BC Geological Survey Assessment Report 29470

ASSESSMENT REPORT FOR DRILL PROGRAM ON THE BA PROPERTY:

BA 5 Mineral Claim

Statement of exploration# 4169325

LOCATED 40 KM EAST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION NTS 104A/4 LATITUDE 56 12' LONGITUDE 129 28'

by

Edward Kruchkowski, B.Sc., P. Geo.

Prepared for:

MOUNTAIN BOY MINERALS LTD. Box 859 Stewart, BC V0T 1W0

9 December 2006

Page

SUMMARY	1
INTRODUCTION	3
Location and Access	3
Physiography and Topography	3
Property Ownership	3
Previous Work	4
Early Years	4
Recent Years	5
GEOLOGICAL SUMMARY	6
Regional Geology	6
Local Geology	7
Deposit Types	8
Mineralization	8
Production	8
DIAMOND DRILLING	9
GEOCHEMICAL SAMPLING	20
Rock Geochemical Surveys	20
CONCLUSIONS	20
RECOMMENDATIONS AND BUDGET	22
REFERENCES	23
CERTIFICATE OF AUTHOR'S QUALIFICATIONS	24
STATEMENT OF COSTS	25

<u>List of Figures</u>

<u>after Page</u>

Figure 1 Figure 2	Location Map Claim Map	25 25
Figure 3	Regional Geology Map (after Greig 1994)	25
Figure 4	Map Geology and Plan Of Barbara Zone	25
Figure 5	Geological Cross-Section of DDH 2006-BA-1 to 4	25
Figure 6	Geological Cross-Section of DDH 2006-BA-5	25

Figure 7	Geological Cross-Section of DDH 2006-BA-7 -8	25	
Figure 8	Geological Cross-Section of DDH 2006-BA-9-10	25	
Figure 9	Geological Cross-Section of DDH 2006-BA-11 -12	25	
Figure 10	Geological Cross-Section of DDH 2006-BA-13-14	25	
Figure 11	Assay Cross-Section of DDH 2006-BA-1 to 4		25
Figure 12	Assay Cross-Section of DDH 2006-BA-5	25	
Figure 13	Assay Cross-Section of DDH 2006-BA-7 -8	25	
Figure 14	Assay Cross-Section of DDH 2006-BA-9-10	25	
Figure 15	Assay Cross-Section of DDH 2006-BA-11 -12	25	
Figure 16	Assay Cross-Section of DDH 2006-BA-13-14		25

LIST OF APPENDICES

APPENDIX I	Drill Hole Logs – DDH –2006-BA-1-14
APPENDIX II	Assay Results DDH –2006-BA – 1 to 14

	Page	
Table 1	Drill Hole Summary	9
Table 2	Significant Drill Hole Intersections	17

SUMMARY

The BA property silver-lead-zinc property(formerly called the Barbara project), owned 100 % by Mountain Boy Minerals Ltd extends from just east of Bear Lake, spanning an area including the north side of Strohn Creek Valley to the headwaters of Nelson and Bear glaciers, approximately 32 kilometers northeast of Stewart, British Columbia. The property covers an area of altered, Lower Jurassic-age, Hazelton pyroclastic volcanic rocks that are overlain by Middle Jurassic Salmon River Formation sediments.

The property contains approximately 5,964.97 hectares in 13 separate claims.

There are no known ore bodies on the property.

The property lies within a belt of Jurassic volcanic rocks extending from the Kitsault area, south of Stewart, to north of the Stikine River. This belt is host to numerous gold and gold-silver deposits, in a variety of geological settings, including the former producing Snip, Granduc and Premier-Big Missouri properties as well as the presently producing Eskay Creek. Reserves have been reported from a number of other properties including Red Mountain, the Brucejack Lake – Suphurets area and Georgia River. The property is just north of the epithermal gold-silver deposit being explored at nelson creek. In addition, numerous gold-silver showings have been reported from the Kitsault area as well as Mount Rainey, near Stewart. At least three porphyry type deposits with Cu-Mo, Cu-Mo-Au or Cu-Au mineralization are also present.

The eastern part of the property is underlined by a large intrusion of off-white feldspar – biotite porphyry that is part of the Strohn stock. To the west, this rock is in contact with another intrusion of dark gray to black feldspar porphyritic basalt/andesite. Most of the central and northern parts of the property are occupied by andesite pyroclastics cut by dykes of feldspar-biotite porphyry. The western part of the property is dominated by mudstones and siltstones of Salmon River Formation. Other rocks present in this area include rocks of Bowser Lake Group, Mount Dilworth (?) and Betty Creek Formations. They form a gently dipping syncline with a southeast axis.

The BA mineral zone appears to represents a vent portion of a Kuroko type VMS system. It is composed of exhalite horizons with related zinc-lead-silver mineralization. The exhalite is composed of intercalated centimeter scale laminae of red, gray, black and green chert. Some sections of exhalite consist of more massive red chert (jasper). The zone is closely associated with very strongly silicified felsic volcanic rocks which represent either dacites of the Mt. Dilworth Formation or a dacite horizon within upper level of Betty Creek Formation. The main exhalite horizon is up to 40-50 metres wide and can be traced for 1 kilometre in a north-south direction. Based on field observations, the exhalite horizon may stretch over 3 kilometres along a syncline to the east. Mineralization is confined to a sedimentary horizon(s) that is immediately below the exhalite. Mineralization consists of a pale brown sphalerite with minor galena and traces chalcopyrite that occurs as fine laminae between mudstone layers, as fracture filling and as veins in the underlying andesites.

During the period August to September, 2006, Pinnacle Mines conducted an exploration program of geochemical sampling that included chip lines across mineralized structures or horizons as well as grab sampling of outcrop and float rocks on the BA 1-10 claims. After Mountain Boy Minerals Ltd optioned the property in October, 2006, a total of 1183.44 meters of BTW size core was drilled in 14 holes from 3 different drill pads.

In the 2006 program of rock sampling on the BA claims 32 outcrop grab, 110 float and 4 chip samples were collected. One of these samples on the BA zone, a 1.7 metre (true width) chip across finely laminated mudstone/limestone and chert with extremely fine-grained disseminated sulphides and abundant pervasive hydrozincite stain assayed 5.24% Zn, 0.66% Pb and 55.2 g/t Ag. Another sample, a 1.2 metre chip (true width) from mudstone-limestone-chert breccia with some extremely fine disseminated sulphides and abundant pervasive hydrozincite stain assayed 2.17% Zn, 0.41% Pb and 13.5 g/t Ag. A float sample composed of very strongly K-feldspar altered felsic fragments cemented by fine grained sulphides was found approximately 3 kilometers east of the above samples. The sample assayed 6.9% zinc, 2.3% lead and 759.6 g/t silver.

DDH 2006-BA-1 through BA-10 were drilled from pad #1 in four different azimuths. Drill holes BA-11 and BA-12 were drilled from pad #2, 100 meters west of pad #1. Drill holes BA-13 and BA-14 were drilled on pad #3, 150 meters east of pad #1. DDH 2006-BA-6 was lost near the top of the hole and was not completed. DDH 2006- BA-13 & 14 were partially drilled down an andesite dyke and did not intersect the main exhalative horizon. Drilling intersected numerous sections of silver-lead-zinc mineralization with some zones as follows: 2.80 m of 48.72 g/t Ag, 1.03 % Pb and 5.82 % Zn in DDH 2006-BA-3, 3.44 m of 123.7 g/t Ag, 2.35 % Pb and 5.80 % Zn in DDH 2006-BA-5 and 10.31 m of 152.19 g/t Ag, 4.67 % Pb and 4.05 % Zn in DDH 2006-BA-9.

Exploration potential on the property is excellent with most of the exhalite and possible underlying sulphide zones remaining to be tested.

It is recommended that in the next exploration season an IP geophysical survey, prospecting, detailed geological mapping and drilling is recommended. The work should focus on the newly discovered BA zone as well as on the south and southwest portions of the property.

Estimated cost of the program is \$1,500,000.00.

INTRODUCTION

Mountain Boy Minerals Ltd has earned a 50 % interest in the BA Property from Pinnacle Mines Ltd. through an option agreement and subsequently purchased the other 50 %. This report is being prepared in order to summarize the 2006 drill exploration results on the BA Property.

Location and Access

The claims in the property, which are contiguous, extend from just east of Bear Lake, spanning an area including the north side of Strohn Creek Valley to the headwaters of Nelson and Bear glaciers, approximately 32 kilometers northeast of Stewart, British Columbia. The claim area is centered on 56 degrees 12 minutes latitude and 129 degrees 38 minutes longitude on NTS sheet 104 A/4. Claims location is shown on Figure 1.

At the present time access to the north part of the claims is via paved Highway 37A while the southern and northern part of the claims are accessible via helicopter from Stewart or from the Ellsworth logging camp situated on Highway 37 about 20 km to the east.

Physiography and Topography

The area of BA claims encompasses steep mountain slopes typical of the Coastal Range region of British Columbia. Slopes range from moderate to precipitous. Elevations vary from about 800 meters at Strohn Creek to almost 2300 metres along the mountain peaks. Topography is rugged with several glaciers transecting the claim area, particularly the Bear and Nelson Glaciers. The southern portion of the claim area is covered by a portion of the Cambria ice field. Approximately a half of the claims are covered by ice and snow, another 15-20% is covered by talus and glacial moraine, outcrops comprise the remaining 30-35% of the property. Lower slopes of the mountain valleys are occupied by spruce and hemlock trees. Higher elevations are covered by alpine grass and heather. Due to the large snowfall, the surface exploration is restricted to summer and early fall with the maximum rock exposure occurring in late August to October.

PROPERTY OWNERSHIP

The property consists of approximately 5,964.97 hectares in 13 separate claims of Relevant claim information is summarized below:

Name	Tenure	NTS Map Area	Area in ha	Expiry Date
Stro 1	396552	NTS 104 A/4	500.00	September 20/2007
Stro 2	396553	NTS 104 A/4	500.00	September 20/2007
Stro32	396554	NTS 104 A/4	400.00	September 20/2007
BA 1	396830	NTS 104 A/4	500.00	September 20/2007
BA 2	396831	NTS 104 A/4	500.00	September 20/2007
BA 3	396832	NTS 104 A/4	500.00	September 20/2007
BA 4	396833	NTS 104 A/4	500.00	September 20/2007
BA 5	522217	NTS 104 A/4	433.28	November 11/2009
BA 6	522218	NTS 104 A/4	433.45	November 11/2009
-	522219	NTS 104 A/4	451.82	November 11/2009
BA 7	522220	NTS 104 A/4	361.31	November 11/2009
-	522221	NTS 104 A/4	451.60	November 11/2009
-	522222	NTS 104 A/4	433.54	November 11/2009

List of Property Claims

Claims location is shown in Figure 2 copied from MINFILE database. All the claims are situated in the Skeena Mining Division in the Province of British Columbia.

The Stro 1 to 3 and BA 1 to 4 claims are registered in the name of Ed Kruchkowski who is holding them in trust for Mountain Boy Minerals. The BA 6 to 10 claims are held by Mountain Boy Minerals.

Mountain Boy Minerals Ltd. had an agreement with Pinnacle Mines Ltd., whereby Mountain Boy would acquire a 50% interest in Pinnacle's BA claims numbered 1-10 which are located just east of Stewart in the Skeena Mining Division. As consideration, Mountain Boy paid Pinnacle \$45,000 as well as a granted to Pinnacle a 50% interest in its Stro claims 1-3 which are adjacent to the BA claims. As part of the agreement, Mountain Boy also carried out a limited drill program of 800 meters on the property.

Mountain Boy drilled 1183.44 meters as part of the agreement to acquire a 50% interest in Pinnacle's BA claims No. 1 to 10. In addition, Mountain Boy paid Pinnacle \$45,000 and granted Pinnacle a 50% interest in its Stro claims No. 1 to 3 which are adjacent to the BA claims. Subsequently Mountain Boy purchased the other 50% interest from Pinnacle.

PREVIOUS WORK

Early Years

The exploration for metals began in the Stewart region about 1898 after the discovery of mineralized float by a party of placer miners in the Bitter Creek area.

The first mineral claims in the Bear River Pass area were staked by W.B. George in 1910. These claims became the nucleus of the property owned by the George Gold-Copper Mining Company, which was incorporated in 1925

Early work in the Strohn Creek area located the Montreal group in 1925 and the Southern Cross property in 1929-30.

Recent Work

The only work on the property was done in 2005 when 15 rock samples (all float) were collected on BA-1 to 4 claims. One of the samples (A05-268) assayed as much as 10.5% zinc, 1.21% lead, and 147 ppm mercury. The sample also showed anomalous silver (8.4 ppm), arsenic (328 ppm), molybdenum (44 ppm), antimony (130 ppm) and tungsten (2514 ppm).

The closest prospect with recorded work is located 4 kilometres to the southeast at Teuton's Resources Del Norte Claim group. In 2002, Teuton Resources discovered a high-grade gold-silver mineralization in this area. That year, Teuton completed sampling and small three-holes drilling program The results of the 2002 surface sampling program include 10 meters of 0.179 opt Au and 8.4 opt Ag. The best drill-hole, 2002-3 assayed 0.223 opt Au and 8.09 opt Ag over a drill length of 23.4 meters. The two most important mineralized zones of Del Norte claim group i.e. K (Kosciuszko) zone and LG vein are located along the contact between altered andesite pyroclastics of Betty Creek Formation and mudstones/siltstones of Salmon River Formation. Teuton's drilling defined a significant mineralized structure containing gold-silver bearing mineralization hosted in near-vertically dipping, quartz-sulfide/sulfosalt vein and breccia zones, with a majority of the intersections containing gold equivalent values greater than 0.40 oz/ton. Including drilling completed in 2002, 2003, 2004 and 2005, this structure has now been tested by 16 drill pads along an 1100-meter long strike length and to a depth of 450 meters.

The Willoughby prospect is located in the headwaters of Willoughby glacier, some 10 kilometres to the south from BA property. A mineralized zone carrying low-grade gold and silver values was investigated in this area in 1941 and the Wilby group of claims was staked in 1945.

To date, 11 mineralized occurrences have been located on the Willoughby property. Mineralization consisting of pyrite, pyrrhotite along with lesser sphalerite, galena and rare visible gold occurs in veins, stockwork and fracture fillings. In addition, pyrite and pyrrhotite occur as semi-massive to massive in lenses and pods. Several of the zones appear to be intrusion related. The best drill intersection averages 40.1 grams per tonne gold and 109.6 grams per tonne silver over 11.7 meters in one of the zones.

The former Goat mine is located 8 kilometres to the north from BA claims. The showings were staked first in 1960 and than re-staked in 1963 by Newmont Mining and Granby Mining.

Noradco acquired the claims in 1964 and completed trenching, sampling and small (3 holes) drilling program on the property. In 1965, 2 adits were driven on the F vein and 2 raises were driven to the G vein. In 1971, Abitibi acquired the Shield Minerals interest as well as incorporated Nordore Mining Co. In 1974, Nordore rehabilitated the workings now on the Ken 1-4 and Goat A-H claims. In 1974, the Remus claims were acquired as a mill site. About 1770 tonnes of ore were stockpiled. In 1976, about 295 tonnes of ore was milled from a portable concentrator. Development work on the E vein recommenced in 1979 and "some" material was put through the concentrator. In 1980, underground development continued and the mill operated for several months. The mill was destroyed by fire in 1981 and all work ceased. Bond Gold carried out a geophysical survey over the property in 1990. In 1991, Cameco conducted geochemical surveys and sampling on the Ken and Hugh claims. Proven and probable reserves in 1979 were 8800 tonnes grading 4782.9 grams per tonne silver and 10.6 grams per tonne gold. Recorded production during 1975 and 1979-81 was 1,794,049 grams of silver, 5,475 grams of gold, 52,641 kilograms of zinc, 4,071 kilograms of lead and 153 kilograms of copper.

GEOLOGICAL SURVEYS

Regional Geology

The BA property lies in the Stewart area, east of the Coast Crystalline Complex and within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic Stuhini Group, Hazelton Group and Bowser Lake Group that have been intruded by plugs of both Cenozoic and Mesozoic age.

According to C.F. Greig, in G.S.C. Open File 2931, portions of the general Stewart area are underlain by Triassic age Stuhini Group. The Stuhini Group rocks are either underlying or in fault contact with the Hazelton Group. These Triassic age rocks consist of dark gray, laminated to thickly bedded silty mudstone, and fine to medium grained and locally coarse-grained sandstone. Local heterolitic pebble to cobble conglomerate, massive tuffaceous mudstone and thick-bedded sedimentary breccia and conglomerate also form part of the Stuhini Group.

At the base of the Hazelton Group is the lower Lower Jurassic Marine (submergent) and nonmarine (emergent) volcaniclastic Unuk River Formation. This is overlain at steep discordant angles by a second, lithologically similar, middle Lower Jurassic volcanic cycle (Betty Creek Formation), in turn overlain by an upper Lower Jurassic tuff horizon (Mt. Dilworth Formation). Middle Jurassic non-marine sediments with minor volcanics of the Salmon River Formation unconformably overlie the above sequence.

The lower Lower Jurassic Unuk River Formation forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, volcanic conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.

In the property area, the Unuk River Formation is unconformably overlain by middle Lower Jurassic rocks from the Betty Creek Formation. The Betty Creek Formation is another cycle of trough filling sub-marine pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, with self erosional conglomerate, sandstone and siltstone and minor crystal and lithic tuffs, chert, limestone and lava.

The upper Lower Jurassic Mt. Dilworth Formation consists of a thin sequence varying from black carbonaceous tuffs to siliceous massive tuffs and felsic ash flows. Minor sediments and limestone are present in the sequence. Locally pyritic varieties form strong gossans.

The Middle Jurassic Salmon River Formation is a late to post volcanic episode of banded, predominantly dark colored siltstone, greywacke, sandstone, intercalated calcarenite rocks, minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows.

Overlying the above sequences are the Upper Jurassic Bowser Lake Group rocks. These rocks mark the western edge of the Bowser Basin and are also located as remnants on mountaintops in the Stewart area. These rocks consist of dark gray to black clastic rocks including silty mudstone and thick beds of massive, dark green to dark gray, fine to medium grained arkosic litharenite.

According to E.W. Grove, the majority of the rocks from the Hazelton Group were derived from the erosion of andesitic volcanoes subsequently deposited as overlapping lenticular beds varying laterally in grain size from breccia to siltstone.

D. Alldrick's work to the north of Stewart has shown several volcanic centers in the surveyed area. Lower Jurassic volcanic centers in the Unuk River Formation are located in the Big Missouri Premier area and in the Brucejack Lake area. Volcanic centers within the Lower Jurassic Betty Creek Formation are in the Mitchell Glacier and Knipple Glacier areas.

There are various intrusives in the area. The granodiorites of the Coast Plutonic Complex largely engulf the Mesozoic volcanic terrain to the west. East of these (in the property area), smaller intrusive plugs range from quartz monzonite to granite to highly felsic. Some are likely related to the late phase offshoots of the Coast plutonism, other is synvolcanic and tertiary. Double plunging, northwesterly - trending synclinal folds of the Salmon River and underlying Betty Creek Formations dominate the structural setting of the area. These folds are locally disrupted by small east-over thrusts on strikes parallel to the major fold axis, cross-axis steep wrench faults which locally turn beds, selective tectonization of tuff units and major northwest faults which turn beds.

Local Geology

Figure 3 shows the general property geology according to C. Greig.

Eastern part (Claims 396830 to 396833)

The southern part of this area is underlined by a large intrusion of off-white coloured feldspar – biotite porphyry. To the west, this intrusion is in contact with another intrusion of dark gray to black feldspar porphyritic basalt/andesite. Most of the central and northern parts of the BA-1 to 4 claims are occupied by andesite pyroclastics cut by dykes of feldspar-biotite porphyry. The northern part of the BA 2 claim (396831) hosts intrusion of diorite and associated skarn

Western part (claims 522217 to 522222)

The western part of the property is dominated by mudstones and siltstones of Salmon River Formation. Other rocks present in this area include rocks of Bowser lake group, Mount Dilworth (?) and Betty Creek Formations. All these rocks are part of a syncline gently dipping towards the middle of the property.

Rocks of Mount Dilworth Formation (?) consist of extremely silicified fragmental felsic rocks forming a horizon which vary in thickness from a few dozen metres to over a kilometer.

Rocks of Betty Creek Formation observed along the western edge of ther property consist of andesite pyroclastics and epiclastics and green aphanitic to feldspar+/-hornblende (?) porphyritic andesite. The latter rock formed primarily as shallow intrusions.

All the sedimentary and volcanic rocks underlying the BA property are cut by off-white dykes of feldspar porphyry.

Deposit Types

Drilling is testing a volcanogenic massive sulphide (VMS) horizon located in the upper parts of Bear Glacier within the same stratigraphic horizon as that which hosts the Eskay Creek deposit. It appears that the zone represents a portion of a Kuroko-type VMS system composed of an exhalite horizon with related zinc-lead-silver mineralization. There appear to be several lenses of massive pyrite, sphalerite, galena and traces chalcopyrite commonly within felsic volcanic rocks and sedimentary rocks.

Mineralization

During the 2006 exploration program on the BA property a VMS zone called BA was discovered. The VMS zone is located in the upper parts of Bear Glacier (see figure 4 for zone location).

The BA mineral zone appears to represents a vent portion of a Kuroko type VMS system. It is composed of exhalite horizons with related zinc-lead-silver mineralization. The exhalite is composed of intercalated centimeter scale laminae of red, gray, black and green chert. Some sections of exhalite consist of more massive red chert (jasper). The zone is closely associated with very strongly silicified felsic volcanic rocks which represent either dacites of the Mt. Dilworth Formation or a dacite horizon within upper level of Betty Creek Formation. The main exhalite horizon is up to 40-50 metres wide and can be traced for 1 kilometre in a north-south direction. Based on field observations, the exhalite horizon may stretch over 3 kilometres along a syncline to the east. Mineralization is confined to a sedimentary horizon(s) that is immediately below the exhalite. Mineralization consists of a pale brown sphalerite with minor galena and traces chalcopyrite that occurs as fine laminae between mudstone layers, as fracture filling and as veins in the underlying andesites.

Part of the zone very likely represents a vent portion of this system as strongly indicated by the presence of exhalite with amygdoidal texture. Such a texture could only form in the vent area as a result of rapid pressure release (boiling) and subsequent infilling of numerous air bubbles (vesicles) by quartz and to lesser extent by carbonates.

Not far from the main exhalite horizon there are also a few other, much thinner (1-3m) exhalite horizons, below the main one.

Production

There has been no mineral production from the property.

DIAMOND DRILLING

During the period October 1, to October 28, 2006, Mountain Boy Minerals Ltd drilled 1183.44 meters of BTW drill core in 14 separate drill holes from 3 different pads utilizing a modified J. K. Smit 300 drill owned by Mountain Boy. DDH 2006-BA-1 through BA-10 were drilled from pad #1in four different azimuths. Drill holes BA-11 and BA-12 were drilled from pad #2, 100 meters west of pad #1. Drill holes BA-13 and BA-14 were drilled on pad #3, 150 meters east of pad #1. DDH 2006-BA-6 was lost near the top of the hole and was not completed. DDH 2006-BA-13 & 14 were partially drilled down an andesite dyke and did not intersect the main exhalative horizon.

The two main rock types intersected were felsic sedimentary breccia and volcanic breccias with lesser mudstone and exhalite. Feldspar porphyry and felsite are also common in the drill core.

Drill hole azimuths, dips and total depth of hole are summarized below:

	Table 1-Drilling Summary					
Drill Hole	Pad No.	Azimut	h Dip	Total Depth (m)		
<u>by Number</u>		Degrees	Degrees			
2006-ВА -1	Pad 1	250	-45	46.95		

2006–BA-2	Pad 1	250	-55	185.32
2006–BA-3	Pad 1	250	-82	75.59
2006–BA-4	Pad 1	250	-68	52.12
2006–BA-5	Pad 1	160	-80	42.06
2006–BA-6	Pad 1	067	-45	11.58
2006–BA-7	Pad 1	067	-55	182.62
2006–BA-8	Pad 1	067	-65	91.99
2006–BA-9	Pad 1	025	-60	75.89
2006–BA-	Pad 1	025	-70	114.91
10				
2006–BA-	Pad 2	074	-70	95.37
11				
2006–BA-	Pad 2	vertical	-90	74.68
12				
2006–BA-	Pad 3	324	-60	180.44
13				
2006–BA-	Pad 3	324	-80	75.89
14				

Total 1183.44 m

Drill log summaries are as follows:

BA-2006-1

The hole encountered fine grained, siliceous andesite tuff with minor interbedded chert and siltstone and minor pyrite and sphalerite as disseminated grains and small streaks at 18.29 to 22.87m.

At 22.87 to 26.31m the hole came to felsic sedimentary breccia containing sulphide clasts, 1-2% disseminated to patchy pyrite, and trace sphalerite concentrated in matrix.

Feldspar phenocrysts in extremely fine grained groundmass were intersected by the hole at 26.31 to 34.45m.

The hole met sedimentary breccia composed of chalcedonic and felsic fragments set in a groundmass dominated by mudstone and variable amounts of fine grained pyrite and sphalerite at 34.45 to 46.95m.

The hole was stopped at 46.95m before reaching the planned depth due to technical difficulties.

Figure 5 shows the geological section for DDH – 2006-BA -1 to 4

BA-2006-2

Fine grained, weakly silicified andesite tuff with areas of distinct lamination and minor quartz-carbonate veining was hit by the hole at 8.54 to 12.50m.

From 12.50 to 18.29m the hole ran across heterolithic sedimentary breccia and fine volcanic tuff containing abundant matrix dominated by mudstone, 1-3% extremely fine grained pyrite, and trace to 1% sphalerite.

The hole intercepted sedimentary breccia composed of silicified felsic fragments, sporadic clasts of chert, andesite, mudstone, and sulphides at 18.29 to 25.45m. Matrix, making up 10-15% of the rock, composed of mudstone and sulphides was observed within the interval. The sulphides include 5% pyrite, 3% sphalerite, and trace to minor galena.

Weakly silicified feldspar porphyry containing altered and diffused feldspar phenocrysts was encountered by the hole at 25.45 to 33.95m.

At 33.95 to 55.47m the hole hit upon heterolithic sedimentary breccia and fine volcanic tuff containing abundant matrix dominated by mudstone, 1-3% extremely fine grained pyrite, and trace to 1% sphalerite.

Moderate chlorite alteration and 1-3% quartz-carbonate veining were observed in an interval of andesite lapilli tuff partially replaced by feldspar and possible hornblende porphyritic andesite met by the hole at 55.47 to 185.32m.

The hole came to a close at 185.32m.

Figure 5 shows the geological section for DDH – 2006-BA -1 to 4

BA-2006-3

From 6.40 to 8.29m the hole ran across heterolithic sedimentary breccia dominated by felsic fragments with a mudstone matrix containing 5-10% extremely fine grained pyrite, approximately 1% sphalerite, and trace galena.

Andesite-dacite tuff with a massive to finely laminated texture and minor pyrite was intersected by the hole at 8.29 to 11.58m.

The hole came to an interval of finely laminated volcanic tuff to breccia with contorted to brecciated laminae of reddish sphalerite at 11.58 to 13.41m. Mudstone supported slump breccia, 4-5% sphalerite, 2-3% pyrite, and minor galena were also observed in the interval.

At 13.41 to 24.60m the hole encountered sedimentary, volcanic breccia with silicified felsic fragments, 3-30% matrix composed of mudstone, 5-10% extremely fine grained pyrite, trace to 5% sphalerite, and minor galena.

Fragments of felsic rocks, andesites, chert, mudstone, rare exhalite fragments, and mudstone dominated matrix containing minor pyrite and sphalerite were observed in an interval of heterolithic sedimentary breccia hit by the hole at 24.60 to 34.44m.

Strongly chloritic breccia with different lithological fragments and a section of exhalite was intercepted by the hole at 34.44 to 36.21m.

The hole ran across sphalerite cemented breccia containing 30-40% yellow sphalerite and minor galena at 36.21 to 36.73m.

Felsic lapilli tuff with short sections of laminated fine felsic tuff and mudstone was met by the hole at 36.73 to 44.50m.

From 44.50 to 57.45m the hole came to heterolithic volcanic breccia of felsic to intermediate composition. Minor pyrite and sphalerite were observed in the matrix as well as clasts of mudstone, chert and exhalite.

Dark green andesite lapilli tuff with porphyritic to aphanitic andesite replacement was encountered by the hole at 57.45 to 75.59m.

The hole was terminated at 75.59m.

Figure 5 shows the geological section for DDH – 2006-BA -1 to 4

BA-2006-4

At 6.40 to 7.47m the hole intercepted sedimentary breccia and possible exhalite containing few sulphides. The exhalite exhibits amygdaloidal/colloform texture and contains semi-massive sphalerite and pyrite; the amygdules are filled with chalcedony and lesser carbonates.

The hole came to an interval of mostly finely laminated felsic to intermediate tuff containing semi-massive sections, local weak silicification, and sporadic thin laminae of sphalerite at 7.47 to 14.02m.

Felsic clasts set in a matrix dominated by mudstone were observed in an interval of sedimentary breccia hit by the hole at 14.02 to 50.60m.

Feldspar porphyritic andesite with moderate to strong chlorite-sericite alteration was intersected by the hole at 50.60 to 52.12m.

The hole was completed at 52.12m.

Figure 5 shows the geological section for DDH – 2006-BA -1 to 4

BA-2006-5

Andesitic tuff and mudstone with a massive texture, weak silicification, and 5-30% quartz-carbonate was encountered by the hole at 5.09 to 11.43m.

The hole met sedimentary volcanic breccia dominated by very strongly silicified felsic fragments at 11.43 to 26.97m. Contained within the interval was clasts of andesite, mudstone, and chert, mudstone dominated matrix, small sections of felsic tuff with lamination, and minor pyrite.

From 26.97 to 42.06m the hole ran across moderately chlorite altered andesite lapilli tuff replaced by feldspar and possibly hornblende porphyritic andesite.

The hole came to an end at 42.06m.

Figure 6 shows the geological section for DDH – 2006-BA -5.

<u>BA-2006-6</u>

The hole was not drilled to the planned depth due to excessive overburden.

BA-2006-7

Moderate chlorite-sericite alteration and 20-30% feldspar phenocrysts set in a very fine grained groundmass were observed in an interval of feldspar porphyry intersected by the hole at 5.03 to 26.52m.

At 26.52 to 42.06m the hole came to heterolithic volcanic sedimentary breccia composed of semi-rounded and semi-angular, andesitic and felsic clasts and containing narrow sections of felsic tuff, weak to moderate chloritization, and minor disseminated pyrite.

The hole met sedimentary breccia composed of silicified felsic clasts set in a mudstone dominated matrix and containing 1% disseminated pyrite, minor sphalerite, and traces of galena within matrix and clasts at 42.06 to 51.20m.

Possible hornblende phenocrysts set in aphanitic groundmass and 10-20% feldspar were observed in porphyritic andesite encountered by the hole at 51.20 to 72.54m.

The hole was finished at 72.54m.

Figure 7 shows the geological section for DDH – 2006-BA -7-8.

BA-2006-8

Heterolithic sedimentary breccia dominated by felsic fragments with weak to moderate silicification, up to 5% sphalerite in matrix, and 3-15% barren quartz-carbonate veining was met by the hole at 5.79 to 8.44m.

The hole came ran across 20-30% feldspar phenocrysts set in very fine grained groundmass with moderate sericitization and weak to strong silicification at 8.44 to 11.79m.

From 11.79 to 16.31m the hole intersected sedimentary breccia dominated by strongly silicified felsic fragments in a mudstone dominated matrix with 5% pyrite and trace to 1% sphalerite.

Hit upon by the hole at 16.31 to 37.18m was moderately sericitized feldspar-possible hornblende porphyritic andesite with strongly chloritized hornblende phenocrysts.

Moderately to strongly chloritized heterolithic sedimentary breccia with local minor sphalerite was encountered by the hole at 37.18 to 40.84m.

The hole came to hornblende porphyritic and hornblende feldspar aphanitic andesite with moderate to strong chloritization and places of andesite lapilli tuff largely replaced by andesite at 40.84 to 53.64m.

At 53.64 to 55.17m the hole met aphanitic groundmass composed of 10-20% feldspar phenocrysts with very strong silicification, place of brecciated rock, and traces of galena and chalcopyrite.

Hornblende porphyritic and hornblende feldspar aphanitic andesite with moderate to strong chloritization and places of andesite lapilli tuff largely replaced by andesite were intercepted by the hole at 55.17 to 81.99m.

The hole was discontinued at 81.99m.

Figure 7 shows the geological section for DDH – 2006-BA -7-8.

BA-2006-9

A fine grained groundmass consisting of 20-25% feldspar phenocrysts with moderate sericitization and local weak silicification was hit by the hole at 5.79 to 20.11m.

Encountered by the hole at 20.11 to 25.30m was siliceous mudstone containing 10-20% felsic fragments, 10-20% barren quartz-carbonate veining, and contact with overlying feldspar porphyry.

The hole ran across sections of breccia composed of felsic fragments in a matrix forming 10-40% of the rock and containing mudstone with lesser sulphides at 25.30 to 35.60m. The sulphides

include 10% fine disseminated pyrite, 15% galena, and 15% sphalerite. The breccia is intercalated with sections of finely laminated mudstone and sulphides.

Volcanic breccia dominated by siliceous felsic, andesite, chert, and mudstone fragments with minor pyrite and local sphlaerite and galena was intersected by the hole at 35.60 to 45.41m.

From 45.41 to 63.70m the hole came to silicified felsic fragments set in a moderately to strongly chloritized groundmass with 2% pyrite and trace to minor sphalerite.

Volcanic breccia composed of felsic fragments with minor pyrite and minor galena was met by the hole at 63.70 to 68.88m.

The hole ran across silicified felsic fragments set in a strongly chloritized groundmass with 2% pyrite and trace to minor sphalerite at 68.88 to 73.52m.

Strongly chloritized feldspar and possible hornblende porphyritic andesite was encountered by the hole at 73.52 to 75.89m.

The hole came to a close at 75.89m.

Figure 8 shows the geological section for DDH – 2006-BA -9-10.

BA-2006-10

Felsic heterolithic sedimentary breccia with strongly silicified fragments, abundant mudstone, 1-5% pyrite, and 1-2% sphalerite was intercepted by the hole at 5.21 to 6.40m.

Met by the hole at 6.40 to 36.57m was a fine grained groundmass consisting of 10-20% feldspar phenocrysts.

The hole came to a sedimentary breccia-sulphide zone dominated by felsic fragments set in a dark mudstone matrix at 36.57 to 43.07m.

Weak sericitization was observed in an interval of felsic tuff to lapilli tuff hit by the hole at 43.07 to 44.71m.

At 44.71 to 53.95m the hole encountered sedimentary breccia dominated by strongly silicified felsic fragments with up to 3% pyrite and minor sphalerite concentrated in mudstone dominated matrix.

Volcanic breccia composed of very strongly silicified felsic fragements set in a dark matrix containing mudstone, fine grained pyrite, trace to 4% sphalerite, and trace to 1% galena was intersected by the hole at 53.95 to 72.24m. Places of feldspar porphyritic dacite replacement,

places of weak to moderate chloritization, and small disseminated veins within felsic clasts were also observed in the interval.

The hole ran across a crackle zone of very strongly silicified felsic volcanic rock with 5-10% feldspar phenocrysts, sulphide filled irregular fractures, and disseminated grains within clasts at 72.24 to 106.77m. The sulphides include 3% pyrite, trace to 3% sphalerite, trace to 2% galena, and local trace sphalerite.

From 106.77 to 114.91m the hole met strongly chloritized porphyritic andesite with possible hornblende and contact with crackle zone.

The hole was concluded at 114.91m.

Figure 8 shows the geological section for DDH – 2006-BA -9-10.

BA-2006-11

Red laminated exhalite was intercepted by the hole at 2.13 to 12.19m.

Hit by the hole at 12.19 to 15.54m was brecciated chert containing up to 5% pyrite and up to 3% sphalerite concentrated in a matrix of andesite tuff and mudstone.

The hole came to mostly laminated, locally massive andesite tuff with possible green sphalerite within several laminae at 15.54 to 21.03m.

From 21.03 to 27.58m the hole encountered laminae of exhalite intercalated with tuff and mudstone containing up to 2% sphalerite with possible pale yellow sphalerite within several laminae.

Mostly laminated andesite tuff and mudstone with areas of intraformational breccia, intercalated exhalite, 5% pyrite, and 3% sphalerite were met by the hole at 27.58 to 47.85m.

Quartz replacement of lower part of the interval and 2% pyrite were observed in an interval of silicified andesite tuff intersected by the hole at 47.85 to 55.78m.

The hole came to a sedimentary/volcanic breccia-sulphide zone dominated by felsic and chert fragments set in a matrix of mudstone, chert, and sulphides at 55.78 to 70.32m. Sulphides include 5-50% pyrite, trace to 10% galena, and 1-10% sphalerite.

From 70.32 to 93.57m the hole ran across feldspar porphyritic andesite with possible hornblende, strong chloritization, and amygdoidal texture.

The hole came to completion at 93.57m.

Figure 9 shows the geological section for DDH – 2006-BA -11-12.

BA-2006-12

Red, finely laminated exhalite with minor intercalated tuff and mudstone was intercepted by the hole at 1.67 to 8.84m.

Hit by the hole at 8.84 to 12.95m was brecciated chert cemented by a mixture of fine tuff, mudstone, and fine grained sulphides including 5% pyrite and trace to 2% sphalerite.

Mostly laminated to massive, fine andesite tuff locally intercalated with mudstone, chert, and exhalite containing areas of strong contortions, 2% sphalerite as laminae, and possible pale green sphalerite was met by the hole at 12.95 to 46.33m.

At 46.33 to 69.95m the hole came to silicified breccia composed of andesite, felsic, lesser chert, and exhalite fragments.

Moderately chloritized feldspar porphyritic andesite with possible hornblende was encountered by the hole at 69.95 to 74.68m.

The hole came to an end at 74.68m.

Figure 9 shows the geological section for DDH – 2006-BA -11-12.

BA-2006-13

The hole ran across sedimentary breccia consisting of felsic fragments in a matrix dominated by mudstone with moderate to strong silicification, 3-20% barren quartz-carbonate veinlets and replacements, and trace to 1% pyrite at 5.79 to 18.59m.

From 18.59 to 23.77m the hole intersected andesite tuff with laminated to massive texture and local minor pyrite and sphalerite as streaks parallel to lamination.

Mostly aphanitic felsite intercalated with feldspar porphyritic andesite with weak to moderate silicification, weak to moderate carbonate replacement, minor disseminated pyrite, and local trace galena was hit by the hole at 23.77 to 44.20m.

Locally weak silicification and moderate chloritization with almost black chlorite were observed in an interval of feldspar porphyritic andesite met by the hole at 44.20 to 87.78m.

The hole came across weakly to moderately silicified felsite intercalated with andesite and of an aphanitic texture at 87.78 to 99.97m.

At 99.97 to 110.64m the hole encountered felsic fragments in a weakly hematitic matrix with weak to moderate silicification and locally minor pyrite.

Andesite of a mostly aphanitic and lesser feldspar porphyritic texture with moderate chloritization was intercepted by the hole at 110.64 to 180.44m.

The hole was terminated at 180.44m.

Figure 10 shows the geological section for DDH – 2006-BA -13-14.

BA-2006-14

Moderately to strongly silicified mudstone and siltstone brecciated and cemented by quartz and containing minor to 5% pyrite was hit by the hole at 3.05 to 6.25m.

From 6.25 to 11.73m the hole ran across strongly chloritized, weakly silicified andesite with trace to minor pyrite.

Remnant felsic fragments and a section of silicified andesite tuff with lamination were observed in a section of strongly silicified rock met by the hole at 11.73 to 13.41m. Also in the interval was 10-15% barren quartz veinlets and replacements, trace sphalerite, trace to minor galena, and minor to 1% pyrite.

The hole intersected an interval with possible andesite tuff containing trace sphalerite as small scattered grains and moderately silicified felsite at 13.41 to 19.81m.

At 19.81 to 75.89m the hole came to felsic breccia in most part replaced by greenish-black aphanitic to feldspar porphyritic andesite with felsic fragments decreasing with depth. Occasional chert fragments and a trace amount of sphalerite as scattered grains were also present within the interval.

The hole was stopped at 75.89m.

Figure 10 shows the geological section for DDH – 2006-BA -13-14.

Assay results greater than 1 % Zn are plotted on the figures and are listed in the section below.

Tabulated assays for the core from the drilling are as follows:

Table 2 Significant Drill Hole Intersections

From	То	Core	Ag	Pb	Zn

DDH	(m)	(m)	Length	g/t	%	%
			(m)			
BA-1	24.36	26.31	1.95	23.5	0.22	1.22
and	39.63	46.95	7.32	75.60	0.66	1.79
BA-2	24.09	25.46	1.37	146.5	0.64	4.05
and	33.96	35.98	2.02	156.7	1.55	6.75
and	45.12	51.22	6.10	98.95	1.16	1.81
BA-3	6.40	7.10	0.70	65.0	1.67	1.89
and	7.56	8.29	0.73	43.4	1.01	2.82
and	11.58	13.41	1.22	76.5	0.46	4.31
and	13.41	19.05	5.64	48.46	0.58	1.59
and	20.73	24.60	3.87	95.76	1.13	2.03
and	31.4	34.45	3.05	21.1	0.13	1.13
and	36.22	39.04	2.80	48.72	1.03	5.82
Including	36.22	36.74	0.52	51	2.14	20.9
BA-4	6.40	7.47	1.07	36.5	0.35	1.84
and	14.02	23.77	9.75	60.92	0.57	1.91
and	37.49	42.06	4.57	72.93	0.85	1.78
BA-5	5.09	14.63	9.54	95.84	1.12	2.64
including	5.09	8.53	3.44	123.7	2.35	5.80
and	26.49	26.97	0.49	73.0	0.55	13.2
BA-7	39.01	42.06	3.05	26	0.035	3.30
BA-8	5.79	8.44	2.65	51.1	0.74	2.84
and	11.80	14.78	2.99	22.7	0.24	1.59
and	66.90	67.73	0.83	308.4	8.94	13.9

BA-9	25.30	35.61	10.31	152.1 9	4.67	4.05
including	33.23	34.45	1.22	369.6	16.1	13.7
and	39.33	43.90	4.57	60	1.12	1.98
and	63.72	68.90	5.18	74.8	0.60	1.61
BA-10	5.21	6.40	1.19	19.5	0.22	1.47
and	39.62	44.71	5.09	62.46	0.72	6.86
including	39.62	41.15	1.52	69.2	0.98	10.7
including	41.15	43.07	1.92	99.5	1.08	8.6
and	78.33	79.86	1.52	87	2.85	1.07
and	81.38	82.91	1.52	18.4	0.12	1.31
and	101.1 9	102.7 2	1.92	45.6	0.25	1.18
BA-11	12.16	14.94	2.73	13.43	0.34	1.56
and	22.25	23.16	0.91	7.6	0.17	1.17
and	55.78	57.00	1.22	55.7	0.46	1.17
and	57	58.52	1.52	47.7	0.88	4.7
and	63.09	68.88	5.78	125.0	2.26	3.13
BA-12	10.67	12.19	1.52	31.2	1.3	3.22
and	13.72	15.24	1.52	10.5	0.17	1.18
and	27.43	28.96	1.52	8.7	0.28	1.09
and	54.86	56.39	1.52	101.3	0.38	3.31
and	68.58	69.95	1.37	113.7	1.7	1.21
BA-13	5.79	8.53	2.74	19.2	0.13	1.04
and	18.59	23.77	5.18	34.2	0.33	1.77

Figure 11 shows the assay section for DDH 2006-BA-1 to 4 inclusive. Figure 12 shows the assay section for DDH 2006-BA-5. Figure 13 shows the assay section for DDH 2006-BA-7 - 8. Figure

14 shows the assay section for DDH 2006-BA-9 - 10. Figure 15 shows the assay section for DDH 2006-BA-11 - 12. Figure 16 shows the assay section for DDH 2006-BA-13 - 14.

Complete drill logs with assay results for DDH-2005-BA 1-14 inclusive are located in Appendix I. Complete assay results for the drilling are located in Appendix II while Appendix III shows the calculations for each drill hole with widths and assays used in determining Table 2.

GEOCHEMICAL SURVEYS

Reconnaissance rock geochemical samples were taken from zones of interest including mineralized zones and any unusual rock types within the property area.

In 2005 15 rock samples (all float) were collected on BA-1 to 4 claims. One of the samples assayed as much as 10.5% zinc, 1.21% lead, and 147 ppm mercury. The sample also showed anomalous silver (8.4 ppm), arsenic (328 ppm), molybdenum (44 ppm), antimony (130 ppm) and tungsten (2514 ppm).

In 2006, a total of 146 geochemical rock samples were taken from the property One of these samples, a 1.7 metre (true width) chip across finely laminated mudstone/limestone and chert with limonite and abundant pervasive hydrozincite stain assayed 5.24% Zn, 0.66% Pb and 55.2 g/t Ag from the BA zone. Another sample, a 1.2 metre chip (true width) from mudstone-limestone-chert breccia with some extremely fine disseminated sulphides and abundant pervasive hydrozincite stain assayed 2.17% Zn, 0.41% Pb and 13.5 g/t Ag.

Samples associated with the main exhalite horizon include a 0.8m chip sample from a black mudstone/tuff with extremely fine grained sulphides and pervasive hydrozincite stain which assayed 1.05% Zn, 0.2 % Pb and 8.4 g/t Ag. Another sample from the contact zone, a 0.5 m chip from intercalated mudstone, chert and andesite tuff with strong limonite and hydrozincite stain assayed 1.98% Zn, 0.4% Pb and 67.7 g/t Ag. The highest assays came from two float samples derived from the contact zone of the main exhalite horizon. One assayed 15.2% Zn, 3.05% Pb and 121.3 g/t Ag while a second sample assayed 10.8% Zn, 8.54% Pb and 305 g/t Ag.

All samples have high levels of mercury with the high of 19000 ppb

INTERPRETATION AND CONCLUSIONS

- 1. The BA property silver-lead-zinc property, owned 100 % by Mountain Boy Minerals Ltd extends from just east of Bear Lake, spanning an area including the north side of Strohn Creek Valley to the headwaters of Nelson and Bear glaciers, approximately 32 kilometers northeast of Stewart, British Columbia.
- 2. The property contains approximately 5,964.97 hectares in 13 separate claims.
- 3. There are no known ore bodies on the property.

- 4. The eastern part of the property is underlined by a large intrusion of off-white feldspar biotite porphyry that is part of the Strohn stock. To the west, this rock is in contact with another intrusion of dark gray to black feldspar porphyritic basalt/andesite. Most of the central and northern parts of the property are occupied by andesite pyroclastics cut by dykes of feldspar-biotite porphyry. The western part of the property is dominated by mudstones and siltstones of Salmon River Formation. Other rocks present in this area include rocks of Bowser Lake Group, Mount Dilworth (?) and Betty Creek Formations. They form a gently dipping syncline with a southeast axis.
- 5. The BA mineral zone appears to represents a vent portion of a Kuroko type VMS system. It is composed of exhalite horizons with related zinc-lead-silver mineralization.
- 6. The main exhalite horizon is up to 40-50 metres wide and can be traced for 1 kilometre in a north-south direction. Based on field observations, the exhalite horizon may stretch over 3 kilometres along a syncline to the east. Mineralization is confined to a sedimentary horizon(s) that is immediately below the exhalite. Mineralization consists of a pale brown sphalerite with minor galena and traces chalcopyrite that occurs as fine laminae between mudstone layers, as fracture filling and as veins in the underlying andesites.
- 7. During the period August to September, 2006, Pinnacle Mines conducted an exploration program of geochemical sampling that included chip lines across mineralized structures or horizons as well as grab sampling of outcrop and float rocks on the BA 1-10 claims. After Mountain Boy Minerals Ltd optioned the property in October, 2006, a total of 1183.44 meters of BTW size core was drilled in 14 holes from 3 different drill pads.
- 8. In the 2006 program of rock sampling on the BA claims 32 outcrop grab, 110 float and 4 chip samples were collected. One of these samples on the BA zone, a 1.7 metre (true width) chip across finely laminated mudstone/limestone and chert with extremely fine-grained disseminated sulphides and abundant pervasive hydrozincite stain assayed 5.24% Zn, 0.66% Pb and 55.2 g/t Ag. Another sample, a 1.2 metre chip (true width) from mudstone-limestone-chert breccia with some extremely fine disseminated sulphides and abundant pervasive hydrozincite stain assayed 2.17% Zn, 0.41% Pb and 13.5 g/t Ag. A float sample composed of very strongly K-feldspar altered felsic fragments cemented by fine grained sulphides was found approximately 3 kilometers east of the above samples. The sample assayed 6.9% zinc, 2.3% lead and 759.6 g/t silver.
- 9. DDH 2006-BA-1 through BA-10 were drilled from pad #1in four different azimuths. Drill holes BA-11 and BA-12 were drilled from pad #2, 100 meters west of pad #1. Drill holes BA-13 and BA-14 were drilled on pad #3, 150 meters east of pad #1. DDH 2006-BA-6 was lost near the top of the hole and was not completed. DDH 2006-BA-13 & 14 were partially drilled down an andesite dyke and did not intersect the main exhalative horizon. Drilling intersected numerous sections of silver-lead-zinc mineralization with some zones as follows: 2.80 m of 48.72 g/t Ag, 1.03 % Pb and 5.82 % Zn in DDH 2006-

BA-3, 3.44 m of 123.7 g/t Ag, 2.35 % Pb and 5.80 % Zn in DDH 2006-BA-5 and 10.31 m of 152.19 g/t Ag, 4.67 % Pb and 4.05 % Zn in DDH 2006-BA-9.

- 10. Exploration potential on the property is excellent with most of the exhalite and possible underlying sulphide zones remaining to be tested.
- 11. It is recommended that in the next exploration season: airborne EM and magnetics, IP geophysical survey, prospecting, detailed geological mapping and drilling is recommended. The work should focus on the newly discovered Barbara zone as well as on the south and southwest portions of the property.
- 12. Estimated cost of the program is \$1,500,000.00.

RECOMMENDATIONS AND BUDGET

For the next exploration season an IP geophysical survey, prospecting, detailed geological mapping, and drilling is recommended. The work should focus on the newly discovered BA zone as well as on the south and southwest portions of the property.

Estimated Cost of the Program

IP survey, 10 kilometres @ \$3000/ kilometre

\$30,000.00	
Geologist, 120 days @ \$450.00/ day	\$54,000.00
Field assistant, 120 days @ \$250.00/day	\$30,000.00
Grid construction – 10 kilometers @ \$1000.00/ kilometre	\$10,000.00
Drilling 6000 metres @ \$110.00/ metre (all inclusive)	\$660,000.00
Helicopter support	\$400,000.00
Accommodation and food (in Stewart)	\$40,000.00
Vehicle rental	\$10,000.00
Core cutting	\$50,000.00
Assaying 3000 samples @ \$25.00/sample	\$75,000.00
Freight	\$10,000.00
Report	\$15,000.00
Drafting	\$15,000.00
Contingency (10%)	\$101,000.00

Total

\$1, 500,000.00

REFERENCES

- 1. ALLDRICK, D.J. (1984); "Geological Setting of the Precious Metals Deposits in the Stewart Area", Paper 84-1, Geological Fieldwork 1983, B.C.M.E.M.P.R.
- 2. ALLDRICK, D.J. (1985); "Stratigraphy and Petrology of the Steward Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
- 3. B.C.M.E.M.P.R. (1979) Geological Fieldwork.
- 4. CREMONESE, D. (1995), "Assessment Report on Geochemical Work on the Surp Claims".
- 5. GREIG, C.J., ET AL (1994); "Geology of the Cambria Icefield: Regional Setting for Red Mountain Gold Deport, Northwestern British Columbia", p. 45, Current Research 1994-A, Cordillera and Pacific Margin, Geological Survey of Canada.
- 6. GROVE, E.W. (1971); Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- 7. GROVE, E.W. (1982); "Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 8. GROVE, E.W. (1987); Geology and Mineral Deposits of the Unuk, River-Salmon, River-Anyox, Bulletin 63, B.C.M.E.M.P.R.
- 9. MINFILE
- 10. WALUS A. (2005), "Assessment Report on Geological and Geochemical Work on BA claims"

CERTIFICATE of AUTHORS'QUALIFICATIONS

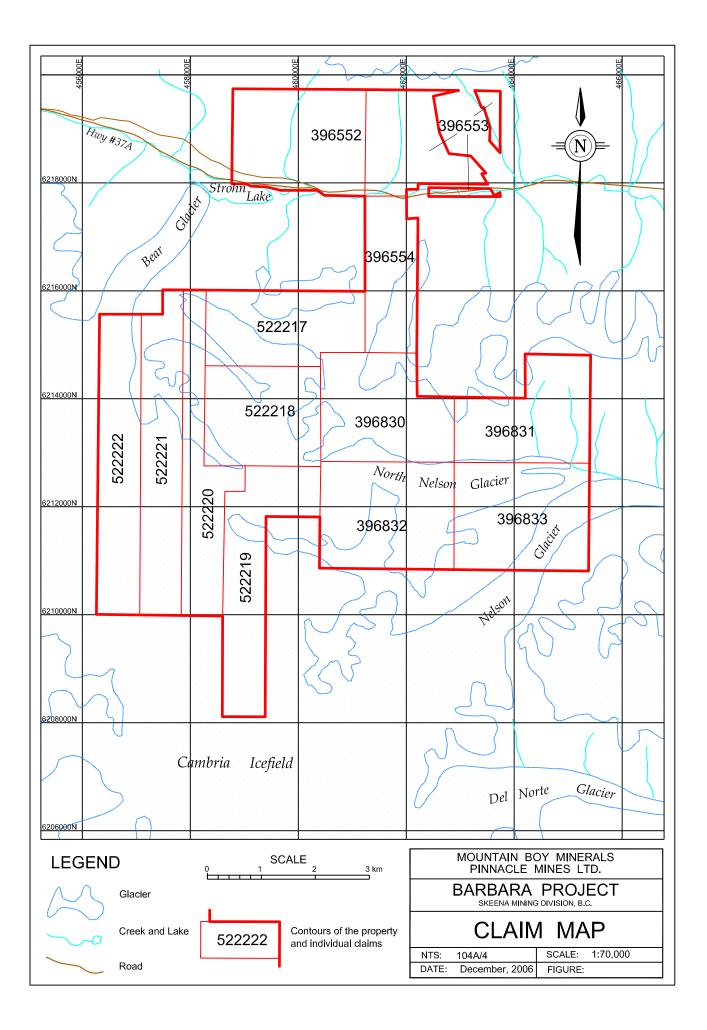
I, Edward R. Kruchkowski, geologist, residing at 23 Templeside Bay, N.E., in the City of Calgary, in the Province of Alberta, hereby certify that:

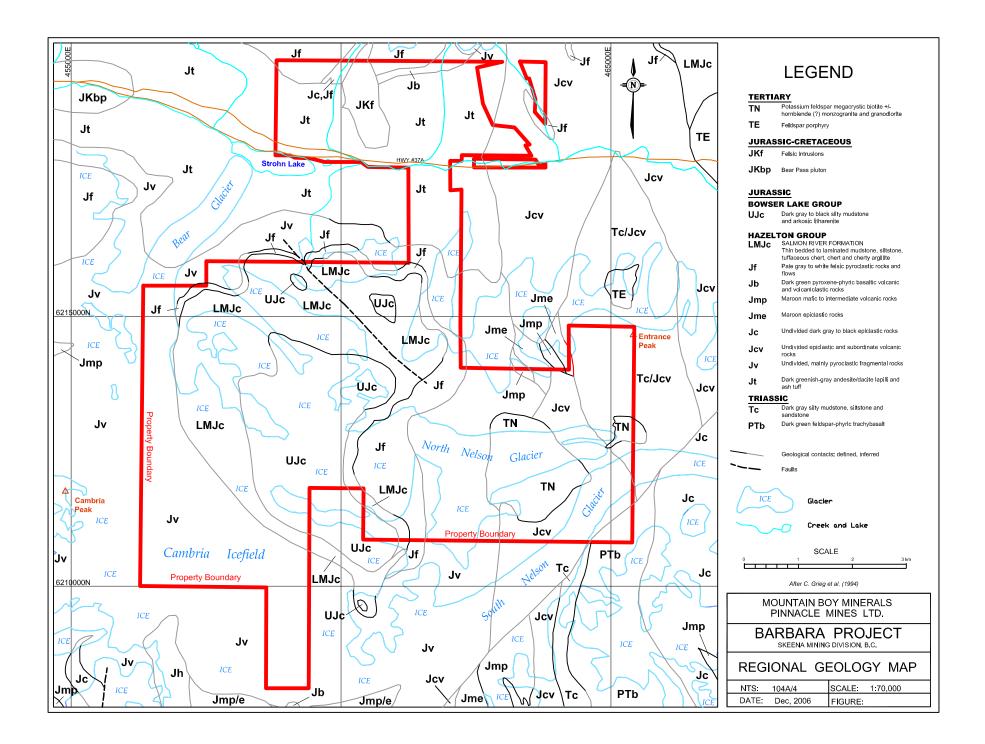
- 1. I received a Bachelor of Science degree in Geology from the University of Alberta in 1972.
- 2. I have been practicing my profession continuously since graduation.
- 3. I am a member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 4. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. I am a consulting geologist working on behalf of Bear River Resources Inc.
- 6. This report is based on a review of reports, documents, maps and other technical data on the property area and on my experience and knowledge of the general area obtained during programs in 1969 2006.
- 7. I am familiar with these types of deposits having conducted exploration programs on these types of occurrences in the Stewart region.
- 8. I authorize Bear River Resources Inc. to use information in this report or portions of it in its prospectus, any brochures, promotional material or company reports and consent to the placing of this report in the public file of any Exchange, that Bear River Resources Inc. is being listed on.
- 9. I am independent of Bear River Resources Inc. having no interest in the property or securities and not expecting to receive any.

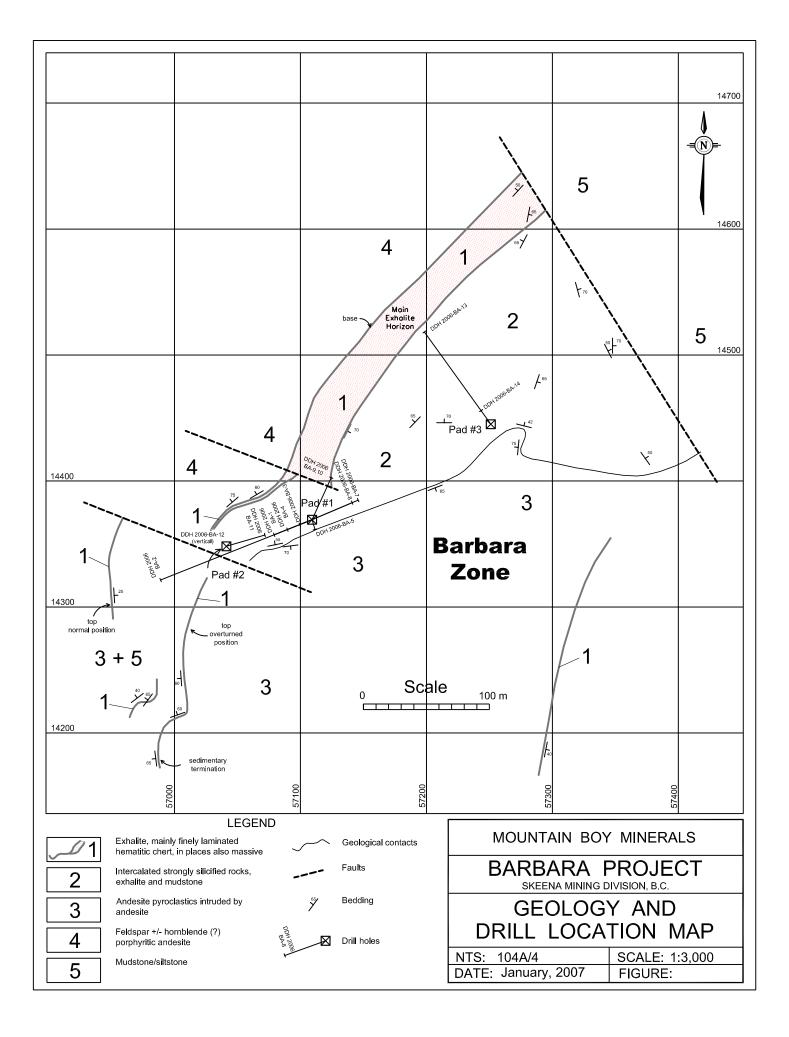
Date:

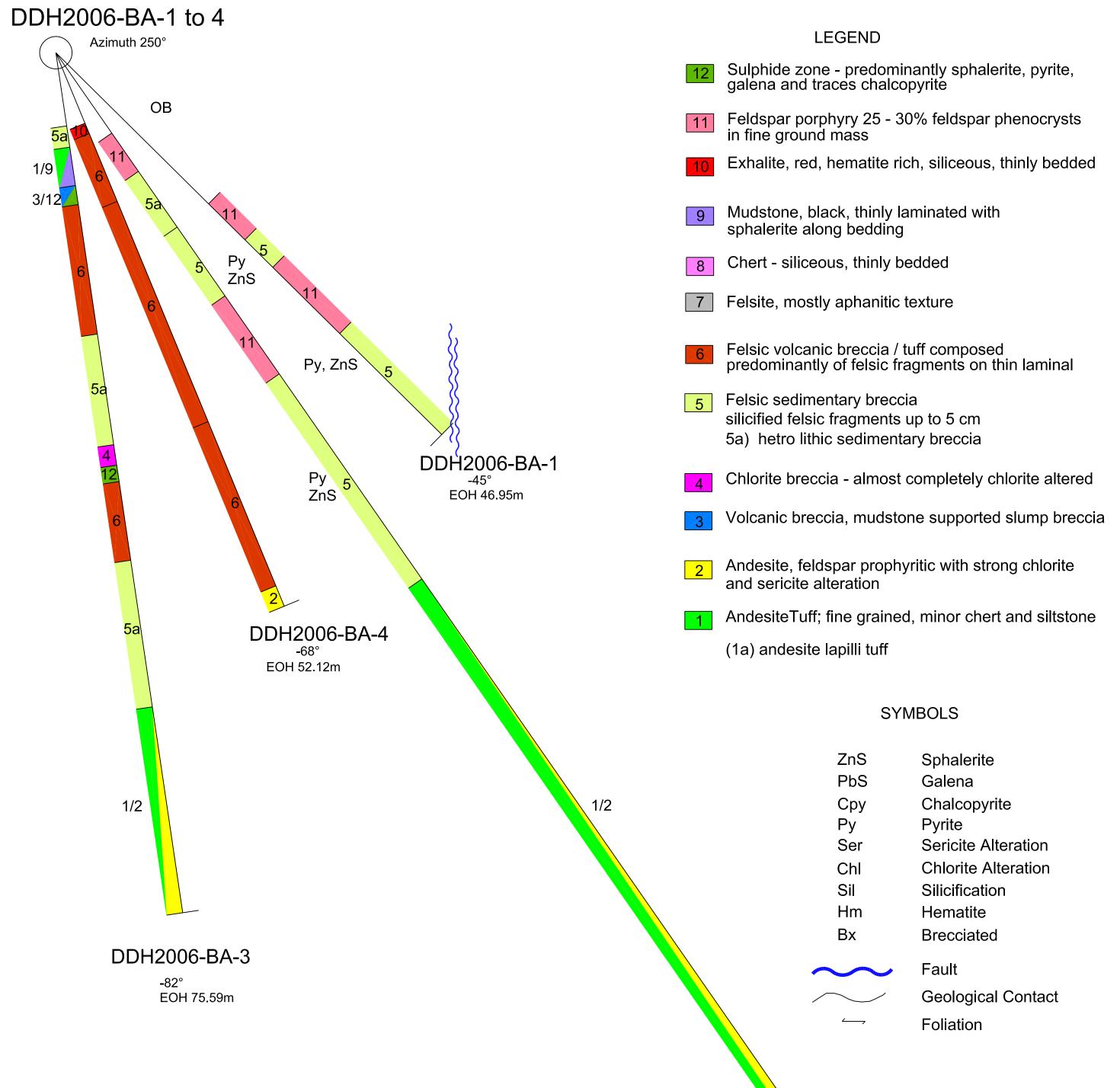
E.R. Kruchkowski, B.Sc.

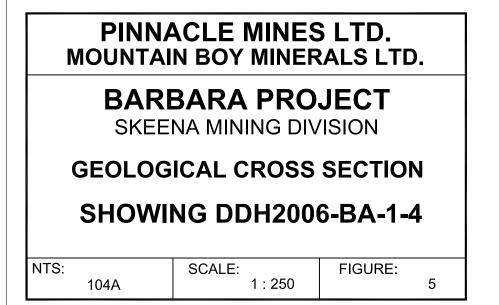
STATEMENT OF COSTS

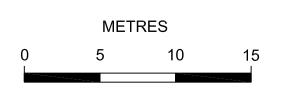

E. Kruchkowski – 40 days @\$450.00	\$18,000.00
Geologist	
R. Lemieux	
20 days @ \$250.00/day	\$5,000.00
Helicopter 155 hours @ \$956/hour	\$148,180.00
Drilling - 1183.44 meters @100.00/meter	\$118,344.00
Analysis – Assayers Canada	\$8,400.00
Drafting	\$2,500.00
Accommodation 60 days @ \$100.00/day	\$5,000.00
Report preparation	\$5,000.00

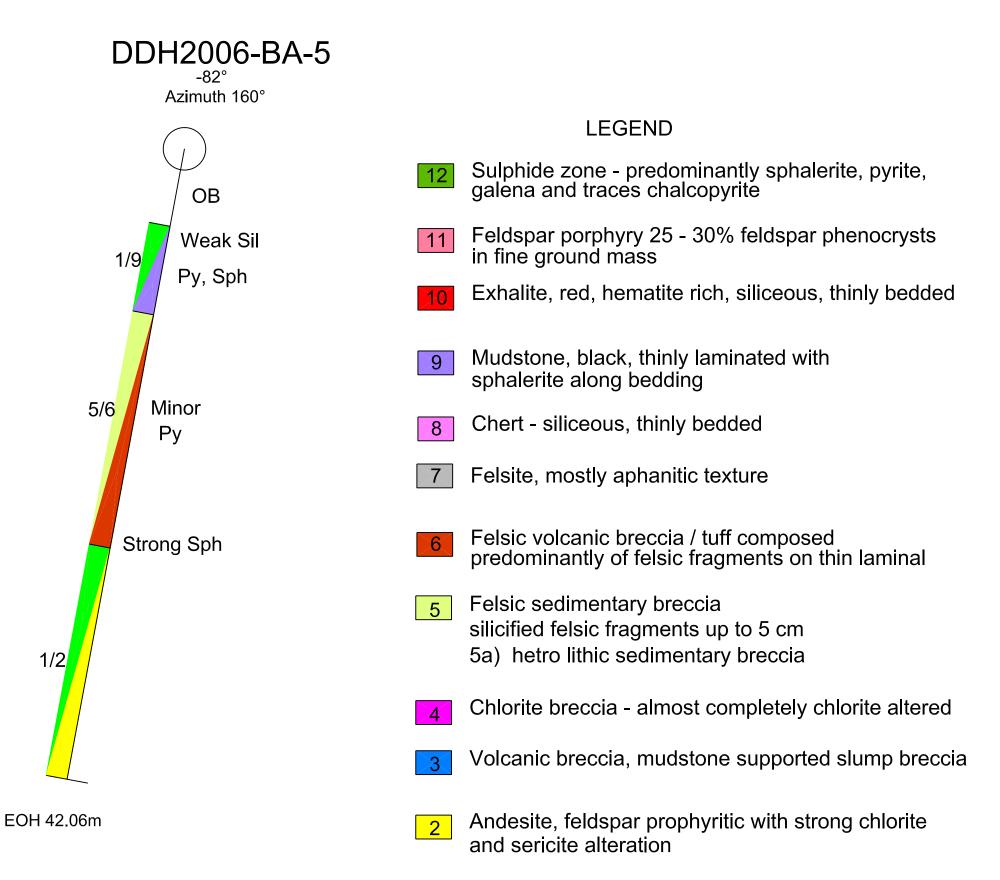

Total


\$305,424.00


BALocationMap



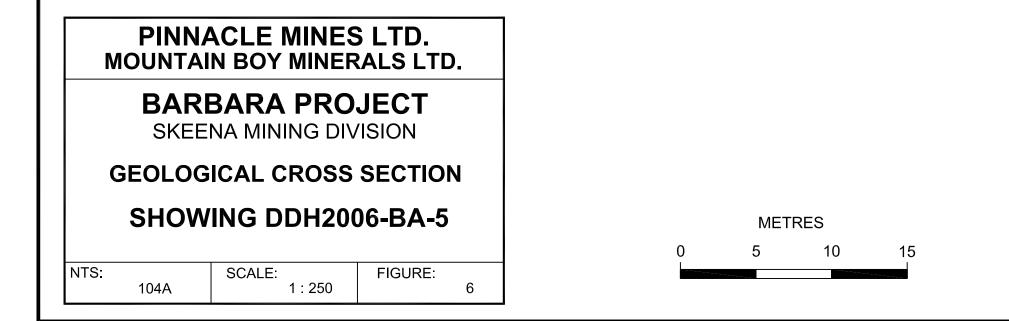


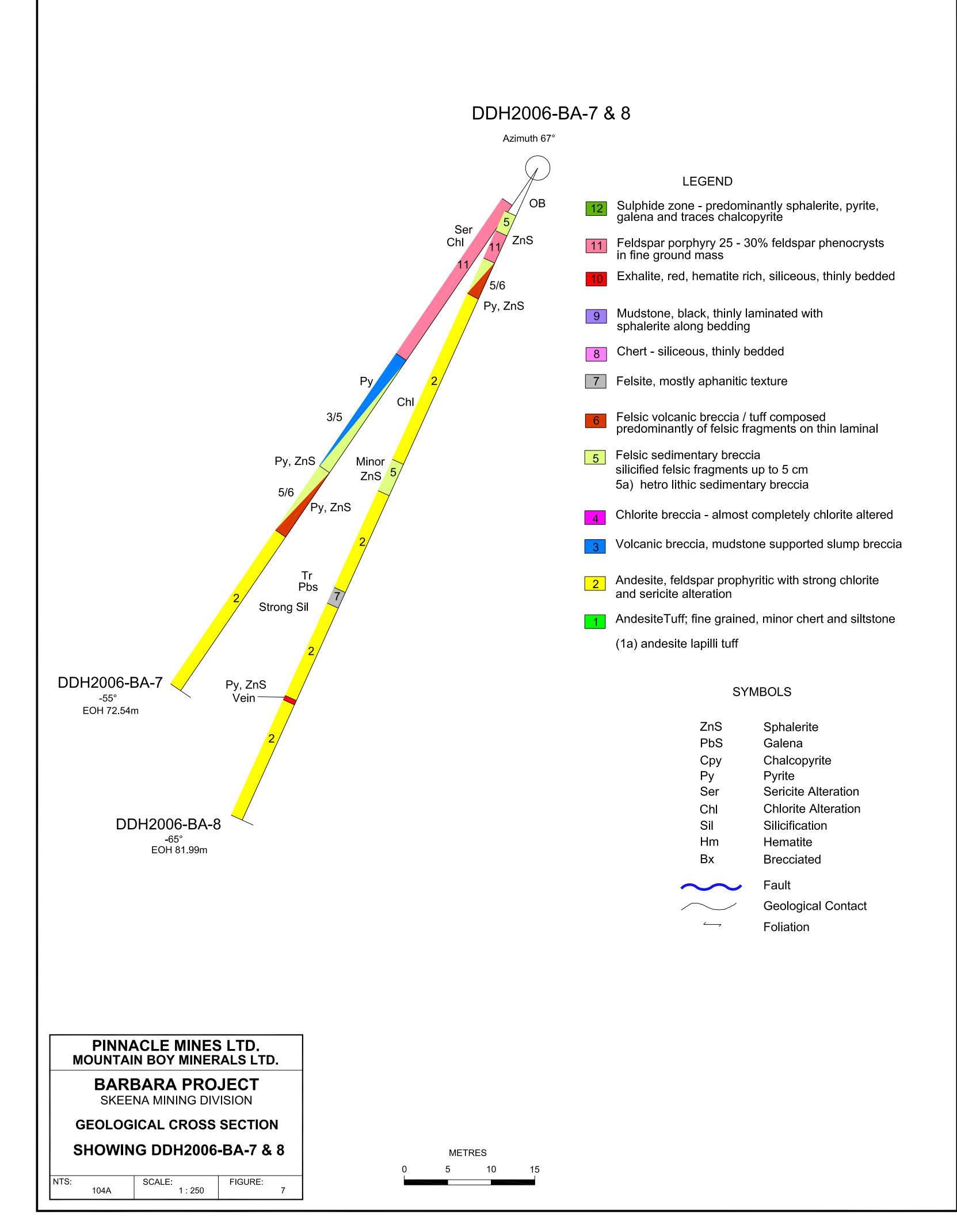


AndesiteTuff; fine grained, minor chert and siltstone

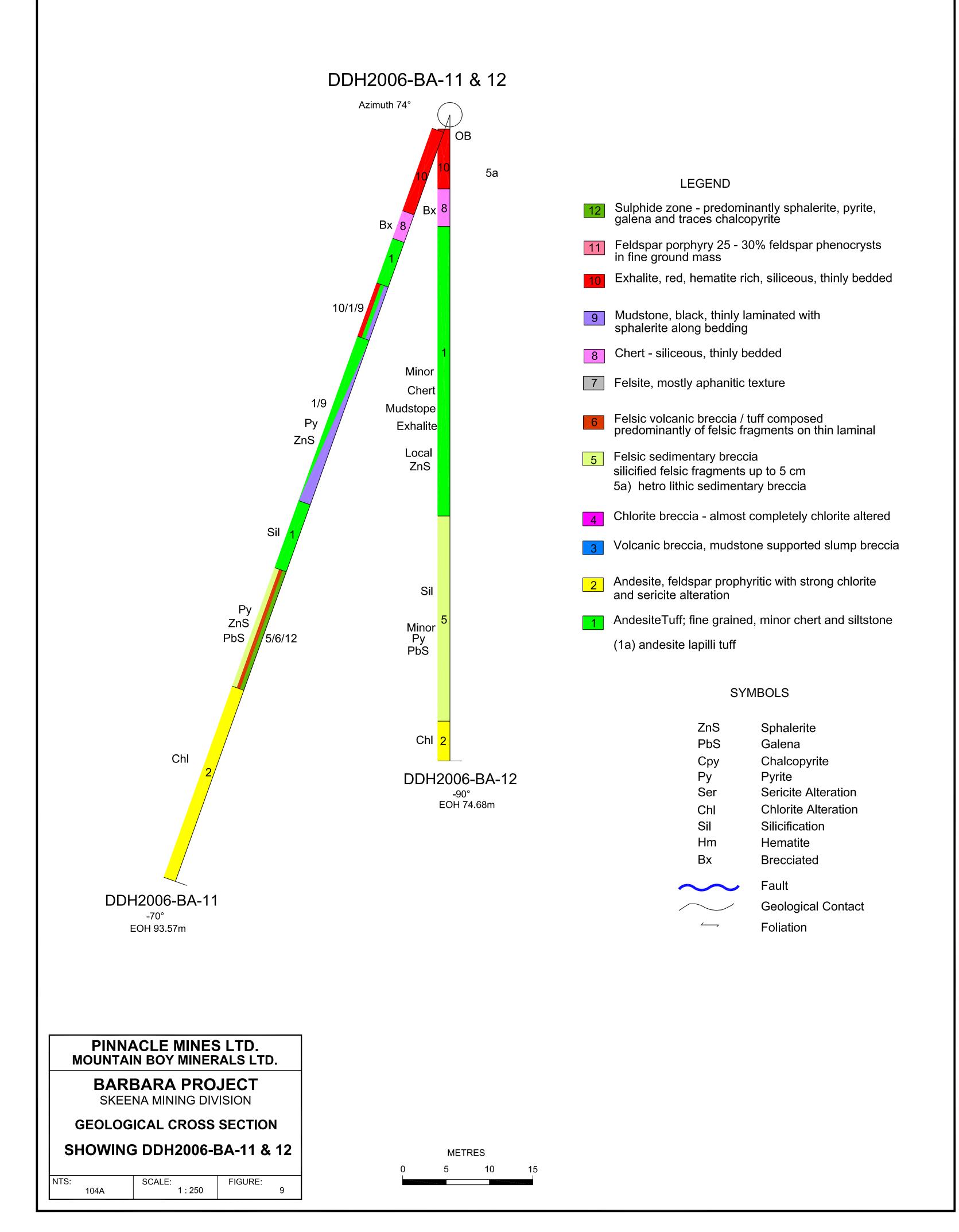
(1a) andesite lapilli tuff

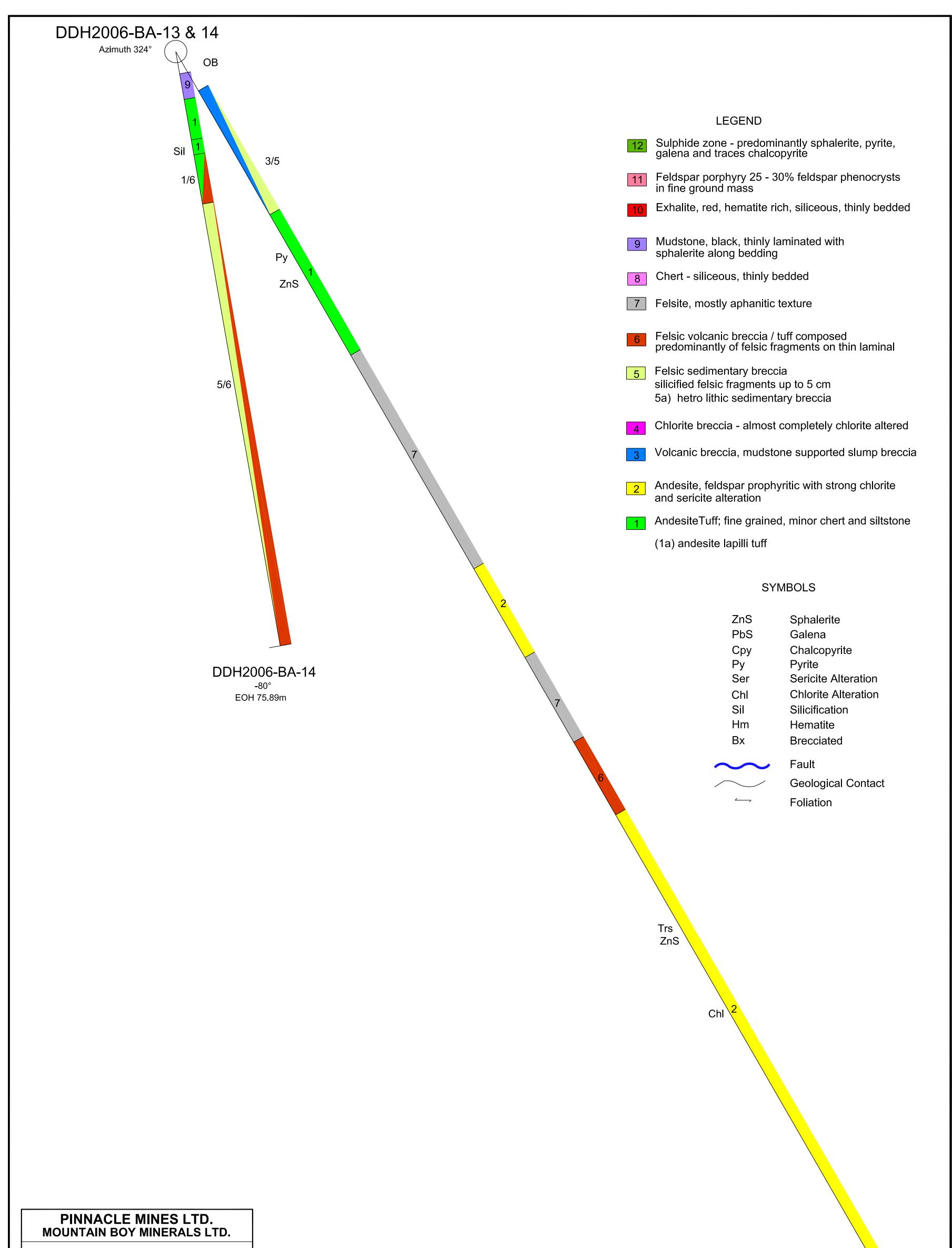
ZnS	Sphalerite
PbS	Galena
Сру	Chalcopyrite

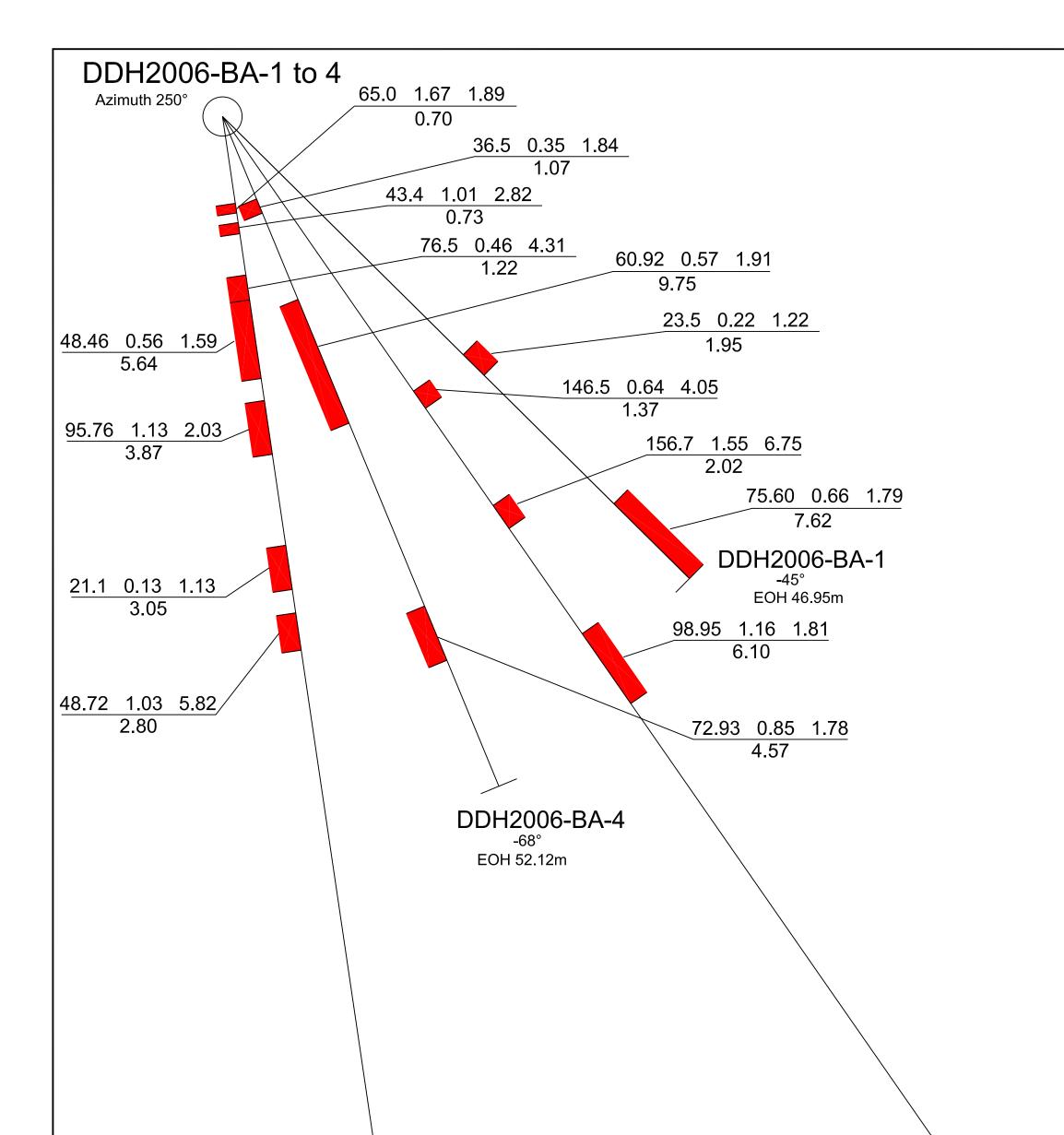

- Py Pyrite
- Ser Sericite Alteration
- ChI Chlorite Alteration
- Sil Silicification
- Hm Hematite
- Bx Brecciated

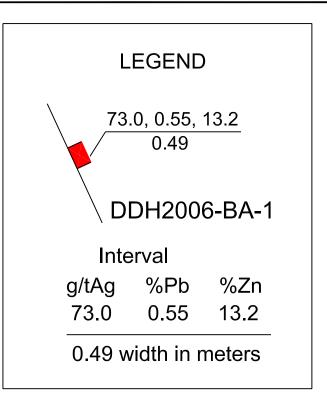

Fault

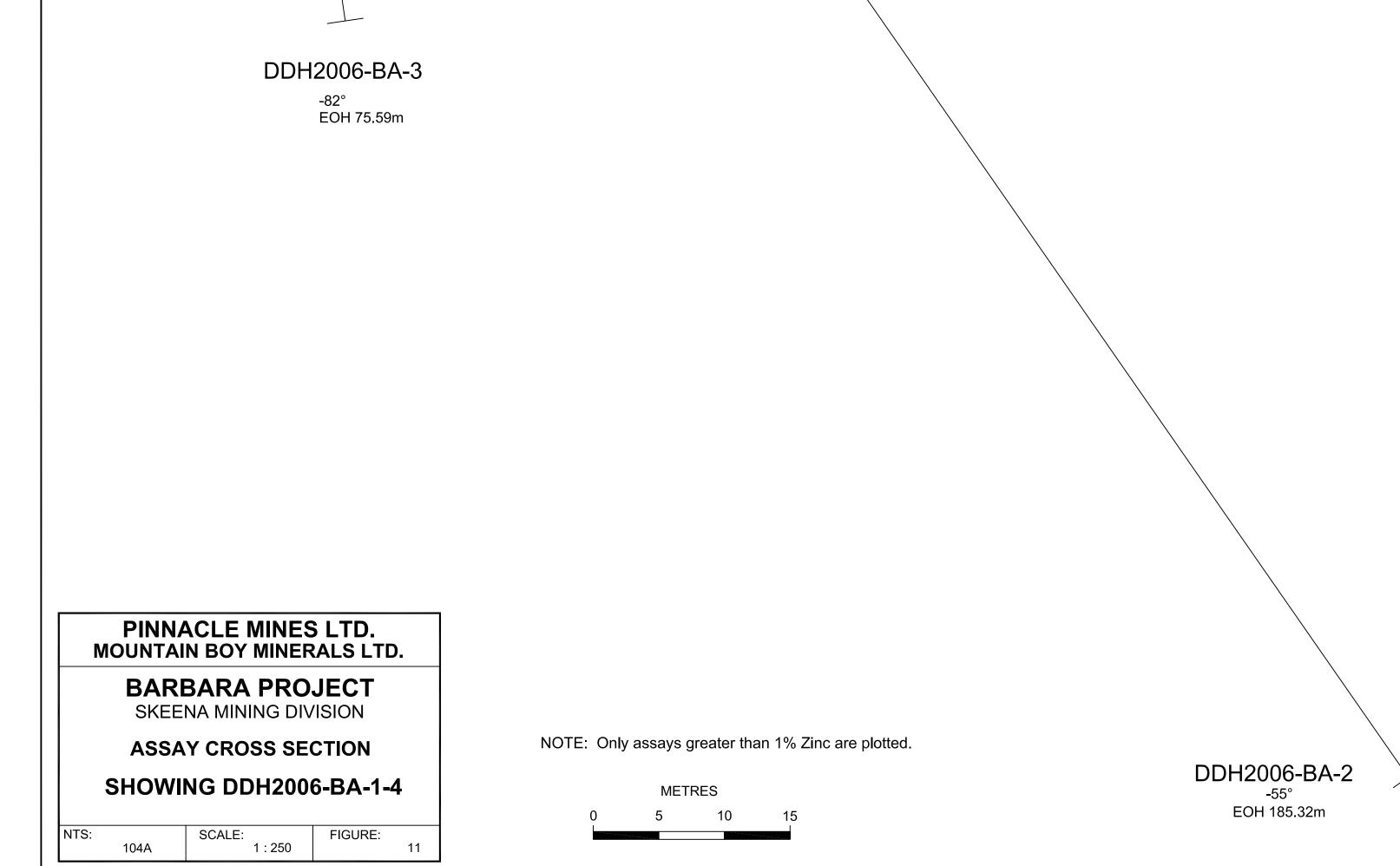

 \longrightarrow

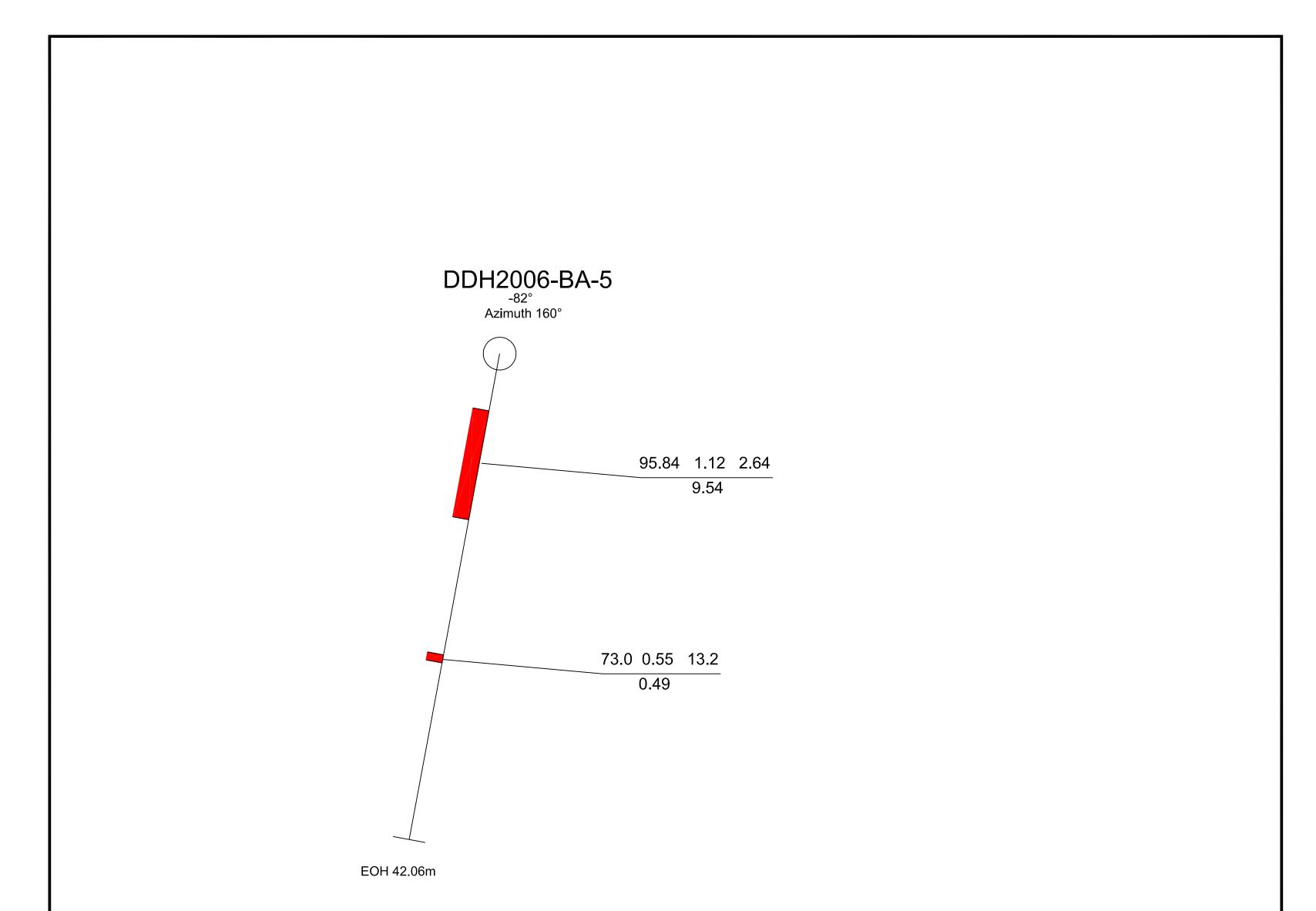

Geological Contact

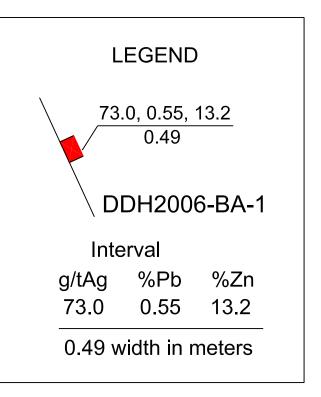

Foliation

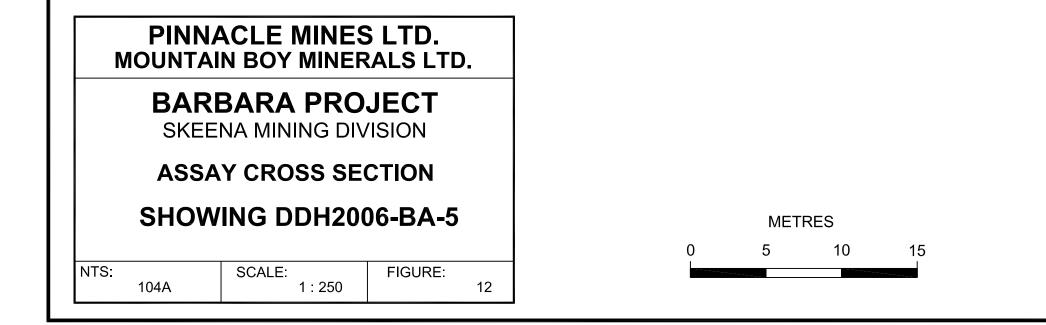


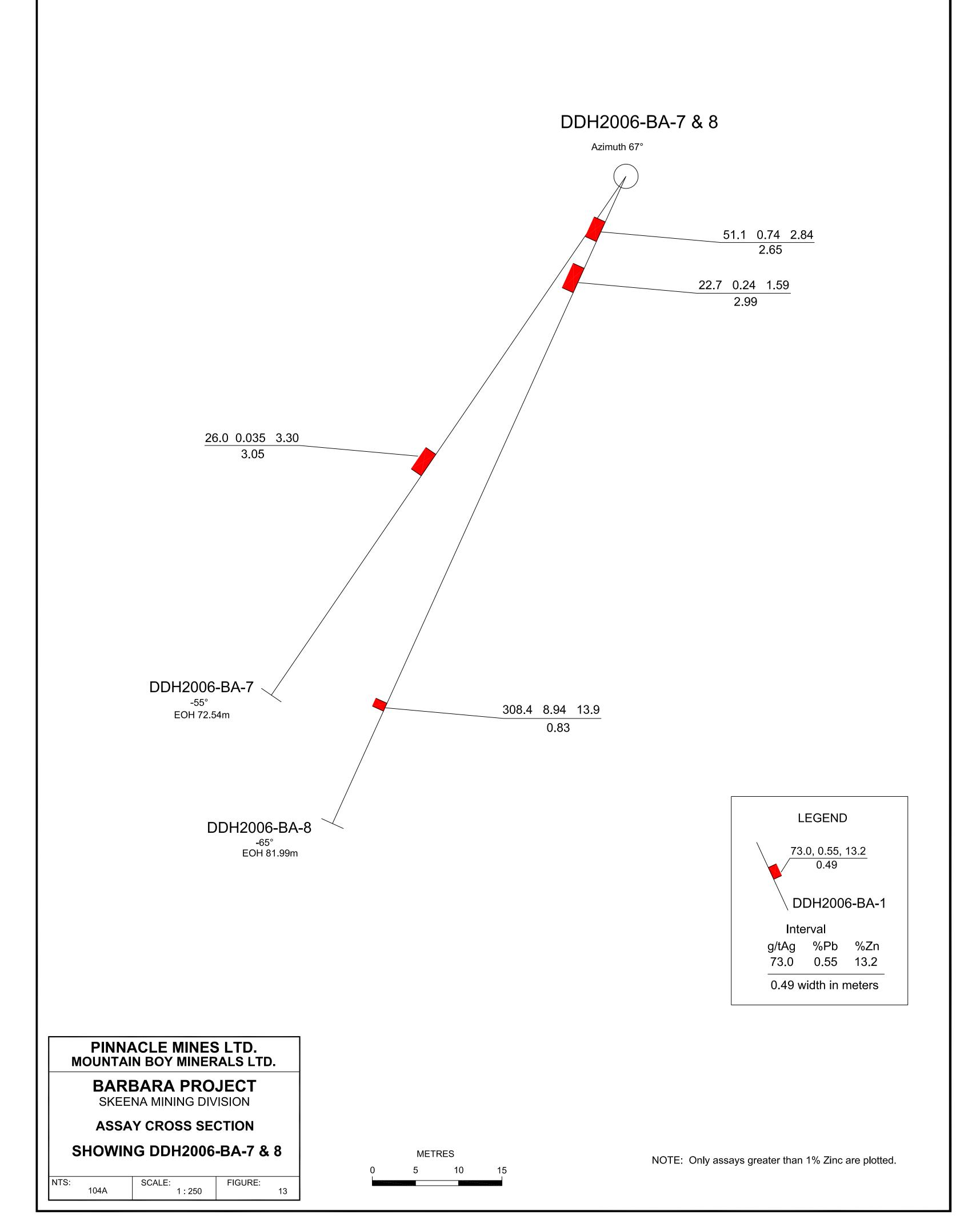


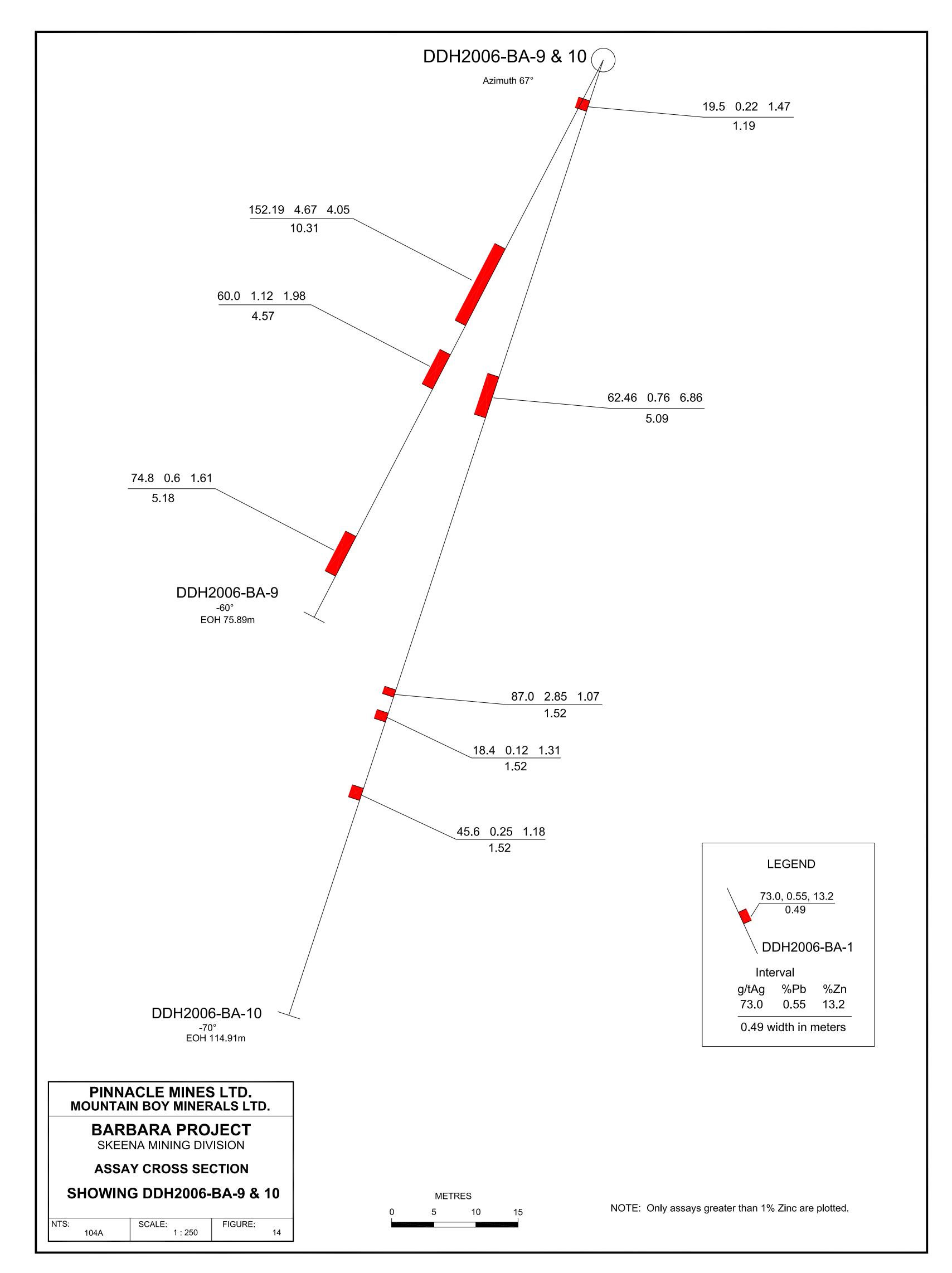


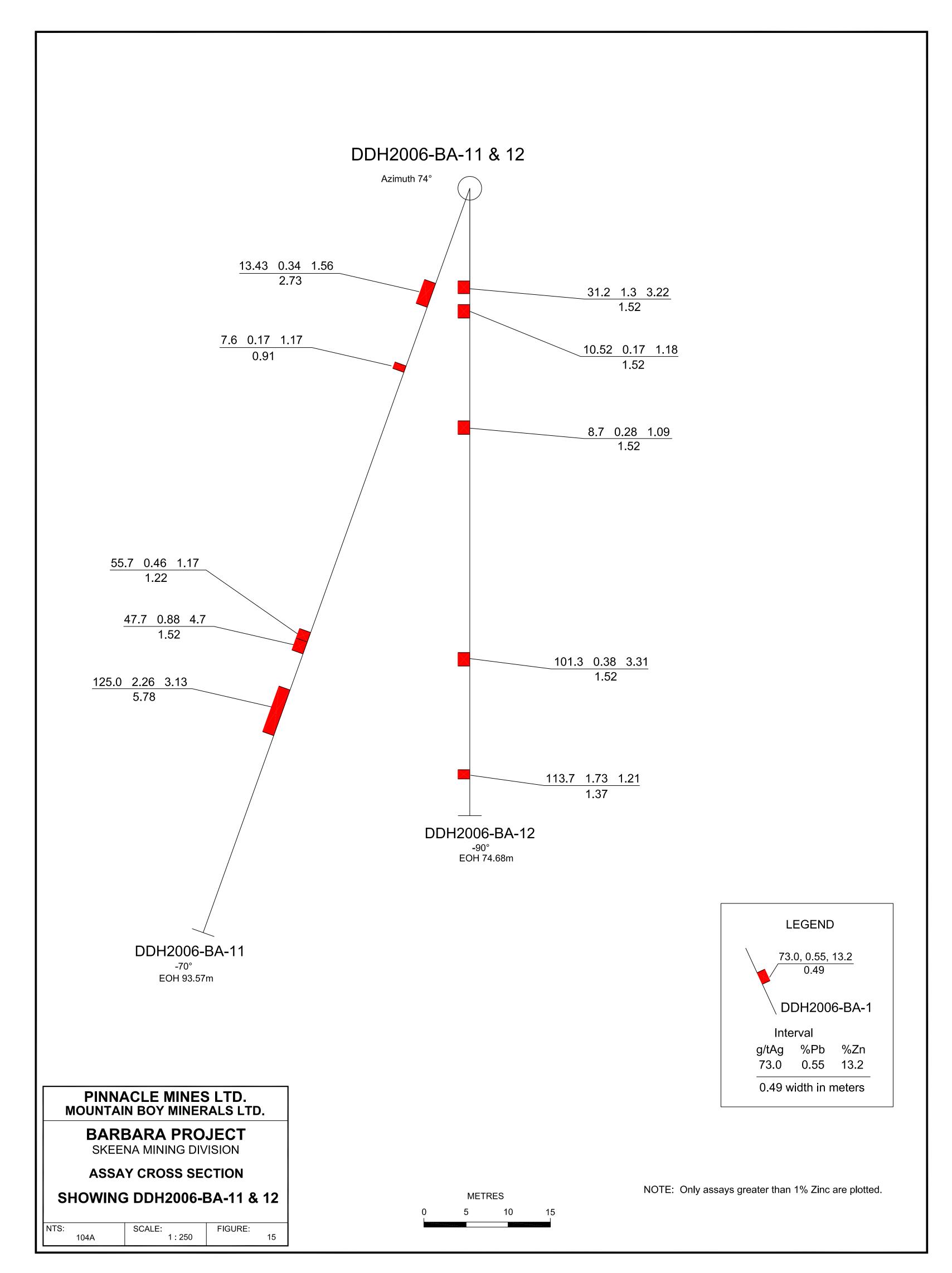

SKEENA MINING DIVISION	
GEOLOGICAL CROSS SECTION	
SHOWING DDH2006-BA-13 & 14	METRES
NTS: SCALE: FIGURE: 104A 1 : 250 10	0 5 10 15

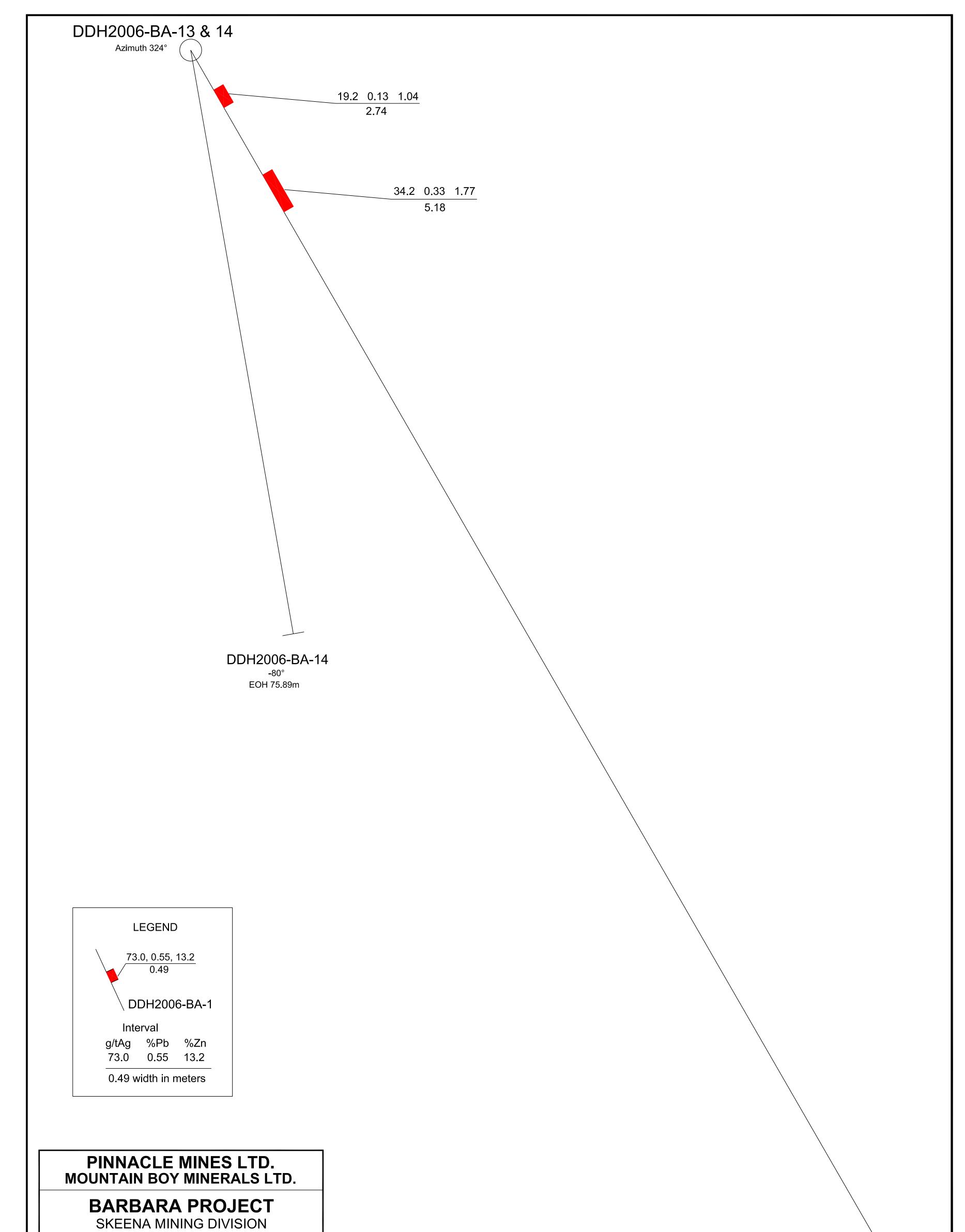




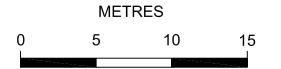








NOTE: Only assays greater than 1% Zinc are plotted.



ASSAY CROSS SECTION

SHOWING DDH2006-BA-13 & 14

NTS:		SCALE:	FIGURE:	
NTS: ^	104A	1 : 250		16

NOTE: Only assays greater than 1% Zinc are plotted.

APPENDIX I

Drill Hole Logs – DDH –2006-BA-1-14

DDH	2006-	BA-1	Total depth: 46.95m Core size: BTW	Logge	d by:	A. Wa	us				
Azimu	th:	250	Start: October 01, 2006	Eastin	-	45710	8	North	ina:	62143	68
Inclina	ation:	45	Completion: October 03, 2006	Elevat	0	1517			<u> </u>		
Interva	al (m)	Rock type	Rock description, alteration, mineralization,	Samp	e interv	/al (me	tres)		Assay		
From	· · /		structure	Sple No		То	Width	Ag(g/t)		Pb%	Zn%
0	18.29	Overburden									
18.29	22.87	Andesite	Fine grained, often siliceous andesite tuff with minor	9501	18.29	21.34	3.05	4.8	0.007	0.1	0.36
		Tuff	interbedded chert and siltstone. Occasionally there is	9502	21.34	24.39	3.05	9.3	0.004	0.09	0.45
			a bedding at 10-25° to core axis. Sporadically there	9503	24.36	26.31	1.95	23.5	0.005	0.22	1.22
			is minor pyrite and sphalerite as disseminated grains	9504	34.45	36.59	2.14	26.1	0.007	0.31	0.66
			and small streaks parallel to bedding.	9505	36.59	39.63	3.04	17	0.006	0.11	0.6
				9506	39.63	42.68	3.05	62	0.008	0.71	2.25
22.87	26.31	Felsic	The rock is composed mostly of felsic clasts 0.2-5.0 cm	9507	42.68	46.95	4.27	85.3	0.018	0.63	1.46
		Sedimentary	in size. Sporadically sulphide clasts were also noted.								
		Breccia	The rock contains 1-2% disseminated to patchy pyrite								
			and trace sphalerite concentrated in matrix.								
			From 24.42 to 24.85m - Interval of finely laminated chert,								
			mudstone and extremely fine grained pyrite.								
			From 24.24 to 26.22m - Interval with 10-15% quartz-								
			carbonate veinlets.								
			From 26.22 to 26.31m - Limonitic quartz vein.				-				
26.31	34.45	Feldspar	The rock contains 20-30% feldspar phenocrysts set in								
		Porphyry	extremely fine grained groundmass. Feldspar pheno-								
			crysts are often strongly altered and diffused.								
34.45	46.95	Felsic	The rock is composed mostly of felsic and chalcedonic								
		Sedimentary	fragments set in a groundmass dominated by								
		Breccia	mudstone accompanied by variable amounts of very								
			fine-grained pyrite (up to 15%) and sphalerite (up to 1%).								
			From 36.59 to 37.50m - Fault - badly broken core and								
			· · · · · · · · · · · · · · · · · · ·								
			fault gouge.								

Page 1 of 1

	E.O.H. at 46.95m				
	* Due to technical problems the hole was stopped				
	before reaching the planned depth.				

DDH	2006-	BA-2	Total depth: 185.32m Core size: BTW	Logge	d by:	A. Wa	us				
Azimu	ith:	250	Start: October 03, 2005	Eastin	g:	45710	8	North	ing:	66214	368
Inclina	ation:	-55	Completion: October 05, 06	Elevat		1517					
Interva	al (m)	Rock type	Rock description, alteration, mineralization,	Samp	le interv	/al (me	tres)		Assay	1	
From	То		structure	Sple No		То	Width	Ag(g/t)	-	Pb%	Zn%
0	8.54	Casing/									
		Overburden									
8.54	12.50	Fine	The rock is often weakly silicified. In places distinct	9508	8.54	12.50	3.96	4.1	0.005	0.08	0.26
		Andesite	lamination at 20-45° to c/a. Minor quartz-carbonate	9509	12.50	17.68	5.18	11	0.004	0.09	0.46
		Tuff	veining.	9510	17.68	20.73	3.05	40.6	0.012	0.8	0.89
				9511	20.73	24.09	3.36	38.6	0.018	0.22	0.97
12.50	18.29	Heterolithic	The clasts in breccia average 0.2-2.0cm. Abundant	9512	24.09	25.46	1.37	146.5	0.015	0.64	4.05
		Sedimentary	matrix dominated by mudstone with 1-3% extremely	9513	25.46	29.88	4.42	1.5	0.005	0.01	0.09
		Breccia/ Fine	fine grained pyrite and trace to 1% sphalerite.	9514	33.96	35.98	2.02	156.7	0.023	1.55	6.75
		Volcanic Tuff	Bedding in volcanic tuff ranges from 20-40° to c/a.	9515	35.98	39.02	3.04	69.7	0.023	0.29	0.71
				9516	39.02	42.07	3.05	77.2	0.036	0.44	0.96
18.29	25.45	Felsic	The rock is composed mostly of very strongly	9517	42.07	45.12	3.05	32.4	0.018	0.38	0.51
		Sedimtary	silicified felsic fragments varying in size from 0.3 to	9518	45.12	48.17	3.05	83.2	0.085	0.87	1.47
		Breccia	7cm. Sporadically clasts of chert, andesite, mudstone	9519	48.17	51.22	3.05	114.7	0.141	1.44	2.14
			and of sulphides were also seen. Matrix, making up	9520	51.22	54.27	3.05	50	0.042	0.59	0.66
			10-15% of the rock is composed of mudstone and	9521	54.27	55.49	1.22	66.1	0.031	0.54	0.78
			sulphides. Sulphides include up to 5% pyrite, up to								
			3% sphalerite and trace to minor galena. Some								
			felsic fragments contain sulphides as well.								
			From 23.48 to 24.70m - Silicified andesite tuff.								
			From 24.09 to 25.46m - Interval with 2-3% sphalerite.								
			From 23.72 to 23.78m - Fault (fault gouge).								
25.45	33.95	Felspar	The rock is weakly silicified. Feldspar phenocrysts are								
_0.10	00.00	Porphyry	often altered and diffused. Upper contact is at 45° and							1	
			lower contact at 90° to c/a.								
33.95	55.47	Felsic	Same as interval 12.50 to 25.30m.								
		Sedimentary									
		Breccia	From 33.96 to 35.98m - Interval with 5% pyrite, 2-3%								

			sphalerite and minor galena.				
			From 39.63 to 39.85m - Interval of finely laminated fine				
			tuff/chert. Lamination at 45° to 90° to c/a.				
55.47	185.32	Andesite	Andesite lapilli tuff partially replaced by feldspar +/-				
		Lapilli Tuff/	hornblende porphyritic andesite. Moderate chloritic				
		Andesite	alteration. The rock contains 1-3% barren quartz-				
			carbonate veining.				
			From 126.52 to 126.62m - barren quartz-carbonate				
			veining at 45° to c/a.				
			185.32 m EOH				

DDH	2006	6-BA-3	Total depth: 75.59m Core size: BTW	Logge	d by:	A. Wa	us				
Azim	uth:	250	Start: October 06, 2006	Eastin	g:	45710	8	North	ing:	621436	38
Inclin	ation:	82	Completion: October 06, 2006	Elevat	ion:	81517			-		
Interv	/al (m)	Rock type	Rock description, alteration, mineralization,	Samp	e interv	/al (me	tres)		Assay		
From		<i>,</i>	structure	Sple No	From	То	Width	Ag(g/t)	Cu%	Pb%	Zn%
0	6.40	Overburden									
6.4	8.29	Heterolithic	The rock is dominated by felsic fragments averaging	9522	6.40	7.10	0.70	65	0.014	1.67	1.89
		Sedimentary	0.5-2.0 cm in diameter. Mudstone dominated matrix	9523	7.10	7.56	0.46	7.3	0.009	0.15	0.42
		Breccia	contains 5-10% extremely fine grained pyrite, 0.5-1.0%	9524	7.56	8.29	0.73	43.4	0.015	1.01	2.82
			sphalerite and trace galena.	9525	8.29	11.58	3.29	12	0.011	0.12	0.65
				9526	11.58	13.41	1.83	76.5	0.014	0.46	4.31
			From 7.10 to 7.56m - dyke of silicified feldspar porphyry.	9527	13.41	14.63	1.22	25.7	0.011	0.2	1.55
				9528	14.63	16.15	1.52	50.3	0.021	0.38	1.22
8.29	11.58	Andesite-	Massive to finely laminated texture. Lamination at 45	9529	16.15	17.68	1.52	68.5	0.019	1.09	1.85
		Dacite Tuff/	degrees to c/a. In a few places lamination is strongly	9530	17.68	19.05	1.37	44.4	0.017	0.59	1.76
		Mudstone	disturbed. Minor pyrite.	9531	19.05	20.73	1.68	105.4	0.085	0.69	0.98
				9532	20.73	22.86	2.13	64.3	0.02	0.57	1.51
11.58	13.41		Most of the interval consists of finely laminated	9533	22.86	23.47	0.61	134.8	0.036	2.08	2.39
		Breccia	volcanic tuff and lesser laminae of reddish sphalerite.	9534	23.47	24.60	1.13	134	0.032	1.66	2.83
		Sulphide	Laminae are 1-3 mm thick and are in most part very	9535	24.60	26.82	2.23	42.2	0.014	0.32	0.56
		Zone	strongly contorted to brecciated. In places the rock	9536	26.82	28.80	1.98	28.7	0.023	0.1	1.18
			represents mudstone supported slump breccia.	9537	29.81	31.39	1.58	9.5	0.009	0.04	0.7
			Average sphalerite content 4-5%, and pyrite 2-3%,	9538	31.39	32.92	1.52	21.1	0.012	0.13	1.13
			locally minor galena. Sulphides occur mostly as strongly	9539	32.92	34.44	1.52	21.1	0.012	0.13	1.13
			disturbed laminae.	9540	34.44	36.21	1.77	6.6	0.014	0.04	0.35
				9541	36.21	36.73	0.52	51	0.074	2.14	20.9
			From 12.19 to 12.50 chert/exhalite with amygdoidal/	9542	36.73	39.01	2.29	48.2	0.043	0.78	2.4
			colloform texture.	9543	39.01	42.06	3.05	9.2	0.01	0.04	0.61
				9544	42.06	45.11	3.05	27.8	0.035	0.08	0.35
13.41	24.60	Felsic	The rock is dominated by silicified felsic fragments up	9545	45.11	48.16	3.05	17	0.019	0.03	0.04
		Volcanic/	to 5 cm in diameter. Matrix constituting 3-30% of	9546	48.16	51.21	3.05	26.9	0.014	0.05	0.18
		Sedimentary	the rock is composed mostly of mudstone with 5-10% of	9547	51.21	54.25	3.05	7.2	0.009	0.02	0.04
		Breccia	extremely fine grained pyrite, trace to 5% sphalerite and	9548	54.25	57.45	3.20	1.7	0.004	0.01	0.03
			locally minor galena.	9549	57.45	60.35	2.90	1	0.002	0.01	0.02
				9550	60.35	63.40	3.05	0.8	0.002	0.01	0.04
			From 19.05 to 19.35 - sand and gravel (crack fill).	9201	63.40	66.45	3.05	8.8	0.005	0.02	0.06

			From 22.86 to 23.47 - Interval with 10-12% very pale	9202	71.93	72.15	0.22	66.5	0.024	0.1	1.38
			yellowish sphalerite (?) cementing breccia clasts.								
			From 19.81 to 20.12 - dyke of hornblende porphyritic								
			andesite.								
24.6	34.44	Heterolithic	The clasts include fragments of felsic rocks, andesites,								
		Sedimentary	chert, mudstone and rare exhalite fragments. Mudstone								
		Breccia	dominated matrix include minor pyrite and sphalerite.								
			From 32.00 to 32.10 - 15% of pale yellow sphalerite in								
			the matrix.								
			From 28.80 to 29.81- sand and gravel (crack fill).								
34.44	36.21	Chloritic	The rock, composed of different lithological fragments is								
		Breccia	very strongly chloritized. At the bottom of the interval								
			there is a few cm wide section of exhalite. Upper								
			contact at 80 degrees to c/a.								
36.21	36.73	Sphalerite	The interval contains 30-40% pale yellow sphalerite and								
		Cemented	minor galena cementing the clasts. Contacts of this								
		Breccia	zone are at 25-30 degrees to c/a.								
36.73	44.5	Felsic Lapilli	Felsic lapilli tuff with short sections of laminated fine								
		Tuff	felsic tuff and mudstone. Lamination at 30-40 deg to c/a.								
			From 38.40 to 38.62 - thin laminae composed of								
			sphalerite (?).								
			From 42.06 to 42.11 - section of white to dark grey chert.								
44.5	57.45	Heterolithic	The rock is composed mostly of volcanic fragments								
		Volcanic	ranging in composition from felsic to intermediate.								
		Breccia	Sporadically clasts of mudstone, chert and exhalite were								
			also seen. Clast size ranges from less than a 1.0 cm								
			to 10 cm in diameter. Sulphides include minor pyrite								
			and sphalerite in the matrix.								
57.45	75.59	Andesite	Dark green andesite lapilli tuff to a large degree								
		Lapilli Tuff/	replaced by porphyritic to aphanitic andesite.								

	Andesite					
		At 71.93 to 72.15 - brecciated interval with 2-3%				
		pyrite and 2-3% pale yellowish sphalerite (?).				
		75.59m EOH				

Page 7 of 7

DDH	2006	-BA- 4	Total depth: 52.12m Core size: BTW	Logge	ed by:	A. Wal	us				
Azimu	ith:	250	Start: October 7, 2006	Eastin	ig:	457108	3	Northi	ng:	621436	68
Inclina	ation:	68	Completion: October 8, 2006	Elevat	ion:	1517					
Interv	al (m)	Rock type	Rock description, alteration, mineralization,	Samp	le interv	/al (met	tres)		Assay		
From	То		structure	Sple No	From	То	Width	Ag(g/t)	Cu%	Pb%	Zn%
0	6.40	Overburden									
6.40	7.47	Sedimentary	The exhalite (?) exibits amygdoidal/colloform texture.	9203	6.40	7.47	1.07	36.5	0.007	0.35	1.84
		Breccia/	Amygdules are filled with chalcedony lesser carbonates.	9204	7.47	9.14	1.68	6.8	0.004	0.08	0.65
		Exhalite (?)	The exhalite(?) hosts 15 cm section composed of semi-	9205	9.14	10.67	1.52	5.4	0.004	0.09	0.25
			massive sphalerite and pyrite. Sections of sedimentary	9206	10.67	12.19	1.52	6.5	0.005	0.07	0.26
			breccia contains little sulphides.	9207	12.19	14.02	1.83	25.2	0.005	0.18	0.97
				9208	14.02	15.85	1.83	64.7	0.01	0.47	3.17
7.47	14.02	Felsic to	The rock is mostly finely laminated with laminae 1-5 mm	9209	15.85	17.68	1.83	30.6	0.01	0.23	1.18
		Intermediate Tuff	wide at 30 degrees to c/a. Some sections are massive.	9210	17.68	19.20	1.52	50.4	0.013	0.45	1.88
			Locally weak silicification. Sporadically there are thin	9211	19.20	20.73	1.52	55.8	0.015	0.63	1.26
			laminae of sphalerite.	9212	20.73	22.25	1.52	64.5	0.011	0.93	1.79
				9213	22.25	23.77	1.52	104.8	0.017	0.82	2.08
			From 9.90 to 10.52 - 20-30% barren quartz-carbonate	9214	23.77	25.30	1.52	65.3	0.013	0.2	0.81
			veining.	9215	25.30	26.82	1.52	48.6	0.017	0.32	0.72
				9216	26.82	28.35	1.52	8.7	0.011	0.09	0.3
14.02	50.60	Felsic Volcanic/	The rock is composed mostly of felsic clasts set in a matrix	9217	28.35	29.87	1.52	58	0.079	0.26	0.14
		Sedimentary	dominated by mudstone.	9218	29.87	31.39	1.52	95.6	0.025	1.43	0.57
		Breccia		9219	31.39	32.92	1.52	40.8	0.012	0.21	0.72
			From 14.02 to 14.93- section of breccia with very strongly	9220	32.92	34.44	1.52	28.7	0.024	0.27	0.31
			deformed to brecciated laminae of pyrite and sphalerite.	9221	34.44	35.97	1.52	35.5	0.023	0.44	0.82
			Average sphalerite content 3-4%.	9222	35.97	37.49	1.52	31.2	0.019	0.34	0.45
			From 14.63 to 14.72 section of exhalite (?) with amygdoidal	9223	37.49	39.01	1.52	78	0.063	1.18	1.46
			texture.	9224	39.01	40.54	1.52	99.4	0.064	0.79	2.32
			From 14.93 to 15.09 - several laminae of sphalerite @30-65	9225	40.54	42.06	1.52	41.4	0.013	0.57	1.56
			degrees to c/a.	9226	42.06	43.59	1.52	26.2	0.019	0.11	0.29
			From 15.09 to 15.24 - Dyke of feldspar porphyritic andesite.	9227	43.59	45.11	1.52	37.4	0.042	0.08	0.72
			Upper contact at 65 degrees to c/a.	9228	45.11	46.63	1.52	36.9	0.059	0.22	0.79
			From 15.24 to 15.85 - same as interval 14.02-14.93.	9229	46.63	49.07	2.44	18.2	0.017	0.06	0.16
			From 15.85 to 16.06 - gravel of different rock types (crack fill)	9230	49.07	50.60	1.52	0.4	0.002	0.01	0.02

From 39.62 to 42.52 - a few short sections of finely laminated volcanic tuff to mudstone. Lamination vary from

10 to 65 degrees to c/a.

50.60	52.12	Andesite	Feldspar porphyritic andesite with moderate to strong				
			sericite-chlorite alteration.				
			52.12m EOH				

page 9 of9

Page 10 of 10

DDH	2006	-BA- 5	Total depth: 42.06m Core size: BTW	Logge	d by:	A. Wa	us				
Azimu	ith:	160	Start: October 8, 2006	Eastin	-	457108	3	North	ing:	62143	68
Inclina	ation:	80	Completion: October 10, 2006	Elevat	ion:	1517					
Interv	al (m)	Rock type	Rock description, alteration, mineralization,	Samp	le interv	al (me	tres)		Assay		
From		<u> </u>	structure	Sple No		То		Ag(g/t)		Pb%	Zn%
0	5.09	Overburden									
5.09	11.43	Andesitic Tuff/	Massive texture. Quartz-carbonate veining 5-30%.	9231	5.09	8.53	3.44	123.7	0.009	2.35	5.8
		Mudstone	Locally weak silicification.	9232	8.53	11.58	3.05	25.1	0.007	0.33	1.04
				9233	11.58	14.63	3.05	135.1	0.111	0.52	0.66
			From 5.48 to 5.85 - 10% of combined pyrite and sphalerite	9234	14.63	17.68	3.05	34.6	0.017	0.03	0.24
			occuring as irregular patches.	9235	17.68	20.73	3.05	14.5	0.015	0.14	0.22
			From 5.48 to 8.53 - 55% core recovery.	9236	20.73	23.77	3.05	23.6	0.015	0.07	0.52
				9237	23.77	26.49	2.71	17.6	0.008	0.02	0.1
11.43	26.97	Felsic Volcanic/	The rock is dominated by very strongly silicified felsic	9238	26.49	26.97	0.49	73	0.03	0.55	13.2
		Sedimentary	fragments up to 5 cm across. There are also clasts of	9239	26.97	29.87	2.90	3.5	0.006	0.03	0.22
		Breccia	andesite, mudstone and chert. Mudstone dominated matrix								
			comprise 0-10% of the rock. Locally there are small								
			sections of fine felsic tuff with lamination at 60-70 degrees								
			to c/a. Minor pyrite.								
			-	_							
			From 20.88 to 21.03 -pyrite and sphalerite laminae at								
			60-70 degrees to c/a.								
			From 20.03 to 21.79 - moderate chloritization.								
			From 26.49 to 26.97- section with 20-25% pale yellow								
			sphalerite cementing breccia clasts.								
26.97	42.06	Andesite Lapilli	Andesite lapilli tuff to large degree replaced by feldspar +/-								
		Tuff/ Andesite	hornblende(?) porphyritic andesite. Moderate chloritization.								
			42.06m EOH								
				_	 		<u> </u>	 	<u> </u>	ļ	

DDH	2006-	BA- 6	Total depth: 11.58m Core size: BTW	Logge	d by:	A. Wa	lus				
Azimu	ith:	67	Start: October 10 , 2006	Eastin		45710		Northi	ng:	621436	68
Inclina		45	Completion: October 11, 2006	Elevat	ion:	1517	7		Ŭ		
Interv		Rock type	Rock description, alteration, mineralization,	Samp	le inter	val (me	etres)		Assay	1	
From			structure	Sple No	From	То		Ag(g/t)			Zn%
0	11.58	Overburden	Note* The hole was terminated before reaching the								
			planned depth due to excessive overburden.								
			11.58m EOH								
							_				
										1	
							-				
							+			+	
					1	1	+			1	
										1	
					1	1	1			1	
										1	
										1	

Page 12 of 12

DDH	2006	-BA-7	Total depth: 72.54 Core size: BTW	Logge	ed by:	A. Wal	us				
Azimu	uth:	67	Start: October 12, 2006	Eastin	ng:	457108	3	North	ing:	62143	68
Inclin	ation:	55	Completion: October 13, 2006	Elevat	tion:	1517					
Interv	al (m)	Rock type	Rock description, alteration, mineralization,	Samp	le interv	al (met	tres)		Assay		
From	To		structure	Sple No		То	Width	Ag(g/t)		Pb%	Zn%
0	5.03	Overburden									
5.03	26.52	Feldspar	The rock consists of 20-30% of feldspar phenocrysts	9240	26.52	29.87	3.35	32	0.024	0.12	0.76
		Porphyry	set in a very fine-grained groundmass. Moderate sericite-	9241	29.87	32.92	3.05	27.9	0.002	0.01	0.18
			chlorite alteration.	9242	32.92	35.97	3.05	18.3	0.006	0.02	0.19
				9269	35.97	39.01	3.05	12.9	0.017	0.02	0.46
			From 25.75 to 26.52 - interval in most part replaced by	9270	39.01	40.54	1.52	25.9	0.001	0.03	3.25
			aphanitic dacite/andesite.	9271	40.54	42.06		26.1	0.018	0.04	3.3
				9272	42.06	45.11	3.05	22.6	0.02	0.13	0.59
26.52	42.06	Heterolithic	Heterolithic volcanic/sedimentary breccia composed of	9273	45.11			17.3	0.013	0.1	0.51
		Breccia	semirounded to semiangular clasts up to 15cm in size. The	9274	48.16	51.21	3.05	15	0.015	0.16	0.49
			clasts are composed mostly of andesitic and felsic rocks.	9275	51.21	54.25	3.05	3.9	0.01	0.06	0.2
			Sporadically narrow sections of felsic tuff at 30-60 degrees								
			to c/a. Weak to moderate chloritization throughout the								
			interval. Minor disseminated pyrite.								
			From 39.01 to 42.06 - interval with a fews short sections								
			(up to 15cm in length) of sphalerite cemented breccia with								
			sphalerite content up to 20%.								
42.06	51.20	Felsic Volcanic/	The rock is composed of strongly silicified felsic clasts up								
		Sedimentary	to 20 cm in diameter. These are set in a mudstone								
		Breccia	dominated matrix which comprises 10-20% of the rock.								
			The interval contains 1% disseminated pyrite, minor								
			sphalerite and trace galena both within matrix and clasts.								
51.20	72.54	Andesite	Feldspar - hornblende(?) porphyritic andesite composed of								
			10-20% feldspar and hornblende(?) phenocrysts set in								
			aphanitic groundmass.								
			From 60.96 to 63.40 - andesite replacement after felsic								
			volcanic/sedimentary breccia(?).					ļ	ļ		
			72.54m EOH								

Page 13 of 13

DDH	2006	-BA-8	Total depth: 81.99m Core size: BTW	Logge	d by:	A. Wal	us				
Azimu	uth:	67	Start: October 14, 2006	Eastin	g:	457108		North	ing:	62143	68
Inclin	ation:	65	Completion: October 15, 2006	Elevat	ion:	1517					
Interv	al (m)	Rock type	Rock description, alteration, mineralization,	Samp	le interv	val (met	tres)		Assay		
From	То		structure	Sple No	From	То	Width	Ag(g/t)	Cu%	Pb%	Zn%
0	5.79	Overburden									
0	5.79	Overburden									
5.79	8.44	Heterolitic	The rock is dominated by felsic fragments. Weak to	9276	5.79	8.44	2.65	51.1	0.005	0.74	2.84
		Sedimentary	to moderate silicification. Up to 5% sphalerite in the matrix.	9277	8.44	11.80	3.35	2.3	<0.001	0.03	0.2
		Breccia	The rock contains 3 to 15% barren quartz-carbonate	9278	11.80	14.78	2.99	22.7	0.006	0.24	1.59
			veining.	9279	14.78	15.33	0.55	2.2	<0.001	0.02	0.35
				9280	15.33	16.31	0.98	62.9	0.035	1.24	0.81
8.44	11.79	Feldspar	The rock is composed of 20-30% feldspar phenocrysts set	9281	16.31	17.98	1.68	0.6	0.001	0.01	0.09
		Porphyry Dyke	in a very fine grained groundmass. Moderate sericitization	9282	36.27	37.19	0.92	1.5	0.001	0.02	0.18
			and weak silicification except the top 40 cm which shows	9283	37.19	39.32	2.13	3	0.007	0.01	0.09
			strong silicification.	9284	39.32	40.84	1.52	2.1	0.005	0.01	0.05
				9285	40.84	42.37	1.52	1.9	0.002	0.01	0.08
11.79	16.31	Felsic Volcanic/	The rock is dominated by very strongly silicified felsic	9286	53.64	55.17	1.53	2.7	0.012	0.03	0.02
		Sedimentary	fragments up to 5 cm across set in a mudstone dominated	9287	66.90	67.73	0.83	308.4	0.089	8.94	13.9
		Breccia	matrix. Up to 5% pyrite, trace to 1% sphalerite.								
			From 14.78 to 16.31- dyke of aphanitic andesite, upper								
			contact at 30 degrees to c/a.								
16.31	37.18	Andesite	Feldspar-hornblende(?) porphyritic andesite. Moderate								
			sericitization. Hornblende(?) phenocrysts are strongly								
			chloritized.								
37.18	40.84	Heterolithic	The rock is moderately to strongly chloritized. Locally								
57.10	40.04	Sedimentary	minor sphalerite was noted.								
		Breccia									
		Brooola	From 38.71 to 39.23 - dyke of fine grained andesite.								
40.84	53.64	Andesite	Mostly hornblende(?) porphyritic but also hornblende(?)-								
			feldspar and aphanitic andesite. Moderate to strong								
			chloritization. In places andesite lapilli tuff replaced to large								
			degree by andesite.								

Page 14 of 14

								[
53.64	55.17	Felsite	The rock is composed of 10-20% feldspar phenocrysts set					
			in aphanitic groundmass. Very strong silicification, in					
			places the rock is brecciated. Traces of galena and					
			chalcopyrite.					
55.17	81.99	Andesite	Same as interval 40.84-53.64.					
			From 66.90 to 67.73 quartz-pyrite-galena-sphalerite vein @					
			10 degrees to c/a. Galena content 10-15%, sphalerite					
			content 1-2%.					
			81.99m EOH	 				

DDH	2006	-BA-9	Total depth: 75.89m Core size: BTW	Logge	d by:	A. Wal	us				
Azimu	uth:	25	Start: October 15, 2006	Eastin		457108	3	North	ina:	621436	68
Inclina	ation:	60	Completion: October 16, 2006	Elevat	0	1517	-		<u> </u>		
Interv	al (m)	Rock type	Rock description, alteration, mineralization,	Samp	e interv	al (met	tres)		Assay		
From	· /		structure	Sple No	From	То		Ag(g/t)	Cu%	Pb%	Zn%
0	5.79	Overburden									
5.79	20.11	Feldspar	The rock consists of 20-25% of feldspar phenocrysts	9243	20.12	22.86	2.74	14	0.006	0.12	0.73
		Porphyry	2-5 mm in diameter set in a fine-grained groundmass.	9244	22.86	25.30	2.44	16.4	0.006	0.12	0.87
			Moderate sericitization, locally weak silicification.	9245	25.30	27.13	1.83	20.9	0.005	0.23	1.62
				9246	27.13	28.65	1.52	59.4	0.01	1.42	1.8
20.11	25.30	Siliceous	The rock contains 10-20% felsic fragments up to 1.0 cm	9247	28.65	30.18	1.52	82.7	0.027	1.4	2.24
		Mudstone	in diameter. There is 10-20% of barren quartz-carbonate	9248	30.18	31.70	1.52	146.3	0.096	4.09	6.6
			veining. Contact with overlying feldspar porphyry at 60	9249	31.70	33.22	1.52	286.5	0.197	4.53	2.83
			degrees to c/a.	9250	33.22	34.44	1.22	369.6	0.071	16.1	13.7
				9251	34.44	35.60	1.16	175.2	0.01	9.2	1.29
			From 24.47 to 24.63 - fault (rock chips and ground up rock,	9252	35.60	37.80	2.19	40.3	0.027	0.46	0.85
			strong limonite)	9253	37.80	39.32	1.52	45.4	0.017	0.79	0.79
				9254	39.32	40.84	1.52	82.6	0.035	1.4	1.5
25.30	35.60	Felsic Volcanic/	The breccia sections of this interval are composed mostly	9255	40.84	42.37	1.52	22.7	0.016	0.3	0.67
		Sedimentary	fo felsic fragments up to 7.0 cm in diameter.	9256	42.37	43.89	1.52	74.7	0.016	1.65	3.78
		Breccia to Lami-	Matrix, which forms 10 to 40% of the rock consists of	9257	43.89	45.42	1.52	7	0.008	0.1	0.45
		nated Mudstone	mudstone with lesser sulphides which include extremely	9258	45.42	48.46	3.05	3.7	0.017	0.03	0.15
		and Sulphides	fine disseminated pyrite (up to 10%), galena (up to 15%)	9259	48.46	51.51	3.05	0.1	0.004	0.02	0.15
			and sphalerite (up to 15%). The breccia sections are inter-	9260	51.51	54.56	3.05	1.1	0.006	0.01	0.09
			calated with sections of finely laminated mudstone and	9261	54.56	57.61	3.05	2.9	0.011	0.01	0.17
			sulphides (mostly pyrite with much less sphalerite).	9262	57.61	60.66	3.05	0.3	0.007	0.01	0.11
			Lamination is at 0 to 20 degrees to c/a. Often lamination is	9263	60.66	63.70	3.05	18.4	0.058	0.16	0.48
			disturbed to various degree.	9264	63.70	66.75	3.05	39.1	0.072	0.48	1.16
				9265	66.75	68.88	2.13	125.8	0.147	0.78	2.25
			From 25.45 to 25.60 and from 26.00 to 26.15 - intervals of	9266	68.88	71.93	3.05	23.8	0.073	0.05	0.64
			chert/exhalite (?) with colloform/vesicular texture.	9267	71.93	73.52	1.58	17.5	0.027	0.05	0.23
			From 33.53m to 33.84 - interval with 15% of finely laminated	9268	73.52	75.90	2.38	14.9	0.032	0.03	0.25
			pale yellow sphalerite and 15% galena. Lamination is at								
			0 to 20 degrees to c/a.								
35.60	45.41	Felsic Volcanic	The rock is dominated by siliceous felsic fragments up to								

		Breccia	6-7 cm in diameter. Other fragments include andesite,				
			mudstone and chert. In places, mudstone dominated				
			matrix up to 15% of the rock. Minor pyrite and locally also				
			sphalerite and galena concentrated in the matrix.				
45.41	63.70	Chloritizied Felsic	The rock is composed of silicified felsic fragments up to 5				
		Breccia	cm in diameter set in a moderately to strongly chloritized				
			groundmass. Fragments are chloritized to much lesser				
			degree than groundmass. Locally up to 2% pyrite and trace				
			to minor sphalerite.				
63.70	68.88	Felsic Volcanic	The rock is composed of felsic fragments up to 15cm in				
		Breccia	diameter. Minor pyrite and locally minor galena.				
68.88	73.52	Chloritizied	Similar as interval 45.41-63.70 but stronger chloritization.				
		Felsic(?) Breccia			 	 	
73.52	75.89	Andesite	Strongly chloritizied feldspar +/- hornblende porphyritic				
			andesite.				
			75.89m EOH				

page 16 16

Total depth: 114.91m

DDH 2006-BA-10

Core size: BTW Logged by: Easting: A. Walus 457109 Northing

			Total depth. 114.9111 Core size. DTW	Logge	-	A. Wal					
Azimu	th:	25	Start: October 16, 2006	Eastir	ng:	457108		North	ing:	621436	68
Inclina	tion:	70	Completion: October 18, 2006	Elevat	tion:	1517					
Interva	al (m)	Rock type	Rock description, alteration, mineralization,	Samp	le interv	val (meti	res)		Assay		
From	То		structure	Sple No	From	То	Width	Ag(g/t)	Cu%	Pb%	Zn%
0	5.21	Overburden									
5.21	6.40	Heterolithic	Felsic, very strongly silicified fragments are dominant.	9288	5.21	6.40	1.19	19.5	0.004	0.22	1.47
		Sedimentary	Abundant, mudstone dominated matrix with 1-5% pyrite								
		Breccia	and 1-2% sphalerite.	9289	38.71	39.62	0.91	1	< 0.001	0.02	0.1
				9290	39.62	41.15	1.52	69.2	0.029	0.98	10.7
6.40	36.57	Feldspar	The rock consists of 10-20% feldspar phenocrysts 1-5 mm	9291	41.15	43.07	1.92	99.5	0.021	1.08	8.6
		Porphyry	in size set in fine-grained groundmass.	9292	43.07	44.71	1.65	13	0.009	0.07	1.28
				9293	44.71	47.85	3.14	28.2	0.012	0.14	0.6
			From 37.49 to 39.62 - moderate silicification	9294	47.85	50.90	3.05	24.4	0.015	0.14	0.25
				9295	50.90	53.95	3.05	50.8	0.034	0.91	0.42
36.57	43.07	Felsic Volcanic/	The rock is dominated by felsic fragments set in a dark,	9296	53.95	55.47	1.52	19.4	0.026	0.12	0.25
		Sedimentary	mudstone dominated matrix.	9297	55.47	57.00	1.52	13.6	0.011	0.04	0.2
		Breccia -		9298	57.00	60.44	3.44	10.7	0.01	0.03	0.1
		Sulphide Zone	From 36.57 to 41.15 - 10-15% of pale yellow sphalerite is	9299	60.44	62.48	2.04	5.8	0.006	0.01	0.11
			cementing breccia clasts.	9300	62.48	66.14	3.66	3.3	0.003	0.01	0.07
				9301	66.14	67.67	1.52	15.6	0.008	0.03	0.28
			From 41.63 to 42.12 - strongly disturbed pyrite and	9302	67.67	69.19	1.52	16.7	0.011	0.04	0.67
			mudstone laminae at variable attitudes to c/a.	9303	69.19	70.71	1.52	17.9	0.011	0.12	0.64
				9304	70.71	72.24	1.52	17.1	0.014	0.09	0.54
43.07	44.71	Felsic Tuff to	Weak sericitization.	9305	72.24	73.76	1.52	20.3	0.017	0.05	0.7
		Lapilli Tuff.		9306	73.76	75.29	1.52	4.1	0.005	0.01	0.08
			From 44.20 to 44.71 - intercalated laminae of mudstone,	9307	75.29	76.81	1.52	18.9	0.052	0.16	0.29
			pyrite and sphalerite at 15-20 degrees to c/a.	9308	76.81	78.33	1.52	72.5	0.203	1.09	0.56
				9309	78.33	79.86	1.52	87	0.091	2.85	1.07
146.70	53.95		The interval is dominated by strongly silicified felsic	9310	79.86	81.38	1.52	23.1	0.015	0.35	0.59
		Sedimentary	fragments up to 20 cm in size. Up to 3% pyrite and minor	9311	81.38	82.91	1.52	18.4	0.012	0.12	1.31
		Breccia	sphalerite concentrated in mudstone dominated matrix.	9312	82.91	84.43	1.52	10	0.007	0.04	0.17
				9313	84.43	85.95	1.52	12	0.009	0.04	0.35
			From 53.22 to 53.80 -crude bedding/lamination at 45 deg.	9314	85.95	87.48	1.52	14.1	0.017	0.06	0.48
			to c/a. Also 0.5-1.0% greenish sphalerite(?).	9315	87.48	89.00	1.52	14.5	0.017	0.16	0.68
				9316	89.00	90.53	1.52	27.7	0.013	0.59	0.4

Page 18 of 18

53.95	72.24	Felsic Volcanic	The rock is composed of very strongly silicified felsic	9317	90.53	92.05	1.52	31.9	0.015	0.64	0.3
		Breccia	fragments up to 10 cm in size. They are set in a dark	9318	92.05	93.57	1.52	21.4	0.014	0.39	0.37
			matrix composed of small felsic fragments, mudstone and	9319	93.57	95.10	1.52	24.4	0.012	0.39	0.76
			very fine grained pyrite, sphalerite and galena.								
			Matrix content ranges from 5 to 20%. Content of sphalerite	9320	95.10	96.62	1.19	18.5	0.011	0.32	0.54
			varies from trace to 4%, galena from trace to 1%. Most of	9321	96.62	98.15	1.53	19.1	0.027	0.1	0.95
			sulphides are concentrated in matrix, to lesser degree they	9322	98.15	99.67	0.91	26.2	0.139	0.04	0.9
			occur as small disseminated grains within felsic clasts.	9323	99.67	101.19	1.52	34.7	0.221	0.1	0.67
			In several places weak to moderate chloritization. In a few	9324	101.19	102.72	1.92	45.6	0.252	0.25	1.18
			places replacement by feldspar porphyritic felsite(?).	9325	102.72	104.24	1.65	36.2	0.255	0.08	0.87
				9326	104.24	106.77	3.14	25.1	0.035	0.08	0.25
			From 55.47 to 56.08 - partial replacement by feldspar	9327	106.77	108.81	3.05	12.7	0.009	0.31	0.08
			porphyritic felsite (?).								
72.24	106.77	Felsite Hosted	Very strongly silicified felsic volcanic rock, often with 5-10%								
		Crackle Zone	feldspar phenocrysts, less often aphanitic. The rock is								
		with Sulphides	densely irregularly fractured to brecciated with sulphides								
			filling the fractures and spaces between the clasts, and to a								
			much lesser degree forming small disseminated grains								
			within the clasts. Sulphides include up to 3% pyrite, trace								
			to 3% sphalerite, trace to 2% galena, and locally trace								
			chalcopyrite.								
			From 72.24 to 75.89 - moderate chloritization.								
			From 102.72 to 106.77 - several patches up to 4 cm across								
			of light beige chalcedony (?) replacing felsic fragments.								
			Also there is 1 to 5% of barren quartz-carbonate veinlets								
			and replacements.								
106.77	114.91	Andesite	Strongly chloritizied hornblende(?) porphyritic andesite.								
			Contact with crackle zone at 40 degrees to c/a.								
			From 112.16 to 112.77 - partial replacement by aphanitic								
			felsite(?).								
			114.91 EOH								

page 19 of 19

DDH	2006-	BA-11	Total depth: 93.57m Core size: BTW	Logg	ed by:	A. Wal	us				
Azimu	th:	74	Start: October 19, 2006	Easti	ng:	457040)	North	ing:	621434	17
Inclina	ation:	70	Completion: October 21, 2006	Eleva	tion:	1539					
Interva	al (m)	Rock type	Rock description, alteration, mineralization,	Samp	ole inter	val (me	tres)		Assay		
From	To		structure	Sple No	From	То	Width	Ag(g/t)	Cu%	Pb%	Zn%
	0.40	O									
0	2.13	Overburden		0000	44.00	40.40	0.04	40.4	0.000	0.00	0.4
0.40	40.40	Exhalita		9328	11.28		0.91	40.4	0.003	0.03	0.1
2.13	12.19	Exhalite	Red coloured laminated exhalite with 1 to 7 mm wide	9329	12.19		0.91	13.1	0.004	0.41	1.55
			laminae at 0 to 75 degrees to c/a.	9330	13.11	14.02	0.91	13.4	0.003	0.31	1.58
				9331	14.02	14.94	0.91	13.8	0.006	0.31	1.54
			From 2.43 to 2.65 - silicified andesite tuff.	9332	14.94	15.85	0.91	9.1	0.005	0.14	0.45
			From 4.72-5.33 - This interval contains a few short	9333	15.85	16.76	0.91	8.1	0.005	0.12	0.66
			sections of andesite/felsic tuff.	9334	16.76		0.91	2.6	0.004	0.03	0.08
				9335	17.68		0.91	1.6	0.003	0.02	0.04
12.19	15.54	Brecciated	The rock contains up to 5% pyrite and up to 3% sphalerite	9336	18.59		0.91	3.2	0.005	0.08	0.11
		Chert	concentrated in a matrix composed mostly of andesite tuff	9337	19.51		0.91	2	0.005	0.04	0.08
			and mudstone.	9338	20.42	21.34	0.91	6.1	0.003	0.16	0.68
				9339	21.34	22.25	0.91	7.6	0.001	0.17	0.54
			From 12.80 to 13.20 - lamination at 10-25 degrees to c/a.	9340	22.25		0.91	17.1	0.002	0.52	1.17
			From 13.87 to 14.18 - andesite tuff.	9341	23.16		0.91	12.7	0.003	0.19	0.97
				9342	24.08		0.91	14	0.004	0.19	0.93
15.54	21.03	Andesite Tuff	Mostly laminated, locally massive. Lamination ranges from	9343	24.99		0.91	11.1	0.003	0.15	0.68
			30 to 80 degrees to c/a. Possible presence of greenish	9344	25.91	26.82	0.91	2.4	< 0.001	0.04	0.06
			sphalerite within several laminae.	9345	26.82	27.74	0.91	3.1	0.001	0.02	0.05
				9346	27.74	41.76	14.02	2.8	0.002	0.04	0.07
21.03	27.58	Exhalite/ Tuff/	Intercalated laminae of exhalite, tuff and mudstone.	9347	41.76		1.52	3	0.002	0.05	0.09
		Mudstone	Lamination ranges from 0 to 65 degrees to c/a. Locally up	9348	43.28	44.81	1.52	5.3	0.004	0.08	0.21
			to 2% sphalerite. Possible presence of pale yellow	9349	44.81	46.33	1.52	3.4	0.003	0.09	0.19
			sphalerite (?) within several laminae.	9350	46.33		1.52	8.2	0.004	0.14	0.34
				9351	47.85	49.38	1.52	15.5	0.005	0.18	0.72
27.58	47.85	Andesite Tuff/	Mostly laminated at 0 to 30 degrees to c/a, locally also	9352	49.38	50.90	1.52	29.8	0.008	0.65	0.44
		Mudstone	massive. In a few places intraformational breccia. In	9353	50.90	52.43	1.52	26.1	0.011	0.4	0.73
			several places intercalated exhalite. Sulphides include	9354	52.43	53.95	1.52	25.5	0.008	0.14	0.46
			up to 5% pyrite and up to 3% sphalerite.	9355	53.95	55.78	1.83	16.6	0.005	0.11	0.43
				9356	55.78	57.00	1.22	55.7	0.009	0.46	1.17
			From 30.48 to 31.70 - exhalite/chert with colloform/	9357	57.00	58.52	1.52	47.7	0.008	0.88	4.7
			amygdoidal texture.								

page 20 of 20

				9358	58.52	60.05	1.52	23.1	0.01	0.33	0.71
			From 32.76 to 33.01- very fine laminae of sphalerite at	9359	60.05	61.57	1.52	47.7	0.033	0.47	0.86
			30-35 degrees to c/a.	9360	61.57	63.09	1.52	36.9	0.009	0.25	0.72
			From 37.73 to 38.95 - laminated exhalite at 15-25	9361	63.09	64.62	1.52	76.4	0.012	1.82	4.08
			degrees to c/a.	9362	64.62	66.14	1.52	82	0.005	2.44	3.76
				9363	66.14	67.05	0.91	273.5	0.033	3.5	3.12
47.85	55.78	Silicified	Lower part of the interval is in most part replaced by	9364	67.05	67.97	0.92	159.4	0.045	2.19	2.07
		Andesite Tuff	quartz. Up to 2% pyrite.	9365	67.97	68.88	0.91	94.7	0.034	1.52	1.55
				9366	68.88	69.80	0.92	10.3	0.002	0.04	0.13
55.78	70.32	Felsic	The rock is dominated by felsic and chert fragments up to								
		Sedimentary/	5 cm in diameter. They are set in a matrix composed of								
		Volcanic	mudstone, chert and sulphides. Some sections exhibit								
		Breccia -	crude lamination at 30 to 90 degrees to c/a. Sulphides								
		Sulphide Zone	include 5 to 50% pyrite, trace to 10% galena and 1 to 10%								
			sphalerite. Contact with underlying andesite at 45 degrees								
			to c/a.								
			From 64.16 to 66.14 - interval dominated by chert.								
70.32	93.57	Andesite	Feldspar hornblende(?) porphyritic andesite. Strong								
			chloritization. Amygdoidal texture in the upper part of the								
			interval.								
			93.57m EOH								

Page 21 of 21

DDH	2006-	BA-12	Total depth: 74.68m Core size: BTW	Logge	d by:	A. Wal	us				
Azimu	th:		Start: October 22, 2006	Eastin	g:	457040)	North	ing:	621434	17
Inclina	tion:	90	Completion: October 23 2006	Elevat	-	1539			<u> </u>		
Interva	al (m)	Rock type	Rock description, alteration, mineralization,	Samp	le interv	al (meti	res)		Assay	1	
From	Το		structure	Sple No	From	То	Width	Ag(g/t)		Pb%	Zn%
0	1.67	Overburden									
1.67	8.84	Exhalite	Red coloured laminated exhalite with attitude of lamination	9367	8.84	10.67	1.83	16.4	0.002	0.19	0.93
			ranging from 30 to 90 degrees to c/a. Minor intercalated	9368	10.67	12.19	1.52	31.2	0.008	1.3	3.22
			volcanic tuff/mudstone.	9369	12.19	13.72	1.52	12.5	0.005	0.22	0.88
				9370	13.72	15.24	1.52	10.5	0.003	0.17	1.18
8.84	12.95	Brecciated	The rock is composed of chert fragments cemented by a	9371	15.24	16.76	1.52	6.7	0.002	0.09	0.34
		Chert	mixture of fine tuff, mudstone and extremely fine grained	9372	16.76	18.29	1.52	5	0.001	0.13	0.32
			sulphides. Sulphides include up to 5% pyrite and trace to	9373	18.29	19.81	1.52	3.8	< 0.001	0.06	0.33
			2% sphalerite.	9374	19.81	21.34	1.52	5.7	0.001	0.09	0.41
				9375	21.34	22.86	1.52	7.5	0.003	0.11	0.59
12.95	46.33	Andesite Tuff	Mostly laminated to massive fine andesite tuff locally	9376	22.86	24.38	1.52	9	0.003	0.12	0.92
			intercalated with mudstone, chert and exhalite. Lamination	9377	24.38	25.91	1.52	7.9	0.004	0.13	0.71
			is at 20 to 90 degrees to c/a. In places it is strongly	9378	25.91	27.43	1.52	5.4	< 0.001	0.2	0.39
			contorted. Locally up to 2% sphalerite, mostly as laminae.	9379	27.43	28.96	1.52	8.7	0.001	0.28	1.09
			Possible presence of pale greenish sphalerite.	9380	28.96	30.48	1.52	10.4	0.005	0.14	0.78
				9381	30.48	32.00	1.52	11.5	0.002	0.13	0.81
			From 18.13 to 18.74 - laminated exhalite.	9382	32.00	33.53	1.52	4.2	0.001	0.06	0.2
			From 32.15 to 33.53 - section dominated by exhalite.	9383	33.53	35.05	1.52	4.6	0.001	0.07	0.2
			From 44.96 to 46.33 - weak to moderate silicification.	9384	35.05	36.58	1.52	4.6	0.001	0.05	0.29
				9385	36.58	38.10	1.52	5.4	0.002	0.06	0.2
46.33	69.95	Silicified	Breccia composed of andesite, felsic and lesser chert and	9386	38.10	39.62	1.52	7.2	0.003	0.11	0.33
		Breccia	exhalite fragments up to 5 cm in size. From 46.33 to 53.64	9387	39.62	41.15	1.52	6.6	0.003	0.11	0.38
			metres weak to moderate silicification. From 53.64 to 69.95	9388	41.15	42.67	1.52	6	0.003	0.09	0.26
			metres very strong to extreme silicification, almost	9389	42.67	44.20	1.52	5.3	0.001	0.07	0.21
			complete replacement by extremely fine-grained	9390	44.20	45.72	1.52	11.4	0.003	0.09	0.58
			chalcedonic silica. 1-10% patchy pyrite and locally minor	9391	45.72	47.24	1.52	18.5	0.007	0.22	0.42
			galena. Contact with underlying andesite at 30 degrees to	9392	47.24	48.77	1.52	9.9	0.002	0.08	0.3
			c/a.	9393	48.77	50.29	1.52	5.3	0.001	0.08	0.31
			From 69.49 to 69.74 - "Ghost" lamination at 30 degrees to	9394	50.29	51.82	1.52	5.8	<0.001	0.06	0.22
			c/a.	9394	51.82	53.34	1.52	17.8	0.003	0.39	0.22

Page 22 of 22

				9396	53.34	54.86	1.52	33.2	0.003	0.63	0.65
69.95	74.68	Andesite	Moderately chloritizied hornblende(?) +/- feldspar porphyritic	9397	54.86	56.39	1.52	101.3	0.022	0.38	3.31
			andesite.	9398	56.39	57.91	1.52	117.2	0.011	0.34	0.94
				9399	57.91	59.44	1.53	53.6	0.006	0.27	0.66
				9400	59.44	60.96	1.52	54	0.006	0.82	0.79
				9451	60.96	62.48	1.52	84.2	0.007	1.31	0.74
				9452	62.48	64.01	1.52	64.1	0.007	1.02	0.69
				9453	64.01	65.53	1.52	41	0.002	0.62	0.51
				9454	65.53	67.06	1.52	23.3	0.001	0.1	0.23
				9455	67.06	68.58	1.52	70.9	0.009	0.35	0.46
				9456	68.58	69.95	1.37	113.7	0.016	1.7	1.21
				9457	69.95	71.32	1.37	3.5	0.008	0.07	0.39
			74.68 EOH								

Page 23 of 23

DDH 2006-BA-13		-	Total depth: 180.44m Core size: BTW	Logged by:		A. Walus		Manth		004.4.4	
Azimuth:324Inclination:60Interval (m)Rock typeFromTo		-	Start: October 24 , 2006	Easting:		457250		Northing:		6214444	
			Completion: October 26, 2006 Rock description, alteration, mineralization,	Elevation: 1529 Sample interval (metres)							
		Коск туре		-	1			Assay			
From	10		structure	Sple No	From	То	Width	Ag(g/t)	Cu%	Pb%	Zn%
0	5.79	Overburden									<u> </u>
5.79	18.59	Felsic Volcanic/	The rock consists of felsic fragments up to 3 cm across set	9458	5.79	8.53	2.74	19.2	0.003	0.13	1.04
		Sedimentary	in a matrix dominated by mudstone. Variable silicification	9459	8.53	11.58	3.05	42.5	0.075	0.15	0.36
		Breccia	from moderate to very strong. 3-20% barren quartz-	9460	11.58	16.15	4.57	51.9	0.07	0.11	0.28
			carbonate veinlets and replacements. Trace to 1% pyrite.	9461	16.15	18.59	2.44	27.7	0.018	0.1	0.18
				9462	18.59	20.73	2.13	35	0.014	0.47	1.25
			From 8.53 to 16.15 - 20% core recovery.	9463	20.73	23.77	3.05	33.6	0.012	0.23	2.13
				9464	23.77	26.82	3.05	19.4	0.011	0.04	0.24
18.59	23.77	Andesite Tuff	Laminated to massive texture. Lamination ranges from 10	9465	26.82	29.87	3.05	14.1	0.008	0.03	0.14
			90 degrees to c/a. Locally minor pyrite and sphalerite as	9466	29.87	32.92	3.05	7.5	0.002	0.02	0.08
			streaks parallel to lamination.	9467	32.92	35.97	3.05	6.2	0.001	0.02	0.07
				9468	35.97	39.01	3.05	5	0.001	0.01	0.16
23.77	44.20	Felsite	Mostly aphanitic texture. Locally intercalated with feldspar	9469	39.01	42.06	3.05	8.7	0.003	0.01	0.09
			porphyritic andesite. Weak to moderate silicification. In	9470	42.06	45.11	3.05	5.7	0.004	<0.01	0.03
			many places weak to moderate carbonate replacement.								
			Minor disseminated pyrite, locally trace galena.	9471	58.83	60.35	1.52	13.2	0.006	0.01	0.21
44.20	87.78	Andesite	Feldspar porphyritic andesite. Moderately chloritizied with	9472	63.40	66.45	3.05	13	0.003	0.01	0.1
			almost black chlorite. Locally weak silicification.	9473	66.45	69.49	3.05	3.3	0.001	0.01	0.07
				9474	69.49	72.54	3.05	8.1	0.017	0.01	0.05
			From 70.02 to 74.67 - a ghost texture of the original felsic								
			or heterolithic breccia can be seen.	9475	93.88	96.93	3.05	5	0.009	<0.01	0.08
87.78	99.97	Felsite	Aphanitic texture, weak to moderate silicification. In several	_							├──
			places intercalated with andesite.								
99.97	110 64	Felsic Breccia	The rock is composed of felsic fragments up to 3 cm in								┣───
			diameter set in a weakly hematitic matrix. Weak to								
			modarate silicification. Locally minor pyrite.								
110.64	180 44	Andesite	Mostly aphanitic lesser feldspar porphyritic texture.	_			<u> </u>				┣──

 Moderate chloritization. Locally trace sphalerite.
 Image: Constraint of the sphalerite in the sphalerite.
 Image: Constraint of the sphalerite in the spha

Page 24 of 24

Page 25 of 25

DDH 2006-BA-14		BA-14	Total depth: 75.89m Core size: BTW	Logge	d by:	A. Wal	us				
Azimuth:324Inclination:80Interval (m)Rock type		324	Start: October 26, 2006	Easting:		457250		Northing:		6214444	
		80	Completion: October 28, 2006 Rock description, alteration, mineralization,	Elevation: 1529							
		Rock type		Sample interval (metres)				Assay			
From	To		structure	Sple No	From	То	Width	Ag(g/t)	Cu%	Pb%	Zn%
0	3.05	Overburden		9476	3.05	6.25	3.2	50.4	0.069	0.07	0.26
-				9477	6.25	9.14	2.89	9.4	0.003	0.03	0.28
3.05	6.25	Mudstone/	Moderate to strong silicification. Locally the rock is	9478	9.14	11.73	2.59	4.9	0.002	0.02	0.13
		Siltstone	brecciated and cemented by quartz. Minor to 5% pyrite.	9479	11.73	13.41	1.68	42.6	0.011	0.06	0.1
				9480	13.41	14.93	1.52	10.9	0.003	0.05	0.17
6.25	11.73	Andesite Tuff	Strong chloritization, weak silification. Trace to minor pyrite.	9481	14.93	17.98	3.05	6.5	0.015	0.01	0.09
				9482	17.98	21.03	3.05	3	0.007	0.01	0.03
11.73	13.41	Strongly	In one spot remnant felsic fragments can be seen. In	9483	21.03	24.08	3.05	2.7	0.001	0.01	0.03
		Silicified Rock	another place there is 6-7 cm section of silicified andesite	9484	24.08	27.13	3.05	2.6	0.004	0.01	0.09
			tuff with lamination @ 40 degrees to c/a. 10-15% of barren								
			quartz veinlets and replacements. Trace sphalerite, trace	9485	48.46	51.51	3.05	3.1	0.005	0.01	0.13
			to minor galena, minor to 1% pyrite.								
				9486	72.85	75.90	3.05	2.5	0.001	0.01	0.08
13.41	19.81	Andesite(?) Tuff	Andesite tuff(?) portions of the interval contain trace								
		Partly Replaced	sphalerite as small scattered grains. Felsite is moderately								
		by Felsite	silicified.								
19.81	75.89	Felsic Volcanic/	The original felsic volcanic/sedimentary rock is in most							<u> </u>	
10.01	10.00	Sedimentary	part replaced by greenish-black aphanitic								
			to feldspar porphyritic andesite. All matrix and								
		by Andesite	most of the fragments are replaced by andesite but								
			numerous felsic and occasionally chert fragments 0.5-3.0								
			cm in diameter can still be seen. Number of felsic								
			fragments decreases with depth. Trace amount of								
			sphalerite as scattered grains less than 1 mm in diameter								
			is present throughout the entire interval.								
			75.89m EOH								┣───

APPENDIX II

Assay Results DDH –2006-BA – 1 to 14

		Assay	Assay	Assay	Assay
Certificate	Sample	Ag	Cu	Pb	Zn
Number	Name	g/tonne	%	%	%
6V2244RA	A009535	missing			
6V2244RA	A009536	28.7	0.023	0.1	1.18
6V2244RA	A009537	9.5	0.009	0.04	0.7
6V2244RA	A009538/A009539	21.1	0.012	0.13	1.13
6V2244RA	A009540	6.6	0.014	0.04	0.35
6V2244RA	A009542	missing			
6V2244RA	A009543	9.2	0.01	0.04	0.61
6V2244RA	A009544	27.8	0.035	0.08	0.35
6V2244RA	A009545	17	0.019	0.03	0.04
6V2244RA	*DUP A009536	28.4	0.024	0.09	1.16
6V2244RA	*CCu-1c	130.4			4.05
6V2244RA	*KC-1a		0.635	2.26	
6V2244RA	*BLANK	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay
Certificate	Sample	Ag	Cu	Pb	Zn
Number	Name	g/tonne	%	%	%
6V2244RA	A008173	36	0.018	0.05	0.18
6V2244RA	A008174	172.5	0.055	0.09	0.22
6V2244RA	A008175	3.9	0.003	0.02	0.04
6V2244RA	A008176	3.9	0.006	0.03	0.08
6V2244RA	No number	53.4	0.023	0.12	0.44
6V2244RA	*DUP A008173	35.5	0.019	0.04	0.2
6V2244RA	*CCu-1c	130.3			4.01
6V2244RA	*KC-1a		0.629	2.24	
6V2244RA	*BLANK	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay
Certificate	Sample	Ag	Cu	Pb	Zn
Number	Name	g/tonne	%	%	%
6V2244RA	A008551	10.8	0.01	0.02	0.2
6V2244RA	A008552	8410	0.903	0.6	0.76
6V2244RA	A008553	543	0.086	0.08	0.2
6V2244RA	A008554	34.6	0.049	0.06	0.08
6V2244RA	A008555	103.7	0.024	0.06	0.09
6V2244RA	A008556	10.4	0.008	0.02	0.16
6V2244RA	A008557	2215	0.202	0.1	0.28
6V2244RA	A008558	154.3	0.039	0.04	0.24
6V2244RA	A008559	3068	0.283	0.44	0.39
6V2244RA	A008560	20.9	0.032	0.1	0.08
6V2244RA	A008561	30.4	0.018	0.06	0.07
6V2244RA	A008562	5.6	0.021	0.02	0.05
6V2244RA	A008563	5.4	0.003	0.01	0.04
6V2244RA	A008564	3.4	0.003	0.01	0.08
6V2244RA	*DUP A008551	11.5	0.009	0.02	0.21
6V2244RA	*DUP A008560	21.1	0.03	0.1	0.1
6V2244RA	*CCu-1c	128.1			4.03
6V2244RA	*KC-1a		0.624	2.22	
6V2244RA	*BLANK	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	%	%	%
6V2244RA	A008623	0.53	6.5	0.001	0.1	0.14
6V2244RA	A008624	1.36	3.5	0.002	0.08	0.11
6V2244RA		0.22	2.8	0.001	0.01	0.02
6V2244RA	A008626	0.14	2	0.001	0.01	0.01
6V2244RA	A008627	0.33	6	0.002	0.08	0.09
6V2244RA	A008628	1.92	32	0.015	0.08	0.27
6V2244RA	A008629	1	6.8	0.007	0.04	0.16
6V2244RA		0.13	2.5	0.001	0.01	0.01
6V2244RA		0.54	14.1	0.003	0.03	0.08
6V2244RA	A008632	0.24	4.2	0.001	0.02	0.07
6V2244RA	A008633	0.27	3.5	0.002	0.02	0.01
6V2244RA		0.19	3.2	0.003	0.02	0.02
6V2244RA		0.15	5.2	0.004	0.02	0.09
6V2244RA	A008636	0.37	4.4	0.006	0.03	0.03
6V2244RA	A008637	0.31	3.5	0.003	0.06	0.08
6V2244RA	A008638	0.61	10.9	0.005	0.18	0.47
6V2244RA		0.54	3.7	0.003	0.05	0.03
6V2244RA	A008640	0.56	4.5	0.003	0.12	0.08
6V2244RA		0.17	4	0.003	0.04	0.24
6V2244RA		0.89	16.4	0.019	0.42	0.97
6V2244RA	A008643	0.72	6.8	0.008	0.03	0.05
6V2244RA		0.27	4.4	0.002	0.04	0.03
6V2244RA		0.09	2.1	0.002	0.01	0.01
6V2244RA		0.57	3.3	0.003	0.03	0.13
6V2244RA	*DUP A008623	0.51	6.3	0.001	0.1	0.14
6V2244RA		0.25	4.3	0.001	0.02	0.07
6V2244RA	*DUP A008642	0.91	17.7	0.019	0.42	0.97
6V2244RA	*1110	1.43				
6V2244RA			131			4.02
6V2244RA				0.633	2.25	
6V2244RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	%	%	%
6V2244RA	A008647	0.44	3.8	0.004	0.03	0.07
6V2244RA	A008648	0.18	4.1	0.005	0.04	0.05
6V2244RA		0.39	6.3	0.01	0.15	0.14
6V2244RA	A008650	0.63	9.3	0.003	0.04	0.05
6V2244RA	A008651	0.28	4.9	0.002	0.02	0.04
6V2244RA	A008652	0.27	3.8	0.002	0.02	0.06
6V2244RA	A008653	0.16	4	0.015	0.02	0.04
6V2244RA		0.25	3.9	0.005	0.02	0.02
6V2244RA	A008655	0.12	4.4	0.007	0.02	0.01
6V2244RA	A008656	1.02	6.7	0.005	0.01	0.02
6V2244RA	A008657	0.3	5.1	0.005	0.02	0.06
6V2244RA		1.16	7.5	0.005	0.03	0.11
6V2244RA		0.59	5.5	0.004	0.05	0.04
6V2244RA	A008660	0.14	3.6	0.003	0.02	0.05
6V2244RA	A008661	0.07	2.5	0.011	0.01	0.02
6V2244RA	A008662	0.1	3.7	0.005	0.05	0.01
6V2244RA		1.22	7.9	0.006	0.08	0.16
6V2244RA	A008664	0.91	84.4	0.009	0.04	0.06
6V2244RA		0.21	5.7	0.005	0.01	0.01
6V2244RA	A008666	0.25	10.7	0.006	0.02	0.02
6V2244RA	A008667	0.17	4.8	0.004	0.02	0.03
6V2244RA		0.16	5.2	0.006	0.01	0.03
6V2244RA		0.01	2.9	0.012	0.01	0.03
6V2244RA		0.01	3	0.008	0.02	0.04
6V2244RA	*DUP A008647	0.56	3.5	0.004	0.03	0.06
6V2244RA		1.01	7.5	0.005	0.01	0.02
6V2244RA	*DUP A008666	0.25	9.4	0.006	0.02	0.02
6V2244RA	*1110	1.51				
6V2244RA			131			4.05
6V2244RA				0.633	2.23	
6V2244RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	%	%	%
6V2244RA	A008671	0.02	2.3	0.011	0.02	0.1
6V2244RA	A008672	0.02	2.7	0.013	0.01	0.06
6V2244RA	A008673	0.04	2.5	0.016	0.01	0.04
6V2244RA	A008674	0.01	1.8	0.01	0.01	0.08
6V2244RA	A008675	0.11	33.8	0.016	0.04	0.14
6V2244RA	A008676	0.01	1.8	0.006	0.01	0.1
6V2244RA	A008677	0.01	1.7	0.005	0.02	0.06
6V2244RA	A008678	0.01	2	0.005	0.01	0.02
6V2244RA	A008679	0.01	2.3	0.006	0.01	0.02
6V2244RA		0.01	2.4	0.002	0.02	0.06
6V2244RA	A008681	0.01	3	0.014	0.02	0.02
6V2244RA	A008682	0.01	1.4	0.003	0.02	0.02
6V2244RA		0.01	2.7	0.005	0.02	0.07
6V2244RA	A008684	0.01	1.1	0.001	0.01	0.02
6V2244RA			8.8	0.005	0.02	0.06
6V2244RA	A009202		66.5	0.024	0.1	1.38
6V2244RA	A009501		4.8	0.007	0.1	0.36
6V2244RA	A009502		9.3	0.004	0.09	0.45
6V2244RA	A009503		23.5	0.005	0.22	1.22
6V2244RA	A009505		17	0.006	0.11	0.6
6V2244RA			62	0.008	0.71	2.25
6V2244RA	A009507		85.3	0.018	0.63	1.46
6V2244RA			4.1	0.005	0.08	0.26
6V2244RA			11	0.004	0.09	0.46
-	*DUP A008671	0.02	3	0.012	0.02	0.09
6V2244RA	*DUP A008680	0.01	2.1	0.003	0.02	0.06
6V2244RA	*DUP A009505		17.2	0.005	0.11	0.6
6V2244RA	*1110	1.44				
6V2244RA			130.9			4
6V2244RA				0.626	2.23	
6V2244RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay
Certificate	Sample	Ag	Cu	Pb	Zn
Number	Name	g/tonne	%	%	%
6V2244RA	A009510	40.6	0.012	0.8	0.89
6V2244RA	A009511	38.6	0.018	0.22	0.97
6V2244RA	A009512	146.5	0.015	0.64	4.05
6V2244RA	A009513	1.5	0.005	0.01	0.09
6V2244RA	A009514	156.7	0.023	1.55	6.75
6V2244RA	A009515	69.7	0.023	0.29	0.71
6V2244RA	A009516	77.2	0.036	0.44	0.96
6V2244RA	A009517	32.4	0.018	0.38	0.51
6V2244RA	A009518	83.2	0.085	0.87	1.47
6V2244RA	A009519	114.7	0.141	1.44	2.14
6V2244RA	A009520	50	0.042	0.59	0.66
6V2244RA	A009521	66.1	0.031	0.54	0.78
6V2244RA	A009546	26.9	0.014	0.05	0.18
6V2244RA	A009547	7.2	0.009	0.02	0.04
6V2244RA	A009548	1.7	0.004	0.01	0.03
6V2244RA	A009549	1	0.002	0.01	0.02
6V2244RA	A009550	0.8	0.002	0.01	0.04
6V2244RA	*DUP A009510	41.5	0.011	0.82	0.88
6V2244RA	*DUP A009519	114	0.141	1.42	2.16
6V2244RA	*CCu-1c	130.9			4.07
6V2244RA	*KC-1a		0.635	2.22	
6V2244RA	*BLANK	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay
Certificate	Sample	Ag	Cu	Pb	Zn
Number	Name	g/tonne	%	%	%
6V2322RA	9203	36.5	0.007	0.35	1.84
6V2322RA	9204	6.8	0.004	0.08	0.65
6V2322RA	9205	5.4	0.004	0.09	0.25
6V2322RA	9206	6.5	0.005	0.07	0.26
6V2322RA	9207	25.2	0.005	0.18	0.97
6V2322RA	9208	64.7	0.01	0.47	3.17
6V2322RA	9209	30.6	0.01	0.23	1.18
6V2322RA	9210	50.4	0.013	0.45	1.88
6V2322RA	9211	55.8	0.015	0.63	1.26
6V2322RA	9212	64.5	0.011	0.93	1.79
6V2322RA	9213	104.8	0.017	0.82	2.08
6V2322RA	9214	65.3	0.013	0.2	0.81
6V2322RA	9215	48.6	0.017	0.32	0.72
6V2322RA	9216	8.7	0.011	0.09	0.3
6V2322RA	9217	58	0.079	0.26	0.14
6V2322RA	9218	95.6	0.025	1.43	0.57
6V2322RA	9219	40.8	0.012	0.21	0.72
6V2322RA	9220	28.7	0.024	0.27	0.31
6V2322RA	9221	35.5	0.023	0.44	0.82
6V2322RA	9222	31.2	0.019	0.34	0.45
6V2322RA	9223	78	0.063	1.18	1.46
6V2322RA	9224	99.4	0.064	0.79	2.32
6V2322RA	9225	41.4	0.013	0.57	1.56
6V2322RA	9226	26.2	0.019	0.11	0.29
6V2322RA	*DUP 9203	37.2	0.008	0.34	1.85
6V2322RA	*DUP 9212	64.5	0.012	0.9	1.81
6V2322RA	*DUP 9222	30.3	0.02	0.33	0.44
6V2322RA	*CCu-1c	131			3.98
6V2322RA	*KC-1a		0.628	2.23	
6V2322RA	*BLANK	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay
Certificate	Sample	Ag	Cu	Pb	Zn
Number	Name	g/tonne	%	%	%
6V2322RA	9227	37.4	0.042	0.08	0.72
6V2322RA	9228	36.9	0.059	0.22	0.79
6V2322RA	9229	18.2	0.017	0.06	0.16
6V2322RA	9230	0.4	0.002	0.01	0.02
6V2322RA	9231	123.7	0.009	2.35	5.8
6V2322RA	9232	25.1	0.007	0.33	1.04
6V2322RA	9233	135.1	0.111	0.52	0.66
6V2322RA	9234	34.6	0.017	0.03	0.24
6V2322RA	9235	14.5	0.015	0.14	0.22
6V2322RA	9236	23.6	0.015	0.07	0.52
6V2322RA	9237	17.6	0.008	0.02	0.1
6V2322RA	9238	73	0.03	0.55	13.2
6V2322RA	9239	3.5	0.006	0.03	0.22
6V2322RA	*DUP 9227	38.3	0.042	0.08	0.71
6V2322RA	*DUP 9236	23.4	0.015	0.08	0.51
6V2322RA	*CCu-1c	130.8			4.04
6V2322RA	*KC-1a		0.632	2.22	
6V2322RA	*BLANK	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay
Certificate	Sample	Ag	Cu	Pb	Zn
Number	Name	g/tonne	%	%	%
6V2536RA	A009240	32	0.024	0.12	0.76
6V2536RA	A009241	27.9	0.002	0.01	0.18
6V2536RA	A009242	18.3	0.006	0.02	0.19
6V2536RA	A009269	12.9	0.017	0.02	0.46
6V2536RA	A009270	25.9	0.001	0.03	3.25
6V2536RA	A009271	26.1	0.018	0.04	3.3
6V2536RA	A009272	22.6	0.02	0.13	0.59
6V2536RA		17.3	0.013	0.1	0.51
6V2536RA		15	0.015	0.16	0.49
6V2536RA	A009275	3.9	0.01	0.06	0.2
6V2536RA	A009276	51.1	0.005	0.74	2.84
6V2536RA		2.3	<0.001	0.03	0.2
6V2536RA		22.7	0.006	0.24	1.59
6V2536RA		2.2	<0.001	0.02	0.35
6V2536RA	A009280	62.9	0.035	1.24	0.81
6V2536RA		0.6	0.001	0.01	0.09
6V2536RA		1.5	0.001	0.02	0.18
6V2536RA		3	0.007	0.01	0.09
6V2536RA		2.1	0.005	0.01	0.05
6V2536RA		1.9	0.002	0.01	0.08
6V2536RA		2.7	0.012	0.03	0.02
6V2536RA	A009287	308.4	0.089	8.94	13.9
6V2536RA		19.5	0.004	0.22	1.47
6V2536RA		1	<0.001	0.02	0.1
6V2536RA	*DUP A009240	33.2	0.024	0.11	0.78
6V2536RA	*DUP A009275	3.1	0.01	0.07	0.2
6V2536RA	*DUP A009285	2.2	0.002	0.01	0.08
6V2536RA	*CCu-1c	127.6			4.02
6V2536RA	*KC-1a		0.628	2.22	
6V2536RA	*BLANK	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay
Certificate	Sample	Ag	Cu	Pb	Zn
Number	Name	g/tonne	%	%	%
6V2536RA	A009290	69.2	0.029	0.98	10.7
6V2536RA	A009291	99.5	0.021	1.08	8.6
6V2536RA	A009292	13	0.009	0.07	1.28
6V2536RA	A009293	28.2	0.012	0.14	0.6
6V2536RA	A009294	24.4	0.015	0.14	0.25
6V2536RA	A009295	50.8	0.034	0.91	0.42
6V2536RA	A009296	19.4	0.026	0.12	0.25
6V2536RA	A009297	13.6	0.011	0.04	0.2
6V2536RA	A009298	10.7	0.01	0.03	0.1
6V2536RA	A009299	5.8	0.006	0.01	0.11
6V2536RA	A009300	3.3	0.003	0.01	0.07
6V2536RA	A009301	15.6	0.008	0.03	0.28
6V2536RA	A009302	16.7	0.011	0.04	0.67
6V2536RA	A009303	17.9	0.011	0.12	0.64
6V2536RA	A009304	17.1	0.014	0.09	0.54
6V2536RA	A009305	20.3	0.017	0.05	0.7
6V2536RA	A009306	4.1	0.005	0.01	0.08
6V2536RA	A009307	18.9	0.052	0.16	0.29
6V2536RA	A009308	72.5	0.203	1.09	0.56
6V2536RA	A009309	87	0.091	2.85	1.07
6V2536RA	A009310	23.1	0.015	0.35	0.59
6V2536RA	A009311	18.4	0.012	0.12	1.31
6V2536RA	A009312	10	0.007	0.04	0.17
6V2536RA	A009313	12	0.009	0.04	0.35
6V2536RA	*DUP A009290	70.5	0.028	0.99	10.6
6V2536RA	*DUP A009299	6.1	0.006	0.01	0.11
6V2536RA	*DUP A009309	86.6	0.089	2.89	1.08
6V2536RA	*CCu-1c	127.7			4.02
6V2536RA	*KC-1a		0.632	2.22	
6V2536RA	*BLANK	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay
Certificate	Sample	Ag	Cu	Pb	Zn
Number	Name	g/tonne	%	%	%
6V2536RA	A009314	14.1	0.017	0.06	0.48
6V2536RA	A009315	14.5	0.017	0.16	0.68
6V2536RA	A009316	27.7	0.013	0.59	0.4
6V2536RA	A009317	31.9	0.015	0.64	0.3
6V2536RA	A009318	21.4	0.014	0.39	0.37
6V2536RA	A009319	24.4	0.012	0.39	0.76
6V2536RA	A009320	18.5	0.011	0.32	0.54
6V2536RA	A009321	19.1	0.027	0.1	0.95
6V2536RA	A009322	26.2	0.139	0.04	0.9
6V2536RA	A009323	34.7	0.221	0.1	0.67
6V2536RA	A009324	45.6	0.252	0.25	1.18
6V2536RA	A009325	36.2	0.255	0.08	0.87
6V2536RA	A009326	25.1	0.035	0.08	0.25
6V2536RA	A009327	12.7	0.009	0.31	0.08
6V2536RA	A009328	40.4	0.003	0.03	0.1
6V2536RA	A009329	13.1	0.004	0.41	1.55
6V2536RA	A009330	13.4	0.003	0.31	1.58
6V2536RA	A009331	13.8	0.006	0.31	1.54
6V2536RA	A009332	9.1	0.005	0.14	0.45
6V2536RA	A009333	8.1	0.005	0.12	0.66
6V2536RA	A009334	2.6	0.004	0.03	0.08
6V2536RA	A009335	1.6	0.003	0.02	0.04
6V2536RA	A009336	3.2	0.005	0.08	0.11
6V2536RA	A009337	2	0.005	0.04	0.08
6V2536RA	*DUP A009314	14.5	0.016	0.06	0.47
6V2536RA	*DUP A009323	35.9	0.219	0.1	0.66
6V2536RA	*DUP A009333	7.7	0.005	0.12	0.67
6V2536RA	*CCu-1c	127.5			3.99
6V2536RA	*KC-1a		0.627	2.22	
6V2536RA	*BLANK	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay
Certificate	Sample	Ag	Cu	Pb	Zn
Number	Name	g/tonne	%	%	%
6V2536RA	A009338	6.1	0.003	0.16	0.68
6V2536RA	A009339	7.6	0.001	0.17	0.54
6V2536RA	A009340	17.1	0.002	0.52	1.17
6V2536RA	A009341	12.7	0.003	0.19	0.97
6V2536RA	A009342	14	0.004	0.19	0.93
6V2536RA	A009343	11.1	0.003	0.15	0.68
6V2536RA	A009344	2.4	<0.001	0.04	0.06
6V2536RA	A009345	3.1	0.001	0.02	0.05
6V2536RA	A009346	2.8	0.002	0.04	0.07
6V2536RA	A009347	3	0.002	0.05	0.09
6V2536RA	A009348	5.3	0.004	0.08	0.21
6V2536RA	A009349	3.4	0.003	0.09	0.19
6V2536RA		8.2	0.004	0.14	0.34
6V2536RA		15.5	0.005	0.18	0.72
6V2536RA	A009352	29.8	0.008	0.65	0.44
6V2536RA		26.1	0.011	0.4	0.73
6V2536RA	A009354	25.5	0.008	0.14	0.46
6V2536RA		16.6	0.005	0.11	0.43
6V2536RA		55.7	0.009	0.46	1.17
6V2536RA	A009357	47.7	0.008	0.88	4.7
6V2536RA		23.1	0.01	0.33	0.71
6V2536RA		47.7	0.033	0.47	0.86
6V2536RA		36.9	0.009	0.25	0.72
6V2536RA		76.4	0.012	1.82	4.08
6V2536RA	*DUP A009338	6.3	0.003	0.16	0.69
6V2536RA	*DUP A009347	3.1	0.002	0.05	0.09
6V2536RA		48.9	0.008	0.9	4.7
6V2536RA	*CCu-1c	127.3			4.07
6V2536RA	*KC-1a		0.632	2.25	
6V2536RA	*BLANK	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay
Certificate	Sample	Ag	Cu	Pb	Zn
Number	Name	g/tonne	%	%	%
6V2536RA	A009362	82	0.005	2.44	3.76
6V2536RA	A009363	273.5	0.033	3.5	3.12
6V2536RA	A009364	159.4	0.045	2.19	2.07
6V2536RA	A009365	94.7	0.034	1.52	1.55
6V2536RA	A009366	10.3	0.002	0.04	0.13
6V2536RA	A009367	16.4	0.002	0.19	0.93
6V2536RA	A009368	31.2	0.008	1.3	3.22
6V2536RA	A009369	12.5	0.005	0.22	0.88
6V2536RA	A009370	10.5	0.003	0.17	1.18
6V2536RA	A009371	6.7	0.002	0.09	0.34
6V2536RA	A009372	5	0.001	0.13	0.32
6V2536RA	A009373	3.8	<0.001	0.06	0.33
6V2536RA	A009374	5.7	0.001	0.09	0.41
6V2536RA	A009375	7.5	0.003	0.11	0.59
6V2536RA	A009376	9	0.003	0.12	0.92
6V2536RA	A009377	7.9	0.004	0.13	0.71
6V2536RA	A009378	5.4	<0.001	0.2	0.39
6V2536RA	A009379	8.7	0.001	0.28	1.09
6V2536RA	A009380	10.4	0.005	0.14	0.78
6V2536RA	A009381	11.5	0.002	0.13	0.81
6V2536RA	A009382	4.2	0.001	0.06	0.2
6V2536RA	A009383	4.6	0.001	0.07	0.2
6V2536RA	A009384	4.6	0.001	0.05	0.29
6V2536RA		5.4	0.002	0.06	0.2
6V2536RA	*DUP A009362	80.3	0.006	2.45	3.74
6V2536RA	*DUP A009371	6.2	0.002	0.1	0.34
6V2536RA	*DUP A009381	11.7	0.002	0.13	0.82
6V2536RA		127			3.95
6V2536RA	*KC-1a		0.634	2.23	
6V2536RA	*BLANK	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay
Certificate	Sample	Ag	Cu	Pb	Zn
Number	Name	g/tonne	%	%	%
6V2536RA	A009386	7.2	0.003	0.11	0.33
6V2536RA	A009387	6.6	0.003	0.11	0.38
6V2536RA	A009388	6	0.003	0.09	0.26
6V2536RA	A009389	5.3	0.001	0.07	0.21
6V2536RA	A009390	11.4	0.003	0.09	0.58
6V2536RA	A009391	18.5	0.007	0.22	0.42
6V2536RA	A009392	9.9	0.002	0.08	0.3
6V2536RA	A009393	5.3	0.001	0.08	0.31
6V2536RA	A009394	5.8	<0.001	0.06	0.22
6V2536RA	A009395	17.8	0.003	0.39	0.24
6V2536RA	A009396	33.2	0.003	0.63	0.65
6V2536RA	A009397	101.3	0.022	0.38	3.31
6V2536RA	A009398	117.2	0.011	0.34	0.94
6V2536RA	A009399	53.6	0.006	0.27	0.66
6V2536RA	A009400	54	0.006	0.82	0.79
6V2536RA		84.2	0.007	1.31	0.74
6V2536RA	A009452	64.1	0.007	1.02	0.69
6V2536RA		41	0.002	0.62	0.51
6V2536RA		23.3	0.001	0.1	0.23
6V2536RA	A009455	70.9	0.009	0.35	0.46
6V2536RA		113.7	0.016	1.7	1.21
6V2536RA	A009457	3.5	0.008	0.07	0.39
6V2536RA		19.2	0.003	0.13	1.04
6V2536RA		42.5	0.075	0.15	0.36
6V2536RA	*DUP A009386	6.8	0.003	0.11	0.33
6V2536RA	*DUP A009395	17.3	0.003	0.39	0.25
6V2536RA		71.1	0.009	0.35	0.46
6V2536RA	*CCu-1c	127.8			4
6V2536RA	*KC-1a		0.634	2.27	
6V2536RA	*BLANK	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay
Certificate	Sample	Ag	Cu	Pb	Zn
Number	Name	g/tonne	%	%	%
6V2536RA	A009460	51.9	0.07	0.11	0.28
6V2536RA	A009461	27.7	0.018	0.1	0.18
6V2536RA	A009462	35	0.014	0.47	1.25
6V2536RA	A009463	33.6	0.012	0.23	2.13
6V2536RA	A009464	19.4	0.011	0.04	0.24
6V2536RA	A009465	14.1	0.008	0.03	0.14
6V2536RA	A009466	7.5	0.002	0.02	0.08
6V2536RA	A009467	6.2	0.001	0.02	0.07
6V2536RA	A009468	5	0.001	0.01	0.16
6V2536RA	A009469	8.7	0.003	0.01	0.09
6V2536RA	A009470	5.7	0.004	<0.01	0.03
6V2536RA	A009471	13.2	0.006	0.01	0.21
6V2536RA	A009472	13	0.003	0.01	0.1
6V2536RA	A009473	3.3	0.001	0.01	0.07
6V2536RA	A009474	8.1	0.017	0.01	0.05
6V2536RA	A009475	5	0.009	<0.01	0.08
6V2536RA		50.4	0.069	0.07	0.26
6V2536RA		9.4	0.003	0.03	0.28
6V2536RA	A009478	4.9	0.002	0.02	0.13
6V2536RA	A009479	42.6	0.011	0.06	0.1
6V2536RA		10.9	0.003	0.05	0.17
6V2536RA	A009481	6.5	0.015	0.01	0.09
6V2536RA		3	0.007	0.01	0.03
6V2536RA		2.7	0.001	0.01	0.03
6V2536RA	*DUP A009460	52.2	0.071	0.11	0.27
6V2536RA	*DUP A009469	8.4	0.003	0.01	0.09
6V2536RA	*DUP A009479	43.1	0.01	0.06	0.1
6V2536RA		129.7			4.03
6V2536RA	*KC-1a		0.635	2.24	
6V2536RA	*BLANK	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay
Certificate	Sample	Ag	Cu	Pb	Zn
Number	Name	g/tonne	%	%	%
6V2536RA	a009484	2.6	0.004	0.01	0.09
6V2536RA	A009485	3.1	0.005	0.01	0.13
6V2536RA	A009486	2.5	0.001	0.01	0.08
6V2536RA	*DUP A009484	2.7	0.003	0.01	0.09
6V2536RA	*CCu-1c	129.5			3.96
6V2536RA	*KC-1a		0.635	2.27	
6V2536RA	*BLANK	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	%	%	%
6V2716RA	A009021	10.69	11.9	0.045	0.04	0.08
6V2716RA		2.87	2.2	0.002	0.01	0.06
6V2716RA		2.18	2.6	0.001	0.03	0.11
6V2716RA		3.82	4.7	0.007	0.01	0.03
6V2716RA		0.56	3.7	<0.001	0.01	0.06
6V2716RA	A009026	0.14	2.2	<0.001	0.02	0.07
6V2716RA	A009027	0.38	2.7	<0.001	0.04	0.22
6V2716RA	A009028	1.48	5.5	0.003	0.16	0.6
6V2716RA		0.68	4.6	0.007	0.13	0.35
6V2716RA	A009030	1.35	12.5	0.012	0.17	0.59
6V2716RA	A009031	0.45	2	<0.001	0.07	0.18
6V2716RA	A009032	0.15	3.8	<0.001	0.16	0.29
6V2716RA		0.04	0.9	<0.001	<0.01	0.02
6V2716RA	A009034	0.14	1.5	<0.001	<0.01	0.01
6V2716RA		2.66	2.1	<0.001	<0.01	0.01
6V2716RA		0.2	1.3	<0.001	0.01	0.03
6V2716RA	A009037	2.45	8.1	0.027	0.14	0.25
6V2716RA		0.71	1.8	0.001	0.01	0.03
6V2716RA	A009039	1.04	63.3	0.005	0.03	0.07
6V2716RA		0.9	8.8	<0.001	<0.01	0.03
6V2716RA		0.03	2.1	<0.001	<0.01	0.02
6V2716RA		0.03	0.8	<0.001	<0.01	0.01
6V2716RA		0.01	0.3	<0.001	<0.01	0.01
6V2716RA		0.02	0.7	<0.001	<0.01	0.01
	*DUP A009021	9.29	12.9	0.043	0.05	0.07
	*DUP A009030	1.34	10.6	0.01	0.17	0.59
6V2716RA	*DUP A009040	0.78	8.7	<0.001	0.01	0.03
6V2716RA		1.29				
6V2716RA			130.8			4.01
6V2716RA				0.634	2.22	
6V2716RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	%	%	%
6V2716RA		0.02	0.8	0.003	<0.01	0.01
6V2716RA	A009046	0.02	0.6	<0.001	<0.01	0.01
6V2716RA		0.03	1	0.003	0.01	0.01
6V2716RA		<0.01	0.2	0.003	<0.01	0.01
6V2716RA	A009049	<0.01	<0.1	<0.001	<0.01	0.01
6V2716RA		0.1	0.8	0.001	<0.01	0.01
6V2716RA	A009051	0.03	0.9	<0.001	<0.01	0.01
6V2716RA		<0.01	0.3	<0.001	<0.01	0.01
6V2716RA		<0.01	<0.1	<0.001	<0.01	0.01
6V2716RA		<0.01	<0.1	<0.001	<0.01	<0.01
6V2716RA		<0.01	0.8	<0.001	<0.01	<0.01
6V2716RA		0.6	7.8	0.001	0.02	0.11
6V2716RA	A009138	0.09	2.8	<0.001	<0.01	0.04
6V2716RA		0.16	2.2	<0.001	0.01	0.02
6V2716RA		0.18	3.8	0.004	0.03	0.13
6V2716RA		0.05	1.3	<0.001	<0.01	<0.01
6V2716RA		0.09	4.1	<0.001	<0.01	<0.01
6V2716RA		0.02	0.9	<0.001	<0.01	<0.01
6V2716RA		0.02	0.4	<0.001	<0.01	<0.01
6V2716RA	A009145	<0.01	0.5	<0.001	<0.01	<0.01
6V2716RA		<0.01	<0.1	0.001	<0.01	<0.01
6V2716RA		0.23	0.9	0.002	<0.01	<0.01
6V2716RA		0.05	0.6	0.001	<0.01	<0.01
6V2716RA		0.22	2.1	<0.001	<0.01	0.01
	*DUP A009045	0.03	0.4	0.002	<0.01	<0.01
	*DUP A009135	0.01	<0.1	<0.001	<0.01	<0.01
	*DUP A009145	0.01	0.3	0.001	<0.01	<0.01
6V2716RA		1.27				
6V2716RA			129.6			4.04
6V2716RA				0.628	2.21	
6V2716RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	%	%	%
6V2716RA	A009150	0.33	15.8	0.003	0.04	0.07
6V2716RA	A009151	0.37	4.3	0.002	0.02	0.03
6V2716RA	A009152	0.13	11.6	0.003	0.01	0.01
6V2716RA	A009153	0.36	14.8	0.002	0.02	<0.01
6V2716RA		0.26	14.6	0.001	<0.01	<0.01
6V2716RA		0.24	12.3	0.001	<0.01	<0.01
6V2716RA	A009156	0.45	12.1	0.002	0.01	0.01
6V2716RA	A009157	0.16	14.3	0.002	0.01	0.03
6V2716RA		0.01	11.8	<0.001	<0.01	<0.01
6V2716RA	A009159	0.03	12	<0.001	<0.01	<0.01
6V2716RA		0.03	10.6	0.002	<0.01	0.01
6V2716RA		0.03	10.4	0.001	0.03	0.1
6V2716RA	A009162	0.13	12.3	0.002	0.01	0.01
6V2716RA		0.18	16.2	0.002	<0.01	0.01
6V2716RA	A009164	0.09	11.4	0.003	<0.01	0.01
6V2716RA	A009165	0.15	12.3	0.004	<0.01	0.01
6V2716RA		0.2	11.2	0.002	<0.01	0.01
6V2716RA	A009167	0.04	11.7	0.001	<0.01	0.02
6V2716RA		0.44	13.7	0.005	0.04	0.06
6V2716RA		0.68	13.3	0.011	0.06	0.04
6V2716RA	A009170	1.37	14.4	0.01	0.03	0.04
6V2716RA	A009171	0.12	12.6	0.002	<0.01	0.01
6V2716RA	A009172	0.33	9.8	0.001	0.01	0.01
6V2716RA		0.77	13.5	0.005	0.03	0.05
	*DUP A009150	0.36	14.9	0.001	0.04	0.06
6V2716RA	*DUP A009159	0.02	10.4	<0.001	0.01	<0.01
	*DUP A009169	0.8	16.1	0.011	0.06	0.04
6V2716RA	*OxH37	1.29				
6V2716RA			128.1			4.01
6V2716RA				0.63	2.26	
6V2716RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	%	%	%
6V2716RA		0.41	1.7	0.003	0.01	0.01
6V2716RA		0.39	3.3	0.003	0.05	0.06
6V2716RA		0.59	2.5	0.007	0.02	0.02
6V2716RA		1.12	4.5	0.012	0.02	0.02
6V2716RA		0.73	3	0.009	0.02	0.02
6V2716RA		4.26	6.6	0.01	0.1	0.33
6V2716RA		1.83	4.6	0.016	0.11	0.26
6V2716RA		1.46	4.9	0.016	0.11	0.15
6V2716RA	A009182	0.18	3.1	0.004	0.03	0.07
6V2716RA		2.53	7	0.015	0.13	0.2
6V2716RA		0.39	6.3	0.009	0.03	0.07
6V2716RA	A009185	0.78	2.7	0.007	0.02	0.03
6V2716RA		0.18	2.4	0.003	0.01	0.01
6V2716RA	A009187	0.15	2.9	0.002	0.01	0.01
6V2716RA	A009188	0.7	5.3	0.015	0.09	0.18
6V2716RA	A009189	0.16	1.8	0.003	0.02	0.06
6V2716RA		0.02	0.6	0.001	<0.01	<0.01
6V2716RA		<0.01	0.2	0.002	<0.01	<0.01
6V2716RA	A009192	<0.01	0.9	0.003	<0.01	<0.01
6V2716RA		0.01	0.9	0.002	<0.01	<0.01
6V2716RA		<0.01	0.6	0.002	<0.01	<0.01
6V2716RA		0.01	0.5	0.002	<0.01	<0.01
6V2716RA		0.02	1.1	0.011	<0.01	<0.01
6V2716RA		0.01	0.3	0.003	0.01	<0.01
	*DUP A009174	0.33	1.9	0.002	0.01	<0.01
	*DUP A009183	2.41	7.5	0.016	0.13	0.2
	*DUP A009193	0.01	0.8	0.002	<0.01	<0.01
6V2716RA		1.31				
6V2716RA	*CCu-1c		131			4.05
6V2716RA				0.633	2.19	
6V2716RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	%	%	%
6V2716RA	A009198	0.03	1.3	0.006	<0.01	0.01
6V2716RA	A009199	<0.01	1.1	0.001	<0.01	0.01
6V2716RA	A009200	<0.01	0.7	0.002	<0.01	0.01
6V2716RA	A009401	<0.01	1.4	0.001	<0.01	0.01
6V2716RA		<0.01	0.5	0.001	<0.01	0.01
6V2716RA	A009403	<0.01	0.6	0.001	<0.01	0.01
6V2716RA	A009404	<0.01	1.9	0.001	<0.01	0.01
6V2716RA	A009405	0.03	0.4	0.002	0.01	0.03
6V2716RA	A009406	5.04	23.3	0.013	0.54	0.93
6V2716RA		0.03	1.2	0.002	0.01	0.01
6V2716RA	A009408	0.01	1.3	0.001	<0.01	0.01
6V2716RA		0.06	1.2	<0.001	<0.01	0.01
6V2716RA		0.01	0.3	<0.001	<0.01	<0.01
6V2716RA	A009411	0.02	0.8	0.001	<0.01	0.01
6V2716RA		0.01	0.7	0.002	<0.01	0.01
6V2716RA	A009413	0.19	1.3	0.001	0.01	0.03
6V2716RA		0.01	1.5	0.003	<0.01	0.01
6V2716RA		<0.01	0.9	0.002	<0.01	0.01
6V2716RA	A009416	<0.01	1	0.003	<0.01	0.01
6V2716RA		0.05	10.7	0.002	0.01	0.02
6V2716RA		<0.01	0.6	0.002	<0.01	<0.01
6V2716RA	A009419	<0.01	<0.1	0.002	<0.01	<0.01
6V2716RA		0.01	0.3	0.002	<0.01	0.01
6V2716RA		0.23	5.5	0.004	0.02	0.01
	*DUP A009198	0.05	1	0.004	<0.01	0.01
6V2716RA	*DUP A009407	0.02	0.9	0.001	0.01	0.01
	*DUP A009417	0.04	9.7	0.001	0.01	0.02
6V2716RA		1.29				
6V2716RA			130.9			4.04
6V2716RA				0.635	2.22	
6V2716RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	%	%	%
6V2716RA	A009422	0.12	5.8	0.003	0.01	0.01
6V2716RA		0.1	4.2	0.003	0.01	0.01
6V2716RA		0.15	4.5	0.002	0.01	<0.01
6V2716RA	A009425	0.49	6.3	0.002	0.01	<0.01
6V2716RA	A009426	0.18	6	0.004	<0.01	0.01
6V2716RA		0.1	1.4	0.003	0.01	0.01
6V2716RA	A009428	0.1	1.6	0.002	0.01	0.01
6V2716RA	A009429	0.04	6	0.002	<0.01	0.01
6V2716RA		0.01	7.2	0.001	<0.01	0.01
6V2716RA	A009431	0.15	4.8	0.002	<0.01	0.01
6V2716RA	A009432	0.34	7.5	0.001	0.01	0.01
6V2716RA	A009433	0.51	10.7	0.001	0.02	0.03
6V2716RA	A009434	0.2	6.8	<0.001	0.01	<0.01
6V2716RA	A009435	0.16	5	<0.001	<0.01	<0.01
6V2716RA	A009436	0.03	5.6	0.001	<0.01	<0.01
6V2716RA	A009437	0.11	2.1	0.002	0.01	<0.01
6V2716RA		0.07	2	0.002	0.01	0.01
6V2716RA		0.03	7.9	0.001	0.01	0.01
6V2716RA		0.06	9.8	0.001	0.01	0.01
6V2716RA		0.23	4.3	0.001	0.01	<0.01
6V2716RA		0.32	5.2	0.002	0.01	0.01
6V2716RA	A009443	0.04	4	0.001	<0.01	0.01
6V2716RA		0.11	4	0.002	0.01	<0.01
6V2716RA		0.15	1.9	0.001	0.01	<0.01
	*DUP A009422	0.14	6	0.003	0.01	<0.01
6V2716RA	*DUP A009431	0.18	5.3	0.003	0.01	<0.01
	*DUP A009441	0.25	4.7	0.002	0.01	<0.01
6V2716RA		1.28				
6V2716RA	*CCu-1c		130.1			4.04
6V2716RA				0.631	2.27	
6V2716RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	%	%	%
6V2716RA	A009446	0.64	2.1	0.012	0.03	0.04
6V2716RA	A009447	0.5	4.8	0.009	0.09	0.04
6V2716RA		5.37	8.3	0.035	0.15	0.24
6V2716RA	A009449	3.58	7	0.025	0.11	0.19
6V2716RA	A009450	0.28	6	0.002	<0.01	<0.01
6V2716RA	A009551	0.83	1.5	0.002	0.01	0.01
6V2716RA	A009552	0.83	0.6	0.001	0.02	0.04
6V2716RA	A009553	0.47	3.7	0.001	0.01	0.01
6V2716RA	A009554	0.73	0.6	0.001	0.01	0.02
6V2716RA		1.12	3.1	0.006	0.04	0.14
6V2716RA	A009556	0.67	7.3	0.009	0.04	0.07
6V2716RA		0.81	2.1	0.004	0.02	0.03
6V2716RA		0.33	6.5	0.001	0.01	<0.01
6V2716RA	A009559	0.66	2.7	0.003	0.03	0.16
6V2716RA		2.73	5.4	0.018	0.08	0.34
6V2716RA	A009561	3.11	6.8	<0.001	0.02	0.03
6V2716RA	A009562	0.4	1.3	0.003	0.01	<0.01
6V2716RA		0.32	3.6	0.006	0.01	<0.01
6V2716RA	A009564	0.74	0.6	0.013	0.01	<0.01
6V2716RA		0.41	4	0.01	0.01	<0.01
6V2716RA		0.31	5.8	0.011	0.01	<0.01
6V2716RA	A009567	0.54	2.7	0.004	<0.01	<0.01
6V2716RA		0.33	5.2	0.005	0.01	<0.01
6V2716RA		0.37	0.9	0.004	0.03	<0.01
	*DUP A009446	0.68	4.1	0.01	0.03	0.04
	*DUP A009555	1.02	2.1	0.005	0.03	0.14
6V2716RA		0.37	5.2	0.009	0.01	<0.01
6V2716RA		1.3				
6V2716RA			128.2			3.96
6V2716RA				0.631	2.22	
6V2716RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	%	%	%
6V2716RA	A009570	0.55	6	0.006	0.01	0.01
6V2716RA	A009571	3.36	7.4	0.004	0.06	0.08
6V2716RA		0.49	2.5	<0.001	0.08	0.03
6V2716RA	A009573	0.27	6	0.001	0.03	0.04
6V2716RA	A009574	0.13	4.5	0.002	0.03	0.03
6V2716RA	A009575	0.14	3.7	0.001	0.02	0.03
6V2716RA	A009576	0.22	2.2	0.002	0.02	0.02
6V2716RA	A009577	0.03	1	0.002	0.01	0.01
6V2716RA	A009578	0.13	5.9	0.003	0.01	0.01
6V2716RA	A009579	0.07	3.3	0.001	0.01	<0.01
6V2716RA	A009580	0.03	2	0.002	0.01	<0.01
6V2716RA	A009581	0.03	1.5	0.002	0.01	0.01
6V2716RA		0.02	2.8	0.001	0.01	<0.01
6V2716RA	A009583	0.01	3.8	0.003	0.01	<0.01
6V2716RA	A009584	<0.01	1.1	0.004	0.01	<0.01
6V2716RA	A009585	0.02	1.6	0.007	0.02	0.01
6V2716RA		<0.01	2.4	<0.001	<0.01	<0.01
6V2716RA	A009587	<0.01	1.2	0.001	0.01	<0.01
6V2716RA		<0.01	1.5	0.002	0.01	<0.01
6V2716RA		<0.01	2.1	0.001	0.01	0.01
6V2716RA	A009590	<0.01	0.4	0.001	<0.01	<0.01
6V2716RA		0.19	4.8	0.001	0.06	0.08
6V2716RA		<0.01	2.9	0.002	<0.01	<0.01
6V2716RA		<0.01	1.5	0.002	<0.01	<0.01
	*DUP A009570	0.49	6.5	0.005	0.01	<0.01
	*DUP A009579	0.05	3.4	0.001	0.01	<0.01
	*DUP A009589	0.01	2.8	0.002	0.01	<0.01
6V2716RA	*OxH37	1.3				
6V2716RA			126.4			0.397
6V2716RA				0.632	2.23	
6V2716RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	%	%	%
6V2716RA	A009594	0.03	0.4	0.002	<0.01	<0.01
6V2716RA	A009595	0.17	4.8	0.002	0.01	<0.01
6V2716RA	A009596	0.7	4.8	0.006	0.01	<0.01
6V2716RA	A009597	0.3	1.1	0.003	<0.01	<0.01
6V2716RA	A009598	0.07	0.4	0.002	<0.01	<0.01
6V2716RA	A009599	0.38	2.6	0.009	<0.01	<0.01
6V2716RA	A009600	0.16	0.1	0.003	<0.01	<0.01
6V2716RA	A009601	0.24	1.3	0.002	<0.01	0.01
6V2716RA	A009602	0.49	6.1	0.003	0.01	0.05
6V2716RA		0.28	2.7	0.001	0.01	<0.01
6V2716RA		0.11	2.3	0.002	0.15	0.05
6V2716RA		0.25	3.7	0.002	0.04	0.25
6V2716RA		0.22	3.5	<0.001	0.01	0.01
6V2716RA	A009607	0.2	3	<0.001	<0.01	0.01
6V2716RA		0.07	2.4	<0.001	<0.01	<0.01
6V2716RA		0.11	1.6	<0.001	<0.01	<0.01
6V2716RA		0.17	2.9	<0.001	<0.01	<0.01
6V2716RA		0.17	1.3	<0.001	<0.01	0.01
6V2716RA		0.67	2.9	0.007	0.01	<0.01
6V2716RA	A009613	0.2	1.5	0.002	<0.01	<0.01
6V2716RA		0.1	2.2	<0.001	<0.01	<0.01
6V2716RA		2.01	1.6	0.001	0.01	0.03
6V2716RA		0.15	0.7	<0.001	0.01	<0.01
6V2716RA		0.37	0.8	<0.001	<0.01	<0.01
	*DUP A009594	0.02	0.5	0.001	<0.01	<0.01
	*DUP A009603	0.33	2.9	<0.001	0.01	<0.01
	*DUP A009613	0.23	1.2	0.001	<0.01	<0.01
6V2716RA		1.25				
6V2716RA			130			3.96
6V2716RA				0.627	2.22	
6V2716RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01

		Assay	Assay	Assay	Assay	Assay
Certificate	Sample	Au	Ag	Cu	Pb	Zn
Number	Name	g/tonne	g/tonne	%	%	%
6V2716RA	A009618	0.15	2.5	0.004	0.03	0.01
6V2716RA	A009619	0.14	1.6	0.004	0.01	0.01
6V2716RA	A009620	0.19	2	<0.001	0.01	0.02
6V2716RA	A009621	1.8	217.3	0.987	6.4	12
6V2716RA	A009622	1.91	3.3	0.005	0.04	0.04
6V2716RA	A009623	1.41	2.4	0.002	0.01	0.02
6V2716RA	A009624	2.07	3.5	0.003	0.02	0.03
6V2716RA	A009625	1.02	2.2	<0.001	0.01	<0.01
6V2716RA	A009626	1.34	1.6	0.001	0.01	0.01
6V2716RA	*DUP A009618	0.13	2.8	0.003	0.03	<0.01
6V2716RA	*OxH37	1.32				
6V2716RA	*CCu-1c		131			4.02
6V2716RA	*KC-1a			0.628	2.21	
6V2716RA	*BLANK	<0.01	<0.1	<0.001	<0.01	<0.01