Assessment Report

Diamond Drilling Lennac Lake Property Drill holes LL07-1 to LL07-3

Tenure Nos.: 504371, 551061,551062, 552271, 552272, 552273, 552274 552275, 552276

> Omenica Mining Division NTS Map 93L/9 Latitude: 54° 45'N Longitude: 126° 20'W

Owners: D.G. MacIntyre and V.H. Parsons Operator: Dentonia Resources Ltd.

> Report prepared by: D.G. MacIntyre, Ph.D., P.Eng.

> > November 26, 2007

BC Geological Survey Assessment Report 29459

TABLE OF CONTENTS

Table of Contents	2
List of Figures	2
List of Tables	3
Summary	4
Location, Access and Physiography	4
History	6
Tenure	7
Regional Geology	7
Property Geology	8
Work Performed	10
Results	12
LL07-1	12
LL07-2	14
LL07-3	16
Conclusions and Recommendations	16
References	16
Appendix A – Summary of Expenditures	18
Appendix B – Statement of Qualifications	21
Appendix C – Drill Hole Logs	22
Appendix D - Assay Results, LL07-1 to LL07-3	29
Appendix E - Certificates of Analysis	32

LIST OF FIGURES

Figure 1. General location map, Lennac Lake property	5
Figure 2. Access routes, Lennac Lake Property.	5
Figure 3. Claim location map	6
Figure 4. Regional geology	8
Figure 5. Property geology showing outcrop areas.	9
Figure 6. Location of drill holes LL07-1 to LL07-3, Lennac Lake property	.11
Figure 7. Graphic log, DDH LL07-1.	.13
Figure 8. Graphic log, DDH LL07-2.	.14
Figure 9. Graphic log, DDH LL07-3.	.15

LIST OF TABLES

Table 1. List of Mineral Tenures, Lennac Lake Property	7
Table 2. List of diamond drill holes, Lennac Lake property	.10
Table 3. Detection limits for Group 7AR and 1F analyses	.12

SUMMARY

The Lennac Lake property is located west of Babine Lake in west central British Columbia. This property covers a number of copper-molybdenum showings that were first discovered by Amax Exploration Inc. in 1971. Amax did a limited amount of drilling in 1973 and 1974 before allowing the claims to lapse. This work defined two areas of low grade Cu mineralization - the West and East zones. Subsequent operators on the property have included Kennecott, Cominco and Hudson Bay Exploration and Development. These companies did very little work on the property. Subsequently the claims were allowed to expire and the property was re-staked by D.MacIntyre and V.Parsons in September 2004.

In 2007, the main focus of work on the property was the Southeast Zone. This zone is comprised of several Cu-Mo showings that have been exposed by trenching in a flat lying, heavily treed area that is virtually devoid of outcrop. This preliminary phase of exploration, completed between August 20 and September 3, 2007 involved drilling three short AQ diamond drill holes targeting the northern part of the southeast zone. The drill holes intersected anomalous concentrations of Cu, Ag, Mo and Au hosted by clay-silica altered lapilli tuffs, breccias and porphyry dykes. The results of this drilling are the subject of this report.

LOCATION, ACCESS AND PHYSIOGRAPHY

The Lennac Lake property is located west of Babine Lake in west central British Columbia. The nearest town is Granisle, about 18 kilometres northeast of the property. The Lennac Lake claims are reached by traveling northeast along the Granisle highway from the village of Topley on Highway 16 to kilometre 29, turning left onto the Shoulder Forest Service Road (not maintained) then five kilometres to the start of an old four-wheel drive exploration road that extends seven kilometres west to the original showings. The approximate location of the center of the claim block is at latitude is 54° 45' N and longitude 126° 20' W. The property is located on NTS map 93L/9.

The Lennac Lake claims cover a relatively flat plateau area with elevations ranging from 880 to 1050 metres. Lower areas on the property, especially to the south, are swampy but there are also low rises covered by open pine forest growing on relatively well drained overburden. Outcrop is scarce but the southeast showings were exposed by trenching with the overburden only a metre deep. Elsewhere thick glacial outwash sands and gravels cover bedrock.

The Lennac Lake property is ideally located for development. An all weather paved highway is within a few kilometers of the showings as is a transmission line that serves the community of Granisle. The CN railway line is located approximately 40 kilometres south of the property and is accessible via the Granisle Highway or Houston Forest products haulage road. The property is relatively flat and is largely covered by pine forest growing on gravel outwash deposits. Much of the pine is infected with pine beetle and will probably die within the next few years. Much of this pine may be logged as part of a salvage operation.

Figure 1. General location map, Lennac Lake property

Figure 2. Access routes, Lennac Lake Property. Triangles represent the location of major porphyry Cu and Mo deposits in the area.

HISTORY

The Lennac Lake copper-molybdenum prospect was first discovered by Amax Exploration Inc. in 1971 and staked as the Thezar claims (Leary and Allen, 1972). (Minfile Nos. 93L 190, 191). Work on the property defined four areas of low-grade copper mineralization. After completing an IP survey (Depaoli and Allen, 1972) Amax drilled 44 percussion holes in 1973 and five diamond drill holes in 1974 (Hodgson, 1974). At the same time, British Newfoundland Exploration Ltd. drilled 11 percussion and three diamond-drill holes on the Jacob showing south of the Thezar claims. The claims were, in both cases, allowed to lapse.

In 1990, L. Bourgh restaked the property and it was optioned to Kennecott Exploration (Canada) Ltd. Kennecott completed geological mapping, prospecting and trenching and found additional copper showings on the east side of the property (the southeast showings) (Smit and Harival, 1992). Cominco Ltd. optioned the property in 1993 and did additional prospecting, soil geochemistry and trench sampling of the southeast showings (Callan, 1993; Jackisch, 1993).

Figure 3. Claim location map. Claim information taken from Mineral Titles on Line

Hudson Bay Exploration and Development held the property in 1998. After airborne electromagnetic surveys, it was concluded that grids should be investigated for outcrop and soil geochemistry in the vicinity of several EM anomalies (Bidwell, 1998). However, Hudson Bay dropped the claims in July 2004.

TENURE

Six two-post legacy claims were staked over the southeast showings in September 2004 by D.G. MacIntyre and V.H. Parsons of Victoria. Additional claims to cover the original Thezar and Jacob showings were added on Jan. 12, 2005 when Mineral-Titles-On-Line electronic staking was inaugurated by the B.C. Ministry of Energy, Mines and Petroleum Resources.. The original two-post claims were subsequently converted to cell claims. As of December 2007, the property was comprised of 9 cell claims covering 3510.11 hectares. A list of mineral tenures comprising the Lennac Lake property showing good-to-dates, tenure owners and hectares for each cell claim is given in Table 1. Claim boundaries relative to known Cu-Mo showings, topographic features and access routes are shown on Figure 3. Work discussed in this report was done on tenure 504371 between August 15 and September 3, 2007.

Tenure No.	Issue Date	Good to date	Owners	Hectares
504371	2005/Jan/20	2012/Sep/16	D.MacIntyre/V.Parsons	373.47
551061	2007/Feb/03	2012/Jan/10	D.MacIntyre/V.Parsons	373.34
551062	2007/Feb/03	2012/Jan/10	D.MacIntyre/V.Parsons	224.08
552271	2007/Feb/18	2010/Feb/18	Dentonia Resources Ltd.	466.83
552272	2007/Feb/18	2010/Feb/18	Dentonia Resources Ltd.	336.24
552273	2007/Feb/18	2010/Feb/18	Dentonia Resources Ltd.	336.01
552274	2007/Feb/18	2010/Feb/18	Dentonia Resources Ltd.	466.61
552275	2007/Feb/18	2010/Feb/18	Dentonia Resources Ltd.	466.95
552276	2007/Feb/18	2010/Feb/18	Dentonia Resources Ltd.	466.58

Table 1. List of Mineral Tenures, Lennac Lake Property

3510.11

REGIONAL GEOLOGY

The area surrounding the Lennac Lake property is mainly underlain by Jurassic Hazelton Group volcanics and lesser sediments (Figure 4). To the east of the property, Triassic Takla Group volcanics and sediments are in fault contact with the Hazelton Group. To the north Cretaceous sediments overlie the Hazelton Group, and to the south Tertiary volcanics of the Ootsa Lake and Endako Groups overlie the Hazelton rocks.

There are three ages of intrusives in the area. Jurassic Topley quartz monzonites and granodiorites underlie a large area south of the property. Late Cretaceous Bulkley intrusions, quartz monzonite and quartz diorite, occur as plugs throughout the area. Finally, Tertiary Babine intrusives occurring as small plugs and dikes are found around Babine Lake. They are often described as biotite-feldspar porphyries. Mineralization occurs in porphyries associated with all three ages of intrusives. The former Granisle and Bell mines about 25 kilometres north of Lennac Lake are associated with Babine intrusives.

Figure 4. Regional geology. Source of information: B.C. Ministry of Energy and Mines, digital geology map of B.C.

PROPERTY GEOLOGY

On the Lennac Lake property, porphyry copper mineralization and alteration are associated with a series of northeast-trending dikes of biotite-hornblende-feldspar-quartz porphyry that intrudes maroon lapilli tuffs and volcaniclastic rocks of the Lower Jurassic Telkwa Formation (Figure 5). The porphyry, which is quartz monzonite to granodiorite in composition and is typical of the Late

Cretaceous Bulkley intrusions, contains euhedral biotite books, hornblende, plagioclase and locally quartz eyes up to one centimetre in diameter. Phenocrysts comprise up to 30 per cent of the rock.

Figure 5. Property geology showing outcrop areas. Source: Amax Exploration Assessment Reports

The four main areas of mineralization on the property are the West, East, Southeast and Jacob zones (Figure 5). The West zone, discovered first, is mostly disseminated and fracture-coated pyrite, chalcopyrite and trace molybdenite in relatively fresh, coarse-grained porphyry and hornfelsed volcanics. The East zone is mainly fracture coatings and veinlets of pyrite and chalcopyrite with associated chlorite-epidote alteration. This alteration is superimposed on biotite hornfelsed Telkwa volcanics.

The Southeast zone has three separate mineralized occurrences, the Suratt showing, and trenched areas 230 and 530 metres respectively further south (Figure 6). There is no outcrop between these showings. The Suratt showing includes chalcopyrite, pyrite and some tetrahedrite in what has been variously described as a rhyolite breccia or a silicified and bleached originally dark-green andesite. This is exposed in trenching along the old exploration road.

The trenches further south exposed a quartz-molybdenite stockwork in a quartz-sericite altered quartz-biotite-feldspar porphyry, and further on disseminated and fracture-controlled chalcopyrite and pyrite in a fine-grained quartz-sericite-altered feldspar porphyry and a medium to coarse-grained quartz-biotite-feldspar porphyry intrusion.

At the Jacob showing, Hazelton volcanics are intruded by granodiorite and associated biotite-feldspar porphyry. Quartz veining and quartz-carbonate stringers host pyrite with minor chalcopyrite, molybdenite and bornite. Traces of magnetite and sphalerite were noted in some quartz-carbonate stringers. (Minfile No. 93L 243).

WORK PERFORMED

Between August 15 and September 3, 2007, three AQ diamond drill holes totaling 260 metres were completed by Low Profile Exploration Ltd. using a small portable drill. These drill holes are listed in Table 2. Drill hole locations are shown in Figure 6. All core was moved to a warehouse in Houston B.C. where it was split in half at two metre intervals using an hydraulic splitter with half of the core returned to the core box and half bagged, labeled and sent to Acme Analytical Laboratories Smithers sample preparation facility where it was crushed and pulverized to -150 mesh size. After processing, a portion of the crushed core is sent directly by the Smithers facility to Acme's ISO 9002 accredited laboratory in Vancouver. A total of 139 samples in two batches (A718344 & A718365) were analyzed by the laboratory using an Aqua Regia digestion and Inductively Coupled Plasma Emission Spectrometry (ICP-ES ultratrace analytical package G7AR). Detection limits, as published on Acme's website for these analytical packages, are listed in Table 3. Drill core from the project has now been moved to a warehouse in Smithers B.C.

Hole	Easting	Northing	Elev.	Length	Azimuth	Inclination	Casing
LL07-1	673313	6069026	990	105.16	230	-50	5.30
LL07-2	673267	6068809	995	57.61	14	-45	1.68
LL07-3	673329	6068763	995	97.23	21	-45	1.93

Table 2. List of diamond drill holes, Lennac Lake property

Note: coordinates are for Zone 9, NAD 83. distance values are in metres.

Prior to the start of diamond drilling at Lennac Lake, old overgrown access roads and drill trails on the property had to be cleared using a D3 bulldozer. This work was done by Clay Enterprises of Houston B.C. The costs related to this road clearing and subsequent diamond drilling program are tabulated in Appendix A. A total of \$54,446 was spent on this initial phase of diamond drilling.

Figure 6. Location of drill holes LL07-1 to LL07-3, Lennac Lake property.

Table 3. Detection limits for Group 7AR and 1F analyses (from the AcmeLabs website)

Analyte	Unit	Det. Limit	Analyte	Unit	Det. Limit	Analyte	Unit	Det. Limit
Ag	GM/T	2	Cu	%	0.001	Ni	%	0.001
Al	%	0.01	Fe	%	0.01	Р	%	0.001
As	%	0.01	Hg	%	0.001	Pb	%	0.01
Bi	%	0.01	Κ	%	0.001	Sb	%	0.001
Ca	%	0.01	Mg	%	0.01	Sr	%	0.001
Cd	%	0.001	Mn	%	0.01	W	%	0.001
Co	%	0.001	Мо	%	0.001	Zn	%	0.01
Cr	%	0.001	Na	%	0.001			

Detection Limits for ICP-ES analyses (Group 7AR Aqua Regia Digestion)

Detection Limits for	ICP-MS analyses (G	Broup 1F Aqu	ua Regia Digestion)

Analyte	Unit	Det. Limit	Analyte	Unit	Det. Limit	Analyte	Unit	Det. Limit
Ag	PPB	2	Ga	PPM	0.1	Sc	PPM	0.1
Al	%	0.01	Hg	PPB	5	Se	PPM	0.1
As	PPM	0.1	Κ	%	0.01	Sr	PPM	0.5
Au	PPB	0.2	La	PPM	0.5	Te	PPM	0.02
В	PPM	20	Mg	%	0.01	Th	PPM	0.1
Ва	PPM	0.5	Mn	PPM	1	Ti	%	0.001
Bi	PPM	0.02	Mo	PPM	0.01	Tl	PPM	0.02
Ca	%	0.01	Na	%	0.001	U	PPM	0.1
Cd	PPM	0.01	Ni	PPM	0.1	V	PPM	2
Co	PPM	0.1	Р	%	0.001	W	PPM	0.1
Cr	PPM	0.5	Pb	PPM	0.01	Zn	PPM	0.1
Cu	PPM	0.01	S	%	0.02			
Fe	%	0.01	Sb	PPM	0.02			

Notes: PPM=parts per million; PPB-parts per billion;GM/T=grams per metric tonne; some elements are only partially digested if refractory minerals are present; see Acme website for details; ICP-ES=Inductively Coupled Plasma Emission Spectrometrey; ICP-MS=Inductively Coupled Plasma Mass Spectrometry.

RESULTS

Drill hole logs for holes LL07-1 to LL07-3 are given in Appendix C. Appendix D gives analytical results for Cu, Mo, Pb, Zn, Ag, Au, As, Sb and Hg for each 2 metre sample interval. Original analytical certificates are shown in Appendix E. Graphic logs for each drill hole are shown in Figures 7, 8 and 9.

LL07-1

This drill hole was collared on the old access road near trenches at the Surratt showing and drilled at azimuth 230 and inclination -50 degrees (Figure 6). The first 43 metres of this hole intersected claysilica altered lapilli tuff containing anomalous concentrations of Cu (>0.1%) and Ag (>1000 ppb). Between 55.64 and 73.25 metres the drill hole intersected a clay-chlorite altered porphyry comprised of 45-55% 2-4 mm feldspars, 10-15% 2-4 mm biotite books pseudomorphed by chlorite and/or sericite and 1-2% 2-4 mm quartz "eyes". This porphyry contained much lower concentrations of Cu, Mo and Ag than surrounding volcanic rocks. Below the porphyry dyke to the end of the hole the drill hole intersected clay-silica altered lapilli tuff, a coarse grained bladed porphyry with 35-45% 0.5-3 cm rectangular feldspar phenocrysts in a dark fine-grained matrix and a heterolithic intrusive breccia with a foliated flow banded matrix of quartz and feldspar. Anomalous concentrations of Ag, Cu and to some extent Mo occur between 85 metres and the end of the hole at 105.6 metres.

Figure 7. Graphic log, DDH LL07-1. Note: BRXX=breccia, BLFP=bladed feldspar porphyry, LPTF=lapilli tuff, QBFP=quartz-biotite-feldspar porphyry

egme	ent Start D	epth :(0.00			Segn	hent End Dept	h :57.61		
epth At	Lith	6	Sample	Start	End	Mo %	Cu%	Ag PPB F	Au PPB F	Elevatio
	CASING			1 1				111111111		1
		\$15 N	723053	1.83	3		0.12 0.15		1000	
	TUFF	N. 2 N.	723054	3	5	ā.,		8		
		28 V V	723055	5	7					
	FP	N.V.N	723056	7	9			6		1212.414
-10	144		723057	9	11					987-
	22	N.C.	723058	11	13					
		Sec.	723059	13	15			100		
		E.S.X.	723060	15	17		F2 - N			
TUFF	TUFF	S. S. S.	723061	17	19					
-20			723062	19	21					980-
		1.1.2	723063	21	23				100	
	-	N (2. N)	723064	23	25	- et al.		[
		550	723065	25	27					
	LPTF	- Sec	723066	27	29	100				
-30			723067	29	31					973-
		See.	723068	31	33	1	-	2		
			723069	33	35					
		N. S.	723070	35	37				r .	
	TUFF		723071	37	39					
-40		120	723072	39	41	1 N		- 1 C		966-
	FP	NV.	723073	41	43		1 1			017917070
		VYVV	723074	43	45					
		N.S.S.	723076	45	47					
	IMI	- 4	723077	47	49					
-50	BRXX	а Р В А	723078	49	51					959
00		1014	723080	51	53					000
	FP	XX	723081	53	55					
		12.0	723082	55	57					
		1339	723083	57	57.81					

Figure 8. Graphic log, DDH LL07-2. Note: BRXX=breccia, FP= feldspar porphyry, LPTF=lapilli tuff, TUFF=tuff

LL07-2

Drill hole LL07-2 was collared at the end of a short drill trail approximately 223 metres south of drill hole LL07-1 and was drilled at azimuth 14 degrees and inclination -45 degrees toward hole 1. Trenches adjacent to this drill site have exposed malachite and azurite stained clay-silica altered tuffs similar to those at the Surratt showing near drill site 1. Drill hole 2 went to a depth of 57.6 metres and intersected silica-clay altered tuff cut by feldspar porphyry dykes (Figure 8). The tuffs contained

anomalous concentrations of Cu and Ag at 11 to 25 metres and 33 to 41 metres with low values associated with the feldspar porphyry dykes. The hole was terminated at 57.6 metres due to seizing of the drill rods.

Segme	ent Start D)epth :	0.00			Segri	ent End Depti	n :97.23		
Depth At	Lith	i -	Sample	Start	End	Mo %	Cu %	Ag PPB F	Au PPB F	Elevation
	CASING				1		TITT	11111111		
		^ ^ ^ ^ ^	723084	<u>1.83</u> 3	35	<u>698683699</u>	0000		6885	
		A A A	723086	5	7	21	ማ ማ ማ		8888	
20866	PHVI	~^^^	723087	7	9					120103000
-10		A	723088	9	11					987-
		^^^^	723089	11	13		20			
			723090	13	15	1000				
		V V	723091	13	19			-		
-20	1	V V	723093	19	21		- B			980-
	VOLC	V Y	723094	21	23					000
		V V	723096	23	25					
3		W W	723097	25	27	15				
20	VOLC	VV	723098	27	29		- 6			072
-30	LPTF		723099	23	31	· ·	24 T		1	915-
		1-5-5	723100	33	35	· ·			K	
			723102	35	37		1 1	- I	1	
	IPTE	S. Com	723103	37	39	Esc. 1				
-40		1.	723104	39	41					966-
		142	723105	41	43		1			
	LPTF	N - 2. X	723106	43	45	131	- D			
		X-51	723107	40	47	12	-U 13			
-50	LPTF	1.28	723109	49	51		<u>6</u> 8			959
00	1.172 Mar.	1	723110	51	53		84 T			000
	BEP \	2.57	723111	53	55	The second second				
5	LPTF /	4 . 4	723112	55	57			_		
~~	BEP	144	723113	57	59	- 10 C				050
-60	LOTE		723114	59	61		1 N		L	952-
		5.5	723115	61	63	- C				
	BLFP	11/1/3	723118	65	67					
	VOLC	v v	723119	67	69					
-70	LPTF	N 1/8	723120	69	71					945-
0.05503	100000	される	723121	71	73					5-55-5-65-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5
1	BFP		723122	73	75					
		+ +	723123	75	70		- R			
00	VOLC	V V	723124	70	79	- 0	L (1			020
-00	TEBX /	7.910	723125	- 73	83	- C	- 1 C		- 4. A	900
	FP	VX3	723128	83	85			-		
		NY IV	723129	85	87					
5.5		VV S	723130	87	89					122
-90	FP	12/1	723131	89	91					931-
	143	VV3	723132	91	93					
		1014	723133	93	95					
		1.1.	120134		31.23					

Figure 9. Graphic log, DDH LL07-3. Note: BRXX=breccia, BLFP=bladed feldspar porphyry, LPTF=lapilli tuff, BFP= biotite-feldspar porphyry, FP=altered feldspar porphyry, VOLC=undifferentiated volcanic rock, TFBX=tuff breccia, RHYL=rhyolite

LL07-3

Drill hole LL07-3 was collared on the old drill trail 264 metres south of drill hole 1 and 75 metres southeast of hole 2 and was drilled at azimuth 21 degrees and inclination -45 degrees. Trenches adjacent to this drill site have exposed clay-silica altered rhyolite cut by quartz veins containing molybdenite. This showing was previously referred to as the quartz stockwork zone. The first 16 metres of this drill hole intersected a feldspar phyric rhyolite cut by quartz-molybdenite stringers and veinlets. Mo grades for this interval ranged from 0.024 to 0.055% Mo. Between 16.05 and 71.1 metres hole 3 intersected clay-silica altered lapilli tuff and bladed feldspar porphyry cut by narrow feldspar porphyry dykes similar to those intersected in holes 1 and 2. As shown in Figure 9 strongly anomalous Ag and to some extent anomalous Cu and Mo values occur throughout this interval with strongly anomalous Ag (>2000 ppb) occurring between 21 to 29 and 61 to 83 metres depth. A medium to coarse grained feldspar porphyry was intersected between 81.23 to the end of the hole at 97.23 metres. This porphyry contained low concentrations of Cu, Mo, and Ag.

CONCLUSIONS AND RECOMMENDATIONS

This report summarizes the results of the first 3 drill holes completed as part of the phase 1 drilling program on the Lennac Lake property. These holes were the first to be drilled in the Southeast Zone and intersected clay-silica altered volcanics containing anomalous but sub economic concentrations of Ag, Cu and Mo. These volcanics are cut by feldspar porphyry dykes that are also altered but relatively unmineralized. The highly anomalous concentrations of Ag which in part correlate with higher Cu values was a surprise and suggests the presence of a Cu-Ag bearing mineral that has not yet been identified. Although Tetrahedrite (Cu₁₂Sb₄S₁₃) is the most obvious choice, low Sb values (<.01%) suggest that this mineral is not present. Arsenic on the other hand is anomalous and this might suggest the presence of Tennantite (Cu₁₂As₄S₁₃) which is also known to be Ag bearing. Other possibilities include Proustite (Ag₃AsS₃) or Acanthite/Argentite (Ag₂S).

The pervasive nature of the clay-silica alteration, presence of intrusive breccia and porphyry dykes and local highly anomalous concentrations of Ag and to a lesser extent Cu and Mo suggest a possible high level transitional porphyry environment. If this interpretation is correct it suggests the possibility of a larger possibly intact (not eroded) porphyry Cu-Mo deposit at depth. It is recommended that a larger drill be brought onto the property that would be capable of drilling to depths of 400 to 500 metres to test this hypothesis. Using an all inclusive cost of \$200/metres, a 5000 metre drill program would cost \$1,000,000 to complete.

References

- Bidwell, G., 1998: Line Cutting and Geophysical Report on the Len 3, 4 and 5 claims, B.C. Ministry of Energy and Mines Assessment Report 25,628.
- Callan, N., 1993: Geology and Geochemistry, Lennac Property, B.C. Ministry of Energy and Mines Assessment Report 23,048.
- Depaoli, G.M. and Allan, J.F., 1972: Geophysical report on Ground Magnetometer and Induced Polarization Surveys on the Lennac Lake Copper Property, B.C. Ministry of Energy and Mines Assessment Report 3808.
- Hodgson, C.J., 1974: Lennac Lake Drill Program, B.C. Ministry of Energy and Mines Assessment Report 5031.

- Jackisch, I., 1993: I.P./Resistivity Survey on the Lennac Property, B.C. Ministry of Energy and Mines Assessment Report 23,048.
- Leary, G.M. and Allan, J.F., 1972: Lennac Lake Cu Property, B.C. Ministry of Energy and Mines Assessment Report 3807.
- Smit, H. and Harival, C., 1992: Geology and Trenching on the Lennac Lake Property, B.C. Ministry of Energy and Mines Assessment Report 22,181.

APPENDIX A – SUMMARY OF EXPENDITURES

G	Personnel eological	Company	Services	Dates	No.	Units	Rate	Total
	Vic Parsons	Calderwood- Parsons	core logging	August 30, 2007 to Sept. 1, 2007	3.0	days	\$550.00	\$1,749.00
	Don MacIntyre	D.G MacIntyre & Assoc.	core logging, project management	August 1, 2007 to August 30, 2007	54.0	hours	\$90.00	\$5,151.60
Sı	upport Service	s						
	Alex Clay	Clay Enterprises, Houston B.C.	D3B cat rental, road refurbishing, materials for bridge construction, travel to and from property from Houston	August 15, 2007 to Sept. 3, 2007				\$9,844.38
Di	amond Drilling	3						
	Gary Thompson	Low Profile Exploration, Houston B.C.	AQ diamond drilling, 260 metres, DDH LL07-1 to LL07-3, mobilization to the property, daily travel from Houston B.C., drill materials and supplies, equipment rental	August 15, 2007 to Sept. 3, 2007				\$37,700.97
								\$54,445.95

Expenditures - August 1 - September 3, 2007 drilling program

LOWPROFILE EXPLORATION

Invoice No.

200714

P.O. Box 704, Houston, B.C. V0J 1Z0 Ph:250-845-2253, Fax:250-845-2287

INVOICE

Customer		Misc	3			
Name	Dentonia Resources Ltd	Date Order No.		10/09/2007 Lannac Lk DD		
Address	Suite 880-609 Granville St. PO. Box 10321 Pacific Centre					
City	Vancouver Province BC ZIP V7Y 1G5	Rep		D. M	AacIntyre	
Phone		FOB		V. I	Parsons	
Qty	Description	Un	it Price	-	TOTAL	
2	Truck and Trailer Unit Mobilization of equipment to project	\$	130.54	\$	261.08	
140	Pickup Km's for mobilization	S	0.60	\$	84.00	
2	Unimog hours for Mobilization	S	40.00	\$	80.00	
6	Man hrs for Mobilization	S	40.00	\$	240.00	
81.25	Man hrs for pickup traveling time to & from project Aug 15 to Sept 3	S	20.00	\$	1,625.00	
3640	Pickup Km's to & from project Aug 15 to Sept 3	S	0.60	\$	2,184.00	
124.25	Off Hyw travel time Drill setup & tear down & startup & shutdown each day	\$	40.00	\$	4,970,00	
52.75	Unimod Hrs for off Hvw travel and supply hauling	S	40.00	S	2,110,00	
188.25	Drilling Hrs	S	135.00	\$	25,413,75	
38	Core Boxes and blocks	S	14 03	S	533 14	
1	Lumber for Bridge material	S	200.00	\$	200.00	
	NOTE: Invoicing for DDH's LL07-01,02,03					
		6	SubTotal	s	37,700.97	
		5	Shipping	-	Contraction (Contraction)	
Payment	Tax Rate(s)		11 0			
Comments	GST # 111569158	-	TOTAL	\$	37,700.97	
	WCB # 288943					

Thank you Gary Thompson www.lowprofileexploration.ca email:gary@lowprofileexploration.ca

CLAY BOX 8 HO45 U 0J	ENTERPRISES TON B.C. - 120	INV GST R108 -41 WLB 292 - 60	OICE 15563 64-001		OUR NUMBER DATE CUSTOMER'S OF	6 RDER	503	95
ADDRESS 3	DENTONIA RES 03-1039 RICH COYVER B.C.	ARDS ST.	SHIP TO ADDRESS					
TAX REG. NO.		SALESMAN	F.O.B	TERMS		VIA		
QUANTITY		DESCRIPTION	States 10		PRICE		AMC	DUNT
	RENTAL DIBCO BRIDGES, TOLE 102HOURS X 1820KM X MOB & DE BRIDGE TIM NAILS 690 65T	NNACLAKE MI NNACLAKE MI 4 72.00 60¢ PERKN MOB BERS	40, 1N51 AC N/NG CC, 1	AIMS		-	13 44 10 92 560 368 39 440	00 22 47 05 64
			TOTAL			H	1844	38

APPENDIX B – STATEMENT OF QUALIFICATIONS

I, Donald George MacIntyre, Ph.D., P.Eng., do hereby certify that:

- 1. I am a Consulting Geologist, with residence and business address at 4129 San Miguel Close, Victoria, British Columbia, Canada.
- 2. I graduated with a B.Sc. degree in geology from the University of British Columbia in 1971. In addition, I obtained M.Sc. and Ph.D. degrees specializing in Economic Geology from the University of Western Ontario in 1975 and 1977 respectively.
- 3. I have been registered with the Association of Professional Engineers and Geoscientists of British Columbia since September, 1979, registration number 11970. I am a Fellow of the Geological Association of Canada and a member of the British Columbia and Yukon Chamber of Mines.
- 4. I have practiced my profession as a geologist, both within government and the private sector, in British Columbia and parts of the Yukon for over 30 years. Work has included detailed geological investigations of mineral districts, geological mapping, mineral deposit modeling and building of geoscientific databases. I have directly supervised and conducted geologic mapping and mineral property evaluations, published reports and maps on different mineral districts and deposit models and compiled and analyzed data for mineral potential evaluations.
- 5. The work described in this report was done under my supervision under contract to Dentonia Resources Ltd. .

Dated this 26th of November, 2007

"DMacIntyre"

D. MacIntyre, Ph.D., P.Eng.

DRILL-CORE LOG FOR DDH: LL07-1

		INTE	RVAL						
Main		Nes	sted		Local st	ructures			
om (m) T	o(m) I	From (m)	To (m)	Fr	rom (m)	To (m)	Fault Lithology	Description	Mineralization
0.00	5.3							Casing	
5.30	55.64						Lapilli Tuff	lapilli tuff, abundant feldspar crystal fragments in matrix and clasts, strong clay-silica alteration, rock is quite siliceous, some dark specks and patches that appear to be biotite, heterolithic, 0.5- 20 cm subangular white to medium grey clay altered clasts, 45-65%, matrix supported, clasts of crystall tuff to 20 cm, minor pyrite, trace chalcopyrite, possibly tetrahedrite; most likely Telkwa Formation volcanics	minor pyrite, trace chalcopyrite, tetrahedrite?
		5.3		13				iron and manganese oxide on fracture surfaces	Fe & Mn oxide
					27.3	27.4	4	2-3 cm hard black vein (tourmaline?) with fine pyrite at 10-15 to the core axis; shear surface with slikensides parallel to vein	pyrite
					37			1 mm quartz-MoS2 stringer @45 ° to core axis	mo
					47.3	47.	4	1 mm MoS2 stringer @10 ° to core axis	mo
					53.1			Mo on fracture face @20 ° to core axis	mo
55.64	73.25						Feldspar porphyry	feldspar porphyry, clay-chlorite altered, light to medium grey, 45-55% 2-4 mm feldspars, 10-15% 2-4 mm biotite books pseudomorpheed by chlorite and/or sericite, 1-2% 2-4 mm quartz "eyes"; white reaction rims on greenish altered feldspar cores, mottled texture due to alteration, rock is medium greenish grey and harder where less altered, groundmass is fine grained medium grey, probably sericite altered, trace of pyrite, very few veins, pervasive alteration, dyke contact at 45-55 deg. to the core axis, porphyry is finer grained at contact	trace pyrite
					58.2			Mo on fracture face @45 ° to core axis; parallel K- feldpar veinlet	mo
					64.01			Mo and pyrite on fracture face @30 ° to core axis	mo, pyrite
73.25	76.95						Lapilli Tuff	Lapilli tuff as above, intensely altered with some quartz-MoS2 stringers and veinlets, disseminated pyrite, local dark, biotite rich patches	molybdenite, pyrite, trace chalcopyrite
76.95	91.72						Bladed porphyry	bladed porphyry, 35-45%, 0.5-3 cm rectangular feldspar blades in a dark grey, fine-grained groundmass, dark colour could be due to very fine blotte in the groundmass, locally groundmass is light brown where altered, quartz- MoS2 stringers, some disseminated pyrite, red hematite possibly after magnetite	molybdenite, pyrite, trace chalcopyrite
					77.15	77.7	5	quartz-MoS2-py stringers subparallel to core axis	molybdenite, pyrite
91.72	105.16						Intrusive breccia	intrusive breccia, foliated suggesting fluid flow, angular intrusive clasts to 10 cm with matrix "flowing" around the clasts, matrix appears to be mainly quartz and feldspar and is very hard siliceous, includes clay altered clasts of feldspar porphyry, light grey quartz-feldspar porphyry clasts, granodiorite, some black biotite in clasts; quartz-MoS2 stringers and veinlets, cut clasts and matrix, some disseminated py, quite coarse	molybdenite, pyrite, trace chalcopyrite

DRILL-CORE LOG FOR DDH: LL07-2

Male		NIERVAL	Logalate	turne			
Main m (m) T	(m) Fr	mested	From (m)	(m) Fa	ult Lithology	Description	Mineralization
0	1.68	surfut) to (m)	prom (m) [10	2(11) 143	and christogy	Casing	milleranzation
1.68	3.57		2.85		tuff	Silicitied tuff with variable fragments in fine- grained matrix. Several silica veins up to 2-3 cm wide, coated with Fe & Mn oxides 0.5 cm Qz vein, 30° to core axis, may contain	pyrite, possibly molybdenite
3.57	3.77				Porphyry	Dyke composed of white-yellow well-formed	
3.77	6.2				Tuff	Very siliceous medium to dark green mainx potassic alteration in places, specks of red benative Several Mo.07 very laterate & stringers	Molybdenite, some Pyrite.
			4,39 4,7 4,9 5,15			2mm Q2-Mo stringer, 45° to core axis 2 mm Mo-Qz stringer, 45° to core axis 2.3 mm Mo-Qz stringer, 50° to core axis Qx-Mo-Py vein up to 1 cm wide, 45° to core axis	
			5.5 5.81			1 mm Mo stringer, 35° to core axis 1 mm Mo stringer, in veinlet that has feldspars, 35° to core axis	
6.2	11.74		6 34, 6 38 & 6 47		Feldspar porphyry	White feldspar porphyry in a black f.gr. Matrix, which includes much blottle, plagioclase foldspar & possibly hornblende. Phenocrysts frequently 1.5 cm iong, often redtangular. Moderate Mostringers, very little Pyrtle. Rusty Fe oxides along fractures. 2 mm Mostringers, 70, 45 & 30 degrees* to core axis respectively	Molybdenite, some Pyrite.
			6.95 6.9 7.25 7.5 7.55 7.87			2 cm wide Gz-wo vein, 70 to core axis Atteroid feldspar patches Py stringers, 1-2 mm wide, 30° to core axis Barren Qz vein, no visible sulphides 3 cm Qz vein, 25° to core axis, 1 mm Mo along margin 2 mm Qz-Mo stringer, 55° to core axis	
			8.95 9.14 9.32 10.15 10.91	9.44		1-2 mm Mo stringers in porphythic teldspar Mo visible in remnant veins Fractured & altered porphyry 1-2 mm Q2-Mo stringer, 25° to core axis 1 cm wide Q2-Mo vein, Mo mostly in centre, 50° to core axis	
11.65	23.68		11.17		Sillicifed & argillic tuffs	2 mm stringer of hematic Tuffs, highly silicified in part, also some sections that have argilic ALT. Some sections with very broken core, rusty along fractures. Minor porphyry intervals similar to above Moderate to weak Mo	Molybdenite, som hematite
			12.88			2 mm Qz-Mo-Py stringer	
			13 15.39	13.25 15.49		Hematite gives rock a reddish tinge. 0.5-1 cm Mo-Qz vein in rusty fracture zone, 10- 155 to over win	
			15.57			Strong argillic ALT, clays, cut by 2-3 mm Qz-Mo stringer	
			16.2 16.68 17.38 17.87	17.56 x		Broken core, possible faulting 3 parallel Mo stringers, 35° to core axis 7 mm Qz-Mo vein 30° to core axis, some Py 3 parallel Qz veins, 45° to core axis, some Mo	
23.68	32.36		23.02		Lapilli Tuff	Med. Gray siliceous & argilized lapilil tuffs, mottled appearance due to white foldspars. Minor chlorite. Bedding apparent in some sections. Weak to moderate Mo mineralization, some Py 15 cm 02-Movein 30 ⁶ to one aris	Molybdenite, pynte
			23.52 24 24.11 25.5 25.65 26 26 26 26 26 26 26	24 55		2-3 mm Mo-2 vien, 45° to core axis This interval resembles previous unit of silicoous 1gr. tuff 4 mm Qz vein, minor Mo, 50° to core axis 1 mm Mo stringer, 40° to core axis 5 mm K-Att Ieldspar 1 mm Qz stringer, minor Mo Qz vein swells to 3 cm in part, Mo in vein abt 1 cm wide	
			26.56 26.7 28.3 28.97			No stringer, <1 mm, 45° to core axis 2 cm Qz vein, Mo in centre Layering in tuff, 35° to core axis 1 mm Mo stringer, 45° to core axis. Continue to 29.08, some swelling to 4 mm.	

535570		INTER	VAL				
Main	6	Neste	bd	Local structures			
rom (m) T	o (m)	From (m) T	o (m)	From (m) To (m)	Fault Lithology	Description	Mineralization
				29.77		2 parallel Mo-Oz veins up to 5 mm wide, 70° to	
				20.25		COTP axis	
				30.35		Of Mostringer, sourced directions, some Pu	
				30.85		az-wo sungers, several directions, some Py	
				31.09		1 mm Or Mo stringer 15% to core avis	
				24.4		5 cm of what annears to be breedia	
				31.8		2 mm Oz-Mo stringer 45° to core axis	
				3234		0.5 cm Qz-Mo-Py vein 70° to core axis	
32.36	41.15	5			Mainly tuff.	Generally f. gr-med gr. Greenish tuff as seen	Pvrite, hematite, mino
					small	11.65-23.68. Some small intervals hat are	Molybdenite
					porphyry	porphyritic dykelets, & one section of lapilli tuff	
					dikes.	as in previous unit. Sections of very broken &	
						sheared core with sericite, Py. Little Mo seen.	
		32.9				15 cm of altered porphyry, bleached, some	
		22.42				nematile	
		33.12				Pigr, Tuli uz-wo vein, some Py, 1-2 mm, 35° to	
		22.50	34.92		<i>v</i> .	Venubroken core at 34 10 & 34 25 come Du &	
		55.52	174.22		0	hematite	
		35	35.0		¥.	Very broken, core	
		36 58	36.82			Interval of lapilli tuff seen in previous unit	
				37.65		Qz veinlet 3 mm, some Mo	
		38.8	40.4			Crushed rock, rehealed, breccia. Some Mo	
						seen @ 38.97 & 39.15	
		40.9				Porphyry with typically large white feldspars as	
						seen before, abt 5 cm wide.	
41.15	44.1				Feldspar	Porphyry with greenish black groundmass &	Hematite, Py
					porphyry	large white to pale-green feldspar phenocrysts 1	
						1.5 cm long, generally elongated. Little, if any,	
						mineralization observed in this unit. Hemable &	
						Fy occasionally visible.	
		43 37	43.69			Interval of f or Tuff as seen previously	
44 1	44.52	10.07	10.00		Lapilli tuff	Altered lapilli tuff or possibly breccia, as seen	
					1999 (1997)	above.	
44.52	45.78	3			Tuff, some	Altered in places	Hematite, minor
					porphyry		molybdenite
				44.98		0.5 cm banded Qz-Mo vein, 70° to core axis, in	
				100000		altered & sheared tuff.	
				45.59		1-2 mm stringer including hematite and a	
45.70	10.01				T 44	blacker mineral that might be Mo	
40.76	40.94				X TUII	F.gr. Full as above, rightly potassic altered, very broken & sheared from 46 17 to end of unit	
						broken a sheared non 40.17 to end of drit.	
46.94	50.6	5			Breccia.	Breccia, in places resembling the porphyry but	Hematite, weak
					altered	bleached & very altered Some sections very	Molybdenite, magnetite
						broken core with clay gouge & argillized.	
						Hematite occasionally visible. Some weak Mo	
						mineralization	
				46.96		Mo-Qz stringer, 2 mm, 35° to core axis	
		47.3	47.5			Large white brecciated feldspars in bleached	
				124		groundmass	
				48		broken 1.5 cm uz-Mo vein, 20" to core axis	
				48,56		s min w-Q stringer, 55" to core aos, broken by	
		49.0	40.2			Clau nouroa fault?	
		40.8	40.2	49.43	0	Hematite & magnetite vein in altered braccia	
				49.94		Hematite	
		50	50.6		х	Very crushed & clay gouge core. Significant	
						portions missing.	
50.6	57.61				x Pornhuny in	Medium to coarse grained nombury with	Minor Moubdenite
50.5					part altered	greenish black matrix & large white feldspar	times moyesterned
						phenocrysts. Core is extremely stressed espy	
						toward bottom of hole. After 3.80 very bleached	
						and crushed so identity of rock is less distinct.	
						Some missing core.	
				57.36		Some visible Mo.	
				57.61		EOH	

DRILL-CORE LOG FOR DDH: LL07-3

-

Ŀ,

N	Aain		Nested	ocore axis! s	tructure			
From (m) To	o (m)	From (m) To (m)	From (m) T	o (m)	Fault Lithology	Description	Mineralization
0.0	30	1.83	a. (2239) 22 ku	343.04		Physlits	Casing Creamy to hale dray thuslits, northuritic in	Molubdapita minor
	20	10.05				Riyolta	Creamy to pare gray involute, potprivate in places with small phenocrysts white feldspars in a partly chloritic white groundmass. Qz & minor biotte in matrix: Generally deeply weathered until about 8 45, with Fe oxide coating along fractures, inside and along surface of cocre. Qz-Mo stimgers & verins are common. Some broken, others intact. Some veins are banded. Little Py seen but is found locore axisily	Pyrite
				2.34			1 mm Qz-Mo stringer, 30° to core axis	
				2.49			2 X 1 mm Qz-Mo stringers @ 5° to core axis; one 0.5 cm Qz-Mo vein, 80° to core axis	
				3.67			1 mm Qz-Mo stringers	
				4,23 4,39	4.45		< 1 mm Qz-Mo stringer, 45° to core axis 2 parallel Qz-Mo veinlets, 5-8 mm wide, 50° to core axis	
				4.6	5.02		Broken 2-3 mm remnant of Qz-Mo vein	
				4,87	5.03		vein, up to 2 cm wide	
				5.1			1.5 cm Qz-Mo vein, 40° to core axis	
				5.43			1 mm Mo stringer 80° to core axis	
				6.28	6.37		Small Qz-Mo stringers, 45° to core axis	
				6.86 7.39			< 1 mm Mo stringer, 45° to core axis Network of small Mo stringers, largest up to 3 mm, generally – 40° to core axis	
				7.97 8.48			< 1 mm Mo stringer, 40° to core axis 1 mm Mo stringer, associated Py, 20° to core axis	
				8.94			Broken 3 mm Mo vein	
				9.42	9.55		Set of parallel Qz-Mo veins (5) about 45-35° to core axis & up to 6 mm wide	
				10.2			1 mm Mo stringer, 45° to core axis	
				11	11.05		0.5 cm banded Qz-Mo vein, 45° to core axis	
				11.22			I mm mo stringer, 55° to core axis Same as above	
				12.05	12.13		Qz-Mo in broken core, up to 1 cm wide	
				12.41			1 mm Qz-Mo stringer	
				13.1			Mo along edges of vein, 35° to core axis 1 mm Mo stringer, 45° to core axis	
				14.44			2 parallel Qz-Mo veins with Mo along edges, some Py 40° to core axis	
				14.78	14.88		2 Qz-Mo veins, 1-1.5 cm wide, some Py, in altered myolite, 45° to core axis	
				15.03			0.5 cm Qz vein, some Mo	
				15.85			1 cm Qz vein, Mo along edges, 40° to core axis	
18.0	15	28 5				volcanion	Variable for Light t med, and valuation	
10.0		20.0				*vicalises	myolitic to andesitic and lacking the porphyntic texture noted in previous unit. Some darker intervals with more pynte & some sections broken core. Some chloritic alleration. Mo veins still common. Py locore axislly evident.	
				16.16			Banded Gz-Mo vein up to 2.5 cm thick, displaced by minifault about 1 cm, about 50° to core axis	
				16.41 16.67			0.5 cm broken Qz-Mo veins in possible tuff 0.5 cm Qz vein, minor Mo, broken core to 16.80	
				16.97			3 mm Mo-Qz vein, 40° to core axis, Continues	
				17.26			to 17.12, in vuggy veins. Similar veining to above in possible brecclated	
				17.46			smail give, Fy & epidote Mo as above, with Py. Core is largely broken from here to 18.75. Some thin Mo stringers are visible but can't get orientation	
				19.48	19.9		Darker f.gr. Interval which could be tuff	
				20.4			7 mm Qz vein with Mo on edges, 35° to core axis	
				20.75			2 cm banded Qz-Mo vein, 75° to core axis in paler grav f.gr. Possible tuff	
							bearer first a first state and	
				20.89			1.25 cm Qz-Mo vein, 40° to core axis	

Prem (m) To (n) Prom (m) To (n) Prom (m) To (n) Prom (m) To (n) Prom (m) To (n) Prom (m) To (n) Prom (m) To (n) Prom (m) To (n) Prom (m) To (n) Prom (m) To (n) Minerature 22.1 22.3 3.3 3.3 3.4		t e	INTERVAL	la como contrat		-		
21.1 Clay Aft on core, minor Mo 22.1 Smm G2 very, minor Mo 22.3 SS min G2-Very, minor Mo 23.3 SS min G2-Very, minor Mo 24.2 SS min G2-Very, minor Mo 24.2 SS min G2-Very, minor Mo 26.5 29.5 26.5 29.5 26.5 29.5 26.5 29.5 26.5 29.5 26.5 29.5 26.5 29.5 26.5 29.5 26.5 29.5 26.5 29.5 27.5 29.6 28.8 Lapit Luft 29.8 33.6 29.8 33.6 29.8 31.10 10.7 Tim Q2-Mery ward, -45% core and set Mermine deraw ward, -45% core and set Mermine deraward, -45% core and set Mermine deraward, -45% core and set Mermi	From (m)	To (m)	From (m) To (m)	From (m)	To (m)	Fault Lithology	Description	Mineralization
22.1 3 mm G2 ven, minor Mo 22.3 0.5 23.33 2 mm A 5 m And-V ven in bolan core 32.22 A 23.33 2 mm A 5 m And-V ven in bolan core 2.2 mm A 5 m And-V ven in bolan core 2.2 mm A 5 m And-V ven in bolan core 2.2 mm A 5 m And-V ven in the same rock type bulcenes is very bolan a stratenes. Some day stretetion. Minor bolan a stratenes. Some day stretetion. Minor A damager veny stretetion. Minor Bolance vent and the same rock type bulcenes is very bolan a stratenes. Some day stretetion. Minor Bolance vent and the same rock type bulcenes is very bolan a stratenes. Some day stretetion. Minor Bolance vent and bolance vent and				21.71			Clay Alt on core, minor Mo	
22.33 0.5 cm bandle Qz-Mo van in broken core 23.24 3 mm 8.15 cm bandle Qz-Mo van is to said 26.5 20.56 26.5 20.56 26.5 20.56 26.5 20.56 26.5 20.56 26.5 20.56 26.5 20.56 26.5 20.56 26.5 20.56 26.5 20.56 26.5 20.56 26.5 20.56 26.6 20.57 26.7 20.6 26.8 Lapit Lut 26.8 Lapit Lut 26.8 Lapit Lut 26.9 20.1 26.9 20.1 26.9 20.1 26.9 Lapit Lut 26.9 20.1 26.9 20.1 27.9 20.1 28.3 1.16.2 29.38 31.18 31.14 1.11.11.11.11.11.11.11.11.11.11.11.11.1				22.1			3 mm Qz vein, minor Mo	
23.22 U.S. fm D2MOrPyvein, 59% to core ans 34.4 28.5 20.8 User in D2MOrPyvein, 50% to core ans 34.4 28.5 20.8 velocities 28.5 33.6 Velocities 29.38 33.5 Lapil tult Uight to mode for yealing tult proposible brencial with some argitic turit sections (31.0.3.2) approx.1 / Net MS2, velocities assored with some argitic turit sections (31.0.3.2) approx.1 / Net MS2, velocities Modedwith with some argitic turit sections (31.0.3.2) approx.1 / Net MS2, velocities 29.38 31.12 31.18 Timm 0.240 vent, 45% to core axis 11.02 Modedwith with some argitic turit sections (35.10 33.6 43.39 Lapil turit Apprex 10 head to argit and (40.00 33.6 43.39 Lapil turit Apprex 10 head to argit (20.00 33.6 43.39 Lapil turit Apprex 10 head to argit (20.00 33.6 43.39 Lapil turit Apprex 10 head to argit (20.00				22,38			0.5 cm banded Qz-Mo vein in broken core	
28.5 20.5 20.8 2 mm M & stringer, 80 for core and 24.3 2 mm M & stringer, 80 for core and 3 mm A 15 m beams not kips but core is very relean & stringers, but no core and the stringer weekly apparent Molpdami 20.5 20.8 valaritie Amm A 15 mm A 15 m hoc2 winn respectively, 50 for 20.83 Molpdami 20.5 20.8 wataritie Amm A 15 mm A 15 mm A 25 mm A 24 mm A 25 mm A 16 mm A 25 mm A 24 mm A 16 mm A 25 mm A 24 mm A 22 mm A 24 mm A 25 mm A 24 mm A 25 mm A 24 mm A 25				23.22			0.5 cm Qz-Mo-Pyvein, 55° to core axis	
24.2.6 3 mm a 15 or Mo-G2 white respectively. SPM or easist of a more day abration. Minor Most fingers water body peak loce with any periode. A strattered, some radiug peak loce with any body and a more day abration. Minor Most fingers weekly apparent di 28.35 Molpubelic 28.35 29.38 33.8 Lapilit Luff Sectors (31.0-32) approx. [West MoS2, with corea with approx. Bit persons 31.12 Molpubelic 29.38 29.38 33.8 Lapilit Luff Sectors (31.0-32) approx. [West MoS2, with corea with approx. Bit for any mode of the persons and sectors 31.13 Molpubelic 29.38 33.6 43.39 Lapilit Luff Sectors (31.0-32) approx. [West MoS2, with corea with 31.14 Molpubelic 20.16 33.6 43.39 Lapilit Luff Sectors (31.0-32) approx. [West MoS2, with corea with 31.14 Molpubelic 20.16 33.6 43.39 Lapilit Luff Sectors (31.0-32) approx. [West MoS2, with corea (31.0-32) approx. [West Mos2, with mest MoS2, with mest 35.5 33.6 43.39 Lapilit Luff Approx. [West MoS2, with corea (31.0-32) approx. [West Mos2, with mest MoS2, with mest 35.6 33.6 43.30 Lapilit Luff Approx.[West Mos2, with mest 35.6<				23.38			2 mm Mo stringer, 60° to core axis	
26 5 29 38 Voltamic Comparison of the bit come is way. Modeled with the standard space start weekly appared. Molydden with the start weekly app				24.22 &			3 mm & 1.5 cm Mo-uz veins respectively, 50° to	
29.3 (29.3)	26.5	20.2	2	24.20		voloopios	Core axis	Mohibrionito
29.86 29.36 33.8 Lipit Lingt Core very cruthed, here to 29.33 29.1 29.36 33.8 Lipit Lingt Core very cruthed, here to 29.33 Core very cruthed, here to 29.33 29.3 29.36 33.8 Lipit Lingt Core very cruthed, here to 29.33 Core very cruthed, here to 29.33 29.3 29.36 33.8 Lipit Lingt Core very cruthed, here to 29.33 29.3 29.37 31.12 State 29.38 Time C2-Movers, 45° to core axis 31.12 23.8 31.43 2 Time Movers, 45° to core axis 31.12 Molydoent were to 20.000 mineralization is state angular fragments Movers on core axis 31.18 Molydoent were to 20.0000 mineralization is state angular fragments of white Heldpalth rock are up to 3 an across JMO mineralization is state 35.7 Molydoent angular fragments of white Heldpalth rock are up to 3 an across JMO mineralization is state 33.7 33.6 43.39 4.311 Time Movers on 3 am, miner Mo Core axis, 100 mineralization is state 33.7 Time Movers on 3 am, miner Mo Core axis, 100 mineralization is state 33.7 34.01 35.6 35.68 1 mm Mo Stringer, 670 to core axis 1 mm Mo Stringer, 670 to core axis 1 mm Mo Stringer, 70° to core axis 3 mini Stringer, 70° to core axis 3 mini Stringer, 70° to core axis 3 mini Monger, 70° to core axis 1 mm Mo Stringer, 70° to cor	20.0	20.0	<u> </u>			VUICAIROS	hroken & shattered some clay alteration. Minor	morybuerite
20.53 22.36 Mo broken vein on broken More Mo stringer Core very cruthed, here b 20.33 22.36 33.6 22.37 33.8 23.8 Lapili tuff 23.8 33.8 23.8 33.8 23.8 31.12 31.12 31.18 31.13 arm Mo Stringer, 50° to core axis 31.11 arm Mo Stringer, 50° to core axis 31.11 arm Mo Stringer, 50° to core axis 32.11 arm Mo Stringer, 50° to core axis 33.5 35.84 33.71 arm Mo Stringer, 50° to core axis 33.71 <							Mo stringers weakly apparent	
22.38 33.8 Use transmission of the strength of the st								
28.35 Minor Mo stringer 29.36 33.6 Lapili tuff. Upt to med. Gray liquili tuff or possible brecking. Molybdeni with some agrice. Lift sections (31.0.32.0 approx.). Weak MoSC, with accore assissment aff accion agrice. Lift sections (31.0.32.0 approx.). Weak MoSC, with accore assissment aff accion agrice. Lift sections (31.0.32.0 approx.). Weak MoSC, with accore assissment aff accion assis (31.0.32.0). 29.38 31.12 31.18 To Weak Mosc, with accore assissment are close assis. To Weak Mosc, with accore assissment aff accion accore assis. To Weak Mosc, with accore assis. 33.6 43.39 Lapili tuff. To Weak Mosc, with accore assis. Molybdeni are close accore accore assis. Molybdeni are close accore accore accore are close accore accore accore are close accore accore accore are close accore accore accore are close accore accore are close accore accore are close accore accore accore are close accore accore are close accore accore are close accore accore are close accore accore accore are close accore accore are close accore				26.63			Mo broken vein on broken core	
29.38 33.6 Lapili tuli Core very cruched, here to 29.33 Molyddeni with some argite tul section (31.0.32.0) 29.38 33.6 23.93 approx.1 Veak MoS2, with some argite tul section (31.0.32.0) approx.1 Veak MoS2, with some argite tul section (31.0.32.0) 33.6 33.8 31.18 direction is 55° to core axis 31.18 33.6 33.8 31.43 2 mm Mo.60° to core axis 31.18 33.6 43.39 Lapili tuli, Argite laggerst of withe feldgath: core axis Molyddeni 33.7 2 mm Mo.60° to core axis molectar stringer, 45° to core axis Molyddeni 33.8 43.39 Lapili tuli, Argite laggerst of withe feldgath: core axis Molyddeni 33.6 43.39 Lapili tuli, argite ta core axis Molyddeni 33.6 43.39 Lapili tuli, argite ta core axis Molyddeni 33.6 43.39 Lapili tuli, argite ta core axis Molyddeni 33.6 43.39 Lapili tuli, argite ta core axis Molyddeni 33.6 43.39 Lapili tuli, argite ta core axis Molyddeni 33.6 35.83 35.83 S5.83 S5.83 S5.84 33.7 1 Thim Molyddeni Thim Molyddeni 33.9 1 Thim Molyddeni Thim Molyddeni <				28.35			Minor Mo stringer	
23.36 33.6 Lapli Ituff Lapli Ituff Lapli Ituff Lapli Ituff 100 rossible braccia Molyddeni 29.36 33.6 29.30 11.2 31.18 Imm 02-400 ven, 45*to core axis Imm 02-400 ven, 45*to core axis 31.6 31.43 2 mm Mo stringer, 50*to core axis 21.83 Imm 02-400 ven, 45*to core axis Molyddeni 33.6 43.39 Lapli Ituff 7 mol of to core axis 31.81 Imm 02-400 ven, 45*to core axis Molyddeni 33.6 43.39 Lapli Ituff 7 mol of to core axis Molyddeni Molyddeni 33.6 43.39 Lapli Ituff 7 mol of to core axis Molyddeni Molyddeni 33.6 43.39 Lapli Ituff 7 mol of to core axis Molyddeni Molyddeni 33.6 43.39 Lapli Ituff To mol of tho core axis Molyddeni Molyddeni 33.6 43.39 Lapli Ituff To mol of tho core axis Molyddeni Molyddeni 33.6 43.01 Core axis Molyddeni Molyddeni Molyddeni 34.01 Core axis Molyddeni Molyddeni Molyddeni				29.1			Core very crushed, here to 29.33	
 with some argin but socies assumed atmages with some argin but socies assumed atmages with some assumed atmages at a some assumed atmages with some assumed at a some atmages with some assumed at a some atmage with a some atmage with a some assumed at a some atmage with a some atmage with a some atmages with	29.36	33	6			Lapilii tuff	Light to med. Gray lapilli tuff or possible breccia	Molybdenite, hemat
43.30 45 23 55.04 45 23 46 7 x 46 46 5 46 7 x 46 46 5 46 7 x 46 46 5 46 7 x 46 5 5 46 7 x 46 5 5 46 7 x 46 5 5 5 5 10 46 5 11 x 46 5 5 5 5 10 46 5 11 x 46 5 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5							with some argillic tuff sections (31.0-32.0	
2938 31.12 31.18 Imm 22-Mov ven, 47 b ocre axis Broken stingers No, only ven can determine and an obstinger, 50 to core axis 3157 Imm 22-Mov ven, 47 b ocre axis are stinger Mo, only ven can determine argular fragments No, only ven can determine angular fragments of while feldgature, ords are up to 3 marcros (M one) benceal core axis argular fragments of while feldgature, ords are up to 3 marcros (M one) benceal core axis argular fragments of while feldgature, ords are up to 3 marcros (M one) benceal core axis argular fragments of while feldgature, ords are up to 3 marcros (M one) benceal core axis argular fragments of while feldgature, ords are up to 3 marcros (M one) arguing arguing arguing arguing arguing the stinger, 45° to core axis arguing the stinger, 45° to core axis arguing the stinger, 45° to core axis arguing the stinger for to core axis arguing the stinger, 50° to core axis arguing the stinger, 45° to core axis arguing the stinger for to c							approx.). Weak MoS2, with occore axissional	
1 mm 022M0 veru, As' to core axis 311.2 31.18 1 mm 022M0 veru, As' to core axis direction is 05' to core axis (§ 31.16. 314.3 2 mm Mo-02 stinger, 70' to core axis 3151 2 mm Mo-02 stinger, 70' to core axis memory and the fedge after not set ap to 3 m arross JM ommenatizable is the fedge after not set ap to 3 m arross JM ommenatizable is the fedge after not set ap to 3 m arross JM ommenatizable is the fedge after not set ap to 3 m arross JM ommenatizable is the fedge after not set ap to 3 m arross JM ommenatizable is the fedge after not set ap to 3 m arross JM ommenatizable is the fedge after not set ap to 3 m arross JM ommenatizable is the fedge after not set ap to 3 m arross JM ommenatizable is the fedge after not set ap to 3 m arross JM ommenatizable is the fedge after not set ap to 3 m arross JM ommenatizable is the fedge after not set ap to 3 m arross JM ommenatizable is the fedge after not set ap to 3 m arross JM ommenatizable is the fedge after not set ap to a mark of the fedge after not set ap to a mark of the fedge after not set ap to a mark of the fedge after not set ap to a mark of the fedge after not set ap to a mark of the fedge after not set ap to a mark of the fedge after not set ap to a mark of the fedge after not set ap to a mark of the fedge after not set ap to a mark of the fedge after not set ap to a mark of the fedge after not set ap to a mark of the fedge after not set ap the fedge after not s							stringers. Minor hematite.	
31.12 31,10 Closen failure into our year of a long gal 18. 31.12 31,10 Closen failure into our year of a long gal 18. 31.12 21.15 Closen failure into our year of a long gal 18. 31.12 21.15 Closen failure into our year of a long area (S) 31.12 21.15 Closen failure into our year of a long area (S) 31.12 21.15 Closen failure into our year of a long area (S) 31.11 Closen failure into our year of a long area (S) Molyddeni angular fagments of white feldgather (Cock are up to is a macros). Molyddeni angular fagments of white feldgather (V) to is an area (S) Molyddeni angular fagments of white feldgather (Cock are up to is a more (V) and soft ange in the closen area (S) 31.12 31.11 Closen area (S) Molyddeni angular fagments of white feldgather (V) and soft ange in the closen area (V				29.38	24.40		1 mm GZ-Mo vein, 45° to core axis	
3143 and tools as a for Outle ask age antis 3131 and tools ask age antis 3132 Lapili tift, drapits (anti) tift, draphts (antion is all hydrogen) 3133 antion and tools ask age antis 3133 antion and tools ask age antis 3134 antion and tools ask age antis 3135 antion antion antis 3144 antion antion antis 3135 antion antion antis 3144 antion antion antis 3135 antion antion antis 3144 antion antion antis 3144 antion antion antis 3144 antion antion antion antion antion antis 3145 antion anti				31.12	31.10		Broken sinngers Mo, only one can determine	
31 8 7 31 8 7 32 19 2 mm Mo. 28 for the use and service and the service and 21 9 2 mm Mo. 27 stringer, 45 to core axis angular fragments of while fedges there of some angular fragments of the some axis and the stringer some to core axis and the stringer some or some axis and the stringer some or some axis angular fragments of the some axis angular fedge the some axis angular fragments of the some axis angular fedge the some axis angular fragments of the some axis angular fedge the som				21/2			3 mm Mo chinger 50° to core axis	
33.5 43.39 Lapil Luft, Argine Lapil Luft, brecisi 32.19 Lapil Luft, Argine Lapil Luft, Argine Lapil Luft, brecisi 32.19 Argine Lapil Luft, Argine Lapil Luft, Brecisi 32.19 Molecular Argine Lapil Luft, Argine Lapil Luft, Brecisi 32.19 Molecular Argine Lapil Luft, Argine Lapil Luft, Brecisi 32.19 Molecular Argine Lapil Lapil Luft, Brecisi 33.11 Molecular Argine Lapil Lapil Luft, Brecisi 33.11 Molecular Argine Lapil Lapil Lapil Luft, Brecisi 33.11 Molecular Argine Lapil Lapil Lapil Lapil Luft, Brecisi 33.11 Molecular Argine Lapil L				3167			2 mm Mo. 60° to core axis	
33.6 43.39 2 mm Macro stringer (43.39) 2 mm Macro stringer (43.39) Method of the column (a) 33.6 43.39 43.39 34.01 Argain (a) Argain (a) Method of the column (a) 33.6 43.86 4.8 Small Method of the column (a) Small Method of the column (a) Method of the column (a) Method of the column (a) 33.6 4.8 Small Method of the column (a) Small Method of the column (a) Method of the column (a) Method of the column (a) 33.7 1 The Method column (a) The Method of the column (a) Method column (a) Method column (a) 34.01 40.17 The Method column (a) The Method column (a) The Method column (a) Method column (a) 43.30 45.23 Tuff. some (a)				31.91			Small Qz-Mo stringer	
33.6 43.39 Lapit Lint. Arginc Lipit Lint. Argin. <td></td> <td></td> <td></td> <td>32.19</td> <td></td> <td></td> <td>2 mm Mo-Qz stringer, 45° to core axis</td> <td></td>				32.19			2 mm Mo-Qz stringer, 45° to core axis	
43.39 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 55.24 55.04 55.35 51.11 x 27.07 27.07 x 24.57 x 25.00 x 24.50 x 25.00 x 2	33.6	43.3	9			Lapilli tuff,	Argillic lapilli tuff, or possible breccia (some	Molybdenite
43.38 45.23 45.23 55.04 45.23 55.04 45.23 55.04 45.24 45.24 45.24 45.24 45.24 45.24 45.24 45.24 45.24 45.24 45.24 45.24 45.24 45.24 45.24 45.24 45.25 40.17						breccia	angular fragments of white feldspathic rock are	1995) - Wester (* 1995) - 1
43.01 Graves but veins are thickner where they courred to 1 cm m). 34.01 Graves. 30" to core axis 35.57 35.80 35.51 Graves. 30" to core axis 37.37 1 cm broken Mo-Var ven, quits 25° to core axis 37.37 1 cm broken Mo-Var 38.5 Core quits broken 38.5 Small Mo-Stringer. 45" to core axis 38.6 Small stringers Mo, < tmm, 30" to core axis							up to 3 cm across) Mo mineralization is still	
43.39 45.23 45.23 45.23 45.24 45.23 45.24 45.25 45.274 45.25 45.274 45.275							fairly weak but veins are thicker where they	
40.1 Gz vein, 20° to core axis, 3 mm, minor Mo 35.57 Bedding, 60° to core axis 35.8 35.88 35.8 35.88 37.37 1 mm Mo-Oz vein, num S2° to core axis 36.14 1 mm Mo-Oz vein, num, minor Mo 38.5 Core quite broken 38.4 Small Mo stringer in broken core 39.84 & Small Mo stringer, some orientation as above. 41.16 1 mm Mo stringer, same orientation as above. 41.16 1 mm Mo stringer, Same orientation as above. 41.16 1 mm Mo stringer, 45° to core axis. 42.11 1-2 mm Mo-Oz stringer, 70° to core axis. 42.41 1-2 mm Mo-Oz stringer, 70° to core axis. 42.42 Turt, some 43.39 45.23 45.23 Turt, some 45.23 S5.04 45.23 Lapilit If Mo 45.23 S5.04 45.23 S5.04 45.23 S5.04 45.23 S5.04 45.23 S5.04 45.24 Turm Mo-Oz stringer, 70° to core axis.							occur (up to 1 cm).	
35.57 Bedding, 60 to core axis 35.83 35.83 36.14 1 mm Mo-Qz stringer, 75 to core axis 37.37 1 cm broken Mo vein 38.5 Core quite broken 39.64 Small Mo Stringer in broken core 39.71 Small Mo Stringer, 50 to core axis 39.95 1 cm Q2-Mo vein, dispada by facture, 65° to core axis, cots across bedding @90 angle 40.17 Thin Mo stringer, 50° to core axis 41.46 1 mm Mo Stringer, 50° to core axis 41.91 1-2 mm Mo-Gz stringer, 45° to core axis 41.91 1-2 mm Mo-Gz stringer, 45° to core axis 42.48 Thin Mo stringer 50° to core axis 41.91 1-2 mm Mo-Gz stringer, 45° to core axis 43.39 45.23 43.39 45.23 45.23 Tutt, some 43.39 45.23 45.24 -1 mm Mo-Gz stringer, 70° to core axis 44.37 2 mm Mo-Gz stringer, 70° to core axis 45.23 55.04 45.23 55.04 45.23 45.74 45.24 -1 mm Mo-Gz stringer, 70° to core axi				34.01			Qz vein, 30° to core axis, 3 mm, minor Mo	
35.8 35.8 4-8 mm Mo-Oz vein, mm S2* to core axis 36.14 1 mm Mo-Oz vein, mm, A5* to core axis 37.37 1 cm broken Mo vein 38.5 Small Mo stinger in broken ore 39.44 & Small Mo stinger, and work on ore 39.95 1 cm Oz-Mo vein, displaced by fracture, 65* to 40.17 Thin Mo stinger, for one axis 41.66 1 mm Mo-Oz stinger, 45* to core axis 41.68 Thin Mo stinger, 50* to core axis 41.68 Thin Mo stinger, 50* to core axis 42.41 -2 mm Mo-Oz stinger, 45* to core axis 42.45 < 1 mm Mo stinger, 50* to core axis				35.57			Bedding, 60° to core axis	
38.14 1 mm Mo-02 stringer, 56* to core axis 37.37 1 cm toroken Mo vein 38.5 Core quite broken core 39.3 Small Mo stringer, in toroken core 39.4 Small Mo stringer, in toroken core 39.71 1 cm Ca-Mo vein, displaced by facture, 65* to 39.95 1 cm Qz-Mo vein, displaced by facture, 65* to 40.17 Thin Mo stringer, came orientation as above 41.86 Thin Mo stringer, 50* to core axis 41.86 Thin Mo stringer, 50* to core axis 42.41 1-2 mm Mo-2x stringer, 45* to core axis 42.48 Tim Mo stringer, 50* to core axis 43.39 45.23 45.23 Tuff, some 43.37 Tuff, some 44.53 Qx stringer, 10* to core axis 45.23 55.04 45.23 S5.04 45.23 S5.04 45.24 45.74 45.23 Tuff, some 45.24 45.74 45.25 46.7 x 45.24 Yein work on core with cange at the solution work on the solutin work on the solutin work on the solution work				35.8	35.88		4-8 mm Mo-Qz vein, runs 25° to core axis	
37.3 / 1 cm broken Mo vein 38.5 Core quits broken 39.3 Small Mo stinger, Small Mo stinger, Small Mo, < tmm, 30* to core axis				36.14			1 mm Mo-Qz stringer, 45° to core axis	
38 5 Core quite broken ore 39 3 Small kninger in broken ore 39 4 & Small stringer in broken ore 39 71 Tim Ko stringer, in troken ore 39 95 1 cm Qz-Mo vein, gisplaced by facture, 65° to core axis 40.17 Thin Mo stringer, same onentation as above. 4146 1 mm Mo stringer, 50° to core axis 4186 Thin Mo stringer, 50° to core axis 419 1.2 mm Mo-20 stringer, 45° to core axis 4248 < 1 mm Mo stringer, 45° to core axis				37.37			1 cm broken Mo vein	
43.39 45.23 55.04 55.04 55.04 55.04 55.04 55.05 55.04 55.05 55.04 55.05				38.5			Core quite proken	
43.39 45 23 43.39 45 23 43.39 45 23 43.39 45 23 43.39 45 23 45 23 55 04 45 23 55 04 55 04 56 04 57 00 000000000000000000000000000000000				39.3			Small Mo stringer in broken core	
40.17 Thin Mo stringer, same orientation as above 40.17 Thin Mo stringer, same orientation as above 414.6 Thin Mo stringer, 45° to core axis 42.41 1-2 mm Mo-G2 stringer, 45° to core axis 42.43 -1 mm Mo stringer, 8° to core axis 43.39 45.23 43.39 45.23 44.53 Tuft, some singer, 70° to core axis 43.75 Tuft, some sections, still with fragmerts. 43.75 Tum, Mo-G2 stringer, 70° to core axis 44.53 Car stringer, 10° to core axis 45.24 S5.04 45.25 55.04 45.26 46.5 46.5 46.7 x 45.74 Broken Mo char stringer, 70° to core axis 45.74 Broken Mo char stringer, 75° to core axis 45.74 Tim Mo Stringer, 75° to core axis 45.74 Tim Mo Stringer, 75° to core axis 45.74 Tim Mo char stringer, 05° to core axis 45.74 Tim Mo stringer 45.74 Tim Mo char stringer, 05° to core axis 45.74 Tim Mo char stringer, 07° to core axis 45.74 <td></td> <td></td> <td></td> <td>39 04 4</td> <td></td> <td></td> <td>Sman stringers wo, < min, 30, to core axis</td> <td></td>				39 04 4			Sman stringers wo, < min, 30, to core axis	
40.17 41.46 40.17 41.46 41.66 & Thin Mo stringer, same orientation as above 41.91 42.41 42.48 42.96 43.39 45.23 45.24 45.23 45.24 45.24 45.25 45.25 45.24 45.25 45.25 45.24 45.25 45.25 45.25 45.25 45.25 45.25 45.25 45.25 45.25				39.95			1 cm Oz-Mo vein, displaced by fracture, 65° to	
40.17 41.46 41.66 & 41.66 & 41.66 & 41.91 42.41 42.41 42.41 42.41 42.42 & 42.96 43.39 Thin Mo stringer, same orientation as above 1 mm Mo stringer, 50° to core axis Tim Mo stringer, 55° to core axis 42.41 42.41 42.41 42.41 42.41 42.42 42.96 1 mm Mo stringer, 45° to core axis 42.96 1 mm Mo stringer, 55° to core axis 43.39 45.23 Tuff, some 43.75 44.37 44.53 Tuff, some 10 core axis 44.37 2 mm Mo-022 stringer, 70° to core axis 2 mm Mo-022 stringer, 70° to core axis 3 core axis 2 mm Mo-022 stringer, 70° to core axis 2 mm Mo-022 stringer, 70° to core axis 3 core axis 4 c							core axis, cuts across bedding @ 90 angle	
4017 Thin Mo stringer, some onertation as above 1 mm Mo stringer, 50° to core axis 41.66 & 41.91 1.2 mm Mo stringer, 50° to core axis 42.41 -2 mm Mo-Qz stringer, 45° to core axis 42.43 < 1 mm Mo stringer, 58° to core axis								
41.66 1 mm Mo stringer, 30° to core axis 41.66.8 Thin Mo stringer, as above 41.91 1.2 mm Mo-02 stringer, 45° to core axis 42.48 1 mm Mo stringer 42.96 1 mm Mo stringer 43.39 45.23 45.23 Tuff, some sime stringer, 35° to core axis 43.39 45.23 45.23 Tuff, some stringer, 70° to core axis 44.37 1 mm Mo-02 stringer, 70° to core axis 44.37 1 mm Mo-02 stringer, 70° to core axis 44.53 20° stringer, 1 mm, minor Mo 45.23 55.04 45.23 Lapili luff 45.24 Lapili luff 45.25 55.04 45.24 Lapili luff 45.25 1 mm Z-Mo stringer, 5° to core axis 45.26 1 mm Z-Mo stringer, 5° to core axis 45.27 1 mm Mo-02 stringer, 1 mm, minor Mo 45.28 46.7 x 45.74 Broken core, day Alt 45.85 1 mm Z-Mo stringer, 5° to core axis 46.5 46.7 x 47.90 1 mm Mo-02 stringer, 75° to core axis 46.5 49.89 x 50.27 1 mm Mo-3 stringer, 75° to core axis 50.28 52.07 52.23 2 mm Mo-02 stringer, 60° to core axis				40.17			Thin Mo stringer, same orientation as above	
41.66 & 41.91 Thin Mo stringers, as above 41.91 1-2 mm Mo-02 stringer, 45° to core axis < 1 mm Mo stringer, 55° to core axis, Bedding 70° to core axis 43.39 45.23 43.39 45.23 44.37 1.10 mm Mo-02 stringer, 70° to core axis 2 mm Mo-02 stringer, 70° to core axis 3 core axis actions of Molybdenil At 5 23 45.23 55.04 45.24 Lapilli tuff Argilized lapids to mode stringer on crushed actions of Molybdenil autims Mo is weak to moderate. Bedding is quite often evident. 45.74 Broken Mo stringer, 5° to core axis 44.83 45.74 Broken Mo stringer, 5° to core axis 46.65 46.7 x Very crushed core, day Att 45.95 47.6 49.89 x Clay Att 8 breciated core. Bit change at 49.95. 50.07 Thin Mo stringer, 75° to core axis 49.50 49.6 49.89 x 50.27 Thin Mo stringer, 75° to core axis 52.83 & 52.83 52.83 & 52.83 & 52.83 Small Mo stringers 52.83 & 52.83 Small Mo stringers 53.01 2 mm Mo-02 stringer, 80° to core axis, day Att				41.46			1 mm Mo stringer, 50° to core axis	
41.91 -2.4 mm Mo-Qz stringer, 45* to core axis 42.48 < 1 mm Mo-Qz stringer, 45* to core axis				41.66 &			Thin Mo stringers, as above	
42.41 1-2 mm Mo-2tringer, 45° to core axis 42.48 < 1 mm Mo stringer				41.91				
42.48 < 1 mm Mo stinger, 68 to core axis, Bedding 70*				42.41			1-2 mm Mo-Qz stringer, 45° to core axis	
42.96 1 mm Mo stringer, 58*to core axis, Bedding 70* to core axis 43.39 45.23 43.39 45.23 43.39 45.23 43.39 45.23 43.39 45.23 43.39 45.23 43.75 1 mm Mo-Qz stringer, 70* to core axis 44.53 20 2 stringer, 10* to core axis 44.53 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.24 Lapili tuff are before. Some sections of Very crushed & broken core with clay gouge, suggesting faulting. Mo is weak to moderate. Bedding is quite often with clay gouge, suggesting faulting. Mo is weak to moderate. Bedding is quite often with clay gouge, suggesting faulting. Mo is weak to moderate. Bedding is quite often with clay gouge, suggesting faulting. Mo is weak to moderate. Bedding is quite often with clay gouge, suggesting faulting. Mo is weak to moderate. Bedding is quite often with clay gouge, suggesting faulting. Mo is weak to moderate. Bedding is quite often with clay gouge, suggesting faulting. Mo is weak to moderate. Bedding is quite often with clay gouge, suggesting faulting. Mo is weak to moderate. Bedding is quite often with clay gouge, suggesting faulting. Mo is weak to core, axis for one axis 45.05 49.5 Yery crushed core, Clay Alt & broccialed core. Bi				42.48			< 1 mm Mo stringer	
43.39 45 23 43.39 45 23 43.39 45 23 43.39 45 23 43.39 45 23 43.39 45 23 43.75 44.37 44.37 45.23 55 04 45.23 55 04 45.24 45.75 46.7 x 45.75 46.7 x 45.75 46.5 x 46.7 x 45.76 46.5 x 47.7 x 45.76 46.5 x 47.7 x 45.70 46.5 x 49.6 x 49.89 x 49.6 x 49.89 x 49.6 x 49.89 x 49.6 x 49.6 x 49.89 x 49.6 x 49.6 x 49.89 x 49.6 x 49.6 x 49.6 x 49.6 x 49.89 x 49.6 x 49.6 x 49.6 x 49.6 x 49.6 x 49.8 x 49.6 x 49.6 x 49.8 x 49.6 x 49.6 x 49.6 x 49.6 x 49.8 x 49.6 x 49.6 x 49.8 x 50				42.96			1 mm Mo stringer, 85* to core axis, Bedding 70*	
43.33 Tolk, some Saminal out recut as some morpulating volcanics and some for Volcanics sections, shill with fragments. 43.75 1 mm Mo-Qz stringer, 70° to core axis 44.37 2 mm Mo-Qz stringer, 10° to core axis 44.37 2 mm Mo-Qz stringer, 10° to core axis 45.23 55.04 Lapilii tuff A 56.04 A 57.4 B core axis A 66.7 x Very crushed core, axis A 66.7 x Very crushed core, axis A 66.7 x <td>42.20</td> <td>46.0</td> <td>2</td> <td></td> <td></td> <td>Tuff come</td> <td>To core axis Similar but lace altered buff, as breasin as 20.26</td> <td>Malundamita</td>	42.20	46.0	2			Tuff come	To core axis Similar but lace altered buff, as breasin as 20.26	Malundamita
43.75 43.75 44.37 44.53 44.53 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.24 45.24 45.24 45.25 45.74 45.74 45.74 45.75 46.7 x 46.7 x 46.83 46.7 x 46.83 46.7 x 46.83 46.7 x 46.7 x 46.83 46.7 x 46.83 46.8 x 46.7 x 46.83 46.8 x 46.8 x 47.8 x 48.8 x 48.8 x 49.8 x 49.8 x 40.9 x 40.	40.00	40.2				volcanics	33.60. Some f or Volcanic sections, still with	morybdenite
43.75 44.37 44.57 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.23 55.04 45.24 45.74 45.74 45.74 45.74 45.74 45.74 45.74 45.74 45.74 45.74 45.74 45.75 46.7 x 46.7 x 46.7 x 46.7 x 46.7 x 46.7 x 46.7 x 46.7 x 46.7 x 46.7 x 46.8 x 46.8 x 46.8 x 46.8 x 46.8 x 46.8 x 46.8 x 46.9 x 47.0 x 47.						*OfGet#Ga	fragments	
44.37 2 mm Mo-Qz stringer, 40° to core axis Qz stringer, 10° to core axis A5.23 55.04 Lapilii Luff 45.23 45.24 45.74 45.74 45.74 45.75 46.5 46.7 x Very cushed core, clay Alt 46.83 48.28 49.5 x 49.5 x 49.5 x 49.6 49.89 x Clay Alt 20° to core axis 50.27 50.27 50.27 50.27 50.24 50.27 50.24 50.27 50.24 50.27 50.24 50.27 50.24 50.27 50.24 50.27 50.24 50.27 50.24 50.27 50.24 50.27 50.24 50.27 50.24 50.25 50.23 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.20 50.25 50.20 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20 50.25 50.20				43.75			1 mm Mo-Qz stringer, 70° to core axis	
44.53 Öz stringer, 1 mm, minor Mo 45.23 55.04 Lapili tuff 45.24 Eroken Kon derstel: Bedding is quite often evident. 45.74 Broken Kon stringer, 5° to core axis 45.55 46.7 x Very crushed core, day Alt 46.83 8 mm Mo-Qz ven, 35° to core axis 48.28 49.5 x Very crushed day alt core, much oft missing. Some Mo visible on crushed surfaces as at 48.50 48.50 49.6 49.89 x Clay Alt & brecitaled core. Bit change at 49.95. 50.27 Thin Mo stringer, 75° to core axis 50.63 51.11 x More crushed core, Mo stringer (20° to core axis) 52.23 2 mm Mo-Qz stringer, 60° to core axis 52.83.8 Small Mo stringers 52.98 53.01 2 mm Mo-Qz stringr, 80° to core axis, Attered tuff fragments quite othen chlontized. Bedding ~				44.37			2 mm Mo-Qz stringer, 40° to core axis	
45.23 55.04 Lapilii tuff Argilized tapili tuff as before. Some sections of Molybdenil brecka also some sections of very crushed & breckan core with day gouge, suggesting faulting. Mol sympers, 5'to core axis 45.74 Broken Ao stringer, 5'to core axis 45.83 46.5 46.7 x 46.83 8 mm Mo-02 ven, 35'to core axis 42.95 x Very crushed core, day Alt 49.6 49.89 x Clay Alt & breckate core. Bit change at 49.95. 50.27 Thin Mo stringer 50.27 Thin Mo stringer, 75'to core axis 50.27 2 mm Mo-0-2z stringer, 80'to core axis 52.33 51.11 x More crushed core, Mo stringer (25.0.85) 52.07 2 mm Mo-0-2z stringer, 60'to core axis. Attered 101 fragments quite oten chlonitzed. Bedding ~ 45'to core axis 52.83 & 52.80 53.01 53.01 2 mm Mo-2z stringer, 80'to core axis, day Alt <td></td> <td></td> <td></td> <td>44.53</td> <td></td> <td></td> <td>Qz stringer, 1 mm, minor Mo</td> <td></td>				44.53			Qz stringer, 1 mm, minor Mo	
briccia also some sections of very crushed & broken core with clay gouge, suggesting faulting. Mo is weak to moderate. Bedding is quite often evident. Broken Mo stringer on crushed core 45.95 1 mm 02-Mo stringer, 5° to core axis 46.5 46.7 x Very crushed core, clay Alt 46.83 8 mm Mo-Qz veri, 35° to core axis 48.28 49.5 x Very crushed care, clay Alt 48.50 49.89 x Clay Alt core, much of timissing. Some Mo visible on crushed surfaces as at 48.50 49.89 x Clay Alt & brecciated core. Bit change at 49.95. 50.27 Thin Mo stringer, 75° to core axis 50.63 51.11 x More crushed core, do stringer @ 50.85 52.20 2 mm Mo-Qz stringer, 60° to core axis 52.23 2 mm Mo-Qz stringer, 60° to core axis 52.83 & Small Mo stringers 53.01 2 mm Mo-Qz stringer, 80° to core axis, clay Alt	45.23	55.0	4			Lapilli tuff	Argillized lapilli tuff as before. Some sections of	Molybdenite
broken core with clay gouge, suggesting faulting. Mo is weak to moderate. Bedding is quite often evident. 45.74 Broken Mo stininger on crushed core 45.95 1 mm C2-Mo stininger, 5" to core axis 46.63 8 mm Mo-Oz ven, 35" to core axis 48.28 49.5 x Very crushed core, clay Alt 48.28 49.5 x Very crushed core, clay Alt 48.50 2007 Some Mo visible on crushed surfaces as at 48.50 49.89 x Clay Alt & brecited core. Bit change at 49.95. 50.63 51.11 x More crushed core, Mo stringer (2) 50.85 52.07 2 mm Mo-Oz stringer, 50° to core axis 52.23 2 mm Mo-Oz stringer, 60° to core axis. Attered tuff fragments 52.23 4 Small Mo stringers 52.23 52.08 53.01 2 mm Mo-Oz stringer, 80° to core axis, clay Alt							breccia also some sections of very crushed &	
faulting. Mo is weak to moderate. Bedding is quite often evident. 45.74 Broken Mo stringer on crushed core 45.95 1 mm Qz-Mo stringer, 5° to core axis 46.5 46.7 x 46.83 8 mm Mo-Qz vein, 35° to core axis 48.28 49.5 x 49.6 49.89 x 49.6 49.89 x 50.27 Thin Mo stringer 50.44 < 1 mm Mo-Qz stringer, 75° to core axis							broken core with clay gouge, suggesting	
45.74 Broken Mo stringer on crushed core 45.95 1 mm Qz-Mo stringer, 5* to core axis 46.5 46.7 x 46.83 8 mm Mo-Qz vein, 35* to core axis 48.28 49.5 x 48.20 49.5 x 49.6 49.89 x 50.27 Thin Mo stringer 50.47 Thin Mo stringer 50.48 51.11 x 50.63 51.11 x 50.63 51.11 x 52.83 8 52.83 8 53.01 2 mm Mo-Qz stringer, 80* to core axis, clay Alt							faulting. Mo is weak to moderate. Bedding is	
45.74 Broken Mo Stringer on crushed core 45.95 1 mm M2-Mo stringer, 5" to core axis 46.65 46.7 x 46.83 8 mm Mo-Oz vein, 35" to core axis 48.28 49.5 x 49.6 49.89 x 49.6 49.89 x 50.27 Thin Mo stringer, 75" to core axis 50.44 < Clay Alt & brecciated core. Bit change at 49.95.				0000000			quite often evident.	
49.59 1 mm U2-Mo stringer, 5* to core axis 46.53 46.7 × 46.83 8 mm Mo-Qa vein, 35* to core axis 48.83 49.5 x 48.84 49.5 x 49.65 49.89 x 49.6 49.89 x 50.27 Thin Mo stringer 50.44 < Thin Mo stringer				45.74			Broken Mo stringer on crushed core	
40.5 40.7 x Very Crushed core, day Alt 46.83 8 mm Mo-Qz veri, 35* to core axis 8 mm Mo-Qz veri, 35* to core axis 48.28 49.5 x Very crushed day alt core, much of timising. Some Mo visible on crushed surfaces as at 48,50 49.6 49.89 x Clay Alt & breciated core. Bit change at 49.95. 50.27 Thin Mo stringer, 75* to core axis 50.43 51.11 x More crushed core, Mo stringer (2) 50.85 52.07 2 mm Mo-Qz stringer, 60* to core axis 52.23 2 mm Mo-Qz stringer, 60* to core axis. Altered tuff fragmers, for to core axis. Altered tuff fragmers 52.83.8 Small Mo stringers 53.01 2 mm Mo-Qz stringer, 80* to core axis, clay Alt				45.95	40.0	191	i mm uz-Mostringer, 5" to core axis	
40.33 o mm mo-uz view, sor to core axis 48.28 49.5 x 48.28 49.5 x 49.6 49.89 x 50.27 Thin Mo stringer 50.44 < Term Mo-uz stringer, 75° to core axis				46.5	46.7	×	Very crushed core, clay Alt	
49.6 49.89 x Clay Alt & breccisted core. Bit change at 49.95. 50.27 Thin Mo stringer 50.44 < Timm Mo stringer				40.03	40.4	÷	Venucrushed clay alt core much of it mission	
49.6 49.89 x Clay At 8 breciated core. Bit change at 49.95. 50.27 Thin Mo stringer 50.44 5 threciated core. Bit change at 49.95. 50.44 < 1 mm Mo stringer, 75° to core axis 50.63 51.11 x More crushed core, Mo stringer @ 50.85 52.07 2 mm Mo-Oz stringer, 60° to core axis. Attered tuff fragments quite otten chlonitzed. Bedding ~ 45° to core axis 52.83 & Small Mo stringers 52.98 53.01 2 mm Mo-Oz stringer, 80° to core axis, clay Att				40.20	40.0	075	Some Mo visible on cruched surfaces as at	
49.6 49.89 x Clay Alt & brecciated core. Bit change at 49.95. 50.27 Thin Mo stringer 50.44 <1 mm Mo stringer (250.35)							48 50	
50.27 Thin Mo stringer 50.44 < 1 mm Mo stringer, 75° to core axis				49.6	49.89	x	Clay Alt & brecciated core. Bit change at 49.95.	
50.27 Thin Mo stringer 50.44 < 1 mm Mo stringer, 75° to core axis						(m)		
50.44 < 1 mm Mo stringer, 75° to core axis				50.27			Thin Mo stringer	
50.83 51.11 x More crushed core, Mo stringer (2) 50.85 52.07 2 mm Mo-Oz stringer, 80° to core axis 52.23 2 mm Mo-Oz stringer, 60° to core axis. Altered tull fragments quite othen chlontized. Bedding ~ 52.83.8 52.98 53.01 2 mm Mo-Oz stringer, 80° to core axis, clay Alt				50.44			< 1 mm Mo stringer, 75° to core axis	
52.07 2 mm Mo-Oz stringer, 80° to core axis 52.23 2 mm Mo-Oz stringer, 60° to core axis 52.83 & 45° to core axis 52.83 & Small Mo stringers 52.98 53.01 2 mm Mo-Oz stringer, 80° to core axis, clay Alt				50.63	51.11	x	More crushed core, Mo stringer @ 50.85	
52.23 2 mm Mo-Oz stringer, 60° to core axis. Altered tuff fragments quite often chlontized. Bedding ~ 45° to core axis 52.83 & Small Mo stringers 52.98 53.01 2 mm Mo-Oz stringr, 80° to core axis, clay Alt				52.07			2 mm Mo-Qz stringer, 80° to core axis	
tuff fragments quite otten chlontized. Bedding ~ 45° to core axis 52.83.8 Small Mo stringers 52.98 53.01 2 mm Mo-Qz stringr, 80° to core axis, clay Alt				52.23			2 mm Mo-Qz stringer, 60° to core axis. Altered	
45° to core axis 52.83 & Small Mo stringers 52.98 53.01 2 mm Mo-Qz stringr, 80° to core axis, day Alt							tuff fragments quite often chloritized. Bedding ~	
52.83 & Small Mo stringers 52.98 53.01 2 mm Mo-Qz stringr, 80° to core axis, clay Alt							45° to core axis	
52.98 53.01 2 mm Mo-Gz stringr, 80° to core axis, clay Alt				52.83 &			Small Mo stringers	
53.01 2 mm Mo-GZ stringr, 80° to core axis, clay Alt				52.98			A man bla Carabara conta	
				53.01			2 mm mo-uz stringr, 80° to core axis, day Alt	
53.39 1 mm stringer Mo, 30° to core axis				53.39			1 mm stringer Mo, 30° to core axis	
53.45 1-2 mm Mo stringer, 80° to core axis				53.45			1-2 mm Mo stringer, 80° to core axis	

Main		Nested	ocore axisl s	tructure			
rom (m) To	o (m)	From (m) To (m)	From (m) T	o (m)	Fault Lithology	Description	Mineralization
		CONTRACTOR CONTRACTOR	53.83			2 mm Mo stringer, 60° to core axis	Aven allow a contraction
1444.200			53,95		0.000	1 mm Mo stringer	
55.04	55.64				Feldspar	Feldspar porphyry dyke, plagiodase & biotite,	Molybdenite
					porphyry	as described previously, large rectangular	
						teldspars in dark groundmass. Feldspars up to	
						2 cm long.	
			55.12			Small tragments of Mo-Qz vein	
22.01	100.00		55,54		100.000	5-6 mm wide Mo-Gz vein, 70° to core axis	
55.64	55.42				Tuff	Short interval of what appears to be altered tuff.	
						Mo seen as veinlets & stringers, also some	
						disseminations. Some uz veining with minor	
			FFOF			2 mm Mo stringer 708 to some svis	
			55.95			2 min Mo stilliger, 70 to core axis	
			56.08			Diss. Mo in broccia, about 5%	
56.42	60.82		50.15		Foldenar	Generally feldener nombury se shove but with	
00.42	00.02				nombyry	narro f or intervals that appear to be stressed &	
					beeb did.	altered, possibly breccia. Mo is moderate, some	
						Pv	
			56.42			5-6 mm Mo-Qz vein, 25° to core axis	
			56.72			Red hematite stringer, 5° to core axis, speck of	
						Cpy visible	
			56.77	57.19		Porphyry is somewhat bleached	
			57.13			1-2 mm Qz-Mo stringer, displaced 0.5 cm, 35°	
						to core axis	
			57,64			2-3 mm Mo-Oz stringer in porphyry, 30° to core	
						axis	
			58.42			1 mm Qz-Mo stringer in porphyry, 80° to core	
			122.00	642574		axis	
			59.41	59.49		1 cm banded Mo-Qz vein, some Py, 35° to core	
						axis	
			59.98			omaii Mo stringer	
			60.04			 gr. dykelet of altered material, containing Mo, 	
			80.8*			1.2 mm Mosterians 20% to core aver	
			00.01			1 mm Mo stringer, 40° to core axis	
80.99	62.49		00.72		Tuff come	Light to medium gray tuff in what is apposite a	
00.00	00.40				nombury	f or aroundmass. Tuff froaments up to 1 cm	
					porpristy	Some narrow intrusions of feldspar pombury. Pu	
						is widespread but % is low. Mo locore axis/ly	
						strong but weak to moderate overall.	
			61.02			3-4 mm Qz-Mo veinlet cut in part by clay gouge.	
						45° to core axis, may be some Diss. Mo also	
			61.16			0.5 cm Qz-Mo vein with Mo on edges, 60° to	
			Caroline C			core axis	
			61.33			Indistinct Qz-Mo vein up to 1 cm wide, 30° to	
						core axis in what appears to be altered	
						porphyry. Porphyry interval continues to 61 50	
			61.46			0.5 cm Qz-Mo vein	
			62.43			Breccia fragments, some hematite & Cpy	
			12121212			specks	
			62.64	62.84		Porphyry dyke	
			6323			7-8 mm QZ-Mo vein, Mo mostly on edges,	
62.43	- p.e. #				Diadad	Pladed folderer norphy of coate provide the	2
03.43	00.5				foldenas	cocarcional finan grained fuff or possible	
					normbury	volcanic as seen in previous unit Mo	
					borbridia	occurrences rare	
			63.65			Hematite on fracture	
			63.86			Mostringer some Py 1 mm @ 60core avic in	
			00.00			for hiff	
			63.95			Mo & Covidiss, Also in hiff	
			64 7			<1 mm stringer Cov. Couple more to 65.0. Verv	
			175305.000			minor. Appear to be in tuff.	
			65	65.75		Altered porphyry, some hematite	
	69.53				Tuff or	F.gr dark gray tuff or volcanic, possibly andesitio	-
66.5					volcanic	basaltic composition. Could be a dyke. Some	
66.5					1000 (ATARO	Qz-feldspar veining. Occasional Mo	
66.5							
66.5						2.5 cm wid feldspathic dykelet, 50° to core axis.	
66.5			66.63				
66.5			66.63			Some nematite	
66.5			66.63 66.85			Some nematite Specks of Diss. Cpy & Mo	
66.5			66.63 66.85 67.55			Some nematite Specks of Diss. Cpy & Mo 1 cm wide feldspathic vein similar to above.	
66.5			66.63 66.85 67.55			Some nematte Specks of Diss. Cpy & Mo 1 cm wide feldspathic vein similar to above, visible Mo, 40° to core axis	
66.5			66.63 66.85 67.55 69.39			Some nematte Specks of Diss. Cpy & Mo 1 cm wide feldspathic vein similar to above, visible Mo, 40° to core axis Fldspathic vein, 0.5 cm, with diss. Mo, 45° to	
66.5			66.63 66.85 67.55 69.39			Some nematte Specks of Diss. Cpy & Mo 1 cm wide feldspathic vein similar to above, visible Mo, 40° to core axis Fldspathic vein, 0.5 cm, with diss. Mo, 45° to core axis	
69.53	71.1		66,63 66,85 67,55 69,39		Lapilli tuff	Some nematte Specks of Diss. Cpy & Mo 1 cm wide feldspathic vein similar to above, visible Mo. 40° to core axis Fldspathic vein, 0.5 cm, with diss. Mo, 45° to core axis Fine to medium grained light gray lapilli tuff, not	

Page 3

	INTERVAL			1		
Main	Nested	ocore axisl s	tructure	Founda 1 Marcala	Department	Minemilertier
rom (m) 10 (m	1) From (m) 10 (m)	From (m) Te	s (m)	Fault Lithology	7-8 mm banded Mo-Oz vein with offshow	mineralization
		08.00			stringers 30° to core axis to 69.66	
		69.78			1 mm Mo stringer, runs up° to core axis	
		69.86			3 Mo-Qz stringers, about 60° to core axis	
		70.01			1 mm Mo stringer, 40° to core axis. Also @	
					70.06, 70.13, 70.19 & 70.26	
		70.27	70.33		7 mm banded Qz-Mo vein, 30° to core axis, with	
					assorted stringers. Some core missing	
		70.75			Mo stringers, 1 mm, 70° to core axis	
		70.92			Multi-direction 1 mm Mo stringers	
71.1 77	7.39			Altered	Altered porphyry, chloritized & with hematite	
				porphyry	commonly. Many veinlets with bleaching around	
					these. Mo mineralization continues to be	
		74.00			moderate to strong.	
		71.58			1 mm Mo-uz stringer, 80° to core axis	
		72.1			1-2 mm Mo-Oz stringer 50° to core avis	
		7212			Pulstinger minor Mo & Mo stringer	
		72.15			8 cm wide feldspar pomhvrv dvke	
		72.79	72.86		6 cm wide vein of Mo-Pv-Qz, altered feldspar.	
					40° to core axis	
		73.2			7-8 mm Qz-Mo-Py vein, 45° to core axis	
		73.26			1.2 cm banded Mo-Q vein, 50° to core axis	
		73.9			Black elongated hornblende or pyroxene (?)	
					phenocysts in green plagioclase groundmass.	
		1.1			Hematite also present	
		74.89			1-2 mm Qz-Mo stringer, 80° to core axis	
		75.27			1 cm Qz-Mo vein, cut by feldspathic vein 0.5-1	
					cm	
		77.27			2 GZ veinlets, minor Mo	
		11.32			e-/ mm uz-mo-r-y vein, cut by feldspar vein,	
77.30 00	1.08			unionio er	Same for volcanic or biff case @ 66.50 Dart	
11.58 80	2.00			buff	array to brown. Altered paler in places. Weak	
				1011	Mo, occurrences usually in Oz stringers	
					ine, orden energy drobely in the energy of	
		78			Qz stringer, minor Mo	
		78.55			1 mm Mo-Qz stringer, minor Cpy, 55° to core	
					axis	
		78.81			1 mm Mo-Oz stringer, 45° to core axis	
		79.37	79.67		Coarse gr. interval	
80.08 8	80.4	22.2	22.0	volcanics	Paler f.gr interval volcanics	
		80.2	80.4		Set of Qz-Mo veins 3-4 cm wide, 50° to core	
		00.00			axis	
00.75 04	1.00	80.38		Tuffaceour	Mo-Gz stringer	
00.75 01	1.20			braccia	hematite and diss sulphies incl Cov especially	
				proceig	noticeable @81.13	
		80.91			6 mm Oz-Mo vein 80° to core avis	
		81.02			2.2 cm Mo-Qz vein some Cov & hematite 85°	
		01.02			to core axis	
81.23 8	85.3			Feldspar	Medium to coarse-gr feldspar porphyry as seen	
	5685			porphyry	above with white-creamy well-formed crystals.	
				in a concella	Some hematite & weak Mo where rock is	
					fractured & altered. Black-green groundmass.	
		83.18	84.61		Bleached & altered variety of feldspar porphyry,	
					sencitzed	
		82.5			< 1 mm Mo stringer, 30° to core axis	
		82.71			1-2 mm Mo-Qz stringer, 25° to core axis	
		82.92			1 mm mo stringer, 80° to core axis, cut by	
		64 7			Reached & altered mak dependence	
		84.7			preducied & altered rock described above,	
					Mo. Also a pale gray stristed mineral containing	
					disseminated hematite which scratches easily	
					(proustite?). This is in smaller but well-formed	
					crystals in the groundmass. Crystals are	
					hexagonal to square	
85.3 97	7.23			Altered	Pale greenish porphyry which could be an	
				porphyry	attered version of the feldspar porphyry with	
					green-black groundmass. Med.coarse grained	
					as above. Contains the same mineral set	
					including uz inclusions & the sencite? (altered	
					augity / sven above, some bands of unaltered	
					IEIUSUAL DUIDRIVIVAS SEEN ADOVE, MO	
					mineralization rare to nee existent. No objector	
					mineralization rare to non-existent. No stringers	
					mineralization rare to non-existent. No stringers but some diss. Mo in Qz inclusions	
		85.89	86		mineralization rare to non-existent. No stringers but some diss. Mo in Qz inclusions. Unattered feldspar porphyry	

Page 4

APPENDIX D - ASSAY RESULTS, LL07-1 TO LL07-3

Hole	Sample No	From (m)	To (m)	WT KG	Mo %	Cu %	Pb PPM	Zn PPM	Ag PPB	As PPM	Au PPB	Sb PPM	Hg PPB
LL07-1	723001	5.3	7	1.1	<0.001	0.102	49.88	111.8	1790	284.1	91.7	13.77	16
LL07-1	723002	7	9	1.5	0.001	0.157	47.08	132.1	3349	493.4	16.9	19.41	20
LL07-1	723003	9	11	1.8	<0.001	0.086	17.81	89.9	2117	235	32.7	3.94	8
LL07-1	723004	11	13	1.8	0.003	0.111	58.01	227.5	2448	254.7	113.3	10.97	39
LL07-1	723005	13	15	1.8	0.002	0.093	8.77	59.4	2029	79.2	127.8	2.08	<5
LL07-1	723006	15	17	2	0.004	0.107	60	103	2177	215	52.5	7.07	20
1107-1	723007	17	19	1.5	0.002	0.273	35.95	174.6	4333	760.2	27.4	24.99	14
1107-1	723008	19	21	2	0.002	0.196	12.61	55.2	3372	285	10.8	2.27	<5
11.07-1	723009	21	23	17	<0.001	0 135	42.58	114.4	2454	283.8	26.8	7 94	<5
11.07-1	723010	23	_== 25	1.6	0.002	0 105	15 69	84.5	1922	186.8	11.3	13.4	<5
11.07-1	723011	_== 25	_0 27	1.6	0.003	0.085	100.9	173.9	3575	268.1	24.7	40.64	48
11.07-1	723012	27	29	1.0	0.007	0.163	82.96	239.1	7869	478.9	112.4	82.34	78
11.07-1	723013	29		17	0.01	0.1	55 27	121.3	2202	267	21.7	21.28	43
11.07-1	723014	31	33	1.8	0.009	0 136	39.31	120.9	2627	312.9	26.9	14.37	20
11.07-1	723015	33	35	1.0	0.009	0 131	47 7	194	2182	329.6	17.9	17.05	13
11.07-1	723016	35	37	1.8	0.007	0 156	13.67	62.7	2930	232.2	20	4 2	5
11.07-1	723017	37	30	1.0	0.001	0.152	51 28	170.5	1264	186.8	26	27 59	7
11.07-1	723018	39	41	1.8	0.005	0.161	27.04	109	1481	242.8	21.1	26.73	8
11.07-1	723019	41	43	1.8	0.005	0 104	40.56	168 7	2504	233	27.2	30.13	35
1107-1	723020	43	45	1.0	0.006	0.104	18.88	67.4	1362	133.8	16.1	6.9	8
1107-1	723021	45	40	1.0	0.007	0.007	46.96	58.9	1569	127.5	34.7	10.9	17
1107-1	723022	40	49	1.0	0.007	0.040	40.00 55.02	113.9	1670	80.9	42.2	9.28	29
1107-1	723022	49	-13 51	1.0	0.000	0.042	16 59	86.2	1857	125.3	66.7	8 11	23
1107-1	723025	51	53	1.7	0.007	0.000	14.63	177.4	988	93	44 4	4 19	18
1107-1	723026	53	55	1.0	0.009	0.040	36.27	248.4	1149	103.5	30.2	4.13	18
11.07-1	723027	55	57	1.0	<0.000	0.036	109.7	466.7	1316	71.4	43.9	4 54	40
11.07-1	723028	57	59	1.6	<0.001	0.006	11 54	837.1	339	11	127.4	1.01	14
11.07-1	723029	59	61	1.0	<0.001	<0.000	12.04	129.5	30	19	13.9	0.17	<5
1107-1	723030	61	63	1.8	< 0.001	< 0.001	11.34	104	36	1.2	36.6	0.13	<5
1107-1	723031	63	65	1.9	<0.001	0.005	11.41	124.8	121	8.7	26.4	0.38	<5
LL07-1	723032	65	67	2	< 0.001	< 0.001	9.81	111.8	14	2.5	6	0.1	<5
LL07-1	723033	67	69	2	< 0.001	0.004	16.39	111.2	154	11.9	26.1	0.39	<5
LL07-1	723034	69	71	1.9	< 0.001	< 0.001	9.96	95.4	41	1.7	23.7	0.05	<5
LL07-1	723035	71	73	2.1	< 0.001	0.002	28.89	138.4	152	4.1	16.4	0.25	<5
LL07-1	723036	73	75	1.1	0.005	0.094	42.45	193.4	3433	167.1	33.6	7.56	8
LL07-1	723037	75	77	2.3	0.004	0.023	28.56	104.2	1164	65	32.2	6.48	<5
LL07-1	723038	77	79	1.9	0.085	0.055	10.27	118.9	1326	34.5	208.4	2.83	<5
LL07-1	723039	79	81	1.8	0.008	0.065	13.68	106.4	1915	64.7	55.2	4.91	<5
LL07-1	723040	81	83	1.9	0.008	0.098	6.78	68.8	1230	117.1	23	3.15	<5
LL07-1	723041	83	85	1.6	0.003	0.092	6	58.8	1618	148.7	21.7	6.74	<5
LL07-1	723042	85	87	1.6	0.004	0.123	14.73	147.1	2540	183.1	40	14.38	5
LL07-1	723043	87	89	2	0.003	0.112	94.48	209	5654	260.1	81.4	15.03	11
LL07-1	723044	89	91	1.8	0.004	0.125	104.8	331.9	5010	256.7	99.7	21.69	19
LL07-1	723045	91	93	1.8	0.01	0.128	111.1	214	3939	284.5	33.1	16.6	17
LL07-1	723046	93	95	1.8	0.016	0.112	52.83	146.7	4576	200.4	33.6	27.81	11
LL07-1	723048	95	97	1.8	0.023	0.021	21.81	54	1366	32.7	13.7	2.99	<5
LL07-1	723049	97	99	1.9	0.034	0.016	53.98	99.8	2049	53.9	22.2	3.06	13
LL07-1	723050	99	101	1.9	0.032	0.019	48.01	139.8	1783	67.3	28.6	6.39	16
LL07-1	723051	101	103	2.1	0.026	0.157	2094	2175	23333	379.6	111	82.47	217

Hole	Sample No	From (m)	To (m)	WT KG	Mo %	Cu %	Pb PPM	Zn PPM	Ag PPB	As PPM	Au PPB	Sb PPM	Hg PPB
LL07-1	723052	103	105.16	2	0.003	0.032	80.87	370.2	2683	98.4	41.2	5.69	27
LL07-2	723053	1.83	3	1.2	0.006	0.013	16.94	109.3	308	33.1	7.8	3.42	<5
LL07-2	723054	3	5	1.8	0.005	0.002	4.52	72.3	52	7.3	2.4	0.62	<5
LL07-2	723055	5	7	2	0.015	0.006	4.99	76.7	168	13.2	4	0.77	<5
LL07-2	723056	7	9	2.1	0.004	0.01	13.02	93.4	341	32.8	10.3	0.64	<5
LL07-2	723057	9	11	1.8	0.003	0.004	8.98	153.1	182	23.1	24.1	1.75	<5
LL07-2	723058	11	13	1.9	0.008	0.049	7.99	125.6	1096	80.2	20.8	4.78	<5
LL07-2	723059	13	15	1.8	0.005	0.068	15.78	198.9	1311	171.4	62.1	11.83	<5
LL07-2	723060	15	17	1.5	0.009	0.016	457.3	140	3772	83.4	48.8	18.28	40
LL07-2	723061	17	19	1.5	0.005	0.021	30.01	148	1324	88.8	41.4	10.73	22
LL07-2	723062	19	21	1.5	0.014	0.102	96.6	315.6	4459	262.7	88.4	7.35	7
LL07-2	723063	21	23	1.8	0.016	0.134	13.14	101.2	1962	248.9	36.1	6.49	<5
LL07-2	723064	23	25	1.9	0.006	0.059	16.65	83.7	1383	129.9	23.9	9.16	<5
LL07-2	723065	25	27	1.8	0.006	0.009	5.65	52.2	399	27.4	4.6	4.39	<5
LL07-2	723066	27	29	1.8	0.003	0.02	70.23	68.2	796	68.4	6.5	7.64	6
LL07-2	723067	29	31	1.5	0.018	0.021	20.47	55.7	753	65.4	18.9	8.61	<5
LL07-2	723068	31	33	1.8	0.006	0.017	24.42	72.8	738	74.5	25.3	8.15	11
LL07-2	723069	33	35	1.6	0.011	0.156	12.33	92.2	2008	204.4	62.4	16.08	21
LL07-2	723070	35	37	1.5	0.011	0.091	12.2	71.1	956	96.9	46.4	11.03	<5
LL07-2	723071	37	39	1.4	0.018	0.178	31.02	126.3	2264	210.3	62.9	18.5	12
LL07-2	723072	39	41	1.2	0.021	0.033	16.95	131.4	1633	102.3	64.9	8.6	13
LL07-2	723073	41	43	2	0.007	0.069	6.63	73.1	951	76.4	44.3	5.2	<5
LL07-2	723074	43	45	1.8	0.005	0.055	6.8	112.8	795	74.7	33.2	5.38	<5
LL07-2	723076	45	47	1.4	0.011	0.039	12.11	194.2	906	77.1	51.9	8.17	57
LL07-2	723077	47	49	1.8	0.005	0.008	13.84	181.9	189	26.4	15.6	0.66	7
LL07-2	723078	49	51	1.3	0.006	0.002	17.28	163.3	143	27.8	18.8	0.51	<5
LL07-2	723080	51	53	1.5	<0.001	<0.001	10.09	105.5	59	8.2	4.1	0.19	<5
LL07-2	723081	53	55	1.7	<0.001	<0.001	8.74	115.8	79	8.9	4.3	0.24	<5
LL07-2	723082	55	57	1.5	<0.001	<0.001	8.19	148.4	17	3.1	2.5	0.13	<5
LL07-2	723083	57	57.61	0.5	<0.001	0.005	9.66	103.6	225	18.7	11.7	0.36	<5
LL07-3	723084	1.83	3	1	0.01	0.065	18.24	85	2114	102.2	37.4	9.25	10
LL07-3	723085	3	5	1.6	0.011	0.008	5.59	116.2	153	12.5	8	0.56	<5
LL07-3	723086	5	7	1.7	0.01	0.015	6.48	98.2	155	25.6	17.6	1.73	<5
LL07-3	723087	7	9	1.9	0.024	0.049	19.49	99.7	583	110.5	18.5	5.16	12
LL07-3	723088	9	11	1.9	0.028	0.039	6.03	70.3	295	68.2	29.7	3.71	10
LL07-3	723089	11	13	1.8	0.055	0.006	4.42	73.9	57	16.8	5.4	0.66	10
LL07-3	723090	13	15	1.8	0.022	0.006	22.44	101.6	165	13.2	6.6	0.69	<5
LL07-3	723091	15	17	1.6	0.019	0.021	11.62	98.1	268	39.9	7.7	2.44	8
LL07-3	723092	17	19	1.6	0.019	0.018	300.5	1772	1537	151.3	76.2	3.22	86 -
LL07-3	723093	19	21	1.9	0.028	0.017	11.61	54.1	809	59.7	59.6	2.27	<5
LL07-3	723094	21	23	1.9	0.025	0.065	17.86	60.9	2218	137	31.5	6.65	9
LL07-3	723096	23	25	1.7	0.019	0.045	40.97	147.9	5233	149.3	76.3	18.36	45
LL07-3	723097	25	27	1.7	0.016	0.057	195.5	136.2	3022	202.8	77.7	6.99	27
LL07-3	723098	27	29	1.5	0.013	0.093	9.96	106.2	2275	159.1	27.1	13.39	1/
LL07-3	723099	29	31	1.6	0.006	0.028	7.72	83.1	744	45	14	5.8	<5
LL07-3	723100	31	33	1.9	0.01	0.006	32.45	100.9	284	16.9	16.1	1.46	5
LL07-3	723101	33	35	1.8	0.003	0.006	6.8	92.6	231	14.4	6.9	1.39	<5
LL07-3	723102	35	37	2	0.013	0.046	15.64	74.5	1306	109.2	30.9	0.69	1
LL07-3	723103	37	39	1.5	0.004	0.045	10.9	08.2	1331	51.4	30.9	9.55	18
LL07-3	723104	39	41	1.5	0.015	0.067	5.05	58.2	1491	82.5	21.7	٥.1 <i>/</i>	13
LL07-3	723105	41	43	1.7	0.009	0.044	5.9	67.4	885	59.8	9.6	7.02	12

Hole	Sample No	From (m)	To (m)	WT KG	Mo %	Cu %	Pb PPM	Zn PPM	Ag PPB	As PPM	Au PPB	Sb PPM	Hg PPB
LL07-3	723106	43	45	1.7	0.011	0.021	7.68	55.3	503	47.8	10	3.16	<5
LL07-3	723107	45	47	1.7	0.014	0.052	4.28	53.3	1042	65.3	22.8	5.01	9
LL07-3	723108	47	49	1	0.009	0.028	37.13	71.1	881	27.6	27.9	1.56	12
LL07-3	723109	49	51	1	0.01	0.02	14.8	46.3	1041	50.8	16.4	3.25	15
LL07-3	723110	51	53	1.8	0.012	0.027	10.43	56.1	1086	75.4	17.1	2.33	9
LL07-3	723111	53	55	1.7	0.016	0.055	32.99	139.3	1778	149.8	27	5.96	20
LL07-3	723112	55	57	1.9	0.042	0.122	27.61	94.8	1236	311	27.3	6.4	<5
LL07-3	723113	57	59	1.9	0.012	0.069	4.82	82.9	904	119.7	11.3	2.12	<5
LL07-3	723114	59	61	2	0.026	0.039	11.44	109.7	1063	91.4	29.9	3.25	7
LL07-3	723115	61	63	2	0.017	0.041	168.2	720.7	3616	134.1	72.3	7.81	26
LL07-3	723117	63	65	1.9	0.004	0.203	84.72	653	2463	508	84.2	12.89	14
LL07-3	723118	65	67	2	0.005	0.085	4.86	61.4	820	97.9	32.9	1.42	<5
LL07-3	723119	67	69	2	0.007	0.068	2.71	65.5	1512	12.8	13.1	0.72	<5
LL07-3	723120	69	71	1.7	0.048	0.02	9.52	94.5	644	48.3	9.5	2.33	11
LL07-3	723121	71	73	1.9	0.009	0.13	5457	1612	30420	340.2	217.6	114.1	205
LL07-3	723122	73	75	2	0.006	0.066	15.28	82.9	1016	65.8	69.6	1.53	<5
LL07-3	723123	75	77	2.1	0.006	0.075	28.84	113.9	2372	152.5	88.2	14.1	18
LL07-3	723124	77	79	2	0.006	0.036	3.22	130.4	872	28.8	18.7	0.3	<5
LL07-3	723125	79	81	2	0.018	0.099	5.01	75.8	2383	98.8	77.2	1.32	<5
LL07-3	723126	81	83	1.8	0.012	0.058	5.95	85.7	2337	107.8	18.4	1.63	<5
LL07-3	723128	83	85	1.8	0.001	0.002	6.7	62.4	113	4.2	2.4	0.19	<5
LL07-3	723129	85	87	1.8	<0.001	0.002	4.41	34.8	74	4	1.5	0.11	<5
LL07-3	723130	87	89	1.9	<0.001	<0.001	8.2	39.5	44	2.7	2.9	0.14	<5
LL07-3	723131	89	91	1.7	<0.001	<0.001	3.66	39.7	49	3	1.8	0.14	<5
LL07-3	723132	91	93	1.8	<0.001	<0.001	3.92	39.5	59	2.3	<0.2	0.11	<5
LL07-3	723133	93	95	1.9	<0.001	<0.001	5.81	39.7	75	2.2	1.2	0.12	<5
LL07-3	723134	95	97.23	2.1	<0.001	<0.001	6.46	35.1	95	4.7	1.7	0.16	<5

APPENDIX E - CERTIFICATES OF ANALYSIS

Invoice To: Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada

CC: Don Macintyre

This report supersides all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acre assumes the liabilities for actual cost of analysis only.

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada

LENNAC November 14, 2007

2 of 4

Project: Report Date:

Part 1

CERTIFICATE OF ANALYSIS

SMI07000128.1

	Method	WGHT	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	P	Cr	Mg	AI
	Unit	kg	%	%	%	%	GNVT	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	MDL	0.01	0.001	0.001	0.01	0.01	2	0.001	0.001	0.01	0.01	0.01	0.001	0.001	0.001	0.01	0.01	0.001	0.001	0.01	0.01
723001	Drill Core	1.1	< 0.001	0.102	< 0.01	0.01	3	<0.001	<0.001	0.06	0.71	0.03	0.001	< 0.001	0.003	< 0.01	0.46	0.025	< 0.001	0.14	0.38
723002	Drill Core	1.5	0.001	0.157	< 0.01	0.01	4	<0.001	<0.001	0.04	0.71	0.04	0.001	< 0.001	0.005	< 0.01	0.53	0.025	0.004	0.15	0.42
723003	Drill Core	1.8	< 0.001	0.086	< 0.01	<0.01	2	<0.001	<0.001	0.05	1.13	0.02	0.002	< 0.001	0.002	< 0.01	1.03	0.030	< 0.001	0.32	0.47
723004	Drill Core	1.8	0.003	0.111	< 0.01	0.02	3	<0.001	<0.001	0.05	0.84	0.02	0.002	< 0.001	0.004	< 0.01	1.04	0.025	0.004	0.30	0.53
723005	Drill Core	1.8	0.002	0.093	< 0.01	< 0.01	2	<0.001	<0.001	0.03	0.66	<0.01	0.002	< 0.001	0.001	< 0.01	0.91	0.025	< 0.001	0.31	0.55
723006	Drill Core	2	0.004	0.107	< 0.01	0.01	3	<0.001	<0.001	0.04	0.80	0.02	0.002	< 0.001	0.002	< 0.01	0.97	0.028	0.004	0.28	0.50
723007	Drill Core	1.5	0.002	0.273	< 0.01	0.02	5	<0.001	<0.001	0.03	1.13	0.07	0.002	< 0.001	0.006	< 0.01	0.77	0.022	< 0.001	0.23	0.49
723008	Drill Core	2	0.002	0.196	< 0.01	< 0.01	4	<0.001	<0.001	0.02	0.61	0.03	0.002	< 0.001	< 0.001	< 0.01	0.62	0.027	0.004	0.23	0.42
723009	Drill Core	1.7	< 0.001	0.135	< 0.01	0.01	2	<0.001	<0.001	0.03	0.63	0.03	0.002	< 0.001	0.002	< 0.01	0.93	0.029	< 0.001	0.35	0.48
723010	Drill Core	1.6	0.002	0.105	<0.01	< 0.01	3	<0.001	<0.001	0.03	0.43	0.02	0.002	< 0.001	0.004	< 0.01	0.77	0.022	0.005	0.30	0.48
723011	Drill Core	1.6	0.003	0.085	< 0.01	0.02	4	<0.001	<0.001	0.05	0.74	0.02	0.002	< 0.001	0.009	< 0.01	0.78	0.027	< 0.001	0.27	0.42
723012	Drill Core	1.6	0.007	0.163	< 0.01	0.02	10	<0.001	<0.001	0.03	1.02	0.04	0.002	< 0.001	0.015	< 0.01	0.46	0.020	0.005	0.17	0.36
723013	Drill Core	1.7	0.010	0.100	< 0.01	0.01	3	<0.001	<0.001	0.05	0.70	0.02	0.002	< 0.001	0.005	< 0.01	0.79	0.025	< 0.001	0.28	0.46
723014	Drill Core	1.8	0.009	0.136	< 0.01	0.01	3	<0.001	<0.001	0.03	0.49	0.03	0.002	< 0.001	0.004	< 0.01	0.89	0.020	0.004	0.27	0.44
723015	Drill Core	1.7	0.009	0.131	< 0.01	0.02	3	<0.001	<0.001	0.03	0.62	0.03	0.002	< 0.001	0.004	< 0.01	0.84	0.021	< 0.001	0.28	0.45
723016	Drill Core	1.8	0.007	0.156	< 0.01	< 0.01	3	<0.001	<0.001	0.03	0.50	0.02	0.002	< 0.001	< 0.001	< 0.01	0.68	0.019	0.004	0.27	0.53
723017	Drill Core	1.7	0.011	0.152	< 0.01	0.02	<2	<0.001	<0.001	0.02	0.51	0.02	0.002	< 0.001	0.006	< 0.01	0.84	0.024	< 0.001	0.22	0.52
723018	Drill Core	1.8	0.005	0.161	< 0.01	0.01	<2	<0.001	<0.001	0.02	0.67	0.02	0.002	< 0.001	0.006	< 0.01	0.65	0.028	0.004	0.24	0.51
723019	Drill Core	1.8	0.005	0.104	< 0.01	0.02	3	<0.001	<0.001	0.04	0.93	0.02	0.002	< 0.001	0.006	< 0.01	0.80	0.021	< 0.001	0.27	0.50
RRE 723019	Drill Core		0.005	0.104	< 0.01	0.02	3	<0.001	<0.001	0.04	0.86	0.02	0.002	< 0.001	0.006	< 0.01	0.82	0.020	0.004	0.28	0.49
723020	Drill Core	1.9	0.006	0.057	< 0.01	< 0.01	<2	<0.001	<0.001	0.03	0.91	0.01	0.002	< 0.001	0.001	< 0.01	0.68	0.021	<0.001	0.24	0.45
723021	Drill Core	1.9	0.007	0.048	<0.01	< 0.01	<2	<0.001	<0.001	0.03	1.04	0.01	0.002	< 0.001	0.003	< 0.01	0.73	0.022	0.005	0.24	0.47
723022	Drill Core	1.8	0.005	0.042	< 0.01	0.01	2	<0.001	<0.001	0.06	1.27	<0.01	0.003	< 0.001	0.002	< 0.01	1.50	0.017	< 0.001	0.48	0.41
723023	Drill Core	1.7	0.014	0.056	< 0.01	<0.01	2	<0.001	<0.001	0.04	1.35	0.01	0.003	< 0.001	0.002	< 0.01	1.44	0.020	0.004	0.49	0.50
723024	Drill Core	2.3	< 0.001	0.002	< 0.01	0.01	<2	0.005	0.001	0.04	3.29	<0.01	0.009	< 0.001	< 0.001	< 0.01	0.59	0.049	0.004	1.04	2.10
723025	Drill Core	1.8	0.007	0.046	< 0.01	0.02	<2	<0.001	<0.001	0.03	1.23	<0.01	0.003	< 0.001	0.001	< 0.01	0.93	0.032	0.004	0.38	0.66
723026	Drill Core	1.5	0.009	0.032	< 0.01	0.02	<2	<0.001	<0.001	0.05	1.28	<0.01	0.003	< 0.001	< 0.001	< 0.01	1.00	0.025	< 0.001	0.41	0.61
723027	Drill Core	1.9	< 0.001	0.036	< 0.01	0.05	<2	<0.001	0.001	0.14	2.01	<0.01	0.007	< 0.001	0.001	< 0.01	3.31	0.060	0.002	1.06	0.61
723028	Drill Core	1.6	< 0.001	0.006	<0.01	0.08	<2	<0.001	<0.001	0.11	1.86	<0.01	0.007	< 0.001	< 0.001	< 0.01	3.17	0.073	< 0.001	0.94	0.65
723029	Drill Core	1.9	< 0.001	< 0.001	< 0.01	0.01	<2	<0.001	<0.001	0.11	1.89	<0.01	0.008	< 0.001	< 0.001	< 0.01	3.19	0.073	0.002	0.95	0.65

Project:

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada

Part 2

LENNAC Report Date:

November 14, 2007

2 of 4

CERTIFICATE OF ANALYSIS

SMI07000128.1 Method 746 7AR 7AR 1F 15 1F 1F 1F 1F 15 1F 7AR 1F 11 1F 1F 1F 15 Analy U Na к w Hg Mo Cu Pb Zn Ag Ni Co Mn Fe As Au Th Sr Cd Sb Un ppm ppm ppb ppm % ppb ppm % ppm ppm ppm ppm ppm ppm ppm ppm % ppm 0.01 0.1 0.2 0.1 0.02 MDL 0.001 0.001 0.001 0.001 0.01 0.01 0.1 2 0.1 1 0.01 0.1 0.1 0.5 0.01 72300 Drill Core 0.00 0.195 <0.001 <0.001 49.88 179 601 13.77 6.67 1110 111.8 2.0 0.71 284.1 91. 3.0 11.2 2.63 2.8 723002 Drill Core 0.006 0.217 <0.001 <0.001 9.85 1681 47.08 132.1 3349 34 23 440 0.70 493.4 13 16.9 33 10.6 1.61 19.41 723003 Drill Core 0.009 0.224 < 0.001 < 0.001 9.77 926.9 17.81 89.9 2117 3.3 3.6 653 1.18 235.0 2.8 32.7 2.9 16.3 0.40 3.94 723004 Drill Core 0.007 0.200 <0.001 <0.001 26.73 1155 58.01 227.5 2448 3.9 2.0 558 0.85 254.7 2.9 113.3 3.0 17.5 1.98 10.97 723005 Drill Core 0.012 0.182 <0.001 <0.001 22.20 1021 8 77 50 4 2020 27 19 392 0.64 79.2 2.5 107.8 28 18.4 0.21 2.08 723006 Drill Core 0.008 0.203 < 0.001 < 0.001 35.73 1099 60.00 103.0 2177 3.4 2.2 461 0.82 215.0 2.7 52.5 3.1 16.3 0.80 7.07 723007 0.007 0.241 < 0.001 < 0.001 17.36 2958 35.95 174.6 3.7 4.7 328 1.15 760.2 27.4 16.8 1.15 24.99 Drill Core 4333 3.1 1.8 723008 Drill Core 0.024 0.195 <0.001 <0.001 17.63 2106 12.61 55.2 3372 25 1.7 248 0.59 285.0 25 10.8 33 14.9 0.27 2 27 723009 Drill Core 0.028 0.228 < 0.001 < 0.001 8.07 1447 42.58 114.4 2454 29 21 360 0.63 283.8 2.6 26.8 33 20.1 1.47 7.94 1102 15.69 21.5 13.40 723010 Drill Core 0.023 0.206 <0.001 <0.001 22.87 84.5 1922 2.6 1.5 273 0.42 186.8 2.9 11.3 3.1 0.77 723011 Drill Core 0.006 0.230 0.001 <0.001 28.80 863.0 100.9 173.9 3575 3.0 17 536 0.75 268.1 1.8 24.7 32 174 1.67 40.64 723012 Drill Core 0.006 0.231 <0.001 <0.001 70.08 1788 82.96 239.1 7869 5.8 4.6 299 1.04 478.9 1.7 112.4 3.3 17.2 2.73 82.34 20.2 723013 Drill Core 0.007 0.256 <0.001 <0.001 100.9 1046 55.27 121.3 2202 2.6 1.7 594 0.72 267.0 21.7 2.9 0.95 21.28 1.6 723014 Drill Core 0.011 0.220 <0.001 <0.001 83.76 1403 39.31 120.9 2627 2.5 1.8 345 0.50 312.9 2.4 26.9 3.1 19.0 1.29 14 37 723015 Drill Core 0.013 0.204 <0.001 <0.001 89.58 1403 47.70 194.0 2182 4.1 2.1 293 0.62 329.6 5.0 17.9 3.3 20.5 2.68 17.05 70.86 13.67 19.9 723016 Drill Core 0.017 0.192 <0.001 <0.001 1724 62.7 2930 4.5 2.1 320 0.50 232.2 4.2 20.0 3.3 0.40 4.20 723017 Drill Core 0.016 0.192 < 0.001 < 0.001 112.2 1610 51.28 170.5 1264 24 21 210 0.53 186.8 3.9 26.0 3.0 20.8 2.45 27 59 723018 Drill Core 0.034 0.194 < 0.001 < 0.001 46.27 1692 27.04 109.0 1481 3.0 2.5 190 0.66 242.8 2.3 21.1 2.7 17.8 0.87 26.73 Drill Core 723019 0.026 0.222 <0.001 <0.001 52.42 1036 40.56 168.7 250 3.2 3.0 424 0.94 233.0 2.4 27 3. 19.8 2.29 30.13 RRF 723019 Drill Core 0.024 0.208 <0.001 <0.001 49.79 1076 50.55 161.0 2533 39 25 300 0.88 233 3 24 40.2 3.2 21.0 2 16 29.60 0.028 0.225 < 0.001 < 0.001 56.26 723020 Drill Core 592.8 18.88 2.3 303 0.92 133.8 18.6 67.4 1362 2.0 3.1 16.1 3.1 0.69 6.90 723021 Drill Core 0.013 0.212 <0.001 <0.001 63.60 500.7 58.9 3.3 2.9 373 1.07 127.5 34.1 18.1 0.79 10.90 46.96 1569 2.4 3.3 723022 Drill Core 0.017 0.212 <0.001 <0.001 51.57 412.9 55.02 113.9 1670 31 38 644 1.28 80.9 22 42.2 35 28.7 1 13 9.28 32.9 723023 Drill Core 0.020 0.193 < 0.001 < 0.001 139.5 601.0 16.59 86.2 1857 443 1.41 125.3 2.0 66.7 3.6 0.76 8.11 3.1 4.4 723024 Drill Core 0.027 0.335 <0.001 <0.001 0.81 25.80 10.31 57.2 15.6 471 0.6 82.7 0.10 101.6 83 3.42 5 0.4 2.4 0.14 723025 Drill Core 0.028 0.213 <0.001 <0.001 66.14 502.9 14.63 177.4 988 3.2 4.4 345 1.29 93.0 1.8 44.4 3.3 24.5 1.79 4.19 29.2 0.034 0.252 <0.001 <0.001 90.02 334.6 36.27 499 723026 Drill Core 1149 5.7 1.32 103.5 30.2 2.46 4.67 248.4 4.2 1.5 2.9 723027 Drill Core 0.017 0.404 < 0.001 < 0.001 4.85 382.1 109.7 466.7 1316 4.9 10.4 1505 2.11 71.4 43.9 1.9 68.1 4.22 4.54 17 723028 Drill Core 0.021 0.477 < 0.001 < 0.001 1.03 65.98 11.54 837.1 339 3.5 6.5 1174 1.91 11.0 1.2 127.4 2.0 77.4 8.90 Drill Core 0.031 0.452 < 0.001 < 0.001 0.79 6.94 12.04 129.5 30 1056 13.9 86.3 0.17 723029 3.3 6.3 1.84 1.1 1.8 0.29 1.9

des all p port sup er dated prior to the date on this certificate. Signature in

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada

LENNAC Report Date:

November 14, 2007

Page:

Project:

2 of 4 Part 3

CERTIFICATE OF ANALYSIS

CERTIFIC	ATE OF AN	ALY	′SIS														SMI	070	001:	28.1	
	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	Bi	v	Ca	P	La	Cr	Mg	Ba	π	в	AI	Na	к	w	Sc	т	S	Hg	Se	Те
	Unit	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm
	MDL	0.02	2	0.01	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02
723001	Drill Core	0.10	<2	0.54	0.025	11.0	2.8	0.15	36.8	< 0.001	<20	0.29	0.005	0.14	<0.1	0.9	0.12	0.30	16	0.4	0.03
723002	Drill Core	0.15	2	0.57	0.025	11.1	27.9	0.15	45.9	< 0.001	<20	0.34	0.002	0.16	<0.1	0.7	0.15	0.42	20	0.8	0.03
723003	Drill Core	0.22	2	1.09	0.027	8.9	2.8	0.32	57.5	< 0.001	<20	0.33	0.006	0.15	<0.1	0.9	0.12	0.84	8	0.8	0.04
723004	Drill Core	0.18	3	1.11	0.023	8.4	31.9	0.28	94.7	< 0.001	<20	0.41	0.004	0.13	<0.1	1.0	0.14	0.61	39	0.8	0.02
723005	Drill Core	0.08	2	1.00	0.026	7.8	2.9	0.32	42.4	< 0.001	<20	0.43	0.009	0.15	<0.1	1.2	0.14	0.31	<5	0.5	0.03
723006	Drill Core	0.17	2	1.00	0.032	7.5	31.2	0.29	75.7	< 0.001	<20	0.41	0.007	0.15	<0.1	0.8	0.13	0.56	20	0.6	0.04
723007 Drill Core 0.22 4 0.81 0.024 5.5 4.1 0.22 97.7 <0.001 <20 0.38 0.006 0.19 0.1 0.7 0.21 0.99 14 1.4 723008 Drill Core 0.12 3 0.64 0.025 8.3 31.1 0.22 95.6 <0.001															0.07						
723008	Drill Core	0.12	3	0.64	0.025	8.3	31.1	0.22	95.6	< 0.001	<20	0.32	0.016	0.14	<0.1	0.7	0.13	0.42	<5	1.1	<0.02
723009	Drill Core	0.14	3	0.98	0.027	8.8	2.8	0.34	87.5	< 0.001	<20	0.36	0.021	0.18	<0.1	0.9	0.12	0.36	<5	0.9	0.06
723010	Drill Core	0.08	3	0.81	0.026	9.3	38.3	0.30	88.1	< 0.001	<20	0.39	0.016	0.15	<0.1	0.8	0.11	0.20	<5	0.8	0.03
723011	Drill Core	0.20	2	0.83	0.029	8.9	2.7	0.26	141.7	< 0.001	<20	0.32	0.004	0.17	<0.1	0.7	0.10	0.57	48	0.6	0.06
723012	Drill Core	0.27	<2	0.46	0.023	4.9	38.0	0.18	42.4	< 0.001	<20	0.31	0.005	0.16	0.1	0.4	0.24	1.00	78	1.0	0.06
723013	Drill Core	0.15	4	0.84	0.025	10.6	2.9	0.29	85.2	< 0.001	<20	0.36	0.005	0.18	<0.1	0.8	0.12	0.52	43	0.7	0.05
723014	Drill Core	0.10	2	0.93	0.022	7.4	37.8	0.26	45.9	< 0.001	<20	0.32	0.008	0.17	<0.1	0.8	0.14	0.29	20	0.8	0.02
723015	Drill Core	0.11	4	0.90	0.021	7.4	2.8	0.28	64.3	< 0.001	<20	0.37	0.009	0.13	<0.1	1.0	0.23	0.38	13	1.0	0.02
723016	Drill Core	0.12	<2	0.74	0.024	8.3	36.5	0.28	34.6	< 0.001	<20	0.41	0.012	0.14	<0.1	0.8	0.11	0.29	5	1.0	0.03
723017	Drill Core	0.09	3	0.91	0.030	9.5	2.7	0.22	55.8	< 0.001	<20	0.47	0.013	0.16	<0.1	1.1	0.17	0.24	7	1.2	0.02
723018	Drill Core	0.09	4	0.67	0.025	6.7	33.7	0.24	44.9	< 0.001	<20	0.37	0.023	0.13	<0.1	1.9	0.18	0.25	8	0.9	0.03
723019	Drill Core	0.21	3	0.83	0.028	6.6	3.3	0.27	53.3	< 0.001	<20	0.39	0.020	0.16	<0.1	0.9	0.15	0.64	35	0.6	0.04
RRE 723019	Drill Core	0.21	3	0.87	0.025	7.2	36.2	0.27	53.5	< 0.001	<20	0.39	0.017	0.15	<0.1	0.8	0.16	0.63	40	0.9	0.03
723020	Drill Core	0.20	3	0.73	0.023	7.6	3.3	0.24	53.8	< 0.001	<20	0.35	0.021	0.18	<0.1	0.8	0.11	0.55	8	0.5	0.03
723021	Drill Core	0.24	<2	0.78	0.021	6.8	40.1	0.23	97.9	< 0.001	<20	0.36	0.009	0.15	<0.1	0.6	0.11	0.88	17	0.5	0.02
723022	Drill Core	0.24	3	1.53	0.019	4.4	2.3	0.46	56.2	< 0.001	<20	0.28	0.012	0.15	<0.1	0.7	0.68	0.83	29	0.5	0.05
723023	Drill Core	0.22	7	1.49	0.024	4.5	34.2	0.51	69.2	< 0.001	<20	0.42	0.014	0.15	<0.1	0.9	1.10	0.82	23	0.7	0.05
723024	Drill Core	0.10	44	0.64	0.055	12.8	39.6	1.06	220.9	0.004	<20	2.00	0.021	0.23	<0.1	5.8	0.03	0.24	26	0.3	0.02
723025	Drill Core	0.21	8	0.99	0.033	5.9	37.5	0.37	60.0	< 0.001	<20	0.53	0.022	0.16	<0.1	1.0	0.46	0.75	18	0.4	0.02
723026	Drill Core	0.20	8	1.04	0.030	8.1	3.1	0.41	63.2	< 0.001	<20	0.51	0.028	0.20	<0.1	1.3	0.55	0.67	18	0.4	0.02
723027	Drill Core	0.33	21	3.40	0.067	4.9	20.3	1.08	316.9	< 0.001	<20	0.49	0.011	0.24	<0.1	2.3	0.18	0.55	40	0.3	0.03
723028	Drill Core	0.05	31	3.38	0.079	7.1	3.0	0.97	255.0	0.001	<20	0.60	0.020	0.31	<0.1	2.3	0.13	0.12	14	⊲0.1	<0.02
723029	Drill Core	0.04	32	3.17	0.076	7.0	22.2	0.92	313.0	0.001	<20	0.55	0.027	0.27	<0.1	2.3	0.10	0.07	<5	<0.1	<0.02

Project:

Page:

Report Date:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada LENNAC November 14, 2007

SMI07000128.1

2 of 4 Part 4

CERTIFICATE OF ANALYSIS

	Method Analyte Unit MDL	1F Ga ppm 0.1
723001	Drill Core	0.8
723002	Drill Core	0.9
723003	Drill Core	1.0
723004	Drill Core	1.1
723005	Drill Core	1.1
723006	Drill Core	1.1
723007	Drill Core	1.3
723008	Drill Core	1.0
723009	Drill Core	1.1
723010	Drill Core	1.1
723011	Drill Core	0.9
723012	Drill Core	0.8
723013	Drill Core	1.1
723014	Drill Core	0.9
723015	Drill Core	1.0
723016	Drill Core	1.2
723017	Drill Core	1.2
723018	Drill Core	1.0
723019	Drill Core	1.0
RRE 723019	Drill Core	1.0
723020	Drill Core	1.1
723021	Drill Core	1.0
723022	Drill Core	0.8
723023	Drill Core	1.0
723024	Drill Core	5.8
723025	Drill Core	1.4
723026	Drill Core	1.2
723027	Drill Core	1.1
723028	Drill Core	1.3
723029	Drill Core	1.3

Project:

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada

LENNAC Report Date: November 14, 2007

3 of 4 Part 1

CERTIFICATE OF ANALYSIS

SMI07000128.1

	Method	WGHT	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	P	Cr	Mg	AI
	Unit	kg	%	%	%	%	GMT	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	MDL	0.01	0.001	0.001	0.01	0.01	2	0.001	0.001	0.01	0.01	0.01	0.001	0.001	0.001	0.01	0.01	0.001	0.001	0.01	0.01
723030	Drill Core	1.8	< 0.001	< 0.001	< 0.01	0.01	<2	< 0.001	<0.001	0.10	1.87	<0.01	0.008	< 0.001	< 0.001	< 0.01	2.75	0.075	< 0.001	0.65	0.65
723031	Drill Core	1.9	< 0.001	0.005	< 0.01	0.01	<2	<0.001	< 0.001	0.11	1.88	<0.01	0.007	< 0.001	< 0.001	< 0.01	3.29	0.072	0.003	0.94	0.67
723032	Drill Core	2	< 0.001	< 0.001	< 0.01	0.01	<2	<0.001	<0.001	0.10	1.81	<0.01	0.007	< 0.001	< 0.001	< 0.01	2.87	0.075	< 0.001	0.82	0.66
723033	Drill Core	2	< 0.001	0.004	< 0.01	0.01	<2	<0.001	<0.001	0.11	1.84	<0.01	0.007	< 0.001	< 0.001	< 0.01	2.80	0.075	0.002	0.65	0.63
723034	Drill Core	1.9	< 0.001	< 0.001	< 0.01	<0.01	<2	0.001	<0.001	0.13	1.93	<0.01	0.008	< 0.001	< 0.001	< 0.01	2.91	0.081	< 0.001	0.67	0.56
723035	Drill Core	2.1	< 0.001	0.002	< 0.01	0.01	<2	<0.001	<0.001	0.14	1.80	<0.01	0.008	< 0.001	< 0.001	< 0.01	3.29	0.092	< 0.001	0.69	0.82
723036	Drill Core	1.1	0.005	0.094	< 0.01	0.02	3	0.001	<0.001	0.13	2.42	0.02	0.006	< 0.001	0.002	< 0.01	2.64	0.122	0.002	0.97	0.83
723037	Drill Core	2.3	0.004	0.023	< 0.01	< 0.01	<2	<0.001	<0.001	0.08	1.13	<0.01	0.004	< 0.001	0.002	< 0.01	1.61	0.036	0.001	0.55	0.62
723038	Drill Core	1.9	0.085	0.055	< 0.01	0.01	<2	0.001	0.001	0.08	4.33	<0.01	0.007	< 0.001	< 0.001	< 0.01	2.81	0.207	0.002	1.35	1.42
723039	Drill Core	1.8	0.008	0.065	< 0.01	0.01	<2	0.002	0.001	0.10	4.73	<0.01	0.007	< 0.001	0.002	< 0.01	2.92	0.208	0.002	1.35	1.35
723040	Drill Core	1.9	0.008	0.098	< 0.01	< 0.01	<2	0.002	0.002	0.05	4.46	0.01	0.007	< 0.001	< 0.001	< 0.01	1.82	0.220	0.002	1.36	1.74
723041	Drill Core	1.6	0.003	0.092	< 0.01	< 0.01	<2	<0.001	0.001	0.04	2.52	0.01	0.005	< 0.001	0.001	< 0.01	1.37	0.125	0.002	0.94	1.16
723042	Drill Core	1.6	0.004	0.123	< 0.01	0.01	3	0.002	0.002	0.10	3.48	0.02	0.007	< 0.001	0.004	< 0.01	2.87	0.188	0.003	1.40	1.47
723043	Drill Core	2	0.003	0.112	< 0.01	0.02	7	<0.001	0.002	0.18	2.53	0.03	0.005	< 0.001	0.004	< 0.01	2.20	0.079	0.002	0.82	0.78
723044	Drill Core	1.8	0.004	0.125	0.01	0.04	6	0.001	0.002	0.20	4.20	0.03	0.008	< 0.001	0.005	< 0.01	2.94	0.187	0.002	1.38	1.58
723045	Drill Core	1.8	0.010	0.128	0.01	0.02	4	<0.001	0.001	0.17	2.01	0.03	0.009	< 0.001	0.005	< 0.01	3.68	0.071	0.002	1.23	0.89
723046	Drill Core	1.8	0.016	0.112	< 0.01	0.01	5	<0.001	<0.001	0.12	1.18	0.02	0.004	< 0.001	0.007	< 0.01	1.60	0.056	0.003	0.60	0.64
723047	Drill Core	2.4	< 0.001	0.003	< 0.01	< 0.01	<2	0.005	0.001	0.06	3.19	<0.01	0.008	< 0.001	< 0.001	< 0.01	0.91	0.050	0.004	1.01	2.09
723048	Drill Core	1.8	0.023	0.021	<0.01	<0.01	<2	<0.001	<0.001	0.09	0.87	<0.01	0.003	<0.001	< 0.001	< 0.01	1.12	0.041	0.005	0.42	0.59
723049	Drill Core	1.9	0.034	0.016	< 0.01	< 0.01	2	<0.001	<0.001	0.12	1.16	<0.01	0.004	< 0.001	< 0.001	< 0.01	1.34	0.034	0.002	0.35	0.60
723050	Drill Core	1.9	0.032	0.019	< 0.01	0.02	2	<0.001	<0.001	0.13	1.14	<0.01	0.003	< 0.001	0.003	< 0.01	1.32	0.033	0.005	0.39	0.60
723051	Drill Core	2.1	0.026	0.157	0.20	0.24	27	<0.001	<0.001	0.18	2.23	0.04	0.003	0.002	0.020	< 0.01	1.50	0.022	0.002	0.52	0.58
723052	Drill Core	2	0.003	0.032	< 0.01	0.04	3	<0.001	<0.001	0.08	1.01	<0.01	0.003	< 0.001	0.002	< 0.01	1.16	0.025	0.004	0.39	0.55
723053	Drill Core	1.2	0.006	0.013	< 0.01	0.01	<2	<0.001	<0.001	0.04	1.63	<0.01	0.003	< 0.001	< 0.001	< 0.01	1.81	0.067	0.002	0.38	0.84
723054	Drill Core	1.8	0.005	0.002	< 0.01	< 0.01	<2	<0.001	<0.001	0.04	1.67	<0.01	0.006	< 0.001	< 0.001	< 0.01	1.93	0.088	0.004	0.82	0.91
723055	Drill Core	2	0.015	0.006	< 0.01	< 0.01	<2	<0.001	<0.001	0.06	2.17	<0.01	0.004	< 0.001	< 0.001	< 0.01	1.57	0.133	0.002	0.88	0.98
723056	Drill Core	2.1	0.004	0.010	< 0.01	< 0.01	<2	<0.001	<0.001	0.07	3.91	<0.01	0.005	< 0.001	< 0.001	< 0.01	1.66	0.222	0.002	1.12	1.30
RRE 723056	Drill Core		0.004	0.009	< 0.01	<0.01	<2	<0.001	<0.001	0.07	4.03	<0.01	0.005	< 0.001	< 0.001	< 0.01	1.64	0.226	0.001	1.12	1.30
723057	Drill Core	1.8	0.003	0.004	< 0.01	0.01	<2	0.001	<0.001	0.10	4.07	<0.01	0.006	< 0.001	0.002	< 0.01	2.77	0.226	< 0.001	1.42	1.39
723058	Drill Core	1.9	0.008	0.049	< 0.01	0.01	<2	<0.001	<0.001	0.09	4.11	<0.01	0.007	< 0.001	0.001	< 0.01	2.46	0.232	< 0.001	1.28	1.40

Project:

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada LENNAC

Part 2

Report Date: Nov

November 14, 2007

3 of 4

CERTIFICATE OF ANALYSIS

SMI07000128.1

	Method	7AR	7AR	7AR	7AR	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	Na	к	w	Hg	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb
	Unit	%	%	%	%	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm
	MDL	0.001	0.001	0.001	0.001	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02
723030	Drill Core	0.044	0.457	<0.001	< 0.001	0.49	5.80	11.34	104.0	36	3.1	5.6	944	1.73	1.2	1.2	36.6	1.7	86.3	0.18	0.13
723031	Drill Core	0.023	0.395	<0.001	< 0.001	0.35	54.19	11.41	124.8	121	3.2	6.0	1032	1.79	8.7	1.1	26.4	1.6	68.9	0.39	0.38
723032	Drill Core	0.026	0.413	<0.001	< 0.001	0.46	3.17	9.81	111.8	14	3.0	5.9	1053	1.81	2.5	1.1	6.0	1.6	70.6	0.23	0.10
723033	Drill Core	0.034	0.426	<0.001	< 0.001	0.49	45.24	16.39	111.2	154	3.1	6.1	1076	1.64	11.9	1.1	26.1	1.6	72.6	0.39	0.39
723034	Drill Core	0.033	0.410	<0.001	< 0.001	0.72	8.49	9.96	95.4	41	12.6	7.5	1271	1.77	1.7	1.0	23.7	1.5	80.0	0.07	0.05
723035	Drill Core	0.047	0.533	<0.001	<0.001	0.46	16.50	28.89	138.4	152	4.8	6.7	1321	1.64	4.1	1.4	16.4	1.6	81.9	0.78	0.25
723036	Drill Core	0.058	0.421	<0.001	< 0.001	42.66	945.4	42.45	193.4	3433	13.4	8.4	1272	2.34	167.1	1.6	33.6	2.0	61.7	1.33	7.56
723037	Drill Core	0.031	0.339	<0.001	< 0.001	38.16	256.7	28.56	104.2	1164	4.5	3.7	806	1.11	65.0	1.3	32.2	3.9	40.3	0.77	6.48
723038	Drill Core	0.061	0.645	< 0.001	< 0.001	829.1	540.0	10.27	118.9	1326	14.7	15.7	779	3.82	34.5	0.6	208.4	1.0	75.2	< 0.01	2.83
723039	Drill Core	0.060	0.577	<0.001	< 0.001	64.74	649.9	13.68	106,4	1915	16.3	14.2	1016	4.05	64.7	0.6	55.2	1.0	79.8	0.35	4.91
723040	Drill Core	0.135	1.013	<0.001	< 0.001	71.43	971.1	6.78	68.8	1230	18.5	22.1	466	3.88	117.1	0.5	23.0	0.9	69.3	0.03	3.15
723041	Drill Core	0.097	0.644	<0.001	< 0.001	31.26	908.2	6.00	58.8	1618	10.7	15.6	355	2.37	148.7	0.8	21.7	2.2	47.9	0.15	6.74
723042	Drill Core	0.055	0.702	<0.001	< 0.001	35.59	1173	14.73	147.1	2540	17.4	18.2	934	3.09	183.1	0.9	40.0	1.3	72.6	0.86	14.38
723043	Drill Core	0.040	0.454	<0.001	< 0.001	25.88	1082	94.48	209.0	5654	9.4	19.9	1703	2.40	260.1	1.6	81.4	2.2	50.9	1.83	15.03
723044	Drill Core	0.052	0.693	<0.001	< 0.001	34.39	1225	104.8	331.9	5010	13.0	17.0	1817	3.45	256.7	1.1	99.7	1.3	79.0	3.08	21.69
723045	Drill Core	0.023	0.347	<0.001	< 0.001	86.75	1307	111.1	214.0	3939	10.5	12.8	1711	1.99	284.5	1.9	33.1	2.1	88.9	2.05	16.60
723046	Drill Core	0.042	0.355	<0.001	< 0.001	145.1	1123	52.83	146.7	4576	4.2	11.5	1223	1.13	200.4	1.9	33.6	2.6	43.8	2.35	27.81
723047	Drill Core	0.033	0.335	<0.001	< 0.001	0.90	24.54	8.28	99.1	85	51.2	13.3	544	3.03	6.3	0.3	0.9	2.0	85.5	0.08	0.20
723048	Drill Core	0.050	0.336	<0.001	< 0.001	204.5	219.0	21.81	54.0	1366	3.1	5.6	856	0.79	32.7	1.7	13.7	2.7	31.4	0.36	2.99
723049	Drill Core	0.022	0.379	<0.001	< 0.001	345.4	171.9	53.98	99.8	2049	2.9	3.2	1260	1.19	53.9	2.6	22.2	2.8	34.6	0.64	3.06
723050	Drill Core	0.022	0.387	<0.001	< 0.001	304.2	196.9	48.01	139.8	1783	3.0	3.2	1350	1.10	67.3	2.4	28.6	2.6	32.1	1.32	6.39
723051	Drill Core	0.007	0.389	<0.001	< 0.001	244.0	1524	2094	2175	23333	3.2	5.4	1684	2.19	379.6	2.5	111.0	3.3	31.0	23.53	82.47
723052	Drill Core	0.032	0.360	<0.001	< 0.001	23.26	309.6	80.87	370.2	2683	2.7	4.3	830	0.97	98.4	1.3	41.2	3.2	31.2	3.74	5.69
723053	Drill Core	0.043	0.305	<0.001	< 0.001	55.04	133.6	16.94	109.3	308	6.2	4.6	388	1.44	33.1	0.5	7.8	2.6	26.4	0.58	3.42
723054	Drill Core	0.086	0.362	<0.001	< 0.001	42.83	19.81	4.52	72.3	52	8.3	4.0	402	1.55	7.3	0.4	2.4	2.5	48.6	0.28	0.62
723055	Drill Core	0.109	0.492	<0.001	< 0.001	128.7	57.78	4.99	76.7	168	8.7	4.6	528	1.93	13.2	0.5	4.0	2.2	35.0	0.18	0.77
723056	Drill Core	0.095	0.781	<0.001	< 0.001	39.50	96.18	13.02	93.4	341	10.6	8.7	666	3.26	32.8	0.5	10.3	1.2	40.9	0.29	0.64
RRE 723056	Drill Core	0.102	0.798	<0.001	< 0.001	38.50	89.52	14.81	88.8	327	9.8	8.5	644	3.27	29.8	0.5	11.8	1.3	41.8	0.29	0.61
723057	Drill Core	0.066	0.629	<0.001	< 0.001	28.62	42.26	8.98	153.1	182	10.9	8.3	1066	3.66	23.1	0.5	24.1	1.2	55.1	0.60	1.75
723058	Drill Core	0.087	0.686	<0.001	<0.001	67.60	449.5	7.99	125.6	1096	9.5	8.1	825	3.31	80.2	0.5	20.8	1.3	54.4	0.49	4.78

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada

Part 3

LENNAC

3 of 4

November 14, 2007

www.acmelab.com

Project: Report Date: Page:

CERTIFICATE OF ANALYSIS

CERTIFIC	ATE OF AN	JALY	′SIS														SMI	070	001:	28.1	
	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	Bi	v	Ca	P	La	Cr	Mg	Ba	π	в	AI	Na	к	w	Sc	т	s	Hg	Se	Те
	Unit	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm
	MDL	0.02	2	0.01	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02
723030	Drill Core	0.03	31	2.68	0.076	7.7	3.5	0.63	459.0	0.002	<20	0.56	0.037	0.27	<0.1	2.2	0.07	0.04	<5	<0.1	<0.02
723031	Drill Core	0.03	28	3.24	0.079	7.3	24.6	0.91	236.6	0.001	<20	0.56	0.020	0.24	<0.1	2.1	0.10	0.05	<5	<0.1	<0.02
723032	Drill Core	<0.02	30	2.84	0.076	6.9	3.3	0.81	106.9	0.001	<20	0.56	0.022	0.25	<0.1	2.0	0.10	0.05	<5	0.1	<0.02
723033	Drill Core	0.03	27	2.64	0.074	6.9	23.7	0.62	328.5	0.002	<20	0.49	0.029	0.26	<0.1	2.1	0.08	0.06	<5	<0.1	< 0.02
723034	Drill Core	0.06	30	2.90	0.089	7.3	4.0	0.64	338.9	0.002	<20	0.42	0.029	0.25	<0.1	2.0	0.09	0.07	<5	0.1	0.04
723035	Drill Core	0.05	23	3.01	0.099	9.5	6.1	0.64	310.6	0.002	<20	0.50	0.026	0.32	<0.1	1.6	0.13	0.08	<5	0.1	<0.02
723036	Drill Core	0.13	48	2.65	0.128	11.0	18.9	0.96	64.6	0.010	<20	0.54	0.029	0.29	<0.1	2.7	0.15	0.47	8	0.6	< 0.02
723037	Drill Core	0.09	13	1.64	0.038	7.8	13.4	0.55	63.1	0.001	<20	0.37	0.018	0.22	<0.1	0.8	0.12	0.38	<5	0.2	0.03
723038	Drill Core	0.12	142	2.60	0.225	12.5	22.2	1.34	55.3	0.071	<20	1.09	0.034	0.56	0.1	7.0	0.22	0.52	<5	1.6	< 0.02
723039	Drill Core	0.29	96	2.83	0.225	13.1	18.2	1.34	49.5	0.068	<20	1.08	0.038	0.54	0.2	6.4	0.24	0.51	<5	1.0	0.15
723040	Drill Core	0.09	138	1.78	0.240	13.2	30.3	1.33	120.8	0.173	<20	1.48	0.102	0.97	0.1	7.2	0.32	0.54	<5	1.4	0.02
723041	Drill Core	0.06	82	1.37	0.130	10.1	21.6	0.91	96.1	0.087	<20	0.90	0.065	0.58	0.1	4.4	0.24	0.37	<5	0.9	<0.02
723042	Drill Core	0.12	109	2.67	0.201	10.4	30.2	1.33	92.2	0.097	<20	1.14	0.038	0.68	0.1	6.7	0.31	0.48	5	1.1	0.02
723043	Drill Core	0.19	29	2.12	0.081	7.0	14.1	0.78	124.8	0.006	<20	0.51	0.026	0.30	<0.1	3.8	0.23	1.30	11	0.9	0.03
723044	Drill Core	0.20	101	2.71	0.194	9.8	21.4	1.31	104.8	0.087	<20	1.24	0.037	0.64	0.1	6.5	0.32	0.83	19	1.1	0.11
723045	Drill Core	0.24	42	3.56	0.079	7.6	19.5	1.24	64.3	0.003	<20	0.64	0.019	0.24	<0.1	4.8	0.22	0.77	17	1.0	0.05
723046	Drill Core	0.08	17	1.62	0.058	8.8	31.3	0.57	138.8	0.003	<20	0.44	0.025	0.24	<0.1	2.7	0.22	0.36	11	0.6	0.04
723047	Drill Core	0.11	41	0.93	0.052	13.7	41.8	0.99	211.0	0.004	<20	1.84	0.026	0.22	<0.1	5.0	0.03	0.17	21	<0.1	<0.02
723048	Drill Core	0.11	9	1.06	0.042	5.7	38.5	0.38	62.7	0.002	<20	0.35	0.034	0.22	<0.1	1.4	0.13	0.37	<5	0.2	0.03
723049	Drill Core	0.28	5	1.30	0.038	6.7	19.4	0.36	187.9	< 0.001	<20	0.39	0.016	0.25	<0.1	1.1	0.10	0.90	13	0.3	0.08
723050	Drill Core	0.22	5	1.34	0.036	7.2	40.5	0.39	148.4	< 0.001	<20	0.35	0.014	0.23	<0.1	0.9	0.11	0.76	16	0.2	0.05
723051	Drill Core	3.00	4	1.43	0.024	4.5	18.3	0.51	75.7	< 0.001	<20	0.35	0.007	0.26	<0.1	0.8	0.15	2.07	217	0.5	0.42
723052	Drill Core	0.18	6	1.17	0.027	8.2	38.5	0.38	94.5	< 0.001	<20	0.33	0.020	0.24	<0.1	1.0	0.14	0.50	27	0.3	0.04
723053	Drill Core	0.07	42	1.80	0.071	5.2	15.7	0.34	69.8	0.020	<20	0.56	0.022	0.22	<0.1	4.2	0.10	0.04	<5	<0.1	<0.02
723054	Drill Core	0.03	49	1.96	0.096	7.3	39.0	0.78	76.3	0.030	23	0.60	0.053	0.29	<0.1	5.3	0.10	<0.02	<5	<0.1	<0.02
723055	Drill Core	0.06	50	1.54	0.133	7.9	16.9	0.79	79.2	0.057	25	0.62	0.065	0.41	0.1	5.1	0.10	0.07	<5	<0.1	< 0.02
723056	Drill Core	0.22	67	1.64	0.243	10.8	16.6	1.09	119.8	0.153	<20	0.98	0.064	0.77	<0.1	7.5	0.18	0.37	<5	<0.1	<0.02
RRE 723056	Drill Core	0.22	67	1.59	0.239	10.7	9.6	1.07	130.8	0.153	22	0.97	0.072	0.72	0.1	7.3	0.17	0.33	<5	<0.1	<0.02
723057	Drill Core	0.23	69	2.73	0.242	11.2	10.6	1.44	134.7	0.097	<20	1.13	0.044	0.59	<0.1	7.5	0.17	0.42	<5	<0.1	< 0.02
723058	Drill Core	0.24	70	2.31	0.239	10.8	7.8	1.15	92.9	0.111	<20	1.07	0.060	0.59	<0.1	7.4	0.19	0.27	<5	0.2	<0.02

Project:

Page:

Report Date:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 105 Canada LENNAC November 14, 2007

3 of 4 Part 4

CERTIFICATE OF ANALYSIS

	Method Analyte Unit MDL	1F Ga ppm 0.1
723030	Drill Core	1.6
723031	Drill Core	1.4
723032	Drill Core	1.4
723033	Drill Core	1.3
723034	Drill Core	1.3
723035	Drill Core	1.2
723036	Drill Core	1.7
723037	Drill Core	0.9
723038	Drill Core	4.0
723039	Drill Core	3.7
723040	Drill Core	6.7
723041	Drill Core	4.2
723042	Drill Core	4.8
723043	Drill Core	1.6
723044	Drill Core	4.3
723045	Drill Core	1.7
723046	Drill Core	1.2
723047	Drill Core	5.5
723048	Drill Core	0.9
723049	Drill Core	0.9
723050	Drill Core	0.7
723051	Drill Core	0.8
723052	Drill Core	0.7
723053	Drill Core	1.8
723054	Drill Core	2.2
723055	Drill Core	2.8
723056	Drill Core	4.5
RRE 723056	Drill Core	4.5
723057	Drill Core	4.2
723058	Drill Core	4.2

Project:

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada LENNAC

Report Date: November 14, 2007

4 of 4

Part 1

CERTIFICATE OF ANALYSIS

SMI07000128.1

	Method	WGHT	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	P	Cr	Mg	AI
	Unit	kg	%	%	%	%	GNVT	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	MDL	0.01	0.001	0.001	0.01	0.01	2	0.001	0.001	0.01	0.01	0.01	0.001	0.001	0.001	0.01	0.01	0.001	0.001	0.01	0.01
723059	Drill Core	1.8	0.005	0.068	< 0.01	0.02	<2	<0.001	<0.001	0.10	4.03	0.02	0.008	< 0.001	0.002	< 0.01	3.49	0.181	0.002	1.48	1.40
723060	Drill Core	1.5	0.009	0.016	0.05	0.01	4	<0.001	<0.001	0.30	1.32	<0.01	0.004	< 0.001	0.004	< 0.01	2.22	0.046	0.002	0.85	0.60
723061	Drill Core	1.5	0.005	0.021	< 0.01	0.01	<2	<0.001	<0.001	0.20	1.47	<0.01	0.004	< 0.001	0.003	< 0.01	1.94	0.040	0.003	0.74	0.64
723062	Drill Core	1.5	0.014	0.102	< 0.01	0.03	5	<0.001	<0.001	0.13	2.73	0.03	0.004	< 0.001	< 0.001	< 0.01	1.67	0.122	0.001	0.82	0.86
723063	Drill Core	1.8	0.016	0.134	< 0.01	<0.01	<2	0.001	<0.001	0.06	1.89	0.03	0.004	< 0.001	0.002	< 0.01	1.98	0.144	0.003	0.92	1.18
723064	Drill Core	1.9	0.006	0.059	< 0.01	< 0.01	<2	<0.001	<0.001	0.04	1.03	0.01	0.004	< 0.001	0.002	<0.01	1.43	0.049	0.002	0.58	0.67
723065	Drill Core	1.8	0.006	0.009	< 0.01	< 0.01	<2	<0.001	<0.001	0.05	0.79	<0.01	0.003	< 0.001	0.001	< 0.01	1.27	0.029	0.004	0.54	0.48
723066	Drill Core	1.8	0.003	0.020	< 0.01	<0.01	<2	<0.001	<0.001	0.05	0.71	<0.01	0.003	< 0.001	0.002	< 0.01	1.09	0.020	0.002	0.44	0.44
723067	Drill Core	1.5	0.018	0.021	< 0.01	< 0.01	<2	<0.001	<0.001	0.11	0.92	<0.01	0.004	< 0.001	0.002	< 0.01	1.75	0.029	0.005	0.66	0.45
723068	Drill Core	1.8	0.006	0.017	<0.01	< 0.01	<2	<0.001	<0.001	0.13	1.41	<0.01	0.003	< 0.001	0.003	< 0.01	1.67	0.039	0.002	0.63	0.45
723069	Drill Core	1.6	0.011	0.156	< 0.01	< 0.01	2	0.001	<0.001	0.08	3.30	0.02	0.005	< 0.001	0.005	< 0.01	2.32	0.218	0.002	1.03	1.36
723070	Drill Core	1.5	0.011	0.091	< 0.01	< 0.01	<2	<0.001	<0.001	0.04	2.07	0.01	0.004	< 0.001	0.003	< 0.01	1.61	0.109	0.001	0.78	1.06
723071	Drill Core	1.4	0.018	0.178	< 0.01	0.01	3	<0.001	<0.001	0.04	1.78	0.02	0.004	< 0.001	0.006	< 0.01	1.56	0.060	0.003	0.69	0.86
723072	Drill Core	1.2	0.021	0.033	< 0.01	0.01	<2	0.001	0.001	0.24	2.71	0.01	0.006	< 0.001	0.003	< 0.01	2.77	0.139	< 0.001	1.07	1.12
723073	Drill Core	2	0.007	0.069	< 0.01	< 0.01	<2	<0.001	0.001	0.08	3.70	<0.01	0.007	< 0.001	0.002	< 0.01	2.14	0.230	0.001	1.24	1.46
723074	Drill Core	1.8	0.005	0.055	< 0.01	0.01	<2	<0.001	0.002	0.11	4.14	<0.01	0.007	< 0.001	0.001	< 0.01	3.12	0.203	< 0.001	1.53	1.35
723075	Drill Core	2	< 0.001	0.002	< 0.01	0.01	<2	0.006	0.001	0.04	3.46	<0.01	0.011	< 0.001	< 0.001	< 0.01	0.56	0.052	0.006	1.10	2.23
723076	Drill Core	1.4	0.011	0.039	< 0.01	0.02	<2	0.001	0.001	0.15	3.88	<0.01	0.013	< 0.001	0.002	< 0.01	6.67	0.141	< 0.001	2.32	1.03
723077	Drill Core	1.8	0.005	0.008	< 0.01	0.02	<2	<0.001	0.001	0.15	3.39	<0.01	0.016	<0.001	< 0.001	< 0.01	6.74	0.117	0.001	2.22	1.01
723078	Drill Core	1.3	0.006	0.002	< 0.01	0.02	<2	<0.001	<0.001	0.22	3.10	<0.01	0.015	< 0.001	< 0.001	< 0.01	6.93	0.067	< 0.001	2.27	0.79
723079	Drill Core	2.5	< 0.001	0.002	< 0.01	0.01	<2	0.005	0.001	0.04	3.47	<0.01	0.007	< 0.001	< 0.001	< 0.01	0.49	0.051	0.005	1.02	2.07
723080	Drill Core	1.5	< 0.001	< 0.001	<0.01	0.01	<2	<0.001	<0.001	0.08	1.92	<0.01	0.006	< 0.001	0.001	< 0.01	3.74	0.073	< 0.001	1.21	0.70
723081	Drill Core	1.7	< 0.001	< 0.001	< 0.01	0.01	<2	<0.001	<0.001	0.10	1.97	<0.01	0.007	< 0.001	< 0.001	< 0.01	3.77	0.055	0.003	1.22	0.67
RRE 723081	Drill Core		< 0.001	<0.001	< 0.01	0.01	<2	<0.001	<0.001	0.10	1.98	<0.01	0.008	< 0.001	< 0.001	< 0.01	3.80	0.055	0.001	1.22	0.76
723082	Drill Core	1.5	< 0.001	< 0.001	< 0.01	0.02	<2	<0.001	<0.001	0.08	2.30	<0.01	0.009	< 0.001	< 0.001	< 0.01	4.82	0.055	0.003	1.59	0.71
723083	Drill Core	0.5	< 0.001	0.005	< 0.01	0.01	<2	<0.001	<0.001	0.08	1.92	<0.01	0.011	< 0.001	< 0.001	< 0.01	3.82	0.055	0.001	1.26	0.70

Project:

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada LENNAC

Report Date:

November 14, 2007

4 of 4 Part 2

CERTIFICATE OF ANALYSIS

CERTIFIC	CATE OF AN	IAL	(SIS	3													SMI	070	0012	28.1	
	Method	7AR	7AR	7AR	7AR	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	Na	к	w	Hg	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb
	Unit	%	%	%	%	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm
	MDL	0.001	0.001	0.001	0.001	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02
723059	Drill Core	0.038	0.425	<0.001	<0.001	44.08	637.0	15.78	198.9	1311	11.1	8.9	1010	3.34	171.4	0.8	62.1	1.8	71.0	1.19	11.83
723060	Drill Core	0.027	0.339	<0.001	< 0.001	76.16	160.2	457.3	140.0	3772	5.8	3.1	2937	1.24	83.4	0.7	48.8	1.0	39.0	1.41	18.28
723061	Drill Core	0.011	0.270	<0.001	<0.001	48.94	222.6	30.01	148.0	1324	7.6	4.4	2055	1.48	88.8	0.6	41.4	1.1	36.9	1.39	10.73
723062	Drill Core	0.077	0.392	<0.001	< 0.001	127.2	1052	96.60	315.6	4459	7.6	8.0	1315	2.70	262.7	0.8	88.4	2.5	39.1	2.40	7.35
723063	Drill Core	0.051	0.430	<0.001	< 0.001	140.3	1244	13.14	101.2	1962	12.0	5.5	519	1.79	248.9	0.7	36.1	0.9	37.0	0.50	6.49
723064	Drill Core	0.040	0.293	<0.001	<0.001	57.67	617.1	16.65	83.7	1383	4.4	3.5	384	1.03	129.9	0.9	23.9	2.9	32.2	0.46	9.16
723065	Drill Core	0.012	0.307	<0.001	< 0.001	51.14	98.06	5.65	52.2	399	4.3	2.2	460	0.78	27.4	0.8	4.6	2.9	29.1	0.30	4.39
723066	Drill Core	0.010	0.299	<0.001	< 0.001	31.31	219.7	70.23	68.2	796	3.2	1.7	528	0.69	68.4	0.8	6.5	2.6	24.0	0.57	7.64
723067	Drill Core	0.012	0.337	<0.001	< 0.001	158.0	220.0	20.47	55.7	753	4.0	2.1	1007	0.86	65.4	1.0	18.9	2.9	36.6	0.37	8.61
723068	Drill Core	0.015	0.299	<0.001	< 0.001	53.53	175.8	24.42	72.8	738	4.5	3.0	1247	1.30	74.5	1.0	25.3	3.3	34.7	0.39	8.15
723069	Drill Core	0.027	0.466	<0.001	< 0.001	91.41	1428	12.33	92.2	2008	8.9	9.0	718	2.82	204.4	1.5	62.4	2.1	47.1	0.47	16.08
723070	Drill Core	0.030	0.332	<0.001	< 0.001	97.42	845.7	12.20	71.1	956	9.6	6.0	409	1.94	96.9	1.0	46.4	2.4	38.2	0.63	11.03
723071	Drill Core	0.023	0.244	<0.001	< 0.001	154.8	1641	31.02	126.3	2264	9.5	6.4	423	1.71	210.3	0.9	62.9	3.0	35.3	1.45	18.50
723072	Drill Core	0.016	0.443	<0.001	< 0.001	186.4	317.1	16.95	131.4	1633	8.1	8.7	2251	2.61	102.3	1.8	64.9	2.1	50.5	1.09	8.60
723073	Drill Core	0.044	0.578	<0.001	< 0.001	60.58	606.8	6.63	73.1	951	8.7	15.8	826	3.24	76.4	0.8	44.3	1.3	54.7	0.32	5.20
723074	Drill Core	0.032	0.645	<0.001	<0.001	46.74	518.2	6.80	112.8	795	8.9	15.3	1045	3.71	74.7	0.6	33.2	1.7	60.6	0.41	5.38
723075	Drill Core	0.030	0.394	<0.001	< 0.001	0.57	22.64	8.90	97.9	67	55.2	14.9	385	3.17	4.2	0.3	0.4	1.9	93.1	0.09	0.11
723076	Drill Core	0.018	0.318	<0.001	< 0.001	98.53	380.4	12.11	194.2	906	10.3	14.0	1385	3.56	77.1	0.8	51.9	1.3	106.6	1.14	8.17
723077	Drill Core	0.014	0.285	<0.001	< 0.001	50.13	76.71	13.84	181.9	189	8.3	11.7	1460	3.12	26.4	0.9	15.6	1.2	130.8	1.04	0.66
723078	Drill Core	0.014	0.276	<0.001	<0.001	52.74	21.75	17.28	163.3	143	7.1	7.9	2126	2.91	27.8	1.2	18.8	1.0	139.1	1.05	0.51
723079	Drill Core	0.027	0.334	<0.001	<0.001	0.37	18.59	7.18	97.5	56	55.0	14.0	379	3.23	4.8	0.3	0.6	2.1	62.2	0.09	0.10
723080	Drill Core	0.012	0.433	<0.001	<0.001	1.26	1.94	10.09	105.5	59	5.6	7.5	851	1.93	8.2	0.8	4.1	1.4	60.9	0.41	0.19
723081	Drill Core	0.012	0.361	<0.001	< 0.001	0.67	4.46	8.74	115.8	79	5.8	6.5	963	1.96	8.9	0.5	4.3	1.2	70.4	0.57	0.24
RRE 723081	Drill Core	0.012	0.383	<0.001	< 0.001	0.83	5.87	9.15	113.4	73	5.3	6.4	968	1.98	9.5	0.5	6.1	1.3	71.0	0.56	0.28
723082	Drill Core	0.015	0.288	<0.001	< 0.001	0.48	1.96	8.19	148.4	17	6.4	6.6	831	2.33	3.1	0.4	2.5	1.4	94.4	0.88	0.13
723083	Drill Core	0.011	0.280	<0.001	< 0.001	2.92	51.44	9.66	103.6	225	5.2	6.2	819	1.92	18.7	0.7	11.7	1.2	94.1	0.67	0.36

Project:

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada LENNAC

Part 3

November 14, 2007 Report Date:

4 of 4

CERTIFICATE OF ANALYSIS

CERTIFIC	CATE OF AN	IALY	/SIS														SM	070	001:	28.1	
	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	Bi	v	Ca	P	La	Cr	Mg	Ba	π	в	AI	Na	к	w	Sc	п	S	Hg	Se	Те
	Unit	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm
	MDL	0.02	2	0.01	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02
723059	Drill Core	0.33	51	3.18	0.196	8.9	16.3	1.39	100.6	0.041	<20	0.98	0.023	0.33	<0.1	5.8	0.19	0.58	<5	0.3	0.02
723060	Drill Core	0.25	15	2.12	0.052	3.6	15.1	0.79	67.9	0.001	<20	0.36	0.018	0.21	<0.1	2.0	0.09	0.58	40	0.2	0.03
723061	Drill Core	0.37	16	2.14	0.046	3.4	26.4	0.75	58.6	0.001	<20	0.37	0.009	0.16	<0.1	2.1	0.10	0.73	22	0.2	0.04
723062	Drill Core	0.69	36	1.77	0.138	7.5	11.5	0.83	112.7	0.022	<20	0.64	0.053	0.30	<0.1	4.3	0.26	0.95	7	0.7	0.05
723063	Drill Core	0.14	62	1.86	0.154	6.2	28.3	0.84	57.4	0.034	<20	0.78	0.032	0.32	<0.1	7.3	0.20	0.20	<5	0.5	0.02
723064	Drill Core	0.10	22	1.51	0.056	6.3	16.1	0.58	63.3	0.002	<20	0.47	0.025	0.20	<0.1	2.6	0.15	0.12	<5	0.3	<0.02
723065	Drill Core	0.11	10	1.33	0.032	5.4	37.8	0.54	60.6	< 0.001	<20	0.31	0.010	0.20	<0.1	1.4	0.08	0.23	<5	0.1	< 0.02
723066	Drill Core	0.11	5	1.15	0.022	6.0	19.0	0.43	45.4	< 0.001	<20	0.28	0.010	0.20	<0.1	1.0	0.09	0.27	6	<0.1	<0.02
723067	Drill Core	0.14	11	1.65	0.030	5.6	41.7	0.62	67.4	< 0.001	<20	0.27	0.009	0.22	<0.1	1.2	0.13	0.32	<5	0.1	< 0.02
723068	Drill Core	0.13	16	1.64	0.040	4.5	16.8	0.62	62.5	< 0.001	<20	0.32	0.011	0.20	<0.1	2.0	0.12	0.38	11	<0.1	<0.02
723069	Drill Core	0.25	51	2.15	0.187	10.7	18.7	0.95	225.2	0.041	<20	1.00	0.017	0.35	<0.1	5.4	0.64	0.51	21	0.7	0.05
723070	Drill Core	0.14	34	1.51	0.100	8.9	9.4	0.72	229.2	0.018	<20	0.82	0.020	0.24	<0.1	4.3	0.17	0.28	<5	0.6	0.02
723071	Drill Core	0.11	22	1.49	0.056	5.5	24.6	0.64	77.2	0.002	<20	0.65	0.017	0.15	<0.1	2.8	0.26	0.35	12	1.3	0.04
723072	Drill Core	0.25	33	2.62	0.128	7.9	9.3	1.00	80.8	0.016	<20	0.84	0.011	0.28	<0.1	4.1	0.35	0.77	13	0.3	0.02
723073	Drill Core	0.30	67	2.02	0.206	11.1	10.7	1.19	128.9	0.082	<20	1.13	0.034	0.50	<0.1	7.4	0.22	0.45	<5	0.4	0.04
723074	Drill Core	0.33	63	2.78	0.198	10.1	6.9	1.43	209.8	0.066	<20	1.02	0.023	0.48	<0.1	6.7	0.31	0.80	<5	0.3	0.03
723075	Drill Core	0.10	41	0.53	0.051	10.9	53.4	0.99	267.7	0.004	<20	1.89	0.023	0.23	<0.1	5.2	0.02	0.22	23	0.2	<0.02
723076	Drill Core	0.42	67	6.59	0.140	7.7	3.6	2.11	352.5	0.007	<20	0.79	0.014	0.20	0.1	6.1	0.23	0.51	57	0.3	0.07
723077	Drill Core	0.05	63	6.77	0.117	6.9	10.6	2.03	41.6	0.004	<20	0.80	0.012	0.18	<0.1	7.8	0.14	0.16	7	<0.1	< 0.02
723078	Drill Core	0.03	57	7.13	0.065	6.6	3.8	2.16	1435	0.002	<20	0.62	0.011	0.19	<0.1	6.9	0.22	0.20	<5	0.1	<0.02
723079	Drill Core	0.09	42	0.48	0.049	12.2	53.1	0.98	183.4	0.004	<20	1.85	0.022	0.22	<0.1	5.5	0.03	0.18	27	0.1	< 0.02
723080	Drill Core	<0.02	25	3.63	0.074	7.2	9.6	1.20	79.4	0.001	<20	0.51	0.010	0.25	<0.1	3.2	0.29	0.08	<5	<0.1	<0.02
723081	Drill Core	<0.02	26	3.71	0.056	5.9	28.8	1.16	57.9	0.001	<20	0.50	0.010	0.21	<0.1	3.0	0.16	0.07	<5	<0.1	< 0.02
RRE 723081	Drill Core	<0.02	26	3.64	0.055	5.9	13.5	1.15	58.1	0.001	<20	0.55	0.009	0.23	<0.1	3.0	0.17	0.07	<5	<0.1	< 0.02
723082	Drill Core	<0.02	37	5.09	0.055	7.0	29.2	1.53	33.1	0.001	<20	0.57	0.012	0.19	<0.1	3.3	0.11	<0.02	<5	<0.1	<0.02
723083	Drill Core	0.05	27	3.65	0.057	4.8	14.6	1.21	495.7	< 0.001	<20	0.54	0.009	0.18	0.2	2.9	0.13	0.21	<5	<0.1	0.02

Project:

Page:

Report Date:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada LENNAC November 14, 2007

4 of 4 Part 4

CERTIFICATE OF ANALYSIS

	Method Analyte Unit MDL	1F Ga ppm 0.1
723059	Drill Core	2.9
723060	Drill Core	0.9
723061	Drill Core	0.9
723062	Drill Core	2.1
723063	Drill Core	2.9
723064	Drill Core	1.2
723065	Drill Core	0.8
723066	Drill Core	0.7
723067	Drill Core	0.8
723068	Drill Core	0.9
723069	Drill Core	3.5
723070	Drill Core	2.6
723071	Drill Core	1.6
723072	Drill Core	2.5
723073	Drill Core	4.4
723074	Drill Core	4.2
723075	Drill Core	5.7
723076	Drill Core	2.2
723077	Drill Core	2.2
723078	Drill Core	1.7
723079	Drill Core	5.5
723080	Drill Core	1.2
723081	Drill Core	1.1
RRE 723081	Drill Core	1.3
723082	Drill Core	1.4
723083	Drill Core	1.3

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only.

SMI07000128.1

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y1 GS Canada LENNAC November 14, 2007

www.acmelab.com

Project: Report Date:

1 of 2 Part 1

QUALITY CONTROL REPORT

SMI07000128.1

	Method	WGHT	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	P	Cr	Mg	AI
	Unit	kg	%	%	%	%	GM/T	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	MDL	0.01	0.001	0.001	0.01	0.01	2	0.001	0.001	0.01	0.01	0.01	0.001	0.001	0.001	0.01	0.01	0.001	0.001	0.01	0.01
Pulp Duplicates																					
723016	Drill Core	1.8	0.007	0.156	< 0.01	< 0.01	3	< 0.001	<0.001	0.03	0.50	0.02	0.002	<0.001	< 0.001	< 0.01	0.68	0.019	0.004	0.27	0.53
REP 723016	QC																				
723027	Drill Core	1.9	< 0.001	0.036	<0.01	0.05	<2	< 0.001	0.001	0.14	2.01	<0.01	0.007	<0.001	0.001	< 0.01	3.31	0.060	0.002	1.06	0.61
REP 723027	QC		< 0.001	0.035	0.01	0.05	<2	< 0.001	<0.001	0.14	1.98	<0.01	0.007	<0.001	< 0.001	< 0.01	3.27	0.059	0.002	1.06	0.62
723034	Drill Core	1.9	< 0.001	<0.001	<0.01	< 0.01	<2	0.001	<0.001	0.13	1.93	<0.01	0.008	<0.001	< 0.001	< 0.01	2.91	0.081	< 0.001	0.67	0.56
REP 723034	QC																				
723036	Drill Core	1.1	0.005	0.094	<0.01	0.02	3	0.001	<0.001	0.13	2.42	0.02	0.006	<0.001	0.002	< 0.01	2.64	0.122	0.002	0.97	0.83
REP 723036	QC																				
723065	Drill Core	1.8	0.006	0.009	<0.01	<0.01	<2	< 0.001	<0.001	0.05	0.79	<0.01	0.003	<0.001	0.001	< 0.01	1.27	0.029	0.004	0.54	0.48
REP 723065	QC		0.006	0.009	< 0.01	< 0.01	<2	< 0.001	<0.001	0.05	0.85	<0.01	0.003	<0.001	0.001	< 0.01	1.36	0.030	0.005	0.56	0.51
723078	Drill Core	1.3	0.006	0.002	<0.01	0.02	<2	< 0.001	<0.001	0.22	3.10	<0.01	0.015	<0.001	< 0.001	< 0.01	6.93	0.067	< 0.001	2.27	0.79
REP 723078	QC																				
RRE 723081	Drill Core		< 0.001	<0.001	<0.01	0.01	<2	< 0.001	<0.001	0.10	1.98	<0.01	0.008	<0.001	< 0.001	< 0.01	3.80	0.055	0.001	1.22	0.76
REP RRE 723081	QC		< 0.001	<0.001	<0.01	0.01	<2	<0.001	<0.001	0.10	2.00	<0.01	0.008	<0.001	< 0.001	< 0.01	3.80	0.056	0.001	1.22	0.74
Reference Materials																					
STD DS7	Standard																				
STD DS7	Standard																				
STD DS7	Standard																				
STD DS7	Standard																				
STD DS7	Standard																				-
STD DS7	Standard																				
STD DS7	Standard																				
STD DS7	Standard																				
STD DS7	Standard																				
STD DS7	Standard																				
STD R3A	Standard		0.078	0.805	1.99	4.02	202	0.545	0.061	0.07	30.54	0.04	0.003	0.024	0.037	< 0.01	1.30	0.045	0.011	1.06	1.10
STD R3A	Standard		0.077	0.796	1.96	4.00	203	0.544	0.061	0.07	30.30	0.04	0.003	0.024	0.038	<0.01	1.30	0.049	0.011	1.05	1.09
STD R3A	Standard		0.076	0.815	1.97	4.01	199	0.530	0.061	0.07	31.86	0.04	0.003	0.024	0.033	0.01	1.30	0.048	0.011	1.04	1.09

Standard

Standard

Standard

STD DS7 STD R3A

STD R3A

STD R3A

Client: Project:

Report Date:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada LENNAC November 14, 2007

						ww	w.acmo	lab.co	m			Page:			1 of 2	Part	2				
QUALITY C	ONTROL	REF	POR	T													SMI	0700	0012	8.1	
	Method Analyte	7AR Na	7AR K	7AR W	7AR Hg	1F Mo	1F Cu	1F Pb	1F Zn	1F Ag	1F Ni	1F Co	1F Mn	1F Fe	1F As	1F U	1F Au	1F Th	1F Sr	1F Cd	11 St
	Unit	%	%	%	%	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm
	MDL	0.001	0.001	0.001	0.001	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02
Pulp Duplicates		<u></u>																			
723016	Drill Core	0.017	0.192	< 0.001	<0.001	70.86	1724	13.67	62.7	2930	4.5	2.1	320	0.50	232.2	4.2	20.0	3.3	19.9	0.40	4.20
REP 723016	QC	8				69.47	1590	14.68	54.3	2836	4.2	1.7	280	0.49	231.7	4.1	26.6	3.3	19.8	0.40	4.14
723027	Drill Core	0.017	0.404	< 0.001	<0.001	4.85	382.1	109.7	466.7	1316	4.9	10.4	1505	2.11	71.4	1.7	43.9	1.9	68.1	4.22	4.54
REP 723027	QC	0.017	0.400	0.001	<0.001																
723034	Drill Core	0.033	0.410	< 0.001	<0.001	0.72	8.49	9.96	95.4	41	12.6	7.5	1271	1.77	1.7	1.0	23.7	1.5	80.0	0.07	0.05
REP 723034	QC	-				0.72	8.32	9.99	97.3	33	13.5	7.8	1276	1.83	1.9	1.1	7.3	1.5	79.3	0.08	0.06
723036	Drill Core	0.058	0.421	< 0.001	<0.001	42.66	945.4	42.45	193.4	3433	13.4	8.4	1272	2.34	167.1	1.6	33.6	2.0	61.7	1.33	7.56
REP 723036	QC					45.68	985.9	48.40	199.4	3536	13.9	9.2	1320	2.45	170.5	1.7	46.8	2.1	63.7	1.35	7.76
723065	Drill Core	0.012	0.307	< 0.001	⊲0.001	51.14	98.06	5.65	52.2	399	4.3	2.2	460	0.78	27.4	0.8	4.6	2.9	29.1	0.30	4.39
REP 723065	QC	0.013	0.322	< 0.001	<0.001																
723078	Drill Core	0.014	0.276	< 0.001	<0.001	52.74	21.75	17.28	163.3	143	7.1	7.9	2126	2.91	27.8	1.2	18.8	1.0	139.1	1.05	0.51
REP 723078	QC					51.63	20.64	17.32	168.9	155	7.1	8.1	2172	2.92	28.3	1.2	20.2	1.1	137.6	1.03	0.48
RRE 723081	Drill Core	0.012	0.383	< 0.001	<0.001	0.83	5.87	9.15	113.4	73	5.3	6.4	968	1.98	9.5	0.5	6.1	1.3	71.0	0.56	0.28
REP RRE 723081	QC	0.012	0.376	< 0.001	<0.001		1.00.0001				2.00.00					1040.0					
Reference Materials	1112223	1.	0.11.11021																		
STD DS7	Standard					18.76	101.7	70.69	391.9	860	53.4	8.8	605	2.39	50.5	5.0	73.5	4.5	82.8	6.36	4.56
STD DS7	Standard	-				20.04	99.96	70.99	385.6	774	53.2	9.0	606	2.36	50.5	5.2	54.4	4.7	81.7	6.36	4.75
STD DS7	Standard	-				18.95	98.30	61.36	389.5	730	55.1	9.4	591	2.32	47.0	4.3	53.2	3.9	68.2	5.80	3.70
STD DS7	Standard					19.79	99.25	66.26	393.8	777	55.6	9.4	624	2.39	47.4	4.5	44.8	4.3	73.3	6.14	3.85
STD DS7	Standard					21.55	105.2	65.13	417.4	836	57.2	9.9	644	2.47	54.3	4.8	61.1	4.5	80.9	6.47	3.59
STD DS7	Standard					21.59	106.2	65.51	408.2	851	58.7	9.4	627	2.45	48.0	4.6	56.9	4.6	81.6	6.39	3.89
STD DS7	Standard					20.76	102.2	68.77	421.2	861	58.7	9.6	703	2.53	49.6	4.9	53.4	4.7	74.9	6.53	4.17
STD DS7	Standard	-				21.11	103.7	66.77	419.9	759	54.0	9.4	643	2.46	48.8	4.8	51.1	4.4	71.6	6.25	4.17
STD DS7	Standard	-				19.53	100.9	64.64	373.9	811	51.4	8.6	581	2.28	50.2	4.7	67.3	4.0	73.0	6.17	4.02
STD DS7	Standard					19.31	99.61	64.27	363.5	1273	51.4	8.6	580	2.23	50.1	4.5	200.7	4.0	71.8	6.07	4.10
											100000					100					

This report supersedes all previous pr inary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only

0.037 0.444 <0.001 0.002

0.037 0.447 <0.001 0.002 0.039 0.434 <0.001 0.002

Client: Project: Report Date: Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada LENNAC November 14, 2007

												Page:		1	of 2	Part	3				
QUALITY CO	ONTROL	REP	OR	Г												5	SMIC	0700	012	8.1	
	Method Analyte Unit	1F Bi ppm	1F V ppm	1F Ca %	1F P %	1F La ppm	1F Cr ppm	1F Mg %	1F Ba ppm	1F Ti %	1F B ppm	1F Al %	1F Na %	1F K %	1F W ppm	1F Sc ppm	1F Ti ppm	1F S %	1F Hg ppb	1F Se ppm	1 T ppi
Pulo Duplicates	MUL	0.02	2	0.01	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0,1	0.1	0.02	0.02	3	0.1	0.0
723016	Drill Core	0.12	~2	0.74	0.024	83	36.5	0.28	34.6	<0.001	<20	0.41	0.012	0.14	<0.1	0.8	0.11	0.29	5	1.0	0.0
REP 723016	OC	0.12	<2	0.71	0.024	8.1	36.3	0.26	33.7	<0.001	<20	0.44	0.011	0.14	<0.1	0.7	0.11	0.28	8	0.9	0.0
723027	Drill Core	0.33	21	3.40	0.067	4.9	20.3	1.08	316.9	<0.001	<20	0.49	0.011	0.24	<0.1	2.3	0.18	0.55	40	0.3	0.0
REP 723027	QC	2.00				4.0	20.0				20		2.211		2.1	2.0		2.00	40	3.0	0.0
723034	Drill Core	0.06	30	2.90	0.089	7.3	4.0	0.64	338.9	0.002	<20	0.42	0.029	0.25	<0.1	2.0	0.09	0.07	<5	0.1	0.0
REP 723034	QC	0.05	31	2.95	0.091	7.9	4.1	0.66	347.2	0.002	<20	0.44	0.028	0.26	<0.1	2.0	0.10	0.07	<5	0.3	<0.0
723036	Drill Core	0.13	48	2.65	0.128	11.0	18.9	0.96	64.6	0.010	<20	0.54	0.029	0.29	<0.1	2.7	0.15	0.47	8	0.6	-0.0
REP 723036	QC	0.13	50	2.70	0.133	11.5	21.0	0.98	69.0	0.010	<20	0.58	0.029	0.30	<0.1	2.7	0.16	0.50	7	0.7	<0.0
723065	Drill Core	0.11	10	1.33	0.032	5.4	37.8	0.54	60.6	<0.001	<20	0.31	0.010	0.20	<0.1	1.4	0.08	0.23	<5	0.1	<0.0
REP 723065	QC																				
723078	Drill Core	0.03	57	7.13	0.065	6.6	3.8	2.16	1435	0.002	<20	0.62	0.011	0.19	<0.1	6.9	0.22	0.20	<5	0.1	<0.0
REP 723078	QC	0.04	57	7.19	0.064	6.5	3.9	2.17	1341	0.002	<20	0.58	0.010	0.18	<0.1	7.0	0.23	0.20	<5	<0.1	0.0
RRE 723081	Drill Core	<0.02	26	3.64	0.055	5.9	13.5	1.15	58.1	0.001	<20	0.55	0.009	0.23	<0.1	3.0	0.17	0.07	<5	<0.1	<0.0
REP RRE 723081	QC			11.11.12.W	110100000000000000000000000000000000000					100.01.02				20101010					100000		
Reference Materials																					
STD DS7	Standard	5.07	80	0.93	0.079	13.7	183.2	1.02	379.6	0.124	34	0.99	0.099	0.45	3.5	2.8	4.19	0.20	204	3.5	1.0
STD DS7	Standard	4.78	83	0.94	0.074	13.8	188.4	1.05	374.7	0.127	38	1.01	0.098	0.43	3.3	2.8	3.84	0.21	198	3.6	1.1
STD DS7	Standard	4.11	77	0.88	0.074	10.9	182.9	1.00	355.8	0.113	34	0.96	0.091	0.44	3.1	2.7	3.95	0.20	193	3.4	0.9
STD DS7	Standard	4.20	80	0.97	0.077	12.3	194.4	1.06	372.4	0.124	36	1.03	0.095	0.45	3.5	2.8	4.10	0.20	188	3.4	1.2
STD DS7	Standard	4.57	86	0.98	0.084	13.3	215.8	1.09	383.7	0.128	35	1.05	0.115	0.48	3.5	2.8	4.35	0.20	186	3.8	1.0
STD DS7	Standard	4.51	84	0.97	0.085	13.1	212.1	1.06	380.3	0.129	29	1.04	0.112	0.47	3.6	3.0	4.11	0.19	202	3.6	1.1
STD DS7	Standard	4.87	85	0.99	0.074	13.6	200.2	1.08	366.5	0.117	36	1.08	0.101	0.48	3.5	2.8	4.21	0.20	195	3.5	1.1
STD DS7	Standard	4.44	85	0.96	0.075	12.5	186.4	1.07	345.8	0.118	35	1.03	0.096	0.41	3.5	3.1	4.05	0.21	200	3.5	0.9
STD DS7	Standard	4.40	80	0.91	0.079	12.0	184.5	1.03	387.8	0.113	54	0.98	0.102	0.46	3.1	2.6	3.93	0.18	190	3.3	1.0
STD DS7	Standard	4.37	78	0.89	0.081	11.0	180.7	1.01	364.3	0.109	52	0.96	0.101	0.45	3.3	2.3	3.97	0.18	195	3.3	0.9
STD R3A	Standard																				
STD R3A	Standard																				
STD R3A	Standard																				

Clier	nt:	

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC VV7Y IGS Canada LENNAC November 14, 2007

www.acmelab.com

Project: L Report Date: N

1 of 2 Part 4

SMI07000128.1

1F	Method
Ga	Analyte
ppm	Unit
0.1	MDL

Pulp Duplicates		
723016	Drill Core	1.2
REP 723016	QC	1.0
723027	Drill Core	1.1
REP 723027	QC	
723034	Drill Core	1.3
REP 723034	QC	1.4
723036	Drill Core	1.7
REP 723036	QC	1.9
723065	Drill Core	0.8
REP 723065	QC	
723078	Drill Core	1.7
REP 723078	QC	1.5
RRE 723081	Drill Core	1.3
REP RRE 723081	QC	
Reference Materials		
STD DS7	Standard	4.9
STD DS7	Standard	4.7
STD DS7	Standard	4.5
STD DS7	Standard	4.5
STD DS7	Standard	4.8
STD DS7	Standard	4.9
STD DS7	Standard	4.9
STD DS7	Standard	4.7
STD DS7	Standard	4.5
STD DS7	Standard	4.3
STD R3A	Standard	
STD R3A	Standard	
STD R3A	Standard	

A amount also
ACTELADS ACME ANALYTICAL LABORATORIES LTD.
852 E. Hastings St. Vancouver BC V6A 1R6 Canada
Phone (604) 253-3158 Fax (604) 253-1716

Client: Project:

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada LENNAC November 14, 2007

Part 1

www.acmelab.com

Project: Report Date:

2 of 2

QUALITY C	ONTROL	REF	POR	Т													SMI	070	0012	28.1	
		WGHT Wgt	7AR Mo	7AR Cu	7AR Pb	7AR Zn	7AR Ag	7AR Ni	7AR Co	7AR Mn	7AR Fe	7AR As	7AR Sr	7AR Cd	7AR Sb	7AR Bi	7AR Ca	7AR P	7AR Cr	7AR Mg	7AR Al
		kg 0.01	% 0.001	% 0.001	% 0.01	% 0.01	GM/T	% 0.001	% 0.001	% 0.01	% 0.01	% 0.01	% 0.001	% 0.001	% 0.001	%	% 0.01	% 0.001	% 0.001	% 0.01	% 0.01
STD R3A	Standard		0.076	0.832	1.98	4.03	199	0.536	0.063	0.07	32.76	0.04	0.003	0.024	0.038	0.01	1.34	0.049	0.012	1.05	1.10
STD R3A	Standard	-	0.076	0.831	2.21	4.12	205	0.548	0.062	0.07	32.17	0.04	0.003	0.023	0.037	0.01	1.33	0.049	0.011	1.07	1.11
STD R3A	Standard		0.075	0.854	2.22	4.20	208	0.570	0.062	0.07	32.06	0.04	0.003	0.024	0.038	0.01	1.38	0.048	0.012	1.10	1.14
STD R3A	Standard		0.075	0.818	2.02	4.04	197	0.541	0.064	0.07	31.61	0.04	0.003	0.023	0.039	<0.01	1.32	0.049	0.011	1.04	1.10
STD R3A	Standard		0.073	0.818	2.07	3.92	200	0.539	0.063	0.06	30.38	0.04	0.003	0.023	0.038	< 0.01	1.34	0.049	0.012	1.02	1.08
STD R3A Expected			0.077	0.811	1.92	4.03	197	0.524	0.062	0.07	32.47	0.04	0.003	0.023	0.031		1.29	0.05	0.011	1.04	1.08
STD DS7 Expected		1																			
BLK	Blank		< 0.001	<0.001	<0.01	<0.01	<2	< 0.001	<0.001	<0.01	<0.01	<0.01	< 0.001	<0.001	< 0.001	< 0.01	<0.01	< 0.001	< 0.001	⊲0.01	< 0.01
BLK	Blank		< 0.001	<0.001	< 0.01	< 0.01	<2	< 0.001	<0.001	<0.01	< 0.01	<0.01	< 0.001	<0.001	< 0.001	< 0.01	<0.01	< 0.001	< 0.001	<0.01	< 0.01
BLK	Blank	1	< 0.001	<0.001	<0.01	<0.01	<2	<0.001	<0.001	<0.01	<0.01	<0.01	< 0.001	<0.001	< 0.001	<0.01	<0.01	<0.001	< 0.001	<0.01	<0.01
BLK	Blank		< 0.001	<0.001	< 0.01	< 0.01	<2	< 0.001	<0.001	<0.01	< 0.01	<0.01	< 0.001	<0.001	< 0.001	<0.01	<0.01	< 0.001	< 0.001	<0.01	< 0.01
BLK	Blank																				
BLK	Blank																				
BLK	Blank	1																			
BLK	Blank																				
BLK	Blank																				
Prep Wash			1.02233			2000				154101		52010	10.000				10000		0.000		
G1	Prep Blank	<0.01	< 0.001	<0.001	<0.01	< 0.01	<2	< 0.001	<0.001	0.06	1.90	<0.01	0.007	<0.001	< 0.001	<0.01	0.55	0.074	0.005	0.60	1.12

AcmeLabs ACME ANALYTICAL LABORATORIES LTD.
852 E. Hastings St. Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

Client: Project:

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y1 GS Canada LENNAC November 14, 2007

www.acmelab.com

Report Date: Nove

2 of 2 Part 2

QUALITY C	ONTROL	REF	POR	T												5	SMI	0700	012	8.1	
		7AR Na	7AR K	7AR W	7AR Hg	1F Mo	1F Cu	1F Pb	1F Zn	1F Ag	1F Ni	1F Co	1F Mn	1F Fe	1F As	1F U	1F Au	1F Th	1F Sr	1F Cd	1F Sb
		% 0.001	% 0.001	% 0.001	% 0.001	ppm 0.01	ppm 0.01	ppm 0.01	ppm 0.1	ppb 2	ppm 0.1	ppm 0.1	ppm 1	% 0.01	ppm 0.1	ppm 0.1	ppb 0.2	ppm 0.1	ppm 0.5	ppm 0.01	ppm 0.02
STD R3A	Standard	0.040	0.436	0.002	0.002																
STD R3A	Standard	0.040	0.447	< 0.001	0.002																
STD R3A	Standard	0.039	0.481	< 0.001	0.002																
STD R3A	Standard	0.040	0.421	< 0.001	0.001																
STD R3A	Standard	0.040	0.433	< 0.001	0.002																
STD R3A Expected		0.04	0.41		0.002																
STD DS7 Expected		1				20.92	109	70.6	411	890	56	9.7	627	2.39	48.2	4.9	70	4.4	68.7	6.38	5.86
BLK	Blank	< 0.001	<0.001	< 0.001	<0.001																
BLK	Blank	< 0.001	<0.001	< 0.001	<0.001																
BLK	Blank	<0.001	<0.001	< 0.001	<0.001																
BLK	Blank	< 0.001	<0.001	< 0.001	<0.001																
BLK	Blank							1100000						4.1000							
BLK	Blank					<0.01	< 0.01	<0.01	⊲0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02
BLK	Blank					<0.01	< 0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	⊲0.2	<0.1	<0.5	< 0.01	<0.02
BLK	Blank					<0.01	< 0.01	<0.01	⊲0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	< 0.01	<0.02
BLK	Blank					<0.01	< 0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	< 0.01	<0.02
Prep Wash																					
G1	Prep Blank	0.125	0.556	<0.001	<0.001	0.65	4.56	3.39	49.8	11	4.2	3.8	501	1.75	<0.1	2.9	⊲0.2	4.0	60.2	0.02	<0.02

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y1 G5 Canada LENNAC November 14, 2007

www.acmelab.com

Project: Report Date:

2 of 2 Part 3

QUALITY C	ONTROL	REP	POR	Г													SMI	0700	012	8.1	
		1F Bi ppm	1F V ppm	1F Ca %	1F P %	1F La ppm	1F Cr ppm	1F Mg %	1F Ba ppm	1F Ti %	1F B ppm	1F Al %	1F Na %	1F K %	1F W ppm	1F Sc ppm	1F Ti ppm	1F S %	1F Hg ppb	1F Se ppm	1F Te ppm
STD R3A	Standard	0.02	2	0.01	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02
STD R3A	Standard	<u> </u>																			
STD R3A	Standard	<u> </u>																			
STD R3A	Standard																				
STD R3A	Standard																				
STD R3A Expected		-																			
STD DS7 Expected		4.51	86	0.93	0.08	12.7	163	1.05	370.3	0.124	38.6	0.959	0.073	0.44	3.8	2.5	4.19	0.21	200	3.5	1.08
BLK	Blank			_																	
BLK	Blank	-																			
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank	<0.02	<2	<0.01	<0.001	<0.5	<0.5	<0.01	<0.5	<0.001	<20	< 0.01	<0.001	<0.01	<0.1	<0.1	<0.02	< 0.02	<5	<0.1	<0.02
BLK	Blank	<0.02	<2	<0.01	⊲0.001	<0.5	<0.5	<0.01	<0.5	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02
BLK	Blank	<0.02	<2	<0.01	<0.001	<0.5	<0.5	<0.01	<0.5	< 0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02
BLK	Blank	<0.02	<2	< 0.01	<0.001	<0.5	<0.5	<0.01	<0.5	< 0.001	<20	< 0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02
Prep Wash				0.000																	
G1	Prep Blank	0.08	33	0.47	0.070	7.1	44.3	0.57	208.0	0.127	<20	0.97	0.077	0.47	<0.1	2.1	0.32	0.03	<5	<0.1	<0.02

Client:	Dentonia Resources Ltd.
	P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada
Project:	LENNAC
Report Date:	November 14, 2007

Page:

November 14, 2007 2 of 2 Part 4

QUALITY CONTROL REPORT

		1F Ga ppm 0,1
STD R3A	Standard	
STD R3A	Standard	
STD R3A	Standard	0 8
STD R3A	Standard	
STD R3A	Standard	
STD R3A Expected		
STD DS7 Expected		4.6
BLK	Blank	-
BLK	Blank	1 1
BLK	Blank	2 8
BLK	Blank	
BLK	Blank	
BLK	Blank	<0.1
Prep Wash		
G1	Prep Blank	4.6

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only.

SMI07000128.1

Project:

Page:

Report Date:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 608 Granville St. Vancouver BC V7Y 1G5 Canada LENNAC October 22, 2007

Part 4

SMI07000142.1

1 of 1

QUALITY CONTROL REPORT

	Method Analyte Unit MDL	1F Ga ppm 0.1
Pulp Duplicates		
723084	Drill Core	1.6
REP 723084	QC	1.6
723095	Drill Core	6.0
REP 723095	QC	
723119	Drill Core	8.1
REP 723119	QC	8.3
Reference Materials		
STD DS7	Standard	4.7
STD DS7	Standard	5.2
STD R3A	Standard	
STD R3A Expected		
STD DS7	Standard	4.7
STD DS7	Standard	5.2
STD DS7 Expected		4.6
BLK	Blank	<0.1
BLK	Blank	<0.1
Prep Wash		
G1	Prep Blank	4.7

Page:

Submitted By: Receiving Lab: Received: Report Date:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y1 GS Canada Adolf Petancic

Acme Analytical Laboratories (Vancouver) Ltd. October 01, 2007 October 22, 2007 1 of 3

SMI07000142.1

CERTIFICATE OF ANALYSIS

LENNAC

53

ACME FILE: A718365

CLIENT JOB INFORMATION

SAMPLE DISPOSAL

Project:

Shipment ID:

P.O. Number Number of Samples:

DISP-PLP DISP-RJT

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES Method Number of Code Description Test Code Samples Wgt (g)

Method Code	Number of Samples	Code Description	Test Wgt (g)	Report Status
R150	53	Crush, split and pulverize drill core to 150 mesh		
7AR	53	1:1:1 Aqua Regia digestion ICP-ES analysis	1	Completed
1F	53	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	0.5	Completed

ADDITIONAL COMMENTS

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Dispose of Pulp After 90 days

Dispose of Reject After 90 days

Invoice To:	Dentonia Resources Ltd.
	P.O. Box 10321 Pacific Centre
	880 - 609 Granville St.
	Vancouver BC V7Y 1G5
	Canada

CC: Don MacIntyre V. Parsons

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only.

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada

Part 1

LENNAC October 22, 2007

2 of 3

www.acmelab.com

Project: Report Date:

Page:

CERTIFICATE OF ANALYSIS

SMI07000142.1

	Method	WGHT	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	P	Cr	Mg	AI
	Unit	kg	%	%	%	%	GMT	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	MDL	0.01	0.001	0.001	0.01	0.01	2	0.001	0.001	0.01	0.01	0.01	0.001	0.001	0.001	0.01	0.01	0.001	0.001	0.01	0.01
723084	Drill Core	1	0.010	0.065	< 0.01	< 0.01	2	< 0.001	0.001	0.05	1.64	<0.01	0.003	< 0.001	0.003	< 0.01	0.74	0.091	< 0.001	0.12	0.90
723085	Drill Core	1.6	0.011	0.008	< 0.01	0.01	<2	<0.001	< 0.001	0.08	2.07	<0.01	0.004	< 0.001	< 0.001	< 0.01	2.20	0.092	0.003	0.38	0.89
723086	Drill Core	1.7	0.010	0.015	< 0.01	< 0.01	<2	<0.001	<0.001	0.08	1.56	<0.01	0.004	< 0.001	< 0.001	< 0.01	1.96	0.075	< 0.001	0.60	0.68
723087	Drill Core	1.9	0.024	0.049	< 0.01	0.01	<2	<0.001	<0.001	0.10	1.80	0.01	0.005	< 0.001	0.001	< 0.01	2.33	0.079	0.002	0.79	0.82
723088	Drill Core	1.9	0.028	0.039	< 0.01	< 0.01	<2	<0.001	<0.001	0.04	1.87	<0.01	0.004	< 0.001	< 0.001	< 0.01	2.29	0.075	< 0.001	0.79	0.94
723089	Drill Core	1.8	0.055	0.006	< 0.01	< 0.01	<2	<0.001	<0.001	0.04	2.07	<0.01	0.004	< 0.001	< 0.001	< 0.01	2.37	0.082	0.003	0.79	0.92
723090	Drill Core	1.8	0.022	0.006	< 0.01	0.01	<2	<0.001	<0.001	0.05	2.43	<0.01	0.004	< 0.001	< 0.001	< 0.01	2.41	0.083	< 0.001	0.84	1.11
723091	Drill Core	1.6	0.019	0.021	<0.01	0.01	<2	<0.001	<0.001	0.06	1.92	<0.01	0.006	<0.001	< 0.001	< 0.01	2.58	0.061	0.003	0.86	0.88
723092	Drill Core	1.6	0.019	0.018	0.03	0.19	<2	<0.001	<0.001	0.14	2.70	0.01	0.004	0.001	0.001	< 0.01	2.01	0.056	< 0.001	0.63	0.90
723093	Drill Core	1.9	0.028	0.017	<0.01	< 0.01	<2	<0.001	<0.001	0.04	2.06	<0.01	0.003	< 0.001	< 0.001	< 0.01	1.36	0.064	0.003	0.52	1.00
723094	Drill Core	1.9	0.025	0.065	< 0.01	< 0.01	<2	<0.001	<0.001	0.03	1.63	0.01	0.003	< 0.001	0.001	< 0.01	1.55	0.060	< 0.001	0.57	1.03
RRE 723094	Drill Core		0.024	0.067	< 0.01	<0.01	3	<0.001	<0.001	0.03	1.58	0.01	0.003	< 0.001	0.002	< 0.01	1.54	0.062	0.003	0.57	1.05
723095	Drill Core	2.3	< 0.001	0.003	< 0.01	0.01	<2	0.005	0.001	0.04	3.28	<0.01	0.009	< 0.001	< 0.001	< 0.01	0.48	0.049	0.004	1.07	2.30
723096	Drill Core	1.7	0.019	0.045	< 0.01	0.02	6	<0.001	<0.001	0.15	1.49	0.01	0.004	< 0.001	0.005	< 0.01	1.78	0.057	0.003	0.57	0.70
723097	Drill Core	1.7	0.016	0.057	0.02	0.01	3	< 0.001	<0.001	0.04	1.74	0.02	0.003	< 0.001	0.003	< 0.01	1.21	0.067	< 0.001	0.41	0.82
723098	Drill Core	1.5	0.013	0.093	< 0.01	0.01	2	<0.001	<0.001	0.05	1.47	0.02	0.005	< 0.001	0.004	< 0.01	1.84	0.062	0.003	0.63	0.89
723099	Drill Core	1.6	0.006	0.028	< 0.01	<0.01	<2	<0.001	<0.001	0.04	1.62	<0.01	0.004	< 0.001	0.002	< 0.01	1.51	0.052	< 0.001	0.62	1.05
723100	Drill Core	1.9	0.010	0.006	< 0.01	< 0.01	<2	<0.001	<0.001	0.06	1.53	<0.01	0.004	< 0.001	< 0.001	< 0.01	1.46	0.044	0.004	0.59	0.80
723101	Drill Core	1.8	0.003	0.006	<0.01	< 0.01	<2	<0.001	<0.001	0.05	2.37	<0.01	0.005	<0.001	< 0.001	< 0.01	1.79	0.082	< 0.001	0.85	1.32
723102	Drill Core	2	0.013	0.046	<0.01	<0.01	<2	<0.001	<0.001	0.05	1.80	0.01	0.004	<0.001	0.001	< 0.01	1.34	0.045	0.005	0.56	0.82
723103	Drill Core	1.5	0.004	0.045	< 0.01	< 0.01	<2	<0.001	<0.001	0.05	1.40	<0.01	0.004	< 0.001	0.002	< 0.01	1.28	0.033	<0.001	0.48	0.71
723104	Drill Core	1.5	0.015	0.067	<0.01	< 0.01	<2	<0.001	<0.001	0.03	1.05	<0.01	0.003	<0.001	0.001	< 0.01	1.03	0.020	0.006	0.40	0.55
723105	Drill Core	1.7	0.009	0.044	<0.01	<0.01	<2	<0.001	<0.001	0.03	0.96	<0.01	0.003	< 0.001	< 0.001	< 0.01	0.98	0.027	< 0.001	0.40	0.53
723106	Drill Core	1.7	0.011	0.021	< 0.01	< 0.01	<2	<0.001	<0.001	0.03	1.41	<0.01	0.004	< 0.001	< 0.001	< 0.01	1.35	0.050	0.004	0.60	0.90
723107	Drill Core	1.7	0.014	0.052	<0.01	< 0.01	<2	<0.001	<0.001	0.03	1.19	<0.01	0.004	< 0.001	0.001	< 0.01	1.30	0.033	< 0.001	0.46	0.62
723108	Drill Core	1	0.009	0.028	< 0.01	< 0.01	<2	<0.001	<0.001	0.05	1.32	<0.01	0.004	< 0.001	< 0.001	< 0.01	1.91	0.046	0.004	0.60	0.83
723109	Drill Core	1	0.010	0.020	< 0.01	< 0.01	<2	<0.001	<0.001	0.05	0.90	<0.01	0.004	< 0.001	0.001	< 0.01	1.47	0.043	< 0.001	0.53	0.59
723110	Drill Core	1.8	0.012	0.027	<0.01	<0.01	<2	< 0.001	< 0.001	0.05	0.97	<0.01	0.003	< 0.001	0.001	< 0.01	1.29	0.033	0.005	0.43	0.69
723111	Drill Core	1.7	0.016	0.055	< 0.01	0.01	<2	<0.001	<0.001	0.05	1.09	0.01	0.003	< 0.001	0.001	< 0.01	1.17	0.032	< 0.001	0.45	0.58
723112	Drill Core	1.9	0.042	0.122	< 0.01	0.01	<2	<0.001	<0.001	0.06	2.63	0.03	0.007	< 0.001	< 0.001	< 0.01	2.57	0.234	0.001	1.23	1.67

Project:

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada

Part 2

SMI07000142.1

LENNAC

2 of 3

ab.com

Report Date: October 22, 2007

CERTIFICATE OF ANALYSIS

	Method	7AR	7AR	7AR	7AR	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	Na	к	w	Hg	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb
	Unit	%	%	%	%	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm
	MDL	0.001	0.001	0.001	0.001	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02
723084	Drill Core	0.009	0.280	<0.001	< 0.001	83.04	618.2	18.24	85.0	2114	5.6	14.4	458	1,46	102.2	0.9	37.4	2.8	18.3	0.50	9.25
723085	Drill Core	0.009	0.299	<0.001	< 0.001	85.92	72.79	5.59	116.2	153	3.3	4.6	730	1.85	12.5	0.8	8.0	2.5	34.5	0.41	0.56
723086	Drill Core	0.010	0.357	<0.001	< 0.001	82.95	144.3	6.48	98.2	155	4.0	4.0	710	1.49	25.6	0.8	17.6	2.4	32.7	0.48	1.73
723087	Drill Core	0.009	0.357	<0.001	<0.001	212.6	450.2	19.49	99.7	583	3.4	6.4	925	1.68	110.5	1.3	18.5	2.5	45.9	0.59	5.16
723088	Drill Core	0.009	0.294	<0.001	< 0.001	245.3	359.5	6.03	70.3	295	3.3	7.1	333	1.71	68.2	0.9	29.7	3.1	36.9	0.37	3.71
723089	Drill Core	0.009	0.269	<0.001	<0.001	493.3	53.61	4.42	73.9	57	2.5	2.5	385	1.77	16.8	0.8	5.4	2.9	39.0	0.46	0.66
723090	Drill Core	0.009	0.297	<0.001	<0.001	195.0	58.01	22.44	101.6	165	2.4	2.9	415	2.09	13.2	0.6	6.6	3.2	36.3	0.71	0.69
723091	Drill Core	0.009	0.291	<0.001	< 0.001	162.1	205.9	11.62	98.1	268	3.4	4.0	560	1.83	39.9	1.4	7.7	2.7	49.1	0.58	2.44
723092	Drill Core	0.009	0.354	<0.001	< 0.001	155.6	176.9	300.5	1772	1537	3.8	5.2	1278	2.62	151.3	1.1	76.2	3.1	34.2	16.21	3.22
723093	Drill Core	0.024	0.321	<0.001	<0.001	262.2	173.6	11.61	54.1	809	2.6	3.4	409	1.74	59.7	1.3	59.6	3.5	30.6	0.32	2.27
723094	Drill Core	0.019	0.302	<0.001	< 0.001	218.4	636.6	17.86	60.9	2218	2.3	7.1	299	1.53	137.0	2.0	31.5	3.1	28.2	0.51	6.65
RRE 723094	Drill Core	0.018	0.298	<0.001	< 0.001	204.0	647.1	11.34	58.1	2208	2.6	7.5	295	1.54	137.5	2.0	47.2	3.2	28.4	0.42	6.64
723095	Drill Core	0.029	0.394	<0.001	<0.001	2.89	26.41	9.12	103.1	89	55.4	14.8	371	3.24	6.3	0.4	1.7	2.4	90.3	0.12	0.14
723096	Drill Core	0.008	0.413	<0.001	< 0.001	162.8	443.7	40.97	147.9	5233	2.9	7.8	1453	1.44	149.3	1.8	76.3	3.1	31.2	1.44	18.36
723097	Drill Core	0.008	0.522	<0.001	<0.001	138.8	547.2	195.5	136.2	3022	3.6	8.6	413	1.71	202.8	1.4	77.7	3.0	23.6	1.52	6.99
723098	Drill Core	0.008	0.325	<0.001	<0.001	107.3	879.9	9.96	106.2	2275	3.0	9.0	446	1.36	159.1	1.0	27.1	2.5	38.3	0.81	13.39
723099	Drill Core	0.021	0.339	<0.001	< 0.001	51.50	264.7	7.72	83.1	744	3.6	4.3	374	1.40	45.0	1.0	14.0	2.7	30.7	0.51	5.80
723100	Drill Core	0.017	0.328	<0.001	< 0.001	82.78	61.78	32.45	100.9	284	4.3	3.7	526	1.40	16.9	1.0	16.1	2.5	33.3	0.60	1.46
723101	Drill Core	0.024	0.413	<0.001	< 0.001	27.98	64,14	6.80	92.6	231	5.9	6.1	473	2.12	14.4	0.7	6.9	2.5	43.2	0.31	1.39
723102	Drill Core	0.027	0.337	<0.001	<0.001	115.0	449.2	15.64	74.5	1306	4.9	8.1	451	1.69	109.2	1.3	30.9	2.7	31.4	0.35	6.69
723103	Drill Core	0.010	0.344	<0.001	<0.001	32.97	440.4	10.90	68.2	1331	3.7	6.7	508	1.35	51.4	1.0	30.9	2.8	29.1	0.68	9.55
723104	Drill Core	0.008	0.312	<0.001	<0.001	138.9	678.6	5.05	58.2	1491	4.0	7.3	338	1.02	82.5	1.0	21.7	3.1	28.9	0.41	8.17
723105	Drill Core	0.009	0.283	<0.001	<0.001	82.61	448.5	5.90	67.4	885	3.3	3.3	254	0.96	59.8	1.1	9.6	2.8	28.3	0.52	7.02
723106	Drill Core	0.014	0.300	<0.001	< 0.001	93.17	225.5	7.68	55.3	503	4.9	5.3	301	1.40	47.8	1.2	10.0	3.0	35.7	0.25	3.16
723107	Drill Core	0.011	0.339	<0.001	< 0.001	123.0	508.1	4.28	53.3	1042	4.2	6.1	328	1.18	65.3	1.5	22.8	2.7	35.4	0.30	5.01
723108	Drill Core	0.006	0.301	<0.001	< 0.001	79.68	274.8	37.13	71.1	881	4.8	5.2	482	1.27	27.6	2.4	27.9	3.1	34.9	0.62	1.56
723109	Drill Core	0.008	0.342	<0.001	< 0.001	84.05	206.2	14.80	46.3	1041	3.2	2.8	487	0.82	50.8	1.6	16.4	3.0	32.2	0.39	3.25
723110	Drill Core	0.016	0.355	<0.001	< 0.001	107.5	272.9	10.43	56.1	1086	3.5	4.9	432	0.90	75.4	1.6	17.1	2.8	27.3	0.35	2.33
723111	Drill Core	0.020	0.339	<0.001	< 0.001	140.7	541.6	32.99	139.3	1778	4.2	5.4	513	1.05	149.8	1.9	27.0	3.2	27.0	1.95	5.96
723112	Drill Core	0.055	0.677	< 0.001	<0.001	389.2	1191	27.61	94.8	1236	7.7	12.7	558	2.47	311.0	0.8	27.3	1.4	58.6	1.78	6.40

Project:

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada

LENNAC October 22, 2007

Report Date:

2 of 3 Part 3

CERTIFICATE OF ANALYSIS

CERTIFICATE OF ANALYSIS SMI07000142.1 Method 1F 1F																					
	Method	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	Bi	v	Ca	P	La	Cr	Mg	Ba	π	в	AI	Na	к	w	Sc	т	S	Hg	Se	Те
	Unit	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm
	MDL	0.02	2	0.01	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02
723084	Drill Core	0.13	17	0.71	0.085	7.7	2.7	0.09	155.0	0.002	<20	0.58	0.006	0.19	<0.1	2.3	0.18	0.13	10	0.4	<0.02
723085	Drill Core	0.07	25	2.11	0.083	5.1	20.6	0.35	152.8	0.002	<20	0.61	0.006	0.19	<0.1	2.5	0.19	0.07	<5	0.3	< 0.02
723086	Drill Core	0.10	19	1.83	0.074	5.8	3.1	0.55	199.9	0.002	<20	0.40	0.006	0.22	<0.1	1.9	0.14	0.26	<5	0.3	< 0.02
723087	Drill Core	0.13	22	2.19	0.075	7.1	20.1	0.73	206.9	0.001	<20	0.53	0.005	0.21	<0.1	2.1	0.26	0.35	12	0.6	0.02
723088	Drill Core	0.07	25	2.25	0.077	5.2	2.8	0.76	315.2	0.002	<20	0.63	0.006	0.18	<0.1	2.4	0.15	0.22	10	0.4	< 0.02
723089	Drill Core	0.04	27	2.21	0.081	5.2	21.7	0.74	476.3	0.002	<20	0.63	0.006	0.16	0.1	2.5	0.24	0.08	10	0.2	<0.02
723090	Drill Core	0.04	26	2.25	0.085	5.6	2.4	0.77	140.8	0.002	<20	0.75	0.007	0.17	<0.1	2.6	0.41	0.17	<5	0.2	< 0.02
723091	Drill Core	0.11	25	2.56	0.061	5.3	20.3	0.82	97.5	0.001	<20	0.57	0.007	0.17	<0.1	2.5	0.30	0.30	8	0.4	< 0.02
723092	Drill Core	0.27	14	1.95	0.055	5.3	2.5	0.60	83.5	0.001	<20	0.60	0.006	0.21	0.2	1.9	0.76	1.81	86	0.7	0.10
723093	Drill Core	0.06	20	1.35	0.067	6.8	21.3	0.49	72.0	0.006	<20	0.71	0.019	0.22	0.1	2.4	0.28	0.45	<5	0.4	0.03
723094	Drill Core	0.11	13	1.46	0.056	4.1	2.3	0.52	72.0	0.001	<20	0.70	0.015	0.18	<0.1	1.9	0.37	0.47	9	0.8	< 0.02
RRE 723094	Drill Core	0.10	13	1.48	0.058	4.3	20.3	0.53	78.1	0.001	<20	0.74	0.014	0.18	<0.1	1.9	0.38	0.49	5	0.7	<0.02
723095	Drill Core	0.11	45	0.48	0.052	13.6	39.6	1.01	211.9	0.004	<20	1.90	0.025	0.24	<0.1	5.3	0.02	0.20	26	0.3	< 0.02
723096	Drill Core	0.23	5	1.73	0.056	5.3	24.8	0.54	76.2	0.001	<20	0.42	0.005	0.26	<0.1	1.2	0.16	0.91	45	0.7	0.04
723097	Drill Core	0.69	8	1.20	0.066	5.1	2.3	0.36	110.4	0.001	<20	0.51	0.005	0.33	<0.1	1.2	0.23	1.25	27	0.7	0.05
723098	Drill Core	0.18	16	1.66	0.060	6.0	22.0	0.57	52.4	0.001	<20	0.58	0.005	0.19	<0.1	2.1	0.24	0.44	17	0.8	0.03
723099	Drill Core	0.08	21	1.39	0.051	6.7	4.0	0.55	57.7	0.003	<20	0.67	0.014	0.20	<0.1	2.7	0.20	0.18	<5	0.2	<0.02
723100	Drill Core	0.09	22	1.43	0.042	7.0	33.0	0.55	60.7	0.004	<20	0.58	0.012	0.21	<0.1	2.7	0.46	0.33	5	0.2	<0.02
723101	Drill Core	0.05	45	1.66	0.076	8.2	6.9	0.81	137.1	0.020	<20	1.04	0.019	0.31	<0.1	4.1	0.15	0.10	<5	0.2	<0.02
723102	Drill Core	0.08	21	1.32	0.043	7.9	36.0	0.53	104.0	0.002	<20	0.64	0.021	0.22	<0.1	2.5	0.16	0.58	7	0.5	<0.02
723103	Drill Core	0.09	14	1.26	0.028	6.5	3.6	0.44	80.4	0.001	<20	0.50	0.008	0.23	<0.1	2.1	0.18	0.38	18	0.4	0.02
723104	Drill Core	0.11	10	1.05	0.021	6.3	45.0	0.38	78.3	< 0.001	<20	0.40	0.006	0.23	<0.1	1.2	0.22	0.31	13	0.6	< 0.02
723105	Drill Core	0.06	12	1.02	0.026	7.3	4.5	0.38	146.3	< 0.001	<20	0.39	0.007	0.21	<0.1	2.0	0.12	0.11	12	0.4	< 0.02
723106	Drill Core	0.06	28	1.41	0.053	9.6	38.1	0.60	167.0	0.006	<20	0.79	0.014	0.23	<0.1	3.7	0.15	0.15	<5	0.2	< 0.02
723107	Drill Core	0.11	16	1.33	0.033	9.5	4.6	0.45	740.5	0.001	<20	0.46	0.009	0.24	<0.1	1.9	0.20	0.35	9	0.4	< 0.02
723108	Drill Core	0.09	20	1.90	0.046	7.8	29.5	0.58	183.9	0.003	<20	0.64	0.005	0.20	<0.1	2.8	0.55	0.29	12	0.3	< 0.02
723109	Drill Core	0.08	5	1.45	0.041	5.0	3.4	0.49	103.9	< 0.001	<20	0.36	0.005	0.22	<0.1	1.5	0.11	0.23	15	0.3	0.02
723110	Drill Core	0.11	6	1.28	0.033	8.4	42.9	0.39	103.2	< 0.001	<20	0.43	0.013	0.22	<0.1	1.2	0.11	0.34	9	0.5	<0.02
723111	Drill Core	0.13	8	1.16	0.033	6.5	6.0	0.42	235.5	0.001	<20	0.40	0.017	0.24	<0.1	1.3	0.16	0.40	20	0.5	< 0.02
723112	Drill Core	0.09	106	2.49	0.232	9.8	12.6	1.18	231.9	0.094	<20	1.35	0.043	0.57	0.1	7.2	0.87	0.34	<5	1.0	0.04

Project: Report Date:

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC VTY 165 Canada LENNAC October 22, 2007

2 of 3 Part 4

CERTIFICATE OF ANALYSIS	CERTIF	ICATE	OF A	NALY	'SIS
-------------------------	--------	-------	------	------	------

	Method Analyte Unit MDL	1F Ga ppm 0.1
723084	Drill Core	1.6
723085	Drill Core	1.6
723086	Drill Core	1.2
723087	Drill Core	1.3
723088	Drill Core	1.5
723089	Drill Core	1.6
723090	Drill Core	1.7
723091	Drill Core	1.3
723092	Drill Core	1.4
723093	Drill Core	2.0
723094	Drill Core	1.5
RRE 723094	Drill Core	1.7
723095	Drill Core	6.0
723096	Drill Core	1.0
723097	Drill Core	1.3
723098	Drill Core	1.4
723099	Drill Core	1.6
723100	Drill Core	1.5
723101	Drill Core	3.1
723102	Drill Core	1.5
723103	Drill Core	1.3
723104	Drill Core	1.1
723105	Drill Core	1.2
723106	Drill Core	2.3
723107	Drill Core	1.4
723108	Drill Core	1.9
723109	Drill Core	1.0
723110	Drill Core	1.0
723111	Drill Core	1.1
723112	Drill Core	5.1

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only.

SMI07000142.1

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada LENNAC October 22, 2007

Part 1

3 of 3

www.acmelab.com

Project: Report Date:

Page:

CERTIFICATE OF ANALYSIS

SMI07000142.1

	Method	WGHT	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	P	Cr	Mg	AI
	Unit	kg	%	%	%	%	GNVT	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	MDL	0.01	0.001	0.001	0.01	0.01	2	0.001	0.001	0.01	0.01	0.01	0.001	0.001	0.001	0.01	0.01	0.001	0.001	0.01	0.01
723113	Drill Core	1.9	0.012	0.069	< 0.01	< 0.01	<2	<0.001	0.002	0.05	3.39	0.01	0.007	< 0.001	< 0.001	< 0.01	1.82	0.245	< 0.001	1.14	1.53
723114	Drill Core	2	0.026	0.039	< 0.01	0.01	<2	<0.001	0.001	0.09	3.70	<0.01	0.006	< 0.001	< 0.001	< 0.01	2.14	0.251	0.002	1.19	1.60
723115	Drill Core	2	0.017	0.041	0.02	0.08	4	<0.001	0.001	0.15	4.40	0.01	0.006	< 0.001	0.001	< 0.01	2.07	0.215	< 0.001	1.11	1.35
723116	Drill Core	2.1	< 0.001	0.002	< 0.01	0.01	<2	0.006	0.001	0.04	3.35	<0.01	0.010	< 0.001	< 0.001	< 0.01	0.58	0.052	0.006	1.09	2.38
723117	Drill Core	1.9	0.004	0.203	0.01	0.07	3	<0.001	0.001	0.06	4.96	0.05	0.005	< 0.001	0.004	< 0.01	1.77	0.221	< 0.001	1.31	1.53
723118	Drill Core	2	0.005	0.085	< 0.01	< 0.01	<2	<0.001	0.001	0.05	4.00	<0.01	0.006	< 0.001	< 0.001	< 0.01	1.98	0.217	< 0.001	1.39	1.43
723119	Drill Core	2	0.007	0.068	< 0.01	< 0.01	<2	<0.001	<0.001	0.05	6.45	<0.01	0.004	< 0.001	< 0.001	< 0.01	1.35	0.176	0.001	1.52	1.51
RRE 723119	Drill Core		0.007	0.076	< 0.01	<0.01	<2	<0.001	<0.001	0.05	6.75	<0.01	0.004	<0.001	< 0.001	< 0.01	1.35	0.181	< 0.001	1.56	1.53
723120	Drill Core	1.7	0.048	0.020	< 0.01	< 0.01	<2	<0.001	<0.001	0.05	2.28	<0.01	0.004	< 0.001	< 0.001	< 0.01	1.56	0.074	0.004	0.77	0.67
723121	Drill Core	1.9	0.009	0.130	0.56	0.17	33	<0.001	<0.001	0.11	4.08	0.03	0.007	0.002	0.021	< 0.01	3.12	0.213	< 0.001	1.08	1.16
723122	Drill Core	2	0.006	0.066	< 0.01	< 0.01	<2	<0.001	<0.001	0.05	4.11	<0.01	0.007	< 0.001	< 0.001	< 0.01	1.99	0.251	0.002	1.05	1.66
723123	Drill Core	2.1	0.006	0.075	< 0.01	0.01	2	<0.001	0.001	0.07	4.13	0.01	0.008	< 0.001	0.002	< 0.01	3.62	0.198	< 0.001	1.61	1.13
723124	Drill Core	2	0.006	0.036	< 0.01	0.01	<2	<0.001	0.001	0.07	6.15	<0.01	0.005	< 0.001	< 0.001	< 0.01	2.19	0.167	0.002	1.61	0.96
723125	Drill Core	2	0.018	0.099	< 0.01	< 0.01	2	<0.001	<0.001	0.06	4.18	<0.01	0.004	< 0.001	< 0.001	< 0.01	1.84	0.202	< 0.001	1.33	1.14
723126	Drill Core	1.8	0.012	0.058	< 0.01	< 0.01	2	<0.001	<0.001	0.06	3.91	0.01	0.005	< 0.001	< 0.001	< 0.01	1.95	0.249	0.001	1.18	1.27
723127	Drill Core	3	< 0.001	0.003	< 0.01	0.01	<2	0.005	0.001	0.04	3.26	<0.01	0.005	< 0.001	< 0.001	< 0.01	0.48	0.058	0.004	0.99	2.13
723128	Drill Core	1.8	0.001	0.002	< 0.01	<0.01	<2	<0.001	<0.001	0.05	2.10	<0.01	0.008	< 0.001	< 0.001	< 0.01	3.16	0.098	0.002	0.94	0.65
723129	Drill Core	1.8	< 0.001	0.002	< 0.01	< 0.01	<2	<0.001	<0.001	0.04	1.95	<0.01	0.009	< 0.001	< 0.001	< 0.01	2.77	0.080	< 0.001	0.70	0.61
723130	Drill Core	1.9	< 0.001	< 0.001	<0.01	<0.01	<2	<0.001	<0.001	0.04	1.95	<0.01	0.007	<0.001	< 0.001	<0.01	2.41	0.087	0.004	0.70	0.61
723131	Drill Core	1.7	< 0.001	< 0.001	< 0.01	<0.01	<2	<0.001	<0.001	0.04	2.07	<0.01	0.007	< 0.001	< 0.001	<0.01	2.19	0.084	< 0.001	0.69	0.63
723132	Drill Core	1.8	< 0.001	< 0.001	< 0.01	< 0.01	<2	<0.001	<0.001	0.04	2.03	<0.01	0.006	< 0.001	< 0.001	< 0.01	2.26	0.086	0.004	0.70	0.58
723133	Drill Core	1.9	<0.001	<0.001	<0.01	<0.01	<2	<0.001	<0.001	0.05	2.00	<0.01	0.007	< 0.001	< 0.001	< 0.01	2.47	0.088	<0.001	0.69	0.60
723134	Drill Core	2.1	< 0.001	< 0.001	< 0.01	<0.01	<2	<0.001	<0.001	0.05	1.85	<0.01	0.008	< 0.001	< 0.001	< 0.01	2.75	0.085	0.004	0.60	0.72

Project:

Page:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada

Part 2

LENNAC

3 of 3

Report Date: October 22, 2007

CERTIFICATE OF ANALYSIS

CERTIFIC	ATE OF AN	IAL	/SIS	3													SMI	070	001	42.1	
	Method	7AR	7AR	7AR	7AR	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F	1F
	Analyte	Na	к	w	Hg	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb
	Unit	%	%	%	%	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm
	MDL	0.001	0.001	0.001	0.001	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02
723113	Drill Core	0.068	0.734	<0.001	< 0.001	102.7	670.4	4.82	82.9	904	9.6	20.2	481	3.29	119.7	0.8	11.3	1.5	55.8	0.28	2.12
723114	Drill Core	0.086	0.797	<0.001	< 0.001	234.1	377.1	11.44	109.7	1063	9.0	15.2	872	3.39	91.4	1.0	29.9	1.4	52.7	0.78	3.25
723115	Drill Core	0.080	0.768	<0.001	< 0.001	146.8	403.3	168.2	720.7	3616	8.7	14.5	1518	4.22	134.1	0.7	72.3	1.3	53.9	7.93	7.81
723116	Drill Core	0.032	0.421	<0.001	< 0.001	1.93	23.34	10.33	106.9	87	57.3	14.9	402	3.29	5.8	0.5	3.6	2.5	95.1	0.12	0.10
723117	Drill Core	0.113	1.038	<0.001	< 0.001	32.72	1947	84.72	653.0	2463	8.5	15.3	613	4.27	508.0	0.5	84.2	1.3	45.8	6.96	12.89
723118	Drill Core	0.100	0.864	<0.001	<0.001	42.52	785.0	4.86	61.4	820	6.9	11.3	421	3.49	97.9	0.6	32.9	1.6	50.2	0.28	1.42
723119	Drill Core	0.105	0.934	<0.001	< 0.001	60.44	641.5	2.71	65.5	1512	7.0	10.4	454	4.97	12.8	0.5	13.1	2.0	36.4	0.20	0.72
RRE 723119	Drill Core	0.093	0.959	<0.001	< 0.001	63.17	739.7	2.65	70.9	1575	7.4	11.3	476	5.29	13.0	0.5	14.5	1.9	37.4	0.18	0.68
723120	Drill Core	0.040	0.437	<0.001	< 0.001	467.0	205.3	9.52	94.5	644	4.1	4.3	474	2.04	48.3	0.7	9.5	3.2	34.9	0.63	2.33
723121	Drill Core	0.037	0.523	<0.001	< 0.001	75.00	1302	5457	1612	30420	6.8	11.9	1140	4.01	340.2	0.9	217.6	1.3	64.6	17.38	114.1
723122	Drill Core	0.172	0.787	<0.001	< 0.001	52.77	674.0	15.28	82.9	1016	7.2	9,4	479	3.79	65.8	0.5	69.6	1.7	74.4	0.50	1.53
723123	Drill Core	0.084	0.646	<0.001	< 0.001	57.20	736.5	28.84	113.9	2372	7.3	11.1	656	3.84	152.5	0.4	88.2	1.2	73.9	0.80	14.10
723124	Drill Core	0.097	0.682	<0.001	< 0.001	49.71	337.6	3.22	130.4	872	7.9	12.6	643	4.79	28.8	0.4	18.7	1.6	51.0	0.76	0.30
723125	Drill Core	0.108	0.754	<0.001	< 0.001	156.7	966.4	5.01	75.8	2383	8.0	11.7	548	3.59	98.8	0.5	77.2	1.4	41.4	0.21	1.32
723126	Drill Core	0.113	0.811	<0.001	< 0.001	104.2	556.2	5.95	85.7	2337	6.7	11.0	528	3.41	107.8	0.4	18.4	1.2	48.4	0.44	1.63
723127	Drill Core	0.028	0.330	<0.001	< 0.001	1.95	27.76	7.69	103.8	69	49.4	12.0	397	3.13	4.3	0.3	1.0	2.2	52.3	0.09	0.21
723128	Drill Core	0.036	0.466	<0.001	< 0.001	9.52	16.52	6.70	62.4	113	3.4	6.4	517	1.92	4.2	1.3	2.4	1.6	74.1	0.32	0.19
723129	Drill Core	0.046	0.376	<0.001	< 0.001	1.72	16.39	4.41	34.8	74	3.7	6.3	403	1.74	4.0	1.3	1.5	1.8	84.1	0.09	0.11
723130	Drill Core	0.046	0.337	<0.001	< 0.001	0.92	9.72	8.20	39.5	44	4.1	6.5	379	1.77	2.7	1.5	2.9	1.9	71.3	0.06	0.14
723131	Drill Core	0.050	0.277	<0.001	< 0.001	0.38	9.52	3.66	39.7	49	3.8	7.3	389	1.91	3.0	1.6	1.8	2.0	66.9	0.05	0.14
723132	Drill Core	0.053	0.279	<0.001	< 0.001	0.66	9.93	3.92	39.5	59	3.6	6.8	417	1.86	2.3	1.6	<0.2	1.8	61.3	0.06	0.11
723133	Drill Core	0.047	0.334	<0.001	< 0.001	0.43	8.75	5.81	39.7	75	2.9	6.3	459	1.79	2.2	1.7	1.2	1.8	70.0	0.09	0.12
723134	Drill Core	0.048	0.339	<0.001	< 0.001	0.54	8.86	6.46	35.1	95	3.7	6.5	532	1.81	4.7	1.8	1.7	1.9	84.0	0.08	0.16

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada

LENNAC October 22, 2007

www.acmelab.com

Project: Report Date: Page:

3 of 3 Part 3

CERTIFICATE OF ANALYSIS

	and a state																				
	Method	114	11	11-	114	114	114	11-	11-	11-	114	16	11-	114	11-	114	11	114	16	11-	11-
	Analyte	Bi	v	Ca	P	La	Cr	Mg	Ba	n	в	AI	Na	к	w	Sc	т	S	Hg	Se	те
	Unit	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm
	MDL	0.02	Z	0.01	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	2	0,1	0.02
723113	Drill Core	0.09	114	1.80	0.245	12.6	3.8	1.09	71.3	0.114	<20	1.23	0.052	0.68	0.1	8.9	0.34	0.52	<5	0.8	0.03
723114	Drill Core	0.31	93	2.00	0.244	14.1	12.3	1.14	74.3	0.094	<20	1.31	0.067	0.69	0.1	6.8	1.91	0.57	7	0.6	0.03
723115	Drill Core	2.16	71	2.07	0.217	14.4	2.9	1.08	83.5	0.082	<20	1.13	0.063	0.66	0.1	6.1	0.57	1.87	26	0.6	0.11
723116	Drill Core	0.13	47	0.59	0.056	14.8	55.2	1.06	265.4	0.005	<20	2.07	0.031	0.28	<0.1	5.7	0.03	0.20	35	0.3	< 0.02
723117	Drill Core	0.87	95	1.72	0.223	16.1	3.4	1.24	201.3	0.169	<20	1.30	0.098	0.94	0.1	9.1	0.40	1.02	14	1.1	0.06
723118	Drill Core	0.06	92	1.81	0.210	15.5	3.3	1.31	82.4	0.143	<20	1.27	0.085	0.81	0.2	9.3	0.71	0.18	<5	0.4	0.04
723119	Drill Core	0.06	191	1.27	0.177	15.3	9.8	1.47	159.4	0.169	<20	1.37	0.091	0.91	<0.1	17.3	0.35	0.15	<5	0.2	<0.02
RRE 723119	Drill Core	0.06	199	1.33	0.182	15.8	2.1	1.52	160.8	0.173	<20	1.40	0.079	0.96	<0.1	18.3	0.37	0.17	<5	0.2	<0.02
723120	Drill Core	0.09	50	1.56	0.073	6.7	31.6	0.75	261.8	0.034	<20	0.61	0.038	0.37	0.1	5.0	0.34	0.27	11	0.3	0.03
723121	Drill Core	0.88	61	3.02	0.218	9.8	2.3	1.07	50.6	0.030	<20	1.09	0.033	0.43	<0.1	6.2	0.39	2.09	205	1.0	1.15
723122	Drill Core	0.16	85	1.91	0.264	13.7	13.4	1.07	120.7	0.103	<20	1.66	0.169	0.78	<0.1	8.7	0.37	0.19	<5	0.2	0.04
723123	Drill Core	0.36	90	3.41	0.199	11.8	3.1	1.56	55.8	0.089	<20	1.08	0.073	0.60	0.2	8.3	0.35	0.46	18	0.4	0.04
723124	Drill Core	0.24	182	2.06	0.162	11.4	14.3	1.53	159.6	0.120	<20	0.90	0.079	0.64	<0.1	17.9	0.22	0.24	<5	<0.1	<0.02
723125	Drill Core	0.20	116	1.72	0.194	16.6	3.6	1.27	143.1	0.103	<20	1.01	0.091	0.68	0.1	12.2	0.35	0.42	<5	0.7	0.04
723126	Drill Core	0.26	90	1.78	0.241	16.0	10.7	1.14	90.2	0.111	<20	1.15	0.097	0.72	0.1	6.9	0.39	0.40	<5	0.4	0.03
723127	Drill Core	0.08	42	0.46	0.055	14.0	34.6	0.96	333.0	0.004	<20	1.93	0.026	0.23	<0.1	5.4	0.05	0.07	20	0.2	<0.02
723128	Drill Core	0.04	24	2.95	0.100	8.1	17.3	0.90	339.9	0.007	<20	0.54	0.030	0.28	<0.1	3.2	0.20	0.04	<5	<0.1	0.03
723129	Drill Core	<0.02	22	2.60	0.081	7.6	4.6	0.65	522.8	0.007	<20	0.53	0.041	0.23	<0.1	2.6	0.08	0.02	<5	<0.1	<0.02
723130	Drill Core	<0.02	24	2.28	0.085	7.9	29.8	0.68	451.8	0.006	<20	0.53	0.041	0.21	<0.1	2.6	0.11	0.02	<5	<0.1	<0.02
723131	Drill Core	<0.02	28	2.16	0.086	8.6	5.5	0.67	214.0	0.009	<20	0.54	0.044	0.17	<0.1	2.6	0.10	⊲0.02	<5	<0.1	<0.02
723132	Drill Core	0.02	27	2.21	0.086	7.9	35.4	0.69	287.9	0.009	<20	0.43	0.045	0.18	<0.1	2.4	0.09	0.03	<5	<0.1	<0.02
723133	Drill Core	<0.02	22	2.44	0.085	8.1	4.2	0.66	260.1	0.007	<20	0.44	0.041	0.21	<0.1	2.7	0.10	0.03	<5	<0.1	<0.02
723134	Drill Core	<0.02	23	2.80	0.090	8.7	34.3	0.62	241.7	0.006	<20	0.63	0.045	0.22	<0.1	2.9	0.10	0.02	<5	<0.1	<0.02

Project:

Page:

Report Date:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC/VIPY 1G5 Canada LENNAC October 22, 2007

3 of 3 Part 4

CERTIFICATE OF ANALYSIS

	Method Analyte Unit MDL	1F Ga ppm 0.1
723113	Drill Core	5.4
723114	Drill Core	5.5
723115	Drill Core	5.2
723116	Drill Core	6.5
723117	Drill Core	6.0
723118	Drill Core	6.1
723119	Drill Core	8.1
RRE 723119	Drill Core	8.4
723120	Drill Core	2.5
723121	Drill Core	3.8
723122	Drill Core	7.1
723123	Drill Core	4.8
723124	Drill Core	6.6
723125	Drill Core	6.2
723126	Drill Core	5.2
723127	Drill Core	5.8
723128	Drill Core	1.4
723129	Drill Core	1.5
723130	Drill Core	1.7
723131	Drill Core	1.7
723132	Drill Core	1.7
723133	Drill Core	1.6
723134	Drill Core	2.2

Client: Project:

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada LENNAC October 22, 2007

Part 1

Report Date:

Page:

1 of 1

QUALITY C	ONTROL	REF	POR	Т													SMI	070	0014	12.1	
	Method	WGHT	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR	7AR
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	NI	Co	Min	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr	Mg	AI
	Unit	Kg	%	76	%	%	GMT	%	%	%	%	%	%	%	0.001	%	%	% 0.001	%	%	%
Dule Dueliestes	MUL	0.01	0.001	0.001	0.01	0.01	2	0.001	0.001	0.01	0.01	0.01	0.001	0.001	0.001	0.01	0.01	0.001	0.001	0.01	0.01
Pulp Duplicates	D-11 0	-	0.040	0.005	-0.01	-0.04		-0.004	0.004	0.05	1.01	-0.01	0.000	-0.004	0.000	-0.04	0.74	0.004	-0.004	0.40	0.00
723084	Unil Core	1	0.010	0.005	<0.01	<0.01	2	<0.001	0.001	0.05	1.04	<0.01	0.003	<0.001	0.003	<0.01	0.74	0.091	<0.001	0.12	0.90
REP 723084	QC																				
723095	Drill Core	2.3	<0.001	0.003	<0.01	0.01	<2	0.005	0.001	0.04	3.28	<0.01	0.009	<0.001	<0.001	<0.01	0.48	0.049	0.004	1.07	2.30
REP 723095	QC		< 0.001	0.003	< 0.01	0.01	<2	0.005	0.001	0.04	3.32	<0.01	0.009	<0.001	< 0.001	< 0.01	0.49	0.050	0.004	1.09	2.37
723119	Drill Core	2	0.007	0.068	< 0.01	< 0.01	<2	<0.001	<0.001	0.05	6.45	<0.01	0.004	<0.001	< 0.001	< 0.01	1.35	0.176	0.001	1.52	1.51
REP 723119	QC																				
Reference Materials																					
STD DS7	Standard																				
STD DS7	Standard	1																			
STD R3A	Standard		0.078	0.820	1.96	4.00	200	0.550	0.061	0.07	30.09	0.04	0.003	0.024	0.036	< 0.01	1.34	0.047	0.011	1.05	1.10
STD R3A	Standard		0.078	0.811	1.96	4.00	207	0.546	0.061	0.07	30.64	0.04	0.003	0.025	0.036	< 0.01	1.33	0.051	0.012	1.06	1.12
STD R3A	Standard		0.077	0.817	1.94	4.02	201	0.535	0.062	0.07	31.36	0.04	0.003	0.024	0.038	< 0.01	1.31	0.049	0.012	1.06	1.12
STD R3A	Standard	-	0.079	0.820	1.98	4.05	200	0.550	0.062	0.07	30.80	0.04	0.003	0.024	0.036	< 0.01	1.34	0.052	0.012	1.08	1.17
STD R3A Expected			0.077	0.811	1.92	4.03	197	0.524	0.062	0.07	32.47	0.04	0.003	0.023	0.031		1.29	0.05	0.011	1.04	1.08
STD DS7	Standard		0.0115010										20310222								
STD DS7	Standard	-																			
STD DS7 Expected																					
BLK	Blank	-	< 0.001	<0.001	< 0.01	<0.01	<2	< 0.001	<0.001	<0.01	<0.01	<0.01	< 0.001	<0.001	<0.001	< 0.01	<0.01	< 0.001	< 0.001	<0.01	<0.01
BLK	Blank	-	<0.001	<0.001	<0.01	<0.01	<2	<0.001	<0.001	<0.01	<0.01	<0.01	<0.001	<0.001	<0.001	<0.01	<0.01	<0.001	<0.001	<0.01	<0.01
Prep Wash			2.001	2.001	2.01			2.001	2.001	5.01	5.01	2.91	2.001		0.001	5.61	5.01		0.001	2.01	3.91
GI	Pren Blank	<0.01	<0.001	<0.001	<0.01	<0.01	<2	<0.001	<0.001	0.06	2.06	<0.01	0.009	<0.001	<0.001	<0.01	0.64	0.075	0.007	0.61	1.24

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada LENNAC October 22, 2007

Project: Report Date:

Page:

1 of 1 Part 2

GOMENT O	on no L													011101-0001112.1							
	Method Analyte Unit	7AR	7AR	7AR	7AR	1F Mo	1F Cu ppm	1F	1F Zn ppm	1F Ag ppb	1F	1F	1F	1F Fe %	1F	1F U	1F Au	1F	1F	1F	16
		Na	к	W	Hg			Pb			Ni	Co	Mn		As			Th	Sr	Cd	Sb
		%	%	%	%	ppm		ppm			ppm	ppm	ppm		ppm	ppm	ppb	ppm	ppm	ppm	ppm
	MDL	0.001	0.001	0.001	0.001	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02
Pulp Duplicates																					
723084	Drill Core	0.009	0.280	< 0.001	<0.001	83.04	618.2	18.24	85.0	2114	5.6	14.4	458	1.46	102.2	0.9	37.4	2.8	18.3	0.50	9.25
REP 723084	QC	8				81.77	630.7	18.38	85.8	2138	5.8	14.2	460	1.46	103.0	1.0	14.8	2.9	18.6	0.48	9.09
723095	Drill Core	0.029	0.394	< 0.001	<0.001	2.89	26.41	9.12	103.1	89	55.4	14.8	371	3.24	6.3	0.4	1.7	2.4	90.3	0.12	0.14
REP 723095	QC	0.029	0.406	< 0.001	<0.001		1.1247-12-														
723119	Drill Core	0.105	0.934	< 0.001	<0.001	60.44	641.5	2.71	65.5	1512	7.0	10.4	454	4.97	12.8	0.5	13.1	2.0	36.4	0.20	0.72
REP 723119	QC	1				64.59	660.7	2.78	71.6	1380	7.5	10.9	473	5.24	13.5	0.5	14.8	2.1	38.3	0.17	0.78
Reference Materials																					
STD DS7	Standard					20.04	105.2	68.51	394.1	842	54.6	9.3	634	2.46	52.1	5.0	64.5	4.5	80.3	6.66	4.69
STD DS7	Standard					22.23	110.3	72.58	412.3	1015	55.4	9.5	669	2.57	52.1	5.1	60.8	4.7	81.7	6.77	5.17
STD R3A	Standard	0.036	0.455	< 0.001	0.002																
STD R3A	Standard	0.037	0.462	< 0.001	0.002																
STD R3A	Standard	0.041	0.434	< 0.001	0.001																
STD R3A	Standard	0.042	0.455	0.001	0.002																
STD R3A Expected		0.04	0.41		0.002																
STD DS7	Standard					20.37	102.4	68.05	385.2	853	56.1	9.1	613	2.41	50.6	5.3	51.5	4.5	76.7	6.53	3.93
STD DS7	Standard					22.50	133.6	76.20	406.4	873	59.5	10.0	651	2.53	52.9	5.7	85.8	4.5	84.2	6.93	4.13
STD DS7 Expected						20.92	109	70.6	411	890	56	9.7	627	2.39	48.2	4.9	70	4.4	68.7	6.38	5.86
BLK	Blank	< 0.001	<0.001	< 0.001	<0.001	<0.01	< 0.01	<0.01	<0.1	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02
BLK	Blank	<0.001	<0.001	< 0.001	<0.001	<0.01	< 0.01	<0.01	0.8	<2	<0.1	<0.1	<1	<0.01	<0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02
Prep Wash	1.1076020276					0.000	0.000000000		1000	07.0			0.005		1000	200000	1000			11.100 C	
GI	Preo Blank	0.128	0.584	<0.001	<0.001	0.33	5.85	2.98	46.3	7	5.9	44	532	1.84	0.2	23	<0.2	4.0	64.3	0.01	0.02

Client:	
Designation	

Dentonia Resources Ltd. P.O. Box 10321 Pacific Centre 880 - 609 Granville St. Vancouver BC V7Y 1G5 Canada LENNAC October 22, 2007

Project: Report Date:

												Page:			1 of 1	Part	3				
QUALITY CO	ONTROL	REP	OR	Т												;	SMI	0700	014	2.1	
	Method Analyte	1F Bi	1F V	1F Ca	1F P	1F La	1F Cr	1F Mg	1F Ba	1F Ti	1F B	1F Al	1F Na	1F K	1F W	1F Sc	1F TI	1F S	1F Hg	1F Se	1 T
	Unit	ppm 0.02	ppm 2	% 0.01	% 0.001	ppm 0.5	ppm 0.5	% 0.01	ppm 0.5	% 0.001	ppm 20	% 0.01	% 0.001	% 0.01	ppm 0.1	ppm 0.1	ppm 0.02	% 0.02	ppb 5	ppm 0.1	pp 0.0
Pulp Duplicates		1																			
723084	Drill Core	0.13	17	0.71	0.085	7.7	2.7	0.09	155.0	0.002	<20	0.58	0.006	0.19	<0.1	2.3	0.18	0.13	10	0.4	<0.0
REP 723084	QC	0.15	16	0.73	0.087	7.2	3.2	0.10	154.3	0.002	<20	0.60	0.007	0.19	<0.1	2.4	0.19	0.13	7	0.5	⊲0.0
723095	Drill Core	0.11	45	0.48	0.052	13.6	39.6	1.01	211.9	0.004	<20	1.90	0.025	0.24	<0.1	5.3	0.02	0.20	26	0.3	<0.0
REP 723095	QC																				
723119	Drill Core	0.06	191	1.27	0.177	15.3	9.8	1.47	159.4	0.169	<20	1.37	0.091	0.91	<0.1	17.3	0.35	0.15	<5	0.2	<0.0
REP 723119	QC	0.06	199	1.29	0.179	16.3	10.3	1.55	161.4	0.173	<20	1.42	0.094	0.92	<0.1	17.8	0.36	0.16	<5	0.2	<0.0
Reference Materials																					
STD DS7	Standard	4,73	84	0.99	0.080	12.5	197.7	1.08	400.0	0.115	39	1.06	0.103	0.47	3.3	2.8	4.17	0.21	204	3.5	1.0
STD DS7	Standard	4.81	91	0.99	0.082	13.0	202.8	1.13	401.4	0.122	48	1.09	0.100	0.49	3.4	2.9	4.60	0.22	201	4.0	1.1
STD R3A	Standard																				
STD R3A	Standard																				
STD R3A	Standard																				
STD R3A	Standard																				
STD R3A Expected																					
STD DS7	Standard	4.50	86	0.92	0.079	12.3	196.6	1.04	395.8	0.118	38	0.99	0.098	0.46	3.4	2.9	4.17	0.19	210	3.6	0.9
STD DS7	Standard	4.96	90	1.02	0.081	15.4	217.0	1.12	424.5	0.130	41	1.09	0.104	0.49	3.6	3.0	4.53	0.20	227	3.7	1.0
STD DS7 Expected		4.51	86	0.93	0.08	12.7	163	1.05	370.3	0.124	38.6	0.959	0.073	0.44	3.8	2.5	4.19	0.21	200	3.5	1.0
BLK	Blank	<0.02	<2	<0.01	<0.001	<0.5	<0.5	<0.01	<0.5	<0.001	<20	< 0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	⊲0.0
BLK	Blank	<0.02	<2	<0.01	<0.001	<0.5	<0.5	<0.01	⊲0.5	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.0
Prep Wash																					
G1	Prep Blank	0.07	35	0.49	0.072	7.1	53.1	0.57	225.2	0.123	<20	0.99	0.094	0.53	0.1	2.0	0.32	< 0.02	<5	<0.1	<0.0