MAMMOTH GEOLOGICAL LTD.

2446 Bidston Road Mill Bay, B.C. Canada VOR 2P4

> BC Geological Survey Assessment Report

> > 29629

Phone: (250) 743-8228 Fax: (250) 743-4430

email: mammothgeo@shaw.ca

GEOLOGICAL REPORT

BABINE PROJECT

Omenica Mining Division TRIM Sheet 093M009, 093M010, 093M019, 093M020 UTM (NAD 83) ZONE 9 679400E 6106500N

FOR

Midland Recording Services Ltd. 1870 Inglewood Drive Kamloops, B.C. V2B 4W1

By: R.Tim Henneberry, P.Geo. December 15, 2007

-2-SUMMARY

The Midland Recording Services Ltd. 7640 hectare Babine project lies in the Babine Lake area of central British Columbia. The property lies on the east shore of Babine Lake, 65 kilometres northeast of Smithers, British Columbia. Road access is provided by private barge across Babine Lake from Topley Landing to the Hagman Forest Service Road.

The Babine Lake area has a long and productive porphyry copper±gold history. The area hosts three significant porphyry copper-gold deposits: Morrison, Bell and Granisle. The Morrison deposit, 16 kilometres northwest of the Babine property, has published measured and indicated mineral reserves of 207 million tonnes at a grade of 0.39% copper and 0.20 grams per tonne gold. The Bell deposit, contiguous to the south boundary of the Babine property, produced 77.2 millions tonnes at and average grade of 0.47% Cu and 0.20 grams per tonne Au and hosts a pre NI43-101 historic resource of 296 million tonnes grading 0.46% Cu and 0.20 grams per tonne Au. The Granisle deposit, 13 kilometres south of the Babine property, produced 52.7 million tonnes at an average grade of 0.47% Cu and 0.20 grams per tonne Au and hosts a pre NI43-101 historic resource of 119 million tonnes grading 0.41% Cu and 0.15 grams per tonne gold.

Exploration completed by Midland has been successful in locating several areas of anomalous copper in bedrock or angular float. Three target areas have been identified on the Babine property: the Sparrowhawk Area, the Babine Feldspar Porphyry Area and the Disseminated Chalcopyrite Area.

The Sparrowhawk area has a long exploration history including soil geochemistry, sampling, ground magnetics and IP and 3 drill holes, though the results of the drilling are not available. Three high chargeability IP anomalies lie within a 3900 metre by 2400 metre area over the old 1990 grid. A program of prospecting, mapping and Mobile Metal Ion (MMI) soil geochemistry sampling is recommended. The grid will consist of 26 E-W lines at 150 metre spacings. Sampling will take place at 150 sample intervals along each 2400 metre N-S cross line. 24 sampling mandays and 8 geological mapping mandays are required for the Sparrowhawk area.

The BFP float area requires some detailed prospecting to locate the source of the mineralized angular float. Six prospecting mandays and 2 geological mapping mandays are recommended for the BFP area.

The disseminated chalcopyrite area is also very interesting. Midland prospector Brent McEwen noted abundant outcrop in this area. Therefore a program of bedrock grid sampling and mapping is recommended over a two kilometre by two kilometre area. Each of the E-W trending 2000 metre lines will be spaced at 100 metre intervals. All bedrock encountered on the lines will be grab sampled for analysis. 24 sampling mandays and 8 geological mapping mandays are required for the disseminated chalcopyrite area.

The estimated cost of this exploration program is \$100,000.

The 2007 Midland Recording Services Ltd. Babine property exploration program came in at \$37,904.89.

-3-TABLE OF CONTENTS

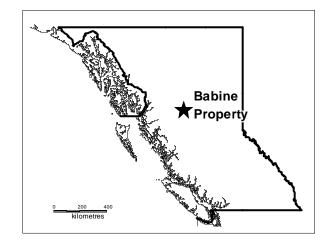
INTRODUCTION	
RELIANCE ON OTHER EXPERTS	
PROPERTY DESCRIPTION AND LOCATION	6
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND	
PHYSIOGRAPHY	
HISTORY	
GEOLOGICAL SETTING	
Babine Lake Area Geology	
Babine Property Geology	
DEPOSIT TYPES	
MINERALIZATION	
EXPLORATION	
DRILLING	
SAMPLING METHOD AND APPROACH	
SAMPLE PREPARATION, ANALYSES AND SECURITY	26
DATA VERIFICATION	27
ADJACENT PROPERTIES	
MINERAL PROCESSING AND METALLURGICAL TESTING	28
MINERAL RESOURCESAND MINERAL RESERVE ESTIMATES	28
OTHER RELEVANT DATA ND INFORMATION	28
INTERPRETATION AND CONCLUSIONS	29
RECOMMENDATIONS	30
REFERENCES	31
STATEMENT OF COSTS	33
COST ESTIMATES	34
CERTIFICATE	38
LIST OF FIGURES	
Figure 1. Location Map	5
Figure 2. Claim Map	
Figure 3. Exploration History	
Figure 4. Regional Geology	
Figure 5. Preliminary Property Geology	
Figure 6. Zone Locations	
Figure 7. Sparrowhawk Showing Area	
Figure 8. Babine Feldspar Porphyry Area	
Figure 9. Disseminated Chalcopyrite Area	
Figure 10. Sample Locations	
LIST OF APPENDICIES	
Appendix 1. 2007 Babine Property Rock Sampling	35
I J I O	

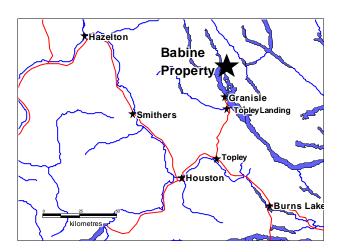
-4-INTRODUCTION

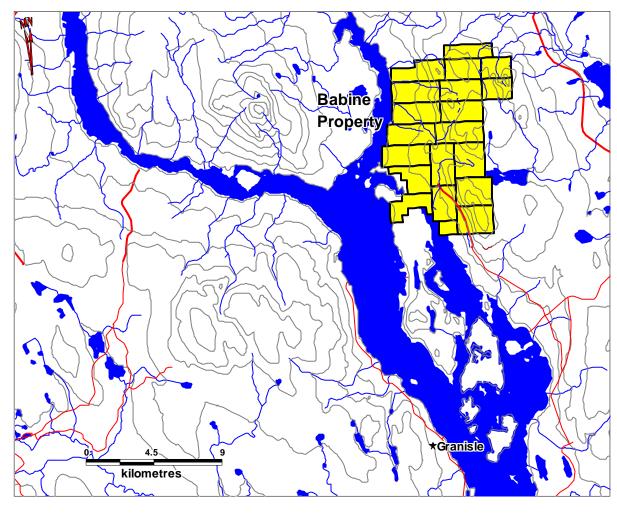
The purpose of this Technical Report is to combine and compile all available data with the data from the 2007 exploration programs undertaken by Midland Recording Ltd.

This report was commissioned by Mr. Rolland Menard, the president of Midland Recording Ltd.

R.Tim Henneberry, P.Geo. serves as the Qualified Persons responsible for preparing the Technical Report.


In preparing this report, the author relied on geological reports listed in the References (Section 21) of this report and his extensive years of mineral exploration experience in British Columbia.


The author has not yet visited the site. The exploration program described in this report was completed by prospector Brent McEwen. The author has been working with Mr. McEwen over the last few years and has instructed him in proper sampling techniques. The author examined and described all samples sent for analysis.

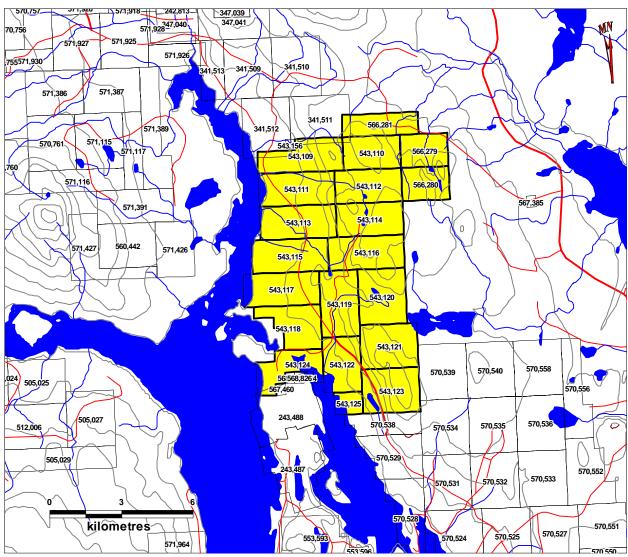

RELIANCE ON OTHER EXPERTS

The author is not relying on a report or opinion of any experts. The ownership of the claims comprising the property and the ownership of the surrounding claims has been taken from the Mineral Titles Online database maintained by the British Columbia Ministry of Energy and Mines. The data on this site is assumed to be correct.

The section on the History of the property area has been taken from the British Columbia Ministry of Energy and Mines Assessment Files. The geological assessment reports have been written by competent geologists and engineers to the industry standards of the day. The rock, soil and silt analyses were completed by reputable Canadian assay labs, again to the industry standards of the day.

Projection is UTM NAD83 Zone 9

BABINE PROJECT LOCATION Figure 1


-6-PROPERTY DESCRIPTION AND LOCATION

The Babine Project lies on TRIM claim sheets 093M009, 093M010, 093M019 and 093M020 in the Omenica Mining Division. The property consists of 22 claims totaling 7630 hectares. The geographic center of the property is approximately UTM ZONE 9 679400E 6106500N (NAD 83).

Rolland Menard of Kamloops, B.C. is listed as owner of 100% of the claims. He is holding the claims in trust for Midland Recording Ltd.

Tenure Number	Claim Name	Owner	Good To Date	Area
543109	BABINE 1	118167	25 *	425.565
543110	BABINE 2	118167	2009/jan/25 *	333.038
543111	BABINE 3	118167	2009/jan/25 *	444.196
543112	BABINE 4	118167	2009/jan/25 *	388.665
543113	BABINE 5	118167	2009/jan/25 *	444.333
543114	BABINE 6	118167	2009/jan/25 *	388.79
543115	BABINE 7	118167	2009/jan/25 *	444.473
543116	BABINE 8	118167	2009/jan/25 *	444.474
543117	BABINE 9	118167	2009/jan/25 *	444.617
543118	BABINE 10	118167	2009/jan/25 *	370.641
543119	BABINE 11	118167	2009/jan/25 *	444.69
543120	BABINE 12	118167	2009/jan/25 *	463.187
543121	BABINE 13	118167	2009/jan/25 *	444.868
543122	BABINE 14	118167	2009/jan/25 *	370.792
543123	BABINE 15	118167	2009/jan/25 *	445.055
543124	BABINE 16	118167	2009/jan/25 *	333.715
543125	BABINE 17	118167	2009/jan/25 *	111.279
543156	BABINE 18	118167	2009/jan/25 *	18.501
566279	BABINE 19	118167	2009/jan/25 *	277.528
566280	BABINE 20	118167	2009/jan/25 *	277.614
566281	BABINE 21	118167	2009/jan/25 *	295.956
567460	BABINE 22	118167	2009/jan/25 *	18.543
Total hectares				7630.52

^{*} pending approval of 2007 assessment credits

Projection: UTM NAD 83 Zone 9

Claim Location (093M009, 093M010, 093M019, 093M020)

Figure 2

The Babine property is surrounded by open ground except for some contiguous claims on the south and north boundaries. Tenures 243488 and 244224 on the south boundary are held by McLaren Forest Products Ltd and include the old Bell copper mine. Tenure 521585 on the south boundary in held by K.P. Morris. Tenures 570534, 570538 and 570539 along the southeast boundary form part of a large claim block held by Kenrick-Eskay Mining Corp. Tenures 341511 and 341512 on the northern boundary are held by Pacific Booker Minerals Inc.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Babine property lies on the east shore of Babine Lake, 65 kilometres northeast of Smithers, British Columbia. Access to the property from Smithers is as follows: 94 kilometres east from Smithers on Highway 16 to Topley; 40 kilometres north along the Granisle Highway from Topley to Topley Landing; a private barge across Babine Lake from Topley Landing; then 25 kilometres north from the barge landing to the claims along the Hagman Forest Service Road to the property

The topography relief ranges from 720 metres above sea level (ASL) on Babine Lake to 1320 metres ASL at the top of the ridge on the eastern side of the property. Despite the 600 metres of relief, the topography is only moderate. The claims are in a historic logging area with sections of the property in various stages of the logging cycle from clear cut through second generation to unlogged first growth. The pine within the forest has been devastated by the Mountain Pine Beetle. The long logging history has left access roads in various conditions from maintained to deactivated through much of the claim group.

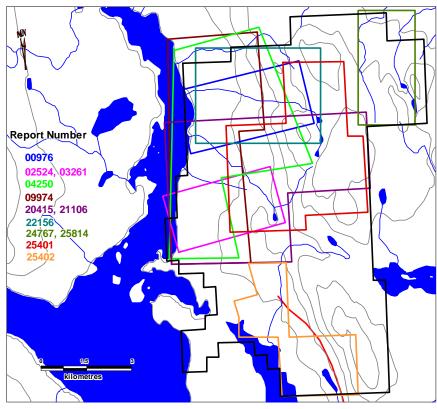
The climate of this part of the province is typical of the central interior of British Columbia. The summer field season is generally warm and dry and runs from mid- May through to mid-October. Winters are cold with significant snow accumulations. Temperatures can dip to minus 20 Celsius for extended periods.

The logistics of working in this part of the province are good. There is direct road access to the property for supplies and equipment. There is no accommodation, supplies or fuel on the eastern side of Babine Lake, so a camp is required. Heavy equipment is available in either Smithers or Houston. Depending on the type of exploration program to be conducted, the field season generally runs from mid-May to mid-October.

Exploration permits will be required for trenching and diamond drilling. These permits are readily obtainable from the Provincial Ministry of Energy, Mines and Petroleum Resources after a 60 day review period. Reclamation bonds in the range of \$5,000 to \$15,000 are generally required.

-9-HISTORY

The Babine project has a long exploration history, starting back in 1966 (Figure 3). The ground underlying the Babine claims has been staked and subsequently allowed to lapse numerous times over the last 40 years. The present Babine 1-22 claims are contiguous to the north to the Morrison project of Pacific Booker Minerals Inc. and to the south to Xstrata Copper's past producing Bell Mine.


New Far North Explorations completed 56.4 line miles (90.2 line km) of geochemical soil sampling and geological mapping on their Vez 1-40 and Tal 1-23 claims in 1966. Soil lines were spaced 400 feet (122 m) with sample stations every 300 feet (91 m). A definite, northwest trending, geochemical anomaly was located in a deep, swampy ravine in the southeast corner of the claim block. (Storey, 1966). This survey covers much of the northwestern section of the present claim block.

Torwest Resources Ltd. completed 34.5 line km (21.6 line miles) of geochemical soil sampling on their Ben 1-20 and Ben 23-38 claims in 1970. Soil lines were spaced at 244 metre (800 foot) intervals with sample stations every 61 metres (200 feet). The survey revealed soil copper anomalies with pronounced east-west alignments with the anomalies stronger in the eastern part of the grid. (Kelley, 1970). Torwest continued the exploration of the Ben claims in 1971, completing 34.5 line km of magnetic and 34.5 line km of electromagnetic surveys, as well as, geological mapping and a further 9 line km (5.7 line miles) of auger soil geochemical surveys. The soil and geophysical anomalies were not found to be coincident. The geological mapping located widely disseminated pyrite but little signs of copper mineralization. (Betmanis, 1971). These surveys cover much of the east central section of the claim group.

Quintana Minerals Corporation held most of the ground presently by Midland Recording in the early 1970's. They completed geological mapping and rock geochemical sampling over most of their claim block in 1973, taking 520 samples. Two areas were identified for follow-up, a copper occurrence near BAB 131 claim and a carbonate alteration zone on TONJA 100 claim, neither of which are on the present Midland claim holdings. (Wolfhard, 1973).

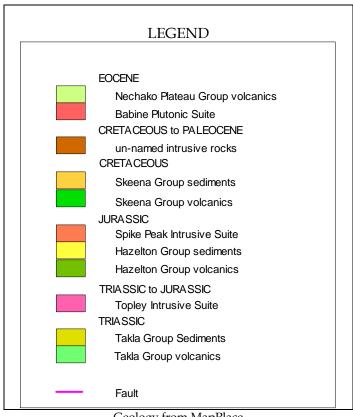
The ground appears to have lain idle until the early 1980's when Noranda Exploration Company, Limited staked a 3.5 to 4 kilometre wide strip on the eastern shore of Babine Lake. During 1981, Noranda established a cut grid totaling 63.5 line kilometres. They completed soil geochemistry (869 samples) and 51 line kilometres of ground magnetometer survey and 51 line kilometres of IP. Leahey and McCarter (1981) identified several IP anomalies and magnetic features worthy of follow-up. These surveys covered the northwest quarter of the present property.

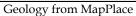
Noranda again acquired ground in the area in 1989, the Sparrowhawk property. They cut a 3.2 km of base line and 27 km of cross line, taking only 254 soil samples. Noranda also completed mapping and prospecting (Orgryzlo, 1990). Myers (1991) continued the exploration for Noranda the next season. They cut a further 30.9 kilometres of line, took a further 86 soil samples, and completed 15.75 line km of dipole – dipole IP and 18.7 line km of magnetics. Myers (1991) recommended diamond drilling on three high chargeability IP anomalies. The drilling was completed (Orgryzlo personal communication) though the data is not in the public file. The centre of the present Babine 1-22 claims covers the old Sparrowhawk claims.

Report Numbers

00976 - New Far North, 1966 02524 - Torwest Resources, 1970 03261 - Torwest Resources, 1971 04250 - Quintana Minerals, 1973 09974 - Noranda Exploration, 1981 20415 - Noranda Exploration, 1990 21106 - Noranda Exploration, 1991 22156 - Noranda Exploration, 1992 24767 - Delorme and Fournier, 1997 25401 - Booker Gold Exploration, 1998 25402 - Booker Gold Exploration, 1998 25814 - Delorme and Fournier, 1999

From: British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report Index Files


Projection: UTM NAD 83 Zone 9


BABINE PROPERTY Exploration History FIGURE 3

Noranda also explored peripheral ground to the north of the Sparrowhawk. They took 63 rocks and 16 silts from the Nuniz claims, locating patchy disseminations and stringers of chalcopyrite within weakly developed propylitic andesite. (Kraft, 1992). These surveys covered the northern section of the present property.

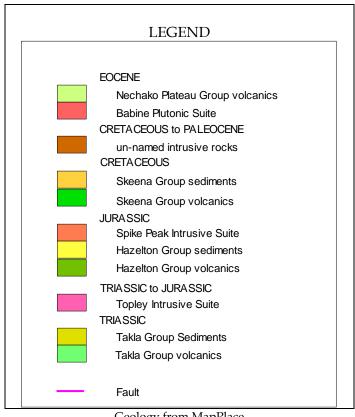
Booker Gold Explorations Inc., now Pacific Booker Minerals Inc., explored the Wolf and Buzz claim blocks in the late 1990's (O'Brien, 1998a; O'Brien, 1998b). Most of their effort was concentrated on the Wolf block, covering the old Noranda Sparrowhawk claims. Geological mapping and prospecting, soil sampling (98 samples) and rock sampling (17 samples) were completed on the Wolf block. Mapping located Biotite Feldspar Porphyry (BFP) and some copper mineralization and two copper soil anomalies on the property, (O'Brien ,1998a). Geological mapping and prospecting, soil sampling (26 samples) and rock sampling (3 samples) were completed on Buzz block. Prospecting located Biotite Feldspar Porphyry (BFP) boulders and sulphide mineralization on the property, (O'Brien ,1998b).

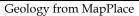
Delorme and Fournier held a large block of ground in 1996 (McLeod, 1997) downsizing to two claim blocks in 1999 (McLeod, 1999). The 1996 program consisted of 50.2 line kilometres of cut grid, with 39.2 line km of magnetometer and VLF-EM surveys and 6 line km of self potential (SP), 37 rock samples and 115 soil samples. The 1998 program consisted of further SP surveys and one 32.67 metre X-Ray drill hole.

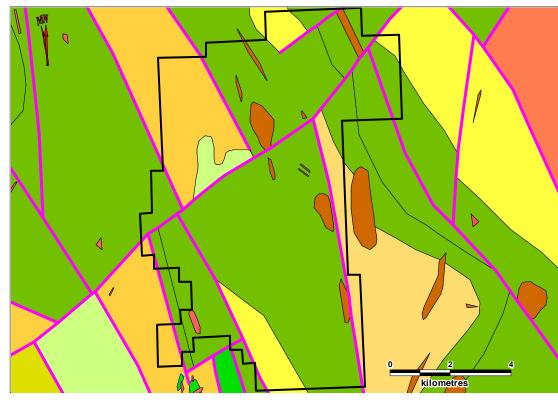
Projection: UTM NAD 83 Zone 9

BABINE PROJECT REGIONAL GEOLOGY Figure 4

-12-GEOLOGICAL SETTING (From MINFILE NTS Summary for 093M)


The Babine project lies within the Stikinia Terrane of the Intermontane Belt of central British Columbia. The Stikinia Terrane consists of the Lower to Middle Jurassic Hazelton Group and the Upper Triassic Stuhini (Takla) Group island arc volcanic rocks. These are intruded by the Late Triassic to Middle Jurassic Omineca, Francois Lake and Topley intrusions. Overlap assemblages consist of the Middle Jurassic to Upper Cretaceous Bowser Lake, Lower Cretaceous Skeena and Cretaceous Sustut groups. These mainly comprise clastic sedimentary and minor volcanic rocks deposited in local fault-bounded successor basins and in the Bowser basin, a portion of which underlies much of the northwestern portion of the map area. Upper Cretaceous calc-alkaline volcanic rocks of the Kasalka Group extruded from several volcanic centres, while coeval plutonic rocks formed the Bulkley Intrusions. During the Cenozoic Era, important igneous activity occurred in the Eocene stage, when the Babine, Kastberg and Nanika intrusions and the Ootsa Lake Group calc-alkaline volcanic suite formed. Structure is dominated by block faulting which has controlled the location of the major mountain valley systems, as well as many of the intrusive rock suites and mineral deposits. Aside from contact effects near intrusive bodies, metamorphism is light, reaching prehnite-pumpellyite facies.


There are three significant porphyry copper-gold deposit in the general area of the Babine project. The Morrison deposit lies approximately 16 kilometres northwest of the centre of the Babine property. Pacific Booker Minerals Inc. has recently released a measured and indicated mineral reserve estimate of 207 million tonnes at a grade of 0.39% copper and 0.20 grams per tonne gold. The Bell deposit lies 7 kilometres to the south of the centre of the Babine property. The Bell mine produced approximately 77.2 millions tonnes at and average grade of 0.47% Cu and 0.20 grams per tonne Au. Pre NI43-101 historic resources stand at 296 million tonnes grading 0.46% Cu and 0.20 grams per tonne Au. The Granilse mine lies 13 kilometres south of the centre of the Babine property. The Granisle mine produced 52.7 million tonnes at an average grade of 0.47% Cu and 0.20 grams per tonne Au. Pre NI43-101 historic resources stand at 119 million tonnes grading 0.41% Cu and 0.15 grams per tonne gold. (Carter et al, 1995).


Babine Lake Area Geology (Summarized from Carter et al, 1995))

The oldest rocks exposed in the Babine area are marine volcanic, volcaniclastic and sedimentary rocks of the late Triassic Takla Group and early Jurassic Hazelton Group. Early Jurassic Topley granitic intrusions, in part comagmatic with Hazelton Group volcanics are distributed through the area. Overlying these rocks are younger marine and nonmarine clastic sedimentary rocks of the middle to late Jurassic Bowser Lake Group and mid-Cretaceous Skeena Group. These younger sediments are preserved in down-dropped basins bounded by north-northwest trending regional faults, developed during a period of extensional faulting in the late Cretaceous and early Tertiary time.

The north-northwest trending regional faults and associated dilatant zones provided conduits for late Cretaceous Bulkley Intrusions and more importantly, for the Eocene Babine Igneous Suite. The porphyry copper deposits and occurrences in the area are associated with the Babine Igneous Suite.

Projection: UTM NAD 83 Zone 9

BABINE PROJECT PRELIMINARY PROPERTY GEOLOGY Figure 5

Babine Property Geology

The Babine property has was not mapped as part of the current exploration program. Much of the present property was mapped by O'Brien (1998a, 1998b) for Booker Gold Exploration Inc. Her description of the geology is summarized as follows: she found the property was mainly underlain by andesitic to basaltic flows, porphyries and volcaniclastics of the Hazelton Group. The lower part of this unit, visible in part in the southern part of the property, contains rhyolitic ash flows and lapilli tuffs. The middle unit consists of basaltic flows and related pyroclastic flows, occurring throughout the majority of the property. The Hazleton volcanics are altered to a powdery white, near the area of Ben Lake. More commonly, Hazleton volcanics are mildly to moderately chloritized, with calcite and quartz veining, and minor amounts of epidote, hematite and pyrite occur locally.

Sedimentary rocks from the Middle to Upper Jurassic Ashman Formation outcrops on the eastern edge of the Bear claims. Deep water siltstones and fossiliferous greywacke occur in small outcrops in a clearcut.

Intrusions of Cretaceous-Tertiary granodiorite to diorite occur on the central and eastern sections of the Wolf 1 claims, as well as the northeastern comer of the Wolf 2. This is likely an area with various plugs, of slightly different composition. Elsewhere on the property, intrusive stocks generally occur in small exposures adjacent to Hazleton Group volcanics.

An Eocene-age biotite feldspar porphyry (BFP) plug outcrops on the west central section of the present property. The BFP is relatively resistant and forms a series of ridges with mild topography. Trace amounts of pyrite were seen in this plug and it was relatively unaltered.

A major northeast trending fault dissects the centre of the claims, producing an up-lifted horst in a southeast trending ridge, providing extensive bedrock exposure.

-15-DEPOSIT TYPES

The Babine property is being explored for porphyry Cu – Au deposits. The following description is summarized from the British Columbia Ore Deposit Models (Panteleyev, 1995).

Porphyry Cu±Au deposits consist of stockworks of quartz veinlets, quartz veins, closely spaced fractures and breccias containing pyrite and chalcopyrite with lesser molybdenite, bornite and magnetite occurring in large zones of economically bulk-mineable mineralization in or adjoining porphyritic intrusions and related breccia bodies. Disseminated sulphide minerals are present, generally in subordinate amounts. The mineralization is spatially, temporally and genetically associated with hydrothermal alteration of the hostrock intrusions and wallrocks. In British Columbia, porphyry deposits are either Triassic-Jurassic or Cretaceous-Tertiary in age.

Porphry Cu-Au deposits are typically hosted in orogenic belts at convergent plate boundaries, commonly linked to subduction-related magmatism or in association with the emplacement of high-level stocks during extensional tectonism related to strike-slip faulting and back-arc spreading following continent margin accretion. They are associated with high-level (epizonal) stocks within volcano-plutonic arcs. Virtually any type of country rock can be mineralized, but commonly the high-level stocks and related dikes intrude their coeval and cogenetic volcanic pile. These intrusions range from coarse-grained phaneritic to porphyritic stocks, batholiths and dike swarms. Compositions range from calcalkaline quartz diorite to granodiorite and quartz monzonite. Commonly there is multiple emplacement of successive intrusive phases and a wide variety of breccias.

Porphyry Cu-Au deposits consist of large zones of hydrothermally altered rock containing quartz veins and stockworks, sulphide-bearing veinlets; fractures and lesser disseminations in areas up to 10 km2 in size, commonly coincident wholly or in part with hydrothermal or intrusion breccias and dike swarms. Deposit boundaries are determined by economic factors that outline ore zones within larger areas of low-grade, concentrically zoned mineralization. Ore grade mineralization is often controlled by igneous contacts. Breccias, mainly early formed intrusive and hydrothermal types also commonly host ore-grade mineralization. Zones of intensely developed fracturing give rise to ore-grade vein stockworks, notably where there are coincident or intersecting multiple mineralized fracture sets.

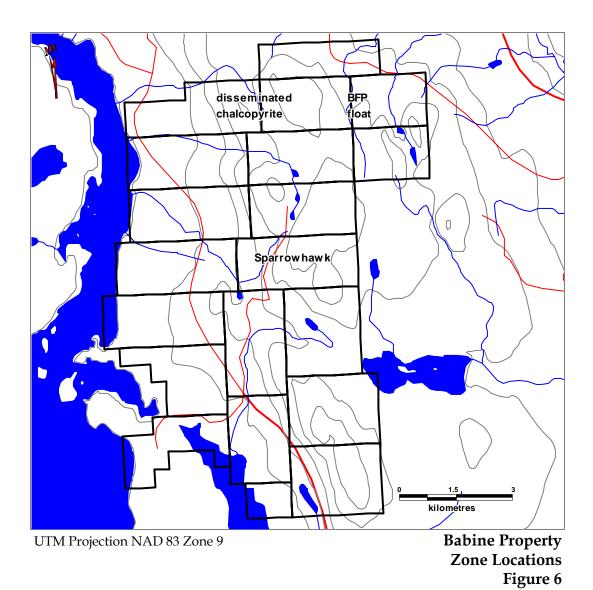
Alteration mineralogy consists of quartz, sericite, biotite, K-feldspar, albite, anhydrite /gypsum, magnetite, actinolite, chlorite, epidote, calcite, clay minerals, tourmaline. Early formed alteration can be overprinted by younger assemblages. Central and early formed potassic zones (K-feldspar and biotite) commonly coincide with ore. This alteration can be flanked in volcanic hostrocks by biotite-rich rocks that grade outward into propylitic rocks. The biotite is a fine-grained, 'shreddy' looking secondary mineral that is commonly referred to as an early developed biotite (EDB) or a 'biotite hornfels'. These older alteration assemblages in cupriferous zones can be partially to completely overprinted by later biotite and K-feldspar and then phyllic (quartz-sericite-pyrite) alteration, less commonly argillic, and rarely, in the uppermost parts of some ore deposits, advanced argillic alteration (kaolinite-pyrophyllite)

Ore deposits are associated with multiple intrusions in subvolcanic settings of small stocks, sills, dikes and diverse types of intrusive breccias. Reconstruction of volcanic landforms, structures, vent-proximal extrusive deposits and subvolcanic intrusive centres is possible in many cases, or can be inferred. Mineralization at depths of 1 km, or less, is mainly associated with breccia development or as lithologically controlled preferential replacement in hostrocks with high primary permeability. Propylitic alteration is widespread and generally flanks early, centrally located potassic alteration; the latter is commonly well mineralized. Younger mineralized phyllic alteration commonly overprints the early mineralization. Barren advanced argillic alteration is rarely present as a late, high-level hydrothermal carapace.

Pyrite is the predominant sulphide mineral; in some deposits the Fe oxide minerals magnetite, and rarely hematite, are abundant. Ore minerals are chalcopyrite; molybdenite, lesser bornite and rare (primary) chalcocite. Subordinate minerals are tetrahedrite/tennantite, enargite and minor gold, electrum and arsenopyrite. In many deposits late veins commonly contain galena and sphalerite in a gangue of quartz, calcite and barite. Gangue minerals in mineralized veins are mainly quartz with lesser biotite, sericite, K-feldspar, magnetite, chlorite, calcite, epidote, anhydrite and tourmaline. Many of these minerals are also pervasive alteration products of primary igneous mineral grains.

Geochemically, calcalkalic systems can be zoned with a Cu+Au ore zone having a 'barren', low-grade pyritic core and surrounded by a pyritic halo with peripheral base and precious metal-bearing veins. Central zones with Cu commonly have coincident Mo, Au and Ag with possibly Bi, W, B and Sr. Peripheral enrichment in Pb, Zn, Mn, V, Sb, As, Se, Te, Co, Ba, Rb and possibly Hg is documented. Overall the deposits are large-scale repositories of sulphur, mainly in the form of metal sulphides, chiefly pyrite. Geophysically, ore zones, particularly those with higher Au content, can be associated with magnetite-rich rocks and are indicated by magnetic surveys. Alternatively the more intensely hydrothermally altered rocks, particularly those with quartz-pyrite-sericite (phyllic) alteration produce magnetic and resistivity lows. Pyritic haloes surrounding cupriferous rocks respond well to induced polarization (I.P.) surveys but in sulphide-poor systems the ore itself provides the only significant IP response.

British Columbia porphyry Cu \pm Mo \pm Au deposits range from 50 to 900 million tonnes grading 0.2 to 0.5 % Cu, <0.1 to 0.6 grams/tonne Au, and 1 to 3 grams/tonne Ag. Mo grades range from negligible to 0.04 % Mo. Median values for 40 B.C. deposits with reported reserves are: 115 Mt with 0.37 % Cu, *0.01 % Mo, 0.3g /t Au and 1.3 g/t Ag.


Mine production in British Columbia is from primary (hypogene) ores. Rare exceptions are Afton mine where native copper was recovered from an oxide zone, and Gibraltar and Bell mines where incipient supergene enrichment has provided some economic benefits.

Porphyry deposits contain the largest reserves of Cu, significant Mo resources and close to 50 percent of Au reserves in British Columbia.

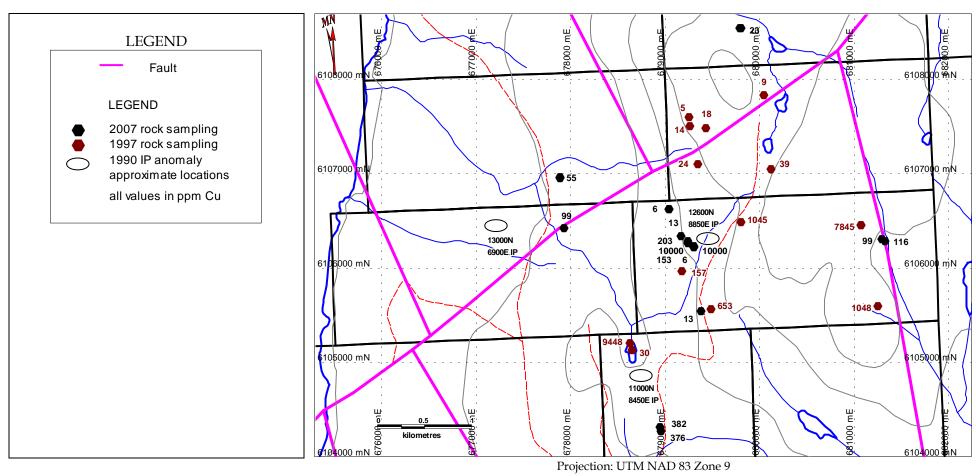
-17-MINERALIZATION

The Babine project is being explored for copper <u>+</u> gold porphyry mineralization. There are several areas of anomalous bedrock copper mineralization throughout the claim block:

- Sparrowhawk area
- BFP float area
- Disseminated chalcopyrite area

Sparrowhawk

The Sparrowhawk showing was first located by Noranda Exploration in the 1989, with discovery of an extensive zone of bleaching, pyritization and carbonate alteration opened up during logging road construction. Initial exploration (Orgryzlo, 1990) located a second chalcopyrite with bornite zone. The program consisted of a 250 sample soil grid geochemical grid and reconnaissance prospecting and sampling. Two zones of mineralization were described by Orgryzlo (1989):


- Chalcopyrite and bornite occur in a 10 cm wide quartz vein on the LWO 29 mineral claim. The showing is adjacent to the southern claim boundary, and is some 200 meters northwest of the small lake on the LWO 27 mineral claim.
- Disseminated chalcopyrite, accompanied by malachite staining, occurs in association with magnetite veins at the 3300 foot (1000 meter) elevation in the center of the LWO 28 mineral claim. A boulder of hematite and pyrite bearing float discovered to the west of this occurrence at 12600 N, 8900 E yielded 1760 ppb gold.

Myers (1991) continued with the exploration of the Sparrowhawk expanding the soil grid to link the two showing areas and running ground magnetometer and later IP over sections of the grid. Diamond drilling was recommended to follow up the IP, but there is no record of further work or drilling in the assessment files. Three diamond drill holes were completed, (Peter Orgryzlo, personal communication) but records of this drilling are not in the public record. The three IP drill targets are, indexed to the 1990 grid:

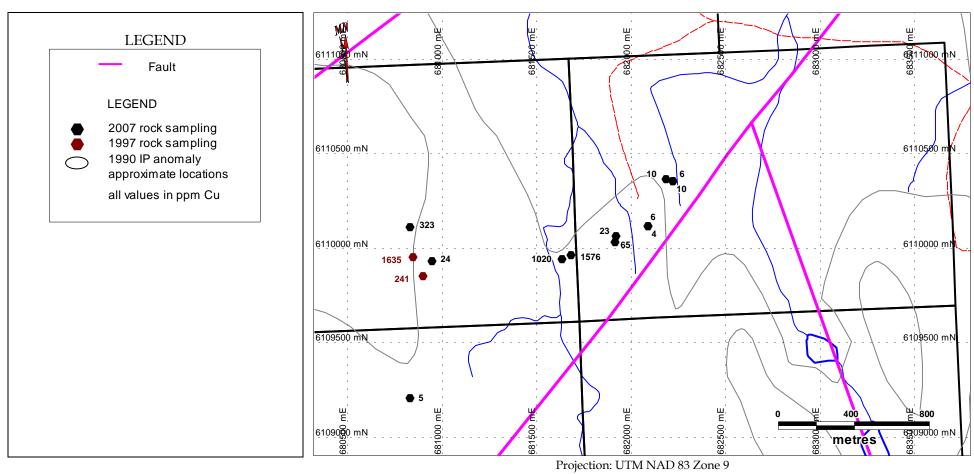
- 13,000 N, 6900 E. This high is open to the west, south, and north. It has no magnetic association, no soil geochemical association and lies near Tertiary Babine intrusive outcrop
- 12,600 N, 8850 E. This high is weaker to the south and lies on the west flank of a magnetic high and is associated with felsic volcanics. The 1760 ppb Au float was found in this area.
- 11,000 N, 8450 E. This high is open to the south and weaker to the north, has no magnetic association, has no soil geochemical association and lies in felsic volcanics south of Ben Lake

Further sampling was completed by O'Brien (1998a) for Booker Gold Exploration Inc. and again as part of the current exploration program. The sampling results are summarized below and shown on Figure 7:

Sample	Lithology	Alteration	Mineralization	% Cu	Cu ppm	Mo ppm	Pb ppm	Zn ppm
AS-2	none given	none given	none given		30	-1	42	326
AS-3	none given	none given	none given		9448	1	15	55
EO3	granodiorite	hematite	diss. py, mal, azu		653	-1	6	10
EO4	andesite	chlorite, calcite	traces py		39	1	8	230
EO6	andesite	none given brecciated, hematite	0.5% py, fracture mal		1045	1	-3	35
EO10	andesite	stringers	diss. py, tr cpy		157	3	-3	26
EO148	granodiorite	manganese	none noted		24	1	3	12
EO149	granodiorite	none noted	none noted		14	-1	-3	50
EO150	andesite	none noted	none noted		5	4	-3	114
EO153	granodiorite	chlorite, epidote	sulfide vein, py, mal		1048	-1	30	92
EO166	volcanic	chlorite	tr to 0.5% py		9	2	3	8
EO199	volcanic	chlorite	tr to 0.5% py		18	1	10	101
EO273	andesite	none given	malachite showing		7845	-1	-3	30

BABINE PROJECT Sparrowhawk Showing Area Figure 7

The sampling results from the 2007 Midland Recording Services program are summarized below ands shown on Figure 7:


Sample	Lithology	Alteration	Mineralization	% Cu	Cu ppm	Mo ppm	Pb ppm	Zn ppm
41001	Andesite	chl	traces py		99	7	78	96
41002	Andesite	chl	traces py		116	12	46	77
41013	Rhyolite	cb, lim	traces py		9	12	16	235
41014	Rhyolite	lim on fractures	traces py		55	2	42	78
41015	Volcaniclastic	cb veining	traces py		99	6	24	43
41016	Rhyolite	strong lim, hem?	NVM		382	9	40	146
41017	Andesite	cb stockwork	traces py		376	10	40	147
41018	Andesite	fracture lim	traces py		13	10	30	53
41019	Basalt	magnetic	traces py		27	4	14	31
41020	Basalt	magnetic	traces py		23	3	18	34
41043	Andesite	quartz sulfide vein	mal, py, tr cpy	1.00	10000	19	20	27
41044	BFP	pervasive sil, ser, lim	traces py		292	5	14	41
41045	Diorite	intense silicification, lim	diss. py, mal		6886	10	18	29
41046	Diorite	intense silicification, lim	malachite seams	3.25	10000	24	22	49
41047	Andesite	carbonate	magnetic, trace sulfides		203	7	16	36
41048	Andesite	carbonate	magentic, mal		153	8	12	19
41049	Andesite	lim on fractures	diss. py		14	3	10	11
41451	Diorite	intense limonite	traces py		6	5	10	52

The area around the Sparrowhawk showing has yielded several significant copper values. At present most of the significant values come from massive sulfide veins. These veins strongly suggest there is significant copper in the system. While the early copper soil geochemistry results were spotty at best (Orgryzlo, 1990; Myers, 1991), this may well be a function of glacial overburden. The IP anomalies (Myers, 1991) strongly suggest this area of the Babine property requires further exploration.

Babine Feldspar Porphyry

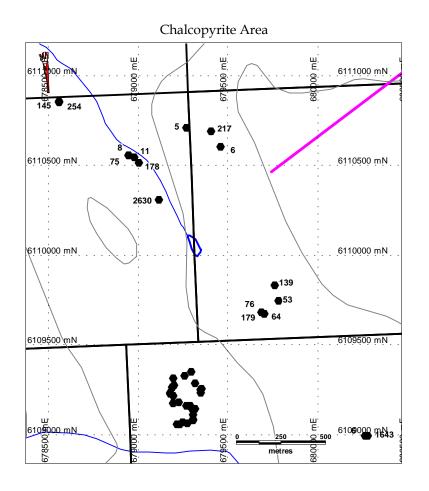
The extreme northeast corner of the claim block yielded samples on angular Babine Feldspare Porphyry float. Two samples showed strong alteration and carried disseminated sulfides including chalcopyrite. This rock type is the host for most of the porphyry deposits in the Babine Lake area. Bedrock exposure is reported to be poor by Midland Recording Services prospector Brent McEwen.

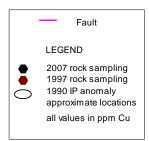
O'Brien (1998a) took two samples, anomalous in copper, in the area from propylitically altered volcanic bedrock in the area, noting chalcopyrite and bornite in one of the samples. Sampling by prospector Brent McEwen, located propylitically altered andesites in the area as well. Neither located Babine Feldspar Porphyry in place. The O'Brien (1998a) sampling results are summarized below:

BABINE PROJECT Babine Feldspar Porphyry AreaFigure 8

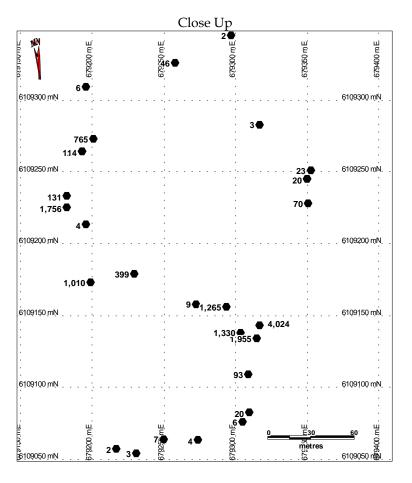
Sample	Lithology	Alteration	Mineralization	% Cu	Cu ppm	Mo ppm	Pb ppm	Zn ppm
EO89	volcanic	chlorite, epidote, calcite	py 0.5-1.0%, cpy 0.1-0.2%		241	-1	8	85
EO90	volcanic	calcite, epidote	pt, tr cpy, tr mal, tr bor		1635	-1	8	68

McEwen's Midland Recording Services sampling results are summarized below:


Sample	Lithology	Alteration	Mineralization	% Cu	Cu ppm	Mo ppm	Pb ppm	Zn ppm
41003	BFP	lim on fractures	Traces py		6	8	42	56
41004	Rhyolite	lim on fractures	Fracture pyrite		10	6	18	48
41005	BFP	lim on fractures	2%-3% py, tr to 1% cpy		10	7	38	49
41006	BFP	clay, sericite, silica	Traces py		1020	5	20	67
41007	BFP	clay, sericite, silica	Py seams to 1 mm		1576	4	22	95
41008	Basalt	lim on fractures, magnetic	2%-3% py		65	6	48	57
41009	Basalt	lim on fractures	almost py seam in sample		23	4	22	175
41028	Andesite	chl, epi, cb, magnetic	Traces py		24	3	24	34
41029	Andesite	chl, lim, magnetic	Traces py		323	5	34	119
41037	Granodiorite		Traces py		5	26	16	9
41053	Andesite	carbonate	disseminated pyrite		6	8	14	22
41054	Andesite	none noted	disseminated pyrite		4	-1	8	3


Both sets of sampling results show the area is anomalous in copper and more importantly has some disseminated chalcopyrite within volcanic bedrock and also in the Babine Feldspar Porphyry angular float samples. This area requires follow-up exploration.

Disseminated Chalcopyrite Area


The disseminated chalcopyrite area appears to be a new discovery linked to recent logging road construction. Chloritc and silicic altered andesitic volcanics with lesser gabbro(?) were mapped and sampled over 2000 metre by 1500 metre area. While the grab bedrock samples have not returned consistent copper in every sample, 9 of the 42 samples taken returned values in excess of 1000 ppm copper.

Further exploration is also required to adequately assess this area. The Midland Recording McEwen 2007 sampling results are as follows:

Map Projections are UTM NAD82 Zone 9

BABINE PROJECT Disseminated Chalcopyrite AreaFigure 9

Sample	Lithology	Alteration	Mineralization	% Cu	Cu ppm	Mo ppm	Pb ppm	Zn ppm
41021	Gabbro	magnetic	2%-3% py		254	9	28	49
41022	Syenite?	clay, sericite, silica, epidote	traces py, native Cu?		145	8	34	34
41023	Andesite	cb, magnetic	traces py, fracture mal		2630	5	12	13
41024	Andesite	cb, magnetic	traces py, fracture mal		178	11	28	24
41025	Diorite	pervasive sil, ser, lim	2%-5% py		11	5	8	3
41026	Andesite	sil, ser, cb, lim	traces py		8	6	28	36
41027	Andesite	sil, ser, cb, lim	2%-5% py		75	6	24	13
41030	Andesite	chl, lim, cb	2%-3% py, 1%-2% cpy, mal		4024	8	36	67
41031	Andesite	chl, lim, cb veining	traces py, cpy		1265	7	24	59
41032	Gabbro	sil, magnetic	traces py, cpy		139	10	32	58
41033	Gabbro	sil, magnetic	traces py, cpy		53	7	36	59
41034	Gabbro	sil, magnetic	traces py, cpy		64	13	36	76
41035	Gabbro	sil, magnetic	traces py, cpy		179	8	38	66
41036	Gabbro	sil, magnetic	traces py, cpy		76	11	36	66
41038	Andesite	man, magnetic	traces py		5	6	18	74
41039	Andesite	intense silicification, lim	traces py		217	9	26	26
41040	Andesite	intense silicification, lim	2%-5% py		6	2	22	54
41041	Andesite	cb, slickensides	traces py		6	7	24	96
41042	Syenite?	fracture lim	traces py		1643	14	22	22
41051	Andesite	carbonate	diss. limonite after py		94	8	26	28
41052	Andesite	carbonate	diss. py		21	4	12	23
41055	Andesite	none noted	diss. py		7	6	10	6
41056	Andesite	carbonate	diss. py		3	3	8	4
41057	Andesite	fracture lim, carbonate	diss. py		2	3	4	2
41058	Andesite	fracture lim, carbonate	magnetic, trace sulfides		1011	7	22	23
41059	Andesite	fracture lim, carbonate	traces cpy, thin dark grey seams		1955	6	36	71
41060	Andesite	fracture lim, carbonate	diss. py, cpy		1330	10	28	66
41061	Andesite	fracture lim, carbonate	traces cpy		9	4	4	12
41062	Andesite	fracture lim, carbonate	traces py, cpy		399	5	22	25
41063	Andesite	fracture lim, carbonate	traces py, cpy		4	8	14	22
41064	Andesite	fracture lim	magenetic, traces py, cpy		1757	7	22	32
41065	Andesite	fracture lim, carbonate	traces py, cpy		131	6	14	18
41066	Andesite	intense limonite	diss. py		127	5	16	17
41067	Andesite	intense silicification, lim	traces py		15	8	18	15
41068	Andesite	fracture lim, carbonate	traces py		765	4	16	12
41069	Andesite	fracture lim	traces py		6	8	12	9
41070	Andesite	fracture lim, K-feldspar	traces py		47	5	14	20
41071	Andesite	fracture lim	traces py, cpy		2	7	14	23
41072	Andesite	fracture lim	magnetic, trace sulfides		3	4	12	12
41073	Andesite	carbonate, epidote	magnetic, trace sulfides		35	24	34	5229
41074	Andesite	carbonate, epidote	magenetic, traces py, cpy		21	14	40	1914
41075	Andesite	carbonate, epidote	magenetic, traces py, cpy		24	10	38	197
41076	Andesite	carbonate, epidote	magenetic, traces py, cpy		71	14	46	476

-25-EXPLORATION

A two part exploration program was completed on the Babine claims in 2007. The first phase consisted of reconnaissance of the ground to get the layout of roads and initial sampling. This phase was completed between August 27 and September 29. A total of 39 bedrock grab samples and float samples were taken during this phase. An additional 4 claims were added to the property base.

The second phase took place in early October and consisted of a further 36 bedrock grab and float samples.

While the Sparrowhawk showing was already know the prospecting and sampling covered the entire property. Two new zones were discovered: the Babine Feldspar Porphyry area and the disseminated chalcopyrite area. The second phase of the program was concentrated in these two areas.

The sample results have been described in the mineralization section, so there is little point in repeating the same information in this section.

The sampling was completed by prospector Brent McEwen and his assistant for Midland Recording Services Ltd. The author has been working with Mr. McEwen for the last few years, so he is familiar with Mr. McEwen's methods and abilities. All samples were examined and described by the author. One half of each rock sample bag was sent to the lab for analysis and the remaining half was kept for reference and review.

The author has not visited the property, but has offered his direction on the exploration completed by Mr. McEwen. The author has been asked to compile the data into the proper format for assessment credit.

DRILLING

There is no public record of diamond drilling on the Midland Recording Services Ltd. Babine property. As stated in the Mineralization section, three holes were reportedly completed on the Sparrowhawk showing by Noranda Exploration Inc. in the early 1990's, but this cannot be confirmed as there is no information in the public record.

-26-SAMPLING METHOD AND APPROACH

Rock sampling surveys were completed during 2007 on the Babine property.

Rock samples were taken from areas of interest. 1-3 kilograms of rock were placed in a poly sample bag with a sequentially numbered assay certificate. The bag was then sealed with twist ties or flagging tape for transport to the lab. The sample location was marked as a waypoint in a Garmin 76 GPS unit and also written on the corresponding assay ticket as a back-up. Each sample location was flagged with the sample number, sampler and date.

All samples were taken by prospector Brent McEwen for Midland Recording Services Ltd. The author reviewed, examined and described each sample. The samples were delivered to Eco Tech Laboratories Ltd. by McEwen.

SAMPLE PREPARATION, ANALYSIS AND SECURITY

All rock samples were taken and immediately placed in sealed sample bags. The sample location was written on the outside of the kraft soil bag for soil samples. A pre-numbered assay ticket was placed in each poly sample bag with the corresponding part of the ticket filled out with date, time and location. Flagging was used to mark the field sample locations. A fix of the position was obtained by a Garmin 76 Global Positioning System unit set to record NAD 83 coordinates for the rock samples.

Mr. McEwen sorted all rock samples by number, then bagged and then delivered them promptly to Eco Tech Laboratory Ltd. in Kamloops, British Columbia.

Eco Tech's sample preparation procedures are described below. Samples are first catalogued and dried. They are then prepared as follows:

Soils	Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh.
Silts	Stream silts are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. The entire sample of the stream heavies is used for analysis.
Rocks	Rock samples are two stage crushed to minus 10 mesh and a 250 gram sub-sample is pulverized on a ring mill pulverizer to -140 mesh. The sub-sample is rolled, homogenized and bagged in a pre-numbered bag.

Samples for gold geochemical analysis are weighed to 30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Over-range values for rocks are re-analyzed using gold assay methods.

Standards were not inserted by Mr. McEwen. Eco Tech inserted standard reference materials through the lab handling process and performed an appropriate percentage of repeats and resplits, allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client. Eco Tech's standards, repeats and re-splits performed well.

For multi element ICP analysis, a 0.5 gram sample is digested with 3 ml of a 3:1:2 (HCl:HN03:H20) which contains beryllium acting as an internal standard for 90 minutes in a water bath at 95°C. The sample is then diluted to 10 ml with water. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are e-mailed as well as printed on a laser printer and are faxed and/or mailed to the client.

The author feels confidence in the assay results from Eco Tech Laboratories Ltd. based on the labs in-house re-splits, re-checks and standards.

DATA VERIFICATION

The quality control measures for the 2007 exploration program on the Midland Recording Services Ltd. Babine property consisted of Eco Tech Laboratories Ltd. initiated resplits, rechecks and standards through the sample stream. The lab runs three quality control measures. First, they insert standards in to the sample stream. Secondly, they complete a repeat analysis on every tenth sample. Thirdly, they complete a resplit and analysis on every 25th sample.

The author feels confidence in the assay results from Eco Tech Laboratories Ltd. based on the labs in-house re-splits, re-checks and standards. He further feels these were sufficient quality control measures for the 2007 program.

ADJACENT PROPERTIES

This report is not relying on information from adjacent properties. It should be noted however the former producing Bell Copper Mine lies on the southern boundary of the present Babine claim block; and the northern boundary is contiguous to the Pacific Booker Minerals Inc. Morrison Copper project.

MINERAL PROCESSING AND METALLURGICAL TESTING

There has been no mineral processing or metallurgical testing undertaken on the Babine property.

MINERAL RESOURCES AND MINERAL RESERVE ESTIMATES

There are presently no mineral reserves or mineral resources on the Babine property.

OTHER RELEVANT DATA AND INFORMATION

There is no additional relevant data or information known that is not disclosed on the Babine property.

-29-INTERPRETATION AND CONCLUSIONS

The Midland Recording Services Ltd. Babine property lies in an area of excellent geologic potential. The Babine Lake area has a long history of porphyry copper – gold exploration and production including the past producing Granisle and Bell mines and the Morrison project, which Pacific Booker Minerals Inc. is advancing toward production. The Babine Property is ideally located in a direct line from Granisle in the south, through Bell, then through the Babine Property to the Morrision property.

The Babine project itself has seen several periods of exploration since the first discovery of porphyry copper-gold mineralization at Granisle in the 1960's. The 2007 exploration completed by Midland Recording Services Ltd. has met with sufficient success to justify a further scaled up exploration program.

Further exploration is required in each of three mineralized areas: Sparrowhawk, Babine Feldspar Porphyry and disseminated copper.

The Sparrowhawk area remains an attractive target. The sampling completed by Noranda (Orgryzlo, 1990), Booker (O'Brien, 1998a) and Midland in this program has shown significant copper occurs within the area. The IP anomalies identified by Noranda (Myers, 1991) are the logical first place to test. The lack of responses from the soil geochemistry surveys (Orgryzlo, 1990; Myers, 1991) suggest conventional geochemistry does not work. A mobile metal ion (MMI) survey on 150 metre centres over the area of the 1991 Noranda grid to encompass all IP anomalies would be a logical next step.

The Babine Feldspar Porphyry (BFP) float area is also an attractive target area. A detailed prospecting program is required in this area to attempt to find the source of the angular BFP float.

The disseminated chalcopyrite area is also an attractive target area. This area requires detailed mapping, prospecting and grid bedrock sampling.

The additional anomalous copper values found both by O'Brien (1998a) and Midland in this program also need to be examined to see if there is any continuity to the anomalous values.

-30-RECOMMENDATIONS

The Midland Recording Services Ltd. Babine property lies in the Babine Lake area of central British Columbia. Exploration completed by Midland has been successful in locating several areas of anomalous copper in bedrock or angular float.

Three target areas have been identified on the Babine property: the Sparrowhawk Area, the Babine Feldspar Porphyry Area and the Disseminated Chalcopyrite Area.

The Sparrowhawk area has a long exploration history including soil geochemistry, sampling, ground magnetics and IP and 3 drill holes, though the results of the drilling are not available. Three high chargeability IP anomalies lie within a 3900 metre by 2400 metre area over the old 1990 grid. A program of prospecting, mapping and Mobile Metal Ion (MMI) soil geochemistry sampling is recommended. The grid will consist of 26 E-W lines at 150 metre spacings. Sampling will take place at 150 sample intervals along each 2400 metre N-S cross line. 24 sampling mandays and 8 geological mapping mandays are required for the Sparrowhawk area.

The BFP float area requires some detailed prospecting to locate the source of the mineralized angular float. Six prospecting mandays and 2 geological mapping mandays are recommended for the BFP area.

The disseminated chalcopyrite area is also very interesting. Midland prospector Brent McEwen noted abundant outcrop in this area. Therefore a program of bedrock grid sampling and mapping is recommended over a two kilometre by two kilometre area. Each of the E-W trending 2000 metre lines will be spaced at 100 metre intervals. All bedrock encountered on the lines will be grab sampled for analysis. 24 sampling mandays and 8 geological mapping mandays are required for the disseminated chalcopyrite area.

The estimated cost of this exploration program is \$100,000.

The 2007 Midland Recording Services Ltd. Babine property exploration program came in at \$37,904.89.

-31-REFERENCES

<u>www.em.gov.bc.ca/Mining/Geolsurv/Minfile/default.htm</u>. The British Columbia Ministry of Energy and Mines Minfile website provided a geological summary on the 093M map sheet.

<u>www.em.gov.bc.ca/Mining/Geolsurv/MapPlace/default.htm</u>. The British Columbia Ministry of Energy and Mines MapPlace website provided the regional geological map and legend.

Betmanis, A.I. (1971). Report on Geological, Geophysical and Geochemical Surveys on the Ben Group of Mineral Claims. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 03261.

Carter, N.C.; Dirom, G.E. and Orgryzlo, P.L. (1995). Porphyry Copper-Gold Deposits, Babine Lake Area, West-Cental British Columbia. In: Porphyry Deposits of the Northwestern Cordillera of North America. Edited by T.G. Schroeter. Canadian Institute of Mining, Metallurgy and Petroleum Special Volume 46, pp. 247-255.

Kelley, S.F. (1970). Geochemical Report on the Ben Group of Mineral Claims. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 02524.

Kraft, T. (1992). Geological and Geochemical Report on the Pond, Nuniz and Jinx 2 Groups. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 22156.

Leahey, M.W. and McCarter, P. (1981). Line Cutting, Geology, Geochemistry and Geophysics on the Lake Mineral Claims. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 09974.

McLeod, J.W. (1997). Report on the Hearne 1 and 2 Claim Groups. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 24767.

McLeod, J.W. (1999). Report on the LK7 Claim Group. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 25814.

Myers, D. (1991). Assessment Report Geochemistry and Geophysics Sparrowhawk Property. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 21106.

O'Brien, E.K. (1998a). Geological and Geochemical Assessment Report for the Wolf Group. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 25401.

O'Brien, E.K. (1998b). Geological and Geochemical Assessment Report for the Buzz Group. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 25402.

Orgryzlo, P.L. (1990). Geological Assessment of the Sparrowhawk Project. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 20415.

Panteleyev, A. (1995): Porphyry Cu+/-Mo+/-Au, in Selected British Columbia Mineral Deposit Profiles, Volume 1 - Metallics and Coal, Lefebure, D.V. and Ray, G.E., Editors, British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20, pages 87-92.

Storey, A.E. (1966). Geological Report on the Babine Property. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 00976.

Wolfhard, M.R. (1973). Geological and Geochemical Report on some R, RR, SNO, NED, BAB, TONJA, IDC and N claims, situate on Babine Lake at Hawthorn Bay and Hatchery Arm. British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report 04250.

-33-STATEMENT OF COSTS

Brent McEwen David Switzer	Aug 29,30,31; Sep 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 Aug 29,30,31; Sep 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17									
D 1										
Personnel Brent McEwen	20	d	@	¢400	/ 4	ф	0,000,00			
David Switzer	20	days	@	\$400 \$400	/day	\$ \$	8,000.00 8,000.00			
Support	20	days	ω	⊅4 00	/day	Ф	8,000.00			
Vehicle	20	days	@	\$40	/day	\$	800.00			
Vehicle km	3770	km	@	\$0.5	/km	\$	1,885.00			
Fuel	3770	KIII	©	Ψ0.5	/ KIII	\$	1,351.85			
ATV	14	days	@	\$40	/day	\$	560.00			
ATV standby	6	days	@	\$10	/day	\$	60.00			
Trailor	20	days	@	\$50	/day	\$	1,000.00			
Food	20	aays	•	ΨΟΟ	/ day	\$	865.06			
Supplies						\$	42.00			
Analysis	40	samples	@	\$35	/sample	\$	1,400.00			
Eco-tech Invoices	10	sumples	0	ΨΟΟ	/ bumple	Ψ	1,100.00			
Report	50	hours	@	\$100	/hour	\$	5,000.00			
кероп	30	110013	•	Ψ100	/ Hour	Ψ	5,000.00			
Assessment Credit Su	ıbtotal					\$	28,963.91			
Brent McEwen	Oct 10), 11, 15, 16								
Lucien Menard), 11, 15, 16								
Rolland Menard	Oct 15	5, 16								
Personnel										
Brent McEwen	4	days	@	\$400	/day	\$	1,600.00			
Lucien Menard	4	days	@	\$400	/day	\$	1,600.00			
Rolland Menard	2	days	@	\$400	/day	\$	800.00			
Support										
Vehicle	3	days	@	\$40	/day	\$	120.00			
Vehicle km	1400	km	@	\$0.5	/km	\$	700.00			
Fuel						\$	555.31			
ATV	3	days	@	\$40	/day	\$	120.00			
Accommodation						\$	410.40			
Food						\$	621.60			
Supplies						\$	35.54			
Analysis						\$	2,378.13			
Eco-tech Invoices										
Assessment Credit Su	ıbtotal					\$	8,940.98			
Total Assessment Cre	\$	37,904.89								

-34-COST ESTIMATES

Mapping, prospecting, MMI survey, grid sampling

21 days

Sparrowhawk - prospecting and MMI Survey

26 lines of 2400 metres

150m by 150m grid - 416 samples

running lines, sampling 20 samples per manday - 24 man days

allow 25 bedrock samples

BFP area - prospecting

Allow 6 man days

allow 25 bedrock samples

Disseminated chalcopyrite area - prospecting, bedrock grid sampling

21 lines of 2000 metres - lines at 100 metre spacing

flag lines and bedrock sample all exposures - allow 20 samples per line

allow 420 samples

running lines, sampling 20 samples per manday - 24 man days

Geologist	21	days	@	\$	500	/day	\$	10,500	
Prospector	21	days	@	\$	400	/day	\$	8,400	
Assistant	21	days	@	\$	400	/day	\$	8,400	
Assistant	21	days	@	\$	400	/day	\$	8,400	
Room & Board	84	days	@	\$	100	/day	\$	8,400	
Vehicle + Fuel	21	days	@	\$	150	/day	\$	3,150	
Analysis - rock	470	sample	@	\$	35	/sample	\$	16,450	
Analysis - MMI soil	416	sample	@	\$	35	/sample	\$	14,560	
Analysis - standards	45	sample	@	\$	35	/sample	\$	1,575	
Travel							\$	5,000	
Sundries							\$	2,000	
Contingency							\$	8,165	
Report							\$	5,000	
Mapping, prospecting, MM	Mapping, prospecting, MMI survey								

Sample No.	83Z9_East	83Z9_North	Rock Type	Alteration	Mineralization	Width	% Cu	ppm Cu	ppm Mo	ppm Pb	ppm Zn
41001	681298	6106303	Andesite	chl	tr py	Grab		99	7	78	96
41002	681328	6106279	Andesite	chl	tr py	Grab		116	12	46	77
41006	681634	6109941	Syenite?	clay, ser, sil	tr py	Float		1020	5	20	67
41007	681682	6109960	Syenite?	clay, ser, sil	Py seams to 1 mm	Float		1576	4	22	95
41010	680061	6103808	Andesite	chl	tr py	Grab		179	8	38	77
41011	680117	6103791	Andesite	chl	2%-3% diss py, tr of cpy?	Grab		351	10	40	70
41012	680374	6103820	Andesite	chl, epi, cb	mag, tr of py	Grab		268	7	26	86
41013	677887	6106961	Rhyolite	cb, lim	tr py	Grab		9	12	16	235
41014	677885	6106951	Rhyolite	frac lim	tr py	Grab		55	2	42	78
41015	677935	6106421	Volcaniclastic	cb veining	tr py	float		99	6	24	43
41016	678951	6104315	Rhyolite	strong lim, hem?	NVM	Grab		382	9	40	146
41017	678954	6104272	Andesite	cb stockwork	tr py	Grab		376	10	40	147
41018	679380	6105539	Andesite	frac lim	tr py	Grab		13	10	30	53
41019	679794	6108539	Basalt	mag	tr py	Grab		27	4	14	31
41020	679800	6108538	Basalt	mag	tr py	Grab		23	3	18	34
41021	678564	6110851	Gabbro	mag	2%-3% py	float		254	9	28	49
41022	678563	6110853	Syenite?	clay, ser, sil, epi	tr py, native Cu?	Grab		145	8	34	34
41023	679115	6110307	Andesite	cb, mag	tr py, frac mal	Grab		2630	5	12	13
41024	679008	6110509	Andesite	cb, mag	tr py, frac mal	Grab		178	11	28	24
41025	678978	6110541	Diorite	per sil, ser, lim	2%-5% py	Grab		11	5	8	3
41026	678947	6110552	Andesite	sil, ser, cb, lim	tr py	Sub crop		8	6	28	36
41027	678948	6110553	Andesite	sil, ser, cb, lim	2%-5% py	Grab		75	6	24	13
41028	680947	6109930	Andesite	chl, epi, cb, mag	tr py	Grab		24	3	24	34
41029	680833	6110109	Andesite	chl, lim, mag	tr py	Grab		323	5	34	119
41030	679317	6109143	Andesite	chl, lim, cb	2%-3% py, 1%-2% cpy, mal	Grab		4024	8	36	67
41031	679294	6109156	Andesite	chl, lim, cb veining	tr py, cpy	Grab		1265	7	24	59
41032	679764	6109831	Gabbro	sil, mag	tr py, cpy	Sub crop		139	10	32	58
41033	679785	6109744	Gabbro	sil, mag	tr py, cpy	Grab		53	7	36	59
41034	679703	6109672	Gabbro	sil, mag	tr py, cpy	Grab		64	13	36	76
41035	679703	6109672	Gabbro	sil, mag	tr py, cpy	Grab		179	8	38	66
41036	679690	6109681	Gabbro	sil, mag	tr py, cpy	Sub crop		76	11	36	66
41037	680832	6109202	Granodiorite		tr py	Float		5	26	16	9
41038	679273	6110709	Andesite	man, mag	tr py	Grab		5	6	18	74
41039	679406	6110686	Andesite	int sil, lim	tr py	Float		217	9	26	26

Sample No.	83Z9_East	83Z9_North	Rock Type	Alteration	Mineralization	Width	% Cu	ppm Cu	ppm Mo	ppm Pb	ppm Zn
41040	679460	6110603	Andesite	int sil, lim	2%-5% py	Grab		6	2	22	54
41041	680263	6108993	Andesite	cb, slickensides	tr py	Grab		6	7	24	96
41042	680280	6108990	Syenite?	frac lim	tr py	Float		1643	14	22	22
41043	679310	6106221	Andesite	3 cm qtz sul vein	py, tr cpy, strong mal	Grab	1.00	10000	19	20	27
41044	676695	6101753	Syenite?	per sil, ser, lim	tr py	Grab		292	5	14	41
41003	682224	6110352	QFP	frac lim	tr py	Float		6	8	42	56
41004	682224	6110352	Rhyolite	frac lim	frac py	Float		10	6	18	48
41005	682187	6110362	QFP	frac lim	2%-3% py, tr to 1% cpy	Float		10	7	38	49
41008	681916	6110030	Basalt	frac lim, mag	2%-3% py	Float		65	6	48	57
41009	681924	6110062	Basalt	frac lim	py seam	Float		23	4	22	175
41050	685204	6099300	Diorite	frac lim	tr py	Grab		40	6	96	28
40958	676750	6100300	QFP	frac lim, sil	qtz stockwork, tr py	Grab		211	24	8	6
41045	679311	6106227	Diorite	int sil, lim	frac mal, diss py	Grab		6886	10	18	29
41046	679309	6106223	Diorite	int sil, lim	mal seams	Grab	3.25	10000	24	22	49
41047	679248	6106279	Andesite	cb	mag, tr sul	Grab		203	7	16	36
41048	679246	6106267	Andesite	cb	strongly mag, local mal	Grab		153	8	12	19
41049	679174	6106331	Andesite	frac lim	diss py	Grab		14	3	10	11
41051	679309	6109109	Andesite	cb	diss lim after py	Grab		94	8	26	28
41052	679310	6109082	Andesite	cb	diss py	Grab		21	4	12	23
41053	679305	6109076	Andesite	cb	diss py	Grab		6	8	14	22
41054	679274	6109063	Andesite	none noted	diss py	Grab		4	-1	8	3
41055	679250	6109064	Andesite	none noted	diss py	Grab		7	6	10	6
41056	679231	6109054	Andesite	cb	diss py	Grab		3	3	8	4
41057	679217	6109057	Andesite	frac lim, cb	diss py	Grab		2	3	4	2
41058	679199	6109173	Andesite	frac lim, cb	mag, tr sul	Grab		1011	7	22	23
41059	679315	6109134	Andesite	frac lim, cb	tr cpy, thin dark grey seams	Grab		1955	6	36	71
41060	679304	6109138	Andesite	frac lim, cb	diss py, cpy	Grab		1330	10	28	66
41061	679273	6109158	Andesite	frac lim, cb	tr cpy	Grab		9	4	4	12
41062	679230	6109179	Andesite	frac lim, cb	tr py, cpy	Grab		399	5	22	25
41063	679196	6109213	Andesite	frac lim, cb	tr py, cpy	Grab		4	8	14	22
41064	679183	6109225	Andesite	frac lim	mag, tr py, cpy	Grab		1757	7	22	32
41065	679183	6109233	Andesite	frac lim, cb	tr py, cpy	Grab		131	6	14	18
41066	679193	6109264	Andesite	int lim	diss py	Grab		127	5	16	17
41067	679193	6109264	Andesite	int sil, lim	tr py	Grab		15	8	18	15

Campala Na	83Z9_East	83Z9_North	Dools Tryno	Alteration	Mineralization	Width	0/ С.	C	Ma		7
Sample No.	_	_	Rock Type				% Cu	ppm Cu	ppm Mo	ppm Pb	ppm Zn
41068	679201	6109273	Andesite	frac lim, cb	tr py	Grab		765	4	16	12
41069	679196	6109309	Andesite	frac lim	tr py	Grab		6	8	12	9
41070	679258	6109326	Andesite	frac lim, Kspar	tr py	Grab		47	5	14	20
41071	679297	6109345	Andesite	frac lim	tr py, cpy	Grab		2	7	14	23
41072	679317	6109283	Andesite	frac lim	mag, tr sul	Grab		3	4	12	12
41073	679350	6109245	Andesite	cb, epi	mag, tr sul	Grab		35	24	34	5229
41074	679350	6109245	Andesite	cb, epi	mag, tr py, cpy	Grab		21	14	40	1914
41075	679353	6109251	Andesite	cb, epi	mag, tr py, cpy	Grab		24	10	38	197
41076	679351	6109228	Andesite	cb, epi	mag, tr py, cpy	Grab		71	14	46	476
41451	679043	6106625	Diorite	int lim	tr py	Float		6	5	10	52
41453	682091	6110113	Rhyolite	int sil, lim	tr py	Grab		7	-1	18	80
41454	682091	6110113	Andesite	frac lim, cb	tr py	Grab		4	12	56	59
41452	679043	6106625				Stream		41	5	30	88
cb	carbonate	Kspar	K-feldspar	per	pervasive						
chl	chlorite	lim	limonite	int	intense						
epi	epidote	ser	sericite	mag	magnetic						
frac	fracture	sil	silicification	8	magnette						
iiac	macture	511	SHICHICATION								
bor	bornite			tr	trace						

disseminated

diss

сру

ру

mal

sul

chalcopyrite

pyrite

malachite

sulfides

-38-CERTIFICATE

I, R.Tim Henneberry, P.Geo. do hereby certify that: I am the Qualified Person for:

Midland Recording Services Ltd.

1870 Inglewood Drive Kamloops, B.C. V2B 4W1

I earned a Bachelor of Science Degree majoring in geology from Dalhousie University, graduating in May 1980.

I am registered with the Association of Professional Engineers and Geoscientists in the Province of British Columbia as a Professional Geoscientist.

I have practiced my profession continuously for 27 years since graduation.

I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101. My relevant experience for the purpose of this Technical Report is:

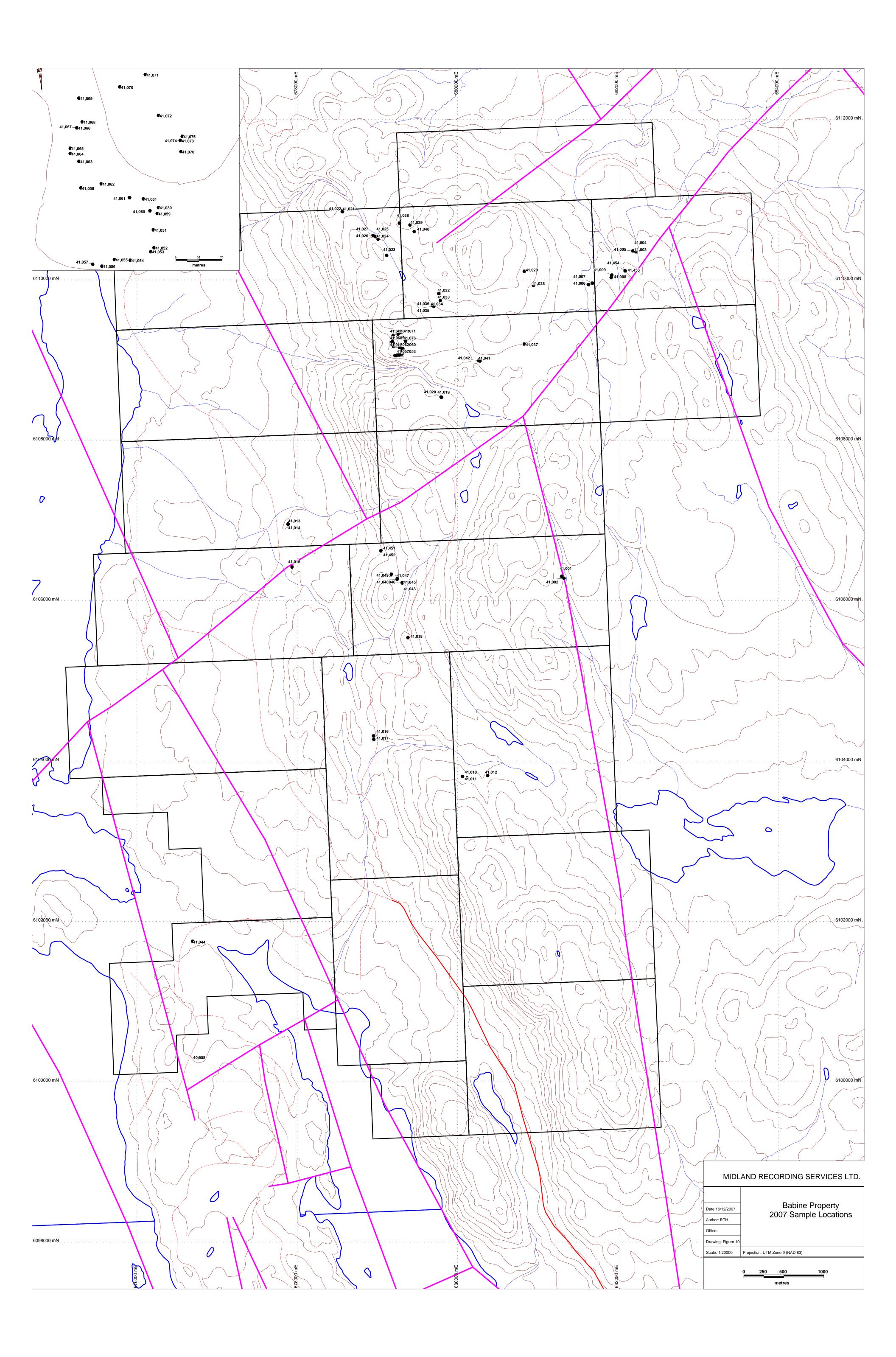
• 27 years of exploration experience for base and precious metals in the Canadian Cordillera

I am responsible for the preparation of the technical report titled "Geological Report Babine Project" and dated December 15, 2007, relating to the Babine property. I was asked by Mr. Rolland Menard of Midland Recording Services Ltd. to compile the data from the 2007 exploration program. The program was completed by prospector Brent McEwen. I have not yet visited the Babine Property.

I have not had prior involvement with the property that is the subject of the Technical Report.

As of December 15, 2007, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

I am independent of the issuer after applying all of the tests in section 1.4 of NI 43-101.


I have read NI 43-101 and Form 43-101F, and the Technical Report has been prepared in compliance with that instrument and form.

I consent to the public filing of the Technical Report with the British Columbia Ministry of Energy and Mines in support of assessment work requirements.

	•	
"signed and seale	ed"	

R.Tim Henneberry, P.Geo

Dated this 15th day of December, 2007.

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2007- 1480

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Midland Recording 1870 Inglewood Drive Kamloops, BC V2B 1W4

Phone: 250-573-5700 Fax : 250-573-4557

> No. of samples received: 7 Sample Type: Rock **Project: Babine 20-22** Submitted by: Rolland Menard

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	41003	11	0.3 1.88	15	50	35	0.29	2	2 1	6 10	7	6 5.7	2 1	0 1.5	6 33	5	8 0.03	3 3	34 1500) 42	2 1	5 <2	0 1	6 0.0	3 <1	0 9	96 <10) :	2 56
2	41004	9	0.2 0.63	<5	135	35	0.06	2	8	86	10	4.94	<10	0.21	502	6	0.08	7	470	18	<5	<20	14	0.02	<10	4	<10	4	48
3	41005	16	0.2 1.81	20	65	50	0.19	2	13	104	10	5.55	10	1.39	288	7	0.04	28	1230	38	10	<20	28	0.04	<10	93	<10	<1	49
4	41008	6	0.3 2.75	20	100	45	0.36	3	22	101	65	6.21	<10	1.29	444	6	0.11	14	990	48	10	<20	34	0.25	<10	177	<10	5	57
5	41009	4	0.3 1.02	10	60	15	0.23	2	8	77	23	2.88	10	0.38	438	4	0.05	6	1030	22	<5	<20	10	0.02	<10	30	<10	13	175
6 7	41050 40958	5 34	0.8 5.48 <0.2 0.25	45 <5	85 80	35 35	3.89 0.02	<1 5	19 19	21 58	40 211	4.66 >10	<10 <10	0.44 <0.01	657 8	6 24	0.05 0.02	7 27	970 <10	96 8	<5 <5	<20 <20	283 16	0.11 0.04	<10 <10	98 4	<10 <10	4 <1	28 6
QC DAT	A:																												
Repeat:		13	0.3 1.94	15	55	40	0.29	3	16	109	6	5.78	10	1.59	337	8	0.03	34	1520	40	15	<20	14	0.03	<10	97	<10	3	55
Resplit:	41003	11	0.2 1.99	20	55	30	0.30	2	17	123	7	5.91	10	1.62	344	7	0.04	36	1520	40	15	<20	14	0.03	<10	99	<10	2	54
Standar PB113	d:	633	11.2 0.22	45	60	<5	1.68	47	3	6 2	2253	1.11	<10	0.11	1495	67	0.02	3	80 5	5522	30	<20	84	0.01	<10	9	<10	<1 6	6977

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

JJ/sa/jl df/1444a XLS/07

CERTIFICATE OF ASSAY AK 2007 - 1481

Midland Recording

1870 Inglewood Drive

Kamloops, BC

V2B 1W4

JJ/nl

05-Nov-07

No. of samples received: 39

Sample Type: Rock

Project: Babine 1 to 19

Submitted by: Rolland Menard

ET#.	Tag #	Cu (%)
38	41043	2.80
QC DATA: Repeat: 38	41043	2.80
Standard: Cu120		1.52

ECO TECH LABORATORY LTD.

Jutta Jealouse

XLS/07 B.C. Certified Assayer

ECO TECH LABORATORY LTD.

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2007- 1481

Midland Recording 1870 Inglewood Drive Kamloops, BC V2B 1W4

No. of samples received: 39 Sample Type: Rock **Project: Babine 1 to 19** Submitted by: Rolland Menard

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg % Mn	Мо	Na %	Ni P	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	41001	4	11.1 3.05	<5	85	70	2.69	2	45	39	99	8.03	<10	2.76 1102	7	0.05	11 890	78	35	<20	29	0.55	<10	375	<10	26	96
2	41002	5	1.4 3.55	<5	80	65	3.56	3	46	33	116	8.72	<10	3.56 1154	12	0.03	18 640	46	40	<20	41	0.37	<10	461	<10	22	77
3	41006	19	2.3 0.54	<5	70	<5	1.26	1	19	48	1020	5.80	20	0.60 303	5	<0.01	53 1390	20	<5	<20	40	0.03	<10	72	<10	1	67
4	41007	29	2.9 0.60	20	70	<5	1.03	2	24	41	1576	6.41	<10	0.64 471	4	<0.01	50 1360	22	<5	<20	41	0.05	<10	73	<10	<1	95
5	41010	6	1.8 2.78	<5	55	35	1.17	1	36	39	179	7.08	<10	2.92 1166	8	0.05	27 680	38	25	<20	19	0.24	<10	246	<10	12	77
_				_		_																					
6	41011	14	2.1 2.53	<5	55	-	1.26	3	42	26			-	1.67 1024	-	0.04	21 810	40		<20		0.21				10	70
7	41012	4	0.8 1.90	<5	70	_	0.99	2	30	30				1.27 1133		0.09	15 1440	26				0.19				16	86
8	41013	3	1.0 0.31	<5	95	35	0.10	5	18	45	9	6.39	<10	0.04 1972	12	0.06	17 450	16	30	<20	18	0.03	<10	63	<10	16	235
9	41014	6	10.7 0.30	<5	60	15	0.14	<1	7	53	55	4.43	<10	<0.01 844	2	0.06	2 290	42	<5	<20	27	0.08	<10	47	<10	6	78
10	41015	4	0.4 2.18	<5	80	5	7.56	1	29	144	99	5.20	<10	2.40 1058	6	0.02	63 580	24	15	<20	114	0.04	<10	190	<10	5	43
11	41016	29	0.6 3.25	<5	65	-5	5.34	2	31	24	382	8 52	-10	2.33 2179	a	0.02	10 870	40	15	-20	132	0.07	-10	405	-10	14	146
12	41017	4	0.3 3.29	<5	70	-	5.41	2	32	29			-	2.38 2245	-	0.02	11 870	40	-	-	-	0.06	-		-		147
13	41018	0	0.7 2.44	_	110		2.05	2	26	23				1.99 921	-	0.02	16 1710	30	_	<20	44	0.06				14	53
14	41019	4	0.7 2.44	<5	40	-	0.56	1	22	23 27	_	5.36	-		-	0.03	4 840	14	_	<20		0.00	-		-	15	31
	41019	-		_	-			-	24									18	_								
15	41020	3	1.2 0.65	<5	45	30	0.61	<1	24	40	23	6.01	<10	0.89 420	3	0.12	2 770	18	<5	<20	8	0.22	<10	122	<10	17	34
16	41021	2	<0.2 2.38	<5	100	10	0.44	3	37	37	254	9.74	<10	2.35 1574	9	0.05	26 560	28	15	<20	31	0.17	<10	392	<10	<1	49
17	41022	2	0.2 2.46	<5	90	15	0.36	1	42	19	145	6.12	<10	2.00 1037	8	0.04	13 540	34	20	<20	34	0.17	<10	197	<10	1	34
18	41023	16	0.7 0.33	<5	70	<5	0.45	2	90	29	2630	6.17	30	0.20 330	5	0.12	7 580	12	<5	<20	<1	0.13	<10	123	<10	6	13
19	41024	5	0.2 2.17	<5	90	10	0.84	3	23	20	178	8.91	<10	2.60 659	11	0.12	18 920	28	25	<20	14	0.11	<10	300	<10	2	24
20	41025	4	0.3 0.20	<5	70	15	0.03	<1	7	52	11	2.79	<10	<0.01 28	5	0.12	<1 350	8	<5	<20	11	0.03	<10	10	<10	3	3
0.4	44000	0	00.045	_	405	00	0.04		00	0.4	0	4.00	40	0.00.4004	0	0.00	0.0050	00	05	00	40	0.40	40	404	40	0.4	00
21	41026	3	0.2 2.15		125		0.81	1	29	24	_	_	-	3.20 1634		0.06	9 3850	28	_	<20	_	0.10	-	-	-	24	36
22	41027	8	0.4 1.09	<5	50		0.06		105	28				1.39 325	-	0.08	14 60	24	_	<20	9	0.19	-	-	-	3	13
23	41028	4	0.5 1.77	<5	55		5.03	1	23	22			-	1.18 880	_	0.05	11 560	24	_	<20	96	0.32	-	-	-	10	34
24	41029	4	0.6 2.61	_	125		1.11	2	56	21				2.19 1734	_	0.04	16 620	34	_	_	34	0.33					119
25	41030	8	1.0 3.01	<5	130	<5	0.66	2	43	14	4024	7.64	<10	3.17 1797	8	0.04	14 410	36	20	<20	12	0.25	<10	363	<10	12	67
26	41031	5	2.0 1.65	<5	70	<5	1.10	2	23	24	1265	6.80	<10	1.88 1306	7	0.04	17 450	24	15	<20	15	0.18	<10	326	<10	10	59
27	41032	6	1.3 2.62	<5	80	25	-	3	63	6			-	1.38 732		0.07	37 560	32	-	<20	-	0.17	-		-	<1	58
28	41033	7	<0.2 3.09		115		2.49	2	50	10		9.01				0.03	3 770	36		<20		0.19				<1	59
29	41034	6	0.2 3.24		110		2.70	3	55	5		>10				0.03	11 4560	36		<20	31	0.15				6	76
30	41035	6	<0.2 3.16		100		2.40	2	63	7				1.66 804		0.03	25 1580	38		<20		0.17				2	66
30	71000	U	₹0.2 5.10	\J	100	23	2.40	_	03	'	119	∂. - -3	\10	1.00 004	0	0.03	20 1000	50	10	~20	~~	0.17	\10	511	\10	_	00

31	41036	5	0.2 3.00	<5	145	50	2.10	3	55	10	76	>10	<10	1.67 793	11	0.04	19	1280	36	20	<20	26	0.18	<10	667	<10	<1	66
32	41037	4	0.4 0.85	<5	85	15	0.12	<1	18	47	5	3.15	<10	1.02 241	26	0.08	5	410	16	10	<20	7	0.05	<10	77	<10	7	9
33	41038	5	0.2 1.27	<5	120	45	0.67	1	19	18	5	5.59	<10	1.34 2556	6	0.08	7	1010	18	15	<20	10	0.27	<10	91	<10	20	74
34	41039	83	2.9 0.63	395	50	<5	1.11	3	41	92	217	7.12	<10	0.09 223	9	< 0.01	57	6210	26	<5	<20	360	0.04	<10	45	<10	7	26
35	41040	11	0.2 1.46	<5	75	20	0.17	<1	127	38	6	4.85	<10	1.75 1392	2	0.11	28	280	22	<5	<20	11	0.18	<10	91	<10	1	54
36	41041	5	<0.2 2.06	<5	65	25	1.33	2	27	33		5.17	<10	_	7	0.04	25	480	24	25	<20	29	0.11		224	<10	6	96
37	41042	19	1.0 1.37	<5	80	<5	0.32	<1	45	75	1643	3.38	<10	1.48 90	14	0.03	36	1430	22	<5	<20	27	0.19	<10	106	<10	5	22
38	41043	383	3.6 0.77	20	165	<5	1.84	8	276	17	>10000	>10	<10	0.40 1923		<0.01	49	<10	20	5	<20	27	0.03	<10	157	<10	34	27
39	41044	5	0.2 0.58	<5	75	<5	0.52	<1	8	89	292	2.08	20	0.40 457	5	0.03	12	740	14	<5	<20	13	0.03	<10	28	<10	7	41
QC DA																												
Repeat	:																											
1	41001	7	11.1 2.96	<5	80	75	2.51	3	43	36	96	7.88	<10	2.69 1073	7	0.04	11	880	76	45	<20	29	0.52	<10	350	<10	22	96
10	41015	5	0.4 2.17	<5	80	<5	7.65	2	29	143	99	5.23	<10	2.44 1071	6	0.02	67	580	24	15	<20	115	0.04	<10	191	<10	5	43
19	41024	6	0.2 2.12	<5	80	30	0.82	2	23	21	178	8.79	<10	2.53 646	10	0.12	15	910	26	25	<20	15	0.11	<10	296	<10	2	23
36	41041	4	<0.2 2.06	<5	60	10	1.36	<1	27	34	6	5.13	<10	2.09 2001	5	0.04	23	480	24	15	<20	25	0.11	<10	225	<10	6	94
38	41043	320																										
Resplit	:																											
1	41001	6	10.3 2.96	<5	75	70	2.71	3	42	20	75	7.80	<10	2.69 1049	8	0.04	12	880	78	35	<20	29	0.50	<10	375	<10	26	100
36	41041	4	<0.2 2.04	10	65	25	1.26	2	28	32	7	5.12	<10	2.07 1970	8	0.04	28	540	32	30	<20	25	0.10	<10	224	<10	10	94
Standa	rd:																											
Pb113			11.2 0.25	40	70	<5	1.64	38	2	5	2312	1.02	<10	0.11 1414	69	0.01	2	70 54	470	20	<20	85	0.01	<10	7	<10	<1 6	939
Pb113			11.8 0.24	45	65	<5	1.65	38	2	5	2346	1.02	<10	0.11 1423	66	0.01	3	70 54	476	25	<20	89	0.01	<10	6	<10	<1 6	945
OXE56		615																										
OXE56		615																										

Cu Fe % La Mg % Mn Mo Na % Ni

Р

Pb Sb Sn Sr Ti %

U

V W

Y Zn

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

JJ/sa/dc df/5548 XLS/07

Et #.

Tag #

Au(ppb) Ag Al % As Ba Bi Ca % Cd Co Cr

CERTIFICATE OF ASSAY AK 2007 - 1743

Midland Recording

1870 Inglewood Drive

Kamloops, BC

V2B 1W4

01-Nov-07

No. of samples received: 36

Sample Type: Rock Project: Babine 1 to 22

Submitted by: Rolland Menard

		Cu
 ET #.	Tag #	(%)
2	41046	3.25

QC DATA: Standard:

CU120 1.54

ECO TECH LABORATORY LTD.

Jutta Jealouse

JJ/nl XLS/07 **B.C.** Certified Assayer

ECO TECH LABORATORY LTD.

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Midland Recording 1870 Inglewood Drive Kamloops, BC V2B 1W4

Phone: 250-573-5700 Fax: 250-573-4557

> No. of samples received: 36 Sample Type: Rock Project: Babine 1 to 22 Submitted by: Rolland Menard

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag Al%	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	w	Υ	Zn
1	41045	20	<0.2 1.15	<5	110	<5	1.99	3	49	20	6886	>10	20	0.71	827	10	0.04	15	<10	18	<5	<20	15	0.04	<10	180	<10	21	29
2	41046	405	2.4 1.53	15	170	<5	4.37	9	452	19	>10000	>10	30	1.05	3752	24	<0.01	69	<10	22	35	<20	42	<0.01	<10	154	<10	60	49
3	41047	5	<0.2 0.89	<5	75	20	1.82	2	19	43	203	6.59	<10	0.53	1003	7	0.05	14 1	1310	16	<5	<20	8	0.03	<10	124	<10	16	36
4	41048	25	<0.2 0.79	<5	65	25	2.68	3	15	35	153	7.61	<10	0.52	920	8	0.04	11 1	1280	12	<5	<20	16	0.03	<10	141	<10	10	19
5	41049	15	<0.2 0.61	<5	55	15	3.00	<1	12	60	14	5.39	<10	0.29	1166	3	0.04	8	470	10	<5	<20	36	0.06	<10	39	<10	9	11
6	41051	15	<0.2 1.38	<5	65	15	0.32	1	11	60	94	4.81	<10	1.53	1004	8	0.05	7	750	26	20	<20	5	0.09	<10	77	<10	11	28
7	41052	20	<0.2 0.64	<5	30	15	1.01	1	13	61	21	3.67	<10	0.58	512	4	0.10	5	640	12	5	<20	5	0.04	<10	43	<10	9	23
8	41053	15	<0.2 0.67	<5	55	25	0.29	2	12	72	6	4.56	<10	0.55	455	8	0.09	6	640	14	<5	<20	1	0.03	<10	46	<10	11	22
9	41054	15	<0.2 0.37	<5	25	15	0.71	<1	6	101	4	2.24	<10	0.22	145	<1	0.10	<1	350	8	<5	<20	4	0.03	<10	27	<10	7	3
10	41055	5	<0.2 0.49	<5	25	10	0.29	<1	12	80	7	2.72	<10	0.38	147	6	0.07	4	360	10	5	<20	5	0.03	<10	24	<10	7	6
11	41056	40	<0.2 0.34	<5	25	20	0.81	<1	10	83	3	2.48	<10	0.24	220	3	0.08	4	350	8	<5	<20	8	0.03	<10	23	<10	6	4
12	41057	5	<0.2 0.18	<5	20	15	2.31	<1	9	88	2	1.99	<10	0.05	222	3	0.08	<1	350	4	<5	<20	11	0.03	<10	23	<10	9	2
13	41058	15	<0.2 1.20	<5	55	<5	0.16	2	16	49	1011	5.14	<10	1.05	407	7	0.09	6	560	22	15	<20	5	0.03	<10	50	<10	4	23
14	41059	15	<0.2 2.53	<5	105	<5	1.40	1	35	21	1955	7.66	10	2.45	1637	6	0.05	13	400	36	<5	<20	7	0.24	<10	408	<10	13	71
15	41060	20	<0.2 1.85	<5	170	<5	0.87	3	26	23	1330	8.58	<10	1.93	1299	10	0.06	20	340	28	15	<20	9	0.19	<10	318	<10	13	66
16	41061	5	<0.2 0.17	<5	35	20	0.50	<1	12	68	9	4.14	<10	<0.01	287	4	0.11	3	450	4	<5	<20	3	0.05	<10	36	<10	6	12
17	41062	5	<0.2 1.29	<5	45	<5	0.99	1	16	49	399	4.91	<10	1.01	710	5	0.07	5	730	22	<5	<20	5	0.03	<10	90	<10	9	25
18	41063	<5	<0.2 0.82	<5	50	20	0.35	2	20	149	4	4.89	<10	0.78	462	8	0.07	15	780	14	10	<20	<1	0.04	<10	55	<10	7	22
19	41064	10	<0.2 1.59	<5	60	<5	0.56	2	19	46	1757	6.13	<10	1.27	762	7	0.05	8	400	22	10	<20	3	0.02	<10	113	<10	4	32
20	41065	220	<0.2 0.80	<5	50	10	1.74	1	41	46	131	4.83	<10	0.64	679	6	0.10	6	870	14	5	<20	10	0.03	<10	97	<10	12	18
21	41066	5	<0.2 0.94	<5	45	5	0.54	<1	13	64	127	4.36	20	0.50	533	5	0.07	4	630	16	<5	<20	<1	0.03	<10	22	<10	6	17
22	41067	5	<0.2 0.96	<5	40	20	0.23	2	13	70	15	4.66	<10	0.52	397	8	0.06	5	630	18	<5	<20	<1	0.03	<10	23	<10	3	15
23	41068	5	<0.2 0.97	<5	40	<5	1.04	1	12	74	765	3.81	<10	0.53	484	4	0.07	5	630	16	5	<20	3	0.03	<10	20	<10	7	12
24	41069	5	<0.2 0.63	<5	40	35	0.29	2	12	69	6	4.42	<10	0.29	319	8	0.07	6	710	12	10	<20	4	0.04	<10	22	<10	5	9
25	41070	95	<0.2 0.84	<5	60	25	1.82	2	12	39	47	6.91	<10	0.46	764	5	0.07	6 1	1210	14	<5	<20	12	0.07	<10	117	<10	11	20

ICP CERTIFICATE OF ANALYSIS AK 2007-1743

Et #.	Tag #	Au(ppb)	Ag Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	<u> P</u>	Pb	Sb	Sn	Sr	Ti %	U	<u> </u>	w	Y	Zn
26	41071	60	<0.2 0.80	<5	65	25	1.50	2	19	36	2	5.87	<10	0.94	681	7	0.08	9	1210	14	10	<20	8	0.06	<10	124	<10	15	23
27	41072	20	<0.2 0.79	<5	35	20	0.41	1	8	72	3	3.97	<10	0.53	414	4	0.09	3	740	12	<5	<20	2	0.02	<10	20	<10	9	12
28	41073	80	<0.2 2.90	<5	105	60	5.42	15	60	6	35	>10	10	2.66	3923	24	0.03	6	600	34	<5	<20	56	0.29	<10	720	<10	3 5	5229
29	41074	5	<0.2 2.84	<5	105	55	3.29	7	59	9	21	>10	<10	2.18	3242	14	0.03	5	610	40	10	<20	68	0.28	<10	714	<10	4 ′	1914
30	41075	10	<0.2 2.67	<5	170	60	1.63	3	52	6	24	>10	10	2.04	2832	10	0.04	5	700	38	<5	<20	34	0.25	<10	759	<10	3	197
31	41076	10	<0.2 3.07	<5	85	60	2.05	5	69	5	71	>10	10	1.99	2604	14	0.05	10	490	46	20	<20	18	0.19	<10	703	<10	2	476
32	41451	10	<0.2 0.30	<5	1285	15	0.57	<1	6	91	6	2.28	<10	0.03	497	5	<0.01	28	320	10	<5	<20	57	0.01	<10	44	<10	6	52
33	41453	<5	<0.2 0.81	<5	65	5	0.65	<1	6	54	7	2.68	<10	0.39	589	<1	0.05	<1	630	18	<5	<20	10	0.02	<10	31	<10	12	80
34	41454	<5	<0.2 3.10	<5	150	45	0.41	3	16	20	4	8.15	<10	1.40	636	12	0.02	12	1280	56	20	<20	16	0.03	<10	88	<10	5	59
35	41455	390	0.6 0.27	<5	50	<5	0.21	3	26	103	5427	6.88	<10	0.02	30	231	0.01	30	<10	18	<5	<20	13	<0.01	<10	6	<10	<1	20
36	41456	75	<0.2 0.16	<5	80	15	0.41	3	44	58	415	>10	<10	<0.01	53	236	0.02	41	370	10	<5	<20	10	0.03	<10	4	<10	<1	19
QC DA																													
1	41045	30	<0.2 1.13	<5	105	<5	1.93	5	47	20	6814	>10	20	0.71	804	11	0.04	16	<10	20	5	<20	18	0.03	<10	175	<10	22	28
10	41055	5	<0.2 0.51	<5	25	15	0.29	<1	11	79	3	2.74	<10	0.38	145	4	0.08	3	350	10	5	<20	3	0.03	<10	25	<10	7	6
19	41064	25	<0.2 1.61	<5	60	<5	0.57	<1	19	47	1784	6.16	<10	1.27	769	3	0.05	4	430	26	5	<20	3	0.03	<10	113	<10	5	32
Resplit	t:																												
1	41045	25	<0.2 1.19	<5	105	<5	1.91	5	49	23	6720	>10	20	0.80	839	11	0.04	17	<10	20	<5	<20	14	0.03	<10	188	<10	21	31
36	41456	80	<0.2 0.14	<5	85	5	0.39	4	51	61	420	>10	<10	<0.01	52	245	0.01	47	330	12	<5	<20	8	0.03	<10	3	<10	<1	18
Standa			•																										
PB113/			11.4 0.26	45	60	<5	1.70	38	3	6	2127	1.07	<10	0.10	1421	63	0.02	3		5622	25	<20		<0.01		8	<10	<1 6	6988
PB113/	А		11.6 0.26	45	60	<5	1.67	38	3	5	2145	1.07	<10	0.11	1408	63	0.02	2	90	5568	20	<20	87	<0.01	<10	8	<10	<1 6	5918
SE29		600																											
SE29		605																											
OXE56	i	455																											
_																													

ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer

JJ/nI df/7419S XLS/07

ICP CERTIFICATE OF ANALYSIS AK 2007-1744

ECO TECH LABORATORY LTD.

10041 Dallas Drive

KAMLOOPS, B.C.

V2C 6T4

Midland Recording 1870 Inglewood Drive Kamloops, BC V2B 1W4

Phone: 250-573-5700 Fax : 250-573-4557

> No. of samples received: 1 Sample Type: Stream **Project: Babine 1 to 22** Submitted by: Rolland Menard

Values in ppm unless otherwise reported

Et #.	rag#	Au(ppb)	Ag Al %	As	ва	Bi C	<i>;</i> a %	Cd	Co	Cr	Cu Fe	9 %	La	Mg% Mn	Mo	Na %	Ni	Р_	Pb	Sb	Sn	Sr	11%	U	<u> v</u>	w	Y	<u>Zn</u>
1	41452	10	0.2 1.55	5	265	5 (0.81	1	14	45	41 4.	.01	10	0.59 1031	5	0.03	28	740	30	5	<20	48	0.03	<10	74	<10	16	88
QC DATA: Repeat:	41452	5	0.3 1.61	<5	270	10 (0.82	2	14	46	42 4.	.08	10	0.61 1043	5	0.03	28	760	26	10	<20	48	0.04	<10	76	<10	17	85
Resplit:	41402	3	0.0 1.01	~ 0	210	10 ,	0.02	_	17	70	72 7.	.00	10	0.01 1040	J	0.00	20	700	20	10	\2 0	40	0.04	<10	70	~10	17	00
1	41452	15	0.3 1.59	5	250	5 (0.78	2	14	53	41 4.	.12	10	0.57 1002	5	0.03	31	790	28	10	<20	44	0.04	<10	73	<10	16	80
Standard: PB113A SE29		600	11.0 0.26	40	55	<5	1.63	37	2	5 2	2240 1.	.03 <	<10	0.11 1479	65	0.02	3	10 5	5472	25	<20	87	<0.01	<10	8	<10	<1 6	973

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

JJ/jl df/1744 XLS/07