

Fieldwork Completed between November 1 and December 1, 2007

TABLE of CONTENTS

	<u>Page No.</u>
SUMMARY	
INTRODUCTION	
LOCATION and	ACCESS
CLAIM STATUS	and OWNERSHIP 3
HISTORY	
FIELD and ANAL	YTICAL TECHNIQUES
GEOLOGY	
REGION	AL GEOLOGY
PROPER	TY GEOLOGY
	GENERAL LITHOLOGY-STRATIGRAPHY
	SOUTH GOSSAN ZONE – LITHOLOGY and ALTERATION
	CULLEET CREEK ZONE – LITHOLOGY and ALTERATION
	STRUCTURE
MINERA	LIZATION
GEOCHEMISTRY	1
AREA 1a	+b NORTHWEST ARM of LeMARE LAKE 11
AREA 2a	-c NORTHWEST ARM of LeMARE LAKE 11
AREA 3a	+b NORTHWEST ARM of LeMARE LAKE 11
AREA 3c	-g SOUTH GOSSAN ZONE 12
AREA 4 I	EAST SIDE LEMARE LAKE 12
AREA 5 I	NORTHEAST CULLEET CREEK 12
AREA 6-	7 NORTH KISKIMO CREEK 12
PREVIOUS GEO	PHYSICS
CONCLUSIONS a	and RECOMMENDATIONS 14
REFERENCES	
APPENDICES	
APPENDIX I	Statement of Qualifications 19
APPENDIX II	Statement of Expenditures
APPENDIX III	Sample Descriptions
APPENDIX IV	Assay Results

LIST of TABLES

_

		Page No.
TABLE 1	CLAIM TENURE	3

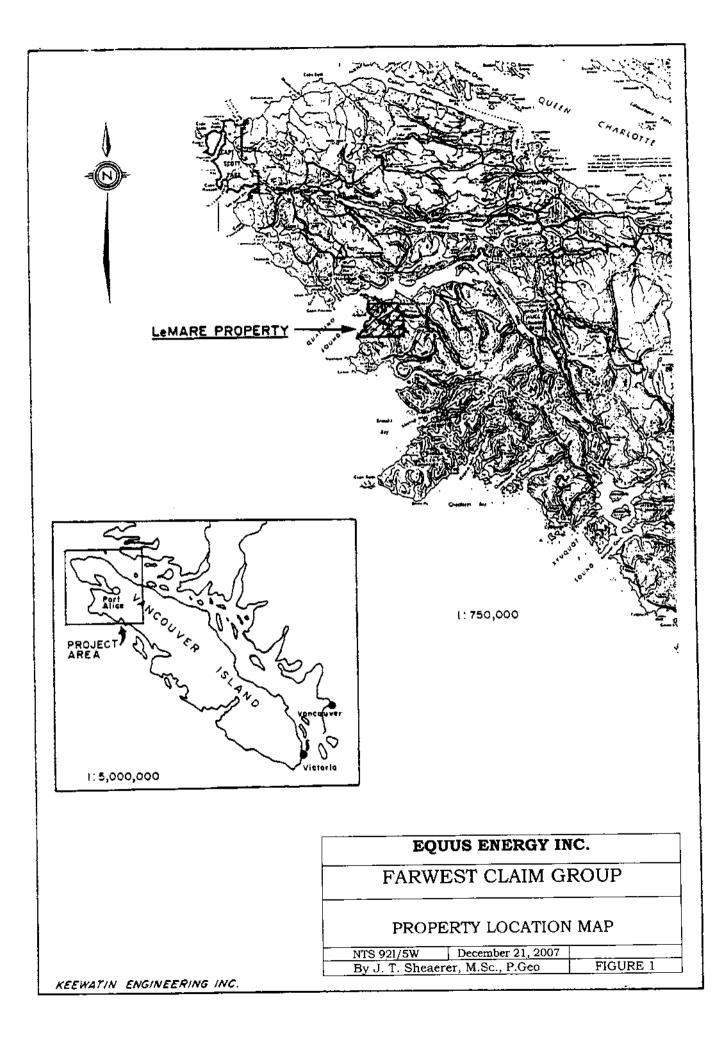
LIST of FIGURESS

	Following Page No.	
FIGURE 1	Property Location Map i	
FIGURE 2	Google Earth Image	
FIGURE 2A	Access Map1	
FIGURE 3	Claim Location Map 2	
FIGURE 4	Regional Geology Map 5	
FIGURE 5	Local Geology & Key Map, 1:20,000 in pocke	t
FIGURE 6	Northwest Arm LeMare Lake Areas 3a, 1a & 1b, 1:5,000 12	
FIGURE 7	West Mainline, Areas 2, 2b & 2c, 1:5,000 12	
FIGURE 8	West Mainline, Area 2a, 1:5,000 12	
FIGURE 9	Southwest LeMare, Areas 3b &3c, 1:5,000 12	
FIGURE 10	South Gossan Zone, Areas 3D, 3E, 3F & 3G, 1:5,000 12	
FIGURE 11	East Side LeMare, Area 4, 1:5,000 12	
FIGURE 12	Northeast Culleet Creek, Area 5, 1:5,000 12	
FIGURE 13	East Mahatta Area, Area 6, 1:5,000 12	
FIGURE 14	Koskimo Creek, Area 7, 1:5,000 12	
FIGURE 15	Total Field Magnetics	
FIGURE 16	Calculated Gradient Magnetics14	
FIGURE 17	Proposed Drill Hole Locations15	

SUMMARY

A prospecting, geochemical sampling (totalling 131 soils samples and 4 rock samples) and mapping program was carried out by a three to six man field crew between November 1 and December 1, 2007 on the 216 unit LeMare Claim Group located on the northwest coast of Vancouver Island. The objective of the 2007 work program was to conduct reconnaissance style exploration in search of Island Copper type porphyry Cu-Mo-Au deposits and establish potential drill targets on the property.

The LeMare Claim Group is underlain by lower Jurassic Bonanza Supergroup Volcanics intruded by coeval Island Intrusives. A major northwest trending alteration zone is present in the southwestern part of the property as defined by work completed in 1991 by previous operators. Mineralization and geochemical soil anomalies are zoned over a six kilometre strike length along this alteration zone. Molybdenum soil anomalies are associated with an advanced silic-argillic-phyllic alteration core flanked by Cu-Au anomalies in transitional phyllic-potassic alteration. The propylitically altered Bonanza Group volcanics hosts a continuous Zn soil anomaly outboard of the Cu/Au/Mo Zones.


Patchy mineralization, a zoned geochemical anomaly and a high-level, low pH alteration assemblage indicates that a mineralized porphyry system may occur at depth beneath the South Gossan Zone in the LeMare Lake Valley. Observed alteration and mineralization patterns indicate that copper values may increase at depth in the Culleet Creek Zone. Strong Cu-Mo-Au geochemical values coincident with an airborne magnetic high in the central portion of the property have not been examined and detailed work is required.

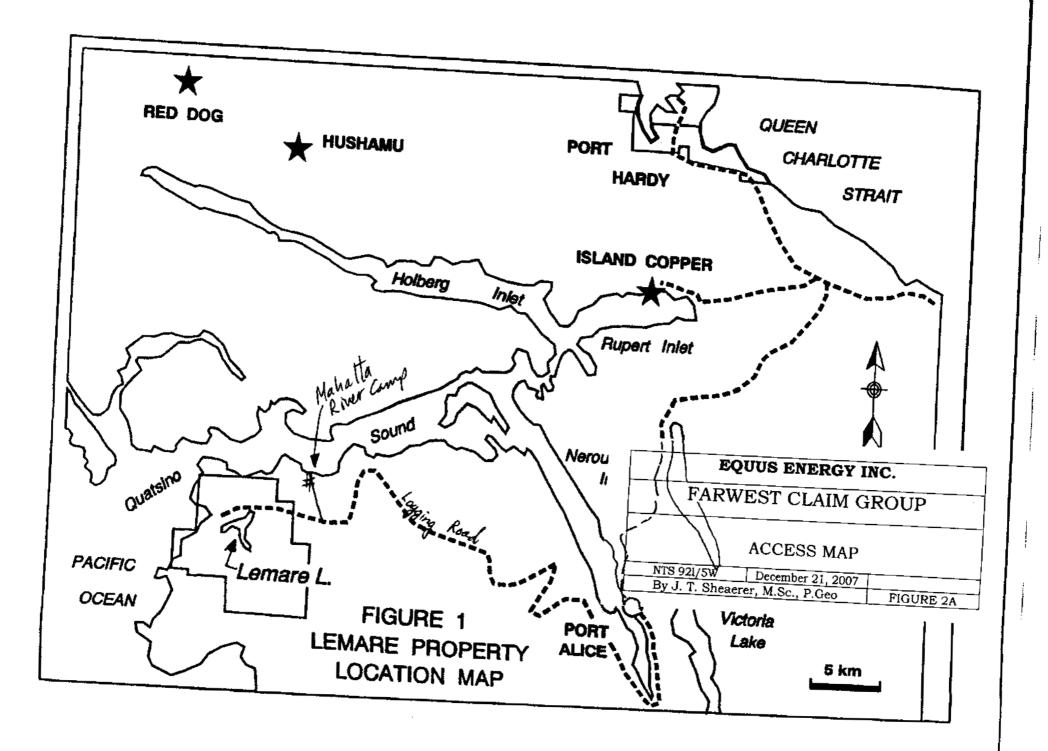
The geologic and metallogenic setting of the LeMare claims is comparable to the Island Copper mine and the Island Copper Belt deposits.

Additional detailed field work and follow-up diamond drilling is recommended to evaluate the targets identified on the LeMare claim group.

Respect fully submitted, J. T\ Shearer, M.Sc., P.Geo.

iii

INTRODUCTION


A prospecting and geochemical sampling (totalling 131 soils samples and 4 rock samples) program was carried out by Homegold Resources Ltd on the Far West claims between November 1, 2007 and December 1, 2007 on behalf of Equus Energy. This project was carried out by a 3 to 6 man crew. The total expenditure was about \$26,000 (see Appendix II, Statement of Expenditures).

This area was first prospected in the early 1980's as logging roads provided access. Exposures indicated that a large intensely altered hydrothermal system occurred immediately west of LeMare Lake.

Prospecting along Culleet Creek and the West Mainline discovered advance argillic alteration zones characterized by geyserite and chalky geyserite similar to geological environment at the active quarries of Electra Gold at PEM100 north of Holberg Inlet and Lehigh Cement at Monteith Bay north of Kyuquot.

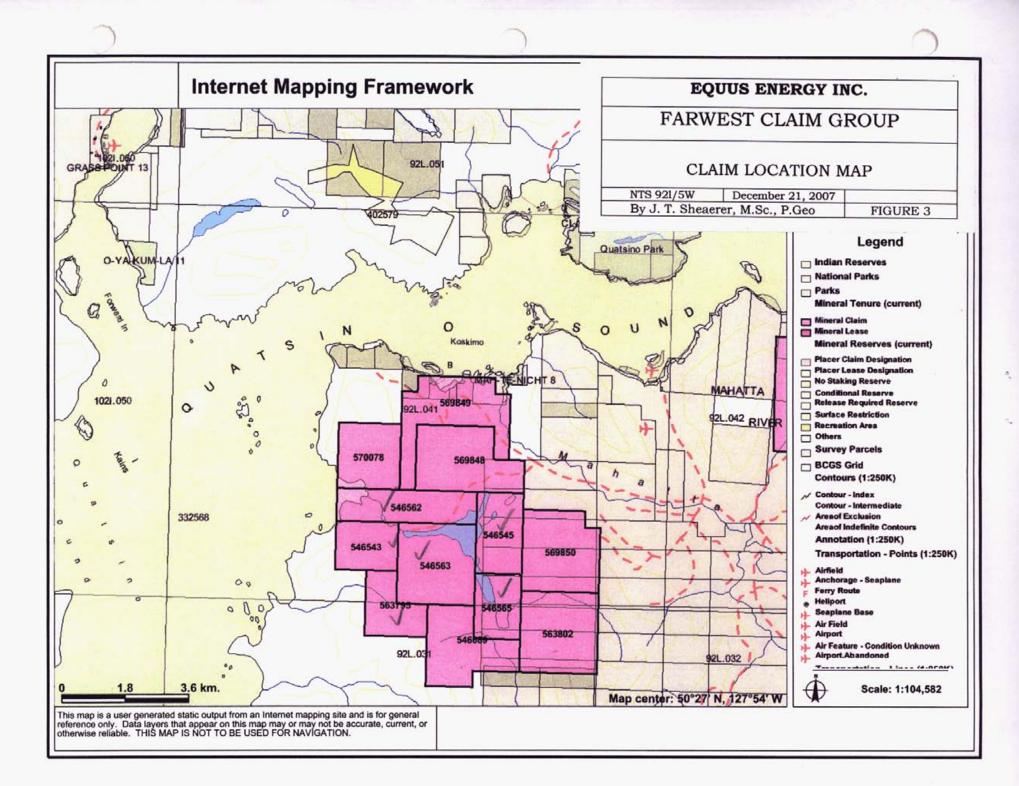
The LeMare Claim Group is underlain by lower Jurassic Bonanza Supergroup Volcanics intruded by coeval Island Intrusives. A major northwest trending alteration zone is present in the southwestern part of the property. Mineralization and geochemical soil anomalies are zoned over a six kilometre strike length at this alteration zone. Molybdenum soil anomalies are associated with an advanced argillic-silic-phyllic alteration core flanked by Cu-Au anomalies in transitional phyllic-potassic alteration. The outboard zone of propylitically altered Bonanza Group volcanics hosts a continuous Zn soil anomaly. This is a classic pattern.

Patchy copper mineralization, a zoned geochemical anomaly and an intense high-level, low pH alteration assemblage indicates that a mineralized porphyry system may occur <u>at depth</u> beneath the South Gossan Zone in the LeMare Lake Valley. Observed alteration and mineralization patterns indicate that copper values may increase at depth in the Culleet Creek Zone. Strong Cu-Mo-Au geochemical values coincident with an airborne magnetic high in the central portion of the property have not been examined in detail and more work is required.

LOCATION and ACCESS

The Far West claim group is located approximately 35km southwest of the Island Copper deposit on the northwestern coast of Vancouver Island. The property is centred at latitude 50°25' north and longitude 127°53' west in NTS Map Sheet #92L/5W (see Figures 1, 2 and 2a, Claim Location Map).

Access to the property is via approximately a 1.5 hour drive on well maintained logging roads from Port Alice, a distance of about 55km. Excellent recent logging road access is available throughout the claim group with the exception of the west central portion of the claims.


Physiography and Climate

The Far West Claims lie within the Mahatta-Kashultl Mountain ranges on the northwest coast of Vancouver Island. Physiography is characterized by moderate relief with elevation ranges from sea level to 2,500 feet in the southwestern portion of the property.

Vegetation and old growth forest consists of mature stands of coniferous forest with minor amounts of undergrowth. Approximately 70% of the property has been logged during the past 25 years and is in various stages of re-growth. Very dense underbrush and growth of alder occur in the logged areas.

The climate is characterized by warm wet springs and falls and cool wet winters. Precipitation dominates the weather pattern during the fall, winter and spring months. Snow, when it does fall during the winter, only stays for a matter of days. During the summer, hot dry periods can occur for durations up to several weeks creating moderate forest fire hazard conditions.

2

PROPERTY STATUS and OWNERSHIP

J. T. Shearer, M.Sc., P.Geo. is the 100% owner and title holder of the Far West Claim Group (see Figure 3, Claim Location Map). The property has been optioned to Equus Energy.

Claim Name	Tenure #	Cells	Area	Date Located	Current Anniversary	Owner
			(ha)		Date	
Far West 1	546543		247.094	December 4, 2006	December 4, 2009	J. T. Shearer
Far West 2	546545		308.842	December 4, 2006	December 4, 2009	J. T. Shearer
Far West 3	546562		370.562	December 5, 2006	December 5, 2009	J. T. Shearer
Far West 4	546563		514.826	December 5, 2006	December 5, 2009	J. T. Shearer
Far West 5	546565		247.170	December 5, 2006	December 5, 2009	J. T. Shearer
Far West 6	546689		432.646	December 6, 2006	December 6, 2009	J. T. Shearer
Far West 7	563795		247.176	July 29, 2007	December 5, 2009	J. T. Shearer
Far West 8	563802		515.005	July 29, 2007	December 5, 2009	J. T. Shearer
Far West 9	569848	1	493.960	November 10, 2007	December 5, 2009	J. T. Shearer
Far West 10	569849		514.420	November 10, 2007	December 5, 2009	J. T. Shearer
Far West 11	569850		494.200	November 10, 2007	December 5, 2009	J. T. Shearer
Geyserite	570078		329.300	November 14, 2007	December 5, 2009	J. T. Shearer

TABLE I

Total Size 4715.201 ha

Mineral title is acquired in British Columbia via the Mineral Act and regulations, which require approved assessment work to be filed each year in the amount of \$4 per hectare per year for the first three years and then \$8 per hectare per year thereafter to keep the claim in good standing.

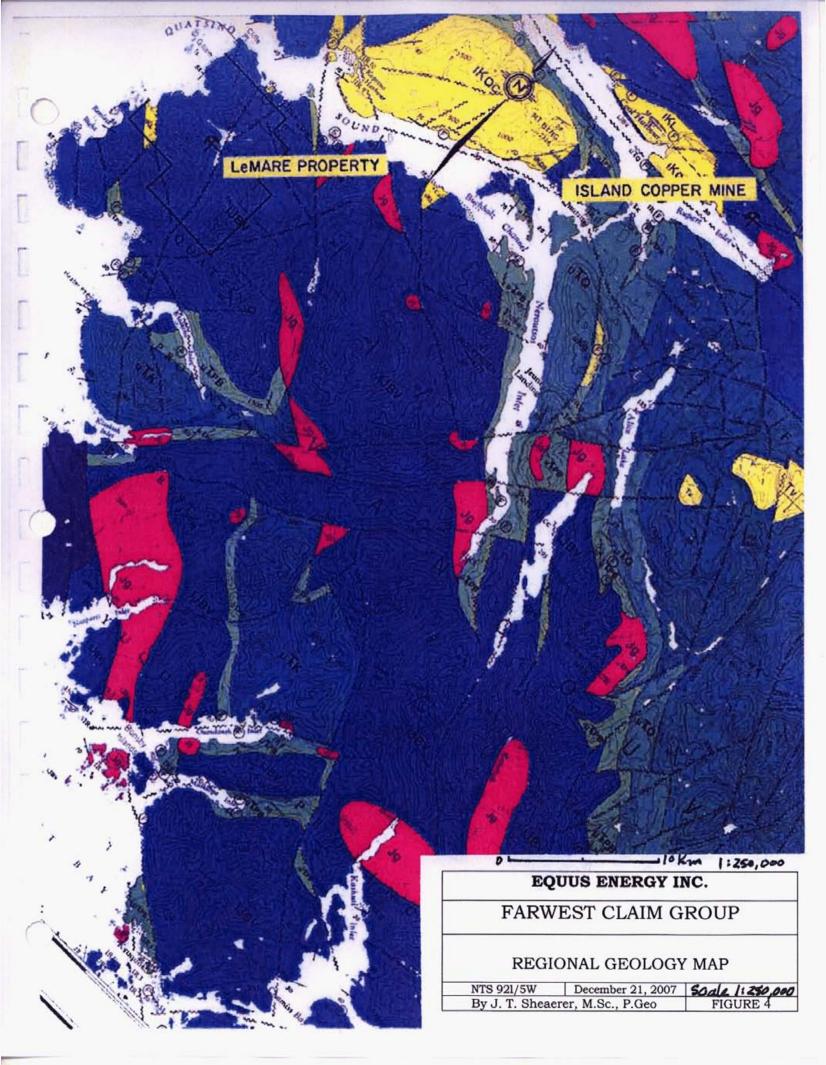
Under the present status of mineral claims in British Columbia, the consideration of industrial minerals requires careful designation of the products end use. An industrial mineral is a rock or naturally occurring substance that can be mined and processed for its unique qualities and used for industrial purposes (as defined in the Mineral Tenure Act). It does not include "Quarry Resources". Quarry Resources includes earth, soil, marl, peat, sand and gravel, and rock, rip-rap and stone products that are used for construction purposes (as defined in the Land Act). Construction means the use of rock or other natural substances for roads, buildings, berms, breakwaters, runways, rip-rap and fills and includes crushed rock. Dimension stone means any rock or stone product that is cut or split on two or more sides, but does not include crushed rock.

HISTORY

During the late 1960's and early 1970's exploration for porphyry Cu-Mo-Au deposits similar to the Island Copper Mine operated by BHP Utah was conducted by several companies on the western portion of Vancouver Island. The earliest reference to claim staking activity in the LeMare area is during 1970 when the Cam Claims were recorded along the north shore of LeMare Lake. No assessment work was filed at this time. This area was later staked by British Newfoundland Exploration during 1980 and four days of prospecting, mapping and sampling was filed as an assessment report (Prospecting Report, LeMare No. 1 and No. 2 Mineral Claims, R. J. Bilquist, 20 Nov. 1980, Assessment Report No. 8593).

A compilation and research program was undertaken by Keewatin Engineering Inc. in March of 1991. During an examination of the Island Copper Belt to determine search parameters for Island Copper type deposits, it was recognized that a similar belt existed between Kyuquot Sound to the south and Quatsino Sound to the north which is referred to as the Mahatta-Kashutl Belt. A Minfile search within this belt encountered references to the LeMare No. 1 and the LeMare No. 2 showings from earlier recorded assessment work.

In 1991, a work program (Birkland, 1991) was conducted reconnaissance style exploration for Island Copper type deposits. Moss mat and stream sediment sampling was completed in 1991 on the entire claim group and follow-up soil geochem coverage was completed along all logging roads in the favourable belt recognized by airborne geophysics and by anomalous moss mat geochemistry. Follow-up geological mapping and surface sampling of anomalous areas was conducted on the South Gossan Zone (SGZ) and on the Culleet Creek area. Detailed work was concentrated in the northwestern and southeastern portions of this 6 km long alteration-mineralization trend.


Diamond drilling was completed in 1992 mainly in the Culleet Creek area (6 holes) and only one short hole was drilled on the edge of the South Gossan Zone.

FIELD and ANALYTICAL TECHNIQUES

Gold was analyzed by fire assay with an AA finish at IPL (International Plasma Labs). Analytical techniques are described in Appendix IV.

Soil Sampling

Soil samples were taken from the B horizon, upslope of logging road-cuts avoiding till where possible. Samples were taken at approximately 50m centres. Samples were analyzed by ICP for 30 elements.

GEOLOGY

REGIONAL GEOLOGY

Northwestern Vancouver Island lies within the Wrangellia terrain of British Columbia Insular Belt of British Columbia.

The oldest exposed rocks are upper Triassic theoleiitic basalts of the Karmutsen Formation which are overlain by the Quatsino and Parson Bay Formations depending on the presence of a major regional unconformity.

The Mahatta-Kashutl Belt is primarily underlain by the lower to middle Jurassic Bonanza Supergroup, an emergent volcanic sequence. The basal part of the Bonanza Supergroup consists of marine basalt and andesitic pillow basalts, amygdaloidal and massive flows and intraformational breccias. The basal basalt and andesite sequence grades upwards into andesite to dacite flows, tuffs and breccias. These rocks are overlain by interbedded intraformational breccias and maroon sub-aerial flows which may be overlain in some localities by felsic tuffs and flows and rhyodacite flows near volcanic-intrusive centres.

The Jurassic Bonanza volcanics are overlain by shallow water marine sediments and volcanics belonging to the Cretaceous Long Arm Formation.

Regional bedding strikes northwest and dips moderately southwest. This attitude is relatively consistent throughout the area.

Intrusive rocks of major batholithic proportions are coeval with the lower Jurassic Bonanza volcanics. The Island Intrusives are primarily of granodiorite to monzonite composition. High level apophyses, cupolas and porphyry dyke swarms may locally be present and are commonly of rhyodacite composition.

Lat Jurassic (and younger) gabbro and andesite dykes cross-cut Bonanza volcanics and Island Intrusives. They are thought to be feeders for upper Bonanza volcanics and are typical of gabbro and andesite dyke swarms of the Insular Belt.

Tertiary (Eocene) "Catface" intrusives may be present and Catface-Mount Washington-Zeballos-Kennedy Lake type quartz veins (which may be gold bearing) are present primarily in east-west trending structures.

Metamorphism and Alteration

6

Most Mesozoic rocks exhibit greenschist or lower degrees of regional metamorphic grade. Metamorphic minerals commonly present are chlorite, sericite, clay and epidote.

Local contact metamorphism associated with the margins of primarily deep hypobyssal intrusive batholiths generally is characterized by hornfels (i.e. silica, hornblende-amphibole and pyrite) developments. These rocks form resistant spines, headlands or mountain ranges along the margins of the major intrusives.

Alteration assemblages associated with high level sub-volcanic porphyries commonly display the following features:

- Low pH silica-pyrite caps at high levels above the porphyry intrusions.
- Spherical shells of advanced argillic alteration surrounding porphyry intrusions. Advanced argillic alteration commonly consists of silica, pyrophyllite (with rare dumortierite), muscovite-sericite and clays. Phyllic alteration commonly flanks the advanced argillic alteration zones and consists of silica, pyrite, sericite and clay and, where weathered, exhibits a definitive jarosite staining.
- Within the porphyry intrusions themselves, argillic alteration consisting of silica, argillic and kaolinitic clay and pyrite commonly is zoned to depth with increasing amounts of potassic alteration (k-spar) and albite.
- Wallrock alteration associated with porphyry intrusions commonly displays transitional phyllic-potassic alteration consisting of biotite, hornblende-amphibole, black (high iron) chlorite and magnetite and Cu-Mo-Au mineralization may be present associated with this zone. Peripheral to the transitional phyllic-potassic alteration is a zone of propylitic alteration which consists of epidote and commonly chlorite (low iron apple green) with high background geochemical values in zinc associated with mineralized porphyry systems.

Structure

The Far West claims lie within the Cape Scott fault bounded structural blocks. Mesozoic structure is typically of a brittle, block fault style with very little folding. This was attributed by the early GSC writers to be due to the thick brittle Karmutsen basalt "basement" rocks.

Major northwest trending imbricate thrust faults repeat the section in an east-west sense and are part of the overriding plate tectonic regime.

Major north and northwest trending deep normal faults commonly control emplacement of the Island intrusions. These faults may be right lateral and slickensides are generally horizontal.

East and northeast trending normal blocks faults are generally of Jurassic to Tertiary age and usually down drop the south side blocks with significant displacements. Slickensides commonly have a vertical sense and east-west structures commonly host Tertiary intrusions and related gold-quartz veins.

Intrusive breccias and volcanic pyroclastic breccias are common around high level intrusive centres and volcanic vents.

Mahatta-Kashuti Belt

The Mahatta-Kashuti belt of Island Intrusions and sub-volcanic porphyries is flanked to the south by deep hyperbysal environments south of Kashuti-Tahsish Inlets. To the northwest, the Island Intrusions become progressively higher lever in nature with an increasing abundance of high level porphyries present until intrusive-porphyry complexes appear to dive beneath younger upper Bonanza volcanic cover north of Quatsino Sound. Regional tilting downwards in a northwesterly direction and a subsequent deeper level of erosion in the southeastern portion of the panel would logically offer an explanation for the distribution of the levels of emplacement observed within this belt.

The Mahatta-Kashutl belt has the favourable ingredients of both a profusion of high level porphyries and numerous volcanic-intrusive centres hosted in favourable lower Jurassic Bonanza aluminous iron and titanium rich marine sub-aqueous volcanics.

Property Geology

General Lithology - Stratigraphy

The Far West claims are primarily underlain by northwest striking, southwest moderately dipping lower to middle Bonanza volcanics. The area between LeMare Lake to Culleet Creek to the west is generally underlain by lower Bonanza volcanics which exhibit pillow lavas, amygdaloidal and massive basalt and andesite flows and breccias. These rocks grade upward to the southwest into intraformational breccias, andesites and dacites grading into sub-aerial maroon andesites. From LeMare Lake to Culleet Creek to the northeast, rocks appear to still belong to the Jurassic Bonanza volcanic supergroup but appear to be more siliceous in nature and exact relationship to Bonanza stratigraphy is unknown.

It is possible that an intrusive centre/volcanic vent lies north and in the vicinity of the North and South Lake Zones.

South Gossan Zone (GZ) – Lithology and Alteration

The porphyry intrusives and related alteration system on the LeMare property appear to plunge at right angles to bedding in a manner consistent with the intersection of northwest and northeasterly striking structural orientations. Intrusive porphyries to a width of +50m and associated alteration selvages, particularly in the SGZ area, appear to plunge moderately to steeply to the northeast.

Alteration is commonly zoned on the LeMare property and grades inwards with increasing intensity from propyllitic to phyllic (potassic) to advanced argillic to a mixed argillic (potassic) core.

Volcanic rocks in the area of the South Gossan Zone (SGZ) are mafic to dacitic volcanics intruded by altered quartz porphyry (as determined from cross-cutting field relationships). Rocks within the SGZ alteration cap are so highly altered as to be of uncertain protolith.

Culleet Creek Zone – Lithology and Alteration

The Culleet Creek area is primarily underlain by basalt and andesite amygdaloidal flows, massive flows and flow breccias interbedded with dacite tuffs. Numerous steeply incised, till covered gullies flanked by prominent siliceous spiny ridges are suspected to be underlain by highly altered recessive quartz porphyry dykes and swarms.

8

Structure

The major structural element on the claim group is a northwest trending major fault system which appears to occur within the topographic low centred along Culleet Creek and LeMare Lake. From exposures in the SGZ, the northwest trending structures have moderate southwesterly dips and slickensides indicate a large component of horizontal displacement. Complimentary northeast trending structures (the northeast lobe of LeMare Lake) usually dip moderately southeast and slickensides indicate a vertical displacement commonly with a south side down. Some northeasterly trending structures dip northwest with unknown displacement sense. Normal east-west trending block faults occur at the south end of the SGZ and at Culleet Creek.

The Culleet Creek area is a complex zone of structural intersections evident from lineaments observed on air photos.

Mineralization

A 6km trend along Culleet Creek and LeMare Lake host numerous Cu (Mo-Au) mineral showings and associated soil geochem anomalies. This trend is coincident with the magnetic-low signature of the alteration trend evident from the high level GSC airborne data.

South Gossan Zone (SGZ)

Copper mineralization flanks the alteration zones and occurs in volcanic wallrocks. Modes of occurrences are described as follows:

- Massive fine grained chalcopyrite and bornite/chalcocite/covellite (may be Au bearing) veinlets and fractures radiating out from beneath the northeast plunge beneath the advance argillic alteration cap.
- Disseminated fine grained chalcopyrite associated with black chlorite-magnetitehydrobiotite? In mafic volcanic (transitional potassic-phyllic "mafic porphyry") alteration.
- East of the SGZ and across the LeMare Lake valley (Trapper Cabin area) are fault controlled chalcopyrite and bornite occurrences in siliceous pyritic volcanics.
- To the west of the SGZ and in the headwaters of "Dumortierite Creek", carbonate veins up to .3m in width occur in propylitic alteration envelopes. The veins have been traced for a strike length of up to 15m.

Culleet Creek Zone

9

The Culleet Creek mineral occurrence lies at the northwestern end of the LeMare mineral trend.

Rocks in the vicinity of the Culleet Creek Zone exhibit a white weathering rind on surface (kaolinite after chlorite-K-spar). Numerous voids and boxwork textures with remnant secondary Cu minerals indicate Cu mineralization is being leached by surface weathering and all values encountered near surface are likely depleted. This distinctive weathering characteristic (including chalcedonic quartz intergrowths) occurs over an area of approximately 500m X 750m. Two road borrow pits (Gorby and Boris showings) have fresher rock exposed in the pitwalls and

roadfill debris. All rock types exposed in the pits are silicified and mineralized to various degrees. Modes of occurrences of copper mineralization are described as follows:

- Chalcopyrite, chalcocite, minor bornite, covellite, and native copper in apple greed silicified (AGS) zones.
- Associated with chalcedonic intergrowths, jasper and quartz veinlets and fractures, amygdules or disseminated in breccia matrix overprinting all rock types.
- Disseminated chalcopyrite in lesser silicified dark green chloritized volcanics.

The 500m X 750m alteration zone of AGS has been trenched in 1991 with 8 plugger blast hole trenches.

At the Mo Road showing to the west of Culleet Lake, sparse chalcopyrite and molybdenite mineralization has been noted in the road-cut associated with advanced argillic and phyllic alteration.

South Lake Zone

The mineralization and alteration style at the South Lake Zone is virtually identical to the silicification and modes of mineral occurrences found in the Culleet Creek Zone. The area between the Culleet Creek Zone and the South Lake Zone is primarily covered in the valley bottom and a total strike length of 2.5km of similar alteration style and mineralization is indicated.

Alteration consists of apple green silicification characterized by light green chlorite, K-spar, and platy chalcedonic intergrowths, jasper and quartz veinlets and stockworks. All of the volcanic rocks are silicified and mineralized. Many of the volcanic rocks in this area exhibit crackle brecciation grading to rotational breccia and locally advancing to chaotic polylithic brecciation indicating that this area may be proximal to an intrusive centre of a volcanic vent.

LeMare No. 2 Showing

The LeMare No. 2 Showing is located in the southwestern border of the main LeMare alteration trend. It is in the immediate vicinity southwest of the Culleet Zone.

Chalcopyrite and minor bornite occurs as disseminations and fracture fillings associated with black chlorite, magnetite and K-spar alterations in basic volcanics. Mineralization occurs over 565m along the Restless Main logging road outcrops.

North Lake Zone

The North Lake mineral occurrence is the original discovery outcrop area initially found by British Newfoundland Exploration Company. The style of mineralization and alteration is very similar to the alteration style and mode of occurrence in the LeMare No. 2 Showing but the North Lake Zone is located on the north side of the main LeMare mineral alteration trend as opposed to the LeMare No. 2 Zone which is on the south side. Mineralization occurs in the Restless Main logging road outcrops over a strike length of 450m.

10 Geological and Geochemical Assessment Report on the Far West Claim Group, LeMare Lake Area December 21, 2007

GEOCHEMISTRY

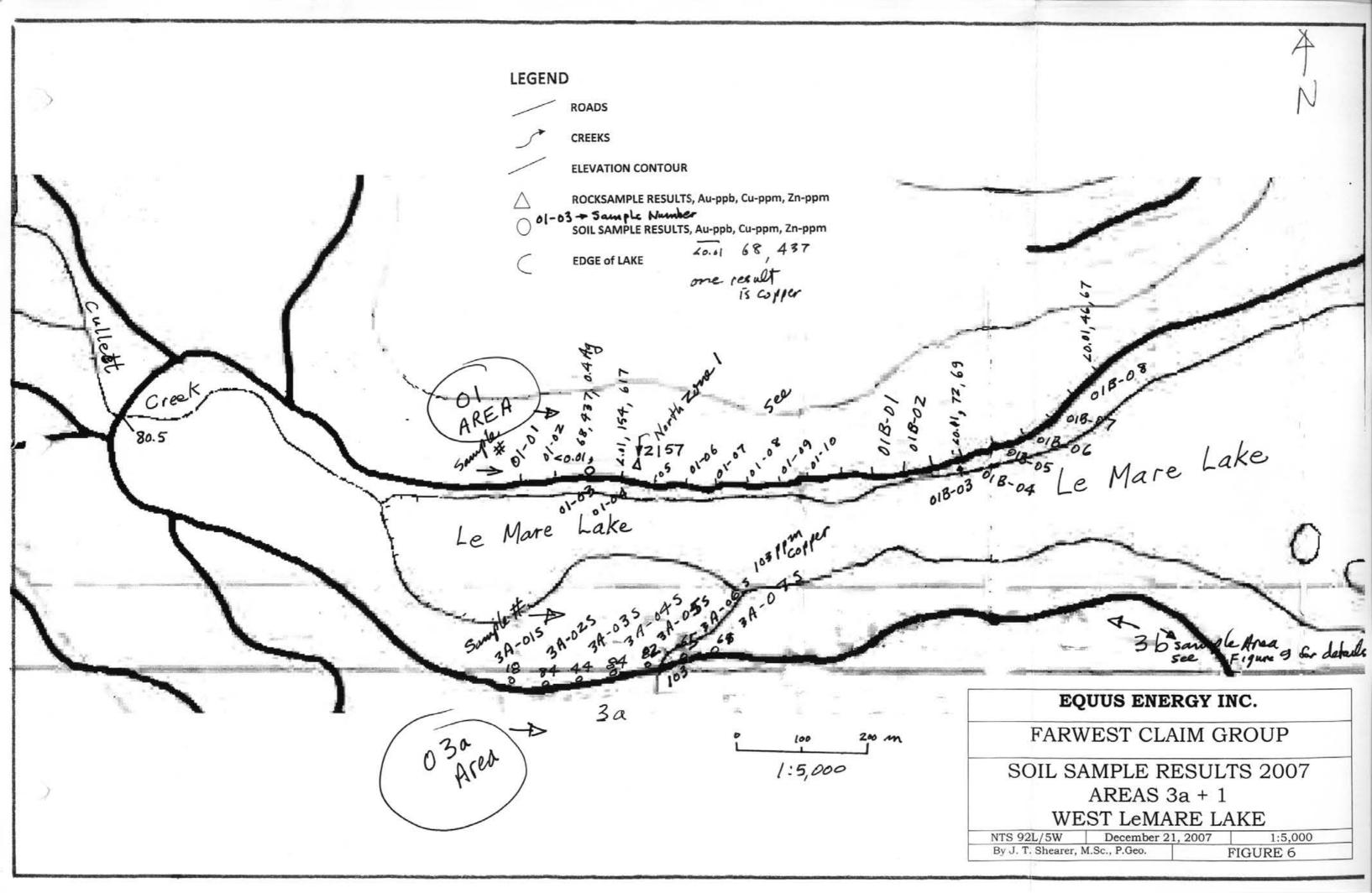
The geochemical program on the LeMare claims in 1991 consisted of moss mat and active stream sediment sampling, soil sampling along logging road access, and rock chip geochemistry on selected targets. In 2007, some re-sampling of areas sampled in 1991 was necessary to obtain first-hand information and additional sampling was also completed. A total of 131 soils samples and 4 rock samples were collected in 2007. Soil results are plotted on Figures 6 to 14. A key map (Figure 5) shows the locations of Figures 6 to 14.

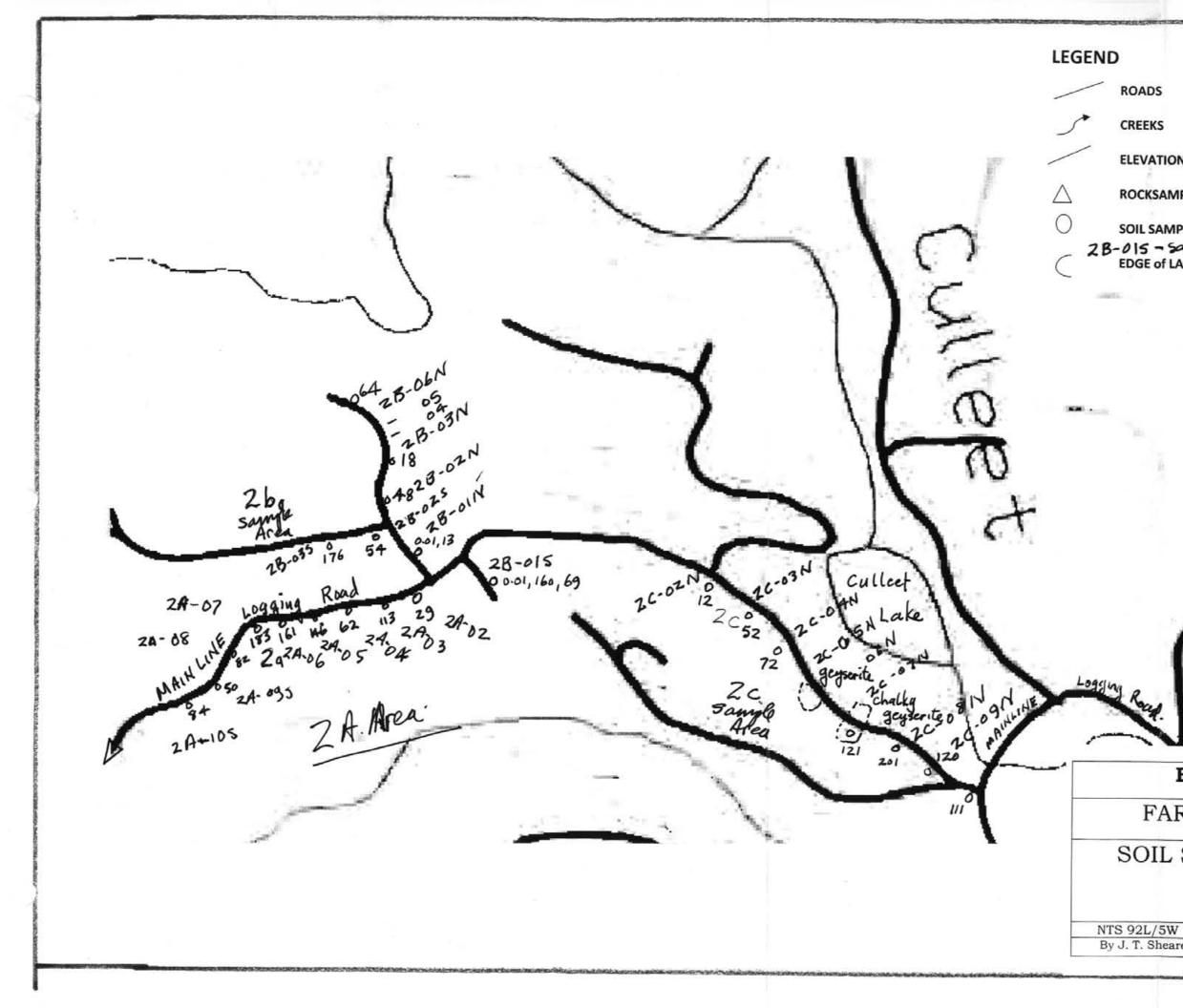
Previous moss mat, soil and rock chip geochem results indicate a zoned geochemical anomaly exists over a strike length of approximately 6km with up to a 2.5km width. The geochemical anomaly consists of a Mo core which generally coincides with the low pH advanced argillic and phyllic alteration assemblages which is flanked by Au and Cu geochemical anomalies within the transitional potassic-phyllic alteration assemblages with an outboard zoned Zn anomaly corresponding to the distal prophylitic alteration zone.

Previous Moss Mat Sample Results (1991)

Moss mat and active stream sediment results were generally very low. For example, "Dumortierite Creek" did not return any anomalous stream sediment samples or moss mat samples although mineralization outcrops in the creek bed with values up to 5.9% Cu and 154 ppb Au from grab samples. Best moss mat anomalous values include 63, 93, 67 and 166 ppm Cu and 4ppm Mo flanking the South Gossan Zone. One tributary of "Dumortierite Creek" returned 174ppm Cu. In the vicinity south of the South Lake Zone, a moss mat Au anomaly of 1,099 ppb Au (check 82 ppb Au) was encountered in the area above the LeMare No. 2 Showing and west of the South Gossan Zone and east of LeMare Lake. Zinc values of 203ppm, 317ppm and 196ppm were encountered respectively.

Soil Sample Results


(1) Areas 1a & b & 3a Northwest Area of LeMare Lake (see Figure 6)


The 1a area is along the steep road cuts on the north side of LeMare Lake. Copper is elevated but most sample sites did not contain enough soil for a sample to be collected. Zinc returned values up to 617ppm and Lead is up to 45ppm on repeat assay.

A rock sample collected on the north side of LeMare Lake assayed 2,157ppm copper, 0.7ppm silver.

(2) Areas 2a-2c West Mainline (see Figures 7 and 8)

Soil values in the Culleet Creek and West Restless Mainline areas encountered anomalous Cu Values to a maximum of 223 ppm, 3 Mo values to a maximum of 5ppm Mo and Zn values to a maximum of 246ppm Zn.

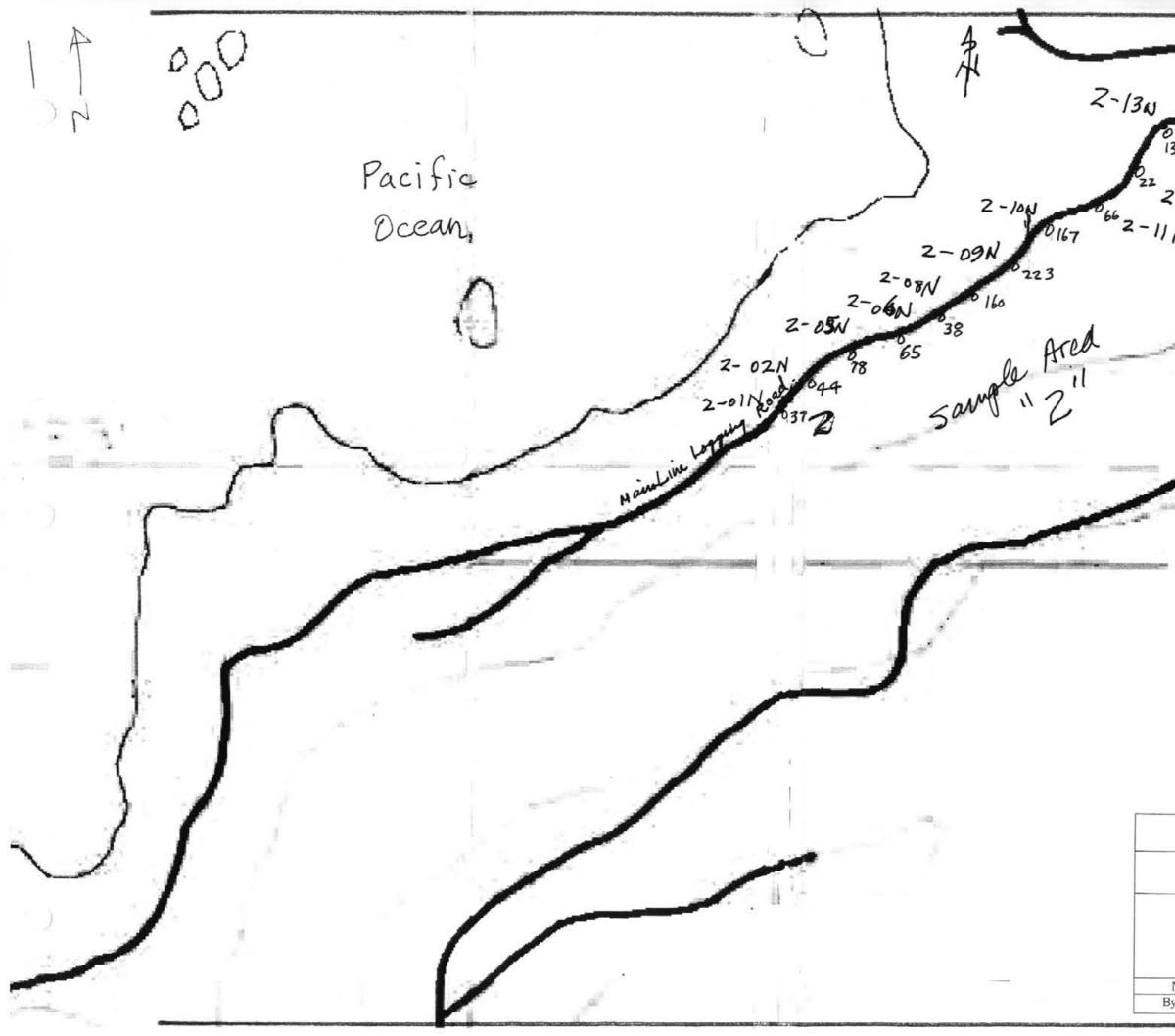
ROADS

CREEKS

ELEVATION CONTOUR

ROCKSAMPLE RESULTS, Au-ppb, Cu-ppm, Zn-ppm

SOIL SAMPLE RESULTS, Au-ppb, Cu-ppm, Zn-ppm 2B-015 - Sample 2.01 52 164 EDGE of LAKE number only one result is copper


> 200 100 1:5,000

> > EQUUS ENERGY INC.

FARWEST CLAIM GROUP

SOIL SAMPLE RESULTS 2007 AREAS 2, 2b + 2c WEST MAINLINE December 21, 2007 1:5,000

By J. T. Shearer, M.Sc., P.Geo. FIGURE 7

	and the second	
-	26	
2	26 -15_{A} 0 26 40 37	
	0 0 26	
3 24 2	0 0 26 40 37	
2 N	40 37 14 N	C
2-12N		
N		
	1	10 C
	1	
1 and the second	Scooler .	1
2°.		
100	and the second second	
	1	
1		
-		
LECEN	1 L 4	
LEGENI		
	ROADS	
	CREEKS	
/	ELEVATION CONTOUR	1
\bigtriangleup	ROCKSAMPLE RESULT	S, Au-ppb, Cu-ppm, Zn-ppm
0 2-	SOIL SAMPLE RESULT	
C	EDGE of LAKE	38
C		
		and the second se
1	EQUUS ENER	GY INC.
FAF	RWEST CLAI	M GROUP
SOIL	SAMPLE RE	SULTS 2007
	AREA 2	

WEST MAINLINE

NTS 92L/5W	Decembe	er 21, 2007	1:5,000
By J. T. Shearer, M.S	Sc., P.Geo.	FIG	URE 8

(3) Areas 3b & c Southwest LeMare Lake (see Figure 9)

This area is located along the west side of the south area of LeMare Lake. Copper values are up to 103 ppm. Gold is up to 70 ppb.

(4) Areas 3d to 3g South Gossan Zone(see Figure 10)

Numerous anomalous Mo values between 3 and 4 ppm Mo were found to be flanked by Cu-Au values outside the main argillic alteration area. Twenty-five anomalous Cu soils taken in 1991 to a maximum value of 482ppm Cu and 10 anomalous Au soils to a maximum of 75ppb Au occur surrounding the main South Gossan Zone. The area in the LeMare Lake valley down plunge from the alteration cap is till covered and geochemical responses in this area were low, as expected.

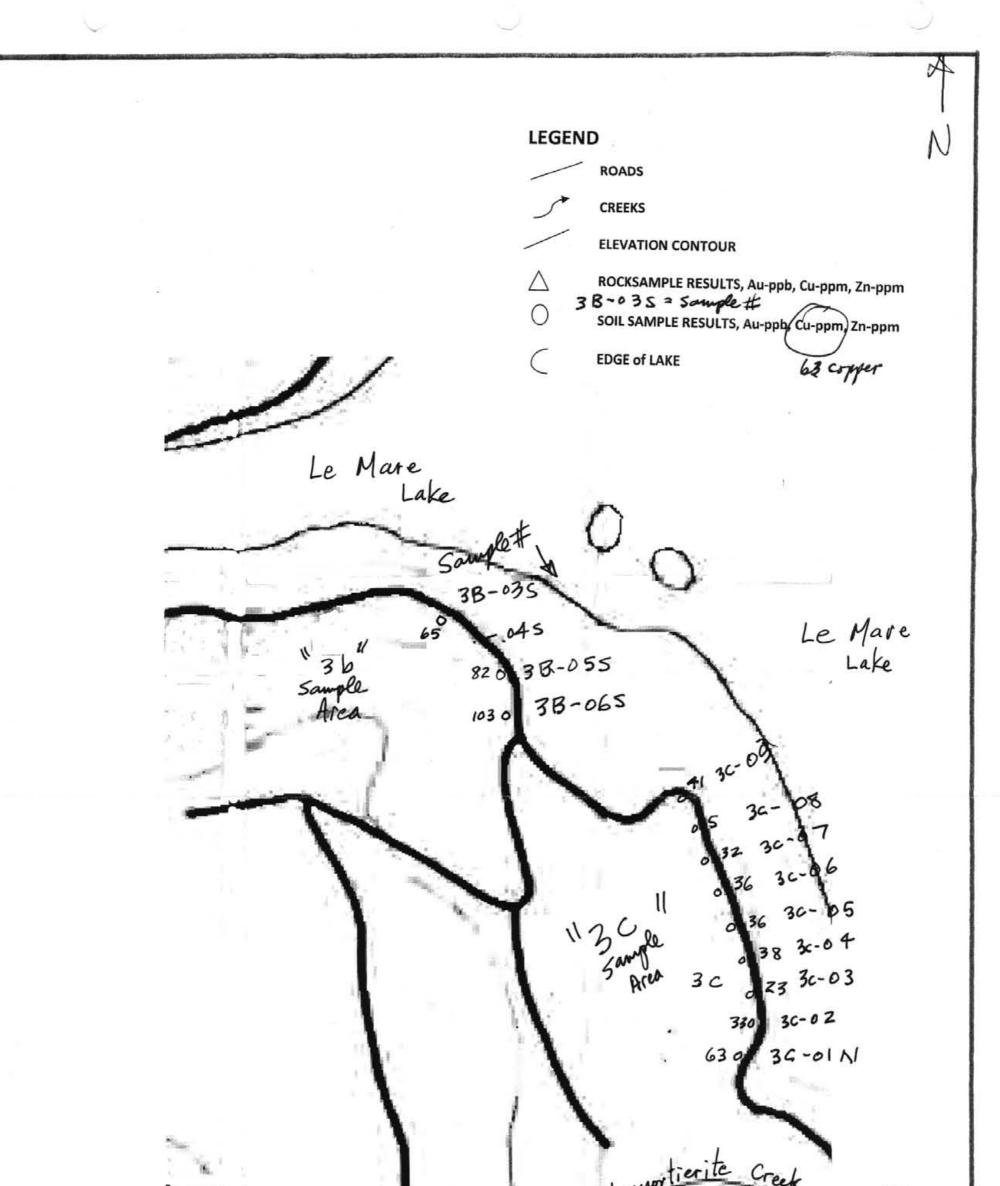
(5) Area 4 East Side of LeMare Lake (see Figure 11)

To the east of LeMare Lake, 3 Cu soil values up to 119ppm Cu and Zn values up to 106ppm occur. To the east of Dumortierite Creek and surrounding the ridge on which an airborne magnetic highest is centred, strong anomalous soil responses were encountered. Anomalies included Mo values to a maximum of 25ppm, 15 Cu values to a maximum of 2,307ppm Cu. Gold is up to 110 ppb. Additional detailed prospecting, mapping and sampling is required in this area.

(6) Area 5 Northeast Culleet Creek (see Figure 12)

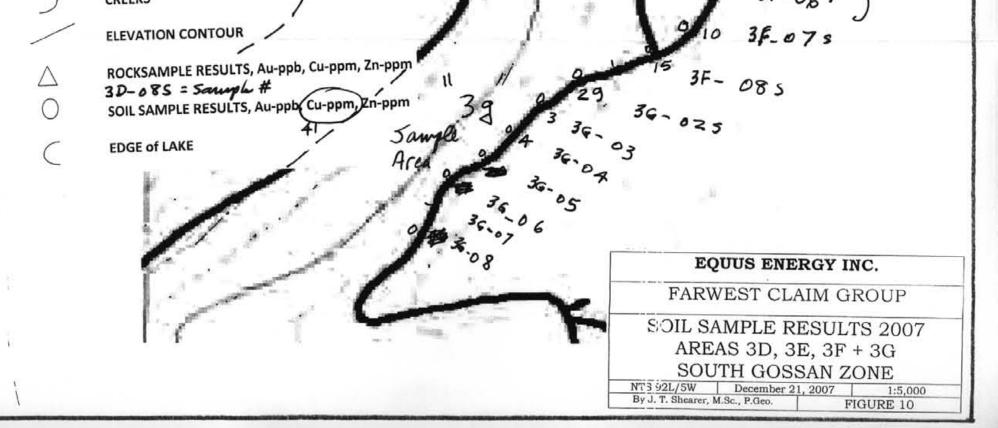
Soil samples in this recently logged area have silver values up to 0.2ppm Ag. Other elements are uniformly low.

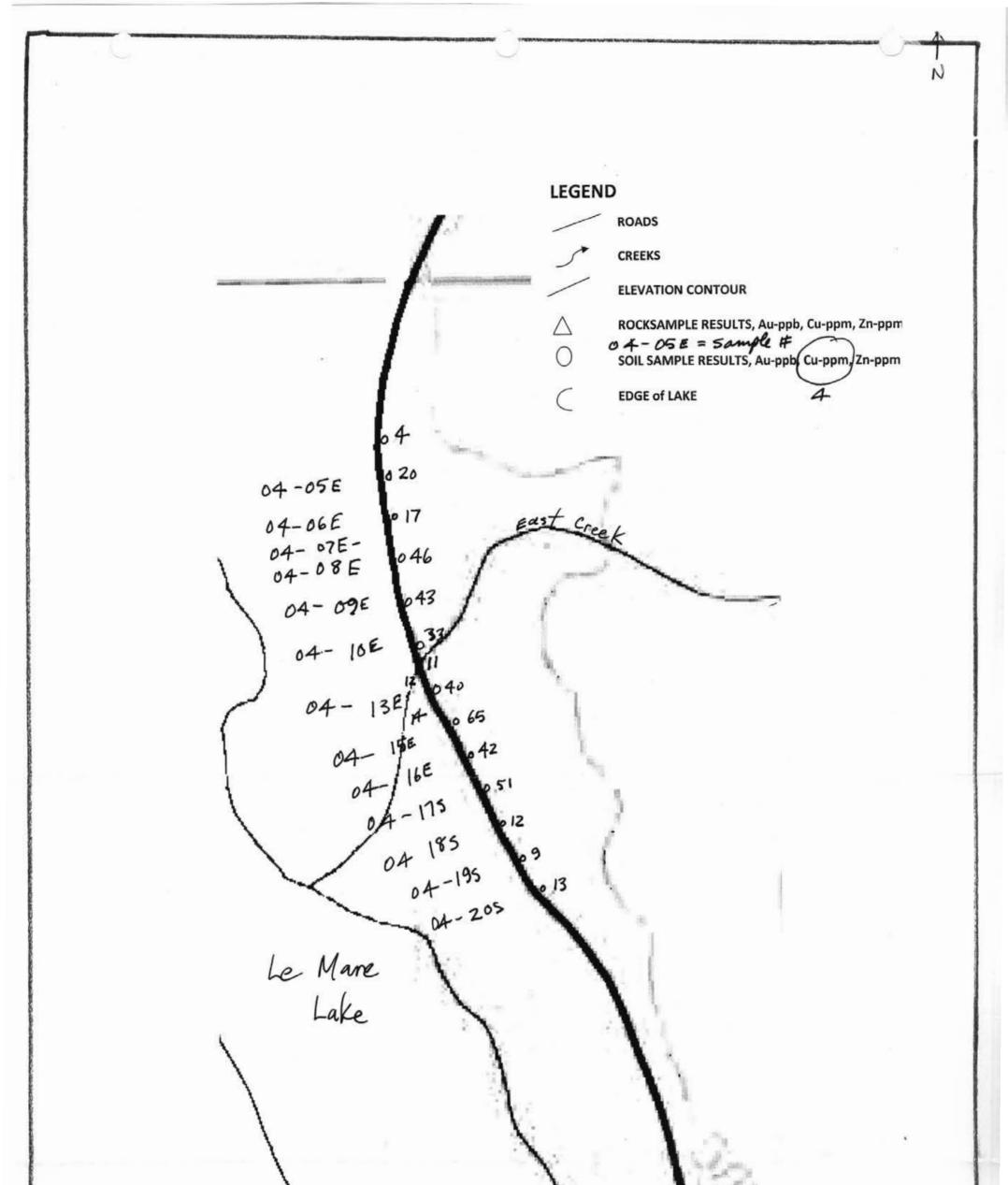
(7) Area 6 East Mahatta Area (see Figure 13)


Silver values in this area are up to 1.5ppm Ag. Other elements are uniformly low.

(8) North Koskimo Creek (see Figure 14)

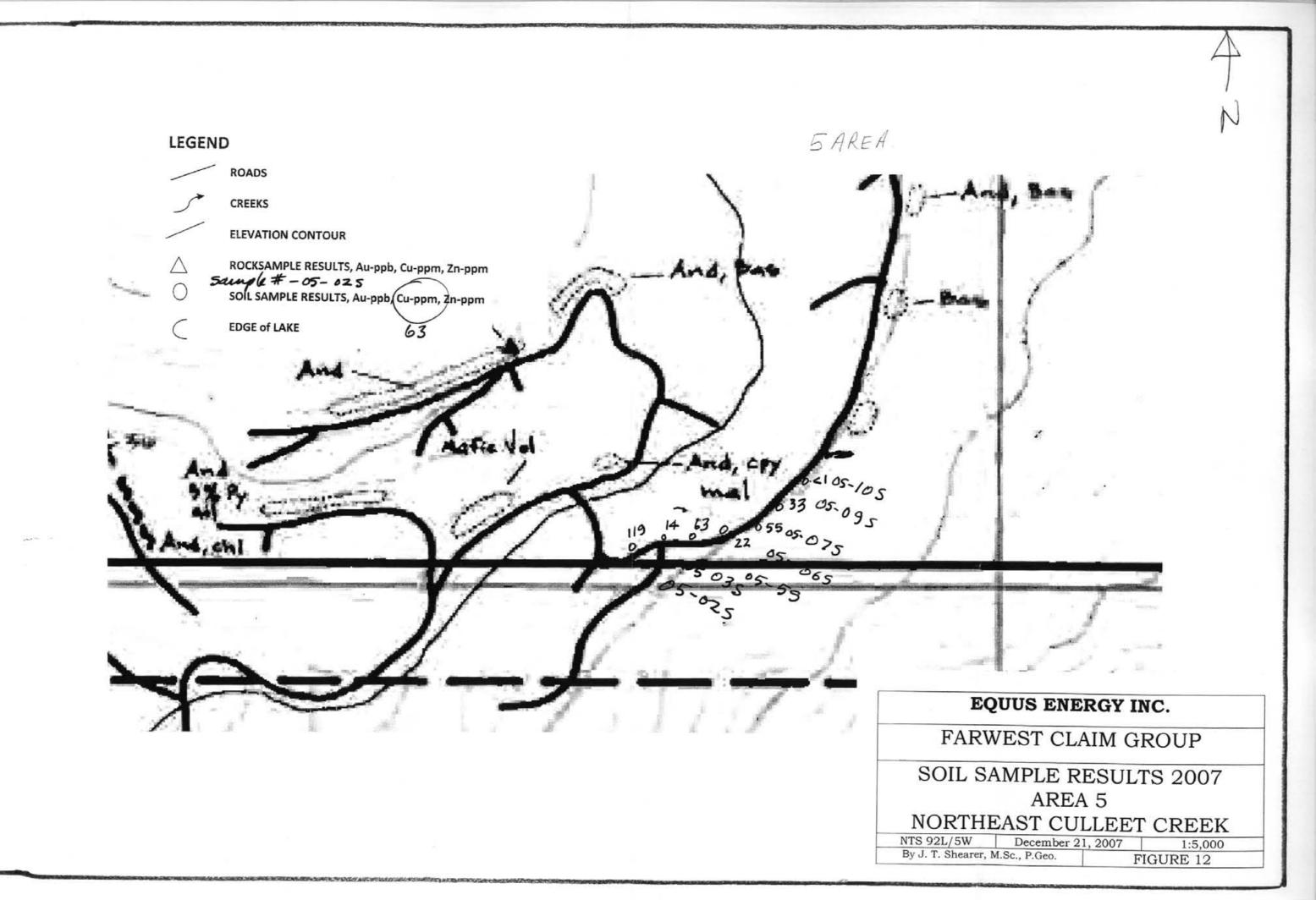
All values are uniformly low in this area. Anomalous samples from the 1991 program were not duplicated.

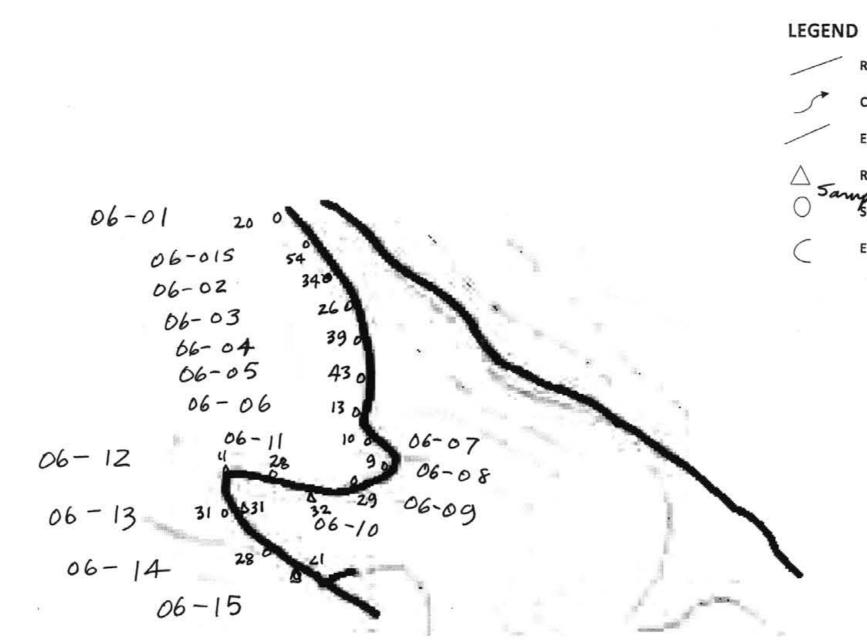

Geochemical interpretation


Interpretation of soil geochemical anomalies and related surface outcrop mineralization indicates that the distribution of metals is pH controlled which is in turn a function of alteration type encountered in bedrock due to hydrothermal alteration related to high level quartz porphyry intrusion. Within the advanced argillic and phyllic alteration zones, very low pH's (less that 3.0) were encountered. Within these zones Mo anomalies remain (as Mo is stable to a pH of 1). All Cu values are leached out of bedrock and soil as Cu becomes mobile at a pH of 4.

dumor lier creek
EQUUS ENERGY INC.
FARWEST CLAIM GROUP
SOIL SAMPLE RESULTS 2007
AREAS 3b + 3c
SOUTHWEST LeMARE
NTS 92L/5W December 21, 2007 1:5,000
By J. T. Shearer, M.Sc., P.Geo. FIGURE 9

Le Mare Lake 3D-015 30-025 30 3D- 035 Sample 30-045 Area 3D- 055 3D-065 075 0930-085 2 H8 3E-035 3e 3=-045 3E-05 Roc 38-065 available 3E-07 5 3E-085 54 3E-09 S v ∥ 3f 3E -105 Sample Area 3F-025 31-035 3F-045 LEGEND 3F-05 s No ROADS Soil 3F-06 5 CREEKS


EQUUS ENERGY INC.


FARWEST CLAIM GROUP

SOIL SAMPLE RESULTS 2007 AREA 4

EAST SIDE LeMARE

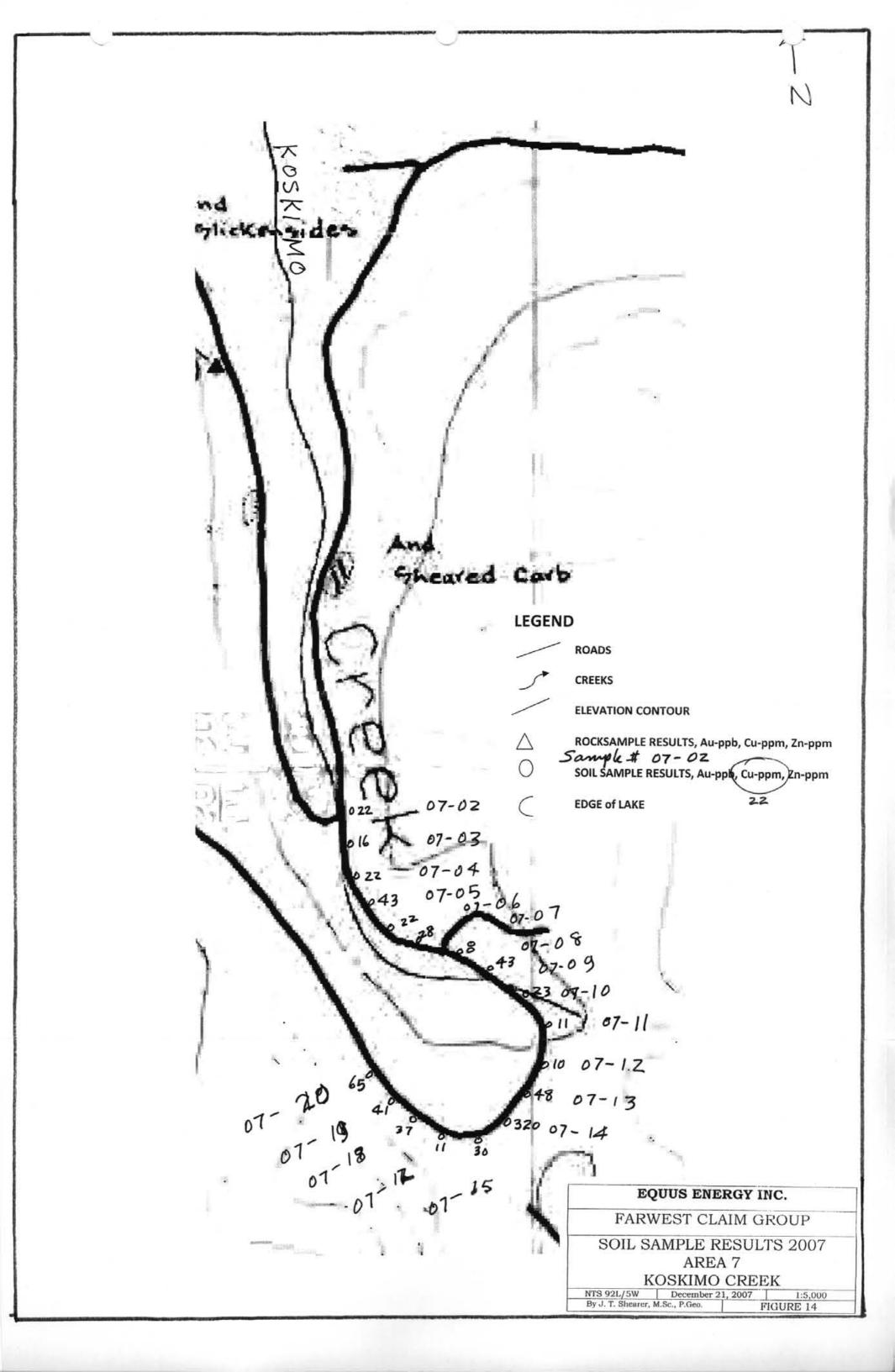
NTS 92L/5W	December 21, 2007	1:5,000
By J. T. Shearer, N	I.Sc., P.Geo.	FIGURE 11

FA SOIL NTS 92L/5 By J. T. She

ROADS

CREEKS

ELEVATION CONTOUR


ROCKSAMPLE RESULTS, Au-ppb, Cu-ppm, Zn-ppm Sample # 06-01 SOIL SAMPLE RESULTS, Au-ppb, Cu-ppm, Zn-ppm

20

EDGE of LAKE

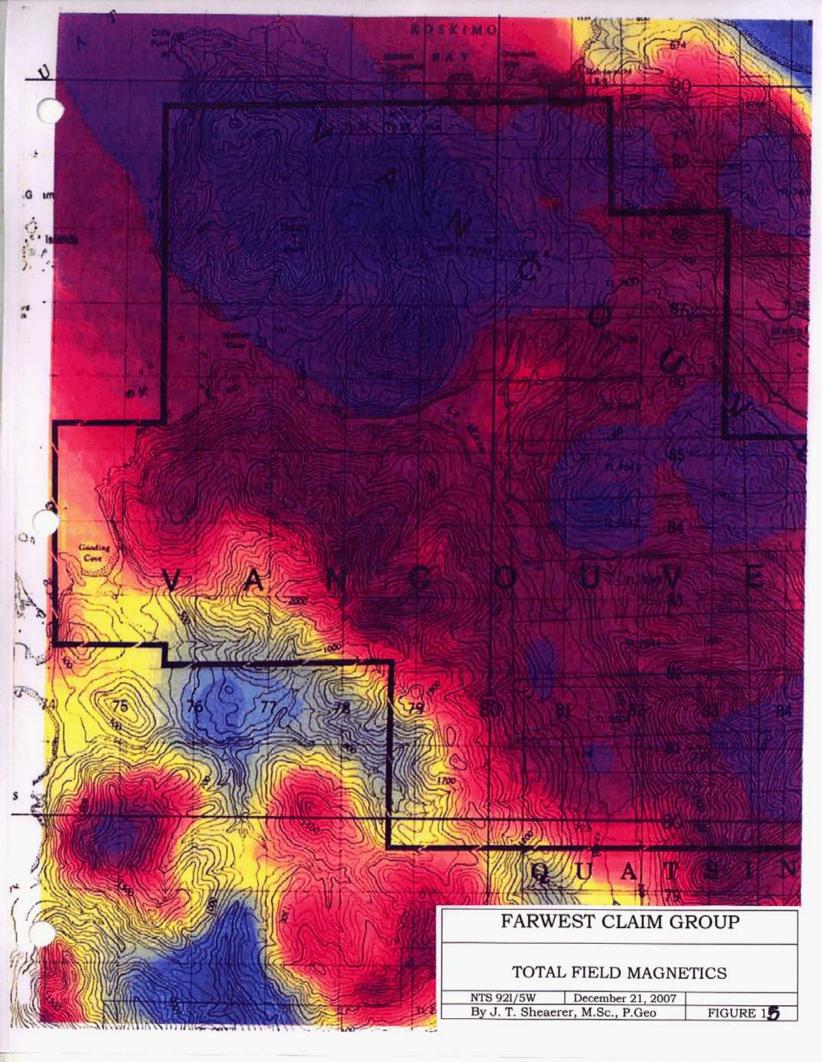

E	QUUS ENERGY	INC.
ARV	VEST CLAIM	GROUP
L S.	AMPLE RESU	LTS 2007
	AREA 6	
EAS	ST MAHATTA	AREA
′5W	December 21, 2007	1:5,000
hearer,	M.Sc., P.Geo.	FIGURE 13

FIGURE 13

Peripheral to the advanced argillic-phyllic alteration zones where the pH of the soils and bedrock is greater than 4, numerous Cu and Au anomalies and outcrop showings occur in the favourable volcanic host associated with transitional phyllic-potassic alteration. The outboard Zn anomalies associated with the prophylitic alteration zones are typical of zoned porphyry systems found elsewhere in British Columbia, Chile, Costa Rica, the Philippines, etc.

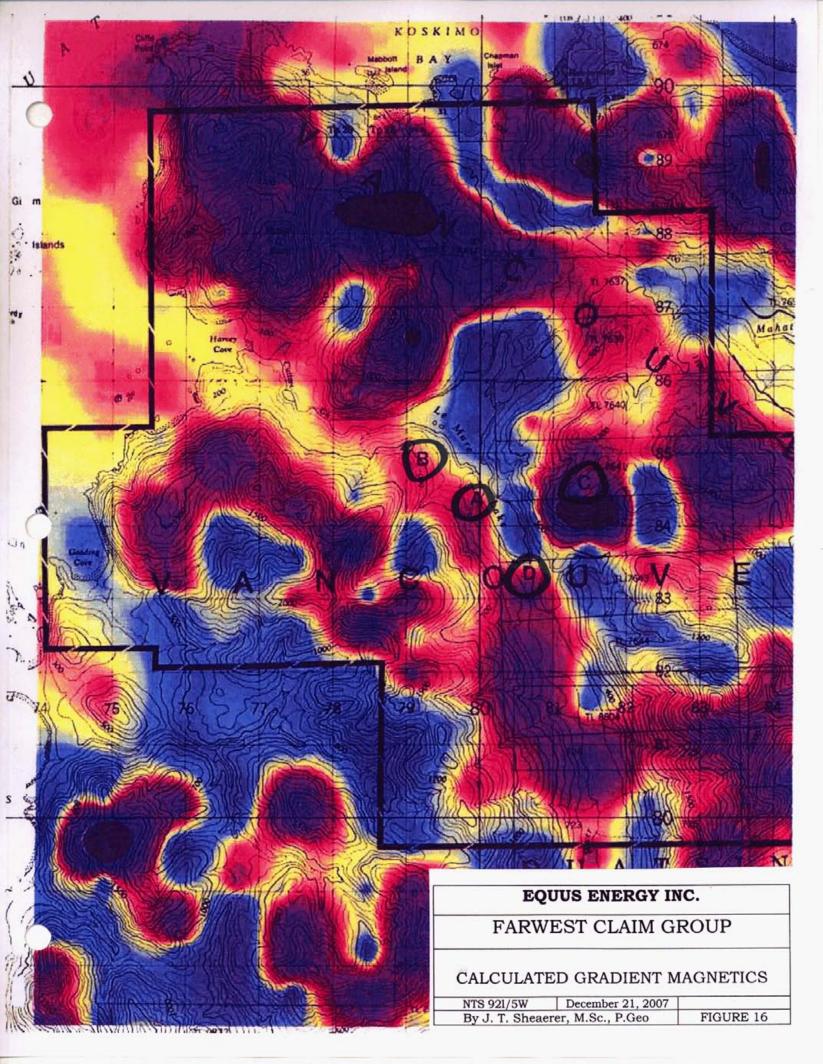
-

GEOPHYSICS

Airborne Magnetics

Total field and calculated gradient maps for digitized Geological Survey of Canada 1962 Airborne Magnetic Data is shown on Figure 15 and Figure 16.

The calculated gradient map (Figure 16) indicated the following:


- A northwest trending low magnetic trough corresponding to the major cross property LeMare alteration trend. This magnetic low is likely caused by the destruction of magnetite within the argillic alteration trend.
- Anomaly A is coincident with the South Gossan Zone and indicates that although magnetite destruction is present at a high level in the advanced argillic and phyllic zones which outcrop on surface, magnetite alteration exists at depth beneath the alteration cap.
- Anomaly B is located on the ridge west of Dumortierite Creek where the best anomalous soil geochemistry on the property occurs. It is interpreted that this area is underlain by a porphyry system with corresponding flanking magnetite alteration and associated Cu-Mo-Au mineralization.
- Anomaly C is the highest magnetic anomaly adjacent to the LeMare-Culleet alteration trend. This anomaly is on strike with east-west faults exposed in the South Gossan Zone and on trend with east-west structures and geochemical anomalies encountered on the east side of LeMare Lake (Trapper cabin area).
- Anomaly D occurs in a covered low-land in the vicinity of gold geochem anomalies "down plunge" of the main South Gossan Zone alteration cap. This large positive anomaly within the northwest trending magnetic low trough indicates that a porphyry and associated magneitite-bearing Cu-Mo-Au system may be at depth beneath the valley till and has not been detected by conventional soil geochemistry completed to date.

Ground Magnetometer Orientation Survey

South Gossan Zone

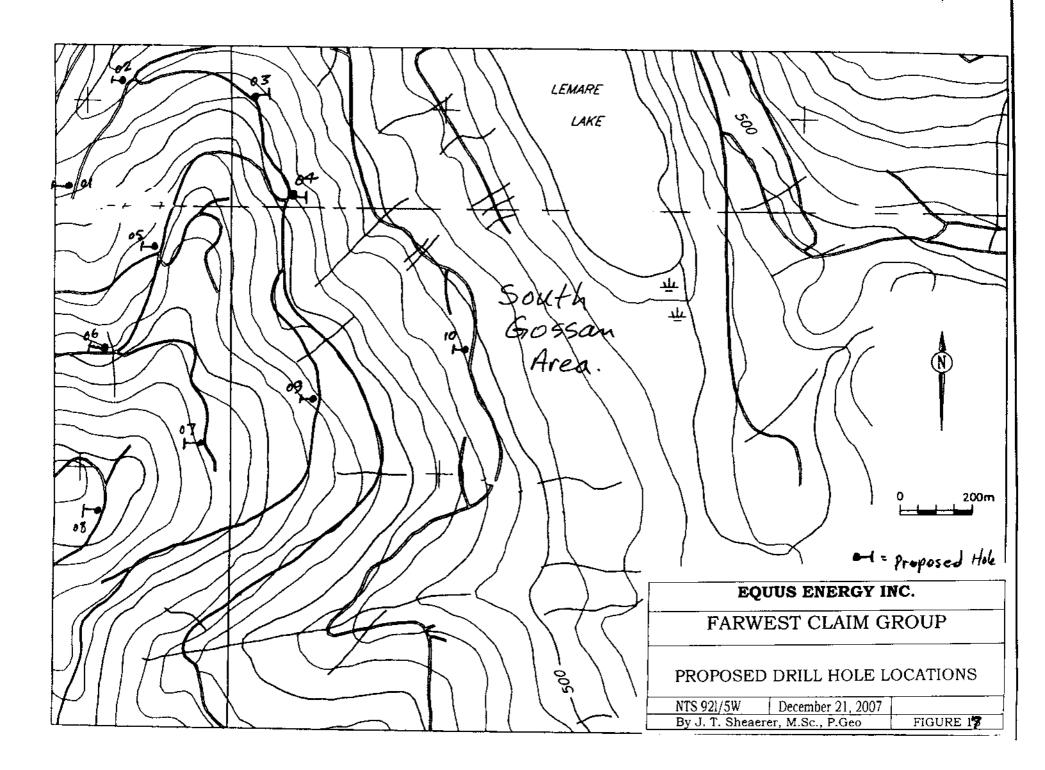
14

One traverse line was run in 1991 on the South Gossan Zone utilizing a GEM GSM-10 Magnetometer. Readings were taken at 25m station intervals. Results indicated that values within the South Gossan alteration zone were relatively constant with values ranging between 56,150 and 56,250 gammas. At the alteration contact, a high to 56,650 followed a low to 55,800 gammas encountered a magnetic cross-over of approximately 850 gammas. Within the wallrock volcanics, spiky readings fluctuating 600 to 700 gammas with means at approximately 56,200 gammas occurred. More orientation work is required to make any definitive conclusion; however, the edge of the South Gossan alteration system appears recognizable by contrasts of up to 1,000 gammas indicated by a high-low dipole magnetic feature.

CONCLUSIONS and RECOMMENDATIONS

- 1. A 6km long northwest trending alteration-mineralization belt occurs on the LeMare property which is coincident with a major airborne magnetic feature.
- 2. Size of the alteration belt and initial geochemical anomalies encountered compares in order of magnitude to the Island Copper deposit.
- The South Gossan Zone alteration cap is similar to porphyry alteration caps in the Island Copper Belt. The presence of copper mineralization in outcrop interpreted as leakage from beneath the alteration cap and the zoned geochemical anomaly indicate that a mineralized porphyry likely lies at depth beneath the South Gossan Zone. Because of a significant change in alteration style from one level of the alteration zone to the next, it is estimated that the vertical gradient of the system is relatively shallow.
- The Culleet Creek zone may be a continuously mineralized zone of a dimension of 750m X 500m characterized by white weathering apple green silicification containing well developed chalcedonic and jasper intergrowths. The copper values are considered to be leached and depleted on surface. All fresh rock of all various rock types that have been encountered in this zone exhibits some degree of silicification and copper mineralization. A major target may be at depth or lateral to this zone.

RECOMMENDATIONS


- Complete prospecting and mapping on the entire six kilometre alteration belt;
- Complete detailed soil geochemistry in areas of sparse road cover and in anomalous areas particularly in the vicinity of the ridge northwest of Dumortierite Creek;
- Initiate first pass prospecting and moss mat geochem sampling of the area east of the Trapper Cabin area in the locality of the high airborne magnetic anomaly. Contingent on moss mat results, consider follow up detailed prospecting, mapping and soil geochemistry;
- Conduct a detailed ground magnetometer survey on all logging road access utilizing fill-in cross lines where applicable;
- Spot diamond drill holes around the north and east flanks beneath the South Gossan Zone alteration cap (refer to Figure 17); layout fences of diamond drill holes on the Culleet Creek Zone; locate contingent drill holes on any additional targets north of the "Dumortierite Creek" or east of the Trapper Cabin area based on detailed field work from Phase I.

submitted

Jø Shearer, M.Sc., P.Geo December 21, 2007

Geological and Geochemical Assessment Report on the Far West Claim Group, LeMare Lake Area December 21, 2007

15

LEMARE LAKE PROJECT

A Phase II exploration program is recommended as follows: Geological compilation, mapping and all previous work to common scales, establish camp facilities, ATV and truck support, re-establish grid, continued environmental baseline studies, additional follow-up geochemical surveys, Induced Polarization in selected areas, and Diamond drilling, Road upgrades will be required for access on the east side.

Budget

Phase II Contingent on favourable results from Phase 1		
Geological mapping	18,000.00	
Grid establishment and reconnaissance sampling	12,000.00	
Geotech Study for Road reactivation permit	5,500.00	
Planning, selection and site confirmation, camp	15,000.00	
Compilation, digitization	6,000.00	
Petrographic Studies	5,000.00	
Consulting, supervision and reports	12,000.00	
	\$73,500.00	\$73,500.00
Diamond Drilling & supervision all in cost,		·
3,000m@\$125/m	375,000.00	
(includes drill moves and consumables)		
Characterization of mineralization and assaying	25,000.00	
Consulting, supervision and reports	12,000.00	
Access Road Opening & Excavator	30,000.00	
	\$442,000.00	\$442,000.00
Phase II		\$ 515,500.00
Contingency		\$40,000.00
Total Phase II		\$556,000.00
PHASE III contingent on favourable results from Phase II		
Follow-up Diamond Drilling, 3,000m @ \$125/m	375,000.00	
Geological Supervision and core splitting	30,000.00	
Camp, Drill crew & geological,	00,000.00	
400 man days @ \$50/day	20,000.00	
400 man days @ 4007 day	\$425,000.00	\$425,000.00
	φ+20,000.00	φτ25,000.00
Drafting, computer work	20,000.00	
Report Preparation & Reproduction	12,000.00	
Assessment Fees	15,000.00	
·	\$47,000.00	\$47,000.00
Phase III		\$472,000.00
Contingency		\$30,000.00
Total Phase III		\$502,000.00
Grand Total Phase II & III		\$1,058,000.00

REFERENCES

Andrew, A., Godwin, C., 1989:

Galena Lead Isotope Model for Vancouver Island MEMPR Paper 1989-1

Bean, R. E., Titley, S. R., 1981:

Porphyry Copper Deposits, Part II. Hydrothermal Alteration and Mineralization; Economic Geology, 75th Anniversary Vol., pp. 235-269.

Birkland, A. O., 1991:

Geological and Geochemical Report on the LeMare Project, Assessment Report 22,162.

Carson, D. J. T., 1969:

Tertiary Mineral Deposits of Vancouver Island, CIM Bulletin (May).

1973:

Plutonic Rocks of Vancouver Island, GSC Paper 72-44.

Gravel, J. L., Matysek, P. F., 1989:

1988 Regional Geochemical Survey, MEMPR Paper 1981-1

Jeletsky, J. A., 1970:

Some Salient Features of Early Mesozoic History of Insuk Tectonic Belt, Western British Columbia, GSC Paper 69-14.

Lamb, J., 1981:

The Island Copper Mine, CIM District 6 Paper.

Leitch, Craig, 1991:

Petrographic Report on 26 Specimens from the LeMare Property on Vancouver Island, British Columbia.

Matysek, P. F., Gravel, J. L., Jackanun, W., 1989a:

NTS 92OL/102I-Alert Bay/Cape Scott, MEMPR BC RGS 23, GSC Open File 2040.

1989b:

NTS 92K - Bute Inlet, MEMPR BC RGS 22, GSC Open File 2039.

MEMPR Minfile 1989: 092E – Nootka Sound

MEMPR Minfile 1989: 092-L/1011 – Alert Bay/Cape Scott

MEMPR Minfile 1989: 092K – Bute Inlet

Muller, J. E., 1977a:

Geology of Vancouver Island, Field Trip 7: Guidebook

17	Geological and Geochemical Assessment Report on the
	Far West Claim Group, LeMare Lake Area
1	December 21, 2007

1977b:

Geology of Vancouver Island, GSC Open File 463

1980:

The Paleozoic Sicker Group of Vancouver Island, GSC Paper 79-30

Muller, J. E., Carson, D. J. T., 1969:

Geology and Mineral Possibilities of Vancouver Island, Canadian Mining Journal (May).

Muller, J. E., Cameron, B. E. B., Northcote, K. E., 1981: Geology and Mineral Deposits of Nootka Sound, GSC Paper 80-16. **APPENDIX I**

_

STATEMENT OF QUALIFICATIONS

DECEMBER 2007

STATEMENT of QUALIFICATIONS

I, JOHAN T. SHEARER, of 3572 Hamilton Street, in the City of Port Coquitlam, in the Province of British Columbia, do hereby certify:

- 1. I am a graduate of the University of British Columbia (B.Sc., 1973) in Honours Geology, and the University of London, Imperial College (M.Sc., 1977).
- 2. I have over 35 years experience in exploration for base and precious metals and industrial mineral commodities in the Cordillera of Western North America and Superior Province in Manitoba and Northern Ontario with such companies as McIntyre Mines Ltd., J. C. Stephen Explorations Ltd., Carolin Mines Ltd. and TRM Engineering Ltd.
- 3. I am a fellow in good standing of the Geological Association of Canada (Fellow No. F439) and I am a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia (Member No. 19,279) and a member of the CIMM and a fellow of the Society of Economic Geologists (SEG Fellow #723766).
- 4. I am an independent consulting geologist employed since December 1986 by Homegold Resources Ltd. at #5-2330 Tyner St., Port Coquitlam, B.C.
- 5. I am the author of the present report entitled "Geological and Geochemical Assessment Report on the Far West Claim Group for Equus Energy." dated December 21, 2007.
- 6. I have visited the property on Nov. 11-23 and 23-26, 2007. I have carried out mapping and sample collection and am familiar with the regional geology and geology of nearby properties. I have become familiar with the previous work conducted on the LeMare Lake Project by examining in detail the available reports and maps and have discussed previous work with persons knowledgeable of the area.

Dated at Port Coquitlam, British Columbia, this 21st day of December, 2007.

J. T. Shearer, M.Sc., F.G.A.C., P.Geo. Quarry Supervisor #98-3550 December 21, 2007

APPENDIX II

STATEMENT OF EXPENDITURES

DECEMBER 2007

STATEMENT of EXPENDITURES

Wages and Benefits J. T. Shearer, M.Sc., P.Geo., 5 days @ \$600/day, November 11: J. Stewart, 3 days @ \$400/day, November 11-13, 2007 W. Stewart, 3 days @ \$225/day, November 11-13, 2007 M. Augustine, 3 days @ \$225/day, November 11-13, 2007 Jeff Bullock, 4 days @ \$200/day, November 23-26, 2007 Daren Howich, 7 days @ \$200/day, November 24-30, 2007 T. M ^c Donald, 7 days @ \$200/day, November 24-30, 2007 Kevin Nooski, 7 days @ 200/day, November 24-30, 2007 Kevin Benton, 7 days @ 200/day, November 24-30, 2007	-13, 23-27, 2007	\$ 3,000.00 1,200.00 675.00 675.00 800.00 1,750.00 1,400.00 1,400.00 \$11,700.00
	GST	732.00
	Wages Sub-Total	\$13,032.00
Expenses	-	
Boat, Radar/depth sounder, 2 days @ \$400.00 (Radar for Fog)		800.00
Boat, 7 days @ \$200.00		1,400.00
Gas for Boat		850.00
Gas for Truck		400.00
Truck Rental, 2 Trucks for 10 days @ \$75/day		1,500.00
Hotel & Meals		500.00
Ferries		400.00
Analytical, IPL Assay Labs, 135 samples @ \$27/each + 7.75		3645.00
Au, Cu/Mo, Zn, Ag, ICP		
4 rock samples @ \$32/each		128.00
Report Preparation		1,800.00
Word Processing and Reproduction		350.00
Drafting and Freight of Samples to Vancouver		1,500.00
E)	xpenses Sub-Total	\$13,273.00
	Grand Total	\$26,305.00

Filed	5,500 <u>15,000</u> 20,500
Plus PAC debited	2,314.96 <u>5,096.69</u> 8,401.65

APPENDIX III

.*

SAMPLE DESCRIPTIONS

DECEMBER 2007

LeMARE LIST OF SAMPLES

Sample Number	Description	Γ
01-01	Large rock outcrop	
01-02	Rock sample, blocky dark green , fresh basalt	
01-03	Red/brown soil 1m	
01-04	Red/brown 2m	
01-05	No soil small rock outcrop – chloritic dense basalt-andesite	
01-06	Rock outcrop 2m high, laminated rhyo-dacite, rusty, siliceous	
01-07	Rock sample 3m, dark grey dacite	
01-08	Rock sample 20m, highly sheared chloritic basalt, rusty	
01-09	Rock sample 8m, white weathering siliceous light bluish grey	· / · ····
~~~	rhyolite	
01-10	Rock 5m, epidotized laminated rhyo-dacite, kaolinized	
01A-01	01A-10 rock samples	
01B-01	Rock, very chloritic, slickensided basalt	
01B-02	Rock, rusty, highly chloritic basalt, fractured	······
01B-03 ,	Red/brown soil 2m,	
01B-04	Rock, very chloritic, massive basalt	
01B-05	Rock, dark brown-black basalt, chloritic	
01B-06	Rock, friable, pyritic andesite	
01B-07	Rock, slickensided, highly chloritic basalt, very magnetic	
01B-08	Rock	
01B-09	Rock	
01B-10	Rock, chloritized basalt	
2-015	Red/brown 2ft	
2-025	Red/brown 3ft	
2-035	Light brown 3ft	
2-045	Rock	
2-055	No dirt, rock	
2-065	Red brown 2ft	
2-075	Rock, dark green, highly chloritic basalt	
2-085	Dark brown 1ft	
2-095	Rock	
2-105	Rock, GPS 0900576208, UTM 5585845 (2)	
2-01N	Red brown 5ft	
2-02N	Red brown 5ft	
2-03N	Rock, dark fine grained andesite	
2-04N	Rock, chloritic, fine grained basaltic andesite	
2-05N	Red brown 2ft	
2-06N	Red brown 1ft	
2-07N	Rock	
2-08N	Red brown 4ft	
2-09N	Red brown 1ft	
2-10N	Red brown 2m	

21 Geological and Geochemical Assessment Report on the Far West Claim Group, LeMare Lake Area December 21, 2007

2-11N	Red brown 3ft
2-11N 2-12N	Red brown 1m
2-12N	Red brown 1 ft
2-13N 2-14N	Red brown 3ft
2b-01S	Red brown 1m down
2b-025	Orange/brown, small outcrop 1m, rock sample
2b-03S	Light brown 2m down
2b-04S	Large rock, pit 40ft high
2b-055	Same rock knob
2b-06S	40ft Cut same rock knob
2b-07S	Same
2b-085	2.5ft wt through same rock
2b-09S	10 ft cut
2b-105	Same
	Road very deactivates
2b-01N	2ft orange brown below
2b-02N	1m red brown, andesitic crystal tuff
2b-03N	Red brown 2ft below
2b-04N	10ft high outcrop
2b-05N	Small outcrop near ocean
2b-06N	Red brown dirt end of road, ditched high side and piled in
	middle of road the whole way
2c-01N	40ft high rock outcrop, no soil, chloritic, sheared andesite
2c-02N	Small outcrop, dirt had fallen, buff weatered, med. green
	dacite
2c-03	Red brown dirt 2ft
2c-04	Red brown 1m down
2c-05	Small outcrop, very chloritic, black, sheared andesite
2c-06	Large rock hill, dense, chloritic, very magnetic andesite
2c-07	20ft cut through dirt, red brown
2c-08	Red brown 1m down
2c-09	Same as 08
2c-10	2m down brown
3A-015 /	Light brown 2ft
3A-025 V	Dark brown 1ft
3A-035 V	Light brown 3m
3A-045	Medium brown 3ft
3A-05S	Light brown 2ft
3A-065	Rock Sm
3A-005 3A-07S	Rock
3A-073 3A-085	Rock
	Dark brown 2ft
3A-09S	
3A-105	Rock, laminated, relatively fresh dacite
3B-01S	Deale dealte
3B-02S	Rock, dacite Rock, pyritic dacite

22 Geological and Geochemical Assessment Report on the Far West Claim Group, LeMare Lake Area December 21, 2007

3B-035	Dark red brown 4.5ft	
3B-04S	Rock, rhyo-dacitic tuff, crystal	
3B-05S	Medium brown 4ft	
3B-06S	Brown gray	
38-075	Rock, siliceous andesite, slightly pyritic	
3B-08S	Rock	
3B-095	Rock	
3B-10S	Rock, siliceous basaltic andesite, rusty weathering	
3C-01N	Dark brown/rock 3ft	
3C-02N	Dark red brown 2ft	
3C-03N	Brown 3ft	
3C-04N	Dark red brown 2 ft	
3C-05N	Yellow/brown 3ft	
3C-06N	Red brown/rock 5 ft	
3C-07N	Red brown/rock 5ft	
3C-08N	Rock	
3C-09N	Red brown 4ft	
3C-10N	Rock	
3D-01S	Light brown 1ft	· ·
3D-02S	Light grown 2ft	
3D-03S	Brown 2ft	
3D-04S	Light brown 1ft	
3D-055	Light brown 1ft	
3D-065	Brown 2ft	
3D-07S	Very light brown/rock 3ft, talcose, highly sheared rhyolite	
3D-08S	Medium brown 2ft	
3D-095	Rock	
3D-105	Rock	
3E-01S	Rock	
3E-02S	Rock, fresh dacite	
3E-03S	Light brown 1.5ft	
3E-04S	Red brown/rock 30ft	
3E-05S	Rock, very rusty, pyritic kaolinized rhyolite	
3E-06S	Rock, rusty, pyritic, highly altered-kaolinized rhyolite	
3E-07S	Rock, very rusty, siliceous andesite, trace malachite & gypsum	
3E-08S	Rock, highly kaolinized rhyolite, very friable, faulted	
3E-09S	Red brown 2ft	
3E-10S	Grey with brown 50ft	
3F-01S	Rock, very rusty laminated dacite	
3F-02S	Orange brown 2ft	
3F-03S	Orange red brown 2 ft	
3F-04S	Rock, light green dacite-andesite, brown weathering	
3F-05S	Rock, pervasive brown sandy, very altered "volcanic"	
3F-06S	Rock	
3F-07S	Yellow/brown 2ft	

23 Geological and Geochemical Assessment Report on the Far West Claim Group, LeMare Lake Area December 21, 2007

3F-08S	Red light brown clay 2ft	
3F-09S	Rock, whitish to buff weathering, white kaolinitic rhyolite	
3F-10S	Rock, greenish pyritic altered rhyolite, siliceous	
3G-01S	Rock , rusty weathering, pyritic, siliceous andesite	
3G-025	Orange brown 20ft	
3G-025 3G-03S	Orange brown 25ft	
3G-033 3G-045	Orange brown 5ft	
3G-043 3G-05S	1 -	
	Rock, siliceous, pyritic andesite	
3G-06S	Rock, laminated dacite, kaolinized	
3G-07S	Rock	
3G-08S	Rock	
3G-09S	Rock, rhyo-dacite, pyritic, highly altered	
3G-10S	Rock	
	Area 4 roads have alders but drivable	
04-01E	12m cut through rock no soil, dark green siliceous andesite	
04-02E	10m cut through rock and hardpan	
04-03E	10m cut through rock, dark grey basalt, strongly magnetic	
04-04E	6m cut through rock	
04-05E	Dark brown dirt 2ft down	
04-06E	Red/brown dirt 1m down small rock out crop	
04-07E	1m high rock outcrop no soil	
04-08E	4m dirt bank	
04-09E	3m rock cut, soil on top, 1m down, dark grey basalt, non mag.	
04-10E		
04-115	Rock 2ft down	
04-125	2m high rock crop no dirt	
04-135	Red brown dirt, 1m down, small rock outcrop	
04-145	2m cut through rock, no soil	
04-15S	1ft down, red/brown soil	
04-165	2m down, red/brown soil	
04-175	1.5m down, red/brown soil	
04-185	1m down, light red/brown soil	
04-195	2m down, light red/brown soil	
04-205	1m down, red/brown soil	+
	Area 5 road clear	
05-015	Red/brown soil & rock sample 1m down, reddish brown,	
	Zeolitic andesite	
05-025	Brown soil 1m	•
05-035	Red/brown soil and rock 3m cut through rock	
05-045	Red/brown soil 1m down, 4m cut through hardpan	+
05-055	Brown hardpan 1m down	+
05-065	Rock from rock pit, 15m high pit	1
05-075	Red/brown soil from edge of small rock pit 2ft, slickensided	
	chloritic black basalt]
05-085	Small rock outcrop	
	- Silen rock duterop	1

24 Geological and Geochemical Assessment Report on the Far West Claim Group, LeMare Lake Area December 21, 2007

. ..

05-095	Small rock outcrop, red/brown soil 1m down	
05-105	Small rock pit 5m high, red brown soil from edge 2ft	
	09U 0577751, UTM 5588057	
06-05	Red brown 3ft	
06-06	Red brown 3 ft	
06-07	Red brown 3 ft	
06-08	Red brown 5 ft	
06-09	Dark red brown 2 ft	
06-10	Rock	
06-11	Dark red brown 2 ft	
06-12	Red brown 3 ft	
06-13	Dark red brown 2 ft/rock	
06-14	Red brown 0.5ft	
06-15	rock	
07-12	Kaolinized and siliceous andesitic tuff	

APPENDIX IV

ASSAY RESULTS

DECEMBER 2007

-

.

CERTIFICATE OF ANALYSIS iP. J7L5946

150 9001-2000 RATING A THE Intertek

200 - 11620 Horseshoe Way Richmond, B Canada V7A 4v.5 Phone (604) 879-7878 Fax (604) 272-0851

INTERNATIONAL PLASMA LABS LTD.			~ ·		Inter	tek Fax (604) Website www	272-0851 w.ipl.ca	
Homegatbillesourcesowpany Project : Le Mare		135	Sample	es Print: Jan 18, 2008 In: Dec 10	, 2007	Website www [594612:0	9:37:80011	808:001]
Shipper : Johan T. Shearer Shipment: PO#: Comment:	B11100 B21100 B84100 B82101	AHOUNT 131 4 7 1	TYPE Soil Rock Repeat Blk iPL	PREPARATION DESCRIPTION Dry & sift to -80 mesh, discard reject. crush, split & pulverize to -150 mesh. Repeat sample - no Charge Blank iPL - no charge.			12M/Dis 12M/Dis	REJECT 00M/Dis 03M/Dis 00M/Dis 00M/Dis
	B90022	1	STD iPL	Std iPL(Au Certified) - no charge	NC-No Samolo	Rep=Replicate M=	Month Die	Dianad
	Ana	lytical	Summa	ry			month UIS=	=viscard
	Anal	yšis: ICl	P(AqR)30	/ Au(FA/AAS 30g)				
Document Distribution	EN RT CC IN FX # Code	Mathad	Units	Description	[] amout	1 2-24	1.1.14	
Unit 5, 2330 Tyner Street		nethou	UTIELS	beschiputon	Element	Limit Low	Limit High	
Port Coguitlam	DL 3D EM BT BL 01 0368	FA/AAS	g/mt	Au (FA/AAS 30g) g/mt	Gold	0.01	5000.00	
B.C. V3C 2Z1	0 0 1 0 0 02 0721	ICP	ppm	Ag ICP	Silver	0.1	100.0	
Canada	03 0711	ICP	ppm	Cu ICP	Copper	1	10000	
Att: Johan T. Shearer	04 0714	ICP	ppm	Pb ICP	Lead	2	10000	
	Ph: (604)970-6402 05 0730	ICP	ppm	Zn ICP	Zinc	1	10000	
	06 0703	ICP	ррт	As ICP	Arsenic	5	10000	
	07 0702	ICP	ррп	Sb ICP	Antimony	5 5	2000	
	08/0732	ICP	ppm	Hg ICP	Mencury	3	10000	
	09 0717	ICP	ppm	No ICP	Molydenum	1	1000	
	10 0747	ICP	ррл	T1 ICP (Incomplete Digestion)	Thallium	10	1000	
	11 0705	ICP	ppm	Bi ICP	Bismuth	2	2000	
	12 0707	ICP	ррп	Cd ICP	Cadmium	0.2	2000.0	
	13 0710	ICP	ppm	Co ICP	Cobalt	1	10000	
	14 0718	ICP	ppm	Ni ICP	Nickel	1	10000	
	15 0704	ICP	ppm	Ba ICP (Incomplete Digestion)	Barium	2	10000	
	16 0727	ICP	ррл	W ICP (Incomplete Digestion)	Tungsten	5	1000	
	17 0709	ICP	рол	Cr ICP (Incomplete Digestion)	Chromium	1	10000	
	18 0729	ICP	ррп	V ICP (Incomplete Digestion)	Vanadium	1	10000	
	19 0716	ICP	ppm	Mn ICP	Manganese	1	10000	
	20 0713	ICP	ppm	La ICP (Incomplete Digestion)	Lanthanum	2	10000	
	21 0723	ICP	ррл	Sr ICP (Incomplete Digestion)	Strontium	1	10000	
	22 0731	ICP	ppm	Zr ICP (Incomplete Digestion)	Zirconium	1	10000	
	23 0736	ICP	ррл	Sc ICP	Scandium	1	10000	
	24 0726	ICP	X	Ti ICP (Incomplete Digestion)	Titanium	0.01	10.00	
	25 0701	ICP	*	Al ICP (Incomplete Digestion)	Aluminum	0.01	10.00	
	26 0708	ICP	x	Ca ICP (Incomplete Digestion)	Calcium	0.01	10.00	
	27 0712	ICP	X	Fe ICP (Incomplete Digestion)	Iron	0.01	10.00	
	28 0715	ICP	X	Mg ICP (Incomplete Digestion)	Magnesium	0.01	10.00	
	29 0720	ICP	X	K ICP (Incomplete Digestion)	Potassium	0.01	10.00	
	30 0722	ICP	x	Na ICP (Incomplete Digestion)	Sodium	0.01	10.00	
	31 0719	ICP	ž	P ICP	Phosphorus	0.01	5.00	
1					_	1		
l				· · · ·				
EN=Envelope # RT=Report Style CC=Copi	es IN=Invoices Fx=Fax(1=Yes 0=No C=DDS Targe BI = DBS(1=Yes 0=No) Totals:	1=Copy	1=Invoice 0=3½ Disk BC Certified	Assayers: David	Chiff, Ron W illi:	ams ,	

EN=Envelope # RT=Report Style CC=Copies IN=Invoices Fx=Fax(1=Yes 0=No) Totals: 1=Copy 1=Invoice 0=3½ Disk DL=Download 3D=3½ Disk EM=E-Mail BT=BBS Type BL=BBS(1=Yes 0=No) ID=C058401 * Our liability is limited solely to the analytical cost of these analyses.

Signature:

1C

1

-

CERTIFICATE OF ANALYSIS il. 07L5946

200 - 11620 Horseshoe Way Richmond, E Canada V7A 4V5 Phone (604) 879-7878 Fax (604) 272-0851

ient : Nonego oject: Le Mare				5 Sam	ples 131=Soil	4-6	lock	7=Repea	t 1=	81k iP	_ 1	[594612	:09:37:	80011808	Print: J	an 18. Jan 18. Jec 10.	Fax Websi 2008 2007	(604) 23 ite www. Paj Sec	ipl.ca ge	1 of 4 1 of 2
ample Name		Туре	Au g/mt	Ag ppn	Cu ppm	Pb ppm	Zn ppn	As ppm	Sb ppm	Hg ppm	Мо ррт	וז ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ва ррт	W ppm	Cr ppn	۷ ppm
1-03 2 1-04 F 1B-03 F 1B-08 -015	igure b	Soil Soil Soil Soil Soil	<0.01 <0.01 <0.01 <0.01 <0.01	0.4 <0.1 <0.1 <0.1 <0.1	68 154 72 46 26	39 8 <2 <2 <2	437 617 69 67 47	71 67 52 54 34	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	00000	이 이 이 이 이 이	<10 <10 <10 <10 <10	<2 <2 7 5 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	49 42 25 9 16	13 25 5 4 13	104 66 69 26 21	\$\$\$\$	82 64 16 26 88	313 173 91 44 199
-01N -02S -02N -03S -05N SU	V	Soil Soil Soil Soil Soil	<0.01 <0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1	37 94 44 31 78	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	37 60 57 62 71	33 42 47 42 50	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	5000	식 식 식 식	<10 <10 <10 <10 <10	<2 <2 3 10 8	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	9 12 9 6 14	4 10 6 3 6	16 22 19 41 20	হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ	37 52 48 33 27	168 96 95 100 23
- 06S - 06N - 08S - 08N - 09N	quire 8	Soil Soil Soil Soil Soil	<0.01 <0.01 <0.01 0.01 <0.01	<0.1 <0.1 <0.1 0.5 <0.1	59 65 38 160 223	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44 58 125 89 86	37 38 39 47 51	৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩	2222 2	<1 <1 <1 1 3	<10 <10 <10 <10 <10	10 3 <2 4 9	<0.2 <0.2 <0.2 <0.2 <0.2	4 10 28 15 18	3 9 10 20 5	26 19 37 46 57	からかか	33 35 57 55 25	100 73 126 75 54
- 10N - 11N - 12N - 13N - 14N		Soil Soil Soil Soil Soil	0.04 <0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1 0.1	167 66 22 13 24	~~~~~	81 90 52 39 62	45 43 35 28 25	৩ ৩ ৩ ৩ ৩ ৩ ৩	~~~~	1 <1 <1 <1 <1	<10 <10 <10 <10 <10	7 <2 6 9	<0.2 <0.2 <0.2 <0.2 <0.2	9 14 7 5 9	7 11 5 2 10	47 31 24 22 61	হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ	37 59 39 29 43	93 183 108 90 96
-15N B-01S B-01N Gol B-02S B-02N G	, quite	Soil Soil Soil Soil Soil	<0.01 <0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1 0.1	40 160 13 54 48	~~~~~	51 69 30 82 63	40 41 25 39 38		2222	2 <1 <1 <1 <1	<10 <10 <10 <10 <10	√2 10 11 √2 5	<0.2 <0.2 <0.2 <0.2 <0.2	5 6 4 11 11	4 3 <1 8 5	31 30 18 27 28	\$ \$ \$ \$ \$ \$ \$ \$ \$	38 17 22 41 37	79 20 64 78 89
3-03S 3-03N 3-06N C-02N C-03N	•	Soil Soil Soil Soil Soil	<0.01 <0.01 <0.01 <0.01 <0.01	<0.1 0.2 <0.1 <0.1 <0.1	176 18 64 12 52	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	186 41 43 55 68	43 33 32 31 76	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<1 <1 <1 <1 <1	<10 <10 <10 <10 <10	5 14 4 5 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	25 3 4 8 15	9 <1 1 5 14	46 30 20 65 27	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	52 3 16 29 60	49 14 48 111 142
C-03N C-04N C-07N C-08N C-09N C-10N	aune 1	Soil Soil Soil Soil Soil	<0.01 <0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 0.1 <0.1	72 121 201 120 111	~~~~~ ~~~~~	140 85 246 119 174	48 45 44 74 37	\$ \$ \$ \$ \$ \$ \$ \$	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		<10 <10 <10 <10 <10	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.2 <0.2 <0.2 <0.2 <0.2	20 14 51 27 34	24 14 33 15 21	26 30 47 21 55	かかかか	80 63 130 92 115	141 119 156 137 177
4-015 4-025 4-035 4-045	igure 1946	Soil Soil Soil Soil	<0.01 <0.01 <0.01 <0.01	<0.1 0.1 <0.1 <0.1	18 84 44 84	<2 <2 <2 <2	58 91 85 135	40 30 28 33	\$ \$ \$ \$ \$	3 3 3 3 3 3	시 시 시 시	<10 <10 <10 <10	4 2 5	<0.2 <0.2 <0.2 <0.2	12 15 9 20	4 14 7 17	25 31 54 56	<5 <5 <5 <5	47 58 36 42	108 101 74 63
nimum Detection kimum Detection thod =No Test Ins=In	n	e Del=Delay	FA/AAS	ICP	ICP	ICP	ICP	ICP	ICP	ICP	1 1000 ICP uple	10 1000 ICP	2 2000 ICP	0.2 2000.0 ICP	1 10000 1 ICP	1 10000 1 ICP	2 10000 ICP	5 1000 1 ICP	1 0000 ICP	1 10000 ICP

0		
4	An enter	56

INTERNATIONAL PLASMA LABS LTD.

CERTIFICATE OF ANALYSIS iPl 7L5946

150 9091:2000

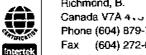
Intertek

200 - 11620 Horseshoe Way Richmond, B.C

Canada V7A 4.

Phone (604) 879-7878

Fax (604) 272-0851


	NTERNATIONAL PLASMA LABS LTI Homogolici Resuurceripan Le Mare		ip#	135	Sampi 13	les 1=Soil	4=Roc	k 7=	Repeat	1=B1k	iPL :	1 [594612	2:09:37:8	Print: 0011808:00h	Jan 18. Dec 10.	2008	www.ipl.ca Page Section	1 of 2 of	
Sample N	ame	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti X	AT X	Ca X	Fe X	Mg X	K X	Na X	P X		-			
01-03 01.04 01B-03 01B-08 2-015	See Figle	4641 3298 1189 491 591	9 12 23 7 4	9 28 6 5 16	125 106 100 76 97	39 52 14 13 12	0.47 0.32 0.15 0.12 0.29	5.38 8.77 5.55 6.70 4.39	0.17 0.62 0.08 0.12 0.16	5.67 4.87 5.91 4.81 5.11	0.36 0.47 0.27 0.22 0.24	<0.01 0.03 0.03 0.02 0.01	0.03 0.04 0.02 0.02 0.03	0.08 0.11 0.12 0.08 0.04					
2-01N 2-02S 2-02N 2-03S 2-05N	Fig 8	200 447 283 274 1187	7 6 3 7 10	4 6 4 3 4	103 79 101 102 89	9 14 11 8 10	0.32 0.26 0.18 0.07 0.11	4.65 5.97 6.13 5.93 7.05	0.07 0.12 0.07 0.04 0.07	5.07 4.60 5.37 6.01 5.12	0.13 0.28 0.21 0.12 0.29	0.01 0.01 0.02 0.02 0.01	0.03 0.03 0.03 0.02 0.02	0.04 0.04 0.06 0.04 0.09					
2-06S 2-06N 2-08S 2-08N 2-09N	v	245 352 1914 535 840	4 7 10 14 15	3 4 7 5 6	86 68 77 68 87	9 10 15 16 9	0.03 0.16 0.17 0.09 0.06	5.14 5.43 5.21 6.22 6.11	0.04 0.09 0.11 0.09 0.11	5.39 4.42 4.63 4.19 5.60	0.12 0.28 0.23 0.33 0.19	0.01 0.01 0.02 0.03 0.02	0.03 0.02 0.03 0.03 0.02	0.05 0.04 0.07 0.06 0.08					
2-10N 2-11N 2-12N 2-13N 2-13N 2-14N		308 370 263 265 564	9 <2 6 7	5 5 4 8	86 123 89 77 86	7 23 9 4 5	0.10 0.31 0.12 0.09 0.06	5.07 5.33 4.50 3.37 19%	0.09 0.10 0.07 0.07 6 0.16	5.24 5.63 5.57 5.36 5.47	0.26 0.26 0.20 0.14 0.21	0.03 0.01 0.02 0.02 0.04	0.02 0.03 0.02 0.03 0.02	0.06 0.04 0.04 0.04 0.04 0.04					
2-15N 28-01S 28-01N 28-02S 28-02N 28-02N	FigT	250 444 146 548 361	5 8 2 2 2 2	4 2 3 5	69 88 105 96 114	8 7 4 10 16	0.04 0.02 0.06 0.13 0.20	4.92 6.29 3.30 5.16 4.68	0.05 0.04 0.03 0.07 0.07	4.75 5.48 5.94 5.65 5.84	0.13 0.22 0.12 0.31 0.27	0.02 0.02 0.01 0.02 0.02	0.03 0.02 0.02 0.02 0.02	0.04 0.05 0.03 0.04 0.03					
2B-03S 2B-03N 2B-06N 2C-02N 2C-03N	1.7	2316 176 357 475 407	13 4 4 10 <2	3 2 4 7 5	87 108 88 80 93	13 3 6 21	0.03 0.01 0.01 0.15 0.32	6.44 3.99 3.68 3.63 6.09	0.04 0.03 0.06 0.12 0.11	5.14 6.44 5.67 4.73 4.55	0.18 0.07 0.13 0.19 0.26	0.04 0.02 0.04 0.03 0.01	0.02 0.02 0.02 0.02 0.02	0.09 0.05 0.05 0.05 0.03					
2C-04N 2C-07N 2C-08N 2C-09N 2C-10N	Fig7	591 408 3510 932 2164	<2 5 12 4 10	11 6 9 8 10	109 106 116 112 112	25 21 44 19 28	0.36 0.28 0.31 0.26 0.27	7.21 6.23 6.34 5.72 5.57	0.12 0.10 0.13 0.10 0.15	4.76 4.92 5.80 5.24 5.74	0.34 0.26 0.34 0.24 0.25	0.01 0.01 0.01 0.01 0.01	0.02 0.02 0.03 0.03 0.03	0.03 0.03 0.06 0.05 0.07					
3A-01S 3A-02S 3A-03S 3A-04S	Figb	509 1558 1049 964	4 7 19 10	5 8 6 9	96 70 51 55	8 6 6	0.08 0.12 0.02 0.03	4.70 3.69 3.25 4.16	0.13 0.14 0.10 0.16	5.68 4.03 4.02 4.09	0.16 0.23 0.18 0.31	0.03 0.03 0.04 0.03	0.02 0.03 0.02 0.03	0.06 0.09 0.05 0.05					
finimum De faximum De fethod —=No Test		ICP	2 0000 10 ICP y Max=	ICP	ICP	ICP	10.00 1 ICP	0.01 10.00 ICP 10 %=E	ICP	ICP	0.01 10.00 ICP Sample	0.01 10.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP					

0	

CERTIFICATE OF ANALYSIS iP. J7L5946

150 9001-2000

200 - 11620 Horseshoe Way Richmond, B.

Phone (604) 879-7878 Fax (604) 272-0851 Website www.ipi.ca 108 Pane 2 of

	nternational plasma Nonegolid (Reseur Le Mare			5 Sam	ples 131=Soil	4=	Rock	7=Repea	t 1=	⊟lk iPL	. 1	[594612	:09:37:	р 80011808	rint: J		Fax Websi 2008 2007	te www Pa	gje	2 of 4 1 of 2
ample N	lame	Туре	Au g/mt	Ag ppm	Cu ppm	Pb ppm	Zn ppn	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm	W ppm	Cr ppm	V ppm
A-05S A-09S B-03S B-05S B-06S	see Fig	Soil Soil Soil Soil Soil Soil	<0.01 <0.01 <0.01 <0.01 <0.01	0.1 <0.1 <0.1 <0.1 <0.1	66 61 65 82 103	88888	155 207 89 74 77	30 49 39 42 40	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2222 2222	<1 4 <1 <1 <1	<10 <10 <10 <10 <10 <10	4 3 22 23	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	23 18 20 13 21	24 18 14 13 12	90 79 26 20 28	****	48 54 54 38 31	59 81 92 45 74
C-01N C-02N C-03N C-04N C-05N	Figure	Sof1 Sof1 Sof1 Sof1 Sof1 Sof1	0.03 0.07 0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1	63 33 23 38 36	~~~~	67 49 44 76 76	47 80 29 43 57	<5 <5 <5 <5 <5	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	시 시 시 시 시	<10 <10 <10 <10 <10	3 11 <2 3 5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	37 7 10 15 14	13 1 7 11 9	21 12 14 27 24	জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ	55 23 37 58 43	119 130 114 121 109
C-06N C-07N C-09N D-01S D-02S	Sear Fil	Soil Soil Soil	0.01 0.02 0.01 0.02 0.01	<0.1 <0.1 <0.1 <0.1 <0.1	36 32 5 41 22	~~~~~	161 128 118 128 52	155 127 72 63 30	<5 <5 <5 <5 <5	3 3 3 3 3 3 3 3 3 3 3 3 3		<10 <10 <10 <10 <10	6 <2 15 2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	12 9 6 24 10	7 4 <1 16 8	33 20 27 66 23	১ ১ ১ ১ ১ ১	48 36 11 32 51	, 127 112 85 130 106
D-03S D-04S D-05S D-05S D-06S D-07S	Seer 10	y Soil Soil Soil Soil Soil Soil	<0.01 <0.01 <0.01 0.01 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1	18 13 22 21 81	~~~~~	42 45 49 40 12	32 35 40 38 34	<5 <5 <5 <5 <5	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 4 4 4 4	<10 <10 <10 <10 <10	10 <2 5 17	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	34 25 12 14 5	7 5 10 5 <1	26 20 19 20 51	হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ	36 42 47 39 <1	90 122 90 106 <1
D-08S E-03S E-04S E-09S E-10S	(13 ¹	Soil Soil Soil Soil Soil	<0.01 0.01 <0.01 0.01 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1	109 148 28 54 <1	&&&&&	74 41 69 38 <1	30 47 40 35 <5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	~~~~ ~~~~~	1 3 4 4 <1	<10 <10 <10 <10 <10	7 7 15 9 <2	<0.2 <0.2 <0.2 <0.2 <0.2	37 33 39 2 <1	15 10 2 2 <1	47 70 56 74 7	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	30 28 5 20 <1	127 44 <1 38 <1
F-02S F-03S F-07S F-08S G-02S	4:0210	Soil Soil Soil Soil Soil	<0.01 <0.01 0.03 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1	31 12 10 15 29	88888	28 20 18 20 17	35 25 24 62 6	\$ \$ \$ \$ \$ \$ \$	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 41 41 41 1	<10 <10 <10 <10 <10	9 7 8 7 2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	4 2 2 <1	3 <1 <1 3 1	25 21 17 24 57	হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ	27 18 15 20 4	43 76 49 35 21
G-03S <u>G-04S</u> 4-05E 4-06E 4-08E		Soil Soil Soil Soil Soil Soil	<0.01 0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1	3 4 20 17 46	&&&&&	4 13 178 116 191	<5 12 40 58 44	<5 <5 <5 <5 <5	~ ~ ~ ~ ~ ~ ~	2 2 <1 <1 <1	<10 <10 <10 <10 <10	2622 2622 2022	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<1 <1 25 13 13	<1 2 24 10 16	8 26 92 36 37	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<1 11 69 70 65	6 26 152 195 161
4-09E 4-10E 4-13S 4-15S	Figil	Soil Soil Soil Soil	<0.01 0.11 <0.01 <0.01	<0.1 <0.1 <0.1 0.5	43 33 40 65	8888 8888	120 99 156 110	49 45 45 38	かかかか	5000 0000	<1 <1 <1 <1	<10 <10 <10 <10	3 2 2 2 2 2 2	<0.2 <0.2 <0.2 <0.2	12 14 15 14	13 13 10 13	39 33 52 30	র হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ	65 66 61 55	93 138 137 130
	etection etection	<u> </u>	0.01 5000.00 FA/AAS	0.1 100.0 ICP	1 10000 10 ICP	2 0000 1 ICP	1 10000 ICP	5 10000 ICP	5 2000 1 ICP	3 10000 ICP	1 1000 ICP	10 1000 ICP	2 2000 ICP	0.2 2000.0 ICP	1 10000 1 ICP	1 .0000 1 ICP	2 10000 ICP	5 1000 ICP	1 10000 ICP	1 10000 ICP

-----No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

0	

CERTIFICATE OF ANALYSIS iP. /7L5946

ISO 9001:2080

200 - 11620 Horseshoe Way Richmond, B.

Canada V7A 4vu

Phone (604) 879-7878 Fax (604) 272-0851

	ATIONAL PLASMA LABS LTD. gg 11:1 (Reisuupcee)/pany are	Shi	p#	135	Samp	les 31=Soil	4=Roc	k 7≓	Repeat	1 -8 1k	iPL 1	[594612	:09:37:8	Print: 0011808:00h)	Intertek Jan 18, Dec 10,	Websit 2008	(604) 272-08: e www.ipl.ca Page Section	2 of	
Sample Name		Мп ррп	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti X	A1 *	Ca X	Fe X	Mg X	K X	Na X	P X					
IA-05S IA-09S IB-03S IB-05S IB-06S	Fig9	1917 685 1769 442 1155	17 19 12 9 7	13 9 6 4 5	49 64 90 58 73	11 12 12 12 12 11	0.05 0.11 0.24 0.21 0.18	3.38 6.49 5.14 5.63 4.12	0.23 0.17 0.13 0.15 0.19	3.70 4.00 5.11 3.46 4.33	0.40 0.25 0.33 0.35 0.34	0.05 0.03 0.02 0.03 0.03	0.03 0.03 0.02 0.03 0.03	0.06 0,14 0.08 0.08 0.13					
C-01N C-02N C-03N C-04N C-04N C-05N	Fig9 Fig9	791 212 233 565 548	6 8 3 5 5	10 2 5 4 4	97 108 80 88 83	19 11 11 20 11	0.18 0.07 0.30 0.21 0.11	5.97 4.43 4.12 5.63 4.77	0.11 0.03 0.13 0.09 0.09	5.18 6.36 4.11 4.75 4.76	0.38 0.13 0.22 0.26 0.25	0.02 <0.01 0.01 0.01 0.02	0.02 0.02 0.03 0.02 0.02	0.07 0.06 0.03 0.07 0.06					
C-06N C-07N C-09N D-01S D-02S	Figio	721 536 528 1081 260	<2 4 9 3	4 3 7 5	117 94 120 68 61	18 12 12 16 7	0.14 0.13 0.02 0.17 0.20	7.58 6.21 7.61 2.59 4.32	0.05 0.05 0.02 0.25 0.08	5.91 5.31 6.75 4.13 3.66	0.30 0.23 0.15 0.38 0.26	0.01 0.01 0.01 0.04 0.01	0.02 0.03 0.02 0.03 0.02	0.06 0.07 0.10 0.09 0.04					
D-03S D-04S D-05S D-06S D-07S	Fig10 Fig10	1380 530 367 254 21	11 3 3 5 2	3 4 3 1	82 87 89 84 122	9 11 13 9 <1	0.02 0.20 0.22 0.16 <0.01	3.34 4.71 5.51 4.93 0.16	0.05 0.07 0.11 0.07 <0.01	5.56 5.08 4.52 5.16 7.22	0.26 0.18 0.29 0.22 <0.01	0.02 0.01 0.01 0.01 0.04	0.02 0.02 0.02 0.02 0.02 0.02	0.10 0.06 0.05 0.05 0.35					
D-08S E-03S E-04S E-09S E-10S	i ()	1485 1023 2463 96 3	7 17 21 23 2	11 10 3 18 2	81 71 114 72 8	12 9 14 5 <1	0.13 0.04 <0.01 0.01 <0.01	3.26 4.50 4.19 4.22 0.05	0.22 0.24 0.04 0.03 <0.01	5.06 4.86 6.53 5.03 0.07	0.44 0.24 0.11 0.08 <0.01	0.03 0.04 0.03 0.03 0.01	0.03 0.03 0.02 0.02 0.01	0.09 0.10 0.17 0.09 <0.01					
F-02S F-03S F-07S F-08S G-02S	Figio	120 94 80 117 10	5 6 9 14	3 3 3 14	79 67 55 54 23	10 5 3 3 <1	0.03 0.02 0.01 0.01 <0.01	4.87 3.19 3.19 3.21 0.49	0.04 0.02 0.03 0.03 0.01	5.15 4.62 4.27 4.24 1.68	0.13 0.08 0.08 0.17 0.01	0.02 0.01 0.02 0.03 0.03	0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.07 0.03					
G-03S G-04S <u>4-05E</u> 4-06E 4-08E	~~	13 65 539 398 514	<2 5 7 2 5 5	2 8 22 3 4	20 42 66 124 76	<1 <1 17 18 16	<0.01 <0.01 0.37 0.27 0.14	0.12 1.64 3.94 7.45 5.30	0.01 0.02 0.51 0.07 0.15	2.23 3.48 3.40 5.10 4.68	0.02 0.10 0.39 0.24 0.31	0.02 0.03 0.02 0.01 0.02	0.02 0.02 0.03 0.03 0.03	0.02 0.06 0.05 0.03 0.03					
4-09E 4-10E 4-13S 4-15S	Figu	427 288 305 300	9 4 3 4	4 5 5	76 113 87 95	18 20 12 10	0.15 0.34 0.25 0.34	6.34 6.27 6.22 4.89	0.14 0.17 0.16 0.19	4.41 4.79 4.63 4.72	0.25 0.25 0.23 0.25	0.02 0.02 0.01 0.01	0.02 0.03 0.03 0.03	0.05 0.04 0.03 0.04					
nimum Detec ximum Detec thod	tion tion 1	1 0000 1 ICP	2 .0000 1 ICP	1 10000 ICP	1 10000 : ICP	1 10000 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP					

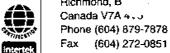
{21

1

CERTIFICATE OF ANALYSIS iF. J7L5946

NO 1001-2000 200 - 11620 Horseshoe Way Richmond, B Canada V7A 4vo

Phone (604) 879-7878


roject: Le Mare Sample Name	Ship# 	Au	Ag	131=Soil Cu	4=R Pb	zn Zn	7=Repea	t 1= 	81k iPl				80011808		Dec 10,			ction	
	туре	g/mt	лу ррп	ppm	ppm	ppm	As ppm	ppm	Hg ppm	.Mo ppm	TT Ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm	W ppm	Cr ppm	V ppm
4-165 44-175 44-185 44-195 44-205 FIZ	Soil Soil Soil Soil Soil	<0.01 <0.01 <0.01 <0.01 <0.01	0.2 <0.1 <0.1 <0.1 0.2	42 51 12 9 13	~ ~ ~ ~ ~ ~ ~ ~	105 106 66 74 64	51 49 29 67 41	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2222 2222	식 식 식 식	<10 <10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	21 19 12 14 13	15 13 4 7 5	29 22 23 23 19	<i>হ</i> হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ	67 56 46 41 50	156 126 162 165 126
5-02S 5-03S 5-04S 5-05S 5-07S F1g ² 5-09S	Soil Soil Soil Soil Soil	<0.01 <0.01 <0.01 <0.01 0.01	0.1 <0.1 0.2 <0.1 <0.1	119 14 63 22 55	~ ~ ~ ~ ~ ~ ~	353 61 83 171 164	46 35 89 40 39	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	00000	<1 <1 <1 <1 <1	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.2 <0.2 <0.2 <0.2 <0.2	42 25 41 37 30	61 37 27 32 23	106 18 43 29 25		104 145 124 85 78	126 238 223 164 109
5-10 <u>5</u> 6-01 6-01S 6-02	Soil Soil Soil Soil Soil Soil	<0.01 <0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 1.5 <0.1	33 <1 20 54 34	~~~~~	117 33 43 101 90	54 22 32 47 73	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	~ ~ ~ ~ ~ ~	식 식 식 식 식	<10 <10 <10 <10 <10	2 6 2 2 2 2 2	<0.2 <0.2 <0.2 <0.2 <0.2	24 6 19 19 24	20 4 13 28 28	38 21 16 24 25	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	85 18 53 123 53	131 121 126 165 77
16-03 16-04 16-05 16-06 16-07	Soil Soil Soil Soil Soil	<0.01 <0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1	26 39 43 13 10	~~~~	61 95 56 41 42	29 65 63 34 72	র র র র র র র র র র র র র র র র র র র	~ ~ ~ ~ ~ ~	<1 5 1 2 <1	<10 <10 <10 <10 <10	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.2 <0.2 <0.2 <0.2 <0.2	19 24 29 14 22	18 17 14 5 7	20 19 26 16 18	\$\$\$\$\$	49 45 43 52 77	105 101 87 191 123
16-08 16-09 16-10(Rock) 16-11 16-12	Soil Soil Rock Soil Soil	<0.01 <0.01 <0.01 <0.01 <0.01	0.1 <0.1 <0.1 <0.1 <0.1	9 29 32 28 11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	46 48 79 53 48	32 53 18 53 43	\$ \$ \$ \$ \$ \$ \$ \$	20000 2000	<1 <1 <1 <1 <1	<10 <10 <10 <10 <10	88888 8888	<0.2 <0.2 <0.2 <0.2 <0.2	15 19 40 22 14	5 14 87 12 5	18 15 39 20 25	፝ ଦ୍ ଦ୍ ଦ୍ ଦ୍ ଦ୍ ଦ୍ ଦ୍ ଦ୍ ଦ୍ ଦ୍ ଦ୍ ଦ୍ ଦ୍	43 48 73 57 53	194 84 46 115 134
6-13(Rock) 6-13(Soil) 6-14 6-15(Rock) 7-02	Rock Soil Soil Rock Soil	<0.01 <0.01 0.07 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1	31 32 28 <1 22	~~~~~	39 105 60 41 39	21 63 56 8 33	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	22222	<1 <1 <1 <1 <1	<10 <10 <10 <10 <10	VVV4V	<0.2 <0.2 <0.2 <0.2 <0.2	42 32 17 3 16	64 25 12 2 13	26 19 15 48 23	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	44 75 62 39 47	91 168 136 <1 131
7-03 7-04 7-05 7-06 7-07	Soil Soil Soil Soil Soil	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1 <0.1	16 22 43 22 28	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	35 36 57 36 29	41 37 29 34 38	জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ	<u> </u>	<1 <1 <1 <1 <1	<10 <10 <10 <10 <10	~~~~~	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	16 18 17 17 18	12 13 11 13 8	14 17 22 12 25	かかかかか	60 59 42 49 58	132 147 95 116 159
7-08 7-09 7-10 7-11	Soil Soil Soil Soil	<0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1	8 43 23 11	~~~~	27 42 49 48	29 41 32 32	ৎ ৎ ৎ ৎ	0000	<1 <1 <1 <1	<10 <10 <10 <10	2 2 2 2 2 3	<0.2 <0.2 <0.2 <0.2	16 18 31 10	5 20 28 6	15 15 25 50	<5 <5 <5 <5	64 63 40 29	246 103 86 63

0		
4	and a start	-

CERTIFICATE OF ANALYSIS iP. J7L5946

ISO MO12000

200 - 11620 Horseshoe Way Richmond, B

	ATIONAL PLASMA LABS LTD. 1930: Resources Pany are	Shi	p#	135	Samp 13	les 31=Soil	4=Rock	: 7 -	Repeat	1=B1k	iPL 1	[594612	2:09:37:8	Print: 0011808:00Dj	Intertek Jan 18. Dec 10.	Website	604) 272-08 www.ipl.ca Page Section	3 of	
Sample Name		Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti X	A1 *	Ca X	Fe X	Mg X	K X	Na X	P X					
04 - 165 04 - 175 04 - 185 04 - 195 04 - 205	Fig 11 Fig 12	789 787 590 466 555	6 4 5 3	4 5 3 4 3	115 91 92 106 116	20 20 11 14 11	0.42 0.37 0.28 0.37 0.29	7.01 6.17 3.94 3.55 5.19	0.19 0.21 0.08 0.11 0.12	5.07 4.28 5.04 5.21 5.28	0.33 0.32 0.19 0.26 0.23	0.02 0.02 0.01 0.01 0.01	0.03 0.03 0.02 0.03 0.03	0.09 0.11 0.04 0.03 0.06					
)5-02S)5-03S)5-04S)5-05S)5-07S	Fig12	2495 344 744 987 724	11 <2 10 <2 3	28 4 12 12 5	78 143 118 93 85	18 12 23 15 13	0.17 0.55 0.33 0.34 0.30	4.90 5.51 7.34 5.19 5.86	0.83 0.08 0.60 0.39 0.16	4.68 5.83 5.43 4.70 4.36	0.53 0.43 0.28 0.38 0.34	0.02 0.01 0.01 0.01 0.02	0.03 0.03 0.03 0.03 0.03 0.03	0.05 0.03 0.05 0.04 0.04					
)5-09S)5-10S)6-01)6-01S)6-02		729 131 617 650 785	7 11 <2 5	9 3 7 7 12	89 103 95 119 66	21 4 11 13 14	0.23 0.03 0.34 0.35 0.21	6.16 2.96 4.29 6.37 4.35	0.28 0.06 0.10 0.17 0.16	4.97 6.24 4.65 5.35 4.12	0.34 0.21 0.31 0.35 0.49	0.01 0.03 0.01 0.01 0.01	0.03 0.02 0.02 0.02 0.02	0.05 0.03 0.07 0.04 0.06					
16-03 16-04 16-05 16-06 16-07	Fig 13	561 551 771 305 494	5 5 10 3 7	10 7 7 4 3	79 101 94 117 169	13 19 22 11 20	0.24 0.32 0.35 0.40 0.45	4.06 7.71 8.29 4.76 10%	0.14 0.19 0.22 0.09 0.10	4.35 4.31 4.06 5.45 6.35	0.38 0.38 0.31 0.13 0.20	0.01 0.01 0.01 <0.01 <0.01	0.03 0.03 0.03 0.02 0.02	0.06 0.07 0.16 0.06 0.15					
)6-08)6-09)6-10(Rock))6-11)6-12		231 343 684 420 316	2 3 4 2 2	5 6 20 6 5	123 105 103 122 124	9 21 5 21 13	0.48 0.39 0.42 0.42 0.40	4.09 7.33 2.98 7.25 6.66	0.11 0.19 1.36 0.20 0.13	5.46 4.17 4.03 4.59 5.26	0,11 0.29 0.60 0.25 0.14	<0.01 0.01 0.02 0.01 <0.01	0.03 0.02 0.05 0.02 0.03	0.07 0.09 0.09 0.09 0.09 0.06					
16-13(Rock) 16-13(Soil) 16-14 16-15(Rock) 17-02		450 310 264 342 275	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	21 6 4 3 11	104 160 136 30 91	5 24 28 3 15	0.46 0.58 0.45 0.01 0.45	3.08 9.15 8.12 1.11 4.62	1.74 0.12 0.09 0.08 0.33	3.88 5.52 5.13 2.60 4.06	0.62 0.31 0.21 0.28 0.29	0.02 <0.01 <0.01 0.07 0.01	0.07 0.03 0.03 0.06 0.03	0.05 0.07 0.05 0.03 0.03					
17-03 17-04 17-05 17-06 17-07	Fig 14	206 241 608 331 256	<u>৯৯৯৯</u>	6 6 11 7 8	118 107 89 97 141	16 21 9 12 11	0,49 0,45 0,35 0,40 0,52	6.38 5.81 3.94 4.91 5.38	0.19 0.14 0.34 0.14 0.21	4.51 4.22 3.85 4.02 5.40	0.27 0.27 0.26 0.26 0.21	0.01 0.01 0.02 0.01 0.01	0.03 0.03 0.03 0.03 0.03	0.04 0.04 0.04 0.05 0.04					
07-08 07-09 07-10 07-11		217 230 700 175	<2 <2 <2 7	5 8 20 4	167 107 80 54	8 17 12 9	0.66 0.44 0.41 0.10	4.01 5.88 4.50 4.76	0.11 0.23 0.49 0.10	5.80 3.99 3.60 3.84	0.16 0.35 0.40 0.16	<0.01 0.01 0.02 0.01	0.03 0.03 0.03 0.03	0.04 0.03 0.04 0.03					
inimum Detect aximum Detect ethod		1 0000 1 ICP	2 0000 1 ICP	1 0000 J ICP	1 10000 J ICP	1 10000 ICP	0.01 10.00 1 ICP	0.01 .0.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP					

-----No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

١

CERTIFICATE OF ANALYSIS iF. J7L5946

ISO 9001:2008 200 - 11620 Horseshoe Way Richmond, E

Canada V7A 4.0

Phone (604) 879-7878

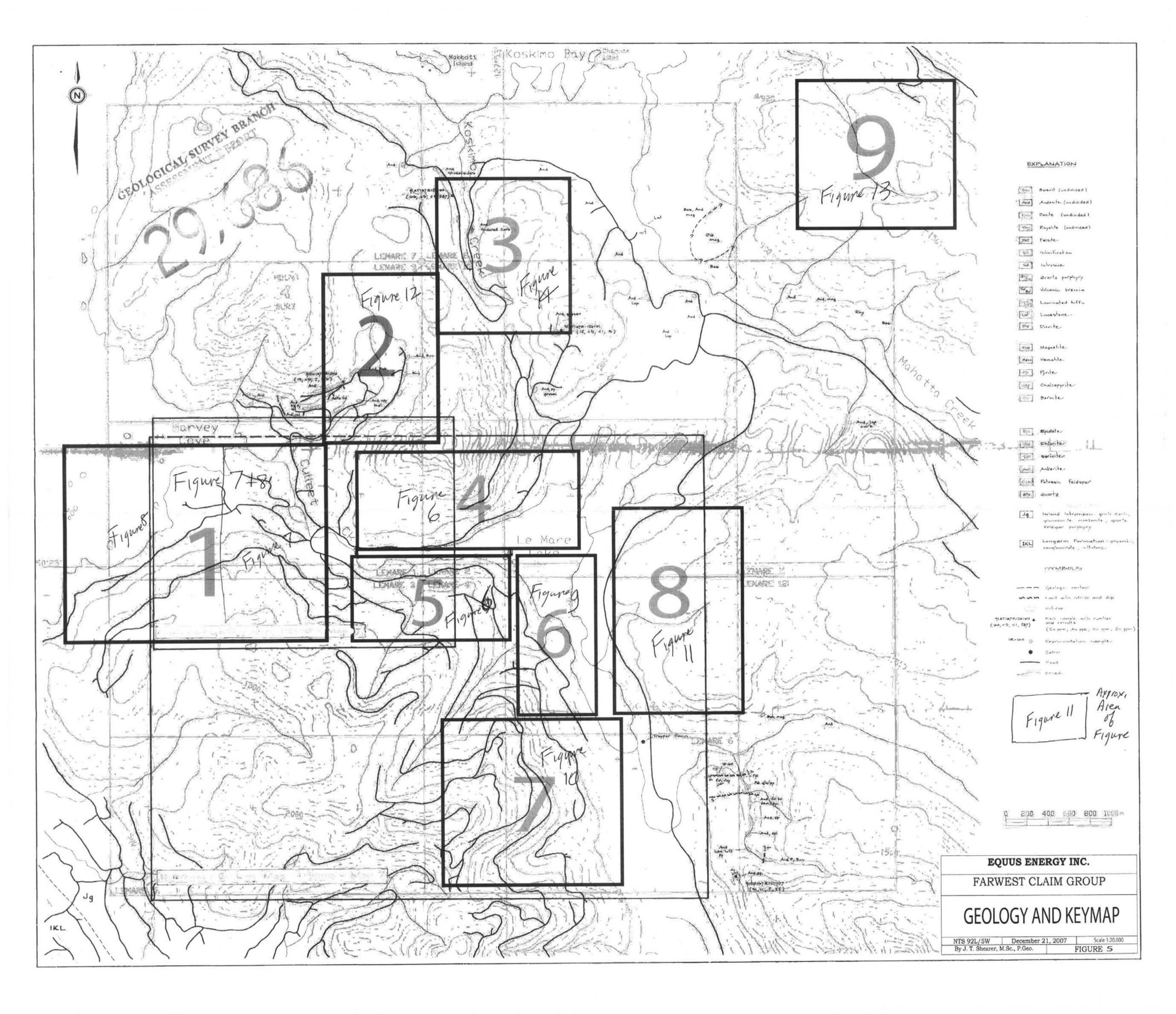
Fax (604) 272-0851

Minhaite	users into a
rreusile	www.ipl.ca

International Plasma L Sent : Homegory Resource roject: Le Mare		135	Samı	o les 131=Soil	4=R	ock	7=Repea	t 1=	8⊺k iPL	1 [[594612:	09:37:8	P1 0011808 :	rint: Ja	tertek an 18, ec 10,	2008	te www. Pag Sec	je i	4 of 4 1 of 2
ample Name	Туре	Au g/mt	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Мо ррп	T] ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm	W ppm	Cr ppm	V ppm
7-13 7-14 7-15 7-16 7-17 Fig 14	Soil Soil Soil Soïl Soïl Soil	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.1 0.1 <0.1 <0.1 <0.1	10 48 320 30 11	<2 <2 <2 <2 <2 <2	66 70 174 53 41	38 40 43 37 29	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	&&&&	식 식 식 식	<10 <10 <10 <10 <10 <10	2 <2 5 4 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	11 21 17 15 22	8 23 21 11 13	95 89 40 52 43	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	21 38 55 43 61	35 37 84 97 167
7-18 7-19 7-20 orth Zone1 A-01S	Soil Soil Soil Rock Soil	<0.01 <0.01 <0.01 <0.01 <0.01	0.1 <0.1 <0.1 0.7 <0.1	37 41 65 2157 29	<2 <2 <2 7 2	76 57 53 53 32	53 53 53 75 39	\$ \$ \$ \$ \$ \$ \$ \$	~~~ ~~~~	<1 <1 <1 53 <1	<10 <10 <10 <10 <10	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	25 24 17 15 37	23 25 17 6 10	23 30 15 38 27	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	88 64 68 37 75	214 111 133 15 151
A-02S A-02S A-03S A-04S A-05S A-07S A-07S	Soil Soil Soil Soil Soil Soil	<0.01 0.04 0.08 <0.01 0.71	<0.1 <0.1 0.4 <0.1 0.1	113 62 146 161 183	<2 <2 <2 <2 <2 <2	223 88 55 69 117	25 57 38 52 58	\$ \$ \$ \$ \$ \$ \$ \$ \$	ଏ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ ଅ	<1 <1 <1 <1 <1	<10 <10 <10 <10 <10	<2 6 8 3 4	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	27 53 22 18 20	41 17 7 13 27	36 37 26 19 126	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	61 103 48 55 53	90 126 70 77 30
A-08S A-09S A-10S E 01-03 E 2-14N	Soil Soil Soil Repeat Repeat	<0.01 <0.01 <0.01 <0.01 <0.01	0.1 0.1 0.4 0.1	82 50 84 70 23	<2 <2 <2 45 <2	92 138 189 458 61	45 62 31 73 26		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	식 식 식 식 식	<10 <10 <10 <10 <10	8 ~2 ~2 ~2 8	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	50 39 28 50 9	42 29 39 14 9	91 47 74 107 58	\$ \$ \$ \$ \$ \$ \$	98 132 74 85 41	158 114 99 313 100
RE 3A-05S RE 3D-07S RE 04-16S RE 06-07 RE 07-13	Repeat Repeat Repeat Repeat Repeat	<0.01 <0.01 <0.01 <0.01 <0.01	0.1 <0.1 0.2 <0.1 <0.1	63 82 31 9 10	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	147 13 102 41 67	33 35 54 75 39	জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ	~ ~ ~ ~ ~	<1 <1 <1 <1 <1	<10 <10 <10 <10 <10	4 16 <2 <2 5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	23 6 22 21 10	24 <1 14 7 8	87 52 30 18 93	\$ \$ \$ \$ \$ \$ \$ \$	46 <1 65 75 22	54 <1 156 123 39
8]ank iPL 35-1P58 35-1P58 REF	B1k iPL STD iPL STD iPL	<0.01 1.46 1.46				-			- -			-		Ξ				 	
inimum Detection		0.01	0.1	1 10000 10	2	1	5	5 2000 1	3	11000	10 1000	2 2000 2	0,2	1	1 .0000 1	2	5 1000 1	1	1

	1
	87 P

CERTIFICATE OF ANALYSIS iF. J7L5946


150 9001 2000

200 - 11620 Hottkeshoe Way Richmond, B Canada V7A 4v5 Phone (604) 879-7878

	ATIONAL PLASMA LABS LTD. 1970 Regute Company 199	Shi				31=Soil	4=Rock		Repeat	1=81k		· · · · · ·		0011808:00h]	Jan 18, Dec 10,	Website 2008	04) 272-085 www.ipl.ca Page Section	4 of	f f
sampre name		Man pipana	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti X	Al X	Ca X	Fe X	Mg X	K X	Na X	P X					
07-13 07-14 07-15 07-16 07-17	Fig 14	808 1692 315 685 516	17 12 6 8 <2	9 14 5 8 12	48 55 62 78 103	7 8 12 10 17	0.05 0.11 0.06 0.13 0.52	4.42 4.72 4.86 4.39 3.80	0.24 0.36 0.10 0.16 0.36	3.32 3.55 4.21 4.57 4.49	0.14 0.35 0.24 0.26 0.31	0.02 0.02 0.01 0.01 0.01	0.03 0.03 0.02 0.03 0.03	0.06 0.07 0.05 0.05 0.04					
07-18 07-19 07-20 North Zonel 24-015		676 930 271 738 2306	<2 10 <2 8 4	8 20 6 11 24	119 77 116 24 75	21 19 25 6 11	0.43 0.31 0.43 0.01 0.22	6.11 5.86 6.85 0.56 3.72	0.18 0.66 0.14 2.20 0.22	4.89 3.98 4.49 2.09 4.42	0.32 0.37 0.31 0.10 0.20	0.01 0.03 0.01 0.15 0.01	0.03 0.04 0.03 0.02 0.03	0.07 0.08 0.05 0.05 0.09					
2A-02S 2A-03S 2A-04S 2A-05S 2A-05S 2A-07S	Fig \$7	1205 3637 2517 850 3706	5 7 6 5 20	10 17 11 18 41	60 71 56 59 47	15 16 9 5	0.23 0.12 0.01 0.13 0.04	2.81 6.33 3.31 4.14 4.74	0.34 0.13 0.09 0.19 0.71	3,21 4,90 4,40 3,90 3,33	0.50 0.27 0.11 0.26 0.30	0.04 0.01 0.01 0.01 0.04	0.02 0.03 0.02 0.02 0.03	0.07 0.14 0.14 0.06 0.17					
2A-085 2A-095 2A-105 2E 01-03 2E 2-14N		2768 1934 2091 4641 561	6 7 9 6	33 14 16 9 7	72 82 61 133 85	11 20 17 39 5	0.04 0.21 0.21 0.48 0.07	3.95 5.97 2.93 5.37 1.95	0.36 0.26 0.57 0.17 0.16	4.92 4.47 3.82 5.68 5.46	0.48 0.36 0.51 0.37 0.21	0.03 0.01 0.04 <0.01 0.04	0.04 0.03 0.03 0.03 0.02	0.09 0.06 0.07 0.08 0.04					
RE 3A-05S RE 3D-07S RE 04-16S RE 06-07 RE 07-13		1969 24 789 474 808	16 2 6 7 17	11 1 5 3 9	43 132 119 175 42	9 <1 20 20 7	0.05 <0.01 0.43 0.44 0.05	3.40 0.15 7.00 10% 4.40	0.22 <0.01 0.18 0.09 0.25	3.74 7.26 5.09 6.31 3.32	0.40 <0.01 0.32 0.19 0.14	0.05 0.04 0.02 <0.01 0.03	0.02 0.02 0.03 0.02 0.03	0.06 0.35 0.09 0.15 0.07					
31ank iPL 35·1P58 35·1P58 REF		-								 	 _								
nimum Detecti	ion	1	2	1	1	1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01				-	

