Assessment Report

BC Geological Survey Assessment Report 29575

Rock Geochemistry and Geological Mapping on the Logan Property

Lillooet Mining Division

92J/14

UTM Zone 10 NAD83 472000E 5627000N

50⁰ 48' North Latitude 123⁰ 23' West Longitude

For

Paget Resources Corporation

By

John Bradford P.Geo

January 2008

Table of Contents

Introduction	3
Location and Access	3
Physiography, Climate and Vegetation	3
Claims and Ownership	3
Exploration History	7
Regional Geological Setting	8
Property Geology	10
Structure	10
Mineralization and Alteration	10
Work Completed 2007	11
Rock Geochemistry	11
Conclusions and Recommendations	11
References	14
Appendix A Statement of Qualifications	16
Appendix B Statement of Costs	18
Appendix C Rock Samples	19
Appendix D Analytical Certificates	20

List of Figures

Figure 1	Location Map
Figure 2	Claim Map
Figure 3	Regional Geology
Figure 4	Property Geology, Mineralized Zones and Rock Samples (1:10,000)

List of Tables

Table 1	Claim Status
Table 2	Historical exploration work in the Logan Property area

Rock Geochemistry and Geological Mapping on the Logan Property

Introduction

The Logan Property was examined by the author, geologist Craig Bow and prospector John Fleishman, on September 14-15, 2007. The purpose of the visit was to evaluate the economic potential of the claims by validating the location, style and potential of known mineralization as presented by previous workers in the area. Representative rock samples were collected from mineralized outcrops. All work including report writing was completed at a cost of \$11,132.78.

Location and Access

The Logan Property is located 65 kilometres northwest of Pemberton in the Coast Mountains of southwestern B.C. The property is located in NTS 92J/14, latitude 50°48'N, longitude 123°23'W. Access is by helicopter from Pemberton, or from Lillooet, 100 km to the east. Road access for helicopter staging is possible to within 5 kilometres from the northern property boundary, with road connections from Lillooet (on B.C. Highway 12) via the Bridge River/Carpenter Lake road to Gold Bridge, then south on the Hurley River Forest Service Road, west on the Bridge River Forest Service road on the south side of Downton Lake, and up the upper Bridge River valley. On the south side of the property, logging roads extend part of the way up Salal Creek from the Upper Lillooet Forest Service Road, which connects to B.C. Highway 99 via Pemberton and Pemberton Meadows.

Physiography, Climate and Vegetation

The property straddles the divide between the upper Bridge and Lillooet Rivers, a mountainous, glacier-strewn area capped by Ochre Mountain (2541 metres). Elevations range from 1400 metres in the southwestern corner of the property to 2541 meters, on the east side of the property. The entire property is in alpine terrain, with little or no vegetation and large areas covered by moraine and outwash from retreating glaciers. Climate is typical of the high southern Coast Mountains, with substantial winter snow accumulations.

Claims and Ownership

The Logan Property consists of 10 contiguous claims which total 2819 hectares, as indicated on Figure 2. They are owned 100% by Paget Resources Corporation (BCE ID

number 201036) of 920-1040 W. Georgia St., Vancouver, BC. The claims are currently valid until March 6, 2008.

Table 1: Claim Status

Tenure	Claim Name	Owner	Good To Date	Status	Area
553680	SAL 1	201036 (100%)	2008/mar/06	GOOD	510.629
553682	SAL 2	201036 (100%)	2008/mar/06	GOOD	510.756
553818	SAL 3	201036 (100%)	2008/mar/07	GOOD	490.154
553819	SAL 4	201036 (100%)	2008/mar/07	GOOD	163.453
554090	SAL 5	201036 (100%)	2008/mar/12	GOOD	286.055
557371	SAL 6	201036 (100%)	2008/apr/22	GOOD	347.488
557500	SAL 7	201036 (100%)	2008/apr/23	GOOD	102.226
558709	SL-1	201036 (100%)	2008/may/14	GOOD	81.767
558710	SL-2	201036 (100%)	2008/may/14	GOOD	102.180
558975	SL-3	201036 (100%)	2008/may/21	GOOD	224.744
					2819.452

Exploration History

The Logan Property covers most of the Salal Creek porphyry molybdenum prospect, which has been explored intermittently since its discovery in 1960 by Phelps Dodge during airborne reconnaissance. A detailed exploration history is summarized by Kikauka (1996a) and will not be repeated here. Previous work is documented in 14 assessment reports available on the B.C. Ministry of Mines ARIS website (http://www.em.gov.bc.ca/cf/aris/).

Report #	Year Work Done	Company	Work Done
709	1965	Southwest Potash	Rock sampling (231 samples), geological mapping
2741	1970	Cerro Mining	Rock sampling (140 samples), silt sampling (112 samples), geological mapping
2878	1970	Silver Standard	Airborne geophysics
3275	1971	Cerro Mining	Ground magnetics
3370	1971	Cerro Mining	Geological mapping
5948	1976	BP Minerals	IP, magnetics
6345	1977	BHP-Utah Mines	Topographical Mapping/orthophoto
6355	1976	BP Minerals	Diamond Drilling
6759	1977	BHP-Utah Mines	Rock sampling (392 samples), geological mapping, petrography, photogrammetric
6999	1978	BHP-Utah Mines	Rock sampling (578 samples), geological mapping

Table 2: Historical exploration work in the Logan Property area.

7557	1979	BHP-Utah Mines	Diamond Drilling
12798	1984	BP Minerals	Silt sample re-analysis
24684	1996	Verdstone Gold Corp.	Rock sampling (374 samples), geological mapping, diamond drilling (2 DH)
24819	1996	Verdstone Gold Corp.	Rock sampling (662 samples), soil sampling (47 samples), geological mapping, diamond drilling (2 DH)

Regional Geological Setting

The region is primarily underlain by granitic plutons of the Coast Plutonic Complex along the western margin of Stikine and Cadwallader terranes. Plutonic rocks in the area are varied in composition and range in age from Jurassic to Tertiary. Plutonic rocks of the have intruded into Upper Triassic metavolcanic rocks of the Cadwallader Group and, to the west of these rocks, into Lower Cretaceous volcanic rocks of the Fire Lake, or Gambier Group. Overlying the plutonic and volcanic rocks are basalt flows of the Pleistocene Garabaldi Group.

The Logan area is underlain by a quartz monzonite body, the Salal Creek stock, which covers an area of about 60 square kilometres and is both texturally and compositionally zoned. These zones are: i) a coarse grained marginal phase; ii) a medium grained intermediate phase; iii) a fine grained core phase; and iv) an irregularly distributed quartz feldspar porphyry phase. Aplite dykes and irregularly shaped masses of quartz-alkali feldspar pegmatite occur throughout the stock.

Property Geology

The Salal Creek stock is a concentrically zoned granitic pluton about 8 km across and 11 km long. A fine grained equigranular to subporphyritic biotite granite core phase up to 3 km across intrudes a coarse grained biotite granite marginal phase. The outer phase contains subequal amounts of quartz, K-feldspar and plagioclase and 3-5% biotite; grain size varies from 2-3 mm. Subrounded mafic metamorphic inclusions are widespread and locally abundant. The fine-grained (<1 mm) core phase is quartz-rich and locally contains rounded 1-2 mm quartz phenocrysts. Biotite is present, where not altered to sericite-pyrite, but is less abundant than in the marginal phase.

The granite is overlain and intruded by Pliocene-Pleistocene andesitic to basaltic volcanics of the Garibaldi Volcanic belt. Volcanic rocks include scoriaceous to amygdaloidal flows and pyroclastic rocks and may represent a subglacial mound-type eruptive center.

The 2007 program involved the examination of outcrops in the Mud Lake and Logan Ridge area along the east-west contact between fine and corase-grained phases on the north side of the pluton.

Structure

Quartz vein sets measured in the Mud Lake-Logan Ridge area are dominantly east-west trending (striking 090-100) and dipping steeply (60-80°) to the south. The veins are roughly parallel to the contact between intrusive phases.

Mineralization and Alteration

An alteration zone over 1 km long and 200-250 metres wide was mapped in the Mud Lake – Logan Ridge area in 2007 (Figure 4). The zone crops out on the northeast and northwest sides of Mud Lake and again 700 metres further to the west along the east side of Logan Ridge. The intervening area is covered by extensive moraine and young volcanic boulders. Alteration varies from patchy to anastomosing zones of quartz-sericite-pyrite (QSP) associated with local quartz stockwork in the Mud Lake area, to pervasive QSP in the Logan Ridge area. Alteration in the Logan Ridge area varies from sericite-pyrite to locally intense silicification cut by pyrite stockwork. Alteration is accompanied by a variety of vein sets, including 2-10 cm sheeted quartz-pyrite and quartz-molybdenite veins, pyrite-molybdenite stockwork, and quartz-magnetite veins, locally with molybdenite. A covered area 400 metres east of Logan Ridge contains abundant boulders with quartz-magnetite veins to 5 cm with sericite haloes.

Work Completed 2007

The Logan Property was examined by the author on September 15, 2007. The purpose of the visit was to evaluate the economic potential of the claims by validating the location, style of alteration and potential of known mineralization in the Mud Lake – Logan Ridge area as presented by Mustard et al, (1965).

Rock Geochemistry

Rock samples were collected from five vein vein/stockwork mineralized zones order to define the metal tenor of these zones. The samples are intended to be representative of the metal values obtainable in these zones. Samples were collected in plastic sample bags and sealed with plastic zip ties. Sample locations were recorded by GPS. Sample locations are marked with flagging tape and embossed aluminum tags. Samples were taken to International Plasma Labs of Richmond B.C. directly from the project area in sealed bags with security tags.

At the laboratory, the samples were dried crushed and pulverized using standard rock preparation procedures. The pulps were then analyzed for Au using a 30 gram fire assay with AA finish and for 30 elements by ICP using a multi-acid digestion. Quality control at the laboratory is maintained by submitting blanks, standards and re-assaying duplicate samples from each analytical batch

Rock sample descriptions and analytical results are in Appendix C. Sample locations are plotted on Figure 4.

Two samples 350 metres apart from the Mud Lake zone returned Mo values of 0.28% and 0.86% (148403 and 148407). The easternmost sample of stockwork mineralization also returned anomalous Ag (1.1 ppm), Pb (419 ppm) and Zn (230 ppm) as well as high Mn (0.97%). Four samples were taken from the Logan Ridge zone, returning Mo values of 0.08-0.16%. One of the samples also returned anomalous W (300 ppm; sample 148406). Cu and Au values are insignificant in both zones.

Conclusions and Recommendations

The intitial reconnaissance of the Mud Lake - Logan Ridge area confirmed the observations reported by Mustard et al (1965), and suggest that a significant mineralizing system is present along the northern fine-grained - coarse-grained contact of the Salal Creek stock. Alteration and Mo mineralization was traced discontinuosly over a strike length in excess of 1 kilometre, much of which is covered by glacial and young volcanic debris. Where exposed, on the east side of Logan Ridge and around Mud Lake, alteration is robust, varying from patchy QSP to pervasive intense QSP to intense silica cut by pyrite stockwork. Vein sets accompanying alteration include sheeted quartz-pyrite and

quartz-molybdenite, quartz-magnetite, locally accompanied by molybdenite, and quartzpyrite and quartz-molybdenite-pyrite stockwork. The alteration zone appears to be roughly centred along a steeply south dipping contact between the inner fine-grained core phase and ther outer coarse-grained marginal phase of the pluton. The overall width of the zone is about 200-250 metres.

Only limited historical drilling has been completed in the Mud Lake - Logan Ridge area (assays are not available), and the presence of robust alteration and locally strong mineralization over a significant width and strike length suggests that further work is warranted. A program of detailed mapping and continuous chip sampling is recommended to define the better grade sections and to extend the zone to the east and west. A series of widely spaced drill holes may be undertaken if the results of further mapping and sampling suggest that significant grades and widths may be obtained.

References

Bradshaw, P. M. D. (1970): Geochemical Research Report on the Salal Creek Project. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 3094.

Campbell, C.B., and Mustard, D.K. (1970): Assessment Report Geological and Geochemical Surveys EE, R, Bat & Ball Mineral Claims. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 2,741.

Campbell, C.B., and Mustard, D.K. (1971): Assessment Report Geological Survey R, Bat, Ball, Best, Beta, Berg, EE Mineral Claims. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 3,370.

Crosby, R.O. (1971): Report on Airborne Geophysical Surveys, Salal Creek Molybdenite Property, B.C. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 2878.

Deighton, J.R. (1978): Assessment Report on the Geology and Rock Geochemistry of the Salal Mineral Claims. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 6,759.

Deighton, J.R. (1978): Assessment Report on the Geology and Rock Geochemistry of the Salal Mineral Claims. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 6,999.

Deighton, J.R. (1979): Assessment Report on the 19779 Diamond Drilling Program of the Salal Mineral Claims. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 7,557.

Kikauka, A. (1996a): Geological, Geochemical and Diamond drilling Report on the Salal 1-6 Claims, Pemberton, B.C. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 24,684.

Kikauka, A. (1996b): Geological, Geochemical, and Diamond Drilling Report on the Salal 1-6 Claims, Pemberton, B.C. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 24,819.

Mustard, D.K. (1977): Drilling Report on the Salal Creek Property. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 6,355.

Mustard, D.K. and Campbell, C.B. (1971): Ground Magnetometer Survey on the Plug Mineral Claims. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 3,275.

Appendix B Statement of Costs

Professional Fees and Wages

		Days/hrs	Ra	ite/day	Total
	John Bradford	2	\$	600.00	\$ 1,200.00
	Craig Bow	2	\$	600.00	\$ 1,200.00
	John Fleishman	2	\$	500.00	\$ 1,000.00
	Subtotal				\$ 3,400.00
Equipment	Rental				
	Rental Truck	2	\$	66.66	\$ 133.32
	Hand-held radios (4)	2	\$	8.00	\$ 16.00
	Subtotal				\$ 149.32
Expenses					
	Geochemical Analyses				\$ 157.41
	Helicopter Helicopter fuel (incl	3.3	\$	975.00	\$ 3,217.50
	transportation)				\$ 445.50
	Helicopter GST				\$ 219.78
	Food (incl mob in/out)				\$ 537.39
	Accomodation (incl mob)				\$ 516.87
	Fuel				\$ 199.57
	Report	2	\$	600.00	\$ 1,800.00
	Field Supplies Drafting/reporting				\$ 25.00
	consumables				\$ 36.26
	Subtotal				\$ 7,155.28
Subtotal					\$ 10,704.60
Manageme	nt/Project Supervision				
	4% on portion <\$100,000				\$ 428.18
Total					\$ 11,132.78

Mustard, D.K. Fox, P.E., and Barker, R.A., (1965): Report on the Salal Creek Molybdenite Property. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 709.

Wong, R.H. (1984): Assessment Report on the Reanalysis of Stream Sediment Samples from the Salal Group A and B Mineral Claims. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 12,798.

Appendix A Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, John Bradford, P.Geo., certify that:

1. I am presently Vice President Exploration for Paget Resources Corporation with a business address located at:

920-1040 W. Georgia St. Vancouver, BC, Canada V6E 4H1

- 2. I am a member in good standing of the Association of Professional Engineers and Geoscientists of B.C.
- 3. I graduated from the University of British Columbia in 1985 with a Bachelor of Science in Geology and from the University of British Columbia in 1988 with a Master of Science in Geology.
- 4. Since 1988 I have been continuously employed in exploration for base and precious metals in North America, South America and China.
- 5. I supervised and participated in the 2007 exploration program from September14-15, 2007 and am therefore personally familiar with the geology of the Logan Property and the work conducted in 2007. I have prepared all sections of this report.

Dated this 15 Day of January, 2008

Signature

John Bradford, M.Sc, PGeo

Appendix C Rock Samples

			UTM				
Project	Area	Geologist	Zone	UTM E	UTM N	Sample	Туре
Salal Creek	Logan Ridge	JB	10	471743.00	5628058.00	147595	grab
Salal Creek	Mud Lake	JB	10	472831.44	5628161.95	148403	grab
Salal Creek	Logan Ridge	JB	10	471886.00	5627986.58	148404	grab
Salal Creek	Logan Ridge	JB	10	471830.72	5628007.46	148405	grab
Salal Creek	Logan Ridge	JB	10	471758.34	5628072.07	148406	grab
Salal Creek	Mud Lake	JB	10	472542.67	5628356.07	148407	grab

		struct	struct	struct		
Sample	Description	strike	dip	type	Au	Ag
147595	mo-py vn in strong sil zn				-0.01	-0.5
	10 m wide zone strong QSP alt c.g. Bi gr, cut by QV stkwk, loc strong					
148403	Mo, Py vns				0.02	1.1
148404	v. strong QSP alt f.g. gr cut by Mo-py stkwk	90	55	vein	-0.01	-0.5
148405	intense QSP alt f.g. gr, loc strong Mo bands, py stringers				-0.01	-0.5
	broad zone v. strong sil-QSP alt f.g. gr, loc 2-10 cm sheeted qtz-py,					
148406	qtz-mo vnlets	92	85	vein	-0.01	-0.5
	narrow (0.5 m) zone banded qtz-Mo+py; ferrimolyb on frct, in c.g. bi					
148407	gr, mod sil-arg alt				0.01	-0.5

Sample	Cu	Pb	Zn	As	Sb	Hg	Мо	TI	Bi	Cd	Со	Ni	Ва	w	Cr	v	Mn	La	Sr	Zr	Sc	Ti
147595	23	133	24	-5	-5	-3	839	-2	-2	-0.2	3	-1	158	10	139	7	318	15	11	2	1	0.03
148403	13	419	230	-5	-5	-3	2812	-2	-2	-0.2	2	-1	213	6	171	-1	9679	9	13	1	-1	0.05
148404	14	67	54	-5	-5	-3	1585	-2	-2	-0.2	7	-1	185	38	140	2	1249	17	14	2	1	0.03
148405	38	19	91	-5	-5	-3	1376	-2	-2	-0.2	7	-1	140	27	137	8	430	15	7	2	1	0.03
148406	13	50	114	-5	-5	-3	1610	-2	-2	-0.2	7	-1	115	300	128	-1	570	12	7	4	-1	0.02
148407	14	13	31	-5	-5	-3	8571	-2	-2	-0.2	3	-1	262	32	174	-1	447	3	5	2	-1	0.03

Comula		0-	Га	Ма	V	Na	5
Sample		Ca	ге	ivig	n	ina	P
147595	5.41	0.02	2.38	0.07	3.44	0.42	-0.01
148403	3.23	0.19	2.75	0.13	2.17	0.05	-0.01
148404	6.06	0.02	1.93	0.07	3.96	0.50	-0.01
148405	5.19	0.03	2.77	0.09	3.21	0.14	-0.01
148406	3.41	0.02	4.11	0.05	2.33	0.10	-0.01
148407	4.08	0.01	2.10	0.18	2.47	0.06	-0.01

Appendix D Analytical Certificates

1	1	1	1	[
Ô				
4				
	19 (Bar 788	的物质		

INTERNATIONAL PLASMA LABS LTD.

CERTIFICATE OF ANALYSIS iPL 07I4227

Paget Resources Corp		6	Sample	es Print: Sep 24, 2007 In: Sep 20,	2007	[422715:02:18:70092407:001]
Project : Logan Shipper : John Bradford Shipment: PO#: None given Comment:	CODE B21100 B84100 B82101 B90022	AMOUNT 6 1 1 1	TYPE Rock Repeat B1k iPL STD iPL	PREPARATION DESCRIPTION crush. split & pulverize to -150 mesh. Repeat sample - no Charge Blank iPL - no charge. Std iPL(Au Certified) - no charge	NG-No Campio	PULP REJECT 12M/Dis 03M/Dis 12M/Dis 00M/Dis 00M/Dis 00M/Dis Pap-Paplicato M-Month Dis=Discard
	Ana Anal	lytical ysis: Au	Summan (FA/AAS)	ry / ICP(Multi-Acid)30	NS=NO Sampre	Rep-Repricate menoriti Dis-Discard
Document Distribution	## Code	Method	Units	Description	Element	Limit Limit
1 Paget Resources Corp EN RI CC IN FX 920 - 1040 W. Georgia St. 1 2 1 1 0 Vancouver DL 3D EM BT BL BC V6E 4H1 0 0 1 0 0 Canada Att: John Bradford Ph:778.327.6540	01 0801 02 0368 03 0771 04 0761 05 0764	Spec FA/AAS ICPM ICPM ICPM	Kg g/mt ppm ppm ppm	Weight in Kilogram (1 decimal place) Au (FA/AAS 30g) g/mt Ag ICP(Multi-Acid) Cu ICP(Multi-Acid) Pb ICP(Multi-Acid) Depressed	Wt Gold Silver Copper Lead	0.1 9999.0 0.01 5000.00 0.5 500.0 1 20000 2 10000
Em:jbradford@pagetresources.com	06 0780 07 0753 08 0752 09 0782 10 0767	ICPM ICPM ICPM ICPM ICPM	ppm ppm ppm	Zn ICP(Multi-Acid) As ICP(Multi-Acid) Depressed Sb ICP(Multi-Acid) Depressed Hg ICP(Multi-Acid) Mo ICP(Multi-Acid)	Zinc Arsenic Antimony Mercury Molydenum	$\begin{array}{cccc} 1 & 10000 \\ 5 & 10000 \\ 5 & 2000 \\ 3 & 10000 \\ 1 & 1000 \end{array}$
	11 0797 12 0755 13 0757 14 0760 15 0768	ICPM ICPM ICPM ICPM ICPM	ppm ppm ppm ppm	Tl ICP(Multi-Acid) Bi ICP(Multi-Acid) Cd ICP(Multi-Acid) Co ICP(Multi-Acid) Ni ICP(Multi-Acid)	Thallium Bismuth Cadmium Cobalt Nickel	2 1000 2 2000 0.2 2000.0 1 10000 1 10000
-	16 0754 17 0777 18 0759 19 0779 20 0766	ICPM ICPM ICPM ICPM ICPM	ppm ppm ppm ppm	Ba ICP(Multi-Acid) W ICP(Multi-Acid) Cr ICP(Multi-Acid) V ICP(Multi-Acid) Mn ICP(Multi-Acid)	Barium Tungsten Chromium Vanadium Manganese	$\begin{array}{cccc} 2 & 10000 \\ 5 & 1000 \\ 1 & 10000 \\ 1 & 10000 \\ 1 & 10000 \end{array}$
	21 0763 22 0773 23 0781 24 0786 25 0776	ICPM ICPM ICPM ICPM ICPM	ppm ppm ppm ppm %	La ICP(Multi-Acid) Sr ICP(Multi-Acid) Zr ICP(Multi-Acid) Sc ICP(Multi-Acid) Ti ICP(Multi-Acid)	Lanthanum Strontium Zirconium Scandium Titanium	$\begin{array}{cccc} 2 & 10000 \\ 1 & 10000 \\ 1 & 10000 \\ 1 & 10000 \\ 0.01 & 10.00 \end{array}$
	26 0751 27 0758 28 0762 29 0765 30 0770	ICPM ICPM ICPM ICPM ICPM	* * * * *	Al ICP(Multi-Acid) Ca ICP(Multi-Acid) Fe ICP(Multi-Acid) Mg ICP(Multi-Acid) K ICP(Multi-Acid)	Aluminum Calcium Iron Magnesium Potassium	$\begin{array}{ccccc} 0.01 & 5.00 \\ 0.01 & 10.00 \\ 0.01 & 5.00 \\ 0.01 & 10.00 \\ 0.01 & 10.00 \\ 0.01 & 10.00 \end{array}$
	31 0772 32 0769	ICPM ICPM	*	Na ICP(Multi-Acid) P ICP(Multi-Acid)	Sodium Phosphorus	

EN=Envelope # RT=Report Style CC=Copies IN=Invoices Fx=Fax(1=Yes 0=No) Totals: 1=Copy 1=Invoice 0=3½ Disk DL=Download 3D=3½ Disk EM=E-Mail BT=BBS Type BL=BBS(1=Yes 0=No) ID=C055601 * Our liability is limited solely to the analytical cost of these analyses.

BC Certified Assayers: David Chin, Ron Williams

Signature:

ſ

CERTIFICATE OF ANALYSIS iPL 07I4227

200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

INTERNATIONAL PLASMA LABS															Website	e www.ip	l.ca		
lient : Paget Resources Corp roject: Logan	p Ship#	6	Sample	es 6=Rock	1=Re	epeat	1=B1k	iPL	1=STD i	PL [4	122715:02	2:18:70	Pr 092407:	int: Sep OCh] Sep	24,20 20,20)07)07	Page Sect	e 1 cion 1	of 1 of 2
Sample Name	Туре	Wt Kg	Au g/mt	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm	Co	Ni ppm	Ba ppm	W ppm	Cr ppm
147595 148403 148404 148405 148406	Rock Rock Rock Rock Rock	1.6 1.8 1.7 1.5 1.8	<0.01 0.02 <0.01 <0.01 <0.01	<0.5 1.1 <0.5 <0.5 <0.5	23 13 14 38 13	133 419 67 19 50	24 230 54 91 114	<5 <5 <5 <5 <5	<5 <5 <5 <5 <5	く3 く3 く3 く3 く3 く3	839 0.28% 0.16% 0.14% 0.16%	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	3 2 7 7 7 7	<1 <1 <1 <1 <1	158 213 185 140 115	10 6 38 27 300	139 171 140 137 128
148407 RE 147595 Blank iPL GS-1P5B GS-1P5B REF	Rock Repeat Blk iPL STD iPL STD iPL	2.1	0.01 <0.01 <0.01 1.46 1.46	<0.5 <0.5 	14 25 	13 134 	31 23 	<5 <5 —	<5 <5 —	<3 <3 	0.86% 898 	<2 <2 	<2 <2 	<0.2 <0.2 	3 2 	<1 <1 	262 166 	32 10 	174 142

linimum Detection	0.1	0.01	0.5	1	2	1	5	5	3	1	2	2	0.2	1	1	2	5	1	
Maximum Detection	9999.0	5000.00	500.0	20000	10000	10000	10000	2000	10000	1000	1000	2000	2000.0	10000	10000	10000	1000	10000	
lethod	Spec	FA/AAS	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	ICPM	
No Test Incologiant Comple Dal-Dal	MourNe	Estimata	Daa-DaC	nontr m-		0/-Ectim	ata 0/ N	C-No Sa	mple										

	1		1
		837	
	Marchel Marchel		923
CLASS .			

CERTIFICATE OF ANALYSIS iPL 0714227

1

[[[200 - 11620 Horseshoe Way Richmond, B.C. Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipl.ca

INTERNATIONAL PLASMA LABS LTD.														Intertek	J Fax Websi	(604) 272-085 te www.ipl.ca	1	
Client : Paget Resources Corp Project: Logan	Sh	ip#	6 8	ample	es 6=Rock	1=Re	epeat	1=Blk iP	L 1=	STD iPL	[42271	5:02:18:	F 70092407	rint: Sep 2 :001h] Sep 2	4. 2007 0. 2007	Page Section	1 of 2 of	1 2
Sample Name	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti %	A1 %	Ca %	Fe %	Mg %	K لا	Na %	P %		E.		
147595 148403 148404 148405 148406	7 <1 2 8 <1	318 9679 1249 430 570	15 9 17 15 12	11 13 14 7 7	2 1 2 2 4	1 <1 1 1 <1	0.03 0.05 0.03 0.03 0.02	5.41% 3.23 6.06% 5.19% 3.41	0.02 0.19 0.02 0.03 0.02	2.38 2.75 1.93 2.77 4.11	0.07 0.13 0.07 0.09 0.05	3.44 2.17 3.96 3.21 2.33	0.42 0.05 0.50 0.14 0.10	<0.01 <0.01 <0.01 <0.01 <0.01				
148407 RE 147595 Blank iPL GS-1P5B GS-1P5B REF	<1 7 —	447 330 — —	3 12 —	5 12 —	2 3 	<1 1 	0.03 0.03 — —	4.08 5.46% 	0.01 0.02 	2.10 2.40 	0.18 0.08 — —	2.47 3.37 — —	0.06 0.42 	<0.01 <0.01 — —				
Minimum Detection	1	1	2	1	1	1	0.01	0.01	0 01	0.01	0 01	0 01	0 01	0 01				

10000 10000 10000 10000 10000 10000 ICPM ICPM ICPM ICPM ICPM ICPM 10.00 ICPM 5.00 ICPM Maximum Detection 10.00 10.00 5.00 5.00 10.00 10.00 Method ICPM ICPM ICPM ICPM ICPM ICPM

----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

ſ

1