$$
\begin{gathered}
\hline \text { BC Geological Survey } \\
\text { Assessment Report } \\
29667
\end{gathered}
$$

DIAMOND DRILLING REPORT on the

 WASI CREEK PROPERTY

 WASI CREEK PROPERTY}

Tenure No. 512686
Omineca Mining Division
NTS: 94C/03E
BCGS Map Sheet: 094C.005, 094C. 015
Latitude: $\mathbf{5 6}^{\circ} \mathbf{6 . 5}$ ' N ; Longitude $125^{\circ} 1.5^{\prime} \mathrm{W}$
UTM: NAD 83, Zone 10; $6220000 \mathrm{~N} ; 374000$ E

Owner: Selkirk Metals Holdings Corp.

Author: Calvin Church, P.Geo.

TABLE OF CONTENTS

Section		Title	Page
A	Report	Introduction	3
		Property	3
		Location and Access	3
		Climate, Topography and Vegetation	4
		History	4
		Regional Geology	8
		Property Geology	8
		2006 Diamond Drilling	10
		Recommendations	12
		List of References	14
		Statement of Qualifications	16
	Tables: 1	2006 Drill Hole Summary	10
	2	Significant Drill Hole Intersections - 2006 Program	12
B	Property	Schedule of Mineral Claims	17
C	Expenditures	Statement of Expenditures	18
D	Analytical Reports	Acme Analytical Laboratories Ltd.: - Certificates of Analysis (5 reports) -Statement of Analytical Procedures: Group 7AR	20
E	Drill Hole Logs	Drill Hole Record	
		Drill Hole Number WZ-06-08	
		Drill Hole Number WZ-06-09	
		Drill Hole Number WZ-06-10	
		Drill Hole Number WZ-06-11	
F	Illustrations		
	Plan Number	Title	Scale
	WA-06-1 (after p.4)	General Location Pian	1:250000
	WA-06-2 (after p.4)	Mineral Claims	1:50000
	WA-06-3 (in pocket)	Mineral Claims / Drill Hole Locations	1:20000
	WA-06-4 (in pocket)	Geology and Drilling Compilation	1:5000
	WA-06-5 (in pocket)	Drill Section-WZ-06-08-Looking 261°	1:500
	WA-06-6 (in pocket)	Drill Section - WZ-06-09 - Looking 281°	1:500
	WA-06-7 (in pocket)	Drill Section - WZ-06-10 - Looking 275°	1:500
	WA-05-8 (in pocket)	Drill Section - WZ-06-11 - Looking 340°	1:500

SECTION A: REPORT

INTRODUCTION:

Selkirk Metals Holdings Corp. ("Selkirk Holdings" or "the Company") owns a 100% interest in the Wasi Creek Property. The property was initially acquired by Cross Lake Minerals Ltd. ("Cross Lake") in July 2000 following a review of prospective areas in British Columbia for carbonate-hosted zinc-lead-silver deposits. It was assigned to Selkirk Holdings in June 2005 as a result of a Plan of Arrangement. It was originally staked to cover the area previously known as the Par Property which Cominco Ltd. extensively explored from 1990 to 1995. The Wasi Creek Property is located 150 km northwest of Mackenzie on the south side of the Osilinka River adjacent to Wasi Lake in the Omineca Mining Division. This report summarizes the program of NQ diamond drilling that was carried out by the Company in late November and December 2006 on the Carrie 2 and Par North Zones. The work was conducted on Tenure No. 512686. Four drillholes totaling 1094.0 m were completed.

PROPERTY:

The Wasi Creek Property is comprised of seven cell claims containing an aggregate of 134 cells and covering 2417.457 hectares. These claims represent the conversion in January, April and May 2005 of 11 contiguous legacy mineral claims, three 4 post and eight 2 post, totaling 66 claim units and covering an area of 1650 hectares. The claims are all situated in the Omineca Mining Division. The Property is registered in the name of Selkirk Metals Holdings Corp. It was originally acquired by Cross Lake by staking on four occasions between July 2000 and October 2001 (see Plan Numbers WA-06-2 and WA-063). A Schedule of Mineral Claims is appended in Section B and the expiry dates therein are based on the Statement of Work filed on November 26, 2007 as Event \#4181783 and assume that this assessment report will be accepted for assessment purposes. None of the cell claims have been surveyed.

By agreement dated September 1, 2004 and amended November 19, 2004, December 5, 2005 and November 28, 2007, Cross Lake granted Bard Ventures Ltd. an option to earn a 50% interest in the Property by incurring aggregate exploration expenditures of $\$ 800,000$ on or before December 31, 2008. This agreement was assigned to Selkirk Holdings by Cross Lake in accordance with the aforementioned Plan of Arrangement.

LOCATION AND ACCESS:

The Property is located on the south side of the Osilinka River some 150 km northwest of Mackenzie and 43 km north-northwest of Germansen Landing. The claims are on BCGS map sheets 94C005 and 94C015
and NTS map sheet $94 \mathrm{C} / 3 \mathrm{E}$. Geographic co-ordinates at the centre of the property are $56^{\circ} 6.5^{\prime}$ North latitude; $125^{\circ} 1.5^{\prime}$ West longitude and UTM coordinates are 6220000 N and 374000 E in Zone 10 , NAD 83.

Access to the property is excellent due to extensive iogging operations that have been carried out around and on the claims. The easiest access is by using Highway \#97 north of Prince George to a small community named Windy Point, 12 km north of McLeod Lake. From Windy Point one drives on the main haulage logging road located on the west side of Williston Lake, north for 170 km and then west for 22 km to the junction of the Osilinka and Wasi Lake Forest Access roads. The Wasi Creek Property is reached by traveling another 18 km aiong the south side of the Osilinka River on the Wasi Lake Forest access road. There are several secondary forest access roads crossing the claims all of which are navigable with a four wheel drive vehicle.

CLIMATE, TOPOGRAPHY AND VEGETATION:

The Wasi Lake area has cold, high snowfall winters and warm, damp summers. The topography of the property is moderately steep. The lowest elevation is 830 m on the northern boundary of the property along Wasi Creek near its confluence with the Osilinka River while the high point is 1460 m on the ridge located along the eastern boundary of the claims. The slopes are heavily timbered by pine and spruce. In the clear cuts deciduous willows and poplars predominate.

HISTORY:

The earliest recorded work located in the area was in the Annual Report of the Minister of Mines in 1930 documenting the Weber Prospect, located near the northern edge of the present Wasi Creek Property. The report describes the Weber mineralization as disseminated galena, zinc and pyrite in siliceous dolomite of which a 5.18 m channel sample assayed $3.6 \% \mathrm{Zn}, 1.6 \% \mathrm{~Pb}, 1 \mathrm{oz}$ ton Ag and $0.02 \mathrm{oz} /$ ton Au . The Weber Prospect was restaked and worked intermittently following the discovery and described in the 1954 Geological Survey of Canada Memoir 274, by E.F. Roots entitled "Geology and Mineral Deposits of Aiken Lake Map-Area, British Columbia". He describes the showing as pyrite-galena-sphalerite-barite replacement body in limestone that strikes north 30 degrees west and dips 80 degrees northeast. A grab sample assayed trace $\mathrm{Au} ; 2.0 \mathrm{oz} /$ ton $\mathrm{Ag} ; 10.24 \% \mathrm{~Pb}$ and 4.06% barite. An inventory of the numerous carbonate-hosted stratabound zinc, lead, silver and barite showings in the Wasi Creek area is well described in British Columbia Department of Mines Open File Paper 1992-1. The paper is named "Geology of the Usilika Lake Area, Northern Quesnel Trough, B.C.", $(94 \mathrm{C} / 3,4,6$) by F.Ferri, S. Dudka and C. Rees.

In 1990 Cominco Ltd. completed a reconnaissance silt and soil geochemical survey on the stratigraphic extensions of the Lower Cambrian to Middle Devonian carbonates that host the known mineral occurrences. The area around the Weber Prospect was highly anomalous so Cominco staked their first two claims covering this prospect and the anomalous areas. Cominco then completed contour and grid soil sampling and outlined a large, highly anomalous area 1.0 by 4.5 km in size in lead, zinc, iron and silver and staked five additional claims.

Cominco Ltd. completed an intense exploration program during 1991. The exploration program consisted of geological mapping, soil sampling, airborne electromagnetic and magnetometer surveys, ground geophysical surveys including HLEM, magnetometer, Induced Polarization and VLF surveys. A trenching program was completed on the target area of the large soil geochemical anomaly and the coincident conductors. There were seven trenches excavated with the best mineralization discovered in trench \#3 that assayed $8.4 \% \mathrm{Zn}, 3.5 \% \mathrm{~Pb}$ and $14.2 \mathrm{~g} / \mathrm{Ag}$ over a width of 17.2 m .

In 1992 Cominco Ltd. completed 16 diamond drillholes totalling $1,346 \mathrm{~m}$ in the area of the trenching. The strike length explored is approximately 2.0 km along a fault controlled, base metal mineralized, structure on the east side of Wasi Creek. The work was not filed for assessment credit so there are no records of the results in the provincial data base.

In 1993 Cominco drilled four holes on the north side of the Osilinka River on a separate area and one hole in the Wasi Creek area in the vicinity of the 1992 drilling. The Wasi Creek drillhole was collared near the Duncan Showing and was successful in intersecting two mineralized horizons that assayed $6.9 \% \mathrm{Zn}, 1.6 \%$ Pb and $18.4 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ over a width of 4.5 m and $3.1 \% \mathrm{Zn}, 3.2 \% \mathrm{~Pb}$ and $32.0 \mathrm{~g} / \mathrm{Ag}$ over a width of 3.1 m .

In 1994 Cominco constructed more drill access roads and sites and completed four holes totaling $1,164 \mathrm{~m}$, including two vertical holes drilled possibly to complete stratigraphic sections on either side of the fault controlled mineralization.

Cross Lake Minerals Ltd. acquired a 20 unit mineral claim over the property when the ground came open in 2000 and in 2001 added an additional 46 units. The Company carried out a program of geological mapping, stream sediment sampling and trenching in 2001. In 2002, anomalous stream sediment samples were followed up by soil geochemical sampling in areas upstream from the anomalies.

Stream sediments in the Wasi Creek area were sampled by the British Columbia Geological Survey in 1991 and the results are detailed in Open File 1992-11. Four samples were collected in the Wasi Creek Property area (SS-018, SS-130, SS-203, and SS-304) and had the highest in indicator and base metal elements minerals for the entire survey area. The base metal source for the three anomalous samples, SS018, 130 and 203, are most likely the Duncan and Par mineralized horizons on the east side of Wasi Creek. Stream sediment sample SS-018, the highest in base metal elements of all of the stream sediment samples, was collected from a stream on the west side of Wasi Creek and south of any known mineralization. In July 2002, Cross Lake Minerals Ltd. sampled the same drainage in order to verify the earlier result. The new sample (WS-1) was taken approximately 750 m upstream, and to the west, of the B.C. government sample site location SS-018 on the OSI 2 mineral claim at approximate NAD 27 UTM coordinates $6219053 \mathrm{~N}, 371988 \mathrm{E}$ at an elevation of 967 m . The sample was lower in base metal values than the B.C. government sample.

The 2002 soil sampling program was designed to test both sides of an unnamed stream that was highly anomalous in base metal elements when sampled previously by the B.C. Geological Survey. Two sample lines were run parallel and approximately 100 m on either side of the stream until its junction with Wasi Creek then in opposite directions along the west bank. A total of 55 soil samples were collected and the total length of lines surveyed was 1350 m . The sampling program was successful in delineating two areas of anomalous base metal elements. Soils anomaious in lead and zinc occur to the north of the unnamed creek and west of Wasi Creek. The details of this 2002 program were set out in the "Soil Geochemical Report on the Wasi Creek Property, OSI 2 and 3 Mineral Claims" by Jim Miller-Tait, P.Geo. dated January 10, 2003, B.C Assessment Report \#27,032.

Additional soil sampling programs were carried out on the property in two phases during the summer of 2004. Details of the 2004 Phase 1 program completed in June was titled "Geochemical Sampling Report on the Wasi Creek Property" by Calvin Church, P.Geo. dated October 28, 2004, B.C. Assessment Report \#27532. The program was regional in scope and consisted mainly of a series of road traverses transecting the boundaries of the property. A total of 137 soil samples were collected from road cuts at 100 m intervals along roughly 13 km of logging road. Anomalous results from the Phase 1 program were located approximately one km east of the main Par showings on the east half of the OSI claim.

The 2004 Phase 2 geochemical soil sampling program was carried out in September 2004 which reported results of 212 soil samples collected at 25 m intervals along contour traverses above Wasi Creek.

Consistently anomalous soil geochemical anomalies for lead and zinc were returned from traverses below Carrie Mountain where 48% of the samples had values exceeding 1000 ppm Zn and 28% had values between $400-1000 \mathrm{ppm} \mathrm{Zn}$. Results from the 2004 Phase 2 geochemical sampling program are summarized in the report titled "Geochemical Sampling Report (2004 Phase 2) on the Wasi Creek Property" by Calvin Church, P.Geo. dated October 15, 2005, BC Assessment Report \#27907.

In May 2005 Aeroquest Ltd. completed a helicopter-borne AeroTEM II electromagnetic and magnetometer survey over the Wasi Creek Property for Cross Lake Minerals Lid. The survey covered an area of 4000 m by 4000 m with 41 east-west lines on 100 m spacing and 5 north-south tie lines on 1000 m spacing. A total of 186.8 line km was flown. Details of the survey are set out in an assessment report written for Selkirk Holdings titled "Airborne Geophysical Report on the Wasi Creek Property" by Calvin Church, P.Geo. dated October 15, 2005, BC Assessment Report \#27907. An interpretation of the airborne data was conducted by Syd Visser of S.J.V. Consultants L.td, which was used in conjunction with property scale mapping to identify prospective targets from the airborne EM survey. Some EM targets located over favorable geologic units in areas of anomalous soil geochemistry represented good drill targets.

During June and July 2005 a seven hole diamond drilling program totaling 1053.6 m was completed on the Wasi Creek Property targeting prospective EM conductors identified in the May 2005 airborne survey. No significant mineralization was detected in core from drillhole targets on the east side of Carrie Mountain and west of Wasi Creek. Clean heterolithic limestone and dolomite breccias with a minor clastic component predominate from the collar to the bottom of the hole. The two drillholes (WZ-05-03 and WZ-05-04) targeting shallow EM conductors east of the Main Par horizon intersected thick ($60-80 \mathrm{~m}$) intervals of black shale and argillite which were clearly the source of the anomalies there. The holes bottomed in poorly mineralized Sandpile Fm carbonates at depths of about 200 m . Disseminated and replacement style lead-zinc-silver mineralization was recovered from a fence of three holes drilled approximately 300 m west of the Main Fault and $200-400 \mathrm{~m}$ south of discovery trench T3. Drillhole WZ-05-05 targeted a weak northwest trending conductor that drillhole $92-14$ appears to have intersected 50 m south. Low grade pyrite mineralization is common in the upper section of WZ-05-05 where it is hosted by a carbonate breccia consisting of angular fragments of Rosella Fm supported in a variably dolomitized matrix. Minor sphalerite and lesser galena occur as selvages along thin calcite veins except over the short interval of higher grade where sphalerite is seen partially replacing breccia fragments. Two short step-out holes were then completed 50 and 150 m north along this weak conductor and encountered similar grades and styles of mineralization. Dril! hole WZ-05-06 encountered the widest zone of
mineralization where replacements textures of sphalerite replacing breccia clasts are common from 46 to 60 m depth. Drill core assays returned values of $2.1 \% \mathrm{Zn}, 0.1 \% \mathrm{~Pb}$ and $9.2 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ over 14.2 m . The chaotic mineralized breccias are thought to represent debris flow/slump features adjacent to a fault scarp. This work was reported in the "Diamond Drilling Report on the Wasi Creek Property" by Calvin Church, P.Geo., dated October 31, 2005, BC Assessment Report \#28364.

REGIONAL GEOLOGY:

The following regional geological description has been compiled from papers in the British Columbia Geological Survey Branch Reports of Geological Fieldwork in 1989 and 1991. The Wasi Creek Property is located in an area that straddles the boundary between the Intermontane and Omineca tectostratigraphic beits of the Canadian Cordillera. The Western Intermontane Superterrane is represented by the Siide Mountain and Quesnel terranes. Together with the eastern autochthonous North American stratigraphy, these rocks form part of a southwest-dipping homoclinal sequence. This sequence has been cut by a series of normal faults, which trend northeasterly. With the exception of the eastern pericratonic strata all of the rocks have been weakly metamorphosed.

The Wasi Creek Property is underlain by the pericratonic North American rocks of primarily carbonates and siliciclastics of miogeoclinal origin. These rocks include the Upper Proterozoic Ingenika Group consisting of impure quartzite, schist, phylite, limestone, feldspathic wacke and arkosic sandstone. Overlying this Group is the Lower Cambrian to Middle Devonian Atan, Razorback, Echo Lake and Otter Lake Groups. These Groups consist of limestone, dolomite, shale, quartzite, and argillaceous limestone. The Lower Cambrian to Middle Devonian limestone and dolomite host the zinc, lead and silver mineralization on the Wasi Creek Property.

PROPERTY GEOLOGY:

The Wasi Creek Property geology is a compilation from Cross Lake's 2001 exploration work, Cominco's 1990-1995 exploration programs and mapping completed by the British Columbia Geological Survey as described in File Paper 1992-1. The paper is named "Geology of the Usilika Lake Area, Northern Quesnel Trough, B.C.", (94C/3, 4, 6) by F.Ferri, S. Dudka and C. Rees. The geological stratigraphy underlying the property are all Paleozoic in age ranging from Lower Cambrian to Mississippian.

The oldest rock units exposed in the claim area are the Lower Cambrian to Middle Devonian carbonates assigned to the Lower Cambrian Mount Kison Formation of the Atan Group. Overlying this unit are the Cambrian and Ordovician Razorback, Middie Ordovician to Lower Devonian Echo Lake Group and

Middle Devonian Otter Lakes Group. This entire carbonate package consists of limestone, dolomite, lesser shale, quartzite and argillaceous limestone. The Atan, Razorback, and Echo Lake Groups are host to the mineralization on the Wasi Creek Property. Overlying the carbonates is the Upper Devonian to Lower Mississippian aged Big Creek Group. The lithology of the Big Creek Group consists of dark grey to blue grey shales, argillites and minor siltstones. Lower Mississippian-aged dacitic tuff units of the Lay Range Assemblage cap the sequence and represent the only major volcanic rock unit observed on the claims. This thick unit is only exposed on the northwest side of a major geological structure which is postulated to occur in the valley bottom of Wasi Lake and Wasi Creek. The rest of the Lay Range Assemblage is absent in the Wasi Creek Area.

Across Wasi Creek Valley, on the southeast side of the northeast trending Wasi structure, outcrops of Pennsylvanian-aged Mount Howell Formation are mapped. Mount Howell Formation lithologies consists of argillite, chert, gabbro and minor basalt, wacke and felsic tuff.

There are numerous carbonate-hosted zinc-lead-silver showings on the Wasi Creek Property but the best exposed mineralization occurs on the east side of Wasi creek and has received the largest amount of exploration work. Three showings (Duncan, Par and Weber) define the mineralized Par horizon, which was the main focus of Cominco's exploration programs, located from south to north over a two kilometre strike length. These showings are located along a fault structure orientated 330 degrees dipping 70 degrees to the northeast and may be the conduit of mineralizing solutions on the property. The fault and the three showings are all located on the east side of a major northeast trending structural lineament that follows the trace of the valley bottom of Wasi Creek and Wasi Lake. Cominco completed the bulk of their exploration work in this area by completing airborne and ground geophysical surveys, seven excavator trenches and 21 diamond drill holes exploring these mineralized structures. Mineralization is considered to be stratabound with most primary features obliterated by deformation. The sulphides consist of sphalerite, galena, pyrite and traces of tetrahedrite while grain size varies from fine grained at the Duncan showing to coarse-grained in showings located northward along the strike of the main Par horizon.

The Carrie 2 showing is located on the west side of the Wasi Valley structure near the northwest edge of the property. The showing was hand trenched, mapped and sampled by Cross Lake Minerals Ltd. during 2001. Carrie 2 mineralization consists of disseminated fine-grained sphalerite, galena and pyrite hosted in brecciated dolomite and limestone with carbonate in-filling of fractures and open spaces. Mineralized weathered exposures are usually oxidized and in some locations hydrozincite is noted. The trench rock chip channel samples assayed as high as $5.01 \% \mathrm{Zn}, 0.89 \% \mathrm{~Pb}$ and $18 \mathrm{~g} / \mathrm{Ag}$.

2006 DIAMOND DRILLING PROGRAM:

Connors Drilling Ltd from Kamloops, B.C. was contracted by Selkirk Holdings to do the diamond drilling on the Wasi Property in late 2006. Drill crews were mobilized on November 2nd to begin plowing the deep snow from the access roads and constructing drill pads prior to the arrival of the diamond drill. Drill crews and geological staff first stayed at the Osilinka logging camp until December Ist and then moved to the Omineca camp until December 18th due to closure of the Oslinka camp. A D7 Cat was parked at the 20 km mark between the Omineca and Osilinka logging camps and was used to help maintain the Wasi access road that follows the south side of the Omineca River and leads to the property.

An insulated Weatherhaven tent was erected on the property and used as a location for logging and splitting core. The drill core was logged and then split for sampling with one half of the core stored in boxes at the property for later reference if needed. The other half was shipped to Acme Analytical Labs Ltd. in Vancouver, B.C. for analysis for 23 elements utilizing the Acme Group 7AR ICP-ES procedure.

Four holes were drilled to test three different targets. The first target was to test mineralization found in Carrie trenches 1,2 \& 3 completed earlier in the year. The trenches are on the west side of Wasi Creek on the east facing slopes of Carrie Mountain. The first two holes drilled were sulphide poor and returned no significant results. The next target was a well defined EM conductor striking at 335° running parallel to the Carrie trenches. The centre of the EM conductor was very close to the collars of the first two Carrie holes so the set up was achieved by spinning the drill around on the same pad. The third target was a stepout hole 100 m to the west of Cominco's hole 92-9 to test the continuity of mineralization at depth and a conductor near the hole collar. Drillhoie focations are shown on Plan Numbers WA-06-3 and WA-06-4 and a summary of drillholes appears below in Table 1.

Table 1: 2006 Drillhole Summary						
Hole Number	UTM: NAD 83, Zone 10		Elevation (m ASL)	Azimuth	Dip	Length (metres)
	North	East				
WZ-06-08	6221535	373754	845	171°	-50°	280.0
WZ-06-09	6221540	373750	845	191°	-45°	250.0
WZ-06-10	6221536	373753	845	005°	-65°	263.0
WZ-06-11	6221513	374250	843	070°	-50°	301.0
Total						$\mathbf{1 0 9 4 . 0}$

Drillholes WZ-06-08 and WZ-06-09 were drilled to confirm depth continuity of three mineralized samples located in bedrock in Carrie trenches 1,2 and 3. The holes were collared on the logging road that closely hugs the valley bottom on the east side of Carrie Mountain. Trench mapping was unable to conclude any reliable contacts or strike direction. Three significant samples were discovered in each of the three trenches describing an inferred strike of 106° to 110°. Drillhole WZ-06-08 intersected mostly non-mineralized siltstone/phyllite lithologies with interbeds of argillite. WZ-06-09 was drilled from the same location as WZ-06-08 but at a slightly different azimuth and dip and cuts the same sequence of highly fractured siltstone/phyllites. A fault with abundant gouge and sericite alteration was encountered from 115.0 to 122.0 m . Due to the steep slope it was not possible to construct a drill pad to target any of the potential hanging wall mineralization.

WZ-06-10 was drilled at $005 \%-65^{\circ}$ to test a large geophysical airborne EM anomaly detected in the Aeroquest survey from May 2005. The anomaly strikes at 335° from UTM coordinate 6222000 N , 374360 E to $6220950 \mathrm{~N}, 374400 \mathrm{E}$ and it has a continuous elevated EM ridge for 110 m with an average width of 30 m . Due to the slope of Carrie Mountain and the overburden thickness the hole was angled obliquely to cross-cut the anomaly. A quartz vein cuts the core from $211.8-213.0 \mathrm{~m}$ and contains minor reddish-brown sphalerite $1-2 \%$, pyrite $4-6 \%$ near the upper contact with large clasts of epidote, minor limonite and abundant ankerite alteration. The upper and lower contacts are at 62° and 18° to core axis respectively. Host rock lithologies of the quartz vein are highly fractured black argillite and interbedded siltstone.

WZ-06-11 was drilled to test the down dip extension of Cominco's $92-09$ drillhole and to test an EM conductor near the proposed collar. The best intersection was from $196.25-196.75 \mathrm{~m}$ and visually estimated to contain $25-30 \%$ honey yellow to minor reddish-brown sphalerite, $6-7 \%$ pyrite and $1-2 \%$ galena. Visual estimates translate to a grade of $5.6 \% \mathrm{Zn}$ and $7.0 \mathrm{~g} / \mathrm{t}$ over 4.5 m (see Table 2). Typically the sulphides are concentrated along quartz carbonate vein selvages up to several centimeters except where sphalerite is seen replacing breccia fragments and infilling permeable carbonate units up to several metres. Selvage type mineralization is seen in a dolomitized quartz carbonate vein which occurs from $21.6-23.4 \mathrm{~m}$ containing $30-40 \%$ pyrite and minor sphalerite along the hanging wall. The pyrite content in the upper section of the drillhole is the probable source of the EM conductor.

Table 2: Significant Intersections From 2006 Program						
DRILL HOLE	FROM (\mathbf{m})	TO (\mathbf{m})	INTERVAL (\mathbf{m})	ZINC $(\%)$	LEAD $(\%)$	SILVER $(\mathbf{g} / \mathrm{t})$
WZ-06-11	22.0	23.4	1.40	1.67	.013	3.0
WZ-06-11	66.1	66.3	0.2	12.30	26.79	59.0
WZ-06-11	196.25	197.7	1.45	5.61	.41	7.0
including	196.25	196.75	0.5	13.36	0.8	19.0

CONCLUSIONS:

The 2006 drilling program on the Wasi Creek property was not successful in confirming significant base metal mineralization at the Carrie showing. Although surface trenches have returned samples grading up to $7.1 \% \mathrm{Zn}$ over 4 m , only poorly mineralized sequences of weakly altered siltstone, phyllite and argillite were intersected in drillholes from that area. Property scale mapping in the area of the showing indicate prospective Rosella Formation carbonates but no mineralized carbonate horizons have been intersected in drillholes to date.

Drill programs in 2005 and 2006 have intersected fault controlled mineralized carbonate lithologies on the east side of Wasi Creek known as the Par horizon. The structure is orientated 330/70E and can be traced from the Duncan showing in the south to the Weber showing in the north initially discovered and explored by Cominco between 1990 and 1995. Mineralization intersected in drillholes WZ-05-05, WZ-05-06 and WZ-05-07 is described as minor sphalerite and lesser galena on calcite vein selvages and local sulphide replacement textures of sphalerite replacing breccia carbonate fragments. The mineralization in these three drillholes shows a strike continuity of over 200 m , averaging between 1.5 m to 4.5 m thick and grading $3.4 \%-6.4 \% \mathrm{Zn}, 9.2 \mathrm{~g} / \mathrm{t}-14.3 \mathrm{~g} / \mathrm{t}$ Ag. Drillhole WZ-06-11 encountered similar styles of mineralization and Rosella Fm carbonate host lithologies. Significant pyrite is seen in core adjacent to and within the mineralized horizons and is probably the source of the EM anomalies that the drillholes targeted.

RECOMMENDATIONS:

Due to the lack of any mineralization in holes WZ-06-08 and WZ-06-09, a detailed localized compilation of the area immediately surrounding the Carrie trenches and the large EM anomaly, with drilling, surface mapping, trenching and soil geochemical sampling should be done before any further drilling is initiated. The slopes are steep around the trenches and road and pad work will be required. The significant
discovery of 7.1% Zinc over 4 m in trench Carrie \#2 is still unexplained and so further work is required to uncover the source of this mineralization. The trench shouid be mapped in detail and the Carrie \#3 trench should be excavated down to bed rock. According to the trenching report excessive wet conditions in Carrie \#3 may have not exposed the bed rock enough for detailed sampling. The trenches attempted to expose bedrock over an EM anomaly that strikes at 335° similar to the 330° strike of the mineralized Par horizon.

The main two km Par horizon which jinks the Duncan, Par and Weber showings should be explored on its west side and extending to the north. A grid should be constructed and a detailed ground geophysical EM survey used to more accurately define targets in those areas. The mineralized Par holes are widely spaced and adding holes between areas of known mineralization, with the help of modern geophysical methods, may result in new discoveries or identify multiple mineralized horizons.

Additional detailed soil geochemical sampling, prospecting and geophysical surveys is recommended for the area south of the Duncan showing considering the success soil sampling surveys have had on this property in the past. This area is under explored relative to other areas on the property and is up ice from the main Par showings. High $\mathrm{Zn} / \mathrm{Pb}$ ratios in soil geochemical results could be used to identify possible subsurface carbonate breccia mineralization.

Calvin Church, P.Geo.

LIST OF REFERENCES:

Church, C., (2004): Geochemical Sampling Report on the Wasi Creek Property, OSI, OSI 2, OSI 3, TM 2 and TM 3 Mineral Claims, for Cross Lake Minerals Ltd.; NTS 94C/03E; B.C. Assessment Report \#27532

Church, C., (2005): Geochemical Sampling Report (2004 Phase 2) on the Wasi Creek Property, Tenure Nos. 511313, 512685 and 512686, for Selkirk Holdings Metals Holdings Corp.; NTS 94C/03E; B.C. Assessment Report \#27907

Church, C., (2005): Airborne Geophysical Survey Report on the Wasi Creek Property, Tenure Nos. 503533, 511312, 511313, 511316, 512684, 512685 and 512686, for Selkirk Holdings Metals Holdings Corp.; NTS 94C/03E; B.C. Assessment Report \#27907

Church, C., (2005): Diamond Drilling Report on the Wasi Property, Tenure Nos. 512685 \& 512686 for Selkirk Metals Holdings Corp.; NTS: 94C/03E; BC Assessment Report \#28364

Ferri F., Dudka S., Rees C., (1992): Geology of the Usilika Lake Area, Northern Quesnel Trough, B.C. ($94 \mathrm{C} / 3,4,6$). British Columbia Geological Survey Geological Fieldwork 1991, Paper 1992-1.

Ferri F., Dudka S., Rees C., Meldrum D., Willson M., (1992): Geology, Geochemistry and Mineral Occurrences of the Usilika Lake Area, B.C. (94C/3, 4 and 6). British Columbia Geological Survey Open File 1992-11.

Gabrielse, H.: Unpublished GSC Map of the Mesilinka Map Area, 94C.

Lewis T., (2006): Geochemical and Trenching Program Report on the Wasi Creek Property, Tenure Nos. $387800,379604,390515,390516$ for Selkirk Holdings Metal holdings Corp. NTS: 94C/03E

Mansy, J.L. and Gabrielse, H., (1978): Stratigraphic Terminology and Correlation of Upper Proterozoic Rocks in Omineca and Cassiar Mountains, North-Central B.C., GSC Paper 77-19.

Melville D.M. (1990): Carbonate-Hosted Lead-Zinc Occurrences in the Germansen Landing and End Lake Areas (94C/2, 93N/15). British Columbia Geological Fieldwork Exploration in British Columbia 1989, Pages 193 to 196

Miller-Tait, J. (January 2002): Geological Report on the Wasi Creek Property, OSI Mineral Claim, for Cross Lake Minerals Ltd.; NTS 94C/3E; B.C. Assessment Report \#26,827

Miller-Tait, J. (January 2003): Soil Geochemical Report on the Wasi Creek Property, OSI 2 and 3 Mineral Claims, for Cross Lake Minerals Ltd.; NTS 94C/3E; B.C. Assessment Report \#27,032

Roots, E.F., (1954): Geology and Mineral Deposits of the Aiken Lake Map Area, B.C., GSC Memoir 274.

STATEMENT OF OUALIFICATIONS:

For: Calvin Church, 1733 Napier Street, Vancouver, B.C. V5L 2N1.

I graduated from the University of British Columbia with a Bachelor of Sciences Degree in Geology (1987);

I have been practicing my profession as a geologist in mineral exploration and mining intermittently since 1987;

I am a registered member in good standing as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia;

The observations, conclusions and recommendations contained in this report are based on field examinations, personal sampling, and the evaluation of results of the exploration programs completed by past operators.

Calvin Church, P.Geo.

WASI CREEK			SCHEDULE OF MINERAL CLAIMS			
PROVINCE: British Columbia			CLAIMS: 7	CELLS:	AREA: 2417.457 ha	
MINING DIVISION: Omineca			NTS: 94C/03E		BCGS: 094C.005, 015	
LOCATION: on the south side of the Osilinka River near Wasi Lake some 150 km northwest of Mackenzie, 200 km northeast of Smithers and 43 km north-northwest of Germansen Landing			LATITUDE: $\mathbf{5 6}^{\circ} \mathbf{6 . 5}$		LONGITUDE: $125^{\circ} 1.5{ }^{\circ}$	
			UTM NAD 83	ZONE 10	6220000 N	374 000E
			PROPERTY INTEREST: Selkirk Metals Holdings Corp. - 100\% Bard Ventures Ltd. - 0\%			
MAP	$1: 250000$ $1: 50000$ $1: 20000$ $1 ; 20000$ $1: 20000$ $1: 20000$	94C Mesilinka River 94C/03 Uslika Lake 94C005 Conglomerate Mtn. 94C006 Mount Howell 94C015 Tenakihi Range 94C016 End Lake				
AGREEMENT SUMMARY:						
Sep 01, 2004: Letter Option Agreement between Cross Lake Minerais Ltd. and Bard Ventures Ltd. whereby Bard may eam a 50% interest in the Property by incurring aggregate exploration expenditures of $\$ 800,000$ by December 31, 2006.						
Nov 19, 2004: Letter amendment whereby first and second work periods combined.						
Jun 16, 2005: Assignment Agreement between Cross Lake Minerals Ltd. and Selkirk Metals Holdings Corp. whereby Cross Lake assigned a 100% interest in the Wasi Creek Property to Selkirk Holdings.						
Dec 05, 2005: Letter amendment whereby work requirement of $\$ 350,000$ was extended by one year to December 31, 2006 and an aggregate work of $\$ 800,000$ was extended by one year to December 31, 2007.						
Noy 28 2007: Letter amendment whereby aggregate work requirement of $\$ 800,000$ was extended by one year to December 31, 2008.						

CLAIM SUMMARY:							
CLAIM NAME	TENURE NUMBER	CELLS/ UNITS	GROSS AREA (hectares)	$\begin{gathered} \text { RECORD } \\ \text { DATE } \\ \text { (yyy-mm-dd) } \end{gathered}$	$\begin{gathered} \text { GOOD TO } \\ \text { DATE } \\ \text { (yyy-mm-dd) } \end{gathered}$	ANNUAL WORK \$	RECORDED OWNER /REMARKS
Cell Claims:		Cells					
-	503533	17	306.732	2005-01-14	2011-11-01	2453.86	Selkirk Metals Holdings Corp.
W 1A	511312	14	252.471	2005-04-21	2011-11-01	2019.77	Cop.
-	511313	42	758.063	2005-04-21	2011-11-01	6064.50	"
-	511316	4	72.151	2005-04-21	2011-11-01	577.21	"
-	512684	2	36.070	2005-05-16	2011-11-01	288.56	"
-	512685	17	306.698	2005-05-16	2011-11-01	2453.58	"
.	512686	38	685.272	2005-05-16	2011-11-01	5482.18	"
7		134	2417.457			19339.66	

CLAIM BOUNDARY COORDINATES		UTM: NAD 83, ZONE 10		Northing
Corner No.	Cell ID	Cell Corner	Easting	
1	094 C 02 E 070 B	NE	376003.631	6223164.687
2	094 C 02 E 020 C	SE	375869.890	6218528.222
3	094C03H012D	SW	374314.861	6218573.307
4	$094 \mathrm{C03A092C}$	SE	374260.697	6216718.756
5	094 C 03 A 095 C	SW	371538.227	6216799.039
6	094 C 03 H 055 C	NW	371718.036	6222826.295
7	094 C 03 H 054 D	NE	373271.567	6222780.246
8	094 C 03 H 063 B	NW	373285.236	6223243.888

[^0] clockwise direction.

SECTION C: EXPENDITURES - Wasi Creek Property-2006 Diamond Drilling Program

Field Supplies:			
Eagle Building Supplies Quesnel, BC	Equipment and materials for onsite core handing facility:		1,132.63
Acme Analytical Laboratories Ltd.	Sample bags, shipping bags		254.13
Subtotal:			1,386.76
Freight:			
Greyhound Courier Express	Transport of drill core samples from Mackenzie to Vancouver		977.13
Analytical Services:			
Acme Analytical Laboratories Ltd.	ICP-ES 23 element analyses	252 samples	4360.66
Map Preparation:			
Mike J. Davies	Base map preparation, data plotting, geological map and drill sections	8 hours @ $\$ 60.00$	480.00
Printing:	Map reproduction		50.00
Subtotal:			530.00
Report Preparation:			
Caledonia Geological Calvin Church, P.Geo.	Data review, interpretation and report preparation	4 days @ $\$ 500.00$	2,000.00
Erik Andersen, Land Administrator	Report compilation and editing	10 hours @ \$40.00	400.00
Subtotal:			2,400.00
Total			\$247,159.20
Total Drillng			$1,094.0 \mathrm{~m}$
Cost per Metre			\$225.92

Expenditure Apportionment:

Claim Tenure No.	Drilling (metres)	\% of Total	Expenditure
512686	1094.0	100.00	$\$ 247,159.20$
Total	1094.0	$\mathbf{1 0 0 . 0 0}$	$\$ 247,159.20$

SECTION D: ANALYTICAL RESULTS

1. Analyses carried out by Acme Analytical Laboratories Ltd. of Vancouver, B.C.

- Certificate of Analysis \#A609139 dated December 7, 2006
- Certificate of Analysis \#A609316 dated December 14, 2006
- Certificate of Analysis \#A609317 dated December 14, 2006
- Certificate of Analysis \#A609420 dated December 19, 2006
- Certificate of Analysis \#A609532 dated December 22, 2006
- Statement of Analytical Procedures: Group 7AR Methods and Specifications

ACME ANAT TCAL	LABORATOR credited Selk	$\begin{aligned} & \begin{array}{l} \text { RIES LTD } \\ \text { CO. } \end{array} \\ & \text { cirk Me } \end{aligned}$	$\frac{e t a l}{1255}$	$\begin{aligned} & 85: \\ & 5 \mathrm{HO} \\ & 5 \mathrm{~W} . \mathrm{Pe} \end{aligned}$	52 B oldi ender	$\begin{gathered} \mathrm{HA} \\ \mathrm{St} . \end{gathered}$	$\begin{array}{r} \text { ASS } \\ \text { S Lt } \\ \text { Vancou } \end{array}$	$\begin{aligned} & \text { GS } \\ & \text { SAY } \\ & \frac{d}{} \end{aligned}$	GT. VI つUVE CERTIFIC PROJECT W BC VGE 2V1 SU	$\begin{aligned} & \text { ER BC } \\ & \text { IATE } \\ & \text { IASI } \end{aligned}$	V6 Fi by:	A 1R le Jim M	6 \# A6 miller-	PHO 91 ait	NE $(6$	24)2	53-3	3158	FAX	$\begin{aligned} & 604) \\ & 7 \end{aligned}$	$\begin{array}{r} 3-1716 \\ \text { an } \\ \text { an } \end{array}$
SAMPLE\#	$\begin{array}{ccc} \mathrm{O} & \mathrm{MO} & \mathrm{Cu} \\ & \% & \% \end{array}$	$\begin{array}{cc} \text { Pb } & 2 n \\ \% & \% \end{array}$	Ag $\mathrm{gm} / \mathrm{mt}$	$\begin{gathered} \mathrm{Ni} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Co} \\ \% \end{gathered}$	$\begin{gathered} M n \\ \% \end{gathered}$	$\begin{aligned} & \mathrm{Fe} \\ & \% \end{aligned}$	$\begin{gathered} \text { As } \\ \% \end{gathered}$	$\begin{array}{ccc} \hline \mathrm{Sr} & \mathrm{Cd} & \mathrm{Sb} \\ \% & \% & \% \end{array}$	$\begin{gathered} \mathrm{Bi} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	$\begin{aligned} & p \\ & \% \end{aligned}$	$\begin{gathered} \mathrm{Cr} \\ \% \end{gathered}$	$\begin{aligned} & \mathrm{Mg} \\ & \% \end{aligned}$	$\begin{gathered} \text { AI } \\ \% \end{gathered}$	$\begin{aligned} & \mathrm{Na} \\ & \% \end{aligned}$	$\begin{aligned} & K \\ & \% \end{aligned}$	$\begin{aligned} & W \\ & \% \end{aligned}$	$\underset{\%}{\mathrm{Hg}}$	Sample kg	
G-1	<.001<.001	$<.01$. 01		<.001<	<. 001	. 06	2.00	<. 01	. $009<.001<.001$	$<.01$. 63	. 075	. 001	. 63	1.13	. 12		<. 001	<. 001	-	
502501	¢.001.001	<. $01<.01$	<2	. 001	. 001	. 13	3.20	<. 01	. $024<.001<.001$	$<.01$	1.73	. 065	. 001	. 95	1.17	. 02	. 48	<. 001	<. 001	3.7	
502502	\{. 001.001	$<.01<.01$	<2	. 002	. 001	. 04	2.76	<. 01	.009<.001<.001	< 01	. 81	. 069	<.001	. 55	1.03	. 01	. 64	<.001	<. 001	1.1	
502503	<. $001<.001$	<. $01<.01$	<2	. 001	. 001	. 12	2.76	<. 01	. $022<.001<.001$	<. 01	1.71	. 062	. 001	. 77	. 61	. 04	. 44	<. 001	<. 001	3.0	
502504	¢. 001.001	<. $01<.01$	<2	. 002	. 001	. 06	3.19	$<.01$. $013<.001<.001$	$<.01$	1.13	. 079	. 001	. 76	. 79	. 02	. 59	<. 001	$<.001$	5.0	
502505	<. 001.001	<. $01<.01$	<2	. 002	. 001	. 07	3.67	<. 01	. $010<.001<.001$	$<.01$. 75	. 065	. 001	. 68	. 97	. 01	. 57	. 001	$<.001$	4.7	
502506	$\bigcirc .001 .001$	<.01<.01	<2	. 002	. 001	. 07	4.04	<. 01	. $012<.001<.001$	$<.01$. 92	. 070	. 001	. 75	. 77	. 01	. 61	. 001	<.001	6.5	
502507	<.001<.001	<. $01<.01$	<2	. 007	. 001	. 08	4.06	< 01	. $013<.001<.001$	<. 01	1.15	. 068	. 001	. 80	. 58	. 01	. 50	<. 001	<. 001	6.3	
502508	<.001.001	$<.01<.01$	<2	. 003	. 002	. 04	3.46	<. 01	. $011<.001<.001$	<. 01	1.02	. 070	. 001	. 67	. 74	. 01	. 66	<. 001	<. 001	4.7	
502509	+.001.001	$<.01<.01$	<2	. 002	. 001	. 05	3.26	<. 01	$.008<.001<.001$	$<.01$. 60	. 076	. 001	. 57	. 80	. 01	. 66	<. 001	<.001	5.3	
502510	<.001.002	$<.01<.01$	<2	. 004	. 002	. 04	3.52	<. 01	. $005<.001<.001$	$<.01$. 30	. 070	. 001	. 56	. 80	. 01	. 83	<. 001	<. 001	5.8	
502511	$<.001 .001$	<.01<.01	<2	. 002	. 001	. 09	3.75	<. 01	. $019<.001<.001$	<. 01	1.53	. 089	. 001	. 81	. 82	. 01	. 61	<. 001	<. 001	6.0	
502512	\$.001.001	<. $01<.01$	<2	. 002	. 001	. 05	3.70	<. 01	.011<.001 . 001	$<.01$. 90	. 082	. 001	. 69	. 87	. 01	. 64	<. 001	<. 001	5.3	
502513	<.001.001	<. $01<.01$	<2	. 002	. 001	. 04	3.50	<. ${ }^{\text {dr }}$. $012<.001<.001$	$<.01$. 92	. 084	. 001	. 61	. 83	. 01	. 67	. 001	<.00?	5.0	
502514	<. 001.001	$<.01<.01$	<2	. 002	. 001	. 05	3.07	$<.01$. $017 \times .001<.001$	<. 01	1.37	. 077	. 001	. 57	. 98	. 01	. 68	. 001	<. 001	2.2	
502515	¢.001.001	$<.01<.01$	<2	. 001	. 001	. 06	3.41	$<.01$. $016<.001<.001$	$<.01$	1.33	. 063	. 001	. 56	. 74	. 01	. 72	<. 001	$<.001$	6.0	
502516	$<.001 .001$	<.01<.01	<2	. 001	. 001	. 05	3.04	< 01	. $017 \times .001 .001$	$<.01$	1.39	. 060	. 001	. 54	. 72	. 01	. 73	<. 001	<. 001	4.5	
502517	$<.001 .001$	<. $01<.01$	<2	. 001	. 001	. 05	3.31	<. 01	.017<.001 . 001	< 01	1.48	. 079	. 001	. 54	. 82	. 01	. 66	<. 001	<. 001	4.7	
502518	$\frac{1}{2} .001 .001$	$<.01<.01$	<2	. 001	. 001	. 04	2.62	<. 01	.012<.001<.001	< 01	1.06	. 062	. 001	. 39	. 78	. 01	. 73	. 001	<. 001	3.5	
502519	<.001 . 001	$<.01<.01$	<2	. 001	. 007	. 06	2.68	<. 01	. $021<.001<.001$	$<.01$	2.24	. 152	. 009	. 54	.61	. 01	. 54	. 001	<. 001	5.4	
	<.001.001	$<.01<.0 \uparrow$	<2		. 001	. 04	2.12		. $013 \times .001<.001$		1.81	. 134	. 001	. 38	. 67	. 01	59	001	< 001	4.6	
502522	<.001<.001	<. $01<.01$	<2	. 001	. 001	. 04	2.92	<. 01	. $015 \times .001 .001$	<. 01	1.86	. 118	. 001	. 37	. 78	. 01	. 57	-.001	<. 0001	4.6 6.2	
502523	$\leqslant .001<.001$	$<.01<.01$	-2	. 001	. 001	. 04	2.43	<. 01	. $016 \times .001 .001$	$<.01$	1.34	. 079	. 001	. 27	. 66	. 01	. 75	<. 001	<. 001	6.0	
502524	<.001<.001	<.01<.01	<2	. 001	. 001	. 05	3.55	$<.01$. $012 \times .001 .001$	$<.01$	1.06	. 066	. 001	. 34	. 61	. 01	. 73	<. 001	<. 001	5.4	
RE 502524	<.001<.001	$<.01<.01$	<2	. 001	. 001	. 05	3.56	<. 01	. $012<.001$.001	<. 01	1.05	. 066	. 001	. 34	. 62	. 01	. 74	<. 001	<. 001	-	
RRE 502524	<.001<.001	$<.01<.01$	<2	. 001	. 001	. 05	3.49	$<.01$. $012 \times .001<.001$	< 01	1.06	. 065	. 001	. 33	. 59	. 01	. 72	<. 001	<.001	-	
502525	<.001<.001	$<.01<.01$	<2	. 001	. 001	. 05	3.01	$<.01$. $021<.001 .001$	$<.01$	1.98	. 087	<. 001	. 42	. 64	. 01	. 71	<. 001	. 001	3.6	
502526	<. 001.001	<. $01<.01$	<2	. 001	. 001	. 06	3.42	<. 01	.028<.001 . 001	<. 01	2.63	. 123	. 001	. 55	. 66	. 01	. 68	. 001	<. 001	2.8	
502527	$\leqslant .001 .001$	$<.01<.01$	<2	. 002	. 001	. 03	2.75	<. 01	.016<.001 . 001	<.01	1.27	. 088	<. 001	. 37	. 75	. 01	. 84	. 001	<. 001	3.2	
502528	¢.001.001	$<.01<.01$	<2	. 002	. 001	. 03	2.84	<. 01	. $017<.001<.001$	<. 01	1.43	. 082	. 001	.42	. 77	. 01	. 83	. 001	. 001	4.6	
502529	\$.001.002	$<.01<.01$	<2	. 002	. 001	. 06	3.39	$<.01$. $022<.001<.001$	$<.01$	1.86	. 080	$<.001$. 55	. 67	.01	. 71	<. 001	. 001	4.3	
502530	\$.001.001	<. $01<.01$	<2	. 002	. 001	. 06	3.25	<. 01	. $013<.001<.001$	< 01	1.60	. 084	<. 001	. 40	. 64	. 01	. 65	<. 001	<. 001	3.5	
502531	\&.001.001	$<.01<.01$	<2	. 001	. 001	. 06	3.20	<. 01	. $019<.001<.001$	<. 01	2.25	. 085	. 001	. 48	. 61	. 01	. 55	<. 001	<. 001	2.2	
502532	$\bigcirc .001 .003$	<.01<.01	<2	. 002	. 001	. 01	1.60	$<.01$. $005<.001<.001$	<. 01	. 56	. 099	. 001	. 13	. 73	. 01	. 80	<. 001	<. 001	1.3	
502533	$\bigcirc .001 .002$	<.01<.01	<2	. 001	. 001	. 06	3.23	<. 01	. $017<.001<.001$	<. 01	2.03	. 060	. 001	. 49	. 58	. 01	. 56	<. 001	<. 001	6.1	
STANDARD R-3	. 074.800	1.924 .14	200	. 532	. 062	. 07	31.45	. 04	. 003.025 .040	<. 01	1.34	. 057	. 013	1.10	1.16	. 04	. 48	. 036	. 003	-	

GROUP TAR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML , ANALYSED BY ICP-ES.
SAMPLE TYPE: DRILL CORE R150 Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
\qquad FA \qquad DATE RECEIVED: DEC 72006 DATE REPORT MAILED:

SAMPLE\#	$\begin{aligned} & \text { Mo } \\ & \% \end{aligned}$	$\begin{gathered} \mathrm{Cu} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \% \end{gathered}$	$\begin{gathered} 2 n \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{gm} / \mathrm{mt} \end{array}$	$\begin{aligned} & \mathrm{Ni} \\ & \% \end{aligned}$	$\begin{gathered} \text { Co } \\ \% \end{gathered}$	$\begin{array}{r} M n \\ \% \end{array}$	$\begin{aligned} & \mathrm{Fe} \\ & \% \end{aligned}$	As \%	$\begin{aligned} & \mathrm{Sr} \\ & \% \end{aligned}$	cd	$\begin{gathered} \text { Sb } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Bi} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	\%	$\begin{array}{cr} \mathrm{Cr} \\ \% \end{array}$	$\begin{gathered} \text { Mg } \\ \% \end{gathered}$	$\begin{aligned} & \mathrm{Al} \\ & \% \end{aligned}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$	${ }_{0}^{\mathrm{K}}$	$\begin{aligned} & \text { W } \\ & \text { \% } \end{aligned}$	Hg $\%$	Sample kg
G-1	<.001<.	. 001	$<.01$	<. 01	<2	<. 001	<. 001	. 06	2.00	< 01	. 008 <	<. $001<$	<. 001	$<.01$. 59	. 074	. 001	. 63	1.11	. 12	. 55	<. 001	<. 001	-
502534	<. 001	. 001	<. 01	<. 01	<2	. 001	. 001	. 04	2.34	< 01	. 008 <	<. 001	. 001	<. 01	. 98	. 071	. 001	. 31	. 59	. 01	. 57	<. 001	<. 001	5.1
502535	<. 001	. 001	<. 01	<. 01	<2	. 002	. 001	. 08	3.97	<. 01	. 016	<. 001	. 001	$<.01$	1.99	. 056	<. 001	. 59	. 55	. 01	. 53	<.001	<. 0.01	5.5
502536	e. 001	. 001	$<.01$	$<.01$	<2	. 002	. 001	. 05	2.90	< 01	. 012 <	<.001<	<. 001	<. 01	1.42	. 074	. 001	. 38	. 54	. 01	. 56	<. 001	<. 001	6.6
502537	\$. 001	. 001	<. 01	<. 01	<2	. 002	. 001	. 05	3.75	$<.01$. $013<$	<.001<	<. 001	<. 01	1.55	. 077	$<.001$. 46	. 35	. 01	. 40	<. 001	$<.001$	4.0
502538	4.001	. 001	<. 01	<. 01	<2	. 002	. 001	. 09	4.20	<. 01	. $013<$	<.001<	<. 001	$<.01$	1.83	. 064	. 001	. 58	. 55	. 01	. 46	<.001	<.001	3.5
502539	$<.001$. 003	<. 01	. 02	<2	. 004	. 002	. 07	6.02	<. 01	. $005<$	<.001<	<. 001	<. 01	. 49	. 075	. 007	. 76	. 40	. 01	. 34	. 001	<.001	1.6
502540	<. 001	. 003	<.01	.01	<2	. 004	. 002	. 05	5.38	<. 01	. 003 <	<. 001	. 001	<. 01	. 32	. 083	. 001	. 69	. 58	. 01	. 56	<. 001	< 0.01	3.6
502541	<. 001	. 002	<. 01	. 01	<2	. 004	. 002	. 09	5.72	< 01	. $003<$	<. 001	. 001	<. 01	. 25	. 080	<. 001	. 73	. 34	. 01	. 36	. 001	<.001	6.0
502542	$\bigcirc .001$. 002	<. 01	. 01	<2	. 004	. 002	. 11	5.86	<. 01	. 004 <	<.001<	<, 001	$\checkmark .01$. 54	. 080	. 001	. 78	. 79	. 01	. 53	<. 001	<. 001	5.6
RE 502542	<. 009	. 002	<. 01	. 01	<2	. 004	. 002	. 11	5.77	$<.01$. $004 \times$	<. 001	. 001	< 01	. 54	. 081	. 001	. 79	. 84	. 01	. 54	<. 001	<.001	.
RRE 502542	¢.001	. 002	<. 01	. 01	<2	. 004	. 002	. 11	5.74	<. 01	. $004<$	<. 001	. 001	<. 01	. 54	. 081	. 001	. 77	. 55	. 01	. 34	. 001	<. 001	-
502543	$\leqslant .001$. 002	<. 01	. 01	<2	. 004	. 002	. 11	5.70	< 01	. $004 \times$	<. 001	. 001	<. 01	. 41	. 080	. 001	. 81	. 99	. 01	. 57	<. 001	<.001	6.4
502544	$\bigcirc .001$. 004	<. 01	<. 01	<2	. 004	. 002	. 11	5.47	< 01	. $005<$	<. 001	. 001	<. 01	. 71	. 083	<. 001	. 77	. 33	. 01	. 31	. 001	<.001	7.0
502545	$\bigcirc .001$. 003	<. 01	$<.01$	<2	. 003	. 002	. 10	4.00	< 01	. $010<$	<.001<	<. 001	<. 01	1.29	. 076	$<.001$. 67	. 53	. 01	. 52	<. 001	<.001	2.3
502546	¢. 001	. 004	<. 01	. 01	<2	. 004	. 002	. 11	6.07	$<.01$. $0004<$	<.001	. 001	$<.01$. 50	. 075	. 001	. 87	. 80	. 01	. 28	<. 001	<. 001	4.4
502547	¢. 001	. 003	<. 01	. 01	<2	. 004	. 003	. 09	6.13	<. 01	. $004<$	<.001<	<. 001	<. 01	. 58	. 070	. 001	1.03	. 68	. 01	. 49	<. 001	<. 001	1.5
502548	<. 001	. 003	<. 07	. 01	<2	. 004	. 002	. 15	5.57	<. 01	. $010<$	<.001	. 001	<. 01	1.39	. 094	. 001	. 91	. 92	. 01	. 30	<. 001	<.001	4.4
502549	$<.007$. 003	<. 01	. 01	<2	. 004	. 002	. 08	5.74	<. 01	.008<	<. 001	. 001	<. 01	1.06	. 088	. 002	. 94	2.24	. 02	. 52	<.001	<. 001	5.6
502550	$\uparrow .001$. 003	<. 01	. 01	<2	. 004	. 002	. 06	5.15	<. 01	. $006<$	<.001<	<. 001	<. 01	. 84	. 090	. 002	. 82	1.56	. 01	. 31	<. 001	<. 001	4.5
502551	<. 001.	. 001	<. 01	<. 01	<2	. 002	. 001	. 08	3.57	$<.01$. $011<$	<. 001	. 001	$<.01$	1.56	. 193	. 001	. 59	1.07	. 02	. 50	<. 001	<. 001	1.5
502552	6.001.	. 001	<. 01	<. 01	<2	. 002	. 001	. 11	3.54	<. 01	. $012<$	<. 001	. 001	< 01	2.23	. 089	. 001	. 69	. 79	. 03	. 31	<.001	<, 001	2.8
502553	$\bigcirc .001$.	. 002	<. 01	<. 01	<2	. 002	. 001	. 04	2.50	<. 01	. 011 <	<. 001	. 001	$<.01$. 89	. 072	. 001	. 38	1.07	. 01	. 93	<. 001	<. 001	2.2
502554	\}.001<.	. 001	<. 01	<. 01	<2	. 001	. 001	. 08	2.46	<. 01	.019<	<.001<	<.001	<. 01	2.38	. 119	<. 001	. 67	. 94	. 01	. 57	<. 001	<.001	. 7
502555	¢. 001 .	. 001	<. 01	<. 01	<2	. 002	. 001	. 02	2.43	<. 01	. $010<$	<.001<	<. 001	<. 01	. 84	. 135	. 001	.39	1.28	. 01	. 79	<. 001	<. 001	3.2
502556	¢.001<.	. 001	<. 01	<. 01	<2	. 001	. 001	. 11	2.30	<. 01	.016<	<.001<	<. 001	$<.01$	2.75	. 109	<. 001	. 71	. 87	. 01	. 54	<. 001	<. 001	. 8
502557	Y. 001	. 001	<. 01	<. 01	<2	. 002	. 001	. 04	2.37	<. 01	. $012 \times$	<. 001	. 001	$<.01$	1.34	. 117	. 001	. 50	. 88	. 01	. 72	<. 001	<. 001	2.6
502558	2. 001	. 004	. 01	<. 01	<2	. 003	. 001	. 03	3.11	. 01	. $011 \times$	<.001<	<. 001	$<.01$	1.16	. 071	. 001	. 41	. 76	. 01	. 67	<. 001	<. 001	1.1
502559	\}.001	. 001	<. 01	<. 01	<2	. 002	. 001	. 07	2.77	<. 01	.016<	<.001<	<. 001	< 01	2.19	. 053	<. 001	. 67	. 69	. 01	. 66	<. 001	<.001	3.0
STANDARD R-3	. 076.	. 814	2.01	4.01	198	. 547	. 062	. 07	31.44	. 04	. 003	. 025	. 039	$<.01$	1.34	. 049	. 013	1.11	1.12	. 04	. 47	. 046	. 002	.

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-HZO) DIGESTION TO TOO ML, ANALYSEO BY ICP-ES.
SAMPLE TYPE: DRILL CORE R150
Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
1AN 042007
Data FA \qquad DATE RECEIVED: DEC 142006 DATE REPORT MATLED:

SAMPLE\#	Mo cu	$\begin{gathered} \text { Pb } \\ \% \end{gathered}$		$\begin{array}{r} \mathrm{Ag} \\ \mathrm{gm} / \mathrm{mt} \end{array}$	$\begin{array}{ll} \text { Ag } & \mathrm{Ni} \\ \mathrm{nt} & \% \end{array}$	$\begin{gathered} c_{0} \\ \% \end{gathered}$	$M n$ $\%$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{gathered} \text { As } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{sr} \\ \% \end{gathered}$	$\begin{array}{cc} \mathrm{cd} & \mathrm{Sb} \\ \% & \% \end{array}$	$\begin{gathered} B i \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	$\begin{aligned} & p \\ & \% \end{aligned}$	$\underset{\%}{\mathrm{Cr}}$	$\begin{gathered} \mathrm{mg} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Al} \\ \% \end{gathered}$	Na	K	$\begin{aligned} & w \\ & \% \end{aligned}$	$\begin{gathered} \mathrm{Hg} \\ \% \end{gathered}$	$\begin{gathered} \text { Sample } \\ \mathrm{kg} \end{gathered}$
G. 1	<.001<.001	< 01	<. 01		2<.001<	<. 001	. 06	2.06	<. 01	. 009	<. 001.001	<. 01	. 68	. 077	. 001	. 61	1.19	. 16	. 57	< 0001	<. 001	
502588	¢. 001.001	<. 01	<. 01		2.002	. 001	. 05	3.65	< 01	. 013	<.001<.001	<. 01	1.24	. 221	. 001	. 42	. 77	. 01	. 62	<. 001	<. 001	3.0
502589	+. 001.002	< 01	<. 01		2.003	. 002	. 03	3.55	< 01	. 004	<.001<.001	<. 01	. 37	. 060	. 001	. 40	. 64	. 01	. 73	. 001	<. 001	2.3
502590	¢. 001.002	<. 01	<. 01		2.003	. 001	. 04	3.85	<. 01	. 009	. $001<.001$	<. 01	. 92	. 096	. 001	. 50	. 69	. 01	. 70	<. 001	<. 001	3.3
502591	¢. 001.001	$<.01$	<. 01		<2.002	. 001	. 04	3.11	<. 01	. $022 \times$. $001<.001$	<. 01	1.76	. 053	. 001	. 35	. 57	. 01	. 78	<. 001	<.001	2.2
502592	+.001.001	< 01	<. 01		2.001	. 001	. 03	3.29	. 03	. 015	<.001<. 001	<. 01	1.41	. 188	. 001	. 22	. 59	. 01		<. 001	<. 001	1.4
502593	<. $001<.001$	<. 01	<. 01		2.001	. 001	. 02	2.19	. 02	. $014 \times$	<.001<.001	<. 01	1.33	. 131	. 001	. 19	. 59	. 01	. 74	<. 001	<. 001	3.2
RE 502593	2.001<.001	<. 01	<. 01		2.001	. 001	. 02	2.15	. 02	. 014	<.001<.001	<. 01	1.31	. 130	. 001	. 18	. 60	. 01	. 73	<. 001	<. 001	
RRE 502593	\{.001<.00\}	-. 01	<. 01		$2.001<$	<. 001	. 02	2.19	. 02	. 014	<.001<. 001	<. 01	1.30	. 131	. 001	. 18	. 67	. 01	. 78	<. 001	<. 001	
502594	¢.001<. 001	<. 01	<. 01		2.001	. 001	. 03	2.64	<. 01	. 015	. $001<.001$	<. 01	1.93	. 104	. 001	. 35	. 68	. 01	. 77	. 001	<. 001	2.5
502595	<. 001.001	<. 01	<. 01		< 2001	. 001	. 03	3.22	. 09	.009<	<. 001.002	<. 01	1.52	. 114	. 001	. 28	. 73	. 01	. 51	. 001	<. 001	. 6
502596	2.001<.001	<. 01	<. 01		$2.001<$	<. 001	. 04	2.31	<. 01	.012<	<.001<.001	<. 01	1.70	. 106	. 001	. 26	. 55	. 01	. 63	<.001	<. 001	2.8
502597	<.001<.001	<. 01	<. 01		2.001	. 001	. 01	1.21	<. 01	. 006	<. $001<.001$	<. 01	. 68	. 128	. 001	. 17	. 94	. 01	. 87	<. 001	<. 001	2.4
502598	¢.001<.001	< 01	<. 01		2<.001<	<. 001	. 02	1.28	<. 01	. 007	-. $001<.001$	<. 01	1.00	. 106	. 001	. 22	. 74	. 01	. 59	<. 001	. 001	1.7
502599	+. 001.003	<. 01	$<.01$		<2.001	. 001	. 04	4.40	<. 01	. 019	<.001<.001	<. 01	1.93	. 050	. 001	. 57	. 76	. 01	. 76	<. 001	<. 009	2.0
	\{.001 .001	<. 01	<. 09		2.001	. 001	. 06	2.61	<. 01	. 015	<.001<. 001	<. 01	1.97	. 122	. 001	. 56	1.07	. 01		<. 001	<. 001	2.0
502601	\{.001.003	<. 01	<. 01		2.004	. 002	. 02	2.78	<. 01	. 004	<.001<.001	<. 01	. 36	. 078	. 001	. 26	1.00	. 81	1.13	<. 001	<. 001	3.0
502602	\{.001.001	<. 01	<. 01		2.002	. 001	. 04	2.34	<. 01	. $011<$	-001<.001	<. 01	1.25	. 076	. 001	. 42	. 86	. 01		<. 001	<. 001	1.0
502603	¢.001.003	<. 01	. 04		2.003	. 002	. 01	2.34	<. 01	. 005	<.001<. 001	<. 01	. 51	. 031	. 001	. 25	. 69	. 01		<. 001	<. 001	. 9
502604	¢. 001.001	<. 01	<. 01		<2. 002	. 001	. 01	2.26	<. 01	. 003	<. $001<.001$	<. 01	. 26	. 055	. 001	. 18	. 79	. 01	. 95	<. 001	<. 001	1.1
502605	K. 001.006	<. 01	. 10		2.005	. 002	. 07	5.18	<. 01	. 033	<.001<.001	<. 01	3.29	. 094	. 009	1.16	. 74	<. 01		<. 001	<. 001	1.3
502606	<. 001.002	<. 01	<. 01		2.003	. 001	. 03	2.98	<. 01	. 006	<.001<.001	<. 01	. 61	. 095	. 001	. 33	. 85	. 01		<. 001	<. 001	3.2
502607	+.009 . 003	<. 01	<. 01		2.002	. 002	. 05	3.88	<. 01	. 009	<.001<. 001	<. 01	1.06	. 063	. 001	. 66	. 86	. 01	. 67	<. 001	<. 001	3.3
502608	¢.001.003	<. 01	<. 01		2.002	. 002	. 04	3.56	<, 01	. 008	<.001<. 001	<. 01	. 99	. 087	. 001	. 60	. 72	. 01		<. 001	<. 001	1.9
502609	¢.001.002	<. 01	<. 01		2.002	. 001	. 04	3.67	. 01	. 009	<. $001<.001$	$<.01$	1.82	. 060	. 001	. 86	1.09	. 01	. 40	<. 001	<. 001	1.1
502610	. 001 . 001	<. 01	<. 01		2.001	. 001	. 06	2.75	<. 01	. 012	. $001<.001$	<. 01	1.67	. 083	. 001	. 70	. 90	. 01		<. 001	<. 001	2.0
502611	-.001.001	< 01	<. 01		2.001	. 001	. 04	2.52	<. 01	. 008	. $001<.001$	<. 01	1.20	. 054	. 001	. 56	1.06	. 01	. 53	<. 001	<. 001	2.3
Standard R-3	. 077.794	1.96	4.11	196	6.540	. 060	. 07	31.18	. 04	. 003	. 025.038	<. 01	1.25	. 051	. 012	1.05	1.05	. 04	. 43	<.001	. 002	

GROUP $7 A R-1.000 \mathrm{GM}$ SAMPLE, AOUA - REGIA (HCL-HNO3-H20) DIGESIION TO 100 ML , ANALYSED BY ICP-ES.

- SAMPLE TYPE; DRILL CORE R150 Samples beginning'RE' are Reruns and 'RRE, are Reject Reruns.

Data \qquad FA \qquad DATE RECEIVED: DEC 142006 DATE REPORT MAILED:
JAN 142007

	LABORATORIES E ccredited Co.) Selkirk	$\frac{\text { Metals Hold }}{1255 \mathrm{~W} . \text { Pende }}$	$\begin{aligned} & \text { E. H } \\ & \text { ding } \\ & \text { er } 5 t \end{aligned}$		NGS SSA td. couve	ST. VA Y CERTIFI PROUECT	$\begin{aligned} & \text { IVER } \\ & \text { ICAT } \\ & \text { WAS } \\ & \text { Submit } \end{aligned}$	$\begin{array}{cc} \hline \text { BC } & \mathrm{V} \\ \mathrm{E} & \\ \mathrm{II} & \mathrm{~F} \\ \hline \text { tted by } \end{array}$	$6 \mathrm{~A} 1 \mathrm{~F}$ ile Jim	$\begin{aligned} & \text { R6 } \\ & \text { \# A } \\ & \text { Miller } \end{aligned}$	$\begin{aligned} & \mathrm{PHO} \\ & 60942 \\ & \text { Tait } \end{aligned}$				3158 A 1	926	(604)	$\begin{gathered} -1716 \\ A \\ 4 \end{gathered}$
SAMPLE\#	$\begin{array}{cccc}\mathrm{MO} & \mathrm{Cu} & \mathrm{Pb} & 2 \mathrm{n} \\ \% & \% & \% & \%\end{array}$	$\begin{array}{ccc} \hline & A g & N i \\ \% & \text { gm/mt } & \% \\ \hline \end{array}$	$\begin{aligned} & \mathrm{Mn} \\ & \% \end{aligned}$	$\begin{aligned} & \hline \mathrm{Fe} \\ & \% \\ & \hline \end{aligned}$	$\begin{gathered} \text { As } \\ \% \end{gathered}$	$\begin{array}{ccc} \hline \mathrm{Sr} & \mathrm{~cd} & \mathrm{Sb} \\ \% & \% & \% \\ \hline \end{array}$	$\begin{gathered} 81 \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$?	$\begin{gathered} \mathrm{c}_{\mathrm{r}} \\ \% \end{gathered}$	Mg	$\begin{gathered} \mathrm{AL} \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Na} \\ \% \\ \hline \end{gathered}$	\%	w		$\underset{\mathrm{kg}}{\text { Sample }}$	
G-1	<. $001<.001<.01<.01$	$1<2<.001<.001$. 06	1.85	<. 01	.007<.001.001	<. 01	. 49	. 076	. 007	. 59	1.08	. 11	. 58	<. 001	<. 001		
502673	¢.001 . $002<.01<.09$	<2.003.001	. 05	3.53	<. 01	.016<. 001.001	<. 01	. 96	. 053	. 001	. 53	. 50	. 01	. 33	<.001	<. 001	5.6	
502674	<. 001.001 . $01<.01$	<2 . 002.001	. 12	3.64	<. 01	.045<. 001.001	<. 01	2.86	. 048	. 001	. 99	. 73	. 01	. 48	<. 001	<. 001	2.6	
502675	<.001 . $001<.01<.01$	<2 .003 .001	. 07	3.10	<. 01	.030<.001.001	<. 01	1.83	. 052	. 001	. 62	. 66	. 01	. 50	<. 001	. 001	3.6	
502676	$\} .001 .002<.01<.01$	$1<2$. 003.001	. 05	2.53	<. 01	.022<.001<.001	<. 07	1.30	. 053	. 001	. 38	. 67	. 01	. 57	<. 001	<. 001	4.5	
RE 502676	<. $001.002<.01<.01$	<2 .003 . 001	. 05	2.56	<. 01	. $022<.001 .001$	<. 01	1.30	. 054	. 001	. 38	. 68	. 01	. 58	<. 001	<. 001		
RRE 502676	¢.001 . $002<.01<.01$	$1<2.002 .001$. 05	2.53	<. 01	. $024<.001 .001$	<. 01	1.44	. 050	. 001	. 41	. 59	. 01	. 51	<. 001	<. 001		
502677	<.001 . $002<.01<.01$	$1<2.003 .002$. 07	3.69	<. 01	. $024<.001 .001$	<. 01	1.37	. 062	. 001	. 66	. 76	. 01	. 56	<. 001	<. 001	3.0	
502678	<.001 . $002<.01<.01$	<2 . 003.002	. 04	3.11	<. 01	.011<. 001.001	<. 01	. 50	. 078	. 001	. 42	. 75	. 01	. 55	<. 001	<. 001	2.0	
502679	< $001.002<.01<.01$	$1<2.002 .002$. 09	3.43	<. 01	.022<.001 . 009	<. 01	1.08	. 078	. 001	. 65	. 81	. 01	. 52	<. 001	<. 001	4.7	
502680	1.001 . $002<.01<.01$	$1<2.003 .001$. 04	3.98	< 01	. $007<.001 .001$	<. 01	. 35	. 051	. 001	. 72	. 61	. 01	. 48	<. 001	<. 001	4.7	
502681	<.001 .002<.01<.01	$1<2.003 .001$. 06	3.58	<. 01	.016<. 001.001	<. 01	. 66	. 066	. 001	. 74	. 70	. 02	. 59	<. 001	<. 001	2.2	
502682	<. 001 . 001 . $01<.01$	<2.003 .001	. 04	3.23	<. 01	.020<. 001.002	<. 01	1.08	. 060	. 001	. 66	. 61	. 01	. 58	<. 001	<. 001	1.6	
502683	<.001 .002<.01 <. 01	<2 .003 . 002	. 05	3.90	< 01	.016<. 001.001	<. 01	. 66	. 072	. 001	. 81	. 72	. 02	. 55	. 001	<. 001	1.3	
502684	$<.001 .001<.01<.01$	$1<2.002 .001$. 06	4.05	<. 01	.019<.001<.001	$<.01$. 58	. 091	. 001	. 76	. 63	. 01	. 47	<. 001	<. 001	2.5	
502685	<.001 . $001<.01$. 01	$1<2.002 .001$. 07	4.19	<. 01	. $023<.001<.001$	<. 01	. 83	. 065	. 001	. 86	. 54	. 01	. 41	<. 001	<. 001	3.0	
502686	$<.001 .002<.01<.01$	<2.002.001	. 04	2.90	< 01	. $016<.001 .001$	<. 01	. 62	. 057	. 001	. 63	. 67	. 01	. 45	-. 001	<. 001	2.4	
502687	¢. $001.001<.01<.01$	$1<2.002 .001$. 05	3.27	<. 01	. $023<.001<.001$	<. 01	. 98	. 095	. 001	. 50	. 53	. 01	. 43	. 001	<. 001	3.1	
502688	<.001 . $002<.01<.01$	$1<2.002 .002$. 03	3.59	<. 01	. $014<.001 .001$	<. 01	. 77	. 065	. 001	. 40	. 72	. 01	. 42	<. 001	<. 001	3.4	
502689	¢.001<.001 . $05 \quad .13$	$3<2<.001<.001$. 13	2.58	< 01	. 011.001 .001	<. 01	21.00	. 004	<. 001	10.92	. 08	<. 01	. 02	. 001	<. 001	3.7	
502690	2.001<.001<.01 . 01	$1<2<.001 \times .001$. 04	. 57	<. 01	.060<.001<. 009	$<.01$	39.25	. 003	<. 001	2.93	. 04	$<.01$. 01	<. 001	<. 001	3.2	
502691	¢.001<.001<.01 . 03	$3<2<.001<.001$. 01		<. 01	. $060<.001<.001$	<. 01	43.65	. 001	<. 001	. 66	. 02	<. 01	. 01	. 001	<. 001	3.0	
502692	¢.001<.001<.01<.01	$1<2<.001<.001$. 01	. 13	< 01	.054<.001<.009	<. 01	40.14	. 004	<. 001	. 45	. 02	<. 01	<. 01	. 001	<. 001	5.9	
502693	¢.001<.001<.01<.01	$1<2<.001<.001$. 02	. 46	< 07	. $030<.001<.001$	<. 01	41.19	. 004	<. 001	1.45	. 06	<. 01	. 01	. 001	<. 001	1.0	
502694	!. $001.001<.01<.01$	<2.001.001	. 10	3.85	<. 01	. $021<.001<.001$	<. 01	2.52	. 077	. 001	. 78	. 59	. 01	. 17	. 001	<. 001	1.5	
502695	<. $001.003<.01<.01$	<2 .002.002	. 22	7.29	<. 01	. $129<.001<.001$	$<.01$	10.79	. 674	. 001	2.72	. 67	. 01	. 19	<. 001	<. 001	1.9	
502696	<. $001.001<.01<.01$	<2 . 002.001	. 08	3.09	<. 01	. $023<.001 .001$	<. 01	2.63	. 077	. 001	. 69	. 51	. 02	. 22	. 001	<. 001	4.0	
502697	4.001 .001 . 01 . 02	<2 . 002.001	. 07	3.84	< 01	.018<.001<.001	<. 01	10.61	. 040	. 001	5.34	. 86	. 01	. 12	. 001	<. 001	2.2	
502698	<.001.003<.01<.01	<2 . 003.002	. 09	5.08	< 01	.038<.001<.001	<. 01	6.58	. 217	. 001	2.87	1.27	. 01	. 23	. 001	<. 001	5.7	
502699	<.001<.001 <. $01<.01$	$1<2<.001<.001$. 03	. 64	<. 01	.059<.001<.001	<. 01	39.94	. 008	<. 001	1.41	. 17	<. 01	. 02	. 001	<. 001	1.5	
502700	¢.001<.001 . $44 \quad .47$	7 4<.001<.001	. 02	. 28	< 01	. $055.001<.001$	$<.01$	43.42	. 003	<. 001	. 79	. 02	< 01	$<.01$. 001	. 001	4.1	
502701	<.001<.001 . 451.08	4<.001<.001	. 02	. 22	<. 01	. $058.002<.001$	<. 01	42.99	. 003	<. 001	. 32	. 02	<. 01	<. 01	<.001	. 002	2.7	
502702	<. $0001<.001 \quad 1.17 \quad .75$	6<.001<.001	. 01	. 25	<. 01	. $056.002<.001$	<. 01	40.69	. 005	<. 001	. 39	. 03	. 01	<. 01	<. 001	. 001	1.2	
502703	¢.001<.001 . $11 \quad .14$	$4<2<.001<.001$. 01		< 01	. $083<.001 .001$	<. 01	41.34	. 004	<. 001	. 66	. 03	. 02	<. 01	. 001	<. 001	4.5	
502704	<.001<.001<.01<.01	$1<2<.001<.001$. 01	. 12	<. 01	. $061<.001<.001$	<. 01	44.70	. 002	<. 001	. 46	. 03	<. 01	<. 01	. 001	<. 001	5.5	
SIANDARD R-3	. 076.8091 .904 .02	2198.541 .060	. 07	29.92	. 04	. 003.024 .038	<. 01	7.30	. 050	. 012	1.03	1.10	. 04	. 44	. 001	. 002	-	

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNOZ-H2O) DIGESTION 70 100 ML, ANALYSED BY JCP-ES.

- SAMPLE TYPE: DRILL CORE R150 Samples beginning.'RE' are Reruns and 'RRE' are Reject Reruns. FA \qquad DATE RECEIVED: DEC 192006 DATE REPORT MAILED:

[^1]

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H20) DIGESIION TO 100 ML , ANALYSED BY ICP-ES.

- SAMPLE TYPE: DRILL CORE R150 Samples beginning' RE' are Reruns and 'RRE' are Reject Reruns. FA \qquad DATE RECEIVED: DEC 222006 DATE REPORT MAILED:

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Methods and Specifications for Analytical Package Group 7AR - Multi-Element Assay by ICP-ES - Aqua Regia Digestion

Comments

Sample Preparation

All samples are dried at $60^{\circ} \mathrm{C}$. Soil and sediment are sieved to -80 mesh $(-177 \mu \mathrm{~m})$. Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed $\left(475^{\circ} \mathrm{C}\right)$. Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh $(100 \mu \mathrm{~m})$ in a mild-steel ring-and-puck mill. Pulp splits of 1 g are weighed into 100 mL volumetric flasks.

Sample Digestion

A 30 mL aliquot of modifed aqua regia solution (equal parts ACSgrade HCl and HNO_{3} acids and de-mineralized $\mathrm{H}_{2} \mathrm{O}$) is added and heated in a hot water bath ($\sim 95^{\circ} \mathrm{C}$) for 1 hour. After cooling for 3 hours the solutions are transferred to 100 mL volumetric flasks and made to volume with $5 \% \mathrm{HCl}$. Very high grade samples may require a 1 g per 250 mL or 0.25 g per 250 mL sample to solution ratio for through digestion and accurate determination.

Sample Analysis

Solutions aspirated into a Jarrel Ash Atomcomp model 800 or 975 ICP atomic-emission spectrometer are analysed for a 23 element package comprising: $\mathrm{Ag}, \mathrm{Al}, \mathrm{As}, \mathrm{Bi}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Hg}$, $\mathrm{K}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Na}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pb}, \mathrm{Sb}, \mathrm{Sr}, \mathrm{W}$ and Zn .

Quality Control and Data Verification

An Analyical Batch (1 page) comprises 33 samples. QAVQC protocol incorporales a sample-prep blank (Si or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a prep duplicate from the -10 mesh rejects to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD R-2 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other cerifified assayers are Leo Arciaga, Ken Kwok, Marcus Lau, Dean Toye and Jacky Wang.

Document: Metthod and Specifications for Group 7AR.doc	Date: Mar 22.2004	Prepared By: J. Gravel

SECTION E: DRILL HOLE LOGS

Drill Hole Record

Drill Hole Number WZ-06-08
Drill Hole Number WZ-06-09
Drill Hole Number WZ-06-10
Drill Hole Number WZ-06-11

SELKIRK METALS HOLDINGS CORP.

c:lwasi creekddill hole record

Tests: coltar	Depth 0 176 281	$\begin{gathered} \text { Azlmuth } \\ 151.7 \\ 154.2 \end{gathered}$	$\begin{aligned} & \text { Dip } \\ & -50 \\ & -51.9 \\ & -52.4 \end{aligned}$	Depth	Azimuth	Dip	Drilling SouthEast Carrie trenches $1,2 \& 3$	PRRPERTY: ZONE: UTM: NAD 83 EASTING: NORTHING: ELEVATION: AZIMUTH: DIP:

Wasi Creek

 Carrie 2 Zone 10 373754.00 6221535.00 845.00 171.00 171.00-50.00

Page\#

Date Begun:	November 26,2006
Date Finished:	Novamber 30, 2006
Logged by:	MJM
Depth:	280.00
Core slze:	NQ2

Wasi Creek
Carrie 2 Zone 10 373754.00 6221535.00 845.00
171.00 .51 .00
.50 .00

Date Begun: \quad November 26, 2006 Date Finished: November 30, 2006 Logged by: Depth: Core size:

MJM
280.00
NQ2

SELKIRK METALS HOLDINGS CORP.
WASI CREEK PROPERTY

HOLE: WZ-06-08						Page 1
					Core	
From	To	Length	Recovered	\%	$>10 \mathrm{~cm}$	\%
14.50	16.00	1.50	1.3	86.7	0.0	0.0
16.00	19.00	3.00	2.5	82.0	0.3	9.0
19.00	22.00	3.00	2.7	91.3	0.0	0.0
22.00	25.00	3.00	2.9	95.3	1.6	53.3
25.00	28.00	3.00	2.6	88.0	1.0	34.0
28.00	31.00	3.00	3.0	101.0	0.8	25.7
31.00	34.00	3.00	3.0	99.3	1.3	44.3
34.00	37.00	3.00	2.7	90.0	1.2	40.7
37.00	40.00	3.00	3.0	98.7	1.2	38.7
40.00	43.00	3.00	3.0	99.3	1.1	36.7
43.00	46.00	3.00	2.6	86.7	0.5	16.3
46.00	49.00	3.00	3.0	100.0	0.9	29.7
49.00	52.00	3.00	2.6	86.0	0.0	0.0
52.00	55.00	3.00	2.8	93.3	0.9	29.7
55.00	58.00	3.00	2.7	88.3	1.7	56.7
58.00	61.00	3.00	3.0	100.0	0.7	24.7
61.00	64.00	3.00	2.9	97.3	0.7	24.0
64.00	67.00	3.00	3.1	103.3	0.4	13.3
67.00	70.00	3.00	3.1	103.3	0.4	13.3
70.00	73.00	3.00	2.7	88.3	0.1	3.3
73.00	76.00	3.00	2.7	90.0	0.6	20.0
76.00	79.00	3.00	3.0	100.7	0.5	17.7
79.00	82.00	3.00	2.1	71.3	0.0	0.0
82.00	118.00	36.00	spilled	\#VALUE!	spilled	\#VALUE!
118.00	121.00	3.00	2.8	93.3	1.5	49.0
121.00	124.00	3.00	2.9	95.0	0.6	20.7
124.00	127.00	3.00	2.8	94.0	1.4	45.7
127.00	130.00	3.00	3.1	101.7	2.9	98.0
130.00	133.00	3.00	1.3	41.7	0.9	29.7
133.00	136.00	3.00	2.8	92.0	0.9	29.7
136.00	139.00	3.00	2.9	95.0	0.5	18.0
139.00	142.00	3.00	2.9	96.7	0.7	24.3
142.00	145.00	3.00	3.1	101.7	0.0	0.0
145.00	148.00	3.00	3.1	102.7	0.0	0.0
148.00	151.00	3.00	3.1	103.3	0.3	10.0
151.00	154.00	3.00	3.0	99.0	0.5	18.0
154.00	157.00	3.00	3.0	98.3	1.5	50.0
157.00	160.00	3.00	2.9	95.0	0.0	0.0
160.00	163.00	3.00	2.8	93.3	2.1	69.3
163.00	166.00	3.00	3.0	99.3	1.8	61.3

SELKIRK METALS HOLDINGS CORP.
WASI CREEK PROPERTY

RQD LOG		HOLE: WZ-06-08				Page 2
					Core	
From	To	Length	Recovered	\%	$>10 \mathrm{~cm}$	\%
166.00	169.00	3.00	2.9	96.7	0.9	29.7
169.00	172.00	3.00	2.1	70.0	0.3	9.7
172.00	175.00	3.00	2.9	95.0	0.1	3.3
175.00	178.00	3.00	2.7	91.3	0.9	28.3
178.00	181.00	3.00	2.8	93.3	1.0	33.0
181.00	184.00	3.00	2.8	1.8	3.0	100.7
184.00	187.00	3.00	2.9	95.3	2.9	95.3
187.00	190.00	3.00	2.6	85.0	0.1	4.7
190.00	193.00	3.00	2.7	90.7	0.1	4.0
193.00	196.00	3.00	2.8	93.3	0.3	10.0
196.00	199.00	3.00	1.8	61.0	0.0	0.0
199.00	202.00	3.00	2.1	70.0	0.0	0.0
202.00	205.00	3.00	2.6	86.7	0.5	15.7
205.00	208.00	3.00	2.8	94.7	0.0	0.0
208.00	211.00	3.00	3.0	100.0	0.5	15.0
211.00	214.00	3.00	2.7	89.0	0.0	0.0
214.00	217.00	3.00	2.9	95.0	1.1	36.7
217.00	220.00	3.00	2.9	95.3	0.2	7.3
220.00	223.00	3.00	2.7	89.0	0.7	22.0
223.00	226.00	3.00	2.6	85.7	0.2	6.3
226.00	229.00	3.00	3.0	101.3	0.0	0.0
229.00	232.00	3.00	2.7	90.0	0.0	0.0
232.00	235.00	3.00	2.8	91.7	0.0	0.0
235.00	238.00	3.00	2.6	87.3	0.0	0.0
238.00	241.00	3.00	2.8	91.7	0.0	0.0
241.00	244.00	3.00	2.7	910	0.0	0.0
244.00	247.00	3.00	3.0	100.0	0.7	23.3
247.00	250.00	3.00	2.5	84.0	0.0	0.0
250.00	253.00	3.00	2.7	88.7	0.0	0.0
253.00	256.00	3.00	2.6	88.0	0.3	10.0
256.00	259.00	3.00	2.9	95.0	0.9	31.0
259.00	262.00	3.00	2.3	76.7	0.6	0.2
262.00	265.00	3.00	2.7	89.0	0.3	11.3
265.00	268.00	3.00	2.6	85.0	1.1	37.3
268.00	271.00	3.00	3.0	98.7	1.1	35.0
271.00	274.00	3.00	3.0	100.0	1.2	41.3
274.00	277.00	3.00	2.5	83.3	0.0	0.0
277.00	280.00	3.00	2.8	93.3	0.5	17.3

SELKIRK METALS HOLDINGS CORP.

WASI CREEK PROPERTY

SELKIRK METALS HOLDINGS CORP.
WASI CREEK PROPERTY

SELKIRK METALS HOLDINGS CORP. - DRILL HOLE LOG

HOLE: WZ-06-10

SELKIRK METALS HOLDINGS CORP
WASI CREEK PROPERTY

RQD LOG	HOLE: WZ-06-10				Page 1	
					Core	
From	To	Length	Recovered	\%	$\geq 10 \mathrm{~cm}$	\%
22.5	25	2.5	1.80	72.00	0.00	0.00
25	28	3	2.70	90.00	0.34	11.33
28	31	3	2.50	83.33	0.28	9.33
31	34	3	2.71	90.33	0.00	0.00
34	37	3	2.72	90.67	0.60	20.00
37	40	3	2.68	89.33	0.50	16.67
40	43	3	2.83	94.33	1.32	44.00
43	46	3	2.87	95.67	1.20	40.00
46	49	3	3.05	101.67	0.57	19.00
49	52	3	2.50	83.33	0.00	0.00
52	55	3	2.55	85.00	0.30	10.00
55	58	3	2.60	86.67	0.00	0.00
58	61	3	2.20	73.33	0.20	6.67
61	64	3	1.60	53.33	0.00	0.00
64	67	3	2.60	86.67	0.00	0.00
67	70	3	2.20	73.33	0.00	0.00
70	73	3	2.90	96.67	1.57	52.33
73	76	3	2.40	80.00	0.48	16.00
76	79	3	3.00	100.00	2.80	93.33
79	82	3	2.80	93.33	2.70	90.00
82	85	3	3.00	100.00	1.56	52.00
85	88	3	2.90	96.67	1.65	55.00
88	91	3	2.85	95.00	1.05	35.00
91	94	3	2.50	83.33	1.20	40.00
94	97	3	3.30	110.00	2.67	89.00
97	100	3	2.90	96.67	0.00	0.00
100	103	3	2.90	96.67	0.00	0.00
103	106	3	2.50	83.33	0.00	0.00
106	109	3	2.55	85.00	0.00	0.00
109	112	3	2.96	98.67	0.41	13.67
112	115	3	2.70	90.00	1.27	42.33
115	118	3	2.80	93.33	1.14	38.00
118	121	3	2.90	96.67	0.00	0.00
121	124	3	2.90	96.67	1.36	45.33
124	127	3	3.00	100.00	1.70	56.67
127	130	3	2.92	97.33	0.00	0.00
130	133	3	2.60	86.67	0.15	5.00
133	136	3	2.30	76.67	0.00	0.00
136	139	3	2.70	90.00	0.85	28.33
139	142	3	2.70	90.00	0.55	18.33

SELKIRK METALS HOLDINGS CORP.
WASI CREEK PROPERTY

RQD LOG	HOLE: WZ-06-10				Page 2	
					Core	
From	To	Length	Recovered	\%	$>10 \mathrm{~cm}$	\%
142	145	3	2.00	66.67	0.00	0.00
145	148	3	2.60	86.67	0.00	0.00
151	154	3	2.65	88.33	2.00	66.67
154	157	3	2.30	76.87	0.00	0.00
157	160	3	2.75	91.67	0.00	0.00
160	163	3	2.60	86.67	0.30	10.00
163	166	3	2.26	75.33	0.22	7.33
166	169	3	2.20	73.33	0.34	11.33
169	172	3	2.70	90.00	0.22	7.33
172	175	3	2.70	90.00	0.42	14.00
175	378	3	2.77	92.33	0.70	23.33
178	181	3	3.10	103.33	1.20	40.00
181	184	3	2.85	95.00	0.00	0.00
184	187	3	2.40	80.00	0.00	0.00
187	190	3	1.60	53.33	0.00	0.00
190	193	3	2.50	83.33	0.20	6.67
193	196	3	2.45	81.67	0.00	0.00
196	199	3	2.20	73.33	0.00	0.00
199	202	3	2.90	96.67	1.70	56.67
202	205	3	2.60	86.67	0.70	23.33
205	208	3	2.40	80.00	0.60	20.00
208	211	3	2.61	87.00	1.23	41.00
211	214	3	2.80	93.33	1.20	40.00
214	217	3	2.90	96.67	0.93	31.00
217	220	3	3.00	100.00	1.32	44.00
220	223	3	2.60	86.67	1.60	53.33
223	226	3	2.80	93.33	1.10	36.67
226	229	3	2.70	90.00	0.77	25.67
229	232	3	2.50	83.33	1.60	53.33
232	235	3	3.10	103.33	1.70	56.67
235	238	3	2.90	96.67	0.50	16.67
238	241	3	2.80	93.33	0.47	15.67
241	244	3	2.60	86.67	1.50	50.00
244	247	3	2.68	89.33	1.40	46.67
247	250	3	2.50	83.33	1.07	35.67
250	253	3	2.33	77.67	1.10	36.67
253	255	3	2.45	81.67	0.63	21.00
256	259	3	2.50	83.33	0.39	13.00
259	263	4	3.10	77.50	0.14	3.50

SELLKIRK METALS HOLDINGS CORP.
WASI CREEK PROPERTY

RQD LOG	HOLE: WZ-06-11				Page 1	
					Core	
From	To	Length	Recovered	\%	$>10 \mathrm{~cm}$	\%
20	22	2	1.30	65.00	0.00	0.00
22	25	3	2.70	90.00	1.00	33.33
25	28	3	2.85	95.00	1.30	43.33
28	31	3	2.30	76.67	1.30	43.33
31	34	3	3.10	103.33	0.75	25.00
34	37	3	2.20	73.33	0.38	12.67
37	40	3	2.95	98.33	1.26	42.00
40	43	3	3.05	101.67	1.18	39.33
43	46	3	2.95	98.33	1.50	50.00
46	49	3	2.56	85.33	0.15	5.00
49	52	3	2.83	94.33	0.93	31.00
52	55	3	2.80	93.33	0.00	0.00
55	58	3	2.10	70.00	0.00	0.00
58	61	3	2.40	80.00	0.30	10.00
61	64	3	2.90	96.67	0.00	0.00
64	67	3	2.10	70.00	0.00	0.00
67	70	3	2.95	98.33	0.85	28.33
70	73	3	3.00	100.00	1.98	66.00
73	76	3	3.05	101.67	1.55	51.67
76	79	3	2.40	80.00	0.85	28.33
79	82	3	3.00	100.00	0.56	18.67
82	85	3	2.50	83.33	0.96	32.00
85	88	3	3.00	100.00	1.75	58.33
88	91	3	2.76	92.00	1.27	42.33
91	94	3	3.10	103.33	0.89	29.67
94	97	3	2.70	90.00	0.60	20.00
97	100	3	2.50	83.33	0.50	16.67
100	103	3	2.50	83.33	0.00	0.00
103	106	3	2.80	93.33	0.25	8.33
106	109	3	2.70	90.00	0.83	27.67
109	112	3	2.40	80.00	0.00	0.00
112	115	3	2.60	86.67	0.00	0.00
115	118	3	2.80	2.63	0.00	0.00
118	121	3	2.50	83.33	1.50	50.00
121	124	3	3.10	103.33	1.50	50.00
124	127	3	2.50	83.33	0.00	0.00
127	130	3	2.86	95.33	0.00	0.00
130	133	3	2.75	91.67	0.00	0.00
133	136	3	2.70	90.00	0.00	0.00
136	139	3	2.90	96.67	0.00	0.00

SELKIRK METALS HOLDINGS CORP.
WASł CREEK PROPERTY

SELKIRK METALS HOLDINGS CORP.
WASI CREEK PROPERTY

RQD LOG	HOLE: WZ-06-11					
					Core	
From	To	Length	Recovered	$\%$	$>10 \mathrm{~cm}$	$\%$
262	265	3	2.90	96.67	0.22	7.33
265	268	3	2.95	98.33	2.36	78.67
268	271	3	2.80	93.33	1.50	50.00
271	274	3	2.71	90.33	0.00	0.00
274	277	3	2.80	93.33	1.27	42.33
277	280	3	3.00	100.00	1.25	41.67
280	283	3	2.60	86.67	2.06	68.67
283	286	3	2.94	2.63	1.90	63.33
286	289	3	2.90	96.67	0.50	16.67
289	292	3	2.88	96.00	0.55	18.33
292	295	3	2.85	95.00	0.94	31.33
295	298	3	3.00	100.00	1.30	43.33
298	301	3	3.00	100.00	0.60	20.00

SECTION F: ILLUSTRATIONS

Plan Number	Title	Scale
WA-06-1 (after p.4)	General Location Plan	$1: 250000$
WA-06-2 (after p.4)	Mineral Claims	$1: 50000$
WA-06-3 (in pocket)	Mineral Claims / Drill Hole Locations	$1: 20000$
WA-06-4 (in pocket)	Geology and Drilling Compilation	$1: 5000$
WA-06-5 (in pocket)	Drill Section - WZ-06-08 - Looking 261	$1: 500$
WA-06-6 (in pocket)	Drill Section - WZ-06-09 - Looking 281	$1: 500$
WA-06-7 (in pocket)	Drill Section - WZ-06-10 - Looking 275	$1: 500$
WA-05-8 (in pocket)	Drill Section - WZ-06-11 - Looking 340	$1: 500$

[^0]: Note: Property corners are numbered in a sequence starting at the NE corner of the property and proceeding in a

[^1]: Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

