
McKee Creek Property

Assessment Report 2007

RECONNAISANCE ROCK SAMPLING AND PRELIMINARY STRUCTURAL EVALUATION OF THE MCKEE CREEK PROPERTY, NORTHWESTERN BRITISH COLUMBIA

Claims involved: 389070, 389774, 389775, 389776, 389777

ATLIN MINING DIVISION

NTS 104N.043

Approximate coordinates of the centre of the property:

Latitude: 59°28'25"N; Longitude:133°32'55"W UTM: 659550N, 582250E (Zone 8)

Owner: John Harvey, Vancouver

Operator: Saturn Minerals Inc., Vancouver

[SOW 4165777]

By

Krzysztof Mastalerz, Ph.D., P.Geo.

Submitted: December 30¹⁴, 2007

TABLE OF CONTENTS

		-8-
TAB	LE OF CONTENTS	i
FIGL	JRES AND TABLES	ii
1.0	INTRODUCTION	1
	1.1 Location and Access	1
	1.2 Physiography, Vegetation and Climate	1
	1.3 Property Definition and Claim Information	2
	1.4 History	3
	1.5 Summary of Work Done by Saturn Minerals in 2007	3
2.0	TECHNICAL DATA AND INTERPRETATION	4
	2.1 Regional Geology	4
	2.2 Property Geology	5
	2.3 Rock Sampling Program	6
	2.4 Structural Observations	8
	2.5 Occurrences of gold	9
3.0	CONCLUSIONS and RECOMMENDATIONS	10
4.0	REFERENCES	12
5.0	WORK COST STATEMENT	14
6.0	CERTIFICATE	15

Page

FIGURES

- FIGURE 1. Location Map, 1: 7,000,000
- FIGURE 2. Claim map, 1: 20,000
- FIGURE 3. Regional Geology, 1:85,000
- FIGURE 4a. Sample Location Map Southwestern Part of the Property, 1: 5,000
- FIGURE 4b. Sample Location Map Northeastern Part of the Property, 1: 5,000

TABLES

TABLE 1.Claim Status

APPENDICES

- APPENDIX 1 Sample Location and Description
- APPENDIX 2 List of Laboratory Analytical Results
- APPENDIX 3 Laboratory Certificates

RECONNAISANCE ROCK SAMPLING AND PRELIMINARY STRUCTURAL EVALUATION OF THE MCKEE CREEK PROPERTY, NORTHWESTERN BRITISH COLUMBIA BCGS 104N.043

1.0. INTRODUCTION

The McKee Creek property is a lode-gold prospect located in the Atlin placer gold camp in northwestern British Columbia (Fig. 1). McKee Creek is also one of the most important placer gold producing creeks in the Atlin camp with reported production of approximately 47, 000 ounces of gold. The claim group consists presently of eight (originally seven) contiguous mineral claims (Fig. 2) located along the middle part of McKee Creek and lower part of Eldorado Creek. The property is owned by John Harvey and, since December 2006, and held under option by Saturn Minerals Ltd. of Vancouver, British Columbia.

1.1 Location and Access

The McKee Creek property is located 14.5 kilometres southeast of the town of Atlin in northwestern British Columbia (Figs. 1 and 2). The claims cover the middle third of the McKee Creek valley and lower portion of its left-bank tributary, Eldorado Creek. The property is centered approximately at latitude 59° 28.5' North and 133° 33' West on BCGS map sheet 104N.043. The property is approximately 499 hectares in area (some claims overlap each other).

Access to the property is provided by all-year-maintained gravel road from Atlin to O'Donnel River (Warm Bay Road). This road crosses McKee Creek over the bridge some 250 metres south-east of the property boundary. A rough, four-wheel-drive dirt road running along the steep north bank of the McKee Creek Valley provides direct access to the central and northeastern parts of the property. Some seasonal gravel roads are maintained by placer miners and run along the bottom of the valley which is strongly modified by hydraulic mining. A walk-in trail along the southern bank of the creek provides access to the upper reaches of Eldorado Creek.

1.2 Physiography, Vegetation and Climate

The Atlin area is located on the Teslin Plateau, just east of the Coast Mountains in northwestern British Columbia. The town of Atlin lies on the eastern shore of Atlin Lake at an elevation of 690-750 metres a.s.l. Topography of the area varies from rugged and moderately rugged to the east, to moderately diversified, with gently rolling hills with some depressions of small lakes, and rather narrow flats along Atlin Lake.

Most of the McKee property is located within the broad valleys of McKee and Eldorado Creeks, which have been modified by glacial processes and are characterized by moderately diversified relief. McKee Creek is about 12 kilometres long and flows west and southwest into Atlin Lake. Elevations on the property range from 800 metres a.s.l. in its southwestern part, through approximately 900-1200 metres a.s.l. in its central and northern parts, up to almost 1300 metres a.s.l. in its NW corner. The character of the McKee Creek Valley changes from relatively deeply incised along its middle third to a broad saddle area in its upper portion and between drainages of McKee and Spruce Creeks, towards the northeast. Topography of the McKee valley floor is very strongly modified by placer mining operations. Present day slopes of the middle part of the valley are extremely steep and undercut by hydraulicking and excavation. Modern slope processes, especially slumps and slides have considerably shaped various parts of the valley floor and have mostly concealed outcrops of argillaceous rocks.

The tree line in the Atlin vicinity lies at approximately 1400 metres a.s.l. on north facing slopes, and at 1500 metres a.s.l. on southern slopes. The valley floors are forested with lodge-pole pine, black spruce, aspen, scrub birch and willow. Mountain alder grows locally near streams. Buckbrush covers the slopes above tree line. The lower part of the McKee valley floor is almost completely unvegetated due to placer mining activity.

Summer daily temperatures near Atlin averages 20-25°C at lower elevations and declines considerably at elevations exceeding 1500-1600 metres a.s.l. Lower lying areas, located directly around Atlin Lake experience little to moderate precipitation during summer seasons. Onset of winter is frequently preceded by relatively short periods of autumn weather conditions, with considerably lowered temperatures, cloudy skies and more frequent precipitation. Winter conditions are expected from the end of October to April with moderate snowfall and temperatures averaging -15°C to -20°C in January/February.

1.3 Property Definition and Claim Information

The McKee property is located in the Atlin Mining Division (Fig. 2) and presently comprises eight Mineral Claims totaling 499.34 hectares. Seven of these claims (legacy claims) form the core of the property and are owned by Mr. J. Harvey of Vancouver. An additional claim (tenure 565006) was staked in summer, 2007, by Saturn Minerals to fill the gaps existing between legacy claims which formed the original property. Claim information is listed in Table 1.

Table 1. Claim status of	f the McKee Creek pro	perty, Atlin Min	ing Division, NTS 104N.043
Claim Name	Tenure Number	Area	Good To Date
MOTHER LODE	389070	300.0	2010/mar/31
ANITA-1	389772	25.0	2010/mar/31
ANITA-2	389773	25.0	2010/mar/31
ANITA-3	389774	25.0	2010/mar/31
ANITA-4	389775	25.0	2010/mar/31
ANITA-5	389776	25.0	2010/mar/31
ANITA-6	389777	25.0	2010/mar/31
MCKEE ADDITION	565006	49.339	2008/aug/24

In late 2006 Saturn Minerals Inc. of Vancouver, BC, optioned the property and became the operator. Work done by Saturn in summer 2007 was conducted on the following claims: 389070, 389774, 389775, 389776, and 389777. Expiry dates listed above are contingent upon acceptance of this assessment report, according to event 4165777 filed on August 24st, 2007.

1.4 History

Placer gold was first discovered in the Atlin area in 1897 by Fritz Miller on Pine Creek. By the end of 1989, more than 3000 people camped in the Atlin area. The most important placer gold production came from only 8 creeks – Spruce, Pine, Birch, Boulder, Ruby, Otter, Wright and McKee. Hydraulic mining on McKee Creek began in 1903 and accounted for most of the gold recovered from this area. Some underground work in the course of exploration and mining for placer gold was also done on the creek in the mid 1930's. From 1898 to 1945, approximately 1,369,123 grams of gold were recovered from the creek making it the 5th largest producer in the Atlin Camp (Holland, 1950).

Gold-bearing quartz veins were first discovered in the Atlin area in 1899. Soon after, most of the recently known hard-rock showings, namely: Pictou, Anaconda, Beavis, Golden View, were discovered. In 1981, Yukon Revenue Mines Ltd. re-examined the Lakeview property and showed low-grade gold values over a broad zone of a quartz stockwork developed in a listwanite alteration zone in serpenitites and ultramafics (Gonzalez and Dandy, 1987). In 1986, Homestake acquired the Yellowjacket showing on the Pine Creek, east of Atlin. Preliminary drilling intersected several intervals of considerably high gold grades in a quartz stockwork with 1-2% pyrite, which was hosted by carbonatized to talcose (advanced listwanite alteration) ultramafics. More recently, Muskox reported bonanza gold grades over numerous intervals in a few diamond drill holes on the same property (Prize Mining Corp. News Release, Apr 28, 2004).

The first gold-bearing vein zone on McKee Creek was discovered in 1940 by placer miners while driving an adit (White, 1941; Carter, 1983). Cominco examined the showing and optioned the ground in1941. A sampling program resulted in gold values ranging up to 0.36 opt. In 1983, Standard Gold Mines Ltd. announced additional gold vein discovery located approximately six kilometers northeast of the confluence of McKee and Eldorado Creeks (Gonzalez & Dandy, 1987) in a similar geological setting to McKee Creek. However, several exploration programs conducted in 1980's failed to identify a gold system in bedrock on the McKee Creek property (e.g. Wong and Troup, 1983; Gonzalez and Dandy, 1987).

1.5 Summary of Work Done by Saturn Minerals in 2007

Saturn Minerals personnel conducted a rock sampling program which was accompanied by detailed lithological and structural observations, and collection of structural measurements, on the McKee property during the summer season in 2007. The program of rock sampling resulted in 122 samples which have been ICP assayed for 30 elements. A selection of some of these samples was fire assayed. The program was designed to test for gold on reconnaissance scale. Variable lithologies and alteration products present on the property were identified and the survey was focused on selected areas of the most advanced listwanite alteration and on associated systems of quartz and carbonate veins. These areas apparently follow various tectonic zones. Selection of the zones for sampling resulted from prospecting and provisional structural and lithological observations. Ouctrops encountered during prospecting were briefly mapped and geological and structural observation collected. In selected zones of the most advanced alteration detailed photographic documentation and lithological and structural observations and measurements were taken. Saturn's program resulted in the discovery of gold bearing quartz veins in a few discrete tectonic and alteration zones on the property. Two polished thin sections were made from one of the gold bearing zones for further petrographymineralogical study.

2.0. TECHNICAL DATA AND INTERPRETATION

2.1 Regional Geology

The Atlin area is situated in the western portion of the Atlin Subterrane in northwestern British Columbia. This terrane comprises a package of detached and tectonically deformed remnants of the Late Paleozoic to Late Triassic Tethyan oceanic crust and ocean floor deposits. Its allochtonous origin is well proven by exotic fauna of the fusulinind foraminifers and conodonts (Monger 1975). The Atlin Subterrane represents the northern extension of the Cache Creek Terrane which is interpreted as a subduction ophiolitic complex related to the long lasting ocean crust evolution, volcanic arc development of the Quesnellia and Stikinia, ocean closure, and finally, the Middle Jurassic terrane accretion and localized ocean crust obduction (Monger et al., 1982; see also: Ash, 1994, Ash & Arksey 1990b, c).

The western part of the Cache Creek Terrane is highly tectonically disrupted and most units are bounded by faults. Common are mixtures of various lithologies in a form of tectonic mélanges and/or polymictic tectonic breccias. The western boundary of the terrane coincides with the Nahlin Fault where the terrane contacts with tectonically deformed strata of the Lower Jurassic Laberge Group. Cache Creek Terrane is dominated by basic volcanics and carbonate rocks, but includes also slivers of ultramafics, chert, argillite and coarse clastics of volcanic arc affinity.

Ultramafic bodies known elsewhere as the "Atlin intrusions" and interpreted before as younger intrusions (Aitken, 1959) do not show thermal contacts and have to be considered as Alpine type ultramafics. Such bodies resulted from serpentinite-peridotite diapirism occurring within orogenic belts, due to extremely ductile-type reology/ behavior of these rocks under conditions of high pressure and temperature. Small-scale plugs of tonalite and of related intrusive rocks occur in places, some of them accompanied by a molybdenite mineralization.

The lithostratigraphic scheme of the Cache Creek Terrane near Atlin is still only simplified in spite of several attempts at formalization. It is partly due to the complex nature of an overall structure and predominance of tectonic contacts between individual component units. All the lithostratigraphic (frequently of rather lithotectonic character) end-members of the Terrane are included into the Cache Creek Group. Basaltic volcanic rocks and associated volcaniclastics are grouped into the Nakina Formation, while sedimentary endmembers, predominantly chert and argillites are classified into the Kedahda Formation. However, original contacts between individual litologies of these two lithostratigraphic units are generally unknown since they form rather consistently individualized tectonic units.

Structural geology is dominated by effects of strong deformation related to formation of accretionary prism and overthrusting of detached units one upon another.

2.2 Property Geology

The area of the McKee property is covered with a relatively thick layer of loose Quaternary and minor, probably Tertiary, deposits (e.g. Gunn, 1977, Walcott, 1985, Mark 1986). These deposits include alluvial channel gravels, gravelly-to-pebbly sands, minor silts and silty clays, and finally glacial till layers. Extensive exposures of these sediments can be observed along the steep banks of the middle portion of the McKee Creek valley. Seismic surveys and drilling operations conducted so far on the property show that both McKee and Eldorado Creek paleovalleys (pre-Quaternary) are locally very deeply incised. Further downstream, south-west of the McKee Creek bridge, where the creek reaches its upper alluvial fan-deltaic segment, the thickness of loose deposits still reaches 20-30 metres (Kierans, 1984).

Bedrock outcrops account for a very small fraction of the property area, probably less than 5-10% of its total area. Very long but narrow exposures occur along the present day active channels of McKee and Eldorado Creeks. There are still few small-scale outcrops along some of the abandoned and cut-off channels, and several high, cliffy outcrops located along the steep walls of both valleys.

The property is underlain by dark gray to gray cherts, minor dark gray argillites, locally siliceous, and subordinately by other siliciclastic rocks of the Kedahda Formation (Mississippian to Triassic), greenstones, meta-andesites and meta-basalts of the Nakina Formation (Late Paleozoic), and ultramafic rocks of the Atlin Ultramafic Allochton (Ash and Arksey, 1990a). All of these rocks are classified as end members of the Cache Creek Group (Cache Creek Terrane; Terry, 1977, Ash and Arksey, 1990).

Cherts and argillites of the Kedahda Formation sometimes display moderately well preserved bedding and/or laminations but invariably show evidence of tectonic deformation. The property is situated in a broad compressional tectonic setting related to terrane accretion and thrust faulting, and the bedrock shows numerous effects of tectonic deformation. Strong fracturing of the rock, with common development of fracture cleavage and variable attitudes of the original bedding are the most common evidence of tectonic deformation. Numerous fault zones are frequently accompanied by strongly brecciated protolith rock and overprinted by listwanite alteration. Quartz and carbonate veins of variable widths, sometimes forming sheeted and stockwork-type vein systems, frequently accompany the latter zones. The listwanite alteration assemblage results from the progressive hydrothermal alteration of ultramafic and adjoining rocks, and includes serpentinization, carbonatization and development of quartz veins. The zones of the most advanced alteration are characterized by profound carbonate replacement with characteristic systems of magnesite veins, development of talc, the presence of mariposite (a green chrome mica), and a limited pyrite-arsenopyrite mineralization.

The McKee Creek valley is believed to follow a prominent NE-SW trending tectonic zone (McKee Creek Fault Zone) of a second-order thrust fault or inverse fault character (Fig 3). There occur locally slivers of strongly serpentinized ultramafics and strong carbonate replacements follows this zone. It expresses its deeply altered character as a broad belt of very low magnetic suspectibility (Gonzalez, 1985). There also are some smaller NE-SW elongated magnetic elements visible on the magnetic survey map, as well as some northeast trending VLF-EM conductors (Gonzalez 1984).

2.3 Rock Sampling Program

During the summer field season in 2007 Saturn personnel collected 122 rock samples on the McKee property. Most of this collection are grab and composite grab samples representing variable lithologies, alteration products, and/or tectonic deformation styles present on the property. Special attention was paid to test zones of advance listwanite alteration, intense development of quartz and carbonate veins and zones of the strongest deformation. Some chip samples tested selected varieties of the bedrock along available sections displaying remarkable consistency of the rock properties. A few samples were taken from subcrop areas, where bedrock was not available at the surface, but the abundance and character of the float material suggested proximity to relevant bedrock. A few float samples represent specific lithologies that were not encountered in outcrop on the property, or they have displayed unique, usually strongly advanced, development of alteration products (e.g. the ones with extremely abundant mariposite, very strong development of quartz/carbonate veins, silicification etc.).

The complete set of sample descriptions and corresponding analytical geochemical results from the sampling program are presented in Appendices 1 and 2, respectively. Appendix 1 provides UTM coordinates of the sample locations. Sample locations are also shown on maps (Figs. 4a and 4b).

The set of analytical results of the sampling program (Appendix 2) displays several geochemical features typical for the rock assemblage tested in 2007 on the McKee Creek property. It is characterized by generally low to very low contents of precious, base metals and some elements indicative of active hydrothermal systems. Some other, immobile elements, such as nickel and chromium, display on average relatively high concentrations.

Concentrations of gold and silver are frequently below their respective detection limits by ICP method. However, several samples returned considerably elevated silver values (starting from 2-3 ppm) up to 10.6-17.7 ppm, with the maximum recorded value of 48.8 ppm Ag. Similarly, several of the assayed samples returned distinctly elevated gold values.

These values range usually from approximately 30 to 231 ppb Au. Most of the samples with elevated gold values were collected from the zones of thin quartz-carbonate veins (sheeted veins to incipient stockwork) cutting through strongly listwanite-altered rock (in a few cases through strongly fractured chert), and/or just from listwanite altered rock with some disseminated to cubed pyrite and, probably, arsenopyrite. A few samples displayed even much more elevated gold values of 666, 1750, 1966, 2966 and 7733 ppb Au. All the samples tested additionally for gold by fire assay confirmed their corresponding ICP results (see Appendix 2).

Base metal concentrations are usually low to very low in the tested set of samples. Lead is very strongly depleted. Zinc and copper show predominantly moderately low to very low values, however, several samples displayed distinctly anomalous copper concentrations, ranging from 100 to 300 ppm. A few samples showed even higher Cu contents, up to a maximum of 681 ppm (Appendix 2).

Some other elements, such as arsenic, antimony and bismuth, are also characterized by generally very low to low concentrations. However, several samples from the McKee property show distinctly elevated antimony, and some of them, slightly elevated bismuth values. Noteworthy is that there exists good correlation between elevated antimony and/or bismuth, and gold and/or silver in the tested set of samples. Arsenic is commonly low but rarely varies between 200 and 661 ppm.

On the contrary, some elements display strongly elevated values in rock samples from the McKee Creek property. Especially, nickel and chromium are typical of highly elevated concentrations. Both these elements display a wide variability in a tested sample population, however, both Ni and Cr attain frequently of a few hundreds ppm. Several samples displayed nickel values ranging from 1000 to 1720 ppm, and, similarly, chromium in a range from 1000 to 1760 ppm. Both these elements represent relatively immobile constituents of the mafic and ultramafic rocks, and their contents are apparently independent of the degree of alteration of the original rock.

A distinct positive correlation between elevated values of precious metals and copper, antimony and bismuth apparently exists in a set of analyzed samples (Fig. 5). However, statistical significance of this conclusion cannot be tested rigorously due to the structure of the available data.

Common low contents of precious and base metals, as well as some other indicative elements such as arsenic, antimony and bismuth, would be usually regarded as negative evidence for the presence of a significant hydrothermal system. However, the McKee Creek property is located in a relatively unique geological setting. A great part of the samples taken during this program represents moderately-to-highly listwanite altered ultramafic to volcanogenic rocks. These rocks represent advance stages of serpentinization, carbonatization and quartz-carbonate vein development. Original protolith rocks are frequently unrecognizable by macroscopic methods and show evidence of pre-existing strong tectonic deformation (from strong fracture cleavage, through brecciation, up to the features of tectonic mélange). The process of advanced alteration of these rocks was apparently accompanied by strong leaching of several mobile elements by aggressive, CO2-bearing solutions percolating along the zones of the most intense tectonic deformations. Some distinct geological settings, especially an occurrence of prominent contacts of the contrasting lithologies and/or degree of alteration, are prerequisite for buffering of these solutions and precipitation of metals. Well developed systems of quartz-carbonate veins, being the final products of the listwanite alteration processes, appear to be the best loci for such concentrations (e.g. Ash & Arksey 1990a; Ash, 2001; Hansen et al., 2005)

2.4 Structural Observations

Most of the prospecting, rock sampling and geological observations were completed along the middle portion of the McKee Creek valley (Fig. 4a, b). The valley is believed to follow approximately one of the prominent, SW-NE striking tectonic zone, characteristic of very advanced tectonic deformation and listwanite alteration (Fig. 3). The style of tectonic deformation here is characteristic of strong fracture cleavage, brecciation, localized shearing, approaching stage of mylonitization of the preexisting rock. There is abundant evidence of several fault displacements, including faults of inverse character, occurs in this area. Some of the shallow dipping fault surfaces are apparently related to thrust-fault displacements. An overall character of several zones of severe brecciation, including coarse- to fine-grained polymictic tectonic breccias, brings about a conclusion on tectonic mélange style of deformation. Some sections displaying a mélange character are exposed in road cuts along the Warm Bay Road, between Atlin and McKee Creek.

Diversified evidence of tectonic deformation encountered during this study supports a hypothesis of the prominent tectonic zone running along McKee Creek valley. The zone display a very complex character as concluded from the variety of structural features and their variable attitude. Relics of the primary stratification surfaces (So) display variable orientation and must be interpreted in terms of either folding or variable rotation of fault blocks. Most of the So surfaces, especially in the northeastern part of the property, dip at moderate to high angles toward the NNE and NE. This attitude represents dominant orientation of tectonic planar features in the Atlin Complex of the Cache Creek Terrane resulting from the dominant direction of tectonic transport (and compression) during the terrane accretion.

Metamorphic foliation due to recrystallization (S1) is rather poorly developed on the McKee Creek property. It shows variable orientation and frequently follows the primary planar structure (So). On the contrary, very common steep zones of shearing (deformation foliation – S2) display predominantly SW-NE and WNW-ESE strikes. However, there are also common W-E strikes of moderately dipping shear zones, especially in the southwestern part of the property. Several distinct fault zones usually parallel shear planes. The sense of tectonic grooves on the surfaces of these features points to the prevailing sub-horizontal relative displacements.

Fracture cleavage is usually relatively well developed, especially in metasediments, on the property scale. However, it shows very variable orientation which apparently varies considerably between individual large-scale tectonic units/blocks.

Quartz and/or carbonate veins usually parallel shearing zones and display steep to vertical dips. Some of the veins mimic orientation of the local fracture cleavage.

2.5 Occurrences of gold

Saturn's 2007 exploration program resulted in the discovery of gold in bedrock on the McKee property. Sites containing gold are situated in three distinct areas on the property (Fig. 4a and 4b). In all of these areas gold occurs in quartz veins which cut through and run roughly parallel to the distinct zones of shearing or tectonic brecciation. Both quartz veins and wall rocks contain some (0.5-2%) of disseminated and/or coarse-crystalline, cubed pyrite. Wall rocks are characterized by listwanite alteration including variable amount of mariposite, and silicification. All discoveries are located at the valley bottom, along main channel of McKee Creek, in a wide, complex zone of strong tectonic deformation (McKee Creek Fault Zone).

The first gold discovered during the Saturn's 2007 program is located approximately 150 metres NE from the confluence of Eldorado Creek to McKee Creek (Fig. 4a). A subordinate zone of strong listwanite alteration and subparralel quartz-carbonate veins follow here a complex shearing/brecciation zone which strikes from WNW to ESE, and display variable, steep to moderate dips, toward the NE. There occur blocks of cherty tuffaceous sediments and chert nearby, but on a large-scale the host rock has to be classified as a tectonic, most probably polymictic breccia which also contains fragments of strongly altered ultramafic rock. The exposed section is a part of a complex unit of a tectonic mélange character. Sample MK07-KR27 taken here from a strongly fractured guartz-carbonate vein with some accompanied wall rock of listwanized cherty sediment returned 2.96 gpt gold. Chip samples taken from the strongly carbonatized, tectonic breccia at the footwall of the vein also returned elevated values of gold. The zone is characterized by an abundance of mariposite and 1-2% of disseminated and cubed, locally coarsecrystalline, pyrite. Several other samples taken nearby in similar geological settings, but especially in a wide zone of tectonic breccia strongly overprinted by listwanite alteration, along the lowermost part of Eldorado Creek, have returned from 43 to 666 ppb of gold.

The northeastermost gold discovery is located approximately 600-650 metres NE from the confluence of Eldorado McKee Creeks. Quartz veins carrying gold are hosted in a SW-NE striking, steeply dipping secondary shear zone. The veins attain a few centimeters in widths and run parallel to the shear zone. The zone cut through black cherty sediments and tuffaceous sediments. The host rock displays locally relatively strong silicification. Incipient mariposite occurs along and near the walls of the veins. Quartz veins, as well as the immediate wall rock, contain some 1-2% of disseminated to cubed pyrite. Three samples (MK07-KR46, 47 and 48) returned elevated gold values, including 7.73 gpt Au in MK05-KR47. The latter sample displays additionally distinctly elevated values of Ag (48.4 ppm) and Cu (442 ppm). This group of samples is also characterized by elevated contents of antimony and slightly elevated arsenic.

The third site is situated some 1300 metres downstream from the confluence of Eldorado and McKee Creeks, on tenure 389774 (Fig 4b). The area is underlain by a variety of lithologies including tuffaceous sediments, chert and fragmental metavolcanics, which host irregular diorite intrusion(?). Bedrock shows abundant evidence of strong tectonic deformation, including fracture cleavage, brecciation and shearing, and is frequently overprinted by listwanite alteration with locally abundant mariposite. Shear zones strike predominantly from WNW-ESE to WSW-ENE and their dips vary widely from moderate northward to moderate southward. Quartz veins display variable attitudes but commonly run parallel to shear and/or fracture zones. Sample MK07-KR98Q, taken there from a set of thin parallel quartz veins, returned 1.74 gpt gold. Several other samples taken nearby from quartz veins and tectonic breccia showing listwanite alteration have returned slightly elevated values of gold. Sample MK07-KR97M taken from meta-andesite to metabasalt with some pyrite following fractures, returned 180 ppb gold. Several samples from this area returned distinctly elevated (110-681 ppm) copper.

3.0 CONCLUSIONS and RECOMMENDATIONS

Several lode gold deposits are apparently spatially associated with large placer deposits. Some of the most important lode-gold deposits are postulated as developed in compressional tectonic settings in association with large-scale bodies of mafic-ultramafic rocks (cf. Ash and Arksey 1990a, Ash, 2001). Association of high-grade gold veins with the zones of listwanite alteration of the ultramafic rocks was first identified by Russian geologists in the Ural Mountains, and since then it has been postulatd for several locations in western North America, including the famous Motherlode camp in California, and Cassiar, Bralorne and possibly Barkerville in British Columbia.

Most of the McKee Creek property is underlain by various products of listwanite alteration of a complex of rocks of various compositions, including ultramafics, and forming units of a tectonic mélange character. The listwanite alteration assemblage results from the progressive hydrothermal alteration of ultramafic and adjoining rocks, and includes serpentinization, carbonatization and development of quartz veins. The zones of the most advanced alteration are characterized by profound carbonate replacement with characteristic systems of magnesite veins, development of talc, the presence of mariposite (a green chrome mica), and limited pyrite-arsenopyrite mineralization. The processes of listwanite alteration develop especially well where pre-existing rock was strongly fractured and/or brecciated making easy passages for percolating CO2-rich brines (Hansen et al., 2005). The precious metals, especially gold, are postulated to precipitate predominantly in quartz veins, during the final stage of the progressive listwanite alteration, in areas where solutions underwent effective buffering along distinct lithological contacts (cf. Ash, 2001; Hansen et al., 2005).

Saturn's 2007' gold discoveries on the McKee property are located along a prominent zone of strong tectonic brecciation and displacement (McKee Creek Fault Zone) This zone is accompanied by strong listwanite alteration and development of quartz and quartz-carbonate veins. The highest concentrations of gold occur in quartz and/or quartz-carbonate veins. Significantly elevated gold values have also been documented from the strongly brecciated and directly adjoining wall rocks which are overprinted by listwanite alteration. Gold values reported here are believed to be the first identification of the gold system in the bedrock of the property since the discovery reported in 1940 by placer miners (Carter, 1983).

The Atlin area is already known from several occurrences of gold-bearing quartz veins in listwanite settings. The Pictou, Anaconda, Beavis, Golden View and Yellowjacket showings are among the best known. Prize Mining Corp. recently reported several bonanza-grade gold intervals on the Yellowjacket property (Prize Mining Corp. News Release, Apr 28, 2004) and is conducting work towards further development of that property.

Recent identification of a gold-bearing quartz-vein system in a listwenite setting makes the McKee Creek property one of the promising lode-gold targets in the Atlin area. Further exploration work is warranted on the property. Prospecting and sampling with direct application of the criteria developed during 2007 season should be completed on the remaining part of the property, as early as possible during the next summer season (in June). Previously recognized areas of gold-bearing quartz-carbonate veins should be followed-up by detailed, outcrop-scale mapping and complementary sampling to satisfactorily delineate gold-bearing structures. Geometry, widths and attitudes of individual zones should be delimited with the best possible accuracy. Mechanical excavation of selected sites might be very fruitful. Outcrop-scale mapping programs should also be preformed on new promising targets as they arise during the prospecting and mapping processes. A rigorous program of sample quality control, using duplicates, blanks and standards, is strongly recommended.

The most promising targets should also be tested by channel samples taken over considerable lengths. All wider zones of tectonic breccias which host numerous quartz veins and are overprinted by listwanite alteration should be sampled systematically, since many features of the rock is considerably obliterated by alteration, and decisions based on macroscopic examination seem to be no longer satisfactory.

Larger-size samples are strongly recommended due to the obvious nugget effect. The results of early-season sampling and mapping program should result in a property-scale compilation concerning an overall geological structure underlying the property, and delineation of geometry and attitudes of the most important tectonic components of the bedrock.

Analytical laboratory and mapping program results should provide satisfactory data bases early enough for making additional decisions concerning further development of the property in the same summer season. Fortunately, the property can be easily accessed from early June until mid October. Exploration-scale drilling of a few carefully selected targets using relatively large-diameter core seems to be a reasonable consequence of a field program.

Some ground geophysical methods (e.g. VLF, EM or IP) might be of some help in better delineation of selected tectonic zones and prominent tectonic contacts. However, interpretation of results of such methods on the McKee Creek property might meet severe difficulties due to several factors. The most important of them are: relatively deep position and very irregular relief of bedrock surface as concluded from the previous work, irregular and shallow ground water table, and a very high degree of modification made in bedrock and overburden in the course of previous hydraulic mining for placer gold.

Applications for a drilling and trenching permits, and optionally geophysical ground work, should be submitted to the Government early in 2008, to avoid unnecessary waiting period during the field season.

4.0 REFERENCES

Aitken, J.D., 1959. Atlin map area, British Columbia; Geological Survey of Canada, Memoir 307: 89 pages.

Ash, C.H., 1994. Origin and tectonic setting of ophiolitic ultramafic and related rocks in the Atlin area, British Columbia (NTS 104N). B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 94, 48 pages.

Ash, C.H., 2001. Relationship between ophiolites and gold-quartz veins in the North American Cordillera. Ministry of Energy, Mines and Petroleum Resources, Bulletin 108, 140 pages.

Ash, C.H. an Arksey, R.L., 1990a. The Listwanite – Lode Gold Association in British Columbia. B.C. Ministry of Mines and Petroleum Resources, Geological Fieldwork 1989, Paper 1990-1: 359-364.

Ash, C.H. an Arksey, R.L., 1990b. The Atlin Ultramafic Allochton: Ophiolitic Basement within the Cache Creek Terrane; Tectonic and Metallogenic Significance. B.C. Ministry of Mines and Petroleum Resources, Geological Fieldwork 1989, Paper 1990-1: 365-374.

Ash, C.H. an Arksey, R.L., 1990c. Tectonic Setting of Listwanite-relatedGold Deposits in Northwestern British Columbia (104N/12). B.C. Ministry of Mines and Petroleum Resources, Open File 1990-22.

Carter, N.C., 1983. Summary report, McKee Creek Mineral Claims; Report dated March 23, 1983.

Gonzalez, R.A., 1984. Geological, Geochemical, and Geophysical Assessment Report of the Sylvia Claim Group, Atlin Mining Division, B.C.; Assessment Report dated October, 1984.

Gonzalez, R.A., 1985. Magnetometer Survey Report on the McKee Creek Property, Atlin Mining Division, NTS 104N/5E, 6W. Geological Branch Assessment Report 14336. Gunn, C.B. Report on Exploration Atlin-McKee Project, McKee Creek, Atlin Mining District, British Columbia. Mineral Resources Branch AR 6464.

Gonzalez, R.A., Dandy, L., 1987. Assessment Report on the Geology, Geophysics, Trenching and Diamond Drilling Programmes at McKee Creek – Atlin Mining Division. Revised version of the Report dated February 6, 1987. Hansen, L.D., Dipple, G.M., Gordon, T.M. and Kallett, D.A., 2005. Carbonated serpentinite (listwanite) at Atlin, British Columbia: a geological analogue to carbon dioxide sequestration. Canadian Mineralogist, Vol 43: 225-239.

Holland, S.S., 1950. Placer Gold Production of British Columbia: B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 28, 89 pp.

Kierans, M.D., 1984. Mineral Property Evaluation Report (Assessment Report) Becker Hammer Drilling Geological Project (September-October 1984), Royce Johnson Gold Placer Claim Group, Lower McKee Creek, East Shore of Atlin Lake, NTS104N-5E, Northwestern British Columbia. Geological Branch AR 13307

Mark, D.G., 1986. Geophysical Report on a Seismic Refraction Survey on the McKee Creek Property (Placer Leases 3041, 13222, 13223 and 13224), Atlin Area, Atlin Mining Division, British Columbia. Geological Branch AR 14507.

Monger, J.W.H., 1975. Upper Paleozoic Rocks of the Atlin Terrane, Northwestern British Columbia and South-Central Yukon. Geological Survey of Canada, Paper 74-47, 63 pp.

Monger, J.W.H., Price, R.A. and Tempelman-Kluit, D.J., 1982. Tectonic Accretion and Origin of the Two Major Plutonic Welts in the Canadian Cordillera. Geology, 10: 70-75.

Walcott, P.A. 1985. A Report on a Seismic Refraction Survey, Atlin Area, British Columbia, NTS 104N-12E.

White, M., 1941? Mine Series Section No. 2106 Progress Report #1 (McKee Creek Workings). Consolidated Mining and Smelting Company of Canada Limited.

Wong, C. and Troup, A.G., 1983. Preliminary Geochemical and Geological Report on the McKee Creek Property, Atlin Mining Division, NTS 104N/5E, 6W. Geological Branch Assessment report 11912.

Respectfully submitted, Killestalen

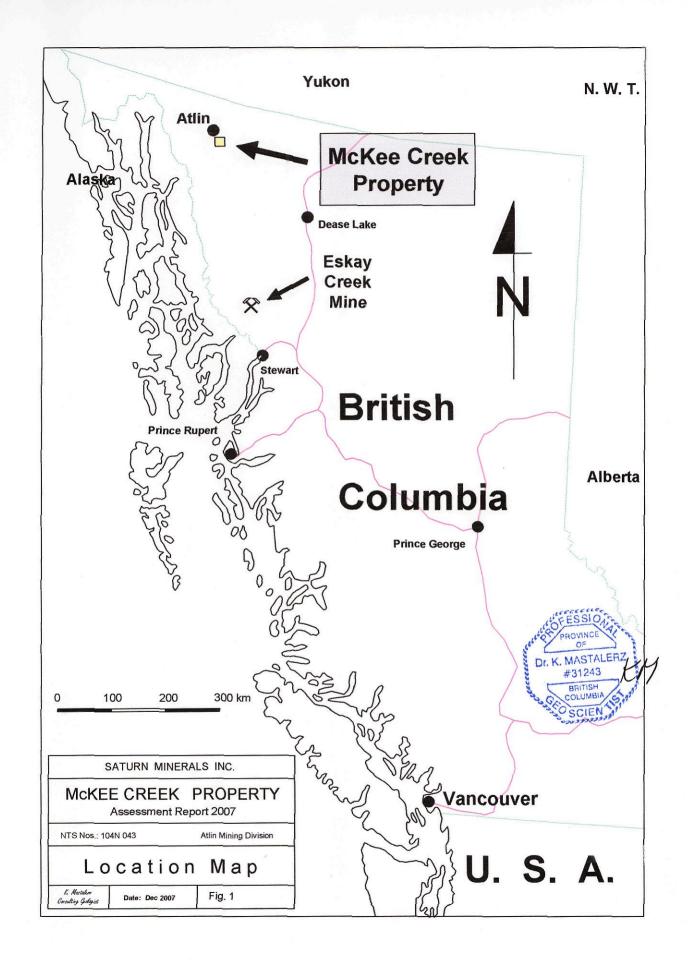
Krzysztof Mastalerz

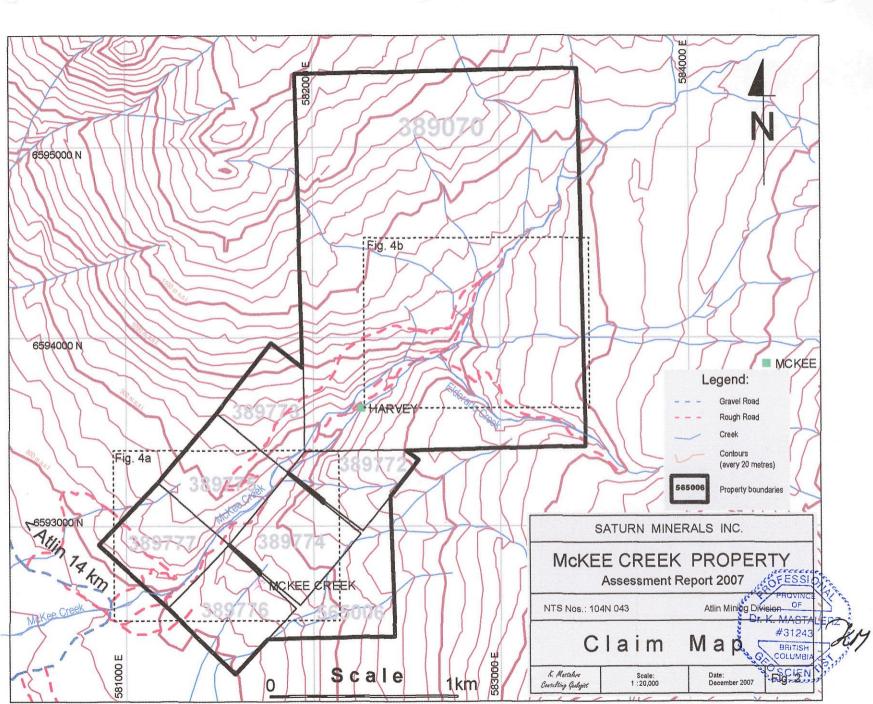
5.0 WORK COST STATEMENT

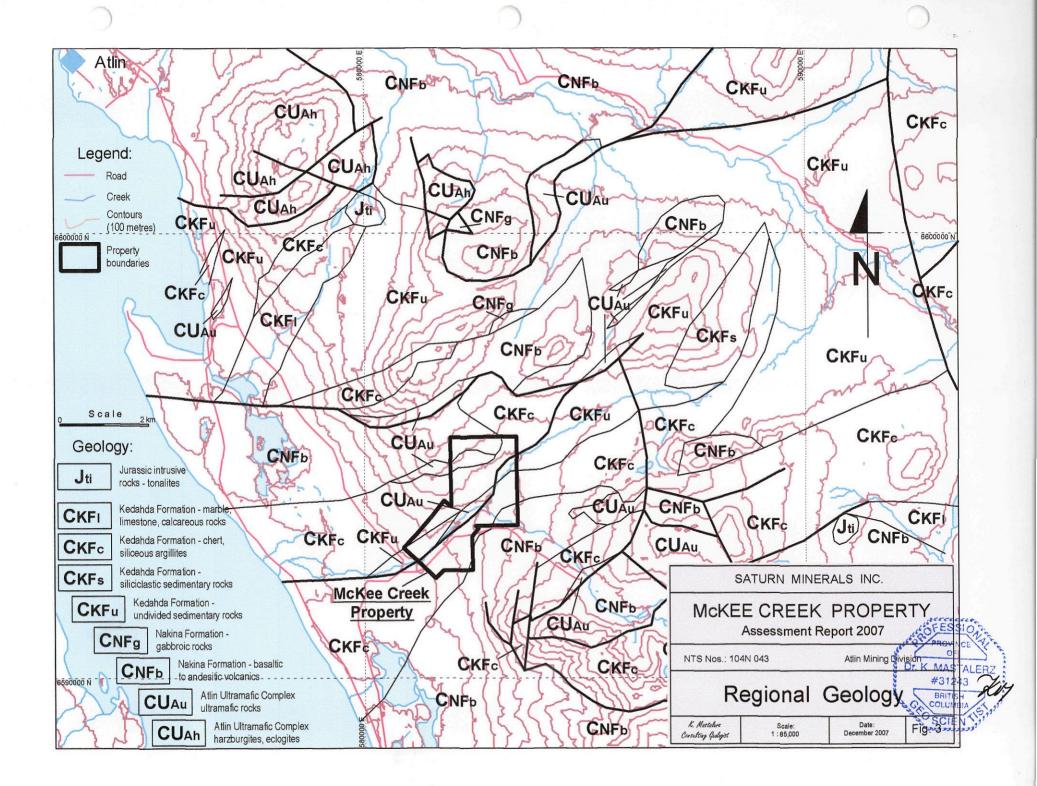
Field Personnel – Period July 02 to Aug 27, 2007:	
Geologist (K. Mastalerz) 15 days @ \$500.00 per day	7,500.00
Field assistant (R. Radomski) 15 days @ \$200.00 per day	3,000.00
Supervision (M. Elson) 2 days @ \$500.00 per day	1,000.00
Expediting (J. Gautier) 4 days @ \$250.00 per day	1,000.00
Sample shipments	250.00
Assays and analyses (Loring ICP: 88 x \$23.00)	2024.00
Assays and analyses (Pioneer ICP: 38 x \$22.25)	845.00
Assays and analyses (Pioneer Fire Assay: 4 x \$12.25)	49.00
Polished thin sections	60.00
Accommodation 17 room-days @ \$80.00 per room	1360.00
Transportation (pickup rental 15 days @ \$45.00 per day	675.00
ATV rental (15 days @ \$45.00 per day)	675.00
Fuel	130.00
Food: 32 days @ \$60.00 per day per person	1,920.00
Satelline phone Iridium (partial cost)	100.00
Small equipment and supplies	300.00
Report and map preparation, compilation:	
K. Mastalerz (5 days @ \$500/day)	2500.00
Drafting for report	650.00
Total	24,058.00

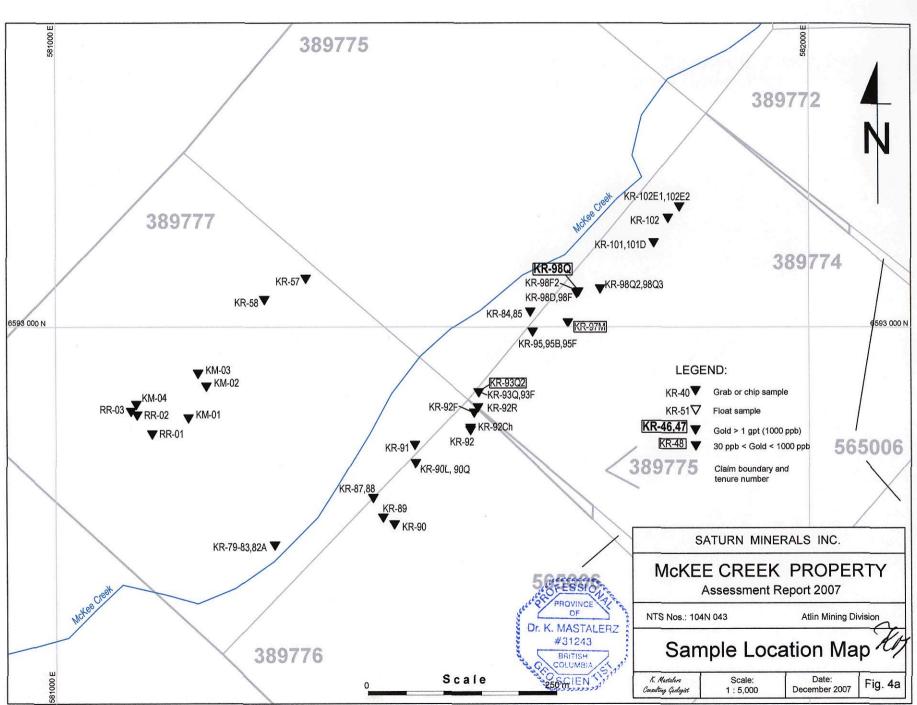
Note 1: This report spans a period prior to and post the date of filing of the Statement of Work, namely, August 24th, 2007 (event 4165777).

Note 2: Please credit the excess amount to the PAC account of the Saturn Minerals Inc..


6.0 CERTIFICATE OF PROFFESSIONAL QUALIFICATIONS


I, Krzysztof Mastalerz, do hereby certify that:


- 1. I am a geologist with an office at 2005 Bow Drive, Coquitlam, B.C.
- 2. I am a graduate of the University of Wrocław, Poland, (M.Sc. in Geology in 1981, Ph.D. in 1990).
- 3. I am a Professional Geoscientist registered with the APEG of the province of British Columbia as a member, # 31243.
- 4. I have continually practiced my profession since graduation in 1981 as an academic teacher (University of Wrocław, A. Mickiewicz University of Poznań) through 1997, a research associate for the State Geological Survey of Poland (1993-1995), and independent consulting geologist in Canada and Peru since 1994.
- 5. This report is based upon field work carried on the McKee Creek property, south of Atlin, B.C., in July and August, 2007.
- 6. I have, personally, conducted and/or supervised field work done on the property in 2007.
- 7. Interpretations and conclusions presented in this report are based on my field observations, analytical results and on previously published and archive literature available for the area.


Dated at Cooputian, BC, this 31st day of December, 2007.

Dr. K. MASTALEAZ #31243 BRITISH GCOLUMBIA Krzysztotementek Krzysztotemente

APPENDICES

Sample Tec		UTM [m]		Sample	Departmen
Sample Tag	East	North	Elevation	Туре	Description
MK07-KM01	581176	6592880	853	G	Fine-to-medium crystalline greenstone, very weak carbonatization, strongly fractured
MK07-KM02	581200	6592922	866	G	Fine-to-medium crystalline greenstone, weakly silicified, moderately fractured
MK07-KM03	581189	6592939	868	G	Small-scale quartz lenses and nodules in strongly carbonatized geenstone
MK07-KM04	581107	6592898	856	SC?	Brownish-red, strongly hematitic, carbonatized greenstone; moderate fracturing
MK07-RR01	581128	6592859	840	G	Dark greenish, aphanitic, metagabbroic(?) rock, incipient carbonate replacements; fractured
MK07-RR02	581108	6592884	849	G	Gray, aphanitic, metagabbroic(?) rock, traces of Py, slightly silicified
MK07-RR03	581100	6592889	849	G	Grayish-green, aphanitic rock, fractured, traces of Py, weakly carbonated areas
MK07-RR04	582867	6594201	1000	G	Dark green serpentinite, no visible mineralization
MK07-RR05	582867	6594201	1000	G	Dark green, strongly fractured/sheared serpentinite, magnesite-carbonate veinlets
MK07-RR06	582867	6594201	1000	G	Very strongly sheared serpentinite (subvertical shear zone), thicker carbonate (magnesite?) veins, slightly limonitic
MK07-KR07	582860	6594176	1004	G	Tectonic breccia of serpentinite (tectonic melange zone), moderately oxidized
MK07-KR08	582839	6594121	995	G	Gray, thick-bedded chert to siliceous, organic-rich fine-grained sediment, some irregular quartz veinlets
MK07-KR09	582839	6594121	995	G	Dark-gray to black, tuffaceous(?) fine sediments, strongly sheared; few quartz veinlets
MK07-KR10	582839	6594121	995	F	Brownish, moderately silicified, tuffaceous, fine grained metasediments; strongly oxidized
MK07-KR11	582839	6594121	995	F	Tectonic breccia of white quartz frags in an abundant carbonate matrix, moderately silicified, weakly oxidized
MK07-KR12	582839	6594121	995	F	Strangly carbonatized and silicified fine-grained rock (protolith unknown; ultramafic?), common mariposite
MK07-KR13	582839	6594121	995	G	Grayish, fine-grained, tuffaceous to cherty metasediment, strongly fractured to brecciated (tectonic microbreccia, almost mylonite); some guartz veinlets
MK07-KR14	582811	6594089	991	F	Quartz-carbonate (and probably sulfate) vein with some disseminated pyrite, abundant mariposite along contacts
MK07-KR15	582811	6594089	991	F	Strongly siliceous, tuffaceous, laminated metasediments, probably marly(?), abundant mariposite
MK07-KR16	582811	6594089	991	G+	Grayish tuffaceous sediments, fine-grained metavolcaniclastics and chert; thin quartz veins

MK07-KR17	582811	6594089	991	G	Thin (1-2 cm) quartz vein, localy drusy to vuggy, cut through chert; few blebs of weathered sulfides, slightly oxidized
Comple Tee		UTM [m]		Sample	
Sample Tag	East	North	Elevation	Туре	Description
MK07-KR18	582811	6594089	991	F-talus	Strongly carbonate replaced, medium grained, and strongly weathered rock - listwanite (protolith unknown; ultramafic?); incipient mariposite, trace of disseminated sulfides
MK07-KR19	582806	6594075	996	G	Shear zone between metasediments and chert, vuggy, siliceous, with some quartz veins and blebs; trace of disseminated sulfides
MK07-KR20	582796	6594051	993	G	Quartz stockwork to sheeted vein system in grayish chert with strong fracture cleavage
MK07-KR21	582796	6594051	993	G	Quartz (minor carbonate) vein, approximately 10 cm thick, locally chalcedony in cherty metasediments
MK07-KR22	582796	6594051	993	60 cm	Shear zone, strongly carbonatized, probably tuffaceous metasediment protolith(?), very contact of quartz vein (sample KR21)
MK07-KR23	582793	6594030	993	G	Dark gray, cherty metasediment, loc brecciated texture, some guartz veinlets; trace of coarse crystalline, cubic Py
MK07-KR24	582815	6594027	994	G+	Quartz vein (1-1.5 cm thick) and wall rock - dark- gray cherty metasediments; oxidized spots along the vein boundaries (weathered sulfides)
MK07-KR25	582823	6594071	995	G+	Thin quartz veins and wall rock - dark gray cherty metasediments
MK07-KR26	582823	6594071	995	G	Dark gray, medium bedded chert and cherty metasediments, locally brecciated and early cemented by silica, loc micro-vuggy with some black fine minerals (Mn-Fe oxides?)
MK07-KR27	582794	6594007	986	G+	Thin quartz veins and wall rock - dark gray cherty metasediments; veina are locally oxidized, weathered around, fracture cleavage in metasediments
MK07-KR27A	582795	6594012	986	70 cm	Dark gray, vuggy, locally brecciated, tuffaceous(?) metasediments with thin quartz veins, strong fracture cleavage, weakly oxidized
MK07-KR27B	582795	6594012	986	30 cm	Shear/fault zone, partly clayey-limonite gouge; protolith unknown
MK07-KR28 582795 6594012 986 60 cm Listwanite: strongly carbonate repl metasediments(?), partly chert, strongly carbonate repl metasediments(?), partly carbonate repl metased					
MK07-KR29	582795	6594012	986	10 cm	Listwenite hangingwall: same as above but disseminated-to-cubed Py 1-2%

MK07-KR30	582795	6594012	986	G	Listwanite: strong carbonate alteration/replacement							
				-	of tuffaceous metasediment, with numerous thin							
					guartz-carbonate veins							
MK07-KR31	582837	6594003	993	G	Quartz-carbonate vein, whitish, with some							
					listwanite wallrock with abundant mariposite along							
					footwall contact							
Sample Tag		UTM [m]		Sample	Description							
	East	North	Elevation	Туре								
MK07-KR32	582837	6594003	993	G	Quartz vein, approximately 3-5 cm thick, massive,							
	582837	6594003	993	G	whitish; with some listwanite wallrock Shear zone in listwanite altered rock, just along the							
MK07-KR33	502037	0394003	993	G								
					contact of quartz vein; abundant mariposite along the quartz vein contact							
MK07-KR34	582837	6594015	993	G	Thick-bedded, coarse-grained lapilli tuff with some							
WIN07-ININ34	302037	0394013	995	9	irregular quartz veins and lenses; cubed, weathered							
					pyrite							
MK07-KR35	582854	6593979	997	G	Gray, fine-grained tuffaceous metasediments, with							
					some cherty lenses							
MK07-KR36	582864	6593994	1008	F	Black chert to cherty siltstone, strongly fractured;							
					pyrite along fractures and disseminated 2-3%							
MK07-KR37	582834	6593979	997	G+	Dark gray chert, semimassive, strongly fractured							
					and cherty volcaniclastic; common Mn oxides							
MK07-KR38	582823	6593970	996	G	Grayish chert, microvuggs with intervenning fine							
		····			metasediments; cubic pyrite 1%							
MK07-KR39	582906	6594284	1024	G	Incipiently brecciated/sheared, grayish-green chert							
					and cherty greenstone							
MK07-KR40	582924	6594315	1023	G	Blackish brecciated chert, locally vyggy, fractures							
	50000	0504005	4000	000	followed by silicification							
MK07-KR41	582990	6594365	1033	SC?	Listwanite altered greenstone and intermediate							
					metavolcanic, abundant carbonate replacenets; brownish weathered							
MK07-KR42	583015	6594405	1040	G	Strongly sheared/faulted listwanite with abundant							
WINO / - NIN42	303013	0334403	1040	0	mariposite							
MK07-KR43	583015	6594405	1040	G	Thin veins of whitish quartz in listwanite							
MK07-KR44	583015		1040	G	Advanced listwanite alteration zone along the wall							
					of quartz vein, abundant mariposite							
MK07-KR45	583015	6594405	1040	G	Zone of intense brecciation with some quartz vein							
					in listwanite							
MK07-KR46	583014	6594408	1039	G	Shear zone in listwanite, with distinct silicification							
					and some quartz veins							
MK07-KR47	583014	6594408	1039	G	Grayish-black tuffaceous metasediments with some							
					quartz veins and incipient mariposite development							
				~								
MK07-KR48	583014	6594408	1039	G	Grayish-brown, strongly clay/talc-carbonate altered							
					tuffaceous metasediments with thin quartz veins							
MK07-KR49	583029	6594422	1038	G	Dark gray to black, fractured to brecciated, chert							
IVIT\U/-F\F\49	303029	0394422	1030	9	(lydite) with numerous thin quartz veins							
MK07-KR50	583029	6594422	1038	G	Fault/shear zone in listwanite altered rock, strong							
	303029	0004722	1000	3	silicification, abundant mariposite							
	L											

C

MK07-KR51	583018	6594415	1035	F	Listwanite altered ultramafic(?) rock with abundant mariposite and 2% of disseminated pyrite							
MK07-KR52	583034	6594445	1031	G	Shear zone in serpentinite, strong carbonate-talc alteration							
MK07-KR53	583034	6594445	1031	G	Shear zone in serpentinite, abundant mariposite, few thin quartz and carbonate veins							
MK07-KR54	583034	6594445	1031	G	Quartz-carbonate veins in a shear zone cutting through serpentinite							
Sample Tag		UTM [m]		Sample	Description							
<u> </u>	East	North	Elevation	Туре								
MK07-KR55	583034	6594445	1031	G	Irregular quartz veins and lenses in black siliceous metasediments							
MK07-KR56	583045	6594477	1037	SC?	Strongly carbonate replaced ultramafic or metavolcanic(?) rock							
MK07-KR57	581332	6593065	895	G	Greenish-gray, medium crystalline greenstone to amphibolite, incipient-to-moderate carbonate alteration							
MK07-KR58	581277	6593037	892	G	Greenish-gray, medium crystalline greenstone to amphibolite, incipient-to-moderate carbonate alteration							
MK-EX1	576860	6598808	719	G	Dark gray cherty argillites with thin (5-8 cm) shear zone, slightly limonitic							
MK-EX2	576356	6600599	731	G	Gray to almost black, felsic(?) metatuff, locally irregular silicification, incipient shearing							
MK07-KR59	582782	6593969	981	G+	Black cherty siltstone and black-matrix meta-lapilli tuff; disseminated pyrite 0.5%							
MK07-KR60	582751	6593936	985	G+	Dark gray, fine-grained black-matrix lapilli tuff, locally slightly silicified, vuggy, Mn-Fe stain, carbonate alteration							
MK07-KR61	582751	6593936	985	G+	Shear zone to verys strong fracture cleavage zone in cherty metasediments, strong carbonate alteration, strongly limonitic							
MK07-KR62	582751	6593936	985	G+	Dark gray, black-matrix lapilli tuff, locally slightly slicified, vuggy, Mn-Fe stain, locally brecciated							
MK07-KR63	582751	6593936	985	G	Greenish, serpentinite to amphibolitic greenstone, strongly fractured							
MK07-KR64	582751	6593936	985	G	Brecciated/sheared greenish serpentinite, talc- carbonate alteration, strong fracture cleavage							
MK07-KR65	582708	6593906	976	G	Irregular quartz veins and lenses in gray strongly oxidized metavolcanics, locally drusy and hematitie							
MK07-KR66	582708	6593893	980	G	Greenish, fine-to-medium crystalline metavolcanics, incipient carbonate alteration							
MK07-KR67	582702	6593893	980	G	Quartz vein and andesitic (metavolcanic), sheared wall rock, limonitic							
MK07-KR68	582700	6593906	976	G	Greenish metavolcanic rock (greenstone), strong fracture cleavage and weakcarbonate-mariposite alteration							
MK07-KR69	582706	6593866	980	G	Fault breccia in moderately carbonate altered complex of chert and metavolcanics, strongly limonitic-henatitic							

MK07-KR70	582706	6593866	980	G	Quartz veins and irregular lenses in a zone of local						
					brecciation, blebs and cubes of pyrite						
MK07-KR71	582705	6593850	981	G	Stockwork to sheeted system of quartz veins,						
					approx. 0.5 m thick, accompanying shear zone,						
					pyrite blebs						
MK07-KR72	582732	6593842	985	G	Dark gray, fractured chert with numerous thin						
					quartz veins						
MK07-KR73	582753	6593813	988	G	Strong listwanite alteration zone (carbonate-talc),						
					protolith unknown						
	A	UTM [m]		Sample							
Sample Tag	East	North	Elevation	Туре	Description						
MK07-KR74	582753	6593813		G	Strongly silicified zone of tectonic breccia						
	002700	0000010		U	(melangé) in a broad zone of listwanite alteration						
MK07-KR75	582773	6593805	991	G	Set of irregular, thin quartz-chalcedony veins in						
	302113	0333003	331	0	grayish cherty wall rock, partly sheared						
MK07-KR76	582783	6593805	991	G	Thin zone of strongly brecciated chert and						
	302703	0393003	551	9	metavolcanic(?) rock with carbonate alteration and						
14/07 1/077		0500070	1000		limonite						
MK07-KR77	582918	6593672	1030	SC?	Greenish amphibolitic meta-andesite, locally						
					sheared, disseminated pyrite 2%						
MK07-KR78	582902	6593686	1028	G	Dark green, fragmental, andesitic-to-basaltic						
					colcanic rock, locally sheared						
MK07-KR79	581290	6592712	790	G+	Grayish chert-carbonate rock, protolith -						
					andesite(?), sheared, brecciated, from melange						
					complex, trace of pyrite						
MK07-KR80	581290	6592712	790	G+	Serpentinite(?), partly fault breccia, with strong						
					chlorite-talc-carbonate alt'n, common mariposite						
MK07-KR81	581290	6592712	790	G	Strongly brecciated, black cherty metasediments,						
					with irregular quartz veins, trace of pyrite						
MK07-KR82	581290	6592712	790	G	Complex of whitish, irregular quartz-carbonate						
					veins, cut through carbonatized						
					andesite/greenstone						
MK07-KR82A	581290	6592712	790	G+	Strongly serpentinized-carbonatized metavolcanic-						
					metatuff with abundant mariposite and thin quartz						
					veins						
MK07-KR83	581290	6592712	790	G	Strongly carbonatized andesitic(?) tuff with some						
				•	quartz veins; fault zone						
MK07-KR84	581630	6593021	835	G	Weak-to-moderately altered diorite, grayish,						
	301030	0000021	000	U	medium-fine grained; trace of disseminated pyrite						
					inedium-nine grained, trace of disseminated pyrite						
MK07-KR85	581630	6593021	835	G	Meta andesite, gravish purplich with purits and						
WITU/-T\TCOJ	501050	0093021	033	G	Meta-andesite, grayish-purplish with pyrite and pyrrhotite along fractures up to 2-3%						
	500004	6502074	057								
MK07-KR86	582334	6593871	957	G	Thin (5-7 cm) quartz-carbonate vein in serpentinite,						
	504404	6500775			some whitish cerrusite						
MK07-KR87	581421	6592775	829	G	Greenish, massive, meta-andesitic lapilli tuff to tuff						
		0.500			breccia, almost greenstone						
MK07-KR88	581421	6592775	829	F	Fine-grained, open framework conglomerate,						
					calcite-aragonite cement						
MK07-KR89	581434	6592749	825	SC?	Listwanite with incipient mariposite, thin quartz						
					veins with relics of brecciated texture; pyrite along						
					contacts and inside quartz veins up to 3%						

MK07-KR90	581449	6592740	831	G+	Strongly brecciated, blackish, chert and cherty metasediments with some thin guartz veins
MK07-KR90L	581477	6592821	836	G+	Whitish carbonate and quartz veins, with metatuffaceous, serpentinized wall rock and 0.5-1% pyrite along fractures
MK07-KR90Q	581477	6592821	836	G	Cloudy, whitish quartz vein, locally microdrusy, vuggy, mariposite along the contact with chert, 0.5% pyrite
MK07-KR91	581476		844	G	Grayish, strongly fractured, tuffaceous and cherty metasediments, trace disseminated pyrite
Sample Tag		UTM [m]		Sample	Description
	East	North	Elevation	Туре	
MK07-KR92	581550	6592865	827	G+	Shear/fault zone in brecciated chert/cherty metasediments with some subparallel quartz veins to quartz stockwork, locally strong oxidation
MK07-KR92Ch	581550	6592868	827	G	Strongly brecciated chert to black-matrix meta- lapilli tuff; disseminated pyrite 1%
MK07-KR92F	581555	6592888	830	G	Fault gouge (clayey-talcose) in chert and serpentinized tuffaceous sediments
MK07-KR92R	581560	6592895	830	G	Regolith on the top of the fault zone in serpentinized tuffaceous sediments(?)
MK07-KR93Q	581561	6592915	844	G	Whitish quartz vein in a footwall of the fault zone, black metasediments-argillitic wall rock
MK07-KR93Q2	581561	6592915	844	G	Strongly oxidized, subvertical quartz vein
MK07-KR93F	581561	6592915	844	G	Fault zone/gouge in strongly brecciated, tuffaceous metasediments
MK07-KR95	581633	6592995	846	G	Andesitic, flow-banded (?) meta-tuff, greenish- purplish, fracture cleavage,; disseminated pyrite 1- 3%, trace of chalcopyrite
MK07-KR95B	581633	6592995	846	G	Greenish andesitic metatuff, strongly fractured, with strong oxidation along fractures
MK07-KR95F	581633	6592995	846	G	Greenish andesitic metatuff, strongly fractured, fracture-filled pyrite up to 5%
MK07-KR97M	581680	6593007	851	G	Greenish meta-andesite, fine-to-medium grained, with 1-2% pyrite mostly fracture controlled
MK07-KR98D	581692	6593046	852	G	Strongly weathered, brownish, chilled margin of diorite, trace-1% disseminated pyrite
MK07-KR98F	581692	6593046	852	G	Fault breccia at the contact with diorite (intrusive)
MK07-KR98F2	581694	6593048	852	G	Fault/shear zone in a melangé of andesite, serpentinite and chert, few thin parallel quartz veins
MK07-KR98Q	581694	6593048	852	G	Thin 2-4 cm quartz vein, moderately oxidized, in strongly sheared, mylonitic rock
MK07-KR98Q2	581723	6593052	848	G	Thin (2-3 cm), drusy quartz vein in strongly serpentinized gabbroic(?) rock
MK07-KR98Q3	581723	6593052	848	G	Quartz vein, 5-10 cm thick, in strongly serpentinized metavolcanic to breccia; abundant carbonaceous matrix

MK07-KR101	581794	6593113	854	G+	Strongly oxidized serpentinite to serpenitized metavolcanic, common disseminated hematite; thrust fault zone
MK07-KR101D	581794	6593113	854	G	Incipiently carbonate altered meta-andesite in a footwall of a secondary thrust fault; trace of disseminated pyrite
MK07-KR102	581813	6593146	867	G+	Fault zone in talcose altered serpentinite, some mariposite
MK07-KR102E	581828	6593161	867	G	Black metasediments and locally andesitic metatuff, sheared, with some thin quartz veins
MK07-KR102E	581828	6593161	867	G	Greenish meta-andesite with 2-3% of disseminated pyrite

Sample	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	La	Mg	Mn	Mo	Na	Ni	Ρ	Pb	Sb	Sr	Th	Ti	U	v	W	Zn
No.	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
MK07-KM01	9.4	2.58	2	<5	28	31	<1	1.96	4	78	4	159	8.50	0.02	16	1.31	1003	2	0.03	32	0.06	<1	12	5	<1	0.46	<1	366	<1	95
MK07-KM02	<0.5	2.28	2	<5	25	25	<1	1.51	3	60	23	87	6.29	0.01	14	1.34	677	1	0.03	35	0.02	<1	6	9	<1	0.27	<1	247	<1	59
MK07-KM03	4.2	0.23	2	<5	27	29	<1	6.98	0	7	67	11	0.54	0.01	40	0.25	838	<1	0.01	12	0.01	<1	3	48	2	0.04	<1	151	<1	13
MK07-KM04	6.1	1.76	4	<5	29	20	<1	3.90	4	77	109	1	8.23	0.14	22	1.77	2312	1	0.02	105	0.03	<1	14	31	<1	0.60	<1	446	<1	75
MK07-RR01	<0.5	3.01	3	<5	30	27	<1	1.53	4	75	8	201	8.33	0.07	12	1.55	782	1	0.03	45	0.02	<1	6	8	<1	0.26	<1	290	<1	72
MK07-RR02	3.6	3.02	2	<5	25	10	<1	1.16	5	84	19	80	9.92	0.02	12	1.56	1045	1	0.03	36	0.03	<1	9	4	<1	0.41	<1	371	<1	98
MK07-RR03	1.92	2.46	2	<5	28	15	<1	1.35	4	67	11	131	7.53	0.01	13	1.50	789	1	0.04	38	0.02	<1	6	3	<1	0.40	<1	382	<1	68
MK07-RR04	3.2	0.93	4	<5	61	13	<1	1.05	4	86	1570	14	6.21	<0.01	5	11.77	598	<1	0.01	1310	0.00	<1	61	6	<1	0.02	<1	194	<1	24
MK07-RR05	2.9	1.04	4	<5	43	11	<1	4.05	4	64	830	11	5.42	<0.01	16	11.73	3036	<1	0.01	911	0.00	<1	29	32	<1	0.02	<1	178	<1	17
MK07-RR06	3.9	0.20	3	<5	- 30	13	<1	3.08	3	52	682	2	3.85	<0.01	19	7.84	1642	<1	0.01	479	0.00	<1	26	27	<1	<0.01	<1	102	<1	9
MK07-KR07	<0.5	0.69	7	<5	35	10	<1	0.73	4	73	1680	2	5.19	<0.01	2	10.30	909	<1	0.01	1030	0.02	<1	71	20	2	<0.01	<1	161	<1	14
MK07-KR08	3.5	0.50	5	<5	34	93	<1	0.47	1	18	115	27	1.73	0.26	14	0.22	91	19	0.01	49	0.12	<1	6	16	5	0.01	<1	92	<1	87
MK07-KR09	3.9	1.54	7	<5	34	121	<1	0.18	3	46	47	79	5.30	0.31	11	0.76	404	5	0.03	51	0.03	<1	3	13	<1	0.02	<1	102	<1	102
MK07-KR10	<0.5	1.72	80	<5	28	83	<1	4.00	5	79	743	22	7.66	0.16	26	5.47	2209	3	0.01	761	0.05	<1	45	94	<1	<0.01	<1	156	<1	95
MK07-KR11	<0.5	0.12	8	<5	30	56	<1	9.59	2	21	112	-2	3.05	0.01	41	4.34	780	<1	0.01	21	0.00	<1	5	132	<1	<0.01	<1	172	<1	
MK07-KR12	10.6	0.33	64	<5	22	29	<1	4.11	3	65	841	19	5.36	0.06	24	7.96	1434	<1	0.01	847	0.00	<1	44	250	<1	<0.01	<1	129	<1	25
MK07-KR13	<0.5	0.75	3	<5	34	105	<1	0.44	1	30	51	88	3.15	0.23	17	0.31	478	1	0.01	38	0.03	<1	2	12	<1	0.01	<1	48	<1	68
MK07-KR14	6.4	0.15	7	<5	26	47	<1	11.97	3	38	418	7	4.54	0.01	41	7.71	554	<1	0.01	325	0.00	<1	13	249	<1	<0.01	<1	199	<1	6
MK07-KR15	1.8	0.37	18	<5	29	55	<1	9.76	2	51	835	43	4.29	0.02	44	5.02	936	<1	0.02	835	0.02	<1	29	101	<1	<0.01	<1	232	<1	28
MK07-KR16	1.6	0.93	8	<5	32	34	<1	2.89	2	26	167	41	2.60	0.12	26	1.41	700	3	0.02	89	0.04	<1	6	55	<1	0.01	<1	118	<1	41
MK07-KR17	<0.5	0.17	2	<5	31	35	<1	0.30	0	8	186	5	0.74	0.02	5	0.26	228	1	0.01	42	0.00	<1	11	5	7	<0.01	<1	49	<1	13
MK07-KR18	<0.5	0.35	36	<5	21	15	<1	1.47	3	54	837	5	3.87	<0.01	13	5.63	777	1	0.01	750	0.00	<1	35	17	<1	<0.01	<1	113	<1	30
MK07-KR19	<0.5	0.36	6	<5	32	52	<1	0.20	2	20	164	50	1.68	0.17	13	0.14	401	10	0.01	102	0.03	<1	9	7	<1	<0.01	<1	70	<1	89
MK07-KR20	<0.5	0.08	7	<5	28	22	<1	0.06	0	7	193	4	0.63	0.05	2	0.08	59	1	0.01	24	0.01	<1	12		<1	<0.01	<1	27	<1	10
MK07-KR21	<0.5	0.08	23	35	30	71	<1	0.96	2	25	221	24	2.62	0.04	13	0.42	1169	1	0.01	113	0.01	<1	17			<0.01	<1	80	<1	27
MK07-KR22	<0.5	1.18	101	<5			<1	1.22	5		1270	74	8.62	0.15	11	5.09	1853	2	0.01	715	0.02	<1	58		-	<0.01	<1	172	<1	82
MK07-KR23	<0.5	0.77	3	<5	28	66	<1	0.30	1	23	210	33	2.48	0.04	11	0.71	522	1	0.03	51	0.01	<1	9	11	<1	0.01	<1	86	<1	67
MK07-KR24	<0.5	0.17	16	33			<1	0.05	1	14	171	21	1.33	0.09	8	0.08	166	1	0.01	47	0.00	<1	13	3	<1	<0.01	11	22	<1	34
MK07-KR25	<0.5	0.12	13	<5	28	50	<1	0.03	1	12	163	19		0.07	2	0.04	176	3	0.01	21	0.01	<1	11	4	5	<0.01	<1	22	<1	28
MK07-KR26	17.7	0.75	5	<5	29	98	<1	0.04	1	23	147	39	2.07	0.21	8	0.37	594	1	0.01	34	0.01	<1	9		<1	<0.01	<1	22	<1	58
MK07-KR27	2.7	0.82	31	2966	32	132	3	0.65	3	36	97	103	4.48	0.23	20	0.06	218	17	0.01	70	0.27	<1	6			<0.01	<1	81	<1	169
MK07-KR27A	<0.5	0.44	82	73	28	138	1	0.07	2	28	126	75	2.80	0.19	11	0.05	143	7	0.01	96	0.02	<1	9	34	<1	<0.01	<1	27	<1	99
MK07-KR27B	11.7	0.36	661	33	30	52	2	0.43	4	97	182	72	8.51	0.23	18	0.20	1371	6	0.01	937	0.02	<1	30		<1	<0.01	<1	81	<1	133
MK07-KR28	2.6	0.36	477	<5	24	39	<1	4.86	3		440	21	5.85	0.05	32	4.45	1388	1	0.01	832	0.01	<1	15		<1	<0.01	<1	156		52
MK07-KR29	<0.5	0.31	463	<5	21	32	<1	4.58	4	71	459	17	5.89	0.04	28	6.04	1157	1	0.01	848	0.01	<1	18	242	<1	<0.01	<1	140	<1	47
MK07-KR30	<0.5	2.62	542	13	22	42	<1	3.96	4	86	1760	18	6.54	0.01	25	5.19	1733	3	0.01	1060	0.01	<1	73	187	<1	<0.01	<1	269	<1	69
MK07-KR31	4.5	0.28	98	<5			<1	2.49	2	35	268	11	3.16	0.10	23	2.75	787	1	0.01	243	0.01	<1	42	141	<1	<0.01	<1	108	<1	23
Blank	<0.5	<0.01	1	<5	21	1	<1	<0.01	<1	<1	<1	<1	<0.01	<0.01	<1	<0.01	1	<1	0.01	<1	<0.01	<1	<1	1	<1	<0.01	<1	16	<1	1

Sample	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La	Mg	Mn	Мо	Na	Ni	Ρ	Pb	Sb	Sr	Th	Ti	U	V	W	Zn
No.	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
MK07-KR32	4.6	0.07	42	<5	21	7	<1	0.06	1	13	175	8	0.84	0.01	2	0.08	95	1	0.01	119	<0.01	<1	15	2	<1	<0.01	<1	16	<1	9
MK07-KR33	8.4	0.74	156	<5	17	178	<1	0.17	5	84	277	55	6.12	0.07	11	0.59	500	5	0.01	781	0.07	<1	36	77	<1	<0.01	<1	76	<1	94
MK07-KR34	6.9	2.81	12	<5	16	63	<1	5.80	5	73	811	141	5.96	0.04	24	3.87	1997	2	0.01	555	0.03	<1	21	28	<1	<0.01	<1	189	<1	64
MK07-KR35	<0.5	0.47	7	<5	18	49	<1	0.08	1	17	23	7	1.65	0.22	15	0.10	80	7	0.01	30	0.01	<1	5	8	4	<0.01	<1	22	<1	97
MK07-KR36	<0.5	0.72	3	<5	21	49	<1	0.23	1	20	53	29	1.81	0.21	6	0.51	384	1	0.02	22	0.01	<1	2	4	3	0.04	<1	22	<1	43
MK07-KR37	<0.5	1.14	5	<5	21	96	<1	0.07	2	30	17	57	2.49	0.22	5	0.39	281	2	0.01	40	0.02	<1	2	8	<1	<0.01	<1	11	<1	46
MK07-KR38	<0.5	0.93	4	<5	21	55	<1	0.03	1	19	55	59	1.79	0.11	2	0.56	291	1	0.02	16	0.01	<1	2	7	<1	<0.01	<1	27	<1	32
MK07-KR39	<0.5	2.44	4	<5	15	42	<1	0.61	4	54	147	153	4.47	0.25	5	2.92	818	1	0.02	54	0.03	<1	8	3	<1	0.37	<1	238	<1	63
MK07-KR40	<0.5	2.34	3	<5	20	26	<1	0.14	4	47	54	34	5.50	0.06	3	1.92	809	1	0.03	17	0.04	<1	2	3	<1	0.03	<1	151	<1	90
MK07-KR41	6.5	0.33	11	<5	20	6	<1	0.42	3	57	919	14	3.13	<0.01	<1	5.76	367	<1	0.01	675	<0.01	<1	25	14	<1	<0.01	<1	65	<1	10
MK07-KR42	<0.5	0.55	10	<5	14	32	<1	7.51	3	46	558	10	3.25	<0.01	32	4.98	1076	1	0.01	586	0.03	<1	20	195	11	<0.01	<1	135	<1	35
MK07-KR43	<0.5	0.56	10	<5	17	27	<1	9.59	4	33	172	<1	3.72	0.02	35	5.54	1232	<1	0.01	99	0.07	<1	8	369	<1	<0.01	<1	140	<1	26
MK07-KR44	2.9	0.18	16	<5	13	18	<1	6.40	2	23	95	48	2.28	0.04	28	3.48	1423	<1	0.01	76	<0.01	<1	40	199	<1	<0.01	<1	87	<1	14
MK07-KR45	<0.5	0.68	4	<5	11	31	<1	2.63	3	33	32	32	3.85	0.02	22	1.62	541	1	0.01	11	0.05	<1	2	75	2	<0.01	<1	43	<1	72
MK07-KR46	2.1	0.76	17	1966	18	21	<1	5.48	4	44	272	6	4.21	0.08	29	5.08	1119	<1	0.01	304	0.05	<1	10	244	<1	<0.01	<1	108	<1	30
MK07-KR47	48.4	0.30	45	7733	17	10	<1	3.58	2	18	181	422	1.46	0.03	21	2.61	375	<1	0.01	194	<0.01	103	28	205	<1	<0.01	<1	60	<1	32
MK07-KR48	<0.5	1.49	83	51	13	12	<1	3.77	5	62	970	51	4.59	0.03	17	7.39	861	1	0.01	787	0.01	<1	197	234	3	<0.01	<1	130	<1	21
MK07-KR49	<0.5	1.08	7	<5	19	55	<1	11.46	3	29	102	2	3.21	<0.01	44	6.38	918	<1	0.01	61	0.14	<1	4	183	<1	<0.01	<1	151	<1	25
MK07-KR50	7.6	1.10	14	<5	17	55	<1	10.54	3	37	585	28	3.13	0.02	38	5.73	790	1	0.02	524	0.05	<1	15	142	4	<0.01	<1	157	<1	44
MK07-KR51	4.8	0.30	7	<5	17	73	<1	11.24	4	66	749	22	4.02	0.02	35	6.19	610	<1	0.01	921	0.01	<1	18	162	6	<0.01	<1	157	<1	13
MK07-KR52	7.1	0.64	10	<5	61	21	<1	1.36	6	86	1460	8	5.23	<0.01	2	12.38	705	<1	0.01	1540	<0.01	<1	38	25	4	0.01	<1	124	<1	15
MK07-KR53	3.1	0.13	7	<5	21	42	<1	2.94	6	55	434	2	4.66	0.02	10	12.36	495	<1	0.01	766	<0.01	<1	11	91	<1	<0.01	<1	81	<1	9
MK07-KR54	7.5	0.20	9	<5	23	60	<1	3.75	4	54	694	5	3.61	0.02	17	9.72	417	<1	0.01	741	<0.01	<1	17	119	<1	<0.01	2	70	<1	9
MK07-KR55	3.9	0.53	5	<5	20	41	<1	2.24	1	13	103	32	1.20	0.01	19	1.69	505	1	0.01	40	0.12	<1	3	70	<1	<0.01	<1	49	<1	19
MK07-KR56	<0.5	2.80	7	<5	13	72	<1	3.03	6	81	177	61	7.81	0.09	16	2.84	1208	4	0.02	82	0.04	<1	4	53	<1	0.01	<1	232	<1	59
MK07-KR57	<0.5	1.95	3	<5	23	16	<1	1.11	3	45	47	42	3.37	0.01	9	1.35	476	1	0.04	42	0.01	<1	2	23	<1	0.19	<1	135	<1	38
MK07-KR58	3.4	2.91	3	<5	24	15	<1	2.92	3	39	64	52	3.15	0.01	15	1.16	459	1	0.03	34	0.01	<1	2	8	<1	0.11	<1	135	<1	36
MK07-KR59	<0.5	0.93	2	<5	21	84	<1	0.09	2	23	44	31	2.02	0.17	7	0.41	453	1	0.02	26	0.01	<1	2	9	2	0.01	<1	22	<1	49
MK07-KR60	11.6	1.60	21	<5	14	78	<1	0.74	4	88	368	125	5.06	0.29	11	0.85	742	3	0.02	142	0.27	<1	13	30	<1	0.03	<1	92	<1	94
MK07-KR61	<0.5	1.84	14	<5	14	83	<1	0.29	6	89	356	63	7.87	0.14	7	0.08	805	3	0.01	216	0.10	<1	14	13	<1	<0.01	<1	119	<1	131
MK07-KR62	<0.5	2.89	25	<5	16	158	<1	0.17	7	97	623	56	8.92	0.91	3	1.07	921	2	0.02	283	0.05	<1	21	6	<1	0.16	<1	173	<1	133
MK07-KR63	1.7	2.93	18	127	16	105	<1	0.52	6	90	531	77	8.50	0.20	9	0.70	1516	2	0.03	253	0.18	<1	19	14	<1	0.01	<1	113	<1	136
MK07-KR64	6.2	2.26	101	<5	17	131	2	0.07	10	133	250	132	12.89	0.28	1	0.10	699	5	0.01	258	0.04	<1	12	8	<1	<0.01	<1	49	<1	220
MK07-KR65	8.9	0.98	117	208	18	77	<1	0.45	4	61	164	31	4.53	0.19	6	0.04	751	2	0.01	110	0.09	<1	14	17	<1	<0.01	<1	43	<1	86
MK07-KR66	6.6	2.82	19	<5	19	35	<1	2.22	5	90	774	41	7.48	0.73	16	1.25	802	1	0.04	224	0.19	<1	24	25	<1	0.16	<1	221	<1	98
MK07-KR67	4.8	1.26	183	130	18	96	<1	0.16	8	115	241	144	10.44	0.28	2	0.09	777	2	0.01	171	0.05	<1	23	8	<1	<0.01	<1	32	<1	105
MK07-KR68	<0.5	2.65	16	<5	17	65	<1	6.35	5	72	668	77	6.26	0.12	32	1.99	1232	1	0.02	218	0.04	<1	20	91	<1	<0.01	<1	167	<1	69
MK07-KR69	1.4	3.83	23	43	17	288	<1	1.63	8	111	302	173	11.14	0.13	17	0.47	2383	4	0.01	234	0.06	<1	14	35	<1	<0.01	<1	184	<1	145

Sample	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	La	Mg	Mn	Мо	Na	Ni	Ρ	Pb	Sb	Sr	Th	Ti	U	V	W	Zn
No.	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
MK07-KR70	1.9	1.41	34	666	21	96	<1	0.16	2	26	133	137	1.89	0.05	6	0.13	167	11	0.01	59	0.04	<1	16	35	<1	<0.01	<1	11	<1	161
MK07-KR71	<0.5	0.75	21	231	21	207	<1	0.16	1	17	123	40	1.30	0.08	5	0.03	93	4	0.01	26	0.07	<1	5	30	6	<0.01	<1	27	<1	37
MK07-KR72	1.9	0.19	12	<5	24	119	<1	0.02	1	11	136	29	0.95	0.07	<1	0.02	320	1	0.01	20	0.01	<1	6	9	6	<0.01	<1	16	<1	25
MK07-KR73	9.6	2.47	67	<5	18	578	<1	0.16	6	105	1170	82	8.11	0.08	10	0.19	859	3	0.01	855	0.07	<1	48	78	<1	<0.01	<1	173	<1	94
MK07-KR74	<0.5	0.28	7	<5	25	76	<1	12.07	7	22	147	5	2.51	0.02	42	5.93	576	0	0.04	54	0.49	<1	2	82	1	<0.01	<1	130	<1	15
MK07-KR75	<0.5	0.28	7	<5	23	125	<1	0.22	1	9	133	12	0.72	0.06	3	0.11	289	1	0.01	44	0.01	<1	6	12	5	<0.01	<1	16	<1	18
MK07-KR76	6.0	2.61	11	<5	22	249	<1	0.47	6	88	205	87	7.68	0.32	21	0.36	1661	4	0.01	118	0.10	<1	9	26	<1	0.02	<1	108	<1	138
MK07-KR77	1.1	2.31	3	<5	21	22	<1	1.69	4	52	101	78	4.61	0.02	12	1.72	671	1	0.04	42	0.03	<1	8	34	<1	0.33	<1	237	<1	42
MK07-KR78	3.2	2.38	3	<5	11	625	<1	3.16	7	85	165	39	8.45	0.69	16	1.92	1030	1	0.08	63	0.03	<1	10	52	<1	0.36	<1	378	<1	75
Repeats																														
MK07-KM01 ck	9.2	2.67	3	<5	29	30	<1	2.14	4	79	6	167	9.23	0.03	18	1.33	1007	2	0.03	31	0.06	<1	14	5	<1	0.56	<1	376	<1	95
MK07-KR16 ck	1.5	0.92	7	<5	30	33	<1	2.87	1	26	164	41	2.55	0.12	27	1.32	686	3	0.02	89	0.03	<1	7	55	<1	0.01	<1	129	<1	41
MK07-KR32 ck	4.5	0.09	45	<5	23	10	<1	0.07	1	14	193	9	0.91	0.02	<1	0.09	102	1	0.01	127	<0.01	<1	16	3	<1	<0.01	1	16	<1	11
MK07-KR52 ck	6.9	0.62	8	<5	55	20	<1	1.23	6	83	1350	7	4.64	<0.01	3	11.64	632	<1	0.01	1470	<0.01	<1	37	24	<1	0.01	<1	113	<1	14
MK07-KR70 ck	2.0	1.10	29		18	91	<1	0.15	2	24	127	129	1.72	0.04	7	0.11	158	10	0.01	54	0.04	<1	14	33	<1	<0.01	<1	12	<1	158

Sample	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Cd	As	U	Th	Fe	Ca	Sb	Bi	V	Sr	Ρ	Mg	Cr	La	Ba	Ti	В	AI	Na	К	W	Au
No.	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm	%	ppm	%	%	%	ppm	ppb
MK07-KR79	1	92	3	56	.3	324	51	1518	.5	16	8	2	6.38	4.09	3	3	87	122	.030	5.83	447	3	43	.01	20	1.75	.02	.15	2	7
MK07-KR80	4	61	8	50	.3	495	34	1739	.7	11	8	2	4.32	8.03	3	5	30	330	.042	4.20	235	5	39	.01	20	.64	.01	.12	2	4
MK07-KR81	7	28	6	35	.3	29	7	655	.5	19	8	2	1.63	4.95	3	3	42	106	.012	1.48	139	3	22	.01	20	.75	.01	.01	2	2
MK07-KR82	1	17	5	21	.3	304	23	1464	.5	4	8	2	3.43	21.21	3	4	13	772	.027	7.78	85	3	18	.01	20	.11	.01	.08	2	1
MK07-KR82A	4	31	3	51	.3	1098	58	898	.5	23	8	2	5.90	3.53	3	4	30	172	.066	8.01	274	7	24	.01	20	.28	.01	.15	2	1
MK07-KR83	5	29	12	33	.3	32	5	649	.5	2	8	2	1.39	3.55	3	4	11	160	.051	1.98	138	7	24	.01	20	.22	.01	.09	48	8
MK07-KR84	2	35	8	62	.3	171	34	1203	.5	2	8	2	5.28	2.47	3	3	128	42	.056	4.73	514	7	69	.01	20	3.40	.02	.11	2	7
MK07-KR85	1	286	3	169	.3	176	76	1531	.5	2	8	2	12.94	.75	3	3	332	17	.301	2.98	398	8	23	.04	20	3.71	.01	.42	2	2
MK07-KR86	4	2	20	38	.3	359	21	1258	.5	60	8	2	2.72	11.14	3	3	14	339	.009	10.46	175	3	24	.01	20	.11	.01	.01	2	1
MK07-KR87	1	59	3	57	.3	51	27	746	.5	2	8	2	4.98	2.49	3	3	148	28	.038	2.26	57	1	22	.31	20	2.61	.03	.02	2	1
MK07-KR88	1	10	5	17	.3	28	3	581	.5	5	8	2	2.84	24.38	3	3	38	328	.033	6.41	102	8	201	.03	20	.70	.02	.04	2	1
MK07-KR89	4	140	8	86	.3	112	31	1178	.5	6	8	2	5.69	2.01	3	3	114	43	.023	.81	89	4	114	.01	20	.45	.01	.03	2	1
MK07-KR90	11	46	9	62	.3	30	5	560	.5	3	12	2	1.61	1.20	3	3	92	44	.125	.84	141	9	40	.02	20	.66	.01	.06	2	12
MK07-KR90L	2	50	4	66	.3	272	35	2654	.5	20	8	2	5.55	9.08	6	3	85	250	.064	5.57	439	5	46	.01	20	1.74	.01	.14	2	5
MK07-KR90Q	6	15	3	30	.3	65	8	734	.5	6	8	2	1.85	3.63	3	3	14	90	.038	2.15	116	4	18	.01	20	.31	.01	.08	2	18
MK07-KR91	4	96	3	169	.3	166	41	1898	.5	5	13	6	9.70	1.31	3	3	127	33	.169	1.93	168	47	106	.12	20	2.70	.01	.73	2	15
MK07-KR92	2	119	4	50	.3	228	38	1390	.5	5	8	2	5.28	7.68	3	3	148	180	.029	5.89	265	7	57	.01	20	2.91	.01	.02	2	11
MK07-KR92Ch	3	112	5	139	.3	50	25	922	.5	2	9	2	6.04	1.62	3	3	219	28	.113	2.58	110	13	67	.01	20	2.46	.01	.10	2	10
MK07-KR92F	3	15	5	38	.3	205	12	1886	.5	3	8	2	2.95	11.91	5	3	33	432	.034	5.90	323	5	79	.01	20	.86	.01	.02	2	9
MK07-KR92R	5	42	4	290	.3	214	32	1015	.5	8	18	5	9.57	2.11	3	3	174	47	.828	2.12	59	53	69	.01	20	2.87	.03	.07	2	4
MK07-KR93Q	11	18	5	13	.3	14	3	153	.5	3	8	2	.57	.13	3	3	7	5	.021	.06	153	2	21	.01	20	.08	.01	.06	2	9
MK07-KR93Q2	31	227	16	187	.3	71	8	852	.6	9	8	4	2.88	.32	4	5	24	16	.079	.16	112	9	54	.01	20	.34	.01	.09	68	27
MK07-KR93F	26	110	11	223	.3	431	29	1160	2.3	6	8	2	5.28	4.55	3	4	215	166	.035	3.10	232	5	40	.01	20	1.02	.01	.02	2	15
MK07-KR95	2	217	6	177	.3	316	29	3659	.5	6	8	7	8.04	.66	3	4	119	25	.227	2.26	110	24	223	.17	20	3.43	.01	.07	2	12
MK07-KR95B	54	681	30	206	14.1	492	103	46000	3.6	249	20	3	7.98	1.32	3	6	143	411	.241	.26	45	71	7523	.01	20	.38	.01	.15	2	17
MK07-KR95F	2	369	3	208	.3	205	74	3755	.5	15	8	2	11.59	.93	3	3	231	23	.362	.84	227	8	133	.01	20	2.50	.02	.18	2	18
MK07-KR97M	1	541	3	195	.3	175	68	3090	.5	10	8	2	12.72	1.39	3	3	333	22	.350	1.47	291	7	42	.01	20	1.84	.03	.06	2	180
MK07-KR98D	5	49	3	100	.3	282	29	736	.5	16	8	2	7.09	.42	3	3	169	16	.086	4.71	625	8	495	.07	20	3.91	.01	.33	2	3
MK07-KR98F	8	85	3	87		151	15	1070	.5	6	8	2	3.60	.39	3	3	102	12	.133	1.02	77	11	437	.01	20	1.20	.01	.13	17	2
MK07-KR98F2	17	101	3	113	.3	330	48	1758	.5	30	8	2	5.74	.32	27	3	101	17	.098	1.36	134	9	199	.01	20	1.53	.01	.12	2	7
MK07-KR98Q	17	168	16	96	1.1	334	38	1703	.5	74	8	2	2 5.49	.26	67	3	97	12	.063	.83	592	6	201	.01	20	.95	.01	.14	2	1750
MK07-KR98Q2	3	7	' 3	26	.3	389	24	2031	.6	210	8	2	2 4.72	13.90	16	3	49	711	.016	6.99	434	5	28	.01	20	1.15	.01	.02	2	5
MK07-KR98Q3	1	4	4	30	3	560	37	1509	.5	394	8	2	2 4.98	19.74	82	5	92	947	.003	8.72	472	6	8	.01	20	1.21	.01	.03	2	1
MK07-KR101	2	7	3	41	.3	1724	119	2483	.5	8	8	2	2 7.51	.76	3	3	35	18	.005	.71	457	2	369	.01	20	.13	.02	.08	2	2
MK07-KR101D	15	3	3	113		788	45	5792	.5	7	8	7	12.84	1.58	4	3	122	20	.156	3.39	37	41	485	.07	20	1.95	.01	.01	2	1
MK07-KR102	1	56	6 3	11	.3	1351	66	155	.5	7	8	2	2 1.54	.05	3	3	27	2	.009	2.19	1256	1	55	.01	20	.88	.01	.01	2	1
MK07-KR102E1	4	51	g	34		45	16	777	.5	10	8	2	2 1.88	1.40	3	3	62	62	.080	1.01	96	6	62	.01	20	.47	.01	.01	2	7
MK07-KR102E2	16	147	1 3	155	.3	136	33	1934	.6	4	8	3	9.81	.81	3	3	254	22	.197	2.20	104	8	27	.02	20	2.19	.02	.19	2	8

Fire Assays

SAMPLE	Au
SAMILL	g/mt
MK07-KR90Q	0.01
MK07-KR93Q2	0.02
MK07-KR97M	0.12
MK07-KR98Q	1.74

PION	SER JORATORIES INC.	#103-2691 VISCOUNT WAY RICHMOND, BC CANADA WEW STO
Project	N MINERALS INC. WB Project 2007	GEOCHEMICAL ANALYSIS CEBER
Sample	Type: Rocks	*Au Analysis- 20 gram sample i
ELEMENT		*Au Analysis- 20 gram sample is digested with aqua regia, MIBK extracted, and is finished by AA or graphite furnace AA.
SAMPLE	Mo Cu Pb Zn	Ag Ni Co M
-	ndel ndel melet	ppm
RX07-01	6 50 7 19	Z - Z - Z - Z - Z - Z - Z - Z - Z - Z -
RB07-01	113 61 13 20	7 1 199 1.27 4 10 ND 14 2/
RB07-02	137 149 4 16	7 1.00 1.09 9 8 ND 13 71 - 0.067 16 62 24
RB07-03	2000 12 6 5	.5 3 3 38 .23 .056 19 78 .25 45 .06 20 .56 .04 10 (
RB07-04	747 14 245 122	.5 5 1 43 .44 2 8 ND 6 26 5 3 3 31 .26 .055 19 71 77 .10 20 .76 .05 .27 6
RB07-05	2000 -	4 1 191 .32 23 8 ND 3 44 .07 20 .71 .05 .21 15
RB07-06	2000 14 22	.3 4 1 56 .24 / 0 3 3 1 .55 .006 4 130 02 12 .02 20 .14 .02 .09 >100
RB07-07	502 20 11	.3 5 1 134 31 // a ND 2 8 .5 4 4 1 07 out
RB07-04K	77 464	.3 35 15 780 4 16 2 .6 5 16 4 17 .001 1 174 .01 4 .01 20 02
RB07-05K	66 101	-3 4 2 103 1 30 2 6 ND 11 48 -5 3 3 118 1 50 64 164 -01 21 -01 20 12 01 53 -
	66 181 6 15	3 4 4 114 1 49 (ND 12 34 .5 3 3 28 19 202 29 256 2.13 81 .32 20 3 07 01 .10 >100 -
^{RB07-06K} RB07-07K	1911 63 11 27	3 5 2 ci 23 86 .24 76 .10 20 67 ci 28 28 -
RB07-07K	2000 5 5 5	3 (1 tot) .64 25 9 ND 7 15 5 7
SKY07-01	2000 0 / .	3 5 1 23 9 8 ND 2 17 5 7 .14 .018 11 150 04 70
SEL07-01	25 104 8 62	3 27 6 T 1 2 24 6 7 1 42 .004 3 143 .03 0 .01 20 .23 .02 .12 2
32207-01	5 1573>10000>10000 69.8	B 1 1 27 2.12 3 8 ND 3 4 5 3 7 2 .30 .003 2 183 .01 14 01 20 .07 .01 .03 85 -
BC07-01	38 17 1000	27 .16 52 8 ND 2 1 110 5 2000 - 57 .02 .008 6 165 65 207 .07 .01 .04 >100 -
CC07-KR09	34 49 440	
CC07-KR10	6 22 100 mm	4 4 749 3.18 40 9 40 13 23 3.4 8 3 14 1.43 .088 10 115 5.
CC07-KR11	4 8/ 45 49	7 4 3101 3.76 20 13 ND 17 23 5.9 3 8 50 .28 .085 19 50 13 .36 39 .05 20 .18 .04 01 7
CC07-KR12	8 18 00 1174 1.3	7 6 1528 3.39 36 8 ND 11 (7 4 5 3 54 1.70 .144 36 65 1.00
CO7-KR13		5 5 4551 3.03 123 10 ND 1/ 1/ 3 3 28 .79 .065 19 8/ // 1.08 40 .01 20 1.94 .01 .15 2
C07-KR14	5 67 740 518 3.9	5 14 1301 2 05 210 14 14 17.1 7 3 11 .22 .068 27 60 70 70 1.20 1.26 .02 .15 2
CO7-KR15	6 47 5930 7161 28.0	5 5 754 3 (5-1000 8 ND 13 38 5.5 5 6 21 1 0/
E07-KM01	34 5 121 1560 .3	13 4 37270 10 44 1000 8 ND 8 16 102,3 13 31 18 24 061 18 81 .55 39 01 20 1 00 1
E07-KM02	4 522 17 117 2.7	27 31 7/3 (.14 1941 8 ND 9 132 17.5 17 3 4
	9 11 2212 85 4.1	3 1 117 TO 11 8 ND 8 29 5 3 6 97 TO 12 10 125 01 20 TO 10 21 2 -
E07-KM03	8 299 919 131 12.3	24 8 ND 19 2 5 3 3 1 1 108 24 41 1.08 121 12 20 1 10 11 18 2
:07-KM04	11 509 3114 3091 27.1	2 3 85 .83 563 23 ND 15 47 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
:07-RR01	< 6 502 ar	5 2 212 .94 203 15 ND 11 3 10 7 4.6 19 38 1 13.42 .001 51 92 03 FF
07-RR02	5 (02 (0	19 20 80 2.01 2 13 ND 38 28 5 - 01 .013 22 107 04 21 011260 1.82 .22 .78 4
07-BR03	7 115 9556>10000 37.6	33 24 147 2.56 4 8 ND 11 117 - 3 3 12 .46 .101 30 35 16 (20 .30 .01 .19 2
		9 18 20060 4.71 3605 8 ND 6 51 177 0 37 4 52 .97 .124 14 78 .46 148 47 33 .06 .09 5

ELEMENT		Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	к	W	Au
SAMPLE		ppm	ppm	ppm	ppm	ppm	bbw	ppm	bbw	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	%	ppm	ppm	X	ppm	×	ppm	*	%	*	ppm	_ppb
/E07-RR04		9	8	1779	1379	3.0	6	9	11107	2.81	3813	8	ND	30	25	16.9	17	5	1	.04	.005	6	99	.05	42	.01	20	.27	-19-	.21	2	-
/E07-RR05		7	446	97	340	2.9	19	32	1961	4.56	62	8	ND	8	63	2.1	4	3	65	2.08	.190	19	41	.90	49	.09	20	1.17	.06	.18	2	-
:07-KR15		82	88	3179	4147	10.2	47	18	3131	4.45	69	8	ND	6	92	80.6	6	8	69	2.58	.143	16	176	1.63	14	01	20	2.04	.01	.12	2	-
:07-KR16		28	1	680	1425	1.1	50	9	35500	6.47	894	8	ND	2	201	14.0	23	3	18	7.26	-058	14	86	53	163	.01	20	1.30	.01	.10	2	-
:C07-KR01		7	73	326	1909	5.2	2	10	167	3.98	4408	8	ND	12	24	19.3	3	10	37	.13	.062	_11-	45	.48	56	.01	20	.86	.03	.16	2	-
:C07-KR02		7	55	226	5463	3.4	7	22	243	3.79>	10000	8	ND	2	4	69.1	49	36	4-	.03	.009	2	179	.17	7	.01	20	.31	.01	.08	2	-
:C07-KR03		4	23	17	4959	.4	88	32	2540	8.55	248	20	ND	11	221	62.7	-3	6	153	3.26	.626	56	381	5.01	2447	.19	20	5.26	.10	3.31	2	-
:C07-KR04		19	181	124>	10000	4.5	62	15	4287	12.25	240	22	ND	12-	88	180.7	3	6	178	1.70	.566	64	318	4.21	206	.09	20	5.43	.01	.23	2	-
:C07-KR05		10	374	410>	10000	30.9	11	47	702	8,99>	10000	8	ND	2	20	148.7	117	47	42	.28	.186	14	145	.76	6	.01	20	1.16	.01	.08	2	-
:C07-KR06A		21	227	107	5760	8.7	45	_32-	3740	13.11>	10000	31	ND	11	68	71.9	29	15	151	1.16	.521	39	300	3.32	66	.08	20	4.03	.01	.53	2	-
:C07-KR06B		3	84	_64	-2611	1.0	9	6	1386	2.80	313	11	ND	13	27	31.9	5	6	47	.41	.074	30	69	.97	56	.01	20	1.28	.02	.15	2	-
:C07-KR07	_	-9-	257	150	286	5.0	97	25	2972	6.14	358	11	ND	4	26	1.6	20	3	103	.47	. 183	19	442	1.73	58	.01	20	2.34	.01	.09	2	-
:C07-KR98		7	23	118	1173	1.6	6	28	1882	4.90>	10000	10	ND	5	31	22.3	24	31	17	.49	.045	15	85	.94	61	.01	20	1.40	.01	.17	2	-
1K07-KR79	Λ	1	92	3	56	.3	324	51	1518	6.38	16	8	ND	2	122	.5	3	3	87	4.09	.030	3	447	5.83	43	.01	20	1.75	.02	.15	2	7
1K07-KR80	1	4	61	8	50	.3	495	34	1739	4.32	11	8	ND	2	330	.7	3	5	30	8.03	.042	5	235	4.20	39	.01	20	.64	.01	.12	2	4
1K07-KR81		7	28	6	35	.3	29	7	655	1.63	19	8	ND	2	106	.5	3	3	42	4.95	.012	3	139	1.48	22	.01	20	.75	.01	.01	2	2
1K07-KR82		1	17	5	21	.3	304	23	1464	3.43	4	8	ND	2	772	.5	3	4	13	21.21	.027	3	85	7.78	18	.01	20	.11	.01	.08	2	1
1K07-KR82A		4	31	3	51	.3	1098	58	898	5.90	23	8	ND	2	172	.5	3	4	30	3.53	.066	7	274	8.01	24	.01	20	.28	.01	.15	2	1
1K07-KR83		5	29	12	33	.3	32	5	649	1.39	2	8	ND	2	160	.5	3	4	11	3.55	.051	7	138	1.98	24	.01	20	.22	.01	.09	48	8
1K07-KR84		2	35	8	62	.3	171	34	1203	5.28	2	8	ND	2	42	.5	3	3	128	2.47	.056	7	514	4.73	69	.01	20	3.40	.02	.11	2	7
1K07-KR85		1	286	3	169	.3	176	76	1531	12.94	2	8	ND	2	17	.5	3	3	332	.75	.301	8	398	2.98	23	.04	20	3.71	.01	.42	2	2
1K07-KR86	J.	4	2	20	38	.3	359	21	1258	2.72	60	8	ND	2	339	.5	3	3	14	11.14	.009	3	175	10.46	24	.01	20	.11	.01	.01	2	1
1K07-KR87	5	1	59	3	57	.3	51	27	746	4.98	2	8	ND	2	28	.5	3	3	148	2.49	.038	1	57	2.26	22	.31	20	2.61	.03	.02	2	1
IK07-KR88	Ň	1	10	5	17	.3	28	3	581	2.84	5	8	ND	2	328	.5	3	3	38	24.38	.033	8	102	6.41	201	.03	20	.70	.02	.04	2	1
IK07-KR89	Č	4	140	8	86	.3	112	31	1178	5.69	6	8	ND	2	43	.5	3	3	114	2.01	.023	4	89	.81	114	.01	20	.45	.01	.03	2	1
IK07-KR90		11	46	9	62	.3	30	5	560	1.61	3	12	ND	2	44	.5	3	3	92	1.20	.125	9	141	.84	40	.02	20	.66	.01	.06	2	12
1K07-KR90L	Ø	2	50	4	66	.3	272	35	2654	5.55	20	8	ND	2	250	.5	6	3	85	9.08	.064	5	439	5.57	46	.01	20	1.74	.01	.14	2	5
1K07-KR90Q	18	6	15	3	30	.3	65	8	734	1.85	6	8	ND	2	90	.5	3	3	14	3.63	.038	4	116	2.15	18	.01	20	.31	.01	.08	2	18
IK07-KR91	X	4	96	3	169	.3	166	41	1898	9.70	5	13	ND	6	33	.5	3	3	127	1.31	. 169	47	168	1.93	106	.12	20	2.70	.01	.73	2	15
1K07-KR92	R	2	119	4	50	.3	228	38	1390	5.28	5	8	ND	2	180	.5	3	3	148	7.68	.029	7	265	5.89	57	.01	20	2.91	.01	.02	2	11
K07-KR92Ch		3	112	5	139	.3	50	25	922	6.04	2	9	ND	2	28	.5	3	3	219	1.62	.113	13	110	2.58	67	.01	20	2.46	.01	.10	2	10
K07-KR92F		3	15	5	38	.3	205	12	1886	2.95	3	8	ND	2	432	.5	5	3	33	11.91	.034	5	323	5.90	79	.01	20	.86	.01	.02	2	9
K07-KR92R		5	42	4	290	.3	214	32	1015	9.57	8	18	ND	5	47	.5	3	3	174	2.11	.828	53	59	2.12	69	.01	20	2.87	.03	.07	2	4
K07-KR93Q	1.	11	18	5	13	.3	14	3	153	.57	3	8	ND	2	5	.5	3	3	7	.13	.021	2	153	.06	21	.01	20	.08	.01	.06	2	9
K07-KR93q2	V	31	227	16	187	.3	71	8	852	2.88	9	8	ND	4	16	.6	4	5	24	.32	.079	9	112	.16	54	.01	20	.34	.01	.09	68	27

EMENT MPLE A	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к %	W ppm	Au ppb
(1)			F.F													-					••			••						PP-11	
07-KR93F	26	110	11	223	.3	431	29	1160	5.28	6	8	ND	2	166	2.3	3	4	215	4.55	.035	5	232	3.10	40	.01	20	1.02	.01	.02	2	15
07-KR95	2	217	6	177	.3	316	29	3659	8.04	6	8	ND	7	25	.5	3	4	119	.66	.227	24	110	2.26	223	.17	20	3.43	.01	.07	2	12
07-KR95B	54	681	30	206	14.1	492	103	46000	7.98	249	20	ND	- 3	411	3.6	3	6	143	1.32	.241	71	45	.26	7523	.01	20	.38	.01	.15	2	17
07-KR95F	2	369	3	208	.3	205	74	3755	11.59	15	8	ND	2	23	.5	3	3	231	.93	.362	8	227	.84	133	.01	20	2.50	.02	.18	2	18
07-KR97M	, 1	541	3	195	.3	175	68	3090	12.72	10	8	ND	2	22	.5	3	3	333	1.39	.350	7	291	1.47	42	.01	20	1.84	.03	.06	2	180
07-KR98D	5	49	3	100	.3	282	29	736	7.09	16	8	ND	2	16	.5	3	3	169	.42	.086	8	625	4.71	495	.07	20	3.91	.01	.33	2	3
07-KR98F	8	85	3	87	.3	151	15	1070	3.60	6	8	ND	2	12	.5	3	3	102	.39	.133	11	77	1.02	437	.01	20	1.20	.01	.13	17	2
07-KR98F2	j 17	101	3	113	.3	330	48	1758	5.74	30	8	ND	2	17	.5	27	3	101	.32	.098	9	134	1.36	199	.01	20	1.53	.01	.12	2	7
07-KR98Q	´ 17	168	16	%	1.1	334	38	1703	5.49	74	8	ND	2	12	.5	67	3	97	.26	.063	6	592	.83	201	.01	20	.95	.01	.14	2	1750
:07-KR98Q2 Q	3 ر	7	3	26	.3	389	24	2031	4.72	210	8	ND	2	711	.6	16	3	49	13.90	.016	5	434	6.99	28	.01	20	1.15	.01	.02	2	5
.07-KR9803	ر 1 د	4	4	30	.3	560	37	1509	4.98	394	8	ND	2	947	.5	82	5	92	19.74	.003	6	472	8.72	8	.01	20	1.21	.01	.03	2	1
.07-KR101	ζz	7	3	41	.3	1724	119	2483	7.51	8	8	ND	2	18	.5	3	3	35	.76	.005	2	457	.71	369	.01	20	.13	.02	.08	2	2
.:07-KR101D 🔨	5 15	3	3	113	.3	788	45	5792	12.84	7	8	ND	7	20	.5	4	3	122	1.58	.156	41	37	3.39	485	.07	20	1.95	.01	.01	2	1
:07-KR102	<u> </u>	56	3	11	.3	1351	66	155	1.54	7	8	ND	2	2	.5	3	3	27	.05	.009	1	1256	2.19	55	.01	20	.88	.01	.01	2	1
:07-KR102E1	4	51	9	34	.3	45	16	777	1.88	10	8	ND	2	62	.5	3	3	62	1.40	.080	6	96	1.01	62	.01	20	.47	.01	.01	2	7
:07-KR102E2	16	147	3	155	.3	136	33	1934	9.81	4	8	ND	3	22	.6	3	3	254	.81	.197	8	104	2.20	27	.02	20	2.19	.02	.19	2	8

ž.

For Pb, Zn greater than 10,000 ppm, assay digestion is required for correct data.

For Ag greater than 35 ppm, assay digestion is required for correct data.

For Mo 2000 ppm and greater, assay digestion is required for correct data.

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

TO: SATURN MINERALS

420-625 Howe Street Vancouver, BC V6C 2T6

DATE: Sept 05, 2007

FILE: 49926

Attn: Mike Elson

30 ELEMENT ICP ANALYSIS

Sample	Ag	AI	As	Au	в	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	κ	La	Mg	Mn	Мо	Na	Ni	Ρ	Pb	Sb	Sr	Th	Ti	U	۷	W	Zn
No.	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
"Rock Samples"																														
VK07-KM01	9.4	2.58	2	<5	28	31	<1	1.96	4	78	4	159	8.50	0.02	16	1.31	1003	2	0.03	32	0.06	<1	12	5	<1	0.46	<1	366	<1	9
VK07-KM02	<0.5	2.28	2	<5	25	25	<1	1.51	3	60	23	87	6.29	0.01	14	1.34	677	1	0.03	35	0.02	<1	6	9	<1	0.27	<1	247	<1	59
VK07-KM03	4.2	0.23	2	<5	27	29	<1	6.98	0	7	67	11	0.54	0.01	40	0.25	838	<1	0.01	12	0.01	<1	3	48	2	0.04	<1	151	<1	1:
VK07-KM04	6.1	1.76	4	<5	29	20	<1	3.90	4	77	109	1	8.23	0.14	22	1.77	2312	1	0.02	105	0.03	<1	14	31	<1	0.60	<1	446	<1	7
MK07-RR01	<0.5	3.01	3	<5	30	27	<1	1.53	4	75	8	201	8.33	0.07	12	1.55	782	1	0.03	45	0.02	<1	6	8	<1	0.26	<1	290	<1	7:
MK07-RR02	3.6	3.02	2	<5	25	10	<1	1.16	5	84	19	80	9.92	0.02	12	1.56	1045	1	0.03	36	0.03	<1	9	4	<1	0.41	<1	371	<1	9
MK07-RR03	1.92	2.46	2	<5	28	15	<1	1.35	4	67	11	131	7.53	0.01	13	1.50	789	1	0.04	38	0.02	<1	6	3	<1	0.40	<1	382	<1	6
VK07-RR04	3.2	0.93	4	<5	61	13	<1	1.05	4	86	1570	14	6.21	<0.01	5	11.77	598	<1	0.01	1310	0.00	<1	61	6	<1	0.02	<1	194	<1	24
MK07-RR05	2.9	1.04	4	<5	43	11	<1	4.05	4	64	830	11	5.42	<0.01	16	11.73	3036	<1	0.01	911	0.00	<1	29	32	<1	0.02	<1	178	<1	1
MK07-RR06	3.9	0.20	3	<5	30	13	<1	3.08	3	52	682	2	3.85	<0.01	19	7.84	1642	<1	0.01	479	0.00	<1	26	27	<1	<0.01	<1	102	<1	9
MK07-KR07	<0.5	0.69	7	<5	35	10	<1	0.73	4	73	1680	2	5.19	<0.01	2	10.30	909	<1	0.01	1030	0.02	<1	71	20	2	<0.01	<1	161	<1	1
VK07-KR08	3.5	0.50	5	<5	34	93	<1	0.47	1	18	115	27	1.73	0.26	14	0.22	91	19	0.01	49	0.12	<1	6	16	5	0.01	<1	92	<1	8
VK07-KR09	3.9	1.54	7	<5	34	121	<1	0.18	3	46	47	79	5.30	0.31	11	0.76	404	5	0.03	51	0.03	<1	3	13	<1	0.02	<1	102	<1	10
MK07-KR10	<0.5	1.72	80	<5	28	83	<1	4.00	5	79	743	22	7.66	0.16	26	5.47	2209	3	0.01	761	0.05	<1	45	94	<1	<0.01	<1	156	<1	9
MK07-KR11	<0.5	0.12	8	<5	30	56	<1	9.59	2	21	112	-2	3.05	0.01	41	4.34	780	<1	0.01	21	0.00	<1	5	132	<1	<0.01	<1	172	<1	

MK07-KR12	10.6	0.33	64	<5	22	29	<1	4.11	3	65	841	19	5.36	0.06	24	7.96	1434	<1	0.01	847	0.00	<1	44	250	<1 <0.01	<1	129	<1	2
MK07-KR13	<0.5	0.75	3	<5	34	105	<1	0.44	1	30	51	88	3.15	0.23	17	0.31	478	1	0.01	38	0.03	<1	2	12	<1 0.01	<1	48	<1	1
MK07-KR14	6.4	0.15	7	<5	26	47	<1	11.97	3	38	418	7	4.54	0.01	41	7.71	554	<1	0.01	325	0.00	<1	13	249	<1 <0.01	<1	199	<1	
MK07-KR15	1.8	0.37	18	<5	29	55	<1	9.76	2	51	835	43	4.29	0.02	44	5.02	936	<1	0.02	835	0.02	<1	29	101	<1 <0.01	<1	232	<1	
MK07-KR16	1.6	0.93	8	<5	32	34	<1	2.89	2	26	167	41	2.60	0.12	26	1.41	700	3	0.02	89	0.04	<1	6	55	<1 0.01	<1	118	<1	
MK07-KR17	<0.5	0.17	2	<5	31	35	<1	0.30	0	8	186	5	0.74	0.02	5	0.26	228	1	0.01	42	0.00	<1	11	5	7 <0.01	<1	49	<1	
MK07-KR18	<0.5	0.35	36	<5	21	15	<1	1.47	3	54	837	5	3.87	<0.01	13	5.63	777	1	0.01	750	0.00	<1	35	17	<1 <0.01	<1	113	<1	
MK07-KR19	<0.5	0.36	6	<5	32	52	<1	0.20	2	20	164	50	1.68	0.17	13	0.14	401	10	0.01	102	0.03	<1	9	7	<1 <0.01	<1	70	<1	
MK07-KR20	<0.5	0.08	7	<5	28	22	<1	0.06	0	7	193	4	0.63	0.05	2	0.08	59	1	0.01	24	0.01	<1	12	4	<1 <0.01	<1	27	<1	
MK07-KR21	<0.5	0.08	23	35	30	71	<1	0.96	2	25	221	24	2.62	0.04	13	0.42	1169	1	0.01	113	0.01	<1	17	53	<1 <0.01	<1	80	<1	
MK07-KR22	<0.5	1.18	101	<5	26	98	<1	1.22	5	99	1270	74	8.62	0.15	11	5.09	1853	2	0.01	715	0.02	<1	58	68	<1 <0.01	<1	172	<1	
MK07-KR23	<0.5	0.77	3	<5	28	66	<1	0.30	1	23	210	33	2.48	0.04	11	0.71	522	1	0.03	51	0.01	<1	9	11	<1 0.01	<1	86	<1	
MK07-KR24	<0.5	0.17	16	33	32	30	<1	0.05	1	14	171	21	1.33	0.09	8	0.08	166	1	0.01	47	0.00	<1	13	3	<1 <0.01	11	22	<1	
MK07-KR25	<0.5	0.12	13	<5	28	50	<1	0.03	1	12	163	19	1.15	0.07	2	0.04	176	3	0.01	21	0.01	<1	11	4	5 <0.01	<1	22	<1	
MK07-KR26	17.7	0.75	5	<5	29	98	<1	0.04	1	23	147	39	2.07	0.21	8	0.37	594	1	0.01	34	0.01	<1	9	3	<1 <0.01	<1	22	<1	
MK07-KR27	2.7	0.82	31	2966	32	132	3	0.65	3	36	97	103	4.48	0.23	20	0.06	218	17	0.01	70	0.27	<1	6	143	<1 <0.01	<1	81	<1	1
MK07-KR27A	<0.5	0.44	82	73	28	138	1	0.07	2	28	126	75	2.80	0.19	11	0.05	143	7	0.01	96	0.02	<1	9	34	<1 <0.01	<1	27	<1	
MK07-KR27B	11.7	0.36	661	33	30	52	2	0.43	4	97	182	72	8.51	0.23	18	0.20	1371	6	0.01	937	0.02	<1	30	21	<1 <0.01	<1	81	<1	1
MK07-KR28	2.6	0.36	477	<5	24	39	<1	4.86	3	69	440	21	5.85	0.05	32	4.45	1388	1	0.01	832	0.01	<1	15	257	<1 <0.01	<1	156	<1	
MK07-KR29	<0.5	0.31	463	<5	21	32	<1	4.58	4	71	459	17	5.89	0.04	28	6.04	1157	1	0.01	848	0.01	<1	18	242	<1 <0.01	<1	140	<1	
MK07-KR30	<0.5	2.62	542	13	22	42	<1	3.96	4	86	1760	18	6.54	0.01	25	5.19	1733	3	0.01	1060	0.01	<1	73	187	<1 <0.01	<1	269	<1	
MK07-KR31	4.5	0.28	98	<5	24	26	<1	2.49	2	35	268	11	3.16	0.10	23	2.75	787	1	0.01	243	0.01	<1	42	141	<1 <0.01	<1	108	<1	
MK07-KM01 ck	9.2	2.67	3	<5	29	30	<1	2.14	4	79	6	167	9.23	0.03	18	1.33	1007	2	0.03	31	0.06	<1	14	5	<1 0.56	<1	376	<1	
MK07-KR16 ck	1.5	0.92	7	<5	30	33	<1	2.87	1	26	164	41	2.55	0.12	27	1.32	686	3	0.02	89	0.03	<1	7	55	<1 0.01	<1	129	<1	
		<0.01	1	<5	21	1	<1	<0.01	<1	<1	<1	<1	<0.01	<0.01	<1	<0.01	1	<1	0.01	<1	<0.01	<1	<1	1	<1 <0.01	<1	16	<1	
Blank	<0.5																												
Blank MK07-KR32	<0.5 4.6		42	<5	21	7	<1	0.06	1	13	175	8	0.84	0.01	2	0.08	95	1	0.01	119	<0.01	<1	15	2	<1 <0.01	<1	16	<1	
			42 156	<5 <5	21 17	7 178	<1 <1	0.06 0.17	1 5	13 84	175 277	8 55	0.84 6.12	0.01 0.07	2 11	0.08 0.59	95 500	1 5	0.01 0.01	119 781	<0.01 0.07	<1 <1	15 36	2 77	<1 <0.01 <1 <0.01	<1 <1	16 76	<1 <1	
MK07-KR32	4.6	0.07				•			1 5 5			•			-				0.01					_					
MK07-KR32 MK07-KR33 MK07-KR34	4.6 8.4	0.07 0.74	156	<5	17	178	<1	0.17	Ŭ	84	277	55	6.12	0.07	11	0.59	500	5	0.01	781	0.07	<1	36	77	<1 <0.01	<1	76	<1	
MK07-KR32 MK07-KR33	4.6 8.4 6.9	0.07 0.74 2.81	156 12	<5 <5	17 16	178 63	<1 <1	0.17 5.80	5	84 73	277 811	55	6.12 5.96	0.07 0.04	11 24	0.59 3.87	500 1997	5 2	0.01 0.01	781 555	0.07 0.03	<1 <1	36 21	77 28	<1 <0.01 <1 <0.01	<1 <1	76 189	<1 <1	

MK07-KR38	<0.5	0.93	4	<5	21	55	<1	0.03	1	19	55	59	1.79	0.11	2	0.56	291	1	0.02	16	0.01	<1	2	7	<1 <0.01	<1	27	<1	32
MK07-KR39	<0.5	2.44	4	<5	15	42	<1	0.61	4	54	147	153	4.47	0.25	5	2.92	818	1	0.02	54	0.03	<1	8	3	<1 0.37	<1	238	<1	63
MK07-KR40	<0.5	2.34	3	<5	20	26	<1	0.14	4	47	54	34	5.50	0.06	3	1.92	809	1	0.03	17	0.04	<1	2	3	<1 0.03	<1	151	<1	90
MK07-KR41	6.5	0.33	11	<5	20	6	<1	0.42	3	57	919	14	3.13	<0.01	<1	5.76	367	<1	0.01	675	<0.01	<1	25	14	<1 <0.01	<1	65	<1	10
MK07-KR42	<0.5	0.55	10	<5	14	32	<1	7.51	3	46	558	10	3.25	<0.01	32	4.98	1076	1	0.01	586	0.03	<1	20	195	11 <0.01	<1	135	<1	35
MK07-KR43	<0.5	0.56	10	<5	17	27	<1	9.59	4	33	172	<1	3.72	0.02	35	5.54	1232	<1	0.01	99	0.07	<1	8	369	<1 <0.01	<1	140	<1	26
MK07-KR44	2.9	0.18	16	<5	13	18	<1	6.40	2	23	95	48	2.28	0.04	28	3.48	1423	<1	0.01	76	<0.01	<1	40	199	<1 <0.01	<1	87	<1	14
MK07-KR45	<0.5	0.68	4	<5	11	31	<1	2.63	3	33	32	32	3.85	0.02	22	1.62	541	1	0.01	11	0.05	<1	2	75	2 <0.01	<1	43	<1	72
MK07-KR46	2.1	0.76	17	1966	18	21	<1	5.48	4	44	272	6	4.21	0.08	29	5.08	1119	<1	0.01	304	0.05	<1	10	244	<1 <0.01	<1	108	<1	30
MK07-KR47	48.4	0.30	45	7733	17	10	<1	3.58	2	18	181	422	1.46	0.03	21	2.61	375	<1	0.01	194	<0.01	103	28	205	<1 <0.01	<1	60	<1	32
MK07-KR48	<0.5	1.49	83	51	13	12	<1	3.77	5	62	970	51	4.59	0.03	17	7.39	861	1	0.01	787	0.01	<1	197	234	3 <0.01	<1	130	<1	21
MK07-KR49	<0.5	1.08	7	<5	19	55	<1	11.46	3	29	102	2	3.21	<0.01	44	6.38	918	<1	0.01	61	0.14	<1	4	183	<1 <0.01	<1	151	<1	25
MK07-KR50	7.6	1.10	14	<5	17	55	<1	10.54	3	37	585	28	3.13	0.02	38	5.73	790	1	0.02	524	0.05	<1	15	142	4 <0.01	<1	157	<1	44
MK07-KR51	4.8	0.30	7	<5	17	73	<1	11.24	4	66	749	22	4.02	0.02	35	6.19	610	<1	0.01	921	0.01	<1	18	162	6 <0.01	<1	157	<1	13
MK07-KR52	7.1	0.64	10	<5	61	21	<1	1.36	6	86	1460	8	5.23	<0.01	2	12.38	705	<1	0.01	1540	<0.01	<1	38	25	4 0.01	<1	124	<1	15
MK07-KR53	3.1	0.13	7	<5	21	42	<1	2.94	6	55	434	2	4.66	0.02	10	12.36	495	<1	0.01	766	<0.01	<1	11	91	<1 <0.01	<1	81	<1	9
MK07-KR54	7.5	0.20	9	<5	23	60	<1	3.75	4	54	694	5	3.61	0.02	17	9.72	417	<1	0.01	741	<0.01	<1	17	119	<1 <0.01	2	70	<1	9
MK07-KR55	3.9	0.53	5	<5	20	41	<1	2.24	1	13	103	32	1.20	0.01	19	1.69	505	1	0.01	40	0.12	<1	3	70	<1 <0.01	<1	49	<1	19
MK07-KR56	<0.5	2.80	7	<5	13	72	<1	3.03	6	81	177	61	7.81	0.09	16	2.84	1208	4	0.02	82	0.04	<1	4	53	<1 0.01	<1	232	<1	59
MK07-KR57	<0.5	1.95	3	<5	23	16	<1	1.11	3	45	47	42	3.37	0.01	9	1.35	476	1	0.04	42	0.01	<1	2	23	<1 0.19	<1	135	<1	38
MK07-KR58	3.4	2.91	3	<5	24	15	<1	2.92	3	39	64	52	3.15	0.01	15	1.16	459	1	0.03	34	0.01	<1	2	8	<1 0.11	<1	135	<1	36
MK07-KR59	<0.5	0.93	2	<5	21	84	<1	0.09	2	23	44	31	2.02	0.17	7	0.41	453	1	0.02	26	0.01	<1	2	9	2 0.01	<1	22	<1	49
MK07-KR60	11.6	1.60	21	<5	14	78	<1	0.74	4	88	368	125	5.06	0.29	11	0.85	742	3	0.02	142	0.27	<1	13	30	<1 0.03	<1	92	<1	94
MK07-KR61	<0.5	1.84	14	<5	14	83	<1	0.29	6	89	356	63	7.87	0.14	7	0.08	805	3	0.01	216	0.10	<1	14	13	<1 <0.01	<1	119	<1	131
MK07-KR62	<0.5	2.89	25	<5	16	158	<1	0.17	7	97	623	56	8.92	0.91	3	1.07	921	2	0.02	283	0.05	<1	21	6	<1 0.16	<1	173	<1	133
MK07-KR63	1.7	2.93	18	127	16	105	<1	0.52	6	90	531	77	8.50	0.20	9	0.70	1516	2	0.03	253	0.18	<1	19	14	<1 0.01	<1	113	<1	136
MK07-KR64	6.2	2.26	101	<5	17	131	2	0.07	10	133	250	132	12.89	0.28	1	0.10	699	5	0.01	258	0.04	<1	12	8	<1 <0.01	<1	49	<1	220
MK07-KR65	8.9	0.98	117	208	18	77	<1	0.45	4	61	164	31	4.53	0.19	6	0.04	751	2	0.01	110	0.09	<1	14	17	<1 <0.01	<1	43	<1	86
MK07-KR66	6.6	2.82	19	<5	19	35	<1	2.22	5	90	774	41	7.48	0.73	16	1.25	802	1	0.04	224	0.19	<1	24	25	<1 0.16	<1	221	<1	98
MK07-KR67	4.8	1.26	183	130	18	96	<1	0.16	8	115	241	144	10.44	0.28	2	0.09	777	2	0.01	171	0.05	<1	23	8	<1 <0.01	<1	32	<1	105
MK07-KR68	<0.5	2.65	16	<5	17	65	<1	6.35	5	72	668	77	6.26	0.12	32	1.99	1232	1	0.02	218	0.04	<1	20	91	<1 <0.01	<1	167	<1	69

MK07-KR69	1.4	3.83		43	17	288	<1	1.63	8	111	302	173	11.14	0.13	17	0.47	2383	4	0.01	234	0.06	<1	14	35	<1 <0.01	<1	184	<1	145
MK07-KR32 ck	4.5	0.09	45	<5	23	10	<1	0.07	1	14	193	9	0.91	0.02	<1	0.09	102	1	0.01		<0.01	<1	16	3	<1 <0.01	1	16	<1	11
MK07-KR52 ck	6.9	0.62	8	<5	55	20	<1	1.23	6	83	1350	7	4.64	<0.01	3	11.64	632	<1	0.01	1470 •	<0.01	<1	37	24	<1 0.01	<1	113	<1	14
MK07-KR70	1.9	1.41	34	666	21	96	<1	0.16	2	26	133	137	1.89	0.05	6	0.13	167	11	0.01	59	0.04	<1	16	35	<1 <0.01	<1	11	<1	161
MK07-KR71	<0.5	0.75	21	231	21	207	<1	0.16	1	17	123	40	1.30	0.08	5	0.03	93	4	0.01	26	0.07	<1	5	30	6 <0.01	<1	27	<1	37
MK07-KR72	1.9	0.19	12	<5	24	119	<1	0.02	1	11	136	29	0.95	0.07	<1	0.02	320	1	0.01	20	0.01	<1	6	9	6 <0.01	<1	16	<1	25
MK07-KR73	9.6	2.47	67	<5	18	578	<1	0.16	6	105	1170	82	8.11	0.08	10	0.19	859	3	0.01	855	0.07	<1	48	78	<1 <0.01	<1	173	<1	94
MK07-KR74	<0.5	0.28	7	<5	25	76	<1	12.07	7	22	147	5	2.51	0.02	42	5.93	576	0	0.04	54	0.49	<1	2	82	1 <0.01	<1	130	<1	15
MK07-KR75	<0.5	0.28	7	<5	23	125	<1	0.22	1	9	133	12	0.72	0.06	3	0.11	289	1	0.01	44	0.01	<1	6	12	5 <0.01	<1	16	<1	18
MK07-KR76	6.0	2.61	11	<5	22	249	<1	0.47	6	88	205	87	7.68	0.32	21	0.36	1661	4	0.01	118	0.10	<1	9	26	<1 0.02	<1	108	<1	138
MK07-KR77	1.1	2.31	3	<5	21	22	<1	1.69	4	52	101	78	4.61	0.02	12	1.72	671	1	0.04	42	0.03	<1	8	34	<1 0.33	<1	237	<1	42
MK07-KR78	3.2	2.38	3	<5	11	625	<1	3.16	7	85	165	39	8.45	0.69	16	1.92	1030	1	80.0	63	0.03	<1	10	52	<1 0.36	<1	378	<1	75
SQ-TR1-2	12.6	3.89	910	<5	13	48	<1	0.56	25	81	25 9	119	10.58	0.35	17	2.96	4420	5	0.01	38	0.16	252	27	23	<1 0.08	<1	151	<1	1620
SQ-TR2-3	376	1.63	10000	1066	14	26	197	0.24	66	97	91	687	11.82	0.17	11	0.54	1396	14	0.02		0.08	3000	342	62	<1 0.01	<1	49	<1	2870
SQ-TR3-5	163	1.49	9220	87	17	21	30	0.39	35	60	54	344	7.01	0.29	20	0.31	881	21	0.01	7	0.08	4990	164	85	<1 <0.01	<1	38	<1	905
SQ-TR3-6	12.7	1.28	3020	<5	24	19	3	0.27	17	49	68	309	4.98	0.15	13	0.35	806	18	0.01	2	0.05	451	39	24	<1 <0.01	<1	43	<1	951
WB-TR1-1	2.4	0.94	264	<5	21	53	45	0.52	3	31	58	341	3.65	0.52	18	0.04	78	7	0.04	2 •	<0.01	66	7	4	19 0.01	<1	38	10	59
WB-TR1-2	1.2	0.81	581	<5	23	47	6	0.34	2	16	70	147	1.74	0.47	22	0.02	50	4	0.04	<1 •	<0.01	12	4	3	24 <0.01	<1	16	9	38
WB-TR1-3	4.7	0.61	81	<5	22	23	4	0.28	2	16	57	176	1.80	0.29	31	0.02	71	4	0.06	<1 •	<0.01	8	3	0	36 <0.01	<1	22	0	118
WB-TR2-1	1.8	1.04	98	<5	18	58	8	0.57	2	17	68	222	1.84	0.60	29	0.01	143	13	0.05	1 •	<0.01	<1	3	3	31 <0.01	<1	32	28	128
WB-TR2-2	7.1	0.86	38	<5	24	35	<1	0.40	2	13	79	115	1.56	0.44	34	0.01	161	2	0.05	1 •	<0.01	<1	3	2	36 <0.01	<1	16	<1	148
C-TR2-4	34.2	1.32	1070	<5	21	25	<1	0.08	13	36	49	39	4.33	0.34	13	0.39	2535	7	0.02	2	0.04	1400	55	4	<1 <0.01	<1	<1	<1	1190
C-TR5-5	<0.5	0.91	629	<5	17	45	<1	0.70	22	22	52	46	2.00	0.16	32	0.50	852	2	0.03	15	0.06	254	8	27	5 0.01	<1	54	<1	2300
C-TR5-12	6.8	1.09	4140	<5	14	38	<1	0.95	16	42	60	31	3.07	0.17	24	0.56	798	2	0.05	4	0.05	1670	12	57	10 <0.01	<1	60	<1	1100
AL07-RR09a	3068	0.03	10000	70	4	8	<1	0.02	583	46	27	865	5.41	0.01	<1	0.05	187	1	0.02	2 •	<0.01	10000	3170	4	<1 <0.01	<1	<1	<1	10000
AL07-RR10a	82	1.61	188	<5	13	890	<1	0.95	13	36	36	74	3.32	0.39	14	0.78	320	1	0.11	6	0.11	1620	61	67	<1 0.30	<1	205	<1	780
ME-KM20	8	0.44	2540	226	9	71	6	0.03	300	58	34	185	6.09	0.29	1	0.08	271	10	0.03	14	<0.01	689	144	5	<1 0.01	<1	22	<1	10000
MK07-KR70 ck	2.0	1.10	29		18	91	<1	0.15	2	24	127	129	1.72	0.04	7	0.11	158	10	0.01	54	0.04	<1	14	33	<1 <0.01	<1	12	<1	158
C-TR2-4 ck	32.8	1.20	1035	<5	17	24	<1	0.07	12	34	49	37	3.84	0.28	11	0.36	2488	7	0.01	3	0.04	1250	51	3	<1 <0.01	<1	<1	<1	1090
Blank	<0.5	0.01	17	<5	12	1	<1	0.00	<1	1	<1	<1	0.03	<0.01	<1	0.00	23	<1	0.00	<1 ·	<0.01	<1	1	0	<1 <0.01	<1	<1	<1	2
CTR 5-8C	46	0.29	10000	96	7	27	59	0.07	137	78	71	19	9.29	0.15	4	0.06	204	1	0.02	8	0.03	5270	83	6	<1 <0.01	<1	11	<1	8960

CTR 5-11C	9.9	0.34	10000	255	12	32	11	0.06	10	34	106	17	3.43	0.18	6	0.05	110	1	0.03	1	0.02	2070	46	8	<1 <0	.01	<1	22	<1	640
Blank	<0.5	<0.01	21	<5	11	1	1	<0.01	<1	<1	<1	<1	0.02	<0.01	<1	<0.01	1	<1	0.01	<1	<0.01	1	1	<1	<1 <0	.01	<1	16	1	1
WB-TR5-1	31	3.20	348	<5	279	370	34	<0.01	55	22	69	80	1.88	1.60	<1	0.05	334	13	0.08	7	<0.01	3470	29	<1	<1 0	.01	<1	164	<1	5480

0.500 Gram sample is digested with Aqua Regia at 95 C for one hour and bulked to 10 ml with distilled water.

Partial dissolution for Al, B, Ba, Ca, Cr, Fe, K, La, Mg, Mn, Na, P, Sr, Ti, and W.

Gold is analyzed using Fire Assay and AA finish.

Certified by: