

ASSESSMENT REPORT

## ON

## DIAMOND DRILLING

 NORTH STRUCTURE AREAMineral Tenure 510499

BC Geological Survey Assessment Report 29810

Moyie Lake Area, British Columbia

## FORT STEELE MINING DIVISION

TRIM MAP 82G. 021
UTM 5460720N 585280E

Peter Klewchuk, P. Geo.
March, 2008

## TABLE OF CONTENTS

Page
1.00 INTRODUCTION
1.10 Location and Access ..... 1
1.20 Property ..... 1
1.30 Physiography ..... 1
1.40 History of Previous Work ..... 1
1.50 Scope of Present Program ..... 4
2.00 GEOLOGY ..... 4
3.00 DIAMOND DRILLING ..... 4
4.00 CONCLUSIONS ..... 8
5.00 REFERENCES ..... 8
6.00 STATEMENT OF EXPENDITURES ..... 9
7.00 AUTHOR'S QUALIFICATIONS ..... 10
LIST OF ILLUSTRATIONS
Figure 1. Property Location Map ..... 2
Figure 2. Mineral Tenure Map Showing Location of Drill Holes ..... 3
Figure 3. Location Map of DDH NS-07-1 \& 3 ..... 5
Figure 4. Cross Section of DDH NS-07-1 ..... 6
Figure 5. Cross Section of DDH NS-07-3 ..... 7
Appendix 1. Diamond Drill Log
Appendix 2. Drill Core Analyses

### 1.0 INTRODUCTION

### 1.10 Location and Access

The North Structure area is part of St. Eugene Mining Corporation's Moyie Lake claim block and is located about 25 kilometers south of Cranbrook, B.C. just east of the southern Moyie Lake and just north of the community of Moyie (Figures $1 \& 2$ ). Access is via Highway $3 / 95$ south of Cranbrook andthe Barkshanty Forest Servive Road

### 1.20 Property

The North Structure area is part of a larger block of claims in the Moyie Lake area held by St. Eugene Mining Corporation Ltd. This claim block surrounds the St. Eugene Mine block of claims held by Teck-Cominco and covers a WNW trending geophysical anomaly which parallels the trend of the St. Eugene vein system. The property also covers the Society Girl workings which are on strike of the St. Eugene vein to the ESE of the St. Eugene Mine workings.

### 1.30 Physiography

The Moyie Lake claim block is located to the east and west of Moyie Lake in the McGilvray Range of the Purcell Mountains. Topography is of glacially rounded mountain ridges and tops with generally steep-sided stream valleys. Elevations in the area range from 928 meters at Moyie Lake to about 2075 meters. A mixed forest cover consists mainly of pine, fir and larch with some parts of the property recently logged.
1.40 History of Previous Work

The St. Eugene Mine was discovered in 1893 and mined intermittently from 1895 to 1929. Just over one million tons were mined at an approximate grade of $15 \% \mathrm{~Pb}, 7 \mathrm{oz} / \mathrm{ton} \mathrm{Ag}$ and $5 \% \mathrm{Zn}$ (zinc was not recovered in the early years of mining. Minor production occurred from the Aurora deposit west of the lake and from the Society Girl deposit located "on strike" of the St. Eugene to the ESE. In the spring of 2006 St. Eugene Mining Corp. Ltd. conducted an airborne geophysical survey over their Moyie lake group of claims (Klein, 2006; AR 28450). A WNW anomaly, parallel to the trend of the St Eugene vein system, was detected approximately 1.2 kilometers north of the St Eugene. The area of the anomaly was prospected, geologically mapped and covered with a soil geochemistry survey but only very limited geologic evidence was found to support the presence of a "St Eugene-like" mineralized structure.


Figure 1. St. Eugene Mining Corp. Property Location Map


### 1.50 Scope of Present Program

Three NQ diamond drill holes totalling 1007.06 meters were drilled to test the North Structure in April and May of 2007. Hole NS-07-2 was abandoned at a depth of 218.24 meters when the rods were stuck and subsequent activity caused the core barrel to break off in the hole. Efforts to retrieve the broken core barrel were unsuccessful and the hole was abandoned.

### 2.00 GEOLOGY

The rocks which underlie the North Structure area are of the middle Aldridge Formation and consist of fine grained clastics of turbidite affinity. The area has been most recently mapped by Hoy (1982). The east side of lower Moyie Lake is on the eastern flank of a north-plunging anticline whose axis trends NNE and runs through the lake. Bedding dips gently to moderately east.

### 3.00 DIAMOND DRILLING

Three NQ diameter diamond drill holes (DDH NS-07-1, 2 \& 3) totalling 1007.06 meters were drilled on the "North Structure" between April 28 and May 23, 2007. Figures 2 and 3 show the location of the drill holes; Figures 4 and 5 are cross-sections of DDH NS-07-1 and 3 respectively. DDH NS-07-3 was collared within 10 meters of hole NS-07-2 and drilled parallel to hole 2 thus a separate cross-section for hole 2 was not made. The complete drill logs are in Appendix 1. Selected drill core was sampled by splitting, placed in plastic sample bags and shipped to ALS Chemex Laboratories (ALS Chemex Ltd.) at 212 Brooksbank Avenue, North Vancouver, B.C. where it was analyzed for a 33 element ICP package by standard analytical procedures. Drill core analyses are in Appendix 2.

All 3 diamond drill holes intersected middle Aldridge stratigraphy consisting of siltstones, argillites and impure quartzites. Hole NS-07-1 was collared at $-54^{\circ}$ toward an azimuth of $007^{\circ}$ and drilled to a total depth of 361.49 meters. Hole NS-07-2 was collared at $-52^{\circ}$ toward an azimuth of $039^{\circ}$ for a total depth of 218.24 meters and hole NS-07-3 was collared at $-51^{\circ}$ toward an azimuth of $042^{\circ}$ for a total depth of 427.33 meters.

Drill hole NS-07-2 was abandoned at 218.24 meters because of a core barrel getting stuck and breaking in the hole. The lower portion of the core barrel could not be retrieved.

Drill Holes NS-07-1 \& 3 each intersected a narrow mineralized vein system within a shear or fault structure. Sulfides include galena, sphalerite and pyrite. The narrow sulphide-bearing deformation zone occurs within a wider zone of bleached (sericitic?) alteration up to about 20 meters wide. The sulphide vein system intersected by drilling is interpreted to be a WNW-



## ST EUGENE MINING CORP LTD CROSS SECTION DDH NS-07-1

Figure 4


## ST EUGENE MINING CORP LTD CROSS SECTION DDH NS-07-3

Figure 5
striking, steeply south dipping structure parallel to the St Eugene vein system and is evidently the cause of the linear geophysical anomaly detected in 2006 by the airborne survey. Details of the mineralized intervals in the 2 holes is:

| DDH | DEPTH | LENGTH | $\#$ | ICP PPM |  |  | ASSAY \% |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  | Pb | Zn | Ag | Pb | Zn |
| NS-07-1 | $297.9-298.6$ | 0.7 m | 81477 | 2750 | 4340 | 2.3 | .28 | 0.44 |  |
|  | $298.6-298.8$ | 0.2 m | 81478 | $>10000$ | $>10000$ | 45.5 | 5.01 | 3.48 |  |
|  | $298.8-299.75$ | 0.95 m | 81479 | 830 | 747 | 1.3 | 0.07 | 0.07 |  |
| NS-07-3 | $369.45-370.0$ | 0.55 m | 81488 | $>10000>10000$ | 14.3 | 1.33 | 3.02 |  |  |
|  | $370.0-370.35$ | 0.35 m | 81489 | 1015 | 2210 | 1.4 | 0.11 | 0.24 |  |
|  | $370.35-371.2$ | 0.85 m | 81490 | 846 | 534 | 0.9 | 0.09 | 0.06 |  |

### 4.00 CONCLUSIONS

DDH NS-07-1 \& 3 successfully tested the North Structure, a previously unrecognized WNW striking sulphide-mineralized vein system that parallels the St Eugene vein system to the south. High lead, zinc and silver values - up to $8.49 \% \mathrm{~Pb}+\mathrm{Zn}$ over 0.20 meter - are present within a 20 meter wide bleached alteration envelope.

### 5.00 REFERENCES

Hoy, T., and Diakow, L., 1982; Geology of the Moyie Lake area; Preliminary map No. 49; British Columbia Ministry of Energy, Mines and Petroleum Resources.

Klein, Jan., 2006; Report on a Helicopter-borne Aerotem II/Magnetic survey over the Moyie Lake and Monroe Lake grids, SE British Columbia, executed by AeroquestLimited on behalf of St. Eugene Mining Corporation Ltd. BC Assessment Report 28450.

### 6.00 STATEMENT OF EXPENDITURES

Diamond Drilling; SCS Diamond drilling Ltd. 1007.06 meters @ $\$ 166.56 /$ meter ..... \$167,735.91Includes direct and indirect drilling costs; drilling, lubricants,materials costs, lodging and truck
Geologist; P. Klewchuk; access trail survey, trail construction supervision, drill layout, drilling supervision and core logging; periods of Dec . 20-31, 2006 and April 15 - May 25, $2007 \quad 31$ days @ \$400/day 12,400.00 4X4 truck 28 days @ \$135/day ..... 3780.00
Field assistant; J Kechnie; transport drill core; April 26 - May 25, 2007; 21 days @ \$225/day ..... 4725.00
4X4 truck 21 days @ \$95/day ..... 1995.00
Tracked excavator; construct access trail and drill sites; Wild Horse Contracting; Dec. 20-31, 2006 and April 15 - May 15, 2007; 33 hours @ \$117/hr ..... 3861.00
D6 cat; 16 hours @ $\$ 104 / \mathrm{hr}$ ..... 1664.00
D6 cat; move drill, modify drill sites; Pighin's Welding; 22 hours @ $\$ 115 / \mathrm{hr}$ ..... 2530.00
D6 cat standby; 12 days @ \$125/day ..... 1500.00
Lowbeds ..... 2144.95
Core rack at Vine logging facility; materials and construction ..... 2150.00
Core sampling; move core to racks; B. Collinson; $21 / 2$ days ..... 500.00
Vine facility core logging facility rental; 23 days @ \$50/day ..... 1150.00
Drill core analyses; ALS Chemex 14 samples@\$28 ..... 392.00
Total ..... $\$ 206,527.86 .00$
12\% Administration overhead ..... 24,783.00
TOTAL EXPENDITURE ..... $\$ 231,311.00$

### 7.00 AUTHOR'S QUALIFICATIONS

As author of this report I, Peter Klewchuk, certify that:

1. I am an independent consulting geologist with offices at $1-200$ Norton Avenue, Kimberley, B.C.
2. I am a graduate geologist with a B. Sc. degree (1969) from the University of British Columbia and an M. Sc. degree (1972) from the University of Calgary.
3. I am a Fellow of the Geological Association of Canada and a member of the Association of Professional Engineers and Geoscientists of British Columbia.
4. I have been actively involved in mining and exploration geology, primarily in the province of British Columbia, for the past 32 years.
5. I have been employed by major mining companies and provincial government geological departments.

Dated at Kimberley, British Columbia this $25^{\text {th }}$ day of March, 2008.

Peter Klewchuk, Teos,

## Appendix 1. Diamond Drill Log

Hole No: NS-07-1<br>Commenced: April 28, 2007<br>Completed: May 6,2007<br>Coordinates: 585289E 5460723N<br>Core Size: NQ<br>Azimuth: $007^{\circ}$<br>Property: ST. EUGENE /North Structure District: Fort Steele<br>Owner: St. Eugene Mining Corp.<br>Location: North Structure Contractor: SCS Diamond Drilling<br>Total Length: 361.49 m<br>Logged by: P. Klewchuk<br>Collar Dip: $\quad-54^{\circ}$<br>Elevation: $\quad 1052.9 \mathrm{~m}$<br>Objective: Test North Structure<br>Airborne Geophysics Anomaly

## Meters Description

$0-7.62$ CASING. Core starts at $\sim 4.42 \mathrm{~m}$.
4.42-10.25 SILTSTONE and ARGILLITE, minor QUARTZITE

Medium to dark grey, thin-bedded and laminated with a few medium thick beds. Bedding at $42^{\circ}-43^{\circ}$ to $\mathrm{c} / \mathrm{a}$. Fine-grained pyrite is concentrated in bedding-parallel bands near 9.2 m .
10.25-32.3 SILTSTONE and QUARTZITE, minor ARGILLITE

Medium grey and bluish-grey. Predominantly medium and thick-bedded with narrow zones of thin-bedded and laminated.
Bedding: $42^{\circ}$ at $11.5 \mathrm{~m} ; 43^{\circ}$ at $14.5 \mathrm{~m} ; 42^{\circ}$ at $17.5 \mathrm{~m} ; 46^{\circ}$ at $20.5 \mathrm{~m} ; 45^{\circ}$ at 22.5 m ; $40^{\circ}$ at $28 \mathrm{~m} ; 43^{\circ}$ at 31.0 m .
At 11.6 m 3 quartz veins 5 mm to 3 cm wide cut core at $50^{\circ}-60^{\circ}$ to c/a, close to $90^{\circ}$ to bedding. Light grey, granular vuggy quartz.
At 13.8 m a $3-4 \mathrm{~mm}$ wide rusty quartz vein cuts core at $32^{\circ}$ to $\mathrm{c} / \mathrm{a}$, close to $90^{\circ}$ to bedding; reorienting core indicates WNW-striking steep dip, i.e., St. Eugene vein trend.
At 15.0 m a $5-6 \mathrm{~mm}$ wide vuggy quartz vein cuts core at $50^{\circ}$ to c/a.
At 17.0 m 2 rusty, granular vuggy quartz veins cut core at $45^{\circ}$ to c/a. Minor associated muscovite. Healed rusty, 'crackle breccia' occurs in underlying 6 cm of core. Near 19.5 m 3 thin, vuggy, light grey quartz veins up to 6 mm wide, cut core at $50^{\circ}$ to $\mathrm{c} / \mathrm{a}$.
At 25.0 m 2 thin quartz veins; very rusty; one cuts core at $20^{\circ}$ to c/a; other is light grey, $\sim 8 \mathrm{~mm}$ wide at $50^{\circ}$ to $\mathrm{c} / \mathrm{a}$.
At 26.21 m 2 quartz veins up to 1.5 cm wide at $50^{\circ}$ to $\mathrm{c} / \mathrm{a}$.
At 27.1 m a massive lens of po is bedding-parallel at $35^{\circ}$ to $\mathrm{c} / \mathrm{a}$, but only crossed $2 / 3$ of core.
At 30.7 m light grey, irregular quartz vein, up to 2 or 3 cm wide in broken core.

## DDH: NS-07-1

## Meters Description

32.3-44.5 ARGILLITE, minor SILTSTONE

Medium and dark grey, finely-laminated and thin-bedded with few medium thick beds. About $35 \%$ of the interval consists of bands of finely-laminated dark grey argillite; 42.3 m to 45.0 m is mostly of this character.
Bedding: $45^{\circ}$ at $32.3 \mathrm{~m} ; 47^{\circ}$ at $36.8 \mathrm{~m} ; 45^{\circ}$ at $39.0 \mathrm{~m} ; 48^{\circ}$ at $41.0 \mathrm{~m} ; 44^{\circ}$ at 44.5 m . 34.7 m to 35.1 m hosts 3 narrow, lensey, bedding-parallel oxidized pyrite bands 1 to 5 mm thick.
44.5-67.8 SILTSTONE, minor ARGILLITE

Light to medium grey and blue grey; some darker grey. Predominantly medium and a few thick-bedded siltstones with widespread narrow bands of thin-bedded and laminated argillite.
Bedding: $43^{\circ}$ at $48.5 \mathrm{~m} ; 48^{\circ}$ at $52.5 \mathrm{~m} ; 45^{\circ}$ at $57.7 \mathrm{~m} ; 47^{\circ}$ at $60.3 \mathrm{~m} ; 47^{\circ}$ at 67.8 m . Near 57.5 m and 58.2 m few thin, rusty pyritic quartz veins up to 12 mm wide, at $49^{\circ}-60^{\circ}$ to $\mathrm{c} / \mathrm{a}$, close to $90^{\circ}$ to bedding. Minor ZnS occurs in one thin band.
$61.5 \mathrm{~m}-62.7 \mathrm{~m}$ has a few vuggy, light grey quartz veins at $\sim 50^{\circ}-60^{\circ}$ to $\mathrm{c} / \mathrm{a}$ and close to $90^{\circ}$ to bedding. Quartz vein up to 1.5 cm wide.
At 58.2 m driller stuck rods; no evidence of fault or bad ground.
67.8-77.7 ARGILLITE, SILTSTONE and QUARTZITE

Dark, medium and light grey. Mostly thin-bedded and laminated argillite and siltstone; 69.3 m to 72.7 m is thick and medium-bedded, lighter grey siltstone and quartzite. $30-40 \%$ of the interval is dark grey, finely-laminated argillite in bands a few mm to 30 cm thick.
Bedding: $48^{\circ}$ at $67.9 \mathrm{~m} ; 47^{\circ}$ at $70.0 \mathrm{~m} ; 50^{\circ}$ at $73.5 \mathrm{~m} ; 48^{\circ}$ at 76.4 m .
77.7-88.6 SILTSTONE and QUARTZITE, minor ARGILLITE

Light to medium grey; thick and medium-bedded; 80.3 m to 82.0 m is thin-bedded and laminated argillite and siltstone.
Bedding: $48^{\circ}$ at $79.7 \mathrm{~m} ; 47^{\circ}$ at $81.0 \mathrm{~m} ; 48^{\circ}$ at 85.6 m . Weak healed brecciation with thin calcite veinlets at 84.0 m . Few 8 mm wide, light grey quartz and quartz-calcite veins near 86.7 m ; bedding-parallel and at $\sim 90^{\circ}$ to bedding ( $50^{\circ}$ to $\mathrm{c} / \mathrm{a}$ ).
88.6-119.6 SILTSTONE, ARGILLITE and minor QUARTZITE Interval of mixed lithologies dominated by medium and thick siltstones (minor quartzite) with intervening bands of thin-bedded and laminated argillite.
Bedding: $48^{\circ}$ at $90.0 \mathrm{~m} ; 46^{\circ}$ at $96.3 \mathrm{~m} ; 46^{\circ}$ at $101.0 \mathrm{~m} ; 55^{\circ}$ at 109.0 m ;
$48^{\circ}$ at $110.0 \mathrm{~m} ; 44^{\circ}$ at $116.0 \mathrm{~m} ; 48^{\circ}$ at 119.4 m .
At 113.5 m a $3-4 \mathrm{~mm}$ massive pyrite vein cuts core at $50^{\circ}$ to $\mathrm{c} / \mathrm{a}, \sim 70^{\circ}$ to bedding. At 114.6 m a $4-5 \mathrm{~cm}$ wide light blue-grey quartz vein cuts core at $85^{\circ}$ to $\mathrm{c} / \mathrm{a}$. Quartz is foliated/healed brecciated with adjacent core bleached to pale grey.

DDH: NS-07-1

## Meters Description

119.6-122.6 ARGILLITE

Dark, medium and light grey; $\sim 75 \%$ of the interval is dark grey finely-laminated argillite. Bedding: $46^{\circ}$ at $120.0 \mathrm{~m} ; 46^{\circ}$ at 122.0 m .
122.6-133.6 SILTSTONE, minor ARGILLITE

Dark blue-grey to pale brownish grey (sericitic-altered?). Predominantly mediumbedded with lams and thin beds of argillite.
Bedding: $50^{\circ}$ at $123.8 \mathrm{~m} ; 50^{\circ}$ at $128.0 \mathrm{~m} ; 44^{\circ}$ at $130.0 \mathrm{~m} ; 45^{\circ}$ at 133.6 m .
At 123.75 m two $5-8 \mathrm{~mm}$ wide quartz-pyrite-biotite veins cut core at $\sim 50^{\circ}$ to $\mathrm{c} / \mathrm{a}$, close to $90^{\circ}$ to bedding. Minor local healed brecciation with yellow-white quartz vein matrix at 128.3 m .
133.6-138.6 ARGILLITE, minor SILTSTONE

Approximately $60 \%$ is dark grey laminated argillite interbedded with thin beds of light grey argillite; $40 \%$ is lighter grey, medium thick siltstone.
Bedding: $43^{\circ}$ at $134.0 \mathrm{~m} ; 42^{\circ}$ at 138.0 m . Broken core at 131.1 m ; possible 1.5 m core loss. At 135.3 m drilling encountered a "mud seam"- dark grey mud, similar to core. Est. 1.0 m core loss. No evidence in adjacent core of fracturing or bad ground. At $136.7 \mathrm{~m}, 5 \mathrm{~cm}$ wide bed is healed breccia with chlorite-pyrite veinlet matrix.
138.6-167.9 SILTSTONE, minor QUARTZITE and ARGILLITE

Light grey to medium grey; few laminated argillite bands are darker grey. Mainly medium and thick-bedded with narrow zones of thin-bedded and laminated argillite. Bedding: $50^{\circ}$ at $142.0 \mathrm{~m} ; 40^{\circ}$ at $146.0 \mathrm{~m} ; 45^{\circ}$ at $150.0 \mathrm{~m} ; 45^{\circ}$ at $158.0 \mathrm{~m} ; 48^{\circ}$ at $163.0 \mathrm{~m} ; 48^{\circ}$ at 167.8 m .
At 159.0 m narrow $2-3 \mathrm{~mm}$ wide pyrite vein cuts core at $40^{\circ}$ to $\mathrm{c} / \mathrm{a}$.
At 160.4 m narrow $3-4 \mathrm{~mm}$ quartz vein cuts core at $43^{\circ}$ to c/a.
167.9-174.5 ARGILLITE, minor SILTSTONE and QUARTZITE About $40 \%$ is dark grey, finely-laminated argillite; $25 \%$ is light grey medium thick siltstone and quartzite. $35 \%$ is light-medium grey thinner bedded argillite and silty argillite.
Bedding: $50^{\circ}$ at $170.5 \mathrm{~m} ; 48^{\circ}$ at 174.5 m .
Narrow, ragged py vein at 170.3 m is partly bedding-parallel, partly cross-cutting at $\sim 60^{\circ}$ to c/a.
At 172.7 m and 172.8 m two $1.0-1.5 \mathrm{~cm}$ wide quartz-pyrite veins at $36^{\circ}$ to $\mathrm{c} / \mathrm{a}$, close to $90^{\circ}$ to bedding.

[^0]
## DDH: NS-07-1

## Meters Description

183.0 con't. Scattered thin, lensey yellowish-white quartz veins - parallel and sub-parallel to bedding. Some elongated vugs with open space crystallization. These quartz veins are associated with bleaching - probable sericitic alteration.
183.0-191.5 ARGILLITE, minor SILTSTONE and QUARTZITE

Est. $55-60 \%$ is dark grey, finely-laminated argillite. 188.1 m to 191.5 m is mostly lighter grey thin-bedded argillite. 184.7 m to 185.8 m is more massive siltstone and quartzite.
Bedding: $52^{\circ}$ at $183.8 \mathrm{~m} ; 48^{\circ}$ at $187.0 \mathrm{~m} ; 48^{\circ}$ at 191.3 m .
$183.85-184.0 \mathrm{~m}$ is healed breccia in laminated dark grey argillite; quartz and quartz-pyrite vein matrix is mostly bedding-parallel, much less cross-cutting. Minor ZnS occurs in one thin quartz vein.
At 183.3 m narrow py vein at $30^{\circ}$ to $\mathrm{c} / \mathrm{a}$, close to $90^{\circ}$ to bedding.
At 183.5 m 1 cm wide bedding-parallel gouge/clay zone; narrow bedding-parallel fault slip.
191.5-198.7 SILTSTONE and QUARTZITE, minor ARGILLITE

Medium-dark grey, mottled from silicification. Few zones of thin-bedded argillite. Bedding: $45^{\circ}$ at $192 \mathrm{~m} ; 54^{\circ}$ at 198.5 m .
Some broken core but no obvious faulting. Near $198.5 \mathrm{~m}, 3$ quartz, qtz-pyrite and qtz-calcite veins cut core at $60^{\circ}$ and $30^{\circ}$ to $\mathrm{c} / \mathrm{a}$.
198.7-201.8 ARGILLITE

Light, medium and darker grey. Thin-bedded and laminated. $\sim 50 \%$ is dark grey finely-laminated argillite.
Bedding at $53^{\circ}-55^{\circ}$ to $\mathrm{c} / \mathrm{a}$. Disseminated py is common locally in dark grey argillite. Few thin cross-cutting discontinuous py veinlets also present.
201.8-216.4 SILTSTONE and QUARTZITE, minor ARGILLITE

Light and medium grey to blue-grey. Medium and thick-bedded with scattered bands of thin-bedded argillite.
Bedding: $51^{\circ}$ at $204.3 \mathrm{~m} ; 48^{\circ}$ at $212.1 \mathrm{~m} ; 51^{\circ}$ at 214.3 m . Narrow ( $\sim 8 \mathrm{~cm}$ ) crush zone at $\sim 80^{\circ}$ to c/a at 207.5 m - minor fault.
216.4-221.2 ARGILLITE, few SILTSTONE beds.

Approximately $35 \%$ is dark grey, finely-laminated argillite; $\sim 40-45 \%$ is thin-bedded light grey argillite; remainder is medium beds of siltstone.
Bedding: $47^{\circ}$ at $217.0 \mathrm{~m} ; 48^{\circ}$ at 221.0 m . At 217.6 m a 1 cm wide bedding-parallel abundant pyrite bed.

## DDH: NS-07-1

## Meters Description

221.2 - 242.6 SILTSTONE and QUARTZITE, minor ARGILLITE

Light, medium and dark grey, mostly medium and thick-bedded with bands of thinbedded argillite.
Bedding: $43^{\circ}$ at $223.0 \mathrm{~m} ; 46^{\circ}$ at $225.8 \mathrm{~m} ; 48^{\circ}$ at $231.0 \mathrm{~m} ; 49^{\circ}$ at $233.7 \mathrm{~m} ; 45^{\circ}$ at 237.5 m . At 233.5 m to 234.0 m is dark grey finely-laminated argillite.

Bedding-parallel slump zones occur near 231.0 m and 234.3 m .1 .5 cm wide bedding-parallel qtz-py vein at 239.0 m immediately below 4 cm wide zone of crushed argillite; minor bedding-parallel fault.

## 242.6-249.5 ARGILLITE

Dark grey, finely-laminated. About $5 \%$ is thin and medium-bedded siltstone and light grey argillite.
Bedding: $48^{\circ}$ at $242.6 \mathrm{~m} ; 45^{\circ}$ at $246.0 \mathrm{~m} ; 47^{\circ}$ at 248.8 m .
249.5-269.8 SILTSTONE and QUARTZITE, minor ARGILLITE

Mainly light-medium grey. Medium and thick-bedded with minor scattered bands of thin-bedded argillite.
Bedding: $46^{\circ}$ at $252.0 \mathrm{~m} ; 46^{\circ}$ at $255.5 \mathrm{~m} ; 45^{\circ}$ at $263.9 \mathrm{~m} ; 42^{\circ}$ at 269.6 m . Weak healed breccia at 249.6 m over $\sim 10 \mathrm{~cm}$ of core; yellowish quartz veins and minor pyrite. At 252.6 m 15 cm of core is moderately fractured, crushed; very minor fault 3 mm wide quartz vein at 252.9 m at $50^{\circ}$ to $\mathrm{c} / \mathrm{a}$. Fairly broken core from 257.5 m to 260.9 m ; no obvious faulting. At 267.0 m narrow $2-10 \mathrm{~mm}$ wide breccia/fracture zone at $62^{\circ}$ to $\mathrm{c} / \mathrm{a}, \sim 70^{\circ}$ to bedding.
269.8-276.4 ARGILLITE, minor SILTSTONE Mainly finely-laminated, dark grey argillite with abundant thin beds of light grey argillite and a few medium thick siltstone beds. Bedding: $32^{\circ}$ at $270.8 \mathrm{~m} ; 36^{\circ}$ at $273.0 \mathrm{~m} ; 39^{\circ}$ at 276.0 m . Minor local healed brecciation with thin lensey calcite and calcite-quartz veinlets. Local healed brecciation with narrow crushed fragmented zones; some distinct fractures show minor offset.
276.4-291.8 QUARTZITE and SILTSTONE, minor ARGILLITE

Light to medium grey, locally darker grey. Siltstones and quartzites are medium and thick-bedded. Argillites are thin-bedded.
Bedding: $38^{\circ}$ at $279.0 \mathrm{~m} ; 42^{\circ}$ at $283.0 \mathrm{~m} ; 22^{\circ}$ at 285.0 m . Quartzites and siltstones are bleached, brecciated (healed with thin quartz veinlets) below 288.3 m . Minor brecciation is more evident below about 280.5 m ; bedding-parallel, slightly oblique with higher angle fracturing of brecciation. A few cross-cutting, high angle to core axis veinlets have pyrite. Core is variably broken below 283.3 m but not obviously faulted.

## DDH: NS-07-1

## Meters Description

291.8-296.7 Approximately 75\% QUARTZITE (minor SILTSTONE), 25\% ARGILLITE; healed BRECCIA, minor FAULTING.
Bleached quartzites (sericitic altered) display healed breccia texture with thin veinlets of yellow-white quartz; 4 or 5 narrower bands of light to dark grey argillite.
Bedding: $36^{\circ}$ at $291.8 \mathrm{~m} ; 38^{\circ}$ at $294.0 \mathrm{~m} ; 44^{\circ}$ at 294.4 m . Argillites display more of the structural disturbance; healed fracturing and narrow bands of brecciation (but no obvious bedding in much of the quartzite). A $6-8 \mathrm{~cm}$ band of brecciated siltstone at 291.9 m has patchy pyrite.
296.7- FAULT/SHEAR ZONE; Local PbS, ZnS.
299.75 Core is variably sheared, brecciated with fabric at $40^{\circ}-50^{\circ}$ to $\mathrm{c} / \mathrm{a}$; some rubbly core; some core loss, est. 0.8 m but not obviously where sulfides are present. Interval is $\sim 70 \%$ argillite, $30 \%$ siltstone (excluding sulfide band). 298.6 m to 298.8 m is semimassive sulfides; irregular veinlets and patches of $\mathrm{ZnS}, \mathrm{PbS}$ and minor py in a siliceous ('siltstone') host. Fabric is $50^{\circ}-80^{\circ}$ to $\mathrm{c} / \mathrm{a}$. Minor py occurs in shear-parallel veinlets near 299.6 m .

SAMPLING: 81477 297.9-298.6 est. 0.7 m (some core loss)
81478 298.6-298.8 $\quad 0.2 \mathrm{~m}$ semi-massive vein sulfides
81479 298.8-299.75
0.95 m
299.75 - Altered SILTSTONE and QUARTZITE; minor ARGILLITE; weak BRECCIATION
310.2 Sericitic altered, bleached medium thick siltstones and quartzites with some weak brecciation, healed by thin yellow-white quartz veinlets. Scattered bands of thinbedded argillite with healed fracturing, brecciation. Bleaching and brecciation diminish downward (weak bleaching and few fractures occur below this interval). Bedding: $30^{\circ}$ at $300.8 \mathrm{~m} ; 36^{\circ}$ at $302.1 \mathrm{~m} ; 52^{\circ}$ at $304.3 \mathrm{~m} ; 54^{\circ}$ at $307.0 \mathrm{~m} ; 52^{\circ}$ at 310.0 m . Below 301.6 m thin-bedded argillite predominates.
310.2 - SILTSTONE and QUARTZITE, and lesser ARGILLITE
361.49 Dominantly lighter grey, medium thick siltstones and quartzite with intervening zones of laminated and thin-bedded argillite:
$310.2 \mathrm{~m}-320.2 \mathrm{~m}$ - Mainly siltstone and quartzite.
$320.2 \mathrm{~m}-322.0 \mathrm{~m}$ - Argillite $-85 \%$ laminated dark grey.
$322.0 \mathrm{~m}-325.1 \mathrm{~m}$ - Q \& S.
$325.1 \mathrm{~m}-330.15 \mathrm{~m}$ - Argillite - Est. $55 \%$ laminated dark grey.
$330.15 \mathrm{~m}-336.2 \mathrm{~m}$ - Quartzite and siltstone.
$336.2 \mathrm{~m}-339.4 \mathrm{~m}$ - Argillite - light grey $\sim 25 \%$ siltstone.
339.4 m-341.7m-S \& Q.
$341.7 \mathrm{~m}-344.9 \mathrm{~m}$ - Mainly light grey argillite; est. 15-20\% medium-bedded S .
$344.9 \mathrm{~m}-351.1 \mathrm{~m}-\mathrm{S} \& \mathrm{Q} \sim 10-20 \%$ Argillite.
$351.1 \mathrm{~m}-361.49 \mathrm{~m}-\mathrm{S} \& \mathrm{Q} \sim 15 \%$ Argillite.

## DDH: NS-07-1

## Meters Description

361.49 con't. Bedding: $53^{\circ}$ at $312.2 \mathrm{~m} ; 53^{\circ}$ at $317.0 \mathrm{~m} ; 50^{\circ}$ at $322.0 \mathrm{~m} ; 50^{\circ}$ at $326.0 \mathrm{~m} ; 53^{\circ}$ at $335.6 \mathrm{~m} ; 48^{\circ}$ at $342.8 \mathrm{~m} ; 50^{\circ}$ at $348.5 \mathrm{~m} ; 49^{\circ}$ at $355.0 \mathrm{~m} ; 48^{\circ}$ at 361.3 m .
At 312.8 m l cm wide quartz vein at $50^{\circ}$ to $\mathrm{c} / \mathrm{a}$; at 325.0 m hairline fractures (healed) at $55^{\circ}$ to $\mathrm{c} / \mathrm{a}, 1 / 2 \mathrm{~mm}$ py veinlet, 5 mm displacement; at 328.0 m to 331.0 m local very weak healed brecciation with thin, white quartz-calcite veinlets.
At 346.7 m 8 cm crushed argillite; minor bedding-parallel fault.
361.49 m END OF HOLE

## DRILL HOLE RECORD

| Hole No: | NS-07-2 | Property: <br> District: <br> Owner: | ST. EUGENE <br> Fort Steele |
| :--- | :--- | :--- | :--- |
| Commenced: $:$ | May 7, 2007 | Sugene Mining Corp. |  |
| Completed: | May 9, 2007 | Location: | North Structure |
| Coordinates: | 585282 E 5460719 N | Contractor: | SCS Diamond Drilling |
| Core Size: | NQ | Total Length: | 218.24 m |
| Azimuth: | $039^{\circ}$ | Logged by: | P. Klewchuk |
| Collar Dip: | $-52^{\circ}$ | Date: | May 14, 2007 |
| Elevation: | 1038.6 m |  |  |
| Tests at: | $197.0 \mathrm{~m}-50.5^{\circ}$. |  |  |
| Objective: | Test North Structure |  |  |
|  | Geophysical Anomaly |  |  |

## Meters Description

0-6.1
CASING
Rubble to 5.8 m ; bedrock starts at 5.8 m .
5.8-218.2 Normal succession of Upper Middle Aldridge siltstones, quartzites and argillites.

Lithologies:
5.8-10.5 ARGILLITE - $75 \%$ finely-laminated, dark grey. $25 \%$ thin-bedded, light grey, few medium thick siltstone beds.
10.5-17.7 QUARTZITE and SILTSTONE - medium and thick-bedded, 10-15\% thin argillite beds.
17.7-21.7 70\% ARGILLITE - laminated dark grey and thin-bedded light grey, $30 \%$ siltstone.
21.7-29.5 SILTSTONE and QUARTZITE - thick and medium-bedded, very minor ( $<5 \%$ ) argillite.
29.5-30.7 ARGILLITE - laminated, dark grey; 10-15\% thin-bedded, light grey.
30.7-34.7 SILTSTONE and QUARTZITE - thick and medium-bedded. $15 \%$ thin-bedded argillite.
34.7-37.7 ARGILLITE - $60 \%$ laminated, dark grey, 40\% thin-bedded and light grey.
37.7-74.0 SILTSTONE and QUARTZITE - light grey, medium and thickbedded; est. 15-20\% argillite - scattered bands of thin-bedded and laminated argillite.
74.0-77.0 ARGILLITE-65\% laminated dark grey; 35\% thin-bedded light grey.
77.0-86.7 SILTSTONE and QUARTZITE - medium and thin-bedded; 10-15\% thin-bedded argillite.
86.7-88.9 75\% ARGILLITE - 65\% laminated dark grey, $35 \%$ thin-bedded, light grey; $25 \%$ siltstone (one 50 cm bed).
88.9-92.2 SILTSTONE and QUARTZITE - 15\% thin-bedded argillite.
92.2-93.0 ARGILLITE - laminated dark grey.

## DDH: NS-07-2

## Meters Description

218.2 con't 93.0-120.6 SILTSTONE and QUARTZITE - medium and thick-bedded $15 \%$ thin-bedded argillite.
120.6-126.8 ARGILLITE - 70-75\% laminated and dark grey; 25-30\% thin-bedded and light grey; about $10 \%$ of the interval is medium thick beds of light grey siltstone.
126.8-135.4 SILTSTONE and QUARTZITE - medium and thick-bedded. ~5\% thin-bedded argillite.
135.4-137.2 ARGILLITE - laminated, dark grey; $10 \%$ is thin-bedded and light grey.
137.2 - 138.5 SILTSTONE and QUARTZITE - thick-bedded.
138.5-144.0 ARGILLITE - 138.5 to 140.3 is laminated and dark grey; 140.3 to 144.0 is thin-bedded and light grey with few thin siltstone beds.
144.0-149.3 SILTSTONE and QUARTZITE - thick and medium-bedded; 5\% thin argillite beds.
149.3-150.8 ARGILLITE - thin-bedded, light grey, minor thin siltstone beds.
150.8-156.0 SILTSTONE and QUARTZITE - thick and medium-bedded; $5 \%$ thin argillite beds.
156.0-157.8 ARGILLITE - laminated, dark grey.
157.8-167.4 SILTSTONE and QUARTZITE - thick and medium-bedded < $5 \%$ thin argillite beds.
167.4-169.7 ARGILLITE - $65 \%$ dark grey laminated; 35\% thin-bedded and light grey.
169.7-185.0 SILTSTONE and QUARTZITE - light-medium grey; thick and medium-bedded; $\sim 5 \%$ thin-bedded argillite.
185.0-191.8 70\% ARGILLITE - ( $\sim 50 \%$ of this is laminated dark grey); $30 \%$ medium thick siltstone.
191.8-210.1 SILTSTONE and QUARTZITE - medium and thick-bedded; 20\% is argillite, mostly light grey and thin-bedded; $201.6 \mathrm{~m}-202.2 \mathrm{~m}$ is laminated, dark grey.
210.1-216.6 ARGILLITE - 85-90\% is dark grey, laminated. $10-15 \%$ is light grey, thin-bedded; $\sim 10 \%$ of the interval is medium thick siltstone.
216.6-218.2 SILTSTONE and QUARTZITE - thick and medium-bedded.

Bedding: $44^{\circ}$ at $6.3 \mathrm{~m} ; 46^{\circ}$ at $14.0 \mathrm{~m} ; 50^{\circ}$ at $20.8 \mathrm{~m} ; 55^{\circ}$ at $29.5 \mathrm{~m} ; 62^{\circ}$ at 35.0 m ; $52^{\circ}$ at $41.6 \mathrm{~m} ; 59^{\circ}$ at $48.0 \mathrm{~m} ; 50^{\circ}$ at $55.5 \mathrm{~m} ; 45^{\circ}$ at $65.3 \mathrm{~m} ; 48^{\circ}$ at $70.3 \mathrm{~m} ; 50^{\circ}$ at 77.0 m ; $50^{\circ}$ at $82.0 \mathrm{~m} ; 46^{\circ}$ at $87.5 \mathrm{~m} ; 48^{\circ}$ at $93.2 \mathrm{~m} ; 47^{\circ}$ at $98.5 \mathrm{~m} ; 43^{\circ}$ at 104.0 m ;
$46^{\circ}$ at $110.7 \mathrm{~m} ; 43^{\circ}$ at $117.0 \mathrm{~m} ; 44^{\circ}$ at $121.3 \mathrm{~m} ; 42^{\circ}$ at $125.1 \mathrm{~m} ; 43^{\circ}$ at 133.5 m ; $42^{\circ}$ at $139.0 \mathrm{~m} ; 48^{\circ}$ at $145.0 \mathrm{~m} ; 44^{\circ}$ at $150.5 \mathrm{~m} ; 42^{\circ}$ at $156.0 \mathrm{~m} ; 38^{\circ}$ at $163.3 \mathrm{~m} ; 42^{\circ}$ at $168.5 \mathrm{~m} ; 43^{\circ}$ at $173.5 \mathrm{~m} ; 39^{\circ}$ at $180.5 \mathrm{~m} ; 40^{\circ}$ at $186.0 \mathrm{~m} ; 41^{\circ}$ at $190.0 \mathrm{~m} ; 47^{\circ}$ at $198.5 \mathrm{~m} ; 43^{\circ}$ at $201.6 \mathrm{~m} ; 45^{\circ}$ at $205.3 \mathrm{~m} ; 45^{\circ}$ at $210.7 \mathrm{~m} ; 52^{\circ}$ at 216.0 m .

## DDH: NS-07-2

## Meters Description

## Features:

At $11.6 \mathrm{~m}, 1.5 \mathrm{~cm}$ wide light grey quartz vein at $75^{\circ}-80^{\circ}$ to $\mathrm{c} / \mathrm{a}$ with chlorite, biotite and pyrite in host sediments at contact.
At $12.2 \mathrm{~m}, 2$ quartz veins at $58^{\circ}$ to $\mathrm{c} / \mathrm{a} ; 1 / 2$ and 1 cm wide minor pyrite, some calcite.
At $13.4 \mathrm{~m}, 12-15 \mathrm{~mm}$ wide qtz-calcite vein at $40^{\circ}$ to $\mathrm{c} / \mathrm{a}$.
At $22.8 \mathrm{~m}-26.7 \mathrm{~m}$, healed breccia. Prominent vein fabric is parallel to c/a; lensey veinlets of dense white quartz; more ragged vein matrix of chlorite, minor pyrite.
At 32.0 m , granular vuggy and rusty quartz vein $\sim 1 \mathrm{~cm}$ wide in broken core; probably at $25^{\circ}-30^{\circ}$ to $\mathrm{c} / \mathrm{a}$.
At $36.2 \mathrm{~m}, 1 \mathrm{~cm}$ wide bedding-parallel qtz-calcite-biotite-pyrite vein.
At 37.7 m , thin wavy cross-cutting qtz-calcite-biotite-pyrite veins; lensey, up to 3 mm wide at $30^{\circ}-60^{\circ}$ to $\mathrm{c} / \mathrm{a}$.
At $38.6 \mathrm{~m}, 1-2 \mathrm{~cm}$ wide quartz vein at $30^{\circ}$ to $\mathrm{c} /$ a; granular, rusty; some unoxidized pyrite.
At 43.7 m , thin qtz-chlorite veinlets at $40^{\circ}-50^{\circ}$ to $\mathrm{c} / \mathrm{a}$; lensey, wavy.
At 48.1 to 48.9 m , qtz veining. $\sim 25 \%$ included siltstone. Upper contact at $\sim 40^{\circ}$ to c/a; lower contact is more irregular. Chlorite concentrated near 48.1 m ; patchy, coarse biotite throughout. Very minor PbS in narrow fractures.

## Sampling:

B081480

$$
\begin{equation*}
48.1 \mathrm{~m}-48.9 \mathrm{~m} \tag{0.8~m}
\end{equation*}
$$

At 49.2 m , irregular, wavy quartz vein 6 or 8 cm lensing down to $<1 \mathrm{~cm}$, with few thin peripheral chlorite veinlets $1-2 \mathrm{~mm}$ wide.
At 49.7 m to $50.1 \mathrm{~m}, \sim 9$ quartz veins, 2 mm to 2 cm wide, $20^{\circ}$ to $70^{\circ}$ to $\mathrm{c} / \mathrm{a}$. Thicker ones are vuggy, rusty, some calcite with one thicker vein.
At $54.3 \mathrm{~m}, 3$ quartz veins at $40^{\circ}$ to c/a; probably bedding-parallel. Vuggy, rusty, chloritic.
At 54.8 m , one 6 cm quartz vein at $38^{\circ}$ to $\mathrm{c} / \mathrm{a}$ with coarse chlorite, biotite on margins.

## Sampling:

B081481

$$
54.75 m-54.85 m \quad(0.1 m)
$$

At 63.6 m , a 7 cm wide bedding-parallel band of siltstone has wispy lenses and small patches of py and ZnS and 'dendritic' Mn (?).
Near 70.0 m , very thin bedding-parallel bands and lenses of py in argillite.
At 79.6 m to 79.8 m , few $1-3 \mathrm{~mm}$ lensey, irregular pyrite-calcite-minor ZnS veinlets at $50^{\circ}-60^{\circ}$ to c/a, cut bedding at $\sim 70^{\circ}$. Minor, very small patches of ZnS occur in adjacent sediments.
At $87.0 \mathrm{~m}-87.4 \mathrm{~m}$, healed breccia - crackle type bx with many small fragments. Veinlet matrix of quartz, calcite and pyrite.

## DRILL HOLE RECORD

| Hole No: | NS-07-3 | Property: District: | ST. EUGENE <br> Fort Steele |
| :---: | :---: | :---: | :---: |
| Commenced: | May 13, 2007 | Owner: | St. Eugene Mining Corp. |
| Completed: | May 19, 2007 | Location: | North Structure |
| Coordinates: | 585274 E 5460724 N | Contractor: | SCS Diamond Drilling |
| Core Size: | NQ | Total Length: | 427.33 m |
| Azimuth: | 042 ${ }^{\circ}$ | Logged by: | P. Klewchuk |
| Collar Dip: | $-51^{\circ}$ |  |  |
| Elevation: | 1039.1 m | Date: | May 19, 2007 |
| Tests at: | $176 \mathrm{~m} ;-50^{\circ}$. |  |  |
| Objective: | Test North Structure Geophysical Anomaly |  |  |

## Meters Description

0-3.66 CASING, left in hole.
~3.66-196.9 CORE DISCARDED; essentially a duplicate of NS-07-2.
196.9-354.0 SILTSTONES, QUARTZITES and ARGILLITES

Lithologies: Meters
196.9-203.4 ARGILLITE, minor SILTSTONE - 30\% finely-laminated, dark grey argillite; $35 \%$ light grey argillite; $35 \%$ siltstone.
203.4-222.0 SILTSTONE, minor ARGILLITE - thick and medium-bedded siltstone, thin-bedded and laminated argillite. $212.9-213.5$ is dark grey, laminated argillite.
222.0-228.8 ARGILLITE, minor SILTSTONE - ~ 80\% is dark grey laminated argillite, $10 \%$ thin-bedded light grey argillite; $10 \%$ medium-thick siltstone.
228.8-246.5 SILTSTONE and QUARTZITE, minor ARGILLITE - medium and thick-bedded, fairly massive siltstone and quartzite with scattered narrow bands of thin-bedded light and dark grey argillite. About $10 \%$ of the interval is argillite.
246.5 - 252.5 ARGILLITE, minor SILTSTONE - about 60\% dark grey, finelylaminated argillite, $20 \%$ light grey thin-bedded argillite and $20 \%$ medium thick siltstone.
252.5-272.8 SILTSTONE and QUARTZITE, minor ARGILLITE - medium and thick-bedded siltstone with about $20 \%$ scattered bands of thin-bedded argillite. 267.1 m to 267.8 m is dark gray laminated argillite with a few bedding-parallel and cross-cutting veinlets of yellow dolomite and pyrite.

## DDH: NS-07-3

## Meters <br> Description

354.0 con't.

## Lithologies - cont. Meters

272.8-273.9 ARGILLITE - 80\% is dark grey, finely-laminated; 20\% is light grey. 273.9-275.9 40\% QUARTZ VEINING, 60\% ALTERED SILTSTONE with qv. Upper contact of $q v$ at 273.8 m at $\sim 80^{\circ}$ to $\mathrm{c} / \mathrm{a}$. Lower contact of qvat 275.9 m at $65^{\circ}$ to $\mathrm{c} / \mathrm{a}$.
275.9-303.6 SILTSTONE with minor QUARTZITE, ~20-25\% ARGILLITE. Siltstone and quartzite are medium and thick-bedded. Argillite occurs as thinbedded units ranging from single beds to zones 70 cm thick.
303.6-309.0 ARGILLITE, $\sim 15 \%$ medium thick SILTSTONE beds. Argillite is $\sim 85 \%$ dark grey, finely-laminated and $15 \%$ light grey and thin- bedded.
309.0-353.6 SILTSTONE and QUARTZITE, minor ARGILLITE. Siltstone and quartzite are medium and thick-bedded. Argillite is light to medium grey, thin-bedded, in zones up to $\sim 20 \mathrm{~cm}$ thick. A few $\sim 10 \mathrm{~cm}$ bands of laminated, dark grey argillite are present.
353.6-354.0 ARGILLITE - Dark grey, laminated. Bottom $\sim 10 \mathrm{~cm}$ is a minor fault zone with fine-grained pyrite and blebs of light grey quartz and yellow calcite/dolomite.

Bedding: $\quad 37^{\circ}$ at $197.0 \mathrm{~m} ; 42^{\circ}$ at $202.5 \mathrm{~m} ; 40^{\circ}$ at $208.0 \mathrm{~m} ; 47^{\circ}$ at $213.0 \mathrm{~m} ; 39^{\circ}$ at $217.0 \mathrm{~m} ; 41^{\circ}$ at $222.0 \mathrm{~m} ; 42^{\circ}$ at $227.0 \mathrm{~m} ; 38^{\circ}$ at $236.0 \mathrm{~m} ; 42^{\circ}$ at $239.5 \mathrm{~m} ; 45^{\circ}$ at $243.5 \mathrm{~m} ; 45^{\circ}$ at $248.5 \mathrm{~m} ; 40^{\circ}$ at $252.5 \mathrm{~m} ; 40^{\circ}$ at $258.0 \mathrm{~m} ; 40^{\circ}$ at $261.0 \mathrm{~m} ; 45^{\circ}$ at $268.0 \mathrm{~m} ; 43^{\circ}$ at $273.5 \mathrm{~m} ; 45^{\circ}$ at $278.0 \mathrm{~m} ; 43^{\circ}$ at $281.0 \mathrm{~m} ; 42^{\circ}$ at $284.0 \mathrm{~m} ; 42^{\circ}$ at $291.5 \mathrm{~m} ; 43^{\circ}$ at $297.0 \mathrm{~m} ; 39^{\circ}$ at $303.0 \mathrm{~m} ; 43^{\circ}$ at $306.5 \mathrm{~m} ; 40^{\circ}$ at $312.0 \mathrm{~m} ; 40^{\circ}$ at $320.0 \mathrm{~m} ; 38^{\circ}$ at $324.0 \mathrm{~m} ; 38^{\circ}$ at $329.5 \mathrm{~m} ; 40^{\circ}$ at $337.0 \mathrm{~m} ; 40^{\circ}$ at $342.0 \mathrm{~m} ; 33^{\circ}$ at $348.0 \mathrm{~m} ; 38^{\circ}$ at $351.0 \mathrm{~m} ; 40^{\circ}$ at $353.0 \mathrm{~m} ; 25^{\circ}$ at 353.7 m .

Features: $\quad 197.0 \mathrm{~m}$ to 201.5 m - very weak healed breccia with very thin dolomitefilled fractures. Few pyrite veinlets; one bedding-parallel 3 mm py-chlorite band at 197.3 m .
204.5 m to 207.0 m - Patchy tan-grey bleaching; sericitic alteration zones of bleaching have diffuse boundaries, tend to be bedding-parallel. No obvious associated fault.
At $218.0 \mathrm{~m}-\sim 5 \mathrm{~cm}$ bedding-parallel fault zone in narrow argillite band; shearing and healed brecciation with angular argillite fragments, matrix of quartz and yellow dolomite.
Between 213.5 m and 222.0 m - patchy sericite, bleaching may be related to this fault.
222.0 m to 228.8 m - finely-disseminated py along with a few py laminations and bedding-parallel dolomite veinlets are present in argillite zone.
$268.2 \mathrm{~m}-269.9 \mathrm{~m}$ - bleached (sericitically altered) siltstone/quartzite; quite strongly fractured at $30^{\circ}$ to c/a; crush zone at 269.2 m is probable minor Fault Zone.

## DDH: NS-07-3

## Meters Description

354.0 con't.

Features con't.
$272.8 \mathrm{~m}-273.9 \mathrm{~m}$ - variably (healed) brecciated argillite with quartz and dolomite vein matrix. One 4 cm wide quartz vein at 273.5 m , at $85^{\circ}$ to $\mathrm{c} / \mathrm{a}$, carries patchy py, minor blebs of ZnS .
$273.9 \mathrm{~m}-274.2 \mathrm{~m}$ - QUARTZ VEIN. Upper contact at $80^{\circ}-85^{\circ}$ to $\mathrm{c} / \mathrm{a}$; lower contact in broken core but est. $70^{\circ}-75^{\circ}$ to c/a. Some healed breccia texture with angular fragments of host argillite in qv near 273.9 m . Ragged patches of ZnS up to 2 cm across, locally at 274.0 m .
$274.2 \mathrm{~m}-275.1 \mathrm{~m}-$ Bleached siltstone. Healed breccia texture locally with thin, light grey qv at various orientations.
$275.1 \mathrm{~m}-275.7 \mathrm{~m}$ - QUARTZ VEIN. Upper contact at $\sim 50^{\circ}$ to c/a, beddingparallel. Lower contact at $63^{\circ}$ to c/a. Light grey mottled quartz, locally with elongate vugs at $\sim 70^{\circ}-80^{\circ}$ to $\mathrm{c} / \mathrm{a}$.

Sampling: B81483
B81484
$273.1 \mathrm{~m}-273.9 \mathrm{~m}$
( 0.8 m ) Bx Argillite
B81485 $274.2 m-275.1 m$
B81486
$275.1 \mathrm{~m}-275.7 \mathrm{~m}$
$(0.3 \mathrm{~m}) \quad$ Q.v.
$(0.9 \mathrm{~m}) \quad \mathrm{Bx}$, bleached siltstone
( 0.6 m )
Q.v.
$275.7 \mathrm{~m}-276.5 \mathrm{~m}-$ Bleached siltstone with a few quartz-pyrite veins.
At 303.7 m - narrow ( $\sim 8 \mathrm{~cm}$ ) bedding-parallel zone of crushed argillite - minor fault.
$303.6 \mathrm{~m}-309.0 \mathrm{~m}$ - Argillite zone hosts weak brecciation with thin calcite-dolomite veinlets. Included siltstones are calcareous; some calcite is present in siltstones through much of the hole.
$311.2 \mathrm{~m}-311.9 \mathrm{~m}-$ Healed brecciation, fracturing at $0^{\circ}-5^{\circ}$ to $\mathrm{c} / \mathrm{a}$. with very thin, discontinuous calcite veinlets.
At 319.7 m - healed brecciation and bleaching adjacent to fracture at $17^{\circ}$ to $\mathrm{c} / \mathrm{a}$.
At $321.1 \mathrm{~m}-\sim 10 \mathrm{~cm}$ zone of crushed argillite, healed breccia texture; minor FAULT. Adjacent siltstone is bleached from 320.7 m to 321.3 m .
At 342.2 m - local Z -shaped fold in narrow $\sim 10 \mathrm{~cm}$ wide zone; $2-3 \mathrm{~cm}$ wide quartzitic bed is folded; soft sediment deformation/slumping.
$350.0 \mathrm{~m}-353.6 \mathrm{~m}$ - weak bleaching with few scattered dolomite veinlets, mostly bedding-parallel.
$353.6 \mathrm{~m}-354.0 \mathrm{~m}$ - FAULT ZONE. Sheared argillite with some fine-grained pyrite. Basal 3 cm has blebs of quartz, dolomite and minor pyrite. Shearing is oblique to bedding, but beds are warped on Hanging Wall side of Fault. Lower contact of fault is at $35^{\circ}$ to $\mathrm{c} / \mathrm{a}$. and sharp.
354.0-361.4 ALTERED SILTSTONE.

Mostly pale grey, bleached and sericitically altered. Weak healed breccia through much of the interval with thin yellow dolomite veins at different orientations.
Bedding: $40^{\circ}$ at $354.9 \mathrm{~m} ; 40^{\circ}$ at 360.6 m .

## DDH: NS-07-3

## Meters Description

361.4-363.7 FOLDED ARGILLITE

Laminated, dark grey. Disseminated lenses and rounded porphyroblasts of pyrite common; est. $3 \%$. Weak healed breccia texture with yellowish dolomite veinlets. Folding evident by 362.4 m ; mostly ductile but some healed brittle fractures.
At $363.6 \mathrm{~m}-5 \mathrm{~cm}$ of core is broken by fractures (some sub-parallel veinlets of dolomite) at $80^{\circ}-85^{\circ}$ to $\mathrm{c} / \mathrm{a}$. Contact at 363.7 m is at $58^{\circ}$ to $\mathrm{c} / \mathrm{a}$.
Bedding: $36^{\circ}$ at $361.4 \mathrm{~m} ; 32^{\circ}$ at $361.8 \mathrm{~m} ; 20^{\circ}$ to $8^{\circ}$ at $362.4 \mathrm{~m} ; 40^{\circ}$ to $0^{\circ}$ to $75^{\circ}$ at 362.8 m ; more folded between 362.8 m and 363.7 m .

## 363.7-367.7 ALTERED SILTSTONE

Pale yellowish grey, bleached, sericitically altered; quite massive; weak healed breccia texture throughout with thin yellow dolomite veinlet matrix. $\sim 1 \mathrm{~cm}$ wide shear at 365.2 m at $70^{\circ}$ to $\mathrm{c} / \mathrm{a}$; at 367.1 m weak brecciation over $\sim 4 \mathrm{~cm}$ at $55^{\circ}$ to $\mathrm{c} / \mathrm{a}$.
367.7-367.8 SHEAR/FAULT ZONE

Foliated/sheared at $75^{\circ}-90^{\circ}$ to c/a. Dark grey/black argillite mixed with lensey masses of quartz and sheared siltstone.
367.8 - HEALED, SILICIFIED BRECCIA; "SILTSTONE"
369.45 Yellowish grey, mottled. Texture is distinctly 'foliated' from 367.8 m to 368.6 m with fabric at $55^{\circ}$ to $\mathrm{c} / \mathrm{a} .369 .0 \mathrm{~m}$ to 369.45 m is a more massive healed breccia with distinct sub-rounded equant small quartzite clasts ( $<1 \mathrm{~mm}$ to $\sim 1 \mathrm{~cm}$ across) 'floating' in a matrix of yellowish siltstone/quartzite. Basal contact is at $80^{\circ}$ to c/a. Narrow ( $\sim 2 \mathrm{~cm}$ wide) shear zones at 368.4 m and 369.0 m are at $55^{\circ}-60^{\circ}$ to c/a.

## Sampling:

B81487 $\quad 369.0 \mathrm{~m}$ to $369.45 \mathrm{~m} \quad(0.45 \mathrm{~m}) \quad$ Altered breccia
369.45 - SHEAR/FAULT ZONE. VEIN SULFIDES
370.0 Strong deformation fabric at $75^{\circ}-90^{\circ}$ to $\mathrm{c} / \mathrm{a}$; looks like a mixture of argillite and siltstone. Deformation fabric is complex with some crinkling; few healed fractures at $45^{\circ}-0^{\circ}$ to $\mathrm{c} / \mathrm{a}$. with few mm of displacement. Contact at 369.45 is crushed argillite for $\sim 10 \mathrm{~cm}$; uniformly dark grey. Lensey and more irregular patchy reddish-brown ZnS is scattered through the interval - est. $35 \%$; lesser fine-grained PbS is associated with some of the ZnS . A basal zone of sulfides, $\sim 6 \mathrm{~cm}$ thick, is associated with light grey calcite patches and veins.

Sampling:
B81488 $\quad 369.45 \mathrm{~m}-370.0 \mathrm{~m} \quad$ ( 0.55 m )

## DDH: NS-07-3

## Meters Description

370.0-372.5 SHEAR/FAULT ZONE; SILTSTONE, minor ARGILLITE

Quite strongly sheared but with numerous $5-20 \mathrm{~cm}$ zones of less deformed, more massive (some is healed breccia) siltstone. Narrow argillite zones are deformed/ sheared at $\sim 55^{\circ}-60^{\circ}$ to c/a. Few specks of ZnS noted in upper 20 cm . At $370.64 \mathrm{~m} \sim 10 \mathrm{~cm}$ of 'foreign' rubble, presumably cave from bit change.

Sampling:
B81489 $\quad 370.0 \mathrm{~m}-370.35 \mathrm{~m}$
B81490 $\quad 370.35 \mathrm{~m}-371.2 \mathrm{~m}$
372.5-410.0 SILTSTONE and QUARTZITE, minor ARGILLITE

Medium and thick-bedded siltstone and quartzite with intervening bands, up to $\sim 40 \mathrm{~cm}$ thick, of thin-bedded argillite. Upper portion, to about 382.2 m , is a healed breccia with scattered calcite and quartz veinlets, rarely with minor py. Most veinlets are at $45^{\circ}$ to c/a., but different, irregular, attitudes are present.
Bedding: $25^{\circ}$ to $\mathrm{c} / \mathrm{a}$ at $375.0 \mathrm{~m} ; 27^{\circ}$ at $376.9 \mathrm{~m} ; 42^{\circ}$ at $379.2 \mathrm{~m} ; 50^{\circ}$ at 381.4 m ; $38^{\circ}$ at $384.4 \mathrm{~m} ; 26^{\circ}$ at $387.0 \mathrm{~m} ; 29^{\circ}$ at $394.7 \mathrm{~m} ; 27^{\circ}$ at $399.0 \mathrm{~m} ; 32^{\circ}$ at $405.2 \mathrm{~m} ; 45^{\circ}$ at 408.7 m.

At $373.8 \mathrm{~m}-\sim 6 \mathrm{~cm}$ wide weaker shear zone at $80^{\circ}-85^{\circ}$ to $\mathrm{c} / \mathrm{a}$. Healed breccia with qtzcalcite veining is strongest between 373.8 m and 374.8 m .
At $382.2 \mathrm{~m}-12-20 \mathrm{~cm}$ wide calcite-sulfide vein at $36^{\circ}$ to $\mathrm{c} / \mathrm{a}$. Sulfides are mostly ragged po with very minor Cpy and ZnS .
At $404.1 \mathrm{~m}-404.3 \mathrm{~m}-$ minor fault; crushed core at $55^{\circ}-60^{\circ}$ to $\mathrm{c} / \mathrm{a}$, oblique to bedding. Reorienting core indicates WNW-striking, steep south dip; St. Eugene trend.

## 410.0-411.7 ARGILLITE

$90 \%$ is dark grey, laminated, $10 \%$ is thin-bedded, light grey.
Bedding at $37^{\circ}$ to $\mathrm{c} / \mathrm{a}$.
411.7-415.5 SILTSTONE and QUARTZITE, minor ARGILLITE

Medium and thick-bedded siltstone and quartzite; $\sim 25 \%$ is thin beds of light grey argillite.
Bedding: $35^{\circ}$ at 414.0 m .
415.5-418.5 ARGILLITE ~5\% SILTSTONE
$55 \%$ is dark grey, laminated; $35 \%$ is thin-bedded, light grey; $10 \%$ is medium thick siltstone.
Bedding: $30^{\circ}$ at $416.0 \mathrm{~m} ; 40^{\circ}$ at 418.5 m .

## DDH: NS-07-3

## Meters Description

418.5- SILTSTONE and QUARTZITE, minor ARGILLITE
427.33 Medium thick-bedded siltstone and quartzite; bands of thin-bedded argillite; 425.1 m to 425.3 m and 426.7 m to 427.33 m is dark gray laminated argillite with some thin, light grey argillite beds.
424.9 m to 425.2 m is a shear-fault zone at $30^{\circ}$ to $\mathrm{c} / \mathrm{a}$, oblique to bedding, consists of $70 \%$ qtz-carbonate veining and $30 \%$ crushed dark grey argillite. 5 cm wide qtz-dolomite vein at 425.4 m at $20^{\circ}$ to $\mathrm{c} / \mathrm{a}$.; qtz-dolomite is a matrix to abundant angular, disoriented argillite fragments.

### 427.33 m END OF HOLE

## CERTIFICATE VA07059853

## Project:

P.O. No.: 67

This report is for 35 Drill Core samples submitted to our lab in Vancouver, BC. Canada on 11-JUN-2007.
The following have access to data associated with this certificate:


|  | SAMPLE PREPARATION |
| :--- | :--- |
| ALS CODE | DESCRIPTION |
| WEI-21 | Received Sample Weight |
| CRU-QC | Crushing QC Test |
| PUL-QC | Pulverizing QC Test |
| LOG-22 | Sample login - Rcd w/o BarCode |
| CRU-31 | Fine crushing $-70 \%<2 \mathrm{~mm}$ |
| SPL-21 | Split sample riffle splitter |
| PUL-31 | Pulverize split to 85\% <75 um |


|  | ANALYTICAL PROCEDURES |  |
| :--- | :--- | :--- |
| ALS CODE | DESCRIPTION | INSTRUMENT |
| Pb-AA46 | Ore grade Pb-aqua regia/AA | AAS |
| Zn -AA46 | Ore grade Zn - aqua regia/AA | AAS |
| ME-ICP41 | 35 Element Aqua Regia ICP-AES | ICP-AES |
| Ag-AA46 | Ore grade Ag - aqua regia/AA | AAS |

To: ST. EUGENE MINING CORP
ATTN: PETER KLEWCHUK
1-200 NORTON AVE
KIMBERLEY BC V1A 1X9 pages of this report have been checked and approved for release.

Signature:


ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY AS Canada Ltd.
212 Brooksbank Avenue
North Vancouver BC V7J 2C
Phone: 6049840221 Fax: 6049840218 www.alschemex.com
CERTIFICATE OF ANALYSIS VA07059853

| S*mple Description | Methow Analyte Units LOR | $\begin{gathered} \text { WEl-21 } \\ \text { Recve Wt. } \\ \text { kg } \\ 0.02 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ \text { Ag } \\ \text { Ppm } \\ 0.2 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ \text { Al } \\ \mathbf{Y} \\ 0.01 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ \text { As } \\ \text { PPm } \\ 2 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ \quad 日 \\ \text { ppm } \\ 10 \end{gathered}$ | $\begin{gathered} \text { ME-TCP41 } \\ \text { Ea } \\ \text { ppm } \\ 10 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ \text { Be } \\ \text { Ppm } \\ 0.5 \end{gathered}$ | $\begin{gathered} \text { ME-ICP4: } \\ \mathrm{Bi} \\ \text { Ppm } \\ 2 \end{gathered}$ | $\begin{gathered} \text { ME-ICP4 } \uparrow \\ C a \\ \% \\ 0.01 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ \text { Cd } \\ \text { Ppon } \\ 0.5 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ \text { Co } \\ \text { PPm } \\ 1 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ C r \\ \text { PPm } \\ 1 \end{gathered}$ | $\begin{gathered} M E-I C P 41 \\ C u \\ \text { ppm } \\ 1 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ F_{0} \\ \% \\ 0.01 \end{gathered}$ | $\begin{gathered} \text { ME.JCP41 } \\ \text { Ga } \\ \text { PPm: } \\ 10 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B081958 |  | 1.40 | 0.3 | 1.64 | 7 | $<10$ | 90 | 0.5 | $<2$ | 0.14 | $<0.5$ | 18 | 30 | 42 | 3.56 | $<10$ |
| B081959 |  | 3.46 | $<0.2$ | 1.46 | 20 | $<10$ | 60 | $<0.5$ | <2 | 0.31 | $<0.5$ | 13 | 23 | 30 | 3.49 | $<10$ |
| B081960 |  | 0.62 | $<0.2$ | 1.71 | 2 | <10 | 30 | $<0.5$ | 2 | 4.50 | <0.5 | 21 | 30 | 153 | 4.67 | <10 |
| B081961 |  | 2.94 | 0.2 | 1.78 | 7 | $<10$ | 20 | <0.5 | $<2$ | 3.96 | 1.8 | 31 | 11 | 217 | 9.81 | $<10$ |
| B081483 |  | 2.02 | $<0.2$ | 0.63 | 105 | $<10$ | 60 | 2.0 | 3 | 0.98 | 1.2 | 18 | 10 | 28 | 5.78 | $<10$ |
| B081484 |  | 0.78 | 6.2 | 0.15 | 18 | <10 | 10 | $<0.5$ | 14 | 0.09 | 44.4 | 8 | 17 | 194 | 0.73 | $<10$ |
| B081485 |  | 2.26 | $<0.2$ | 0.49 | 21 | $<10$ | 50 | 0.6 | $<2$ | 0.33 | $<0.5$ | 8 | 12 | 4 | 1.45 | $<10$ |
| B081486 |  | 1.30 | $<0.2$ | 0.11 | 5 | $<10$ | 10 | 0.5 | $<2$ | 0.11 | $<0.5$ | 4 | 19 | 6 | 1.44 | $<10$ |
| B081487 |  | 1.56 | $<0.2$ | 0.41 | 34 | <10 | 30 | $<0.5$ | 2 | 4.38 | $<0.5$ | 6 | 10 | 7 | 3.01 | $<10$ |
| B081488 |  | 1.50 | 14.3 | 0.88 | 137 | <10 | 40 | 1.4 | 5 | 0.54 | 187.5 | 26 | 6 | 201 | 2.97 | $<10$ |
| B081489 |  | 1.28 | 1.4 | 1.07 | 29 | <10 | 50 | 0.8 | <2 | 1.25 | 13.8 | 8 | 12 | 47 | 1.90 | $<10$ |
| B081490 |  | 2.30 | 0.9 | 0.92 | 9 | $<10$ | 40 | 0.6 | 2 | 1.05 | 3.0 | 4 | 8 | 47 | 1.44 | $<10$ |
| B081491 |  | 2.22 | 0.8 | 1.47 | 12 | $<10$ | 50 | 0.6 | 2 | 0.30 | 7.5 | 10 | 8 | 73 | 2.32 | $<10$ |
| 8081492 |  | 2.66 | 1.6 | 1.37 | 65 | $<10$ | 50 | 0.5 | 2 | 0.21 | 7.6 | 19 | 9 | 108 | 2.49 | $<10$ |
| B081493 |  | 2.72 | 1.6 | 1.76 | 11 | <10 | 50 | 0.5 | 2 | 0.46 | 6.2 | 13 | 12 | 127 | 3.26 | <10 |
| 8081494 |  | 2.48 | 2.3 | 1.57 | 34 | $<10$ | 40 | 0.5 | 2 | 0.47 | 15.4 | 17 | 12 | 280 | 2.87 | $<10$ |
| B081495 |  | 2.34 | 35.6 | 2.59 | 14 | $<10$ | 10 | $<0.5$ | $<2$ | 0.90 | 171.0 | 18 | 24 | 213 | 6.60 | 10 |
| B081496 |  | 2.10 | $>100$ | 1.45 | 20 | <10 | <10 | $<0.5$ | 2 | 0.37 | 275 | 34 | 13 | 150 | 5.14 | <10 |
| B081497 |  | 1.32 | $>100$ | 1.63 | $<2$ | $<10$ | 10 | $<0.5$ | 2 | 0.18 | 374 | 30 | 27 | 164 | 5.26 | $<10$ |
| B081498 |  | 1.20 | 11.4 | 2.32 | 7 | <10 | 40 | <0.5 | $<2$ | 0.11 | 5.8 | 12 | 16 | 102 | 4.24 | 10 |
| 8081499 |  | 1.60 | 98.1 | 1.95 | $<2$ | $<10$ | 40 | $<0.5$ | 2 | 0.97 | 40.3 | 17 | 17 | 18 | 3.36 | $<10$ |
| B081500 |  | 1.04 | 27.7 | 1.98 | <2 | $<10$ | 30 | $<0.5$ | $<2$ | 0.51 | 156.5 | 21 | 14 | 66 | 3.88 | <10 |
| 8081951 |  | 0.80 | 3.5 | 2.51 | 9 | $<10$ | 40 | $<0.5$ | $<2$ | 2.51 | 37.4 | 12 | 29 | 58 | 4.39 | 10 |
| B081952 |  | 4.02 | 1.0 | 5.68 | 50 | <10 | 20 | 0.5 | $<2$ | 0.34 | 3.1 | 19 | 34 | 95 | 11.45 | 10 |
| 8081953 |  | 0.78 | 8.0 | 2.36 | 38 | $<10$ | 50 | 0.5 | 5 | 0.17 | 4.6 | 21 | 19 | 29 | 4.15 | 10 |
| B081954 |  | 2.16 | 44.4 | 3.76 | 2 | <10 | $<10$ | $<0.5$ | 4 | 2.42 | 85.9 | 16 | 21 | 75 | 8.39 | 10 |
| B081955 |  | 2.14 | 23.5 | 3.13 | 5 | <10 | 10 | $<0.5$ | 2 | 3.10 | 34.3 | 15 | 18 | 84 | 6.70 | 10 |
| 8081956 |  | 2.26 | 1.9 | 1.09 | 30 | $<10$ | 30 | $<0.5$ | 2 | 1.50 | 22.1 | 30 | 8 | 51 | 2.66 | $<10$ |
| B081957 |  | 0.94 | 3.4 | 0.70 | 48 | $<10$ | 10 | 2.5 | $<2$ | 6.01 | 39.6 | 24 | 6 | 72 | 4.42 | 10 |
| B081477 |  | 1.58 | 2.3 | 0.44 | 47 | $<10$ | 30 | 0.6 | $<2$ | 0.35 | 25.2 | 9 | 5 | 63 | 1.66 | $<10$ |
| B081478 |  | 0.54 | 45.5 | 0.18 | 591 | $<10$ | 10 | 0.5 | 5 | 0.34 | 204 | 33 | 9 | 963 | 3.10 | <10 |
| B081479 |  | 2.92 | 1.3 | 0.52 | 20 | <10 | 30 | 0.7 | 2 | 0.14 | 3.9 | 12 | 7 | 103 | 2.22 | <10 |
| E081480 |  | 1.60 | $<0.2$ | 0.75 | 12 | <10 | 20 | 8.5 | 2 | 0.07 | $<0.5$ | 6 | 12 | 11 | 1.65 | $<10$ |
| B081481 |  | 0.24 | $<0.2$ | 4.28 | 4 | <10 | 130 | 0.6 | 3 | 0.03 | $<0.5$ | 9 | 16 | 28 | 7.89 | 10 |
| B081482 |  | 0.48 | $<0.2$ | 1.11 | $<2$ | <10 | 50 | $<0.5$ | 2 | 0.08 | $<0.5$ | 10 | 15 | 33 | 3.13 | $<10$ |

212 Brooksbank Avenue
North Vancouver BC V7J 2Ci
Phone: 6049840221 Fax: 6049840218 www.alschemex.com

O: ST. EUGENE MINING CORP
701 - 675 WESt hASTINGS AVE. VANCOUVER BC V6B 1N2

Page: 2-B
Total \# Pages: 2 (A - C) Finalized Date: 16-JUN-2007 Account: STEUGE

ALS
CERTIFICATE OF ANALYSIS VA07059853

| Sample Description | Method Analyte Units 20n | $\begin{gathered} \text { ME-ICP41 } \\ \mathrm{Hg} \\ \text { porn } \\ 1 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ K \\ \% \\ 0.01 \end{gathered}$ | $\begin{gathered} \text { ME-ICP4 } 1 \\ \text { La } \\ \text { Dom } \\ 10 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ \text { M/g } \\ \% \\ 0.01 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ \text { Mn } \\ \text { PPOn } \\ 5 \end{gathered}$ | $\begin{gathered} \text { ME-KP41 } \\ \text { Mo } \\ \text { ppm } \\ t \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ \mathrm{Na} \\ \$ \\ 0.01 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ \mathrm{Ni} \\ \text { Dpm } \\ 1 \end{gathered}$ | $\begin{gathered} M E-I C P_{4} T \\ P \\ p o m \\ 10 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ \text { Pb } \\ \text { PPm } \\ 2 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ s \\ \$ \\ 0.03 \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ \text { Sb } \\ \text { Ppm } \\ 2 \end{gathered}$ | $\begin{gathered} \text { ME-FCP4: } \\ \text { Sc } \\ \text { ppm } \\ ! \end{gathered}$ | $\begin{gathered} \text { ME-ICP41 } \\ \text { Sr } \\ \mathrm{ppm} \\ t \end{gathered}$ | $\begin{gathered} \text { ME-ICP } 41 \\ \text { Th } \\ \text { Pprm } \\ 20 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8081958 |  | $<1$ | 0.74 | 20 | 0.64 | 340 | 3 | 0.03 | 29 | 360 | 19 | 0.80 | <2 | 2 | 13 | $<20$ |
| B081959 |  | $<1$ | 0.58 | 10 | 0.65 | 594 | 2 | 0.05 | 18 | 260 | 21 | 0.55 | <2 | 3 | 25 | $<20$ |
| B081960 |  | $<1$ | 0.38 | 10 | 0.75 | 954 | $<1$ | 0.03 | 40 | 170 | 14 | 0.44 | <2 | 3 | 114 | $<20$ |
| B081961 |  | $<1$ | 0.51 | 10 | 0.72 | 2250 | $<1$ | 0.02 | 35 | 70 | 60 | 4.61 | $<2$ | 3 | 83 | $<20$ |
| B081483 |  | $<1$ | 0.41 | 20 | 0.17 | 1640 | 2 | 0.02 | 41 | 410 | 83 | 1.23 | 29 | 2 | 56 | $<20$ |
| B081484 |  | <1 | 0.08 | 10 | 0.02 | 154 | $<1$ | 0.02 | 9 | 50 | 5000 | 0.52 | 173 | $<1$ | 8 | <20 |
| B081485 |  | $<1$ | 0.34 | 30 | 0.10 | 622 | $<1$ | 0.01 | 9 | 190 | 37 | 0.09 | 2 | 1 | 20 | $<20$ |
| 8081486 |  | <1 | 0.06 | 10 | 0.02 | 422 | 1 | 0.01 | 6 | 10 | 45 | 0.08 | $<2$ | 1 | 5 | $<20$ |
| B081487 |  | $<1$ | 0.23 | 20 | 0.58 | 492 | 1 | 0.06 | 12 | 240 | 28 | 0.30 | 5 | 5 | 108 | <20 |
| B081488 |  | 2 | 0.38 | 20 | 0.17 | 310 | 2 | 0.02 | 22 | 210 | >10000 | 2.58 | 16 | 2 | 38 | $<20$ |
| B081489 |  | <1 | 0.50 | 20 | 0.24 | 371 | 1 | 0.02 | 14 | 190 | 1015 | 0.37 | $<2$ | 2 | 48 | $<20$ |
| B081490 |  | $<1$ | 0.43 | 20 | 0.20 | 267 | 2 | 0.02 | 15 | 190 | 846 | 0.31 | $<2$ | 1 | 42 | $<20$ |
| B081491 |  | $<1$ | 0.54 | 40 | 0.48 | 129 | $<1$ | 0.02 | 23 | 430 | 684 | 0.71 | 3 | 1 | 12 | 20 |
| B081492 |  | $<1$ | 0.53 | 40 | 0.44 | 119 | 1 | 0.02 | 28 | 280 | 1385 | 0.77 | 3 | 2 | 15 | 20 |
| B081493 |  | $<1$ | 0.54 | 30 | 0.66 | 181 | 3 | 0.02 | 24 | 260 | 1115 | 1.00 | 6 | 2 | 16 | $<20$ |
| B081494 |  | $<1$ | 0.34 | 20 | 0.66 | 205 | 4 | 0.02 | 18 | 560 | 2320 | 0.70 | 6 | 2 | 12 | $<20$ |
| B081495 |  | <1 | 0.09 | $<10$ | 1.36 | 530 | $<1$ | 0.02 | 16 | 160 | > 10000 | 3.71 | 57 | 2 | 16 | $<20$ |
| 8081496 |  | 2 | 0.03 | <10 | 0.71 | 286 | $<1$ | 0.01 | 10 | 70 | >10000 | 6.94 | 277 | 1 | 11 | $<20$ |
| B081497 |  | 1 | 0.12 | 10 | 0.78 | 274 | $<1$ | 0.02 | 11 | 100 | > 10000 | 8.02 | 240 | 2 | 5 | $<20$ |
| B081498 |  | $<1$ | 0.53 | 30 | 0.96 | 243 | 1 | 0.02 | 14 | 340 | > 10000 | 0.45 | 16 | 2 | 9 | $<20$ |
| B081499 |  | $<1$ | 0.50 | 30 | 0.72 | 197 | <1 | 0.03 | 23 | 250 | >10000 | 2.30 | 107 | 2 | 17 | $<20$ |
| B081500 |  | $<1$ | 0.41 | 20 | 0.79 | 251 | $<1$ | 0.02 | 13 | 220 | >10000 | 2.67 | 37 | 2 | 14 | $<20$ |
| B081951 |  | $<1$ | 0.46 | 30 | 1,00 | 302 | $<1$ | 0.02 | 15 | 260 | 3540 | 0.76 | 3 | 3 | 31 | $<20$ |
| B081952 |  | <1 | 0.29 | 10 | 2.67 | 776 | $<1$ | 0.02 | 33 | 210 | 922 | 0.41 | <2 | 10 | 16 | $<20$ |
| E081953 |  | $<1$ | 0.50 | 50 | 0.96 | 250 | 1 | 0.02 | 26 | 260 | 8590 | 0.44 | 8 | 2 | 12 | 20 |
| B081954 |  | 1 | 0.06 | 10 | 1.98 | 530 | 4 | 0.01 | 24 | 170 | >10000 | 2.86 | 42 | 4 | 40 | $<20$ |
| 8081955 |  | 1 | 0.09 | 10 | 1.61 | 392 | 1 | 0.01 | 21 | 160 | $>10000$ | 1.65 | 23 | 3 | 45 | $<20$ |
| B081956 |  | $<1$ | 0.31 | 30 | 0.50 | 128 | 2 | 0.02 | 25 | 330 | 1710 | 1.00 | 7 | 1 | 23 | $<20$ |
| 8081957 |  | $<1$ | 0.16 | 10 | 0.39 | 177 | 2 | 0.02 | 26 | 230 | 3160 | 1.85 | 16 | 3 | 78 | $<20$ |
| 8081477 |  | $<1$ | 0.25 | 10 | 0.06 | 207 | 1 | 0.01 | 18 | 190 | 2750 | 1.05 | 4 | 1 | 16 | $<20$ |
| 8081478 |  | 2 | 0.09 | $<10$ | 0.05 | 408 | <1 | 0.01 | 16 | 50 | >10000 | 3.54 | 31 | <1 | 8 | $<20$ |
| B081479 |  | $<1$ | 0.30 | 20 | 0.06 | 371 | 1 | 0.01 | 29 | 250 | 830 | 0.98 | 2 | 1 | 14 | $<20$ |
| 8081480 |  | $<1$ | 0.17 | 60 | 0.34 | 187 | 1 | 0.03 | 14 | 250 | 60 | 0.11 | $<2$ | 1 | 9 | $<20$ |
| 8081481 |  | $<1$ | 2.65 | 10 | 2.05 | 606 | $<1$ | 0.03 | 41 | 50 | 47 | 0.17 | $<2$ | 7 | 6 | $<20$ |
| B081482 |  | $<1$ | 0.66 | 10 | 0.45 | 267 | 1 | 0.02 | 8 | 50 | 39 | 0.38 | $<2$ | 1 | 6 | $<20$ |




[^0]:    174.5-183.0 SILTSTONE and QUARTZITE, very minor ARGILLITE Light to medium grey, medium, thick and thin-bedded. Bedding: $43^{\circ}$ at $175.8 \mathrm{~m} ; 47^{\circ}$ at 182.8 m .

