

Ministry of Energy & Mines Energy & Minerals Division Geological Survey Branch

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT [type of survey(s)] Diamond Drilling	TOTAL COST \$ 189,427
AUTHOR(S) Lesley C. Hunt	SIGNATURE(S) 144 C. Hat
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S) 07-0100011-072	22YEAR OF WORK_2007
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S	.)4167853
PROPERTY NAME Taurus Property	
CLAIM NAME(S) (on which work was done) Mack #3 (226144), Hopefull #2 (226147)	
COMMODITIES SOUGHT Gold	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN 104P 012	
MINING DIVISION Liard	_NTS104P/5
LATITUDE59017'" LONGITUDE	129042'" (at centre of work)
OWNER(S)	
1) <u>American Bonanza Gold Corp.</u>	_ 2)
MAILING ADDRESS 675 West Hastings Street, Ste. 305	
Vancouver, BC, V6B 1N2	
OPERATOR(S) [who paid for the work]	
1) Cusac Gold Mines Ltd.	_ 2)
MAILING ADDRESS 1600/409 Granville St	
Vancouver, BC, V6C 1T2	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structur Jurassic, Triassic, Late Paleozoic, Sylvester Allocthon, Pyrit	e, alteration, mineralization, size and attitude): ized Carbonitized metabalsalts hosting quartz vein and stringer
disseminated gold, shear hosted gold, Mesothermal Quartz	vein systems, jasperoidal basalts,
Greenschist, oceanic rocks thrust over autochthonous Nort	h American sediments. Strike 070, Dips steeply north & south
greenstones, pillow metabasalts, serpentinite, fuschitic listw	anites and argillites, quartz vein breccias, thrust faulting
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMEN 7816, 9116, 11074, 14491, 21548, 21549, 21550.	IT REPORT NUMBERS 5628, 5887, 6125, 6641, 7501, 7601,

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
(total metres; number of holes, size)			
Core	953.12 m HQ	Mack #3, Hopefull #2	\$ 157,452.00
Non-core			
RELATED TECHNICAL		Maak #2 Happfull #2	¢ 04 705 00
Sampling/assaying	746 Core Samples		\$ 31,795.00
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/trail			
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST	\$189,427.00

Diamond Drilling Report

on the

BC Geological Survey Assessment Report 29571

Taurus Property

(Mack #3, Tenure No. 226144 & Hopefull #2, Tenure No. 226147)

Claims Optioned from American Bonanza Gold Corporation

Liard Mining Division N.T.S. 104P/5 Latitude 59" 17' N Longitude 129' 42' W

For:

Cusac Gold Mines Ltd. Ste. 1600 – 409 Granville St. Vancouver, B.C. V6C 1T2

November 30, 2007

By: Lesley C. Hunt, BSc. VPExploration Cusac Gold Mines Ltd

TABLE OF CONTENTS

SUM	MARY 1
1.0	INTRODUCTION
1.1	LOCATION , ACCESS & INFRASTRUCTURE5
1.2	PHYSIOGRAPHY5
1.3	PROPERTY6
1.4	EXPLORATION HISTORY10
1.5	GEOLOGICAL SETTING
	Regional Geology15Local and Property Geology151. Lithology152. Structure163. Mineralization17
2.0	2007 DIAMOND DRILLING PROGRAM
2.1	INTRODUCTION
2.2	DRILLING PROCEDURES
2.3	GEOLOGICAL RESULTS22
2.4	ANALYTICAL RESULTS
3.0 I	NTERPRETATIONS AND CONCLUSIONS
4.0 F	RECOMMENDATIONS
5.0 F	REFERENCES
6.0 S	TATEMENT OF COSTS

LIST OF TABLES

7	CLAIM LIST - AMERICAN BONANZA GOLD CORP	TABLE 1
13	TAURUS RESOURCE ESTIMATE SUMMARY BY ZONE	TABLE 2
	(Wardrop, Technical Report for Cusac Gold Mines, May 15, 2007)	
	DIAMOND DRILL COLLAR INFORMATION	TABLE 3
22	SIGNIFICANT COMPOSITE ASSAYS	TABLE 4
25	FIRE & METALLIC ASSAY SAMPLE SUMMARY	TABLE 5

LIST OF FIGURES

FIGURE 1	LOCATION MAP	.4
FIGURE 2	2007 TAURUS DEPOSIT REGIONAL LAND TENURE	.8
FIGURE 3	2007 TAURUS DEPOSIT DETAIL CLAIM MAP	9
FIGURE 4	TAURUS PROPERTY SITE PLAN	14
FIGURE 5	GENERALIZED PROPERTY GEOLOGICAL MAP	19

LIST OF APPENDICES

- APPENDIX A STATEMENT OF QUALIFICATIONS
- APPENDIX B TAURUS PROPERTY LITHOLOGY KEY
- APPENDIX C 2007 DRILL LOGS, 07TC-01 to 07TC-06
- APPENDIX D DIAMOND DRILL SECTIONS & PLANS
- APPENDIX E ASSAY & ANALYSIS PROCEDURES
- APPENDIX F ORIGINAL ASSAY & ANALYSIS CERTIFICATES
- APPENDIX G TAURUS METALLURGICAL RECOMMENDATIONS (Wardrop, Technical Report for Cusac Gold Mines, May 15, 2007)

SUMMARY

This report documents a portion of the diamond drilling program conducted from June 19th to July 17th of 2007 on the Taurus Property in the Cassiar Gold Camp, northern British Columbia by Cusac Gold Mines Ltd..

The property has year round paved road access and consists of 46 mineral claims covering 9.8km². Cusac Gold Mines concluded an agreement with American Bonanza Gold Corp. (the owner) to earn a possible 100% interest in the property subject to staged payments and a 2.5% NSR on ten mineral claims.

The property is located in the Sylvester Allochthon composed of Devonian to Triassic age subaqueous volcanic, sedimentary and ultramafic rocks juxtaposed in several thrust sheets. Gold mineralization at Taurus has many features in common with ophiolite related gold-quartz vein systems in other major gold camps in the Western Cordillera including Wells-Barkerville, Bralorne and Mother Lode.

There are several known easterly trending gold zones on the property including the past producing Taurus Mine (1981-1988). The property features broad zones of carbonate altered pillowed to massive basalts that host swarms of steeply northerly dipping quartz veins. The wall rock of these veins contain abundant disseminated, coarse grained, sub to euhedral pyrite. These zones of pyritized altered basalts containing 5% or more quartz veining are called **T4**. The zones of pyritized / altered basalts containing less than 5% quartz veining are called **T4A**. Another less common style of gold mineralization is called **T3** and features abundant very fine to fine grained disseminated pyrite and pervasive sericite and ankerite often seen with shear related banding. T3 mineralization is predominantly seen in the Highway and Taurus West areas.

Previous gold exploration including underground development in three workings, the Taurus Mine, Plaza and Sable has taken place on the property. Large exploration drill programs in the early 1990's, pre-1995, largely focused on higher grade (>6 g/t) gold potential associated with larger penetrative quartz vein systems within T4 mineralized zones.

Exploration by Cyprus Canada Inc. in 1995 - 1996 followed by International Taurus and Cusac Gold Mines have investigated the low-grade (l-3 g/t) bulk-tonnage gold potential of the larger T4 zones such as 88 Hill. Several resource calculations have been documented, most recently 32,386,000 tonnes grading 1.0 g/t gold in 2007 by Wardrop Engineering Inc. ("Wardrop").

In recent reporting, numerous authors have noted that the most current database previous to 2007 was incomplete. Core logging was in some cases, hastily done, there is data missing, there is core missing. No correlation between the numerous geological legends as well as the various grids and various navigational systems that have been introduced over the years had been attempted. Cusac has now incorporated many reports, databases and maps into one database. The 2007 Taurus Gemcom diamond drilling database is the most complete and accurate to date.

In 2006, Cusac Gold Mines conducted a Lidar (Light Detection and Ranging) survey covering 138.5 km² over the Table Mountain Property (wholly owned by Cusac) and the Taurus Property (owned by both Bonanza and Cusac). This survey produces a bare earth image with extremely high resolution and will be quite useful in future exploration.

The main objective of the drilling was to increase the confidence level of the inferred resource in the 88Hill zone of the Taurus Deposit and to increase the geological understanding of the gold distribution throughout the area.

Total program costs for the six diamond drill holes, 07TC-01 to 07TC-06 were \$ 189,427.

The results of the 2007 exploration program were encouraging, demonstrating that there is good solid continuity of grade and structure between historical drill holes. The re-logging of the T3 mineralization in the 88Hill area indicated that these zones were mis-logged and in fact the previously noted T3 mineralization in the 88 Hill zone is T4 or T4A. With respect to current metallurgical data this is positive news because to date, the metallurgical understanding of the two ore types at Taurus reveals that the T3 ore may be refractory and the T4 and T4A ores return a much higher percentage of gold through conventional gravity float processing.

Preliminary geological modeling is currently underway. The 2007 drilling program will help to understand the structural controls on gold mineralization which to date are not clear. Structures appear to be consistent throughout the mineralized zones including several sets of pre to post-mineral faults of various orientations.

The Taurus Property has excellent gold potential with a variety of targets. Further exploration is strongly recommended, future work should include infill drilling diamond drilling to achieve a 25 meter spacing between target zones, continuing infill sampling in historical drill holes and continued compilation work and technical studies including further metallurgical studies to determine more accurately, the different types of ore in the deposit.

1.0 INTRODUCTION

This report presents the results of six drill holes of a diamond drilling program completed on the Taurus property by Cusac Gold Mines Ltd. during June and July 2007. This program was supervised by Lesley Hunt, VP Exploration, and Mike Glover, Senior Project Manager both of Cusac Gold Mines Ltd. and was financed by Cusac Gold Mines Ltd., whose head office is at Ste. 1600 - 409 Granville St., Vancouver, BC, V6C 1T2.

Total applicable exploration expenses on the Taurus Property during this phase of 2007 exploration program amounted to \$189,247.00.

The main objectives of the 2007 exploration program were bifold however interrelated. Firstly objectives of the diamond drilling program on 88 Hill which consisted of six HQ drill holes **totaling 953.12 meters**, was designed to confirm structure and grade continuity between historic drill holes in the 88 Hill area. Previous drilling had been designed to explore the deposit at 50 meter spacing and the 2007 drill program drilled the target to reduce the intersection spacing of the mineralization to 25 meters.

In order to properly advance the geological model of the Taurus deposit it was imperative to improve the status of the current Taurus Property database. This was done by compiling all of the known exploration results to date into one database. This included compiling historical drill logs and all known exploration reports. This also included the re-logging of historical drill core where data was either missing or incomplete and infill sampling of historical drill core where previous programs targeting high-grade quartz veins had only sampled vein material. As well, a correlation of the numerous geological legends, grids and navigational systems used over the years was completed, and using new topographical data from the recent Lidar survey, the relocation of drill collars to more accurate elevations was completed.

The objectives of the 2007 work program was to obtain a solid database which will lead to a more confident and higher level geological understanding of the deposit and to potentially raise the current resource category at 88 Hill from an inferred resource to indicated resource hence advancing the deposit towards a prefeasibility study.

This assessment report covers six drill holes, 07TC-01 to 07TC-06 which are all located on American Bonanza Gold Corp.'s claims.

Much of the background data in the following sections 1.1, 1.2, and 1.4 has been taken from an assessment report written by Ronald Wells, now deceased, titled Geological, Geochemical and Interpretive Report dated August 23, 2003 for Navasota Resources Ltd.

1.1 LOCATION, ACCESS AND INFRASTRUCTURE

The Taurus Property covers approximately 980 hectares located in the Liard Mining Division located in north-central British Columbia, approximately 8 kilometers east of the former townsite of Cassiar, B.C., 117 kilometers north of Dease Lake, B.C., and 141 kilometers south of Watson Lake, Yukon Territory, (Figure 1). The property is located on NTS map sheet 104P05E and BCGS map sheet 104PO22, at 59" 16' 28" latitude and 129" 41' 22" longitude, and UTM coordinates 6570815mN, 460706mE (UTM Zone 09 - NAD 83).

There is excellent paved road access to the property. Heading west from the Stewart-Cassiar Highway 37 - 1km north of Jade City, the Cassiar Highway (not to be confused with the Stewart-Cassiar Highway) bisects the property and lies proximal to several of the known gold zones. From here, numerous old mine access and exploration roads to the north and south yield excellent vehicle access to most areas. Previous mining activities on the property in the 1980's and 1990,s have left several buildings on the property one of which was used for a core logging shack during the 2007 summer exploration program.

Most general supplies and services are available in Watson Lake, and limited supplies are available in Dease Lake. Commercial air service is available to Dease Lake by Northern Thunderbird Air (NTAir) and charter air service is available to Watson Lake. The Cassiar airstrip is available for use by charter aircraft. The nearest major centers are Whitehorse, Yukon, approximately 560 kilometers to the northwest, and Smithers, B.C., almost 720 kilometers south.

There is a small but highly skilled population base in the area, however most personnel for a new mining operation would have to be brought in from elsewhere.

The town of Cassiar has been sold and only a few residents (10) remain in the nearby townsite of Jade City. Power for the region was historically and will in the future have to be provided by privately owned diesel generators, unless the B.C. Hydro grid is extended north. There are numerous creeks in the property area that have sufficient year-round flow for any exploration or mining operation. The property itself affords space for the development of tailings storage areas, waste disposal sites, heap leach pads, if required, and expanded processing facilities.

1.2 PHYSIOGRAPHY

The Taurus Property is located at the confluence of Quartzrock and Troutline Creeks which then drain east into McDame Creek. Troutline Creek forms a broad westerly trending valley, its floor up to two kilometers wide features swampy areas separated by low hills with elevations between 1,000 and 1,200 meters. The two creeks are deeply incised in the Wings Canyon-confluence area with vertical cliffs and rapids. To the north and south the valley slopes rise steeply to local peaks over 2,000 meters in elevation. Vegetation consists of forests of jackpine, lodgepole pine, black spruce, and poplar thinning to buckbrush and alpine meadows above treeline at 1,400 meters.

Previous mining and exploration activities on the property have resulted in patchy cleared areas that have been both naturally reclaimed and professionally seeded. Daily mean temperatures recorded at Jade City,, range from -20° C in January to $+15^{\circ}$ C in July. Snowfall between October and May has total accumulation of 227 centimeters.

1.3 PROPERTY

Table 1 below lists the 46 mineral claims comprising the Taurus property. Cusac Gold Mines Ltd. holds, except for a 2.5% Net Smelter Return (NSR) in effect for the ten claims noted, a 100% undivided right to gain the title and interest in all of the Taurus claims free and clear of all encumbrances and royalties. The ten claims marked with an asterisk (*) in Table 1 are subject to a 2.5% NSR royalty in favor of Sable Resources Ltd. of Vancouver.

Figure 2 shows the Taurus claims and property outline with respect to surrounding claims and the Table Mountain Property owned by Cusac and others. Figure 3 shows the detailed location of the Taurus claims with respect to the exploration zones.

In 1995, Cyprus Canada contracted Ivan Royan, British Columbia Land Surveyor, of Underhill and Underhill to complete a survey of the Taurus claims, to determine if any fractions existed between claims and to resolve which claims had precedence. According to Broughton and Masson (1996), this work resolved location and precedence issues and allowed Cyprus Canada to stake apparent open ground. As a result, some discrepancies exist between claim locations from the legal survey and those on the Ministry of Energy and Mines website (MTO). Figures 2 and 3 use the MTO claim locations because as of January 2008 all claim boundaries on the MTO web site are accepted as final claim boundary locations.

Placer claims exist along both Quartzrock and Troutline Creeks within the Taurus property boundary. Surface tenures also overlap the Taurus property, but no title search has been done to date.

Tailings are located in two locations in the same drainage area about 600 meters immediately east of the Taurus Mine workings. The flotation tailings are primarily quartz with carbonate and hence are quite inert. For the last two years of its operation, the Taurus mine leached flotation concentrate on site. The leach tailings were treated using the INCO SO2 method of cyanide destruction and were buried within the Phase I tailing impoundment. The mine and mill site were reclaimed after closure to the satisfaction of the Province and a \$10,000 bond remains in place to facilitate any required future reclamation. Water quality monitoring of various discharges has been discontinued with effluent being deemed acceptable from all discharge locations by provincial authorities. An additional \$25,000 bond is in place to cover the reclamation costs of current exploration programs. Permits are required from the provincial government prior to exploration programs. As a relatively recent past producer there should not be any major hindrances to development from a permitting perspective.

Tenure	Tenure			Map	Good To		Minina		Tag		
Number	Type	Claim Name	Owner	Number	Date	Status	Division	Area	Number		
221785	Mineral	HANNA 9	202171 (100%)	104P022	2009/sep/11	GOOD		225.0	19067		
221900	Mineral	PORTAL 2	202171 (100%)	104P022	2009/sep/11	GOOD		225.0	41466		
221901	Mineral	PORTAL 1	202171 (100%)	104P022	2009/sep/11	GOOD		375.0	41465		
222080	Mineral	MM 1 FR.	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	41467		
226142 *	Mineral	MACK #1	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	2599		
226143 *	Mineral	MACK #2	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	2600		
226144 *	Mineral	MACK #3	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	2601		
226145 *	Mineral	MACK #4	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	2602		
226146 *	Mineral	HOPEFULL #1	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	2607		
226147 *	Mineral	HOPEFULL #2	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	2608		
226148 *	Mineral	HOPEFULL #3	202171 (100%)	104P022	2008/sep/11	GOOD	LIARD	25.0	2609		
226149 *	Mineral	HOPEFULL #4	202171 (100%)	104P022	2008/sep/11	GOOD	LIARD	25.0	2610		
226150 *	Mineral	HILLSIDE	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	2633		
226151 *	Mineral	HIGHGRADE	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	2630		
226207	Mineral	THRUSH	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	241446		
226208	Mineral	COPCO #1	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	355002		
226209	Mineral	COPCO #2	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	355003		
226210	Mineral	COPCO #3	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	355006		
226211	Mineral	COPCO #4	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	355007		
226212	Mineral	COPCO #5	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	355004		
226213	Mineral	COPCO #6	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	355005		
227201	Mineral	ROY 1	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	148039M		
227202	Mineral	ROY 2	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	148040M		
227203	Mineral	ROY 3	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	148041M		
227204	Mineral	ROY 4	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	148042M		
227536	Mineral	TOD #7	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	859986		
227537	Mineral	TOD #8	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	859987		
227694	Mineral	ATLAS #1	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	431545M		
227695	Mineral	ATLAS #2	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	431546M		
227696	Mineral	ATLAS #3	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	431547M		
227697	Mineral	ATLAS #4	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	431548M		
227698	Mineral	ATLAS #5	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	431549M		
227699	Mineral	ATLAS #6	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	431550M		
227700	Mineral	ATLAS #7	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	431551M		
227701	Mineral	ATLAS #8	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	431552M		
227702	Mineral	ATLAS #9	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	431553M		
227703	Mineral	ATLAS #10	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	431554M		
227704	Mineral	ATLAS #11	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	431555M		
227705	Mineral	ATLAS #12 FR	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	431556M		
227708	Mineral	DOR #1	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	372824M		
331105	Mineral	MISS DAISY 1	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	658604M		
331106	Mineral	MISS DAISY 2	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	658603M		
331167	Mineral	BES 1	202171 (100%)	104P022	2008/sep/11	GOOD	LIARD	25.0	658606M		
331168	Mineral	BES 2	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	658607M		
332630	Mineral	TOR 2	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	450.0	120591		
395270	Mineral	FIREWEED	202171 (100%)	104P022	2009/sep/11	GOOD	LIARD	25.0	713665M		

 Table 1: CLAIM LIST - AMERICAN BONANZA GOLD CORP.

1.4 EXPLORATION HISTORY

Pre-1988: The Cassiar area was first explored in 1874, resulting in the discovery of placer gold in McDame Creek. By 1895, 2.2 million grams had been produced. Gold-quartz veins were discovered in Troutline Creek in 1934, leading to the discovery of many more gold bearing veins that lead to the establishment of several small gold mining operations. The Taurus Mine was originally covered by seven claims of the Cornucopia Group staked by J.C. Simpson in 1935. Simpson carried out stripping, trenching and rock sampling until 1944. The following year, Benroy Gold Mines Ltd. optioned the property and completed more than 700 meters of trenching and 1500 meters of diamond drilling.

The claims were restaked in 1959 by Couture and Copeman who hand-mined 25 tons of highgrade ore from a short adit. In 1960, Cornucopia Explorations Ltd. was incorporated and acquired the property. The following year, Cornucopia changed names to Hanna Gold Mines Ltd. and proceeded with 1,180 meters of drifting and crosscutting, and 1,000 meters of diamond drilling. By the end of 1963 an "indicated reserve" of 72,500 tonnes grading 22.6 grams per tonne gold had been outlined (Gunning, 1987).

In 1964, Newconex Canadian Exploration Ltd. optioned the property and completed an additional 180 meters of drifting and crosscutting and 210 meters of drilling. In 1972, Hanna Gold Mines became Dorchester Resources Ltd., and rehabilitated and resampled the main 3600 level adit, and completed another 223 meters of underground diamond drilling between 1973 and 1975. In 1976, Dorchester Resources became Taurus Resources Ltd. In 1978, Ashlu Gold Mines Ltd. optioned the property and completed 7.2 kilometers of ground-based magnetometer and electromagnetic surveys. In 1979, United Hearne Resources Ltd. optioned the property and continued underground development and drilling, confirming a "reserve" of 60,000 tonnes grading 16.1 grams per tonne gold.

A 135 tonne per day mill was constructed at the Taurus Mine during 1980-81to treat 220,000 tonnes of ore, averaging 5.14 grams per tonne gold prior to closing in 1988. The Plaza and Sable underground workings, south of the Cassiar highway, were developed between 1980 and 1994 but with no recorded production.

1988 to 1994: In 1988, Sable Resources Ltd. conducted an Induced Polarization (IP) survey that outlined 33 anomalies on the "Main Grid" area. Trenching and 5 diamond drillholes tested one anomaly discovering the 1988-1 and 1988-2 vein systems in the 88 Hill area. Hole 88-5 intersected 5.99 grams per tonne over 12.34 meters. Subsequently, a small open pit extracted 2600 tonnes grading 2.06 grams per tonne from the 1988-2 vein.

In 1993, Sable extended the IP coverage and completed additional trenching. Late in 1993, Sable sold its controlling block of shares in International Taurus Resources Inc., to Hera Resources Inc. who completed a trenching and 26-hole diamond drilling program totaling 1554 meters, (5099 feet) on the east side of 88 Hill. Trenching tested 6 of a total now of 42 geophysical (IP) targets, discovering 3 gold-bearing vein systems (1993-1 to 3), which were subsequently drill-tested. A "potential resource" of 436,000 tonnes (481,000 tons) in individual narrow quartz veins grading 6.99 grams per tonne gold (0.204 ounces per ton) was reported by B.E. Spencer (1994) for the 88-1, 93-1 and 93-2 vein systems.

Also in 1994, a second resource calculation by A.J. Beaton included the 88-1, 93-1, and 93-2 vein systems calculated a "geological or potential ore reserve" of 367,000 tons grading 0.172 ounces per ton. This estimate includes data on the portion of 1994 trenching and diamond drilling completed in the 88 Hill area. That portion of the program consisted of extensive trenching and diamond drilling along the south and north margins of the area explored in 1993.

1994 to 1999 : In 1994, International Taurus moved to the north side of the highway, along strike to the west of the Taurus mine workings to complete 88 diamond drillholes totaling 7,518 meters and an IP survey over 26.7 kilometers of grid. In addition, 220 meters of drifting and 47 meters of raising were completed in the existing underground workings to define additional mineral resources. Underground development was suspended in late 1994, following the discovery of new targets. One drill hole west of the Taurus workings, 94-56, intersected 44.5 meters of pyritic mineralization grading 1.6 grams per tonne. This new zone, dubbed the Taurus West Zone, signaled the potential for bulk tonnage gold deposits on the Taurus property. A total of 24 diamond drillholes tested the Taurus West. Seven holes collared from 3 set-ups over 350 meters, tested the B.M. Zone, an 850-metre long IP anomaly, approximately 300 meters north of Taurus West.

Cyprus Canada Inc. signed a joint venture agreement with International Taurus and Cusac Gold Mines Ltd. in January 1995, and Douglas Busat in May 1995, assembling a claim package of some 4,000 hectares stretching 10 kilometers east-west by 4 kilometers north-south. In March 1995, Cyprus began diamond drilling on the Taurus West and 88 West areas, completing 7 widely spaced NQ holes (T95-1 to 7) totaling 1,357 meters. A north-south oriented grid was cut with lines 3,000 meters in length at 200 meter line spacing, to serve as control for pole-dipole IP and ground magnetometer surveys. In May and June, another 7 widely spaced NQ holes (T95-8 to 14) totaling 1,209 meters tested chargeability anomalies in the western portions of the grid, as well as the southern part of the Taurus West area.

Mapping the central portion of the property commenced in mid-June 1995, with limited trenching at Taurus West. A soil geochemical survey was completed over the grid at 50 meter stations. Diamond drilling resumed in July, completing an additional 10,104 meters in 64 holes. Two diamond drill rigs drilled both NQ and HQ holes over the 88 Hill, Taurus Mine and Taurus West areas, using 100 to 400 meter hole spacing. The grid was expanded later in the summer for further IP, ground magnetometer and soil geochemical surveys. Finally, in September, a reverse circulation (RC) drill was brought in to twin 5 diamond drillholes in the Taurus West, Highway, and 88 Hill Zones. A total of 826 meters of drilling was completed to determine the viability of the RC system.

Preliminary metallurgical testing on 11 composite samples from the 88 Hill and Taurus West Zones was designed to test the characteristics of two dominant types of mineralization (T4's and T3). Leach tests utilizing cyanide and froth flotation tests were run. Also, a preliminary resource calculation was completed to quantify potential resources for economic analyses. An inferred, undiluted mineral inventory of 38 million tonnes grading 1.42 grams per tonnes was calculated for the 88 Hill, Taurus West and Highway Zones. A second calculation utilized the same data but a different set of assumptions defined potential resource of 40.6 million tonnes grading 1.07 grams per tonne.

In July 1996, Cyprus decided to discontinue its efforts on the Taurus property, feeling that the deposit failed to meet its requirements at the time.

International Taurus continued on with a program of 36 reverse-circulation holes, totaling 3,869 meters, drilled on 50-metre centers on the 88 Hill Zone, and 5 NQ diamond drillholes, totaling 582 meters, extending the zone some 300 meters to the west. The program was designed to upgrade a portion of the inferred mineral resource, defining a "drill indicated reserve" of 13,725,350 tonnes grading 1.01 grams per tonne gold. An additional 27,355,000 tonnes grading 0.67 grams per tonne gold was classified as "inferred". A sectional method of resource calculation was employed. Given the lack of rigorous economical analyses and general geological modeling in the calculation, this figure is an indicated mineral resource. Additional wide-spaced drilling in the Taurus West Zone outlined a "drill inferred resource" of 25,134,000 tonnes grading 0.67 grams per tonne gold. This figure updated a part of the global inferred resource completed by Cyprus.

In 1997, a further six holes totaling 790 meters was completed by International Taurus. No logs or hole locations were found in the data supplied by International Taurus. No significant work programs were completed in 1998. In September Cusac Gold Mines Ltd. entered into an agreement with International Taurus to earn up to 70% interest in the Taurus property by performing a certain minimum amount of exploration and development work over a four-year period and completing a positive feasibility study.

In 1999, Cusac completed another resource calculation. Cusac defined six distinct zones using a database of 130 drillholes to define a "total mineral inventory" of 62,397,477 tonnes grading 0.80 grams per tonnes.

1999 – Present

No significant work programs were completed on the Taurus Property from 2000 to 2002.

In late 2003, Navasota Resources Limited conducted a two-phase program consisting firstly of general geological compilation with some geochemistry, as well as limited remapping and relogging of specific core. Phase II consisted of a drill hole program made up of 13 NQ holes totaling 1,974 meters in length. The holes were designed to test the zones identified in post-1994 work. In general terms, these results confirmed the results reported in previous programs on the Taurus property. The zones intersected in the 2003 program do not seem to match up identically with those from previous work; therefore, more work is needed to understand the nature of the zones on the property. Difficulties arising from the high nugget affect associated with the T4 mineralization may be the cause of this, and some small test pits and/or underground sampling may be needed to understand the geology better.

Until 2003, no 43-101 compliant resource estimates were completed. Table 2 below, comprises a summary of the current 43-101 compliant resource estimate by Wardrop Engineering Inc. for Cusac Gold Mines Ltd., dated May 15, 2007.

	Table	e 2.													
Summary of Ir	nferred Mine	eral Resoui	ce Estimate												
;	at 0.50 g/t Au Cutoff														
	Average														
Zone Name	Tonnes	Grade	Contained												
	(000's)	(g/t Au)	Oz Au												
Sable	1,350	1.32	57,339												
88Hill	8,505	1.15	315,797												
88West	13,102	0.87	366,930												
Highway	2,456	0.98	77,276												
Taurus West	3,709	1.02	121,056												
Taurus	2,348	0.99	74,489												
Plaza	917	0.95	27,999												
Total	32,386	1.00	1,040,886												
(Wardrop Engineerii	ng Inc., Techni	ical Report on	the Taurus												
Deposit for Cusac G	old Mines Ltd.	, May 15, 2007	7												

GEOLOGICAL SETTING

Regional Geology

Rocks of the Sylvester Allochthon, an accreted terrane of Mississippian to Triassic age, underlie the Taurus property. The allochthon was thrust over miogeoclinal platformal rocks of the Cassiar Terrane, forming a flat-bottomed, northwest-trending synclinorium of stacked thrust slices. The North American continental margin can be characterized as platformal limestones interbedded with clastic rocks including quartzite, grey to green phyllite, sandstone, phyllitic siltstone, and shale of Cassiar Terrane (Figure 6). Emplacement of the allocthon most likely occurred during early Jurassic time

The Sylvester Group can be divided into three major divisions (Nelson et al., 1988).

The base of the group, **Division I**, is composed of mainly chert and black argillite, with lesser sandstone, siltstone, diorite and diabase sills, and bedded quartz-pyrite-barite exhalites.

Division II, which hosts the mineralization at Taurus, is made up of basaltic flows and breccias, chert and argillite, intercalated with variably altered, narrow bodies of ultramafic rocks. The highest exposed structural level of the allochthon.

Division III, is comprised of island arc volcanic rocks of basic to felsic composition and limestones. The Sylvester Group is correlated with Slide Mountain Terrane.

The Sylvester allochthon is intruded by the late Cretaceous Cassiar batholith to the west, and several other smaller stocks in the Cassiar area ranging in age from 90 Ma to 50 Ma. Compositionally, these intrusive rocks are quartz monzonites.

Local and Property Geology

1. Lithology:

The Taurus property and surrounding area are underlain by an upright sequence of Division II massive to pillowed to rarely amygdaloidal, medium grey-green basaltic flows, chert and argillite, occasional ultramafic flows or sills, and mafic and lamprophyre dykes. Cyprus geologists divided the Taurus stratigraphy, generally from oldest to youngest, as follows (Broughton and Masson, 1996):

Argillite is typically dark grey to black, carbonaceous to graphitic, well bedded, and commonly sheared. Beds range from 1 mm to 10 cm in thickness. Argillite grades into argillaceous chert. Contacts with basalts are sheared, graphitic, gougey, and brecciated. The unit was used as a basal marker for drilling.

Chert and *argillaceous chert* are characterized by alternating bands of soft (H=3-4), pale greenish mudstone and hard (H>6) cream white chert. This cherty nature may be, in part, secondary as contacts with adjacent basalts, mudstone, and argillite are often gradational.

Mudstone pale green, soft, and finely laminated, occurs at the base of mineralized basalts in the 88 Hill area and has been correlated with adjacent cherts.

Ultramafics occur at the west end of the property near the basalt-argillite contact and range in colour from dark green to black, and in texture from strongly schistose to massive. These sills or flows are altered to chlorite + talc +/- pyrrhotite, with local fuchsite in listwanite. In one location, a 1-metre section of massive sulphide (pyrrhotite + minor chalcopyrite) is hosted in deformed chlorite-talc-serpentine schist.

Mafic volcanics dominate the property area occurring as light to medium dark green massive to pillowed flows, altered to chlorite-actinolite-epidote-leucoxene carbonate-sericite. A magnetic jasperoidal pillowed sub-type has been recognized. Pillowed flows are generally poorly developed or poorly recognized, and appear not to be laterally extensive. Mafic flows are the dominant host of gold mineralization at Taurus and are underlain and intercalated with sedimentary rocks.

Mafic tuffs are noted at several locations throughout the property but do not appear to form correlatable units. The tuffs are fine-grained and laminated to coarse lapilli.

Mafic and Lamprophyre Dykes cut all other units on the Taurus property. Mafic dykes are aphanitic, dark green to black while lamprophyre dykes host biotite and occasional pink potassium feldspar phenocrysts. Both range from centimeters to 10 meters in thickness. Lamprophyre dykes have strongly magnetic contact aureoles up to 1 meter into the host rock.

Volcanic and sedimentary sequences on the Taurus property are relatively flat lying and face up. Within the basalt package, a steeply dipping north to northwest trending foliation appears to predate all other structures and may be related to allochthon emplacement. Flat, sheared contacts may represent significant thrust faults, the most important being the lower contact of the dominantly basaltic sequence. A series of shallow east-dipping faults are possibly rooted in this basal thrust. This tectonic event likely resulted in ground preparation that allowed mineralizing fluids to circulate through the host rock.

2. Structure

Volcanic and sedimentary sequences on the Taurus property are relatively flat lying and face up. Within the basalt package, a steeply dipping north to northwest trending foliation appears to predate all other structures. Flat, sheared contacts may represent significant thrust faults, the most important being the lower contact of the dominantly basaltic sequence. A series of shallow east-dipping faults are possibly rooted in this basal thrust (?). This tectonic event likely resulted in ground preparation that allowed mineralizing fluids to circulate through the host rock.

Several sets of pre-mineralization structures have been identified. A low angle thrust fault striking northwest with a 15° dip to the southwest separates basaltic host rocks from barren argillites. This structure is likely one of a series of thrust faults. Another mineralized fault,594 Fault strikes to the north and dips 30-40° to the east, crosscutting the other sets and displays

reverse sense of movement. One such fault may correlate with a north-trending reverse fault at the Cusac (Erickson) Mine, 8 kilometers to the south. Many quartz veins at the Taurus Mine are controlled by a series of faults striking 80-90° and dipping 50-60° to the south. Movement is interpreted to be both right lateral and reverse along these faults. Pyritic faults often occur adjacent to these larger quartz veins.

Post-ore structures include at least three sets of steeply dipping faults. One set of narrow faults striking 290-300° has been mapped in the Taurus Mine with meter-scale sinistral displacements of mineralized veins. A prominent subvertical set, trending 310-330°, shows up as chlorite schist in basalt and laminated to schistose fabric in cherts. Another subvertical northeast trending set has been defined from magnetometer and IP data. One set of faults strikes 250° with shallow southerly dips.

Hydrothermally altered basalt forms east-trending, steeply dipping, braided zones up to 60 meters thick, separated by blocks of unaltered basalt. Alteration consists of plagioclase altering to sericite and augite to epidote, sphene and chlorite. As alteration intensity increases, plagioclase and augite are completely replaced and the groundmass alters to dolomite, leucoxene and traces of potassium feldspar.

3. Mineralization:

Both Taurus and the neighboring Cusac (Erickson) Mines have exploited well defined Mesothermal quartz-carbonate-gold veins, similar to other volcanic-hosted vein systems at Bralorne and in the Mother Lode district of California. These vein systems are characterized by white to clear bull quartz and lesser iron-magnesium carbonate, calcite and traces of sericite.

Mineralization in this setting falls into two types: *pyritic quartz veining* (*T4 & T4A*) and *disseminated pyrite* (*T3*). The two basic types of gold mineralization are predominantly hosted in altered basalt.

The following section describes the various vein types and mineralization in more detail.

<u>Pyritic quartz veins</u> are best developed at the Taurus Mine and 88 Hill Areas, in three main structural trends described previously. Pyritic quartz vein mineralization can be subdivided into two subtypes: large veins (**T5**) and broad zones of sheeted or swarmed veins hosted by pyritized carbonate altered basalts (T4 & T4A).

Veins are composed of white quartz with patches of clear quartz, patches of carbonate (ankerite/dolomite), with clay and sericite flanked by narrow zones of sulphide mineralization, typically 10 centimeters wide, along the vein margins. These zones often extend into the wallrock overprinting the vein contacts. Sulphides consist of pyrite with minor tetrahedrite and arsenopyrite, and trace sphalerite, galena and chalcopyrite. Systematic chip sampling shows that fine gold is concentrated in these sulphide zones averaging 21 grams per tonnes over 10 centimeters compared with only 1.8 grams per tonne over 50 centimeters across the center of the vein along graphitic banding. Alteration halos typically average 2 grams per tonne over 40 centimeters (Gunning, 1988).

In broad zones of pyritic quartz vein mineralization, pyrite typically makes up 5-10% of the rock, mainly as fine to coarse disseminations, fracture fillings, veinlets, halos and mud faults. Pyrite is associated with minor arsenopyrite along vein margins, chalcopyrite, apple green sericite,

sphalerite and occasional visible gold. These broad zones have an east-west strike and steep southerly dip. Gold grains occur among quartz grains and in and adjacent to pyrite, sphalerite and tetrahedrite grains.

The second type of mineralization, termed <u>disseminated pyritic or pyrite – carbonate</u> <u>mineralization</u>, is characterized by to-40% fine-grained pyrite, sometimes banded and lacking significant quartz veining. The banded appearance is actually a shear fabric with basalt altered to sericite/muscovite + dolomite +/- leucoxene +/- quartz. Unmineralized quartz + carbonate veinlets are common, as is irregular, hairline, locally graphitic fracturing. Distal to the goldbearing mineralization, two vein structures with high silver/gold ratios have been explored. The Elan veins, northwest of the property, returned silver grades up to 5 ounces per ton but gold grades are typically less than 0.01 ounces per ton. These veins are not considered to be of much significance.

Seven zones of mineralization have been identified, each with a unique set of geological characteristics (Figure 3). The zones are the Taurus Mine, Taurus West, Plaza, Sable, 88 Hill, 88 West and the Highway. Continuity appears to be good within each area but continuity between various zones is still a major issue to be resolved. This is most likely a factor of exploration density Mineralization at the Taurus Mine is fairly well understood with large vein systems as described above. A zone of disseminated pyritic mineralization has been identified in the Decline Fault hanging wall. Controls for the low-grade mineralization at Taurus Mine are not well understood.

Mineralization at **88 Hill** extends at least 1000 meters by 400 meters and includes surface and underground development work on the Sable and Plaza vein systems. Pyritic quartz vein mineralization occurs in swarms or sheets within pyritized and ankeritized basalt. Veins exposed in trenches and underground workings generally strike east-west with steep north and south dips and occur as broad zones of small tensional veins and narrow zones around continuous veins. These mineralized zones are separated by unaltered, unmineralized basalt. Mineralized zones are broadly continuous but individual structures are not correlatable. The 88 Hill Zone is open to the east back toward the Taurus Mine, and to the north and south. To the north, the zone may continue into the Highway Zone. Mineralization in the 88 West fine does not appear to extend beyond the east-dipping Taurus West Fault.

The Highway Zone lies along the north side of the highway between Quartzrock Creek and the Taurus West Fault. Geologically the Highway Zone is very similar to the 88 Hill, with pyritic quartz vein mineralization in the east to broad quartz-rich zones in the west.

Taurus West hosts disseminated pyrite-type mineralization centered on section 1100W Drilling has demonstrated that continuity within the zone is limited and does not extend to 1000W or 1200W.

Wings Canyon lies in Quartzrock Creek approximately one kilometer south of the Taurus Mine. Most of Wings Canyon lies immediately south the property, but given its proximity to the property, it is included in this discussion. Wings Canyon is characterized by a broad zone of low-grade mineralization related to extensive northeast striking and variably south-dipping white quartz veins.

Figure 5 Generalized Property Geological Map

2.0 DIAMOND DRILLING PROGRAM

2.1 INTRODUCTION

Cusac Gold Mines Ltd completed a diamond drilling program on the Taurus Property between June 19 and July 17, 2007. The program consisted of 10 drill holes, 07TC-01 to 07TC-10. This report covers only the first 6 drill holes in the program as they are on the American Bonanza Gold Corp's claims.

The program was supervised by Lesley Hunt (VPExploration) and Mike Glover (Senior Project Geologist), both of Cusac Gold Mines employ. DJ Drilling, of Watson Lake, Yukon Territories was the drilling contractor, and as always, performed a very professional job.

The objective was to improve the confidence and continuity of both the grade and structure of the 88Hill Zone portion of the Taurus Deposit and to improve the understanding of the geological setting and controls on gold mineralization within the known gold zones on the Taurus Property. Updated metallurgical studies from fresh, unoxidized samples are to be completed on the core from this program.

There are some facilities on the property left over from previous exploration and mining including a useable cabin and core shack. All known drill core from previous drill programs is stored in racks on the property (see Fig. 4, Site Plan) and most of it is labeled. Some of the 1994 and earlier core is cross-stacked and locally incomplete, some boxes are difficult to impossible to decipher. This core was obviously not used for the diamond drill database update.

Appendix D illustrates the Diamond Drill Hole Location in plan view and a set of west looking sections.

Access to the property by old exploration roads and trails is excellent, however a quad must be used for some of the very old naturally reclaimed trails. The old underground workings at the Taurus Mine, Plaza and Sable have been reclaimed as have the majority of trenches. The 88Hill bulk sample trench has only been contoured leaving great altered, multiple gram mineralized outcrop to view. Drillhole markers left in the ground for 1995 and later still have readable tags. The area is generally quite open to overhead coverage and facilitates the use of GPS for locating drill collars. This is advantageous especially since the old exploration grids are variably overgrown with sparse reference points.

2.2 DRILLING PROCEDURES

This report covers **six** HQ drill holes of a ten drill hole program in the 88Hill zone. These six holes were all collared on American Bonanza Gold Corp's mineral claim, Mack #3 - Tenure No.226144.

DJ Drilling Ltd. of Surrey, B.C, contracted the diamond drilling for the 2007 exploration program. All core from the diamond drill program was logged and sampled using geological control, with sample lengths typically around 1.5 meters. The holes were drilled with Longyear LF 70 hydrostatic drill using conventional HQ equipment.

Drill pad preparation was completed using a D-6 Cat. All of the setups were located on existing roads and cat-trails. Drill set-ups were verified by staff geologists using a Garmin GPS. Downhole surveys were done with a 'Flex – It' downhole survey instrument. Drill collar locations are marked with a 4"X4" wooden post and a metal Dymo tag marked with the hole number and left in the collar after the drill was moved off the pad. All set-ups were re-contoured subsequent to the completion of the program.

Core was logged and sampled onsite by staff geologists. Core recoveries and RQD measurements were taken by core technicians and entered into excel spreadsheets.

Core photographs were taken after logging and laying out sample locations and before splitting the core. The core is stored in permanent core racks in the central part of the property. Core rack locations are indicated on Figure 4, Site Plan. Individual drill hole boxes are mapped and available in the Cusac 2007 Taurus Database.

All drilling information was compiled on a master spreadsheet and relevant portions imported into Gemcom for geological modeling. Recorded data includes the following items:

- 1. Header Hole, X, Y, Z, Depth, System, Start, Finish, Logger, Purpose.
- 2. Surveys Hole, Depth, Azimuth, Dip.
- 3. Lithology Hole, From, To, Lithological Code, Structure Code.
- 4. Assays Hole, From, To, Sample, Width, Routine Assay Au g/T, Metallic Assay Au g/tonne, Shipment, and QA/QC lookups and checks for standards.
- 5. Composites Hole, From, To, Core Length, Assay Au g/T.
- 6. Recovery and RQD data
- 7. Copies of Original Assay Certificates

Drill Hole Collar information is summarized below.
--

			Collar				
Hole ID	Easting	Northing	Elevation(m)	TD (m)	TD(ft)	Section (E)	Purpose
07TC-01	459631	6570378	1108.00	154.53	506.9	459640	Infill Drilling 88 Hill
07TC-02	459635	6570344	1108.00	121.05	397.0	459640	Infill Drilling 88 Hill
07TC-03	459657	6570422	1112.00	142.34	466.9	459660	Infill Drilling 88 Hill
07TC-04	459696	6570361	1115.00	141.40	463.8	459700	Infill Drilling 88 Hill
07TC-05	459721	6570434	1119.00	190.80	625.8	459720	Infill Drilling 88 Hill
07TC-06	459772	6570415	1117.00	203.00	665.8	459780	Infill Drilling 88 Hill

 Table 3: Diamond Drill Hole Collar Information

2.3 GEOLOGICAL RESULTS

Diamond Drill Hole Logs are included in Appendix C and Sections and Plans of the diamond drilling are included in Appendix D. Significant composite assay results are presented in Table 4 below.

Un-Cappe	d Compo	sites	-		Capped Co	mposites	to 12.42	g/T A	υ
Hole ID	FROM	то	g/T	m Core	Hole ID	FROM	то	g/T	
07TC-01	3.05	111.55	2.36	108.50	07TC-01	3.05	111.55	1.07	
Including	3.05	83.00	1.25	79.95	Including	3.05	83.00	1.15	
Including	12.15	63.90	1.61	51.75	Including	12.15	63.90	1.46	
Including	100.40	111.55	14.00	11.15	Including	100.40	111.55	2.11	
Including	101.90	107.40	27.94	5.50	Including	101.90	107.40	3.83	
	0			(1.80)					
0/TC-02	5.50	69.70	1.14	64.20	0/1C-02	5.50	69.70	1.14	
Including	14.30	52.85	1.29	38.55	Including	14.30	52.85	1.29	
Including	14.30	19.20	3.61	4.90	Including	14.30	19.20	3.60	
Including	42.70	52.85	2.38	10.15	Including	42.70	52.85	2.38	
Including	66.40	69.70	5.06	3.30	Including	66.40	69.70	5.06	
									Ī
07TC-03	14.80	102.00	1.15	87.20	07TC-03	14.80	102.00	0.96	
Including	14.80	90.50	1.28	75.70	Including	14.80	90.50	1.06	
Including	14.80	45.10	2.14	30.30	Including	14.80	45.10	1.59	
Including	58.85	90.50	0.94	31.65	Including	58.85	90.50	0.94	
07TC-04	1.10	19.06	0.82	17.96	07TC-04	1.10	19.06	0.82	
Including	1.10	7.50	1.80	6.40	Including	1.10	7.50	1.80	
07TC-04	49.60	67.86	5.37	18.26	07TC-04	49.60	67.86	1.94	
Including	52.70	67.86	6.39	15.16	Including	52.70	67.86	2.26	
07TC-05	7.85	147.90	0.80	140.05	07TC-05	7.85	147.90	0.77	
Including	28.45	64.35	1.74	35.90	Including	28.45	64.35	1.59	
Including	28.45	53.90	2.15	25.45	Including	28.45	53.90	1.94	
Including	60.00	64.35	1.62	4.35	Including	60.00	64.35	1.62	
Including	133.75	147.90	1.77	14.15	Including	133.75	147.90	1.77	
07TC-06	4.20	139.73	0.56	135.53	07TC-06	4.20	139.73	0.56	
Including	4.20	27.25	0.73	23.05	Including	4.20	27.25	0.73	
Including	4.20	6.65	2.71	2.45	Including	4.20	6.65	2.71	
Including	18.07	27.25	1.09	9.18	Including	18.07	27.25	1.09	
Including	42.25	82.90	1.07	40.65	Including	42.25	82.90	1.07	
Including	42.25	47.85	2.87	5.60	Including	42.25	47.85	2.87	
Including	57.30	66.20	1.74	8.90	Including	57.30	66.20	1.74	
Including	73.00	82.90	0.93	9.90	Including	73.00	82.90	0.93	
Including	97.50	139.73	0.35	42.23	Including	97.50	139.73	0.35	

Table 4: Significant Composite Assays

m Core 108.50 79.95 51.75 11.15 5.50

> 64.20 38.55 4.90 10.15 3.30

87.20 75.70 30.30 31.65

17.96 6.40 **18.26** 15.16

 140.05

 35.90

 25.45

 4.35

 14.15

 135.53

 23.05

 2.45

 9.18

 40.65

 5.60

 8.90

 9.9.00

 42.23

The infill drilling results from drill holes 07TC-01 to 07TC-06 well established strong continuity of structure and grade between historical drill holes. Significant structures like quartz veins and distinct mineralized zones appear to be traceable from hole to hole in this particular area and with the smaller drill collar spacing (25m).

It is an issue at 88Hill however is that correlation between larger blocks of mineralization is much more complex and the limited drilling that Cusac carried out in 2007 alone can not resolve the orientation of gold mineralization (shoots) in several of the known zones with any confidence.

Limited geological modeling to date has been completed over the entire Taurus Deposit. This is a function of lack of staffing and funding.

The 2007 drill program covered a strike length of 150 meters. This is one of the few areas where drilling has been designed at 25 meters or less, the Sable zone is the other one. The wide and variable spacing of the historical drillholes often allowed more than one interpretation of > 1.0 g/t gold shoots with both sub-vertical and shallow dipping possible.

A relatively distinct contact with the T1F (Basalt with magnetite and / or Jasper) zone at depth has become traceable over 200 meters or so. This appears to cut off the mineralization a depth in the 88 Hill zone and may continue to do so in the Sable area where the mineralization has been offset in a normal dextral sense and more than likely rotated.

2.4 ANALYTICAL RESULTS

SAMPLE PREPARATION, ANAYLYSIS AND SECURITY

Core samples from the 2007 Cusac drill program were split with a conventional core splitter, bagged and driven by management or a management designated employee to the Eco Tech Prep Lab in Whitehorse. Half the core was left in the core boxes as a permanent record.

Sampling consisted of marking the mineralized sections into sample intervals based on geological criteria, splitting the core in half along its length using a continuous line to prevent bias, and bagging one-half of the split core from each marked sample interval.

Standard samples were purchased from Canadian Resource Labs in Delta, BC and were inserted into the sample sequence as every tenth sample. Blank samples were inserted after any sample containing visible gold

Each sample was individually bagged in 6mm plastic sample bags and then several samples were sealed together in a large 6mm poly bag and each large bag was sealed with serialized security seals. The large bags were in turn sealed in a woven rice bag to provide protection during shipping.

Sample requisitions and Sample Shipping Lists with security seal information were emailed to the lab with a request for verification of the seal integrity to facilitate detection of possible tampering. Eco Tech then faxed a hand written and signed letter stating each security seal number and the condition of the security seal that they received in Whitehorse. The samples were crushed, split, and pulverized to produce 200-gram pulps, which were shipped via air to EcoTech's lab in Kamloops for analysis. Assay and analysis procedures are located in Appendix E.

In house check assays were conducted by EcoTech on approximately 10% of the samples All standards returned results within the upper and lower limits allowed.

All but one of the blanks returned below detection level gold. Blank sample No. 31442 returned 0.23 g/t gold and was just noticed to be anomalous during the writing of this report. Sample No. 31441, located directly inline with 31442 in the sample sequence is an anomalous 2007 core sample, and returned 6.7 g/t gold. Both the blank and sample 31441 will be sent to EcoTech Labs for reassay immediately.

838 samples were analysed including standards and blanks. Of these 746 samples were drill core. A standard 1 assay ton fire assay was requested for each sample and metallic assays were requested on any sample that returned a fire assay result of greater than 2.0 g/t Au.

24 mineralized quartz vein samples were requested to be metallic assayed regardless of the fire assay result. This was to check for nugget effect in quartz veins with a greater potential to return anomalous gold values.

72 metallic assays were run on the core samples that returned greater than 2.0 g/t gold. Table 5 below, summarizes the results of the samples that were sent for metallic assay including core logging observations.

The unbiased standard deviation of the difference in gold values in samples that underwent metallic screen assaying where the fire assay was **greater than 2.0 g/t** gold was 65.2

The unbiased standard deviation of the difference in gold values in samples that underwent metallic screen assaying where the fire assay was **less than 2.0 g/t** gold was 48.7.

This indicates an erratic variation in gold values within the same type of rocks within close proximity of each other due most likely to the nugget effect that perhaps has been overlooked in the past and that the gold values in much of the previous sampling may be underestimated and further metallic sampling is recommended.

The quality control procedures used by Cusac and EcoTech Labs are industry standard and any variable results are most likely due to the presence of relatively coarse gold particles.

Table	5 FIF	RE&N	IETAL		SSAY	SAMPL	E SUM	MARY															
A	ssay Re	sults: F	ire Assay	s >2g/t /	Au & Met	allic Assa	ys	VOLCANICS					QUARTZ										
Hole ID	From (m)	To (m)	Sample No.	Width (m)	Fire Assay (g/t)	Metallic Assay (g/t)	% Diff.	Coarse Grained Pyrite	Fine Grained Pyrite	Tet	Aspy	Ser	%Q	Coarse Grained Pyrite	Fine Grained Pyrite	Ser	Сру	Sph	Tet	Aspy	# VG Specks		
07TC-04	55.20	55.50	32058	0.30	790.00	221.00	-72.0%	0	0	0	0	0	90%	5	2	0	0.25	0.5	0	1	7		
07TC-05	13.50	15.00	32148	1.50	6.00	2.28	<u>-62.0%</u>	0.5	0	0	0.5	0.5	50%	0.5	0.5	0.5	0.5	0.5	0	0	0		
07TC-04	64.10	64.55	32068	0.45	11.70	8.12	-30.6%	1	0.5	0.5	0	2	99%	0	0	0	0	0	0	0	0		
07TC-05	52.95	53.30	32192	0.35	17.30	16.20	<u>-6.4%</u>	60	0	0	20	0	90%	0.1	0	0	0	0	0	0.1	0		
071C-03	17.80	18.70	31291	0.90	4.90	4.63	-5.5%	12	2	0	1	1	8%	0.25	0	0	0	0	0	0	0		
071C-04	33.00	33.75	31391	0.75	7.40	7.16	-3.2%	/	3	0	1	0	8%	1	0.25	0	0	0	0	0.25	0		
0710-05	36.00	37.50	32175	1.50	2.50	2.36	-5.6%	2	1	0	1.5	0	2%	0	0	0	0	0	0	0	0		
071C-05	125.20	13.50	32147	1.80	3.30	3.20	-3.0%	10	0	0	0.25	0.25	25%	0.25	0.25	0.25	0.25	0.25	0	0	0		
07TC-05	90.70	91.60	43174	1.50	2.00	2.05	-0.9%	10	0	0	2	0	1%	0	01	0	0	0	0	0	0		
07TC-00	37.40	38 71	21120	0.90	3.00	2.90	-1.0 %	- 4	2	0	0.1	0	2%	0	0.1	0	0	0	0	0.1	0		
07TC-06	43 55	43.85	27084	0.30	2.60	2.61	0.0%	3	0.25	0	2	3	2%	0	0	0	0	0	0	0	0		
07TC-00	103.40	104 90	31244	1.50	2.00	2.01	1.4%	5	0.25	0	0.25	0	2 /0	0	0	0	0	0	0	0	0		
07TC-06	5 40	5 70	27039	0.30	8 10	8.28	2.3%	3	2	0	1.5	0	99%	0	0	0	0	0	0	0	0		
07TC-02	48 75	50.25	31445	1.50	4 20	4 41	5.0%	7	4	0	1.0	0	20%	0	0	0	0	0	0	0	0		
07TC-05	35.55	36.00	32173	0.45	7.60	7.98	5.0%	4	0	0	0	0	95%	0	0	0	0	0	0	0	0		
07TC-01	36.20	37.10	31181	0.90	4.50	4.75	5.6%	12	0	0	1	0	10%	0.5	0	0	0	0	0	0	0		
07TC-06	137.55	137.90	27167	0.35	2.14	2.27	6.2%	1	1	0	0	0	1%	0	0	0	0	0	0	0	0		
07TC-04	6.45	6.65	31358	0.20	3.70	3.94	6.5%	3	1	0	1	2	1%	0	0	0	0	0	0	0	0		
07TC-03	16.77	17.80	31289	1.03	4.20	4.48	6.7%	12	7	0	1	0	3%	0.25	1	0	0	0	0	0	0		
07TC-05	28.45	29.30	32163	0.85	3.50	3.74	6.9%	5	0.25	0	1	1	100%	1	1	1	1	1	0	0	0		
07TC-02	18.30	18.80	31415	0.50	11.60	12.50	7.8%	2.5	1.75	0	0.1	0	75%	0	0	0	0	0	0	0	0		
07TC-06	103.77	104.85	27149	1.08	2.02	2.18	8.1%	7	5	0	0	0	1%	0.1	0	0	0.1	0	0	0.1	0		
07TC-06	42.25	42.95	27081	0.70	2.90	3.15	8.5%	3	0.5	0	1.25	0	3%	0.1	0.1	0	0	0	0	0.1	0		
07TC-05	141.90	143.40	32277	1.50	2.38	2.59	8.8%	2.25	0.5	0	1	2	8%	0	0	0	0	0	0	0	0		
07TC-06	109.10	110.20	27154	1.10	5.50	5.99	9.0%	1	1.5	0	0.25	0	8%	0.25	0.25	0	0.1	0	0	0	0		
07TC-05	63.75	64.35	43107	0.60	5.89	6.42	9.0%	1	0	0	0.5	0	3%	0	0	0	0	0.1	0	0	0		
07TC-02	66.40	67.80	32011	1.40	10.10	11.20	10.9%	7	3	0	3	0	10%	0.5	0.25	0	0	0	0	0.25	0		
07TC-06	62.00	62.92	27105	0.92	2.04	2.27	11.4%	5	3	0	0	0	1%	0	0	0	0	0	0	0	0		
07TC-03	20.10	21.50	31293	1.40	2.80	3.13	11.8%	10	0.5	0	5	1	7%	1	0	0	0	0	0	2	0		
07TC-04	6.65	6.98	31359	0.33	9.60	10.95	14.1%	1	1	0	0.1	0	90%	0	0.1	0	0.1	0	0	0	0		
07TC-04	52.70	54.00	32056	1.30	2.01	2.30	14.4%	7	3	0	1	0	1%	0	0	0	0	0	0	0	0		
07TC-03	43.35	43.60	31317	0.25	2.04	2.34	14.7%	0.35	0.25	0	0.1	0	97%	0	0	0	0	0	0	0	0		
07TC-03	62.85	63.90	31337	1.05	2.62	3.02	15.3%	10	0	0	1	0	7%	1	0	0	0	0	0	0	0		
07TC-06	64.80	66.20	27109	1.40	3.00	3.47	15.5%	10	3	0	0	0	15%	0	0	0	0	0	0	0	0		
07TC-06	23.10	23.30	27056	0.20	2.04	2.37	15.9%	3	0.5	0	0.25	0.25	25%	0.25	0.25	0.25	0.25	0.25	0.25	0.1	0		
07TC-03	28.85	30.15	31301	1.30	9.40	10.90	16.0%	3	2	0	2	1	15%	0	1	0	0	0	0	0	0		
07TC-01	53.10	53.93	31197	0.83	2.30	2.70	17.4%	20	4	0	1	0	25%	0	0	0	0	0	0	0	0		
07TC-01	37.10	37.40	31182	0.30	14.90	17.50	17.4%	0	0	0	0	0	90%	0.5	7	0	0	0	0	0	0		

Hole ID	From (m)	To (m)	Sample No.	Width (m)	Fire Assay (g/t)	Metallic Assay (g/t)	% Diff.	Coarse Grained Pyrite	Fine Grained Pyrite	Tet	Aspy	Ser	%0	2	Coarse Grained Pyrite	Fine Grained Pyrite	Ser	Сру	Sph	Tet	Aspy	# VG Specks
07TC-01	106.40	107.40	31246	1.00	123.00	145.00	17.9%	2	0.25	0	0.25	0	7%	, D	0	0	0	0	0	0	0	0
07TC-02	17.50	18.30	31414	0.80	3.80	4.49	18.2%	3.5	7	0	0	0	4%	, D	0	0	0	0	0	0	0	0
07TC-02	44.35	45.60	31441	1.25	6.70	8.02	19.7%	7	5	0	1	0	1%	, D	0	0	0	0	0	0	0	0
07TC-03	75.75	77.25	31348	1.50	2.67	3.20	19.9%	5.5	0	0	0.25	2	3%	b	5	0.5	0	0	0	0.5	0	0
07TC-02	26.95	28.45	31424	1.50	2.06	2.47	19.9%	15	10	0	0	0	10%	6	1	0	0	0.1	0.1	0	0.1	0
07TC-05	30.80	31.90	32167	1.10	11.50	13.90	20.9%	5	1	0	0.25	0	2%	b	0	0	0	0	0	0	0	0
07TC-06	26.05	26.50	27061	0.45	5.10	6.30	23.5%	5	0.5	0	0.2	0	1%	þ	0	0	0	0	0	0	0	0
07TC-06	26.97	27.25	27064	0.28	2.16	2.67	23.7%	7	1	0	0.1	0	5%	, D	0.5	0.25	0	0	0	0	0	0
07TC-04	55.50	56.50	32061	1.00	2.60	3.25	25.0%	0.5	0.5	0	0.5	2	5%	, D	0	0	0	0	0	0	0	0
07TC-04	5.00	5.60	31356	0.60	2.50	3.13	25.2%	5	1	1	0.5	1	1%	b	0	0	0	0	0	0	0	0
07TC-03	39.55	40.20	31313	0.65	5.40	6.96	28.9%	5	2	0	2	0	6%	b	0	0	0	0	0	0	0	0
07TC-02	14.30	15.05	31411	0.75	7.40	9.70	31.1%	3	5	0	0	0	5%	b	0	0	0	0	0	0	0	0
07TC-01	13.60	15.00	31159	1.40	7.00	9.22	31.7%	2	3	0	0.5	0	8%	b	0	0	0	0	0	0	0	0
07TC-05	38.70	39.90	32177	1.20	2.06	2.72	32.0%	1	0.5	0	0.25	2	3%	5	0	0	0	0	0	0	0	0
07TC-05	34.90	35.55	32172	0.65	2.40	3.17	32.1%	8	0	0	0.25	0	1%	5	0	0	0	0	0	0	0	0
07TC-01	24.20	24.50	31169	0.30	4.30	5.73	33.3%	0	0	0	0	0	95%	6	0	0.25	0	0	0	0	0	1
07TC-04	64.85	65.85	32071	1.00	8.70	11.60	33.3%	20	3	0	0.5	0	10%	6	0	0	0	0	0	0	0	0
07TC-01	47.15	48.65	31193	1.50	3.10	4.15	33.9%	7	1	0	1	1	15%	6	0	0	0	0	0	0	0	0
07TC-06	5.70	6.65	27041	0.95	2.15	2.92	36.0%	3	1	0	6	0	1%	5	0	0	0	0	0	0	0	0
07TC-04	1.10	1.40	32296	0.30	3.50	4.82	37.7%	1	0.5	0	1	0	3%	5	0	0	0	0	0	0	0	0
07TC-01	19.30	20.80	31165	1.50	3.10	4.31	39.0%	2	2	0	0.5	0	1%	5	0	0	0	0	0	0	0	0
07TC-01	15.00	16.50	31161	1.50	2.40	3.39	41.3%	2	3	0	0.5	0	1%	5	0	0	0	0	0	0	0	0
07TC-05	29.30	29.60	32164	0.30	12.90	20.30	57.4%	0.5	0	0	0	0	98%	6	0.25	0	0	0	0	0	0	0
071C-02	50.25	51.55	31446	1.30	2.05	3.24	58.0%	/	4	0	1	0	3%	, ,	0	0	0	0	0	0	0	0
071C-06	23.85	24.37	27058	0.52	2.14	3.39	58.4%	3	0.5	0	0	0	1%	, ,	0	0	0	0	0	0	0	0
0710-06	45.00	45.85	27087	0.85	5.00	8.84	76.9%	20	3	0	3.5	2	8%) /	0.1	0.1	0	0	0.1	0	0	0
0710-06	26.50	26.97	27062	0.47	2.14	3.79	77.1%	0	0	0	0	0	98%	6	0.5	0.25	0	0	0	0	0	0
0710-04	00.85	67.86	32073	1.01	3.10	5.80	87.1%	5	0.5	0.25	0	3	3%) /	0	0.1	0	0.1	0.25	0.25	0	0
0710-02	7.45	8.65	31405	1.20	2.30	4.42	92.2%	7	2	0	2	0	25%	⁄o /	0	0	0	0	0	0	0	0
0710-05	44.05	44.95	3∠183 22104	0.30	3.30	6.40 5.55	93.9%	0	0.5	0	0	0	99%	′0	0	0	0	0	0	0	0	0
07TC-05	42.50	43.00	32181	1.15	2.20	2.22	143.4%	/	0.5	0			2%) /	0	0	0	0	0	0	0	0
07TC-01	19.00	19.30	31104	0.30	21.00	3∠.80 111.00	310.2%	0	0	0	0.5	0	00%	'0 /-	∠ 0.5	0	0	0.5	1.5	0.5	01	1
0/10-03	10.00	10.77	31307 73		21.60	111.00	409.2%	0	U	U	U	0	99%	0	0.5	U	U	U	U	U	0.1	
			12	samples	5 Otana dia 1	Devidentie	05.0															
			U	nblased	Standard	Deviation	65.2															

Hole ID	From To Sample (m) (m) No.	Width (m)	Fire Assay (g/t)	Metallic Assay (g/t)	% Diff.	Co Gra Py	arse ined rite	Fine Grained Pyrite	Tet	Aspy	Ser	,	%Q	Coarse Grained Pyrite	Fine Grained Pyrite	Ser	Сру Ѕр	n Te	t Aspy	# VG Specks
---------	-------------------------------	--------------	------------------------	----------------------------	---------	-----------------	----------------------	---------------------------	-----	------	-----	---	----	-----------------------------	---------------------------	-----	--------	------	--------	----------------

Assay Results: Fire Assays > 2g/t Au & Metallic Assays									VOLCA	ANICS			QUARTZ									
Hole ID	From (m)	To (m)	Sample No.	Width (m)	Fire Assay (g/t)	Metallic Assay (g/t)	% Diff.	Coarse Grained Pyrite	Fine Grained Pyrite	Tet	Aspy	Ser	%Q	Coarse Grained Pyrite	Fine Grained Pyrite	Ser	Сру	Sph	Tet	Aspy	# VG Specks	
07TC-06	73.50	74.10	27118	0.60	1.67	1.01	-39.6%	10	5	0	0.5	0	0.3	2	1	0	0.1	0.25	0	0	0	
07TC-06	79.50	80.70	27125	1.20	1.90	1.62	<mark>-14.6%</mark>	2	0.5	0	0.35	0	0.01	0.1	0.1	0	0	0	0	0.2	0	
07TC-03	15.25	16.60	31306	1.35	1.68	1.60	<mark>-4.8%</mark>	15	0	0	1	1	0.2	0	1	0	0	0	0	0	0	
07TC-05	78.30	78.60	43119	0.30	1.76	1.93	9.8%	7	0	0	5	0	0.8	0	0	0	0	0	0	0	0	
07TC-06	102.41	103.50	27147	1.09	0.43	0.48	10.7%	1	0.5	0	0	0	0.03	0	0.1	0	0	0	0	0	0	
07TC-04	17.71	18.41	31374	0.70	1.80	2.04	13.3%	3	5	1	0	0	0.12	0	0	0	0	0	0	0	0	
07TC-06	101.35	102.41	27146	1.06	0.78	0.88	13.4%	2	0.25	0	0	0	0.03	0	0.1	0	0	0	0	0	0	
07TC-05	17.00	18.00	32152	1.00	1.82	2.07	13.7%	2	0	0	1	1	1	1	1	1	1	1	0	0	0	
07TC-03	88.70	89.60	32111	0.90	1.73	2.01	16.2%	2	1	0	0	2	0.12	0	0	2	0	0	0	0	0	
07TC-05	60.00	60.35	43101	0.35	1.93	2.25	16.6%	10	0	0	0.5	0	0.01	0	0	0	0	0	0	0	0	
07TC-04	59.45	60.25	32064	0.80	1.71	2.02	18.1%	0.5	0.5	0	1	3	0.2	0.1	0	0	0	0	0	0.1	0	
07TC-04	4.27	5.00	31355	0.73	1.94	2.36	21.6%	3	0.5	0	0.5	0	0.05	0	0	0	0	0	0.1	0	0	
07TC-01	18.00	19.00	31163	1.00	1.05	1.31	24.8%	2	3	0	0.5	0	0.03	0	0	0	0	0	0	0	0	
07TC-03	61.85	62.85	31336	1.00	1.72	2.27	32.0%	8	0	0	0.5	0	0.05	0	0	0	0	0	0	0	0	
07TC-02	42.70	43.40	31438	0.70	1.78	2.36	32.6%	10	7	0	1	0	0.15	0.1	0	0	0	0	0	0.1	0	
07TC-06	58.95	59.40	27102	0.45	0.13	0.18	40.5%	0	0	0	0	0	0.99	0.25	0.1	0	0.25	0.25	0	0.1	0	
07TC-01	20.80	22.30	31166	1.50	0.68	1.02	50.0%	2	2	0	0.5	0	0.1	0	0	0	0	0	0	0	0	
07TC-06	46.40	47.85	27089	1.45	1.02	1.58	55.3%	15	0.5	0	0.2	0	0.15	0.35	0.2	1	0.25	0	0.1	0.1	0	
07TC-03	42.15	43.35	31316	1.20	1.55	2.42	56.1%	9	1	0	0.5	1	0.01	0	0	0	0	0	0	0	0	
07TC-03	14.80	15.25	31288	0.45	1.52	2.47	62.5%	15	0	0	1	1	0.02	0	1	0	0	0	0	0	0	
07TC-04	64.55	64.85	32069	0.30	1.89	3.08	63.0%	0.5	0.25	0	0	0	0.01	0	0	0	0	0	0	0	0	
07TC-06	57.95	58.95	27101	1.00	1.86	3.42	83.8%	30	7	0	0	0	0.01	0	0	0	0	0	0	0	0	
07TC-05	60.35	60.60	43102	0.25	1.23	2.44	98.4%	1	0	0	0	0	0.99	0	0	0	0	0	0	0	0	
07TC-06	42.95	43.55	27082	0.60	1.27	3.99	213.9%	40	1	0	0.25	0	0.95	0.5	0.1	0	0	0	0	0	2	
			24	samples	3																	
			U	Standard	Deviation																	

3.0 INTERPRETATION & CONCLUSIONS

The Taurus Property with its long history of exploration and development, including some mining of high-grade gold-quartz veins, and the distribution of gold in several known zones over at least 2 square kilometers of the property is highly encouraging in the search for an economic low-grade gold deposit. The Taurus Deposit requires significant amounts of further exploration. This exploration should not be restricted to high or low grade gold targets to the exclusion of the other.

In Wardrop's "Technical Report on the Taurus Project" dated May 15, 2007 for Cusac Gold Mines, the authors state "However, it would appear as if there are at least two T3 types, namely T3A and a T3B classification. From the Hazen Research testwork, it can be concluded that the T3B-type is the highly refractory ore type only, although certain T4-type material samples also displayed a significant degree of refractoriness. It is therefore vital that the classification of ore types, particularly T3 and T4, be done systematically followed by detailed testwork as per the Hazen Research program, in order to metallurgically characterize these different ores types."

The 2003 geological-geochemical study by Navasota produced some excellent basic data on alteration and the two styles of gold mineralization-T3 pyritic and T4 pyritic-quartz vein zones. Ronald C. Wells states in his Assessment Report dated August 25, 2003 that "T3 style, fine pyrite hosted gold mineralization is far more extensive than previously recognized. Previous metallurgical tests by Cyprus Canada on T3 mineralization involved a limited number of samples from the Taurus West Zone and should be regarded as preliminary. Further testing is required from different areas on the property." The 2007 Taurus drill core from 88 Hill produced no samples of T3 mineralization. During core logging of the 2007 drill holes at the 88 Hill, there was a noticeable lack of T3 mineralization. Hence, the previously logged intersections of T3 were relogged. All of the T3 intersections noted at 88Hill were relogged as either T4 or T4A. There were 12 noted T3 intersections from previous years drilling.

It should therefore be noted that previously, a T3A and T3B lithologies were designated. The author has not seen any logs or maps with a designated description or location of a T3B lithology. It may well be that some T3 mineralization was sent to Hagen Research for metallurgical studies and that there were 2 samples of T3. To designate the difference they were labeled A & B, hence on receiving the results, a T3A and T3B lithology was born.

The T3 lithology qualifiers "A and B" have been dropped until further proof of a difference in mineralogy, texture, location or anything can be obtained. To my knowledge there is only one Lithology T3. It is very easy to distinguish from T4, by the pervasive alteration of sericite, ankerite and the fine to very fine grain size of the pyrite.

The 2007 drilling program conducted by Cusac was relatively limited. Geological modeling is on-going and the exploration season is mainly used for collecting data and in the case of the Taurus deposit a significant amount of data is still missing. In particular the detailed mapping and processing data from the three underground high grade mines

are needed to successfully explore the Taurus, Plaza, and Sable zones. There is still a very large amount of compilation work to be done and geological modeling will prove more beneficial when all of the previous results have been compiled and available in one solid comprehensive format and database.

The most updated Taurus database is the new 2007 Cusac Drillhole Database. Many previously missing or incomplete drill hole logs have been located and /or relogged and subsequently compiled into this database and entered into Gemcom software. There were numerous Lithology legends used in historical data and Cusac has adopted the "T" set of lithologies that was introduced by Cypress in 1995 & 96. The reason for this is that a large amount of the drilling database already used these lithology codes and it would easily distinguish the Table Mountain and Taurus Deposits.

Cusac's Gems database consists of two areas, **Taurus** and **Taurus II**. Figure 2, Regional Land Tenure shows these two areas.

The **Taurus area** is defined by drill holes that potentially could affect the Taurus Resource as outlined in the most recent Technical Report by Wardrop for Cusac Gold Mines, dated May 15, 2007. The Taurus area includes the seven zones outlined on Figure 4, Taurus Site Plan.

Those zones include, **88Hill, 88West, Highway, Sable, Plaza, Taurus** (**Mine**) and **Taurus West**. There are 349 drill holes currently in the database that are included in the Taurus Area.

The **Taurus II area** was defined in 2005 when Cusac decided that until the tenure affecting the Taurus Deposit could be resolved into one company's ownership, Cusac would examine the potential for a second bulk tonnage disseminated gold deposit in the area surrounding the Taurus deposit. There are 516 drill holes currently in the database that are included in the Taurus II Area which includes the Taurus Area.

It must be noted that the 2007 Cusac exploration program concentrated mainly on the 88 Hill area. There is still much compilation to complete the Taurus database to include infill sampling, relogging, check logging and compiling old drill data of the other 6 zones. The 88 Hill zone was chosen as a first priority due to it's more advanced stage of exploration and this zone contains the most number of drillholes and geological data.

Another complication is that the controls on T3 and T4 styles of gold mineralization may well be different. It has been noted that textures from thin section work imply that some of the known T3 mineralization has overprinted T4 mineralization.

The 88 Hill area has been drilled on 50-metre centers from section 500W to 1000W, and 100-meter centers from 1000W to 1300W (88 West). Both areas are open to north, to the Highway Zone. In fact, the 88 Hill, Sable and Plaza zones are likely continuous with the Taurus Mine to the east, although no drillholes have tested that part of the trend. This deposit is open in all directions really until the structural controls on the gold distribution have been resolved.

In conclusion the Taurus Property holds excellent potential for both low and high grade gold targets. The significant amount of previous exploration has not adequately tested the property.

4.0 **RECOMMENDATIONS**

At this stage a solid working geological model is required to understand the geometry of both individual and multiple gold zones and to guide future exploration and development. **Compilation** is priority so that geological studies will be directed in the proper direction without re-doing previous work and to benefit from the multi millions of dollars that have already been spent on exploring this property. Hawthorne Gold Ltd. has recently merged with Cusac Gold Mines Ltd. and the colossal amount of data will shortly be transferred from the Table Mountain minesite office to their Vancouver Office where a whole floor of an office building is to be designated to the Cassiar Gold Camp Compilation. A uniform grid system should be established for all future exploration. Cusac has adopted the section naming using the 'Easting' method rather than the cut grid that Cypress established. The reason for this is that GPS units are used regularly for field work now and the old cut grids have been naturally reclaimed and are very difficult to find.

Cusac's 2006 Lidar survey should be used intensively for property scale exploration. The survey data still needs to be completely incorporated into the database. To date, only the priority area which is the central core of the Erickson Creek Fault Zone has been fully extracted and brought into the database.

In order to improve the confidence in future resource estimates and to establish a uniform sampling method the following recommendations should be continued:

Continue the infill and re-sampling of low grade intersections and verification of high grade intersections in the pre-1994 drill holes.

Continuation of infill and where needed re-logging of core using the common lithological nomenclature established by Cusac's 2007 program.

Diamond Drilling will be directed mainly gaps in the model and at extremities of the model to improve confidence in and expand the resource. Especially the obvious gaps in drilling between;

- a) Taurus mine and Plaza workings,
- b) Sable workings and 88 Hill
- c) East end of the Highway Zone near Quartzrock Creek

Diamond drilling should use a range of hole orientations to test a number of northerly trending mineralized structures that may be under-represented in work to-date.

Metallurgical Studies The T4 and T3 -types of ore require metallurgical characterization in order that process selection and development may follow. A further, more detailed, phase of the testing of the Taurus ore types will be required should the project develop to the engineering design and pre-construction feasibility stage. A copy of the recommended test program outlining the first phase of metallurgical testing from Wardrop's Technical Report for Cusac dated May 15, 2007 is located in Appendix G, together with a budget cost for these tests. Cusac / Hawthorne will complete the metallurgical tests on the 174 samples sent to Vancouver in September of 2007. These samples have been well documented and logged.
5.0 REFERENCES

- Beaton, A. (1994): Report on the Proposed Exploration Programme, International Taurus Resources Inc. Property, Cassiar, B.C., Unpublished Company Report for International Taurus Resources Inc.
- Broughton, D. and Masson, M. (1996): Report on 1995 Exploration Program on the Taurus Project, B.C., NTS 104P/5, Unpublished Report for Cyprus Canada Inc.
- Cavey, G., Gunning, D. and Wild, C.J. (2005): Technical Report on the Taurus Project, Liard Mining District, British Columbia for International Taurus Resources Inc., American Bonanza Gold Mining Corp., Fairstar Exploration Inc, and 0710887 BC Ltd.
- Cusac Gold Mines Ltd. (May, 1999), Taurus Project, Unpublished Company Report.
- Cyprus Canada Inc. (1995): Due Diligence Summary, Taurus Project, B.C., Unpublished Company Report.
- Glover, M.J. (1999): Trenching Report, Highgrade and Hillside Claims, 93-2 Vein Area, 1999 Field Season, Cusac Gold Mines, Taurus Option, Unpublished Report.
- **Gunning, M.H. (1988):** Gold Distribution in the Taurus Mine Quartz Veins; Exploration in British Columbia 1987, Part B, B.C. Ministry of Energy Mines and Petroleum Resources, pages B95-B105.
- International Taurus Resources Inc. (1999): Taurus Project, Unpublished Company Report.
- Laing, D.C. (1996): Cyprus Canada Inc Scoping Study, Taurus Gold Project, Mineral Resources Development, Inc., Unpublished Report for Cyprus Canada Inc.
- Nelson, J.L. and Bradford, J.A. (1993): Geology of the Midway Cassiar Area, Northern British Columbia (104O, 104P); B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 83.
- Palmer, K. and de Ruijter, A. (2006): Report to American Bonanza Gold Corporation: Technical Report on the Taurus Project, Liard Mining District, British Columbia, Resource Estimate and Metallurgical Review; Wardrop Engineering Inc, 77 pages.
- Spencer, B.E. and Bridge, D.J. (1995): Summary Report on the 1994 Exploration Programme, International Taurus Resources Inc. Property, Cassiar, B.C., Unpublished Report for International Taurus Resources Inc.
- Spencer, B.E. (1994): Report on the 1993 Exploration Programme, International Taurus Resources Inc. Property, Cassiar, B.C., Unpublished Report for Hera Resources Inc.
- Taurus Mine (1986): Metallurgical year end balance sheet, courtesy G. Hawthorn.
- **Trenaman, R.T. (1995):** Report on the International Taurus Resources Inc. Property, Cassiar, B.C., Unpublished Report for International Taurus Resources Inc.
- **Trenaman, R.T. (1979):** Report on the Diamond Drilling Programme on the Taurus Gold Property, Cassiar, British Columbia, Unpublished report for United Hearne Resources Ltd.

- **Trenaman, R.T. (1997):** Report on the 1996 Exploration Program Taurus Project, Cassiar, British Columbia, Unpublished Report for International Taurus Resources Inc.
- Wells, R.C. (2003): Geological, Geochemical, and Interpretive Report on the Taurus Property, Unpublished Report for Navasota Resources Limited.
- Wells, R.C. (2004): Report on the 2003 Drilling Program on the Taurus Property, Unpublished Report for Navasota Resources Limited.
- Westcoast Mineral Testing, Test results from Taurus samples. Unpublished memos and test result reports.
- Westervelt, R.D. (1994): A Summary Review Report on the Table Mountain Gold Property, Cassiar, British Columbia for Cusac Industries Ltd.
- Wild, C.J. (2003): Report on Exploration Activities on the Taurus Property, Unpublished Report for Navasota Resources Ltd.

6.0 STATEMENT OF COSTS

Cusac Gold M	lines Ltd		
2007 Taurus I	Exploration Project Cost Statement	t	
June 19 to Ju	ly 2 2007		
General	1st Aid	\$2,500.00	
	Camp Maintenance	\$367.49	
	Camp Supplies	\$1,245.19	
	Groceries	\$1,134.00	
	Communications	\$504.71	
	Vehicle Repair and Maintenance	\$1,581.50	
	Exploration Supplies	\$2,308.72	
	Misc Fees	\$145.29	
	Rent	\$149.65	\$9,936.55
Drilling	DJ Drilling Direct Costs	\$118,681.06	
	Core storage	\$1,245.00	
	Assaying	\$31,795.00	
	Sperry Sun Rental	\$1,033.50	\$152,754.56
Freight	Freight Misc	\$56.25	
	Freight Samples	\$764.00	\$820.25
Fuel	Fuel	\$2,800.00	\$2,800.00
Travel	Travel Accomodations	\$564.00	
	Travel Airfare	\$1,875.00	
	Travel Busfare	\$241.00	
	Travel Meals	\$56.10	
	Travel Taxi Fare	\$56.80	\$2,792.90
Wages	Wages Contract	\$7,000.00	
	Wages Staff	\$11,450.00	
	Exploration - CPP Expenses	\$456.05	
	Exploration - EI Expenses	\$200.88	
	Exploration - WCB Expenses	\$1,035.81	\$20,142.74
TOTAL			\$189,247.00

APPENDIX A

STATEMENT OF QUALIFICATIONS

Appendix A: Statement of Qualifications

I, Lesley C. Hunt, B.Sc., of Km 632 Hwy 37N, Jade City, BC,

do hereby certify that:

I am a geology graduate of Lakehead University, Thunder Bay, Ontario, 1985.

I have practiced as a geologist, since 1984 for various companies in Canada and overseas.

I have been employed as a senior project/mine geologist and VPExploration at the Table Mountain Property by Cusac Gold Mines Ltd. more or less continuously since June 1994. The current work was supervised by Mike Glover and myself with George Sanders acting as QP.

I may, at any given time, hold securities or options to acquire securities in Cusac Gold Mines Ltd..

Signed this 14th day of December, 2007 at Dawson Creek, British Columbia

July 1. Heart

Lesley C. Hunt, B.Sc.

APPENDIX B

TAURUS PROPERTY LITHOLOGY KEY

APPENDIX B Key to Lithological Codes and Abbreviations

Taurue	Project Lithology Legend
iauiusi	Toject Littlology Legena
T1	Basalt
T1A	Pillow Basalt
T1F	Basalt Mag or Jasper
T2	Altered Basalt
T3	Pvritic Mineralized Zone
Τ4	Pyritic Quartz Vein Zone >5% QV's
T4A	Pvritic Quartz Vein Zone <5% QV's
T5	Quartz Vein
Т6	Graphitic Argillite
T 7	Argillaceous Chert
T7A	Chert
T8	Mafic Tuff
Т9	Ultramafic Volcanic
T10	Mafic Dyke
T11_	Lamprophyre
T12	Massive Sulphide
T13	Mudstone
	Alteration
D	Dolomite/dolomitization
Ser	Sericite
Sil	Silica
K	Clay
Chl	Chlorite
Gf	Graphite
М	Mariposite
Ca	Carbonate/Calcite
Q/Qtz	Quartz
alt'n	Alteration
frac ('d)	fracture (d)
	Alteration Modifiers
w	weak
m	moderate
i	intense
(p)	pervasive
(f)	fracture controlled
Der	Mineralization
Py ark	Pylile Sebelerite
spn	
сру	
tet	
aspy	
VG	
FeOX	Iron Oxides

	Table Mountain
QVLT	Quartz Veinlet
QVBX	Quartz Vein BX
QVb	Quartz Vein Bull
QV	Quartz Vein
QSTWK	Quartz Stockwork
QSTRZ	Quartz Stringer Zone
QSTR	Quartz Stringer
QCV	Quartz Carbonate Vein
OB	Overburden
FLT	Fault
7a	Listwanite (Serpentinite)
7b	Listwanite (Talc Carbonate, Qtz)
7c	Listwanite (Mariposite, Qtz)
5Dd	Graphitic Argillite
5CfBXr	Cherty Matrix BX, Rewk'd
5CfBXg	Cherty Matrix BX, Graphitic
5CfBXb	Cherty Matrix BX, Black
5CfBX	Cherty Matrix BX
5CeBX	Brecciated Cherty Tuffs
5Ce	Cherty Tuff / Tuffaceous chert
5Cd	Argillaceous Chert
5CamD	Volcanics, Mod Dolomitization
5CamiD	Volcanics, Mod-Int Dolomitization
5CaiD	Volcanics, Int Dol
5CaiDBX	Volcanics, IntDol BX'd
5CaBXg	Volcanics, Int Graph BX'n
5CaBX	Volcanics, BX'd
5Ca/5Ce	Volcanics/Cherty Tuffs
5Ca	Volcanics
10a	Mafic Dyke
10b	Lamprophyre Dyke
<u>-</u>	· · · · · ·
vfgr	Very fine grained
fgr	Fine grained
mgr	Medium Grained
cgr	Coarse Grained
CSE	Coarse sub to euhedral (Py)
TCA	to core axis (angles)
UC	Upper contact
LC	Lower contact
BX	Breccia
BX'n	Brecciation
cbx	Crackle Breccia
vnlt	Veinlet
str	Stringer

APPENDIX C

DIAMOND DRILL LOGS

Cusac (Gold Min	les Lte	d.		07 Taurus					Dian	nond Di	rill Hole	Log				0	7TC-01	
Collar D	etails				Purpose:								Starte	d			J	une 19,	2007
Longitud	de	45	59631.0	E	Infill & Metallurgical Drilling 88 Hill								Finish	led			J	une 21,	2007
Latitude		657	70378.0	Ν	5 5								Logge	ed By:		S. And	erson	C. Zwa	irich
Elevatio	n		1108.0	m ASL									Tests			Depth	Az	Dip	
End of H	lole		154.5	m												0.0	170.7	-55.4	
Azimuth			170.7																
Dip			-55.4																
					ļ														
Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)		Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
0	4.3	OB			Casing/ Overburden.	3.05	4.30	31151	1.25	0.48	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.30	5.45	T4A		Py QV Zone <5% Q	Subcrop. iFeOx as fracture and halos. cgr Py up to 7% locally, fgr Py up to 1% locally. Average Py 3%. 4.6-5.45 iSer, one Q veinlet, no sulphide.	4.30	5.45	31152	1.15	0.50	1%	2.97	0.99	0.00	0.00	0.00	0.00	0.00	2.97
5.45	6.35	5 T5	QV	QV	UC @45TCA, LC @45TCA. Mostly white, moderately fractured Q. FeOx stained, with a few stylolite fractures with gr/Py. Few T4 inclusions near UC. Lower 10cm multiphase Q with intense T4 fragments. f- cgr Py in Q 0.75%, f-cgr Py in T4 frags 2% of total sample. Altogether, 2.75%.	5.45	6.35	31153	0.90	1.90	95%	0.71	0.81	0.00	0.00	0.00	0.00	0.00	0.00
6.35	12.15	T4A		Pv QV Zone <5% Q	Relatively massive grey. Few Q/Ca +/- Chl	6.35	7.85	31154	1.50	0.27	0%	1.50	1.00	0.00	0.00	0.00	0.00	0.00	0.00
	-			,	veinlets. No sulphide	7.85	9.35	31155	1.50	0.01	0%	1.50	1.00	0.00	0.00	0.00	0.00	0.00	0.00
						9.35	10.75	31156	1.40	0.22	2%	1.47	0.98	0.00	0.00	0.00	0.00	0.00	0.00
						10.75	12.15	31157	1.40	0.01	1%	1.49	0.99	0.00	0.00	0.00	0.00	0.00	0.00
12.15	14.02	T4A		Pv QV Zone <5% Q	10% Q stringers, mSer.	12.15	13.60	31158	1.45	0.85	2%	1.96	2.94	0.00	0.00	0.00	0.49	0.00	1.96
					12.15-13.6 cgr Py 1-5%, local average 2%. fgr Py 1%, 0.5% Aspy. Q stringers cgr Py 2% often in clots to 1cm, especially associated with graphitic fractures. 13.6-15.0 As above.	13.60	15.00	31159	1.40	9.22	8%	1.84	2.76	0.00	0.00	0.00	0.46	0.00	0.00
14.02	14.40)T10		Mafic Dyke	Vague UC. Soft medium green Chl and biotite. Discrete lower contact @20TCA.														
14.40	22.30	T4		Py QV Zone >5% Q	10% Q stringers. Weak PDO @45TCA. Q	15.00	16.50	31161	1.50	3.39	1%	1.98	2.97	0.00	0.00	0.00	0.50	0.00	0.00
					stringers to 10cm, average of 3cm.	16.50	18.00	31162	1.50	0.91	5%	1.90	2.85	0.00	0.00	0.00	0.48	0.00	0.00
		1			15.0-16.5 As in 12.15-13.6.	18.00	19.00	31163	1.00	1.31	3%	1.94	2.91	0.00	0.00	0.00	0.49	0.00	0.00
		1			16.5-18.0 As above.	19.00	19.30	31164	0.30	32.80	80%	1.60	1.60	0.50	1.50	0.40	0.10	1.00	0.00
			1		17 9-18 1 Moderate fault ik	19.30	20.80	31165	1.50	4.31	1%	1.98	1.98	0.00	0.00	0.00	0.50	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)		Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					gouge/rubble.	20.80	22.30	31166	1.50	1.02	10%	1.80	1.80	0.00	0.00	0.00	0.45	0.00	0.00
					18.0-19.0 As in 12.15-13.6.														
					19.0-19.3 Three Q stringers. 1x10cm														
					with 1.5% Sph, 0.5% Tet , 2% Py, 0.5%														
					Cpy and 1mm size speck of visible gold.														
					19.7-20.8 Weak fault, rubbly core. As in														
					12.15-13.6.														
22.20	22.00	τ4Λ		$B_{\rm M}$ OV Zono 45% O	20.8-22.3 As above	22.20	22.00	21167	1 50	0.02	10/	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00
22.30	23.00	14A		Fy QV Z011e < 5% Q	velopping Fow shoer relatively 0/Co	22.30	23.00	31107	1.50	0.03	170	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00
					voicanics. Few shear, relatively Q/Ca														
					@45TCA 1.25% car subsdral By diss to														
					1cm Trace Pv in O stringers														
23.80	24.20	T4		Py QV Zone >5% Q	As above.	23.80	24.20	31168	0.40	0.69	2%	1.96	1.96	0.00	0.00	0.00	0.00	0.00	0.00
24.20	24.50	T5	QV	QV	White quartz weakly fractured. Few clear	24.20	24.50	31169	0.30	5.73	95%	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
					Si filled fractures parallel TCA. Locally														
					vuggy. 0.25% mgr Py especially														
					associated with fractures. wG +/- clay and														
24 50	24.80	T4		Pv OV Zone >5% O	EW One speck visible cold 1mm atEW	24 50	25.20	31171	0.70	1 03	1%	6.93	2 97	0.00	0.00	0.00	0.10	0.00	0.00
24.80	25.20	T2		Altered Basalt		24.00	20.20	51171	0.70	1.55	170	0.00	2.01	0.00	0.00	0.00	0.10	0.00	0.00
25.20	33.60	T1		Basalt	Medium to dark green, few Q/Ca/Chl	25.20	26.70	31172	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					veinlets.	26.70	28.20	31173	1.50	0.01	0%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					25.2-33.6 Trace cgr euhedral Py diss.	28.20	29.70	31174	1.50	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						29.70	31.20	31175	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						31.20	32.70	31176	1.50	0.01	4%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
33.60	34 70	Т2		Altered Basalt	Trace car eubedral Py diss	32.70	33.60	31177	0.90	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
34 70	37 10	T4		Pv QV Zone >5% Q	Light grey with slight purple hue for	34 70	36.20	31179	1.10	1 79	10%	4.51	1.81	0.00	0.00	0.00	0.00	0.00	0.00
01.70	07.10	· ·			massive fabric, weakly fracture filled G +/-	36.20	37.10	31181	0.90	4.75	10%	10.85	0.05	0.00	0.00	0.00	0.90	0.00	0.00
					K. no PDO. Q stringers approx @55TCA.					-									
					milky white, moderately to intensely														
					fractured, some filled with dark Q with G														
					impurity.														
					36.2-37.1 12% Cse Py, 0.5% cgr Py in														
					Q stringer.														
37.10	37.40	T5	QV	QV	Milky white, intensely fracture filled with	37.10	37.40	31182	0.30	17.50	90%	0.45	0.45	0.00	0.00	0.00	0.00	0.00	0.00
					dark Q+/- Py and K. Few unfilled voids,														
					fracture and void controlled Py +/- G and														
					K. Fracture controlled Py 7%, Cse Py														
					approx 0.5%.														
37.40	42.10	T4A		Py QV Zone <5% Q	Medium grey fine to medium gr, massive	37.40	38.71	31183	1.31	3.87	2%	4.90	1.96	0.00	0.00	0.00	0.98	0.00	0.00
					moderately fracture filled with G+/- K, few	38.71	39.60	31184	0.89	0.01	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
			1		Q veinlets approx @55TCA.	39.60	41.00	31185	1.40	0.01	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00

From To (m) Code Strue Lithology Description (m) (m) <th>Depth</th> <th></th> <th>Lith.</th> <th></th> <th></th> <th></th> <th>From</th> <th>То</th> <th>Sample</th> <th>Width</th> <th>AU</th> <th>Q</th> <th>Py (%)</th> <th></th> <th>Сру</th> <th>Sph</th> <th>Tet</th> <th>Aspy</th> <th>VG</th> <th>Alt'n</th>	Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)		Сру	Sph	Tet	Aspy	VG	Alt'n
Image: Second	From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Čgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
42.10 43.00 74 Py QV Zone >5% Q As per 37.42.7 with approximately 20cm quinterse fracture filled with Quint to appresent mineralization approx @01CLA. 42.10 43.00 1.07 20% 5.60 0.40 0.00 0.00						38,71-42,1 Medium green grev.	41.00	42.10	31186	1.10	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
42.10 43.00 74 Py QV Zone >5% Q As per 37.4-42 with approximately 20cm interimentation approx @60TCA. If the order of the period of the						moderately fractured filled with graphite.														
42.10 43.00 Tase cgr diss Py, trace frae Py, 1% Aspy. 39.641.0 As above. 42.10 43.00 Tase cgr diss Py, trace frae Py, 1% Aspy. 39.641.0 As above. 42.10 43.00 Tase cgr diss Py, trace frae Py, 1% Aspy. 41.0-42.1 As above. 42.10 43.00 1.07 20% 5.60 0.40 0.00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>moderate Ca veinlets approx @30TCA</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>						moderate Ca veinlets approx @30TCA														
42.10 43.00 T4 Py QV Zone >5% Q As per 37.4-12.1 with approximately 20cm mineralization approx @BOTCA. 42.10 43.00 1.07 2.0% 5.60 0.40 0.0						Trace cor diss Py, trace frac Py, 1% Aspy.														
42.10 43.00 T4 Py QV Zone >5% Q As per 37.4.42.1 with approximately 20cm Q stringer, milky while Q with no apparent mineralization apports @07CA. 43.00 1.07 20% 5.60 0.40 0.00<						.39 6-41 0 As above														
42.10 43.00 T4 Py QV Zone >5% Q As per 37.4-42.1 with approximately 20cm O stringer, milky while Q with no apparent mineralization approx 860TCA. 42.10 43.00 1.07 20% 5.60 0.40 0.00						41 0-42 1 As above														
42.10 43.00 T4 Py QV Zone >5% Q As per 37.4-42.1 with approximately 20cm Q stringer, milky white Q with no apparent mineralization approx @010TCA. 43.00 31187 0.90 1.07 20% 5.60 0.40 0.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>41.0 42.1 7.8 0.0000.</td> <td></td>						41.0 42.1 7.8 0.0000.														
43.00 45.35 T4A Py QV Zone <5% Q Light to medium green, moderately fracture filled with Ca/G +/- K, locally interse fracture filled with Ca/G +/- K, locally is 31-5333 Fracture JP in Q intergra accounted for in 3% displayed. 5520 5503 12101 1.50 0.33 77. 4.41 5% 0.05 0.44 0.00 0.00 0.00 0.00 0.00 0.00	42.10	43.00	T4		Py QV Zone >5% Q	As per 37.4-42.1 with approximately 20cm	42.10	43.00	31187	0.90	1.07	20%	5.60	0.40	0.00	0.00	0.00	0.40	0.00	0.00
43.00 45.35 T4A Py QV Zone <5% Q Light to medium green, moderately intense fracture filled with Cals' A+K, locally intense fracture filled with Cals' A+K, locally incomplete tore. Rubble, open fractures, moderate K, moderately Chi locally. S53, local S,						Q stringer, milky white Q with no apparent														
43.00 45.35 T4A Py QV Zone x5% Q Light to medium green, moderately fracture filled with Ca/G 4/- K, locally intense fracture filled with G/- K Q stringers @ 45.10 45.35 63.90 T4 Py QV Zone >5% Q Light gree with or with under ate to intense fracture filled with Si/c a r/h gree with or without clay. Local incompetent core. Rubble, open fracture, 53.10 45.35 6.01 11% 0.10 0.00						mineralization approx @60TCA.														
43.00 45.35 T4A Py QV Zone <5% Q Light to medium green, moderately racture filled with clay. T2? 44.50 31188 1.50 0.01 1% 0.10 0.28 0.00 0																				
fracture filled with Car/G +/- K, locally intense fracture filled with clay. T27 44.50 45.35 31189 0.85 0.01 1% 0.10 0.25 0.00	43.00	45.35	T4A		Py QV Zone <5% Q	Light to medium green, moderately	43.00	44.50	31188	1.50	0.01	1%	0.10	0.25	0.00	0.00	0.99	0.00	0.00	0.00
45.36 63.90 T4 Py QV Zone >5% Q Light grey with purple hue, fgr, mod fracture filled with G+/- K Q stringers (0 ≥ 60TCA. Milky white moderate to intense fracture filled with G+/- K Q stringers fracture filled with slica rich paraphite with or without clay. Local graphite with orewithout c						fracture filled with Ca/G +/- K, locally	44.50	45.35	31189	0.85	0.01	1%	0.10	0.25	0.00	0.00	0.50	0.00	0.00	0.00
45.35 63.90 T4 Py QV Zone >5% Q Light grey with purple hue, fyr, mod fracture filled with stingar ich stringers 45.35 46.10 31191 0.75 0.01 2% 0.10 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td>intense fracture filled with clay. T2?</td> <td></td>						intense fracture filled with clay. T2?														
fracture filled with G+/. K Q stringers @ 66/10 47.15 31122 1.16 2.0% 8.00 1.60 0.0	45.35	63.90	T4		Py QV Zone >5% Q	Light grey with purple hue, fgr, mod	45.35	46.10	31191	0.75	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						fracture filled with G+/- K Q stringers	46.10	47.15	31192	1.05	1.76	20%	8.00	1.60	0.00	0.00	0.00	0.80	0.00	0.00
intense fracture filled with silica rich graphite with out clay. Local incompetent core. Rubble, open fractures, moderate K, moderately Chi locally. 53.1-53.93 55.00 31194 1.35 0.60 20% 0.20 1.80 0.00 <						@>60TCA. Milky white moderate to	47.15	48.65	31193	1.50	4.15	15%	5.95	0.85	0.00	0.00	0.00	0.85	0.00	0.85
64.15 T5 QV QV Milky white Q, moderately fracture filled with G, massive moderately fracture filled with G, massive intensely fracture filled with Ca, mK (P) zone. 65.00 51.50 31.195 1.50 0.00 1.20 0.00						intense fracture filled with silica rich	48.65	50.00	31194	1.35	0.60	20%	0.20	1.80	0.00	0.00	0.00	0.40	0.00	0.00
64.15 75.0 74.0 Py QV Zone >5% Q As per 45.35-63.9 64.15 65.00 1.20 0.00						graphite with or without clay. Local	50.00	51.50	31195	1.50	0.65	10%	6.30	0.45	0.00	0.00	0.00	0.90	0.00	0.00
64.15 TS QV QV Milky white Q, moderately fracture filled with Ca and by grey Q, also moderately fracture filled with Ca and by grey Q, also moderately fracture filled with Ca and by grey Q, also moderately fracture filled with Ca and by grey Q, also moderately fracture filled with Ca and by grey Q, also moderately fracture filled with Ca and by grey Q. 33.11 33.119						incompetent core. Rubble, open fractures,	51.50	53.10	31196	1.60	0.22	1%	0.00	1.24	0.00	0.00	0.00	0.50	0.00	0.00
64.15 69.90 T4 Py QV Zone >5% Q As per 45.35-63.9. 53.14 55.10 51.153.93 Fractured Py in Q stringer accounted for in 3% displayed. 56.35 58.05 59.50 51.199 1.25 0.95 0.48 0.00						moderate K, moderately Chl locally.	53.10	53.93	31197	0.83	2.70	25%	15.00	3.00	0.00	0.00	0.00	0.75	0.00	0.00
64.15 69.90 T4 Py QV Zone >5% Q Mikey with Q, moderately fracture filled with Ca and filled with Ca moderately fractured, filled with Ca moderately fractured, filled with Ca, mc(P) zone. 64.15 65.00 0.01 0.02 0.00						53.1-53.93 Fractured Py in Q stringer	53.93	55.30	21100	1.37	1.41	5% 10%	0.95	1 90	0.00	0.00	0.00	0.48	0.00	0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						accounted for in 3% displayed.	56 55	58.05	31201	1.20	0.95	7%	0.47	0.47	0.00	0.00	0.00	0.45	0.00	0.00
to @40TCA, +/- 5. to @40TCA, +/- 5. <thto &="" 0.00<="" th=""> to @40TCA, +/- 5. to</thto>						58.05-59.5 Q stringer orientation chage	58.05	59.50	31202	1.50	0.00	7%	4 65	1.86	0.00	0.00	0.00	0.47	0.00	0.00
64.15 G9.90 F4 Py QV Zone >5% Q As per 45.35-63.9. 64.15 65.50 67.00 62.50 63.1204 1.50 0.04 1.2% 6.16 0.44 0.00						to @40TCA, +/- 5.	59.50	61.00	31203	1.50	0.53	3%	2.91	0.97	0.00	0.25	0.00	0.97	0.00	0.00
64.15 T5 QV QV Milky white Q, moderately fracture filled with G bounded by grey Q, also moderate 63.90 64.15 31206 0.01 98% 0.00							61.00	62.50	31204	1.50	0.94	12%	6.16	0.44	0.00	0.00	0.00	0.88	0.00	0.01
63.90 64.15 T5 QV QV Milky white Q, moderately fracture filled with G bounded by grey Q, also moderate K. 63.90 64.15 31206 0.25 0.01 98% 0.00 <							62.50	63.90	31205	1.40	1.05	6%	2.82	0.47	0.00	0.00	0.00	0.47	0.00	0.00
instruction with G bounded by grey Q, also moderate K. instruction	63.90	64.15	T5	QV	QV	Milky white Q, moderately fracture filled	63.90	64.15	31206	0.25	0.01	98%	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.00
K. K.<						with G bounded by grey Q, also moderate														
64.15 69.90 14 Py QV Zone >5% Q As per 45.35-63.9. 64.15 65.50 31207 1.35 0.10 1% 0.99 0.99 0.00 <td>04.45</td> <td></td> <td>Ŧ</td> <td></td> <td>D 0)/7 50/0</td> <td>К</td> <td>04.45</td> <td>05.50</td> <td>04007</td> <td>1.05</td> <td>0.40</td> <td>40/</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.50</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	04.45		Ŧ		D 0)/7 50/0	К	04.45	05.50	04007	1.05	0.40	40/	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00
69.90 72.10 T2 Altered Basalt Grey-medium green, fgr, massive moderately fractured, filled with Ca and mK. 70.00 71.50 31218 1.50 1.12 5% 0.99 0.00	64.15	69.90	14		Py QV Zone >5% Q	As per 45.35-63.9.	64.15	65.50	31207	1.35	0.10	1%	0.99	0.99	0.00	0.00	0.50	0.00	0.00	0.00
69.90 72.10 72 Altered Basalt Grey-medium green, fgr, massive moderately fractured, filled with Ca and mK. 70.00 71.50 31212 1.50 0.10 0.99 0.99 0.90 0.00 0.							67.00	67.00	21208	1.50	0.01	5% 5%	0.95	0.95	0.00	0.00	0.48	0.00	0.00	0.00
69.90 72.10 T2 Altered Basalt Grey-medium green, fgr, massive moderately fractured, filled with Ca and mK. 70.00 71.50 31212 1.50 0.001 3% 0.10 0.0							68 50	70.00	21209	1.50	0.26	10/	0.95	0.95	0.00	0.00	0.00	0.40	0.00	0.00
OS.50 72.10 <th< td=""><td>69 90</td><td>72 10</td><td>Т2</td><td></td><td>Altered Basalt</td><td>Grev-medium green far massive</td><td>70.00</td><td>70.00</td><td>31211</td><td>1.50</td><td>0.20</td><td>3%</td><td>0.99</td><td>0.99</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></th<>	69 90	72 10	Т2		Altered Basalt	Grev-medium green far massive	70.00	70.00	31211	1.50	0.20	3%	0.99	0.99	0.00	0.00	0.00	0.00	0.00	0.00
72.10 73.00 T4A Py QV Zone <5% Q Light yellow with purple hue. Moderately fractured, filled with Ca, mK (P) zone. 72.10 73.00 74.85 72.10 73.00 74.85 0.00	00.00	72.10	12		Altered Basalt	moderately fractured filled with Ca and	71.50	72 10	31212	0.60	0.01	3%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
72.10 73.00 T4A Py QV Zone <5% Q Light yellow with purple hue. Moderately fractured, filled with Ca, mK (P) zone. 72.10 73.00 31214 0.90 0.01 3% 0.24 0.00<						mK	71.00	72.10	01210	0.00	0.01	070	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fractured, filled with Ca, mK (P) zone. 73.00 74.85 72 Altered Basalt As per above. 73.00 74.20 31215 1.20 0.01 1% 0.10 0.00	72.10	73.00	T4A		Pv QV Zone <5% Q	Light vellow with purple hue. Moderately	72.10	73.00	31214	0.90	0.01	3%	0.24	0.00	0.00	0.00	0.10	0.00	0.00	0.00
73.00 74.85 T2 Altered Basalt As per above. 73.00 74.20 31215 1.20 0.01 1% 0.10 0.00	_				,	fractured, filled with Ca, mK (P) zone.	_		-				-							
74.85 75.50 T4A Py QV Zone <5% Q Light yellow, fgr, massive intensely fractured, filled with G, mCa veinlets. 74.85 75.50 31216 0.65 0.01 1% 0.10 0.00 0	73.00	74.85	T2		Altered Basalt	As per above.	73.00	74.20	31215	1.20	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
74.85 75.50 T4A Py QV Zone <5% Q Light yellow, fgr, massive intensely fractured, filled with G, mCa veinlets. 74.85 75.50 31217 0.65 0.09 1% 0.00 0						· ·	74.20	74.85	31216	0.65	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fractured, filled with G, mCa veinlets.	74.85	75.50	T4A		Py QV Zone <5% Q	Light yellow, fgr, massive intensely	74.85	75.50	31217	0.65	0.09	1%	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00
						fractured, filled with G, mCa veinlets.														

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)		Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
75.50	75.90	T5	QV	QV	Milky white Q, moderately fractured, filled with G/grey Q. Bounded by 6cm zones of intense fractures filled with G and anastomosing large grey and white Q. No sulphide in QV. 5% fractured Py in bounding zones.	75.50	75.90	31218	0.40	0.98	95%	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00
75.90	79.65	T4A		Pv QV Zone <5% Q	First meter as per above, rest is moderate	75.90	77.40	31219	1.50	1.73	1%	4.95	0.25	0.00	0.00	0.00	0.10	0.00	0.00
					fracture filled with Ca. One Q stringer	77.40	78.90	31221	1.50	0.76	5%	4.75	0.24	0.00	0.00	0.00	0.10	0.00	0.00
					approx 6cm, milky white approx perpendicular TCA.	78.90	79.65	31222	0.75	1.03	5%	2.85	0.24	0.00	0.00	0.00	0.01	0.00	0.00
79.65	80.00	T5	QV	QV	As per 63.9-64.15.	79.65	80.00	31223	0.35	0.11	99%	0.00	0.00	0.00	0.00	0.10	0.00	0.00	0.00
80.00	83.00	T4A		Py QV Zone <5% Q	Light grey with purple hue, fgr. Massive,	80.00	81.50	31224	1.50	1.64	2%	2.94	1.72	0.00	0.00	0.00	0.10	0.00	0.00
					moderate fracture filled with G/Si/mCa veinlets. 81.5-83.0 3% cgr Py, 0.5% fgr diss Py. Q stringer 0.25% Py, trace Aspy bounded by 1mm - 3mm thick band of Aspy. Fracture controlled Aspy 0.5%	81.50	83.00	31225	1.50	1.85	5%	2.86	0.49	0.00	0.00	0.03	0.00	0.00	0.00
83.00	85.55	T2		Altered Basalt	Light grey, fgr, massive altered basalt,	83.00	84.50	31226	1.50	0.01	2%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					mCa approx @30TCA.	84.50	85.55	31227	1.05	0.01	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
85.55	91.85	T1		Basalt	Medium green, f-mgr, massive. Few Ca	85.55	87.00	31228	1.45	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					veinlets weakly fracture filled with Ca/G.	87.00	88.65	31229	1.65	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						88.65	90.35	31231	1.70	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
01.05	02.40	то		Altered Decelt	As par above, constinuity O attingers	90.35	91.85	31232	1.50	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
91.65	93.40	12		Altered Basalt	Milky white Q, UC approx @30TCA. no LC. Fault. Q stringer has trace Tet.	91.05	93.40	31233	1.55	0.01	3%	0.00	0.24	0.00	0.00	0.25	0.00	0.00	0.00
93.40	95.90	T2		Altered Basalt	Slight green-light grey, fgr, massive. Q	93.40	94.30	31234	0.90	0.19	12%	0.44	0.22	0.00	0.00	0.00	0.12	0.00	0.00
					stringer approx 15cm at 93.4. UC and LC	94.30	95.30	31235	1.00	0.01	1%	0.25	0.25	0.00	0.00	0.00	0.00	0.00	0.00
					approx @30TCA, milky white. No sulphide in Q, but in volcanics at contacts. Py, arsenopyrite, green mineral- chlorite?. Serpentinite- green along fracture. Weak fault? Blocky. 93.4-94.3 cgr Py 0.5% diss, fgr Py 0.25% diss. Aspy locally 1%, 0.25% overall. Trace Tet.	95.30	95.90	31236	0.60	0.01	1%	0.25	0.10	0.00	0.00	0.00	0.00	0.00	0.00
95.90	99.15	T1		Basalt	Medium green-grey, fgr, massive. Few Ca	95.90	97.40	31237	1.50	0.01	1%	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					veinlets. Py in volcanics.	97.40	98.20	31238	0.80	0.01	1%	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
00.47	400.40	то		Altered De - K	Linkt many (m. many) 5 - 0 - i i i i	98.20	99.15	31239	0.95	0.01	1%	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
99.15	100.40	12		Aitered Basalt	Lignt grey, tgr, massive. Hew Ca veinlets. Py, euhedral-subhedral. cgr Py diss 0.25%, cgr Py clotted - trace, fgr Py diss 0.25%	99.15	100.40	31241	1.25	0.01	1%	0.25	0.25	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)		Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
100.40	101.90	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Locally moderately fractured, filled with siliceous graphite. Few Q veinlets, few Q stringers approx @30TCA. Weak fault? Blocky. cgr Py diss 3%, cgr Py fracture controlled 1%, cgr Py up to 5mm- euhedral. fgr Py diss	100.40	101.90	31242	1.50	0.63	1%	2.97	1.24	0.00	0.00	0.50	0.00	0.00	0.00
101.90	103.40	T4A		Py QV Zone <5% Q	Light grey, fgr, massive, locally moderately fractured, filled with siliceous graphite. Few Q veinlets, no PDO. cgr Py diss locally 5%, approx 2% overall. cgr Py clotted locally 7%, approx 3% overall. 0 25% Aspy, cgr Py, eukedral-sub-edral	101.90	103.40	31243	1.50	1.00	2%	4.90	0.00	0.00	0.00	0.00	0.25	0.00	0.00
103.40	107.40	T4A		Py QV Zone <5% Q	Light grey. fgr, massive, Fault at 103.4,	103.40	104.90	31244	1.50	3.65	7%	4.65	0.00	0.00	0.00	0.00	0.23	0.00	0.00
					approx 5cm, BX zone. UC and LC approx @30TCA. Q clasts and altered basalt clasts, approx 70% clasts, 30% matrix. Matrix -G, clasts are 1-30mm. intensely fractured, filled with G. Q stringer at approx 104.0, milky white, UC and LC approx @30TCA. LC intensely graphitic. Few Q veinlets, no PDO. 103.4-104.9 cgr Py diss 3%, cgr Py clotted 5% locally, 2% overall, 0.25% Aspy. 104.9-106.4 cgr Py diss 2%, cgr Py clotted 1%, Py more concentrated in and around intense fracture zones. 106.4-107.4 cgr Py diss 2%, cgr Py clotted 0.5%, fgr Py diss 0.25%, 0.25% Aspy.	<u>104.90</u> 106.40	<u>106.40</u> 107.40	<u>31245</u> 31246	<u>1.50</u> 1.00	<u>1.13</u> 145.00	<u>3%</u> 7%	<u>2.91</u> 1.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00
107.40	111.55	T4A		Pv QV Zone <5% Q	Light grey, for. Massive, weakly to	107.40	108.90	31247	1.50	0.17	7%	0.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				,	moderately fractured, filled with granite.	108.90	110.40	31248	1.50	0.09	2%	0.49	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Few Q veinlets, no PDO. Q strigner at approx 108.25 for approx 7cm. UC and LC appro @45TCA. Milky-chalky white. Py. 107.4-108.9 cgr Py clotted appprox 0.25%. Trace fgr diss Py.	110.40	111.55	31249	1.15	0.93	5%	0.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00
111.55	113.00	T4A		Py QV Zone <5% Q	Slightly green-light grey, fgr, massive. Weak fault? Blocky. intensely fractured, filled with Q/Ca. Py.	111.55	113.00	31251	1.45	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
113.00	115.30	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Weak fault?	113.00	114.50	31252	1.50	0.01	1%	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)		Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					Blocky.	114.50	115.30	31253	0.80	0.17	1%	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
115.30	116.70	T2		Altered Basalt	Medium green-grey, fgr, massive. Q stringer approx 1cm at 115.65. No apparent sulphides. Light grey zone from 116.7-116.9	115.30	116.70	31254	1.40	0.01	2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
116.70	117.70	T2		Altered Basalt	Medium green-grey, fgr, massive. Weakly fractured, filled with graphite. Py.	116.70	117.70	31255	1.00	0.01	1%	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
117.70	118.60	T2		Altered Basalt	Light grey, fgr, massive.	117.70	118.60	31256	0.90	0.09	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
118.60	119.35	T4A		Py QV Zone <5% Q	Medium mauve-grey, fgr, massive. Intensely fractured, filled with graphite. cgr Py, euhedral 0.5% overall, locally approx 1%.	118.60	119.35	31257	0.75	1.16	4%	0.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00
119.35	121.00	T4A		Py QV Zone <5% Q	Light buff grey, fgr, massive. Weakly fractured, filled with siliceous graphite. Py. mSer.	119.35	121.00	31258	1.65	0.01	2%	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
121.00	122.50	Τ4		Py QV Zone >5% Q	Light buff grey, fgr, massive. Weak- moderately fractured, filled with siliceous graphite. mSer. Some Q veinlets. Q stringer at 121.5, milky white approx 8cm. Two Q-chert stringers at 121.05 and 122.25. Q stringer at 122.15. Overall Q approx 10%.	121.00	122.50	31259	1.50	0.01	15%	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00
122.50	123.15	T4A		Py QV Zone <5% Q	Light buff grey, fgr, massive. Weak to moderately fractured, filled with siliceous graphite. Serpentinite along breaks. Some Q veinlets, mSer	122.50	123.15	31261	0.65	0.03	2%	0.25	0.49	0.00	0.00	0.10	0.00	0.00	0.00
123.15	130.50	T2		Altered Basalt	Light buff grey, fgr, massive. mSer. Blebs	123.15	124.50	31262	1.35	0.01	5%	0.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					of Q-chert approx 5cm. No apparent	124.50	126.00	31263	1.50	0.01	3%	0.49	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					sulphides. mSer.	126.00	127.50	31264	1.50	0.01	7%	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						127.50	129.00	31265	1.50	0.01	3%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						129.00	130.50	31266	1.50	0.01	3%	0.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00
130.50	130.85	FLT	FLT	Altered Basalt	Fault gouge. Medium grey, fgr, massive. Moderately fractured, filled with graphite. Locally BX with Q blebs. intense clay- kaolinite?	130.50	130.85	31267	0.35	0.60	1%	0.25	0.50	0.00	0.00	0.00	0.00	0.00	0.00
130.85	131.95	T2		Altered Basalt	Light green-grey, fgr, massive. m-iSer, locally moderately fractured, filled with siliceous graphite. cgr diss Py, concentrated around fracture. Locally approx 3% 0.25% overall iSer locally iCS. intersety fractured	130.85	131.95	31268	1.10	0.01	2%	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
131.95	134.33	12	1	Alleleu Dasall	IDEI, IUCAILY IUDA. IIILEIISELY ITAULUIEU,	131.90	133.20	31209	1.20	0.19	4 70	0.40	0.00	0.10	0.00	0.00	0.01	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Pv (%)		Cpv	Sph	Tet	Aspv	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Ćgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					filled with graphite. Tan-light grey. Few Q stringers, at 132.5 approx 2cm, @25TCA. Others no PDO. Cal Py? in Q stringer 131.95-133.2 cgr Py diss 0.5%. Arpy?	133.20	134.35	31271	1.15	0.01	3%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					0.25%. ICP														
134.35	135.35	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Moderate to intensely fractured, filled with graphite. cgr Py 0.25% clotted. Euhedral-subhedral cgr Py diss 0.25% 0.25% Tet	134.35	135.35	31272	1.00	0.01	3%	0.49	0.00	0.00	0.00	0.24	0.00	0.00	0.00
135.35	136.85	T4A		Py QV Zone <5% Q	Buff-tan grey, m-iSer. fgr, massive, moderate-intensely fractured, filled with graphite. Q veinlet approx @30TCA. Trace cgr Py diss, euhedral.	135.35	136.85	31273	1.50	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
136.85	138.35	T4A		Py QV Zone <5% Q	Slightly buff-grey, mSer, fgr, massive. Few Q veinlets, weakly fractured, filled with siliceous graphite. Q stringer at approx 137.0, approx 10cm, approx @45TCA, contains Cal Py. Dissolved clasts leaving rims 0.5-2cm. Q stringer at approx 137.2, 5cm, UC @60TCA, LC @45TCA, -Cal Py. Ser in Q veinlets and stringers. Trace Cal Py in Q stringers. cgr Py rimmed with graphite approx 0.25%, diss, euhedral.	136.85	138.35	31274	1.50	0.01	12%	0.22	0.00	0.10	0.00	0.00	0.00	0.00	0.00
138.35	139.30	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Weakly fractured, filled with siliceous graphite. cgr Py 0.25%, euhedral, trace of Tet. T2 ?	138.35	139.30	31275	0.95	0.01	1%	0.25	0.00	0.00	0.00	0.10	0.00	0.00	0.00
139.30	140.15	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Weakly fractured, filled with graphite. Very few Q veinlets. cgr Py 0.25% euhedral.T2?	139.30	140.15	31276	0.85	0.01	1%	0.25	0.00	0.00	0.00	0.10	0.00	0.00	0.00
140.15	141.65	T2		Altered Basalt	Slight green-grey, fgr, massive. Weakly fractured, filled with graphite.	140.15	141.65	31277	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
141.65	145.40	T2		Altered Basalt	Light green-grey, fgr, massive. Py.														
145.40	149.60	T1		Basalt	Medium green-grey, fgr, massive. Py.														
149.60	150.50	Τ1		Basalt	Light grey-slightly green, fgr, massive. Moderately fractured- Q. No apparent sulphides.														
150.50	152.00	T1F	SHRZ	Basalt	Dark green, red-hematite, fgr, massive. No apparent sulphides.														
152.00	154.53 EOH	T1F		Basalt	Dark green, red. Jasper and hematite, fgr, massive. No apparent sulphides. Few chert-Q veinlets FQH														

Cusac (Gold Min	es Ltd.			07 Taurus					Diar	nond D	orill Ho	le Log				0	7TC-02	
Collar D	etails				Purpose:								Starte	d				lune 21	2007
Longitu	de	45	9635.0	E	Infill & Metallurgical Drilling 88 Hill								Finish	ed			J	une 23	2007
Latitude		657	0344.0	N										ed By:		L. Hunt	<u> </u>	<u>ao _o</u> ,	
Elevatio	n		1108.0	m ASL	1								Tests	· • · =) ·		Depth	Az	Dip	
End of H	lole		121.1	m	1											0.0	174.5	-55.7	
Azimuth	10.0		174.5		1											0.0			
Dip			-55.7		1													I	
- 1																			
Dooth		11 :46	1			From	Ta	Comple	Width		~		(0/)	0	0	T .(VO	A Irl.
Depth	- ()	Lith.	~	1.24		From	10	Sample	vviatn	AU "	Q	Ру	(%)	Сру	Sph	let	Aspy	VG	Alt'n
From	10 (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	⊦gr	(%)	(%)	(%)	(%)	Occ	Ser
C	3.50	OB		Overburden														ļ!	
3.50	4.20	T2		Altered Basalt	Subcrop. T2 with increasing FeOx.	3.50	4.50	31401	1.00	0.01	5%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Fracture, moderately to intensely broken													۱	
					core.													۱	
																		۱	
4.20	5.50	T2		Altered Basalt	Weak fracture, mSi, mSer,	4.50	5.50	31402	1.00	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.50	7.45	T4A		Pv QV Zone <5% Q	mSi, mSer. 1% Q veinlet, no sulphide.	5.50	6.45	31403	0.95	0.90	6%	0.94	0.47	0.00	0.00	0.00	0.00	0.00	0.00
				, ,		6.45	7.45	31404	1.00	0.05	1%	0.99	0.50	0.00	0.00	0.00	0.00	0.00	0.00
7.45	8.65	T4		Pv QV Zone >5% Q	25% Q/Ca veinlets, irregular 1-10cm, In	7.45	8.65	31405	1.20	4.42	25%	5.25	1.50	0.00	0.00	0.00	1.50	0.00	0.00
					volcanics car Pv 70% fractured controlled		0.00	01.00			_0/0	0.20		0.00	0.00	0.00		0.00	0.00
					20% disc for Py 20% disc 20% fracture													۱	
					sontrolled Trace culphide in O veinlete													۱	
					controlled. Trace sulphide in Q verniets,													۱	
					especially at selvages.													۱	
8.65	14 30	Т2		Altered Basalt	Weak to moderately fractured, mostly	8 65	10 30	31406	1 65	0.01	1%	0 10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
0.00	11.00			Altered Baean	hairling Few $\Omega/Ca \pm /-Chl veinlets mm$	10.30	11.80	31407	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
						11 80	13.00	31408	1.00	0.01	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					scale. NO PDO.	13.00	14.30	31409	1.20	0.01	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
14 30	15.05	ΤΔΔ		Pv OV Zone <5% O	iD iSer 5% O veinlets mm-4cm Note O	14 30	15.05	31411	0.75	9 70	5%	2.85	4 75	0.00	0.00	0.00	0.00	0.00	0.00
14.00	10.00	1 - 77 \		1 y Q V 20110 (0/0 Q	veinlets offset seen twice. Few Pv	14.00	10.00	01411	0.70	0.70	070	2.00	4.70	0.00	0.00	0.00	0.00	0.00	0.00
					consistive two plats and solvered. Note													۱	
					esperany at verniets and servages. Note													۱	
					diagram drawn in notes.													1	
15.05	17.50	Т2		Altered Basalt	Weakly fractured few O/Ca ±/- Chl	15.05	16.20	31412	1 15	0.03	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
10.00	11.50	1'-			veinlets mm scale @45-50TCA	16.20	17.50	31413	1.30	0.05	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
17.50	18 30	Τ4Α		$P_{V} \cap V$ Zone <5% \cap	No O stringers for diss Py from 17 5-17 9	17 50	18 30	31414	0.80	4 49	4%	3 36	6.72	0.00	0.00	0.00	0.00	0.00	0.00
17.50	10.00		1	, , & v 20110 < 070 Q	T22 (Vory marked 1.2cm zone of D to car	11.00	10.00	01714	0.00	7.73	- 70	0.00	0.72	0.00	0.00	0.00	0.00	0.00	0.00
					Dy diag)													l l	
																		l	
					17.9-18.3 7% cgr Py.													l	
																	,		

Depth		Lith.				From	То	Sample	Width	AU	Q	Py ((%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
18.30	18.80	T5	BX	QV	Mostly white Q hosts 25-30% volcanic fragments (int. alteration). Fragments are 75% well digested and 25% fresh. QV contacts vague, LC appears to grade into irregular stringers. QV is weakly fractured. cgr Py appears to mostly associate with remnant and fresh fragments. Some diss in Q, some fracture controlled. cgr fragments 2%, cgr diss 0.25%, cgr fractures 1%. Total 2.5%. fgr Py in frags 1%, fgr Py fractured 0.5%, fgr Py diss 0.25%, f-mgr Aspy, total 1.75%.	18.30	18.80	31415	0.50	12.50	75%	0.63	0.44	0.00	0.00	0.00	0.03	0.00	0.00
18.80	19.20	T4A		Py QV Zone <5% Q	Intense fracture near LC T5 (20cm). 4cm Q stringer reworked "cherty" intense fracture. cgr Py 10%, fgr Py 7%, both in volcanics. cgr Py in Q stringer, especially in fracture 1%. fgr Py in Q stringer, especially in fracture, 0.5%. Aspy? Trace.	18.80	19.20	31416	0.40	1.18	1%	9.91	6.94	0.00	0.00	0.00	0.00	0.00	0.00
19.20	19.50	T2		Altered Basalt	19.2-25.5 Medium grey, fgr, intensely fractured. iK(f) mK(p). Few Q/Ca veinlets, some veinlets filled with white clay, trace cgr Py in Q veinlets, no PDO veinlets. Note regarding veinlets: perpendicular offsets of veinlets. (see diagram in logs).	19.20	20.70	31417	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
19.50	22.20	T2	FLT	Altered Basalt	Weak fault, intensely fractured subparallel TCA. Volcanics have only trace Py. 8cm Q veinlet @60TCA. No sulphide.	20.70	22.20	31418	1.50	0.01	5%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
22.20	25.50	T2	[Altered Basalt	As noted in 19.2-19.5.	22.20	23.70	31419	1.50	0.01	4%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
						23.70	24.50	31421	0.80	0.19	20%	0.08	0.08	0.00	0.00	0.00	0.00	0.00	0.00
			1			24.50	25.50	31422	1.00	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Pv	(%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
25.50	26.60	T4A		Py QV Zone <5% Q	25.5-29.15 5% white Q stringers and	25.50	26.95	31423	1.45	0.87	2%	4.90	2.94	0.00	0.00	0.00	0.00	0.00	0.00
					veinlets @40TCA. Q veinlets are white														
					with local bands of grey Q/digested														
					fragments of iD volcanics parallel to veinlet														
					selvages, local vugs to 0.5cm. Q veinlets														
					host mSer in weak bands and localized														
					clots to 1cm. mK(p) and localized clay														
					filled fractures, hairline, to mm size.														
					Please check this to see that is it														
					formatted correctly. There were a number														
					of arrows in the logs directing the order of														
					observations.														
26.60	26.70	FLT	FLT	Py QV Zone <5% Q	Volcanics. Fault @30TCA 1cm wide.														
					Clay/Py matrix hosts Q veinlet fragments,														
					very vuggy, matrix locally dissolved. No														
					sulphide in Q veinlet fragments														
26.70	29.15	T4A		Py QV Zone <5% Q	26.95-28.45 In volcanics: cgr Py local	26.95	28.45	31424	1.50	2.47	10%	13.60	9.10	0.10	0.10	0.00	0.01	0.00	0.00
					40%, average 15%, fgr diss 10%. In Q	28.45	29.15	31425	0.70	0.20	1%	0.99	0.50	0.00	0.00	0.00	0.00	0.00	0.00
					stringers: cgr Py 1% especially at veinlet														
					selvages. Trace Spn, trace Aspy, trace														
					Cpy. 28.45-20.45, pgr Dv overege 119((legel														
00.45		To			28.45-29.15 Cgi Fy average 11% (local	00.45	00.55	01100	4 40	0.00	4.07	0.40	0.40	0.00	0.00	0.00	0.00		0.00
29.15	32.85	12		Altered Basalt	Weak fracture with white clay filling. Few	29.15	30.55	31426	1.40	0.03	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					Q/Ca +/-K +/- Chi veinlets- irregular. No	30.55	32.05	31427	1.50	0.03	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					sulphide. 0.5cm fault at 29.15 @201CA, Q	52.05	52.05	51420	0.80	0.04	1 /0	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
22.05	22.00	τ4Δ		$D_{V} \cap V$ Zono $450' \cap$	Veiniet no suipride.	22.05	22.00	21420	0.15	0.01	20/	1.05	0.00	0.10	0.25	0.01	0.00	0.00	0.00
52.05	33.00	147		ry QV 2011e < 370 Q	Volcanics intensely yuggy (See diagram	52.05	55.00	51429	0.15	0.91	570	1.95	0.90	0.10	0.25	0.01	0.00	0.00	0.00
					in logs) In Ω veinlet: 0.25% Tet 0.25%														
					Solution trace Cov 0.25% car Dv In														
					volcanics: 2% car 1% far														
		T 0	51																
33.00	34.35	12	вх	Altered Basalt	As above. Local BX with Ca +/- Q	33.00	34.35	31431	1.35	0.10	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					fragments. Very dry, trace Py, IK(f) and														
					т-іқ(р).														
34.35	37.00	T4A		Py QV Zone <5% Q	34.35-38.3 7-10% white Q/Ca veinlets.	34.35	35.85	31432	1.50	0.48	3%	2.91	2.91	0.00	0.00	0.00	0.00	0.00	0.00
				,	Very irregular with displacement to 5cm on	35.85	37.35	31433	1.50	0.61	10%	4.50	2.70	0.00	0.00	0.00	0.00	0.00	0.00
					approx parallel fault (TCA). Volcanics.														
					mK(p) iSer both diss and banded (yellow														
					tinge) subparallel to veinlets. Trace Py in														
					veinlets especially at veinlet selvages.														
37.00	37 35	FIT	FLT	Pv QV Zone <5% Q	Moderate fault, iK gouge @10TCA														
37.35	38.30	T4A	· - ·	Py QV Zone <5% Q	As noted in 34.35-37.0.	37.35	38.30	31434	0.95	0.42	4%	0.96	0.48	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py	(%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
38.30	42.70	T2		Altered Basalt	Weak to moderate fracture with few Q/Ca	38.30	39.80	31435	1.50	0.03	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					+/- Chl veinlets. mm scale, no PDO.	39.80	41.30	31436	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					41.2-42.7 Increase in Ca alteration and	41.30	42.70	31437	1.40	0.09	4%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					local m-iSer.														
42.70	43.40	T4		Pv QV Zone >5% Q	10cm Q stringer @60TCA. Marked	42.70	43.40	31438	0.70	2.36	15%	8.52	5.97	0.00	0.00	0.00	0.87	0.00	0.00
				.,	change in hostrock from weak to moderate														
					Ca alteration, no suphide, to classic T4 iCa														
					alteration with car Pv around Q stringer.														
					mK(p) volcanics. In volcanics: cgr Pv														
					10% far Pv 7% mar Aspy 1%. In Q														
					stringer: trace cgr Pv, trace cgr Aspv.														
43.40	44.35	T2		Altered Basalt	Moderate to intense Ca alteration, few	43.40	44.35	31439	0.95	0.05	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					Q/Ca veinlets +/- Ser, very irregular.														
44.35	45.60	T4A		Py QV Zone <5% Q	Less than 1% Q veinlets. Intense Ca	44.35	45.60	31441	1.25	8.02	1%	6.93	4.95	0.00	0.00	0.00	0.99	0.00	0.00
					alteration, weak to locally moderate														
					fracture, mK(p).														
45.60	48.75	T2		Altered Basalt	As above.	45.60	47.10	31443	1.50	0.04	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
40.75	40.00	T 4 A				47.10	48.75	31444	1.65	0.15	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
48.75	49.98	I4A		Py QV Zone <5% Q	Q veinlets, intense fracture, mSer, very	48.75	50.25	31445	1.50	4.41	20%	5.60	3.20	0.00	0.00	0.00	0.80	0.00	0.00
					irregular. 10% Q veinlets and stockwork														
					hosted in iCa, wSer, locally w-mK(p).														
					48.75-50.25 cgr Py 7% (locally up to														
					20%).														
49,98	50.00	FLT	FLT	Pv QV Zone <5% Q	Fault 1cm, iK gouge @10TCA.														
50.00	52.55	T4A		Py QV Zone <5% Q		50.25	51.55	31446	1.30	3.24	3%	6.79	3.88	0.00	0.00	0.00	0.97	0.00	0.00
				,		51.55	52.85	31447	1.30	0.97	3%	6.79	3.88	0.00	0.00	0.00	0.97	0.00	0.00
52.55	52.85	FLT	FLT	Py QV Zone <5% Q	Intensely rubbly, iK gouge. Fault	52.85	54.25	31448	1.40	0.05	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					@25TCA.														
52.85	57.00	T2		Altered Basalt	Moderate to locally iCBX, iCa, mK(p)	54.25	55.65	31449	1.40	0.06	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					(yellowish tinge), mSer? Few Q/Ca	55.65	57.00	32001	1.35	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					veinlets, no sulphide, average 0,2-0.75cm.														
					no PDO.														

Depth		Lith.	1			From	То	Sample	Width	AU	Q	Pv	(%)	Cpy	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
57.00	57.40	T4A		Py QV Zone <5% Q	10% Q/Ca stockwork in iCa volcanic.	57.00	57.40	32002	0.40	0.37	10%	1.85	0.95	0.10	0.10	0.46	0.00	0.00	0.00
					Q/Ca is two types: first older intensely														1
					fractured iSer alteration with no sulphide														1
					and second fresh white/grey Q with														1
					sulphide as noted:														1
					In volcanics, especially at veinlet selvages														1
					cgr Py 2%, cgr Py 1%, f-mgr Tet 0.5%,														1
					trace Cpy, trace Sph. In Q veinlets cgr Py														1
					0.5%, trace Cpy, trace Tet, trace Sph.														1
																			1
57.40	59.25	T2		Altered Basalt	iCa, mK(p) and local iK(f). Trace cgr Py	57.40	58.30	32003	0.90	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					and for Py, especially at 58.6.	58.30	59.25	32004	0.95	0.01	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
																			1
59.25	60.45	T4A		Pv QV Zone <5% Q	5% weakly mineralized Q veinlets hosted	59.25	60.45	32005	1.20	0.01	5%	0.95	0.48	0.00	0.00	0.00	0.00	0.00	0.00
				,	in iCa wSer volcanics. Veinlets @25-						• / •								
					30TCA, iK(f) in volcanics.														1
																			1
60.45	66.40	T2		Altered Basalt	Ca alteration grades from intense to w-m	60.45	61.95	32006	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					at 61.5. Few cgr Pv mK(f) and (p). Local	61.95	63.45	32007	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					iCBX.	63.45	64.95	32008	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
						64.95	66.40	32009	1.45	0.05	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
66.40	67.60	T4A		Py QV Zone <5% Q	5% Q veinlets and stringers hosted in iCa	66.40	67.80	32011	1.40	11.20	10%	6.35	2.75	0.00	0.00	0.00	2.73	0.00	0.00
					iSer alteration volcanics, moderately														1
					fractured, local iCBX. In volcanics: cgr Py														1
					diss 7%, fgr diss 3%, f-mgr Aspy 3%. In														1
					quartz: cgr Py 0.5%, fgr 0.25%, f-mgr														1
					Aspy 0.25%.														1
07.00	07.74	0.075																	┝──┥
67.60	67.74	QSTR		Quartz Stringer	Q stringer, 14cm, weakly vuggy. Euhedral														1
					Py crystals to 3mm, weakly fractured														1
					@ 301 CA. ISer at veiniet selvages.														1
67.74	69.70	T4A		Pv QV Zone <5% Q	As above.	67.80	69.20	32012	1.40	0.15	1%	0.99	0.74	0.00	0.00	0.00	0.00	0.00	0.00
				,	67.8-69.2 No Q.	69.20	69.70	32013	0.50	1.59	10%	1.80	0.90	0.00	0.00	0.00	0.68	0.00	0.00
					69.2-69.7 cgr Py 2% especially near														1
					3cm Q veinlets, fgr Py 1%, fgr Aspy 0.75%														1
69.70	76.00	T2		Altered Basalt	mCa alteration. few Q/Ca veinlets. mSer.	69.70	71.20	32014	1.50	0.01	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					moderate fracture with wht clay and or	71.20	72.80	32015	1.60	0.01	3%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					chlorite filling.	72.80	74.40	32016	1.60	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
						74.40	76.00	32017	1.60	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
76.00	77.00	Г4А		Py QV Zone <5% Q	3% Q veinlets, iSer in Q veinlets @30TCA	76.00	77.00	32018	1.00	0.91	5%	2.85	1.90	0.00	0.00	0.00	0.00	0.00	0.00
					ID.														
77.00	78.90	T2		Altered Basalt	wCa alteration, few Q/Ca +/- Chl veinlets	77.00	78.50	32019	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py	(%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					irregular, anastomosing networks. Average PDO @30TCA.	78.50	80.00	32021	1.50	0.01	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
78.90	85.20	T1		Basalt	Medium green fine grain, numerous Chl +/-	80.00	81.50	32022	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					Q/Ca veinlets, somewhat clay fracture	81.50	83.00	32023	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					filling, mm scale, irregular.	83.00	84.50	32024	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
		To				84.50	86.00	32025	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
85.20	88.00	12		Altered Basalt	Medium greyish brown, wK(p). Numerous	86.00	87.50	32026	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					chloritic fractures. No PDO. Weak local IK gougey zones (not really faultish).	87.50	88.00	32027	0.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
88.00	96.60	T4A		Py QV Zone <5% Q	5% white Q/Ca veinlets hosted in iCa,	88.00	89.50	32028	1.50	0.38	7%	2.79	2.79	0.00	0.00	0.00	0.01	0.00	0.00
					moderate to locally intense fracture.	89.50	91.00	32029	1.50	0.05	1%	0.99	0.25	0.00	0.00	0.00	0.00	0.00	0.01
					Moderate to locally intense sericitic, local	91.00	92.50	32031	1.50	0.23	5%	0.95	0.48	0.00	0.10	0.01	0.00	0.00	0.00
					iSi. Volcanics are locally vuggy. Q/Ca/Ser	92.50	94.00	32032	1.50	0.17	2%	2.94	2.94	0.00	0.00	0.00	0.00	0.00	0.00
					veinlets, average @30TCA.	94.00	95.50	32033	1.50	0.56	10%	4.50	3.60	0.00	0.00	0.00	0.91	0.00	0.00
					88.0-89.5 In volcanics: cgr Py 3%, fgr Py 3%. In Q veinlets: Trace Py,Aspy. 89.5-91.0 1% cgr Py mostly fracture controlled, 0.25% fgr Py diss, 0.25% Q/Ca/Ser veinlets. Trace fgr Py in Q veinlets. 91.0-92.5 1% cgr Py especially fracture controlled, 0.5% fgr Py diss, 4cm Q veinlet with trace cgr Sph. Trace Tet (fgr), trace fgr Py. 92.5-94.0 3% cgr Py diss and fracture controlled, 3% fgr Py fracture controlled and diss, two 1cm Q/Ca/iSer veinlets with trace cgr and trace fgr Py. 94.0-95.5 5% cgr Py diss, 4% fgr Py diss, 1% Aspy especially at veinlet selvages. In Q veinlets trace Py, trace Aspy at selvages. 95.5-96.6 iSer iK(p). 7% cgr diss and fracture controlled, 10% fgr diss Py (locally 50%), 4cm Q veinlet iSer, 0.5% diss Py,	95.50	96.60	32034	1.10	0.70	5%	6.65	9.50	0.00	0.00	0.00	0.01	0.00	3.00
96.60	98.10	T2		Altered Basalt	m-iK(p), few hairline white clay filled fractures, relatively massive. Pale blue "blebs" clay throughout to 1%. 96.6-99.6 Trace cgr Py, trace fgr Py, iSer. 1.5% cgr Py diss, 1% fgr Py diss, no Q.	96.60	99.60	32035	3.00	0.01	1%	0.74	0.50	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.	I			From	То	Sample	Width	AU	Q	Pv	(%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
98.10	100.50	T4A		Py QV Zone <5% Q	98.1-103.8 Intensely sericitized,	99.60	101.10	32036	1.50	0.05	2%	1.47	0.98	0.00	0.00	0.00	0.00	0.00	0.00
					moderate to locally intense K alteration.														
					Few Q/Ca +/-Chl irregular veinlets/fracture														
					filling. 1% Q/Ca veinlets.														
					99 6-101 1 No O														
100.50	101.50	FLT	FLT	Py QV Zone <5% Q	Moderate fault. Intense broken core, iK														
104 50	100.00	T 4 A			gouge (local).	101.10	100.00	00007	4.50	0 77	001	1.05	0.07	0.40	0.05	0.00	0.40	0.00	0.00
101.50	103.80	14A		Py QV Zone <5% Q	As described in 98.1-100.5	101.10	102.60	32037	1.50	0.77	3%	4.85	0.97	0.10	0.25	0.00	2.43	0.00	0.00
					101.1-102.6 5% cgr Py (local to	102.60	103.60	32030	1.20	0.20	2%	2.94	1.90	0.00	0.00	0.00	0.10	0.00	0.00
					0.75cm), 1% fgr (local 10%), 2.5% m-cgr														
					Aspy diss. I nree 1 cm Q veiniets with														
					trace Aspy, Cpy 0.25% Spn.														
402.00	404.00		DΥ	Fault	Foult has a sig (at a shundark (O flood) - latera a hu	400.00	404.00	20000	4.40	0.01	050/	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
103.60	104.90	FLI	Ъл	Fault	have intense acuacy Calatered	103.60	104.90	32039	1.10	0.01	25%	0.00	0.06	0.00	0.00	0.00	0.00	0.00	0.00
					volconics appear to grade into mD iK														
					volcanics appear to grade into mb, in														
					both Ω/C_2 and altered volcanics (both are														
					fragments 22 matrix throughout unit) iK(f)														
					m_{m} Ser in volcanics. Local Ser in O/Ca														
104.90	106.30	T4A		Py QV Zone <5% Q	1% Q veinlets average less than 1cm.	104.90	106.30	32041	1.40	0.01	3%	0.49	0.24	0.00	0.10	0.00	0.00	0.00	0.00
					Average PDO @30TCA. iCa wSer, local														
					mSer in volcanics, numerous K filled														
					fractures, mm scale, no PDO. Q/Ca														
106.30	106.70	T2		Altered Basalt	106.3-109.0 wCa	106.30	107.80	32042	1.50	0.01	2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
106.70	107.20	FLT	FLT	Altered Basalt	Weak fault @30TCA, iK gouge, verv	100.00	101.00	02012	1.00	0.01	270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					discrete iK(p) and moderately broken core.														
					Few barren Q/Ca veinlets.														
107.20	109.00	T2		Altered Basalt	108.85-109.3 Trace fgr Py in gouge,	107.80	108.85	32043	1.05	0.01	3%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					trace Py in Q veinlets.	108.85	109.30	32044	0.45	0.01	75%	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00
					109.3-110.4 Trace cgr and trace fgr Py.														
109.00	109.15	FLT	FLT	Altered Basalt	Fault. iK gouge @45TCA. iD.														
109.15	109.30	QSTR		Quartz Stringer	Q/Ca stringer. Yellow Ca halos around														
					fracture. wSer.														
109.30	112.65	Т2		Altered Basalt	Moderate to locally intense Ca alteration.	109.30	110.40	32045	1.10	0.01	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					Weak to local iCBX, mSi.	110.40	111.50	32046	1.10	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
112.65	11/ 70	Τ 4Λ		$P_{V} \cap V Z_{ODO} < 5\% \cap$	6% O/Ca vaiplate @35TCA bastad iCa	112.65	112.05	32047	1.15	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
112.00	114.70	14/			wK(n) mSer Few bairling irregular	113.65	114 70	32040	1.00	0.12	<u>~ /</u> 0 1%	0.49	0.49	0.00	0.00	0.00	0.00	0.00	0.00
					fractures filled with white clay or Ω/Ca	110.00		02010	1.00	0.01	. /0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
114.70	116.00	T2		Altered Basalt	m-iCa, wSer.	114.70	116.20	31351	1.50	0.01	5%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
116.00	116.20	FLT	FLT	Fault	Fault/breccia @20TCA. Intense vuggy														
					gougey fragments of both iCa volcanics														
					and Q angular slicks of graphite/chlorite.														

Depth		Lith.				From	То	Sample	Width	AU	Q	Py ((%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
116.20	117.90	T2		Altered Basalt	wCa, mCBX.	116.20	117.70	31352	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
						117.70	119.20	31353	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
117.90	121.05	T1		Basalt	UC marked by shear zone and 1cm Q	119.20	121.05	31354	1.85	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					stringer @50TCA. mSi(p), few Q/Ca +/-														
					Chl veinlets mm to 0.5cm scale.														
EOH																			

Cusac C	Gold Min	es Lto	ł.		07 Taurus					Diam	nond D	rill Hol	e Log				0	7TC-03	5
Collar D	etails				Purpose:								Starte	d			J	une 23	, 2007
Longituc	le	45	59657.0	E	Infill & Metallurgical Drilling 88 Hill								Finish	ed			J	une 25	, 2007
Latitude		657	70422.0	Ν									Logge	d By:		C. Zwai	rich	S. And	erson
Elevatio	n		1112.0	m ASL									Tests			Depth	Az	Dip	
End of H	lole		142.3	m												0.0	177.8	-53.5	
Azimuth			177.8																
Dip			-53.5																
Depth		Lith.	1			From	То	Sample	Width	AU	Q	Pv ((%)	Cpv	Sph	Tet	Aspv	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
0	3.00	OB		Overburden															
3.00	3.50	T2		Altered Basalt	iFeOx	3.00	3.50	31278	0.50	0.03	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.50	13.45	T1		Basalt	Medium green-grey, fgr, massive. Weakly	3.50	5.00	31279	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					fractured, filled with siliceous graphite.	5.00	6.50	31281	1.50	0.01	0%	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Jasper on some break surfaces. Few Q/Ca	6.50	8.00	31282	1.50	0.01	0%	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					veinlets, most @45TCA, others no PDO or	8.00	9.50	31283	1.50	0.01	0%	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					discontinuous.	9.50	11.00	31284	1.50	0.01	0%	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					5 00-13 45 0 5% cgr diss Pv- eubedral	11.00	12.50	31285	1.50	0.01	0%	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						12.50	13.45	31286	0.95	0.01	0%	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00
13.45	14.80	T2		Altered Basalt	Medium grey, slightly green, fgr, massive. Few Ca/Q blebs and veinlets.	13.45	14.80	31287	1.35	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14.80	18.70	T4		Pv QV Zone >5% Q	Light grey, fgr. massive approx 15% Q.	14.80	15.25	31288	0.45	2.47	2%	14.70	0.00	0.00	0.00	0.00	0.98	0.00	0.98
				.,	Three major Q stringers: at 15.60 approx	15.25	16.60	31306	1.35	1.60	20%	12.00	0.00	0.00	0.00	0.00	0.80	0.00	0.80
					20cm @45TCA at 16 55 approx 15cm	16.60	16.77	31307	0.17	111.00	99%	0.50	0.50	0.00	0.00	0.00	0.10	1.00	0.00
					@45TCA at 17.80 approx 10cm $@45TCA$	16.77	17.80	31289	1.03	4.48	3%	11.65	6.80	0.00	0.00	0.00	0.97	0.00	0.00
					Many minor O stringers approx 1-2cm														
					Many Minol & stingers applox 1-2cm.														
					14.9.15.25 year Dy up to 1 am autodrol														
					14.8-15.25 Vcgr Py, up to 1cm eunedral,														
					concentrated around Q stringer. Approx														
					15% local fgr Py, 5% fgr Py overall, 15%														
					local cgr Py, 10% cgr Py overall, 0.5% cgr														
					Py within Q stringer, 1% fgr Py in graphite														
					filled fracture within Q stringer. wSer, 1%														
					Aspy.														
					16.6-16.77 Q stringer with gold flake in														
					core -ICP. Trace Aspy.														
					16.77-17.8 Approx 1% Aspv. vcgr Pv.														
					up to 1cm for Pv diss fracture controlled														
					Approx 6% clotty Py 6% diss car Py 12%														
					car Py overall Approx 5% for fracture														
					controlled Dr. 20/ for Dr. dies 10/ for														
					controlled Py, 2% fgr Py alss, 1% fgr														
					tracture controlled Py in Q stringer, 0.25%														
					cgr Py diss in Q stringer. w-mSer.														
l	l	l			17.8-18.7 Approx 1% Aspy. cgr Py														

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)	Cpy	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					approx up to 0.5cm euhedral. Approx 1% fgr diss Py, 10% diss cgr Py, 2% clotted cgr Py, 1% fgr fracture controlled Py, 20% local cgr Py clotted, 0.25% cgr Py diss in Q stringer. w-mSer.	17.80	18.70	31291	0.90	4.63	8%	11.06	1.86	0.00	0.00	0.00	0.92	0.00	0.92
18.70	20.15	Τ4		Py QV Zone >5% Q	Light-medium grey, slightly green, fgr, massive. Two Q/Ca veinlets approx 5mm approx @45TCA. Weakly fractured filled	<u>18.70</u> 20.10	<u>20.10</u> 21.50	<u>31292</u> 31293	1.40 1.40	0.04 3.13	<u>2%</u> 7%	0.10 9.37	0.00 0.54	0.00	0.00 0.00	0.00 0.00	0.00 4.79	0.00 0.00	0.00 0.93
					with G. 20.1-21.5 cgr euhedral Py. 7% cgr Py diss, 3% cgr Py clotted, local 10% fgr and cgr Aspy, 5% overall Aspy, 0.5% fgr Py, 2% Aspy in fractures in Q stringers, 1% cgr Py in fractures in Q stringers.														
20.15	21.50	T4A		Py QV Zone <5% Q	Light grey, fgr, massive weakly fractured filled with siliceous graphite. Three Q stringers: first at 20.4 approx 7cm approx @50TCA, second at 20.7 approx 12cm with no PDO (graphite veinlets) and third at 30.05 approx 5cm perpendicular TCA.														
21.50	23.95	T2		Altered Basalt	Light grey, slightly green. fgr, massive.	21.50	22.70	31294	1.20	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.99
					Weakly fractured, filled with siliceous graphite. Few Q/Ca veinlets @40-45TCA or no PDO. wSer.	22.70	23.95	31295	1.25	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.99
23.95	25.50	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Weakly fractured, filled with Si/G. One Q stringer at 25.0 approx 10cm approx @45TCA. w-mSer, buff colour. Few Q/Ca veinlets. wSer. Py concentrated around Q stringer- local 2% cgr Py and 7% fgr Py. Overall 7% cgr Py, 3% fgr Py, 1% Aspy.	23.95	25.50	31296	1.55	1.43	5%	9.50	0.00	0.00	0.00	0.00	0.95	0.00	0.95
25.50	27.00	T2		Altered Basalt	Light-medium grey-green, fgr, massive. Moderately fractured, filled with Si/G. Few Q/Ca veinlets, no PDO. wSer.	25.50	27.00	31297	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.99

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Égr	(%)	(%)	(%)	(%)	Occ	Ser
27.00	28.00	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Weakly fractured, filled with Si/G. One Q stringer at approx 27.35 approx @45TCA. wSer. Py concentrated around Q stringer. Locally 5% cgr Py, 7% fgr Py. Overall 2% cgr Py, 2% fgr Py. 0.5% fgr Py fracture controlled within Q stringer. 2% Aspy in volcanics.	27.00	28.00	31298	1.00	0.49	5%	1.90	1.90	0.00	0.00	0.00	1.90	0.00	0.95
28.00	28.85	Т2		Altered Basalt	Medium green grey, fgr, massive, moderately fractured filled with Si/G, few Q/Ca veinlets. No PDO.	28.00	28.85	31299	0.85	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
28.85	31.45	Τ4Α		Py QV Zone <5% Q	Light grey, fgr, massive. Weakly fractured, locally moderately fractured, filled with Si/G. One Q stringer at 29.8 approx 15cm angle TCA not clear, moderately fractured, crumbly and broken. wSer. One Q stringer approx at 29.7- discontinuous, moderately fractured. 28.85-30.15 wSer. Py concentrated around Q stringers. 2% cgr Py (7% locally), 1% fgr Py, 1% fgr fracture controlled Py, 1% fracture controlled fgr Py in Q stringer. 30.15-31.45 0.25% fgr Py, 0.25% fracture controlled fgr Py.	<u>28.85</u> 30.15	<u>30.15</u> 31.45	<u>31301</u> 31302	<u>1.30</u> 1.30	<u>10.90</u> 0.10	<u>15%</u> 1%	<u>2.55</u> 0.99	<u>1.70</u> 0.50	0.00	0.00	0.00	<u>1.70</u> 0.00	0.00	0.85
31.45	33.60	T2		Altered Basalt	Light grey, fgr. Massive, weakly fractured filled with Si/G.	31.45 32.60	32.60 33.60	31303 31304	1.15	0.01	1% 1%	0.25 0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
33.60	35.00	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Weakly fractured, filled with siliceous graphite. Many Q/Ca veinlets. No PDO. Few Q blebs - intensely fractured. Py concentrates in and around Q blebs. cgr Py up to 1cm, euhedral. 2% cgr Py diss, 2% fractured controlled fgr Py, 1% fgr Py diss, 1% cgr Py in Q blebs, 1% fgr Py in Q blebs, locally 10% fgr Py. 34.8-35.0 m-clay zone locally- still competent.	33.60	35.00	31305	1.40	1.90	2%	2.95	1.97	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.	1			From	То	Sample	Width	AU	Q	Py (%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Égr	(%)	(%)	(%)	(%)	Occ	Ser
35.00	36.23	T2	SHRZ	Altered Basalt	Light grey, fgr, massive. Moderate- intensely fractured, filled with Si/G. Few Q/Ca veinlets.	35.00	36.23	31308	1.23	0.06	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
36.23	37.20	T2	SHRZ	Altered Basalt	Light grey, fgr, massive, moderate fractured filled with Si F. Many Q/Ca veinlets. No PDO. iK lower 2cm.	36.23	37.80	31309	1.57	0.03	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
37.20	39.55	T2		Altered Basalt	Light grey, fgr, massive. Weakly fractured,	37.80	38.60	31311	0.80	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					filled with siliceous graphite. Few Q/Ca veinlets mm scale. Shear zone at approx 38.35-38.95.	38.60	39.55	31312	0.95	0.04	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
39.55	40.20	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Weakly fractured, filled with Si/G. At 39.95-40.2 Q strigner banded by darker softer clay and graphite. Q contains wSer. 2% Aspy, 3% cgr Py diss euhedral, 2% cgr Py clotted, concentrated in and around siliceous graphite filled fractures. fgr fracture controlled Py in Q stringers and in G banding, Q locally about 10%. Overall approx 1% fgr Py diss, 1% fracture controlled for Py.	39.55	40.20	31313	0.65	6.96	6%	4.70	1.88	0.00	0.00	0.00	1.88	0.00	0.00
40.20	42.15	Т2		Altered Basalt	Light buff-grey, fgr, massive. Weakly fractured, filled with Si/G, Few Q/Ca veinlets mm scale, no PDO. Fault gouge zone at 41.25-41.55. wSer.	40.20	41.25	31314	1.05	0.18	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.99
42.15	43.35	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Weakly fractured,	41.25	42.15	31315	0.90	0.34	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.99
					filled with Si/G. Few QCa veinlets (no PDO), one Q stringer approx 2cm, perpendicular TCA. Weak fault, blocky. cgr Py fades out at 42.8-43.00. Soft graphite and clay at LC of fault. wSer.	42.15	43.35	31316	1.20	2.42	1%	8.91	0.99	0.00	0.00	0.00	0.50	0.00	0.99
43.35	43.60	T5	QV	QV	Milky white Q moderately fractured, filled with Si/G. Volcanic clast inclusions containing Aspy and Py (cgr). UC approx @45TCA, LC approx perpendicular TCA. Fractures contain Py. 0.25% cgr Py- fracture controlled, trace Aspy, 0.25% fgr fracture controlled Py, trace cgr diss Py.	43.35	43.60	31317	0.25	2.34	97%	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
43.60	46.15	14A		Py QV Zone <5% Q	Light buff grey. i-mSer. Weak fault,	43.60	45.10	31318	1.50	0.56	- 3%	0.97	0.00	0.00	0.00	0.00	0.24	0.00	1.94

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Égr	(%)	(%)	(%)	(%)	Occ	Ser
					blocky. One Q stringer approx 5cm. Many Q veinlets, either @60-70TCA or no PDO.	45.10	46.15	31319	1.05	0.10	2%	0.98	0.00	0.00	0.00	0.25	0.00	0.00	1.96
46.15	48.00	T2		Altered Basalt	Medium green-grey, fgr, massive. m-iSer.	46.15	47.20	31321	1.05	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Weakly fractured, filled with Si/G, few Q/Ca veinlets. No PDO. Weak fault zones blocky.	47.20	48.00	31322	0.80	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
48.00	48.65	T4A		Py QV Zone <5% Q	Purple/green grey, weak fault, blocky, fgr, massive.	48.00	48.65	31323	0.65	0.01	1%	1.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00
48.65	49.90	T2		Altered Basalt	m-iSer. Light buff-grey, slightly green, fgr, massive. Weakly fractured, filled with Si/G. Few Q/Ca veinlets, mm scale.	48.65	49.90	31324	1.25	0.01	4%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
49.90	52.40	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Weakly fractured,	49.90	51.15	31325	1.25	0.34	2%	0.98	0.00	0.00	0.00	0.00	0.00	0.00	0.98
				,	filled with Si/G. Locally moderately fractured. Blocky. Few Q/Ca strigners approx perpendicular TCA. Few Q/Ca veinlets, no PDO. One large Q stringer approx perpendicular TCA at approx 51.75 approx 1.6cm, contains iSer green and white. Locally mBX. wSer. 49.9-51.15 1% cgr Py diss- euhedral. 51.15-52.4 2% cgr Py diss- euhedral, up to 1cm.	51.15	52.40	31326	1.25	0.99	12%	1.76	0.09	0.00	0.00	0.00	0.00	0.00	0.88
52.40	53.00	T2		Altered Basalt	Light buff-grey fgr massive. Weakly fractured filled with Si/G. Few Q/Ca veinlets. No PDO. Trace cgr Py diss. wSer.	52.40	53.00	31327	0.60	0.03	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.99
53.00	55.50	T2	FLT	Altered Basalt	Fault gouge. Light buff grey, fgr, massive,	53.00	54.00	31328	1.00	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	1.02
					m-iK very broken. iSer in Q, wSer in volcanics. *** Missing core between 54 and 57.	54.00	55.50	31329	1.50	0.01	10%	0.09	0.00	0.00	0.00	0.00	0.00	0.00	1.10
55.50	57.00	T4A	FLT	Py QV Zone <5% Q	Same fault as in previous interval. Fault gouge, blocky. Light buff grey, fgr, massive. Locally intensely fractured, filled with Si/G. Locally mBX, m-iSer concentrates in BX zones.	55.50	57.00	31331	1.50	0.21	5%	1.90	0.00	0.00	0.00	0.00	0.00	0.00	1.90
57.00	57.60	T4A		Py QV Zone <5% Q	Light buff grey, fgr, massive. mSer. Many Q/Ca veinlets perpendicular TCA or no PDO. Weakly fractured, filled with Si/G.	57.00	57.60	31332	0.60	0.32	8%	0.92	0.00	0.00	0.00	0.46	0.00	0.00	1.84

Depth		Lith.				From	То	Sample	Width	AU	Q	Pv (%)	Cpy	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	q/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Öcc	Ser
57.60	58.85	T2		Altered Basalt	Light grey, for, massive, Weakly fractured.	57.60	58.85	31333	1.25	0.12	5%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.95
					filled with Si/G. wSer.				-	-									
58.85	63.90	T4		Py QV Zone >5% Q	Light grey, fgr, massive. m-iSer.	58.85	60.35	31334	1.50	1.16	15%	5.10	0.00	0.00	0.00	0.00	0.85	0.00	2.00
					Moderate-intensely fractured, filled with	60.35	61.85	31335	1.50	1.20	5%	5.70	0.48	0.00	0.00	0.00	0.95	0.00	2.00
					Si/G. Local iBX zones. iSer. Many Q/Ca	61.85	62.85	31336	1.00	2.27	5%	7.60	0.00	0.00	0.00	0.00	0.48	0.00	0.00
					veinlets mm scale approx @60TCA or no	62.85	63.90	31337	1.05	3.02	7%	9.37	0.07	0.00	0.00	0.00	0.93	0.00	0.00
					PDO. Q/Ca stringers at 59.25 (approx														
					5cm), 59.80 (approx 15cm), 60.85 (approx														
					5cm) and 61.45 (approx 10cm), all approx														
					perpendicular TCA. Fault gouge at 58.85														
					approx 25cm. iK. Approx 10% Q in T4														
					zone. Q stringers at 62.3 (approx 3cm),														
					62.6 (approx 4cm) and 63.1 (approx														
					12cm), all approx perpendicular TCA. iSer														
					in Q.														
					58.85-60.35 mSer in Q. 5% cgr Py diss.														
					iSer at BX zones, m-iSer overall. 1%														
					fracture control cgr Py, 1% Aspy, 1%														
					fracture controlled fgr Py in fractures in Q.														
					60.35-61.85 iSer, wBX zones. m-iSer														
					overall. 1% fracture controlled cgr Py, 5%														
					diss cgr Py, 1% Aspy, 1% fracture														
					controlled fgr Py in Q. mSer in Q. 0.5%														
					fgr diss Py.														
					61.85-62.85 3% cgr Py diss, 0.5% cgr														
					Py fracture controlled, 0.5% Aspy.														
					62.85-63.9 Locally 75% cgr Py! Approx														
					8% cgr Py overall diss. 1% Aspy, 2%														
					clotted cgr Py, 1% cgr Py in Q (euhedral).														
							a (a =	a (a				a a -					0.0-		
63.90	71.00	12		Altered Basalt	Light grey, fgr, massive. Weakly fractured	63.90	64.95	31338	1.05	0.04	1%	0.25	0.00	0.00	0.00	0.00	0.00	0.00	1.98
					tilled with Si/G. Few Q/Ca veinlets, locally	64.95	66.50	31339	1.55	0.01	1%	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					abundant, anostamosing network, mm	68.00	60.50	31341	1.50	0.03	2%	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					scale. mSer.	69.50	71 00	31342	1.50	0.01	3% 1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
71.00	74 00	T4A		Pv QV Zone <5% Q	Light grey, for, massive, Moderate	71.00	72.50	31344	1.50	1.30	2%	3.19	0.00	0.00	0.00	0.98	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					fractured, filled with Si F. Many Q veinlets mm scale. No PDO. Q stringer banded by graphite approx 3cm at approx 71.75 approx @50TCA. 71.0-71.2 Fault gouge iK. Local m-iBX, highly fractured. mSer. 71.0-72.5 3% cgr Py overall diss, 5-7% locally. 0.25% fracture controlled cgr Py. 72.5-74.0 Locally 10% cgr Py diss euhedral, up to 1cm. Overall cgr Py approx 3% diss, 0.25% Tet, 0.25% fgr diss Py. mSer.	72.50	74.00	31345	1.50	0.69	1%	2.97	0.25	0.00	0.00	0.25	0.00	0.00	1.98
74.00	74.75	T4A	FLT	Py QV Zone <5% Q	Fault gouge. Light grey, fgr, massive. Soft clay zone. iK. Trace cgr Py at contacts.T11 by La	74.00	74.75	31346	0.75	0.29	0%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
74.75	75.75	Τ5	QV	QV	Milky white carbonate rich Q. Rubbly and blocky. Moderately fractured, filled with Si/G. wSer. UC undetermined, LC approx @55TCA. 0.25% cgr Py in Q, 0.25% fgr fracture controlled Py. Py concentration at contacts in volcanics, locally 12% cgr Py in volcanics.	74.75	75.75	31347	1.00	0.37	99%	0.25	0.25	0.00	0.00	0.00	0.00	0.00	0.99
75.75	79.60	T4A		Py QV Zone <5% Q	Light-medium grey, fgr, massive. Locally	75.75	77.25	31348	1.50	3.20	3%	5.49	0.15	0.00	0.00	0.02	0.24	0.00	1.94
					intensely fractured, filled with siliceous	77.25	78.75	31349	1.50	1.02	3%	3.40	0.00	0.00	0.00	0.00	0.10	0.00	1.94
70.00		7.4		D: 01/ 7-1-1 50/ 0	graphite, local BX. Few Q stringers 1-3cm approx @50TCA, few Q veinlets, no PDO. Fault gouge at 75.95 approx 20cm, iK, banded by two Q stringers. Weak fault 78.55-79.5 blocky and mK near end. mSer, locally iSer. 75.75-77.25 5% cgr Py diss, m-iSer, 0.25% Aspy, 5% cgr Py in Q, 0.5% Tet in Q, 0.5% fgr fracture controlled Py cgr. 77.25-78.75 3% cgr Py diss, m-iSer, 0.25% Aspy, trace cgr Py in Q, 0.5% fracture controlled Py cgr. 78.75-79.6 0.25% fgr Py diss, 0.5% fgr Py fracture controlled.	78.75	79.60	32101	0.85	0.08	7%	0.50	0.74	0.00	0.00	0.00	0.10	0.00	1.98
79.60	84.20	T4	BX	Py QV Zone >5% Q	Light grey, fgr, massive. i-mBX m-iSer.	79.60	81.10	32102	1.50	1.83	7%	5.60	0.02	0.00	0.00	0.00	0.23	0.00	1.86
					12% Q. Many Q veinlets, no PDO. Q	81.10 82.50	82.50	32103	1.40	0.17	5% 5%	0.95	0.00	0.00	0.00	0.00	0.10	0.00	1.90
		1	1	1	sungers: at 80.3 approx 13cm @551CA,	02.00	00.00	52104	1.00	0.91	J /0	0.90	0.00	0.00	0.00	0.00	0.24	0.00	0.00

Depth		Lith.	1			From	То	Sample	Width	AU	Q	Py (%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Égr	(%)	(%)	(%)	(%)	Occ	Ser
					at 82.2 approx 6cm approx perpendicular TCA, at 82.85 approx 5cm @80TCA, at 83.55 approx 5cm approx perpendicular TCA, at 83.7 approx 5cm. BX highly fractured, filled with Si/G. Blocky -weak fault approx 81.1-82.0. 79.6-81.1 Locally 10% cgr Py diss, 3% cgr Py overall diss, 0.25% Aspy, 3% cgr fracture controlled cgr Py, 0.25% cgr Py in Q. mSer. 82.5-83.5 Locally 12% cgr Py fracture controlled around Q in volcanics. 83.5-84.2 mSer in Q. 3% cgr Py diss, trace cgr Py in Q	83.50	84.20	32105	0.70	1.14	50%	1.55	0.10	0.00	0.00	0.00	0.00	0.00	1.00
84.20	85.00	T4A	BX	Py QV Zone <5% Q	m-iSer. Light buff grey, fgr, massive. Highly fractured filled with Si/G. BX- Q clasts mm scale to 3cm. Many Q veinlets, no PDO.	84.20	85.00	32106	0.80	0.61	1%	1.98	0.00	0.00	0.00	0.00	0.00	0.00	1.98
85.00	85.65	T4A	BX	Py QV Zone <5% Q	Weak fault- blocky. iSer. Light buff grey, fgr, massive. Intensely fractured filled with Si/G. Few Q veinlets, no PDO up to 1cm clasts Q.	85.00	85.65	32107	0.65	0.90	1%	2.97	0.00	0.00	0.00	0.00	0.00	0.00	1.98
85.65	87.20	T2		Altered Basalt	Local BX. Light buff grey, fgr, massive. Highly fractured filled with Si/G. Clasts in BX zone up to 1cm, mSer.	85.65	87.20	32108	1.55	0.28	3%	0.10	0.24	0.00	0.00	0.00	0.00	0.00	0.00
87.20	90.50	T4A	ΒX	Py QV Zone <5% Q	iSer. Light buff grey, fgr, massive. Q	87.20	88.70	32109	1.50	1.10	3%	1.94	0.24	0.00	0.00	0.00	0.00	0.00	1.94
					altered volcanic clasts in BX up to 3cm.	88.70	89.60	32111	0.90	2.01	12%	1.76	0.88	0.00	0.00	0.00	0.00	0.00	2.00
					Highly fractured filled with Si/G. Q stringer at 89.9, approx 15cm, approx @45TCA. 88.7-89.6 2% cgr Py diss, 1% fgr Py diss. mSer in Q and in volcanics. 89.6-90.5 1% cgr Py in diss, 1% clotted cgr Py.	89.60	90.50	32112	0.90	1.23	2%	1.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00
90.50	92.35	T2	ВX	Altered Basalt	iSer. Light buff grey, fgr, massive.	90.50	91.35	32113	0.85	0.16	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Intensely fractured, filled with Si/G. Q and altered volcanic clasts up to approx 3cm.	91.35	92.35	32114	1.00	0.13	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
92.35	92.80	T2	BX	Altered Basalt	iSer. Light buff grey, fgr, massive. Intensely fractured filled with Si/G. Clasts of Q and altered volcanics approx up to 5cm. Few Q/Ca veinlets, no PDO.	92.35	92.80	32115	0.45	0.55	2%	1.96	0.25	0.00	0.00	0.00	0.00	0.00	0.00
92.80	99.30	T2		Altered Basalt	Local BX, mSer, Light buff grey, Many	92.80	94.30	32116	1.50	0.09	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					Q/Ca veinlets, no PDO. Moderate-	94.30	95.30	32117	1.00	0.05	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					intensely fractured, filled with Si/G.	95.30	96.80	32118	1.50	0.05	3%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						96.80	98.30	32119	1.50	0.16	3%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						98.30	99.30	32121	1.00	0.13	10%	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00
99.30	100.60	T4A	BX	Py QV Zone <5% Q	m-iSer. Light-medium buff grey, fgr,	99.30	100.60	32122	1.30	0.92	6%	2.82	0.71	0.00	0.00	0.47	0.00	0.00	2.00
					massive. Intensely fractured, filled with Si,														
					G. Many Q veinlets and blebs, no PDO. Q														
					stringers at 99.67, approx 12cm,														
					perpendicular TCA. Clasts of altered														
					volcanics and Q up to 3cm. Locally 10%														
					cgr Py, 3% cgr Py diss overall. m-iSer,														
					mSer in Q stringer, 0.5% fgr Py, 0.25% fgr														
					Py fracture controlled.														
100.60	101.00	T5	QV	QV	Milky white Q. Moderately fractured, filled	100.60	101.00	32123	0.40	0.12	95%	0.95	0.95	0.00	0.00	0.00	0.00	0.00	0.00
					with Si/G. mSer. Ca. UC and LC approx														
					perpendicular TCA.														
101.00	102.00	T4A	BX	Pv QV Zone <5% Q	mSer. Medium-light buff arev. far.	101.00	102.00	32124	1.00	0.98	1%	2.97	0.00	0.00	0.00	0.00	0.10	0.00	1.98
				,	massive. Intensely fractured, filled with			-				-							
					Si/G. Clasts and altered volcanics- Q mm														
					to cm scale. Few Q/Ca veinlets- no PDQ.														
					mm scale.														
102.00	108.30	T2		Altered Basalt	Local BX. Light buff grey, fgr. massive.	102.00	103.50	32125	1.50	0.13	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.99
					Many Q/Ca veinlets, no PDO, mm scale.	103.50	105.00	32126	1.50	0.08	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.99
					wSer. Lower 1m contains mK.	105.00	106.50	32127	1.50	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.98
						106.50	107.70	32128	1.20	0.04	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.99
						107.70	108.30	32129	0.60	0.12	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
108.30	111.75	T1	BX	Basalt	Locally intense Ser in upper 1m. Dark	108.30	109.80	32131	1.50	0.10	3%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					purple/green. Many Q blebs and veinlets.	109.80	110.70	32132	0.90	0.05	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					No PDO. fgr, massive. No apparent	110.70	111.75	32133	1.05	0.03	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					sulphides.	111.75	113.20	32134	1.45	0.03	3%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						113.20	114.70	32135	1.50	0.04	7%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						114.70	116.20	32136	1.50	0.05	2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						110.20	117.70	32137	1.50	0.06	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
111 75	119.00	T1	FLT	Basalt	iK fault gouge Major fault BX Highly	117.70	119.30	32130	1.00	0.00	170	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
111.75	115.00			Dasan	fractured O/Ca stringer m-iSer. No														
					apparent sulphides. O veinlets network														
					mm scale														
440.00	440.04			Decelt		110.00	400.05	00400	4.05	0.04	4.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
119.00	142.34			Dasalt	Dark green/purple/red. Few to many Q	119.30	120.35	32139	1.05	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Jasper.														
FOU																			
		1		1				1											

Cusac (Gold Min	es Ltd.			07 Taurus		Diam	07TC-04											
Collar D	etails				Purpose:								Starte	d				June	25, 2007
Lonaitua	le	45	9696.0	E	Infill & Metallurgical Drilling 88 Hill								Finish	ed				June	27.2007
Latitude		657	0361.0	N									Logae	ed Bv:		L. Hun	t '	S. An	derson
Elevatio	n		1115.0	m ASL	1								Tests	,		Depth	Az	Dip	
End of H	lole		141.4	m	1											0.0	180.8	-44.3	
Azimuth			180.8		1														
Dip			-44.3		1														
					1														
Donth		11 :46	T	1	-	From	Ta	Comple	Width		0	D	(0()	0	Ort	T .(A		A 111-
Depth	T.a. (Liun. Carla	Charles	lithe le eu c	Description		10	Sample	vviatri	AU au/t	Q	Py	(%)	Сру	Spn	let	Aspy	VG	Alth
From	10 (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	⊢gr	(%)	(%)	(%)	(%)	Occ	Ser
0	1.10	OB		Overburden															
1.10	1.40	14A		Py QV Zone <5% Q	iFeOx. Buff grey, fgr, moderately fractured	1.10	1.40	32296	0.30	4.82	3%	0.97	0.49	0.00	0.00	0.00	0.97	0.00	0.00
4.40	0.50	то			filled with G and cgr Py.	4.40	0.00	00007	0.00	0.04	4.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.40	3.56	12		Altered Basalt	IFeOx. Light grey, moderately fracture	1.40	2.06	32297	0.66	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.50	4.07	T 4 A			weathered, fdr, massive, wCa veinlets.	2.06	3.50	32298	1.50	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.56	4.27	14A		Py QV Zone <5% Q	IFeOx. Heavily weathered, moderately	3.56	4.27	32299	0.71	1.53	2%	2.94	0.49	0.00	0.00	0.00	0.98	0.00	0.00
					fractured, Q stringer approx 2cm, approx														
					@80TCA. Q stringer trace Aspy, trace												1 '	'	
4.07	F 00			Foult Zono	Cse Pv EcOx boovily woothered Intense	4.07	E 00	21255	0.72	2.26	E0/	2 05	0.49	0.00	0.00	0.01	0.49	0.00	0.00
4.27	5.00	FLIZ		rault Zone	FeOx, fleaving weathered. Interise	4.27	5.00	31300	0.75	2.30	5%	2.00	0.40	0.00	0.00	0.01	0.40	0.00	0.00
					fracture, IK gouge localized throughout. Q												1 '	'	
5.00	5 60	τ4Λ		$P_{V} \cap V Z_{OPO} < 5\% \cap$	iFagments. Trace Aspy in Q.	5.00	5 60	21256	0.60	2 12	10/	4.05	0.00	0.00	0.00	0.00	0.50	0.00	0.00
5.00	5.00	14A		ry QV 2011e < 3 /0 Q	fracture legalized iQ/Ca vainlate 1mm	5.00	5.00	51550	0.00	5.15	1 70	4.95	0.99	0.00	0.00	0.99	0.50	0.00	0.99
																	1 '	'	
5.60	6 45	Т2		Altered Basalt	As above	5 60	6.45	31357	0.85	0.11	1%	0.10	0.00	0.00	0.00	0.00	0.10	0.00	0 00
6.45	6.65	Τ4Δ		$P_V \cap V Z_{one} < 5\% \cap$	As above	6.45	6.65	31358	0.00	3 94	1%	2 97	0.00	0.00	0.00	0.00	0.10	0.00	1 98
6.65	6.98	T5			iFeOx Milky white O matrix contains T4A	6.65	6.98	31359	0.20	10.95	90%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	10		Q	venoliths and 4cm band, 1cm dark chert	0.00	0.00	01000	0.00	10.00	0070	0.10	0.10	0.10	0.00	0.00	0.01	0.00	0.00
					voinlot intensely fractured O filled with												1 '	'	
					obort												1 '	'	
6.98	7.50	T4A		Pv QV Zone <5% Q	iFeOx. Light grey with light green tinge.	6.98	7.50	31361	0.52	1.62	2%	0.25	1.96	0.00	0.00	0.00	0.25	0.00	0.00
0.00					Moderate clay specs, intense fracture	0.00		0.001	0.02		270	0.20		0.00	0.00	0.00	00	0.00	0.00
					weathered or filled with graphite or Ω/Ca												'		
					voinlote Contains 1 cm O voinlot which is												1 '	'	
					weiniets. Contains form & veiniet which is												1 '	'	
7.50	9.85	T2		Altered Basalt	mFeOx. Moderate weathering, light grev.	7.50	9.00	31362	1.50	0.06	2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					moderately fractured, moderate Ca	9.00	9.85	31363	0.85	0.03	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					veinlets, f-mgr, massive.														
9.85	10.60	T2		Altered Basalt	Grey-green to light grey-yellow. mgr,	9.85	10.60	31364	0.75	0.01	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	1.98
					massive, weakly fractured, few Ca veinlets.												1 '	1 '	
					I ocalized iSer												1 '	1 '	

Depth		Lith.				From	То	Sample	Width	AU	Q	Py ((%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
10.60	11.06	T4		Py QV Zone >5% Q	Buff grey with purple hue, intense fractured	10.60	11.06	31365	0.46	1.29	6%	0.49	1.90	0.00	0.00	0.48	0.00	0.00	0.00
					filled with clay and fgr Py. Contains two Q														
					stringers 1cm and 3cm, iK throughout.														
					Abrupt LC approx @50TCA. Q stringer														
					has trace Tet, trace for Py, 0.25% CSE Py														
					rimming														
11.06	14.90	T1		Basalt	Medium green, f-mgr, massive, many Ca	11.06	12.56	31366	1.50	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					veinlets, no PDO. Weakly fractured filled	12.56	14.06	31367	1.50	0.03	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11.00	45.05	To			with G.	14.06	14.90	31368	0.84	0.06	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14.90	15.05	12		Altered Basalt	Light grey, mgr, iK, iCa veinlets. Clasts of	14.90	15.05	31369	0.15	0.13	2%	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00
					Ca with boudinage fabric approx @451CA,														
15.05	17.40	TI		Decelt	UC @25TCA. LC @40TCA.	1E 0E	16 70	24274	1.05	0.01	20/	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15.05	17.40	11		Dasan	As per above, with two Q/Ca stringers. the	15.05	17.40	21272	1.00	0.01	3%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					first 2cm @601CA, the second 3cm	10.70	17.40	31372	0.70	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					@501CA, both joining together at 16.50m														
					when combined, @351CA, contains 11														
					xenoliths and graphitic blebs, no sulphide.														
17.40	17 71	Т2		Altorod Bacalt	Sharp LIC @60TCA_gradational LC	17.40	17 71	21272	0.21	0.05	10/	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
17.40	17.71	12		Alleleu Dasall	alap oc @ourca, gradalional co	17.40	17.71	31373	0.51	0.05	1 70	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					Geventered filled with C fow Conversioners														
					throughout														
17 71	10.06	Тл		$P_{V} \cap V Z_{ODO} > 5\% \cap$	Light grey with slight purple bue, far	17 71	18 /1	3137/	0.70	2.04	12%	2.64	1 10	0.00	0.00	0.88	0.00	0.00	0.00
17.71	13.00	14		1 y Q V ZONE 2070 Q	massive weakly fractured. Five O stringers	18.41	19.06	31375	0.70	2.04	20%	2.04	2 40	0.00	0.00	0.00	0.00	0.00	0.00
					from 2 15cm intensely frontured unfilled or	10.41	15.00	51575	0.00	1.55	2070	2.40	2.40	0.10	0.10	0.00	0.45	0.00	0.00
					with grou O Contains valcania vanalitha														
					miningley Q. Contains voicanic xenolitis,														
					nineralization within Q is found														
					18 6m booto 20m O stringer obouron fold														
					To.on hosis schild sinnger chevron fold														
					mostly milky white Q.														
19.06	20.98	T2		Altered Basalt	Buff brown with purple hue mar abundant	19.06	20.18	31376	1 12	0.05	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
10.00	20.00	. –		Allered Baean	Ca specs mK throughout Moderately	20.18	20.98	31377	0.80	0.11	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					fractured filled with iSer/K contains calcite	20.10	20.00	01011	0.00	0.11	. /0	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					veinlet approx 1cm, eubedral crystal faces														
					on down hole side suggesting that fracture														
					was not yot fully filled at 20 75m approx														
					@20TCA														
20.09	24 20	Т1	+	Basalt	6 per 11 06-14 90	20 02	22 /10	31370	1 50	0.00	10/	0.00	0.00	0.00	0.00	0 00	0.00	0.00	0.00
20.96	24.30			Dasan	As per 11.00-14.80	20.90	22.40	31370	1.30	0.09	1 /0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						23.40	25.35	31381	1 15	0.03	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24.30	26.25	T1	FI TZ	Basalt	As per above. Incompetent core, rubble	25.10	26.25	31382	1.15	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	_0.20		l		with iK gouge throughout	_3.10	_0.20	01002		0.01	. , 5	0.00	2.00	0.00	0.00	0.00	0.00	0.00	0.00
26.25	26 45	T2	FI TZ	Altered Basalt	Grev rubble and incompetent core	26 25	26 45	31383	0.20	0.01	1%	0.00	0 10	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py ((%)	Cpy	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
26.45	27.65	T4A	FLTZ	Py QV Zone <5% Q	Grey with purple hue, fgr, massive.	26.45	27.65	31384	1.20	0.76	2%	2.94	0.98	0.00	0.00	0.49	0.00	0.00	0.00
				-	Intensely fractured, trace Ca veinlets,														
					localized Q stringer zone of approx four														
					randomly oriented 2-4cm width milky white														
					Q, some grey Q along fractures and rims														
		_			of stringers														
27.65	29.93	Т2		Altered Basalt	Buff brown , mgr, some Ca veinlets no	27.65	28.65	31385	1.00	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					PDO. Medium green colouring on fracture	28.65	29.93	31386	1.28	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					faces, some dark chert with Q/Ca veinlets.														
29.93	31.17	T2	QSTR	Altered Basalt	Light grey, fgr, locally intensely fractured	29.93	31.17	31387	1.24	0.01	12%	0.09	0.00	0.00	0.10	0.00	0.00	0.00	0.36
					filled with anastamosing Ca veinlets 5-														
					10mm, cut across by two joining Q														
					stringers, one @10TCA, the other														
					@40TCA. Q is milky white, contains dark														
					chert veinlets, Ser veinlets. At 31.10m														
					milky Q veinlet cutting through cgr variable														
					grey to white Q all approx @50TCA. Q														
					system cross cuts talc veinlet system														
					oriented @30TCA in down hole direction														
					(oppositeQ system)														
31.17	32.05	T2		Altered Basalt	As per 27.65-29.93.	31.17	32.05	31388	0.88	0.18	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
32.05	33.75	T4		Py QV Zone >5% Q	Light grey to buff brown, fgr, massive.	32.05	33.00	31389	0.95	1.07	3%	2.93	0.99	0.00	0.00	0.00	0.49	0.00	1.94
					Weakly fractured, few Ca veinlets, six Q	33.00	33.75	31391	0.75	7.16	8%	6.52	2.84	0.00	0.00	0.00	0.94	0.00	0.00
					stringers @45 +/-5 TCA, milky white.														
33.75	36.50	T2		Altered Basalt	Buff brown, fgr, massive. Moderately	33.75	35.00	31392	1.25	0.03	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					fractured filled with Q/Ca veinlets approx	35.00	36.50	31393	1.50	0.01	5%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					6cm wide milky white Q stringer at 35.0m														
					approx @50TCA. Intensely fractured filled														
					with Ca or unfilled. At 36.4m approx 3cm														
					Q stringer as per above and bounded by														
					1cm on either side with iK alteration of T1.														
26.50	12 50	T4		Decelt	Madium graan f mgr abaatia fraatura fill	26.50	20.40	24204	1.60	0.01	10/	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30.50	43.50	11		Dasall	Medium green, I-mgr, chaolic hacture ill	30.30	30.10	21205	1.00	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					and anastamosing graphitic fabric. IK, few	30.10	39.40	21206	1.50	0.01	1 70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Ca veinlets @45+/-51CA from 1mm to	39.40	41.03	21207	1.50	0.00	1 70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					20mm thickness, Ca speckled throughout.	41.03	42.00	31308	0.90	0.04	1%	0.00	0.10	0.00	0.00	0.10	0.00	0.00	0.00
43 50	43.68	Т2		Altered Basalt	Buff brown for massive pervasive K	43 50	45 13	31399	1.63	0.03	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40.00	40.00	12		Altered Basalt	replacement $1 \text{ cm} \Omega/Ca \text{ stringer at LIC}$	40.00	40.10	01000	1.00	0.01	170	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					approx @25TCA I C approx @45TCA po														
					appion wastich, LC appion wastich. 110														
					Tot in O atringer														
43.68	46.42	T1	1	Basalt	As per 36.5-46.5	45.13	46.42	32051	1.29	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
46.42	49.60	T2	1	Altered Basalt	Buff. fgr. Few Q/Ca veinlets, no sulphide	46.42	48.00	32052	1.58	0.04	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
Depth		Lith.				From	То	Sample	Width	AU	Q	Py ((%)	Сру	Sph	Tet	Aspy	VG	Alt'n
-------	--------	-------	-------	------------------	---	-------	-------	--------	-------	--------	-----	-------	------	------	------	------	------	------	-------
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					in Q. QSTR PDO approx @45TCA, mSer.	48.00	49.60	32053	1.60	0.07	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
49.60	52.70	T4A		Py QV Zone <5% Q	Approx 10% Q/Ca stringers and veinlets	49.60	51.10	32054	1.50	0.72	10%	0.45	0.23	0.50	0.10	0.01	0.00	0.00	0.00
					hosted in w-mCa w-mSer, wK(p).	51.10	52.70	32055	1.60	0.05	1%	0.50	0.25	0.50	0.10	0.00	0.00	0.00	0.00
52.70	52.90	T2		Altered Basalt	As above.	52.70	54.00	32056	1.30	2.30	1%	6.93	2.97	0.00	0.00	0.00	0.99	0.00	0.00
52.90	53.40	T2	FLT	Altered Basalt	mCa wM mK(f) mK(p).														
53.40	54.00	T4A	BX	Py QV Zone <5% Q	Relatively recent Intensely fractured, iCa, local iK gouge, iSi.														
54.00	55.20	T4A		Py QV Zone <5% Q	iCa mSer mK(p) iK(f) hosts 3% Q/Ca veinlets.	54.00	55.20	32057	1.20	0.25	3%	0.97	0.49	0.00	0.00	0.00	0.00	0.00	0.00
55.20	55.50	Τ5	BX	QV	UC @45TCA, LC @50TCA. Mostly white Q moderately fractured- hairline, with G/Py +/- Tet filling and numerous Ser clots and patchy host iCa iK iPy fragments to 3cm x 2cm. Some fragments are well digested and pinch out into fractures with iSx. See diagram in logs. 1% Aspy cgr and fgr especially at vein selvages. 0.5% cgr Sph, one patch with VG specks (3-4). 3cgr VG approx 4mm x 2mm.	55.20	55.50	32058	0.30	221.00	90%	4.50	4.50	0.25	0.50	0.00	0.90	7.00	0.00
55.50	59.45	T2		Altered Basalt	Buff grey with very slight purple hue, fgr,	55.50	56.50	32061	1.00	3.25	5%	0.48	0.48	0.00	0.00	0.00	0.48	0.00	1.90
					massive, moderately fractured filled with	56.50	58.00	32062	1.50	0.08	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.99
					G, many Q/Ca whispy veinlets approx @45TCA. w-mSer, mK throughout.	58.00	59.45	32063	1.45	0.03	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	1.98
59.45	60.25	Τ4		Py QV Zone >5% Q	Buff yellow brown, iSer, fgr weakly fractured, unfilled. Many whispy Q/Ca veinlets, 1x15cm Q stringer approx @50TCA. Moderately fractured, milky white, trace sulphide, mK throughout	59.45	60.25	32064	0.80	2.02	20%	0.42	0.42	0.00	0.00	0.00	0.82	0.00	2.40
60.25	64.10	T2		Altered Basalt	As per above.	60.25	61.75	32065	1.50	0.04	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						61.75	64.10	32066	2.35	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
64.10	64.55	T4A		Py QV Zone <5% Q	Buff brown, fgr, massive few Q/Ca veinlets generally @45TCA, weakly fractured. UC @35TCA. LC @35TCA.	64.10	64.55	32068	0.45	8.12	99%	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.02
64.55	64.85	Τ5		QV	Milky white, grey Q predominant along contacts, many carbonate clots. Moderately fractured, unfilled or with grey Q.	64.55	64.85	32069	0.30	3.08	1%	0.50	0.25	0.00	0.00	0.00	0.00	0.00	0.00
64.85	65.85	T4A		Py QV Zone <5% Q	Light grey with purple hue, fgr, massive. Intense mineralization, localized iSer (apple green). Whispy veinlets, few Ca	64.85	65.85	32071	1.00	11.60	10%	18.00	2.70	0.00	0.00	0.00	0.45	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py ((%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
65.85	66.85	T2		Altered Basalt	Buff yellow brown, iSer, fgr, moderately fractured. Localized iSer (apple green) anastamosing patches and veinlets, five Q stringers with sharp contacts and intensely digesting T2 host rock with engulfed clasts. Two phases of Q, milky white and clear grey, stringers approx @30TCA, vuggy, unfilled fractures, contains 1cm fault at 66.80m, few Ca veinlets.	65.85	66.85	32072	1.00	0.11	8%	0.25	0.11	0.00	0.00	0.10	0.00	0.00	2.76
66.85	67.86	Τ4		Py QV Zone >5% Q	Buff brown with purple hue, weakly fractured filled with clay, wK(P). Localized intense carbonate anastomosing veinlets, localized iSer (apple green) patches. Contains 2x6cm Q stringer, milky white with grey clear Q along fractures.	66.85	67.86	32073	1.01	5.80	3%	4.85	0.49	0.10	0.25	0.25	0.00	0.00	2.91
67.86	69.60	T2		Altered Basalt	Buff grey, fgr, few Q/Ca veinlets, iK(F),	67.86	68.66	32074	0.80	0.13	2%	0.00	0.10	0.00	0.00	0.10	0.00	0.00	0.00
					moderately fractured. Gradational transition into T1 volcanics over latter 70cm.	68.66	69.60	32075	0.94	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
69.60	72.40	T1		Basalt	Green-grey, mgr, moderately fractured	69.60	71.00	32076	1.40	0.01	1%	0.10	0.00	0.00	0.00	0.10	0.00	0.00	0.00
					filled with G +/-K, few whispy Q/Ca veinlets gradational UC, LC approx @40TCA.	71.00	72.40	32077	1.40	0.01	1%	0.10	0.00	0.00	0.00	0.10	0.00	0.00	0.00
72.40	77.88	T2		Altered Basalt	Green-grey to buff yellow brown localized	72.40	73.50	32078	1.10	0.01	1%	0.00	0.10	0.00	0.00	0.10	0.00	0.00	2.97
					iSer, f-mgr, iK(F). Moderately fractured,	73.50	74.70	32079	1.20	0.01	2%	0.00	0.10	0.00	0.00	0.10	0.00	0.00	3.00
					chaotic Ca +/-K +/- Chl veinlets offset by	74.70	75.40	32081	0.70	0.01	1%	0.10	0.00	0.00	0.00	0.10	0.00	0.00	0.00
					later iK(F), localized contains three Q	76.40	70.10	32082	0.70	0.01	5% 1%	0.29	0.05	0.00	0.00	0.10	0.00	0.00	2.85
			1	1	Istringers approx @45TCA_approx 1.2m	10.10	11.10	52005	1.00	0.01	i /0	0.00	0.20	0.00	0.00	0.10	0.00	0.00	0.00

Depth		Lith.	1			From	То	Sample	Width	AU	Q	Py (%)	Cpy	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
	<u>10 (iii)</u>				apart, approx 5cm width further detailed below. Moderate fault, iK gouge with rubble at 73.87m bounded by parallel TCA principle fracture 73.5m-73.87m, 73.9m- 74.1m. Q stringer one, at 73.42m, variable grey to clear white. Intensely fractured filled with dark grey Q. Contains abundant Ca. Q stringer two, at 74.62m, intensely fractured. Milky white, pervasive Ser alteration. Trace cgr Py, very little dark grey Q presence. Q stringer three at 75.90m, variably grey to clear Q. Intensely fractured, contains many T2 xenoliths partially digested, abundant sulphide mineralization. 77.1m-78.5m In volcanic fragments in QVBX 0.25% fgr Py, 0.25% cgr, 0.25% fgr Py in Q.	77.10	78.50	# 32084	1.40	<u>9/t</u> 1.68	⁷⁶ 10%	0.23	0.23	0.00	0.00	0.00	0.00	0.00	0.00
77.88	78.20	QVBX	FLT	Quartz Vein Breccia	QVBX/Fault parallel TCA. 30% white Q/Ca matrix supports mCa alteration angular fragments, matrix.														
78.20	78.50	T4A		Py QV Zone <5% Q	Ser 1-2mm size porphyroblasts weak to moderately fractured with few Q/Ca +/- Ser filled fractures.														
78.50	81.85	T2		Altered Basalt	Medium brownish mK(f), few Q/Ca veinlets	78.50	80.00	32085	1.50	0.04	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					approx @40TCA. Last 20cm vuggy and	80.00	81.10	32086	1.10	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					unfilled fracture, abundant Ca speckled fabric.	81.10	81.85	32087	0.75	0.03	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
81.85	82.50	Τ4	FLTZ	Py QV Zone >5% Q	Buff brown, fgr, mK(f), few Ca veinlets. iSer alteration, Q stringer @45TCA contains abundant Ca, milky white, weakly fractured, vuggy, bounded by iK gouge.	81.85	82.50	32088	0.65	0.78	8%	0.23	0.23	0.00	0.00	0.00	0.23	0.00	0.00
82.50	83.22	T2		Altered Basalt	Olive brownish with iChl patches. m(k) (f).	82.50	83.22	32089	0.72	0.01	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
83.22	90.55	T1		Basalt	Dark greenish fgr local isolated patches of	83.22	84.72	32091	1.50	0.01	0%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					iChl +/-K, +/-leucox? Weak white K on	84.72	86.22	32092	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					fracture (mm scale), no PDO. Few Q/Ca	86.22	88.00	32093	1.78	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					veinlets at 84.3. Tension gashes filled with	80.20	89.30	32094	1.30	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					white Q @30TCA. See diagram in notes.	69.30	90.00	32095	1.20	0.01	1 70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
90.55	102.00	T2		Altered Basalt	fgr buff-mauve colour, mCa mSi, few Q	90.55	91.90	32096	1.35	0.03	5%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					veinlets to 1cm average PDO @30-40TCA.	91.90	93.40	32097	1.50	0.04	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
1		I	I	1	Q veinlets locally contain Ser, no sulphide	93.40	94.90	32098	1.50	0.01	3%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					in veinlets.	94.90	96.40	32099	1.50	0.10	3%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					91.83-91.9 Q veinlet with few well	96.40	97.90	31146	1.50	0.03	3%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					digested T2 fragments, no sulphide	97.90	99.50	31147	1.60	0.05	7%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					@45TCA. Four Q veinlets with moderate	99.50	100.90	31148	1.40	0.01	3%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					vellow Ca. 5cm, no sulphide. @40TCA.	100.90	102.00	31149	1.10	0.01	2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					graphitic +/- Ser contacts, very discreet.														
					Few patches iSer mSi(n)														
102.00	107.40	T1		Basalt	Medium-dark green, mSi. Numerous	102.00	103.45	27001	1.45	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					irregular Q stockworks and veinlets. No	103.45	104.85	27002	1.40	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					sulphide in Q.	104.85	106.10	27003	1.25	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
407.40	440.05	то				106.10	107.40	27004	1.30	0.01	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
107.40	113.65	12		Altered Basalt	very weak Ca alteration, numerous mm	107.40	108.90	27005	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					scale Q veinlets (fractured infill) and weak	108.90	111.40	27000	1.50	0.01	2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					stockworks with creamy Ca rims around	111.40	112.40	27007	1.50	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Q/Ca veinlets. No obvious PDO for Q/Ca	113.40	114 25	27000	0.85	0.11	4%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					structure.	113.40	114.20	21003	0.00	0.15	570	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					111.9-117.25 At this point, T2 changes														
					in character. mm scale Q veinlets change														
					to Chl fracture filled with 3cm Q veinlets.														
					(no mm scale Q/Ca structure). Chl +/- clay														
					alteration fragments angular in Q/Ca														
					veinlets and stockworks. Local iCBX with														
					Chl filled fractures.														
113.65	114.25	T4A		Py QV Zone <5% Q	iCa mSer with 3cm Q/Ca veinlet @30TCA.														
					Q veinlet has numerous clots of Ser														
					espeically near selvage. Locally vuggy, no														
					sulphide in veinlet.														
114.25	117.20	T2		Altered Basalt	Buff-grey fgr, mCa wSer, few barren Q	114.25	115.75	27011	1.50	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					veinlets less than 1cm. No sulphide.	115.75	117.20	27012	1.45	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					Local K(f).														
								070/0			10/								
117.20	117.96	I4A		Py QV Zone <5% Q	iCa, moderately fractured, local iCBX mSi,	117.20	117.96	27013	0.76	1.27	1%	2.97	2.97	0.00	0.00	0.00	0.99	0.00	0.00
					local iK(f). LC very discrete with 2-3cm														
					graphitic/pyritic band @501CA. 0.5%														
					irregular blebs and mm scale veinlets.														
					0.5% fgr Aspy Very bright whitish silver,														
					diss. Few mgr Aspy.														
117.96	126.95	T2		Altered Basalt	117.96-121.0 iSer(p), local iK(p), local	117.96	119.46	<u>270</u> 15	1.50	0.08	3%	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00
					iK(f). Very irregular Q/Ca +/- Ser veinlets,	119.46	120.95	27016	1.49	0.03	2%	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00
					local T2 fragments (fresh and moderately	120.95	122.56	27017	1.61	0.21	2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					digested). Q veinlets locally vugqv.	122.56	124.06	27018	1.50	0.22	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					120 95-124 0 iSer(p) "vellowish tinge"	124.06	125.56	27019	1.50	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					121.0 Few Q veinlets, PDO @ 40- 45TCA. Shearing/boudinage @45TCA. 122.4 Q stringer @60TCA. HW intensely vuggy, blue clay on fracture.	125.56	126.96	27021	1.40	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
126.95	130.00	T2	ΒX	Altered Basalt	Medium buff-grey, fgr fragments locally are hosted by Chl/G +/- Si matrix. Some zones are more BX than others. Fragments at mK(p). Few Q veinlets, no sulphide. 128.5-130.0 Local 0.25% cgr Py.	<u>126.96</u> 128.50	<u>128.50</u> 130.00	27022 27023	<u>1.54</u> 1.50	<u>0.03</u> 0.01	<u>5%</u> 1%	<u>0.10</u> 0.10	0.10 0.10	0.00	0.00	0.00	0.00	0.00	<u>0.00</u> 0.00
130.00	131.80	T2		Altered Basalt	Relatively massive, medium buff, few Q	130.00	130.90	27024	0.90	0.04	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					veinlets to 6mm, PDO @50TCA.	130.90	131.80	27025	0.90	0.04	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
131.80	132.35	T4A	FLT	Py QV Zone <5% Q	Intensely broken core, wK(f) mK(p). Medium buff, intensely vuggy wth very irregular Q veinlets.	131.80	132.35	27026	0.55	0.56	2%	0.98	0.49	0.00	0.00	0.00	0.00	0.00	0.00
132.35	132.55	Τ5		QV	Discrete contacts @45TCA. White Q, intensely fractured, with white and grey and intense yellow Ca 2cm stringer selvages. Vuggy along fractures. 1.5% fgr Py especially at stringer selvages.	132.35	132.55	27027	0.20	1.26	99%	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00
132.55	134.00	T2	FLT	Altered Basalt	w-mCa, intensely broken core to 133.5, mK(p) especially 135.3. Moderately vuggy throughout. Few Q blebs and irregular veinlets. No sulphide in Q.	132.55	134.00	27028	1.45	0.49	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
134.00	135.30	Τ2	BX	Altered Basalt	Less Ca alteration fragments rounded, hosted by iK matrix, fragments:matrix 85:15. Few Q filled fractures (veinlets), few Chl filled fractures. Q/Ca vnlts. No sulphide. 5cm grades into mD iK gouge at LC zone.	134.00	135.30	27029	1.30	0.03	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
135.30	141.40	T1		Basalt	iK(p), numerous white Q irregular veinlets	135.30	136.80	27031	1.50	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					and patches. No PDO. Few local zones of	136.80	138.30	27032	1.50	0.03	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					BX with T1 fragments in iK matrix.	138.30	139.80	27033	1.50	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FOH						139.60	141.40	27034	1.60	0.01	170	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			1																

Cusac G	old Mine	es Lte	d.		07 Taurus					Dian	nond Di	rill Hol	e Log				07	7TC-05	5
Collar De	atails				Durnosa.								Starte	h			Jı	une 27	2007
Lonaitud	e	45	59721.0	E	Infill & Metallurgical Drilling 88 Hill								Finish	ed			J	une 30	2007
Latitude	-	65	70434.0	N									Logge	ed By:		C. Zwa	rich		
Elevation	۱		1119.0	m ASL									Tests			Depth	Az	Dip	
End of H	ole		190.8	m												0.0	179.1	-45.5	1 1
Azimuth			179.1																
Dip			-45.5																
																			Щ
Depth		Lith.				From	То	Sample	Width	AU	Q	Py	(%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Cod	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
0	3.30	OB		Overburden	0-3.00 Casing. 3.0-3.10 Overburden. 3.10-3.30 Subcrop.														
3.30	7.85	T1		Basalt	Dark blue/green, fgr, massive. Weakly fractured, filled	3.30	4.80	32141	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					with Si/G. Few Q/Ca veinlets, no PDO, mm scale. Few	4.80	6.30	32142	1.50	0.01	1%	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Q/Ca whisps mm-cm scale, FeOx along fractures.	6.30	7.85	32143	1.55	0.01	0%	0.25	0.10	0.00	0.00	0.00	0.00	0.00	0.00
7.85	8.85	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Moderately fractured, filled	7.85	8.85	32144	1.00	0.69	1%	2.48	0.25	0.00	0.00	0.00	0.99	0.00	0.00
				,	with Si/G. FeOx along fractures, few Q/Ca veinlets, no PDO. T4A fades into T1- gradual. Locally 3% Aspy, 4% cgr.														
8.85	11.70	T1		Basalt	Dark blue/green, fgr, massive. Weakly fractured, filled	8.85	10.30	32145	1.45	1.00	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					with Si/G, many Q/Ca veinlets/blebs mm scale, no PDO. FeOx along fractures. Weak fault, blocky ~9.5- 11.0. **Missing core between ~ 9.5-11.0.	10.30	11.70	32146	1.40	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11.70	15.65	T4		Py QV Zone >5% Q	Light grey, fgr, massive. Weak-moderately fractured,	11.70	13.50	32147	1.80	3.20	25%	7.56	0.06	0.25	0.25	0.00	0.19	0.00	0.25
				,	filled with Si/G, FeOx along fractures. Few Q/Ca	13.50	15.00	32148	1.50	2.28	50%	0.50	0.25	0.50	0.50	0.00	0.25	0.00	0.50
					veinlets and whisps, no PDO, mm scale. Five Q stringers: at 12.2, ~ 18cm @~75TCA, at 12.6 ~ 10cm contacts TCA not clear, at 13.1 ~ 12cm contacts TCA not clear, at 14.05 ~ 3cm ~ perpendicular TCA, at 15.00 ~ 6cm ~ perpendicular TCA. Q stringer - wSer. 12% Q in zone. wSer near end of unit.	15.00	15.65	32149	0.65	0.21	25%	0.25	0.06	0.25	0.25	0.00	0.19	0.00	0.25
15.65	18.90	Т4		Py QV Zone >5% Q	w-mSer, light grey, fgr, massive. Weakly fractured,	15.65	17.00	32151	1.35	0.64	25%	2.31	0.06	0.25	0.25	0.00	0.19	0.00	0.25
					filled with Si/G Many Q/Ca veinlets, either no PDO or	17.00	18.00	32152	1.00	2.07	100%	1.00	1.00	1.00	1.00	0.00	0.00	0.00	1.00
					@~50TCA. Q stringers as noted: at 16.75, ~ 20cm, @~45TCA. At 17.15 ~10cm, @~45TCA. At 18.3 ~8cm, @~50TCA.	18.00	18.90	32153	0.90	0.12	7%	0.25	0.02	0.00	0.00	0.00	0.00	0.00	2.00
18.90	20.50	T2		Altered Basalt	Light green/grey, fgr, massive. Moderately fractured, filled with Si/G. Many Q/Ca veinlets and whisps, mm scale, no PDO. mSer.	18.90	20.50	32154	1.60	0.03	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	1.98
20.50	24.45	T1		Basalt	Dark grey/green, fgr, massive. Moderate-intensely	20.50	22.00	32155	1.50	0.01	1%	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					fractured, filled with Si/G, local BX zones. Many Q/Ca	22.00	23.50	32156	1.50	0.01	0%	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					blebs and veinlets, no PDO. One Q veinlet @~45TCA, mm scale.	23.50	24.45	32157	0.95	0.04	1%	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py	(%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Cod	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
24.45	25.05	T2		Altered Basalt	Medium grey/green, fgr, massive. Weakly fractured, filled with Si/G. Many Q veinlets, whisps. No PDO, mm scale, one Q stringer ~3cm.	24.45	25.05	32158	0.60	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25.05	25.80	T4A		Py QV Zone <5% Q	Light grey, slightly green, fgr, massive. Weakly fractured, filled with Si/G. Many Q veinlets, whisps, no PDO, mm scale. One Q stringer ~ 3cm	25.05	25.80	32159	0.75	0.17	1%	0.25	0.00	0.00	0.00	0.10	0.00	0.00	0.00
25.80	28.45	T2		Altered Basalt	Medium green/grey, fgr, massive. Moderately	25.80	27.30	32161	1.50	0.04	0%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					fractured, filled with Si/G. Few-many Q/Ca veinlets and whisps @~45TCA or no PDO.	27.30	28.45	32162	1.15	0.01	0%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
28.45	29.30	T4A		Py QV Zone <5% Q	Light grey-mauve, fgr, massive. Weakly fractured, filled with Si/G. 2% cgr diss Py, up to 1cm, euhedral.	28.45	29.30	32163	0.85	3.74	0%	1.00	1.00	1.00	1.00	0.00	0.00	0.00	1.00
29.30	29.60	Т5	QV	QV	Milky white, Ca rich Q. Weakly fractured, filled with Si/G. Blocky, weak fault?	29.30	29.60	32164	0.30	20.30	98%	0.26	0.25	0.00	0.00	0.00	0.00	0.00	0.00
29.60	30.30	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Few Q/Ca veinlets, no PDO. Blocky, weak fault?	29.60	30.30	32165	0.70	0.01	2%	4.90	0.00	0.00	0.00	0.00	0.98	0.00	0.00
30.30	30.80	T2		Altered Basalt	Medium green/grey, fgr, massive. Weakly fractured, filled with Si/G.	30.30	30.80	32166	0.50	0.05	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30.80	31.90	T4A		Py QV Zone <5% Q	As above. One Q stringer at ~ 5cm, angle TCA not clear. Few Q/Ca veinlets, no PDO, mm scale. Blocky, weak fault?	30.80	31.90	32167	1.10	13.90	2%	4.90	0.98	0.00	0.00	0.00	0.25	0.00	0.00
31.90	34.90	T2		Altered Basalt	Medium green/grey, fgr, massive. Few Q/Ca veinlets,	31.90	32.90	32168	1.00	0.04	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					mm scale, @~45TCA.	32.90 33.90	33.90 34.90	32169 32171	1.00	0.03	1% 1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
34.90	35.55	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Weakly fractured, filled with Si/G. Few Q/Ca veinlets. no PDO.	34.90	35.55	32172	0.65	3.17	1%	7.92	0.00	0.00	0.00	0.00	0.25	0.00	0.00
35.55	36.00	T5	QV	QV	Milky white Q, volcanic and graphite inclusions and veinlets containing Py. UC and LC @~45TCA.	35.55	36.00	32173	0.45	7.98	95%	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00
36.00	39.90	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Few Q/Ca veinlets, mm scale,	36.00	37.50	32175	1.50	2.36	2%	1.96	0.98	0.00	0.00	0.00	1.47	0.00	0.00
					@~50TCA, some perpendicular TCA. Few chert and Q	37.50	38.70	32176	1.20	0.70	2%	1.96	0.49	0.00	0.00	0.00	0.98	0.00	0.00
					blebs 0.5-3cm width. Q stringers as noted, all @~50TCA: at 37.10 (2cm), at 37.55 (3cm), at 38.15 (2cm), at 39.40 (10cm). w-mSer.	38.70	39.90	32177	1.20	2.72	3%	0.97	0.49	0.00	0.00	0.00	0.24	0.00	1.94
39.90	41.35	T2		Altered Basalt	Medium green/grey, fgr, massive, mottled texture- colours. Few Q/Ca veinlets, no PDO. Ca talc seen on fracture surfaces. mSer.	39.90	41.35	32178	1.45	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	1.98
41.35	42.50	T2	FLT	Altered Basalt	Light green/grey, fgr, massive. Upper ~15cm iK. Blocky, rubbly small broken pieces. Few Q/Ca veinlets and blebs, no PDO, mm-1cm scale.	41.35	42.50	32179	1.15	0.04	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
42.50	44.65	T4A	FLT	Py QV Zone <5% Q	Light mauve-grey, fgr, massive. Moderately fractured.	42.50	43.65	32181	1.15	5.55	2%	6.86	0.49	0.00	0.00	0.00	0.98	0.00	0.98
					filled with Si/G. Many Q/Ca veinlets, mm scale, no PDO. Few Q stringers ~3cm @~50TCA. wSer. mK throughout. 42.5-43.65 Locally 30% cgr Py (7% overall). 43.65-44.65 Locally 10% cgr Py (3% overall).	43.65	44.65	32182	1.00	0.80	1%	2.97	0.25	0.00	0.00	0.00	0.25	0.00	0.00
44.65	44.95	T5	QV	QV	Milky white Q/Ca. Few fractures- graphite. No sulphide in Q, fgr Py in volcanics. G at contacts.	44.65	44.95	32183	0.30	6.40	99%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Pv	(%)	Cpv	Sph	Tet	Aspv	VG	Alt'n
From	To (m)	Cod	Struc	Lithology	Description	(m)	(m)	#	(m)	q/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
44.95	52.65	T2	1	Altered Basalt	Medium green, slightly altered volcanics. Few to many	44.95	46.40	32184	1.45	0.43	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Q/Ca veinlets, no PDO. Little fault at 51.5 ~30cm, mK.	46.40	47.90	32185	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Also at 52.4 ~15cm. mK.	47.90	49.40	32186	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						49.40	50.90	32187	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						50.90	51.90	32188	1.00	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						51.90	52.65	32189	0.75	0.03	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
52.65	52.95	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Few Q/Ca veinlets, no PDO.	52.65	52.95	32191	0.30	1.25	1%	2.97	0.99	0.00	0.00	0.00	0.00	0.00	0.00
52.95	53.30	Т5	QV	QV	Bands of volcanics and graphite- sulphide @~50TCA, some discontinuous.	52.95	53.30	32192	0.35	16.20	90%	6.09	0.09	0.00	0.00	0.00	2.09	0.00	0.00
53.30	53.90	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Many Q/Ca veinlets, no PDO, mm scale.	53.30	53.90	32193	0.60	1.53	1%	0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00
53.90	58.30	T2		Altered Basalt	Dark green grey, fgr, massive. Slightly altered	53.90	55.40	32194	1.50	0.03	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					volcanics, many Q/Ca veinlets, no PDO. Weak to	55.40	56.90	32195	1.50	0.03	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					moderate fractured, filled with Si/G.	56.90	57.40	32196	0.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						57.40	58.30	32197	0.90	0.03	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
58.30	59.05	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Few Q/Ca veinlets @~45TCA. Q stringer ~6cm @~50TCA.	58.30	59.05	32198	0.75	0.61	3%	1.94	0.00	0.00	0.00	0.00	0.00	0.00	0.00
59.05	60.00	T2		Altered Basalt	Medium green/grey, weakly fractured, filled with Si/G, fgr, massive.	59.05	60.00	32199	0.95	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
60.00	60.35	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Few Q/Ca veinlets @~45TCA.	60.00	60.35	43101	0.35	2.25	1%	9.90	0.00	0.00	0.00	0.00	0.50	0.00	0.00
60.35	60.60	Т5	QV	QV	Milky white, no sulphides in Q. Few fractures, filled with G, containing sulphides.	60.35	60.60	43102	0.25	2.44	99%	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
60.60	61.95	T4A	FLT	Py QV Zone <5% Q	Light grey, fgr, massive. Upper 15cm iK. Blocky, rubbly and broken. Few Q/Ca veinlets, no PDO. mSer.	60.60	61.95	43103	1.35	1.19	1%	6.93	0.00	0.00	0.00	0.00	0.50	0.00	1.98
61.95	62.55	T2	FLT	Altered Basalt	As above. Few Q/Ca veinlets, no PDO, broken and blocky.	61.95	62.55	43104	0.60	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
62.55	63.10	T4A	FLT	Py QV Zone <5% Q	Light grey, fgr, massive. Intensely fractured. Q/Ca veinlets, no PDO, mm scale. Q/Ca blebs ~ 2-3cm.	62.55	63.10	43105	0.55	0.35	1%	0.99	0.00	0.00	0.00	0.00	0.25	0.00	0.00
63.10	63.75	T2	FLT	Altered Basalt	As above.	63.10	63.75	43106	0.65	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
63.75	64.35	T4A	FLT	Py QV Zone <5% Q	As above. Q stringer ~6cm @~50TCA.	63.75	64.35	43107	0.60	6.42	3%	0.97	0.00	0.00	0.10	0.00	0.49	0.00	0.00
64.35	71.30	T2		Altered Basalt	As above. Becomes greener and less altered at ~67.9.	64.35	65.85	43108	1.50	0.19	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Two Q stringers at 67.35 and 66.80, both ~ 6cm.	65.85	67.35	43109	1.50	0.31	3%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Contain Pv at contacts, locally 2%	67.35	68.85	43111	1.50	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					containt y at contacto, locally 270.	68.85	69.85	43112	1.00	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						69.85	71.30	43113	1.45	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
71.30	72.80	T1		Basalt	Dark green, fgr, massive. Very few Q/Ca veinlets, no PDO, mm scale.	71.30	72.80	43114	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
72.80	73.80	T2		Altered Basalt	As above.	72.80	73.80	43115	1.00	0.03	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
73.80	76.85	T1	FLT	Basalt	As above. Local iK, green. Very crumbly and broken.	73.80	75.25	43116	1.45	0.01	0%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					with local clay rich zones.	75.25	76.85	43117	1.60	0.01	0%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
76.85	78.60	T4A	FLT	Py QV Zone <5% Q	As above. Local iK, broken, blocky, wSer. QV at 78.3	76.85	78.30	43118	1.45	0.43	1%	4.95	0.00	0.00	0.00	0.00	2.97	0.00	0.99

Depth		Lith.				From	То	Sample	Width	AU	Q	Py	(%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Cod	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					~30cm, UC and LC not clear. Intensely broken,	78.30	78.60	43119	0.30	1.93	80%	1.40	0.00	0.00	0.00	0.00	1.00	0.00	0.00
					fractured, many clay/volcanic inclusions comtaining	78.60	80.10	43121	1.50	0.24	1%	0.50	0.00	0.00	0.00	0.00	0.10	0.00	0.00
					sulphides (Pv).														
					76.85-78.3 Locally 20% Aspy.														
					······································														
78.60	84.30	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Weakly fratured filled with	80.10	81.60	43122	1.50	0.01	1%	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				-	Si/G. Few to many Q/Ca veinlets. Local w-mSer. Two	81.60	83.10	43123	1.50	0.05	2%	0.49	0.00	0.00	0.00	0.10	0.00	0.00	0.00
					Q/Ca stringers, at 83.05 ~ 3cm @~55TCA and at ~82.4	83.10	84.30	43124	1.20	0.01	1%	0.50	0.00	0.00	0.00	0.10	0.00	0.00	0.00
					~5cm.														
04.00	00.05	то		Alternal Danalt	Links haff mean fam anna iar Ndadamstaha farataan d	04.00	05.00	404.05	4.50	0.04	40/	0.40	0.00	0.00	0.00	0.00	0.00	0.00	4.00
84.30	60.60	12		Altered Basalt	Light, buil grey, igr, massive. Moderately fractured,	84.30	80.80	43120	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	1.98
					filied with SI/G. Many Q/Ca veiniets, no PDO, mm	85.80	80.83	43120	1.05	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
96.95	04.05	τ4Λ		Dy OV Zono 25% O	SCAle.	96.95	00.25	12127	1 50	0.07	250/	0.44	0.06	0.25	0.25	0.00	0.10	0.00	0.25
00.05	34.33	147			As above. Q stringer as noted below:	88 35	80.33	43127	1.30	0.07	2370	0.44	0.00	0.23	0.23	0.00	0.15	0.00	0.23
					Ω stringer at 02.55 10cm @ 50TCA	89.80	91 30	43129	1.40	0.01	1%	0.50	0.00	0.00	0.00	0.00	0.25	0.00	0.00
					Q stringer at 92.55, \sim 10011, $\otimes \sim$ 5010A.	91.30	92.55	43131	1.00	0.17	2%	0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.00
					Q stringer at 94.15, \sim 5011, \otimes \sim 4510A.	92.55	94.00	43132	1.45	0.14	10%	0.45	0.00	0.00	0.00	0.00	0.23	0.00	0.00
					Q stringer at 94.5, ~15cm, @~451CA.	94.00	94.95	43133	0.95	0.75	90%	0.10	0.00	0.00	0.00	0.00	0.05	0.00	0.00
94.95	95.55	T5	QV	QV	Int. fractured, filled with siliceous G, milky white Q.	94.95	95.55	43134	0.60	0.52	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
95.55	96.30	T4A		Py QV Zone <5% Q	Light grey, fgr, massive. Highly fracture filled with Si/G.	95.55	96.30	43135	0.75	0.63	1%	4.95	0.00	0.00	0.00	0.00	0.99	0.00	0.00
					Few Q/Ca veinlets, no PDO, mm scale.														
96.30	103.35	T2		Altered Basalt	Light green/grey, fgr, massive. Weakly fractured, filled	96.30	97.80	43136	1.50	0.03	0%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					with Si/G. Few Q/Ca veinlets, no PDO, mm scale.	97.80	99.30	43137	1.50	0.01	0%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						99.30	100.80	43138	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						100.80	102.30	43139	1.50	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						102.30	103.35	43141	1.05	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
103.35	106.05	T4A		Py QV Zone <5% Q	As above. Q stringer at ~104.0, ~25cm @~50TCA. Q	103.35	104.60	43142	1.25	0.90	100%	1.00	1.00	1.00	1.00	0.00	0.00	0.00	1.00
					stringer at ~105.5, ~5cm, @~50TCA. Q stringer at	104.60	106.05	43143	1.45	0.75	25%	1.56	0.25	0.25	0.25	0.00	0.19	0.00	0.25
					~105.6, ~5cm, @~80TCA. Few Q/Ca veinlets														
					@~50TCA.														
106.05	107.10	T4A	FLT	Py QV Zone <5% Q	As above. Locally iK, blocky and broken. Local BX,	106.05	107.10	43144	1.05	0.42	50%	0.75	0.35	0.50	0.50	0.00	0.25	0.00	0.50
					intensely fractured. Many Q/Ca veinlets @~80TCA to														
					perpendicular TCA, or no PDO.														
407.40	400 50	T 4 A				407.40	400.00	101.15	4.50	0.47	500/	0.50	0.05	0.50	0.50	0.00	0.05	0.00	0.50
107.10	109.50	I4A		Py QV Zone <5% Q	Light grey, fgr, massive. Weakly fractured, filled with	107.10	108.60	43145	1.50	0.17	50%	0.50	0.25	0.50	0.50	0.00	0.25	0.00	0.50
					SI/G. Few Q/Ca veinlets, no PDO. Little fault-gouge at	108.60	109.50	43140	0.90	0.01	50%	0.50	0.25	0.50	0.50	0.00	0.25	0.00	0.50
					107.45, IK, ~10cm, @~501CA.														
109.50	110.05	T4A	BX	Py QV Zone <5% Q	Light grey, fgr, massive. Intensely fractured, filled with	109.50	110.05	43147	0.55	1.28	1%	11.88	0.50	0.00	0.00	0.00	2.97	0.00	1.98
					Si/G. mSer.														
110.05	110.35	T5	QV	QV	Milky white Q, few G and volcanic bands.	110.05	110.35	43148	0.30	0.30	99%	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00
110.35	111.65	T4A	ВX	Py QV Zone <5% Q	As above. More iBX and fractured. Small fault gouge	110.35	111.65	43149	1.30	0.17	3%	1.46	0.00	0.00	0.00	0.00	0.49	0.00	1.94
					zone ~1cm at 110.35 next to QV. mSer. Q stringer at														
					111.56, ~8cm, @~50TCA, mSer in Q. Locally 5% cgr														
444.05	440.40	то		Alternal Dr. II	Pv.	444.07	440.00	40454	4.05	0.07	00/	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00
111.65	116.40	12		Altered Basalt	w-moer. Light buff grey, tgr, massive. Weakly	111.65	113.00	43151	1.35	0.07	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					fractured, filled with SI/G. Few Q/Ca veinlets, mm	114.60	114.50	43152	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					scale, no PDO. Few Q stringers ~3cm.	115.50	116.00	43153	0.00	0.11	1 70 1 0/	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				1		110.00	110.40	-0104	0.00	0.01	1 /0	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00

From To (m) Cod Struc Lithology Description (m) (m) # (m) g/t % Cgr Fgr (%)	(%) Occ Ser 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
116.40 118.55 T2 FLT Altered Basalt As above. Fault gouge, local iK. 116.40 117.55 43155 1.15 0.03 1% 0.10 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Image: Constraint of the constrated of the constraint of the constraint of the constraint of the	0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
118.55 121.90 T4A Py QV Zone <5% Q	0.00 0.00 0.00 0.99 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
with Si/G, local mBX. Q/Ca stringer at 121.2, ~12cm 120.00 121.00 43158 1.00 0.11 1% 1.98 0.00<	0.99 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Image: Constraint of the constrated of the constraint of the constraint of the constraint of the	0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
121.90 127.05 T2 Altered Basalt Medium green grey, fgr, massive. Moderately fractured. Q/Ca blebs, veinlets. Q/Ca stringer at 126.5, -10cm. @~45TCA. 121.90 123.40 43161 1.50 0.03 1% 0.10 0.00 <td>0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
fractured. Q/Ca blebs, veinlets. Q/Ca stringer at 126.5, 123.40 124.90 43162 1.50 0.01 3% 0.10 0.00 0.00 0.00 0.00 0.00 -10cm. @~45TCA. 124.90 126.40 43163 1.50 0.03 3% 0.10 0.00 0.00 0.00 0.00	0.000.000.000.000.000.00
124.90 126.40 43163 1.50 0.03 3% 0.10 0.00 0	0.00 0.00 0.00
<u>126.40</u> 127.05 43164 0.65 0.01 3% 0.10 0.00 0.00 0.00 0.00	0.00 0.00 0.00
127.05 127.35 T5 QV QV Milky white Ca rich Q, few graphitic whisps. 127.05 127.35 43165 0.30 0.01 100% 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00
127.35 128.60 12 Altered Basalt Medium green, tgr, massive. Few Q/Ca veinlets 127.35 128.60 43166 1.25 0.01 10% 0.09 0.00 0.00 0.00 0.00	0.00 0.00 0.00
@~45TCA or no PDO, mm scale. Q/Ca stringer at	
128.8, ~15cm, @~50TCA.	
128.60 133.75 T1 Basalt Dark green, fgr, massive. Few Q/Ca veinlets, no PDO, 128.60 130.10 43167 1.50 0.01 1% 0.00	0.00 0.00 0.00
mm scale. Last 20cm T2. 130.10 131.60 43168 1.50 0.01 1% 0.10 0.00 0.00 0.00 0.00	0.00 0.00 0.00
<u>131.60</u> <u>132.60</u> <u>43169</u> <u>1.00</u> <u>0.01</u> <u>0%</u> <u>0.10</u> <u>0.00</u>	0.00 0.00 0.00
<u>132.60</u> 133.75 43171 1.15 0.01 1% 0.10 0.00 0.00 0.00 0.00	0.00 0.00 0.00
133.75 138.20 T4A Py QV Zone <5% Q Light grey, fgr, massive. Few Q/Ca veinlets, mm scale, 133.75 135.20 43173 1.45 0.86 3% 0.97 0.00 0.00 0.00 0.00 0.00	0.97 0.00 0.00
no PDO. Weakly fractured, filled with Si/G. <u>135.20</u> 136.70 43174 1.50 11.10 1% 9.90 0.00 0.00 0.00 0.00	1.98 0.00 0.00
	0.99 0.00 0.00
138.20 139.40 12 FLT Altered Basalt Light grey, fgr, massive, local IK, blocky. Few Q/Ca 138.20 139.40 32274 1.20 0.04 1% 0.10 0.00 0.00 0.00 0.00	0.00 0.00 0.00
veinlets, mm scale, no PDO. Weakly fractured, filled	
	0.00 0.00 1.00
139.40 141.90 12 Altered Basalt Light grey, tgr, massive. Few chert and Q blebs ~2cm 139.40 140.90 32275 1.50 0.01 1% 0.10 0.00 0.00 0.00 0.00 0.00	0.00 0.00 1.98
width. Weakly fractured, filled with Si/G. Few-many 140.90 141.90 32276 1.00 0.08 1% 0.10 0.00 0.00 0.00	0.00 0.00 1.98
Q/Ca veinlets, mm scale, no PDO. mSer. Lower	
~40cm fault, mK.	
141.90 148.55 T4A BX PV QV Zone <5% Q mBX. Light grev. fgr. massive. Upper 2m iBX. rest 141.90 143.40 32277 1.50 2.59 8% 2.07 0.46 0.00 0.00 0.00	0.92 0.00 1.84
mBX. Fractured filled with Si/G. Many Q/Ca veinlets. 143.40 144.90 32278 1.50 0.14 1% 0.25 0.00 0.00 0.00 0.00	0.25 0.00 1.98
mm scale, @~55TCA or no PDO. O stringer at 142.75 144.90 146.40 32279 1.50 1.23 1% 0.99 0.00 0.00 0.00 0.00	0.99 0.00 1.98
-8cm @-50TCA Q stringer at 142.90 -8cm 146.40 147.90 32281 1.50 0.32 100% 1.00 1.00 1.00 0.00	0.00 0.00 1.00
@~50TCA mSer 147.90 148.60 32282 0.70 0.01 25% 0.25 0.06 0.25 0.25 0.00	0.19 0.00 0.25
148.55 148.80 T4A FLT Py QV Zone <5% Q Light grey, fgr, massive. m-iK, blocky. 148.60 149.20 32283 0.60 0.01 1% 0.25 0.00 0.00 0.00 0.00	0.00 0.00 0.99
148.80 150.25 T4A Py QV Zone <5% Q Light grey, fgr, massive. Moderately fractured, filled 149.20 150.25 32284 1.05 0.01 1% 0.25 0.00 0.00 0.00 0.00 0.00	0.25 0.00 0.99
with Si/G. Few Q/Ca veinlets, mm scale, @~45TCA or	
no PDO.	
150.25 154.20 T2 Altered Basalt Light grey, fgr, massive. Weakly fractured, filled with 150.25 151.75 32285 1.50 0.03 5% 0.10 0.00 0.00 0.00 0.00	0.00 0.00 0.00
Si/G. Many Q/Ca veinlets, mm scale, no PDO. Q 151.75 153.25 32286 1.50 0.01 5% 0.10 0.00 0.00 0.00 0.00	0.00 0.00 0.00
stringer at ~151.55, ~8cm ~perpendicular TCA. Q 153.25 154.20 32287 0.95 0.01 1% 0.10 0.00 0.00 0.00 0.00	0.00 0.00 0.00
stringer at 152.55, ~12cm, @~55TCA. Few Q/chert	
blebs. Upper 60cm mK, weak-fault	
154 20 159 60 T2 Altered Baselt Medium green for massive Moderately fractured filled 154 20 155 70 32288 1 50 0.01 1% 0.10 0.00 0.00 0.00 0.00	
194.20 195.00 12 Altered Dasati Weeking geon, generating and geon and an analysis and	
ØrstorCA Fault at 154 6-155 5 107 201 157.201 322031 1.501 0.011 1% 0.100 0.001 0.001 0.00 0.001 0.00	
	0.00 0.00 0.00
159.60 160.30 32294 0.70 0.01 0% 0.10 0.00 0.00 0.00 0.00	0.00 0.00 0.00
160.30 181.20 T2 Altered Basalt As above. Q/Ca stringer at 124.20 ~3cm @~50TCA. 160.30 161.80 32295 1.50 0.08 2% 0.10 0.00 0.00 0.00 0.00	0.00 0.00 0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (S	%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Cod	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
						161.80	163.30	178651	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						163.30	164.80	178652	1.50	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						164.80	166.30	178653	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						166.30	167.80	178654	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						167.80	169.30	178655	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						169.30	170.80	178656	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						170.80	172.30	178657	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						172.30	173.80	178658	1.50	0.04	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						173.80	175.30	178659	1.50	0.03	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						175.30	176.80	178661	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						176.80	178.30	178662	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						178.30	179.80	178663	1.50	0.05	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						179.80	181.20	178664	1.40	0.12	3%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
181.20	186.15	T1		Basalt	As above.	181.20	182.70	178665	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						182.70	184.20	178666	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						184.20	185.70	178667	1.50	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						185.70	186.15	178668	0.45	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
186.15	190.80	T2		Altered Basalt	As above. ~187.65 green turns to grey rock last	186.15	187.65	178669	1.50	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					~10cm.	187.65	189.15	178671	1.50	0.06	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						189.15	190.80	178672	1.65	0.01	5%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EOH																			

Callar Details Purpose Barred June 80 2007 Latilude 6870472 (E) Infill & Motallurgical Drilling 88 Hill Finshed June 80 2007 Latilude 6870476 (N) Einshed June 80 2007 Finshed June 80 2007 End of Hole 203.0 m Anderson Finshed June 80 2007 Finshed June 80 2007 Star 45.0 Depth Act O Opth Act O Opth Act O Depth Act O Opth Act O Opth Act O Opth Act O Star	Cusac (Gold Min	es Ltd			07 Taurus					Dia	mond D	rill Hol	e Log					07TC-0	6
Longaular 4597721 5 (E) Infili & Metallurgical Drilling 88 Hill Filter Linged P Linged P <thlinged p<="" thr=""> Linged P Linged P<td>Collar D</td><td>etails</td><td></td><td></td><td></td><td>Purpose:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Starte</td><td>d</td><td></td><td></td><td></td><td>June (</td><td>30, 2007</td></thlinged>	Collar D	etails				Purpose:								Starte	d				June (30, 2007
Latitude 65704150 [N] Evolution 1117 [OII ASL. Somman 20.0 Candidi 1800 Op	Longitud	le	4	459772.0	E	Infill & Metallurgical Drilling 88 Hill								Finish	ed				July	2,2007
Elevation 117.2 m ASL cod 1Holo 2030 m 201p 1180.0 	Latitude		65	570415.0	N									Logge	ed By:		L. Hun	t	S. Ande	rson
End of Hole 203.0 m 200	Elevatio	n		1117.0	mASL									Tests			Depth	Az	Dip	
Azimuth 1880 P 0 <t< td=""><td>End of H</td><td>lole</td><td></td><td>203.0</td><td>) m</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td>180.0</td><td>-45.0</td><td></td></t<>	End of H	lole		203.0) m												0.0	180.0	-45.0	
Dip 46.0	Azimuth			180.0)												0.0			
Depth Image: Construct of the stand st	Din			-45.0)															
Depth From Lth. Code Stute Lthology Description From To Sample Width AU Q Py (%) Cpv (%)	Dip			10.0	1															
Depth Lthology Description From To (m) Sample Width AU O PV (%) Cyv Sol Ter Attribute 00 1.52 Code Stude (M) Casing through overburden. 1.52 2.12 2703 0.60 0.01 0.60 0.00<														I						
From To (m) Code Struc Lithology Description (m) # (m) # (m) # (m) ft (m) ft< (m) ft ft< ft< ft< ft< ft< ft<	Depth		Lith.				From	То	Sample	Width	AU	Q	Py	(%)	Сру	Sph	Tet	Aspy	VG	Alt'n
0 1.52 0.6 0 0.7	From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
1 12 2.17 TI TLT Basalt Subcrop. 1.2 2.12 2.12 2.00 0.00	0	1.52	OB		Overburden	Casing through overburden.	, í			, í				Ť		· · ·		· · ·		
2.12 3.60 1.48 0.06 1.49 0.06 1.49 0.00	1.52	2.12	T1	FLT	Basalt	Subcrop.	1.52	2.12	27035	0.60	0.01	0%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.60 4.20 1.20 Altered Baselt Subcrop. 3.60 4.20 2.7037 0.60 0.01 0.61 0.01 0.00 <th< td=""><td>2.12</td><td>3.60</td><td>T1</td><td></td><td>Basalt</td><td>Fault, UC @10TCA, LC @60TCA, iK gouge.</td><td>2.12</td><td>3.60</td><td>27036</td><td>1.48</td><td>0.06</td><td>1%</td><td>0.10</td><td>0.10</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></th<>	2.12	3.60	T1		Basalt	Fault, UC @10TCA, LC @60TCA, iK gouge.	2.12	3.60	27036	1.48	0.06	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
4.20 4.75 T4A Py GV Zone -6% Q Subcrop. Buff mauve with Q vein inclusions 3%, to dxform.rounded. No subchide in Q. dx Gorunge. IFeOX fractures. 4.20 5.40 27038 1.20 1.15 1% 4.95 1.98 0.00 0.00 2.97 0.00 0.00 4.75 5.10 T4A Py QV Zone -5% Q 1% QUCa veinlets to 3mm, no PDO. -<	3.60	4.20	T2		Altered Basalt	Subcrop	3.60	4.20	27037	0.60	0.01	0%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
4.75 5.10 T4A FLT Py QV Zone <5% Q	4.20	4.75	T4A		Pv QV Zone <5% Q	Subcrop, Buff mauve with Q vein inclusions 3% to	4.20	5.40	27038	1.20	1.15	1%	4.95	1.98	0.00	0.00	0.00	2.97	0.00	0.00
4.75 5.10 T4A FLT Py QV Zone <5% Q	1.20	1.1 0	1.17.		r y av zono sovo a	Av5cm rounded. No sulphide in O	1.20	0.10	21000	1.20		170	1.00	1.00	0.00	0.00	0.00	2.01	0.00	0.00
1.10 1.11 <th< td=""><td>4 75</td><td>5 10</td><td>Τ4Δ</td><td>FI T</td><td>Pv OV Zone <5% O</td><td>iK douge iFeOx fracture</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	4 75	5 10	Τ4Δ	FI T	Pv OV Zone <5% O	iK douge iFeOx fracture								1						
5.10 5.40 T4A Py QV Zone <5% Q 1% Q/Ca veinlets to 3mm, no PDO. Image: Constraint of the constraint of t	4.70	0.10	, , , , , ,																	
5.40 5.70 75 QV White Q, iFeOX fracture. Moderately fractured often are bott faix. Pr outes a bott faix. Pr outes (green Q, some irregular clot. White and grey Q. No subchide in Q. 5.70 5.70 6.65 7.40 2.70 m 0.00	5.10	5.40	T4A		Py QV Zone <5% Q	1% Q/Ca veinlets to 3mm, no PDO.														
5.40 5.70 5.70 CV White Q, IFeOX fracture. Moderately fractured often with Py/Glo4y filling to 2mm, no PDO. UC and LC are both Car. Py Guode. 5.70 27039 0.30 8.28 99% 0.03 0.02 0.00 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					-															
with Py/G/clay filing to 2mm, no PDO. UC and LC are both clay. Py QuV Zone <5% Q with Py/G/clay filing to 2mm, no PDO. UC and LC are both clay. Py QuV Zone <5% Q with Py/G/clay filing to 2mm, no PDO. UC and LC green Q, some irregular clot. While and grey Q. No subcide in Q. Subcrop. wCa alteration, weak to moderately fractured with Chill, Im, mscale. on PDO. 5.70 6.65 7.90 7.90 9.90 0.00<	5.40	5.70	T5		QV	White Q, iFeOx fracture. Moderately fractured often	5.40	5.70	27039	0.30	8.28	99%	0.03	0.02	0.00	0.00	0.00	0.02	0.00	0.00
Are both Glav, Py Quoue. Are bot						with Py/G/clay filling to 2mm, no PDO. UC and LC														
5.70 6.65 T4A Py QV Zone <\$% Q						are both clay. Py gouge.														
Image: Construct of the stand s	5.70	6.65	T4A		Py QV Zone <5% Q	1% Q/Ca veinlets, mm scale. SOme clear and dark	5.70	6.65	27041	0.95	2.92	1%	2.97	0.99	0.00	0.00	0.00	5.94	0.00	0.00
6.65 7.90 T2 Altered Basalt Subcrip. wCa alteration, weak to moderately fractured with Chi fill, mm scale, no PDO. 6.65 7.90 27042 1.25 0.01 0% 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>green Q, some irregular clot. White and grey Q. No</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td></t<>						green Q, some irregular clot. White and grey Q. No														
6.65 7.90 T2 Altered Basalt Subcrop. wCa alteration, weak to moderately fractured with Chi fill. mm scale. on PDO. 6.65 7.90 27042 1.25 0.01 0% 0.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>sulphide in Q.</td> <td></td> <td> </td> <td></td>						sulphide in Q.														
Image: Construct of the second seco	6.65	7.90	T2		Altered Basalt	Subcrop. wCa alteration, weak to moderately	6.65	7.90	27042	1.25	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7.90 17.60 T1 Basalt Medium-dark green, few mm scale clay +/- Q filled fractures. 7.90 9.50 27043 1.60 0.01 0% 0.00						fractured with Chl fill, mm scale, no PDO.														
Image: Section of the sectin of the section of the section	7.90	17.60) T1		Basalt	Medium-dark green, few mm scale clay +/- Q filled	7.90	9.50	27043	1.60	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11.00 12.50 27045 1.50 0.01 0% 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>fractures.</td><td>9.50</td><td>11.00</td><td>27044</td><td>1.50</td><td>0.01</td><td>1%</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>						fractures.	9.50	11.00	27044	1.50	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12.50 14.02 27046 1.52 0.01 0% 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>11.00</td><td>12.50</td><td>27045</td><td>1.50</td><td>0.01</td><td>0%</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>							11.00	12.50	27045	1.50	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Image: height of the second							12.50	14.02	27046	1.52	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Image: Non-State interview Image: Non-State interview <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>14.02</td><td>15.52</td><td>27047</td><td>1.50</td><td>0.01</td><td>1%</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></th<>							14.02	15.52	27047	1.50	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Image: Non-State index Image: Non-State index<							15.52	16.62	27048	1.10	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17.60 18.07 T2 Altered Basalt Buff brown, weak to moderately fractured filled with K, locally K(P). Some Ca specs, some Q/Ca veinlets. no PDO. 17.60 18.07 27051 0.47 0.06 0% 0.10 0.00							16.62	17.60	27049	0.98	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11.00 12.01 12.01 12.01 13.01 <th< td=""><td>17 60</td><td>18 07</td><td>'T2</td><td></td><td>Altered Basalt</td><td>Buff brown, weak to moderately fractured filled with</td><td>17 60</td><td>18.07</td><td>27051</td><td>0.00</td><td>0.06</td><td>0%</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></th<>	17 60	18 07	'T2		Altered Basalt	Buff brown, weak to moderately fractured filled with	17 60	18.07	27051	0.00	0.06	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
18.07 19.40 T4A FLT Py QV Zone <5% Q	17.00	10.07	12		Altered Basalt	K locally K(P) Some Calspace some O/Ca	17.00	10.07	21001	0.47	0.00	070	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
18.07 19.40 T4A FLT Py QV Zone <5% Q Buff grey with purple hue, few mm scale Ca +/-K veinlets. Local K(p), mK gouge and rubble from 18.7m-19.2m. local ISer. 18.07 19.40 27052 1.33 1.02 2% 0.25 0.25 0.00 0.00 0.34 0.00 1.96 19.40 20.95 T2 Altered Basalt Buff brown-grey, moderately fractured filled with K, w-mK(p), few Q/Ca veinlets mm scale. Two Q veinlets clear grey, less than 1cm @45TCA. Contains patchy section filled of clear grey Q, Jasper Q, yellowish Ca. 19.40 20.95 21.75 T4A FLT Py QV Zone <5% Q						vointeta no DDO														
10.07 13.40 14.7 12.1 19.40 20.95 10.07 13.40 27052 1.55 0.02 0.25 0.00 <td>18.07</td> <td>10.40</td> <td>τ4Λ</td> <td></td> <td>$P_{V} \cap V$ Zong $< 5\% \cap$</td> <td>Buff grey with purple hue, few mm scale Ca +/-K</td> <td>18.07</td> <td>10.40</td> <td>27052</td> <td>1 33</td> <td>1 02</td> <td>2%</td> <td>0.25</td> <td>0.25</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.34</td> <td>0.00</td> <td>1.06</td>	18.07	10.40	τ4Λ		$P_{V} \cap V$ Zong $< 5\% \cap$	Buff grey with purple hue, few mm scale Ca +/-K	18.07	10.40	27052	1 33	1 02	2%	0.25	0.25	0.00	0.00	0.00	0.34	0.00	1.06
19.40 20.95 T2 Altered Basalt Buff brown-grey, moderately fractured filled with K, w- mK(p), few Q/Ca veinlets mm scale. Two Q veinlets clear grey, less than 1cm @45TCA. Contains patchy section filled of clear grey Q, Jasper Q, yellowish Ca. 19.40 20.95 27053 1.55 0.06 1% 0.00 <	10.07	19.40	147		r y Q V 2011e < 378 Q	builded lead $K(n)$ mK source and whele from	10.07	19.40	21032	1.55	1.02	270	0.20	0.23	0.00	0.00	0.00	0.54	0.00	1.50
19.40 20.95 T2 Altered Basalt Buff brown-grey, moderately fractured filled with K, w- mK(p), few Q/Ca veinlets mm scale. Two Q veinlets clear grey, less than 1cm @45TCA. Contains patchy section filled of clear grey Q, Jasper Q, yellowish Ca. 19.40 20.95 27053 1.55 0.06 1% 0.00 <						veiniets. Local K(p), filk gouge and tubble from														
19.40 20.95 12 Altered Basalt Bull brown-grey, moderately fractured filled with K, w- mK(p), few Q/Ca veinlets mm scale. Two Q veinlets clear grey, less than 1cm @45TCA. Contains patchy section filled of clear grey Q, Jasper Q, yellowish Ca. 19.40 20.95 27053 1.55 0.00 0.10 0.00	10.40	20.05	- T0		Altered Decelt	18.7m-19.2m. local iSer.	10.40	20.05	07050	4 55	0.00	4.07	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
20.95 21.75 T4A FLT Py QV Zone <5% Q	19.40	20.95	∠ '	1	Allereu Basalt	buil brown-grey, moderately fractured filled with K, W-	19.40	20.95	27053	1.55	0.06	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
20.95 21.75 T4A FLT Py QV Zone <5% Q						mK(p), rew Q/Ca veinlets mm scale. I wo Q veinlets														
20.95 21.75 T4A FLT Py QV Zone <5% Q iK gouge. UC @15TCA, iK(p) throughout. Rubble or intensely fractured filled with fgr Py +/- K. Some Ca and volcanic clasts supported by fracture fills. 20.95 21.75 27054 0.80 1.01 1% 0.00 0.09 0.00 0.00 0.25 0.00 0.00						clear grey, less than 1cm @45TCA. Contains patchy														
20.95 21.75 T4A FLT Py QV Zone <5% Q iK gouge. UC @15TCA, iK(p) throughout. Rubble or 20.95 21.75 27054 0.80 1.01 1% 0.00 0.99 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00						section filled of clear grey Q, Jasper Q, yellowish Ca.														
intensely fractured filled with fgr Py +/- K. Some Ca and volcanic clasts supported by fracture fills.	20.95	21.75	T4A	FLT	Pv QV Zone <5% Q	iK gouge, UC @15TCA, iK(p) throughout, Rubble or	20.95	21.75	27054	0.80	1.01	1%	0.00	0.99	0.00	0.00	0.00	0.25	0.00	0.00
and volcanic clasts supported by fracture fills.			1		,	intenselv fractured filled with for Pv +/- K. Some Ca	0					.,,,						1.20		2.50
						and volcanic clasts supported by fracture fills														

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
21.75	23.10	T2		Altered Basalt	Medium-light grey, localized purple hue or buff	21.75	23.10	27055	1.35	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.98
					brown. Moderately fractured, unfilled or filled with G														
					+/- clay. Localized intensely fractured, same fill, mod														
					K(p) in intense fracture zones. Dark speckles														
					throughout zone few Ca veinlets														
23.10	23.30	Т4		Py QV Zone >5% Q	Light grey with slight purple hue, weakly fractured K	23.10	23.30	27056	0.20	2.37	25%	2.31	0.44	0.25	0.25	0.06	0.21	0.00	0.25
					filled. Few Ca veinlets, mm scale, localized patchy														
					Ca, Ca speckled volcanics. Contains one ~6.5cm Q														
					stringer @80TCA. Milky white, moderately fractured,														
					contains grey Q, mineralized Q stringer.														
23.30	23.85	T2		Altered Basalt	Light arey, locally purple hue or huff brown colouring	23 30	23.85	27057	0.55	0.13	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	1 98
20.00	20.00			Allorou Bubalt	Intensely Ca speckled throughout Contains Q/Ca	20.00	20.00	21001	0.00	0.10	170	0.00	0.10	0.00	0.00	0.00	0.00	0.00	1.50
					stringer ~ 2.5 cm @ ~ 80 TCA Intensely fractured filled														
					with Ca. grev Q. Contains apple green sericite local														
					carbonate patchy alteration.														
23.85	24.37	T4A		Py QV Zone <5% Q	Light grey, with slight purple hue, moderately	23.85	24.37	27058	0.52	3.39	1%	2.97	0.50	0.00	0.00	0.00	0.00	0.00	0.00
					silicified. Few Ca veinlets and local Ca veinlet														
					system @50TCA. Ca contains mQ, Ca speckels														
					thoughout 1-2mm diameter, some replaced by cgr														
04.07	20.05	то		Altered Decelt	Pv Crean groute huff groon grou interacts Co anachied	04.07	20.05	07050	1.00	0.04	4.07	0.00	0.40	0.00	0.00	0.00	0.00	0.00	0.00
24.37	26.05	12		Altered Basalt	Green-grey to buil green grey, intensely Ca speckled	24.37	26.05	27059	1.08	0.04	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					-21111 diameter. Moderately fractured filled with Ca														
					+/-K +/- Chi. Few Ca veinlets generally ~201CA.														
26.05	26.50	T4A		Pv QV Zone <5% Q	Buff grev with purple hue, mK(p), moderately	26.05	26.50	27061	0.45	6.30	1%	4.95	0.50	0.00	0.00	0.00	0.20	0.00	0.00
				,	fractured filled with K $+/-$ Chl. Few whisp Ca veinlets.						.,.						••=•		
					mineralized.														
26.50	26.97	T5		QV	Milky white Q, contains patchy Ca rich patches.	26.50	26.97	27062	0.47	3.79	98%	0.49	0.49	0.00	0.00	0.00	0.00	0.00	0.00
					Moderately fractured filled with grey Q (impurities),														
					most recent weak fracture unfilled. Mineralization														
					occurs hear or within grey Q fracture fillings. UC														
				-	@50TCA_LC indistinct														
26.97	27.25	T4A		Py QV Zone <5% Q	Buff brown grey, intensely fractured based on poor	26.97	27.25	27064	0.28	2.67	5%	6.68	0.98	0.00	0.00	0.00	0.10	0.00	0.00
					core quality. Otherwise weakly fractured filled with K														
					or unfilled. mK(p), few Ca veinlets, no PDO. Most														
					intense mineralization near UC with 15, gradational														
					decrease towards LC. mm scale Ca veinlet is LC														
					from 14A to 12 @601CA, contains Q stringer														
					offshoot at 15 (QV), milky white Q with grey Q														
27.25	29.25	T2	mFLT	Altered Basalt	Medium green, intensely Ca speckled ~1-2mm	27.25	28.25	27065	1.00	0.05	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					diameter. Moderate silification, subparallel TCA (less	28.25	29.25	27066	1.00	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					than 10 degrees). Fault, iK gouge, few Ca veinlets.		-		-			-							-
29.25	30.60	T1	FLT	Basalt	Dark green, vfgr, massive. Moderately fractured	29.25	30.60	27067	1.35	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					filled with Ca +/-K, iK gouge +/- Ca +/-Chl in faults	0					.,,,	2.50							
					@~20TCA or indistinct.														
30.60	34.36	T1		Basalt	Dark green, vfgr, massive. Moderately fractured	30.60	32.10	27068	1.50	0.03	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py ((%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					filled with Ca +/-K. Light to medium green volcanics	32.10	33.25	27069	1.15	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					surrounding localized anastomosing chaotic	33.25	34.36	27071	1.11	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					fractures, K filled +/- Chl, many whisp Ca veinlets.														
34.36	34.66	T1	FLT	Basalt	iK gouge, contains volcanic rubble. mK(p) clasts.	34.36	34.66	27072	0.30	0.03	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					No distinct contacts.														
34.66	36.90	T1		Basalt	As per 30.6-34.36.	34.66	35.80	27073	1.14	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						35.80	36.90	27074	1.10	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
36.90	37.75	T1	FLT	Basalt	As per 34.36-34.66.	36.90	37.75	27075	0.85	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
37.75	40.20	T1		Basalt	Medium green, many Ca veinlets, moderate to	37.75	38.70	27076	0.95	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					intensely fracture filled with Ca, K +/-Chl, mK(p).	38.70	40.20	27077	1.50	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					38.70m-39.45m Principle fault, parallel TCA iK(p)														
					near fault.														
40.20	42.25	T2		Altered Basalt	Buff grey, localized m-iSer zones, moderately	40.20	41.15	27078	0.95	0.01	1%	0.00	0.10	0.00	0.00	0.10	0.00	0.00	1.98
					fractured filled with K +/- Chl, moderate silification.	41.15	42.25	27079	1.10	0.01	8%	0.00	0.09	0.00	0.00	0.09	0.00	0.00	1.84
					Few mm scale Q/Ca veinlets, milky white-clear grey														
					Q, yellowish Ca @~60TCA Contains Q/Ca stringer														
					~11cm, barren, milky white, rimmed by grey Q														
					@60TCA.														
12 25	12 95	тлΔ		$P_V OV Zone < 5\% O$	Buff any with faint purple hue. Weakly fractured filled	12 25	12 95	27081	0.70	3 15	3%	2 01	0.49	0.00	0.00	0.00	1 22	0.00	0.00
72.25	72.35				with K or unfilled. Few Ca veinlets, contains one off-	72.20	72.55	27001	0.70	5.15	570	2.31	0.43	0.00	0.00	0.00	1.22	0.00	0.00
					shoot O stringer from T5 (pext upit) Milky white														
					clear grou O minor minoralization														
42.95	43.55	T5		QV	Milky white Q, green Q occupying fractures and	42.95	43.55	27082	0.60	3.99	95%	2.48	0.53	0.00	0.00	0.00	0.01	2.00	0.00
					surrounding halo around fractures. Moderately														
					fractured, no PDO, most mineralization is found														
					within or near grey Ω . Vuggy and unfilled fractures														
					found locally moderate occurrence, contains volcanic														
					clasts beavily K altered or CSE Py replaced contains														
					$VGL VG (2) = 0.5 \text{mm} \times 0.5 \text{mm}$ within or completely														
43.55	43.85	T4A		Py QV Zone <5% Q	Buff brown, mK(p), moderately fractured filled with K	43.55	43.85	27084	0.30	2.61	2%	2.94	0.25	0.00	0.00	0.00	1.96	0.00	2.94
					or K replaced by CSE Py, near perpendicular TCA,														
					UC with T1 fault @ near perpendicular TCA.														
43.85	44.20	T1	FLT	Basalt	Dark green, K(f), UC @near perpendicular TCA,	43.85	44.20	27085	0.35	0.10	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					contains Ca blebs and veinlets (initial 8cm), rest of														
					unit iK(p) aouae. pale areen.														
44.20	45.00	T2		Altered Basalt	Buff brown-grey, few Q/Ca veinlets mm scale, pitted	44.20	45.00	27086	0.80	0.17	3%	0.24	0.10	0.00	0.00	0.00	0.00	0.00	1.94
					texture, localized iCa speckles 1-2mm in diameter.														
					Chaoric Ca veinlet system near LC, contains ~3cm														
					wide barren milky white Q stringer.														
45.00	47.85	T4		Py QV Zone >5% Q	Light grey with slight purple hue, localized buff brown	45.00	45.85	27087	0.85	8.84	8%	18.41	2.77	0.00	0.10	0.00	3.22	0.00	1.84
					(iSEr), greater than 5% Q stringer. Q stringers	45.85	46.40	27088	0.55	1.28	12%	0.44	0.22	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					generally @50TCA. mK(f), local mK(p), few veinlets contain apple green Ser Q stringers within zone bounded by intense sulphide. Q stringer one: Milky white Q, rimmed by grey Q, moderate fractures filled with grey Q, abundant iK(p) volcanic clasts. Q stringer two: Milky white Q, rimmed by grey Q, mCa patches. Q stringer three: LC volcanics, intense sulphie. Milky white Q, fractures filled and haloed by grey Q, moderately fractured. Most mineralization occuring within or near grey Q. Q stringer four: milky white, weakly fractured, no grey Q. LC rimmed with Chl +/- K, trace mineralization. Q stringer five: Milky white, few Ca veinlets, iSer	46.40	47.85	27089	1.45	1.58	15%	12.80	0.48	0.25	0.00	0.02	0.19	0.00	0.15
47.85	50.90	T2		Altered Basalt	Buff brown with slight purple tinge. Many Q/Ca veinlets generally @~50+/-5TCA, locally anastomosing, moderately fractured filled with K +/-Chl, mK(p), localized mCa speckles.	47.85 49.35	<u>49.35</u> 50.90	27091 27092	1.50 1.55	<u>0.01</u> 0.04	1% 2%	0.10 0.10	<u>0.10</u> 0.10	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
50.90	52.15	Τ4		Py QV Zone >5% Q	Buff grey, recent intense fractures into blocky core. Few Ca veinlets, moderately fractured filled with K +/- Chl, mK(p). Two Q strigners contain patchy Ca @~40TCA. Further detail below: QSTR One: Milky white with clear grey Q, few Ca veinlets, anastamosing in/our around volcanic clasts. QSTR Two: Milky white, unfilled fractures and voids.	50.90	52.15	27093	1.25	0.72	12%	2.77	1.01	0.00	0.00	0.00	0.01	0.00	0.00
52.15	53.70	T2		Altered Basalt	Buff brown-grey-green, contains apple green (Ser) small specs, less than 1mm diameter. Contains Ca whispy veinlets and specs, recent fractures (blocky core)	52.15	53.70	27094	1.55	0.04	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
53.70	54.00	T4A		Py QV Zone <5% Q	Buff grey, slight purple tinge, moderately fractured K)f), moderate silicificated (p), few Ca veinlets.	53.70	54.00	27095	0.30	0.21	1%	0.50	0.25	0.00	0.00	0.00	0.20	0.00	0.00
54.00	55.15	T5	BX	QV	Polyphase Q, milky white, clear and grey Q, anastomosing chaotically. Clear grey Q found within centre of milky white veinlets. Clear grey Q clasts 2- 20mm, subangular colvanic clasts 1-30mm in size. Volcanic host rock and clasts buff brown, iK(p), many mm scale Q/Ca veinlets. Within volcanics, some dark black Q bands anastamosing through milky white Q, (graphite?), iK +/- Chl (f) with volcanics.	54.00	55.15	27096	1.15	1.27	30%	2.40	2.40	1.00	0.00	0.00	0.53	0.00	0.00
55.15	57.30	T2		Altered Basalt	Buff brown-green, chaotic whispy Ca +/- Chl veinlets. Localized iCa speckling, moderately fractured filled with K +/-Chl.	55.15 56.50	56.50 57.30	27097 27098	1.35 0.80	0.01	<u>1%</u> 1%	0.10 0.10	0.10 0.10	0.00	0.00	0.00	0.00	0.00	<u>1.98</u> 1.98

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
57.30	57.95	T4A		Py QV Zone <5% Q	Buff brown with slight purple hue. m-iK(f) +/- Chl, few no PDO Ca veinlets. iSer.	57.30	57.95	27099	0.65	1.15	1%	2.97	2.97	0.00	0.00	0.00	0.00	0.00	2.97
57.95	58.95	T4A	FLT	Py QV Zone <5% Q	Initial 25cm iK gouge, remainder of section blocky core. Buff brown, iK(p), intensely fractured, unfilled. Few Ca veinlets, intense sulphide near LC with T5	57.95	58.95	27101	1.00	3.42	1%	29.70	6.93	0.00	0.00	0.00	0.00	0.00	0.00
58.95	59.40	T5	FLT	QV	Very blocky core. Milky white with grey Q +/- K filling. Moderately fractured vein, LC @near perpendicular	58.95	59.40	27102	0.45	0.18	99%	0.25	0.25	0.25	0.25	0.00	0.10	0.00	0.00
59.40	60.90	T4A	FLT	Py QV Zone <5% Q	Buff grey - buff brown, mK(f), few patchy Ca zones, few Ca veinlets. Contains ~3cm Q stringer, milky white barren of sulphide.	59.40	60.90	27103	1.50	1.74	2%	14.70	6.86	0.00	0.00	0.00	0.00	0.00	0.00
60.90	62.00	T2	FLT	Altered Basalt	Buff brown blocky core, few mm scale Ca veinlets. Two barren ~2cm Q/Ca veinlets @~45+/-5TCA. Localized Ca speckles 1-2mm, localized Ca whisps.	60.90	62.00	27104	1.10	0.05	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	1.98
62.00	62.92	T4A		Py QV Zone <5% Q	Buff grey with localized purple hue of buff brown colouring. mK(f) locally replaced by CSE Py. mSi(p), few Q/Ca veinlets, no PDO. Localized patchy Ca zone.	62.00	62.92	27105	0.92	2.27	1%	4.95	2.97	0.00	0.00	0.00	0.00	0.00	0.00
62.92	63.35	T2		Altered Basalt	Locally iSEr gradation to wSer(p) iSer(f) zoning. Few Q/Ca veinlets @40TCA with one at @60TCA.	62.92	63.35	27106	0.43	0.06	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
63.35	64.35	Τ4		Py QV Zone >5% Q	Buff brown, chaotic moderately to intensely fractured filled with K +/- Chl +/- G. Few Ca veinlets @60TCA, localized mCa speckling. Q stringer ~10cm @~50TCA LC and UC. Milky white Q bounded by grey Q at contacts, most sulphide occuring near Q	63.35	64.35	27107	1.00	1.51	7%	2.79	0.93	0.00	0.00	0.00	0.00	0.00	2.79
64.35	64.80	T2		Altered Basalt	Buff grey, moderately fractured filled K+/- Chl. Few Ca veinlets, wK(p).	64.35	64.80	27108	0.45	0.17	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
64.80	66.20	T4		Py QV Zone >5% Q	Buff brown with slight localized purple hue. Moderately fractured K +/- Chl(f). Few Ca veinlets. 1x15cm Q stringer, LC and UC @55TCA. Milky white with grey Q in weak fracture. Contains some patchy Ca. 1x2cm Q stringer milky white clear Q with Ca patches cut through ~ centre secondary clear- grey Q stringer, system @55TCA. 1x1cm milky white Q stringer @~30TCA contains patchy Ca, Q veinlets mm scale generally @30TCA. Sulphide mineralization in volcanics generally follows fracture replacin gK @~50TCA, intensely sulphide around	64.80	66.20	27109	1.40	3.47	15%	8.50	2.55	0.00	0.00	0.00	0.00	0.00	0.00
66.20	68.35	T2		Altered Basalt	Pale green with localized mSer zones characterized	66.20	67.10	27111	0.90	0.01	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					by butt brown colouration. mK(mF) +/- Chl. few Ca veinlets, localized chaotic anastomosing Ca +/- Chl patches.	67.10	68.35	27112	1.25	0.01	0%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
68.35	69.17	T4A		Py QV Zone <5% Q	UC indistinct, gradational LC to T2 @~50TCA. Buff grey with slight yellow tinge, weakly fractured filled with K +/- Chl or unfilled. Few Q/Ca veinlets, no PDO, dark blebs found moderately throughout	68.35	69.17	27113	0.82	0.08	1%	2.97	0.50	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
69.17	71.93	T1		Basalt	Medium green, weakly fractured filled K +/- Chl. Few	69.17	70.40	27114	1.23	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Q/Ca @~55TCA, many whispy Ca mm scale veinlets @~35+/-5TCA.	70.40	71.93	27115	1.53	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
71.93	73.00	T2		Altered Basalt	Pale green-yellow, no Ca veinlets, moderate Ca speckling less than 1mm diameter. One occurrence of chaotic patchy Ca +/- K +/- Chl +/- Si veinlets system. DIssolution upper and lower contacts @~40TCA and near perpendicular TCA respectively.	71.93	73.00	27116	1.07	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
73.00	73.50	T4A		Py QV Zone <5% Q	Transition from UC perpendicular TCA through buff brown (iSEr) to buff grey colouration, coinciding progression from moderately to intensely fractured filled with K +/-CbL few Ca veinlets	73.00	73.50	27117	0.50	0.94	1%	4.95	1.98	0.00	0.00	0.00	0.00	0.00	0.00
73.50	74.10	Τ4		Py QV Zone >5% Q	Buff brown-grey, m-iK(p), iK(mf), few unfilled fractures. ~9cm Q stringer UC and LC @~45TCA, milky white contains few open voids and unfilled fractures, few patchy Ca, bounded by anastamosingQ and Q/Ca stringers ~2mm-30mm. Heavily sulphide mineralized zone, anastamosing Q is clear to variable grav and milky white	73.50	74.10	27118	0.60	1.01	30%	7.60	4.10	0.10	0.25	0.00	0.35	0.00	0.00
74.10	76.20	T4A		Py QV Zone <5% Q	Buff brown-grey, moderately to intensely fractured	74.10	75.10	27119	1.00	0.58	1%	4.95	0.99	0.00	0.00	0.00	0.00	0.00	0.00
					filled with K +/- Chl, locally mK(p). Few Q/Ca veinlets @~65TCA, contains one Q stringer ~2cm milky white, barren @~45TCA. cgr Py zones in/on, qx60cm zone of volcanics with little cgr Py.	75.10	76.20	27121	1.10	0.74	2%	4.90	0.98	0.00	0.00	0.00	0.00	0.00	0.00
76.20	79.50	T2		Altered Basalt	Buff grey, mCa speckling less than 1mm. Less than	76.20	77.20	27122	1.00	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					1mm appel green sericite speckled, moderately fractured filled with K +/- Chl. Few mm scale Q/Ca veinlets, local zone of three Q stringers @~45TCA from 1cm-5cm. Milky white, clear grey Q, all barren of sulphide minerals. Largest (5cm) numerous iSer (apple green) parches, also many Ca patches throughout	77.20 78.20	78.20 79.50	<u>27123</u> 27124	<u>1.00</u> 1.30	0.01 0.01	<u>3%</u> 1%	<u>0.10</u> 0.25	<u>0.10</u> 0.10	0.00 0.00	0.00	0.00	0.00	0.00	<u>0.03</u> 0.00
79.50	82.90	T4A		Py QV Zone <5% Q	Buff brown dominantly localized (Ser) deficient grey	79.50	80.70	27125	1.20	1.62	1%	1.98	0.50	0.00	0.00	0.00	0.35	0.00	0.00
					buff colour. Moderately fractured filled with K +/-Chl.	80.70	81.60	27126	0.90	2.95	1%	3.96	0.99	0.00	0.00	0.00	0.10	0.00	0.00
					Numerous grey Q/Ca veinlets anywhere from @35- 55TCA, localized chaotic patchy anastomosing Ca and apple green Ser +/-Q. Section contains four 1- 2cm Q stringers, milky white, bounded by grey-clear Q. Some sulphide mineralization, intense sulphide bounding 5mm veinlet grey Q at 81.5m.	81.60	82.90	27127	1.30	1.61	1%	6.93	0.99	0.00	0.00	0.00	0.25	0.00	0.01
82.90	84.55	T2		Altered Basalt	initially buff brown transitionsto pale green colour. mCa speckled 1mm-2mm diameter moderately fractured filled with K +/-ChI +/- Q, some Ca veinlets.	82.90	84.55	27128	1.65	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
84.55	88.20	T1		Basalt	medium green, moderately fractured filled with K +/-	84.55	85.75	27129	1.20	0.01	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					Chl. Few Q/Ca veinlets, mm scale, no PDO.	85.75	87.17	27131	1.42	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
			1			87.17	88.20	27132	1.03	0.01	0%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.	I			From	То	Sample	Width	AU	Q	Pv (%)	Cpv	Sph	Tet	Aspv	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
88.20	95.30	T2		Altered Basalt	Initial 30cm iK(p), variable colouration from buff	88.20	89.80	27133	1.60	0.01	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					brown with slight purple hue to pale green-grey,	89.80	91.32	27134	1.52	0.03	3%	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00
					locally Ca speckled less than 1mm in diameter.	91.32	92.75	27135	1.43	0.16	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.40
					Weak to moderately fractured filled with K +/-Chl.	92.75	94.05	27136	1.30	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Few Q/Ca veinlets. Q stringers detailed below:	94.05	95.30	27137	1.25	0.22	1%	0.10	0.25	0.00	0.00	0.00	0.25	0.00	0.00
					90.45: 5cm milky white bounded by grey Q,														
					contains few Ca parches @~50TCA.														
					91.5: 2cm milky white-clear Q, abundant Ca														
					patches, abundant apple green Ser (p) @40TCA.														
					94.9: 1cm and 3cm milky white Q stringers														
					@~30TCA, bounded by grey Q. Contains few Ca														
					patches, very few mm scale volcanic clasts within Q														
					stringers.														
95 30	95 37	T2	FLT	Altered Basalt	Initial 25cm consists of iK gouge with rubble and	95.30	95 70	27138	0 40	0 16	1%	0 10	0.25	0.00	0.00	0.00	0.00	0.00	0.00
00.00	00.07			/ itorou Dubuit	incompetent core Later 15cm of core relatively	00.00	00.70	21100	0.10	0.10	170	0.10	0.20	0.00	0.00	0.00	0.00	0.00	0.00
					competent except principle fracture parallel TCA.														
					Buff brown grev colouration, modeartely fractured														
					filled with K +/- G and locally intensely fractured.														
					Few Q/Ca veinlets within incompetent core and														
					rubblo														
95.37	97.50	Т2		Altered Basalt	Buff brown - dark grey, intensely fractured filled with	95.70	96.70	27139	1.00	0.10	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					K +/- G, mK(p). Locally near BX fabric due to intense	96.70	97.50	27141	0.80	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					fracture filled with graphitic clay. Very few Ca														
					veiniets, speckled Chi throughout.														
		-																	
97.50	97.93	Т4		Py QV Zone >5% Q	Buff hrey brown, iK +/- G (iF), mK(p). No Ca veinlets,	97.50	97.93	27142	0.43	1.06	8%	0.00	1.84	0.00	0.00	0.00	0.00	0.00	0.00
					local near BX fabrix by intense fracture zones.														
					Contains ~3.5cm Q stringer bounded by grey Q.														
					Moderately fratured filled by grey Q, dominantly milky														
97.93	101.35	T2		Altered Basalt	Buff brown, moderately fractured filled with K +/-Chl	97.93	99.00	27143	1.07	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	2.97
					+/- G. Locally intensely fractured. Moderate Ca	99.00	100.30	27144	1.30	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	2.97
					speckling less than 2mm in diameter. Few Q/Ca	100.30	101.35	27145	1.05	0.05	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	2.97
101.35	103.50	T4A		Py QV Zone <5% Q	Buff grey with slight brown, locally buff brown (iSer).	101.35	102.41	27146	1.06	0.88	3%	1.94	0.24	0.00	0.00	0.00	0.00	0.00	0.00
					Moderately fractured filled with K +/- Chl +/- G. Few	102.41	103.50	27147	1.09	0.48	3%	0.97	0.49	0.00	0.00	0.00	0.00	0.00	0.00
					mm scale Ca veinlets, o PDO. Three Q stringers														
					ranging from 1cm-3cm @~45+/-5TCA. Milky white Q														
					contains abundant Ca parches, lacalized apple green														
					sSer rich patches. Pyritehedrons range in size from														
					mm scale to about 1cm across (width). Q stringer														
					one contains numerous clasts of apple green Ser, Ca														
					volcanics. Q stringers two and three are connected														
					by mm scale fracture fills contains numerous clasts														
					of Ca, apple green Ser and iK volcanics.														

Depth		Lith.	I			From	То	Sample	Width	AU	Q	Pv (%)	Cpv	Sph	Tet	Aspv	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
103.50	103.77	T2		Altered Basalt	Pale yellowish green, iCa speckled less than 1mm.	103.50	103.77	27148	0.27	0.03	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					moderately fractured filled with K +/- Chl +/- G, no														
					PDO. No Ca veinlets, UC @45TCA, LC dissolution														
					indistinct contact.														
103.77	104.85	T4A		Py QV Zone <5% Q	Buff brown, locally buff grey. Intensely fractured	103.77	104.85	27149	1.08	2.18	1%	6.93	4.95	0.10	0.00	0.00	0.00	0.00	0.00
					filled with grey Q +/- C, K +/- G +/- sulphide. Few														
					chaotic anastomosing G +/- K veinlet junctions, few														
					Q/Ca mm scale veinlets. Two milky white Q stringers														
					~1cm @~60TCA, some sulphide. Fault at 104.26, iK														
					gouge. UC ~perpendicular TCA, LC@50TCA. Fault														
					system bounded by intense sulphide.														
					***See diagrem in logs.														
104.05	400.40	то		Altered Decelt	Duff brown buff groopich brown, buff brownith pumple	404.05	100 10	07454	4 55	0.01	4.07	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.07
104.00	109.10	12		Allereu Dasall	but brown but greenish brown, but firey with purple	104.00	100.40	27152	1.55	0.01	20/	0.00	0.10	0.00	0.00	0.00	0.00	0.00	2.97
					Note: Note: this section is found within her 28 which was	100.40	107.90	27152	1.00	0.03	3%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	2.91
					Note: this section is found within box 28 which was	107.50	109.10	27155	1.20	0.01	1 70	0.00	0.10	0.00	0.00	0.00	0.00	0.00	2.57
					accidentally spilled. Very blocky, assumed as a														
					result of spill.														
					1 mm 10mm diameter apple green petebes lessly														
					min - Tomm diameter apple green patches, locally														
					m-iCa speckies 1-2mm. Contains zone of														
					anastamosing grey Q stringers, abundant Ca														
					patches throughout, ~5cm @601CA, cross cut by														
					milky white S~2cm Q stringers @301CA.														
109.10	110.20	T4		Py QV Zone >5% Q	Buff grey with slight brown, locally iSer apple green	109.10	110.20	27154	1.10	5.99	8%	0.94	1.40	0.10	0.00	0.00	0.23	0.00	0.00
					patches ~5-10mm width. Moderately fractured filled														
					with G +/- Si +/- K +/- fgr Py. No Ca veinlets, one														
					1cm Q stringer @30TCA, milky white with some Ca														
					patches. Trace sulphide, one 8cm Q stringer														
					@30TCA. Milky white, grey Q in/around fractures,														
					abundant Ca patches, moderately fractured, filled														
110.00	440 50	то		Altered Decelt	with C 1 / day as well as arou O	440.00	444 70	07455	1 50	0.04	4.07	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00
110.20	116.50	12		Allereu Dasall	K / Chlor unfilled mK(p) legally Calebackled 1	111.20	113 35	27155	1.50	0.04	1%	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00
					2mm diameter Local Ca whispy veinlets few O. Ca	113.35	114.85	27150	1.50	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					$C_{\rm L}/K_{\rm V}$ vointete all @ 45TCA Contains barron O	114.85	116.50	27158	1.65	0.03	5%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					stringer at 114.9 @ 45TCA. Abundhat vellow Ca			2		0.00	0,0	0.00	00	0.00	0.00	0.00	0.00	0.00	0.00
					parabas, graphitic which yound to and unfilled														
					fractures and voids. Fault movement of O stringer														
					2cm or open irregular fracture filled by O stringer														
					*** Note diagram drawn in logs														
116.50	117.10	T2		Altered Basalt	Buff greenish brown, iK(p), mCa whisps and	116.50	117.10	27159	0.60	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					speckles, no Ca veinlets, UC @35TCA, intenselv						.,.								
					baked by lamprophyre dyke at LC @~35TCA														
117.10	126.30	T11	1	Lamprophyre	Dark grey to black, porphyritic fabric, phenocrysts	117.10	118.25	27161	1.15	0.03	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					include amphibole, pyroxene crystals less than 2mm.														
					kspar crystals 2-20mm average ~4mm, plg crystals 2-	118.25	125.40	NS	7.15									0.00	0.00

Depth		Lith.	1			From	То	Sample	Width	AU	Q	Py (%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					6mm aerage ~4mm. Chaotic anastamsing tiger fabric near contacts as well as transitional phenocryst appearances and sizes. Decrease in kspar phenocrysts toward contacts, contains few Ca veinlets generally @40TCA. mK(p), iK(p). Light grey zones representing possible faults detailed below: 117.7 @15TCA begins at centre of core to one side ~8cm along core length (see diagram). 120.6 @25TCA, ~3cm. 121.6 @~10TCA, ~2cm filled by (P) Ca stringer +/- K throughout. 123.6-123.75 @40TCA 126.0-126.3 Three principle fractures @~10TCA offsetting Ca stringer in three locations by 10-15mm, bounded LC with 5cm iK gouge and iBX.	125.40	126.30	27162	0.90	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
126.30	127.65	T4A	FLT	Py QV Zone <5% Q	T2BX / T4A. Faultzone. ***See diagrams in logs. UC iK gouge @~45TCA, 4cm wide, continues subparallel TCA for 7cm decreasing from 1cm width. in T2BX. Following iK gouge is 33cm iBX zone where anastomosing Ca veinlet system makes up the matrix supporting T2 clasts mm scale to 5cm, BX zone intensely silicified. Following 39cm T@, iCa speckling 1-2mm, moderate fractures with K +/-Chl, few Ca veinlets @50TCA. Fianl 59cm T4A faultzone. Buff grey with purple tinge. Intensely fractured filled with iK chaotic anastamosing 1mm-30mm Ca veinlets/stringers, contains parasitic Q stringer ~1.5cm wide, milky white. Contains iSer apple green patches moderately through volcanics.	126.30	127.65	27163	1.35	0.80	10%	2.71	0.46	0.10	0.10	0.01	0.00	0.00	0.10
127.65	127.95	T2		Altered Basalt	T11 transition. Transitional increase from pale green to medium green with many offset Ca stringers to dark grey-black porphyritic fabric with the same phenocrysts as per 117 1-126 3	127.65	128.65	27164	1.00	0.04	2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
127.95	131.90	T11	FLT	Lamprophyre	Blocky core with locally principle fracture orientation subparallel TCA. Locally iK, light grey, intensely fractured zones throughout, same rock description as 117 1-126.3	128.65	135.75	NS	7.10									0.00	0.00
131.90	136.75	T11		Lamprophyre	As per 117.1-126.3	135.75	136.75	27165	1.00	0.01	2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
136.75	137.55	T2		Altered Basalt	Transition from T11, chaotic anastomosing T11 veinlets through standard volcanics. Spotted fabric as well, few random Ca veinlets.	136.75	137.55	27166	0.80	1.35	1%	2.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00
137.55	137.90	T4A	FLT	Py QV Zone <5% Q	iK gouge, T4A rubble and low compency core. UC indistinct, IC near perpendicular TCA. Intensely fractured filled with K +/- G +/- Chl in remaining core, no Ca veinlets	137.55	137.90	27167	0.35	2.27	1%	0.99	0.99	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py ((%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
137.90	139.20	T2		Altered Basalt	Contacts interpreted, buff brown locally pale green	137.90	139.20	27168	1.30	0.05	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	1.98
					(lack of Ser). Moderately to intensely fracture filled														
					with K +/- G +/- Chl. Few anastomosing Ca veinlets,														
					no PDO.														
139.20	139.73	T4		Py QV Zone >5% Q	Buff brown with purple hue. Intensely ffractured filled	139.20	139.73	27169	0.53	1.08	100%	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00
					with K +/- G. Few Q/Ca veinlets, locally abundant Ca														
					patches. Contains Q stringers ~3.5cm @50TCA,														
					offset by 2cm milky white with clear-grey Q														
					surrounding fracture, some Ca patches throughout.														
139.73	143.15	T2		Altered Basalt	Buff brown with purple hue to pale green, colour	139.73	140.70	27171	0.97	0.01	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	2.97
					dependant on level of Ser alteration. Moderately	140.70	141.90	27172	1.20	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					fractured filled with K +/- Chl +/- G. Few Q/Ca	141.90	143.15	27173	1.25	0.01	0%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					veinlets, no PDO except between 139.73-139.9														
					where gour mm scale grey Q/Ca veinlets cross cut														
					Ca veinlet all @~20TCA, local moderate Ca speckle														
					less than 1mm.														
143.15	146.80	T1		Basalt	Medium green, weakly fractured filled with K +/- Chl	143.15	144.75	27174	1.60	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					+/- G. Many Q/Ca veinlets, mostly random with few	144.75	145.75	27175	1.00	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					@~40TCA, mgr, no fabric.	145.75	146.80	27176	1.05	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
146.80	147.50	T2		Altered Basalt	T2 transition. Pale green with chaotic fabric of dark	146.80	147.50	27177	0.70	0.01	3%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					highly silicified volcanic stringer with anastomosing														
					Q/Ca veinlets less than 10mm. Surrounding														
					volcanics are pale green iK(p), iK(f), sharp contact at														
					147.5 with 2mm grey Q/Ca veinlet and iSer T2														
4 47 50	1 4 9 9 9	то			downhole of veinlet	4 47 50	4.40.00	07470	4 70	0.01	40/	0.40	0.40	0.00	0.00	0.00	0.00	0.00	0.00
147.50	149.20	12		Altered Basalt	Buff brown, moderately fractured filled with K +/-G,	147.50	149.20	2/1/8	1.70	0.01	1%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
1/0 20	150.00	Т2	OSTP7	Altered Basalt	Buff brown intensely fractured filled with K +/- Chl +/-	1/0 20	150.00	27170	0.80	0.20	20%	0.00	0.08	0.75	0.00	0.12	0.02	0.00	0.22
149.20	130.00	12	QUINZ	Alleleu Dasali	Si ± 2 G mK(n) locally iK(n). Few Ca patches three	149.20	130.00	2/1/9	0.00	0.20	2070	0.00	0.00	0.75	0.00	0.12	0.02	0.00	0.22
					O stringers: First anastomosing through volcanic														
					wall rock ~ 4 cm thick $@\sim 30TCA$ milky white to clear														
					arey O some Ca patches. Second milky white														
					$\sim 1 \text{ cm} = 0.30 \text{ TCA}$ contains few T2 volcanic clasts														
					some sulphide some Ca patches. Third														
					anastamosing through T2 many T2 clasts supported														
					in stringer milky white to clear Q abundant Ca														
150.00		To				1 = 0 0 0		07101			0 01								
150.00	155.30	12		Altered Basalt	Buff brown, moderately fractured filled with K +/- Chl	150.00	151.45	2/181	1.45	0.01	2%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					+/- G, locally ICa speckles 1-2mm and Ca whisps.	151.45	154.05	27102	1.40	0.01	1%	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					Some Q/Ca veinlets and stringers, milky white-clear	15/ 25	155 20	2719/	1.40	0.01	30/2	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					grey Q. At 153.55 is a 4cm Q stringer @~451CA,	104.20	155.50	21104	1.05	0.09	570	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					multiple offsets by about 1-2cm, abundant Ca														
455.00	453.15	то	F 1 T		patches, iew apple green Ser patches.	455.00	450.00	07405	0.00	0.01	4.6.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
155.30	157.45	12	FLÍ	Altered Basalt	Buff greenish brown, recently fractured into very	155.30	156.20	27185	0.90	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Depth		Lith.				From	То	Sample	Width	AU	Q	Py (%)	Сру	Sph	Tet	Aspy	VG	Alt'n
From	To (m)	Code	Struc	Lithology	Description	(m)	(m)	#	(m)	g/t	%	Cgr	Fgr	(%)	(%)	(%)	(%)	Occ	Ser
					blocky core. Abundant Ca speckles 1-2mm. Few	156.20	157.45	27186	1.25	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					grey Q/Ca veinlets, last meter principle fracture														
					subparallel TCA. Few barren, milky white - clear grey														
					Q veinlets anastamosig through T2 altered volcanic														
					wall rock.														
157.45	160.45	T2		Altered Basalt	T11 transitional zone. Intensely baked rock, chaotic	157.45	158.95	27187	1.50	0.13	5%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					fabric of anastomosing Q/Ca veinlets and stringers.	158.95	160.45	27188	1.50	0.01	2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
160.45	169.05	T11		Lamprophyre	As per 117.1-126.3. Contains granitic xenoliths.	160.45	161.45	27189	1.00	0.01	0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						161.45	168.10	NS	6.65									0.00	0.00
						168.10	169.05	27191	0.95	0.01	1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
169.05	170.20	T2		Altered Basalt	T11 transitional zone. As per above.	169.05	170.20	27192	1.15	0.01	8%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
170.20	172.10	T2		Altered Basalt	Buff brown-greyish green. Moderately fractured filled	170.20	171.10	27193	0.90	0.01	2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				-	with K +/- Chl +/- Ca. Few Q/Ca veinlets subparallel	171.10	172.10	27194	1.00	0.01	10%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
172.10	201.80	T1		Basalt	Medium green, local 10cm, intermittent zones of pale	172.10	173.70	27195	1.60	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					green fgr halos, possibly outer edge of pillow basalts	173.70	175.25	27196	1.55	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					rapidly cooling. Entire zone contains whispy Chl rich	1/5.25	1/6./5	2/19/	1.50	0.01	1%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					patches and veinlets, locally abundant Q/Ca veinlets	1/6./5	1/1.50	2/198	0.75	0.01	5%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					@30TCA or no PDO, 1-10mm. Further downhole	177.50	185.25	NS	1.75	0.00	00/	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					experiences Q stringers and chaotic Q veinlet	185.25	186.30	27199	1.05	0.06	3%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					systems. All are milky white, abundant Ca patches,	186.30	188.00	36501	1.70	0.01	2%	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00
					some contain T1 volcanic clasts, most are @35+/-	188.00	109.00	30502	1.55	0.01	10%	0.09	0.09	0.00	0.00	0.00	0.00	0.00	0.00
					5TCA, all barren but still sampled through for	109.00	102.70	30503	1.00	0.01	0%	0.09	0.09	0.00	0.00	0.00	0.00	0.00	0.00
					verification as can be seen mineralization and	102 70	102.05	26505	1.00	0.01	370	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					sampling on p.52. Localized flow breccia within	102.70	105.00	36506	1.25	0.01	2 /0	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					section, jasperoid appears at 195.8. T1F?	195.95	195.10	36507	1.15	0.01	2%	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					***See diagram in logs.	196.60	198.00	36508	1.00	0.01	1%	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					5 5	198.00	199.25	36509	1.40	0.01	2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
201.80	203.00	T1	FLT	Basalt	Internittent iK gouge with rubble and incompletent	100.00	100.20	00000	1.20	0.01	270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	_00.00		· -·		core. UC @40TCA														
EOH																			

APPENDIX D

DIAMOND DRILL SECTIONS & PLANS

APPENDIX E

ASSAY & ANALYSIS PROCEDURES

ASSAY & ANALYSIS PROCEDURES

GOLD ASSAY

Samples are sorted and dried (if necessary). The samples are crushed through a jaw crusher and cone or rolls crusher to -10 mesh. The sample is split through a Jones riffle until a -250 gram sub sample is achieved. The sub-sample is pulverized in a ring & puck pulverizer to 95% - 140 mesh. The sample is rolled to homogenize.

A 30 g sample size is fire assayed using appropriate fluxes. The resultant dore bead is parted and then digested with aqua regia and then analyzed on a Perkin Elmer AA instrument.

Appropriate standards and repeat sample (Quality Control Components) accompany the samples on the data sheet.

METALLIC GOLD ASSAY

Samples are catalogued and dried. Rock samples are two stage crushed to minus 10 mesh, then split to achieve a 250 gram (approximate) sub-sample. The sample is pulverized to 95% -140 mesh. The sample is weighed, then rolled and homogenized and screened at 140 mesh.

The -140 mesh fraction is homogenized and 2 samples are fire assayed for Au. The +140 mesh material is assayed entirely. The resultant fire assay bead is digested with acid and after parting is analyzed on a Perkin Elmer atomic absorption machine using air-acetylene flame to .03 grams/t detection limit.

The entire set of samples is redone if the quality control standard is outside 2 standard deviations or if the blank is greater than 0.015 g/t.

The values are calculated back to the original sample weight providing a net gold value as well as 2-140 values and a single +140 mesh value.

Results of all assays are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are emailed or faxed and mailed to the client.

MULTI ELEMENT ICP ANALYSIS

A 0.5 gram sample is digested with 3ml of a 3:1:2 (HCl:HN03:H20) which contains beryllium which acts as an internal standard for 90 minutes in a water bath at 95°C. The sample is then diluted to 10ml with water. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client. Table 5 below, summarizes the detection limit for the ICP elements analysis.

	Detection Lim	it
	Low	Upper
Ag	0.2 ppm	30.0 ppm
Al	0.01%	10.0%
As	5 ppm	10,000 ppm
Ba	5 ppm	10,000 ppm
Bi	5 ppm	10,000 ppm
Ca	0.01%	10,00%
Cd	1 ppm	10,000 ppm
Co	1 ppm	10,000 ppm
Cr	1 ppm	10,000 ppm
Cu	1 ppm	10,000 ppm
Sn	20 ppm	10,000 ppm
Ti	0.01%	10.00%
V	1 ppm	10,000 ppm
Zn	1 ppm	10,000 ppm

	Detection Lim	it
	Low	Upper
Fe	0.01%	10.00%
La	10 ppm	10,000 ppm
Mg	0.01%	10.00%
Mn	1 ppm	10,000 ppm
Mo	1 ppm	10,000 ppm
Na	0.01%	10.00%
Ni	1 ppm	10,000 ppm
Р	10 ppm	10,000 ppm
Pb	2 ppm	10,000 ppm
Sb	5 ppm	10,000 ppm
Sr	1 ppm	10,000 ppm
U	10 ppm	10,000 ppm
Y	1 ppm	10,000 ppm

APPENDIX F

ORIGINAL ASSAY & ANALYSIS CERTIFICATES

AUG 2 8 2007

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2007-7092

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2 10-Jul-07

Attention: Lesley Hunt

No. of samples received: 141 Sample Type: Core **Project: Taurus Shipment #:07-004** Submitted by: Lesley Hunt/Mike Glover

		Au	Au	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	
1	31151	0.48	0.014			
2	31152	0.50	0.015			
3	31153	1.90	0.055			
4	31154	0.27	0.008			
5	31155	<0.03	<0.001			
6	31156	0.22	0.006			
7	31157	<0.03	<0.001			
8	31158	0.85	0.025			
9	31159	7.00	0.204			
10	31160	5.10	0.149			
11	31161	2.40	0.070			
12	31162	0.91	0.027			
13	31163	1.05	0.031			
14	31164	7.9	0.230			
15	31165	3.10	0.090			
16	31166	0.68	0.020			
17	31167	0.03	0.001			
18	31168	0.69	0.020			
19	31169	4.30	0.125			
20	31170	0.29	0.008		•	
21	31171	1.93	0.056			- ()
22	31172	<0.03	<0.001			\frown
23	31173	< 0.03	<0.001		/	
24	31174	<0.03	<0.001			
25	31175	<0.03	<0.001		(ECO TECH LABORATORY LTD.
						Juta Jealouse
						B.C. Ceptified Assayer
Cusac Gold Mines Ltd. AW7-7092

10-Jul-07

		Au	Au	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	
26	31176	<0.03	<0.001			
27	31177	<0.03	<0.001			
28	31178	0.78	0.023			
29	31179	1.79	0.052			
30	31180	2.01	0.059			
31	31181	4.50	0.131			
32	31182	14.9	0.435			
33	31183	3.90	0.114			
34	31184	<0.03	<0.001			
35	31185	<0.03	<0.001			
36	31186	<0.03	<0.001			
37	31187	1.07	0.031			
38	31188	<0.03	<0.001			
39	31189	<0.03	<0.001			
40	31190	1.04	0.030			
41	31191	<0.03	<0.001			
42	31192	1.76	0.051			
43	31193	3.10	0.090			
44	31194	0.60	0.017			
45	31195	0.65	0.019			
46	31196	0.22	0.006			
47	31197	2.30	0.067			
48	31198	1.41	0.041			
49	31199	0.95	0.028			
50	31200	1.00	0.02 9			
51	31201	0.35	0.010			
52	31202	0.89	0.026			
53	31203	0.53	0.015			
54	31204	0.94	0.027			
55	31205	1.05	0.031			
56	31206	<0.03	<0.001			
57	31207	0.10	0.003			
58	31208	<0.03	<0.001			
59	31209	1.12	0.033			
60	31210	4.99	0.146			
61	31211	0.26	0.008			
62	31212	<0.03	<0.001			
63	31213	<0.03	<0.001			
64	31214	<0.03	<0.001			
65	31215	<0.03	<0.001			
66	31216	<0.03	<0.001			
67	31217	0.09	0.003			\sim
68	31218	0.98	0.029	38.0	1.108	\frown
69	31219	1.73	0.050			
70	31220	1.98	0.058			
71	31221	0.76	0.022			
72	31222	1.03	0.030			L ADA T
73	31223	0.11	0.003			ECUTECHILABORATORY LTD.
						sura Jeajouse
						BLC. Centillen Assayer

Eco Tech ENBORATORY ELD Page 2

Cusac Gold Mines Ltd. AW7-7092

10-Jul-07

		Au	Au	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/ť)	(oz/ť)	
74	31224	1.64	0.048			·····
75	31225	1.85	0.054			
76	31226	<0.03	<0.001			
77	31227	< 0.03	<0.001			
78	31228	< 0.03	<0.001			
79	31229	< 0.03	<0.001			
80	31230	0.96	0.028			
81	31231	<0.03	<0.001			
82	31232	< 0.03	<0.001			
83	31233	<0.03	<0.001			
84	31234	0.19	0.006			
85	31235	< 0.03	<0.001			
86	31236	<0.03	<0.001			
87	31237	<0.03	<0.001			
88	31238	<0.03	<0.001			
89	31239	< 0.03	< 0.00 1			
90	31240	5.00	0.146			
91	31241	<0.03	<0.00 1			
92	31242	0.63	0.018			
93	31243	1.00	0.029			
94	31244	3.60	0.105			
95	31245	1.13	0.033			
96	31246	123	3.587			
97	31247	0.17	0.005			
98	31248	0.09	0.003			
9 9	31249	0.93	0.027			
100	31250	4.89	0.143			
101	31251	< 0.03	<0.001			
102	31252	< 0.03	<0.001			
103	31253	0.17	0.005			
104	31254	< 0.03	<0.001			
105	31255	<0.03	<0.001			
106	31256	0.09	0.003			
107	31257	1.16	0.034			
108	31258	<0.03	<0.001			
109	31259	<0.03	<0.001			
110	31260	5.01	0.146			
111	31261	0.03	0.001			
112	31262	<0.03	<0.001			
113	31263	< 0.03	<0.001			
114	31264	<0.03	<0.001			
115	31265	<0.03	<0.001			
116	31266	<0.03	<0.001			
117	31267	0.60	0.017			\bigcap ()
118	31268	<0.03	<0.001			(h
119	31269	0.19	0.006			(MALI
120	31270	1.02	0.030			AUTO L
121	31271	<0.03	<0.001		(ECØ TECH LABORATORY LTD.
						Vitta Jealpuse
						B.C. Certilied Assayer

Eco Tech Exponential Page 3

Cusac Gold Mines Ltd. AW7-7092

•

10-Jul-07

		Au	Au	Ag	Ag	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	
122	31272	< 0.03	< 0.001			•
123	31273	<0.03	<0.001			
124	31274	< 0.03	<0.001			
125	31275	<0.03	<0.001			
126	31276	<0.03	<0.001			
127	31277	< 0.03	<0.001			
128	31401	<0.03	<0.001			
129	31402	<0.03	<0.001			
130	31403	0.90	0.026			
131	31404	0.05	0.001			
132	31405	2.30	0.067			
133	31406	<0.03	<0.001			
134	31407	< 0.03	<0.001			
135	31408	<0.03	<0.001			
136	31409	<0.03	<0.001			
137	31410	4.96	0.145			
138	31411	7.40	0.216			
139	31412	0.03	0.001			
140	31413	0.05	0.001			
141	31414	3.80	0.111			

QC DATA:

Repeat:

1	31151	0.56	0.016
36	31186	<0.03	<0.001
45	31195	0.79	0.023
5 2	31202	1.08	0.031
54	31204	1.02	0.030
71	31221	0.84	0.024
74	31224	1.83	0.053
81	31231	<0.03	<0.001
89	31239	<0.03	<0.001
106	31256	0.03	0.001

ECO TECH LABORATORY LTD. Joutta Jealouse B.C. Certified Assayer

· •

10-Jul-07

.

ст #	Tag #	Au (a/t)	Au (oz/t)	Ag	Ag
	1 ay #	(9/1/	(021)	(9/1)	(021)
115	31265	0.06	0.002		
124	31274	<0.03	<0.001		
Poonlite					
nespiit.					
1	31151	0.60	0.017		
36	31186	<0.03	<0.001		
71	31221	0.84	0.024		
106	31256	0.08	0.002		
Standard	4:				
OXK48		3.60	0.105		
OXK48		3.56	0.104		
OXK48		3.59	0.105		
SI25		1.81	0.053		
SI25		1.83	0.053		
SI25		1.81	0.053		

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/sa/jl XLS/07

10041 Dallas Drive, Kamloops, BC V2C 674 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

20-Aug-07

CERTIFICATE OF ASSAY AK 2007-7092 - Revised

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

Attention: Lesley Hunt

No. of samples received: 141 Sample Type: Core **Project: Taurus Shipment #:07-004** Submitted by: Lesley Hunt/Mike Glover

		Metallic	Metallic Assay		
		Au	Au		
ET #.	Tag #	(g/t)	(oz/t)		
9	31159	9.22	0.269		
11	31161	3.39	0.099		
13	31163	1.31	0.038		
14	31164	32.8	0.957		
15	31165	4.31	0.126		
16	31166	1.02	0.030		
19	31169	5.73	0.167		
31	31181	4.75	0.139		
32	31182	17.5	0.510		
33	31183	3.87	0.113		
43	31193	4.15	0.121		
47	31197	2.70	0.079		
94	31244	3.65	0.106		
96	31246	145	4.229		
132	31405	4.42	0.129		
138	31411	9.70	0.283		
141	31414	4.49	0.13		

QC DATA:

Standard:

SI25

1.82

0.053 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assaver

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2007-7102

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

Attention: Lesley Hunt

No. of samples received: 166 Sample Type: Core **Project: Taurus Shipment #: 07-005** Submitted by: Lesley Hunt/Mike Glover

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
1	G31415	11.6	0.338	
2	G314 16	1.18	0.034	
3	G31417	<0.03	<0.001	
4	G31418	<0.03	<0.001	
5	G31419	<0.03	<0.001	
6	G31420	5.10	0.149	
7	G31421	0.19	0.006	
8	G31422	<0.03	<0.001	
9	G31423	0.87	0.025	
10	G 3 1424	2.06	0.060	
11	G31425	0.20	0.006	
12	G31426	0.03	0.001	
13	G31427	0.03	0.001	
14	G31428	0.04	0.001	
15	G31429	0.91	0.027	
16	G31430	5.40	0.157	
17	G31431	0.10	0.003	
18	G31432	0.48	0.014	
19	G31433	0.61	0.018	
20	G31434	0.42	0.012	
21	G31435	0.03	0.001	
22	G31436	<0.03	<0.001	
23	G31437	0.09	0.003	\$
24	G31438	1.78	0.052	In R I

Mare & JUCE

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
25	G31439	0.05	0.001	
26	G31440	0.30	0.009	
27	G31441	6.70	0.195	
28	G31442	0.23	0.007	
29	G31443	0.04	0.001	
30	G 3 1444	0.15	0.004	
31	G31445	4.20	0.122	
32	G31446	2.05	0.060	
33	G31447	0.97	0.028	
34	G31448	0.05	0.001	
35	G31449	0.06	0.002	
36	G31450	0.98	0.029	
37	G32001	<0.03	<0.001	
38	G32002	0.37	0.011	
39	G32003	<0.03	<0.001	
40	G32004	<0.03	<0.001	
41	G32005	<0.03	<0.001	
42	G32006	<0.03	<0.001	
43	G32007	<0.03	<0.001	
44	G32008	<0.03	<0.001	
45	G32009	0.05	0.001	
46	G32010	5.10	0.149	
47	G32011	10.1	0.295	
48	G32012	0.15	0.004	
49	G32013	1.59	0.046	
50	G32014	<0.03	<0.001	
51	G32015	<0.03	<0.001	
52	G32016	<0.03	<0.001	
53	G32017	<0.03	<0.001	
54	G32018	0.91	0.027	
55	G32019	<0.03	<0.001	
56	G32020	0.32	0.009	
57	G32021	<0.03	<0.001	
58	G32022	<0.03	<0.001	
59	G32023	<0.03	<0.001	
60	G32024	<0.03	<0.001	
61	G32025	<0.03	<0.001	
62	G32026	<0.03	<0.001	
63	G32027	<0.03	<0.001	
64	G32028	0.38	0.011	In A I.
65	G32029	0.05	0.001	ay an Druce per

ECO/FECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
66	G32030	0.96	0.028	
67	G32031	0.23	0.007	
68	G32032	0.17	0.005	
69	G32033	0.56	0.016	
70	G32034	0.70	0.020	
71	G32035	<0.03	<0.001	
72	G32036	0.05	0.001	
73	G32037	0.77	0.022	
74	G32038	0.28	0.008	
75	G32039	<0.03	<0.001	
76	G32040	5.10	0.149	
77	G32041	<0.03	<0.001	
78	G32042	<0.03	<0.001	
79	G32043	<0.03	<0.001	
80	G32044	<0.03	<0.001	
81	G32045	<0.03	<0.001	
82	G32046	<0.03	<0.001	
83	G32047	<0.03	<0.001	
84	G32048	0.12	0.003	
85	G32049	<0.03	<0.001	
86	G32050	0.30	0.009	
87	G31351	<0.03	<0.001	
88	G31352	<0.03	<0.001	
89	G31353	<0.03	<0.001	
90	G31354	<0.03	<0.001	
91	G31278	0.03	0.001	
92	G31279	<0.03	<0.001	
93	G31280	1.03	0.030	
94	G31281	<0.03	<0.001	
9 5	G31282	<0.03	<0.001	
96	G31283	<0.03	<0.001	
97	G31284	<0.03	<0.001	
98	G31285	<0.03	<0.001	
99	G31286	<0.03	<0.001	
100	G31287	<0.03	<0.001	
101	G31288	1.52	0.044	
102	G31289	4.20	0.122	
103	G31290	0.31	0.009	
104	G31291	4.90	0.143	A
105	G31292	0.04	0.001	La. Rue Inen
106	G31293	2.80	0.082	appoin erace por

ECOTECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
107	G31294	<0.03	<0.001	
108	G31295	<0.03	<0.001	
109	G31296	1.43	0.042	
110	G31297	<0.03	<0.001	
111	G31298	0.49	0.014	
112	G31299	<0.03	<0.001	
113	G31300	5.20	0.152	
114	G31301	9.40	0.274	
115	G31302	0.10	0.003	
116	G31303	<0.03	<0.001	
117	G31304	0.29	0.008	
118	G31305	1.90	0.055	
119	G31306	1.68	0.049	
120	G31307	21.8	0.636	
121	G31308	0.06	0.002	
122	G31309	0.03	0.001	
123	G31310	0.30	0.009	
124	G31311	<0.03	<0.001	
125	G31312	0.04	0.001	
126	G31313	5.40	0.157	
127	G31314	0.18	0.005	
128	G31315	0.34	0.010	
129	G31316	1.55	0.045	
130	G31317	2.04	0.059	
131	G31318	0.56	0.016	
132	G31319	0.10	0.003	
133	G31320	5.10	0.149	
134	G31321	<0.03	<0.001	
135	G31322	<0.03	<0.001	
136	G31323	<0.03	<0.001	
137	G31324	<0.03	<0.001	
138	G31325	0.34	0.010	
139	G31326	0.99	0.029	
140	G31327	0.03	0.001	
141	G31328	<0.03	<0.001	
142	G31329	<0.03	<0.001	
143	G31330	0.97	0.028	
144	G31331	0.21	0.006	
145	G31332	0.32	0.009	
146	G31333	0.12	0.003	
147	G31334	1.16	0.034	In. R. I

ECO/TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

6 7 #	T #	Au Au
<u> </u>	iag #	(g/t) (02/t)
148	G31335	1 20 0 035
140	G31336	1 72 0 050
150	G31337	2.62 0.076
151	G31338	0.04 0.001
152	G31339	<0.04 0.001
153	G31340	0.31 0.009
154	G31341	0.03 0.001
155	G31342	<0.00 0.001
156	G31343	<0.00 <0.001
157	G31344	1 30 0 038
158	G31345	0.69 0.020
150	G31346	0.29 0.008
160	G31347	0.37 0.011
161	G31348	2.67 0.078
162	G31349	1.02 0.030
163	G31350	0.30 0.009
164	G32101	0.08 0.003
165	G32107	1.83 0.053
166	G32102	0.17 0.005
100	032103	0.17 0.005
	<u>[A:</u>	
_	-	
Repeat:		
2	G31416	1.06 0.031
19	G31433	0.60 0.017
37	G32001	<0.03 <0.001
45	G32009	0.10 0.003
49	G32013	1.66 0.048
80	G32044	<0.03 <0.001
89	G31353	<0.03 <0.001
115	G31302	0.09 0.003
119	G31306	1.76 0.051
124	G31311	<0.03 <0.001
129	G31316	1.89 0.055
139	G31326	1.18 0.034
141	G31328	<0.03 <0.001
147	G31334	1.22 0.036
148	G31335	1.11 0.032
149	G31336	1.95 0.057
157	G31344	1.59 0.046
159	G31346	0.27 0.008
162	G31349	0.81 0.024
165	G32102	1.64 0.048

ECO/FECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

ET#.	Tag #	Au (g/t)	Au (oz/t)	
QC DATA:	:			
Standard:				
SI25		1.80	0.052	
SI25		1.77	0.052	
SI25		1.7 9	0.052	
SI25		1.81	0.053	
SI25		1.7 9	0.052	
SI25		1.79	0.052	
SJ32		2.66	0.078	

JJ/jl XLS/06

ECO/VECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2007-7102

15-Aug-07

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

Attention: Lesley Hunt

No. of samples received: 166 Sample Type: Core **Project: Taurus Shipment #: 07-005** Submitted by: Lesley Hunt/Mike Glover

		Metalli	c Assays	
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
1	G31415	12.5	0.365	
10	G31424	2.47	0.072	
24	G31438	2.36	0.069	
27	G31441	8.02	0.234	
31	G31445	4.41	0.129	
32	G31446	3.24	0.094	
47	G32011	11.2	0.327	
101	G31288	2.47	0.072	
102	G31289	4.48	0.131	
104	G31291	4.63	0.135	
106	G31293	3.13	0.091	
114	G31301	10.9	0.318	
119	G31306	1.60	0.047	
120	G31307	111	3.237	
126	G31313	6.96	0.203	
129	G31316	2.42	0.071	
130	G31317	2.34	0.068	
149	G31336	2.27	0.066	
150	G31337	3.02	0.088	
161	G31348	3.20	0.093	

ECÓ TÉCH LABORATORY L Jutta Jealouse B.C. Certified Assayer

Metallic Assays				
		Au	Au	
<u>ET</u> #.	Tag #	(g/t)	(oz/t)	
QC DATA:				
Standard:				
SI25		1.80	0.052	
SI25		1.81	0.053	

JJ/jl XLS/06

ECO TECH LABORATORY LTD. Juita Jealouse B.C. Certified Assayer

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2007-7124

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

26-Jun-07

Attention: Lesley Hunt

No. of samples received: 162 Sample Type: Core **Project: Taurus Shipment #:07-006** Submitted by: Lesley Hunt/Mike Glover

		Au	Au	
ET #.	Tag #	(g/t)	_(oz/t)	
1	G32104	0.91	0.027	•••••••
2	G32105	1,14	0.033	
3	G32106	0.61	0.018	
4	G32107	0.90	0.026	ž
5	G32108	0.28	0.008	
6	G32109	1.10	0.032	
7	G32110	1.03	0.030	
8	G32111	1.73	0.050	
9	G32112	1.23	0.036	
10	G32113	0.16	0.005	
11	G32114	0.13	0.004	
12	G32115	0.55	0.016	
13	G32116	0.09	0.003	
14	G32117	0.05	0.001	
15	G32118	0.05	0.001	
16	G32119	0.16	0.005	
17	G32120	4.90	0.143	
18	G32121	0.13	0.004	
19	G32122	0.92	0.027	
20	G32123	0.12	0.003	
21	G32124	0.98	0.029	
22	G32125	0.13	0.004	\frown /
23	G32126	0.08	0.002	
24	G32127	<0.03	<0.001	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
25	G32128	0.04	0.001	
26	G32129	0.12	0.003	
27	G32130	1.06	0.031	
28	G32131	0.10	0.003	
29	G32132	0.05	0.001	
30	G32133	0.03	0.001	
31	G32134	0.03	0.001	
32	G32135	0.04	0.001	
33	G32136	0.05	0.001	
34	G32137	0.06	0.002	
35	G32138	0.06	0.002	
36	G32139	<0.03	<0.001	
37	G32140	4.99	0.146	
38	G32296	3.50	0.102	
39	G32297	<0.03	<0.001	
40	G32298	<0.03	<0.001	
41	G32299	1.53	0.045	
42	G31355	1.94	0.057	
43	G31356	2.50	0.073	
44	G31357	0.11	0.003	
45	G31358	3.70	0.108	
46	G31359	9.60	0.280	
47	G31360	0.31	0.009	
48	G31361	1.62	0.047	
49	G31362	0.06	0.002	
50	G31363	0.03	0.001	
51	G31364	<0.03	<0.001	
52	G31365	1.29	0.038	
53	G31366	<0.03	<0.001	
54	G31367	0.03	0.001	
55	G31368	0.06	0.002	
56	G31369	0.13	0.004	
57	G31370	4.93	0.144	
58	G31371	<0.03	<0.001	
59	G31372	<0.03	<0.001	
60	G31373	0.05	0.001	
61	G31374	1.80	0.052	
62	G31375	1.53	0.045	
63	G31376	0.05	0.001	_
64	G31377	0.11	0.003	
65	G31378	0.09	0.003	
66	G31379	0.03	0.001	

CH)LABORATORY LTD. Æ¢Ø∕# Jutta Jealouse Certified Assayer в.¢.,

26-Jun-07

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
67	G31380	0.99	0.029	· · · · · · · · · · · · · · · · · · ·
68	G31381	0.04	0.001	
69	G31382	< 0.03	<0.001	
70	G31383	< 0.03	<0.001	
71	G31384	0.76	0.022	
72	G31385	< 0.03	<0.001	
73	G31386	< 0.03	<0.001	
74	G31387	< 0.03	<0.001	
75	G31388	0.18	0.005	
76	G31389	1.07	0.031	
77	G31390	5.03	0.147	
78	G31391	7.40	0.216	
79	G31392	0.03	0.001	
80	G31393	< 0.03	<0.001	
81	G31394	< 0.03	<0.001	
82	G31395	< 0.03	<0.001	
83	G31396	0.06	0.002	
84	G31397	0.04	0.001	
85	G31398	0.03	0.001	
86	G31399	<0.03	<0.001	
87	G31400	0.98	0.029	
88	G32051	<0.03	<0.001	
89	G32052	0.04	0.001	
90	G32053	0.07	0.002	
91	G32054	0.72	0.021	
92	G32055	0.05	0.001	
93	G32056	2.01	0.059	
94	G32057	0.25	0.007	
95	G32058	790	23.039	
96	G32059	0.04	0.001	
97	G32060	5.00	0.146	
98	G32061	2.60	0.076	
99	G32062	0.08	0.002	
100	G32063	0.03	0.001	
101	G32064	1.71	0.050	
102	G32065	0.04	0.001	
103	G32066	<0.03	<0.001	
104	G32068	11.7	0.341	
105	G32069	1.89	0.055	
106	G32070	0.33	0.010	
107	G32071	8.70	0.254	
108	G32072	0.11	0.003	/

ECO FECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

26-Jun-07

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
109	G32073	3.10	0.090	
110	G 3 2074	0.13	0.004	
111	G32075	<0.03	< 0.001	
112	G32076	<0.03	< 0.001	
113	G32077	<0.03	<0.001	
114	G32078	<0.03	<0.001	
115	G32079	<0.03	<0.001	
116	G32080	1.04	0.030	
117	G32081	<0.03	<0.001	
118	G32082	<0.03	<0.001	
119	G32083	<0.03	<0.001	
120	G32084	1.68	0.049	
121	G32085	0.04	0.001	
122	G32086	<0.03	<0.001	
123	G32087	0.03	0.001	
124	G32088	0.78	0.023	
125	G32089	<0.03	<0.001	
126	G32090	5.10	0.149	
127	G32091	<0.03	<0.001	
128	G32092	<0.03	<0.001	
129	G32093	<0.03	<0.001	
130	G32094	<0.03	<0.001	
131	G32095	<0.03	<0.001	
132	G32096	0.03	0.001	
133	G32097	0.04	0.001	
134	G32098	<0.03	<0.001	
135	G32099	0.10	0.003	
136	G32100	1.02	0.030	
137	G31146	0.03	0.001	
138	G31147	0.05	0.001	
139	G31148	<0.03	<0.001	
140	G31149	<0.03	<0.001	
141	G31150	0.30	0.009	
142	G27001	<0.03	<0.001	
143	G27002	<0.03	<0.001	
144	G27003	<0.03	<0.001	
145	G27004	<0.03	<0.001	
146	G27005	<0.03	<0.001	
147	G27006	<0.03	<0.001	
148	G27007	<0.03	<0.001	$\langle \rangle$
149	G27008	0.11	0.003	
150	G27009	0.13	0.004	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

26-Jun-07

		Au	Âu
<u> </u>	Tag #	(g/t)	(oz/t)
151	G27010	1.03	0.030
152	G27011	<0.03	<0.001
153	G27012	<0.03	<0.001
154	G27013	1.27	0.037
155	G27014	<0.03	<0.001
156	G27015	0.08	0.002
157	G27016	0.03	0.001
158	G27017	0.21	0.006
159	G27018	0.22	0.006
160	G27019	<0.03	<0.001
161	G27020	4.97	0.145
162	G27021	<0.03	<0.001

QC DATA:

Repeat:			
1	G32104	0.91	0.027
2	G32105	1.30	0.038
6	G32109	0.98	0.029
10	G32113	0.14	0.004
19	G32122	0.67	0.020
21	G32124	1.11	0.032
36	G32139	< 0.03	<0.001
54	G31367	<0.03	<0.001
62	G31375	1.41	0.041
71	G31384	0.70	0.020
80	G31393	<0.03	<0.001
8 9	G32052	0.03	0.001
115	G32079	<0.03	<0.001
120	G32084	1.75	0.051
124	G32088	0.80	0.023
150	G27009	0.15	0.004
159	G27018	0.23	0.007

Resplits:

1	G32104	0.83	0.024
36	G32139	<0.03	<0.001
71	G31384	0.80	0.023
142	G27001	<0.03	<0.001

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

26-Jun-07

=

Id Mines Ltd.	AW7-7124	26-Jun-07	
Tao #	Au (a/t)	Au (oz/t)	
i dg ii	(9//	(021)	
	1.80	0.052	
	1.82	0.053	
	1.82	0.053	
	2.60	0.076	
	2.63	0.077	
	Id Mines Ltd Tag #	Au Tag # (g/t) 1.80 1.82 1.82 2.60 2.63	Au Au Tag # (g/t) (oz/t) 1.80 0.052 1.82 0.053 1.82 0.053 2.60 0.076 2.63 0.077

:

ECO TECHLABORATORY LTD. B.C. Certified Assayer

JJ/nl XLS/07

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2007-7124

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2 15-Aug-07

Attention: Lesley Hunt

XLS/06

No. of samples received; 162 Sample Type: Core **Project: Taurus Shipment #:07-006** Submitted by: Lesley Hunt/Mike Glover

		Meta	allic Assay	
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
8	G32111	2.01	0.059	
38	G32296	4.82	0.141	
42	G31355	2.36	0.069	
43	G31356	3.13	0.091	
45	G31358	3.94	0.115	
46	G31359	11.0	0.319	
61	G31374	2.04	0.059	
78	G31391	7.16	0.209	
93	G32056	2.30	0.067	
95	G32058	221	6.445	
98	G32061	3.25	0.095	
101	G32064	2.02	0.059	
104	G32068	8.12	0.237	
105	G32069	3.08	0.090	
107	G32071	11.6	0.338	
109	G32073	5.80	0.169	
	[A:			
Standar	rđ:			
SI25		1.80	0.052	\bigcirc
SI25		1.82	0.053	
SI25		1.82	0.053	
SJ32		2.60	0.076	
SJ32		2.63	0.077	ECO TECH
JJ/jI				B.C. Certifie

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

20-Aug-07

CERTIFICATE OF ASSAY AK 2007-7126 Revised

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

Attention: Lesley Hunt

No. of samples received: 160 Sample Type: Core Submitted by: L. Hunt Project: Taurus Shipment #: 07-006

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
1	27022	0.03	0.001	
2	27023	<0.03	< 0.001	
3	27024	0.04	0.001	
4	27025	0.04	0.001	
5	27026	0.56	0.016	
6	27027	1.26	0.037	
7	27028	0.49	0.014	
8	27029	0.03	0.001	
9	27030	1.00	0.029	
10	27031	<0.03	<0.001	
11	27032	0.03	0.001	
12	27033	<0.03	<0.001	
13	27034	<0.03	<0.001	
14	32141	<0.03	<0.001	
15	32142	<0.03	<0.001	
16	32143	<0.03	<0.001	
17	32144	0.69	0.020	
18	32145	1.00	0.029	
19	32146	<0.03	<0.001	
20	32147	3.30	0.096	
21	32148	6.00	0.175	
22	32149	0.21	0.006	
23	32150	0.31	0.009	_
24	32151	0.64	0.019	\sim
25	32152	1.82	0.053	
26	32153	0.12	0.003	

ABORATORY LTD. lutta Jealouse B.C eđ lssayer ent

Cuese Gold Mines Ltd. AK7 - 7126

Cusac	Gold Min	es Ltd. AK7 - 712	6	23-Jul-07
		Au	Au	
ET #.	Tag #	<u>(g/t)</u>	(oz/t)	
27	32154	0.03	0.001	
28	32155	<0.03	<0.001	
29	32156	<0.03	<0.001	
30	32157	0.04	0.001	
31	32158	<0.03	<0.001	
32	32159	0.17	0.005	
33	32160	1.01	0.029	
34	32161	0.04	0.001	
35	32162	<0.03	<0.001	
36	32163	3.50	0.102	
37	32164	12.9	0.376	
38	32165	<0.03	<0.001	
39	32166	0.05	0.001	
40	32167	11.5	0.335	
41	32168	0.04	0.001	
42	32169	0.03	0.001	
43	32170	4.90	0.143	
44	32171	<0.03	<0.001	
45	32172	2.40	0.070	
46	32173	7.60	0.222	
47	32174	<0.03	<0.001	
48	32175	2.50	0.073	
49	32176	0.70	0.020	
50	32177	2.06	0.060	
51	32178	<0.03	<0.001	
52	32179	0.04	0.001	
53	32180	0.31	0.009	
54	32181	2.28	0.066	
55	32182	0.80	0.023	
56	32183	3.30	0.096	
57	32184	0.43	0.013	
58	32185	<0.03	<0.001	
59	32186	<0.03	<0.001	
60	32187	<0.03	<0.001	
61	32188	<0.03	<0.001	
62	32189	0.03	0.001	
63	32190	4.95	0.144	
64	32191	1.25	0.036	
65	32192	17.3	0.505	_
66	32193	1.53	0.045	\land
67	32194	0.03	0.001	
68	32195	0.03	0.001	/ Kilh

ECO TECH/LABORATORY LTD. B.Q. Certified Assayer

1+d AK7 - 7126

Cusac	Gold Mine	s Ltd. AK7 - 7126	5	23-Jul-07
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
<u> </u>	32196	< 0.03	<0.001	
70	32197	0.03	0.001	
71	32198	0.61	0.018	
72	32199	< 0.03	<0.001	
73	32200	1.04	0.030	
74	43101	1.93	0.056	
75	43102	1.23	0.036	
76	43103	1.19	0.035	
77	43104	< 0.03	<0.001	
78	43105	0.35	0.010	
7 9	43106	<0.03	<0.001	
80	43107	5.89	0.172	
81	43108	0.19	0.006	
82	43109	0.31	0.009	
83	43110	0.30	0.009	
84	43111	<0.03	<0.001	
85	43112	<0.03	<0.001	
86	43113	<0.02	<0.001	
87	43114	<0.03	<0.001	
88	43115	0.03	0.001	
89	43116	<0.03	<0.001	
90	43117	<0.03	<0.001	
91	43118	0.43	0.013	
92	43119	1.76	0.051	
93	43120	1.03	0.030	
94	43121	0.24	0.007	
95	43122	< 0.03	<0.001	
96	43123	0.05	0.001	
97	43124	< 0.03	<0.001	
98	43125	<0.03	<0.001	
99	43126	< 0.03	< 0.001	
100	43127	0.07	0.002	
101	43128	<0.03	<0.001	
102	43129	0.17	0.005	
103	43130	0.32	0.009	
104	43131	0.47	0.014	
105	43132	0.14	0.004	
106	43133	0.75	0.022	
107	43134	0.52	0.015	_
108	43135	0.63	0.018	\sim
109	43136	0.03	0.001	
110	43137	<0.03	<0.001	

ECO TECH/LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

and Gold Mines Ltd. AK7 - 7126

Cusac	Gold Mine	s Ltd. AK7 - 7126	5	23-Jul-07
		Au	Au	
_ET #.	Tag #	(g/t)	(oz/t)	
<u> </u>	43138	< 0.03	<0.001	
112	43139	<0.03	<0.001	
113	43140	5.10	0.149	
114	43141	< 0.03	<0.001	
115	43142	0.90	0.026	
116	43143	0.75	0.022	
117	43144	0.42	0.012	
118	43145	0.17	0.005	
119	43146	<0.03	<0.001	
120	43147	1.28	0.037	
121	43148	0.30	0.009	
122	43149	0.17	0.005	
123	43150	0.98	0.029	
124	43151	0.07	0.002	
125	43152	<0.03	<0.001	
126	43153	0.11	0.003	
127	43154	<0.03	<0.001	
128	43155	0.03	0.001	
129	43156	<0.03	<0.001	
130	43157	<0.03	<0.001	
131	43158	0.11	0.003	
132	43159	0.45	0.013	
133	43160	0.32	0.009	
134	43161	0.03	0.001	
135	43162	<0.03	< 0.001	
136	43163	0.03	0.001	
137	43164	<0.03	<0.001	
138	43165	<0.03	<0.001	
139	43166	<0.03	<0.001	
140	43167	<0.03	<0.001	
141	43168	<0.03	<0.001	
142	43169	<0.03	<0.001	
143	43170	0.31	0.009	
144	43171	<0.03	<0.001	
140	43172	<0.03	<0.001	
140	43173	0.00	0.020	
147	431/4	0.20	0.027	
148	431/5	0.39	0.011	
149	02214 20075	-0.02	-0.001	
100	322/3	<0.03	0.001	$\langle \rangle \langle \rangle$
101	30077	0.00	0.002	
102	V2211	2.00	0.003	1 At L

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Cusac	Gold Mine	s Ltd. AK7 - 7126)	23-Jul-07
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
153	32278	0.14	0.004	
154	32279	1.23	0.036	
155	32280	4.97	0.145	
156	32281	0.32	0.009	
157	32282	<0.03	<0.001	
158	32283	<0.03	<0.001	
15 9	32284	<0.03	<0.001	
160	32292	<0.03	<0.001	

QC DATA:

Repeat:			
1	27022	0.03	0.001
10	27031	< 0.03	<0.001
19	32146	0.05	0.001
71	32198	0.70	0.020
89	43116	<0.03	<0.001
106	43133	0.80	0.023
115	43142	0.84	0.024
124	43151	0.05	0.001
141	43168	<0.03	<0.001
150	32275	<0.03	<0.001
159	32284	0.03	0.001
Resplits	:		
1	27022	0.03	0.001
6	27027	1.35	0.039
66	32193	1.38	0.040
71	32198	0.57	0.017
106	43133	0.67	0.020
120	43147	1,21	0.035
141	43168	<0.03	<0.001
148	43175	0.41	0.012
154	32279	1.23	0.036
Standar	d:		
SJ32		2.60	0.076
SJ32		2.63	0.077
SJ32		2.62	0.076
SI25		1.78	0.052

1.80

0.052

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Oertified Assayer

JJ/nl/jl XLS/07

SI25

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 R-mail: info@ecotechlab.com www.ecotechlab.com

20-Aug-07

CERTIFICATE OF ASSAY AK 2007-7126

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

Attention: Lesley Hunt

No. of samples received: 160 Sample Type: Core Submitted by: L. Hunt Project: Taurus Shipment #: 07-006

		Metalli	ic Assay	
		Au	Âu	
ET #.	Tag #	(g/t)	(oz/t)	
20	32147	3.20	0.093	
21	32148	2.28	0.066	
25	32152	2.07	0.060	
36	32163	3.74	0.109	
37	32164	20.3	0.592	
40	32167	13.9	0.405	
45	32172	3.17	0.092	
46	32173	7.98	0.233	
48	32175	2.36	0.069	
50	32177	2.72	0.079	
54	32181	5.55	0.162	
56	32183	6.40	0.187	
65	32192	16.2	0.472	
74	43101	2.25	0.066	
75	43102	2.44	0.071	
80	43107	6.42	0.187	
92	43119	1.93	0.056	
147	43174	11.1	0.324	
152	32277	2.59	0.076	
				<u>^</u>

JJ/kk XLS/06

EÇØ TÉC BORATORY LTD. Г lutta Jealouse B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2007-7158

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

Attention: Lesley Hunt

No. of samples received: 99 Sample Type: Core **Project: Taurus Shipment #:07-007** Submitted by: Lesley Hunt/Mike Glover

		Au	Au	
<u>ET #.</u>	Tag #	(g/t)	(oz/t)	
1	G32285	0.03	0.001	
2	G32286	<0.03	<0.001	
3	G32287	<0.03	<0.001	
4	G32288	<0.03	<0.001	
5	G32289	<0.03	<0.001	
6	G32290	1.06	0.031	
7	G32291	<0.03	<0.001	
8	G32293	<0.03	<0.001	
9	G32294	<0.03	<0.001	
10	G32295	0.08	0.002	
11	G32300	0.32	0.009	
12	1 7865 1	<0.03	<0.001	
13	178652	<0.03	<0.001	
14	178653	<0.03	<0.001	
15	178654	<0.03	<0.001	
16	178655	<0.03	<0.001	
17	1 78656	<0.03	<0.001	
18	178657	<0.03	<0.001	
19	178658	0.04	0.001	
20	178659	0.03	0.001	
21	178660	1.09	0.032	
22	1 7866 1	<0.03	<0.001	
				\bigcirc ()

ABORATORY LTD. alquse ed Assayer Certi

Cusac Gold Mines Ltd. AW7 - 7158

· .

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
23	178662	<0.03	<0.001	
24	178663	0.05	0.001	
25	178664	0.12	0.003	
26	178665	<0.03	<0.001	
27	178666	<0.03	<0.001	
28	178667	<0.03	<0.001	
29	178668	<0.03	<0.001	
30	178669	<0.03	<0.001	
31	178670	0.32	0.009	
32	178671	0.06	0.002	
33	178672	<0.03	<0.001	
34	27035	<0.03	<0.001	
35	27036	0.06	0.002	
36	27037	<0.03	<0.001	
37	27038	1.15	0.034	•
38	27039	8.10	0.236	
39	27040	0.30	0.009	
40	27041	2.15	0.063	
41	27042	<0.03	<0.001	
42	27043	<0.03	<0.001	
43	27044	<0.03	<0.001	
44	27045	<0.03	<0.001	
45	27046	<0.03	<0.001	
46	27047	<0.03	<0.001	
47	27048	<0.03	<0.001	
48	27049	<0.03	<0.001	
49	27050	5.06	0.148	
50	27051	0.06	0.002	
51	27052	1.02	0.030	
52	27053	0.06	0.002	
53	27054	1.01	0.029	
54	27055	<0.03	<0.001	
55	27056	2.04	0.059	
56	27057	0.13	0.004	
57	27058	2.14	0.062	
58	27059	0.04	0.001	
59	27060	0.98	0.029	
60	27061	5.10	0.149	
61	27062	2.14	0.062	
62	27063	0.06	0.002	
63	27064	2.16	0.063	
64	27065	0.05	0.001	\sim
65	27066	<0.03	<0.001	$\langle \rangle \langle \rangle$
6 6	27067	<0.03	<0.001	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Cusac Gold Mines Ltd. AW7 - 7158

.

ET #.Tag #(g/t)(oz/t) 67 270680.030.001 68 27069<0.03<0.001 69 27071<0.03<0.001 70 27071<0.03<0.001 71 27072<0.03<0.001 72 27073<0.03<0.001 73 27074<0.03<0.001 74 27075<0.03<0.001 76 27077<0.03<0.001 76 27077<0.03<0.001 76 27078<0.03<0.001 76 27079<0.03<0.001 77 27080<4.96<0.145 80 27081<2.90<0.085 81 27082<1.27<0.037 82 27083<0.00<0.01 84 27085<0.10<0.003 85 27086<0.17<0.03 86 27087<0.03<0.01 88 27089<0.03<0.01 90 27091<0.03<0.01 91 27092<0.04<0.01 92 27093<0.72<0.021 93 27094<0.04<0.01 94 27095<0.21<0.037 96 27097<0.03<0.001 94 27098<0.21<0.037 96 27097<0.03<0.001 97 27098<0.03<0.001 99 27100<0.03<0.001			Au	Au	
67270680.030.001 68 27059 < 0.03 < 0.001 69 27070 0.31 0.009 70 27071 < 0.03 < 0.001 71 27072 0.03 < 0.001 72 27073 < 0.03 < 0.001 73 27074 < 0.03 < 0.001 74 27075 < 0.03 < 0.001 74 27075 < 0.03 < 0.001 76 27077 < 0.03 < 0.001 76 27077 < 0.03 < 0.001 78 27079 < 0.03 < 0.001 78 27079 < 0.03 < 0.001 79 27080 4.96 0.145 80 27081 2.90 0.085 81 27082 1.27 0.037 82 27083 < 0.03 < 0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 0.17 0.003 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27089 1.02 0.031 90 27091 < 0.03 < 0.001 91 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.036 95 2.7100 1.01 0.029	ET #.	Tag #	(g/t)	(oz/t)	
68 27069 <0.03 <0.001 69 27071 <0.03 0.009 70 27071 <0.03 <0.001 71 27072 0.03 0.001 72 27073 <0.03 <0.001 73 27074 <0.03 <0.001 74 27075 <0.03 <0.001 75 27076 <0.03 <0.001 76 27077 <0.03 <0.001 76 27077 <0.03 <0.001 78 27079 <0.03 <0.001 79 27080 4.96 0.145 80 27081 2.90 0.085 81 27082 1.27 0.037 82 27083 <0.03 <0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 1.28 0.037 88 27089 1.02 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27096 1.27 0.037 96 27097 <0.03 <0.001 94 27095 0.21 0.036 95 27096 1.27 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.51 0.034 <td< td=""><td>67</td><td>27068</td><td>0.03</td><td>0.001</td><td></td></td<>	67	27068	0.03	0.001	
69 27070 0.31 0.009 70 27071 -0.03 -0.001 71 27072 0.03 0.001 72 27073 -0.03 -0.001 73 27074 -0.03 -0.001 74 27075 -0.03 -0.001 75 27076 -0.03 -0.001 76 27077 -0.03 -0.001 77 27078 -0.03 -0.001 78 27079 -0.03 -0.001 78 27079 -0.03 -0.001 79 27080 4.96 0.145 80 27081 2.90 0.085 81 27082 1.27 0.037 82 27083 -0.03 -0.001 83 27084 2.60 0.076 84 27086 0.17 0.003 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27089 1.02 0.030 90 27091 -0.03 -0.01 91 27092 0.04 0.001 94 27095 0.21 0.037 96 27097 -0.03 -0.01 97 27098 -0.03 -0.01 98 27099 1.57 0.034 99 27100 1.01 0.029	68	27069	<0.03	<0.001	
70 27071 <0.03 <0.001 71 27072 0.03 0.001 72 27073 <0.03 <0.001 73 27074 <0.03 <0.001 74 27075 <0.03 <0.001 74 27076 <0.03 <0.001 76 27077 <0.03 <0.001 76 27077 <0.03 <0.001 78 27079 <0.03 <0.001 79 27080 4.96 0.145 80 27081 2.90 0.085 81 27082 1.27 0.037 82 27083 <0.03 <0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 0.17 0.037 86 27087 5.00 0.146 87 27098 1.02 0.031 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.037 96 27097 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029 </td <td>69</td> <td>27070</td> <td>0.31</td> <td>0.009</td> <td></td>	69	27070	0.31	0.009	
71 27072 0.03 0.001 72 27073 <0.03 <0.001 73 27074 <0.03 <0.001 74 27075 <0.03 <0.001 75 27076 <0.03 <0.001 76 27077 <0.03 <0.001 78 27079 <0.03 <0.001 78 27079 <0.03 <0.001 79 27080 <4.96 0.145 80 27081 2.90 0.085 81 27082 1.27 0.037 82 27083 <0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 1.17 0.037 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27090 1.03 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 94 27095 0.21 0.006 95 27096 1.27 0.037 96 27097 <0.03 <0.001 94 27098 0.03 <0.001 94 27099 1.15 0.034 99 27100 1.01 0.029	70	27071	<0.03	<0.001	
72 27073 <0.03 <0.001 73 27074 <0.03 <0.001 74 27075 <0.03 <0.001 75 27076 <0.03 <0.001 76 27077 <0.03 <0.001 76 27077 <0.03 <0.001 78 27079 <0.03 <0.001 79 27080 4.96 0.145 80 27081 2.90 0.085 81 27082 1.27 0.037 82 27083 <0.03 <0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 0.17 0.005 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27089 1.02 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 94 27095 0.21 0.006 95 27096 1.27 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	71	27072	0.03	0.001	
73 27074 <0.03 <0.001 74 27075 <0.03 <0.001 75 27076 <0.03 <0.001 76 27077 <0.03 <0.001 77 27078 <0.03 <0.001 78 27079 <0.03 <0.001 79 27080 4.96 0.145 80 27081 2.90 0.085 81 27082 1.27 0.037 82 27083 <0.03 <0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 0.17 0.005 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27090 1.03 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 91 27095 0.21 0.037 96 27096 1.27 0.037 96 27096 1.27 0.037 96 27096 1.27 0.037 96 27096 1.27 0.037 96 27098 0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	72	27073	<0.03	<0.001	
74 27075 <0.03 <0.001 75 27076 <0.03 <0.001 76 27077 <0.03 <0.001 77 27078 <0.03 <0.001 78 27079 <0.03 <0.001 79 27080 4.96 0.145 80 27081 2.90 0.085 81 27082 1.27 0.037 82 27083 <0.03 <0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 0.17 0.005 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27089 1.02 0.030 90 27091 <0.03 <0.001 91 27092 0.044 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.037 96 27097 <0.03 <0.001 94 27095 0.21 0.036 95 27096 1.27 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	73	27074	<0.03	<0.001	
75 27076 <0.03 <0.001 76 27077 <0.03 <0.001 77 27078 <0.03 <0.001 78 27079 <0.03 <0.001 79 27080 4.96 0.145 80 27081 2.90 0.085 81 27082 1.27 0.037 82 27083 <0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 0.17 0.005 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27089 1.02 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.036 95 27096 1.27 0.037 96 27097 <0.03 <0.001 94 27095 0.21 0.036 95 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	74	27075	<0.03	<0.001	
76 27077 <0.03 <0.001 77 27078 <0.03 <0.001 78 27079 <0.03 <0.001 79 27080 4.96 0.145 80 27081 2.90 0.085 81 27082 1.27 0.037 82 27083 <0.03 <0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 0.17 0.005 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27089 1.02 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.037 96 27097 <0.03 <0.001 94 27098 0.21 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	75	27076	<0.03	<0.001	
77 27078 <0.03 <0.001 78 27079 <0.03 <0.001 79 27080 4.96 0.145 80 27081 2.90 0.085 81 27082 1.27 0.037 82 27083 <0.03 <0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 0.17 0.005 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27089 1.02 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	76	27077	<0.03	<0.001	
78 27079 <0.03 <0.001 79 27080 4.96 0.145 80 27081 2.90 0.085 81 27082 1.27 0.037 82 27083 <0.03 <0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 0.17 0.005 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27089 1.02 0.030 89 27090 1.03 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27096 1.27 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	77	27078	<0.03	<0.001	
79 27080 4.96 0.145 80 27081 2.90 0.085 81 27082 1.27 0.037 82 27083 <0.03 <0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 0.17 0.005 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27099 1.02 0.030 89 27090 1.03 0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.037 96 27097 0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	78	27079	<0.03	<0.001	
80 27081 2.90 0.085 81 27082 1.27 0.037 82 27083 <0.03 <0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 0.17 0.005 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27099 1.02 0.030 89 27090 1.03 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27096 1.27 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	79	27080	4.96	0.145	
81 27082 1.27 0.037 82 27083 <0.03 <0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 0.17 0.005 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27089 1.02 0.030 89 27090 1.03 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.036 95 27096 1.27 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	80	27081	2.90	0.085	
82 27083 <0.03 <0.001 83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 0.17 0.005 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27099 1.02 0.030 89 27090 1.03 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	81	27082	1.27	0.037	
83 27084 2.60 0.076 84 27085 0.10 0.003 85 27086 0.17 0.005 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27090 1.03 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	82	27083	<0.03	<0.001	
84 27085 0.10 0.003 85 27086 0.17 0.005 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27099 1.02 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	83	27084	2.60	0.076	
85 27086 0.17 0.005 86 27087 5.00 0.146 87 27088 1.28 0.037 88 27089 1.02 0.030 89 27090 1.03 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.006 95 27096 1.27 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	84	27085	0.10	0.003	
86 27087 5.00 0.146 87 27088 1.28 0.037 88 27089 1.02 0.030 89 27090 1.03 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.006 95 27096 1.27 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	85	27086	0.17	0.005	
87 27088 1.28 0.037 88 27089 1.02 0.030 89 27090 1.03 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.036 95 27096 1.27 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	86	27087	5.00	0.146	
88 27089 1.02 0.030 89 27090 1.03 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.066 95 27096 1.27 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	87	27088	1.28	0.037	
89 27090 1.03 0.030 90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.006 95 27096 1.27 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	88	27089	1.02	0.030	
90 27091 <0.03 <0.001 91 27092 0.04 0.001 92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.006 95 27096 1.27 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	89	27090	1.03	0.030	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	27091	<0.03	<0.001	
92 27093 0.72 0.021 93 27094 0.04 0.001 94 27095 0.21 0.006 95 27096 1.27 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	91	27092	0.04	0.001	
93 27094 0.04 0.001 94 27095 0.21 0.006 95 27096 1.27 0.037 96 27097 <0.03 <0.001 97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	92	27093	0.72	0.021	
94 27095 0.21 0.006 95 27096 1.27 0.037 96 27097 <0.03	93	27094	0.04	0.001	
95 27096 1.27 0.037 96 27097 <0.03	94	27095	0.21	0.006	
96 27097 <0.03 <0.001 97 27098 <0.03	95	27096	1.27	0.037	
97 27098 <0.03 <0.001 98 27099 1.15 0.034 99 27100 1.01 0.029	96	27097	<0.03	<0.001	
98 27099 1.15 0.034 99 27100 1.01 0.029	97	27098	<0.03	<0.001	
99 27100 1.01 0.029	98	27099	1.15	0.034	
	99	27100	1.01	0.029	

ECOTECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

7-Aug-07

		Au	Au	
<u> </u>	Tag #	<u>(g/t)</u>	(oz/t)	
QC DAT/	A:			
Repeat:				
1	G32285	0.03	0.001	
10	G32295	0.06	0.002	
19	178658	<0.03	<0.001	
36	27037	<0.03	<0.001	
37	27038	1.20	0.035	
45	27046	<0.03	<0.001	
51	27052	0.96	0.028	
53	27054	0.94	0.027	
54	27055	0.03	0.001	
71	27072	<0.03	<0.001	
90	27091	<0.03	<0.001	
95	27096	1.27	0.037	
98	27099	1.26	0.037	
Resplits:				
1	G32285	<0.03	<0.001	
36	27037	<0.03	<0.001	
71	27072	<0.03	<0.001	
Standard	l;			
SJ32		2.65	0.077	
SJ32		2.62	0.076	
SJ32		2.63	0.077	

JJ/jl XLS/07

ECO/ECH)LABORATORY LTD. Jutta Jeanuse B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AW 2007-7158

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

9-Aug-07

Attention: Lesley Hunt

No. of samples received: 99 Sample Type: Core **Project: Taurus Shipment #:07-007** Submitted by: Lesley Hunt/Mike Glover

		Metallic Assay		
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
38	27039	8.28	0.242	
40	27041	2.92	0.085	
55	27056	2.37	0.069	
57	27058	3.39	0.099	
60	27061	6.30	0.184	
61	27062	3.79	0.111	
63	27064	2.67	0.078	
80	27081	3.15	0.092	
81	27082	3.99	0.116	
83	27084	2.61	0.076	
86	27087	8.84	0.258	
88	27089	1.58	0.046	

QC DATA:

Standard:		
SJ32	2.60	0.076
SJ32	2.65	0.077

JJ/bp XLS/06

ECO FECH LABORATORY LTD. ECO 720 B.C. Certified Assayer

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2007-7159

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

Attention: Lesley Hunt

No. of samples received: 150 Sample Type: Core **Project: Taurus II** Shipment #: 07-007 Submitted by: Lesley Hunt/Mike Glover

		Au Au
<u> </u>	Tag #	(g/t) (oz/t)
1	27101	1.86 0.054
2	27102	0.13 0.004
3	27103	1.74 0.051
4	27104	0.05 0.001
5	27105	2.04 0.059
6	27106	0.06 0.002
7	27107	1.51 0.044
8	27108	0.17 0.005
9	27109	3.00 0.087
10	27110	1.56 0.045
11	27111	<0.03 <0.001
12	27112	<0.03 <0.001
13	27113	0.08 0.002
14	27114	<0.03 <0.001
15	27115	<0.03 <0.001
16	27116	<0.03 <0.001
17	27117	0.94 0.027
18	27118	1.67 0.049
19	27119	0.58 0.017
20	27120	5.07 0.148
21	27121	0.74 0.022
22	27122	<0.03 <0.001
		ECO TECHILABORATORY LTD. Jutta Jeaiouse B.C. Certified Assaver

		Au Au
<u> </u>	Tag #	(g/t) (oz/t)
23	27123	<0.03 <0.001
24	27124	<0.03 <0.001
25	27125	1.90 0.055
26	27126	3.00 0.087
27	27127	1.61 0.047
28	27128	<0.03 <0.001
29	27129	<0.03 <0.001
30	27130	2.03 0.059
31	27131	<0.03 <0.001
32	27132	<0.03 <0.001
33	27133	<0.03 <0.001
34	27134	0.03 0.001
35	27135	0.16 0.005
36	27136	<0.03 <0.001
37	27137	0.22 0.006
38	27138	0.16 0.005
30	27139	0.10 0.003
40	27140	1.06 0.031
40	27140	-0.03 -0.001
40	27141	1.06 0.031
42	27142	<0.03 <0.001
43	27143	<0.03 <0.001
44	27144	
40	27 140	0.00 0.001
40	2/140	0.78 0.023
47	2/14/	0.43 0.013
48	27148	0.03 0.004
49	27149	2.02 0.059
50	27150	5.10 0.149
51	27151	<0.03 <0.001
52	27152	0.03 0.001
53	27153	<0.03 <0.001
54	27154	5.50 0.160
55	27155	0.04 0.001
56	27156	<0.03 <0.001
57	27157	<0.03 <0.001
58	27158	0.03 0.001
5 9	27159	<0.03 <0.001
60	27160	2.01 0.059
61	27161	0.03 0.001
62	27162	<0.03 <0.001
63	27163	0.80 0.023
64	27164	0.04 0.001
65	27165	<0.03 <0.001
66	27166	1.35 0.039
67	27167	2.14 0.062
		ECOTECI LABORATORY LTD.
		LeKitta Jealbuse /
		B.C. Certified Assayer
		Page 2
		· ~3~ -

136

		Au Au
ET #.	Tag #	(g/t) (oz/t)
68	27168	0.05 0.001
69	27169	1.08 0.031
70	27170	5.06 0.148
71	27171	<0.03 <0.001
72	27172	<0.03 <0.001
73	27173	<0.03 <0.001
74	27174	<0.03 <0.001
75	27175	<0.03 <0.001
76	27176	<0.03 <0.001
77	27177	<0.03 <0.001
78	27178	<0.03 <0.001
79	27179	0.20 0.006
80	27180	1.06 0.031
81	27181	<0.03 <0.001
82	27182	<0.03 <0.001
83	27183	<0.03 <0.001
84	27184	0.09 0.003
85	27185	<0.03 <0.001
86	27186	<0.03 <0.001
87	27187	0.13 0.004
88	27188	<0.03 <0.001
89	27189	<0.03 <0.001
90	27190	5.01 0.146
91	27191	<0.03 <0.001
92	27192	<0.03 <0.001
93	27193	<0.03 <0.001
94	27194	<0.03 <0.001
95	27195	<0.03 <0.001
96	27196	<0.03 <0.001
97	27197	<0.03 <0.001
98	27198	<0.03 <0.001
99	27199	0.06 0.002
100	27200	2.16 0.063
101	36501	<0.03 <0.001
102	36502	<0.03 <0.001
103	36503	<0.03 <0.001
104	36504	<0.03 <0.001
105	36505	<0.03 <0.001
106	36506	<0.03 <0.001
107	36507	<0.03 <0.001
108	36508	<0.03 <0.001
109	36509	<0.03 <0.001
110	36510	1.03 0.030
111	178673	<0.03 <0.001
		ECO TECH LABORATORY LTD. Jotta Jealouse

Eco Tech LABORATORY LTD Page 3

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
112	178674	<0.03	<0.001	
113	178675	<0.03	<0.001	
114	178676	0.24	0.007	
115	178677	0.99	0.029	
116	178678	0.63	0.018	
117	178679	1.67	0.049	
118	178680	5.09	0.148	
119	178681	1.78	0.052	
120	178682	0.59	0.017	
121	178683	0.79	0.023	
122	178684	0.41	0.012	
123	178685	0.05	0.001	
124	178686	<0.03	<0.001	- -
125	178687	0.04	0.001	
126	178688	0.03	0.001	•
127	178689	0.13	0.004	
128	178690	1.06	0.031	
129	178691	0.10	0.003	
130	178692	<0.03	<0.001	
131	178693	<0.03	<0.001	
132	178694	<0.03	<0.001	
133	178695	<0.03	<0.001	
134	178696	<0.03	<0.001	
135	178697	<0.03	<0.001	
136	178698	0.04	0.001	
137	178699	<0.03	<0.001	
138	178700	5.05	0.147	
139	178701	<0.03	<0.001	
140	178702	<0.03	<0.001	
141	178703	<0.03	<0.001	
142	178704	<0.03	<0.001	
143	178705	<0.03	<0.001	
144	178706	<0.03	<0.001	
145	178707	<0.03	<0.001	
146	178708	<0.03	<0.001	
147	178709	<0.03	<0.001	
148	178710	0.31	0.009	
149	178711	<0.03	<0.001	
150	178712	<0.03	<0.001	

ECO TEOPTUABORATORY LTD. Juita Jealouse B.C. Certified Assayer

		Au	Au	
<u>E] #.</u>	lag #	(g/t)	(0Z/t)	
OC DATA:				
Beneat:				
3	27103	1 59	0.046	
11	27111	<0.03	<0.001	
19	27119	0.57	0.017	
21	27121	0.80	0.023	
36	27136	<0.03	<0.001	
45	27145	0.08	0.002	
66	27166	1.44	0.042	
69	27169	1.09	0.032	
71	27171	<0.03	<0.001	
81	27181	<0.03	<0.001	
89	27189	<0.03	<0.001	
106	36506	<0.03	<0.001	1
115	178677	1.07	0.031	
124	178686	<0.03	<0.001	
141	178703	<0.03	<0.001	
150	178712	<0.03	<0.001	
Resplits:				
36	27136	<0.03	<0.001	
71	27171	<0.03	<0.001	
106	36506	<0.03	<0.001	
141	178703	<0.03	<0.001	
Standard:				
SJ32		2.66	0.078	
OXK48		3.56	0.104	
OXK48		3.57	0.104	
OXK48		3.58	0.104	
OXK48		3.58	0.104	

JJ/jl XLS/06

ECO FECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-6700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AW 2007-7159

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

Attention: Lesley Hunt

No. of samples received: 150 Sample Type: Core **Project: Taurus II** Shipment #: 07-007 Submitted by: Lesley Hunt/Mike Glover

		i.	Metallic Assa	ay -
		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	27101	3.42	0.100	
2	27102	0.18	0.005	
5	27105	2.27	0.066	
9	27109	3.47	0.101	
18	27118	1.01	0.029	
25	27125	1.62	0.047	
26	27126	2.95	0.086	
46	27146	0.88	0.026	
47	27147	0.48	0.014	
49	27149	2.18	0.064	
54	27154	5.9 9	0.175	
67	27167	2.27	0.066	
111	178673	<0.03	<0.001	
112	178674	<0.03	<0.001	
113	178675	<0.03	<0.001	
114	178676	0.37	0.011	

QC DATA:

JJ/bp XLS/06

Standard:		
S125	1.82	0.053
SJ32	2.60	0.076

ECO TREALABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

10-Aug-07

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2007- 7092

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

No. of samples received: 141 Sample Type: Core Project: Taurus Shipment #:07-004 Submitted by: Lesley Hunt/Mike Glover

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al	%	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni.	P	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
1	31151	0.5 0.	.59	865	80	15	>10	11	44	33	78	7.82	<10	1.99	1564	5	0.02	44	230	8	10	<20	99	0.04	<10	38	<10	<1	59
2	31152	0.4 0.	.36	715	80	10	>10	10	43	28	62	7.19	<10	3.49	1456	6	0.02	42	250	8	35	<20	165	0.04	<10	25	<10	2	55
3	31153	11.1 0.	.06	2435	25	<5	1.59	24	8	167	228	1.63	<10	0.37	203	<1	< 0.01	7	30	2	80	<20	37	0.01	<10	7	<10	2	53
4	31154	<0.2 2.	.27	375	85	20	>10	8	47	44	59	9.61	<10	3.52	1471	8	0.02	39	570	34	10	<20	88	0.05	<10	169	<10	<1	87
5	31155	<0.2 3.	.87	10	65	15	9.86	3	45	67	57	8.93	<10	3.63	1480	8	0.02	42	570	58	15	<20	54	0.07	<10	330	<10	3	81
6	31156	<0.2 2	96	60	60	15	>10	з	44	72	66	7.92	<10	3.81	1510	6	0.02	41	400	44	15	<20	111	0.05	<10	229	<10	5	79
7	31157	<0.2 3.	.42	<5	55	10	>10	1	45	80	71	8.01	<10	3.94	1489	7	0.03	43	400	50	15	<20	110	0.06	<10	266	<10	3	72
8	31158	0.2 0.	.30	675	100	15	9.38	8	46	31	50	8.00	<10	3.51	1465	5	0.02	38	390	10	10	<20	148	0.05	<10	34	<10	3	72
9	31159	0.6 0.	.95	3115	80	20	6.83	33	46	64	35	9.24	30	2.69	1237	7	0.02	41	1140	20	10	<20	214	0.08	<10	67	<10	4	47
10	31160	<0.2 1	.84	40	130	5	1.70	<1	29	907	68	3.49	<10	0.85	539	15	0.16	705	500	36	<5	<20	52	0.12	<10	77	<10	7	31
11	31161	0.4 0.	.33	2560	95	20	8.27	32	44	29	24	9.17	<10	3.11	1720	9	0.02	42	550	10	25	<20	180	0.05	<10	36	<10	4	53
12	31162	0.3 0.	.56	6000	95	15	9.24	69	45	34	40	9.12	<10	2.88	1508	7	0.02	36	440	12	10	<20	156	0.05	<10	33	<10	<1	63
13	31163	0.2 0.	.23 >1	10000	85	20	8.66	110	52	45	10	8.00	<10	3.03	1536	7	0.01	52	260	8	25	<20	226	0.05	<10	32	<10	3	43
14	31164	4.4 0.	.11	5865	35	<5	3.00	73	13	153	222	2.23	<10	0.71	403	5	0.01	14	30	4	30	<20	64	0.02	<10	14	<10	2	999
15	31165	1.1 0.	.33	3870	85	15	7.45	46	52	31	33	9.99	<10	3.01	1688	6	0.02	42	470	10	10	<20	173	0.05	<10	36	<10	1	53
16	31166	<0.2 2.	.13	1190	75	15	9,90	16	48	59	40	9.32	<10	3.26	1487	6	0.02	38	660	36	<5	<20	119	0.05	<10	180	<10	13	82
17	31167	<0.2 4.	.14	30	70	20	>10	2	49	69	66	9.56	<10	3.37	1708	8	0.02	40	720	68	10	<20	120	0.07	<10	328	<10	22	92
18	31168	<0.2 2	77	1310	85	15	>10	16	49	54	65	>10	<10	3.47	1660	9	0.01	43	650	48	15	<20	122	0.06	<10	150	<10	13	102
19	31169	0.6 0.	.04	745	20	<5	0.49	8	4	213	4	0.62	<10	0.09	86	1	< 0.01	8	90	4	<5	<20	18	< 0.01	<10	4	<10	4	11
20	31170	0.6 0.	.57	190	55	<5	0.25	<1	23	663	80	2.97	<10	0.13	197	11	0.01	526	260	18	<5	<20	11	0.02	<10	23	<10	7	40
21	31171	0.8 1.	.33	1330	95	20	>10	16	51	50	50	8.62	<10	3.09	1505	5	0.02	39	610	24	5	<20	181	0.05	<10	73	<10	8	83
22	31172	<0.2 3.	.53	25	160	15	7.03	з	57	79	73	8.19	10	2.94	1379	12	0.02	54	1010	64	35	<20	114	0.07	<10	259	<10	39	84
23	31173	<0.2 3.	.26	15	75	25	2.95	1	52	69	77	8.73	<10	3.19	1111	5	0.03	41	800	56	10	<20	34	0.31	<10	275	<10	23	98
24	31174	<0.2 3.	.12	20	60	20	7.95	2	49	82	66	8.22	<10	3.17	1474	5	0.04	41	600	54	15	<20	89	0.18	<10	309	<10	29	97
25	31175	<0.2 3.	.71	<5	145	30	7.15	2	52	49	70	9.61	<10	3.50	1524	8	0.03	36	850	66	20	<20	53	0.27	<10	334	<10	27	107

.

ICP CERTIFICATE OF ANALYSIS AK 2007-7092

Cusac Gold Mines Ltd.

,

142

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Νì	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
26	31176	<0.2 3.93	120	60	ΊŬ	>10	3	42	66	33	8.56	<10	3.27	1487	7	0.02	- 38	670	68	35	<20	84	0.07	<10	332	<10	26	84
27	31177	<0.2 4,39	50	70	15	9.12	3	52	71	41	9.54	<10	3.53	1512	11	0.02	45	750	72	30	<20	81	0.06	<10	400	<10	17	93
28	31178	<0.2 2.07	240	105	20	>10	5	45	60	73	8.29	<10	3.52	1638	7	0.02	38	610	38	15	<20	112	0.05	<10	218	<10	9	74
29	31179	06.037	4945	90	10	9.57	56	45	36	32	9.38	<10	3.20	1603	6	0.02	38	490	10	10	<20	195	0.05	<10	29	<10	5	58
20	31180	48 1 29	300	85	-5	0.51	4	16	33	580	5.07	e10	1 27	318	14	0.62	18	320	116	35	<20	11	0.04	e10	25	<10	5	603
00	01100	4.0 1.40	000	00		0.0.	-	10		000	0.0.	~10		0.0	• •	0.02				•••		• •	0.01	~10	20		v	000
24	31181	09.025	4595	95	30	7.26	54	46	45	30	942	c10	3.00	1523	6	0.02	40	370	12	25	<20	194	0.05	~10	29	~10	6	48
32	31182	22 0 12	1425	65	15	0.98	16	27	181	8	6.86	e10	0.20	149	4	0.01	30	30	10	<5	<20	25	0.03	<10	10	<10	-1	13
22	21192	0.7 1.96	3916	100	54	7.64	25	52	201	40	~10	~10	3.40	1709	12	0.02	50	570	26	35	~20	171	0.05	~10	127	~10	â	62
24	21184	-0.2 3.83	3010	70	20	~ 10	2	10	63	57	9.85	<10	3.51	1654	<u>م</u>	0.02	40	740	68	5	~20	100	0.00	~10	361	<10	16	102
24	01104	~0.2 0.00	25	90	-05	7.04	2	50	72	64	>10	~10	2.61	1605	11	0.02	45	790	70	15	~20	61	0.07	~10	350	~10	15	110
30	31100	CU.Z 4.04	00	00	20	/ 27**	4	52	75	04	2.00	SIV	3.01	1005	13	0.02	40	700	12	15	~~~~	51	0.00	\$10	550	<10	13	1 IQ
25	21196	-02 264	46	00	05	Q 48	2	53	62	58	~10	~10	2 10	1650	0	0.01	46	800	72	15	-20	116	0.06	~10	208	10	21	114
00	31100	-01040	1757	20	15	34J 075	20	41	50	40	7.00	-10	0.13	1050	4	0.01	21	CAO.	16	10	-20	10	0.00	-10	000	- 10	ر م م	20
37 60	01:07	-0.2 0.06	001	90		0.70	20	** 1 E O	77	40	0.07	~10	2.00	1652	-4	0.01	40	340	70	15	~20	104	0.00	<10	200	-10	ο C	101
38	31100	<0.2 3.94	40 • E	30	20	0.00	1	50	70	00	9.27	<10	0.49	1497		0.02	42	700	12	10	<20	110	0.09	< 10	200	< 10	20	101
39	31:89	<0.2 4.49	15	75	30	2.10	2	52 4 0	79	03	>10	<10	3.52	3407	10	0.01	40	070	02	20	<20	110	9.08	<10	320	<10	18	105
40	31190	1.7 0.31	340	50	10	0.35	4	12	ا ک	60	3.50	<10	0.07	100	10	0.01	17	370	28	25	<20	11	0.02	<10	19	< 10	1	102
41	21101	-0.2 1.20	25	105	34	0.60	^	40	62	63	0 10	~10	240	1086	6	0.01	20	720	24	10	~20	71	0.06	~10	260	~10	10	102
41	21191	AE 0.27	EneA	00	14	9.03 0.67	60 60	49	70	45	9.19	-10	2.40	1300	0 A	0.01	10	200	24	10	~20	160	0.00	-10	203	~10	10	602
42	31192	10.000	0000	00	10	0.02	02	40	50	40	7 01	~10	2.50	1604	å	0.07	42 64	320	44 00	40	~20	170	0.00	-10	40	~10	-1	50
43	31493	1.0 0.20	080 C70	00	2Q 4.2	230	9	47	52 77	60	1.01	<10	0.20	1004	ب و ۱	0.01	- 04 - 60	500	10	40	~20	179	0.04	<10	33	510	51	- 53 67
44	31194	0.4 0.32	670	80	10	> 10	7) - 10	30	[] []	40	0.20	<10	3.13	1405	4	0.01	53	240	10	20	<20	139	0.04	<10	20	<10	6	27
45	31195	0.3 0.30	1420	00	10	2- i U	10	44	50	40	0.00	<10	3.00	1405	3	0.01	34	340	12	20	< <u>2</u> V	157	0.04	<10	33	<10	2	40
46	31106	202 036	800	05	24	8.84	12	48	32	24	510	~10	2 54	1868	8	0.03	38	830	12	10	-20	78	0.06	~10	66	<10	ż	120
40	21107	07 0.25	~10000	80	20	5.46	174	50	60	10	×10	~10	1 0/	1310	ร	0.00	42	810	10	10	~20	145	0.00	~10	34	~10	~1	50
40	31108	0.7 0.20	1806	00 05	10	3;0 ≤10	10	17	44	63	0.82	<10	2.88	1581	â	0.02	51	610	18	15	~20	130	0.05	~10	42	~10	2	00
40	21100	0.0 0.02	F175	80		-10	63	14	51 51	12	7 03	~10	2.00	1671	e e	0.02	46	280	14	25	~20	195	0.04	<10	312 312	~10	ے 1 ہے	73
49 50	21000	3 7 0 20	220	45	15	0.00	1	10	20	60	2.60	~10	0.06	162	10	0.02	17	200	20	20	~20	100	0.04	~10	10	~10	0	108
50	31200	1.7 0.30	370	-40	15	0.55	4	14	52	00	0.09	< 10	0.00	103	10	0.01	17	390	<i>50</i>	οU	20	0	0.01	510	13	<10	0	1.70
51	31201	02 084	1985	75	15	>10	22	45	48	58	7 99	<10	2 91	1416	6	0.01	45	560	22	35	<20	128	0.04	<10	33	<10	5	79
52	31202	10 0.29	1785	80	15	-10	20	45	51	63	851	<10	2 99	1540	5	0.01	45	480	12	25	<20	217	0.05	~10	31	~10	š	64
52	31202	06.033	055	80	10	×10	12	48	51	43	8 30	~10	2.84	1506	5	0.01	4.7	840	10	25	~20	172	0.00	~10	34	~10	2	77
5.5	31204	0.6 0.27	800	75	on	510	12	45	64	- 10	8.00	~10	2.04	1549	7	0.02	/9	750	8	30	<20	215	0.04	~10	32	~10	5	59
54 66	31204	-0.0 0.27	720	300	15	~10	, <u>r</u>	40 62	11	63	0.00	~10	2.30	1664	à	0.02	56	730	14	20	-20	133	0.04	~10	12	~10	2	72
	01600	CO.7 0.00	7.50	300	1.1	210	3	JE.	-+)	00	3.20	~10	0.10	1004	3	0.04	- 00	750		20	~40	100	0.00	\$10	42	<10	2	16
56	31206	<0.2 0.02	50	20	5	240	<1	3	187	4	0.89	<10	0.50	237	<1	<0.01	4	30	8	<5	<20	43	<0.01	<10	7	<10	4	16
67	31207	20.2 0.32	235	80	5	×10	4	46	39	AA	8.81	~10	3.26	1578	5	0.02	43	550	Ř	10	<20	91	0.05	~10	41	≂າກ	-1	82
E0	21208	20.2 0.32	70	60 65	15	<10	3	12	46	42	8.63	~10	3.30	1751	ß	0.04	42	660	14	15	~20	66	0.00	~10	42	~10	4	02
50	21200	0.3 0.28	3505	85	20	<10 <10	<u>A</u> A	42	46	54	8 24	<10	3 16	1635	5	0.03	38	540	14	20	~20	101	0.00	~10	38	~10	а а	68
60	31209	-0.2 1.04	3505	1.40	1.5	• 9.1 ·		21	066	60	3.72	~10	0.10	560	16	0.16	769	580	48	~5	~20	55	0.00	<10	83	<10	0	25
00	31210	XV/2 1.04	13	:40	ني⊷ا	7.077	× 1	01	300	03	0.72	~ 10	0.00	000	10	0.10	102	500	40	-0	~20	00	0.14	510	0.0	510	Ş	00
61	31211	<0.2 0.57	230	80	25	>10	5	45	37	49	8.62	<10	3,48	1764	6	0.03	41	560	20	15	<20	103	0.05	<10	55	<10	5	84
62	31212	<0.2 3.68	40	60	30	>10	Ť	49	81	59	8,76	<10	3.56	1474	7	0.03	45	620	76	15	<20	66	0.08	<10	290	<10	3	100
63	31213	<0.2 4 13	70	90	30	~10	2	47	74	61	9.08	<10	3,36	1292	10	0.01	44	690	92	30	<20	77	0.06	<10	319	<10	7	91
64	31214	<0.2 1 11	50	75	15	>10	3	47	87	71	7.05	<10	2.60	1586	8	0.02	54	480	26	30	<20	64	0.04	<10	203	<10	14	101
65	31215	<0.2 2.86	75	35	10	>10	1	45	114	72	7.53	<10	3.82	1387	6	0.03	52	430	56	15	<20	70	0.05	<10	216	<10	8	79
0.0	01210	- W. M. 41- DW													~	4.44	W F		÷ •						_,_		~	

Page 2

at here is an experiment of and a set of the transmister theorem is a set of the

<u>....</u>

.

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg % Mn	Mo	Na %	Ni	P	Pb	Şb	Sn	Sr	Ti %	U	V	W	Y	Zn
66	31216	<0.2 2.75	80	60	25	>10	3	46	122	53	8.28	<10	4.08 1471	8	0.03	59	390	58	25	<20	66	0.05	<10	181	<10	5	89
67	31217	<0.2 0.50	180	60	15	> 1 C	4	43	44	63	6.87	<10	3.15 1516	5	0.02	48	430	16	30	<20	93	0.04	<10	55	<10	8	71
68	31218	>30 0.08	2335	40	<5	2.06	27	9	159	793	1.92	<10	0.20 141	4	<0.01	10	20	8	395	<20	31	< 0.01	<10	9	<10	3	600
69	31219	0.5 0.30	2100	85	- 30	>10	28	46	28	54	9.53	<10	3.06 1484	6	0.02	38	570	12	25	<20	152	0.05	<10	32	<10	2	85
70	31220	5.0 1.29	325	70	<5	0.53	5	17	35	577	5.24	<10	1.24 325	13	0.02	19	350	128	40	<20	12	0.04	<10	27	<10	5	646
71	31221	0.9 0.25	1160	80	30	>10	13	48	37	46	8.82	<10	3.20 1697	5	0.02	38	440	10	25	<20	174	0.05	<10	35	<10	<1	74
72	31222	0.5 0.33	2625	96	20	9.97	28	44	45	39	9.00	<10	3.11 1634	6	0.02	32	530	10	25	<20	162	0.05	<10	38	<10	<1	79
73	31223	<0.2 0.02	1780	10	5	124	17	3	170	4	0.71	<10	0.22 1 41	1	<0.01	4	<10	6	<5	<20	29	<0.01	<10	7	<10	5	17
74	31224	0.8 0.26	5345	85	10	8.69	55	46	29	35	>10	<10	3.18 1680	10	0.01	41	530	8	30	<20	208	0.04	<10	31	<10	<1	66
75	31225	<0.2 0.35	3020	75	15	9.93	29	47	38	52	9.26	<10	2.94 1666	5	0.01	37	540	10	10	<20	197	0.05	<10	50	<10	<1	73
76	21006	20.2 1.55	สก	60	15	a 73	2	56	58	65	9.76	~10	2 41 2762	6	0.01	35	850	30	5	~20	76	0.06	~10	321	~10	6	126
70	01220 לכבונ	<0.2 1.31	00	20	20	5.75	2	57	40	72	9.70	~10	2.41 2102	7	0.01	13	050	36	20	~20	03	0.00	~10	256	~10	<u>0</u>	120
70	31227		20 40	70	20	0.68		51	50	73	5.£0 ∽1∩	~10	3 22 1620	7	0.01	20	860	86	~5	~20	95	0.08	~10	284	~10	11	101
70	31220	<0.2 4.40	40	125	20	0.00 0.02	~1	64	61	70	9.23	~10	3 20 1722	, A	0.02	36	860	76	10	~20	96	0.00	~10	312	~10	27	110
19	31220	20.2 0.70	400	20	16	0.28	2	12	32	62	3.20	~10	0.07 168	ä	0.02	18	400	28	25	~20	7	0.03	<10	20	<10	21 2	107
00	31230	2.0 0.51	400	.00	10	0.00	ç	14	QL.	Ų2	0.00	10	0.07 100	3	0.01	10	400	20	6.7	~£.V	'	0.00	< IV	20	\$10	0	107
81	31231	<0.2 3.43	40	60	36	5.25	1	57	62	78	8.56	<10	3.02 1526	5	0.03	36	930	72	25	<20	53	0.40	<10	255	<10	18	114
82	31232	<0.2 4.13	55	65	25	:>10	1	53	54	70	9.69	<10	2.98 1484	7	0.02	36	870	84	15	-20	88	0.13	<10	333	<10	31	107
83	31233	<0.2 0.87	220	65	25	>10	4	50	33	59	9 27	<10	3.16 1536	6	0.06	35	750	22	15	<20	112	0.05	<10	52	<10	10	89
84	31234	<0.2 2.25	1495	75	15	>10	16	44	63	47	9.99	<10	3.25 1284	7	0.02	33	640	44	15	<20	114	0.05	<10	84	<10	3	73
85	31235	<0.2 3.22	40	65	25	>10	З	52	57	59	>10	<10	3.59 1715	11	0.04	38	850	64	25	<20	81	0.05	<10	276	<10	11	114
						- 0	-		~~			10		_	• • •	47	95.0	50		00		0.00	4.0	000		~	
86	31236	<0.2 3.15	15	55	20	>10	2	51	80	64	>10	<10	3.49 1729	8	0.03	37	850	60	15	<20	82	0.06	<10	292	<10	9	112
87	31237	<0.2 4.64	35	455	35	7.53	1	54	/1	64	9.68	<10	3.62 1777	8	0.02	42	900	92	20	<20	103	0.19	<10	328	<10	15	126
88	31238	<0.2 4.48	35	570	25	7.71	2	53	68	58	9.65	<10	3.41 1/61	9	0.02	40	890	90	35	<20	84	0.24	<10	304	<10	16	117
89	31239	<0.2 4.65	50	200	25	>10	<1	52	62	55	9.73	<10	3.31 16/5	9	0.02	38	870	92	20	<20	91	0.11	<10	364	<10	17	110
90	31240	<0.2 2.00	75	125	15	1.90	<1	32	994	\overline{D}	3.80	<10	0.87 581	15	0.16	782	500	48	<0	<20	51	U, 14	<10	87	<10	8	36
91	31241	<0.2 4.01	75	60	25	»10	1	52	60	64	9.94	<10	3.45 1641	10	0.02	42	860	78	25	<20	70	0.07	<10	319	<10	11	117
92	31242	0.2 0.71	290	75	20	>10	4	48	40	64	8.47	<10	3.16 1672	5	0.02	42	640	18	20	<20	122	0.05	<10	54	<10	8	96
93	31243	0.3 1.16	1125	95	25	~10	12	54	34	53	>10	<10	3.27 1501	6	0.02	47	590	32	10	<20	154	0.06	<10	36	<10	7	105
94	31244	0.9 0.29	>10000	80	20	7 98	198	47	43	35	9.77	<10	2.81 1392	7	0.01	44	290	14	35	<20	184	0.05	<10	29	<10	3	61
95	31245	0.8 0.30	5020	65	10	>10	50	49	27	60	9.19	<10	3.23 1640	5	0.01	43	540	12	20	<20	183	0.05	<10	29	<10	<1	75
00	01040	15.0.000	10000	or.	40	< 04	074	61	40	40	. 10	-10	0 67 1964	10	0.04	65	220	1.4	50	~20	147		-10	20	-10	-1	40
95	31245	15.8 0.22	>10000	95	40	5.04	271	01	42	43	>10	< 10	2.67 1364	10	0.01	44	520	14	20	<20	0.4	0.05	<10	23	< 10	< i 1	49
97	31247	<0.2 0.64	250	50	15	9.80	্য ।	47	46	54	0.00	<10	3.09 1348	5	0.02	44	310	10	30	<20	100	0.05	<10	39	<10	1	108
98	31248	<0.2 0.46	170	70	10	>10	3	48	38	57	8.40	<10	3.47 1491	0	0.02	50	420	12	20	<20	017	0.05	<10	30	<10	4	83
99	31249	<0.2 0.76	2855	75	10	\$10	28	49	20	51	8.73	<10	3.51 1602	0	0.01	4/	320	22	20	<20	213	0.05	<10	20	<10	0	00
100	31250	<0.2 1.98	90	135	20	1.92	<1	33	990	70	3,86	<10	0.80 086	16	Ų, 16	780	02U	52	10	<20	২৫	Q.15	<10	Ø7	<1Ų	Э	38
101	31251	<0.2 1.39	130	65	20	>10	3	50	29	64	9.14	<10	3.10 1517	6	0.03	44	830	34	25	<20	85	0.05	<10	40	<10	4	101
102	31252	<0.2 0.54	115	70	-5	»10	2	46	31	62	9.08	<10	3.18 1582	6	0.03	39	780	12	15	<20	91	0.05	<10	39	<10	<1	98
103	31253	<0.2 0.39	105	80	25	>10	2	48	37	69	9.20	<10	3.31 1746	6	0.02	40	760	14	15	<20	144	0.05	<10	39	<10	7	79
104	31254	<0.2 4.43	60	40	10	>10	1	49	88	69	9.10	<10	3.25 1553	9	0.01	45	850	92	25	<20	105	0.06	<10	298	<10	5	97
105	31255	<0.2 2.59	30	50	5	> 1 0	<1	49	76	65	8.63	<10	2.89 1612	6	0.02	44	870	58	15	<20	69	0.05	<10	270	<10	10	107

143

ri.

Et #.	Tag #	Ag	Al %	As	Ba	Bi	Ca %	Cđ	Ço	Cr	Cu	Fe %	La	Mg% Mn	Мо	Na %	Ni	P	₽b	Sb	Sn	Sr	Ti %	U	۷	W	Y	Zn
106	31256	<0.2	0.34	245	60	15	>10	3	43	29	57	8.14	<10	2.98 1493	6	0.02	37	620	10	30	<20	104	0.04	<10	42	<10	4	73
107	31257	<0.2	0.39	>10000	60	15	>10	104	49	28	42	8.92	<10	3.78 1863	4	0.02	49	500	10	25	<20	254	0.05	<10	40	<10	4	54
108	31258	<0.2	0.40	150	55	10	>10	4	47	40	57	8.65	<10	3.31 1589	6	0.05	57	680	8	40	<20	64	0.05	<10	38	<10	<1	85
109	31259	<0.2	0.43	395	55	20	>10	5	45	51	51	8.52	<10	3.31 1477	6	0.06	58	630	14	45	<20	87	0.05	<10	49	<10	5	88
110	31260	<0.2	1.94	85	115	15	1.83	<1	31	983	69	3.78	<10	0.84 573	16	0.15	781	610	48	<5	<20	52	0.14	<10	85	<10	7	37
														0.00 1000	-	A A7	~~	700	~~	45						10	~	70
111	31261	<0.2	0.80	215	50	25	>10	3	48	51	111	8.50	<10	3.08 1335	1	0.07	00	720	20	45	<20	55	0.04	<10	42	<10	2	/5
112	31262	<0.2	0,91	115	55	25	>10	2	48	45	52	8.84	<10	3.34 1463	5	0.08	50	710	22	15	<20	46	0.05	<10	48	<10	3	87
113	31263	<0.2	0.94	80	60	15	>10	1	46	53	68	8.57	<10	3.25 1412	6	0.08	59	700	25	20	<20	46	0.05	<10	49	<10	6	85
114	31264	<0.2	0.63	115	60	25	>10	2	46	46	- 77	8.12	<10	3.17 1425	4	0.08	56	680	20	20	<20	51	0.05	<10	47	<10	9	80
115	31265	<0.2	0.49	125	55	25	>10	2	47	51	56	8.63	<10	3.53 1518	6	0.08	59	730	18	20	<20	54	0.05	<10	45	<10	5	84
116	31266	<0.2	0.70	170	60	15	>10	4	50	41	52	8.66	<10	3.27 1362	8	0.07	69	710	18	40	<20	62	0.04	<10	46	<10	5	92
117	31267	<0.2	1.39	9255	70	26	>10	90	48	50	45	9.32	<10	3.51 1930	6	0.02	60	410	34	35	<20	163	0.06	<10	36	<10	3	69
118	31268	0.2	0.82	235	75	20	>10	3	49	32	59	8.53	<10	3.34 1329	6	0.04	64	690	20	25	<20	100	0.05	<10	33	<10	Ą	80
119	31269	<0.2	0.27	1150	90	30	>10	13	44	51	63	7.86	<10	3.44 1323	5	0.03	64	530	14	15	<20	105	0.05	<10	28	<10	7	71
120	31270	2.0	0.31	405	60	15	0.37	3	13	33	63	3.66	<10	0.06 167	9	0.01	17	430	34	35	<20	12	0.02	<10	19	<10	13	109
121	31271	<0.2	0.31	255	60	25	>10	3	45	50	44	8.15	<10	3.55 1422	4	0 06	6 4	730	12	10	<20	74	0.05	<10	32	<10	6	65
122	31272	<0.2	1.31	160	50	10	>10	2	47	47	68	9.08	<10	3.43 1567	5	0.05	37	820	28	10	<20	63	0.05	<10	104	<10	1	80
123	31273	<0.2	2.24	135	45	15	>10	2	47	107	52	8.92	<10	3.48 1589	4	0.05	62	730	46	10	<20	58	0.05	<10	165	<10	<1	94
124	31274	<0.2	2.16	125	50	15	>10	2	49	101	54	9.22	<10	3.22 1767	5	0.04	52	760	46	5	<20	55	0.06	<10	244	<10	1	88
125	31275	<0.2	4.21	140	45	20	~10	<1	48	117	50	9.08	<10	2.96 1430	5	0.02	51	880	88	<5	<20	65	0.08	<10	364	<10	2	104
126	31276	<0.2	4.27	110	45	25	>10	<1	49	120	55	8.88	<10	3.10 1356	6	0.02	50	870	94	15	<20	63	0.07	<10	366	<10	3	91
127	31277	<0.2	4.57	125	55	20	>10	2	51	114	51	9.07	<10	3.50 1490	9	0.02	55	800	98	30	<20	71	0.07	<10	379	<10	6	98
128	31401	<0.2	2.54	120	80	30	>10	2	50	57	52	>10	<10	2.99 1866	7	0.02	41	790	54	15	<20	71	0.06	<10	215	<10	6	101
129	31402	<0.2	2.95	80	55	15	9.36	<1	52	59	58	>10	<10	3.17 1724	5	0.03	42	790	62	<5	<20	64	0.07	<10	309	<10	2	108
130	31403	< 0.2	0.59	1580	75	25	>10	13	47	39	51	9.54	<10	2.97 1738	4	0.03	40	640	16	10	<20	130	0.06	<10	59	<10	2	71
131	31404	0.2	0.53	360	70	20	9.87	4	49	30	65	>10	<10	2.81 1650	5	0.03	39	750	14	<5	<20	81	0.06	<10	44	<10	<1	97
132	31405	0.6	0.27	9040	65	15	>10	76	41	45	43	8.25	<10	2.36 1404	4	0.01	29	610	10	10	<20	190	0.05	<10	31	<10	1	46
133	31406	<0.2	2.47	90	45	20	>10	1	50	63	59	9.59	<10	2.79 1621	4	0.03	41	740	54	<5	<20	77	0.06	<10	269	<10	<1	96
134	31407	<0.2	2.65	70	55	30	9.85	<1	49	63	49	9.84	<10	2.86 1618	5	0.03	42	770	56	<5	<20	64	0.06	<10	296	<10	4	103
135	31408	<0.2	2.84	65	40	20	>10	2	47	61	69	>10	<10	2.85 1563	6	0.03	38	760	54	<5	<20	76	0.06	<10	312	<10	<1	113
136	31409	<0.2	2 30	70	55	10	9.93	<1	48	51	75	>10	<10	2.93 1511	5	0.03	39	720	46	<5	<20	85	0.06	<10	227	<10	<1	116
137	31410	<0.2	1.98	95	130	10	1.86	<1	32	987	71	3.85	<10	0.83 583	13	0.16	783	620	48	<5	<20	55	0.16	<10	84	<10	7	37
138	31411	11	0.61	945	85	15	9.07	8	49	54	74	974	<10	2.50 1521	6	0.01	41	600	18	15	<20	162	0.05	<10	58	<10	3	68
120	31/12	20.2	2.87	60	_⊴n	20	0.00	- 1	56	56	79	>10	<10	3 10 1796	4	0.02	42	800	58	<5	<20	72	0.06	<10	283	<10	2	112
100	21/12	20.2	2.07	70	55	-20 -25	0.26	~1	50	60	53	×10	<10	3 27 1756	5	0.02	41	830	68	<5	<20	69	0.07	<10	319	<10	6	115
140 141	31/14	1.5	0.25	2125	80	25	6.01	18	54	25	73	>10	<10	2.98 1993	5	0.01	41	620	16	5	<20	187	0.06	<10	27	<10	<1	76
00.51	Τ.Α.,																											
Repeat	181																											
1	31151	0.3	0.60	850	85	15	>10	11	46	33	78	7,96	<10	2.03 1583	4	0.02	45	240	10	10	<20	104	0.06	<10	38	<10	2	59
19	31169	0.4	0.04	760	15	<ō	0.49	7	4	208	4	0.61	<10	0.09 85	<1	<0.01	6	80	4	<5	<20	13	<0.01	<10	5	<10	з	11
36	31186	<0.2	3.59	45	85	20	9.47	2	52	60	56	>10	<10	3.15 1644	9	0.01	45	800	66	10	<20	110	0.06	<10	306	<10	16	109

144

......

*

<u>Et #.</u>	Tag #	Ag Al	%	As	Ba	8 i	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg% Mr	Мо	Na %	Ni	Р	Pb	Şb	Sn	Şr	Ti %	U	٧	<u></u>	Y	Zn
45	31195	0.3 0.3	28 1	1490	80	15	>10	20	48	50	44	8.10	<10	2.99 1404	. 9	0.01	60	360	16	35	<20	162	0.04	<10	33	<10	3	47
54	31204	0.5 0.2	26	880	80	20	>10	11	46	63	31	7.98	<10	2.93 1548	5	0.02	45	/60	10	25	<20	218	0.05	<10	31	<10	4	59
71	31221	0.7 0.2	24 1	1165	90	20	>10	13	47	38	48	8.68	<10	3.17 1685	6	0.02	39	440	10	35	<20	181	0.05	<10	36	<10	2	74
89	31239	<0.2 4.3	55	45	200	20	>10	2	52	62	62	9.81	<10	3.21 1671	9	0.02	38	890	98	15	<20	85	0.10	<10	362	<10	13	112
106	31256	<0.2_0.3	36	245	70	10	>10	4	44	32	58	8.24	<10	3.04 1515	5	0.02	39	650	12	30	<20	115	0.05	<10	43	<10	8	74
115	31265	<0.2_0.4	49	135	50	35	>10	2	46	50	55	8.51	<10	3.45 1493	4	0.08	57	700	14	10	<20	52	0.05	<10	45	<10	З	84
124	31274	<0.2 2.2	26	150	45	2Q	>10	1	49	105	54	9.48	<10	3.34 1775	5	0.04	55	790	46	10	<20	54	0.06	<10	253	<10	2	89
141	31414	1.5 0.2	24 2	2100	75	25	6,32	18	53	25	69	>10	<10	2.96 1980) 5	0.01	41	630	12	10	<20	168	0.06	<10	27	<10	<1	68
Resplit																												
1	31151	0,4 0.6	64	875	85	20	>10	14	48	34	75	8.19	<10	2.02 1655	5	0.02	49	200	14	10	<20	106	0.05	<10	42	<10	2	67
36	31186	<0.2 3.4	47	50	80	20	9.81	2	52	65	59	>10	<10	3.08 1679	8	<0.01	48	820	70	20	<20	115	0.06	<10	306	<10	19	112
71	31221	0.7 0.2	24 1	1145	75	15	>10	12	48	36	46	8.70	<10	3.15 1715	4	0.02	38	470	6	35	<20	176	0.05	<10	36	<10	<1	74
106	31256	<0.2_0.3	38	250	70	15	>10	2	43	33	57	8.12	<10	3.01 1531	4	0.02	36	660	12	20	<20	112	0.05	<10	43	<10	5	73
141	31414	1.7 0.2	26 2	205	80	20	5.96	17	54	29	70	>10	<10	2.89 1974	5	0.01	42	620	12	10	<20	158	0.06	<10	28	<10	<1	71
Standa	rd:																											
Pb113		11.3 0.2	28	60	65	<5	1.78	41	3	6 2	2380	1,12	<10	0.12 1605	64	0.02	į	70 -	5332	20	<20	72	0.02	<10	10	<10	3.6	3901
P5113		1 1.5 0.2	25	55	60	<5	1.87	41	4	6 3	2355	1.16	<10	0.13 1537	62	0.02	3	70 :	5400	25	<20	73	0.01	<10	12	<10	2.6	;922
P5113		11.0 0.2	28	65	70	<ð	1.93	42	4	7 3	2385	1.17	<10	0.14 1570	63	0.02	5	50 -	5316	15	<20	65	<0.01	<10	13	<10	47	'085
Pb113		11.6 0.2	28	65	70	~:5	1.88	41	4	7 2	2337	1.16	<10	0.12 1543	60	0.02	5	60	553 8	20	<20	69	< 0.01	<10	14	<10	27	008
Pb113		11.1 0.2	27	70	60	<5	191	43	4	6 2	2384	1.17	<10	0.10 1568	61	0.02	4	60 :	5550	15	<20	68	<0.01	<10	14	<10	17	062

ECO TEOT LABORATORY LTD. Juttar Jealouse B.C. Certified Assayer

JJ/sa di/7092 XLS/07

Page 5

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 2007-7102

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

Phone: 250-573-5700 Fax : 250-573-4557

- .

No. of samples received: 166 Sample Type: Core **Project: Taurus Shipment #:07-005** Submitted by: Lesley Hunt/Mike Glover

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	ប	v	W	Y	Zn
1	G31415	1.5 0.07	2495	30	<5	0.98	<1	15	111	5	3.01	<10	0.19	141	<1	<0.01	15	150	4	<5	<20	20	0.02	<10	5	<10	<1	9
2	G31416	0.6 0.28	4205	65	5	9.56	4	37	25	42	7.85	<10	2.67	1472	3	0.01	33	520	8	15	<20	173	0.05	<10	22	<10	<1	50
3	G31417	<0.2 2.13	45	60	5	>10	1	39	54	48	8.03	<10	3.09	1453	4	0.02	37	480	28	15	<20	80	0.06	<10	155	<10	2	69
4	G31418	<0.2 2.66	30	50	15	>10	2	48	50	67	9.01	<10	3.02	1661	5	0.02	39	850	34	10	<20	99	0.07	<10	263	<10	5	79
5	G31419	<0.2 3.20	10	45	10	8.71	2	45	54	60	9.37	<10	3.02	1648	5	0.02	42	850	40	25	<20	82	0.07	<10	343	<10	3	88
6	G31420	<0.2 1.77	40	115	5	1.61	<1	27	893	65	3.39	<10	0.79	520	12	0.15	695	610	30	<5	<20	44	0.12	<10	74	<10	4	30
7	G31421	<0.2 1.73	50	80	<5	8.46	2	43	52	133	9.21	<10	2.72	1416	5	0.02	44	620	24	5	<20	86	0.06	<10	103	<10	<1	87
8	G31422	<0.2 1.77	30	50	10	9.27	2	47	30	69	9.30	<10	2.88	1505	5	0.04	41	760	24	15	<20	65	0.06	<10	107	<10	<1	91
9	G31423	0.2 0.50	455	65	10	>10	3	42	24	46	8.22	<10	2.82	1502	5	0.02	34	650	10	20	<20	143	0.05	<10	38	<10	4	61
10	G31424	0.8 0.26	2305	75	10	5.43	1	50	31	47	>10	<10	2.43	1293	5	0.01	48	380	8	10	<20	143	0.07	<10	26	<10	<1	42
4.4	001405	-0.0 1 17	400	<i></i>	-5	- 40	~	40	40	04	7 20	-10	2.05	1007	c	0.04	20	000	20	20	<00	100	0.05	-10	450	-10	44	04
11	G31425	<0.2 1.47	180	00	<0	210	2	49	49	01	1.20	510	2.00	1027	o C	0.01	32	000	20	20	~20	129	0.05	< 10	152	< 10	11	94
12	G31426	<0.2 3.10	35	00	10	9.46	3	48	49	04	>10	<10	3.39	1009	v E	0.02	40	800	30	15	<20	100	0.07	<10	207	<10	10	00
13	G31427	<0.2 2.75	40	90	10	>10	2	49	44	00	9.12	< 10	3.20	1700	э 7	0.01	30	700	34	10	<20	103	0.07	< 10	201	< 10	13	84
14	G31428	<0.2 3.33	40	70	10	>10	2	48	58	49	>10	< 10 - 40	3.69	1700		0.01	40	600	40	20	<20	305	0.07	< 10	249	< 10	2	Ø/
15	631429	2.7 0.93	415	70	Э	9.64	o	40	50	00	0.32	< 10	2.40	1365	5	0.01	55	090	10	30	~20	135	0.05	<10	۲2	< 10	0	551
16	G31430	<0.2 1.79	35	120	<5	1.64	<1	28	889	65	3.42	<10	0.80	526	12	0.15	693	620	30	<5	<20	45	0.12	<10	75	<10	4	31
17	G31431	<0.2 1.99	195	70	10	>10	2	50	43	60	8.71	<10	3.34	1490	6	0.02	47	660	26	20	<20	84	0.06	<10	133	<10	2	69
18	G31432	0.3 0.47	350	60	10	>10	1	41	45	53	6.50	<10	3.19	1468	2	0.01	51	310	10	10	<20	160	0.05	<10	49	<10	6	52
19	G31433	0.4 0.31	1660	60	10	>10	<1	38	47	45	6.29	<10	2.87	1354	2	0.01	47	420	8	15	<20	160	0.05	<10	33	<10	5	47
20	G31434	0.2 0.42	3055	60	<5	>10	<1	39	39	49	5.22	<10	3.13	1411	2	0.01	56	320	10	15	<20	152	0.04	<10	39	<10	8	43
21	G31435	<0.2 2.59	35	40	<5	9.76	1	44	168	70	6.91	<10	4.12	1352	4	0.04	68	440	32	15	<20	63	0.05	<10	150	<10	2	5 9
22	G31436	<0.2 1.61	45	45	<5	9.67	3	45	98	52	7.82	<10	3.60	1468	7	0.04	58	490	22	30	<20	69	0.05	<10	90	<10	3	67
23	G31437	<0.2 0.57	85	65	10	8.51	2	48	27	157	9.47	<10	2.77	1544	4	0.04	38	860	10	55	<20	73	0.06	<10	45	<10	<1	87
24	G31438	0.9 0.31	9660	70	5	8.54	<1	45	36	126	8.82	<10	2.33	1383	2	0.01	35	910	8	15	<20	161	0.06	<10	33	<10	1	43
25	G31439	<0.2 0.72	60	70	10	8.56	3	42	14	28	>10	<10	2.41	1659	6	0.03	29	1020	12	10	<20	78	0.07	<10	40	<10	<1	9 5

· .

	Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
1	26	G31440	0.5 0.54	165	45	<5	0.24	<1	21	643	73	2.86	<10	0.11	187	10	0.01	512	300	14	<5	<20	4	0.02	<10	21	<10	4	38
	27	G31441	0.6 0.56	5975	90	10	8.51	<1	48	21	41	>10	<10	2.43	1636	6	0.02	38	1040	12	10	<20	140	0.08	<10	35	<10	<1	65
	28	G31442	<0.2 2.49	30	40	15	4.83	<1	33	127	86	3.55	<10	1.83	690	1	0.03	51	370	40	10	<20	26	0.22	<10	79	<10	<1	38
	29	G31443	<0.2 0.54	115	50	15	9.01	2	41	17	29	>10	<10	2.27	1450	4	0.05	27	1000	10	10	<20	67	0.07	<10	51	<10	<1	96
	30	G31444	<0.2 0.91	585	70	20	8.61	2	57	23	19	>10	<10	2.36	1859	5	0.05	43	990	16	<5	<20	72	0.08	<10	71	<10	<1	125
	31	G31445	0.2 0.31	>10000	70	15	6 25	<1	54	43	q	>10	<10	2 19	1481	4	0.01	30	1920	12	15	<20	171	0.07	<10	36	<10	З	20
	22	G31446	0.2 0.31	5300	75	20	6.40	~1	48	20	28	>10	<10	2.15	1580	- -	0.01	36	050	10	-5	~20	157	0.07	<10	33	~10	~1	49
	32	G31440	<0.2 0.34	1830	60	5	9.72	2	41	20	20	8 18	<10	2.40	1511	8	0.01	18	640	8	25	<20	137	0.07	<10	35	<10	~1	40 56
	24	G31447	<0.2 0.34	205	55	<5	>10	2	43	25	40	8.04	<10	3.01	1506	3	0.02	43	620	8	20	<20	68	0.04	<10	33	<10	21	72
	35	G31440	<0.2 0.30	530	55	<5	>10	1	40	20	48	7.83	<10	2.95	1466	4	0.02	42	630	10	25	<20	72	0.05	<10	30	<10	2	60
	00	001440	~0.2 0.47	000	00	~0	- 10		72	27	-10	1.00	10	2.30	1400	-	0.02	72	000	10	20	-20	12	0.00	~10	52	-10	2	00
	36	G31450	2.2 0.29	325	40	<5	0.32	<1	11	30	56	3.36	<10	0.04	150	7	0.01	14	430	24	15	<20	5	0.02	<10	16	<10	5	96
	37	G32001	<0.2 0.50	90	50	<5	9.64	1	43	29	62	8.24	<10	2.96	1463	3	0.04	42	640	10	15	<20	51	0.06	<10	40	<10	<1	81
	38	G32002	<0.2 0.48	210	55	<5	8.96	1	45	39	244	8.05	<10	2.10 2	2084	3	0.03	49	580	8	10	<20	53	0.06	<10	41	<10	<1	93
	39	G32003	<0.2 0.44	150	55	<5	>10	1	42	26	58	8.08	<10	3.28	1487	3	0.05	40	740	8	10	<20	65	0.06	<10	40	<10	2	65
	40	G32004	<0.2 0.61	100	50	<5	>10	1	43	28	56	8 .11	<10	2.99	1420	4	0.07	41	810	12	15	<20	64	0.06	<10	47	<10	5	69
	41	G32005	<0.2 0.41	65	45	10	>10	2	36	46	61	7.19	<10	2.71	1332	2	0.07	31	1230	10	10	<20	64	0.05	<10	45	<10	10	46
	42	G32006	<0.2 2.37	25	40	10	9.15	1	45	43	56	9.24	<10	3.23	1690	4	0.04	33	830	32	10	<20	52	0.07	<10	217	<10	<1	92
	43	G32007	<0.2 4.28	15	45	10	8.87	3	46	52	66	9.47	<10	3.36	1591	10	0.02	36	890	56	30	<20	60	0.09	<10	363	<10	<1	94
	44	G32008	<0.2 3.28	50	45	10	9.46	2	46	46	54	9.42	<10	3.28	1623	7	0.03	35	870	46	20	<20	49	0.07	<10	278	<10	<1	91
	45	G32009	<0.2 1.76	220	65	5	>10	2	47	28	54	9.61	<10	3.20	1580	5	0.03	34	870	28	25	<20	86	0.07	<10	112	<10	<1	92
	46	G32010	<0.2 1.82	45	115	<5	1.68	<1	28	887	65	3.44	<10	0.80	526	14	0.16	692	630·	36	<5	<20	48	0.13	<10	75	<10	6	32
	47	G32011	2.2 0.54	>10000	70	5	7.07	8	45	38	36	9.37	<10	2.45	1215	4	0.02	32	420	14	20	<20	158	0.06	<10	23	<10	<1	39
	48	G32012	0.3 0.95	720	60	10	9.80	2	47	14	54	9.33	<10	3.04	1497	5	0.02	34	870	18	25	<20	104	0.06	<10	30	<10	<1	80
	49	G32013	<0.2 1.14	>10000	60	5	>10	2	48	26	72	9.56	<10	2.76	1387	3	0.02	33	620	20	25	<20	137	0.06	<10	24	<10	<1	97
	50	G32014	<0.2 1.27	130	55	10	>10	2	45	14	60	9 .11	<10	2.99	1549	4	0.04	33	840	20	25	<20	82	0.06	<10	35	<10	<1	82
	51	G32015	<0.2 1.49	45	45	15	9.65	2	44	40	58	9.09	<10	3.13	1458	5	0.05	33	850	24	10	<20	47	0.06	<10	109	<10	<1	86
	52	G32016	<0.2 2.97	80	55	5	9.42	2	47	39	57	9.76	<10	3.42	1576	7	0.03	35	820	42	20	<20	54	0.06	<10	220	<10	<1	91
	53	G32017	<0.2 2.73	150	45	10	8.84	2	48	44	75	9.14	<10	3.20	1545	6	0.02	36	840	40	20	<20	52	0.06	<10	227	<10	<1	89
	54	G32018	<0.2 0.82	405	60	10	>10	1	44	32	64	7.22	<10	2.85	1563	3	0.02	34	560	16	10	<20	107	0.05	<10	72	<10	4	55
	55	G32019	<0.2 3.05	20	40	10	>10	2	47	67	71	8.12	<10	3.63	1753	6	0.02	40	520	42	25	<20	103	0.07	<10	277	<10	5	75
	56	G32020	07.058	180	50	<5	0.27	<1	23	691	77	2,99	<10	0.12	199	10	0.01	554	330	16	<5	<20	5	0.02	<10	23	<10	4	40
	57	G32021	<0.2 4.06	25	40	10	9.71	<1	47	68	54	8.77	<10	3.77	1646	6	0.02	39	710	58	20	<20	119	0.10	<10	352	<10	<1	81
	58	G32022	<0.2 3.76	15	40	.5	9.44	2	43	49	97	7.93	<10	3.09	1497	5	0.01	37	710	54	20	<20	85	0.08	<10	311	<10	<1	83
	59	G32023	<0.2 3.95	15	35	10	9.85	1	46	51	60	8.73	<10	3.31	1624	5	0.02	32	910	52	10	<20	79	0.09	<10	356	<10	<1	86
	60	G32024	<0.2 4.36	15	40	10	8.95	1	45	51	55	8.99	<10	3.27	1488	5	0.02	33	860	62	10	<20	73	0.11	<10	367	<10	<1	90
	61	G32025	<0.2 4 19	45	45	<5	9.68	1	45	50	54	9.08	<10	3.36	1527	6	0.02	34	890	58	15	<20	61	0.10	<10	354	<10	<1	89
	62	G32026	<0.2 2.97	55	40	10	9.31	2	46	45	63	9.25	<10	3.37	1641	6	0.03	34	860	42	15	<20	61	0.06	<10	267	<10	<1	91
	63	G32027	<0.2 2.85	65	40	10	9.35	2	46	47	57	9.07	<10	3.33	1650	6	0.03	34	870	44	15	<20	62	0.07	<10	291	<10	<1	89
	64	G32028	<0.2 1.08	2475	60	<5	>10	6	45	23	58	8.75	<10	2.97	1572	7	0.03	35	640	18	45	<20	102	0.05	<10	49	<10	<1	76
	65	G32029	<0.2 0.92	155	55	10	8.96	3	46	18	57	9.17	<10	3.11	1521	5	0.03	36	840	16	25	<20	80	0.06	<10	42	<10	<1	90
								-	· +				. –			-													

-. Cusac Gold Mines Ltd.

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg% Mn	Мо	Na %	Ni	<u>P</u>	Pb	Sb	Sn	Sr	Ti %	υ	V	W	Y	Zn
66	G32030	2.2 0.28	310	40	<5	0.33	<1	11	29	57	3.32	<10	0.05 150	7	0.01	14	440	26	25	<20	4	0.02	<10	16	<10	6	93
67	G32031	<0.2 0.41	100	80	15	9.78	3	45	24	31	8.78	<10	3.40 1736	6	0.02	33	630	10	25	<20	114	0.06	<10	39	10	<1	362
68	G32032	<0.2 0.26	195	65	15	>10	3	44	23	35	8.84	<10	3.01 1583	4	0.02	33	700	8	20	<20	136	0.06	<10	30	<10	3	64
69	G32033	0.2 0.71	9585	60	15	>10	35	40	37	39	8.46	<10	2.86 1427	4	0.02	28	560	16	25	<20	167	0.06	<10	27	<10	3	56
70	G32034	0.2 0.56	>10000	60	15	>10	35	42	34	31	8.71	<10	2.95 1571	4	0.02	30	590	16	25	<20	209	0.06	<10	27	<10	4	53
71	G32035	<0.2 3.84	55	40	15	9 94	1	48	53	60	9.58	<10	3.30 1506	5	0.02	33	970	64	5	<20	76	0.08	<10	293	<10	10	96
72	G32036	<0.2 0.57	90	55	5	9 55	3	46	31	52	8.82	<10	3.25 1457	3	0.05	38	790	14	15	<20	80	0.06	<10	44	<10	3	76
73	G32037	03 070	3595	60	10	>10	11	45	33	33	8 83	<10	3.37 1613	4	0.02	41	430	16	30	<20	181	0.06	<10	36	<10	4	58
74	G32038	<0.2 0.89	1130	55	<5	>10	 م	44	40	47	8.37	<10	3 09 1641	6	0.02	41	730	20	40	<20	88	0.05	<10	103	<10	7	62
75	632039	<0.2 0.53	55	50	10	>10	2	24	59	14	6 4 1	<10	2 72 1701	3	0.04	28	440	12	20	<20	82	0.00	<10	112	<10	23	<u>11</u>
10	002000	-Q.2 Q.00	00	00	10	- 10	~	27	00	14	0.41	10	2.72 1101	v	0.04	20		12	20	-20	02	0.00	10	112	10	20	
76	G32040	<0.2 1.89	65	115	10	1 72	<1	20	020	68	3 56	<10	0.83 542	14	0.16	726	720	40	5	<20	48	0.14	<10	78	<10	R	22
77	G32040	<0.2 1.03	55	45	5	510	-1	11	57	63	6.23	<10	2 31 1396	2	0.10	37	880	20	15	-20		0.14	210	197	<10	23	85
79	G32041	<0.2 1.02	40	40 60	10	>10	~1	41	72	63	8.20	210	2.01 1000	6	0.07	41	1010	64	15	~20	115	0.00	~10	315	<10	15	83
70	G32042	<0.2 0.07	30	80	10	>10	1	41	62	60	8.56	~10	2.73 1433	2	0.02	28	870	26	5	~20	83	0.00	~10	277	<10	10	85
20	G32043	<0.2 1.50	65	45	-5	>10	-1	28	112	86	5.86	~10	2.30 1731	2	0.02	10	710	20	15	~20	87	0.07	~10	143	~10	10	60
00	052044	NO.2 1.04	03	40	~5	-10	N	20	115	00	5.00	~10	2.10 2001	2	0.01	15	710	20	15	~20	Q1	0.00	510	140	<1 0	19	00
81	G32045	<0.2.2.55	70	50	<5	9 72	1	46	50	72	8 97	<10	3 09 1415	4	0.02	42	880	42	10	<20	63	0.07	<10	206	<10	ર	88
82	G32046	<0.2 2.00	70	40	10	0.04	2	47	58	57	8.57	<10	3 24 1417	т А	0.02	30	890	42	20	<20	50	0.06	<10	200	<10	ă	an
83	G32040	<0.2 2.00	145	50	10	5.54	1	45	45	54	8 30	<10	3 10 1820	5	0.02	30	860	28	20	<20	67	0.00	<10	158	<10	4	87
0.0	632047	<0.2 1.07	265	65	20	510	3	47	22	ب ر م	0.00	<10	3 82 2055	5	0.02	43	1050	14	15	~20	126	0.00	~10	44	~10	10	40
04 95	C32040	<0.2 0.00	110	75	15	0 70	5	52	42	25	0.65	~10	3.02 2000	7	0.00	47	700	26	26	~20	67	0.07	~10	125	<10	5	70
60	052049	NO.2 1.04	110	13	13	9.19	2	Jz	42	50	9.00	~10	0.00 1002	,	0.02		150	20	25	~20	07	0.00	510	155	510	3	12
86	G32050	07 057	200	50	5	0.26	<1	23	667	77	2 08	<10	0 12 10/	10	0.01	533	340	20	<5	< 20	10	0.02	<10	23	<10	7	<i>A</i> 1
87	G31351	<0.2 1.22	110	50	10	>10	1	43	1002	40	7.92	<10	2 74 1594	4	0.07	51	700	20	20	<20	54	0.06	<10	100	<10	10	77
88	C31352	<0.2 1.22	85	40	20	>10	<1	48	162	62	9.02 Q.07	<10	3 95 1501	7	0.02	62	820	68	25	<20	46	0.00	<10	273	<10	7	70
80	G31353	<0.2 3.61	65	40	20	A 05	- i - i	47	160	70	7.24	<10	3 30 1169	Ś	0.02	55	780	64	25	<20	20	0.10	<10	261	<10	15	68
03	G31354	<0.2 3.01	40	40	20	3.83	c1	40	140	7.5 - 2.1	6 17	<10	2 40 1041	্র	0.02	<u>/0</u>	960	52	15	<20	24	0.27	<10	186	<10	15	64
30	001004	N.2 2.01	70	40	20	5.05	~1	40	140	01	0.17	~10	2.40 1041	0	0.00	-0	000	52	10	~20	24	0.00	~10	100	~10	10	04
Q1	G31278	<0.2 4.34	140	70	15	6.81	1	48	36	50	>10	<10	3 13 1795	6	0.02	31	1040	72	10	<20	41	0.12	<10	410	<10	<1	111
92	G31279	<0.2 4.35	90	45	10	>10	2	47	42	51	9.56	<10	3 30 1505	7	0.02	33	830	66	20	<20	70	0.10	<10	393	<10	3	93
92	G31280	23 0.30	335	40	<5	0.35	1	12	31	60	3.51	<10	0.05 158	8	0.01	15	480	28	20	<20	8	0.03	<10	17	<10	้ลั	98
94	G31281	<0.2 4 15	55	45	20	>10	, 1	51	94	82	8.28	<10	3 98 1607	5	0.02	45	600	68	25	<20	69	0.25	<10	300	<10	22	80
94 95	G31282	<0.2 2.68	45	120	15	3.88	, <1	42	92	75	5.81	<10	2 63 1083	2	0.04	38	620	52	15	<20	37	0.30	<10	179	<10	17	59
~~	QUILOZ	-0.2 2.00	40	120	10	0.00	••	72	02	.0	0.01	-10	2.00 1000	-	v.v .		020	01	10	-20		0.00	- 10		-10		00
96	G31283	<0.2 3.33	45	40	20	6.98	1	49	82	70	7 26	<10	3 25 1384	8	0.03	44	710	58	45	<20	43	0.36	<10	248	<10	13	75
97	G31284	<0.2 2.68	40	90	30	3.08	<1	51	62	69	6.65	<10	2.31 1257	2	0.05	37	1010	56	20	<20	19	0.54	<10	200	<10	<1	78
98	G31285	<0.2 3.08	35	75	25	3.94	<1	54	62	80	7.62	<10	2.71 1315	4	0.03	40	990	58	20	<20	21	0.49	<10	242	<10	<1	86
99	G31286	<0.2 3.89	30	45	30	9.02	<1	48	91	63	7 97	<10	3 64 1454	5	0.03	42	630	70	25	<20	74	0.22	<10	298	<10	18	76
100	G31287	<0.2 2.17	65	50	5	9.97	2	48	84	64	7 79	<10	3 86 1467	5	0.03	45	540	38	15	<20	88	0.06	<10	217	<10	7	73
100	001201	-0.2 E.11		ŶŶ	Ŭ	0.07	•	.0	•••	•••			0.00 1101		0.00		•.•					0.00				•	
101	G31288	02019	2000	65	15	>10	15	46	30	34	7 84	<10	3 56 1545	4	0.01	44	280	12	25	<20	264	0.06	<10	21	<10	7	40
102	G31289	07 025	6135	75	15	9.32	31	54	36	49	9.69	<10	2.88 1481	4	0.02	40	610	8	15	<20	198	0.06	<10	27	<10	<1	50
103	G31290	0.6 0.56	185	40	<5	0.25	<1	22	666	76	2.97	<10	0.11 192	11	0.01	540	340	16	<5	<20	4	0.02	<10	22	<10	5	41
104	G31291	07 0.23	2130	70	<5	8.48	12	42	48	126	8.55	<10	2.26 1238	4	0.01	38	630	8	15	<20	169	0.05	<10	25	<10	<1	56
- 105	G31292	<0.2 0.72	50	60	10	8.63	2	46	35	55	9.87	<10	2.68 1439	3	0.03	37	910	16	10	<20	55	0.07	<10	69	<10	<1	98
	001202	-0.2 0.7Z	00	~~	10	0.00	£.		00	~~	0.01			~	Q.QQ	÷.	0.0				00			00		•	~~

148

- .

ICP CERTIFICATE OF ANALYSIS AK 2007-7102

-	Et #.	Tag #	Ag Al %	As As	Ba	_ Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg% Mn	Mo	<u>Na %</u>	Ni	<u>P</u>	Pb	Sb	Sn	<u>Sr</u>	<u>Ti %</u>	υ	<u> </u>	W	<u>Y</u>	Zn
-	106	G31293	2.0 0.23	>10000	70	15	9.11	87	43	41	72	8.53	<10	2.46 1411	4	0.02	35	750	10	30	<20	187	0.06	<10	25	<10	1	51
	107	G31294	<0.2 1.46	200	60	10	9.33	2	49	41	49	9.81	<10	2.72 1410	5	0.02	39	820	26	15	<20	54	0.06	<10	116	<10	<1	96
	108	G31295	<0.2 0.91	35	55	5	9.34	2	42	35	89	9.61	<10	2.54 1511	5	0.03	31	820	18	10	<20	53	0.06	<10	89	<10	<1	89
	109	G31296	0.4 0.29	4880	70	20	8.73	38	41	40	40	9.05	<10	2 29 1294	4	0.01	37	590	12	25	<20	138	0.06	<10	25	<10	<1	55
	110	G31297	<0.2 1.29	55	60	15	9.54	2	47	41	45	9.48	<10	2 71 1496	6	0.02	42	830	26	10	<20	68	0.06	<10	104	<10	1	87
	110	001207	W.E 1.20		00	10	0.04	2	-11		-10	0.40	10	2.71 1400		0.02	74.	000	20	10	-20	ΟQ	0.00	-10	104	-10	•	01
	111	G31298	<0.2 0.41	3410	70	<5	>10	23	46	36	29	8 22	<10	2.67 1553	. A	0.02	30	720	12	15	<20	168	0.06	<10	28	<10	2	45
	112	G31200	<0.2 0.41	5410	55	<5	0 37	<1	46	47	55	9.66	<10	2 90 1528	2	0.02	37	840	36	<5	<20	60	0.00	<10	186	<10	<1	03
	112	G31299	<0.2 2.00	55	120	10	9.97 1.73	~1	20	632	60	3.50	<10	0.84 542	· 14	0.02	721	700	40	~5	~20	15	0.07	<10	79	~10	7	23
	11.0	G31300	12 0.25	0675	00	10	6.70	72	29 50	53Z 61	00	5.50	~10	0.04 042	. 14 	0.10	50	740	40	20	~20	40	0.13	~10	10	<10	-1	40
	114	G31301	-0.2 0.33	105	75	15	510	10	JZ 40	20	40	0.45	~10	2.12 1203	, J	0.01	20	920	16	10	~20	97	0.07	~10	20	<10	~1	40
	115	G31302	×0.2 0.71	195	75	15	210	2	40	29	49	9.45	~10	2.77 1510	4	0.0Z	ిని	620	10	10	~ 20	07	0.06	510	01	<10	~ (04
	110	C24202	-0.2.2.04	00	66	40	>10	2	4.4	66	60	9.66	~10	3 35 1500	- 7	0.02	40	670	26	25	~20	70	0.00	~10	100	~10	~ 1	00
	110	G31303	<0.2 2.04	00	- 00 - 75	10	>10	3	44	00	00	0.00	\$10	3.30 1000		0.02	40	0/0	30	20	< <u>20</u>	70	0.06	\$10	195	<10	<1	02
	117	G31304	<0.2 0.55	120	15	10	>10	~ ~	48	20	40	1.30	< 10	4.10 2127	3	0.02	43	700	12	20	<20	105	0.06	<10	01	<10	8	57
	118	G31305	2.5 0.31	4//5	80	15	8.20	41	52	53	103	>10	<10	2.63 1373	4	0.01	45	630	14	15	<20	182	0.07	<10	30	<10	<1	73
	119	G31306	0.4 0.20	2995	60	10	9.10	29	34	75	30	5.71	<10	2.60 11/4	4	0.01	34	340	14	25	<20	209	0.04	<10	21	<10	9	- 33
	120	G31307	0.4 0.05	1070	15	<5	1.73	9	7	204	6	1.67	<10	0.41 236	2	<0.01	9	10	6	<5	<20	37	0.01	<10	7	<10	<1	155
								_																			_	
	121	G31308	<0.2 1.31	155	75	15	>10	3	51	50	60	7.75	<10	3.08 1795	4	0.02	48	740	28	20	<20	134	0.06	<10	131	<10	5	67
	122	G31309	<0.2 3.07	140	65	10	>10	2	51	58	63	>10	<10	3.28 1720	6	0.02	50	870	50	20	<20	88	0.07	<10	293	<10	4	100
	123	G31310	0.7 0.62	210	40	<5	0.29	<1	24	704	83	3.15	<10	0.14 207	12	0.01	569	370	20	10	<20	5	0.02	<10	25	<10	6	42
	124	G31311	<0.2 3.79	80	55	10	8.27	2	55	68	98	>10	<10	3.41 1599	6	0.02	45	1010	66	5	<20	59	80.0	<10	348	<10	2	115
	125	G31312	<0.2 2.67	120	125	10	>10	2	70	49	35	>10	<10	3.28 1780	5	0.02	70	1030	44	10	<20	86	0.07	<10	228	<10	2	99
															_													
	126	G31313	0.4 0.35	7105	75	15	6.97	67	48	46	29	>10	<10	2.51 1467	6	0.01	40	1160	12	15	<20	161	0.07	<10	39	<10	<1	43
	127	G31314	<0.2 0.83	575	70	15	>10	7	49	47	52	9.76	<10	2.37 1895	8	0.01	40	830	20	30	<20	72	0.06	<10	228	<10	2	99
	128	G31315	<0.2 0.58	205	80	<5	>10	3	49	37	52	9.97	<10	2.78 1887	4	0.01	37	930	12	15	<20	98	0.07	<10	141	<10	1	87
	129	G31316	0.3 0.29	3300	90	<5	>10	28	44	24	35	>10	<10	3.09 1739	5	0.02	39	770	10	25	<20	176	0.07	<10	37	<10	<1	58
	130	G31317	0.3 0.17	>10000	70	<5	6.76	85	54	124	10	6.08	<10	1.64 877	3	0.01	56	160	10	10	<20	145	0.04	<10	19	<10	<1	24
	131	G31318	0.9 0.49	2005	75	5	7.11	38	49	46	68	9.74	<10	3.06 1554	5	0.03	41	670	12	15	<20	86	0.06	<10	60	<10	<1	87
	132	G31319	<0.2 0.37	320	70	<5	>10	4	42	44	42	7.55	<10	3.79 1558	4	0.02	56	430	6	15	<20	136	0.05	<10	46	<10	<1	54
	133	G31320	<0.2 1.95	60	120	10	1.72	<1	29	933	70	3.61	<10	0.87 545	13	0.16	727	690	38	<5	<20	48	0.16	<10	80	<10	10	32
	134	G31321	<0.2 0.94	100	60	5	>10	2	43	67	67	7.31	<10	3.78 1520	4	0.04	65	350	18	30	<20	80	0.05	<10	79	<10	8	59
	135	G31322	<0.2 1.45	35	55	10	>10	3	46	93	54	8.35	<10	3.94 1625	5	0.05	61	500	26	15	<20	52	0.06	<10	101	<10	9	68
	136	G31323	<0.2 0.46	65	75	10	9.59	3	59	44	203	>10	<10	3.28 1341	5	0.08	47	690	10	20	<20	41	0.06	<10	65	<10	<1	73
	137	G31324	<0.2 1.00	80	65	10	>10	2	45	48	54	8.69	<10	3.65 1406	4	0.07	55	580	18	30	<20	73	0.06	<10	50	<10	<1	75
	138	G31325	<0.2 0.44	1330	75	<5	9.33	15	45	50	76	8.06	<10	3.62 1309	7	0.04	48	630	8	35	<20	93	0.05	<10	46	<10	<1	72
	139	G31326	<0.2 0.35	1050	85	10	9.81	13	53	48	98	8.54	<10	3.57 1252	5	0.02	61	550	8	25	<20	152	0.05	<10	37	<10	<1	54
	140	G31327	<0.2 0.39	100	75	<5	9.98	3	48	39	73	8.08	<10	3.62 1209	4	0.03	45	620	10	25	<20	81	0.05	<10	37	<10	<1	71
	141	G31328	<0.2 0.52	105	60	10	>10	2	53	41	53	8.70	<10	3.95 1463	4	0.03	54	550	12	25	<20	69	0.06	<10	50	<10	<1	83
	142	G31329	<0.2 0.78	75	55	10	>10	3	47	47	56	8.19	<10	3.51 1268	6	0.05	44	560	14	20	<20	57	0.05	<10	52	<10	<1	75
	143	G31330	2.3 0.31	315	40	<5	0.36	4	12	31	63	3.57	<10	0.06 161	8	0.01	15	480	26	25	<20	5	0.02	<10	17	<10	8	100
	144	G31331	<0.2 0.51	755	70	10	>10	11	45	38	56	8.22	<10	3.53 1272	4	0.04	43	530	12	20	<20	81	0.05	<10	42	<10	<1	71
	. 145	G31332	0.2 0.38	1035	70	10	>10	14	42	37	95	7.95	<10	3.51 1346	5	0.03	49	490	10	40	<20	95	0.05	<10	32	<10	<1	70

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	<u>P</u>	Pb	Sb	<u>Sn</u>	Sr	Ti %	U	V	W	Y	Zn
146	G31333	0.2 0.36	125	75	10	>10	4	44	47	60	7.76	<10	3.46 1	307	5	0.03	47	510	10	35	<20	114	0.05	<10	33	<10	<1	95
147	G31334	5.1 0.28	4575	95	<5	>10	50	46	47	210	8.27	<10	3.25 1	296	4	0.02	52	370	10	70	<20	217	0.06	<10	29	<10	<1	69
148	G31335	0.6 0.29	2980	95	15	>10	39	45	46	50	7.79	<10	3.34 1	309	6	0.02	48	430	8	40	<20	166	0.05	<10	31	<10	1	60
149	G31336	0.7 0.32	3545	85	30	>10	49	52	33	61	9.66	<10	3.35 1	461	5	0.02	38	830	12	15	<20	216	0.07	<10	34	<10	6	56
150	G31337	1.2 0.27	2205	100	10	7.11	28	50	40	47	>10	<10	3.02 1	374	5	0.02	36	610	10	15	<20	173	0.07	<10	32	<10	<1	48
															-												•	
151	G31338	<0.2 0.47	110	80	20	>10	3	47	26	63	9.44	<10	3.47.1	614	4	0.03	34	880	10	15	<20	91	0.06	<10	52	<10	1	83
152	G31339	<0.2 1.84	60	90	20	>10	3	47	46	61	9.45	<10	3 53 1	511	6	0.03	34	830	30	15	<20	70	0.06	<10	143	<10	4	91 91
153	G31340	07 062	215	50	<5	0.29	<1	24	710	84	3 15	<10	0.00 /	205	13	0.01	570	370	18	15	<20	6	0.02	20	25	<10	4	<u>4</u> 1
154	G31341	<0.2 3.03	45	60	10	>10	<1	50	70	82	0.10	<10	3 95 1	605	5	0.03	42	680	50	20	<20	72	0.02	<10	278	<10	10	20
155	C31342	<0.2 0.00	15	60	15	>10	2	45	58	57	8 70	<10	3 41 1	660	5	0.00	35	640	46	10	<20	102	0.07	<10	275	<10	3	85
100	001042	-0.2 2.01	10	00	10	- 10	-	-0	00	01	0.10	10	0.711	000	Ŭ	0.02	00	040	-0	10	~20	IVZ	0.07	-10	210	510	v	00
156	G313/13	<0.2 3.87	50	85	15	>10	2	52	17	67	Q Q7	<10	3 56 1	674	7	0.02	28	1030	60	10	<20	77	0.08	<10	350	<10	R	03
157	G31344	04 057	1255	80	20	>10	20	10	22	40	0.35	<10	3 32 1	755	Ŕ	0.02	36	2630	16	40	<20	212	0.00	120	72	<10	12	67
150	021245	0.4 0.07	010	75	20	0.62	12	40	20		9.55	~10	3 36 1	572	4	0.02	25	600	21	10	~20	120	0.00	~10	25	<10	10	62
150	C21246	0.0 0.40	155	20	~5	9.02	13	42 64	42	125	6.00 5.57	210	1.00 1	607	7	0.02	2.J 55	5460	20	25	~20	554	0.00	~10	102	~10	15	00
109	031340	0.5 2.00	100 646	20	~5	2 04	່ ເ	- 54	40	130	1 76	210	0.04	420	-1	-0.0Z	00	5400	20	20	<20	304	0.05	~10	193	~10	10	00
100	651347	0.2 0.00	013	30	<0	0.91	0	1	130	1	1.70	< 10	0.24	128	~1	<0.01	0	00	2	<0	<20	19	0.01	510	5	510	51	4
161	C21249	11 054	6045	00	20	0.20	01	16	20	60	0.75	<10	2 4 7 1	400	6	0.01	25	540	£	20	~20	201	0.06	~10	20	~10	2	52
101	031340		1040	105	20	0.00	20	40	20	47	9.10	<10	2.47 1	499	5	0.01	30	040 600	0	20	~20	221	0.00	~10	30	<10 <10	~	00
102	031349	<0.2 0.45 0.7 0.57	1240	105	20	0.90	20	40	31 649	47	0.70	<10	0.40 1	104	10	0.02	00	200	10	20	<20	144	0.00	<10	40	<10 <10	4	24
103	G31300	10.7 0.57	120	50 05	<0 40	0.24	1	20	042	03	2.79	S IU 	0.13	100		0.01	494	290	10	< D	<20	4	0.02	< 10	21	< 10	4	32
104	G32101	<0.2 0.59	245	90	10	0.97	0	44	30	94	8.30	< 10	3.711	202	c v	0.02	49	080	0	10	<20	101	0.06	<10	42	<10	ঁ	13
100	G32102	0.4 0.37	1630	90	10	9.65	21	40	47	44	0.02	<10	3.33 1	401	4	0.01	43	450	8	10	<20	200	0.06	<10	34	<10	1	47
165	G32103	0.4 0.39	60	80	5	8.64	4	4Z	30	53	8.20	<10	3.82 1	428	S	0.02	35	640	ю	15	<20	91	0.06	<10	44	<10	1	58 C
	۸.																											
Bonoat:	<u> </u>																											
repeat.	C21415	16 0.07	2560	20	5	1.00	~1	16	112	6	2.09	~10	0.20	145	-1	<0.01	14	160	A	-5	<20	10	0.02	~10	5	<10	~1	0
10	G31413	0.0007	2000	30	15	1.00	~1	50	21	10	5.00	>10	0.20	070	- i E	~0.01	14	200	4	45	<20	15	0.02	< 10		<10	~1	0 40
10	G31424	0.0 0.23	2300	()	10	5.05	Z	20	اد 47	40	210 6.40	510	2.09 1	270	2	0.01	49	300	10	10	~20	100	0.07	<10	20	< 10	~1	40
19	G31433	0.5 0.50	245	00	<0	210	< 1 	39	47	40	0.40	~10	2.09 1	310	נ ד	0.01	11	430	0	20	×20 ×20	102	0.05	< 10	33	< 10	5	40
30	G31450	2.2 0.28	310	40	<0	0.33	< i	11	29	50	3.32	510	0.00	100	~	0.01	14	430	24	20	<20	1	0.02	< 10	10	< 10	0	93
45	G32009	<0.2 1.00	195	55	10	>10	4	40	27	21	9.27	<10	3.001	000	9	0.02	31	630	24	40	<20	81	0.05	<10	107	<10	<1	87
54	G32018	<0.2 0.81	405	00	15	>10	2	43	32	00	1.20	<10	2.85 1	201		0.02	30	290	10	15	<20	107	0.00	<10	12	<10	4	Q4
/1	G32035	<0.2 3.95	50	45	10	>10	1	49	54	62	9.68	<10	3.40 1	523	5	0.02	35	950	64	15	<20	79	0.08	<10	299	<10	9	96
80	G32044	<0.2 1.05	50	40	<5	>10	1	28	137	85	5.9Z	<10	2.72.2	700	4	0.01	22	700	20	20	<20	86	0.06	<10	144	<10	18	67 70
89	G31353	<0.2 3.97	00	45	25	7.01	<1	51	185	79	7.68	<10	3.611	258	4	0.03	59	760	68	20	<20	30	0.35	<10	275	<10	12	/5
106	G31293	2.1 0.25	>10000	75	20	9.15	103	48	43	74	8.84	<10	2.60 1	465	3	0.02	38	780	12	30	<20	203	0.06	<10	26	<10	2	52
115	G31302	<0.2 0.73	180	80	10	>10	3	41	31	50	9.35	<10	2.77 1	489	3	0.02	39	830	16	10	<20	91	0.07	<10	62	<10	<1	08
124	G31311	<0.2 4.02	65	70	20	8.78	1	64	73	100	>10	<10	3.62 1	715	4	0.02	48	1050	60	<5	<20	63	0.09	<10	384	<10	<1	122
141	G31328	<0.2 0.55	110	65	10	>10	3	52	43	55	8.78	<10	4.02 1	481	5	0.03	55	560	12	15	<20	74	0.06	<10	51	<10	<1	84
150	G31337	0.9 0.27	2085	100	20	6.95	34	47	37	48	>10	<10	3.04 1	264	8	0.02	36	570	10	25	<20	161	0.05	<10	30	<10	<1	38
Resplit:					_			. –		-			• • -			~ ~ ·		100		_								-
1	G31415	1.2 0.09	2435	25	<5	1.07	<1	17	120	5	3.26	<10	0.25	163	<1	<0.01	19	160	6	<5	<20	19	0.02	<10	8	<10	<1	6
37	G31450	<0.2 0.47	100	50	10	9.53	3	44	29	59	8.15	<10	2.87 1	434	4	0.03	43	680	14	20	<20	48	0.05	<10	39	<10	3	/4
71	G32035	<0.2 3.82	65	40	10	9.98	1	48	52	60	9.49	<10	3.30 1	492	6	0.02	35	940	66	15	<20	17	0.07	<10	290	<10	8	95
106	G31293	2.2 0.26	>10000	80	20	9.28	134	48	50	92	9.28	<10	2.74.1	490	4	0.02	41	760	12	45	<20	219	0.07	<10	27	<10	1	53
141	G31328	<0.2 0.56	120	75	15	>10	5	47	42	53	8.20	<10	4.14 1	382	6	0.03	51	520	8	25	<20	74	0.06	<10	49	<10	2	74
• .																											150	

ECO TEC	H LABOI	RATORY LTD.					I	ICP CI	ERTIFICA	TE OF	ANAL	YSIS A	K 200	07- 71	02					8	Cusa	ac Gol	d Mine	s Lt	d.		
Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Co	Cr Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
Standard:																											
Pb113		10.8 0.26	65	65	<5	1.59	38	3	6 2283	1.06	<10	0.10 1	1518	61	0.02	1	70 5	5550	10	<20	69	0.02	<10	7	<10	<1 6	976
Pb113		11.6 0.26	60	70	<5	1.66	41	3	6 2318	1.08	<10	0.10	1542	64	0.02	2	60 5	5456	15	<20	67	0.02	<10	8	<10	<1 6	5907
Pb113		11.2 0.28	60	65	<5	1.74	42	3	5 2383	1.12	<10	0.12 1	1577	59	0.02	3	60 5	5426	10	<20	76	0.01	<10	9	<10	<1 6	5917
Pb113		10.4 0.28	55	60	<5	1.75	44	3	6 2349	1.12	<10	0.12 1	1579	58	0.02	2	70 5	5594	15	<20	73	0.01	<10	9	<10	<1 7	/085
Pb113		11.0 0.28	55	65	<5	1.68	42	2	5 2234	1.05	<10	0.13	1519	62	0.02	3	80 5	5538	10	<20	63	< 0.01	<10	8	<10	<1 7	094

ECO FECH LABORATORY LTD. Jutta Jealquise B/C. Certified Assayer

JJ/sa df/7102 XLS/07 .

.....

ECO TECH LABORATORY LTD. 10041 Dailas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

No. of samples received: 162 Sample Type: Core **Project: Taurus Shipment #:07-006** Submitted by: Lesley Hunt/Mike Glover .

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg% Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
1	G32104	0.8 0.44	1520	70	5	5.98	8	35	26	133	7.56	<10	3.32 1421	6	0.02	37	830	6	20	<20	176	0.06	<10	40	<10	<1	62
2	G32105	5.4 0.30	4155	50	<5	6.17	18	23	59	160	4.98	<10	2.64 1128	3	0.01	23	260	8	90	<20	287	0.05	<10	25	<10	2	76
3	G32106	1.0 0.37	1010	95	10	5.85	7	38	18	58	9.28	<10	3.85 1456	8	0.02	41	600	4	15	<20	214	0.07	<10	43	<10	<1	139
4	G32107	1.3 0.29	860	75	25	6.25	7	34	19	47	7.69	<10	3.39 1321	6	0.02	37	530	6	25	<20	304	0.06	<10	32	<10	<1	70
5	G32108	0.8 0.35	235	65	<5	5.20	3	27	51	45	6.00	<10	2.71 1138	5	0.02	41	430	4	15	<20	164	0.05	<10	37	<10	1	83
£	632109	05.030	455	65	10	6 80	4	28	49	22	5 71	<10	3 09 1214	6	0.02	38	520	4	20	~20	298	0.04	~10	38	<i>c</i> 10	з	34
7	632110	20027	370	40	5	0.30	-1	â	27	54	3.38	<10	0.05 135	ลื	0.01	13	320	22	20	<20	200	0.03	~10	14	~10	2	03
8	G32111	09028	1360	70	15	6.07	8	35	34	26	7.66	<10	3 18 1382	5	0.02	39	490	8	15	<20	331	0.06	<10	41	<10	3	35
ğ	G32112	12 0 41	1565	85	25	6.81	10	36	21	48	8.29	<10	3.28 1482	5	0.02	39	570	6	15	<20	268	0.07	<10	51	<10	3	51
10	G32113	0.5 0.48	175	65	20	7.74	3	27	32	22	6.54	<10	3.08 1346	5	0.04	28	500	6	10	<20	152	0.06	<10	57	<10	5	46
11	G32114	0.5 0.52	170	65	10	7.26	6	33	29	43	6.99	<10	3.43 1314	14	0.04	45	500	6	65	<20	189	0.03	<10	68	<10	4	58
12	G32115	0.5 0.33	315	55	15	6.61	3	28	43	34	6.31	<10	2.98 1135	4	0.03	28	530	6	10	<20	180	0.05	<10	47	<10	3	37
13	G32116	0.9 0.42	80	55	20	6.77	3	35	32	46	7,27	<10	3.63 1348	6	0.05	36	490	6	20	<20	165	0.06	<10	62	<10	4	55
14	G32117	0.4 0.38	35	110	15	6.76	3	28	37	44	6.91	<10	3.29 1262	5	0.05	31	420	4	15	<20	145	0.06	<10	67	<10	З	55
15	G32118	0.4 0.27	120	55	10	7.23	2	31	36	53	6.84	<10	3.06 1225	4	0.06	31	520	6	<5	<20	132	0.06	<10	48	<10	3	64
16	632119	05.030	125	70	15	6.93	А	35	36	43	B 14	~10	3 59 1441	6	0.04	48	620	А	20	~20	160	0.08	e10	51	~10	2	62
17	G32120	<0.2 1.75	30	110	10	1 75	ہ	27	892	63	3.33	<10	0.82 466	14	0.04	655	500	28	<5	~20	74	0.11	~10	72	~10	6	31
18	G32121	04 0 28	225	65	15	6.78	3	28	42	37	7 20	<10	3.29 1545	5	0.02	38	510	6	10	<20	183	0.06	<10	46	<10	1	65
19	G32122	0.9 0.22	1675	60	20	6.90	5	32	37	48	6.98	<10	3.16 1355	7	0.02	45	520	4	30	<20	320	0.05	<10	35	<10	<1	40
20	G32123	<0.2 0.05	325	20	10	3.40	<1	4	113	2	1.55	<10	0.89 407	<1	< 0.01	1	1340	2	<5	<20	135	0.03	<10	11	<10	4	6
21	G32124	1.1 0.26	3910	70	15	4.39	6	41	25	23	10.00	<10	3.42 1411	7	0.02	54	510	8	15	<20	288	0.08	<10	39	<10	<1	40
22	G32125	0.5 0.27	120	60	5	7.17	4	31	30	44	7.52	<10	3.50 1387	9	0.02	44	600	4	35	<20	179	0.05	<10	53	<10	2	72
23	G32126	0.5 0.36	100	80	10	6.69	2	31	36	49	7.63	<10	3.36 1379	5	0.01	48	400	4	15	<20	190	0.07	<10	57	<10	4	59
24	G32127	0.5 0.31	90	70	15	7.11	2	31	40	71	6.69	<10	3.46 1446	5	0.01	46	380	4	15	<20	182	0.06	<10	52	<10	6	55
25	G32128	0.5 0.34	75	95	15	7.56	2	28	46	45	6.51	<10	3.47 1463	5	0.01	44	380	4	10	<20	192	0.06	<10	54	<10	4	69

152

÷

. . . .

ICP CERTIFICATE OF ANALYSIS AK 2007-7124

Cusac Gold Mines Ltd.

٠

.

<u> </u>	Tag #	Ag Al %	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	<u>Na %</u>	Ni	<u>P</u>	Pb	Sb	Sn	Sr	Ti %	ບ	<u> </u>	W	Y	Zn
26	G32129	0.5 0.50	155	80	<5	6.93	3	37	46	68	7.04	<10	3.07	1531	6	0.02	58	420	4	25	<20	191	0.06	<10	76	<10	6	95
27	G32130	1.9 0.27	395	35	5	0.27	2	9	28	56	3.41	<10	0.05	138	7	0.01	12	330	20	15	<20	5	0.03	<10	14	<10	2	99
28	G32131	0.5 1.74	195	85	20	7.79	1	41	54	76	6.98	<10	2.23	1564	4	0.02	40	490	16	10	<20	194	0.07	<10	217	<10	11	79
29	G32132	0.6 3.04	<5	80	20	5.87	2	42	40	80	8.37	<10	2.27	974	7	0.03	41	610	32	10	<20	220	0.08	<10	279	<10	21	80
30	G32133	0.7 3.24	<5	95	20	5.73	2	43	36	102	8.84	<10	2.20	871	9	0.04	46	650	50	15	<20	218	0.07	<10	296	<10	24	93
-+		•••	_				_								_				••								- •	
31	G32134	0.6 1.32	<5	50	10	9.22	1	37	66	102	5.99	<10	1.52	1531	4	0.03	33	430	36	5	<20	348	0.06	<10	191	<10	27	65
32	G32135	0.9 1.80	<5	55	<5	8 11	3	33	37	137	6.74	<10	1.21	1283	5	0.03	39	590	228	10	<20	341	0.06	<10	208	<10	20	86
33	G32136	0.6 1.85	<5	60	20	7.24	3	45	37	83	7.26	<10	141	1642	9	0.03	61	570	78	25	<20	379	0.05	<10	204	<10	20	68
34	632137	07 184	<5	60	10	9.89	2	43	36	qq	7 40	10	1 41	1712	7	0.02	63	550	64	5	<20	561	0.07	~10	198	~10	10	81
35	G32138	0.7 1.35	~5	80	-5	7.62	2	55	48	105	5 70	30	1 10	1507	6	0.02	70	1070	Q/1	10	~20	667	0.07	~10	170	<10	17	02
00	402100	0.7 1.00	~0	00	~0	1.02	2	00	-0	100	0.70	00	1.10	1007	v	0.02		10/0	34	10	120	007	0.00	~10	170	~.0	17	94
36	G32139	0.5 2.13	15	1105	<5	5.97	1	23	273	65	4.51	130	2.34	809	5	0.03	124	3120	28	15	<20	724	0.20	<10	130	<10	7	41
37	G32140	0.2 1.82	30	115	10	1.79	<1	24	875	64	3.22	<10	0.84	479	14	0.17	677	490	30	<5	<20	60	0.12	<10	74	<10	6	31
38	G32296	1.5 0.23	1490	85	<5	5.50	8	42	19	78	9.47	<10	2.70	1489	6	0.02	44	470	4	15	<20	318	0.07	<10	25	<10	<1	67
39	G32297	0.5 1.35	<5	60	20	5.91	3	49	20	51	8.61	<10	2.66	1229	7	0.04	49	640	12	15	<20	127	0.07	<10	38	< 10	<1	89
40	G32298	0.5 0.97	20	65	10	5 90	3	44	21	49	8.70	<10	2 67	1215	7	0.05	46	640	8	10	<20	112	0.07	<10	36	<10	<1	88
	GOLLOO	0.0 0.01	20	00		0.00	Ŭ				0.70	~	2.01	14.10	•	0.00		v .v	Ŭ		~~~~		0.01	10	00	10	~ (00
41	G32299	1.2 0.33	6665	80	15	5.65	15	55	22	30	8.62	<10	2.36	1418	7	0.02	59	520	6	20	<20	329	0.06	<10	22	<10	<1	56
42	G31355	1.1 0.23	3330	55	10	4.53	4	29	58	35	6.53	<10	2.05	1053	4	0.01	30	360	6	10	<20	310	0.06	<10	19	<10	<1	35
43	G31356	2.1 0.23	1310	70	25	4.39	6	44	25	63	9.33	<10	2.94	1411	10	0.01	47	480	8	35	<20	288	0.06	<10	28	<10	<1	72
44	G31357	0.5 0.66	95	65	15	5.85	3	41	15	44	8.64	<10	2.86	1313	6	0.02	41	600	8	15	<20	171	0.08	<10	29	<10	<1	86
45	G31358	1.8 0.22	7485	70	15	6.74	4	38	13	40	8.67	<10	2.84	1357	8	0.01	41	510	6	30	<20	368	0.06	<10	25	<10	<1	50
		•••				•									•				•									20
46	G31359	19.9 0.14	1055	45	<5	3.19	2	10	111	680	2.45	<10	0.57	326	2	<0.01	14	370	6	40	<20	98	0.02	<10	27	<10	2	181
47	G31360	0.5 0.54	170	45	10	0.15	<1	18	627	73	2.71	<10	0.11	172	11	0.01	493	240	10	<5	<20	7	0.02	<10	20	<10	2	40
48	G31361	1.6 0.27	505	55	10	7.37	2	36	38	54	5.90	<10	3.69	1238	5	0.01	69	160	6	20	<20	376	0.05	<10	31	<10	3	38
49	G31362	0.6 0.53	105	70	<5	6.24	2	34	40	49	6.60	<10	4.23	1294	5	0.02	63	270	6	10	<20	177	0.06	<10	30	<10	<1	51
50	G31363	0.8 2.30	25	125	20	6.19	з	39	130	69	7.72	<10	4.51	1335	8	0.03	67	360	16	25	<20	160	0.06	<10	120	<10	<1	64
51	G31364	0.5 1.36	10	35	10	6.93	2	37	92	65	6.22	<10	3.22	1401	5	0.02	44	500	12	15	<20	125	0.06	<10	131	<10	3	72
52	G31365	0.7 0.84	360	70	20	6.07	3	36	54	27	7.99	<10	2.75	1142	4	0.01	42	560	8	10	<20	279	0.07	<10	49	<10	<1	45
53	G31366	0.6 3.72	<5	45	10	5.48	1	42	62	67	7.46	<10	3.08	1357	9	0.02	43	670	24	25	<20	144	0.11	<10	328	<10	3	93
54	G31367	0.6 3.61	<5	45	25	4.25	2	43	60	37	7.21	<10	3.16	1277	8	0.02	41	680	28	15	<20	99	0.12	<10	294	<10	9	98
55	G31368	0.7 3.76	<5	45	20	6.59	2	38	54	58	7.73	<10	3.03	1396	10	0.02	40	680	28	25	<20	167	0.09	<10	312	<10	5	93
56	G31369	0.6 1.73	15	40	20	8.84	2	45	59	50	6.75	<10	1.68	1592	7	<0.01	52	630	14	15	<20	227	0.07	<10	341	<10	9	118
57	G31370	<0.2 1.81	20	115	15	1.80	<1	28	916	65	3.24	<10	0.84	478	12	0.17	674	500	22	<5	<20	678	0.12	<10	74	<10	6	32
58	G31371	0.7 3.31	<5	50	20	5.63	2	47	62	58	8.67	<10	2.88	1382	- 7	0.02	47	660	26	<5	<20	174	0.08	<10	351	<10	2	95
59	G31372	0.8 3.35	<5	60	30	4.48	3	44	64	74	9.93	<10	3.10	1368	11	0.02	45	650	26	20	<20	139	0.07	<10	410	<10	<1	104
60	G31373	0.7 2.43	<5	85	25	6.31	3	35	39	49	8.98	<10	3.12	1325	10	0.01	40	680	20	20	<20	207	0.07	<10	149	<10	<1	87
~	001074	0.5.0.00	075	~~~		4.00	~	-	60	20	0.00	.10	0.50	1007	~	0.04		200	~	~~		0.44	0.05	.*0	40			
61	G313/4	2.5 0.22	9/5	00	20	4.00	8 10	33	53	38	0.92	<10	2.50	1207	0	0.03	29	390	e c	3U 20	<20	041 200	0.05	<10	19	<10	<1	43
62	G313/5	3.0 0.17	2045	00	15	4.80	15	21	54 00	70	0.95	<10	2.05	949	2	0.02	28	490	b o	30 ⊰⊂	<20	320	0.06	<10	14	<10	<1	58
63	6313/6	0.0 0.08	55	70	20	0.55	4	40	38	00	8.98	<10	3.21	1710	4	0.01	50	090	8	15	<20	202	0.07	<10	102	<10	<1	92
64	G31377	0.5 0.74	10	70	25	8.26	4	41	41	89	8.60	<10	2.08		1	0.01	50	910	6	15	<20	125	0.06	<10	255	<10	2	103
65	G31378	0.7 3.00	70	45	20	6.30	3	39	107	72	7.41	<10	3.92	1342	8	0.02	51	430	24	20	<20	185	0.08	<10	227	<10	<1	73

ICP CERTIFICATE OF ANALYSIS AK 2007-7124

Cusac Gold Mines Ltd.

.

-

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ça %	Cd	Co	Cr	Çu	Fe %	La	Mg% Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
66	G31379	0.6 2.93	<5	45	15	5.86	3	41	122	65	6.89	<10	4.13 1364	10	0.03	52	410	26	30	<20	168	0.07	<10	242	<10	<1	76
67	G31380	2.0 0.27	380	40	10	0.25	2	10	28	55	3.27	<10	0.05 138	7	0.01	13	340	22	15	<20	6	0.03	<10	15	<10	3	98
68	G31381	0.5 3.01	<5	35	20	4.78	2	38	131	104	6.17	<10	3.93 1015	7	0.03	44	520	28	25	<20	119	0.06	<10	217	<10	<1	76
69	G31382	0.6 2.56	5	50	15	5.63	2	41	104	66	6.72	<10	4.08 1240	8	0.02	50	490	26	25	<20	124	0.05	<10	133	<10	<1	76
70	G31383	05 092	<5	50	25	6 14	2	31	38	34	5.84	<10	3.07 1098	5	0.02	38	420	10	20	<20	170	0.07	<10	26	<10	2	57
	401000	0.0 0.02	~•	00	20	0.14	L	01	00	•+	0.04	10	0.07 1000	Ŭ	0.0L	00	420	10	20	~20	170	0.07	~10	20	~10	-	0,
71	G31384	11024	650	65	10	8.04	4	36	27	26	6.58	<10	3.34 1373	4	0.02	38	310	4	15	<20	336	0.06	<10	23	<10	<1	50
72	G31385	04 078	<5	65	15	5.70	2	39	46	53	6 96	<10	3 43 1068	6	0.03	47	400	10	20	<20	122	0.05	<10	38	<10	<1	76
73	G31386	04 049	<5	90	15	5.68	2	42	48	42	6.63	<10	3.62 1143	6	0.07	54	360	6	20	<20	98	0.05	<10	50	<10	<1 <1	74
74	G31387	0.8 0.26	10	40	10	>10	2	25	27	35	4 80	<10	2 27 1117	5	0.04	32	290	ĥ	30	~20	107	0.03	<10	23	<10	د1	43
75	G31388	0.7 0.37	1265	60	10	6.39	3	42	32	69	7.62	<10	3 60 1276	6	0.02	51	380	ĥ	25	~20	201	0.06	~10	23	~10	-1	68
	001000	0.7 0.07	1200			0.00	v	12	UL.	00	1.02	~	0.00 1210	Ŷ	0.02	Û,	000	Û	20	~20	201	0.00	~10	20	510		00
76	G31389	1.5 0.21	2710	55	15	5.82	4	31	55	49	5.79	<10	2.61 960	5	0.01	46	290	4	30	<20	281	0.05	<10	15	<10	<1	46
77	G31390	<0.2 1.79	35	110	15	1.71	<1	25	882	64	3 31	<10	0.83 486	14	0.16	694	530	26	<5	<20	73	0.12	<10	74	<10	5	35
78	G31391	17 0 20	2870	60	35	5.11	5	40	56	16	8.52	<10	3.05.1179	5	0.01	48	180	10	15	<20	326	0.06	<10	15	<10	<1	32
79	G31392	0.8.0.38	100	65	5	6.22	š	45	34	50	8.05	~10	3 66 1181	6	0.04	63	400	้ดี	25	~20	103	0.06	~10	34	~10	~1	70
80	631393	0.5 0.56	60	40	15	5.86	ò	40	56	70	7 11	~10	3 37 1085	4	0.07	49	440	8	15	~20	1/13	0.06	~10	43	~10	~1	70
00	001030	0.0 0.00	00	40	15	0.00	2		00	10	7.11	~10	0.07 1000	-	0.07		770	0		~20	140	0.00	10	-10	~10	~ '	71
81	G31394	0.7 3.75	20	40	<5	6.51	1	38	121	77	7.29	<10	3.58 1213	7	0.03	44	510	36	15	<20	167	0.09	<10	290	<10	<1	76
82	G31395	07405	<5	35	10	640	1	35	129	82	6.90	<10	3 40 1180	. 7	0.02	43	480	40	20	<20	175	0.09	<10	304	<10	ء1	73
83	631396	07407	15	85	15	5.52	2	41	128	100	7.03	<10	3 51 1130	, Q	0.02	56	480	42	25	~20	139	0.08	~10	201	<10	-1	78
84	631397	06300	-5	45	20	4 76	2	43	124	- GO	7.69	~10	3 58 1145	ă	0.03	53	430	30	20	~20	88	0.06	~10	202	~10	-1	83
25	G21208	0.0 0.00	15	40	15	5.25	2	11	110	- 30 71	7.09	~10	3 78 1991	11	0.00	56	450	30	20	~20	105	0.00	>10	270	~10	~1	70
00	001000	0.0 2.01	10	40	1.5	0.20	L		110	• •	1.20	~10	0.70 1221		0.02	50	400	00	00	~20	100	0.00	~10	210	~10	~1	13
86	G31399	0.7 2.64	<5	40	15	6.50	3	38	114	68	7.22	<10	3.69 1221	11	0.03	51	420	28	35	<20	98	0.05	<10	275	<10	<1	76
87	G31400	2.0 0.27	345	50	5	0.20	2	10	28	54	3.20	<10	0.05 139	7	0.01	14	340	24	20	<20	5	0.03	<10	15	<10	2	101
88	G32051	0.7 2.27	25	45	15	5.93	2	44	102	76	7.48	<10	3.68 1164	8	0.06	58	440	24	20	<20	93	0.06	<10	195	<10	<1	76
89	G32052	0.5 0.51	135	45	15	6.12	2	36	26	58	7.26	<10	3.46 1203	5	0.07	45	380	8	15	<20	120	0.06	<10	31	<10	<1	75
90	G32053	06 061	280	55	<5	6.22	2	40	26	79	7.81	<10	3.55 1180	6	0.05	51	410	8	45	<20	137	0.06	<10	28	<10	<1	67
••		0.0 0.0.		**			_			••				-				-				0.00	-1-			.,	•••
91	G32054	1.4 0.86	380	55	10	6.27	2	42	34	177	7.73	<10	3.39 1178	5	0.04	52	250	12	30	<20	203	0.06	<10	33	<10	<1	136
92	G32055	0.6 0.92	95	55	10	5.96	1	39	36	59	7.58	<10	3.42 1160	6	0.05	44	430	10	15	<20	149	0.06	<10	37	<10	<1	67
93	G32056	0.8 0.69	5450	65	20	5.87	<1	3 9	26	50	7.98	<10	2.74 1363	5	0.02	38	570	12	10	<20	221	0.07	<10	30	<10	<1	67
94	G32057	0.6 0.94	1915	80	45	4.92	<1	48	29	10	9.87	<10	2.63 1442	6	0.02	34	990	18	10	<20	185	0.08	<10	34	<10	1	78
95	G32058	14.2 0.23	>10000	60	40	1.57	137	63	96	205	>10	<10	0.36 218	18	0.01	103	1820	16	115	<20	89	0.09	<10	13	<10	<1 3	3509
96	G32059	0.2 2.26	90	50	10	2.36	<1	25	119	83	2.75	<10	1.64 550	6	0.03	58	300	26	30	<20	32	0.15	<10	73	<10	3	40
97	G32060	<0.2 1.84	40	115	10	1.70	<1	25	898	65	3.35	<10	0.84 494	15	0.17	708	530	26	<5	<20	65	0.11	<10	75	<10	5	35
98	G32061	0.9 0.53	6385	70	30	4.84	<1	42	26	19	9.98	<10	2.37 1463	6	0.04	31	870	8	10	<20	167	0.08	<10	38	<10	<1	91
99	G32062	0.6 1.06	<5	55	25	4.80	3	43	33	52	>10	<10	2.60 1592	7	0.07	37	820	12	<5	<20	136	0.09	<10	137	<10	<1	127
100	G32063	0.6 0.99	35	60	15	5.30	2	50	32	29	>10	<10	2.61 1472	8	0.06	37	840	12	10	<20	156	0.08	<10	133	<10	<1	118
101	G32064	0.7 0.42	8130	65	20	3.75	<1	27	53	21	7.26	<10	1.70 934	4	0.02	20	690	8	10	<20	164	0.06	<10	22	<10	<1	66
102	G32065	0.6 1.86	50	45	15	5.49	2	38	36	32	9.69	<10	2.59 1517	7	0.03	28	890	20	10	<20	187	0.08	<10	256	<10	<1	113
103	G32066	0.8 3.08	<5	50	25	5.37	2	46	50	72	>10	<10	2.67 1564	8	0.03	37	850	30	10	<20	166	0.09	<10	396	<10	<1	113
104	G32068	2.6 2.21	490	70	35	5.10	3	47	36	19	>10	<10	2.57 1483	12	0.03	41	860	24	25	<20	212	0.08	<10	252	<10	<1	112
105	G32069	0.5 0.07	420	30	10	2.33	<1	1 1	109	2	3.13	<10	0.90 560	<1	<0.01	10	160	4	<5	<20	163	0.03	<10	9	<10	<1	12

ICP CERTIFICATE OF ANALYSIS AK 2007-7124

Cusac Gold Mines Ltd.

.

Et #.	Tag #	Ag Al %	As	Ba	Bi (Ca %	Cd	Co	Cr	Çu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
106	G32070	0.5 0.54	195	45	<5	0.15	<1	19	631	73	2.80	<10	0.11 1	175	10	0.01	506	260	14	<5	<20	6	0.03	<10	21	<10	2	43
107	G32071	3.4 0.21	3930	80	45	2.77	<1	60	24	32	>10	<10	2.69 15	538	9	0.01	67	390	12	25	<20	314	0.09	<10	28	<10	<1	63
108	G32072	04 0.20	185	50	<5	8.01	<1	39	50	2	4.71	<10	3.19.17	747	2	0.01	29	380	6	10	<20	633	0.06	<10	28	<10	3	35
109	G32073	08 0 23	860	75	25	6.30	1	44	23	30	9.90	<10	3.06.17	744	6	0.02	34	730	ě	10	<20	369	0.08	<10	39	-10	-1	69
110	G22074	0.6 0.31	50	70	30	5.80	3	41	24	23	0.00	~10	2 61 15	534	5	0.02	34	000	8	5	~20	153	0.00	<10	49	~10	~1	84
110	G32074	0.0 0.31	50	10	50	5.09	0	41	24	20	9.70	\$10	2.07 15	104	J	0.04	-04	900	0	Û,	< <u>2</u> 0	100	0.06	<10	40	<10	< 1	04
4 4 4	000075	07 0 47	65	60	05	5 00	0	40	20	170	. 10	-10	0 00 1/	100	0	0.00	40	800	24	10	.00	or.	0.00	-10	040	.10	- 1	100
111	632075	0.7 2.47	00	00	25	5.09	3	40	33	170	>10	<10	2.02 14	109	9	0.03	42	690	24	10	<20	60	0.08	<10	248	<10	<	120
112	G32076	0.6 3.09	25	45	20	4.88	1	43	130	51	7.89	<10	3.85 13	3/5	9	0.04	54	540	32	20	<20	- 11	0.07	<10	272	<10	<1	82
113	G32077	0.6 2.71	20	35	20	5.65	2	39	110	71	6.99	<10	4.15 12	214	7	0.04	53	420	28	15	<20	80	0.06	<10	203	<10	2	69
114	G32078	0.5 1.83	50	35	10	8.20	2	37	65	38	6.5 1	<10	4.01 15	564	8	0.03	42	450	22	30	<20	160	0.05	<10	147	<10	1	75
115	G32079	0.7 2.66	65	45	25	6.20	3	39	61	62	8.19	<10	3.85 13	392	11	0.05	48	640	26	35	<20	93	0.06	<10	208	<10	<1	92
	.																										-	
116	G32080	2.0 0.27	350	40	10	0.30	1	10	29	55	3.30	<10	0.06 1	140	9	0.01	16	370	24	30	<20	6	0.02	<10	15	<10	3	101
117	G32081	0.5 1.50	85	50	15	6.15	2	37	36	44	8.19	<10	3.70 12	271	7	0.05	43	630	18	15	<20	97	0.07	<10	112	<10	<1	89
118	G32082	0.4 0.43	90	45	20	7.01	2	36	27	46	7.26	<10	3.35 12	282	4	0.07	39	510	10	10	<20	113	0.06	<10	41	<10	2	70
119	G32083	0.5 1.06	120	50	20	6.81	1	40	12	59	8.29	<10	3.60 13	379	6	0.04	45	560	14	10	<20	1 41	0.07	<10	35	<10	<1	83
120	G32084	0.7 1.05	1845	60	<5	7.04	<1	39	20	62	7.56	<10	3.43 12	241	6	0.02	45	530	14	20	<20	296	0.06	<10	26	<10	<1	61
404	000005		105		~~	c 00	~	44	40	~ •	0.07	.10	0 44 40		~	0.04	47	600	40	-		450	0.00	40	40	4.0		00
121	G32085	0.6 1.55	105	55	20	6.02	2	41	13	60	8.3/	< 10	3.44 14	245 NH 0	8	0.04	47	600	16	20	<20	153	0.06	<10	40	<10	<1	80
122	G32086	0.5 1.79	110	55	25	5.59	2	40	21	51	8.35	<10	3.28 10	J18	8	0.03	46	560	20	20	<20	164	0.06	<10	40	<10	<1	85
123	G32087	0.4 1.08	70	100	10	5.67	2	36	16	51	7.32	<10	3.17 12	231	5	0.03	39	510	12	10	<20	164	0.06	<10	38	<10	<1	66
124	G32088	0.8 0.74	6410	60	25	9.19	<1	33	21	27	8.03	<10	3.89 15	528	5	0.02	37	560	12	20	<20	370	0.07	<10	37	<10	4	4 9
125	G32089	0.6 1.96	75	70	20	6.88	3	40	45	58	7.90	<10	3.80 14	\$19	8	0.02	44	540	22	30	<20	127	0.07	<10	134	<10	<1	75
126	632000	<0.2 1.81	45	110	10	1 74	~1	25	887	64	3 31	~10	0.83 4	188	12	0.16	701	530	26	~5	~20	63	0.11	~10	74	~10	5	25
107	G22090	07 274	90	46	20	6 10	2	40	70	60	7.74	~10	2 88 12	700	10	0.10	47	560	20	10	~20	100	0.11	~10	74 017	~10	2	70
109	G32091	0.7 3.74	60	40	10	0.19	0	40	72	59	7.74	-10	A 00 12	270	12	0.02	47	500	44	40	<20	102	0.07	-10	010	<10	~	70
120	G32092	0.7 4.45	20	40	75	5.42	2	40	00	60	7.55	~10	4.02.10	201	9	0.02	40	640	44	20	~20	140	0.05	~10	010	<10	<u>د</u>	79
129	G32093	0.0 4.13	20	40	20	0.40	~	40	60	74	7.47	<10	9.12.13	107	10	0.02	44	770	42	20	<20	140	0.15	< 10	0010	<10	0	79
130	G32094	0.0 4.52	30	40	30	0.02	2	45	¢7	14	0.71	<10	0.00 14	+27	10	0.0Z	44	770	40	20	<20	100	0.09	< 10	301	<10	3	09
131	G32095	0.7 4.16	45	40	15	5.08	2	41	70	48	8.13	<10	3.86 13	330	12	0.02	42	640	40	25	<20	104	0.08	<10	355	<10	<1	86
132	G32096	0.7 0.81	70	55	30	6.40	2	35	43	38	7.27	<10	3.30 13	303	6	0.05	37	420	10	15	<20	114	0.06	<10	78	<10	<1	67
133	G32097	0.5 0.47	215	60	25	5.81	2	43	24	67	8 84	<10	3 63 14	120	6	0.06	37	510	8	20	<20	115	0.07	<10	48	<10	<1	96
134	G32098	05 043	40	85	15	5 71	3	41	21	57	8 13	<10	3.67 14	144	7	0.05	42	550	8	25	~20	00	0.06	~10	47	~10	-1	86
135	632000	0.4 0.40	A15	55	15	6.93	3	37	20	53	7 30	<10	3 1/1 19	220	7	0.03	30	470	Ă	25	~20	144	0.05	~10	20	~10	-1	65
100	002033	0.4 0.40	410	55	15	0.00	0	07	23	00	7.50	~10	0.44 10	00	'	0.00	00	470	-+	20	~20	144	0.00	~10	09	10		05
136	G32100	2.0.0.27	335	40	5 (0.28	1	10	29	55	3.34	<10	0.05 1	40	8	0.01	15	360	24	20	<20	7	0.02	<10	15	<10	3	103
137	G31146	05 079	265	50	20	6.70	2	38	30	56	8.12	<10	3.18.14	175	5	0.04	34	610	10	15	<20	100	0.06	<10	93	<10	<1	76
138	G31147	06277	155	45	20	7 34	2	33	67	36	7 45	~10	2 73 12	260	12	0.02	35	740	28	40	~20	150	0.00	~10	243	~10	3	84
120	G21148	0.7 2.74	05	45	20	8.02	Š	20	42	50	8.40	~10	3/6 15	36	7	0.02	33	680	20	20	~20	105	0.07	~10	252	~10	5	96
140	G21140	0.7 2.74	50	50	16	7 76	2	42	70	62	8.06	~10	3 65 14	127	11	0.04	40	710	44	20	~20	200	0.07	~10	262	~10	a	00
140	031149	0.6 4.50	οv	50	10	1.19	2	42	10	QΖ	0.90	< 10	0.00 14	101		0.02	40	710	44	ZŲ	≺ ∠Ų	292	0.09	10	303	<10	U	54
141	G31150	0.5 0.57	210	50	5	0.15	<1	20	66 5	74	2.90	<10	0.12 1	80	10	0.01	543	280	14	<5	<20	7	0.03	<10	22	<10	2	46
142	G27001	0.8 4.51	45	50	25	6.51	2	45	1 17	69	9.17	<10	3.86 14	96	10	0.02	50	660	48	25	<20	160	0.10	<10	339	<10	10	95
143	G27002	0.8 3.83	40	70	15	5.71	2	47	121	66	9.58	<10	3.86 15	521	9	0.03	49	640	44	20	<20	184	0.09	<10	341	<10	10	98
144	G27003	0.8 3.57	30	65	30	6.01	3	49	120	73	9,54	<10	3.99 16	393	10	0.03	51	620	40	25	<20	166	0.08	<10	339	<10	8	97
145	G27004	0.7 3.34	25	55	20	6.14	4	45	121	58	8.93	<10	4.00 15	35	9	0.03	51	600	36	25	<20	170	0.07	<10	301	<10	ค	88
1.40	Gig r VV-r	0.1 0.04	20	00	-~ '						2.00		1.00 10		~	0.00	~ '		••	20			J.J.				•	~~

Cusac Gold Mines Ltd.

.

Et #.	Tag #	Ag Al %	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Cr	Cu	<u>Fe %</u>	La	<u>Mg% Mn</u>	Mo	Na %	Ni	Р	₽b	\$b	<u>Sn</u>	Sr	Ti %	U	V	W	Y	Zn
146	G27005	0.7 3.85	20	50	20	6.75	2	43	105	67	7.88	<10	3.75 1351	10	0.02	52	520	42	30	<20	186	0.06	<10	299	<10	6	85
147	G27006	0.7 3.81	50	55	15	6.44	1	44	76	73	7.86	<10	3.71 1338	9	0.02	50	490	42	25	<20	156	0.07	<10	270	<10	6	82
148	G27007	0.8 3.04	85	60	25	6.57	5	45	37	54	9.42	<10	3.77 1530	16	0.03	44	770	32	60	<20	121	0.06	<10	277	<10	2	95
149	G27008	0.7 0.89	605	75	35	7.62	5	45	23	31	9.31	<10	3.60 1478	10	0.03	43	770	12	40	<20	245	0.06	<10	44	<10	3	70
150	G27009	0.6 0.53	810	65	25	6.57	5	40	25	49	8.59	<10	3.34 1475	9	0.04	37	880	10	35	<20	194	0.06	<10	35	<10	2	77
151	G27010	2.1 0.31	355	45	5	0.22	2	11	31	60	3.43	<10	0.06 150	9	0.01	15	390	28	25	<20	9	0.03	<10	17	<10	4	107
152	G27011	0.4 0.83	70	50	20	5.83	2	43	21	58	8.33	<10	3.33 1490	6	0.06	32	770	14	15	<20	136	0.07	<10	70	10	2	98
153	G27012	0.5 1.21	50	60	30	5.81	3	44	25	67	9.25	<10	3.42 1595	8	0.05	35	760	18	20	<20	129	0.07	<10	66	<10	3	93
154	G27013	1.0 0.81 =	>10000	70	5	7.95	45	42	15	44	9.05	<10	3.40 1425	7	0.03	37	1160	14	35	<20	334	0.09	<10	33	<10	4	65
155	G27014	0.2 2.75	40	45	10	2.45	<1	34	126	86	4.03	<10	2.34 722	5	0.04	55	370	36	25	<20	27	0.23	<10	93	<10	5	53
156	C27015	05 0 77	145	60	15	6 14	а	37	20	43	9 A7	~10	2 20 1442	Q	0.07	41	760	10	20	~20	166	0.06	~10	62	~10	2	67
150	G27015 C27016	0.5 0.77	75	50	20	0.44	3	40	00	40 50	0.07	~10	3.39 1443	0	0.07	41	700	14	20	~20	1100	0.00	~10	03 60	<10	ა ი	0/
157	627010	0.4 0.03	255	65	20	7.20	3 A	40	29	00	0.ZZ 8.20	~10	3 44 1302	97	0.10	40	690	10	20	~20	112	0.00	~10	20	~10	2	00
150	G27017	0.0 0.40	250	70	20	7.20	4	41	25	71	0.29	~10	3.44 1403	، د	0.05	40	600	10	20	~20	140	0.07	>10	35	<10	2	ండ
109	G27010	0.5 0.51	550	50	15	6.90		41	20	57	0.20	~10	3.44 1350	10	0.00	40	760	20	20	~20	104	0.07	~10	41	<10	2	00
100	62/019	0.0 2.10	00	00	13	0.03	2	42	51	57	0.42	10	J.UZ 1000	10	0.03	40	100	50	50	~20	104	0.00	\$10	115	\$10	5	50
161	G27020	<0.2 1.88	50	120	10	1.78	<1	26	919	64	3.43	<10	0.85 504	14	0.17	649	570	34	<5	<20	84	0.13	<10	77	<10	7	37
162	G27021	0.6 2.79	95	50	15	6.44	2	45	59	78	8.75	<10	3.73 1485	8	0.04	45	780	36	20	<20	89	0.07	<10	243	<10	2	97
QC DAT	[A:																										
Repeat	:																										
1	G32104	0.9 0.42	1485	70	<5	5.90	10	34	24	133	7.47	<10	3.26 1402	6	0.02	36	850	4	20	<20	173	0.06	<10	39	<10	<1	64
10	G32113	0.5 0.48	185	60	10	7.62	2	28	31	23	6.47	<10	3.05 1342	5	0.04	27	490	6	10	<20	151	0.06	<10	57	<10	4	44
19	G32122	0.9 0.22	1745	65	10	6.99	<1	31	38	51	6.97	<10	3.17 1359	4	0.02	40	500	6	10	<20	328	0.06	<10	34	<10	1	44
36	G32139	0.5 2.10	10	1050	<5	6.01	<1	25	269	63	4.52	120	2.32 815	5	0.03	121	3080	30	10	<20	730	0.16	<10	128	<10	6	42
45	G31358	1.9 0.22	7410	70	25	6.50	23	38	13	40	8.74	<10	2.84 1356	7	0.01	43	510	6	25	<20	361	0.06	<10	25	<10	<1	51

40	001000	1.0 0.22	1410	10	20	0.00	20	- 00			0.74	-10	2.04 1000	,	0.01		310	<u> </u>	25	~20	201	0.00	~10	~~	~IV	~ 1	
54	G31367	0.7 3.71	<5	50	25	4.33	2	45	63	36	7.50	<10	3.23 1311	9	0.02	43	700	32	20	<20	99	0.13	<10	303	<10	10	103
71	G31384	1.1 0.25	675	60	15	8.03	2	35	27	26	6.61	<10	3.36 1386	5	0.02	36	310	6	20	<20	333	0.05	<10	23	<10	<1	48
80	G31393	0.5 0.56	55	40	15	5.86	2	37	56	68	7.10	<10	3.38 1089	6	0.07	48	430	10	25	<20	146	0.06	<10	43	<10	<1	70
89	G32052	0.5 0.53	150	45	15	6.24	1	37	27	59	7.39	<10	3.56 1231	4	0.07	44	380	8	10	<20	125	0.07	<10	32	<10	<1	78
115	G32079	0.7 2.70	70	50	15	6.18	1	40	59	64	8.21	<10	3.87 1391	8	0.05	47	610	28	25	<20	95	0.07	<10	209	<10	<1	84
124	G32088	0.7 0.74	6390	60	30	9.08	2	33	21	27	7.96	<10	3.81 1507	6	0.02	36	550	10	20	<20	359	0.07	<10	37	<10	3	49
150	G27009	0.7 0.50	765	70	15	6.52	8	39	24	49	8.54	<10	3.25 1456	11	0.03	39	880	10	55	<20	187	0.05	<10	34	<10	2	77
Resplit:																											
1	G32104	0.8 0.44	1485	80	5	5.87	9	35	29	152	7.58	<10	3.37 1421	6	0.02	40	850	6	25	<20	183	0.06	<10	40	<10	1	60
26	C22120	06.204	20	1070	~6	6 09	1	24	267	60	1 20	120	2.20 910	6	0.02	105 1	2100	22	20	~20	720	0 10	~10	100	~10	6	40

36	G32139	0.5 2.04	20 1	070	<5	6.08	1	24	267	60	4.39	120	2.29 819	6	0.03	125 3120	32	20	<20	720	0.18	<10	126	<10	6	42
71	G31384	1.2 0.26	770	65	20	7.76	2	37	36	28	6.71	<10	3.39 1369	6	0.02	41 330	8	30	<20	338	0.06	<10	25	<10	<1	49
107	G32071	2.1 0.20	3865	85	40	3.02	2	58	21	32	>10	<10	2.84 1631	10	0.01	68 420	10	35	<20	405	0.08	<10	29	<10	<1	70
142	G27001	0.8 4.50	60	55	45	6.61	3	46	119	65	9.20	<10	3.85 1491	12	0.02	52 660	54	40	<20	163	0.10	<10	336	<10	10	95

.

	V 16/ V 7-	
Et#. Tag# AgAl% As Ba_BiCa% Cd Co Cr CuFe% LaMg% Mn MoNa%_Ni P Pb Sb Sn Sr Ti% U		1
Standard:		
Pb113 11.3 0.25 50 55 <5 1.55 39 2 4 2313 0.98 <10 0.12 1374 75 0.02 3 70 5422 25 <20 70 <0.01 <10	7 10 <1 6985	5
Pb113 11.4 0.25 50 60 <5 1.57 39 2 5 2234 0.99 <10 0.12 1381 78 0.02 3 70 5364 25 <20 65 <0.01 <10	7 10 <1 7162	2
Pb113 11.4 0.25 60 55 <5 1.58 40 2 5 2249 1.00 <10 0.12 1402 62 0.02 4 70 5388 30 <20 69 <0.01 <10	8 10 <1 6902	2
Pb113 11.4 0.26 65 60 <5 1.60 40 2 5 2196 1.03 <10 0.12 1404 78 0.02 4 60 5648 30 <20 72 <0.01 <10	8 <10 <1 6967	7
Pb113 11.8 0.27 60 65 <5 1.64 41 3 5 2270 1.05 <10 0.12 1431 67 0.02 4 70 5574 30 <20 71 <0.01 <10	9 <10 <1 6965	ŝ

ECO TECH ZABORATORY LTD. Jutta Jealouse B.C. gertified Assayer

JJ/nl df/7124S XLS/07 .

-

.

. . .

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

Phone: 250-573-5700 Fax : 250-573-4557

> No. of samples received: 160 Sample Type: Core Submitted by: L. Hunt Project: Taurus Shipment #: 07-006

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al	%	۱s	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg% Mn	Мо	<u>Na</u> %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	<u>Y</u>	Zn
1	27022	1.0 2.4	49 10	50	45	10	7.52	3	40	106	- 58	8.37	<10	3.91 1318	8	0.05	61	630	28	15	<20	98	0.06	<10	201	<10	<1	96
2	27023	1.0 2.0	64 5	75	45	5	7.25	2	42	98	93	7.91	<10	4.35 1360	7	0.05	57	450	32	20	<20	104	0.06	<10	171	<10	1	73
3	27024	0.9 2.2	24 (50	60	20	6.74	2	46	67	86	7.87	<10	4.19 1273	8	0.07	56	340	26	20	<20	95	0.06	<10	120	<10	<1	80
4	27025	0.8 0.1	73 14	1Q	55	20	7.64	2	43	29	55	7.41	<10	4.15 1306	6	0.08	51	290	12	15	<20	151	0.06	<10	50	<10	<1	80
5	27026	1.3 1.3	38 481	15	65	20	>10	21	4 1	32	39	8.92	<10	4.31 1500	9	0.02	51	200	20	35	<20	296	0.07	<10	85	<10	<1	64
c	07007	05.07	26 02	76	2n	15	7.50	42	14	20	16	1 94	~10	2 10 1000	-1	0.02	17	270	o	10	~20	214	0.05	~10	31	~10	2	40
7	27027	11 2	30 321 44 190	5	55	16	88.1	40	44	76	73	9.04	~10	3 76 1054	7	0.02	59	750	28	20	~20	153	0.03	~10	159	<10	~1	- 40
0	27020	1.1 2.4	44 IO: 95 6	90 55	00 60	10	7.60	2	44	121	75	9.00	~10	3.56 1467	11	0.03	55	700 820	20 40	20	~20	123	0.07	~10	100	~10	<u></u>	90
0	27029	20.01	00 0 24 26	50 50	46	~5	0.22	~1	42	21	54	2.44	<10	0.06 1407	7	0.03	15	270	44	20	~20	100	0.07	~10	231	~10	2	104
9 10	27030	2.0 0.	57 J	00	40	25	5.50	2	50	15/	75	0.61	<10	3 75 1603	, 8	0.01	60	820	20	15	~20	11/	0.05	~10	170	<10	ა ეე	107
10	27031	1.1 4.5	51	IU III	55	55	0.00	2	52	134	75	9.01	~10	3.75 1005	0	0.05	02	020	50	15	~20	114	0.51	~10	372	510	22	105
11	27032	1.1 4.3	38 -	15	55	55	5.50	2	54	158	65	9.29	<10	4.39 1646	11	0.05	64	820	48	35	<20	155	0.45	<10	362	<10	22	108
12	27033	1.1 4.4	46 -	15	60	55	4.59	1	56	1 44	73	9.72	<10	4.39 1518	7	0.05	62	930	54	20	<20	151	0.56	<10	368	<10	24	114
13	27034	1.1 3.9	92 <	5	65	25	7.05	2	42	59	55	9.07	<10	3.59 1652	8	0.02	37	680	44	10	<20	98	0.15	<10	310	<10	8	98
14	32141	1.2 4.4	44 🗧	5	55	45	5.16	2	56	146	62	9.81	<10	4.17 1714	9	0.06	64	900	54	35	<20	144	0.54	<10	360	<10	24	111
15	32142	0.8 3.3	33	5	70	35	3.89	1	54	72	72	8.01	<10	2.89 1363	6	0.02	45	750	44	15	<20	62	0.24	<10	243	<10	21	96
40	00440		50 7	0	05	20	c 27	2	40	60	60	0.55	~10	2 60 1/03	10	0.00	40	740	EO	26	~20	400	0.10	~10	256	~10	0	100
10	32143	1,1 4.3	09 ⊿ 20 245	20	00	30	0.37	10	40	20	00	9.00	510	3.00 1492	10	0.02	42	220	20	30	<20	120	0.10	<10	300	<10	0	100
10	32144	1.0 1.4	∠U ⊃⊺/ 47 /		90 60	20	6.91	2	39 44	- 30 60	20	0.90	~10	3.10 1324	ა ი	0.02	40	330	20	20	~20	102	0.00	<10 <10	200	<10	ు 10	00
10	32143	1.1 4.	10 4	10	165	20	5.01	2	44	76	61	9.09	~10	3.04 1400	10	0.01	41	700	20	20	~20	102	0.11	~10	216	<10	10	400
19	32140	1.1 4.4	497 ∠ ∋4 ⊃06	:0 :e	70	30	0.Z⊺ 7.04	۲ ۲	47	70	24	9.72	~10	3.90 1400	12	0.02	40	/10	00	15	<20	100	0.10	~10	310	<10	12	109
20	32 47	1.1 0.3	31 365	00	70	15	1.04	Э	40	04	24	וס.י	< 10	2.90 1090	Э	0.02	30	410	o	15	~20	414	0.00	< i U	30	<10	51	40
21	32148	1.0 0.4	41 133	35	80	30	6.55	4	43	28	50	9.67	<10	3.03 1616	7	0.02	30	850	10	25	<20	240	0.08	<10	40	<10	<1	96
22	32149	1.0 0.3	33 20	00	70	25	5.41	5	42	49	46	9.21	<10	2.80 1585	11	0.03	37	600	10	45	<20	141	0.06	<10	43	<10	<1	94
23	32150	0.5 0.6	60 21	0	55	5	0.17	<1	21	703	79	3.03	<10	0.13 192	12	0.01	579	280	18	<5	<20	10	0.03	<10	24	<10	3	45
24	32151	1.0 0.3	30 319	90	65	20	6.12	6	38	40	47	8.45	<10	2.76 1489	6	0.03	28	590	6	20	<20	204	0.07	<10	34	<10	<1	85
25	32152	1.4 0.6	65 711	0	70	10	6.98	12	44	33	46	9.38	<10	2.92 1676	7	0.02	31	580	14	20	<20	256	0.08	<10	58	<10	<1	82

Et #.	Tag #	Ag A	AI %	As	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Tì %	U	V	W	Y	Zn
26	32153	0.8 0	0.36	150	70	5	7.88	3	43	36	78	9.01	<10	2.78	1531	5	0.02	26	540	8	25	<20	157	0.07	<10	33	<10	<1	77
27	32154	1.0 2	2.60	40	60	35	6.56	2	46	21	60	>10	<10	3.24	1673	7	0.03	33	710	32	10	<20	91	0.10	<10	222	<10	<1	119
28	32155	0.9 3	3.53	<5	195	50	3.93	2	52	39	60	9.01	<10	3.18	1504	6	0.03	32	740	50	15	<20	58	0.44	<10	302	<10	1 1	119
29	32156	0.8 3	3.04	20	240	50	2.68	2	51	34	61	8.47	<10	2.82	1317	5	0.03	32	770	48	20	<20	53	0.48	<10	281	<10	14	112
30	32157	0.9.3	3.46	20	100	40	4 07	1	49	40	80	8 64	<10	2.96	1318	7	0.03	31	780	50	15	<20	77	0.28	<10	270	<10	7	104
00	02107	0.0 0	5.40	20	100		7.01	•	10		ŶŶ	0.04	-10	2.00	1010	,	0.00		,	00		-20		0.20	-10	210	10	,	104
31	32158	09.2	2 4 8	50	45	15	6 65	2	45	196	67	8 33	<10	4 15	1562	a	0.04	60	500	32	25	<20	203	0.07	<10	301	<10	<1	96
33	32150	0.3 2	1.57	155	70	15	6.45	2	37	51	102	6.60	<10	3.57	12/3	6	0.04	58	A10	12	25	<20	200	0.07	<10	301	<10	2	67
22	32160	20.0	3.20	270	40	5	0.40	2	11	21	57	3.44	~10	0.07	140	a	0.02	16	370	70	20	~20	200	0.00	<10	17	<10	2	104
24	32100	2.0 0	J.30 3 E4	370	40	20	0.0Z	- 1	16	101	67	7.64	~10	4 4 4	1900	5 6	0.01	70	400	20	30	~20	100	0.02	~10	11	~10	ა ა	704
34 25	32101	0.9 2	2.01	20	50	20	0.00 5 24	1	40 50	100	1U 20	1.01	~10	4.41	1410	40	0.03	10	400	30	10 10	~20	109	0.00	<10	147	<10	ں 1	107
30	32102	1.0 3	0.00	30	55	30	0.01	2	52	120	00	9.09	510	4.01	1410	10	0.05	55	000	40	25	SZU	90	0.08	<10	207	510	~ (107
26	22462	10.0	147	2240	70	40	0.00	16	46	20	20	0.24	~10	2.45	1600	40	0.01	22	690	10	25	~20	204	0.06	~10	20	~10	-1	50
20	32103	1.0 0	J.47	3240	70	40	0.09	10	40	450	30	9.24	>10	0.10	200	10	0.01	33	250	12	30 75	<20	390	0.00	<10	29	<10		39
31 20	32164	0.2 0	1.08	2000	20	<0 26	1.40	20	40	102	4	1.77	<10	0.53	209	<u> </u>	0.01	- 4	330	4	<0 -E	<20	90	0.02	< 10	3	< 10	- 1	
38	32105	2.0 0	1.04	2002	80	20	0.02	22	40	20	44 50	10.00	<10 <10	3.04	1048	4	0.02	33	020 790	14	~0	<20	340	0.08	< 10	40	< 10	< I - 4	404
39	32166	1.1 3	5.18	10	60	30	6.30	2	40	22	52	>10	<10	3.29	1534	11	0.02	31	780	40	20	<20	153	0.09	<10	172	10	<1	131
40	32167	2.8 0),42	2375	90	40	6.49	a	51	32	56	>10	<10	2.77	1732	4	0.02	31	590	12	<5	<20	341	0.09	<10	33	<10	<1	73
44	22469	11 3	> 00	20	65	40	5 00	'n	40	20	67	~ 10	~10	0 4 9	1650	0	0.00	20	700	50	~5	~20	170	0.00	~10	200	~10	2	100
41	32108	1.1 3	5.99	30	55	40	0.90	2	49	29	27	>10	< IU 	3.13	1009	0	0.02	30	790	5Z	< 0	<20	170	0.09	< 10	389	<10	2	123
42	32169	1.3 4	1.57	15	100	30	0.34	3	-02 -00	3Z	60	210	<10	3.01	1000	47	0.02	33	820	50	20	<20	178	0.10	< 10	426	<10	2	120
43	32170	0.2 1	1.98	50	120	15	1.75	<1	28	971	107	3.69	<10	0.89	531	17	0.17	113	560	40	<5	<20	56	0.15	<10	82	<10	6	31
44	32171	1.2 3	5.55	35	60	45	5.95	చ - ^ ^	50	29	66	>10	<10	3.52	1547	11	0.02	35	790	48	15	<20	136	0.09	<10	334	<10	4	124
45	32172	1.6 1	1.21	7190	70	20	6.35	39	44	40	45	9.38	<10	2.88	1414	9	0.01	30	580	24	30	<20	302	0.07	<10	99	<10	3	71
40	00170	20.0		45.05	60	F	2.05	22	22	70	- 00	7.05	~10	1 10	804		0.01	~	200	o	45	-20	450	0.07	-10	24	-10	-1	45
40	321/3	2.2 0).3Z	4535	60	с С	3.80	23	33	10	20	7.05	< 10	1.40	801	4	0.01	24	360	0	10	<20	159	0.07	<10	Z4	<10	<1	45
47	32174	0.4 2	2.34	45	60	20	3.31	<1	30	130	01	3.38	<10	1.81	623	2	0.04	44	360	40	10	<20	45	0.26	<10	80	<10	5	4/
48	32175	1.7 U	0.56	4100	80	35	7.15	30	42	30	63	9.44	<10	3.08	1010	6	0.02	21	570	14	35	<20	308	0.08	<10	30	10	1	96
49	32176	0.9 0).57	3540	90	40	6.67	25	42	23	- 39	9.20	<10	3.21	1672	6	0.02	29	610	14	20	<20	245	0.08	<10	39	<10	<1	79
50	32177	1.2 0).32	3745	85	30	5.50	24	44	31	41	9.76	<10	3.03	1505	6	0.02	31	500	10	15	<20	255	0.08	<10	26	<10	<1	86
	20470	00.0	0.05	45	05	20	5 99	2	40	22	60	- 10	-40	2.04	4500		0.07	25	740	40	45	-00	04	0.00	-10	10	-10	- 1	400
51	32178	0.8 0	1.95	15	60	30	5.33	্য	40	22	50	>10	< 10	J.∠⊺	1080	8	0.07	33	710	10	15	<20	10	0.08	< 10	49	< 10	< I	120
52	32179	0.7 0	1.76	45	6U 60	30	5.40	4	43	34	50	9.57	<10	2.03	13/9	0	0.06	41	730	10	35	<20	108	0.07	<10	50	<10	<1	113
53	32180	0.5 0	0.58	190	50	<0	0.18	<1	21	082		3.08	<10	0.13	191	12	0.01	100	300	18	<5	<20	0	0.03	<10	23	<10	Z	42
54	32181	1.0 0	2.54	4265	65	40	5.87	12	47	41	62	9.80	<10	2.88	1009	(0.02	48	670	14	20	<20	259	0.07	<10	31	<10	<1	84
55	32182	1.5 0).36	1000	70	15	9.21	5	44	28	59	8.37	<10	3.96	1817	8	0.02	45	540	10	40	<20	595	0.06	<10	39	<10	3	66
50	22402	00.0	0.00	100	10	Е	0.45	<i>c</i> 1	4	100	F	4 00	~10	0.02	45	-1	-0.01	2	70		۰F	~20	40	0.04	-10	2	~10	- 1	c
50	32103	0.Z 0	2.UZ	120	10		0.15	~1	4	109	0 60	1.02	<10	0.05	40	~ 1	~0.01	د 40	70	4	<0 45	~20	13	0.01	510	050	<10	.51	100
57	32184	1.2 3	5.18	175	80	40	0.45	3	20	02	50	>10	<10	3.58	1030	ð	0.02	40	840	48	15	<20	236	0.09	<10	250	<10	<1	130
58	32185	1.1 3	§.12	<5	55	30	5.93	3	48	71	59	>10	<10	3.47	1542	8	0.03	44	860	48	5	<20	199	0.09	<10	401	<10	<1	122
59	32186	1.1 3	3.28	<5	50	10	5.99	2	49	72	58	>10	<10	3.53	1642	8	0.03	48	760	50	5	<20	197	0.10	<10	396	<10	<1	120
60	32187	1.1 3	3.90	15	55	30	5.73	1	49	74	54	>10	<10	3.44	1465	8	0.03	46	740	60	10	<20	176	0.11	<10	439	<10	<1	126
61	22189	10.0	76	10	E0	25	6 60	2	40	65	60	S10	~10	2 22	1610	0	0.02	50	760	60	10	~20	100	0.00	~10	200	~10	~1	179
01	32100 22100	1.4 0	0110	!∪ 4 <i>⊑</i>	105	30 95	0.00	2	49 50	61	60	~10	~10	2.33	1644	40	0.02		700	00 54	10	~20	102	0.09	>10	262	~10	~1	120
02	32109	1.13	5.39 5.00	10 E E	100	30 40	0.20	Z _1	00 00	01	60	270	~10	0.07 0.00	1041 644	10	0.02	40 770	190	04 40	10	~20	190	0.09	>10	202	~10	5	120
03	32190	10.2 2	1.00	0545	120	10	1.03 o,⊑4	∧ ∦0	20	3/0	00	3./3 Nr 0	~10	0.09	1662	(<i>1</i>	0.10	110	090 470	4Z 10	~0 25	>20 ∠20	60 A	0.10	×10 ~10	04 20	×10 210	р ~1	23
04	32 I9T 20100	1.0 0	1.20	CIC5	70	<u>ა</u> ე ელ	0.01	40 4.40	39 75	400	9 7 - 2	0.24	S 10 240	3.33	255	7	0.01	41	470	1U 4 4	ათ იი	<20 ~20	304	0.00	510	3U 42	~10	51	44
60	34 I 9Z	J.U ()	7.10	~10000	75	20	1.85	140	40	10Z	45	210	<10	0.01	300	(0.01	48	αU	14	20	s20	108	0.07	< IQ	ۍ ا	S 10	<1	20

Et #.	Tag #	Ag Al %	6 As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg% Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	<u></u> U	v	W	Y	Zn
66	32193	1.1 0.79	9 5505	65	30	8.30	10	46	28	36	9.16	<10	2.93 1418	5	0.01	44	630	16	15	<20	332	0.07	<10	50	<10	<1	91
67	32194	1.1 3.84	4 10	45	30	6.59	2	4 4	64	39	>10	<10	2.92 1545	9	0.03	45	700	60	15	<20	133	0.10	<10	374	<10	<1	121
68	32195	1.1 3.45	5 5	45	35	6.30	2	45	67	55	9,79	<10	3.04 1613	9	0.02	45	760	54	15	<20	149	0.10	<10	361	<10	<1	122
69	32196	1.2 4.08	8 10	50	20	6.49	2	52	67	55	>10	<10	3.48 1391	9	0.02	52	820	64	15	<20	166	0.13	<10	400	<10	<1	129
70	32197	11 3 36	3 5	45	15	6.07	2	50	62	50	>10	<10	3 44 1602	9	0.03	49	680	50	20	<20	157	0.10	<10	364	<10	<1	129
	OL /O/	1.1 0.00	- V		10	0.07	-	00	01	00	10		0.111 1002	Ŷ	0.00	10	000	00	20		101	0.10	10	QU I			
71	32198	10.04°	1 1475	75	40	6 35	7	44	35	38	>10	<10	3 10 1437	6	0.02	42	580	14	15	<20	267	0.08	<10	36	<10	<1	82
72	32100	0.8 1.50	ין ו ה	55	50	6.33	२	48	12	37	9.81	<10	3 19 1514	ă	0.02	48	700	30	30	<20	174	0.00	<10	145	10	~1	117
73	32200	20.033	00 C	40	5	0.00	ž	11	22	50	3.64	<10	0.06 156	ă	0.00	16	410	30	25	<20	7	0.03	<10	10	<10	2	106
74	43101	2.0 0.00	a 1045	85	10	8.08	11	47	27	80	>10	<10	3 47 1610	12	0.01	50	630	10	65	<20	517	0.00	<10	20	<10	<u>د</u>	60
74	43101	2.9 0.23	7 105	-5	-5	1 00	2	ر بہ ت	210	200	1 20	~10	0.30 100	2	<0.02	20	500	10	50	~20	71	0.00	<10	10	10	1	03
70	43102	3.0 0.01		-0	~0	1.09	5	J	219	299	1.29	~ 10	0.30 199	2	NU.01	5	500	4	5	~20	f I	0.01	~10	10	10	1	944
76	43103	14 0.6/	1 2255	95	20	7.50	10	61	22	65	510	20	2 17 1569	7	0.02	40	1120	20	10	~20	554	0.00	~10	70	~10	2	110
70	43103	1.4 0.04	+ 2200 1 195	00	20	6.00	2	50	പ	61	~10	~10	2 25 1446	0	0.02	40	760	20	20	~20	94E	0.09	~10	(9 54	~10	-1	100
70	43104		1 100	75	20	0.30	J 0	20	40	47	0.45	~10	3.23 1443	9 5	0.02	JZ 41	610	16	10	~20	240	0.08	~10	10	~10	~1	120
70	43103	0.0 0.0	+ 1323 2 70	73	20	0.10	3	70	40	41	5.40	~10	2.71 1382	0	0.02	41	010	24	5	~20	200	0.07	>10	40	~10	- 1	147
79	43100	0.9 2.00		70	30 25	0.30	د مر	40	20	- 37	210	510	2.90 1437	0	0.02	47	030	34	00	~20	210	0.09	×10	51	\$10	51	117
80	43107	2.1 1.08	9 7055	75	30	0.43	34	40	48	42	>10	< 10	2.49 1309	8	0.02	47	510	26	20	<20	325	0.08	<10	44	<10	<1	55
	404.00			00	05	F 70		F 4	4.0					-	0.00	50	000	4.0	05	.00		0.07		~~	4.0		
8'l	43108	0.7 0.46	0 645	80	25	5.72	4	51	18	47	>10	<10	2.81 1444	1	0.02	53	800	12	20	<20	141	0.07	<10	39	<10	<1	117
82	43109	0.6 0.52	2 2000	75	50	5.39	8	48	28	44	>10	<10	3.08 1295	9	0.05	50	730	14	40	<20	137	0.07	<10	47	<10	<1	115
83	43110	0.5 0.60) 215	55	5	0.17	<1	22	733	73	3.10	<10	0.13 193	12	0.01	606	300	22	<5	<20	6	0.02	<10	24	<10	2	44
84	43111	0.9 2.51	1 /5	55	20	6.48	1	53	98	82	9.04	<10	3.28 1460	6	0.03	59	600	46	25	<20	153	0.08	<10	201	<10	<1	116
85	43112	1.0 4.37	7 30	45	25	6.42	2	49	152	71	9.03	<10	3.82 1460	13	0.02	62	550	78	40	<20	168	0.09	<10	350	<10	<1	108
00	10110			10	45	6 5 4		50		70	0.05		0.01.4440		0.00		500	70	45	.00	400	0.40		0.54			407
86	43113	<0.2 4.14	4 25	40	15	6.51	1	52	151	72	8.85	<10	3.64 1440	8	0.02	66	580	70	15	<20	186	0.10	<10	351	<10	<1	107
87	43114	1.0 3.95	5 20	40	15	6.74	2	45	139	50	8.22	<10	3.52 1501	10	0.02	58	600	70	25	<20	201	0.09	<10	334	10	<1	102
88	43115	1.0 3.98	3 25	55	35	8.51	<1	42	111	55	8.04	<10	2.99 1454	9	< 0.01	47	680	68	25	<20	210	80.0	<10	334	<10	6	102
89	43116	1.2 5.18	3 40	55	30	6.56	2	49	57	35	>10	<10	3.32 1602	10	0.01	36	1140	86	10	<20	131	0.13	<10	482	10	3	138
90	43117	1.1 4.97	7 35	55	30	6.68	1	48	53	40	>10	<10	3.00 1455	12	<0.01	37	1070	80	20	<20	114	0.12	<10	463	<10	2	135
~	10110		- 0400	70		0.55	0					-40	0.04.4400	~	0.00	00	0.40	40	05	-00	474	0.07		40	4.0		100
91	43118	0.9 0.85	5 3400	70	45	0.55	8	41	39	50	>10	<10	2.84 1463	9	0.03	36	840	18	35	<20	174	0.07	<10	49	10	<1	102
92	43119	1.6 0.30	0 6530	55	15	5.53	12	36	103	34	0.00	<10	2.17 1043	5	0.01	42	620	10	25	<20	276	0.05	<10	29	<10	<1	37
93	43120	2.0 0.32	2 365	45	15	0.32	<1	11	33	58	3.61	<10	0.06 153	9	0.01	17	420	34	25	<20	8	0.03	<10	19	<10	3	107
94	43121	0.8 0.51	495	75	30	7.65	3	45	29	54	8.98	<10	3.73 1577	6	0.02	44	450	12	25	<20	254	0.07	<10	32	<10	<1	87
95	43122	0.6 1.37	r 10	50	15	7.70	2	44	50	63	8.19	<10	3.55 1543	6	0.03	42	510	26	20	<20	89	0.07	<10	116	<10	2	97
	40400			-	05	7.00		45	40	40	0.00		0.00 4500	~	0.00	40	400				007	0.00		10	10		~~
96	43123	0.8 0.60) 55	75	35	7.32	4	45	43	43	9.03	<10	3.89 1568	9	0.03	49	460	14	45	<20	207	0.06	<10	42	10	<1	82
97	43124	0.8 0.62	2 25	70	45	6.72	2	44	36	55	8.97	<10	3.65 1329	3	0.07	45	560	16	<5	<20	116	0.08	<10	50	<10	<1	102
98	43125	0.6 0.70) 110	50	30	7.28	2	43	29	65	8.79	<10	3.60 1414	5	0.09	47	600	18	15	<20	114	0.07	<10	50	<10	<1	107
99	43126	0.8 1.45	5 155	60	15	7.38	3	50	32	59	9.61	<10	3.72 1576	7	0.07	52	640	26	35	<20	123	0.08	<10	53	<10	<1	109
100	43127	0.7 0.74	375	45	20	7.59	4	42	46	71	8.35	<10	3.50 1451	6	0.06	43	630	16	25	<20	126	0.07	<10	43	<10	<1	86
4.5.4	10100	0.6.0.04	140	EE	25	604	0	15	07	70	0 00	-10	2 04 4540	c	0.07	40	640	4.4	25	~00	140	0.07	-40		-10		04
101	43120	0.0 0.04	+ 140) 4455	33	20	0.04	∠ ٥	40	27 20	72	0.00	~10	3.04 1012	0	0.07	49	600	14	20	~20	140	0.07	>1U <10	44	<10 <10	~1	94 104
102	43129	0.7 0.79	9 1435	00 E7	20	7.04	0	43 00	20	70	0./0	×10 ~10	0.14 407	40	0.05	47	000	10	-3U ∠≂	<20	149	0.07	<10 <10	<i>ა</i> ರ ೧೯	<10	<1	101
103	43130	0.5 0.63	5 ZNU ZNU	35	<5 45	U.10 7.70	51	47	/42	78	3.10	<10 	0.14 197	13	0.01	011	310 500	20	55	<20 200	1	0.03	510	25	<10	3	44
104	43131	1.0 1.17	955	70	45	7.70	1	47	20	71	9.27	< 10	3.72 1430		0.04	50	220	22	4U 0E	<2U 200	200	0.07	<10 - 40	36	10	<1	88
105	43132	0.8 0.55	> 280	80	10	7.08	3	45	33	54	8.94	<10	3.73 1504	6	0.02	48	770	14	25	<20	208	0.07	<10	33	<10	<1	90

_	Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Co	Cr.	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
-	106	43133	1.1 0.25	4715	65	20	9.89	12	34	64	20	7.23	<10	3.41	1610	7	0.02	40	540	12	30	<20	347	0.06	<10	27	<10	3	45
	107	43134	1.0 0.09	2160	35	<5	>10	2	13	78	3	5.74	<10	4.86	2654	4	0.01	19	250	8	30	<20	601	0.07	<10	49	<10	6	22
	108	43135	1.2 0.26	1635	80	<5	8.83	<1	43	33	35	8.84	<10	3.59	1591	3	0.01	45	480	10	5	<20	406	0.08	<10	26	<10	<1	58
	109	43136	1.0 3.23	75	45	10	7.21	1	44	77	62	8.81	<10	3.86	1505	6	0.02	50	670	54	15	<20	159	0.08	<10	256	<10	2	97
	110	43137	11 4 70	45	45	30	7.80	<1	46	94	66	9.09	<10	4 00	1530	8	0.02	52	690	76	20	<20	169	0.09	<10	362	<10	3	100
	,	1010/				ŶŶ	7.00		10		00	0.00	10			v	0.02	ΨL	000	70	-•			0.00	10	00L		v	
	111	43138	11 4 79	45	45	10	7 85	<1	46	98	65	9.06	<10	4 09	1582	9	0.02	55	700	78	15	<20	241	0.09	<10	354	10	3	101
	112	43139	11 4 48	50	60	45	6.98	2	47	82	66	9.23	<10	4 09	1442	ğ	0.02	55	720	74	30	<20	142	0.00	<10	327	<10	4	102
	113	43140	0.2 2 12	50	125	10	1 59	<1	29	959	68	3.84	<10	0.91	562	16	0.02	780	630	48	<5	<20	61	0.16	<10	87	<10	- A	38
	114	43141	11 3 34	55	75	30	7 72	2	43	87	48	>10	<10	3.85	1592	12	0.10	52	640	56	25	<20	145	0.10	<10	261	<10	2	107
	115	43141	10.0 0.44	2000	60 60	10	6.78	0	24	71	255	607	~10	2.61	1265	5	0.02	32	420	14	165	~20	261	0.00	~10	54	<10	2	220
	115	43142	10.9 0.44	2000	00	10	0.70	9	-04	3.1	200	Q.97	510	2.01	1305	J	0.01	35	420	14	105	~20	201	0.00	S 10	04	\$10	3	209
	116	43143	11075	4585	80	10	7 24	15	AA	AA	48	Q 42	<10	3 58	1487	Q	0.02	51	450	16	40	<20	397	0.06	<10	21	<10	c1	77
	117	43144	0.8 1 10	1245	70	15	8.01	6	45	28	26	0.72	<10	3 00	150/	7	0.02	60	400	20	15	<20	273	0.00	~10	40	~10	~1	9.A
	117	43144	12 0 44	255	70	20	6.70	2	44	38	46	0.71	<10	3.64	1647	6	0.03	50	400 600	12	15	~20	178	0.00	~10	40	10	~1	04
	110	43145	0.7 0.35	200	60	20	6.84	2	43	30	40	9.71 Q./11	<10	3 32	1530	5	0.04	30	670	10	15	~20	121	0.00	~10	40	<10	~1	104
	119	43140	1 4 0 25	6255	00	20	7.64	20	40	וט אני	43	0.70	<10	2 27	1556	7	0.03	40	640	10	10	~20	445	0.00	~10	40	<10	2	06
	120	43147	1.4 0.25	0555	00	20	1.04	30	40	20	41	9.19	~10	3.37	1000	(0.02	40	040	10	20	~20	410	0.07	~10	20	~10	3	00
	121	43148	57005	2530	15	<5	2 22	10	6	162	118	1 54	<10	0.60	316	1	<0.01	6	50	6	80	<20	89	0.02	<10	q	<10	1	349
	122	43149	09 034	445	75	25	6.86	4	40	30	48	8 75	<10	3 47	1389	ż	0.07	47	580	12	30	<20	217	0.06	<10	રર	<10	<1	94
	122	43150	20 032	365	15	5	0.00	2	11	22	56	3.60	<10	0.06	154	10	0.02	18	420	34	25	<20	5	0.00	<10	10	<10	2	102
	123	43151	07 042	1/5	50	15	7 70	2	42	27	56	8.60	<10	3.86	1600	7	0.01	10	450	10	25	<20	142	0.02	<10	10	<10	<1	22
	124	43157	0.0 0.42	95	45	25	6.60	2	42	36	64	8.55	~10	3.00	1517	Å	0.00	-43/ 51	430	10	20	~20	113	0.07	~10	40	~10	2	88
	120	40102	0.0 0.40	00	45	20	0.00	0	44	00	Ų4	0.00	510	0.50	1011	0	0.00	51	400	10	20	~20	115	0.01	~10	-1-1	~10	4	00
	126	43153	07.055	230	60	25	5 78	3	46	33	55	9 11	<10	3 75	1518	6	0.04	47	600	12	20	<20	100	0.07	<10	66	<10	<1	98
	127	43154	0.7 0.90	55	50	15	6.47	Δ	46	45	53	9.36	<10	3.74	1663	10	0.07	48	630	18	35	<20	107	0.07	<10	02	<10	<1	àà
	128	13155	0.7 0.81	75	55	25	7.66	2	42	34	51	9.12	<10	3 73	1646	6	0.07	43	610	16	15	<20	149	0.07	<10	81	<10	<1	ae ae
	120	43156	0.7 0.57	80	55	15	6.05	2	45	32	54	0.10	<10	3.67	1515	7	0.00	46	600	14	20	<20	114	0.07	<10	50	<10	<1	107
	120	43157	06 0 44	85	50	20	6.42	2	43	27	54	0.71	<10	3.36	15/12	5	0.00	37	600 .	10	20	<20	84	0.07	<10	18	<10	21	105
	150	43137	0.0 0.44	00	50	20	0.42	٤.	40	21	94	3.71	-10	0.00	1072		0.00	03	030	10	20	~20	04	0.00	~10	40	~10	~1	100
	131	43158	07 036	565	60	25	6 75	4	44	25	45	9 99	<10	3 26	1529	7	0.07	34	720	10	15	<20	121	0.08	<10	47	<10	<1	113
	132	43159	0.7 0.45	5990	75	20	7.45	15	40	39	47	8.86	<10	3.01	1516	6	0.03	32	680	12	10	<20	235	0.07	<10	37	<10	<1	89
	133	43160	05 0 62	220	55	5	0.18	<1	22	646	79	3.18	<10	0.13	198	12	0.01	571	300	22	<5	<20	8	0.03	<10	25	<10	2	45
	134	43161	0.9 1.04	90	70	10	9.29	3	44	28	62	9 14	<10	3 13	1682	5	0.03	34	740	20	10	<20	207	0.08	<10	145	<10	6	118
	135	43162	11 4 28	45	55	25	6 13	2	51	54	62	>10	<10	3 73	1335	10	0.02	42	870	72	20	<20	164	0.10	<10	373	10	<1	135
	100	JUIGE		10	00		0.10	-	2.					00					0,0	, -				0.10		0.0		•	
	136	43163	0.9 2.46	85	60	25	6.36	2	45	61	60	9.75	<10	3.43	1549	7	0.03	46	760	44	15	<20	152	0.08	<10	233	10	3	120
	137	43164	1.2 3.34	20	60	30	8.94	2	37	51	8	9.97	<10	3.88	2506	9	0.02	35	870	56	15	<20	242	0.11	<10	312	<10	5	112
	138	43165	1.2 1.10	15	55	55	>10	4	39	40	<1	9.90	<10	5.59	4968	10	0.02	23	410	14	45	<20	290	0.10	<10	149	<10	18	54
	139	43166	1.1 3.87	20	50	25	6.89	2	51	57	19	>10	<10	3.83	1748	7	0.02	38	920	66	10	<20	173	0.10	<10	336	<10	4	118
	140	43167	1.1 4.91	25	55	35	6.04	2	50	57	63	>10	<10	3.84	1647	13	0.02	42	980	86	35	<20	162	0.11	<10	349	<10	13	126
	141	43168	1.1 4.88	10	50	25	6.27	2	50	50	65	>10	<10	3.69	1645	10	0.02	42	930	86	25	<20	133	0.10	<10	332	<10	13	120
	142	43169	1.1 5.04	<5	50	35	6.17	2	52	34	65	>10	<10	3.35	1611	13	0.01	38	760	84	30	<20	121	0.09	<10	389	<10	11	123
	143	43170	0.5 0.64	220	50	<5	0.18	<1	22	647	77	3.17	<10	0.13	198	12	0.01	577	290	20	<5	<20	6	0.03	<10	26	<10	2	45
	144	43171	1.1 4.47	60	55	20	8.35	2	49	32	61	>10	<10	3.30	1688	10	0.01	37	700	68	25	<20	135	0.11	<10	342	<10	4	116
	145	43172	0.5 2.93	45	45	40	3.85	<1	37	177	88	4.18	<10	2.28	777	4	0.03	58	430	58	20	<20	67	0.31	<10	107	<10	5	55

Et #.	Tag #	Ag A	<u>\ %</u>	As	Ba	Bi	Ca %	<u>C</u> d	Co	Cr	Cu	Fe %	La	Mg% Mn	Mo	<u>Na %</u>	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Y	Zn
146	43173	0.7 0).32	985	80	45	6.33	3	42	43	48	8.82	<10	2.91 1522	5	0.01	29	580	12	10	<20	297	0.07	<10	32	<10	1	65
147	43174	2.9 ().23 >	>10000	80	15	5.81	14	48	37	21	>10	<10	2.99 1438	6	0.01	38	270	8	20	<20	407	0.09	<10	23	<10	<1	42
148	43175	0.8 0	0.52	310	85	30	6.68	5	44	22	50	9.68	<10	3.41 1659	11	0.02	43	770	12	40	<20	230	0.06	<10	37	<10	<1	84
149	32274	0.6 0	0.56	420	55	20	6.58	3	42	35	53	8.91	<10	3.46 1519	4	0.06	42	750	14	5	<20	128	0.08	<10	46	<10	<1	107
150	32275	0.7 1	1.06	60	65	25	5.95	3	50	35	78	9.50	<10	3.67 1566	8	0.08	48	830	20	15	<20	70	0.07	<10	66	<10	<1	118
151	32276	0.7 0	0.97	115	55	20	6.18	2	45	35	48	9.30	<10	3.40 1483	7	0.07	43	790	20	15	<20	70	0.07	<10	55	<10	<1	100
152	32277	1.4 0	0.70	8645	65	25	7.57	38	36	53	63	8.06	<10	2.88 1244	6	0.02	36	530	18	40	<20	273	0.06	<10	27	<10	<1	181
153	32278	0.8 (0.37	180	65	10	6.60	3	42	33	51	9.07	<10	3.54 1480	7	0.05	43	790	10	30	<20	135	0.07	<10	42	<10	<1	94
154	32279	1.1 0	0.37	1960	85	30	7.93	11	48	42	52	9.26	<10	3.69 1697	7	0.03	49	1170	12	35	<20	259	0.08	<10	45	<10	2	99
155	32280	02 2	2 05	75	130	15	1.68	<1	30	944	66	3.82	<10	0.88 555	17	0.17	772	650	50	<5	<20	60	0.17	<10	85	10	6	39
100	v == • • •	~~ -						·	••	•••		0.02		0.00 000		•					20		0.11				Ŭ	
156	32281	0.7 0	0.42	1000	85	30	8.05	8	44	25	38	8.99	<10	3.73 1612	6	0.03	44	800	12	15	<20	263	0.07	<10	40	<10	<1	82
157	32282	0.7 0).58	110	60	30	6.58	2	44	32	70	9.07	<10	3.45 1422	6	0.06	42	780	14	30	<20	112	0.07	<10	46	<10	<1	107
158	32283	0.8 0	0.69	120	50	20	6.87	2	47	31	52	9.46	<10	3.56 1619	6	0.07	46	820	14	15	<20	94	0.07	<10	52	<10	<1	62
159	32284	0.7 0	0.64	105	65	20	6.67	3	48	29	59	9.78	<10	3.54 1466	7	0.06	52	820	16	15	<20	96	0.09	<10	61	<10	<1	68
160	32292	0.5 2	2.74	30	55	25	4.62	<1	35	145	81	4.07	<10	2.14 817	2	0.02	74	410	60	15	<20	58	0.28	<10	92	<10	4	56
QC DAT	A:																											
Repeat.	:																											
1	27022	1.0 2	2.58	145	50	10	7.60	3	43	108	64	8.44	<10	4.07 1335	- 7	0.05	63	630	30	15	<20	107	0.09	<10	205	<10	2	96
10	27031	1.1 4	1.34	25	50	25	5.39	1	51	151	73	9.44	<10	3.55 1561	9	0.03	63	810	60	15	<20	104	0.25	<10	360	<10	20	108
19	32146	1.2 4	1.64	10	170	25	5.34	2	49	78	65	9.93	<10	4.02 1519	9	0.02	43	720	58	10	<20	167	0.22	<10	323	<10	. 14	110
36	32163	1.7 0).48	3255	75	25	7.87	19	47	20	31	9.56	<10	3.27 1727	6	0.01	28	610	12	15	<20	413	0.08	<10	39	<10	<1	60
45	32172	1.7 1	1.18	7265	65	30	6.38	28	44	39	43	9.41	<10	2.85 1411	10	0.01	33	580	20	35	<20	293	0.07	<10	99	<10	2	72
54	32181	1.0 0).53	4180	85	35	5.87	24	47	39	63	9.84	<10	2.93 1565	7	0.02	47	680	14	20	<20	266	0.09	<10	36	<10	<1	83
71	32198	1.0 0).39	1445	80	25	6.40	9	43	35	35	>10	<10	3.13 1441	5	0.02	42	580	12	15	<20	275	0.08	<10	35	<10	<1	84
80	43107	2.0 1	1.06	7290	70	25	6.53	<1	46	47	39	>10	<10	2.42 1301	6	0.02	46	500	26	25	<20	325	0.09	<10	43	<10	<1	55
89	43116	1.2 5	5.14	35	65	30	6.56	2	48	57	36	>10	<10	3.30 1595	13	0.01	38	1140	88	25	<20	139	0.13	<10	477	10	3	136
106	43133	1.1 0).29	4705	75	10	9.93	19	33	69	23	7.29	<10	3.55 1628	6	0.02	40	540	8	25	<20	357	0.06	<10	29	<10	3	43
115	43142	10.8 0).45	2040	60	<5	6.76	7	34	74	246	6.95	<10	2.54 1356	5	0.01	34	420	14	165	<20	247	0.06	<10	55	<10	3	244
124	43151	0.7 0).45	130	50	15	7.75	3	43	28	58	8.64	<10	3.93 1612	6	0.07	50	460	12	30	<20	146	0.07	<10	42	10	<1	83
141	43168	1.1 4	1.96	5	55	30	6.25	2	50	50	64	>10	<10	3.74 1638	11	0.01	42	940	84	25	<20	139	0.11	<10	336	<10	14	118
150	32275	0.7 1	.03	75	60	20	5.80	4	47	35	76	9.33	<10	3.52 1520	12	0.08	53	810	22	50	<20	65	0.06	<10	66	<10	<1	117
Respitt	07000			400	5.0	05	7 50		40	100	r 4	0.40	.40	0.00 4940	~	0.05	~~~	000	24	20	.00	07	0.07		000			05
1	27022	1.0 2	00.1	160	00	25	1.52	4	43	109	54	0.40	<10	3.90 1310	9	0.05	00	020	34 14	30	<20	97	0.07	<10	203	510	1	95
36	32163	1.6 0	2.48	3425	80	35	8.1Z	1	52	21	30	210	< 10 - 40	3.21 1/36	1	0.01	33	040	14	25	<20	400	0.08	<10	40	<10	<1	0/
/1	32198	1.0 0	3.40	1505	80	50	0.47	10	45	51	38	>10	< 10	3.10 1453	6	0.02	45	010	14	20	<20	2/8	0.08	<10	33	10	<1	84
106	43133	1.0 0	1.26	4670	65	30	9.97	12	33	51	24	1.27	<10	3.61 1652	5	0.02	40	600	10	25	<20	3/0	0.07	<10	28	<10	3	45
141	43168	1.1 4	1.7Q -	15	50	40	5.96	- 2	48	- 52	-59	>10	<10	3.58 1591	- 13	0.01	43	920	90	35	<20	124	0.10	<10	324	10	12	118

ICP CERTIFICATE OF ANALYSIS AW 2007-7126

Cusac Gold Mines Ltd.

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr Cu	Fe %	La	Mg % Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	ΥZ	'n
Standard	:																									
Pb113		11.2 0.30	60	70	<5	1.75	42	3	5 2347	1.13	<10	0.12 1523	76	0.02	2	70	5470	20	<20	77	0.02	<10	9	<10	<1 710)9
Pb113		11.6 0.29	65	65	<5	1.84	44	3	6 2394	1.18	<10	0.13 1583	71	0.02	3	50	5542	20	<20	68	0.01	<10	9	<10	<1 714	15
Pb113		11.2 0.30	65	70	<5	1.83	43	3	6 2375	1.19	<10	0.13 1573	74	0.02	5	60	5490	15	<20	74	< 0.01	<10	10	<10	<1 720)3
Pb113		11.4 0.30	60	75	<5	1.82	42	3	6 2286	1.17	<10	0.13 1551	71	0.02	3	90	5430	15	<20	79	0.01	<10	10	<10	<1 716	50
Pb113		12.0 0.30	55	70	<5	1.79	40	3	6 2245	1.16	<10	0.13 1536	70	0.02	5	90	5580	20	<20	76	< 0.01	<10	10	<10	<1 702	24

Aqua Regia Digestion - ICP Finish

JJ/nl df/7126S XLS/07

ECO FECH LABORATORY LTD. Jutta Jealouse B.Q. Certified Assayer

20

10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2007-7158

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

No. of samples received: 99 Sample Type: Core **Project: Taurus** Shipment #:07-007 Submitted by: Lesley Hunt/Mike Glover

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al%	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	<u>Fe</u> %	La	Mg% Mn	Mo	Na %	Ni P	Pb	Sb	Sn	Sr	<u> </u>	Ų	v	W	Y	Zn
1	G32285	0.3 0.63	140	105	15	6.38	12	41	29	53	>10	<10	4.11 1361	<1	0.18	33 950	12	<5	<20	82	<0.01	<10	70	<10	5	42
2	G32286	<0.2 0.63	130	85	15	8.18	11	37	28	51	9.44	<10	4.20 1435	<1	0.19	31 850	12	<5	<20	89	<0.01	<10	55	<10	4	41
3	G32287	<0.2 2.90	100	90	15	7.44	13	39	47	72	>10	<10	4.46 1428	<1	0.10	31 960	20	<5	<20	114	<0.01	<10	227	<10	4	83
4	G32288	0.2 4.55	80	125	10	5.23	13	41	72	101	>10	<10	4.49 1172	<1	0.09	36 1060	24	<5	<20	75	0.02	<10	406	<10	12	80
5	G32289	<0.2 4.20	60	90	10	5.84	12	44	77	78	>10	<10	4.67 1497	<1	0.10	36 1040	22	<5	<20	64	0.09	<10	376	<10	13	81
6	G32290	2.1 0.33	380	45	5	0.24	4	9	31	68	3.74	<10	0.10 150	6	0.01	15 500	20	30	<20	8	<0.01	<10	22	<10	4	89
7	G32291	0.3 4.00	70	85	10	7.08	12	42	66	108	>10	<10	4.40 1523	<1	0.09	35 900	22	<5	<20	78	0.07	<10	350	<10	12	80
8	G32293	0.3 4.18	60	80	10	6.44	11	44	73	93	9.94	<10	4.41 1505	<1	0.10	36 1020	20	<5	<20	82	0.07	<10	354	<10	12	77
9	G32294	0.5 3.46	50	75	5	5.17	10	47	72	101	9.28	<10	3.88 1334	<1	0.10	37 1030	18	<5	<20	74	0.30	<10	338	<10	17	80
10	G32295	<0.2 2.83	55	60	<5	4.25	8	44	71	79	7.69	<10	2.94 1139	<1	0.10	33 1000	16	<5	<20	71	0.34	<10	249	<10	15	65
11	G32300	0.7 0.67	195	50	5	0.19	3	20	720	92	3.45	<10	0.16 192	10	0.04	608 280	10	15	<20	13	<0.01	<10	26	<10	3	44
12	178651	0.4 3.43	70	65	<5	5.26	9	45	69	85	8.29	<10	3.27 1231	<1	0.10	35 1050	16	<5	<20	58	0.37	<10	282	<10	13	67
13	178652	0.2 4.13	90	70	10	7.85	10	44	71	85	9.65	<10	3.98 1489	<1	0.09	36 1020	20	<5	<20	62	0.16	<10	371	<10	13	76
14	178653	0.4 3.29	70	60	<5	5.48	8	44	68	90	7.76	<10	3.07 1163	<1	0.11	33 1010	18	<5	<20	42	0.41	<10	271	<10	11	66
15	178654	0.3 3.09	55	55	<5	2.14	7	44	75	90	6.73	<10	2.35 946	<1	0.11	37 980	12	<5	<20	29	0.35	<10	175	<10	8	60
16	178655	0.3 2.93	50	60	<5	2.52	6	42	104	78	6.68	<10	2.37 939	<1	0.11	46 820	14	<5	<20	37	0.29	<10	168	<10	9	59
17	178656	0.3 3.11	55	70	<5	4.85	8	41	115	78	7.89	<10	2.87 1182	<1	0.11	49 720	18	<5	<20	74	0.20	<10	222	<10	13	69
18	178657	0.3 3.26	50	50	<5	3.41	7	41	151	58	6.93	<10	2.62 1000	<1	0.11	51 960	16	<5	<20	33	0.45	<10	202	<10	9	64
19	178658	<0.2 2.49	40	45	<5	1.89	6	42	105	84	6.23	<10	2.20 789	<1	0.17	44 880	10	5	<20	35	0.37	<10	153	<10	8	53
20	178659	<0.2 3.58	50	60	5	5.62	8	43	119	74	8.42	<10	3.75 1253	<1	0.09	44 770	16	<5	<20	48	0.19	<10	306	<10	9	68
21	178660	1.9 0.32	365	40	5	0.27	з	9	30	68	3.71	<10	0.10 146	6	0.01	14 500	20	30	<20	8	<0.01	<10	19	<10	4	94
22	178661	0.3 4.00	70	60	5	6.49	9	40	154	77	9.06	<10	4.12 1346	<1	0.09	51 820	18	<5	<20	73	0.05	<10	364	<10	4	74
23	178662	<0.2 4.06	85	60	10	6.50	9	40	168	73	9.05	<10	3.92 1296	<1	0.09	55 880	20	<5	<20	66	0.06	<10	358	<10	з	75
24	178663	<0.2 3.45	1300	75	10	6.82	8	41	128	73	9.19	<10	4.06 1282	<1	0.08	52 820	20	<5	<20	96	0.03	<10	276	<10	4	78
25	178664	<0.2 1.11	1520	65	10	8.19	7	35	31	56	7.66	<10	3.11 1411	<1	0.09	28 600	10	5	<20	137	<0.01	<10	102	<10	9	65

-

AUG 2 8 2007

ICP CERTIFICATE OF ANALYSIS AK 2007-7158

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	W	_ Y	Zn
26	178665	0.3 2.79	75	50	<5	3.64	7	47	56	88	7.52	<10	2.64	1100	<1	0.10	- 33	810	14	<5	<20	67	0.44	<10	234	<10	15	66
27	178666	0.4 2.79	80	50	<5	5.39	7	46	52	96	7.62	<10	2.67	1232	<1	0.10	35	800	14	<5	<20	76	0.30	<10	253	<10	22	66
28	178667	0.3 3.44	55	65	5	5.15	8	49	68	103	9.85	<10	3.32	1189	<1	0.11	42	910	18	<5	<20	80	0.21	<10	330	<10	19	84
29	178668	<0.2 3.76	30	65	10	6.34	9	46	81	77	>10	<10	3.81	1342	<1	0.11	43	860	20	<5	<20	77	0.05	<10	367	<10	24	92
30	178669	0.3 3.67	75	70	10	5.24	9	52	63	123	>10	<10	4.06	1691	<1	0.09	37	810	20	<5	<20	132	0.01	<10	395	<10	5	105
31	178670	0.5 0.66	180	45	<5	0.18	2	19	727	88	3.25	<10	0.14	192	11	0.04	599	300	10	20	<20	12	<0.01	<10	25	<10	3	48
32	178671	<0.2 0.99	305	75	5	5.25	7	36	31	92	8.57	<10	2.99	1245	<1	0.07	23	660	10	<5	<20	134	<0.01	<10	101	<10	6	71
33	178672	<0.2 0.68	15	50	10	>10	7	26	21	43	7.73	<10	2.37	1180	<1	0.06	16	590	10	<5	<20	181	<0.01	<10	72	<10	Ř	62
34	27035	<0.2 4.13	40	60	5	4.94	8	50	60	82	>10	<10	3.46	1312	<1	0.09	41	1010	20	<5	<20	144	0.03	<10	423	<10	6	100
35	27036	0.2 3.98	40	60	5	6.14	8	36	29	65	>10	<10	2.93	1269	<1	0.08	24	1060	18	<5	<20	156	0.04	<10	368	<10	4	99
00	07007	00.000	10	00	25	7 4 7	~	40	00	00	. +0	.10	0.00	1000	10	0.00	07	000	00	05		104	0.07	40	074	**		07
30	27037	<0.2 2.03	0000	00	35	7.17	40	42	20	20	>10	<10	2.90	1903	12	0.02	- 37	930	30	20	<20	394	0.07	<10	371	<10	<1	0/
3/ 00	27030	0.4 0.70	9000	00 50	20	0.69	40	40	05	- 33 - 24	9.01	<10	2.21	1404	44	-0.01		200	10	30	<20	300	0.05	<10	10	<10	< 1	00 7
- 30 20	27039	1.1 0.11	200	40	-5	0.40	40 1	20	90 600	24	0.90	<10	0.13	170	10	<0.01	400	200	10	30	<20	24	0.02	<10	10	<10	<1 7	20
39	27040	0.0 0.54	200	40	<0 1 E	0.10	<1	19	15	10	2.97	<10	0.12	1920	12	0.01	499	320	12	<0 4 c	<20	500	0.01	<10	22	<10	4	39
40	27041	0.4 0.44	>10000	60	15	6.91	19	3/	15	18	8.12	<10	3.33	1020	4	<0.01	24	250	4	15	<20	502	0.06	<10	31	<10	<1	47
41	27042	<0.2 2.75	45	45	25	6.29	3	45	23	59	>10	<10	3.18	1552	9	0.03	31	850	36	15	<20	193	0.07	<10	378	<10	<1	98
42	27043	<0.2 3.41	<5	45	40	6.32	3	45	19	63	>10	<10	2.92	1553	11	0.03	30	840	44	25	<20	204	0.09	<10	436	<10	<1	107
43	27044	<0.2 3.48	<5	45	35	6.49	2	47	19	55	9.08	<10	2.87	1587	8	0.03	31	980	48	10	<20	205	0.11	<10	378	<10	<1	105
44	27045	<0.2 3.64	<5	40	45	6.29	2	43	64	60	8.86	<10	3.12	1529	10	0.03	36	770	48	25	<20	186	0.11	<10	376	<10	<1	101
45	27046	<0.2 3.39	<5	40	30	5.73	2	47	21	57	9.19	<10	2.90	1568	8	0.02	31	900	46	10	<20	184	0.10	<10	373	<10	<1	103
46	27047	<0.2 3.12	<5	45	30	6.11	3	50	22	52	>10	<10	2.83	1444	11	0.03	37	930	40	15	<20	186	0.08	<10	423	<10	<1	104
47	27048	<0.2 2.70	<5	50	35	6.27	3	44	19	70	>10	<10	2.86	1553	10	0.03	31	840	34	15	<20	197	0.07	<10	406	<10	<1	98
48	27049	<0.2 2.74	<5	55	35	6.10	3	41	16	57	>10	<10	2.84	1609	10	0.03	30	870	36	20	<20	186	0.08	<10	409	<10	<1	108
49	27050	<0.2 1.83	35	120	15	1,71	<1	26	947	65	3.54	<10	0.83	510	18	0.16	735	630	34	5	<20	70	0.10	<10	78	<10	3	30
50	27051	0.2 1.01	20	80	55	5.44	4	48	10	70	>10	<10	2.74	1595	10	0.03	32	790	14	20	<20	210	0.06	<10	76	<10	<1	103
51	27052	0.2 1.01	4550	80	40	4.21	9	32	21	50	>10	<10	1.57	1301	9	0.01	24	890	16	15	<20	161	0.06	<10	34	<10	<1	64
52	27053	<0.2 0.91	25	60	30	5.45	3	39	9	49	>10	<10	2.19	1432	6	0.03	24	800	12	10	<20	161	0.06	<10	52	<10	<1	87
53	27054	0.3 2.08	915	75	45	4.95	4	50	17	70	>10	<10	2.43	1324	8	0.02	32	830	26	10	<20	169	0.07	<10	129	<10	<1	90
54	27055	<0.2 1.43	<5	65	50	4.81	3	49	12	68	>10	<10	2.60	1436	10	0.04	32	840	20	15	<20	105	0.07	<10	207	<10	<1	103
55	27056	0.4 0.42	5620	75	55	4.11	27	53	35	47	>10	<10	2.32	1312	9	0.02	38	580	6	25	<20	181	0.06	<10	41	<10	<1	52
56	27057	0.1 0.44	20	75	35	6.06	2	48	8	64	>10	<10	2.59	1627	6	0.03	27	800	6	10	<20	165	0.07	<10	39	<10	<1	79
57	27058	0.2 0.30	1095	80	45	4.88	7	52	10	34	>10	<10	2.49	1611	6	0.01	32	830	4	<5	<20	247	0.06	<10	35	<10	<1	75
58	27059	<0.2 1.80	<5	55	45	5.98	5	54	12	71	>10	<10	3.23	1505	15	0.02	45	750	24	45	<20	162	0.05	<10	133	<10	<1	113
59	27060	2.1 0.29	350	30	5	0.28	2	10	30	58	3.48	<10	0.06	149	8	<0.01	12	450	22	10	<20	7	0.02	<10	16	<10	2	99
60	27061	1.8 0.28	5730	80	40	3.10	33	49	12	82	>10	<10	2.62	1513	16	0.01	40	530	4	85	<20	289	0.04	<10	30	<10	<1	50
61	27062	<0.2 0.04	415	<5	5	0.25	<1	4	141	<1	1.13	<10	0.08	65	<1	<0.01	3	20	<2	<5	<20	6	0.03	<10	3	<10	<1	<1
62	27063	<0.2 2.13	20	40	30	2,59	<1	30	105	78	3.24	<10	1.71	596	2	0.03	47	370	36	<5	<20	23	0.19	<10	77	<10	<1	35
63	27064	0.4 0.31	5250	50	20	1.88	9	56	30	27	>10	<10	2.09	1274	6	<0.01	37	380	<2	<5	<20	184	0.06	<10	28	<10	<1	56
64	27065	<0.2 3.09	35	65	15	5.52	3	44	21	59	>10	<10	3.10	1545	12	0.02	31	880	40	15	<20	186	0.06	<10	376	<10	<1	107
65	27066	<0.2 3.05	<5	70	25	6.07	3	48	21	51	>10	<10	3.12	1640	10	0.03	36	940	44	15	<20	199	0.08	<10	384	<10	<1	109

AUG 2 0 200/ CERTIFICATE OF ANALYSIS AK 2007- 7158

Cusac Gold Mines Ltd.

Et #.	Tag #	Ag Al	% As	Ba	Bi	Ca %	Cd	Co	Cr	Çu	Fe %	La	Mg% Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
66	27067	<0.2 3.4	40 <5	45	40	6.11	2	50	27	60	>10	<10	3.09 1596	8	0.02	35	900	48	5	<20	180	0.12	<10	413	<10	<1	110
67	27068	<0.2 3.6	05 <5	50	35	5.92	2	47	22	52	>10	<10	2.71 1500	9	0.03	31	980	38	<5	<20	153	0.15	<10	444	<10	<1	102
68	27069	<0.2 2.9	98 <5	55	65	5.14	3	51	24	65	>10	<10	2.87 1562	13	0.03	37	950	46	30	<20	126	0.24	<10	411	<10	10	106
69	27070	0.6 0.	55 195	40	<5	0.17	<1	19	616	75	2.95	<10	0.12 180	9	< 0.01	487	310	11	<5	<20	9	0.05	<10	21	<10	2	39
70	27071	<0.2 3.0	05 <5	75	40	3.71	2	53	26	69	>10	<10	3.08 1503	12	0.03	45	870	46	20	<20	78	0.28	<10	398	<10	9	117
71	27072	<0.2 3.3	33 <5	50	65	4.07	2	51	27	102	>10	<10	3.30 1467	10	0.02	35	910	48	35	<20	178	0.23	<10	378	<10	13	115
72	27073	<0.2 3.0	02 <5	50	45	4.30	3	51	27	77	>10	<10	3.05 1515	10	0.03	36	940	42	20	<20	93	0.28	<10	386	<10	8	109
73	27074	<0.2 3.1	14 <5	50	50	5.01	2	49	25	52	>10	<10	3.00 1468	9	0.03	34	1020	46	5	<20	129	0.18	<10	396	<10	8	103
74	27075	<0.2 3.3	32 <5	50	25	5.91	3	48	23	55	>10	<10	3.01 1499	10	0.02	37	990	48	15	<20	157	0.12	<10	399	<10	2	106
75	27076	<0.2 3.4	47 <5	45	40	6.14	4	46	20	65	>10	<10	2.85 1558	12	0.03	33	950	50	20	<20	157	0.10	<10	413	<10	<1	109
76	27077	<0.2 3.3	25 <5	75	15	7.79	2	44	24	56	>10	<10	2.81 1767	10	0.02	36	740	46	10	<20	207	0.08	<10	388	<10	<1	111
77	27078	<0.2 1.	11 30	65	45	5.22	4	50	14	47	9.92	<10	2.59 1590	9	0.04	35	880	14	15	<20	158	0.06	<10	164	<10	<1	96
78	27079	<0.2 0.0	63 35	60	30	5.40	4	44	24	69	>10	<10	2.70 1606	8	0.04	29	760	8	25	<20	188	0.07	<10	72	<10	<1	104
79	27080	<0.2 1.9	96 30	115	15	1.68	<1	28	983	69	3.76	<10	0.88 542	15	0.17	755	670	34	5	<20	63	0.15	<10	81	<10	3	31
80	27081	0.7 0.3	30 3210	70	20	3.20	13	47	12	33	9.64	<10	2.60 1497	12	0.01	37	570	2	50	<20	292	0.04	<10	29	<10	<1	58
81	27082	<0.2_0.1	10 1235	20	10	1.42	3	10	98	2	3.25	<10	0.49 272	3	<0.01	12	80	<2	<5	<20	69	0.03	<10	11	<10	<1	5
82	27083	<0.2 3.3	33 25	65	<5	3.47	<1	41	126	95	5.43	<10	3.14 1012	9	0.02	101	350	48	35	<20	33	0.17	<10	77	<10	<1	61
83	27084	0.7 0.3	38 >10000	60	25	3.34	17	47	23	33	>10	<10	2.78 1450	10	0.01	40	530	6	35	<20	353	0.06	<10	44	<10	<1	40
84	27085	<0.2 2.1	18 125	95	<5	8.18	<1	35	48	105	5.56	200	1.73 682	6	0.02	39	5230	40	5	<20	752	0.06	<10	158	<10	3	56
85	27086	0.2 1.0	09 1445	115	25	7.59	5	43	17	51	8.93	<10	2.87 1523	8	0.01	37	870	12	25	<20	286	0.05	<10	34	<10	<1	77
86	27087	1.0 0.2	25 8225	70	35	2.76	24	51	31	33	>10	<10	2.39 1351	10	<0.01	56	540	6	25	<20	238	0.06	<10	26	<10	<1	39
87	27088	0.3 0.3	38 545	65	15	6.33	4	40	31	50	7.97	<10	3.19 1424	8	0.01	39	410	2	20	<20	271	0.04	<10	28	<10	<1	59
88	27089	2.6 0.3	30 1410	65	20	4.48	6	43	50	176	9.32	<10	2.98 1238	5	0.01	42	360	8	85	<20	221	0.06	<10	31	<10	<1	68
89	27090	2.0 0.2	28 395	30	10	0.32	2	10	30	58	3.46	<10	0.05 148	9	0.01	13	430	24	15	<20	7	0.02	<10	16	<10	2	98
90	27091	<0.2 0.4	46 60	60	35	5.87	4	43	27	83	9.00	<10	3.48 1479	9	0.04	41	640	8	25	<20	121	0.05	<10	44	<10	<1	84
91	27092	<0.2 0.4	42 90	55	25	6.50	5	39	25	51	8.34	<10	3.35 1413	11	0.03	49	580	4	40	<20	139	0.04	<10	39	<10	<1	83
92	27093	0.5 0.2	25 1255	60	25	7.52	6	36	34	38	6.01	<10	3.23 1302	5	0.01	45	330	6	20	<20	363	0.04	<10	22	<10	2	35
93	27094	<0.2 0.4	¥7 85	45	20	8.07	з	38	28	64	6.99	<10	3.55 1346	6	0.02	50	350	4	20	<20	173	0.04	<10	41	<10	<1	50
94	27095	0.2 0.2	29 225	60	35	8.66	3	39	21	45	6.69	<10	3.52 1381	7	0.01	50	370	2	20	<20	349	0.04	<10	30	<10	3	64
95	27096	0.4 0.5	50 1325	60	25	>10	7	30	36	26	6.77	<10	2.63 1416	6	0.01	29	540	10	25	<20	264	0.04	<10	33	<10	1	32
96	27097	<0.2 0.5	58 <5	55	30	6.02	4	38	18	35	9.53	<10	3.14 1409	7	0.05	34	800	6	15	<20	102	0.06	<10	47	<10	<1	93
97	27098	<0.2 0.6	63 15	60	25	6.20	5	44	21	63	9.58	<10	3.14 1486	10	0.04	43	780	8	40	<20	121	0.05	<10	41	<10	<1	94
98	27099	0.2 0.3	39 1285	80	25	5.17	9	48	16	52	>10	<10	3.01 1427	10	0.01	48	790	4	35	<20	265	0.05	<10	35	<10	<1	- 77
99	27100	2.1 0.2	27 375	25	20	0.30	2	10	29	56	3.44	<10	0.05 146	7	<0.01	13	430	22	10	<20	7	0.04	<10	16	<10	1	100
Renest.	Ŀ																										
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G32285	03.04	37 145	Q5	10	6 45	11	43	31	48	>10	<10	3 92 1392	-1	0 17	35	980	12	~5	<20	81	<0.01	<10	68	<10	5	<u>1</u> 1
10	G32205	0.0 0.0	3 55	55	-5	4.34	л Я	44	73	70	7 72	<10	2 85 1147	-1	0.00	34	1020	16	~5	<20	73	0.36	<10	246	<10	15	86
10	179859	0.2 0.	ia 10	40	~5	2.06	с Б	42	107	82	5.00	~10	2.00 777	~1	0.05	14	870	10		~20	28	0.00	~10	154	~10		54

19 170005 .55 40 42 29 >10 <10 3.08 2008 11 0.03 3 21 37 950 36 36 27037 <0.2 2.73 5 55 45 7.23 20 <20 203 0.08 <10 380 <10 <1 86 49 22 58 9.45 <10 2.96 1593 11 0.02 34 920 48 <0.2 3.46 35 5.80 2 45 27046 <5 45

ECO TEC	H LABORA	TORY	LTD.	AUG	20	200	7		CP C	ERTI	FICAT	EOF	ANAL	YSIS	AK 200	07- 71	58						Cusa	ic Gold	d Min	es Lt	d.		
Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
54	27055	<0.2	1.41	<5	60	45	4.82	3	49	12	64	>10	<10	2.55	1436	10	0.03	31	830	20	20	<20	97	0.07	<10	206	<10	<1	107
71	27072	<0.2	3.51	<5	50	75	4.22	3	53	30	102	>10	<10	3.48	1517	11	0.02	38	940	52	35	<20	187	0.21	<10	396	<10	14	119
80	80 27081 0.8 0.30 3 89 27090 2.1 0.28		3080	65	20	3.40	15	48	13	33	9.62	<10	2.55	1485	10	0.01	34	580	4	30	<20	296	0.05	<10	28	<10	<1	60	
89	27090	2.1	0.28	380	35	10	0.22	1	10	30	57	3.42	<10	0.06	146	9	<0.01	14	440	26	15	<20	3	0.02	<10	17	<10	3	98
Resplit:	000005	.0.0	0.75	140	70	10	6.07	0	45	20	46	. 10	.10	0.75	1 475		0.16	40	000	10	-5	-00	70	-0.01	.10	66	.10	6	54
00	G32285	<0.2	0.75	140	10	10	0.27	0	45	30	40	>10	<10	3.75	14/5	<1	0.16	40	990	12	<5	<20	100	<0.01	<10	00	<10	0	51
36	27037	<0.2	2.50	10	40	35	7.05	5	43	19	20	>10	<10	2.85	1/43	10	0.02	43	920	30	22	<20	130	0.05	<10	343	<10	<1	83
71	2/0/2	<0.2	3.17	<0	55	00	4.08	4	50	25	97	>10	<10	3.13	1435	12	0.02	37	930	52	35	<20	1/5	0.22	<10	3/2	<10	14	112
Standard:																													
Pb113	55	45	<5	1.76	39	2	5	2341	1.11	<10	0.13	1488	69	0.02	3	60	5404	25	<20	75	< 0.01	<10	10	<10	<1	6949			
Pb113		10.9	0.26	50	40	<5	1.75	40	2	5	2286	1.10	<10	0.14	1472	71	0.02	. 5	70	5480	20	<20	76	< 0.01	<10	11	<10	<1	6922
Pb113		10.9	0.32	55	70	<5	1.83	47	2	3	2359	1.16	<10	0.14	1514	60	0.04	2	70	5430	15	<20	81	0.01	<10	9	<10	<1	6922

ECO FECH LABORATORY LTD. Juita Jealouse B.C. Certified Assayer

JJ/nl df/7198S XLS/07

167

10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

.5

.

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2007-7159

Cusac Gold Mines Ltd. Ste. 1600-409 Granville St. Vancouver, BC V6C 1T2

No. of samples received: 150 Sample Type: Core **Project: Taurus Shipment #: 07-007** Submitted by: Lesley Hunt/Mike Glover

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al%	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg% Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	27101	1.0 0.31	2760	85	30	4.13	18	46	36	49	>10	<10	2.82 1402	6	0.01	41	550	6	<5	<20	256	0.06	<10	31	<10	<1	63
2	27102	15.0 0.03	505	10	<5	0.21	4	2	157	280	0.53	<10	0.08 60	2	<0.01	4	<10	<2	160	<20	13	<0.01	<10	2	<10	<1	369
3	27103	2.2 0.28	6940	75	25	5 .55	42	41	40	71	8.70	<10	2.74 1371	5	0.01	33	450	6	25	<20	314	0.05	<10	25	<10	<1	67
4	27104	<0.2 0.60	15	70	15	5.33	2	44	25	61	>10	<10	2.92 1499	5	0.04	26	860	6	<5	<20	112	0.06	<10	42	<10	<1	96
5	27105	0.4 0.25	1925	85	30	4.50	14	47	25	33	>10	<10	3.08 1584	6	0.02	30	700	4	<5	<20	328	0.06	<10	36	<10	<1	59
0	07400	0.0 1.00	405	75	40	C 10	-		07	45	0.70	.40		_	0.00	00	700	10	-	00	100	0.00	10		.40		
5	27106	<0.2 1.00	425	75	40	0.19	5	41	27	45	9.70	<10	3.35 1486	5	0.03	38	/00	12	<5	<20	162	0.06	<10	39	<10	<1	89
1	27107	0.3 0.24	3455	75	20	5.81	22	37	50	46	7.73	<10	2.90 1325	5	0.02	34	460	6	10	<20	235	0.05	<10	27	<10	<1	82
8	27108	<0.2 0.39	/85	/5	40	5.99	1	42	30	51	8.71	<10	3.28 1473	5	0.03	40	610	6	5	<20	158	0.05	<10	37	<10	<1	11
9	27109	0.5 0.31	1900	85	15	4.99	12	45	53	31	9.52	<10	2.80 1359	5	0.01	43	1150	8	<5	<20	384	0.06	<10	27	<10	1	39
10	27110	2.8 0.24	425	40	5	0.12	1	31	1399	46	3.23	<10	0.04 208	19	0.01	1111	230	8	10	<20	5	0.02	<10	23	<10	2	30
11	27111	<0.2 2.92	30	70	20	6.49	2	43	82	60	9.40	<10	3.33 1464	6	0.02	39	760	34	<5	<20	115	0.06	<10	255	<10	<1	89
12	27112	<0.2 3.84	<5	60	35	6.54	1	44	114	58	9.2 4	<10	3.57 1469	5	0.02	43	690	48	<5	<20	130	0.07	<10	302	<10	2	87
13	27113	<0.2 0.49	<5	70	15	6.10	2	41	34	60	8.52	<10	3.18 1401	5	0.02	37	620	8	<5	<20	253	0.05	<10	44	<10	3	82
14	27114	<0.2 3.57	15	870	25	2.79	<1	43	125	71	7.56	<10	3.46 1353	3	0.01	43	750	46	<5	<20	158	0.28	<10	205	<10	10	88
15	27115	<0.2 4.55	<5	55	25	6.46	1	45	104	54	9.26	<10	3.56 1420	6	0.02	41	790	54	<5	<20	121	0.08	<10	376	<10	3	91
	07140					0.47			-		0.07	- 0	0.00.4454	_		• -	-		~	~~	450						~~
16	27116	<0.2 2.71	20	100	25	6.17	1	42	76	48	8.87	<10	3.38 1451	5	0.01	37	740	32	<5	<20	150	0.06	<10	230	<10	4	90
17	27117	0.5 0.28	1150	80	35	5.75	9	46	23	23	9.29	<10	3.39 1567	5	0.01	43	540	6	5	<20	372	0.06	<10	26	<10	<1	43
18	27118	0.4 0.30	>10000	80	25	3.67	123	48	69	13	>10	<10	1.83 859	4	0.01	4/	1340	10	<5	<20	270	0.06	<10	24	<10	<1	33
19	27119	0.5 0.27	315	65	40	8.02	4	40	31	46	6.91	<10	3.65 1589	5	0.02	38	550	6	15	<20	404	0.05	<10	27	<10	2	50
20	27120	<0.2 1.83	55	110	15	1.75	<1	27	916	63	3.52	<10	0.81 516	14	0.17	721	650	44	<5	<20	57	0.14	<10	76	<10	6	34
21	27121	0.4 0.31	440	70	25	8.31	4	41	27	42	7.12	<10	3.73 1635	4	0.02	37	660	6	10	<20	451	0.05	<10	29	<10	2	48
22	27122	<0.2 0.54	50	65	20	6.67	3	41	28	52	7.92	<10	3.68 1406	6	0.05	45	420	8	20	<20	162	0.04	<10	38	<10	<1	70
23	27123	<0.2 0.39	45	60	15	7.10	2	43	34	54	7.95	<10	3.72 1411	4	0.06	44	430	4	<5	<20	169	0.05	<10	38	<10	<1	66
24	27124	<0.2 0.43	55	60	30	6.87	2	41	31	66	7.68	<10	3.54 1379	4	0.06	40	430	8	15	<20	142	0.05	<10	36	<10	1	69
25	27125	04 0.28	1550	80	30	7.73	11	43	27	46	7.89	<10	3.48 1412	4	0.02	41	420	6	25	<20	352	0.05	<10	29	<10	1	60
		• • • • • •		24	24											• •		Ū								•	20

,

.

ICP CERTIFICATE OF ANALYSIS AK 2007-7159

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg% Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Y	Zn
26	27126	0.3 0.23	7445	80	20	6.42	42	51	27	8	8.77	<10	3.49 1574	4	0.01	56	150	6	5	<20	416	0.06	<10	23	<10	<1	34
27	27127	0.2 0.26	6790	80	40	6.55	39	41	19	9	8.29	<10	3.37 1498	5	0.02	40	230	8	5	<20	407	0.05	<10	26	<10	<1	37
28	27128	<0.2 2.60	95	65	15	7.10	2	44	52	60	8.44	<10	3.39 1409	6	0.02	40	700	42	<5	<20	120	0.06	<10	210	<10	<1	86
29	27129	<0.2 3.99	50	45	30	7.18	<1	44	70	58	8.09	<10	3.34 1385	5	0.02	39	760	68	<5	<20	86	0.08	<10	320	<10	1	81
30	27130	4.5 1.22	295	45	<5	0.37	4	14	32	575	5.03	<10	1.16 294	13	0.02	18	400	1 18	30	<20	7	0.03	<10	23	<10	<1	545
31	27131	<0.2 3.95	15	50	25	7.28	<1	42	70	63	8.15	<10	3.34 1473	5	0.02	39	720	62	<5	<20	151	0.08	<10	323	<10	1	80
32	27132	<0.2 4.09	15	45	10	7.22	<1	4 4	76	59	8.52	<10	3.58 1550	4	0.02	42	720	66	<5	<20	202	0.08	<10	334	<10	<1	84
33	27133	<0.2 3.26	35	55	30	7.22	1	43	69	71	8.33	<10	3.21 1376	6	0.02	43	730	50	10	<20	127	0.06	<10	272	<10	<1	82
34	27134	<0.2 1.19	95	50	20	6.42	2	40	49	70	7.79	<10	3.08 1360	4	0.09	40	640	18	5	<20	92	0.05	<10	122	<10	<1	70
35	27135	<0.2 0.44	80	50	20	7.97	2	43	20	44	8.35	<10	3.49 1458	5	0.13	42	630	6	<5	<20	123	0.05	<10	55	<10	<1	68
36	27136	<0.2 0.31	70	45	25	6.72	2	40	16	58	7.47	<10	3.13 1291	4	0.08	37	640	8	5	<20	85	0.04	<10	44	<10	<1	76
37	27137	<0.2 0.48	1880	60	10	7.18	10	42	20	56	7.94	<10	3.01 1314	4	0.04	40	630	10	5	<20	171	0.05	<10	35	<10	<1	74
38	27138	<0.2 0.91	415	75	45	6.17	4	45	21	51	>10	<10	3.42 1593	6	0.03	42	550	16	<5	<20	171	0.06	<10	44	<10	<1	93
39	27139	<0.2 0.71	165	60	30	6.42	3	43	20	63	8.47	<10	3.25 1400	4	0.05	41	630	12	20	<20	142	0.05	<10	36	<10	<1	83
40	27140	2.3 0.29	355	40	15	0.27	2	10	30	55	3.45	<10	0.05 147	9	<0.01	15	450	26	25	<20	5	0.02	<10	16	<10	2	107
41	27141	<0.2 0.90	100	65	40	6.88	2	42	14	55	8.40	<10	3.00 1281	4	0.05	39	640	16	<5	<20	130	0.05	<10	37	<10	<1	90
42	27142	<0.2 0.86	7990	55	25	7.35	40	36	37	54	7.14	<10	2.54 1093	3	0.01	34	540	18	15	<20	238	0.04	<10	28	<10	<1	61
43	27143	<0.2 0.99	135	50	35	6.91	3	42	12	58	8.35	<10	3.14 1317	7	0.05	42	680	16	10	<20	135	0.04	<10	39	<10	<1	75
44	27144	<0.2 0.46	65	50	10	6.48	2	43	19	65	8.31	<10	3.25 1326	5	0.08	39	640	8	<5	<20	84	0.05	<10	45	<10	<1	84
45	27145	<0.2 0.39	80	8 5	20	5.83	2	43	16	64	8.63	<10	3.46 1380	5	0.04	41	630	6	<5	<20	125	0.05	<10	44	<10	<1	85
46	27146	-02 033	850	95	20	8.07	4	49	17	я	8 32	~10	3 58 1672	4	0.02	48	220	6	~5	~20	385	0.05	~10	30	~10	~1	42
40	27140	<0.2 0.05	710	80	30	9.38	5	49	12	6	8.34	<10	3 95 1789	4	0.02	47	290	8	~5	~20	441	0.00	<10	35	~10	~1	48
48	27148	<0.2 0.20	115	80	30	5.98	2	47	17	63	9.23	<10	3 11 1240	4	0.02	44	680	20	<5	<20	166	0.05	<10	39	<10 <10	<1	87
49	27149	0.5 0.36	7345	85	25	6.28	25	48	10	52	9.42	<10	3 18 1427	5	0.01	46	520	8	<5	<20	279	0.06	<10	26	<10	<1	93
50	27150	<0.2 1.81	50	110	25	1.73	<1	27	921	62	3.58	<10	0.78 519	14	0.16	736	670	40	<5	<20	55	0.14	<10	82	<10	5	36
••																			_							_	
51	27151	<0.2 1.57	120	65	10	6.86	<1	44	33	61	8.46	<10	3.43 1320	4	0.03	58	550	26	<5	<20	172	0.05	<10	69	<10	<1	75
52	27152	<0.2 1.04	275	55	30	6.63	2	41	28	48	8.11	<10	3.23 1352	4	0.06	48	540	18	<5	<20	137	0.05	<10	59	<10	<1	79
53	27153	<0.2 1.61	100	45	25	6.96	1	42	38	53	7.91	<10	3.40 1332	4	0.05	56	500	26	<5	<20	168	0.05	<10	87	<10	<1	68
54	27154	1.7 0.32	9440	75	20	7.63	29	41	21	68	8.13	<10	3.24 1422	4	0.01	46	480	6	<5	<20	340	0.05	<10	23	<10	<1	155
55	27155	<0.2 0.72	155	60	20	6.69	2	42	18	49	8.36	<10	3.07 1326	4	0.04	47	550	14	<5	<20	153	0.05	<10	37	<10	2	61
56	27156	<0.2 1.68	65	50	35	6.43	2	43	40	60	9.06	<10	3.44 1366	5	0.05	40	770	28	<5	<20	106	0.05	<10	128	<10	<1	90
57	27157	<0.2 2.46	65	50	20	6.98	<1	44	51	65	8.97	<10	3.50 1456	4	0.04	38	660	40	<5	<20	127	0.05	<10	182	<10	<1	90
58	27158	<0.2 2.39	60	45	15	6.39	1	40	59	58	8.07	<10	3.08 1558	4	0.04	36	690	38	<5	<20	192	0.05	<10	192	<10	<1	91
59	27159	<0.2 2.06	100	30	20	7.06	1	50	55	75	6.68	<10	1.68 1325	4	0.03	46	830	36	<5	<20	506	0.04	<10	207	<10	4	101
60	27160	4.5 1.27	330	45	<5	0.38	2	15	33	542	5.17	<10	1.20 305	12	0.02	18	370	124	35	<20	8	0.04	<10	24	<10	<1	559
64	07404	.0.0.0.04	075	045	4-	7.00	~	45	55	67	0.00	.40	2 00 4000	-	0.00	40	770	60		-00	210	0.00	.40	074	.10	4 -	7 7
01 60	27101	<0.2 3.34	210 AE	∠40 ⊑75	40	7.90 5.90	2	40	217	0/	9.02 A AA	< I U 60	3.20 1208	5 5	0.03	40 169	2770	02 E 0	<0 15	<20	1041	0.08	<10	100	<10	11 7	60
02 62	27102	<u.2 2.22<="" td=""><td>40</td><td>5/5</td><td><0 15</td><td>0.00</td><td>ا > د</td><td>20 70</td><td>017 01</td><td>04 60</td><td>4.44 0.01</td><td>00</td><td>4.30 /93</td><td>נ ג</td><td>0.04</td><td>100</td><td>900</td><td>00 A.A</td><td>10</td><td><20</td><td>017</td><td>0.12</td><td>< 10 2+0</td><td>74</td><td>< 10 210</td><td>10</td><td>0∠ 71</td></u.2>	40	5/5	<0 15	0.00	ا > د	20 70	017 01	04 60	4.44 0.01	00	4.30 /93	נ ג	0.04	100	900	00 A.A	10	<20	017	0.12	< 10 2+0	74	< 10 210	10	0∠ 71
64	27103	-0.2 1 07	000	920	10	6.00	~1	40 20	267	03	0.21 7.06	<10 7∆	A 13 820	4 5	0.02	42 165	4680	-+4 66	20	<20	917 1201	0.00	~10	(4 08	<10 210	5	69
65	27104	<0.2 1.9/ 20.2 2.22	60 60	1355	~0 ∠5	5 47	>1	29	322	24	4.20	110	3 70 835	บ ว	0.02	150	4160	70	10	~20	785	0.09	~10	122	~10	ວ ແ	54
00	27100	<u.2 2.00<="" td=""><td>50</td><td>1000</td><td>~0</td><td>Q.47</td><td>~1</td><td>20</td><td>JEE</td><td>04</td><td>4.00</td><td>110</td><td>0.19 000</td><td>5</td><td>0.00</td><td>138.</td><td>-100</td><td>14</td><td>10</td><td>~20</td><td>700</td><td>0.20</td><td><10</td><td>100</td><td>~10</td><td>0</td><td>54</td></u.2>	50	1000	~0	Q.47	~1	20	JEE	04	4.00	110	0.19 000	5	0.00	138.	-100	14	10	~20	700	0.20	<10	100	~10	0	54

.

Cusac Gold Mines Ltd.

Et #.	Tag #	Ag Al %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg % M	n Mo	<u>Na %</u>	6 N	li P	Pb	Sb	Sn	Sr	Ti %	<u> </u>	V	W	Y	Zn
66	27166	0.3 3.27	535	85	45	6.85	3	47	41	53	>10	<10	2.89 114	7 5	0.0	24	3 940	182	<5	<20	489	0.08	<10	285	<10	16	122
67	27167	0.3 1.08	1940	85	50	6.89	7	49	26	20	9.33	<10	2.28 155	4 4	0.0	1 3	9 760	48	<5	<20	302	0.06	<10	136	<10	9	70
68	27168	<0.2 2.07	340	70	15	7.70	2	42	26	50	9,29	<10	2.67 170	4 4	0.0	23	0 860	36	<5	<20	169	0.06	<10	166	<10	4	82
69	27169	0.2 0.87	8530	75	35	>10	26	42	21	21	9.11	<10	3.21 165	35	0.0	22	9 770	20	<5	<20	302	0.06	<10	48	<10	3	64
70	27170	<0.2 1.85	65	110	20	1.70	<1	28	945	62	3.65	<10	0.82 53) 14	0.1	7 76	0 680	44	<5	<20	56	0.14	<10	78	<10	4	38
71	27171	<0.2 1.37	85	55	20	6.95	2	46	44	64	9.26	<10	3.10 151) 5	0.0	3 3	6 870	28	<5	<20	107	0.05	<10	130	<10	<1	93
72	27172	<0.2 3.87	20	40	10	7.13	<1	41	153	64	7.40	<10	3.51 119	75	0.0	2 5	3 510	74	<5	<20	111	0.06	<10	287	<10	<1	78
73	27173	<0.2 3.31	60	45	15	6.88	<1	43	135	63	8.00	<10	3.53 132	1 4	0.0	25	1 560	66	<5	<20	96	0.05	<10	267	<10	2	83
74	27174	<0.2 3.21	35	265	30	4.91	<1	42	126	64	6.79	<10	2.95 120	37	0.0	3 5	4 630	68	15	<20	143	0.13	<10	209	<10	9	78
75	27175	<0.2 3.45	20	520	5 5	3.51	<1	49	115	62	7.69	<10	3.34 131	94	0.0	2 4	9 890	72	5	<20	95	0.37	<10	242	<10	11	98
76	27176	<0.2 4.13	10	135	45	3.59	<1	52	110	52	9.30	<10	3.64 140	9 6	0.0	2 5	6 1020	80	5	<20	100	0.13	<10	257	<10	6	109
77	27177	<0.2 2.32	25	45	20	6.61	<1	35	88	58	5.23	<10	1.76 97	63	0.0	1 4	3 870	50	<5	<20	128	0.04	<10	195	<10	16	71
78	27178	<0.2 1.01	100	90	25	7.68	1	43	50	54	8.35	<10	3.08 156	3 5	0.0	54	3 830	20	<5	<20	126	0.05	<10	120	<10	<1	92
79	27179	<0.2 0.34	90	55	<5	6.79	5	35	64	928	7.95	<10	2.90 140	6 11	0.0	6 3	7 850	8	20	<20	94	0.04	<10	50	<10	<1.2	2098
80	27180	2.1 0.27	405	35	15	0.30	1	11	30	54	3.53	<10	0.05 15	9	< 0.0	1 1	7 470	26	25	<20	7	0.02	<10	16	<10	3	103
81	27181	<0.2 1.08	135	60	25	6.64	2	46	44	63	9.64	<10	3.52 155	2 6	0.0	74	1 860	20	<5	<20	94	0.05	<10	94	<10	<1	93
82	27182	<0.2 2.51	80	55	35	6.56	2	45	61	58	9.26	<10	3,49 150	2 7	0.0	4 4	2 910	48	<5	<20	87	0.05	<10	200	<10	<1	107
83	27183	<0.2 0.71	100	50	20	7.15	1	43	46	67	8.59	<10	3.03 145	15	0.0	63	8 800	14	<5	<20	87	0.05	<10	89	<10	<1	97
84	27184	<0.2 0.31	1540	65	40	7.84	6	41	30	64	8.12	<10	3.11 1492	2 5	0.0	5 3	9 710	8	<5	<20	108	0.05	<10	31	<10	<1	71
85	27185	<0.2 1.68	190	60	20	6.90	2	45	45	61	9.53	<10	3.27 145	35	0.0	5 4	1 870	34	<5	<20	185	0.05	<10	106	<10	<1	99
86	27186	<0.2 2.49	135	55	30	6.55	1	47	56	71	9.69	<10	3.40 162	3 5	0.0	3 3	9 850	54	<5	<20	222	0.06	<10	155	<10	2	85
87	27187	<0.2 2.45	420	50	40	7.77	3	44	46	- 77	9.35	<10	3.24 1412	2 5	0.0	3 4	4 820	52	10	<20	446	0.06	<10	188	<10	5	103
88	27188	<0.2 2.56	80	65	25	7.58	1	42	69	40	6.96	20	2.32 119	5 5	0.0	36	7 1510	106	5	<20	521	0.05	<10	232	<10	19	108
89	27189	<0.2 1.68	35	1335	<5	4.24	<1	21	166	28	3.80	110	2.70 63	5 Э	0.0	4 11	8 3740	58	15	<20	616	0.21	<10	118	<10	5	51
90	27190	<0.2 1.78	60	115	20	1.75	<1	28	943	61	3.64	<10	0.76 52	5 14	0.10	6 76	2 700	46	<5	<20	58	0.13	<10	83	<10	4	39
91	27191	<0.2 1.85	45	1490	<5	3.93	<1	22	228	36	4.13	110	2.90 682	2 4	0.0	4 12	0 3950	64	10	<20	478	0.21	<10	132	<10	6	52
92	27192	<0.2 2.92	55	65	45	>10	<1	38	147	24	7.55	<10	2.76 188	7 5	0.0	3 5	5 830	66	<5	<20	492	0.08	<10	272	<10	14	78
93	27193	<0.2 2.78	105	50	10	7.21	1	48	122	50	8.99	<10	3.35 1552	2 5	0.0	3 5	5 820	54	<5	<20	143	0.05	<10	238	<10	2	97
94	27194	<0.2 2.30	110	55	25	7.61	1	40	102	68	8.14	<10	2.90 1519) 5	0.0	3 53	2 1030	48	<5	<20	104	0.05	<10	187	<10	1	85
95	27195	<0.2 3.00	85	55	40	2.88	<1	52	140	64	7.44	<10	2.15 108	3 3	0.03	3 5	3 1000	66	<5	<20	62	0.27	<10	221	<10	8	87
96	27196	<0.2 2.61	85	40	50	2.64	<1	45	91	66	6.38	<10	1.91 1074	4 3	0.0	3 4	0 790	60	10	<20	42	0.36	<10	176	<10	8	75
97	27197	<0.2 3.58	75	45	45	4.65	<1	52	122	68	8.59	<10	2.98 1372	2 3	0.0	3 52	2 860	72	<5	<20	80	0.32	<10	296	<10	8	91
98	27198	<0.2 3.85	70	40	25	6.15	<1	51	124	63	8.56	<10	3.04 1520) 4	0.00	3 52	2 670	78	<5	<20	129	0.06	<10	293	<10	7	94
99	271 99	<0.2 3.43	2140	45	20	>10	<1	45	65	49	7.52	<10	2.94 1543	} 4	0.0	1 4	5 520	68	<5	<20	157	0.05	<10	191	<10	<1	72
100	27200	4.6 1.23	360	45	<5	0.35	2	15	34	583	5.25	<10	1.14 307	' 12	0.02	2 19	9 380	132	35	<20	5	0.04	<10	24	<10	<1	601
101	36501	<0.2 4.15	110	40	30	8.12	<1	46	70	61	8.55	<10	3.34 1534	5	0.02	2 4	1 660	82	<5	<20	125	0.06	<10	298	<10	<1	86
102	36502	<0.2 4.07	135	45	25	8.59	<1	45	59	64	8.89	<10	3.16 1564	6	0.02	2 38	3 700	82	<5	<20	150	0.06	<10	352	<10	6	89
103	36503	<0.2 3.85	95	45	40	8.90	1	47	67	60	8.73	<10	3.10 1519	5 7	0.02	2 37	7 690	78	5	<20	112	0.08	<10	346	<10	5	88
104	36504	<0.2 3.51	85	50	30	8.08	<1	47	62	60	8.27	<10	2.94 1350) 5	0.02	2 38	3 770	74	<5	<20	91	0.09	<10	314	<10	13	96
105	36505	<0.2 2.58	65	40	45	3.90	<1	51	66	70	6.75	<10	2.15 96	3	0.03	3 39	9 780	60	10	<20	67	0.30	<10	1 9 9	<10	9	77

.

ICP CERTIFICATE OF ANALYSIS AK 2007-7159

Et #.	Tag #	Ag Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg% Mr	n Me	o Na%	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Y	Zn
106	36506	<0.2 2.81	50	70	55	3.72	<1	53	54	70	8.20	<10	2.51 1313	} 4	4 0.04	38	890	66	<5	<20	70	0.31	<10	260	<10	13	96
107	36507	<0.2 2.75	40	45	45	5.7 9	<1	48	60	66	8.00	<10	2.44 1341	4	4 0.03	39	750	62	<5	<20	60	0.19	<10	285	<10	18	91
108	36508	<0.2 3.72	10	75	25	5.07	<1	51	67	73	9.39	<10	3.28 1575	5 5	5 0.03	41	760	80	<5	<20	72	0.20	<10	347	<10	13	103
109	36509	<0.2 3.94	10	335	50	6.46	<1	48	65	49	>10	<10	3.25 2232	2	7 0.05	38	830	82	<5	<20	148	0.08	<10	404	<10	16	115
110	36510	2.1 0.28	410	30	5	0.28	<1	11	31	52	3.50	<10	0.05 151	!	9 <0.01	17	470	28	30	<20	7	0.02	<10	17	<10	2	114
																										_	
111	178673	<0.2 0.01	35	<5	<5	0.52	<1	<1	169	2	0.38	<10	0.12 95	i <	1 <0.01	4	<10	<2	<5	<20	12	<0.01	<10	2	<10	<1	1
112	178674	<0.2<0.01	40	<5	<5	1.36	<1	1	185	2	0.85	<10	0.50 295	; .	1 <0.01	5	60	<2	5	<20	78	<0.01	<10	з	<10	<1	4
113	178675	<0.2<0.01	30	<5	10	0.20	<1	1	192	2	0.32	<10	0.07 55	5 <	1 < 0.01	4	30	<2	<5	<20	10	<0.01	<10	1	<10	<1	<1
114	178676	<0.2 0.02	165	15	<5	0.68	<1	6	203	4	1.47	<10	0.25 159) <	1 <0.01	10	20	4	<5	<20	36	0.02	<10	3	<10	<1	2
115	178677	0.4 0.17	1345	80	40	6.25	<1	49	17	16	>10	<10	3.59 1896	5 :	5 <0.01	47	220	8	<5	<20	326	0.06	<10	24	<10	<1	43
116	178678	0.6 0.17	920	65	40	5.78	3	44	42	18	7.64	<10	3.05 1554	1 8	5 <0.01	46	260	6	25	<20	333	0.04	<10	21	<10	<1	37
117	178679	1.2 0.17	1725	75	20	6.58	2	54	17	37	>10	<10	3.54 1746	5 5	5 <0.01	51	330	12	25	<20	283	0.06	<10	26	<10	<1	50
118	178680	<0.2 1.85	85	110	25	1.62	<1	30	990	63	3.82	<10	0.78 548	3 19	5 0.16	803	710	56	<5	<20	62	0.13	<10	79	<10	4	40
119	178681	0.9 0.16	1310	85	40	6.61	2	50	17	35	9.87	<10	3.25 1609		5 <0.01	47	440	12	10	<20	297	0.06	<10	23	10	<1	50
120	178682	0.3 0.16	770	70	25	7.84	1	44	16	41	7.88	<10	3.06 1459	}	4 0.01	44	530	8	15	<20	294	0.05	<10	24	<10	<1	53
121	178683	0.9 0.23	720	70	50	6.13	3	46	16	53	8.56	<10	2.98 1410) (5 <0.01	50	510	12	10	<20	284	0.05	<10	28	<10	<1	63
122	178684	<0.2 0.18	280	55	20	7.61	1	42	14	83	7.72	<10	3.08 1451	: :	3 <0.01	41	560	6	10	<20	315	0.04	<10	27	<10	1	64
123	178685	<0.2 1.43	60	50	15	4.53	<1	41	57	64	7.26	<10	1.85 1132	2 :	3 <0.01	38	630	36	<5	<20	89	0.04	<10	171	<10	3	88
124	178686	<0.2 1.72	15	65	30	3.53	<1	56	59	74	9.35	<10	1.66 2473	3 (6 <0.01	46	890	4 4	<5	<20	53	0.06	<10	269	<10	3	112
125	178687	<0.2 0.37	125	60	35	8.42	<1	43	25	50	8.02	<10	2.96 1401	4	4 <0.01	44	630	12	10	<20	310	0.05	<10	29	<10	<1	78
126	178688	<0.2 0.30	120	70	15	7.11	<1	43	23	61	7.96	<10	3.02 1397	, 2	4 <0.01	44	620	12	5	<20	271	0.05	<10	25	<10	1	84
127	178689	<0.2 0.31	110	65	15	7.15	2	43	23	60	7.91	<10	3.06 1347	۲ (5 <0.01	45	580	10	15	<20	268	0.04	<10	22	<10	<1	79
128	178690	2.3 0.28	455	25	20	0.24	<1	11	33	53	3.70	<10	0.05 156	5 10	0 <0.01	18	460	32	30	<20	3	0.01	<10	17	<10	3	105
129	178691	<0.2 0.42	145	60	25	7.13	<1	44	26	61	7.24	<10	2.92 1354	μ 4	4 <0.01	43	620	12	10	<20	265	0.04	<10	22	<10	<1	81
130	178692	<0.2 3.46	35	50	30	6.69	<1	50	82	71	9.33	<10	3.35 1341	4	4 0.01	53	690	84	<5	<20	106	0.05	<10	224	<10	<1	92
131	178693	<0.2 3.86	45	40	15	7.97	<1	45	97	69	8.14	<10	3.33 1330) 4	4 0.02	47	660	92	<5	<20	99	0.07	<10	315	<10	<1	87
132	178694	<0.2 3.88	30	40	25	7.98	<1	47	77	61	8.47	<10	3.26 1389) 3	3 0.02	45	700	90	<5	<20	134	0.09	<10	327	<10	<1	91
133	178695	<0.2 3.75	20	25	20	8.08	<1	44	70	61	8.11	<10	3.07 1441	2	2 0.02	41	720	82	<5	<20	101	0.10	<10	324	<10	<1	88
134	178696	<0.2 3.33	80	65	15	7.71	<1	46	111	68	8.29	<10	3.37 1412	2 4	4 0.02	48	630	74	<5	<20	67	0.07	<10	299	<10	<1	84
135	178697	<0.2 3.90	60	35	35	7.94	<1	44	152	73	7,94	<10	3.42 1306	j ∠	4 0.02	53	610	90	<5	<20	50	0.10	<10	317	<10	<1	79
100	470000	00.000	70		00	7 60		45	454	~	7 00		0.00.4000		0 0 00		000	~	F		60	0.00	10	007			
130	178698	<0.2 3.83	70	40	30	7.50	<1	40	101	04 60	7.80	<10	3.38 329		3 0.02	51	600	94	<5 	<20	58	0.09	<10	307	<10	<1	79
137	178699	<0.2 3.75	85	40	20	1.72	<1	48	158	- 69	8.14	<10	3.60 1476) 4 	4 0.02	- 54 - 701	620	90	<5	<20	00	0.09	<10	311	<10	<1	84
138	178700	<0.2 1.86	/5	115	20	1.64	<1	29	9/1	02	3.85	<10	0.77 548		5 0.15	791	670	56	<5	<20	58	0.14	<10	080	<10	3	37
139	178701	<0.2 3.28	80	40	20	7.58	<	49	157	70	8.21	<10	3.41 1485	. 4	4 0.02	53	620	82	<5	<20	102	0.08	<10	282	<10	<1	83
140	178702	<0.2 2.62	95	45	15	6.70	<1	47	133	61	8.59	<10	3.82 1588		5 0.02	53	570	64	10	<20	70	0.06	<10	198	<10	۲>	89
141	178703	<0.2 2.36	65	45	25	5 47	~1	51	47	60	510	~1 0	3 18 1578		7 0.02	40	780	60	~5	~20	53	0.05	<10	140	c10	~1	100
142	178704	<0.2 0.32	35	50	40	5.08	2	48	25	63	510	~10	3 33 1751	, F	6 0.04	38	800	8	25	~20	60	0.06	~10	37	~10	~1	117
143	178705	<0.2 0.66	-5	50	20	5.84	1	47	26	60	>10	<10	2 80 1612		5 0.05	33	710	18	~5	~20	81	0.00	<10	30	~10	21	114
144	178706	<0.2 1.41	<5	50	40	6.15	2	53	26	82	9.82	<10	2.82 1615	, F	6 0.04	40	710	36	<5	<20	ga	0.05	<10	42	<10	<1	122
145	178707	<0.2 1.41	~5	50	25	6.53	1	50	25	30	9.02	<10	2 87 1549		5 0.04	37	880	30	~5	<20	104	0.00	~10	51	<10	21	130
3-10			~~	20		0.00	•	00			0.00	-10	2.0, 1040	· •	0.0.7	<i></i> ,	000	00	-0		104	0.00	~10	~	~	~ 1	100

Cusac Gold Mines Ltd.

Et #.	Tag #	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg% Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	\$r	Ti %	Ų	V	W	Y	Zn
146	178708	<0.2	1.30	<5	50	35	6.06	<1	52	23	30	9.20	<10	2.67 1590	5	0.04	36	900	32	<5	<20	90	0.05	<10	62	<10	<1	116
147	178709	<0.2	0.40	<5	60	45	6.68	2	50	25	22	9.18	<10	2.83 1810	4	0.05	32	810	12	<5	<20	97	0.06	<10	52	<10	<1	107
148	178710	0.6	0.56	280	45	10	0.19	<1	23	737	71	3.26	<10	0.11 202	14	0.01	620	380	22	10	<20	4	0.02	<10	23	<10	2	53
149	178711	<0.2	0.98	<5	50	15	6.94	1	51	26	84	9.82	<10	2.84 1803	5	0.05	36	840	26	<5	<20	116	0.05	<10	41	<10	<1	113
150	178712	<0.2	0.89	<5	55	30	6.69	2	49	21	93	9.91	<10	2.76 1691	5	0.04	32	860	24	<5	<20	112	0.06	<10	38	<10	<1	112
QC DATA:	• <u>•</u>																											
Repeat:																												
1	27101	0.8	0.34	2775	95	30	4.22	19	48	37	48	>10	<10	2.84 1417	6	0.02	43	560	6	<5	<20	255	0.06	<10	32	<10	<1	64
19	2711 9	0.5	0.23	310	60	5	8.14	2	35	29	48	6.99	<10	3.72 1512	3	0.02	37	480	4	10	<20	390	0.04	<10	24	<10	<1	47
36	27136	<0.2	0.35	80	40	20	6.83	2	40	16	59	7.60	<10	3.24 1318	4	0.09	40	630	4	<5	<20	87	0.04	<10	47	<10	<1	75
45	27145	<0.2	0.42	75	85	25	5.85	3	42	17	62	8.65	<10	3.48 1388	6	0.04	43	630	6	5	<20	127	0.05	<10	46	<10	<1	86
54	27154	1.9	0.36	9670	80	25	7.70	25	42	22	68	8.31	<10	3.27 1440	4	0.01	47	510	8	5	<20	347	0.05	<10	24	<10	<1	165
71	27171	<0.2	1.42	85	60	25	6.99	1	45	42	66	9.34	<10	3.13 1527	5	0.03	33	890	30	<5	<20	114	0.06	<10	133	<10	<1	95
89	2718 9	<0.2	1.71	35	1400	5	4.27	<1	21	176	28	3.84	110	2.72 638	3	0.04	119	3810	58	10	<20	617	0.23	<10	120	<10	4	52
106	36506	<0.2	2.90	50	80	55	3.81	<1	54	55	64	8.21	<10	2.58 1322	4	0.04	36	910	64	5	<20	79	0.36	<10	270	<10	14	94
115	178677	0.4	0.17	1360	80	45	6.04	2	52	18	16	>10	<10	3.47 1916	6	<0.01	50	230	10	5	<20	328	0.06	<10	24	10	<1	46
124	178686	<0.2	1.74	10	60	30	3.52	<1	54	59	74	9.30	<10	1.67 2464	5	<0.01	46	850	40	<5	<20	50	0.06	<10	269	<10	2	113
141	178703	<0.2	2.41	65	50	30	5.51	<1	53	48	60	>10	<10	3.24 1589	5	0.02	38	770	58	<5	<20	57	0.06	<10	151	<10	<1	109
Resplit:																												
1	27101	1.0	0.34	2800	80	40	4.19	19	51	32	51	>10	<10	2.59 1371	6	0.01	44	560	8	<5	<20	260	0.06	<10	32	<10	<1	66
36	27136	<0.2	0.30	70	45	25	7.05	1	41	20	59	7.69	<10	3.24 1320	4	0.10	41	680	8	<5	<20	91	0.05	<10	50	<10	<1	80
71	27171	<0.2	1.40	80	55	25	6.97	1	48	40	66	9.41	<10	3.11 1517	5	0.03	36	890	28	<5	<20	110	0.05	<10	132	<10	<1	96
106	36506	<0.2	2.97	55	75	55	4.00	<1	56	58	67	8.39	<10	2.57 1380	3	0.04	39	960	70	<5	<20	74	0.30	<10	278	<10	12	103
141	178703	<0.2	2.40	60	55	30	5.49	2	47	46	64	>10	<10	3.22 1568	9	0.02	42	770	60	5	<20	53	0.05	<10	150	<10	<1	108
Standard																												
Pb113		11.4	0.27	40	55	<5	1.74	38	2	6 2	292	1.12	<10	0.11 1486	62	0.02	2	90 9	5618	10	<20	82	0.02	<10	8	10	<1	6943
Pb113		11.0	0.27	40	50	<5	1.67	39	3	62	2283	1.13	<10	0.11 1510	65	0.02	2	80 5	5548	15	<20	78	0.02	<10	8	10	<1	7144
Pb113		11.4	0.29	35	65	<5	1.64	39	3	7 2	280	1.19	<10	0.11 1560	69	0.02	3	80 9	5588	15	<20	70	0.02	<10	9	10	<1	7074
Pb113		11.0	0.27	40	50	<5	1.67	39	3	6 2	2344	1.20	<10	0.10 1571	60	0.02	1	70 9	5540	15	<20	81	0.02	<10	9	10	<1	7091

ECO TECH LABORATORY LTD. Juita Jealouse B.C. Cerlified Assayer

JJ/sa/ df/7159 XLS/07 -

APPENDIX G

METALLURGICAL RECOMMENDATIONS

PROPOSED METALLURGICAL TESTING PROGRAM

(From Wardrop, Technical Report on the Taurus Property, May 15, 2007)

In order to determine the necessary metallurgical parameters required for engineering design purposes, the metallurgical testing of a gold ore requires the following basic tests. More detailed and complex tests will be required should the ore samples prove to refractory. Although some of the ore types from the Taurus property appear to fall in this category, the testwork may only become necessary once the geological assessment of this deposit has been completed.

A representative sample from each of the five ore types is required. Should several drill cores be obtained, it is recommended that a geologist identify the cores with respect to the ore type, namely as T4, or T3B, or T3A, or T2, or T1, during the logging process. The appropriate sections from the different zones can then be separated and subsequently be combined for metallurgical testing.

In this case, a basic test program is recommended to characterize the response to basic metallurgical processes. A subsequent, more detailed test phase, which may include more specific tests, is recommended for the second phase of the project, namely the engineering design and feasibility level study. The bulk of the testwork will be done on the T4-type material, but in order to understand the response of the other ore types, some basic scoping tests will be recommended as well. A minimum sample weight of 50 kg is required for the T4-type material, while about 20 kg is required for each of the other four ore types. Any sample excess should be archived under appropriate storage conditions. The prices are budget estimate costs only.

The following tests are recommended for the characterization of the ore from the Taurus deposit. Some details are also given with each test, or in the subsequent explanation.

		Т4-Туре	Other Types	Cdn\$	
1a.	Sample Preparation	+	-	2,000	
1b.	Sample Preparation	-	+	2,000	
2	Head Assay; generally Au, ICP	+	+	400	
3	Grinding (Bond Work Index)	+	-	500	
4	Specific Gravity and Bulk Density	+	-	500	
5	Mineralogy;3 sample per ore type	+	+	5,000	
6a.	Gravity Concentration at 2 grinds	+	-	3,000	
6b.	GravityConcentrationat2grinds	-	+	4,000	
7a.	Bottle-RollLeach;6including2CIL	+	-	5,000	
7b.	Bottle-RollLeach;2foreachoretype	-	+	4,800	
8a.	BucketLeach;6sizeswithscreenanalysis	+	-	6,600	
8b.	BucketLeach;4sizes	-	+	6,400	
9	ColumnLeach;1testwithscreenanalysis	+	-	9,000	
10a.	Flotation;6scopingtests	+	-	2,800	
10b.	Flotation;2testsperoretype	-	+	3,200	
11	CyanideDestruction;2tests	+	-	3,000	
12	SettlingTests;2tests	+	-	1,500	
13a.	Environmental Tests	+	-	3,000	
13b.	Environmental Tests	-	+	2,000	
14a.	Supervision and Evaluation of Results	+	-	7,700	
14b.	Supervision and Evaluation of Results	-	+	2,600	
	T4 – Type Material Only		Total	50,000	
	All Tests as Listed		Total	75,000	

T4-type material include a size fraction analysis on both the feed as well as the leach residue to determine the extraction per size fraction. This analysis is also extended to the column test should this test be conducted.

The column test duration is anticipated to be 100 days. However, depending on the results obtained from the bottle-roll tests, and the on-going analysis of the column test results, this duration may be revised.

Basic, open-cycle, scoping flotation tests are envisaged at this stage of the testing program. No cleaner flotation stages or locked-cycle tests have been considered at this stage. Should the results indicate that further work is required; another testing study will be initiated at that time.

Some tests may be conducted on products or tailings of a previous test. For example, the gravity concentration tailings may be cyanided to determine the combined effect of gravity concentration followed by cyanide extraction.

The cyanide destruction tests and the environmental tests may be deferred until a process selection has been made.

No costs have been included for oxidative pre-treatment and recovery processes such as biological leaching, or pressure leaching, Although the T4-type material is considered to be the priority for the basic characterization program, the other types (specifically T1, T2, T3A and T3B) are included should the geological program indicate that it may be impractical to separate these types from the T4 material in the deposit during mining.
However, the testing of the other types may become optional, or could be deferred to another phase of the development of the project.

The sample preparation would depend on the amount of sample delivered to the laboratory, and the condition of the samples delivered.

Head assays are only considered to be for gold and the 30-element ICP suite. However, additional analyses may be required (e.g. silver, iron, arsenic, copper, organic carbon, etc.) depending on the nature and objective of that particular test.

A mineralogical evaluation of the various samples, including associations and liberation sizes, will assist in the overall understanding of the various ore samples being tested. The bucket leach tests for the etc. Diagnostic leaching tests have also been excluded at this stage. Should the need arise, these tests could be incorporated into this recommended program, or a subsequent phase of the project.