2007 GEOPHYSICAL ASSESSMENT REPORT

for an

I.P. and MAGNETOMETER SURVEY

completed on the

BC Geological Survey Assessment Report 29849

FRAN PROPERTY

Omineca Mining Division British Columbia NTS 93K/16, 93N/01

Lat. 55° 00'N Long. 124° 25'W

for

YANKEE HAT MINERALS LTD. 1601 - 700 West Pender Street, Vancouver, B.C. V6E 4N7

by

J.W. Murton P. Eng.

J. W. Murton &Associates 1567 McNaughton Road Kelowna, B.C. V1Z 2S2

Date: February 15, 2008

TABLE OF CONTENTS

1.0	Summary	4
2.0	Introduction	8
3.0	Location And Access	8
4.0	Topography, Vegetation and Climate	9
5.0	Property	10
6.0	Regional Geology	15
7.0.	Property Geology	19
8.0	Mineralization	23
9.0	2007 Exploration Program – I.P.and Mag Survey	26
10.0) Results & Discussion	29
11.0) Conclusions	30
12.0) Statement of Costs	31
13.0) References	32
14.0	Certificates of Qualified Persons J.W. Murton P. Eng. Author	33

Certificate of Alan Scott, Scott Geophysics Ltd. included in appended report.

APPENDICES

APPENDIX A	Logistical Report on the Induced Polarization and	
	Magnetometer Surveys on the FRAN Property by	
	Scott Geophysics Ltd.	Back of Report

LIST OF FIGURES

		Page
Figure 1	Location Map	. 7
Figure 2	Claim Location Scale 1 : 600,000	. 12
Figure 3	Claim Location Scale 1 : 100,000	. 13
Figure 4	Claims and Work Area Scale 1:80,000	. 14
Figure 5	Regional Geology	18
Figure 6	Property Geology	22
Figure 7	Grid A	. 27
Figure 8	Grid B	. 28

LIST OF TABLES

Page

Table 1	Fran Property - List of Mineral Claims		11
---------	--	--	----

1.0 SUMMARY

Yankee Hat Minerals Ltd. is exploring the Fran Property in north-central British Columbia for bulk tonnage and high grade gold-polymetallic deposits. The 2007 geophysical surveys consisted of 47.2 line km of I.P. survey and 48.4 line km of magnetometer survey completed on Tenures # 505331, 510913 and 518242. The cost of this work is being filed for assessment work credits on tenures 561929 and 561966 which are contiguous to and make up a part of the total FRAN claim group.

The original Fran Property consisted of eight mineral claims covering approximately 4000 hectares in the Omineca Mining Division of British Columbia. Staking in the last few years to the east, south and west has expanded the property to 10,227.282 hectares in area. This is a hilly area on the north side of Inzana Lake, 60 kilometres north of Fort St. James, north-central BC. with good logging road access.

The company negotiated an option with the owner, Richard J. Haslinger Jr. on March 31st, 2004. This option is subject to staged payments and a royalty equal to 2% of Net Smelter Returns.

Old discoveries were made by Richard Haslinger Sr.(original property owner) in the mid-1990's resulting in the staking of the Fran claims. These discoveries sparked significant company interest; preliminary sampling and geology programs by Placer Dome Inc. and Homestake Canada Inc. followed in 1998. An extensive gold (copper) soil anomaly and several mineral occurrences were outlined in the Upper-Hill Top and Lower showings area. Property exploration by Navasota Resources Ltd. (2001-2002) involved 32 NQ diamond holes that tested three areas on the 1.5 kilometre long 'Bullion Alley' NW trend (between showings). This drilling encountered numerous multi-gram gold intercepts with variable Ag, Cu, Pb and Zn values mainly from quartz-sulfide vein systems. The Fran Property lies within the Quesnellia Terrain of the Canadian Cordillera and is underlain by Takla Group (Late Triassic-Early Jurassic) sedimentary and volcaniclastic rocks intruded by dykes and small stocks of monzonite, monzodiorite, diorite and more felsic porphyries. In the west central property area the Bullion Alley trend features auriferous (fracture controlled) quartz-sulfide veins and wallrock replacements which have some strong similarities with those in the historic Rossland gold camp in southeastern BC. These quartz-sulfide veins are associated with the majority of the multigram gold intercepts (±Ag, Cu, Pb and Zn) and occur both in intrusive and country rock (hornfels) settings along the trend. Several other syn to post-mineral vein types have been identified in drilling and outcrops in the same area.

The previous work on the Fran Property largely concentrated on one small area, the 'Bullion Alley' trend leaving the rest basically unexplored. The drilling on the Bullion Alley trend has indicated one or more penetrative, WNW trending quartz sulfide vein zones which are know known to continue between the two main showing areas (1.5 kilometres). These are open on either end. Much of the area between the showings had not been tested by drilling other than in the Mid-Ridge area (to the north).

An early property scale stream silt geochemical program indicated a much larger gold target area than that covered by previous exploration. A 45 line kilometer survey grid was installed to cover this area and used for soil geochemical, prospecting and geological mapping. Several east to southeast trending gold (copper, silver) targets were outlined in the west and central grid areas. Prospecting returned a significant number of multi-gram gold values over a 1.7 kilometre strike length. An airborne geophysical survey (magnetic and radiometric) took place late in 2004 and indicated a large number of target areas, some of these were outside of that present claim group and were promptly staked for Yankee Hat.

The 2005 field program by Yankee Hat Minerals featured both property scale and more detailed grid (Bullion Alley) exploration. On the 'Bullion Alley' Grid there was road building, trenching, induced polarization-magnetic geophysical surveys and two phases of diamond drilling totaling 3028.41 metres.

The 2005 drilling results indicated multiple gold mineralized zones (with copper, silver, local lead, zinc) at either contact and within the intrusive complex. In many cases it is premature to correlate gold intercepts between holes because of the wide spacing, often more than 100 metres

A 2051.12 m program of diamond drilling was completed during the period June to September, 2006 with encouraging results. These holes helped to define the mineralized structure indicated in earlier drilling. The North Contact zone has now been shown to have the potential to extend to greater than 1000 m in strike length. Additional drilling will be necessary to confirm this concept.

The 2007 I.P. and Magnetometer survey revealed some interesting anomalous conditions on the two grids surveyed.

The southern most grid A surveys revealed a strong magnetic anomaly centrally located on the grid and possibly related to an underlying monzodiorite stock, although little to no outcrop makes this a weak interpretation.

A moderate to strong I.P. anomaly occurs in the south ¹/₄ of the grid area and this anomaly is interpreted to result from pyritic hornfels within siltstone metasediments adjacent to the postulated intrusive to the north.

The northern grid B surveys revealed a flat magnetic signature coupled with several moderate to strong I.P. anomalies. Limited survey coverage on this grid resulted in 2 of the 3 anomalies discovered being open and extending off the coverage area.

2.0 INTRODUCTION

This report presents the results of an I.P. and magnetometer survey that took place on the Fran Property, Omineca Mining Division of British Columbia between July 21 and August 19, 2007. Linecutting took place during the preceding 2 months but the cost of that work is not included in this report. This work program was supervised by J.W. Murton, P. Eng, and financed by Yankee Hat Minerals Ltd. with offices at 1601 – 700 West Pender Street, Vancouver BC. Kamloops Geological Services Ltd. provided the support and infrastructure for the survey personnel.

The cost of the geophysical survey and associated support cost was \$97,845.32 and this amount is being filed for assessment work credit.

The Fran Property lies in a northwest trending belt of volcanic rocks in Quesnellia hosting alkalic porphyry Cu-Au deposits such as Mt. Milligan (to the northeast). Yankee Hat is exploring the Fran for bulk tonnage intrusive hosted and higher grade auriferous vein-replacement gold deposits.

3.0 LOCATION AND ACCESS

The property is located in north-central British Columbia, four kilometres north of Inzana Lake and approximately 60 kilometres north of the regional centre of Fort St. James (Figure 2). The property has Benoit Lakes on its western boundary and straddles the border area between NTS map sheets 93K/16 and 93N/01 with its centre at Latitude 55°00'N, Longitude 124°25'W; UTM NAD 83, Zone 10 coordinates 6,094,000N 410,000E.

Access to the property area north from Fort St. James is by the Germansen highway for

55 kilometres, then west along the Inzana Forestry Service Road for 30 kilometres.

These roads are unpaved but generally useable throughout the year though winter access

may be difficult along the Inzana FSR in the absence of logging activities. The travel time by truck from Fort St. James to the central property is 70 to 80 minutes, by helicopter 20 minutes. A network of logging roads and trails yield reasonable access to large parts of the property using a 4 x 4 truck or ATV. There are many large clear cuts with useable trails. The far northern, northeastern and western parts of the property are not as easy of access and are accessible by foot or helicopter. Much of the new claim area to the east of the original claims is difficult to access and requires long traverses through thick vegetation (alders).

4.0 TOPOGRAPHY, VEGETATION AND CLIMATE

The property covers a hilly area north of Inzana Lake (880m. elevation) ranging from 975 metres along Inzana Creek to over 1400 metres along the northern range of hills. The main drainages and ridges have west to northwest trend. This area has been glaciated with rounded hill tops that feature bedrock at, or near surface separated by broad valleys with thick till and/or fluvio-glacial deposits. South facing hillsides tend to be more rugged with local cliffs (face up-ice direction). The hill areas on the property until recently were covered by thick stands of mature fir, pine and balsam that are mixed with spruce at lower elevations. Logging activities have resulted in several large clearcuts on northern side of Inzana Creek. Extensive areas of poorly drained marsh occur along the main valley east of Benoit Lakes.

The claims acquired in 2004 and 2005 lie mainly to the east of the original claim group. These claims cover the headwaters to Tezzeron Creek with numerous low swampy areas and thick stands of alders. To the north and south these grade into low hills with better drainage, mixed pine, fir and balsam.

The climate in the Fort St. James-Inzana Lake area features mild to warm summers in the 10° to 20° C temperature range. Winters are cold with sub-freezing temperatures. Snow accumulations have been highly variable over the last few years from less than one to over 2 metres (main period mid-October to mid-April). Historically the Inzana area has been considered a snow belt.

5.0 PROPERTY

Yankee Hat has an option to acquire a 100% undivided interest to Mineral Tenures 505313, 505330, 505331 from Mr. Richard J Haslinger Jr. subject to a royalty equal to 2% of Net Smelter Returns (The Royalty) and staged cash and share payments. The 'Royalty' can be reduced to 1% at any time with a \$2,000,000 payment to the vendor.

The claim list below indicates the present ownership of the claims following consolidation of titles in 2007 and the application of 3 years assessment based on an earlier filed diamond drilling report. Two additional claims were located in 2007 and are included in this assessment work filing.

All claims are located in the Omineca Mining Division, Map 093K.

TABLE 1

Tenure	Claim	Owner	Status - Good	Status after	Map #	Area
#	Name	No.	Standing to	3 years assessment		(Hectares)
505313		111296	2011.04.04		93 K	1206.117
505330		111296	2011.04.04		93 K	1466.79
505331		111296	2011.04.04		93 K	1409.688
503569	Fran26	205146	2011.01.14		93 K	464.431
503576	Fran27	205146	2011.01.14		93 K	464.522
518242	Fran28	205146	2011.07.25		93 K	315.758
505189	Fran29	205146	2011.01.29		93 K	464.367
505190	Fran30	205146	2011.01.29		93 K	464.474
510913		205146	2010.11.12		93 K	1411.046
518135		205146	2011.07.21		93 K	463.922
518136		205146	2011.07.21		93 K	463.826
518137		205146	2011.07.21		93 K	463.731
518138		205146	2011.07.21		93 K	445.09
561966		205146	2008.07.03	2011.07.03	93 K	278.197
561929		205146	2008.07.03	2011.07.03	93 K	445.323
Total						10227.282

FRAN PROPERTY - LIST OF MINERAL CLAIMS

6.0 **REGIONAL GEOLOGY**

The Fran property lies within the Quesnellia Terrain of the Canadian Cordillera which represents a Late Paleozoic to Mesozoic age island arc assemblage (Monger et.al., 1991) and is part of the Intermontane Belt of the Canadian Cordillera. The regional geology is illustrated in Fig.5. The Quesnellia Terrain comprises volcanic and sedimentary rocks of the late Triassic to Early Jurassic age Takla Group with coeval plutons. This assemblage is juxtaposed against the Cache Creek Terrain to the west along the Pinchi Fault and to the east the mainly Paleozoic age Wolverine and Omineca Complexes. The Quesnellia Terrain in British Columbia features both alkalic (Au, Cu) and calc-alkalic (Cu, Mo) porphyry deposits. Mt. Milligan, a significant alkalic porphyry deposit (299 MT @0.45 g/t Au, 0.22% Cu) is located 30 kilometres to the northeast of the Fran (Fig. 5). Several major northwesterly striking faults separate the Fran from the Mt. Milligan deposit area with thick sequences of Eocene volcanics overlying the Takla Group in the central area. This area probably represents an interbasin graben (Nelson, 1990).

Regional 1:50,000 scale geological mapping has taken place in the property area as part of the Nation Lakes project by the BC Geological Survey Branch, Nelson et al. (1991). The mapping in the Inzana Lake area is illustrated in Fig. 6 which features a small part of the 93 K/16 sheet (Open File 1991-3). Much of this mapping appears to have taken place along the better exposed ridge tops with little in the valleys between.

The Takla Group in the property area is represented by the Inzana Lake Formation consisting of a northwest striking sequence of grey, green to black siliceous argillite, grey to green volcanic sandstones and minor augite bearing crystal and lapilli tuffs. This sequence is transitionally overlain by Witch Lake Formation agglomerates, lapilli tuffs and epiclastic sediments east of the property.

Takla to later age (Late Triassic or Early Jurassic) intrusive rocks mainly belonging to the diorite/monzodiorite suite occur throughout the area and range from

narrow dykes to kilometer scale stocks and local intrusion breccias (TAS breccia). Many of the larger bodies are elongate with west to northwest long axes; they commonly form the higher ground and correlate well with airborne magnetic (high) features. One of the main stocks is a porphyritic diorite body over 6 kilometres long that lies at the eastern edge of the original Fran property and is now covered by additional staking in 2004-2005.

Nelson's mapping (1991) suggests two discrete phases of folding in the Inzana Formation sediments in the property area, F2 upright folds have northwest trending axial traces with tight refolded F1 hinges.

During the 1980's a significant amount of exploration for alkalic porphyry Au-Cu deposits took place in this section of Quesnellia following the discovery of the Mt. Milligan. Most of this exploration was to the north and northeast of Inzana Lake in the Nation Lakes area. The Minfile occurrences in the property area are shown on Fig. 6. The large TAS property less than 1 km south of the eastern (new) Fran claims has received significantly more exploration, mainly for gold and copper. The majority of the exploration was conducted in the 1980's during the Mt. Milligan discovery-development period and was by Noranda Exploration, Black Swan Gold Mines and Goldcap. During this period the TAS property with tie-on claims extended into the Fran area.

The TAS features several documented gold zones in a propylitic to potassic altered and sheared, multi-phase diorite stock with extensive intrusion breccias. Like Fran the country rocks are Inzana Lake Formation sediments and tuffs. Two main areas of gold \pm copper mineralization have been identified on the property: the Freegold (091) and TAS Ridge Area (080). The majority of drilling and trenching took place on the TAS Ridge Area where five or more zones were tested. These feature north to northwest trending sulfide rich, fracture-vein-replacement zones with variable amounts of pyrite, pyrrhotite and chalcopyrite. The East Zone reported a weighted average of 9.7 g/t Au across 3

metres width for 63 metres strike length in trenches. In 1999 Omni Resources Inc. drilled the Far East and West Zones reporting several gold intervals in the 2 to 8 g/t range. Navasota Resources Ltd. drilled seven holes in the West Zone area in 2002 with several gold intersections in the 0.4 to 2.6 g/t range over significant core lengths (12.5 to 56.6 metres). Higher grade intervals including 9.16 g/t Au over 1.5m were associated with quartz-sulfide (pyrrhotite, pyrite) vein-wallrock replacements (Wells, 2003) very similar to those in Fran drilling on Bullion Alley.

7.0 PROPERTY GEOLOGY

Previous exploration on the Fran Property has been largely restricted to the showing and 'Bullion Alley' trend on the original Fran, Fran #2 and Fran #3 mineral claims. Outside of this area the property geology was poorly understood and relied on the regional mapping of Nelson et.al. (1996) shown in Fig. 6. 1998 geological mapping and 2001-2002 drilling on the Bullion Alley trend encountered a suite of porphyritic to equigranular intrusive rocks (Upper Triassic-Early Jurassic?) hosted by Inzana Formation, Takla Group (Upper Triassic) volcanic siltstones, mudstones and local tuffs (Figure 5). The intrusive rocks appear to represent a high level dyke swarm 200 to 300 metres wide, with a northwest trend that passes through the drilling areas. Inzana Lake Formation dark siltstones and fine volcaniclastic rocks are converted to hornfels and feature strong fracturing near intrusive contacts. The intrusive rocks have interpreted steep to sub-vertical contacts and consist of variably magnetic, equigranular to plagioclase-hornblende porphyritic diorite to monzodiorites. Narrow variably crowded feldspar porphyry dykes have an aphanitic groundmass and are generally non-magnetic. The petrographic-lithogeochemical study by the author (Wells, 2002) on Navasota drill core samples distinguished three main intrusive rock types:

Monzodiorite (**MD**): The dominant widespread intrusive rock type forming dykes and probable stocks. These white-green mottled, medium grained diorites to monzodiorites appear equigranular but are actually crowded feldspar > hornblende porphyries. Fine groundmass mineralogy includes hornblende, quartz (<5%), K.feldspar, rhombic sphene, disseminated magnetite and some secondary epidote and carbonate. Sub-rounded variably assimilated centimeter scale xenoliths occur locally.

Hornblende Porphyries (HP): These generally form narrow dykes and feature euhedral 1-3mm up to 2 cm euhedral hornblende phenocrysts. The fine groundmass consists of mixtures of K.feldspar > plagioclase with minor epidote and quartz. Remnant plagioclase phenocrysts may be present. Monzonite compositions are indicated.

Plagioclase Porphyries (PP): These leucocratic white to grey, crowded feldspar porphyries feature euhedral plagioclase phenocrysts 1- 4mm in length (some perthite) with local flow alignment. Other minor phenocrysts phases include hornblende (chlorite altered), sphene and rarer prismatic quartz. These phenocrysts occur in an extremely fine groundmass with mixtures of quartz, plagioclase and K.feldspar. Narrow plagioclase porphyry dykes often appear syn-mineral. The only sample taken from the KBE showing area was an intrusive of this type. The mineralogy of these intrusive rocks are consistent with dacite to rhyodacite compositions.

The mineralogical and geochemical features of the three intrusive rock types suggest a comagmatic suite with transitional high K. calc-alkaline to silica saturated alkaline affinity (Wells, 2002).

Inzana Lake Formation, Country Rocks: Within the drilling area there are scattered outcrops of extremely fine grained, green to black sedimentary rocks, mainly mudstones, cherty (altered) siltstones and local tuffs. In drill logs these units often consist of deformed, variably altered and locally banded biotite hornfels. The same drill logs indicate narrow intervals of augite porphyry flows (APF) within the sedimentary sequence. These commonly are bleached-altered with chilled contacts.

Structure: Numerous fault and fault zones are apparent with a variety of interpreted trends including northwest and northeast, steep north dips appear to predominate. The drill logs indicated moderate to strong brittle deformation along some intrusive contacts, especially in the adjacent hornfels-argillites (local brecciation and strong veining). Late chloritic structural zones in the drilling at Hill Top have interpreted shallow dips to the north. These are up to 20 metres wide (DDH. FR-001) and are comparable with structure

exposed in the road bend to the east. A similar shallow dipping fault zone has also been interpreted (at depth) in the Roadside area in holes FR-005 to 008.

Metamorphism: Mineral assemblages more distal to felsic intrusives suggest prehnitepumpellyite to greenschist facies of regional metamorphism. Contact metamorphism is widespread proximal to felsic dykes and stocks. Aureoles are generally narrow with flinty biotite hornfels, however it is often difficult to distinguish biotite alteration from metamorphism.

8.0 MINERALIZATION

A surface examination of Fran mineralization for Placer Dome (Wells, 1999) indicated a variety of styles of gold mineralization in the grid (Bullion Alley) area. This mineralization is hosted by monzodiorite intrusions proximal to contacts with hornfels-metasediments.

- 1. Quartz veinlet stockwork zones with associated K.feldspar alteration in the Hill Top (Upper Showing) area. These were overprinted by later north dipping, chloritic structural zones and returned up to 0.83 g/t Au from 2 metre chips (grab samples returned up to 3 g/t Au).
- 2. Also in the Hill Top area, deformed east trending quartz veins up to 50 cm wide with silicified and K. feldspar altered wallrocks. These contain arsenopyrite, pyrite, galena chalcopyrite and brown sphalerite and returned gold values up to 19.4 g/t (1.8 metre chip sample) with significant Ag, As, Zn, Cu and Pb values.
- 3. In the Lower Showing (Roadside) area, NNW trending highly oxidized fracture zones with visible gold, grab samples returned up to 227 g/t Au and 19.8 g/t Ag.

A fourth area of mineralization 400 metres south of 1 and 2 called the Middle Zone was located by U. Mowat (2000) in dark colored hornfels? adjacent to a dyke. One grab sample with very fine disseminated sulfides returned 7.68 g/t Au.

The drilling programs by Navasota (2001-2002) returned numerous multi-gram gold intersections with a variety of associated metals from Cu, Ag, Pb, Zn, Mo and As. Some of these featured visible gold. This mineralization is predominantly associated with structurally controlled quartz vein-alteration zones containing heavy sulfide concentrations, in particular pyrrhotite and/or pyrite, variable chalcopyrite, local sphalerite, arsenopyrite and molybdenite.

The vein mineralization is intrusive or sediment (hornfels) hosted and at either edge of the dyke swarm. The Mid-Ridge and Hill Top (quartz-arsenopyrite vein) areas are proximal to the north intrusive contact, Hill Top and Roadside (Lower Showing) are proximal to the south

There are a variety of styles of vein mineralization; four main styles were outlined during the 2002 petrographic study by the author (Wells, 2002):

1. Quartz-Sulfide Veins with Au, Ag (Cu)

This is the predominant auriferous vein type in the drilling area and is associated with the higher grade gold intersections. These veins have steep dips

and are hosted by either intrusive rocks or hornfels-country rocks proximal to contacts. The textures often indicate multi-stage veins and wallrock replacements along fracture zones and faults. Quartz is the main gangue mineral followed by carbonate, chlorite and epidote. There are highly variable amounts of sulfide minerals and silicate-carbonate gangue in veins. Sulfides include fine to coarse grained aggregated-disseminations of pyrite and pyrrhotite. Minor dark Fe sphalerite, chalcopyrite, arsenopyrite and rare galena may be present. Gold was observed in several thin sections and hand specimens with several modes:

- Sub-rounded to angular solid inclusions in massive pyrrhotite and less common pyrite. Some angular electrum inclusions up to 300 microns occur in pyrrhotite.
- 2) As clusters of angular free gold grains in vein quartz up to 150 microns
- Gold and/or electrum veinlets and stringers in fractured grains and at fractured quartz grain boundaries. Up to 100 micron elongate grains.
- 4) Extremely fine <5 micron to 60 micron gold inclusions in chalcopyrite.
- 5) At sulfide grain boundaries-pyrite, pyrrhotite chalcopyrite and sphalerite, up to 40 micron grains.

The above gold modes are texturally both early (1) and late (2 to 5). Some remobilization of gold is suggested.

Many quartz-sulfide veins feature narrow zones of intense K. feldspar alteration in the wallrock.

2. Polymetallic veins hosted by Country Rocks with Au, Ag, Zn, Cu, Pb and As

Several holes encountered quartz-carbonate-sulfide veins and stockworks hosted by variably fractured country rock hornfels (siltstone, argillite). These veins and veinlets contain variable amounts of pyrite, pyrrhotite, sphalerite, galena and arsenopyrite. Gold values are generally much lower than in the previous vein type, they are often in the 0.1 to 1 g/t range locally up to 8.25 g/t. Silver to gold ratios are noticeably higher in this type of vein and there are generally higher arsenic, lead and zinc values.

3. Amphibole Veins with Cu-Au (Ag)

These are less common and hosted by monzodiorite porphyry dykes mainly in the Lower Showing (Roadside) area. Medium to coarse grained pyrite and chalcopyrite are associated with deformed hornblende veins with fine disseminated chalcopyrite >pyrrhotite and pyrite in the wallrock. These vein intervals have returned copper values up to 0.92%, gold up to 2.94 g/t, silver up to 5.4 g/t and appear to be early stage (late magmatic).

4. Quartz-Albite Veins

This is a less common intrusive hosted vein type that was noted in the drilling at the Hill Top area. These veins feature variably deformed coarse grained quartz and tabular albite with interstitial carbonate, extremely fine arsenopyrite and pyrite. The wallrock are carbonate-epidote-sericite altered. Gold values are low elevated, 100 ppb up to 1.1 g/t.

Fine quartz \pm epidote \pm chlorite \pm pyrite veinlets are mainly post mineral (rare chalcopyrite) and occur in monzodiorite and porphyries. These veinlets are penetrative, locally cutting earlier mineralized veins.

9.0 2007 EXPLORATION PROGRAM - I. P. + MAG. SURVEY

An exploration program consisting of a pole dipole induced polarization survey plus a ground magnetometer survey was carried out mainly on Tenure #'s 505331 and 510913 during the period July 21 – August 19, 2007 by Alan Scott, of Scott Geophysics Ltd. The focus of the survey was to test the potential of a two areas on the claims covered with overburden that possibly had potential for buried mineralization.

The I.P. survey was conducted using a Scintrex IPR12 receiver and GDD TxII transmitter while the magnetometer survey was conducted with a Scintrex ENVI unit. See the appended report by Scott Geophysics for survey and instrument detail.

On Grid A in the SE quadrant of the claim group and mainly on tenure 510913, a total of 39 line kms of I.P. survey and ground magnetometer survey were completed on 400 m spaced lines trending north - south.

On Grid B in the north central quadrant of the claims and mainly on tenure 505331, a total of 8.2 line kms of I.P. survey and ground magnetometer survey were completed on 400 m spaced lines trending north - south.

Total exploration expenditures for this survey were \$97,845.32. Kamloops Geological Services Ltd. had a 3 person crew on the property based out of Inzana Lake Lodge and all contractors and survey crews utilized these accommodations.

10.0 RESULTS AND DISCUSSION

The results from the I.P. and ground magnetometer survey are presented in the appended report by Scott Geophysics.

The 2007 I.P. and Magnetometer survey revealed some interesting anomalous conditions on the two grids surveyed.

The southern most grid "A" surveys revealed a strong magnetic anomaly up to 59,000 gammas centrally located and extending to the north and off the grid, possibly related to an underlying monzodiorite to diorite stock, although little to no outcrop makes this a speculative interpretation.

A moderate to strong east – west trending I.P. anomaly up to 43.8 mv/v occurs in the south ¼ of the grid area and this anomaly is interpreted to be the result of pyritic hornfels within siltstone metasediments adjacent to the postulated intrusive to the north. Resistivity is rather uniform.

The northern grid B surveys revealed a flat magnetic signature coupled with several moderate to strong I.P. anomalies (up to 49.0 mV/V) on Line 11600E. The southern portion of this strong I.P. anomaly is also noteworthy as it is also a moderately strong resistivity anomaly (up to 1017 ohm-m). This could be due to a sulphide enriched silicified zone in metasediments or metavolcanics but this interpretation requires further field geological study. Limited line coverage on this grid resulted in 2 of the 3 anomalies discovered being open and extending off the gridded area.

11.0 CONCLUSIONS

The 2007 geophysical surveys performed by Scott Geophysics Ltd. on the Fran Property has been highly successful and more than met the original objectives.

A strong I.P. anomaly on the north or B grid warrants additional geophysical investigation as well as prospecting follow up on the ground plus soil geochemical investigations.

A moderate I.P anomaly on the southern or A grid is of lesser interest as it is likely the result of pyritic metasediments adjacent to a postulated dioritic intrusive. Geological mapping and soil sampling should be completed however to further evaluate this anomaly.

12.0 STATEMENT OF COSTS

2007 Geophysical Survey during the period July 21 – August 19, 2007

Scott Geophysics Ltd. Contract	\$57,145.32
Kamloops Geological Services Ltd. personnel	
assisting the survey -61 person days @ 200 / day	12,200.00
M. McInnes, geologist on site management	
29 days @ \$300 / day	8,700.00
Truck Rental 1 month	1,500.00
Communications (Sat phone)	300.00
Accommodation and meals 5 x 29 days x \$100 / day	14,500.00
Fuel and misc.	500.00
Report Preparation	3,000.00
TOTAL EXPENSE	<u>\$97,845.32</u>

Dated this 15th day of February, 2008

J.W. Murton P. Eng.

13.0 REFERENCES

- Bailey, D.G. (1990): A Geological Examination of Tas Prospect, Omineca Mining Division, BC. Assessment Report.
- Mowat, U. (2000): Compilation and Sampling on the Fran Claims, Omineca Mining Division. Assessment Report # 26,282.
- Nelson, J. L., Bellefontaine, K.A., Green, K.C. and MacLean, M. (1991a): Regional Geological Mapping near the Mount Milligan Copper-Gold Deposit (93K/16, 93N/1) in Geological Fieldwork 1990, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1991-1.
- Nelson, J. L., Bellefontaine, K.A., Green, K.C. and MacLean, M. (1991b): Geological and Mineral Potential of the Wittsichica Creek and Tasseron Creek Map-areas (93N/1, 93K/16): B.C. Ministry of Energy, Miners and Petroleum Resources, Paper 1992-1.
- Nelson, J. L., Bellefontaine, K.A., Green, K.C. and MacLean, M. (1991b): Regional Geological Mapping in the Nation Lakes Area (93N/2E, &e); *in* Geological Fieldwork 1991, Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1992-1.
- Nelson, J. L., Bellefontaine, K.A., (1996): The Geology and Mineral Deposits of North-Central Quesnellia; Tezzeron Lake to Discovery Creek, Central British Columbia. B.C. Ministry of Employment and Investment, Energy and Minerals Division, Geological Survey Branch, Bulletin 99.
- Warner, L. M., Kay, B.G. (2002): Assessment Report on Diamond Drilling for the Fran Property, Omineca Mining Division, B.C. for Navasota Resources.
- Warner, L. M., Kay, B.G. (2003): Assessment Report on Diamond Drilling for the Fran Property, Omineca Mining Division, B.C.
- Wells, R.C. (1999): Geological-Geochemical Assessment Report for the Fran Property, Omineca Mining Division, B.C. for Placer Dome North America Ltd.
- Wells, R.C. (2002): Petrographic, Lithogeochemical and Interpretative Report on drill core samples taken from the Bullion Alley Zone, Fran Property, Omineca Mining Division, B.C.
- Wells, R.C. (2003): Petrographic, Geochemical and Interpretative Report on the Geological Setting of Gold Mineralization on the West Zone Area, Tas Property, Omineca Mining Division, B.C.
- Wells, R.C. (2004 a): Report on Exploration on the Fran Property, Omineca Mining Division for Yankee Hat Industries Corp. NI 43-101 Report. Effective Date: 31 March, 2004.
- Wells, R.C. (2004 b): Addendum to NI 43-101 Report on the Fran Property. Omineca Mining Division. Effective Date: 31 March, 2004.
- Wells, R.C. (2005): Geological, Geochemical and Geophysical Report, 2004 Exploration Program for the Fran Property. Assessment Report for Yankee Hat Minerals Ltd.
- Wells, R.C. (2006): Geochemical Report (Stream, Sediment and Topographic Base Maps) on the Fran Property. Assessment Report for Yankee Hat Minerals Ltd.

14.0 CERTIFICATION OF QUALIFIED PERSONS

I, James Wayne Murton of 1567 McNaughton Road, Kelowna B.C., V1Z 2S2, President of J.W. Murton & Associates, do hereby certify that:

I am a graduate of the University of Manitoba in 1961 with a BSc. in Geology.

I am a member of the Association of Professional Engineers and Geoscientists of the Province of B.C., registered in 1972, No. 8324.

I have been a practicing Engineer and Geologist since 1961 in Ontario, Manitoba, Saskatchewan, British Columbia, Yukon, Southwestern U.S.A., Alaska, Ghana, Venezuela, Ecuador, Brazil and Peru.

I have been a Manager for construction, development and production on small underground mines and mills in Alaska, Arizona, British Columbia and Ecuador.

I have read the definition of "qualified person" set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education and relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101 and confirm that this Assessment Report has been prepared in compliance with Form 43-101F1.

I am independent of Yankee Hat Minerals Ltd. And have no interest either direct or indirect in the Fran property.

As of the date of this certification, to the best of the writer's knowledge, information and belief, this Assessment Report contains all scientific and technical information that is required to be disclosed to make the report not misleading.

Dated this 15th day of February, 2008

J.W. Murton P. Eng. J.W. Murton and Associates

Certificate of Alan Scott, Geophysicist included in Appended Report by Alan Scott.

APPENDIX A

LOGISTICAL REPORT

INDUCED POLARIZATION AND MAGNETOMETER SURVEYS

FRAN PROPERTY, INZANA LAKE AREA, B.C.

on behalf of

YANKEE HAT MINERALS LTD.

Suite 1610 – 700 West Pender Street Vancouver, B.C. V6C 1G8

Surveys performed: July 21 to August 19, 2007

by

Alan Scott, Geophysicist SCOTT GEOPHYSICS LTD. 4013 West 14th Avenue Vancouver, B.C. V6R 2X3

August 28, 2007

TABLE OF CONTENTS

1	Introduction	page 1
2	Survey coverage and procedures	1
3.	Personnel	1
4.	Instrumentation	1

Appendix

Statement of Qualifications	rear of report

Accompanying Maps

map pocket

Grid A	-	-
Chargeability/Resistivity Pseudo sections with Magnetome	ter Profiles	
Lines 13200E, 13600E, 14000E, 14400E, and 14800E	(1:5000 scale)	1
Lines 15200E, 15600E, 16000E, and 16400E	(1:5000 scale)	1
Lines 89900N and 19100N	(1:5000 scale)	1
Chargeability contour plan – Triangular Filtered Values	(1:5000 scale)	2
Resistivity contour plan – Triangular Filtered Values	(1:5000 scale)	2
Magnetometer profiles	(1:5000 scale)	3
Magnetometer data posting	(1:5000 scale)	3
Grid B		
Chargeability/Resistivity Pseudo sections with Magnetome	ter Profiles	
Lines 11200E, 11600E, and 12000E	(1:2500 scale)	4
Lines 96700N	(1:2500 scale)	4
Chargeability contour plan – Triangular Filtered Values	(1:5000 scale)	5
Resistivity contour plan – Triangular Filtered Values	(1:5000 scale)	5
Magnetometer profiles	(1:5000 scale)	6
Magnetometer data posting	(1:5000 scale)	6
Accompanying Data Files		

One (1) compact disk with all survey data and maps 7

1. INTRODUCTION

Induced polarization (IP) and magnetometer surveys were performed at the Fran Property, Inzana Lake Area, B.C., within the period July 21 to August 19, 2007.

The surveys were performed by Scott Geophysics Ltd. on behalf of Yankee Hat Minerals Ltd. This report describes the instrumentation and procedures, and presents the results of the surveys.

2. SURVEY COVERAGE AND PROCEDURES

A total of 47.2 km of IP and 48.4 km of magnetometer survey were performed at the Fran Property. The pole dipole array was used for the IP survey. The FranA grid was surveyed with an "a" spacing of 50 metres and "n" separations of 1 to 5. The FranB Grid was surveyed with an "a" spacing of 25 metres and "n" separations of 1 to 5. The on line current electrode location is given in the title block of the pseudo sections.

The chargeability and resistivity results are presented on the accompanying pseudo sections and contour plan maps. The magnetometer survey results are presented as profiles at the top of the pseudo sections, and as data posting and stacked profile plans.

3. PERSONNEL

Esteban Zaragoza was the crew chief on the survey on behalf of Scott Geophysics Ltd. Marty McInnes was the representative on site on behalf of Yankee Hat Minerals Ltd.

4. INSTRUMENTATION

A Scintrex IPR12 receiver and GDD TxII transmitter were used for the IP survey. Readings were taken in the time domain using a 2 second on/2 second off alternating square wave. The chargeability values plotted on the accompanying pseudo sections and plan maps is for the interval 690 to 1050 msecs after shutoff. A Scintrex ENVI was used for the magnetometer survey. All data was corrected for diurnal drift with reference to a Scintrex ENVI base station cycling at 10 second intervals.

Respectfully Submitted,

Alan Scott, Geophysicist

Statement of Qualifications

for

Alan Scott, Geophysicist

of

4013 West 14th Avenue Vancouver, B.C. V6R 2X3

I hereby certify the following statements regarding my qualifications and involvement in the program of work conducted on behalf of Yankee Hat Minerals Ltd., at the Fran Property, Inzana Lake Area, B.C., and as presented in this report of August 28, 2007.

The work was performed by individuals qualified for its performance.

I have no material interest in the property under consideration in this report.

I graduated from the University of British Columbia with a Bachelor of Science degree (Geophysics) in 1970 and with a Master of Business Administration in 1982.

I am a member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

I have been practicing my profession as a Geophysicist in the field of Mineral Exploration since 1970.

Respectfully submitted,

Alan Scott, P.Geo.

12500E

12000E

SURVEY SPECIFICATIONS survey performed August/07 survey magnetometer Scintrex ENVI base magnetometer Scintrex ENVI type proton total field measurement nanoTeslas units diurnal corrections base station data interval 12.5 metres 0 100 200 300 400 METERS YANKEE HAT MINERALS LTD. FRAN PROPERTY INZANA LAKE AREA, B.C. Magnetometer Survey Data Posting DATE: Aug/07 DRAWN BY: ars SCOTT GEOPHYSICS LTD.

			MAGNETOMETER (nT)		5750	0	\		• • •			-+ +	+ .	+ + +	+ +		+-+-	+	+ + + +			-+ +						-+-1-	+ + + +		+		+ + +			
HAT MINERALS LTD.	<pre>CY, INZANA LAKE AREA, B.C. INE: 96700N N SURVEY Pole-Dipole Array N SURVEY Pole-Dipole Array N SURVEY Pole-Dipole Array N SURVEY Pole-Dipole Array N = 690-1050 Pulse Rate: 2 sec of potential electrodes (array heading E) y = 690-1050 msec after shutoff Scintrex ENVI Total Field Magnetometers</pre>	50 100 150 M E T E R S	CHARCEABILITY (mv/v)	a 25 25 25 25 25 25	56500 n 1 – 2 – 3 – 4 – 5 –	2.5 1	B 1. 2.1 .6 3. 3.6 4.	Hg22001 1 6 2.0 2.4 3.4 4.1 7	2.2 2.9 3.3 3.7 4.4	1.7 2.5 2 3.3 4.0 4 5.0	1.6 3.5 4.8	2.1 .8 2. 3.3 .7 4.1 4.8	2.1 3.5 5.8	1.1 4.6 7.5	- 10825E 5.9 5.9 8.2 8.9	3.2 6.3 7.6 7.9 8.4	4.3 6.6 8.1 8.1	4.8 6.7 7.1 7.3 7.7	4.3 5.9 6.8 7.1 7.2	4.0 2. 4.8 6.2 6. 7.5 8.1 8.		6 3.8 5.1 7.7 8 9.7	8 4.5 5.9 4 7.6 7.7 7 10.7	111125E 11125E 1.1 1.1 1.1 1.1 1.1 1.1	Bogeliti 6.6 5.7 5.7	4 6.4 5.4 5.5	4.8 6 5.3 6.0 5 5.9 5.6 5	922211 - - - - - - - - - - - - - - - - -		1.6 2.8 2.8 3.8 4.9 5.4 6.7	1.5 2 3.7 3.7 4 5.8 7.7	U09991 1.6 1. 3.3 2.2 5. 7.3 10	5 <u>1.9</u> 4.3 9.5 <u>1</u> 11400 11400	5.3 9.7 11.5 12.9 14.8 16.9	2. 5 7. 10 12	ontours .5 .5 0 2.5 5
YANKEE	FRAN PROPER L INDUCED POLARIZATI SCOTT GEOPHYSICS Aug/07 current electrode wes Mx chargeabili Mx chargeabili	0 25	APPARENT RESISTIVITY (ohm-m)	a 25 25 25 25 25	n 1 – 2 – 3 – 4 – 5 –	цу 1659 66 1166 11	97 155 1959 180	4 533 109 1546 51 787	30000 538 761 467 663 762	296 375 4 497 586 6 642	373 62 584 04 59 568	288 75 525 55 781	250 0 369 580 7 744 927	244 5 45 564 745	220 1 317 536 5 792 858	219 399 518 555	High High High High High High High High	246 304 383 373 456	259 240 314 460 518	160 4 296 378 36 425 497 5	407 407 54 47 57 39	417 417 460 542	4 253 291 4 390 5T2 2 493	385 3 425 393 3 276	295 365 25 273 392 31 262	192 52 278 300 0 308 316	253 1 275 306 27 273 275 29	972211 85 187 205 57 224 243 54 284	11220 196 188 220 243 336	214 198 28 291 310 28 305	245 28 235 292 312	174 20 269 20 240 273 35	309 301 309 309 309 309	236 294 347 365 416 477 LIN	Cc 30 50 70 10 15 E: 96	ontours 00 00 00 00 500 500

| YANKEE HAT MINERALS LTD.
Fran property, inzana lake area, b.c. | LINE: 11200E
INDUCED POLARIZATION SURVEY Pole-Dipole Array
SCOTT GEOPHYSICS LTD. SCINTREX IPR12
Aug/07 Pulse Rate: 2 sec
current electrode south of potential electrodes (array heading N)
Mx chargeability = 690-1050 msec after shutoff
Magnetometer survey: Scintrex ENVI Total Field Magnetometers | 0 25 50 100 150
M E T E R S | APPARENT RESISTIVITY
(mu/u)
(mu/u)
(mu/u)
(mu/u)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n | 57500
57000
56500
1 - 1.0
2 - 0.3
3 - 4
5 - 0
1 - 264
2 - 231
3 - 4
1 - 264
2 - 231
3 - 4
5 - 0 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Ng22 $\frac{1.6}{524}$ $\frac{1.6}{372}$ $\frac{1}{357}$ $\frac{1}{357}$ $\frac{1}{357}$ $\frac{1}{357}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
Nocess
No
No
No
No
No
No
No
No
No
No
No
No
No | NSC 666
2.4 3.
2.8 3.8
3.9 4.
4.5 4.3
4.5 4.3
4.5 4.3
4.5 4.3
4.5 4.3
648 92 | No $N_{500} = 0.00000000000000000000000000000000$ | $N_{000} = 1000 \text{ M} \text{M} \text{M} \text{M} \text{M} \text{M} \text{M} M$ | $ \begin{array}{c} $ | 2.8 2.3
6 3.2
1.2 3.8
9 4.1
3.7 4.2
1.3.7 4.2
1.3.7 4.2
1.3.7 4.2
1.445 625
1.4 638
683 417 | NSC 1996
2.2
3.0
2.5
3.1
3.5
3.5
3.9
4.7
5
NSC 196
4.7
485
356
3
419
458
515
71 | Nog2796
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog296
Nog29 | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\
& & & \\ & & & \\$ | NSCE
NSCE
06
3.7
3.7
3.8
6.8
7.4
9.9
11.0
NSCE
06
186
153
38
375
239
35
341
289
439 | NOC 10.3 No | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | NOC 4.3
4.3
4.5
8.6
9.5
6
10.9
11.1
11.5
NOC 445
8.6
9.5
6
10.9
11.1
11.5
11.5
206
217
5
264
283
275 | NS NOO
10:2
11.3
5
10:2
11.3
5
10:2
11.3
5
10:2
11.3
5
10:2
11.3
5
10:2
11.3
5
10:2
11.3
5
10:2
11.3
5
10:2
10:2
11.3
5
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
10:2
1 | NSCC996
4
4
6.5
8.3
9.7
8.3
9.7
8.3
9.7
9.4
NSCC996
9
6
4
4
5
4
4
5
7
9.4
NSCC996
9
6
9
7
9.4
NSCC996
9
6
9
7
9.4
NSCC996
9
6
9
7
9
9
6
9
8.3
9
7
9.4
NSCC996
9
6
9
7
9
8.3
9
7
9
9
6
9
8.3
9
7
9
9
6
9
8.3
9
7
9
9
8.3
9
7
9
9
8
9
8
9
8
9
8
9
8
9
8
9
8
9
8
9 | $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ &
\\ & \\ & \\ & \\ & $ | No Construction of the second | $\begin{array}{c} N_{1} \\ N_{2} \\ N_{2} \\ N_{2} \\ N_{2} \\ N_{2} \\ N_{2} \\ N_{3} \\ N_{4} \\ N_{5} \\$ | NGC 266
3.0 2.5
4.2 3
5.6 4.9
.9 6.3 6
7.5 7.4
NGC 266
246 221 1
10 224 24
226 263
25 266 33
262 336 | $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$ | NGC 000
2.0 2.7
3.2 2.9
4.3 4.1
5.4 5.7
6.3 7.1
NGC 000
604 351 | No No 1 1 2.8 2.9 3.3 4.0 4.3 5.2 6.4 6.2 8.0 8.0 290 308 272 280 283 286 313 245 338 268
 | NGC 669
3.0 2.6
3.8 4.2
5.0 6.2
7.8 10.2
9.6 11.9
NGC 669
6.2
7.8 10.2
9.6 11.9
NGC 669
6.2
7.8 10.2
9.6 575
310 233 296
575
511 584 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $N_{27} = 00000000000000000000000000000000000$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | NGC 126
2.9 2.7
4.6 4.5
6.7 6.9
9.7 10.2
3.0 12.6
NGC 126
NGC | NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE
NOCCLE | Neg2222
3.0 3.4
4.8 5.1
6.7 6.8
9.1 9.8
11.7 12.1
Neg2222
6
455 650
775 740
780 779
743 718
732 679
 | N922226
3.6
4.8
6.5
6.9
8.0
8.6
9.9
8.7
11.7
10.6
N99
8.7
11.7
10.6
N99
8.7
11.7
10.6
N0002266
6.9
9.9
8.7
11.7
10.6
N0002266
6.9
9.9
8.7
11.7
10.6
N0002266
6.9
9.9
8.7
11.7
10.6
N0002266
6.9
9.9
8.7
11.7
10.6
N0002266
6.9
9.9
8.7
11.7
10.6
N0002266
6.9
9.9
8.7
11.7
10.6
N0002266
6.9
9.9
8.7
11.7
10.6
N0002266
6.9
9.9
8.7
11.7
10.6
N0002266
6.9
9.9
8.7
11.7
10.6
N000266
6.9
9.9
8.7
11.7
10.6
N000266
7.13
7.13
7.13
7.13
7.142
7.13
7.13
7.142
7.14
7.15
7.14
7.15
7.15
7.14
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7.15
7 | NGCEL6
4.4 3.5
4.4 3.5
$\frac{4.4}{5}$ 8.1 9
$\frac{10.1}{9.3}$ $\frac{10.1}{9.3}$ 10 | $ \begin{array}{c} $ | Ng274 L_6
2.3
2.9
2.3
2.9
2.3
2.9
2.3
6.8
Ng274 L_6
5.2
6.8
Ng274 L_6
5.2
5.2
5.2
5.2
5.2
5.2
5.2
5.2 | NG24726
2.2
8
72
10.4
13.9
10.4
13.9
10.4
13.9
10.4
13.9
10.4
13.9
10.4
13.9
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
10.4
13.9
12
13.9
12
13.9
12
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8
13.8 | $\begin{array}{c} X \\ X \\ Y \\$ | N92926 - 3.5 6. 9.3 9. 13.0 N92926 - 575 3.6 61 13.0
13.0 |
|---|--|--------------------------------|--|--|--|---|--|---|--|--|---
--|--|---|--|---|--|---|--
--|---|---|---|--|--
--|---|--|---|---
--	--	--	---
--	--	--	
--	--	---	---
YANKEE HAT MINERALS LTD. Fran property, inzana lake area, b.c.	LINE: 11600E INDUCED POLARIZATION SURVEY Pole-Dipole Array SCOTT GEOPHYSICS LTD. SCINTREX IPR12 Aug/07 Pulse Rate: 2 sec Augnotometer survey: Scintrex ENVI Total Field Magnetometers	0 25 50 100 150 M E T E R S	APPARENT RESISTIVITY (ohm-m) (m/VV) (m/VV) (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n1) (n2) (
 | $ \begin{array}{c} $ | N000096
 | No 15
No 15
No 16.8
No 16.8 | NO 19.4 18.0
13.4 18.0
19.4 15.
18.9 13.8
12.9 32.3
NO 19.6
919 1315
825 104
771 648
613 52
626 520 | No 1
17,8 27.1
17,8 27.1
19.5 19.3
1051 1174
1051 1174
1051 1174
1051 1174
1051 1174
1051 1174
1051 1174 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC226
NGC276
NGC276
NGC276
NGC276
NGC276
NGC276
NGC277
NGC276
NGC277
NGC276
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277
NGC277 | NOCC 200
NOCC 2 | NG C C C C C C C C C C C C C C C C C C C | NOSCON NAME AND A CONTRACT OF CONTRACT ON | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4.9
4.9
10.4
4.9
10.4
4.9
10.4
7.
9.4
11.0
11.1
11.0
11.1
11.0
10.4
2.56
2.35
340
2
399
461
408 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 | Ng Ng Sgg 6
4 3.2
5.6 5.1
10 8.1
10.2 12.9
3.2 14.3
Ng Sgg 6
-
11.2 12.9
3.2 14.3
Ng Sgg 6
-
11.2 12.9
3.2 14.3
Ng Sgg 6
-
11.2 12.9
3.2 14.3
Ng Sgg 6
-
11.3 1
10.2 12.9
5.6 5.1
10.2 12.9
5.7
5.7
5.7
5.7
5.7
5.7
5.7
5.7
5.7
5.7 | Ng N000996
2.8 3.8
7.5 10.1
9.9 14.4
16.4 10.1
18.0 11.9
201 381
432 558
588 543
655 765
495 3117 | NG CON CONTRACT OF CONTRACT ON | NGC 96
5.0 20.8
26.0 3
30.3 36.9 3
38.0 37.5
NGC 96
217 217
2340 325
340 325
340 22
282 506 | $\begin{array}{c} & N_{92} \\ & N_{92} \\ & 23.6 \\ & 23.6 \\ & 24.3 \\ \hline \\ 2.8 \\ & 35.9 \\ & 44.3 \\ \hline \\ 35.9 \\ & 44.3 \\ \hline \\ 45.0 \\ & 45.5 \\ \hline \\ & 45.0 \\ & 45.5 \\ \hline \\ & 142 \\ & 358 \\ \hline \\ & 358 \\ & 316 \\ \hline \\ & 412 \\ & 435 \\ \hline \\ & 93 \\ & 440 \\ & 518 \\ \hline \\ & 220 \\ \hline \end{array}$ | $\begin{array}{c} & & & \\
& & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$ | $\begin{array}{c} X_{12} \\ X_{12$ | $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$ | $\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$ | NGC 60
20.1 14.6 3
20.1 29.9 2
44.0 29.9 2
NO 000
6 6
1 7
20.1 14.6 3
20.1 14.6 3
20.1 14.6 3
20.1 14.6 3
20.1 14.6 3
20.1 14.6 3
20.1 14.6 12
20.1 14 | Ng N | $\begin{array}{c} N_{2} \\ N_{2} \\$ | $N_{32} = 2.6$ $M_{32} = 4.4$ $R_{33} = 4.4$ $R_{34} = 4.4$ | Ng Nooze
2.2 2.0
3.0 5.0
5.7 6.7
9.0 8.8
12.0 11.0
Ng Lize
426 392
426 392
1328 486
1328 486
1328 496
 | NG SCZ26
4.2 3.5
5.5 4.6
7.1 6.4
7.9 6.9
9.8 8.3
NG SCZ26
9.8 8 | $N_{52} = \begin{bmatrix} 1 \\ 2.8 \\ 3.1 \\ 3.1 \\ 2.8 \\ 3.1 \\ 3.9 \\ 6.4 \\ 5.6 \\ 8.1 \\ 6.0 \\ N_{50} = \begin{bmatrix} 2.8 \\ 2.1 \\ 3.9 \\ 6.4 \\ 5.6 \\ 8.1 \\ 6.0 \\ N_{50} = \begin{bmatrix} 2.8 \\ 3.1 \\ 2.3$ | NGCELG
2.0
3.2
3.7
4.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $N_{92}^{N} + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $ | $\begin{array}{c} N_{9} \\ 2.3 \\ 2.3 \\ 2.6 \\ 1 \\ 4.2 \\ 0 \\ 11.1 \\ 12.9 \\ 11.1 \\ 12.9 \\ 11.1 \\ 12.9 \\ 10 \\ 11.1 \\ 12.9 \\ 10 \\ 11.1 \\ 12.9 \\ 10 \\ 11.1 \\ 12.9 \\ 10 \\ 11.1 \\ 12.9 \\ 10 \\ 11.1 \\ 12.9 \\ 10 \\ 11.1 \\ 12.9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | NgLgL6
2.8
5
8.7
11
14.4
NgLgL6
152
2
246
251
 |
| YANKEE HAT MINERALS LTD.
Fran property, inzana lake area, b.c. | LINE: 12000E
INDUCED POLARIZATION SURVEY POIe-Dipole Array
SCOTT GEOPHYSICS LTD. SCINTREX IPR12
Aug/07 Pulse Rate: 2 sec
current electrode south of potential electrodes (array heading N)
Mx chargeability = 690–1050 msec after shutoff
Magnetometer survey: Scintrex ENVI Total Field Magnetometers | 0 25 50 100 150
M E T E R S | APPARENT RESISTIVITY
(ohm-m)
(a)
(a)
(a)
(a)
(a)
(b)
(a)
(a)
(b)
(a)
(b)
(b)
(b)
(b)
(c)
(c)
(c)
(c)
(c)
(c)
(c)
(c | $ \begin{array}{c} 57500 \\ 577000 \\ 557500 \\ \\ 56500 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | Z4.2
24.2
21.2
21.2
28.3
25.5
21.4
23.0
445
39.7
518
550
456
550
458
550
458
550
550
550
550
550
550
550
5 | Z. Z | X: XO
25.9 18.0 12
20.0 17.4
21.8 19.0 12
20.0 17.4
21.8 19.0 12
18.5 20.0 19
X: XO
25.9 20.0 19
18.5 20.0 19
X: XO
25.9 18.9 12
18.9 18.9 12
18.9 18.9 12
18.9 18.9 12
18.9 18.9 12
18.5 20.0 19
X: XO
25.9 6
12.1 19.0 12
18.9 18.9 12
18.9 18.9 18.9 12
18.5 20.0 19
18.5 20.0 19
12.1 18.9 18.9 12
18.5 20.0 19
12.1 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | NS NO 0896
7.0 5
10.4 9.4
11.5 10
13.3 $12.313.9$ 1213.3 $12.313.9$ 1213.3 13.9 1213.42 3620 626 4789 637 5539 637 5 | NC NO CON CONCENTRAL OF CONCEN | No No $\frac{1}{2}$ N | $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $ | 4.2 5.
7.5 8.8
10.9 13
2.4 18.3
16.4 19
2.4 18.3
1.5 8.8
1.5 8
1.5 8 | No NS | No 10^{-1} 5.5^{-1} 9.2^{-1} 13.6^{-1} 14.3^{-1} 15.2^{-1} 15.2^{-1} 13.6^{-1} 14.3^{-1} 15.2^{-1} $15.2^$ | No 15.1 5.9
5.1 5.9
7.0 8.1
11.8 10.2
14.1 13.
15.9 15.8
No 196
-
254 100
170 252
270 8
242 212 | $N_{0} = \frac{1}{96}$ $3.6 \qquad 3.1$ $3.6 \qquad 3.1$ $3.6 \qquad 5.7$ $11.4 \qquad 8.4$ $14.9 \qquad 15.4$ $N_{0} = \frac{1}{96}$ $148 \qquad 106$ $6 \qquad 171$ $148 \qquad 106$ $6 \qquad 171$ 244 195 $212 \qquad 181$ | No $1000000000000000000000000000000000000$ | NG NG GE
 | $ \begin{array}{c} $ | Z ₂ ,1 2,3
9 4,5
8,3 7,8
3,8 11.6
16,1 15,0
X ₂
249 299
278 337 | No $12, 0$ $11, 8$ $14, 2$
5, 2, 0 $11, 8$ $14, 211, 8$ $14, 211, 8$ $14, 22, 0$ $15, 5$ $1No 12, 5 1No 12, 5 1No 12, 5 1No 12, 5 111, 8$ $14, 2241$ 265315 3368 3717 423 4 | NO NG NG 744 11.9
2.6 4.0 7.4 11.9
0.8 14.3 17.2 21.4
9.6 22.5 NO NG NG 7496 -
222 235 263 215
314 324 381 | Northogo Nor | NS NO
10.5 7,
13.7 11.4
16.3 15.4
17.3 15
NS NO
10.5 7,
13.7 11.4
16.3 15.4
17.3 15
NS NO
17.3 15
NS NO
17.3 15
17.3 15
17.5 17
17.5 17
17. | NSC 256
NSC | XS NO
S.0 4.3
5.4 5.0
7.5 7.0
9.1 8.4
12.2 10.6
XS NO
9.1 8.4
13.4
13.4
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
10.6
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5 | $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
 | $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $ | NGC 206
2.8 4.4
8 3.0 5
6.2 5.4
.5 9.2 9
11.1 12.9
NGC 206
11.1 12.9
NGC 206
11.1 12.9
NGC 206
11.1 12.9
NGC 206
11.1 12.9 | NS NO 4.2 4.6 5.3 5.3 7.1 8.1 10.8 11. 13.6 13.6 NS 0896 316 339 342 354 394 34 393 393 | 4.5 4.0
6.2 7.8
9.2 10.8
4 13.5 13.4
15.1 15.9 | XC XC 4.6 3.5 7.3 7.4 11.0 10.7 13.7 14.6 16.0 17.4 NS 000 96 96 97 13.7 14.6 3.5 7.3 7.4 11.0 10.7 13.7 14.6 16.0 17.4 NS 000 96 69 97 524 529 533
 | NSC NO
4.0 6.0
8.3 9.0
1.2 11.1
14.3 12.2
6.6 14.9
NSC NSC NSC NSC NSC NSC NSC NSC NSC NSC | $\begin{array}{c} N_{2} \\ R_{2} \\ R_{2} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \\$ | Ng N | NC NO
286 457 5
3.4 4.6 4
4.7 4.1
6.0 5.0 4
6.5 6.1
8.3 8.1
296 270 2
296 270 2
298 235 2 | Ng Ng
126
4.5 3.0
3.7 3.8
4.6 4.6
6.0 5.6
7.8 7.6
Ng
1293 269
233 266
241 198
263 187 | No 1.6
2.8
2.8
2.8
2.7
2.6
4.3
4.3
5.7
5.7
7.6
7.9
No
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1 | Ng Ng 222
4.6 4.5
6.1 6.1
7.4 7.7
Ng Ng 222
4.6 4.5
6.1 6.1
7.4 7.7
Ng 222
4.6 4.5
188 177
184 160
240 199
248 317
283 328 | NS NO
2.7 2.9
3.1 3.1
4.8 4.7
6.4 6.5
7.7 8.1
NS NO
2224 235
263 269
308 261
355 290 | $N_{3} = \frac{1}{2.0} + \frac{1}{3.5} + \frac{1}{3.5$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Ng Ng27426
2.6 2.3
3.4 3
4.8 4.6
6.1 ¢
7.2 8.3
Ng27426
242 199
2 269 5
270 377
5 385 5
415 372 | $\begin{array}{c} N_{2} \\ N_{2} \\ 2.2 \\ 2.3 \\ 4 \\ 4.0 \\ 5.5 \\ 5.5 \\ 8 \\ 8 \\ 9.1 \\ 9.3 \\ 9.1 \\
9.1 \\ 9$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

SURVEY SPECIFICATIONS survey performed Aug/07 receiver Scintrex IPR12 transmitter Scintrex IPC7 __ pulse time 2 seconds Mx receive window 690-1050 msecs pole dipole array a spacing 50 metres n separations 1, 2, 3, 4, 5 Lines 132E to 164E: current electrode S of potentials Lines 899N and 991N: current electrode E of potentials Contoured value Filtered resistivity Filtered values n = 1 to 5 Log contour intervals: 50, 70, 100, 150, 200, 300, 500, 700, 1000, 1500, 2000, (ohm-m) Note: The filter applied to this data is the standard Fraser triangular filter whereby one value is selected at n=1, two values at n=2, three values at n=3, etc. The plotted value is the average of the $\sum_{n=1}^{N}$ average values of the n separations and is plotted at the n=1 data point. 200 300 400 100 METERS YANKEE HAT MINERALS LTD. GRID A, FRAN PROPERTY INZANA LAKE AREA, B.C. Resistivity Contour Plan Triangular Filtered Values First to Fifth Separations DRAWN BY: ars DATE: August/07 SCOTT GEOPHYSICS LTD.

RVEY SPECIFICATIONS rvey performed Aug/07 ceiver Scintrex IPR12 ansmitter Scintrex IPC7 lse time 2 seconds receive window 690-1050 msecs ray pole dipole spacing 50 metres separations 1,2,3,4,5 nes 132E to 164E: rrent electrode S of potentials nes 899N and 991N: rrent electrode E of potentials ntoured value Filtered chargeability ltered values n = 1 to 5 ntour intervals: 2.5, 5, 7.5, 10, 12.5, 15, 17.5, , 25, 30, 35, 40, 50, 60 (mV/Volt) te: The filter applied to this data the standard Fraser triangular filter ereby one value is selected at n=1, two lues at n=2, three values at n=3, etc. e plotted value is the average of the erage values of the n separations and
0 100 200 300 400 METERS
ANKEE HAT MINERALS LTD.
RID A, FRAN PROPERTY INZANA LAKE AREA, B.C. Chargeability Contour Plan Triangular Filtered Values First to Fifth Separations AWN BY: ars DATE: August/07 COTT GEOPHYSICS LTD.

SURVEY SPECIFICATIONS survey performed Aug/07 receiver Scintrex IPR12 transmitter Scintrex IPC7 __ pulse time 2 seconds Mx receive window 690-1050 msecs pole dipole a spacing 50 metres n separations 1, 2, 3, 4, 5 Lines 132E to 164E: current electrode S of potentials Lines 899N and 991N: current electrode E of potentials Contoured value Filtered chargeability Filtered values n = 1 to 5 Contour intervals: 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 25, 30, 35, 40, 50, 60 (mV/Volt) Note: The filter applied to this data is the standard Fraser triangular filter ∠ whereby one value is selected at n=1, two values at n=2, three values at n=3, etc. The plotted value is the average of the $\sum_{n=1}^{N}$ average values of the n separations and is plotted at the n=1 data point. 100 200 300 400 METERS YANKEE HAT MINERALS LTD. GRID A, FRAN PROPERTY INZANA LAKE AREA, B.C. Chargeability Contour Plan Triangular Filtered Values First to Fifth Separations DRAWN BY: ars DATE: August/07 SCOTT GEOPHYSICS LTD.

0 100 200 300 400

12	1 2500E	13000E	13500E
93000N		+	
92500N		+	
92000N		+	
91500N			
Z 00 5 L 910			
90500N	+	+	
N00006		+	
Z		L 89900N	
8950(+	L 13200E
12	2500E	13000E	13500E I

sistivit	y (ohm-m
	7000
	5000
	3000
	2000
_	1500
_	1000
	700
	500
	300
	200
	150
-	100
	70
	50
	30
	20
	15
_	10

				6000	0 т			
	MAGNETOMETER (nT)			5700	0	→++		
300			2	5600	- 13250E	- 13300E	- 13350E	- 13400E
		ŭ						
	≽	50	1	-	12.2	8.2	5.1	
× 500	(V)	50	2	_		12.5	10.0	8.6
ш	HARGE (mV	50	4	_		10.1	182	47 3
	ç	50	5	_			20.7	
50 M E					ш	ш	ш	ĿIJ
					3250	3300	3350	3400
<u>о</u> Ш		a	n		Ļ			
	VITY	50	1	_	224	796	/ 10 4 0) 1
	n)	50	2	-		543 (1230	606
	λπ−ι hm−i	50	3	-		796	703	ς Έ
	PAREN (o	50	4	-			437	596
	APF	50	5	-			379	-

LINE: 89900N

461 435 375 543 (1230 606 434 345 324 38

437 596 336 345 287 4

14.ø

379 500 304 371 314

++	-+-+-1	++	+ + + -	⊢≁ ⊦ ₊_			<u>+ + +</u>	++*	+++	+ + + -	+++	+++	• • • •	+ + +	+ + + •	┝╺┝╺┝	+ + +	+ + + +	_ ++	+ + + +	+ + +	• + •	+ + + +	-+++		+++	+ + + +	+++	+ + +	+ + +	+ + + -	-+ + +-	* * * *	_ 	+ + +	<u>+ + + +</u>	· · · · ·	+ + +
- 13600E	- 136505		- 13700E	- 13750E	- 13800E	- 13850E		- 13900E	- 13950E	- 14000E		- 14050E	- 14100E	- 14150E	- 14200E		- 14250E	- 14300E	- 14350E	- 14400E	- 14450E		- 14500E	- 14550E	- 14600E	- 14650E	- 14700E	- 14750E		- 14800E	- 14850E	- 14900E	- 14950E	- 15000E	L r	- 15050E	- 15100E	- 15150E
3. 9 6.	0 <u>4.6</u> 8	2.8 4 6.3	2.9 +.6 6.7	3.7 -5.1 -7.8 8 7	4.0 5.2 7.2	5.9	4.0 6.2 7.8	9.5	4.9 7.4 9.3	4 -7.59 11.0	.2	3.8 6 9.1	4.7 .5 8.8	- 5:0 6.5 - 7.7	6.7 7 9.7	.6 7.1 .8	5.5 8 9.0	6.6 3.4 9.6	6.0 8.1 9.9	5 8.8 10.	3 5 8.0 .9 12.4	5.6 8.1 9.9	5.3 	4.6 .8 9.5	4.2 6.7 8.3	4.3 6.6 8.5	6.9 8.4	7.0	4.6 6.9 8.2 8.6	<u>4.5</u> 6 8.1	4.8 .8 8.0	4.4 6.9 7.8	4. 5.9 7.	0 <u>2</u> 6.4 7 8	6.8 6.8	4.4 6. 9.0	-4.9 .4 6 	.3 .5.
- <u>10</u>	.1	10.8	10.4	10.5	11.	.7 1	1.6	12.4	11.7	11.0	1.9	12.1	12.1	11.4	<u>9.7</u> 1 11	3.0	10.6	11.2	12.2	<u>2</u> 11.	.9 1	3.2	12.3	12.3	11.9	10.	- 9.°	7	9.0	9.6	9.2	9.7	9.0	8 9	.3	9.8	9.2	8.
- 13600E	1 465.00		- 13700E	- 13750E	- 13800E	- 13850E		- 13900E	- 13950E	- 14000E		- 14050E	- 14100E	- 14150E	- 14200E		- 14250E	- 14300E	- 14350E	- 14400E	- 14450E		- 14500E	- 14550E	- 14600E	- 14650E	- 14700E	- 14750E		- 14800E	- 14850E	- 14900E	- 14950E	- 15000E		- 15050E	- 15100E	- 15150E
14 25 10 24	213 58 269	215 2 249 2 244	168 71 274 31 259	148 188 217 308 314	21 229 26 226 19	7 2 305 5 2 209 6 1	43 23 52 23(93	176 1 227 5 2 317	210 98 276 97 271	2. 304 247 247	36 197 60 256 59	227 1 180 263	224 71 18 86 230	276 248 328 235 240	352 352 326 28	31 256 41 318	230 209 281	01 282 60 283	408 324 380 295 301	528 528 57 394 39	50 3 325 75 3 641 88 6	388 322 337 554	269 37 450 450 45 325	238 403 50 483	235 315 368 446 469	211 299 353 422 479	21 281 35 412 42	4 2 	208 249 336 359 394	236 2 279 2 368	257 57 276 94 366	251 292 419 360 374	7 44 395 9 4 ⁻ 435 - 49	-7 1 403 0 4 476 1 5	74 213 90 484	306 ; 27 251 + 25 513	238 79 21 349 31) 4 297	22 33 29 18 41
-+-+		▶₽₩	++	┝┼╋╁	++++	_+ + +	+ + +	+ + +	+ + +	+++	+-+-+	<u>+ + +</u>	++++	+++	+++	+-+-+-	+++	+ + + •	-+++	*	<u>-++</u> +	+ + +	+ + +	• • • •	-+ + +-		 1	-+++	+ + +	+ + +	+ + + - +			- • • •	<u>+ + +</u>	<u>+++</u>	* • • •	+ + +
- 13600E		- 1.303UE	- 13700E	- 13750E	- 13800E	- 13850E		- 13900E	- 13950E	- 14000E		- 14050E	- 14100E	- 14150E	- 14200E		- 14250E	- 14300E	- 14350E	- 14400E	- 14450E		- 14500E	- 14550E	- 14600E	- 14650E	- 14700E	- 14750E		- 14800E	- 14850E	- 14900E	- 14950E	- 15000E		- 15050E	- 15100E	- 15150E
8. 5.9 (19	.3 +2.3	8.4 1]5.1	<u>9.6</u> 2.5 15.7	11.7 14.7 15.9	<u>10</u> 14.7 18	.4 1	0.3	4 1	/ 19.2 2.4 (17.8	21.8 3 1	0.1 21.) 9.6	17.5 0 (1 16.3	18.8 7.7 905	13. 16.0 16.	3 1. 17.7 3 19	1.9	9.4 3 1 14.8	7.3 0.0 12.1	- 7.4 10.4 18.	+ <u>8.</u> +3.1 4 17	.6 1 15.9	0.9	- 15.6 - 2 - 20 20.9	9 .9 3 22.4	6.7 15.1 17.6	4.8 10.0	5. -10.6	4	6.1 10.9	6.5	5.7 3.9 12.6	5.3 9.4 12.3	9.7 9.7	10.8	3.1 14. ⁻ 2.8	<u>12.1</u> 1 1 ² 13.3	10.1 4.1 1. 14.3	5.5 16
.3 19	9.0	22.0	6.8	15.8 16.9	17.7 18	20.3 .8 2	22. Ð.0	5 2 22.3	19.4	16.0	14.?	5 1. 12.9	4.9	42.3 14.	20.4 7 22:	20:4	22.7	6.8	16.2 18.	18.0 D 19	19.4 9.0 1	22.: 9.3	2 2 [.] 22.5	1.6 2 21.7	22.6	19. 7 20.7	18.1	.9	15.: 17.9	3 1 16.8	5.3 17.8	15.9 18.4	16.0 4 16	13.7 5.1 1	3.1) 12.1	5.3 14 14.3	5.9 1
- 13600E		- 1303UE	- 13700E	- 13750E	- 13800E	- 13850E		- 13900E	- 13950E	- 14000E		- 14050E	- 14100E	- 14150E	- 14200E		- 14250E	- 14300E	- 14350E	- 14400E	- 14450E		- 14500E	- 14550E	- 14600E	- 14650E	- 14700E	- 14750E		- 14800E	- 14850E	- 14900E	- 14950E	- 15000E		- 15050E	- 15100E	- 15150E
35 33 46	59 478 65	317 4 559	381 +52 \ 409	453 389 251	47 287 26	73 2 395	+00 45 +55	236 5 448	128 235 285	172 1 172 2	75 259 27	215 \ 2 2 240	152 27 267	(370 196 197	210^{1}	47 \ 157 37	265	268 548 359	214 283 246	4 27 1994 5 18	77 2 251	264 × 276 235	123 5 × 1 283	153 34 164	286 177 203	298 360 276	20 250 5 24	1 : 215 7	213 193 177 (223	231 47 1@4) 117 200 (234	7 1 1 53 4 1	140	38 140	120) 1: 165	190 58 2 184	21 08 \21
)7 38	548 35	482	89 350	298 288	237 26	258 54 2	45 265	488	588	344	219	9 2 241	71 230	189	14)1 7 1	271 55	1 262	98 (181	315) 303	236 3 24	191 47 1	224 191	+ 3 247	a3 324	167	172	260 .\ 22	201 0 :	188	3 2 184	25	155 \ 131	300 \ [<u>3</u> .	32 2	173 209	5 18 194	36 1 195	91) 20

LINE: 89900N

LINE: 16400E

-++ Z0	- +-	ZC	-+ - + + ZO		-++++ 20	z _c				+ + + + ZC	+ + + + +			 Z	-+++-	-++ Z0	 z	z	-+ - + - + ZQ	- † + + + +	×	 Z0	ZC ZC		+ + + +	++++	-+ z	z	- + +	 Z0		+
17.6 - 8 2 22.0	15 20.3 18	0968 -	2968 - 13.9 20.5 21.3	0268 - 4 00	⁹ 268 - 248 28.3 28.2	26.5 29.8 27.2 21.3	38.4 34.9 23.7 18 3	0668 - 30.0 26.9	28.1 18.5 18.5	16.9	12-1 16.0 180	11.9	13.1 13.7 11.6	e.e	4.7 11.3 14.3	7.9 12.0 13.7	8.7 10.1	6.7 8.6 11.3	5.9 5.8 9.6	4.7 7.2 9.1	5.3 5.7 9.7	5.9 7.6 9.0	6.1 5.9 7.2	5.9 5.4 6.2	9206 - 4.5 5.9 6.5	4.0	3.2 4.6 5.9 7 2	3.4 4.7 5.6 6 1	3.5 4.2 5.4	3.4 4.4 5.3	3.6 5.9 2.5	3.8
20.3	23	39600N	38650N	28.6 N00265	28.9 /	222.4	18.0 NO5865	12.3 N00665	18.5 N02668	19.5 N00000	17.1	N00100	15.9	14.2 N00200	14.1 N09201	14.0 N002201	13.5 N0920	13.1 N00400	13.5	13.3 N000901	11.3	9.6 N00901	8.7	8.0 N00201	7.3	1.7 N00801	7.9	8.0 N00601	7.2 N05601	8.3	8.6	9.0
212 7 392 1 3	20 283 26 340	234 69 401	219 320 348 283	402 238 266 319	152 244 329 314	287 277 255 273	257 251 294 412	254 345 356 349	282 292 350 437	223 327 379 534	311 416 476 340	166 243 308 255	243 235 235 531	513 1048 524 424	559 562 530	389 413 517 376	453 399 336 451	524 557 541 423	610 483 732	494 603 710 643	616 596 527	376 393 ¥86 453	352 382 398 285	336 300 282 324	226 295 352 427	187- 309 547	207 367 485 443	200 275 371 443	203 319 370 372	255 322 342 385	199 294 378 419	.357
	40				304		407	403	477			278	300	430	430	365	492	360	049	000	507	404			288	562	510	509	430	+++Z	300	
39550N	+++	39600N	39650N	39700N	39750N	39800N	39850N	39900N	39950N + +	+	90050N	00100N	00150N	10200N	10250N	10300N	10350N	0400N	0450N	10200N	0550N	10600N	10650N	10700N	90750N + +	10800N	10850N		10950N	1000N	1050N	+
17.4 6 27.7 4 25.1	27 29.9 26 25.0	24.4 5.6 25.8	26.4 23.2 24.5 24.1	26.9 23.6 22.2	25.2 30.4 20.1	16.7 18.5 22.0 19.8	10-9 12-3 18.1 22.9	8.6 14.9 18.3	10.9 9.7 13.7 20.0	9.8 15.1 16.9	12.8 14.7 16.1 14.2	13.5 10.3 12.3 12.6	5 10.6 10.9 11.0 12.3	8.8 11.1 12.3 11.3	8.0 8.6 10.6 11.3	5.8 7.3 9.6 11.7	5.7 6.8 9.4 7 11.2	5.1 6.4 8.0	3.8 7.0 9.6 12.9	6 4.5 8.6 10.7 12.3	5.7 8.6 10.8 11.5	6.1 10.0 12.9	60 	3.3 8.6 10.8 11.6	7.6 9.4 10.5 11.7	6.1 9.3 11.0 11.6	6.5 8.7 10.8 11.3	6.4 9.7 11.1	3.5 5.8 8.2 9.8	3.5 5.3 7.6 9.2	3.0 4.8 7.2 9.4	3.0 7.2
20.1 86250N	24	N00968 -	NOG9968	N00768 -	N05798	N00868	Z4.1 NOG868 -	N000668	NO3668	N000006	N02006	N00106	N02106 -	N00200	12.5 00 00 12.5 00 1	N00206	N09206 -	N00400	N02500 -	N00206	NO3300	N009906	- 90650N	N00706 -		Z N N N N N N N N N N N N N N N N N N N	NO28006	Z 00 00 00	NOG600	N000	- 91050N	
262 9 - 506 6 - 593	488 51 530 31	74 413)6 309 18	285 252 260 342 399	286 336 305 193 240	466 348 211 299 279	303 369 378 277 237	344 512 283 523 499	344 510 622 444 387	587 372 381 438 496	289 356 424 384 402	461 419 337 271 305	366 322 339 433 367	341 496 441 509	461 543 586 429 393	635 483 403 367 400	792 529 374 184 223	796 213 179 187 201	169 194 317	185 339 219 361 384	322 326 382 310 306	261 239 268 182 205	390 275 178 302 539	450 439 335 305	618 354 437 384 356	213 315 258 308	222 190 198 203 250	116 161 201 233 238	210 206 218 242	178 199 231 259 243	149 201 245 262 279	179 212 231 295 330	157 284 295
- 89550N		- 89600N		- + + N00768 -	- 89750N	N00868	- 89850N	N00668	- 89950N	N000006 -	- 90050N	- 90100N	- 90150N	- 902000	- 90250N	- 90300N	+ + +	- 90400N	- 90450N	- 90500N	+ + + + + + + + + + + + + + + + + +	N 0000000 06	- 90650N	- 90700N	- 90750N	N008006 -	- + + +	N00606 -		- 91 0000	- 91050N	+
14.9 21.0 .7 17.6	11 17 6 15 19.1	1.8 13.7 17,8 9.3	8.9 12.5 15.7 14.0 15.1	7.5 8.6 12.0 17.0 18.7	5.1 10.6 14.1 20.1 22.5	8.6 16.0 17.1 16.8	13.6 14.4 15.6 22.3 23.1	15.3 24.1 21.7 26.0 27.8	22.9 27.5 26.9 25.0 23.7	29.9 26.1 23.9 14.5 14.4	31.7 18.2 15.4 13.9 13.5	28.8 22.9 14.9 17.0	10.4 44.0 22.3 20.6 16.3	7.8 10.1 15.3 16.3 19.4	6.8 8.8 41.9 13.3 16.8	6.1 6.1 10.8 12.4 15.0	5:0 7.4 10:0 11:4 13:7	5.4 6.8 8.9 9.2 11.8	5.5 5.9 7.2 9.4 11.6	5.4 7.1 8.0 13.6 15:2	6.3 11.4 12.5 11.4 12.3	9.7 10.8 9.0 10.0	10.8 7.6 8.1 12.1 12.9	8.8 11.2 11.3 13.3 14.1	8.2 9.9 13.6 15.1 14.7	6.8 11.0 13.0 13.5 16.4	8.4 11.6 12.6 11.3 11.9	9.6 9.6 10.1 9.7 11.1	7.5 7.8 9.4 11.7 12.2	4.9 7.5 10.5 12.9 15.4	3.8 8.3 11.6 13.5 14.5	6.2 10.5 14.2
- 89550N		- 89600N	- 89650N	- 89700N	- 89750N	N00868 -	- 89850N	N00668 -	- 89950N	N00006 -	- 90050N	- 90100N	- 90150N	- 90200N	- 90250N	- 90300N	- 90350N	- 90400N	- 90450N	N00500 -	- 90550N	N00906 -	- 90650N	N00706 -	- 90750N	N00806 -	- 90850N	N00606 -	- 90950N	- 91000N	- 91050N	
282 346 6 . 347	344 39 378 35	342 98 371 57	339 332 577 642	478 533 515 550	415 487 347 354	281 262 322 227 243	229 197 240 268	275 287 316	258 322 236 239	210 157 209 331 432	250 275 242 291	204 258 3T1	497 296 263 258	426 376 395 320	446 462 484 436	441 443 446 447	459 462 450 440	455 321 313	408 335 359 404 358	430 411 423 408	460 482 446 (469 448	405 5)8 337 303	261 2 9 4 412 460	403 391 261 302	273 218 229	217 217 213 218	260 196 167 179 223	166 204 238 210	211 282 307	218 296 230 204 253	1 4 7 256 240 203	2 9 4
																			.			_+ - + + +	++++	+							ͱ╺╪╴╻╌┩	 +-
NOSS68	7	N00968	N05968 -	N00268 -	NOSZ 68 - 27,1	N N N N N N N N N N N N N N N N N N N	NOG 86 8 	N 000 66 8 	N05668	N000006 -	N0G006 -	N00106 -	N09100 -	N00206 -	N09206	N002 66 -	N03500 -	9.3	- 90450N	N00906 	NOSSO6 -	N000906 -	N05906 -	N00206 -	N09206 -	N000806	N05800 -	Z00060 60 7.8	N09606 -	000016 6.0	N02016 -	6.2
13.7 8 2 24.3	10.8 19 22.6 28	16.5 26.1 3.6	20 .3 23.8 : 21.7 23.2	19.8 20.9 12.1 14.1	9 68 10.8	19.8 14.8 13.5	12 .8 18.2 20.7	12.4 17.5 19.1 21.5	10.6 1 5.1 19.9 21.9	13.6 16.8 18.7 20.9	14.4 16.5 15.9 17.3	11.6 14.8 16.2	10.4 14.8 16.8 18.1	10.8 13.5 15.8 18.2	11.0 13.6 16.2 18.1	12.2 14.1 12.6 14.5	11.2 13.6 15.2	11.4 12:3 16.1 17:6	13.6 15.3 19.0 20:4	14.9 13.6 12.9 14.2	7.8 10.6 8.7	5.7 6.8 16.6 17.9	14.9 17.2	21.4/ 19.5 1 4.9 14.3	15,1- 15.3 14.6 14.8	15.6 14.3 13.6 14.0	12.4 152 14.8 13.4	10.5 13.4 13.8 14.5	9.1 11.7 13.6 15.2	9.1 11.5 12.1 13.8	8.3 10. 3 11.2 12.7	. <mark>9.5</mark> 11.9
N09968 - 352	33	N00968 - 30	N0 <u>9</u> 968 - 362	N00268 - 310	N09268 -	NOO 86 80 	NOS 868 - 360 450	N00668 - 439 270	243 225	N000006 - 172 266	225	N00106 - 170	418	N00206 -	N09206 -	N000 2006 - 310 400	N09£06 - 375	259 713	N09706 -	N00906 - 542 321	NOS 9906 - 3339	N00906 -	N09906 - 210	N00206 - 321	N09206 - 318	258 813	N09806 - 414	293 ~	276 390	-282 450	N09016	216
356 1 3 380	48 392 <u>3</u> 0	320 320	308 249 260	231 222 2 36	239 288 273	341 403 366 .	442 3ø0 282	285 205 220	200 288 297 -	300 228 224	20 (198 221	177 227 250	208 236	¥15 415 289	427 414 401	420 287 313	276 308 313	300 481 482	503 285 285	335 364 361	331 220 238	203 250 259	295 390 353	349 276 305	289 329 323	362 285 302	293 342 340	440 468 372	439 561 584	518 331 341	311 260 269	250 317
			-+ + + ₊	/+++	<u></u> +	_ 	-+++++	+ + + +	_ + + + +		-+-+-+	-+ + + -	-++++		-+ + + 1	-+++-	<u>+</u> + +_+-	_+++	-++	-+ + + -	<u>++++</u> +	-+++		++++	-*-+ + +	+ - +			-+	<u></u>	• • • • •	+
- 89550N	17	N00968 -	20 99 68 	NOOL68 -	N09268 -	NO0868	N05868 -	8.4	N05668 -	N00006 - 7.8	N09006 - 6.7 7.1	N00106 -	N09106 - 3.8 4.2	N00206 - 3.1 3.0	2,5 2,5	NOO£06 -	N03506 -	4.3 7.3	7.0 9.72	N00906 - 8.0 9.1	N099906 - 7.6 8.5	NO0906 - 5.8	N09906 - 7.0- 10.8	N00206 - 8.0	N09206 - 8.1	N00806 5.4	N05806 -	N00606 -	N09606 - 5.4	5.4 7.8	N09016 -	5.9
27.9 6 2 23.3) 23 23.7 22	22.7 2.3	19.9 21.6 23.1 :	19.6 22.2 23.9	23.3 23.0 21.7	20.6 18.9 19.6	12.5 18.8 19.7	16.8 18.4 19.6	16.7 16.3 17.4	13.2 12,5 14.8	9,7 10,2 12.6	7.6 8.2 10.6	6.1 6.6 8.6	4.6 5.8 7.7	4.1	9.6	6.8 9 .9 11.2	8.4 10.6 11.9	9.3 10. 4 11.2	9.6 9.5 10.3	9.5 13.0 13.5	12.4 15.3 15.7	13.3 14.5 15.6	13.2	11.7 11.8 13.0	10.8 11.4 12.0	7.6 13.6 12.7	8.9 10.7 12.3	9.2 10.5 11.5	9.5 9.7 10.4	8.9 9.6 10.3	10.7
325 7 2 265	20	N00968 - 268 79	N099968 - 329 324 266	NOO268 - 213 250 3@1	N09268 - 270 2777 249	2113 232 263	N092868 - 179	N00668 - 183 229 223	N099668 - 193 230 285	2005 263 267	N09006 - 233 206	N00106 - 187 180	N02106 -	N00206 - 116 114	- 90250N	N00£06 -	N03506 -	247 242 264	N09406 - 342 471	477 524	N09906 -	435 508 487	N02906 - 398 568	N00206 - 430 542	400 450 488	451 361	X099806 - 3339 451 421	N00606 - 327 347 424	N09606 -	152 375	306- 322	208
7 334	320	271 78	229 236	276 226	250 269	222 213	252 284	274 300	320 298	213 254	187 176	155 150	145 132	168 177		445 503	290 343	3 06	272 288	416 273	458 364	490 448	589 514	500	333 329	384 383	399 375	321 299	484 499	365 441	411 441	394

YANKEE HAT MINERALS LTD.	FRAN PROPERTY, INZANA LAKE AREA, B.C. LINE: 13200E	INDUCED POLARIZATION SURVEY POIE-Dipole Arroy SCOTT GEOPHYSICS LTD. SCINTREX IPR12	Aug/07 Aug/07 current electrode south of potential electrodes (array heading N)	Mx chargeability = 690-1050 msec after shutoff Magnetometer survey: Scintrex ENVI Total Field Magnetometers	0 50 100 200 300 METERS	APPARENT RESISTIVITY CHARGEABILITY MAGNETOMETER (ohm-m) (m1/V) (n1)	 a n 50 1 50 3 50 4 50 5 4 50 3 50 4 50 5 	60000 - 0000 57000 - 00000 56000 - 00000 - 15.2 - 15.2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Nogree 15.1 15.1 15.1 15.1 21.3 25. 222 56 222 56 222 45	16.4 9 22.6 24.6 183 8 235 335 0 418 533	Nogfee 18.3 20.1 25:2 Xogfee 181 25:2 330 3 458 573	No0968 17.6 21.6 5 23 -25.1 229 373 3 47 559
			YANKEE HAT MINERALS LTD.	FRAN PROPERTY, INZANA LAKE AREA, B.C.	LINE: IJOUUE INDUCED POLARIZATION SURVEY POIE-Dipole Array SCOTT GEOPHYSICS LTD. SCINTREX IPR12 Aug/07 Pulse Rate: 2 sec	current electrode south of potential electrodes (array heading N) Mx chargeability = 690-1050 msec after shutoff Magnetometer survey: Scintrex ENVI Total Field Magnetometers	0 50 100 200 300 METERS	APPARENT RESISTIVITY CHARGEABLUTY MAGNETOMETER (ohm-m) (mV/v) (nT)	a 50 50 50 50 50 50 50 50 50 50 50	n - 2 - 3 - 4 - 5 - 7 7 8 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	20 00 17.5 18. Nogfeg 363 348	Nooge 18.3 3 16 16.9 28 351 351 363 54
			YANKEE HAT MINERALS LTD.	FRAN PROPERTY, INZANA LAKE AREA, B.C.	LINE: 14000E INDUCED POLARIZATION SURVEY POIE-Dipole Array SCOTT GEOPHYSICS LTD. SCINTREX IPR12 Aug/07 Pulse Rate: 2 sec	current electrode south of potential electrodes (array heading N) Mx chargeability = 690-1050 msec after shutoff Magnetometer survey: Scintrex ENVI Total Field Magnetometers	0 50 100 200 300 M E T E R S	APPARENT RESISTIVITY CHARGEABILITY MAGNETOMETER (ohm-m) (nT)	a 50 50 50 50 50 50 50 50 50 50 50 50	6000 5700 5600 n 1 - 2 - 3 - 4 - 5 - 7 n 1 - 2 - 3 - 4 - 5 - 7 1 - 2 - 3 - 4 - 5 - 5 -	26,0 / 18. NOCCON 18. NOCCON NOCCON NOCCON NOCCON 18.	No0368 2 15.9 2 18.5 19 237 9 237 9 237 9 237 3 19
			YANKEE HAT MINERALS LTD.	FRAN PROPERTY, INZANA LAKE AREA, B.C.	LINE: 14400E INDUCED POLARIZATION SURVEY POLE-Dipole Array SCOTT GEOPHYSICS LTD. SCINTREX IPR12 Aug/07 Pulse Rate: 2 sec	current electrode south of potential electrodes (array heading N) Mx chargeability = 690-1050 msec after shutoff Magnetometer survey: Scintrex ENVI Total Field Magnetometers	0 50 100 200 300 M E T E R S	APPARENT RESISTIVITY (ohm-m) CHARGEABILITY MAGNETOMETER (nv/v) (nT)	a 50 50 50 50 50 50 50 50 50 50	n 5500 n 3 - 4 - 5 - 1 - 3 - 4 - 5 - 1 - 3 - 4 - 5 -	2226 312	NO0968 15.8 21.1 15.8 16 21.1 15 15 15 15 15 15 15 15 15 15 15 15 15
			YANKEE HAT MINERALS LTD.	FRAN PROPERTY, INZANA LAKE AREA, B.C.	LINE: 140UE INDUCED POLARIZATION SURVEY POIE-Dipole Array SCOTT GEOPHYSICS LTD. SCINTREX IPR12 Aug/07 Pulse Rate: 2 sec	current electrode south of potential electrodes (array heading N) Mx chargeability = 690-1050 msec after shutoff Magnetometer survey: Scintrex ENVI Total Field Magnetometers	0 50 100 200 300 M E T E R S	APPARENT RESISTIVITY CHARGEABILITY MACNETOMETER (ohm-m) (mV/V) (nT)	a 50 50 50 50 50 50 50 50 50 50	n 5500 n - 2 - 3 - 4 - 5 - 1 - 2 - 3 - 4 - 5 - 1 - 2 - 3 - 4 - 5 - 5 -	21.0 24. 198 220	211.1 7 22 22.4 215 215 215 215 215 215 27

	<u> </u>	
31050N 31100N 31200N 31250N 31250N 31400N 31450N 31450N 31450N 31450N 31450N 31450N 31650N 32650N 32750N 32750N 32850N	32900N	
3.6 3.8 4.0 4.0 4.0 5.2 5.0 5.6 5.7 6.0 5.8 5.9 5.1 6.0 5.9 6.8 8.7 9.7 9.0 7.5 6.7 8.0 $4.8 5.3 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 3.5 3.6 4.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4 3.4 3.8 4.9 4.4$	4 3.5	Contours 5 25
5.9 6.6 6.8 6.9 7.9 7.5 9.0 9.0 9.0 9.0 9.4 10.0 9.1 9.8 9.6 10.8 10.7 10.1 10.6 9.5 10.4 10.7 10.1 10.6 9.5 10.4 10.7 10.1 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 11.8 10.7 10.7 11.8 11.3 11.6 10.6 11.8 12.2 11.6 11.1 12.1 14.4 12.5 11.5 10.4 9.3 9.3 8.3 8.4 7.8 7.8 7.2 11.8 11.1 10.4 10.8 9.6 9.1 8.5 8.6 11.8 11.8 11.1 10.4 10.8 9.6 9.1 8.5 8.6 11.8 11.8 11.1 10.4 10.8 9.6 9.6 9.6 9.6 9.6 11.8 11.8 11.8 11.1 10.4 10.8 9.6	8	7.5 30 10 35 12.5 40 15 17.5 20
a1 6 6 0 N a1 1 5 0 N a1 2 6 0 N a1 2 6 0 N a1 4 0 0 N a2 2 6 0 N a2 2 6 0 N a2 2 6 0 0 N a2 2 6 0 N a2 2 2 0	32900N 32950N	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)3 206 269	Contours
378 357 317 292 293 227 230 251 255 200 283 207 350 241 332 276 320 239 234 239 236 254 218 224 226 279 284 291 278 205 21 85 419 336 323 319 244 298 281 255 213 250 260 219 232 232 207 239 219 253 388 380 335 346 270 320 219 252 273 261 328 286 249 232 283 315 322 244 226 260 219 232 231 310 232 207 388 380 335 346 270 320 219 233 315 322 244 226 244 226 244 226 244 226 244 226 244 226 244 226 255 215 215 215	4	300 500 700 1000
	LINE	: 13200E
	<u>⊢+++++</u>	
 91150N 91150N 91150N 91150N 91250N 91250N 91250N 91250N 91250N 91250N 91250N 92250N 92250N 92250N 92250N 92250N 92250N 92250N 	- 92900N - 92950N	
3.0 3.0 3.3 3.5 3.3 3.1 3.7 4.3 3.4 3.6 6.7 7.3 7.4 7.4 6.7 5.9 5.7 5.7 5.2 5.5 4.3 3.7 4.5 4.2 4.5 3.9 3.8 3.4 4.0 3.4 3.4 3.4 3.9 3.8 3.5 3.8 5.3 4.8 5.6 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 3.6 4.2 4.5 3.9 3.8 3.4 3.9 3.8 3.4 3.9 3.8 3.5 3.8 5.3 5.4 5.4 5.4 5.4 5.4 5.4 5.6 6.4 5.7 5.7 6.7 5.7 6.7 5.7 6.7 5.7 6.7 5.7 6.7 5.7 6.7 5.7 5.7 5.7 6.7 5.7 6.7 5.7 5.7 6.7 5.7 5.7 6.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5	5 3.3 3.6 .8	Contours 2.5 20 5 25 7.5 30
		10 12.5 15 17.5
- 91150N - 91150N - 91150N - 91250N - 92250N - 92250N - 92250N - 92250N - 92250N - 92250N - 92250N - 92250N - 92250N	- 92900N - 92950N	
179 157 158 132 146 122 190 159 154 264 276 267 314 414 306 286 235 226 159 203 104 142 113 105 178 149 143 179 267 146 137 140 256 364 274 268 136 18 01 212 231 189 188 175 233 234 248 311 281 314 190 195 207 184 145 129 159 116 110 116 123 75 87 109 174 146 115 103 231 284 250 238 184 292 256 243 360 335 266 242 325 286 300 242 198 203 228 186 182 172 180 192 161 120 138 132 124 132 136 128 121 135 231 284 </td <td>31 168 137 35</td> <td>Contours 100 150</td>	31 168 137 35	Contours 100 150
62 295 285 279 201 523 306 247 324 338 234 271 318 348 307 223 252 197 206 208 391 197 193 234 181 156 144 156 141 157 158 112 163 128 156 128 138 156 330 295 308 236 352 329 285 319 355 249 237 339 343 370 234 246 245 194 184 258 238 222 244 218 167 180 159 163 167 179 187 167 158 159 158 143 177		200 300 500 700
	LINE	: 13600E

99 09 09 09 09 09 09 09 09 09 09 09 09 0		Contours
2-5 8.3 8.7 8.1 6.9 6.2 5.7 4.8 5.0 6.0 5.6 6.7 6.7 7.3 6.4 5.9 5.8 6.9 5.3 5.3 4.4 5.4 5.2 4.1 4.2 3.6 3.4 3.1 3.3 3.9 4.1 4.1 3.7 3.7 3.9 3.9 11.6 10.5 10.6 9.8 10.6 9.8 10.6 5.5 6.1 6.1 7.3 5.9 5.6 5.1 4.2 4.2 3.4 3.1 3.3 3.9 4.1 4.1 3.7 3.7 3.7 3.9 3.9 11.6 10.5 10.6 9.8 10.6 9.8 6.7 5.2 5.5 6.1 6.1 7.3 5.9 5.6 5.1 4.2 4.2 3.4 3.3 3.9 4.1 4.3	3.7	5 25 7.5 30 10 12.5 15
		17.5 20
- 91050N - 91100N - 91150N - 91150N - 91250N	92900N	Contours
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	134 39	70 100 150 200
203 / 168 145 / 213 163 138 / 281 217 154 170 149 /229 160 201 269 319 / 125 / 167 / 286 258 / 385 331 339 /258 266 176 / 135 / 175 172 135 189 132 135 146 150 180 178		300 500
	LINE	: 14000E
1050N 1100N 1250N	2900N 2950N	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8 1.5 2.0	Contours
10.3 9.5 9.5 10.3 9.6 10.3 9.5 10.3 9.6 10.3 9.6 8.5 7.7 6.6 5.8 4.6 4.5 4.4 3.9 3.8 3.4 3.7 3.6 4.4 3.8 2.6 3.1 2.1 2.1 11.2 10.8 10.9 10.6 11.3 10.9 9.9 10.6 10.9 10.9 10.9 10.9 10.9 8.9 8.5 7.5 6.6 5.8 4.6 4.5 4.4 3.9 3.8 3.4 3.7 3.6 4.4 3.8 2.6 3.1	4	2.5 20 5 25 7.5 10 12.5 15
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00N 20 N	17.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53 139	Contours
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	148 50	100 150 200 300 500
	LINF	• 14400F
	-++++	
 91050N 91150N 91150N 91150N 91200N 91200N 91250N 91250N 91250N 91250N 92350N 92450N 92450N 92650N 92650N 92750N 92850N 	- 92900N	
4.8 5.9 4.7 4.8 4.5 5.8 5.4 5.5 5.8 7.8 9.6 10.6 10.9 9.8 8.4 6.9 6.6 6.1 6.2 5.4 7.0 7.7 10.0 9.5 6.9 5.8 3.8 3.9 3.6 4.0 3.2 3.3 3.5 3.1 3.3 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	8 3.2 3.7 .5	Contours
1.7 9.6 10.1 11.0 10.2 8.9 6.7 8.3 8.6 8.8 7.3 7.7 8.4 8.3 6.5 7.9 8.9 10.8 10.8 14.6 15.2 13.9 14.1 14.4 11.9 11.2 9.5 9.1 5.8 4.2 4.8 3.5 4.3 5.0 4.3 (.8) 3.8 4.4 10.3 10.7 11.4 11.3 10.1 8.8 9.8 9.4 9.2 8.1 8.0 8.8 8.0 6.3 6.9 8.0 10.4 10.8 13.2 14.0 15.6 14.2 11.6 11.1 11.2 10.3 8.5 7.4 5.7 10.6 4.6 4.5 4.1 4.7 3.7 4.0 3.7		5 25 7.5 10 12.5 15 17.5
91050N 91150N 91150N 91150N 91250N	92900N 12950N	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39 111 100	Contours
322 395 329 424 338 293 219 298 288 231 306 216 307 266 214 520 390 309 314 407 426 404 412 459 330 335 291 91 48 149 157 171 181 179 144 109 315 10 65 411 387 437 404 346 259 322 371 252 330 241 276 287 205 315 318 274 394 418 426 470 427 432 302 357 285 204 182 160 155 155 166 142 139 93 106 105 441 394 567 400 434 296 355 395 302 359 270 314 292 217 310 321 241 344 512 421 460 479 450 282 323 293 212 188 212 167 160 166 154 126 107 105 126	13	150 200 300 500 700
	LINE	: 14800E

11500E

12000E