BC Geological Survey Assessment Report 29867

Report of Geological Mapping, Prospecting and Bedrock Geochemical Sampling on Mineral Tenure ML516622

Completed By:

Richard Osmond Senior Consultant GeoVision Geoscience Inc. Date:

December 31st, 2007

Table of Contents

1.	Introduction1
2.	Geological Mapping and Prospecting2
3.	Geochemical Analysis
4.	Expenditures
5.	Conclusions and Recommendations
	List of Appendices
Ap	pendix A: Analytical Methods
Ap	pendix B: Bedrock Geochemical Assay Results
Ар	pendix C: Summary of Field Expenses12
Ар	pendix D: References
Ар	pendix E: Certificate of Author
Ар	pendix E: ALS Chemex Assay Certificates
	List of Tables
Tal	ble 1: Summary of Expenditures for the Mineral Tenure ML516622 for 2007
Tal	ble 2: Elements and Detection Limits for the ICP-AES and the Au-AA23 Analytical Methods 8
Tal Ge	ble 3: Geochemical Assay Results for Bedrock Samples using the ME-ICP41 and Au-AA23 ALS Chemex ochemical Packages
Tal	ble 4: Summary of Field Expenses Incurred during Field Programs
	List of Figures
Fig	ure 1: Location Map for ML5166221
	List of Maps
MA	AP 1: Regional Government Geology
MA	AP 2: Detailed Geology
MA	AP 3: Geological Compilation Map 25
MA	AP 4: Rock Sample Location Map

1. Introduction

The mineral tenure ML516622 is a 527.529 Ha property with dimensions 2.325 km x 1.825 km and located approximately 28 kms west-southwest of the town of Castlegar. The property is situated approximately 8kms south along the Nancy Green forest access road located 28 kms to the west of Castlegar along the No 3 highway (Figure 1).

The mineral tenure was staked in 2000 by Gerald York, a local resident of Castlegar. The claims were converted to the ML516622 mineral tenure in October of 2005. The property was optioned to the present operators, Cascadia International Resources Inc. (Cascadia), through an Option Agreement dated July 11, 2007.

The property was staked initially and later optioned for its molybdenum (Mo), tungsten (W) and gold (Au) potential. The observed mineralization is hosted within intensely skarn altered tuffs/ siltstones of the Mount Roberts Formation. The main zone of skarn alteration is exposed over a strike length of more than 700m with visible molybdenite noted throughout. Grades of up to 1.65% Mo were detected from surface grab samples taken by Cascadia during initial field visits in the spring of 2007.

The exploration work filed under this report will include prospecting, geological mapping and geochemical analysis of collected surface rock samples for base and precious metal potential.

Figure 1: Location Map for ML516622

2. Geological Mapping and Prospecting

The objective of the exploration program was to detail map the overall distribution of skarn alteration on the property and assess the alteration for potential Mo-W-Au mineralization. The work was carried out by Cascadia in two (2) one (1) week field visits during the summer and fall of 2007.

The regional government geological mapping suggest that the property straddles the contact between the Permian to Carboniferous aged metasediments of the Mount Roberts Formation to the east and the Eocene aged granitic rocks of the Coryell Intrusions to the west (MAP 1). A small sliver of mid-Jurassic granitic porphyry is also noted in the regional government mapping along the northwest corner of the property. The overall strike of the geology appears to be north-northeast through the property, however, local mapping suggests that the trend of the metasediments/metavolcanics (?) has more of an N60°E strike similar to the overall regional strike of Mount Roberts Formation (T. Höy et. al., 1994).

The first phase of work focused on evaluating several of the known Nicole V (NV) Mo-W mineral occurrences which were initially discovered by Gerald York during previous prospecting work on the property. The occurrences were geologically mapped and re-sampled and sent for geochemical analysis to determine overall Mo-W-Au grades. The second phase of work focused on extending the skarn alteration along strike to the east and west of the known occurrences to determine the overall size potential of the system.

The initial geological mapping outlined more than 500m of skarn alteration on the property striking N60°E and dipping from vertical to steeply to the north (MAP 2). The skarn alteration consists of massive brown to reddish brown coloured garnet+epidote skarn replacement of altered tuffs (possibly altered siltstones of the Mount Roberts Formation). Hematite alteration also commonly occurs along fractures throughout helping to give the skarn alteration the observed reddish brown color. Along the fringes of the skarn alteration and locally throughout, the epidote+garnet alteration replaces the tuffs as patches and thin bands following original bedding with garnet replacement occurring locally within the center of the epidote alteration. This suggests that the intense garnet replacement is a zoned later stage progression of more intense alteration occurring after pervasive epidote alteration of the tuffs. Two main N60°E striking skarn alteration zones were outlined in the surface geological mapping with the main northern skarn extending over a strike length of more than 700m. The second thinner skarn alteration zone occurs further south and is only visible on surface over a strike length of 350m. This zone appears to be cut off to the east on surface by altered pink feldspar-biotite porphyry. Several smaller patches of skarn alteration were also noted within the altered tuffs further north and south of the two main skarn zones but these patches were not mapped over any sizeable strike length on surface. In contact to the south of both skarn alteration zones, a more massive mafic gabbroic unit (possible altered diorite) is also mapped. This unit is massive dark green to black in colour consisting of fine grained crystals of what appear to be lighter plagioclase (?) mixed with pervasively amphibole (?) (possibly bioite+chlorite) altered pyroxenes. More detailed lithogeochemical and petrographic work is required to determine the overall genetic composition of this unit. It is worth noting that lamprophyric dykes are reported well to the north of the property by other exploration groups working in the area and it may be possibly that these more mafic intrusive looking units are actually lamprophyres explaining their altered

mafic appearance. To the southeast of the skarn alteration an extensively fractured, locally foliated/sheared pink to brick red coloured feldspar+biotite granodiorite porphyry is also mapped. These granodiorites appear pervasively clay and hematite altered and cut locally by quartz+carbonate veins where fracturing and shearing becomes more abundant. It is uncertain if these granodiorites form part of the Eocene aged Corywell Intrusion or if they are related to an older intrusive event not recorded in the area. Along the southern part of the property, more distinctive well banded east-west trending graphitic and limestone rich metasediments of the Mount Roberts Formation were also mapped. These metasediments appear pervasively hornfelsed (?) and locally epidote<u>+garnet altered. Local high grade</u> Cu+Pb+Zn occurrences are mapped within these units but appear and are not discussed in this report. More work is required to fully understand their overall economic potential.

Initial prospecting by the York brothers outlined several higher grade Mo occurrences in the area which were labelled the NV showing. Through initial geological mapping and prospecting, it was determined that these Mo showings were related to patches of visible molybdenite present within the mapped pervasive skarn alteration (MAP 3). The NV-5 showing was initially discovered by a small 1 m x 1 m adit extending approximately 3 - 4 meters into the side of a rock face following some high grade molybdenite mineralization. The York brothers suspect that this adit was hand dug during the early 1900's but no efforts were made to determine if any historical work recorded in the area. Through more detailed mapping and prospecting of the skarn alteration, visible molybdenite was found throughout most of the skarn as disseminated patches of mineralization most of which was exposed along forestry access road cuts on the property. Systematic rock samples of skarn alteration with visible molybdenite were collected and sent for geochemical analysis. No initial efforts were made to prospect or map the distribution of W minerals (scheelite<u>+</u>wolframite) even though early sampling by the York brothers suggested that anomalous W occured throughout the area. These minerals are best detected using short wave UV fluorescence making it difficult to carry out in the field.

3. Geochemical Analysis

A total of 33 rock samples were collected on the property and sent to ALS Chemex in North Vancouver, BC for analysis. The samples were analyzed using the ME-ICP41 package which provides a 35 element suite using an aqua regia digestion followed by an ICP-AES analysis (inductively coupled plasma emissions spectroscopy) and Au-AA23 (atomic absorption spectroscopy) package for Au. Detailed descriptions of both sample analytical methods are found in Appendix A.

From a total of 33 samples taken(MAP 4), five (5) were found to have elevated Mo values of greater than 0.08%Mo and range from 0.15% up to 0.463%Mo. These values were considered low relative to the percentage of visible molybdenite noted in the sample descriptions. It is suspected that some of the molybdenite may have been smeared through the crushing and pulverizing equipment upon preparation and it may also be possible that some of the molybdenite may not have been dissolved in the aqua regia digestion of the sample (personal communication with expert geochemists).

Anomalous W values of greater than 0.1%W were detected in four (4) samples and range from 0.1280% to 0.2930%W. The aqua regia digestion method of extraction was not recommended for refractory minerals such as the W minerals sheelite and wolframite. As a result, the W grades detected by the ME-ICP41 analytical method are thought to be significantly lower than the true W grades expected for these samples.

Based on geological descriptions, it was decided that several of the more anomalous samples would be re-analyzed for Mo and W using the ACME Group 7KP analytical method which uses a complete phosphoric digestion. The results of this analysis and analytical procedures are not discussed as part of this report.

No other anomalous levels of base metal or Au were detected from the suite of samples submitted. A complete summary of the geochemical results is found in Appendix B.

4. Expenditures

A total of \$12,402.70 was spent on Mineral Tenure ML516622 as part of the work commitments for the 2006 -2007 period filed on October 31, 2007. The expenditures were incurred relating to two (2) separate field visits to carry out prospecting, geological mapping and bedrock geochemical sampling on the property. A summary of expenditures are tabulated in Table 1 below:

Expenditure	Rate	Number	Charge
Consulting Fees	\$800/day	10.85 Days	\$8,680.00
Prospector Fees	\$250/day	4.5 Days	\$1,125.00
Geochemical Lab Costs	\$28.88/sample	33 Samples	\$953.04
Field Expenses	Refer to Ap	pendix C	\$1,644.68
Total Expenditures			\$12,402.72

Table 1: Summary of Expenditures for the Mineral Tenure ML516622 for 2007.

It is Important to Note:

- The original filing under Event Number 4177802 for ML516622 on October 31st, 2007 was for a total of \$8464.28. A total of \$3938.44 additional expenditures were added to the cost of completion of this technical assessment report and filed as part of the expenditure credits.
- During the initial filing under Event Number 4177802 for ML516622 on October 31st, 2007, Field Expenses were filed with GST included. For this report, it is assumed that GST should not be added to the overall expenditures. As a result Field Expense of \$1644.68 was used in the calculation of the Total Expenditures.

A summary table of field expenses is found in Appendix C of the report.

5. Conclusions and Recommendations

The initial results of the prospecting, geological mapping and bedrock geochemical sampling were very encouraging with the outline of over 700m of strike length of exposed garnet+epidote skarn alteration anomalous in both Mo and W throughout. It is uncertain at this point as to the full lateral and vertical extent of the skarn alteration as well as the distribution of Mo and W within the alteration system. More work is required to fully understand the true potential of this sizeable Mo-W enriched alteration system.

It is recommended that further prospecting along strike to the east and west as well as a ground gravity geophysical survey be carried out to map out the full extent of skarn alteration. Ground gravity is also recommended based on the high density of both garnet (3.9 g/cm³) and epidote (3.4 g/cm³) relative to the surrounding altered tuffs (<2.67 g/cm³) and granitic rocks (<2.67 g/cm³). The gravity is expected to map out the overall distribution of skarn in three (3) dimensions (3D) to better focus on the thickest and most laterally extensive parts of the alteration. It is worth noting that topographic effects may play a role in masking the overall response of the skarn alteration in these topographically rugged areas. A high resolution digital terrain models (DTM) will likely be required to conduct proper Bouguer reductions.

Appendix A

Analytical Methods

Aqua Regia Digestion

The standard aqua regia digestion consists of treating a geological sample with a 3:1 mixture of hydrochloric and nitric acids. Nitric acid destroys organic matter and oxidizes sulphide material. It reacts with concentrated hydrochloric acid to generate aqua regia:

 $3 \text{ HCl} + \text{HNO}_3 = 2 \text{ H}_2\text{O} + \text{NOCl} + \text{Cl}_2$

Aqua regia is an effective solvent for most base metal sulphates, sulphides, oxides and carbonates but only provides a partial digestion for most rock forming elements and elements of a refractory nature. For method codes, click on the following links: Gold, Silver, Copper, Ultra-Trace Level, Trace Level, and Single Element options.

Inductively Coupled Plasma Emission Spectroscopy (ICP-AES)

In plasma emission spectroscopy, a sample solution is introduced into the core of inductively coupled argon plasma (ICP) at a temperature of approximately 8000 C. At this temperature all elements become thermally excited and emit light at their characteristic wavelengths. This light is collected by the spectrometer and passes through a diffraction grating that serves to resolve the light into a spectrum of its constituent wavelengths. Within the spectrometer, this diffracted light is then collected by wavelength and amplified to yield an intensity measurement that can be converted to an elemental concentration by comparison with calibration standards. This measurement process is a form of atomic emission spectroscopy (AES).

Advantages of ICP-AES Spectroscopy

- Many elements (up to 70 in theory) can be determined simultaneously in a single sample analysis; the largest ICP only package offered by ALS Chemex includes 34 elements.
- Instrumentation is readily amenable to automation, thus enhancing accuracy, precision and throughput.
- High instrumental productivity permits very competitive pricing of analytical packages, thus giving the explorer a significant return on a relatively small expenditure.
- Electronic data capture and transfer to the LIMS ensures that no manual data transcription errors occur.
- ICP-AES offers a useful working range over several orders of magnitude.

Limitations of ICP-AES Spectroscopy

- Complex instrumentation requires highly skilled staff both for routine operations and for repairs and maintenance.
- The emission spectra are complex and inter-element interferences are possible if the wavelength of the element of interest is very close to that of another element; for example, one of the phosphorus wavelengths suffers from both copper and aluminum interference.
- As with atomic absorption spectroscopy, the sample to be analysed must be digested prior to analysis in order to dissolve the element(s) of interest. In certain ICP packages (e.g., the <u>ALS Chemex ME-ICP41 package</u>), a significant number of elements are only partially digested.
- Rigid temperature and humidity control is required for best stability of the spectrometer.

Atomic Absorption Spectroscopy (AAS)

In atomic absorption spectroscopy, an element in its atomic form is introduced into a light beam of appropriate wavelength causing the atom to absorb light (atomic absorption) and enter an excited state. At the same time there is a reduction in the intensity of the light beam which can be measured and directly correlated with the concentration of the elemental atomic species. This is carried out by comparing the light absorbance of the unknown sample with the light absorbance of known calibration standards.

A typical atomic absorption spectrometer consists of an appropriate light source (usually a hollow cathode lamp containing the element to be measured), an absorption path (usually a flame but occasionally an absorption cell), a monochromator (to isolate the light of appropriate wavelength) and a detector.

The most common form of atomic absorption spectroscopy is called flame atomic absorption. In this technique, a solution of the element of interest is drawn through a flame in order to generate the element in its atomic form. At the same time, light from a hollow cathode lamp is passed through the flame and atomic absorption occurs. The flame temperature can be varied by using different fuel and oxidant combinations; for example, a hotter flame is required for those elements which resist atomisation by tending to form refractory oxides.

There are alternative ways of generating the atomic species of an element which do not require the use of a flame. These "flameless" methods generally offer a superior detection limit. One of the more common flameless methods involves vapour generation of the element of interest. As described in <u>Volatilisation</u>, mercury can be easily reduced to its elemental form and then swept into an absorption cell through which a light beam is passed. Similarly, a number of elements may be chemically converted to their volatile hydride forms and swept into an absorption cell. See <u>Hydride Generation</u>. A second common flameless method involves the use of a graphite furnace to electrically heat and volatilise an element of interest into an absorption cell.

Advantages of Atomic Absorption Spectroscopy

The main advantages of atomic absorption spectroscopy are as follows:

- The principles of measurement are straightforward and well understood.
- The technology is relatively inexpensive and the equipment is relatively easy to use.
- The technique is well-suited to the measurement of gold, gold pathfinders and base metals
- There are relatively few matrix and other interference effects
- Sample throughput is high as each measurement can take only seconds when the instrument is calibrated.
- The technique is applicable over a wide range of concentrations for most elements.

Limitations of Atomic Absorption Spectroscopy

- All measurements are made following chemical dissolution of the element of interest. Therefore the measurement can only be as good as the quality of the sample digestion.
- AAS is a sequential (that is, one element at a time) analytical technique. It is better suited to the measurement of small suites of elements as larger suites become progressively uneconomic.
- Occasionally interferences from other elements or chemical species can reduce atomisation and depress absorbance, thereby reducing sensitivity.
- Some elements such as Li, Na, K, Rb and Cs ionise rather easily, again reducing atomisation and complicating the measurement technique.

Analye	Unit	LDL*	UDL**	Std Tolerance, %	Dup Tolerance, %	Overlimit
Ag	ppm	0.2	100	10	10	Ag-OG46
Al	%	0.01	25	10	10	
As	ppm	2	10000	10	10	
В	ppm	10	10000	10	10	
Ва	ppm	10	10000	15	15	
Be	ppm	0.5	1000	10	10	
Bi	ppm	2	10000	10	10	
Ca	%	0.01	25	10	10	
Cd	ppm	0.5	1000	10	10	
Со	ppm	1	10000	10	10	
Cr	ppm	1	10000	10	10	
Cu	ppm	1	10000	10	10	Cu-OG46
Fe	%	0.01	50	10	10	
Ga	ppm	10	10000	10	10	
Hg	ppm	1	10000	10	10	
К	%	0.01	10	10	10	
La	ppm	10	10000	10	10	
Mg	%	0.01	25	10	10	
Mn	ppm	5	50000	10	10	
Mo	%	0.0001	1	10	10	Mo-AA46
Na	%	0.01	10	10	10	
Ni	ppm	1	10000	10	10	
Р	ppm	10	10000	10	10	
Pb	ppm	2	10000	10	10	Pb-OG46
S	%	0.01	10	10	10	
Sb	ppm	2	10000	15	15	
Sc	ppm	1	10000	10	10	

Table 2: Elements and Detection Limits for the ICP-AES and the Au-AA23 Analytical Methods

Sr	ppm	1	10000	10	10	
Th	ppm	20	10000	10	10	
Ti	%	0.01	10	10	10	
TI	ppm	10	10000	15	15	
U	ppm	10	10000	10	10	
V	ppm	1	10000	10	10	
W	ppm	10	10000	15	15	
Zn	ppm	2	10000	10	10	Zn-OG46
Au	ppm	0.005	10	7	10	Au-GRA21

* LDL – Lower Limit of Detection

** UDL – Upper Limit of Detection

Table 3: Continued

Sample No	UTM_Y	UTM_X	Rock Type	Mn_ppm	Mo_%	Na_%	Ni_ppm	P_ppm	Pb_ppr	S_%	Sb_ppn	Sc_ppm	Sr_ppm	Th_ppn	Ti_%	Tl_ppm	U_ppm	V_ppm	W_ppm	Zn_ppn	Au_ppn
260509	5450379	426711	Tuff	837	0.001	0.04	47	570	0	1.01	0	10	8	0	0.01	0	0	130	0	90	0
260512	5450263	426650	Tuff	1240	0.0002	0.15	36	1740	17	0.45	0	17	181	0	0.21	0	0	159	0	79	0
260513	5450081	426542	Tuff	1090	0.0029	0.28	9	580	0	0.53	0	9	216	0	0.17	0	0	111	0	83	0
260514	5449786	426533	Skarn	3300	0.0045	0.02	26	600	4	0.14	0	4	15	0	0.08	0	0	110	570	50	0
260515	5449677	426553	Tuff	1030	0.0049	0.04	15	650	3	1.44	0	14	157	0	0.04	0	0	136	0	64	0
260516	5449596	426587	Tuff	554	0.15	0.03	11	520	0	2.01	0	8	74	0	0	0	0	55	20	21	0.006
260517	5449449	426559	Skarn	1960	0.369	0.01	20	820	4	0.31	0	3	179	0	0.06	0	0	78	300	20	0
260518	5449449	426559	Skarn	1960	0.05	0.01	49	620	0	0.2	0	3	568	0	0.04	0	0	77	830	48	0
260519	5449449	426559	Skarn	2460	0.0065	0.01	29	670	8	0.5	0	4	522	0	0.06	0	0	82	80	149	0.005
260520	5449449	426559	Skarn	1840	0.0173	0.02	20	670	10	0	0	2	121	0	0.05	0	0	59	190	15	0
260521	5449293	426544	Skarn	2990	0.0068	0.02	32	1070	0	0.02	2	4	44	0	0.08	0	0	177	920	41	0
260522	5449275	426508	Skarn	3520	0.016	0.02	42	850	7	0.02	0	2	98	0	0.05	0	0	111	2930	46	0
260523	5449275	426508	Skarn	2480	0.0288	0.01	18	720	0	0.04	2	3	84	0	0.05	0	0	94	1280	22	0
260524	5449264	426514	Skarn	1820	0.0074	0.01	14	820	0	0.01	3	2	47	0	0.04	0	0	75	2430	20	0
260525	5449256	426517	Skarn	2490	0.0035	0.01	14	510	5	0.02	0	2	8	0	0.06	0	10	141	500	10	0
260526	5449116	426650	Skarn	2380	0.274	0.02	28	920	12	1.01	0	4	241	0	0.06	0	0	100	70	60	0
260527	5449103	426651	Granodiorite	589	0.0023	0.2	80	1530	3	0.42	0	7	192	0	0.24	0	0	83	10	45	0
260528	5449177	426646	Granodiorite	869	0.0065	0.06	74	2190	10	0.07	0	8	197	0	0.2	0	0	107	0	71	0
260529	5449216	426628	Skarn	299	0.0025	0.36	85	830	0	0.86	0	5	186	0	0.28	0	0	59	20	19	0
260530	5449147	426670	Granite	720	0.0011	0.05	47	1160	2	0.24	0	8	79	0	0.03	0	0	114	0	82	0
260531	5449078	426737	Skarn	595	0.0014	0.12	45	1010	0	0.81	0	7	109	0	0.28	0	0	99	20	33	0
260532	5449507	426650	Skarn	3180	0.0066	0.02	36	530	5	0.18	2	6	76	0	0.1	0	0	166	180	43	0.005
260533	5449502	426748	Skarn	1810	0.463	0.01	16	780	6	0.49	0	3	86	0	0.06	0	0	91	70	17	0.072
260534	5449582	426736	Skarn	2920	0.0029	0.01	27	740	20	0.01	0	3	8	0	0.07	0	0	197	230	50	0
260535	5449639	426861	Skarn	3060	0.0024	0.01	24	350	9	0.01	0	2	29	0	0.04	0	0	122	720	41	0
260536	5449639	426861	Skarn	2760	0.0195	0.01	27	760	8	0.03	0	6	26	0	0.11	0	0	97	650	92	0
260537	5449469	426664	Gabbro	244	0.001	0.3	26	960	5	0.69	0	2	214	0	0.17	0	0	38	10	20	0
260538	5449546	426836	Skarn	1850	0.0005	0.02	19	710	7	0	0	3	8	0	0.05	0	0	61	20	15	0
260539	5449480	426435	Tuff	927	0.0028	0.15	16	810	3	1.15	0	15	128	0	0.11	0	0	123	30	47	0
260540	5449410	426384	Skarn	2190	0.0291	0.01	18	540	3	0	0	2	20	0	0.04	0	0	73	830	28	0
260541	5449369	426399	Skarn	2620	0.1925	0.02	12	840	7	0	0	3	70	0	0.06	0	0	154	390	28	0
260542	5449251	426496	Skarn	3380	0.0152	0.02	21	980	6	0.02	0	3	9	0	0.05	0	0	179	1600	13	0
260543	5449961	426480	Tuff	346	0.0017	0.09	11	500	0	2.44	3	6	33	0	0.24	0	0	102	30	39	0

Note: Sample Locations are given as UTM_X and UTM_Y coordinates using NAD83 datum and Zone 11N projection.

Appendix B Bedrock Geochemical Assay Results

Table 3: Geochemical Assay Results for Bedrock Samples using the ME-ICP41 and Au-AA23 ALS Chemex Geochemical Packages.

Sample No	UTM_Y	UTM_X	Rock Type	Ag_ppm	Al_%	As_ppm	B_ppm	Ba_ppm	Be_ppm	Bi_ppm	Ca_%	Cd_ppm	Co_ppm	Cr_ppm	Cu_ppm	Fe_%	Ga_ppn	Hg_ppm	K_%	La_ppm	Mg_%
260509	5450379	426711	Tuff	0.4	1.88	20	0	10	0.6	0	0.21	0	21	26	60	5.09	10	0	0.11	10	1.15
260512	5450263	426650	Tuff	0	2.88	6	0	260	1	0	3.94	0	20	102	58	5.23	10	0	0.43	20	2.96
260513	5450081	426542	Tuff	0	2.55	3	0	20	0	0	5.88	0	13	7	36	3.92	10	1	0.06	0	1.26
260514	5449786	426533	Skarn	0	1.7	4	0	0	0	0	14.7	0	5	37	8	12.9	20	0	0.01	0	0.29
260515	5449677	426553	Tuff	0	1.4	4	0	120	0.7	0	5.21	0	15	11	97	5.36	0	0	0.2	10	1.71
260516	5449596	426587	Tuff	0.3	0.69	10	0	110	0.6	0	4.58	0	17	6	123	3.91	0	0	0.16	10	0.44
260517	5449449	426559	Skarn	0	1.05	9	0	230	0.6	0	15	0	3	28	7	11.35	10	1	0.01	0	0.35
260518	5449449	426559	Skarn	0	1.03	19	0	540	1	0	11.5	0	15	23	5	6.79	10	1	0.01	0	1.52
260519	5449449	426559	Skarn	0	1.53	13	0	200	1.1	0	18.1	0.5	10	28	25	11.5	10	2	0.02	0	0.94
260520	5449449	426559	Skarn	0	1.07	5	0	50	0.5	0	17.5	0	1	17	3	13.4	10	0	0.01	0	0.24
260521	5449293	426544	Skarn	0	1.19	7	0	60	1	0	13.75	0	5	40	3	12.4	20	0	0.03	10	0.73
260522	5449275	426508	Skarn	0	0.74	20	0	30	1.4	0	12.45	0	15	26	3	11.25	10	0	0.02	10	0.78
260523	5449275	426508	Skarn	0	0.76	15	0	700	0.9	0	11.6	0	5	24	2	9.99	10	1	0.01	0	0.41
260524	5449264	426514	Skarn	0	0.4	8	0	40	0	0	7.85	0	4	51	1	7.5	10	0	0.02	0	0.29
260525	5449256	426517	Skarn	0	0.78	16	0	20	0	0	11.15	0	0	23	1	12.1	10	0	0.01	0	0.2
260526	5449116	426650	Skarn	0.2	1.54	15	0	50	1	0	14.3	0	2	46	6	10.2	10	0	0.02	10	0.68
260527	5449103	426651	Granodiorite	0.3	2.89	5	0	270	0.8	0	3.26	0	33	100	75	3.47	10	0	0.22	20	1.5
260528	5449177	426646	Granodiorite	0	2.28	0	0	490	1	0	3.25	0	15	153	28	4.57	10	0	0.36	40	2.67
260529	5449216	426628	Skarn	0	3.66	5	0	30	0.6	0	3.45	0	60	45	132	2.38	10	1	0.06	0	0.29
260530	5449147	426670	Granite	0	1.78	11	0	60	0	0	1.73	0	25	47	9	6.02	10	1	0.24	10	1.11
260531	5449078	426737	Skarn	0	0.99	0	0	90	0.5	0	2.39	0	26	141	86	5.69	0	0	0.11	10	0.9
260532	5449507	426650	Skarn	0.2	2.37	10	0	20	0	0	15.5	0	9	43	41	10.8	10	4	0.02	0	0.8
260533	5449502	426748	Skarn	0.3	1.07	14	10	10	0	0	14.2	0	2	29	19	12.6	10	1	0.01	0	0.22
260534	5449582	426736	Skarn	0	1.83	12	0	40	0.7	0	10.5	0	3	25	5	12.6	10	0	0.01	0	0.49
260535	5449639	426861	Skarn	0	1.28	18	0	10	0.5	0	15.1	0	3	13	8	17.3	30	2	0.02	0	0.42
260536	5449639	426861	Skarn	0	2.15	0	0	20	0	0	12.6	0	4	51	1	9.8	10	3	0.01	0	0.84
260537	5449469	426664	Gabbro	0	4.38	9	0	70	0.5	0	3.16	0	29	43	160	2.03	10	0	0.1	0	0.55
260538	5449546	426836	Skarn	0.2	1.02	11	0	10	0	0	16.7	0	1	30	4	16	10	2	0.01	0	0.13
260539	5449480	426435	Tuff	0.2	1.78	7	0	150	1	0	3.95	0	15	16	137	3.83	10	1	0.15	10	1.23
260540	5449410	426384	Skarn	0	1.14	18	0	0	0	0	16.1	0	0	20	5	14.9	10	2	0.01	0	0.35
260541	5449369	426399	Skarn	0	1.22	21	0	0	0.5	0	17.4	0	0	21	28	15.9	20	3	0.02	0	0.51
260542	5449251	426496	Skarn	0	1.2	18	0	20	0	0	15.2	0	0	23	3	15.9	20	0	0.02	10	0.37
260543	5449961	426480	Tuff	0.2	1.31	6	0	30	0	0	0.76	0	17	8	114	5.63	10	0	0.09	0	0.81

Appendix C Summary of Field Expenses

Field 1: Consultant expenses	for field work from the per	iod of August 9 th to 1	3 th , 2007.		
Date	Description	Expense No	Sub-Total	GST	Total
13-Aug-07	Breakfast - NV	8	\$ 16.31	\$ 0.9	8 \$ 17.29
11-Aug-07	Breakfast - NV	12	\$ 13.32	\$ 0.8	0 \$ 14.12
12-Aug-07	Lunch-NV	15	\$ 10.09	\$ 0.6	1 \$ 10.70
12-Aug-07	Dinner - NV	21	\$ 67.25	\$ 4.03	3 \$ 71.28
11-Aug-07	Lunch-NV	22	\$ 11.78	\$ 0.7	1 \$ 12.49
11-Aug-07	Dinner -NV	23	\$ 35.17	\$ 2.1	1 \$ 37.28
10-Aug-07	Breakfast - NV	24	\$ 9.58	\$ 0.5	8 \$ 10.16
09-Aug-07	Dinner-NV	25	\$ 94.58	\$ 5.6	8 \$ 100.26
13-Aug-07	Taxi-NV	27	\$ 47.17	\$ 2.8	3 \$ 50.00
12-Aug-07	Breakfast - NV	28	\$ 24.75	\$ 1.4	9 \$ 26.24
10-Aug-07	Lunch-NV	29	\$ 4.69	\$ 0.2	8 \$ 4.97
13-Jul-07	Lunch-NV	32	\$ 12.39	\$ 0.7	4 \$ 13.13
10-Aug-07	Hotel-NV	38	\$ 110.17	\$ 6.6	1 \$ 116.78
13-Aug-07	Hotel - NV	39	\$ 332.32	\$ 19.94	4 \$ 352.26
13-Aug-07	Flight - NV	40	\$ 654.34	\$ 39.2	6 \$ 693.60
12-Aug-07	Gas - NV	45	\$ 46.65	\$ 2.8	0 \$ 49.45
Totals			\$1,490.58	\$ 89.4	3 \$ 1,580.01
		th			
Field 2: Consultant expenses	for field work from the per	iod of October 9" to	13 , 2007.	1	
Date	Description	Expense No	Sub-Total	GST	Total
09-Oct-07	Breakfast - GM	1	\$ 14.41	\$ 0.8	6 \$ 15.27
13-Oct-07	Taxi - GM	10	\$ 94.86	\$ 5.6	9 \$ 100.55
09-Oct-07	Dinner - GM	15	\$ 67.42	\$ 4.0	5 \$ 71.47
09-Oct-07	Taxi - GM	29	\$ 104.72	\$ 6.2	8 \$ 111.00
10-Oct-07	Dinner - GM	37	\$ 36.72	\$ 2.2	0 \$ 38.92
10-Oct-07	Lunch - GM	39	\$ 11.27	\$ 0.6	8 \$ 11.95
09-Oct-07	Lunch - GM	42	\$ 4.98	\$ 0.3	0 \$ 5.28
11-Oct-07	Dinner - GM	43	\$ 56.56	\$ 3.3	9 \$ 59.95
12-Oct-07	Lunch - GM	44	\$ 12.76	\$ 0.7	7 \$ 13.53
11-Oct-07	Lunch - GM	46	\$ 10.97	\$ 0.6	6 \$ 11.63
13-Oct-07	Lunch - GM	47	\$ 7.38	\$ 0.4	4 \$ 7.82
12-Oct-07	Dinner - GM	49	\$ 48.83	\$ 2.9	3 \$ 51.76
13-Oct-07	Breakfast - GM	50	\$ 9.63	\$ 0.5	8 \$ 10.21
13-Oct-07	Hotel - GM	58	\$ 491.94	\$ 29.5	2 \$ 521.46
09-Oct-07	Flight - GM	59	\$ 553.34	\$ 33.2	0 \$ 586.54
Totals			\$1,525.79	\$ 91.5	5 \$ 1,617.34
Prospector expenses incurred	i for field work	000 kma @ ć(10		¢aca co
Sample Shipmonts		909 kms @ \$0	0.40 pping		\$363.60
Totals		Grey Hound Shi	philig		\$95.90
Totals					3437.30
Total Field Work Expenses	Percentage of Exper Filed	nses Total Exen:	ses on Tenure ML516	622	
\$3,654.85	45%		\$1,6	44.68	

Table 4: Summary of Field Expenses Incurred during Field Programs

Appendix D

References

T. Höy et. al., 1994, "The Geology of the Kootenay Mineral Assessment Region", BCMEMPR Open File 1994-08, (<u>http://www.em.gov.bc.ca/mining/Geolsurv/Publications/OpenFiles/OF1994-</u>08/toc.htm)

Appendix E Certificate of Author

Richard T. Osmond GeoVision Geosciences Inc. 23678 108th Loop, Maple Ridge, BC, V2W 1B2 T:604-466-0425, E:rosmond@shaw.ca

I, Richard Osmond, P. Geo. (#31246), do hereby certify that:

- 1. I am the President and Senior Consultant with GeoVision Geosciences Inc. providing executive and technical services to the mining and exploration industry.
- 2. I hold a B.Sc. (Hon) in Earth Science majoring in Geology/Geophysics (1990) from Memorial University of Newfoundland, St. John's, Newfoundland.
- 3. I am the registered Professional Geoscientist with the Association of Professional Engineers and Geosciences of BC (APEG) under Membership Number 31246. I am also registered as a Géologue with the Odres des Géologue du Québec (OGQ) under Membership Number 462.
- 4. I have worked in the mineral exploration industry for more than 15 years as both an Exploration Geologist and Geophysicist.
- I am responsible for the preparation of all sections of this report "Report of Gelogical Mapping, Prospecting and Bedrock Geochemical Sampling on Mineral Tenure ML516622" dated December 31st, 2007.

Dated this 31st Day of December,

Richard T. Osmond, P.Geo.

Appendix F

ALS Chemex Assay Certificates

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: CASCADIA INTERNATIONAL RESOURCES 23678 108TH LOOP MAPLE RIDGE BC V2W 1B2

Page: 1 Finalized Date: 10-SEP-2007 Account: CASINT

CERTIFICATE VA07090002		SAMPLE PREPARATION	
	ALS CODE	DESCRIPTION	
Project: NV P.O. No.: This report is for 43 Rock samples submitted to our lab in Vancouver, BC, Canada on 16-AUG-2007. The following have access to data associated with this certificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	
		ANALYTICAL PROCEDURI	ES
	ALS CODE	DESCRIPTION	INSTRUMENT
	Au-AA23 ME-ICP41	Au 30g FA-AA finish 35 Element Aqua Regia ICP-AES	AAS ICP-AES

To: CASCADIA INTERNATIONAL RESOURCES ATTN: RICHARD OSMOND 23678 108TH LOOP MAPLE RIDGE BC V2W 1B2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

aurance (1)

Lawrence Ng, Laboratory Manager - Vancouver

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Lid.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: CASCADIA INTERNATIONAL RESOURCES 23678 108TH LOOP MAPLE RIDGE BC V2W 1B2 Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 10-SEP-2007 Account: CASINT

Project: NV

CERTIFICATE OF ANALYSIS VA07090002

	Method	WEI-21	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41 Co	ME-1CP41 Fe	ME-ICP41 Ga
	Analyte	KECVO WL	Ag	AL	AS	B	Dia	De		va ₽				~~~	 v.	0070
Sample Description	Units	Kg	opm 0.0	%	ppm	ppm 10	ppm 40	ppm o s	ppm 2	70 D.01	n s	ppn 1	ppm 1	1	ត្រូក1	10
annihia maanihiidid		0.02	Q.2	0.01		10	, iv	0.0		0.01	4.5	'	•			
E260501		1.24	<0.2	2.17	9	<10	110	<0.5	2	0.92	<0.5	10	19	30	3.90	10
E260502		1.30	0.2	5.66	5	<10	40	Q.7	2	3.73	<0.5	11	12	231	2.74	10
E260503		0.90	0.4	3.45	6	<10	30	<0.5	3	1.57	<0.5	15	18	426	5.96	10
E260504		1.34	0.3	2.06	20	<10	50	<0.5	<2	0.58	<0.5	26	19	140	6.42	10
E260505		1.90	<0.2	1.57	5	<10	30	0.6	<2	3.94	<0.5	10	35	21	3.32	<10
E260506		1.32	<0.2	0.37	3	<10	30	0.5	<2	0.19	<0.5	3	3	10	1.74	<10
E260507	4	1.14	<0.2	1.07	10	<10	50	1.2	<2	3.30	<0.5	11	46	21	3.92	10
E260508		1.20	0.3	0.99	7	<10	50	<0.5	<2	0.85	0.6	15	19	80	4.19	<10
E260509		1.14	0.4	1.88	20	<10	10	0.6	<2	0.21	<0.5	21	26	60	5.09	10
E260510		0.90	<0.2	0.73	7	<10	30	<0.5	<2	1.58	<0.5	19	136	49	2.38	<10
E260511		1.26	0.3	1.81	24	<10	60	1.7	<2	2.95	<0.5	17	12	50	5.63	10
E260512		0.90	<0.2	2.88	6	<10	260	1.0	<2	3.94	<0.5	20	102	58	5.23	10
E260513		1.20	<0.2	2.55	3	<10	20	<0.5	<2	5.88	<0.5	13	7	36	3.92	10
E260514		1.74	<0.2	1.70	4	<10	<10	<0.5	<2	14.7	<0.5	5	37	8	12.90	20
E260515		1.94	<0.2	1.40	4	<10	120	0.7	<2	5.21	<0.5	15	11	97	5.36	<10
E260516		1.58	0.3	0.69	10	<10	110	0.6	<2	4.58	<0.5	17	6	123	3.91	<10
E260517		1.50	<0.2	1.05	9	<10	230	0.6	<2	15.0	<0.5	3	28	7	11.35	10
E260518		1.06	<0.2	1.03	19	<10	540	1.0	<2	11.50	<0.5	15	23	5	6.79	10
E260519		1.74	<0.2	1.53	13	<10	200	1.1	<2	18.1	0.5	10	28	25	11.50	10
E260520		1.50	<0.2	1.07	5	<10	50	0.5	<2	17.5	<0.5	1	17	3	13.40	10
E260521		1.62	<0.2	1.19	7	<10	60	1.0	<2	13.75	<0.5	5	40	3	12.40	20
E260522		1.22	<0.2	0.74	20	<10	30	1,4	<2	12.45	<0.5	15	26	3	11.25	10
E260523		1.94	<0.2	0.76	15	<10	700	0.9	<2	11.60	<0.5	5	24	2	9.99	10
E260524		1.48	<0.2	0.40	8	<10	40	<0.5	<2	7.85	<0.5	4	51	1	7.50	10
E260525		1.74	<0.2	0.78	16	<10	20	<0.5	<2	11.15	<0.5	<1	23		12.10	10
E260526		1.92	0.2	1.54	15	<10	50	1.0	<2	14.3	<0.5	2	46	6	10.20	10
E260527		0.72	0.3	2.89	5	<10	270	0.8	<2	3.26	<0.5	33	100	75	3.47	10
E260528		0.52	<0.2	2.28	<2	<10	490	1.0	<2	3.25	<0.5	15	153	28	4.57	10
E260529		1.16	<0.2	3.66	5	<10	30	0.6	<2	3.45	<0.5	60	45	132	2.38	10
E260530		1.32	<0.2	1.78	11	<10	60	<0.5	<2	1.73	<0.5	- 25	47	9	6.02	10
E260531		1.48	<0.2	0.99	<2	<10	90	0.5	<2	2.39	<0.5	26	141	86	5.69	<10
E260532		2.32	0.2	2.37	10	<10	20	<0.5	<2	15.5	<0.5	9	43	41	10.80	10
E260533		1.52	0.3	1.07	14	10	10	<0.5	<2	14.2	<0.5	2	29	19	12.60	10
E260534		1.40	<0.2	1.83	12	<10	40	0.7	<2	10.50	<0.5	3	25	5	12.60	10
E260535		3.02	<0.2	1.28	18	<10	10	0.5	<2	15.1	<0.5	3	13	8	17.3	
E260536		2.18	<0.2	2.15	<2	<10	20	<0.5	<2	12.60	<0.5	4	51	1	9.80	10
E260537		0.98	<0.2	4.38	9	<10	70	0.5	<2	3.16	<0.5	29	43	160	2.03	10
E260538		88.0	0.2	1.02	11	<10	10	<0.5	<2	16.7	<0.5	1	30	4	16.0	10
E260539		1.12	0.2	1.78	7	<10	150	1.0	<2	3.95	<0.5	15	16	137	3.83	10
E260540		2.30	<0.2	1.14	18	<10	<10	<0.5	<2	16.1	<0.5	<1	20	5	14.9	10

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: CASCADIA INTERNATIONAL RESOURCES 23678 108TH LOOP MAPLE RIDGE BC V2W 1B2

CERTIFICATE OF ANALYSIS VA07090002

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 10-SEP-2007 Account: CASINT

Project: NV

																	_
Sample Description	Method Analyte Unite LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 No % 0.0001	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	-
E260501		2	0.30	<10	1.77	923	0.0003	0.14	13	900	2	0.08	<2	7	70	<20	-
E260502		1	0.13	<10	0.50	270	0.0002	0.48	12	830	2	1.13	<2	4	197	<20	
E200503		<1	0.12	<10	0.47	255	0.0019	0.17	10	680	2	0.86	<2	8	90	<20	
E200004		2	0.48	<10	1.43	563	0.0006	0.12	18	610	<2	3.28	<2	9	41	<20	
E200503		1	0.19	10	1.36	928	0.0002	0.02	37	770	<2	0.16	2	5	97	<20	
E260506		<1	0.13	70	0.03	229	0.0005	0.04	1	640	19	0.24	2	1	16	30	
E20000/		2	0.15	70	1.14	870	0.0002	0.03	20	1940	5	0.18	<2	5	196	<20	
E200000		1	0.10	10	0.70	384	0.0004	0.09	30	970	2	1.47	3	6	33	<20	
E200009		<1	0.11	10	1.15	837	0.0010	0.04	47	570	<2	1.01	<2	10	8	<20	
E200010		<1	0.06	<10	0.55	450	0.0001	0.10	138	630	<2	1.23	<2	2	63	<20	
E260511		2	0.17	10	1.55	860	0.0006	0.04	18	1450	3	0.67	<2	10	161	<20	-
E260512		<1	0.43	20	2.96	1240	0.0002	0.15	36	1740	17	0.45	<2	17	181	<20	
E260513		1	0.06	<10	1.26	1090	0.0029	0.28	9	580	<2	0.53	<2	9	216	<20	
E260514		<1	0.01	<10	0.29	3300	0.0045	0.02	26	600	4	0.14	<2	4	15	<20	
E260515		<1	0.20	10	1.71	1030	0.0049	0.04	15	650	3	1.44	<2	14	157	<20	
E260516		<1	0.16	10	0.44	554	0.1500	0.03	11	520	<2	2.01	<2	8	74	<20	-
E260517		1	0.01	<10	0.35	1960	0.369	0.01	20	820	4	0.31	<2	3	179	<20	
E260518		1	0.01	<10	1.52	1960	0.0500	0.01	49	620	<2	0.20	<2	3	568	<20	
E260519		2	0.02	<10	0.94	2460	0.0065	0.01	29	670	8	0.5	<2	4	522	<20	
E260520		<1	0.01	<10	0.24	1840	0.0173	0.02	20	670	10	<0.01	<2	2	121	<20	
E260521		<1	0.03	10	0.73	2990	0.0068	0.02	32	1070	<2	0.02	2	4	44	<20	-
E260522		<1	0.02	10	0.78	3520	0.0160	0.02	42	850	7	0.02	<2	2	98	<20	
E260523		1	0.01	<10	0.41	2480	0.0288	0.01	18	720	<2	0.04	2	3	84	<20	
E260524		<1	0.02	<10	0.29	1820	0.0074	0.01	14	820	<2	0.01	3	2	47	<20	
E260525		<1	0.01	<10	0.20	2490	0.0035	0.01	14	510	5	0.02	<2	2	8	<20	
E260526		<1	0.02	10	0.68	2380	0.274	0.02	28	920	12	1.01	<2	4	241	<20	-
E260527		<1	0.22	20	1.50	589	0.0023	0.20	80	1530	3	0.42	<2	7	192	<20	
E260528		<1	0.36	40	2.67	869	0.0065	0.06	74	2190	10	0.07	<2	8	197	<20	
E260529		1	0.06	<10	0.29	299	0.0025	0.36	85	830	<2	0.86	<2	5	186	<20	
E260530		1	0.24	10	1.11	720	0.0011	0.05	47	1160	2	0.24	<2	8	79	<20	
E260531		<1	0.11	10	0.90	595	0.0014	0.12	45	1010	<2	0.81	<2	7	109	<20	-
E260532		4	0.02	<10	0.80	3180	0.0066	0.02	36	530	5	0.18	2	6	76	<20	
E260533		1	0.01	<10	0.22	1810	0.463	0.01	16	780	6	0.49	<2	3	86	<20	
E260534		<1	0.01	<10	0.49	2920	0.0029	0.01	27	740	20	0.01	<2	3	8	<20	
E260535		2	0.02	<10	0.42	3060	0.0024	0.01	24	350	9	0.01	~	2	29	<20	
E260536		3	0.01	<10	0.84	2760	0.0195	0.01	27	760	8	0.03	<2	6	26	<20	-
E260537		<1	0.10	<10	0.55	244	0.0010	0.30	26	960	5	0.69	<2	2	214	<20	
E260538		2	0.01	<10	0.13	1850	0.0005	0.02	19	710	7	<0.01	<2	3	8	<20	
E260539		1	0.15	10	1.23	927	0.0028	0.15	16	810	3	1.15	<2	15	128	<20	
E260540		2	0.01	<10	0.35	2190	0.0291	0.01	18	540	3	< 0.01	<2	2	20	<20	

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: CASCADIA INTERNATIONAL RESOURCES 23678 108TH LOOP MAPLE RIDGE BC V2W 1B2

CERTIFICATE OF ANALYSIS VA07090002

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 10-SEP-2007 Account: CASINT

Project: NV

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm (0	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Au-AA23 Au ppm 0.005	
E260501		0.28	<10	<10	123	10	81	< 0.005	
E260502		0.11	<10	<10	54	10	25	< 0.005	
E260503		0.12	<10	<10	106	<10	28	< 0.005	
E260504		0.22	<10	<10	110	<10	80	< 0.005	
E260505		<0.01	<10	<10	78	<10	64	< 0.005	
E260506		<0.01	<10	<10	16	<10	23	<0.005	
E260507		0.01	<10	<10	67	<10	71	<0.005	
E260508		0.14	<10	<10	80	<10	62	<0.005	
E260500		0.14	<10	<10	130	<10	02	<0.005	
E260510		0.07	<10	<10	49	<10	17	<0.005	
2200010		0.01	- 10		40	10	13	~0.000	
E260511		0.06	<10	<10	172	<10	122	< 0.005	
E260512		0.21	<10	<10	159	<10	79	<0.005	
E260513		0.17	<10	<10	111	<10	83	<0.005	
E260514		0.08	<10	<10	110	570	50	< 0.005	
E260515		0.04	<10	<10	136	<10	64	< 0.005	
E260516		<0.01	<10	<10	55	20	21	0.006	
E260517		0.06	<10	<10	78	300	20	<0.005	
E260518		0.04	<10	<10	77	830	48	<0.005	
E260519		0.06	<10	<10	82	80	149	0.005	
E260520		0.05	<10	<10	59	190	15	<0.005	
E260521	_	0.08	<10	<10	177	920	41	<0.005	
E260522		0.05	<10	<10	111	2930	46	< 0.005	
E260523		0.05	<10	<10	94	1280	22	< 0.005	
E260524		0.04	<10	<10	75	2430	20	< 0.005	
E260525		0.06	<10	10	141	500	10	<0.005	
E260526		0.06	<10	<10	100	70	60	<0.005	
E260527		0.24	<10	<10	83	10	45	< 0.005	
E260528		0.20	<10	<10	107	<10	71	< 0.005	
E260529		0.28	<10	<10	59	20	19	< 0.005	
E260530		0.03	<10	<10	114	<10	82	<0.005	
E260531		0.28	<10	<10	99	20	33	<0.005	
E260532		0.10	<10	<10	166	180	43	0.005	
E260533		0.06	<10	<10	91	70	17	0.072	
E260534		0.07	<10	<10	197	230	50	<0.005	
E260535		0.04	<10	<10	122	720	41	<0.005	
E260536		0.11	<10	<10	97	650	92	<0.005	
E260537		0.17	<10	<10	38	10	20	<0.005	
E260538		0.05	<10	<10	61	20	15	<0.005	
E260539		0.11	<10	<10	123	30	47	<0.005	
E260540		0.04	<10	<10	73	830	28	<0.005	

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Lid.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: CASCADIA INTERNATIONAL RESOURCES 23678 108TH LOOP MAPLE RIDGE BC V2W 1B2 Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 10-SEP-2007 Account: CASINT

Project: NV

CERTIFICATE OF ANALYSIS VA07090002

Sample Description	Nethod Analyte Units LOR	WEI-21 Recvd WI. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 AJ % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0:01	ME-ICP41 Cd ppm 0.5	ME-KCP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
E260541 E260542 E260543		2.06 1.62 1.40	<0.2 <0.2 0.2	1.22 1.20 1.31	21 18 6	<10 <10 <10	<10 20 30	0.5 ⊲0.5 ⊲0.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	17.4 15.2 0.76	<0.5 <0.5 <0.5	<1 <1 17	21 23 8	28 3 114	15.9 15.9 5.63	20 20 10
		- - - -													-	

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: CASCADIA INTERNATIONAL RESOURCES 23678 108TH LOOP MAPLE RIDGE BC V2W 1B2

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 10-SEP-2007 Account: CASINT

Project: NV

CERTIFICATE OF ANALYSIS VA07090002

Sample Description	Nethod Analyte Units LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mo ppm 5	ME-ICP41 Mo % 0.0001	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-1CP41 Th ppm 20
E260541 E260542 E260543		3 <1 <1	0.02 0.02 0.09	<10 10 <10	0.51 0.37 0.81	2620 3380 346	0.1925 0.0152 0.0017	0.02 0.02 0.09	12 21 11	840 980 500	7 6 <2	<0.01 D.02 2.44	<2 <2 3	36	70 9 33	<20 <20 <20

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: CASCADIA INTERNATIONAL RESOURCES 23678 108TH LOOP MAPLE RIDGE BC V2W 1B2 Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 10-SEP-2007 Account: CASINT

Project: NV

									CERTIFICATE OF ANALYSIS VA07090002
Sample Description	Method Analyte Units LOR	ME-(CP4) Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-JCP41 Zn ppm- 2	Au-AA23 Au ppm 0.005	
E260541 E260542 E260543		0.06 0.05 0.24	<10 <10 <10	<10 <10 <10	154 179 102	390 1600 30	28 13 39	<0.005 <0.005 <0.005	

LEGEND

- Fault

- Forest Road

- Inferred Geological Contact

- Skarn Alteration

- Altered Tuff

- Granodiorite

- Gabbro / Diorite

- Skarn Outcrop

Altered Tuff Outcrop

- Granodiorite Outcrop

- Gabbro / Diorite Outcrop

Scale 1: 1000

UTM NAD82 Zonew 11N 60 0

120 Meters

GeoVision Geosciences Inc.

MAP 2 Detailed Geology Goat Mountain Property

Designed For:
Cascadia International Resources Inc.
Datum / Projection:
UTM NAD82 Zonew 11N

LEGEND

- Known Occurences (York)

- Sample Location

- Inferred Fault

- Forest Road

- Inferred Geological Contact

- Skarn Alteration

- Altered Tuff

- Granodiorite

- Gabbro / Diorite

- Skarn Outcrop

- Altered Tuff Outcrop

- Granodiorite Outcrop

- Gabbro / Diorite Outcrop

Scale 1: 1000

UTM NAD82 Zonew 11N 50 0 100 Meters

GeoVision Geosciences Inc.

MAP 3 Geological Compilation Map Goat Mountain Property

Designed For:
Cascadia International Resources Inc.
Datum / Projection:
UTM NAD82 Zonew 11N

LEGEND

- Sample Location

- Fault

- Forest Road

- Inferred Geological Contact

Meta-Sediment Outcrop
Meta-Limestone Outcrop

- Skarn Outcrop

- Altered Tuff Outcrop

- Granodiorite Outcrop

- Gabbro / Diorite Outcrop

Scale 1: 2000

UTM NAD82 Zonew 11N 100 0

200 Meters

sion G	eosciences Inc.
MA ample Mounta	P 4 Location Map ain Property
	Designed For:

Designed For:
Cascadia International Resources Inc.
Datum / Projection:
UTM NAD82 Zonew 11N

LEGEND

- Sample Location

- Fault

- Forest Road

- Inferred Geological Contact

Meta-Sediment Outcrop
Meta-Limestone Outcrop
Skarn Outcrop
Altered Tuff Outcrop

- Granodiorite Outcrop

- Gabbro / Diorite Outcrop

Scale 1: 2000

UTM NAD82 Zonew 11N

230 Meters

GeoVision Geosciences Inc.

MAP 4 Rock Sample Location Map Goat Mountain Property

Designed For:
Cascadia International Resources Inc.
Datum / Projection:
UTM NAD82 Zonew 11N