2007 Prospecting and Geochemical Survey Report

on the

Mica Mountain Property

Omineca Mining Division

BC Geological Survey Assessment Report 29773

Map Sheet 94C/57

Mineral Tenure: 543705

Longitude 124°46'49" W, Latitude 56°31'52" N

-Owner-

Guardsmen Resources Inc. 307 – 1497 Marine Drive West Vancouver, British Columbia V7T 1B8

-Operator-

Christopher James Gold Corp. Suite 410- 1111 Melville Street Vancouver, British Columbia, V6E 3V6

-By-

Michael D. Renning

February 2, 2008

Table of Contents

Section	P	age
1.0	Introduction	. 2
2.0	Location/Access	. 3
3.0	Claim Status	. 3
4.0	Physiography	. 4
5.0	History of Exploration	. 5
6.0	Recent Exploration	. 5
6.1	Discussion	5
7.0	Regional Geology	6
8.0	Property Geology	7
8.1	Family Farm Occurrence	. 7
8.2	West Mica Mountain	. 8
9.0	Geochemical Survey	. 9
9.1	Geochemical Sampling Methods	9
10.0	Conclusions	. 9
11.0	Recommendations	. 10
12.0	References	. 11

Appendices

Appendix A - Statement of Qualification(s)	12
Appendix B - 2007 Season Cost Statement	13
Appendix C - Sample Locations & Assay Highlights	14
Appendix D - Analytical Certificates and Procedures	.15
Appendix E – Soil Horizons & Other Layers	16
Appendix E - Work Filing Documents	17

List of Figures

Figure 1 – Location Map	Follows page 3
Figure 2 – Claim/Tenure Map	Follows page 3
Figure 3 – Sample Location Map	Follows page 9
Figure 4.1 – Soil Reconnaissance for Barium	Follows page 9
Figure 4.2 - Soil Reconnaissance for Cerium	Follows page 9
Figure 4.3 - Soil Reconnaissance for Cesium	Follows page 9

Figure 4.4 -	- Soil	Reconnaissance	for	Cobalt	Follows p	age 9
Figure 4.5 -	- Soil	Reconnaissance	for	Copper	. Follows p	age 9
Figure 4.6 -	- Soil	Reconnaissance	for	Dysprosium	Follows pa	age 9
Figure 4.7 -	- Soil	Reconnaissance	for	Gadolinium	Follows p	age 9
Figure 4.8 -	- Soil	Reconnaissance	for	Gallium	. Follows p	age 9
Figure 4.9 -	- Soil	Reconnaissance	for	Holmium	Follows pa	age 9
Figure 5.0 -	- Soil	Reconnaissance	for	Lanthanum	Follows p	age 9
Figure 5.1 -	- Soil	Reconnaissance	for	Lead	Follows p	age 9
Figure 5.2 -	- Soil	Reconnaissance	for	Neodymium	Follows p	age 9
Figure 5.3 -	- Soil	Reconnaissance	for	Niobium	. Follows pa	age 9
Figure 5.4 -	- Soil	Reconnaissance	for	Praseodymium	Follows p	age 9
Figure 5.5 -	- Soil	Reconnaissance	for	Thorium	Follows p	age 9
Figure 5.6 -	- Soil	Reconnaissance	for	Uranium	Follows pa	age 9
Figure 5.7 -	- Soil	Reconnaissance	for	Yttrium	Follows p	age 9
Figure 5.8 -	- Soil	Reconnaissance	for	Zinc	Follows pa	age 9

1.0 INTRODUCTION

The Mica Mountain property is located about 322 kilometres north of Mackenzie by road (190km by air) and 100 kilometers north of Ingenika Camp by road just south of Ingenika Arm on Williston Lake.

The prospect consists of a 60-metre wide zone of irregular pods and dikes of pegmatite in quartz mica schist of the Ingenika Group. The zone has been traced northward across the summit of Mica Mountain. Individual pods and dikes range from 1.5 to 9 metres in width. The pegmatite varies considerably in composition, with quartz and feldspar predominating, accompanied by subordinate muscovite mica. The muscovite occurs as irregularly distributed, well-developed "books", up to 13 centimetres in length. The mica tends to be more abundant near surface. Early work (1931) within the pegmatite zone indicated that the abundance of mica is up to 25 to 30 per cent.

Guardsmen believes that there is significant potential for economic Heavy Rare Earth Elements within the pegmatite zones. The 2007 soil sampling program was designed to test the RGS Cobalt, Copper and Zinc anomalies on the west side of the property.

2.0 LOCATION/ACCESS

The property under discussion; Mica Mountain, is located about 6 kilometers due west of Williston Lake, the largest man-made reservoir in North America. {Fig.1} The town of Mackenzie BC; population of approximately 5,000 is situated roughly 190 kilometers southeast of the property.

3.0 CLAIM STATUS

The claims consist of eighteen Mineral Claims comprising an area of about 6,549 hectares. All claims are owned, or are beneficially owned, by Guardsmen Resources.

The property is situated on NTS map sheets 94C/57 at Latitude $56^{\circ}31'52$ " N – Longitude $124^{\circ}46'49$ " W and falls within the Omineca Mining District. {Fig.2}. During the time the work was carried out on the property, Christopher James Gold Corp was the Operator.

Claim names, tenure numbers, expiry dates and claim area(s) are as follows:

<u>Tenure No</u> .	<u>Claim Name</u>	Good to Date	<u>Area (ha)</u>
503826	Blue Beryl	December 15, 2008	71.36
503828	West Mica Mtn	December 15, 2008	17.84
504968	Aquamarine	December 15, 2008	446.06
504991	Mica	December 15, 2008	446.06
504998	Aqua Mica	December 15, 2008	446.20
543705	Mica Mountain	December 15, 2008	356.56
543706	Mica Mountain 2	December 15, 2008	107.02
549184	Rare	December 15, 2008	446.03
549185	Rare 2	December 15, 2008	445.85
549186	Rare 3	December 15, 2008	445.71
549187	Rare 4	December 15, 2008	445.82
549188	Rare 5	December 15, 2008	446.29
549189	Rare 6	December 15, 2008	446.12
549990	Peg	December 15, 2008	446.70
552358	West Mica	December 15, 2008	446.45
552359	Westco	December 15, 2008	446.12
552360	Southco	December 15, 2008	446.46
552361	Westco 2	December 15, 2008	196.40

4.0 PHYSIOGRAPHY

The project lies on the south side of Ingenika Arm and covers both the extensive river gravels down to the south slopes of Mica Peak. Elevations range from approximately 700 m (2300 feet) above sea level at the river to about 2000 metres at Mica Peak. Timberline occurs at approximately 1525 metres. The property is mostly covered by open stands of conifers, interspersed with poplar on well drained slopes, and cedar in boggy low lying areas.

Mica Mountain Location Map

Mica Mountain Mineral Tenure Map

5.0 HISTORY OF EXPLORATION

Mica Mountain has been known for numerous pegmatite showings and a few kyanite prospects closer to Wiliston Lake. Exploration in the area dates back to 1898.

The Family Farm occurrence comprises two concordant dikes of white pegmatite, intruding schist and consisting of mostly muscovite, quartz and feldspar. One of the two dikes was explored by a shaft and several drifts. Between 1925 and 1927, 2.3 tonnes of sheet mica had been mined from the Family Farm occurrence.

6.0 RECENT EXPLORATION

Other than government sponsored excursions to the property since 1927, there has been no documented exploration by private companies or individuals at Mica Peak.

Guardsmen acquired the claims in 2005 in hopes that appreciable Rare Earth elements may be found in association with the pegmatite zones. During the 1996 visit, heavy snowfall limited exploration to stream silt sampling. Highlights of the 1996 stream silt sampling include: Ce (1174ppm), Pr (114ppm), Nd (402ppm), Gd (52.7ppm), Rb (192ppm), Ga (30ppm) and Y (101ppm).

Unfortunately, exploration in 2007 was limited to the westernmost claims on the property. The purpose of the sampling in this area was to identify a possible source of the anomalous RGS copper and cobalt. Two drainages were tested by approximately 18 km of soil sampling.

6.1 DISCUSSION

RGS data covering the west and south areas of Mica Peak reveal an extremely high RGS cobalt value of 231ppm, draining the western slopes of West Mica Mountain. This represents the 4th highest result in the RGS database for cobalt. The presence of Beryllium (from aquamarine), reported from exploration in the 1920's, together with indications of Rare Earth Elements (REE) discovered in 1996 is thought to be very encouraging.

So far, under current ownership, there have been no rock samples analyzed for REE on Mica Peak. Now that both soil and silt sampling have narrowed down the high potential areas for REE, it appears the pegmatites are the source of the REE found in silt samples collected in 1996. Interestingly, the 2007 soil sampling on the west side of the property has uncovered what appears to be a general enrichment of Gallium. The average result in soils was 21.5 ppm over 73 samples collected. There is no reason to believe that the concentration of Gallium in the B-Horizon soil samples would be enriched to the extent that it would be equal to or greater than the bedrock source. Generally speaking, the concentration of most elements in B Horizon samples is much less than 50% of the bedrock. With this in mind, Gold Canyon Resources Inc. has a 43-101 resource of Gallium on its Cordero Gallium Project in Nevada as follows:

Category	Metric Tonnes	Gallium (ppm)	Gallium Metal (kg)
Indicated	6,450,400	52.3	337,360
Total Indicated	6,450,000	52.3	337,360
Infered within	465,900	42	19,570
envelope			
Inferred outside	7,345,500	49.7	365,070
envelope			
Total Inferred	7,811,400	49.2	384,640

Cordero Project Mineral Resources above 30ppm Gallium (Rounded)

Gold Canyon Resources assert that the Cordero Project contains the largest known resource of Gallium in North America.

7.0 REGIONAL GEOLOGY

The Wolverine Complex is host to a large belt of pegmatites that intrudes extensive areas of metamorphosed Ingenika Group rocks on the west side of Williston Lake. Sizeable pegmatite bodies are present, up to 250 metres in width. The pegmatites are generally very uniform and nondescript. The only known occurrence of beryl-bearing pegmatites in this belt of rocks are at Mica Peak's Family Farm showing (Minfile 94C 034). The rare element class of pegmatites represent a melt that has migrated to shallower levels and fractionated en route. They are subdivided into the LCT (Li-Cs-Ta) and NYF (Nb-Y-F) families. Enrichment in beryllium is common in both families. The LCT type is derived from orogenic plutonic suites that tend to be peraluminous and potassic while the NYF type is anorogenic, related to rifting or post orogen reactivation, and derived from source rocks affected by deep mantle-related metasomatism. NYF magma tends to be peralkaline to metaluminous.

In 1986, rare-earth element pegmatites (NYF type) were discovered in the Mount Bisson/Munroe Creek area in the southern part of this belt (Minfile 93O 021). These alanite bearing pegmatites carry up to 0.8% Niobium. The associated alkalic bodies range from aegirine monzonite/syenites to quartz pegmatites.

8.0 PROPERTY GEOLOGY

Mica Peak, also located within the same terrane as Mount Bisson, could also be host to both NYF and LCT type rare earth pegmatites. Mount Begbie (Minfile 082LNE015) is currently the only documented locale of lithium bearing pegmatite. However, limited silt sampling conducted in 1996 included anomalous Lithium values as high as 102 ppm NNW of the Family Farm occurrence. This anomalous result suggests it is possible that the metamorphosed Ingenika Group rocks at Mica Peak could host polychrome beryl – something not commonly found in British Columbia.

Spectacular sheet mica occurs in a pegmatite close to Mica Peak. Quartz, feldspar and muscovite comprise the main constituents of the pegmatites. Accessories include garnet, tourmaline, kyanite, beryl and apatite.

8.1 FAMILY FARM OCCURANCE

The Family Farm occurrence is situated on the north side of Mica Peak (East Mica Mountain) 6.5 kilometres southwest of Williston Lake. The area is underlain by regionally metamorphosed miogeoclinal rocks of the Hadrynian Ingenika Group. In the vicinity, these metasediments largely comprise quartzites and schists.

According to Geological Survey of Canada Summary Report 1927, all mica-bearing pegmatites in this area consist of feldspar and quartz, and

small amounts tourmaline, garnet and pyrite. The tourmaline occurs as small well-formed, jet black crystals frequently arranged in rosettes, and commonly found in the country rocks adjoining the pegmatites. The garnets are bright ruby-red in colour. One pegmatite dike in the area is also reported to have contained a well-developed crystal of pale bluish green beryl (Emerald).

The Family Farm occurrence comprises two concordant dikes of white pegmatite, intruding schist and consisting of mostly muscovite, quartz and feldspar.

The larger dike forms an elongate ellipsoid that strikes 150 degrees, dips 70 degrees west and plunges up to 12 degrees towards 150 degrees, with long and intermediate axes of 100 metres and 12 metres respectively. This dike varies up to 10 metres wide. Muscovite crystals, up to 13 centimetres in diameter, occur in the pegmatite, with the larger grains generally within 1 metre of the wall rocks. The muscovite is reported to be of excellent quality despite some surface weathering.

The smaller parallel pegmatite dike of similar shape occurs about a hundred metres northeast of the larger one. Although pyrite, tourmaline and garnet are more abundant, only minor amounts of muscovite mica are present in this dike.

The larger dike was explored by a shaft and several drifts, while the smaller one was trenched by General Holdings Company Ltd. between 1925 and 1927. The company extracted up to 2.3 tonnes of raw mica from the workings in 1927.

8.2 WEST MICA PEAK

The West Mica Mountain mica occurrence is located on the north side of West Mica Mountain, 84 kilometres north of Germansen Landing. Hostrocks are pegmatites within mica schists and gneisses and quartzites of the Hadrynian Ingenika Group which have been metamorphosed to the kyanite zone of the amphibolite facies of regional metamorphism. The ccurrence is described as the richest pegmatite dike in the Mica Mountain mica district; apparently, large muscovite crystals,

possibly up to 33 centimetres across) have been extracted from the deposit and a small shipment made. The mode of occurrence is described as similar to the Mica Mountain occurrence located 5 kilometres to the northeast.

All mica-bearing pegmatites in the area are reported to be formed of feldspar and quartz with small amounts of pyrite, tourmaline and garnets. The tourmaline occurs as small well-formed, jet black crystals frequently arranged in rosettes, and commonly found in the country rocks adjoining the pegmatites. The garnets are bright ruby-red in colour.

9.0 GEOCHEMICAL SURVEY

Perhaps the most significant result from the soil sampling was the Gallium anomaly that showed up on both sides of the drainage at the headwaters of the most westerly creek as well as the most of the samples collected on the western bank of the eastern creek (Figure 4.8).

The RGS cobalt value of 231 ppm did not appear to be reflected in the soil analysis. Although there are cobalt anomalies, they are not what was expected out of the 4th highest RGS cobalt in British Columbia. However, a conclusion cannot be made until extensive silt sampling in the western area has also taken place.

9.1 GEOCHEMICAL SAMPLING METHOD

The crew, not previously trained in exploration but with plenty of experience with tree planting, was asked to sample the first horizon below the humus layer and decomposing organic layer. The sampling procedure was explained and it was demonstrated that the layer below is, in most cases, considered the B-horizon and that this should always be the preferred sample. This red-orange brown soil horizon was to be collected free of decomposed organics and large stones. If a proper sample was not available, they were instructed to keep walking while testing the soil. It was also explained to them that the freedom to wander and test the ground is tolerated as the GPS has given them a great advantage. No longer is a sampler restricted to a predetermined sample site. The B-Horizon on the property was reported to range between 25-45cm for all samples. The analytical procedures are outlined in Appendix E, page 16.

10.0 CONCLUSIONS

Based on the results of a small stream silt survey in 2006 together with the reported specimen of aquamarine back in 1927, the Mica Peak

Mica Mountain Soil Barium Statistics

Mica Mountain Soil Cobalt Statistics

Mica Mountain Soil Dysprosium Statistics

Mica Mountain Soil Lead Statistics

Mica Mountain Soil Neodymium Statistics

Mica Mountain Soil Yttrium Statistics

pegmatites could be classified as being within the Rare Earth Element Subalkaline series. Significantly, when compared to the Mount Bisson REE Subalkaline series, the Mica Peak pegmatites appear to be much more rubidium enriched and zirconium depleted. In this setting, an enrichment of rubidium and Lithium suggests there may be potential for the formation polychrome beryl into the wall rocks of the pegmatites. Although the lithium and rubidium values in the 2006 silt samples were only considered anomalous, it is a point that is worthy of further investigation. Lithium bearing pegmatites are not well documented in British Columbia with the only locale being Mount Begbie (Minfile 082LNE015). Minerals to watch for at Mica Peak include spodumene and petalite. In absence of these minerals, an enrichment of Lithium may be found in plagioclase and tourmaline as a substitution for potassium.

The potential for economic concentrations of heavy Rare Earth Elements at Mica Peak remain fair. The silt geochemistry has only been carried out in a limited area to date and no definitive conclusions can be made. However, it has been noted there are a few distinct differences between the chemical signature for sub alkaline pegmatite classification and the silt results from an area north of Mica Peak. Therefore, it is possible there are other pegmatite or intrusive rock types in the vicinity.

11.0 RECOMMENDATIONS

Stream silt sampling, regional mapping, prospecting and detailed sampling of the pegmatites should be carried out in 2008 in order to determine the extent of Rare Earth Element (REE) bearing rocks and their structural controls.

The presence of elevated gallium levels in 2007 soil samples may reflect the composition of the West Mica Peak pegmatites. If so, subject to metallurgical issues that may arise, this area remains a fair exploration target for economic REE together with gallium.

All field personal should become familiar with the identification of beryl in its natural state prior to undertaking field work.

12.0 <u>REFERENCES</u>

Ministry of Energy, Mines and Petroleum Resources- MapPlace,

Potential For Gem Beryl And Schist Hosted Emerald In British Columbia; Andrew S. Legun, P.Geo, Geofile 2005-19 Appendix A

Statement of Qualifications

STATEMENT OF QUALIFICATIONS FOR MICHAEL RENNING

- I have worked in the mining exploration business since 1981. Although I have had much exploration experience as a field assistant and independent prospector, I have worked specifically as a prospector for PNC Exploration (Canada) in 1986, Welcome North Mines in 1988, Rio Algom Exploration in 1992 and Christopher James Gold in 2006 and 2007.
- 2. I had earned a 25% interest in Guardsmen Resources Inc. for my company, Amber Minerals Ltd., by contributing much research and prospecting time during the period from 1987 to 2003. I own all shares in Amber Minerals Ltd.
- 3. On January 8, 2008, Christopher James Gold had publicly announced they have dropped the option to purchase further interest in Guardsmen Resources and all of its assets.
- 4. My other company, Future Metals Inc. was retained by Christopher James Gold during 2007 to work on Guardsmen projects throughout the Province of British Columbia. The contract had expired on December 31, 2007. FMI also explores for and independently acquires Mineral Tenure for Rare Earth Element potential.
- 5. Although I am a shareholder of Christopher James Gold, I own less than 10% of the common shares in the company.

Signed this 14th day of January, 2008 in Vancouver, British Columbia, Canada,

Michael Renning, prospector bcgold@shaw.ca

Appendix B

2007 Season Cost Statement

Mica Mountain 2007 Summary of Expenses

Administration	\$29.41
Communication	\$407.03
Equipment Rental	\$2,500.00
Food-Groceries	\$33.54
Food-Restaurant	\$99.54
Sample analysis - Assaying	\$4,607.85
Supplies - Exploration	\$74.90
Fuel and Oil	\$591.15
Travel and accomodation	\$2,924.60
Wages/Consulting	\$13,978.73

Total

\$25,246.75

Mica Mountain 2007 Detailed Expenses

Category	Description	Rate	Days	Sub	totals
	1/01-10/31 staff wages				
Admin	management	\$-	0	\$	29.41
	Calgary, Alta				
	(416.51;40%Mica,30%NAK,30				
Communications	%TUT)	\$-	0	\$	157.18
	Cda.Wide Communi. 399				
Communications	Mt.Hwy.N.Van	\$-	0.00	\$	184.00
	Cda.Wide Comm., 399				
Communications	Mt.Hwy.,N.Van.	\$-	0	\$	65.85
Equipment - ATV Rental	Yamaha 2007 ATV Rhino	\$ 150.00	5.00	\$	750.00
Equipment Rental - Field	Camping gear/ equipmt.	\$ 50.00	5.00	\$	250.00
Equipment - Trailer Rental	Mirage Cargo / RV Trailer	\$ 200.00	5.00	\$	1,000.00
Equipment Vehicle Dental	Dodgo Dom 1500 1/2 ton 4 v 4	¢ 100.00	E 00	¢	E00.00
	Douge Rail 1500 1/2 1011 4 X 4	\$ 100.00	5.00	¢	500.00
Food Crossrips	Control St. Dr. Coorgo	¢	0.00	¢	22 E /
	Horsting's Farm	ф -	0.00	¢	55.04
Food Postaurant	Market Cachecroek PC	¢	0.00	¢	60 10
	Horsting's Farm	φ -	0.00	\$	00.19
Food Postaurant	Markot Cachocrook BC	¢	0.00	¢	7 55
	Jumbo Postaurant 2260 Hart	φ -	0.00	φ	1.00
Food-Postaurant	W_{V} Pr George BC	\$	0	\$	31 70
Sample analysis - Assaving	11/16 assaving	- ¢	0	\$	1 607 85
Sample analysis - Assaying	Rare Farth Δnalysis	φ -	0	Ψ	\$3,000,00
Supplies - Personal -Work Clothes	S&H Dry Cleaners Inc	\$	0.00	\$	\$3,000.00 10.70
	S&H Dry Cleaners Inc 1160	Ψ	0.00	Ψ	10.70
Supplies - Personal-Slleping Bags	Mt Seymour Rd N Van	\$ -	0.00	\$	64 20
	Fsso 1057A Hwy 97	Ŷ	0.00		01120
Supplies - Vehicle-Fuel	Ave. Williams Lk.BC	\$-	0.00	\$	51.37
	Esso.333 15th Ave.,	Ŧ	0.00	Ŧ	0.1107
Supplies - Vehicle-Fuel	Pr.George,BC	\$-	0.00	\$	97.74
	Omineca Fuel Sales, Williams	*			
Supplies - Vehicle-Fuel	Lk,BC	\$-	0.00	\$	224.53
	Omineca Fuel Sales, Williams				
Supplies - Vehicle-Fuel	Lk,BC	\$-	0.00	\$	100.00
	Shell Cda., 7165 120th				
Supplies - Vehicle-Fuel	St.,Delta,BC	\$-	0.00	\$	117.51
	Northwood Motor Inn,2280 Hart				
Travel and accomodation	Wy, Pr.George,BC	\$-	0.00	\$	57.24
	Northwood Motor Inn,2280 Hart				
Travel and accomodation	Wy, Pr.George,BC	\$-	0.00	\$	57.24
	Giddings Holdings				
Travel and accomodation	Ltd.,Smithers,BC	\$-	0	\$	69.36
Travel and accomodation	Lot 9028, Melville, Vancouver	\$-	0	\$	6.00
Travel and accomodation	Lot 9028, Melville, Vancouver	\$-	0	\$	9.00

Category	Description	Ra	te	Days	Su	btotals
	Marpole Chevron,8884					
Travel and accomodation	Granville, Vancouver	\$	-	0	\$	28.32
	Al's Towing,Box 457,					
Travel and accomodation - Transport	Smithers, BC	\$	-	0	\$	1,415.10
Travel and accomodation - Transport	Bandstra, Box 95, Smithers, BC	\$	-	0	\$	1,282.35
Wages/Consulting/Labour	10/31 claims consulting work	\$	600.00	0.38	\$	225.00
Wages/Consulting/Labour	Field Work	\$	600.00	4.81	\$	2,887.50
Wages/Consulting/Labour	Field Work	\$	375.00	6	\$	2,250.00
Wages/Consulting/Labour	Field Work	\$	400.00	6	\$	2,400.00
	Exploration report					
Wages/Consulting/Labour	preparation/assessment	\$	250.00	1	\$	250.00
Wages/Consulting/Labour	Field Work	\$	250.00	1.6	\$	400.00
Wages/Consulting/Labour	Field Work	\$	250.00	2	\$	500.00
Wages/Consulting/Labour	Research	\$	400.00	1	\$	400.00
Wages/Consulting/Labour	Research	\$	400.00	1	\$	400.00
Wages/Consulting/Labour	Research	\$	400.00	1	\$	400.00
Wages/Consulting/Labour	Research	\$	400.00	1	\$	400.00
Wages/Consulting/Labour	Research	\$	400.00	1	\$	400.00
Wages/Consulting/Labour	Prepare assessment report	\$	400.00	0.66556479	\$	266.23
Wages/Consulting/Labour	Camp demobilization	\$	400.00	1	\$	400.00
Wages/Consulting/Report Writing			\$400.00	6		\$2,400.00
<u> </u>	•	-				05 044 44

Total

\$ 25,246.64

Appendix C

2007 Sample Locations & Analysis Highlights

	T													1	1				
SAMPLE			Ва	Ce	Cs	Dy	Ga	Gd	La	Lu	Nb	Nd	Pr	Rb	Sm	U	Y	Yb	Zr
ID	Easting	Northing	(ppm)																
MTL-01	388126	6268440	714	113.5	4.39	5.38	19.5	8.44	- 59	0.44	18.7	49.6	13.7	99.7	9.09	3.83	25.6	2.95	401
MTL-02	388216	6268343	744	133	5.41	5.87	21.2	9.45	68.2	0.45	18.6	57.4	15.9	115.5	10.2	4.16	27.4	3.14	385
MTL-03	388322	6268234	743	124	4.58	5.53	21	8.83	64	0.46	18.9	54.3	15	109	9.81	4.21	25.7	3.07	473
MTL-04	388474	6268126	741	191	5.69	7.49	20.9	13.8	96.9	0.55	19.9	83.1	22.9	123	14.95	6.02	33.4	3.65	521
MTL-05	388645	6267985	742	129	4.78	6.5	22	9.9	64.9	0.54	21.2	56.9	15.55	110.5	10.3	4.56	32	3.72	436
MTL-06	388773	6267764	720	124	4.51	5.72	20.7	9	63.9	0.45	21.6	53.7	14.95	107.5	9.54	4.05	25.8	3.07	482
MTL-07	388793	6267495	658	159	5.22	6.82	20.3	11.2	79.6	0.52	21.7	67.5	18.75	112.5	12.4	5	30.6	3.46	410
MTL-08	388807	6267236	704	141.5	5.3	5.71	22.8	9.87	72	0.42	20.4	61.5	16.9	106	11.05	4.31	25.2	2.8	404
MTL-09	388811	6266937	728	371	7.33	10.25	22.9	25.1	193.5	0.63	26.8	162.5	44.7	145.5	29	12.1	39.3	4.27	834
MTL-10	388877	6266674	532	183.5	5.44	6.97	22.9	12.1	92.8	0.42	. 20	76.7	21.5	87.2	13.6	5.01	29.3	2.88	377
MTL-11	388979	6266434	858	156.5	6.62	4.63	24.6	10.5	80.4	0.33	20.4	66.9	18.75	165	11.8	5.24	19.1	2.23	475
MTL-12	389110	6266150	1055	353	10.9	6.74	32.9	22.6	186.5	0.17	30.4	153	43	211	26	11.8	17.2	1.19	749
MTL-13	389145	6265912	709	184	7.42	5.74	25	12.2	93.5	0.34	23.8	79.1	22	140	14.3	5.71	23	2.38	415
MTL-14	389247	6265603	842	102	9.28	4.02	25	7.5	52.4	0.22	18.1	43.8	12.35	170.5	8.02	4.46	15.8	1.57	280
MTL-15	389327	6265347	964	113.5	9.61	3.91	28.6	7.84	59.4	0.27	22.7	49.2	13.75	187.5	8.86	4.09	15.9	1.8	368
MTL-16	389278	6265109	742	271	6.26	6.73	29	16.4	139.5	0.36	23.1	112	30.4	150.5	19.35	9.15	25	2.45	649
MTL-17	390431	6269402	833	125.5	7.42	5.5	28.9	8.51	63.5	0.36	19.9	53.3	14.15	175.5	9.47	4.66	24.7	2.54	340
MTL-18	390606	6269188	734	131.5	6.02	5.21	25.4	8.54	67.2	0.36	19.1	55.2	14.75	140.5	9.8	4.85	24.8	2.63	320
MTL-19	390744	6268994	737	92.8	6.74	4.34	24.2	6.2	47.4	0.31	18.8	38.7	10.35	158.5	7	3.76	21.3	2.18	325
MTL-20	390900	6268802	724	125	5.98	4.6	24.4	7.99	63.7	0.29	17.3	51.9	14.05	130	9.1	4.54	20.6	2.13	282
MTL-21	391027	6268573	770	298	6.71	8.38	25.7	18.8	148	0.5	22.9	123.5	33	146.5	21.8	9.62	33.4	3.38	596
MTL-22	391157	6268378	739	181	4.76	5.68	24.4	11.4	91.2	0.38	20.9	73.6	19.85	159.5	12.95	6.55	25.8	2.63	577
MTL-23	391339	6268177	627	213	5.29	6.78	22.7	13.5	109	0.42	. 20	87.8	23.5	113.5	15.1	7.1	29.9	2.89	459
MTL-24	391512	6268008	692	268	5.58	7.63	24.7	16.6	137	0.45	26.9	108.5	29.4	130.5	18.65	8.65	32.3	3.1	481
MTL-25	391704	6267843	743	131.5	6.02	6.16	24.2	9.69	66.6	0.38	19.8	55.8	14.9	137	9.89	4.96	28.7	2.69	362
MTL-26	391877	6267662	813	149.5	11.65	5.52	29.4	10.3	76	0.36	23.7	61.9	16.7	184	11.1	8.15	26.4	2.49	410
MTL-27	392015	6267455	640	291	6.49	7.56	24.8	18	144.5	0.5	48.1	116.5	31.4	130	20.6	9.35	34.1	3.51	693

Mica Mountain 2007 Soil Sample Locations & Analysis Highlights

			5	0	~		0	0					-	D 1	<u> </u>				_
SAMPLE		N	ва	Ce	Cs	Dy (m)	Ga	Gd	La	Lu	ND (m)	Nd	Pr	RD	Sm	U	Y	YD	Zr
	Easting	Northing	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
MTL-28	392099	6267210	643	169.5	6.57	5.85	23.1	11.1	86.5	0.39	23.7	69.1	18.7	143	12.25	5.94	26.3	2.73	431
MTL-29	392163	6266954	722	150.5	6.76	5.96	26.8	9.92	76.8	0.38	25.3	62	16.75	138	11.05	5.78	27.1	2.72	409
MIL-30	392180	6266691	731	220	5.44	7.01	24.7	13.7	111	0.44	24.3	90.2	24.1	134.5	15.6	7.69	31.4	2.97	562
MTL 20	392233	6266443	651	154	6.89	5.82	23.3	10.1	78.3	0.39	22.4	63.3	17.15	140.5	11.1	5.24	26.6	2.6	327
IVITL-32	392223	6266173	705	184.5	7.76	6.37	24	11.8	92.5	0.42	24.9	75.5	20.3	165.5	13.3	6.54	28.2	2.96	390
MCL 04	392265	6265933	671	126	8.81	4.82	21.7	8.04	62.9	0.32	23.3	50.1	13.5	159	8.64	6.72	22.7	Z.Z	458
NCL-01	388180	6268478	620	287	3.63	10.65	19.1	17.8	141.5	0.76	33.5	110	31.1	89.4	19.9	8.06	52.3	5.35	845
NCL 02	388313	6268339	649	349	3.39	11.9	20.2	21.5	174	0.9	35.3	142.5	37.9	91.9	24.5	7.50	56.7	0.08	1100
MCL 04	388541	6268185	070 701	240	4.4	6.19	20.0	15.5	124.0	0.53	20	100	27.2	102	17.2	1.00	37.5	3.73	209
MCL 05	388/91	6268055	701 520	157	0.00 1 1 5	0.72	23.0	9.69	247	0.56	20.9	209	55.2	149	10.7	4.91	35.Z	3.79	390
MCL 06	3000/0	0207042	009	402	4.15	7 42	10.0	31.0	79.0	0.94	32.9	200	17.4	100.5	30.0	20.0	20 2	0.39	F22
MCL 07	200913	6267469	602	100	4.49	7.43	20.2	10.7	70.9	0.57	20.6	62.6	16.45	119	11.0	0.14	30.2	3.93	525
	300933	6267262	700	120	5.03	7.07	20.1	7 26	74.1 52.6	0.55	20.0	02.0	10.40	130	9.00	9.12	39.3	2.01	411 271
	200929	6267040	202	103	3.00	5.04	19.0	10.0	92.5	0.43	10.4	40.0	10.2	1/2 5	0.09	4.3Z	29.1	2.04	271
MCL 10	200923	6266951	762	102	4.90	6.71	22.0	10.9	02.0	0.47	21	70	21.2	143.5	12 75	5.20	20.5	3.24	400
MCL-11	280056	6266652	683	167.5	5.30	8.44	22.3	13.2	90 80.7	0.45	23.2	70.2	21.2	131.5	13.75	11 5	30.5	3.09	508
MCL-12	380151	6266400	603	107.5	1 26	7.74	10.6	12.2	96.2	0.55	21.7	79.2	20.9	134.3	14.45	6.09	36.4	3.74	567
MCL-12	200210	6266206	095 811	120	4.20	5.83	22.6	8.58	90.2 63.7	0.34	21.0	79.9 53.5	1/ 35	152	0.48	4.09	28.0	2.00	384
MCL-14	380216	6266083	816	136.5	6 35	5.00	25.0	8.6	69.6	0.42	21 /	56.7	14.00	1/6	9.40	4.03	20.3	2.33	462
MCL-15	380260	6265016	908	151.5	6 59	5.66	25.0	9.88	76.1	0.04	20.8	64.2	17 15	183	11 35	5 58	20.4	2.07	402
MCL-16	380232	6265508	742	168.5	6.75	7 25	19.7	12	83.1	0.00	20.0	72.1	19.6	132	13.5	6.57	24.1	3 45	458
MCL-17	389409	6265481	814	100.0	9.04	5.65	25.1	7 55	52	0.0	22.0	43.7	11 95	168	7.83	3.57	28.2	2 97	406
MCL-18	389454	6265323	781	100	7 73	5.69	21.6	7.00	49	0.43	21.7	40.7	11.35	144 5	7.00	3.88	28.2	2.07	367
MCL -19	389473	6265078	778	112	6.59	6 46	16.2	8.61	55.3	0.40	13.7	54.9	14 75	128.5	9.96	5.62	28.8	2 95	292
MCL -20	389512	6264906	973	272	8.94	12.6	21.2	19	133	0.93	29.3	122	33.9	166.5	21.7	9.58	53.6	6 19	677
MCL-21	389553	6264696	790	83	10.55	4.49	24.9	6.32	40.9	0.21	15.3	39.1	10.85	160.5	7.34	11.2	17.9	1.54	198
MCL-22	390470	6269423	583	397	4.76	12.55	17.3	25.3	199.5	0.88	25.3	183	50.8	104.5	32.3	13.3	49.8	5.85	601
MCL-23	390684	6269231	748	352	7.1	11.05	21.4	22.2	173.5	0.48	21	161.5	44.6	166	27.3	12.6	37.5	3.29	573
MCL-24	390831	6269023	606	378	6.24	13.1	18.1	25.6	189	0.62	20.6	176	48.8	146.5	31.2	14.8	43.8	4.19	570
MCL-25	391002	6268827	630	197.5	6.01	6.29	18.9	13.2	96.6	0.38	16.7	91.5	25.5	132	16.25	6.76	23.1	2.47	312
MCL-26	391189	6268652	520	413	5.4	12.45	17.9	26.5	224	0.78	27.5	185.5	49.3	123	32.2	14.3	57.9	5.33	652
MCL-27	391485	6268482	501	148	4.31	5.67	14.8	9.93	74.6	0.37	14	69.1	19.2	110	11.8	5.46	21.6	2.37	216
MCL-28	391677	6268238	776	198.5	6.46	9.23	21.4	13.6	101.5	0.64	24.1	93.2	26	140.5	16.55	8.48	39.7	4.4	404

SAMPLE			Ва	Ce	Cs	Dy	Ga	Gd	La	Lu	Nb	Nd	Pr	Rb	Sm	U	Y	Yb	Zr
ID	Easting	Northing	(ppm)																
MCL-29	391830	6268080	480	148.5	4.37	6.3	14.5	10.3	73.8	0.4	14.8	69.5	19.5	104	12.4	5.9	25.8	2.76	263
MCL-30	391990	6267895	681	255	7.7	8.89	20.3	16.9	126	0.45	15.3	118.5	32.4	178.5	20.5	11.1	31.9	3.13	350
MCL-31	392071	6267679	380	244	3.04	8.99	11.8	16.1	122.5	0.6	16.9	112	30.9	74.1	19.75	8.82	35.5	4.07	477
MCL-32	392163	6267498	360	69.1	3.78	3.64	11.1	5.24	35.5	0.21	9.3	33.1	9.12	86	6.02	3.32	16	1.55	179
MCL-33	392202	6267293	468	89	3.97	4.41	13.9	6.26	43.6	0.3	12.7	40.9	11.35	94.5	7.29	3.66	19.1	2.11	207
MCL-34	392240	6267042	522	254	5.17	9.81	16.2	17.1	130	0.6	19.6	118.5	33.1	107.5	20.9	9.97	37.9	3.95	425
MCL-35	392280	6266795	429	120.5	3.75	5.21	12.5	8.14	59.4	0.36	12.3	55.9	15.55	91.4	9.88	4.76	22.2	2.44	273
MCL-36	392340	6266714	707	152	6.2	5.8	19.5	10.1	74.5	0.37	16.2	70.5	19.35	149.5	12.95	5.82	22.9	2.47	278
MCL-37	392335	6266485	548	120	4.87	4.91	16.1	8.33	59.3	0.34	14.8	55.8	15.35	123.5	9.88	4.79	20	2.36	362
MCL-38	392350	6266248	400	357	2.46	13.95	10.9	23.7	175.5	0.93	25.5	163	44.9	61.1	28.9	12.3	62.2	6.7	635
MCL-39	392385	6266039	845	265	6.75	8.53	23.1	17.1	131	0.46	17	122.5	33.4	156	21.8	10.2	30.1	3.08	567
MCL-40	392400	6265834	749	156	6.07	6.5	19.6	10.4	77.1	0.43	17.5	71.2	19.7	156.5	12.35	6.02	27.5	2.84	342

Appendix D

Analytical Certificates & Procedures

Project: Mica Peak 2007

MAX BAKER

DAVE TRABERT

P.O. No.:

18-OCT-2007.

ALS Chemex

CERTIFICATE VA07119942

MARK MALFAIR

MICHAEL RENNING

This report is for 73 Soil samples submitted to our lab in Vancouver, BC, Canada on

The following have access to data associated with this certificate:

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: CHRISTOPHER JAMES GOLD CORP. 410 - 1111 MELVILLE ST. VANCOUVER BC V6E 3V6

Page: 1 Finalized Date: 16-NOV-2007 Account: CHJAGO

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR-41	Screen to -180um and save both	
	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
	ALLOON TA AA CUIL	110

To: CHRISTOPHER JAMES GOLD CORP. ATTN: MICHAEL RENNING 410 - 1111 MELVILLE ST. VANCOUVER BC V6E 3V6

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

allatter ar Co

Lawrence Ng, Laboratory Manager - Vancouver

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: CHRISTOPHER JAMES GOLD CORP. 410 - 1111 MELVILLE ST. VANCOUVER BC V6E 3V6

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 16-NOV-2007 Account: CHJAGO

Project: Mica Peak 2007

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
MTL-01 MTL-02 MTL-03 MTL-04 MTL-05		0.28 0.30 0.28 0.26 0.34	<0.005 <0.005 <0.005 <0.005 <0.005	<0.2 <0.2 <0.2 0.2 0.2	2.00 2.42 0.94 1.45 1.81	2 3 <2 <2 <2	<10 <10 <10 <10 <10	60 80 30 50 50	<0.5 0.6 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	0.25 0.23 0.10 0.12 0.14	<0.5 <0.5 <0.5 <0.5 <0.5	13 12 4 8 9	36 41 18 31 34	22 30 9 19 17	3.50 3.70 1.50 2.31 2.77
MTL-06 MTL-07 MTL-08 MTL-09 MTL-10	2	0.24 0.32 0.36 0.32 0.30	<0.005 0.005 <0.005 <0.005 <0.005	<0.2 0.2 <0.2 <0.2 0.2	1.61 2.65 2.21 1.88 4.65	<2 2 <2 <2 <2 <2	<10 <10 <10 <10 <10	50 70 60 70 100	<0.5 0.7 0.5 0.5 1.4	<2 <2 <2 <2 <2 3	0.08 0.13 0.09 0.17 0.28	<0.5 <0.5 <0.5 <0.5 <0.5	8 10 8 10 16	28 44 38 32 55	15 23 16 22 28	3.87 4.79 4.49 3.05 5.33
MTL-11 MTL-12 MTL-13 MTL-14 MTL-15		0.28 0.28 0.32 0.20 0.32	<0.005 <0.005 <0.005 0.006 <0.005	<0.2 0.3 <0.2 0.2 0.2	1.56 2.71 2.31 2.54 2.10	<2 <2 <2 <2 <2 <2	<10 <10 <10 <10 <10	70 160 80 110 70	<0.5 0.7 0.5 0.6 <0.5	<2 2 3 2 <2	0.18 0.02 0.09 0.06 0.06	<0.5 <0.5 <0.5 <0.5 <0.5	10 8 10 13 9	26 39 42 37 33	20 71 23 39 21	2.96 6.35 4.02 3.66 3.01
MTL-16 MTL-17 MTL-18 MTL-19 MTL-20		0.38 0.26 0.24 0.24 0.24	<0.005 <0.005 <0.005 0.006 <0.005	<0.2 0.3 0.2 0.2 0.2	1.90 2.14 1.65 1.72 1.41	<2 <2 <2 <2 <2 <2	<10 <10 <10 <10 <10	60 90 60 80 60	0.5 0.6 <0.5 <0.5 <0.5	<2 2 <2 2 2 <2	0.08 0.12 0.12 0.16 0.07	<0.5 <0.5 <0.5 <0.5 <0.5	8 15 8 9 6	29 32 26 26 24	25 33 25 20 22	3.19 3.46 2.48 2.43 2.09
MTL-21 MTL-22 MTL-23 MTL-24 MTL-25		0.34 0.30 0.26 0.24 0.26	<0.005 <0.005 <0.005 <0.005 <0.005	<0.2 <0.2 0.3 <0.2 0.3	1.55 0.56 1.85 1.58 1.97	<2 <2 <2 <2 <2 <2	<10 <10 <10 <10 <10	70 40 50 60 120	<0.5 <0.5 <0.5 <0.5 0.6	<2 <2 <2 <2 <2 <2 <2	0.04 0.02 0.07 0.07 0.26	<0.5 <0.5 <0.5 <0.5 <0.5	6 2 7 7 21	23 7 28 26 29	15 8 18 12 30	2.39 0.97 2.85 2.19 3.06
MTL-26 MTL-27 MTL-28 MTL-29 MTL-30		0.28 0.36 0.26 0.34 0.30	0.011 <0.005 <0.005 <0.005 <0.005	0.2 <0.2 <0.2 <0.2 0.2 0.2	1.60 1.40 1.44 2.35 1.29	<2 <2 <2 3 <2	<10 <10 <10 <10 <10	80 50 60 80 40	0.5 <0.5 <0.5 0.6 <0.5	3 <2 <2 <2 <2 <2	0.06 0.04 0.08 0.04 0.04	<0.5 <0.5 <0.5 <0.5 <0.5	7 7 21 10 5	27 23 37 35 14	26 14 46 30 19	3.06 2.32 2.44 4.82 2.08
MTL-31 MTL-32 MTL-33 MCL-01 MCL-02		0.40 0.36 0.28 0.30 0.36	<0.005 <0.005 <0.005 <0.005 <0.005	0.2 0.2 <0.2 <0.2 <0.2	2.13 2.39 2.24 1.37 0.95	4 <2 2 <2 <2	<10 <10 <10 <10 <10	80 120 100 70 70	0.9 0.9 0.7 <0.5 <0.5	<2 <2 2 <2 2	0.08 0.11 0.14 0.24 0.11	<0.5 <0.5 <0.5 <0.5 <0.5	18 13 8 7 6	28 33 30 24 15	31 32 31 47 12	4.59 4.12 3.15 2.65 1.96
MCL-03 MCL-04 MCL-05 MCL-06 MCL-07		0.22 0.38 0.34 0.32 0.26	<0.005 <0.005 <0.005 <0.005 <0.005	<0.2 <0.2 0.2 <0.2 0.2	1.61 2.18 1.94 2.01 2.41	<2 <2 <2 <2 <2 <2	<10 <10 <10 <10 <10	70 90 110 100 160	<0.5 0.8 0.7 <0.5 0.6	<2 2 <2 2 2	0.20 0.23 0.93 0.58 0.69	<0.5 <0.5 <0.5 <0.5 <0.5	8 9 12 13 14	26 36 34 37 43	22 15 55 24 47	3.03 3.86 2.88 3.12 3.62

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: CHRISTOPHER JAMES GOLD CORP. 410 - 1111 MELVILLE ST. VANCOUVER BC V6E 3V6

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 16-NOV-2007 Account: CHJAGO

Project: Mica Peak 2007

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
MTL-01 MTL-02 MTL-03 MTL-04 MTL-05	3	10 10 10 10 10	<1 2 <1 1 <1	0.13 0.29 0.11 0.22 0.21	20 20 10 20 10	0.81 0.95 0.38 0.66 0.92	397 337 107 170 277	<1 1 <1 <1 <1	0.01 0.02 0.01 0.01 0.02	26 28 9 16 21	750 580 250 420 450	13 10 7 8 8	0.01 0.02 0.01 0.04 0.03	<2 <2 <2 <2 <2 <2 <2	3 4 2 2 4	19 20 10 18 12
MTL-06 MTL-07 MTL-08 MTL-09 MTL-10	1.1	10 10 10 10 10	<1 <1 <1 <1 1	0.18 0.24 0.17 0.42 0.23	10 10 10 20 20	0.60 0.81 0.72 0.75 1.08	186 221 199 211 422	<1 <1 <1 1	0.01 0.01 0.02 0.02 0.04	16 29 21 32 32	480 710 580 490 980	7 8 12 7 19	0.03 0.03 0.03 0.04 0.04	<2 <2 <2 <2 <2	3 4 3 5	11 15 12 19 42
MTL-11 MTL-12 MTL-13 MTL-14 MTL-15		10 10 10 10 10	<1 <1 1 <1 1	0.28 0.88 0.51 0.47 0.47	20 30 20 20 20	0.62 1.04 1.00 0.87 0.80	194 111 194 212 125	1 2 <1 1 <1	0.01 0.04 0.02 0.02 0.02	25 16 23 27 19	300 850 510 700 440	8 7 8 8 9	0.04 0.42 0.05 0.06 0.03	<2 <2 <2 <2 <2 <2	2 3 3 4 3	14 26 16 15 14
MTL-16 MTL-17 MTL-18 MTL-19 MTL-20		10 10 10 10 10	1 <1 <1 1 1	0.42 0.27 0.23 0.33 0.23	20 20 20 10 10	0.69 0.71 0.60 0.64 0.53	134 298 133 180 113	<1 <1 <1 <1 <1	0.01 0.01 0.01 0.01 0.02	23 42 22 24 17	520 460 400 400 350	6 11 9 8 5	0.03 0.02 0.02 0.02 0.02 0.04	<2 <2 <2 <2 <2 <2	2 3 2 2 2	10 19 15 18 17
MTL-21 MTL-22 MTL-23 MTL-24 MTL-25		10 10 10 10 10	1 <1 <1 <1 <1	0.38 0.07 0.20 0.28 0.33	10 10 10 10 20	0.57 0.09 0.59 0.63 0.72	116 40 138 113 829	<1 <1 <1 <1 <1	0.01 0.01 0.01 0.01 0.02	13 5 17 16 31	170 140 280 290 570	6 12 12 7 11	0.02 0.01 0.02 0.02 0.04	<2 <2 <2 <2 <2 <2	2 1 2 2 3	13 5 14 22 28
MTL-26 MTL-27 MTL-28 MTL-29 MTL-30		10 10 10 10 10	<1 <1 <1 <1 <1	0.43 0.19 0.25 0.34 0.11	10 10 20 20 20	0.54 0.53 0.48 0.72 0.28	127 130 117 191 83	1 <1 1 1	0.02 0.01 0.01 0.02 <0.01	14 16 48 24 11	420 240 300 340 250	14 11 13 13 9	0.04 0.02 0.03 0.05 0.03	<2 <2 <2 <2 <2 <2	2 2 2 4 2	11 9 15 9 9
MTL-31 MTL-32 MTL-33 MCL-01 MCL-02		10 10 10 10 10	<1 <1 <1 <1 <1	0.39 0.56 0.57 0.19 0.15	10 20 20 20 10	0.72 0.75 0.75 0.59 0.36	182 207 167 239 350	<1 <1 1 1 <1	0.01 0.01 0.02 0.01 0.01	32 31 19 17 9	550 400 340 1200 640	8 10 11 4 3	0.01 0.02 0.07 0.03 0.04	<2 <2 <2 <2 <2 <2	3 3 4 3 2	10 15 35 11 10
MCL-03 MCL-04 MCL-05 MCL-06 MCL-07		10 10 10 10 10	<1 <1 <1 <1 <1	0.24 0.27 0.35 0.47 0.61	20 20 50 20 30	0.65 0.84 0.77 1.05 1.15	195 279 377 441 554	1 1 1 1	0.02 0.02 0.03 0.02 0.02	17 20 22 25 29	660 1140 530 1050 820	<2 8 4 3 4	0.06 0.04 0.06 0.03 0.04	<2 <2 <2 <2 <2 <2	3 4 4 4 6	15 13 49 25 32

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: CHRISTOPHER JAMES GOLD CORP. 410 - 1111 MELVILLE ST. VANCOUVER BC V6E 3V6 Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 16-NOV-2007 Account: CHJAGO

Project: Mica Peak 2007

Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2							
MTL-01 MTL-02 MTL-03 MTL-04 MTL-05	5-e)	<20 <20 <20 <20 <20	0.10 0.14 0.09 0.12 0.18	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	48 47 26 38 48	<10 <10 <10 <10 <10	64 65 29 50 55			1				
MTL-06 MTL-07 MTL-08 MTL-09 MTL-10		<20 <20 <20 <20 <20	0.12 0.16 0.15 0.15 0.18	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	49 58 59 36 58	<10 <10 <10 <10 <10	53 69 56 86 80		,					
MTL-11 MTL-12 MTL-13 MTL-14 MTL-15		<20 <20 <20 <20 <20	0.13 0.21 0.19 0.17 0.17	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	37 47 54 40 40	<10 <10 <10 <10 <10	52 68 63 70 62					12		
MTL-16 MTL-17 MTL-18 MTL-19 MTL-20	2	<20 <20 <20 <20 <20	0.13 0.14 0.11 0.13 0.10	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	33 37 29 29 24	<10 <10 <10 <10 <10	60 103 56 62 44							
MTL-21 MTL-22 MTL-23 MTL-24 MTL-25		<20 <20 <20 <20 <20	0.16 0.07 0.14 0.14 0.14	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	31 22 42 30 35	<10 <10 <10 <10 <10	50 16 56 50 70	1999-1999 1999-1997 1999-1997						
MTL-26 MTL-27 MTL-28 MTL-29 MTL-30		<20 <20 <20 <20 <20	0.19 0.15 0.14 0.19 0.08	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	47 43 34 46 28	<10 <10 <10 <10 <10	57 46 88 68 35						2	
MTL-31 MTL-32 MTL-33 MCL-01 MCL-02		<20 <20 <20 <20 <20	0.16 0.16 0.17 0.14 0.14	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	40 40 49 44 36	<10 <10 <10 <10 <10	71 73 73 44 38		a.					
MCL-03 MCL-04 MCL-05 MCL-06 MCL-07		<20 <20 <20 <20 <20	0.16 0.19 0.13 0.18 0.22	<10 <10 <10 <10 <10	<10 <10 10 <10 <10	44 66 50 51 64	<10 <10 <10 <10 <10	50 66 47 57 65							

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: CHRISTOPHER JAMES GOLD CORP. 410 - 1111 MELVILLE ST. VANCOUVER BC V6E 3V6 Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 16-NOV-2007 Account: CHJAGO

Project: Mica Peak 2007

. Mica Feak 2007

	Method	WEI-21	Au-AA23	ME-ICP41												
	Analyte	Recvd Wt.	Au	Ag	AI	As	В	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe
Comple Decorintion	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
Sample Description	LOR	0.02	0.005	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
MCL-08		0.32	<0.005	0.3	2.35	<2	<10	160	0.7	<2	0.49	<0.5	12	37	45	3.52
MCL-09	50	0.36	< 0.005	<0.2	1.93	<2	<10	110	0.5	<2	0.34	<0.5	13	30	34	3.03
MCL-10		0.36	< 0.005	0.2	1.90	<2	<10	100	0.5	2	0.23	<0.5	11	28	27	2.87
MCL-11		0.28	< 0.005	<0.2	2.16	2	<10	100	0.6	2	0.67	<0.5	22	35	28	3.57
MCL-12		0.30	< 0.005	<0.2	1.53	<2	<10	90	<0.5	<2	0.23	<0.5	10	24	36	3.00
MCL-13		0.30	<0.005	<0.2	2.19	<2	<10	110	0.6	<2	0.18	<0.5	14	35	51	3.53
MCL-14		0.30	<0.005	<0.2	2.26	<2	<10	80	0.6	2	0.11	<0.5	10	34	28	3.49
MCL-15		0.42	<0.005	0.2	2.37	<2	<10	140	0.6	<2	0.20	<0.5	18	39	47	3.80
MCL-16		0.32	0.005	0.2	2.21	3	<10	130	1.0	2	0.20	<0.5	15	33	40	3.83
MCL-17		0.26	<0.005	<0.2	3.37	<2	<10	150	0.9	2	0.23	<0.5	20	54	47	4.88
MCL-18		0.38	<0.005	0.2	2.88	<2	<10	120	0.9	2	0.37	<0.5	13	42	32	4.12
MCL-19		0.34	<0.005	<0.2	2.33	2	<10	120	0.9	2	0.29	<0.5	19	36	49	3.79
MCL-20		0.38	< 0.005	0.2	1.92	<2	<10	110	0.8	<2	0.33	<0.5	17	32	45	3.80
MCL-21		0.24	< 0.005	0.5	2.79	<2	<10	130	0.9	2	0.12	<0.5	8	39	55	3.55
MCL-22		0.34	<0.005	<0.2	0.90	<2	<10	50	<0.5	2	0.15	<0.5	5	17	15	2.01
MCL-23		0.30	<0.005	<0.2	1.88	<2	<10	130	0.5	3	0.19	<0.5	7	32	31	4.52
MCL-24		0.42	< 0.005	<0.2	2.34	<2	<10	140	0.6	<2	0.22	<0.5	10	32	43	4.46
MCL-25		0.28	<0.005	<0.2	1.59	<2	<10	80	<0.5	2	0.10	<0.5	7	20	21	3.27
MCL-26		0.30	0.007	0.2	1.40	<2	<10	80	0.5	2	0.24	<0.5	16	20	22	2.59
MCL-27		0.38	<0.005	0.2	1.77	<2	<10	80	0.5	<2	0.55	<0.5	8	27	23	2.81
MCL-28		0.22	<0.005	<0.2	1.90	<2	<10	130	0.6	<2	0.70	<0.5	16	28	33	3.11
MCL-29		0.28	<0.005	0.3	1.95	<2	<10	100	0.7	<2	0.64	<0.5	13	28	29	3.21
MCL-30		0.44	<0.005	<0.2	2.84	2	<10	140	0.7	<2	0.32	<0.5	14	35	36	5.03
MCL-31	1	0.34	< 0.005	0.2	1.68	2	<10	80	0.6	2	0.33	<0.5	33	25	25	3.24
MCL-32		0.24	<0.005	<0.2	1.78	<2	<10	60	2.3	<2	0.74	<0.5	13	27	24	7.01
MCL-33		0.26	<0.005	<0.2	1.52	<2	<10	90	0.5	<2	0.20	<0.5	9	25	19	2.38
MCL-34		0.42	<0.005	0.2	1.89	<2	<10	110	0.5	2	0.52	<0.5	14	32	20	2.74
MCL-35		0.34	<0.005	<0.2	1.89	<2	<10	120	<0.5	2	0.16	<0.5	9	25	26	3.04
MCL-36		0.46	<0.005	<0.2	1.95	5	<10	120	0.6	2	0.14	<0.5	12	28	32	3.07
MCL-37		0.28	<0.005	<0.2	1.69	<2	<10	90	<0.5	3	0.10	<0.5	13	25	24	2.78
MCL-38		0.30	<0.005	<0.2	0.93	<2	<10	50	<0.5	<2	0.15	<0.5	5	16	14	1.70
MCL-39		0.26	<0.005	<0.2	1.28	<2	<10	60	<0.5	2	0.02	<0.5	8	19	24	2.40
MCL-40		0.40	<0.005	<0.2	2.08	<2	<10	120	0.7	2	0.10	<0.5	18	29	46	3.22

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: CHRISTOPHER JAMES GOLD CORP. 410 - 1111 MELVILLE ST. VANCOUVER BC V6E 3V6

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 16-NOV-2007 Account: CHJAGO

Project: Mica Peak 2007

	Mathod	ME-ICP41														
	Analyte	Ga	Hg	к	La	Mg	Mn	Mo	Na	Ni	. P	Pb	S	Sb	Sc	Sr
	Units	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample Description	LOR	10	1	0.01	10	0.01	5	1	0.01	~ 1	10	2	0.01	2	1	1
MCL-08		10	<1	0.33	20	0.96	347	1	0.02	24	870	5	0.06	<2	5	30
MCL-09		10	<1	0.58	20	0.91	333	1	0.02	25	840	2	0.03	<2	4	20
MCL-10		10	<1	0.47	20	0.78	198	1	0.01	24	530	3	0.04	<2	3	20
MCL-11		10	<1	0.42	20	0.99	432	1	0.02	32	1000	3	0.05	<2	4	36
MCL-12		10	<1	0.44	10	0.74	258	1	0.01	22	960	<2	0.04	<2	3	9
MCL-13		10	<1	0.60	210	0.95	312	1	0.02	37	760	<2	0.06	<2	4	10
MCL-14		10	<1	0.41	20	0.83	187	<1	0.01	31	470	<2	0.05	<2	4	11
MCL-15		10	<1	0.83	20	1.08	370	1	0.02	36	600	<2	0.07	<2	5	16
MCL-17		10	<1	0.55	20	0.00	427	1	0.02	26	780	4	0.14	<2	5	34
WGL-17		10	~1	0.59	20	1.55	556	'	0.02	39	1060	0	0.05	<2	D	18
MCL-18		10	<1	0.64	10	1.16	320	2	0.02	28	620	2	0.05	<2	5	25
MCL-19		10	<1	0.60	20	1.02	430	1	0.02	32	660	2	0.12	<2	5	23
MCL-20		10	<1	0.63	20	0.86	324	1	0.02	24	980	4	0.24	<2	4	27
MCL-21		10	<1	0.72	10	0.96	106	1	0.02	16	510	10	0.13	<2	4	29
MGL-22		10	<1	0.22	20	0.35	121	1	0.01	12	360	2	0.03	<2	2	15
MCL-23		10	<1	0.61	10	0.74	154	2	0.01	17	1080	12	0.16	<2	3	31
MCL-24		10	<1	0.99	20	0.96	199	2	0.03	22	680	5	0.19	<2	5	37
MCL-25		10	<1	0.28	20	0.39	168	1	0.01	20	780	8	0.03	<2	2	13
MCL-26		<10	<1	0.50	20	0.57	308	1	0.01	18	790	3	0.07	<2	3	18
MCL-27		10	<1	0.33	20	0.63	174	1	0.01	19	340	9	0.05	<2	2	56
MCL-28		10	<1	0.29	20	0.70	952	1	0.02	35	740	5	0.06	<2	3	50
MCL-29		10	<1	0.40	20	0.73	384	1	0.01	29	630	4	0.08	<2	3	42
MCL-30		10	<1	0.89	20	1.06	238	3	0.02	20	370	5	0.06	<2	5	37
MCL-31		10	<1	0.30	20	0.55	938	1	0.02	37	800	13	0.01	<2	2	28
MCL-32		10	<1	0.26	20	0.61	8//	1	0.02	80	680	/	0.06	<2	3	41
MCL-33		10	<1	0.39	10	0.60	168	<1	0.02	28	450	6	0.02	<2	2	17
MCL-34		10	<1	0.51	10	0.74	185	1	0.02	38	730	10	0.04	<2	3	29
MCL-35		10	<1	0.57	10	0.73	190	1	0.02	22	490	8	0.03	<2	3	16
MCL-36		10	<1	0.65	10	0.75	209	1	0.02	26	490	7	0.03	<2	3	16
MCL-37		10	<1	0.36	10	0.60	157	<1	0.01	25	410	8	0.02	<2	3	15
MCL-38		<10	<1	0.22	10	0.37	113	1	0.01	11	550	4	0.05	<2	2	17
MCL-39		10	<1	0.26	10	0.41	164	<1	0.01	16	340	7	0.02	<2	1	8
MCL-40		10	<1	0.66	20	0.78	367	1	0.02	29	440	7	0.03	<2	4	11

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: CHRISTOPHER JAMES GOLD CORP. 410 - 1111 MELVILLE ST. VANCOUVER BC V6E 3V6 Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 16-NOV-2007 Account: CHJAGO

Project: Mica Peak 2007

CERTIFICATE	OF	ANALYSIS	VA07119942
	· · ·		

Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
MCL-08 MCL-09 MCL-10 MCL-11 MCL-12	2	<20 <20 <20 <20 <20	0.21 0.17 0.15 0.18 0.15	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	62 43 39 54 39	<10 <10 <10 <10 <10	60 63 58 84 58	
MCL-13 MCL-14 MCL-15 MCL-16 MCL-17		<20 <20 <20 <20 <20 <20	0.20 0.18 0.21 0.18 0.25	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	51 48 47 57 78	<10 <10 <10 <10 <10	73 61 77 76 111	
MCL-18 MCL-19 MCL-20 MCL-21 MCL-22		<20 <20 <20 <20 <20	0.23 0.20 0.18 0.24 0.12	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	67 59 55 67 32	<10 <10 <10 <10 <10	76 83 74 77 44	
MCL-23 MCL-24 MCL-25 MCL-26 MCL-27		<20 <20 <20 <20 <20	0.22 0.21 0.18 0.13 0.12	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	52 37 47 26 37	<10 <10 <10 <10 <10	79 92 62 68 64	
MCL-28 MCL-29 MCL-30 MCL-31 MCL-32		<20 <20 <20 <20 <20	0.12 0.14 0.22 0.11 0.13	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	33 33 40 30 35	<10 <10 <10 <10 <10	64 70 102 76 178	
MCL-33 MCL-34 MCL-35 MCL-36 MCL-37		<20 <20 <20 <20 <20	0.13 0.15 0.14 0.17 0.15	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	28 31 32 37 37	<10 <10 <10 <10 <10	58 79 59 69 68	
MCL-38 MCL-39 MCL-40		<20 <20 <20	0.09 0.11 0.17	<10 <10 <10	<10 <10 <10	26 26 37	<10 <10 <10	37 52 72	
0									

CERTIFICATE VA07148235

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: GUARDSMEN RESOURCES INC. C/O CHRISTOPHER JAMES GOLD CORP. SUITE 410 - 1111 MELVILLE STREET VANCOUVER BC V6E 3V6

Page: 1 Finalized Date: 5-FEB-2008 This copy reported on 11-MAR-2008 Account: KFP

	SAMPLE PREPARATIO	NC
ALS CODE	DESCRIPTION	
ND-02	Find Sample for Addn Analysis	
and the second		
	ANALYTICAL PROCEDU	IRES
ALS CODE		IRES

Project: Mica Peak 2007

P.O. No.:

This report is for 73 Pulp samples submitted to our lab in Vancouver, BC, Canada on 11-DEC-2007.

The following have access to data associated with this certificate:

SCOTT GIFFORD

MICHEAL RENNING

To: GUARDSMEN RESOURCES INC. ATTN: MICHEAL RENNING

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GUARDSMEN RESOURCES INC. C/O CHRISTOPHER JAMES GOLD CORP. SUITE 410 - 1111 MELVILLE STREET VANCOUVER BC V6E 3V6 Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 5-FEB-2008 Account: KFP

Project: Mica Peak 2007

100 1 Car 2007

Sample Description	Method	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81	ME-MS81
	Analyte	Ag	Ba	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Ga	Gd	Hf	Ho	La
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	LOR	1	0.5	0.5	0.5	10	0.01	5	0.05	0.03	0.03	0.1	0,05	0.2	0.01	0.5
MTL-01		<1	714	113.5	15.2	90	4.39	25	5.38	3.07	1.62	19.5	8.44	11.2	1.01	59.0
MTL-02		<1	744	133.0	14.2	90	5.41	30	5.87	3.27	1.80	21.2	9.45	11.0	1.10	68.2
MTL-03		<1	743	124.0	6.9	80	4.58	12	5.53	3.15	1.71	21.0	8.83	13.2	1.05	64.0
MTL-04		<1	741	191.0	10.1	80	5.69	21	7.49	4.05	2.25	20.9	13.80	14.7	1.33	96.9
MTL-05		<1	742	129.0	11.2	70	4.78	18	6.50	3.90	1.83	22.0	9.90	12.4	1.28	64.9
MTL-06		<1	720	124.0	9.5	80	4.51	18	5.72	3.27	1.68	20.7	9.00	13.9	1.09	63.9
MTL-07		<1	658	159.0	12.1	90	5.22	24	6.82	3.77	1.88	20.3	11.15	11.6	1.26	79.6
MTL-08		<1	704	141.5	10.1	90	5.30	17	5.71	3.13	1.79	22.8	9.87	11.3	1.05	72.0
MTL-09		<1	728	371	11.7	80	7.33	23	10.25	4.89	4.06	22.9	25.1	23.1	1.62	193.5
MTL-10		<1	532	183.5	17.4	90	5.44	27	6.97	3.47	2.29	22.9	12.10	10.4	1.23	92.8
MTL-11		<1	858	156.5	11.7	80	6.62	21	4.63	2.39	1.93	24.6	10.50	13.4	0.81	80.4
MTL-12		<1	1055	353	9.3	110	10.90	73	6.74	1.98	3.39	32.9	22.6	21.8	0.78	186.5
MTL-13		<1	709	184.0	11.5	90	7.42	26	5.74	2.84	2.22	25.0	12.15	11.6	0.97	93.5
MTL-14		<1	842	102.0	13.2	80	9.28	37	4.02	1.90	1.47	25.0	7.50	8.3	0.69	52.4
MTL-15		<1	964	113.5	10.3	100	9.61	24	3.91	1.94	1.58	28.6	7.84	10.8	0.66	59.4
MTL-16		<1	742	271	9.6	80	6.26	24	6.73	2.80	2.72	29.0	16.35	17.8	0.99	139.5
MTL-17		<1	833	125.5	16.8	100	7.42	34	5.50	2.69	1.62	28.9	8.51	9.5	0.97	63.5
MTL-18		<1	734	131.5	10.5	90	6.02	28	5.21	2.82	1.59	25.4	8.54	9.1	0.95	67.2
MTL-19		<1	737	92.8	11.1	80	6.74	20	4.34	2.33	1.24	24.2	6.20	9.1	0.80	47.4
MTL-20		<1	724	125.0	8.1	80	5.98	22	4.60	2.24	1.37	24.4	7.99	7.9	0.79	63.7
MTL-21 MTL-22 MTL-23 MTL-24 MTL-25		<1 <1 <1 <1	770 739 627 692 743	298 181.0 213 268 131.5	8.6 3.8 8.0 8.4 20.4	80 70 80 80 80	6.71 4.76 5.29 5.58 6.02	15 12 16 12 27	8.38 5.68 6.78 7.63 6.16	3.69 2.77 3.15 3.54 2.97	2.87 1.84 2.08 2.54 1.79	25.7 24.4 22.7 24.7 24.2	18.75 11.35 13.45 16.60 9.69	16.3 14.8 12.2 12.6 9.6	1.30 0.97 1.13 1.20 1.09	148.0 91.2 109.0 137.0 66.6
MTL-26		<1	813	149.5	9.8	90	11.65	26	5.52	2.68	1.60	29.4	10.25	11.4	0.95	76.0
MTL-27		<1	640	291	9.3	80	6.49	15	7.56	3.70	2.51	24.8	17.95	17.7	1.26	144.5
MTL-28		<1	643	169.5	8.9	70	6.57	18	5.85	2.89	1.73	23.1	11.10	11.4	0.99	86.5
MTL-29		<1	722	150.5	11.7	90	6.76	27	5.96	3.00	1.61	26.8	9.92	11.0	1.04	76.8
MTL-30		<1	731	220	6.6	80	5.44	20	7.01	3.30	2.20	24.7	13.65	14.6	1.15	111.0
MTL-31 MTL-32 MTL-33 MCL-01 MCL-02		<1 <1 <1 <1	651 705 671 620 649	154.0 184.5 126.0 287 349	21.7 17.5 9.4 11.4 9.6	80 80 60 70 60	6.89 7.7 6 8.81 3.63 3.39	33 35 27 37 12	5.82 6.37 4.82 10.65 11.90	2.90 3.16 2.45 5.72 6.34	1.63 1.92 1.41 2.90 3.54	23.3 24.0 21.7 19.1 20.2	10.05 11.75 8.04 17.80 21.5	8.9 10.6 12.1 21.4 28.4	1.03 1.08 0.82 1.95 2.11	78.3 92.5 62.9 141.5 174.0
MCL-03		<1	676	248	10.4	70	4.40	20	8.19	4.14	2.61	20.6	15.45	21.2	1.42	124.5
MCL-04		<1	701	157.0	10.9	70	5.86	15	6.72	3.75	1.46	23.6	9.69	10.9	1.25	77.3
MCL-05		<1	539	452	13.7	80	4.15	45	15.15	7.28	4.94	18.6	31.8	28.9	2.55	247
MCL-06		<1	685	153.0	16.1	80	4.49	23	7.43	4.16	2.01	20.2	10.65	13.8	1.44	78.9
MCL-07		<1	692	125.0	17.1	90	5.53	41	7.57	4.14	2.10	20.1	10.35	10.6	1.42	74.1

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GUARDSMEN RESOURCES INC. C/O CHRISTOPHER JAMES GOLD CORP. SUITE 410 - 1111 MELVILLE STREET VANCOUVER BC V6E 3V6

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 5-FEB-2008 Account: KFP

Project: Mica Peak 2007

Sample Description	Method Analyte Units LOR	ME-MS81 Lu ppm 0.01	ME-MS81 Mo ppm 2	ME-MS81 Nb ppm 0.2	ME-MS81 Nd ppm 0.1	ME-MS81 Ni ppm 5	ME-MS81 Pb ppm 5	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0.1	ME-MS81 Ta ppm 0.1	ME-MS81 Tb ppm 0.01	ME-MS81 Th ppm 0.05	ME-MS81 TI ppm 0.5
MTL-01 MTL-02 MTL-03 MTL-04 MTL-05		0.44 0.45 0.46 0.55 0.54	<2 <2 <2 <2 <2 <2	18.7 18.6 18.9 19.9 21.2	49.6 57.4 54.3 83.1 56.9	31 32 15 23 25	23 21 20 17 22	13.70 15.90 15.00 22.9 15.55	99.7 115.5 109.0 123.0 110.5	9.09 10.20 9.81 14.95 10.30	2 3 3 3 3	202 181.5 203 186.0 183.5	2.4 1.6 1.5 1.6 1.7	1.09 1.23 1.12 1.62 1.31	18.40 21.3 18.65 31.8 20.4	<0.5 0.5 <0.5 <0.5 <0.5
MTL-06 MTL-07 MTL-08 MTL-09 MTL-10		0.45 0.52 0.42 0.63 0.42	<2 <2 <2 <2 <2 <2	21.6 21.7 20.4 26.8 20.0	53.7 67.5 61.5 162.5 76.7	21 30 23 31 35	23 23 24 23 28	14.95 18.75 16.90 44.7 21.5	107.5 112.5 106.0 145.5 87.2	9.54 12.40 11.05 29.0 13.60	3 3 3 3	176.0 154.5 171.5 164.5 208	1.7 1.8 1.6 2.5 1.5	1.17 1.41 1.19 2.70 1.51	19.05 27.4 22.5 63.1 30.2	<0.5 <0.5 <0.5 0.5 <0.5
MTL-11 MTL-12 MTL-13 MTL-14 MTL-15		0.33 0.17 0.34 0.22 0.27	<2 2 <2 <2 <2 <2	20.4 30.4 23.8 18.1 22.7	66.9 153.0 79.1 43.8 49.2	27 18 27 28 26	25 28 24 24 26	18.75 43.0 22.0 12.35 13.75	165.0 211 140.0 170.5 187.5	11.80 26.0 14.30 8.02 8.86	3 4 3 4 4	141.5 124.5 153.5 119.0 140.5	1.7 2.6 2.0 1.4 1.8	1.14 2.21 1.35 0.91 0.94	25.4 59.1 29.3 17.20 18.40	0.6 0.9 0.5 0.7 0.7
MTL-16 MTL-17 MTL-18 MTL-19 MTL-20		0.36 0.36 0.36 0.31 0.29	<2 <2 <2 <2 <2 <2	23.1 19.9 19.1 18.8 17.3	112.0 53.3 55.2 38.7 51.9	27 49 29 27 23	25 26 23 24 19	30.4 14.15 14.75 10.35 14.05	150.5 175.5 140.5 158.5 130.0	19.35 9.47 9.80 7.00 9.10	3 4 3 3 3	128.5 149.0 149.5 133.5 150.0	2.0 1.5 1.6 1.5 1.3	1.71 1.11 1.08 0.83 0.95	44.1 19.55 21.8 14.95 20.5	1.0 0.8 0.6 0.7 0.5
MTL-21 MTL-22 MTL-23 MTL-24 MTL-25		0.50 0.38 0.42 0.45 0.38	<2 <2 <2 <2 <2 <2	22.9 20.9 20.0 26.9 19.8	123.5 73.6 87.8 108.5 55.8	20 9 20 20 32	26 27 23 23 25	33.0 19.85 23.5 29.4 14.90	146.5 159.5 113.5 130.5 137.0	21.8 12.95 15.10 18.65 9.89	3 4 3 3 3	115.5 122.5 122.5 152.5 149.5	1.9 1.6 1.5 1.9 1.5	2.05 1.28 1.51 1.78 1.21	49.4 32.4 35.8 44.9 20.9	0.7 0.6 0.6 0.6 0.7
MTL-26 MTL-27 MTL-28 MTL-29 MTL-30		0.36 0.50 0.39 0.38 0.44	<2 <2 <2 <2 <2 <2	23.7 48.1 23.7 25.3 24.3	61.9 116.5 69.1 62.0 90.2	22 22 21 27 17	29 24 25 30 26	16.70 31.4 18.70 16.75 24.1	184.0 130.0 143.0 138.0 134.5	11.10 20.6 12.25 11.05 15.60	5 3 3 4 3	111.0 138.5 124.5 111.5 143.5	2.6 2.2 2.0 2.0 2.4	1.18 1.86 1.24 1.21 1.54	25.9 49.6 30.5 28.6 37.2	0.7 0.5 0.5 0.7 0.6
MTL-31 MTL-32 MTL-33 MCL-01 MCL-02		0.39 0.42 0.32 0.76 0.90	<2 <2 <2 <2 <2 <2	22.4 24.9 23.3 33.5 35.3	63.3 75.5 50.1 116.0 142.5	39 36 23 24 18	27 27 29 22 23	17.15 20.3 13.50 31.1 37.9	140.5 165.5 159.0 89.4 91.9	11.10 13.30 8.64 19.90 24.5	3 3 4 3 3	114.0 100.5 151.5 212 230	1.9 2.1 2.0 2.9 3.0	1.24 1.35 0.99 2.17 2.50	27.4 33.3 21.5 42.4 55.0	0.7 0.8 0.7 <0.5 <0.5
MCL-03 MCL-04 MCL-05 MCL-06 MCL-07		0.53 0.58 0.94 0.57 0.55	<2 <2 <2 <2 <2 <2 <2	26.0 26.9 32.9 21.0 20.6	100.0 62.0 208 66.0 62.6	24 26 28 32 39	22 29 20 21 19	27.2 17.00 55.2 17.40 16.45	102.0 149.0 100.5 119.0 138.0	17.20 10.70 35.8 11.50 11.25	3 4 3 3 3	190.5 177.5 214 235 242	2.7 2.1 2.8 1.6 1.5	1.82 1.27 3.51 1.38 1.37	38.7 32.9 73.4 23.4 17.80	0.5 0.6 0.5 0.6 0.7

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GUARDSMEN RESOURCES INC. C/O CHRISTOPHER JAMES GOLD CORP. SUITE 410 - 1111 MELVILLE STREET VANCOUVER BC V6E 3V6 Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 5-FEB-2008 Account: KFP

Project: Mica Peak 2007

Sample Description	Method Analyte Units LOR	ME-MS81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ppm 5	ME-MS81 W ppm 1	ME-MS81 Y ppm 0.5	ME-MS81 Yb ppm 0.03	ME-MS81 Zn ppm 5	ME-MS81 Zr ppm 2	
MTL-01 MTL-02 MTL-03 MTL-04 MTL-05		0.44 0.44 0.55 0.55	3.83 4.16 4.21 6.02 4.56	103 98 84 89 88	4 5 5 3 2	25.6 27.4 25.7 33.4 32.0	2.95 3.14 3.07 3.65 3.72	84 89 59 74 78	401 385 473 521 436	
MTL-06 MTL-07 MTL-08 MTL-09 MTL-10		0.46 0.51 0.42 0.61 0.44	4.05 5.00 4.31 12.10 5.01	97 97 104 82 87	3 6 3 5 6	25.8 30.6 25.2 39.3 29.3	3.07 3.46 2.80 4.27 2.88	76 87 82 119 103	482 410 404 834 377	
MTL-11 MTL-12 MTL-13 MTL-14 MTL-15		0.32 0.17 0.35 0.24 0.25	5.24 11.80 5.71 4.46 4.09	96 122 99 90 107	6 4 4 4	19.1 17.2 23.0 15.8 15.9	2.23 1.19 2.38 1.57 1.80	78 119 92 92 90	475 749 415 280 368	
MTL-16 MTL-17 MTL-18 MTL-19 MTL-20		0.34 0.37 0.38 0.31 0.32	9.15 4.66 4.85 3.76 4.54	94 108 96 88 88	3 3 3 3 2	25.0 24.7 24.8 21.3 20.6	2.45 2.54 2.63 2.18 2.13	91 121 81 79 67	649 340 320 325 282	
MTL-21 MTL-22 MTL-23 MTL-24 MTL-25		0.49 0.37 0.42 0.45 0.40	9.62 6.55 7.10 8.65 4.96	98 94 95 93 96	3 3 2 3 3	33.4 25.8 29.9 32.3 28.7	3.38 2.63 2.89 3.10 2.69	78 45 68 71 84	596 577 459 481 362	
MTL-26 MTL-27 MTL-28 MTL-29 MTL-30	2	0.36 0.49 0.39 0.40 0.44	8.15 9.35 5.94 5.78 7.69	120 107 94 105 101	5 4 3 4 4	26.4 34.1 26.3 27.1 31.4	2.49 3.51 2.73 2.72 2.97	81 69 71 82 61	410 693 431 409 562	
MTL-31 MTL-32 MTL-33 MCL-01 MCL-02		0.37 0.43 0.32 0.79 0.86	5.24 6.54 6.72 8.06 10.25	100 102 90 93 92	3 2 3 3 2	26.6 28.2 22.7 52.3 56.7	2.60 2.96 2.20 5.35 6.08	106 111 79 76 74	327 390 458 845 1100	
MCL-03 MCL-04 MCL-05 MCL-06 MCL-07		0.57 0.54 0.95 0.59 0.55	7.58 4.91 26.6 6.14 9.12	93 100 94 100 108	2 3 2 2 2	37.5 35.2 69.0 38.2 39.3	3.73 3.79 6.39 3.93 3.81	77 77 79 75 76	812 398 1150 523 411	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GUARDSMEN RESOURCES INC. C/O CHRISTOPHER JAMES GOLD CORP. SUITE 410 - 1111 MELVILLE STREET VANCOUVER BC V6E 3V6 Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 5-FEB-2008 Account: KFP

Project: Mica Peak 2007

ect. Wilca Peak 2007

CERTIFICATE OF ANALYSIS VA07148235

Sample Description	Method	ME-MS81														
	Analyte	Ag	Ba	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu	Ga	Gd	Hf	Ho	La
	Units	ppm														
	LOR	1	0.5	0.5	0.5	10	0.01	5	0.05	0.03	0.03	0.1	0.05	0.2	0.01	0.5
MCL-08	2	<1	700	103.0	14.0	70	5.08	41	5.64	3.20	1.54	19.6	7.36	7.2	1.07	53.6
MCL-09		<1	803	162.0	15.4	80	4.96	31	6.63	3.43	1.99	22.6	10.85	12.9	1.17	82.5
MCL-10		<1	763	190.0	12.9	80	5.35	25	6.71	3.24	2.11	22.3	12.00	15.0	1.16	96.0
MCL-11		<1	683	167.5	24.3	80	5.48	26	8.44	4.30	2.28	21.1	13.15	13.5	1.49	89.7
MCL-12		<1	693	193.0	12.7	70	4.26	34	7.74	4.07	2.15	19.6	12.70	15.1	1.39	96.2
MCL-13		<1	811	128.0	16.8	80	5.97	47	5.83	3.07	1.62	22.6	8.58	10.2	1.11	63.7
MCL-14		<1	816	136.5	13.1	100	6.35	28	5.09	2.56	1.67	25.8	8.60	12.6	0.89	69.6
MCL-15		<1	908	151.5	19.2	110	6.59	43	5.66	2.62	1.86	25.7	9.88	12.3	0.92	76.1
MCL-16		<1	742	168.5	16.5	70	6.75	34	7.25	3.74	1.94	19.2	11.95	12.8	1.31	83.1
MCL-17		<1	814	108.0	24.8	100	9.04	49	5.65	3.22	1.52	25.1	7.55	11.6	1.11	52.0
MCL-18		<1	781	101.0	15.7	80	7.73	31	5.69	3.29	1.48	21.6	7.18	10.1	1.10	49.0
MCL-19		<1	778	112.0	15.7	40	6.59	36	6.46	3.29	1.81	16.2	8.61	7.9	1.22	55.3
MCL-20		<1	973	272	19.7	50	8.94	42	12.60	6.76	3.41	21.2	18.95	18.4	2.37	133.0
MCL-21		<1	790	83.0	7.1	50	10.55	41	4.49	1.99	1.38	24.9	6.32	5.5	0.81	40.9
MCL-22		<1	583	397	5.9	40	4.76	15	12.55	6.26	3.93	17.3	25.3	15.7	2.15	199.5
MCL-23		<1	748	352	6.3	50	7.10	24	11.05	4.16	3.10	21.4	22.2	14.7	1.65	173.5
MCL-24		<1	606	378	6.6	40	6.24	25	13.10	5.08	3.60	18.1	25.6	15.8	1.99	189.0
MCL-25		<1	630	197.5	5.3	40	6.01	16	6.29	2.83	2.14	18.9	13.15	8.4	1.06	96.6
MCL-26		<1	520	413	19.9	60	5.40	23	12.45	6.04	3.79	17.9	26.5	17.8	2.04	224
MCL-27		<1	501	148.0	5.6	40	4.31	16	5.67	2.72	1.71	14.8	9.93	6.3	0.99	74.6
MCL-28		<1	776	198.5	16.2	60	6.46	31	9.23	4.66	2.45	21.4	13.60	10.9	1.67	101.5
MCL-29		<1	480	148.5	8.6	30	4.37	19	6.30	3.06	1.76	14.5	10.30	7.3	1.13	73.8
MCL-30		<1	681	255	9.5	50	7.70	25	8.89	3.76	2.55	20.3	16.85	9.7	1.43	126.0
MCL-31		<1	380	244	19.2	30	3.04	17	8.99	4.58	2.56	11.8	16.05	12.8	1.58	122.5
MCL-32		<1	360	69.1	8.0	20	3.78	14	3.64	1.82	0.99	11.1	5.24	5.1	0.67	35.5
MCL-33		<1	468	89.0	6.3	30	3.97	14	4.41	2.31	1.22	13.9	6.26	5.8	0.81	43.6
MCL-34		<1	522	254	9.6	40	5.17	15	9.81	4.62	2.63	16.2	17.05	11.6	1.67	130.0
MCL-35		<1	429	120.5	5.7	30	3.75	16	5.21	2.65	1.38	12.5	8.14	7.7	0.93	59.4
MCL-36		<1	707	152.0	9.8	40	6.20	25	5.80	2.76	1.85	19.5	10.10	7.8	1.01	74.5
MCL-37		<1	548	120.0	8.4	30	4.87	18	4.91	2.48	1.48	16.1	8.33	10.5	0.89	59.3
MCL-38		<1	400	357	4.6	20	2.46	13	13.95	7.13	3.48	10.9	23.7	17.2	2.51	175.5
MCL-39		<1	845	265	9.7	50	6.75	26	8.53	3.44	3.08	23.1	17.10	15.4	1.32	131.0
MCL-40		<1	749	156.0	15.8	40	6.07	36	6.50	3.19	1.97	19.6	10.40	9.5	1.16	77.1

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GUARDSMEN RESOURCES INC. C/O CHRISTOPHER JAMES GOLD CORP. SUITE 410 - 1111 MELVILLE STREET VANCOUVER BC V6E 3V6 Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 5-FEB-2008 Account: KFP

Project: Mica Peak 2007

ect. Mica Peak 2007

CERTIFICATE OF ANALYSIS VA07148235

provide an end of the second state of the seco		and the second se	And in case of the local data and the second data and the													
Sample Description	Method Analyte Units LOR	ME-MS81 Lu ppm 0.01	ME-MS81 Mo ppm 2	ME-MS81 Nb ppm 0,2	ME-MS81 Nd ppm 0.1	ME-MS81 Ni ppm 5	ME-MS81 Pb ppm 5	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0.1	ME-MS81 Ta ppm 0.1	ME-MS81 Tb ppm 0.01	ME-MS81 Th ppm 0.05	ME-MS81 TI ppm 0.5
MCL-08 MCL-09 MCL-10 MCL-11 MCL-12		0.43 0.47 0.45 0.55 0.54	<2 <2 <2 <2 <2 <2 <2	18.4 21.0 23.2 21.7 21.6	45.3 68.7 79.0 79.2 79.9	30 31 31 37 28	20 23 23 19 21	12.00 18.30 21.2 20.9 21.6	115.0 143.5 131.5 134.5 117.0	8.09 11.85 13.75 14.45 14.05	3 3 3 3 3	207 205 193.0 238 197.0	1.3 1.6 1.9 1.6 1.8	0.99 1.34 1.41 1.67 1.54	14.55 24.2 29.1 27.1 31.5	0.6 0.6 0.6 0.6 0.5
MCL-13 MCL-14 MCL-15 MCL-16 MCL-17		0.42 0.34 0.33 0.50 0.44	<2 <2 <2 <2 <2 <2	21.0 21.4 20.8 22.8 21.7	53.5 56.7 64.2 72.1 43.7	46 40 46 27 47	23 25 24 25 27	14.35 15.10 17.15 19.60 11.95	152.0 146.0 183.0 132.0 168.0	9.48 9.78 11.35 13.50 7.83	3 4 4 3 4	184.5 160.0 159.5 194.5 188.0	1.7 1.7 1.7 2.1 1.6	1.12 1.05 1.19 1.48 1.02	21.3 21.3 24.4 29.8 18.05	0.7 0.6 0.8 0.6 0.7
MCL-18 MCL-19 MCL-20 MCL-21 MCL-22		0.43 0.44 0.93 0.21 0.88	2 <2 <2 <2 <2 <2	22.1 13.7 29.3 15.3 25.3	41.9 54.9 122.0 39.1 183.0	32 22 23 11 8	24 13 17 14 15	11.35 14.75 33.9 10.85 50.8	144.5 128.5 166.5 160.5 104.5	7.71 9.96 21.7 7.34 32.3	3 2 3 4 2	183.5 167.5 252 134.5 167.0	2.2 1.1 2.7 1.3 2.3	0.97 1.28 2.57 0.88 2.97	16.35 21.0 52.2 15.10 80.5	0.6 <0.5 <0.5 <0.5 <0.5
MCL-23 MCL-24 MCL-25 MCL-26 MCL-27		0.48 0.62 0.38 0.78 0.37	<2 <2 <2 <2 <2 <2	21.0 20.6 16.7 27.5 14.0	161.5 176.0 91.5 185.5 69.1	11 9 7 23 9	19 14 14 23 12	44.6 48.8 25.5 49.3 19.20	166.0 146.5 132.0 123.0 110.0	27.3 31.2 16.25 32.2 11.80	3 2 3 3 2	153.5 110.0 80.5 149.0 141.0	1.6 2.0 1.4 2.5 1.0	2.71 3.17 1.56 2.90 1.24	71.0 79.9 40.6 72.8 30.1	0.5 0.5 <0.5 0.8 <0.5
MCL-28 MCL-29 MCL-30 MCL-31 MCL-32		0.64 0.40 0.45 0.60 0.21	<2 <2 <2 <2 <2 <2	24.1 14.8 15.3 16.9 9.3	93.2 69.5 118.5 112.0 33.1	29 13 10 14 33	19 12 17 15 10	26.0 19.50 32.4 30.9 9.12	140.5 104.0 178.5 74.1 86.0	16.55 12.40 20.5 19.75 6.02	3 2 3 2 1	220 118.5 110.5 118.5 95.0	1.7 1.3 1.4 1.5 0.8	1.87 1.33 2.10 1.98 0.71	38.5 29.8 54.8 53.3 14.50	<0.5 <0.5 0.6 <0.5 <0.5
MCL-33 MCL-34 MCL-35 MCL-36 MCL-37		0.30 0.60 0.36 0.37 0.34	<2 <2 <2 <2 <2 <2	12.7 19.6 12.3 16.2 14.8	40.9 118.5 55.9 70.5 55.8	12 19 7 16 13	15 15 12 17 15	11.35 33.1 15.55 19.35 15.35	94.5 107.5 91.4 149.5 123.5	7.29 20.9 9.88 12.95 9.88	2 2 2 3 2	126.0 126.0 84.3 123.0 105.0	1.1 1.7 1.1 1.5 1.3	0.85 2.24 1.05 1.29 1.02	17.80 53.9 25.7 31.7 25.3	<0.5 <0.5 <0.5 <0.5 <0.5
MCL-38 MCL-39 MCL-40	~	0.93 0.46 0.43	<2 <2 <2	25.5 17.0 17.5	163.0 122.5 71.2	<5 15 19	12 23 17	44.9 33.4 19.70	61.1 156.0 156.5	28.9 21.8 12.35	2 3 3	139.0 154.5 133.0	2.8 1.5 1.6	2.97 2.13 1.34	78.9 54.4 32.2	<0.5 <0.5 <0.5

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: GUARDSMEN RESOURCES INC. C/O CHRISTOPHER JAMES GOLD CORP. SUITE 410 - 1111 MELVILLE STREET VANCOUVER BC V6E 3V6 Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 5-FEB-2008 Account: KFP

Project: Mica Peak 2007

CERTIFICATE OF ANALYSIS VA07148235

Sample Description	Method Analyte Units LOR	ME-MS81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ppm 5	ME-MS81 W ppm 1	ME-MS81 Y ppm 0.5	ME-MS81 Yb ppm 0.03	ME-MS81 Zn ppm 5	ME-MS81 Zr ppm 2	
MCL-08		0.44	4.32	95	2	29.1	2.84	71	271	
MCL-09		0.46	5.28	96	2	31.5	3.24	82	485	
MCL-10		0.43	5.93	94	3	30.5	3.09	79	561	
MCL-11		0.56	11.45	99	3	41.4	3.74	97	508	
MCL-12		0.54	6.09	87	2	36.4	3.83	80	567	
MCL-13		0.41	4.09	103	2	28.9	2.99	90	384	
MCL-14		0.35	4.56	107	3	23.4	2.37	83	462	
MCL-15		0.34	5.58	110	3	24.1	2.30	93	449	
MCL-16		0.49	6.57	94	3	31.5	3.45	88	458	
MICL-17		0.44	3.57	126	3	28.2	2.97	125	406	
MCL-18		0.46	3.88	108	3	28.2	3.00	88	367	
MCL-19		0.47	5.62	67	1	28.8	2.95	73	292	
MCL-20		0.95	9.58	89	3	53.6	6.19	101	677	
MCL-21		0.25	11.15	94	2	17.9	1.54	78	198	
MCL-22		0.87	13.25	58	2	49.8	5.85	55	601	
MCL-23		0.48	12.60	72	2	37.5	3.29	73	573	
MCL-24		0.66	14.80	52	2	43.8	4.19	67	570	
MCL-25		0.38	6.76	61	2	23.1	2.47	50	312	
MCL-26		0.78	14.25	67	3	57.9	5.33	95	652	
MCL-27		0.36	5.46	47	2	21.6	2.37	48	216	
MCL-28		0.67	8.48	71	2	39.7	4.40	82	404	
MCL-29		0.43	5.90	42	2	25.8	2.76	53	263	
MCL-30		0.49	11.05	57	2	31.9	3.13	//	350	
MCL-32		0.01	3.32	30	2	30.0	4.07	57	4//	
MOL-02		0.24	0.02		1	10.0	1.55		175	
MCL-33		0.32	3.66	40	2	19.1	2.11	47	207	
MCL 25		0.60	9.97	40	1	37.9	3.95	64	425	
MCL-36		0.37	4.70	60	2	22.2	2.44	44	273	
MCL-37		0.36	4.79	51	1	20.0	2.47	58	362	
MCL-39		1.01	12.30	36	4	62.2	6.70	42	625	
MCL-30		0.47	10.15	50	2	30.1	3.09	43	635	
MCL-40		0.44	6.02	62	2	27.5	2.84	73	342	
WOL-40		0.44	0.02	02	2	21.5	2.04	71	542	
	\mathcal{R}_{i}									

Fire Assay Procedure – Au-AA23 & Au-AA24 Fire Assay Fusion, AAS Finish

Sample Decomposition:	Fire Assay Fusion (FA-FUS01 & FA- FUS02)
Analytical Method:	Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 mL dilute nitric acid in the microwave oven, 0.5 mL concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 mL with de-mineralized water, and analyzed by atomic absorption spectroscopy against matrix-matched standards.

Method Code	Element	Symbol	Units	Sample Weight (g)	Lower Limit	Upper Limit	Default Overlimit Method
Au-AA23	Gold	Au	ppm	30	0.005	10.0	Au- GRA21
Au-AA24	Gold	Au	ppm	50	0.005	10.0	Au- GRA22

Geochemical Procedure - ME-ICP41 Trace Level Methods Using Conventional ICP-AES Analysis

Sample Decomposition:	Nitric Aqua Regia Digestion (GEO-AR01)
Analytical Method:	Inductively Coupled Plasma - Atomic
	Emission Spectroscopy (ICP - AES)

A prepared sample is digested with aqua regia for in a graphite heating block. After cooling, the resulting solution is diluted to 12.5 mL with deionized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. The analytical results are corrected for inter-element spectral interferences.

NOTE: In the majority of geological matrices, data reported from an aqua regia leach should be considered as representing only the leachable portion of the particular analyte.

Element	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Silver	Ag	ppm	0.2	100	Ag-OG46
Aluminum	AI	%	0.01	25	
Arsenic	As	ppm	2	10000	
Boron	В	ppm	10	10000	
Barium	Ва	ppm	10	10000	
Beryllium	Be	ppm	0.5	1000	
Bismuth	Bi	ppm	2	10000	
Calcium	Ca	%	0.01	25	
Cadmium	Cd	ppm	0.5	1000	
Cobalt	Со	ppm	1	10000	
Chromium	Cr	ppm	1	10000	
Copper	Cu	ppm	1	10000	Cu-OG46
Iron	Fe	%	0.01	50	

Revision 06.01

Element	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Gallium	Ga	ppm	10	10000	
Mercury	Hg	ppm	1	10000	
Potassium	K	%	0.01	10	
Lanthanum	La	ppm	10	10000	
Magnesium	Mg	%	0.01	25	
Manganese	Mn	ppm	5	50000	
Molybdenum	Мо	ppm	1	10000	
Sodium	Na	%	0.01	10	
Nickel	Ni	ppm	1	10000	
Phosphorus	Р	ppm	10	10000	
Lead	Pb	ppm	2	10000	Pb-OG46
Sulfur	S	%	0.01	10	
Antimony	Sb	ppm	2	10000	
Scandium	Sc	ppm	1	10000	
Strontium	Sr	ppm	1	10000	
Thorium	Th	ppm	20	10000	
Titanium	Ti	%	0.01	10	
Thallium	TI	ppm	10	10000	
Uranium	U	ppm	10	10000	
Vanadium	V	ppm	1	10000	
Tungsten	W	ppm	10	10000	
Zinc	Zn	ppm	2	10000	Zn-OG46

Elements listed below are available upon request

Element	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Cerium	Ce	ppm	10	10000	
Hafnium	Hf	ppm	10	10000	
Indium	In	ppm	10	10000	
Lithium	Li	ppm	10	10000	
Niobium	Nb	ppm	10	10000	
Rubidium	Rb	ppm	10	10000	
Selenium	Se	ppm	10	10000	
Silicon	Si	ppm	10	10000	
Tin	Sn	ppm	10	10000	
Tantalum	Та	ppm	10	10000	
Tellurium	Те	ppm	10	10000	
Yttrium	Y	ppm	10	10000	
Zirconium	Zr	ppm	5	10000	

Appendix E

Soil Horizons And Other Layers

SOIL HORIZONS AND OTHER LAYERS

The definitions of classes in the Canadian system are based mainly on the kinds, degrees of development, and the sequence of soil horizons and other layers in pedons. Therefore, the clear definition and designation of soil horizons and other layers are basic to soil classification. A soil horizon is a layer of mineral or organic soil or soil material approximately parallel to the land surface that has characteristics altered by processes of soil formation.

It differs from adjacent horizons in properties such as colour, structure, texture, and consistence, and in chemical, biological, and mineralogical composition. The other layers are either nonsoil layers such as rock and water or layers of unconsolidated material considered to be unaffected by soil-forming processes. For the sake of brevity these other layers are referred to simply as layers, but it is recognized that soil horizons are also layers In previous editions of this publication and in the Glossary of Terms in Soil Science organic materials are designated as layers and not horizons.

The major mineral horizons are A, B, and C.

The major organic horizons are L, F, and H, which are mainly forest litter at various stages of decomposition, and O, which is derived mainly from bogs, marsh, or swamp vegetation. Subdivisions of horizons are labeled by adding lower case suffixes to some of the major horizon symbols as with Ah or Re. Well-developed horizons are readily identified in the field. However, in cases of weak expression or of borderline properties, as between Ah and H, laboratory determinations are necessary before horizons can be designated positively. Many of the laboratory methods required are outlined in a manual prepared by a subcommittee of CSSC (McKeague 1976). Some other methods pertaining to organic horizons are outlined near the end of this chapter.

The layers defined are R, rock; W, water; and IIC or other nonconforming, unconsolidated mineral layers, IIIC, etc. below the control section that are unaffected by soil-forming processes. Theoretically a IIC affected by soil-forming processes is a horizon; for example a IICca is a horizon. In practice, it is usually difficult to determine the lower boundary of soil material affected by soil-forming processes.

Thus the following are considered as horizons: C(IC), any unconforming layer within the control section, and any unconforming layer below the control section that has been affected by pedogenic processes (e.g. IIBc, IIIBtj). Unconforming layers below the control section that do not appear to have been affected by pedogenic processes are considered as layers. The tiers of Organic soils are also considered as layers.

Mineral horizons and layers

Mineral horizons contain 17% or less organic C (about 30% organic matter) by weight.

A This is a mineral horizon formed at or near the surface in the zone of leaching or eluviation of materials in solution or suspension, or of maximum in situ accumulation of organic matter or both. The accumulation of organic matter is usually expressed morphologically by a darkening of the surface soil (Ah), and conversely the removal of organic matter is usually expressed by a lightening of the soil colour usually in the upper part of the solum (Ae). The removal of clay from the upper part of the solum (Ae) is expressed by a coarser soil texture relative to the underlying subsoil layers. The removal of iron is indicated usually by a paler or less red soil colour in the upper part of the solum (Ae) relative to the lower part of the subsoil.

B This is a mineral horizon characterized by enrichment in organic matter, sesquioxides, or clay, or by the development of soil structure; or by a change of colour denoting hydrolysis, reduction, or oxidation. The accumulation in B horizons of organic matter (Bh) is evidenced usually by dark colours relative to the C horizon. Clay accumulation is indicated by finer soil textures and by clay cutans coating peds and lining pores (Bt). Soil structure developed in B horizons includes prismatic or columnar units with coatings or stainings and significant amounts of exchangeable sodium (Bn) and other changes of structure (Bm) from that of the parent material. Colour changes include relatively uniform browning due to oxidation of iron (Bm), and mottling and gleying of structurally altered material associated with periodic reduction (Bg)-

C This is a mineral horizon comparatively unaffected by the pedogenic processes operative in A and B, (C), except the process of gleying (Cg), and the accumulation of calcium and magnesium carbonates (Cca) and more soluble salts (Cs, Csa). Marl, diatomaceous earth, and rock no harder than 3 on Mohs' scale are considered to be C horizons.

R This is a consolidated bedrock layer that is too hard to break with the hands (>3 on Mohs' scale) or to dig with a spade when moist and does not meet the requirements of a C horizon. The boundary between the R layer and any overlying unconsolidated material is called a lithic contact.

W This is a layer of water in Gleysolic, Organic, or Cryosolic soils. Hydric layers in Organic soils are a kind of W layer.

Lowercase suffixes

b-A buried soil horizon.

c -- A cemented (irreversible) pedogenic horizon. Ortstein, placic, and duric horizons of Podzolic soils, and a layer cemented by CaC03 are examples.

ca - A horizon of secondary carbonate enrichment in which the concentration of lime exceeds that in the unenriched parent material. It is more than 10 cm thick, and its CaCO, equivalent exceeds that of the parent material by at least 5% if the CaCO, equivalent is less than 1 (13% vs 8%), or by at least 1/3 if the CaCO3 equivalent of the horizon is 15% or more (28% vs 21%). If no IC is present, this horizon is more than 10 cm thick and contains more than 5% by volume of secondary carbonates in concretions or in soft, powdery forms, cc -- Cemented (irreversible) pedogenic concretions.

e -- A horizon characterized by the eluviation of clay, Fe, Al, or organic matter alone or in combination. When dry, it is usually higher in (colour value by one or more units than an underlying B horizon. It is used with A (Ae).

f-A horizon enriched with amorphous material, principally AI and Fe combined with organic matter. It must have a hue of 7.5YR or redder, or its hue must be 10YR near the upper boundary and become yellower with depth. When moist the chroma is higher than 3 or the value is 3 or less. It contains at least 0.6% pyrophosphate-extractable AI + Fe in textures finer than sand and 0.4% in sands (coarse sand, sand, fine sand, and very fine sand). The ratio of pyrophosphate-extractable AI + Fe to clay (< 0.002 mm) is more than 0.05 and organic C exceeds 0.5 · 0 . Pyrophosphate-extractable Fe is at least 0.3%, or the ratio of organic C to pyrophosphate-extractable -Fe is less than 20, or both are true. It is used with B alone (Bf), with B and h (Bhf), with B and g (Bfg), and with other suffixes. These criteria do not apply to Bgf horizons. The following f horizons are differentiated on the basis of the organic C content:

Bf - 0.5-5% organic C

Bhf --- more than 5% organic C

No minimum thickness is specified for a BF or a Bhf horizon. Thin Bf and Bhf horizons do not qualify as podzolic B horizons as defined later in this chapter. Some Ah and Ap horizons contain sufficient pyrophosphate-extractable AI + Fe to satisfy this criterion of f but are designated Ah or Ap.

g --- A horizon characterized by gray colours, or prominent mottling, or both, indicative of permanent or periodic intense reduction. Chromas of the matrix are

generally 1 or less. T-t is used with A and e (Aeg); B alone (Bg); B and f (Bfg, Bgf); B, h, and f (Bhfg); B and t (Btg) C alone (Cg); C and k (Ckg); and several others. In some reddish parent materials matrix colours o reddish hues and high chromas may persist despite long periods of reduction. In these soils, horizons are designated as g if there is gray mottling or marked bleaching on ped faces or along cracks.

Aeg -- This horizon must meet the definitions of A, e, and g.

Bg This horizon is analogous to a Em horizon but has colours indicative of poor drainage and periodic reduction. It includes horizons occurring between A and C horizons in which the main features are: (i) Colours of low chroma, that is: chromas of -1 or less, without mottles on ped surfaces or in the matrix if peds are lacking; or chromas of 2 or less in hues of 10YR or redder, on ped surfaces or in the matrix if peds are lacking, accompanied by more prominent mottles than those in the C horizon; or hues bluer than IOY, with or without mottles on ped surfaces or in the matrix if peds are lacking. (ii) Colours indicated in (i) and a change in structure from that of the C horizon. (iii) Colours indicated in (i) and illuviation of clay too slight to meet the requirements of Bt, or an accumulation of iron oxide too slight to meet the limits of Bgf. (iv) Colours indicated in (i) and the removal of carbonates. Bg horizons occur in some Orthic Humic Gleysols and some Orthic Gleysols.

Bfg, Bhfg, Btg, and others -- When used in any of these combinations the limits set for f, hf, t, and others must be met.

Bgf -- The dithionite-extractable Fe of this horizon exceeds that of the IC by 1% or more. Pyre phosphate-extractable AI + Fe is less than the minimum limit specified for f horizons. This horizon occurs in Fera Gleysols and Fera Humic Gleysols and possibly below the Bfg of gleyed Podzols. It is distinguished from the Bfg of gleyed Podzols on the basis of the extractability of the Fe and AI. The Fe in the Bgf horizon is thought to have accumulated as a result of the oxidation of ferrous iron. The iron oxide formed is not associated intimately with organic matter or with AI and is sometimes crystalline. The Bgf horizons are usually prominently mottled, more than half of the soil material occurs as mottles of high chroma.

Cg, Ckg, Ccag, Csg, Csag -- When g is used with C alone, or with C and one of the lowercase suffixes k, ca, s, or sa the horizon must meet the definition for C and for the particular suffix as well as for g.

h -- A horizon enriched with organic matter. It is used with A alone (Ah), or with A and e (Ahe), or with B alone (Bh), or with -B and f (Bhf).

Ah -- A horizon enriched with organic matter, it has a colour value at least one unit lower than the underlying horizon or 0.5.0 more organic C than the IC or both. It contains less than 17% organic C by weight.

Ahe -- An Ah horizon that has undergone eluviation as evidenced, under natural conditions, by streaks and splotches of different shades of gray and often by platy structure. It may be overlain by a dark-coloured Ah and underlain by a light-coloured Re.

Bh - This horizon contains more than 1% organic C, less than 0.3% pyrophosphate-extractable Fe, and has a ratio of organic C to pyrophosphate-extractable Fe of 20 or more. Generally the colour value and chroma are less than 3 when moist.

Bhf -- Defined under f.

j This is used as a modifier of suffixes e, f, g, n, and t to denote an expression of, but failure to meet, the specified limits of the suffix it modifies. It must be placed to the right and adjacent to the suffix it modifies. For example, Bfgj means a Bf horizon with a weak expression of gleying, Bfjgj means a B horizon with weak expression of both f and g features.

Aej -- It denotes an eluvial horizon that is thin, discontinuous, or slightly discernible.

Btj -- It is a horizon with some illuviation of clay but not enough to meet the limits of Bt.

Btgj, Bmgj These are horizons that are mottled but do not meet the criteria of Bg.

Bfj It is a horizon with some accumulation of pyrophosphate-extractable AI + Fe but not enough to meet the limits of Bf. In addition, the colour of this horizon may not meet the colour criteria set for Bf.

Btnj or Bnj - These are horizons in which the development of solonetzic B properties is evident but insufficient to meet the limits for En or Bnt.

k - Denotes the presence of carbonate as indicated by visible effervescence when dilute HC1 is added. It is used mostly with B and m (Bmk) or C (Ck) and occasionally with Ah or Ap (Ahk, Apk), or organic horizons (Ofk, Omk).

m - A horizon slightly altered by hydrolysis, oxidation, or solution, or all three to give a change in colour or structure, or both. It has:

1. Evidence of alteration in one of the following forms:

- a. Higher chromas and redder hues than the underlying horizons.
- b. Removal of carbonates either partially (Bmk) or completely (Bm).
- c. A change in structure from that of the original material.
 - 1. Illuviation, if evident, too slight to meet the requirements of a Bt or a podzolic B 3
 - 2. Some weatherable minerals.
 - 3. No cementation or induration and lacks a brittle consistence when moist This suffix can be used as Bm, Bmgj, Bmk, and Ems.

n -- A horizon in which the ratio of exchangeable Ca to exchangeable Na is 10 or less. It must also have the following distinctive morphological characteristics: prismatic or columnar structure, dark coatings on ped surfaces, and hard to very hard consistence when dry. It is used with B as En or Bnt.

p-A horizon disturbed by man's activities such as cultivation, logging, and habitation. It is used with A and O.

s - A horizon with salts, including gypsum, which may be detected as crystals or veins, as surface crusts of salt crystals, by depressed crop growth, or by the presence of salt-tolerant plants. It is commonly used with C and k (Csk), but can be used with any horizon or combination of horizon and lowercase suffix.

sa - A horizon with secondary enrichment of salts more soluble than Ca and Mg carbonates; the concentration of salts exceeds that in the unenriched parent material. The horizon is at least 10 cm thick. The conductivity of the saturation extract must be at least 4 mS/cm and exceed that of the C horizon by at least one-third. (The unit mho has been replaced by siemens [S].) t -- An illuvial horizon enriched with silicate clay. It is used with B alone (Bt), with B and g (Btg), with B and n (Bnt), etc.

Bt - A Bt horizon is one that contains illuvial layer-lattice clays. It forms below an eluvial horizon but may occur at the surface of a soil that has been partially truncated. It usually has a higher ratio of fine clay to total clay than the IC. It has the following properties :

1. If any part of an eluvial horizon remains and there is no lithologic discontinuity between it and the Bt horizon, the Bt horizon contains more total clay than the eluvial horizon as follows:

a. If any part of the eluvial horizon has less than 15% total clay in the fine earth fraction (<2 mm), the Bt horizon must contain at least 3% more clay, e.g. Re 10% clay; Bt minimum 13% clay.

b. If the eluvial horizon has more than 15% and less than 40% total clay in the fine earth fraction, the ratio of the clay in the Bt horizon to that in the eluvial horizon must be 1.2 or more, e.g. Re 25% clay; Bt at least 30% clay.

c. If the eluvial horizon has more than 40% total clay in the fine earth fraction, the Bt horizon must contain at least 8% more clay, e.g. Re 50.0 clay; Bt at least 58% clay.

- 1. A Bt horizon must be at least 5 cm thick. In some sandy soils where clay accumulation occurs in the lamellae, the total thickness of the lamellae should be more than 10 cm in the upper 150 cm of the profile.
- 2. In massive soils the Bt horizon should have oriented clay in some pores and also as bridges between the sand grains.
- 3. If peds are present, a Bt horizon has clay skins on some of the vertical and horizontal ped surfaces and in the fine pores or has illuvial oriented clays in 1% or more of the cross section as viewed in thin section.
- 4. If a soil shows a lithologic discontinuity between the eluvial horizon and the Bt horizon, or if only a plow layer overlies the Bt horizon, the Bt horizon need show only clay skins in some part, either in some fine pores or on some vertical and horizontal ped surfaces. Thin sections should show that the horizon has about 1% or more of oriented clay bodies Btj and Btg are defined under j and g.

u -- A horizon that is markedly disrupted by physical or faunal processes other than cryoturbation. Evidence of marked disruption such as the inclusion of material from other horizons or the absence of the horizon must be evident in at least half of the cross section of the pedon. Such turbation can result from a blowdown of trees, mass movement of soil on slopes, and burrowing animals. The u can be used with any horizon or subhorizon with the exception of A or B alone; e.g. Aeu, Bfu, BCu.

x - A horizon of fragipan character. A fragipan is a loamy subsurface horizon of high bulk density and very low organic matter content. When dry, it has a hard consistence and seems to be cemented. When moist, it has moderate to weak brittleness. It frequently has bleached fracture planes and is overlain by a friable B horizon. Air-dry clods of fragic horizons slake in water.

y -- A horizon affected by cryoturbation as manifested by disrupted and broken horizons, incorporation of materials from other horizons, and mechanical sorting in at least half of the cross section of the pedon. It is used with A, B, and C alone or in combination with other subscripts, e.g. Ahy, Ahgy, Bmy, Cy, Cgy, Cygj.

z -- A frozen layer. It may be used with any horizon or layer, e.g. Ohz, Bmz, Cz, Wz.

Department of Geography University of Calgary 2500 University Dr. NW Calgary, AB T2N 1N4 geograph@ucalgary.ca

© 2005-2006 Department of Geography, University of Calgary