1.51	<1	11	127	151	3.10		0.98	368	209	0.09	61	570	18		<20	47	0.10 <1				12	83
25	44697	0.2	1.59	15	160	<5	1.05	<1	16	129	182	3.59		0.86	240		0.07	70	390	16		<20	36	0.15 <1				7	48
25	44037	0.5	1.00	13	100	\3	1.00	` '	10	123	102	3.33	<10	0.00	240	221	0.07	70	330	10	\ 3	\2 0	30	0.15 <1	0 1	23 \	~10	,	40
26	44698	0.2	1.65	10	255	<5	0.62	<1	17	158	157	3.51	<10	0.96	243	30	0.12	78	550	18	<5	<20	30	0.17 <1	0 1	51 -	<10	11	51
27	44699	<0.2	2.03	15	340	<5	1.00	<1	16	149	141	3.65	<10	1.10	355	36	0.22	76	690	20	<5	<20	47	0.19 <1	0 1	66 <	<10	16	71
28	44701	<0.2	1.96	20	350	<5	1.08	<1	12	157	74	3.13	<10	1.02	345	85	0.15	65	520	16	10	<20	75	0.14 <1	0 1	44 <	<10	10	70
29	44702	0.2	1.63	250	220	<5	1.00	<1	15	129	149	3.19	<10	0.97	247	68	0.11	64	560	18	10	<20	42	0.12 <1	0 1	43 <	<10	12	68
30	44703	<0.2	1.41	50	270	<5	0.55	<1	15	157	114	3.27	<10	0.93	260	109	0.10	76	640	16	<5	<20	23	0.17 <1	0 1	70 <	<10	14	66

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
31	44704	0.2	0.89	15	110	<5	0.94	<1	9	156	155	2.26	<10	0.53	177	90	0.10	48	440	12	<5	<20	36	0.04	<10	83	<10	9	68
32	44705	<0.2	0.03	10	20	<5	>10	<1	<1	5	7	0.09	<10	>10	66	<1	<0.01	<1	370	<2	35	<20	102	<0.01	<10	3	<10	<1	8
33	44706	<0.2	1.26	50	180	<5	1.12	<1	14	146	169	3.35	<10	0.95	245	182	0.07	76	580	12	<5	<20	50	0.09	<10	133	<10	9	61
34	44707	0.5	0.76	15	80	<5	1.16	<1	18	118	472	5.01	<10	0.53	154	3791	0.06	60	340	8	<5	<20	44	0.04	<10	79	<10	1	50
35	44708	0.2	0.72	<5	135	<5	0.69	<1	11	176	180	2.94	<10	0.50	129	64	0.07	55	320	10	<5	<20	25	0.06	<10	72	<10	6	37
36	44709	0.2	0.59	<5	185	<5	0.58	<1	12	129	135	2.48	<10	0.47	152	14	0.07	50	750	8	<5	<20	21	0.09	<10	69	<10	10	47
37	44710	0.2	0.61	5	140	<5	1.36	<1	6	18	102	2.64	10	0.38	621	639	0.04	16	740	14	<5	<20	94	0.02	<10	30	<10	15	92
38	44711	0.5	0.88	<5	95		1.79	<1	19	92	445	4.09		0.98	270	10	0.04		1960	8	<5	<20	53	0.08			<10	4	80
39	44712	<0.2	1.04	5	240	<5	0.42	<1		175	99	2.57			183	12	0.06	63	420	10		<20	17	0.12		117		10	62
40	44713	<0.2	2.93	10	435	<5	1.64	<1	16	129	71	3.89	<10	1.12	398	2	0.31	69	680	28	<5	<20	155	0.18	<10	166	<10	14	98
41	44714	0.2	2.37	15	210	<5	1.76	<1	17	147	123	3.78	<10	0.86	317	7	0.25	70	530	26	<5	<20	105	0.12	<10	137	<10	10	130
42	44715	0.2	2.04	10	160	<5	1.74	<1	16	163	138	3.20	<10	0.52	305	29	0.39	67	680	24	<5	<20	127	0.11	<10	110	<10	11	67
43	44716	0.2	1.48	10	160		1.14	<1	18	151	184	3.62		0.49	277	322	0.27	72	620	22	<5	<20	62		<10			10	68
44	44717	<0.2	1.87	10	240		1.18	<1		140	108			0.87	342	19	0.25	55	510	26	<5	<20	72	0.15				13	79
45	44718	<0.2	1.29	10	135	<5	1.28	<1	12	130	168	3.35	<10	0.46	222	12	0.16	43	440	16	<5	<20	51	0.09	<10	92	<10	9	57
46	44719	<0.2	0.43	<5	60	<5	0.72	<1	8	118	159	2.38	<10	0.19	142	12	0.05	25	210	6	<5	<20	13	0.05	<10	42	<10	6	47
47	44721	<0.2	0.93	5	125		1.09	3	11	162	153	2.74		0.33	200	12	0.16	41	380	12	<5	<20	38	0.08			<10		210
48	44722	<0.2	0.94	5	200		0.93	<1		140	59	1.95		0.45		2	0.14	40	430	14	<5	<20	31	0.11			<10	10	48
49	44723		1.00	<5	170	<5	0.87	<1	8	146	57	1.96		0.42		<1	0.15	39	430	14	<5	<20	29	0.10			<10	8	55
50	44724	<0.2	0.72	<5	80	<5	1.73	<1	9	102	107	2.12	<10	0.17	183	2	0.13	37	430	12	<5	<20	45	0.06	<10	36	20	7	35
51	44725	<0.2	0.03	10	15	<5	>10	<1	<1	12	14	0.09		>10	82		<0.01	<1	430	<2		<20		<0.01			<10	<1	15
52	44726	<0.2	0.92	<5	150		1.43	<1		143	171	3.24		0.53	255	3		55	490	14		<20	36	0.10			<10	9	58
53	44727	<0.2	0.97	5	130	<5	1.62	<1		153	106	2.50				1	0.12	45	450	16	<5	<20	52	0.09	_		<10	7	44
54	44728	<0.2	1.26	10	175		1.10	<1		160	106	2.45		0.48		2	0.21	44	450	16		<20	49	0.11	_	_	<10	11	57
55	44729	<0.2	1.77	10	685	<5	0.58	<1	15	150	44	3.59	<10	0.88	343	<1	0.10	72	640	24	5	<20	25	0.19	<10	164	<10	12	139
56	44730	0.2	0.57	5	135		1.38	<1	7	19	96	2.69		0.36	627		0.04	16	780	18		<20	89	0.02			<10		105
57	44731	<0.2	1.27	35	330		0.82	<1	14	241	63	2.50		0.51	242	<1	0.13	75	480	24		<20	30	0.15			<10		103
58	44732	<0.2	0.91	10	130	<5	0.76	<1	10	149	127	2.67		0.42		14	0.11	48	360	12		<20	29	0.07	_	_	<10	6	57
59	44733	<0.2	1.23	5	205		1.10	<1	11	169	105	2.68			173	12	0.13	55	430	18	<5	<20	37	0.12		-	<10	8	73
60	44734	<0.2	1.48	10	460	<5	0.55	<1	12	168	52	3.22	<10	0.87	258	<1	0.08	64	560	24	<5	<20	17	0.17	<10	124	<10	9	113
61	44735	<0.2	1.80	<5	540		0.56	<1	10	184	59	2.66	10	1.08	273	<1	0.07	61	540	12		<20	21		<10			19	83
62	44736	<0.2	1.68	10	360		1.41	<1	9	153	60	2.29	10	0.89	259	21	0.04	56	410	12	5	<20	61		<10	_	<10	14	61
63	44737	<0.2	1.49	10	175		0.99	<1		149	124	2.23	10		189	2	0.21	42	420	12		<20	62	0.10			<10	16	42
64	44738	<0.2		10	215		0.98	<1	14		107	2.87	10	0.89	295	<1	0.17	57	560	14		<20	225		<10		<10		152
65	44739	0.2	1.35	<5	160	<5	0.62	<1	10	138	109	2.28	<10	0.65	177	25	0.13	44	270	10	<5	<20	68	0.10	<10	83	<10	12	37
66	44741		1.32	_	100		0.74	<1		107	305	3.38	10	0.75		12		40	370	8	<5	<20	78	0.06			<10	4	36
67	44742	<0.2	1.20	5	100		1.26	<1	8	133	158	2.08	10	0.56	149	96	0.09	32	300	8	<5	<20	69	0.05			<10	8	30
68	44743	0.2	1.41	<5	125		1.26	<1	11	108	180	2.70	10	0.87	226	29	0.08	51	450	12	5	<20	68	0.06			<10	12	45
69	44744	<0.2	1.17	10	95	<5	1.11	<1	11	116	226	2.91	10	0.76	178	31	0.08	39	460	8	10	<20	54	0.04			<10	6	47
70	44745	<0.2	1.05	25	85	<5	1.15	<1	8	88	137	1.86	<10	0.50	141	27	0.09	40	360	8	<5	<20	58	0.03	<10	59	<10	8	31

Tag #	Аg	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	<u>Zn</u>
14746	0.2	1.66	5	90	<5	1.57	<1	12	110	210	2.73	<10	0.66	169	17	0.20	37	360	24	<5	<20	100	0.06	<10	72	<10	8	34
14747	<0.2	1.50	10	115	<5	1.08	<1	15	145	191	2.80	<10	0.66	161	5	0.18	49	370	20	<5	<20	75	0.08	<10	95	<10	9	32
14748	<0.2	1.39	<5	140	<5	0.82	<1	14	153	151	2.66	<10	0.67	177	<1	0.18	45	460	20	<5	<20	52	0.11	<10	112	<10	11	39
14749	<0.2	1.52	<5	160	<5	0.91	<1	14	182	138	2.57	<10	0.60	165	<1	0.20	45	470	22	<5	<20	54	0.11	<10	111	<10	13	33
14750	<0.2	0.72	<5	130	<5	1.29	<1	7	19	115	2.48	20	0.46	602	617	0.04	14	750	20	<5	<20	118	0.02	<10	31	<10	20	73
14751	<0.2	2.34	<5	165	<5	1.34	<1	18	151	160	3.21	<10	0.84	236	2	0.30	54	580	30	<5	<20	81	0.14	<10	134	<10	13	46
14752	<0.2	1.93	15	205	<5	1.04	<1	15	176	115	2.81	<10	0.81	259	11	0.24	62	640	30	<5	<20	62	0.14	<10	129	<10	18	52
14753	<0.2	2.81	30	210	<5	1.59	<1	15	132	124	2.94	<10	0.91	362	7	0.32	77	530	32	<5	<20	92	0.13	<10	121	<10	11	67
<u>:</u>																												
14672	0.5	0.77	35	95	145	0.80	<1	11	195	284	3.33	<10	0.72	200	86	0.03	55	450	8	<5	<20	17	0.05	<10	99	30	7	91
14682	<0.2	1.52	15	135	<5	0.96	<1	15	145	189	3.40	<10	1.04	233	84	0.11	66	520	12	<5	<20	97	0.12	<10	143	<10	11	44
14691	0.2	1.91	5	100	<5	1.22	<1	20	165	263	4.39	<10	0.78	312	58	0.28	86	840	16	<5	<20	60	0.12	<10	117	<10	12	83
14709	0.2	0.55	<5	170	<5	0.57	<1	12	127	131	2.55	<10	0.45	153	14	0.05	50	780	10	<5	<20	20	0.09	<10	68	<10	7	51
14718	<0.2	1.25	<5	135	<5	1.26	<1	12	128	165	3.37	<10	0.45	221	11	0.15	44	450	16	<5		49	0.09	<10	90	<10	6	58
14728	<0.2	1.11	10	175	<5	1.07	<1	11	157	94	2.44	<10	0.43	192	2	0.18	47	480	20	<5	<20	43	0.10	<10	77	<10	9	63
14672	0.5	0.71	45	95	150	0.76	<1	13	196	252	3 50	<10	0.65	187	84	0.03	60	390	8	<5	<20	16	0.04	<10	95	20	6	104
							_																				-	52
14746											-	-	-		-					_		_		-	-		-	32
	10.2						•						0.00		. 0	0.20		0.0	. •				0.00		. •			0_
:																												
	>30	0.47	270	80	<5	1.64	32	4	44	6209	1.60	<10	0.15	556	34	0.02	7	280	5308	55	<20	131	< 0.01	<10	13	10	<1 8	364
	>30	0.49	270	75	<5	1.62	32	4	43	6298	1.69	<10	0.14	547	33	0.02	7	280	5292	55	<20	135	< 0.01	<10	13	10	<1 8	3379
	>30	0.50	270	75	<5	1.66	32	4	43	6275	1.63	<10	0.14	556	34	0.02	7	270	5254	55	<20	139	<0.01	<10	13	10	<1 8	3419
11111 : 11111	4746 4747 4748 4749 4750 4751 4752 4753 4672 4682 4691 4709 4718 4728 4672 4709	4746 0.2 4747 <0.2 4748 <0.2 4749 <0.2 4750 <0.2 4751 <0.2 4752 <0.2 4753 <0.2 4753 <0.2 4672 0.5 4682 <0.2 4709 0.2 4718 <0.2 4728 <0.2 47409 0.2 47409 0.2 47409 0.2 47409 0.2 4730	4746 0.2 1.66 4747 <0.2	4746 0.2 1.66 5 4747 <0.2	4746 0.2 1.66 5 90 4747 <0.2	4746 0.2 1.66 5 90 <5	4746 0.2 1.66 5 90 <5	4746 0.2 1.66 5 90 <5	4746 0.2 1.66 5 90 <5	4746 0.2 1.66 5 90 <5	4746 0.2 1.66 5 90 <5	4746 0.2 1.66 5 90 <5	4746 0.2 1.66 5 90 <5 1.57 <1 12 110 210 2.73 <10 4747 <0.2 1.50 10 115 <5 1.08 <1 15 145 191 2.80 <10 4748 <0.2 1.39 <5 140 <5 0.82 <1 14 153 151 2.66 <10 4749 <0.2 1.52 <5 160 <5 0.91 <1 14 182 138 2.57 <10 4750 <0.2 0.72 <5 130 <5 1.29 <1 7 19 115 2.48 20 4751 <0.2 2.34 <5 165 <5 1.34 <1 18 151 160 3.21 <10 4752 <0.2 1.93 15 205 <5 1.04 <1 15 176 115 2.81 <10 4753 <0.2 2.81 30 210 <5 1.59 <1 15 132 124 2.94 <10 4682 <0.2 1.52 15 135 <5 0.96 <1 15 145 189 3.40 <10 4681 0.2 1.91 5 100 <5 1.59 <1 15 145 189 3.40 <10 4709 0.2 0.55 <5 170 <5 0.57 <1 12 127 131 2.55 <10 4718 <0.2 1.25 <5 135 <5 0.57 <1 12 127 131 2.55 <10 4718 <0.2 1.25 <5 135 <5 1.26 <1 12 128 165 3.37 <10 4728 <0.2 1.11 10 175 <5 1.07 <1 11 157 94 2.44 <10 4672 0.5 0.71 45 95 150 0.76 <1 13 196 252 3.50 <10 4709 0.2 0.49 <5 170 <5 0.60 <1 12 116 125 2.48 <10 4709 0.2 0.49 <5 170 <5 0.60 <1 12 116 125 2.48 <10 4709 0.2 0.49 <5 170 <5 0.60 <1 12 116 125 2.48 <10 4709 0.2 0.49 <5 170 <5 0.60 <1 12 116 125 2.48 <10 4709 0.2 0.49 <5 170 <5 0.60 <1 12 116 125 2.48 <10 4709 0.2 0.49 <5 170 <5 0.60 <1 12 116 125 2.48 <10 4746 <0.2 1.68 10 80 <5 1.51 <1 13 107 225 2.79 <10	4746	4746	4746	4746	4746	4746	4746	4746	4746	4746 0.2 1.66 5 90 <5 1.57 <1 12 110 210 2.73 <10 0.66 169 17 0.20 37 360 24 <5 <20 100	4746 0.2 1.66 5 90 <5 1.57 <1 12 110 210 2.73 <10 66 169 17 0.20 37 360 24 <5 <20 100 0.06	4746 0.2 1.66 5 90 <5 1.57 <1 12 110 210 2.73 <10 0.66 169 17 0.20 37 360 24 <5 <20 100 0.06 <10 17477 <0.2 1.50 10 115 <5 1.08 <1 15 145 191 2.80 <10 0.66 161 5 0.18 49 370 20 <5 <20 75 0.08 <10 47478 <0.2 1.59 <5 100 115 <5 1.08 <1 14 153 151 2.66 <10 0.67 177 <1 0.18 45 460 20 <5 <20 52 0.71 <10 17478 <0.2 1.39 <5 140 <5 0.82 <1 14 153 151 2.66 <10 0.67 177 <1 0.18 45 460 20 <5 <20 52 0.11 <10 17479 <0.2 1.52 <5 160 <5 0.91 <1 14 182 138 2.57 <10 0.60 165 <1 0.20 45 470 22 <5 <20 54 0.11 <10 174751 <0.2 2.34 <5 165 <5 1.34 <1 18 151 160 3.21 <10 0.84 236 62 0.30 54 580 30 <5 <20 118 0.02 <10 4751 <0.2 2.34 <5 165 <5 1.34 <1 18 151 160 3.21 <10 0.84 236 12 70 0.30 54 580 30 <5 <20 62 0.14 <10 4753 <0.2 2.81 30 210 <5 1.59 <1 15 132 124 2.94 <10 0.91 362 7 0.32 77 530 32 <5 <20 92 0.13 <10 4691 0.2 1.39 15 100 <5 1.22 <1 20 165 263 4.39 <10 0.72 200 86 0.03 55 450 8 <5 <20 97 0.12 <10 4691 0.2 1.31 5 100 <5 1.22 <1 20 165 263 4.39 <10 0.72 200 86 0.03 55 450 8 <5 <20 97 0.12 <10 4709 0.2 0.55 <5 136 <5 1.54 <1 12 127 131 2.55 <10 0.45 152 11 0.45 50 780 10 <5 <20 20 0.09 <10 4718 <0.2 1.55 <5 135 <5 1.64 2 12 12 128 165 3.37 <10 0.45 152 11 0.45 50 780 10 <5 <20 20 0.99 <10 4718 <0.2 1.15 10 175 <5 1.07 <1 11 157 94 2.44 <10 0.43 192 2 0.18 47 480 20 <5 <20 45 <20 13 0.04 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	4746 0.2 1.66 5 90 <5 1.57 <1 12 110 210 2.73 <10 66 169 17 0.20 37 360 24 <5 <20 100 0.06 <10 72	4746 0.2 1.66 5 90 <5 1.57 <1 12 110 210 2.73 <10 0.66 169 17 0.20 37 360 24 <5 <20 100 0.06 <10 72 <10 174747 <0.2 1.50 10 115 <5 1.08 <1 15 145 191 2.80 <10 0.66 161 5 0.18 49 370 20 <5 <20 75 0.08 <10 95 104 1748 <0.2 1.59 <5 140 <5 0.82 <1 14 153 151 2.66 <10 0.67 177 <1 0.18 49 370 20 <5 <20 52 0.11 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10 112 <10	4746 0.2 1.66 5 90 <5 1.57 <1 12 110 210 2.73 <10 66 169 17 0.20 37 360 24 <5 <20 100 0.06 <10 72 <10 8 4747

JJ/kc df/2315b XLS/06

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

TTM Resources 20-Feb-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 78

Sample Type: Core **Project: CHU Shipment #: 8**

Submitted by: All North Cons.

		Мо
ET #.	Tag #	(%)
19	44691	0.007
34	44707	0.400
35	44708	0.007

QC DATA:

Standard:

MP2 0.275 MP2 0.284

ECO TECH LABORATORY LTD.

JJ/sa Jutta Jealouse

XLS/07 B.C. Certified Assayer

TTM Resources

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 78

Sample Type: Core Project: CHU
Shipment #: 8

Submitted by: All North Cons.

		Мо	
ET #.	Tag #	(%)	
17	44689	0.095	
18	44690	0.063	
34	44707	0.403	
37	44710	0.064	
56	44730	0.065	
75	44750	0.064	
QC DAT			

Repeat:

-1	•	
17	44689	0.097
34	44707	0.402

Standard:	
MP2	0.277
MP2	0.280

ECO TECH LABORATORY LTD.

8-Feb-07

Jutta Jealouse

B.C. Certified Assayer

JJ/kk XLS/06

TTM Resources

20-Feb-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 54

Sample Type: Core Project: CHU
Shipment #: 7

Submitted by: All North Cons.

		Мо	
ET #.	Tag #	(%)	
8	44621 Resplit	0.013	
9	44622 Resplit	0.025	
14	44627 Resplit	0.035	
22	44635 Resplit	0.005	
24	44637 Resplit	0.009	
41	44655 Resplit	0.029	
42	44656 Resplit	0.020	
43	44657 Resplit	0.009	
46	44663 Resplit	0.036	
50	44667 Resplit	0.015	

QC DATA:

Standard:

MP2 0.281 MP2 0.283

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

JJ/kk XLS/06

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 **ICP CERTIFICATE OF ANALYSIS AK 2007-0037**

TTM Resources
P.O. Box 968 Pulpmill Road
Prince George, BC
V2L 4V1

Attention: Ken MacDonald

No. of samples received: 54

Sample Type: Core Project: CHU Shipment #: 7

Submitted by: All North Cons.

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	Lal	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	44613	0.4	1.55	35	80	<5	0.94	1	12	126	214	3.24	<10	0.77	266	87	0.08	43	440	4	<5	<20	45	0.09	<10	68	<10	5	93
2	44614	0.2	2.20	20	80	<5	0.94	<1	15	126	228	3.96	<10	1.17	245	162	0.15	64	560	<2	<5	<20	56	0.18	<10	130	<10	6	69
3	44615	0.3	2.12	20	65	<5	1.91	1	11	113	393	4.52	<10	1.20	313	1067	0.14	58	700	<2	<5	<20	65	0.12	<10	119	<10	11	106
4	44616	<0.2	2.10	20	110	<5	0.53	<1	14	104	115	3.43	<10	1.19	200	39	0.09	53	490	<2	<5	<20	30	0.18	<10	109	<10	3	37
5	44617	<0.2	2.37	20	135	<5	0.47	<1	15	112	110	3.57	<10	1.30	266	107	0.10	53	490	<2	<5	<20	28	0.23	<10	125	<10	3	49
						_														_	_							_	
6	44618	<0.2		20	130		0.34	<1		101				1.31	282		0.06	52	470	<2	<5	<20		0.24		125	<10	3	40
7	44619		1.42	15	65		0.72	<1	15	149		4.09		0.75	195		0.11	51	480	<2	<5	<20		0.13	-	76	<10	7	40
8	44621	<0.2		20	95	-	0.95	<1	15	116		3.68		1.20	195		0.19	63	600	<2	<5	<20		0.18	-	138	<10	6	43
9	44622	<0.2		30	80	_	2.07	<1	15	136				1.12			0.29	78	640	<2	<5	<20		0.16			<10	8	56
10	44623	<0.2	3.05	30	80	<5	1.45	<1	15	131	243	3.93	<10	1.10	286	241	0.28	69	640	<2	<5	<20	108	0.18	<10	129	<10	7	53
11	44624	<0.2	2.48	20	90	<5	1.22	<1	13	135	145	3.42	<10	0.99	218	40	0.21	54	620	<2	<5	<20	77	0.15	<10	111	<10	5	41
12	44625	<0.2		<5	25	<5	>10	<1	<1	3	-	0.09	<10		59		<0.01	2	350	<2	<5	<20		<0.01	-	<1	<10	1	5
13	44626	<0.2		20	90	<5	0.99	<1	14	121	-	3.52	-	-	229		0.17	59	520	<2	<5	<20		0.17			<10	6	42
14	44627	<0.2		30	90		1.27	<1	15	135	-		-	1.20	271		0.18	67	540	<2	<5	<20	-	0.17	-	110		7	50
15	44628		1.55	15	70		0.82	<1	17	76				1.20			0.09	-	1250	<2	<5	<20		0.20		-	<10	7	63
10	11020	0.1	1.00		. 0	10	0.02	٠.			001		110	1.20	0.0	2.0	0.00	00	.200	`-	10	120		0.20	110	00	1.0	•	00
16	44629	< 0.2	2.20	20	105	<5	0.81	<1	14	141	120	3.44	<10	1.13	273	21	0.14	72	530	<2	<5	<20	50	0.20	<10	108	<10	6	52
17	44630	< 0.2	0.76	10	115	<5	1.46	<1	4	16	86	2.41	10	0.40	697	610	0.04	17	780	8	<5	<20	131	0.02	<10	22	<10	12	89
18	44631	0.3	1.96	25	120	<5	0.85	<1	11	144	134	2.67	<10	0.91	328	32	0.13	58	460	<2	<5	<20	60	0.15	<10	87	<10	5	34
19	44632	0.3	1.69	15	115	<5	0.68	<1	14	158	163	3.27	<10	0.89	317	60	0.08	38	610	<2	<5	<20	35	0.17	<10	86	<10	5	44
20	44633	<0.2	1.91	15	130	<5	0.60	<1	14	108	104	3.12	<10	0.99	264	85	0.08	44	500	<2	<5	<20	35	0.19	<10	99	<10	4	36
						_														_	_								
21	44634	<0.2		15	115	-	0.54	<1	15	126			<10		259		0.09	45	510	<2	<5	<20		0.21	<10	90	<10	4	39
22	44635	<0.2		15	110	_	0.63	<1	15	116		3.43		0.95	221		0.12	42	470	<2	<5	<20		0.19	<10	102	<10	4	36
23	44636	<0.2		20	115		0.82	<1	14	139		3.07		0.95	249		0.12	43	600	<2	<5	<20		0.19	<10	102	<10	4	54
24	44637	<0.2	1.64	15	125	<5	0.42	<1	14	131		3.02			236		0.07	40	460	<2	<5	<20		0.20	<10	93	<10	4	37
25	44638	0.2	2.31	25	120	<5	1.44	<1	15	139	171	3.50	<10	1.05	269	33	0.12	55	520	<2	<5	<20	80	0.18	<10	112	<10	5	44
26	44639	0.4	1.77	20	90	<5	1.06	<1	14	105	283	3.68	<10	1.08	254	13	0.07	52	600	<2	<5	<20	42	0.15	<10	97	<10	6	42
27	44641		0.96	10	55		1.21	<1	19	114		6.45		0.48		4675		62	330	<2	<5	<20		0.13	<10	39	<10	5	46
28	44642	<0.2		25	115		1.47	<1	16	124		3.60		1.14			0.23	61	630	<2	<5	<20		0.22	<10	119	<10	7	51
29	44643		2.88	25	90	<5	1.39	<1	18	122	195			1.12			0.23	84	670	<2	<5	<20	91		<10	121	<10	8	64
30	44644		3.10	30	80		1.84	<1	18	128		-		1.15		-	0.25	-	590	<2	<5	<20		0.21	-	129	<10	9	68
30	77044	0.2	3.10	30	00	<.5	1.04	\ 1	10	120	202	4.00	<10	1.13	400	100	0.23	11	390	~∠	<0	\ 20	100	0.20	< 10	123	<10	Ð	00
														Dogo	4														

Et #.	Tag #	Ag	Al %	As	Ва	Bi C	Ca %	Cd	Со	Cr	Cu	Fe %	La l	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti %	U	٧	W	Υ	Zn
31	44645	<0.2	0.03	<5	25	<5	>10	<1	<1	5	2	0.07	<10	9.80	63	<1	<0.01	2	280	<2	<5	<20	92 < 0.01	<10	<1	<10	1	4
32	44646	0.3	2.57	25	80	<5	1.42	<1	18	128	311	4.42	<10	1.15	300	259	0.22	77	590	<2	<5	<20	85 0.19	<10	126	<10	9	55
33	44647	<0.2	2.34	20	85	<5	1.07	<1	14	140	175	3.83	<10	1.17	316	816	0.19	71	600	<2	<5	<20	66 0.22	<10	128	<10	9	59
34	44648	<0.2	2.19	20	125	<5	0.77	<1	17	128	156	3.92	<10	1.21	308	40	0.16	68	590	<2	<5	<20	53 0.24	<10	132	<10	7	57
35	44649	0.2	2.81	25	80	<5	1.37	<1	19	131	307	4.63	<10	1.30	393	42	0.25	89	620	<2	<5	<20	103 0.23	<10	143	<10	10	77
36	44650	<0.2	0.75	10	135	<5	1.36	<1	4	17	110	2.46	20	0.47	617	615	0.05	18	710	6	<5	<20	128 0.02	<10	27	<10	15	69
37	44651	<0.2	2.66	25	110	<5	1.23	<1	18	136	251	3.98	<10	1.40	328	40	0.31	81	610	<2	<5	<20	105 0.20	<10	166	<10	12	56
38	44652	0.2	2.14	20	75	<5	1.16	<1	19	138	407	4.43	<10	1.34	268	59	0.22	76	600	<2	<5	<20	75 0.17	<10	161	<10	13	46
39	44653	0.3	2.24	25	75	<5	1.30	<1	17	128	295	4.18	<10	1.34	307	269	0.21	81	580	<2	<5	<20	68 0.17	<10	154	<10	13	56
40	44654	0.2	1.75	15	65	<5	0.90	<1	17	141	383	3.94	<10	1.09	230	231	0.18	52	580	<2	<5	<20	59 0.17	<10	128	<10	10	44
41	44655	0.2	1.08	10	85	<5	0.65	<1	12	171	275	2.89	<10	0.80	165	294	0.09	51	470	<2	<5	<20	33 0.13	<10	102	<10	10	31
42	44656	0.2	1.06	10	90	<5	0.53	<1	13	182	252	2.85	<10	0.86	153	168	0.08	53	550	<2	<5	<20	23 0.13	<10	119	<10	9	27
43	44657	0.3	1.13	10	55	<5	0.73	<1	15	137	497	4.20	<10	0.81	151	80	0.12	51	550	<2	<5	<20	61 0.09	<10	91	<10	8	29
44	44658	0.2	1.45	10	95	<5	0.64	<1	15	227	279	3.19	<10	1.00	183	62	0.12	63	510	<2	<5	<20	41 0.15	<10	117	<10	9	34
45	44659	<0.2	3.02	25	80	<5	1.30	<1	21	167	242	4.00	<10	1.51	278	32	0.38	92	630	<2	<5	<20	108 0.22	<10	155	<10	11	49
46	44663	<0.2	2.83	25	80	<5	1.21	<1	21	174	275	3.96		1.50	263	333	0.32	94	570	<2	<5	<20	135 0.21	<10	135	<10	10	48
47	44664	<0.2	2.29	20	140	<5	0.90	<1	17	173	177	3.40	<10	1.56	256	62	0.21	76	580	<2	<5	<20	64 0.22	<10	153	<10	11	43
48	44665	<0.2	0.03	<5	30	<5	>10	<1	<1	5		0.05	<10	9.44	46	<1	0.01	2	250	<2	<5	<20	75 < 0.01	<10	<1	<10	1	4
49	44666	0.2	1.24	10	80	<5	0.78	<1	15	184	365	3.45	<10	1.03	188	39	0.12	67	580	<2	<5	<20	37 0.16	<10	116	<10	10	32
50	44667	<0.2	1.97	35	115	<5	1.97	<1	14	161	213	3.06	<10	1.18	252	179	0.17	77	470	<2	<5	<20	102 0.08	<10	104	<10	9	41
51	44668	<0.2	2.57	25	75	<5	1.80	<1	22	166	257	4.16	<10	1.53	330	130	0.27	95	530	<2	<5	<20	115 0.16	<10	123	<10	12	53
52	44669	<0.2		25	105		0.96	<1	17	165	180	3.73		1.68	274		0.24	76	550	<2	<5	<20	97 0.22	<10	158	<10	10	49
53	44670		0.78	10	140		1.43	<1	4	17	117	2.55		0.49	626		0.05	18	730	6	<5	<20	133 0.02	<10	28	<10	15	70
54	44671		1.62	15	65	<5		<1		175		3.34		1.13	254		0.16	69	600	<2	<5	<20	47 0.15		117	_	11	45
	-		-	_										_														
QC DAT	Γ Α:																											
1	44613	0.4	1.59	35	65	<5	0.97	1	12	131	216	3.33	<10	0.79	276	93	0.08	45	460	<2	<5	<20	47 0.09	<10	70	<10	5	97
10	44623	< 0.2	3.04	30	75	<5	1.48	<1	14	126	233	3.88	<10	1.08	284	233	0.28	68	630	<2	<5	<20	112 0.18	<10	125	<10	8	53
19	44632	0.3	1.69	15	105	<5	0.70	<1	14	162	159	3.28	<10	0.89	322	68	0.09	38	620	<2	<5	<20	35 0.18	<10	85	<10	6	45
37	44651	0.2	2.78	25	110	<5	1.26	<1	18	138	255	4.11	<10	1.45	329	42	0.33	82	620	<2	<5	<20	110 0.21	<10	172	<10	12	56
45	44659	<0.2	3.03	25	90	<5	1.35	<1	21	167	240	3.95	<10	1.49	277	39	0.40	92	630	<2	<5	<20	112 0.22	<10	154	<10	11	49
Resplit	:																											
1	44613	0.4	1.50	30	75	<5	0.95	1	12	122	200	3.36	<10	0.80	280	87	0.07	45	450	<2	<5	<20	45 0.09	<10	70	<10	5	87
37	44651	0.2	2.88	20	90	<5	1.09	<1	18	133	344	4.15	<10	1.35	301	37	0.20	74	600	<2	<5	<20	94 0.19	<10	160	<10	13	50
Standa	rd·																											
PB106	u.	> 20	0.55	270	Q.E	_ E	1 62	21	1	40	6229	1 62	_10	O 16	502	ဘ	0.01	7	200	522A	60	-20	0 01 مے	_10	10	-10	1 (2261
PB106				270 270	85 80		1.63	34 32	4		-	1.63		0.16	593	33		7	280 270		60 60	<20	138 < 0.01	<10	13	<10 ~10		8361 8400
PD 100		>30	0.54	2/0	οU	<5	1.69	32	4	41	บาวง	1.00	<10	0.17	563	33	0.02	1	2/0	JJ 10	00	<20	134 < 0.01	<10	13	<10	ıč	3400

JJ/kc df/n0041 XLS/06 ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

TTM Resources 7-Feb-07

520-700W Pender Street Vancouver, BC V6C 1G8

Attention: Ken MacDonald

No. of samples received: 54

Sample Type: Core Project: CHU
Shipment #: 7

Submitted by: All North Cons.

		Мо	
ET #.	Tag #	(%)	
3	44615	0.114	
17	44630	0.063	
27	44641	0.458	
33	44647	0.085	
36	44650	0.065	
53	44670	0.064	
QC DAT			
3	44615	0.115	
27	44641	0.482	
Standar MP2 MP2 MP2 MP2	rd:	0.276 0.284 0.281 0.283	

ECO TECH LABORATORY LTD.

JJ/kk XLS/06 Jutta Jealouse B.C. Certified Assayer

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax: 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2007-31

TTM Resources P.O. Box 968 Pulpmill Road Prince George, BC V2L 4V1

Attention: Ken MacDonald

No. of samples received: 64 Sample Type: Core

Project: CHU Shipment #: 6

Submitted by: All North Cons.

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al%	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	44546	0.2 1.70	5	120	<5	1.78	1	14	161	328	3.74	<10	1.38	296	249	0.06	65	550	12	15	<20	55	0.13	<10	167	<10	16	52
2	44547	<0.2 1.80	5	135	<5	0.57	1	15	142	243	3.58	<10	1.59	278	304	0.10	59	530	12	10	<20	30	0.19	<10	217	<10	19	47
3	44548	<0.2 1.91	<5	130	<5	0.43	<1	17	149	271	3.75	<10	1.51	263	362	0.16	58	470	12	10	<20	27	0.21	<10	212	<10	18	51
4	44549	0.3 1.98	10	120	<5	0.85	2	17	151	439	4.21	<10	1.50	288	162	0.13	65	520	10	25	<20	34	0.15	<10	204	<10	19	52
5	44550	<0.2 0.87	5	155	<5	1.36	<1	7	20	140	2.58	20	0.53	653	633	0.05	13	740	14	<5	<20	149	0.05	<10	35	<10	21	73
6	44551	0.4 1.79	<5	90	<5	0.92	1	18	189	733	4.59	<10	1.06	248	252	0.20	71	500	8	10	<20	88	0.13	-10	111	-10	16	45
7	44552	0.4 1.79	10	65	<5	1.75	1	16	162	659	4.27	<10	1.23	290	336	0.20	70	600	8	5	<20	76		<10		<10	14	46
8	44553	0.4 1.41	20	120	<5	1.75	1	12	152	332	3.54	<10	1.18	259	303	0.10	58	500	12	15	<20	58			137		14	50
9	44554	<0.2 1.00	45	120	<5	1.51	<1	13	124	273	3.21	10	0.96	370	53	0.10		1060	8	<5	<20	51	0.00	-	-	<10	16	56
10	44555	<0.2 1.19	<5		<5	0.86	<1	12	63	118	2.76	10			<1	0.08	-	1490	8	<5	<20	43	0.12			<10	9	61
10	44000	\0.2 1.03	\ J	110	\3	0.00	\ 1	12	03	110	2.70	10	0.00	407		0.00	5	1430	O	\ J	\20	40	0.15	\10	00	<10	3	O I
11	44556	<0.2 1.63	<5	90	<5	0.70	2	15	146	388	3.96	<10	1.11	189	87	0.20	61	680	10	20	<20	49	0.13	<10	147	<10	13	51
12	44557	<0.2 1.73	<5	100	<5	0.71	1	17	173	436	4.19	<10	1.15	175	340	0.22	63	570	10	10	<20	49	0.15	<10	150	<10	13	50
13	44558	0.2 1.24	<5	90	<5	0.74	<1	16	130	446	4.01	<10	1.03	177	274	0.14	61	760	10	<5	<20	42	0.14	<10	122	<10	15	41
14	44559	<0.2 1.33	<5	95	<5	0.57	2	16	130	290	3.78	<10	1.27	224	98	0.10	47	810	8	15	<20	38	0.15	<10	152	<10	15	46
15	44561	<0.2 1.03	<5	105	<5	0.48	1	11	98	222	2.86	<10	0.98	223	36	0.09	32	700	4	15	<20	24	0.12	<10	115	<10	13	41
40	4.4500	00007	_	400	_	0.00		•	440	400	0.00	40	0.70	000	0.4	0.00	00	4.40	0	_	00	0.4	0.40	40	405	40	45	0.7
16	44562	<0.2 0.87	<5		<5	0.30	<1	-	110	193		<10		239	94	0.08	29	440	6	<5	<20	21	0.12			<10	15	37
17	44563	<0.2 1.77	<5	170	<5	0.42	<1	17	138	277		<10	1.49	346	205	0.14	61	510	12	10	<20	31		<10		<10	22	58
18	44564	<0.2 2.19	<5	140	<5	0.67	1	18	152	356	4.00	<10	1.55		283		72		10	20	<20	63	0.20			<10	19	58
19	44565	<0.2 0.05	<5	10	<5	>10	<1	<1	4	7	0.08	<10	>10	64		<0.01	<1	360	<2	25	<20	155		<10	3	<10	10	5
20	44566	<0.2 1.94	<5	145	<5	0.60	2	20	151	299	3.85	<10	1.49	296	264	0.20	75	520	14	25	<20	37	0.17	<10	195	<10	18	61
21	44567	<0.2 0.81	<5	90	5	0.58	1	9	80	162	2.69	10	0.74	211	55	0.09	17	930	6	10	<20	34	0.11	<10	80	<10	12	38
22	44568	<0.2 0.61	<5	100	<5	0.55	<1	8	55	135	2.21	10	0.49	198	33	0.08	5	930	6	<5	<20	35	0.09	<10	44	<10	10	38
23	44569	0.2 1.06	<5	90	<5	0.59	2	13	117	310	3.44	<10	0.89	267	143	0.12	41	670	8	10	<20	47	0.10	<10	109	<10	11	43
24	44570	<0.2 0.87	5	155	<5	1.36	<1	7	20	140	2.58	20	0.53	652	641	0.05	13	750	14	<5	<20	146	0.06	<10	34	<10	21	74
25	44571	<0.2 1.78	<5	110	<5	0.49	1	17	136	285	3.71	<10	1.44	279	249	0.15	60	540	12	10	<20	56	0.18	<10	193	<10	19	51

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	44572	<0.2 1.85	<5	120	<5	0.57	1	22	151	274	4.09	<10	1.48	330	170	0.15	63	1080	10	20	<20	30	0.21	<10	187	<10	26	57
27	44573	<0.2 1.52	<5	135	<5	0.42	<1	18	132	233	3.52	<10	1.28	337	200	0.11	54	540	10	5	<20	25	0.20	<10	171	<10	21	52
28	44574	0.5 1.41	10	135	<5	0.41	<1	15	149	392	3.15	<10	1.20	284	305	0.09	54	420	14	10	<20	16	0.17	<10	174	<10	18	58
29	44575	2.6 1.25	<5	110	25	0.34	1	18	122	1011	3.44	<10	1.04	273	497	0.07	46	350	10	<5	<20	12	0.14	<10	156	<10	13	85
30	44576	1.3 1.09	<5	80	<5	0.41	1	20	151	1053	4.79	<10	1.11	244	799	0.09	43	420	8	<5	<20	16	0.13	<10	127	<10	12	56
31	44577	1.2 1.58	<5	105	<5	0.42	2	17	132	853	3.93	<10	1.68	359	281	0.08	45	700	10	20	<20	12	0.18	<10	188	<10	14	72
32	44578	<0.2 1.33	<5	150	<5	0.38	<1	18	130	156	3.02	<10	1.07	270	478	0.09	43	500	12	5	<20	14	0.18	<10	158	<10	19	51
33	44579	0.6 1.13	<5	95	<5	0.40	2	18	131	602	3.96	<10	0.98	260	465	0.09	47	470	10	20	<20	28	0.13	<10	132	<10	14	57
34	44581	0.4 1.15	<5	100	<5	0.34	1	16	144	417	3.36	<10	0.95	249	316	0.10	42	480	10	10	<20	14	0.15	<10	130	<10	15	59
35	44582	0.2 1.52	10	125	<5	0.70	1	16	157	219	3.57	<10	1.28	235	373	0.09	52	490	12	10	<20	24	0.17	<10	190	<10	13	54
36	44583	0.3 1.64	25	110	<5	1.04	1	14	127	298	3.41	<10	1.40	238	210	0.08	53	490	10	15	<20	36	0.16	<10	185	<10	12	54
37	44584	0.8 1.74	10	115	<5	0.87	1	10	195	482	2.81	<10	1.50	270	395	0.10	40	560	14	20	<20	24	0.11	<10	210	<10	20	71
38	44585	<0.2 0.04	5	15	<5	>10	<1	<1	5	6	0.07	<10	>10	66	<1	<0.01	<1	340	<2	35	<20	142	0.02	<10	4	<10	4	5
39	44586	0.2 1.39	15	105	<5	1.42	<1		125	303			1.10		389	0.05		460	12	10	<20	30	0.10				17	76
40	44587	0.2 1.35	20	95	<5	1.24	<1	12	128	236	2.95	<10	1.10	230	665	0.05	47	410	26	5	<20	23	0.10	<10	140	<10	11	63
41	44588	<0.2 1.72	<5	75	<5	0.47	2	25	155	487	4.71	<10	1.53	271	441	0.08	61	440	6	15	<20	28	0.18	<10	187	<10	14	56
42	44589	<0.2 1.60	5	110	<5	0.47	1	16	146	342	3.68	<10	1.41	236	292	0.08	57	450	12	20	<20	22	0.15	<10	200	<10	15	93
43	44590	0.2 0.89	<5	155	<5	1.36	<1	7	20	143	2.59	20	0.54	657	619	0.05	17	730	14	<5	<20	153	0.05	<10	36	<10	21	72
44	44591	<0.2 1.70	<5	110	<5	0.61	1	18	160	420	4.34	<10	1.41	261	198	0.11	58	620	12	10	<20	57	0.18	<10	169	<10	14	76
45	44592	<0.2 1.70	<5	125	<5	0.86	1	19	160	418	4.13	<10	1.64	312	530	0.08	69	800	8	15	<20	49	0.18	<10	202	<10	18	72
46	44593	<0.2 1.71	10	145	<5	0.77	1	15	184	303	3.65	<10	1.60	309	326	0.09	77	670	12	10	<20	30	0.17	<10	227	<10	19	71
47	44594	0.2 1.25	<5	105	<5	0.61	<1	15	167	373	3.40	<10	1.14	215	966	0.09	50	620	10	<5	<20	28	0.14	<10	159	<10	15	52
48	44595	0.2 1.57	10	65	<5	1.04	1	24	180	659	4.97	<10	1.32	251	1303	0.08	71	480	10	5	<20	87	0.15	<10	170	<10	13	60
49	44596	<0.2 1.32	5	90	<5	0.46	<1	17	148	584			1.38			0.08	-	400	8	10	<20	65	0.13				12	49
50	44597	0.2 1.58	5	125	<5	0.62	1	16	186	405	3.64	<10	1.52	268	523	0.09	69	590	10	10	<20	61	0.19	<10	227	<10	20	60
51	44598	<0.2 1.51		130	<5	0.38	<1		153	185			1.26			0.08		470	12	5	<20	25	0.21				20	52
52	44599	0.2 1.64	_	145	<5	0.44	<1		166	356			1.47				-	580	12	_	<20	27	-		205		24	59
53	44601	2.9 1.65	<5	90	<5	0.40	2		151				1.48			0.11		420	8	10	<20	27	0.19				19	83
54	44602	1.4 1.48	5	95	<5	0.60	<1		176				1.42			0.09		500	10	5	<20	27	0.15			<10	17	57
55	44603	2.1 1.35	10	90	<5	0.68	1	17	171	1284	3.91	<10	1.28	228	580	0.08	53	420	8	10	<20	25	0.15	<10	137	<10	12	58
56	44604	2.4 1.19	15	85	<5	0.67	<1			1272			1.03			0.06	_	320	8	5	<20	25	0.11				13	71
57	44605	<0.2 0.04	5	10	<5	>10	<1	<1	4	12	0.07		>10	68		<0.01	<1		<2	30	<20		0.04		_	<10	2	6
58	44606	0.5 1.12	5	80	<5	0.66	1		156	580			1.03			0.09		580	4		<20	28	0.14				11	48
59	44607	0.3 1.11	<5	90	<5	0.53	2	18	100	422	3.99		1.01	242	214	0.10	31		8	5	<20	37	0.15				13	42
60	44608	<0.2 1.23	10	115	<5	0.85	<1	14	155	239	3.08	<10	1.01	278	795	0.08	41	520	6	10	<20	31	0.13	<10	129	<10	16	61
61	44609	0.3 0.62	<5	85		0.57	<1	7		370	2.66		0.42			0.09	_	790	6	<5	<20	38	0.07	-	-	<10	7	26
62	44610	<0.2 0.91	<5	155		1.37	<1	7	19	145	2.62	20	0.55		700	0.05		760	12	<5	<20		0.06			<10	21	71
63	44611	0.4 0.60	<5	85	<5	0.53	<1	8	95	401	2.67	10	0.42	174	108	0.08	11	700	6	<5	<20	34	80.0	<10	37	<10	6	24
64	44612	0.2 0.70	<5	75	<5	0.71	<1	10	81	278	2.55	10	0.61	203	320	0.08	23	740	6	<5	<20	36	0.10	<10	64	<10	9	32

Tag#

Et #.

ICP CERTIFICATE OF ANALYSIS AK 2007-31

TTM Resources

Page 2
Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P Pb Sb Sn Sr Ti % U V W Y Zn

QC DAT Repeat:																													
1	44546	0.2	1.76	10	120	<5	1.79	1	15	163	339	3.74	<10	1.41	298	255	0.07	65	580	12	20	<20	53	0.13	<10	170	<10	19	50
10	44555	< 0.2	1.08	<5	125	<5	0.87	<1	13	68	124	2.79	10	0.88	414	<1	0.10	4 ′	1480	10	5	<20	48	0.13	<10	70	<10	11	62
36	44583	0.3	1.72	20	120	<5	1.06	1	14	131	312	3.46	<10	1.45	242	215	0.09	53	460	8	10	<20	38	0.17	<10	190	<10	11	53
45	44592	< 0.2	1.64	<5	115	<5	0.85	2	18	160	405	4.08	<10	1.59	308	533	0.07	72	780	10	25	<20	49	0.18	<10	198	<10	19	74
54	44602	1.4	1.50	<5	105	<5	0.62	2	22	183	1119	3.97	<10	1.49	303	811	0.10	71	490	8	15	<20	29	0.15	<10	177	<10	18	58
Resplit: 1 36	44546 44583	0.3 0.5		10 20	120 105	<5 <5	1.81 0.98	2 2	14 16	165 133	330 325	3.76 3.77	<10 <10	1.40 1.49	298 243	255 219	0.07 0.10	68 57	600 470	14 6	25 20	<20 <20	53 40	0.10 0.15	<10 <10	170 186	<10 <10	19 11	54 50
Standar PB106 PB106	d:	>30 >30		285 280	80 80	<5 <5	1.69 1.62	31 32	4		6279 6296	1.67 1.69	<10 <10	0.16 0.17	541 556	36 35	0.03 0.03		270 5 280 5		60 75	<20 <20		<0.01 <0.01	<10 <10	14 14	10 10		3440 3464

Jutta Jealouse

B.C. Certified Assayer

JJ/dc df/31

XLS/06

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2007-0021

TTM Resources
P.O. Box 968 Pulpmill Road
Prince George, BC
V2L 4V1

Attention: Ken MacDonald

No. of samples received: 106

Sample Type: Core Project: CHU
Shipment #: 5

Submitted by: All North Cons.

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	44434	0.2	0.86	5	65	<5	0.33	<1	10	55	160	3.09	<10	0.67	321	14	0.08	3	570	12	<5	<20	13	0.15	<10	70	<10	9	73
2	44435	0.2	0.61	<5	35	<5	0.42	<1	9	54	221	3.01	<10	0.45	223	132	0.05	2	400	12	<5	<20	11	0.07	<10	57	<10	7	51
3	44436	0.4	0.77	5	65	<5	0.32	<1	11	55	193	3.39	<10	0.57	279	18	0.07	3	520	12	<5	<20	10	0.13	<10	71	<10	9	63
4	44437	0.5	0.79	10	60	<5	0.37	<1	11	66	463	3.76	<10	0.61	226	49	0.09	2	550	14	<5	<20	11	0.13	<10	66	<10	10	50
5	44438	0.4	0.82	5	55	<5	0.59	<1	13	68	339	3.92	<10	0.57	333	67	0.10	2	530	14	<5	<20	15	0.15	<10	60	<10	8	74
6	44439	0.3	0.83	5	70	<5	0.29	1	11	46	116	2.97	<10	0.56	305	26	0.07	2	560	14	<5	<20	9	0.17	<10	83	<10	7	85
7	44441	0.5	0.92	5	65	<5	0.42	<1	9	54	175	2.93	<10	0.64	280	66	0.10	2	550	16	<5	<20	16	-	<10	72	10	8	73
8	44442	0.3	1.45	10	45	5	0.42	<1	9	40	276	3.06	<10	0.69	241	45	0.10	1	610	22	<5	<20	41		<10	68	20	7	49
9	44443	0.3	0.67	5	45	<5	0.46	<1	8	60	266	3.26	<10	0.48	169	71	0.08	2	540	18	<5	<20	20	-	<10	53	<10	8	50
10	44444	0.3	0.63	5	30	<5	0.73	<1	10	73	278	3.11	-	0.37	188	36	0.05	2	530	14	<5	<20	16	0.09	<10	43	<10	8	36
		0.0	0.00				00	٠.		. •		• • • • • • • • • • • • • • • • • • • •	1.0	0.0.			0.00	_		•				0.00				Ū	
11	44445	< 0.2	0.02	<5	30	<5	>10	<1	<1	4	4	0.06	<10	>10	48	<1	0.01	2	340	2	<5	<20	89	< 0.01	<10	<1	<10	2	4
12	44446	0.4	0.69	5	40	<5	0.81	<1	13	66	447	4.03	<10	0.32	241	15	0.09	2	490	10	<5	<20	10	0.10	<10	37	<10	10	42
13	44447	0.2	0.59	5	45	<5	0.41	<1	6	48	223	2.80	<10	0.38	185	10	0.06	2	480	8	<5	<20	9	0.09	<10	51	<10	9	38
14	44448	0.5	0.70	5	45	<5	0.46	<1	8	52	376	3.50	<10	0.48	221	17	0.07	3	470	10	<5	<20	14	0.10	<10	51	<10	10	51
15	44449	0.5	0.67	5	40	<5	0.55	3	9	56	435	4.00	<10	0.44	240	22	0.07	2	460	10	<5	<20	15	0.09	<10	46	<10	9	198
16	44450	0.2	0.74	10	125	<5	1.29	<1	5	17	114	2.58	20	0.49	614	639	0.05	11	750	16	<5	<20	128		<10	27	<10	16	72
17	44451	0.6	0.60	5	45	<5	0.47	<1	8	65	444	3.71	<10	0.40	226	23	0.07	<1	490	8	<5	<20	11	0.10	<10	44	<10	9	63
18	44452	0.2	0.72	5	60	<5	0.36	<1	7	69	134	2.32	<10	0.51	217	26	0.07	<1	460	10	<5	<20	10	-	<10	49	<10	9	44
19	44453	0.2	0.77	10	55	<5	0.41	<1	8	64	201	2.78	<10	0.55	284	33	0.09	<1	460	10	<5	<20	10	0.12	<10	52	<10	10	54
20	44454	0.3	0.61	5	40	<5	0.35	<1	9	74	423	4.23	<10	0.43	170	36	0.07	<1	440	8	<5	<20	10	0.09	<10	39	<10	9	31
21	44455	0.3	0.56	5	45	<5	0.44	<1	8	50	297	2.83	<10	0.41	205	11	0.08	<1	520	8	<5	<20	9	0.10	<10	51	<10	11	36
22	44456	0.3	0.64	5	45	<5	0.46	<1	8	69	300	2.74	<10	0.41	198	14	0.08	<1	540	8	<5	<20	9		<10	52	<10	10	38
23	44450	0.2	0.04	10	50	<5	0.40	<1	6	73	225	2.74	<10	0.47	160	92	0.08	<1	450	10	<5	<20	17	• • • • •	<10	48	<10	10	36 27
24	44458	0.2	0.69	5	50	<5	0.30	<1	7	69	218	2.44	<10	0.46	145	56	0.07	<1	440	8	<5	<20	13	0.08	<10	51	<10	8	29
25	44459	0.3	1.10	15	55	<5	1.18	<1	11	68	268	2.80	<10	0.40	280	82	0.08	8	700	12	<5	<20	35	0.00	<10	72	<10	10	51

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	44461	0.2	2.30	25	105	<5	2.43	<1	24	127	189	3.12	<10	1.71	495	22	0.26	33	1050	22	<5	<20	114	0.15	<10	118	<10	7	45
27	44462	0.3	0.94	10	60	<5	0.62	<1	14	76	331	3.04	<10	0.81	189	115	0.10	4	540	12	<5	<20	27	0.11	<10	71	<10	8	36
28	44463	0.4	1.07	10	40	<5	1.14	<1	7	87	305	2.78	<10	0.55	273	386	0.08	<1	460	14	<5	<20	26	0.07	<10	46	<10	9	36
29	44464	0.3	0.95	10	50	5	0.53	<1	13	74	291	2.97	<10	0.63	164	75	0.08	<1	530	16	<5	<20	26	0.11	<10	60	10	10	41
30	44465	<0.2	0.03	<5	25	<5	>10	<1	<1	6	7	0.07	<10	>10	53	<1	<0.01	2	270	<2	<5	<20	93	<0.01	<10	<1	<10	2	6
31	44466	0.2	0.82	10	50	-5	0.95	<1	8	72	254	2 58	-10	0.59	167	229	0.07	_1	480	14	5	<20	12	0.10	-10	52	<10	10	38
32	44467	0.2	1.54	15	90			<1	9	81				0.39	208	186	0.07	14	480	20	<5	<20	55	0.10			<10	9	46
33	44468	<0.2	2.41	30	130	<5		<1		142				1.25	278	430	0.15	40	520	22	<5		46	0.13				7	43
34	44469	<0.2	1.75		125	<5	0.40	<1		129				1.38	285	64	0.10	42	550	16	<5		16	0.24				8	46
35	44470	0.2	0.74			_		<1		18				0.48	625	633	0.05			16		<20		0.02				16	73
00	44470	0.2	0.74		100	10	1.40	`'	Ü	.0	110	2.00	20	0.40	020	000	0.00		770		10	120	120	0.02	110	_,	110		70
36	44471	<0.2	1.64	15	95	<5	0.40	<1	15	143	262	2.90	<10	1.18	243	213	0.14	45	500	20	<5	<20	17	0.23	<10	154	<10	10	40
37	44472	0.3	1.44	15	85	<5	0.38	<1	15	127	347	3.10	<10	1.22	240	95	0.11	45	500	16	<5	<20	24	0.19	<10	149	<10	10	46
38	44473	0.2	1.56	15	85	<5	0.42	<1	17	123	273	3.89	<10	1.31	261	66	0.13	47	570	16	<5	<20	19	0.21	<10	158	<10	10	45
39	44474	< 0.2	1.54	15	120	<5	0.46	<1	16	137	173	2.79	<10	1.21	213	27	0.15	46	520	16	<5	<20	24	0.21	<10	156	<10	10	36
40	44475	0.2	1.23	10	105	<5	0.35	<1	12	140	228	2.90	<10	1.16	191	32	0.10	38	540	14	<5	<20	15	0.20	<10	147	<10	11	35
41	44476	0.2	1.47	15	110	-5	0.42	<1	1/1	133	210	2 81	-10	1.26	191	106	0.13	38	540	14	<5	<20	21	0.21	-10	1//	-10	11	32
42	44477	0.2	2.19	25	95			<1		133				1.88	370	28	0.13		1080	22		<20	77	0.18			10	7	55
42	44477 44478	0.3	1.39	15	105	<5		<1		153				1.23	186	150	0.10	43	560	16	<5		22	0.16			<10	11	31
44	44479	0.3	1.42	_	100		0.45	<1		141				1.12	201	308	0.11		530	16		<20	17	0.21				9	33
45	44479 44481	0.2	1.35		100	_	0.38	<1		149				1.09		194			560	14	<5	<20	20	0.22				11	39
43	44401	0.5	1.55	13	100	<3	0.30	<u> </u>	14	149	230	2.90	<10	1.03	212	134	0.12	39	300	14	<3	\ 20	20	0.21	<10	139	<10		39
46	44482	0.3	1.43	10	75	<5	0.49	<1	15	139	310	3.44	<10	1.19	232	198	0.13	42	550	14	<5	<20	20	0.20	<10	137	<10	11	45
47	44483	0.5	1.17	15	80	<5	0.65	<1	14	113	280	2.94	<10	1.08	199	246	0.07	34	530	12	<5	<20	47	0.16	<10	127	<10	10	38
48	44484	1.2	1.58	25	65	<5	1.01	<1	17	131	626	3.65	<10	1.15	244	92	0.11	43	570	20	<5	<20	30	0.13	<10	118	<10	11	52
49	44485	< 0.2	0.04	<5	30	<5	>10	<1	<1	4	6	0.08	<10	>10	60	<1	<0.01	2	360	<2	<5	<20	91	<0.01	<10	1	<10	2	5
50	44486	0.3	1.36	15	100	<5	0.45	<1	14	152	212	2.96	<10	1.19	223	138	0.10	39	530	14	<5	<20	16	0.22	<10	146	<10	11	41
51	44487	0.4	1.34	20	90	-5	0.53	<1	12	139	260	2 88	-10	1.20	207	293	0.07	40	570	14	<5	<20	13	0.19	-10	150	-10	12	37
52	44488	0.3	1.24	35	70		1.76	<1		136	232			1.00	232	243	0.05	38	470	14	<5		27	0.10				12	37
53	44489	0.3	1.52	45	80	<5	1.05	<1		143	174			1.11	244	153	0.06	39	520	16	<5	<20	23	0.13				11	40
54	44490	0.2	0.77	5	130	<5	1.44	<1		18	114	2.50		0.49	606	613	0.05	11		16	<5			0.02			<10	16	70
55	44491	0.2	1.48	25	80	<5	0.68	<1		142				1.21	217	129	0.07		520	16	<5	<20	22	0.15				11	42
										–																			
56	44492	0.3	1.60	25	70	<5	1.16	<1	12	125	207	3.88	<10	1.25	207	217	0.08	38	520	16	<5	<20	31	0.14	<10	135	<10	12	35
57	44493	0.4	1.31	25	60	<5	0.56	<1	14	155	252	2.97	<10	1.18	199	546	0.08	41	540	16	<5	<20	18	0.18	<10	150	<10	11	38
58	44494	0.4	1.64	20	70	<5	0.47	<1	17	164	292	3.12	<10	1.30	211	104	0.11	50	570	18	<5	<20	21	0.21	<10	154	<10	9	41
59	44495	0.4	1.46	25	65	<5	0.56	<1	16	147	286	3.85	<10	1.22	211	108	0.08	45	570	16	<5	<20	23	0.17	<10	140	<10	12	42
60	44496	0.3	1.25	20	50	<5	0.61	<1	17	158	223	2.89	<10	0.99	175	260	0.07	43	520	14	<5	<20	21	0.15	<10	123	<10	12	32
61	44497	0.3	1.07	10	55	_ E	0.49	_1	11	153	252	2 02	-10	0.93	192	146	0.09	30	500	12	-5	<20	29	0.17	-10	110	-10	11	36
62	44498		1.19	10	45		0.49		15					0.93	181	403		35		12		<20	28 19	0.17			20		36 49
63	44496 44499		0.98	10	70		0.46	<1						0.86		488	0.08					<20	13	0.16				12	
64	44499 44501		1.00	10	50	<5		<1		168				0.85		1422		29	480	10		<20	29	0.13			10	14	
65	44501		0.96	10	50		0.79			158				0.69						10		<20	29				30	11	
03	44002	1.0	0.90	10	50	\ J	0.30	,	1.1	130	JZ 1	2.01	\10	0.03	2J 4	550	0.04	23	550	10	~5	\ 20	4	0.10	~10	31	30		+50

ICP CERTIFICATE OF ANALYSIS AK 2007-0021

TTM Resources

Et #. Tag # Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P Pb Sb Sn Sr Ti % U V W Y Zn
Page 2

66 67 68 69 70	44503 44504 44505 44506 44507	0.8 0.6 <0.2 0.6 0.5	0.94 1.25 0.02 1.02 0.83	10 15 <5 15	55 60 30 45 50	<5 <5 <5 <5 <5	0.48 0.83 >10 0.77 0.43	<1 <1 <1 <1	14 <1 15	165 171 4 163 161	349 5 387	2.79 2.83 0.06 2.84 2.87	<10 <10 <10	0.86 >10 0.82	200 236 52 189 191	272 217 <1 351 975	0.06 0.06 <0.01 0.06 0.04	30 35 1 31 27	450 430 240 470 400	12 14 <2 12 10	<5 <5 <5 <5 <5	<20 <20 <20 <20 <20	21 31 94 23 13	0.13 0.16 <0.01 0.13 0.10	<10 <10 <10	114 <1	<10 <10 <10 <10 <10	13 12 2 11 11	37 50 4 39 84
71 72 73 74 75	44508 44509 44510 44511 44512	0.8 1.2 0.2 0.4 0.8	0.95 0.97 0.72 1.41 1.09	15 25 10 20 15	35 35 130 70 50	<5 <5 <5	0.78 1.23 1.25 0.58 0.74	1 <1 <1 <1 <1	14 5	123 148 17 141 140	561 594 113 239 535	5.54 5.75 2.50 2.83 2.82	<10 20 <10	0.65 0.71 0.49 1.14 0.91		1111 1213 625 386 670	0.04 0.04 0.04 0.05 0.04	30 27 11 41 29	620 480 760 670 500	16 12 16 14 12	<5 <5 <5 <5 <5	<20 <20 <20 <20 <20	21 26 129 24 24	0.07 0.05 0.02 0.16 0.10	<10 <10 <10	69 28 149	<10 <10 <10 <10 <10	10 10 17 13 12	66 39 71 39 43
76 77 78 79 80	44513 44514 44515 44516 44517	0.4 0.2 0.3 0.3 0.4	1.09 1.20 1.17 0.93 1.18	15 10 15 10	50 85 80 75 60	<5 <5 <5	0.59 0.53 0.84 0.42 1.39	<1 <1 <1 <1 <1	13 12	166 199 183 218 224	172 194 244	2.89 2.76 2.66 2.70 2.78	<10 <10 <10	0.87 0.93 0.70	161 206 264 185 199	906 475 336 448 636	0.05 0.06 0.05 0.06 0.05	31 36 32 33 34	490 480 500 530 400	12 12 12 10 12	<5 <5 <5 <5 <5	<20 <20 <20 <20 <20	30 28 25 18 31	0.11 0.18 0.14 0.14 0.15	<10 <10 <10	122 115 99	<10 <10 <10	13 12 14 10 11	34 35 61 32 37
81 82 83 84 85	44518 44519 44521 44522 44523	0.3 0.2 0.3 0.5 0.4	1.39 1.57 1.45 1.43 1.42	10 15 10 10 15	60 65 65 60 70	<5 <5 <5	1.37 0.52 0.36 0.32 0.37	<1 <1 <1 <1 <2	14 15 18	159 184 140 144 124	235 240 354	2.93 2.88	<10 <10 <10	1.10 1.31 1.22 1.37 1.21	190 272 281 313 407	430 558 860 398 303	0.06 0.11 0.09 0.07 0.07	37 52 61 53 52	540 590 540 610 490	14 16 14 14 14	<5 <5 <5 <5 <5	<20 <20 <20 <20 <20	40 44 24 19 38	0.17 0.21 0.21 0.21 0.22	<10 <10 <10	164 157 166	<10 <10 <10	12 15 12 13 13	38 57 65 64 112
86 87 88 89 90	44524 44525 44526 44527 44528	0.6 <0.2 0.3 0.2 0.4	1.44 0.03 1.39 1.41 1.14	10 <5 10 10 15	60 30 80 75 55	<5 <5 <5	0.42 >10 0.33 0.41 0.42	<1 <1 <1 <1 <1	<1 16 18	143 5 149 142 155	351 5 208 194 275	3.03 0.07 2.85 2.87 2.82	<10 <10 <10	1.26 >10 1.25 1.20 0.92	364 49 294 213 275	457 1 294 353 127	0.07 <0.01 0.08 0.06 0.05	54 1 44 40 37	460 260 460 430 410	14 2 14 14 12	<5 <5 <5 <5 <5	<20 <20 <20 <20 <20	20 94 24 20 23	0.21 <0.01 0.23 0.22 0.15	<10 <10 <10	<1 143 146	<10 <10 <10	13 2 15 12 12	71 3 53 39 44
91 92 93 94 95	44529 44530 44531 44532 44533	0.4 0.2 0.3 0.3	0.79 0.74 0.49 0.65 0.68	5 5 <5 5 10	65 130 55 55 45	5 <5 <5 <5 <5	0.45 1.27 0.58 0.67 1.04	<1 <1 <1 <1 <1	9 5 6 6 8	123 17 82 86 92	225 112 165 185 337	2.52 2.55 2.05 2.20 2.39	10 20 10 20 10	0.61 0.49 0.38 0.45 0.55	257 624 186 219 221	100 617 99 106 68	0.07 0.04 0.06 0.06 0.06	16 11 1 4 9	650 740 870 850 740	8 14 6 8 10	<5 <5 <5 <5 <5	<20 <20 <20 <20 <20	29 128 35 33 40	0.13 0.02 0.10 0.11 0.08	<10 <10 <10	68 28 26 35 43	<10 <10 <10 10 <10	10 17 6 6 7	41 70 30 32 39
96 97 98 99 100	44534 44535 44536 44537 44538	0.4 1.1 0.7 0.3 0.2	0.98 1.23 0.90 1.19 1.37	10 15 10 10 15	50 45 50 85 90	<5 <5 <5 <5 <5	0.42 0.52 0.42 0.37 0.27	<1 1 1 <1 <1	25 18 14	173 168 162 142 142	542 227	7.53 3.20 2.78		0.87 1.30 0.83 1.19 1.32	224 312 249 212 239	300 134 138 186 205	0.07 0.08 0.06 0.06 0.07	35 37 35 43 42	570 690 740 520 460	12 16 12 14 14	<5 <5 <5 <5 <5	<20 <20 <20 <20 <20	21 23 14 12 14	0.14 0.13 0.13 0.19 0.21	<10 <10 <10	112 98 162	<10 <10 <10	14 16 14 12 11	48 76 59 39 47
101 102 103 104 105 106	44541 44542 44543 44544	<0.2 <0.2 0.3 0.3	1.36 1.71 1.46 1.45 1.83 0.02	15 10 25 30	115 150 55 80	<5 <5 <5 <5	0.39 0.19 0.71	<1 <1	16 16 16 12	156 129 160 166	153 112 355 248	3.01 2.79 3.01 2.97	<10 <10 <10 <10	1.33 1.38 1.26 1.24 1.64 >10	319 240 235 255	68 164 86 168 442 <1	0.06 0.08 0.07 0.05 0.05 <0.01	46 51		18	<5 <5 <5	<20	18 12 21 28	0.21 0.25 0.26 0.17 0.16 <0.01	<10 <10 <10 <10	155 157 135 203	<10 <10 <10 <10	12 13 8 10 14 2	50 65 41 44 54 4

ICP CERTIFICATE OF ANALYSIS AK 2007-0021

TTM Resources

Et #. Tag # Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P Pb Sb Sn Sr Ti % U V W Y Zn Page 3

QC DATA:

Repeat	:																												
1	44434	0.2	0.78	5	65	<5	0.34	<1	11	54	160	3.28	<10	0.72	354	15	0.07	3	650	16	<5	<20	13	0.16	<10	73	<10	9	85
10	44444	0.3	0.70	10	30	<5	0.72	<1	9	69	284	2.87	<10	0.34	180	38	0.06	1	510	10	<5	<20	13	0.07	<10	36	<10	7	34
19	44453	0.2	0.74	10	60	<5	0.40	<1	8	62	199	2.56	<10	0.55	246	30	0.09	<1	460	10	<5	<20	11	0.12	<10	51	<10	9	48
36	44471	0.2	1.56	15	100	<5	0.33	<1	15	139	247	3.02	<10	1.16	239	199	0.13	44	490	18	<5	<20	17	0.23	<10	152	<10	10	37
45	44481	0.3	1.32	15	95	<5	0.42	<1	14	147	264	2.84	<10	1.11	212	185	0.12	39	570	14	<5	<20	19	0.20	<10	140	<10	11	38
71	44508	0.6	1.02	15	40	<5	0.82	1	17	131	571	5.66	<10	0.65	222	1301	0.04	32	660	12	<5	<20	21	0.08	<10	71	<10	11	67
80	44517	0.3	1.20	10	60	<5	1.47	<1	12	230	314	2.92	<10	0.81	200	644	0.05	34	400	12	<5	<20	31	0.16	<10	116	<10	12	38
89	44527	0.2	1.42	10	85	<5	0.46	<1	18	147	193	2.73	<10	1.21	214	355	0.06	40	430	14	<5	<20	20	0.22	<10	147	<10	13	39
Resplit	·-																												
1	44434	0.2	0.90	10	60	<5	0.34	<1	10	54	166	3.09	<10	0.62	295	16	0.08	1	540	10	<5	<20	12	0.14	<10	63	<10	9	72
36	44471	< 0.2	1.58	15	105	<5	0.31	<1	15	137	237	2.87	<10	1.21	249	192	0.09	41	490	14	<5	<20	14	0.24	<10	159	<10	10	34
											201	2.07	\10	1.21	243	132	0.09	71	430	14	\0	\20	17	0.2-1	110				
Standa	rd:								.0	101	201	2.01	110	1.21	243	192	0.09	71	430	14	\ 0	\2 0		0.24	110				
Standa PB106	rd:	>30	0.53	275	75	<5	1.62	33	4	43	6292	1.69	<10	0.17	564	31	0.02	7	270	5272	55	<20		<0.01	<10	13	10	1 8	359
	rd:	>30 >30	0.53 0.51	275 275	75 75	<5 <5												7 7	270				144			13 13	10 10		359 342

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

JJ/sa df/n21 XLS/06

TTM Resources 26-Jan-07

P.O. Box 968 Pulpmill Road **Prince George, BC**

V2L 4V1

Attention: Ken MacDonald

No. of samples received: 106

Sample Type: Core Project: CHU
Shipment #: 5

Submitted by: All North Cons.

		Мо
ET #.	Tag #	(%)
16	44450	0.064
35	44470	0.063
54	44490	0.062
57	44493	0.056
64	44501	0.145
65	44502	0.054
70	44507	0.105
71	44508	0.117
72	44509	0.125
73	44510	0.062
75	44512	0.068
76	44513	0.093
80	44517	0.066
82	44519	0.060
83	44521	0.088
92	44530	0.062
QC DAT	<u>Γ</u> Α:	
Standar	d:	
MP2		0.279
MP2		0.282
JJ/kk		ECO TECH LABORATORY LTD. Jutta Jealouse
XLS/06		B.C. Certified Assayer
,		2.0. 0000., 0.

ICP CERTIFICATE OF ANALYSIS AK 2007-17

TTM Resources

P.O. Box 968 Pulpmill Road

Prince George, BC

V2L 4V1

Attention: Ken MacDonald

No. of samples received: 92

Sample Type: Core Project: CHU
Shipment #: 3

Submitted by: All North

Phone: 250-573-5700 Fax : 250-573-4557

10041 Dallas Drive **KAMLOOPS**, **B.C**.

V2C 6T4

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G44259	1.0	0.99	10	35	<5	1.40	<1	11	35	200	2.90	<10	0.31	382	1	0.04	2	590	14	<5	<20	21	0.13	<10	65	<10	8	43
2	G44261	0.5	0.78	10	60	<5	2.10	<1	9	37	125	2.58	<10	0.34	686	<1	0.09	3	540	10	<5	<20	41	0.13	<10	60	<10	11	37
3	G44262	0.3	0.70	5	65	<5	3.06	2	10	40	70	2.40	<10	0.24	860	<1	0.08	2	570	8	<5	<20	57	0.13	<10	52	<10	11	169
4	G44263	8.0	0.76	5	65	15	2.34	1	11	40	85	2.87	<10	0.43	653	1	0.09	5	670	10	<5	<20	35	0.14	<10	58	<10	9	96
5	G44264	0.4	0.84	10	80	<5	1.41	<1	12	46	113	2.58	<10	0.52	599	<1	0.09	6	790	10	<5	<20	53	0.15	<10	59	<10	7	47
6	G44265	0.2	0.01	<5	25	<5	>10	<1	<1	4	3	0.05	<10	>10	43	<1	<0.01	1	300	<2	<5	<20	91	<0.01	<10	<1	<10	2	4
7	G44266	0.2	0.70	5	50	<5	1.86	<1	10	45	56	2.41	<10	0.25	654	<1	0.09	3	580	8	<5	<20	27	0.14	<10	55	<10	10	37
8	G44267	0.4	0.67	5	50	<5	2.57	<1	10	41	88	2.27	<10	0.26	827	<1	0.09	3	610	8	<5	<20	30	0.13	<10	70	<10	10	37
9	G44268	1.2	0.76	10	25	<5	4.60	<1	8	27	321	2.66	<10	0.35		2	0.06	3	580	10	<5	<20	33	0.11	<10	75	<10	13	41
10	G44269	0.3	0.69	5	55	<5	2.42	<1	8	48	73	2.15	<10	0.29	827	1	0.07	2	550	10	<5	<20	28	0.12	<10	43	<10	8	46
11	G44270	0.2	0.71	5	115	<5	1.39	<1	5	17	110	2.43	20	0.47		632	0.04	18	730	16	<5	<20	123	0.02	<10	25	<10	15	70
12	G44271	0.3	0.66	5	40	<5	2.23	<1	8	50	80	2.27	<10	0.26	757	3	0.08	2	510	8	<5	<20	37	0.11	<10	44	<10	8	69
13	G44272	0.6	1.31	10	75	5	2.55	9	13	33	120	3.30	<10	0.66		1	0.07	<1	830	16	<5	<20	34	0.16	<10	59	<10	9	681
14	G44273	0.4	0.55	5	30	<5	3.31	<1	9	38	110	2.43	<10	0.25		2	0.09	3	580	8	<5	<20	28	0.12	<10	51	<10	10	40
15	G44274	0.4	0.56	5	40	<5	4.01	<1	10	32	66	2.28	<10	0.24	1196	1	0.07	2	600	8	<5	<20	43	0.11	<10	48	<10	10	48
16	G44275	0.5	0.70	5	70	<5	4.74	<1	8	37	112	2.35	<10	0.22	_	1	0.07	2	550	8	<5	<20	197	0.10	<10	36	<10	10	38
17	G44276	0.2	0.74	5	55	<5	1.31	<1	9	41	70	2.07	<10	0.31	503	3	0.07	2	620	8	<5	<20	23	0.13	<10	55	<10	8	43
18	G44277	0.4	1.26	10	45	10	1.76	<1	10	42	96	2.54	<10	0.27	570	<1	0.13	2	570	14	<5	<20	34	0.13	<10	44	<10	8	44
19	G44278	0.2	1.34	10	80	<5	1.37	<1	12	35	55	2.39	<10	0.49	454	4	0.09	2	610	14	<5	<20	36	0.14	<10	57	<10	7	44
20	G44279	0.2	0.97	10	75	<5	0.97	<1	10	47	104	2.38	<10	0.32	441	4	0.07	2	570	12	<5	<20	25	0.12	<10	40	<10	8	40
21	G44281	0.4	1.43	15	70	<5	1.84	<1	12	44	165	2.89	<10	0.49	588	5		1	490	14	<5	<20	36	0.12	<10	42	20	7	86
22	G44282	0.3	0.92	10	70	<5	1.12	<1	10	32	99	2.59	<10	0.43	560	2		2	590	12	<5	<20	15	0.14	<10	42	<10	11	71
23	G44283	0.4	0.97	5	80	<5	0.97	<1	12	47	115	2.82	<10	0.40	564	1	0.08	2	610	12	<5	<20	15	0.15	<10	54	<10	10	62
24	G44284	0.2	0.93	10	105	<5	0.81	1	8	58	45	1.86	<10	0.39	356	2	0.08	2	460	10	<5	<20	17	0.11	<10	49	<10	7	80
25	G44285	0.2	0.01	<5	30	<5	>10	<1	<1	3	4	0.06	<10	>10	47	<1	<0.01	2	280	<2	<5	<20	87	<0.01	<10	1	<10	2	4

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
26	G44286	0.2	0.93	10	30	<5	1.43	<1	6	45	55	1.35	<10	0.33	500	2	0.08	2	460	10	<5	<20	23	0.09	<10	38	<10	7	34
27	G44287	<0.2	0.94	20	35	<5	1.25	<1	6	49	33	1.47	<10	0.32	419	1	0.10	2	430	10	<5	<20	24	0.10	<10	51	<10	6	47
28	G44288	<0.2	0.70	20	40	<5	1.25	<1	7	54	43	1.60	<10	0.28	422	4	0.06	2	410	10	<5	<20	18	0.08	<10	39	<10	5	39
29	G44289	0.2	0.73	10	25	<5	2.28	<1	6	38	62	1.44	<10	0.20	694	2	0.07	2	420	6	<5	<20	21	0.07	<10	41	20	7	41
30	G44290	0.2	0.67	5	115	<5	1.35	<1	5	16	107	2.43	20	0.47	598	611	0.04	17	720	14	<5	<20	123	0.02	<10	25	<10	15	68
31	G44291	0.2	0.59	5	45	<5	2.91	<1	9	35	143	2.62	<10	0.21	768	4	0.09	2	570	8	<5	<20	38	0.11	<10	53	<10	9	76
32	G44292	0.2	2.03	60	75	<5	1.55	<1	15	62	170	3.90	<10	0.77	498	4	0.14	17	590	22	<5	<20	54	0.16	<10	106	<10	9	54
33	G44293	0.2	2.13	40	155	<5	0.55	<1	16	116	60	3.33	<10	1.05	428	5	0.09	40	540	24	<5	<20	33	0.24	<10	143	<10	7	94
34	G44294	0.2	2.08	20	160	<5	1.08	<1	16	91	58	3.31	<10	1.13	459	3	0.08	31	960	22	<5	<20	76	0.23	<10	120	<10	7	78
35	G44295	<0.2	2.10	120	195	<5	0.53	<1	17	117	48	3.36	<10	1.14	458	4	0.09	40	530	22	<5	<20	47	0.25	<10	145	<10	9	93
36	G44296	0.2	2.16	25	155	<5	0.78	<1	16	87	61	3.25	<10	1.13	450	3	0.07	39	570	24	<5	<20	52	0.21	<10	136	<10	8	84
37	G44297	0.2	1.91	15	170	<5	0.41	<1	16	98	55	3.22	<10	1.13	414	5	0.06	39	510	20	<5	<20	32	0.24	<10	145	<10	7	81
38	G44298	0.2	2.31	30	190	<5	0.89	<1	15	119	60	3.12	<10	1.17	386	5	0.11	43	510	24	<5	<20	38	0.22	<10	139	<10	8	72
39	G44299	0.2	2.30	30	190	<5	0.56	<1	16	117	59	3.16	<10	1.21	376	6	0.09	46	540	24	<5	<20	38	0.25	<10	151	<10	8	76
40	G44301	0.2	2.32	30	170	<5	0.99	<1	16	121	69	3.23	<10	1.24	380	11	0.09	49	580	24	<5	<20	57	0.21	<10	140	<10	10	72
41	G44302	0.2	2.25	20	95	<5	0.88	<1	17	112		3.49		1.18	356	11	0.10	-	660	22	<5	<20	42		<10			10	74
42	G44303	0.2	1.94	20	175	<5	0.52	<1		119		3.21		1.18	354	25	0.08		540	20	<5	<20	47	0.23	_	-	-	8	72
43	G44304	0.3	2.13	20	115	<5	1.86	<1	26	122	66	3.71	<10	1.75	506	3	0.10	56	1270	26	<5	<20	78	0.17	<10	119	<10	5	76
44	G44305	0.2	0.01	<5	30	<5	>10	<1	<1	3		0.06		>10	56		<0.01		310	<2	<5	<20		<0.01			<10	2	4
45	G44306	0.2	2.12	20	115	<5	1.56	<1	25	114	54	3.52	<10	1.78	481	3	0.10	54	1140	26	<5	<20	61	0.16	<10	118	<10	5	81
40	0.44007		0.45		455	_	0.50			400		0.00	4.0			_	0.40	4-	400	-00	_			0.05	4.0	450	4.0	•	
46	G44307	0.2		15	155		0.53	<1		129		3.06		1.19			0.12		490	22	<5	<20	33	0.25				6	82
47	G44308	0.2	2.81	25	105	<5	1.40	<1		136		2.96	-	1.02		18	0.24		520	26	<5	<20	85		<10			6	65
48	G44309	0.2	2.37	20	80	<5	1.16	<1		131		3.04		0.97		21	0.23		650	24	<5	<20	70		<10			6	69
49	G44310	0.2	0.69	5	110	<5	1.38	<1	5	17		2.42	20	0.46					730	16	<5	<20		0.02			<10	15	70
50	G44311	0.2	2.49	30	95	<5	0.97	<1	17	135	146	3.47	<10	1.10	287	32	0.25	49	560	24	<5	<20	61	0.19	<10	142	<10	7	63
51	G44312	0.2	2.19	90	125	<5	0.71	<1	11	130	02	2 12	-10	1.05	211	32	0.21	12	560	22	<5	<20	38	0.21	<10	117	-10	9	78
52	G44312 G44313	0.2	2.19	155	105	<5	0.71	<1		131		3.13		1.03	320	26	0.19		560	22	<5	<20	44	0.21		143		8	95
53	G44314	0.3	2.00	20	135	<5	0.62	<1				3.21		1.17		43	0.13	41	520	20	<5	<20	36	0.20		139		8	63
54	G44315	0.2	2.10	55	90	<5	1.63	<1				3.23		1.04		20	0.10		510	22		<20	42		<10			9	51
55	G44316		1.63		120	<5	0.36	<1						1.05			0.10		510	16		<20	16		<10			8	71
33	044010	\0. 2	1.00	20	120	\0	0.50	`'	10	121	107	0.04	\10	1.00	320	20	0.07	72	310	10	\ 0	\20	10	0.20	\10	100	~10	O	, ,
56	G44317	<0.2	1.82	30	185	<5	0.36	<1	16	100	70	3 35	<10	1.16	331	19	0.08	40	530	18	<5	<20	19	0.25	<10	149	<10	8	67
57	G44318	0.2	1.85	15	155	<5	0.39	<1				3.49		1.16		30	0.09		570	18	<5	<20	19	0.25	<10			9	70
58	G44319	0.2	1.94	15	165	<5	0.43	<1		101	101			1.21	313	39	0.11	41		18	<5	<20	23	0.24			<10	8	66
59	G44321	0.2	2.08	20	200	<5	0.47	<1	16	99	93	3.49		1.27		20	0.11	41	590	20	<5	<20	23		<10			7	73
60	G44322	0.2	1.65	60	175	<5	0.30	<1	_	104		3.10		1.16		28	0.06		530	16	<5	<20	12	0.24			<10	7	59
00	011022	0.2	1.00	00	170	10	0.00	`'	.0	.0-1	100	0.10	110	1.10	210	20	0.00	72	000	10	10	120	12	0.2	110	1-10	110	•	00
61	G44323	0.2	1.64	15	130	<5	0.48	<1	13	107	120	3.06	<10	1.11	234	75	0.09	39	550	16	<5	<20	24	0.21	<10	145	<10	8	53
62	G44324		1.36		140		0.48	<1						1.07			0.09		730	14		<20		0.19				7	
63	G44325		1.39		125		0.51	1						1.08			0.07		630	14		<20		0.18					121
64	G44326		1.42	10	85		0.55	6						1.03					660	16		<20		0.16					667
65	G44327		1.32				0.56										0.06			16				0.16					88
									• •				• •							-					• •		-	-	

Tag#

Et #.

ICP CERTIFICATE OF ANALYSIS AK 2007-17

TTM Resources

Zn

										ge z												
Ag	Al %	As	Ва	Bi Ca %	Cd	Co	Cr	Cu Fe %	La Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ

66	G44328	0.3	1.25	10	95	<5	0.42	1	13	118	140	2.95	<10	0.93	216	174	0.06	35	430	14	<5	<20	13	0.16	<10	116	<10	7	112
67	G44329	0.3	1.16	10	90	<5	0.55	2	13	90	243	3.36	<10	0.82	202	246	0.07	29	690	14	<5	<20	20	0.13	<10	98	<10	6	138
68	G44330	0.3	0.69	5	110	<5	1.36	<1	5	16	109	2.38	20	0.46	599	621	0.04	18	700	14	<5	<20	121	0.02	<10	25	<10	15	69
69	G44331	0.2	1.48	10	125	<5	0.50	<1	13	108	137	3.06	<10	1.01	242	227	0.07	37	480	16	<5	<20	19	0.19	<10	126	<10	7	94
70	G44332	0.2	1.45	10	125	30	0.40	5	14	111	158	3.16	<10	1.13	252	340	0.07	36	510	14	<5	<20	16	0.19	<10	138	<10	7	539
71	G44333	0.2	1.45	30	165	<5	0.32	<1	13	106	94	2.94	<10	1.10	242	90	0.05	38	460	20	<5	<20	12	0.21	<10	151	<10	6	48
72	G44334	0.2	1.50	15	155	<5	0.37	<1	14	114	97	2.93	<10	1.05	226	131	0.06	38	460	16	<5	<20	15	0.21	<10	147	<10	5	66
73	G44335	0.4	1.14	25	120	<5	0.51	<1	13	75	259	3.16	<10	0.89	210	171	0.05	23	890	14	<5	<20	25	0.15	<10	100	<10	6	45
74	G44336	0.3	1.48	10	160	<5	0.44	<1	14	102	168	3.05	<10	1.06	235	164	0.06	35	510	14	<5	<20	16	0.21	<10	134	<10	6	44
75	G44337	0.2	1.87	15	135	<5	0.56	<1	16	115	130	3.08	<10	1.06	267	141	0.09	43	530	20	<5	<20	23	0.19	<10	147	<10	7	60
76	G44338	0.3	1.37	10	115	<5	0.46	<1	17	97	237	3.33	<10	1.02	231	141	0.07	39	470	14	<5	<20	18	0.17	<10	130	<10	7	56
77	G44339	0.4	1.55	10	130	<5	0.52	<1	15	109	167	3.17	<10	1.08	264	101	0.07	41	500	16	<5	<20	22	0.19	<10	142	<10	7	62
78	G44341	0.4	1.35	10	115	5	0.41	<1	12	105	169	3.12	<10	1.01	268	410	0.06	39	480	14	<5	<20	17	0.18	<10	140	<10	8	53
79	G44342	0.4	1.36	10	120	<5	0.41	<1	14	114	206	3.22	<10	1.02	235	255	0.06	42	570	16	<5	<20	16	0.19	<10	142	<10	8	47
80	G44343	0.3	2.01	20	120	<5	1.27	<1	21	108	120	3.53	<10	1.63	444	165	0.09	50	960	22	<5	<20	53	0.20	<10	134	<10	6	75
81	G44344	0.3	1.50	10	95	<5	0.54	<1	16	129	208	3.38	<10	1.04	238	208	0.08	43	560	16	<5	<20	35	0.18	<10	125	<10	8	46
82	G44345	0.2	0.04	<5	30	<5	>10	<1	<1	3	4	0.09	<10	>10	55	<1	<0.01	2	320	2	<5	<20	94	<0.01	<10	2	<10	2	3
83	G44346	0.3	1.29	10	90	<5	0.40	<1	18	112	256	3.30	<10	1.11	224	238	0.07	40	480	14	<5	<20	19	0.17	<10	136	<10	8	41
84	G44347	< 0.2	0.83	5	160	<5	2.21	<1	6	45	2	1.79	<10	1.29	482	<1	0.05	4	740	10	<5	<20	52	0.10	<10	33	<10	5	36
85	G44348	0.7	1.32	20	85	<5	0.70	<1	21	101	287	3.33	<10	1.01	269	222	0.06	40	490	16	<5	<20	26	0.16	<10	126	<10	8	45
86	G44349	0.2	1.30	10	95	<5	0.43	<1	14	129	222	3.10	<10	1.02	190	239	0.08	48	510	14	<5	<20	19	0.17	<10	132	<10	7	46
87	G44350	0.2	0.73	5	105	<5	1.42	<1	5	17	111	2.44	20	0.47	650	648	0.04	18	770	16	<5	<20	126	0.02	<10	26	<10	16	75
88	G44351	0.2	1.70	15	120	<5	0.49	1	17	112	194	3.37	<10	1.18	244	189	0.09	52	610	18	<5	<20	26	0.21	<10	150	<10	8	94
89	G44352	0.5	1.66	20	100	<5	0.66	<1	19	111	239	3.33	<10	1.25	304	294	0.06	55	630	18	<5	<20	24	0.21	<10	161	<10	8	56
90	G44353	0.9	1.69	30	90	<5	0.80	<1	21	104	318	3.47	<10	1.20	291	623	0.05	51	610	18	<5	<20	30	0.17	<10	138	<10	9	52
91	G44354	0.6	1.63	25	105	<5	0.54	<1	20	107	226	3.39	<10	1.26	304	372	0.06	52	620	18	<5	<20	25	0.22	<10	166	<10	8	49
92	G44355	0.2	1.56	10	135	<5	0.41	<1	17	115	141	3.23	<10	1.15	251	131	0.07	55	570	16	<5	<20	20	0.23	<10	156	<10	8	51
QC DAT	<u>'A:</u>																												
Repeat:	•																												
1	G44259	1.2	0.94	10	35	<5	1.35	<1	11	33	201	2.85	<10	0.31	368	1	0.04	2	560	12	<5	<20	20	0.13	<10	64	<10	9	41
10	G44269	0.3	0.73	10	60	<5	2.48	<1	9	50	74	2.17	<10	0.30	861	1	0.08	2	570	10	<5	<20	29	0.13	<10	44	<10	9	48
19	G44278	0.2	1.44	10	80	<5	1.42	<1	13	38	53	2.42	<10	0.50	483	4	0.11	3	630	16	<5	<20	39	0.15	<10	57	<10	8	46
36	G44296	0.2	2.14	25	155	<5	0.78	<1	16	87	60	3.16	<10	1.13	446	3	0.07	39	570	22	<5	<20	52	0.21	<10	135	<10	8	83
45	G44306	0.2	2.12	20	115	<5	1.57	<1	25	114	54	3.49	<10	1.78	485	3	0.10	54	1130	26	<5	<20	60	0.17	<10	118	<10	5	80
54	G44315	0.2	2.20	60	90	<5	1.70	<1	14	116	128	3.16	<10	1.05	314	21	0.10	42	540	22	<5	<20	43	0.13	<10	107	<10	9	53
71	G44333	0.2	1.51	35	170		0.33												490			<20	13	0.22	<10	152	<10	6	47
80	G44343																0.11												70
Resplit:																													
1	G44259	1.2	0.94	15	40	<5	1.52	<1	12	40	220	2.92	<10	0.31	408	1	0.06	2	590	12	<5	<20	23	0.15	<10	65	<10	10	46
36	G44296	0.2	2.21	25			0.77										0.07		570	22		<20		0.22					84
71	G44333	0.2	1.51				0.35																	0.21				6	49
			-	-	-	-				-		= =	-		-				-	-	-	-	-		-		-	-	-

ICP CERTIFICATE OF ANALYSIS AK 2007-17

TTM Resources

Et#. Tag# Ag Al% As Ba BiCa% Cd Co Cr CuFe% LaMg%_{AQ}Mon MoNa% Ni P Pb Sb Sn Sr Ti% U V W Y Zn

Standard:																										
PB106	>30	0.51	265	75	<5	1.61	30	3	39 6250	1.40	<10	0.22	535	31	0.02	6	270 5	286	55	<20	152	<0.01	<10	16	10	<1 8484
PB106	>30	0.50	275	85	<5	1.67	34	2	40 6357	1.40	<10	0.27	546	32	0.02	6	250 5	364	60	<20	143	<0.01	<10	15	10	<1 8454
PB106	>30	0.54	270	80	<5	1.60	37	2	36 6290	1.39	<10	0.20	549	33	0.02	7	260 5	370	55	<20	136	< 0.01	<10	14	10	<1 8456

JJ/kc/sa

df/n17 XLS/06 ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

TTM Resources 26-Jan-07

P.O. Box 968 Pulpmill Road **Prince George, BC**

V2L 4V1

Attention: Ken MacDonald

No. of samples received: 92

Sample Type: Core Project: CHU
Shipment #: 3

Submitted by: All North

		Мо
ET #.	Tag #	(%)
11	G44270	0.062
30	G44290	0.063
49	G44310	0.064
68	G44330	0.061
87	G44350	0.063
90	G44353	0.064

QC DATA:

Repeat:

11 G44270 0.063

Standard:

MP2 0.282

ECO TECH LABORATORY LTD.

JJ/kc XLS/06 Jutta Jealouse B.C. Certified Assayer

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2007-0016

TTM Resources P.O. Box 968 Pulpmill Road Prince George, BC V2L 4V1

Attention: Ken MacDonald

No. of samples received: 74

Sample Type: Core Project: CHU Shipment #: 4

Submitted by: All North

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	G44356	0.3	1.38	15	95	<5	0.63	<1	19	101	201	3.59	<10	1.08	229	374	0.07	44	460	16	<5	<20	41	0.19	<10	137	<10	8	50
2	G44357	0.3	0.95	15	105	<5	0.55	<1	17	121	170	3.27	<10	1.11	261	428	0.05	45	480	14	<5	<20	21	0.21	<10	139	<10	9	51
3	G44358	0.4	1.00	10	90	5	0.47	<1	17	111	320	3.70	<10	0.93	253	680	0.06	45	490	12	<5	<20	17	0.13	<10	106	<10	8	69
4	G44359	0.9	0.97	5	95	<5	0.78	<1	11	103	479	2.45	<10	0.94	229	585	0.09	40	580	10	5	<20	48	0.12	<10	90	130	9	56
5	G44361	0.3	0.77	5	95	<5	0.53	<1	12	76	256	2.80	<10	0.74	180	461	0.07	24	690	8	<5	<20	56	0.11	<10	68	<10	7	36
				_		_														_	_							_	
6	G44362	0.4	0.76	5	85	<5	0.54	<1	14	79	285	3.23	_	0.77	185	648	0.07	27	730	8	<5	<20	57	0.12		70	20	8	44
7	G44363	0.7	0.81	5	95	<5	0.43	1	15	88	331	3.29	<10	0.74	234	507	0.08	32	500	8	<5	<20	29		<10	81	30	9	82
8	G44364	0.7	0.72	5	80	<5	0.79	2	14	89	381	3.04		0.65	248	352	0.08	24	740	10	<5	<20	48	0.11	<10	69	10	8	127
9	G44365	<0.2	0.02	<5	30	<5	>10	<1	<1	4	7	0.07	<10	>10	64	3	0.01	1	320	10	<5	<20	108	<0.01	<10	1	<10	2	4
10	G44366	1.3	1.09	10	105	10	0.49	2	14	118	253	3.22	<10	1.09	279	424	0.06	40	590	12	<5	<20	18	0.16	<10	133	10	8	116
11	G44367	0.3	1.54	15	120	<5	0.83	<1	16	123	175	3.48	-10	1.47	250	244	0.06	46	600	16	<5	<20	46	0.20	<10	154	-10	8	53
12	G44368	0.3	1.22	10	120	<5	0.03	<1	15	116	176	3.36	<10	1.14	200	322	0.06	47	460	12	<5	<20	13		<10	144	<10	8	55
	G44369	0.5				-				86		2.70	<10		197	341		19		12	<5	<20	45		<10	63	20	6	53
13			0.77	_	120	<5	0.75	<1	13		254		-	0.64		-	0.10	_	660		-	_	_		_		_	-	
14	G44370	0.2	0.67	5	115	<5	1.33	<1	4	16	106	2.43	20	0.47	570	614	0.04	17	890	12	<5	<20	118	0.02		25	<10	15	64
15	G44371	1.0	0.55	10	70	5	1.36	<1	9	57	236	2.15	10	0.36	237	224	0.05	7	880	12	<5	<20	43	0.06	<10	23	<10	4	51
16	G44372	0.6	1.00	10	105	<5	0.63	1	15	120	259	2.93	<10	0.98	272	628	0.07	33	490	12	<5	<20	32	0.15	<10	112	<10	7	106
17	G44373	1.3	0.54	5	90	<5	0.71	2	16	51	472	3.00	<10	0.40	229	211	0.06	8	860	8	<5	<20	60	0.06	<10	27	20	4	115
18	G44374	1.2	0.78	10	130	5	0.73	<1	18	111	356	3.23	<10	0.64	305	235	0.09	19	820	10	<5	<20	48	0.10	<10	55	60	6	65
19	G44375	0.5	0.84	5	135	<5	0.60	<1	13	105	176	2.55	<10	0.84	261	510	0.07	24	550	10	<5	<20	46	0.12	<10	85	<10	6	62
20	G44376	0.4	0.85	10	95	<5	0.77	<1	14	107	216	3.00	<10	0.83	232	436	0.06	29	520	10	<5	<20	45	0.12	<10	88	30	7	56
21	G44377	0.5	0.99	15	100	<5	0.52	<1	14	121	273	3.43	<10	0.94	232	536	0.06	39	460	12	<5	<20	25	0.16	<10	114	<10	7	52
22	G44378	0.6	0.78	10	70	<5	1.33	3	16	123	264	3.16	<10	0.71	279	240	0.06	30	670	8	<5	<20	48		<10	70	10	7	187
23	G44379	0.6	0.58	5	85	<5	1.04	4	13	95	285	2.74	<10	0.51	256	256	0.06	19	670	8	<5	<20	52	0.08	<10	43	30	5	354
24	G44381	0.4	0.45	10	80	<5	0.93	<1	15	89	276	2.78	<10	0.38	174	290	0.05	8	780	10	<5	<20	45	0.06	<10	24	20	4	50
25	G44382	0.4	0.49	5	75	<5	1.31	<1	12	67	163	2.53	10	0.42	272	310	0.05	7	920	12	<5	<20	45	0.06	<10	23	10	5	52
26	G44383	0.3	0.49	5	65	<5	1.41	<1	9	73	125	2.72	10	0.40	229	166	0.04	6	940	10	<5	<20	46	0.05	<10	27	30	4	40
27	G44384	0.3	0.43	5	60	<5	1.49	<1	10	43	190	2.72	10	0.40	236	108	0.04	7	920	10	<5	<20	47	0.03	<10	22	20	5	47
	G44385	<0.4	0.43	_	30	<5	>10		-		190	0.05	<10	>10	236 59		0.04		310	15	<5	<20				1	<10	2	3
28				<5		-	-	<1 -1	<1 10	4 52	•					<1		2 6		-	_					•			_
29	G44386	0.5	0.52	5	65	<5	0.93	<1	10	52	194	2.24	<10	0.44	224	138	0.04	•	980	10	<5	<20	46	0.07	<10	24	20	4	51
30	G44387	0.6	0.52	5	80	<5	0.90	<1	12	73	269	2.39	<10	0.40	225	129	0.06	6	880	8	<5	<20	45	0.07	<10	23	30	3	38

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
31	G44388	0.4	0.37	10	50	<5	1.68	<1	12	78	296	2.76	10	0.24	235	630	0.03	11	730	8	<5	<20	40	0.02	<10	18	40	6	37
32	G44389	0.7	0.46	10	45	10	1.35	<1	17	67	531	3.26	10	0.30	209	684	0.03	11	860	12	<5	<20	48	0.02	<10	19	<10	6	42
33	G44390	0.2	0.68	5	115	<5	1.32	<1	4	16	104	2.46	20	0.47	503	630	0.04	18	690	14	<5	<20	119	0.02	<10	26	<10	15	63
34	G44391	0.5	0.52	5	65	<5	0.88	<1	12	59	309	2.44	<10	0.39	238	322	0.03	6	870	10	<5	<20	38		<10	23	<10	3	51
35	G44392	1.0	0.77	15	60	45	1.48	1	18	78	605	3.73	<10	0.71	403	626	0.03	13	680	12	<5	<20	46		<10	51	<10	5	65
00	011002	1.0	0.77		00	-10	1.40			, 0	000	0.70	110	0.7 1	100	020	0.00		000	12	-0	120	-10	0.00	110	01	110	Ü	00
36	G44393	0.2	0.50	10	55	<5	1.11	<1	8	46	137	2.07	10	0.40	235	64	0.04	6	880	12	<5	<20	45	0.04	<10	22	10	4	46
37	G44394	0.7	0.51	70	55	5	1.35	<1	9	66	501	3.83	10	0.35	292	286	0.05	17	800	12	5	<20	51	0.04	<10	22	70	4	59
38	G44395	0.5	0.58	10	60	<5	1.25	<1	9	74	291	2.53	<10	0.42	285	358	0.04	7	900	10	<5	<20	47	0.05	<10	25	50	4	57
39	G44396	0.5	0.49	10	70	<5	1.33	<1	13	71	278	2.91	10	0.35	232	271	0.05	8	970	12	<5	<20	58		<10	22	<10	6	52
40	G44397	0.6	0.58	5	75	5	1.18	1	19	66	376	2.88	10	0.54	320	255	0.02	10	1090	12	<5	<20	60		<10	31	30	6	113
	0.1007	0.0	0.00	Ŭ		Ŭ	0	•		00	0.0	2.00		0.0 .	020	200	0.02		1000		10	120	00	0.00	110	٠.	00	Ŭ	
41	G44398	0.7	0.51	10	95	<5	1.48	<1	14	58	368	2.89	10	0.39	281	425	0.03	9	930	46	<5	<20	69	0.04	<10	25	<10	6	107
42	G44399	0.8	0.62	15	95	<5	1.92	1	26	52	578	3.70	10	0.44	420	651	0.06	10	1080	26	<5	<20	72	0.04	<10	32	10	6	80
43	G44401	0.7	1.00	10	130	<5	0.85	2	23	103	478	3.94	<10	1.02	421	1003	0.07	29	750	16	<5	<20	46	0.12	<10	92	<10	6	169
44	G44402	0.8	1.18	25	100	<5	1.47	1	19	102	469	4.17	<10	1.33	521	1294	0.06	30	830	24	<5	<20	38		<10	117		9	136
45	G44403	1.7	0.72	25	70	<5	1.30	2	20	64	746	3.67	10	0.55	396	389	0.05	10	1030	12	<5	<20	44		<10		<10	6	129
	•		· · · -					_		٠.		0.0.		0.00	000	000	0.00							0.00	1.0	٠.	1.0		0
46	G44404	1.8	0.78	10	60	<5	0.86	4	22	75	822	4.21	10	0.54	378	767	0.05	9	960	12	<5	<20	46	0.07	<10	30	<10	5	259
47	G44405	< 0.2	0.02	<5	25	<5	>10	<1	<1	4	7	0.07	<10	>10	53	2	0.01	2	310	20	<5	<20	90	<0.01	<10	2	<10	2	5
48	G44406	1.4	0.62	15	65	<5	1.76	1	19	44	534	3.86	<10	0.46	708	1355	0.04	7	930	10	<5	<20	57	0.05	<10	29	20	6	111
49	G44407	2.5	0.60	15	65	15	1.54	6	25	87	914	4.04	<10	0.42	515	813	0.05	9	830	24	<5	<20	51		<10	26	20	5	424
50	G44408	2.4	0.43	10	60	15	2.67	5	9	49	819	3.06	10	0.40	501	772	0.04	15	810	48	<5	<20	57		<10	29	80	8	451
								-	-														-					-	
51	G44409	0.9	0.78	10	100	<5	1.02	2	17	111	404	3.29	<10	0.71	318	712	0.06	26	600	14	<5	<20	43	0.08	<10	69	20	7	135
52	G44410	0.2	0.70	5	110	<5	1.35	<1	5	17	106	2.45	20	0.48	531	610	0.04	16	720	14	<5	<20	121	0.02	<10	26	<10	15	65
53	G44411	2.2	0.69	5	95	<5	0.50	3	16	89	656	3.70	<10	0.54	305	1277	0.06	14	910	10	<5	<20	30		<10	40	10	6	216
54	G44412	1.6	0.68	10	105	5	0.87	1	11	69	560	3.49	10	0.58	258	1126	0.06	9	1100	12	<5	<20	42		<10	40	<10	6	85
55	G44413	1.4	0.64	15	70	<5	0.88	1	16	84	698	3.98	10	0.49	240	980	0.06	7	910	10	<5	<20	44		<10	29	<10	5	72
				_	-								_									-				_			
56	G44414	1.3	0.58	5	75	10	0.79	1	19	74	521	3.68	10	0.45	217	723	0.07	6	990	10	<5	<20	41	0.06	<10	27	<10	5	75
57	G44415	1.7	0.68	10	75	<5	1.09	<1	13	74	635	3.76	10	0.49	320	1053	0.07	6	1010	10	<5	<20	51	0.06	<10	28	<10	6	53
58	G44416	1.6	0.72	10	70	<5	1.32	1	13	58	680	4.05	<10	0.51	355	637	0.07	6	1050	10	<5	<20	70	0.06	<10	32	<10	6	65
59	G44417	2.2	0.64	5	75	<5	0.89	3	10	77	675	3.33	<10	0.48	334	1377	0.06	6	1080	8	<5	<20	60	0.08	<10	30	<10	5	178
60	G44418	2.5	0.60	20	65	<5	2.03	2	14	76	1102	4.04	10	0.38	400	1277	0.05	6	920	46	<5	<20	64	0.03	<10	19	10	6	145
61	G44419	4.2	0.68	15	85	<5	0.87	2	38	67	1863	6.85	10	0.47	202	1180	0.08	7	1080	18	<5	<20	36	0.04	<10	31	<10	6	97
62	G44421	2.4	0.79	15	65	<5	1.23	1	19	63	1051	4.92	10	0.50	330	1773	0.06	7	1010	14	<5	<20	43		<10	31	<10	6	74
63	G44422	1.9	0.73	15	65	<5	1.30	2	12	82	797	4.03	<10	0.49	375	1637	0.07	6	1060	12	<5	<20	44		<10	30	10	6	104
64	G44423	1.7	0.62	20	60	<5	0.88	<1	10	69	638	3.72	10	0.53	254	1234	0.05	7	1030	10	<5	<20	35		<10	31	10	5	59
65	G44424		1.01	_														-	760	_							-	7	65
	·			. •	•	••			- •	0					- · ·			J.				0	-				- •	•	
66	G44425	<0.2	0.05	<5	30	<5	>10	<1	<1	3	5	0.08	<10	>10	50	<1	0.01	1	300	20	<5	<20	93	<0.01	<10	2	<10	2	3
67	G44426	1.0	1.10	25	95		1.15	<1	13	120	425			1.05	287		0.07	32	1020	14		<20		0.10		89	20	7	59
68	G44427		1.24	15	90	<5	3.36	1		121		4.16			417		0.06	39	960	14		<20		0.10				7	89
69	G44428		1.50		125				17						460		0.10	46	870	16		<20		0.16				10	
70	G44429		1.25		100		1.20		13					1.15			0.07		520	12		<20		0.17				8	64
1				-					-											_					-		-	-	- •

ICP CERTIFICATE OF ANALYSIS AK 2007-0016

TTM Resources

								Page 2													
Et #.	Tag #	Ag Al%	As E	a BiCa%	Cd Co	Cr	Cu Fe %	La Mg 🖔 🛮 Mn	Mo Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
																		=		=	=

	•	v. –	0.00	•										· · · ·	0.0		0.0.							0.0-					• .
72	G44431	0.2	1.32	15	105	<5	0.56	1	14	131	258	4.07	<10	1.32	313	575	0.07	46	590	14	<5	<20	28	0.16	<10	158	<10	11	104
73	G44432	0.3	1.40	10	95	<5	0.58	<1	16	147	281	4.19	<10	1.27	223	505	0.08	47	530	16	<5	<20	76	0.18	<10	149	<10	7	50
74	G44433	0.4	1.26	15	70	<5	0.71	<1	15	127	271	3.54	<10	1.13	182	385	0.05	36	400	14	<5	<20	28	0.13	<10	130	<10	7	41
74	G44433	0.4	1.20	13	70	<0	0.71	< I	13	121	211	3.54	<10	1.13	102	303	0.03	30	400	14	<0	\2 0	20	0.13	<10	130	<10	,	41
QC DAT	Γ Δ:																												
Repeat																													
1	G44356	0.3	1.35	15	95	<5	0.60	<1	19	102	198	3.52	<10	1.06	209	376	0.06	44	470	16	<5	<20	40	0.19	<10	136	<10	7	44
10	G44366	1.3	1.11	10	105	10	0.44	2		120	260	3.25	<10	1.09	246	424	0.06	40	540	12	_	<20	18	0.16	<10	134	10	8	102
_		_		_		_	• • • •		14	-			_					_			<5	_				-	-	0	
19	G44375	0.5	0.86	5	135	<5	0.57	<1	13	102	181	2.58	<10	0.85	258	514	0.08	23	540	10	<5	<20	48	0.12	<10	87	<10		60
36	G44393	0.2	0.51	10	60	<5	1.14	<1	7	49	132	2.02	10	0.40	224	63	0.04	6	840	8	<5	<20	46	0.04	<10	22	10	4	44
45	G44403	1.7	0.73	20	70	<5	1.40	2	20	65	751	3.68	10	0.56	366	378	0.05	10	1070	12	<5	<20	44	0.05	<10	38	<10	6	119
54	G44412	1.6	0.67	10	105	5	0.84	1	11	68	556	3.45	10	0.57	247	1056	0.06	9	1070	10	<5	<20	42	0.05	<10	39	<10	6	83
Resplit																													
1	G44356	0.3	1.41	20	95	<5	0.56	<1	21	127	191	3.59	<10	1.12	251	337	0.07	51	520	20	<5	<20	37	0.20	<10	142	<10	8	54
26	G44393	0.2	0.56	10	60	_	1.27		9	75	164	2.35	10	0.40	210	59	0.06	8	850	8		<20	53	0.04	<10	23	<10	4	40
36				_		<5		<1	47	_			_					_		_	<5				_	-	-	-	
72	G44431	0.3	1.35	15	80	<5	0.64	2	17	124	308	4.73	<10	1.32	294	528	0.07	46	560	14	<5	<20	34	0.16	<10	159	<10	12	99
Standar	rd:																												
PB106		>30	0.52	270	85	<5	1.63	36	4	45	6216	1.58	<10	0.18	547	32	0.03	7	280 5	5342	60	<20	141	<0.01	<10	13	10	1	8344
PB106		>30	0.51	275	80	<5	1.60	40	3	39	6205	1.65	<10	0.17	565	33	0.02	8	270 5		55	<20		<0.01	<10	14	<10		8450
PB106		>30	0.51	270	80	_	1.65	31	4	43	6194	1.45	<10	-	560	30		7	270 5		55	<20			<10	13	_		8384
FD100		>30	0.51	270	80	<5	1.05	31	4	43	0194	1.45	<10	0.17	560	30	0.02	,	2/0 5	0202	55	<20	145	<0.01	< 10	13	<10	ı	0304

4 16 107 2.45 20 0.47 540 622 0.04 18 700 14 <5 <20 120 0.02 <10 26 <10 15

JJ/kk df/n16 XLS/06

71

G44430

0.2 0.68

5 110 <5 1.25 <1

ECO TECH LABORATORY LTD.

64

Jutta Jealouse B.C. Certified Assayer

TTM Resources

P.O. Box 968 Pulpmill Road **Prince George, BC**

V2L 4V1

Attention: Ken MacDonald

No. of samples received: 74

Sample Type: Core Project: CHU
Shipment #: 4

Submitted by: All North

		Мо	
ET #.	Tag #	(%)	
3	G44358	0.068	
4	G44359	0.056	
6	G44362	0.065	
7	G44363	0.053	
14	G44370	0.062	
16	G44372	0.063	
19	G44375	0.052	
21	G44377	0.054	
31	G44388	0.064	
32	G44389	0.066	
33	G44390	0.064	
35	G44392	0.065	
42	G44399	0.063	
43	G44401	0.097	
44	G44402	0.119	
46	G44404	0.074	
48	G44406	0.135	
49	G44407	0.079	
50	G44408	0.077	
51	G44409	0.070	
52	G44410	0.063	
53	G44411	0.129	
54	G44412	0.109	

ECO TECH LABORATORY LTD.

26-Jan-07

Jutta Jealouse

B.C. Certified Assayer

TTM Resources AK6-0016

26-Jan-07

		Мо
ET #.	Tag #	(%)
55	G44413	0.096
56	G44414	0.071
57	G44415	0.105
58	G44416	0.063
59	G44417	0.137
60	G44418	0.127
61	G44419	0.130
62	G44421	0.182
63	G44422	0.165
64	G44423	0.127
65	G44424	0.118
67	G44426	0.089
68	G44427	0.080
69	G44428	0.059
71	G44430	0.063
72	G44431	0.058
73	G44432	0.048
QC DAT	ΓΛ.	
QC DA	=	
Repeat		
3	G44358	0.070
21	G44377	0.056
49	G44407	0.078
61	G44419	0.131
04	. 1	
Standa	ra:	0.070
MP2		0.278
MP2		0.283
MP2		0.283
MP2		0.281

JJ/kk XLS/06 Jutta Jealouse B.C. Certified Assayer

10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 2006-2270

TTM Resources P.O. Box 968 Pulpmill Road Prince George, BC V2L 4V1

Attention: Ken MacDonald

No. of samples received: 43

Sample Type: Core Project: CIIV Shipment #: 2

Submitted by: All North

Phone: 250-573-5700 Fax: 250-573-4557

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	44214	<0.2	0.97	<5	150	<5	2.33	<1	13	38	55	2.43	<10	0.41	735	<1	0.20	4	600	10	<5	<20	33	0.16	<10	76	<10	16	72
2	44215	0.2	1.56	<5	250	<5	2.44	<1	16	31	93	3.26	<10	0.89	808	<1	0.15	4	700	18	<5	<20	33	0.22	<10	98	<10	18	88
3	44216	<0.2	1.18	<5	210	<5	1.54	<1	15	37	32	3.31	<10	0.74	581	<1	0.15	4	610	14	<5	<20	27	0.21	<10	98	<10	17	56
4	44217	<0.2	1.99	<5	190	<5	1.63	<1	17	32	67	3.18	<10	0.91	579	<1	0.15	5	670	22	<5	<20	46	0.19	<10	108	<10	13	101
5	44218	0.4	1.58	<5	140	<5	0.87	3	14	34	186	2.59	<10	0.94	430	<1	0.16	3	520	18	<5	<20	23	0.15	<10	74	<10	13	253
6	44219	<0.2	1.89	<5	310	5	0.71	<1	16	26	42	3.37	<10	1.30	541	<1	0.16	4	590	24	<5	<20	22	0.22	<10	116	<10	18	80
7	44221	0.2		<5	355	<5	1.39	<1	20	18	108	3.86	_	1.30	706	<1	0.16	7		26	5	<20	68	-	<10	_	<10	14	80
8	44222	<0.2		<5	335	<5	0.96	<1	22	12	117	4.01	<10	1.16	646	<1	0.18	6		26	<5	<20	42	0.25			<10	9	91
9	44223	<0.2	2.60	<5	255	<5	1.61	<1	22	8	93	3.87	<10	0.99	607	<1	0.25	5	770	24	<5	<20	79	0.24	<10	173	<10	5	87
10	44224	<0.2	2.15	5	160	<5	1.55	<1	13	21	66	2.72	<10	0.58	464	<1	0.17	3	700	20	<5	<20	67	0.16	<10	81	<10	9	59
				_		_														_						_			_
11	44225	<0.2		5	15	<5	>10	<1	<1	4		0.08		>10	75		<0.01	<1		<2	35	_	_	<0.01	-	3	_	1	5
12	44226	<0.2		5	145	<5	1.98	<1	15	45	39	2.74		1.11	413	<1	0.21	13		24	<5		120	0.15		81	<10	6	53
13	44227	<0.2		<5	280	<5	2.54	<1	28	90	39	4.60		2.14	502	<1	0.21	_	1830	20	<5	_	183		<10		<10	6	65
14	44228		1.62	<5	160	<5	1.70	<1	20	62	49	3.50		1.39	443	<1	0.17		1120	12	<5	<20	73					8	60
15	44229	0.3	1.32	<5	180	<5	0.82	1	11	37	85	2.53	<10	0.73	441	<1	0.16	4	510	14	<5	<20	29	0.15	<10	71	<10	16	86
16	44230	<0.2	0.68	<5	125	<5	1.25	<1	7	18	120	2.23	20	0.46	589	651	0.04	14	720	12	<5	<20	123	0.02	<10	30	<10	17	70
17	44231	< 0.2	1.04	<5	125	<5	0.93	<1	16	28	38	2.17	<10	0.56	450	2	0.14	2	520	12	<5	<20	13	0.15	<10	62	<10	14	58
18	44232	< 0.2	0.93	<5	110	<5	1.09	<1	10	39	68	2.07	<10	0.47	402	<1	0.13	4	520	10	<5	<20	21	0.14	<10	63	<10	14	59
19	44233	0.5	1.03	<5	110	<5	0.75	1	10	36	93	2.22	<10	0.55	400	<1	0.10	4	540	10	<5	<20	15	0.14	<10	67	<10	13	110
20	44234	<0.2	0.86	<5	85	<5	0.63	<1	9	42	85	2.01	<10	0.43	374	<1	0.11	2	530	10	<5	<20	13	0.14	<10	60	<10	15	42
21	44235	0.2	0.86	<5	85	<5	0.97	<1	9	36	80	1.85	<10	0.39	379	<1	0.10	3	520	12	<5	<20	25	0.13	<10	56	<10	17	41
22	44236	0.2		<5	105	<5	0.85	1	9	49	66	1.98	<10	0.34	407	<1	0.16	4		10	<5	<20	22	0.13		59	<10	15	75
23	44237	0.8		<5	65	<5	3.21	3	9	49	174	2.21	<10	0.34	1196	<1	0.10	3	530	8	<5	<20	34	0.12	<10	50	<10	16	75 196
23	44238	0.3	0.82	<5	55	<5	6.11	<1	8	32	94	1.99		0.29	2058	<1	0.12	3	510	10	<5	<20	69	0.11	<10	55	<10	16	67
25	44239	1.1		<5	45	5	5.31	٦ ،	9	28	65	2.08	_	0.30	1537	<1	0.11	3	520	6	<5	<20	67	0.09	<10	43	<10	16	294
23	77203	1.1	0.02	< J	40	3	3.31	J	J	20	03	2.00	< 10	0.24	1337	<u> </u>	0.14	3	320	U	<0	\ 20	07	0.03	×10	43	~10	10	∠3 4

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
26	44241	0.2	1.47	<5	90	<5	4.84	<1	11	27	65	2.44	<10	0.40	1414	<1	0.17	3	670	10	<5	<20	73	0.13	<10	72	<10	14	67
27	44242	0.6	0.61	<5	65	25	2.83	3	9	37	101	2.21	<10	0.23	938	<1	0.13	2	500	8	<5	<20	31	0.10	<10	49	<10	15	227
28	44243	0.2	0.68	<5	40	<5	3.55	3	8	29	82	1.91	<10	0.26	1102	<1	0.09	2	490	6	<5	<20	47	0.10	<10	48	<10	13	234
29	44244	< 0.2	0.90	<5	100	<5	0.86	<1	9	46	66	2.19	<10	0.32	444	<1	0.10	3	500	10	<5	<20	14	0.12	<10	58	<10	14	48
30	44245	<0.2	0.04	5	35	<5	>10	<1	<1	3	6	0.07	<10	>10	72	<1	<0.01	<1	340	<2	30	<20	119	<0.01	<10	2	<10	4	6
31	44246	<0.2	0.69	<5	80	<5	1.13	<1	9	44	56	2.02	<10	0.27	372	<1	0.11	3	490	8	<5	<20	17	0.11	<10	52	<10	12	36
32	44247	0.2	0.71	<5	90	<5	2.30	<1	9	37	77	1.96	<10	0.26	625	<1	0.09	2	530	10	<5	<20	32	0.10	<10	48	<10	15	47
33	44248	0.3	0.68	<5	65	<5	1.13	<1	8	46	100	1.81	<10	0.23	452	<1	0.08	4	460	8	<5	<20	32	0.08	<10	60	<10	11	45
34	44249	1.9	1.01	<5	60	175	1.14	7	9	44	429	2.68	<10	0.36	499	<1	0.11	3	470	10	<5	<20	19	0.08	<10	56	<10	8	356
35	44250	<0.2	0.69	<5	125	<5	1.28	<1	7	18	126	2.28	20	0.48	605	610	0.05	15	710	12	<5	<20	128	0.02	<10	31	<10	17	71
36	44251	0.3	1.15	<5	45	<5	3.03	<1	9	39	170	1.86	<10	0.31	807	2	0.14	2	500	14	<5	<20	58	0.09	<10	64	<10	11	39
37	44252	0.3	0.81	5	45	15	1.93	1	10	35	150	2.37	<10	0.32	703	<1	0.11	3	520	8	<5	<20	19	0.10	<10	68	<10	9	66
38	44253	1.2	0.71	<5	60	<5	2.58	4	9	32	219	1.90	<10	0.29	925	<1	0.17	3	550	6	<5	<20	34	0.11	<10	64	<10	14	209
39	44254	0.5	0.74	<5	60	<5	2.53	4	10	29	86	2.03	<10	0.26	868	<1	0.13	3	580	6	<5	<20	36	0.12	<10	78	<10	15	209
40	44255	<0.2	0.82	<5	105	<5	2.10	<1	11	33	43	2.65	<10	0.39	767	<1	0.16	3	580	10	<5	<20	26	0.15	<10	76	<10	17	48
41	44256	0.5	0.96	<5	110	<5	0.66	<1	13	39	84	2.66	<10	0.47	438	<1	0.14	4	540	16	<5	<20	17	0.16	<10	87	<10	15	111
42	44257	0.4	0.97	<5	110	10	0.86	<1	13	33	48	2.68	<10	0.44	456	<1	0.16	3	560	14	<5	<20	16	0.18	<10	78	<10	13	69
43	44258	8.0	1.02	<5	125	<5	0.76	2	15	32	114	3.11	<10	0.47	476	<1	0.12	5	610	16	<5	<20	14	0.18	<10	99	<10	14	164
QC DAT	٠																												
Repeat																													
1	44214	< 0.2	0.87	<5	125	<5	2.28	<1	12	35	54	2.41	<10	0.42	728	<1	0.17	4	590	8	<5	<20	29	0.14	<10	76	<10	13	71
10	44224	< 0.2	1.99	<5	155	<5	1.50	<1	12	19	58	2.66	<10	0.55	448	<1	0.15	3	710	22	<5	<20	61	0.15	<10	77	<10	7	59
19	44233	0.5	0.98	<5	105	<5	0.74	2	10	36	92	2.20	<10	0.54	395	<1	0.09	3	540	12	<5	<20	15	0.13	<10	65	<10	13	112
Resplit																													
1	44214	< 0.2	0.86	<5	135	<5	2.39	1	12	37	56	2.38	<10	0.38	822	<1	0.16	4	570	8	<5	<20	33	0.13	<10	74	<10	14	86
36	44251	0.4	1.12	5	45	<5	2.95	<1	9	35	185	2.04	<10	0.30	769	2	0.12	2	480	14	<5	<20	60	0.09	<10	60	<10	9	41
Standar	rd:																												
Pb106		>30	0.55	275	60	<5	1.74	41	4	41	6253	1.40	<10	0.22	509	30	0.02	7	280	5240	55	<20	136	< 0.01	<10	14	10	<1	8488

4 41 6219 1.40 <10 0.22

ECO TECH LABORATORY LTD.

7 270 5240 55 <20 139 <0.01 <10 16 10 <1 8484

Jutta Jealouse

B.C. Certified Assayer

JJ/bp df/2270 XLS/06

Pb106

>30 0.56 280

<5 1.75

31 0.02

505

TTM Resources

26-Jan-07

P.O. Box 968 Pulpmill Road **Prince George, BC** V2L 4V1

Attention: Ken MacDonald

No. of samples received: 64

Sample Type: Core **Project: CHU Shipment #: 6**

Submitted by: All North Cons.

		Мо	
ET #.	Tag #	(%)	
5	44550	0.065	
24	44570	0.064	
30	44576	0.082	
40	44587	0.066	
43	44590	0.063	
45	44592	0.049	
47	44594	0.094	
48	44595	0.128	
50	44597	0.050	
52	44599	0.103	
53	44601	0.074	
54	44602	0.075	
55	44603	0.054	
56	44604	0.097	
58	44606	0.053	
60	44608	0.077	
62	44610	0.064	

ECO TECH LABORATORY LTD.

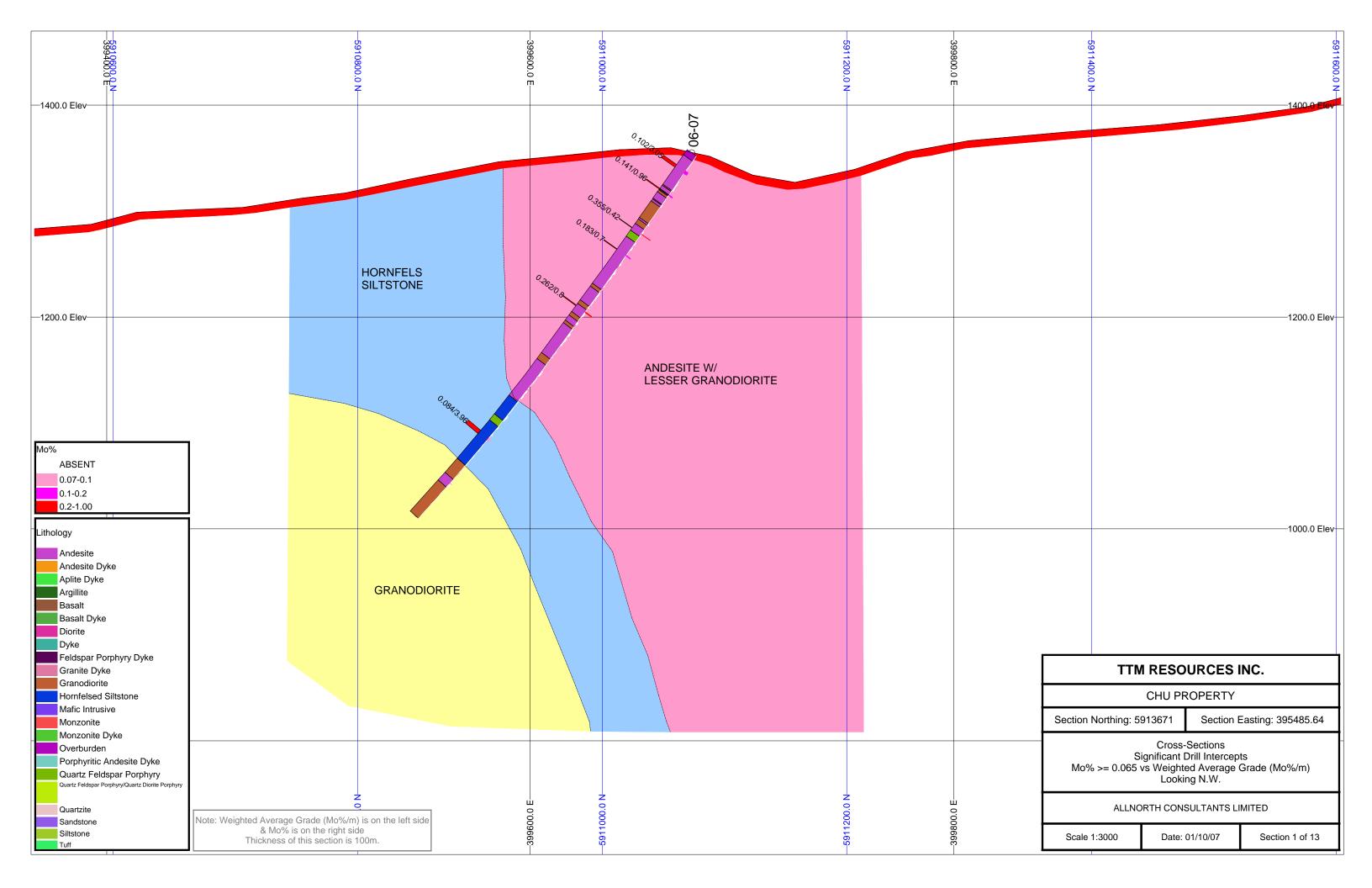
Jutta Jealouse

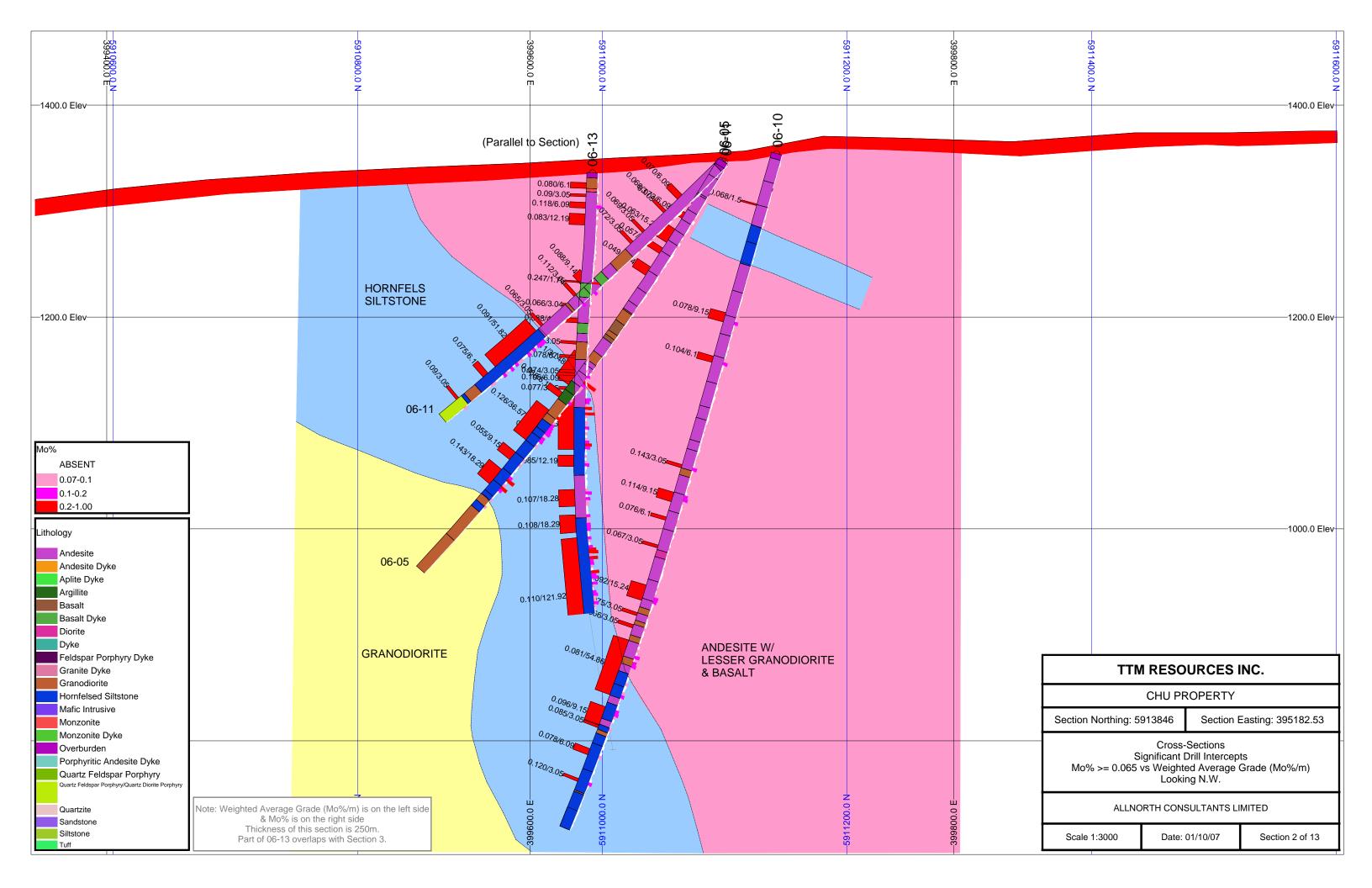
B.C. Certified Assayer

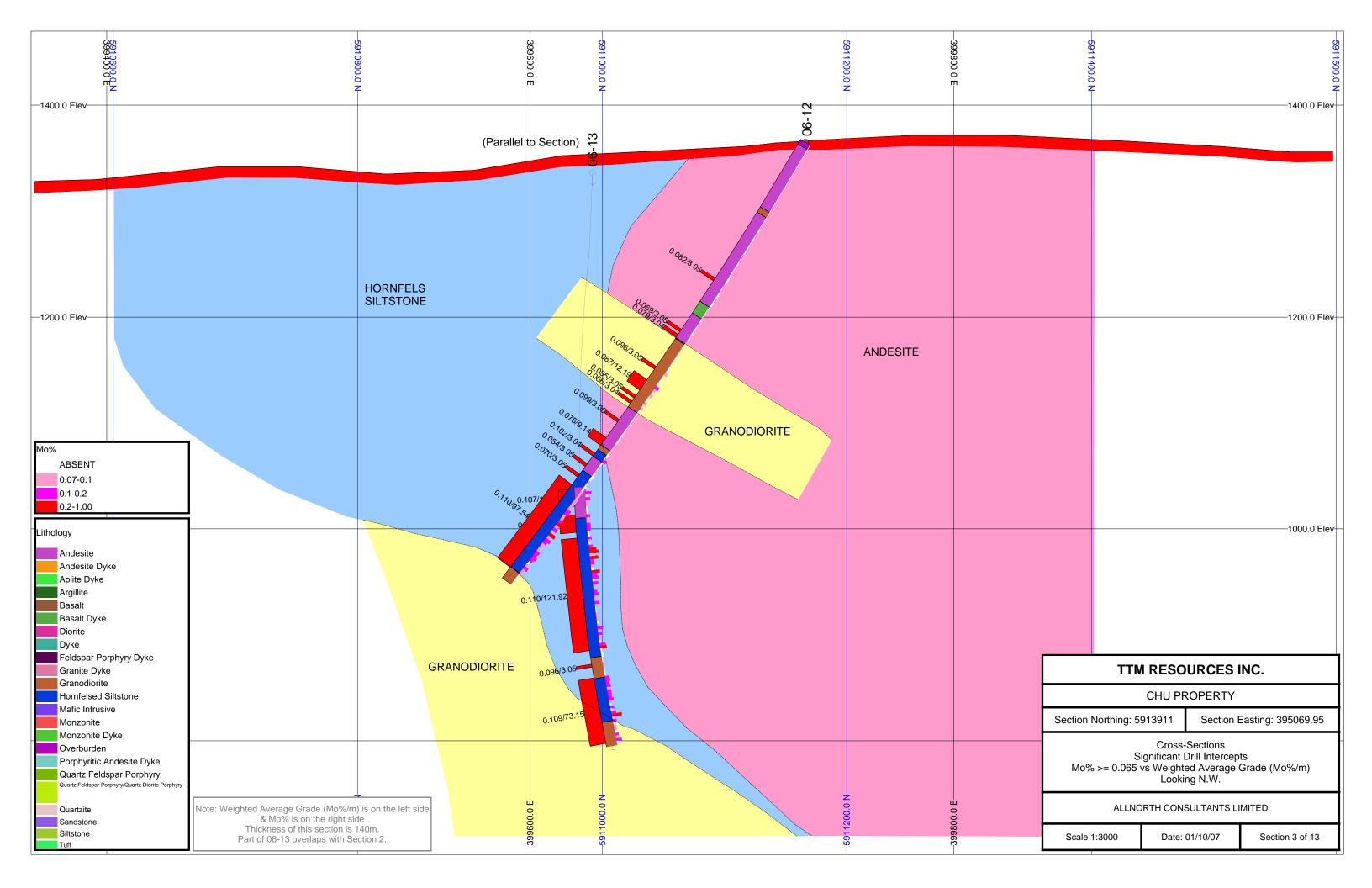
TTM Resources AK7-31

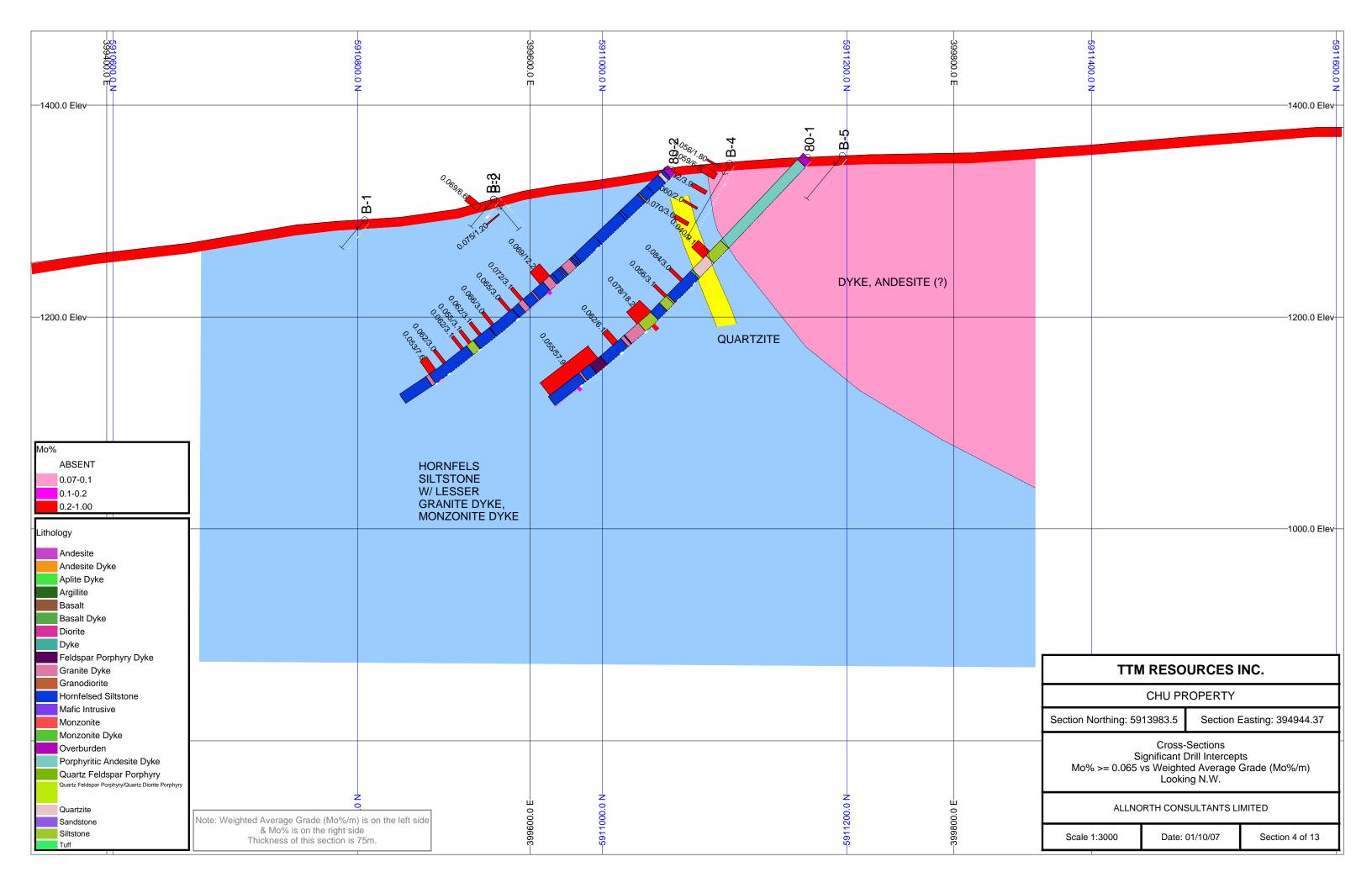
26-Jan-07

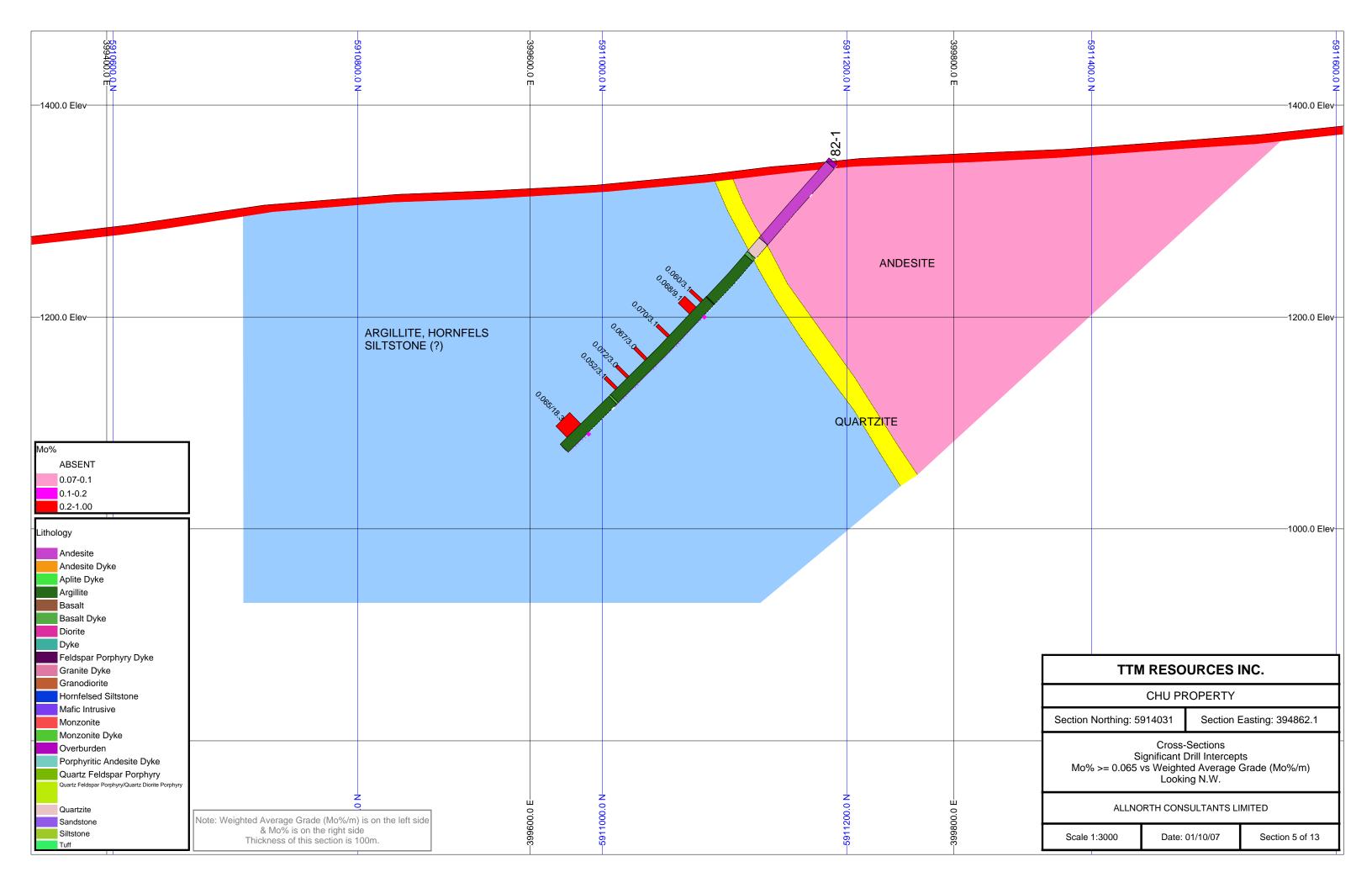
<i>"</i>	T "	Mo	
ET #.	Tag #	(%)	
QC DAT	A :		
	=		
Repeat:			
5	44550	0.064	
47	44594	0.095	
Standar	d:		
MP2		0.281	
MP2		0.280	
MP2		0.282	

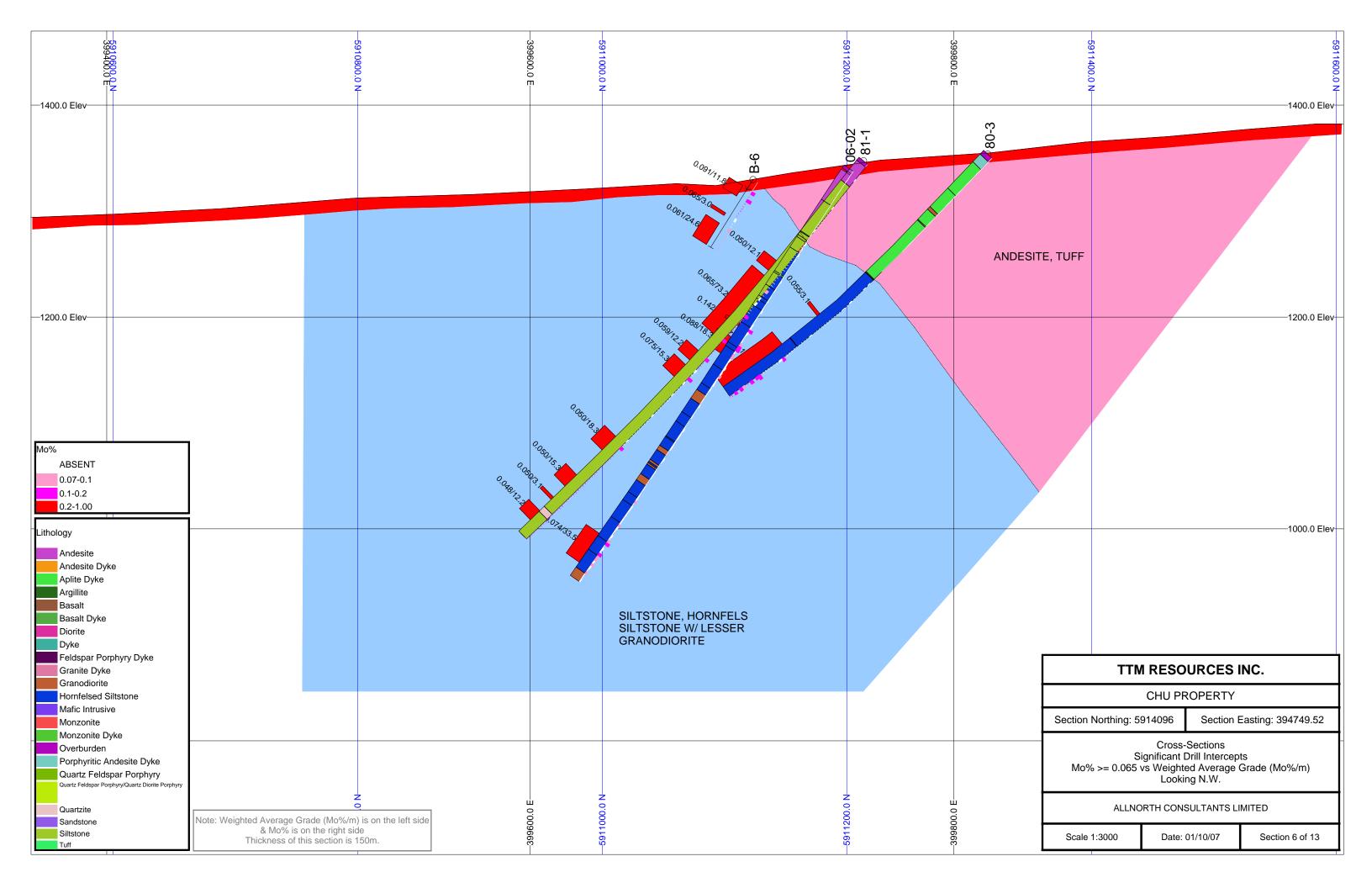

ECO TECH LABORATORY LTD.

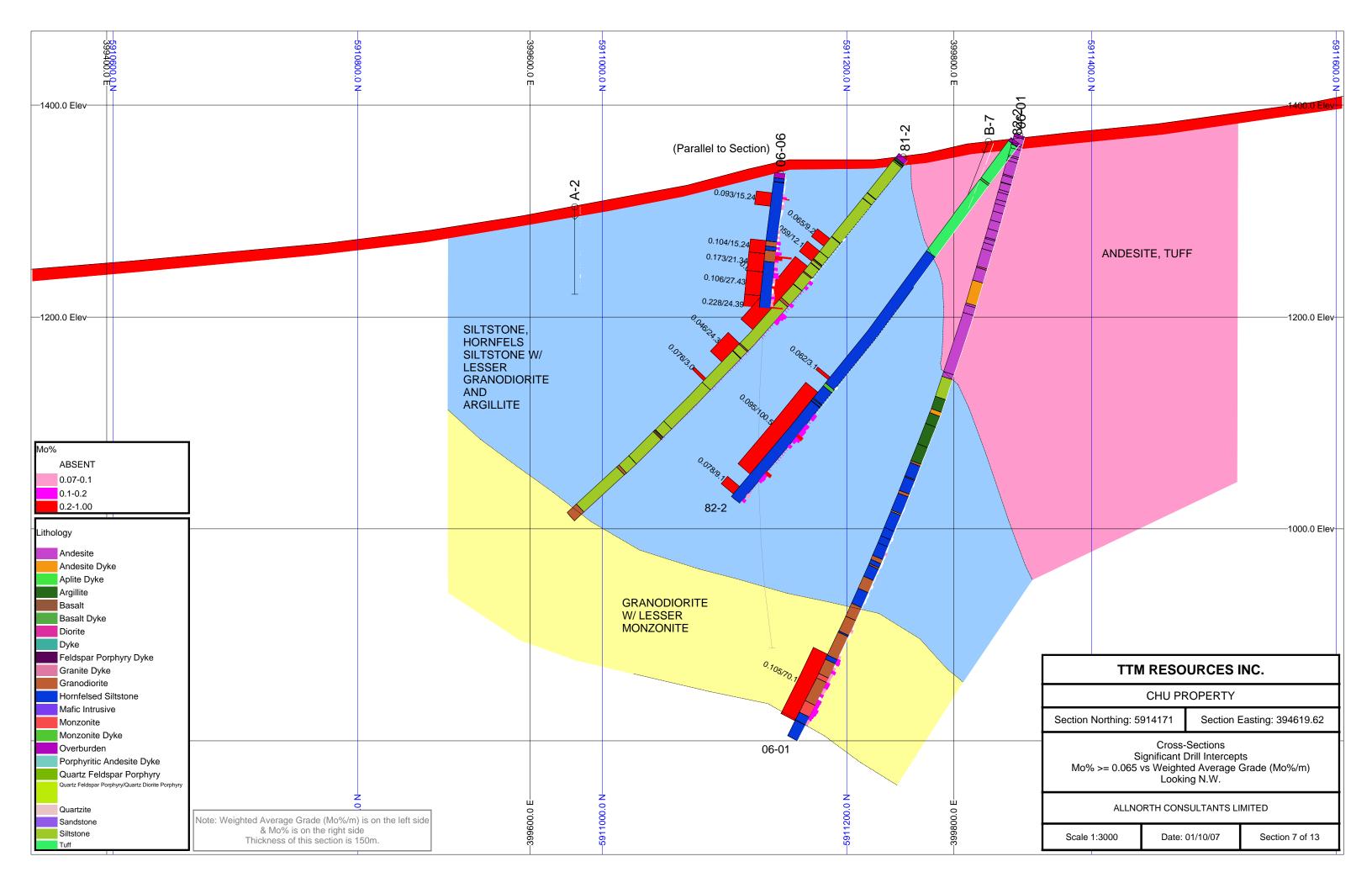

JJ/dc Jutta Jealouse

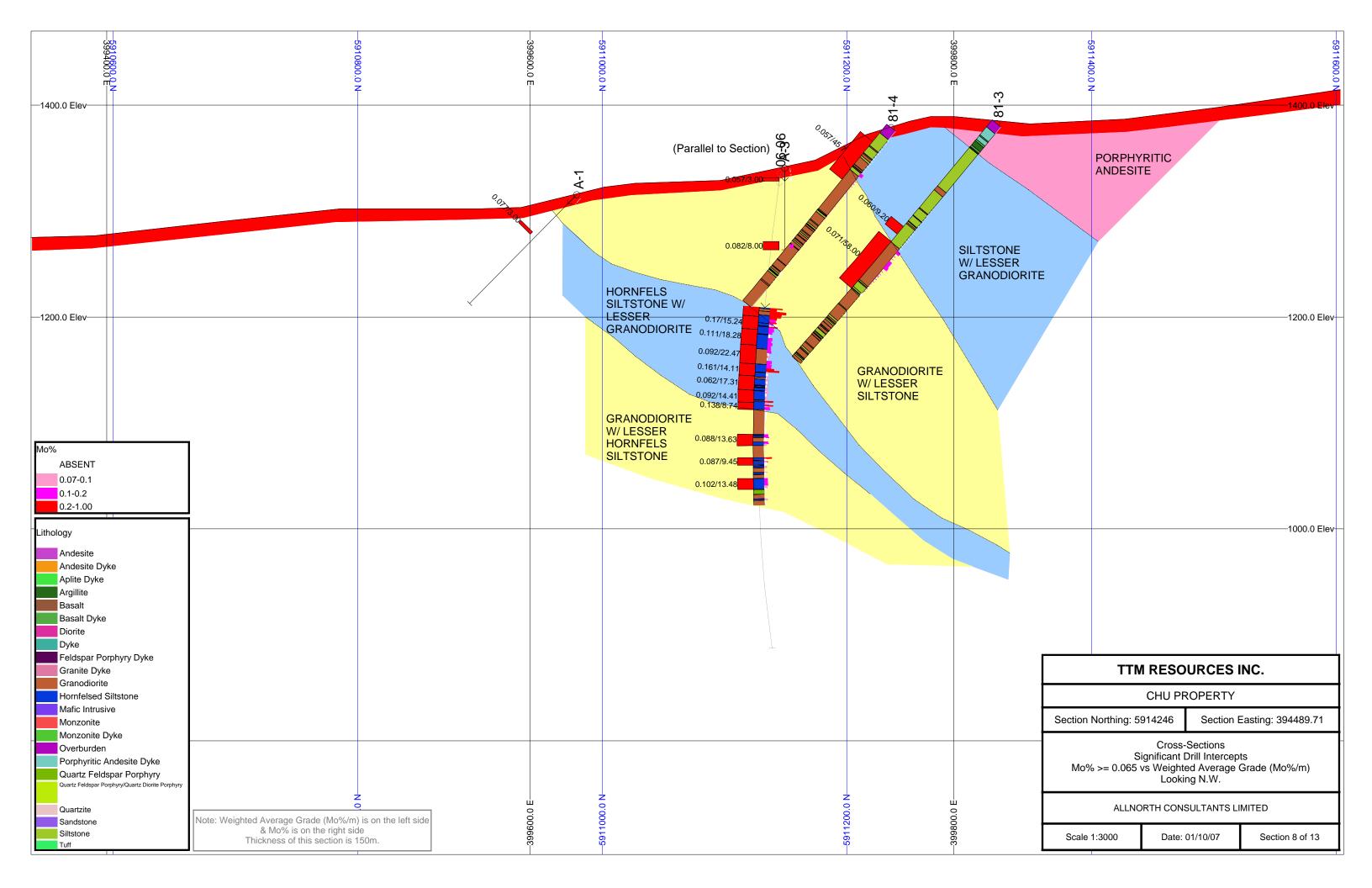

XLS/06 B.C. Certified Assayer

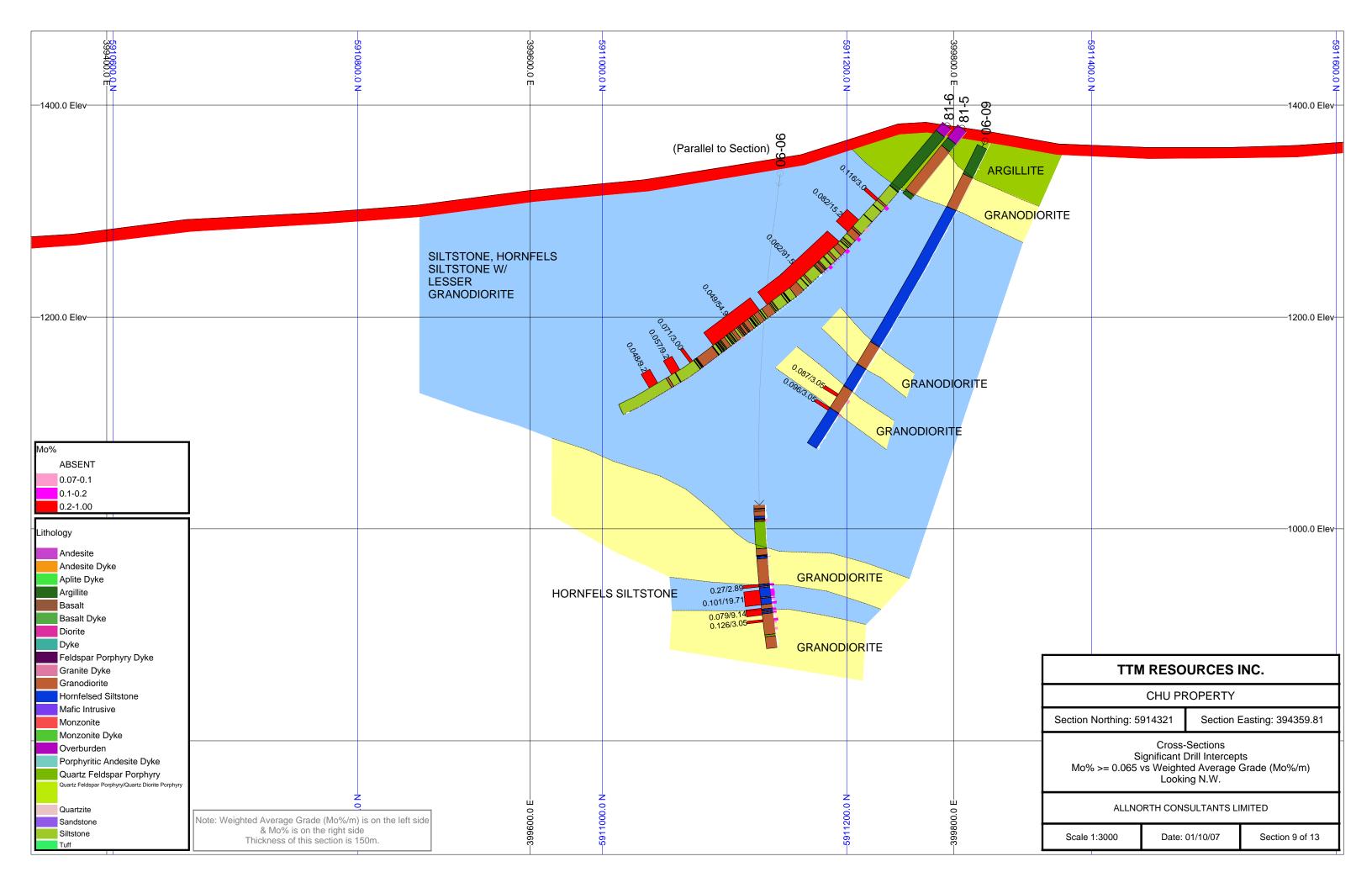

APPENDIX VI

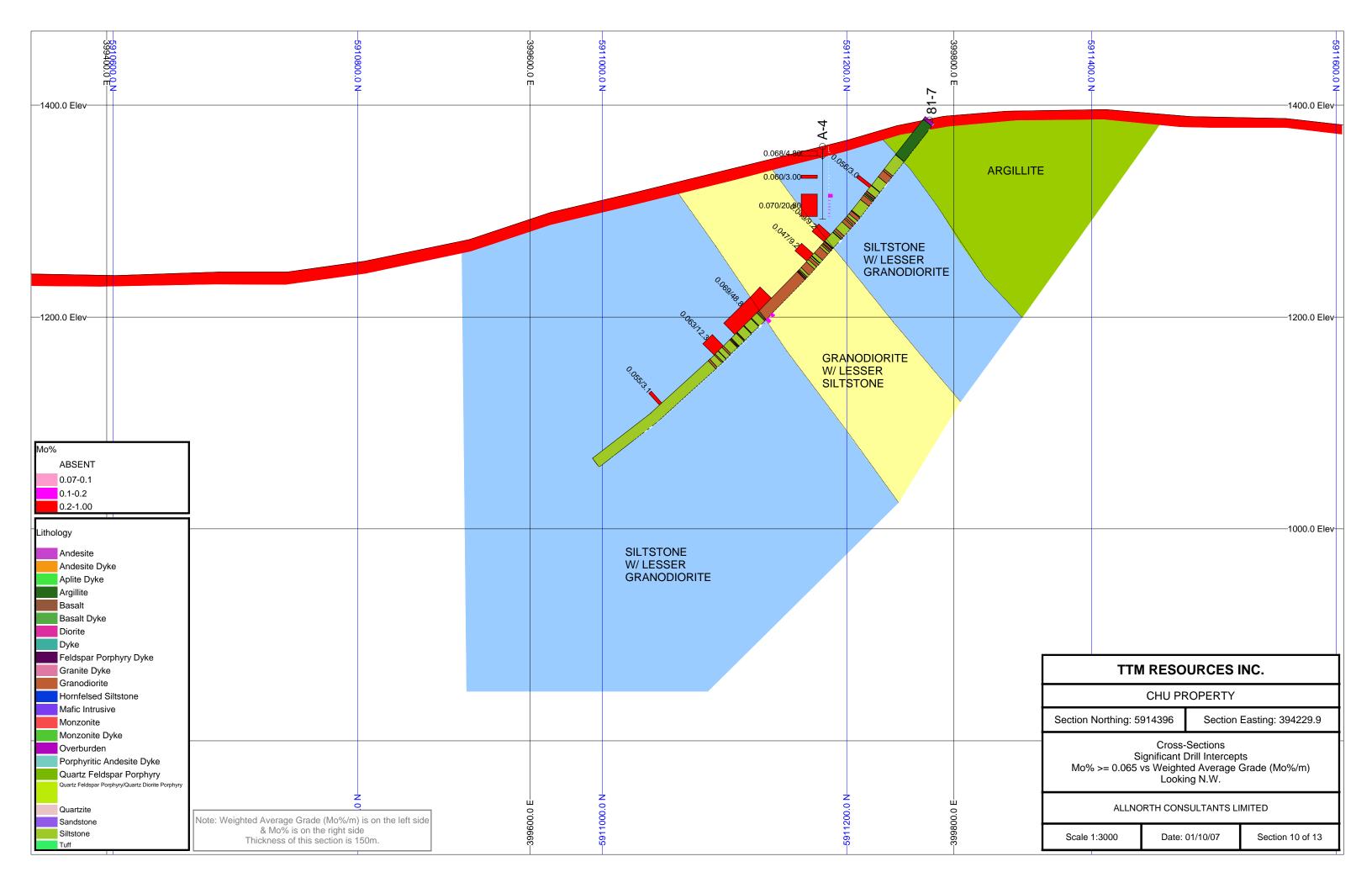

Cross Sections

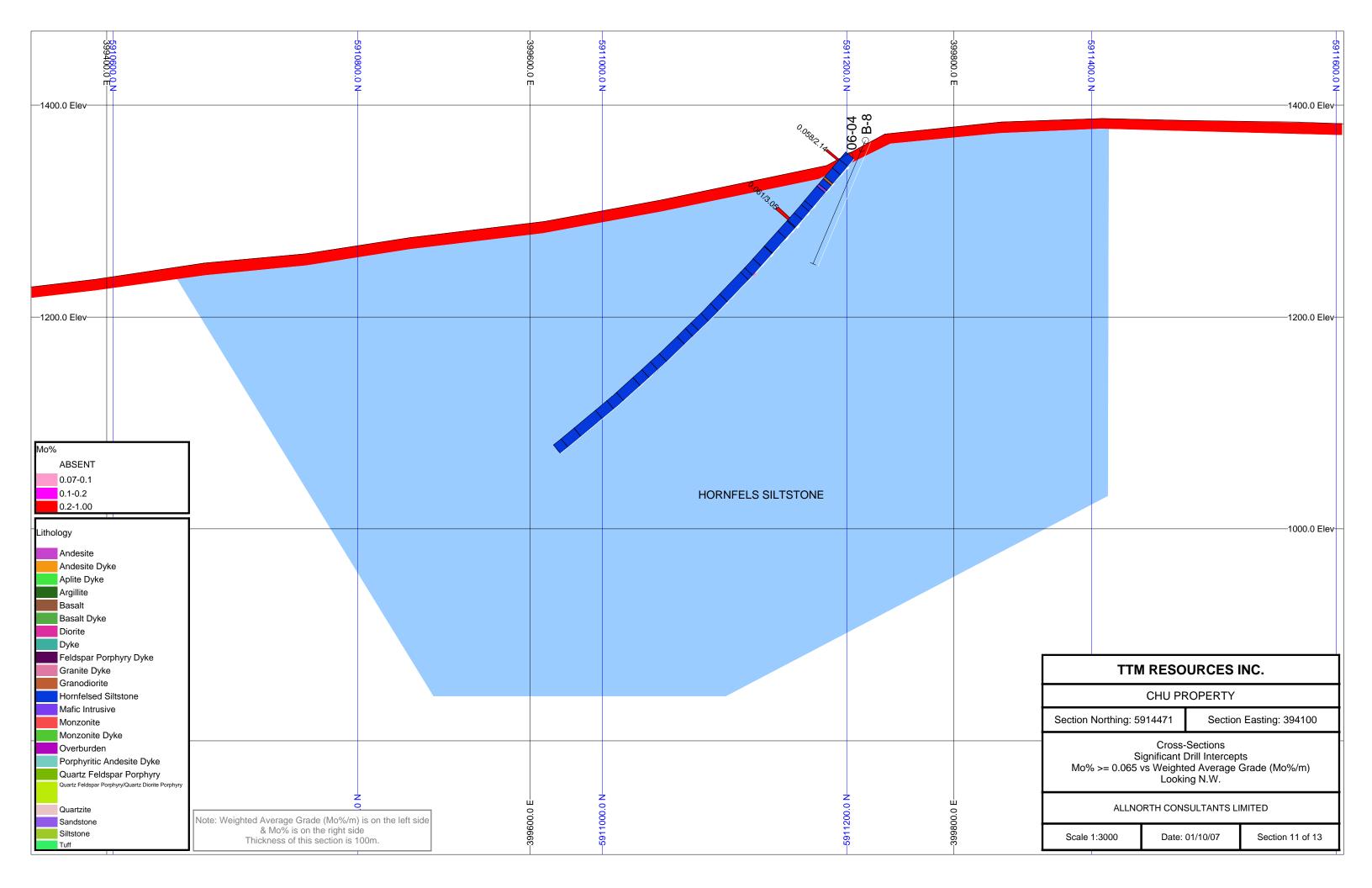


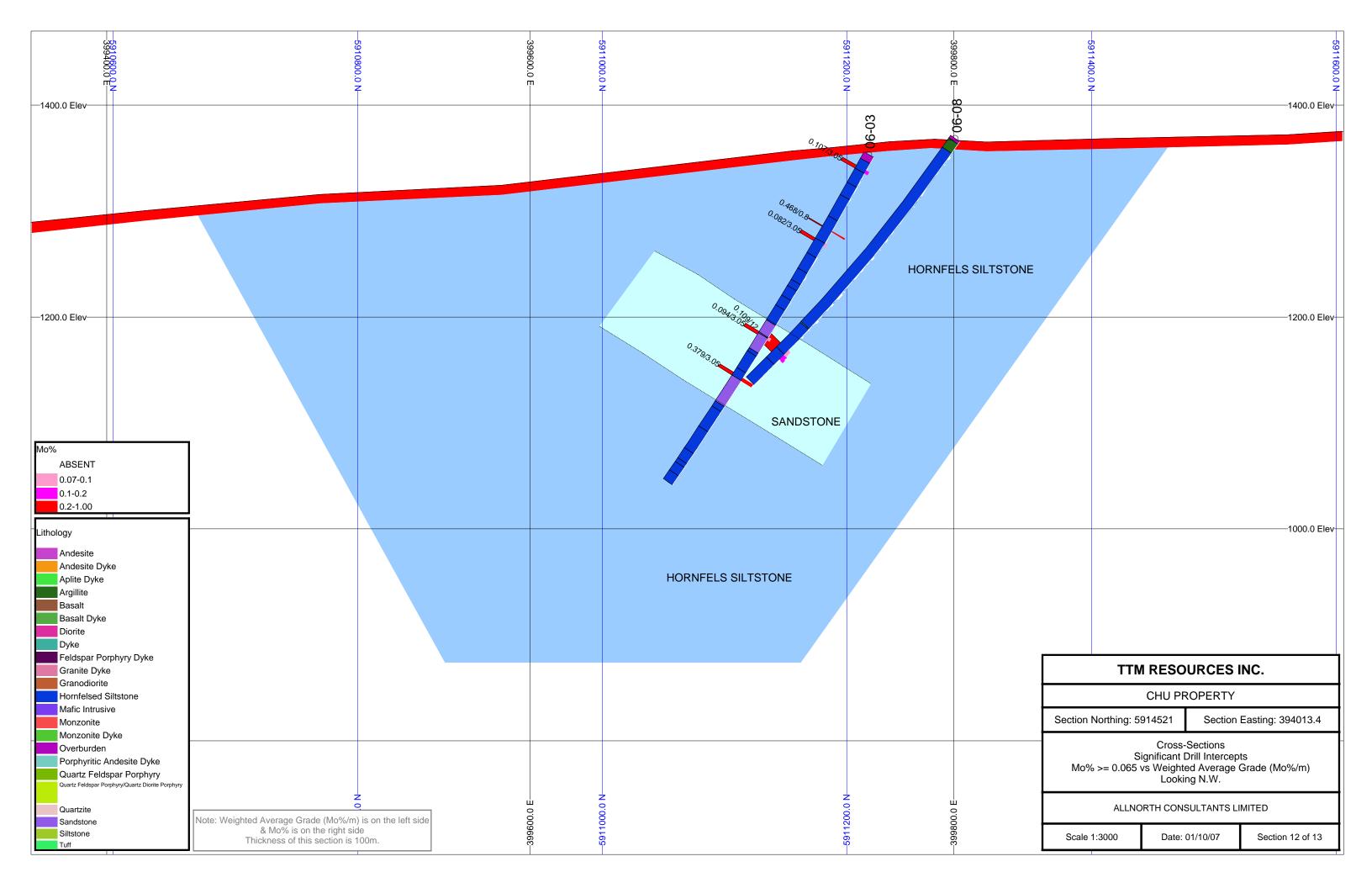


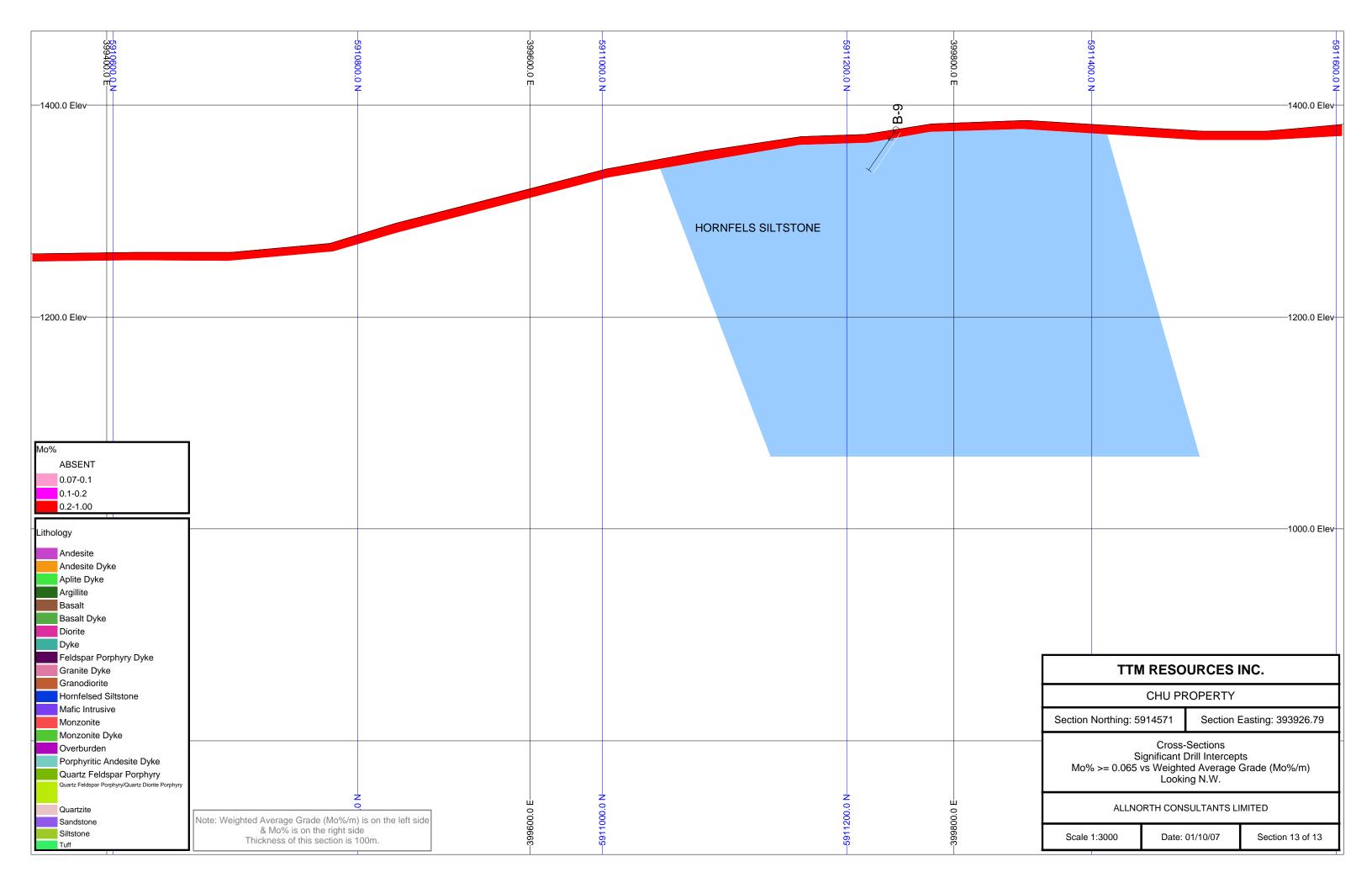












APPENDIX VII

Lab Analytical Methods

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
E- mail: info@ecotechlab.com
www.ecotechlab.com

Analytical Procedure Assessment Report

MULTI ELEMENT ICP ANALYSIS

A 0.5 gram sample is digested with 3ml of a 3:1:2 (HCl:HN03:H20) which contains beryllium which acts as an internal standard for 90 minutes in a water bath at 95°C. The sample is then diluted to 10ml with water. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

	Detection Limit				Detection	n Limit		
			Low	Upper			Low	Upper
Ag	0.2ppm	30.0ppm	Fe	0.01%		10.00%		
Al	0.01%		10.0%		La	10ppm	10,000ppm	
As	5ppm		10,000ppm	Mg	0.01%	N-1-1-	10.00%	
Ba	5ppm		10,000ppm	Mn	lppm		10,000ppm	
Bi	5ppm		10,000ppm	Mo	1ppm		10,000ppm	
Ca	0.01%		10,00%	Na	0.01%		10.00%	
Cd	1ppm		10,000ppm	Ni	1ppm		10,000ppm	
Co	1ppm		10,000ppm	P	10ppm		10,000ppm	
Cr	1ppm		10,000ppm	Pb	2ppm		10,000ppm	
Cu	1ppm		10,000ppm	Sb	5ppm		10,000ppm	
Sn	20ppm		10,000ppm					
Sr	1ppm		10,000ppm					
Ti	0.01%		10.00%					
U	10ppm		10,000ppm					
V	1ppm		10,000ppm					
Y	1ppm		10,000ppm					
Zn	1ppm		10,000ppm					

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com

www.ecotechlab.com

Molybdenum Assay

Samples are catalogued and dried. Rock samples are 2 stage crushed followed by pulverizing a 250 gram sub-sample. The sub-sample is rolled and homogenized and bagged in a pre-numbered bag.

A suitable sample weight is digested with nitric, hydrochloric, hydrofluoric and perchloric acids in Teflon beakers. The digested sample is allowed to cool, bulked up to 200ml volume and analyzed by an ICP instrument, to .001 % detection limit.

One repeat is run for each batch of 20 or less.

Certified reference material standards are run with each batch.

Results are compared and must fall within control limits to be accepted.

APPENDIX VIII

QA/QC Results

Eco-tech and ALS Chemex Copper and Molybdenum Values

Sample	Sample	Eco-tech Mo%	ALS Mo%	ALS Mo ppm	Eco-tech Cu%	ALS Cu%	ALS Cu ppm
1	G44800	0.0212	0.0159	159	0.0333	0.0286	286
2	G45740	0.0010	0.0009	9	0.0000	0.0009	9
3	G45760	0.0200	0.0169	169	0.0360	0.0418	418
4	G45780	0.0060	0.0048	48	0.0160	0.011	110
5	G45800	0.0250	0.017	170	0.0603	0.0258	258
6	G45820	0.0530	0.04	400	0.0345	0.0276	276
7	G45840	0.0420	0.0292	292	0.0348	0.0252	252
8	G45860	0.0095	0.0045	45	0.0693	0.047	470
9	G45880	0.0447	0.0237	237	0.0412	0.029	290
10	G45900	0.0294	0.0277	277	0.0429	0.032	320
11	G45920	0.0271	0.0178	178	0.0351	0.0398	398
12	G45940	0.0387	0.0326	326	0.0558	0.0702	702
13	G45960	0.0555	0.0559	559	0.0559	0.0545	545
14	G45980	0.0651	0.0569	569	0.0517	0.0603	603
15	G46000	0.0000	0.0007	7	0.0021	0.0022	22
16	G46020	0.0427	0.0637	637	0.1119	0.16	1600
17	G46040	0.0266	0.0238	238	0.0197	0.021	210
18	G46060	0.0780	0.0662	662	0.0208	0.0197	197
19	G46080	0.0233	0.0234	234	0.0194	0.0191	191
20	G46100	0.0439	0.045	450	0.0626	0.0563	563
21	G46120	0.0339	0.0298	298	0.0248	0.0259	259
22	G46140	0.0199	0.0157	157	0.0777	0.0822	822
23	G46160	0.0338	0.0316	316	0.0341	0.0353	353
24	G46180	0.0208	0.0247	247	0.0767	0.0832	832
25	G46200	0.0517	0.0494	494	0.0130	0.0124	124
26	G46220	0.0706	0.06	600	0.0156	0.0155	155
27	G46240	0.0131	0.0127	127	0.0174	0.0164	164
28	G46260	0.0017	0.002	20	0.0381	0.0408	408
29	G46280	0.0239	0.0208	208	0.0193	0.0186	186
30	G46300	0.0388	0.0332	332	0.0226	0.0227	227
31	G46320	0.0170	0.0218	218	0.0857	0.0799	799
32	G46340	0.0643	0.0557	557	0.0231	0.0215	215
33	G46360	0.0211	0.017	170	0.0250	0.0263	263
34	G46380	0.1136	0.108	1080	0.0517	0.0539	539
35	G46400	0.0730	0.0686	686	0.0234	0.0213	213

Chu Assessmer	nt Report		TTM Resour	ces Ltd.		06/06/2007			
36	G46420	0.1525	0.138	1380	0.0336	0.0335	335		
37	G46440	0.0266	0.0324	324	0.0789	0.0767	767		
38	G46460	0.0527	0.0474	474	0.1024	0.0887	887		
39	G46480	0.0249	0.0192	192	0.0682	0.055	550		
40	G46500	0.0392	0.0409	409	0.0382	0.0315	315		
41	G46520	0.1083	0.101	1010	0.1274	0.0918	918		
42	G46540	0.0296	0.0217	217	0.0497	0.0389	389		
43	G46560	0.1012	0.0835	835	0.0571	0.047	470		
44	G46580	0.1030	0.0739	739	0.0304	0.0286	286		
45	G46600	0.1408	0.0926	926	0.0312	0.0248	248		
46	G46620	0.0636	0.0484	484	0.0271	0.0249	249		

611

672

0.0402

0.0267

0.029

0.028

290

280

Eco-tech Laboratory Copper and Molybdenum Statistics

0.0581

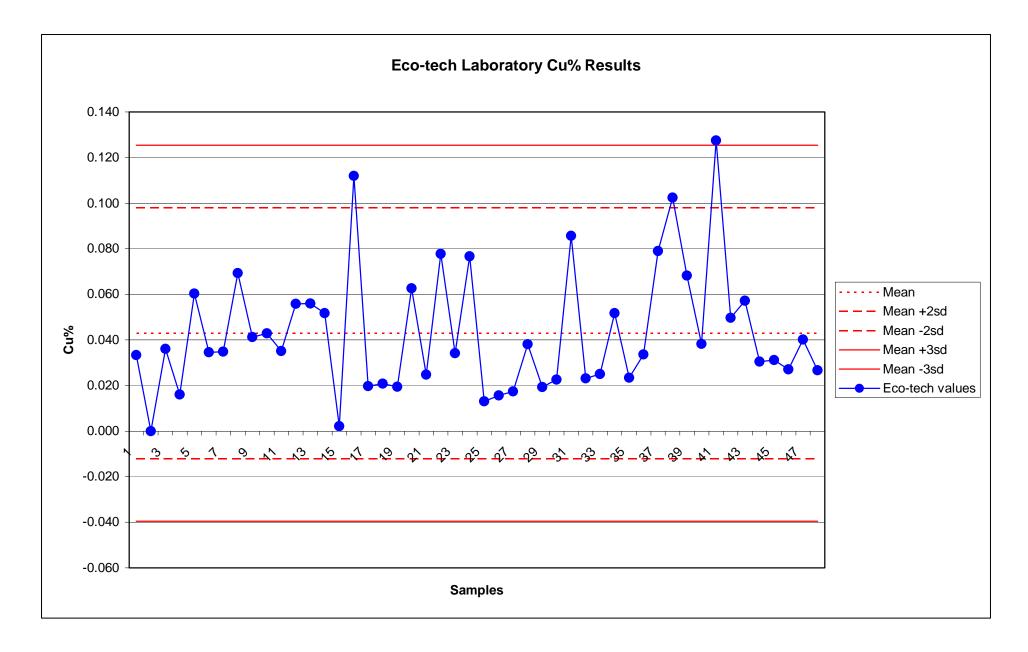
0.1312

Cu	Mean	Mean -	Mean	Mean -	Mo	Mean	Mean -	Mean	Mean -
mean	+2sd	2sd	+3sd	3sd	mean	+2sd	2sd	+3sd	3sd
0.043	0.098	-0.012	0.125	-0.040	0.048	0.121	-0.026	0.158	-0.063

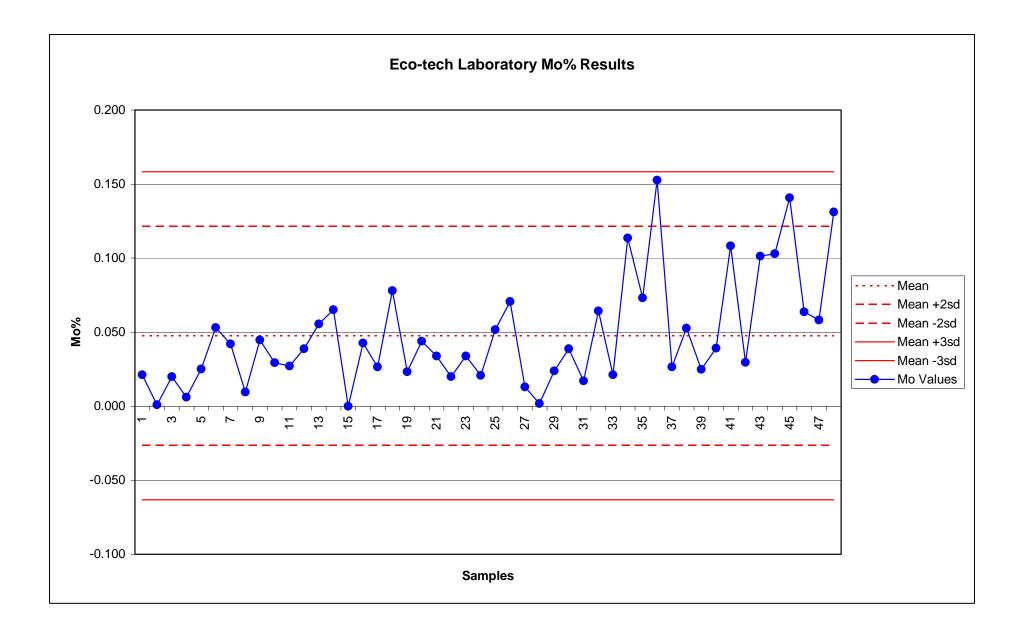
0.0611

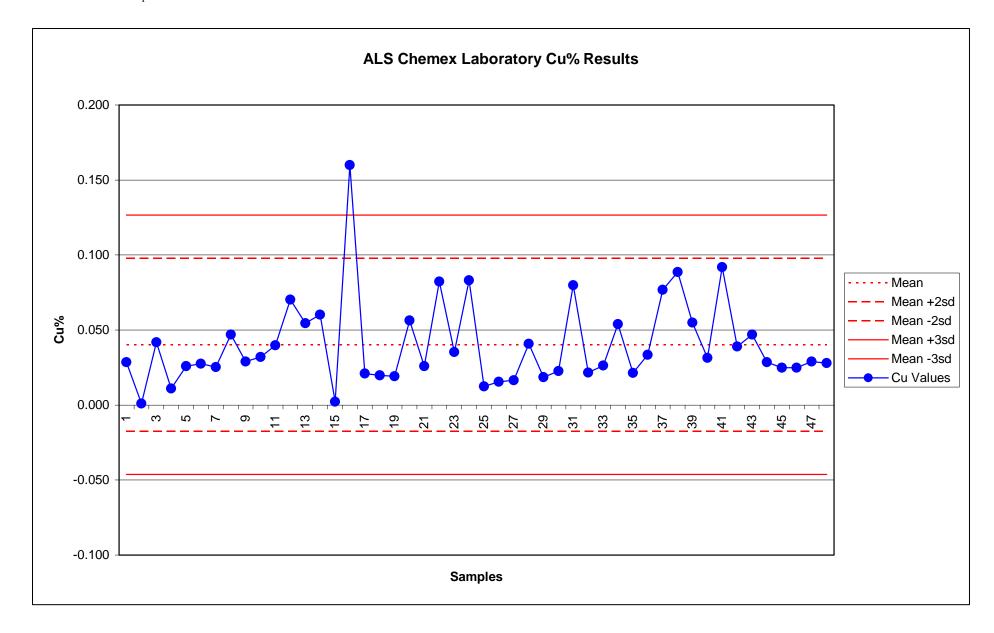
0.0672

ALS Chemex Copper and Molybdenum Statistics

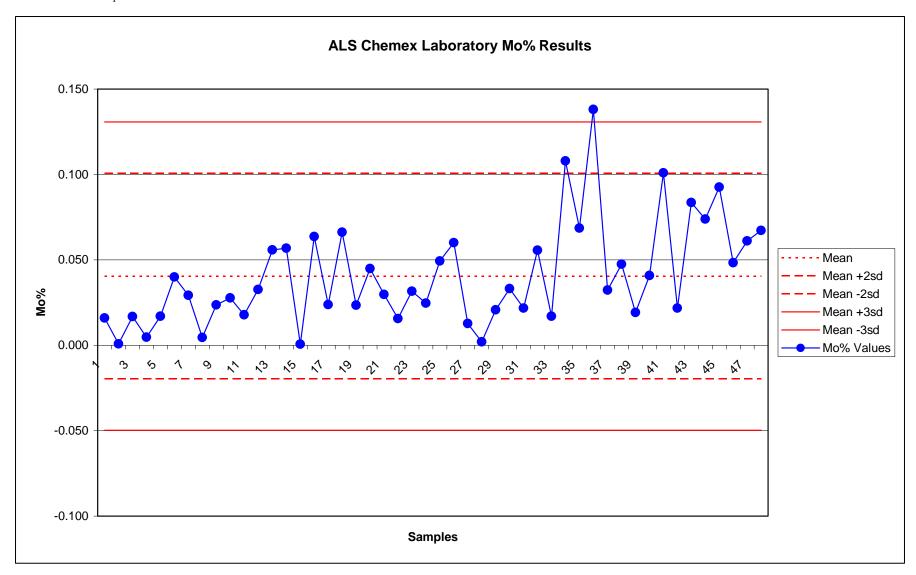

G46640

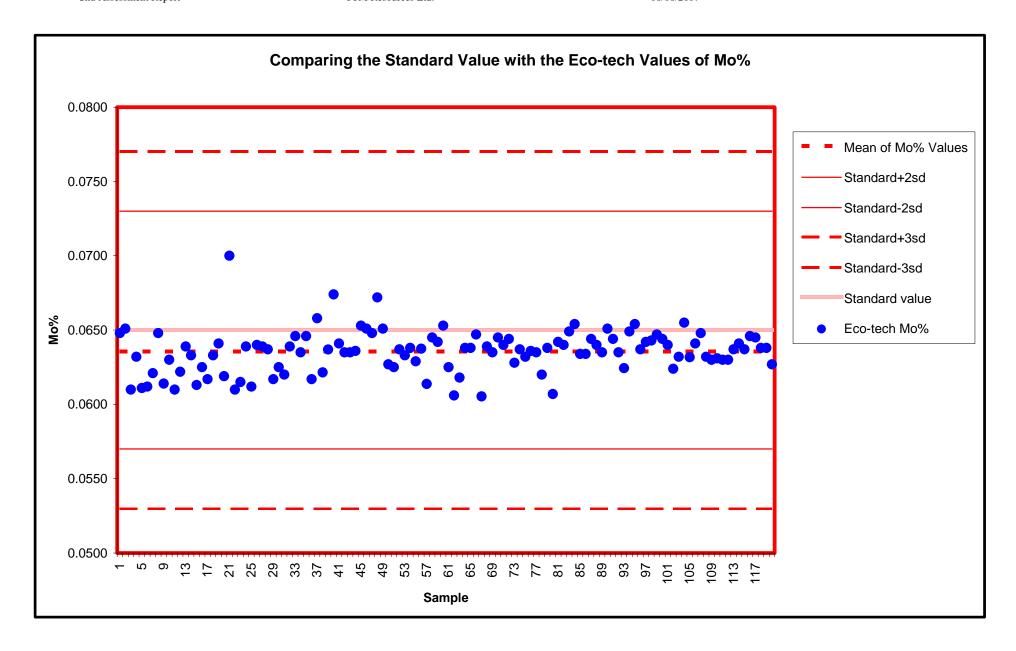
G46660


47


48

Cu	Mean	Mean -	Mean	Mean -	Mo	Mean	Mean -	Mean	Mean -
mean	+2sd	2sd	+3sd	3sd	mean	+2sd	2sd	+3sd	3sd
0.040	0.098	-0.017	0.127	-0.046	0.041	0.101	-0.020	0.131	-0.050




4

6

