GEOCHEMICAL REPORT ON THE DAVIDSON PROPERTY

near Smithers, B.C.

BC Geological Survey Assessment Report 29651

Tenure No.'s 501559, 501577, 501731, 503061, 503063, 509898

OMINECA MINING DIVISION BRITISH COLUMBIA

BCGS: 093L.073,074,084

UTM: 606000E, 6073000N ZONE 9, NAD 83

> Owners: W.E. Pfaffenberger D.A. Davidson

Operator: Blue Pearl Mining Inc. 1723-595 Burrard St PO Box 49197 Vancouver BC V7X 1K8

By

James Hutter, P. Geo Anthony L'Orsa, P. Geo

December 15, 2007

Table of Contents

1.0	Summary and Conclusions	1
2.0	ntroduction	1
	2.1 Location and Access	1
	Property Description and Ownership	3
	2.3 Climate and Physiography	5
	2.4 Infrastructure	5
	History and Previous Work	5
	2.6 Geology	б
	2.6.1 Regional and Local Geology	6
	2.6.2 Property Geology	
	2.7 2006 Exploration Program	9
3.0	Geochemistry	9
5.0	5.1 Field and Laboratory Procedures	
	B.2 Discussion	
	3.2.1 Ag Geochemistry	
	3.2.2 As Geochemistry	
	3.2.3 Au Geochemistry	
	3.2.4 Bi Geochemistry	
	3.2.5 Cd Geochemistry	
	3.2.6 Cu Geochemistry	
	3.2.7 Fe Geochemistry	
	3.2.8 Mn Geochemistry	
	3.2.9 Mo Geochemistry	
	3.2.10 Pb Geochemistry	
	3.2.11 Sb Geochemistry	
	3.2.12 Zn Geochemistry	
4.0	Conclusions and Recommendations2	8
5.0	References2	9

Figures

1.	Regional Location Map	2
2.	Claim Map	4
3.	Regional Geology	7
4.	Local Geology	8
5.	Sample Locations	14
6.	Ag Geochemistry	15
7.	As Geochemistry	16
8.	Au Geochemistry	17
9.	Bi Geochemistry	18
10.	Cd Geochemistry	19
11.	Cu Geochemistry	20
12.	Fe Geochemistry	21
13.	Mn Geochemistry	22
14.	Mo Geochemistry	23
15.	Pb Geochemistry	24
16.	Sb Geochemistry	25
17.	Zn Geochemistry	26
18.	Au, Mo and Pb Anomalies	27

Appendices

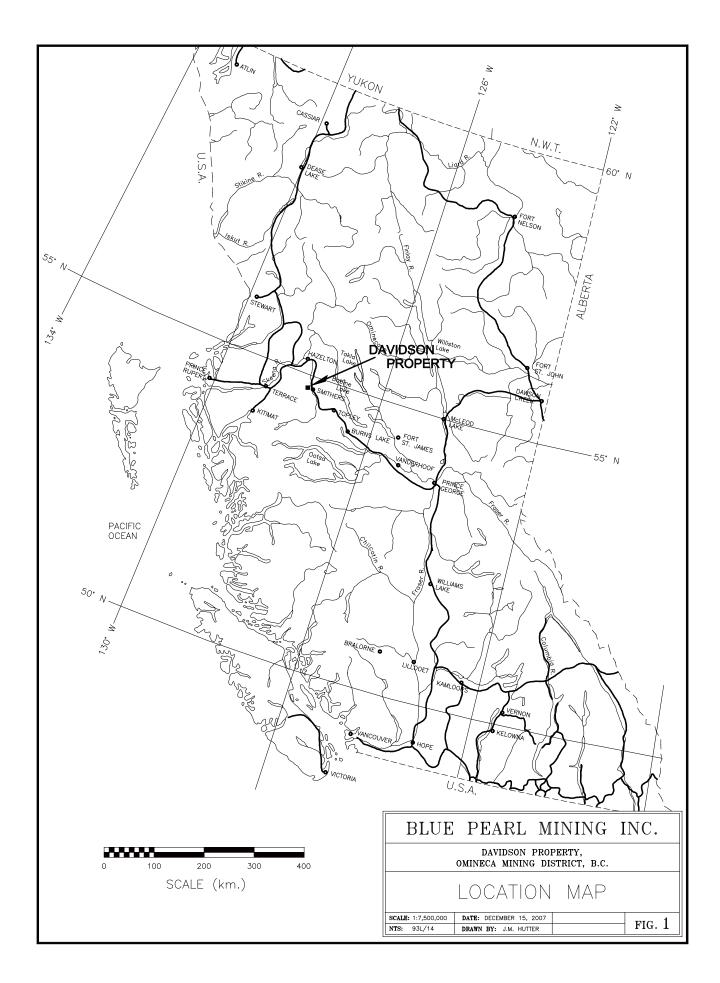
A.	Sample Listing	31
B.	Statistical Data	42
C.	Statement of Expenditures	55
D.	Certificates of Analysis	57
E.	Listing of Software Used	73
F.	Statements of Qualifications	75

1.0 SUMMARY AND CONCLUSIONS

A GPS-controlled reconnaissance geochemical sampling program was carried out on six mineral claims of the Davidson property by Blue Pearl Mining Inc. in September and October, 2006. A total of 444 soil samples and 16 rock samples were taken.

Five multi-element soil anomalies were identified and related to mineral zoning centered on a porphyry molybdenum system on Hudson Bay Mountain.

Two soil samples from one of the anomalies returned very high Au values. These samples will require further investigation. Further work will also be required on the other four multi-element anomalies.


Further geochemical sampling, mapping and prospecting has been recommended.

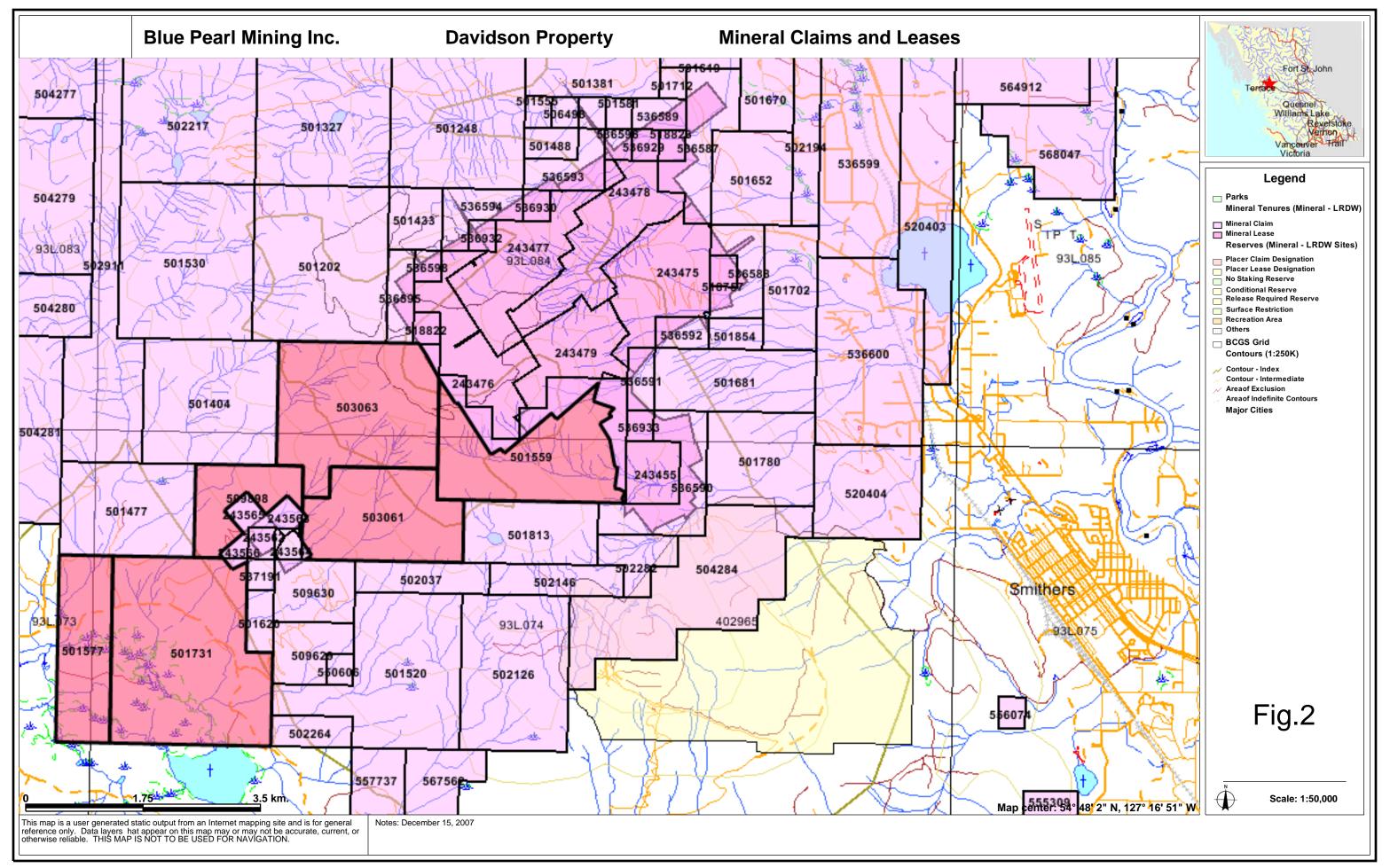
2.0 INTRODUCTION

A GPS-controlled reconnaissance geochemical sampling program was carried out on six mineral claims of the Davidson property by Blue Pearl Mining Inc. in September and October, 2006. The field work was done by Dan Ethier and the authors as part of a much larger and continuing project that is concentrated on the Davidson molybdenum deposit in Hudson Bay Mountain.

2.1 Location and Access

The area in which the geochemical work was done is centred at about 54° 47' north latitude and 127° 21' west longitude (Fig. 1) on the south-western slopes and base of Hudson Bay Mountain, map 93L/14W, about 10 km due west of Smithers. Excellent access to the areas at lower elevations is provided by the McDonell Lake road and connecting logging and mining roads. Access to the claims at higher elevations was by helicopter.

2.2 Property Description and Ownership


The property consists of six mineral cell claims covering an area of 2238.072 ha and six mining leases covering 1631.8 ha as listed below. The work described in this report was done on the six mineral claims. The expiry dates of the mineral claims reflect the application of this work.

Tenure No.	Tenure Type	Area in ha	Registered Owner	Expiry
501559	Mineral Cell	447.47	W. Pfaffenberger	2010/Mar/22
501577	Mineral Cell	223.902	D.A. Davidson	2010/Mar/22
501731	Mineral Cell	615.729	W. Pfaffenberger	2010/Mar/22
503061	Mineral Cell	298.395	W. Pfaffenberger	2010/Mar/22
503063	Mineral Cell	466.081	W. Pfaffenberger	2010/Mar/22
509898	Mineral Cell	186.495	W. Pfaffenberger	2010/Mar/22
243455	Mining Lease	214.07	D.A. Davidson	2009/Jun/27
243475	Mining Lease	288.98	D.A. Davidson	2009/Jan/10
243476	Mining Lease	299.87	D.A. Davidson	2009/Jan/10
243477	Mining Lease	292.78	D.A. Davidson	2009/Jan/10
243478	Mining Lease	342.53	D.A. Davidson	2009/Jan/10
243479	Mining Lease	193.57	D.A. Davidson	2009/Jan/10

The claims and mining leases are held by Blue Pearl Mining Inc. under an option agreement with D.A. Davidson and Fundamental Resources Corporation, a private minerals company of which W. Pfaffenberger is president.

Claims and leases are shown in Figure 2.

The claims cover part of the western extension of the Hudson Bay Mountain hydrothermal system and have the potential of hosting economic ore deposits, particularly precious metals-bearing epithermal veins.

2.3 Climate and Physiography

Climate data collected at Smithers airport between 1971 and 2000 (Environment Canada, 2007)) record cool summers and cold winters. During that period, daily average temperatures ranged from -9°C in Jan to 15°C in July. The average annual snowfall during the period was about 2 m and the average annual rainfall was about 354 mm. Precipitation in the claims area, which is at higher elevations and on the west side of Hudson Bay Mountain, is expected to be greater than at the airport.

The claims range in elevation from about 850 m to 2589 m, the highest point on Hudson Bay Mountain. The mountain slopes range from gentle to vertical and are drained by a complex of creeks that drain southwest into the Zymoetz (Copper) River, except for Simpson Creek that flows northeast into the Bulkley River system. The larger creeks carry sufficient water for exploration and mining purposes. Outcrops are common at higher elevations, but rare on the low-lying western part of the claims area. The lower slopes of Hudson Bay Mountain are covered by mostly coniferous forests of hemlock, subalpine fir, spruce and pine. Willows and alders are locally common in swampy areas, especially at lower elevations, and a few aspen and cottonwood trees can be found in the western claims area.

2.4 Infrastructure

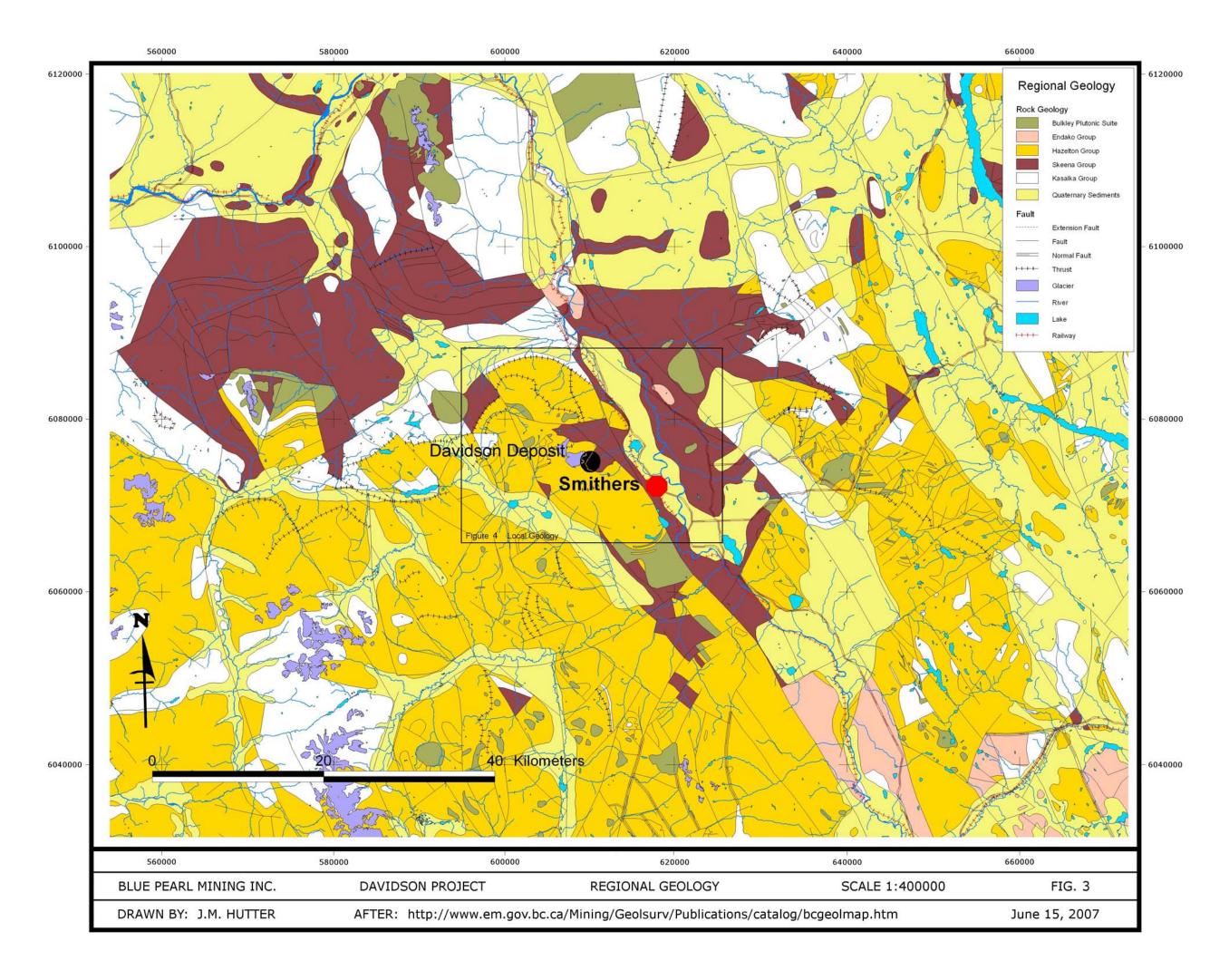
The lower claims area contains a few logging and mining roads that are connected to Smithers by about 23 km of good gravel roads. Smithers, with a population of about 5,600 people, is the regional service centre for the area. Highway 16 runs through Smithers and the town is serviced by CN railway, and an airport that is regularly used by several air carriers including Air Canada Jazz, Central Mountain Air and Hawkair.

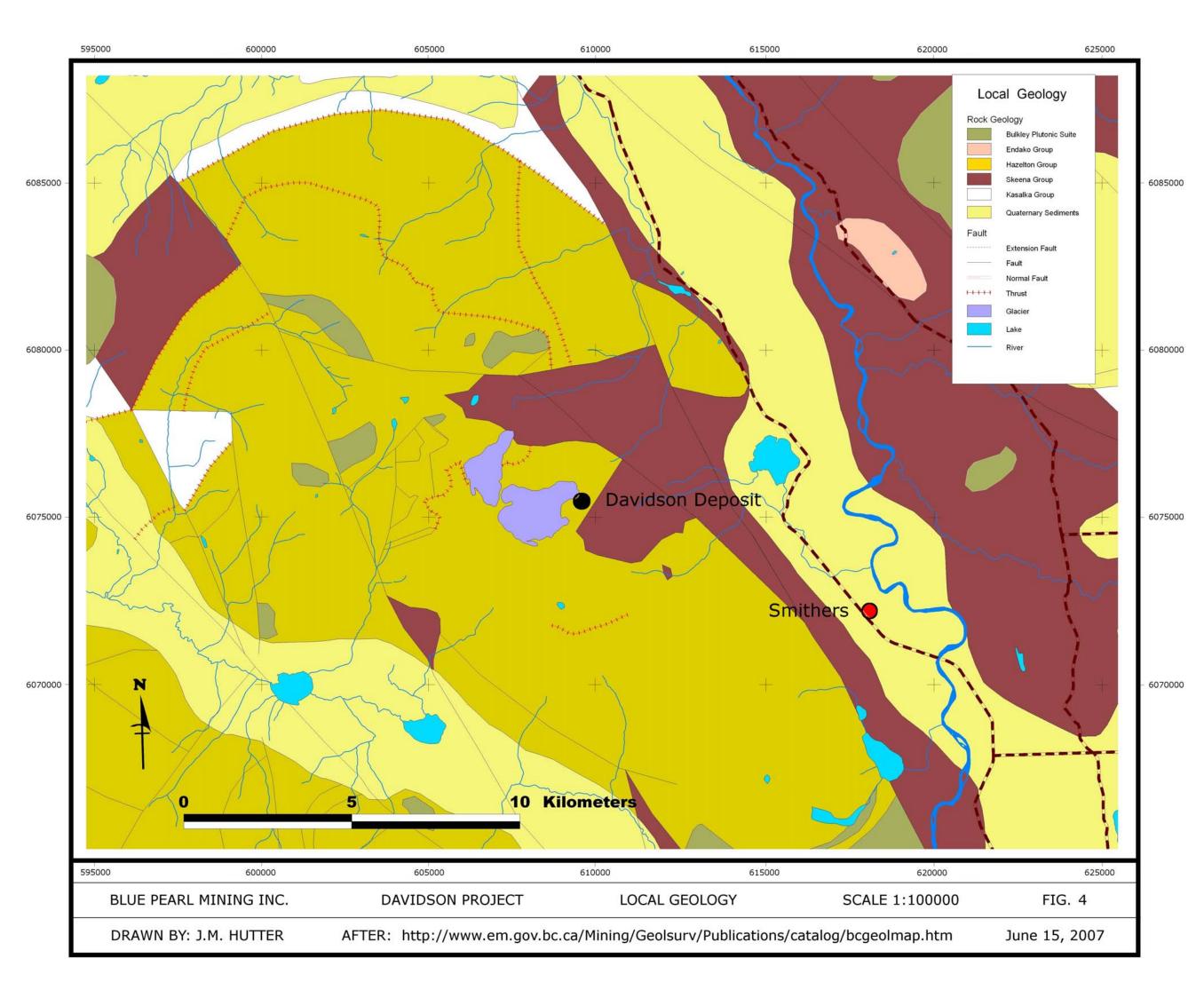
2.5 History and Previous Work

Early prospectors were drawn to the numerous base and precious metals veins on Hudson Bay Mountain since the late 1800s and technical studies by members of the Geological Survey of Canada began soon thereafter (e.g. Leach, 1909; Jones, 1926; Kerr, 1937). The first small shipment of ore from near the claims was sent out on pack horses from the Victoria prospect in 1905. However, significant production in the general area of the claims was only achieved from the Duthie mine vein system, which yielded about 75,000 tonnes of ore between 1923 and 1988, from which silver, gold, lead, zinc and minor amounts of copper and cadmium were recovered (Kindle,1954; Minfile, 2007).

Past work by Blue Pearl Mining Inc. on Hudson Bay Mountain has been confined to the area of the Davidson molybdenum deposit on the eastern side of the mountain, where 15000 m of diamond drilling and extensive environmental studies have been completed since the summer of 2005. Climax Molybdenum Corporation (B.C.) Ltd and associated

companies had previously completed approximately 60000 metres of diamond drilling and 3 km of underground development on the property in the period from 1957 to 1980.


The property has also been known as Yorke-Hardy, Hudson Bay Mountain and Glacier Gulch.


2.6 Geology

2.6.1 Regional and Local Geology

The oldest rocks in the general area of Hudson Bay Mountain are island arc volcanics and sediments of the Lower to Middle Jurassic Hazelton Group (Fig. 3 and 4), which form a part of the accreted Stikine terrane. These rocks are followed in age by largely sandy successor basin formations of the Middle to Upper Jurassic Bowser Lake Group and the Lower Cretaceous Skeena Group that were deposited as sediments were eroded from rising landmasses while Stikinia and other terranes collided with North America during Middle to Late Jurassic time. Continued subduction and pressure from advancing Pacific plates during Cretaceous-early Paleogene time resulted in the development of the Skeena fold and thrust belt and in an episode of igneous activity that formed the Bulkley plutonic suite and continental volcanic rocks of the Kasalka Group. A shift in Pacific plate movement from a northerly to a north-westerly direction in Eocene time was accompanied by a transtensional regime resulting in the episode of intense volcanism that emplaced the bimodal Ootsa Lake-Endako volcanic assemblages and resulted in the development of basin-and-range structures that account for the Bulkley Valley graben and adjacent fault-block mountain ranges (Tipper and Richards, 1976; Souther, 1992; Gabrielse and Yorath, 1992; Struik and MacIntyre, 2001; Crawford, et al., 2005; Massey, et al., 2005).

There are three major suites of granitic intrusive rocks in the region: the Topley plutonic suite (Late Triassic to Middle Jurassic), Bulkley plutonic suite (Late Cretaceous) and the Nanika plutonic suite (Eocene), as outlined by Carter (1981). The Bulkley plutonic suite is represented by a northerly-trending series of intrusions that host or are associated with several porphyry copper-molybdenum systems including the Huckleberry mine and the molybdenum and tungstenbearing system of the Davidson deposit.

2.6.2 Property Geology

The significant mineral deposits on Hudson Bay Mountain are associated with an intrusive complex of the Bulkley plutonic suite that intruded volcanic rocks of the Hazelton Group near the end of the Cretaceous Period. The resulting hydrothermal system left a well-developed mineral zoning pattern (Kirkham, 1969) in which the Davidson molybdenum orebody (Atkinson, 1995) occupies a central position. The molybdenum zone is followed outward by a barren zone in which quartz veins carry few sulphide minerals, followed next by an intermediate zone in which pyrrhotite, sphalerite and arsenopyrite are relatively abundant, and followed finally by an outer zone of veins that may include various amounts of pyrite, arsenopyrite, sphalerite, galena, tetrahedrite, bournonite, pyrargyrite, marcasite and other minerals. Quartz veins and carbonate minerals are found throughout the system. The best known examples of the intermediate and outer zones are found in the vein systems in and near the former Duthie mine on the western side of the mountain.

2.7 2006 Exploration Program

The program described in this report consisted of the collection and analysis of 444 mostly soil samples (but including a few silt samples) and 16 rock samples. Samples were taken on an approximately 200 metre grid pattern at lower elevations, but at higher elevations where the topography was more difficult it was necessary to modify or abandon the grid, and samples were taken where access was possible. Rock samples were taken where no soil was available or where visible mineralization was identified. Locations of soil and rock samples are listed in Appendix A.

Field work totalled 33 man-days from September 12 to October 17, 2006. For work at higher elevations, crews were set out and picked up by helicopter from Smithers. For more easily accessible areas a four-wheel drive vehicle was used for crew transportation. Total cost of the program was \$32,209.61, as detailed in Appendix C. Of the total of 460 samples taken, three plotted outside of the boundary of the claims. The prorated value of work done on the claims therefore amounts to \$31,999.54, of which \$30,934.61 was applied as assessment work.

3.0 GEOCHEMISTRY

3.1 Field and Laboratory Procedures

At lower elevations soils are found in a complex mixture of colluvial, till, fluvial, swamp and lake deposits. The samples were generally taken from the B horizon although locally one of the A layers provided the only material available. Soils were normally collected at depths of less than 30 cm below surface, although sampling depths of up to one metre were attained in places in order to penetrate organic layers. Silt samples were also collected where streams crossed lines. At higher elevations, mountain soil development was commonly poor with no distinct soil horizons and therefore the sample consisted of whatever soil was available, often being talus fines or frost boils in talus. A few silt and spring samples were also taken. The samples were collected using an Eijkelkamp stony soil sampler or a Geotul mattock. The location of each sample site was recorded by hand-held GPS units and the site locations are shown in Figure 5. The GPS units used were a Garmin GPS 12XL, Etrex Legend and a Magellan Sportrak Map. Soils were placed in kraft paper bags marked with the last four numbers of the UTM Easting and the last five numbers of the UTM Northing. Samples were allowed to air dry and were then shipped by bus in a single batch to Acme Analytical Laboratories Ltd. in Vancouver. At the laboratory samples were dried at 60°C and sieved to -80 mesh. Analysis was completed by ICP-MS for 36 elements including Au after leaching a 15.0 gm sample in hot Aqua Regia for one hour. Standards and duplicates were inserted at the lab to check analytical error.

Rock samples were placed in plastic sample bags marked with the location as above and shipped by bus to Acme Analytical Laboratories Ltd. with the soil samples. They were crushed to 70% passing 10 mesh and a 250 gm split was pulverized to 95% passing 150 mesh. A 15 gm split was then analyzed by the same method as the soil samples. Standards and duplicates were inserted at the lab.

Certificates of analysis are found in Appendix D.

3.2 Discussion

Results of soil sample analyses were plotted for Ag, As, Au, Bi, Cd, Cu, Fe, Mn, Mo, Pb, Sb and Zn and are shown in Figures 7 to 17 respectively. For the purposes of this reconnaissance program, values were contoured at approximately the 50th, 75th and 90th percentiles as indicated in Table 1 below, and the 90th percentile was chosen as the anomaly threshold for all elements of economic interest. Note that these values are anomalous only with respect to the local background. Earlier work (Davidson, 1968) directly over the Davidson deposit encountered much higher values for Cu and Mo than those found in this study.

Percentile	Ag	As	Au	Bi	Cd	Cu	Fe	Mn	Mo	Pb	Sb	Zn
	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
90th	1.2	750	175	15	6	300	8	2150	10	70	10	1000
75th	0.6	350	60	5	3	150	6	1700	5	40	5	600
50th	0.4	125	10	1.5	1.5	50	4	1100	3	20	2.5	300

Table 1: Percentiles for Selected Elements

Contouring of the data indicated five multi-element anomalies as shown in Table 2. Elements shown in brackets in are present in smaller but still anomalous amounts. The approximate centre of each anomaly is indicated in UTM coordinates.

Anomaly 1	Anomaly 2	Anomaly 3	Anomaly 4	Anomaly 5
609800E,	607100E,	606300E,	607900E,	606600E,
6073900N	6073500N	6073900N	6072500N	6072700N
	Ag	Ag	Ag	Ag
As	As	As	As	As
Au	Au	(Au)	(Au)	
Bi	Bi			
	Cd	Cd	Cd	(Cd)
Cu	Cu	Cu	(Cu)	(Cu)
Fe	Fe	(Fe)	(Fe)	
	Mn	Mn	Mn	Mn
			Мо	Мо
	Pb	Pb		
	Sb	Sb	Sb	Sb
	Zn	Zn	(Zn)	Zn

Table 2: Multi-element Anomalies

Three groups of multi-element anomalies are noted. Anomaly 1 has high values of As, Au, Bi, Cu and Fe and is interpreted as being closer to the centre of hydrothermal activity (which is assumed to be near the Davidson molybdenum deposit) and therefore of higher temperature. Moving further from the hydrothermal centre, Anomalies 2 and 3 have high values of most metals except Mo and are considered to be more distal. Anomalies 4 and 5, the furthest from the hydrothermal centre, are high in most metals except Pb. A plot of anomalous Au, Mo and Pb (Fig. 18) shows that these elements are arranged in three mostly separate zones that are concentric to a centre of hydrothermal activity near the Davidson molybdenum deposit. Note that the zone of anomalous Mo is generally anomalous only with respect to the local background, as Mo values directly over the Davidson deposit are considerably higher (Davidson, 1968).

Based on the presence of major anomalies (ignoring smaller one-point anomalies), ore and some indicator elements are distributed in four concentric zones as follows:

Zone 1: As, Au, Bi, Cu, Fe

Zone 2: Ag, As, Au, Bi, Cd, Cu, Fe, Mn, Pb, Sb, Zn

Zone 3: Ag, As, Cd, Mn, Mo, Sb, Zn

Zone 4: Pb, with lesser Ag, Cd and Zn

It must be kept in mind that the area investigated is rather small in relation to the extent of known metal zoning on Hudson Bay Mountain. It is therefore possible that some of the zoning noted here may be fortuitous, and that a program of greater extent going beyond the claim boundaries might produce results at variance with those observed here. Anomalies in Zone 4 may be related to deposition of sediments by Henderson Creek, Sloan Creek and an un-named creek that passes through the Victory Group. Some anomalies in Zone 4 might be the result of contamination from the Duthie Mine tailings, transported by Henderson Creek during the spring freshets.

Frequency distribution histograms, outlier box plots, basic statistical data and selected bivariate scatterplots for elements discussed below are shown in Appendix B. The bivariate scatterplots also display best fit straight lines using least squares regression. Correlation coefficients are shown at the bottoms of the scatterplot pages.

3.2.1 Ag Geochemistry (Fig. 6)

Anomalous amounts of Ag occur mainly in Zones 2 and 3, with lesser amounts in Zone 4.

3.2.2 As Geochemistry (Fig. 7)

Anomalous amounts of As occur in Zones 1, 2 and 3 but As is notably low in Zone 4. The southwest-trending tail of Anomaly 2 may be related to an extension of the Victory vein located on the Victory Claim Group.

3.2.3 Au Geochemistry (Fig. 8)

Au anomalies occur only in Zones 1 and 2, except for a few single-point anomalies in Zone 3. Two very high samples (6573 and 4272 ppb) were retrieved from Anomaly 1, although no mineralization except disseminated pyrite was noted in the nearby rocks.

3.2.4 Bi Geochemistry (Fig. 9)

Bi distribution is very similar to that of Au, with anomalous amounts of Bi occurring mainly in Zones 1 and 2. Bi values are notably low in Zone 4.

3.2.5 Cd Geochemistry (Fig. 10)

Anomalous amounts of Cd occur in Zones 2, 3 and 4. Zn and Cd distributions are very similar and those two elements have a correlation coefficient of 0.7470 in this population. Anomalies in Zone 4 may be related to deposition of sediments by Henderson Creek, Sloan Creek and an un-named creek that passes through the Victory Group. Some anomalies in Zone 4 might be the result of contamination from the Duthie Mine tailings, transported by Henderson Creek during the spring freshets.

3.2.6 Cu Geochemistry (Fig. 11)

Anomalous amounts of Cu occur mainly in Zones 1 and 2. The distribution is very similar to that of Fe. The southwest-trending tail of Anomaly 2 may be related to an extension of the Victory vein located on the Victory Claim Group.

3.2.7 Fe Geochemistry (Fig. 12)

Fe anomalies occur mainly in Zones 1 and 2 in the headwaters of Henderson Creek and on the ridge to the north of Simpson Creek, where rocks are noticeably rusty. The distribution is very similar to that of Cu. Cu and Fe display a correlation coefficient of 0.7724.

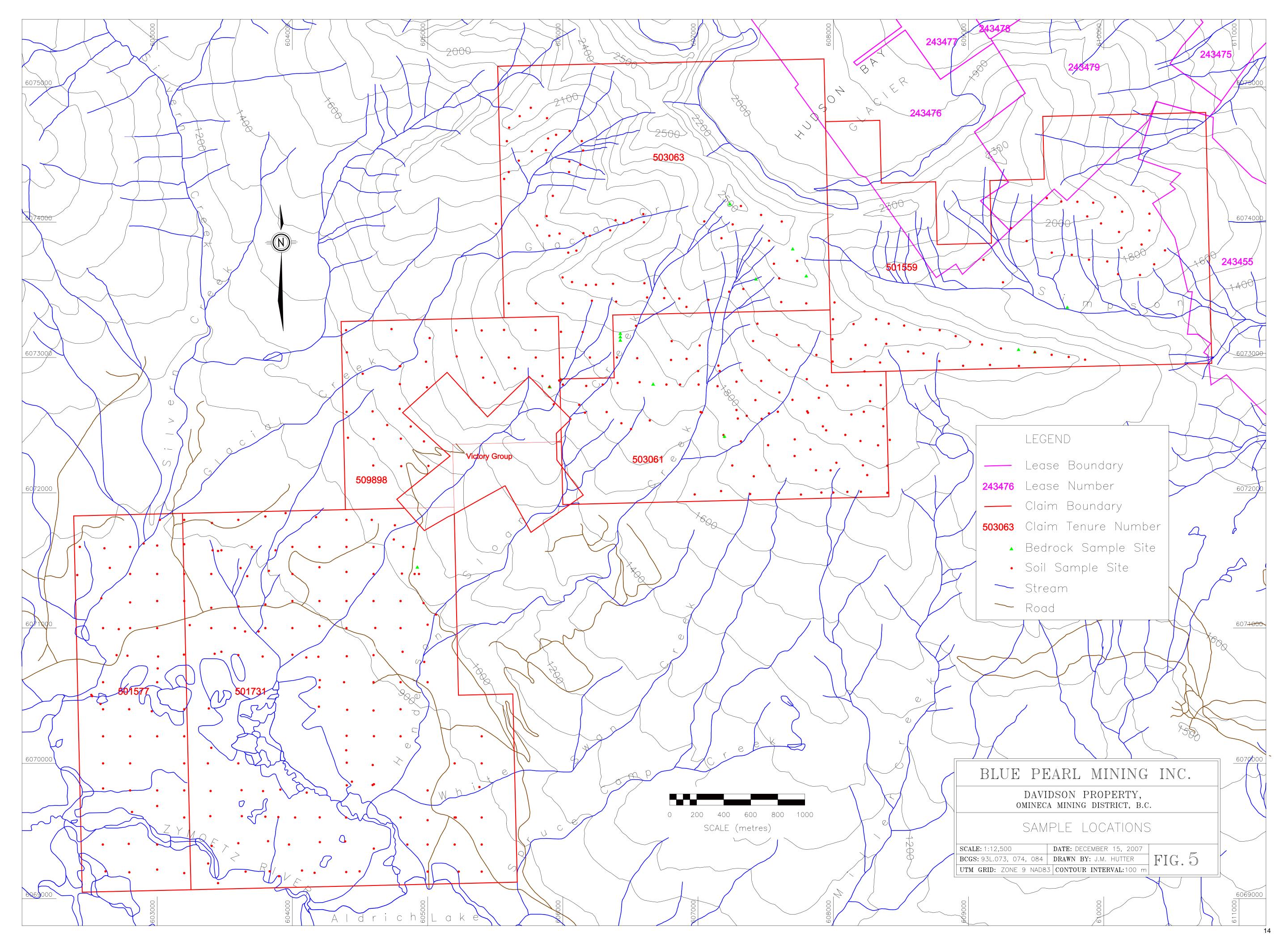
3.2.8 Mn Geochemistry (Fig. 13)

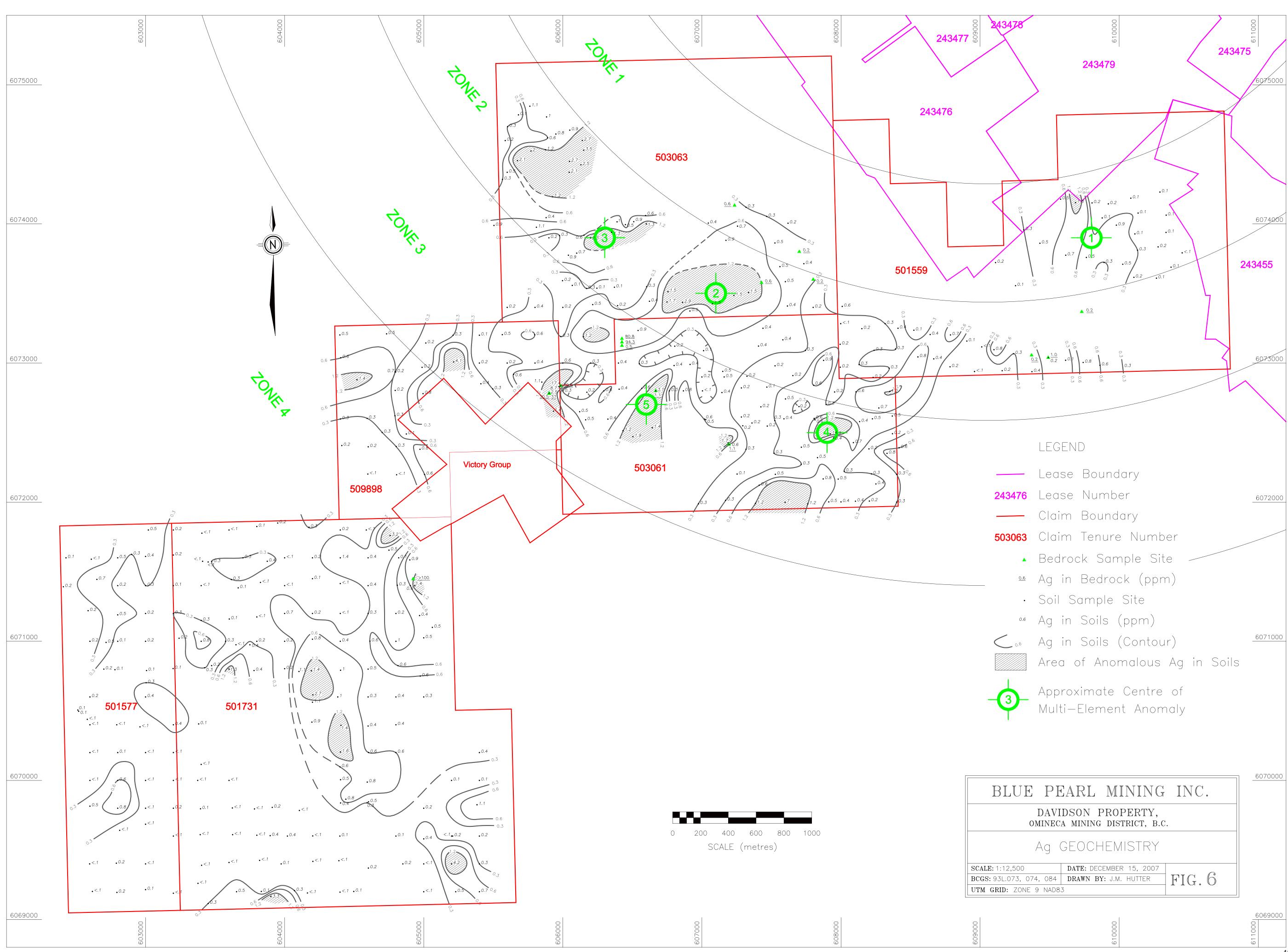
Anomalous amounts of Mn occurs mainly in Zones 2 and 3.

3.2.9 Mo Geochemistry (Fig. 14)

Anomalous concentrations of Mo are found mainly in Zone 3.

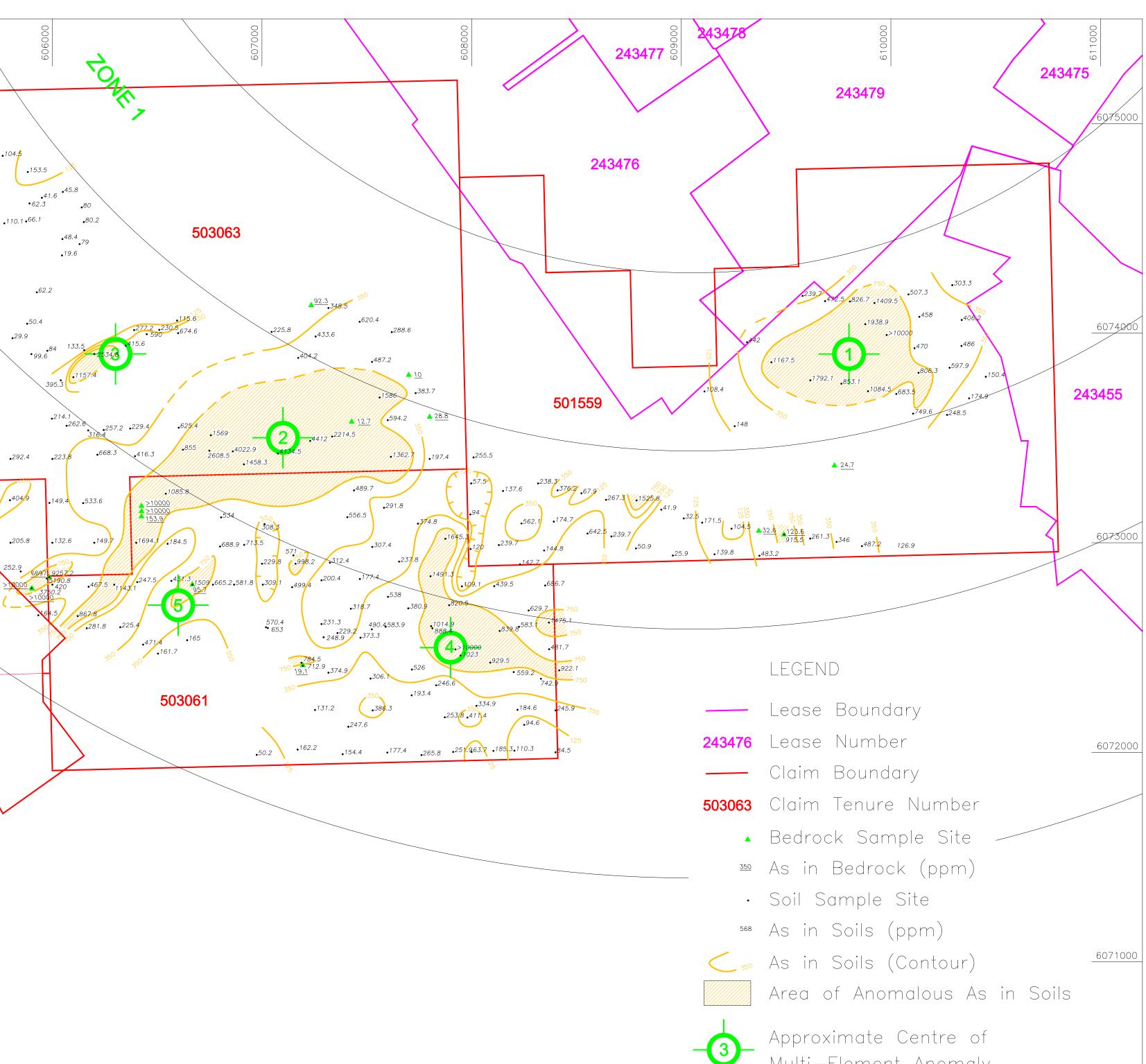
3.2.10 Pb Geochemistry (Fig. 15)

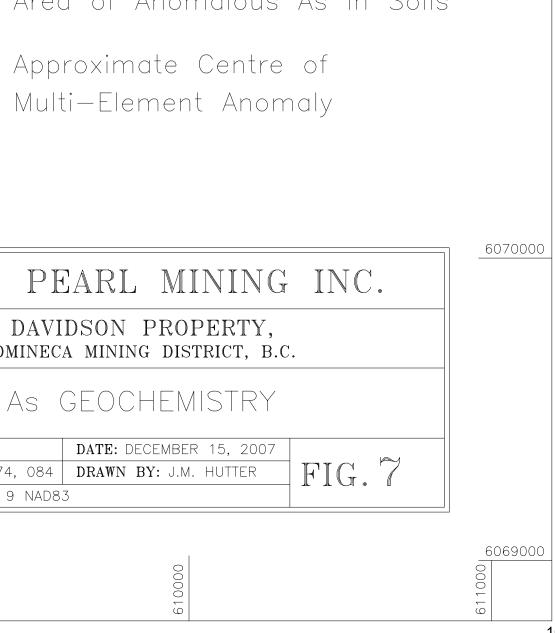

Pb anomalies occur mainly in Zones 2 and 4, and Pb concentrations are notably low in Zone 3. Anomalies in Zone 4 may be related to deposition of sediments by Henderson Creek, Sloan Creek and an un-named creek that passes through the Victory Group. Some anomalies in Zone 4 might be the result of contamination from the Duthie Mine tailings, transported by Henderson Creek during the spring freshets.


3.2.11 Sb Geochemistry (Fig. 16)

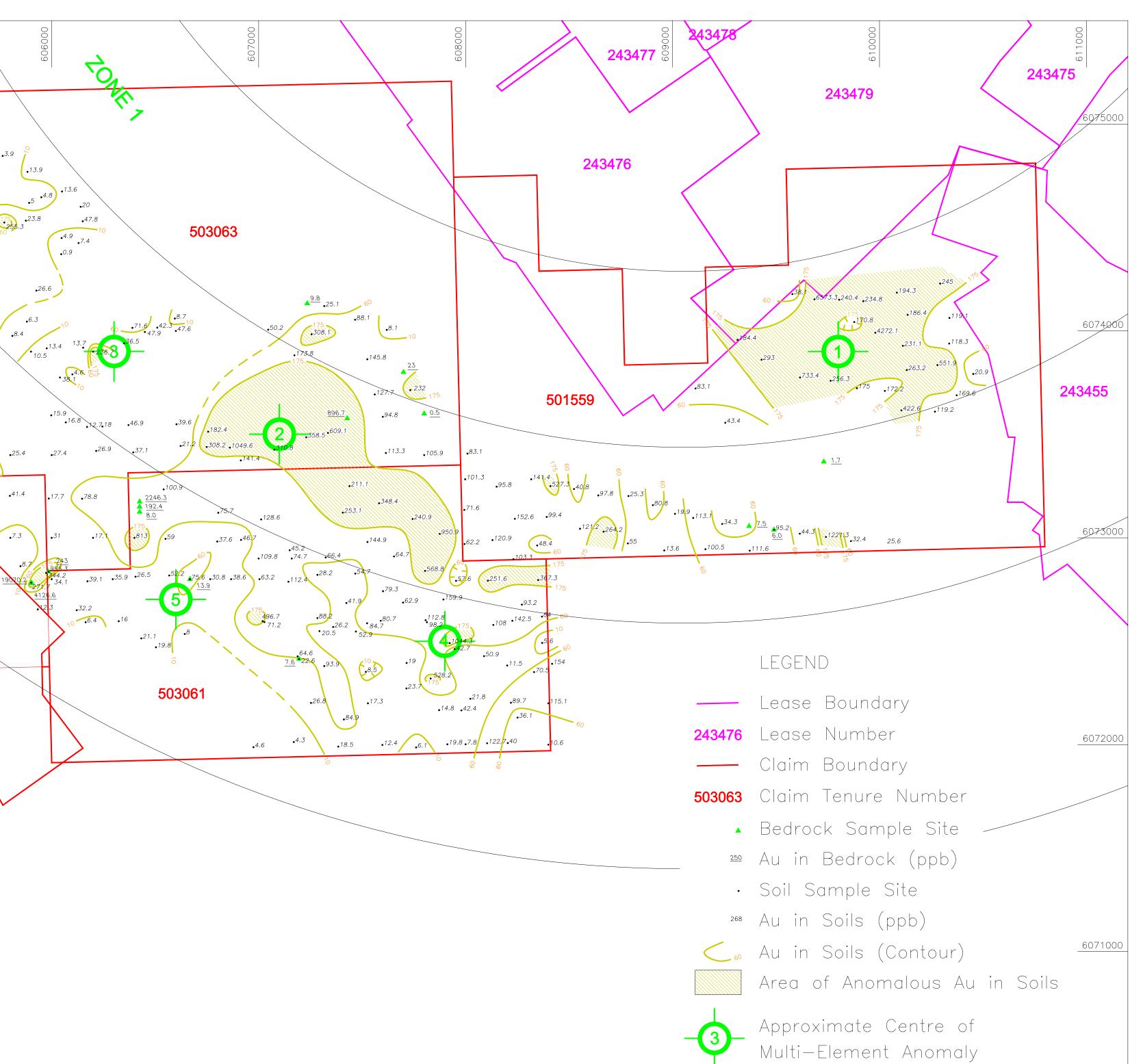
Anomalous concentrations of Sb occur mainly in Zones 2 and 3. Sb displays a correlation coefficient of 0.5370 with Ag and 0.5048 with As. The southwest-trending tail of Anomaly 2 may be related to an extension of the Victory vein located on the Victory Claim Group.

3.2.12 Zn Geochemistry (Fig. 17)


Zn anomalies occur in Zones 2, 3 and 4. The southwest-trending tail of Anomaly 2 may be related to an extension of the Victory vein located on the Victory Claim Group. Anomalies in Zone 4 may be related to deposition of sediments by Henderson Creek, Sloan Creek and an un-named creek that passes through the Victory Group. Some anomalies in Zone 4 might be the result of contamination from the Duthie Mine tailings, transported by Henderson Creek during the spring freshets.

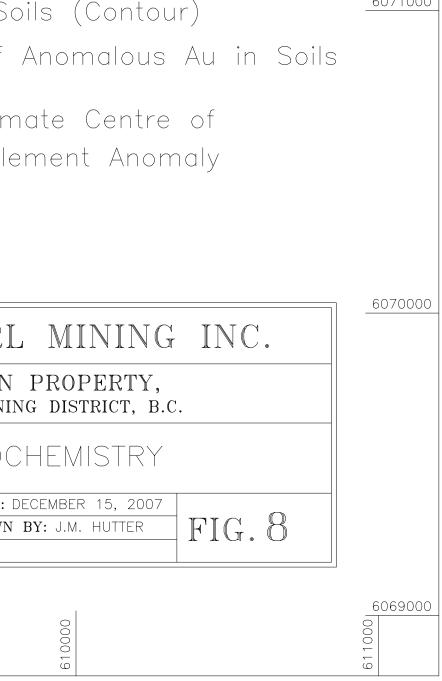

BLUE	Pŀ	CARI
-		DSON
ON	INEC	A MINI
ŀ	Ag	GEO(
.E: 1:12,500		DATE:
S:93L.073, 074	, 084	DRAWN
GRID: ZONE 9	NAD8	3

6075000	<u>603000</u>	604000		5.4 •11
6074000			122 .197 .277	.43.3 79.9 7.7
6073000			•60.6 •41.1 •289.6 •44.6 •138.9 •94. •63.7 •688.9 •121.5 •3	5 5 94.3 25. 25.
6072000	•34.7 •29 •15.2 •18.4 •33.8 • ^{27.3} •35 •26	•∠0. <i>+</i>	.17.2 .36.3 .222.8 .222.8 .222.8 .351.9 .53.6 .57.1.270.4	
6071000	•37.5•18.6 •46 •46 •26 •30.2 •17.7	•47.2 •47.2 •15.8 •22.5 •76.8 •22.5 •76.8 •135.3 •21.5 •135.3 •21.5 •135.3 •21.5 •125 •42.2 •36.3 •35.2 •43.9 •53.4 •15.8 •15.8 •22.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
6070000	•.19.2 •.6.3 •.4.8 •.7.1 •.5 •.6.1 •.4.6 •.7.1 •.8.7 •.6 •.2.3 •.6.4 •.5.8 •.1. •.2.3 •.6.4 •.5.8 •.1. •.5.	1 .46.4 5 .5.8 4 .10.2 .3 2.2 .4.7 .4.2 .5.4 .2.5 .6.7	343.8 $.270.4$ $.304.2.119.7$ $.399.7$ $.306.5$ $.19.9.43.8.65.3$ $.76.1$ $.10$ $.9.1.238.7$ $.210.5.37.8$ $.111.6$ $.30.6$ $.88.7.7.7$ $.12$ $.39.2$ 3.1 $.11.4$ $.9.5$	
6069000	•10.4 •21.3 •11.9 •6.1 •24.1 • ^{8.9} •4. 000 00 00 00 00 00 00 00	.3.2 $.4.2$ $.4.9$ $.5.9$ $.7.5.9.6.6.4$ $.45.7$ $.14.6$ $.235$ 1 $.6.4125$ 1 $.6.4000400000400000040000004000000400000000$	•7.5 •5.6 •6 •10 •6 •10 •12.1 •33 •32.8	



BLUE PE	LAR
DAVI	DSON
OMINEC	A MIN
٨	
As (JEO
SCALE: 1:12,500	DATE
,	
BCGS: 93L.073, 074, 084	DRAW

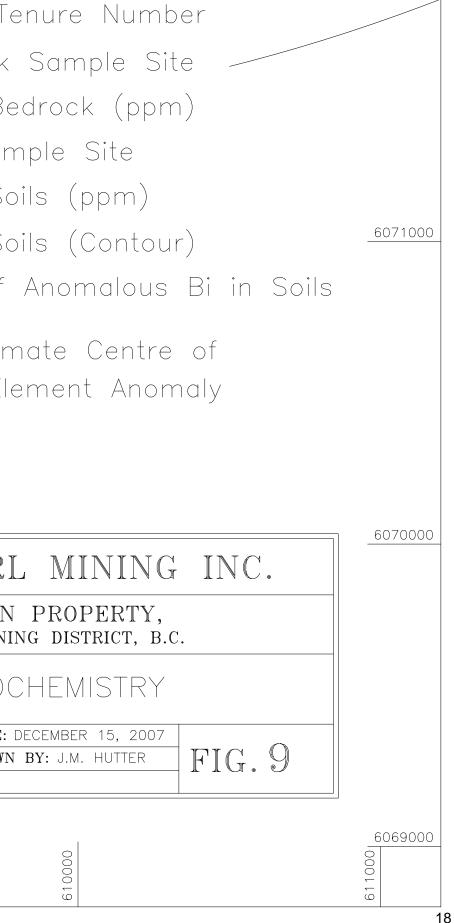
0	200	400	600	800	1000
	S	CALE ((metre:	s)	

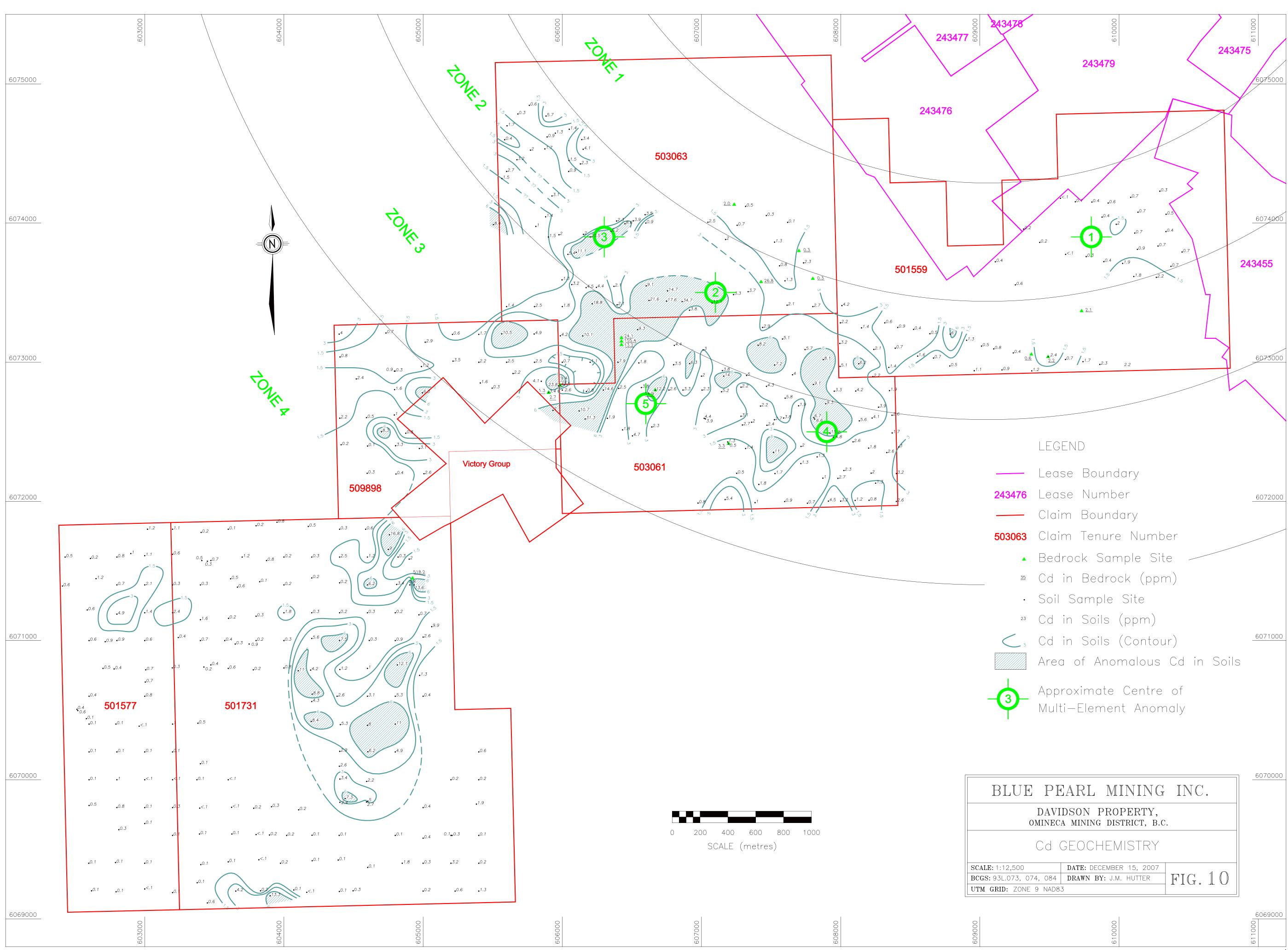


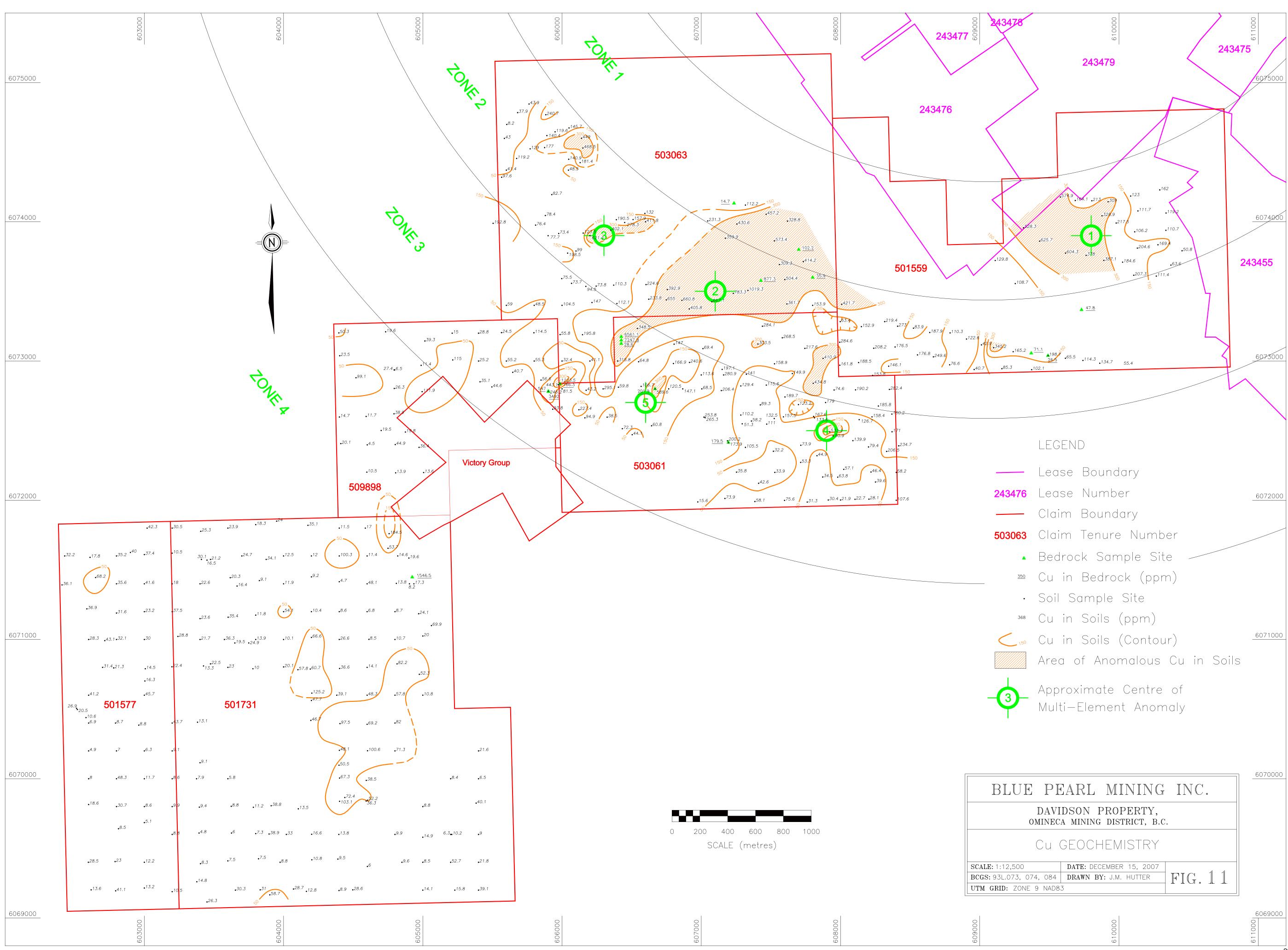
6075000	603000	604000	000 <u>0</u> 00 tonkto .2. .4.7	
6074000				
6073000			3.9 $.3.4$ $.5.5$ $.4.2$ $.2.1.2$ $.5.8$ $.10$ $.13.1$ $.7.2$ $.62$ $.11.2$ $.5.8$ $.4.9$ $.5.5$ $.4.2$ $.2$ $.5.8$ $.10$ $.13.1$ $.7.2$ $.62$ $.1217$ $.5.8$ $.4.9$ $.5.8$ $.4.9$ $.5.5$ $.5.8$ $.4.9$ $.5.5$ $.5.8$ $.4.9$ $.5.8$ $.5.8$ $.4.9$ $.5.8$).
6072000	•4.5 •4	•.8 •2.7 •2.5 •1.5 •2.6	.0.8 .<.5 .4.6 .4.3 10 Victory Group 509898 .0.9 .3 .11.7 10 .4.2 .0	
6071000	• ^{3.6} •<.5 •<.5 .1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	•5.7 •1.8 •2.4 •2 •1.6 •1.2 •1.5 •1.5 •1.5 •1.4 •1.1 •<.5 •2	501731	•3.7 •13.6 •6.3 •22.8 •10 •11.3 •10.8 •5.4 •10.9 •12.1 •23.4	
6070000	•<.5 •<.5 •<.5 •< • ^{0.9} •<.5 •<.5 •1 •<.5		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
6069000	•<.5 •<.5 •<.5 •<.5 •<.5 •<.5 •<	•<.5 •<.5 •<.5 •<.5 •<.5 •<.5 •<.5 •<.5 •<.5 •<.5 •<.5	•<.5 •<.5 •<.5 •<.5 •<.5 •<.5 •<.5 •<.5	

BLUE PI	EARI
DAV OMINEC	IDSON Ca mini
Au	GEO(
SCALE: 1:12,500	DATE:
BCGS: 93L.073, 074, 084	DRAWN
UTM GRID: ZONE 9 NADE	3

0	200	400	600	800	1000
	S	CALE	(metre	s)	

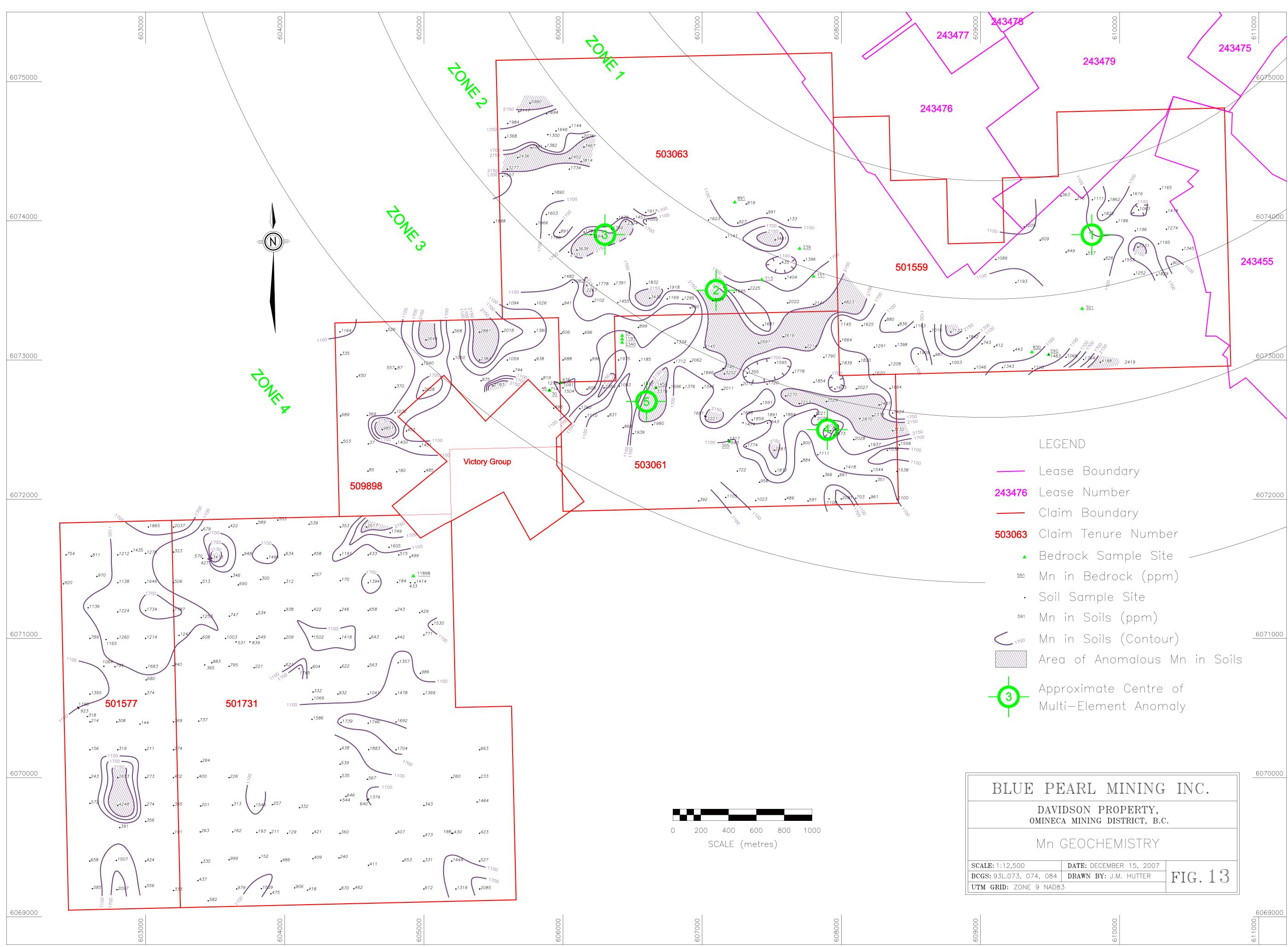


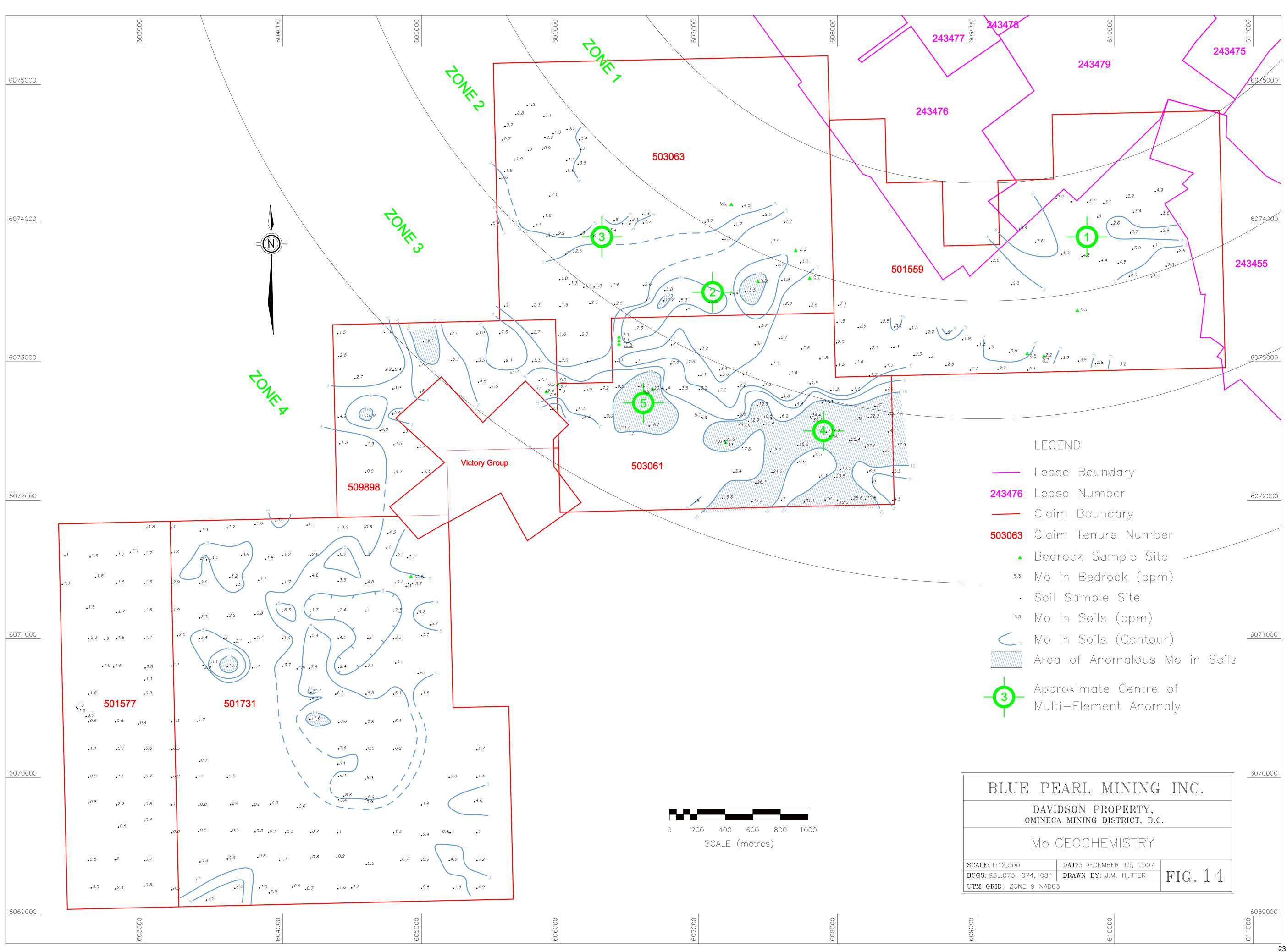

6075000	0000 1000 1000 1000 1000 1000 1000 100	604000		•0.2 •0.7
6074000				•2.5 •3.6 •1.9
6073000		tonkr.	•0.8 0.9_0.7 •0.7	2.4 0.9 •1 • 1.6 • 2.6 •0.9
6072000	•0.2 •0.2	•0.1	.0.1 .0.4 .0.5 509898 .0.1 .0.1 .0.8 .0.8	ry Group
6071000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	•0.2 •0.2 •0.2 •0.2 •0.2 •0.2 •0.2 •0.2	•0.2 •0.1 •0.2 •0.1 •0.1 •0.2 •0.2 •0.2 •0.2 •0.2 •0.5 •0.6 •1 •0.7	•0.6 •0.8 •1.1 •0.6 •0.8 •1.1 •1.2 •1.5 •2.2 •0.4 •1.8 •2.1 •2.7	
6070000	•0.1 •0.1 •0.1 •0.1 •0.1 •0.2 •0.1 •0.1 •0.1 •0.2 •0.1 •0.2	•0.1 •0.1 •0.1	•1.2 •2.7 •2	0.2 0.1 .3
	•0.1 •0.1 •0.1 •0.1 •0.1 •0.1 •0.1 •0.2 •0.1 •0.1	•0.1 •0.1 •0.1 •0.1 •0.1 •0.1 •0.1 •0.1 •0.1 •0.1 •0.1 •0.1 •0.2 •0.2 •0.3 •0.2 •0.1 •0.1	•0.2 •0.1 •0.1 •0.1 •0.3 •0	0.2 0.2 0.3
6069000	603000	604000	605000	

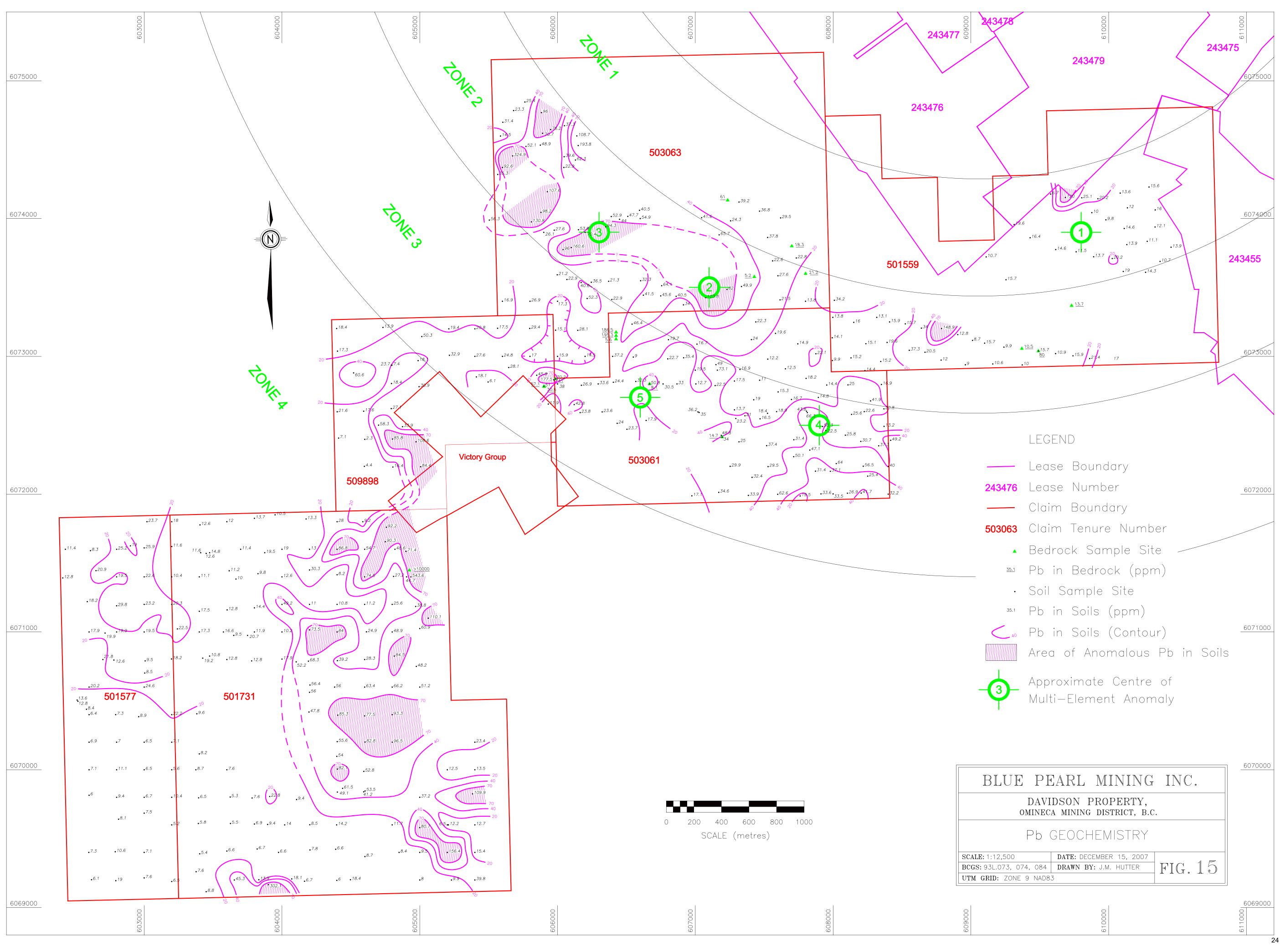

BLUE PI	EARI
DAVI ominec	IDSON Sa mini
Bi	GEO(
SCALE: 1:12,500	DATE:
BCGS: 93L.073, 074, 084	DRAWN
UTM GRID: ZONE 9 NAD8	7

0	200	400	600	800	1000
	SC	CALE	(metre	es)	

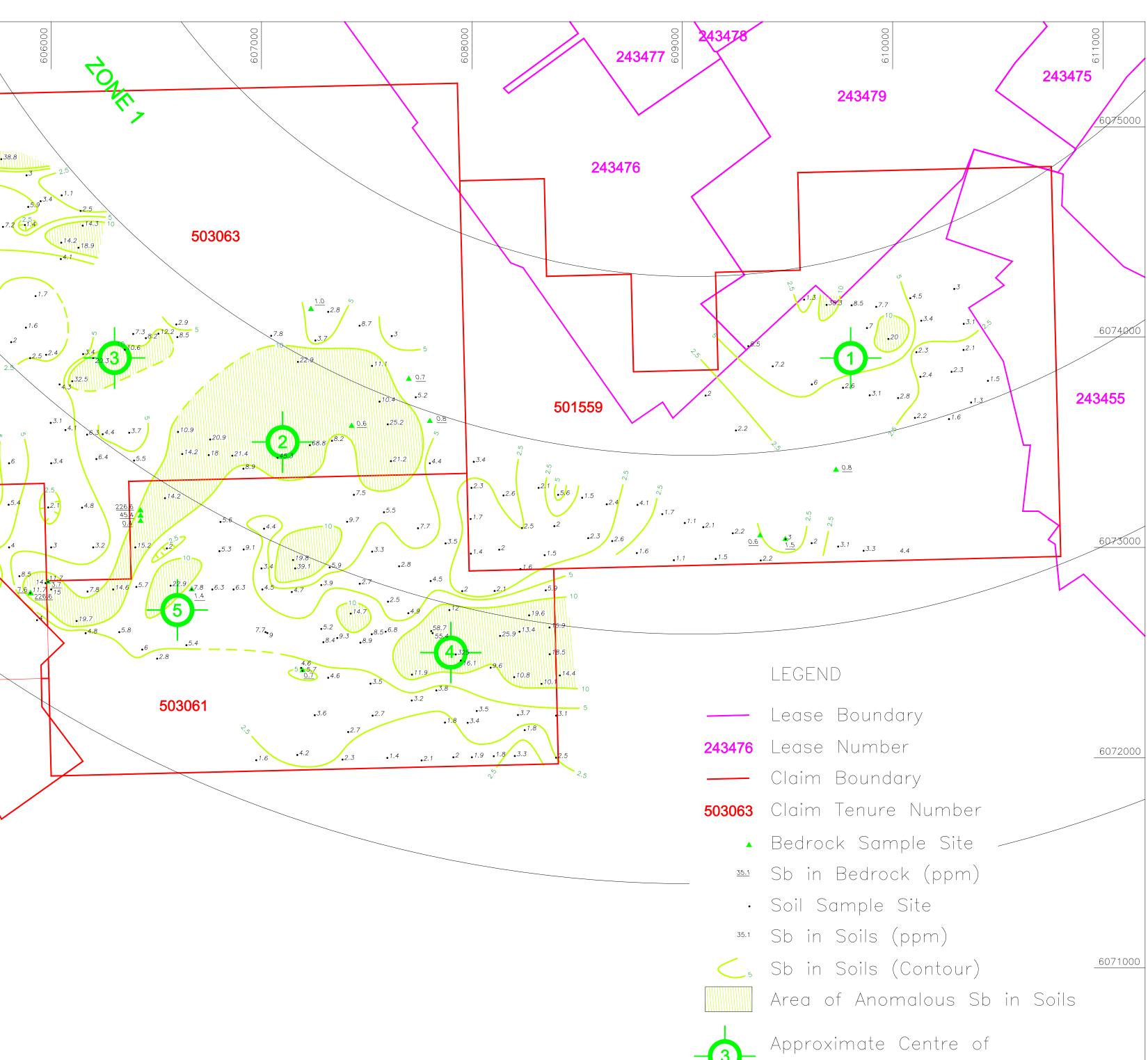



BLUE PE	EARI
DAVI ominec.	DSON A MINII
Cd (GEO(
CONTR 4 40 500	
SCALE: 1:12,500	DATE: [
BCGS: 93L.073, 074, 084	DATE: [DRAWN

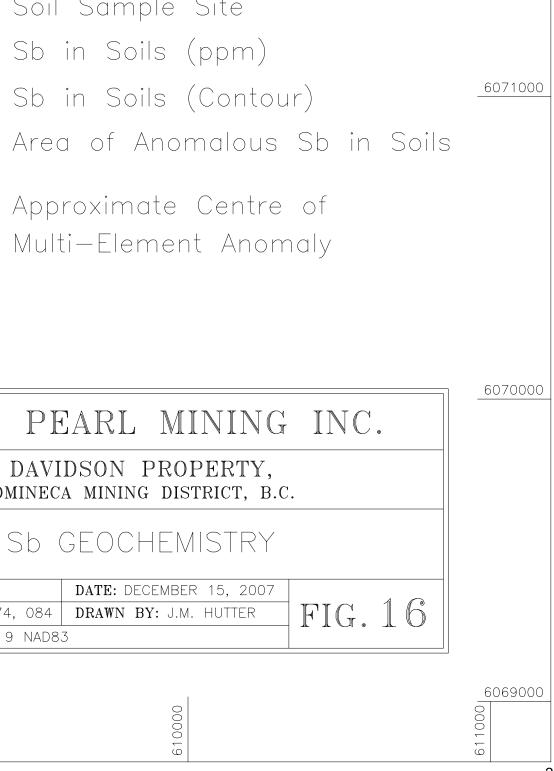

BLUE PE	EARI
DAVI ominec	DSON A MINI
Cu	GEO(
SCALE: 1:12,500	DATE:
BCGS: 93L.073, 074, 084	DRAWN


0	200	400	600	800	1000
	S	CALE	(metre	s)	

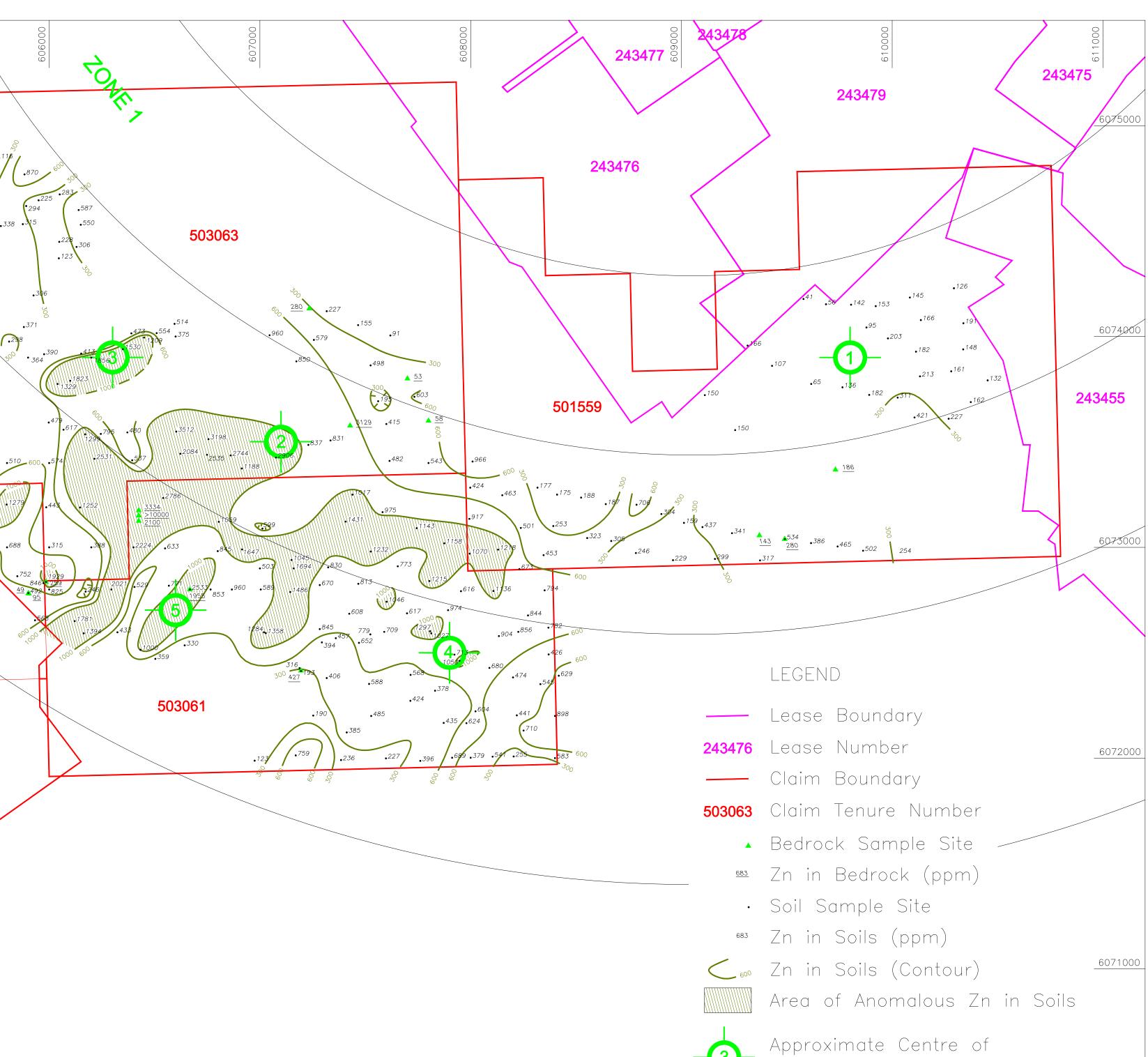
BLUE PE	EARI
DAVI ominec	DSON A MINI
Mn	GEO(
SCALE: 1:12,500	DATE:
BCGS: 93L.073, 074, 084	DRAWN



BLUE PE	EARI
DAVI ominec	DSON A MINI
Mo (GEO(
SCALE: 1:12,500	DATE:
BCGS: 93L.073, 074, 084	DRAWN
UTM GRID: ZONE 9 NAD8	-

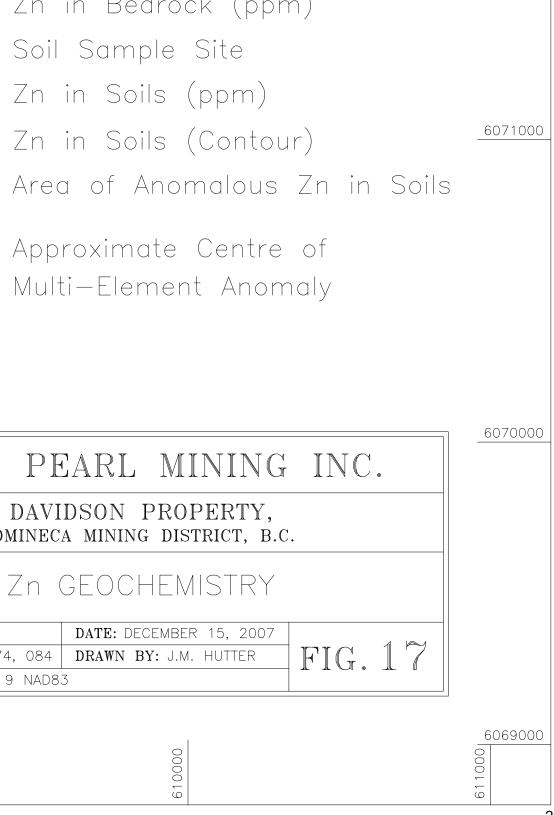

BLUE PH	EARI
DAVI ominec	DSON A MINI
Pb	GEO(
SCALE: 1:12,500	DATE:
BCGS: 93L.073, 074, 084	DRAWN
,,,,,,	

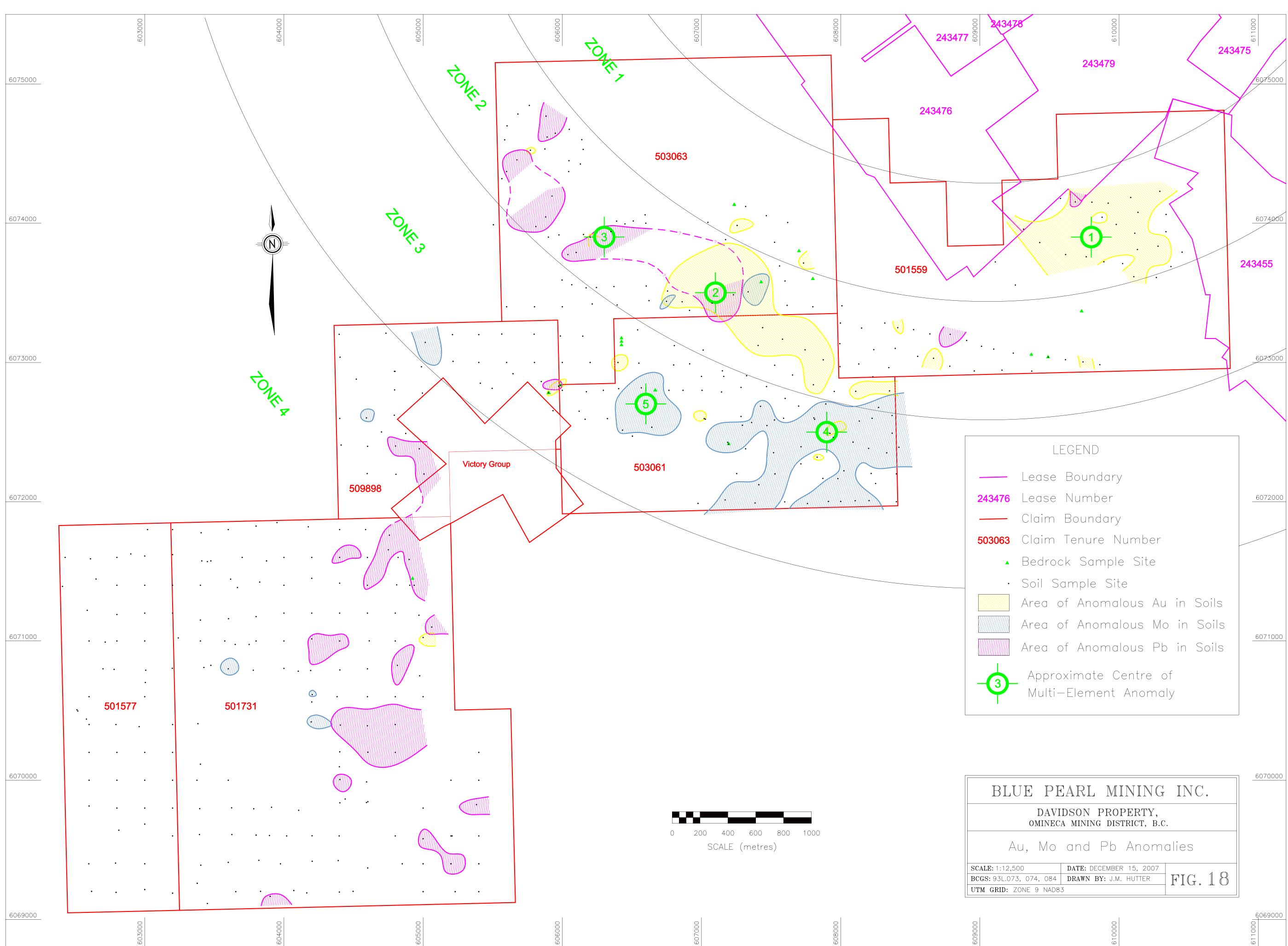
6075000	93000 101	604000	
6074000			5 .3.5 .3.4 5 .5.2 2 Ng 0
6073000			•2.6 •3 •0.5 •0.5
6072000	•1.5 •1.4	• '	.0.7 .0.9 .8.6 .2.4 Victory Group .1 .3.7 .2.7 Victory Group 509898 .0.4 .0.4 .4.4 .2.5 .4.2 .5 .4.2 .5 .4.2 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
6071000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• $.3.6$ • 2.4 • 2.5 • 1.6 • 0.5 • 3.9 • 1 • 1.6 • 0.8 • 0.6 • 1.4 • 3.1 • 5
6070000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•0.4 •0.6 •0.2	.3.4 $.4$ $.4.2$ $.1.2.4.6$ $.4.6$ $.5.8.1.8$ $.5.8$ $.6$ $.1.6.1.8.4$ $.3.1$ $.0.6$ $.0.9.3.9$ $.3.32.6$ $.3.1.0.9$ $.3.1$
6069000	•0.5 •0.3 •0.4 •0.8 •0.3 •0.4 •0.5 •0.4 •0.4 •0.4	• 0.2 • 0.3 • 0.3 • 0.4 • 0.5 • 0.8 • 0.4 • 0.4 • 0.4 • 0.5 • 0.4 • 0.4 • 0.4 • 0.5 • 0.4 • 0.4 • 0.5 • 0.4 • 0.4 • 0.8 • 0.5 • 0.4 • 0.8	0.7 0.6 $0.3 \cdot 1.4$ $0.3 \cdot 1$ 0.9 0.6 0.5 0.6 0.7 $0.1.10.3$ 0.5 0.6 0.7 0.9 0.6
	603000	604000	605000



BLUE PF	CARI
DAVI ominec	DSON A MINII
Sb (GEOC
SCALE: 1:12,500	DATE:
BCGS: 93L.073, 074, 084	DRAWN
UTM GRID: ZONE 9 NAD8	7

0	200	400	600	800	1000
	S	CALE ((metre	s)	




	603000	604000	00 902000 902	
6075000				.11 .132 .124 .99 .33
6074000				00 .484 .421 .476 1000 .106
6073000		300 	365 .365 .181 .326 .326 .326 .292 .441 .441 .71 .93.43 .215 .215 .215 .215 .215 .215 .226 .645 600 .0	.432 .302 .284 .681 .394 .344
6072000	•196 •248	.93 .86 .92 .107 .169	•122 •29 •813 •62 600 •83 •165 •1112 509898 ••••••••••••••••••••••••••••••••••	tory Group
	.175 .122 .143 .271 .96	142	•600 •61 •78 •78 •70 •218 •10000 •10000 •10000 •10000 •10000 •10000 •10000 •10000 •10000 •10000 •10000 •10000 •10000 •10000 •10000 •10000	
6071000	•110 _{•145} •158 •138 •145	.177 $.77$ $.113.117$ $.128$ $.190$ $.81$ $.704$.117 .108 .126 .364 600 1000 .755 .144 .444 .642 1000 .19888 .1988 .1988 .1988 .19888 .1988	
	•125 •179 102 501577 •115 •42	501731 .414 84 .350	472 .550 .857 .283 .681 .760 .928 .389 .945 .678	•137
6070000	•47 •92 •51 •98 •7 • ⁶⁷ •151 •70 •149 •60	•52 70 •45	•520 •669 •659 •594 431 •604 •158	.71 .300
	•82 •106 •84	•107 •57 • ³¹ •49 • ⁸⁸	•109 •104 •159 ⁴⁴ •111 •49 •443 •108 •396 •52 •138 •121 •177	•97 •80 •281
6069000	903000	000000000000000000000000000000000000000	605000	

BLUE PE	EARI
DAVI ominec.	DSON A MINII
Zn	GEO(
SCALE: 1:12,500	DATE:
BCGS: 93L.073, 074, 084	DRAWN
UTM GRID: ZONE 9 NAD8	

0	200	400	600	800	1000
	S	CALE ((metre	s)	

BLUE PE	EARI
DAVI ominec	DSON A MINII
Au, Mo	and
SCALE: 1:12,500	DATE:
BCGS: 93L.073, 074, 084	DRAWN
UTM GRID: ZONE 9 NAD8	3

0	200	400	60	0 80) O C	1000
	S	CALE	(met	res)		

4.0 CONCLUSIONS AND RECOMMENDATIONS

Five multi-element soil anomalies were identified and related to a pattern of mineral zoning centered roughly on the Davidson porphyry molybdenum system on Hudson Bay Mountain.

Anomalies 1 and 2 returned significant Au values in soils. These areas will require further investigation, with Au as the main element of interest. Further work will also be required to better define and possibly extend the other three multi-element anomalies.

Geological field assessments should be conducted, taking into account not only the present work but also previous geochemical work. Follow-up procedures may vary from site to site, but are expected to include additional soil and rock geochemical sampling, mapping and prospecting.

5.0 REFERENCES

Atkinson, D., 1995. The Glacier Gulch (Hudson Bay Mountain or Yorke-Hardy Porphyry Molybdenum-Tungsten Deposit, West-Central British Columbia, *in* Schroeter, T.G., ed., Porphyry Deposits of the Northwestern Cordillera of North America: Canadian Institute of Mining, Metallurgy and Petroleum, pages 704-707.

Bright, M.J. and Jonson, D.C., 1976. Glacier Gulch (Yorke-Hardy), *in* Sutherland Brown, A., ed., Porphyry Deposits of the Canadian Cordillera: Canadian Institute of Mining and Metallurgy, Special Volume 15, pages 455-461.

Carter, N.C., 1981. Porphyry Copper and Molybdenum Deposits West-Central British Columbia: B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 64, 150 pages.

Crawford, M.L., Crawford, W.A. and Lindline, J., 2005. 105 Million Years of Igneous Activity, Wrangell, Alaska, to Prince Rupert, British Columbia: Canadian Journal of Earth Sciences, v. 42, pages 1097-1116.

Davidson, D.A., 1968. Geochemical Report on the "Kem" Group Claims, Assessment Report No 01730: Climax Molybdenum Corporation of B.C. Ltd., 64 pages.

Davidson, D.A., 1970. Geochemical Report on the Alpha and Beta Group Claims, Assessment Report No. 02245: Climax Molybdenum Corporation of B.C. Ltd., 51 pages.

Davidson, D.A., 1987. Geochemical Report on the Zeta Group Claims, Assessment Report No. 16491: Climax Molybdenum Corporation of B.C. Ltd., 28 pages.

Davidson, D.A., 1990. Geochemical Report on the Omega Group Claims, Assessment Report No. 19569: Climax Molybdenum Corporation of B.C. Ltd., 37 pages.

Davidson, D.A., 1990. Geochemical Report on the Omega Group Claims, Assessment Report No. 20797: Climax Molybdenum Corporation of B.C. Ltd., 28 pages.

Davidson, D.A., 1991. Geochemical Report on the Omega Group Claims, Assessment Report No. 21743: Climax Molybdenum Corporation of B.C. Ltd., 37 pages.

Environment Canada, 2007, http://www.climate.weatheroffice.ec.gc.ca/climate_normals/results_e.html?StnID=487&a utofwd=1

Gabrielse, H. and Yorath, C.J., 1991. Tectonic Synthesis, *in* Gabrielse H. and Yorath C.J., eds., Geology of the Cordilleran Orogen in Canada: Geological Survey of Canada, Geology of Canada, no.4, pages 677-705.

Jones, R.H.B., 1926. Geology and Ore Deposits of Hudson Bay Mountain, Coast District, B.C.: Geological Survey, Department of Mines, Canada, Summary Report, 1925, Part A, pages 120A-143A.

Kerr, F.A., 1937. Hudson Bay Mountain, British Columbia: Economic Geology, v. 32, pages 579-588.

Kindle, E.D., 1954. Mineral Resources, Hazelton and Smithers Areas, Cassiar and Coast Districts, British Columbia: Geological Survey of Canada, Memoir 223, 148 pages.

Kirkham, R.V., 1969. A Mineralogical and Geochemical Study of the Zonal Distribution of Ores in the Hudson Bay Mountain Range, British Columbia: Unpublished Ph.D. dissertation, University of Wisconsin, Wisconsin, 152 pages.

Leach, W.W., 1909. The Bulkley Valley and Vicinity: Geological Survey Branch, Department of Mines, Canada, Summary Report, 1908, pages 41-45

Massey, N.W.D., MacIntyre, D.G., Desjardins, P.J. and Cooney, R.T., 2005. Digital Map of British Columbia: B.C. Ministry of Energy and Mines, Geofile 2005-2.

Minfile, 2007, http://minfile.gov.bc.ca/ 93L 088 and 93L 089.

Souther, J.G., 1991. Volcanic Regimes, *in* Gabrielse H., and Yorath, C.J., eds., Geology of the Cordilleran Orogen in Canada: Geological Survey of Canada, Geology of Canada, no.4, pages 457-490.

Struik, L.C. and MacIntyre, D.G., 2001. Introduction to the Special Issue of Canadian Journal of Earth Sciences: The Nechako NATMAP Project of the central Canadian Cordillera: Canadian Journal of Earth Sciences, v.38, pages 485-494.

Tipper, H.W., 1976. Smithers Map Area, British Columbia: Geological Survey of Canada, O.F. 351 (geological map).

Tipper, H.W. and Richards, T.A., 1976. Jurassic Stratigraphy and History of North-Central British Columbia: Geological Survey of Canada, Bulletin 270, 73 pages.

Appendix A

Sample Listing

Note: To detemine the UTM location of samples add "60" to each Easting and Northing: For example, 2618E 69202N becomes 602618E 6069202N.

Soil Samples:

Line	East	North	Colour	Depth	Comments
69200 N	2618	69202	medium greyish-brown	40	pebbles to clay
	2794	69195	greyish-brown	30	
	3000	69215	medium greyish-brown	40	rocky
	3200	69189	light brownish-grey	20	rocky
	3377	69260	medium grey-brown	20	sandy, pebbly
	3450	69115	greyish-brown	25	
	3654	69200	medium greyish-brown	5	mud
	3832	69202	medium brown	40	rusty, clayey
	3901	69166	brown	5	silt
	4071	69208	dark brownish grey	40	partly rusty
	4164	69191	medium brown	30	
	4398	69197	medium brown	20	
	4497	69202	rusty grey	30	rocky clay
	5000	69200	red-brown	15	
	5230	69200	red-brown	15	
	5400	69200	red-brown	20	
69400 N	2598	69400	medium brown	35	
	2790	69405	medium grey-brown	35	clay to pebbles, rocky
	3000	69400	medium brown	25	sandy with angular pebbles
	3403	69390	grey-brown	20	
	3600	69410	grey-brown	30	
	3820	69425	grey	30	
	3975	69400	grey-brown	15	
	4203	69418	grey-brown	20	
	4390	69423	grey-brown	20	
	4602	69370	red-brown	30	
	4850	69400	red-brown	15	
	5000	69400	red-brown	15	
	5200	69400	grey	30	clay
	5400	69400	grey	25	
69600 N	2814	69641	maroon	20	
	3000	69685	maroon	20	
	3200	69600	grey	20	
	3393	69610	maroon	20	
	3626	69610	medium grey	30	
	3800	69606	medium grey	40	gravelly
	3896	69603	dark grey	50	clay with boulders
	4020	69600	dark grey to dark brown	40	clay with boulders
	4202	69601	light brown	30	pebbly
	4397	69600	light grey	30	gravelly
	4800	69600	red-brown	20	
	5000	69580	red-brown	15	
	5200	69600	red-brown	30	

Line	East	North	Colour	Depth	Comments
	5208	69600	red-brown	15	
	5400	69600	red-brown	20	
69800 N	2600	69815	red-brown	20	
	2800	69800	red-brown	20	
	3000	69800	red-brown	30	
	3200	69800	medium brown	25	
	3395	69796	rusty brown	20	rocky
	3624	69802	medium brown	30	sandy, few pebbles
	3783	69795	medium greyish brown	20	minor rust
	3911	69806	light greyish brown	55	few rocks
	4106	69784	medium brownish-grey	30	sandy with pebbles
	4402	69838	medium brownish-grey	40	
	4440	69865	dark brownish-grey	5	
	4593	69840	medium brownish-grey	5	silt
	4603	69846	medium brownish-grey	5	silt with angular pebbles
	5000	69800	brown	40	
	5383	69825	brown	5	
70000 N	2600	70000	brown	15	
	2800	70000	brown	20	
	3000	70000	red-brown	10	
	3200	70000	red-brown	20	
	3375	70000	red-brown	20	
	3600	70000	red-brown	20	
	4398	70097	medium greyish-brown	10	
	4402	70005	medium brownish-grey	50	
	4594	69988	medium brown	45	sandy
	5200	70000	red-brown	30	
	5400	70000	red-brown	25	
70200 N	2600	70200	black	30	
	2800	70200	red-brown	15	
	3000	70200	red-brown	15	
	3200	70200	red-brown	20	
	3400	70115	red-brown	15	
	4401	70204	medium brownish-grey	30	
	4603	70201	medium brown	40	silty
	4800	70200	brown	50	sandy
	5400	70200	brown	30	
70400 N	2581	70439	medium grey-brown	10	
	2519	70497	brown	5	silt
	2600	70400	brown	10	
	2793	70400	medium rusty brown	30	
	2960	70385	medium brown-grey	30	rocky
	3200	70400	grey	70	clay
	3382	70406	brown	5	silt
	4196	70419	brown	5	silt
	4405	70396	medium brown	10	

Line	East	North	Colour	Depth	Comments
	4600	70391	medium brown	20	rocky
	4800	70400	light brown	60	
70600 N	2513	70506	brown	5	silt
	2600	70600	medium brown	30	sandy, gravelly
	3000	70600	dark brown	40	
	4200	70562	brown	5	silt
	4203	70615	medium brown	40	
	4382	70600	rusty brown	20	
	4600	70600	red-brown	25	
	4800	70600	red-brown	40	
	5000	70600	red-brown	20	gravelly
70800 N	2700	70800	red-brown	10	
	2780	70796	brown	5	silt
	3004	70702	brown	5	silt
	3007	70790	brown	5	silt
	3198	70804	rusty medium brown	90	sandy, pebbly
	3425	70810	medium brown	15	
	3475	70825	brown	5	silt
	3600	70800	brown	5	silt
	3780	70790	red-brown	20	
	4000	70803	rusty brown	65	sandy with pebbles
	4103	70783	brown	20	silt, sand, gravel
	4192	70788	medium brown	65	rocky
	4402	70792	medium brown	45	
	4600	70800	medium brown	20	
	4815	70825	brown	5	silt
	4975	70750	brown	5	silt
71000 N	2600	71000	red-brown	30	
	2716	70992	brown	5	silt
	2800	71000	medium brown	20	
	3000	71000	medium brown	40	silt, sand & pebbles
	3241	71022	medium brown	30	
	3400	71000	red-brown	40	
	3575	71000	brown	40	
	3650	70975	brown	10	
	3750	70975	brown	5	
	3800	71000	red-brown	25	
	4000	71000	red-brown	40	
	4200	71015	red-brown	40	
	4400	71000	red-brown	20	sandy
	4613	71001	red-brown	20	
	4800	71000	rusty red-brown	30	
	5000	71025	red-brown	30	
71200 N	2587	71220	brown	5	silt
	2800	71190	brown	30	rocky
	3000	71200	red-brown	30	

Line	East	North	Colour	Depth	Comments
	3200	71200	dark brown	30	
	3400	71150	brown	50	
	3602	71160	brown	5	
	3800	71175	red-brown	15	
	4000	71200	brown	20	
	4200	71200	red-brown	30	rocky
	4400	71200	red-brown	30	
	4600	71200	red-brown	15	
	4800	71200	red-brown	15	
	4970	71185	brown	10	
	5062	71100	brown	5	
71400 N	2409	71392	brown	10	
	2650	71445	brown	10	
	2800	71400	brown	5	silt
	3000	71400	red-brown	15	
	3200	71400	brown	15	
	3400	71400	brown	15	
	3617	71444	brown	30	
	3666	71384	brown	5	silt
	3826	71423	red-brown	20	
	4000	71400	red-brown	20	
	4200	71450	red-brown	20	
	4400	71415	red-brown	40	
	4600	71400	brown	5	
	4810	71403	red-brown	30	
	4904	71400	red-brown	20	
	4936	71400	red-brown	20	
71600 N	2428	71600	brown	5	silt
	2610	71590	red-brown	15	clayey
	2800	71600	red-brown	40	
	2900	71625	brown	5	silt
	3000	71610	red-brown	20	
	3200	71620	red-brown	40	
	3410	71575	brown	5	
	3450	71570	red-brown	10	
	3475	71575	grey	50	clay
	3700	71600	brown	5	silt
	3875	71575	brown	5	silt
	4000	71600	light brown	15	
	4200	71600	brown	30	rocky
	4400	71600	red-brown	20	
	4600	71600	red-brown	25	
	4750	71655	brown	5	
	4820	71600	red-brown	15	
	4900	71585	red-brown	15	
71800 N	3020	71800	brown	5	silt
710001	3200	71800	red-brown	15	on
	5200	1000	.54 5:5011	10	

Line	East	North	Colour	Depth	Comments
	3405	71777	brown	15	
	3600	71800	brown	10	
	3800	71825	brown	10	
	3950	71850	brown	5	silt
	4175	71820	brown	10	silt
	4400	71800	brown	30	
	4587	71800	dark brown	10	
	4758	71760	brown	5	silt
72000 N	6975	71988	dark brown	10	
	7170	72013	medium brown	15	
	7385	71991	medium brown	5	
	7598	71999	grey-brown	5	
	7761	71987	medium grey-brown	5	
	7912	72002	medium brown	5	silt
	8000	72002	medium brown	10	
	8104	72007	medium brown	10	
	8204	72008	brown	10	
	8400	72000	medium brown	10	
72200 N	4598	72202	grey	20	till
	4805	72197	brown	15	
	5006	72199	brown	20	rocky
	7253	72202	dark brown	10	
	7412	72122	medium brown	10	
	7528	72200	dark brown	10	
	7714	72272	medium brown	15	
	7872	72167	medium brown	20	
	7980	72166	medium brown	15	
	8023	72222	medium brown	10	
	8219	72203	medium brown	10	
	8251	72131	medium brown	10	
	8400	72200	medium brown	10	
74400 N	4411	72407	grey-brown	30	till
	4601	72398	grey	20	gravelly till
	4802	72400	brown	30	rocky
	4973	72380	rusty brown	20	rocky
	6504	72471	dark brown	10	
	7188	72427	brown	5	silt
	7195	72413	brown	20	
	7317	72380	brown	15	
	7518	72352	medium brown	5	silt
	7715	72395	brown	25	
	7831	72320	brown	15	
	7923	72491	brown	10	
	7947	72462	brown	20	
	8089	72428	medium brown	20	
	8201	72383	brown	30	
	8331	72351	brown	20	

Line	East	North	Colour	Depth	Comments
	8370	72492	brown	15	
	8418	72391	brown	25	
72600 N	4401	72598	brown	25	rocky
	4593	72602	brown	25	rocky
	4701	72501	dark brown	30	extremely rocky
	4793	72621	brown	10	
	4875	72490	brown	10	
	5933	72654	medium brown	10	
	6121	72650	brown	10	rusty boulders with sulphides
	6164	72592	brown	10	
	6324	72579	medium brown	5	
	6433	72514	light brown	10	
	6643	72535	dark brown	10	
	7028	72593	medium brown	10	angular gravel with rusty cobbles
	7019	72597	medium brown	10	angular gravel with rusty cobbles
	7284	72612	medium brown	10	angular gravel in talus
	7294	72549	brown	5	in talus
	7360	72569	medium brown	3	
	7424	72685	medium brown	10	
	7470	72547	brown	5	in talus
	7524	72587	medium brown	10	talus
	7590	72599	medium brown	10	talus
	7698	72687	medium brown	5	
	7807	72602	brown	5	frost boil in talus
	7813	72592	medium brown	10	
	7893	72702	brown	10	in talus
	8134	72579	brown	5	frost boil in talus
	8226	72599	brown	5	frost boil in talus
	8272	72677	brown	5	in talus
	7369	72619	brown	5	frost boil in talus
72800 N	4520	72880	dark brown to black	2	
	4795	72803	medium brown	15	
	4995	72780	brown	20	
	5411	72851	rusty medium brown	10	
	5496	72814	rusty brown	10	
	5646	72919	dark brown	10	
	5849	72863	medium brown	15	
	5901	72783	medium brown	10	
	5973	72830	dark brown	10	
	5985	72836	brown	15	
	6000	72800	brown	10	
	6173	72790	rusty red-brown	20	a a la la la casila
	6295	72800	rusty	20	pebbly silt
	6405	72812	brown	10	froat bail
	6568 6668	72818	brown	10 10	frost boil
	6668 6766	72800	brown	10 10	below pyritic quartz vein
	6766 6867	72800 72800	brown	10 5	
	0007	12000	brown	5	

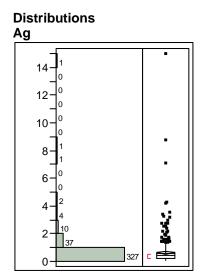
Line	East	North	Colour	Depth	Comments
	7000	72900	brown	5	frost boil
	7004	72800	brown	15	
	7144	72788	brown	15	
	7150	72940	brown	10	
	7160	72900	brown	5	
	7284	72821	brown	5	
	7324	72905	brown	5	
	7467	72827	brown	10	
	7601	72742	brown	5	
	7654	72910	brown	10	in talus
	7804	72840	brown	5	in talus
	7954	72792	brown	5	in talus
	8108	72793	brown	5	in talus
	8231	72897	brown	5	in talus
	8351	72796	rusty brown	10	
73000 N	4403	73038	dark brown to black	5	mud
	4794	72936	medium brown	15	bouldery
	4798	72936	medium brown	15	
	4988	72969	medium brown	20	
	5015	73144	dark brown	2	
	5215	73008	medium brown	15	
	5400	73000	medium brown	15	
	5600	73000	medium brown	20	
	5800	73000	dark brown	40	
	6000	73000	brown	30	
	6200	73000	grey-brown	30	
	6400	73000	medium brown	10	alluvial fan
	6550	72995	medium brown	20	
	6800	72982	medium brown	15	
	6915	72990	brown	20	
	7012	73089	grey-brown	15	
	7407	73122	brown	10	
	7526	72980	brown	5	in talus
	7582	73167	brown	10	
	7744	73091	brown	5	in talus
	7875	73019	brown	5	in talus
	7995	72970	brown	5	in talus
	8130	72989	brown	5	in talus
	8238	73092	brown	5	in talus
	8346	72963	brown	5	in talus
	8392	73101	brown	5	in talus
	8553 8667	73044	brown	5 5	in talus in talus
	8667 8784	73030 72973	brown	5 5	
	8764 8960	72973	brown brown	5 5	in very coarse talus in talus
	8960 9100	72939 73096	rusty brown	5 5	in laius
	9100 9159	72945	brown	5 5	in talus
	9139 9240	73067	rusty brown	5	in talus
	9240 9373	72938	brown	5	in talus
	0010	12000		0	

Line	East	North	Colour	Depth	Comments
	9491	73039	rusty brown	5	
	9615	73020	brown	10	
	9741	73004	brown	10	pebbly
	9862	72984	brown	5	
	10025	72973	brown	5	
73200 N	4397	73202	dark brown	5	silty
	4733	73210	light to medium brown	30	
	5211	73200	dark brown	2	
	5400	73200	dark brown	5	stream cut bank
	5565	73204	dark brown	5	
	5798	73203	dark brown	5 5	
	5986 6147	73190 73189	dark brown dark brown	э З	
	6541	73234	medium brown	10	
	6805	73121	medium brown	5	
	7439	73250	brown	10	
	7994	73135	brown	5	
	7998	73283	brown	5	in talus
	8150	73247	brown	5	in talus
	8317	73283	brown	5	
	8410	73250	brown	5	
	8524	73236	brown	5	
	8641	73205	brown	5	
	8787	73202	brown	5	
	8905	73158	brown	5	
	9012	73116	brown	5	
73400 N	5600	73400	red-brown	20	
	5800	73400	brown	30	
	6000	73400	brown	20	
	6215	73420	light brown, fine	5	frost boil
	6394	73413	brown	5	frost boil, talus slope
	6623	73444	brown	10	gravelly
	6749	73439	brown	10	frost boil
	6861	73436	rusty brown	10	
	6914	73374	brown	10	frost boil
	7076	73426	red-brown	5	frost heave
	7230	73486	brown	5	telue
	7335 7615	73507 73410	rusty brown	10 10	talus
	7815	73410	red-brown brown	10 5	frost boil
	8009	73400	brown	5	1051 001
	0009	73407	brown	5	
73600 N	5998	73592	dark brown	10	
	6068	73558	dark brown	10	rocky
	6171	73536	dark brown	5	talus
	6245	73538	brown	5	gravelly
	6371	73545	dark brown	10	
	6603	73549	brown	15	talus

Line	East	North	Colour	Depth	Comments
	6756	73513	brown	10	in taken
	7561	73693	brown	5	in talus
	7600 9255	73585 73556	rusty brown brown	10 10	
	9255 10106	73616	brown	5	talus fines
	10268	73610	brown	5	talus fines
	10373	73689	brown	10	
73800 N	6040	73775	brown	10	talus
	6100	73790	brown	5	
	7173	73882	rusty brown	5	
	7525	73863	rusty brown	5	in talus
	7733	73714	brown	10	
	9111	73722	brown	5	talus fines
	9430	73861	brown	10	
	9616	73775	brown	10	
	9764	73759	brown	10	rocky
	9891	73723	brown	10	
	10026 10132	73710 73811	brown	10 5	talus fines
	10132	73835	brown brown	5 5	talus fines
	10453	73792	brown	10	
74000	5505	73989	medium brown	5	silty
	5810	73976	brown	10	rocky
	5880	74045	brown	5	
	5900	73900	brown	5	frost boil
	5976	73916	medium brown	5	frost boil
	6152	73919	medium brown	5	gravelly, in talus
	6200	73900	brown	10	
	6350	73940	brown	10	
	6390	74015	medium brown	5	gravelly, in talus
	6450 6510	73995	brown	10	
	6510 6505	74016	medium brown	5 10	
	6595 6600	74060 74000	brown brown	10	
	7046	74000 74006	brown	5	
	7256	73984	rusty brown	5	in talus
	7466	74054	rusty brown	10	in taluo
	7619	74005	very rusty brown	10	
	9314	73957	brown	5	talus fines
	9878	74043	brown	5	
	9980	73991	brown	5	in talus
	10113	73928	brown	5	talus fines
	10136	74078	brown	5	talus fines
	10337	73939	brown	5	talus fines
	10338	74063	brown	5	talus fines
74200 N	5926	74195	brown	5	
. 1200 14	7317	74120	brown	5	

Line	East	North	Colour	Depth	Comments
	9579	74178	rusty brown	5	talus fines
	9686	74153	yellow-brown	5	
	9805	74151	brown	5	talus fines
	9922	74144	brown	5	
	10084	74185	brown	5	talus fines
	10293	74229	brown	10	talus fines
74400 N	5600	74371	brown	5	talus fines
	5674	74455	brown	10	
	6046	74371	medium brown	5	talus
	6130	74425	brown	10	
	6048	74449	brown	10	talus gravel
74600 N	5566	74320	brown	10	
	5586	74599	brown	10	
	5771	74524	brown	5	
	5875	74533	medium brown	5	
	5891	74619	brown	5	rocky
	5950	74646	brown	5	
	6050	74674	brown	10	
	6140	74600	brown	10	
	6150	74530	brown	10	
74800 N	5603	74699	brown	5	decomposed rock
	5681	74784	brown	5	
	5763	74846	brown	5	slightly rusty
	5883	74769	brown	5	very rocky

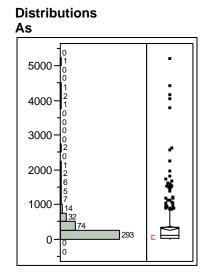
Rock Samples:


Easting	Northing	Description
4024	71448	able itized velocies
4924		chloritized volcanics
9490	73039	rhyolite, rusty on fractures
7235	74133	andesite
7800	73600	rhyolite
9370	73056	silicified volcanics, rusty on fractures
7700	73800	andesite
9731	73368	silicified siltstone
7195	72413	rotten limonitic rock
6668	72800	pyritic quartz veins in tuff
7428	73577	galena, sp, cp, aspy in quartz veins
5904	72780	tet, py, cp, aspy in quartz veins in tuff
5901	72782	tet, py, cp, aspy in quartz veins in tuff
5985	72836	quartz veins with sulphides in altered andesite
6425	73125	tet, py, po, aspy in quartz veins
6425	73150	tet, py, po, aspy in quartz veins
6425	73175	tet, py, po, aspy in quartz veins

Appendix B

Statistical Data

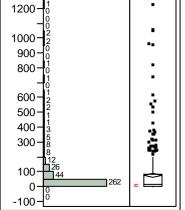
Frequency Distribution Histograms, Outlier Box Plots, Quantiles, Moments and Selected Scatterplots for Elements Plotted on Geochemical Maps


Note: The y axis displays analytical results in ppm for the element charted except for Au which is shown in ppb and Fe which is shown in percent. The x axis displays sample frequency; counts in each bar interval are shown on top of the bar. Samples recorded as < (less than) or > (greater than) were deleted, as were the following outliers that appeared to exert undue influence; Ag 17.4, As 9257, Au 6573 and 4272, Bi 305 and 267, Mn 9851, Mo 316.2, Pb 543.6, Sb 325.

100.0%	maximum	14.900
99.5%		9.196
97.5%		2.980
90.0%		1.260
75.0%	quartile	0.600
50.0%	median	0.400
25.0%	quartile	0.200
10.0%		0.100
2.5%		0.100
0.5%		0.100
0.0%	minimum	0.100

Moments

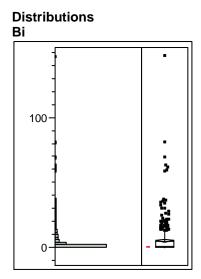
Mean Std Dov	0.637859
Std Dev	1.0884701
Std Err Mean	0.0556182
upper 95% Mean	0.7472152
lower 95% Mean	0.5285028
N	383
Sum Wgt	383
Sum	244.3
Variance	1.1847671
Skewness	7.9723363
Kurtosis	87.696377
CV	170.64431
N Missing	61


Quantiles

400.00/		5400.0
100.0%	maximum	5190.8
99.5%		4353.7
97.5%		1691.7
90.0%		737.0
75.0%	quartile	347.3
50.0%	median	121.5
25.0%	quartile	30.3
10.0%		8.0
2.5%		3.2
0.5%		2.0
0.0%	minimum	1.7

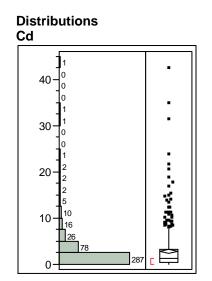
Moments

Mean	312.14376
Std Dev	575.94058
Std Err Mean	27.425742
upper 95% Mean	366.0455
lower 95% Mean	258.24203
N	441
Sum Wgt	441
Sum	137655.4
Variance	331707.56
Skewness	4.6854251
Kurtosis	28.369664
CV	184.51132
N Missing	3


Distributions Au 1300-0 1200-

Quantiles

100.0%	maximum	1221.3
99.5%		1064.2
97.5%		559.1
90.0%		206.1
75.0%	quartile	80.6
50.0%	median	17.0
25.0%	quartile	3.7
10.0%		1.3
2.5%		0.8
0.5%		0.5
0.0%	minimum	0.5


Mean	75.659948
Std Dev	157.92045
Std Err Mean	8.079913
upper 95% Mean	91.546753
lower 95% Mean	59.773143
Ν	382
Sum Wgt	382
Sum	28902.1
Variance	24938.868
Skewness	4.1739873
Kurtosis	20.790087
CV	208.72397
N Missing	62

100.0%	maximum	146.90
99.5%		78.16
97.5%		34.23
90.0%		13.40
75.0%	quartile	5.00
50.0%	median	1.15
25.0%	quartile	0.20
10.0%		0.10
2.5%		0.10
0.5%		0.10
0.0%	minimum	0.10

Moments

Mean Std Dev Std Err Mean	5.1771493 11.750882 0.5589324 6.2756516
upper 95% Mean	
lower 95% Mean	4.0786471
N	442
Sum Wgt	442
Sum	2288.3
Variance	138.08322
Skewness	6.2350828
Kurtosis	56.739079
CV	226.97591
N Missing	2

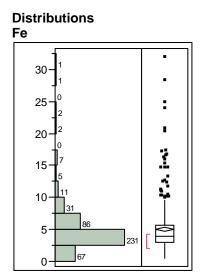
Quantiles

100.0%	maximum	42.500
99.5%		34.139
97.5%		14.788
90.0%		7.140
75.0%	quartile	3.275
50.0%	median	1.300
25.0%	quartile	0.400
10.0%		0.200
2.5%		0.100
0.5%		0.100
0.0%	minimum	0.100

Moments

Mean Std Dev	2.8532407 4.5109857
Std Err Mean	0.2170349
upper 95% Mean	3.2798192
lower 95% Mean	2.4266623
N	432
Sum Wgt	432
Sum	1232.6
Variance	20.348992
Skewness	4.1851728
Kurtosis	24.814542
CV	158.10042
N Missing	12

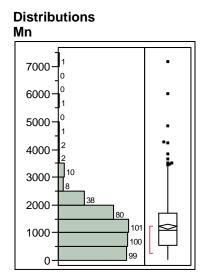
Distributions Cu 1300-1200 . 1100· . 1000-900-800-. 700· 1.000 600 500 12 400 300 200 100


Quantiles

0-

100.0%	maximum	1223.5
99.5%		966.2
97.5%		574.7
90.0%		281.7
75.0%	quartile	141.0
50.0%	median	51.1
25.0%	quartile	20.7
10.0%		9.5
2.5%		6.5
0.5%		4.7
0.0%	minimum	4.5

288


Mean	110.39077
Std Dev	149.10289
Std Err Mean	7.0761102
upper 95% Mean	124.29768
lower 95% Mean	96.48385
Ν	444
Sum Wgt	444
Sum	49013.5
Variance	22231.673
Skewness	2.9657492
Kurtosis	12.371417
CV	135.06827
N Missing	0

100.0%	maximum	31.940
99.5%		27.528
97.5%		16.148
90.0%		8.260
75.0%	quartile	5.673
50.0%	median	3.980
25.0%	quartile	3.015
10.0%		2.270
2.5%		1.555
0.5%		0.890
0.0%	minimum	0.510

Moments

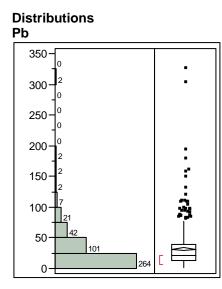
Mean Std Dev Std Frr Mean	4.9965766 3.6234561 0.1719616
upper 95% Mean	5.3345385
lower 95% Mean	4.6586147
N	444
Sum Wgt	444
Sum	2218.48
Variance	13.129434
Skewness	3.31914
Kurtosis	15.588275
CV	72.518775
N Missing	0

Quantiles

100.0%	maximum	7137.0
99.5%		5725.5
97.5%		3409.5
90.0%		2145.0
75.0%	quartile	1686.0
50.0%	median	1105.0
25.0%	quartile	539.0
10.0%		330.4
2.5%		180.4
0.5%		85.4
0.0%	minimum	37.0

Moments

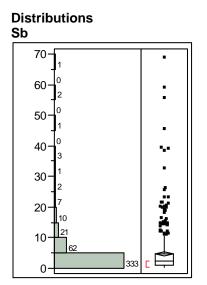
Mean	1219.5034
Std Dev	863.49394
Std Err Mean	41.025835
upper 95% Mean	1300.1333
lower 95% Mean	1138.8734
N	443
Sum Wgt	443
Sum	540240
Variance	745621.78
Skewness	1.8524459
Kurtosis	7.3169096
CV	70.807014
N Missing	1


Distributions Мо 1 40 • . 5 30. ÷ 20 ų, 10. 141

Quantiles

0-

100.0%	maximum	43.100
99.5%		41.496
97.5%		26.090
90.0%		9.980
75.0%	quartile	4.900
50.0%	median	2.800
25.0%	quartile	1.600
10.0%		0.800
2.5%		0.500
0.5%		0.300
0.0%	minimum	0.300


Mean	4.769526
Std Dev	6.4325597
Std Err Mean	0.3056201
upper 95% Mean	5.3701751
lower 95% Mean	4.1688768
Ν	443
Sum Wgt	443
Sum	2112.9
Variance	41.377825
Skewness	3.3475896
Kurtosis	12.814188
CV	134.86791
N Missing	1

100.0%	maximum	324.90
99.5%		278.27
97.5%		109.78
90.0%		67.50
75.0%	quartile	39.20
50.0%	median	20.50
25.0%	quartile	12.60
10.0%		8.20
2.5%		6.10
0.5%		4.58
0.0%	minimum	2.30

Moments

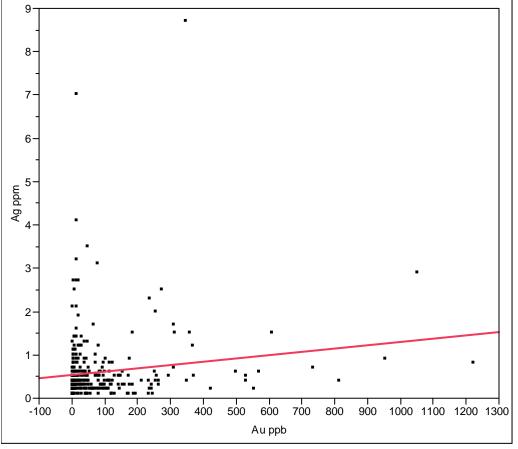
Mean	31.807223
Std Dev	33.710299
Std Err Mean	1.6016247
upper 95% Mean	34.954969
lower 95% Mean	28.659478
N	443
Sum Wgt	443
Sum	14090.6
Variance	1136.3843
Skewness	3.8822805
Kurtosis	24.009285
CV	105.98316
N Missing	1

Quantiles

100.0%	maximum	68.800
99.5%		57.974
97.5%		22.900
90.0%		10.860
75.0%	quartile	4.900
50.0%	median	2.400
25.0%	quartile	1.100
10.0%		0.500
2.5%		0.300
0.5%		0.222
0.0%	minimum	0.200

Moments

Mean	4.7069977
Std Dev Std Err Mean	7.5070146 0.356669
upper 95% Mean	5.4079756
lower 95% Mean	4.0060198
N	443
Sum Wgt	443
Sum	2085.2
Variance	56.355268
Skewness	4.4745143
Kurtosis	26.373599
CV	159.48626
N Missing	1


Distributions Zn . 3500. . . 3000 . х. -2500 • 2000 1500 1000 500 0-

Quantiles

maximum	3654.0
	3441.3
	2076.1
	1063.0
quartile	633.8
median	306.0
quartile	122.0
	74.5
	41.0
	26.2
minimum	18.0
	quartile median quartile

Mean	482.36486
Std Dev	544.48698
Std Err Mean	25.840208
upper 95% Mean	533.14949
lower 95% Mean	431.58024
N	444
Sum Wgt	444
Sum	214170
Variance	296466.07
Skewness	2.5840912
Kurtosis	8.6800999
CV	112.87866
N Missing	0

Bivariate Fit of Ag By Au

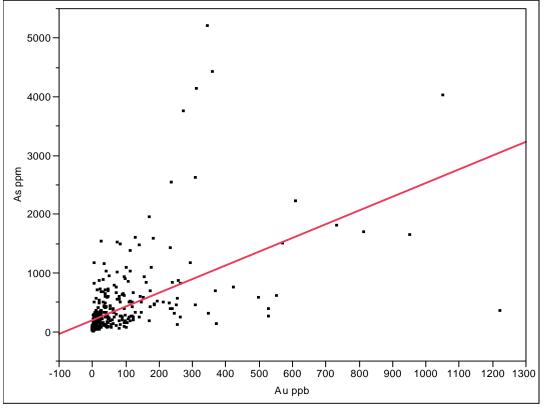
Linear Fit

Linear Fit Ag = 0.547572 + 0.0007569*Au

Summary of Fit

RSquare RSquare Adj	0.019614 0.016764
Root Mean Square Error	0.796544
Mean of Response	0.60578
Observations (or Sum Wgts)	346

Analysis of Variance


Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	4.36670	4.36670	6.8823
Error	344	218.26174	0.63448	Prob > F
C. Total	345	222.62844		0.0091

Multivariate Correlations

Ag	Au
1.0000	0.1401
0.1401	1.0000
	1.0000

98 rows not used due to missing or excluded values or frequency or weight variables missing, negative or less than one.

Bivariate Fit of As By Au

-----Linear Fit

Linear Fit

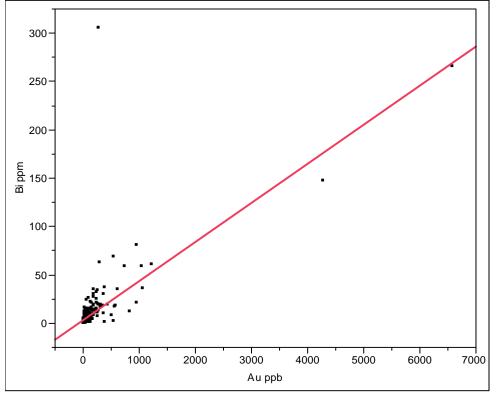
As = 192.22017 + 2.3395385*Au

Summary of Fit

RSquare	0.304319
RSquare Adj	0.302478
Root Mean Square Error	507.4978
Mean of Response	357.8503
Observations (or Sum Wgts)	380

Analysis of	Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	42587137	42587137	165.3522
Error	378	97355422	257554.03	Prob > F
C. Total	379	139942559		<.0001
Parameter I	Estimates			

	Sumates			
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	192.22017	29.04621	6.62	<.0001
Au	2.3395385	0.181939	12.86	<.0001


Multivariate

Correlations

	As	Au
As	1.0000	0.5517
Au	0.5517	1.0000

64 rows not used due to missing or excluded values or frequency or weight variables missing, negative or less than one.

Bivariate Fit of Bi By Au

Linear Fit

Bi

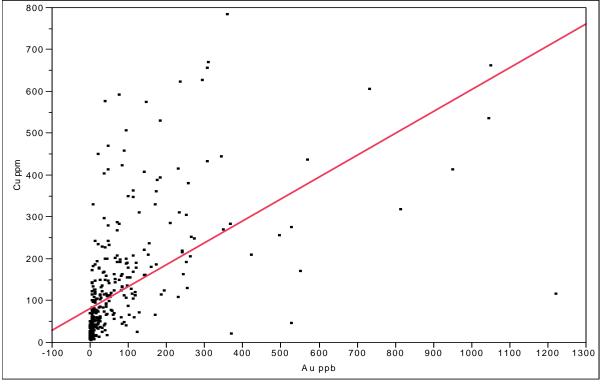
Linear Fit Bi = 3.2345863 + 0.0404508*Au

Summary of Fit

RSquare	0.525476
RSquare Adj	0.524234
Root Mean Square Error	16.34096
Mean of Response	7.421615
Observations (or Sum Wgts)	384

Analysis of	Variance		
Source	DF	Sum of Squares	
Model	1	112957.06	
Error	382	102004.25	
C. Total	383	214961.31	

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	3.2345863	0.858385	3.77	0.0002
Au	0.0404508	0.001967	20.57	<.0001
Multivariate Correlations		Au	Bi	
Au	1.00	00	0.7249	


0.7249

1.0000 60 rows not used due to missing or excluded values or frequency or weight variables missing, negative or less than one.

Mean Square 112957 267

F Ratio 423.0176 Prob > F <.0001

Bivariate Fit of Cu By Au

------Linear Fit

Linear Fit

Cu = 81.523276 + 0.5222442*Au

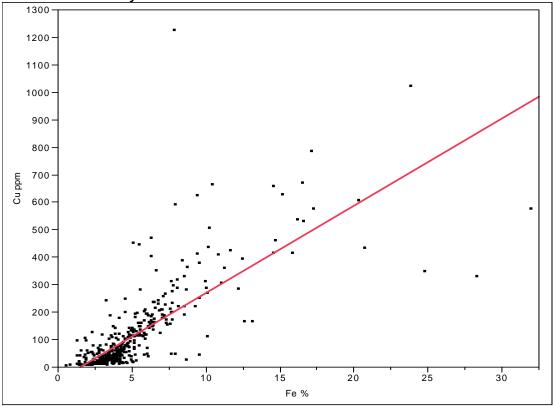
Summary of Fit

RSquare	0.318432
RSquare Adj	0.316629
Root Mean Square Error	114.1554
Mean of Response	119.0942
Observations (or Sum Wgts)	380

Analysis of	Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	2301406.9	2301407	176.6039
Error	378	4925893.2	13031	Prob > F
C. Total	379	7227300.1		<.0001

Parameter Estimates			
Term	Estimate	Std Error	t Ratio
Intercept	81.523276	6.502785	12.54
Au	0.5222442	0.039298	13.29

Multivariate Correlations


Cu	Au
1.0000	0.5643
0.5643	1.0000
	1.0000

64 rows not used due to missing or excluded values (including Cu >1000 ppm and Au>4000 ppb, which values appear to exert undue influence on the fit) or frequency or weight variables missing, negative or less than one.

Prob>|t| <.0001

<.0001

Bivariate Fit of Cu By Fe

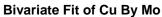
Linear Fit

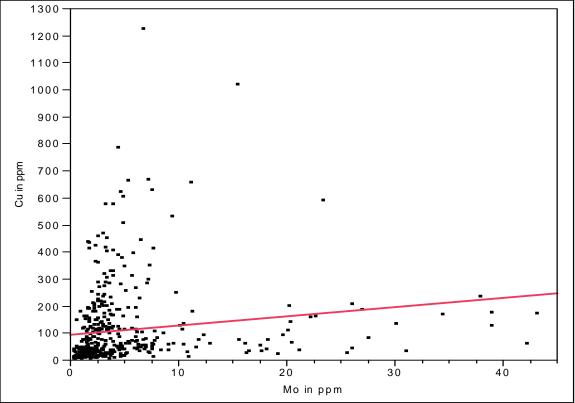
Linear Fit Cu = -48.41547 + 31.783009*Fe

Summary of Fit

RSquare	0.596573
RSquare Adj	0.595661
Root Mean Square Error	94.81107
Mean of Response	110.3908
Observations (or Sum Wgts)	444

Analysis of \	/ariance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	5875431.5	5875431	653.6144
Error	442	3973199.7	8989	Prob > F
C. Total	443	9848631.1		<.0001


Parameter Estimates


Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-48.41547	7.670095	-6.31	<.0001
Fe	31.783009	1.243181	25.57	<.0001

Multivariate

Correlations

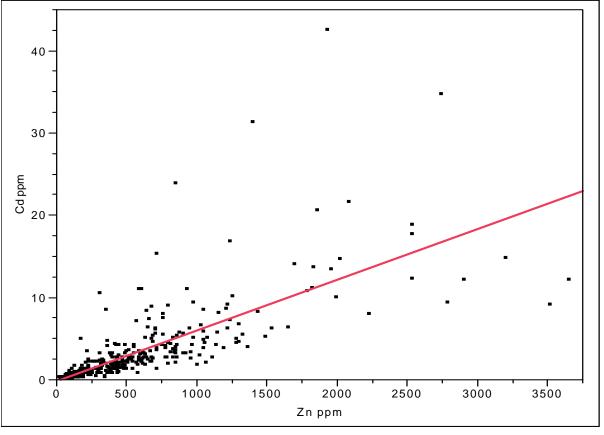
	Cu	Fe
Cu	1.0000	0.7724
Fe	0.7724	1.0000

Linear Fit

Linear Fit

Cu = 93.182981 + 3.4077048*Mo

. . .


Summary of Fit

RSquare	0.021964
RSquare Adj	0.019746
Root Mean Square Error	146.4392
Mean of Response	109.4361
Observations (or Sum Wgts)	443

Analysis of Var	iance				
Source	DF	Sum of Squ	lares	Mean Square	F Ratio
Model	1	212	380.1	212380	9.9037
Error	441	9456	995.1	21444	Prob > F
C. Total	442	9669	375.2		0.0018
Parameter Estir	nates				
Term	Esti	mate	Std Error	t Ratio	Prob> t
Intercept	93.18	2981	8.6649	10.75	<.0001
Мо	3.407	7048	1.082835	3.15	0.0018
Multivariate					
Correlations					
		Мо		Cu	
		1.0000		0.1482	
Мо		1.0000		0.1402	

1 row not used due to missing or excluded values or frequency or weight variables missing, negative or less than one.

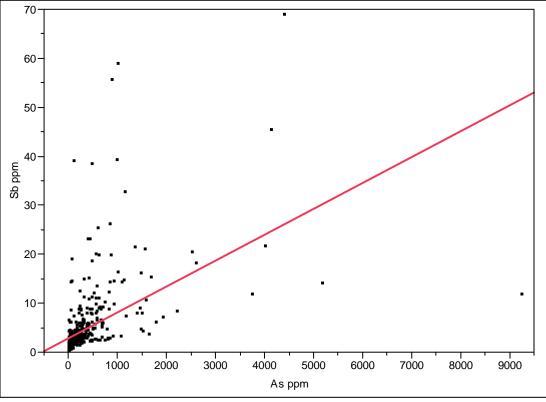
Bivariate Fit of Cd By Zn

Linear Fit

Linear Fit Cd = -0.191071 + 0.0061585*Zn

. . .

Summary of Fit


RSquare	0.558034
RSquare Adj	0.557006
Root Mean Square Error	3.002414
Mean of Response	2.853241
Observations (or Sum Wgts)	432

Analysis of	Variance			
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	4894.1861	4894.19	542.9245
Error	430	3876.2294	9.01	Prob > F
C. Total	431	8770.4155		<.0001

Multivariate Correlations		
	Cd	Zn
Cd	1.0000	0.7470
Zn	0.7470	1.0000

12 rows not used due to missing or excluded values or frequency or weight variables missing, negative or less than one.

Bivariate Fit of Sb By As

Linear Fit

Linear Fit Sb = 2.9184266 + 0.005277*As

Summary of Fit

0.254809
0.253115
6.464467
4.672398
442

Analysis of Varia Source Model Error C. Total		1838	Jares 7.317 7.306 4.623	Mean Squa i 6287.3 41.7	150.4527
Parameter Estim Term Intercept As	ates Estimat 2.918426 0.00527	6	Std Error 0.339107 0.00043	t Ratio 8.61 12.27	Prob> t <.0001 <.0001
Multivariate Correlations As Sb		As 1.0000 0.5048		Sb 0.5048 1.0000	

2 rows not used due to missing or excluded values or frequency or weight variables missing, negative or less than one.

Appendix C

Statement of Expenditures

Blue Pearl Mining Inc.

Soil sampling 2006: Expenses

Date	Helicopter	J. Hutter	A. L'Orsa	D. Ethier	Truck	Assays	Freight	Report 4 days	Maps 2 days
Sept 12	602.43	х	х	х					
Sept 28	716.08	х	х	х					
Oct 2	745.73	х	х	х					
Oct 4	644.08	Х	х	х					
Oct 6	830.98	х	х	х					
Oct 9	1173.18	Х	х	х					
Oct 10	960.47	х	х	х					
Oct 10	455.85	х	х	х					
Oct 11	1058.28		х	х					
Oct 12				х	40.60				
Oct 13	1058.28		х	х					
Oct 16			х	х	40.60				
Oct 17			х	х	40.60				
No. of day	s x Rate:	8 x \$500	12 x \$475	13 x \$300	3 x \$40.60	\$7,114.07	\$128.38	4 x \$500	2 x \$500
Subtotal:	\$8245.36	\$4000.00	\$5700.00	\$3900.00	\$121.80	\$7114.07	\$128.38	\$2000.00	\$1000.00
Summary:									
-	Highland H	elicopters:	helicopter		8245.36				
	J. Hutter:		wages		4000.00				
	A. L'Orsa:		wages		5700.00				
	D. Ethier:		wages		3900.00				
	D. Ethier:		truck		121.80				
	Acme Labs	:	assays		7114.07				
	Greyhound		freight		128.38				
	Report writi	ng:			2000.00				
	Map prepar	ation:			1000.00				
	Total:				\$32,209.61				

Three of 460 samples plotted ouside claim boundaries. The amount available to apply as work is $(457/460) \times 32,209.61 = 31,999.54$, of which 30,934.61 was applied as work.

Appendix D

Certificates of Analysis

PLE#	Мо	Cu	Pb		Ag	Ni	Со	Mn	Fe	729 As	U	Au	Th S	r	Cd	Sb	Bi	V	Ca	P	La ppm p	Cr	: Jim Hu Mg Ba % ppm	Ti	B	A1 X	Na X	K	W Hg		T1 ppm	-	Ga Se ppm ppm	Sample gm
8E 69202N 44E 69195N 10E 69215N 10E 69189N 17E 69260N	2.4 .8 .5	ppm 13.6 41.1 13.2 10.5 14.8	6.1 19.0 7.6 6.5 7.6	80 51 57	<.1 .2 .1 <.1	8.6 18.5 10.1 9.4 14.7	20.9 9.2 5.3	556 333	5.83 2.89 2.35	6.1	.5 2.6 .9 .4	<.5 1 <.5 1 <.5 1 <.5 1	.6 2	3 8 25	.1 .1 <.1 <.1 .1 .1	.5 .5 .4 .4	.1 .2 1 .1 .1	56 04 64 44	.43 .47 .19 .15	.053		16 29 21 14	.31 141 .66 219 .32 145 .37 109 .53 234	.099 .025 .040 .054 .027	2 2 2 <1	1.00 2.33 1.41 1.35 2.21	.086 .233 .069 .048 .041	.04	.1 .02 .1 .06 .1 .05 .1 .02 .1 .02	5.0	.1 .1 .1 .1	<.05 .06 <.05	3 <.5 7 <.5 4 <.5 4 <.5 6 <.5	15.0 .5 15.0 15.0 .5
0E 69115N 4E 69200N 2E 69202N 1E 69166N 1E 69208N	6.4 1.5 2.6	26.3 30.3 31.0 58.7 28.7		96 1958	.5 .1 3.3	14.2 9.2	12.1 12.4 9.2	979 1509 475	1.92 3.42 1.59	45.7 14.6	.6 .5	<.5 <.5 <.5	.8 4 1.1 4 .4 3	46 30 1	4.2	1.3 .8 2.5	.2 .2 .3	53 61 33		.128 .042 .050 .092 .056	19 10 9 8 14	15 20 11	.48 332 .49 198 .50 212 .32 146 .53 245	.019 .023 .040 .010 .020	1 1	3.01 1.56 1.56 1.19 2.04	.381 .199 .142 .135 .167	.06 .05 .06 .08 .07	.1 .18 .1 .08 .1 .05 .1 .14 .1 .07	10.3 7.6 7.5 5.2 8.8	.2 .1 .1	<.05 <.05	6 <.5 5 .5 5 <.5 3 <.5 7 <.5	15.0 7.5 .5 7.5
54E 69191N 98E 69197N 97E 69202N 90E 69200N 80E 69200N	1.6 1.9 .8	12.8 8.9 28.6 14.1 15.8	8.0	52 138 121	<.1 .1 <.1	11.1	7.3 9.1 8.1	870 462 612	2.41 2.45 3.05	6.4 6.0 10.0 12.1 33.0	.5 3.3 .3	<.5 <.5	.8 1.3 .9	39 42 34 19 25	.1 .3	.3	.1 .2 .2	56 63	.19 .27 .40 .18 .21	.017 .015 .020 .124 .047		13	.40 166 .36 161 .51 168 .42 137 .41 214	.067 .066 .020 .053 .027	1 <1 1	1.61 1.38 1.90 1.58 1.61	.072 .066 .207 .059 .053	.03 .03 .04 .05 .07	.1 .03 .1 .02 .1 .04 .1 .02 .1 .03	4.8 4.8 8.6 4.1 4.1	.1 <.1	<.05	5 <.5 4 <.5 6 <.5 4 <.5 6 <.5	15.0 15.0 7.5 15.0 15.0
00E 69200N 98E 69400N 90E 69405N 00E 69400N 03E 69390N	.5 2.0	39.1 28.5 23.0 12.2 8.3	7.3	82 106 84	<.1 .2 <.1	15.5 8.6	7.8 13.0 7.7	658 1507 424	3.05 4.92	21.3 11.9	.5 1.2 .6	<.5 <.5	1.3 1.0 .8	21 56 33 38 18	1.3 .1 .1 .1	.8	.1 .1 .1	66	.26 .45 .40 .36 .17	.070 .061 .079 .044 .079	11 7	23 25	.34 219 .49 231 .52 259 .40 187 .24 123	.012	2 1 1	1.67 1.64 2.50 1.47 1.35	.134 .185 .120 .093 .047	.08 .09 .05 .05 .05	.2 .07 .1 .06 .1 .06 .1 .03 .1 .03	8.8 4.8	.1 .1 .1	.41 <.05	6 <.5 5 <.5 7 <.5 5 <.5 5 <.5	15.0 7.5 15.0 15.0
00E 69410N 20E 69425N 3820E 69425N 75E 69400N 03E 69418N		7.5		31 31 49	.1	4.4 4.2 5.3	2.9 4.7	152 154 486	2.09 2.24 2.31 2.70 2.95	4.9 5.1 5.9	.3 .3 .3	<.5 <.5 <.5 <.5 <.5	.2 .2 .7	14 24 23 23 17	.1 <.1 .2 .1	.4 .4 .5	.1 .1 .1	51 52	.10 .09 .09 .12 .11	.043 .037 .038 .026 .153	5 5 6	10 10 10 11 13	.17 93 .15 127 .15 120 .18 103 .22 107	.068	1 1 2	.96 1.12 1.16 1.00 2.04	.027 .024 .031 .044 .052	.04 .03 .03 .04 .05	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.3 2.2 2.8	.1 .1 .1	<.05 <.05	5 <.5 5 <.5 5 <.5	15. 15. 15. 15.
90E 69423N 02E 69370N 50E 69400N 00E 69400N 00E 69400N	.9 .5 .7 .9 4.6	6.0 9.6 8.5	8.7 8.4 9.5	78 443 108	.2 .2 <.1	8.2 6.6	4.6 10.7 5.1	411 653 331	2.93 2.31 2.62 2.85 4.62	5.6 8.3	.2 .3 .3	<.5 <.5 <.5 <.5 <.5	.9 .8	17	.1 .1 1.8 .3 3.2	.3 .5 .6	.1 .1 .1 .3	60 45 47 55 70	.11 .08 .16 .16 .43	.114 .146 .186 .110 .049	7 6	11 11	.20 109 .11 104 .30 148 .24 111 .50 345	.045 .037 .039	1 1 1	1.53 1.22 1.87 1.51 2.60		.05 .08 .06 .06 .16	.1 .0	2.8 4.0 2.9	3 .1) .1	1.94 <.05	7 <.5 6 <.5 6 <.5	15. 15.
00E 69400N 814E 69641N 800E 69685N 800E 69600N 7ANDARD DS7	.6 .4 .6	8.8	8.1 7.5 5.2	88 60 77	3 <.1) <.1 / <.1	6.2 2.7 10.1	6.9 3.4 5.2	391 356 191	2.61	. 2.0	.3	<.5 <.5 <.5 <.5 <.5	.6 .5 .7	27 14 11	.3 .1 .1	.3	.1	43	.32 .23 .12 .09 .98	.027 .094 .031 .089 .079	7 6	12 6 13	.39 187 .22 153 .10 77 .24 98 1.07 375	.071 .054 .019	. 2	1.76	.051 .031 .025	.04	.2 .0 .1 .0 .1<.0 .1 .0 3.9 .2	1 3. 1 2. 5 2.	1 <.1) <.1 B .1	<pre><.05 2.46 <.05 <.05 <.05 <.05</pre>	5 <.5 4 <.5 6 <.5	15. 15. 15.
GROUP 1 (>) CON - SAMPL	CENT	RATION	EXCE	EDS (JPPE	R LIM	IITS.	SO	ME MI	2-2 H NERAL ng 'R	S MAY	BE	PART	TALL	Y AT	TACK	ED.	REF	FRACT	ORY A	AND (GRAPI	300 ML, HITIC SA	MPLES	CAN	BY IC LIMIT	P-MS. AU SI	OLUBI	ILITY.	JIMB	A	<u>o</u> Ta	5/0	E III

					Bl	ue	Ре	arl	. Mi	niı	ng	PR	OJE	ECT	DA	VI	DSC	N	FI	LE	#	A6(080	79				E	Pag	e 2			ACHE	ANALYTICAL
SAMPLE#	Mo ppm	Cu ppm		Zn ppm	· · · J	Ni ppm	Co ppm	Mn ppm	Fe %		U ppm				Col S opm pp					La ppm			Ba ppm	Ti %p						Sc ppn p		S Ga %rppm		ample gm
G-1 3393E 69610N 3626E 69610N 3800E 69606N 3896E 69603N	.5	2.3 4.8 6.0 7.3 38.9	5.8 5.5 6.9	42 30 26	<.1	4.6 4.5 5.4	4.4 3.7 3.2 3.8 4.9	263 162 193	1.47 1.82 1.45	<.5 2.0 3.1 1.7 2.6	.2 .2 .5	1.7 <.5 1.6	.5 .3 .8	17 29 59 <	<pre>.1 <. .1 . .1 . .1 . .2 .</pre>	2. 3. 3.	1 34 1 40 1 38	.13 .20 .36	.080 .026 .021 .010 .017	5 5 10	8 7 11	.20	81 159 206	.044 .038 .053		32 .00 11 .01 28 .01	9.03 5.02 6.01	.1 .1 .1	.01 .01 .01	5.1	. 1<.0	5 4 5 5 5 4	<.5	15.0 15.0 15.0 15.0 .5
4020E 69600N 4202E 69601N 4397E 69600N 4800E 69600N 5000E 69580N	.7 1.0 1.3	33.0 16.6 13.8 9.9 14.9	14.2 11.7	67 109 104	<.1 .1 .1	10.3 8.9 8.0	8.1 7.0	421 360 407	3.06 2.43 2.95	7.7 12.0	.5 .3 .3	.6 1.5 2.2 .8 14.5	.9 .8	21 24 11	.1 . .1 .	8. 7. 6.	2 54	.11 .21	.046 .072 .030 .070 .026	7 7 6		.13 .38 .52 .26 .38	160 140 115	.068 .041 .039	2 1. 1 1.	62 .01	0.04 2.04 0.04	.2 .1 .1	.03	5.0 4.4 3.3	.1<.0 .1<.0	15 4 15 5 15 5	<.5 <.5 <.5 <.5 <.5	.5 15.0 15.0 15.0 15.0
5200E 69600N 5208E 69600N 5400E 69600N 2600E 69815N 2800E 69800N	1.0	6.3 10.2 9.0 18.6 30.7	12.2 12.7 6.0	111 97 67	.2 .2 .5	4.7 8.3 11.6	4.3 6.4	423 572	3.00	11.4 9.5 2.3	.3 1.0	1.3 1.0 <.5 .9 <.5	.7 1.1 .2	5 17 59	.5 .	0. 9.	1 34 1 54 2 48 1 22 2 82	.06	.062 .120 .170 .117 .168	5 7 13	9 14 15	.17 .17 .22 .41 .56	68 115 217	.021 .020 .008	<1 1.	10 .00 67 .00 17 .01	06 .03 08 .05 .4 .05	.3 .2 .1	.03	2.9 4.0	.1<.0 .1<.0	5 5 5 6 2 5	<.5 <.5 <.5 <.5	15.0 15.0 15.0 .5 15.0
3000E 69800N 3200E 69800N 3395E 69796N 3624E 69802N 3783E 69795N	.8	8.6 9.9 9.4 8.8 11.2	10.4 6.5 5.3	149 64 44	.2 .1 <.1	9.7 9.5 6.2	6.8 4.2 4.8	395 201 313	2.54 3.16 2.09 2.06 2.31	5.8 12.2 4.7 4.2 5.4	.3 .3 .3		.9 .7 .9	15		0. 3.	2 56	.10	048 .107 .090 .022 .044	6 4 9	13 12 10 11 15	.23	213 202 129	.050 .033 .035 .072 .090	11. 12. 1.	52 .01 35 .00 12 .01 99 .01 02 .01	07 .04 11 .03 15 .03	.3 .1	.01 .05 .03		.1<.0)5 5)5 5)5 3	<.5 <.5 <.5 <.5 <.5	15.0 15.0 7.5 15.0 15.0
3911E 69806N RE 4106E 69784N 4106E 69784N 4402E 69838N 4440E 69865N	.8 .6 3.4	38.8 13.7 13.5 103.1 72.4	9.4 9.4 49.1	80 80 594	<.1 <.1 .4	9.0 9.3 7.2	7.0 6.9 5.9	337 332 544	1.29 2.50 2.46 1.86 3.90		.4 .4 .4	1.9 19.1	1.1 1.1 .5	15	.1 .2 2.4 2	6 62		.2	2 .021 3 .036 3 .035 3 .055 4 .083	10 10 11	13 13 14	.46 .46 .54	207 213 188	.006 .078 .075 .013 .018	1 1. 1 1. 1 2.	93 .03 34 .03 29 .03 18 .03 73 .03	15 .04 15 .04 14 .08	4 .1 4 .1 3 .2		4.9 5.0 5.7	.1<.0 .1<.0 .1<.0 .4 .1 .3 .1	05 4 05 4 11 8	<.5 <.5 <.5 <.5 <.5	7.5 15.0 15.0 7.5 15.0
4593E 69840N 4603E 69846N 5000E 69800N 5383E 69825N 2600E 70000N	6.9 1.6	36.3 52.2 8.8 40.1 8.0	53.5 37.2 109.9	634 158 355	.5 .2 1.0	6.4 4.3 7.4	10.0 3.3 8.5	1374 343 1464	2.77 4.16 1.87 3.25 2.25	210.5	.3 .2 .3	7.2 10.0 2.7 6.7 <.5	.5 .6 .5	15 9	2.7 2 5.0 3 .4 1.9 3 .1	31 9	.6 48 .1 34	3 .3 4 .1 2 .4	5 .049) .060 2 .028 L .055) .031	10 8 15	10 9	.50 .28 .40	158 86 184	.022 .025 .021 .021 .021 .052	21. 11. 31.	28 .0 53 .0 01 .0 46 .0 19 .0	11 .08 07 .04 10 .08	3 .3 4 .1 8 .2		4.9 2.6 5.5		05 6 05 4 06 4	<.5 <.5 <.5 <.5	15.0 15.0 15.0 15.0 15.0 15.0
2800E 70000N 3000E 70000N 3200E 70000N 3375E 70000N 3600E 70000N	.7	48.3 11.7 8.6 7.9 5.8	6.5 5.6	51 98 70	<.1 <.1 <.1	8.9 8.2 6.4	5.9 7.5 6.6	273 402 400	3.47 2.71 2.70 3.75 1.93	8.7 6.4	.3 .3 .3	<.5 <.5 <.5 2.0 .8	1.1 .6 .9	22 13	<.1 <.1	.6 .4 .6	.1 59	5 .0 .1 .0	1 .084 3 .068 1 .045 7 .181 2 .056	3 5 5 4 5 5	11	. 28 . 35 . 23	125 214 130	.058 .032 .052	$\begin{array}{c}1 1 \\ 1 1 \end{array}$	54 .0 81 .0 81 .0	08 .03 11 .03 09 .03	3 .1 3 .1 3 .2	L .03 L .03 2 .04	7.4 3.8 3.4 3.2 2.1	<.1<. .1<. <.1<.	05 4 05 6 05 8	<.5 <.5 <.5 <.5 <.5	.5 15.0 15.0 15.0 15.0
STANDARD DS7	19.7	113.5	68.8	3 420	.9	55.6	9.4	634	2.38	50.0	4.9	67.6	4.4	68	6.56	.34	.5 8	1.9	5.080) 12	160	1.06	365	. 118	39	.97 .0	76.4	4 3.9	9.20	2.5	4.3.	22 5	3.8	15.0

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data _____ FA _____ 59

		Blue Pearl M	ining PROJEC	T DAVIDSON FILE #	A608079	Page 3	ACHE ANALYTICAL
SAMPLE#	Mo Cu Pb Zn ppm ppm ppm ppm		As U Au Th Sr ppm ppm ppb ppm ppm	Cd Sb Bi V Ca P La Cr ppm ppm ppm ppm % % ppm ppm	5		a SeSample xm.ppm gm
G-1 4398E 70097N 4402E 70005N 4594E 69988N 5200E 70000N	.5 2.1 2.4 45 3.1 50.5 54.0 520 6.1 67.3 82.1 669 6.9 38.5 52.8 416 .8 8.4 12.5 60	.5 7.5 7.1 535 2.71 .8 5.7 7.6 567 3.01	43.8 .3 14.9 .5 17 65.3 .4 16.4 .5 14 76.1 .3 95.2 .4 11	2.6 1.8 1.5 45 .34 .049 9 10	.50 178 .018 2 1.61 .012 .58 174 .018 2 1.94 .012 .58 117 .027 2 1.59 .012	.07 .3 .08 4.9 .2 .12 .08 .4 .11 5.5 .3 .06 .09 .3 .08 4.6 .2 <.05	4 <.5
5400E 70000N 2600E 70200N 2800E 70200N 3000E 70200N 3200E 70200N	.7 7.0 7.0 40 .6 6.3 6.5 37	<pre><.1 3.5 2.9 156 2.30 .1 3.7 3.4 319 1.93 <.1 6.2 3.5 211 2.05</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1 .3 .1 48 .13 .042 4 11	.13 124 .029 1 .88 .009 .21 114 .057 1 1.04 .011	.02 .1 .03 1.6 <.1	$\begin{array}{rrrr} 4 <.5 & 15.0 \\ 4 <.5 & 15.0 \\ 4 <.5 & 15.0 \\ 4 <.5 & 15.0 \\ 4 <.5 & 15.0 \\ 4 <.5 & 15.0 \end{array}$
3400E 70115N 4401E 70204N 4603E 70201N 4800E 70200N 5400E 70200N	7.6 48.1 55.6 389 6.6 100.6 82.8 945	1.6 6.7 10.9 438 2.02 10 6 7.9 17.5 1883 4.54 10 6 6.0 14.0 1704 4.00 10	399.7.416.3.714306.5.336.2.616		.46256.00921.83.014.61183.03921.83.013	.08.3.185.6.2.23.11.5.116.2.3<.05	$\begin{array}{ccccccc} 5 & <.5 & 15.0 \\ 5 & .6 & 7.5 \\ 6 & <.5 & 15.0 \\ 5 & <.5 & 15.0 \\ 5 & <.5 & 15.0 \end{array}$
2581E 70439N 2519E 70497N 2600E 70400N 2793E 70400N RE 2793E 70400N	1.2 20.5 12.8 115 .5 6.9 6.4 41 .5 8.7 7.3 51	.1 7.3 9.1 923 3.67		.6 1.1 .1 45 .39 .053 8 11 .1 .4 .1 43 .06 .035 4 12 .1 .4 .1 49 .10 .051 5 14	.50 91 .021 1 1.20 .012 2 .20 86 .059 1 1.10 .011 4 .26 102 .058 1 1.25 .012	.02 .1 .02 2.1 <.1 <.05	$\begin{array}{llllllllllllllllllllllllllllllllllll$
2960E 70385N 3200E 70400N 3382E 70406N 4196E 70419N 4405E 70396N	1.1 43.7 22.2 16 1.7 13.1 9.6 8 11.6 46 7 47 8 35	9 4 4 11 9 1586 7 63	8.1 .4 2.1 .9 25 46.4 .2 .6 .5 24 804.8 .3 4.8 .3 42	1.0 1.5 .3 55 .42 .051 10 16	0 .43 80 .012 1 1.03 .013 9 .27 277 .009 2 1.23 .015	.04 .1 .05 7.3 .2 < .05 .04 .1 .04 3.8 < .1 .09	$\begin{array}{rrrrr} 4 < .5 & 15.0 \\ 5 < .5 & 15.0 \\ 3 & .6 & 15.0 \\ 3 & .8 & .5 \\ 7 & .5 & 7.5 \end{array}$
4600E 70391N 4800E 70400N 2513E 70506N 2600E 70600N 3000E 70600N	7.8 69.2 77.5 76 6.1 82.0 93.3 92 1.3 26.9 13.6 10 1.6 41.2 20.2 12 .9 45.7 24.6 17	8 .4 7.3 16.6 1692 4.26 2 .1 9.1 10.9 1196 3.20 5 .2 9.2 11.3 1395 3.70	304.2 .3 23.4 .5 20 19.2 .3 2.8 .7 23 30.2 .5 1.2 .7 18	.4 1.1 .1 52 .41 .059 8 13 .4 1.6 .2 51 .39 .056 11 13	1 .55 176 .033 2 1.51 .013 3 .47 115 .037 1 1.13 .012 2 .58 129 .016 1 1.42 .014	.17 .5 .08 5.2 .3 .06 .06 .1 .03 5.6 .1 <.05 .07 .1 .04 6.6 .1 <.05	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
4200E 70562N 4203E 70615N 4382E 70600N 4600E 70600N 4800E 70600N	10.1 125.2 56.4 67 6.2 39.1 56.0 47 4.8 48 3 63 4 55	2 1.0 6.2 9.9 932 3.34 0 .3 6.1 9.8 1041 3.38	244.7 .6 11.4 .5 50 175.2 .3 3.4 .6 15 185.1 .3 11.3 .8 13	2.6 3.4 1.2 48 .34 .053 8 1 3.1 4.0 1.5 51 .19 .071 7 1		.12 .2 .35 7.1 .2 1.41 .09 .3 .06 4.5 .1 <.05 .07 .3 .07 4.7 .2 <.05	5 .5 7.5 5 1.3 .5 5 <.5 7.5 5 <.5 15.0 7 <.5 15.0
STANDARD DS7	19.9 108.1 68.3 41	9 .9 55.4 9.7 634 2.41	49.7 4.8 67.0 4.3 68	6.5 6.2 4.5 86 .95 .078 12 16	2 1.04 373 .119 38 .92 .075	.45 4.0 .20 2.4 4.3 .17	5 3.7 15.0

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____60

ACHE ANALYTICAL					Bl	lue	Pe	arl	. M:	lnir	ıg	PRO	JE	СТ	DA	VII	osc	N												e 4				ANALYTICAL
SAMPLE#	Mo ppm	Cu ppm			Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm		Th ppm p		Cd ppm p		Bi pm p	V mc	Ca %		La (pm pp		Mg Ba Xippi		B ppm			K N X ppr				-	Ga Se S pm ppm	sample gm
G-1 5000E 70600N 2700E 70800N 2780E 70796N 3004E 70702N	1.8 1.8 1.5	10.8 31.4 21.3	2.4 51.2 21.8 12.6 8.5	283 145 108	.3 .2 .1	2.9 8.5 6.8	8.1	1369 1064 795	2.40 3.86 3.06	<.5 33.4 37.5 18.6 26.0	.2 .4 .3	.6 5.4 5.7 1.8 1.6	.8	4 14 18	 .1 .4] .5] .4] .7] 	.2 .9 .8	.4 .3	35 55 43	.48 . .06 . .23 . .43 . .54 .	123 043 046	10 7	5. 14. 12.	16 9 57 10 51 6	1 .120 6 .008 0 .015 4 .021 6 .015	11 <11 11	L.71 L.59 L.08	.005 .009 .013	.04 . .07 . .07 .	2 .0 1 .0 1 .0	1 1.9 5 2.5 3 5.9 3 4.1 4 3.8	.2< .1< <.1	.05 .05 .07	5 <.5 6 <.5 5 <.5 4 .8 4 1.2	15.0 15.0 15.0 7.5 15.0
3007E 70790N 3198E 70804N 3425E 70810N 3475E 70825N 3600E 70800N	2.1 2.9 5.1	22.4 13.3 22.5	9.5 18.2 19.2 10.8 12.8	107 27 97	.1 .3 .2	8.8 3.9 8.2	10.5 4.1 12.8	840 365 883	3.93 2.92 5.25	46.0 40.9 27.7 81.7 125.1	.4 .4 .3	2.4 2.1 <.5 2.3 1.5	.5 .7 .2 .6	25 15	.3 1 .2 .4	.7 .6 .9	.1 .2 .2 .1 .2	52 33 41	.61 . .43 .	063 060 064	9	15 . 7 . 13 .	58 9 14 9 40 8	9 .019 6 .011 7 .006 4 .004 6 .005	<1 1 <1 <1 1	.95 1.33	.010 .009 .011	.06 . .03 . .05 .	1 .0 1 .0 1 .0	2 3.7 2 5.2 6 2.2 4 4.6 3 6.8	.1< <.1 <.1	.05 .07 .06	4 .5 5 <.5 4 .5 4 .6 4 2.2	15.0 15.0 7.5 15.0 15.0
3780E 70790N 4000E 70803N 4103E 70783N 4192E 70788N 4492E 70792N	3.7 4.6 7.6	20.1 57.8 60.7	17.9 3 52.2 7 68.3	211 605 423	.2 1.0 1.4	8.6 7.2 8.6	9.6 11.9 8.5	621 1745 604	3.41 3.03 2.79	16.0 33.0 250.5 106.4 65.8	.3 .3 .4	1.5 2.2 4.5 6.3 3.7	.5 .2 .4	20 36 1 21	.2 .8 11.0 4.2 1.2	1.0 2.5 2.6	.2 .5 .6	54 34 1 48	.40	036 077 089	21	12 10 13	.38 15 .35 15 .47 13	0 .010 4 .026 2 .009 9 .011 51 .012	1 1 2 1 1 1	1.77 1.45 1.22 1.78 1.64	.012 .014 .013	.05 . .07 . .09 .	1 .0	5 2.2 3 4.6 4 3.8 4 5.6 8 5.9	.1< .1 .2	.05 .10 .07	5 <.5 5 <.5 4 .5 5 .5 5 <.5	15.0 15.0 .5 7.5 7.5
4600E 70800N RE 2716E 70992N 4815E 70825N 4975E 70750N 2600E 71000N	2.1 4.5 4.1	43.5 82.2 52.3	1 28.3 5 20.0 2 84.5 3 48.2 3 17.9	141 3654 392	.5 4.6 2.6	7.4 8.7 6.4	9.9 11.4 9.5	1153 1357 986	3.38 3.72 3.47	70.8 34.2 260.1 117.2 26.6	.5 .6 .3	13.6 4.1 6.3 22.8 1.2	.5 .6 1.1	27 17 8	.9 12.1 1.3	2.8 4.3 1 3.6	.2 1.1	49 53 48	.11	069	11 17 12	13 13 10	.51 11 .50 17 .44 18	67 .013 12 .014 19 .026 80 .033 99 .017	1 2 1	2.01 1.43 1.60 1.79 1.20	.014 .013 .007	.07 . .11 . .08 .	.1 .0 .2 .0 .3 .0)5 3.5)3 5.5)7 6.0)6 5.8)5 4.9	.1 .2<	<.05	9 <.5 5 1.3 5 .5 5 <.5 5 <.5	15.0 15.0 15.0 15.0 15.0
2716E 70992N 2800E 71000N 3000E 71000N 3241E 71022N 3400E 71000N	1.6 1.7 2.5	32. 30. 28.	1 19.9 1 19.9 0 19.5 8 22.5 7 17.3	158 138 14	B .1 B .2 5 .2	8.2 8.3 9.7	3 11.2 11.8	1260 1214 1247	3.73 3.93 4:10	31.8	.4 .4 .5	2.4 8.1 1.8 2.7 <.5	.6 .7 .6	18 18 17	.9 .6 .4	1.6 1.9 1.8	.2 .2 .3 .2	52 55 53	.37 .35	.071 .051 .052	9	13 13 14	.54 11 .59 9 .56 9	14 .016 13 .014 90 .027 95 .017 86 .010	1 7 1 7 1	1.42 1.39 1.50 1.66 1.62	.011 .012 .009	.09 .07 .07	.1 .0 .1 .0	04 5.7 02 5.7 02 5.8 03 5.9 03 4.5	1 .1 3 .1 9 .1	.07 <.05	5 1.4 5 <.5 5 <.5 5 <.5 5 <.5	15.0 15.0 15.0
3575E 71000N 3650E 70975N 3750E 70975N 3800E 71000N 4000E 71000N	2.1 1.0 1.4	19. 24. 13.	3 16.6 5 9.5 9 20.7 9 11.9 1 10.2	5 10 24 9 19	3 <.1 7 .3 0 .2	10.6 14.1 10.5	L 10.7 5 10.8	531 839 549	3.28 3.19 4.62	35.2 43.9 53.4 18.5 13.4	.2 .3 .3	2.2	.7	9	.3 .9	.8 .8	.1 .2 .1	41 61	.35 .62 .10		11	12 13 16	.45 .38 1 .37 1	87 .010 50 .009 38 .009 20 .029 78 .02	5 <1 5 1 3 1	1.69 1.39 1.68 2.95 1.29	.008 .010 .008	.05 .06 .05	.1 .	04 6.3 02 4.0 08 5.4 07 4.7 03 2.6) .1. 4 .1 7 .1.	.07 <.05	5 <.5 4 <.5 5 <.5 7 <.5 5 <.5	15.0 15.0 15.0
4200E 71015N 4400E 71000N 4613E 71001N 4800E 71000N 5000E 71025N	4.1 2.0 3.3	26. 8. 10	7 48.9) 75 9 14 9 44	5.4 4.6	4 8.1 5 3.9	1 12.6 9 5.3 5 6.4	1418 643 442	3.98 2.79 4.41	191.2 174.8 146.1 78.5 114.9	.2	10.4 6.4 24.3	.6 .6 1.0	12 61 6	. 9	2.9 2.0 2.0	.6 .3 .5	35 56	.23 .32 .08	.044 .063 .021 .127 .284	7 8 7	12 7 11	.50 1 .27 .25 1	28 .01 60 .02 75 .02 08 .02 64 .01	1 2 3 3 1 1	1.71 1.70 1.02 2.47 1.90	.009 .010 .007	.09	.1 . .3 . .2 .	10 6.0 04 4.9 04 3.7 05 3.9 04 3.7	9.1 7.1 9.1	<.05 <.05 <.05	10 <.5	15.0 15.0 15.0
STANDARD DS7	20.5	108.	4 68.	4 41	1.9	9 55.	6 9.6	631	2.39	48.7	4.7	66.3	4.3	68	6.4	6.2	4.5	84	.92	.078	12	162 1	1.06 3	74 .12	0 40	. 96	.076	.44 4	1.0 .	20 2.	4 4.3	. 21	5 3.4	15.0

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data ____ FA ____ 61

5

ACHE ANALYTICAL					Bl	ue	Pea	arl	Mi	ning	J P	PROJ	JEC	'T	DAVI	DS	ON	I	FILI	E #	‡ A	6080)79				Pa	ge 5	5			YTICAL
SAMPLE#	Mo ppm	Cu ppm					Co ppm	Mn ppm	Fe %						Cd Sb ppm ppm			Ca %	۹ ۶ p	La pm p		Mg Ba %rppnn		B A1 ppm %						S Ga Sa ≵ppnn ppn		le gm
	1.5 2.7 1.6	31.6 23.2	2.5 18.2 29.8 23.2 20.3	134 167 229	.2 .4 .2	9.3 10.4 8.3	12.4 17.5 12.6	1224 1734	3.98 3.96 3.87	25.8 27.8 35.4	.4 .4 .3	3.6 <.5 <.5	.7 2 .9 2 .4 1	21 20 14	<.1 <.1 .6 1.2 4.9 1.9 1.4 1.9 2.4 1.6	.2 .2 .2	64 50 52	.45 .31 .30	.060 .106 .054	10 9 7	14 17 14	.58 131 .52 116 .53 130	.031 .018 .015	1 .89 1 1.41 2 1.60 1 1.35 <1 1.54	.013 .014 .009	.07 .09 .10	.7 . .3 . .1 .	03 6.6 09 7.0 02 4.6	.1 .0 .1<.0	6 5 <.! 8 5 <.! 5 5 <.!	5 15 5 15	.0 .5 .0
3602E 71160N 3800E 71175N 4000E 71200N	.8 6.3	35.4 11.8 54.1	17.5 12.8 14.4 49.2 11.0	77 115 400	.1 <.1 .7	11.3 7.9 8.8	9.1 7.1 8.2	747 534 938	4.19 2.86 3.56	15.7 135.3	.3 .3 .5	<.5 4.8 5.4	.8 .9 .9	24 10 21	1.6 1.2 .2 .8 .3 .7 1.8 3.0 .3 .4	.2 .1 .7	46 50 51	.35 .10 .56	.029 .110 .027	8 6	16 12 14	.47 104 .39 128 .28 94 .47 178 .27 105	.005 .020 .017	<1 1.49 <1 1.50 1 1.56 1 1.63 1 1.99	0.010 0.008 0.009	.06 .06 .09	.1 . .1 .	04 3.2 09 7.4	.1<.0 .1<.0	5 4 <. 5 4 <. 5 6 <.	5 15 5 15 5 15	.0 .0 .0
4400E 71200N 4600E 71200N 4800E 71200N 4970E 71185N 5062E 71100N	2.3 5.2	6.8 8.7 24.1	10.8 11.2 25.6 38.8 110.1	108 126 361	.3 .2 .4	5.2 4.1 5.3	6.3 4.2 9.2	658 243 429	3.32 3.22 3.82	17.4 33.5 111.2	.3 .2 .2 3	1.1 <.5 1.2	.5 .7 .6	8 6 6	.2 .8 .3 .6 .2 1.4 .7 3.1 9.9 6.5	.1 .2 .6	51 50	.13 .10 .12	.123 .087 .028	6 7 6	10 8 10	.33 210	.029 .014 .008	1 1.12 1 1.40 <1 1.31 1 1.85 3 1.38	0.008 .007 5.005	.05 .04 .06	.1 . .1 . .1 .	03 3.0 04 4.1	.1<.0 .1<.0 .1<.0	5 6 <. 5 5 <. 5 6 <.	5 15 5 15 5 15	.0 .0
2800E 71400N 3000E 71400N	1.6 1.5 1.5	68.2 35.6 41.6	19.5 22.6	175 143 271	.7 .2 .3	14.7 6.7 8.8	12.5 12.2 12.5	970 1138 1646	3.96 3.81 4.08	18.3 25.3 23.1 30.3 30.0	.5 .3 .4	1.1 2.0 2.3	.8 .6	33 21 22	.6 .8 1.2 1.0 .7 1.3 2.1 1.7 2.1 1.6	.2 .2	64 45 56	.92 .52 .48	.089 .062 .070	15 12 12	17 10 13	.61 158 .61 185 .52 112 .56 165 .56 162	.020 .022 .019	11.19 11.47	5 .015 9 .014 7 .015	.12 .09 .11	.1 . .1 . .1 .	04 9.0 04 5.9 03 7.3	.1 .0 .1<.0 .1<.0	16 61. 15 4<. 15 5<.	1 15 5 7 5 15	.5
3200E 71400N 3400E 71400N 3617E 71444N 3666E 71384N 3826E 71423N	2.8 3.2 3.1	22.6 20.3 16.4	10.0	90 99 104	<.1 .3 .1	11.9 10.1 11.4	15.1 9.9 10.8	513 346 690	4.00 3.07 3.69	83.1		1.0 1.3 1.3		10 36 12	.3 .6 .3 .7 .5 .4 .6 .6 .1 .7	.2 .2 .2	39 41 44	.27 .66 .47	.047 .034 .035		14 14 16	.44 59	.002	<1 1.50 <1 1.60 <1 1.74 <1 1.60 1 1.40	B .009 4 .010 7 .010	.07 .05 .06	.1 . .1 . .1 .	02 4.6 04 4.3 03 4.0	.1<.0)5 4 .)5 5 < .)5 5 .	5 15 5 7 8 15	.0 .5 .0
4000E 71400N 4200E 71450N 4400E 71415N 4600E 71400N 4810E 71403N	4.6 3.6 4.8	9.2 4.7 48.1	30.3 8.2 74.5	153 78 701	.1 <.1 .4	3.0 3.0 7.8	3.5 3.1 12.3	257 170 1394	3.01 2.10 3.99	209.9	.1 .1 .3	3.9 1.3 2.0	. 5	6 6 15	.2 .7 .2 2.8 .2 .5 6.2 3.9 3.4 1.0	.7 .1 1.0	54 46 58	.09 .09 .40	.045 .032 .063	7 5 11	7 6 12	.12 47 .56 114	2 .017 .027 .030	<1 1.0 1 .7	1 .006 3 .008 3 .011	.04 .05 .09	.2 .	.02 2.0 .07 5.6	.1<.(.1<.(.1 .(05 6 <. 05 5 <. 06 5 <.	5 15 5 15 5	5.0 5.0 .5
4904E 71400N 4936E 71400N 2428E 71600N 2610E 71590N 2800E 71600N	3.7 1.0 1.6	17.3 32.2 17.8	543.6 11.4 8.3	1832 119 70	1.4 .1 <.1	4.7 9.4 10.8	6.7 10.0 11.5	1414 754 811	3.30 3.25 4.99	60.5 157.0 15.2 18.4 33.8	.3 .3 .5	6.5 1 <.5 1.3	.1 .5 .8	16 1 28 22	.8 1.0 13.6 6.0 .5 .8 .2 .5 .8 1.1	.3 .1 .1	44 60 63	.40 .78 .44	.031 .052 .040	9 9	11 15 17	.56 132 .65 132	0.011 7.035 2.067	1 1.4 2 1.5 1 1.5	7 .007 5 .017 1 .012	.08 .09 .05	.2 .1 .1	.04 5.9	.1<.(.1 .(.1<.(05 7 < 06 5 05 5 <	5 19 8 19 5 19	
STANDARD DS7	20.0	114.0	67.8	420	. 9	56.1	9.6	626	2.38	49.2	4.8 6	60.0	4.3	68	6.4 6.2	4.4	86	.91	.081	12	162	1.07 36	5.120	39.9	8 .075	.44	4.0	.21 2.4	4.3 .	19 5 3	7 19	5.0

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data ____ FA ____ 62

44
 ACME ANALYTICAL

Blue Pearl Mining PROJECT DAVIDSON FILE # A608079

	1				B	lue	Pe	ear]	LM	ini	ng	PRC	JE	CT	DA	VID	SON	1	FIL	E #	A	6080	79	• .			Pa	ge	6		ACH		
SAMPLE#	Mo ppm	Cu ppm		Zrı ppm				Mn ppm	Fe %	As ppm p	-				Cd S ppm pp			Ca %		La (opm pp		Mg Ba ≵ppnn	Ti %		41 N 2		W H		Sc T pm pp		Ga Se opm ppm	Sample gm	
G-1 2900E 71625N 3000E 71610N 3200E 71620N 3410E 71575N	2.1 1.7 1.4	40.0 37.4 10.5	2.6 19.0 25.9 11.6 11.6	162 178 92	.3 .4 .2	11.8 8.5 4.3	11.2 11.4 5.4	1270 3 323 2	.75 .71 .95	<.5 2 27.3 35.0 26.9 59.4	.4 .4 .2	1.0 .9 1.0	.6 .5	19 24 10	<.1 <. 1.0 1. 1.1 2. .6 1. .5 .	2.2 1.3 3.3	49 54 60	.46 .53 .15	.071	10 1 11 1 6 1	18 . 13 . 10 .	61 205 55 133 53 130 26 44 43 58	.016 .017 .021	1 1. 1 1. 1 .	25 .01 54 .01 88 .00	7 .10 1 .09 8 .06	.1 .0	4 5 4 5 01 2	.6 . .7 . .9 .	1 .07 1<.05 1<.05	5 <.5 4 <.5 5 <.5 5 <.5 4 .5	15.0 .5 15.0 15.0 15.0	
3450E 71570N 3475E 71575N 3700E 71600N 3875E 71575N 4000E 71600N	3.4 3.8 1.8	21.2 24.7 34.1	14.8 11.4 19.5	86 112 161	.3 .3 .4	16.3 15.7 23.2	19.6 12.5 15.7	948 3	.99 .60 .95	29.5 99.8 74.5	.3 .2	1.6 .9 <.5		76 17 41	.31. .7. 1.2. .8. .2.	6.2 6.2 9.2	42 41	.91 .80 .87		12 3	16 . 22 . 20 .	38 119 36 138 38 63 38 144 34 120	.004 .001 .002	1 1. <1 1. 1 1.	49 .01 86 .01	5.07 1.05 3.06	.1 .0	07 5 04 3 07 5	.4 . .6 .	1<.05	4 <.5 5 <.5 5 1.4 5 <.5 5 <.5	15.0 7.5 .5 7.5 15.0	
4200E 71600N 4400E 71600N 4600E 71600N 4750E 71605N 4820E 71600N	6.2 3.0 7.0	100.3 11.4 53.7	86.8 54.7 90.3	613 414 794	1.4 .4 .5	9.5 3.6 18.9	15.8 5.8 13.4	1191 4 433 3 1605 3	.55 .69 .67	33.1 351.9 53.6 222.8 57.1	.7 .2 .3	27.3 1 6.8 4.2	.1 .6 .4	6 15	.3. 2.53. 1.22. 9.04. .32.	6 1.0 4 .6 2 .8	67 59	.30 .10 .38	. 216	18 6	16 . 9 . 29 .	22 130 52 214 29 82 57 115 40 66	.014 .023 .024	1 2. 1 1. <1 1.	22 .00 56 .00	6 .12 5 .05 2 .08	.2 . .2 . .2 .	20 9 05 3 08 4	9.4 . 9.6 .	2<.05	4 <.5 7 <.5 8 <.5 5 <.5 5 <.5	15.0 15.0 15.0 .5 15.0	
4900E 71585N 3020E 71800N 3200E 71800N 3405E 71777N 3600E 71800N	1.8 1.0 1.3	42.3 30.5 25.3	12.6	196 248 93	.5 .2 <.1	8.4 11.8 12.5	12.6 13.0 10.2	2037 3	.26 3.72 3.50	270.4 34.7 29.7 20.4 18.3	.3	4.5 4.8	.8 .6 .0	23 65 29	2.0 1. 1.2 1. 1.1 1. .2 1. .1 .	5.2 4.2 0.1	55 56 55	.48 1.63 .29	. 025 . 074 . 196 . 055 . 033	8 10	12 17 16	.44 125 .55 143 .59 228 .45 107 .41 82	.022 .025 .037	2 1. 11 2. 1 1.	13 .07 41 .01	7.10 4.49 1.09	.1 . .1 . .1 .	03 7 01 5 03 5	.1 . 5.8 . 5.6 .	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	7 <.5 5 .7 6 <.5 4 <.5 4 <.5	15.0	
3800E 71825N 3950E 71850N 4175E 71820N 4400E 71800N 4587E 71800N	3.3 1.1 .6	24.0 35.1 11.5	13.3 28.0	107 169 144	.2 .3 .2	12.9 20.0 6.6	10.3 10.7 7.0	353 2	3.54 2.98 2.26		. 2	1.5	.6 .7 .4	26	.2 . .8 . .5 . .3 .	7.2 9.2 4.1	40	.68 .84 .44	.034 .050 .046 .029 .126	7 11 8	19 17 12		.001	<1 1. 1 1. 1 1.	50 .01 27 .00	0 .06 1 .05 8 .05	.1 .	05 3 07 4 02 3	3.7 . 4.6 . 3.0 .	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	5 <.5 4 1.7 4 <.5 5 <.5 3 <.5	7.5 7.5 15.0	
4758E 71760N 6975E 71988N 7170E 72013N 7385E 71991N 7598E 71999N	5.0 15.6 42.2	15.6 73.9 58.1	17.1 34.6 33.9	123 759 236	.3 .3 1.2	3.3 9.3 5.1	3.0 9.6 6.6	392 2 1105 3 1023 1	2.55 3.57 1.94	352.8 50.2 162.2 154.4 177.4	.4 .5 .3	4.6 4.3 18.5	.1 .6 .3	5 10 6	.81. 5.44. 1.02.	6 .9 2 1.5 3 .7	36 39 30	.04 .24 .13	.076 .101 .081	8 15 9	8 12 8	.44 418 .18 122 .38 251 .26 114 .27 117	.007 .006 .005	1 1. 2 1. 1 1.	01 .01 92 .00 89 .00 51 .00 73 .00	5.03 8.11 7.07	.2 . .2 . .3 .	06 09 5 17 2	.9 5.0 2.7	.2 .10 .1 .06 .2 .06 .3 .09 .3 .14	7 1.9 10 <.5 5 .7 4 .9 6 .6	15.0 15.0 15.0	
7761E 71987N 7912E 72002N RE 7912E 72002N 8000E 72002N 8104E 72007N	16.5 16.9 19.2	30.4 30.2 21.9	32.6 33.5	689 701 379	.5 .5 .4	7.4 8.5 7.6	8.1 8.0 8.3	2081 2	3.05 3.02 2.61	251.9 248.3 63.7	.4 .4 .4	14.9	.3 .3 .3	9 9 7	3.2 1.	0.9 9.8 9.6	40 39 32	.26 .25 .17	.106	14 14 14	11 10 11	.30 293 .35 323 .34 318 .28 304 .29 175	.007 .007 .004	11. <11. 11.	63 .01	9.09 8.09 0.08	.3. .4. .2.	08 3 07 3 06 2	3.3 3.1 2.8	.3 .12 .3 .06 .3 .06 .2 .09 .2<.05	4 <.5	15.0 15.0 7.5	
 STANDARD DS7	20.8	110.2	69.4	416	.9	56.3	9.6	636 2	2.42	48.8	4.9 1	03.2 4	1.3	69	6.5 6.	24.5	86	. 92	.080	12 1	.64 1	.06 373	.121	41	95.07	7.44	4.1 .	21 2	2.4 4	.3 .20	5 3.4	15.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data ____ FA ____ 63

44

Blue Pearl Mining PROJECT DAVIDSON FILE # A608079 Page 7 ACME ANALYTICA ACME ANALYTICA SAMPLE# Mo Cu Pb Zn Ag Ni Со Mn Fe As U Au Th Sr Cd Sb Bi ٧ Ca P La Cr Ti B Mg Ba A] Na K W Hg Sc Tl S Ga Se Sample ppm ppm ppm ppm ppm ppm ppm ppm 2 ppm ppm ppb ppm ppm ppm ppm ppm ppm Ł % ppm ppm % ppm % ppm z % % ppm ppm ppm ppm % ppm ppm qm G-1 .6 2.8 3.1 49 <.1 7.1 4.7 553 1.96 .6 2.2 <.5 3.9 53 <.1 <.1 .1 40 .50.085 6 66 8204E 72008N .64 207 .118 1 .93 .061 .47 .1<.01 2.0 .4<.05 10.8 28.1 41.7 255 .2 5.9 8.1 961 3.43 110.3 .4 40.0 .3 4 .8 3.3 .8 44 .04 .100 11 9 5 < 5 15.0 .34 163 .008 1 1.55 .006 .06 .3 .05 2.5 .3 .07 4.5 107.6 32.2 583 .3 11.8 12.7 1100 3.67 84.5 .4 10.6 .3 6 2.6 2.5 1.0 48 .06 .121 11 13 .39 109 .011 1 1.94 .006 .06 .2 .07 2.9 .3 .09 8400E 72000N 4 < .5 15.0 4598E 72202N .9 10.5 4.4 83 <.1 4.6 3.2 85 1.50 17.5 .1 2.0 .6 11 .3 1.0 5 .5 15.0 .16 .037 8 7 .09 46 .002 1 .85 .007 .06 .1 .03 1.3 <.1<.05 .1 28 4.7 13.9 15.4 155 <.1 3.5 3.9 180 2.34 76.1 .2 15.9 .7 7 .4 3.7 .4 40 .17 .019 10 6 .15 58 .004 <1 1.11 .004 .04 .1 .03 2.0 .1<.05 '4805E 72197N 4 <.5 15.0 5 <.5 15.0 3.3 13.6 84.4 1113 .6 4.5 7.2 485 3.77 314.6 .2 11.5 .8 7 2.6 2.7 .5 56 .14 .024 11 10 .25 94 .005 <1 1.85 .006 .06 .2 .02 3.4 .2<.05 5006E 72199N 8.4 35.8 29.9 190 .1 5.7 7.3 722 3.84 131.2 .4 26.8 .2 4 .5 3.6 .9 52 .04 .096 7 9 .35 73 .011 1 1.74 .006 .05 .3 .06 1.9 .2<.05 7253E 72202N 9 <.5 15.07412E 72122N 26.1 42.6 32.4 385 .6 5.8 9.0 956 3.22 247.6 .4 84.9 .1 6 1.8 2.7 1.2 45 .10 .082 6.5 15.0 9 9 .36 118 .008 1 1.67 .008 .10 .3 .08 1.9 .5 .07 28.6 44.7 34.1 404 .6 6.3 9.6 992 3.44 263.5 .4 13.0 .2 6 1.8 2.8 1.2 48 RE 7412E 72122N 6 <.5 15.0 9 9 .37 123 .008 1 1.67 .008 .10 .3 .09 2.2 .5<.05 .10 .086 7528E 72200N 21.2 33.9 29.5 485 .5 8.6 10.4 1812 3.31 386.3 .4 17.3 .2 7 1.7 2.7 1.2 46 .09 .157 9 11 .32 157 .006 6.5 15.0 1 1.94 .008 .11 .3 .07 2.3 .5 .11 6 . 6 15.0 7714E 72272N 6.6 53.3 50.1 424 .3 7.7 8.6 884 3.61 193.4 .4 23.7 .9 4 1.3 3.2 1.0 49 .03 .047 10 10 .35 108 .008 1 1.82 .006 .10 .3 .05 4.8 .3<.05 7872E 72167N 9.1 34.5 31.4 435 .8 6.2 4.9 366 2.79 253.8 .5 14.8 .2 5 <.5 15.0 6 1.0 1.8 1.0 42 .06 .115 15 11 .31 153 .007 1 2.08 .007 .09 .5 .05 2.3 .3 .07 20.5 63.8 37.1 624 .5 8.0 7.2 661 3.60 411.4 .5 42.4 .3 7 2.7 3.4 1.8 47 .06 .112 16 11 .38 106 .012 1 2.25 .009 .11 .3 .07 3.4 .6<.05 7980E 72166N 7.5 15.0 10.5 57.1 64.0 604 .3 9.0 11.5 1418 4.07 334.9 .4 21.8 .6 5 2.3 3.5 1.4 52 .04 .081 12 12 .37 104 .016 2 1.76 .006 .11 .2 .04 4.4 .4<.05 8023E 72222N 7.6 15.0 8219E 72203N 6.3 46.4 56.5 441 .3 7.3 10.1 1544 3.95 184.6 .4 89.7 .2 5 2.0 3.7 1.1 52 .05 .111 16 9 .29 142 .011 2 1.69 .011 .10 .3 .06 2.9 .3 .07 6 <.5 7.5 6 <.5 15.0 8251E 72131N 5.0 39.6 25.4 710 .4 6.9 5.4 351 3.21 94.6 .5 36.1 .7 5 1.3 1.8 .7 49 .07 .091 14 12 .35 141 .004 1 2.42 .006 .09 .3 .05 4.6 .3<.05 5.5 58.2 40.0 898 .3 7.0 10.8 1538 4.02 245.9 .5 115.1 .3 6 3.2 3.1 1.3 55 8400E 72200N 7 <.5 15.0 .08 .141 17 10 .38 148 .010 1 2.06 .006 .10 .3 .04 3.6 .3<.05 4411E 72407N 1.3 20.1 7.1 122 .2 20.4 14.0 503 2.83 93.5 .2 .8 .9 7 <.5 15.0 17 .2 .7 .1 36 .44 .024 10 18 .31 84 .001 1 1.59 .012 .06 <.1 .02 2.8 .1<.05 4601E 72398N 1.9 4.5 2.3 29 .2 2.7 .8 37 .51 10.5 .1 <.5 .7 3 .1 .9 5 <.5 15.0 .06 .011 19 4 .01 18 .001 1 .52 .007 .03 <.1 .01 .6 .1<.05 .1 13 4802E 72400N 4.5 44.9 85.8 813 .3 31.5 21.3 1400 6.05 207.9 .2 4.6 1.2 8 3.3 8.6 .3 126 .23 .056 8 85 .94 93 .012 1 2.73 .006 .07 .2 .28 10.2 .1<.05 3 <.5 15.0 12 <.5 15.0 4973E 72380N 3.7 36.4 108.6 621 .8 4.6 19.0 1451 6.11 103.7 .6 4.3 .5 21 3.1 2.4 .4 71 1.21 .100 35 10 .38 73 .018 2 3.01 .008 .06 .2 .11 6.1 .1 .07 13 .8 7.0 44.1 23.7 359 1.9 6.3 11.1 1939 2.35 161.7 .6 19.8 < 1 9 4.7 2.8 1.2 33 .17 .162 7 9 .22 128 .008 2 1.46 .008 .08 .2 .09 .8 .2 .13 6504E 72471N 15.0 7188E 72427N 20.2 200.2 48.8 316 1.7 3.8 17.5 1317 5.79 784.5 .3 64.6 .6 6 1.3 4.6 12.5 36 .03 .079 10 6 .19 95 .007 1 1.22 .006 .16 .2 .08 2.8 .4 .18 5 .7 7.5 39.0 173.9 34.0 193 .6 1.4 9.5 543 6.50 712.9 .2 22.6 .5 3 .5 5.7 15.5 17 .03 .074 7 3 .08 45 .005 1 .87 .003 .09 .1 .10 2.2 .4<.05 7195E 72413N 5 .9 15.0 7317E 72380N 7.8 105.5 25.0 406 .3 7.8 10.1 1774 4.76 374.9 .4 93.9 .2 9 1.4 4.6 9.0 70 .06 .135 9 13 .51 90 .026 1 2.45 .007 .13 .3 .04 3.8 .5<.05 3 .9 15.0 8 .6 15.0 7518E 72352N 17.7 32.2 37.4 588 .3 6.7 9.7 2281 2.91 306.1 .4 8.5 .1 15 11.0 3.5 1.2 42 .29 .147 9 11 .28 265 .008 2 1.75 .009 .13 .2 .06 1.6 .5 .16 18.2 73.9 31.4 568 .5 8.8 8.1 900 4.21 526.0 .5 19.0 .2 9 2.0 11.9 3.2 54 .05 .160 15 14 .40 138 .013 3 2.41 .008 .12 .2 .09 2.8 .8 .07 7715E 72395N 6 6 15.0 20.6 111.3 69.1 401 1.1 56.2 9.6 641 2.43 51.5 5.0 65.4 4.4 73 6.8 6.1 4.6 88 .98 .080 13 165 1.06 389 .125 39 .98 .077 .46 3.9 .20 2.5 4.3 .21 STANDARD DS7 8 .6 15.0 5 3.8 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data + FA

AC	ME AN	IALY	TIC		L	ABC	DRA	TO	RIE	s	LT	.		852	-201	38 Q.	fitol	-88 . i	h Ca	5.08	영상감	202	1993.E	639	1. San Ma	2723	286a	6.27	44	PHO	NE	(604) 25	3-3	15	8 F1	•X (604) 25	3-1	716	
A	A	,0 ,9						33				<u>ear</u>	<u>1 M</u> Box 7	G <u>ini</u> 29 120	na	PF	10J	EC'	ΓĪ	DAV	LYS TDS c voj	ION	a .	Fi	TIF le nitte	#	A6 (080			Pa	.ge	1							4		•
MPLE#		Mo		Cu ppm	Pb ppm		Zn pm	Ag ppm	Ni ppr			Mn ppm	Fe %		s l n ppn		Au ppb	Th ppm (Cd ppm	Sb ppm		ii V mippπ			PL %pp			1g B ≵ppi		i % pp	B A m				W Hg m ppm		n ppr		Ga ppm	Se S ppm	ample gm
1 31E 723 23E 724 47E 724 89E 724	491N 462N	316.2 19.0	5 4 2 53 5 9	4.9 3.3 0.9	3.3 47.1 50.3 22.5 25.8	3 7 10	78 13 1 50	.4 4.9 .4	7.8 2.0 11.2	3 9 0 6 2 12	0.1 1 5.0 2.0 1	543 1	3.76 6.19 4.90	<.! 246. >1000 1023. 929.	0.2 0.0	5 52 2 104 5 4	1.7 28.2 44.3 42.7 50.9	.6 .8	6 38 10	<.1 1.3 15.2 4.8 2.6	3.8 325.0 16.1	1. 58. 3.	1 35 4 49 7 18 0 56 9 50). (3 .(50 .08 04 .08 04 .07 10 .17 04 .19	B2 1 75 3 15 2	87 26 1	0.3 3.0	36 12 06 22 48 9	9.12 0.02 6.00 7.02 4.03	23 04 23	1 1.2 2 1.8 1 .5 2 2.0 2 2.5	3.0 0.0 6.0	06 .1 07 .1 07 .0	.0. .5. .8.	4.08	4. 2. 4.	4 .: 4 6.: 6 .:	2<.05 3 .24 4 .06	5 2 7	<.5 .5 4.6 .5 .7	15.0 15.0 15.0 15.0 15.0
01E 72 31E 72 70E 72 18E 72 18E 72	351N 492N 391N	26. 43. 37.	0 20 1 17 9 23)6.5 71.0 34.7	30.7 37.3 13.2 49.2 21.6	3 5 2 4 2 6	45 26 29	.8 .2 .6	7.9 64.4 9.1	5 10 4 49 7 14).4 1 9.6 1 4.5	3132 1556	4.69 5.92 7.75 6.43 5.10	559. 742. 481. 922. 84.	9.1 7.1	6 2 6 1	11.5 70.5 5.6 54.0 .6	.7	7 6	2.6 1.7	10.1 18.5 14.4	4.	.7 49 .7 138	5. 3.	04 .1 04 .1 08 .0 04 .1 17 .0	98 1 89 54 1	191 86 141	1 . 91. 3 .	35 8 23 17 42 9	2 .01 6 .01 7 .01 18 .01 18 .01	16 09 24	1 1.8 1 2.0 1 1.9 2 2.0 2 2.1	0.0 6.0	08 .0 03 .1 07 .0)8 . 17 .)7 .	.2 .06 .2 .13 .2 .46 .4 .08 .2 .04	3 2. 5 22. 3 5.	.7 1. .2 1. .2 .	0 .10 0<.09 6<.09	6 7 6	.7 <.5 .6	15.0 15.0 15.0 15.0 15.0
93E 72 01E 72 793E 72 375E 72 E 4875E	501N 621N	4. 2. 3.	6 1 9 3 1 1	19.5 38.9 19.8	17 . 58 . 27 . 33 .	36 12 92	539 232 242	.3 .3 .1	3. 6. 4.	513 710 2	2.9 0.8 5.6	9851 1032 452	4.66 3.78 3.80 3.29 3.22	127. 40. 69. 76. 74.	6. 7. 6.	2 5 2	5.3 5.0 3.5 1.0 71.5	.4 .8 .7	5 24 19 7 7	.5 8.3 1.0 .8 .9	3.0 2.5)	.4 10 .5 4 .8 5 .7 5 .6 5	0. 7. 7.	09 .0 85 .1 72 .0 11 .0 11 .0	48 59 29	10 28 1 10	6. 11. 8.	14 37 44 8 33 7	52 .0 77 .0 37 .0 75 .0 73 .0	13 · 19 19	1 1.6 <1 1.5 2 2.4 1 1.6 1 1.5	59.0 12.0 53.0	06 . 09 . 07 .	11 06 05	.2 .02 .2 .08 .1 .04 .2 .03	3 2 8 6 2 4	.8 . .7 . .3 .	1<.05 2<.05 2<.05 2<.05 2<.05	5 8	2 <.5 3 <.5 9 <.5 8 <.5 8 <.5	15.0 15.0 15.0 15.0 15.0
933E 72 121E 72 164E 72 324E 72 433E 72	2650N 2592N 2597N	6. 4. 7.	4 2 4 6	27.4 94.9 38.5	11. 42. 23. 23. 24.	8 17 8 13 6 4	781 394 433	.5 .5 .4	10. 5.	43 1 1	0.1 7.9 6.2	1760 1110 831	1.27 6.78 1.87 3.29 4.55	164. 867 281 225 471	.8 . .8 . .4 .	5 2 3		1.2 .1 .1	13 26 6	7.0 10.7 31.3 1.9	19.7 4.8 5.8	77 131 131	.2 1 .6 5 .5 2 .7 4	5. 31. 3.	.05 .2)88 234 110	10 13 7	11 . 8 . 8 .	55 22 30	41 .0 95 .0 84 .0 68 .0 73 .0)45)08)12	1 1. 4 2. 4 1. 2 1. 2 2.	03 .0 29 .0 52 .0	015 . 011 . 007 .	23 10 12	.2 .0 .7 .0 .4 .0 .3 .0 .5 .1	4 6 8 1 5 1	.5 .0 .4	1 .1 6 .0 2 .3 2 .0 .3 .0	B 7 0 4 8 6	2 8.2 7 .6 4 1.5 5 <.5 9 .6	.5 15.0 7.5 15.0 15.0
643E 72 028E 72 019E 72 284E 72 294E 72	2593N 2597N 2612N	6 5 3	.0 2 .1 2 .5 1	65.3 53.8	3 17. 3 35. 3 36. 2 13. 3 23.	0 1 2 1 7	358 284 845	.5 .6	5 8 5 8 2 11	73 83	87.0 83.1 86.9	2221 1681 1686	2.92 7.22 7.10 5.77 4.45	653 570 231	.0 .4 .3	.6 .5 .5 .4	8.0 71.2 496.7 88.2 20.5	1.1 1.3 .9	11 14 11	3.9	9. 7. 5.	78 23	1.7 5	59 56 38	.05 .1 .10 . .12 . .10 . .04 .	113 126 126	8 9 8	9 10 16	.64 1 .71 1 .81 1	39 .0 11 .0 09 .0 02 .0 47 .0	085 094 068	2 2. 3 3. 2 3. 2 2. 1 1.	35. 27. 47.	010 . 014 . 011 .	21 2 23 2 20	.2 .1 2.9 .0 2.4 .0 .3 .0 .2 .0	1 7 1 7 4 7	7.7 7.1	.7 .1 .7 .1 .7 .0 .5 .0	1 1 8 1 9	6 .5 1 .6 0 <.5 8 <.5 6 <.5	15.0
360E 7 424E 7 470E 7 524E 7 590E 7	2685N 2547N 2587N	12 10 10	.3 .4 1 .5 1	89. 111. 132.	2 21 3 19 3 19 5 18 5 18	0 5 4	608 652 779	-	2 11 2 10 3 11	.0 1	12.0 12.5 14.5	1643 1891	4.25 4.43 5.14 5.52 5.45	318 373 490	.4		26.2 41.9 52.9 84.7 80.7	9. (9. (9. (8 9 10	2.2	2 14. 4 8. 7 8.	9 4 5 7		52 56 71	.06 .	117 126 128	10 9 11	14 13 15	.62 .58 .65 1	.05 .0 93 .0 94 .0 101 .0 131 .0	047 045 048	1 2. 2 2. 1 2. 1 2. 1 3.	49 . 37 . 73 .	010 007 008	. 13 . 14 . 14	.3 .0 .3 .0 .3 .0 .3 .0 .3 .0)7 5)4 5)5 6	5.6 5.9 6.2	.5<.0 .7<.0 .5 .0 .6 .0	15 17 19	6 <.5 7 <.5 7 <.5 8 .5 .0 .6	15.0 15.0
7698E 7 7807E 7 7813E 7 7893E 7 8134E 7	2602N 2592N 2702N	34 30 11	.4	167. 133. 179.	2 16 6 43 6 66 0 14 7 25	.8 1 .3 1 .8	1297 1027 974		6 11 6 14 3 12	.4	11.5 14.6 22.1	1221 2079 2529	5.11 5.82 5.17 5.20 5.59	1014 888 820	1.9 3.4	.5	112.8 98.3	B 1.0 2 1.9 9 1.2	$12 \\ 5 \\ 12 \\ 2 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ $	9.		7	3.8	57 60 63	.08 . .11 . .07 . .07 .	109 104 114	14 13 11	16 16 15	.56 1	113 .	039 051 052		.97 .07 .18	. 007	.10 .11 .11	.7 .3 .3 .5 .3	25 16 06	5.9 1 6.3 1 6.3	.4 .	10 06 06	9 .9 7 <.5 6 <.5 7 <.5 8 .5	15.0 15.0 15.0
STANDAR		20	.8	105.	6 66	.9	399		9 54	1.3	9.4	640	2.4) 49	9.3 4	1.7	125.	1 4.4	4 71	16.	6 6	.2	4.5	85	. 93	081	12	159 1	.06	382 .	121	40	. 97	. 078	.44	4.1 .	20	2.5	1.2 .	20	5 3.5	15.0
	GROUP (>) CC - SAMF	NCEN.	TRA	LION	EX	CEEC	DSι	IPPE	R 11	IMIT	IS.	SOM	E MINI	-2 HCL ERALS	MAT	BE	PARI	IALL	.T A	ILACI		K E I	ct Re	erun	7110	GRA				20 0		Y ICF IMIT	P-MS AU	SOLU	BILI		ME	A N	δ Ι		CER	A
	Data_	<u> </u>	FA			. 1	D	ATI	R	EC	EIV	ED:	OC	T 23 3	2006	I	DATI	E R	EPC	RT	MAI	LEI	D:			•••		• • •	••							HS		Ray	mon	d CI	han	
ta est	All res	ults	are	e co	onsio	dere	ed t	he	cont	fid	enti	al p	roper	ty of	the	cli	ent.	Act	ne a	śsum	es th	e t	iabil	iti	es f	or a	ctua	i co	st o	fth	e ar	alys	is o	nly.	. '		V	ノ			5	

ACHE ANALYTICAL						Blı	1e 1	Pea	rl N	lini	ng	PR	OJE	CT	Dž	AVI	DSOI	1	FI	LE	# 2	A60	808	0				Pa	age				_		
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm		Mn ppm	Fe %	As ppm	U ppm		Th ppm p	÷.		Sb ppm	Bi ppm p		5Ca لا		La ppm p	-	Mg Ba %tppn		8 ppm	A1 %	Na %	K X	W ppm p		Sc ppm p		Ga S ppm pp		ple gm
G-1 B226E 72599N B272E 72677N B369E 72619N 4520E 72880N	27.0	2.1 158.4 185.8 160.2 99.1	41.9	856 844 782	.5 .7 .5	15.3 12.9 12.9	14.3 18.1 16.6	1424	5.58 6.10 6.13	<.5 583.1 629.7 475.1 145.4	.7 .8 .6	42.5 93.2 84.0	2.2 1.6	10 11 10	4.1 3.9 2.6	13.4 19.6 15.9	.1 4.8 5.8 4.8 1.3	62 72 86	.05 .05 .05	.142	16 11	23 16 16	.59 206 .54 129 .66 167 .77 106 .48 159	.082 .105 .103	2 2 2 2 1 2	.90 2.45 2.93 2.82 2.68	.009 .011 .007	.09 .12 .11	.4. .7.	.35 .13	6.7 7.9 1 8.1	.4<.05 .7<.05 .2 .07 .7 .07 .3 .10	7 8 9	.5 1 .5 1	15.0 15.0 15.0 15.0 15.0
4795E 72803N 4995E 72780N 5411E 72851N RE 5411E 72851N 5496E 72814N	3.9 6.0 4.5 4.5 1.6	26.3 111.9 35.1 33.9 44.6	30.9 18.1	645 394 380	.8 .4 .4	8.7 8.2 7.5	13.5 7.9 7.7		3.57 4.93 4.68	100.3 182.4 181.4 175.2 60.7	1.6 .4 .4	4.9 12.7 1.9	. 2	11 16	6.3 1.6 1.4	3.0		49 73 71	. 47 . 33	.108 .091 .086	54 8 8	25 18 18	.21 9/ .34 6/ .70 9/ .69 9/ .07 5/	3 .036 5 .039 5 .038	2 (2) 2)	1.29 6.51 2.62 2.66 4.77	.010 .020 .019	.06 .11 .10	.2 .2 .3	.15 .09 1 .05 .04 .05 1	1.2 3.5 3.2		61 12 12 <	.3 1 .5 .5	7.5 15.0 7.5 7.5 15.0
5646E 72919N 5849E 72863N 5901E 72783N 5973E 72830N 5985E 72836N	6 5	40.7 56.6 246.2 443.1 1223.5	45.8 51.0	752 492 846	1.1 2.5 8 7	8.6 5.7 6.3	5.6 8.5 20.9	714	3.65 4.52 5.46	94.3 252.9 3750.2 5190.8 9257.2	.5	8.7 271.7 344.2	.6	8 6 15 2	4.1 3.4 23.8	8.5 11.7 14.0	.9 2.2 305.2 17.7 80.7	52 36 40	.07 .04 .04	.102 .077 .117	7 14 11	11 7 8	.27 11 .35 8 .29 11 .31 17 .32 18	5 .014 7 .016 5 .016	3 1 2	2.10	.008 .006 .006	.11 .10 1	.4	.07 .15 .26	3.6 3.0	.2 .19 .4 .08 .3<.05 .3 .07 .3 .08	9 6 7	.5 .7 .9	15.0 15.0 15.0 15.0 15.0
6000E 72800N 6173E 72790N 6295E 72800N 6405E 72812N 6568E 72818N	9.5	43.2 295.1	24.4	246 2021 529	.2 .6 .4	3.9 12.2 9.2	4.9 42.0 8.9	608 2359 1093	5.22 7.78 4.15	420.0 467.5 1143.1 247.5 431.3	.3 .4 .4	34.1 39.1 35.9 26.5 52.2	.1 1.1 .2	7 11 9	.8 14.6 2.5	15.0 7.8 14.6 5.7 22.9	5.6 8.1	69 55 57	.04 .13 .07	.128 .104 .096 .138 .098	8	14	.46 7 .21 7 .55 8 .41 7 .58 11	8 .019 7 .047 9 .023	<1 2 2		.006 .013 .007	.07 .26 .09	.3 .6 .4		1.4 5.9 2.1	.5<.05 .4 .10 .8 .10 .5 .11 1.0<.09) 11 <) 7 L 8	.5 .7 .8	.5 15.0 15.0 15.0 15.0
6668E 72800N 6766E 72800N 6867E 72800N 7000E 72900N 7004E 72800N	4.0 3.5 2.1	589.6 120.5 147.1 113.6 68.5	30.5 33.0 19.5	853 960 503	.3 .8 .2	7.8 14.0 15.8	8 18.3 9 19.0 8 17.3	1696 1376 1846	5.81 6.38 5.40	1509.0 665.2 581.8 229.8 309.1	.4 .5 .9	75.6 30.8 38.6 109.8 63.2	.5 1.2 .8	9 10 13	2.6 3.3 2.0	7.8 6.3 6.3 3.4 4.5	4.8 6.7 3.8	69 75 79	.10 .10 .12		8 8 11	11 16 19	.73 11 .62 12 .67 11 .70 10 .76 12	0.050 3.050 0.059) 1) 2) 1	3.20 2.90 2.62 2.96 2.68	.010 .009 .010	.12 .12 .13	.6 .7 .7	.10 .03 .03 .05 .03	5.2 6.4 6.7	.4 .08 .4 .08 .4 .00 .4 .00 .4<.09	8 9 < 5 8 < 6 8	.5 .5 .8	15.0 15.0 15.0 15.0 15.0
7144E 72788N 7150E 72940N 7160E 72900N 7284E 72821N 7324E 72905N	3.4 3.6 2.2	206.4 197.1 280.9 129.4 141.0	49.0 73.1 17.5	1045 1694 670	.5 .5 .2	14.0	28.2 342.6 319.9	2145 3202 2012	8.70 5.11	571.0	.7 .8 .6	112.4 45.2 74.7 28.2 66.4	1.3	15 18 11	3.8 14.0 2.2	19.8 39.1 3.9	6.8 8.0 3.3	83 94 75	.08 .12 .10	.126 .166 .134 .172 .108	9 12 9	18	.72 11 .77 21	1.06	4 3 5 3 1 1	2.58 2.43 2.72 2.84 1.99	.013 .013 .009	.22 .33 .15	.8 .8 .3	.12 .32	7.7 10.0 5.9	1.2 .1	98 09 78	.7 .7 .5	15.0 15.0 15.0 15.0 15.0
7467E 72827N 7601E 72742N 7654E 72910N 7804E 72840N 7954E 72792N	1.8 1.4	115.6 189.7 149.9 434.8 74.6	15.3 12.5 18.2	1046 773 1215	.5	5 13. 2 13. 5 10	5 21.4 9 19.9	4 2270 5 1778 1 1854	6.43	177.4 538.0 237.8 1491.3 109.1) .6 3 .4 3 .5	79.3 64.7 568.8	31.1 71.1 31.3	14 12 15	5.8 4.0 9.1	2.8	8.5 6.3 17.8	91 87 96 89 70	.09	.119 .152 .123 .152 .108	10 8 8	19 13	.86 11 .87 14 .91 10 .70 10 .79 10	41 .07 09 .07 06 .06	0 1 2 1 9 <1	2.60 3.32 2.59 2.53 2.46	.010	.19 .19 .16	.4 .3 .7	.06 .02 .04	7.4 7.9 7.4 7.6 6.5	.4.0	1 10 8 8 1 10	.5 .5 .7	15.0 15.0 15.0 15.0 15.0
STANDARD DS7	20.9	106.5	67.5	5 404		9 53.	89.	5 632	2.39	51.2	2 4.6	78.	5 4.3	69	6.6	5 6.3	4.6	84	. 94	.081	11	159	1.04 3	30 .11	9 38	. 93	. 077	.46	4.0	. 19	2.5	4.2.2	2 5	3.6	15.0

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL		Blue Pearl Minir	ng PROJECT DAVIDSON	FILE # A608080	Page 3	ACHE ANALYTICAL
SAMPLE#	Mo Cu Pb Zn ppm ppm ppm ppm p	Ag Ni Co Min Fe As opm ppm ppm \$ ppm			K W Hg Sc Ti S % ppm ppm ppm ppm S	5 Ga SeSample &ppm.ppm gm
G-1 8108E 72793N 8231E 72897N 8351E 72796N 4403E 73038N	1.6 190.2 25.0 1136 1.7 153.8 14.4 673 7.1 282.4 16.9 794	.6 15.8 19.6 2027 5.99 439.5 .2 14.2 19.7 1620 6.24 142.7 1.2 12 1 19.2 1664 12.19 686.7	1.9 <.5	.07 .162 9 16 .73 115 .100 2 2.82 .010 .04 .195 10 18 .76 104 .120 2 2.79 .007	.15 .5 .03 7.6 .4 .00 .18 .6 .02 7.7 .5<.01 .14 .4 .05 9.3 .4 .01	8 9 .6 15.0 5 9 .5 15.0 8 12 1.3 15.0
4794E 72936N 4798E 72936N RE 4798E 72936N 4988E 72969N 5015E 73144N	2.4 6.5 7.4 43 2.4 6.8 6.7 40 7.7 11 4 18 1 215	.2 1.0 .7 86 .79 20.8	1 10.8 .1 4 .3 2.0 .7 18 1 3.5 .1 4 .4 1.8 .6 18	.29 .040 6 10 .25 53 .027 1 1.45 .007	.02 .2 .02 .7 .1<.0	5 3 <.5 7.5 5 3 <.5 15.0 5 10 <.5 15.0
5215E 73008N 5400E 73000N 5600E 73000N 5800E 73000N 6000E 73000N	3.5 25.2 27.6 284 9.1 55.2 24.8 681 3.3 55.3 17.0 688	.2 4.4 6.8 2383 3.77 121.5 .2 7.5 9.9 1059 4.11 323.0	.5 7.3 .1 10 2.5 4.0 1.9 56	.14 .147 6 9 .24 129 .025 1 1.87 .009 .24 .079 7 11 .54 79 .026 2 2.13 .009 .18 .128 9 12 .48 102 .020 2 2.71 .008		7 13 .6 15.0 5 8 <.5 15.0 1 9 <.5 15.0
6200E 73000N 6400E 73000N 6550E 72995N 6800E 72982N 6915E 72990N	3.1 315.8 37.2 2224 1.0 64.8 9.0 633 3.7 166 9 22 7 845	.4 15.4 32.3 1975 8.06 1694.1 .3 9.0 10.2 1185 4.50 184.5 4 15.0 19.6 1712 6.30 688.9		.10 .119 12 17 .69 126 .062 <1 2.79 .012 .08 .090 5 14 .73 87 .034 1 2.75 .006 .11 .133 7 21 .70 97 .068 2 2.36 .011	.09 .3 .06 2.4 .4 .0 .23 1.0 .06 8.5 .9 .1 .12 .3 .06 4.5 .3 .3 .20 .8 .03 6.9 .5 .0 .17 3.7 .05 6.9 .6 .0	.3 9 .9 15.0)5 8 .5 15.0)5 9 < .5 7.5
7012E 73089N 7407E 73122N 7526E 72980N 7582E 73167N 7744E 73091N	3.4 303.5 24.0 1431 1.5 158.9 12.2 1232 2 7 268 5 19 6 975	.3 17.3 44.3 2697 11.06 556.5 .2 13.2 20.6 1595 7.34 307.4 3 19 3 41 9 2616 10 09 291 8	3 .4 128.6 .3 11 3.0 4.4 3.5 78 5 .8 253.1 1.3 20 8.2 9.7 11.1 93 4 .4 1.44.9 1.2 14 7.2 3.3 7.2 82 3 .5 348.4 1.3 29 5.1 5.5 10.2 102 3 .6 240.9 1.2 14 5.7 7.7 10.3 74	.07 185 11 18 .56 150 .071 2 2.41 .017 11 .120 9 16 .73 117 .058 1 2.20 .010 .11 .198 12 21 .74 174 .061 2 2.59 .018	.19 .4 .03 7.1 .5<.0 .19 .5 .05 9.3 .7 .1	L7 9 .9 15.0 05 8 <.5 15.0 14 9 .7 15.0
7875E 73019N 7995E 72970N 8130E 72989N 8238E 73092N 8346E 72963N	1.3 161.8 9.9 1070 1.6 188.5 15.2 1218 2 1 208 2 15 1 501	.2 20.6 26.3 1839 6.35 120.0 .3 15.3 22.0 1820 7.06 239.7 .3 15.6 19.7 1291 7.59 562 1	4 62.2 1.1 19 5.1 1.4 6.4 103	.08 .160 10 15 .69 116 .084 1 2.57 .009	.15 .4 .03 8.3 .4<. .15 .5 .04 8.1 .5<.	05 9<.5 15.0 05 9 .5 15.0 05 9 .6 15.0
8392E 73101N 8553E 73044N 8667E 73030N 8784E 72973N 8960E 72939N	2.0 249.6 20.5 305 2.5 76.6 12.0 246	8 20.0 41.1 1909 7.07 642.5 4 11.8 15.8 987 9.56 239.7 2 13 8 16 6 1003 5 50 50	7 .8 99.4 2.2 13 .7 2.0 9.0 102 5 1.6 121.2 2.4 18 1.6 2.3 22.0 94 7 .7 264.2 1.9 13 .7 2.6 12.8 90 9 .7 55.0 2.1 14 .5 1.6 3.6 68 9 .7 13.6 2.2 13 1.1 1.1 1.2 67	18 207 13 20 .87 174 .060 2 2.88 .013 .04 .218 9 16 .51 94 .082 1 2.63 .007 .08 .183 9 16 .61 113 .079 1 2.50 .009	.30 .7 .03 10.3 .9<.	07 9 .6 15.0 07 9 .9 15.0 05 8 .5 15.0
STANDARD DS7	20.5 107.6 67.4 404	.9 55.4 9.7 647 2.42 51.	7 4.7 68.8 4.4 70 6.6 6.2 4.5 84	.93 .084 11 161 1.04 374 .117 40 .96 .079	.44 3.9 .20 2.4 4.2 .	20 5 3.8 15.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data _____ FA _____ 67

· · · · · · · · · · · · · · · · · · ·	ACME ANALYTICAL]	Blu	ie 1	Pea	rl N	linir	ng				DA	VII				_			808						ıge					
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm p		Ni ppm	Co ppm		Fe ۶	As ppm p	-		Th ppm p		Cd ppm	Sb ppm	Bi ppm p	V pm	Ca %		La (pm p		Mg B % pp		1i B ≵ppnn		Na %		W Ho m ppr	/	T1 ppm		Sa Se S om ppm	sampie gm
	G-1 9100E 73096N 9159E 72945N 9240E 73067N 9373E 72938N	5.0 2.2 3.8	85.3 165.2	15.7 10.6 9.9	437 299 341	.8 .2 .3	4.2 16.6 5.4	3.8 17.3 4.0	1343 443	24.80 4.76 12.59	<.5 1 171.5 139.8 104.5 483.2	.3 .7 .4	113.1 100.5 34.3	1.4 2.1 1.2	28 13 11	.8 .9 .4	2.1 1.5 2.2	<.1 11.0 3.2 4.0 5.3	82 66 30	.02 . .11 . .03 .		11 10 8	17 18 7	.59 19 .33 29 .61 9 .31 7 .45 9	5.07 8.06 1.03	78 1 56 2 35 1	2.23 2.61	.062 .009 .010	.13 .17 .14	.4 .02	2 2.4 2 18.5 3 6.5 3 4.3 4 5.3	.2 .5< .3	.77 1 .05 .16	11 1.6 7 .5	15.0 15.0 15.0 15.0 7.5
-	9491E 73039N 9615E 73020N 9741E 73004N 9862E 72984N 10025E 72973N	3.9 3.8 2.8	198.7 65.5 114.3 134.7 55.4	10.9 15.9 21.4	386 465 502	.1 .8 .6	10.5 13.7 17.2	12.3 17.4 29.5	1066 1764 4188	6.05 5.87 6.40	261.3 346.0	.6	95.2 44.3 221.3 32.4 25.6	.3 1.7 1.8	10 11 14	.7 1.7 2.3	2.0 3.1 3.3	9.9	56 56 71	.05 .05 .04	177 310 140 169 210	10 12 16	15 16 15	.36 9 .38 7 .45 11 .46 17 .37 20	6.02	23 1 48 2 64 2	2.01 1.98 2.08 2.40 1.86	.008 .007 .006	.14 .18 .22	.4 .0 .5 .0	5 3.9 6 2.9 2 5.0 3 7.1 4 6.1	.3 .5< .6<	.13 .05 .05	6 .6 7 .6 6 .6 7 .5 6 <.5	15.0 15.0 15.0 15.0 15.0
	4397E 73202N 4733E 73210N RE 4733E 73210N 5211E 73200N 5400E 73200N	1.9 2.1 2.5	50.3 19.6 19.8 15.0 28.8	13.9 14.3 19.4	292 299 76	.5 .5 .3	6.2 6.0 2.1	8.2 8.2 3.2	526 519 568	2.21 3.35 3.32 1.81 4.16	60.6 41.1 42.4 44.6 138.9	.2 .2 .2	3.4 3.3 5.5	.2 .7 .7 <.1	9 9 6	4.0 .7 .6 1.7	1.3 1.4 1.3	. 8	60 61 35	.57 .19 .21 .06 .24	. 036 . 037 . 090	4 4 5	11 11 6	.42 12 .53 6 .53 6 .12 6 .59 10	56 .08 59 .09 50 .04	87 3 99 2 40 1	1.36 2.55 2.57 1.26 2.75	.013 .014 .006	.10 .11 .05	.3 .0 .4 .0 .1 .0	2 3.9 4 5.4 4 5.6 6 .9 4 2.8	.2< .3< .2<	.05	4 4.5 9 <.5 9 <.5 8 <.5 11 .5	7.5 7.5 7.5 15.0 15.0
	5565E 73204N 5798E 73203N 5986E 73190N 6147E 73189N 6541E 73234N	2.7 1.6 2.7	195.8	29.4 15.1 28.1	1279 443 1252	.6 .3 1.2	10.3 5.8 9.1	16.0 4.9 7.8	1380 606 696	2.79 5.37	404.9 149.4	.4 .3 .5	41.4 17.7 78.8	.4 .1 .6	11 13 13 1	4.9 4.2 10.1	5.4 2.1 4.8	2.4 13.7	55 37 50	.45 .14 .13 .16 .32	.103 .115 .108	8 7 12	11 9 14	.52 8		41 3 22 2 32 3	1.38 2.69 1.70 2.20 2.72	.010 .008 .009	.15 .11 .15	.2 .0	7 4.1	.4 .3 .4	.09	5 .6 8 .6 6 .7 7 .8 8 1.6	15.0
	6805E 73121N 7439E 73250N 7994E 73135N 7998E 73283N 8150E 73247N	3.2 2.5 1.5	284.6	14.1 13.8	1017 917 424	.4 .2 <.1	15.7 17.8 14.6	32.8 24.8 15.3	8 1664 8 1145	9.99 8.03 5.14	489.7	.6 .4 .6	71.6	1.6 1.1 1.8	23 18 17	2.9 3.2 2.2	7.5 1.7 2.3	12.2 7.8 2.4	87 82 80	.10	.213 .150 .116	10 8 9	17 16 16	55 55 53 49 62 1	56 .0 98 .0 57 .0	184 1 163 1 192 1	2.23 2.75 2.46 2.09 2.57	.017 .010 .010	.19 .13 3 .17	.6 .0 3.3 .0 .5 .0	13 5.6 13 7.1 13 6.8 12 6.9 13 8.1	.7 3.6 3.3	.07 .17 .10 <.05 .09	7 .5 9 1.0 7 .9 7 <.5 8 .7	15.0 15.0 15.0
	8317E 73283N 8410E 73250N 8524E 73236N 8641E 73205N 8787E 73202N	3.1 1.5 2.2	219.4 273.0 83.9 187.9 110.3	15.9 15.7 34.0	175 188 187	.3	10.5 17.8 14.8	10.1 22.1 13.5	l 1163 5 1015	7.75 5.15 8.50	238.3 376.2 67.9 267.3 1525.8	.4 .6 .6	527.3 40.8 97.8	1.4 1.5 1.1	8 12 12	.9 .4 .5	5.6 1.5 2.4	14.1 68.9 3.2 10.6 11.6	35 71 93	.03 .10 .09	.154	8 8	18 17	.62 1	93 .0 04 .0 81 .0)18 <1)71 2)42 1	2 2.23 1 2.42	.006 .010 .010	.17 .17 .13	.4 .(.7 .(1.1 .(03 5.	5 .5 3 .5 3 .5	.06 <.05 .07	7 .7 5 1.2 6 .6 9 .8 11 .7	7.5 15.0 15.0
	8905E 73158N 9012E 73116N 5600E 73400N 5800E 73400N 6000E 73400N	1.3 2.0 2.3	48.5	8.7 16.9 26.9	159 441 510	<.1 .2 .3	11.6 7.2 7.7	5 10.8 2 7.1 7 6.4	8 743 7 1094 4 1026	3.46	165.0 292.4	.5 .3 .6	19.9 80.9 25.4) 1.8 5 .2 1 .1	11 6 12	.5 1.4 2.5	1.1 2.4 6.0	5.6 1.9 2.4 2.5 1.5	50 55 39	.09 .05 .11	. 190 . 111 . 118 . 120 . 074	7 6 8	11 10	.50	65 .0 98 .0	069 024 016		008. 8 008. 8 5.008	.26 .12 .10	.4 . .2 . .3 .	02 7. 01 4. 08 2. 07 2. 03 3.	3 .4 4 .3 1 .3			15.0 15.0 15.0
	STANDARD DS7	19.9	106.8	68.6	405	.9	55.3	39.	5 646	2.45	50.8	4.7	79.9	94.3	70	6.4	6.2	4.5	85	. 93	. 082	12	161	1.08 3	369 .	117 3	9.95	5.077	.45	3.9.	20 2.	4 4.3	.21	5 3.9	15.0

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

		-			Bl	Lue	Pe	ear:	l M:	inir	ıg	PRO	JEC	T.	DAV	'IDS	SON	I	FII	'E ‡	# A	60	8080)				Pa	.ge	5				A L ITTICAL
SAMPLE#	Mo ppm	Cu ppm		Zn ppm p			Co ppm		Fe %		U ppm		u Th bppm			Sb ppm	Bi ppm	V ppm	Ca %		La opmip		Mg Ba % ppm		B ppm	Al X	Na %	K X p		ng s	Sc 1 om pr		Ga Se opm ppm	Sample gm
G-1 6215E 73420N 6394E 73413N 6623E 73444N 6749E 73439N	2.5 3.0	2.4 147.0 112.1 233.8 655.0	22.9 41.5	2531 537 2084	.5 1 .2 1 .4 2	19.1 15.1 22.1	16.0 52.6	2102 1455 3432	5.54 5.56 6.53	668.3 416.3 855.0	.6 .6	26. 37.	9.8 1.7 21.2	20 13 17	18.8 2.1 21.6	6.4 5.5 14.2	4.5 3.6	83 69 86	.33 .10 .26	157 166 102		19 18 19	.58 186 .85 154 .53 126 .71 107 .36 86	.031 .028 .052	4 3 5	3.25 2.36 1.94	.012	.17 .15 .19	.4 .0	04 5 07 8	9 7 4 1	.3<.05 .5 .15 .6 .13 .1 .07 .5 .24	4 <.5 9 .8 7 <.5 6 <.5 8 1.8	15.0 15.0 15.0 15.0 15.0
6861E 73436N 6914E 73374N 7076E 73426N 7230E 73486N 7335E 73507N	4.0 7.2 4.4	660.8 405.8 667.1 783.3 1019.3	34.0 103.8 82.0	1188 2906 837	.5 1 1.5 1 1.5	13.2 18.0 7.2	17.2 62.2 30.3	990 3026 1645	10.86 16.55 17.12	1458.3 4134.5 4412.0	.8 .9 1.3	141. 310. 358.	4 2.1 8 1.6 5 2.0	14 11 13	3.8 12.1 3.3	8.9 45.3 68.8	15.9 19.2 29.2	53 112 59	.05 .11 .10	.130 .136 .161	14 11 10	14 13 9	.40 82 .63 114 .47 86	.043 .028 .036	2 10 2	2.27 2.41	.012 .017 .018	.29 3 .27 2	2.5 . 3.3 . 2.7 .	03 7 05 14 14 8	.2 .9 1 .8 1	.5 .30 .3 .15 .3 .19 .3 .36 .8 .66	7 1.2 7 1.0 7 1.4 8 2.8 8 2.2	15.0 15.0 15.0 15.0 15.0
7615E 73410N 7800E 73400N 8009E 73407N 5998E 73592N 6068E 73558N	2.5 2.3	361.7 153.9 421.7 75.5 73.7	13.8 34.2 21.2	543 966	.2 2	20.5 27.0 20.4	55.3 55.7 19.7	2141 4823 1482	7.55 11.66 4.59		.6 .9 .6	105. 83. 15.	91.9 11.5	17 19 12	2.7 4.2 1.3	4.4 3.4 3.1	10.9 6.2 25.7 2.1 2.0	110 138 66	.11 .43	.212 .223 .156	14 11 9	20 23 20	.54 210 .68 16 .36 139 .53 90 .50 8	.070 .085 .036	2 3 3	2.60 3.02 2.39	.019 .010 .025 .010 .009	.18 .15 .13	.6 . .5 . .5 .	04 10 05 18 06 5	.8 .5 .4	.5 .22 .6 .06 .6 .17 .3 .07 .3 .07	7 .9 8 <.5 9 .7 6 <.5 5 <.5	15.0 15.0
6078E 73600N N.S. 6171E 73536N 6245E 73538N 6371E 73545N 6603E 73549N		94.5 73.8 110.3 224.6	36.5 21.3	480	.1	19.9 20.4	16.5	1778 1391	5.15 4.76 5.16 7.24	229.4	2 .5 1 .6	18. 46.	7 1.2 0 1.0 9 1.3 6 1.4	12 12	4.4	4.4 3.7		77	.13 .11	.112	10 10	17 20	.65 15 .58 11 .63 11 .79 9	4 .035 1 .044	3	2.02	.011 .011 .012 .017		.3.	· ·	.3	.4 .11 .4<.05 .5 .06 .7 .10	8 .7 6 .5 6 <.5 7 .6	
6756E 73513N RE 6756E 73513N 7480E 73588N N.S. 7561E 73693N 7600E 73585N	5.8 - 5.7	392.9 378.2 309.3 504.4	63.2 22.6	5 195	1.5	17.2	43.4	1894 - 435	9.95		2.4	195. 127.	4 1.4 1 1.4 - 7 1.3 8 1.5	20	13.9 - .8	20.3	34.3 33.3 14.6 10.4	85 - 75	.11	.153	10 - 17	16 16 12 15	.69 10 .65 10 .33 20 .39 14	5.064 2.039	4	2.61	.021 .021 .067 .031	. 27	3.1 . 1.2 .	04 9 04 9 .14 8	.0 - 3.3 1	.9 .23 .8 .21 .3 .63 .0 .27	9 1.4 8 1.3 6 2.2 8 1.7	-
9255E 73556N 10106E 73616N 10268E 73610N 10373E 73689N 6040E 73775N	2.9 2.4 2.3	108.7 207.3 111.4 63.6 198.5	19.0 14.3 10.7	421 3 227 7 162	.2 .1 .1	13.9 14.6 13.0	28.2 22.2 13.8	1252 1829 907	6.99 4.95 4.29	148. 749. 248. 174. 395.	6.7 5.7 9.5	422 119 169	.2 .9	2 14 9 17 5 11	1.8 2.2 .7	2.2 1.6 1.3		77 69 65	.10 .18 .13	.123 .167 .074	11 10 7	20 16	.53 14 .58 13 .62 16 .52 10 .49 7	8 .073 3 .066 4 .042	3 1 5 1 2 1	2.27 2.60 2.17	.011 .015 .017 .008 .042	.22 .22 .14	2.7 1.5 1.1	.02 7 .09 5 .03 4	.2 5.7 1.3	.6<.05 .8 .08 .8 .10 .4 .06 .5<.05	6 <.5 8 .5 7 .5 6 <.5 7 .9	15.0 15.0 15.0
6100E 73790N 7173E 73882N 7525E 73863N 7733E 73714N 9111E 73722N	3.9	359.9 573.4 414.2	65.7 37.8 22.8	8 498 8 603	.9 .5 .4	11.2 12.3 12.8	72.3 45.3	1141 3481 1396	11.21 17.24 14.53	1157. 404. 487. 383. 108.	2 .7 2 .6 7 .5	173 145 232	.8 1.6	7 15 5 22 4 22	2.0 2 1.3 2 2.3	22.9 11.1 5.2	8.1	48 107 182	.08 .07 .08	. 203 . 237 . 302	17 14	14	.42 23 .35 5 .43 18 .59 18 .57 9	9.02 7.08 2.06	9 3 2 2 9 2	2.78 2.50 2.42	2.046	.07 .30 .37	1.3 .8	.05 0 .05 1 .04 1	1.6 : 3.2 :	.5<.05 .3 .15 .7 .64 .3 .39 .5<.05	9 1.7 10 2.3	15.0 15.0 15.0
STANDARD DS7	20.1	107.1	68.	1 398	.9	53.9	9.5	614	2.36	49.	2 4.8	61	.74.	4 68	3 6.2	2 6.0	4.3	84	. 91	.080	12	160	1.03 36	6.12	0 38	. 97	.077	.43	3.8	.19	2.4	4.1 .21	5 3.4	15.0

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

_____ FA _____ 69

ACME ANALYTICAL						в1	.ue	Pe	arl	Mini	ng	PRO	JEC	T	DA	VI	DSOI	N	FI	LE	#	A60	0808	30				F	age	e 6	5				
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm pj			Th S opm pp		Cd opm	Sb ppm	Bi ppm p	V pm	Ca ଅ	Pl %pp	_a (om pp		Mg Ba %ippm		B ppm	A1 لا	Na %	K X	W ppm p		Sc ppm p			Ga Se S pm ppm	Sample gm
G-1 9430E 73861N 9616E 73775N 9764E 73759N 9891E 73723N	7.6 4.9 4.8	2.5 625.7 604.3 378.0 387.1	11.5	107 65 136	.5 .7 .5	7.0 3.3 5.4	13.9 5.7 7.4	485 609 449 517 626	15.20 20.33 9.55	1792.1 1	.8 .0 .9	293.0 1 733.4 1 256.3		6 8 ∢ 5	<.1 .3	7.2 6.0 2.6		76 73 67	.09 .	197 168 169	7 9	10 . 7 . 8 .	70 187 59 99 37 83 58 76 47 131	.102 .062 .070	1 3 2 1 2 2	3.00 1.88 2.90	.087 .013 .012 .012 .012 .014	. 33 1 . 22 . 26	0.6 3.7 2.5	.05 1 .07	9.7 1 L0.3 6.1 1	.5 .9 .6	.44 .69	5 <.5 10 2.1 10 2.5 10 1.4 8 1.3	15.0 15.0 15.0 7.5 7.5
10026E 73710N 10132E 73811N 10280E 73835N 10453E 73792N 5505E 73989N	3.8 3.1 2.6	184.6 204.6 169.4 50.8 192.8	13.9 11.1 13.9	213 161 132	.3 .2 <.1	16.5 16.4 14.4	36.1 22.1 13.7	1345	6.81 7.30 3.97	683.5 1 806.3 1 597.9 150.4 277.0	.1 .7 .4	263.2 551.9	1.7 1 .5 1	6 .6 .1	.7 .7	2.4 2.3 1.5	16.6 3.4	73 84 64	.12 . .11 . .12 .	176 129	16 10 8	19 . 18 . 17 .	61 136 50 168 52 144 44 121 70 94	.052 .075 .034	2 1 1	2.58 2.22 1.80	.011 .013 .012 .009 .039	.20 .22 .09	1.9	.09 .03 .03	7.5 3.6	.9 .7 .2	.23 .16 .16 .09 .10	9 .8 9 .9 8 .5 6 <.5 8 .8	15.0 15.0 15.0 15.0 15.0
5810E 73976N 5880E 74045N 5900E 73900N 5976E 73916N RE 5976E 73916N	1.6 3.7 2.9	76.4 78.4 77.7 73.4 74.8	98.2 26.1 27.6	371 364 390	.4 .2 .3	6.9 18.3 20.0	16.6 15.9 12.9	1603 1198 891	2.40 3.26 3.78 3.56 3.44	50.4 99.6 84.0	.2 .3 .4 .4	8.4 6.3 10.5 13.4 9.9	.1 2 .9 1 .8 2	29 .6 20	1.0 1.4 1.5 2.0 1.9	1.6 2.5	1.1 2.1	70 61 56	.37 .35 .14 .20 .20	141 087 085		10 . 19 . 19 .	37 97 54 89 54 111 50 118 52 113	038 3 .030	4 2 2	3.24 1.91 1.66	.026 .013 .009 .010 .012	.16 .10 .10	.2 .9 .6	.06	3.3 5.1 5.5	.4	.17 .07	10 1.4 12 .8 6 <.5 5 <.5 5 <.5	15.0 15.0 15.0 15.0 15.0
6152E 73919N 6200E 73900N 6350E 73940N 6390E 74015N 6450E 73995N	4.6 3.4 6.0	123.5 621.3 402.1 190.5 278.3	70.4 94.3 52.9	1856 1530 473	2.3 1.3 1.0	8.1 7.9 9.8	59.4 38.7 31.4	3264 1769	4.71 9.42 6.33 6.04 5.54	2534.8 415.6 277.2	.5 .4 .4	13.7 236.7 36.5 71.6 47.9	.9 1 .8 2 1.0 1	132 26 17	0.5 6.2 2.3	20.3 10.6 7.3		66 61 59	.17 .35 .37	.107 .086	10 13 10 8 11	9. 8. 15.	71 120 43 120 57 80 62 63 61 10	0.022 3.058 3.059	2 7 4 4 3	1.71 2.22 1.66	.022 .012 .037 .043 .022	.24 .32 .28	.3 .4 .8	.10 .06 .06	8.3 7.7		.09 .08 .05	7 .5 8 2.4 9 1.0 8 1.0 7 .6	15.0 15.0 15.0 7.5 15.0
6510E 74016N 6595E 74060N 6600E 74000N 7046E 74006N 7256E 73984N	3.6 7.7 3.7	157.9 132.0 411.8 231.3 430.6	40.5 54.9 41.6	514 375 960	.6 1.3 .4	12.1 9.7 13.4	20.7 19.6 28.0	1917 1059 1623	5.59 4.96 15.85 7.72 20.71	115.6 674.6 225.8	.3 .4 .7 .9	8.7 47.6	1.1 1.7 1.3	24 16	3.5 .9	2.9 8.5 7.8	14.5 3.7 23.7 10.8 16.5	63 69 57	.13 .14	.080 .195 .187	8	16 21 13	63 7 53 7	0.067	3 5 7 2 3 1	1.76 2.17 2.37		.28 .32 .19	1.0	.03 .08 .05	13.6 5.7	.5 < .7 .6	<.05 .21 .10	8 .9 8 .6 11 3.4 9 1.1 15 2.4	15.0 15.0 15.0 15.0 15.0
7466E 74054N 7619E 74005N 9314E 73957N 9878E 74043N 9980E 73991N	3.7 9.4 4.0	457.2 328.8 528.3 328.9 217.9	29.9 19.6 10.0	5 91 5 166	.2	2.8 14.8 20.4	2.0 22.6 51.1	133 1205 1822	14.67 28.32 16.59 8.53 8.11	288.6 442.0	1.0 .6 1.7	184.4 170.8	6.5 1.3 2.3	8 24 19 12 15	.1 .2 .4	7.0	13.4 4.6 29.7 18.9 146.9	133 82 38	.01 .10 .02	.340 .204 .125	6 18	34 23 11	.56 8 .07 30 .85 15 .20 10 .30 28	8 .119 2 .013	7 1 5 1 3 <1	1.00 2.69 1.43	.013 .116 .016 .010 .022	.46 .63 .16	1.2 7.9 1.2	.04 .03 .02	16.2 15.7 8.9 4.4 4.6	.4 1	1.34	13 1.4 11 1.3 11 2.3 4 .8 4 4.8	7.5 15.0 15.0 15.0 15.0
10113E 73928N 10136E 74078N 10337E 73939N 10338E 74063N 5926E 74195N	3.4 2.9 3.6	106.2 111.7 110.7 119.2 82.7	12. 12. 16.	0 168 1 148 0 190	5 .1 3 .1 1 .1	19.7 14.7 16.4	17.9 15.9 16.8	1274 1418	5.32 5.17 5.51	458.0 486.0	.7 .6 .7	118.3 119.1	1.3 .9 1.3	12 11 12 12 28		3.4		62 66 74	.08 .10 .10	.108 .171 .158	10	20 16 19		0.03 9.04 0.05	7 1 2 1 2 2	1.79 1.92 2.15	.011 .009 .010 .010 .022	.09 .14 .12	1.5 1.4 2.0	.02 .03 .02	4.6	.6 .3 .4 .5	.08 .08 .09 .06 .14	6 .5 6 .6 6 .6 7 .7 10 1.1	15.0 15.0 15.0 15.0 15.0
STANDARD DS7	19.8	107.3	67.	8 395	5.9	52.9	9.2	626	2.38	50.6	4.8	63.7	4.3	69	6.3	6.2	4.5	83	. 92	. 080	12	159 1	.03 37	5 .11	9 40	.92	.076	.43	3.9	. 20	2.5	4.1	. 20	5 3.7	15.0

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA _____ 70

ACME ANALYTICAL						Blı	ue	Pea	ırl	Mini	lng	PRC	JE	CT	DAV	IDSC	N	FI	LE	#	A6(0808	30				Pa	ige	7			ACME ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm		Zn				Mn ppm	Fe %	As ppm					il Sb nippmi	Bi ppnt		Ca %		La (pm pp		Mg Ba %rppnr		B ppm	A1 %	Na %	K X p	W H pm pp	5	: ⊺1 ⊧ppm		Ga Se ppm ppm	Sample gm
G-1 7317E 74120N 9579E 74178N 9686E 74153N 9805E 74151N	4.5 3.2 4 0	1.9 112.2 574.9 164.1 213.0	39.2 6.7	227 41 56	.3 .5	8.5 3.0 3.0	10.7 3.6 6.1	819 363 216	31.94 13.13	<.5 348.5 239.7 472.5 826.7	.6 .2 .6 6	25.1 1 38.1	3 2 .6 .8 1	2 . 5 <.1	1 <.1 5 2.8 1 1.3 1 38.3 4 8.5	4.8 14.5 265.0	206 12	.09 .	303 267 228	6 1 2 6 7	10 . 60 . 1 .	75 203 49 120 18 36 01 87 28 123	.047 .120 .003		75 .0 29 .0 35 .0	018 109 144	26 2 15 29 70 12	.2 .1 .5 .0 .6 .0		3.9 1.6 2.5	1.05	5 <.5 9 1.5 13 1.8 1 6.7 4 .6	15.0 7.5 15.0 15.0 15.0
9922E 74144N 10084E 74185N 10293E 74229N 5600E 74371N 5674E 74455N	3.2 4.9 1.9	162.0	13.0 15.0 92.0	5 145 5 126 5 421	.1 .1 .5	25.1 16.4 5.2	30.8 18.3 21.0	1616 1165 3277	5.48 6.50 4.19	507.3	.8 .7 .4	8.3	1.9 .9 1 .3 1	9. 2. 72.	6 7.7 7 4.5 3 3.0 7 3.5 2 8.4	13.4 19.4 3.6	54 71 64	.06 .08 .44	088	14 10 19	18 . 18 . 7 .		.028 .044 .020	<1 1. 1 2. 5 2.)09 .)10 .)16 .	07 1 14 2 17	.9 .0 .8 .0 .7 .0 .2 .0 .2 .0	12 5. 16 5.	3.3 1.5 6.3	.08	4 .7 4 <.5 6 .5 10 .5 6 .8	15.0 15.0 15.0 15.0 15.0
6046E 74371N 6130E 74425N 6048E 74449N 5566E 74320N RE 5566E 74320N	3.6 1.7 3.6	181.4 140.9 97.6	62. 39. 35.	3 306 5 228 3 476	2.5 2.7 .3	11.0 8.7 22.9	28.6 20.6 20.4	3814 2452 1557	5.01 4.55	19.6 79.0 48.4 197.7 192.9	.3 .3 .5	7.4 4.9 48.5	.8 1 1.1 1	21 2. 17 1. 16 1.	9 4.1 3 18.9 5 14.2 5 3.4 5 3.4	1.6 1.1 1.9	107 86 75	.39 .71 .41 .17 .17	.098 .097 .105	16 12 9	21 1 16 22	.53 83 .05 108 .92 83 .64 99 .64 103	3 .082 .078 9 .054	62. 51. 22.	71 .0 04 .0 84 .0 24 .0 .28 .0	025 . 022 . 012 .	54 49 18	.2 .1)99.)66.	5 1.2 7 1.0 4 .4	0 <.05 <.05 <.05 <.05 <.05 <.05	6 <.5 9 .5 8 <.5 7 <.5 7 <.5	15.0 15.0 15.0 7.5 7.5
5586E 74599N 5771E 74524N 5875E 74533N 5891E 74619N 5950E 74646N	3.0 .9 2.9	43.0 129.0 177.0 140.4 119.6	52. 48. 70.	1 338 9 315 7 294	2.0	9.1 8.5 11.1	23.5 21.8 15.6	2281 1382 1300		110.1 66.1 62.3	.3 .3 .4	23.8 5.0	.5 .7 .2	162. 191. 17.	4 6.0 0 7.2 7 1.4 9 5.9 3 3.4	7.3 9.5 3.8	93 68 75	.62 .55	.084	16 8 5 9 8	20 1 16 23	86 8		8 1 4 2 6 2	.21 . .76 . .11 . .32 . .06 .	030 054 024	.28 .39 1 .19	.9.(02 7. 06 4.	8 .7 0 .8 2 .4	3 <.05		15.0 15.0 15.0
6050E 74674N 6140E 74600N 6150E 74530N 5603E 74699N 5681E 74784N	3.4 3.0 .7	468.5	108. 193. 31.	8 550 4 124	2.7	11.4 8.2 3.6	38.4 37.2 5.8	2076 3467 1984	3.72 5.10 6.31 2.01 4.96	80.0 80.2 8.0	.7 .5 .4	13.6 20.0 47.8 2.9 2.3	1.0 .9 .8	35 3. 34 4. 6 1.	.4 1.1 .4 2.5 .1 14.3 .7 6.3 .3 2.8	12.0 11.0 .2	67 85 16	.73 .79 .26		16	18 11 4		6.008	11 2 8 2 5	.87 . .47 . .21 . .82 . .45 .	046 032 006	.29 .21 .23	2.7 . 2.0 . .1 .	01 6. 03 10. 28 12. 05 4. 05 5.	6 . 9 . 4 .	7 <.05 7 <.05 6 <.05 4 <.05 6 <.05	10 .5 2 <.5	15.0 7.5
5763E 74846N 5883E 74769N STANDARD DS7	3.1	240.7	96.	0 870	1.0	6.5	16.4	1694			.8		.3	51 5	.6 38.8 .7 3.0 .6 6.0	7.4	48	1 05	. 177 . 152 . 081	9	7	.30 20 .53 7 .05 36	8.034	73	.06 .	036	.17	.3 .	08 4	4 .		12 1.2	15.0

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

_____ FA _____ 71

				Ē	<u>31u</u>	<u>e</u> .	Pea Box	arl x 729	<u>Mi</u> 1260	ninc King	<u>r P</u> st.,	ROJ Smi	EC ther	T I s BC	VAC	IDS 2N0	ON Si	ibmit	Fil tted	e by:	# Ji	A6 m Hu	081 tter	L20	I									-
SAM	PLE#	Mo	Cu						Mn F		U				Cd Sb																Ga	Se		
		ррп	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	opb	ppm p	ipm pp	om ppm	n ppm	ppm	x	t ppr	ppm	*	ppm	\$ p	pm X	*	*	ppm pp	n ppr	n ppm	1	ppm	ppm		
G-1			2.9						543 1.8	.5	2.8	1.0	4.0	58 <	1 <.1	1	38	.52 .0	74 7	11	. 58	202 .	123	1 1.02	.081	.50	.1 <.(01 2.2	2.3	<.05	5	<.5		
	OE 73039N	.7	26.5	80.0	280	1.0	1.4	.5	292 1.1	>10000 123.6	.2	4566.5	.5	3 2	2 170.8	.2	4 c	.98 .0	13 1	5	.24	31 .	001	5.24	.004	.15	.1 1.3	7 2.2	2.2	4.46	2	<.5		
723	ISE 74133N	.5	14./	PT 10	28U	.6	3.1	6.3	891 3.5	5 92.3	.2	9.8	2.0	38 2.	0 1.0	.2	79 1	1.80 0	33 2	13	56	65	134	2 4 57	632	1 15	1 1	1 7 9		- DE	10			
780	OE 73600N	.7	35.9	21.2	58	.2	3.4	1.7	151 3.1	5 28.8	.1	.5	1.0	,	.3 .8	8. 1	29	.03 .0	32 1	8	.07	376	010	3 .53	.040	.28	.1 .6	1 4.1	.3	.03	2	<.5		
937	OE 73056N	.5	71.1	10.5	143	.2	2.6	2.9	830 3.4	32.6	1.1	7.5	.6	4	.6 .6	5.7	27	.05 .0	18 8	20	27	73	044	2142	039	11	1 - 1	1 6 1		< 0E				
	DE 73800N	2.3	102.2	18.3	53	.2	1.8	1.6	239 5.6	3 10.0	.3	23.0	.8	4	.3 .7	5.7	32	.08 .1	17 7	5	07	65	006	4 78	026	19	1 4	1 7 6		14	2			
	11 /3368N	./	47.8	13.7	186	.2	1.0	2.0	301 1.5	5 24.7	.2	1.7	1.0	7 2	1 .8	.5	3	24 0	19 4	12	14	69	083	2 66	115	15	2 - 1	1 24		22				
	95E 72415N 98E 72800N	1.0	179.5	14.7	427	1.1	.6	2.1	355 2.2	3 19.1	.3	7.6	1.0	1 3.	3 .7	2.7	2	.02 .0	22 1	5	11	70	110	3 62	006	27	1 - 1	1 1 2		16	2			
000										95.7																								
	8E 73577N	2.5	877.3	5.2	3129	.6	1.8	64.7	713 27.6	12.7	.1	896.7	.5	2 25	.8 .6	31.7	17	.17 .0	53 3	4	. 68	24 .	049	1 1.61	.021	.50	.6.0	1 5.2	2 1.3	8.83	8	3.9		
	14E /2/8UN	.8 3	492.0	30.6	95	37.0	1.3	17.2	30 27.1	>10000	.11	9070.2	.2	6 2	7 226.6	49.3	4	.01 .0	18 3	2	01	35	003	1 21	002	09	2 (0 1 0	· •	4 20	,	2.0		
	JE 72782N	3.1	547.0	57.1	49	30.5	4,1	10.8	46 2 6	5 >10000 2 >10000	.11	4126 6	.1	6 2.	7 228.2	48.2	4	.01 .0	17 3	2	.01	33.	003	1.23	.002	.08	.2 .0	9.9	.1	4.38	1	2.4		
	ISE 72836N	.7	186.3	41.0	259	28.9	1.0	7.5	636 3.1	6697.0	.2	243.0	.9	27 9.	.4 3.7	25.1	7	.01 .0	05 5 12 10	7	<.01	30 . 134 .	001 002	1 .14	.004	.11 3	5.3 .(.6 .(01 .7 01 2.1	<.1	.72	<1 3	<.5 <.5		
642	25E 73125N																																	
	25E 73150N	1.97	247.9	195.3>	10000	94.3	2.8	68.2 1	191 22.5	> 153.9 >10000	<.1	192.4	.1	1 155	4 45 4	142 2	55 I 16	0. 58.0	62 2 39 1	12	.74	122 .	106	4 4.51	.409	.83	.6 <.0	1 9.4	.6	. 20	10	<.5		
		126	561.1	186.5	3334	80.8	1.9 1	65.3	54 36.1	2 >10000	.1	2246.3	<.1	<1 24	1 401.8	216.7	<1	01 0	01 <1	3	< 01	5	001	1 04	001	02	- 1 /	10 3	1	-10		7.0		
642	SE /31/5N								(nn n 4								85	94 0	78 12	169	1.07	368	119	40 97	074	45				-10		1.4		
STA ROUP 1DX - 15.0	GM SAMPLI	E LE		59.7 D WI1	401 TH 9	.9	2-2	2-2 H	CL-HN	03-1120	AT	95 DF	-G (FOR		HOUS	ת כ	11117	ED T	0 30					DV	100	Ne				5	3.6		
STA ROUP 1DX - 15.0 >) CONCENTRATION	GM SAMPLI	E LE	ACHE	59.7 D WI1 IMITS	401 FH 91 S. 1	.9 D ML SOME	2-2 MIN	2-2 H	CL-HN S MAY	03-1120	AT RTIA	95 DE	EG. C	FOR		HOUF	R, D FORY	I LUT AND	ED T GRA	0 30 PHI1	00 N TIC	1L, A SAMP	NAL	(SED CAN	BY LIM	100	Ne				5	3.6		
STA ROUP 1DX - 15.0 >) CONCENTRATION SAMPLE TYPE: RO	GM SAMPLI I EXCEEDS ICK R150	E LE UPP	ACHE ER L Samp	59.7 D WI1 IMITS Les L	401 FH 90 S. 9	.9 D ML SOME	2-2 MIN g_ <u>'</u> R	2-2 H IERAL RE' a	CL-HN S MAY <u>re Re</u>	03-H2O BE PA runs a	AT RTIA nd 1	95 DE LLY A RRE'	G. C ATTAC are	FOR KED. Reje	ONE RE Ct R	HOUF FRACT eruns	R, D FORY 5. 12	ILUT AND 2-0	ED T GRA	о 30 рні 1 06	DO N TIC PC	1L, A SAMP	NAL	(SED CAN	BY LIM	100	Ne				5	3.6		
STA ROUP 1DX - 15.0 >) CONCENTRATION SAMPLE TYPE: RO	GM SAMPLI I EXCEEDS ICK R150	E LE UPP	ACHEI ER L Samp	59.7 D WI1 IMITS Les L	401 FH 90 S. 9	.9 D ML SOME	2-2 MIN g_ <u>'</u> R	2-2 H IERAL RE' a	CL-HN S MAY <u>re Re</u>	03-H2O BE PA runs a	AT RTIA nd 1	95 DE LLY A RRE'	G. C ATTAC are	FOR KED. Reje	ONE RE Ct R	HOUF FRACT eruns	R, D FORY 5. 12	ILUT AND 2-0	ED T GRA	о 30 рні 1 06	DO N TIC PC	1L, A SAMP	NAL	(SED CAN	BY LIM	100	Ne				5	3.6		
STA ROUP 1DX - 15.0 >) CONCENTRATION SAMPLE TYPE: RO	GM SAMPLI I EXCEEDS ICK R150	E LE UPP	ACHEI ER L Samp	59.7 D WI1 IMITS Les L	401 FH 90 S. 9	.9 D ML SOME	2-2 MIN g_ <u>'</u> R	2-2 H IERAL RE' a	CL-HN S MAY <u>re Re</u>	03-H2O BE PA runs a	AT RTIA nd 1	95 DE LLY A RRE'	G. C ATTAC are	FOR KED. Reje	ONE RE Ct R	HOUF FRACT eruns	R, D FORY 5. 12	ILUT AND 2-0	ED T GRA	о 30 рні 1 06	DO N TIC PC	1L, A SAMP	NAL	(SED CAN	BY LIM	100	Ne				5	3.6		
STA ROUP 1DX - 15.0 >) CONCENTRATION SAMPLE TYPE: RO	GM SAMPLI I EXCEEDS ICK R150	E LE UPP	ACHEI ER L Samp	59.7 D WI1 IMITS Les L	401 FH 90 S. 9	.9 D ML SOME	2-2 MIN g_ <u>'</u> R	2-2 H IERAL RE' a	CL-HN S MAY <u>re Re</u>	03-H2O BE PA runs a	AT RTIA nd 1	95 DE LLY A RRE'	G. C ATTAC are	FOR KED. Reje	ONE RE Ct R	HOUF FRACT eruns	R, D FORY 5. 12	ILUT AND 2-0	ED T GRA	о 30 рні 1 06	DO N TIC PC	1L, A SAMP	NAL	(SED CAN	BY LIM	100	Ne				5	3.6		
	GM SAMPLI I EXCEEDS ICK R150	E LE UPP	ACHEI ER L Samp	59.7 D WI1 IMITS Les L	401 FH 90 S. 9	.9 D ML SOME	2-2 MIN g_ <u>'</u> R	2-2 H IERAL RE' a	CL-HN S MAY <u>re Re</u>	03-H2O BE PA runs a	AT RTIA nd 1	95 DE LLY A RRE'	G. C ATTAC are	FOR KED. Reje	ONE RE Ct R	HOUF FRACT eruns	R, D FORY 5. 12	ILUT AND 2-0	ED T GRA	о 30 рні 1 06	DO N TIC PC	1L, A SAMP	NAL	(SED CAN	BY LIM	100	Ne				5	3.6		
STA ROUP 1DX - 15.0 >) CONCENTRATION SAMPLE TYPE: RO	GM SAMPLI I EXCEEDS ICK R150	E LE UPP	ACHEI ER L Samp	59.7 D WI1 IMITS Les L	401 FH 90 S. 9	.9 D ML SOME	2-2 MIN g_ <u>'</u> R	2-2 H IERAL RE' a	CL-HN S MAY <u>re Re</u>	03-H2O BE PA runs a	AT RTIA nd 1	95 DE LLY A RRE'	G. C ATTAC are	FOR KED. Reje	ONE RE Ct R	HOUF FRACT eruns	R, D FORY 5. 12	ILUT AND 2-0	ED T GRA	о 30 рні 1 06	DO N TIC PC	1L, A SAMP	NAL	(SED CAN	BY LIM	100	Ne				5	3.6		
STA ROUP 1DX - 15.0 >) CONCENTRATION SAMPLE TYPE: RO	GM SAMPLI I EXCEEDS ICK R150	E LE UPP	ACHEI ER L Samp	59.7 D WI1 IMITS Les L	401 FH 90 S. 9	.9 D ML SOME	2-2 MIN g_ <u>'</u> R	2-2 H IERAL RE' a	CL-HN S MAY <u>re Re</u>	03-H2O BE PA runs a	AT RTIA nd 1	95 DE LLY A RRE'	G. C ATTAC are	FOR KED. Reje	ONE RE Ct R	HOUF FRACT eruns	R, D FORY 5. 12	ILUT AND 2-0	ED T GRA	о 30 рні 1 06	DO N TIC PC	1L, A SAMP	NAL	(SED CAN	BY LIM	100	Ne				5	3.6		
STA ROUP 1DX - 15.0 >) CONCENTRATION SAMPLE TYPE: RO	GM SAMPLI I EXCEEDS ICK R150	E LE UPP	ACHEI ER L Samp	59.7 D WI1 IMITS Les L	401 FH 90 S. 9	.9 D ML SOME	2-2 MIN g_ <u>'</u> R	2-2 H IERAL RE' a	CL-HN S MAY <u>re Re</u>	03-H2O BE PA runs a	AT RTIA nd 1	95 DE LLY A RRE'	G. C ATTAC are	FOR KED. Reje	ONE RE Ct R	HOUF FRACT eruns	R, D FORY 5. 12	ILUT AND 2-0	ED T GRA	о 30 рні 1 06	DO N TIC PC	1L, A SAMP	NAL	(SED CAN	BY LIM	100	Ne				5	3.6		
STA ROUP 1DX - 15.0 >) CONCENTRATION SAMPLE TYPE: RO	GM SAMPLI I EXCEEDS ICK R150	E LE UPP	ACHEI ER L Samp	59.7 D WI1 IMITS Les L	401 FH 90 S. 9	.9 D ML SOME	2-2 MIN g_ <u>'</u> R	2-2 H IERAL RE' a	CL-HN S MAY <u>re Re</u>	03-H2O BE PA runs a	AT RTIA nd 1	95 DE LLY A RRE'	G. C ATTAC are	FOR KED. Reje	ONE RE Ct R	HOUF FRACT eruns	R, D FORY 5. 12	ILUT AND 2-0	ED T GRA	о 30 рні 1 06	DO N TIC PC	1L, A SAMP	NAL	(SED CAN	BY LIM	100	Ne				5	3.6		
STA ROUP 1DX - 15.0 >) CONCENTRATION SAMPLE TYPE: RO	GM SAMPLI I EXCEEDS DCK R150	E LE UPP	ACHEI ER L Samp	59.7 D WI1 IMITS Les L	401 FH 90 S. 9	.9 D ML SOME	2-2 MIN g_ <u>'</u> R	2-2 H IERAL RE' a	CL-HN S MAY <u>re Re</u>	03-H2O BE PA runs a	AT RTIA nd 1	95 DE LLY A RRE'	G. C ATTAC are	FOR KED. Reje	ONE RE Ct R	HOUF FRACT eruns	R, D FORY 5. 12	ILUT AND 2-0	ED T GRA	о 30 рні 1 06	DO N TIC PC	1L, A SAMP	NAL	(SED CAN	BY LIM	100	Ne				5	3.6	(Ē	
STA ROUP 1DX - 15.0 >) CONCENTRATION SAMPLE TYPE: RO	GM SAMPLI I EXCEEDS DCK R150	E LE UPP	ACHEI ER L Samp	59.7 D WI1 IMITS Les L	401 FH 90 S. 9	.9 D ML SOME	2-2 MIN g_ <u>'</u> R	2-2 H IERAL RE' a	CL-HN S MAY <u>re Re</u>	03-H2O BE PA runs a	AT RTIA nd 1	95 DE LLY A RRE'	G. C ATTAC are	FOR KED. Reje	ONE RE Ct R	HOUF FRACT eruns	R, D FORY 5. 12	ILUT AND 2-0	ED T GRA	о 30 рні 1 06	DO N TIC PC	1L, A SAMP	NAL	(SED CAN	BY LIM	100	Ne				5	3.6	516	79
STA ROUP 1DX - 15.0 >) CONCENTRATION SAMPLE TYPE: RO	GM SAMPLI I EXCEEDS DCK R150	E LE UPP	ACHE ER L Samp	59.7 D WI1 IMITS Les L	401 FH 90 S. 9	.9 D ML SOME	2-2 MIN g_ <u>'</u> R	2-2 H IERAL RE' a	CL-HN S MAY <u>re Re</u>	03-H2O BE PA runs a	AT RTIA nd 1	95 DE LLY A RRE'	G. C ATTAC are	FOR KED. Reje	ONE RE Ct R	HOUF FRACT eruns	R, D FORY 5. 12	ILUT AND 2-0	ED T GRA	о 30 рні 1 06	DO N TIC PC	1L, A SAMP	NAL	(SED CAN	BY LIM	100	Ne				S	3.6	516	
STA ROUP 1DX - 15.0 >) CONCENTRATION SAMPLE TYPE: RO	GM SAMPLI I EXCEEDS DCK R150	E LE UPP	ACHE ER L Samp	59.7 D WI1 IMITS Les L	401 FH 90 S. 9	.9 D ML SOME	2-2 MIN g_ <u>'</u> R	2-2 H IERAL RE' a	CL-HN S MAY <u>re Re</u>	03-H2O BE PA runs a	AT RTIA nd 1	95 DE LLY A RRE'	G. C ATTAC are	FOR KED. Reje	ONE RE Ct R	HOUF FRACT eruns	R, D FORY 5. 12	ILUT AND 2-0	ED T GRA	о 30 рні 1 06	DO N TIC PC	1L, A SAMP	NAL	(SED CAN	BY LIM	100	Ne				5	3.6	516	

Appendix E

Listing of Software Used

Software programs used in the preparation of this report:

Name	Version	Manufacturer	Purpose				
Word 2003	11.6502.6408 SP1	Microsoft Corporation	word processing				
Excel 2003	11.6355.6408 SP1	Microsoft Corporation	spreadsheet				
Intellicad PE	6.3.70.0	CAD Manufacturing Solutions Inc.	drafting				
JMP	7.0.1	SAS Institute Inc.	statistical analysis				
Acrobat Professional	8.1.1	Adobe Systems Inc.	report preparation				

Appendix F

Statements of Qualifications

CERTIFICATE

I, James M. Hutter, of Smithers, British Columbia, hereby certify that:

- 1. I am a practicing Professional Geologist with offices at 4407 Alfred Avenue, Smithers, British Columbia.
- 2. I hold a Bachelor of Science degree (Geology) from the University of British Columbia, Vancouver, British Columbia.
- 3. I am registered as a Professional Geoscientist by the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. I have practiced mining exploration since graduation (1976), mostly in British Columbia.
- 5. I have been employed by Blue Pearl Mining Inc. since September 2005 as Exploration Manager on the Davidson project.
- 6. The observations and opinions expressed herein are based on field work conducted in September and October 2006 and on a review of available maps and reports.
- 7. I have an interest in securities of Thompson Creek Metals Co. Inc., the parent company of Blue Pearl Mining, Inc.

Dated at Smithers, British Columbia, this 10th day of January, 2008.

James M. Hutter, P. Geo

STATEMENT OF QUALIFICATIONS

I. Anthony T. L'Orsa, P.Geo., independent geologist with business address at 8858 Adams Road, Smithers, British Columbia, certify that:

1. I am a graduate of Tulane University, New Orleans, Lousiana, U.S.A., with the degrees of Bachelor of Science (1961) and Master of Science (1964) in geology.

2. I have practised my profession in mineral exploration since 1962 in western Canada, Australia and Mexico.

3. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia, a fellow of the Geological Association of Canada, a member of the Society of Economic Geologists and a member of the Society for Geology Applied to Mineral Deposits.

4. I am a qualified person, as defined in National Instrument 43-101.

. l'a Anthony L'Orsa, P. Geg

Smithers, B.C., 10 January 2008