

Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division BC Geological Survey

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT [type of survey(s)] TOTAL COST	
AUTHOR(S) SCOTT PETSLL, GABE JUTRASSIGNATURE(S)	On Adre plans
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S) 53.4637 . MX-1-58	7
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S) 16	3
PROPERTY NAME MOKE CREEK	
CLAIM NAME(S) (on which work was done) 408606, 508124, 50	28 357 508 358 514545
514548, 514551, 545725, 54709C, 5668	98,547089
COMMODITIES SOUGHT Co., Av., Aq	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN	
MINING DIVISION LIARD NTS 1043	
LATITUDE 37 0 01 35 LONGITUDE 135 0	있다. ' 3을 " (at centre of work)
OWNER(S)	
1) GALDRE CREEK MINING CORPORATION 2)	
MAILING ADDRESS SIGN TO 2100, 200 GRANDILLE ST VANCOUVER, BC, VGC 154	
OPERATOR(S) [who paid for the work]	
1) NOUNGELO CANADA INC. 2)	
MAILING ADDRESS	
SUITE 2300 , 200 GRANVILLE ST	
VANCOUVER, 130 , 1400 154	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineral	· · · · · · · · · · · · · · · · · · ·
Mode CREEK , HAZZELTON, STUHINI, BOWSIDE L	
JURASSIC, GEOLDEMICAL, MARRING, GEOTECHNI	CAL, GAIGES CREEK
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBER 77 10 10 10 10 10 10 10 10 10 10 10 10 10	
REDURT (AC# 28423) AND BOXE ASSESSIME	NT REPORT (46# 23791
ON THE MORE CREEK' PROPERTY	(OVER)

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area) ROAD ROUT	TE 1:4000 38 ha (0.38 km²)	408606, 545 725, 508338	
Ground, mappingSINTER	_	547089,547090	\$9,114.39
Photo interpretation			• •
GEOPHYSICAL (line-kilometres)		F	
Ground			
Magnetic			
Electromagnetic]
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL			
(number of samples analysed for)			
Soil			1
Silt		 5:4548,5:4551,556898,408606,547090,	1 10 00 1 77
Rock 177 Samples - 33 elem		508124, 508337, 508338, 541/89	\$ 62,204.77
Other a samples - 19 elem	ent + anions and nutrient	514545	\$ 897.40
DRILLING		,	
(total metres; number of holes, size)			
Non-core 243.8 m; 2 holes	150 com diameter	514545	\$ 72,637.10
) 120 mm diameter	3,12,12	4 (3.300) 10
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/trail		<u> </u>	<u> </u>
Trench (metres)			
Underground dev. (metres)			\$ 2450.00
Other Report Writing, Ma	anagement Fee		\$ 14,730.37
	7	TOTAL COST	\$162,034.03

BC Geological Survey Assessment Report 29749

2007 GEOTECHNICAL DRILLING, GEOCHEMICAL SAMPLING AND GEOLOGICAL MAPPING ASSESSMENT REPORT ON THE MORE CREEK PROPERTY

Event Number: 4181168 Claims Worked On: 408606, 508124, 508337, 508338, 514545, 514548, 514551, 545725, 547089, 547090, and 566898.

> Liard Mining Division British Columbia, Canada

NTS Map Sheets 104B and 104G BCGS Map Sheets 104B.098, 104B.099, 104G.007, 104G.008, 104G.009, and 104G.019

57° 01'35" North Latitude 130° 24'30" West Longitude

Owned by Galore Creek Mining Corporation Suite 2100, 200 Granville Street Vancouver, BC V6C 1S4

Operated by NovaGold Canada, Inc. Suite 2300, 200 Granville Street Vancouver, BC V6C 1S4

Prepared by

Scott A. Petsel, CPG, P.Geo. Gabe Jutras, B.Sc. Mark Williams, B.Sc.

Dates Worked: November 21st, 2006 to October 10th, 2007 Report: February, 2008

TABLE OF CONTENTS

			Page
1.0	INTRO	DDUCTION	1
2.0	LOCA	TION, ACCESS & PHYSIOGRAPHY	1
3.0	EXPLO	ORATION HISTORY	4
4.0	LAND	TENURE AND CLAIM STATUS	5
5.0	2007 S	UMMARY OF WORK	8
6.0	GEOL	OGY	8
	6.1	Regional Geology	}
	6.2	Property Geology)
7.0	GEOT	ECHNICAL DRILLING	12
8.0	GEOC	HEMICAL SAMPLING	13
9.0	GEOL	OGICAL MAPPING	14
10.0	DISCU	USSION AND CONCLUSIONS	14
	10.1	Geotechnical Drilling	ļ
	10.2	Geochemical Sampling	ļ
	10.3	Geological Mapping	;
	10.4	Exploration Potential	;
11.0	RECO	MMENDATIONS	16
LIST (OF TABI	<u>LES</u>	<u>Page</u>
Table 1	Land T	Penure and Claim Status	5
Table 2	Drill H	Tole Collar Information	12
LIST (<u>)F FIGU</u>	<u>URES</u>	<u>Page</u>
Figure	1 Locatio	on Map	3
Figure	2 Claim	Map	7
Figure	3 Propert	ty Geology	10

APPENDICES

APPENDIX I		References
APPENDIX II		Statement of Expenditures
APPENDIX III	[Statement of Qualifications
APPENDIX IV		Geotechnical Drilling
Geotecl	chnical Drill Hole Collar Locations Map	
DH-1 1	Drill Log	
DH-2 1	Drill Log	
Geotecl	chnical Drill Hole Analytical Geochemistry Results	
APPENDIX V		Geochemical Sampling
Geoche	nemical Sample Descriptions	
Geoche	nemical Sample Location Maps	
Analyti	tical Geochemistry Certificates	
APPENDIX VI	[Geological Mapping
Geolog	gical Map of the Road Route (32 – 37 km)	
Geolog	gical Map of the Sinter Prospect	

1.0 INTRODUCTION

The More Creek property is located in northwestern British Columbia, 115 kilometres north of Stewart. The Stewart-Cassiar Highway passes through the easternmost claims in the group. The property consists of 56 mineral tenures totalling 22,725 hectares owned by the Galore Creek Mining Corporation, a jointly controlled operating company established to direct the construction and operation of the Galore Creek Project. Teck Cominco Ltd. and NovaGold Resources Inc. each hold a 50% interest in this partnership created to build the Galore Creek copper-gold mine. The 2007 field program on the More Creek property was completed under the direction and effort of NovaGold Canada Inc.

This report documents the geotechnical drilling, geochemical sampling, and geological mapping program completed between November 21, 2006 and October 10, 2007 on the More Creek property. The geochemical sampling and geological mapping program was conducted on mineral claims 408606, 508124, 508337, 508338, 514548, 514551, 545725, 547089, 547090, and 566898. Geotechnical drilling was conducted at Sus Camp, on mineral claim 514545.

The Galore Creek access road route passes through the northern most claims in the property. The road begins approximately 13 kilometres north of the Bob Quinn Airstrip on the Stewart-Cassiar Highway and will, upon completion, provide access to the Galore Creek alkalic porphyry deposit 125 kilometres to the west. Construction activities on the Galore Creek project were suspended in November of 2007 due to an increase in estimated capital costs. NovaGold and Teck Cominco continue to view the Galore Creek deposit as a substantial resource and have initiated a comprehensive review to evaluate alternative development strategies. During the 2007 season roadwork progressed from a number of headings along the route. Camps have been placed at the road construction headings. Staging for the Galore Creek project has been carried out from Sus camp, located just off the Stewart-Cassiar Highway. Ch'iyone Camp is located at kilometre 36 along the Galore Creek access road route. Both of these road construction camps are within the More Creek property boundary.

The More Creek property contains the pyritic stockwork Sinter prospect, and the gossanous rhyolite Southmore and Logan Ridge showings. The western claims in the property contain the Upper Hazelton group Downpour Creek and Sixpack Range Eskay equivalent facies. The Downpour Creek facies in particular is prospective for accumulation and preservation of exhalative sulphides (Alldrick *et al.*, 2005).

The geochemical sampling program (Jun 2 – Oct 10) focused on outcrop and road cuts along the road route corridor. Geochemical samples were analysed for exploration purposes in addition to evaluating the potential of the rock to generate acid drainage. Geotechnical drilling at Sus Camp (Nov 21 – May 11) provided groundwater for the camp. Geological mapping (Aug 18 – Aug 21) focused on the Sinter prospect and exposures near the contact of the Stuhini group and the prospective Upper Hazelton group in the vicinity of the Ch'iyone Camp.

2.0 LOCATION, ACCESS & PHYSIOGRAPHY

The More Creek property is located in northwestern British Columbia, approximately 115 kilometres north of the tidewater port of Stewart, British Columbia (Figure 1). The Stewart-Cassiar Highway (Highway 37) runs along the eastern edge of the claim group, with the Bob Quinn Airstrip located immediately south of the eastern claims. The Galore Creek access road route runs through the northern claims in the property. The road route is on the east side of the upper Iskut River, and the north side of More Creek, crossing the Iskut River at the confluence with More Creek (Figure 2). The property is located within the Liard Mining Division at 57° 01'35" north latitude and 130° 24'30" west longitude.

The 2007 field program was based at Sus Camp, located at kilometre 3 on the Galore Creek access road route. During the 2007 field season the camp was accessed by Hawk Air flights to the Bob Quinn Airstrip from Vancouver via Smithers or Terrace. The Galore Creek access road begins approximately 15 kilometres north of the Bob Quinn Airstrip on the Stewart-Cassiar Highway. The Sus Camp is a further 3 kilometre drive west on the access road. A branch road leads from the Sus Camp to the main staging area for the Galore Creek project 2 kilometres to the southeast. The Galore Creek access road currently allows access to approximately 18 kilometres along the access road; roughly 2 kilometres beyond the upper Iskut River crossing. The remainder of the property is only accessible by helicopter, typically from the main staging area near the kilometre 3 Sus Camp.

The property straddles the eastern margin of the Coast Mountains. The western claims are characterized by rugged mountainous terrain, with steep slopes rising from the Iskut River and More Creek to glaciated peaks. The eastern claims in the property lie within the broad glacial valley of the upper Iskut River, and are characterized by much more gentle topography than the mountainous western claims. Elevations in the property range from 400 metres along the Iskut River, to 2100 metres at the summits of glaciated peaks. Relief varies from moderate to extreme. The tree line, located at an elevation of 1100 metres, divides the forests of balsam fir, sitka spruce, alder, willow, devils club and cedar from the sparse alpine vegetation above.

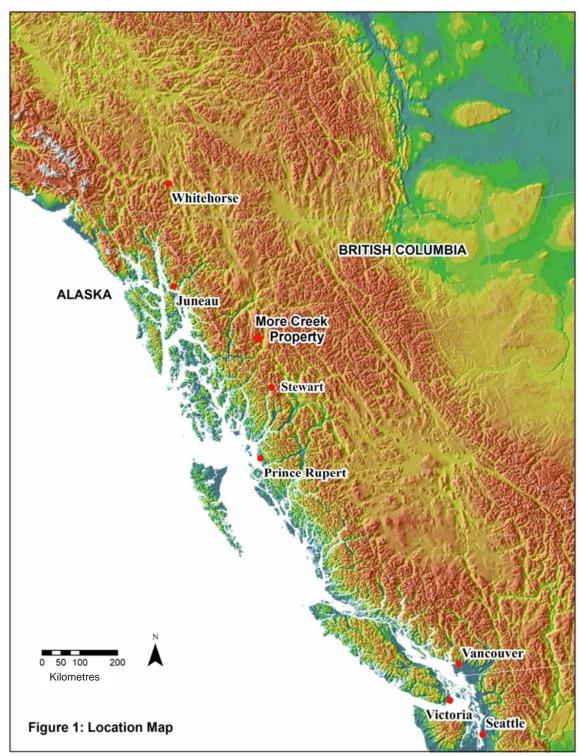


Figure 1. Map showing the location of the More Creek Property

3.0 EXPLORATION HISTORY

Recorded exploration work on the property began in 1988 when Valley Gold Ltd., Noranda Exploration Ltd., and Corona Corporation staked the Wad, Sinter and Bill claims. This area is now covered by the BTO claims in the More Creek property (Table 1). In 1988 the claims were staked to cover gossanous outcrop. That year, a program of prospecting and 134 geochemical samples indicated a geochemically anomalous alteration zone warranting further exploration (Bale and Day, 1989).

In 1990 Noranda Exploration Ltd. ran an extensive program on land currently making up much of the western portion of the current More Creek property. Noranda's 1990 program operated on the Wad, Sinter and Bill claims, as well as the Devil claims acquired by option from Santa Marina Gold Ltd.

The Devil property is now covered by portions of tenures 547087, 547088, 547089, 508338 and 547093. Prior to 1990 there had been no work on the Devil property. In 1990 a program of airborne geophysics, geological mapping and reconnaissance geochemistry was completed. The airborne geophysical program consisted of electro-magnetic and magnetic surveys. The geochemistry program included soil, silt, rock and pan sampling. Reconnaissance sampling identified a large area of anomalous copper, manganese, vanadium and zinc on the south side of More Creek, in the southeast portion of the claims. Grid sampling on the north side of More Creek identified a multi-element anomaly in the northwest corner of the claims (Baerg *et al*, 1991). Airborne magnetic data indicated that there is a major lithologic break along More Creek, with higher magnetic relief on the north side, suggesting the possibility of a higher volcanic component (Baerg, 1991).

The 1990 Noranda's Wad, Sinter and Bill program consisted of property wide geological mapping, prospecting, and geochemical sampling; including detailed grid work. The grid work consisted of a magnetometer survey, with rock and soil sampling. The results did not indicate significant gold anomalies, but did find anomalous mercury, arsenic and antimony along a 2 kilometre northwest trending fault trace (Grill and Savell, 1991). A single unreported drill hole was drilled at the prospect by Noranda; no results are known (Alldrick *et al.*, 2005). Grill and Savell (1991) suggested that the intense pyritization, silicification, and alteration with associated mercury, arsenic and antimony anomalies indicate potential for gold mineralization at depth.

Also in 1990, Stow Resources Ltd. conducted a reconnaissance exploration program on the Burr Property. The Burr Property is presently covered by tenure 508124 and the east half of tenure 508337. The program consisted of rock, soil and stream sampling as well as geological mapping and prospecting (Bobyn, 1990).

In 2003 Barrick Gold Inc. conducted a reconnaissance style program of stream silt geochemistry, prospecting, and mapping of selected targets on their MOR Property (Mann and Gale, 2004). The MOR 3 through 20 claims are presently covered by the BTO claims on the Galore Creek Mining Corporation's More Creek property. A major purpose of the 2003 program was to follow up on a British Columbia Geological Survey RGS silt sample with 6000 ppb gold. Barrick collected 17 silt and 14 rock samples, including samples at the Sinter and Logan Ridge showings. Low gold grades in silt and rock samples from the MOR claims resulted in effort being focused on the then contiguous RDN claims to the west (Mann and Gale, 2004).

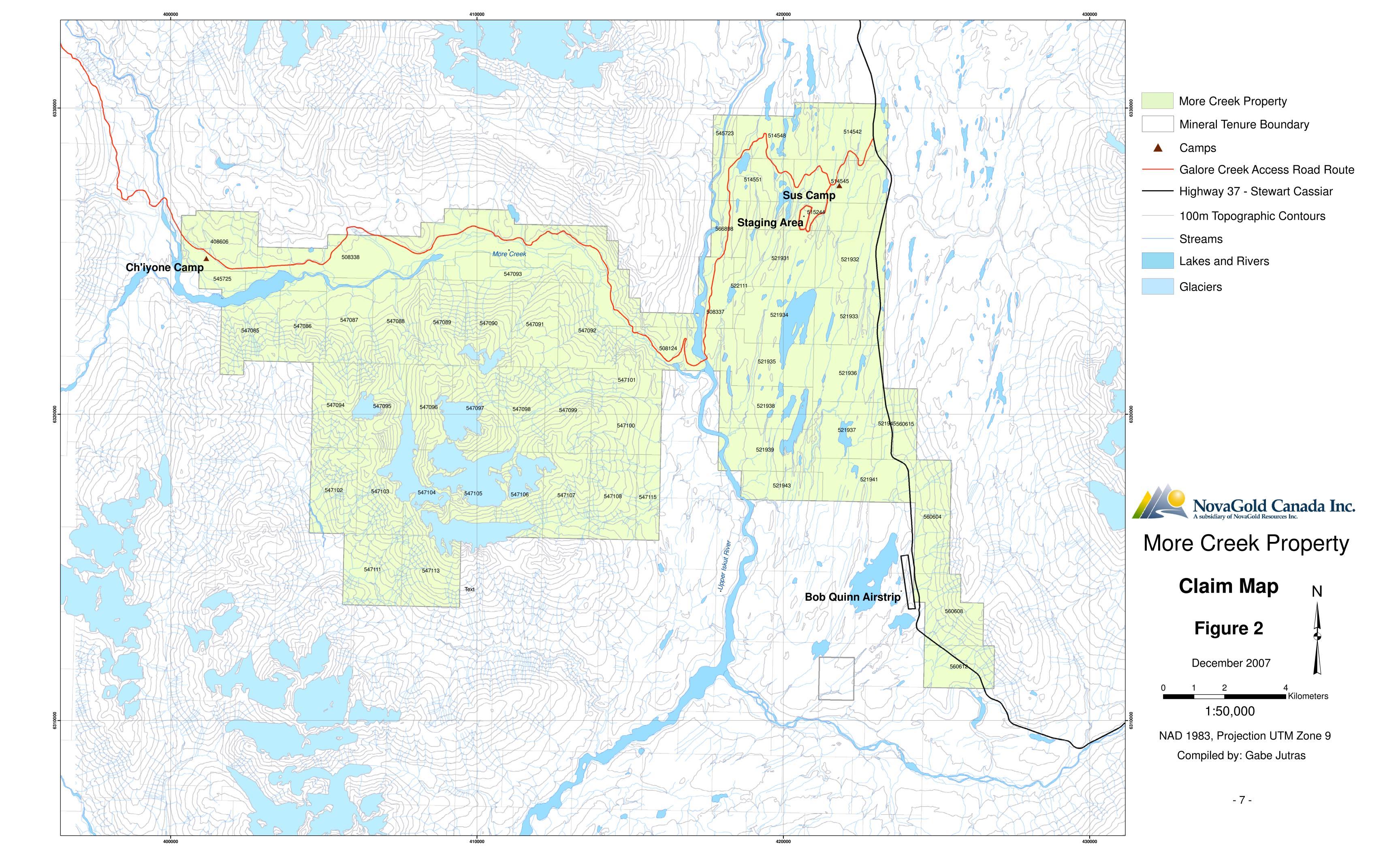
During 2004 and 2005, NovaGold Canada Inc. acquired mineral claims 408606, 508124, 508337, 508338, 514542, 514545, 514548, and 514551. In 2005, NovaGold hired Frontier Geosciences Inc. to conduct a seismic refraction survey at several proposed creek and river crossings along the Galore Creek access road route. The purpose of the survey was to determine the thicknesses and extent of overburden layering, and the depth and configuration of competent bedrock surface. The work was carried out as a segment of the evaluation of the Galore Creek access road route (Craig, 2006).

Field work on the More Creek property during the 2006 field season consisted of digital mapping and geotechnical drilling programs. The drilling was performed along the Galore Creek access road route at the Iskut River crossing on mineral claim 508124, and the Muskwie Creek crossing on mineral claim 508338. Digital mapping, consisting of lidar and digital photography, was conducted on mineral claims 408606, 508124, 508337, 508338, 521935,521936, 521937, 521938, 521941 and 521945 (Petsel and Wu, 2007).

In August 2007 NovaGold Resources Ltd. and Teck Cominco Ltd. established the Galore Creek Mining Corporation to develop the Galore Creek mine. On October 15, 2007 the More Creek property claims held by NovaGold Canada Inc. were transferred to the Galore Creek Mining Corporation.

4.0 LAND TENURE AND CLAIM STATUS

The More Creek property consists of 56 mineral claims totalling 22,725.36 hectares owned by the Galore Creek Mining Corporation. The claims are listed in Table 1 and displayed on a claim map in Figure 2. This report covers work completed on the More Creek property between November 21, 2006 and October 10, 2007 under BC Ministry of Forests and Range Special Use Permit S24637 and BC Ministry of Energy, Mines and Petroleum Resources mine permit number MX-1-687.


TABLE 1: Land Tenure and Claims Status

Tenure No.	Claim Name	Owner	Good To Date	Area (ha.)
408606	VIA 17	Galore Creek Mining Corp.	2009/dec/01	500
508124	CV 1	Galore Creek Mining Corp.	2009/dec/01	440.17
508337	CV 2	Galore Creek Mining Corp.	2009/dec/01	985.4798
508338	CV 3	Galore Creek Mining Corp.	2009/dec/01	1354.832
514542	THOMAS 1	Galore Creek Mining Corp.	2009/dec/01	421.877
514545	THOMAS 2	Galore Creek Mining Corp.	2009/dec/01	422.043
514548	THOMAS 3	Galore Creek Mining Corp.	2008/dec/01	421.895
514551	THOMAS 4	Galore Creek Mining Corp.	2008/dec/01	369.29
515244	ISKUT 1	Galore Creek Mining Corp.	2009/dec/01	422.157
521931	BQ 1	Galore Creek Mining Corp.	2009/dec/01	422.299
521932	BQ 2	Galore Creek Mining Corp.	2009/dec/01	422.295
521933	BQ 3	Galore Creek Mining Corp.	2009/dec/01	422.482
521934	BQ 4	Galore Creek Mining Corp.	2009/dec/01	440.088
521935	BQ 5	Galore Creek Mining Corp.	2009/dec/01	440.241
521936	BQ 6	Galore Creek Mining Corp.	2009/dec/01	422.668
521937	BQ 7	Galore Creek Mining Corp.	2009/dec/01	422.855
521938	BQ 8	Galore Creek Mining Corp.	2009/dec/01	440.388
521939	BQ 9	Galore Creek Mining Corp.	2009/dec/01	422.915
521941	BQ 10	Galore Creek Mining Corp.	2009/dec/01	440.652
521943	BQ 11	Galore Creek Mining Corp.	2009/dec/01	246.771
521945	BQ 12	Galore Creek Mining Corp.	2009/dec/01	88.089
522111	BQ 13	Galore Creek Mining Corp.	2009/dec/01	70.397
545723	THOMAS 5	Galore Creek Mining Corp.	2008/nov/22	87.8953
545725	CV 4	Galore Creek Mining Corp.	2009/dec/01	175.9993
547085	BTO 01	Galore Creek Mining Corp.	2009/dec/09	440.1768
547086	BTO 02	Galore Creek Mining Corp.	2009/dec/09	352.1113

NovaGold Canada Inc.

Totals:	56 Claims		Area:	22,725.36
566898	THOMAS 6	Galore Creek Mining Corp.	2008/sep/28	211.1012
560615	BQ 17	Galore Creek Mining Corp.	2009/dec/01	176.1681
560612	BQ 16	Galore Creek Mining Corp.	2009/dec/01	317.7117
560608	BQ 15	Galore Creek Mining Corp.	2009/dec/01	405.7895
560604	BQ 14	Galore Creek Mining Corp.	2009/dec/01	423.1134
547115	BTO 27	Galore Creek Mining Corp.	2009/dec/10	211.5211
547113	BTO 26	Galore Creek Mining Corp.	2009/dec/10	440.9843
547111	BTO 25	Galore Creek Mining Corp.	2009/dec/10	440.9764
547108	BTO 024	Galore Creek Mining Corp.	2009/dec/10	423.0539
547107	BTO 23	Galore Creek Mining Corp.	2009/dec/09	423.097
547106	BTO 22	Galore Creek Mining Corp.	2009/dec/09	423.1018
547105	BTO 21	Galore Creek Mining Corp.	2009/dec/09	423.102
547104	BTO 20	Galore Creek Mining Corp.	2009/dec/09	423.0805
547103	BTO 19	Galore Creek Mining Corp.	2009/dec/09	423.0746
547102	BTO 18	Galore Creek Mining Corp.	2009/dec/09	423.0759
547101	BTO 17	Galore Creek Mining Corp.	2009/dec/09	246.5536
547100	BTO 16	Galore Creek Mining Corp.	2009/dec/09	422.8065
547099	BTO 15	Galore Creek Mining Corp.	2009/dec/09	422.7944
547098	BTO 14	Galore Creek Mining Corp.	2009/dec/09	422.8018
547097	BTO 13	Galore Creek Mining Corp.	2009/dec/09	422.8057
547096	BTO 12	Galore Creek Mining Corp.	2009/dec/09	422.791
547095	BTO 11	Galore Creek Mining Corp.	2009/dec/09	422.7853
547094	BTO 10	Galore Creek Mining Corp.	2009/dec/09	422.7855
547093	BTO 09	Galore Creek Mining Corp.	2009/dec/09	299.1494
547092	BTO 08	Galore Creek Mining Corp.	2009/dec/09	422.5198
547091	BTO 07	Galore Creek Mining Corp.	2009/dec/09	422.5103
547090	BTO 06	Galore Creek Mining Corp.	2009/dec/09	422.5141
547089	BTO 05	Galore Creek Mining Corp.	2009/dec/09	422.5117
547088	BTO 04	Galore Creek Mining Corp.	2009/dec/09	422.5069
547087	BTO 03	Galore Creek Mining Corp.	2009/dec/09	422.5071

Note: Good to Dates indicated above are subject to the Government approval of Assessment Report filed under Event No. 4181168.

5.0 2007 SUMMARY OF WORK

The 2007 program consisted of geotechnical drilling, geochemical sampling, and geological mapping. Geotechnical drilling was conducted on mineral tenure 514545. The geological mapping and geochemical sampling took place on mineral tenures 514545, 408606, 508124, 508337, 508338, 514548, 514551, 545725, 547089, 547090, and 566898. The work was carried out under BC Ministry of Energy, Mines and Petroleum Resources mine permit number MX-1-687 and BC Ministry of Forests and Range Special Use Permit number S24637.

On November 22, 2007, under event 4181168, assessment work totalling \$160,000 was applied to the claims listed in Table 1. The expiry dates listed are subject to government approval of this assessment report. The expenditures between November 21, 2006 and October 10, 2007 are detailed in Appendix II. This section outlines the work completed during this period. Further details of the geotechnical drilling program are discussed in section 7.0. Details on the geochemical sampling and mapping programs are given in sections 8.0 and 9.0, respectively.

Geotechnical drilling and water chemistry testing on the More Creek property commenced on November 21, 2006 and ended on May 11, 2007 (drilling itself ended on May 8, 2007). Two drill holes, totalling 243.8 metres, were drilled during this period. Drilling was performed to develop water wells for Sus Camp, located at kilometre 3 on the Galore Creek access road route, on mineral tenure 514545 (Figure 2). The geotechnical drilling program was supervised by AMEC Earth & Environmental and Emerson Groundwater Consultants Inc. The geotechnical drilling was carried out by Double D Drilling Ltd. Appendix IV provides a drill hole location map, drill logs and water chemistry results for the drilling program.

The ARD geochemical sampling program, conducted between June 2nd, 2007 and October 10th, 2007 sampled drill cuttings and blasted rock produced during road construction. Sampling was conducted for exploration purposes, as well as to identify rock which future road construction spoils could potentially generate acid drainage. Geologists visited road headings as road construction progressed in order to continually sample freshly broken rock. 168 samples were collected and underwent Acid Base Accounting (ABA). Most samples were also analysed by ICP. An additional 3 samples from along the road route were collected specifically for exploration purposes and analysed by ICP. Rock found to be potentially acid generating was isolated in waste piles for continued monitoring. Appendix V gives the geochemical sample descriptions, a geochemical sample locations map, and the analytical geochemistry certificates.

The geological mapping program carried out between August 18th, 2007 and August 21st, 2007 focused on the Galore Creek access road route between kilometre 32 and kilometre 37 (in the vicinity of the Ch'iyone Camp) and the Sinter prospect. The mapping in the vicinity of the Ch'iyone Camp was conducted on mineral tenures 408606, 545725, and 508338 between August 18th and 20th. One geochemical sample was collected from this area. The Sinter prospect mapping was conducted on mineral tenures 547089 and 547090. Five geochemical samples were collected on August 21st. Analytical results from the geochemical sampling are given with the results from the ARD sampling in Appendix V. Geological maps are presented in Appendix VI.

6.0 GEOLOGY

6.1 Regional Geology

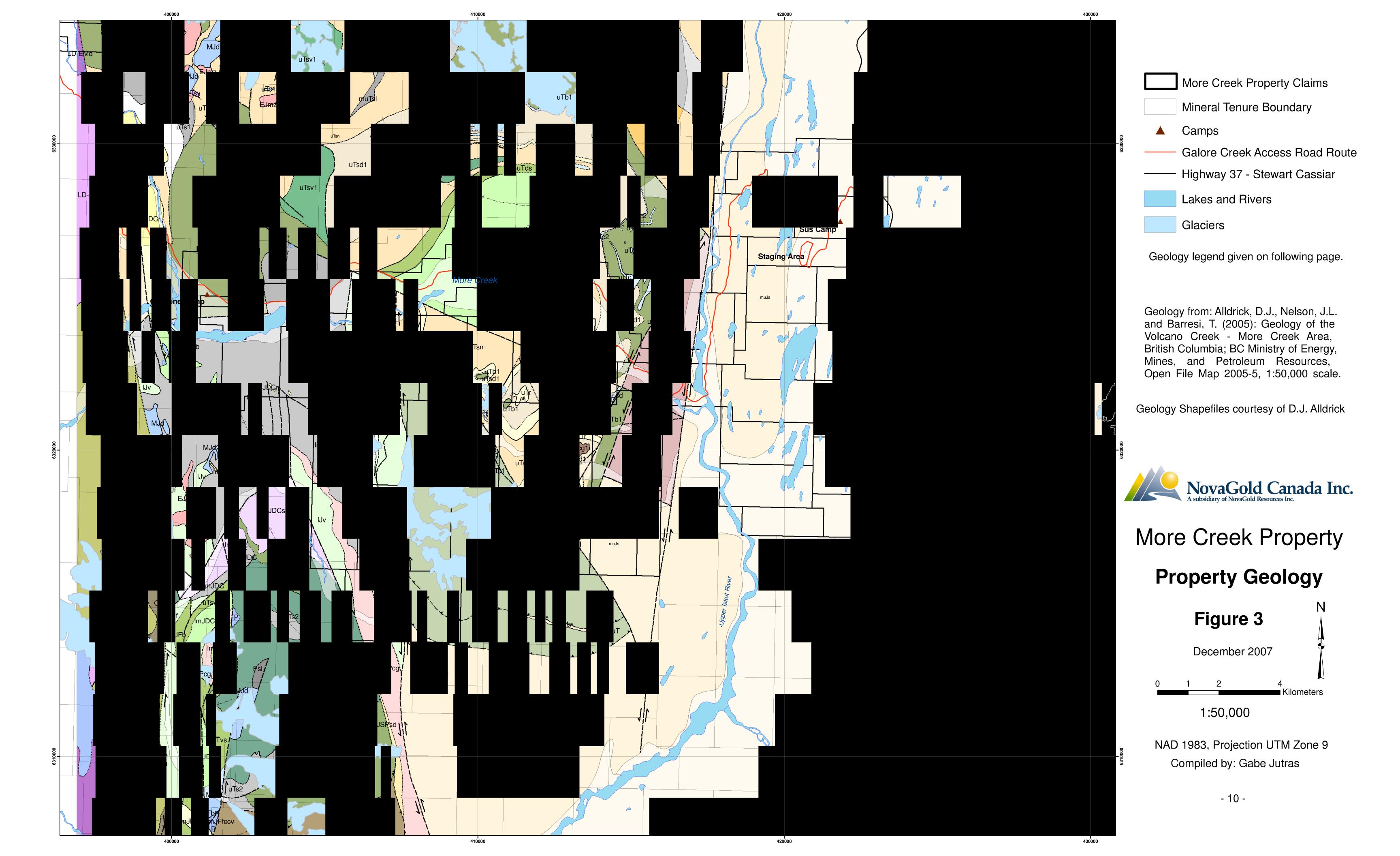
The following regional geology of the More Creek area is paraphrased from Logan (2000):

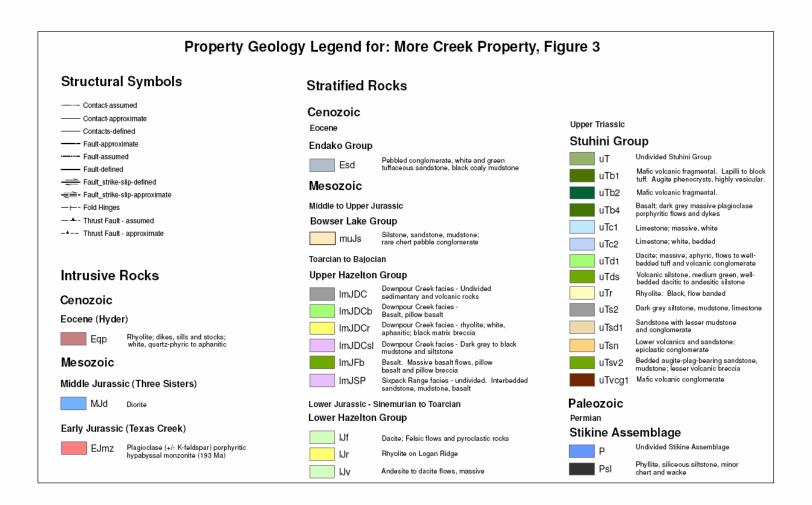
NovaGold Canada Inc. 2007 Geotechnical Drilling, Geochemical Sampling and Geological

Mapping Assessment Report on the More Creek Property

The More Creek area is located along the western margin of the Intermontane Belt, adjacent to the high-relief mountains of the Coast Belt. The area is mainly underlain by rocks of the Stikine terrane, which is composed of well stratified Middle Paleozoic to Mesozoic sedimentary rocks, and volcanic and comagmatic plutonic rocks of probable island arc affinity. The Paleozoic Stikine assemblage, the Late Triassic Stuhini Group and the Early Jurassic Hazelton Group are overlapped by the Middle Jurassic to Early Tertiary successor-basin sediments of the Bowser Lake and Sustut Groups, Late Cretaceous to Tertiary continental volcanic rocks of the Sloko Group, and Late Tertiary to Recent bimodal shield volcanism of the Edziza and Spectrum ranges.

At least 7 discrete plutonic episodes can be recognized in the region: Late Devonian, Early Mississippian, Middle (?) to Late Triassic, Late Triassic to Early Jurassic, late Early Jurassic, Middle Jurassic and Eocene. In northwestern British Columbia, the Late Triassic to Early Jurassic Copper Mountain Plutonic Suite consists of numerous small alkaline and associated ultramafic bodies that occupy a north-northwest-trending belt along the east side of the Coast Range. They lie within the Stikine terrane and include the Bronson, Zippa Mountain and Galore Creek intrusions.


6.2 Property Geology


The property geology is dominated by the Hazelton, Stuhini and Bowser Lake Groups (Figure 3). The eastern claims in the claim group lie within the Bowser Basin. The margin of the basin lies just to the west of the upper Iskut River. West of the Iskut River, outcrop is dominated by the Stuhini and Hazelton Groups. The regional scale Forrest Kerr fault lies just 2 kilometres west of the claim group. The Stikine Assemblage is the basement of Stikinia; it is exposed just west of the claims, on the west side of the Forrest Kerr fault. The Triassic Pass fault runs north-south through the western portion of the claim group, separating rocks of the Hazelton group to the west from the Stuhini group to the east (Alldrick *et al.*, 2005).

In the claim area the Late Triassic Stuhini group is represented by: volcanic sandstone with lesser mudstone and conglomerate, limestone, vesicular mafic volcanic fragmental, black flow-banded pyritic rhyolite, and massive aphyric dacite (Alldrick *et al.*, 2005). The geochemistry of the Stuhini Group volcanic rock has a strong arc signature. The Stuhini Group has been inferred to represent a Carnian to Norian age arc that built upon the basement Paleozoic Stikine Assemblage (Logan *et al.*, 2000). The Sinter prospect and Southmore showing are both found in the pyritic, structurally disrupted, flow-banded rhyolite of the Stuhini group (Alldrick *et al.*, 2005).

The Early Jurassic Lower Hazelton group is represented in the claims by a fault bounded unit of massive andesite to dacite flows, with lesser maroon-weathering volcanic conglomerate and breccia of Sinemurian to Toarcian age. The Logan Ridge showing is a resistant ridge of gossanous rhyolite of the Lower Hazelton group (Alldrick *et al.*, 2005).

Alldrick *et al.* (2005) have mapped five different Upper Hazelton outcrop areas as distinct Eskay Rift facies packages due significant differences in stratigraphy and thickness between areas. Both the Sixpack Range facies and the Downpour Creek facies are found within the claim group. The Sixpack Range facies occurs in the claim group as a unit of polymictic conglomerate with subordinate sedimentary breccia representing a more proximal, rift margin scarp deposit. It is interpreted to be a basal conglomerate for the finer grained Downpour Creek facies. The Downpour Creek facies is dominated by fine grained clastics; representing distal, basinal sedimentation prospective for exhalative sulphide accumulation and preservation (Alldrick *et al.*, 2005). Rock of this facies dominates the geology of claims: 547084, 547085, 547086, the western portion of 548087, and parts of 547102 and 547103.

The Eskay Rift resulted from an extensional regime in the Early to Middle Jurassic. Orientations of dykes and feeder zones suggest east-west extension of the north-south trending regional scale structure. The extensional regime of the Toarcian to Bathonian age gave way to sinistral displacement imposed on the pre-existing rift weakness in the Middle to Late Jurassic (Alldrick *et al.*, 2005). Sinistral displacement on the Forrest Kerr fault has been dated to 172 to 167 Ma by Uranium-Lead dating of syn and post kinematic plutons. It has an east-side-down throw of greater than 2 kilometres, and a post mid Jurassic sinistral displacement of greater than 2.5 kilometres. This displacement has resulted in the Stikine Assemblage outcropping to the west of the fault, with the Hazelton and Stuhini Groups exposed on the east side of the fault (Alldrick *et al.*, 2005).

The Middle to Late Jurassic Bowser Lake Group overlaps the older volcanic sequences. It is made up of turbiditic shale, siltstone, greywacke, fine to medium grained sandstone and rare conglomerate. The contact with the underlying Upper Hazelton Group is gradational (Alldrick *et al.*, 2005). South of More Creek the rocks of the Stuhini Group are thrust over, and in sinistral fault contact with the Bowser Lake Group. Eocene rhyolite is exposed along the faulted contact immediately north and south of More Creek. Intrusives of the Early Jurassic Texas Creek and the Middle Jurassic Three Sisters Plutonic Suite are found just west of the claims, along the Forrest Kerr fault (Alldrick *et al.*, 2005).

7.0 GEOTECHNICAL DRILLING

Geotechnical drilling and water chemistry testing on the More Creek property commenced on November 21, 2006 and ended on May 11, 2007 (drilling itself ended on May 8, 2007). Two drill holes, totalling 243.8 metres, with 15 metres of overburden and 228.8 metres of bedrock, were drilled during this period. Drilling was conducted at kilometre 3 along the Galore Creek access road route, at Sus Camp, on mineral claim 514545. Details for the geotechnical drill holes are given in Table 2.

TABLE 2: Drill Hole Collar Information

		UTM	UTM	Elevation	Dip	Total Hole	Depth to
Hole ID	Location	East	North		(°)	Length (m)	Bedrock (m)
DH-1	Sus Camp	421711	6327617	630m	-90	123.4	10
DH-2	Sus Camp	421667	6327494	630m	-90	120.4	5

Double D Drilling Ltd. provided a Foremost DR-24 air rotary drill rig and drilled the two vertical geotechnical drill holes. Supervision and logging of drill cuttings was provided by Emerson Groundwater Consultants Inc. for DH-1, and by AMEC Earth and Environment for DH-2. Both holes are collared at 630 metres elevation. No dip tests were performed for these drill holes. The holes were located using a handheld GPS unit (accuracy of \pm 10 m) and were not surveyed using a total station. The drill hole diameter was 150 mm. Analytical water chemistry work was conducted at ALS Environmental. The drill cuttings were not retained for storage as the cuttings were not assayed. The water samples were not retained for storage either.

For the drill holes, overburden and bedrock were logged in addition to recording details on structural geology and groundwater. Water samples were taken from each drill hole. The drill logs and analytical water chemistry results are provided in Appendix IV. Both drill holes were developed as water wells to service the Sus Camp. When the drilling was complete the drill rig was removed from the site, and the area surrounding the wells was reclaimed.

DH-1 was drilled at Sus Camp to provide a groundwater source for sanitary and potable use, as well as fire protection. It was drilled to a depth of 123.4 metres. Overburden consisted of a stiff, brown till. Bedrock was encountered at a depth of 10 metres. Lithology was logged as medium black. It is likely that this is the same lithology as the nearby DH-2 sandstone. No lithology contacts were noted. Water bearing fractures were encountered at 67.0, 94.2 and 115.8 metres.

DH-2 was drilled at Sus Camp to improve the quality and quantity of camp water supply. DH-2 was drilled to a depth of 120.4 metres. Overburden consisted of moist, poorly sorted, fine to coarse grained brown sand, with gravel and some silt. Bedrock was encountered at 5 metres. The bedrock has been logged as sandstone. No lithology contacts were noted in the drill log. Saturated fracture zones were intersected at 19.8, 40.5, and 86.9 metres.

8.0 GEOCHEMICAL SAMPLING

The geochemical sampling program was conducted to identify exploration targets along the Galore Creek access road route as well as to identify rock, which when disturbed by road building processes, could potentially generate acid rock drainage. Sampling occurred on tenures 408606, 508124, 508337, 508338, 514548, 514551 and 566898 between June 2nd, 2007 and October 10th, 2007. Samples were collected from blasting-hole drill cuttings, freshly blasted rock, and in-place rock. The sampling was limited to the road route corridor. The road route east of the Iskut River crossing is road accessible, and sampling was conducted using a truck for access. The area of the property west of the Iskut River was accessible only by helicopter. Geologists were flown out to road construction headings in order to take samples as road construction progressed.

Sample locations were determined using handheld GPS units. For each sample, the location, sampler, and date were recorded in addition to notes on the lithology, alteration, and the presence of visible sulphides. Samples were gathered at Sus Camp and shipped to Assayers Canada and SGS Labs in Vancouver for analytical chemistry work. Acid Base Accounting (ABA) was performed on every sample (168 samples) and 33 element ICP analysis was performed on most samples. ABA analysis provided a ratio of neutralizing potential to acid potential (NP/AP). Samples found to have an NP/AP of less than 3 were considered potentially acid generating. Rock found to be potentially acid generating was isolated in waste piles for continued monitoring. ICP was conducted on the samples to provide exploration data, as well as to analyse metal leaching potential. Acid potential and total sulphur analyses in the ABA results have also been used for exploration purposes. In addition to the 168 ARD samples, 3 more samples were collected along the road route specifically for exploration purposes. These samples were analysed by ICP. ICP and ABA analytical result certificates are presented in Appendix V.

Six geochemical samples were also collected during field mapping on tenures 508338 (1 sample; August 20th, 2007), 547089 (4 samples; August 21st, 2007) and 547090 (1 sample; August 21st, 2007). These samples underwent ICP analysis at ALS Chemex in Vancouver.

For the water chemistry sampling (tenure 514545), two samples were collected from the two geotechnical drill holes drilled near Sus camp and analysed for 19 elements (both total and dissolved) plus anions and nutrients. Physical property tests were also performed. The results from the water chemistry sampling are presented in Appendix IV.

9.0 GEOLOGICAL MAPPING

Geological mapping, conducted between August 18th and August 21st, 2007, focused on the Galore Creek access road route corridor and the Sinter showing. Mapping control was established by the use of handheld GPS's (+/- 10m) and the use of aerial photos. The road route mapping was conducted in the area of the Ch'iyone Camp, on the western side of the property, on mineral tenures 408606, 545725 and 508338. The outcrop in this area is dominated by volcanic and sedimentary rock of the Stuhini Group. It is just north of a contact with the Downpour Creek facies of the Upper Hazelton Group. In this area, More Creek flows along the contact, and the actual contact is obscured by fluvial sediment. The Sinter prospect is a pyritic stockwork with anomalous mercury, arsenic and antimony that has been exposed by recent glacial retreat. The prospect is south of More Creek in the southeast corner of mineral tenure 547089 and crosses over into tenure 547090.

Volcanic and sedimentary lithologies dominate the outcrop mapped along the Galore Creek access road route in the Ch'iyone camp vicinity. Interbedded dark grey siltstone and sandstone is common, with rare pebble conglomerate. Sandstone and siltstone is typically weakly metamorphosed. The fine grained units are commonly calcareous. Quartz-carbonate veining is common. The rock is metamorphosed to lower greenschist facies. Pyrite and limonite are common on fractures. Contact measurements could not be taken due to the broken nature of the rock. A 2.5 metre wide steeply dipping fault, striking northwest, was mapped near kilometre 33 on the Galore Creek access road route. A 30 centimetre zone of fault gouge is found at the centre, with fault breccia on either side. Geochemical samples taken in the surrounding area were found to have anomalous copper and arsenic. A geological map of the Ch'iyone Camp area is presented in Appendix VI.

The Sinter prospect is a 50 metre wide zone trending northeast with a strike length of at least 300 metres. It is a zone of strong pyritic stockwork. Veinlets, pods, and fracture fillings of pyrite-sericite-jarosite-quartz-carbonate are found in a moderately to strongly sericite altered host rhyolite with disseminated pyrite. Rare cinnabar and orpiment was observed. A discrete zone of matrix supported breccia is found within the larger stockwork. The west side of the showing is bounded by a steeply northeast dipping shear zone. A geological map of the Sinter prospect is presented in Appendix VI.

10.0 DISCUSSION AND CONCLUSIONS

10.1 Geotechnical Drilling

Between November 21, 2006 and May 8, 2007 a total of 243.8 metres were drilled on the More Creek property. The drilling was performed at the Sus Camp, on mineral tenure 514545. DH-1 drilled through 10 metres of till and was completed to a depth of 123.4 metres drilling through sandstone bedrock. DH-2 reached sandstone after 5 metres of overburden, and was completed to a depth of 120.4 metres. No lithological contacts were observed in either drill hole. Water bearing fractures were encountered at 67.0, 94.2 and 115.8 metres in DH-1, and at 19.8, 40.5 and 86.9 metres in DH-2. DH-1 and DH-2 have been developed as wells to provide groundwater to Sus Camp. Water samples were analyzed for dissolved metals and were not found to have results significant to mineral exploration.

10.2 Geochemical Sampling

The geochemical sampling program, conducted between June 2nd, 2007 and October 10th, 2007 was mostly restricted to the Galore Creek access road route, with a few samples also collected during mapping at the Sinter prospect. During the season, 168 ARD samples were collected. An additional 3 samples were collected along the road route specifically for exploration purposes and were assayed by ICP. Five exploration samples were taken at the Sinter prospect whilst mapping and 1 additional exploration sample was collected while mapping along the road route in the vicinity of Ch'iyone Camp. All ARD samples underwent ABA analysis and most were also analyzed by ICP. The exploration samples were analyzed by ICP only. 53 of the samples taken along the Galore Creek access road route within the More Creek property were found to be potentially acid generating using the criteria discussed in section 8.0. Samples found to be potentially acid generating were not used for road construction, and were isolated in waste piles for monitoring.

Geochemical sampling along the road route was intended to identify potentially acid generating rock, as well as identify exploration targets. As road work progressed, samples of freshly broken rock and drill cuttings were collected. A number of samples taken near kilometre 33 on the Galore Creek access road route returned anomalous results. Sample A0416 had anomalous arsenic and silver, and samples A0414, A0420, A0417, and A0419 have greater than 100 ppm Cu. Mapping in this area found a 2.5 metre wide fault with gouge, fault breccia, and pseudotachylite. The surrounding rock is strongly bleached. Quartz and carbonate veining is common in and around the fault. Geochemical samples collected during mapping activities at the Sinter prospect returned gold up to 57 ppb, copper up to 70 ppm, mercury up to 16 ppm, arsenic up to 653 ppm, and antimony up to 102 ppb.

10.3 Geological Mapping

The geological mapping program, conducted between August 18th and August 21st, focused on mapping along the Galore Creek access road route in the vicinity of the Ch'iyone Camp (mineral tenures 408606, 545725 and 508338), and at the Sinter prospect on mineral tenures 547089 and 547089. Lithology, structure, alteration and mineralization of outcrop and road cut exposures were detailed.

Volcanic and sedimentary lithologies of the Stuhini Group are dominant north of More Creek near the Ch'iyone Camp. The fault contact with the prospective Downpour Creek facies is concealed beneath fluvial sediment somewhere in this area. Interbedded dark grey siltstone and sandstone are common in the Ch'iyone Camp area. A major northwest trending fault was mapped at kilometre 33, with associated geochemical anomalies. Quartz-carbonate veining is common in the area, but little sulphide mineralization was observed. The dominant volcanic and sedimentary lithologies have been weakly metamorphosed, up to lower greenschist facies.

Mapping at the Sinter prospect documented a pyritic stockwork and breccia with associated anomalous mercury, arsenic and antimony. Strongly sericite altered rhyolite hosts a stockwork of pyrite-sericite-jarosite-quartz-carbonate, with rare cinnabar and orpiment. The prospect is a 50 metre wide zone trending northeast with a strike length of at least 300 metres.

10.4 Exploration Potential

The exploration potential of the More Creek property can be divided into the general prospectivity of the Upper Hazelton Downpour Creek facies found in the western claims of the property, and the gossanous Sinter prospect and Logan Ridge and Southmore showings.

Claims covering areas underlain by the Downpour Creek facies of the Eskay equivilant Upper Hazelton group were not investigated during the 2007 field program. This facies, as mapped by Alldrick *et al.* (2005) is found in mineral claims BTO 01, 02, 03, 10, 18, 19, and 25. The fine-grained sedimentary units that make up this facies are thought to have been deposited into the Eskay Rift, and are prospective for distal accumulation and preservation of exhalative sulphide deposits (Alldrick *et al.*, 2005). Historical work has not focused on the area covered by these claims.

Mapping and geochemical sampling along the road route identified the kilometre 33 area as worthy of further investigation. Analytical geochemistry results demonstrate the area to have weakly anomalous copper, arsenic and silver. Mapping along the road route found brecciation and faulting of weakly metamorphosed fine grained sedimentary lithologies. The area is thought to be just north of a contact with the Downpour Creek facies. The 2007 program was limited to mapping and sampling along the road route corridor. Soil sampling, as well as a search for further outcrop concealed in the dense forest beyond the road route through-fare may prove worthwhile.

The gossanous Logan Ridge and Southmore showings were also not investigated during the 2007 field season. The Logan Ridge showing is a resistant gossanous rhyolite forming a rugged ridge crest. The 2003 Barrick Gold program sampled the Logan Ridge showing and found up to 44960 ppm Cu, 7.7 ppm Ag, and 236.2 ppm As. No other exploration results are known.

Surface samples have been collected from the Sinter prospect by a number of campaigns, and have demonstrated the prospect to have anomalous mercury, arsenic and antimony on surface. A single unreported drill hole was drilled at the prospect by Noranda, with no known results. The geochemical anomaly and intense alteration may indicate potential for gold mineralization at depth.

11.0 RECOMMENDATIONS

It is recommended that road sampling for both ARD identification and exploration potential be continued, should the Galore Creek access road construction resume. Easier access through the More Creek claims will make field mapping and geochemical sampling easier, quicker and less costly in the future.

Further investigation of the anomalous area surrounding kilometre 33 should occur as well as an investigation of the geochemical anomaly at Logan Ridge. More work is warranted in the Sinter area.

A future budget of \$86,000 will allow for the ARD sampling to continue and well as the recommended exploration mapping.

APPENDIX I

REFERENCES

REFERENCES

- Alldrick, D.J., Nelson, J.L., and Barresi, T. (2005). Geology and Mineral Occurances of the Upper Iskut River Area: Tracking the Eskay Rift through Northern British Columbia (Telegraph Creek NTS 104G/1,2; Iskut River NTS 104 B/9, 10, 15, 16), Geological Fieldwork 2004, British Columbia Geological Survey, Paper 2005-1.
- Alldrick, D.J., Nelson, J.L., and Barresi, T. (2005). Geology of the Volcano Creek More Creek Area, British Columbia; BC Ministry of Energy, Mines, and Petroleum Resources, Open File Map 2005-5, 1:50,000 scale.
- Anderson, R.G. and Thorkelson, D.J. (1990). Mesozoic stratigraphy and setting for some mineral deposits in Iskut River map area, Northwestern British Columbia, in Current Research, Part E, Geological Survey of Canada, Paper 90-1 E, p.131-139.
- Baerg, R. (1991). Geophysical Assessment Report on the Devil 3, and More 1 and 2 claims, for Noranda Exploration Company Ltd., May 1991. AR #21348.
- Baerg, R., Bradish, L., and Wong, T. (1991). Geological, Geochemical, Geophysical Report on the Devil Property (Devil 1-4 claims), for Noranda Exploration Company Ltd., January 1991. AR #21087.
- Bale, W.C., Day, R.C. (1989). Prospecting Assessment Report on the Wad 1 2, Sinter 1 -2, and Bill 2 Mineral Claims, for Valley Gold Ltd., Noranda, and Corona Corporation, October 1989. AR #19216.
- Bobyn, M. (1990). Assessment report on geological mapping, prospecting, rock, soil and stream sampling on the Burr 1-4 claim group, for Stow Resources Ltd., December 1990. AR #20593.
- Bessler, J.U. (2006). Well #1, Galore Filter Plant, for Emerson Groundwater Consultants Inc., *NovaGold Internal Report*.
- BGC Engineering Inc. (2006). Geotechnical Investigations for Select Crossings on the Galore Creek Access Road, for McElhanney Consulting Services Inc., *NovaGold Internal Report*.
- Craig, C.P. (2006). Seismic Refraction Assessment Report on the More Creek Property, for NovaGold Canada Inc., June 2006. AR #28423
- Green, S. (2007). Well #2 Completion and Testing Report, Km 3 Camp, Galore Creek Project, for AMEC Earth and Environmental., June 2007. *NovaGold Internal Report*.
- Grill E., and Savell, M. (1991). Geological, Geochemical & Geophysical Report on the Wad 1 & 2, Sinter 1 & 2, Bill 2 Mineral Claims, More Creek Property, for Noranda Exploration Company Ltd. April 1991. AR #21311.
- Logan, J.M., Drobe, J.R. and McClelland, W.C. (2000). Geology of the Forrest Kerr Mess Creek Area, Northwestern British Columbia (104B/10, 15 & 104G/2 & 7W). British Columbia Ministry of Energy and Mines, Bulletin 104, 164 pages.
- Mann, R.K., and Gale, D.F.G., (2004). 2003 Assessment Report on the RDN 1-18 and MOR 1-16, 18 Claims, for Rimfire Minerals Corporation and Barrick Gold Inc., March 2004. AR #27376.
- Petsel, S.A., and Wu, S.W.M. (2007). 2006 Geotechnical Drilling Assessment Report on the More Creek Property, for NovaGold Canada Inc. January 2007. AR #28791.

APPENDIX II

STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURES

EXPENSE	COST
Geotechnical Drilling	
Double D Drilling - DH1	
set up and tear down charge	\$1,000.00
8 inch surface casing	\$1,104.00
6 inch overlap casing	\$570.00
6 inch cased drill hole	\$1,288.00
6 inch open hole with plastic liner supplied and installed	\$17,760.00
Camp Costs	\$2,164.80
Emerson Groundwater Consultants	
Personnel	\$7,200.00
Camp Costs	\$1,082.40
ALS Lab (Analysis) - 1 sample File: L460474	\$307.40
Double D Drilling - DH2	
Mob and demob	\$3,000.00
Drill and install 8 inch surface casing	\$736.00
Install 6 inch overlap	\$380.00
Drill and install 6 inch casing	\$332.10
Open hole in bedrock c/w liner	\$17,490.60
Camp Costs	\$3,788.40
AMEC Earth & Environmental	
Personnel	\$12,576.00
Camp Costs	\$2,164.80
ALS Lab (Analysis) - 1 sample File: L504714	\$590.00
SUBTOTAL	\$73,534.50

Drilling occurred between November 21st, 2006 and May 8th, 2007

Drilling period for DH-1 (not including water testing): Nov 21 - 24, 2006: 123.40m drilled Drilling period for DH-2 (not including water testing): May 6 - 8, 2007: 120.40m drilled

EXPENSE	Days Worked	COST
Geochemical Sampling		
Geologists		
Mark Williams		
6/2/07, 6/5/07, 6/7/07, 6/8/07, 6/10/07, 6/13/07 6/3/07 (1/2 day), 6/4/07 (1/2 day), 6/9/07 (1/2 day), 6/12/07 (1/2 day)	8	
Rex Turna		
6/12/07 (1/2 day)	0.5	
Danette Schwab		
6/16/07, 6/18/07, 6/21/07 6/21/07 (1/2 day), 6/15/07 (1/2 day), 6/17/07 (1/2 day), 6/19/07 (1/2 day)	5	
Gabe Jutras		
6/21/07, 6/25/07, 6/26/07 6/24/07 (1/2 day)	3.5	
Ruby Yan		
8/27/07 (1/2 day)	0.5	
Mark King		
9/14/07, 10/10/07	2.5	
9/13/07 (1/2 day)		
Travis Murphy		
9/30/07 9/25/07 (1/2 day), 9/28/07 (1/2 day)	2	
Pay	•	
Geologists		\$6,378.05
Junior Geologists		\$1,225.13
Camp Costs		\$3,968.80
Heli Time		\$14,580.00
Consulting Geologist		
Milan Butorac		
7/22/07, 7/26/07, 7/27/07, 7/28/07, 8/1/07, 8/11/07, 8/13/07, 8/14/07, 8/18/07 7/21/07 (1/2 day), 7/25/07 (1/2 day), 8/2/07 (1/2 day), 8/19/07 (1/2 day), 8/21/07 (1/2 day), 9/3/07 (1/2 day)	12	

Pay	\$7,800.00
Camp Costs	\$2,164.80
Heli Time	\$8,100.00
Assaying - 167 samples	\$17,760.88
SUBTOTAL	\$61,977.66

EXPENSE	Days Worked	COST
Mapping		
Geologists		
Danette Schwab		
8/20/07 (prep), 8/21/07 (field)	2	
Scott Close		
8/21/07 (field), 9/1/08 (map compilation after mapping)	2	
Crystal McConeghy		
8/18/07 (prep), 8/19/07 (field), 8/20/07 (field)	3	
Sarah Henderson		
8/18/07 (prep), 8/19/07 (field), 8/20/07 (field)		
Field Assistant	3	
Lester Dennis		
8/20/07 (field)	1	
Pay	·	
Geologists		\$1,484.04
Junior Geologists		\$1,576.20
Field Assistant		\$200.15
Camp Costs		\$1,804.00
Heli Time		\$4,050.00
Assaying - 9 samples (6 samples collected while mapping + 3 additional samples taken of	during ARD sampling)	\$227.11
SUBTOTAL	. 5/	\$9,341.50

Report Writing	\$2,450.00
Management Fee (10%)	\$14,730.37
TOTAL COST	\$162,034.03

EXPENSE	Rate
Camp Costs	\$180.40 per person per day
Helicopter Rate	\$1,350.00 per hour*

^{*} The helicopter rate is a general hourly rate and does not differentiate between the use of a Bell 205 or a Bell 206 helicopter.

APPENDIX III

STATEMENTS OF QUALIFICATION

GEOLOGIST'S CERTIFICATE

- l, Scott Alan Petsel, of 10619 Horizon Drive, Juneau, Alaska, 99801, USA, DO HEREBEY CERTIFY THAT:
 - 1) I am a geologist in the minerals exploration industry employed by NovaGold Resources Inc., 2300-200 Granville Street, Vancouver, B.C., V6C 1S4.
 - I am a 1987 graduate of the Fort Lewis College, Durango, Colorado, USA with a Bachelor of Science in Geology.
 - 3) I have practiced my profession with various mining companies in Colorado, Arizona, Alaska, and Nevada in the United States, internationally in the Philippines, Mexico, Russia and Canada (Ontario and British Columbia) for 18 years.
 - 4) I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
 - 5) I am a Certified Professional Geologist (CPG 10071), as certified by the American Institute of Professional Geologists (AIPG).
 - 6) I have no interest in the property herein.

DATED at Vancouver, British Columbia, Canada this 28 day of January 2008.

Scott Alan Petsel

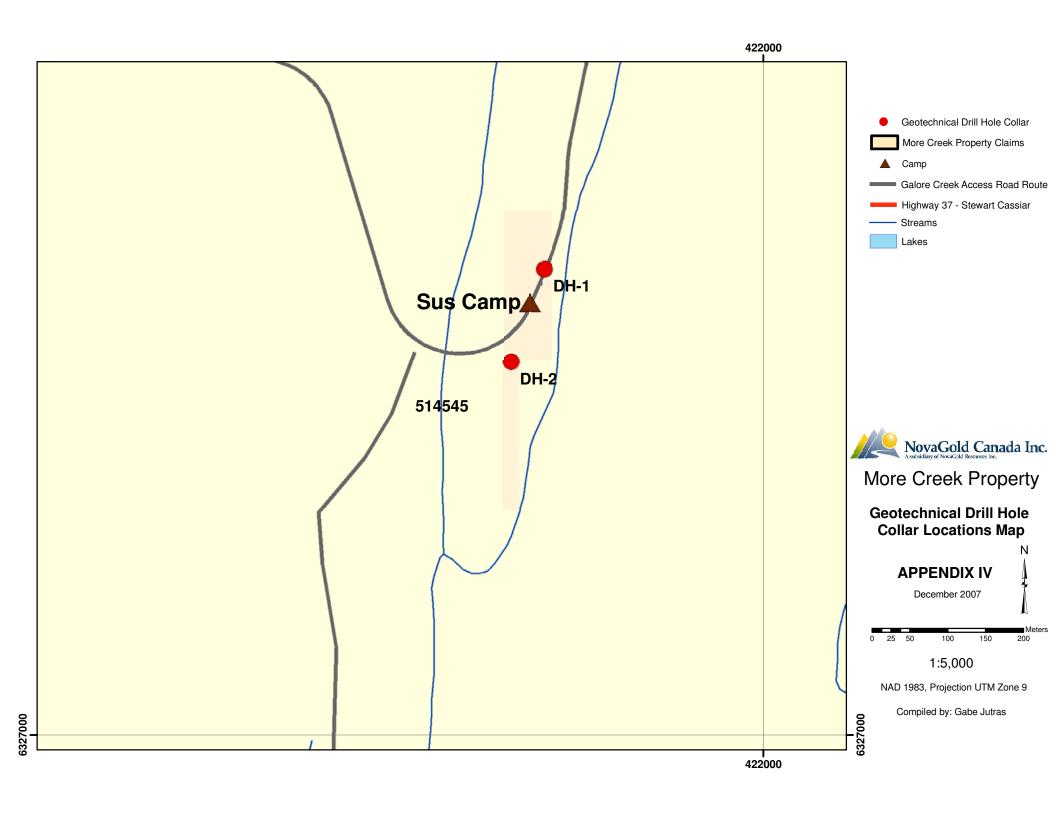
GEOLOGIST'S CERTIFICATE

- 1, Gabe Jutras, of 2549 Cambridge St, Vancouver, British Columbia, V5K 1L3, Canada, DO HEREBEY CERTIFY THAT:
 - 1) I am a geologist in the minerals exploration industry employed by NovaGold Resources Inc., 2300-200 Granville Street, Vancouver, B.C., V6C 1S4.
 - 2) 1 am a 2007 graduate of the University of British Columbia with a Bachelor of Science in Earth and Ocean Science.
 - 3) I have practiced my profession with mining companies in British Columbia and the Yukon Territory for one year.
 - 4) I have no interest in the property herein.

DATED at Vancouver, British Columbia, Canada this ______ day of December 2007.

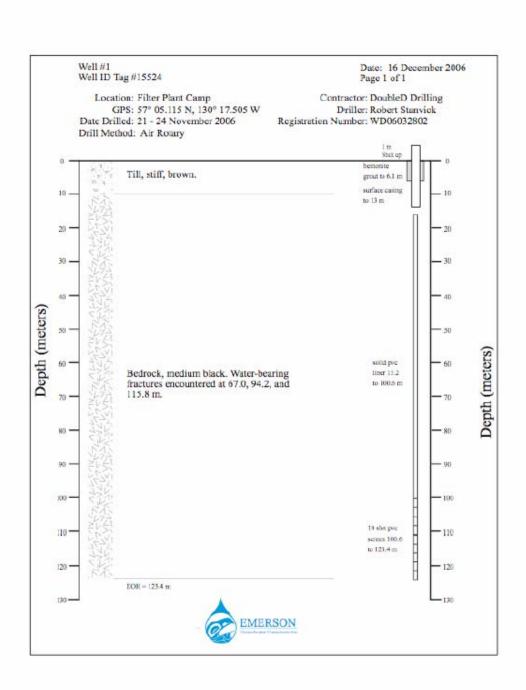
Gabe Intras

GEOLOGIST'S CERTIFICATE


- I, Mark Williams, of 7227 Balmoral Street, Burnaby, British Columbia, V5E 1J6, DO HEREBEY CERTIFY THAT:
 - 5) I am a geologist in the minerals exploration industry employed by NovaGold Resources Inc., 2300-200 Granville Street, Vancouver, B.C., V6C 1S4.
 - 6) I am a 2002 graduate of James Cook University, Australia, with a Bachelor of Science in Environmental Earth Science and a 2003 graduate of James Cook University, Australia, with a Bachelor of Science with honours in Geology.
 - 7) I have practiced my profession with mining companies in British Columbia, Australia and New Zealand for five years.
 - 8) I have no interest in the property herein.

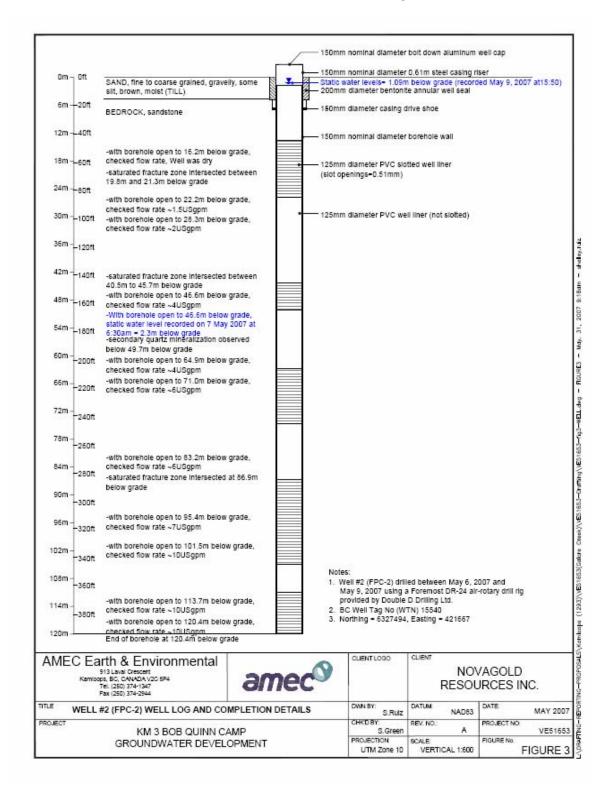
DATED at Vancouver, British Columbia, Canada this 28 day of January, 2008.

Mgwilliams .


APPENDIX IV

GEOTECHNICAL DRILLING

DH-1 Drill Log


From: Bessler, J.U. (2006). Well #1, Galore Filter Plant, for Emerson Groundwater Consultants Inc., *NovaGold Internal Report*.

Emerson Groundwater Consultants Inc.

DH-2 Drill Log

From: Green, S. (2007). Well #2 Completion and Testing Report, Km 3 Camp, Galore Creek Project, for AMEC Earth and Environmental., June 2007. *NovaGold Internal Report*.

Geotechnical Drill Hole Analytical Geochemistry Results

From: Green, S. (2007). Well #2 Completion and Testing Report, Km 3 Camp, Galore Creek Project, for AMEC Earth and Environmental., June 2007. NovaGold Internal Report.

Analytical Chemistry Results-Potability Parameters

	Concentra	tion (mg/L)	GCDWQ (2008)		
	May 10, 2007	May 10, 2007		_	
Parameter	Well #1	Well #2	Aesthetic Objective	Maximum Acceptable Concentration	
Physical Parameters					
Colour	<5.0	<5.0	ns	ns	
Conductivity (µS/cm)	566	542	ns	ns	
Total Dissolved Solids	347	351	500	ns	
Hardness (as CaCO3)	<7.0	<7.0	ns	ns	
pН	<u>9.55</u>	9.46	6.5-8.5	ns	
Turbidity (NTU)	9.86	15.8	0.1	1	
Anions and Nutrients					
Total Alkalinity(as CaCO3)	247	254	ns	ns	
Chloride	<5.0	<5.0	250	ns	
Fluoride	0.933	1.06	ns	1.5	
Sulphate	57.5	43.7	500	ns	
Nitrate as N	<0.0050	<0.0050	10	ns	
Nitrite as N	<0.0010	<0.0010	ns	ns	
Bacteriological Parameters					
Total Coliform (MPN/100ml)	<1	<1	ns	0	
Escherichia coli (MPN/100ml)	<1	<1	ns	0	

Notes:

mg/L milligrams per litre equivalent to parts per million by volume

µS/cm microSiemens per centimetre NTU Nephelometric Turbidity Units

CFU Coliform forming units

< less than analytical detection limit indicated

ns no listed standard

GCDWQ Guidelines for Canadian Drinking Water Quality, March 2008

Underlined indicates level is beyond GCDWQ aesthetic objective acceptable range

Bold indicates concentration exceeds GCDWQ maximum acceptable concentration

VE51653

: Analytical Chemistry Results-Total and Dissolved Metals Concentrations

		Concentra	ation (mg/L)		GCDWQ (2006)	
	May 10, 2007	May 10, 2007	May 10, 2007	May 10, 2007		_
Parameter	Well #1 (dissolved)	Well #1 (total)	Well #2 (dissolved)	Well #2 (total)	Aesthetic Objective	Maximum Acceptable Concentration
Aluminum	< 0.010	0.51	<0.010	1.11	0.2	ns
Antimony	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ns	0.006
Arsenic	< 0.0010	< 0.0010	< 0.0010	<0.0010	ns	0.010
Barium	<0.20	< 0.20	<0.20	<0.20	ns	1.0
Boron	<1.0	<1.0	<1.0	<1.0	ns	5
Cadmium	< 0.0020	< 0.0020	<0.0020	<0.0020	ns	0.005
Calcium	<1.0	2.7	<1.0	2.7	ns	ns
Chromium	< 0.020	< 0.020	<0.020	< 0.020	ns	0.05
Copper	< 0.010	< 0.010	<0.010	<0.010	1.0	ns
Iron	0.062	0.359	0.043	<u>0.755</u>	0.3	ns
Lead	< 0.010	< 0.010	< 0.010	<0.010	ns	0.010
Magnesium	<1.0	<1.0	<1.0	<1.0	ns	ns
Manganese	< 0.020	< 0.020	<0.020	<0.020	0.05	ns
Mercury	< 0.00020	< 0.00020	<0.000050	< 0.000050	ns	0.001
Potassium	<1.0	<1.0	<1.0	1.2	ns	ns
Selenium	< 0.010	<0.010	<0.010	<0.010	ns	0.01
Sodium	139	136	131	130	200	ns
Uranium	< 0.0010	< 0.0010	<0.0010	<0.0010	ns	0.02
Zinc	< 0.50	< 0.50	< 0.50	< 0.50	5.0	ns

Notes:

mg/L milligrams per litre equivalent to parts per million by volume

< less than analytical detection limit indicated

ns no listed standard

- indicates parameter not analyzed GCDWQ Guidelines for Canadian Drinking Water Quality

underlined indicates concentration exceeds GCDWQ aesthetic objective

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

ANALYTICAL REPORT

AMEC EARTH & ENVIRONMENTAL LTD.

Reported On: 17-MAY-07 06:34 PM ATTN: SCOTT GREEN

913 LAVAL CRESCENT KAMLOOPS BC V2C 5P4

Lab Work Order #: L504714 Date Received: 11-MAY-07

Project P.O. #:

Job Reference: VE51653/FILTER PLANT COMP

Legal Site Desc:

CofC Numbers: 75286

Other Information:

The water as represented by the sample submitted met the Canadian Drinking Water Guidelines for all parameters analysed with the exception of pH, Total Iron, and Turbidity which are limited for aesthetic purposes rather than health considerations. Please contact ALS Environmental if you require any additional information. Comments:

T.G Coulter TIMOTHY GUY CROWTHER General Manager, Vancouver

For any questions about this report please contact your Account Manager:

Jerry Holzbecher

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS LABORATORY GROUP ANALYTICAL REPORT 17-MAY-07 18:32

	Sample ID Description Sampled Date Sampled Time Client ID	L504714-1 10-MAY-07 09:00 FPC-1	L504714-2 10-MAY-07 09:15 FPC-2		
Grouping	Analyte				
WATER					
Physical Tests	Hardness (as CaCO3) (mg/L)	<7.0	<7.0		
	Colour, True (CU)	<5.0	<5.0		
	Conductivity (uS/cm)	566	542		
	pH (pH)	9.55	9.46		
	Total Dissolved Solids (mg/L)	347	351		
	Turbidity (NTU)	9.86	15.8		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	247	254		
	Chloride (CI) (mg/L)	<0.50	<0.50		
	Fluoride (F) (mg/L)	0.933	1.06		
	Sulfate (SO4) (mg/L)	57.5	43.7		
	Nitrate (as N) (mg/L)	<0.0050	<0.0050		
	Nitrite (as N) (mg/L)	<0.0010	<0.0010		
Bacteriological Tests	Coliform Bacteria - Total (MPN/100mL)	<1	<1		
	E. coli (MPN/100mL)	<1	<1		
Total Metals	Aluminum (Al)-Total (mg/L)	0.51	1.11		
	Antimony (Sb)-Total (mg/L)	<0.0050	<0.0050		
	Arsenic (As)-Total (mg/L)	<0.0010	<0.0010		
	Barium (Ba)-Total (mg/L)	<0.20	<0.20		
	Boron (B)-Total (mg/L)	<1.0	<1.0		
	Cadmium (Cd)-Total (mg/L)	<0.0020	<0.0020		
	Calcium (Ca)-Total (mg/L)	<1.0	2.7		
	Chromium (Cr)-Total (mg/L)	<0.020	<0.020		
	Copper (Cu)-Total (mg/L)	<0.010	<0.010		
	iron (Fe)-Total (mg/L)	0.359	0.755		
	Lead (Pb)-Total (mg/L)	<0.010	<0.010		
	Magnesium (Mg)-Total (mg/L) Manganese (Mn)-Total (mg/L)	<1.0	<1.0		
		<0.020 <0.00020	<0.020 <0.00020		
	Mercury (Hg)-Total (mg/L)				
	Potassium (K)-Total (mg/L) Selenium (Se)-Total (mg/L)	<1.0	1.2 <0.010		
		<0.010			
	Sodium (Na)-Total (mg/L)	136	130		
	Uranium (U)-Total (mg/L)	<0.0010 <0.50	<0.0010 <0.50		
Dissolved Metals	Zinc (Zn)-Total (mg/L) Aluminum (Al)-Dissolved (mg/L)	-			
DISSOIVED MEIAIS		<0.10	<0.10		
	Antimony (Sb)-Dissolved (mg/L)	<0.0050	<0.0050		
	Arsenic (As)-Dissolved (mg/L) Barium (Ba)-Dissolved (mg/L)	<0.0010	<0.0010		
	Barium (Ba)-Dissolved (mg/L) Boron (B)-Dissolved (mg/L)	<0.20 <1.0	<0.20 <1.0		
	· · · · · · · · · · · · · · · · · · ·				

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L504714-1 10-MAY-07 09:00 FPC-1	L504714-2 10-MAY-07 09:15 FPC-2		
Grouping	Analyte				
WATER					
Dissolved Metals	Cadmium (Cd)-Dissolved (mg/L)	<0.0020	<0.0020		
	Calcium (Ca)-Dissolved (mg/L)	<1.0	2.7		
	Chromium (Cr)-Dissolved (mg/L)	<0.020	<0.020		
	Copper (Cu)-Dissolved (mg/L)	<0.010	<0.010		
	Iron (Fe)-Dissolved (mg/L)	0.062	0.043		
	Lead (Pb)-Dissolved (mg/L)	<0.010	<0.010		
	Magnesium (Mg)-Dissolved (mg/L)	<1.0	<1.0		
	Manganese (Mn)-Dissolved (mg/L)	<0.020	<0.020		
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.000050		
	Potassium (K)-Dissolved (mg/L)	<1.0	<1.0		
	Selenium (Se)-Dissolved (mg/L)	<0.010	<0.010		
	Sodium (Na)-Dissolved (mg/L)	139	131		
	Uranium (U)-Dissolved (mg/L)	<0.0010	<0.0010		
	Zinc (Zn)-Dissolved (mg/L)	<0.50	< 0.50		

L504714 CONTD... PAGE 4 of 6 17-MAY-07 18:32

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

ALK-COL-VA Water Alkalinity by Colourimetric (Automated) APHA 310.2

This analysis is carried out using procedures adapted from EPA Method 310.2 "Altalinity". Total Altalinity is determined using the methyl urange colourimetric method.

colodimiento mentos.

ANIONS-CL-IC-VA Water Chloride by Ion Chromatography APHA 4110 Determination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by Ihis method include: brumide, chloride, fluoride, nitrate, nitrite and sulphate.

ANIONS-F-IC-VA

Water Fluoride by Ion Chromatography

APHA 4110 'Delemination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by ton Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by Ihis method include: brande, chloride, fluoride, nitrate, nibite and sulphate.

ANIONS-NO2-IC-VA

Water Nitrite by Ion Chromatography

APHA 4110 'Delemination of Anions by C

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by lon Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by his method include: brunide, chloride, fluoride, nitrate, nitrite and sulphate.

ANIONS-NO3-IC-VA

Water

Nitrate by Ion Chromatography

APHA 4110 'Delemination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by lon Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by his method include: brunide, chloride, fluoride, nitrate, nitrite and sulphate.

ANIONS-SO4-IC-VA

Water

Sulfate by Ion Chromatography

APHA 4110 'Delemination of Anions by IC

This analysis is carried out using procedures adapted from APHA Method 4110 "Determination of Anions by Ion Chromatography" and EPA Method 300.0 "Determination of Inorganic Anions by Ion Chromatography". Anions routinely determined by his method include: brunide, chloride, fluoride, nitrate, nitrite and sulphate

COLOUR-TRUE-VA

Water

Color (True) by Spectrumeter

APHA 2120 "Golor"

This analysis is carried out using procedures adapted from APHA Method 2120 "Color". Colour (True Colour) is determined by filtering a sample through a 0.45 micron membrane filter followed by analysis of the filtrate using the platfinum-cobalt colourimetric method. Aparent Colour is determined without prior sample filtration. Colour is pH dependent. Unless otherwise indicated, reported colour results pertain to the pH of the sample as received, to within ++-1 pH

E-COLILERT-HEALTH-VA Water

E.coli by Colilet

APHA METHOD 9223

This analysis is carried out using procedures adapted from APHA Method 8223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture hydrohysable substrates and then sealed in a multi-unell packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is obtained by comparing the positive responses to a probability table.

EC-PCT-VA

Water

Conductivity (Automated)

APHA 2510 Auto, Conduc.

This analysis is carried out using procedures adapted from APTIA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

HARDNESS-CALC-VA

Water

Hardness

APHA 23408

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

HG-DIS-CVAFS-VA

Water

Dissolved Mercury in Water by CVAPS

EPA 5W-848 3005A & EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stampus chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

L504714 CONTD...
PAGE 5 of 6

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)

HG-TOT-DW-CVAFS-VA Water

Total Mercury in Water by CVAFS

EPA 245.7

MET-DIS-DW-ICP-VA

Water

Dissolved Metals in Water by ICPOES

EPA SW-848 3005AM0108

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wasterrake" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waster SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma – optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-DW-MS-VA

Water

Dissolved Metals in Water by ICPMS

EPA 5W-848 3005AM020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastercate" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-848 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3006A) and analysis by inductively coupled plasma – mass spectrometry (EPA Method 8000A).

MET-TOT-DW-ICP-VA

Water

Total Metals in Water by ICPOES

EPA 5W-848 3005A/80108

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wasternates" published by the American Public Health Association, and with procedures adapted from Test Methods for Evaluating Solid Waster SW-464 published by the United States Environmental Protection Agency (EPA). The procedure implies preliminary state treatment by acid digestion, using either hobbook or microwave oven (EPA Method 3005A) and analysis by inductively coupled plasma - optical emission spectrophotometry (EPA Method 60106).

MET-TOT-DW-MS-VA

Water

Total Metals in Water by KCPMS

EPA SWUME SITISAMIDOS

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wasteralter" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waster" SW-348 published by the United States Environmental Protection Agency (EPA). The procedures may invoke preliminary ample treatment by acid digestion, using either holisock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass speciformetry (EPA Method 8026A).

PH-PCT-VA

Water

pH by Meter (Automated)

APHA 4500-H "off Value

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

T-COLILERT-HEALTH-VA Water

Total coliform by Colilert

APHA METHOD 9223

This analysis is carried out using procedures adapted from APHA Method B223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-arell packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is quantified by a statistical estimation of bacteria density (most probable number).

TDE VA

Water

Total Dissolved Solids by Gravimetric

APHA 2540 Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total dissolved solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TURB-MET-VA

Water

Turbidity by Meter

APHA 2130 Turbidity

This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

The last two letters of the above ALS Test Code column indicate the laboratory that performed analysis for that test. Refer to the fist below:

Laboratory Definition Code	Laboratory Location	Laturatory Definition Code	Laboratory Location
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA		

L504714 CONTD... PAGE 6 of 6

Reference Information

Methods Listed (if applicable):

ALS Test Code Test Description Analytical Method Reference(Based On)

GLOSSARY OF REPORT TERMS

SUM: A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environments.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million.

mg/L (units) - unit of concentration based on volume, parts per milion N/A - Result not available. Refer to qualifier code and deficition for explanation

Test results reported relate only to the samples as received by the **laboratory**.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE COMMITTION.

Although test results are generated under strict QA/QC producuts, any unsigned less reports, faxes, or emails are consider.

ALS Laboratory Group has an extensive QA/QC program where all analytical data repuried is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from obscious measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

APPENDIX V

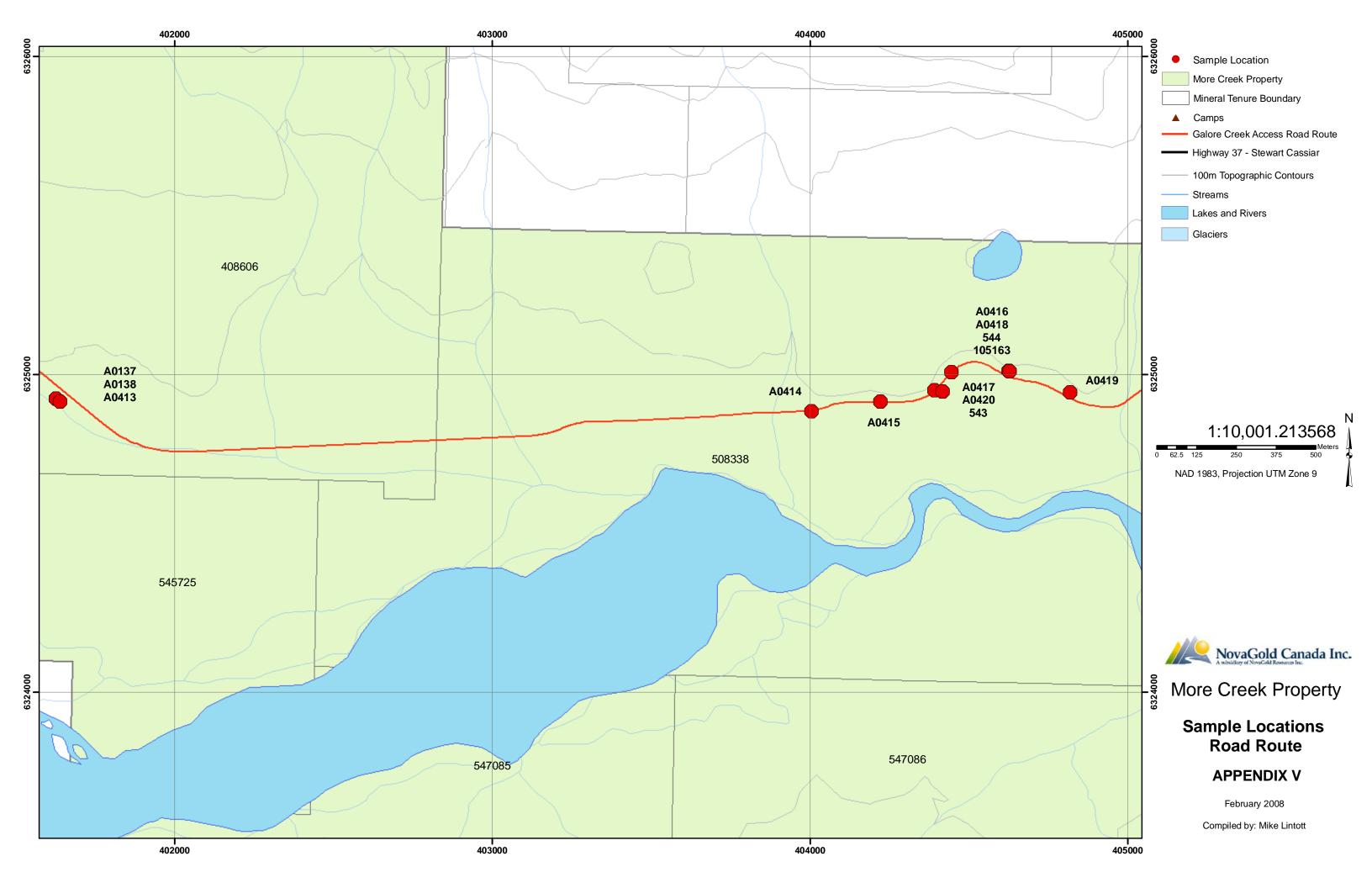
GEOCHEMICAL SAMPLING

Geochemical Sample Descriptions

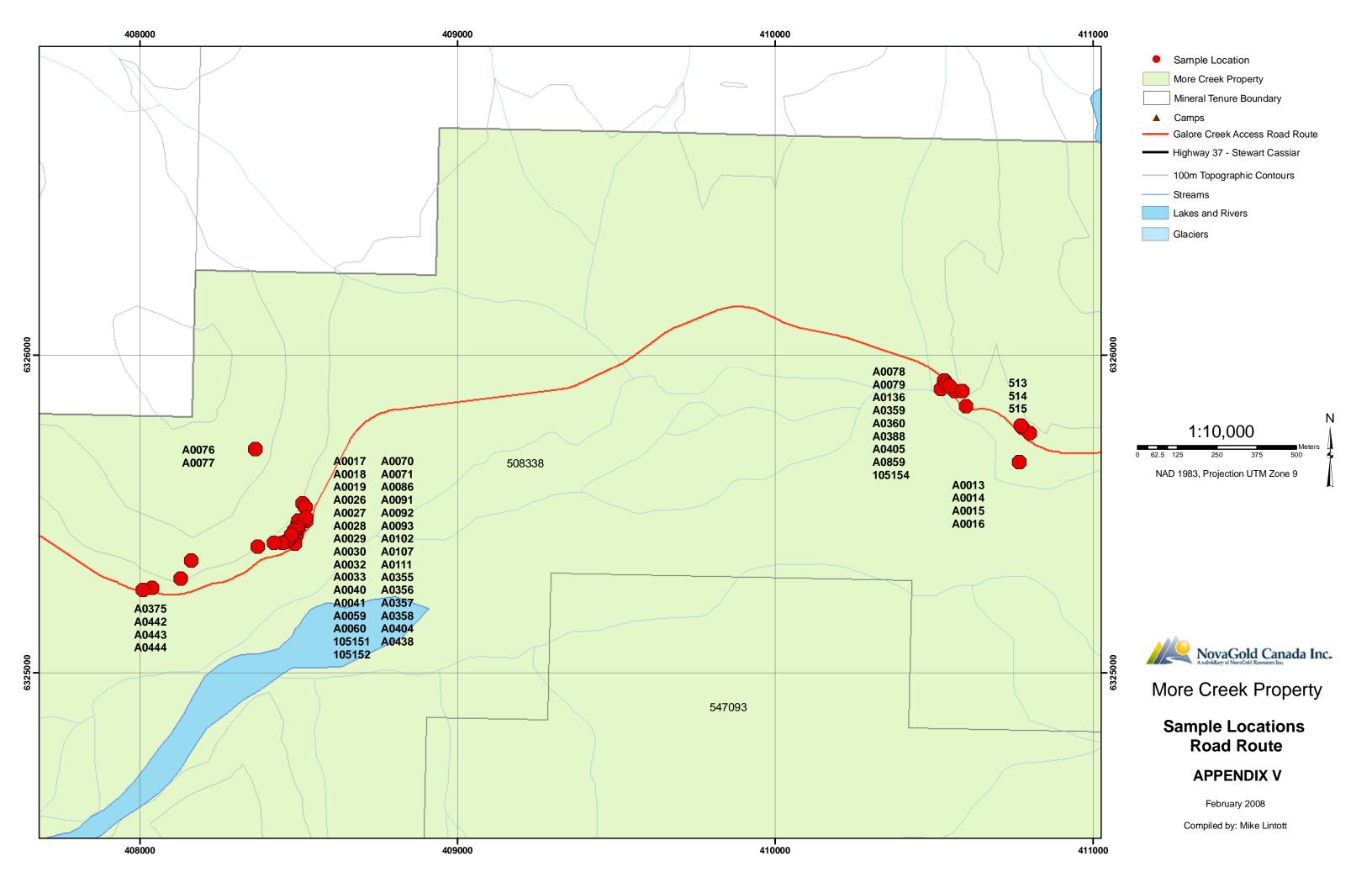
Sample	Date	Easting	Northing	Sampler	Description
A0009	2-Jun-07	419110	6328930	MW	
A0010	2-Jun-07	419110	6328930	MW	
A0011	2-Jun-07	419110	6328930	MW	
A0012	2-Jun-07	419640	6328220	MW	
A0013	2-Jun-07	410768	6325663	MW	Black sandstone
A0014	2-Jun-07	410768	6325663	MW	
A0015	2-Jun-07	410768	6325663	MW	
A0016	2-Jun-07	410768	6325663	MW	
A0017	2-Jun-07	408523	6325479	MW	Black sandstone
A0018	2-Jun-07	408512	6325534	MW	Black sandstone
A0019	2-Jun-07	408521	6325523	MW	Volcanic rock with pyrite
A0023	3-Jun-07	417344	6321725	MW	Sed rock
A0024	3-Jun-07	416779	6322128	MW	Volcanic with minor py. Area should be filled, no cut needed
A0026	4-Jun-07	408521	6325523	MW	Volcanic rock. Variable pyrite in outcrop + some Fe Ox.
A0027	4-Jun-07	408510	6325480	MW	Volcanic rock. Variable pyrite in outcrop + some Fe Ox.
A0028	5-Jun-07	408497	6325468	MW	Volcanic rock - sample #1, sthrn side of shear
A0029	5-Jun-07	408497	6325468	MW	Volcanic rock - sample #2, 1.5m wide shear
A0030	5-Jun-07	408497	6325468	MW	Volcanic rock - sample #3, nthrn side of shear
A0031	5-Jun-07	416412	6321774	MW	Talus boulder. Py free volcanic
A0032	7-Jun-07	408500	6325460	MW	Volcanic
A0033	7-Jun-07	408500	6325460	MW	Volcanic
A0034	7-Jun-07	416282	6321711	MW	Volcanic
A0035	7-Jun-07	416241	6321735	MW	Volcanic - weathered
A0036	7-Jun-07	416143	6321802	MW	Volcanic
A0037	7-Jun-07	414908	6323330	MW	Volcanic
A0038	7-Jun-07	415774	6322189	MW	Volcanic - altered - chlorite + epidote, hornblend crystals
A0039	7-Jun-07	415663	6322369	MW	Volcanic
A0040	8-Jun-07	408505	6325475	MW	Volcanic
A0041	8-Jun-07	408505	6325475	MW	Volcanic
A0042	8-Jun-07	417500	6323200	MW	

A0043	8-Jun-07	417500	6323200	MW	
A0044	8-Jun-07	417587	6323719	MW	Sedimentary - py + carb
A0045	9-Jun-07	417436	6322006	MW	Sample #1
A0046	9-Jun-07	417436	6322006	MW	Sample #2
A0047	9-Jun-07	417436	6322006	MW	Sample #3
A0048	9-Jun-07	417455	6322671	MW	Sample #1
A0049	9-Jun-07	417455	6322671	MW	Sample #2
A0050	9-Jun-07	417460	6322814	MW	
A0051	9-Jun-07	417477	6322827	MW	
A0052	9-Jun-07	417578	6323441	MW	
A0053	9-Jun-07	417578	6323441	MW	Sandstone, no visible sulphides. Potential source of rip-rap.
A0054	9-Jun-07	417762	6324619	MW	Grab sample of PAG material used on road
A0059	10-Jun-07	408500	6325480	MW	·
A0060	10-Jun-07	408500	6325480	MW	
A0070	12-Jun-07	408492	6325436	MW	py still id'd in rock
A0071	12-Jun-07	408492	6325436	MW	py still id'd in rock
A0072	12-Jun-07	416605	6321977	MW	Volcanic - Si flooded
A0073	12-Jun-07	416605	6322050	MW	Volcanic - Si flooded. Contains py
A0074	12-Jun-07	416688	6322149	RT	Volcanic - Si flooded. Contains py
A0075	12-Jun-07	416798	6322120	RT	Volcanic - Si flooded. Contains py
A0076	12-Jun-07	408364	6325705	MW	Green fine-grained volcanic flow with <1mm cubic pyrite disseminated throughout (~0.5%)
A0077	13-Jun-07	408364	6325706	MW	Green fine-grained volcanic flow with <1mm cubic pyrite disseminated throughout (~0.5%)
A0078	13-Jun-07	410533	6325921	MW	no visible sulphides black shale with ~1% sheeted quartz, slightly weathered sample
A0079	13-Jun-07	410532	6325921	MW	no visible sulphides black shale with 5-15 % crackle-breccia and sheeted carbonate veins, slightly
					weathered
A0080	14-Jun-07	419403	6328621	DLS	dk grey fine sst. ? (no outcrop in vicinity)
A0081	14-Jun-07	419180	6329005	DLS	black pebble conglomerate, some iron-stains on weathered surface, 1-2% fine coatings of pyrite
					(possibly pyrrhotite on pebble surfaces)
A0082	14-Jun-07	419429	6328770	DLS	dark gray argillite and fine sandstone (outcrop visible at drill site) no visible sulphides. Checked
A0083	14-Jun-07	419328	6329154	DLS	blast material after blast. No visible sulphides.
		417429	6321983		uniform dark gray shale, no visible sulphides (outcrop visible at drill site)
A0085	15-Jun-07	411429	0321303	DLS	dark grey chert-pebble conglomerate (same lithology as A0081). Occasional calcite veinlets, also occasional carbonate crinoid fossils, trace pyrite (pyrrhotite?) coating on pebbles
A0086	15-Jun-07	408489	6325449	DLS	green medium to coarse volcaniclastic with <1mm trace pyrite disseminations. Rare py on
, 10000	10 0011 01	100 100	3020110	520	green median to course volvariouslic with a min trace pyrite discommensions. Nate py on

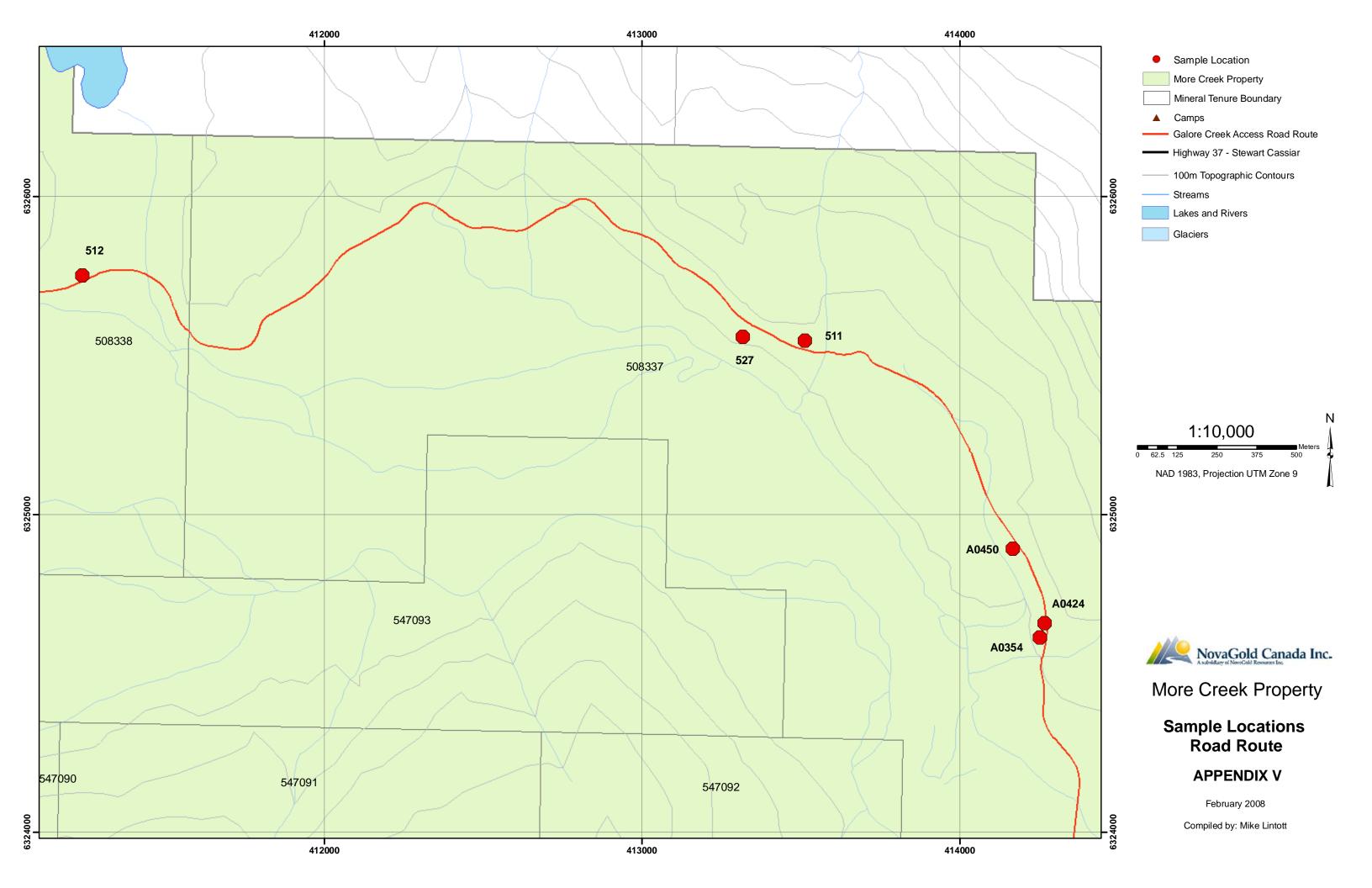
A0089 A0090 A0091	16-Jun-07 16-Jun-07 16-Jun-07	416764 416745 408488	6322165 6322204 6325407	DLS DLS DLS	fractures. Moderate reaction to HCI. grey-green silicified volcanic? or laminated siltstone? Faint banding apparent. Conchoidal fracture. grey-green silicified volcanic? or laminated siltstone? Faint banding apparent. Conchoidal fracture. Trace <1mm disseminated pyrite encountered occasionally. ~0.5% <1mm py crystals in green and marroon volcaniclastics, carbonate in groundmass as well as carbonate stringers
A0092	16-Jun-07	408473	6325425	DLS	probably same rock type as A0091
A0093	16-Jun-07	408473	6325425	DLS	~1m west of A0092, probably same rock type as A0091
A0094	17-Jun-07	416690	6322431	DLS	drill cutting from boulder. Grey-green sugary textured rock (sandstone?). No banding visible. Rock - no fizz. No sulphides visible, but hard to get a fresh surface.
A0095	17-Jun-07	416683	6322229	DLS	same rock type as A0090, ~0.5% disseminated pyrite
A0100	18-Jun-07	418063	6325288	DLS	dark grey sandstone and siltstone. No visible sulphides. Most of this rock has been used as ditch fill.
A0101	18-Jun-07	417706	6324348	DLS	Chert-pebble conglomerate and sandstone. Very fine pyrite coatings on some pebbles, no fizz.
A0102	18-Jun-07	408468	6325420	DLS	Variable pyrite (trace to 1%) occurs as fine to medium-grained clusters of pyrite crystals as well as dissemintations.
A0107	19-Jun-07	408457	6325412	DLS	Medium-green coarse sand sized volcaniclastic (tuff?). Carbonate alters grndmass and as veins.
A0108	19-Jun-07	416696	6322212	DLS	Same as A0090, with trace carbonate veinlets and trace py (<1mm diss'ns, locally 0.5%)
A0111	21-Jun-07	408522	6325489	GJ	Weakly metamorphosed siltstone, chl alt'n, mn coatings on fractures, 0.1% py visible as cubes and flecks, carbonate in veins and fractures only.
A0112	21-Jun-07	416292	6321726	GJ	green-grey cherty siltstone, does not fizz in Hcl (but cuttings did fizz), a few blebs and flecks of py.
A0113	21-Jun-07	416164	6321853	GJ	Green weakly metamorphosed granitic intrusive, chl alt'n, flecks of py
A0114	21-Jun-07	419455	6328411	DLS	Sandstone and Conglomerate, occasional carbonate veins. Sampled large pile of blast rock that may not have been sampled before.
A0120	24-Jun-07	418245	6326457	GJ	Dark grey shale grading into pebble conglom, minor py
A0121	24-Jun-07	418245	6326409	GJ	Dark grey shale, w/ a few pebbles (grading into pebble conglomerate)
A0122	24-Jun-07	418238	6326384	GJ	Dark grey shale, no py , no fizz
A0123	24-Jun-07	418234	6326366	GJ	Dark grey shale, no py , no fizz
A0124	24-Jun-07	418237	6326306	GJ	Dark grey shale, no py , no fizz
A0125	24-Jun-07	418242	6326250	GJ	Dark grey shale, no py , no fizz
A0126	24-Jun-07	418234	6326204	GJ	Dark grey shale, no py , no fizz
A0127	25-Jun-07	419822	6327939	GJ	Siltstone to Sandstone, weakly metamorph'd, weak foliation developed at 211/89, primary bedding still visible near horizontal, small flecks of py, no fizz
A0128	25-Jun-07	419815	6327957	GJ	Same as A0127

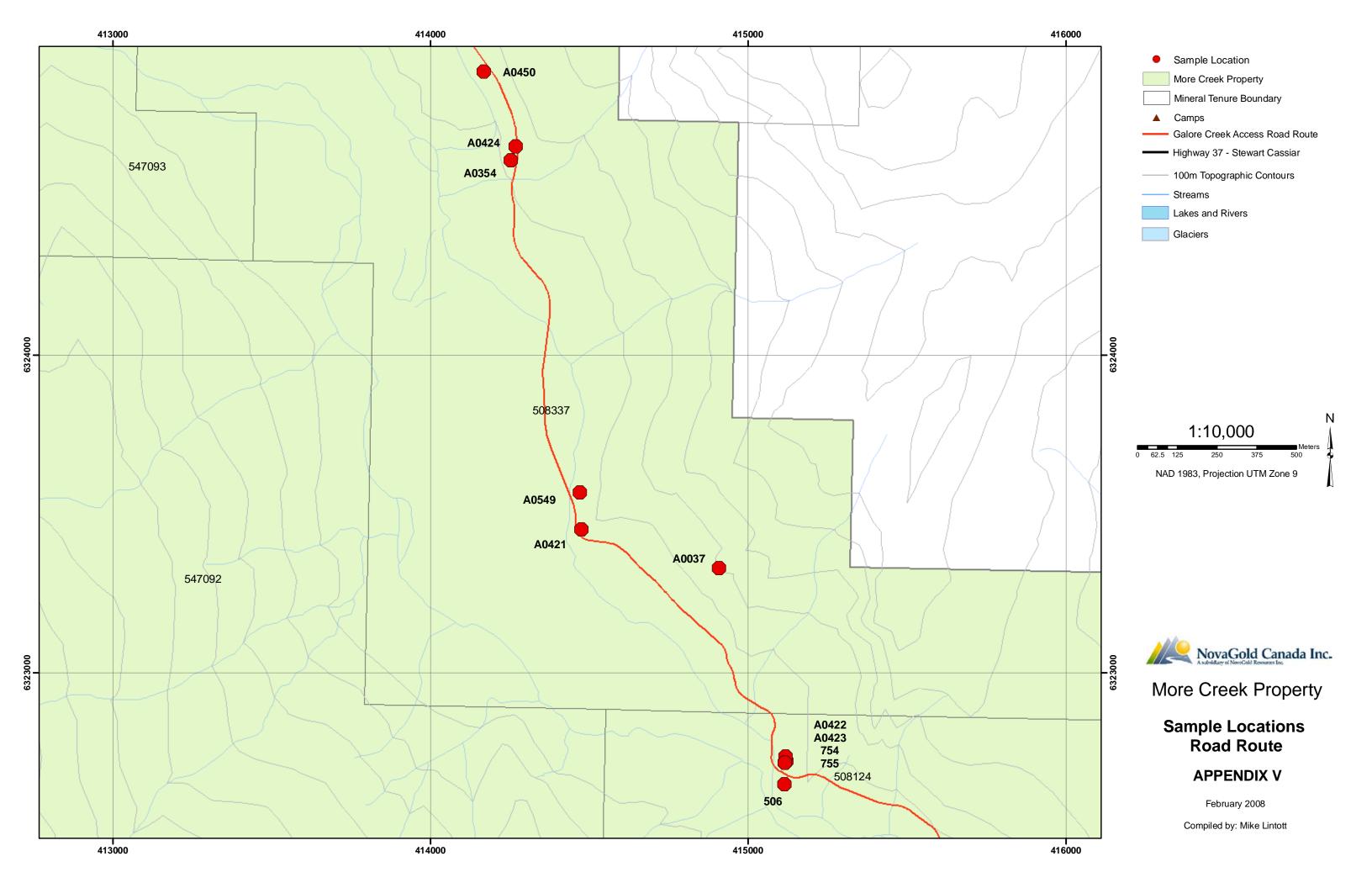

A 0 4 0 0	05 lun 07	419565	6328292	GJ	Maderataly faliated walkly conglements, citatons water, we my use firm To avide an making
A0129	25-Jun-07	419303	0320292	GJ	Moderately foliated pebble conglomerate, siltstone matrix, no py, no fizz, Fe-oxide on pebble margins
A0130	25-Jun-07	419438	6328431	GJ	Shale, no py, no fizz, more competent than Km 11
A0131	25-Jun-07	419430	6328937	GJ	Shale, minor py, no fizz, more competent than Km 11
A0132	25-Jun-07	418874	6328683	GJ	Weakly metamorph'd sandstone and silstone, no py, no fizz
A0133	25-Jun-07	417969	6325164	GJ	Weakly metamorph'd siltstone to fine-grained sandstone, a few flecks of py, no fizz, more
					competent than Km 11
A0134	25-Jun-07	417704	6324307	GJ	Chert-pebble conglomerate, py ass'd w/ chert pebbles
A0135	25-Jun-07	417571	6323445	GJ	Sandstone/ Siltstone, weakly metamorph'd, no fizz, small diss. of py visible.
A0136	25-Jun-07	410522	6325895	GJ	Folded and foliated siltstone, shot through with calcite veining, minor py observed
A0137	26-Jun-07	401626	6324925	GJ	Volcanic flow breccia, clasts to > 20cm, diss. sulphides readily found throughout, weak to mod.fizz
A0138	26-Jun-07	401626	6324925	GJ	Volcanic flow breccia, clasts to > 20cm, diss. sulphides readily found throughout, weak to mod.fizz
A0354	21-Jul-07	414253	6324614	MB	accumulation of volcanic sandstone
A0355	22-Jul-07	408497	6325459	MB	massive volcanic sandstone with disseminated sulphide minerals
A0356	22-Jul-07	408485	6325450	MB	massive volcanic sandstone with disseminated sulphide minerals
A0357	22-Jul-07	408476	6325435	MB	massive volcanic sandstone with disseminated sulphide minerals
A0358	22-Jul-07	408448	6325409	MB	massive volcanic sandstone with disseminated sulphide minerals
A0359	22-Jul-07	410565	6325887	MB	volcanic sandstone abd siltstone with volcanic ash layered, no visible sulphide minerals
A0360	22-Jul-07	410589	6325887	MB	layered volcanic ash no visible sulphide minerals
A0361	22-Jul-07	416160	6321810	MB	Upper level. Massive volcanic sandstone with disseminated sulphide minerals
A0362	22-Jul-07	416158	6321789	MB	Upper level. Massive volcanic sandstone with disseminated sulphide minerals
A0363	22-Jul-07	416600	6322064	MB	layered volcanic sediments (siltstone and sandstone) with clay
A0375	25-Jul-07	408038	6325268	MB	volcanic sandstone and claystone with volcanic glass and calcite vaines
A0376	26-Jul-07	417590	6323445	MB	massive to foliated rhyilite with quarz and cacite
A0377	26-Jul-07	417713	6324370	MB	volcanic conglomerate, massive and foliated with calcite
A0378	26-Jul-07	417701	6324326	MB	volcanic conglomerate, massive and foliated with calcite, and volcanice siltstone and tuff
A0379	26-Jul-07	417958	6325157	MB	massive ryolite, with some flow lamination, occasionaly fractures filled with calcite or black cristal,
					probably galena
A0380	26-Jul-07	418059	6325308	MB	laminated and foliated rhyolite with bodies of volcanic conglomerate
A0381	26-Jul-07	418245	6326476	MB	rhyolite with subhorizontal layer of tuff (5cm)
A0382	26-Jul-07	418871	6328698	MB	rhyolite foliated with layer of tuff(10 cm) rich of quarz and sulphides
A0383	27-Jul-07	419181	6329003	MB	foloated volcanogeny siltstone and conglomerate
A0384	27-Jul-07	419422	6328935	MB	layered volcanogeny siltstone with layers of tuff
A0385	27-Jul-07	419431	6328775	MB	massive to thick layers of foliated volcanic conglomerates and below is foliated rhyolite (or basalt)

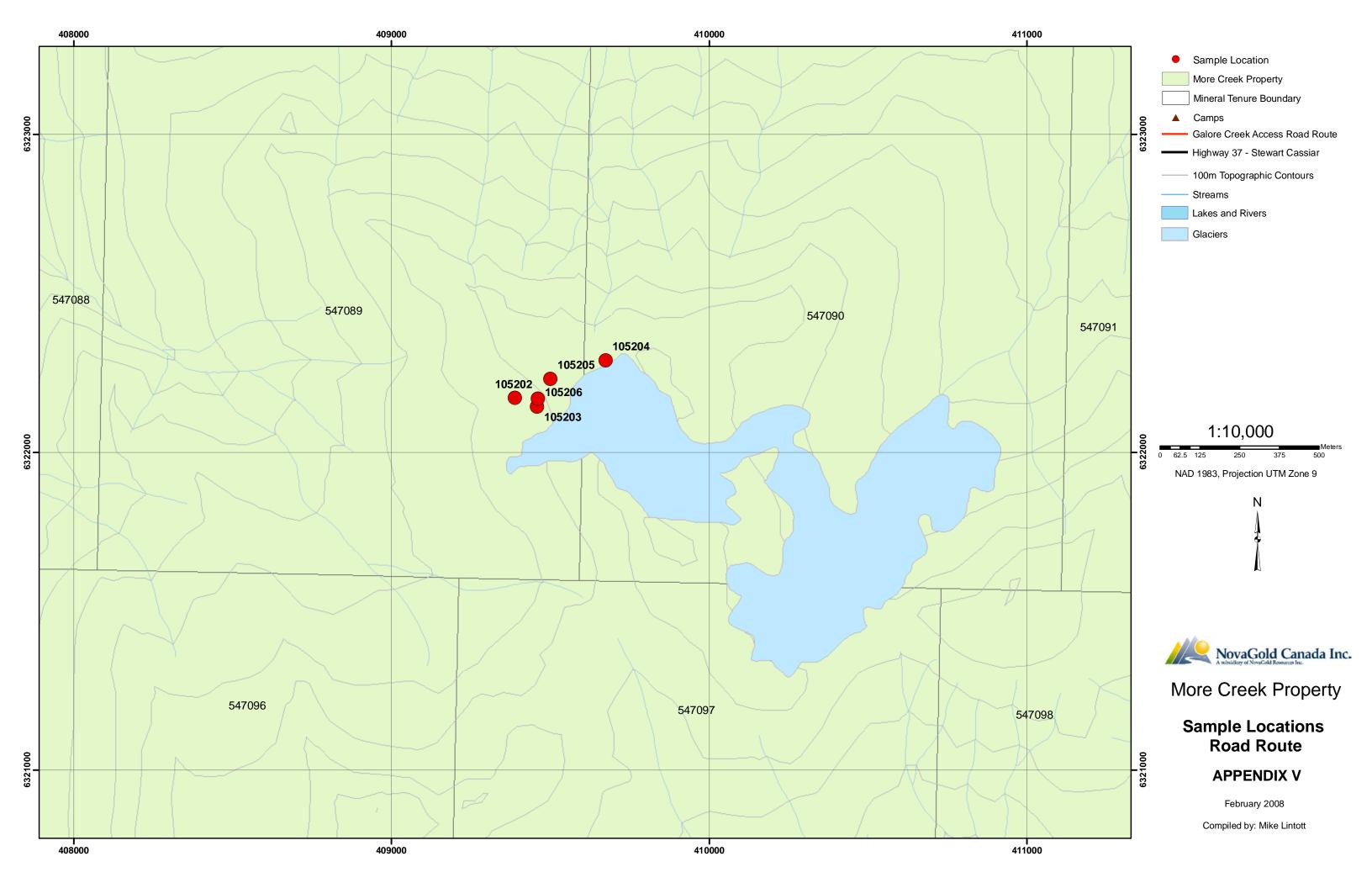
					with empty holes of large minerals
A0386	27-Jul-07	419460	6328430	MB	foliated volcanic siltstone with volcanic conglomerate (empty holes of large cristals)
A0387	27-Jul-07	419561	6328291	MB	layered volcanic siltstone, sandstone and conglomerates (with empty holes of large minerals)
A0388	28-Jul-07	410600	6325835	MB	
A0389	28-Jul-07	417597	6323444	MB	volcanogeny sandstone and siltstone with rare sulfade minerals and calcite vaines
A0395	1-Aug-07	417426	6321999	MB	volcanogeny conglomerate
A0396	1-Aug-07	416758	6322147	MB	massive rhyolite
A0397	1-Aug-07	416747	6322162	MB	massive rhyolite
A0398	1-Aug-07	416111	6321901	MB	volcanogeny sandstone
A0399	1-Aug-07	416157	6321858	MB	volcanogeny sandstone
A0400	1-Aug-07	416712	6322316	MB	volcanogeny sandstone breciated
A0401	1-Aug-07	416705	6322331	MB	massive rhyolite with flow texture and dessiminated sulphide minerals
A0402	1-Aug-07	416722	6322379	MB	massive rhyolite with dessiminated sulphide minerals
A0404	2-Aug-07	408422	6325409	MB	massive fractured volcanogeny sandstone
A0405	2-Aug-07	410537	6325910	MB	volcanogeny siltstone, fracture zone filled with calcite
A0408	11-Aug-07	418183	6327890	MB	layered volcanic sandstone, siltstone, and tuff with sulphide minerals and calcite
A0409	11-Aug-07	418180	6327882	MB	layered volcanic sandstone, siltstone, and tuff with sulphide minerals and calcite
A0410	11-Aug-07	417479	6322816	MB	layered volcanic sandstone, siltstone, and tuff with sulphide minerals and calcite
A0411	11-Aug-07	417458	6322651	MB	layered volcanic sandstone, siltstone, and tuff with sulphide minerals and calcite
A0413	13-Aug-07	401638	6324915	MB	volcanic, probably andesite with rare visible sulphide min. and calcite
A0414	13-Aug-07	404004	6324884	MB	grey corse granular volcanic sandstone with calcite matrix
A0415	13-Aug-07	404222	6324915	MB	fractured volcanic sandstone with calcite
A0416	13-Aug-07	404445	6325008	MB	fracture zone with intrusive (syenite) quarz and sulphide minerals
A0417	13-Aug-07	404626	6325013	MB	masive volcanic sandstone with visible sulphide minerals
A0418	13-Aug-07	404626	6325013	MB	
A0419	13-Aug-07	404818	6324944	MB	fractured volcanic sandstone with visible sulphide minerals
A0420	13-Aug-07	404392	6324952	MB	masive volcanic sandstone with quarz veins and visible sulphide minerals
A0421	14-Aug-07	414475	6323453	MB	masive volcanic sandstone with calcite veins
A0422	14-Aug-07	415120	6322723	MB	masive volcanic sandstone
A0423	14-Aug-07	415118	6322737	MB	masive volcanic sandstone with sulphide minerals
A0424	14-Aug-07	414268	6324658	MB	layered volcanic sandstone and siltstone with calcite veins
A0438	18-Aug-07	408371	6325398	MB	massive volcanic sandstone with calcite vains
A0442	19-Aug-07	408009	6325262	MB	massive volcanic sandstone with limonite

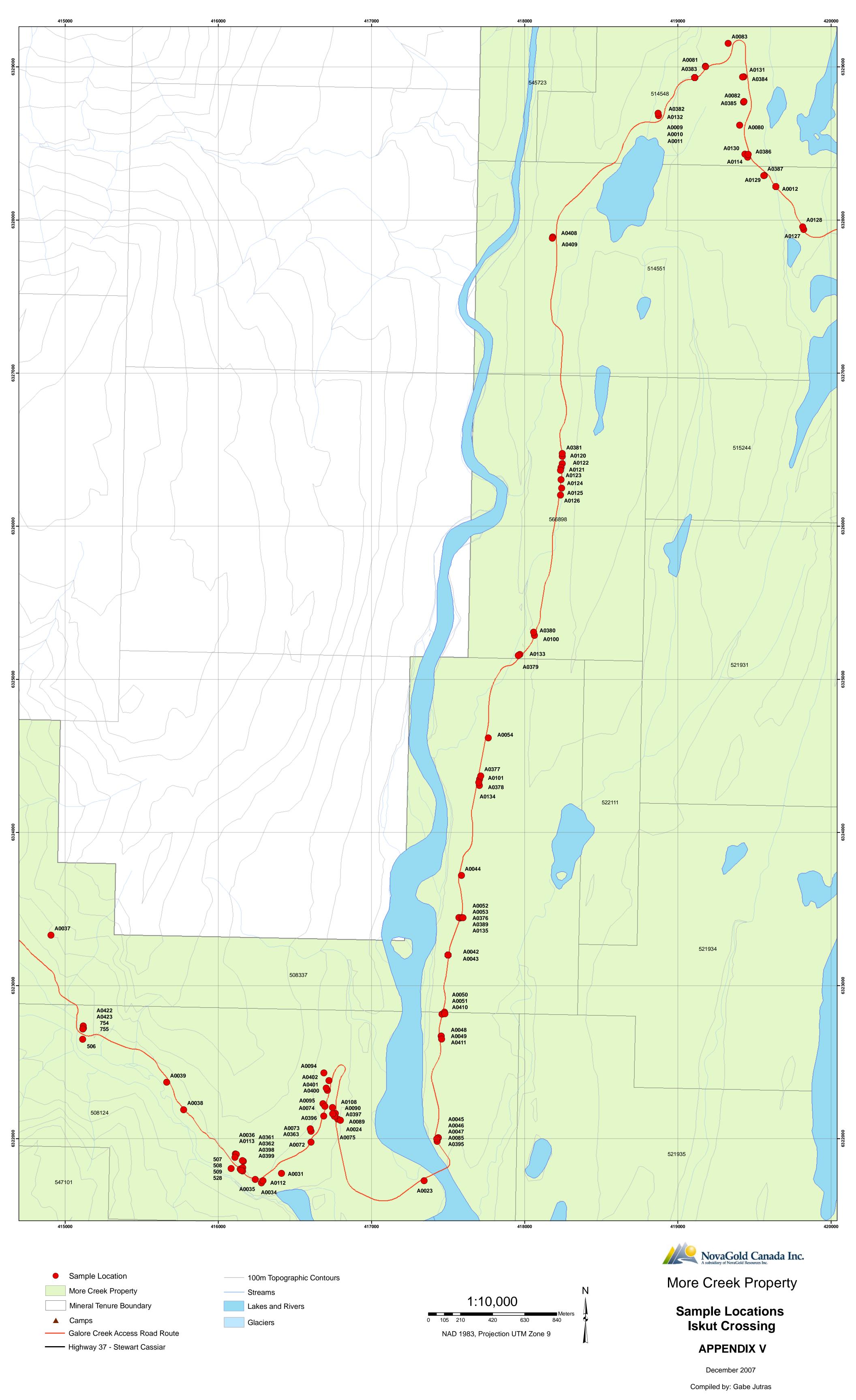

A0443	19-Aug-07	408161	6325355	MB	fractured volcanic siltstone with some calcite veins
A0444	19-Aug-07	408128	6325298	MB	massive volcanic sandstone with calcite veins
A0450	21-Aug-07	414168	6324893	MB	massive volcanic sandstone with calcite vains
506		415114	6322650		
507		416118	6321898		
508		416109	6321878		
509		416149	6321794		
511		413513	6325549		
512		411238	6325753		
513	3-Sep-07	410779	6325773	MB	intusive (rhyolite?) with calcite vains and sulphide minerals
514	3-Sep-07	410801	6325755	MB	layered, folded black siltstone (limestone) with graphite and calcite
515	3-Sep-07	410773	6325779	MB	layered, folded black siltstone (limestone) with graphite and calcite
527	14-Sep-07	413317	6325560	MK	Massive volcanic sandstone, grading to siltstone. Trace disseminated Py, tr Ca
528	17-Sep-07	416083	6321806	MK	Mafic Intrusive (Gabbro), pyroxene, hornblende. Trace disseminated Py, Ca veining and coatings associated with cross cutting Quartz veins
543	25-Sep-07	404417	6324946	TM	brecciated siltstone w/ qtz veins and partially chloritized
544	25-Sep-07	404628	6325010	TM	rhyolite with fragments of dark grey basalt. Visible pyrite
549	30-Sep-07	414470	6323568	TM	green volcanic sandstone w/ red oxidized staining
754	27-Aug-07	415116	6322718	RY	volcanic sandstone with very disseminated suphide with calcite veins
755	27-Aug-07	415116	6322718	RY	Oxidized volcanic sandstone with visible sulphide minerals, little calcite mineral
A 0859	10-Oct-07	410548	6325904	MK	Volcanic lava flows; cross cutting quartz veins
105151		408505	6325475	MW	
105152	5-Jun-07	408497	6325468	MW	same as ARD sample A0029, Volcanic rock - sample #2, 1.5m wide shear
105154	13-Jun-07	410533	6325921	MW	ARD sample A0078, no visible sulphides black shale with ~1% sheeted quartz, slightly weathered sample
105163	20-Aug-07	404464	6325044	SH, CM	Diop Mag breccia, trace mal/cp
105202	21-Aug-07	409389	6322172	DLS	vuggy pyrite veins in silica and clay altered slt?
105203	21-Aug-07	409459	6322145	DLS	from clay silica altered vuggy pyrite altered rock in gossanous zone. General strike is 30 deg.
105204	21-Aug-07	409674	6322290	DLS	Orthophyric crystallithic tuff strongly altered by silica and weakly argillic alteration. Py to 4% in pods
105205	21-Aug-07	409500	6322232	DLS	Rock flour breccia to 3m wide, rounded clasts, matrix supported, jarosite + hem to 15% of matrix
106206	21-Aug-07	409461	6322170	DLS	Sandstone with siltstone intra-lenses. Orthophyric crystallithic tuff strongly altered by silica and weakly argillic alteration.

Sample Locations Maps


More Creek Sample Locations Map Road Route 01


More Creek Sample Locations Road Route 02


More Creek Sample Locations Road Route 03


More Creek Sample Locations Road Route 04

More Creek Sample Locations Sinter Prospect

More Creek Sample Locations – Iskut Crossing

APPENDIX V

ANALYTICAL GEOCHEMISTRY CERTIFICATES

ASSAYERS CANADA ABA CERTIFICATES

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Geochemical Analysis Certificate

7S-0022-RG1 -

Page 1 of 4 Jun-07-07

Company:

Novagold Resources Inc.

Project:

Attn:

Scott Davidson

We *hereby certify* the following geochemical analysis of 23 rock samples submitted Jun-07-07 by Scott Davidson.

Sample Name	pH paste	pH rinse	Conductivity us	C %	S-Total %	S-SO4 %	N.P.*
A0009	7.7	7.7	261	0.32	0.06	0.01	11.3
A0010	5.9	5.9	192	0.38	0.07	0.02	6.4
A0011	7.5	7.8	325	0.42	0.11	0.01	11.8
A0012	8.0	8.2	207	0.53	0.32	<0.01	13.1
A0013	8.7	8.9	223	3.58	0.13	<0.01	253.2
A0014	8.5	8.7	321	5.51	0.59	<0.01	436.7
A0015	8.7	9.1	264	10.4	0.14	<0.01	876.9
A0016	8.5	8.6	239	7.95	0.26	<0.01	628.1
A0017	8.3	8.4	470	0.59	0.44	0.02	26.4
A0018	8.4	8.5	408	0.34	0.34	0.02	22.4
A0019	8.4	8.5	263	0.47	0.13	<0.01	37.5
A0020	9.1	9.1	230	0.39	0.08	<0.01	40.5
A0021	8.8	9.0	234	0.12	0.02	<0.01	5.6
A0022	9.0	9.3	295	0.06	0.09	<0.01	4.9
A0023	7.6	7.5	257	0.47	0.11	0.01	8.6
A0024	9.1	9.2	390	0.14	0.29	<0.01	15.6
A0025	9.1	9.0	305	0.56	0.08	0.03	48.2
A0026	8.9	8.9	301	0.50	0.47	<0.01	33.2
A0027	9.2	9.1	269	0.84	0.52	<0.01	68.3
A0028	8.8	8.9	268	0.41	0.25	<0.01	34.5
A0029	8.0	8.3	345	0.18	0.17	<0.01	17.0
A0030	8.9	8.9	252	0.53	0.09	<0.01	58.1
A0031	8.4	8.5	406	0.91	0.18	0.02	79.1
*DUP A0009	7.7	7.9	266	0.32	0.06	<0.01	12.2
*DUP A0018	8.4	8.4	413	0.34	0.33	0.02	23.1
*DUP A0028	8.8	8.9	264	0.41	0.25	<0.01	33.7
*RTS-1				•		1.26	
*AUS				1.25	1.48		
*SY-4							
* 0.01 M KC1			1420				

garagas karang Kabupatèn Ka

^{*}Kg CaCO3 equivalent per tonne of material

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Geochemical Analysis Certificate

7S-0022-RG1

Page 2 of 4 Jun-07-07

Company:

Novagold Resources Inc.

Project:

Attn:

Scott Davidson

We *hereby certify* the following geochemical analysis of 23 rock samples submitted Jun-07-07 by Scott Davidson.

Sample Name	A.P.*	
A0009	1.9	
A0010	2.2	
A0011	3.4	
A0012	10.0	
A0013	4.1	
A0014	18.4	
A0015	4.4	
A0016	8.1	
A0017	13.8	
A0018	10.6	
A0019	4.1	
A0020	2.5	
A0021	0.6	
A0022	2.8	
A0023	3.4	
A0024	9.1	
A0025	2.5	
A 0 026	14.7	
A0027	16.3	
A0028	7.8	
A0029	5.3	
A0030	2.8	
A0031	5.6	
*DUP A0009	1.9	
*DUP A0018	10.3	
*DUP A0028	7.8	
*RTS-1		
*AU5		
*SY-4		
* 0.01 M KCl		

^{*}Kg CaCO3 equivalent per tonne of material

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Geochemical Analysis Certificate

7S-0022-RG1

Page 3 of 4

Company:

Novagold Resources Inc.

Jun-07-07

Project:

Attn:

Scott Davidson

We *hereby certify* the following geochemical analysis of 23 rock samples submitted Jun-07-07 by Scott Davidson.

Sample Name	pH paste	p H rînse	Conductivity us	C %	S-Total	S-SO4 %	N.P.*
*KZK-1							65.5
*BLANK				<0.01	<0.01	<0.01	<0.1

er is to keep week the increase

*Kg CaCO3 equivalent per tonne of material

A

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Geoci	hemical	Analysi	s Certi	ficate
~~~~	P. CHARLE OF P.	X X 4 6 6 6 6 7 13 6	0 00.00	,

7S-0022-RG1

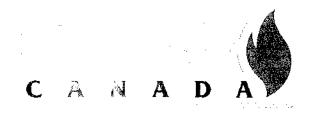
Page 4 of 4 Jun-07-07

Company:

Novagold Resources Inc.

Project:

Attn:


Scott Davidson

We *hereby certify* the following geochemical analysis of 23 rock samples submitted Jun-07-07 by Scott Davidson.

Sample Name	A.P. [∉]		
*KZK-1 *BLANK	<0.1		

*Kg CaCO3 equivalent per tonne of material

Certified by



Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

7S-0024-RG1 Page I of 4

Jan-05-08

# Geochemical Analysis Certificate

Company:

**Novagold Resources** 

Project: Aun:

Galore Creek Scott Davidson

We hereby certify the following geochemical analysis of 23 rock samples submitted Jun-12-07 by Scott Davidson.

Sample Name	Conductivity us	pH paste	pH rinse	C %	. S %	S-SO4 %	N.P.*
Acreso	259	9.40	9.37	0.62	0.21	<0.01	66.6
ALORE	310	9.03	9.03	0.41	0.14	<0.01	39.0
$\mathcal{M}^{t,t} = \mathcal{L}$	339	9.18	9.11	0.55	0.20	<0.01	64.3
14.00 pt	386	8.19	8.25	0.48	0.12	<0.01	20.4
A 0 0	238	9.15	9.00	0.07	0.05	<0.01	28.2
$A_{\mathcal{C}}(x, x', x')$	287	8.89	8.83	0.04	0.03	<0.01	24.9
$\mathcal{L}_{q}(x^{q-1})$	387	8.99	8.95	0.14	9.02	<0.01	13.5
April 1	294	9.00	9.05	0.13	0.02	<0.01	23.9
Activity.	259	8.82	8.75	0.18	0.19	<0.01	26.3
\$2000 j	212	8.68	8.52	0.10	0.12	<0.01	21.5
[400] [1]	280	8.25	8.37	0.39	0.21	<0.01	16.7
$f_{V_{i}}(t_{i+1})$	317	8.30	8.30	0.53	0.20	<0.01	17.8
72044	229	8.93	8.90	0.45	0.36	<0.01	18.8
A/ (445)	322	8.02	8.30	0.27	0.22	<0.01	12.9
ACC (C	427	7.72	7.90	0.33	0.27	<0.01	17.7
$\mathcal{M}(G)^{**}$	284	8.67	8.88	0.26	0.32	<0.01	18.9
4,000 ×	365	8.59	8.60	0.38	0.27	<0.01	21.7
Afrika o	217	8.39	8.40	0.38	0.24	<0.01	19.8
$-Kh^{r+r}$	333	7,90	7.90	0.43	0.23	<0.01	16.9
A00.71	348	8.29	8.45	0.91	0.26	<0.01	66.5
$-\mathcal{M}(\theta^{-1})^{*}$	312	8.02	8.20	0.39	0.21	0.01	18.2
$A_{\bullet}M^{-1}$ ,	331	8.55	8.50	1.26	0.38	<0.01	80.4
$V(t^{-1})$	228	8.79	8.78	0.61	0.28	<0.01	29.9
150F +603X	262	9.37	9.31	0.61	0.22	<0.01	67.7
1001 (1994)	201	8.67	8,70	0.10	0.12	<0.01	20.6
TEME VARMED	361	8.26	8.35	0.90	0.27	<0.01	66.1
the Table 1						1.24	
May 14				1,24	1.51		
the III Kul	1420						
1 al.(la)=							65.3

^{*}Kg CaCO3 equivalent per tonne of material





Assayers Canada 8282 Sherbrooke St. Vancouver, B.C.

V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

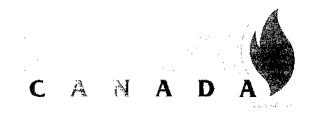
7S-0024-RG1 Page 2 of 4

Jan-05-08

# Geochemical Analysis Certificate

Company:

**Novagold Resources** 


Project: Attn:

Galore Creek Scott Davidson

We hereby certify the following geochemical analysis of 23 rock samples submitted Jun-12-07 by Scott Davidson.

Sampte Name	A.P.*	Au ppb
45	6.6	4
A Total	4.4	
	6.3	5
Activities	3.8	
$(B_{ij})^{k_{ij}}$ (2)	1.6	
The desired	0.9	
25 C	0.6	
and the second	0.6	
$(T_{2n},T_{n-4})$	5.9	2
As Comment	3.8	
1000	6.6	
Astra	6.3	
All Gold	11.3	
AWA ST	6.9	
the following	8.4	
	10.0	
Att Att	8.4	
	7.5	
$A_{\Sigma} e^{i \omega T}$	7.2	
A403	8.1	
2.35	6.6	
7417	11.9	
25 War - 5	8.8	
(1) (4) (1) (4) (4) (4) (4)	6.9	
M10 04 41	3.8	
	8.4	
1.54.15.2		
Asset States		

^{*}Kg CaCO3 equivalent per tonne of material



Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

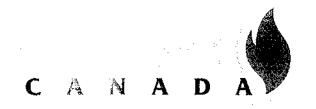
# Geochemical Analysis Certificate

7S-0024-RG1

Page 3 of 4 Jan-05-08

Company:

**Novagold Resources** 


Project. Alto.

Galore Creek Scott Davidson

We hereby certify the following geochemical analysis of 23 rock samples submitted Jun-12-07 by Scott Davidson.

Sample Name	Conductivity us	pH paste	pH rinse	C %	S %	S-SO4 %	N.P.*
+0761							
- Hard Link	<1			<0.01	<0.01	<0.01	< () . 1

^{*}Kg CaCO3 equivalent per tonne of material



Assayers Canada 8282 Sherbrooke St. Vancouver, B.C.

V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

7S-0024-RG1 Page 4 of 4

Jan-05-08

# Geochemical Analysis Certificate

Company:

**Novagold Resources** 

Project:

Galore Creek

Atta: Scott Davidson

We hereby certify the following geochemical analysis of 23 rock samples submitted Jun-12-07 by Scott Davidson.

Sample Name	A.P.*	Aս թթե
		370
The Caller	< 0.1	< 1

*Kg CaCO3 equivalent per tonne of material



### Geochemical Analysis Certificate

7S-0027-RG1 Page I of 2 Jan-05-08

Company:

Novagold Resources Inc.

Project: Attn:

Galore Creek Scott Davidson

We *hereby certify* the following geochemical analysis of 9 rock samples submitted Jun-15-07 by Scott Davidson.

Sample Name	pH paste	pH rinse	Conductivity us	C %	S-Total %	S-SO4 %	N.P.*
7203017	8.97	9.27	268	0.48	0.02	<0.01	15.9
A COL	7.30	7.55	104	0.47	0.02	<0.01	4,3
A 2 10 1	8.57	8.88	301	0.67	0.03	<0.01	11.2
$-\Delta G(t', t)$	9.12	9.17	162	0.30	0.33	<0.01	34.9
7.600	9.10	9.21	1.85	0.52	0.29	<0.01	57.6
AODAN,	8.60	8.65	212	0.04	0.15	<0.01	7.9
A0073	8.45	8.25	217	0.04	0.38	<0.01	6.1
7.0 GT 1	9.80	9.60	352	0.16	0.17	<0.01	18.8
Aug.	8.26	8.25	1892	0.14	0.11	<0.01	16.1
(2) (2) (3) (4) (7)	8.92	9.25	271	0.49	0.03	<0.01	15.3
1900				1.25	1.50		
US 77.1-4						1.27	
**************************************							
rkxx1							65.0
70. UH KC1			1438				
$-\epsilon t_1 / t_{-\epsilon_1}$							
\$1310014W			< 1	<0.01	<0.01	<0.01	<0.1



^{*}Kg CaCO3 equivalent per tonne of material



**7S-0027-RG1** Page 2 of 2

Jan-05-08

# Geochemical Analysis Certificate

Company:

Novagold Resources Inc.

Project Attn: Galore Creek Scott Davidson

We hereby certify the following geochemical analysis of 9 rock samples submitted Jun-15-07 by Scott Davidson.

Sample Name	A.P.*	Aս թթե
And the second	0.6	2
y+(+-)	0.6	1.
Attack is	0.9	
April 1990	10.3	
Action 1	9.1	6
anger i	4.7	
7.00	11.9	2
$f_{\lambda}(x)e^{ixx}$	5.3	1
ACT 1	3.4	
F1803 - 60067	0.9	
17.11		
* \$2**** (		
and the second second		
* N.Z.E.=		
and the state of t		
4 - **		370
THE NAME OF THE PARTY OF THE PA	<0.01	<1



^{*}Kg CaCO3 equivalent per tonne of material



Assayers Canada

8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

### Geochemical Analysis Certificate

7S-0028-RG1 ·

Page 1 of 2 Jun-19-07

Company:

Novagold Resources Inc. Galore Creek

Project: Attn:

Scott Davidson

We *hereby certify* the following geochemical analysis of 12 rock samples submitted Jun-18-07 by Scott Davidson.

Sample Name	pH paste	pH rinse	Conductivity us	C %	S-Total %	S-SO4 %	N.P.*
A0055	7.82	7.70	161	0.10	0.02	<0.01	15.2
A0056	7.80	8.34	302	0.03	0.02	<0.01	13.4
A0057	6.95	8.30	277	0.88	0.10	<0.01	77.4
A0058	7.60	8.12	372	1.22	0.64	<0.01	72.7
A0059	7.67	7.80	305	0.50	0.35	<0.01	28.9
A0060	8.08	8.12	315	0.53	0.36	<0.01	55.4
A0061	7.84	7.78	257	0.09	0.02	<0.01	8.4
A0062	8.35	8.21	263	0.04	0.02	<0.01	15.0
A0063	7.30	7.65	144	0.10	0.03	<0.01	16.5
A0064	7.98	7.70	297	0.08	0.03	<0.01	2.7
A0065	8.02	7.90	462	0.08	0.07	<0.01	11.3
A0066	7.19	7.72	496	0.05	0.28	0.01	9.5
*DOP A0055	7.90	7.70	168	0.09	0.02	<0.01	14.7
*DUP A0064	7.99	7.60	328	0.07	0.03	<0.01	2.9
*Au-5				1.24	1.49		
*RTS-1						1.22	
*KZK-1							62.2
*0.01M KCl			1407				
*BLANK			<1	<0.01	<0.01	<0.01	<0.1

Committee Salvarettee to be a second Gardin



^{*}Kg CaCO3 equivalent per tonne of material



# Geochemical Analysis Certificate

7S-0028-RG1 Page 2 of 2

Jun-19-07

Company:

Novagold Resources Inc. Galore Creek

Project:

Attn:

Scott Davidson

We hereby certify the following geochemical analysis of 12 rock samples submitted Jun-18-07 by Scott Davidson.

Sample Name	A.P.*		
A0055	0.6	——————————————————————————————————————	
A0056	0.6		
A0057	3.1		
A0058	20.0		
A0059	10.9		
A0060	11.3		
A0061	0.6		
A0062	0.6		
A0063	0.9		
A0064	0.9		
A0065	2.2		
A0066	8.8		
*DUP A0055	0.6		
*DUP A0064	0.9		
*Au-5		·	
*RTS-1			
* KZK-1			
*0.01M KCl			
*BLANK	<0.01		

^{*}Kg CaCO3 equivalent per tonne of material



Assayers Canada

8282 Sherbrooke St. Vancouver, B.C.

V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

#### Geochemical Analysis Certificate

7S-0031-RG1

Page 1 of 2

Company:

Novagold Resources Inc.

Jun-25-07

Project: Attn: Galore Creek Scott Davidson

We *hereby certify* the following geochemical analysis of 9 rock samples submitted Jun-20-07 by Scott Davidson.

Sample Name	pH paste	pH rinse	Conductivity us	C %	S-Total %	S-SO4 %	N.P.*
A0076	8.4	8.4	361	1.02	0.23	<0.01	81.9
A0077	8.2	8.4	287	0.77	0.21	<0.01	73.6
A0078	8.4	8.5	379	3.74	0.24	<0.01	304.6
A0079	8.6	8.4	269	3.73	0.11	<0.01	314.3
A0080	8.7	8.4	302	0.65	0.25	<0.01	18.3
A0081.	8.5	8.3	499	0.54	1.04	0.01	24.9
A0082	8.4	8.3	391	0.56	0.60	0.01	19.6
A0083	8.6	8.3	355	1.07	0.35	<0.01	74.4
A0084	8.4	8.1	536	0.35	0.13	<0.01	25.6
*DUP A0076	8.4	8.4	359	1.00	0.22	<0.01	79.2
*Au5				1.25	1.50		
*RTS-1						1.25	
*KZK-1							65.0
*0.01M KCl			1420				
*BLANK			< <u>1</u>	<0.01	<0.01	<0.01	<0.1

Certified by

Bushing Bungday flores are an interes-

The state of the s

^{*}Kg CaCO3 equivalent per tonne of material



#### Geochemical Analysis Certificate

7S-0031-RG1 Page 2 of 2

Jun-25-07

Company:

Novagold Resources Inc.

Project:

Galore Creek

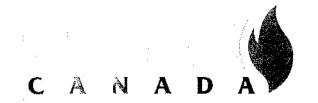
Attn:

Scott Davidson

We hereby certify the following geochemical analysis of 9 rock samples submitted Jun-20-07 by Scott Davidson.

Sample Name	A.P.*	
A0076	7.2	
A0077	6.6	
A0078	7.5	
A0079	3.4	
A0080	7.8	
A0081	32.5	<del></del> -
A0082	18.8	
A0083	10.9	
A0084	4.1	
*DUP A0076	6.9	

^{*}Au5


^{*}RTS-1

^{*}KZK-1

^{*0.01}M KCl

^{*}BLANK

^{*}Kg CaCO3 equivalent per tonne of material



7S-0032-RG1 Page 1 of 2

Jan-05-08

## Geochemical Analysis Certificate

Company:

**Novagold Resources** 

Project: Attn:

Galore Creek

submitted Jun-21-07 by Scott Davidson.

Scott Davidson

We hereby certify the following geochemical analysis of 18 rock samples

Sample Name	pH paste	p <b>H</b> rinse	Conductivity us	C %	S %	S-SO4 %	N.P.*
$A(0)^{-1}$	8.3	8.2	361	0.20	0.21	0.01	7.4
40.00	8.4	8.2	307	0.63	0.37	<0.01	68.1
$(U^{*}Y^{*})^{*} = 0$	8.4	8.1	447	0.20	0.10	<0.01	24.8
$\mathcal{H}(Y, e^{i\phi})$	8.4	8.2	235	0.14	0.08	<0.01	23.1
$f_{\nu}(V) = \epsilon$	8.4	8.2	368	0.20	0.13	<0.01	19.8
$-\hat{p}_{\Sigma}(p) + 0$	8.6	8.4	301.	0.13	0.10	<0.01	15.7
Jefat 101	8.5	8.4	253	0.40	0.08	<0.01	39.6
7300 (2)	8.7	8.5	239	0.32	0.07	<0.01	36.0
AGD C	8.8	8.5	229	0.23	0.26	<0.01	30.5
APP 61	8.5	8.3	355	0.40	0.03	<0.01	17.7
A(C). (1)	8.7	8.4	291	0.16	0.10	<0.01	17.5
(fd) (c. 9)	8.6	8.4	313	0.05	0.06	<0.01	16.3
(A) (A) (A) (A)	8.6	8.3	368	0.52	0.06	<0.01	37.4
740 × 35	8.6	8.4	311	0.69	0.03	<0.01	67.0
A44444	8.6	8.3	322	1.07	0.20	<0.01	82.2
A6177	8.4	8.1	207	0.55	0.13	<0.01	14.1
AND THE	8.4	8.2	299	0.49	0.49	<0.01	20.3
AV 11 x	8.5	8.3	238	0.53	0.23	<0.01	59.4
$\mathbb{P}^{n, n}(\mathcal{E}) = \{\{(x, y, y,$	8.3	8.2	359	0.20	0.20	0.01	7.3
1. P. C. Comp. (4. Co.) [47]	8.5	8.3	359	0.39	0.03	<0.01	17.8
135141				1,25	1.50		
HENRY TO						1.25	
· MARH.							61.9
Mr. N. Kell			1425				
*01 (e.g.							



^{*}Kg CaCO3 equivalent per tonne of material



7S-0032-RG1 Page 2 of 2

Jan-05-08

# Geochemical Analysis Certificate

Company:

**Novagold Resources** 

Project: Attn:

Galore Creek Scott Davidson

We hereby certify the following geochemical analysis of 18 rock samples submitted Jun-21-07 by Scott Davidson.

Santple Name	A.P.*	Au ppb
No. of the control of	6.6	
gat dation	11.6	2.
A Commence of the Commence of	3.1	
$T_{N} = \Gamma_{C}$	2.5	
Action to	4.1	
F. 77 19	3.1	
$f_{i}(x, x_{i}^{*}) = f_{i}(x_{i}^{*})$	2.5	
Assistant and a second of the	2.2	
	8.1	9
Alberta	0.9	
April 1	3.1	
Aglyr era	1.9	1
A7 19	1.9	
.5	0.9	
Production of the Control of the Con	6.3	5
EX.	4.1	
Addition to	15.3	
As a first of	7.2	3
*1711 Control	6.3	
* 1 d 1	0.9	
+ A.A.		
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
1875 gr= 1		
1991 - 11 BHT1		
4.4		373
$(1, \frac{1}{2}, \dots, \frac{1}{2})$		< 3

^{*}Kg CaCO3 equivalent per tonne of material





Court to Braying for over 24 Com-

7S-0034-RG1

Page 1 of 2 Jun-26-07

# Geochemical Analysis Certificate

Company:

Novagold Resources Inc. Galore Creek

Project: Attn:

Scott Davidson

We *hereby certify* the following geochemical analysis of 8 rock samples submitted Jun-22-07 by Scott Davidson.

Sample Name	pH paste	pH rinse	Conductivity us	C %	S-Totai %	S-SO4 %	N.P.*
A00103	8.52	8.61	403	1.67	0.55	0.06	157.8
A00103	8.62	8.58	271	1.71	0.77	<0.01	130.8
A00104 A00105	8.66	8.73	607	0.05	0.18	0.01	5.3
A00106	9.13	9.25	436	0.06	0.08	<0.01	18.7
A00107	9.01	9.03	272	0.72	0.11	<0.01	62.5
A00108	9.21	9.31	371	0.08	0.10	0.05	9.9
A00100 A00109	9.34	9.40	513	0.08	0.18	0.05	1.3.0
A00110	8.18	8.40	427	0.05	0.12	0.03	9.4
*DUP A00103	8.53	8.60	356	1.65	0.55	0.05	156.6
*Au-5	0100			1.25	1.50		
*RTS-1			·			1.29	
*KZK-1							61.4
*0.01M KCl			1436				
*BLANK			<1	<0.01	<0.01	<0.01	<0.1

Certified by

^{*}Kg CaCO3 equivalent per tonne of material



Assayers Canada 8282 Sherbrooke St. Vancouver, B.C.

V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

# Geochemical Analysis Certificate

7S-0034-RG1 Page 2 of 2

Jun-26-07

Company:

*BLANK

Novagold Resources Inc.

Project:

Galore Creek

Scott Davidson Attn:

We hereby certify the following geochemical analysis of 8 rock samples submitted Jun-22-07 by Scott Davidson.

dian y

Sample Name	N.P.* Rerun	A.P.*		 	
A00103 A00104 A00105 A00106 A00107	6.0	17.2 24.1 5.6 2.5 3.4		 	
A00108 A00109 A00110 *DUP A00103 *Au-5	14.4 9.5	3.1 5.6 3.8 17.2	`		
*RTS-1 *KZK-1 *0.01M KC1					

Salago Sago Sago Sago

3.39

^{*}Kg CaCO3 equivalent per tonne of material



Assayers Canada

8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Sandley Bungling for over 82 Hours

# Geochemical Analysis Certificate

7S-0037-RG1 Page 1 of 4 Jun-29-07

Company:

Novagold Resources Inc.

Project:

Galore Creek

Scott Davidson Attn:

We *hereby certify* the following geochemical analysis of 24 rock samples submitted Jun-26-07 by Scott Davidson.

Sample Name	pH paste	pH rinse	Coductiv us	C %	S-Total %	S-SO4 %	N.P.*
A0111	8.80	8.89	245	1.01	0.51	0.05	85.1
A0112	8.40	8.52	320	0.35	0.24	0.01	23.3
A0113	8.68	8.81	214	0.05	0.07	0.02	21.9
A0114	8.19	8.25	293	0.54	0.34	0.01	21.0
A0115	8.72	8.81	226	0.91	0.04	0.03	84.1
A0116	8.40	8.55	128	11.0	<0.01	0.45	977.6
A0117	8.51	8.59	378	6.42	0.01	0.25	535.7
A0118	7.31	7.72	434	0.25	<0.01	<0.01	3.1
A0119	7.68	7.78	308	0.08	0.11	0.02	15.7
A0120	7.58	7.38	299	0.58	0.05	<0.01	12.4
A0121	7.27	7.25	146	0.62	0.05	<0.01	11.1
A0122	6.79	6.65	86	0.99	0.04	<0.01	12.4
A0123	7.46	7.42	199	0.77	0.03	<0.01	11.9
A0124	7.12	7.02	139	0.61	0.05	<0.01	11.5
A0125	7.70	7.72	150	0.68	0.03	0.01	12.1
A0126	7.82	7.85	3.67	0.60	0.03	<0.01	13.0
A0127	8.39	8.39	314	1.14	0.48	0.02	75.1
A0128	8.61	8.59	289	0.40	0.24	<0.01	22.2
A0129	7.00	6.91	733	0.48	0.52	0.03	7,7
A0130	8.55	8.60	375	0.71	0.23	<0.01	28.3
A0131	7.55	7.52	259	0.63	0.08	<0.01	12.0
A0132	7.61	7.58	354	0.53	0.17	0.02	13.2
A01.33	8.49	7.55	286	0.63	0.53	<0.01	31.9
A0134	8.63	8.72	329	0.48	0.41	<0.01	18.9
*DUP A0111	8.81	8.89	251	1.07	0.52	0.05	84.9
*DUP A0120	7.60	7.39	307	0.58	0.05	<0.01	12.4
*DUP A0130	8.52	8.60	368	0.71	0.22	<0.01	28.3
*Au-5				1.25	1.50		
*RTS~1						1.25	
*KZK-1							60.8

^{*}Kg CaCO3 equivalent per tonne of material

Certified by



## Geochemical Analysis Certificate

7S-0037-RG1 Page 2 of 4 Jun-29-07

Company:

Novagold Resources Inc.

Project:

Attn:

Galore Creek Scott Davidson

We hereby certify the following geochemical analysis of 24 rock samples submitted Jun-26-07 by Scott Davidson.

Sample Name	A.P.*	
A0111	15.9	
A0112	7.5	
A0113	2.2	
A0114	10.6	
A0115	1.3	
A0116	0.0	
A0117	0.3	
A0118	0.0	
A0119	3.4	
A0120	1.6	
A0121	<u>1</u> .6	
A0122	1.3	
A0123	0.9	
A0124	1.6	
A0125	0.9	
A0126	0.9	
A0127	15.0	
A0128	7.5	
A0129	16.3	
A0130	7.2	
A0131	2.5	
A0132	5.3	
A0133	16.6	
A0134	12.8	
*DUP A0111	16.3	
*DUP A0120	1.6	
*DUP A0130	6.9	
*Au-5		
*RTS-1		
*KZK-1.		



^{*}Kg CaCO3 equivalent per tonne of material



# Geochemical Analysis Certificate

Charles Deagons for our re-

7S-0037-RG1

Page 3 of 4 Jun-29-07

Company:

Novagold Resources Inc.

Project:

Galore Creek

Scott Davidson Attn:

We *hereby certify* the following geochemical analysis of 24 rock samples submitted Jun-26-07 by Scott Davidson.

%	%	N.P.*
<0.01	<0.01	<0.1
_		

^{*}Kg CaCO3 equivalent per tonne of material



Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436

Tel: (604) 327-3436 Fax: (604) 327-3423

### Geochemical Analysis Certificate

7S-0037-RG1

Page 4 of 4 Jun-29-07

Company:

Novagold Resources Inc.

Project: Attn: Galore Creek Scott Davidson

We *hereby certify* the following geochemical analysis of 24 rock samples submitted Jun-26-07 by Scott Davidson.

Sample Name A.P.*

*0.01M KCl

*BLANK

*Kg CaCO3 equivalent per tonne of material

GA.



Geochemical Analysis Certificate

7S-0037-RG2

Page 1 of 2

Jun-29-07

Company:

Novagold Resources Inc.

Project: Attn:

Galore Creek Scott Davidson

We hereby certify the following geochemical analysis of 1 rock sample submitted Jun-26-07 by Scott Davidson.

Sample Name	pH paste	pH rinse	Conducty us	. °%	S-Total	S-SO4 %	N.P.*
A0135	8.38	8.40	373	0.45	0.29	<0.01	19.2
*DUP A0135	8.39	8.41	383	0.46	0.28	<0.05	19.2
*Au-5	0.05			1.25	1.50		
*RTS-1						1.25	
*KZK-1							60.9
*0.01M KC1			1398			·	
*BLANK			<1	<0.01	<0.01	<0.01	<0.1

Caretin Barrer St. Grand and Grand

^{*}Kg CaCO3 equivalent per tonne of material



# Geochemical Analysis Certificate

7S-0037-RG2

Page 2 of 2 Jun-29-07

Company:

Novagold Resources Inc. Galore Creek

Project:

Scott Davidson Attn:

We hereby certify the following geochemical analysis of 1 rock sample submitted Jun-26-07 by Scott Davidson.

Sample Name	A.P.*			 
A0135	9.1			
*DUP A0135	8.8			
*Au-5		•		
*RTS-1				
*KZK-1				 
*0.01M KCl			<del></del>	
*BLANK				

^{*}Kg CaCO3 equivalent per tonne of material



**Assayers Canada** 

8282 Sherbrooke St. Vancouver, B.C.

V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assuring for over 25 Years

# Geochemical Analysis Certificate

7S-0042-RG1

Page 1 of 2 Jul-10-07

Company: Project:

Novagold Resources Inc. Galore Creek

Attn:

Scott Davidson

We hereby certify the following geochemical analysis of 8 rock samples submitted Jul-05-07 by Scott Davidson.

389 367 381 518 404	4.88 0.69 0.33 1.01 0.05	0.47 0.26 0.02 0.16 0.11	0.01 <0.01 <0.01 0.02	360.3 57.2 42.4 76.9
381 518 404	0.33 1.01	0.02 0.16	<0.01 0.02	42.4
518 404	1.01	0.16	0.02	
404			-	76.9
	0.05	0.11	40 01	
			<0.01	20.3
420	0.31	0.06	0.02	29.6
557	0.25	0.13	0.04	24.7
687	0.02	0.57	0.06	5.1
383	4.99	0.44	<0.01	360.1
	1.26			
		<u> </u>	1.25	A-14
		1.49		60.1
1483				
<1	<0.01	<0.01	<0.01	<0.1
	1483	1.26	1.26 1.49	1.26 1.25 1.49

Certified by

^{*}Kg CaCO3 equivalent per tonne of material



Assayers Canada 8282 Sherbrooke St. Vancouver, B.C.

V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

# Geochemical Analysis Certificate

7S-0042-RG1

Page 2 of 2 Jul-10-07

Company:

Novagold Resources Inc. Galore Creek

Project:

Attn: Scott Davidson

We *hereby certify* the following geochemical analysis of 8 rock samples submitted Jul-05-07 by Scott Davidson.

N.P.* Modified	A.P.*	
356.7	14.7	
54.6	8.1	
39.9	0.6	
71.7	5.0	
18.1	3.4	
28.4	1.9	- 1000
22.7	4.1	
2.8	17.8	
356.4	13.8	
		/ // <del> </del>
58.4		
<0.1		
	Modified  356.7 54.6 39.9 71.7 18.1 28.4 22.7 2.8 356.4	Modified  356.7 14.7 54.6 8.1 39.9 0.6 71.7 5.0 18.1 3.4 28.4 1.9 22.7 4.1 2.8 17.8 356.4 13.8

the confident homeonic for a concept follows

Certified by

^{*}Kg CaCO3 equivalent per tonne of material



#### Geochemical Analysis Certificate

7S-0053-RG1

Page 1 of 2 Aug-01-07

edine.

Company:

Novagold Resources Inc. Galore Creek

Project: Attn:

Scott Davidson

We *hereby certify* the following geochemical analysis of 16 rock samples submitted Jul-25-07 by Scott Davidson.

Sample Name	pH paste	pH rinse	Conductivity us	C %	S-Total %	S-SO4 %	N.P.*
0351	9.0	9.0	681	1.32	0.36	0.03	106.4
0352	11.0	11.1	756	0.56	0.09	<0.01	47.5
0353	9.0	9.0	326	1.00	0.07	<0.01	28.2
0354	8.9	9.0	398	1.46	0.08	<0.01	162.9
0355	9.1	9.4	293	0.55	0.20	<0.01	58.9
0356	9.2	9.3	286	0.55	0.15	<0.01	62.3
0357	9.0	9.1	260	0.49	0.17	<0.01	55.7
0358	8.9	9.0	257	0.38	0.12	<0.01	37.6
0359	8.4	8.5	966	6.92	0.42	<0.01	523.7
0360	8.2	8.2	1901	6.50	0.38	0.05	491.9
0361	9.2	9.3	254	0.30	0.14	<0.01	31.8
0362	8.6	8.4	343	0.63	0.10	<0.01	39.6
0363	8.9	9.0	372	0.04	0.12	<0.01	10.0
01.42	8.9	9.2	558	0.15	0.22	<0.01	25.9
01.43	7.9	7.9	1157	1.25	0.73	0.02	13.4
0144	8.9	9.1	478	0.94	0.15	0.01	73.8
*DUP 0351	8.9	9.0	688	1.32	0.36	0.03	106.5
*Au5				1.27	1.51		
*0.01% KC1			1418.0				
* KZK-1							68.2
*BLANK			<1	<0.01	<0.01	<0.01	<0.1

^{*}Kg CaCO3 equivalent per tonne of material



# Geochemical Analysis Certificate

7S-0053-RG1 Page 2 of 2 Aug-01-07

Company:

Novagold Resources Inc.

Project:

Galore Creek

Scott Davidson Attn:

We *hereby certify* the following geochemical analysis of 16 rock samples submitted Jul-25-07 by Scott Davidson.

Sample Name	N.P.* Modified	A.P.*
0351	99.6	10.3
0352	45.1	2.8
	23.4	2.2
0353	155.8	2.5
0354	49.5	6.3
0355		
0356	52.0	4.7
0357	45.8	5.3
0358	32.7	3.8
0359	507.6	13.1
0360	481.2	10.3
0361	25.7	4.4
0362	41.1	3.1
0363	5.2	3.8
	19.6	6.9
0142	10.8	22.2
0143		
0144	66.8	4.4
*DUP 0351	99.3	10.3
*Au5		
*0.01M KCl		
*KZK-1	59.4	
	<0.1	
*BLANK	<b>√</b> 0.⊥	

^{*}Kg CaCO3 equivalent per tonne of material



### Geochemical Analysis Certificate

7S-0056-RG1

Page 1 of 2 Aug-07-07

Company:

Novagold Resources Inc. Galore Creek

Project:

Attn:

Scott Davidson

We *hereby certify* the following geochemical analysis of 9 rock samples submitted Aug-01-07 by Scott Davidson.

Sample Name	pH paste	pH rinse	Conductivity us	C %	S-Total	S-SO4 %	N.P.*
0367	9.0	9.2	685	0.50	0.05	<0.01	43.7
0368	8.7	8.8	231	0.54	0.07	<0.01	42.8
0369	8.6	8.6	378	0.26	0.09	<0.01	15.2
0370	8.5	8.5	278	1.31	0.33	<0.01	97.1
0371	8.3	8.1	344	0.69	0.10	<0.01	54.9
0372	9.1	9.1	269	0.56	0.02	<0.01	46.2
0373	8.6	8.7	890	11.8	<0.01	<0.01	966.3
0374	8.5	8.5	138	11.6	0.03	<0.01	984.2
0375	8.3	8.3	398	0.11	0.03	0.01	17.1
*DUP 0367	9.0	9.2	687	0.51	0.05	<0.01	43.4
*Au 5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1.25	1.50		
*0.01M KCL			1440				
*KZK-1							59.9
*RTS-1						1.31	
*BLANK				<0.01	<0.01	<0.01	<0.1

Carrie en Novembra far verse 19 John s

Certified by

^{*}Kg CaCO3 equivalent per tonne of material



#### Geochemical Analysis Certificate

7S-0056-RG1-

Page 2 of 2 Aug-07-07

Company:

Novagold Resources Inc.

Project:

Galore Creek

Scott Davidson Attn:

We *hereby certify* the following geochemical analysis of 9 rock samples submitted Aug-01-07 by Scott Davidson.

Sample Name	N.P.* Modified	A.P.*	
0367	41.8	1.56	
0368	39.1	2.19	
0369	11.3	2.81	
0370	91.4	10.31	
0371	47.5	3.13	
0372	41.4	0.63	
0373	874.3	0.00	
0374	857.3	0.94	
0375	12.3	0.63	
*DUP 0367	41.2	1.56	
*Au 5			
*0.01M KCL			
*K2K-1	58.0		
*RTS-1			
*BLANK	<0.1		

Certified by

^{*}Kg CaCO3 equivalent per tonne of material

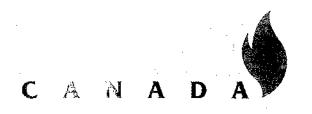


# Geochemical Analysis Certificate

Novagold Resources Inc.

Project. Galore Creek Atm: Scott Davidson

Company.


7S-0057-RG1 Page 1 of 2 Jan-05-08

We hereby certify the following geochemical analysis of 18 rock samples submitted Mar-08-07

Sample Name	Conductivity us	pH paste	pH rinse	C %	S-Total %	S-SO4 %	N.P.*
4.000	269	8.3	8.6	0.56	0.20	<0.01	42.7
$\mathcal{E}_{\mathcal{A}}^{(i)}$	370	7.9	8.0	0.71	0.29	<0.01	41.0
: · · · · ·	264	8,4	8.5	1.47	0.38	<0.01	93.9
$(A, A, B, A) = \{A, B, B,$	370	8.2	8.3	1.26	0.61	<0.01	56.4
Mark Comments	290	8.4	8.3	1.36	0.34	<0.01	98.7
1.31	446	7.3	7.4	0.62	0.36	0.02	9.6
0.482	1691	7.1	7.0	0.39	3.24	0.08	18.6
Contract Con	297	8.2	8.1	0.95	0.46	<0.01	41.9
Transit	336	8.2	8.1	1.32	0.19	<0.01	96.9
Cp 34-1	662	7.5	7.6	0.71	0.77	0.02	16.8
\$490.	327	8.2	8.1	1.96	0.33	<0.01	160.2
(9.0)	386	7,9	7.9	0.56	0.40	<0.01	19.8
(1) \$15 m	525	8.4	8.4	7.58	0.76	<0.01	584.5
(grayers)	301	8.6	8.5	0.37 .	0.45	<0.01	22.8
ta (fa	410	8.9	9.0	0.04	0.19	<0.01	10.7
0.660	471	8.1	8.2	0.04	0.29	0.01	11.6
$(e_{\beta}e_{\alpha})$	684	8.8	8.8	0.93	0.92	<0.01	17.6
0.403	656	8.4	8.3	0.60	0.80	<0.01	20.6
* DOTE - 0 277 6	266	8.4	8.7	0.56	0.20	<0.01	42.9
*/vir ¹				1.24	1.45		
POLIMIK KCI.	1420						
$F(s(\mathbf{F}/s) = 1)$						1.25	
* K X K = 1							60.2
1.3.1.1							
*PTWKK	<1			<0.01	<0.01	<0.01	<0.1



^{*}Kg CaCO3 equivalent per tonne of material



7S-0057-RG1 Page 2 of 2

Jan-05-08

# Geochemical Analysis Certificate

Company:

Novagold Resources Inc.

Project: Aun: Galore Creek Scott Davidson

We hereby certify the following geochemical analysis of 18 rock samples submitted Mar-08-07

Sample Name	N.P.* Modified	A.P.*	Au ppb
*	35.7	6.3	
	32.4	9.1	
•	86.2	11.9	
	50.4	19.1	
* • •	88.4	10.6	
	5,3	10.6	
1.54	12.8	98.8	
. 9	36.4	14.4	
.1 <del>-</del> 1	87.1	5.9	
	12.6	23.4	
	133.3	10.3	
	14.6	12.5	
Control of	512.0	23.8	
$A^{\prime\prime}$ . The $A^{\prime\prime}$	19.1	14.]	
14 + 14	7.0	6.0	
$f_{4} \leftarrow f_{4}^{\dagger}$	8.2	8.8	5
1.4	12.6	28.9	7
$\mathcal{A}_{\mathcal{A}} = \mathcal{A}_{\mathcal{A}}$	15.1	25.0	
17 PM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35.9	6.3	
A. A.			
th. H. Ryll			
the transfer			
en Kritiski eta	57.9		
•			363
* 141 A. T.	<0.1	<0.1	< 1.

^{*}Kg CaCO3 equivalent per tonne of material



# Geochemical Analysis Certificate

Company: Project:

Novagold Resources Inc. Galore Creek

Attn:

Scott Davidson

7S-0061-RG1 Page 1 of 2 Jan-15-08

We hereby certify the following geochemical analysis of 18 rock samples submitted Oct-08-07 by Scott Davidson.

Sample Name	Conductivty us	pH paste	pH rinse	С %	S-Total	S-SO4 %	N.P.*
0.154	499	8.6	8.7	0.67	0.08	0.02	58.9
0.15%	724	8.4	8.6	12.2	0.06	<0.01	940.3
0.1%	661	8.8	8.8	0.42	0.17	0.01	37.6
* 100 mm	819	8.5	8.5	0.35	0.05	0.01	30.7
G (33) a	331	8.8	8.8	0.85	0.25	<0.01	71.8
0.39.	461	8.2	8.2	0.42	0.76	<0.01	24.7
() () (v)	432	9.1	9.0	0.14	0.10	<0.01	16.7
(Y3/) *	361	8.9	9.0	0.27	0.12	<0.01	25.7
0.49+	218	8.9	9.0	0.77	0.05	<0.01	71.4
(p.434)	229	8.9	9.0	0.16	0.08	0.07	65.2
(6)(6))	232	8.6	8.5	0.36	0.08	<0.01	47.9
0401	406	8.7	8.7	0.21	0.77	0.01	17.2
0.400	405	8.8	8.9	0.04	0.30	<0.01	8.1
0400	279	8.8	8.7	0.35	0.18	<0.01	31.7
0404	281	8.8	8.7	1.,04	0.04	<0.01	146.6
04分	359	8.2	8.1	6.95	0.85	<0.01	549.5
07/300:+ic., 3. 1	333	8.5	8.6	0.32	0.38	<0.01	20.5
0.5505-80.002	300	8.5	8.4	1.06	0.49	<0.01	74.0
*PWI * EWI	494	8.6	8.6	0.68	0.08	<0.01	58.9
*(WC-030)	225	8.9	8.9	0.16	0.08	0.07	65.1
*.\$ ¹				1.25	1.50		
* R***, *= 1						1.27	
*6.911 KOL	1458						
* NZE							61.9
#07.4							
*PI SMF				<0.01	<0.01	<0.01	<0.1



^{*}Kg CaCO3 equivalent per tonne of material



7S-0061-RG1

Page 2 of 2 Jan-15-08

## jeochemical Analysis Certificate

Company:

Novagold Resources Inc.

Project:

Galore Creek

Scott Davidson Attn.

We hereby certify the following geochemical analysis of 18 rock samples submitted Oct-08-07 by Scott Davidson.

Samule Name	N.P.* Modified	A.P.*	Au ppb
:	56.6	1.9	
. •	856.7	1.9	
	34.7	5.0	
+ 114 P	29.4	1.3	
4.364	69.1	7.8	8
	21,9	23.8	
17.73	13.4	3.1	
11.00	23.4	3.8	
.4 . 4.	66.9	1.6	
11 (1) + 1	56.0	0.3	
. 1.0	39.8	2.5	
. 10	13.5	23.8	4
10.	4.7	9.4	5
1.11	30.1	5.6	6
	121.9	1.3	
41.	468.7	26.6	5
and the second of	18.5	11.9	
Control was publicated	70.6	15.3	
Committee (1911)	56.5	2.5	
of the constitution	58.5	0.3	
10.11			
facility for			
48. 4 0M.			
1871 (1787)	57.9		
to a final			377
4343 Met	1.05	<0.1	<1

^{*}Kg CaCO3 equivalent per tonne of material



### Geochemical Analysis Certificate

7S-0064-RG1

Page 1 of 2 Nova Gold Resources Inc.

Consister Asserting for ever 19 James

Aug-24-07

Company:

Project:

Attn:

Galore Creek Scott Davidson

We hereby certify the following geochemical analysis of 20 pulp samples submitted Aug-20-07

Sample Name	p <b>i</b> ł paste	pH rinse	Conductivity us	C %	S-Total %	S-SO4 %	N.P.*
0205	8.5	8.5	412	0.83	0.22	0.03	72.0
0406	8.8	8.9	645	<0.01	0.18	<0.01	11.4
0407	9.0	8.8	876	0.62	0.95	0.02	29.1
0408	8.2	8.4	460	0.68	0.59	0.01	49.6
0409	8.2	8.3	443	0.80	0.54	0.01	53.7
0410	8.6	8.6	304	0.73	0.32	<0.01	60.3
0411	8.5	8.5	328	0.38	0.30	<0.01	28.1
0412	8.6	8.7	936	13.4	<0.01	<0.01	1011.1
0413	8.4	8.6	478	0.14	0.02	<0.01	26.6
0414	8.3	8.4	392	1.70	0.35	<0.01	179.4
0415	8.5	8.1	325	1.07	0.06	0.02	89.1
0416	7.3	7.1	921	0.66	0.67	0.16	4.6
0417	8.1	7.9	419	1.82	0.94	<0.01	133.9
0418	8.0	7.9	503	2.37	0.91	0.01	146.6
0419	8.2	7.7	291	0.67	0.74	0.01	59.7
0420	8.2	7.8	462	2.49	0.62	0.01	146.6
0421	8.5	8.2	370	3.42	1.22	<0.01	310.7
0422	8.7	8.5	364	0.14	0.02	<0.01	18.2
0423	7.7	7.8	566	0.01	0.85	0.02	7.1
0424	8.4	8.2	412	3.57	0.13	0.01	290.5
*DUP 0205	8.6	8.4	397	0.81	0.22	0.03	72.1
*DUP 0414	8.4	8.3	380	1.69	0.37	<0.01	179.4
*DUP 0424	8.4	8.2	397	3.57	0.14	<0.01	289.3
*AU5				1.25	1.50		
*RTS-3			<u> </u>			1.54	
*0.01M KCL			1432				
* KZK-1							60.7
*BLANK				<0.01	<0.01	<0.01	<0.1

^{*}Kg CaCO3 equivalent per tonne of material



#### Geochemical Analysis Certificate

7S-0064-RG1 Page 2 of 2

Nova Gold Resources Inc.

Aug-24-07

Company: Project: Attn:

Galore Creek Scott Davidson

We hereby certify the following geochemical analysis of 20 pulp samples submitted Aug-20-07

Sample Name	N.P.* Modified	A.P.*		
0205	66.9	5.9	 	 
0406	6.9	5.6		
0407	24.6	29.1		
0408	41.0	18.1		
0409	45.0	16.6		 
0410	53.2	10.0	 	
0411	23.6	9.4		
0412	897.4	<0.1		
0413	22.6	0.6		
0414	137.7	10.9	 	 
0415	84.2	1.3		
0416	3.9	15.9		
0417	110.0	29.4		
0418	127.6	28.1		
0419	55.5	22.8	 	 
0420	131.4	19.1		
0421	264.6	38.1		
0422	16.1	0.6		
0423	4.85	25.9		
0424	259.0	3.8	 	 
*DUP 0205	66.7	5.9		
*DUP 0414	136.5	11.6		
*DUP 0424	257.1	4.4		
*AU5				
*RTS-3			 	 
*0.01M KCL				
*KZK-1	58.1			
*BLANK	< 0.1	<0.1		

^{*}Kg CaCO3 equivalent per tonne of material

_A

Certified by



**Assayers Canada** 

8282 Sherbrooke St. Vancouver, B.C.

V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

### Geochemical Analysis Certificate

7S-0068-RG1.

Page 1 of 2

Aug-31-07

Company:

Nova Gold Resource Inc.

Project: Attn: Galore Creek Scott Davidson

We *hereby certify* the following geochemical analysis of 10 pulp samples submitted Aug-07-07 by Scott Davidson.

Sample Name	pH paste	pH rinse	Conductivity us	C %	S-Total %	S-SO4 %	N.P.*
0436	9.1	8.9	990	0.93	0.87	0.03	20.7
0437	8.9	9.0	7	1.08	0.86	0.03	29.0
0438	9.2	9.0	426	1.49	0.03	<0.01	199.5
0439	8.9	9.1	434	0.79	0.01	<0.01	33.7
0440	7.9	8.1	1556	0.62	0.91	0.07	34.0
0441	8.9	9.0	455	0.87	0.02	<0.01	50.5
0442	9.0	9.1	386	0.12	0.03	<0.01	16.1
0443	8.8	8.9	347	1.72	0.41	<0.01	51.9
0444	9.1	9.1	298	1.93	0.42	<0.01	250.3
0445	8.6	8.5	409	5,46	<0.01	<0.01	409.2
*DUP 0436	9.0	9.0	974	0.93	0.87	0.02	20.4
*DUP 0445	8.6	8.6	412	5.47	<0.01	<0.01	407.9
*Au-5				1.25	1.49		
*RTS-1						1.26	
*0.01M KCL			1433				
*NBM+1							56.4
*BLANK			<1	<0.01	<0.01	<0.01	<0.1

Jack to Managing for every 181 Johnson

A.

Certified	by
Certified	by

^{*}Kg CaCO3 equivalent per tonne of material



#### Geochemical Analysis Certificate

7S-0068-RG1.

Page 2 of 2 Aug-31-07

Company:

Nova Gold Resource Inc.

Project:

Galore Creek

Attn: Scott Davidson

We *hereby certify* the following geochemical analysis of 10 pulp samples submitted Aug-07-07 by Scott Davidson.

Sample Name	N.P.* Modified	A.P.*	
0436	15.4	26.3	
0437	21.9	25.9	
0438	138.9	0.9	
0439	27.5	0.3	
0440	27.2	26.3	
0441	50.9	0.6	
0442	6.5	0.9	
0443	50.5	12.8	
0444	186.9	<0.1	
0445	375.1	<0.1	
*DUP 0436	15.1	26.6	
*DUP 0445	370.0	<0.1	
*Au-5			
*RTS-1			
*0.01M KCL			
*NBM-1	44.1		
*BLANK	<0.1	<0.1	
		_	

Certified	$b\nu$
Corregacos	$\mathcal{O}_{\mathcal{F}}$

^{*}Kg CaCO3 equivalent per tonne of material



# Geochemical Analysis Certificate

7S-0070-RG1 Page 1 of 2

Nova Gold Resource Inc.

Jan-05-08

Project: Galore Creak Attn: Scott Davidson


Company:

We hereby certify the following geochemical analysis of 8 pulp samples submitted Aug-27-07

Sample Name	pH paste	pH rinse	Conductivity us	C %	S-Total %	S-SO4 %	N.P.* PPM
0.434	9.0	8.9	645	0.03	1.52	0.02	19.6
0.444	8.4	8.2	1739	1.13	2.13	0.06	96.6
044 A	7.0	7.0	3700	0.42	1,98	0.29	31.6
1944 ·	7.0	6.7	150	1.11	0.49	0.26	4.1
(1) (\$\frac{1}{2} \frac{1}{2}	9.9	10.0	714	0.13	0.01	<0.01	27.3
0.41.5	9.1	9.0	420	0.55	0.88	0.06	71.4
0.774	9.0	8.9	452	0.02	0.02	<0.01	8.2
36 4	9.3	9.2	445	0.10	0.25	<0.01	20.2
₹(₹1) - 64°₹0	8.9	8.8	627	0.03	1.53	0.01	23.1
* /k/: ( = *				1.25	1.50		
* (< T , ! = )						1.27	
10. MW ROD			1429				
11344-1							60.5
14) 17 1							
PRAIR			<1	<0.01	<0.01	<0.01	< 0.1



^{*}Kg CaCO3 equivalent per tonne of material



Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

**7S-0070-RG1** Page 2 of 2

Jan-05-08

### Geochemical Analysis Certificate

Comoany:

Nova Gold Resource Inc.

Project: Attn: Galore Creak Scott Davidson

We hereby certify the following geochemical analysis of 8 pulp samples submitted Aug-27-07

Sample Name	N.P.* Modified	A.P.* PPM	Au ppb
6.199	16.64	46.9	2
14	93.69	64.7	.).
4.11	30.68	52.8	2
	1.81	7.2	8
10 A A A	21.68	0.3	7
441.	56.68	25.6	5
fat the	4.80	0.6	
435 G. T.	11.02	7.8	
11/4/14 1	16.55	47.5	
4 8 4 4 5 °C			
14:00 to			
14			
1,34,24+1	46.86		
			387
herweller	0.01	<0.1	< 1

^{*}Kg CaCO3 equivalent per tonne of material



7S-0073-RG1

# Geochemical Analysis Certificate

Page 1 of 2 Jan-05-08

Company:

**Nova Gold Resources** 

Project: Atto.

Galore Creek Scott Davidson

We hereby certify the following geochemical analysis of 10 rock samples submitted Sep-01-07

Sample Name	pH paste	pH rinse	Conductivity us	€ %	S-Total %	S-SO4 %	N.P.*
0.25%	9.3	9.2	760	13.4	<0.01	<0.01	985.0
C 23, 5	9.4	9.5	575	4.53	<0.01	<0.01	338.4
(1.75) T	9.3	9.4	431	0.10	0.49	<0.01	15.3
677	8.5	8.5	427	0.02	0.89	0.03	6.1
136.7 =	9.4	9.4	423	0.19	0.02	<0.01	16.9
15.1.3040.2	9.6	9.4	442	0.09	0.02	<0.01	19.5
1003 - 04.13	9.4	9.6	480	0.27	0.28	<0.01	18.7
$  f(t,y)   \leftarrow f((A_{t-1}, \frac{d}{2}))$	10.1	9.9	844	0.20	0.26	<0.01	28.6
1061 - 104 wg.	10.1	10.2	634	0.20	0.04	<0.01	30.6
$\{[((A_i, a_i), i_i)^T, i_j\}\}$	10.2	10.2	763	0.13	0.03	<0.01	22.7
15800 T. D.C.	9.2	9.3	745	13.9	<0.01	<0.01	986.3
Arth				1.25	1.48		
* (80°, 1= 3							
ARCOHI						1,28	
SEL AT META			1413				
8 MI (MH)							54.2
10010 1006-0456							
*(\$W=1							
407 A CONT.							
PEAGE			<1	<0.01	<0.01	<0.01	<0.01

^{*}Kg CaCO3 equivalent per tonne of material



7S-0073-RG1 Page 2 of 2

Jan-05-08

# Geochemical Analysis Certificate

**Nova Gold Resources** Company:

Project; Galore Creek Aun: Scott Davidson

We hereby certify the following geochemical analysis of 10 rock samples submitted Sep-01-07

Sample Name	N.P.* Modified	A.P.*
	886.5	< (),1
and the second	314.5	<0.1
4 - 4	10.6	15.3
• • •	2.7	26.9
Ball salita	12.1	0.6
And the second	13.5	0.6
The second of	12.3	8.8
46.4 (4.4)	21,2	8.1
To the second	24.9	1.3
100 for explosion	16.6	0.9
	886.2	<0.1
$(\epsilon_{\lambda})$ .		
1 - 1 1 - 1		
The Control of the Co		
1990 Park 12		
1111111111111	46.3	
1 14 (10 April 454)		
and the second second		
A CARRY OF		
Phylip	<0.01	<0.1

^{*}Kg CaCO3 equivalent per tonne of material



**Assayers Canada** 8282 Sherbrooke St. Vancouver, B.C.

V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

### Geochemical Analysis Certificate

7S-0079-RG1 Page 1 of 2 Jan-05-08

Company:

**Nova Gold Resources** 

Project:

Galore Creek

Attn:

Scott Davidson/Ruby Yan

We hereby certify the following geochemical analysis of 6 rock samples submitted Jun-09-07

Sample Name	pH paste	pH rinse	Conductivity us	C %	S-Total %	S-SO4 %	N.P.* PPM
$\{(1,1,-1),((1,1))\}$	9.4	9.3	421	0.17	0.04	<0.01	12.9
131-1 -14 74	9.1	9.1	4.47	0.25	0.04	<0.01	13.6
11日中国 (41.54)	9.3	9.3	355	<0.01	<0.01	<0.01	13.5
$\{0,1+\alpha: \{0,1\}, \{1\}\}$	9.0	9.1	441	0.55	0.04	<0.01	15.2
(11) (1)	9.5	9.5	253	0.23	0.30	<0.01	34.2
Contact	9.2	9.1	212	1.40	0.08	<0.01	214.7
V3AC (1-14) (13.15)	9.4	9.3	421	0.17	0.04	<0.01	12.9
* (C)				1.25	1.50		
* jk(j): '= '						1.26	
70,000 KCD			1413				
1984-1							54.6
10701							
ABI TIN			<1	<0.01	<0.01	<0.01	<0.1



^{*}Kg CaCO3 equivalent per tonne of material



7S-0079-RG1 Page 2 of 2

Jan-05-08

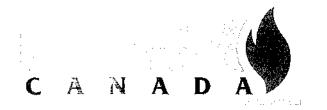
# Geochemical Analysis Certificate

Company:

**Nova Gold Resources** 

Project:

Galore Creek


Atm.

Scott Davidson/Ruby Yan

We hereby certify the following geochemical analysis of 6 rock samples submitted Jun-09-07

Sample Name	N.P.* Modified	A.P.* PPM	Au ppb
	7.5	1.3	3
1.4	8.7	1.3	
	7.9	<0.01	
The english	9.4	1.3	
$(t_{+} - t_{-})$	25.7	9.4	
-	138.9	2.5	
P101 (191 0467	7.3	1.3	
The The Control of th			
PRIVATE CONTRACTOR			
11.11.11.11.1			
1 M1474 - 1	45.0		
A Attack			387
terwiii.	<0.1	<0.1	< 1

^{*}Kg CaCO3 equivalent per tonne of material



Assayers Canada 8282 Sherbrooke St. Vancouver, B.C.

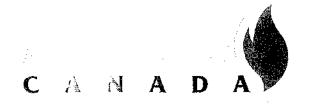
V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

# Geochemical Analysis Certificate

**Nova Dold Resources** 

Project: Galore Creek Attn: Scott Davidson

Company:


7S-0081-RG1 Page L of 2 Jan-05-08

We hereby certify the following geochemical analysis of 19 rock samples submitted Sep-11-07

Sample Name	pH paste	pH rinse	Conductivity us	C %	S-Total	S-SO4 %	N.P.*
90.10	10.4	9.6	149	0.76	0.70	<0.01	15.1
(Projection)	9.5	8.7	269	1.31	0.29	<0.01	150.3
(P.1.)	8.7	8.4	591	8.25	0.37	<0.01	583.4
more than	9.2	8.9	312	4.03	0.93	<0.01	318.2
0.14	8.9	8.4	473	7.44	0.99	<0.01	501.3
O1. E1	9.2	8.9	257	7.77	0,70	<0.01	530.4
0.74.	9.6	9.2	226	0.16	0.02	<0.01	25.8
0.40.1 (3.45-1	8.1	6.1	438	0.16	0.13	0.02	11.9
$(0,   Q ) = (2\beta + \beta)$	7.9	6.0	801	0.16	0.30	0.03	10.6
C(A) (5 * 1 : 1 3	7.2	5.2	858	0.12	0.64	0.07	9.0
$(\cdot,\cdot) \mid (\cdot,\cdot) \mid 1-q$	8.3	5.3	726	0.14	0.25	0.03	11.2
$\{G_{i}^{*}\}_{i=1}^{n}, f_{i}^{*} \in \mathbb{N}$	8.6	8.1	813	0.15	0.28	0.04	14.6
College Edward	9.0	8.1	578	0.18	0.34	0.02	19.0
$(i \cdot \eta \cdot t_i)_{i \in [1, 1]} = [$	7.0	5.7	478	0.30	0.22	0.06	7.4
frifate to set	7.1	5.4	588	0.22	0.28	0.05	9.0
refite to the	7.0	5.5	1302	0.18	0.81	0.07	9.5
114 TO 1144	6.3	4.5	1209	0.13	1.12	0.07	7.5
0.100 1.1-0	7.9	6.0	728	0.09	0.50	0.03	10.5
(. ₫ + z - 10h + €	8.3	6.2	680	0.18	0.37	0.03	11.4
· EMUTE Cond O	10.4	9.7	145	0.76	0.70	0.01	14.8
*1001: 0016.3 D4-3	7.1	5.2	875	0.12	0.62	0.07	9.0
4 (AT 1)				1.25	1.50		
18001-1						1.26	
to. HERCH			1413				
* N(324 = 1							51.5
4 1 to 1							
* BREATH			<1	<0.01	<0.01	<0.01	<0.1



^{*}Kg CaCO3 equivalent per tonne of material



7S-0081-RG1 Page 2 of 2

Jan-05-08

# Geochemical Analysis Certificate

**Nova Dold Resources** Company:

Galore Creek Project: Attn): Scott Davidson

We hereby certify the following geochemical analysis of 19 rock samples submitted Sep-11-07

Sample Name	N.P.* Modified	A.P.*	Au ppb
	11.7	21.9	
Acceptance	120.0	9.1	
4.5	517.7	11.6	
:	287.9	29.0	2
(60° 11 )	482.6	30.9	3
1.4	510.2	21.9	6
11.4	22.8	0.6	
7.40 - 1.4-4	7.2		97
144	6.6		
140	5.4	17.8	
and the second of	7.3	6.7	
196	10.8	7.5	
., fee	14.1	10.0	
16 - 1	3.4	5.0	
$\mathcal{F}(\mathcal{F}_{\mathcal{F}}) = \mathcal{F}(\mathcal{F}_{\mathcal{F}})$	4.6	7.2	
$ \mathcal{F}_{i} _{L^{2}_{T}}^{2}(\epsilon_{i}) \epsilon_{i}\rangle_{L^{2}_{T}}^{2}(\epsilon_{i})= \mathcal{F}_{i} _{L^{2}_{T}}^{2}(\epsilon_{i})$	4.0	23.1	
414 T = 1 = 4	4.0	32.8	
4471 Jan	6.5	14.7	
母(20) 100-40	6.5	10.6	
MARCH (C. 10)	11.7	21.6	
**************************************	5.1	17.2	
The Control William			
Care Control	45.6		
en e			377
11 × 1187	<0.1	<0.1	<1

^{*}Kg CaCO3 equivalent per tonne of material



7S-0090-RG1

Page 1 of 2 Jan-05-08

Geochemical Analysis Certificate

Company: Project: Nova Gold Galore Creek

Attn:

Scott Petsel

We hereby certify the following geochemical analysis of 8 core samples submitted Sep-21-07

Sample Name	Conductivity us	pH paste	pH rinse	C %	S-Total %	S-SO4 %	N.P.* Modified
047 - Prill Oddings	220	9.0	8.7	0.22	0.03	<0.01	15.4
od W-6011. Outsings	241	9.1	8.8	0.19	0.02	< 0.01	10.7
(a) -irini Cuttings	215	9.1	8.6	0.12	0.02	<0.01	4.3
C197 Chill Cuttings	279	9.0	8.0	0.37	0.03	<0.01	9.3
CATT - DEATH Cuttings	637	8.6	7.6	0.19	0.16	0.01	11.0
v474-brill Cuttings	595	8.8	7.7	0.21	0.12	<0.01	11.2
GBRV-faldb-Rook	179	8.7	8.5	0.26	0.07	<0.01	19.4
Offick - Jacab - Rock	135	9.0	9.4	0.52	0.11	<0.01	52.7
1979-1 0473-Drill Cu *AU5				0.22	0.03	<0.01	15.4
1670				1.25	1.48		
FRT(1+-)						1.26	
KOLAIN KOL	1413						
*NHIDE:							45.8
HEARE	<1			<0.01	<0.01	<0.01	<0.1



^{*}Kg CaCO3 equivalent per tonne of material



7S-0090-RG1 Page 2 of 2

Jan-05-08

# Geochemical Analysis Certificate

Company:

Nova Gold

Project: Attn:

Galore Creek Scott Petsel

We hereby certify the following geochemical analysis of 8 core samples submitted Sep-21-07

Sample Name	A.P.*	Au ppb
a contilled tings	0.9	
Carteria: Cathaings	0.6	
TWO tells buttlings	0.6	
1.5 - 1.1 . Trouvings	0.9	
	$A \cdot T$	
in the still Christings	3.8	2
Service - Francis - Reports	2.2	
the state of the state of the	3.4	
Promise of the Artificial Cult *AUS	0.9	
HENDO HOLOTO ECO HOROR		
		387
PMIMIT.	<0.1	<1



^{*}Kg CaCO3 equivalent per tonne of material



# Geochemical Analysis Certificate

Company:

Nova Gold

Project: Attn:

Galore Creek Scott Davidson

7S-0097-RG1 Page I of 2 Jan-05-08

We hereby certify the following geochemical analysis of 6 core samples submitted Oct-03-07

Sample Name	pH paste	pH rinse	Conductivity us	<b>C</b> %	S-Total %	S-SO4 %	N.P,* Modified
0139 .	9.3	9.2	280	7.09	0.04	<0.01	556
6046	8.9	8.7	319	0.39	0.04	<0.01	16.1
E. (1)	8.5	8.2	951	0.88	0.36	0.02	46.0
4.1.4.1 ⁴	9.2	8.9	285	0.72	0.04	<0.01	30.0
440,404	8.8	8.9	323	2.48	0.34	<0.01	119
65.44	8.5	8.6	370	2.99	0.93	<0.01	153
1798 0330	9.2	9.1	256	7.12	0.03	<0.01	556
1.74				1.28	1.49		
14 Km (m. 1						1.26	
10.111 BOD			1413				
Market 1 1							44.4
Profession							
TREATER			< 1	<0.01	<0.01	<0.01	<0.1



^{*}Kg CaCO3 equivalent per tonne of material



7S-0097-RG1 Page 2 of 2 Jan-05-08

# Geochemical Analysis Certificate

Company: Project:

Nova Gold Galore Creck

Attn:

Scott Davidson

We hereby certify the following geochemical analysis of 6 core samples submitted Oct-03-07

Sample Name	A.P.*	Au ppb
0.00	1.2	4
$\alpha = 12$	1.2	3
•	10.6	.]
	1.3	
14	10.6	16
• • •	29.1	1()
17.11 (1.12) 2001 2001	1.0	
90 T. 1.1 KM.		
Market (1997) Market (1997)		387
THE WER	<0.1	< 1

^{*}Kg CaCO3 equivalent per tonne of material

#### APPENDIX V

ANALYTICAL GEOCHEMISTRY CERTIFICATES

ASSAYERS CANADA ICP CERTIFICATES

# Novagold Resources Inc.

Attention: Scott Davidson

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 | Fax: (604) 327-3423

Report No : 7S0022RJ

Date : Jun-07-07

Projecti

Sample type:

# Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag Al ppm %	As ppm	Ba opm	Be ppm	B: ppm	Ca %	Cd ppm		Cr ppm	Cu Fe	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Po ppm	S %	Sb ppm	Sc ppm. :	Sr ppm	Th ppm	T: %	TI ppm	Li ppm	V ppm	₩ VV	Zr ppm	Dow St
A0009	<0.2 1.99	< 5	221	<0.5	< 5	0.14	1	14	158	30 3.5	<1	0.09	<10	1.94	700	<2	0.02	171	636	9	0.02	S	5	19	< 5	<0.01	28	<10	55	<10	79	4
A0010	<0.2 1.50	6	147	<0.5	<5	0.10	1	5	135	18 3.13	<1	0.09	<10	1.37	242	<2	0.01	103	669	7	0.02	10	4	12	<5	0.01	18	<10	51	<10	52	3
A0011	<0.2 1.92	< 5	157	<0.5	<5	0.15	1	12	162	27 3.5	5 <1	0.11	<10	1.82	352	<2	0.02	147	563	б	0.08	9	5	16	< 5	0.01	18	<10	51	<10	\$1	3
A0012	0.2 2.41	10	162	0.5	<5	0.18	2	19	136	48 4.2	3 <1	0.13	<10	2.40	371	<2	0.01	193	511	5	3.26	12	7	18	< 5	0.01	18	<10	60	<10	118	4
A0013	0.5 0.08	<5	27	< 3.5	< 5	9.58	<1	<1	77	4 3.40	) <1	0.02	<10	0.67	388	2	0.01	5	605	< 2	3.11	<5	:	189	<5	<0.01	16	<10	23	<10	4	1
A0014	0.8 0.09	<5	192	<0.5	<5	>15.00	<:	2	9	7 3.86	5 <1	0.04	<10	0.78	967	<2	0.02	ś	369	3	3.67	11	4	257	< 5	<0.01	22	<10	9	<10	2	1
A0015	1.2 0.04	< 5	31	<0.5	<5	>15.00	<1	<1	9	1 1.3	< 1	0.01	<10	6.48	2151	<2	0.01	:	116	2	0.36	8	<:	404	_	<0.01		<:0		<10	1	1
A0016	1.0 0.04	< 5	168	<0.5	<5	>15.00	<1	< 1	24	3 3.44	< 1	0.02	<10	0.60	458		0.01		1111	< 2	0.39	\$	1	548	_	<0.01	23	<10	43	<10	2	1
A0017	0.2 1.39	<5	40	0.5	<5	1.10	2	20	30	71 4.88			<10				0.05		1318	12	0.40	8	10	19	<5	0.27	22	12	151	<10	80	45
AD018	<0.2 2.14	<5	43	0.5	<5	0.85	2	22	33	67 5.49	S <1	0.04	<10	2.45	1118	<2	0.65	23	1442	10	0.29	8	12	18	<5	0.30	27	18	162	<10	101	40
A0019	<0.2 5.49	<5	54	0.5	<5	1.75	2	22	3	40 6.26					1810		2.04		1697	<2	0.10	17	11	33	<\$	0.22	25	23	202	<10	88	24
AGC20	0.2 3.02	<5	331	< 0.5	<5	1.75	2	24	119	32 5.33			<10				0.65		2553	3	0.04	ç	14	112	< 5	0.07	24	18	173	<13	90	4
A0021	<0.2 0.35	<5	77	<0.5	<5	0.09	<1	1	92	7 0.93			<10				0.04	6	279		<0.01	<5	1	10	<5	0.04	15	<10	13	<13	27	2
AUC22	<0.2 0.29	<5	35	<0.5	<5	0.10	<1	2	97	7 0.93			<10				0.04	4		8	0.04	7	1	7	<5	0.03	20		12		26	2
A0023	<0.2 2.19	6	176	<0.5	<5	0.09	1	9	154	40 4.09	) <1	0.14	<10	1.80	272	2	0.01	129	557	12	0.07	12	7	12	<\$	<0.01	29	<10	59	<13	77	3
AGC24	<0.2 0.81	<5	106	<0.5	<5	0.40	1	1	90	4 2.3		0.08		C-39			0.05		176	11	0.25	ç	2	17	<5	0.01	25		5		90	ò
A0025	<0.2 1.14	<5	1049	<0.5	<5	1.43	1	7	56	6 3.46		0.05					0.04		423	7	0.04	8	7	70		< 0.01	1.1	10	43	<10	61	3
A0026	0.4 1.92	<5	40	0.6	<5	1.37	2	20	31	72 5.24					1060		0.05		1582	8	0.43	11	9	21	<5	0.30	28	18	154	<10	93	37
A0027	<0.2 1.75	5	14	3.6	<5	2.69	2	13	23	59 4.7	3 <1	0.03	<10	1.84	1032	<2	0.08		1557	8	0.49	<5	8	46	< 5	0.30	30	:2		<10	61	48
A0028	0.4 4.85	<5	37	3.5	<5	1.88	2	23	9	35 5.3	1	0.03	<10	2.74	1758	<2	1.45	6	1092	4	0.24	20	3	34	<5	0.24	37	22	167	<10	38	25
A0029	<0.2 3.08	9	38	<0.5	<5	0.88	2	22	16	37 5.38	3 <1	0.03	<10	1.87	1459		0.48		1212	ò	0.14	14	7	21	<5	0.24	29	14	140		83	27
A0030	0.3 4.24	< 5	15	0.5	<5	2.37	2	20	9	35 5.69	<1	0.06	<10	2.35	1644	<2	1.31	5	1053	<2	0.05	9	7	34	<5	0.26	28	19	138		77	24
A0031	<0.2 1.89	< 5	553	3.6	<5	3.10	2	< <u>1</u>	15	<1 5.38	3 <1	0.05	14	1.13	1407	< 2	0.05	1	640	12	9.11	13	10	€4	<5	0.01	22	18	5	<10	154	9

Page 1 of 1

A .5 gm sample is digested with 5 mt 3:1 HCt/HNO3 at 95°C for 2 hours and diluted to 25ml.

# Novagold Resources

Anention: So it Davidson ar jest dan ti Otek Sample type.

8282 Sharbrooke St., Vancouver, B.C., V5X 4R6

Tel: 6864132743435 | Fax: 364432743423

Report No. 1 780024RJ

Duta : 1 - 1 m+65+1

# Multi-Element ICP-AES Anarysis

Aqua Regia Digestion

Sample Number	:	As pm	Ba ppm	Be ppm	B: ppm		Cá spm	Cc ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P pom.	Pb ppm	S %	Sic ppm	Sc ppm	Sr opm	Th ppm	T. %	Ti ppm	pom U	V ppm	₩	Zr. ppm i	Z- ppm
40032	<0.2 4.15	< 5	11	< 0.5	< 5	2.65	2	22	14	33	5.18	< 1	3.03	<10	2.11	1435	<2	1.66	6	968	<2	0.22	11	7	14	10	0.26	<10	21	133	<10	74	33
40033	<0.2 3.79	< 5	17	0.5	<5	2.00	3	25	14	30	5.72	< 1	3.03	<10	2.27	1435	<2	1.20	3	925	<2	3.13	< 5	9	12	3	0.30	<10	15	183	<10	84	25
40034	<0.2 1.36	< 5	102	< 0.5	<5	1.96	2	8	27	2	3.51	< 1	3.07	19	0.93	1237	<2	0.08	4	887	4	3.21	3	4	13	7	0.31	<10	15	51	<10	77	5
40035	< 0.2 1.40	<5	114	0.7	<5	0.53	4	13	35	19	3.23	<1	3.03	21	1.18	1199	<2	0.05	30	726	22	3.11	7	5	1	<5	0.31	<10	<10	89	<10	437	5
40036	< 0.2 3.03	<5	29	< 0.5	< 5	2.19	3	32	12	31	5.27	1	3.03	<10	2.51	1096	<2	0.05	21	699	<2	3.04	5	9	2	9	0.34	<10	24	184	<10	76	32
A0037	<0.2 2.15	5	ç5	0.8	< 5	0.91	ź	25	20	< 1	5.93	< 1	3.07		2.05			0.05		1515		0.03	13	14	1		0.46				<10	121	36
A0038	< 0.2 0.94	ક	289	0.7	< 5	0.33	2	1	41	<1	2.27		3.26		0.38			0.01		113		0.01	6	1	1	<5	< 0.01		19	2		178	ó
A0039	<0.2 1.45	12				0.49	3	3	41		4.19		3.07		3.79			0.06		656		0.01	5	5	1	5	0.31		14	24	<10	100	10
A0040	<0.2 2.32	< 5	10	<0.5	< 5	1.16	3	24	15	17	5.39	ï	0.03			1488		0.06		1149		0.18	12	7	2	7	0.40			132	<10	98	52
A0041	<0.2 2.43	< 5	11	Ç.5	< 5	0.99	3	23	12	19	5.42	1	0.02	<13	1.94	1485	<2	0.06	5	1243	<2	0.12	14	5	-	7	0.34	<10	<10	120	<10	92	45
							_										_			200		2 76		_	_		-0.04		20			74	,
A0042	<0.2 1.77	_		<0.5	< 5		2	16	149		3.27			<13				0.02	130	352	_	0.20	< 2	5	2		<0.31		30	47	<10	74	3
A0043	<0.2 2.19		149			0.22	Z	17	166		3.95			<13		233		0.02		415		0.18	8	/	- 2		< 0.31		37	60	<10	95 78	4
AG044	<0.2 1.79		119			0.20	2	15	150		3.35		0.12			200		0.02	122	338		0.33	5	5	- 2	< 5	0.01		30	49	<10		3
AD045	<0.2 1.25		147			0.18	1	12	150		2.40		0.13			213		0.02	36	300		0.21	< 5	4	-		< 0.31		28	32	<10	59	3
AD346	<0.2 1.16	9	159	<0.5	<5	0.31	1	11	139	27	2.34	1	0.12	<23	0.89	282	-	0.02	79	434	<2	0.25	5	4	5	,	<0.31	<10	23	29	<10	57	3
A0047	< 0.2 0.30	ξ	128	<0.5	< 5	0.29	•	7	144	25	1.70	•	0.11	<10	0.65	133	<2	0.02	50	410	2	0.31	7	3	á	<5	<0.31	<10	24	19	<10	37	3
A0048	<0.2 1.86		119			0.52	,	20	146		3.16			<10		355		0.02	151	436		0.25	6	6	6	5	0.09		29	50	<10	38	6
A0049	<0.2 2.20		114			0.36	2	21	137		3.78			< 10		310		0.02	156	486		0.22	б	7	2	<5	0.36	<10	30	58	<10	59	6
A0050	<0.2 2.55		201	0.5		0.18	3	25	134		4.40			<10				0.01	177			0.23	7	7	2	< 5	0.32		26	54	< 10	129	5
A0050	< 0.2 2.06		212			2.27	,	19	171		3.59			<10		851		0.02		536		0.26	6	6	45	3	0.34		30	63	<10	93	5
A0031	10.6 2.00	_		4.2			_			-			•				_				_												
A0052	< 0.2 2.34	9	216	0.5	< 5	0.23	2	23	145	33	4.10	1	0.13	<13	2.22	555	<2	0.02	174	419	4	0.19	7	5	ĭ	< 5	0.31	<10	23	53	<10	114	4
A0053	< 0.2 2.32	12	165	0.5	< 5	2.83	2	23	143	40	4.14	<1	0.13	<10	2.27	1083	<2	0.02	185	465	<2	0.37	6	7	54	9	0.31	<10	31	55	<10	108	4
A0054	< 0.2 2.00	5	157	<0.5	< 5	0.91	2	20	155	26	3.31	<1	0.12	<13	1.97	507	<2	0.02	181	455	<2	0.27	<5	6	36	7	0.03	<10	25	57	<10	82	4

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

# Novagold Resources Inc.

Attention: Scott Davidson Projecti (Idens Organ

Sample type:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tetra 60-41 321-3436 | Favor 6040 321-3423

Report No : 780027RJ

Date

i dansessala

#### Muiti-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	3i ppm	Ca %	Cd ppm	Co ppm	Gr ppm	Cu ppm	Fa %	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	N: ppm	ppm P	.⊃o ppm	\$ %	Sb ppm	Sc ppm	Sr mcq	Th ppm	Ti %	iT mege	_			Za ppm	
A3067	< 0.2	0.26	19	239	0.5	<\$	0.50	<1	S	51	<1	2.17	<1	0.15	<10	0.06	456	<2	3.03	5	351	15	0.02	ó	5	46	<5	<0.01	<10	<10	12	<10	35	3
A0068	< 0.2	0.30	g	76	0.6	5	0.10	<1	5	37	<1	3.88	<1	0.13	<10	0.03	915	<2	0.03	4	825	13	0.01	10	5	18	< 5	< 0.01	<13	13	15	<10	44	3
AG069	< 0.2	0.24	26	126	0.7	< 5	0.36	<1	4	42	<1	3.43	1	0.12	<10	0.03	432	<2	0.03	4	228	12	0.02	< 5	8	22	< 5	< 0.01	<10	12	20	<10	51	5
ASC70	<0.2	2.40	7	52	<0.5	<5	1.58	1	22	16	1.7	5.65	<1	0.04	<10	2.08	1431	<2	0.09	4	1337	3	0.35	10	7	21	<5	0.27	<10	24	130	<10	59	21
A0071	0.2	2.47	< 5	30	0.5	< 3	2.48	1	23	13	15	5.89	1	0.04	<10	2.01	1529	<2	3.19	3	1261	5	0.30	11	9	29	<5	0.32	<10	27	160	<13	59	24
AGC72	<0.2	0.85	< 5	153	<0.5	<5	0.06	<1	ī	55	<1	2.29	<1	0.09	21	0.45	253	2	3.04	3	241	5	0.15	5	2	5	<5	<0.01	<10	<10	7	<10	17	5
A0072	< 0.2	0.49	7	86	< 0.5	< 5	0.06	<1	:	96	<1	1.72	<1	0.05	10	0.22	158	5	0.05	4	203	7	0.40	3	1	6	<5	0.01	<10	<10	ő	<10	<1	7
A0074	<0.2	0.82	< 5	56	< 0.5	<5	0.52	<1		104	<1	2.23	1	0.05	25	0.39	543	<2	3.06	5	175	5	0.17	10	2	21	< 5	0.01	<13	<10	6	<13	28	7
A0075	< 0.2	1.01	< 5	152	0.5	<5	0.37	<:	-	73	<1	2.71	1	0.05	23	0.43	551	3	0.05	4	256	S	0.11	10	2	18	<5	0.01	11	<10	10	<10	43	8

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

### Novagold Resources Inc.

Attention: Scott Davidson

Project: Galore Creek

Sample type:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 | Fax: (604) 327-3423

Report No

7S0028RJ

Date

Jun-19-07

# Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag ppm	A1 %	As mgc	Ba ppm	Be pom	B: ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm		Hg ppm		La ppm		Mn ppm			Ni ppm	P ppm	Pb ppm	\$ %		Sc opm	Sr ppm	Th ppm	T: %	T ppm	ppm U	V mqq	W mcq	Zn ppm	
A0055	<0.2	2.31	<5	589	< 0.5	<5	0.51	2	23	98	28	4.29	1	0.90	<10	2.14	1117	<2	3.08	41	2437	<2	0.01	<5	7	17	6	0.20	<10	<10	141	<10	107	6
A0056	<0.2	1.78	<5	507	< 0.5	<5	0.39	2	17	55	3	3.70	1	1.39	<10	1.19	1050	<2	0.09	5	1185	<2	3.01	<5	5	7	6	0.23	<10	<19	114	<10	104	5
A0057	<0.2	3.33	<5	431	<0.5	<5	3.33	3	28	43	26	5.70	<1	0.85	<10	1.98	1164	<2	0.06	21	1077	<2	3.09	< 5	8	93	11	0.14	<10	46	159	<10	97	5
A0038	<0.2	1.41	ą	99	< 0.5	<5	2.53	2	17	51	59	4.13	1	0.13	<10	1.25	985	19	0.03	19	977	4	3.69	< 5	4	170	16	< 0.01	<10	31	50	<10	65	4
A0059	<0.2	3.03	<3	20	< 0.5	<5	2.13	3	22	13	28	5.39	1	0.04	<10	1.78	1363	<2	3.76	6	1146	<Ž	0.37	5	6	19	8	0.23	<10	18	116	11	92	26
A0060	<0.2	3.20	7	15	<0.5	< 5	2.50	3	23	20	32	5.54	1	0.04	<10	1.80	1399	<2	0.90	6	1151	<2	0.37	<5	7	24	8	0.23	<10	18	121	<10	95	24
A0061	< 0.2	1.29	<5	384	<0.5	< 5	0.13	1	õ	67	19	2.75	1	0.32	<10	0.71	342	<2	3.05	12	511	2	0.01	<5	5	1	5	0.15	<10	17	85	<10	89	2
A0062	<0.2	1.11	<5	148	< 0.5	<5	0.40	1	12	59	5	2.51	<1	0.79	<10	0.64	607	<2	0.08	5	958	2	0.01	<5	2	2	12	0.14	<:)	13	61	<10	68	3
A0063	< 0.2	2.02	<5	182	<0.5	<5	0.22	2	12	56	6	4.47	1	1.58	<10	1.42	1016	7	3.05	4	1001	<2	0.02	<5	9	2	12	0.21	<:3	<10	138	10	140	4
A0064	<0.2	0.16	< 5	21	< 0.5	< 5	0.03	<1	1	135	7	0.55	< 1	0.10	<10	0.01	105	5	3.06	7	40	4	0.03	<b>&lt;</b> 5	<1	2	12	<0.01	<13	12	1	<10	10	2
A0065	<0.2	2.03	22	374	<0.5	<5	0.18	2	13	80	28	3.72	1	1.53	<10	1.17	459	<2	0.06	15	586	< 2	0.07	<5	8	1	б	0.24	<13	17	112	12	71	3
A0066	<0.2	1.65	< 5	281	< 0.5	<5	0.30	2	15	57	14	3.95	< 1	92.0	<13	0.78	1010	5	0.05	9	1051	<2	0.30	<5	4	14	7	0.16	<13	<10	81	12	74	4

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

Signec:

Page 1 of 1

# Novagold Resources Inc.

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Report No : 7S0031RJ

Date

Attention: Scott Davidson

Tel: (604) 327-3436 | Fax: (604) 327-3423

: Jun-25-07

Project: Galore Creek Sample type:

#### Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag Al ppm %		Ba mgq													M.1 ppm					Po ppm		So ppm	Sc ppm		Th ppm	Ti %	T: ppm	bbw	V ppm		Zn ppm	Zr ppm
A0076	<0.2 2.62	<5	19	0.5	<5	3.64	3	24	10	39	5.81	<1	0.04	<10	2.01	1686	<2	0.17	б	1312	4	0.23	21	9	36	< 5	0.31	11	22	152	<10	112	26
A0077	< 0.2 2.43	11	14	0.6	<5	2.91	3	23	12	32	5.59	< 1	0.04	<10	1.87	1598	<2	0.14	ó	1270	3	3.20	15	3	28	<5	0.27	13	14	151	<10	100	23
A007S	0.9 0.11	< 5	22	< 0.5	<5	8.80	<:	3	87	13	1.07	<1	0.02	<10	2.39	758	4	0.02	7	609	3	3.26	14	2	101	<5	0.31	19	<10	22	<10	15	2
A0079	Q.7 1. <del>5</del> 7	<5	455	0.6	<5	9.11	<1	2	30	27	1.37	< 1	0.02	<10	4.14	1047	<2	0.03	12	876	<2	3.12	16	6	122	<5	0.31	11	<10	87	<10	47	2
A0080	<0.2 2.52	< 5	185	0.6	<5	0.32	2	22	149	63	4.39	< 1	0.16	<10	2.28	273	<2	0.02	193	599	7	1.23	15	9	23	< 5	<0.01	18	13	67	<10	121	4
A0081	<0.2 2.11	7	- 75	0.5	<5	N 50	,	19	152	45	4.08	<1	9.21	<10	1.86	519	<2	0.32	174	862	12	1.07	13	7	32	< 5	< 0.01	<10	11	53	<10	108	4
A0082	<0.2 2.05		158			0.35	2		128		4.06					469			150			0.61		7	29	<5	0.31	<10	10	56	<10	112	4
A0083	0.4 1.55	-	140		_	2.58	1	14	125	43	3.00		3.12			675		0.02	118	595	<2	0.38	13	5	124	< 5	< 0.01	11	<10	42	<10	74	3
AC0\$4	0.3 1.59	_	405	<0.5	< 5	0.43	1	16	94	52	2.96	<1	1.08	<10	1.12	399	3	0.05	27	1187	7	0.12	<5	6	17	< 5	0.21	<10	<13	96	<10	40	3

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

ned:_____

# Novagold Resources

8282 Sherbrooke St., Vanccuver, B.C., V5X 4R6

Tel: (604: 327-3436 | Fax: 3904 / 327-3423

Report No :

TS0032RJ

100-05-08 Date

Attention: Scott Davidson Projecti Galore Creek

Sample type:

#### Multi-Element ICP-AES Analysis

Aqua Regia Digestioa

Sample Number	Ag ppm	A! %	As ppm	Sa opm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm		Fe %	Hg opm	K %	La ppm	Mg %	Ma ppm	Ma ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb mqc	Sc ppm	Sr ppm	Th ppm	Ti %	Ti ppm	U ppm	V ppm	W ppm	Zn ppm ;	Zr pom
A0085	<0.2	0.78	<5	215	<0.5	< 5	0.13	1	ó	130	28	1.84	<1	0.08	<10	0.62	147	<2	0.01	51	285	è	0.13	<\$	3	ĉ	<5	<3.01	<1Ĵ	<10	20	<10	48	2
A3386	0.5	2.56	< 5	17	0.5	< 5	2.99	4	21	22	49	5.41	<:	0.04	<10	1.74	1351	< 2	0.33	4	1332	132	0.40	5	7	33	< 5	0.27	<13	12	130	<10	307	2:
A0387	0.2	2.14	5	650	<0.5	< 5	1.05	1	20	55	32	3.57	<1	1.27	<10	1.67	451	<2	0.10	30	3146	3	0.12	5	5	29	<5	0.20	13	<10	102	<10	73	3
A0088	0.4	1.69	7	418	< 0.5	< 5	0.88	1	13	112	25	2.56	<1	0.87	<10	1.03	705	<2	0.09	25	1058	28	0.07	<5	5	37	<5	0.17	<1Ĵ	11	73	<10	99	3
A0389	<0.2	0.91	< 5	217	0.5	<5	0.54	1	2	59	3	2.35	<1	0.07	24	0.45	533	3	0.07	3	238	5	0.13	ş	2	27	<5	0.01	15	<10	7	<10	83	10
			_			_			_										0.00	_					,			2.01	<13	.13	,	-13		
A0090		0.86					0.38	1	2	115		2.22		0.09			441		0.06		185		0.10		2	18	<5 -c	3.01		<10	6			20
A0391		2.72					2.32	خ	23	14		5.58		0.04			1520		0.16		1387		0.06	<5	8	24	<s< td=""><td>0.34</td><td>15</td><td>17</td><td>143</td><td></td><td></td><td>25</td></s<>	0.34	15	17	143			25
AOOSZ	0.2	2.20	< 5	13	0.5	<5	1.98	2	21	25		5.05		0.04			1221		0.38		1328		0.05	8	á	27	<5	3.31	12	13	108	<10	103	25
A0393	<0.2	2.25	< 5	14	0.5	< 5	1.27	2	20	20	37	5.21	<1	0.05	<10	2.24	1255	<2	0.29	3	1290	5	0.07	ŝ	5	20	<5	3.27	18	13	108	<10	97	22
AC394	<0.2	0.52	< 5	90	<0.5	< 5	0.50	1	1	35	2	2.46	<1	0.06	18	C.52	583	<2	0.05	2	. 186	11	0.02	<5	2	14	<5	3.01	<10	<10	8	<13	114	\$
A0095	<b>-</b> 0.2	1.05	<\$	261	l 0.5	< 5	0.44	1	1	51	3	2.52	<1	€.11	19	0.57	544	3	0.05	3	184	14	0.10	<5	,	21	<5	3.01	<10	<10	5	<1Ĵ	81	è
AC096		1.36			<0.5		0.35	1	11	82	-	2.37		0.88		0.91			0.06	25	810		0.04	7	3	15	<5	3.15		<10	77	<13	40	2
A0090 A0097		1.84		453			1.60		16	39		4.80		0.47		1.41			0.37		1479		0.05	15	8	47	<5	0.11	12	12	145		82	4
						_						5.53		G.17		1.97			0.07		1761		0.02	8	11	100	<5	3.04	11	12	177	<10	107	4
8 <del>9</del> 008		2.12			< 0.5		2.49	3	18	43														-			_							
AC399	<0.2	2.57	12	154	<0.5	<>	3.11	2	21	50	27	5.2£	<1	0.17	<10	1.95	1252	2	0.04	25	1382	/	0.18	<5	10	149	<5	0.03	<13	14	117	<10	90	4
						_			_		_							_				_			_		_							
A3100		2.30				_	0.22	1	17	123	_	3.86			<10				0.02		_		0.12	12	9	17	<5	3.02		13	67	<10	112	4
A0101	<0.2	1.68	6	219	<0.5	<5	0.44	1	14	145		3.33	<:	0.13		1.43				114	629		0.49	5	ó	31	<5	<0.01	<13	<10	46	<10	81	3
A0102	<0.2	2.95	< 5	13	0.5	<5	2.25	3	22	11	41	5.70	<1	0.04	<10	2.38	1455	<2	0.58	5	1449	3	0.27	S	7	30	<5	3.29	11	14	142	<10	100	24

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

Signed:

Page 1 of 1

# Novagold Resources Inc.

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No 780034RJ Date

Jun-26-07

Projecti Galore Creek

Sample type:

Attention: Scott Davidson

Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag pom				Be ppm	Bi epm	Ca %	Ca ppm	Co pom	Cr ppm.	Cu ppm	Fe %		K %				Mo ppm	Na %	Ni meq	ppm P	Pb pom	S %	Sb ppm	Sc ppm		Th ppm	Ti %	TI ppm	U ppm	ppm V	W ppm	Zn ppm	
A00103	0.5	23.	<5	251	<0.5	< 5	4,44	2	20	92	49	5.16	<1	3.39	<13	2.20	1518	<2	0.03	44	1269	32	0.57	23	12	160	<5	0.06	18	13	126	<10	131	3
A00104	0.7			134	<0.5	<5	4.11	3	28	86	84	6.52	1	3.11	<13	2.\$1	1923	2	0.02	51	1269	30	0.83	12	12	157	<3	0.01	16	21	130	<10	123	4
A00105	0.2						0.29	1	10	100	55	2.59	<1	0.85	<13	3.76	522	4	0.05	17	689	15	0.17	7	5	13	<5	0.16	<10	<10	77	<10	41	2
A00105	0.5				<0.5		0.58		18	88	23	3.85	<1	1.51	<10	1.92	921	<2	0.07	34	1430	6	0.04	13	5	26	<\$	0.23	21	12	109	<10	82	3
A00108 A00107	0.2					_	2.99		22	13	36	5.60	3	0.05	<10	1.95	1546	<2	G.81	4	1332	3	0.10	13	7	41	<5	0.33	19	16	155	<10	89	24
A00108	<0.2	1.00	11	167	0.6	<b>&lt;</b> 5	0.26	:	1	85	4	2.65	<1	0.08	25	0.50	471	4	€.05	5	230	16	0.09	14	2	13	<5	0.01	10	10	8	<10	79	ŝ
A30109	0.2	1.37	<5	236	<0.5	<5	0.45	:	12	93	31	2.98	<1	0.91	<10	0.95	541	3	0.05	21	790	23	0.18	<5	5	16	< 5	0.17	16	<1û	84	<10	68	2
A30110	<0.2			746	<0.5	<5	0.39	:	12	88	45	3.80	<1	1.46	<10	1.37	576	3	0.07	21	1019	8	0.10	12	10	37	<5	0.25	13	<10	134	<10	72	2

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

# Novagold Resources Inc.

\$2\$2 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 | Fax: (604) 327-3423

Report No

: 7S0037RJ

Date : Jen-29-07

Project: Galore Creek

Attention: Scott Davidson

Sample type:

#### Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag Al ppm %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm			Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sp t	Sc	Sr ppm	ppm Ta	Ti %	TI ppm	bbw i	V opm	W ppm	Zn ppm (	Z: ppm
AD111	0.6 1.86	<5	21	0.6	<5	3.52	1	21	23	65	4.74	<1	0.03	10	1.95	-1013	<2	0.08	17	1447	7	G.57	5	9	49	<5	0.31	27	18	145	<10	90	34
A0112	< 0.2 1.35	5	200	0.6	<5	0.63	:	8	41	17 .	3.42	<1	0.10	18	0.95	972	5	0.05	9	738	13	0.23	8	5	22	<5	0.01	<10	23	54	<10	133	8
A0113	0.3 2.90	<5	26	<0.5	<5	2.12	:	29	16	35	4.69	1	0.05	<10	2.24	884	<2	0.04	25	764	4	0.09	6	7	22	<5	0.32	<10	20	156	<10	91	22
AD114	<0.2 2.19	<5	223	0.5	<5	0.47	:	18	147	51	3.78	<1	0.15	<10	1.89	324	2	0.02				0.33	14	7	49	<5	< 0.01		15	54	< 10	99	3
AD115	<0.2 3.59	<5	42	0.8	<5	3.59	2	45	154	60	5.36	<1	0.03	<10	4.05	1017	<2	0.03	80	1457	<2	0.08	7	8	89	<5	0.46	<10	30	137	<10	75	11
AD116	3.3 0.02	<5	<10	<0.5	<5	>15.00	1	1	3	<1	0.17	1	0.01	<10	0.25	152	<2	0.01	4	87	2	0.55	<5	<1	278	<5	< 0.01	13	<10	3	<10	18	1
A0117	0.9 0.30	<5	94	0.6	<5	>15.00	<1	2	11	4	1.19	<1	0.17	12	0.67	382	< 2	0.05	5	127	8	0.28	< 5	2	177	<5	< 0.01	<10	<10	á	<10	44	3
A0118	< 0.2 0.34	<5	51	0.7	< 5	0.08	1	2	66	б	1.95	< 3	0.14	23	0.04	1268	2	0.04	3	100	17	G.Q1	5	4	8	<5	< 0.01	11	10	6	<10	80	4
A0119	0.3 1.26	< 5	254	<0.5	<5	0.72	<1	16	61	53	2.35	<1	0.50	<10	0.77	343	< 2	0.07	13	693	2	80.0	<5	4	49	<5	0.18	<10	<10	76	<10	21	3
A0120	<0.2 2.71	< 5	152	0.5	<5	0.23	1	23	202	41	4.48	<1	0.13	<10	2.41	695	2	0.02	199	715	8	0.01	9	9	16	<ŝ	<0.01	<10	21	70	<10	148	3
AG121	< 0.2 2.47	5	134	0.5	< 5	0.14	1	20	164	41	4.17	<1	0.17	<10	2.15	403	< 2	0.01	179	648	10	0.02	15	7	12	<5	< 0.01	<10	12	62	<10	117	4
A0122	<0.2 3.01	< 5	102	0.5	< 5	0.14	1	15	174	38	4.58	<1	0.17	<10	2.65	434	< 2	0.01	207	594	6	0.01	12	8	10	<5	0.01	13	17	81	<10	125	4
A0123	< 0.2 2.94	< 5	245	0.5	<5	0.13	1	19	140	43	4.48	<:	0.22	<10	2.56	348	<2	0.02	180	521	6	0.01	12	9	11	< 5	< 0.01	<10	18	75	<10	129	4
A0124	<0.2 2.65	<5	158	0.5	< 5	0.15	1	21	145	47	4.44	<1	0.18	<10	2.34	384	<2	0.01	181	669	13	0.03	9	8	13		<0.01	<10	10	69	<10	108	4
A0125	<0.2 2.75	< 5	210	0.6	< 5	0.15	1	21	108	67	4.43	<:	0.19	<10	2.23	417	<2	0.01	190	481	6	0.01	12	9	18	<5	<0.01	11	18	67	<10	128	4
A0126	<0.2 2.66	<5	329	0.7	<5	0.17	1	19	37	62	4.47	<1	0.20	<10	2.07	361	<2	0.02	152	487	ò	0.01	12	9	22	<5	< 0.01	<10	12	73	<10	150	4
A0127	< 0.2 2.17	<5	109	<0.5	< 5	2.39	1	20	173	36	3.75	<:	0.13	<10	2.15	929	2	0.02	177	539	7	0.50	9	7	111	<5	0.03	<10	16	66	<10	86	4
AC128	< 0.2 2.47	<5	156	0.5	<5	0.50	1	22	181	39	3.82	<:	0.14	<10	2.58	370	< 2	0.02	200	501	4	0.22	13	7	35	<5	0.06	<10	10	70	<10	94	4
AC129	< 0.2 2.27	<5	297	0.5	<5	0.13	1	15	133	44	4.09	<:	0.17	<10	1.97	422	2	0.02	140	505	10	0.33	12	7	18	<5	< 0.01	11	14	57	<10	100	4
A0130	<0.2 2.64	<5	176	0.6	<5	C.81	1	21	172	57	4.11	<1	0.26	<10	2.23	410	2	0.02	183	672	7	0.20	14	8	57	<5	<0.51	<10	16	68	<10	102	4
A0131	< 0.2 2.54	<5	199	3.6	<5	C.14	1	20	157	44	4.23	<1	0.18	<10	2.37	392	< 2	0.02	187	528	7	0.06	14	8	19	<5	<0.01	<10	14	71	<19	116	4
A0132	<0.2 2.62	. 5	367	3.7	<\$	0.12	:	19	133	49	4.27	<1	0.28	<10	2.25	354	2	0.02	156	514	9	0.16	12	8	28	<5	0.21	<10	14	77	<10	117	4
A0133	< 0.2 2.47	<5	207	3.5	<5	1.04	<u>:</u>	24	182	40	4.08	<1	0.15	<10	2.50	603	< 2	0.02	215	664	6	0.50	12	8	62	<5	0.01	<10	19	73	<10	102	4
A0134	< 0.2 1.89	<5	177	3.5	<5	0.32	:	19	176	42	3.38	<1	0.19	<10	1.61	215	3	0.02	129	396	9	0.40	15	6	26	<5	<0.01	<10	<10	52	<10	86	3
A0135	0.4 2.40	<5	306	3.6	<5	0.37	-	22	189	46	4.05	<1	0.22	<10	2.28	329	<2	0.03	188	565	7	0.24	13	8	43	< 5	0.02	25	14	71	<10	115	4

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

# Novagold Resources Inc.

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No

7S0042RJ

Date

Ju2-10-07

Project: Galore Creek

Attention: Scott Davidson

Sample type:

#### Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag Al ppm %	As ppm																			Pb 3		b S om pp				T. %		_			Zn ppm :	
A0135	<0.2 0.12	12	214	<0.5	< 5	13.35	<1	3	65	13	0.88	1	0.06	<10	0.63	663	3	0.01	6	406	3 0	45	<5	2	199	<5	< 0.01	<10	63	10	<10	8	i
A0137	< 0.2 1.74	< 5	212	< 0.5	< 5	2.31	3	19	25	71	4.37	1	0.08	<10	1.51	1047	<2	0.07	8	1379	5 0	.25	<5	14	71	< 5	0.16	<10	<10	172	<10	70	13
40138	<0.2 2.53	< 5	318	< 0.5	< 5	1.74	3	17	21	39	4.30	<1	0.09	<10	2.54	1065	<2	0.09	7	1485	111 0	.03	<5	11	57	<5	0.18	<10	<10	139	<10	105	16
A0139	< 0.2 1.32	. <5	780	<0.5	< 5	2.35	3	19	90	41	4.05	<1	0.45	<10	1.63	827	<2	0.07	43	1155	5 0	.17	<5	9	237	<5	0.10	<10	12	97	<10	111	3
A0140	< 0.2 1.54	< 5	200	<0.5	< 5	1.59	1	17	77	54	2.32	<1	0.29	<10	1.33	349	<2	0.19	41	2697	3 0	.10	<5	5	117	<5	0.15	<10	22	74	<10	42	3
A0201	< 0.2 0.74	- 6	592	1.6	<5	1.27	3	9	11	103	1.93	<1	0.49	15	0.31	1022	3	0.01	4	623	58 0.	.35	<5	1	92	5	0.31	<10	<10	29	<10	230	á
A0202	0.9 0.60	12	847	1.7	< 5	1.00	2	11	7	130	1.77	<1	0.47	20	0.17	1236	4	0.01	2	489	251 0	.15	<5	1	99	< 5	0.01	<10	<10	21	<13	124	2
A0203	0.4 0.36	. 7	377	1.0	< 5	0.20	2	14	9	55	2.46	<1	0.32	<10	0.06	597	16	0.01	2	659	59 0	.56	<5	1	70	6	<0.01	<10	<10	13	<13	77	3

A .5 gm sample is digested with 5 ml 3:1 HCi/HNO3 at 95°C for 2 hours and diluted to 25ml.

# Novagold Resources Inc.

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No

7S0053RJ

Date

Jan-05-08

#### Project: Galore Creek

Attention: Scott Davidson

Sample type:

#### Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag Al ppm %	As mqq	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co pom	Cr opm		Fe %	ppm Hg	K %	La ppm	Mg %	Ma ppm		Na %	N ppm	P ppm	ppm 20	\$ %	Sb ppm	Sc ppm	Sr ppm	Ti %	TI PPM	U ppm	V ppm	W mgc	Zn ppm	Zr ppm
0351	<0.2 0.29	5	607	1.0	<5	3.24	1	11	13	373	1.58	<1	0.26	15	0.74	858	3	0.01	2	438	10	0.41	<5	<1	125	<0.01		<10	10			3
0352	<0.2 0.38	3 15	124	1.3	< 5	1.95	1	4	11	76	0.77	<1	0.31	20	0.15	531	3	0.01	1	205	26	0.10	< 5	<:	62	< 0.01	<10	<10	8	<10		5
9353	<0.2 0.32	2 8	138	1.5	< 5	0.73	2	3	58	<1	4.35	<1	0.22	30	0.30	595	<2	0.03	5	72	19	0.03	< ŝ	ŝ	50	<0.01	<10	<10	11	<10	188	ó
0354	<0.2 2.21	L <5	347	0.5	< 5	3.65	2	20	19	125	6.38	<1	0.14	15	1.86	1634	<2	3.05	7	1325	<2	0.05	S	14	80	<0.01	<10	<10	114	<10	96	6
0355	<0.2 3.35	5 <5	: 11	0.5	<5	2.51	2	26	15	15	5.52	1	0.04	12	2.22	1548	<2	3.77	6	1079	<2	0.19	<5	9	15	0.38	<10	<10	157	<10	87	43
0356	< 0.2 2.96	5 < 5	14	0.5	<5	2.55	2	25	13	17	5.64	1	0.04	11	1.92	1538	<2	0.31	4	1304	<2	0.14	ڌ>	S	12	0.35						29
0357	< 0.2 2.64	4 <5	10	<0.5	<5	2.36	2	26	10	19	6.14	1	0.02	10	2.19	1672	<2	0.23	4	1254	<2	0.17	< 5	8	S	0.35				<10		31
0358	< 0.2 2.65	5 <5	16	0.5	< 5	1.83	3	28	12	3	6.08	1	0.03	10	2.57	1744	<2	0.07	5	1154	<2	0.12	< 5	13	9	0.40	<10	<10	179	<10	-	33
0359	< 0.2 0.15	5 8	15	< 0.5	<5	>15.00	<:	2	45	1	0.72	<1	0.07	10	1.87	511	8	0.01	4	609	<2	0.39	< 5	2	259	< 0.01				<10		1
0363	0.2 0.23	3 16	25	<0.5	<5	>15.00	<:	4	25	3	1.09	<1	0.11	11	1.31	551	7	0.01	5	571	10	0.35	<\$	3	250	< 0.01	<10	48	28	<10	6	1
																														_		
0361	< 0.2 2.79	> <5	31	<0.5	<5	2.27	2	35	45	20	5.56	1	0.03	<10	2.85	1035	<2	0.06	21			0.13		10		0.37				<10		30
0362	< 0.2 2.54	4 < 5	95	0.8	<5	1.95	2	34	26	16	6.06	1	0.07	12	2.66	1325	<2	0.04	17	548		0.08		18	22	0.36						20
0363	< 0.2 1.22	2 < 5	178	0.6	<5	0.12	1	3	80	<:	2.80	<1	0.09	27	0.84	571	10	0.06	3	300	7	0.11	<5	3	8	0.01	11					5
0142	< 0.2 2.26	5 <5	300	0.6	<5	1.43	2	24	96	54	3.32	<1	1.18	<10	1.44	546	4	0.09	32	1052	<2	0.24	<5	4	54	0.23			89	<10		4
0143	< 0.2 4.14	4 <5	449	0.6	<5	1.91	2	26	141	9:	4.68	1	1.48	<10	1.62	494	2	0.24	78	1194	<2	0.80	<5	13	250	0.28	<10	<10	165	<10	104	4
0144	< 0.2 0.43	3 7	481	1.5	<5	2.90	1	8	11	478	1.39	<1	0.38	17	0.25	723	3	0.01	1	382	15	0.17	<5	<1	91	<0.01	<10	<10	13	<10	34	6

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

Signed: _____

# Novagold Resources Inc.

Attention: Scott Davidson

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 | Fax: (604) 327-3423

Report No ::

780056RJ

Date :

Jan-05-08

# Project: Galere Creek Sample type:

### Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag A ppm %			Ba ppm			Ca %	Cc ppm	Co ppm	Cr ppm	opm Cu	Fe %	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo opm	Na %	Ni ppm			S %	Sb ppm	-	Sr ppm	Ti %	TI	Dbw ?	V V	bbw t	Zn ppm p	
	• • •		_	25	1.2	< 5	1.95	<1	,	15	sn	0.54	<1	0.46	29	0.05	516	<2	G.01	1	207	12	0.05	<5	<1	61	<0.01	<10	<13	8	<10	52	5
0367	<0.2 3			75			1.79	_	-			3.64		0.16			727		0.03	31	917	3	0.05	<5	4	10	0.10	<10	<10	68	<10	99	6
0368	<0.2 2.1		_		<0.5									0.14			648		0.05		883		0.09	<5	4	12	0.13	<10	<10	61	<10	90	8
0369	<0.2 1.4	85	<3	317	<0.5	<5	0.54		14			3.51									1087		3.35		:7	264	0.65	<10	<10	218	<10	32	4
0370	< 0.2 3.3	96	<5	52	0.5	< 5	3.58	3	28	34		6.40	-	D.G8			1.11		0.78					-		19			<10		<10		4
0371	<0.2 2.	51	<5	115	0.7	< 5	2.05	3	24	34	89	6.53	1	0.26	15	1.55	1280	<2	0.05	1/	1245	<2	3.09	<2	-3	19	<0.51	× 20	120	33	-,,0	-0.	•
						_		_		20	20	4.03	<1	0.10	3.1	• Qa	838	< 2	0.34	14	985	<2	0.01	<5	6	71	0.21	<10	<10	109	<10	89	10
0372	<0.2 2.	72	<5	83	< 3.5		2.46												0.03		1428		< 0.31			12	< 0.01	<10	<10	15	<10	14	2
0373	0.5 0.	63	< 5	11	<0.5	<5	>15.00	2	- 4	6	24	4.41	<1				2276							-					80		<10	6	1
0374	<0.2 0.	.03	5	16	<0.5	<5	>15.00	<1	1	3	<1	3.17	<1	0.01	15	0.32	405	<2	0.01	1	1977	-		< 5	<1	310				-		-	
0375	<0.2 %		< 5	346	0.7	<5	0.69	2	19	29	17	4.10	<1	0.19	11	1.13	829	<2	0.08	5	979	7	0.32	<5	7	6	0.25	<10	<10	118	<19	66	27

A .5 gm sample is digested with 5 mt 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25mt.

#### Novagold Resources Inc.

Attention: Scott Davids in ur jezh Galere Greek

Sample type:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 | Pax: (604) 327-3423

Report No : 780657R4

Data Jane 15- 5

#### Multi-Element iCP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag A ppm %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Ca opm	Ca ppm	Cr Cr	Си ррт	Fe %	Hg ppm	К %	ppm ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	ppm p	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	ĭi %	Ti mqq	ij pom	V ppm	W ppm	Za ppm į	Zr ppm
0376	<0.2 1.96	<5	130	<0.5	< 5	1.42	1	17	160	13	3.26	<1	0.11	<10	1.99	477	<2	3.62	149	491	< 2	0.20	3	5	62	3.01	<10	<±î	55	<10	77	3
0377	<0.2 1.72	- 7	170	<0.5	<5	1.30	1	15	166	30	3.27	<:	0.16	<10	1.44	523	<2	0.02	128	443	< 2	0.29	7	6	102	<0.01	<10	<10	50	<10	73	3
3378	<0.2 1.82	б	137	<0.5	<5	3.81	2	18	153	33	3.33	<1	0.17	<10	1.52	626	<2	0.02	123	376	< 2	0.40	5	ó	192	<0.01	<10	<10	51	<10	102	3
337 <del>9</del>	<0.2 2.47	6	123	0.5	<5	2.10	Z	26	192	24	4.28	< 3	0.14	<10	2.51	765	<2	0.02	239	554	< 2	0.63	á	7	94	0.01	<10	<10	78	<10	100	4
2380	<0.2 2.08	<5	138	0.5	< 5	3.90	2	19	136	23	3.73	:	0.15	10	1.95	1143	<2	0.02	144	922	<2	0.34	8	5	113	3.01	<10	<1û	58	<10	92	4
3381	<0.2 2.51	7	3:3	0.5	<5	0.19	2	23	145	31	4.29	< 1	0.16	<10	2.15	364	< 2	0.02	168	772	< 3	0.35	<5	\$	12	<0.01	<10	<:0	57	<10	119	4
3382	<0.2 1.81	25	53	< 0.5	<5	0.61	2	20	155	16	6.12	< ]	0.16	13	1.55	431	< 2	0.03	143	1306	<2	3.33	11	6	18	0.01	<10	13	55	<10	88	6
0383	<0.2 2.29	5	105	0.5	< 5	1.41	2	20	123	42	4.30	<1	0.15	<10	2.33	630	<2	0.02	162	506	< 5	0.44	<5	7	54	<0.01	<10	<10	50	<10	112	4
3384	<0.2 2.03	6	193	<0.5	<5	3.87	2	20	161	18	3.59	<1	0.12	12	1.91	1336	<2	0.02	154	348	<2	0.21	<5	6	173	<0.01	<10	<10	60	<10	90	3
2385	<0.2 1.90	7	147	<0.5	<5	0.51	1	18	161	21	3.88	<1	0.14	<10	1.59	479	<2	0.02	14Ĵ	437	<2	0.79	<5	5	11	<0.01	<10	<10	<b>5</b> 3	<10	84	3
0386	<0.2 2.14	<5	254	0.5	<5	5.28	2	15	102	42	3.79	<1	0.17	<10	1.84	:337	<2	0.02	129	480	<2	0.33	5	6	111	< 0.01	<10	< 10	53	<10	98	4
0387	<0.2 2.34	7	143	0.5	<5	0.66	2	21	156	34	4.16	<1	0.17	<10	2.18	437	<2	0.02	165	498	<2	0.43	б	7	15	0.01	<10	<10	59	<10	132	4
0386	<0.2 0.08	17	25	<0.5	<5	>15.00	1	2	41	3	1.00	1	0.03	14	3.78	1279	2	0.02	4	393	<2	0.83	<5	:	201	< 0.00	<10	<10	32	<10	66	1
0389	<0.2 1.85	6	112	< 0.5	<5	0.72	1	19	185	17	3.27	<1	0.13	<10	1.64	314	<2	0.03	160	473	<2	0.44	- 5	5	8	0.01	<10	<10	57	<10	80	3
33 <b>9</b> 0	<0.2 1.02	<5	146	<0.5	<5	0.56	<1	4	114	10	1.28	<1	0.29	<10	0.23	268	<2	0.10	5	476	<2	0.21	<5	1	60	0.07	<10	<10	18	<10	22	2
3391	<0.2 1.29	< 5	558	< 0.5	< 5	0.40	1	11	107	21	3.23	<1	0.82	<10	0.74	708	12	0.08	11	1004	<2	0.33	<5	2	12	0.17	<10	<10	55	<10	86	2
3392	<0.2 3.85	7	235	0.5	<5	1.93	2	28	194	90	4.20	1	1.40	<10	1.45	371	4	0.38	139	1400	<2	1.01	< 5	8	87	0.22	<10	<10	159	<10	90	3
0393	<0.2 3.49	<5	366	<0.5	<5	1.83	2	25	162	91	4.06	1	1.43	<10	1.51	450	5	0.27	116	1339	<2	0.89	< 5	8	114	0.23	<10	<1C	138	<10	174	3

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

# Novagold Resources Inc.

\$2\$2 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 | Fax: (604) 327-3423

Report No

: 7S0061RJ

Date : Jun-15-08

Attention: Scott Davidson Project: Galare Creek

Sample type:

#### Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag Al ppm %			Ba ppm	Be ppm	Bi meq	Ca %	Cd ppm	Cc opm	Cr ppm	Cu pom		Hg ppm	K %		Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	p ppm	Рb ppm	S %	Sb ppm	Sc ppm	Sr ppm	1T .ncq	Ti %	TI ppm	ម ១៦៣	V ppm	₩ ppm	Zn ppm ;	Zr ppm
0151	0.3 0.6	55 .	<5	305	1.1	< ŝ	2.22	:	7	33	64	1.23	1	0.31	17	0.52	594	8	0.02	11	456	13	0.07	<5	1	74	<5	<0.01	<10	<10	23	<10	114	ŧ
0152	9.7 0.3	.3	<3	23	<0.5	<5	>15.00	1	4	11	<1	3.60	<1	0.02	14	9.01	1532	<2	0.03	6	339	2	0.10	< 5	1	79	<5	< 0.01	<10	<10	13	<10	22	2
0153	0.5 0.3	35	6	150	1.0	<5	1.50	:	3	è	87	0.55	<:	0.36	15	0.05	456	<2	0.01	1	223	37	0.17	< 5	<1	36	<5	<0.01	<10	<10	8	<10	71	3
0204	0.5 0.2	29	5	105	1.1	<5	1.17	1	2	10	88	0.35	<1	0.29	18	0.04	374	<2	0.01	<1	183	31	0.04	< 5	<1	44	<\$	< 0.01	<10	<10	4	<10	59	4
C394	2.5 1.8	37 -	<5	96	0.5	< 5	2.95	2	19	54	72	3.83	2	0.13	12	1.52	811	<2	0.04	21	1153	\$	0.24	< 5	5	53	<5	0.10	<10	<10	5 <i>ò</i>	<10	81	7
0395	< 0.2 1.1	.4	S	127	<3.5	< 5	0.83	1	12	143	26	2.74	<:	0.10	<10	1.02	277	3	0.02	77	279	3	0.80	5	3	30	<5	< 0.01	<10	<10	32	<10	52	3
0396	< 0.2 0.9	)4 -	<\$	202	3.5	< 5	0.46	1	2	74	3	2.39	<:	0.09	28	0.47	497	<2	0.07	3	184	8	0.11	5	2	5	<5	0.01	<10	<10	8	<10	84	3
6397	<0.2 1.1	.6 -	<5	318	3.6	< 5	0.90	1	2	59	< 1	2.93	<1	0.07	24	0.60	743	3	0.06	3	265	8	0.13	<5	3	20	<5	< 0.01	<10	<10	14	<10	97	S
0398	< 0.2 2.2	7 -	<5	28	<0.5	< 5	2.70	2	28	78	12	4.70	<1	0.04	11	3.46	855	<2	0.07	27	651	<2	0.05	7	12	23	<5	0.23	<10	<10	154	<10	64	20
0399	< 0.2 2.6	57 -	<5	22	<0.5	<5	4.48	2	30	29	30	4.60	<1	0.02	<10	2.48	933	<2	0.04	24	583	<2	0.36	6	6	12	<5	0.28	<10	<10	160	<10	74	21
0400	<0.2 2.0	)5	5	259	1.5	<5	1.52	1	2	34	<1	3.01	<1	0.19	24	2.05	755	3	0.01	3	306	<2	0.08	<5	3	5	<5	< 0.01	<10	<10	11	<10	56	ó
0401	< 0.2 0.7	9	5	271	0.5	< 5	0.51	1	2	80	7	2.31	<1	0.14	<10	C.51	364	S	0.03	5	177	10	0.80	6	1	5	<5	< 0.01	<10	<10	12	<10	113	7
0402	< 0.2 0.8	32	6	212	<0.5	< 5	0.12	1	2	78	<1	2.35	<1	0.05	22	€.44	406	5	0.07	3	145	12	0.30	5	1	4	<5	0.01	<10	<10	7	<10	45	3
0403	< 0.2 3.3	7 -	< 5	34	< 0.5	<5	2.24	3	30	29	28	5.87	1	0.05	<10	2.38	937	<2	0.05	15	906	<2	0.18	<5	11	31	<5	0.24	<10	<10	164	<10	87	11
0464	< 0.2 2.3	9 .	< 5	11	<0.5	< 5	4.23	2	17	21	16	5.50	<1	0.12	13	2.02	1382	<2	0.06	4	1175	41	0.03	< \$	8	21	<5	0.02	<10	<10	131	<10	94	5
0405	<0.2 0.1	.0	S	273	<0.5	<5	>15.00	<1	3	22	16	0.85	1	0.04	10	0.62	807	<2	0.02	4	357	7	0.50	7	2	404	<5	< 0.01	<10	54	14	<10	5	:
0502-R.S.1	0.4 0.8	4 -	< 5	117	< 0.5	< 5	0.73	1	8	192	23	1.89	1	0.12	<10	0.66	305	<2	0.03	54	343	15	0.40	< 5	3	10	<5	<0.01	<10	<10	27	<10	47	2
0502-R.S.2	<0.2 2.0	)1	5	141	<0.5	< 5	2.83	2	20	134	28	3.54	1	0.14	10	2.01	520	<2	0.02	146	508	3	0.50	<5	6	46	<5	0.05	<10	<10	56	<10	90	4

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

Novagold Resources Inc.

\$2\$2 Sherbrooke St., Vancouver, B.C., V5X 4R6

Report No : TS0064RJ

Attention: Scott Davidson Projection Labora Orbin Yeb (604) 327-3436 | Pala (6/14) 327-3423

Sample type:

#### Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag Al ppm %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca ∛	Cd ppm	Co ppm	Cr ppm		Fe %	Hg ppm	K %	ppm La	Mg %	Mr. ppm	Mo ppm	Na %	Ni ppm	P P	Pt ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	TI ppm	ប pom	V ppm	VV ppm	Zn ppm (	Zr ppm
0235	0.2 0.93	3 <5	792	1.1	< 5	2.54	1	12	31	18	2.60	1	0.34	23	0.90	533	2	0.04	13	1086	11	0.22	< 5	2	147	0.33	<10	<10	48	<10	77	3
0436	0.2 0.83	3 <5	257	< 0.5	< 5	0.39	1	7	90	10	1.71	1	0.49	<10	0.42	350	9	0.09	7	626	<2	0.19	<5	2	7	0.11	<10	<10	38	<10	45	2
0407	0.2 1.89	3 23	69	< 0.5	< 5	1.70	2	19	117	74	3.06	<1	0.89	<10	0.93	312	2	0.13	89	1264	3	0.93	< 5	õ	52	0.15	<10	<10	113	<10	79	2
0438	< 0.2 1.5	9 8	111	< 0.5	< 5	1.63	1	14	153	27	3.29	<1	0.12	<10	1.45	549	< 2	0.02	105	854	<2	0.60	5	5	72	< 0.01	< 10	<10	45	<10	65	4
0409	< 0.2 1.93	7 9	180	<0.5	< 5	1.64	1	18	134	28	3.70	<1	0.14	<10	1.77	929	< 2	0.02	117	560	5	0.52	5	5	57	<0.01	<10	<10	59	<10	85	4
																					_		_	_								-
0410	< 0.2 1.53		88		< 5	2.29	1	18	139		2.91				1.57			0.03			7	0.35	7	6	38	0.10	<10		58	<10		ė.
0411	<0.2 2.10	) 5	137	<0.5	< 5	1.04	1	20	134	-	3.59				2.05			0.03			<2	0.32	3	6	25	0.11	10	<10	63	-	91	5
0412	0.7 0.04	4 <9	<10	<0.5	< 5	>15.00	1	2	10	< 1	2.71	<1	3.01		10.91			0.02				<0.01	< 5	<1	7	<0.31	<10		7	<10	17	1
0413	< 0.2 1.54	1 <5	409	<0.5	< 5	1.03	2	18	27	32	4.38	1	3.09	<13	1.50	1051	< 2	30.0	7	1411	3	0.02	7	3.2	17	0.18	<10			<10	77	18
0414	<0.2 2.09	9 <9	174	<0.5	<5	4.65	2	19	24	136	4.95	< 1	3.13	13	1.93	1286	<2	0.04	10	1622	2	0.38	< 5	18	367	0.31	<10	<10	170	<10	70	4
0415	<0.2 1.57	7 /5	1081	<0.5	<5	3,43	2	17	34	75	4.75	-1	0.17	<11	1.42	1030	- 2	0.05	١٠	1468	<2	0.05	<5	15	150	0.04	<10	<10	163	<10	52	S
0415	1.5 0.30	_			<5	0.24		ą.	58	_	4.64	_		<13		_		0.05		662	25	0.70	18	9	11	< 0.01	<10	13	31			3
	< 0.2 1.69			<0.5	<5	3.17	3	23	18		7.23				1.45			0.03		1621	5	0.95	5	17	54	< 0.01	<10		182		95	5
0417			-		_	3.55	_	15	19	121				<10				0.02		1426	11	0.98		13	84	< 0.01	<10	<10	56	<10	90	4
0418	<0.2 0.51				<5		2	-	-																						109	:2
8419	< 0.2 2.47	/ 3	346	<0.5	<5	2.52	2	19	27	115	5.15	<1	0.15	11	1.03	1162	< 2	0.03	IJ	1295	4	0.80	5	13	14	0.13	<10	<10	166	<-10	102	
0420	<0.2 0.41	1 72	290	<0.5	<š	4.01	2	19	39	95	5.13	<1	0.28	<10	1.29	1430	<2	0.02	ġ	1472	7	0.70	<5	17	181	< 0.01	<10	<10	51	<13	57	4
0421	<0.2 2.10	) <5	40	<0.5	<5	8.73	3	23	23	35	6.29	<1	0.04	12	2.90	1834	<2	0.08	11	951	2	1.42	< 5	14	738	0.01	<10	<10	200	<10	64	5
0422	<0.2 1.13		_		<5	0.71	1	2	66		3.21		3.08		0.49	783		0.07	2	169	3	0.02	<5	4	5	< 0.01	<10	<10	g	<10	102	5
0423	<0.2 1.11	_	111		<5	0.17	1	,	65		3.83		0.08		0.52			0.05	3	176	5	0.92	7	3	ŝ	< 0.01	<10	<10	11	<10	56	5
0424	< 0.2 1.53			<0.5	<5	7.59	3	17	22		6.12		0.11			1894		0.05		1117	<2	0.14	< 5	11		< 0.03		<10	117			5
J744	NO.2 2.J.		. 722	~0.5	`-						J	-	J. 11	•																		_

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

#### Nova Gold Resource Inc.

Attention: Scott Davidson

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 | Fax: (604) 327-3423

Report No

7S0068RJ

Date

Jan-05-08

Projecti Galore Creek Sample type:

# Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag Al ppm % p	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm		Fe %		K %		Mg %		Mo ppm	Na %		ppm P	Pb ppm	S %				Ti %	TI ppm	ا ppm	V ppm	W ppm	Zn ppm	Zr ppm
0436	3.2 2.55	< 5	257	<0.5	<5	1.20	2	24	111	92	3.74	1	1.29	<10	1.41	358	<2	0.17	101	1229	<2	0.91	<5	7	50	3.20	<10	<13	150	<10	220	3
0437	<0.2 2.42	<5	274	< 0.5	<5	0.82	2	28	144	105	5.18	2	1.26	<10	2.00	589	<2	0.08	104	1364	< 2	0.92	<5	17	17	3.17	<10	<13	211	<10	206	3
0438	<0.2 2.08	<5	79	< 0.5	<5	5.06	2	14	19	25	4.81	<1	0.06	<10	1.58	1254	<2	0.10	4	1298	6	0.04	<5	7	83	0.11	<10	<10	136	<10	71	5
0439	< 0.2 0.23	<5	68	1.1	<\$	1.05	1	1	79	<1	1.84	<1	0.17	33	0.14	645	2	0.05	3	54	15	0.01	< 5	3	560	<0.01	<:0	<10	7	<10	183	5
0440	<0.2 0.26	39	93	0.8	<5	2.01	2	ó	83	<1	2.26	1	0.15	<10	0.27	245	4	C.04	5	35	19	D.99	< 5	3	38	<0.01	<10	<10	7	<10	138	4
0441	<0.2 0.23	< 5	106	0.5	<5	1.69	1	1	74	1	1.19	<1	0.11	15	0.44	420	<2	3.06	5	32	15	0.01	< 5	3	46	<0.01	<10	<10	ó	<10	129	10
0442	< 3.2 1.44	<5	456	0.6	< 5	0.51	1	14	39	24	3.28	<1	0.13	14	0.99	913	<2	0.09	5	1069	17	0.03	<5	8	18	3.21	<10	13	91	<10	55	22
0443	<0.2 2.30	13	146	0.8	<5	2.35	2	19	68	126	4.27	<:	0.17	11	1.30	644	2	0.07	38	1272	20	0.40	<5	12	35	3.22	<10	<10	127	<10	118	14
0444	< 0.2 2.94	< 5	42	1.1	<5	7.00	2	25	16	73	5.17	<1	0.09	14	1.62	1354	< 2	0.70	6	2214	15	0.44	<5	10	86	0.35	<10	11	168	<10	65	18
0445	0.2 0.65	<5	197	0.5	<5	12.12	1	7	19	47	2.64	<1	0.29	<10	1.56	807	< 2	0.06	14	901	3	0.03	<5	7	454	<0.01	<10	<10	27	<10	44	2

A .5 gm sample is digested with 5 mil 3:1 HCl/HNO3 at 95°C for 2 nours and diluted to 25ml.

#### Nova Gold Resource Inc.

8282 Sherbrooke St., Vancouver, B.C., V5N 4R6

Tel: (6/i4) 327-3435 | Fax: (6/i4) 327-3423

Report No : 780070RJ

Date

i jur-05-08

Attention: Scott Davidson rregeri Gui re Crea i Sample type:

#### Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag Al ppm %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co pom	Cr ppm	Ou ppm	Fe %	Hg ppm	K %	£a ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Po pom	s %	Sb com	Sc ppm	Sr ppm		TI ppm	_	γ ppm		Zn ppm p	_
<b>343</b> 0	0.2 1.82	<5	238	<0.5	< 5	1.07	2	29	71	154	4.62	1	0.68	<10	1.31	580	<2	0.14	22	1714	< 2	1.59	<\$	7	16	0.17	<10	< 10	124	<10	144	4
0446	< 0.2 1.62	< 5	126	< 0.5	<5	4.00	2	30	93	56	5.30	<:	0.46	<10	1.73	750	<2	0.03	25	1861	S	2.18	< 5	4	72	9.10	<10	<10	80	<10	131	5
3447	<0.2 2.08	< 5	180	<0.5	< 5	1.95	3	29	93	430	5.23	1	1.31	<10	1.35	903	15	0.10	14	1637	6	2.02	< 5	14	18	0.12	<10	<10	174	<10	169	4
3448	0.2 5.15	< 5	574	<0.5	< 5	0.57	1	7	35	53	2.51	<1	0.24	<10	0.65	140	3	0.03	9	1518	10	0.50	< 5	2	8	<0.01	<10	<10	22	<:〕	118	2
3449	<0.2 2.07	< 5	350	<0.5	< 5	1.06	2	22	55	31	3.99	1	1.70	<10	1.77	705	<2	0.05	9	1910	<2	< 0.01	< 5	5	12	0.18	<10	<10	137	<13	118	3
																																_
0450	<0.2 0.23	< 5	138	0.6	< 5	1.73	1	1	79	3	1.21	<1	0.12	1.5	0.46	431	<2	0.07	4	33	15	<6.01	< 5	3	11			_				
3306	<0.2 1.52	< 5	455	1.5	< 5	0.50	1	17	37	30	3.53	1	0.12	15	1.13	997	<2	0.07	5	1103	8	0.03	< 5	7	14	5.18	15	<10	96	<10	73	26
0507	<0.2 2.24	17	158	1.8	<5	2.72	1	24	74	156	5.16	1	0.16	16	1.56	756	<2	0.07	43	1395	9	5.47	<5	13	15	0.19	12	<10	247	<10	143	14

A .5 gm sample is digested with 5 ml 3:1 HCi/HNO3 at 95°C for 2 hours and diluted to 25ml.

#### Nova Gold Resources

Attention: Scott Davidson Project: Galore Creek 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: :604) 327-3423

Report No

~S0073RJ

Date

300-05-08

#### Sample type:

#### Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	- 3	As ppm	Ba ppm	Be ppm	Bi pom	Ga %	Cd ppm	Cc ppm	Cr ppm	ppm C1	Fe %	Hg ppm	К %	La ppm				Na %	Ni ppm	ppm P	Po ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	TI męq	Dbw	ppm V	W ppm	Zn ppm i	Zr opm
0752	0.3 0.05	< 5	<10	<0.5	<5	>15.00	1	3	9	< 1	3.86	<1	0.31	12	9.76	1908	<2	0.02	7	29	28	<0.01	< 5	<1	3	<0.01	<10	<10	8	<10	12	2
0753	<0.2 0.19	<5	87	<0.5	<5	7.08	1	3	80	2	1.28	<1	0.07	11	3.69	1507	<2	0.01	10	192	11	<0.01	< 5	1	149	< 0.01	<10	<10	8	<10	19	2
0754	< 0.2 1.30	7	66	0.5	<5	0.41	1	2	55	<1	3.44	<1	0.12	35	0.70	847	4	0.06	1	183	<2	0.56	5	5	17	< 0.01	20	<10	3	<10	152	5
0755	<0.2 1.23	27	112	0.7	<5	0.09	1	2	55	<1	3.83	<1	0.15	25	0.59	608	8	0.06	3	194	<2	1.05	ó	3	15	<0.01	24	<10	è	<10	83	5
D61-0451	7.8 2.87	<5	390	<0.5	<5	0.51	4	28	50	122	4.41	1	0.99	<13	2.23	851	<2	0.03	15	491	<2	< 0.01	< 5	4	38	0.16	<10	<10	93	<10	81	4
062-0452	4.3 3.02	<5	456	<0.5	<5	0.61	3	29	52	72	4.94	:	1.56	<10	2.43	907	<2	0.03	19	1109	<2	<0.01	<5	4	14	0.19	<10	<10	121	<10	87	3
063-0453	17.6 2.79	<5	586	<0.5	<5	0.58	3	26	47	168	4.42	1	2.26	<13	2.11	942	<2	0.04	18	1115	<2	0.62	< 5	4	12	0.22	<10	<10	125	<10	76	3
064-0454	56.4 2.88	< 5	525	<0.5	< 5	1.02	20	27	45	171	4.52	<:	2.41	<10	2.15	1089	<2	0.05	25	1931	<2	0.08	< 5	4	12	0.23	<10	<10	136	<10	87	3
065-0455	8.0 2.81	< 5	508	< 0.5	<5	1.13	4	27	45	133	4,53	1	2.41	<10	2.09	1207	<2	0.04	15	1782	<2	0.03	< 5	4	12	0.24	<10	<10	152	<10	75	3
066-0456	15.4 3.02	<5	647	<0.5	<5	0.84	7	30	51	141	4.90	1	2.49	<10	2.16	969	<2	0.05	17	1054	<2	0.02	<5	6	60	0.25	<10	<10	159	<10	80	3

A .5 gm sample is digested with 5 ml 3:1 HCVHNO3 at 95°C for 2 hours and diluted to 25ml.

#### Nova Gold Resources

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Report No : TS0079RJ

Attention: Scott Davidson Ruby Yan-Projecti Gallete Cress

Tel: 604) 327-3436 | Paxil 904) 327-3-23

Date 1 (008-05-08)

Sample type:

# Muiti-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag ppm	Ai %	As ppm	Ba ppm	Be ppm	ppm Bi	Ca %	Cd ppm	Co ppm	Cr ppm	Çu pom	Fe %	Hg ppm.	К %	ppm La	Mg %	Mn mqq	i√lo meq	Na %	Ni ppm	pp:m	ppm ppm	S %	Sb ppm	Sc opm	Sr ppm			U ppm			Zn opm p	
01-1-0457	1.5 1	1.38	<5	656	<0.5	< 5	0.45	2	11	108	13	3.10	1	3.87	<13	0.80	842	<2	0.10	7	837	<2	0.03	< 5	2	10	0.23	. <10	<10	53	<10	79	2
01-2 9458	5.8 1	1.35	<5	639	<0.5	<3	0.50	3	12	108	14	2.95	:	3.85	<13	3.79	520	2	0.09	11	800	<2	0.03	< 5	2	10	9.21	. <10	<10	53	12	78	3
01-3 0459	3.9 1	1.34	<5	635	<0.5	<5	0.45	3	11	118	19	3.05	:	3.84	<13	3.79	841	2	0.09	S	845	<2	0.06	< 5	2	10	0.20	) <1(	<10	55	<10	76	2
01-4 9460	9,4 1	1.15	<5	491	< 0.5	<\$	0.58	5	16	150	159	2.72	1	3.70	<13	0.65	722	5	0.09	27	1050	5	0.04	<5	2	3	0.17	< 10	<10	43	53	70	3
0508	< 0.2 2	2.25	<5	32	1.5	< 5	1.09	1	20	59	10	4.93	<:	3.02	22	2.95	639	<2	80.0	26	1255	11	0.30	< 5	11	13	0.14	- 15	<10	138	<10	109	11
0\$09	< 0.2 2	2.70	<5	32	2.4	13	5.90	1	34	23	16	6.18	1	3.05	14	2.62	1451	<2	0.04	12	874	<2	0.08	<5	12	19	0.38	; <u>2</u> ,	k <10	225	<i0< td=""><td>72</td><td>23</td></i0<>	72	23

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

#### Nova Dold Resources

Attention: Scott Davidson Project: Gausse Greek

Sample type:

8282 Sheriotooke St., Vancouver, B.C., V5X 4R6  $\,$ 

Tele (504) 327-3435 | Fax: (604) 327-3423

Report No - :

780081RJ

÷ 1.

Igg=05-48

#### Muiti-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number		As ppm	Ba ppm	Be ppm	Bi pom	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %		√lg %	Mn ppm	Mo ppm	Na %	Ni ppm	ppm P	Pt ppm	\$ %	Sb ppm	Sc ppm	Sr com	Ti %	TI ppm	U mqç	V ppm	W mqc	Zn	Zr ppm
8510	0.9 1.20	49	91	<0.5	< 5	0.61	2	21	134	82	3.26	<1	0.92	<10 0	0.90	243	< 2	0.08	92	1131	3	0.75	<5	4	10	3.19	<10	<10	105	<10	58	2
8511	<0.2 1.72	б	78	3.5	<5	4.62	1	17	49	45	5.04	1	0.03	15 1	.47	1846	<2	0.05	19	866	<2	0.31	<5	12	16	0.01	15	<10	164	<10	92	4
0512	<0.2 0.16	14	204	<0.5	<5	>15.00	<1	2	13	۷	0.74	<1	0.03	18 0	).53	423	9	0.02	3	670	< 2	0.39	< 5	2	424	<0.01		21	29	<10		
8513	< 0.2 1.76	27	186	1.1	<5	11.49	1	25	112	8:	4.87	< 1	0.14			1122		0.02	44	2819	< 2	1.01	5	15		0.01				<10	_	-
€514	<0.2 0.17	13	92	< 3.5	<5	>15.00	<1	4	33	á	1.11	<1	0.10	15 1	1-14	579	7	0.02	5	667	< 2	1.07	< 5	3	391	< 0.31	<18	<10	45	<10	<1	1
																						_	_	_			_					
0515	<0.2 0.12	25		< 3.5		>15.00	<1	3			0.95		0.05					0.02	4							< 0.31		14				
8516	< 0.2 3.64	<5	53	<0.5	<5	1.62	2	35	45		5.21		0.08					0.05	21	-					15	0.25				<10		
0461 D4-1	10.4 1.89	5	277	< 3.5	<5	0.24	6	18	83	49	4.12	1	0.98	<10 1	1.26	708	< 2	0.07	31	855	<2	0.13		9	13	0.19				<10		
0462 D4-2	19.0 1.40	<5	210	<0.5	<5	€.22	9	14	106	59	3.53	< 1	0.66	<10 0	0.34	617	2	0.09	26	703	9	0.32	< 5	7	11	0.12			102	<10		
0463 D4-3	9.1 1.34	<5	186	<0.5	<5	€.15	6	17	109	32	4.45	<1	0.64	<10 0	).77	515	<2	0.09	19	637	5	0.69	< 5	5	12	0.12	<10	<10	92	10	103	3
0464 D4-4	3.6 1.26	5	170	< 0.5	< 5	0.21	4	12	119	58	3.35	1	9.44	<10 0	).74	735	2	0.10	21	661	3	0.27	< 5	5	12	0.38				<10		
0465 04-5	2.6 1.58	< 5	276	< 0.5	< 5	0.43	3	17	105	47	3.50	1	0.93	<10 0	98.0	688	2	0.09	26	775	< 2	0.30	< 5	7	13	0.18	<10	<10	107	20	57	2
0466 04-6	5.8 1.59	<5	278	<0.5	< 5	0.59	4	19	110	43	3.55	1	3.98	<10 0	).96	684	2	0.03	27	793	< 2	0.37	< 5	7	11	0.20	<10	<10	115	31	54	2
0467 05-1	7.0 1.25	<5	142	< 0.5	<5	0.11	4	14	157	70	3.44	< 1	0.55	<10 0	).74	504	<2	0.07	22	542	13	0.24	< 5	4	11	0.39	<10	<10	67	13	53	2
0458 05-2	3.8 1.34	< 5	176	< 0.5	5	0.15	2	10	153	44	3.12	1	0.66	<10 0	0.80	519	<2	0.08	15	604	12	0.30	<5	4	11	0.11	<10	<10	64	<10	71	2
0469 D5-3	4.9 1.53	<5	191	< 0.5	31	0.23	4	18	158	91	4.13	1	0.78	<10 0	).94	759	2	0.08	24	611	17	0.92	< 5	4	13	0.12	<10	<10	80	22	91	3
0470 D5-4	10.8 1.22	<5	122	<0.5	22	0.14	5	20	161	107	3.91	<1	0.47	<10 0	08.0	547	< 2	0.06	24	496	101	1.26	<5	4	13	0.07	<10	<10	68	18	148	2
0471 D5-5	2.8 1.51	<5	169	< 0.5	< 5	€.23	3	14	126	72	3.59	1	0.56	<10 1	1.34	553	<2	0.07	24	652	18	0.55	< 5	5	15	0.12	<10	<10	89	13	66	2
0472 D5-6	6.1 1.71	<5	266	< 3.5	<5	0.24	4	15	154	40	3.93		0.58	<10 1		511	-	0.10	26	692	13	0.39	< 5	6	11	0.15	<10	<10	113	15	73	. 2

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

Nova Gold

Attention: Scott Persel Project: Gaiore Creek Sample type: 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6  $\,$ 

Tel: (604) 327-3436 | Fax: (604) 327-3423

Report No

7S0090RJ

Date

Jan-05-08

#### Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag oom	Al %	As ppm	se mqç	Be ppm	Bi ppm	Ca %	Cá ppm	Co opm	Cr ppm	Cu ppm	Fe %	Hg ppm	К %	La ppm	Mg %	Ma ppm	Mo ppm	Na %	Ni opm	ppm P	Pb ppm	S %		Sc ppm		Ti %		D D	V ppm		Zn ppm: p	_
0473-Drill Cuttings	1.5	1.39	<5	692	<û.5	<5	0.71	2	13	88	<:	2.64	<1	0.85	<10	0.65	743	2	3.12	8	784	36	0.03	<\$	4	9	0.18	<10	<13	49	12	134	2
0474-Drill Cuttings	4.4	1.62	<5	888	<0.5	< 5	0.48	3	13	80	<:	3.41	<1	1.14	<10	0.88	347	<2	0.10	è	745	2	0.02	<5	3	12	0.27	<10	<13	61	<10	93	3
0475-Drill Cuttings	2.4	0.42	< 5	318	<0.5	< 5	0.14	. 1	7	100	<:	0.91	<1	0.24	<10	0.12	332	2	3.07	8	153	9	0.02	<5	1	S	0.03	<10	<13	10	37	34	2
0476-Drill Cuttings	1.8	1.31	<5	553	<0.5	<5	0.46	2	12	240	:	2.86	<1	0.83	<10	0.65	706	5	3.12	17	713	8	0.02	<\$	3	11	0.19	<10	<10	48	19	74	3
0477-Drill Cuttings	0.2	1.38	< 5	471	<0.5	<5	0.71	. 2	13	91	5	2.99	<1	0.77	<10	0.70	820	3	5.13	10	1348	<2	0.15	<\$	3	11	0.19	<10	<10	53	15	70	3
0473-Dri.i Cuttings	0.6	1.34	<5	<b>42</b> 5	<0.5	<5	0.85	1	13	97	7	2.79	<1	0.74	<10	0.69	807	2	0.15	8	1219	<2	0.12	< 5	3	11	3.20	<10	<10	53	21	68	4
0527-Grab-Rock	< 0.2	2.68	< 5	43	1.8	6	1.15	2	30	28	125	7.53	1	0.02	11	2.26	1437	<2	0.08	9	834	<2	0.07	< 5	24	24	3.29	23	<10	247	<13	98	46
0528-Grab-Rock	<0.2	2.87	<5	28	2.0	7	2.85	1	37	25	29	5.37	2	0.03	11	3.06	1348	<2	0.04	21	778	<2	0.11	< 5	15	22	0.32	19	<10	228	<10	36	26

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.

Signed:

Page 1 of 1

Nova Gold

Sample type:

Attention: Sout Davidson - Projectivital of Creek

8282 Sherbrooke St., Vancouver, B.C., V5X4R6

Teick694) 327-3436 | Paxt (604) 327-3423

Report No

TS0097RJ

Date

Jun-05-03

#### Multi-Element ICP-AES Analysis

Aqua Regia Digestion

Sample Number	Ag Ai ppm % i	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd opm	Co ppm	Cr ppm	Cu mcq	Fe %	Hg ppm	K %	∟a ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sp ppm	Sc ppm	Sr pom	Ti %		_			Zn ppm :	
C\$39	0.2 0.98	< 5	95	<0.5	< 5	13.47	1	10	34	<1	3.07	<1	3.06	14	5.88	662	<2	0.05	11	426	3	< 3.01	<5	4	33	0.36	<10	<10	45	<10	26	g
0540	< 0.2 0.41	44	149	1.4	< 5	0.74	1	4	56	<1	2.02	<1	0.26	<10	0.06	539	2	0.03	5	308	15	9.02	< 5	4	48	< 0.31	<10	<10	7	<10	76	3
0541	<0.2 0.30	18	338	0.5	< 5	1.73	1	4	75	<1	2.17	<1	0.13	<10	0.36	329	< 2	0.07	7	98	10	0.34	<5	5	36	< 0.31	<10	<10	ç	<10	57	4
0542	<0.2 0.30	< 5	84	1.1	< 5	1.11	1	1	111	1	2.19	<1	0.20	22	0.15	1606	2	0.05	4	51	18	3.01	<5	3	221	< 0.01	<10	<10	б	<10	115	6
0543	<0.2 0.38	21	229	<0.5	< 5	3.44	1	16	65	92	4.53	<1	0.28	<10	1.06	998	<2	0.04	8	1422	5	3.40	5	14	69	<0.01	16	<10	50	<10	49	3
0544	<0.2 0.77	25	177	0.5	< 5	4.73	1	19	22	143	5.23	<1	3.34	14	1.62	1515	< 2	0.63	13	1521	11	1.08	ó	15	83	<0.01	13	<10	67	<10	83	3

A .5 gm sample is digested with 5 ml 3:1 HCi/HNO3 at 95°C for 2 hours and diluted to 25ml.

#### APPENDIX V

ANALYTICAL GEOCHEMISTRY CERTIFICATES

SGS ABA CERTIFICATES



P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

#### **Galore Creek Mining Company**

Attn: Richard Steele Box 700, 3842-3rd Ave

Smithers, BC V0J 2N0, Canada

Phone: 250-877-4453 Fax:250-877-4469

Friday, October 19, 2007

Date Rec. : 11 October 2007 LR Report: CA10360-OCT07

Reference: Nova Gold

Copy: #1

# CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Approval	4: Analysis Approval	5: AO 549	6: AO 550	7: AO 851	8: AO 852	9: AO 853	10: AO 854	11: AO 855	12: AO 856	13: AO 857
	Date	Time									
Sample Date & Time			04-Oct-07	04-Oct-07	04-Oct-07	04-Oct-07	04-Oct-07	04-Oct-07	04-Oct-07	04-Oct-07	04-Oct-07
Paste pH [units]	19-Oct-07	10:56	7.94	9.49	8.71	8.89	9.18	9.49	9.17	9.01	9.25
Rinse pH (1:1 Ratio)	19-Oct-07	11:17	7.70	8.63	8.26	8.34	8.43	8.87	8.66	8.51	8.76
Rinse Conductivity (1:1) [uS/cm]	19-Oct-07	11:17	999	274	284	196	171	190	195	294	224
Fizz Rate []	19-Oct-07	10:56	3	3	3	3	1	3	1	3	4
Sample [weight(g)]	19-Oct-07	10:56	2.02	1.97	1.98	1.98	2.05	1.97	2.00	2.02	1.98
HCl added [mL]	19-Oct-07	10:56	102.10	28.50	20.00	20.00	20.00	27.90	20.00	30.40	58.40
HCI [Normality]	19-Oct-07	10:56	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	19-Oct-07	10:56	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH to [pH=8.3 mL]	19-Oct-07	10:56	84.60	13.60	10.05	14.20	15.50	15.30	14.30	11.40	17.60
Final pH [units]	19-Oct-07	10:56	1.55	1.60	1.60	1.36	1.37	1.76	1.79	1.75	1.75
NP [t CaCO3/1000t]	19-Oct-07	10:56	43.3	37.8	25.1	14.6	11.0	32.0	14.2	47.0	103
AP [t CaCO3/1000 t]	17-Oct-07	08:33	0.94	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31
Net NP [t CaCO3/1000 t]	19-Oct-07	10:56	42.4	37.5	24.8	14.3	10.7	31.7	13.9	46.7	103
NP/AP [ratio]	19-Oct-07	10:56	46.1	122	81.0	47.1	35.5	103	45.8	152	332
Total Sulphur [%]	15-Oct-07	15:36	0.132	0.007	0.005	< 0.005	0.010	< 0.005	< 0.005	0.019	< 0.005
Acid Leachable SO4-S [%]	16-Oct-07	10:09	0.10	< 0.01	<0.01	< 0.01	0.01	< 0.01	<0.01	< 0.01	< 0.01
Sulphide-S [%]	16-Oct-07	10:09	0.03	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01
Total Carbon [%]	15-Oct-07	15:36	0.250	0.450	0.352	0.132	0.232	0.224	0.054	0.591	1.23
Carbonate [%]	16-Oct-07	10:25	0.822	2.08	1.20	0.379	0.290	1.02	0.157	2.87	6.08

SGS Lakefield Research Limited

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA10360-OCT07

*NP (Neutralization Potential)
= 50 x (N of HCL x Total HCL added - N NaOH x NaOH added)

Weight of Sample

*AP (Acid Potential) = % Sulphide Sulphur x 31.25
*Net NP (Net Neutralization Potential) = NP-AP
NP/AP Ratio = NP/AP

*Results expressed as tonnes CaCO3 equivalent/1000 tonnes of material Samples with a % Sulphide value of <0.01 will be calculated using a 0.01 value.

Chris Sullivan, B.Sc., C.Chem

Project Specialist

Environmental Services, Analytical



#50 655 West Kent Avenue N Vancouver BC V6P 6T7

Phone: 604-324-1166 FAX: 604-324-1177

#### **Galore Creek Mining Company**

Attn: Mark King Box 700, 3842-3rd Ave Smithers, BC V0J 2N0, Canada

Phone: 250-877-4453 Fax:250-877-4469 Wednesday, October 31, 2007

Date Rec.: 24 October 2007 LR Report: CA10709-OCT07 Analysis Location: Lakefield

**Copy:** #1

# CERTIFICATE OF ANALYSIS Final Report

Sample ID	Sample Date & Time	Paste pH units	Fizz Rate 	Sample weight(g)	HCI added mL	HCI Normality	NaOH Normality	NaOH to pH=8.3 mL	Final pH units
3: Analysis Approval Date		30-Oct-07	30-Oct-07	30-Oct-07	30-Oct-07	30-Oct-07	30-Oct-07	30-Oct-07	30-Oct-07
4: Analysis Approval Time		15:48	15:48	15:48	15:48	15:48	15:48	15:48	15:48
5: A 0858	Date:NA	8.99	3	2.00	176.70	0.10	0.10	56.00	1.65
6: A 0859	Date:NA	9.02	3	2.01	255.20	0.10	0.10	64.00	1.66
7: A 0860	Date:NA	8.68	1	2.01	20.00	0.10	0.10	15.20	1.39
8: A 0861	Date:NA	8.78	1	2.05	58.10	0.10	0.10	18.95	1.91
9: A 0862	Date:NA	8.63	2	1.97	65.00	0.10	0.10	25.10	1.67
10: A 0863	Date:NA	8.54	2	2.03	63.10	0.10	0.10	20.05	1.90
11: A 0864	Date:NA	8.50	2	1.97	61.10	0.10	0.10	37.10	1.39
12: A 0865	Date:NA	9.58	3	2.03	59.00	0.10	0.10	20.90	1.70
13: A 0866	Date:NA	8.64	3	2.05	181.30	0.10	0.10	88.10	1.45
14: A 0867	Date:NA	9.05	2	2.00	47.70	0.10	0.10	19.80	1.77
15: A 0868	Date:NA	9.64	1	2.04	20.00	0.10	0.10	15.50	1.36
16: A 0869	Date:NA	9.14	4	2.00	45.70	0.10	0.10	27.40	1.78
17: A 0870	Date:NA	8.72	1	2.05	57.10	0.10	0.10	31.70	1.68
18: A 0871	Date:NA	9.04	1	2.05	20.00	0.10	0.10	18.00	1.40
19: A 0872	Date:NA	9.90	1	2.02	27.20	0.10	0.10	17.10	1.71
20: A 0873	Date:NA	9.92	1	2.00	28.30	0.10	0.10	19.10	1.65
21: A 0874	Date:NA	9.92	1	2.00	27.70	0.10	0.10	18.10	1.71
22: D7 A 1101	Date:NA	6.73	1	2.04	20.00	0.10	0.10	18.90	1.60



Vancouver BC V6P 6T7

Phone: 604-324-1166 FAX: 604-324-1177

LR Report :

CA10709-OCT07

Sample ID	Sample Date & Time	Paste pH units	Fizz Rate	Sample weight(g)	HCI added mL	HCI Normality	NaOH Normality	NaOH to pH=8.3 mL	Final pH units
23: D7 A 1102	Date:NA	6.85	1	2.01	20.00	0.10	0.10	19.40	1.37
24: D7 A 1103	Date:NA	5.36	1	1.97	20.00	0.10	0.10	18.30	1.29
25: D7 A 1104	Date:NA	7.24	1	2.04	20.00	0.10	0.10	17.40	1.50
26: D7 A 1105	Date:NA	6.68	1	1.97	20.00	0.10	0.10	17.80	1.16
27: D7 A 1106	Date:NA	6.83	1	2.05	20.00	0.10	0.10	18.10	1.35
28: D7 A 1107	Date:NA	7.54	1	2.02	20.00	0.10	0.10	17.20	1.36
29: D7 A 1108	Date:NA	8.51	1	2.01	20.00	0.10	0.10	13.10	1.53
30: D8 A 1109	Date:NA	5.91	1	2.02	20.00	0.10	0.10	18.90	1.40
31: D8 A 1110	Date:NA	6.26	1	2.00	20.00	0.10	0.10	18.00	1.35
32: D8 A 1111	Date:NA	6.67	1	2.00	20.00	0.10	0.10	17.60	1.32
33: D8 A 1112	Date:NA	6.59	1	2.00	20.00	0.10	0.10	16.60	1.60
34: D8 A 1113	Date:NA	6.66	1	2.04	20.00	0.10	0.10	18.60	1.39
35: D9 A 1114	Date:NA	6.74	1	1.99	20.00	0.10	0.10	18.50	1.27
36: D9 A 1115	Date:NA	6.70	1	1.98	20.00	0.10	0.10	17.80	1.21
37: D9 A 1116	Date:NA	6.30	1	2.02	20.00	0.10	0.10	16.70	1.49
38: D9 A 1117	Date:NA	8.16	1	2.00	20.00	0.10	0.10	15.70	1.40
39: D9 A 1118	Date:NA	8.22	1	2.01	20.00	0.10	0.10	16.30	1.51
40: Blank					40.00	0.10	0.10	40.20	1.02
42: NBM-1 Standard		9.03	2	2.00	40.00	0.10	0.10	21.90	1.54
43: Condu 1413 std									
44-DUP: A 0870		8.67	1	2.02	61.70	0.10	0.10	37.60	1.61
45-DUP: D9 A 1118		8.24	1	2.02	20.00	0.10	0.10	15.90	1.51

SGS Vancouver #50 655 West Kent Avenue N Vancouver BC V6P 6T7

Phone: 604-324-1166 FAX: 604-324-1177

LR Report : CA10709-OCT07

*NP (Neutralization Potential)
= 50 x (N of HCL x Total HCL added - N NaOH x NaOH added)
Weight of Sample

*AP (Acid Potential) = % Sulphide Sulphur x 31.25
*Net NP (Net Neutralization Potential) = NP-AP
NP/AP Ratio = NP/AP
*Results expressed as tonnes CaCO3 equivalent/1000 tonnes of material
Samples with a % Sulphide value of <0.01 will be calculated using a 0.01 value.

Brian Graha**i**n B.Sc. Project Specialist

Environmental Services, Analytical



#50 655 West Kent Avenue N Vancouver BC V6P 6T7

Phone: 604-324-1166 FAX: 604-324-1177

#### **Galore Creek Mining Company**

Attn: Mark King Box 700, 3842-3rd Ave

Smithers, BC V0J 2N0, Canada

Phone: 250-877-4453 Fax:250-877-4469 Wednesday, October 31, 2007

Date Rec.: 24 October 2007 LR Report: CA10709-OCT07 Analysis Location: Lakefield

**Copy:** #1

# CERTIFICATE OF ANALYSIS Final Report

Sample ID	NP t CaCO3/1000t	AP t CaCO3/1000 t	Net NP t CaCO3/1000 t	NP/AP ratio	Total Sulphur %	Acid Leachable SO4-S %	Sulphide-S %	Total Carbon %	Carbonate %	Rinse pH (1:1 Ratio)	Rinse Conductivity (1:1) uS/cm
3: Analysis Approval Date	30-Oct-07	31-Oct-07	31-Oct-07	31-Oct-07	29-Oct-07	29-Oct-07	29-Oct-07	27-Oct-07	26-Oct-07	31-Oct-07	31-Oct-07
4: Analysis Approval Time	15:48	10:49	10:49	10:49	13:25	13:28	13:28	11:14	09:33	08:26	08:26
5: A 0858	302	4.4	298	68.5	0.238	0.10	0.14	3.58	16.3	8.68	170
6: A 0859	474	28.1	446	16.9	0.873	< 0.01	0.90	6.66	26.8	8.43	250
7: A 0860	11.9	1.9	10.0	6.2	0.078	0.02	0.06	1.37	0.855	8.69	97
8: A 0861	95.7	5.7	90.0	16.7	0.205	0.02	0.18	1.98	5.71	8.89	110
9: A 0862	101	24.0	77.2	4.2	0.799	0.03	0.77	1.82	5.38	8.56	170
10: A 0863	106	33.5	72.4	3.2	1.05	< 0.01	1.07	1.87	5.96	8.74	160
11: A 0864	60.9	12.2	48.7	5.0	0.435	0.04	0.39	1.54	2.99	8.64	130
12: A 0865	93.7	0.31	93.4	302	0.010	0.01	< 0.01	1.08	5.11	9.06	99
13: A 0866	227	20.2	207	11.3	0.671	0.02	0.65	3.54	14.8	8.42	240
14: A 0867	69.8	0.33	69.5	213	0.023	0.01	0.01	1.08	3.80	8.80	110
15: A 0868	11.0	0.31	10.7	35.5	< 0.005	< 0.01	< 0.01	0.112	0.363	9.03	110
16: A 0869	45.8	5.6	40.2	8.2	0.236	0.06	0.18	2.13	9.64	8.76	450
17: A 0870	62.0	0.31	61.7	200	0.024	0.02	< 0.01	0.053	0.025	8.05	110
18: A 0871	4.9	0.31	4.6	15.8	0.024	0.02	< 0.01	0.077	0.054	8.40	160
19: A 0872	24.9	1.1	23.8	23.0	0.069	0.03	0.03	0.139	0.544	8.99	280
20: A 0873	23.0	0.77	22.2	29.8	0.033	< 0.01	0.02	0.096	0.288	8.74	230
21: A 0874	24.0	0.31	23.7	77.4	0.030	0.03	< 0.01	0.110	0.298	8.67	180
22: D7 A 1101	2.7	0.84	1.9	3.22	0.082	0.06	0.03	0.400	0.010	6.18	180



**SGS Vancouver** #50 655 West Kent Avenue N

Vancouver BC V6P 6T7

Phone: 604-324-1166 FAX: 604-324-1177

LR Report : CA10709-OCT07

Sample ID	NP t CaCO3/1000t	AP t CaCO3/1000	Net NP t t CaCO3/1000 t	NP/AP ratio	Total Sulphur %	Acid Leachable SO4-S %	Sulphide-S %	Total Carbon %	Carbonate %	Rinse pH (1:1 Ratio)	Rinse Conductivity (1:1) uS/cm
23: D7 A 1102	1.5	3.6	-2.1	0.42	0.185	0.07	0.12	0.127	0.008	5.77	420
24: D7 A 1103	4.3	7.1	-2.8	0.60	0.351	0.12	0.23	0.271	0.014	4.36	660
25: D7 A 1104	6.4	8.1	-1.7	0.79	0.322	0.06	0.26	0.195	0.022	5.52	400
26: D7 A 1105	5.6	25.0	-19.4	0.22	0.820	< 0.01	0.80	0.251	< 0.005	6.21	690
27: D7 A 1106	4.6	10.3	-5.7	0.45	0.368	0.04	0.33	0.183	< 0.005	5.53	650
28: D7 A 1107	6.9	9.5	-2.6	0.73	0.379	0.08	0.30	0.429	< 0.005	6.19	520
29: D7 A 1108	17.2	15.1	2.12	1.1	0.495	0.01	0.48	0.686	0.412	7.77	590
30: D8 A 1109	2.7	7.2	-4.6	0.37	0.284	0.05	0.23	0.298	< 0.005	4.56	950
31: D8 A 1110	5.0	11.6	-6.6	0.43	0.440	0.07	0.37	0.149	< 0.005	4.65	730
32: D8 A 1111	6.0	13.0	-7.0	0.46	0.488	0.07	0.42	0.058	0.006	4.48	810
33: D8 A 1112	8.5	15.7	-7.2	0.54	0.509	< 0.01	0.50	0.096	0.022	6.26	1030
34: D8 A 1113	3.4	12.2	-8.8	0.28	0.458	0.07	0.39	0.077	0.006	4.68	810
35: D9 A 1114	3.8	3.8	0	1.0	0.160	0.04	0.12	0.108	< 0.005	4.59	610
36: D9 A 1115	5.6	7.5	-1.9	0.75	0.273	0.03	0.24	0.112	< 0.005	4.47	720
37: D9 A 1116	8.2	79.1	-70.9	0.10	2.64	0.11	2.53	0.273	0.334	4.27	1340
38: D9 A 1117	10.8	30.1	-19.3	0.36	1.13	0.17	0.96	0.162	0.161	7.14	880
39: D9 A 1118	9.2	27.1	-17.9	0.34	0.926	< 0.01	0.87	0.202	0.168	6.98	890
40: Blank					< 0.005	< 0.01	< 0.01	< 0.005	< 0.005	6.13	< 1
42: NBM-1 Standard	45.2	7.3	37.9	6.2	0.242	< 0.01	0.23	0.794	1.74		
43: Condu 1413 std											1401
44-DUP: A 0870	59.5	0.31	59.2	192	0.017	0.02	< 0.01	0.054	< 0.005	7.87	85
45-DUP: D9 A 1118	10.1	24.6	-14.5	0.41	0.972	0.18	0.79	0.210	0.133	7.11	880

CA10709-OCT07

LR Report :

SGS Vancouver #50 655 West Kent Avenue N Vancouver BC V6P 6T7

Phone: 604-324-1166 FAX: 604-324-1177

*NP (Neutralization Potential) = 50 x (N of HCL x Total HCL added - N NaOH x NaOH added)

Weight of Sample

*AP (Acid Potential) = % Sulphide Sulphur x 31.25
*Net NP (Net Neutralization Potential) = NP-AP
NP/AP Ratio = NP/AP
*Pagulto expressed as tapped CoCC2 again valent (1000)

*Results expressed as tonnes CaCO3 equivalent/1000 tonnes of material Samples with a % Sulphide value of <0.01 will be calculated using a 0.01 value.

Brian Graha**i**n B.Sc. Project Specialist

Environmental Services, Analytical

#### APPENDIX V

ANALYTICAL GEOCHEMISTRY CERTIFICATES

ALS CHEMEX ICP CERTIFICATES



### ALS Chemex **EXCELLENCE IN ANALYTICAL CHEMISTRY**

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET **VANCOUVER BC V6C 1S4** 

Page: 1 Finalized Date: 27-JUL-2007

**Account: NOVCAN** 

#### **CERTIFICATE TR07070863**

Project: Galore Creek

P.O. No.:

This report is for 5 Rock samples submitted to our lab in Terrace, BC, Canada on

6-JUL-2007.

The following have access to data associated with this certificate:

JACK COTE JOE PIEKENBROCK STUART MORRIS MELISSA ZACK

SCOTT PETSEL

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
WEI-21	Received Sample Weight						
LOG-22	Sample login - Rcd w/o BarCode						
CRU-31	Fine crushing - 70% <2mm						
SPL-21	Split sample - riffle splitter						
PUL-31	Pulverize split to 85% <75 um						

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: NOVAGOLD CANADA INC. ATTN: JOE PIEKENBROCK #2300 - 200 GRANVILLE STREET **VANCOUVER BC V6C 1S4** 

Signature:

Lawrence Ng, Laboratory Manager - Vancouver

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.



EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 27-JUL-2007

**Account: NOVCAN** 

Project: Galore Creek

									-	CERTIF	ICATE	OF ANA	LYSIS	TR070	70863	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
105151 105152 105153 105154 105155		1.91 2.00 0.78 0.81 2.65	<0.005 <0.005 <0.005 <0.005 0.008	<0.2 <0.2 0.2 <0.2 <0.2	2.57 4.95 0.14 1.19 0.18	<2 2 <2 4 <2	<10 <10 <10 <10 <10	10 20 10 130 20	0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	1.66 1.29 0.05 8.68 0.04	<0.5 <0.5 <0.5 <0.5 <0.5	14 16 1 3 2	4 5 6 9 7	29 42 6 17 15	5.42 5.30 0.47 0.72 0.51



EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 27-JUL-2007

**Account: NOVCAN** 

Project: Galore Creek

										CERTIF	ICATE (	OF ANA	LYSIS	TR070	70863	
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
105151 105152 105153 105154 105155		20 10 <10 <10 <10	<1 1 <1 <1 <1	0.03 0.04 0.06 0.03 0.10	10 10 <10 10 <10	2.04 2.07 0.04 3.37 0.01	1300 1425 96 937 282	<1 <1 <1 <1 1	0.10 1.49 0.03 0.04 0.05	3 3 <1 6 2	1090 1050 20 500 10	5 2 2 <2 10	0.22 0.08 0.03 0.07 0.04	<2 <2 2 2 2 <2	9 10 <1 5 <1	31 27 3 167 2



**EXCELLENCE IN ANALYTICAL CHEMISTRY** 

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 27-JUL-2007

Account: NOVCAN

Project: Galore Creek

									CERTIFICATE OF ANALYSIS	TR07070863
	Method Analyte	ME-ICP41 Th	ME-ICP41 Ti	ME-ICP41 TI	ME-ICP41 U	ME-ICP41 V	ME-ICP41 W	ME-ICP41 Zn		
ample Description	Units LOR	ppm 20	% 0.01	ppm 10	ppm 10	ppm 1	ppm 10	ppm 2		
05151		<20	0.55	<10	<10	162	<10	109		
105152 105153		<20 <20	0.39 0.01	<10 <10	<10 20	164	<10 <10	79		
105153		<20 <20	< 0.01	<10 <10	<10	4 59	<10 <10	4 31		
105155		<20 <20	<0.01	<10	10	1	<10 <10	18		



### ALS Chemex **EXCELLENCE IN ANALYTICAL CHEMISTRY**

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET **VANCOUVER BC V6C 1S4** 

Finalized Date: 30-OCT-2007

**Account: NOVCAN** 

#### **CERTIFICATE TR07096020**

Project: Galore Creek- Field Samples

P.O. No.: Batch#: 493

This report is for 21 Rock samples submitted to our lab in Terrace, BC, Canada on

29-AUG-2007.

The following have access to data associated with this certificate:

JACK COTE JOE PIEKENBROCK STUART MORRIS MELISSA ZACK

SCOTT PETSEL

	SAMPLE PREPARATION							
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-22	Sample login - Rcd w/o BarCode							
CRU-31	Fine crushing - 70% <2mm							
SPL-21	Split sample - riffle splitter							
PUL-31	Pulverize split to 85% <75 um							

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Ag-AA46	Ore grade Ag - aqua regia/AA	AAS
Cu-AA46	Ore grade Cu - aqua regia/AA	AAS
Au-AA23	Au 30g FA-AA finish	AAS
Au-GRA21	Au 30g FA-GRAV finish	WST-SIM
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: NOVAGOLD CANADA INC. ATTN: JOE PIEKENBROCK #2300 - 200 GRANVILLE STREET **VANCOUVER BC V6C 1S4** 

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Lawrence Ng, Laboratory Manager - Vancouver



**EXCELLENCE IN ANALYTICAL CHEMISTRY** 

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 30-OCT-2007

Account: NOVCAN

									(	CERTIF	ICATE (	OF ANA	LYSIS	TR070	96020	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1
105201 105202 105203 105204 105205		1.16 1.03 1.55 1.25 0.67	0.006 0.007 0.057 0.007		0.2 0.3 <0.2 0.2 0.2	1.60 0.28 0.25 0.28 0.26	2 90 48 333 653	<10 <10 <10 <10 <10	70 <10 10 <10 <10	<0.5 <0.5 <0.5 <0.5 <0.5	3 <2 2 2 3	0.48 0.15 0.07 0.13 0.14	0.5 0.8 0.8 1.1 2.3	13 3 6 8 10	17 3 5 6 6	92 16 28 70 70
105206 105742 105743 105744 105745		1.59 1.30 1.63 1.03 1.25	0.006 0.006 0.015 0.006 0.495		<0.2 0.3 0.2 0.4 1.6	0.43 1.51 1.40 0.90 0.07	107 10 9 7 3	<10 <10 <10 <10 <10	260 110 130 120 30	<0.5 <0.5 <0.5 <0.5 <0.5	2 2 2 3 3	<0.01 0.48 0.67 0.47 0.15	2.0 0.6 0.5 0.5 1.0	2 5 10 9 3	13 2 5 4 7	57 68 49 58 32
105746 105747 105748 105749 105750		0.48 0.60 0.39 0.49 0.88	0.008 0.017 0.037 0.005 <0.005		<0.2 <0.2 0.2 <0.2 <0.2	0.75 1.04 0.88 2.53 0.49	4 9 18 8 <2	<10 <10 <10 <10 <10	120 20 120 80 10	<0.5 <0.5 <0.5 <0.5 <0.5	2 2 <2 2 <2	0.12 1.16 4.83 1.76 0.50	0.5 0.7 0.6 0.5 <0.5	3 61 14 26 <1	2 3 5 1 7	9 57 109 19 5
105156 105157 105158 105159 105160		2.06 1.86 2.72 1.76 2.12	0.241 0.203 1.055 >10.0 >10.0	23.6 10.15	3.5 0.9 2.2 25.4 >100	1.39 0.87 0.41 0.25 0.39	2 <2 2 12 <2	<10 <10 <10 <10 <10	150 90 550 40 90	<0.5 <0.5 0.7 0.5 <0.5	2 4 4 22 21	1.16 1.87 4.16 0.43 0.14	1.2 <0.5 1.2 0.7 1.0	35 20 18 10 5	17 7 8 4 3	1590 451 5170 >10000 >10000



**EXCELLENCE IN ANALYTICAL CHEMISTRY** 

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 30-OCT-2007

Account: NOVCAN

										CERTIF	ICATE	OF ANA	LYSIS	TR070	96020	·
Sample Description	Method Analyte Units LOR	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1
105201 105202 105203 105204 105205		4.02 9.73 9.93 11.45 15.2	<10 <10 <10 <10 <10	1 16 8 4 3	0.14 0.11 0.08 0.07 0.05	<10 <10 <10 <10 <10	1.10 0.05 0.02 0.02 0.01	622 92 58 46 54	1 2 44 1	0.06 0.06 0.06 0.06 0.06	11 20 14 11	1010 40 30 60 30	2 15 6 2 2	1.08 >10.0 >10.0 >10.0 >10.0	<2 102 25 14 15	2 1 1 2 2
105206 105742 105743 105744 105745		17.5 2.86 4.05 4.15 5.06	<10 <10 <10 <10 <10	3 <1 <1 1	0.27 0.33 0.24 0.21 0.06	<10 <10 <10 <10 <10	0.03 1.42 1.35 0.73 0.01	87 798 431 276 66	7 2 5 1 178	0.08 0.04 0.05 0.03 <0.01	3 <1 1 3	5260 1970 2480 1820 40	8 13 6 4 462	0.90 1.07 1.86 2.42 4.60	15 <2 <2 <2 <2 <2	6 3 3 3 <1
105746 105747 105748 105749 105750		2.78 7.32 3.16 6.60 0.67	<10 <10 <10 10 <10	<1 <1 1 <1	0.24 0.08 0.24 0.06 0.02	<10 <10 <10 <10 <10	0.62 0.41 0.49 1.81 0.03	184 222 1145 1070 85	4 2 1 1 <1	0.03 0.04 0.03 0.05 <0.01	<1 6 1 <1 <1	1600 1560 740 1570 30	9 8 9 3 <2	1.16 7.77 2.11 2.83 0.03	<2 <2 <2 <2 <2 <2	2 3 2 6 <1
105156 105157 105158 105159 105160		14.85 11.00 6.29 6.38 3.10	10 10 <10 <10 <10	<1 <1 <1 1 <1	1.09 0.38 0.35 0.19 0.27	10 20 10 <10 <10	1.35 0.65 1.19 0.05 0.23	1215 768 1640 397 108	<1 1 2 10 1	0.06 0.06 0.07 0.03 0.05	19 9 7 8 4	2530 5920 2240 1070 90	4 2 18 127 63	0.05 0.05 0.43 2.65 2.35	<2 <2 <2 16 <2	6 3 11 9 3
									10 1 64		4					



**EXCELLENCE IN ANALYTICAL CHEMISTRY** 

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 30-OCT-2007

**Account: NOVCAN** 

										CERTIF	ICATE OF	ANALYSIS	TR07096020
Sample Description	Method Analyte Units LOR	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01		
105201		22	<20	0.22	<10	<10	60	<10	45				
105202		11	<20	< 0.01	<10	<10	15	<10	9				
105203		6	<20	<0.01	<10	<10	15	<10	10				
105204		13	<20	<0.01	<10	<10	24	<10	9				
105205		12	<20	<0.01	<10	<10	22	<10	54				
105206		58	<20	<0.01	<10	<10	178	<10	17				
105742		122	<20	0.20	<10	<10	67	<10	86				
105743		117	<20	0.24	<10	<10	85	<10	56				
105744		60	<20	0.25	<10	<10	60	<10	34				
105745		11	<20	<0.01	<10	<10	4	<10	5				
105746		48	<20	0.26	<10	<10	24	<10	13				
105747		255	<20	0.16	<10	<10	51	<10	20				
105748		361	<20	0.01	<10	<10	20	<10	30				
105749		98	<20	0.27	<10	<10	110	<10	96				
105750		45	<20	0.01	<10	<10	13	<10	2				
105156		156	<20	0.36	<10	<10	1230	<10	76				
105157		230	<20	0.16	<10	<10	899	<10	53				
105158		348	<20	0.04	<10	<10	507	<10	99				
105159		81	<20	<0.01	<10	<10	94	<10	66		4.75		
105160		94	<20	0.08	<10	<10	66	<10	30	123	4.78		
105161		233	<20	0.01	<10	<10	64	<10	92	218	6.08		



**EXCELLENCE IN ANALYTICAL CHEMISTRY** 

ALS Canada Llc.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 1 Finalized Date: 23-NOV-2007

Account: NOVCAN

#### CERTIFICATE VA07132350

Project: Galore Creek - Field Sample

P.O. No.: BATCH # 537

This report is for 45 Rock samples submitted to our lab in Terrace, BC, Canada on

12-OCT-2007.

The following have access to data associated with this certificate:

STUART MORRIS MELISSA ZACK

SCOTT PETSEL

JOE PIEKENBROCK

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	<del></del>
LOG-22	Sample login - Rcd w/o BarCode	
SPL-21d	Split sample - duplicate	
PUL-31d	Pulverize Split - duplicate	
PUL-QC	Pulverizing QC Test	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	
LOG-24	Pulp Login - Rcd w/o Barcode	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Cu-AA46	Ore grade Cu - aqua regia/AA	AAS
Au-AA23	Au 30g FA-AA finish	AAS
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: NOVAGOLD CANADA INC. ATTN: JOE PIEKENBROCK #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Signature:

Lawrence Ng, Laboratory Manager - Vancouver

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.



EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 23-NOV-2007

Account: NOVCAN

										CERTIF	ICATE	OF ANA	LYSIS	VA071	32350	
Samula Banariation	Method Analyte Units	WEI-21 Recyd Wt. kg	Ан-АА23 Ан рет	ME-ICP41 Ag pom	ME-ICF41 A %	ME- CP41 As ppm	ME-ICP41 S ppm	ME-ICP41 Ba ppm	ME-ICP41 Be ppm	ME-ICP41 B ppm	ME-3CP41 Ca %	ME-ICP41 Cc ppm 0,5	ME-ICP41 Co ppm 1	WEHCP41 Or opm 1	ME∵CP41 Cu ggrti 1	ME-ICP41 Fe % 0.01
Sample Description	LOR	0 02	0.005	0.2	0.01	2	10	16	G.5	2	0.01	V.S				
105163 105164		3.38 Not Recvd	0.780	2.3	0.49	602	<10	160	<0.5	<2	0.17	<0.5	20	2	102	6,66
105165		2.92	1.185	3.6	0.79	10	<10	210	<0.5	<2	2.30	<0.5	19	8	6713	8.16
105166		1.98	0,098	1.9	0.25	13	<10	<10	<0.5 0.6	<2 <2	0.26 4.52	0.5 81.0	227 24	1 4	2140 >10000	41.5 6.27
105167		1.84	0.207	23.8	1.33	19	<10	60								
109310		1.68	5.94	28.2	1.13	3	<10	530 130	<0.5 <0.5	<2 <2	0.35 0.43	0.6 <0.5	18 5	11 3	>10000 1560	2.84 2.21
109311		0.60 0.74	0.489 0.384	1 2 1.2	0.50 2.20	<2 2	<10 <10	130	<0.5 0.5	<2	1.50	<0.5 <0.5	25	153	1610	7.18
109312 109313		0.74	0.334	0.4	1.95	2	<10	400	<0.5	<2	0,92	<0.5	19	134	577	3.59
109314		0.36	0.005	0.2	1.13	2	<10	140	0.5	<2	0.93	<0.5	11	2	137	3.01
109315		1.82	0.055	1.3	2.21	2	<10	10	<0.5	<2	2.93	<0.5	65	34	1610	15.7
109316		0.96	0.018	8,0	2.00	8	<10	10	<0.5	<2	3.01	< 0.5	34	43	372	11.65
169317		1.12	0.520	5.2	3.33	22	<10	250	<0.5	<2	1.50	<0.5	28	14	4610	9.79
109318		1.10	0.039	0.3	3.66	3	<10	90	<0.5	<2	0.66	<0.5	42	10	3920	3.81
109319		1.90	<0.005	<0.2	2.13	3	<10	190	0.5	<2	1.12	<0.5	22	80	109	3.93
109320		1.74	<0.005	0.2	2.50	4	<10	300	<0.5	<2	1.28	<0.5	24	135	154	3.69
109321		1.48	<0.005	0.2	2.57	<2	<10	90	<0.5	<2	1.03	< 0.5	18 9	111 9≰	23 182	4.60 1.66
109322		1.28	<0.005	0.5	1.63 2.64	<2 <2	<10 <10	120 2ପ	<0.5 <0.5	<2 <2	2.43 1.22	<0.5 <0.5	30	9 <u>r</u> 57	65	3.78
109323 109324		1.94 1.82	<0.005 0.026	0.2 0.6	3.31	3	<10	20 70	<0.5 <0.5	<2	3.10	<0.5	30	333	1020	4.48
		<del></del>					<10	250	<0.5	<2	1,51	<0.5	27	66	9	5.03
109325 109326		2.08 1.12	0,021 0,019	<0.2 <0.2	3,47 1,18	<2 <2	<10 <10	250 40	<0.5	<2	1.14	<0.5	5	9	40	2.08
109327		1.78	0.006	<0.2	1.25	<2	<10	120	<0.5	<2	1.83	<0.5	4	12	59	2,95
109328		1.60	0.010	0.3	2.76	2	<10	230	<0.5	<2	1.37	<0.5	31	92	408	4.76
109329		1.78	0.010	0.2	2.91	2	<10	260	<0.5	<2	1.35	<0.5	30	91	41	5.5 <del>6</del>
109330		2.06	0.011	<0.2	2.67	<2	<10	160	<0.5	<2	1.39	<0.5	26	149	96	4,90
109331		2.02	<0.005	<0.2	2.96	<2	<10	13G	<0.5	<2	1.45	<0.5	25	208	14	4.93
109332		2.20	<0.005	<0.2	2.01	<2	<10	120	<0.5	<2	1.08	<0.5	10	26	81	3,19
109333		<0.02	< 0.505	<0.2	1,80	<2 6	<1C <1C	110 70	<0.5 <0.5	<2 <2	1.15 1.61	<0.5 <0.5	10 20	27 32	69 299	3.20 3.27
109334		1.52	0.625	0.2	0.92				<del></del>						2990	5.10
109335		2.52	0.046 p.aac	2.7	1.65	<2	<10 <10	40 50	<0.5 <0.5	<2 <2	1.88 1.75	<0.5 <0.5	13 11	4 7	2990 531	3.07
109336 109337		1.58 1.72	0.006 0.006	<0.2 0.2	1.65 1.58	<2 <2	<10 <10	50 60	<0.5	<2	1,75	<0.5	10	2	535	3.39
109337		1.72	<0.005	<0.2	0.67	<2	<10	660	0.5	<2	2.34	<0.5	14	32	92	2.55
109339		0.92	0.007	0.2	2.01	5	<10	60	<0.5	<2	1,77	<0.5	17	73	345	3.58
109340		1.08	<0.005	0.2	1.07	<2	<10	2G	<0.5	<2	4.22	<0.5	20	19	399	3,28
109341		0.62	<0.005	<0.2	0.12	5	<10	<10	<0.5	<2	>25.0	0.7	1	2	1:	0.15
109342		1.44	<0.005	<0.2	0.07	<2	<10	10	<0.5	<2	21.2	<0.5	2	:	8	0.47
109343		1.78	<0.005	<0.2	1.55	<2	<10	30	<0.5	<2	2.00	<0.5	8	5	64	3.20
109344		1.72	0.354	<0.2	1.28	2	<10	4C	<0.5	<2	1.41	<0.5	7	5	35	2.24



EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada 11d.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 23-NOV-2007

Account: NOVCAN

										CERTIF	ICATE (	OF ANA	LYSIS	VA071	32350	
***	Method Analyte	ME-ICP49 Ga	MS-iCP41 Hg	ME-ICP41 K	ME-ICP41 La	ME-ICP41 Mg	ME4CP41 Vn	ME-ICP41 Mo	ME-ICP41 Na	ME-ICP41 M	ME-ICP41 P	ME-ICP41 Pb	MEHCP41 S	ME-ICP41 Sb	ME-ICP41 Sc	ME-ICP41 Sr
Sample Description	Units LOR	2015) 10	ppm. 1	% 0.01	ppm 10	% 0.01	рргі 5	ррт 1	% 0.01	ppm :	gom 10	ppភា 2	% 0.01	рр.т 2	ррл 1	çоті 1
105163 105164		<10	<†	0.19	<10	0.04	661	1	0.02	9	1190	35	1.83	6	13	16
105165		10	<1	0.56	30	0.76	698	1	0.06	7	7430	9	0.22	2	4	167
105166		<10	<1	0.03	<10	0.10	178	4	<0.01	21	310	<2	>10.0	4	<1	4
105167		10	<1	0.29	20	1.45	1580	769	0.03	15	1180	168G	3.78	3	8	146
109310		10	<1	1.06	10	1.14	313	15	0.07	14	1170	28	0.62	5	3	230
109311		<10	<1	0.18	10	0.17	212	3	0.07	4	430	16	0.21	<2	1	256
109312		10	<1	1.84	10	2.14	849	1	0.10	50	2600	5	0.13	<2	7	163
109313		10	<1	1,98	10	2.07	588	<1	0.09	40	1390	7	0.14	<2	7	127
109314		<10	<1	0,27	10	0.57	277	3	0,16	1	1000	5	1.23	<2	3	142
109315		10	<1	0.19	<10	1.33	1170	8	0.10	29	1070	15	7.19	<2	9	35
109316		10	<1	0.15	<10	1.60	1390	55	0.04	11	2020	2	0.63	<2	10	35
109317		10	2	0.25	<10	2.42	2090	3	0.03	8	1950	4_	1,77	4	8	39
109318		10	<1	0.16	<10	3.27	1120	1	0.01	17	820	<2	0.13	<2	3	21
109319		10	<1	1.64	<10	1,70	313	1	0.16	32	1550	<2	0.08	<2	5	75
139320		10	<1	1.72	<10	2.23	388	2	0.17	73	1560	<2	0.10	2	6	62
109321		10	<1	1.97	<10	2.30	381	2	0.13	49	1600	2	0.08	2	5	75
1093Z2		<10	<1	1.13	<10	1,44	281	7	0.16	64	1420	2	1.04	<2	6 3	155 100
109323		10	<1	3.18	10	2.65	571	3	0.10	83	970	<2 <2	0.21 1.57	<2 <2	2	182
109324		10	<1	2.91	<10	3.42	380	2	80.0	286	1580					
109325		10	<1	2.26	<10	2.95	416	<1	0.11	42	1410	<2	0.07	2	5	87
109326		<10	<1	0.12	<10	0.87	215	1	0.17	4	840	<2	0.07 0.07	<2	3 2	95 150
109327		<10	<1	0.28	10	0.63	308	11	0.29	7	1130 1450	2 <2	0.07	<2 <2	3	100
109328		10	<1	1.46	<10	2.25	554 465	3 1	0.14 0.13	62 35	1370	<2	0.05	<2	4	67
109329		10	<1	1.87	<10	2.36										
109330		10	<1	1,56	10	2.19	389	<1	D.13	50 83	1150 1160	2 <2	0.12 0.07	<2 <2	5 3	137 81
109331		10	<1	1.68	<10	2.48	351 445	7 34	0.12 0.20	03 13	1260	2	0.32	2	2	87
109332		13	<1 <1	1.00 0.94	<10 10	1,47 1,40	443	32	D.12	8	1210	<2	0.30	<2	3	93
109333 109334		10 <10	<1	0.94 0.36	10	0.47	267	12	0.12	47	1730	3	1.36	<2	3	115
		10	1	0.24	<10	1.27	465	5	0.07	2	1100	4	0.52	<2	5	101
109335 109336		10	1 <1	0.24	<10	0.98	204	6	D.13	3	1100	2	0.07	2	3	174
109337		13	1	0.25	<10	1.00	228	2	0.13	3	1160	<2	0.11	<2	2	108
109336		<10	1	0.41	10	0.91	344	3	0.08	14	900	4	0.34	<2	10	120
109339		13	1	1.38	10	1.94	704	2	0,11	25	1300	6	0.43	<2	7	104
109340		<10	1	0.02	<10	0,59	549	1	0.10	7	980	4	2.27	<2	3	209
109341		<10	1	0,01	<10	0.06	77	<1	0.03	3	100	<2	<0.01	<2	<1	226
109342		<10	1	0.02	<10	12.15	215	<1	0.03	<1	220	<2	<0.01	2	<1	61
109343		10	1	0.21	<10	1.04	413	1	0.14	1	1630 1320	2 <2	0.40 0.21	<2 <2	3 2	73 127



EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vencouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 23-NOV-2007

Account: NOVCAN

Project: Galore Creek - Field Sample

CERTIFICATE OF ANALYSIS VA07132350

	Method	ME-ICP41	ME-ICP41 Ti	MEHCP41	ME-ICP41 U	VIE-ICP41 V	MEHCP41 W	ME-ICP41 Zn	Cu-AAA6 Co	
	Analyte Units	Th	11 %			v ppm	ррт	ppm	56	
Sample Description	LOR	ррт 20	0.01	ррт 10	pprr. 10	į	13	2	0,01	
		20	0.3.	10						
105153		<20	<0.01	<10	<10	41	<10	65		
105164										
105165		<20	0.15	<10	<10	689	<10	63		
105166		<20	0.01	10	<10	114	70	9		
105167		<20	0.05	<10	<10	166	<10	2550	1.33	
109310		<20	0.13	<10	<10	141	<10	76	2.14	
109311		<20	0.08	<10	<10	115	<10	28		
109312		<20	0.31	<10	<10	465	<10	95		
109313		<20	0.37	<10	<10	223	<10	60		
109314		<20	0.12	<10	<10	86	<10	16		
109315		<20	0.21	10	<10	144	20	32		
109316		<20	0.22	<10	<10	140	10	39		
109317		<20	0,05	<10	<10	169	80	115		
109318		<20	0.07	<10	<10	77	<10	48		
109319		<20	C.28	<10	<10	127	<10	14		
109320		<20	C.28	<10	<10	115	<10	16		
109321		<20	0.29	<10	<10	143	<10	32		
109322		<20	0.18	<10	<10	74	<10	19		
109323		<20	0.31	<10	<10	94	<10	60		
109324		<20	0.20	<10	<10	104	<10	23		
109325		<20	0,28	<10	<10	172	<10	41		······································
109326		<20	0.20	<10	<10	65	<10	10		
109327		<20	0.27	<10	<10	59	<10	18		
109328		<20	0.24	<10	<10	135	<10	36		
109329		<20	0.32	<10	<10	201	<10	26		
109330		<20	0.27	<10	<10	140	<10	32		
109331		<20	0.32	<10	<10	182	<10	15		
109332		<20	0.25	<10	<10	108	<10	31		
109333		<20	0.27	<10	<10	112	<10	31		
109334		<20	0.28	<10	<10	94	<10	16		
109335		<20	0.23	<10	<10	175	<10	29	·	<u></u>
109336		<20	0.32	<10	<10	99	<10	10		
109337		<20	0.33	<10	<10	123	<10	9		
109338		<20	0.05	<10	<10	102	<10	13		
109339		<20	0.28	<10	<10	134	<10	76		
109340		<20	0.20	<10	<10	82	<10	38		
109341		<20	0.01	<10	10	4	<10	13		
109342		<20	< 0.01	<10	10	3	<10	15		
109343		<20	0.25	<10	<10	76	<10	20		
109344		<20	0.22	<10	<10	47	<10	5		



EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 23-NOV-2007

Account: NOVCAN

								-		CERTIF	ICATE (	OF ANA	LYSIS	VA071	132350	
Sample Description	Method Analyte Units LOR	WEI-21 Recyd WL kg 0.02	Au-AA23 Au ppm G.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 AJ % C.01	ME-ICP41 As ppm 2	ME-2CP41 B ppm 10	ME-ICP45 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % C.01	ME- CP41 Cd ppm G.5	MECP4* Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
109345 109346 109347 109348 109349		1.62 2.16 0.44 1.08 0.52	<0.305 <0.005 7.11 0.382 0.074	<0.2 <0.2 21.4 6.9 0.5	1.42 2.37 2.27 1.48 2.32	<2 <2 29 5	<10 <10 <10 <10 <10	50 130 70 120 40	<0.5 <0.5 1.0 1.0 1.8	<2 <2 <2 <2 <2 <2	1,22 1,43 4,01 5,43 15,0	<0.5 <0.5 5.5 <0.5 <0.5	13 13 93 9 14	4 5 7 5	118 85 >10000 7990 2090	2.28 5.44 8.51 3.75 5.44
				<u>.</u>												



EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 23-NOV-2007

Account: NOVCAN

										CERTIF	ICATE (	OF ANA	LYSIS	VA071	32350	
	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg <i>pp</i> m 1	ME-ICP41 K % 0.01	MS-:CP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-(0241 Mo pom 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	MERCP41 S % 0.01	ME-ICP41 Sti ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 St ppm 1
109345		<10	<1	0.32	<10	0.71	155	6	0.13	•	1140	<2	0.80	<2	2	113
109346		10	1	1,30	<10	1.49	516	1	0.12	<';	1490	4	0.04	<2	4	132
109347		10	2	0.52	20	1.82	701	2	0,03	45	3190	12	5.62	2	13	87
109348	İ	<10	1	0.21	10	1,74	1150	3	0.05	1	600	10	88.0	<2	5	245
109349		<10	1	0.12	20	3.91	2730	4	0.05	1	610	12	1.69	4	6	787



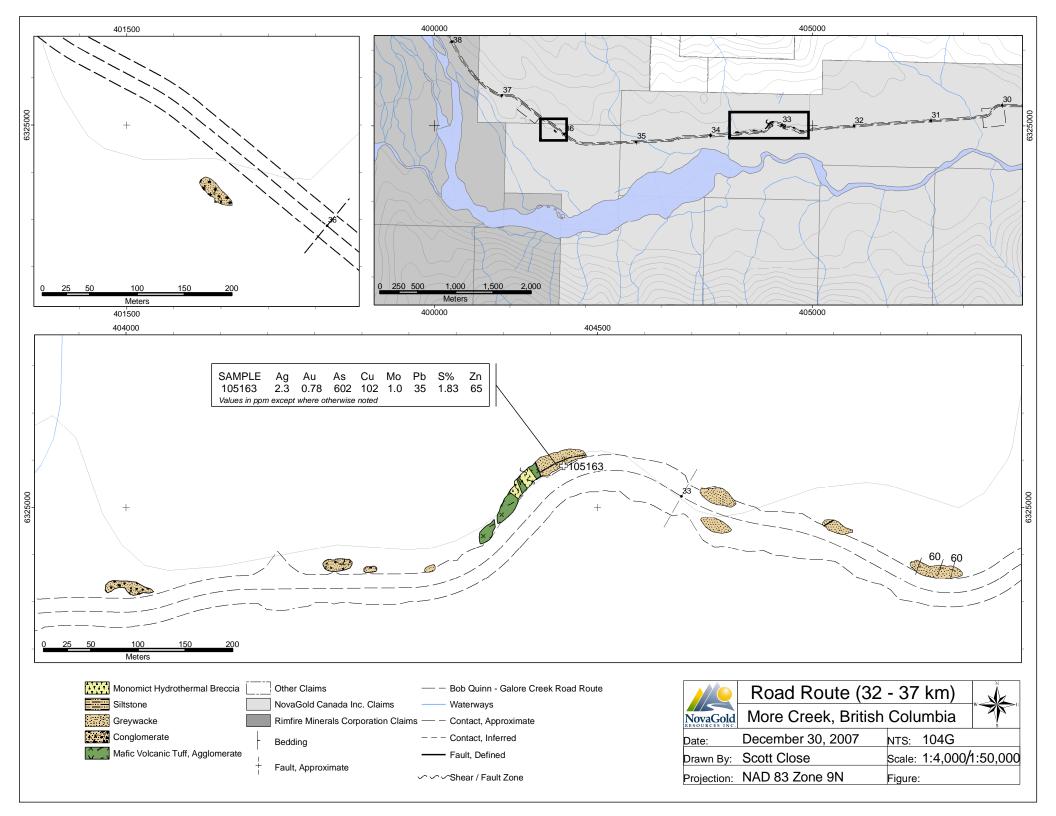
EXCELLENCE IN ANALYTICAL CHEMISTRY

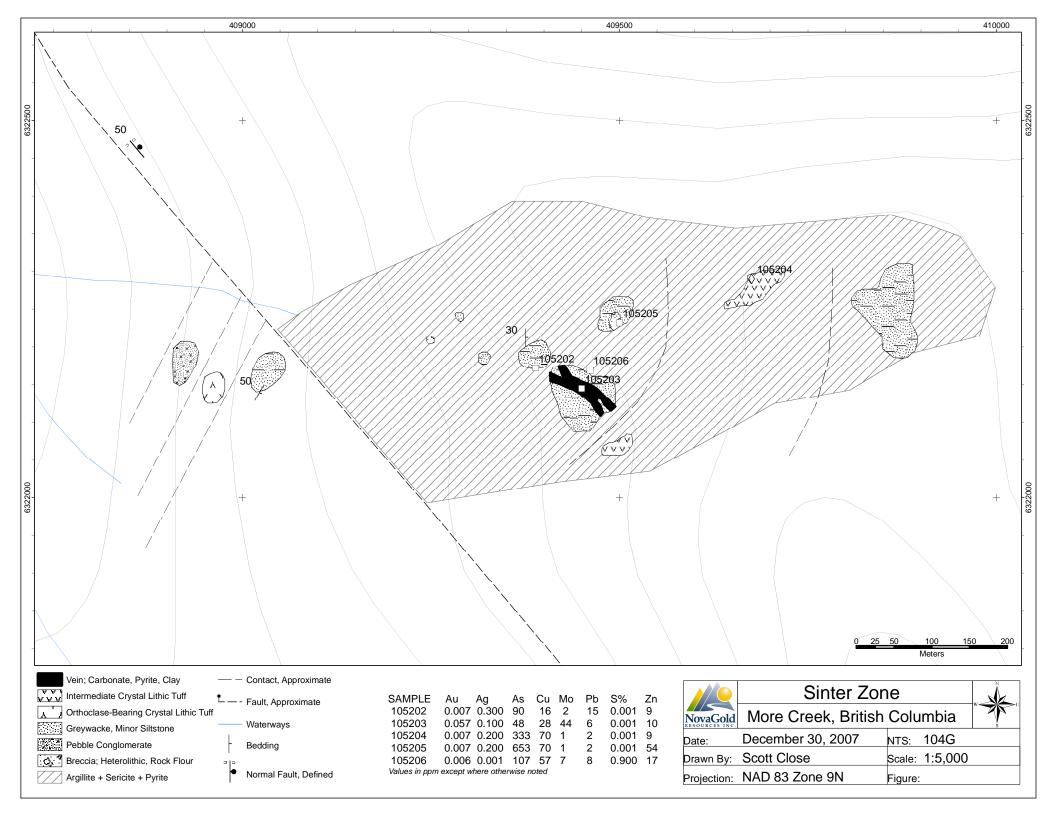
ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone; 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: NOVAGOLD CANADA INC. #2300 - 200 GRANVILLE STREET VANCOUVER BC V6C 1S4 Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 23-NOV-2007


Account: NOVCAN


CERTIFICAT	TF OF	ANALYSIS	VA07132350
OLIVIII IOM		MINE I VIV	170:10-000

Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 50	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	МЕ-ICP41 Zr ppm 2	Cu-AA46 Cu % 3.01	
109345 109346 109347 109348 109349		<20 <20 <20 <20 <20 <20	0.26 0.34 0.08 0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	58 157 168 62 79	<10 <10 <10 <10 <10	4 36 718 44 59	5.43	

### APPENDIX VI

**GEOLOGICAL MAPPING** 



