TECHNICAL ASSESSMENT REPORT

Of The

BC Geological Survey Assessment Report 29467

Hixon Creek Mineral Claims

Cariboo Mining Division, British Columbia, Canada NTS Map 093G07E, BCGS Map 093G048 UTM Zone 10(NAD 83), North 5921604, East 531790 Latitude 53° 26' 33" North Longitude 122° 31' 17" West

For

Cayenne Gold Mines Ltd. 1004 – 470 Granville Street Vancouver, British Columbia Canada V6C 1V5

By

Brian Simmons P.Eng. Consulting Mining Engineer Rodell Enterprises Ltd. Box 151, 1235 Barnes Road Crofton, B.C., Canada, V0R 1R0 Phone 250.210.2520 briangsimmons@shaw.ca

November 30, 2007 Revised February 14, 2008

TABLE OF CONTENTS

SUMMARY	
Figure 1: LOCATION MAP	5
Figure 2: CLAIM LOCATION MAP	6
INTRODUCTION	7
Purpose of Report	7
Sources of Information	7
Extent of Field Involvement	7
PROPERTY DESCRIPTION AND LOCATION	8
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE &	
PHYSIOGRAPHY	9
Topography, elevation and vegetation	9
Access to the Property	9
Proximity to Population Centre	9
Climate	
Surface Areas	10
HISTORY	
GEOLOGICAL SETTING	12
DEPOSIT TYPES	
2007 DIAMOND DRILLING PROGRAM	13
Figure 3: 2007 DIAMOND DRILL LOCATIONS	14
Figure 4: DRILL HOLE SECTION A-AA	15
Figure 5: DRILL HOLE SECTION B-BB	16
2007 PROSPECTING PROGRAM	
Figure 6: WAYPOINT LOCATIONS	19
Figure 7: ROCK CHIP SAMPLES	20
2007 ROAD REHABILITATION AND MAINTENANCE	21
SAMPLING METHOD AND APPROACH	
SAMPLE PREPARATION, ANALYSES AND SECURITY	21
DATA VERIFICATION	
PIONEER PAST PRODUCER	22
CAYENNE SHOWING	
INTERPRETATION AND CONCLUSIONS	24
RECOMMENDATIONS	25
REFERENCES	
Certificate of author Brian Simmons	28
Appendix	29

SUMMARY

The purpose of this technical assessment report is to publish the results of the 2007 Hixon Creek mineral exploration program and to make recommendations. The 2007 mineral exploration program consisted of diamond drilling and prospecting.

Cayenne Gold Mines Limited owns 100% of the Hixon Creek mineral claims. The Hixon Creek mineral claims are located in the Cariboo Mining Division of British Columbia Canada (Figure 1). The mineral claims are contiguous (Figure 2) and total an area of 4255.8 hectares (Table 1).

Since the 1870's, Hixon Creek has had a long history of placer mining. From Ministry of Mines Reports prior to 1945, estimates of up to \$2,000,000 worth of placer gold was mined from Hixon Creek.

In 1933 Quesnel Quartz Mining Company, dewatered the existing underground workings and implemented and underground development program. Quesnel Quartz has recorded production in 1932 and 1939 totaling 2,257 tons. Recovery is reported as 275 ounces of silver and 207 ounces of gold.

The deposit (Quesnel Quartz, Main Shaft workings) is associated with a highly sheared and hydro- thermally altered, northwest trending zone in which greenstones are in contact with quartz sericite schists. A large number of fairly closely spaced quartz veins striking mainly northeasterly with a steep dip also occur in the greenstone near the contact. The veins, which vary from a few centimetres up to about 1.8 metres in width, terminate against the contact. Gold mineralization occurs in the veins and to a lesser extent in the greenstone. Mineralization includes native gold, native silver, galena, sphalerite, chalcopyrite, molybdenite, arseno- pyrite, pyrrhotite and pyrite

The 2007 diamond drilling program consisted of three NQ diamond drill holes for a total of 596 meters (Figures 3, 4, 5). All three holes were drilled from a common site, located 72 meters northeast of the Main Shaft. The holes were drilled to test the validity of earlier drilling as well as to probe for additional gold mineralization and its geological

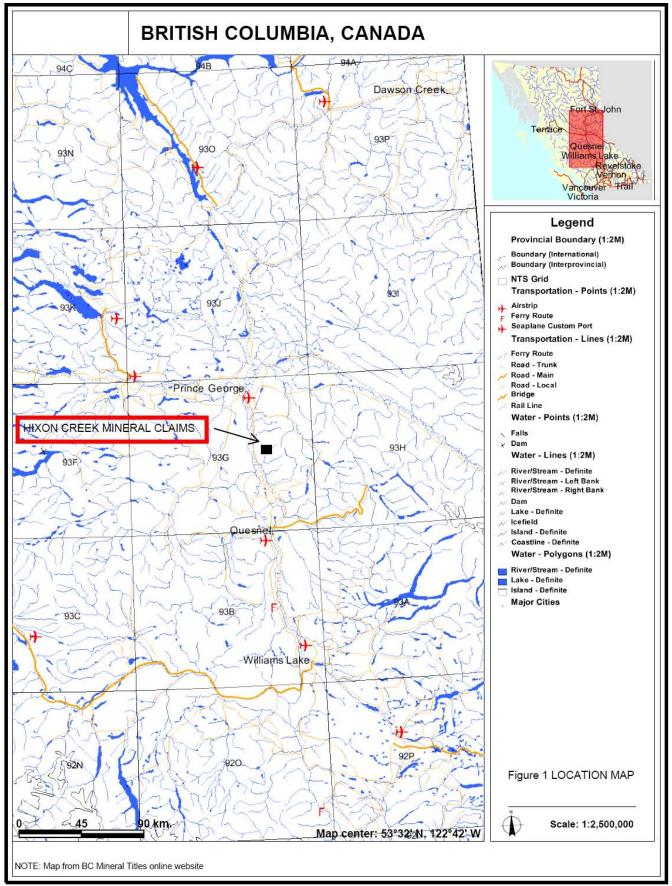
controls. The drill holes encountered multiple zones of gold and silver mineralization (Table 2). All three holes were drilled to a length of 199 meters, the limit of the drill. Each drill hole ended in sulfide mineralization.

No visible gold was observed in the diamond drill core or rock chip samples. The gold values were found to be associated with the sulphide (mainly pyrite) mineralization. The pyrite occurs in close proximity to the quartz, but rarely in the quartz. The quartz and calcite veins are randomly oriented.

DDH-01 had gold and silver intersections (Table 2) similar in grade and length to the previous diamond drilling by Golden Rule Resources (1983) and Noranda Explorations (1988). The best intersection was from 179.3 to 182.3 meters and assayed 6.75 g/t gold and 54.5 g/t silver.

DDH-03 had the most sulfide mineralization. I believe this is because it was drilled at a 45 degree angle to the strike of the quartz veins and to the strike of the schist greenstone contact.

The sulfide mineralization appears to increase the closer to the schist greenstone contact,


The majority of the Hixon Creek Mineral Claims are covered in thick glacial till. A rock sample from the Landing outcrop located in the north area assayed 3.62 g/t gold. Another rock chip sample from an old trench north of Pedley Lake assayed 11.95 g/t gold. The mineralized occurrences conform to the regional north/northwesterly strike of the Quesnel Trough.


In the Main Shaft area, I recommend additional step-out diamond drilling to the northwest along the schist greenstone contact. I also recommend deeper diamond drilling up to 350 meters. Drilling should also be oriented to intersect the schist greenstone contacts.

An excavator is recommended to clean out the existing North Area, Quesnel Quartz and Pedley Lake trenches. New rock outcrops (Road, Landing) should also be excavated and sampled.

In the qualified person's opinion the character of the Hixon Creek Mineral Claims is sufficient to merit a \$210,000 work program.

Figure 1: LOCATION MAP

Page 6 of 29

INTRODUCTION

Purpose of Report

The purpose of this report is to publish the results of the 2007 Hixon Creek mineral exploration program and to make recommendations. The 2007 mineral exploration program consisted of 596 meters of diamond drilling and prospecting.

The terms of reference used for this report are from the *Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines* adopted by the *Canadian Institute of Mining and Metallurgy*. This report was also written in accordance with *National Instrument* 43-101 – *Standards of Disclosure for Minerals Projects*.

Sources of Information

Sources of information noted in the text are *Italicized* and listed in the References. Notes on the Figures list the sources of the maps. For a glossary of geological terms, I recommend using a computer online search engine such as "Google

Extent of Field Involvement

Brian Simmons P. Eng. spent a total of 40 days on the Hixon Creek mineral claims from June 21, 2007 to October 4, 2007. Brian Simmons P. Eng. was the qualified person for the 2007 Hixon Creek mineral exploration program.

PROPERTY DESCRIPTION AND LOCATION

Cayenne Gold Mines Limited owns 100% of the Hixon Creek mineral claims. The Hixon Creek mineral claims are located in the Cariboo Mining Division of British Columbia Canada (Figure 1). The mineral claims are contiguous (Figure 2) and total an area of 4255.8 hectares (Table 1).

TABLE 1

Tenure Number	Tenure Type	Claim Name	Owner	Map Number	Good To Date	Status	Area (ha)
506158	Mineral		146405 (100%)	093G	2010/dec/31	GOOD	115.6
506161	Mineral		146405 (100%)	093G	2010/dec/31	GOOD	173.3
515218	Mineral	PEDLEY LAKE GOLD	146405 (100%)	093G	2010/dec/31	GOOD	57.8
515222	Mineral		146405 (100%)	093G	2010/dec/31	GOOD	674.2
515226	Mineral		146405 (100%)	093G	2010/dec/31	GOOD	558.4
515227	Mineral		146405 (100%)	093G	2010/dec/31	GOOD	712.7
515452	Mineral		146405 (100%)	093G	2010/dec/31	GOOD	96.3
515458	Mineral	CAYENNE 205	146405 (100%)	093G	2010/dec/31	GOOD	19.3
515459	Mineral	CAYENNE 205	146405 (100%)	093G	2010/dec/31	GOOD	134.8
515460	Mineral	CAYENNE 207	146405 (100%)	093G	2010/dec/31	GOOD	96.3
515546	Mineral	CAYENNE 208	146405 (100%)	093G	2010/dec/31	GOOD	19.3
520532	Mineral	LYN !	146405 (100%)	093G	2010/dec/31	GOOD	461.9
520535	Mineral	LYN 2	146405 (100%)	093G	2010/dec/31	GOOD	231.0
520537	Mineral	LYN 3	146405 (100%)	093G	2010/dec/31	GOOD	404.4
520843	Mineral		146405 (100%)	093G	2010/dec/31	GOOD	346.7
520845	Mineral		146405 (100%)	093G	2010/dec/31	GOOD	154.1
					TOTAL (ha)		4255.8

HIXON CREEK MINERAL CLAIMS

The Hixon Creek mineral claims are located in the Prince George Forest district. The Hixon Creek area is presently an active logging area because of the massive pine beetle devastation.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE & PHYSIOGRAPHY

Topography, elevation and vegetation

The Hixon Creek mineral claims are located on the Cariboo Plateau. The Cariboo Plateau has a gentle rolling topography with incised streams. Elevations range from 725 meters to 850 meters. The ground cover varies from dense second growth evergreen forests to clear-cut areas. The plateaus consist mainly of dead or near dead pine trees due to the pine beetle infestation. About 70 percent of the Hixon Creek mineral claims have been logged and are in various stages of re-forestation.

Access to the Property

The village of Hixon is located midway between the cities of Prince George and Quesnel on Highway 97 (Figure 1). From the village of Hixon drive east for 4.1 kilometers on the Hixon Creek gravel road (turns into logging road 38A). A communications tower will be seen to the west (Figure 6). Turn east off of the 38A logging road on to the next secondary logging road. Drive across the bridge and take the next road to the southeast. This is now the old Hixon Creek road. Follow the Hixon Creek road downhill until Hixon Creek. The bridge has been removed. This is the Main Shaft area and the site of the 2007 diamond drilling program. From the 38A road turn off to Hixon Creek is 3.4 kilometers.

A network of logging roads (38A, 38B, 3800) traverses the Hixon Creek mineral claims.

Proximity to Population Centre

The cities of Prince George and Quesnel are the closest major population centers, with Prince George to the north and Quesnel to the south (Figure 1).

The population of Prince George is 72,000 and the population of Quesnel including the surrounding communities is 23,000. Traveling by vehicle both cities are 1 ½ hours away from the Hixon Creek claims.

Climate

The Hixon Creek property has a moderate climate with a growing season from late May to September. The Quesnel area has an average annual rainfall of 36 cm/yr, and an average snowfall of 166 cm/yr. The average summer temperature is 16° Celsius and the average winter temperature is -5° Celsius.

Surface Areas

The hoisting shaft head frames, concentrator, and mining facilities built by the Quesnel Quartz Mining Company in the 1930's are all gone. The concrete foundations of the Main Shaft head frame are still visible and remains of the ore bin are still evident.

The water flume built by the placer miners can be found on the north side of Hixon Creek.

There are two rock quarries and several large gravel pits located on the mineral claims. The blasted rock and gravel are used for the construction of logging roads.

HISTORY

Since the 1870's, Hixon Creek has had a long history of placer mining. From Ministry of Mines Reports prior to 1945, estimates of up to \$2,000,000 worth of placer gold was mined from Hixon Creek.

In the 1870's and 1880's underground development was initiated on the quartz veins found in the incised Hixon Creek. The adits and shafts followed several auriferous quartz veins. A stamp mill was built in 1878 and production was reported to be 239 tons of ore.

In 1933 Quesnel Quartz Mining Company, dewatered the existing underground workings and implemented and underground development program. The Clarke Adit was drifted and the Main Shaft was sunk to 200 feet (4 levels). From the 4th level of the Main Shaft workings, a winze was sunk for an additional 200 feet (levels 5&6). Extensive drifting was done on the three lowest levels. In the Main Shaft underground workings, 29 quartz veins were recorded and sampled. Quesnel Quartz has recorded production in 1932 and 1939 totaling 2,257 tons. Recovery is reported as 275 ounces of silver and 207 ounces of gold.

In the early 1970's, Bethlehem Copper Corporation staked a large block of claims surrounding the Main Shaft area. Bethlehem's mineral exploration program consisted of geological mapping, geochemical soil sampling and 4 diamond drill holes.

From 1980 to 1983, Taiga Consultants on behalf of Golden Rule Resources carried out geological, geochemical, and geophysical surveys. The surveys were conducted from Pedley Lake on a NW striking baseline through Hixon Creek. Also 4 diamond drill holes totaling 353 meters were drilled. Two of the diamond drill holes were drilled beneath the Main Shaft underground workings at Hixon Creek. The other 2 holes were drilled in the Raven area.

In 1987 and 1988 Noranda Explorations drilled 8 diamond drill holes in the Main Shaft and Raven Adit areas. Bulldozer trenching was also done in the Main Shaft area, Raven adit area, Pedley Lake area and North area.

In 2004, Cayenne Gold Mines Ltd. drilled 3 diamond drill holes for a total of 273 meters. The holes were all drilled from the same site located 1.5 kilometers east of the Main Shaft area (Figure 6). All three diamond drill holes, for their entire length encountered a Tertiary chaotic conglomerate. The core/sludge samples contained gold values up to 0.02 ppm.

GEOLOGICAL SETTING

The deposit (Quesnel Quartz, Main Shaft workings) is associated with a highly sheared and hydro- thermally altered, northwest trending zone in which greenstones are in contact with quartz sericite schists. The greenstones and schists likely belong to the Upper Triassic/Lower Jurassic Takla Group. In the vicinity of the contact the greenstones have been hydrothermally altered and exhibit carbonatization and, especially toward the surface, kaolinization. A large number of fairly closely spaced quartz veins striking mainly northeasterly with a steep dip also occur in the greenstone near the contact. The veins, which vary from a few centimetres up to about 1.8 metres in width, terminate against the contact. Gold mineralization occurs in the veins and to a lesser extent in the greenstone. Mineralization includes native gold, native silver, galena, sphalerite, chalcopyrite, molybdenite, arseno- pyrite, pyrrhotite and pyrite (Gov. of B.C. Ministry of Energy, Mines and Petroleum Resources, MINFILE No. 093G 015, Capsule Geology).

DEPOSIT TYPES

The gold–quartz veins are classified as hydrothermal and epigenetic. A disseminated vein, stockwork type deposit is being sought.

2007 DIAMOND DRILLING PROGRAM

A diamond drilling program on Cayenne's Hixon Creek project started on June 26th and was completed on August 9, 2007. The diamond drilling was conducted by Adam Diamond Drilling Limited of Princeton B.C. The program consisted of three NQ diamond drill holes for a total of 596 meters. All three holes were drilled from a common site, located 72 meters northeast of the Main Shaft. The holes were drilled to test the validity of earlier drilling as well as to probe for additional gold mineralization and its geological controls.

The drill holes encountered multiple zones of gold and silver mineralization (Table 2). All three holes were drilled to a length of 199 meters, the limit of the drill (Figures 3, 4, 5). Each drill hole ended in sulfide mineralization.

Drill Hole	From (m)	To (m)	Interval(m)	Gold (g/t)	Silver (g/t)
DDH-01	128.6	133.2	4.6	0.78	<2
DDH-01	151.8	159.1	7.3	0.62	2.3
DDH-01	179.3	182.3	3.0	6.75	54.5
DDH-01	198.0	198.8	0.8	2.13	<2
DDH-02	117.1	118.0	0.9	0.51	<5
DDH-02	127.4	128.0	0.6	0.37	<5
DDH-02	182.8	183.7	0.9	1.80	0.4
DDH-03	60.1	61.6	1.5	11.8	12.9
DDH-03	66.9	69.2	2.3	2.23	3.9
DDH-03	72.1	73.2	1.1	0.62	1.4
DDH-03	156.1	160.2	4.1	0.23	0.7
DDH-03	183.5	184.7	1.2	0.38	0.3
DDH-03	190.4	198.8	8.4	0.51	1.5

TABLE 2

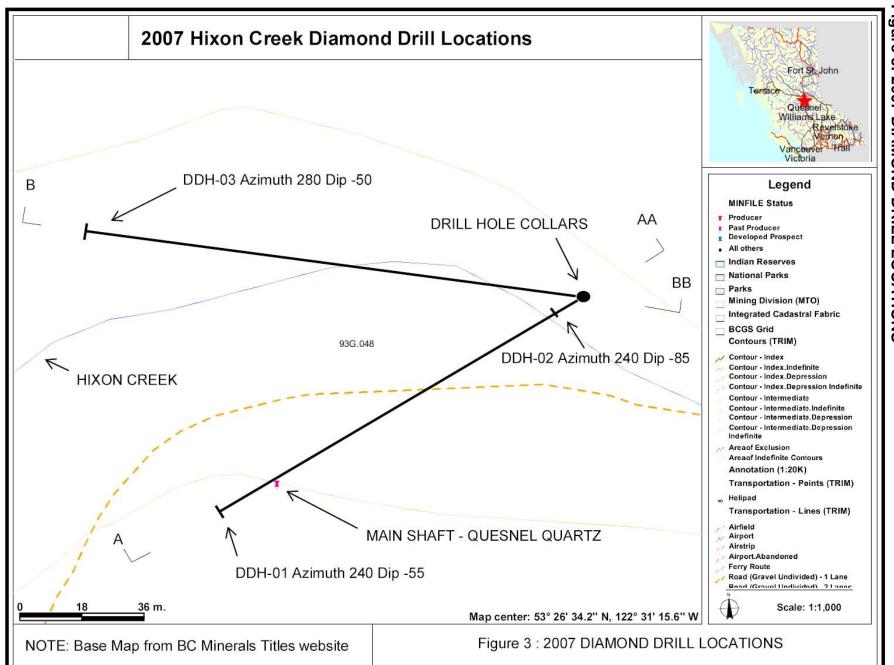
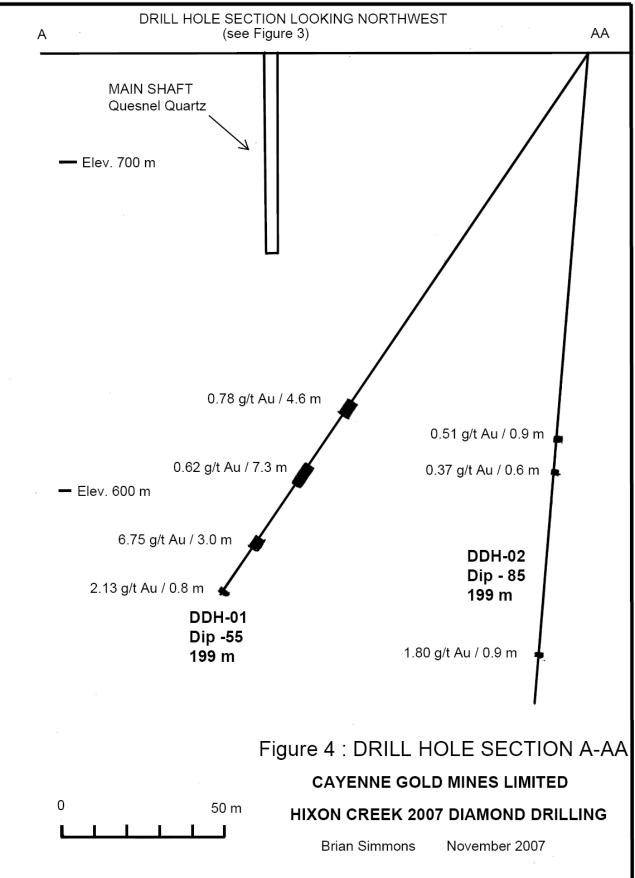
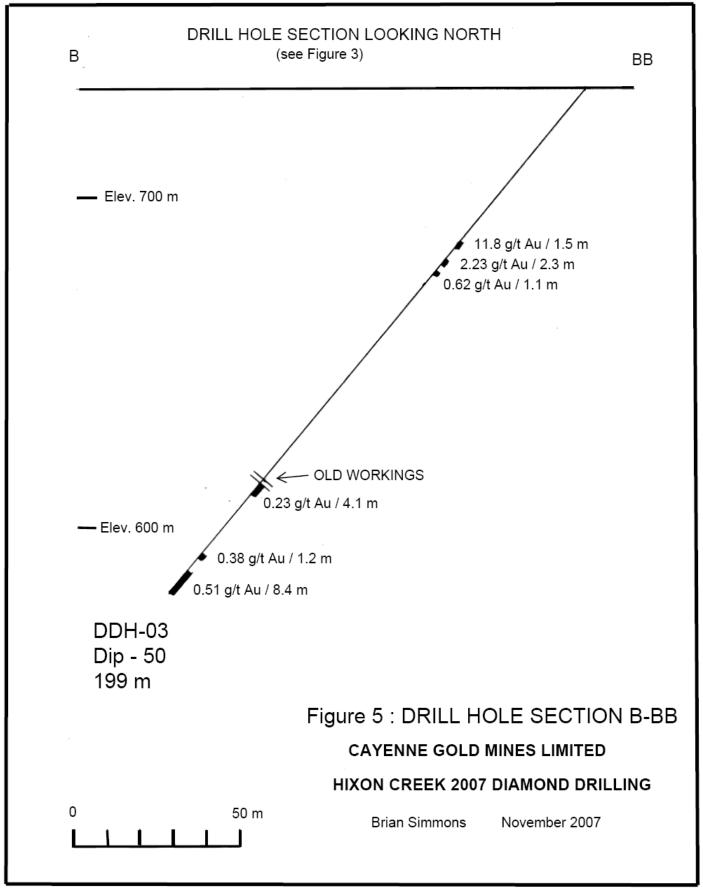




Figure 3: 2007 DIAMOND DRILL LOCATIONS

Page 14 of 29

Figure 4: DRILL HOLE SECTION A-AA

The schist greenstone contact in the Main Shaft area has a northwest strike direction. The quartz veins strike to the northeast, perpendicular to the schist greenstone contact. Both of these strike directions were cross-cut by the 2007 diamond drilling.

All three 2007 diamond drill holes were essentially drilled in greenstone (see Drill Logs in Appendix). Only the bottom of DDH-03 intersected metasediments (schist). The core in the first 30 meters (vertical) was generally intensely altered and/or weathered. In places the original rock type could not be determined.

No visible gold was observed in any of the diamond drill core. The sulfide mineralization (mainly pyrite) occurs in close proximity to the quartz, but rarely in the quartz. The pyrite cubes are well developed and up to 2 mm in size. The quartz and calcite veins are randomly oriented.

The first diamond drill hole (DDH-01) was drilled to the southwest (Azimuth 240 degrees) at an angle of -55 degrees (Figure 4). The drilling direction (Azimuth 240 degrees) is perpendicular to the northwesterly strike of the schist greenstone contact. DDH-01 was directed underneath the Main Shaft and was intended to pierce the schist greenstone contact. DDH-01 did not intersect the contact.

In the upper levels of the Main Shaft, the schist greenstone contact was dipping to the northeast (Quesnel Quartz Mining Company underground maps). On the lower underground levels the schist greenstone contact was dipping to the southwest. On the lowest underground level 6, the schist greenstone contact was recorded as dipping 55 degrees to the southwest.

It is possible DDH-01 was drilled underneath and parallel to the schist greenstone contact. DDH-01 was also drilled parallel and in-between previous diamond drilling by Golden Rule Resources (1983) and Noranda Explorations (1988).

DDH-02 was drilled at an angle of -85 degrees (Azimuth 240 degrees) to test the depth of the greenstone (Figure 4). The best intersection was near the bottom of the hole from 182.8 to 183.7 meters. The interval assayed 1.8 g/t Au and 0.4 g/t Ag.

DDH-03 was drilled to the west (Azimuth 280°) at -50 degrees (Figure 5). This drill hole was directed to intersect the schist greenstone contact at a 45 degree angle. Also at this direction (Azimuth 280°) the quartz veins would be intersected. The quartz veins mapped in the underground workings are roughly perpendicular to the strike of the schist greenstone contact (Quesnel Quartz Mining Company underground maps). DDH-01 was drilled parallel to the strike of the quartz veins.

Of the 3 drill holes, DDH-03 had the most sulphide mineralization (Table 2). DDH-03 also intersected a shallower mineralized zone (from 60 to 75 meters) not encountered in the previous holes.

At 154.3 meters the drill intersected the deepest level (level 6) of the underground workings.

The bottom of DDH-03 intersected the metasediments (schist) from 165.2 to 182.0 meters.

2007 PROSPECTING PROGRAM

In addition to diamond drilling, considerable surface prospecting was done to search out old and new mineralization. The mineral claims are currently being logged due to the pine beetle devastation. About 70 percent of the Hixon Creek mineral claims have been logged.

The majority of the Hixon Creek Mineral Claims are covered in thick glacial till. As result of extensive logging, several bedrock exposures were evident for the first time (Figure 6). A total of 18 rock chip samples were taken. A rock sample from the Landing outcrop located in the north area assayed 3.62 g/t gold (Figure 7). Another rock chip sample from an old trench just north of Pedley Lake assayed 11.95 g/t gold. The mineralized occurrences conform to the regional north/northwesterly strike of the Quesnel Trough.

Trenches dug by previous operators (Golden Rule Resources, Noranda Explorations) were found in the North Area, Main Shaft area, Raven area and Pedley Lake. All of the trenches were sloughed in.

HIXON CREEK MINERAL CLAIMS OUTLINE

> •Water Flume •Road Outcrop Main Sha DDH 2007-1 •DDH-2004

HIXON CREEK

HIXON CREEK ROAD

•Tower

MAIN SHAFT AREA QUESNEL QUARTZ •Road Outcrop Road Outcrop

> Gully •Trench •Rock Pit

> > Rock Pit

PEDLEY LAKE

1 KM

FIGURE 6: WAYPOINT LOCATIONS CAYENNE GOLD MINES LIMITED HIXON CREEK, B.C., CANADA Brian Simmons P.Eng. February 2008 Satellite Image - Google Maps

N

0.07 G007002

0.025

NORTH AREA TRENCHES

3.62 G007003

E970006

0.027 E97005

LANDING OUTCROP

MAIN SHAFT AREA

HIXON CREEK

0.003 E970003

HIXON CREEK ROAD

FIGURE 7: ROCK CHIP SAMPLES CAYENNE GOLD MINES LIMITED HIXON CREEK, B.C., CANADA Gold ppm / Sample Number Brian Simmons P.Eng. Feb. 2008 Satellite Image - Google Maps

1 KM

0.037 E970001 0.25 G007059

PEDLEY LAKE TRENCHES 11.95 G007001

E970002 0.069 <0.05 G007057 <0.05 G007068 ROCK PITS

< 0.05 G007004

PEDLEY LAKE

2007 ROAD REHABILITATION AND MAINTENANCE

A local contractor was hired to make the old Hixon Creek road (Figure 6) passable with a four wheel drive truck. Road rehabilitation and maintenance consisted of ditching and graveling. A rubber tired backhoe and dump truck were utilized.

SAMPLING METHOD AND APPROACH

Recovery of the NQ diamond drill core was good, even in the highly altered/weathered upper portions of the holes. The sulphide/quartz sections of the diamond drill core were split. Half of the core was sent for analysis. After the initial assay results were received, additional sampling was done on non-split sections of core. Typically a core sample length was 2.5 feet (0.76 meter). A six inch core splitter was used. The logging roads provided good access and good geological exposure of the glacial till and country rock. All rock outcrops and rock exposures in the road cut banks were sampled. A Garmin GPSmap76CSx was used to record the rock chip sample location and elevation. A geological description of the sample site was also recorded. GIS mapping software (Manifold) was used to plot the GPS waypoints.

SAMPLE PREPARATION, ANALYSES AND SECURITY

The diamond drill core and rock samples were taken by or under the supervision of Brian Simmons P.Eng. or Alex Burton P.Geo., P.Eng. The diamond drill core was split and sampled on a daily basis. The sample bags were tied with plastic zip locks. The samples were kept in a locked vehicle until there delivery to the assay lab. The diamond drill core is stored at Christina Lake British Columbia.

ALS Chemex and ACME Analytical Laboratories in Vancouver, British Columbia analyzed the core and rock samples for gold and silver (Appendix). Fire assay and AAS\gravimetric techniques were used for the gold and silver analysis.

A dyke in DDH-01 and 4 rock chip samples were analyzed for Pt, Pd, and Au by fire assay and ICP-MS finish (Appendix). The five samples were also analyzed for multiple elements using ICP-MS and ICP-AES techniques (Appendix).

DATA VERIFICATION

The sources of information, which are not based on personal examination, are quoted in the report and listed in the references. The information provided by the various parties is to the best of my knowledge and experience correct.

PIONEER PAST PRODUCER

The past producing Pioneer underground mine is located on the northwest portion of the Hixon Creek Mineral Claims (Figure 2).

The Pioneer deposit occurs within carbonaceous shale of Upper Triassic age which forms part of the Takla Group. The Takla Group forms part of the Quesnellia Terrane which is bounded to the east by rocks of the Omineca Belt and to the west by the Cache Creek Group. The mineralization consists mainly of argentiferous galena and sphalerite within a northerly striking northeast dipping quartz vein. In 1927 four tonnes of ore was mined producing 809 grams of silver, 126 kilograms of lead and 2 kilograms of zinc. Anomalous gold values have also been recorded from the vein (Gov. of B.C. Ministry of Energy, Mines and Petroleum Resources, MINFILE No. 093G 013, Capsule Geology).

CAYENNE SHOWING

The Cayenne showing is located approximately 1 kilometer east of the main shaft area (Figure 2).

The Cayenne showing occurs in an area in which elements of the Omineca Belt and the Quesnellia Terrane both occur. The two terranes are separated from each other by a fault which is probably the northern extension of the Eureka Thrust. The area is largely covered by Pleistocene glacial and fluvioglacial deposits. The Quesnellia Terrane consists of dark grey, generally fine grained argillaceous sedimentary rocks with interbedded basaltic volcanic rocks (generally altered). The Omineca Belt consists of quartz bearing metasedimenary rocks which, in this area, probably form part of the Barkerville Terrane. The Cayenne showing consists of a 0.6 to 1.2 metre wide quartz vein and several smaller quartz stringers which cut highly altered and weathered quartz sericite schist. Gold values have been reported from both the quartz veins and from the schist. The wallrock is quartz sericite schist and this would seem to indicate that this showing is underlain by the Barkerville Terrane. However, due to the lack of detailed mapping in this area, it is not clear in which terrane the showing occurs. A grab sample in 1929 assayed 8.22 grams per tonne gold and 13.71 grams per tonne silver (Energy, Mines and Petroleum Resources Annual Report 1929 p. 189).

Trenching in 1984 produced a best assay from the Raven claim, at the Cayenne, of 7.20 grams per tonne gold over a 5 metre interval (Northern Miner, June 7, 1984). (Gov. of B.C. Ministry of Energy, Mines and Petroleum Resources, MINFILE No. 093G 014, Capsule Geology)

INTERPRETATION AND CONCLUSIONS

No visible gold was observed in the diamond drill core or rock chip samples. The gold values were found to be associated with the sulphide (mainly pyrite) mineralization. The pyrite occurs in close proximity to the quartz, but rarely in the quartz. The quartz and calcite veins are randomly oriented.

DDH-01 had gold and silver intersections (Table 2) similar in grade and length to the previous diamond drilling by Golden Rule Resources (1983) and Noranda Explorations (1988). The best intersection was from 179.3 to 182.3 meters and assayed 6.75 g/t gold and 54.5 g/t silver.

DDH-02 was drilled the furthest away from the schist greenstone contact and had the least sulfide mineralization. It should be noted that the best intersection was near the bottom of the drill hole.

DDH-03 had the most sulfide mineralization. I believe this is because DDH-03 was drilled at a 45 degree angle to the strike of the quartz veins and to the strike of the schist greenstone contact.

The closer to the schist greenstone contact, the sulfide mineralization appears to increase

The majority of the Hixon Creek Mineral Claims are covered in thick glacial till. A rock sample from the Landing outcrop located in the north area assayed 3.62 g/t gold. Another rock chip sample from an old trench north of Pedley Lake assayed 11.95 g/t gold. The mineralized occurrences conform to the regional north/northwesterly strike of the Quesnel Trough.

RECOMMENDATIONS

In the Main Shaft area, I recommend additional step-out diamond drilling to the northwest along the schist greenstone contact. I also recommend deeper diamond drilling up to 350 meters. Drilling should also be oriented to intersect the schist greenstone contacts.

An excavator is recommended to clean out the existing North Area, Quesnel Quartz and Pedley Lake trenches. New rock outcrops (Road, Landing) should also be excavated and sampled.

The past producing Pioneer mine and Cayenne showing should be prospected and sampled. Also any new logging areas and roads should also be prospected. In the qualified person's opinion the character of the Hixon Creek Mineral Claims is sufficient to merit the following work program.

Diamond Drilling (NQ)	\$75,000
750 meters @ \$100 / meter	
Excavator Rental – Trenching,	\$15,000
reclamation, mobilization, \$1200 / day,	
10 days	
Labor core splitter/sampler	15,000
60 days @ \$250/day	
Project Supervision/Qualified Person	\$30,000
60 days @ \$500 / day	
Transportation	\$15,000
Accommodation & Food	\$20,000
Analysis (assaying)	\$15,000
Supplies and Rentals	\$7,500
Reports and Mapping	\$7,500
Contingency (10%)	\$10,000
TOTAL (CANADIAN DOLLARS)	\$210,000

REFERENCES

Adamson, Robert S., Summary Report on the Hixon Creek Property, August 15, 1988

Allan, J.R., 1983 Summary Report, Hixon Creek Gold Project, March 15, 1984

Anderson, R.E., Summary Report Geochemical Survey Mineral Claims Hixon Quartz 1 to 4 and "K" 1 to 84, Hixon Creek B.C., January 13, 1972

Burton, Alex, Report on the Hixon Creek Property, October 18, 2005

Davidson, E.G., Cayenne & Hixonterry Group, November, 1930

- Fox, Michael St. C., Geophysical Survey and Geological and Geochemical Evaluation Hixon Creek Gold Project, September 8, 1980
- Fox, Michael, Geological, Geophysical, and Geochemical Report, Hixon Creek Gold Project, July 15, 1981
- Government of British Columbia Ministry of Energy, Mines and Petroleum Resources, *MINFILE* No. 093G 013, 093G 014, 093G 015, 093G 047, 093G 054.
- Javorsky D., Briden A., Hixon Creek Project, Exploration and Preliminary Diamond Drilling, Amended Assessment Report, March 14, 2006
- Jenks, John D., Report On Rock Assays and Geology of the Hixon Creek Prospect, September 6, 1979

- Peterson, P.E., Report on The Mining Property of the Quesnelle Quartz Mining Company Ltd., Vancouver, B.C., October 24, 1933
- Peterson, P.E., Report on the Mining Property of the Quesnelle Quartz Mining Co. Ltd., Vancouver, B.C., June 18, 1934
- Peterson, P.E., Report on the Mining Property of the Quesnelle Quartz Mining Co. Ltd., Vancouver, B.C., December 14, 1934
- Peterson, P.E., Summary Report on the Mining Property of the Quesnelle Quartz Mining Co. Ltd., Vancouver, B.C., January 20, 1936
- Peterson, P.E., Report on the Mining Property of the Quesnelle Quartz Mining Co. Ltd., Vancouver, B.C., October 7, 1936
- Peterson, P.E., Progress Report on the Mining Property of the Quesnelle Quartz Mining Co. Ltd., Vancouver, B.C., May 5, 1937
- Quesnelle Quartz Mining Company Ltd., 1930's, Maps and Plans of the Main Shaft area,
- Struik L.C., Fuller E.A., Lynch T.E., Geological Survey of Canada, Open File 2172, Geology of Prince George (East Half), Map Area (93G/E), Descriptive Notes and Fossil List, 1990

Certificate of author Brian Simmons

I, Brian Simmons, am a consulting Professional Engineer and President of Rodell Enterprises Limited, residing at 1235 Barnes Road, Crofton, British Columbia, Canada, V0R 1R0

This technical report titled *Technical Assessment Report of the Hixon Creek Mineral Claims* dated November 30th 2007, revised February 14th 2008, and has been prepared for Cayenne Gold Mines Limited.

I am a member of the Association of Professional Engineers and Geoscientists of British Columbia. I am a registered Professional Engineer with License # 15588.

I graduated in 1981, from the Colorado School of Mines with a Bachelor of Science Degree in Mining Engineering. I have practiced my profession since 1982, both as an independent consultant and employee for mining companies in Canada, United States, and Mexico. My experience includes mineral exploration, development to production and production.

As a result of my experience and qualification I am a Qualified Person as defined in National Instrument 43-101.

For 40 days in duration from June 21st 2007 to October 4th 2007, I examined the Hixon Creek mineral claims.

I am responsible for all sections of the technical report.

I am independent of Cayenne Gold Mines Limited in accordance with the application of Section 1.4 of National Instrument 43-101.

I have had no prior involvement in the Hixon Creek mineral claims that are the subject of the technical report.

I have read National Instrument 43-101, Form 43-101F1 and this technical report has been prepared in compliance with NI 43-101 and Form 43-101F1.

As of February 14th 2008, to the best of my knowledge, information and belief, the technical report contains all the scientific and technical information that is required to be disclosed to make the technical report not misleading.

Dated this 14th day of February, 2008 in Crofton, British Columbia, Canada

Brian Simmons, P. Eng. Consulting Mining Engineer

Appendix

Hixon Creek 2007 Mineral Exploration Expenses

2007 Diamond Drill Logs

Hixon Mineral Claims Waypoint locations

Hixon Mineral Claim Rock Chip Sample Waypoints and Assays

ASSAYS – ALS Chemex, ACME ANALYTICAL LABRATORIES LTD.

HIXON CREEK 2007 MINERAL EXPLORA	TION EXPENSES				
CAYENNE GOLD MINES LIMITED					
Exploration Work type	Comment	Days			Totals
		_			
Personnel (Name) * / Position	Field Days (list actual days)	Days		Subtotal*	
Alex Briden / Supervisor / Geologist	June 21, 2007 to August 9, 2007	38		\$19,000.00	
Brian Simmons P.Eng. / Qualified Person	June 21, 2007 to October 4, 2007	40		\$20,000.00	
Alex Burton P.Geo., P.Eng. / Qualified Person		10			
Craig Boruck / Core Splitter / Prospector	June 21, 2007 to October 4, 2007	45 45		\$11,250.00	
Ray Spinks / Labour / Prospector	June 21, 2007 to August 9, 2007	45	\$100.00	\$4,500.00 \$60,750.00	¢40 750 00
Office Studies	List Personnel (note - Office only	, do no	t include (\$60,750.00
General research	Brian Simmons P.Eng.	5 .0			
Report preparation	Brian Simmons P.Eng.	12.0			
Other (specify)	Bridit Siminons F.Eng.	12.0	\$300.00	\$0,000.00	
Other (specify)				\$8,500.00	\$8,500.00
Ground Exploration Surveys	Area in Hesteres (List Dersonnel		1	\$6,500.00	\$6,500.00
	Area in Hectares/List Personnel				
Geological mapping	2 000 ba / all porconnol listed shows				
Prospect	2,000 ha / all personnel listed above				
Underground Trenches	Define by length and width			\$0.00	\$0.00
Trenches	Define by length and width			\$0.00	\$0.00
Coochemical Surveying		No	Data	Subtatal	
Geochemical Surveying	Number of Samples	No. 258.0	Rate	Subtotal	
Drill (cuttings, core, etc.)	258				
Rock	18	18.0	\$40.00		¢11.040.00
Drilling		No	Data	\$11,040.00	\$11,040.00
Drilling	No. of Holes, Size of Core and Metres	No.	Rate	Subtotal	
Diamond	3 DDH's, NQ core, 596 meters	596.0	\$98.40	1	¢50 (4(40
	Olarifu	No	Data	\$58,646.40	\$58,646.40
Other Operations	Clarify	No.	Rate	Subtotal	
Hixon Creek road rehabilitation	Local contractor - backhoe & dump t	гиск		\$3,396.23	<u> </u>
Deslamention	Olarifu	NIC	Data	\$3,396.23	\$3,396.23
Reclamation	Clarify	No.	Rate	Subtotal	
After drilling	fill in sump, grade and seed drill pad	1.0	\$200.00	\$200.00	¢200.00
Turnen autobien		NIC	Data	Cubbatal	\$200.00
Transportation		No.	Rate	Subtotal	
Airfare	CMA - Vancouver/Quesnel			\$1,372.02	
truck rental - 1 ton GMC 4X4	\$0.50 / km, fuel, maintenance			4,184.85	
Chev Suburban 4x4, Ford F150 4x4	fuel, maintenance			\$7,954.00	\$40 E40 07
Assessment detion & Food	Detec you dou	I	1	\$13,510.87	\$13,510.87
Accommodation & Food	Rates per day	170.00	¢ ⊑ 4 00	¢0 (10 00	
Hotel	\$54.00 / day / room	178.00	\$54.00	-	
Camp	core shack and supplies			\$515.29	
Meals	actual costs			\$12,436.00	* 00 E (0 00
Minoritorio		1	1	\$22,563.29	\$22,563.29
Miscellaneous				¢100 F4	
Telephone				\$128.54	
Field Equipment & Supplies				\$772.81	
Storage				\$450.77	
Office Supplies				\$71.67	
Postage				\$9.74	
Miscellaneous				\$1,025.87	
Maps and Reports				\$383.73	#0.040.40
			1	\$2,843.13	\$2,843.13
Equipment Rentals					
Rock saw				\$204.26	
				\$204.26 \$204.26	\$204.26 \$181,654.18

CAYE	NNE G	OLD	D MINES LTD DIAMOND DRILL LOO	G					
Hixon C	reek P	roiect	t, British Columbia, CANADA	НО	E NUI	MBER: D	DH-01		
					leted:	July 13, 2	2007		
), Northing 0531860, Easting 5921682, Elevation 733 m						
Directior	n: Azimi	uth 24	0, Angle: -55 degrees, Length:198.8 meters (652 feet),	, Core Si	ze: NG	2			
Acid dip	test -64	4 degr	ees at 186.6 meters (612 feet)						
Logged	by: Bria	an Sim	nmons, Alex Burton, Alex Briden						
HOLE N	UMBE	R: DD	H-01						
FROM	то	REC	GEOLOGICAL DESCRIPTION	FROM	то	WIDTH		Au	Ag
(feet)	(feet)	%		(feet)	(feet)	(feet)	NUMBER	ppm	ppn
0	15		NQ Casing						
15	18		Cored boulders						
18	21	50	Very soft white weathered rock, brown streak,						
			scratch with finger nail, rusty brown in places,						
			foliation @ 30 degrees to C.A. (core angle)						
21	24	50	Intensly altered andesite , rusty brown, core broken,						
			clayey due to weathering,very soft						
24	34	70	Intensely altered andesite , rusty brown, core broken,						
			light brown to white streak, dark brown to black						
			foliation @ 30 degrees to core angle						
34	38.5	90	Intensely altered andesite, core broken, greenish-						
			brown in colour, foliation @ 30 degrees to core angle						
			36 ft - 36.5 ft. soft clayey highly altered andesite						
38.5	40.5	90	Very soft white rock, kaolinized?, white streak, rusty						
			brown on fractures, broken core and pebbles, highly						
			altered						
40.5	47	90	Altered andesite , greenish-rusty brown, broken core						
			44 ft quartz band @ 30 degrees to core angle						
			45 ft foliation and fractures @ 10 degrees to C.A.						
47	49.5	70	Altered andesite, greenish-rusty brown, pebbles,						
			broken core						
			48.5 ft quartz blebs						
49.5	57.5	80	Shistose - greyish green, purple and green banded,						
			parallel with core angle						
57.5	59.5	30	Quartz - recovery consisted of quartz pebbles, quartz						
			has rusty patches and holes						
59.5	62	30	Shistose - greyish brown with purple streaks, mud						
			like consistency, quartz fragments						
62	67		Shistose - greyish green						
67	104.5	100	Highly altered andersite, medium to light brown,						
			medium grained, few quartz fragments, fractures 30						
			degrees to C.A.						
			86 feet - Minor Quartz at 45 degrees to C.A.						
			94 feet - Quartz pebbles, fragmented core	95.0	97.0	2	G007007	<0.05	<5
104.5	106.5	90	Medium brown sheared andersite, little or no Qtz						
106	107	100	Dark brown graphitic, highly altered Andersite Dyke?						

HOLE N	IUMBE	R: DD	H-01						
FROM	то	REC	GEOLOGICAL DESCRIPTION	FROM	ΤO	WIDTH	• • • • • = =	Au	Ag
(feet)	(feet)	%		(feet)	(feet)	(feet)	NUMBER	ppm	ppm
107	123.5	100	Andesite, medium grained, greenish colour,						
			abundant rust, very little Quartz.	107.0	109.5	2.5	G007008	<0.05	6.0
			110 feet - Minor Quartz at 45 degrees to C.A., black						
			stringers (manganese?)	109.5	110.5	1	G007009	<0.05	<5
			115.5 feet - 1 inch Quartz vein at 90 degrees to C.A.						
				110.5	112.0	1.5	G007010	<0.05	5.0
			116 feet - Clay-like zone	112.0	114.5	2.5	G007011	<0.05	<5
			120.5 feet - Quartz stringers - 45 degrees to C.A.,						
			black stringers (manganese?)	114.5	117.0	2.5	G007012	<0.05	<5
			122 feet - Breccia Zone (6 inches), greenstone, rusty						
			coloured Quartz	117.0	119.5	2.5	G007013	<0.05	<5
				119.5	122.0	2.5	G007014	<0.05	<5
123.5	127.5	100	Andesite, darker green, very rusty, black stringers						
			(manganese?)	123.0	124.5	1.5	G007015	<0.05	<5
			127.5 feet - Contact igneous at 30 degrees to C.A.						
127.5	137	100		135.7	137.0	1.33	G007016	< 0.05	<5
127.0	107	100	136 feet - volcanic facies at 30 dgrees at C.A., Quartz	10011	10110		0001010		10
			136.5 feet - flow lines at 30 degrees to C.A.						
			137 feet - dark black stringers (manganese ?)						
137	139.3	100	Andesite, light green						
139.3	143		Contact zone , very rusty, highly distorted, fault						
100.0	140	100	gouge, manganese, chlorite						
143	148	100	Brown tuff? , medium grain size, little quartz, minute						
140	140	100	black specs?						
148	150	100	Contact Zone , brown-green medium grained diorite,						
140	100	100	minor quartz veins at 90 to C.A.	148.0	150.0	2	G007017	<0.05	<5
150	153	100	Andesite, light green, pyritized, V.F.G., blue tint, very	11010	10010	_	0001011		10
100	100	100	fine minor pyrite	150.0	153.0	3	G007018	<0.05	<5
			150 feet - contact at 45 degrees to C.A.	100.0	100.0	0	0007010	<0.00	~0
153	170	100	Light green Tuff , course grain, rough texture, rusty						
100	170	100	fractures, very little Quartz, narrow vuggy quartz						
			stringers						
170	171	100	Fault Zone? Small occurance (1.5 inch) of milky						
170	1/1	100	white quartz	170.0	171.0	1	G007019	<0.05	<5
171	189	100	Medium grained, green diorite , minor quartz, rusty	170.0	171.0	1	5001019	~0.00	~5
171	109	100	fracture zones						
189	201	100	Fine grained, light green andesite , rock cores well,						
103	201	100	very minor F.G. pyrite, random narrow quartz						
			stringers (numerous)	196.0	197.0	1	G007005	<0.05	<5
201	260	100	Blueish F.G. andesite , minor fine pyrite, moderate	130.0	131.0	I	0001000	~0.05	<u> </u>
201	200	100		201.0	202.0	1	G007006	<0.05	<5
			quartz	201.0	202.0	2.5	G007006 G007020	<0.05	<5 <5
			207 feet - brecciated gouge (6")	204.5	207.0	2.5	G007020 G007021	<0.05	<5 <5
			217.5 feet - distinct pyrite cubes	207.0	209.5	2.5	G007021 G007022	<0.05	<5
			222 to 223 feet - chloritic shear, green mineral	209.5	212.0	2.5	G007022 G007023	<0.05	<5
				212.0	214.5	2.5	G007023 G007024		<5 <5
			224 feet - emerald green mineral - mariposite?	214.0	217.0	2.0	3007024	<0.05	<i>د</i> ی
			225 feet - minor CPY, disemidated fine pyrite	217.0	210 F	25	C007025	<0 0E	۶.
			throughout	217.0	219.5		G007025	<0.05	<5
			227 feet - mariposite?	219.5	222.0	2.5	G007026	<0.05	<5

HOLE N	JUMBE	R: DD	0H-01						
FROM (feet)	TO (feet)	REC %	GEOLOGICAL DESCRIPTION	FROM (feet)	TO (feet)	WIDTH (feet)	SAMPLE NUMBER	Au ppm	Ag ppm
			243.5 - 246.5 feet - Gouge, Contact Zone?, Intense shearing, chloritic, abudant quartz	222.0	224.5	2.5	G007027	<0.05	<5
			253 feet - Graphite Bands?, Foliation parallel with C.A., Fairly abundant pyrite	224.5	227.0	2.5	G007028	0.070	<5
			254 feet - Whispy chlortic laminae	227.0	229.5	2.5	G007029	<0.05	<5
				229.5	232.0	2.5	G007030	<0.05	<5
				232.0	234.5	2.5	G007031	<0.05	8.0
				234.5	237.0	2.5	G007032	<0.05	<5
				237.0	239.5	2.5	G007033	<0.05	<5
				239.5	242.0	2.5	G007034	<0.05	<5
				242.0	244.5	2.5	G007035	<0.05	<5
				244.5	247.0	2.5	G007036	<0.05	<5
				247.0	249.5	2.5	G007037	<0.05	<5
				249.5	252.0	2.5	G007038	<0.05	<5
				252.0	254.5	2.5	G007039	<0.05	<5
				254.5	257.0	2.5	G007040	<0.05	<5
				257.0	259.5	2.5	G007041	<0.05	<5
260	277.5	100	Green chloric tuff , F.G., no laminae, fine pyrite	259.5	262.0	2.5	G007042	<0.05	<5
			277.5 feet - Vuggy quartz vein	262.0	264.5	2.5	G007043	<0.05	<5
				264.5	267.0	2.5	G007044	<0.05	<5
				267.0	269.5	2.5	G007045	<0.05	<5
				269.5	272.0	2.5	G007046	<0.05	<5
				272.0	274.5	2.5	G007047	<0.05	<5
				274.5	277.0	2.5	G007048	<0.05	<5
277.5	315	100	Grey F.G. volcanic , no mafic, no chlorite, minor pale						
			green miniture sericite, fine grain pyrite	277.0	279.5	2.5	G007049	<0.05	<5
			283 feet - Quartz (1.5 inch) with kalonized feldspans,						_
			minor pyrite	279.5	282.0	2.5	G007050	< 0.05	<5
			286 - 287 feet - chloritic selvage between flows	282.0	284.5	2.5	G007051	< 0.05	<5
			292 feet - Quartz vein (2 cm) at 60° to C.A.	284.5	287.0	2.5	G007052	< 0.05	<5
			297 - 298 feet - Flow contact - quartz vien		289.5	2.5	G007053	< 0.05	<5
			301.5 - 302.5 feet - Tuff flow contact at 30° to C.A.		292.0		G007054	< 0.05	<5
			306 - 307 feet - Tuff flow contact at 40 ° to C.A.(?)	292.0	294.5	2.5	146301	0.010	<2
			312.5 feet - Chloritic shear or flow contact	294.5	297.0	2.5	146302	0.020	<2
				297.0	299.5	2.5	146303	0.120	<2
				299.5 302.0	302.0	2.5	146304	0.010	<2
					304.5 307.0	2.5	146305	<0.05	<5
				304.5 307.0	307.0	2.5	146306 146307	<0.05 0.370	<5
				307.0	309.5	2.5 2.5	146307	<0.370	<5 <5
					312.0				<5 <2
21E	206	100	Grov E.G. volgania, motio, fina grain purita	312.0 314.5	314.5	2.5 2.5	146309 146310	0.030	<2 <2
315	326	100	Grey F.G. volcanic , mafic, fine grain pyrite	314.5	317.0	2.5	146310	0.160	<2 <2
			320 feet - Quartz vein	317.0	319.5	2.5	146311	0.020	<2 <2
				319.5	322.0				<2
326	327	100	Quartz voin 2 to 5cm wide at 20 degrade to care	322.0	324.3	2.5	146313	<0.01	<2
320	321	100	Quartz vein 2 to 5cm wide at 20 degrees to core.	324.5	327.0	2.5	146314	0.080	<2
207	342	100	Minor sericite selvage, no pyrite	324.5	327.0				
327	342	100	Grey volcanics	327.0	329.5	2.5 2.5	146315 146316	0.010	<2 <2
			Chloritic slip planes at 20 degrees to core Minor mafics and sometimes small pink feldspar	329.5	334.5	2.5	146316	0.010	<2
			phenocrysts	332.0	334.5	2.5	146317	1.160	<2 <2
			phenodysis		339.5	2.5			
<u>i</u>	<u> </u>			337.0	<i>აა</i> ყ.၁	∠.5	146319	0.030	<2

FROM (feet)									
	TO (feet)	REC %	GEOLOGICAL DESCRIPTION	FROM (feet)	TO (feet)	WIDTH (feet)	SAMPLE NUMBER	Au ppm	Ag ppm
, , 	(/			339.5	342.0	2.5	146320	0.070	<2
342 3	351.5	100	DYKE - rounded small phenocrysts						
			HW. contact 20 degrees to core						
			FW contact 40 degrees to core						
351.5	382	100	Grey volanics (with a little pale green)	351.5	354.5	3	146321	0.700	<2
			5% pyrite within 2 feet of contact, then much	354.0	357.0	2.5	146322	0.030	<2
			reduced	357.0	359.5	2.5	146323	0.100	<2
				359.5	362.0	2.5	146324	0.030	<2
				362.0	364.5	2.5	146325	<0.01	<2
				364.5	367.0	2.5	146326	<0.01	<2
				367.0	369.5	2.5	146327	<0.01	<2
				369.5	372.0	2.5	146328	<0.01	<2
				372.0	374.5	2.5	146329	<0.01	<2
				374.5	377.0	2.5	146330	<0.01	<2
				377.0	379.5	2.5	146331	<0.01	<2
				379.5	382.0	2.5	146332	<0.01	<2
382	402	100	Grey volcanics - no green minus disseminated pyrite						
				382.0	384.5	2.5	146333	0.320	<2
				384.5	387.0	2.5	146334	<0.01	<2
				387.0	389.5	2.5	146335	0.020	<2
				389.5	392.0	2.5	146336	0.010	<2
				392.0	394.5	2.5	146337	0.010	<2
				394.5	397.0	2.5	146338	<0.01	<2
				397.0	399.5	2.5	146339	0.110	<2
				399.5	402.0	2.5	146340	0.600	3.0
402	416	100	TUFF - wavy banded at 30 degrees to core, 1cm						_
			wavy bands green, purple and grey bands	402.0	404.5	2.5	146341	0.010	<2
				404.5	407.0	2.5	146342	<0.01	<2
				407.0	409.5	2.5	146343	< 0.01	<2
				409.5	412.0	2.5	146344	< 0.01	<2
440	447	400		412.0	414.5	2.5	146345	0.030	<2
	417		Quartz veins - 2 cm @ 0 to 30 degrees to core	414.5	417.0	2.5	146346	0.030	2.0
417	435	100	Grey Tuff with tan and few green bands	447.0	440 5	25	440047	0.070	.0
			quartz vein at 421, 427-428, 434, 435 feet	417.0		2.5	146347	0.070	<2
╞────┤─				419.5 422.0	422.0 424.5	2.5	146348	0.080	<2
╞────┼─				422.0	424.5	2.5 2.5	146349 146350	2.350	<2 <2
				424.5	427.0	2.5	146350	2.350	<2 <2
				427.0	429.5	2.5	146351	0.800	<2
-				429.5	432.0	2.5	146352	0.490	<2 <2
435	437	100	Green Tuff	432.0	434.3	2.0	140303	0.220	<2
430	431	100	Quartz at 40 degrees to core at 435.5 feet	434.5	437.0	2.5	146354	0.340	<2
437 4	450.5	100	DYKE - chilled selvages	-04.0	-57.0	2.0	1-0504	0.040	~2
437 4	+50.5	100	contact at 450.5 at 20 degrees to core	437.0	130 F	2.5	G007124	<0.005	0.2
├ ───┼			Contact at 400.0 at 20 degrees to core	450.5	459.5	1.5	146355	0.005	<2
450.5	455	100	TUFF, tan and grey	452.0	455.0	3	146356	0.020	<2
450.5	455		DYKE	-52.0	-55.0	5	1-0000	0.020	~2
	400		TUFF - green mottled, some fragments, minor pyrte						
400 4	с. і і н	100	and quartz	468.0	472.0	4	146357	0.010	<2
			anu yuanz	408.0	474.5	2.5	146358	1.230	<2
				474.0	474.5	0.5	G007125	0.177	0.3
┟───┼─				474.0	477.5		146359	<0.01	<2

HOLE N	IUMBE	R: DD	PH-01						
FROM	TO	REC	GEOLOGICAL DESCRIPTION	FROM		WIDTH	• • • • • • = =	Au	Ag
(feet)	(feet)	%		(feet)	(feet)	(feet)	NUMBER	ppm	ppm
477.5	498	100		487.0	489.5	2.5	146360	<0.01	<2
498	511	100	Grey TUFF - fine pyrite throughout, quartz veinlets						
			quartz vein 508 - 509 feet	498.0	502.0	4	146361	1.350	5.0
				502.0	504.5	2.5	146362	0.570	4.0
				504.5	507.0	2.5	146363	0.220	6.0
				507.0	509.5	2.5	146364	0.510	<2
544	- 4 -	400		509.5	511.0	1.5	146365	0.200	3.0
511	515		Quartz vein	511.0	515.0	4	146366	0.920	<2 <2
515	530.5	100	Grey Tuff - small quartz veins, minor pyrite	515.0 517.0	517.0 519.5	2 2.5	146367 146368	0.050	<2 2.0
				517.0	519.5	2.5	146366	0.030	2.0 <2
				519.5	522.0	2.5	146369	0.210	3.0
				522.0	524.5	2.5	146370	0.130	<2
				527.0	530.5	3.5	146372	0.020	<2
530.5	532	100	DYKE APLITE white, no mafics	530.5	532.0	1.5	G007126	0.005	<0.2
532	542	100	GREY FLOW	532.0	534.5	2.5	146373	0.600	<2
002	042	100		534.5	537.0	2.5	146374	0.120	<2
				537.0	539.5	2.5	146375	0.040	<2
				539.5	542.0	2.5	146376	0.630	2.0
542	544.5	100	Quartz Vein - 2 feet wide	542.0	544.5	2.5	146377	0.140	3.0
544.5	549	100	GREY FLOW	544.5	547.0	2.5	146378	0.630	<2
				547.0	549.0	2	146379	0.190	<2
549	552	100	Flow Grey, porphyritic, altered (kaolin)	549.0	552.0	3	146380	< 0.01	<2
552	564.5		Grey Flow - little pyrite, little quartz	552.0	554.5	2.5	146381	0.010	<2
				554.5	557.0	2.5	146382	0.010	<2
				557.0	559.5	2.5	146383	0.010	<2
				559.5	562.0	2.5	146384	<0.01	<2
				562.0	564.5	2.5	146385	0.020	<2
564.5	586.5	100	Grey-Green Flow - trace pyrite						
			quartz 583 - 584 feet	564.5	567.0	2.5	146386	<0.01	<2
				567.0	569.5	2.5	146387	<0.01	<2
					572.0	2.5	146388	<0.01	<2
				572.0	574.5	2.5	146389	<0.01	<2
				574.5	577.0	2.5	146390	<0.01	<2
				577.0	579.5	2.5	146391	0.020	<2
				579.5	582.0	2.5	146392	<0.01	<2
				582.0	584.0	2	146393	0.030	<2
506 F	FOO	100	Duke @ 20 degrees to save 4 featuride	584.0	586.5	2.5	146394	0.050	2.0
586.5 588	588 598		Dyke @ 20 degrees to core, 1 foot wide	586.5 588.0	588.0 589.5	1.5 1.5	G007127 146395	0.030	0.2 270.0
500	290	100	Flow grey-green , pyrite and quartz veins Vein 593- 594.5 feet - pyrite + galena + sulphosalt +	500.0	009.0	1.0	140090	0.420	210.0
			sulphides	589.5	592.0	2.5	146396	5.480	48.0
			Specimens 593 - 594.5 feet	592.0	592.0	2.5	146390	16.380	8.0
				592.0	598.0	3.5	146398	0.910	<2
598	607	100	DYKE	004.0	000.0	0.0	1 10000	0.010	~~
	501		(see multi-element analysis for sample G007128)	598.0	602.0	4	G007128	0.001	0.3
				602.0	604.5	2.5	G007129		<0.2
				604.5	607.0	2.5	G007130	< 0.005	0.2
607	614.5	100	Flows - banded with more mafics & feldspar			_			
	-	_	phenocrysts	607.0	609.5	2.5	146399	0.050	<2
			quartz veins conformable & across bedding						
			613 to 614 feet - good sulphide vein specimens	609.5	612.0	2.5	146400	0.020	<2

HOLE N	UMBE	R: DD	H-01						
FROM	TO	REC	GEOLOGICAL DESCRIPTION	FROM	TO	WIDTH	• • • • • ==	Au	Ag
(feet)	(feet)	70		(feet) 612.0	(feet) 614.5	(feet) 2.5	NUMBER 331756	ppm <0.01	ppm <2
614.5	621	100	Flow Grey - feldspar + mafic phenocrysts	614.5	617.0	2.5	331750	<0.01	<2
				617.0	619.5	2.5	331758	0.010	<2
621	622	100	Quartz Vein	619.5	622.0	2.5	331759	0.040	<2
622	628	100	Flow, Grey Porphyry - little sulphides or quartz	622.0	624.5	2.5	331760	<0.01	<2
				624.5	627.0	2.5	331761	0.060	<2
628	632	100	Tuff, banded, mostly light grey, minor pyrite	627.0	629.5	2.5	331762	0.040	<2
				629.5	632.0	2.5	331763	<0.01	<2
632	652	100	Strong Green Mariposite or Sericite, little sulphides						
				632.0	634.5	2.5	331764	0.020	<2
			644 - 652 feet - large pyrite cubes, quartz bands	634.5	637.0	2.5	331765	0.020	<2
			650 feet - Quartz vein, 1cm at 45 degrees to C.A.	637.0	639.5	2.5	331766	0.020	<2
				639.5	642.0	2.5	331767	<0.01	<2
				642.0	644.5	2.5	331768	0.080	<2
				644.5	647.0	2.5	331769	0.270	<2
				647.0	649.5	2.5	331770	0.100	<2
				649.5	652.0	2.5	331771	2.130	<2
			652 Feet - EOH						

CAYENNE GOLD MINES LTD

Hixon Creek Project, B. C. CANADA

MULTI-ELEMENT ANAYLSIS HOLE NUMBER: DDH-01 DYKE - SAMPLE NUMBER G007128 (598 feet to 602 feet)

PGM-MS24	PGM-MS24	PGM-MS24	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
Au	Pt	Pd	Ag	AI	As	Ba	Be	Bi
ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
0.001	0.0016	0.002	0.31	7.32	4.6	7550	1.84	0.12
ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe	Ga
%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
6.87	0.15	118.5	28.7	109	6.8	83.5	5.54	14.55
ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
Ge	Hf	In	K	La	Li	Mg	Mn	Mo
ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
0.23	5.1	0.059	3.7	59.8	26.5	3.95	1080	4.15
ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
Na	Nb	Ni	P	Pb	Rb	Re	S	Sb
%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
1.72	16.5	56.1	4150	16.7	125	0.003	0.47	0.84
ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI
ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
27.3	2	1.1	1605	0.61	<0.05	9.4	0.517	1.11
ME-MS61 U ppm 3.1	ME-MS61 V ppm 207	ME-MS61 W ppm 0.7	ME-MS61 Y ppm 29	ME-MS61 Zn ppm 72	ME-MS61 Zr ppm 198.5			

CAYE	NNE G	OLD	MINES LTD DIAMOND DRILL LOG						
Hixon C	reek Pr	oject,	British Columbia, CANADA	HOLE	NUMBE	ER: DDH	-02		
					ed: Jul	y 23, 20	07		
			Northing 0531860, Easting 5921682, Elevation 733 me						
), Angle: -85 degrees, Length:198.8 meters (652 feet), (Core Siz	e: NQ				
No acid									
Logged	by: Bria	n Simn	nons, Alex Briden						
HOLE N	UMBER		1-02 I						
FROM	то		GEOLOGICAL DESCRIPTION	FROM	то	миртц	SAMPLE	Au	٨٩
		REC	GEOLOGICAL DESCRIPTION		(feet)				Ag
(feet)	(feet)	%		(feet)	(leet)	(feet)	NUMBER	ppm	ppm
0	10	10	Cooling acred hould are mud						
0 10	10 70	10 90	Casing - cored boulders, mud Weathered agglomerate - brownish, very soft, pitted						
10	70	90							
			surface, dark brown mineral siderite?, no sulphide,						
			rusty brown sections, white streak 15 feet - Minor quartz pebbles						
			Fracturing at all angles to C.A.						
			17 ft - Minor quartz pebbles						
			41ft - Fragmented quartz						
			49 ft - 20cm of fragmented quartz, vuggy, hemitite in						
			quartz, red streak						
70	72	00	67 ft - Quartz in narrow fractures, 90 ° to C.A.						
70		90	Fault gouge?, brownish, unconsolidated						
72 74	74 75	90	Brown agglomerate Fault zone or shear						
74	94	90 100							
75	94	100	Green - brown agglomerate, medium to coarse						
			grain 80 - 82 feet - Tight nest of fractures						
			87 - 89 feet - Fault gouge - brown						
			91 feet - Quartz blebbs						
			91 - 92 feet - Fault gouge - brown						
			93 feet - Quartz blebs						
94	108	100	Green agglomerate, medium grain						
94	100	100							
108	207	100	96.5 feet - Vuggy quartz in fracture filling Fine grained andesite , green-blue, abundant small						
100	207	100	white calcite & white quartz veining, veining at						
			random angles to C.A.						
			115 - 116 feet- Minor pyrite	115.0	116.0	1	G007055	<0.05	<5
			117 feet - Minor pyrite	122.0	124.5		G007033 G007131		<0.2
			126 feet - Minor pyrite	122.0	127.0		G007131		<0.2
			133 feet - Very shiny light coloured pyrite	124.0	127.0		G007132		
			134 feet - Very shiny light coloured pyrite	127.0	129.5	2.5	G007133 G007134		0.2
			139 - 140 feet - Fine blebs of pyrite associated with	123.3	152.7	1.17	5007154	0.013	0.2
			quartz and calcite	132.7	133.3	0.67	G007056	0.400	<5
			152 feet - Pyrite associated with quartz and calcite	132.1	100.0	0.07	0007000	0.400	<0
			veining	133.3	135 5	2.2	G007135	0.712	0.5
			•	135.5	135.5		G007135 G007136		0.5
			180 - 180.5 feet - Gouge	150.5	137.0	C.1	3007130	0.036	0.3
			202 feet - Several well developed medium size pyrite	127.0	120.0	2	C007407	-0.005	-0.0
			cubes	137.0	139.0	2	G007137		
				151.0	153.0		G007138		0.4
				197.0	200.0	3	G007139	0.006	0.2

UMBER	: DDF	I-02						
то	REC	GEOLOGICAL DESCRIPTION	FROM	то	WIDTH	SAMPLE	Au	Ag
								ppm
· /		Light green fine grained andesite - little or no guartz	()	()	(- PP	PP
	100							
214	80							
218	80	· · ·						
22110	100							
231	100							
201	100		230.5	231.0	0.5	G007140	0.506	1.6
234	80				0.0		0.000	
002	100							
			237.0	240.0	3	G007142	0 365	0.6
								0.3
								0.8
							0.020	0.0
			382.0	384.0	2	G007144	< 0.005	0.3
			002.0	00.110		0001111	101000	0.0
			384.0	387.0	3	G007062	0.510	<5
							0.0.0	
			387.0	390.0	3	G007145	0.013	0.4
								0.2
								<5
								<5
								0.3
			517.0	519.0	2	G007148	0.012	0.3
								<5
			599.0	599.5	0.5	G007149	<0.005	0.3
								<5
								0.5
								<5
		652 feet EOH - July 23/07	0.010	000.0		22.1001		
	TO (feet) 212 214 216 218 221.5 231 234 652	TO (feet) REC % 212 100 214 80 216 100 218 80 221.5 100 231 100 234 80	(feet) % 212 100 Light green fine grained andesite - little or no quartz and calcite veining 214 80 Gouge zone - Intense shearing 216 100 Agglomerate - light green, coarse grain, little or no quartz and calcite veining 218 80 Gouge zone - Intense shearing 221.5 100 Medium grain, light green agglomerate - little or no quartz and calcite veining 231 100 Gray-green andesite with abundate flow lines, minor quartz and calcite 234 80 Fault gouge - green sheared, muddy 652 100 Andesite, light green, minor quartz and calcite veining @ random orientation, fine minor pyrite NOTE - The sulphide mineralization occurs in close proximity to the quartz, but rarely in the quartz. Well developed 1 - 2 mm pyrite cubes. The quartz and calcite veins are randomly oriented 286 feet - Feldspar red 287.5 feet - 30cm quartz - calcite vein 297 feet - Quartz - barren 373 feet - Gouge zone (10cm) muddy 384 - 387 feet - 1.5cm quartz vein, fine pyrite-light colour (marcasite?) 438 feet - Pyrite mineralization appears to be following flow lines, pyrite (narrow) stringers at 30 degrees to C.A. 445 feet - 7cm gouge zone 445 - 470 feet - Gouge zone 445 set - 1519 feet - Fine grain minor pyrite 548 - 549 feet - Feldspar plagioclase?, yellow, with quartz, har	TO (feet) REC % GEOLOGICAL DESCRIPTION FROM (feet) 212 100 Light green fine grained andesite - little or no quartz and calcite veining 100 Agglomerate - light green, coarse grain, little or no quartz and calcite veining 100 Agglomerate - light green, coarse grain, little or no quartz and calcite veining 100 Gouge zone - Intense shearing 213 100 Medium grain, light green agglomerate - little or no quartz and calcite veining 230.5 234 80 Fault gouge - green sheared, muddy 230.5 652 100 Andesite, light green, minor quartz and calcite veining @ random orientation, fine minor pyrite NOTE - The sulphide mineralization occurs in close proximity to the quartz, but rarely in the quartz. Well developed 1 - 2 mm pyrite cubes. The quartz and calcite veins are randomly oriented 237.0 286 feet - Feldspar red 244.0 287.5 feet - 30cm quartz - calcite vein 247.0 297 feet - Quartz - barren 373 feet - Gouge zone (10cm) muddy 382.0 384.0 438 feet - Pyrite mineralization appears to be following flow lines, pyrite (narrow) stringers at 30 degrees to C.A. 387.0 445 feet - 7cm gouge zone 418.0 437.0 518 - 519 feet - Gouge zone 418.0 487 - 491 feet - Quartz rich 517.0	TO (feet) REC % GEOLOGICAL DESCRIPTION FROM (feet) TO (feet) 212 100 Light green fine grained andesite - little or no quartz and calcite veining	TO (feet) REC % GEOLOGICAL DESCRIPTION FROM (feet) TO (feet) WIDTH (feet) 212 100 Light green fine grained andesite - little or no quartz and calcite veining	TO (feet) REC % GEOLOGICAL DESCRIPTION FROM (feet) TO (feet) WIDTH (feet) SAMPLE NUMBER 212 100 Light green fine grained andesite - little or no quartz and calcite veining 0	TO (feet) REC % GEOLOGICAL DESCRIPTION (feet) FROM (feet) TO (feet) WIDTH (feet) SAMPLE (feet) Au ppm 211 100 Light green fine grained andesite - little or no quartz and calcite veining

CAYE	NNE G	OLD	MINES LTD DIAMOND DRILL LC	G					
Hixon C	reek P	roject	, British Columbia, CANADA	HOLE	NOWRE	ER: DDH	-03		
Drilled b	w Adar	n Diar	nond Drilling Ltd. Date Started: July 29, 2007 Da	ate Com	nleted:	August 9	2007		
			, Northing 0531860, Easting 5921682, Elevation 733		olotou.	August	, 2007		
			0, Angle: -50 degrees, Length:198.8 meters (652 fee		Size: N	IQ			
			ees at 168.3 meters (552 feet)	,					
			mons, Alex Briden						
HOLE N	IUMBE	R: DD	H-03						
FROM	ТО	REC	GEOLOGICAL DESCRIPTION	FROM		WIDTH	<u> </u>	Au	Ag
(feet)	(feet)	%		(feet)	(feet)	(feet)	NUMBER	ppm	ppm
•									
0	11		Surface Casing						
11	12		Cored boulder						
12 15	15 22.5		Cored pebbles - quartz fragments						
22.5	22.5 24.5		Muddy brown scoriacious highly altered flows?						
22.3	24.5		Green - brown agglomerate , small white angular penocrysts						
24.5	29.5		Schistose? alternating black and reddish brown						
24.5	29.5		bands, very soft, 30 degrees to C.A.						
29.5	36		Green - brown agglomerate , small white angular						
20.0	50		penocrysts						
36	42.5		Fault zone? highly sheared, highly altered, quartz						
00	12.0		fragments, muddy						
42.5	99		Green - brown agglomerate , small white angular						
			penocrysts, soft, granular texture, medium grain						
			size, siderite?						
			58 feet - Very minor pyrite in loose fragments						
			63 feet - Quartz fragments						
			67 feet - Quartz fragments						
			78 - 92 feet - Highly sheared, altered, muddy						
			incompetent rocks						
99	107	90	Dark brown flow?, dark texture, fine grain, soft						
107	132		Green - brown agglomentate (tuff?), less granular						
			then eariler agglomerate, alternating green and dark						
			brown bands at 30 degrees to C.A.						
400	407	00							
132	137		Milky white quartz pebbles						
137	142		Mudstone?, light brown, very soft						
142	145		Gray - brown, soft laminated flow lines? Quartz						
445	150		fragments						
145	150		Highly fractures, abundant milky white quartz ,	145.0	150.0	5	G007071	0.025	1.8
150	154		angular, rusty fractures, no sulfides		150.0	5	G007071	0.025	1.0
150	154	90	Green - brown agglomerate (tuff?) medium texture						
154	164	100	Highly altered sheared green andersite?,						
154	104		abundant chlorite, milky white quartz filling fractures						
			abundant onionte, milky white quartz milling hactules						
	1		159 feet - 3 cm quartz						
			161feet - 1 cm quartz vein at 45 degrees to C.A.						
164	181	100	Grey - green agglomerate (tuff?), more massive						

HOLE N	UMBE	R: DD	H-03						
FROM	ТО	REC	GEOLOGICAL DESCRIPTION	FROM	ТО	WIDTH	SAMPLE	Au	Ag
(feet)	(feet)	%		(feet)	(feet)	(feet)	NUMBER	ppm	ppm
181	192	100	Fine grain andesite, grey sporatic fine pyrite						
			throughout, very fine quartz veins - random	181.0	183.5	2.5	G007072	0.008	<0.2
				183.5	186.0	2.5	G007073	< 0.005	<0.2
				186.0	188.5	2.5	G007074	< 0.005	<0.2
				188.5	192.0	3.5	G007075	< 0.005	0.2
192	194.5	100	Light grey fine grain andesite, granular pyrite more						
			massive	192.0	194.5	2.5	G007076	0.868	6.7
194.5	202	100	Multi coloured, brown, green, gray, mottled tuff?,						
			massive pyrite	194.5	197.0	2.5	C247002	0.005	0.4
				197.0	199.5	2.5	C247003	0.631	1.7
				199.5	202.0	2.5	G007077	23.000	24.1
202	219.5	100	Light grey - green fine grain andesite, minor pyrite,						
			silicous	202.0	205.0	3	G007078	0.088	1.3
				217.0	219.5	2.5	G007079	0.100	0.3
219.5	225	100	Light grey fine grain andesite, abundant pyrite	219.5	222.0	2.5	G007080	1.505	4.1
				222.0	224.5	2.5	G007081	3.580	5.1
225	235	100	Grey - green fine grain andesite , minor pyrite	224.5	227.0	2.5	G007082	1.590	2.6
				227.0	229.5	2.5	G007083	0.021	0.2
				229.5	232.0	2.5	G007084	0.009	0.2
235	241	100	Light grey andesite, minor pyrite, silicous						
			237 - Quartz blebs and pyrite	236.5	240.0	3.5	C247004	0.616	1.4
241	243	100	Rusty mottled tuff						
243	286		Light green fine grained andesite, numerous quartz						
			and calcite veins at random orientation	259.0	262.0	3	G007085	0.008	<0.2
			259 feet - Pyrite and CPY?, olivene (epidote?)	262.0	264.5	2.5	G007086	< 0.005	<0.2
			268 feet - 10cm milky quartz and calcite veining	264.5	267.0	2.5	G007087	< 0.005	<0.2
			275 feet - 15cm milky quartz and calcite veining	277.0	277.5	2.5	G007088	0.005	<0.2
286	289	100	Scoracious mottled tuff? , rusty brown, orthoclase	_		_			_
			feldspar inclusions? very hard						
289	293	100	Layered greenstone - green, white and brown						
			bands at 45 degrees to C.A.						
293	347	100	Light green, fine grained andesite , quartz and						
			calcite veins at random orientation, very minor						
			pyrite	313.0	313.5	0.5	G007089	<0.005	<0.2
			297 feet - 10cm white and green bnading 45						
			degrees to C.A.	317.0	317.5	0.5	G007090	0.008	0.2
			312 feet - 1cm white orthocase feldspar at 40						
			degrees to C.A.	332.5	333.0	0.5	G007091	0.158	1.1
347	348	100	Rusty mottled tuff , schistosty?						
348	463.5		Grey - green andesite, fine grain, numerous narrow						
			quartz and calcite veins at random oreintations,						
			minor pyrite with occasional blobs	349.0	352.0	3	G007092	0.164	0.6
			359 - 359.5 feet - rusty mottled tuff, schistosty	357.0	357.5	0.5	G007093	0.007	0.3
			363 - 365 feet- rusty mottled tuff, schistosty						
			417 feet - small pyrite blobs						
			428 feet - small pyrite blobs						
463.5	468	100	Light grey andesite , minor pyrite, silicous, flow?	463.0	468.0	5	G007094	0.014	0.2
			464 feet - 10cm quartz vein						
468	477	100	Layered tan - green andesite , fine grain, minor						
		-							
	-		pyrite, quartz and feldspar veins at random oreintations						

HOLE N	IUMBE	R: DD	H-03						
FROM	то	REC	GEOLOGICAL DESCRIPTION	FROM		WIDTH	• • • • • = =	Au	Ag
(feet)	(feet)	%		(feet)	(feet)	(feet)	NUMBER	ppm	ppm
477	503	100	Tan - green fine grain andesite , magnetic black						
			streaks, minor pyrite, quartz and feldspar veins at				-		
			random orientations	482.5	483.0	0.5	G007095	<0.005	<0.2
			482.5 - 483 feet - magnetic	495.0	495.5	0.5	G007096	0.144	<0.2
503	506	100	Brecciated Flow with angular fragments (2cm)						
			feldspars and quartz						
506	509	0	Care tube droped 2 feet ald workings?						
500	509	0	Core tube droped 3 feet, old workings?						
509	510	50	Green fine grain andesite	509.0	510.0	1	G007097	0.189	0.4
510	512	0	Core tube droped 2 feet, old workings?	000.0	010.0	•	0001001	0.100	0.1
512	530	100	Green-grey fine grained andesite , pyrite veins and						
012	000	100	blobs	512.0	513.0	1	G007097	0.189	0.4
			523 - 530 feet - manganese? black on fracutres and	0.2.0	0.010	•	0001001	01100	0.1
			narrow bands	513.0	515.5	2.5	G007098	0.326	0.7
				515.5	518.0	2.5	G007099	0.432	1.0
				518.0	520.5	2.5	G007100	0.108	1.1
				520.5	522.5	2	G007101	0.140	0.5
				522.5	525.5	3	G007102	0.160	0.3
				525.5	528.0	2.5	G007103	0.055	0.6
530	542	100	Fault? highly fractured, numerous shears, talcy -						
			soft white mineral on fracture surfaces,						
			manganese? black on fractures	531.0	533.0	2	G007104	0.663	0.7
542	597	100	Metasediment? Quartzite? interlayered, fine grain						
			andesite - quartzite? minor pyrite	549.5	552.0	2.5	G007105	0.134	0.6
				559.0	562.0	3	G007106	1.100	0.8
			569 feet - 10 cm quartz vein at 30 degrees to C.A.	562.0	564.5	2.5	G007107	0.584	0.7
			582 feet - 1 cm vuggy quartz vein at 70 degrees to						
			C.A., fine pyrite	570.5	571.5	1	G007108	0.503	0.8
			593 feet - 8 cm quartz vein, 4 cm quartz vein at 30						
			degrees to C.A.	582.0	582.5	0.5	G007109	0.025	0.2
597	599	100	Grey andesite, fine grain, minor pyrite						
599	613	100	Green andesite, fine grain, quartz and calcite veins						
			at 60 degrees to C.A., minor pyrite	602.0	604.0	2	G007111	0.586	0.4
			611 feet - minor magnetite	604.0	606.0	2	G007110	0.164	0.2
613	615	100	Black andesite, colour due to manganese, fine						
			grain, heavy pyrite	613.0	615.0	2	G007112	0.047	0.3
615	652	100	Green-grey andesite, medium grain, very silicous,						
			minor pyrite, arsenopyrite, narrow quartz, calcite				_		
			veins	624.5	627.0	2.5	G007113	1.180	1.8
			627 feet - 25cm quartz vein, vuggy	627.0	629.5	2.5	G007114	0.592	2.7
			638 feet - 10cm quartz vein	629.5	632.0	2.5	G007115	1.495	1.5
			646.5 feet - 2 cm vuggy quartz vein at 30 degrees		0045	0.5	0007440	0 0 5 7	0.7
			to C.A	632.0	634.5	2.5	G007116	0.057	0.7
			649.5 feet - 1 cm gouge zone, medium fine pyrite at	004 5	007.0	0.5	000744-	0.040	
			30 degrees to C.A.	634.5	637.0	2.5	G007117	0.019	1.1
				637.0	639.5	2.5	G007118	0.299	0.9
				639.5	642.0	2.5	G007119	0.167	0.8
				642.0	644.5	2.5	G007120	0.014	1.4
			•	644.5	647.0	2.5	G007121	0.027	1.9
				647.0	649.5	2.5	G007122	1.480	1.9
			652 feet EOH - August 9, 2007	649.5	652.0	2.5	G007123	0.320	2.3

Hixon Mineral Claims Waypoint Locations

Site	Location	Description	Lat	Long	Altitude
Old mill site	Main Shaft area	Ore bin	53.44248	-122.52186	755 m
Outcrop	Hixon Creek - Main Shaft area	Schist Az 330 Dip 75E	53.44352	-122.52112	742 m
Outcrop	Hixon Creek - Main Shaft area	Schist tan, rusty, Az 330 Dip 90	53.44289	-122.52185	738 m
Outcrop	Hixon Creek - Main Shaft area	Chert, black, Az 340 Dip 75E	53.4429	-122.52189	738 m
Outcrop	Hixon Creek - Main Shaft area	Chert, black	53.44289	-122.52194	732 m
Outcrop	Hixon Creek - Main Shaft area	Chert Az 340 Dip 80E	53.44295	-122.52215	737 m
Outcrop	Main Shaft area - ore bin	Schist Az 330 Dip 85E	53.44253	-122.52181	737 m
Outcrop	Hixon Creek - Main Shaft area	Schist, green	53.44355	-122.52118	740 m
Outcrop	Hixon Creek - Main Shaft area	Greenstone, weathered	53.44345	-122.52128	739 m
Outcrop	Hixon Creek - Main Shaft area	Schist, quartz	53.4435	-122.52133	745 m
Outcrop	Hixon Creek - Main Shaft area	Schist Az 340 Dip 85E	53.44345	-122.52134	736 m
Outcrop	Hixon Creek - Main Shaft area	White rock, very soft	53.44323	-122.52119	739 m
Outcrop	Hixon Creek - Main Shaft area	Rock, weathered	53.44341	-122.52164	741 m
Pipe	Hixon Creek - Main Shaft area	Pipe in Hixon Creek bank	53.44293	-122.52163	739 m
Outcrop	Hixon Creek - Main Shaft area	Schist	53.44288	-122.52177	741 m
Raven Adit	Raven area	Raven Portal	53.44312	-122.5252	745 m
Old baseline stake	Main Shaft area	Old stake, 50000N 50275E	53.44317	-122.52053	738 m
Outcrop	Main Shaft area - Flume Creek	Rock, weathered, Az 320 Dip 90	53.44365	-122.51996	755 m
Claim post	Main Shaft area	Claim post	53.44277	-122.52036	726 m
DDH-2004	Hixon Creek	DDH 2004 Casing -90	53.44243	-122.49746	782 m
DDH 83-1	Main Shaft area	DDH 83-1 Casing Az 228 Dip -45	53.4433	-122.52078	744 m
DDH 2007-1	Main Shaft area	DDH 2007-1 Az 240 Dip -55	53.4432	-122.52033	733 m
Loose Drill Casing	Raven area	Loose Drill Casing	53.44358	-122.5246	742 m
Water Flume	Main Shaft area	Old placer flume	53.44506	-122.51819	785 m
Road Outcrop	Pedley Lake Area	Greenstone, pyrite		-122.50414	805 m
Road Outcrop	East of Colgrove Creek	Rusty vuggy quartz	53.43455	-122.50017	833 m
Old stake	South-east of Main Shaft	Old Stake L28+00N 4+00E	53.44196	-122.51882	750 m
Gully	Pedley Lake Area	Gully	53.42989	-122.50418	803 m
Main Shaft	Main Shaft area	Main Shaft - 2 compartment	53.44294	-122.52133	725 m
Mason Shaft	Main Shaft area	Mason Shaft waste dump	53.44333	-122.52185	748 m
Outcrop	Pedley Lake area	Schist Az 300 Dip 50S	53.42551	-122.49959	811 m
Outcrop	Pedley Lake area	Quartz Serpentine	53.42561	-122.50017	817 m
Outcrop	South-east of Pedley Lake	Schist Az 330 Dip 90	53.41628	-122.48558	820 m
Bridge removed	Main Shaft area	Bridge removed		-122.52043	737 m
Old Sample Tags	Raven area	Old Channel samples 36290, 36286, 36285		-122.52532	738 m
Outcrop	Pedley Lake area	Schist Az 310 Dip 70E	53.42503	-122.49763	816 m

Hixon Mineral Claims Waypoint Locations

Site	Location	Description	Lat	Long	Altitude
Rock Pit	Pedley Lake Area	Greenstone, pyrite	53.4272	-122.50585	811 m
Rock Pit	Pedley Lake Area	Greenstone, pyrite, Az 314 Dip 90	53.42478	-122.50006	800 m
Landing Outcrop	North Area	Andesite, pyrite, Az 335	53.44893	-122.51987	802 m
Outcrop	Raven Adit - east	Schist Az 330 Dip 75E	53.44351	-122.52397	762 m
Tower	Tall Tower	Commuications Tower	53.43218	-122.55907	804 m
Trench	North Area Trenches	Andesite, pyrite	53.45154	-122.52507	805 m
Trench	Pedley Lake Trenches	Quartzite, light tan, pyrite	53.42923	-122.50283	819 m
Road Outcrop	East of Colgrove Creek	Quartzite, minor pyrite	53.4356	-122.50362	817 m
Rock Pit	Pedley Lake Area	Andesite, f.g., blue-grey, minor pyrite, quartz	53.42727	-122.50541	801 m
Road Outcrop	Hixon Creek - east	Schist, dark rusty	53.44486	-122.48721	817 m

Hixon Creek Claims Rock Chip Sample Waypoints and Assays

Site	Location	Rock Type	Lat	Long	Altitude	Sample	Au ppm	Ag ppm
Trench	Pedley Lake Trenches	Quartzite, light tan, pyrite	53.42923	-122.50283	819 m	G007001	11.95	5
Trench	North Area Trenches	Andesite, pyrite	53.45154	-122.52507	805 m	G007002	0.07	<5
Landing Outcrop	North Area	Andesite, pyrite, Az 335	53.44893	-122.51987	802 m	G007003	3.62	<5
Rock Pit	Pedley Lake Area	Greenstone, pyrite, Az 314 Dip 90	53.42478	-122.50006	800 m	G007004	<0.05	<5
Road Outcrop	Pedley Lake Area	Greenstone, pyrite	53.42729	-122.50414	805 m	G007057	<0.05	<5
Road Outcrop	East of Colgrove Creek	Rusty vuggy quartz	53.43455	-122.50017	833 m	G007058	0.13	<5
Road Outcrop	East of Colgrove Creek	Andesite, f.g., pyrite	53.43455	-122.50017	833 m	G007059	0.25	<5
Road Outcrop	East of Colgrove Creek	Andesite, blue-grey,f.g., 5-10% pyrite	53.43455	-122.50017	833 m	G007060	<0.05	<5
Trench	Pedley Lake Trenches	Quartzite, light tan, pyrite	53.42923	-122.50283	819 m	G007061	1.02	<5
Rock Pit	Pedley Lake Area	Greenstone, pyrite	53.42720	-122.50585	811 m	G007068	<0.05	<5
Landing Outcrop	North Area	Andesite, pyrite	53.44888	-122.51986	809 m	G007069	0.24	<5
Trench	North Area Trenches	Andesite, pyrite	53.45154	-122.52507	805 m	G007070	<0.05	<5
Road Outcrop	East of Colgrove Creek	Quartzite, minor pyrite	53.43560	-122.50362	817 m	E970001	0.037	0.4
Rock Pit	Pedley Lake Area	Andesite, f.g., blue-grey, pyrite, quartz	53.42727	-122.50541	801 m	E970002	0.069	0.2
Road Outcrop	Hixon Creek - east	Schist, dark rusty	53.44486	-122.48721	817 m	E970003	0.003	0.16
Chert	Main Shaft area	Black, Az 340 Dip 75E	53.44290	-122.52189	738 m	E970004	0.027	1.09
Schist	Main Shaft area	Tan, rusty, Az 330 Dip 90	53.44289	-122.52185	738 m	E970005	0.027	1.42
Schist	Raven Adit - east	Az 330 Dip 75E	53.44351	-122.52397	762 m	E970006	0.025	0.43

Sample	Pt ppm	Pd ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Ce ppm	Co ppm	Cr ppm	Cs ppm	Cu ppm	Fe %	Ga ppm
G007001																
G007002																
G007003																
G007004																
G007057																
G007058																
G007059																
G007060																
G007061																
G007068																
G007069																
G007070																
E970001																
E970002																
E970003	0.001	0.001	8.03	2.1	720	1.5	0.35	0.75	0.09	88.1	18	106	6.59	45.4	3.64	23.1
E970004	0.0016	0.002	2.5	48.8	540	0.86	0.21	0.08	1.7	28.2	4	105	1.74	68	2.53	7.3
E970005	0.0006	0.004	5.99	17.1	1210	1.72	0.16	0.1	0.56	47.1	6.5	231	2.46	62.9	2.13	16.65
E970006	0.0033	0.007	3.49	48.2	720	0.86	0.09	0.02	0.76	30.5	4.2	170	2.33	24.9	1.51	13

Hixon Creek Claims Rock Chip Sample Waypoints and Assays

Sample	Ge ppm	Hf ppm	In ppm	K %	La ppm	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Nb ppm	Ni ppm	P ppm	Pb ppm	Rb ppm	Re ppm	S %
G007001																	
G007002																	
G007003																	
G007004																	
G007057																	
G007058																	
G007059																	
G007060																	
G007061																	
G007068																	
G007069																	
G007070																	
E970001																	
E970002																	
E970003	0.13	0.9	0.083	2.34	46.1	55.6	1.18	614	1.13	0.81	13.1	21.7	650	24.3	105	<0.002	0.01
E970004	0.08	1.3	0.042	1	14.7	18.9	0.14	78	5.13	0.07	1.9	63.8	400	22.6	39.9	<0.002	0.07
E970005	0.08	2.3	0.046	1.95	24.8	20.5	0.4	210	0.6	0.32	7.2	46	150	10.5	74.8	<0.002	0.01
E970006	0.07	1.8	0.081	1.41	17.9	15.5	0.13	68	66.4	0.08	3.5	56.1	170	9.5	59.1	<0.002	<0.01

Hixon Creek Claims Rock Chip Sample Waypoints and Assays

•	Sb ppm	Sc ppm	Se ppm	Sn ppm	Sr ppm	Ta ppm	Te ppm	Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
G007001																
G007002																
G007003																
G007004																
G007057																
G007058																
G007059																
G007060																
G007061																
G007068																
G007069																
G007070																
E970001																
E970002																
E970003	0.11	15.6	2	3	118	1.03	0.05	17.1	0.438	0.62	3.7	98	1.9	11.6	56	22.5
E970004	3.91	6.4	5	0.9	18.2	0.13	0.17	3.8	0.073	0.94	2	142	0.5	5.6	201	38.7
E970005	0.44	13.6	2	1.4	99.1	0.5	0.1	6.7	0.241	0.72	1.5	100	1.6	10.3	97	61.3
E970006	2.68	10.3	5	1.1	14.2	0.26	0.17	6.1	0.131	1.58	3.9	1540	2.7	9.5	200	58

VA07069371 - Finalized CLIENT : "CAYGOL - Cayenne Gold Mines Ltd" # of SAMPLES : 6 DATE RECEIVED : 2007-07-03 DATE FINALIZED : 2007-07-06 PROJECT : "HIXON CREEK" CERTIFICATE COMMENTS : "" PO NUMBER : " " Au-GRA21 Ag-GRA21 SAMPLE Au Ag DESCRIPTppm ppm G007001 11.95 5 G007002 0.07 <5 G007003 3.62 <5 G007004 < 0.05 <5 G007005 <0.05 <5 G007006 <0.05 <5

VA07072856 - Finalized CLIENT : "CAYGOL - Cayenne Gold Mines Ltd" # of SAMPLES : 52 DATE RECEIVED : 2007-07-11 DATE FINALIZED : 2007-07-18 PROJECT : "HIXON" CERTIFICATE COMMENTS : "" PO NUMBER : " " Au-GRA21 Ag-GRA21 SAMPLE Au Ag DESCRIPTppm ppm G007007 < 0.05 <5 G007008 < 0.05 6 G007009 < 0.05 <5 G007010 < 0.05 5 G007011 < 0.05 <5 G007012 < 0.05 <5 G007013 < 0.05 <5 G007014 < 0.05 <5 G007015 < 0.05 <5 G007016 < 0.05 <5 G007017 < 0.05 <5 G007018 < 0.05 <5 G007019 < 0.05 <5 G007020 < 0.05 <5 G007021 < 0.05 <5 G007022 < 0.05 <5 G007023 < 0.05 <5 G007024 < 0.05 <5 G007025 < 0.05 <5 G007026 < 0.05 <5 G007027 <5 < 0.05 G007028 0.07 <5 G007029 < 0.05 <5 G007030 < 0.05 <5 G007031 <0.05 8 G007032 < 0.05 <5 G007033 <5 <0.05 G007034 < 0.05 <5 G007035 < 0.05 <5 G007036 < 0.05 <5 G007037 <0.05 <5 G007038 < 0.05 <5 G007039 <0.05 <5 G007040 < 0.05 <5 G007041 < 0.05 <5 G007042 < 0.05 <5 G007043 < 0.05 <5 G007044 < 0.05 <5 G007045 < 0.05 <5 G007046 < 0.05 <5 G007047 < 0.05 <5

G007048	<0.05	<5
G007049	<0.05	<5
G007050	<0.05	<5
G007051	<0.05	<5
G007052	<0.05	<5
G007053	<0.05	<5
G007054	<0.05	<5
A146305	<0.05	<5
A146306	<0.05	<5
A146307	0.3	37 <5
A146308	<0.05	<5

ACHE	ARALYTICAL.	LABORATORIES	LTD.
	TON SHALL A	Corodited Co)	

852 H. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 PAI (604) 253-1716

ASSAY CERTIFICATE

Cavenne Gold Mines File # A704902 Page 1 1004 - 470 Granville St., Vancouver BC V6C 195 Subsicted by: Alex Briden

HIXON	CREEK.	SAMPLE#	Ag** gm/mt	Au** gm/mt			
004-01	Слевк. 2007	G-1 A146301 A146302 A146303 A146304	<2 <2 <2 <2 <2 <2	<.01 .01 .02 .12 .01			
		A146309 A146310 A146311 A146312 A146313	V22 V22 V22 V22 V22 V22 V22 V22 V22 V22	.03 .16 .02 .01 <.01			
		A146314 A146315 A146316 A146317 A146318	<2 <2 <2 <2 <2 <2	.08 .01 .01 .01 .01 1.16			
		A146319 RE A146319 RRE A146319 A146320 A146321	< < < < 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.03 .03 .03 .03 .07 .70			
		A146322 A146323 A146324 A146325 A146326	<pre><22 <22 <22 <22 <22 <22 <22 <22 <22 <22</pre>	.03 .10 .03 <.01 <.01			
		A146327 A146328 A146329 A146330 A146331	20000 20000 20000	<.01 <.01 <.01 <.01 <.01			
		A146332 A146333 A146334 A146335 A146335 A146336	<pre><2 <22 <22 <22 <22 <22 <22 <22 <22 <22</pre>	<.01 .32 <.01 .02 .01			
		STANDARD R-3/SL20	195	5.81			
	- SANPLE TYPE: DR	IS NETALS BY FIRE ASSAY FROM 1 A.T. SAMP ILL CORE R150 (RE' are Refuns and 'RRE' are Reject &	-	IS BT KCP-ES.	C MAR	2010/0	
			4.00	10/07		C. h	No.

All results are considered the confidential property of the client. Acre assumes the inabilities for actual cost of the analysis only.

Page 2

SAMPLE#	Ag** Au** gm/mt gm/mt
G-1 A146337 A146338 A146339 A146340	<pre><2 .01 <2 .01 <2 .01 <2 .01 <2 .01 <2 .11 3 .60</pre>
A146341 A146342 A146343 A146344 A146344 A146345	<pre><2 .01 <2 <.01 <2 <.01 <2 <.01 <2 <.01 <2 <.01 <2 <.03</pre>
A146346 A146347 A146348 A146349 A146350	2 .03 <2 .07 <2 .08 <2 .47 <2 2.35
A146351 A146352 A146353 RB A146353 RRE A146353	<pre><2 .80 <2 .49 <2 .17 <2 .22 <2 .22 <2 .22</pre>
A146354 A146355 A146356 A146357 A146358	<2 .34 <2 .02 <2 .02 <2 .01 <2 1.23
ICP PULP	<pre><2 <.01 <2 <.01 5 1.35 4 .57 6 .22</pre>
A146364 A146365 A146366 A146367 A146368	<2.51 3.20 <2.92 <2.05 2.63
STANDARD R-3/SL20	194 5.95
Sample type: DRILL CORE R150. Samples beginning 'F	E' are Reruns and 'RRE' are Reject Rerung.

Date

Page 3

SAMPLE#	Ag** Au** gm/mt gm/mt
G-1 A146369 A146370 A146371 A146372	<2 <.01 <2 .21 3 .13 <2 .02 <2 .06
A146373 A146374 A146375 A146376 A146377	<2.06 <2.12 <2.04 2.63 3.14
A146378 A146379 A146380 A146381 A146382	<pre><2 .63 <2 .19 <2 <.01 <2 .01 <2 .01 <2 .01</pre>
A146383 A146384 A146385 A146386 RE A146386	<pre><2 .01 <2 <.01 <2 <.01 <2 .02 <2 <.01 <2 <.01 <2 <.01 <2 <.01</pre>
RRE A146386 A146387 A146388 A146389 A146390	<pre><2 <.01 <2 <.01 <2 <.01 <22 <.01 <22 <.01 <22 <.01 <22 <.01</pre>
A146391 A146392 A146393 A146394 A146395	<pre><2 .02 <2 <.01 <2 .03 2 .05 270 6.42</pre>
A146396 A146397 A146398 A146399 A146399 A146400	48 5.48 8 16.38 <2 .91 <2 .05 <2 .02
STANDARD R-3/SL20	194 5.92

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acre assumes the liabilities for actual cost of the analysis only.

Date]

Cayenne Gold Mines FILE # A704902

Page 4

Data

SAMPLE#	Ag**	Au**	
	gr./mt	gm/mt	
G-1 331756 331757 331758 331758 331759		<.01 <.01 <.01 .01 .04	
331760 331761 331762 331763 331763 331764	20000 20000	<.01 .06 .04 <.01 .02	
331765 STANDARD R-3/SL20	<2 195	.02 5,92	

Sample type: DRILL CORE R150.

All results are considered the confidential property of the client. Atme assumes the limbilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9001 Accredited Co.)	852 E. HASTINGS ST. VA ASSAY CER <u>Cayenne Gold Mines</u> 1004 - 470 Granville St	R TIFICATE File # A70533	PHONE (604) 253-3158 FAX (604) 253-1716	
	SAMPLE#	Ag** Au** Sa gm/mt gm/mt	ample kg	
	G-1 331766 331767 331768 331769	<pre><2 <.01 <2 .02 <2 <.01 <2 <.01 <2 .08 <2 .27</pre>	2.8 2.2 2.1 2.5	
	331770 331771 STANDARD R-3/SL20	<pre><2 .10 <2 2.13 195 5.80</pre>	2.4 1.8 -	

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: DRILL CORE R150

Data FA ____ DATE RECEIVED: JUL 25 2007 DATE REPORT MAILED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

VA07081643 - Finalized CLIENT : "CAYGOL - Cayenne Gold Mines Ltd" # of SAMPLES : 16 DATE RECEIVED : 2007-07-25 DATE FINALIZED : 2007-08-07 PROJECT : "Hixon" CERTIFICATE COMMENTS : "" PO NUMBER : " " Ag-GRA21 Au-GRA21 SAMPLE Ag Au DESCRIPTppm ppm G007055 <5 < 0.05 G007056 <5 0.4 G007057 <5 < 0.05 G007058 <5 0.13 G007059 <5 0.25 G007060 <5 <0.05 G007061 <5 1.02

0.51

0.37

6.85

0.24

< 0.05

< 0.05

<0.05 <0.05

<0.05

G007062 <5

G007063 <5

G007064 <5

G007065 <5

G007066 <5

G007067 <5

G007068 <5 G007069 <5

G007070 <5

VA07090257 - Finalized CLIENT : "CAYGOL - Cayenne Gold Mines Ltd" # of SAMPLES : 53 DATE RECEIVED : 2007-08-13 DATE FINALIZED : 2007-09-09 PROJECT : "HIXON CREEK" CERTIFICATE COMMENTS : "" PO NUMBER : " " Au-AA24 Au-GRA22 Ag-AA45 SAMPLE Au Au Ag DESCRIP1ppm ppm ppm G007071 0.025 1.8 G007072 0.008 <0.2 G007073 < 0.005 <0.2 G007074 < 0.005 <0.2 G007075 < 0.005 0.2 G007076 0.868 6.7 23 24.1 G007077 >10.0 G007078 0.088 1.3 G007079 0.1 0.3 G007080 1.505 4.1 5.1 G007081 3.58 G007082 1.59 2.6 0.2 G007083 0.021 G007084 0.009 0.2 G007085 0.008 < 0.2 <0.2 G007086 < 0.005 <0.2 G007087 < 0.005 <0.2 G007088 0.005 G007089 <0.005 < 0.2 0.2 G007090 0.008 G007091 1.1 0.158 G007092 0.6 0.164 G007093 0.007 0.3 0.2 G007094 0.014 G007095 < 0.005 <0.2 G007096 0.144 <0.2 0.4 G007097 0.189 G007098 0.7 0.326 G007099 0.432 1 G007100 0.108 1.1 G007101 0.14 0.5 G007102 0.16 0.3 G007103 0.6 0.055 G007104 0.663 0.7 G007105 0.134 0.6 G007106 1.1 0.8 G007107 0.584 0.7 G007108 0.503 0.8 0.025 0.2 G007109 G007110 0.164 0.2 G007111 0.586 0.4

G007112	0.047	0.3
G007113	1.18	1.8
G007114	0.592	2.7
G007115	1.495	1.5
G007116	0.057	0.7
G007117	0.019	1.1
G007118	0.299	0.9
G007119	0.167	0.8
G007120	0.014	1.4
G007121	0.027	1.9
G007122	1.48	1.9
G007123	0.32	2.3

VA07113309 - Finalized

CLIENT : "CAYGOL - Cayenne Gold Mines Ltd"

of SAMPLES : 31

DATE RECEIVED : 2007-10-01 DATE FINALIZED : 2007-10-29

PROJECT : "HIXON"

CERTIFICATE COMMENTS : "REE's may not be totally soluble in MS61 method."

CERTIFICATE COMMENTS : "REE's may not be totally soluble in MS61 method." PO NUMBER : " "								
I O NOMBERT	Au-AA24	Aa-AA45	PGM-MS24	PGM-MS24	PGM-MS24	ME-MS61	ME-MS61	ME-MS61
SAMPLE	Au	Ag	Au	Pt	Pd	Ag	AI	As
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
G007124	<0.005	0.2						
G007125	0.177	0.3						
G007126	0.005	<0.2						
G007127	0.03	0.2						
G007128			0.001	0.0016	0.002	0.31	7.32	4.6
G007129	<0.005	<0.2						
G007130	<0.005	0.2						
G007131	0.014	<0.2						
G007132	0.028	<0.2						
G007133	<0.005	0.2						
G007134	0.015	0.2						
G007135	0.721	0.5						
G007136	0.036	0.3						
G007137	<0.005	<0.2						
G007138	0.02	0.4						
G007139	0.006	0.2						
G007140	0.506	1.6						
G007141	0.014	0.3						
G007142	0.365	0.6						
G007143	0.029	0.8						
G007144	<0.005	0.3						
G007145	0.013	0.4						
G007146	<0.005	0.2						
G007147	0.007	0.3						
G007148	0.012	0.3						
G007149	<0.005	0.3						
G007150	0.788	0.5						
C247001	<0.005	0.2						
C247002	0.005	0.4						
C247003	0.631	1.7						
C247004	0.616	1.4						

VA07113309 - F CLIENT : "CAYG # of SAMPLES : DATE RECEIVE PROJECT : "HIX CERTIFICATE C PO NUMBER : "								
				ME-MS61				
SAMPLE	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr
DESCRIPTION	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
G007124								
G007125								
G007126								
G007127								
G007128	7550	1.84	0.12	6.87	0.15	118.5	28.7	109
G007129								
G007130								
G007131								
G007132								
G007133								
G007134								
G007135								
G007136 G007137								
G007138								
G007139								
G007140								
G007141								
G007142								
G007143								
G007144								
G007145								
G007146								
G007147								
G007148								
G007149								
G007150								
C247001								
C247002								
C247003								
C247004								

VA07113309 - F CLIENT : "CAYG # of SAMPLES : DATE RECEIVE PROJECT : "HIX CERTIFICATE C PO NUMBER : "								
				ME-MS61				
SAMPLE	Cs	Cu	Fe	Ga	Ge	Hf	In	K
DESCRIPTION	ppm	ppm	%	ppm	ppm	ppm	ppm	%
G007124								
G007125								
G007126								
G007127								
G007128	6.8	83.5	5.54	14.55	0.23	5.1	0.059	3.7
G007129								
G007130								
G007131								
G007132								
G007133								
G007134								
G007135								
G007136								
G007137 G007138								
G007138 G007139								
G007139 G007140								
G007140 G007141								
G007142								
G007143								
G007144								
G007145								
G007146								
G007147								
G007148								
G007149								
G007150								
C247001								
C247002								
C247003								
C247004								

VA07113309 - F CLIENT : "CAYG # of SAMPLES : DATE RECEIVE PROJECT : "HIX CERTIFICATE C PO NUMBER : "								
				ME-MS61				
SAMPLE	La	Li	Mg	Mn	Мо	Na	Nb	Ni
DESCRIPTION	ppm	ppm	%	ppm	ppm	%	ppm	ppm
G007124								
G007125								
G007126								
G007127								
G007128	59.8	26.5	3.95	1080	4.15	1.72	16.5	56.1
G007129								
G007130								
G007131								
G007132								
G007133								
G007134								
G007135								
G007136 G007137								
G007137 G007138								
G007139								
G007139 G007140								
G007141								
G007142								
G007143								
G007144								
G007145								
G007146								
G007147								
G007148								
G007149								
G007150								
C247001								
C247002								
C247003								
C247004								

VA07113309 - F CLIENT : "CAYG # of SAMPLES : DATE RECEIVE PROJECT : "HIX CERTIFICATE C PO NUMBER : "								
				ME-MS61				
SAMPLE	Р	Pb	Rb	Re	S	Sb	Sc	Se
DESCRIPTION	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
G007124								
G007125								
G007126								
G007127 G007128	4150	16.7	125	0.003	0.47	0.84	27.3	2
G007129	4150	10.7	125	0.005	0.47	0.04	21.5	2
G007130								
G007131								
G007132								
G007133								
G007134								
G007135								
G007136								
G007137								
G007138								
G007139 G007140								
G007140 G007141								
G007142								
G007143								
G007144								
G007145								
G007146								
G007147								
G007148								
G007149								
G007150 C247001								
C247001 C247002								
C247002								
C247004								

VA07113309 - F CLIENT : "CAYO # of SAMPLES : DATE RECEIVE PROJECT : "HIX CERTIFICATE C PO NUMBER : "								
				ME-MS61				
SAMPLE	Sn	Sr	Та	Те	Th	Ti	TI	U
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
G007124								
G007125								
G007126								
G007127								
G007128	1.1	1605	0.61	<0.05	9.4	0.517	1.11	3.1
G007129								
G007130								
G007131								
G007132								
G007133								
G007134								
G007135								
G007136								
G007137								
G007138								
G007139 G007140								
G007140 G007141								
G007141 G007142								
G007143								
G007144								
G007145								
G007146								
G007147								
G007148								
G007149								
G007150								
C247001								
C247002								
C247003								
C247004								

VA07113309 - F CLIENT : "CAYO # of SAMPLES : DATE RECEIVE PROJECT : "HIX CERTIFICATE C PO NUMBER : "	:				
			ME-MS61		
SAMPLE	V	W	Y	Zn	Zr
DESCRIPTION	ppm	ppm	ppm	ppm	ppm
G007124					
G007125					
G007126					
G007127					
G007128	207	0.7	29	72	198.5
G007129					
G007130					
G007131					
G007132					
G007133					
G007134					
G007135					
G007136					
G007137					
G007138					
G007139					
G007140					
G007141					
G007142					
G007143					
G007144					
G007145					
G007146					
G007147					
G007148					
G007149					
G007150					
C247001					
C247002 C247003					
C247003 C247004					
0241004					

VA07114024 - Finalized CLIENT : "CAYGOL - Cayenne Gold Mines Ltd" # of SAMPLES : 6 DATE RECEIVED : 2007-10-05 DATE FINALIZED : 2007-11-09 PROJECT : "HIXON" CERTIFICATE COMMENTS : "REE's may not be totally soluble in MS61 method." PO NUMBER : " " Au-AA24 Ag-AA45 PGM-MS2 PGM-MS2 PGM-MS2 ME-MS61 ME-MS61 ME-MS61 ME-MS61 SAMPLE Au Au Pt Pd Ag AI As Ва Ag ppm **DESCRIP**]ppm ppm ppm ppm ppm % ppm ppm E970001 0.037 0.4 0.069 0.2 E970002 0.003 0.001 8.03 2.1 720 E970003 0.001 0.16 E970004 0.027 0.0016 0.002 1.09 2.5 48.8 540 0.027 5.99 17.1 E970005 0.0006 0.004 1.42 1210 E970006 0.025 0.007 0.0033 0.43 3.49 48.2 720

VA071140 CLIENT : ' # of SAMF DATE REC PROJECT CERTIFIC PO NUMB									
	ME-MS61								
SAMPLE	Be	Bi	Ca	Cd	Ce	Со	Cr	Cs	Cu
DESCRIP	lppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
E970001									
E970002									
E970003	1.5	0.35	0.75	0.09	88.1	18	106	6.59	45.4
E970004	0.86	0.21	0.08	1.7	28.2	4	105	1.74	68
E970005	1.72	0.16	0.1	0.56	47.1	6.5	231	2.46	62.9
E970006	0.86	0.09	0.02	0.76	30.5	4.2	170	2.33	24.9

VA071140: CLIENT : " # of SAMP DATE REC PROJECT CERTIFIC, PO NUMBI									
ME	-MS61	ME-MS61							
SAMPLE Fe		Ga	Ge	Hf	In	К	La	Li	Mg
DESCRIP1%		ppm	ppm	ppm	ppm	%	ppm	ppm	%
E970001									
E970002									
E970003	3.64	23.1	0.13	0.9	0.083	2.34	46.1	55.6	1.18
E970004	2.53	7.3	0.08	1.3	0.042	1	14.7	18.9	0.14
E970005	2.13	16.65	0.08	2.3	0.046	1.95	24.8	20.5	0.4
E970006	1.51	13	0.07	1.8	0.081	1.41	17.9	15.5	0.13

VA071140 CLIENT : " # of SAMP DATE REC PROJECT CERTIFIC PO NUMB									
	ME-MS61								
SAMPLE	Mn	Мо	Na	Nb	Ni	Р	Pb	Rb	Re
DESCRIP	lppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
E970001									
E970002									
E970003	614	1.13	0.81	13.1	21.7	650	24.3	105	<0.002
E970004	78	5.13	0.07	1.9	63.8	400	22.6	39.9	<0.002
E970005	210	0.6	0.32	7.2	46	150	10.5	74.8	<0.002
E970006	68	66.4	0.08	3.5	56.1	170	9.5	59 1	< 0.002

VA071140: CLIENT : " # of SAMP DATE REC PROJECT CERTIFIC, PO NUMBI								
ME-MS6	1 ME-MS61 N	ME-MS61						
SAMPLE S	Sb S	Sc	Se	Sn	Sr	Та	Те	Th
DESCRIP1%	ppm p	opm	ppm	ppm	ppm	ppm	ppm	ppm
E970001								
E970002								
E970003 0.0	1 0.11	15.6	2	3	118	1.03	0.05	17.1
E970004 0.0	7 3.91	6.4	5	0.9	18.2	0.13	0.17	3.8
E970005 0.0	1 0.44	13.6	2	1.4	99.1	0.5	0.1	6.7
E970006 <0.01	2.68	10.3	5	1.1	14.2	0.26	0.17	6.1

VA071140; CLIENT : " # of SAMP DATE REC PROJECT CERTIFIC, PO NUMBI								
	-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
SAMPLE Ti		ТΙ	U	V	W	Y	Zn	Zr
DESCRIP1%		ppm	ppm	ppm	ppm	ppm	ppm	ppm
E970001								
E970002								
E970003	0.438	0.62	3.7	98	1.9	11.6	56	22.5
E970004	0.073	0.94	2	142	0.5	5.6	201	38.7
E970004 E970005	0.073 0.241	0.94 0.72	_	–	•••			38.7 61.3