

BC Geological Survey Assessment Report 29756

NTS 94K/4, 5, 6, 11, 12 Lat: $58^{\circ} 23^{\prime} \mathrm{N}$ Long: $125^{\circ} 24^{\prime} \mathrm{W}$

Assessment Report on the Missy Drilling \& Mapping

 as well as
the Sampling of the Missy and Magnum Properties

Laird Mining Division
British Columbia, Canada
March 14, 2008

ARIES RESOURCE CORP
1255 West Pender Street
Vancouver, BC V6E 2V1
Tel: 604-681-0004 Fax: 604-681-0014

for

ACTION MINERALS INC

1255 West Pender Street
Vancouver, BC V6E 2V1
Tel: 604-681-0004 Fax: 604-681-0014
by
George Coetzee, BSc. Geo. (Honours)
\#1-1255 West Pender St.

TABLE OF CONTENTS

1.0 Introduction 5
2.0 Descriptions, Locations and Ownership of Claims 5
3.0 Accessibility, Climate and Physiography 19
4.0 History 22
4.1 Area History 22
4.2 Previous Work 22
4.2.1 Missy Claim TN: $\mathbf{5 0 1 5 3 4}$ 22
4.2.2 Angel Claim TN: 501416 26
5.0 Regional Geology 28
6.0 Regional Structure 28
7.0 General Mineralization Types 32
8.0 Regional Geophysical Surveys (2006) 32
8.1 Regional Magnetic Survey Results (2007) 33
9.0 Exploration on the Missy 35
9.1 The Geology of the Missy Veins 35
9.2 Missy Veins Sampling 37
9.3 Geophysical Exploration of the Missy Property 38
9.4 Mineralization in the Missy Drill Holes 40
9.5 Missy Drill Program 40
9.6 Missy Drill hole Results 41
9.6.1 Missy Drill Core Sampling 43
9.7 Missy drilling Conclusions 45
10.0 Missy North East Extension Mapping 46
10.1 The geology of the Missy (NE Extension) 46
10.2 Missy Mapping Correlation with the Aerial Magnetics 47
10.3 Missy Faulting (NE Extension) 49
10.4 Missy Veins (NE Extension) 47
10.4.1 Missy Vein Sampling (NE Extension) 54
10.5 Missy Vein Sampling (NE Extension) 54
11.0 The General Geology of the Churchill Mine 54
11.1 Sampling of the Magnum of the Magnum Vein and Brecciation 57
11.1.1 Sampling Results of the Magnum Vein and Brecciation 60
12.0 Conclusions 61
12.1 Missy Drilling Conclusions 61
12.2 Missy Mapping Conclusions (NE Extension) 62
12.3 Magnum Brecciated Zone Sampling Conclusions. 62
13.0 Recommendations 63
13.1 Missy Drilling Recommendations 63
13.2 Missy Northeast Extension Mapping Recommendations 63
13.3 Churchill Brecciated Zone Sampling Recommendations 63
14.0 Sampling Method and Approach 63
14.1 Sample Preparation, Analysis and Security. 63
15.0 Statement of Costs 65
16.0 References 66
17.0 Glossary 68
18.0 Certificate 71
LIST OF FIGURES
Figure 1 Regional Location of the Trident Project 21
Figure 2 Missy and Angel Claim Locations 23
Figure 3 Missy Sample Locations (2005) 25
Figure 4 Regional Geology of the Trident Project 30
Figure 5 MAG Surveys with Structural Blocks outline 34
Figure 6 Missy Veins on surface 36
Figure 7 Missy Diamond Drill Site Locations 41
Figure 8 Missy East - West drill Section A -- B 44
Figure 9 Missy East - West drill Section C -- D 45

LIST OF FIGURES (cont.)

Figure 10 Missy Northeast Extension Map 47
Figure 11 Missy Aerial MAG Interpretation 48
Figure 12 Missy Fault 49
Figure 13 Missy Brecciated Zone 50
Figure 14 Missy Pyritic Fault / Shear Zone 51
Figure 15 Missy Vein A 52
Figure 16 Missy Calcite Vein 53
Figure 17 Magnetic interpretation of the Churchill Mine 58
Figure 18 Location of the Magnum Folded, Brecciated and Veined Zone 59
Figure 19 Magnum Folded, brecciated and Veined Zone (NE Extension) 60
LIST OF TABLES
Table 1 Missy Rock Sampling (2005) 24
Table 2 Geology Legend 31
Table 3 Missy Vein Channel Chip Samples 38
Table 4 Missy Drill Hole Collar Coordinates 43
Table 5 Missy Drill Assay Intersections 43
Table 6 Missy Sample Results (NE Extension) 54
Table 7 Magnum Brecciation Sample Results 61

LIST OF APPENDICES

APPENDIX A Claim Information
APPENDIX B Muskwa-Kechika SMZ
APPENDIX C Assays
APPENDIX D Racing River Claims APPENDIX E Drill \& Geotechnical Logs APPENDIX F Missy Northeast Extension Mapping

1.0 Introduction

This Assessment Report outlines drilling and other work carried out in 2007 on the Missy Property (the "Claim"), tenure number 501534 and the Angel claim (the Churchill mine) tenure number 501416 which are part of the group of 580 mineral claims comprising the Trident Copper Project.

At the request of Aries Resource Corp and Action Minerals Inc. (the "Companies" or "Action" or Aries"), the accompanying assessment report was prepared on the Trident Copper Project properties (the "Property"), Fort Nelson Area, Laird Mining Division, British Columbia Canada to summarize previous work, appraise the exploration potential of the Property, and to make recommendations for future work. The trident Copper Project comprises a group of 580 un-surveyed mineral claims totalling over 223,595 hectares (ha).

2.0 Descriptions, Locations and Ownership of Claims

The Trident Copper Project comprises a group of 580 contiguous mineral claims totalling 223,595 hectares (ha). The claims are located in the Liard Mining Division, British Columbia, Canada, and is shown on Map Sheets NTS 94K/4, 5, 6, 11, and 12.

The Property area is centered at latitude $58^{\circ} 23^{\prime}$ North, longitude $125^{\circ} 24^{\prime}$ West, and UTM 6476000 m North, and UTM 360000 m East. Detailed claim information is provided in Appendix A.
Aries holds an interest in claims through option agreements with seven arms-length parties: Twenty-Seven Capital Corp., GWN Investment Ltd., Saints Investment Ltd. Laird Rice, Ryan Gibson, Seguro Projects Inc and Doctors Investment Group Ltd. Action has acquired an interest in the Missy, Okey, Sox, and Talus claims through a non arm's length agreement with Aries. Action also holds an interest in claims through option agreements with six arms-length parties: Minero Majestuoso Limitado, GWN Investment Ltd., Saints Investment Ltd. Laird Rice, Ryan Gibson, and Doctors Investment Group Ltd. The following is a summary of the Trident Copper project acquisitions:

Property	Location	Nature of Ownership Claim Numbers	Current Use or Operations Conducted on the Property	Financial Terms Related to the Company's Ownership of its Interest in the Properties
Neil, Talus, Sox Joint Venture Property	Liard Mining Division, British Columbia	50% 504054 501462 510008	exploration	The Owner hereby grants Action an exclusive and irrevocable option (the "Option") to acquire an undivided fifty (50%) per cent interest in the Mineral Claims by making the following payments/commitments (the "Option Payments") to the Owner: the issuance of 500,000 common shares and a cash payment of $\$ 50,000$ to be paid within 10 days of exchange approval; a cash payment of $\$ 75,000$ on or before 180 days of exchange approval; Before the first ($1^{\text {t }}$) anniversary of this Agreement 500,000 common shares shall be issued to the Owner and, by such time, Action shall have performed exploration and development work costing $\$ 400,000$ on the Mineral Clairns or any properties forming part of the Mineral Claims (including any properties acquired with borders within thirty kilometres of the nearest portion of the Mineral Clairns ["Proximate Properties"]), subject to Aries having previously received a National Instrument 43101 compliant property report recommending such work; On the second (2nd) anniversary of this Agreement 500,000 common shares shall be issued to the Owner and, by such time, Action shall have performed exploration and development work costing $\$ 1,100,000$ on the Mineral Clains or any properties forming part of the Mineral Clairns (including any properties acquired with borders within thirty kilometres of the nearest portion of the Mineral Claims ["Proximate Properties"]), subject to Aries having previously received a National Instrument 43101 compliant property report recommending such work; and On the third (3rd) anniversary of this Agreement $1,000,000$ common shares shall be issued to the Owner and, by such time, Action shall have performed exploration and development work costing $\$ 1,500,000$ on the Mineral Claims or any properties forming part of the Mineral Claims (including any properties acquired with borders within thirty kilometres of the nearest portion of the Mineral Claims ["Proximate Properties"]), subject to Aries having previously received a National Instrument 43101 compliant property report recommending such work. Aries shall have the right at any time to accelerate the Option Payments for the purpose of shortening the time period for exercising the Option.
Missy Property	Liard Mining Division, British Columbia		exploration	the issuance of 500,000 common shares and a cash payment of $\$ 100,000$ to be paid within 10 days of exchange approval; (ii) On or after the first (1^{51}) anniversary of this Agreement 500,000 common shares shall be issued to the Owner and. by such time, Action shall have performed exploration and development work costing $\$ 400,000$ on the Mineral Claim or any properties forming part of the Mineral Claim (including any properties acquired with borders within thirty kilometres of the nearest portion of the Mineral Claim ["Proximate Properties"]), On the second (2nd) anniversary of this Agreement $1,000,000$ common shares shall be issued to the Owner and, by such time, Action shall have performed exploration and development work costing $\$ 400.000$ on the Mineral Claim or any properties forming part of the Mineral Claim (including any properties acquired with borders within thirty kilometres of the nearest portion of the Mineral Claim ["Proximate Properties"]). (iv) On the third (3rd) anniversary of this Agreement $1,000,000$ common shares shall be issued to the Owner and, by such time, Action shall have performed exploration and development work costing $\$ 400,000$ on the Mineral Claim or any properties forming part of the Mineral Claim (including any properties acquired with borders within thity kilometres

				of the nearest portion of the Mineral Claim ["Proximate Properties"],
Yedhe Mountain Property	Liard Mining Division, British Columbia	100% 519444 519445 519446 519447 519448 519449 519450 519451 519452 519453 519454 519455 519456 519457 519458	exploration	The Owner hereby grants Action an exclusive and irrevocable option (the "Option") to acquire an undivided one hundred (100\%) per cent interest in the Mineral Claims by making the following payments (the "Option Payments") to the Owner: A cash payment of $\$ 20,000$ and 400,000 Common shares to be paid and issued within 30 days of TSX Venture Exchange approval. A 1% NSR shall be reserved unto the Owner hereunder which may be purchased at any time by Action paying to the Owner $\$ 1,000,000$, less all amounts previously received by Owner as NSR payments.
Nelson Property	Liard Mining Division, British Columbia	100% 520701 520702 520703 520704 520707	exploration	a) The Owner hereby grants Action an exclusive and irrevocable option (the "Option") to acquire an undivided one hundred (100\%) per cent interest in the Mineral Claims by making the following payments (the "Option Payments") to the Owner: (v) A cash payment of $\$ 10,000$, and (vi) 500,000 Common shares shall be issued to the Owner no later than 10 -business days after the receipt of regulatory approval to this Agreement. b) A 1% NSR shall be reserved unto the Owner hereunder which may be purchased at any time by Action paying to the Owner $\$ 1,000,000$, less all amounts previously received by Owner as NSR payments.
Goliath Property	Liard Mining Division, British Columbia	100% 529843 529844 529845 529846 529847 529848 529849 529850 529851	exploration	a) The Owner hereby grants Action an exclusive and irrevocable option (the "Option") to acquire an undivided one hundred (100\%) per cent interest in the Mineral Claims by making the following payments (the "Option Payments") to the Owner: (vii) A cash payment of $\$ 20,000$, and (viii) 600,000 Common shares shall be issued to the Owner no later than 10-business days after the receipt of regulatory approval to this Agreement. b) A 1% NSR shall be reserved unto the Owner hereunder which may be purchased at any time by Action paying to the Owner $\$ 1,000,000$, less all amounts previously received by Owner as NSR payments.
Tusk	Liard	100\%	exploration	a) The Owner hereby grants Action an exclusive and irrevocable

Property	Mining Division, British Columbia	$\begin{aligned} & 537943 \\ & 537945 \\ & 537947 \\ & 537948 \\ & 537950 \\ & 537951 \\ & 537952 \\ & 537953 \\ & 537954 \\ & 537955 \end{aligned}$		option (the "Option") to acquire an undivided one hundred (100\%) per cent interest in the Mineral Claims by making the following payments (the "Option Payments") to the Owner: (ix) $2,000,000$ Common shares shall be issued to the Owner no later than 10 days after exchange acceptance, (x) A cash consideration of $\$ 25,000$ upon exchange acceptance.
Peace River Property	Liard Mining Division, British Columbia	100% 537944 538056 538054 538053 538050 538047 538052 538066 538064 538063 538061 538058 538057 538048 538045 537941 538069 538078 538083 538088 538090 538093 538095 538098 538076 538075 538072 538071 538055 538038 538036 538081 538080 538067 538065 538062 538060 538070 538073 538084	exploration	a) The Owner hereby grants Action an exclusive and irrevocable option (the "Option") to acquire an undivided one hundred (100\%) per cent interest in the Mineral Claims by making the following payments (the "Option Payments") to the Owner: (xi) A cash payment of $\$ 20,000$, and (xii) $\quad 4,000,000$ Common shares shall be issued to the Owner no later than 10-business days after the receipt of regulatory approval to this Agreement. b) A 1% NSR shall be reserved unto the Owner hereunder which may be purchased at any time by Action paying to the Owner $\$ 1,000,000$, less all amounts previously received by Owner as NSR payments.

		$\begin{aligned} & 538091 \\ & 538085 \\ & 538092 \\ & 538097 \\ & 538087 \\ & 538089 \\ & 538099 \\ & 538096 \\ & 538082 \\ & 538079 \\ & 538077 \end{aligned}$		
Summit Property	Liard Mining Division British Columbia	100\% 517930 517932 517931 517929 517928 517927 517926 517925 517924 517878 517877 517875 517882 517893 517879 517891 517890 517888 517886 517885 517892 517894 517895 517898 517899 517900	exploration	a) The Owner hereby grants Action an exclusive and irrevocable option (the "Option") to acquire an undivided one hundred (100\%) per cent interest in the Mineral Claims by making the following payments (the "Option Payments") to the Owner: (xiii) $\quad 2,000,000$ Common shares shall be issued to the Owner within 10 days of TSX Venture Exchange acceptance, (xiv) A cash consideration of $\$ 25,000$ within 10 days of TSX Venture Exchange acceptance.
Racing River Property	Liard Mining Division, British Columbia	50\% (claim numbers attached as schedule "B")	exploration	a) The Optionor hereby grants the Optionees an exclusive and irrevocable option (the "Option") to acquire an undivided one hundred (100\%) per cent interest in the Mineral Claims by making the following payments and performing the following work programs (collectively the "Option Payments") to the Optionor: No later than 2 (two) business days after signing of the agreement, a cash deposit of $\$ 150,000$ (one hundred and fifty thousand dollars) shall be paid to the Optionor. The deposit shall be refundable to the Optionees in the event that this agreement, in this or any amended form, is not accepted for filing with the TSX Venture Exchange; (ii) No later than 180 days after the receipt of regulatory approval of this Agreement, an additional cash payment

			Owner no later than 10-business days after the receipt of regulatory approval to this Agreement.
b) A 1\% NSR shall be reserved unto the Owner hereunder which			
may be purchased at any time by Action paying to the Owner $\$ 1,000,000$,			
less all amounts previously received by Owner as NSR payments.			

Aries Resource Corp and Seguro Projects Inc:

Key Property and Okey Claim

This option agreement (Agreement) between Aries Resource Corp, 1255 West Pender Street, Vancouver, B.C. (Aries), and Seguro Projects inc, 330 East $23^{\text {rd }}$ Street, North Vancouver, B.C. (Seguro), includes the Key Property and the Okey claim and is effectively dated December 14, 2004. The Agreement is subject to approval, which has been obtained, of the TSX Venture Exchange of both this Agreement and the agreement between Seguro and Senator Minerals Inc, 418 East $14^{\text {th }}$ Street, North Vancouver, B.C. (Senator), cancelling the option agreement held by Senator to acquire a 50% interest in the Key Property and the Okey claim. The following table details Aries' payments under the Agreement.

Monetary Payments CAN\$	
To be paid within 2 days of TSX Venture Exchange Agreement approval	\$10,000
To be paid within 30 days of TSX Venture Exchange Agreement approval	\$32,500
To be paid within 60 days of TSX Venture Exchange Agreement approval	\$32,500
To be paid within 6 months of TSX Venture Exchange Agreement approval	\$75,000
Total	\$150,000
Payments of Aries Common Stock	
To be issued within 10 days of TSX Venture Exchange Agreement approval	300,000 shares
To be issued within 10 days of receipt of independent report of first work program or no later than 30 Nov 2005.	300,000 shares
To be issued upon commencement of commercial production	500,000 shares
Total	1,100,000 shares

The Agreement gives Aries an option to control 100% of the properties, net of a 3% Net Smelter Return Royalty (NSR). Commencing with the date of the Agreement and continuing until the date of commercial production, Aries is to pay a retainer for consulting and operating activities to Seguro, in the amount of CAN $\$ 12,000$, by the end of the first month in each quarter.

For the duration of the Agreement, Aries has the right to designate an Operator entitled to charge an Operator fee equal to 9% of Exploration and Development Expenditures. In the event that Seguro is the designated Operator, 50% of Seguro's retainer fee will be applied as a payment toward the total Operator fee.
Under the Agreement, Aries must keep the claims in good standing and ensure that all exploration work is carried out by qualified parties paid at industry standard rates.

Seguro Projects Inc, Donald A. Simon, and Doctors Investment Group Ltd: NBC Copper Properties Acquisition Agreement

Donald A. Simon, 330 East $23^{\text {rd }}$ Street, North Vancouver, B.C. (Simon), registered with the British Columbia Ministry of Energy and Mines, Mineral Titles branch, as Free Miner Certificate \#124708, holds title on behalf of Seguro to the following ten mineral claims with Tenure Numbers 501389, 501321, 501416, 501446, 501462, 501482, 501497. 501523, 501534, and 510811 (Simon Claims).

The acquisition agreement (Agreement) between Doctors Investment Group Ltd, 29 Retirement Road, PO Box N-7777, Nassau, Bahamas (Doctors) and Seguro includes the Simon Claims and is effectively dated January 5, 2005. The Agreement between Doctors and Seguro allows Doctors to acquire an undivided 100\% interest in the Simon Claims, net of a 1% Net Smelter Return Royalty (NSR), for the following considerations:

- Upon confirmation of the value of any of the Simon Claims through the acceptance by any recognized stock exchange of any option agreement by a listed company to earn an interest in any of the claims, Doctors will pay to Simon $\$ 1,000$ for each claim so approved;
- If work is commenced on any of the Simon Claims, Seguro is to be retained as the operator, and if circumstances preclude Seguro from being the operator, Doctors will retain Seguro on a consulting basis at industry standard rates; and
- If any claim is dropped by Doctors or any optionee, Seguro will be notified thirty (30) days in advance, and Seguro will be allowed first right of ownership of said claim or partial claim at no cost to Seguro.

All Simon Claims are registered in the name of Simon, who acts as registered claimholder only. Upon written request and providing that all above considerations have been met, Simon will provide Doctors and Seguro with executed registerable transfers of interests in the claims.

Doctors and Seguro may assign rights and obligations without the prior written consent of the other party. Any assignee chosen by Doctors must assume all Agreement obligations, and Doctors retains any liabilities and obligations occurring prior to such assignment.

Doctors may terminate the Agreement at any time upon written notice to Seguro thirty (30) days prior to the termination date. Upon termination, Seguro is entitled to retain all payments made by Doctors to the date of termination, and, at Seguro's option, is entitled to beneficial ownership of all terminated claims.

Gilbert Santos and Doctors Investment Group Ltd:

NBC Copper Properties Acquisition Agreement

Gilbert Santos, 2795 East $18^{\text {th }}$ Avenue, Vancouver, B.C. (Santos), registered with the British Columbia Ministry of Energy and Mines, Mineral Titles branch, as Free Miner Certificate \#146887, holds title to twelve mineral claims with Tenure Numbers 504049, 504054, 504060, 504064, 504085, 509540, 509544, 509549, 509553, 509563, 509567, and 509576 (Santos Claims).

The acquisition agreement (Agreement) between Doctors and Santos includes the Santos Claims and is effectively dated January 5, 2005. The Agreement allows Doctors to acquire an undivided 100% interest, net of a 1% Net Smelter Return Royalty (NSR), in the Santos Claims for the following considerations:

- Upon confirmation of the value of any of the Santos Claims through the acceptance by any recognized stock exchange of any option agreement by a listed company to earn an interest in any of the claims, Doctors will pay to Santos $\$ 1,000$ for each claim so approved;
- If work is commenced on any of the Santos Claims, Santos is to be retained as operator, and if circumstances preclude Santos from being the operator, Doctors will retain Santos on a consulting basis; and
- If any claim is dropped by Doctors or any optionee, Santos will be notified within thirty (30) days, and Santos will be allowed first right of ownership of said claim or partial claim at no cost to Santos.

Aries Resource Corp and Seguro Projects Inc:

Churchill Property Option Agreement

This option agreement (Agreement) includes the Cisco and Angel claims and is effectively dated February 24, 2005.

The Agreement is subject to approval of the TSX Venture Exchange. The Agreement gives Aries an option to control 100% of the claims, net of a 1% Net Smelter Return Royalty (NSR). The following table details Aries' payments under the Agreement.

Timing	Payment	Aries Work Requirement
To be issued within 10 business days of TSX Venture Exchange Agreement approval	500,000 shares	none
To be issued on the $1^{\text {st }}$ anniversary of the Agreement	1,000,000 shares	$\$ 250,000$ of $\mathrm{NI} 43-101$ recommended work
To be issued on the $2^{\text {nd }}$ anniversary of the Agreement	2,500,000 shares	$\$ 500,000$ of NI 43-101 recommended work
To be issued on the $5^{\text {th }}$ anniversary of the Agreement	5,000,000 shares	$\$ 500,000$ and bankable feasibility study recommending production
Total	9,000,000 shares	CAN $\$ 1,250,000$

Share issuance requirements are subject of additional regulatory and shareholder approvals, as might be required from time to time, in the event that the share issuances will result in the creation of new insiders or control positions.

Seguro's 1\% NSR can be purchased by Aries at any time for CAN $\$ 1,000,000$, less any prepaid NSR amounts. At any time, Aries may accelerate the Option Payments,
shortening the time period for exercising the Agreement. If Aries fails to make any of the payments, Aries will not be entitled to a partial interest in the claims.

Aries may install, maintain, replace, and remove any machinery, equipment, tools, and facilities on the claims. Upon termination of the Agreement, Aries has a period of six (6) months in which to remove its equipment at its sole expense.

During the Agreement period, Aries shall at all times occupy, manage, and use the subject claims in full compliance with all environmental laws. Aries will be responsible for prompt performance of any reclamation, remediation, or pollution control required for its operations carried out during the Agreement term.

There is an area of interest (AOI) extending one (1) mile from the outer boundaries of the claims. The AOI applies to any additional properties acquired by Seguro, and Aries may acquire a 100% interest in the AOl properties without additional consideration. AOI properties will be included in the Agreement upon Aries reimbursing Seguro for reasonable acquisition costs.

Aries may terminate the Agreement at any time upon written notice to Seguro thirty (30) days prior to the termination date. Upon termination, Seguro is entitled to retain all payments made by Aries to such date. If Aries fails to duly pay or cure any obligation default within thirty (30) days after receipt of a default notice from Seguro, Seguro may terminate the Agreement.

Doctors Investment Group Ltd and Aries Resource Corp: Liard Property Option Agreement

This option agreement (Agreement) effectively dated May 16, 2005, grants Aries an option to acquire up to an undivided 100% interest in the following twenty claims with the Tenure Numbers, 504049, 504054, 504060, 504064, 504085, 509540, 509544, 509549,

509553, 509563, 509567, 509576, 510811, 501321, 501446, 501462, 501482, 501497, 501523, and 501534.

The Agreement gives Aries a yearly option to control 100\% of the claims, net of a 2% Net Smelter Return Royalty (NSR). The following table details Aries' payments under the Agreement.

Timing	Payment	Work Requirement
To be issued within 10 business days of TSX Venture Exchange Agreement approval	$\begin{aligned} & \text { 2,000,000 shares } \\ & \text { (100,000/claim) } \end{aligned}$	none
To be issued on the $1^{\text {st }}$ anniversary of the Agreement	2,000,000 shares	$\$ 750,000$ of NI 43-101 recommended work
To be issued on the $2^{\text {nd }}$ anniversary of the Agreement	2,500,000 shares	$\$ 750,000$ of NI 43-101 recommended work
To be issued on the $3^{\text {rd }}$ anniversary of the Agreement	5,000,000 shares	$\$ 1,000,000$ of NI 43-101 recommended work
To be issued on the $4^{\text {th }}$ anniversary of the Agreement	5,000,000 shares	$\begin{gathered} \$ 1,000,000 \text { of } \\ \text { NI } 43-101 \\ \text { recommended work } \end{gathered}$
Total	16,500,000 shares	CAN $\$ 3,500,000$

Share issuance requirements are subject of additional regulatory and shareholder approvals, as might be required from time to time, in the event that the share issuances will result in the creation of new insiders or control positions.

Doctors' 2% NSR may be purchased by Aries at any time for CAN $\$ 2,000,000$, less any prepaid NSR amounts. At any time, Aries may accelerate the Option Payments shortening the time period for exercising the Agreement. If Aries fails to make any of the payments, Aries will not be entitled to a partial interest in the claims. If a bankable feasibility study is prepared in favour of the claims, either before or after exercising the Agreement, Aries will issue an additional $5,000,000$ common shares to Doctors within five (5) working days of receipt of share issuance regulatory approval.

Concurrently with each of the aforementioned Common Share issuances, Doctors will execute a Voting Trust document which will allow Aries' current management or their
assigns to vote such Common Shares as they deem fit. The Voting Trust does not restrict Doctors from selling Common Shares to unrelated third parties from time to time as it sees fit.

Aries Resource Corp and Action Minerals Inc:

Neil Property Option Agreement

The non-arm's length option agreement (Agreement) between Aries and Action Minerals Inc, 1255 West Pender Street, Vancouver, B.C. (Action), effectively dated July 11, 2005 and amended August 10, 2005, includes the Okey (TN: 510008), Sox (TN: 501462), and the Talus (TN: 504054) claims. The Agreement grants Action an exclusive and irrevocable option to acquire an undivided 50% interest in the Okey, Sox, and Talus claims. The following table details Action's payments.

Timing	Payment	Action Work Requirements
To be issued within 10 business days of TSX Venture Exchange Agreement approval	500,000 common shares CAN $\$ 50,000$ cash payment	none
On or before 180 days of TSX Venture Exchange Agreement approval	CAN $\$ 75,000$ cash payment	none
To be issued before the $1^{\text {st }}$ anniversary of the Agreement	500,000 common shares	$\$ 400,000$ of NI 43-101 recommended work
To be issued on the $2^{\text {nd }}$ anniversary of the Agreement	500,000 common shares	$\$ 1,100,000$ of NI 43-101 recommended work
To be issued on the $3^{\text {rd }}$ anniversary of the Agreement	1,000,000 common shares	$\$ 1,500,000$ of NI 43-101 recommended work
Total	2,500,000 common shares CAN $\$ 125,000$	CAN $\$ 3,000,000$

Exploration and development work by Action may be carried out on the subject claims as well as on acquired properties having borders within thitty (30) kilometres of the nearest portion of the subject claims.

Share issuance requirements are subject of additional regulatory and shareholder approvals, as might be required from time to time, in the event that the share issuances will result in the creation of new insiders or control positions.

At any time, Action may accelerate the Option Payments shortening the time period for exercising the Agreement.

3.0 Accessibility, Climate and Physiography

Access to the Trident Copper Project area is by helicopter from Fort Nelson. Helicopter access can also be based from Toad River (Mile 422 Alaska Highway) or Muncho Lake (Mile 462 Alaska Highway), where hotel accommodations are available. Ground access to the north-eastern portion of the Trident area is possible by two-track dirt road extending thirty kilometres from a point approximately thirteen kilometres west of Summit Lake (Mile 401 Alaska Highway) to the Churchill mill site situated at the confluence of Delano Creek and the Racing River. A temporary exploration camp was located at the Churchill mill site. The road is in good condition and well used, but entails fording MacDonald Creek, Wokkpash Creek, and Delano Creek/Racing River.

Access to the north-western portion of the Trident Copper Project area is by road from Mile 442 on the Alaska Highway, where a dirt road leads south along the Toad River and Yedhe Creek for approximately 30 kilometres to the area of the Key property. The bridge located 1.5 kilometres south of the Alaska Highway, where the Toad River road crosses the Toad River, has a resurfaced width only allowing motorized quad bikes or smaller vehicles. The roads along the Toad River, Yedhe Creek, and the turnoff into the Key property are subject to periodic washouts.

The project area is on moderate to very steep mountainous glaciated terrain with elevations ranging from 1,100 and 2,680 meters. Except for creek and river valleys showing coniferous tree growth, most of the claims are above the tree-line where vegetation is restricted to shrubs and grasses, or is nonexistent. Climate is variable, with higher elevations receiving
precipitation almost daily during the summer. Winters are cold, with snow that stays from September to May. The work season is mid- or late-June to mid-September.

Rocks in the Trident Copper Project area are predominantly Proterozoic Helikian-age Aida Formation marine sediments consisting of calcareous and dolomitic mudstone, siltstone, and minor sandstone. Upper and lower Aida Formation contacts are conformable. The overlying Gataga Formation consists of mudstone, siltstone, and sandstone, and the underlying Tuchodi Formation consists of quartzite, dolomite, siltstone, and red shale. There are a number of other marine sediments occurring within the project area ranging in age from Cambrian to Silurian. While known copper deposits in the project area are vein-type, trace element results from 2005 rock sampling suggest that ironoxide copper gold (IOCG) mineralization, similar to the polymetallic Olympic Dam deposit in Australia and the Nico deposit in the Northwest Territories, may be present.

Figure 1: Regional Location of the Trident Project

4.0 History

4.1 Area History

During the 1940s, copper was discovered in the area while the Alaska Highway was being built. Exploration activity took place during the 1950 s and early 1960 s, but was most active during the late 1960s and early 1970s. The two main deposits identified were the Davis-Keays (the Eagle Vein located on the Key property), discovered in August 1967, by prospectors Harris Davis and Robert Keays of Fort Nelson, BC, and the Churchill Copper deposit (the Magnum Vein located on Aries' Angel claim).

4.2 Previous Work

4.2.1 Missy Claim TN: 501534

As no assessment reports are listed for previous work on the Missy Claim (Figure 2), historical information is limited to Minfile Master Report 094K 005 of the Geological Survey Branch, Ministry of Energy \& Mines. The historical Bill copper showing lies close to a thrust fault within the Muskwa Assemblage's Aida Formation. The Bill showing is located on Aries' current Missy claim and consists of four copper-bearing quartz carbonate veins, striking 020 degrees, in dolostone and carbonaceous shale (Figure3). The veins, each about one meter thick, are adjacent to a small shear in the footwall of the thrust, and are generally poorly and sporadically mineralized with chalcopyrite.

Figure 2: Missy and Angel Claim Locations

On the Missy claim, four rock chip samples were taken from quartz-carbonate veins associated with mafic dykes (Harrington 2005). Quartz-carbonate veining contained malachite staining, massive, and disseminated chalcopyrite. All samples returned anomalous copper values. Sample 335791 was anomalous in silver while the other three samples returned elevated silver values.

Table 1: Missy Rock Sampling (2005)

Sample	Type	Width \mathbf{m}	Au g/t	Ag gt	Ea ppm	Ce ppm	Co ppm	Cu $\%$	La ppm	Ppm ppm
335791	chip	1	$\alpha .001$	1.08	30	16.1	1.7	0.85%	7.4	90
335792	chip	2	0.012	0.35	20	16.8	24.9	0.48%	6.7	240
335793	chip	1.5	0.005	0.42	30	30.5	4.5	0.61%	12.9	210
335794	chip	0.5	0.013	0.61	30	24.1	4.1	1.54%	10.1	320

Figure 3: Missy Sample Locations (2005)

4.2.2 Angel Claim TN: 501416 (Magnum Vein; Churchill Copper Mine)

The Magnum vein was discovered in 1943. In 1958 and 1959, Canex Aerial Exploration Ltd carried out a work program of rock sampling and diamond drilling for Magnum Consolidated Mining Company Ltd. (Figure 2)

Mineralization, described as being epigenetic hydrothermal vein-type, consists of chalcopyrite, bornite, and malachite, with gangue of pyrite, quartz, carbonate, graphite, and ankerite. The deposit occurs in Aida Formation sediments consisting of calcareous shale, dolomite, and limestone, cut by a large number of northeast- to east-trending diabase dikes (Figure 4). Copper mineralization occurs in quartz-carbonate veins.

The diabase dykes and quartz-carbonate veining are generally parallel but dikes are post-mineralization, truncating the veins. A series of northwest-trending trachytic composition dikes cuts across mineralized veins.

Host rock Aida Formation deformation and northwest-trending folding (regionally forming the Muskwa Anticlinorium) are pre-mineralization. At Magnum Creek, dykes, fracture zones, and mineralized veins all cut across the regional folding structure suggesting that both the dykes and veins were emplaced in fracture system that developed after regional folding. The northeast-trending and steeply dipping fracture system and mineralized veining at Magnum Creek was explored for a length of 1,375 meters, 90 meters wide, and to a depth of 365 meters. Veins range from less than 1 meter up to 7.6 meters, and ten veins have been identified.

While the reserve calculation reported for Churchill Copper Corporation Limited (Churchill) by Chapman, Wood, and Griswold (feasibility report, 1969 (as reported by Glenn (1991)) is considered relevant, it is historical, and does not meet NI 43-101 standards. Aries is not treating the reserve calculation as a NI 43-101 defined resource or reserve verified by the writer. The writer has not verified assay results or the resource calculation. Aries has not done the work necessary to verify the classification of the resource or reserve. Aries is not treating this historical amount and classification as a NI 43-101-compliant defined resource or reserve as a qualified person has not verified the figures. Therefore, the historical estimate should not be relied upon. No estimates have been made since that date. In addition, the mineral resource cannot be converted to mineral reserves without further drilling and engineering studies.

From 1967 to 1969, Churchill conducted drilling at 100 -foot centers and some crosscutting and raising on the Magnum vein. Prior to production, Churchill reported proven and probable reserves totaling 1.178 million tons grading 3.92% copper, including a 20% dilution factor, were delineated. From 1970-1974, the Churchill mine processed 598,000 tons of copper ore grading 3.0% copper (Harrington E, 16 August 2005).

5.0 Regional Geology

(Taken from Chapman et al, 1971)
"The Missy property lies within the eastern edge of the Rocky Mountains in an area of rugged topography. Excellent exposures exist above timberline revealing flat to locally contorted sedimentary rock formations dislocated by extensive regional faulting.

Proterozoic argillites, quartzites, and limestones contain all the known copper deposits, possess generally low dips, are intruded by post-ore diabase dykes of Proterozoic age, and are overlain by un-mineralized Palaeozoic formations of Cambrian and later ages. The Proterozoic strata occupy nearly the full width ($40-50$ miles) of the Rocky Mountains in the south part of the area. Northward they become separated into a north-trending eastern belt (mainly east of upper MacDonald Creek) and wider central and western belts which trend northwest and reach the Alaska Highway west of about Mile 436.

The presently known quartz-carbonate veins, many of which contain chalcopyrite, occur mainly in the western half of the Precambrian with a more or less similar distribution to the subsequent diabase dykes.

The dykes cut the veins and are themselves only weakly mineralized on fractures containing carbonates (principally calcite) and quartz. In places dykes are more strongly mineralized by barren pyrite.

Veins may be much less numerous than dykes, many of which are discernible at a distance on the hill slopes. Dykes and veins generally have more or less similar attitudes, which are relatively constant in certain zones, belts, or parts of the area. Dykes and veins
probably occur in, and may be virtually restricted to, these so-called mineral belts.

The best recognized to date is belt 1 approximately 6 miles wide and 40 miles long that trends north 35 degrees west and contains, from north to south, the known copper deposits of the Davis-Keays, Magnum, John, Lady, Churchill Creek, Ed, and Anne properties, (Figure 4; block 2) Most of the known mineralized veins of the region have strikingly similar mineral composition and structural characteristics. The Missy property is located on the border of block 2 and 3 . The dykes/ veins trend in a south- west direction in block 1 until covered by over-thrusted younger rocks. The dykes/ veins trend in a northeast direction on block 2 for about 4 km then they are covered by younger rocks.

This belt, which is further marked by a pattern of sporadically developed northwest trending asymmetric folds with steep east limbs and by the occurrence within it of a huge local pile of Cambrian conglomerate that forms Mt. Roosevelt, contains dykes and veins that mostly strike east of north and possess steep westerly dips.

6.0 Regional Structure

Middle Proterozoic sediments of the Muskwa Assemblage (Wheeler et al, 1991) include the Tetsa, George, Henry Creek, Tuchodi, Aida, and Gataga formations described by Taylor et al, 1973.

The Muskwa Assemblage is cut by gabbroic dykes and is overlain unconformably by Cambrian (Atan Group) and Ordovician (Kechika Group) rocks. These Ordovician and older rocks, termed pseudo-basement by Taylor, were intensely and repeatedly deformed during pre-Laramide periods of tectonism, and also later during the Laramide Orogony, which occurred between 89 and 43 Ma . Laramide compression deformation created large asymmetrical northwest-trending folds, thrust faults, and anticlinal structures which form the Muskwa Anticlinorium.

Uplift in the Rocky Mountains resulted principally from generally northeast-southwest shortening and thrust faulting that penetrated basement rocks, bringing the basement
and overriding younger strata to relatively high levels in the crust. The Laramide thrusts likely followed older zones of weakness.

A fracture zone of normal faults, later than Laramide deformation, extends southward from Muncho Lake into the Toad River valley. The normal faults have a vertical displacement of up to 2,000 feet (600 meters).

Figure 4: Regional Geology of the Trident Project

Table 2: Geology Legend

7.0 General Mineralization Types

General mineralization types discussed in this report are:
Mineralization Type 1; Chalcopyrite bornite pyrite quartz - carbonate veins
This is the most pervasive epithermal vein type of mineralization, encountered at the Magnum, Eagle, Toro, Neil, Missy and Sox projects. The near vertical vein mineralization and associated dykes, crosscut shallow dipping, folded and thrust faulted well foliated argillites and limestone.

Mineralization Vein type 1A; Brecciated mineralized (veined) zones

The brecciated mineralized zones occur where mineralized quartz carbonate vein feeders are intersected by faulting and thus the host rocks were fractured. The mineralization is then trapped in the open cavities. At the Churchill mine, a breccia zone, 20 to 30 metre thick over 200 m in length, is exposed on surface just north of the exploited veins. Malachite (on surface) is clearly visible within the Churchill brecciated zone. The brecciated zone occurs in close vicinity to a north- west trending fault zone. The northern extension of the Neil vein displays a similar brecciated mineralized structure after being cut, by a north west striking fault zone. These brecciated (veined) zones normally carrier relatively large tonnages and high to low copper grades (as was mined on the Toro property). The Neil breccia assayed at 6.1% copper over 20.8 m .

8.0 Regional Geophysical Surveys (2006)

In April 2006 Action and Aries retained McPhar Geosurveys Ltd. to perform ~2600 line kilometres (~ 1600 miles) of helicopter supported magnetic surveys (MAG), to be flown at a line spacing of 100 m over a large portion of the Trident Property, including the Missy Property. The goal of the surveys was to locate mafic dykes spatially associated with the mineralized quartz veins, such as the Magnum Eagle and Missy veins and to identify prospective mineralized bodies, such as Olympic Dam-type IOCG (Ironoxide/Copper/Gold/Silver/Cobalt) mafic intrusive bodies. In addition, some 820 line kilometres (~ 500 miles) of frequency electromagnetic surveys (EM) were to be flown over areas known to contain large veins with conductive massive sulphides to determine their geophysical signatures. For increased accuracy, surveys were
conducted at low levels ($\sim 30 \mathrm{~m}$ above ground). By fall, inclement weather and the rugged topography forced the replacement of McPhar with Aeroquest Ltd. which completed the expanded surveys. In total, ~ 1800 line kilometres of MAG/EM and ~ 2600 line kilometres of MAG were flown in 2006. The airborne magnetic surveys were successful in mapping the diabase dykes swarms on the Missy property as well as several large buried magnetic intrusive bodies. Significant EM and MAG anomalies were noted at the Churchill Mine, at and above the Keys mine, at the Missy and Goat Matnik. The MAG was successful at delineating basic geological structure at the Missy. A high elevation magnetic survey was flown at about the highest mountain height in 2005 for Archer Cathro associates. The magnetic data was acquired from Archer Cathro Associates.

8.1 Regional Magnetic Survey Results (2007)

The low level helicopter MAG (for Action minerals Inc) and high level fix wing magnetic survey (for Archer Cathro Associates) were interpreted separately and then combined. Different colors and line thicknesses were utilized for different anomaly intensities strengths as well as directional trends to highlight different dyke trends and faults. Stratigraphy bedding directions and structural lows were also delineated.

The low level helicopter magnetic survey confirms the fact that 95% of the dykes cuts right through the thrust faults without any displacement. This indicates that the folding and thrust faulting are older than > 780 million years (current dating age of the dykes); this confirms that the dykes were emplaced in the fracture system that developed during and after regional folding, thrust faulting and foliation.

The major dykes swarm trends were divided into three main structural zones or blocks. The boundaries of these blocks are controlled by the major thrust faults. The stress pattern for each block was controlled by the different compression and extensional direction forces (pulses) during different geological time periods. This pertains to over thrusting (towards the east) as well as lateral movement on these thrust faults (Left lateral movement?). Normal faults are nearly none existent on the project. (Figure 4).

In block 1 the major dykes trends at about 160° (we st of Toad River. [True north $=09$). In the central area of block 2, the major dykes trend at 35° (Missy and Churchill Mines). The minor dykes trend at 115° and 95° (in the vicin ity of Churchill area). In the southern part of block 2, (13 km south of Churchill mill site near Toro mine) the directions of dykes are generally about 110°. In block 3 the major tre nd is 165°, the minor trend is $15-30^{\circ}$ (Figure 5).

Figure 5: High and Low Level MAG Surveys with Structural Blocks Outline

Drawn by George Coetzee, BSc Honours, 2007

9.0 Exploration on the Missy

9.1 The Geology of the Missy Veins

The Missy property is located proximately 4 km southwest of the Churchill mine with known historical resources (Figure 2). The mineralization mirrors the Churchill and Davis Keays mines chalcopyrite veining within structural shear/fault zones paralleling mafic dykes; Genn David; 1991.The outcrops consist mainly of buff grey weathered slatey argillites and calcareous shales of the Aida Formation. The argillite are foliated and folded in places.

The Missy Veins consist of three distinct mineralized vein structures, bearing chalcopyrite and malachite minor bornite and containing anomalous gold and silver values. These veins outcrop only on the north-eastern steep slope of a creek over a 30 m strike length within the argillite. The veins are located near the northwest contact of a green-grey medium crystalline mafic dyke that is only exposed on the south-western bank of the creek, for the most part the veins parallels the dyke with an approximately 035 degree strike.

Halfway up the south-western creek slope malachite calcite vein float was sited next to the dyke indicating the mineralization continue towards the southwest. The northeast extensions of the mineralized veins are covered by thick unconsolidated glacial overburden.

The Missy surface mineralization, consists of three approximately $0.5-1.5$ meter carbonate quartz veins, that contain malachite and lesser azurite veining. The oxidization of the mineralization is generally only pervasive up to 10 to 20 m below surface. The two main semi parallel veins named; vein \#1 (southeast side) and vein \#3 (northwest side) is spaced approximately 20 meters apart. A horse tail vein \#2, originating from vein 1 , is positioned about 7 m northwest of vein \#1. (Figure 6) The three veins dip vertically or steeply towards the southeast. The argillite host rock contacts are silicified for approximately 0.5 m on both sides of vein \#1.
contacts are silicified for approximately 0.5 m on both sides of vein \#1.

The below surface the mineralization consists mainly of chalcopyrite with minor pyrite, cobalt, bornite and gold within carbonate - quartz vein material that intruded parallel shear/fault zones in the argillite.

Figure 6: Missy Veins on Surface

Drawn by George Coetzee, BSc Honours, 27 February 2008

The three Missy veins were sampled on surface was sampled in September 2008 by David Peake BSc. Geo. under supervision of George Coetzee BSc. Geo Honours and J. Kowalchuk P.Geo. Continuous channel samples were chipped across the mineralized vein structures at five metre intervals along the three veins. (Figure 6) The samples were bagged, securely stored and transported as prescribed by best practice sampling procedures. Seventeen samples were analyzed by Acme Analytical Labs of Vancouver, BC, with multi-element Inductively Coupled Plasma Mass Spectrometer (ICP MS) technique. For the 40 element geochemical analysis as well as for samples returning $>10,000 \mathrm{ppm}$ values (maximum detection limits), the Group 7TX analytical procedure employing Hot 4-Acid "near total" digestion was used, followed ICP-MS analysis. Values greater than $10,000 \mathrm{ppm}$ copper were re-assayed with a further dilution of the solution to give a more accurate analysis of higher grade samples. Follow up gold fire assays were performed on relevant samples.

The average grade of Vein \#1, over a strike length of 30 metres and an average width of 1.0 metres was 4.6% copper.

The average grade of Vein \#2 over a strike length of 25 metres and an average width of 0.5 metres was 1.97% copper.

The average grade of Vein \#3 over a strike length of 30 metres and an average width of 1.0 metres was $1.14 \% \mathrm{Cu}$. The chip sample results are shown as follows:

Table 3: Missy Vein Channel Chip Samples

Sample Number	Type	Width m	Vein \#	\% Copper
465201	Chip	1	Vein 1	4.6
465202	Chip	1	Vein 1	0.98
465203	Chip	1	Vein 1	16.10
465204	Chip	1	Vein 1	4.52
465205	Chip	1	Vein 1	0.91
465206	Chip	1	Vein 1	0.52
465207	Chip	0.5	Vein 2	0.68
465208	Chip	0.5	Vein 2	3.86
465209	Chip	0.5	Vein 2	0.55
465210	Chip	0.5	Vein 2	1.15
465211	Chip	0.5	Vein 2	3.60
465212	Chip	1	Vein 3	0.38
465213	Chip	1	Vein 3	3.69
465214	Chip	1	Vein 3	0.48
465215	Chip	1	Vein 3	0.13
465216	Chip	1	Vein 3	0.54
465217	Chip	1.	Vein 3	1.60

9.3 Geophysical Exploration on the Missy Property

Prior to drilling, mapping, surface a VLF electromagnetic and a magnetic survey were completed over a strike length of about 400 m to pinpoint the extended strike length and position of veins under the soil cover. The surface survey was inconclusive in accurately outlining the dyke position and therefore not included in this report.

A VLF electromagnetic instrument was utilized to pinpoint the extended strike length and positions of veins under the soil cover. The VLF electromagnetic survey was carried out using an EM16 unit manufacture by Geonics Limited of Metropolitan Toronto, Ontario. This unit - a sensitive receiver with two orthogonal coils, one axis normally vertical and the other horizontal - makes use of the VLF transmitting stations operating for communication with submarines for its transmitted signal - the vertical antenna currents creates concentric horizontal magnetic fields - and measures the vertical components of the secondary fields created as above.

The signal from the vertical axis coil is first minimized by tilting the instrument - tilt angle calibrated in percentage- and the remaining signal in the coil is finally balanced out by the measured percentage of a signal from the other coil, after being shifted 90 degrees. Thus if the secondary fields are small compared to the primary horizontal field, the mechanical tilt angle is an accurate measure of the vertical real component, and the compensation signal from the horizontal coil is one of the quadrature vertical signal. In all 1.5 kilometres of traverses were done using the above instruments at the station intervals of 5 metres (or 1 m near veins) using mainly transmitters of Seattle- NLK 24.8 khz. and Hawaii - NPM 21.4 khz. The field instructions as to how to orientate the instrument during the survey were strictly followed.

The VLF survey lines (every 25 m) extended outward from the veins by at least 15 m to 50 m depending on the terrain and as to ensure no possible veining could be missed. The location where the VLF instrument emitted the highest pitch signal was marked with surveyor lint. A two man team was predominately used to double check these VLF vein readings.

The VLF signal strengths on both ends of the projected mineralization extensions indicated that the veins extend in both directions. The veins could be more than 1000 metres in length based on the geology and magnetic survey of the regional area. The VLF survey returned weak to moderate signal strengths. The vein positions intersected in the drill holes thus far do not strongly correlate with VLF survey positions. Therefore usefulness of the VLF survey in locating the veins under thick overburden is still to be verified by further drilling. Mineralized float indicate that the veins also extend towards the south west. Based on the geology of the Missy area the veins could be potentially be mineralized for $>1000 \mathrm{~m}$ in length as was the case at the nearby Churchill mine. For at least 1.8 km , overburden covers the north-east extension of the Missy veins. Future EM work and follow up drilling are required in order to test the mineral potential of the Missy veins under the overburden.

9.4 Mineralization in the Missy Drill Holes

The mineralization consists mainly of chalcopyrite veining and pyrite within quartzcarbonate material that intruded parallel shear zones within and on the margin of the dyke. The chalcopyrite also occurs as patches and disseminations generally in close proximity to the chalcopyrite veins, and predominately in located in a calcite, ankerite and quartz matrix. The white carbonate is generally of a coarse crystalline nature.

No sulphide oxidation (malachite and/or azurite) and or erythrite (hydrated cobalt arsenide) were observed in any of the drill holes.

9.5 Missy Drilling Program

The helicopter-supported drill program was designed to test the down-dip extent of the three Missy veins, which are exposed on the northeast bank of a creek. Diamond drilling at the Missy Prospect was performed in February and between August - October, 2007, and was contracted to Simpson Drilling Ltd. from Stewart, BC. Approximately 274 m of drilling was completed. The drill hole positions and drill hole azimuths were surveyed with a Rhino handheld GPS (5-20m accuracy) and a compass. (Figure 7) The drill holes are for the most part less than 62 metres in length. The directional deflections of the short drill holes were negligible.

Figure 7: Missy Diamond Drill Site Locations

http://webmap.em.gov.bc.ca/mapplace/minpot/ex_assist.cfm (MTO Tenure Number 501534)

9.6 Missy Drill Hole Results

Drill hole MY07-01 was drilled at -45° in an east-s outheast direction directly towards the three veins. The hole was abandoned in thick glacial till overburden. The final depth of the hole was 37.5 metres (Table 4).

MY07-02 was drilled at -60° in a south-eastern dire ction. The hole was abandoned in loose till material at a depth of 32 metres.

MY07-03 was drilled in a northwest direction at a dip of -60°. The hole was positioned where the creek cuts into the unconsolidated till overburden. Once again the hole was abandoned at 25.3 metres in the till overburden.

MY07-04 was drilled at -78° in a westerly direction, east of vein \#3. It is debatable if the thin carbonate vein with the minor chalcopyrite (at 45.20 to 45.50 m) is vein \#3. The hole was completed at 57.61 m in argillite. See table 5 for assay results.

MY07-05 was drilled -52.5° in a westerly direction. A thin carbonate quartz chalcopyrite vein was intersected from 26.96-27.16 m (vein \#1 [Figure 8]). The final depth of the hole was at 44.81 metres (Table 7).

MY07-06 was drilled at -45° towards the west. The hole was abandoned at 15.85 metres.

MY07-07 was drilled (at -52.5°) towards the west-southwest. Vein \#1 was intersected at 31.27-31.75 metres (Figure 7). The hole was completed at 61.57 metres in argillite material (For assay results see Table 5).

Photographs were taken of all the drill core boxes. Drill holes 4,5 and 7 are stored in Vancouver, BC at 1255 West Pender Street. Drill holes 1, 2,3 and 6 that contained only unmineralized till overburden, were discarded.

Table 4 : Missy Drill hole Collar Coordinates

Diamond hole	drill	Northing	Easting	Elevation in metres	Dip of hole	Final depth in metres	Casing depth in metres
MY07-01	6485874	363703	1435	-45°	37.5	18	104
MY07-02	6485874	363703	1435	-60°	32.00	21.34	138
MY07-03	6485797	363752	1409	-60°	25.3	9.75	271
MY07-04	6485733	363732	1413	-78°	57.61	20.12	337
MY07-05	6485727	363745	1408	-52.5°	44.81	15.24	273
MY07-06	6485727	363745	1408	-45°	15.85	15.24	273
MY07-07	6485727	363745	1408	-52.5°	61.57	19.81	256
Total					274.64	119.50	

Table 5: Missy Drilling Intersections

Diamond Drill Hole	Core Type	Assay Numbers	From $(\mathbf{m}):$	To $(\mathbf{m}):$	Appare nt Width $(\mathbf{m}):$	Cu $(\%)$	True width (\mathbf{m})
MY07-04	NQ	465307	45.2	45.5	0.24	0.002	0.11
MY07-05	NQ	465309	26.96	27.16	0.20	2.88	0.09
MY07-07	NQ	465317	31.27	31.75	0.48	0.19	0.21

9.6.1 Missy Drill Core Sampling

Under the supervision of George Coetzee the diamond drill core was cut and delivered to Acme Analytical Lab in Vancouver, BC. The samples were analyzed by Acme Analytical Labs of Vancouver (an accredited analytical laboratory), with multi-element Inductively Coupled Plasma Mass Spectrometer (ICP MS) technique. For the 40 element geochemical analysis as well as for samples returning $>10,000 \mathrm{ppm}$ values (maximum detection limits), the Group 7TX analytical procedure employing Hot 4-Acid "near total" digestion was used, followed ICP-MS analysis. Values greater than 10,000
ppm copper were re-assayed with a further dilution of the solution to give a more accurate analysis of higher grade samples. Gold fire assays was performed on relevant samples with anomalous Ag and As values. Only anomalous values were returned by the Gold fire assaying. See Appendix Drilling assay results of the three drill holes are displaced in table 5:

Figure 8: Missy East - West Drill Section A - B

Figure 9: Missy East - West Drill Section C - D

9.7 Missy Drilling Conclusions

Due to the difficult drilling conditions as well as less than ideal placement of drill positions between the two closely spaced creeks (therefore fulfilling the riparian setback regulations), the drill program was not successful in fully intersecting the mineralization identified through chip sampling. The mineralized diamond drill vein intersections assayed from 0 to $3 \% \mathrm{Cu}$ over $\sim 0.20 \mathrm{~m}$ (sub economic grade). The true width of the mineralized carbonate quartz vein \#1 in drill holes 5 and 7 were between 9 and

21 cm in thickness (Table 5). The average surface grade of vein \#1 over a strike length of 30 metres with an average width of one metre was 4.6 per cent copper. The average grade of vein \#2 over a strike length of 25 metres with an average width of 0.5 metre was 1.97 per cent copper. The average grade of vein \#3 over a strike length of 30 metres with an average width of one metre was 1.14 per cent Cu . The calcite, quartz and chalcopyrite veins found within the project area, such as at Magnum, Keys and Sox, typically pinch and swell and are a little discontinuous in mineralization and can only be identified through follow up close-spaced drilling.

10.0 Missy NE Extension Mapping

In September 2007, a prospecting and mapping program was initiated on the Missy NE Extension to:

- Identify the mineralized Missy vein extensions towards the north east of the Missy property associated with major dykes or structures.
- Discover new veins paralleling or cross cutting the Missy vein system.
- Map and reconcile the magnetic signatures as located on the airborne magnetic survey and interpreted to be signatures of dykes with the actual dyke locations as well as widths.
- Examine structures or dykes that crosscut the Missy dyke and vein system.

10.1 The Geology of the Missy (NE Extension)

Mapping shows that a large portion of the lower assemblage consists of mainly competent siltstone and sandstone from the Aida Formation (Figure 10; Light yellow in colour), intruded by 5 large mafic dykes (Figure 11). The Aida Formation sandstone ands siltstone south-eastern contact with the Gataga Formation is located 400 m further south east than outlined by the regional BC Government geology map, on the large blue fault line displayed in Figure 10). This fault could be part of the larger regional thrust fault sequence. The bedding of siltstone and sandstone strikes in a general northeast direction dipping at about 20 to 40° southeast. There is no indication of folding within the
blue colour) consists of mudstone, siltstone and sandstone that are generally well foliated.

Figure 10: Missy Northeast Extension Map

http://webmap.em.gov.bc.ca/mapplace/minpot/ex assist.cfm (MTO Tenure Number 501534)
Please also see the enlarged Missy map in Appendix F

10.2 Missy Mapping Correlation with the Aerial Magnetics

The field program has determined that the large, northeast trending magnetic feature outlined in the 2006 airborne geophysical survey consists of four major northeast trending dyke/fault structures B, C, D, E and F (Figure 11). The Major dykes (A, B, C, D, E, F and G) in the corridor average between 20 to 30 metres in width. These dykes are predominantly massive and have a blocky appearance and show minor evidence of shearing or faulting. Minor dykes (approximately one to two kilometres in length) with associated mineralized veins appear to crosscut the larger
northeast trending regional dykes (five to twelve kilometres long). Analysis of the system suggests that the major dyking predates the mineralization events, which are located within fault or shear zones. The surface mapping of dykes and shear zones in the Missy NE Extension was found to correlate closely with the results of the 2006 airborne geophysical survey. All of these structures have the potential of hosting some mineralization.

Figure 11: Missy Aerial MAG Interpretation

[^0]
10.3 Missy Faulting (NE Extension)

Approximately two kilometres northeast of the Missy showing, a large iron stained pyritic fault zone with a strike length greater than 700 metres was located. The width of the siliceous fault zone is about one to three metres wide (Figure12).

Figure 12: Missy Fault

Photo by George Coetzee, BSc. Honours, September 2007

A 20 metre wide iron stained/oxidized brecciated area was also located near the southern portion of this fault. Both the fault zone and brecciated area contained pyrite mineralization (Figure 11 and Figure13: in yellow).

Figure 13: Missy Brecciated Zone

Photo by George Coetzee, BSc. Honours, September 2007

Approximately three kilometres northeast of the Missy showing a pyritic fault and shear zone within a sandstone unit is located within the valley, approximately 30 metres northwest of a parallel mafic dyke. (Figure 11: number 54 and Figure 14) The 100m shear fault zone disappears under talus material towards the southwest and northeast.

Figure 14: Missy Pyritic Fault / Shear Zone

Photo by George Coetzee, BSc. Honours, September 2007.
Drawn by Reza Mohammed BSc.

10.4 Missy Veins (NE Extension)

An approximately one metre wide calcite vein A with some malachite mineralization (Figure11: Number 7) is sporadically exposed over a 50 metre strike length. This vein parallels a 5 m dyke that is nearly perpendicular to the northeast Missy dyke trend. Mineralized malachite float (vein A) extends for 200 metre towards the southwest.

Figure 15: Missy Vein A (Northeast Extension)

Photo by George Coetzee, September 2007

A thin poorly exposed malachite vein B was located about 250 m southwest of vein A on the contact of a mafic dyke(Figure11: Number 5). The length of the mineralized zone is approximately 25 m . Both dykes show evidence of faulting and shearing.

A one metre thick calcite vein C , adjacent to mafic dyke F , was observed approximately 300 metres northwest of the main Missy structure (Figure11: Number 43). Vein C has a strike length of approximately 150 metres. Minor oxidization on surface indicates the presence of minor copper mineralization.

One sample was located 300 metres northwest of the Missy dyke D, within a one metre wide calcite vein on the south-eastern contact of a competent mafic dyke. The calcite dyke contains. (Figure11: number 43 and figure 16).

Figure 16: Missy Calcite Vein

Photo by David Peake, Drawn by George Coetzee BSC Honours, September 2007

10.4.1 Missy Vein Sampling (NE Extension)

Three grab samples were taken from the above mentioned veins A B and C. (Figure11: Number 5, 7 and 43). Three samples of mineralized float were taken within the valley and one sample on the pyritic fault and shear zone (Figure 11: number 54 and Figure 14). The seven samples were sent to ACME Analytical Laboratories (Vancouver, BC) for multi-element analysis. For anomalous assay results see table 6. Mapping and sampling was performed by George Coetzee BSc. Geo. Honours under the direction of the Company's Qualified Person, John Kowalchuk, and P.Geo.

Table 6: Missy Sample Results (NE Extension)

Sample Number	Location	Sample Type (Width in cm)	$\%$ Copper	\% Pb	Vein Width in Meter
$\mathbf{1}$	Missy NE Ext	Float	Trace		N/A
2	Missy NE Ext.	Float	1.18		N/A
3	Missy NE Ext.	Grab $(20 \mathrm{~cm})$	0.03	0.08	
4	Missy NE Ext.	Grab $(15 \mathrm{~cm})$	1.44	0.10	1.5
5	Missy NE Ex	Float	40.29	Trace	N/A
6	Missy NE Ext	Grab	0.12	Trace	1.5
7	Missy NE Ext.	Float	0.01		

11.0 General Geology of the Churchill Mine (Magnum vein, Minfile No094K 003)

The showing occurs in the Aida Formation of the Muskwa Assemblage, which comprises shale or slate, dolomitic and calcareous shale, dolostone and minor limestone (Assessment Report 3535; Geology, Exploration and Mining in British Columbia 1971; Geological Survey of Canada Memoir 373). In the area around the Churchill Mine, the formation consists of a lower unit of dark grey thin-bedded calcareous shale and interbedded calcareous shale and limestone, and an upper unit of interbedded buff- to orange-weathering dolomitic shale and dolostone, locally containing beds of algal dolostone. A large number of diabase dykes cut the sedimentary rocks, ranging from a metre to about 100 metres in width and striking from northeast to east. There is minimal contact metamorphism of the sedimentary host rock, although the
adjacent strata are commonly 'bleached' for several metres. The dykes are evenly distributed in the mine area and generally follow the same fracture and alteration zone that contains cupriferous quartz-ankerite veins. In the mine workings and surface showings, dykes are clearly post-mineralization, truncating the veins. Other dykes, locally known as "grey dykes", are known to cut transversely across the zone of mineralization and alteration, and individual veins, striking in a general northwest direction. These dykes are of trachytic composition, contain disseminations and stringers of pyrite, and are generally only a few metres wide.

The sedimentary rocks are deformed into a large number of folds which plunge gently to the south and southeast. These structures range from a metre to several hundred metres in amplitude and are invariably asymmetric, with gently-dipping west limbs and steep east limbs, and axial planes dipping to the west and southwest (Geology, Exploration and Mining in British Columbia 1971, Plate 3). The ubiquitous slaty cleavage in the Aida Formation rocks is parallel to the axial planes of these folds. In the Magnum Creek area, diabase dykes, fracture zones and cupriferous veins all have trends that are at a high angle to these fold structures, and are apparently not deformed by them. It appears that the dykes and veins filled a system of fractures, generally striking northeast, that developed after the folding and transverse to the fold axes.

Faults are not common on the property. A number of small faults and shear zones have been mapped, but none appear to be very large except at the Churchill Mine zone, where there has been considerable faulting. Most of these faults lie parallel to the zone and cut both mineralized veins and dykes, but within the mine workings at least two faults have been mapped which strike across the zone, dipping southwest at approximately 40 degrees, and are thought to displace ore shoots in a reverse manner.

Within the Magnum zone itself, the deformation is much more heterogeneous than that described above, shown by highly variable fold axes. The cleavage, partly curved and wavy, strikes predominantly south-southwest, with a dip of approximately 60 degrees to the east. In general, bedding dips gently to moderately southeast and apparently forms
the southeast limb of a broad anticline, the hinge zone of which approximately follows Magnum Creek. Also within this zone, the originally calcareous succession is conspicuously non-calcareous, the limestone and calcareous argillite having been extensively altered by decalcification to coarsely crystalline Ferro dolomite and ankerite. The same alteration has produced abundant graphite in shale, locally with coarse ankerite crystals. In addition, pyrite was developed in the west part of the zone forming seams and disseminations roughly concordant with bedding.

Mineralization at the Magnum deposit occurs in cupriferous quartz-ankerite veins in the sub vertical north- to northeast-striking shear and fracture zones. The local preservation between the principal veins of septa of schistose country rock or brecciated quartz stock works suggests that the Magnum zone was originally controlled by a narrow shear zone (or a zone) which was subsequently exploited by hydrothermal activity and later by dyke intrusion. In general, this zone of deformation, alteration, mineralization and dyke intrusion trends 035 degrees, dips steeply and is up to 90 metres wide. It has been partly explored for a length of 1375 metres and to a depth of 365 metres. As many as ten veins have been observed, concentrated in the centre of the zone, although some may prove to be extensions of others. They vary in width from less than 1 metre to as much as 7.6 metres and possess continuity, both on strike and in depth, which may measure a hundred metres or more. As many as three parallel principal veins occur within a width of 45 metres or less across the zone. Numerous subsidiary veins are present, some of which are parallel to the principal veins, and others which have an oblique, northerly trend, and are probably branches of the principal veins.

In more detail, the veins consist of varying proportions of ankerite, quartz, chalcopyrite, and locally pyrite, together with partly replaced remnants of the sedimentary host rock. Very minor amounts of bornite have also been observed. Malachite and azurite are common on the surface. Pyrite is locally prominent, but is generally less than about 10 per cent of the total sulphides in the ore. Chalcopyrite is intimately associated with quartz, although in some places the quartz is so sparse that the vein appears to consist of massive chalcopyrite. Chalcopyrite tends to increase noticeably where a vein
changes direction. Such jogs occur over only a metre or so and their shape is such as to displace the northern part of the vein west or, alternatively, the upper part westward by a metre (Canadian Institute of Mining, Transactions, 1971). The latter sense of displacement is affected also by at least one of several minor syn- and postmineralization faults which occur in the northern part of the mine. These mineralized faults dip approximately 40 degrees southwest, and locally displace the upper parts of two principal veins about 9 metres west along the strike of the fault.

A post-ore diabase dyke of irregular shape and generally steep dip closely follows the southeast side of the vein system and invades it progressively southwards in the zone. The dyke is less than 3 metres wide in the northeast of the zone, but widens southwards and splits locally into two or more parallel branches with an aggregate width which may exceed 45 metres. In places, the dyke becomes sill-like; subsidiary dykes extend west across the vein system. Along part of its length, the main dyke is followed by one or more steep faults, with unknown displacement, near which the diabase is propylitically altered. In the northern part of the mine zone, the dyke adjoins one or more veins, and locally invades and obliterates them; this occurred more extensively in the southern part of the mine zone.

11.1 Sampling of the Magnum Vein and Brecciation (Churchill Mine)

Previous mining and underground diamond drilling indicated that only 850 m of the 1400 m vein strike length and 370 m of the estimated 1000 m vein depth were mined. Exploitation of the Magnum veins was terminated when a south east striking fault was intersected on the northern extent of the underground workings. A large folded brecciated and veined mineralized zone approximately 20 to 30 metres wide and over 200 m in length, was observed on surface just northeast of this faults. The location of the folded brecciated zone is displayed in Figure 5.
In the MAG survey the southeast trending faults as well as the Magnum dyke is clearly visible (Figure 17).

Figure 17: Magnetic interpretation of the Churchill Mine

Updated by George Coetzee, 20 February 2008

The two magnum- as well as the two horse tail-veins striking in a northeast direction cut through a folded and brecciated zone. The veins are the northern extension of the two mined Magnum veins (Figure 18). These types of breccia zones normally carrier relatively large tonnages of copper, as on the Toro property. The northern extension of the Neil vein displays a similar brecciated mineralized structure, after being cut by a northwest striking fault zone. Therefore the brecciated area was sampled in September 2008 by David Peake BSc. Geo. under supervision of George Coetzee BSc. Geo Honours and J. Kowalchuk P.Geo. (Figure 18).

Figure 18: Location of the Magnum Folded, Brecciated and Veined Zone

http://webmap.em.gov.bc.ca/mapplace/minpot/ex_assist.cfm (MTO Tenure Number 501416)

11.1.1 Sampling Results of the of the Magnum Vein and Brecciation

24 grab samples were chipped at 4 to 5 metres intervals over a 100 m section on the south western lower section of the folded/brecciated zone). Only the lower contact of the folded, brecciated and veined zone (Zone) as well as vein 2 was sampled (Figure 18). The 24 grab samples were chipped at 4 to 5 metre intervals over a 100 metre of the south western section of the Zone (Figure 19). Nine samples were taken from the folded/brecciated area and 15 samples of vein 2. Vein 2 assayed on average at 4.35% Cu and the brecciated zone at 0.24\% Cu (Table 7).

Figure 19: Magnum Folded, brecciated and Veined Zone (NE Extension)

Table 7: Magnum Brecciation Sample Results

Sample Number	Type	Width m	Type:	\% Copper
465101	Grab	0.2	Breccia	trace
465102	Grab	0.2	Breccia	0.01
465103	Grab	0.2	Breccia	trace
465104	Grab	0.2	Breccia	014
465105	Grab	0.2	Breccia	0.02
465107	Grab	0.2	Breccia	0.01
465108	Grab	0.2	Vein 2	0.14
465109	Grab	0.2	Vein 2	13.54
465110	Grab	0.2	Vein 2	20.36
465111	Grab	0.2	Vein 2	7.11
465112	Grab	0.2	Vein 2	2.17
465113	Grab	0.2	Breccia	0.60
465114	Grab	0.2	Breccia	0.51
465115	Grab	0.2	Breccia	1.40
465116	Grab	0.2	Vein 2	0.08
465117	Grab	0.2	Vein 2	0.08
465118	Grab	0.2	Vein 2	4.00
465119	Grab	0.2	Vein 2	0.74
465120	Grab	0.2	Vein 2	0.63
465121	Grab	0.2	Vein 2	0.99
465122	Grab	0.2	Vein 2	0.03
465123	Grab	0.2	Vein 2	6.53
465124	Grab	0.2	Vein 2	1.51
465125	Grab	0.2	Vein 2	6.86

12.0 Conclusions

12.1 Missy Drilling Conclusions

- Due to the difficult drilling conditions as well as less than ideal placement of drill positions, between the two closely spaced creeks (therefore fulfilling the riparian setback regulations), the drill program was not successful in fully intersecting the mineralization identified through vein chip sampling. The mineralized diamond drill vein intersections assayed from 0 to $3 \% \mathrm{Cu}$ over $\sim 0.20 \mathrm{~m}$ (un-economic grade). The true width of the mineralized carbonate quartz vein \#1 in drill holes 5 and 7 were between 9 and 21 cm in thickness (Table 5). The average surface
grade of vein \#1 over a strike length of 30 metres with an average width of one metre was 4.6 per cent copper. The average grade of vein \#2 over a strike length of 25 metres with an average width of 0.5 metre was 1.97 per cent copper. The average grade of vein \#3 over a strike length of 30 metres with an average width of one metre was 1.14 per cent Cu . The calcite, quartz and chalcopyrite veins found within the project area, such as at Magnum, Keys and Sox, typically pinch and swell and are a little discontinuous in mineralization. Therefore, closer spaced follow-up drilling is required to ascertain the grades of the veins|

12.2 Missy Mapping Conclusions (NE Extension)

- All the dykes delineated by the 2006 magnetic survey were located and partially mapped within the mapping area.
- The Geology of the Aida Formation and dykes were confirmed and contacts were more accurately plotted. New faults and veins were discovered.
- Iron oxidization associated with faulting, shear zones and a sheared/faulted dyke as well as sporadic Cu mineralization near point 33 indicate that there is a possibility of discovering additional copper mineralization under the talus material, which covers at least 60% of the mapping area.

12.3 Magnum Brecciation Sampling Conclusions

- The grab sampling indicates that there is low copper mineralization within the folded and brecciated zone. Only approximately 5\% of the brecciation and vein 2 were sampled due to weather and safety concerns. Consequently the potential still remains of locating copper mineralization within the folded and brecciated zone.

13.0 Recommendations

13.1 Missy Drilling Recommendations

- .Complete a low level EM survey of the area as to identify potential mineralization under the talus material.
- .Complete a VLF survey of the area as to confirm potential mineralization under the talus material.
- Based on the above mentioned surveys decide where to drill if required.

13.2 Missy Mapping Recommendations (NE Extension)

- Complete a low level EM survey of the area as to identify potential mineralization under the talus material.
- Map areas of interest namely:

1. EM anomalies identified by low level EM survey.
2. The large mainly inaccessible iron stained pyritic fault zone and the fractured/ brecciated area adjacent to the (thrust) fault zone.
3. In the vicinity of the two dykes with the associated copper mineralization.
4. Sheared fault zones paralleling or crosscutting the dyke structures.

- Follow up with a surface MAG and VLF survey where required.

13.3 Magnum Brecciation Sampling Recommendations

- Grid sample the rest of the folded and brecciated zone on Churchill Mine, as to ascertain the mineral content of the total Zone.
- Based on assay results decide if first phase diamond drilling is necessary?

14.0 Sampling Method and approach

14.1 Sample Preparation, Analysis and Security

All the drill core samples were cut; with one half delivered to Acme Analytical Labs of Vancouver, BC , for processing and analysis. The Acme Analytical quality control system complies with requirements of international standards ISO 9001:2000 and ISO

17025:1999. Laboratory procedures employ comprehensive quality control (QC) programs to monitor sample preparation and analysis. QC protocols include the use of barren material to clean sample equipment between sample batches, and size monitoring of crushed material. Analytical accuracy and precision are monitored by the analysis of reagent blanks, reference materials, and replicate samples. Acme Analytical utilizes bar coding and scanning technology providing complete chain of custody records for sample preparation and analytical process.

Each entire sample was passed through a primary crusher to yield a product where greater than 70% is less than 2 mm . A split is then taken using a stainless steel riffle splitter. The crushed sample split of 200-300 grams is ground using a ring mill pulverizer with a chrome steel ring set, with the specification for this procedure calling for greater than 85% of the ground material to pass through a 75 micron (Tyler 200 mesh) screen.

Gold was analyzed using the AU-ICP21 fire-assay technique on a 30 gm pulverized rock sample, with atomic absorption finish. For the remaining 47 elements, the MEMS61 analytical procedure employing four acid "near total" digestion was used, followed by mass spectrographic finish. Samples returning copper values $>10,000 \mathrm{ppm}$ were reanalyzed by ore grade CU-AA62 process, where a prepared sample was subjected to four acid "near total" digestion, followed by atomic absorption.

15.0 STATEMENT of COSTS

16.0 References

Archer, Cathro, and Associates, (1981):
Northern BC Mineral Inventory, Davis-Keays Prospect, ID\# 94K 12, 13, 14, 15, 16, 17, 55, 56.

Carr, J.M. (1971):
Geological Report on Claim Group "B", Magnum Property, Delano Creek, Liard Mining District, for Churchill Copper Corporation Ltd, July 19-August 1, Department of Mines and Petroleum Resources, Assessment Report 3535.

Chapman, Wood, and Griswold, (1971):
Evaluation Report on the Property of Davis-Keays Mining Co. Ltd., Liard M.D., B.C.

Coetzee G, (2007):
Progress Report on Geological Work at the Sox and Magnum \& Regional Geological Interpretation of Trident Project, for Action Minerals Inc and Aries Resource Corp.

Genn, D, (1991):
Project Evaluation and Status Report of the Racing River Copper Project, Including the Davis-Keays, Magnum Vein, Toad River, Neil Vein, BronsonWindermere, and Toro-Churchill Properties, for International Lornex Inc.

Harrington, $E_{\text {, (}} 16$ August 2005):
Technical Report on the Trident Copper Project Laird Mining Division, British Columbia, Canada for ARIES RESOURCE CORP

Lefebure, D.V. (1995):
Iron Oxide Breccias and Veins P-Cu-Au-Ag-U, in Selected British Columbia Mineral Deposit Profiles, Volume 1 - Metalics and Coal, Lefebure, D.V. and Ray, G.E., Editors, British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20, pages 33-36.

MacDonald Consultants, (1970):
Feasibility Report on the Davis-Keays Project for Davis Keays Mining Co. Ltd

Minfile Master Report 094K 005 of the Geological Survey Branch, Ministry of Energy \& Mines.

Taylor, G.C., and Stott, D.F., (1973):
Tuchodi Lakes Map-Area, British Columbia, Geological Survey of Canada, Memoir 373.

Wheeler, J.O., and McFeely, P., (1991):
Tectonic Assemblage Map of the Canadian Cordillera and adjacent parts of the USA; Geological Survey of Canada, Map 1712A, scale 1:2,000,000.

Yukon Geological Survey (YGS), (2004):
Wernecke Breccia \& Fe oxide-Cu-Au, Yukon Geological Survey, http://www.geology.gov.yk.ca/publications/miscellaneous/placemats wernecke breccia placemat 2004.pdf

17.0 Glossary

Conversion Factors

To Convert From	To	Multiply By
Feet	Meters	0.305
Meters	Feet	3.281
Miles	Kilometres ("km")	1.609
Kilometres	Miles	0.6214
Acres	Hectares ("ha")	0.405
Hectares	Acres	2.471
Grams	Ounces (Troy)	0.03215
Grams/Tonnes	Ounces (Troy)/Short Ton	0.02917
Tonnes (metric)	Pounds	2,205
Tonnes (metric)	Short Tons	1.1023

Mineral Elements

Au	Gold	Ce	Cerium	La	Lanthanum
Ag	Silver	Co	Cobalt	P	Phosphorus
Cu	Copper	Ga	Gallium	Se	Selenium
Ba	Barium	Ge	Germanium	U	Uranium

Alteration: Any change in the mineralogical composition of a rock that is brought about by physical or chemical means.

Ankerite: A dolomite group mineral associated with iron ores.
Anomaly: A geochemical or geophysical character which deviates from regularity.
Anticlinorium: A regional scale configuration of many folded, stratified rocks in which rocks dip in two directions away from the crests. Reverse of synclinorium. The crest is called axis.

Arcuate: Curved or bowed.
Argillic: Pertaining to clay or clay minerals. Disseminated precious metal deposits may exhibit "argillic" alteration characterized by the formation of the clay minerals kaolinite and montmorillonite. Epithermal precious metal deposits may exhibit "advanced argillic" alteration characterized by the clays dickite, kaolinite and pyrophyllite.
Basic: An igneous rock having relatively low silica content, such as gabbro and basalt. Basic rocks are relatively rich in iron, magnesium, and/or calcium.
Breccia: A rock composed of highly angular course fragments.
Clastic: Consisting of fragments moved from their place of origin.

Conglomerate: Detrital sedimentary rock made up of more or less rounded fragments of such size that an appreciable percentage of volume of rock consists of particles of granule size or larger.
Cratonic: Pertaining to the relatively immobile part of the earth, the generally large central portion of a continent.
Detrital Sedimentary Rock: Rock formed from accumulation of minerals and rocks derived from erosion of previously existing rocks or from weathered products of these rocks.

Diabase: Rock of basaltic composition, essentially labradorite and pyroxene, characterized by ophitic texture.
Dolomitic: Having the characteristics of dolomite, where calcium-magnesium carbonate predominates, rather than calcium carbonate which comprises limestone.
Epigenetic: A mineral deposit formed later than the enclosing rocks. In ore petrology, applied to mineral deposits of later origin than the enclosing rocks or to the formation of secondary minerals by alteration.
Epithermal Deposit: Formed at shallow depths by low-temperature hydrothermal solutions.

Felsic: Composed of light-coloured minerals such as feldspar and quartz.
Ga: Billion years.
Gangue: Assessory minerals associated with ore in a vein.
Hydrothermal: An adjective applied to heated or hot aqueous-rich solutions, to the processes in which they are concerned, and to the rocks, ore deposits and alteration products produced by them.
Ignimbrite: Volcanic glass shards that when cooling wrapped around rock crystals creating a "welded" texture.
Ma: Million years.
Metasomatism: Process whereby rocks are altered when volatiles exchange ions with them and a new mineral may grow inside the body of an old mineral.
Moraine: A mound, ridge, or other distinct accumulation of unsorted, unstratified glacial drift deposited, chiefly by direct action of glacier ice, in a variety of topographic landforms.

Normal Fault: A fault in which the hanging wall is lowered relative to the foot wall.
Ophitic: Rock texture in which lath-shaped plagioclase crystals are enclosed, wholly or in part, in later-formed mineral augite.

Orogeny: Mountain building, particularly by folding and thrusting.
Pluton: Igneous rock formed beneath the surface by consolidation from magma.
Potassic Alteration: The generally high-temperature alteration process where potassium is introduced replacing calcium producing secondary orthoclase (potassium feldspar) and biotite.
Pyroclastic: Volcanic materials explosively or aerially ejected from a volcanic vent.
Reverse/Thrust Fault: A fault in which the hanging wall is raised relative to the foot wall.
Sericitic Alteration: Forming sericite from the decomposition of feldspars.
Skarn: Derived from limestone and dolomite by the addition of silica, iron, magnesium, and aluminium to form a suite of lime-bearing silicate minerals.
Sodic Alteration: The alteration process where sodium is introduced replacing calcium, and sodium-rich minerals such as albite, scapolite, and hornblende predominate.
Stockwork: A rock mass interpenetrated by small veins.
Strike-slip Fault: A fault where displacement is in the strike direction of the fault.
Subduction: Descent of one tectonic unit under another.
Synclinorium: A regional scale configuration of many folded, stratified rocks in which rocks dip downward from opposite directions to come together in troughs. Reverse of Anticlinorium.
Talus: Slope established by accumulation of rock fragments at the foot of a cliff or ridge. Rock fragments that form talus may be rock waste, slide rock, or pieces broken by frost action. Widely used to mean the rock debris itself.

Till: unsorted glacial sediment. Glacial drift is a general term for the coarsely graded and extremely heterogeneous sediments of glacial origin. Glacial till is that part of glacial drift which was deposited directly by the glacier. It may vary from clays to mixtures of clay, sand, gravel and boulders.

Trachytic: A textural term applied to the ground mass of volcanic rocks in which small crystals of feldspar are arranged in parallel or sub-parallel fashion corresponding to the flow of the lava.
Transverse Fault: A fault with a strike which cuts across the general structure.

18.0 Certificate

Bradford Minerals Explorations Ltd.

George Coetzee
\#3-1255 West Pender Street
Vancouver, BC.
V6E 2V1
Telephone: 604-639-4947
Email: Georgeaction@gmail.com

I, George Coetzee, BSc (Honours) in Geology, hereby certify that I am working for Bradford Minerals Explorations Ltd. (that was contracted By Aries Resources Corp and Action minerals Inc).
\#1-1255 west Pender St
Vancouver, BC. Canada
V6E 2V1

I graduated with a BSc (Honours) in Geology from University of Pretoria in South Africa in 1981.

I have worked as a geologist for a total of 25 years since my graduation from University.
I was on the property for 10% of the time while the diamond drilling took place.
1 am responsible for the preparation of all the sections of the report titled; Assessment Report on the Missy Drilling and Mapping as well as the Sampling of the Missy and Magnum Properties, under the supervision of John Kowalchuk P. Geol.

George Coetzee, BSc. (Honours) in Geology

APPENDIX A

Claim Information

Trident Copper Project Claim Information

Tenure Number	Claim Name	Owner	$\frac{\mathrm{Map}}{\mathrm{No} .}$	Good To Date	$\frac{\text { GoodTo }}{\text { Code }}$	Area
$\frac{501462}{}$	Sox	124708.	094K	2010/dec/31	20101231	253.727
545932	MINER1	146886	094K	2007/nov/26	20071126	404.843
545933	MINER 2	146886	094K	2007/nov/26	20071126	404.553
545934	MINER 3	146886.	094K	2007/nov/26	20071126	404.171
545935	MINER 4	146886	094K	2007/nov/26	20071126	420.458
545936	MINER 6	146886	094K	2007/nov/26	20071126	420.574
545937	MINER 7	146886	094K	2007/nov/26	20071126	302.943
545968	MINER 8	146886	094K	2007/nov/27	20071127	118.103
545969	MINER 9	146886.	094K	2007/nov/27	20071127	16.874
501389	Cisco	124708.	094K	2007/dec/31	20071231	423.072
525771	GRIZZLY 73	146886	094K	2008/jan/18	20080118	423.674
525772	GRIZZIY 74	146886	094K	2008/janit8	20080118	423.669
525773	GRIZZLY 75	146886	094K	2008/jan/18	20080118	423.902
525774	GRIZZLY 76	146886	094K	2008/jan/18	20080118	423.891
525780	GRIZZLY 77	146886	094K	2008/jan/18	20080118	407.139
525783	GRIZZLY 78	146886	094K	2008/jan/18	20080118	407.325
525784	GRIZZLY 79	146886	094K	2008/jan/18	20080118	424.507
525785	GRIZZLY 80	146886 .	094K	2008/jan/18	20080118	288.663
525787	GRIZZIY 81	146886	094K	2008/jan/18	20080118	406.332
525788	GRIZZLY 82	146886	094K	2008/jan/t8	20080118	406.441
525789	GRIZZLY 83	146886.	094K	2008/jan/18	20080118	406.5
525791	GRIZZLY 84	146886	094K	2008/jan/98	20080118	406.644
525792	GRIZZLY 85	146886	094K	2008/jan/18	20080118	423.69
525794	GRIZZLY 86	146886	094K	2008/jan/18	20080118	423.727
525795	GRIZZLY 87	146886.	094K	2008/jan/18	20080118	423.924
525797	GRIZZLY 88	146886	094K	2008/jan/18	20080118	406.934
525798	GRIZZLI 89	146886	094K	2008/jan/18	20080118	373.208
525799	GRIZZLL 90	146886	094K	2008/jan/18	20080118	425.585
525801	GRIZZLY 91	146886	094K	2008/jan/18	20080118	425.59
525802	GRIZZLY 92	146886	094K	2008/jan/18	20080118	425.331
525803	GRIZZLY 93	146886.	094K	2008/jan/18	20080118	425.337
525804	GRIZZLY 94	146886	094K	2008/jan/18	20080118	425.174
525805	GRIZZLY 95	146886.	094K	2008/jan/18	20080118	323.352
525808	GRIZZLY 96	146886	094K	2008/jan/18	20080118	426.526
525809	GRIZZLY 97	146886.	094K	2008/fan/18	20080118	272.843
525811	GRIZZLY 98	146886 .	094K	2008/jan/18	20080118	426.356
525814	GRIZZLY 99	146886	094K	2008/jan/18	20080118	408.621
525815	GRIZZLY 100	146886	094K	2008/jan/18	20080118	425.843
525816	GRIZZLY 101	146886.	094K	2008/fan/18	20080118	204.436
525818	GRIZZLY 102	146886.	094k	2008/jan/18	20080118	406.599
525820	GRIZZLY 103	146886.	094K	2008/jan/18	20080118	406.6
525821	GRIZZLY 104	146886.	094K	2008/jan/18	20080118	101.674
525822	DIEPPE 54	146886.	094K	2008fan/18	20080318	404.755

525823	DIEPPE 55	146886	094K	2008/jan/18	20080118	404.562
508707	Toad 1	146886	094K	2008/mar/10	20080310	422.37
508709	Toad 2	146886	094K	2008/mar/10	20080310	406.753
508710	Toad 3	146886	094K	2008/mar/10	20080310	424.742
529843	WOKK02	200740	094K	2008/mas/10	20080310	422.178
529844	WOKK03	200740.	094K	2008/mar/10	20080310	422.174
529845	WOKK04	200740	094K	2008/mar/10	20080310	422.294
529846	WOKK05	200740	094K	2008/mar/10	20080310	405.553
529847	WOKK06	200740.	094K	2008/mar/10	20080310	405.551
529848	WOKK07	200740.	094K	2008/mar/10	20080310	405.768
529849	WOKK08	200740	094K	2008/mar/10	20080310	405.757
529850	WOKK09	200740.	094K	2008/mar/10	20080310	405.644
529851	WOKK01	200740.	094K	2008/mar/10	20080310	405.555
509540	Gang	146887.	094K	2008/mar/23	20080323	405.288
509553	Annabelle	146887	094K	2008/mar/23	20080323	408.329
509563	He	146887.	094K	2008/mar/23	20080323	425.386
509567	HD	146887	094K	2008/mat/23	20080323	425.643
509576	Goat Chodi	146887.	094K	2008/mar/23	20080323	426.513
531536	DM01	202640	094K	2008/apr/08	20080408	423.819
531537	DM02	202640	094K	2008/apr/08	20080408	423.817
531538	DM03	202640	094K	2008/apr/08	20080408	423.818
531539	DM04	202840.	094K	2008/apr/08	20080408	424.074
531540	DM05	202640.	094K	2008/apr/08	20080408	424.069
531541	DM06	202640	094K	2008/apr/08	20080408	424.066
531542	DM07	202640	094K	2008/apr/08	20080408	407.325
531543	DM08	202640	094K	2008/apr/08	20080408	424.289
531544	DM09	202640	094K	2008/apr/08	20080408	424.153
531545	DM10	202640	094K	2008/apr/08	20080408	407.517
531547	DM11	202640.	094K	2008/apri08	20080408	407.512
531548	DM12-01	202640	094K	2008/apr/08	20080408	407.508
531549	DM13.01	202640 .	094K	2008/apr/08	20080408	135.835
511212	GRIZZİY 30	146886	094K	2008/apr/20	20080420	425.845
511215	GRIZ7LY 31	146886.	094K	2008/apr/20	20080420	425.855
511217	GRIZZIY 32	146886.	094K	2008/apr/20	20080420	425.858
511219	GRIZZLY 33	146886.	094K	2008/apr/20	20080420	425.856
511220	GRIZZLY 34	146886.	094K	2008/apr/20	20080420	425.857
511222	GRIZZLY 35	146886.	094K	2008/apt/20	20080420	425.861
511223	GRIZZLY 36	146886.	094K	2008/apr/20	20080420	425.854
511225	GRIZZLY 37	146886 .	094K	2008/apr/20	20080420	426.115
511228	GRIZZLY 38	146886.	094K	2008/apr/20	20080420	426.12
$5 \uparrow 1232$	GRIZZLY 39	146886.	094K	2008/apri20	20080420	426.121
511235	GRIZZLY 40	146886.	094K	2008/apr/20	20080420	426.123
511236	GRIZZLY 41	146886.	094K	2008/apr/20	20080420	426.127
511242	GRIZZLY 42	146886	094K	2008/apr/20	20080420	426.115
511245	GRIZZLY 43	146886 .	094K	2008/apr/20	20080420	426.105

1247	GRIZZLY 44	146886	094K	2008/apr/20	20080420	426.363
511248	GRIZZLY 45	146886	094K	2008/apr/20	20080420	426.366
511250	GRIZZLY 46	146886	094K	2008/apr/20	20080420	426.369
511252	GRIZZLY 47	146886	094K	2008/apr/20	20080420	426.373
511253	GRIZZLY 48	146886	094K	2008/apr/20	20080420	426.368
511254	GRIZZLY 49	146886	094K	2008/apr/20	20080420	426.356
511256	GRIZZLY 50	146886	094K	2008/apr/20	20080420	426.347
511258	GRIZZLY 51	146886	094K	2008/apr/20	20080420	426.607
511260	GRIZZLY 52	146886	094K	2008/apr/20	20080420	426.612
511262	GRIZZZLY 53	146886.	094K	2008/apr/20	20080420	426.617
511263	GRIZZLY 54	146886.	094K	2008/apr/20	20080420	426.62
$51+265$	GRIZZLY 55	146886.	094K	2008/apri20	20080420	426.616
511267	GRIZZLY 56	146886	094K	2008/apr/20	20080420	426.836
511268	GRIZZLY 57	146886	094K	2008/apr/20	20080420	426.838
511269	GRIZZLY 58	146886.	094K	2008/apr/20	20080420	426.843
511271	GRIZZLY 59	146886	094K	2008/apr/20	20080420	410.014
511272	GRIZZLY 60	146886	094K	2008/apr/20	20080420	410.011
511273	GRIZZLY 61	146886	094K	2008/aps/20	20080420	410.013
511274	GRIZZLY 62	146886.	094 K	2008/apr/20	20080420	410.224
511275	GRIZZLY 63	146886	094K	2008/apr/20	20080420	426.847
511276	GRIZZLY 64	146886	094K	2008/apt/20	20080420	410.015
511436	SOCRATES 20	146886	094K	2008/apr/22	20080422	404.382
511439	SOCRATES 21	146885	094K	2008/apr/22	20080422	403.538
511441	SOCRATES 22	146886	094K	2008/apr/22	20080422	403.533
514443	SOCRATES 23	146886	094K	2008/apr/22	20080422	336.273
511446	SOCRATES 24	146886.	094K	2008/apr/22	20080422	420.362
511447	SOCRATES 25	146886.	094K	2008/apr/22	20080422	420.359
511448	SOCRATES 26	146886	094K	2008/apr/22	20080422	420.614
511449	SOCRATES 27	146886	094K	2008/apr/22	20080422	420.611
511451	SOCRATES 28	146886	094K	2008/apr/22	20080422	420.928
511452	SOCRATES 29	146886	094K	2008/apr/22	20080422	420.925
511453	SOCRATES 30	146886	094K	2008/apr/22	20080422	421.224
511454	SOCRATES 31	146886.	094K	2008/apr/22	20080422	404.394
511455	SOCRATES 32	146886	094K	2008/apr/22	20080422	404.628
511456	SOCRATES 33	146886	094K	2008/apr/22	20080422	404.877
511457	SOCRATES 34	146886	094K	2008/apr/22	20080422	369.953
511458	SOCRATES 35	146886	094K	2008/apt/22	20080422	336.439
511459	SOCRATES 36	146886.	094K	2008/apr/22	20080422	336.441
511460	SOCRATES 37	146886.	094K	2008/apr/22	20080422	420.788
511461	SOCRATES 38	146886.	094 K	2008/apr/22	20080422	420.977
511463	SOCRATES 39	146886.	094K	2008/apr/22	20080422	404.203
511465	SOCRATES 40	146886.	094K	2008/apr/22	20080422	336.981
511466	SOCRATES 41	146886.	094K	2008/apr/22	20080422	269.582
511472	DELANO 10	146886.	094K	2008/apr/22	20080422	405.796
511473	DELANO 14	146886.	094K	2008/apr/22	20080422	405.944

511475	DELANO 12	146886	094K	2008/apr/22	20080422	355.262
511476	DELANO 13	146886	094K	2008/apr/22	20080422	406.16
511478	DELANO 14	146886	094K	2008/apr/22	20080422	406.331
511480	DELANO 15	146886	094K	2008/apr/22	20080422	406.328
511482	DELANO 16	146886.	094K	2008/apr/22	20080422	423.485
511483	DELANO 17	146886	094K	2008/apr/22	20080422	423.482
511485	DELANO 18	146886	094K	2008/apr/22	20080422	406.803
511488	DELANO 19	146886	094K	2008/apr/22	20080422	422.464
511490	DELANO 20	146886	094K	2008/apr/22	20080422	405.401
511492	DIEPPE 45	146886.	094K	2008/apr/22	20080422	404.78
511494	DIEPPE 46	146886	094K	2008/apr/22	20080422	354.334
511496	DIEPPE 46	146886	094K	2008/apr/22	20080422	405.054
511498	DIEPPE 47	146886.	094K	2008/apr/22	20080422	405.202
511500	DIEPPE 48	146886.	094K	2008/apr/22	20080422	405.413
511502	TOAD 4	146886	094K	2008/apr/22	20080422	422.32
511505	TOAD 5	146886.	094K	2008/apr/22	20080422	405.183
511507	TOAD 6	146886.	094K	2008/apr/22	20080422	405.262
511509	TOAD 7	146886	094K	2008/apr/22	20080422	371.767
511511	TOAD 8	146886.	094K	2008/apr/22	20080422	406.367
511512	TOAD 9	146886	094K	2008/apr/22	20080422	423.46
511513	TOAD 10	146886	094K	2008/apr/22	20080422	423.492
511515	TOAD 11	146886	094K	2008/apr/22	20080422	406.756
511520	GATAGA 21	146886.	094K	2008/apr/22	20080422	409.205
511522	GATAGA 22	146886	094K	2008/apr/22	20080422	408.91
511523	gataga 23	146886	094K	2008/apr/22	20080422	408.853
511525	GATAGA 24	146886	094K	2008/apr/22	20080422	408.725
511526	GATAGA 25	146886	094K	2008/apr/22	20080422	408.569
511528	GATAGA 26	146886	094K	2008/apr/22	20080422	408.421
511529	GATAGA 27	146886.	094K	2008/apr/22	20080422	408.233
511530	GATAGA 28	146886	094K	2008/apr/22	20080422	425.688
511531	GATAGA 29	146886	094K	2008/apr/22	20080422	374.418
511532	GATAGA 30	146886.	094 K	2008/apr/22	20080422	425.291
511533	GATAGA 31	146886	094K	2008/apr/22	20080422	425.124
511534	gataga 32	146886	094K	2008/apr/22	20080422	407.967
511536	gataga 33	146886.	094K	2008/apr/22	20080422	427.501
511537	GATAGA 34	146886.	094K	2008/apr/22	20080422	426.639
511538	GATAGA 35	146886	094K	2008/apr/22	20080422	427.084
511539	GATAGA 36	146886	094K	2008/apr/22	20080422	427.305
511595	SOCRATES 42	146886.	094K	2008/apr/25	20080425	353.244
511596	SOCRATES 43	146886.	094K	2008/apr/25	20080425	353.37
511597	SOCRATES 44	146886.	094K	2008/apr/25	20080425	353.515
511599	SOCRATES 45	146886.	094K	2008/apr/25	20080425	202.104
511600	DIEPPE 49	146886.	094K	2008/apr/25	20080425	404.487
511602	DIEPPE 50	146885.	094K	2008/apr/25	20080425	404.489
511603	DIEPPE 51	146886.	094K	2008/apr/25	20080425	404.491
iv						

511604	DIEPPE 52	146886	094K	2008/apr/25	20080425	404.662
511607	TOAD 12	146886	094K	2008/apr/25	20080425	405.79
511608	TOAD 13	146886	094K	2008/apr/25	20080425	405.715
511610	TOAD 14	146886	094K	2008/apr/25	20080425	405.885
511611	TOAD 15	146886	094K	2008/apr/25	20080425	372.015
511613	TOAD 16	146886.	094K	2008/apr/25	20080425	406.942
511614	DIEPPE 53	146886	094K	2008/apr/25	20080425	354.111
511615	GATAGA 37	146886	094K	2008/apr/25	20080425	407.894
511616	GATAGA 38	146886.	094K	2008/apr/25	20080425	425.212
511618	GATAGA 39	146886	094K	2008/apr/25	20080425	407.749
511619	DELANO 21	146886	094K	2008/apr/25	20080425	405.932
511620	DELANO 22	146886	094K	2008/apr/25	20080425	202.878
515464	SOCRATES 46	146886	094K	2008/jun/28	20080628	420.022
515466	SOCRATES 47	146886	094K	2008/jun/28	20080628	420.129
515467	SOCRATES 48	146886.	094K	2008/jun/28	20080628	319.127
515468	SOCRATES 49	146886.	094K	2008/jun/28	20080628	420.125
515470	SOCRATES 50	146886.	094K	2008/jun/28	20080628	419.865
515471	SOCRATES 51	146886.	094K	2008/jun/28	20080628	421.761
515472	SOCRATES 52	146886	094K	2008/jun/28	20080628	421.75
515476	SOCRATES 53	146886	094K	2008/jun/28	20080628	421.51
515482	SOCRATES 54	146886	094K	2008/jun/28	20080628	421.954
515485	SOCRATES 55	146886	094K	2008/jun/28	20080628	421.954
515490	DELANO 23	146886	094K	2008jun/28	20080628	422.197
515495	DELANO 24	146886	094K	2008/jun/28	20080628	422.181
515505	DELANO 25	146886	094K	2008fun/28	20080628	405.439
515516	DELANO 26	146886	094K	2008/Jun/28	20080628	405.535
520525	LYNDA1	146886	094K	2008/jun/28	20080628	427.38
520526	LYNDA2	145886	094K	2008/jun/28	20080628	427.374
520527	LYNDA3	146886.	094K	2008/jun/28	20080628	427.619
520528	LYNDA4	146886	094K	2008/jun/28	20080828	427.37
520529	LYNDA5	146886	094K	2008/fun/28	20080628	427.616
515811	SOCRATES 56	146886	094K	2008/jul/01	20080701	319.277
515813	SOCRATES 57	146886	094K	2008fullot	20080701	302.597
515816	SOCRATES 58	146886	094K	2008/juvot	20080701	403.095
515817	SOCRATES 59	146886	094K	2008/juv01	20080701	403.34
515818	SOCRATES 60	146886	094K	2008/jut0t	20080701	403.333
515819	SOCRATES 61	146886.	094K	2008/jul/01	20080701	419.939
515820	SOCRATES 62	146886	094K	2008/ul/01	20080701	420.678
515821	SOCRATES 63	146886	094K	2008/ul/01	20080701	420.988
515822	SOCRATES 64	146886.	094K	2008/ul/01	20080701	420.979
515823	SOCRATES 65	146886.	094K	2008fulion	20080701	303142
515824	SOCRATES 66	146886	094K	2008ful/0	20080701	421.259
515825	SOCRATES 67	146886	094K	2008/ju/\%1	20080701	421.248
515826	SOCRATES 68	146886	094K	2008/jul/01	20080701	421.499
517407	TOAD 17	146886	094K	2008/jul/12	20080712	118.277

517410	TOAD 18	146886	094K	2008/jul/12	20080712	118.206
517636	DELANO 27	146886 .	094K	2008/fu/13	20080713	422.181
517637	DELANO 28	146886	094K	2008/jul/13	20080713	405.26
517639	DELANO 28	146886	094K	2008/jul/13	20080713	405.183
517877	LR2	146886	094K	2008/jul17	20080717	405.195
517878	LR3	146886	094K	2008/jul/17	20080717	270.133
517882	LR6	146886	094K	2008/jul/17	20080717	422.31
517885	LR7	146886.	094K	2008ful17	20080717	354.947
517886	LR8	146886	094K	2008/jul/17	20080717	422.541
517888	LR9	146886	094K	2008/jul/17	20080717	422.547
517890	LR10	146886	094K	2008/jul/ 17	20080717	422.555
517891	LR\$1	146886	094K	2008/jul/17	20080717	422.556
517892	LR12	146886	094K	2008/ju117	20080717	422.77
517893	LR5	146886	094K	2008/jul/17	20080717	337.844
517894	LR13	146886	094K	2008/ju/717	20080747	372.052
517895	LR14	146886	094K	2008/jul/i7	20080717	405.861
517898	LR15	146886	094 K	2008/jul/17	20080717	405.854
517899	LR16	146886	094K	$2008 / \mathrm{jul} / 17$	20080717	405.848
517900	LR17	146886	094K	2008/jul/17	20080717	405.892
517924	LR41	146886.	094K	2008/jul/17	20080717	404.979
517925	LR42	146886	094K	2008/jul/17	20080717	404.98
517926	LR43	146886	094K	2008/jul/17	20080717	404.982
517927	LR44	146886	094K	$2008 \mathrm{fju/h} 7$	20080717	404.982
517928	LR45	146886	094K	2008/jul/17	20080717	404.983
517929	LR46	146886	094K	2008 ful/ 17	20080717	404.984
517930	LR49	146886	094K	2008/jul/17	20080717	405.191
517931	LR47	146886	094K	2008/ju/17	20080717	404.988
517932	LR48	146886	094K	2008/jul/17	20080717	421.843
517901	LR18	200740 .	094K	2008/ju/17	20080717	355.343
517902	LR19	200740	094K	2008 julli 7	20080717	422.98
517903	LR20	200740	094K	2008/jul/17	20080717	422.98
517904	LR21	200740.	094K	2008/gul/7	20080717	422.978
517905	LR22	200740.	094K	2008 fulis	20080717	422.975
517906	LR23	200740	094K	2008/ju117	20080717	422.973
517907	LR24	200740	094K	2008/jul/17	20080717	406.126
517908	LR25	200740	094K	2008/ju/17	20080717	406.247
517910	LR27	200740.	094K	2008/jul/i7	20080717	406.276
517911	LR28	200740	094K	2008/jul/17	20080717	406.276
517912	LR29	200740.	094K	2008/jul17	20080717	406.277
517913	LR30	200740	094K	2008/jul/17	20080717	406.274
517915	LR32	200740	094K	2008fu/17	20080717	423.429
517916	LR33	200740.	094K	2008/jul/ 17	20080717	423.429
517917	LR34	200740.	094K	2008/jul/17	20080717	423.429
517918	LR35	200740.	094K	2008/jul/17	20080717	423.425
517919	LR36	200740.	094K	2008/jul/17	20080717	423.678

517920	LR37	200740.	094K	$2008 \mathrm{ful} / 17$	20080717	423.679
517921	LR38	200740	094K	2008/jul/17	20080717	423.678
517922	LR39	200740	094K	2008/ju/17	20080717	423.674
517923	LR40	200740	094K	2008/jul/17	20080717	406.945
537919	RR1	200740.	094K	2008/ful/27	20080727	388.153
537920	RR2	200740.	094K	2008/jul/27	20080727	236.402
537921	RR3	200740.	094K	2008/jul/27	20080727	388.175
537922	RR4	200740	094K	2008/Jul/27	20080727	421.937
537923	RR5	200740	094K	2008/jul/27	20080727	421.933
537925	RR6	200740.	094K	2008/jul/27	20080727	421.932
537926	RR7	200740.	094K	2008/jul/27	20080727	421.934
537927	RR8	200740.	094K	2008/ul/27	20080727	421.738
537929	RR9	200740	094K	2008/jul/27	20080727	421.712
537931	RR10	200740	094K	$2008 / \mathrm{jul} / 27$	20080727	421.721
537932	RR11	200740	094K	2008/jul/27	20080727	421.472
537933	RR12	200740	094K	2008/jul/27	20080727	421.705
537935	RR3	200740	094K	2008/jul/27	20080727	421.7
537936	RR14	200740	094K	2008/jul/27	20080727	421.932
537937	RR16	200740.	094K	2008/, $1 / 27$	20080727	421.695
537940	RR18	200740	094K	2008/jul/27	20080727	421.695
537942	RR19	200740	094K	2008fu/ 27	20080727	337.357
537944	RR20	200740	094K	2008/jul/27	20080727	404.026
537946	RR21	200740	094K	2008/jul/27	20080727	404.332
537949	RR22	200740	094K	2008/jul/27	20080727	320.306
537924	AB01	202640	094K	2008/jul/27	20080727	421.487
537928	AB02	202640	094K	2008/ful/27	20080727	421.463
537930	AB03	202640	094K	2008/juli27	20080727	421.455
537934	AB04	202640	094K	$2008 \mathrm{jul} / 27$	20080727	303.8
537938	AB05	202640	094K	2008/ju/27	20080727	236.16
537941	AB06	202640	094K	2008/jul27	20080727	403.725
537943	GRIZZ 1	202640	094K	2008/jul/27	20080727	424.721
537945	GRIZZ 2	202640.	094K	$2008 \mathrm{fu} / 27$	20080727	424.716
537947	GRIZZ 3	202640.	094K	2008/jul/27	20080727	424.713
537948	GRIZZ 4	202640.	094K	$2008 / \mathrm{ful} / 27$	20080727	424.71
537950	GRIZZ 5	202640.	094K	2008/jul/27	20080727	424.727
537951	GRIZZ 6	202640.	094K	$2008 / \mathrm{ju} / 27$	20080727	424.947
537952	GRIZZ 7	202640.	094K	2008/jul/27	20080727	424.931
537953	GRIZZ 8	202640.	094K	2008/jul/27	20080727	424.935
537954	GRIZZ 9	202640.	094K	2008fiul/27	20080727	424.926
537955	GRIZZ 10	202640.	094K	2008/jul/27	20080727	407.904
538026	PQ09	200740.	094K	2008/jul/28	20080728	421.236
538029	PQ02	200740.	094K	2008/jul/28	20080728	421.222
538036	PQ03	200740.	094K	2008/jul/28	20080728	420.355
538038	PQ04	200740	094K	2008/jul/28	20080728	420.354
538045	PQ05	200740	094K	2008/ful/28	20080728	386.932

538048	PQ06	200740	094K	2008/ju/28	20080728	403.804
538052	PQ07	200740	094K	2008/jul/28	20080728	202.02
538055	PQ08	200740.	094K	2008fui/28	20080728	420.353
538057	PQ09	200740	094K	2008/jul/28	20080728	403.802
538060	PQ10	200740.	094K	2008fu/28	20080728	403.329
538062	PQ11	200740	094K	2008/jul/28	20080728	403.325
538065	PQ12	200740	094K	2008/jul/28	20080728	403.323
538067	PQ13	200740	094K	2008/jul/28	20080728	403.323
538070	PQ14	200740	094K	2008/jul/28	20080728	352.506
538073	PQ15	200740.	094K	2008/jul/28	20080728	419.633
538077	PQ16	200740.	094K	2008/jul/28	20080728	352.329
538079	PQ17	200740.	094K	2008/jul/28	20080728	385.831
538082	PQ18	200740	094K	2008ful/28	20080728	402.599
538084	PQ19	200740	094K	2008ful/28	20080728	402.937
538085	PQ20	200740	094K	2008/jul/28	20080728	402.937
538087	PQ21	200740	094K	2008/jul/28	20080728	402.937
538089	PQ22	200740	094K	2008/jul/28	20080728	402.936
538091	PQ23	200740.	094K	2008/ul/28	20080728	386.36
538092	PQ24	200740	094K	2008/jul/28	20080728	403.156
538096	PQ25	200740.	094K	2008/ju/28	20080728	402.601
538025	RR23	202640	094K	2008/jul/28	20080728	421.45
538028	RR24	202540	094K	2008/jul/28	20080728	421.446
538031	RR25	202640.	094K	2008/jul/28	20080728	421.441
538033	RR26	202640	094K	2008/ju/28	20080728	84.288
538037	RR27	202640	094K	2008/jul/28	20080728	421.213
538039	RR28	202640.	094K	2008/jul/28	20080728	421.205
538042	RR29	202640	094K	2008/jul/28	20080728	$42 \uparrow .201$
538043	RR30	202640.	094K	2008/jul/28	20080728	421.196
538046	RR31	202640	094K	2008/jul/28	20080728	303.237
538047	RR32	202640	094K	2008/jul/28	20080728	420.957
538050	RR33	202640	094K	2008 $/ \mathrm{jul} / 28$	20080728	420.95
538053	RR34	202640	094K	2008/ju/128	20080728	420.944
538054	RR35	202640	094K	2008/juil28	20080728	420.941
538056	RR36	202640	094K	2008/jul/28	20080728	336.75
538058	RR37	202640.	094K	2008/jul/28	20080728	403.802
538061	RR38	202640.	094K	2008/jul/28	20080728	403.802
538063	RR39	202640.	094K	2008/jul/28	20080728	403.803
538064	RR40	202640.	094K	2008/jul/28	20080728	403.805
538066	RR41	202640.	094K	2008/ju/28	20080728	269.267
538069	RR42	202640.	094K	2008/jul/28	20080728	336.465
538071	RR43	202640.	094K	2008/ju/28	20080728	420.353
538072	RR44	202640.	094K	2008/jul/28	20080728	420.354
538075	RR45	202640.	094K	2008/jul/28	20080728	420.356
538076	RR46	202640.	094K	2008/jul/28	20080728	420.358
538078	RR47	202640.	094K	2008/jul/28	20080728	269.018

viii

538080	RR48	202640.	094K	2008/jul/28	20080728	403.325
538081	RR49	202640	094K	2008/jul/28	20080728	403.325
538083	RR50	202640.	094K	2008/jul/28	20080728	403.329
538086	RR51	202640	094K	2008/jul/28	20080728	419.911
538088	RR52	202640.	094K	2008ful/28	20080728	419.908
538090	RR53	202640	094K	2008/jul/28	20080728	419.907
538093	RR54	202640.	094K	2008/4/1/28	20080728	419.905
538095	RR55	202640	094K	2008/jul/28	20080728	419.902
538097	RR56	202640	094K	2008/ul/28	20080728	402.991
538098	RR57	202640	094K	2008/jul/28	20080728	402.89
538099	RR58	202640.	094K	2008/jul/28	20080728	402.603
538100	RR59	202640	094K	2008ful/28	20080728	402.604
518973	GRIZZLY 65	146886	094K	2008/aug/12	20080812	406.601
518974	GRIZZLY 66	146886.	094K	2008/aug/12	20080812	406.412
518975	GRIZZLY 67	146886	094K	2008/aug/12	20080812	423.337
518976	GRIZZLY 68	146886	094K	2008/aug/12	20080812	406.604
518977	GRIZZLY 69	146886	094K	2008/aug/12	20080812	406.7
518978	GRIZZLY 70	146886	094K	2008/aug/12	20080812	406.983
518979	GRIZZLY 71	146886.	094K	2008/aug/12	20080812	407.268
518980	GRIZZLY 72	146886	094K	2008/aug/12	20080812	424.502
519444	Y01	200103	094K	2008/aug/28	20080828	337.272
519445	Y02	200103	094K	2008/aug/28	20080828	303.66
519446	Y03	200103	094K	2008/aug/28	20080828	404.991
519447	Y04	200103	094K	2008/aug/28	20080828	202.528
519448	Y05	200103	094K	2008/aug/28	20080828	405.054
519449	Y06	200103	094K	2008/aug/28	20080828	303.903
519450	Y07	200103	094K	2008/aug/28	20080828	405.42
519451	Y08	200103	094K	2008/aug/28	20080828	422.192
519452	Y09	200103	094K	2008/aug/28	20080828	253.436
519453	Y10	200103	094K	2008/aug/28	20080828	202.751
519454	Y11	200103	094K	2008/aug/28	20080828	405.715
519455	Y12	200103	094K	2008/aug/28	20080828	202.962
519456	Y13	200103	094K	2008/aug/28	20080828	304.289
519457	Y14	200103	094K	2008/aug/28	20080828	422.642
519458	Y15	200103	094K	2008/aug/28	20080828	304.354
539991	ANVIL01	202640	094K	2008/aug/28	20080828	408.128
539993	ANVIL02	202640.	094K	2008/aug/28	20080828	408.121
539994	ANVIL03	202640 .	094K	2008/aug/28	20080828	204.058
539996	ANVILO4	202640.	094K	2008/aug/28	20080828	408.094
539997	ANVIL05	202640	094K	2008/aug/28	20080828	408.284
539998	ANVIL06	202640.	094K	2008/aug/28	20080828	408.282
539999	ANVIL07	202640.	094K	2008/aug/28	20080828	408.281
540000	ANVIL08	202640.	094K	2008/aug/28	20080828	408.423
540001	ANVIL09	202640.	094K	2008/aug/28	20080828	136.141
540002	ANVIL10	202640.	094K	2008/aug/28	20080828	306.251

508545	Grizziy 1	146886	094K	2008/sep/09	20080909	220.665
511143	GRIZZLY 6	146886	094K	2008/sep/09	20080909	407.61
511145	GRIZZLY 8	146886	094K	2008/sep/09	20080909	407.633
511146	GRIZZLY 9	146886	094K	2008/sep/09	20080909	424.838
511148	GRIZZLY ${ }^{1}$	146886	094K	2008/sep/09	20080909	407.779
511150	GRIZZLY 12	146886	094K	2008/sep/09	20080909	407.873
520483	TOWER1	200103	094K	2008/sep/27	20080927	355.197
520485	TOWER2	200103	094K	2008/sep/27	20080927	423.104
520486	TOWER3	200103	094K	2008/sep/27	20080927	423.291
520487	TOWER4	200103	094K	2008/sep/27	20080927	406.523
520650	TOWER5	200103	094K	2008/sep/30	20080930	338.278
520651	TOWER6	200103.	094K	2008/sep/30	20080830	338.437
520652	TOWER7	200103	094K	2008/sep/30	20080930	338.596
520653	TOWER8	200103	094K	2008/sep/30	20080930	338.755
520704	GS1	146887.	094K	2008/oct/02	20081002	389.013
520702	GS2	146887.	094K	2008/oct/02	20081002	338.414
520703	GS3	146887	094K	2008/oct/02	20081002	355.456
520704	GS4	146887	094K	2008/oct/02	20081002	355.58
520707	GS5	146887	094K	2008/oct/02	20081002	372.642
509549	Ed	146887	094K	2008/nov/23	20081123	425.068
501179		146886	094K	2009/jan/12	20090112	153.498
525256	GODOT01	200740	094K	2009/jan/13	20090113	101.87
525267	GODOT02	200740	094K	2009/jan/13	20090113	67.862
525433	TORO_SOUTH	200740	094K	2009/jan/14	20090114	407.638
525439	TORO_NORTH	200740	094K	2009/jan/14	20090114	203.591
504054	Talus	146887	094K	2009fan/17	20090117	423.475
511144	GRIZZLY 7	146886	094K	2009/jan/20	20090120	339.543
511947	GRIZZLY 10	146886	094K	2009/jan/20	20090120	339.697
510811	MEDS 1	124708.	094K	2009/fan/31	20090131	253.999
508444	Gataga 1	146886.	094K	2009/mar/09	20090309	341.22
508445	Gataga 2	146886.	094K	2009/mar/09	20090309	392.393
508447	Gataga 3	146886.	094K	2009/mar/09	20090309	409.33
508449	Gataga 4	146885.	094K	2009/mar/09	20090309	238.775
508450	Gataga 5	146886.	094K	2009/mar/09	20090309	375.484
508451	Gataga 6	146886.	094K	2009/mar/09	20090309	392.551
508452	Gataga 7	146886.	094K	2009/mar/09	20090309	409.757
508454	Gataga 8	146886.	094K	2009/mar/09	20090309	409.753
508455	Gataga 9	146886.	094K	2009/mar/09	20090309	409.894
508456	Gataga 10	146886.	094K	2009/mar/09	20090309	410.035
508457	Gataga 11	146886	094K	2009/mar/09	20090309	341.667
508459	Gataga 12	146886	094K	2009/mar/09	20090309	410.178
508460	Gataga 13	146886	094K	2009/mar/09	20090309	273.447
508462	Gataga 14	146886	094K	2009/mar/09	20090309	341.914
508464	Gataga 15	146886	094K	2009/mar/09	20090309	205.205
508467	Gataga 16	146886	094K	2009/mar/09	20090309	323.945

508469	Gataga 17	146886.	094 K	2009/mar/09	20090309	409.189
508470	Gataga 18	146886.	094K	2009/mar/09	20090309	255.651
508471	Gataga 19	146886.	094K	2009/mas/09	20090309	409.02
508479	Socrates 1	146886.	094K	2009/mar/09	20090309	420.076
508482	Socrates 2	146886.	094K	2009/mar/09	20090309	403.3
508483	Socrates 2	146886.	094K	2009/mar/09	20090309	353.034
508484	Socrates 4	146886.	094K	2009/mar/09	20090309	403.374
508485	Socrates 5	146886.	094K	2009/mar/09	20090309	336.284
508486	Socrates 6	146886.	094K	2009/mar/09	20090309	403.539
508487	Socrates 7	146886.	094K	2009/mar/09	20090309	420.576
508488	Socrates 8	146886.	094K	2009/mar/09	20090309	420.577
508489	Socrates 9	146886.	094K	2009/mar/09	20090309	420.573
508490	Socrates 10	146886.	094K	2009/mar/09	20090309	420.569
508492	Socrates 11	146886 .	094k	2009/mar/09	20090309	336.57
508494	Socrates 12	146886.	094K	2009/mar/09	20090309	420.856
508497	Socrates 13	146886.	094K	2009/mar/09	20090309	420.861
508504	Socrates 14	146886.	094K	2009/mar/09	20090309	420.861
508506	Socrates 15	146886.	094K	2009/mario9	20090309	420.86
508507	Socrates 16	146886.	094K	2009/mar/09	20090309	404.242
508508	Socrates 17	146886.	094K	2009/mar/09	20090309	336.876
508509	Socrates 18	146886.	094K	2009/mar/09	20090309	404.371
508510	Socrates 19	146886.	094K	2009/mar/09	20090309	404.518
508519	Delano 1	146886.	094K	2009/mar/09	20090309	406.178
508512	Delano 2	146886.	094K	2009/mar/09	20090309	338.339
508515	Delano 3	146886.	094K	2009/mar/09	20090309	406.042
508521	Delano 4	146886 .	094K	2009/mar/09	20090309	406.165
508527	Delano 5	146886.	094K	2009/mar/09	20090309	406.021
508535	Delano 6	146886.	094K	2009/mar/09	20090309	405.873
508537	Delano 7	146886.	094K	2009/mar/09	20090309	405.729
508540	Delano 8	146886.	094K	2009/mar/09	20090309	405.654
508550	Grizziy 2	146886.	094K	2009/mar/09	20090309	424.21
508554	Delano 3	146888.	094K	2009/mar/09	20090309	$423.96 \uparrow$
508557	Grizzly 4	146886.	094K	2009/mar/09	20090309	406.982
508560	Grizzly 5	146886.	094K	2009/mar/09	20090309	423.724
508597	Dieppe 1	146886.	094K	2009/mar/10	20090310	337.139
508598	Dieppe 2	146886.	094K	2009/mar/10	20090310	337.143
508599	Dieppe 3	146886 .	094K	2009/mar/10	20090310	337.147
508600	Dieppe 4	146886.	094K	2009/mar/10	20090310	421.65
508602	Dieepe 6	146886.	094K	2009/mar/10	20090310	421.656
508603	Dieppe 7	146886.	094K	2009/mar/10	20090310	421.66
508605	Dieppe 8	146886.	094K	2009/mar/10	20090310	$269.85 \uparrow$
508606	Dieppe 9	146886.	094K	2009/mar/10	20090310	405.02
508607	Dieppe 10	146886.	094K	2009/mar/10	20090310	$405.02 \dagger$
508609	Dieppe 11	146885.	094K	2009/mar/10	20090310	405.021
508617	Dieppe 12	146886.	094K	2009/mar/10	20090310	421.892
xi						

508621	Dieppe 13	146886.	094K	2009/mar/10	20090310	404.948
508623	Dieppe 14	146886.	094K	2009/mar/10	20090310	405.051
508627	Dieppe 15	146886.	094K	2009/mar/10	20090310	405.052
508629	Dieppe 16	146886.	094K	2009/mar/10	20090310	422.263
508633	Dieppe 17	146886.	094K	2009/mar/10	20090310	422.097
508634	Dieppe 17	146886.	094K	2009/mar/10	20090310	422.551
508636	Dieppe 18	146886.	094K	2009/mar/10	20090310	422.63
508639	Dieppe 18	146886.	094K	2009/mar/10	20090310	422.629
508642	Dieppe 20	146886.	094K	2009/mar/10	20090310	405.27
508644	Dieppe 21	146886.	094K	2009/mar/40	20090310	388.452
508645	Dieppe 22	148886.	094K	2009/mar/10	20090310	422.467
508647	Dieppe 23	146886.	094K	2009/mar/10	20090310	405.56
508651	Dieppe 24	146886.	094K	2009/mar/10	20090310	422.486
508656	Dieppe 25	146886.	094K	2009/mar/10	20090310	338.186
508659	Dieppe 26	146886.	094K	2009/mar/10	20090310	422.736
508666	Dieppe 27	146886.	094K	2009/mar/10	20090310	422.665
508670	Dieppe 28	146886	094K	2009/mar/10	20090310	304.394
508671	Dieppe 29	146886 .	094K	2009/mar/10	20090310	355.231
508675	Dieppe 30	146886	094K	2009/mar/10	20090310	405.998
508685	Dieppe 31	146886.	094K	2009/mar/10	20090310	372.18
508686	Dieppe 32	146886.	094K	2009/mar/10	20090310	423.009
508687	Dieppe 33	146886.	094K	2009/mar/10	20090310	406.271
508688	Dieppe 34	146886 .	094K	2009/mar/10	20090310	355.674
508689	Dieppe 35	146886.	094K	2009/mar/10	20090310	338.66
508690	Dieppe 36	146886.	094K	2009/mar/10	20090310	338.523
508691	Dieppe 36	146886.	094K	2009/mar/10	20090310	406.415
508692	Dieppe 38	146886.	094K	2009/mar/10	20090310	406.672
508693	Dieppe 39	146886 .	094K	2009/mar/10	20090310	305.023
508694	Dieppe 40	146886.	094K	2009/mar/10	20090310	372.987
508696	Dieppe 41	146886 .	094K	2009/mar/10	20090310	372.206
508697	Dieppe 42	146886 .	094K	2009/mar/10	20090310	406.241
508699	Dieppe 43	146886.	094K	2009/mar/10	20090310	406.385
508704	Dieppe 44	146886.	094K	2009/mar/10	20090310	406.124
508771	Delano 9	146886.	094K	2009/mar/11	20090311	405.508
509141	Gataga 20	146886.	094K	2009/mar/17	20090317	410.227
509544	Goat	146887.	094K	2009/mar/23	20090323	422.436
511151	GRIZZLY 13	146886.	094K	2009/apr/20	20090420	424.864
511153	GRIZZLY 13	146886.	094K	2009/apr/20	20090420	425.069
511155	GRIZZLY 14	146886.	094K	2009/apr/20	20090420	425.065
511157	GRIZZLY 15	146886.	094K	2009/apr/20	20090420	425.078
511159	GRIZZLY 16	146886.	094K	2009/apr/20	20090420	425.074
511160	GRIZZLY 16	146886.	094K	2009/apr/20	20090420	425.224
511162	GRIZZLY 17	146886.	094K	2009/apr/20	20090420	425.323
511165	GRIZZLY 18	146886 .	094K	2009/apr/20	20090420	425.323
511188	GRIZZLY 19	146886.	094K	2009/apr/20	20090420	425.324
xii						

51189	GRIZZLY 20	146886.	094K	2009/apr/20	20090420	425.319
511191	GRIZZLY 21	146886.	094K	2009/apr/20	20090420	425.282
511192	GRIZZLY 22	146886.	094K	2009/apr/20	20090420	425.573
511193	GRIZZLY 23	146886.	094K	2009/apr/20	20090420	425.575
511195	GRIZZLY 24	146886	094K	2009/apr/20	20090420	425.579
511198	GRIZZLY 25	146886.	094K	2009/apr/20	20090420	425.58
511200	GRIZZLY 26	146886.	094K	2009/apr/20	20090420	357.475
511201	GRIZZLY 27	146886.	094K	2009/apr/20	20090420	425.54
511203	GRIZZLY 28	146886.	094K	2009/apr/20	20090420	425.576
511205	GRIZZLY 29	146886.	094K	2009/apr/20	20090420	340.464
517875	LR1	146886.	094K	2009/jul/17	20090717	405.186
517879	LR4	146886 .	094K	2009/jul/17	20090717	422.298
517876	TR1	200740.	094K	2009/jul/17	20090717	406.942
517880	TR2	200740.	094K	2009/jul/17	20090717	406.943
517881	TR3	200740.	094K	2009/jul/17	20090717	406.945
517909	LR26	200740.	094K	2009/jul/17	20090717	406.298
517914	LR3?	200740.	094K	2009/jul/17	20090717	372.664
510008		124708.	094K	2009/jul/23	20090723	591.197
510739	KEY1	124708.	094K	2009/jul/23	20090723	84.474
510740	KEY2	124708.	094K	2009/jul/23	20090723	84.476
510741	KEY3	124708.	094K	2009/Jul/23	20090723	152.056
510808	KEY X	124708 .	094K	2009/jul/23	20090723	16.897
510809	KEYY	124708.	094K	2009/jul/23	20090723	16.891
510810	NUCO 1	124708.	094K	2009/jul/23	20090723	16.881
510255		124708.	094K	2009/aug/30	20090830	270.779
519544	KEY	124708.	094K	2009/aug/31	20090831	422.374
519545	KEY 1	124708.	094K	2009/aug/31	20090831	422.15
519546	KEY 3	124708.	094K	2009/aug/31	20090831	219.48
504085	Carmen	146887.	094K	2009/sep/17	20090917	405.558
501321	Lana	124708.	094K	2009/dec/31	20091231	101.627
501446	Meg	124708.	094K	2009/dec/31	20091231	236.91
501482	Hunter	124708.	094K	2009/dec/31	20091231	406.726
501523	Sara	124708.	094K	2009/dec/31	20091231	287.368
501534	Missy	124708.	094K	2009/dec/31	20091231	406.025
501416	Ange:	124708.	094K	2010/jan/12	20100112	338.184
504049	Lucky Lady	146887.	094K	2010/jan/17	20100117	406.228
504060	Peak	146887.	094K	2010/jan/17	20100117	422.084
504064	Peak South	146887.	094K	2010/jan/17 2010/may/1	20100117	422.362
504869		146886.	094K	2	20100512	746.834
501462	Sox	124708.	094K	2010/dec/31	20101231	253.727
501497	Taya	124708.	094K	2010/dec/31	20101231	202.698
501161		146886.	094K	2011/jan/12	20110112	153.57
501201	-	146886.	094K	2016/jan/12	20160112	153.709

APPENDIX B

MUSKWA-KECHIKA SMZ

LINKS TO INFORMATION ON THE MUSKWA-KECHIKA SPECIAL MANAGEMENT ZONE

Government and separate advisory board http://srmwww.gov.bc.ca/rmd//rmp/mk http://wnw.qp.gov.bc.ca/statreg/stat/M/98038_01.htm http://www.em.gov.bc.ca/subwebs/oilandgas/ptp/MKMA.htm http://www.qp.gov.bc.ca/statreg/reg/M/53_2002.htm http://www.dir.gov.bc.ca/gtds.cgi?show=Branch\&organizationCode=SRM\&organization alUnitCode $=$ MK

Canadian Parks and Wilderness Society http://www.cpaws.org/northernrockies

The Muskwa-Kechika Management Area http://www.wilderness.net/library/documents/iJWDec03 ShultisRutledge.pdf

APPENDIX C

ASSAYS

CLIENT JOBINFORMATION
Project Tiident
Shipment ID:
P.O. Number

Number of Samples:
39

SAMPLE DISPOSAI

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Method Code	Nunter of samples	Code Desoription	Test Wht (g)	Report Status
R150	53	Cruch split and pulveice tock to 150 mesh		
71X	68	4 Acid digetion ICP.ESACP.MS analye	0.5	Completed
3 A	10	Ignite samples, acid digest Au by ICP.MS	15	Completed

Vetsion 2 to include Au by 3 A anales

Acme does not accept responsibility for samples left at the laboratory atter 80 disy without prior wortiten irstivectione tor sample storage or teturn

Invoice To:
Action Mineral
1255 W. Pender St
Vancouver BC V6E 2V1
Canada

CC:

TM

852 E. Hastings St. Vancouver BC V6A 1R6 Canada
Phone (604) 253-3158 Fax (604) 253-1716

Action Mineral

1255 w . Fender St
Vancowver BC VEE 2VI Canada
Trident
Februany 05,2008

CERTIFICATE OF ANALYSIS

	$\begin{gathered} \text { Method } \\ \text { Aralyte } \\ \text { Unit } \\ \text { MDL } \end{gathered}$	7TX	7TX	7TX	7 T X	7TX	7 TX	7TX	7 TX	7TX	7 TX	7 x	7TX	7 TX	7 TX	7TX	$77 \times$	7 TX	$71 \times$	71\%	718
		Mo	cu	Pb	2 n	Ag	Ni	Co	3 Na	F\%	ds	u	Th	$s{ }_{r}$	cd	Sb	a	V	C3	P	Ls
		ppm	ppm	ppro	ppm	ppm	ppm	cpm	ppm	\%	ppm	ppm	ppm	pem	fpm	fom	ppm	ppm	\%	\%	ppon
		0.5	0.5	0.5	5	05	05	1	5	0.01	5	0.5	05	5	0.5	0.5	0.5	10	001	0.01	05
488101	Rock	06	193	1.4	4	0.5	56	7	512	3.10	9	17	40	111	0.5	08	0.8	28	10.33	0.06	13.4
406102	Rock	0.5	527	14	5	0.5	44	15	303	100	21	1.1	27	87	S05	1.1	06	26	6.97	0.03	10.5
405103	Rock	05	359	1.4	क	9.5	41	4	404	1.98	5	3.1	88	72	c0,	0.7	<0.5	62	0.10	0.03	15.2
405104	Rock	0.5	1376	0.8	5	0.5	5.9	5	374	2.10	7	13	3.6	62	<0.5	1.3	605	23	6.12	008	68
468105	Rook	0.7	216.3	12	5	0.5	6.9	7	473	2.38	12	2.4	6.5	88	0.5	1.4	cos	43	7.18	0.04	10.9
488107	Rook	0.6	1158	07	4	Q 0.5	3.8	4	514	2.41	4	1.1	3.0	80	40.5	1.0	<0.5	28	8.03	0.02	3.9
465108	Rock	0.8	1434	77	5	0.5	248	9	283	1.41	17	15	28	64	0.5	3.3	<0.5	24	3.09	004	4.9
465109	Rock	0.5	135397	5.4	36	6.4	482	20	1086	1363	116	05	0.5	66	0.5	13.4	13.5	13	6.07	6001	2.0
486110	Rock	0.6	200609	133	94	11.7	129.3	84	47	1973	264	0.5	0.5	6	1.2	32.1	90.6	<10	425	0.02	1.0
406111	Rock	605	71123	47	34	4.6	342	20	1375	883	111	09	1.7	131	0.5	43	240	<10	10.44	40.01	2.4
486112	Rock	09	21687	18	18	18	22.1	16	1751	4.65	16	06	1.2	72	0.5	2.6	60	<10	11.01	0.03	9.1
485113	Rodk	60.5	5067	4.5	0	0.5	9.4	6	569	2.47	9	06	1.2	59	<0.5	0.9	2.2	<10	5.84	0.02	2.9
466114	Rodk	0.6	5056	1.1	6	0.5	15.5	8	346	1.77	5	45	1.0	34	0.5	1.1	1.3	<10	2.70	0.04	4.2
486115	Rock	0.5	13988	06	5	0.5	25.0	18	632	166	5	0.5	1.1	63	0.5	1.2	0.6	$\leqslant 10$	430	0.01	1.4
468118	Rock	0.5	7850	08	4	$\infty .5$	1.6	2	1432	232	5	0.7	1.7	150	<0.5	405	c0.5	<10	10.72	004	89
465117	Rock	40.5	775.1	405	5	4.5	2.3	2	782	181	5	17	3.8	111	60.5	08	<0.6	27	7.48	003	3.9
466118	Rook	0.5	40004	63	21	2.7	18.6	17	358	6.05	28	405	0.5	26	0.5	48	6.5	10	0.77	¢001	2.1
466119	Rock	0.8	7987	22	9.	0.5	15.6	10	¢09	2.39	7	45	0.5	103	0.5	3.5	1.0	10	431	0.11	2.3
465119 A	Rook Pulp	71.5	4414	1916	6709	240	50.7	61	882	20.08	575	35	6.2	138	30.7	116.4	21.5	60	1.74	0.04	14.0
4051198	Rook Pulp	5.1	489	35	55	$\bigcirc .5$	30.4	11	772	3×8	5	09	2.3	262	∞	1.1	4.5	112	2.50	0.05	10.4
466120	Rock	0.6	6278	19	7	4.5	6.3	4	177	174	42	12	2.3	29	¢0.5	1.1	1.0	23	1.04	0.08	5.3
485121	Rock	0.7	98008	2.8	8	2.0	6.3	3	65	327	7	¢15	9.5	15	60.5	1.6	1.1	<10	0.32	0.04	1.3
465122	Rode	0.6	3118	0.7	\$	0.5	3.2	2	022	239	¢	1.4	38	141	50.5	07	0.5	31	10.29	0.04	8.2
468123	Rock	08	(18347	85	4	6.0	248	26	193	858	5	1.4	2.2	37	0.7	24	1.1	12	2.24	0.32	42
466124	Rock	0.5	15101	11.0	15	2.9	27.8	5	354	287	7	18	3.4	48	c0.5	25	0.5	22	3.70	0.15	8.7
406125	Rock	<0.5	68581	79	14	2.9	10.6	7	65	653	9	12	2.5	17	$\bigcirc 0.5$	3.1	0.7	35	0.50	009	28
486123	Rock	2.0	5508	14.8	21	0.5	10.2	10	167	172	14	09	24	20	60.5	30	0.8	40	0.76	0.03	12.4
406127	Rock	24	23352	289	58	0.5	16.7	24	383	3.90	78	18	47	58	c0.5	11.2	3.3	65	262	0.04	15.9
405128	Rock	1.1	1253	78	63	0.5	11.0	11	36	1.45	16	1.3	3.7	94	0.5	1.1	10	54	318	003	15.0
405129	Rock	1.8	8750	8.4	25	0.5	53.8	34	308	153	132	1.1	2.3	25	0.5	6.8	3.2	29	1.11	0.03	8.4

Trident
Report Date:

Page:

CERTIFICATE OF ANALYSIS
Method $7 T \times 7 T X \quad 7 T X \quad 7 T X$
sralyte Cr Ma Ba
Araly $\mathrm{Cr} \quad \mathrm{Ma} \quad \mathrm{Ba} \quad \pi \quad 81$
7Tx 7Tx $\begin{array}{llll}\text { 7TX } & 7 T X & 7 T X & 7 T\end{array}$ \% \% \% \% fom
fomcom
0.5

VAN07001993.2

(

CERTIFICATE OF ANALYSIS

VAN07001993.2

	$\begin{gathered} \text { Method } \\ \text { Aralyte } \\ \text { Unit } \\ \text { MDL } \end{gathered}$	38 8.4 ppb 0.5
486101	Rock	NA.
486102	Rock	NA.
486103	Rock	NA.
46104	Rock	NA.
486106	Rock	NA.
486107	Rock	NA.
48108	Rock	NA.
486109	Rock	720
4.6110	Rock	3312
985111	Rock	27.2
486112	Rock	NA.
486113	Rock	NA.
486114	Rock	NA.
486115	Rock	H.
48116	Rock	N.
486117	Fock	N.
465118	Rock	N.
486119	Rock	NA.
485112 A	Rock Pulp	NA.
4851198	Rock Pulp	NA.
485120	Rock	15.7
486121	Rock	N. ${ }^{\text {a }}$
486122	Reck	H.
486123	Rock	NA.
486124	Rock	HA.
485125	Rock	NA.
465120	Rock	H.
456127	Rock	48.9
466128	Roosk	NA.
486129	Rook	18.9

acme analyical laboratories lto ACMEA
Canada 852 E. Hastings St. Vancouver BC V6A 1 R6 Phone (604) 253-3158 Fax (604) 253-1716

AAcmelabs
ACME ANALYTICAL LABORATORIES LTD
852 E. Hastings St Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (604) 253-1716

A Acmelabs
ACME ANALYTICAL LABORATORIES LTD.
852 E. Hastings St Vancouver BC V6A 1R6 Canada
Phone (604) 253-3158 Fax (604) 253-1716
www.acmelab.com

QUALITY CONTROL REPORT VAN07001993.2

	Method Analyte Urit MDL	3.8 Au peb 0.5
Fulp Duplicates		
486130	Rock	N.A.
REP 455130	QC	
486201	Rock	196
REP 485201	QC	170
488211	Reck	N.A.
REF 465211	QC	
Reference Materias		
STD O 0 ¢ 57	Standard	$3 \% .1$
STD OXDF:	Standard	368.9
ST0 SF-3T	Standard	
STD SF.3T	Standard	
STD \$F-3T	Standard	
STD SF-3T Expected		
STD OXDEF Expected		413
BLK	Blark	
EUK	Blark	
BLK	Blark	
BUK	Blark	
BLK	Blark	
Buk	Blark	4.5
Prepiwash		

acme analytical laborator Ies ltd.
852 E. Hastings St Vancouver BC V6A 1R6 Canada Phone (604) 253-3158 Fax (804) 253-1716

QUALITY CONTROL REPORT

VAN07001993.2

		3 3
		su
		pob
	Prep Elark	N.A
G1	Prep Elark	N.A

852 E. Hastings St. Vancouver BC V6A 1R6 Canada
Phone (604) 253-3158 Fax (604) 253-1716

Client:

Report 0ate

Action Mineral

1255 wt Pender St
Vancouver BC V6E 2V1 Canada
Trident
February 06, 2000

VAN07001993.2

[^1]aCME ANALYTICAL LABORATORIES LTO
852 E. Hastings St. Vancouver BC VGA 1R6 Canada Phone (604) 253-3158 Fax (804) 253-1716

Client:

Submited By.

Recening Lab
Recemed:
Report Date
Page

Bradford Minerals

1255 u/ Pender St
Vancouver EC VEE 2V1 Canada
Searge Cootze
Acme Analyotal Labor atoties (Vancowver) Lsd.
November 29, 2007
Jaruary 08, 2008
1 ot 2

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION
Project
Stipment ID:
P.O Tumber
Number of Sample 7

SAMPLE DISPOSAL

OISP.PLP
Depoce of Pup Atter 90 davz
Acme does not aocept responsitility for samples left at the laborabiry ater wo
dasy viethout prior witten instructions for sample storage or ceturn
Invoice To
Eradford Minerals
C.

metrood Code	Number d Samples	Code Desoniption	Test Wg (9)	Report Statur
R150	7	Erushapit ans putserice drill core to 100 mesh		
7 TC	7	4 Acid Digeston Analge by ICP-ESICP.MS	0.5	Completed
ABDITIONAL COMMENTS				

1255 W . Pender St
Vancouver BC V6E 2V1
Canada

[^2]

a Me analytical laboratories lto
852 E. Hastings St Vancouver BC VGA 1 RE Canad
Phone (604) 253-3158 Fax (604) 253-1716

Bradford Minerals

1255 w . Pender St Sancower EC LEE 2V1 Canada

None Gmen
January 03, 2006

2012 Fart 2

CERTIFICATE OF ANALYSIS

whw.acmelal.com

 Phone (604) 253-3158 Fax (604) 253-1716

Bradford Mineral

1255 ur . Perider St
Gancouser BC V6E 2V1 Canada

None Gheren
January 08, 2008

Fage

QUALTY CONTROL REPORT

	Method	$71 \times$	7 TX	7TX	7TX	$7 \mathrm{~T} \times$	7 T	71X	7 TX	$7 \mathrm{~T} \times$	$7 \mathrm{~T} \times$	7TX	$7 \mathrm{~T} \times$	$7 \mathrm{~T} \times$	$71 \times$	$7 \mathrm{~T} \times$	7 TX	$7 \mathrm{~T} \times$	71X	7 IX	7 TX
	Analyte	crors	Mg	B2	Ti	8.1	Ns	K	w	2 r	Ce	Sn	γ	to	T3	E*	Sc	L	8	Fb	Hf
	Urit	ppro	\%	ppom	\%	\% $\%$	\%	\%	ppm	ppon	ppm	pptn	ppm	pem	ppm	ppm	ppm	ppm	9	ppom	ppm
	HOL	1	0.01	5	0.001	001	0.01	0.61	0.5	05	5	0.5	0.5	0.5	05	5	1	0.5	0.5	05	05
Reference Materiait																					
STDSF-3T	Standard	178	470	513	0.197	551	208	2.56	42	13.5	4.	63	10.7	15.0	0.5	5	7	25.6	42	90.7	05
ST0 SF.3T	Standard	163	471	514	0.197	6.43	207	200	43	13.2	43	6.1	10.7	143	0.5	5	7	249	42	91.6	06
STD Sf.3T Expected		207.4	467	508	0.19	5.43	208	247	43	14	3	58	11.5	15.1	0.9	0	7	12.1	3.5	908	00
BLK	Elark	ब	क. 01	< 5	\$0001	<001	¢001	©01	40.5	40.5	\%	40.5	<0.5	0.5	0.5	5	<1	<0.5	0.5	40.5	25
Fraplayash																					
9	Prep Elark	10	071	1581	0231	8.15	277	3.14	6.5	9.9	4	13	14.5	25.0	1.0	5	5	424	40.5	135.4	08
S1	Piep Plark	7	072	1007	0220	7.89	269	295	0.5	82	44	14	13.9	23.9	1.0	5	4	322	0.5	1268	06

Missy NE Extension assays (Samples 8 and 9 were taken on the Taya Claim)

[^3]Allest

ACME ANALYTICAL LABORATORIES LTD.
852 E Hastings St. Vancouver BC V6A 1 R6 Canada
Phone (604) 253-3158 Fan (604) 253-1716
www.acmelab.com

Bradford Minerals

1255 w. Fender St Vancouver BC WEE2V1 Canada

None óven
Februany 01, 2008

QUALITY CONTROL REPORT

1 of 1
Fart 3

	Hethod snalyte Urit MOL	3.8 8.0 pob 0.5
Pulp Dupliostes		
11	Rock Fup	422
REP 11	QC	
Reference Matariate		
510 0×067	Standard	38.1
STD 0×057	Standard	3889
STD SF-3T	Standard	
STO SF-3T	Standard	
STO SF-3T	Standard	
STD SF.3T	Standard	
STD SF-3T Expected		
STO OXD57 Expected		413
BuK	Blask	
BLK	Blark	
ELK	Blark	95
Preplifash		
G1	Prep Blark	NA
61	Prep Blark	N. A

APPENDIX D

Racing River Claims

Claim Name	Grant Number District	Registered	Mining
uronson and Toro Properties (1)			
Bronson	501161 094K		
428 North	501179 094K		
Book 50120	1 094K		
Toro 504869	094K		
Muskwa Property			
Delano 1-2	508511-508512 094K		
3	508515094 K		
3	508554 094K		
4	508521 094K		
5	508527 094K		
6	508535 094K		
7	508537 094K		
8	508540 094K		
9	508771 094K		
10-11	511472-511473 094K		
12-13	511475-511476 094K		
14	511478 094K		
15	511480 094K		
16-17	511482-511483 094K		
18	511485094 K		
19	511488094 K		
20	511490094 K		
21-22	511619-511620 094K		
23	515490094 K		
24	515495094 K		
25	515505094 K		
26	515516094 K		
27-28	517636-517637 094K		
28	517639094 K		
Dieppe 1-4	508597-508600 094K		
6-7	508602-508603 094K		
8-10	508605-508607 094K		
11	508609094 K		
12	508617 094K		
13	508621 094K		
14	508623094 K		
15	508627094 K		
(1) optioned from Horst Klassen			
Dieppe 16	508629 094K		
17	508633 094K		
17	508634 094K		
18	508636094 K		
18	508639 094K		
20	508642 094K		
21-22	508644-508645 094K		

23	508647094 K
24	508651 094K
25	508656 094K
26	508659 094K
27	508666 094K
28-29	508670-508671 094K
30	508675094 K
31-36	508685-508690 094K
36	508691 094K
38-40	508692-508694 094K
41-42	508696-508697 094K
43	508699 094K
44	508704094 K
45	511492 094K
46	511494 094K
46	511496094 K
47	511498 094K
48	511500 094K
49	511600 094K
50-52	511602-511604 094K
53	511614 094K
54-55	525822-525823 094K
Gataga 1-2	508444-508445 094K
508447 094K	
508449 094K	
508450-508452	2094K
8-11 508454	4-508457 094K
12-13 508459	-508460 094K
Gataga 14	508462 094K
15	508464 094K
16	508467 094K
17-19	508469-508471 094K
20509141	094K
21511520	094K
22-23	511522-511523 094K
24-25	511525-511526094K
26-32	511528-511534 094K
33-36	511536-511539 094K
37-38	511615-511616094K
39511618	094K
Grizzly 1	508545 094K
2	508550 094K
4	508557 094K
5	508560 094K
6-11	511143-511148 094K
12-13	511150-511151 094K
13	511153 094K
14	511155 094K
15	511157 094K
16	511159 094K
16	511160 094K
17	511162 094K
18	511165094 K
19-20	511188-511189094K
21-23	511191-511193094K
24	511195 094K
25	511198 094K
26-27	511200-511201094K

```
    511203 094K
    511205 094K
    511212 094K
    511215 094K
    511217 094K
    511219 094K
    511220 094K
    511222-511223 094K
    511225 094K
    511228 094K
    511232 094K
    511235-511236 094K
        511242 094K
        511245 094K
    Grizzly 44-45 511247-511248 094K
    46 511250 094K
    47-49 511252-511254 094K
    50 511256 094K
    51 511258094K
    52 511260094K
    53-54 511262-511263 094K
    55 511265 094K
    56-58 511267-511269 094K
    59-64 511271-511276 094K
    65-72 518973-518980 094K
    73-76 52577^-525774 094K
    77 525780 094K
    78-80 525783-525785 094K
    81-83 525787-525789 094K
    84-85 525791-525792 094K
    86-87 525794-525795 094K
    88-90 525797-525799 094K
    91-95 525801-525805 094K
    96-97 525808-525809 094K
    98 525811 094K
    99-101 525814-525816 094K
    102 525818 094K
    103-104 525820-525821 094K
Socrates 1 508479 094K
    2 508482 094K
    2 508483 094K
    4-10 508484-508490 094K
    11 508492 094K
    12 508494 094K
    13 508497 094K
    14 508504 094K
    15-19 508506-508510 094K
    20 511436 094K
    21 511439094K
    22 511441 094K
    23 511443 094K
    24-27 511446-511449 094K
    28-38 511451-511461 094K
    39 511463 094K
    40-41 511465-511466 094K
    42-44 511595-511597 094K
: ates 45 511599 094K
    46 515464 094K
```

47-49 515466-515468 094K
50-52 515470-515472 094K
$53 \quad 515476094 \mathrm{~K}$
54515482094 K
$55 \quad 515485094 \mathrm{~K}$
$56 \quad 515811094 \mathrm{~K}$
$57 \quad 515813094 \mathrm{~K}$
58-68 515816-15826 094K
Toad 1508707094 K
2-3 508709-508710 094K
4511502094 K
5511505094 K
6511507094 K
7511509094 K
8-10 511511-511513094K
11511515094 K
12-13 511607-511608 094K
14-15 511610-511631 094K
16511613094 K
17517407094 K
18517410094 K
Bronson and Toro Properties (1)

Bronson	501161094 K
428 North	501179094 K

Book 501201 094K
Toro 504869 094K
a Muskwa Property
Delano 1-2 508511-508512 094K
3508515094 K
3508554094 K
4508521094 K
$5 \quad 508527094 \mathrm{~K}$
$6 \quad 508535094 \mathrm{~K}$
$7 \quad 508537094 \mathrm{~K}$
8508540094 K
9508771094 K
10-11 511472-511473094K
12-13 511475-511476 094K
$14 \quad 511478094 \mathrm{~K}$
$15 \quad 511480094 \mathrm{~K}$
16-17 $\quad 511482-511483094 \mathrm{~K}$
18511485094 K
19511488094 K
20511490094 K
21-22 511619-511620 094K
23515490094 K
24515495094 K
$25 \quad 515505094 \mathrm{~K}$
$26 \quad 515516094 \mathrm{~K}$
27-28 517636-517637 094K
$28 \quad 517639094 \mathrm{~K}$
r 'vope 1-4 508597-508600 094K
6-7 508602-508603 094K
8 -10 $\quad 508605-508607094 \mathrm{~K}$

11	$508609094 K$
12	$508617094 K$
13	508621094 K
14	508623094 K
15	508627094 K

(1) optioned from Horst Klassen

26-32	511528-511534094K
33-36	511536-511539 094K
37-38	511615-511616094K
395116	094K
$\mathrm{M}^{\text {rizzly }} 1$	508545094 K
2	508550 094K
4	508557 094K
5	508560 094K
6-11	511143-511148 094K
12-13	511150-511151 094K
13	511153 094K
14	511155094 K
15	511157 094K
16	511159 094K
16	511160 094K
17	511162 094K

TWENTY-SEVEN CAPITAL CORP.- CLAIM LIST SEPTEMBER 6, 2006
Registered
Mining
Claim Name Grant Number District
Muskwa Property (cont'd)
$18 \quad 511165094 \mathrm{~K}$
19-20 511188-511189094K
21-23 511191-511193 094K
24511195094 K
$25 \quad 511198094 \mathrm{~K}$
26-27 511200-511201 094K
$28 \quad 511203094 \mathrm{~K}$
29511205094 K
$30 \quad 511212094 \mathrm{~K}$
$31 \quad 511215094 \mathrm{~K}$
32511217094 K
33511219094 K
$34 \quad 511220$ 094K
35-36 511222-511223 094K
37511225094 K
$38 \quad 511228094 \mathrm{~K}$
$39 \quad 511232$ 094K
40-41 511235-511236 094K
$42 \quad 511242094 \mathrm{~K}$
$43 \quad 511245094 \mathrm{~K}$
Grizzly 44-45 511247-511248094K
46511250 094K
47-49 511252-511254 094K
$50 \quad 511256094 \mathrm{~K}$
51511258094 K
52511260094 K
53-54 511262-511263 094K
$55 \quad 511265094 \mathrm{~K}$
56-58 511267-511269 094K
59-64 511271-511276094K
65-72 518973-518980 094K
73-76 525771-525774 094K
$77 \quad 525780094 \mathrm{~K}$
78-80 525783-525785 094K

11511515094 K
12-13 511607-511608 094K
14-15 511610-511611 094K
16511613094 K
17517407 094K
18517410 094K

APPENDIX E

DRILL AND GEOTECHNICAL LOGS

Drill Hole: MY-07-01

AZ: 104

Logged by: David Peake

Claim: Missy \quad N: 6485874
DIP: $-45 \quad$ EL:1435m

E: 363703

DHS: 17 Febr 2007

Final depth: 37.5 m

DHF: 22 Febr 2007

Notes: To intersect the three exposed on the south-east slope of the Missy Knoll.

Drill Hole: MY-07-01
From: To:
Notes:
0 18m
Notes: Casing

Drill Hole: MY-07-01
From:
To:
037.5 m

Notes: \quad About 60% of the rocks are carbonates. All the larger rocks greater than 3 cm consist of dolomite except for a 0.18 m long dyke material at 31.2 m depth. There are two more 3 cm dyke rocks at about 8 m and 12 m depth. A shale segment begins after around 35 m . There are two prominent clay seems at around 26 m and 32 m .

Lithology: Assorted glacial rock rubble and two clay seems.

Structure: Glacial rocks, pebbles and gravel to larger boulders (largest 19 cm). Mud and sand most likely also was incorporated but was
Structure: washed out during drilling.

Alteration: Glacial weathering and rounding
Veining: \quad Two rocks in the 32 m clay seem have small calcite veins.
Mineralization: No apparent.
Final Depth: Abandoned at 37.5 m

Drill Hole: MY-07-02	Claim: Missy	N: 6485874	E: 363703	Final depth: 32 m
AZ:138	DIP: -60	EL: 1435 m	DHS: Aug. 27th, 2007	DHF: September 2nd, 2007
Logged by: David Peake	Teched by: George Coetzee			
Notes: To intersect the three veins exposed on the south-east slope of the Missy Knoll.				

Drill Hole: MY-07-02
$\begin{array}{cc}\text { From: } & \text { To: } \\ & 021.34 \mathrm{~m}\end{array}$

Notes:
 Casing

Drill Hole: MY	
From:	To:
0	32.00 m
Notes:	About $65-75 \%$ of the rocks are a siliceous sandstone. All the larger rocks greater than 3 cm consist of this sandstone except for core segments deeper than about 30 m which then some of the larger rocks are shale float. Shale mostly shows up at these deeper depths and consists of about $5-10 \%$ of the core. There are a few fragments 2% that are of the green and red conglomerate. There is some dyke material also within the pebbles, the largest 3 cm wide, about 1% of the core. There is also a clay section with mostly shale fragments, but there may have been more clay but it was washed out.
Lithology:	Assorted glacial rock rubble
Structure:	Glacial rocks, pebbles and gravel to larger boulders (largest 19 cm). Mud and sand most likely also was incorporated but was washed out during drilling.
Alteration:	Glacial weathering and rounding
Veining:	Four larger rocks contain calcite veining varying from fracture points to pockets but none are wider than 0.5 cm except for one segment that is about 4 cm thick but only protrudes through have the core width. There is about 1% of the float that is calcite pebbles.
Mineralization:	No apparent other than some iron oxidation on about 5-10\% of the siliceous fine grained sandstones.

[^4]Drill Hole: MY-07-03
AZ: 271
Logged by: David Peake

Claim: Missy
DIP:- 60
Teched by: George Coetzee

E: 363752
DHS: Sept. 8th, 2007

Final depth: 25.3 m
DHF: September 12th, 2007

Notes: To intersect the three exposed on the south-east slope of the Missy Knoll.

Drill Hole: MY-07-03
From: To:
$0 \quad 9.75 \mathrm{~m}$
Notes: Casing

Drill Hole: MY-07-03
From: To:
$0.61 \quad 3.05 \mathrm{~m}$
Notes: \quad Fine silts with various sizes of pebbles incorporated.
Lithology: River rock, organic matter, and a clay that has calcite within (fizzes from HCl)
Structure: Mud most likely from decayed organic matter .
Alteration: Decomposed matter and runoff
Veining: None
Mineralization: No apparent mineralization

Drill Hole: MY-07-03
From: To
$3.05 \mathrm{~m} \quad 15.85 \mathrm{~m}$
Notes: \quad About $70-75 \%$ of the material is a fine grained sandstone, ranging in size from sands to 7 cm rocks. Five larger pieces of dyke material are intermingled all of which are about $2-3 \mathrm{~cm}$ cubed. Drywall mud is also incorporated by the drillers to reduce collapsing of the hole.

Lithology: Assorted glacial rock rubble
Structure: Glacial rocks, pebbles and gravel to larger boulders (largest 7 cm). Mud and sand most likely also was incorporated but was washed out during drilling.

Alteration: Glacial weathering and rounding
Veining: No apparent other than a few calcitic pebbles
Mineralization: One segment of mostly pyrite incorporated into a shale (0.5 cm squared)

Drill Hole: MY-07-03
From: 15.85 To: 25.3
Notes:
About 70% of the material is a fine and coarse grained sandstone, ranging in size from sands to 27 cm rocks. One larger piece of dyke material with a length of 23 cm at 25.30 m depth. Contains one exposed surface also on the core side giving the appearance of a halved core section suggesting cored from a boulder. Also intermingled there are a few pieces of dyke material $2-3 \mathrm{~cm}$ in diameter. About 20% is shale or varying sizes, largest being 20 cm . One larger piece of conglomerate 14 cm long with veining.
Lithology:
Assorted glacial rock rubble
Structure:
Glacial and possibly glacial rocks, pebbles and gravel to larger boulders (largest 27 cm). Mud and sand most likely also was incorporated but was washed out during drilling.
Alteration:
Glacial weathering and rounding, one piece of dyke material 0.22 m long.
Veining:
One conglomerate boulder (13 cm) has veining across the length about 3 mm wide. No other apparent veining other than a few calcitic pebbles
Mineralization
No apparent mineralization
Final Depth: Abandoned at $\mathbf{2 5 . 3 m}$

Drill Hole: MY-07-04
AZ: 337

Claim: Missy

DIP: -78

N: 6485733 E: 363732

EL: 1413m DHS: Sept. 15, 2007

Final depth: 57.61 m

DHF: Sept. 21, 2007

Logged by: David Peake Teched by: George Coetzee
Notes: To intersect vein three exposed on the south-east slope of the Missy Knoil.

Drill Hole: MY-07-04
From:From: To:
$0 \quad 20.14$
Notes: \quad There is a 0.23 m section, biggest of all is a silica/calcite matrix with a combination of chalcopyrite and pyrite. Judging from the amount of malachite versus iron oxides, there appears to be more pyrite, with a ratio of $75: 25$ pyrite:chalcopyrite. The other rocks consist of grey/black shale, silica rich bedrock (some with dark chlorite stringers, with malachite on them, one piece is about 1 cm in diameter), red iron rich bedrock, a calcite rich pebble, one pebble has heavy folding
Lithology: Assorted till rock rubble
Structure: \quad Glacial till rocks, pebbles to larger boulders (of 23 cm). Mud and sand most likely also was incorporated but was washed out during drilling
Alteration: Glacial weathering and rounding, within the silica 23 cm section there is minor amounts of Fe oxidation and minor malachite secondary mineralization.
Veining: \quad Some pieces have minor veining (less than 1%) incorporated or are part of a larger structure but no piece appears to be attached to a structure.
Mineralization: Three rocks contain sacrificial malacite and/or iron oxidation. They have about $2-4 \%$ chalcopyrite /pyrite. Most of the mineralization appears to be pyrite $70-80 \%$ and the chalcopyrite being $30-20 \%$ mineralization

Drill Hole: MY-07-04
From: To
$20.14 \mathrm{~m} \quad 21.26 \mathrm{~m}$
Notes: \quad Black/grey shale with varying dip changes. Some areas in longer drill sections and others are brecciated, one from faulting at 21.20 m .

Lithology: Black to Grey Shale
Structure: \quad Some bedding $0(20.14-20.42 \mathrm{~m}), 30(20.71-21.11 \mathrm{~m})$, and $50(21.01-21.26 \mathrm{~m})$ degrees off the drill angle. Shale is brecciated from 20.42-20.74m, and 21.19-31m

Alteration: None
Veining: Minor amounts of calcite veining most less than 1 mm , with one 5 mm veining is less than 1% of the section.
Mineralization: Found two spots of chalcopyrite both less than 1 mm squared. Mineralization minor.

Drill Hole: MY-07-04
From: To
$21.26 \quad 22.77$
Notes: \quad More fluvial rubble. Most are less than 3 cm diameter.

Lithology: Weathered shale segments, fine grained silica sandstones, some iron oxidized segments.
Structure: \quad Fluvial rounded segments, most less than 0.03 m diameters with the largest 0.05 m . One shale segment 0.08 m long, with calcite in filled fracture point less than 0.002 m .

Alteration: Fluvial weathering
Veining: \quad One shale segment 0.08 m long, with calcite in filled fracture point less than 0.002 m . Other pebbles have veining that is 1 mm and less cutting across them.

Mineralization: Only one visible area with a small chalcopyrite/pyrite in a 1 mm square area.

Drill Hole: MY-07-04

From: To
$22.77 \quad 24.30$
Notes: Some micro-faulting, with the shale mostly
Lithology: Black and grey shale bedding, shale bedding has some calcite composition as fizzes with acid.
Structure: \quad Most of the bedding is $75-70$ degrees TCA. Parting at bed angles.
Alteration: Some of the veining has some silica content
Veining: Quartz carbonate veining in fracture points (less than 1%), most are less than 0.5 mm with a few about 1 mm
Mineralization: Minor amounts of mineralization of chalcopyrite within calcite veining. Most are small pockets less than 1 mm square, one at 22.92 m .

Drill Hole: MY-07-04
From: To:
$24.30 \quad 24.85$
Notes: A section of heavy quartz carbonate veining, about 35% veining. Shale within section very brecciated suggesting fault zone. Veining varies in angle with no specific trend for TCA. A milled zone occurs at 22.56 m .

Lithology: Black and grey shale and quartz carbonate veining.
Structure: Fault zone with brecciated shale with veining in fractures, with milled fault at 24.56 m .
Alteration: Quartz carbonate infill.
Veining: About 35% quartz carbonate veined zone
Mineralization: No apparent.

Drill Hole: MY-07-04
From: To:
$24.85 \quad 35.56$
Notes: Mostly grey shale with black sections. Some faulting and folding but on a minor scale. About 5-10\% veining. Between two larger veins (each about $5-6 \mathrm{~cm}$ wide) there is more mineralization of pyrite and chalcopyrite.

Lithology: Black and grey shale with some large veins cross cutting.
Structure: Most bedding at a $40-50$ TCA. At 32.55 m the bedding becomes more brecciated until 33.21 m . The shale in this section has a higher calcite content and fizzes.

Alteration: Veining infill
Veining: \quad Stringers within most of the section with two larger sections of about $5-6 \mathrm{~cm}$, one at 31.85 m and the other 31.61 m and another at 32.89 m that is 1.25 cm wide.

Mineralization: At 31.75 in a more brecciated zone between the two larger veined areas there is a 15 cm section with a predominantly pyrite zone that has mineralization scattered within. Then at 32.07 m there is a small stringer of chalcopyrite/pyrite only 5 mm by 0.5 mm . At 34.42 m also larger pyrite mineralized bleb within the veining.

Drill Hole: MY-07-04

From: To:
$35.56 \quad 38.2$
Notes: A large brecciated zone of shale/fine silt with 40% veining. Little apparent mineralization through the area.
Lithology: Brecciated black and grey shale and quartz carbonate veining
Structure: \quad Brecciated zone with pieces avg about 3 cm in diameter.
Alteration: Brecciation.
Veining: Veining has no apparent trend other than infill. About 40% of the zone. One section of 25 cm has mostly veining with small pieces of included shale at 36.32 m

Mineralization: A small stringer of chalcopyrite at 37.05 m . No other apparent mineralization.

Drill Hole: MY-07-04

From: To:
$38.2 \quad 57.61$
Notes: Most of the shale is bedded with areas of brecciation. The areas of brecciation tend to carry more of the mineralization. Clay seams are also present with one likely between 47.16 to 47.34 m and the other 49.33 to 49.72 m .

Lithology: Black and grey shale with quartz carbonate veining with bedding of 45-60 TCA. The lighter grey shale has a carbonate composition. Clay seam at 47.16 m to 47.34 m and between 49.33 and 49.72 .

Structure: \quad Shale bedding trends $45-60$ TCA. There are two main clay seams where milling could have taken place as a cause of faulting.
Alteration: Grey bedding has higher carbonate composition. No major alterations other than so brecciation in $20-30 \mathrm{~cm}$ sections.
Veining: Quartz carbonate veining. Veining varies from less than a mm stringers to 5 cm . The larger veining tends to be parallel to the bedding. One main quartz carbonate bedding at 53.4 m to 53.55 m

Mineralization: Two larger mineralized zones with one being about $\mathbf{2 0 c m}$ at $\mathbf{4 5 . 2 6 m}$ consisting of pyrite/ chalcopyrite? blend spotty within the shale/veinin The other zone is at 43.58 m for 18 cm . Other stringers at $46.33,48.08,50.31,56.46$, and 57.58 m .

Assay Number	From (m)	To (m)	Cu PPM
465307	45.26	45.5	22.2

Final Depth: 57.61m

Drill Hole: MY-07-05
AZ: 273
Logged by: David Peake

Claim: Missy

DIP: 52.5
$\mathrm{N}: 6485727$

EL: 1408m

E: 363745

DHS: Oct. 4, 2007

Final depth: 44.81 m
DHF: Oct. 11, 2007

Notes: To intersect vein one exposed on the south-east slope of the Missy Knoll.

Drill Hole: MY-07-05
From: To:
$0 \quad 13.95$
Notes: Casing

Drill Hole:	7-05
From:	To:
0	16.27
Notes:	Within the weathered glacial till there is quite a bit of calcite/silica blend (calcite prominent), $\sim 10 \%$ calcitic silica. The high majority of the till rock consists of broken and fractured shale possibly from the contact between the till and the bedrock.
Lithoiogy:	Assorted glacial till rubble
Structure:	Glacial rocks, pebbles to rocks (of $5-6 \mathrm{~cm}$). Mud and sand most likely also was incorporated but was washed out during drilling. Most of the rocks are fractured possibly from the drilling too.
Alteration:	Glacial weathering and rounding, within the silica rich rock there is visible amounts of Fe oxidation.
Veining:	Some pieces are from a larger vein structure most likely broken from.
Mineralizat	A small section of iron oxidation.

Drill Hole: MY-07-05
From: To:
$22.36 \quad 27.85$
Notes: \quad Most of the shale is bedded with large areas of brecciation. Brecciation carries mineralization.
Lithology: Light grey shale brecciated with quartz carbonate infiling. The lighter grey shale has a carbonate composition.
Structure: Brecciated zone
Alteration: Some potential milling throughout.
Veining: \quad Carbonate quartz veining at about $25-35 \%$ of section from 23.47 m to about 27.85 m .
Mineralization: Quite a bit of chalcopyrite/pyrite mineralization, probably <4\% where present. One section very prominent primary chalcopyrite mineralized zone about 1 cm thick at 24.00 m and another 19 cm chalcopyrite/pyrite blend zone cutting long ways across the core/vein at 26.16 rn to 27.17 m and then another 1 cm bleb at 22.60 m . Primary mineralization also quite prominent throughout in blebs and incorporated within the brecciation at $27.80 \mathrm{~m}, 24.16 \mathrm{~m}, 23.12 \mathrm{~m}, 24.87 \mathrm{~m}$. The hole crosscuts vein no 1

Drill Hole: MY-07-05
From: To:
$27.85 \quad 32.36$
Notes: \quad Most of the shale is bedded with large areas of brecciation. Brecciation carries minor mineralization.
Lithology: Light grey shale brecciated with quartz carbonate infiling. The lighter grey shale has a carbonate composition.
Structure: Brecciated zone
Alteration: Some potential milling throughout. Major milling at 32.25 m and 32.01 m . Clays within milled areas and surround regions.
Veining: \quad Carbonate quartz veining at about $25-35 \%$ of section towards upper regions and then at about 29.45 m to 29.70 m fracturing.
Mineralization: One heavily chalcopyrite/pyrite mineralized area from $\mathbf{3 0 . 9 5 m}$ to $\mathbf{3 1 . 0 9 \mathrm { m }}$. Minor areas of mineralization in a few spots but in small blebs and less than 1 mm stringers, like at 30.05 m .

Assay Number	From (m)	To (m)	Cu PPM
4653012	30.95	31.09	21.4

Drill Hole: MY-07-05
From: To:
$32.36 \quad 44.81$
Notes: Black/grey shale with varying dip changes 15-40 TCA variation. Mostly bedded with a few clay spots.
Lithology: Black to Grey Shale with minor veining and minor mineralization. A 5 cm long piece of dyke material at 35.66 m .
Structure: \quad Most of the area bedded $15-40$ TCA. One piece of 5 cm green dyke material at 35.66 m , seems rounded and has a minor amount of Fe oxidation. A few faulted zones a major cemented one at 34.69 m .

Alteration: Faulting at 34.69 other than that no major alterations.
Veining: Minor amounts of calcite stringers most less than 1 mm . One veins less than 1 cm cuts across the core horizontally for about 30 cm .
Mineralization: Found minor amounts of chalcopyrite both less than 1 mm squared or incorporated in shale like in 32.8 m to 33.30 m and 23.73 m . Mineralization minor.

Final Depth: 44.81 m

Drill Hole: MY-07-06	Claim: Missy	N: 6485727	E: 363745	Final depth: 15.85 m
AZ: $\mathbf{2 7 3}$	DIP: $\mathbf{4 5}$	EL: 1408 m	DHS: Oct. 12, 2007	DHF: Oct. 13, 2007
Logged by: David Peake	Teched by: George Coetzee			

Notes: To intersect vein one exposed on the south-east slope of the Missy Knoll.

Drill Hole: MY-07-06
From:
$0 \quad 15.24$
Notes: Casing

Drill Hole: MY-07-06

From: To
0 15.85

Notes: Assorted river rocks of shale (a couple with veining) and sand.

Lithology: Assorted River Rock rubble
Structure: Fluvial rocks, pebbles to larger boulders (of 8 cm). Sand in the second section but believed to be added to make space and to demonstrate the material that came out of the wash.

Alteration: Fluvial weathering and rounding.
Veining: Some pieces have minor veining (less than 1%) incorporated or are part of a larger structure but no piece appears to be attached to a structure.

Mineralizat No apparent Cu but minor Fe oxidation
Final Depth: 15.85 m

Drill Hole: MY-07-07	Claim: Missy	N: 6485727	E: 363745	Final depth: 61.57
AZ: 256	DIP: 52.5	EL: 1408	DHS: Oct. 15, 2007	DHF: Oct. 18, 2007
Logged by: David Peake	Teched by: George Coetzee			

Notes: To intersect the three veins exposed on the south-east slope of the Missy Knoll.

Drill Hole: MY-07-07

From: To.
 $0 \quad 19.81$
 Notes: Casing

Drill Hole:	-07
From:	To:
0	17.5
Notes:	There is a 0.17 m section, with the rock types variable from shale, dolomitic limestone, and then some of the reddish and greenish rocks possibly from the conglomerate from higher elevations. Some minor veining in a shale breccia but no major vein systems.
Lithology:	Assorted River Rock rubble
Structure:	Fluvial rocks, pebbles to larger boulders (of 23 cm). Mud and sand most likely also was incorporated but was washed out during drilling.
Alteration:	Fluvial weathering and rounding with some minor Fe oxidation.
Veining:	Some pieces have minor veining (less than 1%) incorporated or are part of a larger structure
Mineralizat	No apparent major mineralization other than Fe oxidation.

Drill Hole: MY-07-07
From: To:
$17.5 \quad 27.62$
Notes: Black/grey shale with varying dip changes 20-50 TCA. Some veining that does carry some pyrite/chalco mineralization.
Lithology: Black to Grey Shale
Structure: Thrusted bedding that varies 20-50 TCA. Some vein stringers and cross cut and follow bedding planes. At the 23.19 m to 23.39 sections the vein occurred in a brecciated region.

Alteration: No major
Veining: \quad Minor amounts of calcitic silica veining most less than 1 mm , with one 0.5 cm veining cutting along the core angle from 23.19 m to 23.39 m . Another vein follows the bedding and is blebbed at 1 cm wide at 50 TCA.

Mineralization: Some minor and then more concentrated areas of chalco and pyrite mineralization. Two smaller more minor chalco stringers at 19.45 m and 20.39 m . The more concentrated areas at 23.39 m being 0.5 cm by 4 cm long appearing to be primarily pyrite with some chalcopyrite. The other segment consists of two blebs cutting across the core at 25.64 m being mostly pyrite, and 2 cm bleb at 23.99 m and then another chalco/pyrite blends at 24.91 m .

Drill Hole: MY-	
From:	To:
27.62	37.75
Notes:	A shale region of brecciation and veining. The heaviest mineralization in the drill hole occurs in this region.
Lithology:	Brecciated shale with veining altering from brecciation and bedding about every 0.33 m to 0.5 m . Where the lithology is not brecciated the bedding varies from 50-60 TCA. A segment of large vein is 0.48 m long. One small region at about 32.05 m appears to be more weathered, with it including a very small piece of green dyke material but only about 2 cm squared. There are some other rocks accompanying it that could be more of a limestone/ankerite.
Structure:	Brecciated shale with bedding altering every 0.33 m to 0.5 m . Some milling apparent at $29.72 \mathrm{~m}, 33.39 \mathrm{~m}$ ($>10 \mathrm{~cm}$), 34.34 m ($>15 \mathrm{~cm}$ long) and 36.65 m ($>20 \mathrm{~cm}$).
Alteration:	Infiling of calcite/silica blend with some carrying chalco/pyrite blend.
Veining:	Major veining occurs in region with many stringers throughout $\leq 1 \mathrm{~mm}$. Some of the more major veining occurs at $31.27 \mathrm{~m}-31.75 \mathrm{~m}$ and $36.72 \mathrm{~m}-36.88 \mathrm{~m}$. Other sections of veining $+/-5 \mathrm{~cm}$ occurs at $29.47 \mathrm{~m}, 30.03 \mathrm{~m}, 32.41$. There is a long stringer about 1 cm wide spanning from $37.32 \mathrm{~m}-37.75 \mathrm{~m}$.
Mineralization:	A more heavily $\mathrm{Cu} / \mathrm{Fe}$ mineralized zone, although no apparent secondary mineralization. Some minor apparent mineralized areas in blebs and stringers less than 0.5 cm squared at 29.19 m (pyrite), 29.57 m (pyrite), 30.42 m (chalco). 32.41 m (chalco), 36.75 m (chalco), 37.37 m (chalco), 37.49 m (chalco/pyrite) and 37.62 m (chalco/pyrite). The largest area of mineralization takes place between/within the vein of 31.27 m and 31.75 m with two sections about 2 cm squared the mineralization appears to be primarily chalcopyrite.

Assay Number	From (m)	To (m)	Cu PPM
4653012	31.27	31.75	1890

Drill Hole: MY-07-07
From: To:
$37.75 \quad 61.57$
Notes: \quad A predominately monotonous shale area with minor alterations or veining.
Lithology: Black and grey shale bedding with minor amounts of veining (mostly stringers)
Structure: \quad Most of the bedding is $20-30$ degrees TCA.
Alteration: No major alterations.
Veining: Minor stringers $<1 \mathrm{~mm}$ throughout but not as common as the upper regions of the drill hole. One 3 cm vein cuts about at 40TCA at 44.56 m . Some of the larger stringers about 0.5 cm to 1 cm wide occur at 38.91 m and then 48.05 m .

Mineralization: Some minor amounts of mineralization mostly carried within the stringers. Most appear to have a more higher pyrite content then chalcopyrite ratio. There stringers with mineralization mostly of pyrite with some chalco occur at $42.15,42.6,42.93,45.72,45.79$, 45.83 , and 47.71 m depths.

Final Depth: 61.57m

Missy Drill Hole Core Recoveries and RQD

MY-07-01
Recovery and RQD

From:	To:	REC	RQD	\%REC	Length
0	7.01	0.44	0	6	7.01
7.01	10.06	0.82	0.49	27	3.05
10.06	13.11	0.24	0	8	3.05
13.11	16.15	0.5	0.21	16	3.04
16.15	19.2	0.26	0	9	3.05
19.2	22.25	0.16	0	5	3.05
22.25	25.3	0.98	0.39	32	3.05
25.3	28.35	0.44	0	14	3.05
28.35	31.4	0.26	0.19	9	3.05
31.4	34.44	0.99	0	33	3.04
34.44	37.5	0.12	0	4	3.06

MY-07-02
Core and RQD recovery

From:	To:	REC	RQD	\%REC	Length
0	10.06	0.63	0.21	6	10.06
10.06	16.15	0.75	0.17	12	6.09
16.15	19.2	0.48	0	16	3.05
19.2	22.25	0.66	0.26	22	3.05
22.25	25.3	0.17	0	6	3.05
25.3	28.35	0.19	0	6	3.05
28.35	31.39	0.98	0.21	32	3.04
31.39	32	0.23	0.13	38	0.61

MY-07-03
Core and RQD recovery

From:	To:	REC	RQD	\%REC	Distance
0	3.05	0		0	3.05
3.05	11.58	0.39	0	5	8.53
11.58	13.72	0.25	0	12	2.14
13.72	15.85	0.36	0	17	2.13
15.85	16.76	0.82	0.51	90	0.91
16.76	17.98	0.72	0.43	59	1.22
17.98	18.9	0.15	0.1	16	0.92
18.9	19.81	0.17	0.13	19	0.91
19.81	20.73	0.08	0	9	0.92
20.73	23.47	0.18	0	7	2.44
23.17	25.3	0.71	0.54	33	2.13

MY-07-04
Core and RQD recovery

From:	To:	REC	RQD	\%REC	Distance
0	20.42	0.74	0.39	4	20.42
20.42	23.47	1.88	0.93	62	3.05
23.47	29.57	2.23	1.77	37	6.1
29.57	32.61	2.61	2.1	86	3.04
32.61	35.66	2.53	2.18	83	3.05
35.66	38.71	2.41	2.25	79	3.05
38.71	41.76	2.83	2.83	93	3.05
41.76	44.81	2.59	2.32	85	3.05
44.81	47.85	2.76	2.68	91	3.04
47.85	50.90	2.45	2.21	80	3.05
50.90	53.95	2.28	2.1	75	3.05
53.95	57.00	1.94	1.16	64	3.05
57.00	57.61	0.61	0.36	100	0.61

MY-07-05
Core and RQD recovery

From:	To:	REC	RQD	\%REC	Distance
0	14.33	0.16	0	1	14.33
14.33	17.37	1.9	0.48	63	3.04
17.37	20.42	2.77	2.47	91	3.05
20.42	23.47	2.45	2.03	80	3.05
23.47	26.52	3.03	1.77	99	3.05
26.52	29.57	2.44	1.68	80	3.05
29.57	32.61	2.66	1.69	88	3.04
32.61	35.66	2.77	2.65	91	3.05
35.66	38.71	2.94	2.84	96	3.05
38.71	41.76	2.9	2.71	95	3.05
41.76	44.81	2.74	2.18	90	3.05

MY-07-06

Core and RQD recovery

From:	To:	REC	RQD	\%REC	Distance
0	14.33	0.24	0	2	14.33
14.33	15.85	0.4	0	26	1.52

MY-07-07

Core and RQD recovery

From:	To:	REC	RQD	\%REC	Distance
0	14.33	0.34	0	2	14.33
14.33	17.37	0.76	0.28	25	3.04
17.37	20.42	2.48	1.45	81	3.05
20.42	23.47	2.62	2.24	86	3.05
23.47	26.52	2.63	2.43	86	3.05
26.52	29.57	2.88	2.82	94	3.05
29.57	32.61	2.7	2.08	89	3.04
32.61	35.66	2.36	0.99	77	3.05
35.66	38.71	2.6	1.93	85	3.05
38.71	41.76	2.84	2.68	93	3.05
41.76	44.81	3.01	2.85	99	3.05
44.81	47.85	2.93	2.64	96	3.04
47.85	50.9	3.04	3.04	100	3.05
50.9	53.95	2.9	2.81	95	3.05
53.95	57.00	2.81	2.81	92	3.05
57.00	60.05	2.29	1.95	75	3.05
60.05	61.57	1.52	1.16	100	1.52

Appendix F

[^0]: Drawn by George Coetzee, BSc. Honours,2 October 2007

[^1]:

[^2]:

[^3]:

[^4]: Final Depth: Abandoned at 32.00 m

